4,

man N8

DEPARTMENT OF STATE.

north americas
 REPORTS

SURVEY OF THE BOUNDARY
 BETWEEN THE

TERRITORY OF THE UNITED STATES
 AND TIE

POSSESSIONS OF GREAT BRITAIN

FROM THE
Lake of THE W00DS T0 THE SUMMIT OF THE ROCKY MOUNTAINS, AUTHORIZED BY

AN ACT OF CONGRESS APPROVED MAROH 19, 187:.

ARCEIBALD CAMPBELL, Esq., comoussioner.

Captain W. J. TWining,
CORPS OF ENGINEERS, brevet major D. s. a., Chief astronomer.

PUBLISHED IN ACCORDANCE WITH AN ACT OF CONGRESS APPROVED MARCII 3, $18: 7$.

WASHINGTON:
GOVERNMENT PRINTING OFFICE. 1S7S.
[44til Congress, 2d Session. Senate Ex. Doc. No. 41.]

message

From THE

PRESIDENT OF THE UNITED STATES.

communicatini

information in relation to the boundaky-line between the united states and the possessions of great britain,

FHOM TUE

NORTIIWEST ANGLE OF TIIE LaKE OF THE WOODS TO THE SUMMIT OF TIIE ROCKY MOUNTAINS.

February ${ }^{2}$, 18:\%.-Rearl, ordered to lio on the tahle and be printed.

To the Senate and House of Representatives:

I transmit herewith a report from the Secretary of State bearing date the 20 th instant, with its accompaniments, being the report of the commissioner of the United States and of the officers of engineers attached to the commission appointed to determine the boundary-line between the United States and the possessions of Great Britain, from the northwest angle of the Lake of the Woods to the summit of the Rocky Mountains. These reports announce the completion of the labors of this commission, whereby the entire boundary-line between the United States and the possessions of Great Britain is marked and determined, except as to that part of the territory of the United States which was ceded by Russia under the treaty of 1867.

> U. S. GRANT.

Washington, February 23, 1877.

Department of State,
Washington, February 23, 1877.
By the act of March 19, 1872, entitled " $A \mathrm{n}$ act anthorizing the survey and marking of the boundary between the territory of the United States and the possessions of Great Britain, from the Lake of the Woods to the summit of the Rocky Mountains," the President was authorized to co-operate with the Govermment of Great Britain in the appointment of a joint commission for determining such boundary-line between these points.

This boundary to be determined was that defined in the second article of the convention between the United States and Creat Britain of October 20 , 181s, whereby it was provided "that a line drawn from the most north-

REPORTS

OF THE

COMMISSIONER AND OF THE CWEF ASTRON0NER
 OF THE

NORTHERN BOUNDARY.
\square

United States Northern Boundary Commission, Washington, July 3, 1876.

Sir: I have the homor to transmit herewith the original of the final agreement of the commissioners, the original "List of astronomical stations observed," the original official "List of monmments marking the international bomdary-line," and the maps, records, and reports relating to the northern boundary commission, as enumerated in the accompanying letter of the chief astronomer.

I would also respectfully report that with the exception of a few expenditures necessary in closing the office, not included in my accounts for the quarter ended June 30, 1876, but for which vouchers will be rendered in a few days, all office-expenses lave ceased.

I have the honor to be, very respectfully, your obedient servant,
ARCHIBALD CAMPBELL, Commissioner Northern Boundery Survey.
Hon. Hamilton Fisif, Secretary of State.

United States Northern Boundary Commission, Washington, D. C., June 30, 1876.

Sir: I respectfully trausmit the following official records and documents relating to this survey:

First. Portfolio containing originals of preliminary maps of the survey.
Second. Portfolio containing the joint maps signed by the commissioners and chief astronomers.

Third. Two boxes marked "U. S. Northern Boundary Commission, 1872-1876. Under convention of London, Oct. 20, 1818."
(First.) "Book records."
(Second.) "Map records."
The contents are marked on the cover of each box, and all indexed and refened to in detail in the accompanying paper, marked "Appendix F to the report of Capt. W. J. 'Twining, Corps of Engineers, chief astronomer."

Fourth. Appendix A to report of chief astronomer, being the report of Capt. J. F. Gregory, assistant astronomer.

Fifth. Appendix B, being the report of Lient. F. V. Greene, assistant.
Sixth. Appendix C', hypsometry.
Seventh. Appendix I, being a bound copy of the astronomical and geodetic results of the smrey, accompanied by a descriptive memoir by Capt. IV. J. Twining, chief astronomer.

Eighth. Appendix E, giving the complete details of the monuments marking the bomdary, inchoding the calculated azimuths from each.

Ninth. Appendix F, index to maps, showing the record by pages on which each map is based.

Tenth. Appendix G, giving the latitude-observations on which the reconnaissance-maps are based, parts 1 and 2.

I also tramsmit the following maps and diagrams:

1. Reconnaissance-maps, 6 sheets.
2. Profile, 1 sheet.
3. Diagram to ilhustrate the relative errors of astronomical stations in latitude, resulting from local deflections of the phumb-line.
4. Diagram showing method of tracing parallel.
5. Sketch showing triangulation of Chief Mountain Lake.
6. Mip of the vitinity of the northwest point of the Lake of the Woods; scale, 6 inches $=1$ mile.
7. Magnctic chart.
8. Hrawings of instroment-stands.
9. Datwing of targets.
10. Jifty soto photolithographe of proliminary maps

The portions of my report not yet complete are as follows:

1. Appendix H, by Mr. Lewis Boss, on the standard declinations of the stars used in the latitude work.

This important appendix is to be completed, without further expense to the commission, by Mr. Boss, with the assistance of Professor Neweomb, of the Naval Observatory, and the Nautical Almanac Office.
2. Text of report of chief astronomer, in hands of copying-clerk, and waiting completion of Appendix H .

I am, very respectfully, your obedient servant,
W. J. TWINING,

Captain Engineers, Chief Astronomer.
Archibald Campbell, Esq., Commissioner Northern Boundary.

dnited states nortilern boundary commision.

REPORT OF COMMISSIONER ARCHIBALD CAMIPBELL.

$$
1872-1876
$$

REPORT.

United States Northern Boundary Commission, Washington.

SIR: In compliance with instructions received from the Department upon my appointment as "commissioner on the part of the United States to determine and mark the boundary-line between the United States and British possessions, as defined in the second article of the convention between the United States and Great Britain of October 20, 1818," I have the honor herewith to report generally the results of the labors of the commission, and to tromsmit the detailed report of the same by Maj. W. J. Twining, United States Engineers, chief astronomer, as far as completed.

The second article of the convention of 1818 , above referred to, is as follows:

Aricicle 2. It is agreed that a line drawn from the most northwestern point of the Lake of the Woods, along the forty-ninth parallel of north latitnde, or, if the said point shall not be in the forty-ninth parallel of north latitude, then that a line drawn from the said point due nortl or south as the ease may be, until the said line sball interseet the said parallel of north latitude, and from the point of sneb intersection due west along and with the said parallel, shall be the line of demarkation between the territories of the United States, and those of His Britannic Majesty, and that the said line shall form the northern bomudary of the said territories of the United States, and the sonthern boundary of the territories of His Britannie Majesty, from the Lake of the Woods to the Stony Mountains.

The immediate cause of the authorization by Congress of the determination and demarkation of this portion of the boundary-line between the United States and British possessions is stated by the President in his ammal message to Congress, dated December 5, 1ヶ70, third session of Forty-first Congress, as follows:

N B —— 2

In April last, while engaged in locating a military reservation near Pembina, a corps of United States engineers discovered that the commonls-received boundary-line betwen the United States and the British possessions at that place is about fortyseven hundred feet south of the true position of the forty ninth parallel, and that the line, when run on what is now smposed to be the the position of the forty-ninth parallel, would leave the fort of the Hudson Bay Company, at Pembina, within the territory of the United States. This information being communicated to the British Government, I was requested to consent, and did consent, that the British occupation of the fort of the Hudson Bay Company should continue for the present. I deem it important, howerer, that this part of the bomdary-line shonld be definitels fixed by a joint commission of the two governments, and I submit berewith estimates of the expense of such a commission on the part of the United States, and recommend that an appopiation be made for that purpose. The land boundary has already been fixed ant marked from the summit of the Rocky Mountains to the Georgian Bay. It should now be in like manner maked from the Lake of the Woods to the summit of the Rocky Mountains.

The President's message is accompanied by a eorrespondence between the State, 'Treasury, and War Departments, and between the State Department and british minister, in relation to the difficulties on the frontier arising from the menctainty as to the true position of the boundary ; and also by an estimate of the fobsable cost of a commission for surveying and marking the Jommdiny between the Cnited States and British possessions, made by Gencral Inmphreys, Chief of Engineers, in compliance with the request of the State lepartment. The following is a copy of the letter tramsmittins the estimate:

> Office of the Cinef of Exgineers, Wastington, I. C., Norember $23,1570$.

SIR : In reply to the commmication of the 7 th instant from the Department of State asking for an estimate of the prohable cust of surveying and making the bonndary between the United states and the British possessions, hom the Lake of the Woods to the Roeky Momntains, I beg to reply that a moperly-organized commission, with two sets of astronomical and surveying parties to expedite the work, would require, from the estimate hereunto annexed, an expenditure ot ahont $\$ 100,000$ gealy while aethally engaged upon tield-duties.

But it is not possible to state with certanty the length of time required to trace and man the whole line, as the progress that would be mate depends upon the nature of the country to be passed over.

The line is about dight humded and sixty miles long. The season for working to atlontage is short, aml although the country is gemerally an open one, the number of astronomical stations to be ocenpicd, upon which the rate of progress manly rests, depends so much npon the distance of prominent points of devation from each other, that thes camot be cestimaterd.

From one month to six wreks womld, no dombt, making due allowance for bad
weather, be required to establish astronomically a point on the parallel, to trace its connection with a preceding one, and to move the party to the next. Shonld these points arerage fifty miles apart, there mould be some serenteen stations, or, say, eight stations for each astronomical party to occupy, which would consume from eight to twelve mouths' actual field duty for the completion of the line.

It is not probable that the parties can be kept in the dield continnously for this length of time, but that the work would have to mu through two seasons at least, if not longer.

The services of the officers and the greater part of the assistants would be required for another year on office-work to complete the records of the survey, so that the probable expense which would be incurred for completing the work might be set down at $\$ 325,000$.

Officers of engineers have been frequently assigned to perform such duties as these, and if the demarkacion of this bonndary shonld be confided to them, the estimate should be modified.

Very respectfully, your obedient serrant,

> A. А. НUMPHREYS, Brigadier-Gencral and Chief of Engineers.

Hon. W. W. Belfinap, Seeretary of W'rr.
In compliance with the recommendation of the President, a joint resolution appropriating $\$ 100,000$ for the survey of the boundary-line between the United States and the British possessions, from the Lake of the Woods to the Rocky Mountains, was introduced into and passed the Honse of Representatives, but, from want of time or other canse, it filited to pass the Senate. At the succeeding session of Congress, 187!-72, the following act passed both houses and became a law, viz:
AN ACT anthorizing the survey and marking the bomdary between the territory of the United States and the possessions of Great Britain, from the Lake of the Woods to the summit of the Rocky Mountains.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assemblet, That the President of the United States, by and with the adrice and consent of the Senate, be, and he is hereby, authorized to co-operate with the Gorernment of Great Britain in the appointment of a joint commission, in accordance with the plan and estimates of Brig. Gen. A. A. Humplireys, Chief of Engineers, submitted Norember twentr-third, eighteen hundred and seventy, for determining the bommaryline between the United States and the British possessions, between the Lake of the Woods and the Rocky Mountains: Prorided, hacever, That engineers in the regular service of the United States shall be employed exclusively as engineers in the performance of the duties contemplated by this act, without any additional salary, and the Secretary of War is herebs directed to make the necessary detail of engineers for that purpose.

SEC. 2. That fifty thousand dollars, or so mell thereof as may be required, be, and the same is herebs, appropriated, ont of any money in the Treasury not otherwise appropriated, to carry into effect the object of said joint commission.

Approved March 19, 1872.

The amount of the appropriation for one year, according to the estimate of General Humphreys, should have been $\$ 100,000$, but it was reduced by Congress to $\$ 50,000$, a sum insufficient for a vigorous and economical prosecution of the work, particularly during the first year, as many purchases had to be made for an outfit. In consequence of this reduction, the organization of the commission was deferred by the Department until the month of June, when I received the appointment of commissioner, with instructions to organize a party for the survey of the boundary, in accordance with the means provided by Congress.

In compliance with the terms of the act creating the commission, the Chief of Engineers, by direction of the Secretary of War, detailed the following engineer officers for duty with the commission, viz: Capt. and Bvt. Lieut. Col. F. U. Farquhar, Capt. and Bvt. Maj. W. J. Twining, Capt. (then Lieut.) James F. Gregory, and Lieut. F. V. Greene.

An office was temporarily rented in Waslington for the necessary preparations for the survey. Early in July, Colonel Farquhar, with the engineer officers and civil assistants attached to the commission, left Washington for Saint Paul, Minn., and there organized a party for field operations.

Previously to leaving Waslington, upon a request made to the Secretary of War, the Quartermaster-General was directed to furnish the commission with the necessary means of transportation for the field-work of the survey, with the understanding that the mules, wagons, \mathcal{E} c., furnished were to be returned in good condition at the close of the work in the field. The train was directed to assemble at Fort Abercrombie, on Red River, there to await the arrival of the commission.

On my arrival in Saint Paul, Second Lieut. O. D. Ladley, Twentysecond Infantry, who had been detailed by Maj. Gen. W. S. Hancock, then in command of the Department of Dakota, to act as quartermaster and commissary to the commission, reported to me in person and was directed to proceed to Fort Abercrombie in advance of the commission, to put the train in readiness for the march to Fort Pembina, near the forty-ninth parallel.

The purchase of supplies for the season's work being made, and the employés required being sectured, the commission left Saint Paul for Fort

Abercrombie, and on the 29th of August, with the train, started thence northward for Fort Pembina, and reached that post on the 5th of September. Capt. Loyd Wheaton, of the Twentieth Infantry, the officer in command of that post, rendered the commission efficient assistance and facilitated its operations. General Hancock, having detailed Capt. A. A. Harbach's company, K, Twentieth Infantry, as escort to the commission, I found them there in readiness to enter upon the duties assigned them.

The encampment of the commission was at once established in the vicinity of the forty-ninth parallel, near the post erected by Colonel Long in the year 1823, by direction of the govermment, to mark a point on the boundary-line between the United States and Britislı possessions. Colonel Long at that time was engaged in an expedition to the source of Saint Peter's River, Lake of the Woods, \&c. In the narrative published in 1824, compiled from his notes, he makes the following statement:

The main olject of the party in visiting this place (Pembina) being the determination of the forty-ninth degree of latitude, Mr. Calhoma lost no time in taking observations. The first one which he made was near Mr. Nolen's house, and, although not very satisfactory, yet it showed that we were near to the bomudary-line, as it indicated $45^{\circ} 59^{\prime} 27^{\prime \prime}$. We then pitched our camp a litfle farther down on the bank of the river, and, as near as we could judge, to the boundary-line. A large skin-lodge, which was lent to us, sheltered the gentlemen of the party during our stay there. Our tent-flies were pitched aronnd it for the use of the soldiers. In honor of the President of the United States, this place received the name of Camp Monroc. A flag-stafl was planted, which, after a series of observations made during four days, was determined to be in latitude $48^{\circ} 59^{\prime} 27^{\prime \prime}$ north. The maguetic meridian having been aseertained to bo 13° $17^{\prime} 25^{\prime \prime}$ east, the distance to the bondary-line was measured off, and an oak post fixed on it, bearing on the north side the letters G. B., and on the south side, U. S. On the Sth of August at noon the flag was hoisted on the staff, which bore sonth $44^{\circ} 95^{\prime}$ west of the post at a distance of $207 \frac{1}{2}$ feet. A national salnte ras fired at the time, and a proclamation made by Colonel Long that, by virtue of the authority rested in him by the President of the United States, the comutry sithated upon Red Liver above that point was declared to be compreheuded within the territory of the Uuited States. (pi. 46 and 47, Long's Narrative of an Expedition to the Sonree of Saint Peter's River, Lake Wimepeg, Lake of the Woods, \&e., performed in the year 1823, by order of the Hon. John C. Calhenn, Secretary of War.)

When astronomical observations and surveys to determine the boundaryline were commenced by the commission, the season had reached the middle of September, leaving a comparatively short period of time for fich-work in this high latitude. 'The British commissioner, Capt. D. Ri. Camerm, li. A.,
and the British chicf astronomer, Capt. S. Auderson, R. E., reached Bembina on the 16 th and 18 th of September. On the latter day the first meeting of the joint commission took place, and a general pan of operations was agreed upon for the remainder of the season.

The mode of smreving and marking the boundary was discussed, and it was agreed that a point on the forty-ninth parallel of north latitude, close to the western bank of Red River, should be the point of the boundary first to be ascertained.

It was also agreed that when the last-named point had been ascertained, the part of the boundary-line to the east of Red River should be determined, and, if practicable, the survey of it completed during the first working season, so as to enable the joint commission to commence the survey of the line westward of the point ascertained near Red River, at the opening of the next year's operations in the fied.

It was also agreed that such portions of the bomndary-line eastrard of Red River as may be through wooded country, should be cleared for a breadth of thirty feet, under the direction of the British commissioner, during the winter season, at the joint expense of the two commissions.

The manner of permanently making the line was left for future consideration, in order that it might be ascertained by inspection of the comntry what would be the most desirable and economical material for its demarkation.

On the 1st of October Colonel Firquhar, United States chief astronomer, left the eamp, for the Lake of the Woods, to meet the chief astronomer of the british commissiom, for the purpose of jointly ascertaining the position of the "northwestermmost point of the Lake of the Woods," the initial point of the boundary-line; and from that point to determine the boundary-line due sonth, according to the terms of the treaty, until it reaches the forty-minth parallel.

On the 11th of October, accompanice by Captain Cameron, I took the stemer from Pembina down Red River to Fort Gary, on the way to the northwestermmast peint of the Lake of the Woods. On the 14 th we started from Fort Gary for the Lake of the Woods, and on the 19th reached the
vicinity of the northwestermmost point, where we found Colonel Fiartuhar and Captain Anderson, with their respective parties. After their arrival at the lake they had, with the assistance of native Indians of that region, discovered the remains of the reference monument erected by the United States and British commissioners (Messrs. Porter and Barelay), appointed under the sistl and seventh articles of the treaty of Ghent; from which monument, by a series of conrses and distances laid down in their joint report to their governments, the position of the northwestermmost point of the lake was to be ascertained. The northwesternmost point not being on firm ground, could not be marked by a monmment.

From this report of the chief astronomers I was satisfied with the northwesternmost point of the lake, as ascertained by them and recommended for our acceptance, but Captain Cameron was not disposed to accept the result of their examinations and search for the reference monument, it being his policy in the interest of the Canadian Govermment, if not the resnlt of instructions, to leave the question of the northwestermmost point of the lake unsettled, because the meridian boundary-line from that point southerly to its intersection with the forty-ninth parallel would cut off from the mainland and leave to the United States a portion of territory, projecting into the lake, of great importance, and almost indispensable to the province of Manitoba as a means of communication with Camada. Upon this territory a depot and steamboat-landing at the terminus of the Fort Garry road had been established for some time previously to the autherization of the joint commission to determine the boundary.

The British commissioner, while declining to agree officially to the northwesternmost point of the lake as determined by the chief astronomers, expressed his willingness to cut a sight-line from that point southerly through the timber along the meridian bomdary mont it strikes the shore of the lake, without, however, at that time agreeing to it as a part of the boundaryline. His object dombtless was to leave the question in abeyance, in the hope that before the boundary was completed to the summit of the Rocky Mountains, or subsequently, some arrangement might be made between the two govermments whereby this small but much-coreted and important piece of territory would hecome a part of the North West Territory.

Having completed the object of our visit to the Lake of the Woods, we started to Fort Gary on the 25th of October, and reached it on the 29th. In consequence of rainy weather we remained there several days. On the 6 th of November we returned to Pembina. By that time the parties generally had closed field operations, and those of the United States commission were on their way to Fort Abercrombie, where the wagou-train was to be left during the winter season. From there the employés were taken to Saint Panl and discharged for the winter. The last party in the field, under Major Twining, did not reach Saint Panl until the 23 d of November, by which time it had become quite coll.

The Department having designated Detroit as the place for establishing the office of the commission during the winter, the employes who were no longer required were discharged at Saint Panl. The chief astronomer, with his assistants, repaired to Detroit, where they remained mutil the opening of the season for field-work in the ensuing spring.

Congress, during the session of $1872-33$, appropriated $\$ 125,000$ for the operations of the eusuing fiscal year, making it available upon the passage of the act, as the amount of the previons appropriation was nearly exhansted.

Before the resumption of field-work for the year 1873, Colonel Far'quhar, United States chief astronomer, applied to the Engineer Department to be relieved from duty with the boundary commission, preferring his legitimate duties in the Engineer Corps. His request was granted, and Maj. W. J. Twining, the engineer officer next in rank on duty with the commission, became chief astronomer.

At the earlest moment practicable, in the year 1873, Major Twining was in the diell with his parties. The survey was commenced at the astronomical station which bad, during the provious year, been determined and marked on the westem bank of Red liver. Major Twining commenced operations with the intention of completing four lumdred miles of the survey during the season, and he accomplished his object. The boundary was marked at intervals of one mile between the Dnited States and the province of IImitola, and farther west at average intervals of three miles. These numments were bailt of eath, or stome where it comble bemud. Those
separating Manitoba from the United States have been replaced by monnments of iron.

The climate of the country in the vicinity of the boundary camot be smrpassed. The days, though sometimes warm, are always more or less tempered by a pleasant breeze, and the nights in midsummer are cool and refreshing, and sometimes exceedingly cool, even to the freezing-point. The surface of the earth in this region is generally a rolling prairie, gradually but almost imperceptibly rising from Red River to the base of the Rocky Mountains.

After crossing Pembina River, thirty-five miles west of Red River, there is a considerable rise in the land. This eleration is called Pembina Mountain, though in reality it is only an elevated platean. The boundary farther to the west crosses Turtle Mountain, a rough and rugged elevation covered with timber, through the whole extent of which along the boundary a vista of fifteen feet in width was cut. The distance from the east to the west base of the mountain is about thirty-four and one-half miles. By far the larger part of Turtle Mountain falls upon the southern side of the line, and, in consequence of the great searcity of timber in that latitude, it is a fortunate acquisition.

At the close of the scason's work in October Major Twining withdrew all his parties from the field, with the exception of Lieutenant Greene's, and moved sonthwardly to Jamestown, Dak., in order to strike the Northern Pacific Railroad at that point, and from there continued his journey to Saint Paul, where the employús for the season's work were discharged, and the officers and assistants repaired to Detroit to bring up the office-work during the winter. Lieutenant Greene with his party remained in the field during the winter, in order to complete the survey of the line between the Lake of the Woods and Red River, it being impracticable to perform that work during the summer season on accomnt of the swampy character of the country.

In consequence of delay in the passage of the appropriation for the boundary commission for the year 1874 , it was late before I was able to join the parties in the field. On my arrival at Fort Buford, on the Missouri, the military post at which Major Twining laid in his supplies for the season,

I found he lad a short time previonsly started northwardly, to strike the forty-ninth parallel at the point where the survey terminated at the close of the previous season. As soon as my small train was in readiness, I moved toward the boundary-line, accompanied by a small escort of infantry, five companies of which had been detailed by General Terry as escort to the commission, together with two companies of caralry. As the commission were moving throngh a country far from civilization, ocenpied by Blackfeet and other warlike Indians, this large escort was considered necessary to its safety and exemption from molestation.

After steadily traveling for seventeen days, on the $2 d$ of August we reached the camp of the cavaly escort. The country over which we passed, following the Missouri and its tribntaries, is monotonous and minteresting.

The cavalry camp was near the Three Buttes or Sweet Grass Ilills, three prominent peaks which rise to agreat height over the surrounding comntry, and present a most agreealble relief to the eye in contrast with the tameness of the country orer which we har revently passed. We here found delicions, cold, spring water, a great luxury after the mpalatable and nnwholesome water we had been obliged to drink on the route when not near the Missouri River.

From the summit of these peaks on a clear day a fine view of the arest of the Rocky Momntains is obtamed. After remaining a daly at the caralry camp, we left for Major Twining's cann, which we reached after a journey of thirty miles. Captain Gregory and Lientenat Greene, engineer officers attached to the commission, were cencomped in its ricinity. It created quite a variety in our wildemess life to furd such an assemblage of parties in this attractive neighborhood.

From Major Twining I learned that two handred and forty miles of the remander of the boundary left minnished hast year had already been completed since he reached the bomblary and in a little less time than six weeks.

On the 8th of August, a dean, cool, and bright day, accompanied by Lientenant Grecone. I rome to the summit of the westermmost of the Three

.

Buttes, a distance of about six miles from the camp. The ascent was steep toward the summit, but practicable. From that elevated point the Rocky Mountains in all their grandeur were in full view, while beneath us it required but little imagination to convert the rolling prairie into an ocean. The summit of the butte is about 1,700 feet above the level of the prairie.

On the 12th of August, accompanied by Major Twining, I left the Three Buttes for the Rocky Mountains, the distance being about one hundred and ten miles. We encamped for the night in a very fine position, giving a full view of the group of buttes composing the Sweet-Grass Hills; for each of the three principal buttes is composed of one chief butte, surrounded by others of inferior size, the whole of them covering a considerable extent of territory.

The next morning we moved westward, traveled about twenty-eight miles, and encamped on Milk River. From our camp we had fine views of the Rocky Mountains, the summit being still partially covered with snow. On our journey this day we passed throngh the country of the Blackfeet Indians, during which time it was deemed prudent to keep closer together and nearer to the escort than usual, but we were not molested. The Indians, knowing that we were well protected by troops, gave us no trouble during the whole survey.

Toward the evening of this day, the 13th of Angust, Captain Cameron, the British commissioner, unexpectedly made his appearance among us, having just returned from the summit of the Rocky Mountains, where the survey was rapidly progressing to a conclusion. As this was the last opportunity before the parties would be withdrawn from the field, we held a meeting of the joint commission at our camp. Captain Camerou stated that he was now prepared to agree to the northwestermmost point of the Lake of the Woods, as determined by the chief astronomers of the United States and British commissions, his government having directed him to acknowledge the reference-monument pointed out to the chief astronomers by Indians residing in the vicinity.

He also agreed to adopt the astronomical parallel as the true boundary instead of the mean parallel, which he had hitherto strongly urged, and
which would have been a great additional expense without any corresponding benefit.

These points of difference being settled, the joint commission adjourned to meet on some future day, after the completion of the office-work, for the purpose of comparing the records of the survey and the final maps of the bomdary, preparatory to their signature by the commissioners.

The day after the mecting of the joint commission, we contimued our journey toward the Rocky Mountains over a soft, rolling, grassy prairie. During the journey the monntains were constantly in view. No description can do justice to the magnificence of this mountain secnery. As we approached it day by day, the Chief Monntain, near the forty-ninth parallel, stood pre-eminent in distinctuess and grandenr, resembling a gigantic obelisk broken off at the summit. There is an infinite variety in the mountain range near the parallel. It requires but little aid of the imagination to see a city in ruins, in which fortifications, pyramids, and other familiar objects present themselves to the eye.

On the 17th of August we reached Chicf Mountain Lake, near the base of Chief Momentan, and encamped in its ricinity. On the 20th, with a pack-train, we started westward over the Rocky Mountains, taking two days in crossing to its western base, and two days in returning. We found the United States and British parties approaching the termination of the line, and searching for the monument erected on the summit of the mountains at the terminus of the boundary between the United States and British possessions authorized by the treaty of 1846 . The momment was at length discovered in a spot very difficult of access, and therefore the better adapted to preserve it from being disturbed. The survey was carried to the momment, and the line was thus completed from the northwestermmost point of the Lake of the Woods to the smmit of the Foeky Mountains.

The weather had been so fine during the whole season that there was nu interruption to the progress of the survey. The nights were clear, and the astronomical work was rapid and accurate. Being so remote from settlements, and in a latitude where winter commences rery early, it was most fortmate that the parties were able to leave the field while it wats still compatatively mikd.

Arrangements had been made by Major Twining early in the scason for the construction of Mackinac boats at Fort Benton, on the Missomi, for the purpose of transporting the party down the Missomi River to Bismarck, the western terminus of the Northern Pacific Railroad, and thence to Saint Paul by railroad, to be discharged, with the exception of the assistants who were required to do the office-work of the commission.

By the 12th of September, the various parties in the field haring assembled at Fort Benton, the fleet of six Mackinac loats started down the river. Major Twining and his assistants accompanied the expedition. At night the boats were fastened to the shore, and the whole party, including officers, bivouacked. They reached Bismarck in eighteen days.

On the 13th of September I left Fort Benton for Fort Shaw, on Sum River, in Montana, accompanied by General Gibbon, United States Army, who had left lis post for Fort Benton, to visit the officers of the commission before their departure for the East. He had been directed by the commanding general of the Department of Dakota (General Terry) to furnish the commission any additional escort that might be required when it reached the neighborhood of the Rocky Mountains, and he had promptly informed me of his readiness to respond to my requisition for troops, if they should be needed.

We reached Fort Shaw, in Montana, a distance of sisty-three miles, in about eight homs, traveling in a spring-wagon over the natural surface of the ground, which was of a similar character to that over which we had passed on our way to the Rocky Mountains.

I remained two days at Fort Shaw. The post was garisoned by four companies of infantry. It had a very neat and highly military appearance, the houses being mainly of adobe and very warm and comfortable. General Gibbon took mucli pride in exhibiting his tine gardens filled with vegetables for the troops. The soil is very fertile, and, although the warm season is brief, vegetables come to maturity rapidly and are of a very fine quality.

On the $\mathbf{1 6}$ th of September I left Fort Shaw for Helena, a distance of eighty miles, and with a relay reached it in twelve hours. On the succeed-
ing day I attended a fair, at which the varions products of Montana, mineral, animal, and vegetable, were exhibited. Notwithstanding the high latitude of Montana, the winters are comparatively mild. The cattle are left at large during that seatom, and keep in good condition by picking up mutritions grass of that region, which remains on the ground throughout the winter eovered by snow of a moderate depth. Montana being protected from westerly winds hy the Rocky Mountains, the climate is much milder in winter than might maturally be supposed.

The next day 1 started from ICena in a Concord stage, and after trareling steadily four days and three nights I reached Ogden, on Salt Lake, and there took the Union Parific Railroad for the East.

Ufter the chief astronomer and his assistants reached Washington, an oflice was rented for the purpose of working out the results of the surver, and constructing the maps fior the illustration of the boundary-line and the comintry adjacent thereto.

The British commission, at the close of the field-work of the surver, returned to London and there executed their office-work. In the month of March last Maj. D. Ri. Cameron, Li. A., Mer Britannic Majesty's commissioner, amommed to me by lefter that early in April the work of the British commission would be completed and reaty for the fimal mecting of the foint commission preparatory to closing its proceedings, and requested, if comvenient, that I would meet him for that purpose in Lomdon. Having submitted the proposition to the Department, I received authority to comply with it. Acomtingly, with the assent of the Deparment, l left the United states on the lat of $A_{\text {pril, in }}$ andmace of the ehe astronomer, who followed on the 19th. (On his arrival at Lombon the United states and British chief astromomers compared the reends and maps of the respective commissions, and having reported that the tatter were ready for the signature of the commissiomers, they were duly rigued on the egth of Mas, with a protocol of the final procecelings of the commision, of which the following is a cons, viz:

Reeord of procediugs at a meeting of the commissioners apoointed respectivety by the Presiaent of the United States of America, and by Mer Dritamic Majesty, to aseertain and mark the boundary-line between the respective trritories of the United states and of Her Majesty, the steid line being that drfined by the seeond article of the comerntion of London, signed October 30, 1818.

PRMSNAT.

Donald li. Cameron, major Royal Artillery, commissioner on the part of flem Britamnic Majesty.
S. Anderson, captain Royal Engincers, ehef astronomer to ILer Majesty's commission.
A. C. Ward, captain Royal Engineers, secretary to Her Majesty's commission.

Archibald Campbell, commissioner on the part of the United States of America.
W. J. Twining, eaptain of the Corps of Engincers of the United States Arms, chicf astronomer to the United States eommission.

1. The chief astronomers submit the following docmments and maps:
a. A detailed list in duplicate of forty astronomical stations, in addition to one for the location of the most northwestern point of the Lake of the Woods, at which olservar tions were taken mader their superintemdence, to determine the line deswibed in the
 terminal points, viz, the most northwestern point of the Lake of the Woods and the eastern end of the intemational boundary line previonsly marked between Akamina, in the Rocky Monntains, and the western const of North Americal.
b. A deseriptive list in duplicate of three humdred and aishty-right (:3s8) momnments amd marks placed on the bommary lime, as dorived from the astromomical stat tions emmerated in the list refered to in section of of this paragraph.
 illustrating the topography of the comtry throngh which the homblary lime rums, and indicating the relative positions of the rarions monuments and mats refered to in section b of this maragiaph.
2. The second aticle of the convention of London, signed eoth Oetober, 1818 , is read, as follows:
"It is agreed that a line drawn from the most northwestern point of the Lake of the Woods, along the forty-ninth parallal of north latitule, we if the said peint shatl not be in the torty-ninth paralle of north latitude, then that a line dawn from the said point dae north or sonth, as the case may be, until the said line shall intersed the satid parallel of north latitnde, and from the point of such intersection due west, along and with the said parallel, shall he the line of demakation betwern the teritories of His Britamic Majesty and those of the United States, and that the said line shall form the sonthern bonmary of tho said tritorias of llis britamie Majesty, and the morthim bommary of the embitonies of the United States, from the Lake of the Whods to the Stony Momntains."

The duplicate documents and maps emmerated in paragraph mombred ond (1)one set for each of the respective governments-having bern examined and rompared, are anthenticated ty the signatmes of the commissioncre, who arere as follows:

1. The three hundred and aghty eight (*SS) mommonts detaided in the list retered to in seetion b of paragraph mombred one, are on and matio the ast onomioal lines stipm-
lated by the seeond article of the consention of London (signed October 20,1818) to he the line of boundary betreen the territories of Her Britannic Majestr and of the United States of America, from the Lake of the Woods to the Stony (i. e., Rocky) Mountaius.
2. In the interrals between the monmments along the parallel of latitude, it is agreed that the line has the curvature of a parallel of 49° north latitude; and that such characteristie shall determine all questions that mas hereafter arise with reference to the position of the boundary at any point between neighboring monuments.
3. It is further agreed that, in the erent of ans of the said three hundred and eights-eight (358) monmments or marks being obliterated beyond the power of recognition, the lost site or sites shall be recovered by their recorded position relatirely to the next neighboring unobliterated mark or marks.

ARCHIBALD CAMPBELL,
United States Commissioner, London, May 99, 1876.
D. R. CADERON,

Major R. A., Mer Britamic Majesty's Commissioner, London, May 29, 1876.
The proceedings of the joint commission having thus been brought to a conchusion, it adjoumed sine die.

In accordance with an estimate of the chief astronomer of the United States commission, made immediately preceding the opening session of the present Congress, the Department was informed that the office-work of the commission would be completed at the close of the present fiscal year, and that a balance of the appropriation, amounting to $\$ 15,000$, would probally remain unexpended. This contemplated result is now accomplished, and is in a great measure due to the ability and careful management of Major Twining, who has had immediate charge of the survey of the boundary-line, aud to his assistants, Captain Gregory and Lientenant Greene, United States Engineers, who have most efficiently and zealously discharged the duties which derolved upon them.

Mr. James E. Bangs, the secretary of the commission, who has been immediately under my charge, has performed with fidelity and accuracy the various duties pertaining to his position, and particularly those connected with the disbursement of the funds appropriated for the expenses of the commission.

In conclusion, I would respectfully call the attention of the Department to the report of Di. Elliott Cones, the surgeon and maturalist of the commission, whose eminent alility in the latter position has phaced him
among the most distinguished of those who have devoted themselves to this branch of science.

I have the honor to be, very respectfully, your obedient servant, ARCHIBALD CAMPBELL, Commissioner Northern Boundary Survey.
Hon. Hamilton Fish,
Secretary of State.
N B - 3

LIST OF TIE AN゙リRONOMIC．\＆L SRATIONS OBSEIVED BY THE JOINT CONBISSION FOR THE DETELAMLATION OF TIE INTERNATIONAL BOUNDARY－LINE FHOM THE NORTILWEST ANGLE Of THE JAkE OF＇lTHE WOODS TO THE ROCKY MOUNTAINS．

No．	N゙ame nf the astronmmial station．	Distance from Lake of the lioodsstation．		Longitude west of Greten wich．			Remarks．
	Northwest angle	Miles．L	Linlis．	95		$: 99.7$	Lat． $19{ }^{\text {c }}$ 23 $3^{\prime} 19^{\prime \prime} .13 \%$ ．
1	Lake of the Woorls（joint）		11			5，\％ 3	
：	l＇ine liver．．．．．．．．．．．		7305			01.1	
3	Went Rasean lindera．		1083		46	51.9	
4	Red Rivar（joint）．		19：0	17	$1: 3$	51.5	
5	loint de Dichel（joint）．	1103	5963			\cdots	
6	Pambina Doantan，eist（joint）		$000{ }^{2}$	95		：1，3．0	
7	I＇embina Mountain，west．．．．．．．		6307			$01 .: 3$	
8	Lonig liver ．．．．．．．．．．		1305			$5 \cdots 1$	
9	Scepy Ilollow	1×3	：311	09		0.3	
10	＇limrle Monntain，east	：03：	7599			04． 3	
11	＇liurtu Momutain，west		1510	100		13．9	
$1 \because$	First sumrin（0r Mouse River）		11544			3！9，\％	
13	south Antler	－1	1193	101	－	0：． 0	
11	secmal somris（or Monse Liver）	30．；	7150			\％is． 1	
1.1	I vited States No．S A－trobomacal station	3.9	3 － 16	103		25．${ }^{2}$	
16	Shont t＇reek		$\because-13$			00.9	
17	${ }^{\text {＇Thand Monse }}$ River	839		10：3	11	11．：3	
12	Grand Cotoan		29\％			53.7	
19	Nid Coterin	100	4925		05	$\therefore 1.0$	
\because	Ition Mmbly．	103	－03．		39	53．3．18	
$\because 1$	Inaly Surnm	4.81	1－11			$\because 1.4$	
2	Poplar livar		$: 3454$			：3， 2	
$2: 3$	West Poplar	431	6， 2106		$1:$	： 11.1	
4	Little hockr	5：2	1712			$: 31.5$	
\therefore			17411			$1{ }^{2} \cdot \stackrel{3}{4}$	
26	Cattomwond Comle	\％ir	： $2=-1$			15．9	
3	lomb on Jrairie．	－i－2	1\％．31			109．3	
20	Nean trunse Lake		306：			59．6	
29	East lurk．		0：18	109	$\because 1$	$\because 7.8$	
：31	Wrat Fosk	$1 \mathrm{Ha}_{5}$	2：ñ		11	23：	
31	Mak Livar Lake		103－1		111	19．3	
： 3	Mille livar		： $0: 3$			119．I	
33	Last butto		$118-3$	111	11	03． 5	
：3	Wint．Bntte		S3：10			113．13	
（ai）	lied Creek	Ticy	31， 11	112	（11）	19.5	
3	Serond Mitk Iiser（or south Lratucli）		O17，			511．3	
：3	North lmanch Milli líver．．．		3：311			38	
$\because-$	Funky Momatains．		1i1：		\because	：	
219	luby River		13：80			319．0	
du	Olirif Monntain Lako		U210			19.8	
41	Akimina．．－．．．．．		20：	111		ith． 5	Olserved bes the join commission，Ietil．

W．J．TWINING，
C＇uptair of Eingineers，Chited states thidf Astronomer．
AJCHIIJ．ALD CAMPBELL，
Cuited Natus Commissioner，May ： 1 ，Izil．
\therefore ANDEJSON，
（Iaphein Somal Ingimers，liritish Chif Astronomer．
1）．IR（CAMElROS゙

LIST OF MONUMENTS MARKING TIE INJERNATIONAL BOUNDARY-LINE FROM TIE NORTIIWEST ANGLE OF' THE LAKE OF THE WOODS 'JO THE ROCKY MOLNTAINS.

Note.-The azimuths given in this tablo are calculatel, and do not form a part of the othcial agretment of the rommissioners. MONUMENTS MARKING DUE SOUTII LINE.

$\begin{aligned} & \text { } \\ & \text { ed } \\ & \text { 島 } \\ & \vec{B} \\ & \overrightarrow{7} \end{aligned}$	Distabce south or ${ }^{\circ}$ nurthwest point.	Nature of mounmeat.	Longiturle west of Greenwich.	Azimath.		Azimuth.		Remakis.
	Miles. Links	Not marked.	$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 95 & 08 & 57.7 \end{array}$	- ,				Surthwest point inswamp. Lasti.
1	13071	Iron pillar	950857.7	0080	0	18000	2	Latiturle 493 2er 3-4.9.
2	1 T001	--....dio	950857	00	1	00	3	son road.
3	98797		950857.7	07	z	00	4	Latitude $40021^{\prime} 4 \pi^{\prime \prime} 8.8$
4	3 3626do do	950857.7	00	3	1.0	5	Latitnde $40^{\circ} 20^{\prime} 50^{\prime \prime} 4$.
5	5 5 0045	---- du ----	950857.7	00	4	ט0	6	Latitude 49019^{\prime} ex's.1s.
6	${ }_{6} 6182$	Granitecaira	950257.7	00	5	116	7	Latitude $49^{\circ} 18^{\prime} \mathrm{arch}^{\prime \prime} 4$.
7	74351	Iron pillar	95085%	00	6	18000	8	

MONUMENTS FROM LAKE OF THE WOODS WESTVA II.

	Distance from Lake of the Woods.	Noture of monmment.	Longitude went of Greenwith.	Azimuth.		Arimuth		Jiemarks.
1	$\underset{0}{\text { Miles }}$ Links ${ }_{0}$	Stoue cairn, $7{ }^{\frac{1}{\prime} \times 8^{\prime}} \ldots$	$\begin{array}{ccc} 0 & \prime & \prime \prime \\ 95 & 16 & 5 \\ \hline \end{array}$	$\bigcirc 1$		97003	ฐ	Lake of the Wrods astronomical
2	30	Earth mouot, $7 \times 14^{\prime}$	2052.8	9006	1	03	3	
3	50do	4331.1	07	2	10	4	
4	90	Iron pillar	≥ 847.8	06	3	019	5	
5	120	Earth monad, $7^{\prime} \times 14^{\prime} .$.	3245.4	015	4	0.	${ }^{6}$	
6	150		3642.9	06	5	0.1	7	
7	170	Iron pillar	3981.2	07	4	6)	8	East of northrast liosean crossing.
8	18 2080	Earth lumunl, ${ }^{\prime} \times 14^{\prime}$	4101.0	0.	7	$0!$	9	
9	21	Iron 1 illar -...........	4437.9	07	R	011	(1)	
10	941543	Earth mound, 'i $\times 14{ }^{\text {c }}$	4850.8	06	${ }^{4}$	0.9	11	
11	256804	Iron yillar.............	51020	07	10	119	$1:$	On Sidicra.
12	29	Earth mound, $7 \times 14^{\prime} \ldots$	5511.3	17	11	109	1:3	It l'me Jivax.
13	30	-..... do .-...........	5630.5	07	13	07	1.1	
14	325154ils,	960000	05	13	01	17	Markingeasterm bommary of Manitab.t.
15	$33-4936$	Earth.monod, $10^{\prime} \times 6^{2} \ldots$	0116.9	00	14	01	11.	
16	344036	Tiuber .-............	$0 \div 20.0$	00	15	01	17	Jn Firuat Liuncou Swamp
17	$35 \quad 4936$do	03515	00	1 ii	01	15	Do.
18	364936 dor	0.711 .4	00	17	01	$1!$	Ih.
19	374936	do	063.3 .6	00	18	01	20	10.
$\bigcirc 0$	384936 do	0753.7	00	19	01	81	16.
21	394936do	06811.9	00	20	111	8.	Bo.
22	404936ilo	1031.1	0.3	$\because 1$	01	2	I\%.
23	414936 10	1159	10	22	01	24	Uo.
24	425519	Iroo pillar	1315.	00	23	01	-5	
$\stackrel{5}{5}$	434936	Carth mound, $10^{\prime} \times 1{ }^{\prime}$. .	1482.5	06	24	03	$\because 6$	
26	415519	Irou pillar. . .-. - - - - . -	1553.6	89.5	23	01	27	
27	454936	Earth monnd, $10^{\prime} \times 6^{\prime} \ldots$	17 96.9	51	2i	02	シ4\%	
$\stackrel{9}{29}$	465519	Iron pillar---.....-- -	1R31.!	59	97	$0:$	$\therefore 9$	
29	474936	Earth mound, $10^{\prime} \times 6^{\prime} \ldots$	1945.3	9000	2	11	30	
30	4850319	Iron pillar. .-.	2110.3	00	214	(1)	31	Near 40-dille atation.
31	494936	Farth monod, $10^{\prime} \times 0^{\prime} \ldots$	$2: 40.3$	01	311	02	32	
32	$50 \quad 5519$		2034*6	01	31	tr	33	
33 34	$\begin{array}{ll}51 & 4936 \\ 50\end{array}$	Earth monud, $10^{\prime} \times 6^{\prime} \ldots$	2\% 020	01	33	(1) 0	31	
34 35	$\begin{array}{ll}59 & 5: 19 \\ 53 & 4936\end{array}$	Iron nitlar	219 27.0	01	3.1	08	3.5	
36	5450519	Iron pilive. .-.......		01	3.5	U2	3% 38 3	
37	555519	-.-- - do ...	$30-31.5$	01	: 61	02	$3 \cdot$	Werst at Puint di4 rime. Betmeon 37 and $3+$ tha Koswinn livir at I'ointe d'Ormo 'ronsing the line three timer.
38	$50 \quad 5519$ do	3143.7	01	37	10.2	39	
313	575519	--- do	330% \%	11	3.	19,	40	
40	585519	.du	31 20. 0	01	39	112	41	
41	$59 \quad 5519$	- . . . ilo	3541%	01	411	112	1%	
$4:$	$60 \quad 5519$do	3300.4	01	11	112	43	
43	615519-. 10	3515	01	42	02	41 ,	
44	625519do ------.......	$39: 38.7$	01	43	02	45.	

List of the monnments marking the international boundary－line，sc．－Continued．

品品	$\begin{aligned} & \text { Distar } \\ & \text { frim Li } \\ & \text { the too } \end{aligned}$	ance aket of oods．	Niture of monmment．	Longitude west of Greenwich．	Azimnth．		Azimuth．		Remarks．
	Miles．	Links．							
45 46	63	5513	Iron pillar	1604057	1001 01 01	44	80008	$4{ }_{4}^{46}$	
47	6.5	5.19	dis	4336	01	46	$0 \leq$	43	
is	60	5319	．．．．d）	4450.4	01	45	02	44	
49	67		．．．．．d．	4614.15	01	43	03	50	East of Rosean Ridgo．
30		5519	do	4733.8	01	44	0.10	51	West of Rastan Ridge．
51	69	3519	10	4852.8	04	10	0.5	5	
32	70	8．1519	．．．do	3011.1	01	5	04	53	
53	il	动19	．．． 10	5131.3	03	5.	0.7	54	
54	913	5.159	．．do	5.200 .5	04	53	$0 \cdot 3$	sin	
55	73	5.19	．．dn．．．．．．．．．．．．．．	5409.6	01	54	0.	$5{ }^{3}$	
56	74	5519	．．．ds		04	55	0.	8.7	
57	75	5019	．．．d，	5518	04	56	0.5	59	
58	76	［1319	．．．入1י	504.8	04	57	05	34	
59	77	3119	．．${ }^{\text {a }}$	59.43	04	is	0.5	60	
0		2519	．do	970045	04	59	0.3	61	
61	79	5519	．．．．．．lo	11：0． 7	04	tio	01	18	
63	80	5319	．．．．．${ }^{\text {a }}$	0313.9	03	$1 ; 1$	02	13	
63	81	53.1	．${ }^{\text {du }}$	09 fil	04	tit	0.3	6.4	
64	E2	5319	do	00， 02	04	fi	0.3	6.5	
65	8.3	519	．111	$05 \geq 1.4$	0.1	1.4	15	66^{6}	
16	4	5519	．．．dı	4is） 40.8	04	is	05	67	West bark of Joe River．
17	85	3519	．．．${ }^{\text {du }}$	0198	${ }^{4} 4$	66	0.3	$6{ }^{2}$	
$6{ }^{6}$		55141	\cdots	1118.8 123 128.1	04	17 $1 / 8$ $1 / 4$	（15）	19	
70	8	4936	do	$1: 35$	02	19	no	71	Ried Riser astronomical station．
71	83	5.159	． 1 do	13.57 .3	00	3	01	\％	
i2	c9	5.15	．．．llo	1516.4	00	\vdots	01	73	
73	90	$\therefore 19$	do	16385	00	72	01	74	
It	91	5.119	din	1751.4	19	3	91	35	
－	：	\％19	．．．do	1914.0	10	74	11	76	
96	93	2519	．do	2033.1	10	2．：	11	77	
37	91	5in19	\ldots ．．．dn		100	3	01		
79	98	5019	．．do	23115	（19）	7%	111	80	Harais River．
80	97	5.19	．．．do	2540	10	is	01	1	
81	98	6319	． 10	号 690	10	（1）	01	と2	Manitola priveipal meralian．
83	94	5510	．${ }^{\text {dn }}$	20898	010	－1	01	83	
93	1111	501！	，11）	19478	110	\because	11	－4	
84	101	5319	．．． 111	31 Uti． 3	09	$\triangle 3$	11	85	
rif	112	5519	（1）	3－2\％	111	\cdots	01	－6	
ris	103	51014	170	33 4．1．9	20	8.	01	87	
87	104	5519	． c 10	3504.1	0.1	0	01	$8 \times$	
－	10.	5114	曲	30×3.2	110	${ }^{7}$	01	89	
29	114 i	5．1！	－ 11	35184	110	E－	01	90	
90	107	5it！	… du	39911.10	110	9	01	91	
411	10 k	3．19	．．．．．drs \quad. ．．．．	40.102	00	$!0$	2905	92	Grant＇s，or Pointe Miebrl．
01 93 9	1110	5519	．．．．dto		89.57	91	\％ 5	93 94 94	
01	111	2019	．．．．．io	4110.3	8	13	5	45	
95	$11:$	5519	．．．．．dl	15 37． 5	17	91	is	$9{ }^{3}$	
$9{ }^{\text {a }}$	113	5.119	do	tis 5 H．ti	5	！	5	97	
97	11.4	13.319	do	4＊ 2.7	IT	96	S\％	（1）	
9\％	11.7	Sis 19	10	4．3．3．01	¢	4	5 S	93	
99	116	5011	．do	50.34 .1	78	9\％	5	100	
100	117	5.719	．do	52 13：3	3	49	58	101	
101	114	5.19	do	573	ii	100	54	103	
102	119	5.19	．do	54．31．7	II	181	5\％	103	
103	120	5.19	．．．．do	51610.9	51	10：	57	104	
104	121	5519	．．．．dn	5730.11	itim	103	51	115	
115	$1 \geqslant 3$	5.19	．．．．．do	23 10．	St	$10 \pm$	57	106	
106	143	5.319	．．．．do	981000×1	（1）	10.3	St	107	Fase of Pambins Monatain．
1178	121	219	．．．do	01.8	5	1016	5	10.8	
103	12.	5519	－da	14846． 7	54	107	55	109	
109	126		10	11400.1	51	10.4	5	110	
1.0	127	5.19	．．．．（1）．．．．．．．．．．	050.1	3	$10: 1$	5	111	
111	123	5.19	．．小＂	$116+1.3$	． 5	110	51	112	
112	129	2，19	．．．小＂	10－03． 4	4	111	54	$11: 3$	
$11: 3$	130	Ent？	．．．小少		51	11：	54	114	
11.4	131	5 519	．．．dr	10 ＋1．${ }^{4}$	33	$11: 3$	50	115	
11.8	1：2	${ }^{\text {bida }}$	．．．．${ }^{\text {dren }}$	129．5	c0 514	111	270810	116	Near west bank of Pewbina Rirer．
116			．¢！	110 T .5	$901 / 6$	11.2	110	117	Ton of ridge west of Pembina River．
117	134	5819	．小，	14393	10	111%	$1: 10$	11%	
112			．． 1 ，．．．．．．．．．．．．．．						Near Cnited States antronomica］ station No． 4.
119	13 ti	5619	H0	17 l ． 1 i	－9	11＊		120	

List of the monuments marking the international boundery-line, of - C'ontinned.

	Distance from Lako of the Woods.	Nature of mooument.	Longitnde west of Greenmich.	Azinutb.	$\begin{aligned} & \text { E } \\ & =\frac{1}{E} \\ & = \\ & =1 \end{aligned}$	Aximuth		Xowniatha.	
	Miles. Links		- ' 1						
120	$137 \quad 5519$	Iron pillir	981836.8	8957	119	269 5-	121		
-191	1335519do	1956.0	57	120	54	102		
122	$1395: 319$	do	21 15. 2	tio	121	5	133		
123	1405513	-.....do	2231.4	57	123	5	121		
121	1415514	-.....do .	2153.5	57	123	58	1%		
125	1425.519 do ...	2512.7	57	121	58	124		
1:26	- 1435519	-..... do	2631.9	57	12-	58	127		
127	1445519	-...-do	2751.1	57	126	5.8	128		
128	$145 \quad 5519$do	2910.9	57	1.7	58	129		
129	1465514 do.	3029.4	57	12\%	58	130		
130	1475519	- --- do .	3148.6	57	129	54	1:31		
131	1485519dlo	3307.8	57	130	5\%	132		
132	1495519	…... do	3496.9	57	131	5,0	13.5	East bauk of large could.	
133	1505519do	3546.1	57	13:3	5	134	Enst bauk or lirge coub.	
134	1515519 do	3705.3	57	133	5n	135		
135	1595519do. do.	38.24 .5	57	134	5	136		
136	15.35519	-.... do	3943.15	57	1.55	Sx	$1: 3$	Near coule, east bank.	
137	1545519 do	4102.8	5%	136	\%ir	1.3-	Neac coale, east buma.	
132	1555519 do	4222.0	57	136	5			
139	1505519 do	4341.1	57	138	54	141		
140	1575519 do_{0} -	4.500 .3	5%	139	5	141		
141	$\begin{array}{ll}158 & 5519 \\ 159 & 5519\end{array}$do.	$41 \% 19.5$	57	140	5is	112	Near crossing of Half. Breed trail.	
142	$\begin{array}{ll}159 & 5519 \\ 160 & 5519\end{array}$ do. do .	47 48 48 5 5	57	141	5	143		
144	1615519do	50 1\%. 0	55	143	5	143		
145	1625519	.-. . do	51 36.9	57	144	5:1	116		
146	1635519do	525.5 .4	58	14.5	5s	147		
147	1645519 do	5 ± 14.6	57	146	57	14		
148	1655519do	5533.7	54	147	5	149		
149	1665519	. do	5652.9	54	14*	5	150		
150	$167 \quad 5.519$dio	5×12.1	54	149	5	151		
151	1685519	-.-.. do	5931.3	54	1.50	$5 \overline{1}$	15\%		
152	1690420 do	990000.0	54	1.1	54	1,in	Wistera beutuliry of Manitoba.	
153	1695519do do	0050.4	54	15:	5	1.4	Wratera botoriry of Mantobr.	
154	1705519	-.....do	0209.6	54	133	5	15.5		
155	17) 6998	Stono cairn, $13^{t} \times$ r**. $^{\text {\% }}$	0924.2	54	15.5	55	15.17		
156	1727154		0504.2	54	15.5	5.5	1.57		
157	1757662	--...da* ${ }^{*}$............-	0906.7	53	150	51	$15 \times$		
158	- 1765485	Stone cairn, $10^{\prime} \times 6^{\prime *} \ldots$	1004.3	53	1.57	51	154		
159 160	1786597 180 1419	Earth monod, $16^{\prime} \times 7^{4 *}$.	1253.0	54	158	55	160		
160	$\begin{array}{ll}180 & 7412 \\ 183 & 1414\end{array}$	Earth mound, $10^{+} \times 5^{\text {rk }}$	$\begin{array}{lll}15 & 40.1 \\ 18 & 38 . & 3\end{array}$	53 53	159 160	5.1	161 16.3		
162	1833911	Earth mound, ${ }^{\prime} \times 6^{\prime *} \ldots$	1903.0	53	161	51	16:		
163	1863911lo ${ }^{*}$.............	± 300.5	54	162	513	16.	.	
164	189 1*28	-.--. do do	5631.5	54	113:3	. 510	1fis		
165	1915717 do**	6954.2	54	164	-517	1 tai		
166	195192	. . .do*	3427.0	5.3	165	5	11.7		
167	1983911	- do do	3850.6	53	1166	5	1siz		
168	2017911	--..-d du* ------.. .	4387.7	53	1176	511	1310		
169	2037729	Earth nound, $14^{\prime} \times 6^{+*}$	4604.2	51	16:-	87001	120	Thuth* Momotain, eqst, astrounm. ical staticn.	
170	2067529 do do ${ }^{+}$	5001.8	9001	16.9	04	11		
171	$20955 \sim 2$ - ${ }^{\text {a }}{ }^{4}$	5338.0	01	120	01	17-3		
172	212 Ti29 do ${ }^{*}$.............	5751.8	01	171	01	$1: 3$		
173 174 175	215 1996 918 1599		1000057.6	02	174	0.1	171		
174	2183729 do. do 0^{*}..............	0551.9	01	173	0.4	17,		
175 176	9217248	- do do \cdot.............	09 44. 6	01	121	01	176		
176	2947729 do do*.	1346.9	01	17.5	01	175		
177	2276470 dod ${ }^{*}$..............	1732.0	01	176	0.4	150		
178	2297295 do.	2018.0	01	13	0.3	$17!$		
179 180	$\begin{array}{ll}233 & 3787 \\ 335 & 9660\end{array}$	Earth mound, $9^{\prime} \times 0^{\prime 4} \ldots$	2505.5	00	175	03	1-0	Migh rider eat ntsumbit Lakn.	
180	$233-2660$	-..... do 0^{4}..............	27 97. \%	01	1\%!	0.3	\|r		Un wlope n! 'J'untla Monntain, anl onsambe ot timbur.
181	237 6968	Stono cairn, $16^{\prime} \times 7^{\prime *} \ldots$	3048.7	01	1×0	0.3	1-2	Liat of 'Tourle Manutain, west, ase tronomical statinn.	
18?	$\begin{array}{ll}213 & 1114 \\ 917 & 0649\end{array}$ do do	3748.8	01	181	$0 ;$	193		
183 184	$\begin{array}{ll}217 & 0649 \\ \mathbf{2 4 9} & 3035\end{array}$	- . . . do.do*	4257.1	01	14	01	1-1		
184	249 3035 8.9 5806	-..... do. do	4589.9	01	183	$0+$	165		
185	$\begin{array}{ll}\mathbf{2} 22 & 5896 \\ \mathbf{2 5 5} & 2910\end{array}$		50458	01	$1 \sim 4$	01	1-4;		
186	$\begin{array}{ll}255 & 2940 \\ 256 & 3880\end{array}$	Earth mound, $8^{\prime} \times 0^{\prime \prime \lambda}$ Stone, $16^{\prime} \times 7^{\prime k} \ldots . .$.		0: $0:$	$1-3$ 180	0, 03 03	190 $1 \sim 2$		
188	2580741	Eprth mound, \% $\times 8^{\prime \prime}-{ }^{\text {- }}$	5789.8	03	1×6	10	18.1	First rruss ing of Monse liiser on west hauk, astomemical statmon	
189 190	$\begin{array}{ll}261 & 0744 \\ 261 & 0741\end{array}$		101 015		18,	010	190		
190 191	2610084	-		5\%	1 $19!1$	01	$1!14$ $1!2$		
148	2200711	-do*	1319.8	5	101	00	193	Light loank of Sonth Antler rereli	
19.3	233074llo*	1717.1	54	132	00	1094	Letl lank ut suuth Altler Crouk.	

List of the monumonts morking the international boundary－line，fc．－Contimed．

	Listancer from Lakerof the Wroods．	Nature of mooument．	$\begin{aligned} & \text { Longitalh } \\ & \text { wost of } \\ & \text { Grecuwich. } \end{aligned}$	Azimuth．		Azimuth．		Pemarks．
	Miles Links．			$\bigcirc 1$				
194	2.61124	Larth monnd．${ }^{\text {a }}$－＊	1012114.9	69.5	193	27000	195	
119	274 vit4	． 100^{*}	2512.4	57	194	27000	156	
196	¢－1 11173	Stove cairn， $10^{\prime} \times 5$.	980.9	518	195	2695	197	Ou prairic near South Antler Creek
19\％	$2-3$ 2146	Stone cairu， $5^{\prime} \times 1 \mathrm{i}^{* *}$ ．	30 5－！	51	196	54	198	
19．	－6 0140	－${ }^{\text {a }}$ do ${ }^{*}$	3123.7	5	197	55	19	
199	$2-35116$	Earih monod， 15×6＊	3753.4	$5 \cdot$	198	5.3	210	
200	$2{ }^{2} 110.14$	Stune cairn， $15^{\prime} \times 6^{\prime *}$	41010.18	5.3	149	55	！ 11	
201	24148909	Earth monut，12＇afi＊	150，02， 9	53	200	5.5	202	
20	215\％シ5？	－．．．dos．	4）1．3． 1	52	201	50	203	
20.3	30：1 1：50	Stoue cairu．	5.300 .1	51	202	56	24．	
204	3015152	．．．．．du＊	5457.9	51	203	49	405	East bank of Monse Iirer，nea ronal．
20.7	$303 \quad 7150$	Earth mound， E^{\prime}－ $8^{\prime \prime}$ ，	5754.0	$4 i$	201	$2 \% 001$	206	Second irmasing Mouse River astromomical station．
204	3067150	．．．．．．dra	$10 \leq 0153,6$	5%	20.3	01	207	
207	30192150	－．－．dlo ${ }^{\text {a }}$	0.5 E．L． 1	5－	$\because 6$	01	208	
208	31\％into	．．．．dis＊	（11） 53.8	58	\because	01	209	East of litiore des Lites．
419	3150150	．． 11^{*}	1346.1	57	20	01	210	West of Itvidre dos Lacs．
210	319 03n	－．．．．do 0^{*}	17546.11	57	$\because 8$	00	211	
211	3×15150	－－．－dlo ${ }^{+}$	2141.	56	$\because 10$	01	212	
21：	3：－36， 4	Earth mound， $1 y^{\prime} \cdot \mathrm{i}^{\prime+}$	$20: 20.1$	57	$\because 11$	08	213	Anthonomiral station．
213	3293		3516.0	9001	212	08	214	
214	331 5956	Earth monut，14＇x ${ }^{\text {a }}$＊	3441.4	06	213	15	± 15	
215	33485164	Stode，8＇x $\mathbf{6}^{\prime \prime \times}$	30319.8	115	\＄14	$0=$	$\because 16$	
± 14	$33 \bigcirc 1240$	Farth mound 10＇${ }^{\prime \prime}$	41411	11.3	215	02	217	
417	3101291	Stone，10， $5^{\prime \prime}$ ．	4．5 4： 5	0 －	216	0 E	$\because 1$	East batk of conte．
26	$342 \% 14$	Eath moubl 13＇• $\mathrm{F}^{\text {p＊}}$	454110	06	217	07	219	Eskt bank shmot Creek．
2110	343 5812		こ0（10．？	06	815	03	20	Lritiah at ronomical station，Shor Creek，mest bank．
220	3460120	Eaith mound，12t fiok	53.34 .7	00	219	03	221	
221	349 － 410	．．．．．．－dis	5.51	110	20	13	\cdots	
处：	502 4302	． 10^{*}	1030 ± 23	0.3	221	03	283	Near Half－Prech road，east halk of Monse liver．
223	3 3if 0：50	dot ${ }^{*}$	nis 49． 1	8350	272	03	204	West of DIouse It．ver．
42.4	38.3 3－34		$1111 .:$	51	2， 3	269（t）	23	Third Mous astrunomical station．
$\because 25$	3bt 500	Earth mound，1－\times－${ }^{\text {a }}$	1135.7	5	$2 \cdot 4$	26： 59	28	
821	314． 3 3016	．．．．．．dor ${ }^{+}$－－．	17512	\therefore	205	$\because 500$	2 27	Fant of Monse lifer．
2%	36303316	Eath mound，16 6^{\prime}（i＊＊	2354.1	5	23	25000	2゙き	West of Monse lider．
$\because 2$	3724136	．．．．．．dor ．．．．．．．．．．．．	2\％ 24	51	号	26959	2	
429	3\％4 50.5	Stone， $1 \mathbf{L}^{\prime \prime} \times 7^{\prime k}$	31 ± 1.3	57	248	$\because 4.954$	231	
20	3\％		315.3 .7	itis		97009	231	Graml Cont－an athtronmmical station base of Cotara．
231	379 T17		3516.0	90 fis	$\because 30$	03	232	
232	3－2 4 4 （13	110	$4131 .=$	（11）	23.31	09	233	
233	$35.51-415$	110	4514.4	（17）	32	69	234	
\cdots	3un tilis	do	1950．	14	433	0	435	
2运	312 4139	．．．．．ila	51 iws	1115		09	236	
23\％	34.5442	－1］，	5，Fi，	17%	235	0 ？	237	
25	$3!19$ tiel1	．．．． l_{10}	$10+0.30-18$	117	$\because 36$	$0 \cdot$	$\because 3=$	
4	400 1425	Earth montad，10＇＞ 5^{\prime}	0.531 .0	112	？	20953	239	Mid Cote．tu a tronom＇exl station．
2\％	$4193 \% 3!2$	．．．．．．lı．．．．．．．．．．．．．	0， 11104	89 f＇	218	$5 \cdot$	240	
210	815.5418	St n ¢ 10×5	$1: 14$	$4!1$	－\％	5：	$\because 41$	
211	81170	（1）	15 lia． 1	$4!$	$\because 413$	5	2fo	Eant side uf laren conló．
$\because 1 \%$	4113 d－14．	Earth， 10	$1 \sim 45$	4	211	20	$\because 4.3$	WVist side col larie conlé．
$\because 13$	413 31， 5	．．．．．．rlı	2\％311	4	ご	O－	314	
911	H17 311	． 110	$4 \% 350$	$4!$	－13	$5:$	21.5	
$\because 15$	421	Stour 10－y	3×4.1	$\Psi^{\prime \prime}$	$\because 41$	E2	2 li	
2115	4：4 \14 ！	－－．．dr	31；31．7	41	845	$5:$	945	
$\because 47$	4，li incis	E．ath．14，ti ．．．．．．．．．	36580	$+^{\prime}$	$\because 41$		$\because 42$	Sim Mulde istronmaical station．
－12	4＊ 408		4.584 .8	O10 11：	$\because 47$	0.1	24，	
$\therefore 19$	43：1350	Enthlmumad， $1 \mathbf{f}^{\prime} \cdot \mathrm{G}^{\prime}$ ．	$4 \% 121$	0%	㫛品	5	200	East of 1＇s ramid（＇ter＂k．
\％		．．．．d，．	51 Eric	（1）	\cdots	04	2－1	On west hlall＇Y：mmid＇reek．
$\because 1$	43514 l	．．．．111	53，411	（1）3	200	9.3	8－8	
$\therefore 2$	410 71－5	．．．．．Al	S－4．0	11	－1	104	23.3	East of ！ig Mmidy Riper．
2－3	4114	．．．．．． 1 h，	10．10：3 $3: 18$	10	－	03	20	West oll fige Mudily kiver．
\＃． 4	147 5311	S（1014，1－3＇ 1	115 3： 0	00	$\because 3$	03	2.3	
0	451511		$1: \pm 1.1$	vo	45	06	206	nomucal station N゙v， 11.
20	45.14391	－．．．．．17a	12 5.8 .9	0.1	25	07	207	
0	A，4 4is1	Earth mommi，Ju＇－	117 Li .10	11	20	0	2\％	
※－	4578	．．．${ }^{\text {m }}$ ，		114	号	15	289	
－	diol 5	．．．．din	\＃1 4is． 5	14	－54	115	$\because 6$	Iu a brand valley．
41.11	4151 403：3	．．．．．da	※！：－ 3	19：3	25	118	261	
21	4178	．．．．．Al／	3．3：－7	11	2，	11%	$\cdots 10$	
	1：－117，	－the	渻碞 1	113	21.1	116	－ 13	In valley of lopl 1 liver
24.3	tis 3f：1	Larilo momut， $1 t^{\prime} \times{ }^{\text {r }}$ ．	11．31：	111	为	369	204	I＇rlar Fiver athoumuical station
2dis		．．．do ．．．．．．．．．．．		－1，	26，	5\％	3	

List of the monuments marking the internationul boundary－line， \boldsymbol{f} c．－Continnsd．

	Distance from Lake of the Woods．	Nature of monument．	Longitade west of Greenwich．	Azimuth．		Azimuth．		lifmarhs．
	Miles．Links．		－＇t	\bigcirc O		$\bigcirc 1$		
966	4823454	Earth mound， $14^{\prime} \times 6^{\prime}$.	10．\％ 5331.8	8951	265	2695	26%	
207	$4 \times 5 \quad 3454$	．．．．．．do	5189.3	54	266	57	208	
Stic	48834.54	．．．．．do do	10601268	54	263	51	969	
269	4912054	．．．．．．do	0.510 .5	51	268	58	200	
2%	4943454	．．．．．．do	09.1 .8	5.4	269	51	271	
271	4966906	Stone， $13^{\prime} \times 6^{\prime \prime} \ldots$.	13343	54	270	27007	2.2	Went Puplar River anmonmuical station．
272	4986821	Farth monnd， $19^{\prime} \times{ }^{\text {F／＊＊}}$	1511.9	9005	${ }_{2}^{6} 1$	07	273	
273	5011293	．．．．．．do 0^{+}．．．．．	18 14．7	0 0，	278	0%	2it	
94	50：2 7391	．．．．．．dlo＊	2034.2	05	$2 \% 3$	04	2\％5	On eage of west beathel Poplar River：
275	5050350	．．．． do^{*}	2322.1	0.7	274	08	236	
2315	5100170	．．${ }^{\text {d }}$＊	29.56 .1	14	25	18	278	
27	511 1061	Stone $10^{\prime} \times 6^{\prime *}$	3124.1	03		08	278	
258	$514123 ?$	．．．．．．dot ${ }^{+}$	35.23 .4	05	976	08	24	
$\bigcirc 279$	54\％3641	Earth monod， $1 \mathrm{P}^{\prime} \times \mathrm{s}^{\prime *}$	4103.9	$0 \pm$	278	$0 \cdot$	$2 \sim 0$	
280	520	Srome， $10^{x} \times \mathrm{b}^{\prime *} \ldots \ldots$.	44.5	0.	299	07	为1	
$2=1$	5204742	Earth mound， $14^{\prime} \times 6^{* *}$	4631.5	05	$2 ¢ 0$	12	20.1	Little Rokky Cruek antronomieal station；west of creak．
282	5953103	Stone， $10^{\prime} \times 6^{\prime *}$	5012.8	10	281	09	983	
283	523 0764	．．．．．．do do	53 47．${ }^{\text {¢ }}$	10	282	103	204	
28.4	5312323	．．．．．．dro＊	5×00.1	00	$\mathrm{c}_{2} 8$	18.	2 c 5	
2－5	534 7642	．．．．．don＊	1074250.3	8959	284	0：	$2{ }^{2}$	
2¢6	5371010	．．．．．．do ${ }^{*}$	0048	9000	2×5	03	号	
282	5417704	．．．．．du ${ }^{*}$	1205.1	875	980	11.3		Ou cast blatfut Fitochmana Creek．
288	$544 \quad 7513$	Earth unound，19\％$\times \mathrm{C}^{\prime *}$ ．	16 00.8	4006	98	10.3	20.7	
2×9	5483375	stone， $10^{\prime} \times 6^{\prime *} \ldots . .$.	20364.5	00 0.	288 284	10	290	On west bluffof Fremehman＇sCrech． Frouchman＇s Crack astronmmical
290	$550 \quad 6740$	．．．．．．do ${ }^{*}$	2348.2	0.1	2－4	117	291	Frimeliman＇s Creck astronmical at．ations．
291	5531607	．．．．．． 100^{*}	26.54 .9	04	290	02	292	Near lokt．
292	557 2460	．${ }^{\text {d }}{ }^{*}$	12 20.0	$0+$	291	17	493	
293	5603703	．．．．．．d do ${ }^{+}$	36 ± 4.9	01	$29:$	17	969	
294	5032270	．．．．．do do	40 13．2	04	293	07	295	
295	565 2322	．．．．d．${ }^{*}$	4059.1	0.5	204	07	296	
296	$56 \% 3821$	Stone， $12^{\prime} \times 6^{\prime *}$	4545.5	05	295	00	205	Cotonwond conlé astronomical station．
297	5.063881	． $\mathrm{d} 0^{\prime} \dagger$	4943.4	89.57	296	00	498	
29.3	5733881	Stone， $10^{\prime} \times 16^{\prime *}$	51340.9	5 i	297	100	209	
299	5766351	．．．．．ddod ${ }^{+}$．．．	5738.4	57	298	16	3011	Orimest bank of Cottonwood conle．
300	5793801	．．．．．dio＊	1080125	57	999	170	301	
301	$5 \times 238 \mathrm{Cl}$	du－t	0533.5	5	300	(10)	$30: 3$	
302	5053881	．d，${ }^{\text {d }}+$	0931.0	5	301	0108	303	
303	5\％d 1031	．．．．．．do4	13 ก9．2	5%	30\％	2695	314	Pool on Prairie astronomical sta tiol．
304	5916	．．．．．dov＊	17.43 .8	55.	303	59	305	
305	59657	．．．．．dio ${ }^{*}$	$2180 . \mathrm{K}$	54	304	${ }_{5}^{51 m}$	3015	
306	5490203	－．．．．dn＊	2783.3	5.5	305	58	307	
307	601 21－2	．．．．．do ${ }^{\text {a }}$	$3)^{91.0}$	5	306	$5!1$	3192	
308	6056789	．．．．．．do＊	36.23 .3	54	307	5	$30!1$	
$30!$	60186593	．．．．．． 10^{*}	401 く，	55	$30-$	9	310	
310	ti3 0378	－．．．．．du＊	45 53．${ }^{\text {c }}$	54	309	52	311	
311	6153202	Stone， $121 \times \mathrm{f}^{1 / *} \ldots \ldots .$.	4×51.5	55	310	27011	31：3	Neat（romst Laka artronomioal station．
312	618 3202	Stone， $10^{\prime} \times 6^{\prime *}$	52.57 .0	9002	311	11	313	
313	6121 10e5	．．．．．．d10＊	51633.6	08	31：3	11	311	
314	624 2737	．．．．．．do 10^{\star}	10900147.5	08	313	11	31.5	
315	6070571	．．．．．．do do	0183.6	118	314	11	316	
316	6304402	．．．．．．dio ${ }^{\text {＊}}$	0859.0	（1）：	31.5	111	317	
317	6324405	．．．．．．ds＊＊．．．．．．．．．．．．	1133.4	08	316	11	31.4	
318	6354159	Stone and eartb monod， $10^{\prime} \times 8^{3 / 4}$ ．	1535.5	118	317	11	3111	
319	6394147	Stone， $10^{\prime} \times 6^{\prime *}$－．．．．．．．	2049.1	08	318	11	320	
320	$6420: 18$	．．．．． 10 ＊	2407.7	02	319	日 $0^{2} 9$	$3: 1$	Eust Furl astronomican stut：on，in river holton．
321	6436856	．．．．．${ }^{\text {do }}$	2632.6	895	329	53	3201	
322	64462395	．．．do ${ }^{*}$	2946.0	5	$3: 1$	5	3.3	
343	6492001	$\cdots \mathrm{Cl}$ d ${ }^{*}$	33 39．6	51	32%	53	321	
334	6511113	Earth momml，19＋$\times 1$ ．	3609.8	51	323	5	330	
325	$655 \quad 2357$	Stose， $10^{\prime} \times \mathrm{i}^{\prime 2}+\ldots . . .$.	4133.8	514	3：1	5	324	Wrat Furk，astrunommalatimon，in raver button．
326	654 235%	．．．．． 4 n ${ }^{+}+$	4535.7	51	335	5	337	
327	C61 23.57	．．dos ${ }^{\text {a }}$	4933．9	5	324	53	$3 \cdot \mathrm{C}$	
328	66142357	．．．．．dn＇t	5330.7	$5 \cdot$	347	5.0	33： 1	
329	6672357	．．．．．do＊	5698.9	5	3.73	5	33.30	
330	$670 \quad 2357$	．．．．．．do4	1100125.8	53	32.	5.3	331	
331	fǐ3 2357	．．．．．．dn＊	0523.3	528	330	5	33．	
339	6770281	Stonm， $10^{\prime} \times 8^{\prime *}$ 。	1019.5	$5:$	331	51	333	Milk liver Lakn astronomical sta tion．

List of the monuments marhing the international boundary－line， $\mathfrak{f c}$ ．－Continned．

	$\begin{aligned} & \text { Distat } \\ & \text { from Ia } \\ & \text { the Wy } \end{aligned}$	ance alie of outs．	Fature of monumeut．	Longitule west of Greeumich．	Azimuth．		Azlmuth．		Remarlis．
	Miles．I	Links．		O 4	$\bigcirc 1$		$\bigcirc 1$		
333	680	0497	Earth amistooe monod， $10^{\prime} \times 1 i^{\prime *}$	1101419.1	8951	332	26954	334	
334	683	1144	．．． 100^{*}－－－．．．．．．．．	1293.1	51	333	51	33.5	
335	18\％	5545	Stoucs， $10^{\prime} \times 6^{\prime *}$	2145.0	51	334	5.5	334	
331	699	3177	．．．．do ${ }^{4}$	3954.9	50	33.5	57	337	
33%	702	3023	Stone， $13^{\prime} \times 6^{\prime+} \ldots-\ldots-{ }^{\text {a }}$	4346.0	49	336	40	338	West of Milk River astronomical station．
338		750	Stone， $10^{\prime} \times 6^{\prime *}$	4808.1	43	337	46	339	
339	70%	3204	．．．．．．tlo＊．	5142.8	43	338	46	340	Ou west bauk large conke．
340	311	3444	．．．．．．dis＊	5542.7	43	339	46	341	
311	714	8412	．．．．．do ${ }^{*}$	5030.0	43	340	46	342	
342	717	7¢48	．．．．．．do＊	1110421.3	43	$3+1$	46	343	
34.3	720	5.500	．．．．．．do＊	0754.1	43	349	51	344	On crest of spur．
344	733	0383	．．．．．．．du＊	1102.5	50	343	51	345	Momal on west slope of epur of East Butte．
345	726	409.4	．．．．．do ${ }^{*}$	1536.8	42	341	51	346	
346	7.30	0.73	－．．．．．dlo ${ }^{*}$	2018.13	48	345	51	347	
347	731	0724	Stone， $10^{\prime} \times \mathrm{V}^{\prime / *}$	2536.8	48	346	52	348	
348	738	53×3	Stome， $11^{\prime} \times 5^{\prime \prime}$	3139.6	43	347	50	349	East of Wrst Butte．
349	T40	0195	Stoue $10^{\prime} \times 6^{\prime *} \dagger$	3326.6	49	348	27025	350	Wert of West Su，er．
350	742	6312	．．．．．．do ${ }^{+}+$	370153	90 92	349	95	351	
351	745	${ }^{6} 377$	．．．．．．．ds＊＊．	4103.7	2－	3.0	2.	353	
352	748	6856	．．．．．．do＇ 1.	4.505 .1	2%	35.1	25	353	Near Creek．
35.3	751	5750	．．．．．．de＊+	4852.7	82	35.	95	354	
354	754	5770	．．．40＊	5250.9	22	353	25	355	
35.5	757	3504	．－－．．dlo ${ }^{2}$	5705.1	22	3．21	95	3.75	
356	760	3160	．．．．．．16＊	1190019.5	42	35	$0 \pm$	3 3 7	
35%	763	7188	．．．．．．du＊	0456.8	8959	3046	02	3ご	East of Red Creck，near Whoop－up trail．
358		2493	．．．．．． $10{ }^{*}$	1046.3	53	3.7	07	359	
359	71	4218	．．．．．．tto＊	1501.4	59	358	02	360	
360	734	4303	．．．．．．ldo＊	18.54 .7	59	33.9	U2	361	
361	737	± 018	．．．．．．．do＊	9234.6	59	360	02	367	
36：	779	2655	．．．．do ${ }^{*}$	2519.0	59	361	03	36.3	
353	7×1	f才ia	－．．．．do＊	Q8 37.9	53	362	03	364	
364	－85	0279	Stove， $12 \times \mathrm{b}^{*}$－	3250.3	58	363	9695	365	Astronomical atatioo south braoch Milk River，on west Lank．
345			Stone， $10^{\prime} \times 6^{\prime *} \ldots$.	3697.5	55	364	52	306	
366	390	7610	．．．．．do．	$40: 38.7$	65	36.7	57	367	
26	713	Ttit3	－－－．${ }^{\text {d }}$ d ${ }^{*}$	4 ± 36.3	54	366	57	368	
36 c	798	$\underline{3} 305$	．－．．．．do ${ }^{*}$	5019.6	［i）	367	57	：349	
369	801	3：01	－－－－－ $10{ }^{*}$	54960	5.4	308	57	370	
350	E04	3361	．．．．．．do＊	58.85 .1	54	369	55	371	East bluff north branch of Milk liver，astrouomical station．
371	807	6209	． $3 . .$. do＊	1130250.8	51	370	55	37.	On Mthk Liver lidige．
352	\11	2 2 46	－．－．．do ${ }^{*}$	17734．3	51	37	5.5	373	in valley．
373	815	0319	－．．．dod＊	12800	41	372	55	374	Ou high rudge．
371	817	7358	－－－．－－lo ${ }^{*}$	1613.0	59	373	54	37.3	East of saint Mars＇s Riser．
375	$8 \cdot 20$	4100 3046	．．．．．．do＊	1945.0	59	374	5	376	West of Srint Mary＇s River．
371	E：4	3946		24.54	51	3\％	5	377	
375	8205	4138	Stone， $18^{\prime} \times \mathrm{i}^{\prime \prime} \dagger \ldots . .$.	2635.3	52	3 T	45	378	lincky jountain astronomical atr－ tiou，gear lake．
372 379	88.8	1483 04.3	Stone $10^{4} \times 6^{12} \dagger \ldots \ldots$	3036.9 33 109	42	377	4. 46	379 $3=0$	
3－0	－ 36	23．5		4039.0	41	－ 319	4	3eo	Pelly Fiver astronowical station．
：381	ह46	0：40	$1 刃^{\prime} \times \mathrm{i}^{\text {＊＊}}$ ．	5319.6					C＇hief Monotain Lake astrubonical station．
$3{ }^{3}$	8.53	28	7×6.1	11402 5ff． 5		．．．			Summit of Rocky Mountains．

＊Indicates that an iron tablet was buried sifet desp and lofest east of the monnmeot；and findicates that an irou tablet was buried also in the center of the monmecut．

UNITED STATES NORTHERN BOUNDARY COMMISSION.

REPORTS

OF THE

CHIEF ASTRONOMER AND IIIS ASSISTANTS.

UNITED STATES NORTHERN BOUNDARY COMMISSION.

Washington, D. C., Iebruary 14, 1877.

Sir: I have the honor to submit my final report as chief astronomer and surveyor of the northern boundary.

The maps and records of the commission have already been fowarded to the Department; but the text of my own report has been withheld on accom of a delay in completing some computations relating to the declinations of the stars used. As it now appears that the work cannot be finished before the $23 d$ of the present month, and as it is desirable that the records should be completed at once, I send my report to you herewith, and will, as soon as practicable, forward to the Department the unfinished discussion of the standard places of fixed stars, as an appendix. As this work forms no part of the record of the commission, but was undertaken as a matter of scientific interest, I can now inform you that the work of the commission is complete.

The subreports of the officers and a complete index of the records, were sent to the Department in July last.

In closing my connection with the Northern Boundary Commission, I desire to express my appreciation of the kindly courtesy which you have always extended to me and to the officers under my command, and to say that it is a source of gratification to know that my labors have met with your constant approval.

44

 UNITED STATES NORTHERN BOUNDARY COMMISSION.My thanks are due to Capt. J. F. Gregory and Lieut. F. V. Greene, and to assistants Lewis Boss, C. L. Doolittle, O. S. Wilson, and A. Downing for the intelligent and thorough mamer in which they have performed the duties assigned to them.

I am, very respectfully, your obedient servant, W. J. TWINING, Coptain of Engincers, Chief Astronomer.

Archibald Campbell, Esq., Commissioner of the Northern Boundary.

Washington, Felruary 15, 1877.
Sir: In compliarce with the request of Major Twining, United States Engineers, I have the honor to transmit herewith to the Department his report as chief astronomer of the late Northern Boundary Commission.

I have the honor to be, very respectfully, your obedient servant, ARCHIBALD CAMPBELL, Late Commissioner Northern Bomntary Survey.
Hon. Hamilton Fisif,
Secietary of State.

REPOR'T

OF

CAPT. W.J. TWINING,

REPORT.

OHAPTERI.

GENELAL CHARACTEHLSTICS GF THF (OJOXIKY
Sir: The portion of the continent traveresh by that part of flase northem
 been little known, by far the larger part being unexplored. Lying off the asual lines of travel, and presentinge no inducement to commercial enterprise, there was nothinge to hringe its actual value fairly wh the notiee of the general publie, while the ricen of the climate, the lack of forest, and the distance from railway communioation offectually elecesobimmioration.

To the diendvantages already manerl may alory be added the denceres of Indion wafare and the destructive incursions of era-shophers. The experience of the Britisla settlemente along the Lied liver of the North, even to Lake Wimiperg, getendinge throurel neanly seventy yeare, has heren

 with the ruter and procreseive world, the forme of eivilized life findly genae way: and were superecded by the manners of a armadie semi-barbarous perple, though, ewen in this stage of decas: the ratural politentos of is French ancestry and the teachises of a fow prous piteste of the Comblio Church had left their imprese on the wereseling erenserationt.

The peculiar isolation of the distant regions lowere about the Lakeo Winniperg and Manitola, and the ternitory drained by the rivero smperine into these yast bodies of water, is due not simply to diotarese fron the centers of civilization, for their distance from the eratled protiono of Cearseles,
 and. in fact, is much lose, than that of mong of the Northworem riates
and Territories of the United States from their respective centers of trade along the eastern coast. The difficulty has been in the singularly impracticable nature of the country, and of the water-routes lying to the northwest of Lake Superior. This region of swamps and sterile pine-lands has opposed an effectual barrier to commmication toward the Canadas, and has forced the traffic of these remote settlements to find an outlet through Minnesota, and thence to the seaboarl.

Within the last few years, the rapid growth of the great States of the Northwest has given an impulse to the more distant Territories beyond, so that now the lines of settlement are stretching ont, up the rich valley of the Red River, and rapidly extending to the west, along the smaller streams flowing into that water-course. Thus a better knowledge of the resources of the great Northwest has been obtamed throngh the slow progress of actual settlement.

The survey of the northern bomdary, from the Lake of the Woods to the Rocky Mountains, by giving the results of careful examination along a contimons line, has already contributed largely to the actual knowledge necessary to form a correct judgment in regard to the resources and probable future of a vast tract of country which was, at one time, classed, by unthinking and careless writers, as part of the "Great American Desert," and a few years later exalted by the same class of anthorities into something little less than a tropical paradise.

It is of vital importance to the interests of the Northwest that the question of the fertility and general a vailability for settlement of the region east of the Rocky Mountains, comprising the northern part of Dakota and Montana, shonld be definitely settled, in order that a just understanding of the climatic conditions and other considerations may indnce a gradual and healthfil immigration. It is useless to expect to find repeated in these high northern latitudes all the favorable conditions of soil and climate found in the Middle States. On the other hand, it is not well to exaggerate the excellence of the special productions of the northern lands, since the actual farts are sufficient to warrant their settlement and cnltivation.

The great agricultural bonamza of America was found in the valley of the Mississippi, occmpied by the Middle Western States. No other portion
of the continent can unite the various advantages possessed by those broad and fertile plains, since in no other part may we expect to find the richness of soil favored by the climate necessary to a widely-varied production. In the extreme Northwest, we may, however, reasonably expect to find that certain specialties in agriculture will well repay the labor of cultivation. Thus, the test of actual settlement has proved the special adaptation of the soil and climate of the far Northwest to the production of wheat, barley, oats, and the hardier sorts of vegetables. In these specialties, the large production compensates for the lack of more varied agricultural resources.

There is, however, a limit to the extent of the arable lands fixed by tho amount of the amual rain-fall. Commencing with the valley of the Red River, where the ammal deposition amounts to from serenteen to nineteen inches, the amount of the rain-fall decreases, until in longitude 100° it will scarcely exceed seven inches. Here we find a fact which sets a limit to the westem extension of the cultivated area of the United States. The same conditions of humidity formd along the northem boundary exist also in the southern latitudes, giving to some places almost the character of a desert, although, on the northern line, there is no great area to which that name can be properly applied.

No one can point to a given meridian of longitude upon the map of those great plains, and say that to this line the settlements may extend. The varying conditions of humidity from year to year, or perhaps through series of years, fix their own limit, by the operation of mknown laws. The western line of the cultivated areas may therefore, from time to time, be advanced or withdrawn, as the variations of the scasons may be favorable, or umfavorable, to production. Over the belt of disputed territory thus established will ultimately be found a straggling line of frontier ocenpation, elinging to a few advanced points, where favored by the special character of the surroundings. Such a belt of temitory will probably be found, of about one hundred miles in width, separating the easily-cultivated from the actually-irreclaimable lands. On the forty-ninth parallel, the varying line of settlement will probably be in the vicinity of longitude 102°. What the ultimate effect of tree-planting on the adrance of the firontier will be, cannot be predicted. The data are too uncertain to form the basis

[^0]of any reasonable hypothesis, and all predictions must of necessity be mere idle speculation.

The principle of irrigation will here find no extensive application. Under the most favorable circumstances, to irrigate a given area implies that the rain-fall of a very much larger area is utilized to increase the production of the lesser portion. Even then, the conditions of climate must be such as to compensate for the great labor and expense by double crops. Thus, if twelve inches of water were required for purposes of irrigation, the ammal precipitation being only six inches, the difference must be supplied from the rain-fall of surrounding areas, and as but a small part of this can be saved or applied economically, it is evident that the ratio of the cultivated to the uncultivated lands must be exceedingly small. In any case, a system of irrigation can only be applied to the low-lying lands of the valleys bordering the streams. No such condition of low level lands, surounded by elevated mountains or plains, obtains in the territories of the Northwest in the vicinity of the boundary. The rumning streams are few and insigmificant, for the most part ceasing to flow in summer, and forming only a series of stagnant pools. The valleys are deep and narrow, with constantly-varying elevations. The climate is cold, and the season too short for more than one crop. Under these circumstances, it seems evident that the natural laws under whose operation this immense territory has become what it now is, will scarcely be materially affected by the future efforts of man.

A brief explanation of the characteristics of the country will make clear what has been sail, and will serve to explain the general scope of the work performed by the engineers of the commission.

Considered in a general sense, with regard to level and superficial character, the country extending from the Lake of the Woods to the Rocky Momntains, in the vicinity of the forty-ninth parallel of latitude, may be divided into four distinct areas: 1st. The region of swamps, forming the summit-level drained by the Mississippi, the Red River, and the streans flowing north from the Lake of the Woods; 2d. The valley of the Red River; Bd. The prarie patean, extending from the eastern escarpment of the Pembina Mountains to the Cotean of the Missouri; 4th. The prairie
plateau from the Coteau of the Missouri to the Rocky Mountains. This latter division is quite diverse in character, being intersected by the Cotean of the Missouri and a narrow belt of the "manvaises terres," or bad lands of the south.

If considered with regard to drainage, the boundary-line will be found to follow very nearly the dividing ridge of that part of the continent. From the base of the mountains eastward as far as the Milk River ridge, the small streams flow to the north into the Bow River, though they take their rise only a few miles south of the line. From the Milk River ridge eastward as far as the Cotean, the drainage is to the south, the line following pretty nearly parallel to the dividing ridges of the Cypress Hills and the Woody Mountain. From the Cotean to the Turtle Mountain, the boundary lies in the valley of the Mouse River, which, after making a deep bend to the south, flows again to the north, and empties into the Assiniboine. East of the Turtle Mountain, the drainage is about equal in both directions, though all the southern waters find their outlet again to the north by the Sheyenne into the Red River.

The streams between the valley of the Red River and the Rocky Mountains, excepting only the mountain-torrents flowing to the north into the Bow River, and thence into the Saskatchewan, are merely prairie streams, to which the name river is only given by sufferance. Many of them are the most insignificant of rivulets, which, during the melting of the snows in the early spring, may carry a reasonable volume of water, but in the summer consist, for the most part, of a series of pools, more or less stagnant, and with no appreciable current. The Mouse River and the Milk River are the most considerable of those along the northern boundary, and may be taken as the type of all the prairie streams of Dakota and Montana. Thus, the Mouse River, though having a length of as much as four hundred miles and draining the eastern slope of the Cotean of the Missouri, from the north of Woody Mountain to the bend of the Missouri below Fort Stevenson, yet carries an insignificant volume of water, being reduced to almost nothing during August and September. In like manner, the Milk River, rising near the Rocky Mountains, ceases to flow during the montl of August. As these ruvers are not fed by springs, the lack of rain and the rapid evaporatiou
reduces the volume of their flow in proportion to the distance from their sources.

It may be said, then, that the boundary-line intersects no stream of any importance from the Red River to the Saint Mary's; and that this, in itself, is sufficient to prove the very small arerage rain-fall over the included area.

Partly from the same cause, doubtless, the proportion of the two Territories bordering upon the line which is covered by natural forests, is remarkably small. Along the slopes of the Pembina Mountains, the boundary cuts through a distance of dhirteen miles, and on the Turtle Mountain, thirty-four miles of a pretty nearly continuons growth of forest. West of the Thutle Momntain, there is no timber to be found near the line, except along the Mouse River. The line actually cuts no growth of trees, or even bushes of ary size, for a distance of six hundred miles. In northeastem Dakota, certain kinds of oak, aspen, and birch grow freely where protected from prairie-fires, and it is probable that with such protection the natural forests would extend over a large part of the Territory. Judging from the growth along the Mouse River, it seems most probable that the western limit of the extension of the wooded areas, either by natural growth or by artificial planting, will be in the vicinity of longitude 102°.

The detailed topography of the country between the Lake of the Woods and the Rocky Mountains is singularly lacking in points of general interest, and I have, therefore, confined the following description to such matters as are necessary to a correct understanding of the astronomical and topographical work of the commissiom.

A most complete and accurate account of the geology and resources of the country in the vicinity of the looundary-line will be found in the report of Mr. Dawson, the geologist accompanying the Englisl expedition, which is already published.

An armirable description of the water-communications from Lake Superior to Lake Wimipeg, and of the nortliwest territory between the bomdary-line and the Saskatchewan liver, including an account of the Red River settlemont and the IIudson's Bay Company, will be found in the report of the Camadian Exploring Expeditions, 1857-5s: II. Y. Minct, London, 1846 .

THE LAKE OF THE WOODS.
The Lake of the Woods is a name usually applied to a gromp of four lakes lying on the northern boundary of the United States, and nearly in a right line with Lakes Superior and Wimipeg. These four lakes, numbering from the northwest, are the Lac Plat, the Clear Water, the White Fish, and the Lake of the Sand Hills; the latter, by common usage, hats adopted the name Lake of the Woods. The official sanction to this title was given by the commissioners under the sixth and seventh articles of the treaty of Ghent, in fixing the northwest point, and it is, therefore, useless, at this late day, to inquire into the extent and significance of the original term. It is, however, a little difficult to understand the process of reasoning by which those commissioners, while including the Clear. Water and the Lake of the Sand Hills under the general title, yet rejected the Lac Plat.

The geography of the region has never been well known, and, even at the present time, the northern and eastem shores of this lake-system are but illy defined. The drainage is toward the north, by way of the Wimipeg River, into Lake Wimipeg. The principal affluent is the Rainy River, which enters from the southeast, though a number of small tributaries are received from the south and west, draining the swampy belt which borders the lake in those directions. The Rainy River is a stream of three hundred yards in width, flowing with a deep, swift current. The discharge of the lake is by two outlets, with a short series of rapids, into the Wimipeg. River.

The boundary-line enters the lake from the Rainy River, ant, leaving the various islands alternately to the right and left, enters the bay known as the Northwest Angle, at the extreme northern end of which the "most northwest point" is located. The southeastern portion of the Lake of the Sand Hills, or, as now known, the Lake of the Woods, therefore, pertains to the domain of the United States. It comnects with the Clear Water Lake on the north by channel-ways between mmerons rocky islands. The islands cease a short distance south of the entrance to the Northwest Angle. The western and southern shores are bordered by vast swamps, the division between the swamps and the lake being distinctly marked, in some places,
by small ridges of sand-hills, but generally only by narrow sandy beaches, or an accumulation of drift-wood and brush. Buffalo Point is quite an open piece of ground, well raised from the lake, and the same is true of the shore where it cuts the forty-minth parallel. The forests are mostly composed of small pines and tamaracks, though on the higher ground elm, birch, and aspen are found. The waters of the lake are shallow, the greatest depth found in coasting being eighteen feet, though, doubtless, in some parts the depth is much greater. The width of the lake being great (in some directions as much as fifty miles), the winds lave an uninterrupted sweep over its surface. It is thens liable to sudden and violent tempests, which make navigation in small boats both difficult and dangerous

The vicinity of the Lake of the Woods is inhabited by a few small bands of Ojibway or Chippewa Indians, who subsist by trapping, lunting, and fishing. Their lands are not ceded, and they receive no amnities. Their locus is doubtful, some living within the lines of the United States, and others on British teritory. The only present economical value of the Lake of the Woods is in its being on the line of water and land communication between the eastern and western provinces of the Dominion of Canada.

The military route called the Dawson Road has its terminus at the Northwest Angle, and though not such a road as ever to enter into competition with the easier, though less direct, rontes toward the south, yet answers the purpose for which it was built, in giving a line of independent communication between Manitoba and the Canadas. Great efforts lase been made by the Dominion Govermment to utilize it for purposes of immigration and general tramsit; but I have yet to sce the person who has dared its discomforts a second time. The government supports, by subsidy, two steamers and sereral steam-launches. The landing at the Northwest Angle is on British soil, but to reach it the ressels pass through American waters. The road for twelve miles from the angle is continnous corduroy; east of that the route passes through a country of sand-ridges, altemating with swamps, or mushegs, for a distance of seventy miles, to Oak Point. It then conters the valley of the Rel River, and, after crossing an almost contimous suce ession of bogs for thirty miles, reaches Fort Gary

Of the portion of land belonging to the United States cut off by the north and south meridian line, and amounting in all to about one hundred and fifty square miles, much the greater part is covered with a deep bog, on which a few scattering tamaracks struggle for existence. In some localities, where the ground is ligh, deciduous trees predominate, but, as a general rule, the forests are composed of coniferous trees of small size and little value.

The Lake of the Woods receives two additional tributaries, one from the southwest, called the War Road River, and another from the west, called Reed River. These streams are simply small channels cut in the marshes, or muskegs. They drain a width of marsh varying from eight to sixteen miles in width. By the Reed River, the Indians are in the habit of making a portage to the headwaters of the Rosean River, and thus reaching the Roseau Lake. The actual length of the land portage is eight miles, but this is through a swamp, where the traveler sinks from one to three fect into the mud and water, and may consider himself fortunate if he does not once or more disappear entirely beneath the surface. After reaching the northeastern branch of the Rosean, the difficulties of the trip are over.

Lake roseau.

Lake Roseau is a shallow lake, about three miles in greatest length. The shores are lined with a broad margin of tall grass and reeds, from which the lake takes its name. It is fed by two tributaries, the East Roseau and the Pine River; the former being composed of two branches, one from the worth of the boundary and the other draining the broad swamps lying between the Lake of the Woods and the Red Lake in Minnesota. It discharges into the Rosean River, a tributary of the Red River of the North.

the roseau river.

This stream, after keeping a westerly course south of the boundary, finally crosses at a point thirty-three miles east of Pembina, and, flowing for the rest of its course throngh Manitoba, enters the Red River thirteen miles north of the line. The stream is used by lumbermen in floating out
logs from the pineries near Lake Roseau. It is interrupted, at one point, by rocky rapids, but, with that exception, is a clear flowing stream. Its average fall is not less than two feet to the mile, from which it is quite evident that it can never be made navigable excepting above the rapids. It is quite probable that, by cutting down the rapids a few fect, the river might he made to drain, much more thoroughly than it does now, the vast region of swamps through which it takes its course. The first effect of entting down the barrier would be to increase the current, which would again establish nearly the present regimen, but at a lower level. Lateral chamels would then rapidly form through the soft material of the marshes, and a general system of natural drainage would establish itself, which wonld ultimately render available for settlement many hundreds of square miles now covered by bogs. The greatest deptl found in the Rosean Swamp was about fourteen leet, at which a sounding-pole would strike a hard clay pain. The river flows throngh the swamp, and at about the same level, for many miles. We may say, then, that a gradual wearing-ont of the riverchamel to the depth of ten feet would effect the drainage of the greater part of this immense swamp. This is the process which is now actually going on, and which will be completed, like all the operations of nature, slowly but none the less surely.

From the levels given herewith, it will be seen that the difference of level between the Red River and the Lake of the Woods is two hundred and fifty feet. Of this, the gratest rise takes place in the first sixteen miles eastward from the Red River. The total rise here amounts to one lundred and serenty feet. This swamp region is, therefore, a smmmit-level ent off from the Red River Valley by a ridge, through which the Rosean River, the natumal chamel of drainage, breaks in a series of abrupt maph, obstructed with bowders, but through which, in course of time, it will wear a deep and casy chamel. At present, the whole of this comntry most remain uninhabited and without any special vahe.

THE NINO RIVER

From the sixteen-mile ridge begins the valley proper of the Red River of the Nenth. Its dhamentistice at the bommary-line are identically the
same as those at any other point of section-a valley apparently perfectly level, but in reality sloping toward the river quite rapidly, intersected by small running streams, which are simply the lines of drainage of the prairies, and which, therefore, are exceedingly variable in the amount of their discharge. Along these water-courses, as well as on the main river, and, in fact, wherever protection from the prairie fires is offered, will be found lines of forest, mostly of whitewood, but in some cases of oak. The valley is immensely fertile, as has been proved by actual settlement; the only drawbacks being the long and cold winter, the occasional incursions of grasshoppers, and a liability to heavy floods.

These floods in the lower valley were at one time supposed by the half-breeds to be caused by an extraordinary rise of the Missouri River, which, breaking through some low point of the Cotean, poured an immense volume of water into the Monse River near its sonthern bend, and cansed an overflow in the lower Assiniboine and Red Rivers. This supposition was speedily found to be without basis.

A very simple explanation is found in the tortnous course of the river, and in the fact that its course is from south to north. The melting of the snows on the upper waters canses a sudden and violent rise before the outlets are cleared of ice. The natural result is an ice-jam in every sharp bend, which acts as a dam to back the waters over the low-lying lands above.

It is said that the river is quite rapidly widening its own channel. But of this I saw no evidence, beyond the ordinary wash which takes place in all alluvial streams where there is a constant cutting away of the banks in the bends of the river, the material excavated being again deposited below.

Five small steamers ply on the river between Fort Garry and Moorhead, which is the station on the Northern lacific Railroad. All the lands along the river and many of its branches are already taken up, and little settlements are beginning to make their appearance at varions points.

For many years the people of the Northwest have looked upon this valley as the great wheat-field of the world. It seems that this anticipation will, in time, be realizerl. The valley at the forty-ninth parallel has a width
of about fifty miles, which I do not think is materially reduced toward the south. Taking this as the uniform width, the entire area within the domain of the United States can be estimated at about 10,000 square miles, of which the greater part can be cultivated.

The Dominion Govermment have displayed great activity, and presented many inducements to immigrants to settle in the ralley between Pembina and Fort Garry. Their lands have been surreyed nearly on the same plan as the public lands of the United States. They have offered free transportation over the Dawson route, and, if it were not for the intolerable discomforts of the communication, would probably have succeerled in attracting a very large immigration. As it is, their efforts are by no means a failure. A large colony of Memonites, amounting to several thousand, have taken up land between Point Michel and the Pembina Mountains. These people apparently selected their homes on British soil, because they dislike a republican form of government. They are industrious, sober, and economical, and, although they are destined to great suffering, will doubtless succeed in making for themselves comfortable homes. They have to fear the incursion of grasshoppers, which, if it should befall them in the first years, would be fatal to their enterprise, and discourage all future immigration. The long winters and the scarcity of fuel will try them severely, until they become thoromghly accustomed to provide against the rigors of the climate; but this is a difficulty which has been met and overcome on the prairies of Indiana, Illinois, and Iowa, and which will be met successfully on the plains of Northeastem Dakota and Manitoba.
pembina mountain.
The Pembina Mountain, which borders the western edge of the Red River Valley, is not a momntain in the ordinary acceptation of the word, but is dignified by the title only by comparison with the level lands of the region in which it is situated. It is, in reality, the sharp edge of the high prairic platean which extends westward to the foot of the Cotean of the Missomi. The Pembina River breaks through the escarpment in a deep gorge, causing the apparent width of the rongh ground to appear much greater than it really is. The castem face of the mountain, though quite

sharp in the vicinity of the boundary, becomes much more gentle both to the north and south, so that at the distance of a few miles it is reduced to a long, rolling slope, at the foot of which the numerous small streams emptying into the Red River take their rise. Being protected from prairie-fires, the slopes are covered with a very fair growth of forest, which on the south of the line is mostly of oak of small size. The distance along the line, from the foot of the eastern slope to the level of the second prairie platean, including the width of the gorge of the Pembina River, is thirteen miles. From the point thus reached, the level prairic extends westward to the foot of the Turtle Mountain, without presenting to the eye any special points worthy of description.

turtle mountain.

This elevation, which, like the Pembina Mountain, is only so called by comparison, is an irregular mass of drift, rising at the highest point to not more than 500 feet above the general level. The eastern slope is gentle, while the western escarpment is quite sharp. It is covered by a continuous forest of birch, aspen, and oak, interlaced with briers and wildpea vines, forming an almost impenetrable thicket. Many fine lakes were found along the line of the boundary, one of which is more than a mile in width. It was named Lake Farquhar, out of courtesy to the first chief astronomer of the commission. The width of the mountain, from east to west, was foumd to be thirty-four miles. Its extension in the direction of its greatest length, from northwest to southeast, is somewhat greater. Λ s the entire contour of the mountain was not surveyed, the exact proportion lying within the limits of the United States cannot be stated exactly, but may be given approximately at two-thirds of the whole. The Indians report that many small prairies are found in the southern part, and that the general surface is less rugged.

THE MOUSE RIVER.

From the western slope of the Turtle Mountain to the foot of the Cotean the line crosses what may be called the valley of the Monse River. This stream rises to the north of Woody Mountain, and runs southeast until it strikes the boundary. It then follows, nearly parallel to the line, eastward for abont seventy miles, when, making a bold swed, to the sonth-
east for a hundred miles, it doubles back upon its course, and, crossing the line again twenty miles west of 'Turtle Mountain, empties into the Assiniboine. The distance across the bend on the forty-ninth parallel is only fifty miles. The boundary actually crosses this stream four times. There is a good growtl of forest along the valley proper of the river, begiming at the second crossing, and ending abont twenty miles south of the first crossing west of Turtle Mountain.

THE RIVHìRE DES LACS.

Sixteen miles west of the second crossing of the Mouse River, the line euts the head of the Riviere des Lacs. This singrular strean heads far within the bend of the Mouse River, and, at first sight, impresses one strongly as being an ancient bed of that stream. The lake in which it heads is long and narrow, apparently draining only a very small area of flat prairic. It is undoubtedly fed by springs, for the surface-drainage is totally inadequate to furnish the necessary water-supply. The water itself is fonl with regetable decar, although there is but little of rank aquatic growth to be seen.

Three miles merth of the line, and just at the northrest point of this singular lake, stands the prominent butte known as the "IIill of the Murdered Scout." So level is the general surface that the hill, although of small elevation, is the prominent landmark for many miles. Looking from its summit, the deep valley of the Monse River, on the north and east, may be distinctly traced. Toward the south and west, the Cotean of the Missouri bounds the sight, forming apparently a steep and continuous barrier. This illusive appearance is merely the result of distance, for on nearer approach, the mighty ridge becomes a series of swelling slopes, stretching out in enulless conrolutions to the far horizon

The legend from which this isolated butte takes its name is curionsly illustrative of the habits of the momadic Indian tribes. As told me liy an aneient half-breed, it ram as follows: Late in the fall of 1830, a party of Assiniboines, extending their wanderings far to the east of their own comtry, camped on the point of the lake to the north of the butte. One of their number, ancendine the hill to watch the suromeding wontry for traces
of hostile occupation, discovered a camp of Sioux close under the hill on the south. Cautiously approaching the erest, he came suddenly upon a Sioux warrior lying rolled in his buffalo-robe, and apparently overcome with sleep. Seizing a large fragment of granite rock, the Assiniboine approached his foe with stealthy step. With one vigorous blow he struck the Sioux, and fearing to have missed his aim, or that it might not have been fatal, twoned and ran from the spot. Looking back and seeing his enemy quivering on the ground, he returned and dispatelied him. In memory of this deed, which, in the scale of Indian glory, ranks far above the honor of a well-contested fight, he dug in the gravelly soil the figure of a man lying at full length, with outstretched legs and uplifted arms. He also scooped out each of the footprints marking his path as he fled. These marks, though only a few inches deep, were still distinctly visible when I visited the spot in the summer of 1873 , and will probably remain for many years. In the hollow representing the head of the murdered man there was a red granite stone, smooth, oblong in shape, and about eight inches in greatest diameter, which was said to have been the stone used.

From the Hill of the Murdered Scont, the country is a level or gentlyrolling prairie to the foot of the Coteau. Along the valley of the Mouse River, in this interval, there are numerons outcrops of lignite, for an accomnt of which see Dawson's report, before referred to.

TIIE COTEAU OF TIIE MESOURI.

The Cotean of the Missouri is one of the singular physical characteristics of the region. It extends in a direction from northwest to sontheast for many hundred miles, with a height of from two hundred to three humdred feet. At the line it has a width of forty-five miles, though without a distinct western slope. The eastern slope is distinctly visible for a great distance, and retains its apparent abmptness of outline nearly to the crossing of the Northern Pacific Railway, though at that point the rise is so gradual as to be almost imperceptible. What its northern extension may be is not well known, though it certainly extends beyond the Woody Mountain. It consists of a mass of drift, containing no rock in pluce, and very similar in appearance to Turtle Mountain, which is apparently one of its outlyers.

From Turtle Mountain to the southeast, there is a series of rongh hills with intervals of rolling prairie, extending to Devil's Lake, and thence to Lake Jesse, forming, with the Cotean of the Prairie on the eastern border of Minnesota, a line of drift-formation almost exactly parallel, and similar in character to the Cotean of the Missouri.

The Coteau forms, in the latitude of the boundary, pretty nearly the western limit of the area adapted to agricultural puposes, until the fertile belt near the Rocky Mountains is reached, though, as a grazing country, the limit may be placed somewhat farther to the west. The surface of the Cotean consists of an irregular collection of pointed hillocks, growing more and more irregular in design and contour, until they are merged in the bad lands.

These bad lands, or "mauraises terres," as they are termed by the half-breeds, set at defiance all rules of topograplyy, as well as all adequate description. Lacking even the continuons lines of drainage on which the eye may rest, and which give form and system to an ordinary terrain, they stretch in an endless and tiresome succession of arid and treeless hills and ridges, a tumultuons expanse of baked mud. A large part of the country from the western edge of the Cotean to Frenchman's Creek may properly be called "had lands."

In this interval, the line intersects the headwaters of the Quaking Ash, the Little Rocky, and Frenchman's Creek, the first loeing a tributary of the Missouri and the latter two of the Milk River. Where crossed by the line, they are all small rivulets. Frenchman's Creek, though the largest, is strongly alkaline.

> WOODY MOUNTAIN.

Woody Mountain, to the northeast of the crossing of Frencliman's Creek, lies abont twenty miles within the British territory. It is a mass of drift, rising in an irregular platean to the height of 3,800 feet above sealevel. It is a locality well known in the Northwest as the winter rendezrous of the half-breed hunters. The cart-trail from the Red River settlements leads to Woody Momstain, and thence to Fort N. J. Turnay, a trading-post on Frenchman's Creek, from which point a trail leads southeast to Fort Peck, on the Missomi River.

Going westward from Frenchman's Creek, the boundary lies abont midway between the Milk River and the Cypress Hills, cutting successively the Cottonwood, and the east and west forks of the former.

THE THREE BUTTES

There are $n o$ special points of topographical interest until the Three Buttes are reached. These buttes, or "Sweet Grass IIIlls," as they are called by the half-breeds, lie to the south of the boundary. Each consists of a clump of foot-hills lying around a central cone, which shoots up to a height of 7,000 feet, or more, above sea-level. The slopes of the principal peaks consist of a mass of blocks of broken stone of small size, which are crossed and recrossed as closely as a network of vines, by immmerable paths made by the mountain-sheep. These buttes are the center of the feeding-ground of the great northern herd of buffaloes.

This herd, which ranges from the Missouri River north to the Saskatchewan, made its appearance, going south, about the last of August. The number of animals is beyond all estimation. Looking at the front of the herd from an elevation of 1,800 feet above the plain, I was mable to see the end in either direction. The half-breeds, Sionx, Assiniboines, Gros Ventres of the prairie, and Blackfeet, all follow the outskirts of this herd; but, with all their wasteful slaughter, they make but little impression upon it. It is even said by the traders at Fort Benton that the number of buffaloes is increasing, owing to the destruction of the wolves in late years.

Numerous small rivulets take their rise among the foot-hills surounding the buttes, which, however, owing to the rapid evaporation during the dry season, will scarcely flow more than two or three miles before they entirely disappear. It is not uncommon to see one of these little brooks flowing in the early morning, but drying up during the later hours of the day, and again renewing its flow during the cool hours of the night. It is singular that no timber of any size is to be found among there monntains; the only trees are a stunted pine, growing along the upper slopes.

The vicinity of the buttes is the finest grazing country in the north part of Montana, and, being a rendezvous for the migratory herds of buf-
faloes, it is, as a natural consequence, a debatable ground of the Indian tribes in the vicinity.

The tribes disputing this teritory are the Blackfeet, North Assimiboines, and the Gros Ventres of the prairie, though an occasional war-party of Sioux may be found, coming from the direction of the Bear's Paw Mountains.

Westward from the Three Buttes the general character of the country improves rapidly. After passing the North Fork of the Milk River, the effect of the Rocky Mountains on the rain-fall can be distinctly seen in the increased growth of the herbage. The soil also improves, gradually but very perceptibly, up to the very base of the Rocky Mountains. 'The strip, of land, of about twenty-five miles in width, lying close to and incheding the foot-hills of the monntains, has been very appropriately called the "fertile belt"

THE MILK RIVER RIDGE.
The Milk River Ridge, lying between the North Fork of the Milk River and the Saint Mary's, is the dividing-line between the waters flowing to the Missouri and those emptying into the Saskatchewan. The distinction between the two systems is very marked. The streams flowing to the soutls and east, laving their sources in the prairie or low down in the foot-hills, are sluggish in their flow, with a more or less alkaline tendency. The South Fork is particularly noticeable for the milky color of its waters, which gives the name of Milk River to the stream into which it flows. West of the Milk River Ridge, however, the two rivers crossed, namely, the Saint Mary's and the Belly River, are both monntain-streams, which take their rise in large lakes lying far up among the rugged peaks of the main divide. The Saint Mary's, although not more than one hudred and fifty feet in width, and having at its summer stage a depth of about three feet, would be a difficult stream to cross in the early spring, owing to its swift current and the rough masses of bowlders which form its bed. The Belly hiver is of less size hat similar in character.

TILE ROCKY DOUNTAINS.

The main ridge of the Rocky Momotains, into which the line at this point enters, has a wemeral direetion firm northwest to somtheast. I had

been led to suppose that the ascent to the summit was a gradual slope, and was greatly surprised to find that the rolling prairie abutted sharply against an impassable escarpment of rocky precipices. It was found to be impossible to carry a continuous line even so far as the crossing of the Belly River, and the three stations at this point, the Chief Momntain Lake, and the old monument on the summit of the main divide, are comected by traverses. The last station observed astronomically was on the west shore of Chief Mountain Lake, seven miles from the summit, and was reached by rafting from the north end of the lake. The connection between the two final stations was made by a traverse of thirty-five miles, through the South Kootanie Pass. Chief Mountain Lake has a length of nine miles, and is bordered so closely by the precipitous slopes of the surrounding mountains that it is impossible to make one's way along the shore, even on foot.

The highest peak of the Rocky Mountains in the vicinity of the boundary is at the southeast end of the lake, and has an elevation above the sealevel of 10,400 feet. The elevation of the lake is about 4,000 feet, which may also be taken as the height of the base of the main range.

$$
\mathrm{N} \mathrm{~B}-5
$$

CHAPTER II.

general narrative.
The field-work of the commission oceupied a part of the summer of 1872, and of the two following years, 1873 and 1874.

The act of appropriation authorizing the survey was approved Marel 19, 1872, but the field-parties of the joint commission did not meet on the line until the 1st of September. At that time the engineer officers attached to the United States commission were Maj. F. U. Farquhar, chief astronomer, Capt. W. J. Twining, Capt. J. F. Gregory, and Lieut. F. V. Greene.

Under the instructions of Major Farquhar, I took charge of the astronomical parties, and Captain Gregory, assisted by Lieutenant Greene, began the survey of the. line.

The initial point of the survey was fixed, by joint observation, at Pembina, and the following scheme was agreed upon by the chief astronomers of the two commissions, and approved by the commissioners.

Astronomical stations were to be observed at approximate intervals of twenty miles. The points so determined in latitude were to be considered as absolute. The connection from one station to the next in succession, was to be made by a tangent-line to the prime vertical circle at the first station. From the line so traced and marked upon the ground, the proper calculated offsets to the circle of latitude were to be measured at certain intervals. From the last calculated offset the relative error of position due to observation and the local deflection of the phomb-line, was to be deduced, and each intermediate point, already fixed, was to be corrected by the proper proportional amount, depending upon its distance from the initial point.

Each commission agreed to make a topographical survey of a belt of territory five miles wide on its own side of the line, and it was agreed to
consolidate the topographical work of both parties on a series of maps, on a seale of one inch to two miles. It was also finally agreed to plant iron monuments along the southern border of Manitoba, from longitude 96° to longitude 499°, at intervals of one mile, and, west of Manitoba, to mark the line by stone pyramids or otherwise, at approximate intervals of three miles, to the summit of the Rocky Mountains.

Where forests were encountered, a clear cutting was to be carried through. "The northwest point" of the Lake of the Woods, as determined by a previous joint commission, was to be recovered, and a due-sonth line was to be smreyed and marked from that point to the forty-ninth parallel, or until it cut the waters of the lake. The several points of agreement above given were taken by the chief astronomers as the basis of their work, and finally received the approval of both commissioners.

During the months of September and October, I observed one latitude station on the Red River and one on the west shore of the Lake of the Woods, where it is intersected by the parallel of 49°.

The courtry being impassable between the two points, it was necessary, in order to reach the latter, to go by way of Fort Garry, thence by the Dawson Road to the Northwest Angle, and by small boats to the parallel. In this duty I was greatly delayed by accidents and the state of the weather. My orders were to observe also at the Northwest Angle, but not to delay beyond the 7 th of November. I remained at the angle, after returning from the lower station, until that date, without being able to fix a station, on accomst of continuous stoms. I then retumed to Pembina, which I reached on the 14 th of November, and there received orders to retum to Saint Paul.

In the mean time Major Farquhar and Captain Anderson had found what were supposed to be the remains of the old monment, and after sufficiently verifying its position, had started the meridian-line to the south. Licutenant Greene had carried the first tangent eastward from the Red River thirty-three miles. The English parties had also observed one astronomical station east of the Red River, in addition to the joint stations at Pembina and the Lake of the Woors.

Owing to the lack of funds, the parties of this commission could not
remain in the field during the winter, but left the uncompleted line, between the Red River and the Lake of the Woods, for another season.

The English commission, being barracked near Pembina, were able to complete their astronomical and topographical work, on that part of the boundary, during the winter.

The winter of 1872-'73 was passed in active preparation for the following season. The astronomical and topographical notes of the preceding summer were worked, and the declinations of the stars to be used for latitude observation were prepared, the computations being made for every fifth day, from June 1 to September :0. The office of the commission, during this winter, was located in Detroit, Mich.

In the spring of 1873, Major Farqular having been relieved from the commission at his own request, I was appointed chief astronomer and surveyor. The parties were organized in Saint Paul, Minn., and reached Pembina on the 1 st of Junc. Captain Gregory was placed in charge of an astronomical party, I taking one myself, and giving Lientenant Greene the general care of the line and the topography. The English being ready to take the field, there was no delay. After observing jointly the stations at Point Michel and the eastern base of the Pembina Mombain, it was thought best, the methods being essentially the same, and the results on the four joint determinations agreeing very nearly, to carry forward the astronomical work by alternate stations. By the methods adopted the line was checked every twenty miles, a new departure being made at ach astronomical station. The cutting in Pembina Mountain was commenced on the east by the English, and on the west by the parties muder Lieutenant Greene, and the station on the summit of the platean of I'mbina Mountain was, meanwhile, observed by Assistant Boss. Captain Gregery, having observed at the station at Long River, moved forward to South Antler Creek, while I took the station on the west side of Turtle Mountain.

During these movements the United States parties were accompanied by an escort of two companies of the Seventh Cavalry, and Capt. A A. Harbach's company of the 'Twentieth Infantry, all being moder the command of Maj. Marcus A. Reno. Major Reno established his depot at the
second crossing of Mouse River, at which point the main body of the escort was collected.

In Turtle Monntain the first serions difficulty and delay was encountered. The cutting at this point, which I had supposed would not exceed twenty miles in length, was found to be thirty-four miles. Owing to the dense mass of small undergrowth, the entting was most difficult, as the parties were not prepared to mect so formidable an obstacle.

Leaving Lientenant Greene at Turtle Mountain, I moved forward to the Rivière des Lacs, and observed the station near that point, while Captain Gregory moved to a station midway between the third and fourth crossings of the Monse River.

It had been agreed between the English chief astronomer and myself, at the begiming of the summer, that we would attempt to complete the survey of the line for the distance of four hundred miles, during that summer. It was now evident that it could be done with ease by the astronomical parties, but that, owing to the delay in Turtle Monutain, the surveyors would have great difficulty in completing their allotted task. I therefore sent Captain Gregory forward to fix the remaining three astronomical points, and established my camp at the Wood End, near the third crossing of Monse River.

The river here is no longer a ruming stream, the water being found only in pools. The valley also becomes much less distinctly cut, while the wood definitely ceases. The half-breed road which had so conveniently followed near the line for so great a distance, leads up the valley of the river, skirting the edge of the Cotean at a respectful distance, to aroid the rongh ground. It was evident that it was to be of no more use to us, as its direction was too much to the north. The advanced party; therefore, reluctantly leaving the smooth, beaten path which had seemed like a comecting link with civilized life, turned abruptly westward, and plunged into the hills of the Cotean. The detail of the work performed by this party, as given by Captain Gregory, will be found in lis report, which is transmitted herewith. The difficulties encountered, and the sufferings endured by his party, in the storm which shortly after broke upon them, while among the bad
lands west of the Coteau, I commend to the consideration of those theorists who have insisted on drawing an isothermal line of 60° through this region.

For some days after the departure of the working-parties, the weather remained clear and bright; but on the 20th of September a sudden fall of the barometer indicated an approaching storm. During the night it broke upon us in a mingled snow and rain, the wind blowing a furious gale from the northwest. Throughout the day flocks of ducks and other aquatic birds had been winging their way towards the south, while at night the air was filled with wild-geese urging their flight before the tempest, and piercing the sky with harsh cries and the rushing of wings. My camp being comfortably located in a deep valley, and covered from the violence of the wind by a dense grove of trees, I was scarcely aware of the real fury of the storm. At the Wood End we were apparently on the eastern edge, and the snow, although falling continuously for several days, did not lie heavily upon the ground. The working-parties in the Coteau caught its full force, and being on short allowance and without the shelter of timber, suffered severely. The snow fell to the depth of ten inches on a level, while the weather was bitterly cold. It is a source of wonder to me that the entire train of animals did not perish.

On the 8th, Captain Gregory returned with his party, his animals worn out and totally exhausted with fatigue and hunger, they having been for three days without forage. He reported having passed Lieutenant Greene at the three hundred and eighty mile point. That officer, though much delayed, had, with his accustomed energy, pushed his work along regardless of weather, and now reported that he would be at the depot on the 14th.

Our supplies being short, I at once started back to the second crossing of Mouse River, reaching it by easy marches iu three days Leaving orders here for Lieutenant Greene to join me at Fort Totten, and to use his own discretion in regard to his route, I at once started directly across the country. There was a sufficient supply of provisions, and by eking out the forage with flour and hard bread, I was able to make a half ration of forage. The prairic had been burning in every direction for several days, and it was evident that not much grass could be found. From previous expe-
rience, I felt certain that there was no part of that country in which occasional pools of water could not be found, and I only feared that we might be canght in another heary storm while on the open plains. I therefore directed the march toward what I supposed to be the head of the Cut Bank Creek, which we reached after a march of twenty-four miles, having suffered much for want of water. We found it to be a succession of pools, and, by following down along the old half-breed trail, crossed the Monse River two miles south of the month of Willow Creek. I hesitated, here, whether to follow soutl up the Mouse River two days, and then strike for Lake Gerean, or to take the risk of crossing the open plain on a direct comse for Devil's Lake. Ascending one of the sand hillocks, and looking east, I could just distinguish the top of a butte resting like a dark spot on the distamt horizon. This promised water, and I therefore started for it the next morning. We passed at noon a shallow pond of fresh water, and after marching over a flat plain which would be impassable for wagons in wet weather, camped by a stinking pool in a ridge of hills which appears to be a prolongation of Turtle Momntain, though separated from it by a low plain of some width.

The prairie fires, which for some days had been burning brightly in every direction, had swept every vestige of grass from these plains, except in the immediate vicinity of the ponds, leaving the ground covered with a light film of ashes. Orw mareh from this point was most distressing, owing to this canse. A strong east wind raised the dust and ashes in clonds, filling the eyes, nose, and mouth with an irritating alkali, which bit and smarted with mudying zeal

We reached Fort Totten on the 20th October, the only notable camp being that on the IHmricane Lake. This lake, of which I had never heard before, although tolerably fimiliar with that part of the comntry, is a beantifnl sheet of water, perhaps a mile in width. The nortlo and west banks are cosered by a hany forest. la the lake is a large island, partly timbered and partly parie, comected with the north shore by a swampy peninsula which is inpassable, even on foot. The water is green and clear, and a perfect delight to the traveler wearied and disgusted with the usual alkaline or ofthense fresh waters of the plains. I think this lake is the head of the
north branch of the big Coulé, which empties into the Sheyemne, and am quite certain that it had never before been visited by white men.

Lieutenant Greene arrived on the 22d with his party. He had followed down the Mouse River from the second crossing until he reached the great bead, and then had made a straight trail to Devil's Lake.

I had made arrangements at Pembina to complete the survey between the Red River and the Lake of the Woods during the winter. A work so difficult could only be justified by the fact that the ground was utterly impassable in summer. The freezing of the swamps would enable the supplytrain to move east as far as the Roseau Lake. I had, therefore, cansed hay to be cut at several points, and a part of the winter clothing to be prepared. Lieutenant Greene, being in charge of the topographical work, took charge of the party detailed. The men, though they had had a rather rough summer, most of them, readily volmentered for the winter. Having detailed the party to remain, and provided it with the necessary tramsportation, I consolidated what was left into two parties, and on the morning of the 24 th took up the march to Fort Seward. The weather was now musnally cold, with heary winds from the north and constant snow. The ice on the ponds was five inches thick. The men suffered greatly, as their clothing was hardly suitable for such exposure. We arived on the 28th at Fort Seward.

The animals being worn down with work, I left most of the wigons in store, retaining only enough to cary forage, and started the herd to Saint Cloud, Minn., under charge of the quartermaster's clerk, with a sufficient number of herders. The remaining men were sent by rail to Saint Paul, where they were discharged.

The uffice was still retained at Detroit, but, the topographers being in the fied, no work could be done on the maps. The computers at once began preparation of the ephemeris for the ensuing year. In this ephemeris the apparent places of the stars to be used were computed for every fifth day. This work being done in the office saved many vexations delays in the field, and enabled me to count with certainty on a prompt and rapid movement of the several parties.

The detail of the winter work in the field, under the charge of Lientenant Greenc, will be fomel in his repert. It preants many prits

74

of interest, on account of its novelty. Its difficulties were met with great good judgment by the officer in charge. Of this the best proof is that no animals were lost, and none of the men seriously frozen, although exposed for months in the ordinary avocations of camp and field during the most severe weather. The capabilities of this region for settlement are already sufficiently proven by practice, but the incidents of the survey show that, with proper forethought and preparation, the rigors of the winter are little to be dreaded.

The field-parties finished their allotted task, and returned to Saint Paul on the 14 th of March, where they were discharged.

Pending the passage of the act of appropriation for the survey, work was commenced on the preliminary maps, and all necessary preparation was made for the active field-operations of the ensuing summer.

As the parties could not be organized before the passage of the appropriation for the following year, there would only be four months in which to reach the ground, complete the survey, and to return. Of this time at least one-half would be occupied in travel, leaving only the short space of two months to make the survey. I scarcely expected to accomplish the work in this time, and had made estimates looking toward a retreat by way of Salt Lake, or for a winter's march of six weeks to Fort Abercrombie. Neither of these alternatives presented any great attraction, and it is perhaps due, in part, to this that the survey was pushed along with such remarkable rapidity: All preparations had been made to organize the expedition The train which had wintered at Saint Clond was sent, under charge of Lientenant Ladley, by rail to Bismarck, taking up on the way the wagons left at Fort Sewarl.

I was notified of the passage of the appropriation on the 5th of June, aud started for Bismarck with the parties fully organized, on the 6th. Reaching Bismarck on the Sth, I found the steamer Fontenelle waiting, but, contrary to the spirit of the contract made at Saint Paul, the boat had been loaded with two hundred tons of freight. This, with our wagons and animals, crammed the steamer to its utmost caparity, and made arapid trip to Fort Buford an impossibility. The river was high, rumning with a strong current, and it was manifest that five days was too little time for the boat,
loaded as it was, even supposing it possible under any circumstances, which I very much doubted. There was nothing else to be done but to resign one's self to a week of utter weariness and discomfort. In other and more civilized lands the word "steamer" conveys an idea of speed, as well as a certain assurance of comfort, and at least a semblance of the ways and practices of ordinary life. But no one in search of the amenities need look on the deck of an up-river boat. The hull is a shallow box, over which is thrown a light deck and small cabin supported on upright posts. The machinery is rough, primitive in design, and constantly suggestive of unpleasant accidents. The high-pressure engines, exhausting in the open air, thumping over the centers, with leaky oylindera badly packed, or, as in this case, cracked and rudely banded with iron, can hardly be called reassuring. The light, thin upper works, burned in hundreds of holes by the sparks which are constantly flying in clouds over the deck, suggest an alternative scarcely more inviting. As an actual fact, however, I do not recollect ever to have heard of a single case of accident by explosion of boilers or by fire on the Upper Missomri. I am disposed to class this, also, among the special providences, rather than to attribute it to any skill on the part of the builders or owners. Certainly no thought of anything so worthless as human life entered into their calculation. The power of the machinery is apparently calculated with reference to down-stream work in a swift current, for, by the kindliest estimate of its performance, I have not been able to figure an up-stream speed so great as three miles an hour.

Owing to the slow progress made by the boat, I was obliged to land the live stock at the Tobacco Garden, and herd it from that point to Fort Buford, where it arrived on the 15th of June, a few hours after the boat. Five days were consumed in shoeing the animals and making other necessary preparations. The escort, consisting of two companies of the Seventh Cavalry and five companies of the Sixth Infantry, with their train, was concentrated here, under the command of Major Marcus A. Reno.

On the 21 st the expedition started from Fort Buford. Supplies fur six weeks were carried in the train, and arrangements had been made to have further supplies sent up from Fort Benton. On reaching the Big Muddy it was found to be impassable, and we were delayed a day and a half building
a bridge. The stream was one hundred and twenty feet wide and five feet deep, with a soft mud bottom, which made it very difficult to set up the trestles. On the 25th we reached the Quaking Ash or Poplar River, where the varions parties separated. The topographical parties, under Lieutenant Greene, escorted by three companies Sixth Infantry, followed up this stream to the boundary. The details of their march and sulsequent operations will be found in the report of Lieutenant Greene.

Captain Gregory continned with the main party as far as the Little Rocky, where he branched off, accompanied by Captain Bryant, with two companies, to the northwest, intending to make his first astronomical station to the east of Frenchman's Creek; but, becoming involved in the bad lands, he was oldiged to cross that stream fourteen miles below the line, at Fort Tumay, and follow up the west bank.

I continned with the remainder of the escort, which marched up the valley of the Milk River, passing Fort Belknap, and finally established a (amp) on the Sanly, a sonthem lownch of the Milk River, about forty-five miles from Fort Benton. At Fort Belknap agency the mails were found, and forwarded to the parties on the line. The supplies from Fort Benton not laving arived, I went to that place on the 12th of July, and remained mutil the $94 t h$, at which time the long-expected steamer made her appearance, laving left, hoverer, the main part of her stores at Cow Island, one hundred and twenty miles down the river. I sent a train, muder clarge of Lientenant Ladley; to bring up what forage was required; and having sent another sulply-tiain with the necessary sulplies to the Sweet Grass Itills, I returned to my camp on the Sandy.

From this camp, accompanied ly Major Reno, I marehed to the East Butte of the Siweet Cirass Ifills, where the escort had established their permaneit camp. I there learned that Captain Gregory's camp was only eight miles distant, though with rough country between. I therefore sent my train by the trail, and, riding directly across, found Captain Gregory camped on a sumall pool of water about two miles south of the line. Lientenant Greches advance party was reported to be only a few miles back, and the supply-train from Fort Bentom, passing between the first and second buttes, were expeeterl to reercha the West lintte the next day.

On the following day I moved my camp to the West Butte, and encamped on a small brook about one mile north of the line, where the permanent depot was established. This depot was established on the 1st of August. Captain Gregory and the advancel parties of Lientenant Greene were inmediately supplied, and pushed forward without delay.

The work advanced rapidly, and at the end of August our line had been joined by traverse with that of the old northwestern boundary survey, on the summit of the Rocky Mountains, and the survey was complete.

I then concentrated the parties at the supply depot at the Swreet Grass Hills, and having detached Lientenant Greene to carry a meridian from the line to Fort Shaw, in order to get a telegraphic comection for longitude, I left the Sweet Grass Hills with the remainder of the men, the escort meanwhile taking the direct trail to Fort Buford. I arrived at Fort Benton September 8. Lieutenant Greene joined me again, on the 11 th, with his party.

I had previously had Mackinaw boats built and in readiness for our arrival, and on the 12th I started down the Missouri with the entire party, in six open boats. After a royage of eighteen days we arrived at Bismarck, Dak., and thence, by Northern Pacific Railroad, reached Saint Panl, where the parties were discharged.

Thus in four months the expedition completed a journey of nearly four thousand miles, three-fourths of which was by land and in open boats by water, and carried to completion the survey of three hundred and filty-five miles of the boundary-line.

It will be olseerved, by reference to the index of the records and maps, that a large amount of worls has been done, and much information oltained by the commission, in addition to merely defining the line between the United States and the Dominion of Camada. Besides the official maps, a second series has been made, on a scale of one inch to eight miles, on which the lines of exploration by the different parties have been carcfully located.

It will be seen that a large number of recomaissances have been made, which, in the aggregate, give a quite complete riew of the whole region traversed. This series of maps also shows a boat-siurey of the Misomuri River from Fort Benton, Mont, to Bismarek, Dik., made whike returning

 に，にが，

time promised considerable trouble. The point being indicated, and definitely fixed by the joint commission moder the sixth and seventh articles of the treaty of Ghent, admitted of no clange of location by the present commissioners. Its description, by latitude and longitude, was not sufficiently accurate to determine its position, since the methods employed were inadequate. It became necessary, then, to examine the details of the work done by the astronomers of the former commission, in order to form a fair judgment in regard to the accuracy of their work. During the winter of 1872-73 the necessary copies of the record were obtained, and I was able to determine, within very narow limits, the true position of the monment. The water of the lake being much higher in 1572 than when the monment was built, the site was orerflowed to the deptl of several feet. The superstructure had entirely rotted away, being composed of aspen, and there only remained a few fragments of oak to mark the spot.

The following letter to the commissioner gives, in detail, the technical points of the position taken by the chief astronomers, in regard to the recovery of the momment:

> Cnted States Northern Bočdary Cominission, In the fiell, Lat. $49^{\circ} \mathrm{N}$, Long. $10^{\circ} \mathrm{5}^{\prime \prime} \mathrm{II}^{\prime}$., October 1,18 .

SIR: In yonr memorandmo of September 15 , son request my opinion in regard to the initial point of the United States northem bomdary, at the northwest point of the Lake of the Woods, and whether I consider the objection of the English commissioner to the point selected by the English and Ameriean chief astronomers, as well taken, and, fualls, in case of a difference of opinion between yourself and the Euglish commissioner, which canuot be reconeiled, what means of settlement remain.

Before answering these interrogatories, I beg leave to state briefly the means used, orginalls, to fix the "most northwest" point of the Lake of the Woods, and tho methol followed in recovering the monmment erectel at that time.

I have before me the reports of Dr. I. L. Tiarks, astronomer (Norember 18, 18』5), amd David Thompson, survesor (October, 1824), who were employed by the British Goverument to determino the northwest point, and whose reports were adopted at the time by the commissiouer on the part of the United States.

From these reports, it appears that a question arose between the angle at the Rat Portage and the northern point of the bay, now known as the Nortbrest Angle.

This question was settled by Tiarks in faror of the latter, on the pinciple that the morthwest point was that point at which, if a line were dramu in the plane of a great circle, makiug an angle of 450 with the meridian, such a line woudd cut $n o$ other water of the lake. He therefore determined the relative position of the two points in ques.
tion by means of their latitnde and longitude; the latitudes were fixed by means of the sextant, and the longitude by the mean of several chronometer determinations.

The point fixed as the northwest point being in a swamp, its position was given by certain courses and distances from a reference monnment. The question now is to find this monument. It is described by Thompson as a square monument of logs, twelve leet high by seven feet square, the lower part of oak, the upper part of aspen." Its latitude is given by Tiarks $49^{\circ} 23^{\prime} 06^{\prime \prime} .48$ north; its lougitude, approximately; $95^{\circ} 14^{\prime} 38^{\prime \prime}$ west from Greeumich.

So far as these co-ordinates are concerved, for any pmrpose of again finding the point, the lougitnde may be entirels rejected. It appears to have been determined by two chronometers, and as the distance traveled, and the elapsed time, were great, it may very easily be wrong by ten miles. It is only given by Tiarks as an approximation.

This is of little consequence, as the location of the northwest point, east and west, is confined to the narrow channel of the bay, which, at this point, runs generally north and sonth, and (the swamp included) has a width of only two hmelred or three hun. dred feet.

The latitude, then, and the visible channel are the gildes to be followed in search. ing for the ancient monument.

From the rejort of Tiarks, I find that the latitude of the monmment, that being the point at which he observed, was determined by three series of circum-meridian altitudes of the snn. The resnlts, and number of obserrations in each, were as given below, viz:

Latitudes.
Number of observations.
$49^{\circ} 23^{\prime} 02^{\prime \prime} .37$. 9
$49^{\circ} 23^{\prime} 03^{\prime \prime} .60$. 15

The true mean latitude from these observations is $49023^{\prime} 0.5^{\prime \prime} 07$, but the latitude, combining according to the number of the observations in each series, is $49023^{\prime} 06^{\prime \prime} .48$, which is the result Tiaks adopted. This method of weighting the observations shond not have been used, as there is always a coustant error in such series, flue to the correction for index-error, and, in this case, a small additional inarenracy arising from the fact that no barometric correction was applied to the refraction. These eriors are, however, of comparatively little consequeuce, and their sum woild probably not exceed four seconds of arc.

There remains a greater defect, arising from the nuknown eccentricity of the sextant used. This Tiarks himself recognized, but, as he was more especially coneerved in getting the relative latitude of two points within halt a degree of each other, be took no means to eliminate the resulting error, which he regardea as being common to both stations.

This orersight is fatal when it becomes a question of recovering the exact point of observation, as there may have been an error of eccentricity on the limb of the sextant, which wound give an error of a half mile in the latitude, though, as the instrnment was one of very large ratius $\left(9^{\prime \prime}\right)$, amd made by a maker of great reputation (Tronghton), it is not probable that the eccentricity was so great.

Learing this point for the present, I will state the means used to recorer the monnment.

In the fall of 1872, Major Farquhar and Captain Andersun, the chief astronomers of the joint commission for determining the boundars; observed for latitude near the morthrest point of the Lake of the Woods, and, guided hy their results and by information obtained from Indians, discovered what they agreed in sumposing to be the remains of the momment, but in a latitude abont five hundred feet sonth of that given by Tiarks.

Its position with reference to the northwest point of the bay, as given by the sereral conrses and distances, is sufficiently exact.

The evidence appears to me to be strong enongh to warrant them in the conclusion at which they arrived.

Owing, however, to the large possible error in the determination of the latitnde by Tiarks, and considering that the northwest point, so determined, lies within what most be acknowledged to be English tmitory, I am of the opinion that the English commissioner may, without being consiluted as acting in an obstructive maner, take the groma that the evidence is not condusise; bat in making such objection, it is jucm. bent ou him to snggest some ot her point, as the "most northwestern," Which the shape of the bay wonld reuder possible.

There is another means of reducing the uncertainty of Tiarlans determination of the latitude, which I respectinly suggest for sour consideration, in case of a dinal dis. agrement between fourself and the English commissioner. It is to take acourate ohserrations for latitude at the angle near the lat Portage. That station mas marked by Thompon by a monmment in stone, six feet high and fonr feet base, which ean donbtless still be fomu. Tiarks observed there in the same manmer as at the northwest point. Hence, by finding the amomt of the error of his work at the Lat Portage, and apllying the same correction to his work at the Northwest Angle, the error due to the eccentacity of his sextant will be eliminated, and the uncertainty of his latitude will he rednced within a very small limit.

If the latitude, so fomm, should still indicate that the momment was near the point agued upon by Major Farquar and Captain Anderson, I do not see that any further objection could be made ley Her Alajesty's commissioner to an immediate settle. ment of the rexed question.

If, however, such objection shomld still be made, the matter will then have passed beyond my province as the dhiet astrommer of the commission.

1 :am, vers respecthully. your ubedient servant,
W. J. TIIINING,

Coptain of Enginetrs. Chief Astronmer C'nith Nitutes Jorthern Boundary Commission.
Arcimanid Chmplial, Esq.
Finitud states Commissioner, Sorthom Bomendery.
While the shape and gencral character of the surroundings of the Northwest Ingle of the Lake of the Woods, were such as to confine the seareh to a sery small portion of the bay, the scale of the maps was too small to serve as a definite basis ot agrement. A mow smber was there-

1

*

fore made by an English party already on the gromd. This survey was subsequently carried down to the forty-ninth parallel, where it was taken up by the parties moder Lient. F. V. Greene, and continned to the mouth of the Rainy River. The work of the English in the vicinity of the Northwest Point was checked by Capt. James F. Gregory, United States Engineers. The details will be found in his report, which is transmitted herewith.

The position of the Northwest Point, as fixed by Capt. S. Anderson, R. E., and Maj. F. U. Farquhar, United States Engineers, during the fall of 1872 , was not finally agreed to by the commissioners until September, 1874.

CHAPTER IV.

ASTRONOMICAL DETERMINATIONS OF LATITUDE, AND METHODS OF SURVEY.
On account of the peculiar nature of the disputes liable to arise in regard to an international boundary-line, and the acrimony with which such controversies are usually prosecnted, it has been thonght best to give, in a condensed form, the observations made by the United States parties, and the methods employed in fixing the positions of the monuments which mark the line.

An abstract of the British tangent-lines and mounds is added, in order to complete the record of the comections between astronomical stations.

Official copies of the English astronomical observations are on file in the Department of State.

In obedience to the instructions of the commissoner, an official copy of the United States astronomical and geodetic record was transmitted to the chief astronomer of Her Majesty's commission, October 14, 1875. It was accompanied by a descriptive memoir, from which the following explanations are taken :

Astronomy.-The astronomical record consists of -
1st, The observations made with the zenith telescope to determine latitude;

2d, Instrumental constants ;
3d, Abstract of chronometer records;
4th, Star catalogues 1872, '73, and '74.
Instruments.-The instruments used in determining the latitude were zenith telescopes Nos. 7, 11, and 20, Würdemam. Nos. 7 and 11 were of 25 inches focal length. Both were of small power, and more or less damaged by use. No. 7 was nsed only on three stations in 1873: it being found that
the level was badly ground, and that the instrument was loose on its horizontal axis. No. 20 was of 32 inches focal length, with a magnifying power of sixty diameters. It was found to be, in every respect, a perfect instrument.

The chronometers used were by Negus, of New York, and Bond, of Boston.

In computing the latitude of any station, the arithmetical mean of all the determinations was taken as the true latitude, no weights being applied. It is thought that the accuracy of the computation, and the number of anthorities combined in each declination, warrant the assumption that the star places are nearly absolute, learing in the determinations only the error of the observation. This view has been found to be correct, or nearly correct, by subsequently examining the residuals given by each pair of stars, when refered to the mean latitudes of a large number of stations.

In order to prevent the suppression of observations, a mathematical criterion was applied. This, while of doubtfirl utility in compotations made moder the supervision of one skillful computer, I thought to be desirable as a mmber of observers were engaged simultaneonsly, and the computations were to be complated, promptly, in the field.

The standard number of observations, though varying with different stations, was finally fixed at about sixty, it being found that, with the 32inch instrmment, sixty observations wonld give a mean result of which the probable error would be about four feet. This probable error was considered to be very much within the differences which might arise from the methods employed in computing the declinations of the stars used, and the general erors incident to such work.

Instrumental constants.-The observations by which the instrumental constants were determined, are given in full. It will be observed that no cffort was made to dremmine the run of the micrometers, nor the differences due to changes of temperature. I am of the opinion that all such corrections are, eren under the most farorable circumstances, somewhat hypothetical, and therefore liable to introduce mknown errors into the work, and that they are rather matters of curiosity than of practical importance in field-work.

The method of determining the mean places of the stars used is the only part of these computations which calls for any special remark.

In the fall of 1872 , the astronomical party was ordered into the field, under my charge, withont time for careful preparation.

The only authorities available at the time for computing the star places, were the Greenwich Observations from 1836 to 1867 . The computations for the two stations observed in 1872 , depended entirely on these observations. During the winter of $1872-73$, a careful and systematic examination of the existing authorities was commenced, and the list of stars, as given for $\mathbf{1 8 7 3}$, was prepared. This work was continned during the subsequent winter; and the results are given in the star catalogue of 1874 , which, however, differs very slightly from that of 1873.

The principles which were adopted in the discussion of these star places, were mainly derived from the work of Argelander, Bonner Beobachtungen, Band VII.

Some few stars were taken from the second part of that work without modification. These are British Association Catalogue numbers 198, 979 , $4918,5313,5502,6114,7515,7377,8083,8206$, and 8273 . The positions of Greenwich 12 year 78, and B. A. C. 896 , were taken from Part I. For the remainder, the following catalogucs and observations were consulted: Bradley, 1755, B; Lalande, Fedorenko, 1780 , Fed; D'Agelet (Gould), 1800, D'A; Lalande, 1800, L.L ; Piazzi, 1800, Pi; Grombridge, 1810, Gr; Struve, 1830, P. M; Argelander's Abo, 1830, Abo; Taylor's Madras, 1835, 'T; Jacob's Madras, 1848-1852, J Je, \&e.; Bessel's zones (Weisse) ($+15^{\circ}$ to 45°), 1825, $\mathrm{W}_{2} \mathrm{~B}$; Pond's Greenwich, $1830, \mathrm{Pd}$; Airy's First Cambridge Catalogue, 1830, CC; Riimker, 1836, R; Edinburgh (Henderson, 18:35, 1844, Edinburgh (Smyth), E Br $_{3}$, \&e.; C'ambridge (Challis), 1839-1860, Ch_{39}, \&e.; Armagh (Robinson), 1840, Arm; Bomn Nortlı Zones, 1842 , Ö A; Radcliffe Catalogue of 6317 stars, $1845, \mathrm{R} \mathrm{C}$; Radcliffe, $1860, \mathrm{R} \mathrm{C}_{2}$; Radeliffe, later observations, 1861-1870, R C 6 , \&e.; 13om, (Vol. VI). 1866, Arg; Brussels (Quetelet), 1859-1866, Qag, \&e.; Königsberg ; Washington (transit circle), 1867-71, W'n; Washington Catalogue (mural circle). 1860, Y; the entire series of Greenwich catalognes and observations since the

Paris observations, 1856-1867, $\mathrm{P}_{\text {sit }}$ \& $\&$ c.; Durham, D ; the volumes of the Astronomische Nachrichten; Leiden, 1870, L; Pulkowa, 1845, Pul.

The dates after the name of each catalogue refer to the epochs to which each was reduced, and the initials following the date, the designation by which these catalognes and observations will be subsequently referred to.

Systematic corrections, as deduced by Argelander, in Vol. VII, Bonn Obs., were applied to most observations of a date earlier than 1860. In one case, that of Yarnall's Washington Catalogue, a special comparison was made with Wolfer's Fundamental List, in the Tabulæ Reductionum, which is the basis of Argelander's work. But this correction was omitted in a few of the later reductions.

Owing to the great discrepancy in the number of observations on the different stars, the weights were adopted to suit each particular case-i. e., no uniform weight was given to the positions taken from any one catalogue, though a general standard was adopted for each, which was nearly as follows:

B $\frac{1}{3}$	CO... 1	Win 1
D'A........ ${ }^{\frac{1}{4}}$	R... $\frac{1}{2}$	Y................ 1
Fed........ $\frac{1}{4}$	E 1	Al_{40}
L.L. ${ }^{\frac{1}{10}}$	Cb 1	
Pi $\frac{1}{3}$	A.......... . 1	
Gr......... $\frac{1}{2}$	$0{ }^{\text {A A }} \ldots \ldots \ldots \ldots{ }^{\frac{1}{3}}$	
P. M 1	$\mathrm{R} \mathrm{C}_{1} \ldots \ldots \ldots .1$	$\mathrm{A}_{664} \ldots \ldots . ~ 1 \frac{1}{2}$ to 2
Abo........ 1	R $\mathrm{C}_{2} \ldots \ldots \ldots \ldots{ }^{1}$	
T $\ldots \ldots \ldots \ldots$. $\frac{2}{3}$	R $\mathrm{C}_{6}, \mathrm{Sc}^{\text {c..... }} 1$	P 2
. ${ }^{2}$	Arg 1	Pnl........................ 2
$W_{2} \mathrm{~B} \ldots \ldots$. $\frac{1}{8}$	Q $\ldots \ldots . \ldots .1$	L (lic symmetrical obserrations) 4
	$\mathrm{K} \ldots \ldots \ldots \ldots$. $\frac{1}{2}$	

These weights represent the degree of confidence in the several authorities when represented by from three to five observations. In a few of the later reductions, the weights were made decimal fractions in all cases, and increased for some of the modern authorities.

The ordinary method of combining the observations to obtain the result for 1872 , 1873, or 1874 , as required, was, briefly, as follows: The right
asceusion found in the Greenwich Catalogues, or, these failing, in that of the British Association, was used to obtain the anmal precession in declination, the secular variation in declination being taken directly from these authorities. All observations in a given case were then reduced to the required mean epoch, proper motion being always neglected. The resulting corrections (k) to the value of the assmed declimation, the systematic corrections referred to above having been applied, were regarded as made up of three parts: x, a correction to the assumed declination at the required epoch; ty, a correction varying with the time, or, in other words, the proper motion; and v a residual error of observation. Equations of condition were accordingly made of the form $(x+t y-k=0) \sqrt{ } p$, in which p denotes the weight. The value of t was usually taken to the nearest tenth of a year, reckoning from the date of observation, where that conld be ascertained, to the required epoch. These equations were treated in the ordinary maner: But the value of x was usually derived from olservations made in 1830 , or later.

The following example will serve to illustrate the above explanation:

$$
\text { B. A. С. } 67 .
$$

With the annual precession, $+20^{\prime \prime} .018$, computed for 1864 from the A. R. found in Ay_{64} (using Struve's constants), and the secular variation, $-0^{\prime \prime} .035$, adopted from that catalogne, each set of observations is reduced to the required epoch, 1873.0; a systematic correction having first been applied to the declinations as given by D'A, L. L, Pi, $\mathrm{W}_{2} \mathrm{~B}$, Arm, and Y.
$\mathrm{R} \mathrm{C}_{67}, \mathrm{R} \mathrm{C}_{63}$, and $\mathrm{R} \mathrm{C}_{69}$ were combined so as to form one equation. $A y_{69}, \mathrm{Ay}_{69}$, and $\mathrm{A} y_{70}$ were treated in the same manner, the weights in combining being strictly according to the number of observations in each year. Rejecting Lalande, we have the following conditional equations and weights, assumed δ for 1873 being $37^{\circ} 15^{\prime} 53^{\prime \prime} .0$:

B.	$x-117.0 y-\frac{11}{7} .79=0$	Weight.
$\frac{1}{2}$		
D'A.	$x-88.8-2.77=0$	$\frac{1}{4}$
Pi.	$x-73 .-4.41=0$	$\frac{1}{3}$
W $_{2}$ B.	$x-48 .-3.68=0$	$\frac{1}{4}$
T.	$x-38 .-2.20=0$	$\frac{2}{3}$

Arm.	$x-33.9-2.25=0$	1
Yar.	$x-25.7-1.94=0$	1
K.	$i-11.2-2.60=0$	$\frac{1}{3}$
A $_{61}$	$x-8.5-0.85=0$	3
Q_{64}	$x-8.1-1.25=0$	$\frac{1}{2}$
L.	$x-4.1-0.55=0$	4
R. $_{669}$	$x-3.7-0.56=0$	$1 \frac{1}{2}$
A $_{69}$	$x-3.6-1.64=0$	$1 \frac{1}{2}$

From the above, result the following nomal equations:

$$
\begin{aligned}
& +14.8 x-262.6 y=+22^{\prime \prime} .18 \\
& -26.6 x+14339.1 y=-907^{\prime \prime} .62
\end{aligned}
$$

from which,

$$
x=+{ }^{\prime \prime} .55 \text { and } y=-{ }^{\prime \prime} .053
$$

Using T' and the succeeding authorities for the value of x, we obtain $37^{\circ} 15^{\prime} 53^{\prime \prime} .55$, as the δ for 1873.0 ; a result identical with that derived from the direct solution of the normal equations. The following table exhibits the reduction, in talnur form. Colnmn one contains the designation of the various authorities; colmm two, the epoch to which each catalogne is found reduced; columm three, the mean epoch of observation (in the cases of B , L. L, I'i, $\mathrm{W}_{2} \mathrm{~B}$, and T arbitrailly assumed); column four contains the declination as given by the catalogue itself. In cases such as $A y_{\text {ga }}$ and L, where the observations have been redncel to the date of the catalogne, in some instances with proper motiom, the seconds of δ are adopted so as to correspond with the mean date of observation-i. c., as they would have been had no proper motion been applied; colmm fire contains the systematic correction as derived from Vol. VII, Part I, Bonn Observations (Areelander); culmm six, the declination as it results from each anthority, the precession being aplicd to reduce it to 1873.0 ; column seren, the mumber of observations on which each antherity is based; cohmm eight, the final value of the declination for 1873 as it is given ly each athority; colmm nine, the resichals on the corrections which the declination and proper motion allopted for 1873.0 give to carlatalage.

Catalogue.	Epoth, reduction.	Epoch, observation.		Cat.		Sys.corr.	¢ 1873.0.	$\begin{gathered} \text { No. } \\ \text { Nbs. } \end{gathered}$	$\begin{gathered} \text { Fesulting } \\ \delta 1 \times 73.0 . \end{gathered}$	liesid. nals.
				1	"		- 1 1		"	"
I;	17.5	1756	36		36.6		371500.8	4	E4. 6	-1.0
D'A	$1 \sim 00$	1784. 2		51	83.8	-0.4	56.8	4	51.1	+2.
L. 1.	1800	1395		51	3:3 1	-1.8	[5:3]	3		
P i.	1800	1800			37.2	-1.8	57.41	9	5.3. 5	0.0
$\mathrm{W}_{2} \mathrm{I}$	1505	$18: 3$		59	54.7	+0.9	it. 7	1	51.1	-0.6
'	18.35	1835	37	03	15.0	+0.4	5%	4	53, 2	+0.4
Ario	1840	1839.1		04	54. 9	-0.3	\%-3	6	53.5	+10.1
Y	1×10	1847.3			34. 2	$+0.5$	54.9	4	58. (${ }^{\text {a }}$	0.10
K	$1 \leq 61$	1061.8			55.4	-....	55. 6	1	55.4	-1.5
Ar_{g}	1864	1864.5		1:	53.7	-	53. K	:2,	53.4	+0.1
Q64	1864	1864.9		13	54.1		54.3	1	53.8	-0.: 3
1 C 67	1867	1867.8			54.4		54.5	1	54.3	-0.7
$\boldsymbol{R} \mathrm{C}_{63}$	1868	1868.8			12.4		53. 5	\because	¢?:	+1.3
A Y_{68}.	1×6	1818.8			14.7		-4. 8	4	54.6	-1.1)
1.	15.0	$1 \times 6 \pm .9$			5\%.		23.6	15	23.3	$+0.3$
R C_{6}	1869	1×69.8			33.7		23.8	5	5i. 6	- 0.1
A Γ_{69}	1809	1869.8			34.5		-4.6	$\stackrel{\square}{2}$	$\therefore 1.4$	-0.8
A y_{70}	10.0	120.8			53.5		5.i. 19	I	-3.5	0.0

The computation was generally carried to limadredths of a second in the details, but is not rigidly correct to that place.

The stars comprised in the catalogne of 1873 and 1874 were reduced as above, with the exception of a few declinations for 1874 , which were treated in a mamer varying so slightly as not to require special explanation.

Connction of astronomical stations.-The geodetic record gives the determination of the azimutls for each tangent, the station-errors, and the funal offsets to the parallel of latitude in which the station-errors are distributed.

These tangents were run with an 8-inch transit-theodolite, Würdemann, graduated to 10^{\prime}, reading by two verniers to $10^{\prime \prime}$, with illnminated axes, circular and striding level, the tangent-screws working against springs, which was found to be a serious defect.

Azimuths.-The instrmment was mounted in the meridian of the astronomical station, and an approximate 90° turned off, from any data arailable. On this approximate line, at a distance of one to three miles, a bull'seye lantern was placed; its light, two inches in diameter, at a distance of two miles, gave an image equal to a second-magnitude star. The azimuth of this mark wats determined by observations on circmupolar stars near elongation. The stars most irequenty used in the early part of the evening in summer were β and, Cophei and Polaris (castern elongation), and β and y^{2} Urse Minoris (westem dongation). Ten readings were taken on each star, and ten on the mank, five with lamp east ant five lamp wert. The star-readings were reduced to Angation from the recorded time
(simultaneons time-observations with sextant), and the mean of the ten constituted the result for that star. The other stars were taken in different parts of the are, to eliminate errors of graduation, and the final mean was the mean of results by stars. Five stars, with fifty readings, was considered a good detemination, althongh three stars were used when it was not practicable to get more in one night. Treating all the readings (thirty to fifty in number) by least squares, the probable error of this work ranges fiem $0^{\prime \prime} .8$ to $4^{\prime \prime} .0$ at a station, with a mean of $1^{\prime \prime} .8$. The transit was earefully leveled before each pointing and the level examined afterward; if deranged, the observation was rejected.

Having thus determined the true azimuth of the mark, its distance from the transit was chained, and the difference between the azimuth and 270° or 90°, with this distance in feet, gave the solution of a triangle, of which the required side was the distance, in feet, of the mark from the prime vertical sought. Having thus found the direction of the tangent, it was traced to the meridian of the next astronomical station by means of the tramsit, above deseribed, and two targets, the distance being chaned at the same time.

Tracing the tengent. - Calling the point where the transit stood during the azimuth observations (marked with stake and pencil-point), Station 1, the transit was carried to Station 2, set up, leveled, and pointed at the target, which was ovar Station 1. The other target, in front, was then by signals, ranged into the line of 1 and \because, and this gave Station 3 . The transit was then taken to 3 and the rear target to 2 , the front target was ranged into line, and gave Station 4; and so on to the next astronomical station.

The collimation was so adjusted that its eror was as small as possible, and, to cut out the remaining error from this source, two sights were taken at each station. With clamp nortl, the telescope was pointed to the back target, and then revolved in the Y^{*} to align one point in front ; the instrument was then turned 180° in azimuth, which brought the elamp south, resighted on the back target, and another point in front similarly determined. The mean of the two was taken as a point of the tangent.

The telescope was not reversed in the \mathbf{Y}^{*}, on account of the dust. The targets used are shown in the accompanying report of Lieut. Greene.

The commmication between the front and rear targets and the transitinstrument, was kept up by means of large flags, and the United States Army signal code of three elements. The men were instructed in this, and quickly learned it, but to insure accuracy each man was provided with a printed card containing the alphabet. A few special signals were added. By this means, and by transporting the targets and men in light wagons, as much as eighteen miles of line has been traced in one day. The greatest length of chaining in one day was fifteen miles. In rough ground two chainings were made. At the end of the tangent a series of azimuth observations was taken, similar to those at the begiming, the tramsit being placed over the terminal stake, and the mark over the stake next before it. The average azimutl-error in eighteen miles was $20^{\prime \prime}$; when less than this, the tangent was considered correct; if over, it was adjusted in computing the offsets for the mounds. The difference between the computed offset from the tangent to the parallel of 49°, and the measured distance to the astronomical momd, was taken to be the "station-error," i. e., the difference between the astronomical and relative geodetic determinations of the two stations. This was distributed between the stations in direct proportion to the distance. This made the forty-ninth parallel, as manked, a linw of irregnam curvature.

Conpututions.-The astronomical station being considered absolute, the offsets to the mounds were computed by the ordinary formula. For convenience, a table was computed for latitude 49°, giving the offsets and true azimuth for distances of 1,000 feet up to 200,000 . Between the even thousands, the offset was readily interpolated. The final offset was, then, the sum of this computed offset, \pm the proportional part of the stationerror, \pm the error of the initial point north or soutl of 49°, \pm the correction due to azimnth error. A list of these offsets and the stakes from which they were to be measmed was furnished to the "mound party," who followed.

Topography.-All topographical work, except some setching along the
tangents, was done with the stadia-rod and a 6 -inch theodolite. The theodolites were made by Würdeman, and were similar, in nearly all particulars, to the larger transit used on the tangent-line. The cross-hairs were fixed, and the distance was read by noting the number of spaces covered on the rod; the smallest space marked was five feet, and the rod read by estimation to one foot. Each rod was graduated for its own instrument by measuring with great care 1,000 feet, and marking the points covered by the extreme wires; this distance was then subdivided and marked.

The rods read to 1,500 feet, and in rough, broken country were found more accurate than the chain, and at all times more expeditious.

The angles were kept by the method of traversing, or "keeping the azimuth"; each recorded angle being the angle of the line of sight with the true meridian, and were counted from 0° to 360°. The line always started from some stake on the tangent from which the azimuth was taken. When practicable the line mas again closed on the tangent. Of one thousand four hundred miles of stadia-work, sixty-nine lines, comprising seren hundred and fifty miles, were closed, with an average error of 2.7 feet per 1,000 feet of line. As much as twelve miles of this sort of work, exclusive of sidepointings, has been done in one day by a single party with one theodolite and five rods. The vertical angle was always read, and gave an approximation to the vertical heights.

In the office, the stadia-readings have all been reduced to horizontal and vertical distances by means of tables. From the horizontal distances, the rectangular co-ordinates were computed, and these gave the error of the line, which was distributed at each station, proportionately to the length of line. The adjusted stations were then plotted by co-ordinates.

In projecting the maps the polyconic method has been adopted. Each sheet is projected with reference to its own central meridian, and to the forty-ninth parallel, as determined at the Lake of the Toods, for central parallel. The parallel actually marked in ink is the approximate parallel trateed on the ground.

The length of 1° of longitude, in latitude 49°, is taken to be 240,076 feet.

.

APPENDIX D．

SUMMARY OF ASTRONOM1CAL STATIONS，OBSERVED BY THE UNITED STATES ASTRO－ NOMICAL PARTIES．

$\begin{aligned} & \text { 苞 } \\ & \overrightarrow{y y y} \end{aligned}$	Porition．	Olserver．		Latitude．			
1872.				－＇＂	＂	＂	
	Lake of the Woods．	Capt．W．J．Twining．．	84	435945.67	± 0.63	± 0.07	east．
	Red River，Initial Point		104	485955.92	± 0.82	± 0.08	1 do．
$\begin{array}{r} 1873 . \\ 5 \end{array}$	Pointe Miehel， 20 miles w	．do	60	485957.20	± 0.42	± 0.05	west
	of Red River．			48 50 5x． 0			
6	Pembina Mountains，eastside．	Capt．J．F．Gregory．	74	490003.50		± 0.24	3 do ．
7	Pembina Monntains，west side	Assistant Lewis Boss	79	435951.55	± 0.35	± 0.04	4 do．
8	Long River ．．．．．．．．	Capt．J．F．Gregory ．．．	82	485952.54		± 0.037	5 do．
11	Turtle Monutain，west side ．．	（apt．W．J．Twining－－	79	485953.76	± 0.35	± 0.04	6 do．
13	South Antler Creek ．．．．．．．．．	Capt．J．F Gregory．．－	81	490142.76	± 0.898	± 0.092	${ }_{8} \mathrm{~d}$ do．
15	West of Rivière des Laes， 237 miles west of Red River．	Capt．W．J．Twining．．	22	490101.63	± 0.324	王0．038	8 do．
17	Mouse River ．．．．．．．．．．．．．．．．．	Capt．J．F．Gregory	80	485810.99	± 0.588	± 0.066	9 do．
19	Mid Coteau		66	490041.73	$\pm 0.45 \%$	± 0.056	10 do．
$\stackrel{21}{20}$	Bully Spring ．．．．．．．．．．．．．．．．．．		64	490109.11	± 0.408	± 0.051	11 do．
23	Fonr hundred and eight and a half Mile Point．	do	59	$4359 \stackrel{2}{2} .90$	立0．359	$\pm{ }^{ \pm} 0.047$	12 do．
1874.							
27	Frenchman＇s Creek				± 0.359 +0.303	土0．043	${ }_{\text {l }}^{13} \mathrm{~d}$ do．
29	East Fork，Milk R		62	490001.86	$\pm 0.2 \pm 8$	－ $10.0: 6$	15 do．
31	Milk River Lakes	do	\％	$48: 5955.39$	主0．387	土 0.045	16 do．
33	East Butte		60	4850006.30	± 0.3216	± 0.042	17 do．
35	Red River	do	60	490101.42	± 0.275	± 0.035	18 do．
37	North Fork，Milk Ris	do	62	485959.31	土 0.270	芷0．034	19 do．
40	Chief Monntain Lake	．do	47	4900 04． 10	$\pm 0.3: 35$	± 0.049	$\because 0$ do．

Note．－The instrument nsed at stations Nos． 6,13 ，and 17 was Wirdemann，No． 11,25 －inel，having a defective level，and being，at station No．6，also loose upon its horizontal axie．No． 6 being a joint sta－ tion，was not reobserved．At stations Nos．I and 4，Wiirdemanu，No．7，3－ineh was used．At all other stations，tho instrument used was Würdomann，No．20，32－inet．

UNITED STATES NORTHERN BOUNDAFY．

Observations for Latitude．

［Astronomical Station No．1．－Initial point，呺 miles north of Pemlina．Dakota．－Obserter，W．J．Twining，Captain United States Engineers．－Zenilh Telescope，Würdemann No．7．－Cbronoweter，Negus Sidereal No．1j14．］

B．A．C． No．	Readings．				Declination．	Corrections．				Latitucle．	Fermarks．
	Microm．	Level．		Merid.kist.							
		λ.	S．								
				m．s．	－＇t	，＂	＂	＂	＂	－＇＇．	
6．i－6	21． 041	40.5	41.4 34.6		$\begin{array}{llll}32 & 18 & 19 & 35 \\ 45 & 46 & 40 & 20\end{array}$	－2 18．27	11.1	－0． 04		－ 5930	September 10
60－	19.85	44.5	42． 4		439530.611						
（i）te	$\because 4.8$	319.6	4 $\overline{4}, 9$		54 40 4\％．00	-310	-1.35	-0.05		Sn． 43	
0.20	SO． 505	44.3	13．2		［it 4301.30						
1i－17	22． 645	40.4	is． 4		401647.94	$+005.59$	-1.33	0.00	．．．．．－	68． 43	
103%	12.384	4．3．${ }^{\text {a }}$	14． 1		362207.01						
09.9	$\bigcirc 6,0 \div 4$	15． 7	43． 4		$61+16.54$	-500.44	－0．5s	－0． 61		5.564	
50： 1	19．－83	$4{ }^{4} 50$	44.4		f11 5129.63						
703\％	18．025	207	til． 3	－－．	3 t （11 is． 2 ？	$\div 353.45$	－1． 3.5	＋0．06		35．5	
7915	12．－4	动． 7	33．3		570732π						
927	4－6．0．	34.6	5\％． 4		$40 \quad 4042.91$	＋5 5\％．90	-0.97	＋0． 10		57.35	
7345	11． 390	$4 \overline{2} 4$	16.5		i7 0\％42， 11						
34＊	こ－． 14.12	53.4	$3!5$	．．．．．．	$\therefore 10643 \% 0$	－73＊ 3	－239	-0.13		57.20	
21－11	－0，Bu\％	4\％ 1	413． 0								
7．ta？	せ上大iv	30．	42．6	．．．－		-191.11	$+1.46$	－0，0， 0		5．3． 25	
\％0．5	19．052	47.8	44.9		375050						
\％605	33.20	4．5．：	47．		60 1ti 12．Es	$-80 \pi .7$	＋0，90	-0.03		56.79	
76， 6	1） 423	47.3	41.4		553680.39						
－6．t	： 5.60	$3=7$	5．5． 0		1：3 120（15．ce	＋5：001	-3.46	$\underline{10.10}$		34．39	
7n5	30,504	45． 5	17．0		\％2 ti 1\％3！						
\＃\％	－fi．31：	4	4－．${ }^{\text {a }}$	032	340.104 .35	$\div 344.85$	－0． 0	－0， $0:$	1.14	51.95	
$\because 20$	1． A 年	45．	4． 9	＊－${ }^{\text {－}}$	$4-415$						
－－－	\therefore（1）．－-3	find	4－4		4．2 24.48	－78\％	－0．1＝	-0.13		53． 25	
7！	2－－813	320	37．		411089						
-1124	15．215	41．－	3－3	．－．．．．	－1105 1－59	\％ $50 . \mathrm{is}$	－0．E＝	＋0．16	．．．．．．	55． 30	
62140	29.005	3ti． 5	$39=$		0358						
－3：3	1ti． 400	$3-7$	$3=0$	．－．．．	4， 515.54 .89	＋2 2×0	－0．5	＋0． 30	．．．．．．．	$5 \pi .0 .5$	
6.508	31．6．3：3	40.9	$3{ }^{4} .3$		321019.50						
6imi	25． 04.5	3： 1	4－．－		65 to 0.41	－14．	-3.40	-0.04		56.81	Suptember ts．
6691	－4． 244	41．	30.9		41074						
6ficl	21．410	313：－	4．）－		57 f1，	＋9 +90	－1．8in	－9．0．7	．．．．．．	36.04	
60：	11．7？	44.0	$3=7$		43 25，30，50，						
6.45	ご，\％．3	34．\because	42，	＊＊．．	51 小1 $4 \overline{5} \mathbf{3}$	-310.114	-1.616	－0．615	．．．．．．	56.31	
6： 20	23． 112	＋1．3	42．11		54.4301 .64						
	23． 319	40．	1．3．3		41124.20	$+004$	-1.13	0.110		55.16	
$60-7$	12.07	13.7	41． 7		38 3－07．30						
	？5， 0°	37.6	14． 3		$61+140.14$	-45 こ．－	-1.51	-0.0%	－•．．．．	56．1．1	
［100	14．974		40．		1： 45348						
T14itio	$\because{ }^{-24}$	30.7	3．${ }^{\text {a }}$		2．， 3.3 3 3.3 .15	－9 3－11	-1.30	－0．1：		2ir． 49	
21.5	1－3．	43．11	1） 1		519338						
727	$\because 7.53$	40.5	41.6		414040.37	7545.40	-1.21	$+0.10$	．．．．．．．	$4=30.53 .36$	

Observations for Latitude.-Station No. 1—Continued.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Reaulinga.				Declidation.	Corrections.				Latitude.	R"marks.
	Microm.	Lerel.		AH.rid. dist.		Microm.	Level.	Fefrac.	hed. to mes ind.		
		N.	s .								
				m. 8 .	$\bigcirc 1$, "	"	"	"	- ,	
734%	16.024 27.654	45.9	41.1 49.0			- 3631	-1.03	-0. 13		48.59 cis 90	September 18
7480	20.658	43.4	44.8		4.85883 .30						
7403	22.683	40.6	47.9	520337.80	-119.66	-1.96	-0.02	53.80	
7505	21.264	44.5	44.0		3757593.32						
7605	24.535	42. 1	46.5-	$6000{ }^{\text {di }} 13.46$	-208.98	-10.88	-0.03	….	5. 50	
7636	18. 259	44.0	44.3		55.650 .98						
7679	27.111	42. 7	15. 9	---	4.31206 .39	4528.53	-0. 99	40.10		56.53	
7890	16. 249	43.8	4.9 ${ }^{\text {4, }}$	131	4×4930.09						
78×2	27.634	46.6	42.3		-7 2×64	$+0.83$	-0. 13	$+1.12$	54. ${ }^{2}$	
8033	14.8.6	43.0	41.4		56 Or 56.50						
8123	25. 8 \%0	41.4	45. 0	\ldots	41 212 53.7	+431.50	-0. 30	$+0.00$	55.9 .7	
${ }_{\text {cidis }}^{678}$	10.96\% 96	40.0	37. 2	-....	$\begin{array}{ll} 4.3 & 95 \\ 51 & 30 \\ 51.20 \\ 4.51 \end{array}$	-3 14.13	$+0.63$	-0.05		5.4.0)	Sertember 21.
7100	11. 093	32.4	34.2		42.5030 .71						
7166	44. c^{10}	53. 5	34.8		5.53331 .69	-94284	+3.89	-0.17		58.08	
7215	18.790	30. 4	39.4		550533.75						
T<i\%	27.620	31.6	4, ${ }^{\text {c }}$	40.314 .4 .06	+54\% 4.35	-1.35	+0.10	\therefore at	
7345 7448	14.465	40.8 40.7	38.7			-\% 38.48	+0. 0	-0.13		3n. 15	
$74 \% 0$	20. fi*\%	41.0	3? 6	45.5854 .00						
7880	$2{ }_{2} 8$	41). 7	31.9	5203 3-.47	-180.48	+0.4!	-0. 02	\ldots	(5i) 2	
T503	20. 834	39.5	41.3		37575054						
T603	24. 236	45.0	36.	600614.33	-213.43	$+1.46$	-0.113	\ldots	833	
263ti	1ǐ. 837	39.7	41.9		5.5.30 $51 .-1$						
7673	26.073	43.5	38.6	$401 \% 47.10$	+523.98	+0.61	+0.10		5. 14	
78	18.73	38.9	43.7								
2015	24. 344	47.9	34.0		3910503.25	-3 41.14	$+1.69$	+0.0\%		ก1. 19	
78\%	19.254	40.6	41.5		$\begin{array}{llllll} 2 & 0 & 1 & 1: 3 & 3 . \end{array}$						
TEU0	2.918	44.2	35.0		45.54320	$+23335$	$+1.19$	± 0.03		55. 50	
7830	15.39	41.3	41.1		454956.43						
Teq2	26.807	49.0	34.1		432146.85	-7 8098	+3.33	-1.13		55. 5	
7963	31.073	420	43.4		$\begin{aligned} & 411050.40 \\ & 5695 \end{aligned}$			--0. 16		54.4.	
ع0:4	17.673	47.7	37.4			+84.10	+2.	- 0		\%..	
8036 8059	$\xrightarrow{20.195}$	44.0 44.8	41.4 40.8			+0 53.6.	+1.45	40.02		50, 15	
8083	18.223	41.2	44.7		56.2757 .50						
8128	24.993	53.9	3: 4		41 924. 51	+426.51	+4.05	40.04		56.16	
3206	28.406	4.7.0	和. 0		303283.94						
8273	15. Eis	45.9	42929		670.556 .20	+ 73.33	+1.51	+0. 16		5.5. 32	
8344	16.899	枃:	46.1		O) 30 47.7.	+633.96	+3.5.3	+ 11		5in 6	
8366	81.035	40.7	4.4		603 ni 1.62	-3 51. 27	+ ${ }^{2}$ \%	-.118		5iti 17	
46	31.106	40.	43.8		60 40×1.83	-24.90	+24:	-. 0.		51.51	
67	20.914	54.4	34.8	\ldots	$3715 \cdot 1=31$						
150	14.55\%	4.8	45.0			-9 53. 7	$+1.46$	-0.18		\% 3	
198	25. \%\%0	45.0	43.5	014	473.512 .33	+410.74			+0.03	485989	
21.	12.276	39.7	4.9		501621.27	+10.in	-1. 13	T	+0.0.	+6 50, inem	

N B ——i

Obsercutions for Latitmar.-Station No. 1-Continned.

Obserations for Latitude．－Station No．1－Continned．

B．A．C．No．	Leadings．				Dectination．	Comentons．				Latitude．	İ＊marks．
	Mierom．	Level．		Muld． dist．		Mirrom．	Lerel．	Refrac．	In．A．to 		
		N.	S．								
				m．s．	－＇＂	＇＂	＂	＂	＂	\bigcirc ，＂	
7908	29.171	39．4	37.5		41165108						
2024	14． 6.1	33．\because	4．1．5		56.5080 .06	＋650．91	－12	＋0．10		$4 \times 5+5.3 .94$	ご「ptambsid．
8083	17．735	39．5	38． 2								
8158	24.633	$\bigcirc 9.0$	48.7	．．．．．．．．	41 ± 50000	＋4．31．35	-1.14	－ 0.08		55． 16	
8206	29． 086	40.5	37.5		30373						
6273	16．451	26.5	50．0		070.55^{5}	$+810.00$	－5． 0	＋0．16		$5: 17$	
8344	16． 230	36． 2	42%		c0：0 419． 59	$+637.82$	-1.12	＋0．11		511.60	
46 67	30． $4.3 \times$ 20.343	33.4 40.2	46.0 33.1 3		$\begin{array}{llll}609 & 41 \\ 37 & 15 & 41.79 \\ 30\end{array}$	$-941.0!$	－2． 01	-0.05		57．05	
120	14．012	40， 0	339．9		225045006						
15	90．01\％	36.9	41．2	．．．．．．．．	05 ± 54.17	－！ 50.06	$-1.6{ }^{2}$	－0．16		57． 7.2	
9198	24．44i	40.9	40.7		473514.09 50	－+409.95	－6． 119	$\therefore 0.03$		56.52	
2：39	27.1 12	39． 1	43.0								
2：9	16.4 cs	37.5	44.6		374830.93	-700.67	－4．47	-0.12		56.73	
6694	24． 673	39．	4.7 .9	$0 ¢ 1$	40） 074.31						
4681	20．4．46	45．0	3）． 5		574080.49	$t \div 4 \div 07$	-0.114	$+0.05$	＋ $4.0 i$	5tt． 76	Scputmbrr ${ }^{\text {a }}$
7024	22．נ¢	$4 \mathrm{~S}, \mathrm{r}$	42． 1		1.151 9．4．4						
7073	97． 246	40.0	45.0		300000.53	$+214 .: 5$	－0．97	＋0．06		50.05	
7160	15．769	$4 i .6$	104		424.719						
7166	30.550	41． 7	43.6		25 3333	-941.45	＋0．9\％	-0.15		56.60	
2215	19．232	44.0	4．1． 5		5707350						
727	：7．！ 61	45．6	41.0		40405001	＋－5 43．35	＋0，号	$+0.10$		56.37	
7345	15． 669%	415	43.4		47080.518						
7448	± 7.381	4．${ }^{\text {a }} 0$	16．		51003465	-739.15	－10．4．3	-0.13		50.67	
T150	20．699	45.9	45.8		4.5 5， 5.5 .14						
74.9	23.763	46.5	$4{ }^{5} .3$		$5230.3 \cdot 10.00$		＋60．23	－0．02	．	50． 68	
780	21.051	40.0	4．7．8	．．	37585						
7605	2．4．314	$4 \geq .6$	4． 6		1600616.04	－ 11.51	$+1.15$	－0． 03		66． 175	
2636	13． 25.3	4）． 7	47． 4		55：3133．04						
7159	21.6 .4	3： 6	54.3			＋5 530.47	-6.77	$+0.10$		54.95	
785	1R．1N4	4． 4.1	413，5								
7763	23.72%	$4 \leq 1$	430	．．．．．．．	340.5 （17．64	＋－3 39．93	＋0．39	$+0.07$		53． 21	
7\％87	12．743	4． $4 . x$	41.1		新 0111.81						
T． 800	$22.3 \sim 0$	$4 \therefore .6$	41.3		4553301.25	＋i 20.71	＋1．3\％	$+0.03$		5it eli	
7820	15． 200	44．5，	45.8	．．．．．．．	$484.75 .5$						
7cez	66.510	46．9	44.0		417844.72	－780．73	＋0．34	－0． 13		5×19	
7962	29． 198	46． 1	4\％．7		4116580						
c0：～4	10． 100	48.9	43.7	．．．．．．．．	566.828 .37	＋846．81	＋1．${ }^{2}$	$+11.16$		5\％ 5.51	
80：36	21． 509	4：3．6	49.0		49×14121						
8059	23.035	50.8	$4 \therefore 1$		4731512.5	＋05 5.67	＋0． 31	＋1）． 02		55.4%	
8083	19．321	4－7． 9	43.0		56187.54 .81						
812	26． 081	$4-0$	45． 2		418850.38	＋495．83	＋0．3M	＋11， 10		S．1． 11	
8206	93． 536	3 3i． 9	38.7	．．．．．．	303785						
8：73	15．912	39.1	33.9	．．．．．．．	G7 45 35，こ1	＋813．45	＋1． 1.1	－ 0.16		57． 53	
8344	17．682	34． 2	40.0		6031150.13						
8366	$\stackrel{1}{21.61}$	33.9	40.5		103610	－4．33． 10	十0． 28	＋11． 11		5.87	
46	31.80	34.15	40， 1	．．．．．．	6：1 4！32．13	－350．${ }^{2}$	－11．01	＋11．17	．\cdot ．\cdot	A1． A	
67	27． 65	41.0	31.0		$3 \% 1550.05$	-245.26	－0． 2.	－0．6．）		54.6 .5	
120	14． 401	3－． 4	3r， 6		3．52 45，94						
175	69． 400	41.6	35.9		6585	-953.56	$+1.46$	－10．10		1－515 50， 12	

Observations for Latitude.-Station No. 1-Contintued.

B. A. ${ }^{\prime \prime}$. No.	Ftatiags.				Cormetious.						Jemarks.
	Microm.	Lerd.		$\begin{aligned} & \text { Murial. } \\ & \text { dist. } \end{aligned}$	Declination	Dicmm.	Level.	Itatrac.	Rer?. to 1ntoril.	Latitudu.	
		N.	S.								
				m.s.	"	' $"$	'		'	, "	
199	24.750	31. 11	41. 3		183511.38						
219	12.533	47.4	! 5		$5016 \pm 3.3!$	$\div \pm 01.56$	+2. 61	$+11.07$			hrptember ${ }^{\text {a }}$
239	22.459	37.6	\%i. 8		10 9.598 .78						
259	17.637	40.5	35. 1		374830.77	-701.14	+1.17	$-0.1 \pm$.7. 18	
12-Yr. 33	19.533 46.45	$3 \sim .3$ 40.5	37.8	020		+431. 11	+1.1:1	+0.09	-0.0.4	55.71	
401	29. 667	36.5	40.0		080100.96						
438	15.102	43.5	33, 13		$6936: 4.70$	+130.71	+1.54	-0.18		48 59 :37. 20	

[^1]
1872.

UNITED STATES NORTHERN BOUNDARY.

Observations for Latitude.
[Astronomical Station No. \&, east. - Lake of the Wonds, eq miles east of Iembina.-Obsfrer W. W. Twining, Captain United States Engineers.-Zenitl Telescole, Wiurdemann No. 7.-Cluonometer, Nigus Sidereal No. Fis.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latiturl*.	Rematks.
	Microm.	Level.		Mrrid.		Microm.	Level.	Ticfrac.	Ited. to merid.		
		N.	S.								
				m.s.	- 10	' "	"	"	"	- ' $"$	
	25. 106	38.3	37.0	035	473.519 .31						October 15,
	19.194	34.8	40.4	501028.53	$+35.56$	-0.88	+0.06	70.10	48594 J	Octover 1\%.
	28. 989	35.7	39.4		604585.65					46. 34	
	17.045	48.4	2\%.8		$374-34.51$	- 7 1031	$+3.94$	-0.13		46. 14	
	19.30.5	3 3. 1	38.0		670601.60					41.18	
	25. 332	45.5	37.1	. . . -	3041 54.5í	± 413.21	$+2.81$	+10.08		41.15	
401438	29.40	30.9	37.9		$2804 \% 4.01$			-411		43, 9\%	
	14.418	45.9	3: 3		69313 31.01	+! 1 1\%:\%	+3..n	-0.1.		1.,	
$\begin{aligned} & 487 \\ & 5024 \\ & 5100 \end{aligned}$	18.48\%	40.9 46.0	37.7		47 50 50 50 0			-0.0:		1.1. 58	
	20. 341 25. 8.50	46.0 45.9	30. 3			-11203	T3. +6	-0.0.		1..	
$\begin{aligned} & \text { Lill } \\ & \text { finti } \end{aligned}$	25. 693	3.5	411.3		6331696600					414.73	
	14. 184	39. 4	$3: 6$	-.....	34203 106.34	-459.82	-0.40	-0.09		16. 13	
$\begin{aligned} & 7.4 .1 \\ & 754 \end{aligned}$	93. 081	39. 0	40.8		$\begin{array}{lll}6649 & 40.09 \\ 31813\end{array}$					14, 47	
	90.018	43.7	30.1		31.13450 .3	- 210.45	$+4.10$	-0. 01		4\%). 48	
8	14.151 31.945	40.0 47.3	39.5	020		-11 39. 4 i	+3.35	-0.91	$\div 0.11$	16. 34	
67286748	19.509	41.7	38.8		43 95, 39.30					[5. 50	Octobel 17.
	24. 5×5	40.6	34, 5		544047.33	$-3: 1.8$	+0.91\%	-0. 117		(3) ${ }^{\text {a }}$ (1)	Octobet 17.
$\begin{aligned} & 6937 \\ & 6550 \end{aligned}$	17. 644	41.8 41.3	40.9	-						Iti. 灾	
	2\%. 2 \%	41.3	41.7	. -	6141 ? 0.61	- 5. 13. 2.3	+0. 11	-11.10		11. ~~	
$.024$$7073$	19.33\%	40.8	4.7	+•-						15.5.5	
	83.9\%0	4.5.5	$3 \times .7$	360201.92	+259.89	1. 10	$\pm 0.0 .3$		1.8.03	
$\begin{aligned} & 7100 \\ & 7160 \end{aligned}$	13.914	4 4 0	4.388							510.23	
	24.097	43.6	11.0		5533500	- ! $51 . \mathrm{I}$	-0..1)	-11.		\%. 21	
$\begin{aligned} & 2215 \\ & 7: 27 \end{aligned}$	17.801	411.3	41.6		57807					4ti. 30	
	56.255	47.8	35. C	40 4105\%.11	+530.50	+1. ${ }^{4}$	(1). 10		46. 7.3	
$\begin{aligned} & 734 \% \\ & 2445 \end{aligned}$	16.3009 28.343	45.2	40.!		47 51 51 0			-0.13		4ti. f!	
	28. 343	4.7	42.0		51 Oti Hyto	- 7 nnm	+1.\%	-0.18		+1.	
7481 7489	20.133 20.639	4.5 .8 44.5	41.4		$\begin{array}{lll}45 & 58 & 50.50 \\ 503 & 03 & 43.51\end{array}$	- $13 \% 01$	-1.35	-0.01:		1.5.31	
$\begin{aligned} & 750 \mathrm{Z} \\ & 260 \% \end{aligned}$	20.684	46.8	411.6		3750800,80					4in. 13	
	23. 281	43.3	41.8	60 (1i) 90. 2.	- 2 2is 4	-1.00	--0.01		411.3	
$\begin{aligned} & 5136 \\ & 265! \end{aligned}$	81.801	4. 0 16.6	41.2			- 5 11.33	- $-0 . \times$	- 0.09		17.12	
	51.715	16. 6	42.	-	42 1:1200	\% 011.32	-7,	71.			
78.557865	1.810 24.650	43.7 $4 \% .0$	451		$\begin{array}{lll}538 & 45 & 83.30 \\ 30 & 60 & 10.34\end{array}$	+ 3 20.01	+0.76	+ 11.66		41!	
	24.0 .0	$4 \% .0$	12. ${ }^{-}$	- - -	u. (b) 10.3	1 - Mi.	+0.7)	+1.			
\%\% 7800	19.346 29.54	44.0 46.9	45.0 42.4		$\begin{array}{lll} 27 & 01 & 12.47 \\ 45 & 53 & 50 \\ \hline 15 \end{array}$	+205.3\%	+0. 29	- 0.0 .6		$41!$	
7-20	15.650 28.454	4.5 .5 40.6	43.4 4.5		$4-20$ 49 4	- 74.65	$+1.39$	-11.13		4. 59405	

Observations for Latitude．－Stetion No．：こ－Continued．

B．A．（＇．入o．	Leadinas．				Detination．	Corrections．				Latitulo．	Lemarks．
	Microm．	Livel．		$\begin{gathered} \text { Muin. } \\ \text { dist. } \end{gathered}$		Mierom．	Lerel．	Retiac．	Red．tol merid．		
		N．	S．								
				m．s．	－${ }^{\prime}$	$1{ }^{\prime \prime}$	＂	＂	＂	0 ，＂	
590：	$2-130$ 3 3	414 $1-3$	45.3 41.7	．．． 1		183213	＋1．23	$+0.15$		i－5！45．33	October 17.
E03fi	20.917	43.8	4180		4！） 2145.89						
20.39	21.90	41.4	4J． 0		$4-3615.4$	$\pm 0.41 .69$	$+1.6$	－0．02		45.19	
－0－3		45， 4	41.1 $4-2$	－．．．．				$\therefore 0.07$		4．3．34	
－128	：2．019	45.4			412310.50	$7+11.01$	T1． 41	＋0．06		4．0．34	
2006 -273	29.914 17.149	4.83 4.9	4.5 .3 41.4	－．	308780		$+1.73$	＋0．15		44.7	
8：3	1．14	43.4	4.5		ט4 02\％טo． 0	† 1 5 ． 19	＋1． 13	＋0．65		44.78	
8314	2．5． 2×1	4）， 2	46， 1	，．．．．．				－0．0．		4．5． 75	
$=3: 4$	$1-2+3$	4%	41．6	．	24 26 CE． 19	－ 420.63	T1．60	－0．0n			
8344	16．301	40.7	3 E 7	$0 \sim 0$	co 30 5b．14	＋617．92	$+1.91$	$+0.11$	$+0.04$	4，2， 21	
E364	21．523	4.0	36.9		1036 ats	＋ 334.80	＋1．70	＋0．06		4．），51	
$4{ }^{4}$	31， 1112	（1） 4	3－9		（11） 423 ：2，\％3						
67	寺． 491	43： 2	30.7		331554.33	-301.78	＋1．80	－0．0．2		46.25	
120	13． 56	40． 4	39.15		32504904						
15	－ 51.307	43.5	36.5	013	05゙ごイ1．01	-1011.4%	$+1.75$	－0．19	－0．02	44.95	
192	ㅇ⒋1管	40，5	39.7	－．．．．	158178						
219	12．834	43.1	315.9		（1）16 \％ 120	$+3420$	＋1． 57	$+0.07$		14．E0	
939	25．61．5	32． 4	40． 5		to 35 97						
274	16.101	4．3．7	34． 1	－－．－．	35.3 ± 35.04	－-21.13	$+1.46$	－0， 13		4.70	
12．Ir． 3	19． $5 \overline{8}$	39.4	40.7		0601501.94						
345		11． 4	34.1		30 4t is． 71	＋ 1 1， 51	＋23	T＇1． 0		fti． 31	
41	$29.04 i$	31.9	40． 8		－ 01184.17						
43%	14．4．6	43.4	34.3		163631.37	＋ 915.37	$+1.66$	10.17		4.37	
4：4	18.60	40.0	35.9		420420.79						
4 a	13：3	4.1	㕲！	．．．．．．	1：i9 46t， $12 \times$						
58	11．	4． 5	$3-4$	，．．．．．	5116.0 .11	－ 719.11	＋1．46	-0.112		41.00	
560	$\because 4.200$	4×1	3－：		：0 $01: 4083$	-110.53	＋1．4	－11．11：		41.20	
1611	2 Ba	41.1	40．61	．．．．．．	1：16 0r m？						
6is	1－．1．35	41.6	3： 3	．．．．．	$31+31083$	－ 4513	＋0．：34	-0.40		15.05	
74	2．n． 40	10．	40.1		6id 4140.41						
－is	15．4！ 4	41.9	41.5		311546.43	－ 130.31	$+0.01$	-11.01		41.54	
\cdots	14．80\％	414．9	41．11		$1!900.13$						
－ 36	3230	42.3	41． 3		\％ 5135	$-11.5 .816$	＋0．13	-11.26		41.15	
010.1	1－1\％	97． 9	17． 1		$\begin{array}{lll}7 & 1.5 & 43.35 \\ 310 & 31 & 40\end{array}$					is． 16	
449	只） 35	4．） 1	ご． 1		203180.8	＋4．3．15	$-0,01$	＋11． 10		$3 \% 16$	
1111	14，－103	41． 2	＋1．1	．－．．	31.513 .35						
$11: 7$	92，	4．3． 13	41.2	．$\cdot .$.	（i） 45 irse	-117.6	＋0．$\%$	1－0．0．3		14，	
1903	a－，$\quad \cdots$	11． 4	4！！ 4		12418		10.38	-0.11		4．7）	
1ご～	1：1．7．1		4t1．${ }^{\text {d }}$		\％	-318.15	70．38	－0．0，		4．2	
1 $\because ⿰$	$\because 4 \mathrm{l}$	fin，e	4． 7	\cdots						4．）-3	
12－	20． 431	A．$\ .1$	3.15			－2d $d^{2} .40$	－ 0.42	－0．10．		4，$)^{-3}$	
res	19． 129	53，	3.5 .1 in， 1	－．．．	17 $\therefore 19$ 4		－1．0．7	－0．07i		18．\％	U．tolue 1 －
0．15	2h．uth	13．${ }^{\text {¢ }}$	12．］	－••		－n－icr					
激＝0	？2． 101	f11．	40.7		$\therefore 2.3185$						
6－17	－1．－83	35，$:$	413． 4		119 110 8．0．U2	-1120	－\％d	（1） 10		41，1）	
193i	12.14	12．11	11．11		21：9－19，						
05：0	\＃1． 1714	11.0	$3: 1$		til 11 art lis	－ $01 \times$ \％	\cdots	－ 0.111		4.31	
20：1	20.119	12.1	i！－	．	101～1 20． 11						
－11\％． 3	$24, ~ \therefore 1,1$	$1+2$	33．11	．．．		＋： 20.4	－－1．3！	． 11.16		1－2．14 41， 3	

Obserations for Latitude.-Ntation No. \because - Continned.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Realings				Declinationt.	Corrections.				Latitute.	Lemarbs.
	Microm	L.vel.		Merid. dist.		Dicrom.	Lusel.	Is frac	$\begin{aligned} & \text { Sed. to } \\ & \text { nele rid } \end{aligned}$		
		N.	s.								
				2, 8.	- ${ }^{\prime}$	' "	,		"	- "	
7100 7160	14.544	41.5 45.8	4.4 37.9			-024.82	+1. 51	-0.18			Octuber 18.
7215	17.822	40.6	43.4		510737						
72.7	26.184	45.6	38.7		$40-40$ 520	$+52804$	+0.020	+11. 10	\ldots	4, 01	
2345	${ }^{16.145}$	41.9	42.4		45080.95						
T44	28.138	40.6	44.2	51004.80	- \% $51 . \%$	-0.9?	-0.13:		4is is	
7420 7489	20.835 23.100	42.8 40.6	42.3 44.4	455858.61 $5:\left(0^{\circ} 43.62\right.$	-135.31	-1. is	- 0.02		4.7.01	
489	~3. 160	4.									
7505 7605	20.55.5	43.9 39.0	41.0 $4 t i .3$		$\begin{aligned} & 3 i 5000.9 \\ & 600 t 20.41 \end{aligned}$	- 223.74	-0.99	- 0.04		4591	
7636 7649	18.706	42.0	43.5 44.8			+509.46	-1. ${ }^{3}$	+0.09		43.98	
735	19.400	40.6	44. ${ }^{\text {a }}$		584583.24						
7665	24.354	46.7	35.6	017	3030510.40	$+325.19$	+0.00	+0.06	+0.0.4	4\%. 19	
787	19.439	42.8	433.0		920118.65					44.23	
T200	22.68	4.0	41.5	.-.-	45.53	+206.90	+0.38	-0. 013		4. 2.	
7880	15.020 25.693	42.9 43.7	42.3 41.8			- 743.12	+0:0	-0.13:		4.5. 46	
\%nc	28.609	43.4	42.4	411656.8						
$8 \cdot 4$	15.640	41.5	41.7		568527.26	$\div 830.17$	$+0.5$	+0.1.		43.19	
80:3;	2- 463	4. 3	42.8	0 2	495146.10						
81103	$2 \mathrm{C}, 591$	43.9	$4{ }^{2}$	48.3617 .64	+043.3i	+0.83	+0.0!	10.06	48.15	
8183	18.472	42.3	44.0		563 920. 29						
8193	24.850	45. 2	41.0		412300.3	$+410.83$	$+0.50$	+0.07		4, 去	
82017 825	28. 3.41	33.7 35.5	33.6 32.3							$4 \times \mathrm{x}$	
825	16.225	35. 2	32.3		$6: 0000500$	+ 70.4	+0.6i	+(0.1.		10.2.	
8314	95.366	33.6	33.9								
8324	18.614	36.5	31.0	$2+80680$	-42\%.1	+1:	-0.14		4153	
8344	16.412	33. 7	33.		60302045	+6] ${ }^{6}$	+10. 4	+0.11		4, ${ }^{3}$	
8:36	20, 52:	33,9	33.9		603621.51	+33511	+1181	-10.16		4.3.5.3	
${ }_{6}^{46}$	30.633 26.041	3.7 35.6	33.5		69493 3-51	- 3000.8	+10. 8.9	-1). 15		41.42	
120	14.802	34.6	33. 2		32.580 .81						
17.	30. 2×4	34. 8	33.0	05 ± 501.34	-10 0-8,	+115	-0.19		$4 \% .0 .5$	
198	26.1-7	35. 1	34.7		4: 3 3-10.9						
:18	20.354	3 C	35.3		5016824.07	$+34034$	+0.3*	+0.0i		44.24	
12-5r. 7	19.0.11	44.9	220		670608085						
34%	25. 592	24.0	43.6		304154.90	+ 417.31	- +10.41	+10,0,		46.5	
4 T	14.692	34.5	33.3		420421.05						
$4-7$	1*95x	34.4	$3 \mathrm{3i4}$	023		- ¢ 1\%.!	$\therefore 1.17$	-1. 1:			
	96.0\%	35.9	31.9		5010 (19) 40	- 110.30	+0.9.9	-n.0.	+11. 11	4.5.95	
611	96. 115	32.0	33.7		6.345						
Eiti	18.450	34. 2	27.7	3423063.71	-501.19	-1.1.5	-0.04		47. ${ }^{\text {S }}$	
i, 4	23.045	36.5	31.8		664940.73						
78	20.081	32. 0	31.3	3113846.8	- 1 atim	+0. 19.9	-0. 14	titis	
85	13. 180	33. ${ }^{\text {a }}$	34.6		118						
$8: 16$	30.905	33. 6	31.7		is 51	-1135.22	- 0.90	-0	4; $1:$	
929	17.559	33.3	45,		ir 1.54						
040	24. ${ }^{\text {atif }}$	42.8	20.7	203380.90	+14.3,	+ 00.1	+6111		4.1	
1203	2. \square^{-1}	30.6	35.5		Ef 414.18						
1:20	19.42-	3-.11	号 \cdot		-345	$1+1{ }^{\prime \prime}$	- 1111			

104 UNITED STATES NORTHERN BOUNDARY COMMISSION.

Obsmations for Latitula.-Ntation No. \because - Coutinued.

$\begin{aligned} & \text { I. A. } \mathrm{C} \\ & \text { Ao } \end{aligned}$	Rombinga				Corrections.					Latitude.	lemarbs.
	Microm.	Leved.			Declination.	Sicrom.	Level.	Ititrac.	Pral to metid.		
		N.									
				m. s .	$?$, "	\#	"	"	a ${ }^{\text {a }}$	
1\%!		35.	318 31,1	\cdots		- - 49,66	+1.24	-0.0.8		4359 5, 60	October 18.
$1{ }^{\prime \prime}$	310	30.0	41.9		5010010.00						
1.2i	:1. iti	41.3	31. 4	$1=0489.46$	-242.43	-0.22	-0.15-	46.14	October ${ }^{\text {a }}$.
	19, 00:	38.4 40.3	\% 3	$\cdots 0$	cis 515	+ 326.56	40.95	+0,06	$+0.05$	44.0	October ${ }^{\text {a }}$?
5-310	15. arg	3\%.:	+8, 8		- 3 4.14	$+0.09$	-0.13		44.83	
-0\%		2.4 4	+9. 5		+040. 3	+0.4.3	+002		4.08	
- 8 - -3	1-se	40.7	$\cdots 1$							
-1. $=$	$\therefore 1.340$	31. 4	33.1	41230165	+410. m	40.3	± 0.47		4533	
-2iti	10.319	29.7 40,15				+734.7	+0,34	+0. 1.5		4.5. 68	
2011	1180	905 38.10	4118	...	$\begin{array}{ll} 73 & 15.40 \\ 24 \end{array}$	- + 26, 5	-0. 0^{9}	- 0.59		13.24	
83.4	15:4	39.1	40.2		6030 5. 1						
-3, 10	19, 94	3-11	411, 1	6,1) 36	+61-92	+11. 1.8	+11.11	.-. ...	48,	
(13)	38	23, 11	$4{ }^{4}$			I 334.39	-11.68	${ }^{+11} 181$		13 2045	
		41, 14	34, 0			- 3 U1. 80	+0.04			43 50.45 .91	
Mandatitndo. Sumber of letorminatinus. Galan ut matronsti Gue dirision ot level,											80114
											$70^{4} 003$
											$\mathrm{So}_{0} 0 \cdot 010$
											$\bigcirc 00^{\prime \prime} .01 \%$

1873.

UNITED STATES NORTHERN BOUNDARY.

Observations for Latitude.

Obsurations for Latitude - Station So. --Continued.

Observations for Latitude.-Station No. --Continued.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Rendings.				Declination.	Corrections.				Latitude.	Temarks.
	Micront.	Lerel.		Merid. dist.							
		N.	S.								
				m.s.	- ' ${ }^{\prime}$	11	"	"	"	- 1	
7350	29.895	37.5	34. 2		380911.79						
7- Ir. 2315	15.2?	36.5	35.6	----.	594443.52	$+25586$	$\div 0.94$	+0.05		435957.01	Jube 15.
5415	29. 5123	39.0	97. 9		531610.88						
5460	13.032	28.3	98.4	400046.90	- 831.67	-0.22	-0.15	--. --	57.31	Tume 17.
5509	8. 5 fi, 3	92.1	08.0		558939.49						
5.23	98.372	-4. 1	32. 2	420943.98	$+1011.6$	-1.88	$+0.12$	54.3	Trajected.
5545	9. 123	2. 0	31.3		690233.94						
56.24	31.205	2-. 9	-3. 4		98 35 2j.0i	$+110219$	-1. 29	$+0.20$*	60, 60	Regect-d.asdonb, tol on recorl.
544	16.914	30.0	97. 1		489756.00						
5658	21.177	26.5	31.0	016	553765.80	-304.69	-0.36	-0.0.	+0.01	56.44	
5693	27.710	29.9	92. 9		3154 13.19						
5823	15.152	27.9	31.9	U5 52 13.38	+699.61	-0.51	$+0.11$		$5 \% .33$	
58.3	20. 5.37	28.7	30.1		494932.64						
5911	11.181	99.7	29.8		$43 \sim 1584$	-552.6	-0.33	-0.09	55.88	
f04\%	26.611	30.1	30.1								
¢0\%3	11.35:	30.4	30.2		90041239	- 8 2\%	$+0.04$	-0.15	[14, 36	
6114	13.948	29. 7	31.4	76.58 .31 .63						
(ils 7	97.145	31.0	30.0		204740.58	$+650.69$	-0.16	$\div 0.14$	5\%. 68	
6008	10. 449	400	21.5	-	3920811.06						
68.9	25.993	1. 1.6	(1). 0	58 d3 32 41	-450.15	+0.02	-0.0.9		57. 35	
6312	12. $17!$	27. 3	33.9		59 2\% 4r. 21						
4.365	28. ¢ 28	31.8	27.2		381453.95	$+839.89$	+0.83	$+0.15$	57.34	
6421	30. 280	31.3	31.0		491721.71						
6176	± 0.825	31.4	31.0		484156.34	$+016.91$	+0.16	$+0.01$		50. 10	
6553	17. 232	37.5	33.4	.							
6589	$\because 1.043$	33.	94.6	(5) 4547.42	- 15×5	$+0.38$	-0.03		516.19	
6621	21. 36	31.0	31.5		400590.96						
1.1881	15. 700	32. 3	30.0	57641% U8. 41	$+308.62$	+0.4')	+0.05	51.27	
6788	17.7.33	31.5	31.0		43 25 12, 30						
678	23.332	33.0	24.5	033	5440450	~ 253.10	+0.89	-005	+0.14	516.56	
6781	18. 5088	80, 0	33. ${ }^{2}$		\%7 1: 40.12						
6817	19. 311	33.2	21.0		$401138!218$	$+0 \leq 12$	0.00	$+0.01$		4353500.9	

Mean latitulu (60 determinations), 4N0 59'5*".20.

$$
\begin{aligned}
& \epsilon= \pm 0^{\prime \prime} .13 \\
& \tau= \pm 0^{\prime \prime} .4 \\
& \varepsilon_{0}= \pm 0^{\prime \prime} .113 \\
& \tau_{0}= \pm 0^{\prime \prime} .05
\end{aligned}
$$

1873．

UNITED STATES NORTHERN BOUNDALI．

Obsercations jor Letiturle．
 tenant United States Enginecrs．－Zewith Teleseope，Würeman No． 11 －Chmmmeter，Negus Sidereal No．Itsi．］

B．A．C．	Feadiugs．				Declination．	Curcetions．				Latitude．	Itemares．
	Microme．	Letel．		Merin． dist．		Microm，	Level．	Infyac．	Incle to		
		土．	S．								
				m．s．	－，	，＂	＂	＂	＂	－． 1	
50.6	21． 3103	12：3	30.0		$3-4130.3$						
309	11．4．7	2－5	4，5， 0		5924 AK	－ $4.30 .6 \%$	-1.40	－0．0．		485966.10	June 1\％．
T0\％1	15．0331	40.7	33.1		4 S －						
5313	91． 019	41.0	33．${ }^{\text {i }}$		514631.8	＋231．89	± 1.34	＋0．01		2．f． 51	
541.5	11． $\mathrm{f}: 0$	32.8	3， 3.9		\therefore S 1010.44						
5460	25，（－）	30.3	41．：	．．．．．．	4000811.41	－894．42	－ 5.35	－0．13		fil．rit	
5.002	20， ra	3\％．0	为 7		515						
5523	10． $2 \begin{gathered} \\ \end{gathered}$	426	32：		420343.40°	$+1016.2$	$广 3.01$	－ 0.17		61.04	
5	\％－112	ご， 0	81.8			1102	－i，\％i	－11．21		553	
5193	13．4， 3	41， 8	？1． 6		315						
5023	81．1．：	4．6	35：		1，5－1	＋6305	$\because 4.31$	＋0．12		60.03	
503	1．5．19	350	41.1		$4^{1,4: 9} 3=04$						
5911	23.40	31.7	4i3，$i^{\text {a }}$		ず 2158	－5425：	－ 5.8	-0.19		50， 9	
Prefor	21．101	43．0	37． 6		3192011131						
6250	16．51．1	-4.2	Eti， 0	．－．．．	T－4：3：2． 21	-433.03	－E．I－	-0.0		05,68	
$6: 312$	96．053	12． 0	30．3	．．．．．	54.545						
（13）${ }^{\text {a }}$	11．839	\％1．8	5！\％＊	．．．．．	3 L 11 （10）3：	＋ 84.8 .80	-6.33	－10，11	．．	2．．7．7	
rat	19，fras	35.6	45.12		fy 77.01						
14ぢ5	I 5 －	31.0	－1， 7		4 ± 418	$\div 02.8 .3$	－ 0.8	－0．0．4		$5 \mathrm{~L}, 48$	
6.5 .3	20． 836	25．5	11． 18		$3: 15$ 吅 2？						
（iごい	1： 326	：15． 4	4． 3			－ 14.56	－5．59	－0 63		13.316	
6720	\bigcirc	17．5	3is		17 4， 11.5						
Cis：	1－．6．tm	2゙－ 1	こう．		54 10 24．39	－ 931.4	－4．7\％	－1）． 11	．－	$12=30$	
（is－0	19．1 1.1	50， 5	30.11	．．．．．．	57% 17 5						
（ic1ir	1－．73：	311.5	Sis 11	．．．．	（1） $110 \sim^{2}-$ ！ 1	＋025．31	－1 9． 913	$\div 0.01$		6．0．8．	
\％0．4	O1．50	12，3	11．3		61.51041						
70：3	1，1． 1.8	吅， 1	50， 11	．．．．	30.114 .43	＋ 3405	－ 0.5	$\div 0.05$		1i1． 40	
1－04	こ2．Sリ	41.18	32． 2		502955						
4－：	1以 リ！	$\therefore i .0$	4）－		$47 \leq 01206$	$+713.41$	-3.111	＋0．12		54.17	T1110， 16
4－15	29.211	311.6	41.0		2． 20010.30						
4）10	1．5．111	${ }^{11} .18$	30．（i）	．．－．－	51.17 dis． 5 \％	-423.80	-0.17	-0.118	．．－	16．05	
4937	$1 \because 7$	215．0	414		50185809						
411：		4－3	$2{ }_{2}^{11}$	．．．．．	1－13：11．4．13	-9115.10	12.45	－0．15	．	518.61	
5148	9：	35	Stil		$3-41310$						
51117		$\because 11$	1．2．：	．．．．		－48－507	-5.3	-11.15	．\cdot	（i3，sti	
581	17．1i\％	1．	$\because 11$	\cdots	$121-20$						
‥113	$21.93!$	$1: 1 ;$	\therefore ：	－		＋ $041 . \%$	－7．16	-10.05	．．．．	lifi Fs	
5115	$1 \because 1-1$	$\because 11$	14.11		－i＊ 11210.3						
－ 410	20．111	～～－ 0	42．s	．．．．．	（1）（10）［11\％ 614	－$\times 1.5=$	-10.01	-19.11	．．	3.4	
50\％	只＊． 1111	1． 3.3	\therefore i		$\therefore 80$						
50．3	11 1－4	15．1）	－2：	．．．．	$4: 044+5$	$\because 1026.10$	－4． 3.8	－10．1 $=$	．．．．．	1－5964．11	

11

Observations for Latitude.-Station No. 3-Contimed.

$\begin{aligned} & \text { B. A.C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latitute.	Temarks.
	Microm.	Level.		Merit. dist.		Microm.	Level.	Refrac.	Red to merid.		
		N.	S.								
				m. s.	- "	، "	"	"	"	- "	
5	27.443 0.471	23.0 30.0	42.3 41.0			+110\%. 5	-11.06	+0. 21		4) 5735.5	Jude 16.
5693	15.259	33.1	3*. 3		31544295						
5833	20.409	10.7	6 L .0			+653.80	-17.21	+11.13		nit. 5	
5853	15.733	21.6	51.0		404936.57						
5911	24.648	25.6	47.0		48.2158 .16	-532.35	-15. 5.5	-0.0.	20. 17	
6114	20.088	$2 \times .3$	41.4		765834.32						
6157	14.933	47.0	26.0	-	204740.34	+654.54	+1.59	$+0.15$		63.54	
6ッ62	0.836 15.978	41.0 41.0	32.8			- 45200	+5.24	-0. 09		66.39	
6313	26.515	41.0	32.2		592745.89						
6365	12. 526	33.3	39.8		331453.60	$+841.73$	+ 11.71	+0.15	\ldots	fis 37	
6553	21.94	28.2	41.5		321802.48						
658	15.491	4.5	21.6		(6is 4547.10	- 153.36	+6.05	-0.04		13, $4 \pm$	
6624	12. 186	44. 2	24.6		4107827						
6681	23.278	14.0	25.0	\ldots	574607.87	$+303.19$	$+11.97$	+0.0.i		69.98	
6728	29. 917	45.5	ํㅡㄹ		432312.06						
6	18.451	23. 2	41.5	5440 det. 68	- 24.03	+0.78	-0.0.1	--...	813.17	
6750 6817	20. 19.809	34.0 31.2	33.5 34.1			+030.0\%	- 1.05	$+0.01$		633. 55	
6937	23, 237	27.15	40.4		36.3751 .73						
6970	16.496	12. 0	26.0		1144180.63	-436.10	+ 0.99	-0.010		133.99	
7004	20.769	35.5	33. 0		6151 12. 0^{0}						
7673	$16.91!$	31.7	36.7	3614144.71	$+33-10$	-0.47	+0.016		81. 39	
7100	27.171	42.6	19.0		12 45 25. 12						
7166	12.316	13.5	49.0		5.33314 .43	- 911.91	-0.03	-0.16		1ii. 39	
7215	24.742	26.1	11.6		5780714.68						
7277	14.813	43.2	2 4		40 40 33. 76	$+607.67$	-0.-4	$\underline{+0.10}$		6. 3	
5	23.190 19.033	93.0 34.0	46, 3×5			+234.4.0	-4.15	+0.0.4		5×49	June 1\%.
5415	27.618	34.0	32.7		521611.00						
5460	13.921	3. 3	34.2		4) 60 +6.80	-8.8.15	-0.15	-0.15		(11. 13	
5345 5624	10.977	4. 20.0	5		$\begin{aligned} & 69 \\ & 23 \quad 35 \\ & 23.93 \\ & 25.465 \end{aligned}$	+11 กi.90	- 4.00	+0. 21		13.31	
5693	95.81	15.5	57.9		3154 43, 17						
5823	14. 522	54.5	24.7-	ti5 52 13.35	$+639.3=$	- 5. 15	$+0.12$		12.63	
5453	24. 501	31.0	41.3		$40433^{2} .64$						
5911	15.376	21.8	41. 0		4=2154.47	-530404	-9.15	-0.09		li1. 27	
6114	13.312	41.0	34.1		\%15 5831.06						
0157	21.619	40.9	31.7		$\because 04740.5 \pm$	+6.52.63	$\div 4.00$	+0.15		61. 49	
c988	15.653	37. 2	3:0		$39: 514.45$						
6259	23.646	51.1	21.5		584332.4	- 45.61	1942	-0.09		12\% 27	
6421	12. 933	31.6	12.0		4717 17.						\cdots
6476	20.434	43.0	23.1		4541 ati 3.3	+ 018.39	$+3.63$	0.00		61.04	
5036 5097	16.110	27.5 30.0	33.5 31.5			- 433.80	- 23.3	-11.03		18.67	June 1*.
5271	91.561	32.8	2-8		41420-7						
5313	17. 411	22.0	38.8		5.5003502	+231.10	-3.9\%	+0.04	mas	
$\stackrel{5415}{5460}$	26.800 13.307	41.4 09.5	11.8 51.8		58 40 40 10 1611.978	--8220	- 3.184	-0. 1.		4-50 83.116	

110 UNITED STATES NORTHERN BOUNDARY COMMISSION．

Obscratiens for Latitule．－Station Mo．S－Continued．

B. A.C.	Readings．				Declination．	Currections．				Latitude．	Temarks．
	Microm．	Lerel．		$\frac{\text { Merid. }}{\text { dist. }}$		Microm．	Level．	Iffrac．	Ferd to merie．		
		N	S．								
				m \％．	－＂	＂	＂	＂	＂	－＂	
5502	11．642	23.0 ar．	32．9		4 tan	＋10 $25.2-$	－ 4.19	＋0．13		49 5963.11	June 18．
3545	10． 381	31.7	23． 9		690234.25						
seot	2n． 305	21.6	3－．8		SE3523．31	＋1105．35	－ 4.7	＋0．21		61． 20	
5044	17．174	20.8	30． 10.7			－~ 51.80	－6．23	－0．03		62.89	
5093	2－067	24.3	35．		31543.46	＋6326	－4．${ }^{1}$			6257	
－2023	14．3i3\％	$2=5$	32． 6		is $2 \times 13 . \%$	＋632．6\％	－4． 81	－0．12		02．20	
$5-33$ 5911	O4．095	20．3	$3-3$ $3 \sim$ 3 2		$\begin{array}{lll} 49 & 49 & 37.19 \\ 45 & 21 & 35.79 \end{array}$	-542.09	-5.95	-0.09		59.86	
81814	13．093	30.9 19.5	31.7 43.4			＋ 701.90	－ 7.66	＋0．1\％		10230	
Cs：	23． $2=5$	20.8	40.7		55 ¢ 43×3	－ 443.64	－ह． 40	－0．6－		61.8	
8， 10	${ }^{13} \mathbf{1 3 . 0 3 1}$	40.5 11.1	22． 5		59 35 514 14 4	$+653.40$	－ 7.41	$+0.11 i$		06．56	
641	19．815	42． 6	21.3		491720.5						
UR	20.700	2.4	37.7		$4=4150.0$	$+033.07$	$+3.10$	＋0．01		6.13	
运3	12030	30.18	33.8 $3: 1$			－ 151.95	-1.02	－0．0．14		635	
met	23： 122	37.	91.1		40005005					43.9	
$6 \leq 1$	16． 691	14.5	［11． 7		万5 4008.31	$+32201$	－ 8.47	＋0．10			
湤	17．006	$3 \times .6$ 17.3	3 3		$\begin{aligned} & 43: 51060 \\ & 5140 \\ & \hline 105 \end{aligned}$	－ 39.20	－5． d^{2}	－0．01		63.17	
ficll	19． 5 \％	33.0	32．6		5742 4n， 510						
1027	21）． 245	12.4			4010298	＋035．13	－ 9.4	＋0．01		61． 20	
6937	15.043 23.500	af． 40． 0.5	42.6	\ldots		－ 44004	＋2． 24	－c． 08		6． 21	
7024	17．311	33.8	33．6		61 71 03 36 01 45 10	$+334.61$	$+3.26$	$+0.00$		6．2．2	
\％	～．0．0．	－1．0	－c．								
T104	11.517	33.7 40.6	33.9 -0.8			－ 916.81	＋4．95	－0．17		63.21	
	14.845	S6． 6	32.4		3－21 10.03					64.32	Jume 19．
$412+$	21.850		40． 8		小⿺尢丶ーコン	－ 4.21 .12	－29	－0．08		6．3．	गwe
$\begin{aligned} & 5026 \\ & 5057 \end{aligned}$	14．011	2.0 31.8	41.3 37.7		39 50 50	-433.31	－ 7.61	－0．03		88.8	
5	20.809 1 1	330	31.0 314 4	．．．．．．		＋こ34．03	－ 4.59	＋11．04		624	
$\begin{aligned} & 5.02 \\ & 5523 \end{aligned}$	$\begin{array}{r} 5.3 \\ 24.46 \end{array}$	35 19.3 19	73．0			$+1023.65$	－ 8.00	＋0．10		62.61	
$\begin{aligned} & 554, ~ \\ & 5624 \end{aligned}$	$\begin{gathered} \text { E. } \\ 2 \text { tu } \\ \hline \end{gathered}$	43.5 16.0	－25			＋1102．46	－5． 3	$+0.21$		63.011	
5ifit	15． 90	30.5	90．		$4 \geq 374{ }^{4}$	－ 2.4 .6	－ 8.5	－0．05		6－：	
Ltue	20．4\％	13．	41.1		（1）32 16． 11	－－47．03	－$\because 64$	－0．05			
¢083	23.419 $1 \div-015$	24． 3	$\begin{array}{r} 13: \\ 3 \\ \hline 3 \end{array}$	．．．．．		$\div 631.33$	－ 7.51	＋0．12	\ldots	55.51	
－i－	－33．119－	23.1	3－2 4		$\begin{array}{lll} 4 \\ 4 & 4 & 3 \\ 4 & 51 & 2 \\ \hline \end{array}$	－53：60	－8．46	－0．09		60．1：	
6114	123 414	50．0	21． 1	… ${ }^{\text {a }}$		＋ 70234	-4.86	＋0．15	．．．．	4＊39 06.15	

Observations for Latitude.-Station No. 3-Continued.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latitude.	Remaris.
	Microm.	Level.		Merin. dist.		Microm.	Level.	Refrac.	Red. to merid.		
		N.	S.								
				m.s.	$\begin{array}{cc} \circ & \prime \prime \prime \\ 39 & 96 \\ \hline 15.24 \end{array}$	1 "	"	"	"	- '	
625	23.313	31.4	40.18		584333.15	- 144.24	- 9.52	-0.03		435360.33	Junc 19.
6318	9.954	36.0	35.6		592746.92						
6365	24. 206	21.5	50.0		381454.58	$+849.53$	- 8.11	+0.10		61.73	
6491	19.976	33.7	32.0		491789.40						
6466	20.063	®4. 0	47.8	.. --.	48.4157 .01	+ 020.24	-8.71	$+0.01$		60.85	
6553 6556	17.208	26.0 27.0	45.9 45.3			- 145.67	-11.84	-0. 03		48.5958 .19	

Mean latitude (74 determinations), $49^{\circ} 00^{\prime} 02^{\prime \prime} .50$.
$\varepsilon= \pm 3^{\prime \prime} .164$
$\tau_{0}= \pm 0^{\prime \prime} .8+3$

INITED STATES NOR＇THERN BOUNDARY．

Olserations for Latitude．
［Astronomical Station Jos f．Test side of Pembina Jonntain，di miles west of Pumbina，Gbserter．Lemis Boas．－Zedith

L. A. C.	Iendiders．				Declination．	Corrections．				Lititude．	Rematks．
	Micron．	Lerel．		Mcrid． dist．		Microm．	LuTel．	Refrar．			
		λ.	s.								
				\％ 12.8	$=1$	，＂			＇	＂	
$5: 71$	20． $6,-3$	250	229		43－31．47	$\therefore 2.30 .13$	－ 8.313	－0．04		4－5931．3	Jume 2i，
$5+15$	20.301	2\％：	20.4		531613.80						
5460	10．0．1	20.7	27.3		100049.20	－83！． 7	－0．14	－0．15		51.82	
50.2	8．9，1	20.5	2－7	＊＊＊＊	5080						
5303	2e． 5.5	2x．	20	．．．．	4006 di．	± 10 9， 36	＋0．1－	－10 12		52.6	
5.545	E． 5.510	27.9	96．	．．．	190236						
$5 \cdots 2$	27． 719	23.6	31， 2	．．．．		－10 50． 72	－1．4；	T0． 8		20． 82	
5093	25.605	2h． 2	22.2		31.54 4． 20						
$5 \sim 33$	13．331	25.6	$\because \%$－	－．．－－	635015	－1－4 53	$-0 .-0$	$+11.1 \div$		N． 17	
$5-53$	21： 0^{51}	31． 19	43		404941.17						
5511	13． 0 \％${ }^{4}$	13．9	35.0	．．．．．	te 30 01． 11	－ 5.501	－1．20	－12．10		$\therefore 10$	
604T	27．410	22．0	29．7． 3	．．．．	71：34． 1						
6073	10． $11 \% 1$	21． 2	34.3	．	200411.4	－E30．12	－2\％	－0．16		：1． 10	
6114	11．544	96．${ }^{2}$	21！！		－1150 3： 41						
6157	24.545	81.7	3 st 5	．．．．．．		－644．73	-3.46	10.14		51.8	
6808	12．97\％	9rin	28．		3y 2801%						
6299	2． 118	¢8． 1	2．3．${ }^{\text {b }}$		554335.35	$-5.65 .6$	$+0.40$	-0.09		50.94	
6421		O－0	20．	－－－－－	1615					51.95	
6460	19.160	25． 1	91．3		4： 4150.12	＋ 010 fic	-0.53	0.00		11． 0	
0553	19．150	35． 1	\％8．11	．．．．．．．	321768						
6ご家	20.212	23，	36.11	－－－．	fis 45 50，3\％	－ 304.8	－1．14	－0． 114		51.80	
6 62	21.120	28.0	31.4		400783.01						
66.1	15． $2=6$	2．	～ิ． 1	－．．．	37 40 11．10	＋3 01．11	－1．${ }^{2}$	± 11.15		51． 4.5	
615	16．333	291	33.3		43 景 15.50						
6：12	23.4191	＊ 4	236		5t 4023.85		－1． 25	－0．Ha，		50.90	
6090	19.047	20． 11	3\％． 0		¿14 43.05						
U－17	11，ここう	\＆	：33， 3		41163213	＋ 11816	－2． 03	0.018		52． 29	
493	ฐ\％．刀1	2\％．11	2\％	．．－．	$500100-1$						
4094	9．5－	$\because 1 .=$	3 ± 1	．．．．－．	$4=09 \mathrm{UL}-3$	-90.94	-1.61	-0.11	．．．．．．．	51.31	Tune 2\％．
Snen	1501．	2\％	31，	．．．．．．	$3-143301$						
509%	2t：303	31．11	25：		51， 24 4．81	－＋4－75	$\div 1!0 \%$	－0．0E		11，-2	
5x1	21．59	30.11	～1．3	．．．．．．	$424-31.8$						
5：313	17．11＊	$\because \sim .0$	31．1		\＄0 06 ：3． 13.3	＋ 21%	－10．013	．+0.01	－．．．．．	51．4t；	
541.5	5． $00-1$	313． 1	9！	．	呩1512．41						
5 和0	14．315	2.1	$3 \div$	．．．．．．	4110119	- － 39.21	－0．13．	－0．17	．．．．．	5．1．：31	
5502	9． 213	31． 3	－ 23		5 5 51806						
15503	Q～．$=11$	$\because 5$	33．		$450,7416.3,3$	11010.4	-0.81	－0．1－	．．．．．．	51.31	
5\％	4．E0，	320	号	．... ．				$1,21$		1－5451．34	
$50 \% 4$	20.76	－ti it	32．	．－．．．．	－3．4 3 － 1	＋10．00：	-1.14	$+1.21$	．．．．．．	1－w．ul．u4	

$11:$

Observations for Latitule.-Ntation No. 4-Continued.

B. A. C.No.	Readings.				Declination	Corrections.				Latitude.	Lemarks.
	Microm.	Level.		Merid dist.		Wicrom.	Lurel	Refiar.	Red. 10 metid.		
		N.	S.								
				m. s .	- ' ${ }^{\prime}$, '	"	"	"	- . . $"$	
56.4 56.58	15.420	4.7 33.7	${ }_{29}^{32.6}$			-31209	+0.44	-0. 0.5		485950.85	June 26.
5693	25.300		35.0		315445.40						
5×23	13.026	36. 2	24.3		635216.25	+620.83	+0.38	+0.12		52.19	
5853	25. 4.58	32. 1	31.3		494941.42						
5911	13.906	28.1	35, 6		482201.27	-558.43	-1.49	-0.10	.-....	51.33	
6047	97.674	$\stackrel{96}{96}$	26. ${ }^{2}$		$\begin{array}{llll}72 & 12 & 35.03 \\ 96 & 04 & 14.78\end{array}$	- 832.39	-1.c0	-0.16		51.36	
	11.100	\sim									
${ }_{6}^{61157}$	12.065 25.071		27.0 27.6			$+643.54$	-1.03	+0.14		59.85	
6248 6×9	14.321	29.9	30.2 23.4		39 28.131750	-504.94	-0. 28	-0.6. 6		51.13	
6318	12. 273	25.4	27.4		592749.30						
6365	28.711	23.6	29.1		381456.20	+ $8: 0.03$	-1.67	$+0.15$		51.60	
$64 \geq 1$	18. 159	27.0	26.5		491724.79						
6476	18. 491	22.5	30.9		434159.40	$+010.52$	-1.76	0.00	\ldots	50. 8.5	
6583	16. 714	24.0	29.0		321805.49						
6.56	20.643	25.3	28.0		65 45 50.66	- 205.01	-1.92	-0.04		51.31	
6624 $60 t i$	20.665 16.820	27.7 21.1	25.4			$+301.31$	-1.96	+0.03		51.31	
628	16.172	21.0	32.8		43 2.5 15. 37						
674	21.940	20.0	24.7		it 4028.17	- 258.97	-1.67	-0.04		51.09	
6880 6.17	18.335 18.83	$\xrightarrow{27.1}$	26.7 31.3		57 12 43.37 401632.43	+ 015.45	-1.87	0.00		51.4	
6037	13.997	27.0	27.8		316854.83						
6970	23.302	$\stackrel{2}{21.0}$	31.1		614130.09	- 44.81	-1. 36	-0.08		¢1.91	
7024	14.853	31.4	23.3		615106.10						
2073	21.520	11.6	35.4		$36.014 \% 76$	$+326.80$	-1.72	$+0.06$	52. 13	
7100	10.694	$\stackrel{9}{2 .}$	$\underline{93.3}$		424585						
7166	28. $4: 4$	25.8	29.9		553312.80	- 922.73	-1.75	-0.16		51.44	
7215 7277	14.057 25.596	30.1 20.8	25.4		57 40 40 40	+558.03	- 93	$+0.10$		53. 2 Z	Iirjected
7. $\begin{array}{r}\text { 7 } \\ \text { \% }\end{array}$	21.313	29.9	26		3800 15.01						
7. Mr, 2395	15. 773	21.3	35.0		59 +451.03	$+251.40$	-2. 23	$+0.03$		53.16	Iexjecturd.
7377 7398	19.120	24. 5	31.9		692741.51						
7398	10. 5	27.2	20.4		385838	-946,42	-2.11	-0.17		51. bif	
7416 74.53	24.079 14.472	34.5 27.8	32.4			- 458.08	-2.0i	-0.09		51.52	
\%480	17.090	31.8	25.0		455883.39						
T4<9	19.353	30.3	36.1		520326.27	-110.21	-2. 118	-0.02	\ldots	525	
7505	17.309	26.7	29.8		355777.80						
7605	21.24 4	24.9	32.0		600600.90	-200.54	-9.97	-0.03		51.8	
7698	21.610 15.690	26.4	30.2 31.2		$\begin{array}{lllll}2-19 & 37.34 \\ 72 & 34 & 17.95\end{array}$	+257.80	- 414	+0.66		5.37	
88.5	16. 184	32. 0	2.3		584705.76						
7265	23.647	20.2	36.9		39.045×99	$+351.87$	-2.23	+0.07	58	
4937 4974	48.191 10.203	30.9 39.2	2.7. ${ }^{\text {20. }}$		$\begin{aligned} & 500860.92 \\ & 1 \times 0904.90 \end{aligned}$	- 917.94	+5.69	-0.16		50. 3.3	Tume ${ }^{\text {a }}$
$50 \approx 6$	18.927	31.0	27.2		$34^{41} 33.04$						
50:97	24.265	29.2	32.0		592448.43	-449.73	+0.92	-0.06	小年5951. 14	

N $\mathrm{B}-\mathrm{S}$

114 UNITED STATES NORTHERN BOUNDARY COMMISSION．

Observations fir Latitude．－Station No．4－Continned．

$\begin{aligned} & \text { B. A. C. } \\ & \text { N. } \end{aligned}$	Readings．				Declination．	Corrections．				Latitude．	Remarks．
	Micrem．	Level．		$\begin{aligned} & \text { Merid. } \\ & \text { dist. } \end{aligned}$		Microm．	Level．	Tefrac．	Red．to werit．		
		N．	S．								
				m．S．	－＂ 1	،＂	＂	＂	＂	－＇	
5231	21． 69	27.0 28.3	28.7		42 4631．92						
5313	17．2：0	28.3	27.1			$+216.77$	－0． 11	＋0．04		485051.20	June 27.
5415 5460	27．762	20.5 21.0	20．6			-859.37		－0．15		52.21	
5460	11.010	21.0	2.3	．．．		－80．76	＋0．38				
5002 50.3	9．401	32.4	23.3			$+1008.39$	－0． 53	＋0．18		52.42	
5×3	2． 1.58	31.0	29		494941.66						
6011	13．550	21.3	33.2		$4{ }^{2}$ 20 01.52	-600.01	-0.01	－0． 10		50.59	
604 1085	26368	34.0 23：0	23.4 3.4 3.4		$\begin{gathered} 9123020 \\ 3 \end{gathered}$	－ 833.63	－0．62	-0.16		50． 73	
$(1114$	12．071	28.5	Q8． 3	0 O	7am 36.86						
0157	23． 201	27.1	30.4		50474291	＋641．19	-0.69	＋10．14	$\dashv 0.21$	51． 29	
cicisy	14.417 24.251	46.9 30.5	31.3 27.4	16	$\begin{array}{rll} 89 & 27.76 \\ 68 & 5.5 & 35.88 \end{array}$	-50.12	－0． 29	－0．09	＋0．03	\＄1． 35	
5 51318	20．694	2－5．5	30.9 31.8 21.8	\ldots		＇ 216.15	＋0，42	＋0．03		51.64	Jmur 29.
5415	27.413	30.5	96.3		T8 1614.05						
5460	11．64＊	27.8	29.6	\ldots	40）（0）4！ 96	-810.18	＋0． 53	－0． 15		52． 113	
5502	¢159	99． 4	2000			＋1006！！0	－0．1＊	＋0．10		51． 33	
5.54 .4	0.146	2－0	31.3		（9） 1238						
5124	311． 0.0	32.3	$\because 2$			$+1047.98$	＋0． 40	＋0．21		21．06	
5， 174	15.48	25.7	32.6		12878311	$-313.1 \times$	$+0, \mathrm{ra}_{0}$	－0， 06		51.73	
$5{ }^{5}+5$	兄 110	34．6	21.1	－．．．．	¢0 36	-313.12					
5693 5×23		92． 3 3010	91．	…＇．		4619.16	－0．02	＋0．11		5．0．¢0	
50.73	25，381	310．11	99\％				－0． 2 O	－0． 10		50． 91	
5911	13． 740	21.0	30．8	．．．．	48 Cl 13， 04	-600.88	-0.20	－0．10		50．91	
6117	9．97	39.5 20.1	26． 4			＋ 640.19	＋0． 23	＋0．14		5206	
riane	14．34	29．0	96．5		39412.87						
6：29	24．099	31.1	2i． 4		5－ 4333 Bm	－ 5068	＋0．60	－ 18.09	\ldots	51.30	
cid 64746	19．807	31.8 35 3	2\％．9	\ldots		＋ 0115.8	＋0．34	0.00		50． 83	
8017	27.178	2s． 1	21， 3		幵18 36						
6073	10．$=40$	30． 4	21．7		$20^{2} 1415040$	－\％ 3640	＋1． 11	－0． 36		51.27	June ； 30
6111	$1 \because 2$	27.9	$\because 4$								
6157	25.10×2	4	＋	\ldots	20 43 13．4：t	＋6：388	＋ 2.4 .5	$+0.14$		52.82	
186a	13． 43	28989	21．3		$3021 \% 1 \times 2$ $5-43: 36$	－ 5 （17．30	＋2．01	－0．09		52.89	
020	23． 217	$\because 2$	$\because 3$	\cdots							
6318	11－90	洞3	2	．．．．							
C．35is	边！	24．	28．	．．．．．	581457.84	$+880.5$	＋1．40	＋0．1．）		51.27	
fide	1－1－3	$\begin{array}{r}2.9 \\ \hdashline-3\end{array}$	27． 6			－ 007.86	＋0． $0 \cdot ?$	0.000		50． 81	
C\％3	16．192	4－5	$\because 7.3$		321800.4						
dine：	20．$\quad \therefore .1$	シャ．	21.7	．．．．	（i．） 4.51 .80	－ 211×11	40．4	－0． 0.4		51.54	
Gİ4	$221 \sim 0$	27．${ }^{2}$	22， 6		81117818.00						
bital	16．13， 3	24， 5	$\because 1$.			－$\because 5 \times 31$	10.341	＋ 0.003	．．．．．	520	
9\％－19	1＊ 639	哏，	21．11	．－	51：4160		（1）				
6 Cl	14．4．61	$\because 4.3$	－\％\％		（1） 14 shin	1）12．11	10）	0，（11）	．．．．．	48.813	

Observations for Latitude.-Station No. 4-Continued.

$\begin{aligned} & \text { B. A.C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latitude.	Remarks.
	Microm.	Level.		Merid dist.		Microm.	Level.	IRefrac.	Red. 10 merit.		
		N.	S.								
				m.s.	○ ' ${ }^{\prime \prime}$, "	"	"	"	\bigcirc	
69%	24.076	31.2	23.7		6i 4131.31	- 452.40	+0.29	-0.05		485951.35	June 30.
7024	15.984	30.4	24.6		61 5107.33	+ 30061	+0.18	+0.00		50.93	
7100	11. 7.5	27.0	2. 2		424527.53						
7166	30.202	29.0	26.8	……	553318.97	- 931.74	$+0.36$	-0.16	51.71	
7215	13. 34.1	27.7	27.3		570719.93						
727	24. 700	2 L .3	27.2		4040 3\%. 69	$+552.35$	$+0.33$	+0.10	\ldots	51.4	
$\text { 7. Yr. } \begin{gathered} 7320 \\ 2395 \end{gathered}$	91,468	28.2	27.4 27.3		$\begin{array}{lll} 32 & 09 & 16.07 \\ 59 & 44 & 53.08 \end{array}$	$+240.37$	+0.33	+0.03		51.31	
$73 \% 7$	28.544	27.4	28.0		59274294						
7398	9.536	28.4	$2 \% .3$	385140.04	-949.77	+0.11	-0.17		51.66	
7416	24. 860	${ }^{29.2}$	26.4		62 0241.73						
7453	15.138	27.0	$2{ }^{2} \times$	\ldots	360704.01	- 501.65	+0. 20	-0.09		51. 33	
7480 7489	18.406 20.781	$\stackrel{26.8}{29.6}$	29.0								
7489	20.781	29.6	20.2		5203827.37	- 113.69	40.27	-0.02		52. 47	
7505 7605	$\xrightarrow{16,600}$	$\stackrel{29.1}{20.1}$	20.8 27.9		$\begin{array}{lllll}37 & 57 & 48.84 \\ 60 & 06 & 01.97\end{array}$	- 204.23	+0.50	-0.03		5.70	
7627	21.801	27.8	23.0		25 19388						
7606	15.6.44	23. 1	27.3		723414.96	+25242	+0.14	+0.06		51.23	
7755 7765	$\begin{aligned} & 15.145 \\ & 22.4 \leq 6 \end{aligned}$	$\begin{aligned} & 27.6 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 26.8 \\ & 26.2 \end{aligned}$		58470683 390459.98	$+347.7$	$+0.65$	+0.07		485951.90	

Mean latitude (79 determinations), 480 59 $51^{\prime \prime} .55$.

$$
\begin{aligned}
& \varepsilon=0^{\prime \prime} .53 \\
& \boldsymbol{\tau}=0^{\prime \prime} .35 \\
& \varepsilon_{u}=0^{\prime \prime .063} \\
& \tau_{0}=0^{\prime \prime} .01
\end{aligned}
$$

1873.

UNITED STATES NOIRTHERN BOUNDARY．

Oleserations for Latitule．

$\text { 13. A. } \mathrm{C} \text {. }$	leading．				Declinatinn．	Corrections．				Latitude．	Tomarlis．
		1．450．		$\begin{gathered} \text { Motid]. } \\ \text { that. } \end{gathered}$							
		N．	S．								
				m． 8.	－＂	，＂	＂	＂	＂	－．$"$	
5415	2－0 0	：14．0	95．2		5\％ 161616.35						
5160	11．4． M	31．3	21． K		100051.97	－ 83810	$+1.63$	-0.15		485958.91	July 0
5.508	！1，＂10	吅吕	27.4		5.584 .45						
50， 3	2－5． 4 （1）	E3． 4	2ti．！			＋1010．122	$+0.71$	＋+0.18	－．．．．．．．	58.71	
5.28 .3	喿176	$\because 0.3$	23.7		$4!14!4$ 15，02						
5111	1：1． 716	27.0	3： 7	－．．．．．．	1＋3001．93	－ 5.550 .54	-0.91	-0.10	．．－．．．．．	58.39	
6.117	22^{2} tims	31． W	30． 0		781030						
6.673	10． 518.7	－7．	32.4	－．．－	3111817.55	－K $2 \times .7$	－0． 3	-0.16		58.12	
1.114	12． 115	30．1	314． 5	－	2tas 11.74						
16157	25．${ }^{2}$	27.5	33.3		¢0 17－4．5． 69	1－6．46．65	$-1.3 N$	$+0.14$		5190	
6： 682	13．7its	30． 5	31.0							1	
12.201	23． 4×1	： 31.4	：0． 5		Ste 433 3！M K6	-501.71	0.110	-0.119		58.78	
6318	11． 310	331.1	36， 3		50185806						
biblis	22.761	Lel． 4	㧤 6			＋8：31．7	－0． 60	＋0．15		SIP．IR	
dit？	119．43\％	31． 11	31．${ }^{2}$		$4!1720$						
litiai		（14．6）	33：	．\cdot ．	4×41 2i3． 104	＋ 012.16	-0.98	$+0.00$		576	
Rinsis	11．\％！\％	30． 0	33：3 3		3217819.11						
（incofi	20． $7 \mathrm{~T} / \mathrm{m}$	31.6	31． 1	．．．．		－203．40	－0．40	-0.04		58.30	
lif31	a $30: 19$	31.3	32．11		1111730.30						
（ib） 1	jii．15i	33． 11	21． 1	－．	574585	＋ 300213	$+0.25$	$+0.05$		58.8 .4	
1720	1li．Ald	31.6	33.11	\ldots	4t 哭 19， 50						
$674 \times$	21．	3 3 11	32． 5		51 41）32．bi	－\％57，60；	－0．42	-0.05		57．97	
1it\％0	1！1． 1113	31.11	Int 7		$5 \% 4248 . c^{4}$						
呺17	1！8．8ias	：31．	［3． 3		10 l6 313．5．3	＋ 017.53	-1.07	： 0.00		$5 \times .66$	
715： 1	15． Sin	：3．3． 5	： 011		in at t0．130						
707.3	\％＇3 3	吕1：	311.4			$132 m+11$	-1.27	$+0.06$		58， 38	
7100	1）． 3.15	33，！	：11．	．－．．．．							
7164	2i． 010	［31． 17	：5． 3	－－．．．．		－！9\％．37	－0． 6.11	-0.17		58． 29	
2315	13501	3． 1	is， 6	－．．．．	58156						
7278	35． 1110	$3: 16$	is． 6	－－－	（1）10 10， 41	＋55\％．11	－19．14	－0．10		58.71	
TS： 11	－2． 419	：311	： $1!$		It $01: 11900$						
7． 170.23000	16． 811%	31．：1	011.1	$\cdots \cdot \cdot$	59 \＆1 intion	＋\％51．12	-3.02	$+0.05$		58． 618	
73\％	2M．：01	：0． 1	3．1． 3		$50 \% 150$						
73944	91， 012	3， 5	： 11.10		30 51 4	－ 1 4 $4.31 i$	＋0．014	-0.18		¢7． 10	
7410	\＃1． 617	！1． 8	230． 3	\ldots	1020 14．87						
71．3	11．11\％	：3． 1				－ 1578.10	10．33	$-0.0!$		59.09	
741	15． 1.1	31．3	$\because 2.1$	－．．．．．	fis in 12.14						
74：1	20． 210	沙：	84.8		50033 310． 11	-110410	＋19．62	－0．0：		58．58	
Fini	16． 416	3411	38.7								
961\％．	80.75	$\therefore 4.11$	33.5		161160%	－2011．01	＋6． 40	-10.033	－－	42.51578	

Observations for Latitude.-Station No. 5-Continned.

118 UNited states northern buundary commission．

Observations for Latitude．—Station No． 5 －Coutinued．

B．A．C．	Lealinges．				Declination．	Correctious．				Latitude．	Remirks．
	Nicrom．	Lumed．		Merid． dist．		Mierom．	Lerel．	Refrac．	Red．to misid．		
		N．	\therefore								
				m．s．	○＇＂	，＇	＂	＂	＂	－＂	
614	$\begin{aligned} & 19.42 \\ & 2 y^{2} \end{aligned}$	20． 8	$\begin{aligned} & 27.3 \\ & 27.7 .14 \end{aligned}$		S0	＋ 8 i .4 .0 i	＋0．16	＋n． 14		485958.90	July 13.
cistray	14．171	31.1	4．6		39568						
6889	23．989	27.5	29．3	．．．．．．	iv 1340.97	-503.50	＋0．83	－0．09		58．66	
6310	11．403	2T 1	4，it	．．．．．．	59854.89						
6365	2 L .819	3：0	W5	．．．．．．	3－1501．64	＋－80． 20	＋0．e9	＋0．1．		58.84	
6421	19．551	8．	97． 3		4！1： $1: 0.04$						
8.476	19，5－3	？${ }^{\text {d }}$	296	－．．．．	－4204． 68	＋ 010.30	－0．27	0.00		57.44	
	16．85	29．3	30.0		$\because 1810.16$	－204．82	－0．11	－0．0．4		58.31	
1006	20．302	30．0					－0．11				
nos						＋ 300.35	＋0．70	＋0．00		50． 3	
0is	1.5830 81.308	31.8	－90． 3			－250．29	＋0．29	－0．05		58.25	
fiom	1\％．54	27.0	34.0								
（\％1T	19，037	31.4	27.15		401637.62	$+015.27$	＋0．09	0． 00		58.77	
figr	11.717	31．－	31.0								
n！50	24.004	33.0	310.11	．．．．	（i1） 11 3n， 3.	-450.14	＋0．$\times 5$	－0．09		58．55	
70：4	15．45	36.0	37．0		if 5111.04						
211.3	2．2．0	3tio 7	2.7		36\％ 1153	$+38508$	－0． 2 ？	$+0.00$		58.32	
7107	10．35\％	30	31.0		424.833 .72						
7160	－-108	30.5	33.0		$5.43 .3 \pm 3.51$	－ 38.15	－0．201	－0．17		59．70	
i215	13．847	31.5	32.1		510 10.83						
¢17	管 320	32． 1	320		4104012.14	＋58．98	－0． 11	＋0． 10		58.90	
Ta，	91.691	32.8	31.8		181095						
－Tr． 24	16． 2×4	33． 1	31.3		594485	＋ 24938	40.36	＋0．0．		58.86	
7%	25：19	31.4	33.0								
\％3！	14，$\times 13$	33.4	3 3.0	\ldots	3×314.13	－ 9 46． 41	－0．14	－0．12	．．．．．．．	58． 70	
illii	23．316	\cdots	35．0								
4.33	13． 7100	37.4	2－7	\cdots	33115818.18	－459．69	$+0.89$	－0．0．0		50． 58	
7100	17．85	32.8	32.5		4．8 $50-14.6 \%$						
74－4	20．173	34.0	31.3	．．．．	S20．531．6\％	－ 111.95	＋0．65	－0．02	．．．．．．．	20， 5	
$8: 05$	17． 33	31.0	31.1		35050						
illas	21． 516	33.11	33．3． 4		1 in （4） 16.25	－201．94	40．iti	－0．113		Ste． 19	
T0，	91． 15.3	31.11	32． 1	\cdots	2， 19 41， 6						
－itol	16．311	31.11	3．j．ti	．．．．．．	$\therefore 34 \geq 3.08$	＋ 25.50	－n． 10	＋0．03		5\％． 610	
720．	15．9\％	33.11	39		－2 15 10．06						
	2315	31.11	36.5	．．．．．．	3\％0．03． 0	＋ 35×4	－1．1．	10．0：	\ldots	5－． 18	
\because	16， $1:$	313	35：		二2010906						
－－01	218	31．	32．11		15： 5138480	＋232．4	－0．$\quad \therefore$	＋${ }^{10.11}$	．．．．．．	58.56	
ごい	1－3i－	34.6	3×11	\ldots	14．10， 5 d						
－－\％	24.31%	33.1	3．3．11	．．．．．		－718．71	－0．1．4	－11，1．3		52． 30	
7n＊	v2．fow	318.	311		\＃1 10， 48						
－1：2	11． 418	30． 3	37	．．．．．	ati）－16． 26	tos．01	－0．31i	＋11．16		5\％．41	
cinsi	17． 1211 19． 511	31.11 34.4	33.318	……				＋10， $0 \cdot$		5\％．3：1	
－0．31	19． $\boldsymbol{\square}$		．．．．			－10．no	＋（1，${ }^{\text {a }}$	＋1，		：3．3）	
－小－3	11．9109	33．1	$3 \% 0$ 311			f． 133 兄	＋0．41	＋0．0－		杨．	
	21．311		$\because 1$	．．．	3151416						
	11．！－4）	2：1	21－			＋ $10 \times \mathrm{m}$	40． 11	＋0．11		1－505050， 5	Suly 11

Observations for La'itude.-Station No. 5 -Continued.

B. A. C.	Readings.				Declination.	Corrections.				Latitude.	Femarbs.
	Mcrom.	Level.		$\begin{aligned} & \text { Merid. } \\ & \text { dist. } \end{aligned}$		Microm.	Lerel.	Relrac.	Fied. to werid.		
		N.	S.								
				m. 8.	- "	' "	"	"	"	-	
$60 \% 3$	10.075	27.0	27.0		20 0418.68	-831.36	0.00	-0.16		4×5085	
6114	12.012	26. 2	27.7		7658843.08						
6157	25.033	29.0	24.7	10	204746.47	$+644.01$	$+0.62$	+0.1.1	+0.01	51. 56	
6028	13.739	27.1	26.0		392622.53						
6289	23, 357	27.3	25.7	--->.	584341.27	-503.39	+0.c0	-0.69		59.0:	
6624	29.568	$\stackrel{21}{2} 1$	23.1	\ldots	40 At 3x. 62						
6681	16.7311	21.0	23.7	574617.86	$+301.14$	-0.60	to. 05		58.83	July $1{ }^{\text {cos. }}$
6723	16.084	$\stackrel{29}{9}$	220		432521.32						
6748	21.916	93.6	-1.	544034.33	-300.95	+0.74	-0.05		55. ti	
6780	19.323	29.5	2.1		57 42 49.80						
6817	19.813	20.5	Q4. 1		401638.26	$+015.20$	-0.71	0.00		58.52	
6937	14. 260	23. 6	21.1		362800.51						
6970	23.573	17.5	27.0		614136.59	-448.90	-1.56	-0.09		57.91	
7100	11.119	21.9	21.0		424534.34						
7160	29.521	23.4	19.3	553324.17	-930.97	+1.11	-0.17		59.8	
7215	13.833	23.3	25.3	570784.34						
7287	25. 297	28.6	20.5	4040 4! 74	$+553.84$	+1.36	$+0.10$		5.84	
7377	28.929	2. 2	201		592747.80						
7398	10.902	23.0	25. 2	335144.81	-947.04	-0.47	-0.18		$5 \times .56$	
7450	18.06.7	929	92. 5		4.55849 .29						
7489	20.371	23.0	21.0		52033230	-111.55	-0.22	-0.02		59.00	
7505	17.392	27.0	24. 2		375753.43						
7605	21.280	23.5	28.8		600607.33	- 200.82	-0.56	-0.03		485958.97	

Mtran latitude (z^{2} determiuations), $488^{\circ} 59^{\prime \prime} 58.54^{\prime \prime}$.
$\varepsilon= \pm 0^{\prime \prime}, 49755$
$\mathrm{T}_{0}= \pm 0^{\prime \prime} .037$
1873.

UNITED STATES NORTHERN BOUNDARY．
Observetions for Latitude．
［Astronmuical Station No．G－West side of Turtle Mountaid， 150 miks west of Pemhina－Observer，W．J．Twining，Captain Uuiter States Eurigetrs．－Zenith＇Telescope，Würlenam No．20．－Chronometer，Negus Sidereal No．1513．］

$\begin{aligned} & \text { B. A. }: \\ & \text { to. } \end{aligned}$	Ivatuligs				Correctiuns．					Latitude．	Remarks．
	Dicrom	Level．		Merid． dist．	Declinatiou．	Microm．	Level．	Refrac．	Red．to merid．		
		N．	5.								
				m． 8 ．	－＂ 1	， 11	＂	＂	＂	－ 11	
n04\％	46， 018	26， 6	$\frac{27.9}{27.3}$		$\begin{array}{llll}2 & 12 & 43 \\ 2604 \\ 06 & 04 & 21.51\end{array}$	-838.87	-0.90	－0．17		485353.45	Juls 23.
6114 6157	19．01］	2－6	21.5 47.8			－630．69	－0．58	＋0．14		54． 15	
190－	15．3－7	2． 26	3 3． 0		392696.09 6043 45	-511.30	-0.62			53． 69	
がul	曲，315	せ3． 6	30.0		tie 43 40． 32	－5 11.30	－0．62	-0.0.		53.	
6421 6450	20． $4=3$	－10．	27.5 28.4	－－．．．	$\begin{aligned} & 491734.52 \\ & 4=4209.19 \end{aligned}$	＋001．93	-1.07	0.00		52.74	
	10,101 $20.3: 4$	30：	3T．0		$321-14.03$ 65	－2 13．82	-0.65	－0．04		53.15	
cifel	94．03\％	26．	257 -1.0		40 57484838 40		-0.98	＋0．05		53．66	
Ci゙き	1r．4\％！	25．	\＄1．0		万． 11 ご． 0	40.32 .30	-0.98	T0．05		53． 6	
6，5m	$1-501$ $\because 1.602$	28.8	20.1 27.3		$\begin{array}{lll} 43 \\ 54 & 40 & 3.5 \\ 40 & 30 \end{array}$	-307.5	-1.20	－0．15		53.07	
108 180 $1 i=17$	-1.612 20.693 24.955	-6.4 86.1 26.5	22.5 $2 m .3$			＋00t．e9	-0.98	0.00		54.10	
7024 7073	15907 42085	25.0 $2 \div .2$	30.4 $2=0$	．．．．．．	$\begin{array}{llll}61 & 51 & 17.93 \\ 36 & 41 & 5 \% & 39\end{array}$	＋312．0e	-1.33	$\div 0.06$		54.07	
Tino	11． 374	20． 5	34.3		40 50 40 4 4	-36.43	－3．30	－0．17		54.24	
5：3	15．fi！		$9-0$ $\cdots 11.1$		50 40 40	$\div 545$	$+0.85$	$\div 0.10$		51.30	
－Mr． $\begin{array}{r}\text { i390 } \\ \hline\end{array}$	23	2\％．0	2－易			40411.51	＋0．67	$+0.01$		55.08	
737 730%	311． 11.4	475 46.0	30． 3			－9 5\％． 25	－1．09	－0．12		53.66	
－ 1110	86． 16.117	？－0	9．0	\cdots	$\begin{array}{llll}68 & 02 & 51.50 \\ 36 & 0 & 12 & 5\end{array}$	-502.01	-0.69	－0． 00		53.05	
$74-0$ $71-!~$	$\because 1.514$ 114	27．15	22． 4		4.5 50 503 03	－120．61	$+0.18$	-0.02		51． 7	
\％	11．！3 11	207	$2 \% .1$ 31.0	．．•••	3% 30 06 06 0	－： 10.10	-0.91	－0．0．3		53.17	
980\％	28．14	aッ． 2 2	4	．．．．．．		$+24 \% 05$	-0.60	$+0.06$		53.3 .3	
750，	$\begin{aligned} & 1-94 \\ & \hdashline 3,1,5) \end{aligned}$	ご，	3\％．4	．．．．．．．	$\begin{array}{lll} 50 & 10, ~(103 \\ 3 & 0.5 & 10 \end{array}$	$\cdots 3 \cdot 1 \sim 2$	－1． 50	$\div 0.00$		533	
7－ $7-00$	$\begin{aligned} & 15,11 \\ & \text { and } \end{aligned}$	－5．1，	$\because!\frac{1}{3!}$		$\begin{array}{lll} 5 & 11 & 11 \end{array}$	＋1：4．68	-1.69	$+0.01$		74．51	
こ－0	13． 719	$2-7$ 20.1	｜ 31.8		$\begin{array}{llll}4 \times 19 & 36 \\ 411 & 4 \\ 4\end{array}$	－7：2．85	－-1.07	－0．13		$t=5954.01$	

120

Olservations for Latitude.-Station No. G-Contiuned.

B. A. C.	Readings.				Declination.	Corrections.				Latitule.	Femarks.
	Microm.	Level.		Merid. dist.		Mierom.	Level.	Refrac.	Fical. to merrid.		
		N.	s.								
				m. в.	- '"	' "	"	"	"	- . ${ }^{\text {- }}$	
8024	12. 921	28.0 28.0	30.0		5685	$+846.97$	0.83	+0. 10		485953.20	July ${ }^{\text {c }}$
8036	19.894	29.8	27.9		49941.76						
$\varepsilon 050$	21.657	$2 \overline{3} .1$	33.4	483014.00	+0 56. 87	-1.20	$+0.02$	53.57	
8083	16. 803	28.1	29.4		568758.97						
8123	25.376	25.7	320		412509.15	+426.00	-1.60	$+0.03$	$\ldots .$.	53. 45	
${ }_{82006}^{823}$	92.065	27. 1	30.2		20 3730.63						
8273	12.28	2¢. 0	30. 1		670558.26	4809.83	-1.09	$+0.15$		53.33	
8314 8324	2\% 333	29.4	g2p 3		734205.78						
8324	14. 49	26.4	32.0		242612.04	-413.93	-1.14	-0.08		53.76	
8344 67	11.419 24.065	29.9 27.1	$\stackrel{20.1}{31.0}$		60 37 37 15 50 54.98 54.10	+632.37	-0.85	± 0.11		53.82	
3853	25.300	23.3	38.3		4949 47.96						
5911	13.643	32.0	30.2-	482203.44	-6i 01.69	-3.17	-0.10		2m. 74	July ${ }^{\text {and }}$
6047	92. 159	31.6	30.8		72 123 44. 10						
6073	11. 283	31.0	31.2	260421.71	-8 39.93	$+0.14$	-0.17		23, 6is	
6114	13. 154	30.6	31.4		765846.93						
6157	25.302	33.4	2d. 8		504742.26	+635.54	$+0.85$	+0.14		54.65	
${ }_{62068}^{629}$	14. 298	31.0	31.0		3926820.3						
6299	24.329	32.5	29.8		5843 45.60	-511.24	$+0.60$	-0.03		55.21	
6318	13.114	30.9	31.4		592759.48						
6360	29. 261	33.1	29.2		381505.42	+821.c0	+0.76	+7.15		54.56	
6421	29. 160	31.0	31.4		491734.81						
046	22.176	32.4	30.2		484260.47	+000.50	$+0.40$	0.6		53. 0.1	
0.53	17.50\%	31.4	31.3		321814.22						
65 c 6	21.242	32.1	31.1		65 tu 01. 11	-214.47	+0.25	-0.04		53.69	
6654	23.411	32.1	30.9		400742.65						
6681	17.693	31.1	52.2		574023.35	+251. 15	+0.02	$+0.05$	\ldots	53.72	
6728	1\%.225	32.2	31.0		432525.60						
(6) 18	24.385	32.9	31.4		5440314.16	-309.33	+0.c0	-0.05		53. 00	
6780	${ }^{2} 0.369$	32.1	31.0		574254.51						
6817	20.528	33.2	29.9		401642.49	+004. 93	+0.98	0.00		54.41	
6937	14. 938	31.2	32.0		3629804.65						
6970	24.599	33.9	30.0	.-	61414.51	-4 59, 76	$+0.53$	-0.09		53. 27	
7094	16. 711	32.0	31.4		615117.85						
7073	23.009	32. ${ }^{2}$	31.1		360157.65	+315.41	$+0.38$	+0.06		53.48	
7100	10. 807	31.4	32.0		42.4538 .66						
7166	28.301	33.0	30.6		553323.06	-940.03	+0. 40	-0.17		54.16	
\%15	15.123	32.0	31.5		570720.26						
2277	26. 251	31.4	32.3		404046.15	+545.12	-0.09	+0.10		53.24	
73:0	29. 16.3	31.4	32.2		380988.83						
7-Yr. 2395	17.032	33.0	31.0		59 4503.20	+239.20	$+0.27$	$+0.04$		53.68	
7377	30. 151	33.2	30.5		59.753 .01						
7398	10. 031	30.3	33. 6		385149.14	-956.66	-0.14	-0.18		54.11	
7416	27. 001	39.0	32.0		620251.84						
7433	17.049	32.4	31.5	300712.84	$-50 * 79$	$+0.20$	-0.09		53.60	
7880 7889		31.5 32.5	32.5 31.5		$\begin{aligned} & 455853.96 \\ & 5: 0337.13 \end{aligned}$	-121.66	0.00	-0.02		53.87	
\%8,	15. 559	31.5	31.5		58.4716 .35						
-¢6ず	$22, \times 5$	32.8	31. 1		3305050	+3 11.10	+0.10	+11.06i	1-23 54.32	

Obserutions for Letitude．－S：ation No．G－Contimed．

$\begin{aligned} & \text { B. A. } \mathrm{C} \\ & \text { No. } \end{aligned}$	Leratinga				Declimation．	Corrections．				Latitude．	liemarks．
	Discrons	Levr．		Merd dist．		Microm．	Lethl	Lefrac．	Red．to metid，		
		N．	S，								
				$m . s$ ．	－＂	＇＂	＂	＂	＂	－＇	
\％ 7187	136．431	$\begin{aligned} & 320 \\ & 30.5 \end{aligned}$	30.6 32.1	．．．．．．．		十221．61	－0． 01	＋10．0．		485953.40	July 20.
700	219．44	31.4	31.5		411653.68						
8124	12．4！ 4	31．${ }^{\text {i }}$	31，4	．．．．．	56.580 .34	＋84\％ 4	＋0，0：	＋0．16		528	
$\underset{\sim}{+036}$	20．541	31.7 31.0	30.2 31.8 8								
C0，9	2－3：2	31.0	31.8		483614.23	＋05．	$+0.38$	＋0．02		53． 82	
rocs	17．004	$\begin{aligned} & 336 \\ & 36_{2} \\ & 3 \end{aligned}$	$\begin{aligned} & 31.4 \\ & 310.3 \end{aligned}$	\cdots	569559.26 412259.41	＋423．95	＋0．4n	＋0， 08		53． 79	
6．0）i	119020	30.8	32． 1		303720.815						
c273	13． 2×9.0		31.0	．．．．．．	670.588 .4	tros． 97	－0．4．4	＋（1）． 15		52.78	
－314	$2: 050$	311.8	33．	\ldots	$734 \leq 16043$						
5324	14．830	33.0	30.0		24.21285	-415.26	＋0． 36	－0．08		54.16	
834	9． 8.8	310．${ }^{3}$	32.2		603050.533						
1.7	20． 4.56	33． 2	30.0		3715.54 .32	＋6：30． 20	＋0．38	＋0．11		53．18	
60.4	2－339	32.4	31.5								
6013	11． 5 二i， 3	32． 1	33． 0		260123.31	－8 39． 90	＋0．	－0．17		53．65	August 1.
6114	1：3 4i：	33， 0	31.0		76， 5×47.80						
81.37	25，20，	＊9． 3	31.8	．．．．．．	$904749, \mathrm{ct}$	＋6；35．5．0	－0．65	＋0． 14		53.91	
firs	13．03\％	32.0	32.0		3381627.15						
10：－4	23.134	31.0	31.0		58430.16 .45	－5，13． 24	＋0．04	－0．09		53.49	
$6: 18$	11． 30	32.0	33.0		598 ± 00.37						
6樃\％	2.854	33.1	320 2	－．．．．．	38150 US．173	＋23010	－0．12	＋11．15	．．．	54.23	
8121	21． 511	33.1	32.9		4！ 17 \％ 31						
1646	21.504	33．5	33.1		小－42 10.30	＋1000．28	＋0． 51	0.00		53． 78	
83.3	15．966	32 1	33.4		3？1， 150.019						
12mer	－11，319	34．3	31.4		658642.62	－15．99	＋0． 3 ir	－0．04		53.19	
162	2×457	33.2	32.4		406783584						
（ifi81	11， 901	33.0	33.1		548483	＋250． 34	＋0．16	$+0.03$		54． 40	
Mis＊	15．0．4	33.7	3 4		438585						
1.718	21.404	33． 1	33．11		514040.14	－： 10.51	＋0．31	－0．0．5		53． 10	
650	90.205	33.5	38			＋1104．33	＋11．25	0.00		54.08	
6,817	20．405	3：3．5	35.1		401083.43						
1937	1．5 314	33.4	34．2		36880505						
（990）	21.94%	31.1	33， 7	．．．．．．	614142.60	－500．${ }^{\text {am }}$	-12.09	－0．09		53． 13	
－014	15，517	34.1	33．15		lit 5118.6						
71173	28.80	33． 1	31.3		3t， $015-60$	＋315．20	－0． $2 \cdot \times$	＋0．06		53.62	
310%	4．062	33.7	34， 3		424530．4						
iles	27． 3.4	34.1	33.9		5.58330 .15	－？ 41.10%	－0 09	－0．17		53.66	
Tel：	14．flies	31.2	33． 7	\ldots	5511530.36						
7is	只： 7 －	31.3	33.19	．．．．．	40） $404+23$	＋5． 45.12	-1.10	＋0．10		533．36	
7030	23． 2.5	34． 7	3：3．1		3×0308111						
7 9rasin	1－1世4	3 0	31． 3	．．．．．．	（5） 4050.33	＋23911	－0．65	＋0．04		53．72	
735	20.83	33.1	34.1		515851.14						
	10． 5.4	［3t． 7	312． 19		3． 5150.11	－9354．30	＋0．09	－1）． 1		533 14	
7114	21．95\％	31.3	35：								
75.5	11．1tio	S 3.5	311，：3		364015 133	－5 10.89	＋0．0．51	－1）． $0: 1$		533．31	
T100	24．But	31.5	31.1								
715	23－51	3，5， 7	33：		C． 0.530 .31	－1	＋1）．54	－0．012		18.3851 .19	

Observations for Latitude．－Station No．6－Continned．

$\begin{gathered} \text { B. A. } \mathrm{C} \text {. } \\ \text { No. } \end{gathered}$	Readings．				Declination，	Corrections．				Latitude，	Remarks．
	Mierom	Level．		$\begin{gathered} \text { Merin. } \\ \text { dist. } \end{gathered}$							
		N．	S．								
				$m . s$ ．	$\bigcirc{ }^{\circ} \quad 18$	＇＂	＂	＂	＂	－＇ 1	
7605	17.389 1.681	34． 5	34． 3.0	．．．．．．．	375758.78						
	－1． 08	－3． 7		．．．	600612.1	$-\approx 12.86$	＋0，44	-0.03		485953.40	August 1.
7657	93.549	35．2	34.2		251946.99						
7026	18．232	34， 2	36.3		723490.67	＋944．97	－0． 2	＋0．06		53.07	
	16193	34． 2	36． 2		58 17 17．43						
76.5	23， 211	35．2	35． 2	$0 \Omega 0$	390509.73	$+330.92$	－0．41	$+0.06$	± 0.06	53.18	
7757	20.087	34． 2	35． 9		$5 \because 0113.33$						
7600	24，646	33.1	37．0	．	455352.30	＋281．45	－1．25	$+0.04$		53.06	
7880	14． 105	35． 7	34． 2		484950.04						
プゼ\％	28.505	33， 3	36.9	．．．．．．	49244569	－789．59	-0.47	-0.13	－	54， 17	
7662	28.845	34.0	2G． 1		411654.80						
8024	11．96	35.0	34.8	．	562521.5	$+845.57$	-0.42	$+0.16$		53.53	
80136 80.9	18． 208	36．0	33． 9		492143.01						
80.9	20.080	32． 5	37． 4		483615.25	＋055．94	-0.63	$+0.02$		53． 89	
8083 8128	17．314	3．5． 3	34.1		569800.94						
8128	25．e33	34.7	31.9		413300.30	＋4：4．32	＋0．22	$+0.08$		54．83	
8206 8973	96.931	35． 8	34.0		$\begin{array}{llll}30 & 37 & 31.66\end{array}$						
8273	11，355	33.4	36．9	．－	6705054	$+808.87$	-0.38	$+0.15$	\cdots	（14．I！	
8314	23．6．13	35.0	35．${ }^{\text {a }}$		73 42 06，93						
E3：4	15．411	33， 8	36． 3		24261096	-415.39	－0． 60	-0.02		18 5953.88	

Mean latitude（79 determinations），so $54^{\prime \prime} 53^{\prime \prime} .76$ ．

$$
\begin{aligned}
& \varepsilon=0^{\prime \prime} .53 \\
& \tau=0^{\prime \prime} .35 \\
& \epsilon_{0}=0^{\prime \prime} .06 \\
& T_{0}=0^{\prime \prime} .04
\end{aligned}
$$

1873.

UNITED STATES NORTILERN BOUNDARY．

Olservations for Latitude．

$\begin{gathered} \text { 1: A. C. } \\ \text { Nio. } \end{gathered}$	Lewhlingar				Corections．					Latitud．	liemarks．
	Mi＜\％m．	Level．		Merid． llist．	Devination．						
		N．	S．								
				m．s．	－＂	＂	＂	＂	＂	－，／1	
51085	2\％30\％	313． 2	3i．		315450						
50.3	12170	fin． 0	$\because-$ c		bis）S\％	＋80	$+5.43$	$+0.11$		486153.01	litjecterl．
54.3	5.2051	33． 2	3 Sa .7		49 4！510．05						
5911	11．252	1：3．3	31.8		$t-2+10,1 \%$	－412．72	＋2．	-0.05		$41014!50$	
1．04\％	21．332	3.7	29．0		721241.7						
60：3	13．3こ－	43.6	32.11		$\because 14.12333$	－4 46． 81	$+252$	-11.13		4！1．35	
17111	（3．1901	3n， 3	33.7								
1157	43：-2	35．5	4 21.1		50 if 49， 84	＋c 32．43	-4.85	＋10．10		47． 13	
Sidray	19．470	410． 1	314.11		3012408						
6－9！	21．7．5	33.7	$4 \sim 5$	．．．．．	Cion 13 diode	-315.6	－1．54	-0.05		49． 53	
1631	13．36	33， 1	：169	．－．．．－	二小 $2=010.37$						
6315	29.604	31－	12：		3－1．5 Uli．6．	$+101 \% 42$	－1．54	40.10		f：50，	
kifil	13，－119	2－0	31.5		（1） 15330.60						
（iviti	［12．$=11$	31．$!$	$2-3$		If 12 10． 10	$+154.51$	－0．03	＋0． 03		47． 111	
6，533	21．15！	32． 3	－		3： 101209						
（0）－1i	3 t ， 31	$\because 3$	32． 7		（6， 46030	－0 0.0 .03	-0.80	0． 00		4－6， 63	
$66^{2} 4$	26． 122	30． 2	31.0		40 07－43．54						
（ili－1	$1-3.9$	－4． 4	300		57 11： 4.35	$+445.53$	-1.55	$+0.11$		18． 34	
8：5x	21.110	31.7	30.4		432．5 50.33						
6is＊	2．3． 130	30．：	31.9		$\therefore 440$ W． 10	-1150.0	± 0.07	-0.02	－．．．．．．	4.36	
成－0	$13.10 \cdot 3$	30.7	$\because 41$		51085						
6－17	＋2．${ }^{\text {d }}$ ！ 10	3－2．	36.0	＊．．	40 16 43． 43	＋ 150.50	＋0．4i	$+0.03$		414.50	
503\％	19．11－	305	31． 3								
6！ru	？1． 100	3：2．	3：1		lis 41 4． 60	-305.10	$+0.82$	－0．0．0		19．47	
7104	1\＆i． T 31	31.5	33．3：	－－－－－	fil at 1－6，Git						
7153	－1，0\％3	33，！	31． 5	－－．．．	3160155	＋ 500%	＋0．23	＋ 0.09		42．14	
$\because: 10$	15． 193	33．5	31．7								
7 Luti	± 5.116	324	33．3． 3	．．．．．	8.53330 .5	－ 4.308	＋0． $2: 1$	-0.13	．．．．．．	4！．5：	
$\because 15$	$1 \mathrm{C}, 1 \mathrm{l}!$	39． 3	3，3，		570630.34						
	25.661	32.4	311	．．．．．	40 10 12－23	$+735$	$+0.95$	＋0．13		i－． 93	
7320	¥1． 113	33．3．5	3：1 ！	．－．．．	\％h 09\％ 11						
\％10．23：	12．340	31.3	：31．－	－+ －－－	541504.33	$+13360$	$+1.01$	10．10		4－31	
73\％	4－Prut	$3 \therefore 1$	31．3		51：5\％ 514						
731－	14． 83	3 3t． 11	30． ti		S－ 81 5n） 11	$-503,89$	$+1.05$	－0．14		14．15	
2414	93．3	33． 1	33.1								
213，	15．5．a	36.1	（30） 1	．．．．．．		－\＄12．4	$+1.2$	-10.06		19.20	
ミ1－0 -109	？$\because 8.53$	34.18 34	31．8		$\text { A. } \therefore 8$						
T1－！	$\because 1.4=0$	析．f	30 ${ }^{3}$		52030308	＋ 1131.10	： 1.31	$+0.01$		49.6	
？	82.112	32.5	3：3	．．．．－							
\％10．	－2．St？	12． 11	号			－01－ $\begin{aligned} & \text {－}\end{aligned}$	－4．17	－0． 41		411015803	

Obscruations for Latitude.-Ntation No. 7-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{$$
\begin{aligned}
& \text { B. } \Delta . C . \\
& \text { No. }
\end{aligned}
$$} \& \multicolumn{4}{|c|}{Readinga.} \& \multirow{3}{*}{Declination.} \& \multicolumn{4}{|c|}{Corrections.} \& \multirow{3}{*}{La`itude.} \& \multirow{3}{*}{Remarks.}

\hline \& \multirow{2}{*}{Microm.} \& \multicolumn{2}{|l|}{Level.} \& \multirow{2}{*}{Merid. tlist.} \& \& \multirow{2}{*}{Microm.} \& \multirow{2}{*}{Level.} \& \multirow{2}{*}{Refrac.} \& \multirow{2}{*}{Red to merid.} \& \&

\hline \& \& N. \& S. \& \& \& \& \& \& \& \&

\hline \& \& \& \& m. s. \& $\bigcirc{ }^{\circ}{ }^{\prime \prime}$ \& , " \& " \& " \& " \& - ' \&

\hline 7627
7685 \& 25. $2: 6$
17.226 \& ${ }_{3}^{33.8}{ }_{3}^{6}$ \& 33.7
31.9 \& \& 25. 19.9408 \& $+430.03$ \& +1. 24 \& +0.09 \& \& 490148.66 \& Angnst 1.

\hline 7755 \& 17. 129 \& 33.9 \& 34.3 \& \& 58
58
39 \& \& \& \& \& \&

\hline 7805 \& 26.088 \& 36.1 \& 32.0 \& \& 390503.73 \& $+533.12$ \& $+1.21$ \& +0.10 \& \& 48.01 \&

\hline 7887

7800 \& | 18.518 |
| :--- |
| 25 | \& 33.9

37.0 \& 34.5
31.3 \& \& $\begin{array}{llll}52 & 01 & 13.34 \\ 45 & 53 & 32.30\end{array}$ \& + 414.80 \& $+1.67$ \& +0.02 \& \& +9.37 \&

\hline 7820 \& 18.203 \& 34.5 \& 33.6 \& \& 4×4959.07 \& \& \& \& \& \&

\hline 7882 \& 27. 2.87 \& 24.5 \& 41.0 \& \& $4924+9.70$ \& - 535.65 \& -6.09 \& -0. 09 \& \& 42.56 \& Rejucteal.

\hline 7962 \& 30.796 \& 34.6 \& 34.0 \& \& 411654.69 \& \& \& \& \& \&

\hline c0:24 \& 13.612 \& 41.5 \& 87.0 \& \& 568521.8 \& +1038.45 \& $+4.94$ \& $+0.19$ \& \& 51.80 \&

\hline 8036
4059 \& 19. 6.41
24.1×7 \& 35.1
3.3 \& 33.6

36.1 \& \&	49	21	4.3
48	36	15.01	\& +248.90 \& -0.72 \& +0.05 \& \& 47.36 \&

\hline \& \& \& \& \& 562800.25 \& \& \& \& \& \&

\hline c19\% \& ${ }^{26.917}$ \& 37.0 \& 31.1 \& \& 412260.30 \& +616. 22 \& $+1.51$ \& +0.10 \& \& 48. 10 \&

\hline 8206 \& 30.317 \& 35.9 \& 32, \& \& $\begin{array}{llll}30 & 37 & 31.66 \\ 67 & 50 & 511\end{array}$ \& \& \& \& \& \&

\hline 8273 \& 14.170 \& 41.5 \& 27.5 \& \& 6705 59. 43 \& $+959.93$ \& +5.69 \& +0.19 \& \ldots \& 51.36 \&

\hline 8314
8324 \& 23, 015
19.182 \& 31.8
37
31.3 \& 3.51
31.3 \& \& \& -222.41 \& +1.54 \& -0.0. \& \& 13.03 \&

\hline 8324 \& 19.182 \& 37.3 \& 31.3 \& \& \& \& +1.54 \& \& \& \&

\hline ${ }_{6}^{46}$ \& 22. 173
20.650 \& 33.3
38.0 \& 35.7

31.0 \& \&	60	49	29
37	15		\& - 0 56.59 \& $+1.51$ \& -0.02 \& \& 17.33 \&

\hline 5853 \& 24. 407 \& 23.7 \& 83.6 \& \& 494950.96 \& \& \& \& \& \&

\hline 5911 \& 17.622 \& 23.6 \& 24.7 \& \& 482210.33 \& - 41209 \& -0.33 \& -0.07 \& \& 47.81 \& August 2.

\hline 6047 \& 26.125 \& 25.7 \& -4. \& \& 72 12 45. 12 \& \& \& \& \& \&

\hline 6073 \& 15. 187 \& 25.0 \& 25.6 \& \& 2130422.44 \& -640.39 \& $+0.13$ \& -0. 13 \& \& 47.39 \&

\hline 6114 \& 14.054 \& 24.0 \& $\bigcirc 6.9$ \& \& 265848.08 \& \& \& \& \& \&

\hline 6157 \& 27.731 \& 29.5 \& 21.2 \& \& 204751.03 \& $+828.16$ \& +1. 3 \& +0.18 \& \& 49.16 \&

\hline 6968 \& 19.0-0 \& 26.7 \& 24.4 \& \& 3786878 \& \& \& \& \& \&

\hline 6289 \& 24.478 \& 27.0 \& 24.6 \& \& 5843 41. 77 \& - 3 20.5 5 \& +1.54 \& -0.0.5 \& \& 48.01 \&

\hline 6318
6365 \& 13.141
24.605 \& 24.5
32.7 \& 26.9
10.3 \& \& \& \& \& \& \& 49. 26 \&

\hline 6365 \& 29.605 \& 32.7 \& 19.3 \& \& \& $+1011.20$ \& $+3.60$ \& $+0.18$ \& \& +1.2n \&

\hline 6421

6476 \& 19.797 \& 25.4 \& 26.9 \& \& | 4917 |
| :--- |
| 4×48 |
| 48 |
| 10 | \& + 157.74 \& -1. 57 \& $+0.03$ \& \& 49.57 \&

\hline 65.53 \& 20.823 \& 29.1 \& 21.0 \& \& 3212 cos 36 \& \& \& \& \& \&

\hline 65.6 \& 21.315 \& 20.5 \& 33.7 \&-- \& 654602.96 \& -018.32 \& -2.65 \& 0. 00 \& \& 48.19 \&

\hline 6684 \& 26. 143 \& 27.6 \& 26.7 \& \& 400743.84 \& \& \& \& \& \&

\hline 1681 \& 18. $4: 3$ \& 34.5 \& 20. 7 \& \& 3740 ± 3.72 \& + 4. 4ti.68 \& +4.81 \& $+0.11$ \& \& 55.38 \& Rejected.

\hline 6792
678 \& 180.858
92.880 \& $\xrightarrow{98.5}$ \& 96.7

93.0 \& \& $$
\begin{aligned}
& 432526.26 \\
& 544040.54
\end{aligned}
$$ \& - 115.3 \% \& -0. 0 \& -0.02 \& \& 48.13 \&

\hline 6780 \& 24.060 \& 23.0 \& 32.8 \& \& 57\% 4985 \& \& \& \& \& \&

\hline 6817 \& 27.250 \& 29.8 \& 26.2 \& \& 401643.74 \& $+158 . \varepsilon 6$ \& -9.03 \& +0.03 \& \& 46.68 \&

\hline 6937 \& 12. 786 \& 29.8 \& 27.4 \& \& 36.280 \& \& \& \& \& \&

\hline 6970 \& 23. 313 \& 24.7 \& 32. \& \& 61414293 \& - 30.0 \& -1. 83 \& -0.05 \& \& 47.87 \&

\hline 3094
7073 \& 17.467
25.804 \& 24.6
33.5 \& 33.4

24.5 \& \& $$
\begin{array}{llll}
61 & 51 & 19 & 04 \\
36 & 01 & 5 \times 0 . & 20
\end{array}
$$ \& $+509.75$ \& +0. 26 \& +0.09 \& \& 49.08 \&

\hline 7100 \& 16.036 \& 29.5 \& $22^{2} 4$ \& \& 424540.19 \& \& \& \& \& \&

\hline 7166 \& 28.558 \& 20.3 \& 31.4 \& \& 5.) 3330.54 \& - 74.8 .21 \& -1.47 \& -0.13 \& \& 42, 12 \&

\hline 7215 \& 16. 011 \& 24.8 \& 33.18 \& \& 570730.35 \& \& \& \& \& \&

\hline 724 \& 25.345 \& 36.1 \& 93.0 \& \& 40404×30 \& + 738.26 \& +1. 41 \& $+0.13$ \& \& 49. 33 \&

\hline 7-Y\%. $\begin{array}{r}7320 \\ 2395\end{array}$ \& 27.64, ${ }_{\text {27 }}^{15.302}$ \& 31.0
29.1 \& 28.1
30.0 \& \& \& + 4. 32.82 \& +0.65 \& +0.08 \& \& 430149.14 \&

\hline
\end{tabular}

Obserations for Latiturle.-Station No. 7-Continued.

1B. A. C	Lea ings.				Declination.	Corrections.				Latituie.	liemarbs.
	Microma.	Level.		Merid. diat.		3icrom.	Level.	İfrac.	Red. 10 merit.		
		N.	s.								
				m. s.	- ${ }^{\text {a }}$, "	"	"	"	- "	
73\%	9, 50,	31.8 33.4	32.:		5018754.94	-804.34	$+0.43$	-0.14		490142.50	
:416	$23.8-1$	27.8	3.5		6: 025337						
74.3	12.613	34.	42.1		360514.13	-315.73	+1.47	-0.06		49. 43	
7400	29. 033	31.6	ar.0		4,55855.38						
T4E!	21.210	30.8	\%!	500334.60	$+030.58$	+1.70	+0.01		49.88	
7505	cily	+9.	39.7 mi. 10	3 3\% $5 \% 50.13$ 6006 13. 30	-018.84	+0.93	-0.01		4.60	
763	25.206	31.5	30.0		25194782						
7686	17. 805	$3 \leq 1$	29と		223130.07	$+438.69$	+1.24	+0.00		42. 66	
\% 305		99.2 33.3	32.8			$+533.35$	+0. 29	$+0.10$		4\%.69	
75-7	10.7-9	30.5	31. ${ }^{41}$	\ldots	520113.30	+ 415.14	$+0.88$	+0.0x		49.24	
78.0	12.833	321	30.0		4-4959.45						
--8:	2i.fict	31.0	31.5	49 24.50 .05	- 530.17	+0.52	-0.09		49.02	
O92	31. 89	34.3	-2-3		41165						
20:4	14. 193	31.7	32. 2		5625×2.12	$+103 \mathrm{~S} .53$	$+1.80$	$+0.19$			
8037 8050	$\begin{aligned} & 19.3 \\ & 43 \\ & 40 \end{aligned}$	-90.	31.5 8.8 8.2	$\begin{aligned} & 492143.37 \\ & 403615.60 \end{aligned}$	+ 2 4e. $0 \times$	+2.62	10.05		50.23	
$80-3$	17.340	31.0	33.8		502020.011						
212-	25.438	36.6	27.2	4153304.64	+615.18	+ 4.49	+0.11	.-....	48.40	
	310.35\%	3:9	30.7 31.0			$+1003.56$	-3.60	+0.19		41.03	
E314	23. 13%	2-0	3t. 0		73 40 015.27						
8321	19.399	32.3	31.9		242013.23	- 2 1s.cz	-2.43	-0.05		42. 83	
46 60	23.043	31.6	32.8		$\begin{aligned} & 604929.93 \\ & 3: 15 \\ & 35 \end{aligned}$	- 05.5	-3. 43	-0.02		44.58	Rrjected.
	27.540	a3. 3.6 2.0	95.3								
5-23	14.360	25.0	$\underline{24} 6$		(ia 5: 25.33	+809.69	$+2.56$	+0.14		49.33	Angust 3.
50.31	21.604	-96. 4	\%in	015	$\begin{aligned} & 41450.45 \\ & \text { to } 9.10 .54 \end{aligned}$	-414.76	-0.03	-0.06	+10.03	44.63	
604 604	26. 6.4		20.8		72 10458	- 64580	+2. ${ }^{\text {i }}$	-0. 13		51.38	
(i)14	1460%	27.4	22.0		20 5 5 ¢ ¢ 31						
015:	$2-323$	33.0	22:		204550.91	$t=996$	+3.17	+1.13		828	
gigit	1 1. 8.88	ㅇ.4.8	96.1							47.36	
6 ± 29	24. 1411	21.8	34. 5		0x 4348.06	- 316.99	-2.95	-0.03	47.36	
1315	13.090	223	21					+0.13		50.95	
6340\%		± 5	$\because=1$		301502.18	+10 16.00	+0.90	$+0.1$			
14.6	24	29.1	2\%. 2								
083	21. 835	29.7	2¢. 1							46.41	
Cisti	2.2.3:1	21.7	33.13	\cdots	-3 4603.30	-0 0.66	-2. 39	C. 0		40.41	
¢ 6	2\% 3	319 4 4 1	2-4, 3			4444.30	-2.103	+0.11		Hi. ${ }^{\text {N }}$	
(10)20	21.190 26.219	32.0 4.3	-18.			- 1 1. 3 3	-0.0.3	-0.02		4, 39	
6i゙0	241. $7 \% 3$	27.4	320								
1\%	26.910	32:	27.0		$4016 i 4.07$	$+150.3$	+10.36	+0.03		410014	

Observations for Latitude．－Station Mo．T－Contiuned．

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Iendiags．				Declination．	Corrections．				Latitude．	Itomaks．
	Microm．	Leval．		$\begin{aligned} & \text { Meril. } \\ & \text { dist. } \end{aligned}$		Microm．	Level．	Nefrac．	［a．ol．10 1ut I itl		
		N．	S．								
				m．δ.	$\bigcirc{ }^{\circ}$＇${ }^{\prime \prime}$	＇＂	＂	＂	＊	－＂	
7021	15．024	20.0	320		61.5110 .44						
2053	96.398	33． 2	흘 0		360159.24	＋50．2．32	＋11． 23	＋0．09	．．．．．	4901420	
7109	16．086	99， 7	31.8		424.540 .53						
716%	92． 6102	33． 0	23.8		55.333030 .91	-746.77	＋10．69	－0．13		49， 51	
7215	16． 437	2）． 8	$3 \cdot 30$		5\％ 0731.13						
22.75	26． 6 GJ	34． 3	98． 3		40404×65	＋ $73 \therefore 03$	$+1.24$	＋0．13	．．．．．	44.4	
$\begin{array}{r} 7320 \\ \hline \end{array}$	2－189	31.0	31.5	－－．．．	33061980.79						
7－Tr． 2305	14．857	35． 9	26.9		594505.12	$+431.30$	＋28	$+0.05$		20． 11	
7377	97.970	30.7	32.1		593.754 .409						
7398	14．933	33， 0	30.0	．．．．．－	385150.81	-803.63	＋0．59	-0.14	．\cdot ．\cdot－	4．9． 63	
2116	21.352	31.0	32． 1	－－－．	$6 \% 0353.76$						
7453	19．593	33.0	30.0		3617814.47	-315.24	＋0．18	-0.06	．．．．．．	49，4：3	
7400	91． 8.50	32．0	31.3	$0 \sim 8$	去52 5.5						
745	20.433	33.0	30.4	0.9	52033069	＋ $030.3{ }^{3}$	＋1．0＊	＋0．01	＋0．11	4．0．92	
7505	2． 5.512	3.7	30， 8		378585						
7t0：	23.035	31.1	3\％．8．		6） 01313.70	-01230	＋10．6i	-0.01		42．3：3	
7627	$\stackrel{95}{2} 844$	812.8	31.3		9.51947 .53						
7 cos	1世．833	31． 4	32． 7		$723: 0.17$	$+434.4$	10.115	\％ 0.01		42000	
7505	17.930	30.8	33.11	．．．．．．	5947 フー21						
7665	210．20\％	34.8	30.1	．．．．．－	390.810 .43	$+833.16$	410.5	$+0.10$	\cdots	4． 10	
	12．883	31．R	33.0	．．．．．	509 01 14．10						
7800	25． 74	33.3	31， 3	．．．．．－	4.58353 .04	＋ 414.91	＋19． 26	11.11.	\cdots	40.5	
7230	12．490	33.3	31．3	．．．．．．．	4243%						
7882	2－5 59	32.0	33.3	．．．．．	$4!24$ in． 44	-5.3685	＋0． 23	-3.09		48．2－	
7962	31．60\％	33． 3	30.8		4116853						
8024	14． 440	32.0	34． 5	－．．．＇．＇	$564.2 .4!2!1$	$+1037.56$	$+0.15$	＋0．19	－．．．．	4．131	
8036	19． 200	30．8	35．6	－－－－	49.3143 .33						
8034	23． 115	3．． 1	9．${ }^{\text {a }}$		4334515.5	$+847.75$	－1．01	＋0．65		42． 63	
8083	19．892	32．0	34.4		50.3800 .97						
8128	96.974	36，0	3115		41 930．30，	＋ 0116.33	＋1．11	$+0.10$	－．．．．．	$1!10148.4 ?$	

$$
\begin{aligned}
& \begin{array}{l}
=1,203 \\
7=0^{\prime \prime 2} .28
\end{array} \\
& t_{10}=0^{\prime \prime} .136 \\
& \tau_{\mathrm{J}}=0^{\prime \prime} .092
\end{aligned}
$$

1873.

UNITED STATES NORTHERN BOUNDARY

Olserrations for Latitule．

$\begin{aligned} & \text { 1. A. C. } \\ & \text { Sio. } \end{aligned}$	Inadings				Dechatation．	Corrections．				Latitude．	Iemarks．
	Microm．	Level．		$\begin{aligned} & \text { Meriul. } \\ & \text { dist. } \end{aligned}$		Aliéтut．	Lerel．liefrac，		Iurd．tomutiol．		
			8.								
				m．s．	$=1$			t	＂	？＂	
bital biti	90， 01.	$\begin{aligned} & 3 i_{0} 1 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 0 \\ & \because-7 \\ & \hdashline-7 \end{aligned}$	－－．${ }^{\text {c }}$	4） 17.31217	－10．5．20	－1．0\％	$-0.11:$		490100.91	Amernst 16.
fins	1－1－i	310.3	21.3		$321-1-8!$						
fineti	20． 83.1	± 6.4	$\therefore 2.1$			-111.18	-0.80	-0.00		111．\％	
5 cos 4		2tic il	21.9	－• ．．．	400743						
tikl	15． 517	$\because 1$	45.8	．	$\therefore 46: 30$	＋3836	$+0.41$	＋0．02	\cdots	（14． 71	
nios		3ti．	2－． 1		435050.61						
6．4－	$\because 1.8 .1$	2tic． 9	$\because 5.0$			－$\because 14 \%$	－0． 11	－0．1：3	\cdots	00．9\％	
动こ0	17 0＊）	1\％1	inti		\therefore ¢ 50015						
がに	19． 3 （10	34.3	19． 1	－．．．．	（1） 1614 ，ati	－1－1 0×8	-1.07	－1）．03		11.11	
6037	24．3＊3	$\because 1$	\because－		31020096						
60%	2．1．10	\＃7．	ご，\％		（i）＋1 4\％． 4.2	$-3,17.4$	－19． 4	-0.11		0145	
5）	12．942	2tion	ミ－3		$\square 1803$						
7013	－4 929	ㄹ． 0	マ－8	．．．．．．	360：02．01	$\div 119.14$	－0．65	$\therefore 0.07$		01.83	
$\because 100$	10．534	？i9	こ－0		42.544 .43						
－16ti	27． 346	－119	ご，U	－－－－		－8：7．79	－0． 4	－0．1．i		01.91	
－915	12.8	Otic	シャ．	．－．．．	$\therefore 003 \mathrm{~B}$						
－\％	020.31	：4	$\because 3$	．．．．．．	411053 5－5	＋64．93	－0．33	$\div 0.11$	．．．．．－	02 n	
－$\quad 2030$	\％ 219	－\％	720	－．．．	3 － 0140.31						
TVr．${ }^{\text {a }}$	15．50	－7．3	$33^{\circ} \mathrm{S}$	．	59 fis 69，810	＋3 4． 4	－10． 70	$+0.06$		01．Eil	
917：	2\％．32	－ 1	$\because 1$	\cdots	S1105						
73：1－	10．107	$\because 111$	30．$=$	．．${ }^{\prime}$		－8 24．${ }^{\text {i }}$	－1．1．	－0．16	\cdots	11.8	
illif	21．-11	：3，is	28.3	－．．．．．	が，0ごN．44						
74．3	13．－ 10	い11	290	．．．．．		－403．7	-1.13	－0．6i\％		01.41	
7100 $4-9$		\＃1， 6	$\because 1$			－0 81． s	－12 9	0.10		59． 01	
等号	（1） 0	3－4	$\therefore 1.0$	\cdots	（i） 111×43	－109．${ }^{\text {a }}$	-10.80	－011：		01.24	
Fros	11：11：	$\therefore 2$ $\because 2$	？$\because 3$	\cdots		－34． 8	－0．9	－11．1－		01.81	
－	14 ＇311	$\because 1$	？？		\％4\％9？						
こに	$\because 2.43 \%$	31.1	Qt．！	．．．．	$311.1+4$	－4 40．4）	$+1.01$	－0．18	\cdots	c0． 3	
\because	13．30，	21－	$\because 1.11$								
T：0．1	－3．$-\cdots$（	al 7	$\because .4$	－．．．．．		＋ $3: 31.9$	－1．32	$\div 0$	．．．．．．	00． $3: 3$	
こ－50	12．${ }^{\text {2 }}$	－2－1	31．	．．．${ }^{1}$	4－						
－－	24， 321	310	24．7	．．．．．．	$41: 4$ inco！	－ロ ご！！	-1.17	-0.11		01.	
－tiz	$\because 2.1$	31.9	$31:$	\cdots	411.058						
$\cdots 1$	13． 515	3211	9\％	．．．	¢0 ：\％：	＋143：	－10	． 0.1 －		01.02	
－0．${ }^{1} 1$	15．0．8	30． 3	319	．	（1）$\because 1$ 1－1）						
－0．3：	21.100	34，is	31.0		4－36：31．34	$\div 189$	-0.31	－11 $1: 3$	．	140101.2	

Observations for Latiturle．Whation No．E—Continued．

$\text { B. } \frac{\Delta}{\mathrm{N} \%} \mathrm{C} .$	Readings．				Declinatiom．	Correations．				Latioude．	fimarks．
	Microm．	Letel．		$\begin{gathered} \text { Merint. } \\ \text { dist. } \end{gathered}$		Microm．	Lercl．	Infrae．	Iind．to menicl．		
		N.	S．								
				3n． 8.	－＇ 11	＂	＂	＂	＂	3，	
8	$\begin{gathered} 14.964 \\ 25.41 \\ \hline 2 \end{gathered}$	$\begin{aligned} & 30.0 \\ & 30.3 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 30.8 \end{aligned}$		56．50 0．5． 50	＋5 20.56	－0， 3 ：	$+0.10$		4！ 01	
820：	27.750	31． 4	？0．0		303735.83						
827	9.975	30.5	32.0		$6 \% 6604.36$	＋911．51	－0．25	＋ 0.17		01．C3	
F314	21.05 .5	30.0	31.5		33 4： $11.9 ;$						
8321	14．8． 0.1	30.5	31.0		24.2616 .5	－312．4	-0.44	－0．0．3	．．．．．．	101.33	
8344	？．305	30.0	31.4		$60: 30856.34$				．		
1.6	23.946	29.7	32.6	．－．．．．	3715858	＋73．27	－0．8．3	＋0．15	．．．．．．	181.83	
6047	20．216	25．3	23.5	……		－7 30．67	$+1.49$	－6． 14		01.55	Anenist 1
6114	10．4．35	24.4	23.9		76 5m 50． 0						
6151		27.6	4		8047512.12	＋2 40．11	＋0． 5.1	＋0．15	．．．．．	0259	
686\％	14．	时 1	25．${ }_{0}$		35983031						
629	20．05	25.8	25.0	．．．．．．	58.43500 .61	－4 6e． 31	＋60 06	－0．07		01.94	
$6-53$	17．600	24.5	－2． 0	．．．．．	32181×61						
6ごヒ6	14．903	25.9	26．9		65450	－1 10．${ }^{4}$	－1．10	－0．62	\ldots	01.51	
6 cos	23．010	2f， 8	45.8	－．．．．．	400748.57						
101	15．434	23.6	29.10	．．．．．．	is． 410 2m， 11 N	$+35506$	－0．93	＋10．08	．．．．	（1）．	
	12． 150	－ 23	＋18．0		43 az 30.92						
6ita	21．22．5	± 3.6		．．．．．．	544044.94	－2 05， 3	-1.56	－0．033	\ldots	11.11	
$6_{60} 8$	17.951	26.1	26．0		\％ 43000.49						
617	20．1：11	$2 \because 4$	29． 8		401647.84	$+10 \% 41$	-1.63	＋ 602		01.96	
6037	15．3， 735	29.7	46.4		35.2×69.57						
1980	23．350	24.11	25.9		8118147.198	－3 36．	-1.03	－0．0：		111.61	
\％024	14．964	24.7	24.15		0151518.10						
7073	23．334	21.5	± 7.0	\ldots	3602030111	＋1930	-1.810	＋11．0＊		02.14	
5162	24． 1.00	2	24.9		2－1951．15						
－6－6	16，	27.2	24.0		i2 34×35	＋3 47，	＋0，r，	$+0.0{ }^{*}$	．．．．．	01， 60	
7－3	11． 472	21.7	27． 1		$5-1723.32$						
765	23.54 .3	2×0	21． 0		3510.511 .84	＋441． 51	＋030	＋10．10		01.03	
7787	10，900	25.7	36.7		53011902						
Te00	23． 494	24．8	2.7	．．．．．．	4．3 3385	＋32350	－11，4\％	＋0．0．140	．．．．．．	（10． 2.8	
590	13．$\varepsilon 07$	27.5	$\underline{2} 0$		4850004.63						
78：2	26．35\％	27.1	$4{ }^{2}$		$44^{2} 2858.82$	－6 29，4：3	$\rightarrow 11.60$	－0． 11	．．．．．	（11） 01	
	29.319	2 ti .0	$2 \overline{2} .0$		411685						
8024	10．3 3 R	29.11	$\because 1.0$		516 分 2.414	＋94i．16	＋0．22	$+0.15$		01． 28	
8036	${ }^{1} \mathrm{P}$ ． 015	${ }^{29} 9.1$	23.0		49812.12						
8059	21． 709	26.7	29		4034\％ 30.68	＋157．41	40．17	10.3	\ldots	19820	
Eno	2． 404	2－．8	－2． 0	．．．．．．	303538.14						
ع293	10． 6156	$2 \times .5$	± 8.9		670614.91	$+^{10} 10.6{ }^{2}$	＋0，\％	＋9．17		01.48	
$8_{63} 314$	29， 405	25.5	Q． 9		734281936						
c32 4	16．232	St． 4	30.0		2451200	－3133	－0．fii	－0． 16		C0， 56	
8344	8． 42.	20.2	28.6		6030 3f． 2						
1.7	23.112	27.0	31.5	．．．	37155085	f73 ${ }^{3}-1$	－0．it	＋ 1.13		111．38	
6114	10.21%	co． 0	25． 9	\cdots	Tr） 5051.14						Angition 1－
6155	25.04 .5	\cdots	2－0	．．．．	$\because 04752.24$	＋739 11	－-2.8	$\therefore 016$		03.30	1 cosem
fac8	12． 694	2T． 0	9.7		392630.515						
620	20.705	30.0	2．0	．．．．	Se 4350.42	$-404.5 i$	＋0．07	-0.11%		81.6	
${ }_{6}^{6312}$	10．500	$2 \times .9$	92． 11	．．．．．．	59，92 11．41					49301110	
					－3－3 10．－4	－9， 2.0	－0．4i	－ 0.16	．．．．．．		

Observations for Latitude．－Station No．S－Contimued．

$\begin{aligned} & \text { I: A. C. } \\ & \text { No. } \end{aligned}$	Readinge				Diclination．	Corrections．				Latilude．	Remarka．
	Micrem．	Lered．		$\begin{aligned} & \text { Metid } \\ & \text { dist. } \end{aligned}$		Mierom，	Lerel．	liefrat．	Lited to mend．		
		N．	8.								
				m． 8.	－＂	＇＂	＂	＂	＂	，＂	
$6+21$	19．0．0	31.5	㫛 1		4181739.4						
1.420	21．13\％	24.11	\％	－	ts 42 14.64	$+104.51$	－0． 51	＋10．18		490181.26	
12503	1－0．3	27.5	29.1		3：1＊18， 4	-111.4	－010	－10．02		$01 .+4$	
669	23． 4 12\％	2.8 2.3 2.3	5n			＋．3 54． 89	－0．4	$+0.17$		（12． 17	
にば	17．5in	只． 7	30． 11		43 20， 31.						
6i48	21． 4.4	2 4	4－4 6	．．．．	54 40 4，	－ 204.81	－0．33	－0．03		11.003	
600	17．40	\％2． 6	21） 2	\cdots	$\therefore 43008$						
ti－17	20.93	4.9	30.0		411 116 fict 10	＋1 11.811	－0，60）	$+0.02$		11． 51	
6437	15． 581	23.1	蜀11								
6is 14	20． 2 ！ 1	踫0	4！ 16			-356.17	－0． 11	-0.07		01.9	
20：4	14．-1	25.6	311， 11		0151811						
01173	43，1：11	20． 6	20	．．．．．．		＋117．81	－0．1＊	＋0．02		11． 6.1	
\％ 416		2i． 1	31．：1								
74.33	1－3！45	： 20.8	$\because 8.1$	．．．．．．．	3111510.45	－101．111	－0．12	-0.05		01．53	
7100	1：211	30.1	2－：！		4， 501806						
－15：	1：1－-11	－11	330.1		$\therefore 113+14$	-1119.14	＋10．012	－ 11.101		呺	
754	15．933	2！ 0	34． 1	．．．．．	36 504．0480						
Thios	2il 3111	30．－	［11） 11	－－		-110.18	－6．1\％	－0．09		11． 11	
762	吅碞	：30．！	38.0		品1151．4						
	18，	30．	31.0		T： 3113	－34097	＋0．14	＋ 1.10		12	
\％ 5	1：\％	31．0	31.0								
ritio	$\cdots 3.113$	$\because \sim$	32.1		3014515．0	$\cdots+420$	-11.85	＋0．02		11． 41	
こ－ 0	11號	30． 11	3116								
－－ッ！	2\％． 13	30．r	311.4		$4!838.804$	－6 27.5	－ 11.83	－11． 11		13．32	
8111	10．8i	96． 1		－\cdot	\％						
0150	虾． 311	Nits	30． 1	，	2llatis 3	4741.35	－1．6）	＋0．110		11，i］	August
Fis	13 $\because 1.819$	31	30.11 4.4 4.4		310	－409， 41	＋10．6	－0．0i		111．（is	
1，112	11.00	－3：	3118	－	5 E －－ 4.10						
（1315\％	＊＂1．${ }^{\text {ili }}$	－	（iw） 3		3\％ $15010101: 3$	＋ 294	－0． 31	＋11． 17		01.51	
	1－630	25	31.2	．	$411: 8110$						
（1）：		$\stackrel{\sim}{\sim} \cdot 9$	31． 6		何に11－9	． $10: 1$	－0．in	＋6．02		01．${ }^{-3}$	
18.3	15．31	29：	3？		32 10 1－ 5						
fomis	11． 3 －	30．6	3 31		11．） $4 ; 11.0 .5$	－110．	-1.80	-0.02		113． $6=$	
16.21	－x1	31.1	31． 5	．．	if 位 4.110						
1101	15．30	$3: 1$	：13		\therefore 4． $3-4.1$	－ 38.8116	－1．00	$\therefore 11.10$		10.14	
にご	1731：	311	33：		13853						
Dit	$\because 1$	3： 1	3：		511114.50 .6	－204． 3	－1． 11	－0．11：		111.11	
893	1．5． 0 －1；	33． 1	：31＊		3fis 1\％						
14.9	2dit	3311	351		1.1 1 4.4 .81	－3 5t，－． 6	$-10,-1$	－n．0i		01． 1	
20：	15． 11.	3：3	33．6								
2110	2354	31.1	：3．4		3611～11：い2	11%	－1．36	14．0．		111.4	
：1014	10.45	33	31.11		12845		）				
Iticio	2i．	31.1	35.1			－3\％	$-11 \geqslant 1$	$-0.1 .5$		12，f	
515	1？073	3111	只号		$\therefore 178$						
Tiv	4．5：	St 4	31． 1		4111063.81	tif 17，－${ }^{\text {a }}$	111	（1） 11		11． 81	
？		？ 31	． 31.1		3－0930						
T－V\％	15．63	311	3 3，		51.511 .8	（3）119．8）	－19．in	$1+10.101$	．．．．．．	49010104	

Observations for Latitule.-Stution No. S-Contimed.

Mean latitude (iz delrminations), 490 01' Uf", 63.

$$
\begin{aligned}
& \varepsilon=0^{\prime \prime} \cdot 48 \% \\
& T=0^{\prime \prime} \cdot 334 \\
& \varepsilon_{0}=0^{\prime \prime} \cdot 054 \\
& \tau_{0}=0^{\prime \prime} \cdot 0.383
\end{aligned}
$$

187：3．

UNITED STATES NORTHERN BOUNDARY．

Olserrations for Latitule．
Astronomical Station No．O－Mnuse Mirar，atl miles west of Pembina－Obsever，J．F．Grearf，Lientenant Uuited

E．A．C．	leadioge．					Competions．				L titude．	Remarks．
	Microm．	Level．		$\begin{aligned} & \text { Merid. } \\ & \text { dist. } \end{aligned}$	Declivation．						
			S								
				m．s．	－＂	，	\％	${ }^{\prime \prime}$	＂	011	
C04\％	26，020	22． 5	2n－			－10 24.4	＋113	－0，		A－-10.09	
13114	14． 400	2－2． 0	－-1		717－81． 2						
til\％	21.845	二小	9\％：		$\because 14 \mathrm{ta}$	$\cdots+4200$	＋0．11	－0． 10	…－	$10-3$	
6边	15． $10!$	32．5	Q．） 1		3.4935 .0						
103－13	26.400	45.2	3．4．${ }^{\text {a }}$		二 43 It，59	－650．51	＋110．	-11.12		11.01	
f31－	15． 13%	30.1	22．$\%$		O！ $3-4.61$						
（i3） 36	30.31%	－	31．0		$3=1514.4 .5$	＋ 630	$+0.13$	$+0.31$		10． 66	
1 f ：1	21．－ 31	5－3	33， 31		1917 170						
1i3\％	1－34	33.4	231． 3	．．．	104 $411 .-3$	-145.34	－0．\because	－ 11.03		193． 26	
655．3	17.043 23.5	32， 31	313%		30， $1=1-30$	－ $40 \cdot 3$ 3！	－1．	－0．0－		10．3－	
1463	－1． 512	3：	：31．3		$40\left(071^{2} \cdot 10\right.$						
tancl	19，－11	41	33.7		$\therefore 164 \%$－ 61	1103.20	-1.41	＋11．03		16．11－	
12，	16．14．	233． 0	：11． 0		432781.40						
174＊	21．831	3， 6	33， 14		It fi）4is 53	-1000	－ 0.31	－0．0n		09.35	
Ai－0	3－3	31）． 1	238.7		त5： 4001005						
1－12	151．45	34.8	：311． 0	．	40 10，A＂，\％	－1．13．15	＋11，il	－0，03	－－	11． 21	
tim	1．71510	32． 3	－-1		$\because 3$ 3－10．4．7						
6．75	$20.14=$	2迷	：31．3	－．－－－．	$1 i 1$ 11 4．bill	－64－29	－11．-5	-0.13		10.93	
70：3	21.51	： 8 R	35，\％	－	（1） 51 ご $\begin{gathered}\text { a }\end{gathered}$						
707：3	23.3	32． 7	¢－． 3		3600083 la	＋1820	$+1.2$	＋0．0．3	－．	11．51	
［1013	11．3\％	34． 3	2n		42 4． 4.83						
Tlait	41， $0 \cdot 3$	31． 1	34， 3		25 ： 33	－11 20	－1．15	－0． 20		11．$\% 1$	
215	17．110	31．\％	：nt								
9， 5	48.70	H11．－	413		4040 －3．3	$\div 3$ at 44	$+217$	$+0.0 \%$	．．	11．74	
	1 3	－	$\because 1$ $\because 1$		\％51151．10	\pm 0 5\％4	－	＋11．11：		189．17	
7\％\％	1：4．3＇t	24．3	$\because 2$	．－．．．．	F－ 40.11						
ア3\％	22．3iti	25．	4－		31103 15， 010	＋1514	－11，-5	$+0.03$		111．iti	
$\because \because$	21.1311	$\because 4.7$	$\because \sim$	．．．．	$\therefore 20115$						
－ 510	－2912－	± 1	2ipir		4．7 is is．in	＋1033．0	-1.34	$+0.111$		11．6．5	
Sutid	23．331	3：3	2n 11		4117 （110． 5						
－421	12．3．3	Q1．11	3S．3				-0.5	－ 0.19		09， 74	
－ 10×1	$21-1$	$\because 3$	9－7		14121						
－03：		$\because \square$	ご， 1	－－－	1－3031．3）	－ $11.10 .7 i$	-11.11	-11.08	，	10．42	
－1－3	1－9\％1	$\because 4$	2r．m		Stise h6i． 64						，
－10	223117	$2-5$	26． 5		$11 \div 36150.07$	$\div: 31.30$	－11 ！	＋0．04		1072	
－	［1． $0^{\text {a }}$	ご，11	$\because 1$								
－15	16．4－\％	\＃5	2110	．－．．．．	li，0n 0， 31	＋11 15	－1． 3	$\rightarrow 0.12$	．．．．．	$t=5 * 00.09$	

Ubservations for Latitude．—Stetion No．9—Continued．

B. A. C.	Itealings．				Drelimation．	Concetions．				Latitudrs．	Tumates．
	Microns	Lexal．		$\begin{aligned} & \text { MיIirl. } \\ & \text { dist. } \end{aligned}$		Microm．	Lerel．	Refrac．	Ied． 10 werial．		
		N．	S.								
				m．δ ，	0 O	＇ 1	＂	＂	${ }^{\prime \prime}$	－，＂	
87	14．200	23．3	${ }_{20.1}^{20.1}$		601934 36	－ 3114					
6.045	29． 412	凹5． 7	33.0		$72124 \sim 80$						
6073	13565	33.0	267	＊＊－．．．	3604 －4．ci	-10 ± 6.16	-0.33	－11． 21		09．8．8	Augustio．
6114	17．95\％	157	16． 3		765×51.53						
6157	25.0136	1\％． 1	15． 1	．．．－－	20 44 52，35	$+447.85$	＋+0.20	$+0.10$		10.12	
6．6im	16．709	16．5	17.8		39 or 30．53						
（i2．0	27.263	1：1， 1	15.5		584.5 50． 74	－ 700.73	＋0． 5	－0．1：		10．64	
6.318	16．024	16． 0	18，！		54.8504 .76						
6365	26.545	1：1，8	$1+5.0$		381519.56	＋63201	$+0.8$	$+0.11$		10.07	
6121	29.045	12.0	12． 0		40 17 411.5						
64ia	20.01 x	$1!1.7$	15．3	－．．．．．．	4＊42 15.01	－ 14.5	$+0.13$	-0.03		12.193	
65.3	1\％．474	11.3	18.7		$32151!1.3$						
Cuel	24． 0331	19.5	19.0		6． 56017.95	-403.63	$+0.30$	-0.08		10．21	
6684	21.805	111.3	10.7	．．．．．．．	4） $0 \% 48.19$						
6681	20． 010	20.5	10.3	－－．．－	$5746 \div 05$	+100 is	$+0.86$	＋0．103		n9． 6 m	
692	16． 435	21.9	$1 \sim 8$		43 9．，31．61						
6ist	24.494	19.8	2i， 1		51474.5	-459.42	$+0.50$	-0.118		0！9． 5	
0：－0	29.5	19．9	21.9		54.301 .30						
6817	20.091	23.0	1 t． 5		$4016.4 c^{5} 5 \cdot 1$	-144.8	$+0.50$	-0.03		10．511	
6837	15．73：	21.9	90.8	．．．．．．－	$36: 1069$						
6．t：0	20．Tfe	20.8	± 1.9		$61414=89$	－649．1－	0.00	-0.12		10．14	
7024	19．862	20.3	29．5		61.518504						
7033	22.157	23.5	19.8		3002083.85	＋125	$+0.4$	＋0．03		10． 3	
7100	11． 90%	20.3	21.0		424.435						
T16t	30， 473	21.6	23.0	＇．－．．．．	553336.56	-1129.80	＋0． 29	－0．21		11．33：	
2.15	19.513	21.7	23． 0	．．．．－							
「25	24.203	23． 5	21.0		404053.7	$+353.70$	＋0．72	$+0.17$	－．．．．	（19．-1	
730	21． 4.15	22.8	23． 0		3＊（1） $31=1$						
テ－\r． 235	20．1．\％	23． 4	22． 0		544511,11	$+0450$	1－0． 20	＋0．03		14．1：	
73\％	31．13t	20． 3	23.6	．．．．．．．	$59 \mathrm{O}=0400$						
739\％	12006	23.5	91.7		355155.16	－11 4－9．）	$1-0.13$	-0.21		$111-5$	
T116	20． 11.15	2上8	븡	－－．．．	$630 \geq 5197$						
74.3	15．6．3	23.7	$\stackrel{3}{2}$ ， E		$300 \% 311.50$	－ 700.6	$+0.3$	-0.15		195	
740）	19．6．sis	\＃3．	22． 0	－．．－－	45.3101 .35						
74－3	23．ど10	22.0	23． 5		$5203+4.82$	-3129	＋0．07	－0．0．i		$101!$	
750，	18．351	24.7	21.0	\ldots	375201.65						
7605	24．903	31.9	21.8		600631583	-403.43	＋9．94i	-1111%		119．Pri	
963	21.563	24.5	92， 3		9510 10.8						
T606	21.111	23．3	2.3 .9		723434.81	＋0：3．9	$+0.411$	＋0．03		$0=-3$	
75	19．Eni	227	21.5		554724.44						
786.5	2.29.	25：	20． 0		39 05 15， 31	＋ 148	＋11． 11	＋0．0．3		11）．34	
75\％	21． 017	？ 2 b	94．3								
7 700	22． 338	ご． 0	2． 3	－－．	1553585	－ $0-29$ if	＋0．33	$+0.01$	\cdots	（1）．31	
7963	90．85，	95，	23.0	－．．．．．．	411700.66						
8324	15．6at	21.0	24.6		550502.5	$+655$	＋10．08	＋1113	－．．．	1121	
$8031 ;$	29．316	21.6	25． 1	．．．．．．	$49 \% 145$						
8059	90.3196	98.3	30.5		4－34 21.5	－ 056.15	＋11．75	－0． 11.	－－．．	（1） 11	
C083	19．575	23.2	2－ร								
ह12	23，bins	2i．6	21．		$41 \div 86$	＋ 231.2	＋1．11	＋+11.01	．．．	1－ 519 d	

134

Observations for Latitude．－Station No．9－Continned．

1.	Iwarings．				Corrections．					Latitulw．	Memarka．
		Lいいい		Merial． n！st．	Ifeclimation．	Micmen．	Level．	Ficirac．	Ital．to 1anstul．		
		N	\therefore								
				m．		＂	＂	＂	＂	－，	
$\begin{aligned} & -206 \\ & -2: 3 \end{aligned}$		$\begin{aligned} & 24.6 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 2.611 \\ & 24.5 \end{aligned}$			$+1815.53$	＋1．${ }^{1}$	－0．12			
E 2134	4－2， 4.080	只号号	25.3 21.9	．．．．．．．		－ 60000	$+1.90$	－0．12		11．3＇	
40		$\begin{array}{r}56.3 \\ \hdashline 5.4\end{array}$	21．		6ill 9931.46	－ 440.96	$+0.46$	-0.06		97， 12	lughe 16at．
120	11． 80.80	号 4	\％6．3			－11 30.76	$+0.36$	－0．		0x．cs	
108	23．54	1.0 20 -1.5	$\begin{aligned} & \because 1 \% \\ & \because 4 . \end{aligned}$			＋210．15	$\div 1.41$	＋0．103		008	
909		21． 33.0	1－5		80 38 30 10	-901.02	－2． 10	－0．16		10．0，	
$1 \because \mathrm{Ir}_{\mathrm{r}} \mathrm{i} 3$	19，4－8	－1．010	34.8 4.6			＋ 234.34	＋0．2！	$+0.0 \%$		0%－	
1111	25 51.8	第号	23			$+733.54$	－1．44	＋0．14		09\％ 3.	
6114	16．	21.19	足足	．．．．．．．	8076 51.8	＋49194	-0.16	T0．10		11.7	Anust O_{1}
806－9	15.413 -1.693	23.3	［3838	．．．．．．．		－ 6 告， 10	－0 00	－019		11.5	
631边	15.648 $\therefore 6.40$		－101018		54\％ $3-15108$	＋6．33．54	－0．49	＋11． 11		10.4	
6891 6129	21． 210	？	as． －3			－ 1480	－0．03	－19， 03		19.54	
	17．4923	24．4	41.5			-40250	＋0．33	$-0.0{ }^{-1}$		$11.1{ }^{2}$	
tici lifil	（1010	24． 8	－			＋ 101.8	$+0.81$	＋0 0		10． 31	
6004	15．93．3	20．0．	\％			－＋50．85	－0．1：	－10．020		10． 10	
nitil	20．542	24．7	2－2	．．．．．．	$\begin{array}{llll} \therefore 1 & 13 & 11 & 43 \\ 40 & 16 & 4 & 4 \\ \hline 10 & 73 \end{array}$	-146	$\rightarrow 1.8$	－0．0\％		11.45	
（1）．5	15， 310	近	25：		$\begin{array}{lll} 36 & \because & 111 \\ \text { til } & 11 & 40 \\ 4 & 14 \end{array}$	－ 614.45	-1.05	－0．1：		1156	
T.Yr,	$\begin{array}{ll} 21 & 131 \\ 211 & 1:+1 \end{array}$	$\begin{array}{cc} 21 & 0 \\ 1-3 \end{array}$	$\begin{aligned} & 1!11 \\ & \because 1.7 \end{aligned}$			1150.01	－ 31.41	＋0．62	－．	1：31	
\％ 37	11．48	10－8	－ 11.8			114280	－0．1．1	-0.31		11．-2	
it16	$\begin{gathered} 314 \\ 15,24 \\ 15 \end{gathered}$	$\begin{aligned} & 111 \% \\ & 1!\% \end{aligned}$	$\begin{aligned} & 1: 8 \\ & \because! \end{aligned}$			$-65=6$	－0．0．3	－0． 1.5		11.11	
¢ $1+1$ $i-1-9$	$\begin{aligned} & 1 \div 11, \\ & 23.312 \end{aligned}$	$\begin{aligned} & \because 11 \\ & 1-3 \end{aligned}$	$\begin{array}{ll} 1!1 \\ 21 & 1 \end{array}$			－ 311.48	－6． 15	－0．0．0		11．：	
isun itios	$\begin{aligned} & 1-936 \\ & 2-9.435 \end{aligned}$	$\begin{aligned} & 11.5 \\ & \sim 0.0 \end{aligned}$	$\begin{array}{r} 401 \\ 21,3 \end{array}$			－ 101.3 （3）	-11.2			14． 51	
－	$\begin{aligned} & 21.359 \\ & 19.511 \end{aligned}$	20.4	20．	\ldots		＋ 0 5．0．	－0． 5	＋012		03， 61	
\％is		20.7 21.0	21.10	\cdots			－0．03	$+0.113$		09． $8: 3$	
	－			．．．．．．		＋ $11321-$	-0.03	＋0．011		$405-11$ ！ 1	

REPORT OF THE CHIEF ASTRONOMER.

Observations for Latitude.-Station No. 9—Continned.

B. A. C.	Readings.				Declinatiou.	Correctious.				Latitude.	Femand.
	Microm.	Level.		$\begin{aligned} & \text { Mrrid. } \\ & \text { dist. } \end{aligned}$		Microm.	Level.	1: trac.	lind. to nerid.		
		N.	S.								
				m. s.	$\bigcirc{ }^{\circ}$	"	"	"	"	\bigcirc	
78.2	13.63	21.0	(31), 8		43 5000600						
7882	$2 \pm .590$	20, ${ }^{\text {a }}$	22. 0		493856.63	-9 0.54	-0.420	-0.14i	\cdots	to 5810.10	
7962 8024	96. 5	21.8	20.8		$411 \% 01.16$						
8036											
8059	20. 282	22.0	20.8		4×3022.06	- 0 5.5.\%	-0.03	-0.02		10.15	
80×3	18.519	20.8	23.0		$562+07.35$						
8128	22.657	21.5	$\because 0.4$	\ldots	412300068	+ 233.84	-0.16	+0.04		10.64	
8306	96. 311	21. 0	91.0		303537.28						
8273	16.14.5	20.7	21.1		6\% 06468	$+618.82$	-0.16	$+0.12$		111.85	
8314	95. 985	20.7	21.1		73 42 13.85						
8324	16.053	21.0	20.8		242684.04	-60530	-0.0.	-0.1		10. 45	
								-0.0n		11.81	Rujected.
129	11.619 30.60	$\xrightarrow{220} 0$	21.2		$\begin{aligned} & 32505.60 \\ & 650701.97 \end{aligned}$	-1147. 7	10.1:3	-11. 23		11.9	
193	23. 283	29.0	21.7		478534.51						
219	19. 759	$\because 1.6$	$\underline{20}$		(1) 16 32 59	+2 10.93	-0.003	+0.03		09, 4*	
Q39	24, 692	21.8	$\underline{2}$								
259	14. 173	22.5	21, 2		37.4842 .41	-850.44	+0.33i	-0.11;		11. 19	
12 Mr .73	19.053	$\stackrel{21.7}{ }$	28.3		6t 09803.51						
345	23.243	91.1	23.11		304503.20	+ 235.6	-0.92	+10.05		18. 43	
401 438	27.379 15.119	21.9	413.0		280434.84						
	15.119	23.0	22.0			+ 73.3	-11. 03	+0.14	\ldots	48.5801 .87	

$$
\begin{aligned}
& \varepsilon= \pm 0^{\prime \prime} .8721 \\
& \tau= \pm 0^{\prime \prime} . \sin 2 \\
& \varepsilon_{0}= \pm 0^{\prime \prime} .0974 . \\
& \boldsymbol{r}_{0}= \pm 0^{\prime \prime} .064 .72 .
\end{aligned}
$$

1873

UNITED STATES NORTHERS DOUNDARY.

Obsercations for Latitude.

1:3i

Observations for Latitude．－Stetion No．10－COntinued．

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Readings．				Declination．	Correctioms．				Latitude．	Itemarke．
	Hirrom．	Lurel．		M＋rid． dist．		Hicrom．	Lerel	Eefrac．	Lind．to merid		
		N ，	S．								
				m．s ．	$\bigcirc{ }^{\circ} \mathrm{C}$	，＂	＂	＂	＂	－＇	
$\text { 7. Tr. } \begin{array}{r} 7320 \\ \hdashline 3995 \end{array}$	－83．257	24.6 25.0	$\begin{aligned} & 23.4 \\ & 23.0 \end{aligned}$		$\begin{array}{ccc}38 & 09 & 3.5 \\ 50 & 45 \\ 16.12\end{array}$	＋ 317.86	＋0．31	＋0．0．		4900 4． 5 s	
7377	29． 190	23.4	94． 5		592816.05						
7398	11．151	26.3	21.8	－．．．．．	385200.13	－ 019.0	＋0．31	-0.16		44． 56	
2416	24． 1416	96.3	21．8		620305．12						
2453	15.432	23．3	$2{ }^{2} .0$	．．．．．	$360 \% \quad 33.515$	－ 430.3%	＋0．62	－0，08	\ldots	4． 51	
7480	19． 959	25.5	23.0		4559 ncias						
7489	21.367	25.0	23.8	．．．．．．	5203 49．e6	-043.68	＋0．83	－0．020		45.05	
7503	12，¢ 61	23． 2	85.9		37500933						
\％615	21.848	2¢． 0	22.1	．．．．．	60 （6）25．35	-133.30	$+0.71$	－0．03		4． 72	
7627	23． 4.9	29.3	80.7		251955						
7686		12． 0	285		22 3 42． 30	＋ 324.84	$+0.47$	＋0．07		4.41	
785	15． 425	23．5	$13 \pm$		5×479						
7265	23． 81.6	06． 2	21.6	……	390580.31	＋421．90	－2． 50	$+0.08$		41． 41	
2962	20． 470	19.3	17．0		411706.15						
8024	11.310	16.3	20.2		562534.11	＋ 903.40	-0.36	＋0． 17		43． 10	
と0：36	18．413	12.0	18.8		438154.2						
8059	21.452	17.5	1！ 1		4 4 382.95	$+134.01$	－0．5s	40．02		4436	
r083	15．931	17．5	19．0		568813.8						
8128	25．54	12.8	19．0	－－．．．．	418311.19	＋450．6ia	-11.60	＋0．09		11.04	Figjucent．
と206	28． 310	12．5	19.0		303341.591						
8.33	11.385	20.7	14．3	－．．．．	1570611.86	$+84.16$	＋0．42	＋0．17		H． 48	
8：314	23． 135	18.9	1！3． 1		73 42 19，36						
83.4	16．193	14.7	18.1		24208140	-335.59	＋0．31	－0．07	．．．．	45.10	
－366	16．33\％	10.1	19.0		fin 3fi 32．21						
67	24．elly	9．0	19.5		3i 16 （14，el	$+45.63$	＋0．14	＋0．05		4． 40	
120	20.145	20.0	19．6		325301.41						
175	2 E .158	20.6	19.0			－ 919.62	＋0．41	－017	．．．．．＇	44.45	
108	2 n .55	21.5	18.0		47359291						
：1：1	16．510	18．2	21.0		501637.11	$+440.53$	＋0．16	$+0.04$	㖪	40， 0	
234	26． 219	50.5	19， 0								
259	14． 4.4 ！	19.0	20.2	．．．．．	374846.36	-630.02	$+0.05$	-0.11		44．if	
Gr． 12 Yr Y 7：3	1．8． 181	19．\downarrow	19.3		6\％ 06080.59						
345	25．04．7	19.7	1！ 15		3045016.30	＋ 50600 ia	＋0．14	＋0．30	．．．	49.97	
401	99．984	I＇6	19.5		28043810						
43＊	10． 461	12.4	80.3		69） 3638.85	$+1002.56$	－0．40	＋0．1．		1．\％	
414	13．134	24．6	13．63		fi 043045	－628．31	＋0．42	-0.11	． 1	4． 69	
¢ 487	14．337	94． 6	13． 6	．．．．．．	ti 590×8						
－ 54.8		14．7	23.3 23 23	．．．．．．	50 ne 53．5．k 50169543	－ $019.0{ }^{1}$	＋11．4i	－0．01	．．．．	42.65	
$6: 17$	16． 24 4	1e． 3	20.3		34231 T 5	-40.40	-0.11	－0．0i		4－5， 63	
744	21.173	19.3	20．0								
752	16．93：	50.8	19．0		311353.39	-106.52	＋0．11	－0．0：	．．．．	4is．	
225	9． 635	192	20.4		1968						
896	30.480	21.7	18.9	．．．．．．	TE 544801	－104 45.7	＋0．0．3	－695		4is． 42	
979	14．0：3	20.0	21.0		if 1547.29						
909	4． 2 an	20.1	19.6	．．．．．．	（1） 34 33．0．1	$+534.57$	＋0．07	＋1：12	．．．．．	$\therefore 1.0$	
1027	16． 112	21.0	19.3		2．						
1063	$2153: 9$	19.7	21.1		i254 4.310	－24．30	＋0．0）	－11． 0.6	－－．	$4911+4.46$	

1:S I'NITEI STATEN NOHTHERN BOUNHARY COMMISSION.

Obercutions for Latitule.-Station Mo. 10-Continned.

$$
\begin{array}{ccc}
11 & 1,7-3 \\
1 & 1 & \vdots \\
11 & 11-3.3 \\
11
\end{array}
$$

1873

UNITED STATES NORTHERN BOUNDARY．

Observetions for Letitude．
 Zenith Telescope，Wüdemavu No．20．－Chronomftr，Jegus Xidertal Sio．14－1．］

$\begin{gathered} \text { B. A. } \\ \text { No. } \end{gathered}$	Teadings．				Declination．	Aurrections．				Latiturle．		Honathe．
	Micrors．	Lerel．		$\begin{aligned} & \text { Merid. } \\ & \text { dist. } \end{aligned}$		Microm．	L．rvel．	Refrac．	Red．to tuerin！．			
		5.	S ．									
				72． 8.	－＂	${ }^{\prime \prime}$	＂	＂	＂		＂	
6937	16．3－0	15．2	15．0		3685							
0.60	94． 602	17．0	15.3		b1 4155.8%	-356.49	-0.07	－11．08		410	00． 02	Qaptember 11.
7024	1fi． 2 l 4	I－í	14．0		f． 1 51 31．82							
7073	± 1.580	14.5	$1-11$		3602119.17	＋ 412.71	-9.20	－0．0．			CE．4．	
\％110	11．from	1\％． 1	15． 4		424551.81							
－166	2 Ca 350	15．5	17．6		553343.41	－－36． 20	－0．0．4	-0.15			10． 54	
2.15	13．1－6	17.1	11.1		$\therefore 15$							
$\because 2 \%$	¢6．344，	16． c	1－． 0	．．．．	fi）40 52． 46	－＋ 17.73	－0．19	－（0．13	．．．．．．．		00．－7	
5330	$23+21$	80.9	15． 1		3－02 37．－6							
7－Ir． 230	16．33：	143	$\vdots 1.1$	．	59451 c 50	$\therefore 341.31$	－0．42	－0．04，			09．-9	
7.37	2－0，1－3	19.3	17.0		59800.74							
3391	$11.43=$	1．：3	$\because 1.0$		3－520こ2ー	－． $5 \% 0 \%$	－0． 7 \％	-51.10	．－．．．		019．23	
7＋16	23．－ 0 －	21.11	15．3		120302．92							
74.3	15，-46	14．3	2－3 3		3605806	－ 406.8 .1	-0.51	－0．0\％			09．3＊	
74．0	19．623	19． 1	17．7		45 isti－． A^{-}							
－1－9	20420	17．11	20.5	－	$5 \% 4353$	－ 1119 EO	－6． 7 ：	－11． 11	．．．．－		10．S 1	
－6：	23.864	23． 0	14.4		2－1930．99							
－ibis	16．324	14．1	23.7	－－．	こ 34 45． 5	-34%	－（1．23	＋10．11－			［＂： 17	
	15． 4.1	$1<0$	20.1	－．．．．．	5－4120							
－130	24． 533	12：	11.4	．	$3: 45 \%$ \％ 3	－ 411.81	－0． $0: 2$	－0．11－				
3 Fr	17． 4010	$1-.3$	10.7		501905							
プ 0	23． 4101	1－3	19.5		45 if（1，41	-30320	－0． －$^{-1-}$	－016			10．06\％	
ごロ	14．304	17.0	30.7		A－50 13． 111							
Tご2	96． 20.2	$=0.0$	1－．！	．．．．．	$4!1$－25 114．35	－62－2．5	－0． 5.	－0． 11	．．．．．		10． 04	
.7962		205	1：7		411% n－． 23							
E024	1150	14.0	12．0	．．．．．．	51\％25 35． 80	－ 1 fi．U2	$-0-\square$	$\div 015$	．．．．．		19－． 76	
F03t	1－093	17\％	19.1	－－．．．．	$40 \geq 15$							
S00，	21．7\％	三11：	16.0			-1 －3 34	－11 it	－10． 113			$10: 1$	
80－3	15.51	1－9	i 3									
－1－2	213，12：4	17.0	$1-6$		$112313-1$	－ 28.8	-0.211	－ 1111	－．		1－！ 1	
Foni	2 z 010	17．0	1－n	－－．	30 3： 438							
$2 \because 3$	10．912	19．3	1：4． 1	\cdots	HTJ lli i5． 17	－30．3	－0 3 ：	-0.15	\ldots		10－2．al	
6idet	34 \％	13．0	16．		4075							
Citel	17． 23	20.3	10.11		5\％ 4×31.10	－3：392	－1． 17	$\therefore 117$			1：－ i_{1}	\therefore［12＋1ulat 1 at
683	1205	16.0	14． 2	－• ．－－								
6：47	22．063	11.0	140	．．．．．．	51 i0 5l，3\％		－10．1－	－0 03			00．3：	
¢：$=0$	1－3．3	1．5． 3	1.50	．．．－	57430014							
1－7		$15: 3$	10．0	－．－	f）Iti 33 ati	＋104． 11	-0.11	0.011			17． 16	
firs：	17i． 1%	12：3	141	．．．．	3： $2-1$－－							
61711	ころ．－：	1： 7	11；	．	til 415.4	－3．7．17	＋1 ${ }^{\text {＋}}$	－11．19i	\ldots	1．	U い	

Obsercations for Latitude.-Station To. 11-Continned.

Observations for Latitude．－Ntation No．11－Continnerd．

$\begin{aligned} & \text { B. A. C. } \\ & \text { N゙o. } \end{aligned}$	Realings．				Declination．	Crrections．				La＇iturs．	1．6nath：
	Microm．	Lerel．		Merid． dist．		Microm．	L＊V1］．	Refrac．	Rucl． 10 un．rid．		
		N．	S.								
				m．δ ．	－＇＂	＊	＂	＂	${ }^{\prime \prime}$	－＇ 1	
8：4	\％．394i	21.7	14.5		1920 do dia						
979	1．3． 740	20.7	¢0． d		71519 4＊						
949	9584.5	91.0	19． 7		203133.20	$+550.95^{\circ}$	＋0．36	$\div 0.13$		U8．8．3	
1101	16． 5 sa	191．5	92． 1		25 129\％ 98						
1157	21.498	23.1	17.1		\％234 4．07	－22\％．07	$+1.05$	$-0.0 .9$		$0 \times .61$	
1003	23.900	21.0	19.3		$6=4148.30$						
122\％	12．0：1	20.6	19.6	．．．．．．	35.50 .33 .33	－ 239.00	$+0.60$	-0.04		$0 \% .10$	
1054	21． 869	29	17.7		5000116.85						
12.7	15．c！0	19.0	20.7	－－－－	Is 0505.15	$\rightarrow 130.43$	$+0.62$	-0.09		09.18	
C624	23.926	12.8	11.7		40075						
fliel	16． 413	1\％．1	0＇．J	－－－	5741031.23	＋ 3 2．42	$+2.30$	$+0.0 i$		0－． 70	
6.288	17． 802	9.3	15.7		438536.64						
0318	21.818	13． 0	12.0	－．．．－－	51 4051.50	-204.61	-1.90	$-0.0 .3$		08， 83	
$6: 80$	1 28.3	13.1	10.7		578430789						
1817	－ 31.108	4.5	15.6		40 115 33． 39	$+109.04$	－0．60	$\div 0.00$		0 0． 93	
6937	16．1328	15．4	10.6		34is－15．9\％						
69.0	$\because 4.085$	11．\because	15．0	．	（il 415.501	-3.5787	＋ 0.8	-11.07		0 c .8 il	
2024	16． 208	11.1	120	．．．．．	1215189						
7073	21.206	12.1	14．\sim	．	31502309.30	T＋17．4\％	0． 100	$+0.08$	．	$0-\cdots 4$	
$\because 100$	11.797	14.0	1～斤		4045 51， 90						
T166	2x． d l 1	1：． 7	14.0		53.33433 .93	-53.68	$\therefore 11.04$	－0．1：		10.14	
7215	13．310	1．1．0	13， 4		$\therefore 2074848$						
723	518．408	13．6	14.1		$41) \cdot 10$＋0．38	$+646.40$	＋0．0．	40．12	．．．．	09.02	
7767	17． 9110	7.1	22，								
Tと00	23．i48	－3．${ }^{\text {j }}$	6.1		$45510 \% .00$	＋ 320.2	＋0． 10	＋0．06i		0 3 ， 47	
－220	11．76x	12，${ }^{2}$	14.7		48． 51014.8						
7－2	47.359	1＊． 0	1010		43904.89	-631.85	＋1．45	－0．11		19．9．6．	
20tiz	296	1！1． 11	120								
E024	10．003	14．5	11.7		5.04 .837 .90	＋9830101	＋1．9	$+0.17$		6． 5.50	
8036	18．190	15． 11	16．11		$49215-33$						
80， 0 ？	Q1．cin	18， 11	13.0	－．．	IN 345 3ill 4 y	＋1 83，ti－	＋0．0．0	＋ 10.0 .3		09.11	
$\mathrm{HO}, 3$	15．1－0	$3{ }_{15}$	13． 4	．．							
と12	45.501	17．11	11.0	．	$41 \% 1 \% 1.41$	＋5\％	＋1．$\square_{1} 1$	$\div 0.111$		60.80	
roun	2－5， 61	16．0 0	15．5		311 313.7						
8273	11．211	16．，	15.2		1200150.95	＋ 9118.11	$+0.98$	$+0.16$	．．．．．	（12．$\because 1$	
8314	23．938	120	14.8		7312836						
8324	11i． 670	14.7	17．4	－－	919833	-31.510	＋6． 2.5	－0．115	－，	190100.3	

$\varepsilon=0^{\prime \prime}, 133$
$\tau=0^{\prime} .102$
$\varepsilon_{11}=v^{\prime} 075$
$\tau_{0}=0^{\prime \prime} .0 .51$

1873.

UNITED STATES NORTHERN BOUNDARY

Olservations for Latitude.

Observations for Latitule．－Station No．1シ－Continued．

B. A. C.	Readings．				Decrlination．	Correctiona．				Latitutr．	licmaths．
	Microm．	Level．		Merid． dist．		Microm．	Level．	Retrat	Fied．to metid．		
		N．	N．								
				m．s ．	－＇＂	＂	＂	＂	＂	－，＂	
7400	14．333	13． 0	14．${ }^{\text {j }}$		45.5010 .00						
7409	¢－2． 303	16． 1	11.1	．．．．．	50 0354．17	－ 203.18	$+0.76$	－0．03	－．．．．．	to 50，29，6，	
7505	17.399	15.6	11.6	．	37.812 .42						
7605	22． 933	13.0	15． 7	．．．．．	till 0ti 30． 19	－ 459.45	＋0．	－0． 0		$2 \times .63$	
7627	21． 233	16.0	12．8		95 1958						
71×6	17．600	13.8	15.5	．．．	22 34 4－5．07	＋$\because 15$	＋0．3：	－0．0．4		29102	
7655	15． 12.5	14.7	14.5		$5 \checkmark 47: 34.96$						
7765	23.20	15.7	13.1		30058	＋ 25.94	－0． 02	＋0．0．5		$\cdots 4$	
787	19．4．2	14．4	14．5		520131314						
T200	22． 1335	16．11	13.0	．．．．．	455408.20	＋1351．07	＋0． 65	＋0．02		98．11	
7 T 20	$19!07$	13.0	17．6		＋5 5il 15.47						
7×82	428． 767	17．1	120	．．．．．．	15 2.506 .20	-81210	－0． 0.6	－0．1．1		E9． 20	
\％9120	28． 550	12． 2	17．${ }^{\text {a }}$	．．．．	4117 0\％ 17						
2024	12． 69	$\because 00$	0！1． 0	．．．．．	511：3030．37	＋805．51	－－1．34	$+11.11$		－ 4	
ع0：36	191．676	14.7	14.1	－－－	142 21501468						
2050	20， 094	16．0	12.4	．．．．－．	4－3631．78	＋ 0129	$+0.4$	0， 010		4．3． 39	
8083	16．599	14．t	12．：								
c128	24.000	14.0	13． 2	．－．．．．	412335.63	$+341.15$	－6． 0.41	$+10.15$	－\cdot ．\cdot－	28.89	
8906	－6． 911	14.0	$1: 3.5$	．．	30.3744 .3						
8273	12.53 .5	15．7	13．	．．．		＋ 524.65	$+0.51$	＋+10.11		－89	
Hi314	24.323	13.0	14.8	．．．．．	T3 40 90， 30						
8：344	15．120	15.8	11.7	．．	24 2tist． 5	－ 1 Sti． 14 j	＋0． 51	-11.10	．．．．－	291．80	
16	2.657	157	120	．．．．．．	Pil 40 It， 194						
137	16． 235	13． 7	14.0	＋．．．．	3516 199．03	－ $3: 31.4 \%$	＋0． 30	－6． 060	＊．$\cdot \cdots$	－［1． 197	
190	10.146	13．0	149	．．．．．	33.30509						
175	30.707	13.5	13．${ }^{1}$	．．．．	05812.5	－10：30．15	－0． 2	－11． 21	－－．．．	（1）． 103	
J！94	23．51\％	16.0	10．3	．．．．．	413.733 .80						
219	12．0．1！ 1	11.4	15．4	－	50161040	$+319.41$	＋0． iti	＋0． 117		22.84	
239	97.18 s	13． 0	140	－－．．．							
259	19．0：1	15． 10	11.0	．．．．．	321550.1 \％	－\％\％0． 0	＋0．$\times 0$	-11.11		81． 23	
G．12．Yr． 73	16． 6.94	14． 11	1.1	－．．．．．							
345	24.016	09．！	17.0	．．．．．	364510.31	＋3 4\％．1．	-1.08	＋0．114		9－8． 8	
401	28.809	15．7	11．	－．．－－－	$\underline{9}-11483$						
438	11． 2 20！	11．3	16． 1	．．．．．		$+\mathrm{N} 40 \mathrm{Em}$	－0， 51	－0．17		$9 ¢ \operatorname{sr}$	
2015	14． 3.72	1！1． 5	13． 3	．．．．．．	57084.8						
7%	$\bigcirc 4.503$	14．3	19.4	．．．．．．	41110210	＋504．	＋0．${ }^{\text {a }}$	＋1．0！	．．．．．	20.4	
－\％r $\begin{array}{r}7320 \\ \hline 805\end{array}$	21． 3.4	1.5	15.1	－－．							
7 －Yr． 2395	17． 851	17． 1	16． 8		54.451 .64	＋18．2．t	40.5	－0．013		905	
7376	30.53%	14．6	19.5	－．．．	5！！－11．						
7398	9． 912	20．！	13．0	－－－．	$3-5201.80$	$-10: 34$	＋11． 17	－0，1！		20．	
7416	25.133	21.1	1：	－－．．－－							
74.3	13．200	1．5．7	12． 7	．．．．．．	3607 27． 30	－ $5 \cdot-1$	$+1.1$	－10． 111		30）． 5	16．juched．
65.53	17．210	19．11	14.5	．．．．．	321483						
65：6	？ 2.610	20.5	18．N		6i．3 4ti $11.3 \mathrm{3m}$	－~ 50.08	－4，24	$-0.04 i$		991．fi	Sptatubuct
6624	22．	20．0	1！9．7	．．．．．．	4110553.51						
6681	19．9\％0	20.7	11． 11	．．．．．	$15740: 506$	$\square 1: 45$	＋1．95	＋ 11.10	．．．．．	$\because-31$	
67.78	16． 271	18．3	등	．．．．	1：933i， 5						
614	2．35 569	22.4	1－5	．．	$54415 \% 12$	－：13， 11	$-110!$	－0． 01	．．．．．．	$\because 2$	
G：89	coll 90	1！ 0	220	1．．．－．							
C－17	1！1．ぐ14	$2 \div 0$	11.0	．．．．．	40165.56	－ 113	0.101	-0.01	－．．．．．	423 10	

144 LNITED ぶTATES NOLTHERN BOUNDAKY COMMISSION．

Olservations for Latitule．－Stution Mo．1®－Continned．

$\begin{aligned} & \text { Is } \\ & \text { N. } \\ & \hline \end{aligned}$	Readings．				Ineclinatim．	Corrections．				Latituds．	Remats．
		L	cl．								
6937	14．2020	끄 0	19.1	2h．s	$\begin{array}{ccc} \circ & \prime \prime \\ 36 & 28 & 17.4 \end{array}$	，＂	＂	＂	＂		
6484	2） 600	4	20， 1	．．．．	61415206	－530．85	－0．49	-0.10		485998．90	
5184	17．87\％	$\because 1$.	19.9		615134.8						
20：3	212． 56	91．	19.5		$360: 11.16$	＋23064	＋0．：	$\div 0.01$		2－3：31	
515	14．8ta	21．6			तो 0740						
	24． 543	1！ 14			1041020	＋503．17	＋0．	＋0，09		98.4	
7110	25．383	10．8	15．		680311.5						
－1，${ }^{\text {a }}$	13． 324	ir 0		．．	30115	-55404	＋0．02	－0． 10		97． 5	
\％ 62	20803	209	17．	．．．	41511.3						
－1．	1－．	1－3	21.1		，0 ${ }^{\text {ar }}$	Trano	＋0	＋0， 14		28． 10	Rriected．
－193	cosil	19.0	21.0			＋011－					
（1）	～．．．．0	20.0	－0， 1		N＝ut 3 ，	40 n	－0．4t			2．	
－ 20.3		1． 11	130	．．．	沼ざ20．12						
	－	1．4	－1		41 c． 1.0	－－ 330.5	－0， 2	＋0．06		2－3．3	
5	26．e－3	1！0	21．${ }^{19}$		303746						
$\cdots 2.3$	1．4．0to	20． 7	19.1			＋5 \％E4	－0．03	40.14		$\therefore 14$	
E314	24．	－ח． 3	19．11		734 4						
－34	15．3月4	10．2	－0， 7		$\because 4: 415$	－ 480.40	－0．25	-11.10		315	
41	23．310	20.9	19.1		的 4150						
10.	16． 407	17．0			3711310.81	－3593	－11．5．1	－n． 06		31.514	In－jucted．
120	9． $41 \pm$	응	17． 4								
1%	（3）	1tis	93． 4			-1010.5	－0．47	－0． 20		20．50	
117	23．819	20，5	11.0		If 35838						
219		1－2	21.6		50164 ta 12	＋： $31-6$	－11．42	＋0．06		$2 \sim 85$	
29	\therefore anil	낭？	111		100855100						
$25!$	1：4．4	18i	\％1．\because		35420	－751．21	－0，it	-0.14		20：	
12 Tr	15． 118	44	19．！								
	23． $3-3$	19， 4	21.0	．．．．．．	3045116	＋ 3 H．：－	－0：33	$+0.10$	．	2．3－	
	2． 100	21.3	19.3		－ 0 tien						
	11．${ }^{\text {an }}$	19	－20			－ 44.12	－01）	$+0.11$		20．02	
	12 tras	21.18	94.0		小－1439	－i 4.132	－11． 2	-0.13		29． 30	
	17． 2111	（i） 5	21：3		47 50，						
	－2，-11	19.1	21.2			－140．6．	－1．36			2＊．00	
	－5．10：	21.0	＊31． 0	．	1 B ＋17409						
rai	14． 410	19.4			34×381.93	－ a 31.13	－08．	-0.10		$4 \geq 58898$	

$$
\begin{aligned}
& \varepsilon= \pm 0^{\prime \prime} .53 \\
& \tau= \pm 0^{\prime \prime} .35 \\
& c_{0}= \pm 0^{\prime \prime}, 011 \\
& \tau_{11}= \pm 0^{\prime \prime}, 047
\end{aligned}
$$

1871.

UNITEI STATES NORTHERN BOUNDARY．

Observations for Latitude．

B．A． C ．No．	Teratings．				Ireclination．	Correetions．				1．a．ifuld．	S＊mbutay
	Mierom．	Level．		$\begin{aligned} & \text { Merul. } \\ & \text { dst. } \end{aligned}$		Microm．	LeTel	Fufrec．	IENl． 4 murd．		
		N．	\therefore S．								
				m． S ．	$\bigcirc{ }^{\circ}$＇	＇＂	＂	＂		，，＇	
5271	20． 250	18.1	1－3		$421819: 4$						
$5: 313$	15． 345	17.5	13.1		$5.8013 \sim 6021$	＋ 043 ra	＋ 210	＋0．01	－－－－	1．in $01-72$	Juls 6.
5.115	30．501	19.0	10．3		5， 1603.50						
5460	10.810	144	14． 4		400046.094	-1014.15	$+1.93$	－11．1－		19．42	
5500	12．832	14． 5	11.0		5.32933 .38						
50.23	20．8．80	19.6	11； 11		4： 01537.113	＋ 834.64	－0．6．3	－＋1， 17	．．．．	09．$\times 2$	
5n4	11．Ititi	14.1	14．		69022^{2} ¢\％						
54104	2！ 3.013	11.7	15．			＋915．31	－0， 91	＋11．1\％	－－－－．	n－． 3	
inid4	12． 41.8	14．0	13， 0		432751.6						
5458		13．01	11.0	－．－－	$5538810 \pm .15$	-448.43	0． 60	－0．02	．－．	0）\％	
5163	5083	16． 10	10． 2		315439.52						
503	15， 013	12：	11.1		655811.88	1443.81	＋1．03	－ 0.09	＊＊．	10.14	
58.3	20． 190%	16．1）	10.8		494037.69						
5911	143	13：4	13．5	．．．．．．	4×2150.101	－ 739.42	＋1．20	-013		14． 14	
10147	29．$\times 21$	14．7	13． 5		72 1234.37						
610，3	10.4110	13， 11	15． 4	－．．．．	出 $11414.3 \pm$	$-1015.0-$	-11.31	－11． 20	．．．．．	10． 17	
6114	15． 190	11.5	111		7158838						
61.5	些（4）	18．\％	13． 3		2147＋2．3＊	＋ 450.6	＋11．$: 1$	＋1111	\cdots	099． 1.5	
Coll	14． 514	14.5	11.1		\％ivers ro．						
624．		16．．	12．		17 tis 47.45	$+547.91$	＋0．12	$\therefore-11,13$		11－．： 11	
お呺	13．7．3	13． 0	13.4		35180619.84						
62－ 0^{1}	$\because 6.73 \%$	16． 5	13．11	．．．．．．	554334.4 ti8	－651．90	－＋L，\％il	－11．12，	\cdots	（1）．e．fiti	
bimk	14．170	14． 5	11.		59878						
13035	20．303：	17.3	12.3		3×1500.3	＋611．i＊	$+1.05$	＋11．11	－．．－－	09.54	
6401	20 104	17.3	$1 \stackrel{ }{2}$		4！ 17 31，1＊						
6476	$2 \times .517$	13.0	17．5	－－．－－	4＊4：01．12	－ 13 3．90	－0．13	－11．10：	．－．．	Wh．	
（fintib	16． 734	13．31	17．0		3218120						
6isem	24．354	1i．is	13．3		lis ts 5e． 63	－ 3 54．90	4－4．	－12．11－		110.6	
micy	21． 597	16． 7	14．2	．．．．．．	4108408						
6， 6 ¢ 1	19．693	14.5	16． 13		57408193	± 108.41	＋ 0.019	＋10，13：	\ldots	$(1)!9$	
（120）	15．334	14.7	16．8		43858540						
6it＝	24．7511	17.5	14.0	－．．．．	St 40 3－E2	-453.5	$+0.31$	11．110		10， 81	
6：00	2．2 3！	14．${ }^{\text {a }}$	17.0	－．．．．	$\therefore 4253.9$						
li－17	1！21！12	17．1	14．：	．．．．．．	40164.830	-1393%	＋0．112	11． 11.5		11） 11	
6， 30	13．917	100	15．0		17360093						
1， 013	27.280	16.0	15.5		51133 413．14	－ 050.10	＋1111	－1：1：	－	（18．）－${ }^{\text {a }}$	
0.937	17．902	16．7	15． 11								
1，170	－6．903	16.0	16．11	．．．．	61414.3 19\％	－16 46，31	$-0.32=$	－1）1：		（1）．14，	
5104	2\％．${ }^{\text {and }}$	17．3	14．M		61）51 19，¢ 6						
503	50494	14%	17．${ }^{\text {a }}$		3610018	＋ 1 ※i．is	－0． 115	－ 4.11 .3		1－5＊1－120	
N $1:-11$											14，

Obserutions for Latitude．－Station No．1n－Continued．

B. AC.	Teadings．				Declination．	Comrections．				Latituile．	Remarks．
	－	Larel．		Merid． dist．		Microm．	Level．	Refrac．	Reel．to murid．		
		N．	s．								
				m．s．	－	，＂	＂	＂	${ }^{4}$	－，＂	
7100	9． 184	15.0 15.3	15． 17			－11－28． 3 t	＋0．0．1	－0． 20		48.8800 .45	
7215	16， 433	15：	15，0								
227\％	24.046	16.7	16.5			$+356.43$	－0． 2	$+0.07$		09.51	
7320	20． 310	117，0	1i． 1								
7．Yr． 2395	14． 168	17.1	16.0		29.450405	＋ 043.83	0.00	$+0.02$		09． 30	
7375 390	31.523 8.608	15.1	10：			$-11+39$	－0．0． 0	－0． 20		0 S .38	
3116	22.065	10． 1	13.8		1080 503					0×9	
34.33	13．505	15．4	16．5		3605	－ 701.21	－0． $1: 3$	-1.12		08．2	
－503	1．48）	17.1	12．0		378080.14						
\％ 780	$33.4=0$	－1\％	17.4 17.17		（i0） $3: 13.3$		＋0． 0	－0． 16		09．76	
Ttus	2.488	17．0	12.5		Li0 015	－＋0506	－11．10）	-0.07		U8．45	
3 Sot	90． 840	16.4	12.1		20， 101500					00.80	
76：6	15.9 .1	1！） 5	1．3． 7			＋0．31．81	＋0． 47	T0．02		drs	
775	19060	17.7	17.9			± 1 4s ${ }^{\text {a }}$	－0．${ }^{2}$	$\bigcirc 0.03$		0 0． 67	
\cdots	～．										
TET	20．87\％	11．1 1.5	$1 \begin{gathered}19.1 \\ 17.0\end{gathered}$		Wers 03.4	＋ 0 86\％ $\mathrm{min}^{\text {a }}$	－0． 33	＋0．01		09.26	
T80	11． 531	19.0	10． 2	\ldots	fasin 00.41						
7－2	29． 347	16．19	19．2	．．．．	41） 2.00 .117	－ 9 35．84	－0．2	-0.10		00.02	
2007	10． 402	15．3	18.8			－ 940.35	－0．	$+0.80$		09.53	
714.	－1． 161	18.10	19.5	．．．．．．		－？ 40.80					
598	18.858 13.19	1%	17． 10	\ldots	$41170.4 \overline{4}$	＋64．14	－0．07	－10．12		0.65	
cod	1．3．19	1．．									
5115 51%	－	408	35.4 $35:$		（1） 180	－ 10892	＋1．52	－1． 11		0\％． 99	Tuly 7.
					114＊ 19						
23.13	21． 11.10	120	13.1	\ldots	\％ 160	＋1140	＋－2．43	－1）． 01		08.06	
541：	（30）．439	1ヵ，	12		i－1643030						
5440	10， 84.3	17.0	（1） 11		110 0015	－1014．90	＋1．$=3$	－0．10		08.80	
502	12． $2=0$	115	120		\therefore 二）						
50.3	\because	$1 \leq 0$	11． 5			十⺀：3\％ 4	0.80	＋10．35		10.01	
5.4 .4	11． 433	13.6	11！	\ldots							
51	29 301	14．	13．5	\ldots		$\therefore 915.13$	-0.07	± 0.17		09.6	
5itil	16．1133	3	1：11		$4!\because: 51.91$						
Etrio－	－5\％3	13.1	11 ：			－ 4 ¢	＋0．14	－0． 10		12．34	
5itil	25．06	13．3	16．		31.3134						
5－3	16．6．3	1．5．11	14.1		（10） 32120	－1－4＋3． $\mathrm{C}=$	－19．01	＋0．0．1		10． 14.4	
$5 \% 3$	2\％．00	11．0	1：：		$11408: 30$						
541	1．3．1：3	1\％1	15：		1－31310	－750．6	－13． 10	－0．13		023 30	
6044\％	20．000	12.1	$1: 1$		$\because 1.38$						
Cilt ${ }^{\text {a }}$	10.141	11.	16.7	．．．．	（1） 41.11 .9	－14 1.58	1）－ 1	－0． 01		02． 10	
6111	15．5．00	1－3	1312		Tf：in 3－73						
11.7	2゙）	13：3	1－：	\ldots	W14， 4	－4．5014	－－ 0^{171}	－ 011		09.99	
ficti	15198	1111	11：0								
6 64，	－11． 419	17.11	15．1		17．15 1－3， 4	\therefore－f\％ 61	＋11． 3.	－ 4.13		05.8	
	13． 215	1－11	$1+$ 17			－itiondi	\cdots	－0．12	．．．．．．．		

Observations for Latitude．－Station No．13－Contimued．

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Readings．				Declination．	Corrections．				Latitude．	Remarks．									
	Micr ${ }^{\sim} \mathrm{n}$ ．	Level．		Merid． dist．		Microm．	Lerel．	Intfia	lend．t．1． metid．											
		N.	S．																	
0318	13． 285	15.7	17.6	m．s．	$\begin{array}{ccc}0 & 1 \\ 50 & 97 & \\ \end{array}$		＂	＂	＂	－＇ 1										
6365	2fi．\＆46	18.0	17.1	．．．	381501.07	$+042.61$	－0．${ }^{\prime \prime}$	－ 0.11		$f 508.10$										
6421	99． 991	19.6	16.8		491731.51															
64%	19.091	17.0	20.0		484204.79	－ 139.40	－0．01	-0.02	．．．．．．．	08． 31										
6.53	16． 903	18.3	19.8		321812.58															
6586	24.528	90.5	17.9		154559.11	－356．ع6	＋0．95	－0．08		09.10										
c624	21． 605	19．0	19.0		400741.26															
6081	19.45	19.0	${ }^{1} 0.0$		5746 ± 40.31	$+102.87$	－0．涊	$+0.02$		09．413										
6728	15． 706	19.0	20.0	．．．．	432585															
6748	25．13！	10.5	19．：	．．．．．．．．	54403020	-453.60	-0.16	$-0.0{ }^{2}$		69.8										
6780	92．5＜0	19.3	10． 2	．．．．．	574254.37															
6817	119．3E1	17.8	20.5		4016 43，（i0	-130.37	－0．58	－0．03		04.60										
6830	13．509	19.4	18.8		47 36 21． 29															
CE65	26．961	10.0	21． 8		503347.80	-655.10	-1.16	-0.12		07． 91										
6937	13．85	12.6	20.0	．．．．．．．．．	$30220 \% .67$															
6970	20.9×5	18.3	20.4	．．．．．．	614143.48	-645.37	－0．	-0.12		00， 30										
7094	19．02\％	19.8	19.7		615120.30															
7073	21.850	19.5	209	．．．．．．．．	3602080.13	＋129．03	－0． 20	$+0.03$		09.01										
7100	9.601	${ }_{30} 90$	9																	
7466	31.731	22． 2	19.1	．－－－．．．	553333.37	－11 28.67	＋6． 5.4	－0． 00		09.69										
725	1f． 6,0	19.6	22．	．．．．．．．．	570733.90															
72%	21． 231	22.3	20.8	．	404053.2	$+350.42$	－0．25	$+0.07$		C．）F． 1										
7．Tr $\begin{array}{r}7320 \\ \hline 995\end{array}$	90.6097	23． 0	20． 5		380932.19															
7. Tr． 2395	19．140	21.4	边：	．	594500.41	＋ 048.38	＋0．35	＋0． 0^{3}		69.57										
7377	33． er	20.5	23． 6		$50 \sim 75080$															
\％396	9.916	21.0	20.5	．．．．－	3851515	-1149.51	＋0．09	-0.20	．．．．．．．	12． 21										
7416	$2 \% .120$	29.6	95	－	6203 09.09															
753	13．103	43.0	21.9	．	$3607 \approx 1.09$	-701.74	＋11．30	-0.1%		0813										
7180	17．751	21.8	23． 6		45.5002 .81															
748.1	24.00%	$\stackrel{\sim}{-1.9}$	20.7	．	52034501	-314.65	$+0.54$	-0.05		09.15										
7505	1．953	23.9	22.0	\cdots	37.8006 .99															
Tald	10．508	24.3	98	．．．．．．．．	37 de me li4															
7505 6005	34.18 9.157	34.0 3.7	33.0 93.5		60 38 11， 32	-309.10														
T60	9.137	93． 7	\＄3．5	－	000621.90	-406.11	－ 010.45	-0.14		11－										
7627	90.803	95． 0	23． 0	．．．．	5． $195 \% 17$															
7686	19． $1!50$	－4．0	93．6	．．．．．	72343 cra	＋050．11	＋11． 30	＋0．012		$0 \times .75$										
7755	19．920 6	2：0	24．2	．．．．．．．．	58.4797 .16															
7765	2． 201	23.0	$\stackrel{51}{\sim} 1$－	．．．．．	394.5210 .18	$+145.81 i$	-0.51	$+0.03$		00． 10										
7787	20． 258	21．0	96． 0	．．．．．	5201 23．5， 1															
7：00	21． 114	24． 4	22.3	．．．．．	45 54 以上，87	$+050.7$	$-11,415$	$\div 0.01$		0131										
7820	11.245	ล．n． 8	94．0	．$\cdot \cdot$	4र 5000.71															
Teed	09.4%	03.5	93.9	．．．．．．．	49 25 00.96	－985．53	-0.36	－0．11i		（13）64										
7907	11． 190	93． 0	24.6	．．．．．	$744 \leq 49.10$															
794	25.8%	93.6	24.0	．．．．．	$225110.64-$	$+940.80$	－0．4．5	10． 21		1！ 3.3										
7962	$9 \% .538$	95.2	29． 21	．．．．．．．	411706.73															
8024	14．35	21.6	26.7	－- ．${ }^{\text {a }}$	56 2\％3l．č	＋648．71	-0.46	＋ 0.12	．－	$=5000$										

$18 \gamma 1$
GNITED STATES NORTHERN BOUNDARI．
Olasercutions for Latitule．

$\begin{aligned} & \text { I. A. C. } \\ & \text { No. } \\ & \text { N. } \end{aligned}$	Tuadigex．				（uryectioms．						Stemarlis．
	Microm．	Lurel．		$\begin{gathered} \text { M+ Fid. } \\ \text { disot. } \end{gathered}$	Ih． lination．	Hicrum．	1 Lers．l	İefrac．	Iicht 10natrid．	Latitule．	
		ラ．	\therefore								
				m．s ．	$-{ }^{-1}$	，${ }^{\text {a }}$			${ }^{\prime \prime}$	$=1$＇	
5115	H2． 03	200	10.3		To 10，U1，51						
2460	1：3 5－2	20， 0	21.		16（0） 41.00	$-8 \geq 0.11$	-10.40	-4.15		400002.8	July
5002	10． 134	些． 11	20． 2		3×34						
5593	30． 3×1	낭․ 11	$\because 4$	－．．．．．		$+1026.91$	$\div 16.13$	＋0．1 $=$		033．－7	
5.54	17． 519	酎：	20.7		0010 09.8						
	31.203	$\because 1.3$	$\because 80$	．．．．．	$\therefore 250303$	＋110：． 0	＋19．42	$+0.21$		03.54	
$5 \mathrm{Si4} 4$	1－． 319	21.7	上是 0								
5450	24． 010	－14 4	19．3	．．．．－	$\therefore 3 \leq 0.513$	－2．6．2．	$\div 1.15$	－1）． 6.0		＋12． 14	
5663	23， 0 20	48．2． 4	\＄1． 1		31.140 .7						
$5 \leq 33$	14． 23.9	－1．4	20． 1	．．．．．．	动动 13．10	－63．4．4	F－1．－－	$\div 0.12$		0\％：	
$5-53$	2\％9\％	43．${ }^{3}$	$\because 1.7$		$4+44$ 汉 40						
5911	14．iot	43．	$\cdots 1$		i．$\because 2$ 10．\square^{\prime}	－5 42．3\％	$\div 19.1$	－1． 111		0．2． 6.4	
6045	－2．321	⒈－	11． 3		7－1：35． 17						
6073	12．1\％	－2．3	347	－－．\cdot ．	－bill 15	－－5．3．0．3	$\cdots 3$	－11． 16		11.7	
9114	13． $6 \cdot 1$	？3． 1	$\because 3.7$	．．．．．	\％10 5						
115	－6．684	$\therefore 1.2$	$\because 3.10$		2047430	$+1.31 .35$	$+0.115$	$\div 0.15$		033.14	
6 Clig	13． 917	2.4	：3．31								
6．4．3	2\％ins	［3．3	15：3	－－－－．	174.542	$\div 741.7$	＋ 9.01	10．13		023 41	
0 llan	15． 411	35：	$33:$	－．．．．							
ぐらい	－－． 043	こ1．3	$21:$	．．．．．．	$\therefore=13$ 311．11	－ 4 55 5	$\frac{10.15}{3}$	-0.09		12．－－	
855	$1-304$	21．	－3， 5		$3: 215813.33$						
せコこ6	$\cdots 331$	$\because \square .4$	－3．${ }_{\text {¢ }}$		$1.910 \cdot 0.15$	-20.512	＋08	－0．04		112.51	
8634	23．+66	2－9	$\because 1$.	＊．．．．	4017						
60c1	15．ふ0	2.11	$\because 3$.		54051.4	－ 310 la	＋11． 111	＋11．0．7		013.23	
	17．1100	2rin	20． 31 24	－－－－－		$-3.11-7$	－1，\therefore ？	－0．03．		$113.1 \times$	
nia	211．420	？－才，	23．	．	－174．						
（i） 5	21）．-6.6	3） 3	2－5		（1） $11 i+41.012$	$\frac{1}{1} 011.46$	$\div 1.33 i$	0.00		12．91	
1－3 -30	1．7． 0.13	3－19	$\because 4.9$	．\cdot	47230308						
（1－6）	（1）4，4，	3～シ	－1．	－	50 ：33 4 － 11	－ 513%	$+1.86$	－10．0－		1）30：6	
figsi	15．141	$\because 11$	$2-5$	．－．．							
6.10	3.4 .24 .5	\＃3）－	$\because 1.3$	．．．．．	1,1 it if li．	-451.4%	0.011	-0.09		113． 16	
711：	17．201	－3－	\＃1．－		$1!\therefore 1: 1.3 t$						
－073	23． 2104	－1．11	$\because 7.1)$	－．	Srim？ 13.17	$\therefore 3: 1 \times 3$	－11．i．	$\div 0.00$		（1）． 1 ，	
－1017	11． 120	36． 4	$\because 3$.	－．．．${ }^{\text {a }}$	4－3 \％14，3i；						
7166	489．643	－3． 1	$23.1 ;$	．．．．．．．		－ 9 ：\％－－	－ 11.07	-11.17	\cdots	113．3．3	
21.2	1：5＇0	$\because 8.5$	21．1）		$\therefore \mathrm{Sin}$ ：3， 111						
2：15	－3，－1．	$\because 1.0$	23，	－－．-	1910 ： 10.41	＋5ivil	$-110 i$	＋11． 10		113．3\％	
－ $\begin{array}{r}\text {－3，} \\ \text {－}\end{array}$		12．	2n		$3-10433.21$						
－											
％．3．\％	1．5i？	$\because 4$	\because 亿	－．．．．			$\rightarrow 11.8$	－11．0．7	．．．．．．	1200113.23	

$11-$

Observations for Latilule．－Station No．1t－Continned．

$\begin{gathered} \text { B. A. } \\ \text { No. } \end{gathered}$	Feadiness．				Declination．	Corrections．				Latiturle．	Femanks．
	Mierom．	Lever，		$\begin{gathered} \text { Mterid. } \\ \text { dist. } \end{gathered}$							
		N.	S ．								
				m． 8.	\square	＂	＂	＂	＂	＇＂	
73%	30.0 .6	24.1	88.0		598800.44						
7398	10.833	30，0	80		3851 P8．0n	-957.12	$+0.7$	－0．14		490009.96	
7410	25． 246	96.7	26.8		690300.91						
4453	15．298	2 2．5	23.5	．－－－	36078411	-509.01	＋11． 80	－0．09		120．3i	
7420	18．801	30.3	94． 1		45.50 c3． 3						
74.9	21.527	96.8	3r． 1	．．．．．．	5313 d6． 13	－ 1 29， 81	＋1．09	-0.05		02． 09	
750.5	2.732	32.3	으․ 7		375808.01						
7． 56	1． 1.969	3s． 8	$\stackrel{230}{20}$		37480						
7595	32036 $\% .042$	26.0 26.0	30.0 30.6	－－．		-716.96 -213.8	+1.89 +1.12	$-11,18$ -11.04		03.74 0.85	
	17．15\％	30.0	968								
\％ 80	94．10\％	26.0	31.0		$390 \%: 21.1 \%$	＋ 3 3－53	－0．40	＋0．06i	．．．．．	02.83	
$\bigcirc \sim 9$	13． 449	31.8	30.0		520184						
T＝10	89.050	날． 9	$2{ }^{2} 0$		4554 135	$+210.1$	－0．51	$+0.03$		03.55	
720	12.917	27.7	29． 7		4－ 5010.71						
－80\％	2\％．503	28.6	28.0		448080	－：33．0e	－11． 31	－0．13		0281	
7907	8.573	28.5	\％\％ 0		24 42 49．35						
2945	30.691	26． 4	310.2	\cdots	92511.40	＋11 33． 56	－15． 34	1－0．		03．17	
71119	98． 596	27\％	29．0		411706.68						
80.4	11． 764	29.7		＊＊．．．．		＋＜4， $6=$	＋0．1	（1．15		12．72	
8036	19．462	33． 0	24.0		$4!515$						
80.59	31.047	2．i	31.0		4036 29．17	＋ 04% a	＋1）．E3	＋4． 62		03.14	
5271	23． 347	17．9	1\％． 5		$4 \geq$ 4v 50， 1						
5313	18.313	82.7	13． 0			$+2303$	＋9．5	$-11,44$		0231	July 11
5415	98.627	$1 \sim 0$	12.3		5816115.09						
5460	12． 533	$1 \% .3$	19.8		400041.17	－911．93	-0.63	－11．1\％	．．．．	02.23	
55119	10．273	15．9	18.16	\cdots	58.5013						
5583	30． 413	18.0	10.8	．．．．．．．	4 ± 0483005	＋10 3tis．	-6.33	$711.1-$	\ldots	03.94	
5.54 .5	0.713	19.0	19.0		69028190						
5124	31． 204	19． 2	19.7		25 3．7	－11 UT： 5	－11． 11	$-11 .: 1$		03． 611	
5644	17． 5006	20.3	1\％\％		129758， 91						
5 tins	23.193	1！． 5	19.3		55 Se 0，\％35	－玉 ェis．	$+11.4 \%$	-1111.5		112.010	
5608	27．358	20.8	14．9		315440						
5×2	14．603	20.8	1：5	．－．${ }^{\text {a }}$	65 50 1： 5 3\％	＋ $6: 3.4$	－－11．8．	10．12	．．	03.00	
58.30	25.841	19.7	21.10		$49493!1: 3$						
5011	14．662	23.0	15， 0		$4=2: 100.50$	－ 547%	－4．91	－ 11.80		143． 40	
604P	20． 1113	23.5	193	－．．．．	7813 05						
（10\％3	12，3：0	20.5	845	．．．．．．	24， 0415.80	－－3m． 51	＋11． 49	－11．16		10． 5	
6114	13．8\％0	2）． 7	19．5	．．．．．．	765， 5104						
tils	27.10 .30	19.9	23．	．．．．．．．	20 4 4 4，1，0	1．6．0．4	$-4-4,69$	＋7． 1.	．．．－	（2．14	
fix	12.813	93．${ }^{6}$	20.1	$\cdots \cdots$	3052503						
6215	27.685	2！ 0	280	－．．．	$174.14!14$	＋ 710.12	－4．7\％	－11．1！	－－$\cdot \cdots$	11：0i	
60：8	15． 487	9ッ，	~ 0		312081.83						
62 al	95．114	$\because 1.0$	30.4	－	$\therefore 24340.4$	－ 45.5	$+0.8$	－11． 131	\cdots	（1）54	
6312	11．945	214	23： 1	．．．．							
（636）	$2 x_{0}+1.5$	25.2	1！9．8		is 140203	f © \％ 3 ，－		＋11． 1.5	$\cdots \cdot$	113.80	
6481	$\underset{\sim}{2} \cdot 117$	23.5	21.8		$4117: 32!3$						
4．471	41．512	23.6	2.0		At 42（1） 4.15	＋ 01% \％	－13． 31	（1） 0	\cdots	0： 5	
655．3	12．583	20.1	210	－－．．．	$30181: 3,-3$						
6.026	20． 0.0	9－8	21.9		45.4 4i 14，5：	304.35	14．67	-11.11	．	110013.12	

Observations for Latitme．－Ntation No．14－Continued．

B．A．C．	Readings．				Declination．	Corrictions．				Latitule．	Remarks．
	Microm．	Level．		Mlitid． dist．							
		N．	S．								
				m．${ }^{\text {a }}$	－ 10	＇＂	＂	＂	＂	－． 1	
66.4	23．4．99	21．0	993		40074	$+259.48$	＋0．91	$+0.05$		19 c0033． 16	
682	12． 264	23.5	24.0		43.858 .14						
6.48	23.101	25.9	－10		， 14040.71	-30194	＋0．76	-0.0%		0．． 71	
67.0	90．33\％	$\because 4.7$	23.8		2i6 40 505 59						
be1\％	20.731	24．8	81.0		（4） 16 ts． 01	＋012．21	$+1.38$	0.00		03． 114	
6830	15． 8	24.0	95								
de6as	2管54	47.0	－ 6	\ldots	5003034.40	-503.04	＋0．26	－0．0．0		（13．	
6， 605 6050	$15,4.3$ 21017	218	218			－433．94	＋0．04	－（1）（6）		02.90	
	1\％． 540	늑	2－9		（i） 51 O1．4．3						
20.3	24.106	26.0	2－2		8680	＋230．23	$+0.13$	＋0． 616		133.14	
7100	10．Eith	24.0	11		1984823						
Tliti	24.410	$\because 2.8$	23.2	．．．．．	3583834.91	-93612	＋10． 20	－0． 17		03． 31	
7215	11． 26	94．61	＋1，8		 40 40 as． 15	＋54820	－0．04	$+0.10$		03.30	
73：0	93．4in	2	21.4		$33^{4} 093380$						
	18．205	$\because 5$	－1i．	．．．．		－2 40.6	＋0．42	$+0.0 \%$	\ldots	03． 12	
737	29．853	只 4	2 ta .5		59\％						
73315	10． 1200	－\％． 1	$\because 1.8$	\ldots	cis 31 5．a．is	－！ 1 27．00	40.9	－0．1＊		02． 13	
If16	25． $5 \cdot 5$	25.4	23.8		$\text { 䢒 } 0180$						
24.3	15．504	？4．8	$\because 4.5$		56485	－a 09.33	＋0．12	－0，09			
740	19．018，	21． 20	29．7			-12	＋（0，4 4	－0．0：		（13．12	
	2．3！0	05． 9	23．13		35－80． 3						
\％iff	1\％	20	23． 5		：19 4 4.00						
	36	S 5.4	$\because 1.3$	．．．．．．．	1.1101080	－ 716	＋0． 36	－0．1．3		04．919	
［6i05	2． 2411	25.1	25.0			$-: 1: 3.54$	＋0．31	－0． 14		$0 \leq 34$	
3027	20． 519	24.7	品 0	．．							
Iticti	12． 2×5	24.5	2．5			＋㐍93．61	± 0.56	＋0．0．7		03， 3.4	
755	17.823 21.290	28． 7	93：7			＋ 3 3． 3	$+0.51$	＋0．0．11\％		02.91	
757	1－6．015	27.1	23，${ }^{1}$	－．．．．．	动11 11.9						
T－00	43.003	$\because 3.8$	210 7	．．．．．．	4．）it（4）32	F：1．11	＋0．20	－ 10.013		133.11	
F－a	13． $2-1$	$2{ }^{21}$	\because	．．．．．．	＋650 11．117						
Tesi	27.931	2	－1．1		49.511231	－ 7364	$+0.90$	－0．13		03.90	
7907	＊ 510	26． 0	250		71 04.16						
514	30． 23	27.0			2t51 51.96	＋11：11．：31	＋0． 71	＋0．85	\cdots	13．0\％	
808		20． 1	31.6			－533011	$+0.31$	10，1，		113． 1.0	
	19．903	29 3 3	－ 4			＋114！ 42	＋1．05	＋0．02		410003.38	

$$
\begin{aligned}
& t=0 h^{\prime \prime}=1
\end{aligned}
$$

$18 \% 4$.
UNITED STATES NORTHERN BOUNDARY.
Olservations for Latitude.
[Astronomical Station No. 15-East Fork of Milk Liper, 553 milos west of Prmbina,-Olsprver, J. F. Gregory, Captain United States Engineers.-Zenith Telescopo, Würdemann No. :U.-Chronmeter, Nemus sidereal No. 1513.]

$\begin{aligned} & \text { د. A. C. } \\ & \text { No. } \end{aligned}$	Readings.				Declidation.	Corrections.				Latitude.	Temarks.
	Microm.	Lerel.		Merid. dist.							
		N.	S.								
				m. s.	- "	' "	"	"	"	\bigcirc -	
5614 5600	17.541	17.3 21.7	$\begin{aligned} & 50.0 \\ & 15.8 \end{aligned}$			-258.91	+0.71	-0.0.		490001.30	July 15.
5693	27.306	19.0	18.0		31.541 .40						
5823	14.650	20.0	13.7	655414.24	$\underline{+633.13}$	+10.51	+0.10		01.58	
6047	28.060	20.5	19.1		T2 1536						
6073	11.808	19.9	19.8		260416.36	-8 21.84	$+0.33$	-0.16		02.01	
6114	13.317	20.3	19.0		76 58 41. 10						
6157	20.415	19.0	20.9		204744.30	+6 40.30	0. 00	+0.14		12×23	
F_{596}	13.792	21.1	18.7		719593.33						
6345	27.5:1	$1 \times .4$	21.5		17.4549 .84	+734.39	-0. 16	+0.15		00.98	
6968	15.600	$2 \supseteq .0$	17.0		30808080						
6:84	25. 259	18.0	\because		5843 41.60	-500.04	0. 00	-0.19		01.93	
6.318	12.830	20.0	20.0		50.5755 .09						
6365	29.3*3	19.5	21.0		351503.39.	+832.63	-0.33	$+0.15$		02.119	
6421	20.600	20.0	20.6		491734.10						
6476	20.941	20.5	20.5		4t til vi. $3=$	+011.03	-0.13	0. 111		01.64	
653	18.406	20.7	90.7		321814.76						
6.56	22. 490	20.3	20.5	$654631 . c=2$	-206.21	40.02	-11. 01		02.08	
6624	23.680	20.7	21.0		400743.7						
0.681	17.921	21.6	20.7-	574623.12	$+258.89$	+0.13	40.05		02. 52	
678	17.460	20.7	21.9		4.32 .528 .40						
674	23.367	22.0	20.7	-	54404203	-303.49	+0.02	-0.03		01.19	
6780	20.418	23. 1	20.4		57.425						
6817	29.761	19.5	23.4		4) 16846.21	+0 10.65	-0. 49	0.00		01.88	
f830	15.350	20.1	20.7		453024.04						
6865	25.179	235	20.4	503350.10	-505.32	-0.11	-0.08		01. 3 if	
61937	15.580	20.7	23.0		3 6 29 10, 23						
6970	25.120	22.4	$\because 1.3$	\cdots	614146.41	-456.31	-0. 4	-0.09	01.61	
7024	17.45	21.0	83.0		615182.30						
7073	23. 8.50	$2 \therefore 0$	29		36020.60	$+318.03$	-0.47	$\div 0.06$		01.14	
7100	11. 0 T2	23.1	21.0		124540.60						
7166	29.631	21.0	23.5	5333 23.28	-978.36	-0.0.19	-0.17	11029	
7215	15. 103	21.9	23.4		570730.3						
7277	26.342	21.4	23.4		404053.92	+5 46	-0.50	+0. 10	\ldots	12.11	
7-Yr. $\begin{array}{r}7330 \\ 2395\end{array}$	92.870	21.9	23.6 23.1 23.1		+2:9.01	-0.55	± 0.01		$0: 11$	
7377	30.489	23.4	23.5		50280072						
7398	11. 221	21.9	24.5	38.5159 .62	-958.52	-0.83	-0.18	$\ldots .$.	01.618	
$\mathbf{7 1 6}$ 8453	25.4.46 15.460	18.5	29.0 21.6			-5, 10.2.	-1.03	-0. $11!$		490001.23	

Onservations for I．at tude．－Stution So．IV－Continned．

$\begin{aligned} & \text { E. A. C. } \\ & \text { Nie. } \end{aligned}$	leadings．				Iherlination．	Corrections．				L：titude．	Itematse．
	Sicrome．	L．rel．		Melill． hist．		Microna．	Level．	Fuftar．	$\begin{aligned} & \text { lad. to } \\ & \text { musi id. } \end{aligned}$		
		N．	s．								
				m s．	－＇．	，＂	＂	＂	＂	：${ }^{\text {c }}$	
2＋～0	19．980	124． 14	哭：	\cdots		－123．64	－1．93	－0．03		4． 00018	
5 CH	12．3011	12.1	19． 1		4083						
36.5	24．0－\％	15.0	1－9		530 30133	－8．7．：1	－13． 19	－0．0．i		11.11	Juls 16.
503	\％－93	1－：	1：		31848	－1733．55	＋0．1）	－1118		11.73	
	2f．0 0	14.0	1！1：		49.3190 .4						
5811		1i． 0	21.2	．．．．	4－ 2 21． 01.16	－3 4－12	-1.15	－${ }^{\text {（1）}} 111$		01.65	
818	3－1：－	19，－	51		72 $1: 35$						
¢i：	11．913\％	18.11	21.0	－．\cdot ．	－6 U4 16．	－8 21.00	－0． 0^{11}	－8． 11		01.3	
6，114．	141120	15．	21.4 17.4	$\cdots \cdots$		＋694．91	0.10	＋11． 14		01.96	
1－206	13．193	$1 \cdots$	21.11		8 O 5 5 53.50						
024	$\because \mathrm{B}, 1$	14．9	1514		13．4．54． 94	ti 3080	－0．1－	＋ $0.1-$		$01.1 *$	
12\％	15．14	\because	14%		3418 20925						
1120	2－3：313	14．2	－19		30．43＋1．－4	-560.41	－19．14	－11． 1.9		01.5	
淮に	13513	19：7	50				－0． $4!$	－18． 1.5		01.61	
ristor	24．11い	10.1	$\because 1.11$			Texas．	－0．4！				
81801	\％018	1933	21： 11			$-(1110\}$	－0．	11． 1.0		01．：－	
1 mos	1－910	1！： 2	$\because 1.1$		32 1－15．09						
1004	20，路	24．6	20.1		15 dit 02．Uil	－20idi	－4． 31	－0．14		11.73	
	23，69\％	195	91.11		9110 0110						
16.1	14．アバ̇	11．$\%$	21.4		57416	＋25－8	－0．4：4	＋11．4：		01.23	
にす＊	15， 513		2.4 20.3	．．．		－3 03． 0	－0． 24	－0． 11.5		11．49	
150	21． 981	210	1？ 6								
1－17	21.81	17．3	查：3		（1） 16 4ti．4	＋610． 910	-1.03	10.101		01.14	
4	16．10－	14.0	$\because 11$		3n：$\because=10.4 \sim$						
16.0	2t． 1.01	21.3	19，11	．－．．．．	（1）4116． 23	－4．1．4．43	＋11． 110	－0． 019		112． 15	
20：3	1：\％	119	21.0	\ldots	f1 is and						
2117	91.1619	－114	$\because 4.6$	\ldots	35 0： 01.117	＋31．09	-6.8	－ 11.14		11.15	
\＃1 110	$11-17$	21.1	194		12104						
¢111\％		14．	413			－ 19	－11． 1.1	－1． 11		促．0	
？ 21.5	$\begin{array}{ll} 1,0 \\ 10.0 \end{array}$	$\begin{aligned} & 210: \\ & 1:! \end{aligned}$	$\begin{array}{r}\square 1.0 \\ \hdashline+1 \\ \hline\end{array}$	．．．．．			－0．6．	－ 010	．．．．．．．	1314	
- Yroma	$\begin{aligned} & \because 3 \\ & \hdashline-1 \% \end{aligned}$	$\begin{array}{ll} \because \\ 1! \\ 1! \end{array}$	（1） 6			－\％	－13：${ }^{16}$	． 1104		12．1．	
$\begin{gathered} 3 n \\ 3.1 \end{gathered}$	$\begin{gathered} 10,5 \\ 11,1.31 \end{gathered}$	$\begin{array}{r} \because 11 \\ \because 1 \end{array}$	$\begin{gathered} \because: 11 \\ \because \because 6 \end{gathered}$			－ 4.80 .61	－ 0.11	－01． 1.	．．．．．	10	
5	3i． 5.519	13．：	15：		3101010						
3：11	1．1．3．34	1．5．11	Hia ${ }^{\text {a }}$	．．．．．．	－：－11－	－A Ma，Mi	$-1 \div$	－1111		111.11	Tuly 14
1047 nivis	－	1．4	15 20 20	．．		－	2：	－ 116		（1）-3	
1.111	1：3－	1813	16．		it 511 6\％						
121．7	3i 611	1．．5	1：3． 1		216.12 .4101	1 49×2	－ 1 －	11	\ldots	118：	
1－010		18 13.0	111 1101			； 311	－111	11 －	．	1100100×10	
$\cdots 1$	枳 41	（3．0	1\％．1				－		．		

Obscrations for Letitule.-Station No. 15-Continued.

$\begin{gathered} \text { B. A. C. } \\ \text { Ňo. } \end{gathered}$	Feudings.				Declination.	Nicrom.	Currections.			Latitulf.	Temarts.
	Micron.	Lerel.		Merin. dist.							
		N.	S.						mesid.		
disfe	15.500	14. $\overline{3}$	14.5	m.s.			"	'	"	$\bigcirc \quad 11$	
$62=9$	95.17e	11.4	14. 7			-5 00. 63	11.87	0.09			
018	10.379	13.0	16.0		59.9786 .43						
6305	9x. 1 1:	14. 8	15.0		381503.85	$+53: 80$	-6. 31	-i-0.1.i		11.).	
691	21.019	15.0	14.7		491734.65						
61.6	21,364;	14.0	17.7		4-1:30 0 5, \%3	+010. in	-0.31	0.00		(11, 5!	
fini3	19.00\%	14.7	17.6		$321+1.583$						
6 n 6 6	צ3. 0.5	15.8	10.8		15450042	-805.24	-0.ri	-0.04		02. 1?	
frio4	94.141	15. 4	1\%. 1		$400 \% 4.31$						
$66 \leq 1$	15.434	1! ! 0	14.6			+957.37	-fib. (i)	$\div 0.0$,		0: 111	
0:28	17. 5-0	1\%.0	15.8		43 25, 20.96		-				
tit5	23.503	17.0	16.8		54404261	-3 0 - $4 . \mathrm{til}$	-41، $\quad 14$	-0.0.7		11. 10	
15880	21.134	16. 10	18.0		\%\% 和 5 \% + 4						
6817	21.44	13.0	10.0		t0 16 4i, 72	+00: 0.3	0. 116	0.00		(12. 11.5	
8830	14.014	16.7	17.6		4731524.61						
6845	95. $80{ }^{\circ} 3$	1\%.6	17.0	. .	$56,3350.70$	-505.94	-0.07	-0. 68		01.58	
1937	16.110	1.7 \%	19.5		3520.76						
6490	25. $0^{2} 0$	18.8	16.9		614148.19 .5	-45.172	-13.12	-0.09		02.67	
5024	15.711	17. 7	18. 1								
70.3	$\because 1.113$	Iti, !	19.3		$360 \leq 051$	+3 1\%\%t	-0.13	+0.1:6		11.	
7100	10. 282	10, 3	10.9		42 15 Hi, C0						
216it	\%8. 8.3	13.7	18.0		$55 \mathrm{Ji3} 36.93$	-939.05	-(1. fin	-0.1:		111.91	
715	15.423	18. 7	17.6		5\% $0 \% 37.41$						
727	46.618	16.9	21.1		40 40 5inc. 51	$+545.02$	-0.6is	$+0.111$		() $!$! ! !	
G 7380	203.331	19. 5	17.7								
G.. 7-Mr.2.95	18.8.1	1\%.	20.6		$59451 \sim 96$	-1232.73	-114.	+11.04		$0 \div$ il	
737	30. 223	19.6	17. 0		-1! 2- 103 30						
7308	11.433	17.	21.0		38.5110 .20	-959.17	-0. it	-0.1.		0!. 5.5	
7416	9-9.93	15.1	20.4		120020. 60						
745.3	15.469	1'). 6	19.8		3607×1.24	-510.13	-0.47	$-0.0!1$		110.7	Rujuctid.
T100	19.45	12.5	20.0								
74.9	22. 197	20.0	13.1		503645	-1	-10.17	-0.02		12. 129	
5007	3.357	19.15	90.7		3: 5\% 10.18						
70013	14.203	19.0	21.4		$374 \leq 25.51$	- 18.30	-0.1i	-0.13		02.110	
7605	$30.104!$ 7.90	20.5			(19) 3: 17 7!					○ー.	
\%			-0. 4		(0) 019 2d. ${ }^{\text {a }}$	-21300	-0.33	-0.04	49 (i0 01. 23	

Mean latitude (fil determima inns), $4!$ " $0^{\prime} 0 L^{\prime \prime}$. E'i.

$$
\begin{aligned}
\varepsilon & =0 \cdot 1 \\
\tau & =0^{\prime} \cdot 2= \\
t_{0} & =1^{\prime \prime} \cdot 1 \\
\tau_{0} & =0^{\prime \prime} \cdot 0
\end{aligned}
$$

$18 \% 4$.

UNITED STATES NORTIERS BOUNDARY．

Obscrations for Latitude．

B．A．C．	Peadings．				Declination．	Currections．				Leatiturle．	Remarks．
	Mierom	Lerel．				Sicrom．	Lerel．	Incfrac．			
		N．	S．								
				m．s．	\bigcirc－	，＊	＂	＂	＂	－\％	
2it 1	12．641	10.10	12．4	．．．．．	43\％ 03						
3150	2．3， 1.01	17． 5	12.11	．．．．．	50 ion 08.6	－ $30 \% 14$	－0． 42	-0.05		－ 50.48	July 20.
51603	514．813	17．1	17．0		31514						
5－23	11．31\％	1－． 1	1－．6	．．．．．		＋62f．${ }^{\circ}$	－0，09	$+0.13$		5．．） 3	
$5-5.3$	2． 146	$1+0$	17.0	．	414941.15						
591	11． $3: 6$	11\％ 2	\＄1， 11	．	4 $\sin ^{2} 0.3,17$	-551.68	-1.29	-0.10		515.35	
6047	®2．\square^{5}	11.0	1．1	－－r ．－	$\therefore 2380$						
60\％	11．8．3）	12．1	22．0	\cdots		－E 31，siti	－1． 13	-0.16		5．7． 30	
6114	13． 1111	1\％\％	ㄴ．11		$515-43.4$						
61.7	56.34	211	10.1	．．．．．	（1） 5^{2}（1，\％ 11	＋ 41.83	-1.36	＋0．11		5．3． 93	
$6: 06$	13． 014	180	31．$\%$		49－ 40						
	$42.45 i$	21.4	1！． 3	－－．．．	17 the 1.1 ！	$\div 31.7$	-051	＋0．13		54． 69	
Cism－	15． $3=0$	111． 7	13.7		39564.40						
6ごい	25 303	11．8．	219．7	．．．．．．	54.436 .1	－00．${ }^{\text {d }}$	-0.33	-0.04		5.540	
い引！	12.350	19． 5	20， 0								
1305	¢0，（aíl	17． 7	93． 6	－．．．．	3 － 15005		$-1 .: 3$	＋0．15		－15． 96	
01.1	691． 935	11.8	40		（1） 17838						
（12）	90.68	14． 7		－－．${ }^{\text {a }}$	44400．00	＋068）	－0．36	U． 00		5， 28	
0003	12.43	$1 \cdots 5$	21． 11	．．．．．．	$8: 1010$						
（ごご）	いづった	113．	50.1	．．．．．	Li． 4604.16	－2 14．3゙	-0.60	－0．01			
R0\％ 2	93． 015	17.8	91．－	－－．	40）（1） 15.5						
unti	1e．15\％	21． 4	20． 11	．．．．．	540 d	＋251．19	-0.511	$\pm 0.0 .3$		56． 15	
ras	15.173	1．5	2！．3		4）以近 31%						
tis	\＃3 相）	$\because 0.7$	111．5	＊－．．．．	544044.3	-311.2	－0．20	$-0.0 .7$		55.18	
C：\％	90.038	207	19． 5		57.4259 .61						
$1-17$	$\because 1.93 .4$	17.7	ㅍ：			－ 011201	-0.2	0.00		53.32	
$r=?$	15， 2	2n， 5	20.11 21.14		4i 50 50						
$t-1.3$	$2{ }^{2} 405$	1！U 0	21．${ }^{\text {a }}$		10 3\％ 5114	－5 13，${ }^{11}$	－0． 4	－0， 0		20．3）	
$6^{4} 93$	13.012	1－！	\cdots	．．．．．．	340210 20 31						
19	2， 314	沄强	1－．${ }^{13}$		11414	－5，13：315	＋17．14	－ 0.01		84．30	
2194	1\％$\%$	$\because 1.6$	ㄴ11 11		01 51， 25						
－11． 3	W1． 610	1＊：	$\because 11$		，16）（1）OK，セ1	± 3004	-0.10	＋0．010		54	
2100	11．331	20． 4	$\because 1.11$								
711.4	311． 231	\because	－1 11			－9 4．00	-0.13	－0．17		510	
\％1\％	17，P9， 19		5	\cdots	717819 310	＋5\％ 03	-1.11	± 0.10		5， 5	
：21	－b．	1－．1．	－． 1		11\％ 40	十 \quad \％．ti				15\％．0．	
7？	83－751	\cdots	$\because 11$		3－14．20． 51						
13，7ras	1．${ }^{2} 15$	1 \＆	$\because 2$		\therefore di 11．i	＋250：	－0 0	$+0.04$		82， 71	
\％	a：${ }^{3} 10$	1－1．7	배） 11		$5 \cdot 9208,17$	－10．10	-0.11			$4=-1.53$	
－．．${ }^{\text {an }}$	IT 11：	1－＊			＊－＊＊（1）．	－10．11．${ }^{\text {a }}$	－0．1．	－0．14			

151

Observations for Latitude.—Station No. 16-Continued.

$\begin{aligned} & \text { B. A. }: ~ \\ & \text { No. } \end{aligned}$	Readiugs.				Declination.	Corrections.				Latitute.	Temakks.
	Microm.	Lerel.		Merid. dist.							
		N.	S.								
				m. s.	- '"	, "	"	"	"	- '"	
716	15. 581	20.0	22. 0		630304.42						
2453	15. 248	20.8	$\therefore 1.0$		3607 ¢5. 79	$-519.1 i t$	-0. 49	-0.09		485954.91	
7480	19. 248	19.5	21.9		455907.89						
740	昭.216	21.0	20.6		520349.21	- 13 39, 19	-0.45	$-0.0 \pm$		Sos. 5	
7505	2. 807	19.7	21.1		375811.74						
7.06	18.0.55	19.1	21.9		$37404 \% 66$						
7595	32.400	$\stackrel{5}{2} 1.0$	30.5		60331953	- 7 26. 2 y	-0 51	-0.13		54, ik	
7605	7. $4: 29$	$\div 0.7$	20.8		$6006: 20.20$	-223.54	-0.33	-0.04		5.5. 0.3	
50	10. 214	14.8	11.5		690933.17						
5629	31.34	10.6	16.8	-- --	8835 \%2.94	$+1057.29$	-0.60	+0. 21	--....	51. 40	July 23
5644	17. 939	13.4	11.3		42 2755.24						
5658	$\bigcirc 3.919$	12. 7	15.1\%	553505.88	-305.76	-0.25	-0.05		-3.3. 0	
56,93	26.315	10.0	1\%.7		31.84						
5820	14.317	19.0	10.8	-	655216.18	± 695.12	+0.11	+019	----.	61. 30	
5853	20. 145	14.0	15.7		494941.93						
5911	14.64\%	16.0	14.0		46:20 US. 11	$-55 \% 10$	$+0.0 \%$	-0.10		5.5.55	
6047	28.396	20.6	13.9		72123900						
1073	11.821	10.0	18.0		9614 ± 18.09	-831.87	+1.80	-0.16		-11.82	
6114	13. 790	19.8	14.8		76.584 .36						
4157	50.658	10.10	17.5	-...'. ${ }^{\text {a }}$	$\therefore 0.1745 .43$	$+690.34$	$+0.81$	+0.14	20. 03	
624	12.805	20.0	14.8		\%9:8, 50, 68						
$6: 45$	57.306	$1 . .7$	19.0		17 4. 51. 42	$+730.44$	+0.42	+0.1-		648	
6268	15. 567	18.0	17.0		392081.72						
$62 \sim 3$	25. 553	19.5	16.0		584341.04	$-510 . \pm 0$	+1. 10	10,0!		56.119	
6018	12. 231	19.0	16.5	59.7753 .36						
6:305	$\underline{9} .400$	15.0	17.3	301505.60	+822.06	$\div 0.81$	+0.15		5\%. 11%	
f. 421	20.349	$\because 0.3$	15.0		191736.50						
64.6	20.411	13.0	28.0	134209.81	$+001.93$	-0.83	0.00		C1: 30	
6553	18.486	15.5	18.7		321817.09						
6.06	2.. 233	17.0	17.1		65 115 04. 53	- 215,03	-0. it	-0.04		54.:16	
66.4	23.370	15. 4	17.7		4007410.18						
$66 \mathrm{i}=1$	17.442	15.0	$1 \% 0$		57.10 ± 5.83	+24023	$-1.1 \times$	$+0.05$	5.5. 10	
7024	17. 683	14.8	17.9		61515						
7073	¢3. 743	16.11	15.8	360207.15	$+308.55$	-0.41	$+0.116$	---..	54.7	
7100 7166	11.037	15.0	17.0	-......	424542.61						
7166	29.951	16.5	14.0	--....	5533 34.09	- 9 4\% ${ }^{2}$	-0.33	-0. 17		26. 8	
2215	14.941	15.4	17.3	570739.60						
72%	25.792	11.0	$1 \times .7$	$40 \quad 4058.50$	$+53 \% .06$	-1.47	+0.10	\cdots	⒈ 11	
(1) 7380	82.800	17.0	15.7		$3309: 37.34$						
	17.990	14.8	I $\times .3$		59151.717	+230.01	-0. 40	$+0.01$		5.3. -3	
7377	30.177	1\%.0	16. 1	59830505						
73:38	10.612	14.8	19.5		385202.15	-1007.5	-0.91	-0.18		50, 01	
7110	23. 236	17.7	17.1	-.......	$\begin{array}{ccc}62 & 03 & 04.50 \\ 34 & 07 & 31\end{array}$						
743	14.503	16.3	19.0	\cdots	3607 2i. 11	-513.11	-0.17	-0. 14	$\therefore-0$	
7480 7409	19.914	15.3	19.1		45 45 52 0307.816						
74.9	2. 207	19.0	17.1	520350.53	- $13 \div 0 \%$	-0.12	-6.10		‥17	
Enfi	19.241	17.0	19.0		37 4297.71						
7305	3: 6.0	13.0	18. 6		60 3: 15,93	- \% 0.9\%	-0 i-	-013	\cdots.	2iti, 11	
7637	29.61.5	17.0	193		95 70 72 2013					1-8,	
7 CEO	17.705	$1!19$	17.3		723413.99	+230.2		-10.01		1-.n	

Observations for Latituate．－Station No．16－Continued．

$\begin{aligned} & \text { B. A.C. } \\ & \text { Nu. } \end{aligned}$	Hendings．				Declination．	Conrections．				Latitude．	Fiemarka．
	Microm	Lewel．		$\begin{gathered} \text { Mrid. } \\ \text { dist. } \end{gathered}$		Microm．	Level．	Iefrac．	$\begin{gathered} \text { Pesl. to } \\ \text { int rid. } \end{gathered}$		
		N.	s S．								
				m．	－＂	，＂	＂	＂	＂	－． 1	
－7is	17， 306	$\begin{aligned} & 14.8 \\ & 31.0 \end{aligned}$	16.7 31.7			＋3965	－1．03	$\therefore 1106$		4259545	
「－7	18． 410	17.0	11． 0		$5 \geq 0108$						
T－0，	，50\％	1ti．：3	18.3	．．．．．．	455111.6	$\pm \pm 0 \mathrm{th}$ ，	－01． 91	＋11．13		55． 18	
F00	12，023	13.9	90．5		125011.09						
i－ck	27．3nic	16．3	1i．r	－\cdot ．	418	－74．17	－1．if	－0．13		51.31	
230	9．119	17.5	16．0		i1 120						
7 4	31.100	$1 . \therefore 8$	19．：	．．．．．．	U2t 14．e5	＋1191．86	-0.87	410．24		等 40	
	2\％．131	15，5	13．$¢$		3151483						
$5 \cdots$	14． $2: 5$	11.9	115.9		15． 52211.61	＋6852	－11．07	＋0，1：	．．．．．	55.34	July
\％20，	20． 14.3	15.7	16.0	－－．．．．							
591	14．46\％	11.0	12．0			－5intic	－0． 311	－12． 10		5.50	
60\％	2－345	17.1	15．19		O10：34						
fil： 3	$11 \times 2 \mathrm{~m}$	1：10	14.10	－．．．．	－t 61415.51	－831．12	＋1．35	－0．11，		$\therefore 20$	
Cil1：	13． 1.63	12.4	16.1		20－4309						
1.10 .7	23． 50.1	15．5	1． 7		（5il） 47 Hi， 33	＋ 84.45	-0.14	＋0．11		55． 33	
Etar	129\％6	19.3	1413								
1：34，	27.40	12．2	$\because 1.1$		17 4． 51.85	$+: 31.56$	－0．－4	＋0．1－		54.97	
Crive	14 ！ 1011	16．1	12.4		30 c						
Citel	24．915	IV．m	17.11		5×4341.15	－50．6\％	-0.3	－0．60）		Sn cic_{1}	
6315	12．336	117\％	14．：3		50808						
	24． 513	19．19	22． 11		3－1506．16	＋58400	－1．0：	＋10．1：		58.8	
	90	15．0	19.7								
81126	20.514	$1-3$	14i． 4		4－421114	$+011.93$	-0.68	0.60		55.14	
0.503	15．39	$13: 5$	17.7		321217.50						
10－6	20． 29	17.3	1－3．3		6， 16 U5． 23	－ 2150	－0．3i	－0．01		55.34	
Cfiel	92．480	H1：$:$	1111		\＄1118 40， 30						
（1）－1	15．000	15．：	1－．．			＋－19．91	－6． 8.4	＋14．065		55.70	
	15．03i	11：．11	1i．		43 9，31．5w						
dial	23.20 .3	1\％18	17．4	．．．．		-311.36	＋18． 60	－0．0．5		51.71	
9600	20．	15.5	16．6								
－12	20．8．）	19.0	17.5		11114.410 .37	－ 0001006	＋0．91	0． 010		碞！${ }^{\text {a }}$	
a－30			1－1	．．．．．	4，3 3－3．						
（i－1． 5	ご，6こ	119	15.1		$50 \text { 等 } 525$	－ 51.8	＋0．4．5	－0．10－		50.85	
14：	1．5．54i	11.0	17.1		3681330						
131\％	crind	11.3	17．：		1，14 510．0．i	－ 50.06	＋0．91	$-0.10 \cdot 3$		－5．53	
哵1	17.53	1－7	1－9		（11） 81						
2013	23－8：	17．	13.11	．．．		＋ 310.46	-0.27	＋ 1100	\ldots	的． 2.2	
7100	101	15．．5	10.1		4：4i me3						
T116	Q！！！！	$1^{11} 5$	17： 2			－9小哭	＋0．12	－11．1：	\cdots	5113	
2015	1－317\％	190	1i． 13		和（1）40， 3						
こご	91．131	171	11.0		4111054	－$+3 \mathrm{Bl}, 011$	$\rightarrow 0.19$	－11．111		50．	
\％ 3	骂的朎	1\％：5	1－7		二a－ 19380.01						
9 T	1：	$1^{1 \prime} .10$	12：\％	\ldots.		＋2－\％\％\％	：0．13	10．019		Stio． 10.5	
\％	310．1．2	11．3	211， 6		大为 8 －M6：3						
$731-$	111．53\％	219．2	14．11	．．．．．	$3+5 \geq 112 \times 13$	－1049930	-10.00	－0．19	．．．．．	50500	
？ 11	4－100	13．13	1－11								
：173	1．）	12.16	1－． 7		33^{15}	－\therefore 只品	1033	-11.16	．．．．．．	24．4i	
		1－11	14%	．．．．．		133393	－11． 110	-1102			

Observations for Latitude.-Station No. 16-Continurd.

1874

UNITED STATES NORTHERN BOUNDARY．

Olscrutions for Latitude．
 Eagimeers－Znith Telescopm，Würdemam No．20．－Chronmeter，Nerns Sidereal No．151？J

1．A．C．	Inadings．				Veclination．	Corrections．				Latiturn．	Tiemarks．
	Mierom．	Level．		$\begin{gathered} \text { Merid. } \\ \text { dist. } \end{gathered}$		Microm．	Level．	Refrae	Ret．to nevid．		
		N	S．								
				m．s．	－＇${ }^{\prime}$	＂	＂	＂	＂	－＂	
5644	16.76 24.841	$\begin{aligned} & 91.5 \\ & 11.7 \end{aligned}$	$\begin{array}{\|c} 19.5 \\ 216.1 \end{array}$		40	-353.75	－9．11	－0． 07		485105.50	July 2.
568	2－5．93	10.8	20			＋53737	$-1 \cdot 1$	$+0.10$		06.17	
5，	2，．03	21.0	$\therefore 0$		42.49 43，0．						
511	1．3．mit 3	17.0	21.0	．．．．．．		-644.13	-9.23	－11． 11		$0 \% .37$	
ti04：	$22.81: 3$	20.5	23． 0	\ldots	7212450						
nion	10．6ri	23.0	21 \％			－ 0.93 .05	－0．4is	－10． 90		Of． 16	
6.115	11．486	园	－18	．		$+551.20$	-0.47	－-0.13		06． 70	
fixali	13．482	20.7	－1．0								
15：4．）	20.384	23.1	$\because 1 . \mathrm{K}$	．．．．．．	1\％40．0．3	－f． 641.116	－0．4．5	＋11．15	．．．．－	050.4	
gens	14．353	230	20.0		2196313						
（ixel	25.910	$\because 1.9$	2.1	－．．．．．	5，＋3 4i，6\％	-5538	－0．0i	－0111	．－．．．．	01.44	
6031－2	12．${ }^{2}$	29．0	23.1								
830		2N．	23.6		35 1． 11.07	－73！41	－0． 0.6	＋0． 1.3		OG． II	
6， $4: 1$	ก0．	$\because 1.5$	－ 1		4） 17388						
64.6	19．411	28.	$\because 1.0$		434811.5 .8	－04819	-0.41	－0，02	．．．．．．	05.20	
matis	16．1 10	$\because 1$	$\because 14$	－	32 1012.81						
Ger－i	2\％153	23.6	$\because 1.1$	\ldots	65 43 16.40	－ 00.4	－11． 41	-0.05		06．：3	
0 civa	21.503	901	$\because 16$		470745.81.						
cuel	12． 6 in	24.1	$\because 3$		It 468	＋1532	-0.1	$+0.0 .3$	．．．．	00.47	
fins	16．fiti	29	4 6		43 \％3 3 31						
1， $5=$	21． 4 4i	号号：	25.0		54 414 4，0，	－ 4028	－0．51	－19．07		06．33	
6－0	2133	$\underline{-3.5}$	23.4		5\％43，1．12						
6－1：	11． 8.1	23． 5	$\because 1.3$		40 16．0．50	－04111	－0．35	－0．120		06． 70	
1－3）	11.012	213	边								
li， 1.5	－	－ 11	27.0	\cdots		－fictir	－08：	－0．111	\ldots	016．51	
ret	1 ！	里：	21.7		$33^{2}=14.13$						
（10）	2－1． 9×11	：3．4．	$\because 3.7$		61.1151 .37	$-5.5 .83$	－0． 3 it	－0．11	．．．．．．	06.41	
：110m	0.51	40	31.9		42 45，50，\％						
Titrit	30． 314		ごっ		$\therefore 3381123$	-113307	＋0．2：	－0．11		1）： 60	
\％10：	1510.3	23． 0	470		5177418						
\cdots	21.80	？ 5	48.1		11.11 111． 16	＋ 445	＋6：	＋10．0－	．．．．	019.89	
735	2140	21.5	\because	．．．．．							
	1－2．3	\therefore \％	：1 ${ }^{\text {a }}$		\therefore ¢ 408	＋13 31	＋10．4	＋0， 113	．．．．．	106． 27	
\cdots	（30）$\because: 1$	21.1	2－5		5， 5 号（1\％						
73！	9．510	$2 \% 5$	$\because 2.6$		3n is 011．14	-1140.13	＋10．51	－0．17	．．．．．	0．3．${ }^{\text {a }}$	
7118 71.3		品号	230		C： 2108%	－¢ 11. 汸	＋0．18	－0．11			

Observations for Latifude．－Station No．17－Continued．

B．A．C．	Ieadings．				Declination．	Corrections．				Latitude．	Remaris．
	Mierom．	Level．		$\begin{aligned} & \text { Mriil. } \\ & \text { dist. } \end{aligned}$		Mierom．	Level．	Refrac	Fied．to merid．		
		N．	S．								
				m．s．	$\bigcirc{ }^{\circ} \mathrm{\prime}$	＂	＂	＂	＂	－＂	
780 7489	17.948 2.617	26.0 21.5	$\xrightarrow{24.0} \begin{aligned} & 20.0\end{aligned}$			－~ 95.03	＋0．11	－0．04		485906.28	
7505	2． 010	26.9	23.7		375814.05						
7566	17．237	27.0	21.0		374284.16						
${ }_{7}^{7505}$	33． 2×0	24.8 -4.2	26．${ }^{2}$			-818.31 -315.85	+0.27 -0.09	-0.15 -0.06		07.60	
7627	21.554	－4．9	26.5		25.2005 .35						
7686	18.236	26.7	2 s .1		7234.46 .21	＋141．51	000	$+0.03$	．．．．．．	00.31	
7753	17．8：0	25.9	26.0	013	534734.66						
776	22.830	23．7	23.0	010	390587.16	＋235．6．3	－0．98	$+0.04$	$+0.05$	0．3． 65	
7887 7800	19.096 ~ 1.53	21.8 20.0	27.0 23.6		$\begin{array}{llll}5 & 01 & 30.96 \\ 4.04 & 5 & 10.08\end{array}$	$+116.32$	－0．40	$+0.02$		06.46	
7820	12.048	26.9	21.9		的 50 17．00						
7802	$28.60{ }^{102}$	25.7	27.0	．．．．	$49250 \% 17$	-836.03	＋0．15	－0．11		06． 32	
7907	9.738 30.023	27.7 24.0	2.3 30.4 30		$\begin{aligned} & 21425.52 \\ & 24516.53 \end{aligned}$	＋1030．11	－0． 31	＋0．23		0.563	
564	16， 503	13．7	14.9		429858.84						
5658	21.143	17.3	11.0	005	553500.64	－ 3 5n． 32	＋1．16	-0.07	＋0．01	05.37	This 30.
5693	20.244	11.0	14.1		$3154+3.8 \%$						
5×23	15．442	11.8	11.0		63517814	＋ 883.54	－0．3i	＋0．10		0－32	
5853	29.757	16.1	14.9		494343.20						
5911	13．682	13.0	19.0		482204.51	-046.46	$-1.0 i$	－0 11	．．．．	06． 36	
$611 \pm$	14．52．	13.3	11.0		$70.83+1.419$						
6158	20．4． 227	14.6	16．0		204745.05	＋ 531.05	－0．03	＋0．13		07． 20	
6200	13． 451	15． 1	17． 1		395858.39						
6245	26.303	13．0	19．8		$17455 \% .51$	＋ 69.17	－1．90	＋0．15		05． 31	
5693	26．203	13.0	17.5		$3154+1.21$						
$5 \leq 23$	15． 463	17.5	15.0		$655 \geq 17.97$	＋535．60	-0.45	＋0．10		06.35	August ${ }^{\text {a }}$
5853	26．fiso	16.9	15.7		49124371						
5911	13.561	1：2．	20.4		$48 \geqslant 0 \mathrm{O} .31$	－ 646.5	-1.50	－0．11		0 0， 2	
6047	29.697	11.8	1！， 0		721241.39						
（6）73	10.576	15.0	18.0		260113.76	－92989	-1.45	－0．00		06． 02	
C114	14．3\％	15．2．	12． 2		in 5^{2} 4，6，6f						
6157	25． 630	17.3	16.1		9） 47 47， 52	$+550.17$	－0． 40	$\div 0.13$		06． 49	
6206	13．476	16． 1	17.1		20 32300001						
6245	20.363	16.4	17．1		174505.01	$+680.31$	－0． 51	＋0．15		0．5． 47	
6968	11．065	19.0	11.4		3： 2838.5						
6：z9	25.653	11.3	1：3 3		动 43 15．64	-559.86	－0．18	－0．10		0657	
6318	13．294	16.4	15.3		50880						
G369	27.884	16．5	17.0	\ldots	331507.95	＋73350	－0．31	$+0.13$		00.82	
Ct21	20． 280	16i． 3	17．3		491730.23						
6476	19.185	16.5	17．0		$454: 14.5$	－ 040.35	－0．3．3	-0.112	．	11． 99	
6553	17． 238	19．2	11.0		3212 19，34						
6.56	23.260	14.8	19.4		the 40 40．54	－ 308.06	－0．01	－0．0．i		68.33	
6624	22． 360	$1 * 3$	15.3		40 07 48，\％						
Gitel	15．5．3	16．0	17.8		37.1624 .93	$+157.43$	－0．	＋11．03	．．．－－	（16）． 13	
6723	16.378	16.4	1i．4								
6748	24.253	12.0	15.8		5140 17．07	－ 404.72	－0． 27	-0.07		$0 \cdot 71$	
6780	2． 009	16． 0	12.0		57.9303 .18						
6817	19.3 3\％	1－4	$15:$		41112 \％it． 50	－ 0 \％n．${ }^{\text {\％}}$	－0． 30	－0．02		4－29 值20	

Observations fin Latitult．－Sithtion No．17－Continuen．

$\begin{aligned} & \text { B. A. C. } \\ & \text { Ň. } \end{aligned}$	10\％ulings．				Deplinatina．	Corrmetions．				Letitude．	］emarks．
	Micrum．	I．－¢ \％ 1 ．		$\begin{aligned} & \text { Mrut. } \\ & \text { dist. } \end{aligned}$		Microm．	Leral．	Itatras．	Liod．to merid．		
		N．	S．								
				7．${ }^{\text {s．}}$	01	，＂	－	＂	．	${ }^{2}$ ，＂	
6930	14．184	1×3	15．6		4730 30.4	C（0t）${ }^{1}$	-10.0	－ 1.10		4． 5906.43	
6937	1190	1－．0	16．0		3685						
69511	26.150	17．1	1\％．2		6141585	$-55 \% .5$	$\underline{+0.40}$	-0.10	－．－．－	06.51	
20： 4	1－110	150	12.5							O6． $\mathrm{i}=$	
70.3	$2{ }^{2} 504$	11.6	1.30		3611210.43	$\pm \because 16.4!$	＋0．号	＋0．03		06．${ }^{\prime \prime}$	
－1100	10．218	18． 17	1.5 .8 15.6	0 16		-10438	± 0.35	-0.10	＋10．03	04．3＇3	Fiejectel．
$7-20$ $7-28$	11． 50 t	$\begin{array}{lll}12 & 1 \\ 11 & 1 \\ 1\end{array}$	109 14.6	－－－．．	4．5012．93	－ 8316	± 1.81	－0．14		03.01	
21115	9．-19	13．6	1： 1	．．．．．．	7143508						
2：145	30． 117	19.0	11．15	．．．．．．	－5．4．4 17．1．3	＋10： 25	$\div 0.7$	10．92		16．38	
－182	－2． $6+9$	14：	15.8		111714 Dif						
cild	1\％ 461	15.5	11.6		26 25－13．64	＋$\because 38.25$	＋1． 32	＋6．13		01505	
8010	19． 94.3	14.6	1．5． 6		$49 \text { 20 4:3! }$						
810.0	19 dex	18.4	11.5		4585	－ 0 lin 0	-1.36	0． 10		16．3．${ }^{\text {a }}$	
81バ3	16．752	13.0	$1-9$				－1．90	10．06		$0,5,83$	
と1ヵ～	2． 960	13．0	16．3	……	41 － 3 －1． 4	± 31610	-1.90	Fo． 10		0．2，－．，	
EDOE	26． 845	10．0	14．8		30838						
とごい	13 ：㜆 1	1．5． 4	1－7	－．．．．	脌015	$\cdots \mathrm{rab}$	－0， 210	－0．13		（14． 9	
－314	25.410	15．9	15， 7		73 软 92． 0						
－324	14．923	17.0	14． $\mathrm{t}^{\text {t }}$			－心\％\％	＋11	-0.11		（1）．41）	
46	23． 613	17．6	15.0 17.3		10414						
67	15． 940	15． 0	17.3		351017.15	－f010，	＋ 0.6	－0．0i		（1） 0	
190	9． 615	173	159								
175	31．： 210	15． 4	17.3		65.617 .81	-1109.1	－17． 11%	－0．<0		00.21	
198	23．062	19．0	11.8 18.1	．．．．．－	$\begin{array}{lll}47 \\ 40 & 3 & 40 \\ 40 & 40 \\ 40\end{array}$	＋\bigcirc－1．13	－11．0：	－0．05		0.70	
231 $\square-51$	？ 253 m	15.9 $1-0.11$	1： 15								
$\because 51$	$1: 413$	1 1．11	15.3		$364 \times 5: 118$	$-\varepsilon 20.70$	± 10.33	－0． 10		（13， 33	
1．12 Yr． 23	14． 204	12.7 14.3	15.5 10.2			－ 3 10， 21	－0． 51	$+0.07$		4280906	
	－3．015									＋min	

$\begin{aligned} & 0^{\prime \prime} \cdot 4-9 \\
& -\quad 0.3 \cdot 4\end{aligned}$

$70: 304$
ε_{1}
11

${ }^{\circ} 0 \mathrm{C}^{\prime \prime} .042$

1874.

UNITED STATES NORTHERN BOUNDARY．

Observations for Latiturle．

$\begin{gathered} \text { B. A. C. } \\ \text { No. } \end{gathered}$	Fterdiugs．				Declinat ${ }^{\circ} \mathrm{m}$ ．	Correalinus．				Latambe．	Liematice．
	Microm．	Level．		$\begin{gathered} \text { Murin. } \\ \text { dist. } \end{gathered}$		Micrum．	Losel．	liclrac	Fest．tit ruerid．		
		N．	S．								
				m．s ．	－＂	＇ 1		＂	＂	0 ，＂	
58.30	21． 911	18.7	16.3		494941.81						
5911	15．438	17．2	111.5		4－220\％\％ 50	－454．20	-0.0 －	－0．08		490101.31	Auginsts．
6047	27.318	17.8	20.0		T2 1042.50						
6073	1：8．808	20.0	13.5	．．．．．．．	$2604 \sim 0.90$	－ 730.72	－6． 36	－0．1．1		00．E゙）	
6114	12． $4: 12$	20.6	18.0		665847．14	1 － 13.0					
6157	22． 3100	18.7	20.5		20 45 42．42	＋ 743.50	$+0.18$	± 0.17		01.75	
63018	11．533	19.8	19.7		795359.67						
6245	12．063	≥ 0.0	19.7		174551.10	$+833.47$	＋ 11.00	$+019$		110． 60	
6263	15．950	22． 0	17．7	．．	$\because 984080.17$						
6259	93．913	14．5	21．2	．．．	5－43 14． 31	－ 407.35	＋0．36	-0.07		01.33	
6318	11． 069	19.7	20.0		53 2゙10．09						
6365	：311．170	30.0	$\stackrel{\sim}{\sim} 0.6$	．．．．．	321509.50	$+955.38$	-0.80	f－0．17	．．．．．	01， 44	
6421	19．145	21．R	19．1		4） 174498						
646	21.189	19.6	L2． 0		is 4214.31	$+103.47$	$\frac{1}{10.07}$	＋0．0：		$01 .: 1$	
6.53	19．16．5	21． 1	20．8	．．．．．．．	3219 20.94						
ti5\％6	21.551	$\because 1$. ；	21.1	．．．．．．．	135．40 3： 5.5	－ 111.87	＋18．11	－9．02		111.06	
$6+1$	21.153	21.9	90． 6		40 nithe 6						
61081	16． 615	20.8	21． 4		$57841 ; 301.93$	＋ 350.15	＋0．10	＋11．07	．．．．．	01．14	
6728	1\％．8．2	29． 1	199	．．．．．．．．	432535.64						
$6 \div 43$	20． 11.	± 0.1	21.9		5440814	－211． E ．	＋0．09	－0．0．3		（11） 43	
6700	19．530	21.0	吅1．1		57430.50						
6－17	21．	21.7	20． 7		901653.13	＋101．Es	10.80	＋0．02		01.41	
6530	17，stis	21．7	20.7		478383.33						
¢i＝65	24． 04.4	23.0	20.6		502357.6	－411．13	＋0．3．31	-0.05		01． 5	
6037	13．060	23.0	20.6	．．．．．．．	36 24 17．3！						
6950	23． 917	22.0	20.7		614154.4	$\rightarrow 401.91$	＋8．80	-0.05		01． 13.3	
210：4	16．6．33	20.6	21.8		$0151: 31.83$						
\％0：3	24．609	～2．${ }^{1}$	10．9		3416211.19	＋ $40 \% 0 \%$	$+0.50$	＋0．0\％		01.8 .8	
7100	11．63／4	21.6	2）． 3		12 45 53， 3.5						
7166	$4 \times .630$	≈ 1.9	20.0		55.33 11．is	－817．8？	$+0.72$	-0.15		04．9－	
7215	13．30\％	10.0	2．2． 9		［\％） 164500						
727	86.084	23.9	1e．9		404133.13	$+630.61$	$+0.85$	10.11		（1）． 110	
7320	23． 193	21.6	21.1		32094237						
7－Yr， 2345	16． 4.5	22.5	20.6	．．．．．．．．	51） $45 \sim 2.01$	± 300.30	＋0．5：	＋0．03		111．（1i）	
737	20．011	20.8	2.4		5，9 ¢2 11．40						
7398	11．318	23． 1	$\stackrel{12}{ } 0$	．．．．．．．．	$3 * 52$ טส．ล\％	-903.01	-0.11	－0．11i		01． $1 \times$	
7410	24． 200	91． 1	20． 0		630310.71						
74．3	16． 410	ㅇ．0	$\because 1.8$		3617731.14	-410.6%	-0.1	－0．0．－		111.01	
74－0	19，fite	Q1．	21.8		45 201315						
7109	20．6．14	ㅎ．1． 4	220		52113 50：	－ $033-0$	－0． 16	-10.11	\ldots.	4.1011 .21	

Observations for Latitule．－Station No．1s－Contimed．

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Reading．				Declimation，	Corrections．				Latitude．	Temarka．
	Microm．	Level．		Mrrid． clist．		Microm．	Lerel．	Refrac．	Red．tı， Hetid．		
		N.	S．								
				m．s ．	○＇t ${ }^{\prime}$	，＂	＂	＂		\bigcirc ，＂	
8	13．833	90．9	28．		17 12 32 00 3	－697．79	－0．1＊	－0． 11		H： 010101	
2637	23．6．4 4	2.7	21.1				－				
7tion	113．76：3	41.0	$\because 1.9$		7：314．4．9．3	＋333．73	－0．07	＋1117		01． 21 i	
785	16.218	17．7	23．0		58 17838.88						
7365	24．806	21.5	18.4		33955	$+426.83$	－0． 27	＋0．04		800.95	
2787	17.619	21． 9	？1．？		580131.46						
7800	23． 735	21.0	21.2		45.5413 .45	$+315.3$	－01． 27	＋0．05		1111	
－820		20 20.0	20．6		4＜ 50.8048	－64．4．8	－0． 38	－1）． 11		191	
$7{ }^{1 / 107}$	Q 016	21.1	21.1								
744	31.914	21.8	$\cdots 3$		24．${ }^{4} 19.05$	＋12 234	－0． 51	＋0．26		111.81	
	29.197	⒉0	21.15		1115 16，is						
といご	10.835	21.0	2			＋930．3＊	11.014	$+11.17$		01.51	
8036	$1 \times .835$	21.9	21.5		1590 116.19						
8u：	21．460	20.7	218		4－31；3＝35	＋1 10．18	-1133	$+0.102$	\ldots	03．10，	
8193	15． 110	21.0	28.11		，15 9－43 3						
8184	25.016	22.11	21.0	－－．．．．	$11 \pm 323+1$	$+5117.71$	11.00	＋11．49	．．．．．．	613	
8296	22． 80	91． 2	足11	\ldots	34，574 5						
20゙3	11． 737	23．5	20.8	．．．．．．	1is unien ity	＋5500	＋（0．20）	＋0．1：		（1）5\％	
8344	23．537	91.0	20． 0	－．．．．	73 1：30， 30						
8321	16．cie0	20．4	20， 6	$\ldots .$.	3183	33.268	＋11． 11	－10．117	\ldots	91．0：	
410	20．204	23． 0	$\because 2$	．．．．．							
67	12．119	$\stackrel{\square}{\square} 4$	$\because 1.9$	．．．．．	$371161+30$	－ 21150	＋0．11	-1.103	\ldots.	111.28	
120	11． 361	23.3	21.0								
17\％	214	2．${ }^{\text {a }}$	23.0	\ldots	11.648 1！1，tial	－ 1116.15	＋0． 00	－14． 17	\ldots	81.819	
10\％	20， 0	28． 4	28． 1	．．．．．	1738．1211						
$\because 13$	15， 5,0	21.5	2	．．．．．．	， 1115 51．15	$+44.85$	-0.97	＋0．113		111． 019	
23！	26． 304	21.0	23， 6								
389	13.715	23.7	21.0	．．．	37 In 119.6	－ 6480	＋0．02	－0．11		111．f：	
$1 \cdots \mathrm{Y}$ Y， $\mathrm{T}: 3$	15． 109	20.9	－1．19	．．．．．．．	15 H；ç，i4						
34．）	55． 10.9	23.7	$\because 1.0$	．	3014．3018	－ 5098	-0.09	＋6． 10		10：21	
4111	30． 117	号口11	\cdots	\cdots	2－11833， 13						
418	111．30，	$\therefore 0$	2？ 4	．．．		＋61）198 ${ }^{19}$	－0．25	＋11． $\mathrm{i}^{1 \%}$			
5 5 5 5	45.35 x	14．2	15． 11	－．	1117151						
541	15，310	11．0	16．0		1－ 3 alli，li－	－4．3．1	－0 ${ }^{\prime \prime}$	－0．e＇d		101．${ }^{11}$	Angucta
6047	27.094	17．0	13．3	．．．．．．							
6， 103	13．602	13． 11	15.5		20114 $\because 10$		－0． 11	－0． 1.5		14.65	
8111	12．70	14．！	16．13		if 53817						
81.7	$2 \% .15$	15， x	14． 1		刮 474	＋ 711.14	－0． 51	40.15		（1）． 2	
cism	11． 117	$1+0$	17．！								
624，	34．151）	11：． 2	14．3		17 15 50． 17	＋+3111	-0.81	＋0，1：		101． 510	
rims	16． 510	1.5	11． H		$3{ }^{3}$						
1080	21.42	13，3	21．14	．．．．．．	54．4．6 16． 5	－ 1 仿，	－11． 147	－0 11		111.4 .7	
（3318	11． 510	17.4	16：3		析 $2+1 \times 14$						
193163	29． 7.4	13.0	23．${ }^{2}$	．．．．．．．	3－15190．7		－1．31	1017		11.27	
f．lis	19．158	11.0	＋2．11	．．．．．．	$111511.1 \sim$						
1，12\％	2.255	111．0	17．3	．．．．．．	14．4211．	1－165．14	－1． 111	11． 11.	．．．．．	111 dis	
6－5 5	119020	10．2	1－6	．．．．．．	$3 \leq 1-211$						
6．inio	2l．	1！ 11	1－	．．．．．．	（1．） 11614.15	$-110.1 .0$	－14．3ti	－19．01：		1101 （11．（i8	

Observations for Latitude.-Station No. 18-Continmed.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latitnde.	Remarks.
	Hiciom.	Level.		Merid. dist.		Microm.	Lerel.	Refrac.	$\begin{gathered} \text { Perd. to } \\ \text { arerid? } \end{gathered}$		
		N.	S.								
6624	24. 24.	18.7	19. 0	m. s.		, "	"	"	"	- ' 1	
46081	16.6.34	19.0	19.1		574631.21	$+350.43$	-0.09	$+0.07$		400101.44	
7024 7073	16.741 94.745	17.8	19.9	008	6151 呺 17						
	24. 745	19. 3	18.0		3102020.21	+ 408.63	-0.18	$+0.07$	$+0.01$	00. is	
7100 7166	11.575 28.511	00.7 16.1	1fin 18		4 4 4.5 54, 06						
		16.1	21.4		5533345.05	- 547.01	-0. 27	- 0.15		0․ 13	
7215	14.015	17.1	20.1		510074064						
		~.0	17.8		404103.94	$+635.08$	-0.18	+0. 11		01.80	
	29.851 10.904	20.6 $1 \% .9$	18.5		411717.05						
	10.904	1\%.9	21.9		562545.61	+ 929.91	-0.42	+0.17		00. 99	
8036	18.453	20.3	19.7		49 22 06. 30						
c0.9	21.66	1!9.4	20.4	-	483638.72	$+130.81$	-0.00	$+0.02$		02.89	
8883	15.0.0	17.9	23.0		56 23 24. 11						
c1.	-4, 967	20.7	1!. 1		418353.86	$+50 \% 00$	-0.55	$+0.04$		01.42	
8206	20.178	18.8	21.7	0 12	?0 3755.01						
82.3	12.0 .7	21.0	19.0		670623. 22	$+851.5$	-0.80	+0.17	+0.02	01.18	
8311	23.650	91. 0	19.0		734231.28						
8324	16.831	18.0	$\stackrel{0}{ }$		212636.33	-332.13	-0.45	-0.0\%		01.35	
46	23.548	22.0	1×6		604958.21						
67	18.43:	19.4	21.11	371619.18	-207.86	+0. 40	-0.03		01.22	
120	11.760	20.7	19.8		325316.35						
15	29.705	$2!.0$	10.7		$66^{6} 5719.94$	- 917.11	+0.49	-0.17		01.35	
198	25.274	21.5	19.0		4\% 35 42 73						
21:	16. 125	20.0	20.6		5016510.77	+ 443.5%	+0.42	+0.08		00.82	
239	26. 263	18.5	93.0		\%00 255 56.6.7						
2.5	13. 66	23. 1	17.4		374490.90	-698.13	+0. 49	-0. 11		01.02	
Gr. 12.Tr. 73	15.462	20.1	20.5		斿 06438						
345	23.417	29. ${ }^{\text {a }}$	20.5	.	3045 21. 31	$+509.23$	-0.16	$+0.1 v$		02.01	
401	30.509	2t. 6	19.5								
438	10.886	19.5	21.7	6.1 3651.2 .8	+100985050	-0.02	+0. 19		49010233	

Mean latitude (60 determinations), 470 01'01."42

1874.

United states nortuern boundary.

Obsercalions for Latitude.

Obsercations for Latimde.-Station So. 19—Continued.

Olservations for Latitude--Ntation No. 19-Contimed.

$\begin{aligned} & \text { B.A.C. } \\ & \text { No. } \end{aligned}$	Readings.				Declination.	Corrections.				Latitude.	Remarks.
	Microm.	Level.		$\begin{gathered} \text { Merid. } \\ \text { dist. } \end{gathered}$		3icrom.	Level.	Lefrae.	Real 11 merid		
		N.	S.								
				m. s.	- ' "	' "	"	"	"	- . ${ }^{\text {c }}$	
6624 6645	23. 296	17.3 17.8	19.5 19.4		$\begin{array}{lllll}40 & 07 & 59 & 14 \\ 57 & 46 & 3 \% & 14\end{array}$	$+947.65$	-0.0.	+0.05		5953.29	
6\%2	16. $\mathrm{K}_{2} 1$	17.2	20.1		11.2537 .33						
6 6\%	43.141	21.2	16.4		544051.86	-316.32	+0.12	-0.05		58. 60	
6780	20.603	19.0	12.8		$\begin{array}{lllll}57 & 47 & 07.19 \\ 40 & 16 & 5 . & 11\end{array}$						
$6-17$	20.532	19.0	13.1		101655.11	- 002.21	+0.02	0.00		58.96	
6937	15.4N6	19.1	20.7		?68 1901						
6970	25.416	21.1	$1 \times .8$		614150.99	-508.46	$+1.16$	-0.09	59.61	
7624 7073	17.973	19.0	21.4		$6_{1} \quad 51 \quad 33.99$						
7073	23. 233 m	21.2	19.3	360213.69	$+305.29$	-0.11	10.05		59.07	
\%100 i16it	10.5411	31.9	12.81		$\begin{array}{lll} 40 & 45 & 55 . \\ 55 & 63 \\ 53 & 46.90 \end{array}$	- 951.07	-0. 20	-0.13		59.84	
\%915	15. 100	19.2	21.4		570747.52						
7277	25.839	20.5	20.7		404105.60	$+533.59$	-0.5-	+0.10		59.67	
	\%23.311	${ }^{21.5}$	20.0			4220.13	-0. 13	+0.0. 4		59.90	
73\%	30.401	17. 9	23,8		39 2×13 7						
7398	10. 103	${ }^{9} 3.1$	12. 5		35020294	-1011.97	-0. 99	-0.1*		59.05	
\%146	258	21.2	204		60203 0313.10						
7453	15.486	20.0	吅0		360733.166	- 5×3.37	-0.	-0.10		5134	
7480	19.024	21.3	205		4559815.29						
7809	22. 160	19.9	21.8		52035850	-137.60	-0. 2.5	-0.02		59.05	
8266	12.953	20.4	206		37424.8						
7595	27.510	21.0	20.9		6032 ± 38	- \% 32.12	-0.25	-0.13		59.03	
7627 $76 \sim 6$	20, 497	19.9 19.5				+209.26	-0.36	[11.05		59.01	
7855	17.332	19.6	20.0		5 m 47 40. 70						
7665	23. 557	19.8	14.9		390.5324	+ 39.99	-0.11	+0.06		59.20	
757	18.50.7	17.6	21.9		\% 0136.80						
T-00	2 LC 5.5	21.7	17.7		45.5115 .66	$+203.48$	-0.07	$+0.0 .3$		50.67	
\%	$\begin{aligned} & 13.20 \\ & 2 \alpha .32 \end{aligned}$		$\begin{array}{r} 17.6 \\ 2.6 .0 \end{array}$			- 741102	-0.01	-1. 13		435954.08	

$\begin{aligned} & t= \pm 10^{\prime \prime}+105 \\ & \tau= \pm 11^{\prime \prime} \leq 5\end{aligned}$
$\begin{aligned} & 70 \pm \pm 0^{\prime \prime}, 6 \% 1 \\ & \sigma_{0}= \pm 4^{\prime 2} .031\end{aligned}$

1以74.

UNited states Northern boundary.

Obsarations for Latitude.

Astronomical Station No. go-Chief Mountain Lake, 759 miles weat of Pembina, Obeprer, J. F. Gregory, Captain United States Engineers.-Zenith lidescope, Würdeman No. 20.-Chronometer, Nequs Sidereal No. 1513.

$\begin{aligned} & \text { B. A. C. } \\ & \text { No. } \end{aligned}$	Realingrs.				Declination.	Corrections.				Lit itude.	İemarks.
	Microm.	Lerel.		Meril. dist.		Microm.	Loverl.	Nefrac.	Intel. to merid.		
		N.	S.								
				72. 8.	- ${ }^{\circ}$	"	"	"	*	- ' 1	
6206	12.304	90.5	80.5		725902.42						
6245	216.924	24.6	¥1. 1		17455%	+ 734.14	-0.11	$+0.17$	490003.36	Angust 83.
6268	14.930	10.8	23.4		392631.12						
$62=9$	24. 796	$\xrightarrow{2+1}$	20.1	-.-...-.	$5 \geq 4351.80$	- 506 ,	-0.13	-0.09	04. 75	
631s	11. 890	2. 1	20.9	59 220 05, 51						
6365	2x. 126	19.0	24.0	. .	351512.36	+856.51	-0.69	+0.15		03.07	
64.1	19.960	21.5	§1.8	06	41741.25						
6476	$\Sigma 0.007$	21.1	21.5	1542 17.65	+001.	+0.0:	0.00	+0.01	02.27	Rejected.
6553	17.940	21.8	22. ${ }^{2}$		$3: 15$:3. 90						
6586	22. 260	2응	23.0		(i5 dit 1:53	-214.19	-0.31	-0.04		01.17	
6694	2. 0.99	20.8	24.0	4) 07 54.09						
6681	17. 491	!3. 0	21.3. 4	574035.01	+250.	-0.50	$+0.00$		04. 73	
6228 6748	16.778 20.997	21.5	24. 1		43 54 54 40 40 54.43						
6748	22.997	20.3	19.9	.	544054.01	- 313.21	+0. 8.3	-0.05		04.33	
${ }_{65-0}$	20.160	24.1	21. 5	574309.5						
6817	2.175	22.1	W. 5^{0}	401657.20	+ 000.4	$\div 0.0: 1$	0.00		0.3 .96	
6830	14. 701	21.0	23.1		473635.85						
6 6-6is	24.861	23. 0	24. 0		50310 ± 31	- 515.60	+0.90	$-0.0=$		033. 60	
1937	14.923	23. 0	24. \square_{1}		36 nc 21.13						
69.0	$\therefore 4.804$	81.1	21.3	...-....	61415062	- 5 06. 33	+0.71	-0.09	04. 06	
7100	11. 50.3	24.0	33.9	019	42450617						
3166	29. 773	14.0	95.0	-----...	555349.60	-9499\%	-0. 90	-0.18	+6.02	01.8	
4i3c	11. 713	19.!	14.5	59 22 0ti. 12						
636.9	57.959	13.1	21.8	351512.54	+ 805.4	-0. 74	40.15	-.....	14. 13	August 95
tifel	20.17 2	16.9	18.4		4917 小1. 513						
6456	50.261	18. 7	14.8		$451 \% 1 \% .00$	$+0020$	$+0.0!$	0.00		03.94	
6553	15.25:8	17.!	16.8	321×24.16						
6586	2-1. G10	15.8	18.5	$6 \pm 4013.5 \mathrm{~d}$	- $214-1$	-0.13	-0.03	.-.	01.06	
6084	23. 15:3	15, 7	20, ${ }^{\text {d }}$		400554.34						
6681	17.724	21.0	16. 0	.	574635.42	+2talid	$+0.02$	$+1.05$		036. 59	
6803	17.087	15.9	20.9		432.339 .81						
679	23.836	21.0	16. 0	541054.52	$-31 \%-7$	0.41	$-0.0 .1$		61. 24	
0780	20. 5.40	18.0	11. 0		574310.03						
6817	20.543	18.0	19.0		40. 16 5\%.6t	$\pm 000.0 .1$	-0.15	0.00		13.311	
6830	14. 34	17.2	19.9	4~3n 36, 28						
6865	25.124	14.9	17.	503402.5	-516.11	0.00	$-0.0=$		0.3.37	
093%	15. 293	16.!	20.6		368.81 .53						
$69 \% 0$	25.178	21.11	16.3	,	61 4: 00. 1.	-505.07	+0.92	-0.0:1		03. 91	
5024	17.743	19.5	18.0	-----.	of 51:37. 3						
7073	23. 338	19.0	18.6	..	$360: 1$ 14i, 31	+306\%	- 1112	(12.11)		80100 11: 81	

168 UNITED STATES NORTHERN BOUNDARE COMDISSION.
Obevertions for Latitule- Stution To. 20 -Continued.

Obserrations for Latitude.-Station No. 20 -Continued.

$\begin{aligned} & \text { B. A. U. } \\ & \text { No. } \end{aligned}$	Tieadings.				Declination.	Correctious.				Latitude.	Remarks.
	Microm.	Level.		Merid. dist.		Miciom.	Lerel.	Refrac.	Red. to werid.		
		N.	s.								
				m. s.	$\bigcirc{ }^{\prime \prime}$	' "	"	"	"	\bigcirc, "	
6.56	15.790	11.1	48.0		$34 \because 334.48$	- 5 co. 81	-0.62	-0.09		490004.87	Angrst ${ }^{\text {atios }}$
74	23. 361	20.0	23.0		(i) 50003.04						
7.12	18.360	290	20.5		311114.07	-204.28	-0.32	-0.04		03.91	
870	8.840 31.493	${ }_{23.1}^{19.2}$	23.4		19						
							-0.15			170003.28	

Mean latitude (20 determinations), $4,00^{\prime \prime} 0 i^{\prime \prime} .04$.
$\varepsilon=0^{\prime \prime} .503$
$t=0^{\prime \prime} \cdot 3: 5$
$\boldsymbol{c}_{\mathrm{0}}=0^{\prime \prime} . \mathrm{O}_{2} ;$
$\tau_{0}=0^{\prime \prime} .049$

UNITED STATLS NOLTHERN BOUND. S (IY.

SEPTEMLER 19.

SralluN, CASH No. 1, desh: Pemhins, Hak
Obsercations to determine the ralue of one turn of the micrometer of Zenith Telescope
 sidereal.
[Ohmerver, W, J. Twining, Cuntain [\#nited States Lurimeers,]

$t_{0}=\cdots-3 y^{\prime \prime} 11^{\prime \prime} .8$	$\sin \left(z-\tilde{z}_{0}\right)=$ cous δ situ $\left(T-T_{0}\right)$	

157 ®．

UNITED SPATES NORTHERN BOUNDARX．

Septendel： 21.

Station，Casip No．1，Neal Pembina，Dak．
Observations to determine the ralue of one division of the level of Zenith Telescope Wiarde－ mamu No．7，in terms of the mierometer．Nark，cross－huirs of Zenith Telescope No． 11.
［Observer，W．J．Twining，Captain Unitua States Engineers．］

No．		Meane．		Means．	L．evel pusi N．	rst	Leval． 10nt N．	S．				v	ev
1	$\begin{array}{r} 23.5 \varepsilon^{2} \\ .583 \\ .507 \end{array}$	$\because 3.584$	$\begin{array}{r} 21.071 \\ .057 \\ .066 \end{array}$	24.015	$\begin{aligned} & 10.0 \\ & 10.2 \\ & 10.2 \end{aligned}$	64.8 04.7 64.9	$\begin{aligned} & 51.5 \\ & 51.4 \\ & 51.0 \end{aligned}$	$\begin{aligned} & 90.2 \\ & 20, ~ \\ & 20.4 \\ & 20.4 \end{aligned}$	41.3	48.1		． 0.65	． 003364
\％	$\begin{array}{r} 24.1055 \\ .075 \end{array}$	$\because 4.069$	24.592 .572 .571	24．5e0	$\begin{aligned} & 16.4 \\ & 15.4 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 5 \times, 2 \\ & 5 \div \cdot 8 \end{aligned}$ 52.3	Gil．： 2 C．0． 0 C0． 0	14． 3 11．5 14.3	44.6	51.1	1． 1541	． 11508	．000：80
3	$\begin{array}{r} 24.571 \\ .575 \end{array}$	24．5．8	․ 4.98 .983 .987	24．9 $3 \sim 7$	18.1 18.3 18.3	$\begin{aligned} & \text { 5if. } 0 \\ & 5.8 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 5.4 .0 \\ & 53.8 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 21.2 \\ & 20.2 \end{aligned}$	3．5． 1	40.9	1．14－！	． 0003	． 0000031
4	$\begin{array}{r} 84.9-7 \\ .996 \\ .990 \end{array}$	24． 913	$\begin{array}{r} 85.414 \\ .413 \\ .412 \end{array}$	25． 113	$\begin{aligned} & 17.9 \\ & 1 . .9 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 56.3 \\ & 51.0 \\ & 55.8 \end{aligned}$	$\begin{aligned} & 5.4 .7 \\ & 5.3 .3 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 10.3 \\ & 10.4 \\ & 10.2 \end{aligned}$	33.0	43.0	1．13．1	． 002	．methora
5	34.995 .943	2．4．90：	$\begin{array}{r} 25.392 \\ .404 \\ .355 \end{array}$	25.398	$\begin{aligned} & 18.8 \\ & 1.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.8 .3 \end{aligned}$	5.4 .0 54.9 5.4		35.5	40.6	1． 1437	． 0 （10）4	． 100000
6	$\begin{gathered} 2.5 .312 z \\ .405 \\ .400 \end{gathered}$	95． 309	$\begin{gathered} 8-857 \\ =-8 i 6 \\ .-84 \end{gathered}$	2j． 863	16.0 14.1 10.0	57.1 517. 57.4	51.5 514.4 51.5	$\begin{aligned} & 1 \approx 3 \\ & 1 \approx 1 \\ & 1 \approx 2 \end{aligned}$	$3 \cdots$	46.4	1． 2002	． 0.92%	．003235
7	$\begin{array}{r} 95.848 \\ .863 \\ .862 \end{array}$	25． 858	$\begin{array}{r} 56.275 \\ 0: 57 \\ .85 \end{array}$	20． 971	$\begin{aligned} & 16.2 \\ & 16.2 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 56.3 \\ & 510.4 \\ & 56.8 \end{aligned}$	$\begin{aligned} & 53.3 \\ & 53.2 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 19.1 \\ & 1 \div 8 \end{aligned}$	37.3	41.6	1． 1153	． 0 ごい	．00107－4
R	$\begin{array}{r} 17.034 \\ .033 \\ .030 \end{array}$	17.037	$\begin{array}{r} 1.400 \\ .4141 \end{array}$	17．349	20.5 20.6 20.6	$\begin{aligned} & 51.9 \\ & 80.4 \\ & 50.5 \end{aligned}$	502 504 $5 \div 3$	$\begin{aligned} & 18.3 \\ & 1=. ~ \\ & 1=6 \end{aligned}$	33.1	36．$:$	1．1：3：	． 01.41	．060：4．3
9	$\begin{array}{r} 17.4(13 \\ .341 .3 \\ .3304 \end{array}$	17.398	17.765 $.77 \%$.766	17．30is	1.3 18.7 1.3	$\begin{aligned} & 50.2 \\ & 5.2 \\ & 53.1 \end{aligned}$	$\begin{array}{r} 41.3 \\ 41.3 \\ 4!1.3 \end{array}$	$\begin{aligned} & 21.0 \\ & 31.1 \\ & 21.0 \end{aligned}$	311．！	$3 i .0$	1．1！17	． 11511	－100302\％
10		16． 767	$\begin{array}{r} 18.160 \\ .130 \\ .134 \end{array}$	$18.1 \because 1$	19.8 111.8 19.1	50.9 50.5 50.7	41.7 611.4 51.4	$\begin{aligned} & 90.9 \\ & 18.4 \\ & 1.4 \end{aligned}$	31． 11	35.4	1．1403	． 03.30	． 0608
＊11	$\begin{array}{r} 1-423 \\ 0.43 \\ 0.42 \end{array}$	18．832	$\begin{array}{r} 18.530 \\ .511 \\ .5 \div 5 \end{array}$	1－． 531	$\begin{aligned} & 21.0 \\ & 21.0 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 4!8.0 \\ & 411.0 \\ & 49.1 \end{aligned}$	$\begin{aligned} & 50.2 \\ & 510.11 \\ & 510.9 \end{aligned}$	$\begin{aligned} & 19.7 \\ & 1: 11.2 \\ & 211.1 \end{aligned}$	4．4． 6	30．\because	1．1111		

Meat of 1^{11} lovel $=1^{\mathrm{H}}, 11.33 \pm .0096$

$$
\begin{aligned}
& \begin{array}{l}
\varepsilon=0^{103 \%} \\
\tau=0^{3} 19.219
\end{array}
\end{aligned}
$$

1873.

UNITED STATES NORTHERN BOUNDAII.
June 15.

Ohservetions to detcrmine the culue of one division of the level of Zenith Telesenpe Wiarde-
 Tir. 4.
[Olswrove Lewiy Insin.]

1%

Tithe of lerel－Contimuer．

No．		aleabs．		Heans．	L．Wral．first 1mition．		Li vel second bosition．					v	r
					N．	s．	N．	S					
14	$\begin{array}{r} 17.140 \\ .1 .51 \\ .147 \end{array}$	17．146	17． 0,2 .163 ． fi 6 m	16． 19	$0 \times .2$ 0×1 0×1	$\begin{aligned} & 4.83 \\ & 45.3 \\ & 4.5 .7 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.3 \\ & 44.4 \end{aligned}$	$\begin{aligned} & 0.0 \\ & n \div .1 \\ & n-0.8 \end{aligned}$	3ti． 4	524	1．4：0	． 000	． 00.0000
15	$\begin{array}{r} 24.891 \\ .277 \\ .813 \end{array}$	24．20		28.310	17.0 16.3 10.1		$\begin{array}{r} 40.0 \\ 410.0 \\ 431.9 \end{array}$	$\begin{aligned} & 19.9 \\ & 1: 9 \\ & 1: 0.0 \end{aligned}$	3295	18.8	1.111	． 041	． 00016
16	$\begin{array}{r} 95.944 \\ .948 \\ 6499 \end{array}$	25.044	$\begin{gathered} 96.510 \\ \\ \\ 53 \end{gathered}$		寺号	$\begin{aligned} & 47.5 \\ & 47.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 418.5 \\ & 16.4 \end{aligned}$						
											1．4．0	．	． 00 H10 4

Mean vallet of $1^{\text {d }}$ of leved in terms of micro．1．4397．

$$
\begin{aligned}
& \boldsymbol{\varepsilon}=.043 \\
& \tau=.008 \\
& \varepsilon_{0}=.010 \\
& \boldsymbol{\tau}_{6}=.007
\end{aligned}
$$

$$
1^{\mathrm{d}} \text { ot micro. }=\text { "neoz }
$$

$$
\begin{aligned}
& 1^{d} \text { ot miero. }=" \text { ". } 20005 \\
& 1^{\mathrm{d}} \text { of level }=" .936 \pm .0043
\end{aligned}
$$

1873.

UNITED STATES NORTHERN BOUNDARY．

June 13.

Statios，A－Tmonambal Camp No．．．
Olservations to determine the rulue of oue turn of the micrometer of Zenith Teleseope Wärdemann No．20，at the enstorin elongution of Poluris，Chromometer Negus 1513， sidereal．
［Ohsorter，W．J．Twining，＇aptain Cuited States Engintra．］

$$
\begin{aligned}
& \text { A. Is of limaris, } 1^{\mathrm{b}} 11^{\mathrm{m}} 45 \mathrm{~s} \text {. } 63
\end{aligned}
$$

$$
\begin{aligned}
& \text { loterot } \delta=8.3 \pi^{9} 1906 \\
& \text { Jos talnus } b=13 \text {, mita? }
\end{aligned}
$$

$\frac{\square}{E}$		Lir	＋1．	7.	$I-T_{0}$	$2-Z_{0}$		$\begin{aligned} & \dot{\Xi} \\ & \vdots \\ & \vdots \\ & E \\ & E \\ & E \end{aligned}$	新	$\begin{aligned} & \stackrel{j}{\tilde{z}} \\ & \underset{Z}{E} \\ & E \\ & = \end{aligned}$	$Z-Z$	L \vdots \vdots \vdots	n	\cdots
1	25．	30－	33．4	$\begin{array}{llll}\text { h．m．S．} \\ 12 & 59 & \text { cis．}\end{array}$		＋176	11	－10， 10	－．0014	！． 00014	560，4：	6，	．1－4	33－3ili
2	21．i	いw．	33． 1	1400035	21 17． 3		± 11	（1． 511	．0，62	1）1）10\％	5 m \％ 81	10，0， 5	411	1＋10）
3	± 1.	$\because-7$	汹大	1 175．5	$1!1$ das：	123.81	$\therefore 1$	11． 11.5	－ 0 mar	9． 141015	5．59． 59	tiestis	02	－146）
4	21．5	－-5	33． 1	$3 \div 511$	$1 \times 11 . \bar{B}$	314．2 is	$\because 2$	0．-0	． 011.5	！ 11016	5．2．e． 116	1ix．1：7	13	$\underline{204}$
S	？3，	2－1	3．3．	4495	16 511， 3	313－ 1.3	$\because 3$	11． 910	－（1）30）	！ 3 ， 19	$55^{5} 5139$	1ientin	10	10．）
$1:$	：－ 5	34． 7	［33！	631.16	1－7 1－3	33tar，lifi	\because	0． 5.5	－ 003 st	9．00：31	50.394	18： 114	31	411
7	\because	ご．0	2i．b． 0	74\％ 5	1：3 5：${ }^{\text {a }}$	230，liti	2.7	11．lit	－ 110 － 7 i	？10，0－1	50．8． 31	（i1．！－${ }^{\text {a }}$	91	C20 1
－	21.5	近	33． 3	90195	12：311．3	2610．3	$\because 8$	＋11．${ }^{\text {a }}$	－nocio	！） 00930	55.9 .45	tis 13s	63	396\％
9	$\because 1$.		3： 3	11135	11038	\＃5．31	\because	－11．37	－． 11.414	－！9\％，	5．9．43	12， 316	． 141	1行s 1
$1 / 1$	こ11． 5	［19． 11	33.0	11.314	matios	460.15	！	10． 111	＋．omma	9．13140	5t1． 113	120．3年	$\therefore 2$	（i－6）${ }^{\text {d }}$
11	\because	呺	33：	1.3 31．1	O．2 Ma． x	$1: 4.75$	29	＋4．61	． $00-15$	9）（2）1－6	STM 41	811． 4×1	¢0	7396
1.	！4．${ }^{\text {a }}$	$\cdots 3$	3．3！	1185	0164.3	111．13	31	19．35	．10， 0	9．014．1\％	5．5）18	1i－1ti	71	4900
13	13.	ご！ 11	3\％．0	1085	$0 \% 14$.	113．13：	31	（1，0， 11	－Oiref	4．1910－4；	2031．5	lis lliat	017	41
11	1－20	ご．fi	83．3	17.31 .5	11345	－1． H^{2}	：3：	11． 3.	－ 10.6	9． 130.10	S．7\％ 41.5	61．${ }^{\text {ant }}$	． 11.7	123：5
1.	$1-$	ご－－	35．1	1！1 1：．1）	112	511．：3	3＇3	0.5	． 0137	！1． 0135	5．19．122	12x．01！	5 si	31331
Jii	17.2	－-2.	3．3． 1	21）4．3． 5	－ 010 min 51.3	＋1！1．810	\therefore	11.3 .5	． $1110=$	9．110：	5．w． 111	tied 113	72	5184
17	17.	$\therefore-4$	33．4	2：111． 3	＋00 110： 0.7	-11.112	35	（1）． 5	． 111%	！1，11115		181．．23：	.936	54.606
$1-$	11.7	39.1	32\％	23 3－5 5	11 Ect 7	12．13！	：3i	$+11 .-5$	＋．01\％	11．14\％2	可为，－ 1	1：－ 10 HH	4i！	4 4，il
11	$1+1$.	$\because 1$	促！	2．i（1）． 1	11.3 2598	i．3．1．2								
2	1．5． 5	\therefore－！	$33^{2} 4$	$\bigcirc 6$ ： 611.6	11151.7	101． 37								
$\because 1$	1.1	$\because 10$	积， 11	2757.5	111717	13.5					5.20			
？	11.5	－ 4	3：3		1743.8	16：4，$\because=$								
－3	11.	－－ 13	枵號	（3）1－，	11711－7	119．mi								
碞	13，	－-1	13： 2	3：14．11	11100.3	足い1． 13				＇on＇r＇．for	THt：ar．，	$11^{\prime \prime}+18$		
4	1．3	？ 31.6	33．3	3341.8	12118.7	9．9．93			Talate of ol	u－turo ot	$)^{\text {min }}$	．die＇．01！		
吕	1．1． 5	24．11	C3．11	3.5 （1） 5	11号め，									
$\because 7$	\because	：${ }^{-1} 1$	33．	3；37．0	1157．：	：3：1．！				$\varepsilon=11$	\％ 11 \％			
？	11.5	2910	33．11	3×135	1110.5	3．0． 5				\cdots	\％ 110			
2.1	11.	21.4	3： 3	清 $\because \cdots$	1711.7	3－3． 11.1				$r_{11}=11$	．11：\％			
：311	14.5	\＃1．11	35：	405%	$111 \% 7$	11．\％14				$\mathrm{T}_{14}=11$	． 1114			
31	11.	21． 7	32． 3	42.210	$2411:$	＋11i．13								
$3:$	！ 5.5	239．11	33.19	＋i：4\％． i	2.6115	1．is． $1 /=$								
03	$!$	＋1．	30.8	4.318 .5	23.518 .7	¢117． 7								
［1］	－． 5	4 4	纪： 3	4144.5	（1）（13．7	\％ 14.40								
Shi	\cdots ．	2．11	纪 0	4－21．5，\％										
3，	7.	3111	3：0	$4!3!20$	十000 -14	－1，111 1.5								

171
1873.

UNITED STATES NORTHERI BOUNDAIE.
June 14.
Station, ASThonomenl Cimp No. a.
Olservations to detcrmino the ralue of one turn of the micrometor of Zenith Telescope Würdemann No. 20, ut the castern clongution of Poluris, ('hronometer Tergus 1513, sideral.
[Ohserver, W. J. Twining, Captaiu Unitud States Eugineers.]
Assumed intitnte, 4 -0 $50^{\prime} 5 \pi^{\prime \prime} .0$
A. Jut Polivis, $88^{\circ} 5^{\prime}$ 4. $z^{\prime \prime} .0$

$\ln \sin i=-0$ rontas

lour coss $x_{4}=41050^{1} 55^{2}, 0$

1s\%3.

UNLTED STATES N゙OROLUERS BOUNDALI.

June 13.
Smation, Chmp No. 3.
Obserutions for culne of one dixision of lotel of Zenith Telescope No. 11, Wiirdemann, in terms of the micrometer.
[obscrura, Liunt. J. F. Gregurs.]

Obscruations for valuc of one division of level, de.-Continned.

17R 「NITEHSTATEA NORTHERX BOUNDARY COMMHSSION.
O'scrations for value wf one livivim of level, de.-Contiuued.

Obserutions for value of one rivision of lerel, de.-Continued.

180 LNTED STATES NORTIIERN HOENDAKY (OMMISSION.

Observations for ralue of one dixision of Level, de.-Continned.

UNITED STATES NORTHERN BOUNDARY．

JUNE 14.

Station，Camp No． 3
Determinalion of rulue of one turn of the Micrometer，Zemith Telescope Wiirdemann No．11， by observation of Polaris at eastern elongation．
［Observer，Captain J．F．Gregory，United States Engineers．］

		L．	s．	T	$T-T_{11}$	$Z-z_{0}$			$Z-Z^{\prime}$	R	v
				h．m．${ }^{\text {s．}}$	m． 8.	＂			＂	＂	
1	8.	39.0	420	185258.5	－32	$+697.6$	1 With 19	15．477	404.0	73． 763	6\％
2	$\varepsilon .5$	32.5	42.2	5433.5	30 E．4． 5	－bir． 0	413	． 4.7	411.8	55.079	（ix）
3	9.	38.3	42.3	5614.2	2915.	6： 6	314	． $4=4$	404	74.4111	． 117
4	9.5	37.3	4：2．5	5758.2	2749.8	590.9	4 1－19	． $4-\mathrm{T}$	407.1	74.194	214，
5	10.	38.5	4：2 4	1859 99．	25.5	555.5	＊ 150	． 475	413.3	75． 4×9	1． $1!16]$
6	10.5	37.6	44.4	1901 20：3	24 U5．7	518.1	$0 \quad 17$	． 49.	4199.7	74.510	111
7	11.	37.5	44.0	0308.5	2219.5	4×11.9	7 1＊	． 514	40 c .1	74.074	． 38.5
8	11.5	37.7	44.5	0457.0	¢031．0	448.4	$8 \quad 19$	． 49	406\％， 8	73．946	． 133
9	1：．	38.4	44.0	$01 ; 30.3$	18 4－． 7	404 E	950	． $4-3$	407.1	74．${ }^{2}$（1）	－ 1.0
10	12.5	37.5	41.0	0820.5	1707.5	$36 c^{\circ} .5$	$10 \quad 5$	－4！43	419． 4	34.343	－11：67
11	13.	37.8	44.2	1005.0	15.23 .0	331.1	11 20	－ 10%	40\％．8	71.180	－11：
1.2	13.5	37.7	43.5	1150.0	133 m .0	99\％） 6	23 34	． 40	406.9	74．85	.174
13	14.	37.3	44． 0	1332.5	115		24 3\％	． 440	$40!$ ． 6	74.304	－11．
14	11.5	37.8	43.7	1.513 .2	1014.8	220.7	25.315	． 4510	409． 0	74． 119	． 1110
15	1.5	37.1	4．4．0	1656.0	Us 32． 0	183．8	2if 37	． 4×8	400.3	14．5－1	． $1:$
16	15.5	37.1	04． 0	1843.4	$0641 . \mathrm{r}_{1}$	14i． 2	管	－ $4!6$	$40 \% .8$	74.95	． 1111
17	16.	37.0	44.8	20.20 .2	0501.8	10e． 4	2989	－402	948.7	74.417	． 1110
18	16.5	37.8	43． 4	2206.7	$03 \stackrel{1}{2} 3$	7－9	49 40	． 49%	$410 . \mathrm{x}$	74．71\％	－319
19	17.	37.1	44.0	2351.5	－ 111350	＋34．6	$30 \quad 41$	442	405	7 f .144	$\therefore \square$
90	17.5	36.7	44.5	2534.5	＋ 0000.5	－02．3	3142	－ 4 r	405.4	74． 235	－14
21	18.	3 3． 8	44．9	2719.0	$015+1.0$	33.19	324	． 40	411.1	74．${ }^{\text {¢ }}$（19	－． 510
22	18.5	37.3	44.0	2901.7	0333.7	76． 7	33 － 44	5．1－4i	$40 \% 1$	74.50%	11：
23	1！！	36.7	41.5	3046.5	0.51×5	114．	ง． 4	v． 1.0		－4．al\％	－1／
24	19.5	37.15	44.6	32 2×0	07 （以）． 0	15．0． F					
2－1	51.	311.6	4 So 0	3411.3	$1184 \% 3$	1E\％					
26 6128	50.5	36.6	44.7	3.516	10 23．5	2．3．		Cort. fur	$t_{1}=-$	311	
5	21.	36.4	41.9	3736.0	$1 \pm 0 \% 0$	201． 3		of one	$14=$	$31 \pm$	
98	21.5	310.0	45.0	39.33 .0	13 55． 0	509.4					
29	$\underline{2}$	35.8	4.15	9102.5	$15: 34.5$	335． 3					
30	98.5	35.8	45． 2	9251.0	17 4．3．0	3541					
31	43.	36.0	$4 \% 0$	4430.5	19 12． 5	414.4					
33	83.5	36.1	45.0	4609.3	20981.3	415.0	the dillerenc	in the le	Is at the		$\begin{aligned} & \text { teld for } \\ & \text { tionos. } \end{aligned}$
33	84.	36.0	45.1	4758.5	29830．5	4－4．1					
34	24． 5	3－7． 7	45.6	49 4－3．3	2t 14.3	S1． 2					
35	45.	36.0	45． 5	51.27 .1	255	515					
36	25.5	36.0	45.6	5315.0	2747.0	$546 . \mathrm{W}$					
37	26．	31.0	9， 5	$545(\mathrm{i} .0$	39 8ヶ． 0	63．\％， 1		，			
38	26.5	36.0	45.5	56837.2	3100.8	649． 1					
39	27.	35.6	45.6	195397.2	3259	Tres 3					
40	27.5	36.0	45.5	20 0014.8	34 4i，\sim	Tfic． 1					
41	58.	35.6	46.0	U153．8	36 ¢\％．	T－1．3					
42	2\％．5	35.6	46.0	1333.3	2805.3	816.8					
43	29.	35． 7	45.0	05 2．4．3	3956.3	\％ 36.1					
44	89.3	35.4	46.2	20 0\％ 04.0	$+4131.9$	－891． 2					

1873.

UNITED STATES NORTHERN BOUNDARY.
July 19.
Station, Tbritle Molitan Defot (east side), Dak.
Observations to determine the colue of one division of the level of Zenith Telescope Wiirdemann No. 11 in terms of the micrometer. Mark, eross-hairs of Trunsit Teleseope Fo. 4.
[Observer, W. J. Twining, Captain Cuited States Engineers.]

idis. of lavel $=1$. Thl dis. miccom.

ϵ		. 14.4
7	$=$. 1335
${ }^{19}$	$=$	1117
		. 010

1873.

UNITED STATES NORTIERN BOUNIARY.

July 18.

Station, Tulthe Mountaly Iepot (rast alde), Dik,
Obsercations to determine the value of one turn of the mierometor of Zenith Teliseope Wiurde. mann No. 11, by the castern elongation of Tularis; Chronometer 151:' Negus.
[Observer, W, J. Twioing, Captain Unitod Statcs Enpiucers.]

$\log \cot \quad \delta=8.3740,45$ \log tang $\phi=0.0616742$

t_{0} in time $=-5$ in 40.5 A. I. $=$ in $^{1} 1217 \times 5$ Sill. time of elonct. $=1$ th 18 n 35.0

logrin $\phi=982-1.111$

UNITED STATES NORTUERN BOUNDARY．

JUNE 18．j．

Fulit Duford，Dakota．
Obsercations to detomine the value of one turn of the micrometer of Zenith Teleseope Würdemann To． 20 ；Chronometer Negus No． 1513 ，eastern clongation of Polaris．
［Observer，J．F．Grpory，Captain Tnited States Engineers．］
Chronometer－time of elongation， $19^{\mathrm{b}} 1 \mathrm{E}^{\mathrm{m}} 12^{\text {an }}$ ．

No．	Cbronom． ti：ne．	Correction to motion in sertical．	Correction for level．	Cosrented thlle．	No．	Chronom． tiroo．	Correction torootion in rertical．	Corrections tor level．	$\begin{aligned} & \text { Corructerl } \\ & \text { iiwat? } \end{aligned}$	15 rev．in terval．	v
	h．m．${ }_{\text {c }}$ ．	S．	（1）	h．m． 8 ．		h．m．s．	8.	s.	h．m7．s．		
1	$183 * 40.0$	$+11 . \alpha$	$+06$	153854	31	142201.9	13.	-0.7	19 －$\because: 9$	$500-8$	3．
$\stackrel{9}{3}$	40 14， 17	10．$\%$	$+0.7$	40191	3：	23511．5	10.	0.8	23 49．	10．6	5.5
3	4138.0	4． 3	$+0.7$	414.11	3.3	5516.3	0.	1.1	2515.	17．	－1
4	4315.8	\cdots	-1.4	4：3 1f． 1	： 4	24．91．9	-0.1	1.1	$26+3$	$19.1 ;$	4.5
5	4138.	7．if	＋11．7	4140	\％	$\because 811.6$	0.8	1.1	$\square 29.3$	（18．5	34
6	41619.8	12.3	＋11．4	46.17 .5	36	－ 37.0	1）． 5	1． 2	$293 \% 6$	กब． 1	3． 11
7	4783	5.5	＋11．6	4733.7	3%	31 0．3．9	0.4	1.4	310 ± 3	10． 18	3.5
$\stackrel{7}{8}$	4．4 34．3	4.7	＋ 11.9	4－5！！	3 3	313 33． 4	0.5	1． 2	$3 \% 31.7$	11.8	1． 7
$\stackrel{\square}{10}$	5004.6	1． 1	0．01	541	39	33510.0	11.8	1．	33 37.0	118.9	3．
10	51513	3.1	0． 0	51.84	40	3750	1． 0	1.4	$35 \% 16$	131.9	4．8
11	538011	！2！	0.0	5383.5	41	$31 ; 82$	1． 3	1．4	31449.9	O1： 4	1． 3
1%		4.1 8.1	19.4 $+\quad 01$	51.80.	$4 ?$	$38 \div 0.7$	1． 5	1.4	3 s 17.	115.0	1．！
14	5\％ 513.4	2.11	＋ 0.1	81515.8	4：	$3!1410$	1． 11	1.4	3942 i	（16．） 9	1． 8
15	1－5． 111.0	1． 3	＋ 1.1 +0.1	12	4i	4113.6	\bigcirc	1.4	4110.1	0.5 .0	0.1
16	$190083 \sim 4$	1.11	$+0.2$	19196	116	$4 \because 40.0$	\％．8	1.4	4385.5	11.4	0． 6
17	$0: 01.4$	11．：	＋ 0.2	112 10.1	47	45.554	3.3	1.1	4104．	（1．）． 1	1． 13
13	0： $3: 3.5$	0.6	－0．\because	03 ［3！！	＋＊	47079	4．	1.4	4.1 ti citio． 0	04.7	11． 1
19	0151010	0.4	－0． 5	045	$4!1$	4×310	5.3	$\because 1$		10．1	3． 0
21	05 ± 7	0，\％	-0.5	065	5.10	4450	（i． 1	1.19	$4!14$	${ }_{10-1}$	3.4
$\because 1$	07.18	$11 .:$	0.0	1178	51	¢ 感， 0	7.0	1.9	416	）＝	3． 1
$2 \cdot$	014 路 3	$+10.1$	-0.4	090	5－3	$5-12 x$	4.0		516.1	－ 0 \％ 6	1.5
U3：	$104!18$	11.	-0.4	10 ＋a．6	5	¢4 119	\％． 0	$1 .!$	$5 \cdot 34$	\％	交：
24	$1 \div 11.8$	0.	－ 10.4	1：11i． 4	2.15 5.4	12 49，	！1． 0	9．1	510×6	$\because 610$	5.1
！	13 41．9	0.	-0.1	1341.5		\cdots	F．	！． 1	5；36，！	00．5）	4．1i
41	15 ck 0	1.	－1．	15117	\cdots	11.	11.3	1．${ }^{\text {r }}$	析 11.10	00． 1	$\therefore .0$
27	1635	0.	－ 0.5	1fis．${ }^{\text {1／}}$	\％in		19.	1． 11		113：3	1．\sim
$\because 8$	1－4\％ 5	0.	－ 11.1	1－13．4		20 101 18.6	1.51	1．11	19.557 .9	$0: 31$	$\because 11$
$\because 9$	154 9\％ 1	1.	－ 11.1	11：	\％）	11.3119 .10	17． 3	1.11	$\because 0101 \times 1.3$	（19）！	4．：
30	19：468．0	0.	－0．3	1！ 29 ， 50.	的	20 la 3 3－3	$\begin{array}{r}15.8 \\ -1100 \\ \hline\end{array}$	1.8 -1.5		$\begin{array}{r}\text { cib，} \\ \text { grig } \\ \hline\end{array}$	4． 3.1
	－		－－	1．20．	W．	－（1）ぶ．．．	－10．0	－1．\％	到 041%	260 0	
No	N．S．	Nor N．	\leqslant								
	d． 1.	$1]$	17.					Mreme		438	
1	$1-617$	哭 119\％	14．					lur	3．115，1fil		
\because	$1-5114.1$	：1－1： 1	1！：					hus 1icas	－mitula		
4	$1!101 \%$	311192	11． $1 ;$				lug bit	11 ota－tnrm．	1．70：0235		
5	1\％．15，14．	31.30	1！！ 1					I．DB，turn，	192\％ 18301		
${ }^{3}$	1－． $\mathrm{M}^{1} 17$	33 为为	1：1， 3				orreetion tur	rel al－tion，	－ $1^{\prime \prime} 00315$		
7	1－． 1313	313	1：1				－rrectelta＇	1： 0 atill	$10^{-2 \prime} .051$	． 110.	
\checkmark	1－． 6114.3	3 mi －5	198								
1	$1!9119$	（1）20， 0^{2}	119								
12	1－． $1!1!1$	47 90，	111.5								
13	19.019 .1	$4!1211$									
117		＂0） 21.0									
！ 11			1！ 1.1								
：1	11，岁 14．	－iti 31.0	11.7								
㫛	1！！ 11913	（1）$\% 1.0$	14．\times								
\because	\＄11．$\overline{0}$ 14．5	－									

1874

UNITED STATES NORTHERN BOUNDARY.

JUNE 14.5.

Fort Duford, Dagota
Observations to detcrmine the ralue of one turn of the micrometor of Zenith Telescope Würicmann No. 20, elongation of B. A. C. No. 240 (eastern), Chronumeter Negnes $1 \tilde{J} 1 \ldots$, sidereal.
[Obserfer, J. F. Gregory, Captaía United States Enginoers.]
Chronometer time of olongation, $126^{6} 50^{2}$.

1ぶれ

UNITED STATES NORTHERN BOUNDARY．
JUYE 15．え．
FORT ELCORD，D．AEOTA．
Observations to determine the ralue of nat turn of the micrometer of Zenith Telcocope Wiirdemana So．20，Chromometer Negus 1513 ，eastern clongution of Pelaris．
［Ohserver，J．F．Gremory，（aptain Eaited States Engineers．］
Chromemetertime of flongation， $19^{\mathrm{h}} 1 \mathrm{E}^{\mathrm{n}} \mathbf{1 0} 0^{\circ}$ ．

No．	C Clamoma iftue．	Currection to mation in rertionl．	Comention furlued．	Correatad tinke．	No．	Chemman． time．	Correction to notinil in rextienl．	Correctini for lexel．	$\begin{aligned} & \text { Correcesed } \\ & \text { timbt? } \end{aligned}$	$\begin{aligned} & \text { 12ruv, in } \\ & \text { tuc... } \end{aligned}$	\imath^{\prime}
	h．m，s．	E	S．	\％．m．s．		h．m．s．	ε.	8.	h．m．s．	8.	\therefore S．
1	1－33 1：0	$\div 17.3$	$-1 . \%$	1－33－1	$\because 5$	19 リヒ 1：1－	－．	$+.6$	10） $0=20$ e	2012．	3.3
\because	31：34． 0	15 \％	1.1	3151.3	21	（1）58．0	． 1	． 5	（1） 42.6		4.8
3	31\％ 15	14.1	1．${ }^{3}$	2ti 2ll 1 ，1i	\because	111.14	0.	5	11 12：！	91， 3	4.1
\pm	3535.6	1：\％	1．！	3510.4	$\because-$	1243.11	11.	；	12 4， 7	9\％． 3	E． 1
i	39090	11.3	3	311－1	\because	141ミ ！	0.	－	140.11	（17）$)^{4}$	1．7
$1 i$	40）3\％． 4	11.0	9.4	4）1．1． 1	：3＇	1－1 33.4	1.	1． 1	1． 313.1	－1 1	． 1
；	4t2 14.7	9.11	$\because 4$	－i 211.3	\＄1	185%	0.	1.1	165 5	\cdots	1．2
－	4；31． 11	$\therefore 11$	2． 1	438	31！	18.6 \％	1.	1.11	1－ローム	12： 11	2－
！	445% is	（2． 3^{3}	$\because 1$	$4.911 \sim 3$	3.3		0.	1.11	$1!150$	112）	3 5
111	4t3 2\％：0		1．：	40\％31．：	$\because 1$	$\therefore 1.4$	1.	1.1	21 $2 \times$ \％	41．3	$\because 1$
11	45.34	$\therefore \because$	1．	4\％$\because=$	5.7	2 L 4：16	11.	1．2	2 4 4．6	！ 10.6	1.4
12	4123.6	4.5	1.7	415	S	O4 1． t	0.	1.0	Et 110 ，	！11． 2	1.0
$1: 3$	$5051 . \%$	3．－	1.7		37	5 ¢ 41.3	1.	1.11	234 4	E！ 11	－ 2
14	514%	3． 3	1.7	51210.1	3 －	$\therefore 17$.	－． 1	1.1	5511－5	［14． 4	1． 2
$1 ;$	$534 \% 5$	2.7	1.7	， 3 4－	$3 \cdot$	二－3\％． 11	\therefore	． 4	$2-3.7$	E－：	2．1
117	\therefore 二15．6	9．3	1.7	514，${ }^{2}$	41	30 03．	． 3	1.5	31104	－\％	． 5
1.	501 3\％．5	1．！	1.4	－ $0^{4} 414$	41	31.89	． 4	1.7	3130.9	（911， 9	1.7
1－	S－13，${ }^{\text {a }}$	1． 5	1.1		$4{ }^{2}$	3258	． 1.	1．－	3254	8.5 .5	3.7
$1: 9$	1－51936	1． 2	． 4	125030	43	31 20． 4	－－	1.	3423.4	－ti． 1	31
（1）	121104.3	．$!$	\cdots	I！）（11） 115.4	4	$354 \cdots 1$	1． 14	1．：	3.14	－3．5	5．
$\because 1$	1．13300	.7	$\square .1$	$0 \leq 3 \times 1$	4%	371164	1． 3	1． 8	31109	-35	3.4
\because	（1）5－5	．	－． 3	（11） 5	41.	S－4．5	1.7	1．${ }^{\text {a }}$	3－43， 1	$\therefore 2$	211
$\because 3$	$15: 20$	4	－． 4	$05 \div 2.1$	：7	（11）11．：3	$\because 11$	$\therefore 1$	4011.1	－3， 11	6． 3
$\because 1$	$19+65$	＋．	．．．－．${ }^{\text {i }}$		1	$14+134.2$	$-\because 1$	$+\because 1$	$1: 11: 3-4$	$20-3.6$	5． 11

No	S．	\therefore	Nu．	5
1	211	1211	$3 '$	1.4
\because	$11!$	110	：3：	19．
：	$\because 11$	1）．0	34	11．7
\pm	$\therefore 1 \therefore$	1 j	37	13．1
5	\because ，	1－：	3	17．
1.	$\because 1.4$	$1-\mathrm{i}$	3.	13：
7	21．1	1－\quad－	31	1．
\checkmark	$\because 4.4$	$1 . i$	4.	$11:$
$!$	$\because 14$	1．	41	11．${ }^{1}$
111	21.4	$1{ }^{1}$	4.	$1: 4$
15	－1	19：		
$1!1$	21	1！${ }^{\text {－}}$		
4	19 －	21．11		
$\because 1$	117	2t． 11		
\because ：	$\because 1111$	14．－		
$\because 3$	111．	$\because 1.11$		
21	14.7	： 51311		
\because	10°	211		
－－	19．$\overline{5}$	$\because 11$		

$\begin{gathered} \text { Mran. } \\ \text { log } \\ \text { log } 1.1 \\ \text { loy } \mathrm{e} \end{gathered}$	$\begin{array}{r} 20-1 \times 2 \\ 3.31!9-10 \\ 1.1 .1018 \\ -35: 29.4 \end{array}$
311.812	
low rahur ot win turn． raline ous turan． Conrection f．urn	$\begin{aligned} & \text { 1. } 200 \% \\ & 10 \\ & -10 \% \end{aligned}$
True valus dau tura	0ッ゙ロ1～

$1-i$

187%

UNITED STATES NORTUERN BOUNDARY゙.

Dctermination of Chronometer corrcetions of Chronometer Negue Sidereal 1514, Iy Transit Olservations.

At Station No. 1 , Initat Pont neat Pemenna, Dak.

SEST.INT TLIE.

Station.	Date.	Olijects.	$\begin{gathered} \text { Chmonmeter } \\ \text { used. } \end{gathered}$	$\begin{aligned} & \text { Obscrred } \\ & \text { correctiou. } \end{aligned}$	Latitade.	Longi- tule.	$\begin{gathered} \text { Corraction } \\ \text { to } 1514 \text {. } \end{gathered}$
Fort I'mbina	Ang. 21	Sun............	L. 182 mm . $8 .$.	$\begin{gathered} h . m . \\ -1 \\ -1 \\ 20 \end{gathered} \frac{11.4}{}$	$\begin{array}{ccc} 0 & 11 \\ 18 & 86 & 4.5 \end{array}$	7.m. s. 16255	$\begin{array}{c:c} h . m . & s . \\ -1 & 10 \\ \hline \end{array}$
Fort Pembina............	- 4 Ug. ${ }^{\text {2 }}$	Suth.............	E. 185im. s. .	11.9			17. 5
Fort Pembina	Aug. 3	Sun	I. 1-81m.8...	10.4			16. 5
Fort Pembina............	Aug. 80	a Ophinchi..... a Perasi	N. 1514 : id . .	¢8. 6			13.3
Fort Pembina	Aug. $\mathrm{S}^{\text {a }}$	Sun.	B. 153 m .8.	10.5			-12008.4
Fort Pembiua	Sept. 1	Sun.	T. 1-8m. 9	-19000.4	185645	685	-1 19 58. 9
N. W. Augle.............	Oct. 10		N. 1514 sid ..	+ 83\%.7	492820	$650\left[3{ }^{\circ}\right]$	+ 8377
Statiou No. 2 East.	Oct. 14	Sun	N. $1319 \mathrm{~m} . \mathrm{s}$	-61647.4	4×5345	69107	$\therefore \quad 810.3$
Statiou No. © East	Oct. 16	Sun	S. 1.144 sid .	± 822.6	423945	62107	+ 8 22.1
Station No. 2 East.	Oct. 22	a Tanri a 1^{\prime} 'quasi	N. 1514 sill.	+ 8 200\%	485945	68107	+ 890.2
	Nov. 3, a.m.	Sun	N. $1319 \mathrm{~m} . \mathrm{s}$	-61506.8	$48 \therefore 20$	$620[37]$	+ 903.8
N. W. Angle.	Nov. 4, a.m.	Sun............	N. $1319 \mathrm{~m} . \mathrm{s}$	-61457.0	49220	$620[37]$	$+911.6$

1873.

UNITED STATES NORTHERN BOUNDARI.

I) tomination of chronometer corrections and resulting corrections of Sidercal Chronom. eter Negies 14S1, used with Zenith Telescope for determination of Latitude.

Sextent Time－Continued．

Station．	Date．	Oljects．	Chronnmeter nsed．	Obserted correction．	Latitude．	$\begin{aligned} & \text { Lond- } \\ & \text { and } \end{aligned}$	$\begin{array}{\|c} \text { Correction } \\ \text { to } 1461 . \end{array}$
Station No． 7	Ang． 7	San．	N． $1319 \mathrm{~m} . \mathrm{s} .$.	$\begin{array}{r} \text { m. } \\ -11 \\ -1 . \\ 54.0 \end{array}$	490150	h．m．s． 64502	
Station No． 9	Lug． 18	Sun	N． 1319 m． $8 .$.	－1821．8	435813	6） 524	－29 17．6
Station No.	Aug． 19	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$ ．	-1817.3			－80 1！：
Station Yo． 9	Ang． 20	Sun	N． 1319 m\％．8 ．．	-1752.3			－29 31．6
Station No． 9	Ang． 30	Sun	N． 1319 m .8.	-1750.1			－2939．1
Station No． 9	Ang．31，a．m．	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$ ．	－17 49．0	485818	6544	－20 33．9
Temporary Camp	Sipt．1，p．m．	Sun	2． $1319 \mathrm{~m} . \mathrm{s}$ ．．	-1916.1	490130	651 ［2］	－31050
Near camp	Scpt．3，p．m．	Sun	N． 1319 ml ．S	－20 24．0	485800	6 6－［34］	－32 00.
Station No． 10	Sept． 4	a Luotis	N．131：ma 8	－21 10.7	470040	6502	－33 11．5
Station No． 10	Sopt．J．a．m．	San	N． $1319 \mathrm{~m} . \mathrm{s}$ ．	$-21[13.01]$			－33［14． 3 ］
Station No． 10	Sept． 6	Sun	N． 1319 12． 8.	－2106．6			－33 12.3
Station No． 10	Sept．\％，a．m．	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$ ．	－2101．4	190040	656	－3319．6
Camp near No． 10.	Sept． 8	San．	N． $1319 \mathrm{m} 8 ..$.	－ 2003.2	比 ご 20	（6） 5 ［ 300	－32 21.0
Near No 10	Sept． 9	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$ ．．	－－2006．8	4－5 580	$655[? 0]$	－32 22.3
Stnay Creels．	Sept．19，p．m．	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$	－2412．1	490100	（ 58 ［ 3 C ）	
Station N ${ }_{1} 11$	Sept．14，p．m．	Sun	N． $1319 \mathrm{~m} . \mathrm{s} .$.	－35 02． 5	49 （0 5.	7004	
Station No． 11	Sept． 14	a Contis．	N． 1481 sid．	-3740.8	490055		－3\％40．
Station No． 11	Sept． 15	Sun．	N． $1319 \mathrm{~m} . \mathrm{s}$	-2506.9	490010		-3848.8
Station No． 11	Sept． 16	San	N． 1319 mm .8	－2159．2			－3741． 4
Station No． 11	Sept． 16	a Enotis	N． 14.1 sid．	－3730．8			－35 5n．
Station No． 11	Sept． 17	a Porotis \qquad a Andromedro	N． 1481 sin ．	－37 42 5	$4900{ }^{11}$	700 4：	－3\％42，
Station $\mathrm{N}_{0} 12$	Sept．~ 0	a Bootis．	N． 1481 sid ．	－4137．7	490000	7043	－ 41 3ก． 7
Station No． 12	Stpt． 21	Snn	N． $1319 \mathrm{~m} . \mathrm{s}$.	－2＞ 30.0	4－930		－4140．1
Station No．12	Scpt．${ }^{2}$	Sun	N． $1319 \mathrm{~m} . \mathrm{s}$ ．	－23 31．0			－4137．6
Station No． 12	Sept． 9.5	Sun	N． 1319 m．в	－275．6	$4 \geqslant 5930$	7015	－41930，
Temporary Camp．	Oct． 6	$\begin{aligned} & \text { a Lyrie......... } \\ & \text { a Avdromer } . \end{aligned}$	N． 1 del sid．	－23 15.3	400240	$651[50]$	－23 05．3

1873

UNITED STATES NORTHERN BOUNDARY.
Determimation of chronometer eorrections and resulting corrections of Sideveal Chronomcter Negus 1513, used with Zewith Teleserpe for determination of Latiturle.

SERTANT.

Sextant Time-Continued.

Station.	Date.	Oljects.	Chronometer nsed.	Olserved currection.	Latitude	Loneritude.	Correction to 151.3.
Station No.	Ang. 20.4			h. 710.8	$\begin{array}{cc} \circ & \prime \prime \\ 4901 & 0 \geq \end{array}$	$n . m . s$ 6	m_{-2}
Station No. 8	Ang. ~. 4	a Dootis a Audromedo	N. 1.13 cid				
Station No.8...	Aug. 96.4	a Bontis.. a Andromedie β 1'egasi........	13. 158 п. $8 .$.	-13651.2	490102	64945	-20.4.
Wood End Depot Camp...	Ang. 29.3	a Rootis. α Andrometro	N. 1013 sid. .	- $250 \% .6$	490130	6818	-23 0n. 6
Wood End Depot Camp....	Sept. 6	a Bootim......... a Andrumedis.	N. 1513 sitl..	- 21.85	430130	6515	-945\%4

1874.

UNITED STATES NORTHERS BUUNDARI．

Determination of Chronometer eorreetions，and correction of Chronometer Negus 1513， achenever used in Latitule acork， 49 th parelled．

Statiou．	Date．	Ohjuets．	Chrommeter uscd．	Obsictud correction．	Latitude．	Longl－ tude．	$\begin{gathered} 1513 \text { correc- } \\ \text { tion. } \end{gathered}$
Fart Enford	June 15	Sun	ぶ． $1319 \mathrm{~m} . \mathrm{s}$ ．	$\begin{array}{r} 7 n .8 . \\ +\quad \because 03.2 \end{array}$	$\begin{array}{cc} 0 \\ 46 & 10 \end{array}$	h．m． 6．55 5：	m．s ．
Fust linfurd	Jame 16	Smin．	N． 1319 mo s．．	$+8006.5$			
Fort linford	June 1s	Snı	土． $1319 \mathrm{~m} . \mathrm{s}$ ．	＋20 0.0			
Fort Juturd	Jume 12	a Aiguil：o．． a livotia．	人．14E1＝il ．	$-33+3.6$			
Font mafurd	Junt ${ }^{\text {a }}$	514	N． 1312 ml ．S．	$+2000.6$			
liie Muthy．	Tune 92	Silu	S． $13119 \mathrm{~m} . \mathrm{s}$ ．	$+1750.8$	ざ 0！ 10	$65-1$	
Prancluman＇s Puint	Junle－－	SILU	ㄴ．1：319 \％．	$+1639.8$	10083	4503	
Ouahing．Aslı．	Jumo 0°	Stm．	N． 1310 m .8 ．	$+1536.8$	$10^{2} 0758$	70080	
Litulo lerenpine Crefk	Jnue ${ }^{\text {－}}$	$\begin{aligned} & \text { a. Aruilat } \\ & \text { a louti } \end{aligned}$	S．1．13 sid ．．	-80.1	$4=015$	70402	－C805．1
13tugs Cruelk	June 30	SuL	N． 1319 m．＊．	： 10 co． 9	$4+161$	70693	
Iocky Creets	Juls 9	Sแい	S． 131910.8	$t=50.8$	4	7 1185	
Pruirie	Juls 3	Sin．	S． 1319 mm ． 8	＋E 10.0	434250	70×4	
Furt＇Iuruay	Jnly 4	a Cyeni．．． a linotli ．．	S．1013 sid．．．	－125．3．4	434105	70.4	－125．3． 1
Station No． 13	July 5	$\begin{aligned} & \text { a C'yuni } . \\ & \text { a linutis. } \end{aligned}$	N． 1.12 sid．．．	－13 42．	45 as 08	70.135	-1342.2
ぶィ1tion No． 13	Taly 8	$\begin{aligned} & \text { arromi } \\ & \text { a Bublis. } \end{aligned}$	ㄷ． 1513 sin	-1342.0	485 50\％	70.35	-1340
Station Nou 11	Tuly 10	5111.	S． 1319 m．s．．	$\pm 352 \%$	400003	7120	-1650.3
Siation No． 11	Tuly 11	Sinu	S． 1319 m11．s．．．	＋ 35%	490000	\％12 51	－16 5\％． 7
Sution So． 14	July 12	$\begin{aligned} & \text { arronit } \\ & \text { alyntis } \end{aligned}$	S． 1513 sid．．．	-1658.1	420003	71：59	-165.4
Station So． 15	Tuly 5	$a C \text { Crni }$ a binetis．	ภ． $1319 \mathrm{m}. \mathrm{s.}$.	－0．46． 4	490003	F 1\％ 015	－：143
Station So． 1.	J 1 ly 20	$\begin{aligned} & \text { a Cowni } \\ & \text { a lountin } \end{aligned}$	バ． 1513 sit．．．．	－2． 41.4	490003	；173ti	-2116.4
Station Sor 16	July ${ }^{2}$	＊ロ1	35． 1319 m ．	$-34 \% 4$	1－20 50	－20 4－41	－－9499
S．ation No． 16	July	$\begin{aligned} & \text { a'vini } \\ & \text { a Simbio } \end{aligned}$	N． 1319 m .8	$-3.41 .9$	$44^{2} 0$	7 2011	－-4.0
＇lemporars Station，nearsio it	Inly 2	a Poutis	N．1513＝14．．．	－25353	12508		－87 3－．3
Station Fio． 17	Tuly	S1191	N． 1319 m .8.	－：\％ 3.9	in 5000	7214	－－5 55． 3
Statinn Su， 17	A11\％－	SH：	N． 1.312 m .8.	－ 34	$1-\therefore 110$	：2141	－590． 00.
	Alle． 4	S111	S． 15133 sill．	－30 36	4911113	7－24i11	－30 בther
Stulimi Sel 1 －	Alur－	S113	大． 1319 mof	－10 $4=-$	410100	$7 \because 13$	－3：¢1．

Sextant Time-Continued.

Station.	Date.	Objeets.	$\begin{aligned} & \text { Chronometer } \\ & \text { uacrl. } \end{aligned}$	$\begin{gathered} \text { Observed } \\ \text { correction. } \end{gathered}$	Latitudo.	Longitude.	$\begin{gathered} 155 \text { correc } \\ \text { tion. } \end{gathered}$
Station No. 19	Aug. 13	Sun	N. 1319 mb 8...	$\begin{gathered} m . s . s . \\ -1+3 . \end{gathered}$	$\begin{gathered} \circ \\ 49 \\ 49 \\ \hline \end{gathered}$	$\begin{aligned} & h . m . s_{8} \\ & 7.3155 \end{aligned}$	$\begin{gathered} m . \\ -36 \\ -3.0 \end{gathered}$
Station near No. 20....	Alog. 18	a Buntis. a Andrumelia	N. 1513 sid...	-40 04. 5	490302	73533	-4004.5
Station near No. 20.	Aug. 19	a Bootis a Andromedx.	N. 1513 sid...	-4005. 8	400302	73533	-4005.8
Station No. L^{0}	Aug. 2^{3}	Sun	N. 1513 sill..	-4006.7	490000	73533	-400f. 7
Station No. 20	Ang. 25	Sinn	N. 1513 sid.	- 500092	49 0004	73533	-4009.2
Sweet Grass Depot, No. 2.....	Sopt. 1	a Beotis a Andromeda:	N. 1513 sid.	-3049.1	490108	72609	-3040.4
Fort Benton...	Sept. 10	a A ndromedie a Cm. lior a Ophiuchi...	N. 1513 sid....	-2i 2.2	4 T 4850	72239	-2724.2

N 1 - -13
1872.

UNITED STATES NORTHERN BOUNDARY.
Ineclinutions culopted in reducing observations for Latitude.

UNITED STATES NORTHERN BOUNDARY．

Declinations adopted in reducing obsercations for Latitude．

D．A． N ：	Decliuation．			Proper motion．	B．A．C．	Dec	lina	tion．	I＇roper unotius．
	－	，	＂	＂		\bigcirc	，	4	＂
4804	50	21	49．84	$-.131$	360.5	（i）	04	13． 4	－． 015
4827	47	90	37.33	$-.027$	7197	25	19	42.37	－． 1100%
4897	38	®）	07.99	＋．122	7net	T2	31	3211！	－1175
4918		43	$3!1 .+0$	＋． 168	75	EM	47	18．30	－． 033
4937		0	55.05	－－ 2 x	716	39	0.7	17\％． 11	－．036
4974	48	$0 \times$	$5!40$	$+.053$	788	5	01	13．30	－． 010
50：3	38	41	20． 33	－． 019	T200	4.5	5.3	51.29	－． 010
5097	59	21	4243	＋．032	7500	4.	4.	5 5． 14	－．10235
5241	43	43	27.63	$+.5 .6$	7 Tc 2	49	31	$4!50$	＋．004
5313			33． 40	＋．103	7962	41	16	53.26	－． 001
5415	58	16	10．11	$+.675$	8031	50	85	23， 06	－． 030
5460	40	00	48．42	－．033	80.36	49	91	43， 4	$+.149$
$550-3$		\bigcirc	39， 82	－． 013	c0．9	$4 \times$	30	15． 5	＋．1185
55 ± 3	43	09	45.66	＋． 040	c083	56	ミ2	0：3． 11	$+.209$
5545			33．80	＋．020	8128	41	20	59． 11	＋． 011
56.4	23	3.	27.73	$+.031$	－206	$3)$	37	29．1．3	－． 016
5644	43	27	54.60	－． 129	8273	97	015	08.42	－．0047
5658	55	3 S	05．53	－． 0331	K311	73	12	1：3．3	－0025
5003	31	54	46．F1	－． 0.6	Minl	34	䠔	07.7	－． 1143
5823	65	52	16．19	$+.031$	－311	c）	30	55.46	－．033i
5553		49	42．35	$+.053$	－36if	60	318	2.40	－．003
5911	43	ล2	0－ 2.8	－．023	46	$f 0$	4．	34．92	－＋100
6047	72	12	35．21	－． 279	67	37	1．5	5 3，5， 1	－． 0.55
$600^{\circ} 3$	20	04	15． 19	－． 010	$1: 11$	3：	5	41．） $4 \times$	＋．02
6114			40， 49	＋．235	17.1	（i，	57	11． 31	－．0\％
6157		47	4f． 51	$-.020$	19.4	17	35	2tl， 11	． 1100
6268	39	26	21． 16	$+.010 .7$	21.1	50	15	${ }_{2} 101$	－． 040
6289	58	43	3 t .13	＋．0．75	包的	6 6t	95	33.25	＋． 116
6318	59	$\stackrel{\square}{7}$	53.95	$+.023$	为	37	4－	3，5，－1	－．1115
6365	38	10	01．35	$+.033$	12．Yr．${ }^{3}$	68	06	04． 211	－．015
0421	49	17	30.01	＋．001	34.7	30	$4 t$	51.5	－． 016
6466	42	43	04．93	$-.143$	411	5－	01	$2 \mathrm{Ci}, 10$	－．11－9
6.553	33	13	10．48	$+.012$	4 ta	$0!$	36	318．\because	－． 047
6.508	65	45	5\％． 5	$+.0107$	$4 \div 1$	$4=$	01	23，4i	-0.1
66 ± 4			$3 \pm .14$	＋．003	$4-7$	4	3）	01．Fli	－，12\％
60.1			12．74	－． 0174	$5: 5$	510	02	50	－024
0728		25	20． 0.3	－． 044	510	51.	09	44． 12	－．031
6743		40	33． 21	＋．13．	1.11	63	45，	81．0．7	＋． 10135
6iと0	5	42	54． 54	－． 0515	6， 10	34	\square	017． 31	－． 1448
6817	40	16	33.15	－． 032	714	（if）	415	40．38	－． 0003
6037	36	23	01.47	$+.031$	58	31	13	47.22	－ 038
6.0	61	41	31.74	$+.049$	$5 \cdot 5$	119	\because	$11-03$	－．024
$70: 4$	61	51	16．11	＋． 019	－14；	T－	5.	11.11	－．015
7073	36	01	54， 59	－． 019	$97!$	7	1.5	51.111	－．（97，${ }^{\text {a }}$
7100	4.3	47	34，3：	$+.053$	909	20	31	1！ 11.5	－． $11-1$
T106		33	4\％，50	－． 110%	10.9	$\underset{\sim}{2}$	$1:$	$1 \cdots 3!$	－ 1113
515		07	$\bigcirc 8.45$	－． 4^{5}	104%	72	54	4． 50	－ 034
7：7		4）	447.5	－．020	1101	31	17．	1：1， 5.5	－． 0411
－7． 7.300	3	01	5	－． 013	1125	dif	4	（6），in）	－ 0094
7－15．939\％	5．）	4.7	0．3．9）	－－． 036	1：03	fie	41	$4 \cdots 5$	＋012
7.3%		97	53， 89	－，117	1192	35		92013	－． 011
73318	33	51	47.15	$-.023$	12゙1	5.10	$0 \cdot 1$	14．3！	． 11110
7116		${ }_{0}{ }^{2}$	53，5：	＋．031	$1 \checkmark 8$	4	0.5	40.11	，0．：$=$
7453 -4.0	30	07	10．53	－． 019					
T－0	45	58	5．5．9	$+.106$					
7409		03	36.98	－． 001					
7505	37	37	50． \％$^{\text {c }}$	＋． 00.5					

1874.

UNITED STATES NORTHERN BOUNDARY．
Declimations allopted in retucing observetions for Latitude．

B．A． S ．	Declination．			Pale 120t16ill．	B. A. C.	Wee	imat	ivn．	Proper notiona．
	2	1	＂	＂		\bigcirc	，	＂	＂
5115	11	（1）i	1．1．30	－． 012 x	7．505	60	32	23．12	－．030
517\％		（1）	4．）－	＋． 107	ins	10	（1＋i	20．－	－．015
3271		4 4	17．302	－$\quad \therefore=6$	712%	95	19	59．15	－．0175
5313		（ii）	9．8．15	1．103	T15 0	7：	34	49.23	－．1153
－ 115		10	10．15．5	－． 1163.5	二小彡	53°	45	33． 114	－． 031
510		00	$39 .-1$	－．011．3	IT．	39	14.5	\＃．11	－． 110
5008		$\bigcirc 1$	31． 419	－． 0113	\＃－7	52	11	31．23	－． 110
5 sis		（19）	35，$=$	－． 1111	T－10	45	51	10．4． 30	－． 1110
50		（1：）	号何似	＋．0\％\％	$5=11$	4	¢0	16.73	
5120		3.5	－1．（10）	$+.11 .61$	\％－3	49	25	UE． 14	－． 104
514		28	51.91	－．03－4	396	71	42	519.20	－ 0113
56，	5	i	111． 14 i	－． 11.311	－ 14.3	$2 \cdot$	54	11．11	－．024
5 ti 4.3	S1	it	41．53	－．111：2	－1102	41	17	11． 111	－． 101015
5－23	1.5		11． 14	＋．11180		， 10	95	43． 43	－． 1115
5－13		$4!$	．-29	＋．llisi	－ 639	49	：？	1204	＋14＇1
E）11		－	1910，19	－． 1111 i	Eti	48	$31 ;$	35． $11=$	＋1185
C01\％	\div	13	3i， E_{3}		－1゙3	541	$\underline{2}$	21.5	＋－20－5
4165	\because	11	15．113	－M014	－123	41	$\stackrel{\square}{2}$	1N．ES	＋． 011
1911	ii）	二	44． 31	－． 0^{6}	S：214	30	37	47．97	$\rightarrow .016$
613\％	21	47	41.10	－．1320	2－2．3	0．	110	24.40	－． 0063
6306	7！	う。	53． 27	＋． 12×2	8311	73	40	33． 20	－．0025
60．		1j	$\therefore 1.11$	－．131		21	＊	27.77	－． 1143
バきいご		\because	$\because 3,13$	（171）	E：31	10	31	15．47	－．036
（12－3）	S－	43	11． 717	－11，${ }^{1}$	－ 3 atit	6	3 st	44． 4.3	－．
tiris	ris	\＃5	，\％ 31	3．110－2	41	69	49	58.24	－．1129
ci．3tios	3－	1.1	111． 23	1． $\mathrm{MmO}^{\text {a }}$	137	： 7	36	1：5．51	－． 1133
（121	41	17	33， 100	－． $414+05$	129	$3:$	13	49．41	＋． 1 －
1） 3.16	4－	4．	10－ 31	－13ta	$1: 5$	（i，${ }^{\text {a }}$	${ }^{-1}$	$\because 1.3$	－． 1133
1，mis	32	13	14．） 11 m	＋－11208	198	17	35	\％ $9 \cdot 4$	－． 1013
$0 \cdot 20$	\therefore	$4{ }^{4}$	11．3．2）	$+.117$	810	50	16	45	－． 040
crot		117	1．3．9	＋．193\％	232	60		5\％．0．3	－．196
（1）＝1	57	17	2－3：	－．1172	4－10	3	43	5．7． 44	－ 0.016
¢19，	43	こ5	301． 53	＋．1015	$\because \mathrm{Yr} 73$	67		23． 93	－． 015
隹i＊	$\therefore 1$	40	1131	＋． 1100%	34.5	30		14．21	－． 016
小に：0	\cdots	4.3	（11） 11	－． 11.18	411	23	04	44．22	－．08\％
65\％	41	$1 ;$	4－（1）	－． $1+.8$	413	17	36	55． 10	$\rightarrow .04 \%$
1i－ d 1	4	$3 \cdot$	E14．in	－ 011.2	474	4.	04	48.112	－． $0: 1$
154%	i）	33	为家	－． 1111	4－7	47	5	210	－．105
1，459	枵	：2	11． 1°	．11！	Pix	5	$n 3$	10.8	－．006i
1.510	1．1	11	5121	． 0.7	500	50	10	06.97	－．031
20゙1	lil	51	2\％47	［3！${ }^{1}$	6111	63	46	$4=69$	＋．0035
7183	：	1－2	（以1）	－． 11111	1720	34		－4．${ }^{2}$	－．14．4
7100	12	4	4－51	．10．3	ist	6.6		（12． 1	－．n0．35
－16．，	\therefore	紿	411．：3	－． 4 2iaj	75	31	14	（13 6）	－，mis8
$\because \because$	i：	05	41．${ }^{1}$	－$\because 4$	8：5	19		23， 60	－00．
7：	4	11	$\therefore 1-13$	－． 1102	816	78	53	01．84	－．015
－1：	3－	111	35.01	－． 11.3	979	77		01． 8	－． 0606
－12． 1	S	4	1i． 41	\therefore－ 11.24	97	21		33.47	－．081
京口	il	3	\＃\％． 1 ！	－． 015	1021	2.5		25.64	－． 103
\％．31－	$3-$	\therefore	019	－． 0.5	＋60\％	7：	51	50.16	$\rightarrow .1839$
711：	$6:$	113	113． 1 仿	＋．13：	1101	31		ッ6．07	－． 010
－1．3	3is	Ui	$\because-$	－．195	1107	Si		123）	－．094
7101		S＇	11－8．$: 1$	$+.110$	1×43	倍	11	519 13	＋．012
7107			N． 57	－． 11143	12－5	35		23． 64	－．011
Tun		\therefore－	11． 11	－．．ns	1294			11．20	－． 1410
Tutit		4：	27.80	＋．102	1ヵら	45		12．00	－．0．13

104

1871.

UNITED STATES NORTHERN BOUNDARY.

Preliminary compututions relating to Ouservations made at Fort Duford, Dak, to determine the value of one revolution of micrometer of Zenith Telescone W'ïrdemann No. ©0.

Reduction of E. A. C. 240 from mean plane 1850 to apparent phace Juno 14.5, 1874.
FORMUL E.

$$
\begin{aligned}
& \tan \frac{1}{2}\left(z^{\prime}+z\right)=\tan \frac{1}{2}\left(\psi^{\prime}-\psi\right) \cos \frac{1}{2}\left(\varepsilon_{1}^{\prime}+\varepsilon_{1}\right) \\
& \frac{1}{3}\left(z^{\prime}-z\right)=\frac{\frac{1}{2}\left(\varepsilon_{1}^{\prime}-\varepsilon_{1}\right)}{\operatorname{tang} \frac{1}{2}\left(\psi^{\prime}-\psi\right) \sin \frac{1}{2}\left(\varepsilon_{1}^{\prime}+\varepsilon_{1}\right)} \\
& \text { sin ! ! ! }=\sin \frac{1}{2}\left(\psi^{\prime}-\psi\right) \text { sin } \frac{1}{2}\left(\varepsilon_{1}^{\prime}+\varepsilon_{1}\right) \\
& \gamma=\sin \theta(\tan \delta+\tan !\theta \cos A) \\
& \left(1^{\prime}-1\right)=\frac{p \sin A}{1-p \cos \Lambda} \\
& \tan \frac{1}{2}\left(\delta^{\prime}-\delta\right)=\tan \frac{1}{2} 0 \frac{\cos \frac{1}{\cos }\left(\frac{1}{2}-1\right)}{\left(1^{2}-1\right)} \\
& \begin{aligned}
\varepsilon_{1} & =23027^{\prime} 54^{\prime \prime} .8324 & \psi & =41^{\prime} 58^{\prime \prime} .72 \\
\varepsilon_{1}^{\prime} & =93^{\circ} 21^{\prime} 54^{\prime \prime} .2602 & \psi & =62^{\prime \prime} 07^{\prime \prime} .51
\end{aligned}
\end{aligned}
$$

log $\cos \frac{1}{2}\left(c_{1}^{\prime}+c_{1}\right)=9.962512$
$\log \left(\begin{array}{l}\left(z^{\prime}-z\right)=0 \\ \left.z^{\prime}-z\right)=-14+34 ;\end{array}\right.$
$\log \tan \frac{1}{2}\left(z^{\prime}+z\right)=7.400412$
$\frac{1}{2}\left(z^{\prime}+z\right)=y^{\prime} 14^{\prime \prime} .4^{2}$

$$
\begin{aligned}
& \delta=6 g 01958^{\prime \prime} .6 \\
& \delta^{\prime}=85^{0} 90^{\prime} 40^{\prime \prime} .0
\end{aligned}
$$

$\left(1^{\prime}-4\right)=0^{\circ} 54^{\prime} 21^{\prime \prime}$
Mean 18i4.0 $=12021^{\prime 2} 39^{\prime \prime} 0$

Formula for apparent A. R. and $>$:

$$
\begin{aligned}
& a^{\prime}-\dot{\delta}=f+\tau \mu+g \sin (G+a) \frac{\tan \dot{b}}{15}+h \sin (H+a) \frac{\operatorname{ref} \delta}{1}(\text { in time }) \\
& \delta^{\prime}-\delta=\tau \mu^{\prime}+g \cos (G+a)+h \cos (\Pi+a) \sin \delta+i \cos \phi \text { (in arc) }
\end{aligned}
$$

June 14.5: $888^{\circ} 20^{\prime} 36^{\prime \prime}$
Zen. dist. and chron. lime of elongation comphted lig formule as fohluws:

$$
t_{e}=\cot \delta \tan \phi \quad G_{2}=\operatorname{cosee} \delta \sin \phi \quad T_{\epsilon}=(\text { timo hong })=A . \text { R. }-(\text { chrou. corr'n })-t_{\epsilon}
$$

Nicrom. values computel by formalo as follows:
$z^{\prime \prime}=$ seconds of arc in direction of rertical from elongation, $t=$ dift. of elong. and time of obsprration.
$z^{\prime \prime}=\frac{\cos \delta \sin t}{\sin 1^{\prime \prime}}$, for which may bo written $z^{\prime \prime}=15 \cos \delta\left[t-\delta\left(15 \sin 1^{\prime \prime}\right)^{2} t^{\circ}\right]$, in which t is in secoutly of tine.
$\frac{1}{6}\left(15 \sin 1^{\prime \prime}\right)^{2} t^{3}=$ "conr"n to motion in vortical". Corr" for level, $\pm\left[\frac{1}{2}(n-s)-1\left(n_{0}-s_{4}\right)\right] \frac{6}{15}$ con s

Lbstract of I Imentix C' to repart of C'upt. W. T. Tuinint, Chief Lstronomer.

('arリs, de.	Lutitule.		$\begin{aligned} & \text { Slmer } \\ & \text { Statinn } \\ & \text { Su, } 1 . \end{aligned}$	$\begin{aligned} & \text { Jrove } \\ & \text { writ. } \end{aligned}$	Lo:ation of camp.
Station No. 1	1:1) 1101010	31%	lint.	$\begin{aligned} & \text { Ǐ1. } \\ & 7 . .11 \end{aligned}$	Pomntary finat west hatatio of Red limar.
Station No. \because crant	151301010	$1 \% 1 \%$	$\because 1 \%$	10:1.:	On bont daly-lian, at Lake of the Wumel.
Station No. : $:$ enat	$4.1+170$		lli-. 1	U17.15	() Whamban-litue, lis milas east of li, llivil.
Station Nis. f (anat	1.) $111+11$:14i:	$\because 4.6$	[191.19	On la malary-lina. ©an miles eant 1.f lial liters.
Station furthwont ancle	4.) 3	(15) 14	-5\%.	1110.5	Thamit pon woar lamding, North-
	1.1 (11) (19)	- .----	$\because 3.31$	11:1.1.	W: \&1.

Abstract of Appendix O，we．－Continmed．
ALTITUDES OF ASTRONOMLCAL CAMPS，\＆

Camps．	datitude of camps.	$\begin{aligned} & e \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		$\begin{gathered} \text { Mhovr Wood Linl, } \\ \text { C:amp No. } \end{gathered}$		Location of citmo．
	－． 1	－1 1				
Red River．	490000.00	971351.5			\％in． 0	Wust River at I wonbinat．
Fort Pembina ．．．	－－．．－．．．．－．．．．．				790.0	barometer at F＇art Pem－ lima．
Station No． 2.	490000.00	974085.4			－1：3．7	Ntobl I＇endina liaver．
Station No． 3 ．．．．	490000.00	$9500 \leq 1$			10：30． 1	Last slope of Fembinat Mountains．
Station No．4．．．．	4 5 59 El． 5.	931606	－－－	－．．	10\％）！ 0	West slope of Pembina Mumatains．
Station No． 5 \％．．	490000.00	93515.3 .9			15，\％\％，	Long livers．
Station No．6．．．．	Is 5．1 ¢．\％． 60	$100: 321.5$	－－－．		20\％\％．0	West slope of Turtle Ammiain．
Station No． 7	$49015 \leq 56$	101 20 0．\％． 4			111．1． 0	Onfonth Antler Creek．
Stition No． 8 ．．．．	490101.03	$10: 06: 20$	－－－		1！バー． 1	fond ol panisa．
Wood End，No． 1.			－－－－		1上17．	On Jonse litiol．
Wood Earl，No．＇2．					174.9	I）．
Station No．！－．－．	45.1810 .69	103111.1 .8			19×11.7	Do．
Station No． 10	490044.73	$10405: 37$	\％27．		－14．5，5	\ln Cotran of tlur Missonlii．
Station No．Il．	49010.11	$10.510 \cdot 36.11$	717．1i			
Station No．I＇：．．．	4t 59.5 .90	106103		11：11．11	$\because-610$	Noarl＇uplar liver．

Cilllim， Nu	学			$\begin{aligned} & \dot{5} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Lumation uf eamp．
Furt Brinton	$154=50.00$	$110: 1!1+0$		！17．4．11	On Missongi River．
Station Nu．${ }^{\text {Sta }}$	455080.11	$107 \% 3$	19\％．0	$\therefore-16 i$	linht banlioflrenclaman＇s Creek．
Statiun No． $11 . . .$.	491010	10 1， 131505		$\therefore 1111.8$	［＇oul mat pralito．
Station No．1．5．．．．．	$4911010 t .8 i$	$109 \% 115.5$	1100.11	いず心！	Bet Fuk of Jilk River．
Station No． $11 \mathrm{i} . . . \mathrm{C}$	$4-50950.30$	$11010: 31.7$	14－．	6－3．0．	Dilk Rifor laks．
Station No． 17 ．．．．．	45.5014 .30	11111 10．	$1115!.11$	：3\％）．	N゙ッ：1r Laムt Lintte，Swectgrass hlills．
British depot ．．．．．．			11193i． 1	23：3．4	Ne：arimerterass Mills．
United States camb	490105.41	．．．．．．．．．．－．－．	101－13． 3	：\％130，\because	1）s．
British mounhl．．．．．	4910000.150	．．．．．．．．．．．．．．	1651．$: 1$	4305	Britisl West Butte astronomital titions．
Do．	42） 10000.00	－－－－－－	1100.0	4．94．01	
Station No．1～．．．．	490101.12	11\％00 11.7	-37.1	$\therefore 2,+11.0$	lid Jiver（batheh of Malk River）．
Station Nı． 19 ．．．．．	4×3959.31	11！\％5x，	1611.0	$4: 15,:$	
Statiou No． $20 . . .$.	49 （10）0．1． 10	．．．．．	13：36． 1	421：	Wint thome at（hiat Vomanain 1．N！．

('ONNEUTION OF' ASTRONOMIUAL STATIONS.

DETJUL OF l゙NITED sTATES TANGENT LINEA,

UNITED STATES 'TANGENI No. 1.
Winter 1853-9.t.
From Joint Astromomical stetion at Red Liver to British Astronomecal Station, Lieuten. ant (iaheey, at West Riosculu.
[Obstrert, Lieut. F. V. Chetme.-Tintsit Würdemannein. No. 71]
sZRMUTHS

Date.		lonition of mark.	$\begin{gathered} \text { No. of } \\ \text { readings. } \end{gathered}$	Star.	Azimutlis.
Noremberis	$\begin{aligned} & \text { Initial puiut } 61,3 \text { leat } \\ & \text { northot } 4!t^{\circ} \text {. } \end{aligned}$	5, ind feet mest of instruwent.	$\left\{\begin{array}{l}8 \\ 3 \\ 8 \\ 8\end{array}\right.$	\dot{c} Trsm Minotis.. W. E 51 Ceplde . . acar IE. E. Iovaris ...bear T. ©. Iobaris ... near LT. C' Mean	
			$3 \pm$		± 700106.3

 error was conrectedin fuchine the irom pillars.

$$
\therefore \text { SATMOS EI:ROR, }
$$

TAN゙GUNT LINE AND JOTNLS.

$\because(1)$

UNITED STATES TANGENT No. 2.

Winter $1873-7$.

From W'est Roseau Astronomical Station to Pine Ridge Astronomical Station.

This tancent was rin in three parts. First part, from West Reseall Astronomical Station to Point D'Orwe; sucond part, from Point D'Orme to Forty-mile Station; third part, from Forty-mile Station to Piue Ridge Astronomical Station.
[Observor, Lient. F. F. Gieeno.-Transit Würdemann Ein. No. 71.]
PART EIIST.-AZIMUTHS.

Dato.	Position of instrument.	Position of mark.	No. of Fealmags.	Star.	Azimnti.
Nov. 21)		(10	β Ceplrei W. E.	4521113
Nov. 21	!		- 10	${ }_{51}$ Polaris.......... ${ }^{\text {Cenha }}$.	$\begin{array}{ll}51 & 514 \\ 51 & 38 \\ 51\end{array}$
Nov. 21	3.9 feet nortb of $49^{\circ} \ldots$	About 1 milo north	10		51 12.8
Nov. 25			10	Polaris. . . before U. U..	$504 \% 7$
Nus. 27)		1 10	Polaris...-. .near L. U..	5232.5
			60	Dtan.................	45143.6

The above azimuth is that of tho Target from the initial point of Part First, Tangent No. ${ }^{2}$.

PART SECOND.-AZIIDTHS.

Chikd Ntutes Trtngent No. Z—Continned.

PAFT THHED.-NZISUCHE

! ! art 'Thuti
Fents-ank station.

Cnited States Tangent No. 2-Continued.
STATION ERROR

CANGENT LINE (PAITT FIEST) AND MOCOLD

Chited States Tangent Xo．：－Contimed．
TANGENT LINE（P」ET SECONTU $\triangle N$ D MOUNDS．

					Final cfiset．	Femarls．
M．Ch．Lks	Fi，	$+$	－	－		
34 OU 00	1．－1． 0	11.1	0.6	210.3	－10．8 south．．	Earth mound， $10^{\circ} \times 6^{\prime}$
350000	$7.0-0$	1.11	2.3	210.3	刃11．6 sonth．．	İo．
360000	12， 360	3.5	4． 1	210.3	¢10．9 south．．	Do．
37 10 00	17．Cifo	7． 6	5.8	210.3	208.5 south．．	Io．
3 ± 000	22， $9: 3$	13．3：	7.6	210.3	204.7 south．．	Do．
$39 \quad 10 \quad 00$	2\％， 20	20． 3	9.3	910.3	199．3 couth1．．	Wo．
400000	$33,1=0$	52． 0	11.0	210.3	192．3 bouth．．	Do．
4005 927	$33,257.0$	31.3	11． 1	210．3	190．1 south．．	

TANGENT LINE（PART IJIRD）AND MOUNDS．

	$\begin{aligned} & E= \\ & E= \\ & E= \\ & E= \end{aligned}$	ت 㤩 E E E 5		Ercor of Initial Point．	Final offset．	Remarks．
14．Ch．Lks．	Feet．	＋	＋	－		
4080.59	87， 915	912． 2	2－． 9	50， 6	181．5 north．	
41000	82，ne2	1－1！． 1	¢T． 2	59.6	15ti． 7 uorth．．	Earth mound， $10^{\prime} \times 1{ }^{\prime}$.
$4 \cdot 20000$	T7， 002	165	9．3． 4	50， 6	131.5 north－	Do．
430010	72，4\％2	143．9	231	59.6	107．9 north．．	Do．
440000	65，14：	133.7	21.9	54.6	FG． 0 north．	Io．
450000	61， 26	101．${ }^{\text {d }}$	¢0． 1	510.6	64． 7 north．．	110.
460000	51，5－2	87． 8	1.1	519	46.6 north．．	Monnd of trmarack poles difen intuswamp．
470000	51，305	\％2． 3	16． 1	59.6	29．4 north．．	IVo．
$48 \quad 0000$	$4 \mathrm{tr}, 023$	$5 \sim 1$	14.9	519.6	13． 4 north．．	Io．
19 $\quad 100$	40，143	4．）． 6	13.0	50.6	0．F south．．	D1\％．
50 00 00	35.40%	31.5	11.4	54.4	13． 7 south．	Do．
$51 \quad 10 \quad 00$	$3(1) 182$	25，0	$!1.7$	5！． 6	23．9 suxuth．．	ITO．
520000	21，902	17．0	ह． 0	5，	34.6 south．．	Do．
5310080	14，tite	10．4	4．	51． 0	42． 8 sonth．－	Io．
54 14． 00	14，342	5.1	4.5	51． 6	4！1． 5 dinuth．	Io．
5.30000	9，（14）－3	2.3	2.7	51.6	51.6 sumth．	Earth mound， $10^{\prime} \times 1{ }^{\circ}$ ．
560000	3.52	0.4	1.0	52． 6	50．：south．	Do．
565731				．．．．		

UNITED STATES TANGENT No． 3.

Winter 18：3－＂it．

From Pine Ridye to Late of the Weorls．

 nected Parts Second and First．which started at the Lako ot the Whols Astronomical statim，and was 1 man west wiatil 17
 this tangent was not traced by tho partien of lientonant Greene who observed for acimuth at Ines linlge，lake of the Wrods，and tho branch of East Posean River where tho two parts juin．

AZIMCTIS．－AT IINE RIDGE－INITIAL POINT PART \＆．

Dite．	Pusition of instrament．	Position of mark．	$\begin{gathered} \text { No. of } \\ \text { re3liags } \end{gathered}$	Star．	Azinuth．
Dec． 20	$\left\{\begin{array}{c} 35 \text { feet sonth of Initial } \\ \text { Ioint, Tangent No. } 3 . \end{array}\right.$	On tangent wrest of iu－ strnuent．	$\left\{\begin{array}{l} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}\right.$		
			S．	Mean	2700037.0
	This mean is the azimnth of the mark placed west of tho instrment，at Pinn Fibines．A point was detemincel east of the Instial Inont on the dubngation of this line with an azimnth of Which gives the azimnth of tho English Tangent．．．．．．				100038. 108
					405834.5

Difletere between the Eog ish and Cnited

AZIMUTIA－AT EAST ILOSEAC－PAlBTS FIRンT IND 心UCONI．
［Obarrar，Lient．F．V．Gramor－Tyansit Wiarlemanar－in，Nin it］

Lata，	］msitinm of instrmment．	Position of＇ 1120 k ．	Now of readinges．	－tar．	Azimutlo．
Dee．${ }^{\text {a }}$	1		5	10．at	
ber．			¢	d Visa Minoris W．Is	$13 \% 1)$
10cers			5		$1110.2=$
Lere，			$\stackrel{\square}{1}$		1．4 S！\＃E
	（ Terminal point witw．	On tangent，abont I mike	5		
Deed ${ }^{\text {Dece }} 36$	j othl part．	Weat of imatrument	\％	Volar ic ．．．．．．IV．	（11．3．7）-
Hec． 89			5		
Jec． $2!$			5	入 In．uoms＇．．．．．．L	11015 l
Dec．${ }^{\prime \prime}$			5	51 Cophat ．．．．．．E．E	16，迷
			50	\＄1：ant	27015011.0
True azimndr at it distance of 27.302 fot					$2 \% 014$ ：3\％
Difference in azimuth－［nited States dectrmination－Tanerent sonth of east Tangunt startw，north weast					5－1

Thited Nates Tangent No. 3.-Tangent Lime-Contimeri.
AZIMETHS - IT LAKE OF TLE WOODS SIATION゙.
[Obserent, Lieut. F. V. Greene.-Transit Wiirdemann 8in. No. Si.]

Date.	Position of inatrument.	Position of mark.		star.	Azimuth.
Dec. 31	$\left\{\begin{array}{c} \text { On astrommical pust } \\ \text { making } 490 . \end{array}\right.$	Two miles mest of instrament.	$\left\{\begin{array}{l} 10 \\ 10 \end{array}\right.$		
			20	Mea	2695914.8
	Lifference in azimuth between the Tuitod states and English detcrminations-tangent soutb of Test, Initial Point Part First Initial Point lart terend, azimuth olsereal Mean of 20 angles betweca Pat Second and meridian..............				
					270 15 90 17 04.0 8.9
	Azimuth of meridian..				
					$\begin{array}{r}179 \\ 90 \\ 90 \\ 14 \\ \hline 14 \\ \hline 12.7\end{array}$
	Azimath of Part First, Timminal Point True azimuth at distance 91,133 teet				E0.43
					¢9424\%0
	Difference in Unitel States and English leterminations-Tangent north of west.........				40.4

UNITED STATES TANGENT No. 1.

1873.

From Joint Astronomical Station No. 1 to Joint. Astronomical Station No. Q. 2.

[Observer, Lieat. F. V. Greene.-Transit Würdemann 8 -in. No. 71.]
AZInOTHS.

Date.	Position of instrnment.	Position of mark	No. of reading	Star.	Azimuth.
Nor. 6	$\left\{\begin{array}{l} \text { Initial Point } 61.3 \text { feet } \\ \text { yorth of } 490 . \end{array}\right.$	5,280 feet mest of instrament.	$\left\{\begin{array}{l}8 \\ 8 \\ 8 \\ 8\end{array}\right.$	\& Trso Minos is W. E 51 Cuphi ... near E. E P'olaris ...near U.C P'olaris.. иеа. U. C. Mran \qquad	
			39		2700100.3

Tangent was ran on this azimuth.

Date.	Position of instrament.	Pusition of mark.	No. of retrdings	Star.	Azimuth.
Jnno 17	Station 33, $0^{\text {ma }} \ldots \ldots . .$.	1,320 feet mest	$\left\{\begin{array}{l}4 \\ 8\end{array}\right.$		
			12	11:9n	23. $2 \pm \pm 3$
	Azimnth determined from a scries of repetitions from Tangent No. Q....................				34.0
	Mran Tangent started north				$\begin{array}{r} 269443.5 \\ 106.3 \end{array}$
	Azimuth due to distance 105, 600 feet				$\begin{array}{r} 2004037.3 \\ 20940 \quad 4.8 \end{array}$
	Error of tangont, north				32.5

STATION ERROR.

Uniten Ntates Tingent So. 1-Continned..
TANGENT LINE.

UNITED STATES TANGENT No. 2.

1873.

From Joint Astronomical Station at Michel to Joint Astronomical Station at Pembina Mountain East.

[Observer, Lient. F. V. Greene-Transit Würdemann 8 in. No. 7 I .] Azimutus.

Diste.	Position of instrument.	Position of mark.	Star.	Azimuths.
June 14	46. 5 feet north of $490 \ldots$	3,154.7 feet west. $\{$	Polaris. British determination Mean	
				2700153

The tangent was run through a point $20 . f 8$ inches sontb of the mark and prolonged to merilian of Astronomical Station, Pembina Monntan East.
The difference betreen the British and Uuited States tangents at this point was inappreciable. The azimuth was checked at tho terminal point by Lieutenant Galwey, R. E.

STATION ERROL.
Lientemant Galwey, R. E., gives the Station Error, Station Pembina Mountain East-south 55.05 feet.

OFFSETS TO PARALLEL.
For list of offets and position of mounds aud iron pillars, see Licutenant Galwey's repun .

UNITED STATES TANGENT No. 3.

1573.

From Unitcd States Astronomical Station No. 4 (Captain Twining), East to Pembina Rirer crossing.
[Observer, Lieut. F. V. Greene.-Transit Würdemann 8-in. No, s̃.] AZIMUTHS.

Mark was moved 5.3 feot south, and tangent run throngh that point.
TANGENT LINE AND MOUNDS.

N $\mathrm{B}-14$

UNITED STATES TANGENT No. 4.

183.

From United States Astronomial Stution No. 4 (Assistunt Lexis Boss), west side of Pem. binn Mountain, to Lont Riter, United Ntates Astronomical station No. 5 (Lieutenant (ircuory).
[Oloserver, Lieut. F. V. Greene-Transit Wiirdemann s.ia. No. 87.]
BZIDUTHS

Date.	Porition of instrument.	Ponition of mark.	$\begin{gathered} \text { No. of } \\ \text { reatlings. } \end{gathered}$	Star.	Azimoth.
Jaly 1	Initinl 1mint 4! ${ }^{\text {a }}$	4,417.8 W	$\left\{\begin{array}{l}2 \\ 8 \\ 8 \\ 8 \\ R \\ 8\end{array}\right.$		$\begin{array}{rrr} \circ & 1 & \prime \prime \\ \therefore 10 & 03 & 40.6 \\ 4 & 20.7 \\ 4 & 0.3 .1 \\ 4 & 00.0 \\ & 4 & 15.5 \end{array}$
			40	Muath.	$\because 700104.0 \pm 1 / 7$
Hatr.	Jumifinn of imatrmment.	Poxition ut moats.	No. of realings.	Star.	Azimath.
Juls :	Ctatinn Nu, $27 . .$.	Station Nor.	$\left\{\begin{array}{l}\text { a }\end{array}\right.$		$\begin{array}{ccc} 0 & 1 & 11 \\ 00 & 31 & 17.2 \\ & 84.6 \\ & 20.4 \end{array}$
			$\because 1$	Mran	(!) $31 \times 0.6 \pm 2^{\prime \prime} .4$
					ع9 3039.5
	Sars in lumuins the line				411

 of hame" "and is sulatatetisu.

心TATION ERIEOR.	
	$\begin{aligned} & \text { Fect } \\ & 565.2 \end{aligned}$
	Gito. 0
	94.8
	120
	42. 8

TINGENT LINE AND MOUNDS.

210

United States Tangent No．4－Contimued．
Tangent line and mounds．

	Distances．					Fiati onfat to mothmat．	Jrmatis．
	MI．Ch．Lks．	Fert．	＋	－	－		Earth monnd．I 10.IO．Ino．I 0.I 0.I 0.
7	76149	41，018	4139	1.0	21.8	23． 4 north	
8	8 \％ 4699	45，341	513.4	1．$\stackrel{1}{2}$	24.1	31.1 morth．	
9	$\begin{array}{llll}9 & 11 & 18\end{array}$	42.80	64．3	1.4	25.7	36，8north	
10	$\begin{array}{llll}10 & 05 & 58,2\end{array}$	5．3，108． 2	77.6	1． 6	9R． 4	47． 610 th．	
11	$\begin{array}{lll}10 & 60 & 67\end{array}$	546,601	28， 16	1．8	30.0	$5 t$ ，chorth．	
	1100000	$54,0-0$	92，6	1.9	31.0	59．\％north．	
19	$\begin{array}{llll}12 & 41 & 59\end{array}$	fifi，10；	114．9	： 2	35.8	ES． 5 north．	
13	$\begin{array}{llll}13 & 69 & 35\end{array}$	73，217				と．	
	1400	－3， 4.0	150.0	9.5	30.5	102．0 north．	Earth honand． I） 0. 10． D．
14	150741	－29，680	154． 3	\because	42.6	1：8．morth．．	
	$\begin{array}{llll}16 & 00 & 09 \\ 17 & 04 & 68\end{array}$	E1，400	1！5．9	3.0	4.81	14．8uorth．	
15	1760468	90， 069	20： 7	3.4	48． 1	111． 2 noth ．	
10	17876	91，85：	826.7	3.6	50.6	192． 5 nuth．	
17	18719	甠，976	924． 5	4.2	53.3	91\％．0mertla	Earth monut， $8^{\prime} \times 3$
19		103， 1013.5	309.6				
20		112，\1\％\％ 8	309.6	1.0	516.7	237． 9 notth．	
21	$\begin{array}{lll}22 & 03 & 53\end{array}$	116．393	$371 . \%$	5．${ }^{\text {a }}$	60．e	＂0．in 1 moth．	Earth momad， $1 \mathrm{~B}^{\prime} \times 0^{\prime}$ 。
22		111，055． 3					
	$\begin{array}{llll}23 & 00 & 00 \\ \bigcirc 1 & 01 & 77\end{array}$	191， 410	403.4	ii． 3	Cit． 9	332． nutith．$^{\text {a }}$	Enthmomas，$\varepsilon^{\prime} \times 3^{\prime}$ ． 1）
23	$\begin{array}{lll}2 \cdot 1 & 04 & 67 \\ 2.7 & 00 & 00\end{array}$	12\％， 028	413.0 438	7． 1	67.4		
21	$\begin{array}{llll}25 & 40 & 23 \\ 23\end{array}$	13.20005	4\％， 3	T． 6	70．${ }^{\text {a }}$	400． 2 nowth．．	
25	$\begin{array}{llll}55 & 79 & 67\end{array}$	137， 298					Eathmoma，
	It 0000	13\％ 250	5174	H2	73． 3		Eartlamound，16 $0^{\prime}+6$.
	27 （10） 00	14．560	5957.9	$9 . \ddot{\square}$	36.1	4－2． 6 furth．	Earth nomonl，8＇＜3 3°
26	$\begin{array}{llll}27 \\ 28 & 00 & 44 \\ 00 & 00\end{array}$	14．3， 90.4		0.1	－13．5		Earth monded，$c^{\prime} \times 3^{\prime}$ ．
	$\begin{array}{lll}28 & 00 & 00 \\ \text { aj } & 00 & 00\end{array}$	$147 . c 10$ $15.3,1: 0$	600． 0	11．） 11.5	15．9	510．7109th．．	
27	$29 \quad 30 \quad 00$	155，100	660.0	13.0	8．36	5\％5． 2 morth．．	Lientenann（immury＇s Merinlian．

On the parallel estahlielied by the ahor＂mondeds iron fillars were placul，in 1sts，by Capt．J．F． Gregory，United States Engincers，as folluwn：

Distance from Initial Print of Tangint Fo． 4

UNITED STATES TANGENT No. 5.

18.3.

From trited States Astronomical station No. 5 (Licutenant Gregory) to Astronomical. station at slemy Mollow (Lieutenent Galcey).
[Oberver, Lichat. F. V. Greme.-Transit, Wülewame 8 -in. No. 87.]

> IZIMCTES.

Bute.	I'usition of insitument.	Phaition of mark.	No. of readings.	Star.	Azimath.
Iuly $\left.\begin{array}{l}16 \\ \text { Luly } \\ \text { le }\end{array}\right\}$ Initial Point, $410 \ldots .$.		3, 40E feet west	$\left\{\begin{array}{l} 8 \\ \varepsilon \\ 8 \\ 8 \\ 8 \end{array}\right.$		
		40	Mran.	2700013.3 ± 24.6	

The mank was morm wouth 0.3 feet and the tangent ran through it.

Date.	I'usitima of instrument.	I'usition of mark.	$\begin{gathered} \text { No of } \\ \text { reulings. } \end{gathered}$	Star.	Azimuth.
	\}ntation 19.............	Station 11.	$\left\{\begin{array}{l}\text { E } \\ \text { E } \\ =\end{array}\right.$		
			32	Mean.................	-9 4202. $4 \pm$ ご,
	muth doce to dintauce 95,	feet			-9 4203.9
	of of Line.				111.5

stITION ERHOL:
Cbaincl histanco from Gitann 13 to Astremomical hional on 400 Fere.
Compmed utiset fir distance of ! !

TANIENT LINE AND MUUNDS.

[^2]> M. rl.
> $\because \quad 11$
> i 11
> $\therefore 1 \therefore 1$.

UNITED STATES TANGENT N゙ゥ. 6.

1873.

From United States Astronomienl Station No. 6, at Turlle Mountain W'est (C'aptain Tuin. ing), castraced into Turtle Mountuin.
[Observer, Lient. F. V. Greene.-Transit Würdemann E-in. No. Ei.] AZMETTH.

Date.	Position of instrmment.	Position of mark.	No. of readings.	Star.	Azimuth.
Altg. 1	$\left\{\begin{array}{l}\text { 2. } 2 \text { feet north of } 490 \\ \text { and } 1,678 \text { feet enstri' } \\ \text { meridian of Uniter } \\ \text { States Astronommen } \\ \text { Station So. } 6 .\end{array}\right.$	$\left\{\begin{array}{l} 8,123 \text { feet west of merid- } \\ \text { ian of Cnited states } \\ \text { Astronomical Station } \\ \text { No. } 6 . \end{array}\right.$	$\left(\begin{array}{l}8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8\end{array}\right.$	```Polaris E \\ 32 famelopardalis W. . \\ \(\beta\) Trse Minoms... W. \\ \(\gamma^{2}\) Urse Mmoris.............. \\ \(\gamma\) Cephei```	$\begin{array}{r} 50.50 .6 \\ 5 \times .1 \\ 418 \\ 4.3 \\ 93.3 \end{array}$
			40	Mean.	2095047.6 ± 312

The tangent was rmn throngh point 26.2 feet north of the mark.
The Station Error as given by the English is, Cniter! States Astronomical Station No. 6 North, 100.76 fect The Station Error as giren by the English is, Cnitel States Astronomical Sta
The tangent line was cut throngh the Fonds. The following are tho stations:

TANGENT LINE AND MOUNDS.

	Distanc			E		Final oftset tomonnd.	In'marks.
	M. Ch. Lhs	Fect.	$+$	-	-		
0	0 0 25	1, 678					
1	$\begin{array}{llll}0 & 75 & 45\end{array}$	4,980					
$\frac{2}{3}$	$\begin{array}{lll}9 & 39 & 63 \\ 9 & 68 & 50\end{array}$	13, 176					
3 4	$\begin{array}{lll}2 & 68 & 50 \\ 3 & 23 & 07\end{array}$	15,091 16,313	f. 3	9.4	9?	4.3 south .	Einth mound.
5	$\begin{array}{llll}3 & 64 & 68\end{array}$	20, 1*					
6	42845	22,711					
7	$\begin{array}{lll}4 & 57 & 83\end{array}$	24, 997	16.9	13.9	$2 \cdot 3$	0.8 north .	Earth momnd.
8	$5{ }^{5} 278$	28, 230					
9	8 20 65	43,73\%	523	94.3	9:	95, 8 nomth.	Earth mound.
10	$8 \quad 31 \quad 57$	44,321					
11	$8 \quad 58 \quad 76$	4ti, 116					
13	$\begin{array}{llll}9 & 20 & 30\end{array}$	48, 860					
14	$10 \quad 32 \quad 78$	51,963					

UNITED STATES TANGENT No.
 1sis.

From United States Astrommical Ntation No. (i, at Turtle Mountain West (Captain Twin(ing), to liritish Asfronomieal Ntation at first consing Monse liter (Lientenant Galacy).

A \%13 UTH心.

Dater.	Position of ísstrmment.	Prasition ul mattr	$\therefore 0.41^{\circ}$ Irodings.	Stils*	Azimuth.
Aug. 1			$\left\{\begin{array}{l} 8 \\ 8 \\ - \\ 8 \end{array}\right.$		$\begin{array}{cc} 0 & \prime \prime \\ \text { 20 } 50 & 50.6 \\ & 58.4 \\ & 49.2 \\ & 47.3 \\ & 93.3 \end{array}$
			41)	Meilu	24, $5047.6 \pm 3^{\prime \prime} . \pm$

The tangent was ran throngh a puiut zian leet nortb of math.

1.atio.	Pusition of instrmanut.	Position ui math.	No. of reallinior	Star	Azimutb,
Ang. 5		Station 8 -1 Tapgent...	$\left\{\begin{array}{l}x \\ M \\ m \\ \varepsilon\end{array}\right.$		
			$3:$	31420	514 $4127.4 \pm 2{ }^{2 \prime} .8$

$\because 11$

UNITED STATES TANGENT No. 8.

1873.

From United States Astronomical Station No. 7, at South Antler Creel: (Licutenemt Greyory), to British Astronomical Station at second coossing Mouse River (Lieutcmant Galwey).
[Observer, Lient. F. V. Grueno.-Transit Würdumanme.ib. No. ET.]
AZIMUTIS.

Date.	Position of instrument.	Pesition of mark.	No. of rearlings.	St:11:	Azinulli.
A $1 \mathrm{~g}, 99$	Station 9.................	Station 8.	$\left\{\begin{array}{l} r \\ h \\ z \\ z \\ \alpha \end{array}\right.$		
			45	Mean	$894130.6 \pm 1^{\prime \prime} .9$
	Azimuth due to distauce 107,698 foet				4989 41.4
	Errot of live to north				141.2

SThTION EIRROL.

\footnotetext{
 distributod at these threestations. or ig $^{\prime \prime} .5$ at each, and tho result ot each selarate erorr is cabulated aud subtracted from tho station error of 221 feet given by tho lime as run. Tho sum of these ertors is 58 fetet.

Chained distance from Station 11 to Astrommical Mound 49°.	$\begin{aligned} & \text { Fect. } \\ & \text { 148.0 } \end{aligned}$
Computod ollset dues to distaoce 119,5it.8 feet. 30.0	
	221.0
	55.0

United States Tamyent No. S-Continued.
TANGENT LINE AND MOUNDS.

$\frac{\stackrel{x}{\tilde{3}}}{\frac{8}{x}}$	Distanc					Final offnet to mound.	Remarks.
0 1		Fert.	-	-	+		Initial Point, meridian of United States Astronomical Station No. 7.
4	$211 \quad 7.3$	11,331	3.5	21.3		17.8sonth..	Stone monid, $10^{\prime} \times 6^{\prime}$.
3	40475	20, 3, 3193	15.2	4.8	---	31. 6 south.	Do.
4	$7 \quad 400.3$	3 31, 6011	43.11	T1. 9		31.9 soutli.	Earth monnl?, $10^{\prime} \times 6{ }^{\prime}$.
5	$\begin{array}{llll}9 & 0.5 & 41\end{array}$	-11, -37	73.6	97.9		24.3 ronth.	Stono mounl, $10^{\prime} \times$ (i'.
1	13.30	72,418	143.9	136.8		7. 1 north.	Eath mound, $12^{2} \times 0^{2}$.
7	110	-4, -4	197. F_{1}	160.3		37.3 nurth.	Stuno monnd, $10^{r} \times 6^{\prime}$.
*	18 7 3	90, 04.3	\cdots				
9	211 318	107, 608	315.4	203.7		114.7north..	Do.
10 11	$\begin{array}{lll}31 & 03 & 01 \\ 92 & 51 & 77\end{array}$	111,083					
11	$\therefore 2517$	119,5\%	$36 \% .0$	831.0	148.0 uorth..	Terminal Point, meridian of Lritish Astronomical Station.

Error at-	Feet.
Station 2 .-	1.6 gouth.
Stition 3..	1.9 Dorth.
Station 4.	3.5 north.
Station 5.	5. 9 north.
Station 6...	9. 7 north.
Station 7.	120 north.
Station ! ...	14.2 2 noth.

 39.7 instead of 369.0 fat. This makes the monnds ctronconsly luilt as in the colunin to tho right. Owing to the ancer. tanty in the azimuth, the station error of 163.3 feet south is not disturbed.

UNITED STATES TANGENT No. 9.

1873.

From United States Astronomical Station No. 8 (Captain Tıining), to British Astronomical Station at Short Creek (Captain Featherstonhaugh).

[Observer, Lieut. F. V. Greene.-Transit Wïrdemann 8-in. No. 87.]
AZLMUTHS.

Date.	Position of instrument.	Position of mark.	No. of readin!s.	Star.	Azimath.
Sept. 1	49° Mound.............	5,711 feet wost	$\left\{\begin{array}{l}8 \\ 8 \\ 8\end{array}\right.$	\quad Polaris..................... β Wrs. Minoris.......... γ^{2} Ursw Minoris.........	$\begin{array}{r} 2604917.9 \\ 20.8 \\ 45.9 \end{array}$
			24	Mean..................	$\bigcirc 0949$ 2e. $2 \pm 3^{\prime \prime} .1$

Tangent was ron throngh a point 17.5 feot north of the Mark.

Date.	Position of instrument.	Position of nark.	No. of readinis.	Star.	Azimath.
Sept. 5	Station 9.................	Station 10.	$\left\{\begin{array}{l}8 \\ 8 \\ 8 \\ 8\end{array}\right.$		0 $\prime \prime$ 269 43 11.0 43 16.8 42 52.1 43 40.7
			32	Moan	$2694315.1 \pm 3{ }^{3 \prime} .7$
					903 4311.1
	Error in line				4.0

TANGENT LINE AND MOUNDS.

	Distan		0 0 0 0 0 0 0 0 0 0 0 0			Final oflyet to monnd.	Remarks.
0	M. Oh. Lhs.	Fect.	+	$+$			Initial Point, meridim Astronomicul Station No. E.
1	100653	5,711					
9	$\begin{array}{lll}9 & 06 & 59 \\ 4 & 34 & 48\end{array}$	10,995					Stone monnd, $8^{\prime} \times 66^{\prime}$.
3	$\begin{array}{llll}4 & 34 & 48\end{array}$	93, 396	15.0	43.6		53.6 north..	Lath monnd, $11^{\prime} \times 6^{6}$.
4	$\begin{array}{lll}6 & 21 & 40 \\ 9 & 13 & 80\end{array}$	33,092 42,392	31.1 64.3	61.6 90.0		154.3 north..	Stome monud, $8^{\prime} \times 0^{\prime}$.
6	$\begin{array}{lll}9 & 13 & 20 \\ 9 & 65 & 09\end{array}$	43,392 51,816	64.3	30.0		104.3 Lorth..	Stan momb, х0.
7	1150414	61, 653	104.3	114.8		219. 1 worth..	Earth mound, $10^{\prime} \times 0^{\prime}$.
8	$\begin{array}{llll}14 & 54 & 45\end{array}$	77, 514	164.9	143.1		308. 0 north..	Stono monnd, $10^{\prime} \times 6^{\prime}$.
9	$\begin{array}{lll}16 & 19 & 68 \\ 17 & 70 & \end{array}$	80, 079	918.0	165.7		3-3. 7 north.. 420.2 north.	Minvilian Butah Astronomical Stathon.
10	$17 \quad 70$	94, 410	24.6	175.6		20. 2 north	

UNITED STATES TANGENT No. 10.

 1873.From Unitad States Astronomical Station No. 9 (Licutemant ('regory) to British Astronomical Station, at Grand Cotean (Lieutenunt Galuey).
[Olserver, Lieut. F. V. Greene.-Transit Würdemannein. No. 87.]
AZIMUTHS.

Date.	Posirion of instrament.	Posiliun of mank.	No. $11{ }^{\circ}$ radings.	Star.	Azimuth.
Sept. 9	49° parallel . . . - -	3035. 3 fert mest.	$\left\{\begin{array}{l} 8 \\ 8 \\ \\ 8 \\ 8 \end{array}\right.$		$\begin{array}{rcc} \circ & 1 \\ 270 & 00 & 19.5 \\ & 19.1 \\ & 30.8 \\ & 07.8 \end{array}$
			32	Mean	$\because 700015.8 \pm 1^{\prime \prime} .9$

Tangent was ran througs a point 0.3 feet south of mark.

Dote.	l'ugitim of instmment.	Position of marl.	No. of readiuss.	Star.	Azimoth.
Sopt. 1.5	Ntation 3.	Statiou 8.			
			$3:$	Ifanin .-.-.-.-.......	
	Tammentmanterl with an azimuth uf				2.1
	Azimuth lue to distaner, 93, 298 for t				- $4: 00 \% \%$
	Eirur of line to sontil				10: 2

TANGENT LINE AND JIUUN゙DS.

UNITED STATES TANGENT No. 11.

1873.

From United States Astronomical Station No. 10 at Mid Coteau (Lieutenant Gregory) to British Astronomieal Station (Captain Featherstonhaugh).
[Observer, Lient. F. V. Greene--Taansit Würtemann B-in. No. 87]
AZ1MOTHS.

Date.	Position of instrument.	Position of matk.	$\begin{gathered} \text { No. of } \\ \text { rading. } \end{gathered}$	Star.	A ainutb.
Sept. 13.	$\left\{\begin{array}{c} 10 \text { fent worth of } 490 \\ \text { monnd. } \end{array}\right\}$	14,164 teet west	$\left\{\begin{array}{l} 8 \\ 8 \\ 8 \\ 8 \end{array}\right.$		24954 571.7 17.: 23. 8 22. 8
			$3:$	Mean	$2695820.1 \pm 1^{\prime \prime} .7$

Tangent was run tbrongh a point 10. T fect north of the mark.

 that it was impossible to comparo the azimuth with tho Eritinh mandian or tamegent.

TANGENT LINE AND MUEADS.

$\frac{\text { 品 }}{\frac{3}{3}}$	Distances.		Computed offset.	家		Fital offect to mound.	IPmmarks.
	M. Ch. Lks.	Fect.	+	-	-		
0							Intial [mint, metialin Astanmmical Station No. 10.
1	$\stackrel{3}{\sim} 5460$	14, 164	5. 5	38.6	10	43. 1 sonth.	
8	50488	26,718	19.6	72.6	10	63.0 south.	Stume Houmal, 1$)^{\prime}$ - 6^{\prime}.
3	$7 \quad 3041$	38,307	40.3	104.2	10	73. 9 sonth	[\%.
4	9 7! 73	52, 283	76.5	143.6	10	Tr. 1 sonth.	Earth manam, 14'. 6 ,
5	$\begin{array}{llll}13 & 67 & 50\end{array}$	6\%, 815	126. 2	184.4	10	68.2 south.	I\%.
6	$14 \quad 2380$	7.5, 490					
7	$\begin{array}{llll}16 & 54 & \text { ¢ }\end{array}$	ce, 101	2113.1	239.6	10	36. 5 south	Ita.
8	$20 \quad 5251$	109,066	326.6	296.7	10	19.9 north.	Stome mount, 19\%; $6^{\prime \prime}$
${ }^{4}$	$2{ }^{2} 20414$	116, 433					
10	$\begin{array}{llll}23 & 40 & 15\end{array}$	124,090	42.7	337.5	10	75. 2 north.	Do.
11	$\begin{array}{lll}35 & 15 & 58 \\ 36 & 01 & 16\end{array}$	133,098					
12	$\begin{array}{lll}26 & 01 & 16\end{array}$	137, 356	518.2	373.7	10	134. $\begin{gathered}\text { north. }\end{gathered}$	tion.

UNITED STATES TANGENT No. 12.

1873.

From United States Astronomical Station No. 11, at Bully Spring (Lieutenant Gregory) to Lritish Astronomical Station at Poreupine Creek (Lieutenant Galucey).
[Oberver, F. V. Greene.-Transit Würdemann E-in. No. 87.]
AZLMUTHS.

Witto.	Position of instrument.	Pusition of mark.	$\begin{aligned} & \text { No. of } \\ & \text { reading. } \end{aligned}$	Star.	Azimntl.
Stpt. 30	$\left\{\begin{array}{c} 1,637 \text { mest and } 9.2 \text { fect } \\ \text { nortly of } 49^{\circ} \text { mound. } \end{array}\right.$	50.15 fect east of instru. ment.	$\left\{\begin{array}{l}8 \\ 8 \\ 8\end{array}\right.$		$\begin{array}{ccc} 0 & 1 & \prime \prime \\ 80 & 53 & 00.2 \\ 53 & 01.3 \\ 54 & 14.2 \end{array}$
			21	Mean	(6)5758.0 $5^{21 .} 4$
	Azimnth of true tangezt at distagce 1,637 feet				695041.5
					14.9

Tingent was ran througla a puint 28 fuet sonth of marli.
The shy was clundy and it wiss mupussible to obtain azimuth observations at terminal point.

STATION ERIOR

TANGENT LINE AND MOUNDS.

UNITED STATES TANGENT No. 13.

1574.

From United States Astronomical Station To. 12 (Captain Gregory) to Iritish Astronomieal Station, Little Roeky Creels (Cuptain Fatherstonhaugh).
[Obserrer, Lieut. F. V. Greene.-Transit Wärdemame \&in. No. ©7.]
AZIMUTMS.

Date.	Pasition of instrument.	Position of mark.	No. of readinus.	Star.	Azimuth.
Suly 4	Station II of tament...	Station 10 of tadgart.	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		
			40	M4:13	en $3347.7 \pm 1^{\prime \prime}$. 4
	True azimuth at listance 135, 852 feet \qquad Error of line to the sonth \qquad 				843402.17
					: 26

STATION ERRUI:

TANGENT LINE AND MOUNDK.

	13:3tanc	cs.			$\begin{aligned} & \text { Error of initial } \\ & \text { l'oint. } \end{aligned}$	$\begin{aligned} & \text { Error of azi. } \\ & \text { muth. } \end{aligned}$	Final ottatt to mound.	Temarks.
1	M. Ch. Lh\%	Fort.	t	-	$+$	\dagger		
4	1758	10, 100	2.9	17.9	20.0	0.9	41.7 murth	
3	42393	$\because 2$	141	33.11	20.0	$\therefore 0$	75. Anorth	Itr.
	© 01048	32:,0110	$\cdots 1$	5.5.0	211.0	3.9	106. 11 urrtit	$1{ }^{1} \cdot$
4	$8 \quad 14 \quad 50$	4:3, 147	51. ${ }^{\text {\% }}$	71.3	5ill 0	3. ${ }^{\text {a }}$	149.3 north.	$1{ }^{1} 10$.
1	131263	6i, 4.4	132. 6	113.0	21. 0	6. 2.	Sil. 4 north..	1)1.
7	14 \% 17	75, 312	155. 7	123.5	21. 11	6. 8	312 0 noth .	Stome hamamil $10^{\circ} \cdot \mathrm{A}^{\circ}$
\checkmark	17 年 67	! 11, 4,10	¢301, 3	15\%.1;	40.11	$\therefore 1$	diti. 0 nurlit.	1lor.
$!$	$\begin{array}{llll}21 & 47 & 3 & 3\end{array}$	114, 1110	3.\%.8	11\%. 1	20.0	10.1	Fmin 0 durth.	
10	24 113 9\%	1: 2 3, $11=1$	42.7	$21 \% 4$	20.0	11.2	128.3.3meth.	
11	牙 58	$1: 50, \ldots 5$	500.7	233.3	20.0	11.9	T2. i murth.	

UNITED STATES TANGENT No. 14.

1874.

From United States Astronomical Statim No. 13 (Captain Gregory) to British Astronomical Nthtion (Licutcnant Galuey).
[Ohserver, Likut. F. V. Grene.-Transit Wiirdemann 8-in. No. 8\%.]
AZIME゙THS.

STATIUN DFROTR

UNITED STATES TANGENT No. 15.

1574.

From United Statcs Astronomical Station No. 14 (Captain Gregory) to British Astronom. ical Station (Captain Feutherstonhaugh).
[Observer, Lient. F. V. Greeve.-Transit Würdemann 8-in. No. 87.] AZIMUTHS.

Date.	Position of instrament.	Position of mark.	$\begin{gathered} \text { No, of } \\ \text { readiags. } \end{gathered}$	Star.	Azimoth.
July 12	$\left\{\begin{array}{l}20 \text { feret north of monnd } \\ 490\end{array}\right.$	11.352 .5 feet west of instrament.	$\left\{\begin{array}{l} 30 \\ 10 \\ 10 \\ 10 \end{array}\right.$		$\begin{array}{ccc} 0 & 1 & 11 \\ 3 & 5 & 54 \\ & 51.10 \\ & 54.1 \\ & 35.4 \\ & 44.4 \end{array}$
			40	Mran	$0.11576 .4 \pm 21.6$

Tangent line was cun throngh a point 389 feet south of mark.

Date.	Position of instrument.	Position of mark.	No. of readiugs.	Star.	Azimatlo.
July 17	Station 10................	Station 11.	$\left\{\begin{array}{l} 10 \\ 10 \\ 10 \\ 10 \end{array}\right.$		
			40	Mean	$21.483 .49 .1 \pm 3^{\prime \prime} .5$
	Trao azimath due to distanco 130,95 feet				2693518.0
	Error of line to north				31.1

 gont 6.2 feet, Station 11, morth of true 1 nugent 6.4 fout

STATION ERLUR.	
The chaivel offect fo monulat Station 11. \square The computed offiset to monad at Station 11	
	170.:
The intital meint wes morth	20.0
Thectur clazammth...	6.480 .4
Station entor of Lritimh Astronomical	143.8

TANGENT LAN ANH MOUNDS.

	Distanc			岕	$\begin{gathered} \text { Errur of initial } \\ \text { puint. } \end{gathered}$		Final onsent to monnd.	Remarls.
	Ih. Ch. Lhes	Pect.	1	-	-	-		
3	34250	18, 1.49	19.6	12.6	20.0		94.0 sonth	
5		4, 7.6	55.0	418	$\because 0.0$		9. $\mathrm{d}_{\text {sonth }}$	Im.
6	$\begin{array}{llll}10 & 62 & 97\end{array}$	$51,9.06$	-1. 1	57.0	20.0		1\%. 1 north	1).
7	$\begin{array}{llll}13 & 02 & 53\end{array}$	¢ 5 , ¢ 2111	121.1	6 E. 9	$\because 9.0$		fll - Euoth	$1{ }^{\text {l }}$
8	17 49 13	93, 026	2375	43.0	20.0		12.9.5 nowth	1 m.
	$20 \quad 46 \quad 62$	109, 137	3134.3	102. 7	20.0		105.6 norstl	1 Ho.
10	$\begin{array}{llll}2.4 & 64 & 47\end{array}$	130,975	471.1	1:31.0	80.0	6.2	313. 3^{3} not th	1 \%.
11	971071	14, 399	5 ti 4.5	143.8	20.0	6.4	394.3 noth	Do.

UNITED STATES TANGENT No. 16.

1574.

This Tungent ares in turo prerts, both starting at United States Astronomical Station No. 15, at the Last Forl: of Mill: River; one part, east 8.5 miles, connceting with Captain Featherstomhaugh's Tangent, the other, west 13.3 miles, to Lieutenant Galhecy's station on the W'est Fork.
[Observer, Lieut. F. V. Greene.-Trausit Würdemann 8-in. No. 87.]
AZIMUTUS.

Itate.	Pusition of instroment.	Position of mark.	No. of realings.	Star.	Azimath.
Tuly 21	$\left\{\begin{array}{l} \text { Eit fert west furd } 12 \text { g: } \\ \text { feet nomth ot ilut } \\ \text { mound. } \end{array}\right.$	$\left\{\begin{array}{l} 14.121 \text { fewt rast of the } \\ \text { instrament. } \end{array}\right.$	$\left(\begin{array}{ll} 10 \\ 1 & 10 \\ 10 \\ 10 \end{array}\right.$		
			40	Mean.-.	$881951.6 \pm 0^{4.6}$
	The azimnthat this point of a perpedieular to the meridian of Captain Gregory's Astronomscal Monnd				E. 5950.1
					13955.5

The tangunt lise was ran through a poiut 411 feet sonth of mark.
No azimuth observations rere talw at the eatime extremity. Noazimuth observations were then at tho wentern estrumity, thon

> STATION ELRROL EAST.

STATION ERROR WEST.

	14
luitial point, north.	1*3.
[uiter States determination of 490, nurth of targent	11.5
	(1) 2
Station ertor Bitish Station, soath	166.7

United States Tengent. No. 10—Contimed.
TANGENT LINE (EAST) AND MOUNDS.

	Distance			$\begin{aligned} & \text { L } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E } \\ & \text { U } \end{aligned}$	$\begin{gathered} \text { Error of initial } \\ \text { point. } \end{gathered}$	Final offset to moand.	licmarks.
4 2	$\left\lvert\, \begin{array}{ccc}\text { Mf. } & \text { Ch. } & \text { Lhs } \\ 6 & 37 & 5! \\ 8 & 40 & 71\end{array}\right.$	Feet 34,161 13,247	$\begin{gathered} 4.0 \\ 4.1 \end{gathered}$	$\begin{array}{r} - \\ 106.4 \\ 41.9 \end{array}$	$\begin{aligned} & 133.2 \\ & 123.2 \end{aligned}$	$\begin{aligned} & 107.6 \text { sunth } \\ & 160.3 \text { south } . \end{aligned}$	Stone and earth momnd, $10^{\prime} \times 6^{\prime}$. Stone monmi, $10^{\prime} \times b^{\prime}$.

TANGENT LINE (WEST) AN1) MOUNDS.

景	Distances.			$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y y}{c} \\ & \stackrel{y}{t} \\ & \stackrel{y}{d} \end{aligned}$	芯	Final ofliset to mound.	Femarks.
	M. Ch. Lhs.	Fect.	$+$	-	-		
2	$1{ }_{1} 66638$	9,601	2.6	23. 0	123.2	143. 6 soutli	
4	4 21 $7 N$ 7 17 83 0 88 80	22, 503	14.0	5:3.0	103. ${ }^{\text {a }}$	162. ${ }^{2}$ soutli	Do.
6	$\begin{array}{lll}7 & 17 & 83 \\ 9 & 08 & 95\end{array}$	34.137 43,111	39.9 63.6	90.8 114.5	193.2	17.4. 1 south	Do.
8	$\begin{array}{rrrr}9 & 08 & 05 \\ 1: 3 & 21 & 40\end{array}$	-48,111	134.7	114.5 166.7	183.2 123.8	174. 1 sumth 155. 2 south	Earth mound, $12^{\prime} \times 7^{\prime}$. Meridiaa Eritish Astronomical Station.

N $\mathrm{B}-10$

UNITED STATES TANGENT No． 17.

187．
From United Stutes Astronomical Station So． 10 （Captain Gregory）to British Astronomical Station（Ceptain Featherstonhaugh）．
［Observer，Lient．F．Y．Greene．－Tramsit Wärdemann E．in．No．87．］
AZIMTTHS．

Date．	Position of instrument．	Position of mark．	$\begin{gathered} \text { No. of } \\ \text { readinges } \end{gathered}$	Star．	Azimutb．
Joly 25	34.5 feet morth of $4 y^{2} \ldots$	$\left\{\begin{array}{l} 12,104 \text { fuet west of in } \\ \text { strmuent. } \end{array}\right.$	$\left\{\begin{array}{l} 10 \\ 10 \\ 10 \end{array}\right.$	Polaris ．．．．．．．．．．．．．．．．．．E．．． β Wrar Minoris．．．．．．．．．．W．．． γ^{2} Urss Minoris ．．．．．．．．．．．．	$\begin{array}{r} \circ \\ 06843 \\ 4 * .0 \\ 520 \\ 52.8 \end{array}$
			30	Mean ．．．．．．．．．．．．．．．．	208 $4345.9 \pm 1 \prime .0$

Tongent live ran thruugh a priut 268.25 feet north of tho mark．

Station 6 of tbe tangent mas on the meridian of the trrumal peint of a tangent ron east hy	
itiates tangent，on the meridian of next Dritish tangent stake，measming the distauce	
letween the twotamonts ateach joint．By the	
taugent was found to he	16．2
Trutazimath for 133，610 teet	ع． 3448.0
Azimutberror	99.8
Lerurth of（＇aptain Featherstonhaugh＇s t	$\begin{gathered} \text { Fect. } \\ 21,4 \end{gathered}$
Iength of Leatenant Grethe＇st．rngent is	112，360
Total luyth of tangent	133，810

STATION ERROR．
At Station $\boldsymbol{G}_{\text {，}}$ the ristance from Tniterl States tament to Dritich determination of $4 y^{\circ} \ldots \ldots .$.
The initial point was north of $4!50$ ．
34.5

Distance from Lnited Statey tangent to 「nitelisiates drtermination of $490 \ldots \ldots . .$.
Station error，Butim Intronominal station，sumb ．
TANGENT LINE AND JUCNDS．

$\frac{x}{y}$		華	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \text { Finsal ufirnt } \\ & \text { tormonal. } \end{aligned}$	Fimarks
	Fet 1.	$+$	－	－		
3	114，10．3	71	3 s d	31%	6， 0^{3} 7 sumith．．	Earth amd stonm monme， $10^{2} \times 6^{4}$ ．
A	32：	运号	18，\％	3\％．	73，3southi．	Sto．${ }^{\text {Stome }}$
4	45.74	57.6	115．6 6	31． 5		Stome mombin，10＇ \boldsymbol{B}^{\prime} ．
5	70， 361	135.9	145.13 -131.61	34.5 31.5	A．8．lisulth	An mommabilt． Dritish mound．
6	112，300	317.3	231.6	31.5		Britith mount．

UNITED STATES TANGENT No. 18.

157.

From United States Astromomicul Station No. 17 (Captain Grequry) to British Astronomical Station (Lientenant Galwey).
[Observer, Lieut. F. V. Greene.-Transit Würdemann sin. No. 87.]
AZIMLTHS

Date.	Position of instrument.	Pusibion of mark.	$\begin{gathered} \text { No. if } \\ \text { readings. } \end{gathered}$	Star.	Azimuth.				
Ang. 2	$\left\{\begin{array}{l}\text { 4. 3feet southand } 1,479 \text { feet } \\ \text { eastof Unitedstates ast ro- } \\ \text { nomical monml. }\end{array}\right\}$	10,67 fuet west of in- strument.	$\left\{\begin{array}{l}10 \\ 10 \\ \mathbf{1 0}\end{array}\right.$	Polaris a Trad Minoris... γ^{2} Uram Minoris . W.					
			30	Mcan.	$8700403.5 \pm 1^{\prime \prime} .1$				
	The azimuth at this point of a perpendicular to themeridian of United States astronomical mound.				2700017.3				
					346.2				
Trateat run throggh a point 13.3 feet south of mark. Total lengthof tangent is 89,636 fect.									
STATION ERIROL.									
Chained nffart from United States tangent to Pritish Astronomical station 49, morth Fect. Initial point, south									

TANGENT LINE AND MOUNDS.

					Final offect to mound.	liemarts
λ	Feet. 18.209	$\frac{1}{1.2}$	$\overline{54.8}$	$\stackrel{-1}{42.3}$		
4	37.08.5	37.8	110.8	42.3	31. 1 sonth ...	Stole mound, $10^{\prime} \times 16^{\prime}$
5	58,305	93.3	175.5	42.3	39. 1 south ..	To.
7	83, 500	1~6.9	${ }^{2} 45.6$	42. 3	16.4 sonth...	Do.
c	89,636	2: 2.6	266.9	42.3	4.0 sonth ...	Eritish astrubomical mondt-Meridian.

UNTED sTATES TANGENT No. 19.

187.

 ical Neetione (C'rptain Featherstonheruk).
[Ghservir, Litatt. IV. V. Aneenc.-Transit Wïrdemann b-in. No. E7.] AZLHU'IUS

INITEO STATES TANGENT No．$\because 0$ ．
157.

From United States Astronomical Station Do． 19 （Captain Cireyory）to British Astronom－ ical Station（Licutcnant（ialloey）．
［0hemver，Licut．J．V．Greque．－Transit Würdimannsin．No．s7］
AZIMUTHS．

STITIOS゙ E1：For．

Computed afleat fur eistance 11ヶ， 14 fert．．

Initial joint ．．．
Station 4 rrar，Dhifish Astrumomical Nation，sumbl \qquad
TANGENT LINR IND MOTNDN．

$\stackrel{\underset{y}{x}}{\stackrel{\rightharpoonup}{E}}$					Frin：］blimel to menlint．	Femarkin
	Feat．	$+$	－	＋		
1	17， 20	s．	354	$\because 4$	33． 8 smath	
A	36,680	3.8	83．3	3.4	23．3．ismuth ．．	Stumemmal， 15.
号	50， 10.8	74i．3	113.1	3.4	\＄3．4 nomth．．	Sture mommal 11%
$\stackrel{\text { F }}{ }$	81， 812	1360	18.8	3.1	1．98uath．．．	
5	105， 9×6	30.4	214.1	3.4		
${ }^{6}$	112，562					
．	112，714					

CONNECTION OF ASTRONOMICAL STATIONS．

DETAILA OF BRITLSI TMNGENT LINEA AND MOLNDS，CONPILED FROM TUE RECORD－ IOOKS OF CAPT．A．FEATHEH心TOXHAITII，I，E．，AND LIEET，W．J．GALIVEY，R．E．

BRITASH TANGENT No． 1.

$15:$.

From Lalie of the IVoms to Pine Fillye Astronomical Station．

> AZLMETIL-PAMT FITST.
（TLu azimuth af lout Firat was cheebed by W．I．atalwer，R．E．］

AZIMLTIK－I＇A！T FOOND

心TATION゙ TRLOR．	
Pant Somantotartat morth	！
	$11+$
	${ }^{-}$
	\therefore 二－1ti
	11\％．tif
	3：－

British Tengent No. 1-COntinued.
PART FLRST.—ONFSETS TO PARILLEL.

			Final offset in feet.	Rutuarkw
	+	12.17	12.935north.	Nu post was fixed, there being no firm around
2	03.06	12. 3.36	27.42 nurth..	No post was insed, there being no himm ground.
3	06.89	36.53	43.43 north..	Earth mound.
4	12. 24	43. 70	60. 94 noith..	Earl mand
5	19. 13	60.87	80. 00 north.	Earth mound.
6	27.55	73.04	100.59 north..	
7	37.50	85. 21	123.71 north..	
8	4.98	97.35	146.36 north..	
9	61.99	109. 54	171.53 north..	Iron pillar.
10	\%6. 53	121.71	198. 24 north..	
11	92. 57	133.88	226. 45 north..	
12	110. 20	146.05	256.25 north..	Earth mound.
13	129.34	158.23	287.50 nurth..	
14	150.00	170. 39	320.39 north..	
15	172. 20	182. 56	354.76 north..	Earth mound.
16	195.93	194. 73	390.65 north.-	
17	220.53	206.90	427.43 north..	Iron pillar.
17.80	227.66	210.00	437.66 north..	Lost fixed by A. Featherstonhaugh. I. . .

PART SECOND.-OFFSETA TO PATALLTL.

	$\begin{gathered} \text { osp!si ou!d } \\ \text { moss ตoneq! } \end{gathered}$				$\begin{aligned} & \text { Final ufinet in } \\ & \text { fuct. } \end{aligned}$	Temarks.
M. Ch.	M. Ch.	$+$	-	-		
1890.80		142.4	166.0	72.10	100. 6 soutli.	Farth mound.
2100.00	10 72. 05 east...	90.94	132.18	$7 \% 0$	112.680ntli...	Tron pillar.
2415.45	754.57 east...	45.45	93. 71	27.0	$12 \sim$ \%, 3 semth . .	Farth monnd.
$\because 68.04$	60 0.01 east...	¢8. 00	73.59	77.11	123. 6 sumth.	Iron pillar.
2900.00	$\because 72.5$ east...	06.41	35.27	7\%.0	10.3. 4 sonth...	Eartl mound.
3000.00	172.05 east. .	0276	23. 11	\%\%.0	87.3 sonth...	
3251.54	0 0.9.49 west ..					

BLITISH TANGENT No. \because.

1873.

From Ioint Astronomical Station No. 1, at Red River, to Joint Astronomical Ntation No. \because, ut I'vinte Mach.
[Observer, Lient. W. J. Gatwry, I. E.-Transit Theudulite 7-in. l., O. No. 3.]
AZlMUTILS

Ditte.	lowition of instrument.	Position of mark.	$\underset{\text { Nu. of }}{\substack{\text { Naings. }}}$	Star.	Azimutlı.
May	Iustrumentonazimath prat	Wiost uf instrmment 3,5\%: \% feet.			
				Mran.	2700017.6

Fexalt: Tangeut rummoumath $14^{\prime \prime}$. \&
STATHON Elitur.

	$\begin{aligned} & \text { Fect. } \\ & \text { Derl\|, } 7!1 \end{aligned}$
Tanment startul north.	61. 5
	34904
	310.67
Stationl error	31.97
	$2 \pm .4$
Mean station mbor, Michel eorth	$3: 3$
Mounds wero milt by Lieutenant Greauce (Ste his report	

bRITISH TANGENT No. 3.

1873.

From Joint Astronomical Station No. 2, at Michel, to Join Astronomical Station No. 3, I'embina Morentain, east.
[Troughton \& Sims Trausit Thoodolite, 7-iv. F. O. No. 3.-Observer, W. J. Galwey, I..E.]
AZIMOTIIS.

Date.	Position of instrument.	Positiou of mark.	No. of radiugn.	Star.	Azinutlı.
Junte 15	Instromeat on astronomical meridian.	$3,154,7$ feet west of instru ment.	4	Pularis....	\square 480 4
				M ${ }^{\text {can }}$	2800155.4
	Tangent was mon through point 20 . \& inches south of the mark. At Joint Astronomical Station, Iemhina Monutain cast, the angle betwern tho tangeut aud the astronmmal meridian of Captain Featherstoubangh gite the azimuth of tangent True azimuth due to distanco.				6! 4.524 .3 と! 44 4土. 3
	Azimnth error to north				36.0

This error was considered cnmalatiro, and was distributed at each atation proportionally to its distance from Miche'.

STATION ERIOLL.	
STATON FM,	Fect.
The aljusted tanceut was at Pombina Mountaiu, boutb of 410	76. 6
Error of inatial pulle neria.	46.5
	123.1
Otriset due to distanco	15c. 15
Statiou error Pembina duuntaiu Astronnmical Station, south	55, 05

> UFFSET TO I'AF:ALLEL.

						$\begin{aligned} & \text { Final ottiset } \\ & \text { inf fiet. } \end{aligned}$
M. Ch.		$+$	-	--	--	
2100	4, 1003	0. 59	3.1	0.10 .5	41.5	
2200	9, 2×3	2. hax	1. 7	0.17	414.3	Sh. 69, knuth.
83110	15, 1 tis	6.31	10.3	1). 8.	414.5	50. ¢, winlth.
$\bigcirc 400$	$\therefore 0,443$	11. 4k	13.9	6. 58	41.5	4\%, 51 smmath.
2500	2-5, 73	18.17	1\%.5	11. -7	44.5	41, $\frac{70}{}$ sthilit.
26 13.8.	31, 314	29.16	$\cdots 1.7$	1. 31	46.3	40.3.j surith.
2700	$341,2-3$	36.11	\%4. 7	1. 53	46.5	36. til south.
2800	41,563	47.42	is. 3	2. 018	414.5	29. 48 sunth.
$29 \quad 10$	41;,843	60.24	31.9	\% H	46. 5	이. 78 sulull.
3000	5, 123	74.58	3is.	3. 24	41.5	10.the south.
3100	57, 404	90.46	3! 1	3. 116	46.5	00, ! 10 uorth.
3200	ti3, 183	107.88	427	1.71	46.5	13, 93 noth.
3300	(17, 9163	12li. 8	413.3	5. 56	411.5	28.41 noth.
34 f0	73, 243	147. ${ }^{\text {d }} 6$	$4!$	1i. 31	44.5	4.4.) notih.
3500	28,523	169.	53.5	7. $\because 4$	415.5	findoz north.

Note-The inon monuments weto subsiqueatly erectad at points

BRITISII TANGENT No． 4.

1573.

From Pembina Mountain cast to Pembina Firor，connecting with Licutenant Grene＇s Tangent from I＇embince Mountuin test．
［Troughton \＆Sims Transit Thomblite 1．O．No．1．－Ohserver；A．Featherstonhangh，R．E．］

AZIMETHS．

The azimub at initial point was deteminw hy oberving an assumed meridian with an astronomical transit and read ing a series of angles betwen this meridian fad tho tangent as follows：

$$
\begin{aligned}
& \text { Mran of above m+ana. }
\end{aligned}
$$

8159940.45

Azimuth of tamtut ．．．．．．．．．．．．．．．．．．．．．．．． 97060

 simer thig the trine 49° ．

SIATION EIRROR．	
Measured offat from Limutenant Grueqeas tanged	$\begin{aligned} & \text { Feet. } \\ & 01.68 \end{aligned}$
Error ofl inital point soudh．	19．94
	$\begin{aligned} & 17.18 \\ & 54,1 \% \end{aligned}$

				．荡	Romarlas．
M．F／hs．	\dagger	\cdots	＋		
1 10．	1．4．	$\therefore 6$	113！	9． 1 suatl．	
1 hap，ill	号耍	1．7． 5	1ti．！		
（3） 16.	1i．－	$2{ }^{2}$	16.1	$\because 0$ nemili．	
4 376．包	1，\％	St， 1	15．：1	（i． 11 suliti．	
5010	111	43.5	$16:$	T．5s mentlı．	
（）014．	2 i .6	C1．${ }^{1}$	1！＂	7．is sumtil．	
$71!4$	III． 1	11．－	149	4．\％sumil．	
8 （0）．	A－3	lim．M	1 15： 1	3.15 sumih．	
	S4i．	－3． 7	1ti，！	0．0 sorath．	

$\because: 1$

BRITISII TANGENT No. 5.

187%.
From sleepy Hollow Astronomical Station to Astronomical Station Turtle Mountain east.
[Troughton \& Sims 7-in. Transit Theodolite F. O. No. 3.-Observer, W. J. Galwey, R. E.]
AZnaroths.

Date.	Position of instrmment.	Position of mark.	Star.	$\Delta z i m u l n$.	Weight.
July 5	$\left\{\begin{array}{l} \text { Instrument on meridian of } \\ \text { Astronomical Station at } \\ \text { Sleepy Hollow. } \end{array}\right.$	$\left\{\begin{array}{l} \text { 2,00 fret west of instrin } \\ \text { ment. } \end{array}\right.$	$\gamma 0$	$\begin{array}{ccc}0 & \prime \prime \\ 280 & 06 & 17.89 \\ & 32.203\end{array}$	1 2
				870015	

The tangent wan run throngh a point $\left(9,300 \times \sin 6^{\prime 2} 27^{\prime \prime} .3\right)=51.78 \mathrm{in}$. south of the matk to a point 12 miles west, when azimuth observations wero taken with the following result :

The taugent was ran to Astronomical Station at Turtle Nountain enst, wherethe azimoth was examined by Captain Featherstonbaugh and an error of $7^{\prime \prime}$ fonad, which was neglectenh.

OFFSETS TO PARALLEL.

				Fimal offiset in feet.
	1	-	-	
80.00	0.77	7.76	$5 \cdots 16$	59.15 sonth.
16i0. 00	3.06	15.52	52. 16	64.62 suntla.
240. 00	13. 89	23. 29	53.16	68.50 sunth
320.00	12.24	31.04	$5 \div 16$	70.96 soutl?
410.18	21.15	39. 83	5\%.16	71. el sutut
43.17	21.50	43.82	52. 14	71. 57 suntll.
5 5tio. 10	37.50	54.33	52. 16	bie. 97.8 smath .
158. 163	61. 79	13.3.81	[0. 16	61.21 soutl.
-11. $2!9$	71. 14	74.83	51.16	5.5 .85 soltb.
4 $=0.110$	[1. 51%	85.33	$52.11 i$	41. 37 swutb.
!33.161	101.23	90.58	52. 16	38. 511 south.
1, 011, 64	1\%3.64	93.03	$5 \% .11$	24.311 somth.
1. 0194.73	143.33	106. 21	$5 \cdots 11 ;$	1,i. 114 sumtl.
1, su0. 00	130.20	1112.42	\%r. 16	03. 62 north.
1, 2\%3. 7	19108	123. 58	5.3. 11%	1-. 50 north.
1, 3-7.90	230.316	134. 66	50.16	43.54 urrth.
1, $4=0.00$	201. 9.4	143. 59	516	Cis. 19 north.
1, 540.05		14! 34	5\% 110	-8, 10 unith.
1. 641.41	3\%2. 19	159. 15	52. 16	110. is musth.

Note - The parallel between sleepy Hollow and Turtle Dountain was subsequenty marked by momods ateet in tiam-

1s．i．

From Turle Honntain Letst tomerl Turtle Monentein West．

 －Z1．1ビ111～。

$$
\text { Ioce rebl } \text { I Taselert. }
$$

BRITISE TANGENT N゚o．

15.9.

Fiom first Crossing，Mouse Fiver．to Erouth Anter Corefi．

AZY゙イIFこ

 susion．

	＝	$\begin{aligned} & \equiv \\ & z \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 三 } \\ & \text { E } \\ & \text { B } \end{aligned}$	Tッセ゚＝－\％
3	－－	－＝	－－	\because
¢	\cdots	－	$\because \cdots$	－
3	81．29	－13．3：		＊ご－－t＊
12	114 \％	＋1． 12		14．$=$
13	1た：	2－3		： $4=5$
15	玉－5	$\bigcirc \cdot{ }_{\text {F }}$	－	12．
G1	3， 3.31	$3: 3$	\cdots	－\％ $5=\%$－

hRITISI TANGENT No. N

153.

From Astronomical Station Second Crossing, Mouse River, to United, States Astronomical Station No. S.

〔Troughton \& Sims iriu. Transit Themblite F. O. No. 3-Observer, W. J. Galwer, R. E.]
AZIMUTHS.

Date.	Pusition of instrument.	Pusition of mare.	State.	Azimutli.
Ing. 1k	(Initial point of tangent on metid\} jan of Astrommatal station.	1512: tt west ofinetrumett		
			Mean	$\because 000183.4$

 ohsurvatuons were taken as fullown:

Date.	I'usition of instumewt.	Ponition of marls.	Star.	Azimuth.
Ang. 18	On tangent			$\begin{array}{r} 2094=\frac{59.9}{53.5} \end{array}$
				$3694=58.7$ 569 40 26.1
	dzimuth error			7.4

STATION EHPOR.

OFFSETS TO PATALLEL.

$\begin{aligned} & E \\ & E E \\ & E \\ & E \\ & E \\ & E \\ & E \\ & E \\ & E \end{aligned}$				$\begin{aligned} & \text { Final offeth, } \\ & \text { in luat. } \end{aligned}$
313,	1	-	c	
3	fi, -r	4. 11	24.83	24.41 soutlı.
15.	27. 5	-. 91	$21 .+3$	と. 22 nonth.
1). Otit	(1) ! !	13.50]	$\because 6.8 .3$	5s to murth.
12.	110.	1\%.m.	26.43	6.3, 50 nowth.
15. 100	173.	D.	26.8	120 cis moth.
$1 \sim$.	217.46	$\because 4 \mathrm{l}, 61$		1:14.3:3 math.

$\because \because=$

BRITISH TANGENT No. 9.

1873.

From Short Creek Astronomical Station to United States Astronomical Station No. 9.
$[$ Tronghton \& Sims Transit Theodolite F. O. No. 1.-Ouserver, A. Fentherstonhaogh, R. E.]

$$
A Z I M U T H S .
$$

This error was not corrected, and the tangent contioaed to termioal point with the astronomical transit, tho theodolite beiog ont of order.

STATION ERIOR.	
	Fect.
Measared offset from terminal point to 49°	205.8
Error of initial poiat north	19.8
	205.6
Error dae to azimath deviation of $14^{\prime \prime}$.	4.95
	220.65
Computerl offset due to dist ance, 16 miles 03.62 chinns	196.68
Station ertor of Coited States Astronomical Station,	94.0

OFISETS TO PAPALLEL.

	$\begin{aligned} & \text { 号 } \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				Final oflset infeet.	F2+413: ${ }^{\text {a }}$ hs.
M1. Ch .	$+$	$+$	$+$	-		
255.80	5.6	4.0	1. 0	19.8	9.2 sonth.	Monmd, 12* 0^{\prime}.
5 25. 18	2\%.0	C. 9	9. 1	19.8	1-\% north..	Do.
915.00	64.5	13.8	3.3	19.8	6i. 4 morth.	110.
1958.78	124. 1	10.1	4.6	19.8	122.0 north.	110.
1003.62	196.7	24. 0	4.9	19.8	205.8 our'tu.	Lo.

Note.-Iron tablets were buried afar the mounds in lath

mRITISH TANGENT No. 10.

1873.

From Grand Cuteau to Mid Coteau.

[Tronghton \& Sims Tin. Transit Theodnlite, F. O. No. 3.-Observer, W. J. Galtuey, J. E.]
AZIMCTHS.

Wate.	losition of matrument.	Pusition of mark.	star.	Azinuti.
Sept. 1	(On meridian of Astro. (Lowical Station.	こ, Fba. 2 fuet west of instrummint.	$\left\{\begin{array}{l}\text { Polaris } \\ \text { - do.. } \\ \cdots \text { do } \\ \text { - do.. }\end{array}\right.$	
			Mean	± 695032.0

 mark and irolonged to the turminal point at lid Cutean.
sTATION EIROR.

OFFSETS TO PATALLEL.

		$\begin{aligned} & \Xi \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { E } \\ & E= \\ & E: \\ & E \\ & E \end{aligned}$	Fiual offert in feet.
	$+$	1	-	
214.4	5.00	34.25	46.1:	10. S-sontly
\$10. 36	-0, 1:	6 6.1. \because	41i. 1.3	31.5 inurth
ti31. 1!	4. 3.311	!3, 1	413.13	9f. 31 murth
\$1111	!!! ! 01	135. 24	412.13	1-1.01 north
1,211.120	15\%. 5	171.4.4	416.13	315 atmorth
1,4,4, -5	203. 11	215. 5	41i.13	+2.3.0310\%t
1, \%12.64	3.0 \%	253.42	Afi. $1: 3$	50\% 0.inurtil
1, 559.4	113.4!	875.15	415.13	640.51 160th

Fote-The form and matking of the monnds wres iu erery respect, similar to thase on the famgent from lst cronsiug. Mouse Niver, tu Sonth Antler Creet.

British Tancent No. 11.

1833.

From British Astronomical Station to Astronomical Station near Bully Spring. [Troaghton \& Sims Trausit Theolulite F. O. No. 1.-Ohsistrer, A. Feathe: stonhangh, I. E.] AZIMOTIIS.

The azinuth, at the initial mint, of a mark placed approsimatily on the tangent, $4,343.4$ fect distant was determined from a series of readingon the angie betwem the mank ant the zonith telescope 	360 (ff 41.30
Mean of readings of angle...........	8950 5108
Azimuth of mark	900020.55
To get on the true tangent, the mark shonh lw mored north, or the instrument somul $(4,3.4 .4 \mathrm{ft}$. γ, sin the same nark for a back sight. The timgent was coosequently in crror siu - $1-3 \mathrm{~F}-\mathrm{m}, 01=0.57$	
$=2 \%^{\prime \prime}$. sonthing ; i.e., the azimuth of the taugevt, as started, was The line was prolonged on this azimuth I , 14 . it thains, when the azinnth mas checked in the same manoer as above.	260 543 33.100
Azimuth of ohservel aneridia	
Mean readiog of augle between meridian and tangent	$9011+16$
Az*muth of tangent	
Compruted azimuth due to dist	94540.10
Aziminh error, south	1,3
Azimuth error, south at ivitial point	2\%. 119
Mean azimuth error, somth to this print, i.e. 1,14.17 Chains	8.81
Thas error in azimuth waz ronsideret cumulation.	
Beyoud Pyranid Creek the ground was very luthen, the line crossing a range of hills athout 5 mites distant. Tu eonvey signal sn far being hilliemt, a mark, apmeximately in line, was phard on this rate. The mean toghe betreen this mank and the meridian observel above was.......	498931.25
Azimntis of meridian ...	3795423.53
Azimuth of mark	fit 14.8
Az.math of mak din to dustance, 1, 141.17 c	c9 4.5 to 09
Azimuth of mark in crror	$100 \% \mathrm{im}$
 tested.	

STATION ELILOH.	
Measumal uffet from terminal mint to 49 -	$\begin{aligned} & \text { Iept. } \\ & \text { atite } \end{aligned}$
Error of initial print, suath.	1311. fix
	569, 38
Azinuth urror berout 1,41.17 chatus	- 17.14
Computul offet due to distante, 41 miles $4 \cdot 06$ cha	-492. 60
Statime error, Enlly Spr	11.34

OFFSETS TO PAIVALIEL

要要					$\begin{aligned} & \text { Yinal offoret } \\ & \text { 10 fert. } \end{aligned}$	Inumition
1r. Oh.	+	\cdots		1		
$\bigcirc 30.03$	1i. $>$	13.5	± 1.1	13in:	1024nomb	Eartle muncal 14 , it
5 43.3.	23.5	¢5, 1	- \because	1313. 7	1=1. $=$ and	1)
260.10	$5 \mathrm{S.6}$	3:3. 1	- 4.0	130. 7		If,
10 4. 5.54	8.5. 3	47.8	1 4.K	130. 7	2tio. 6 notlif.	11.8
1421.17	155. 5	lit. 6	+ 6.1	130. 7	3 S. 1 nuth	1\%.
$18 \quad 00.46$	218. 1	81.5	-10.3	130.7	f69, 0 nıl) ta_{1}	In.
21023	33 c .6	95, \%	- 50	1:31, 7	5.93 .6 20tl.	
$24 \quad 48.06$	402.7	111.3	-11.7	130.7	ti93.0 writh.	Astronomic: 1 moturd, linly Spriag

$\mathrm{N} \mathrm{B}-16$
Trite. - Munds mate of eat th are faced with sum

BRITISH TANGENT No． 13.

187.3.

From East Poplar River to West Poplar River．

［Tronghton S．Sims i－in．Transit＇Thoololite F．O．No，3．－Observer，W．J．Galwey，R．E．］ AZIMETHS．

Tangent was ron throngh a point（ $2,848.5$ feet \therefore sin 33.5 incbes $=$ ） 5 in inches sunth of the mark to the terminal point． s゙ГATION ERIOR．

UFFSETSTO PARALLEL．

		$\begin{gathered} \text { Station reror in } \\ \text { fret. } \end{gathered}$		Final offyrt in lext．
Miles．	＋	\rightarrow	\pm	
3.	4 H	23.103	3×4	I2．lifinorth．
5． 9.475	3． 11	1．1． 11	3－3． 4	99.70 butth．
9.	Pil． 9	fis．！ 9 \％	32.4	33.49 north．
19.	111． 20	514． 53	佂 4	5s． 46 north．
15.	172	113．17	ご，4	47． 43 north ．
15．85	231 16	1．31．$=11$	3－1	14 ti .76 wort b．
$\because 1$.	3．6． 51	1．－\％；	3－1	217．trenorth．
± 3.4315	123．$\because 0$	17ti，is	35.1	$\because-1$. cidurtb．

 at the terminal point．

Britush Tangent No. 13.

1874.

From Little Rockiy Creck to Frenchman's Creck.
[Troughton \& Sims Transit Theodolite F. O. No. 1.-Ohserrer, A. Featherstonhanarh, I. E.]
AZIMUTHS.
The azimuth of a mark placed approximatnly on tho tangent west of the initial point was determinet

Mean reading of auglo between mululian aul mark 000016.3
Azinnth of mark \qquad $510 \quad 00 \quad 05.78$
 bere the line was shifted north 1 th. 7 chains, and the new line continued to the west sher of Frouchman's (reuls

STATION ERROR.
The station error was determinel ly Lientenant Greene to be Frenchman's Crek Station, i.e., United Feet States Astronomical Station No. 13 north 413. 2

OTFSETS TO PAlidLEL

$\begin{aligned} & \text { 'u!nd [entu! } \\ & \text { worj oxart a! I } \end{aligned}$				$\begin{gathered} \text { Fimal orlset in } \\ \text { feet. } \end{gathered}$	10wntas.
M. Ch.	\dagger	+	$+$		
000.00	11.0	0.0	1113.0	1193.80 north.	Eartly summi, tre 14.
$\underset{\sim}{2} 63.61$	$5!$	4. 6	1193, 11	1:233. 5 moth.	
5 40.23	23.1	9.0	1193.0	1205. 1 Durth.	llo.
$y \quad 55.81$	57.9	11.3	Ed, K	1 til).! murtls..	I 10.
12 O 200	116. 8	911. 2	c8.8		1 m
14 42. 68	161.7	23.7	8 AH	\%\%. 2 north..	10.
19 2! 6\%	$9-7.1$	31.7	$88 . \mathrm{N}$	41\%. finorth..	In,
2\% 27.71	3×2.1	310.6	E8.-		
25 4i6. 33	511.5	4:3	EW. ${ }^{\text {H }}$	Cifa. 6 north..	Liock mombil, fr 10^{\prime}.

 tablets were noiformly 10 fiet east of the east crn base of the moubd and two fert below the suface of the grombl.

BRITISH TANGENT No. 14

1374.

From Cottommod Creek to United States Astronomical Station No. 14.
[Tronghton \& Sims, Jin. Transit Theodolite, F. O., No. 3--Obserrer, W. J. Galwer, R.E]
AZIMCTIS.

The tangent was prolonged on this ermeuns azimutlo to $18 . \bar{j}$ mile puint, where azimuth observations wero taken wo follows:

Date.	Fositimin of instrument.	Position of mark.	Star.	Azimuth.
Jnls 3	On tangent	On tangent	Polaris	801 4753.1 40.3
	True azimatla			2694789
				12. 5.7
	Error in rumming the lime			7.0

STATION ERIVOJ.

STATION EMINT.	
Measnred uffen from terminal poiut to 49^{2}.	294-2. 3
Error uf instial point, suntl.	21. 92
	2:7.03
(omputer offst dam to distance, 20 miles 3,903	320.71

OFFSETS TO PILIALLEL.				
	$\begin{aligned} & \text { 老 } \\ & E \\ & E= \\ & E \\ & E \\ & E \end{aligned}$			$\begin{aligned} & \text { Final offser } \\ & \text { an fert. } \end{aligned}$
	+	-	$+$	
atio. 0:1	1. E^{\prime}	7. ${ }^{2}$	$\because 1.72$	23.90 north.
1-27. 60	27.58	15:	41. 23	34.03 north .
F20. 1111	11.919	2.	\#1.	60. Efinuth.
!1tst. 1 (1)	1110.20	3ill 4	$\because 1.72$	701. 4.inuth.
1. 21961010	12.	3- 117	!1. it	1-3, 6 north.
1. 1111.116	$\therefore 24.97$	45, 1	$\because 1.72$	20.3. $3-\mathrm{nmonth}$.

BRITISII TANGENT No. 15.

187.

From Astronomical Station No. 25 to Astronomical station No. 29, Lest Fowl.

[Tronghton \& Sims Astronomical Transit F. O. No. 1.—Observer, A. Featherstomangh, F. E.]
AZIMUTHS.

> ふTATION ERRUR.

Lieutenant Greeno, in bis report, erives station rror of East Fork Station, nortia $\begin{aligned} & \mathrm{Fent} \\ & 4.3 \mathrm{~b} .9\end{aligned}$
OHFSETS TO MIIIALLEL

$\begin{gathered} \text { quiod testat } \\ \text { wosj buczric } \end{gathered}$			$\begin{gathered} \text { and } \\ \text { aus } \\ \text { 4zatayz } \end{gathered}$		$\begin{aligned} & \text { Fimen uffert } \\ & \text { in fiet. } \end{aligned}$	Itomarlis.
3. ('h.	$+$	+	-	-		
0 010, 0t	0.0	0.0	0.0	13.0	15. 11 burth.	成 numand, $6^{\prime} \times 1 w^{\prime}$.
300.00	6.9	4! 4	fi. 11	1511	18. 3 nпrib.	
$5.50 \cdot 3 \cdot$	25. 2	94. 5	11.5	1.) 0	1:3.2 morth.	In.
885	61.8	147.:	17. $=$	15.0	567. 7 torth.	10.
118.8 .15	104. ${ }^{2}$	1!2.4	20.3	150	SER, 3 nemtla.	Io.
$151 \div 00$	175.6	939.7	219.2	$1 \therefore 0$	410.1 morils.	1 om
1708.03	283.6	$\underline{2}-1.19$	34.1	15.0	4-6. 4 math.	Do.

BHITISH TANGENT No. 16.

187.

From W'est Fort Milli River to Cuited States Astronomical Station No. 16.

AZIMUTHS.

Dato.	Powition of instrumment.	Pusition of mark.	Siar.	Azimuth.
July ${ }^{\text {a }}$	()a timgent.		$\left\{\begin{array}{c} \text { I'ularis } \end{array}\right. \text {. }$	
			110:3n.	23 3-41.3
	True azimuth			8!3>18.2
	Azimuth erfur		.	2313 1

-TATION EKliUR.
 OFFSETS PO PAISIALE

		$\begin{aligned} & E \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { Final uffut } \\ & \text { in foet. } \end{aligned}$
	+	-	\%	
:10. 10.1	1. 7 . ${ }^{\text {a }}$	301. F0	1. 116	17. 4.i sulth.
(-11. 119	?	lit. lil	1i, 10	97. 59, sund h.
5-20. 111	1.1. 31	(1-2. 119	(i. 116	
(19,1) (11)	110.: 0	1:3:	1i. 110	(i. 5.5 8untr.
1:114.00	172. ${ }^{\text {a }}$	1.11.01	1. 11 i	
1117. 110	二小, $\%$	1-4.81	6. fl	$60.6 \pm$ urili.

An
$\because 16$

BRITISH 'IANGENT No. 17.

1574.

From British Astronomical Station near Milt Liver to Astronomical Station East Butte.

[Troughton \& Sims Δ stronomical Transit F. O. No. 1.-Obserter, A. Featherstonhameh, R. E.]

AZIMUTHS

This tangent was prolonged eastward 325 chains to connect the Tinited States tangent frum Milk River Lake's Station, und was run westward 19 miles 60.22 ehains, when it joined Dnited States tangeut rom East Butte eastwarrl.

The azimath of a mark placed approximatels on the tangent east of the initial point was determined from a feries of reatings of the anglo between themark adal the zeDith telescope werinlian, the azimuth of which was fonal with astronomical transit to be

0000 27.24

Azimnth of mark \qquad 900016.01

The tangent east was ran on this azimnth, and its connection with Tnited States tament, aud resulting station error, are given in Lieutemaut Greeno's repert.

The tangedt west was run on the same azimuth to ita terminna, wherazimuth obecvationa were talien with Troughtou \& Sims 7in. Theodolite F. O. No. 2 on Polatis, nt varions heur angles, at follows:

Face riyht.	Faceleft.
- ' ${ }^{\text {c }}$	- *
89 4121.0	ह! 41 Qe. 0
4113.0	23.0
41050	1*. 5
41150.5	18.0
Means, 894109.9	と! 41 16. 1

	\bigcirc, "
Guneral mean	191113.4
True qzimuth	2! 40 2ll 0
Error in azimnth, north	53.4
Errur in azimath, worth, at initial point	15.01
Error in azimath, nortb, in rmoning	37.39
'The adnpted azimnti error fur the whole line was north.	34.60
	M. Ch.
Lenith of United States tangent enmb	19 13.30
Total leugth of tangent	23 53.60

STATION ERLOR.
Lieutenant Grembristas station crror East Jintte Statmon, month, 470.9 feq .
OEFSETS TO PADALIEL.

	要		wo.vo प!		Final offset in fe't.	Rumarks.
M. Ch.	\pm	-	-	-		
W. 0000.10	00.0	00.0	c0. 0	50.7	54. 7south..	
3 45, 04	9.7	F1. ${ }^{3}$	3.8	55.7	133.4 solth..	Fock monud, $6^{\prime} \times 10^{\prime}$.
601.81	27.7	127.2	5.4	5.4. 7	173. 1 sonth..	10.
904.21	(ix.	whi. 3	8.1	58.7	$\because 16.4$ south.-	In.
11 73. 8 !	108.8	281.7	11.7	$5{ }^{5} \times 7$	20:3: 3 anouth. .	1\%.
1308.95	186. $\%$	3.5.5	J1. 6		3394.10 somth.	1\%.
1825.27	336.6	417.3	16. 4	5ic. 7	asios sonth.	1 m .

Note.-Aa iron tablet was buried 2 feet in the ground 10 feet east of the hase of erch monnd.

BRITISI TANGENT No． 15.

1874.

From West Butte to l＇nited states Astronomical Station No．1s．

AZ1MUT11\％．
The azimath at ioitial ponnt was determined ley repatime the angle letween the mark aud the mendian of astronom ical transat．
 300005.0

Correction Jor lere． 1

Pusitun of instrament．	I＇ositiva of mark．	Star．	Aziouth．
Ontaluent at terminal foint		$\left\{\begin{array}{l} \text { Pularis } \\ \cdots \text { IJ... } \\ \cdots \text { do. } \end{array}\right.$	
		Me：au	30， 35354
Seat anulu bedtwen approximate marmian amd tangeut．			r！in is \％
Azimuth of tallig（x）t True azimuth			－1， 3447.14
Azimath arat Azmuntle ertor at ithilall puint			211．3
			17.3
Azimath reror in manaing tamenst			$\stackrel{2}{2} 20$

Now concertion matho for cither of thest errons．
がITIION ELILOR．

				Final uliset iu fort．
Chatar	＋	＋	－	
？ 16.	7．${ }^{\text {a }}$	101.42	44． $3: 3$	14． 71 noth．
t－18． 417	2－9，	$\because 11 i,-1$	49.35	16.53 ми女1．
7		3as．（it）	！19．3． 3	－－！！： 4 north．
（10）（10）	110．${ }^{10}$	1心20	Sn 3：	A．3． 11% north．
1， 2019.160		5事，	！ 14.3	（，08，1－3 nuth．
1，4\％，5，	251.10 .5	disid． 1.3	219， 36	

 $\because \downarrow 6$

BRITISH NANGENT No． 19.
 1574.

From South Branch Milk River to North Branch Milk River． ［Tronghton and Sims Astronomical Transit F．O．No．1．－Observer，A．Featherstonlaugh，12．E．］ －AZIMUTILS．

Tho lino was startad on an approximate azimuth of ar0 and prolonged 580.09 chains where azimuth ohsertations wers taken on Polaris bear eastern olongation，as follors：

Mran，हो 万1 09.8 हา 53 54． 3

Coneral mean	E9 5＋ 12
Trne azimuth	895041
Error in azimu	$1: 1$

 angles gare following results

Gencral mean ．． 14

Error in azimath，worth ．．．．．．．．．．．．．．．． 3 － 3
Previous ertor in azimuth，nortlı．．．．．．．． 1 ：
Provious crar in azimntlin monine ．．$\quad 217$

 rest of tho line．

ETITION EIITOLS．

OFTSETS Tせ PARALLLL

	芯	$\begin{aligned} & B \\ & E \\ & E \\ & E \\ & E \\ & E \end{aligned}$			Final（．ffet infor．	Romamks．
	2.8	1．9	（1． 7	11.0	23．finarith．	Janck mommal（tar $10{ }^{\text {a }}$
108080	0.0	11.0	（1）． 11	11.0	11．0 ¢ 5 ¢ ¢	
W． 260.4	5.7	1． 3	5． 7	11.0	1． 7 nuth ．	lat k monnd 8 $^{\prime} \times 10$ ．
573.31	24.8	＊i． 1	1：4	110	ᄃ． 3 Tulth	11% ．
－ 73.31	1ic）！	211． 4	21.3	11.0	64．S зmएth．	710.
13351.24	134.1	45.1	S－ 11	11.11	1－4 nererta．	1% 。
1629	20.5	5．5． 1	12：	11.0	119．3 3ntth．	［\％．
				－．．．．	151．3 murth	

BritTISH TANGENT No. 20.

1874.

From Chief Mountain Astronomical Station to Bel!y River Astronomical Station.
[Troaghton \& Sims 7-in. Transit Theodelite F. O. No. 3.-Observer, W. J. Galwes, R. E.]
AZIMUTII.

Date.	Positiua of iostrnment.	Pusition of marle.	star.	Azimuth.
Aug. 13	$\left\{\begin{array}{c} \text { On meridian of astro- } \\ \text { nomical station. } \end{array}\right.$	4 recis fect west of instrument.		C ' 1
			(Polaris...	2695426
			D,	2.3.4.5
			I 1	31.65
			Mend	20175488.1

British Tangent No. 20-Continued.

1874.

STATION ERROR.

OFFSETS TO PARALLEL.

		$\begin{aligned} & \text { Station error in } \\ & \text { feet. } \end{aligned}$		Final offinet iu feet.
	\dagger	77	- 07	
445.15	23.70	141.48	18.07	135. 25 gouth.
853.53	89.94	271.00	18.07	199. 13 soutb.

Note. -Circolar stome moonds, 10 feet diameter and ofeet high, with herme 2 feet wide and trench $18^{\prime \prime} \times 12^{\prime \prime}$, were erected at ahove distances from initial poiot. That at e52.53 chaios was Captain Featherstouhaugh's astronomical monul, and was built hy lim. An iron tablet markiog exact deternioation of parallel was sunk 6 incles in the ground in center of mound. No tablets were placed ontside the mounds except at astronemical mound.

To comnect Belly River Astronomical station with 49 th Parellel and Rocliy Mountain Astronomical Station．
［Observer，A．Featherstonhauglt，IL．E．］

Tirangle	Angle．	$\begin{aligned} & \text { Observed } \\ & \text { angle. } \end{aligned}$	Correc． tion．	Rellued angle．
		－ 11	＂	－＇${ }^{\prime}$
	13．1	71823054	－5．3	71 处 10
	$1{ }^{1} 1$	7238.8		
	A D ${ }^{\text {d }}$	350622.16		35.56
A li 1	A I E	T2 2 2t 1.3 .3	＋12．04	it 2717
	A $121:$	531022.57		5316
	11 A E	54248316		515
I E A	I）E＇－1	313350	-13.2	818380
		느 3321.8		ㄴ：：33 3 11
	L 14	125 5433		1055420
$A r^{\prime \prime}$	4 Cl	084354.85	436.8	45434
	$\begin{array}{ll}11 \\ 10 \\ 1 & 1 \\ 1\end{array}$	411， 51515		4．130 6
	$1{ }^{\prime \prime} 1 C^{\prime}$	11．354：34．58		1135413
DOE	1）$C E$	41 3118.63	$+20$	443136
	1） 120	$7!3 \leq 2117$		72.30
	$\bigcirc D E$	62 yy 40.2		6it 6.542
D E ${ }^{\circ}$		4\％ 193%	＋1．！	4193
I＇l：	$\cdots P 1$	3．）吹 16.6	－事家	351204
	1）B I	200317.64		71113
	I＇1）	74 5 你 59		74 5410
H $1{ }^{\prime}$	IA ${ }^{\text {a }}$	43 tis 10． 4	$-1: 1: 3$	4368
	$1{ }^{\prime} 1$	$4.51: 5606$		2981409
	A 1 P1	11050.102		11051136
181	$\therefore O X$	1540 42．74	－11． 4	12 475
	$\begin{array}{lll}1 & 1 \\ O & \text { L }\end{array}$			1：0 1304
d ${ }^{\prime}$＇		1909 41．64		1900808
	E1\％	5150.216	$+40.03$	8158
	AEP	i－ $53 \% 5$	＋1．s	\％ 5311
71）	for	61308	（3）	6136
	OIM	6．9．80		85 哠第
	＇ $\mathrm{K}^{\prime} 1$	20） 573		2935

＊Latert mest athat Tuml．

$$
35
$$

TRIANGULATION-Continued.

Side.	Lungh	Azimu h	Latitude.	Departure.	Station	L.atitude.	Departnie.
$A B$	Chains.	1695101.37	$\begin{gathered} \text { Chains. } \\ 8 . \quad 56 .: 03 \end{gathered}$	Chains. E. 10. 012	0	$\begin{aligned} & \text { Chains, } \\ & \quad 10.100 \end{aligned}$	$\begin{aligned} & \text { Cheins. } \\ & \text { 0in hin } \end{aligned}$
A 1	92. 526	2111957.27			I)	S. 13.564	
						S. 140.600	15. 20.111
$R D$	92.236	9771593.37			$1{ }^{\prime}(3)$	S. 332.164	15. 19. 300
A H	68.0.13	11586 92. 21					
I E	58.033	¢2 1805.21			0	00.800 - 13×112	E 00000
23	58.0 .3	4. $180 \% .1$			1	S. 133.0112	1) 11-3:
$D E(1)$	113. 69				I' (c)	S. 164.1478	
$\pm \Gamma$ (${ }^{\text {d }}$	143.715				$2(1)$	S. 33? $17!$	61. 41.836
L E (mead)	113.70:3	83 5251.82			θ	00.000	(11) 100
						S. 12.01%	12. 11. 3.4
$O D$	193\% 4!	$\because 105063.89$	S. 180504	W. 649001	. 1	\&.138.1912	13. 1113
$0 L$	1-9.17	1.68533 .50	S. 168.245	E. 2.986	L	S. 56.203	F. 111.18
						S. 1341949	WV. $710!10$
$A C(1)$	138.499				P ()	S. 332.16 .1	W. 4, 3116
$\therefore O(2)$	138. 489						
A O (mean)	1.50 .495	1751391.79	$\therefore 138.012$	E. 11 534	C		
					L	S 107. 315	L , Tı, 718
$P T$ (1)	1.11 .088					\&. 164.953	1V. 1: $\because 2$
$1 \cdot I T(2)$	151.024				$I^{\prime}(1)$	S. 332.160	17. il. 301
I) $D\left({ }_{3}\right)$	1,51. 01,						
					P (1)	S. 302164	W. 40. 300
1' I' (mean)	151.0303	17211933.37	S. 149.000	E 50.410	$7^{\prime}{ }^{\prime}(2)$	\& 171	Wr.
P A (1)	2033.457						IV. . I
					7 - (menn)	S. 332.169	W5. 44.4
$r \perp(2)$	203. 4 2						
$P^{\prime} 1$ (m¢กั)	2013.301	$197: 3+3.8$	$\therefore 144.16$.	W. 60, 4\%0:			
I \quad (1)	205 20.30				F	00. 000	E. $\begin{gathered}00,000 \\ 1.35\end{gathered}$
P2. (1)	20.6.				F	00.009	I. 1.31
PE (2)	20.3 .319					N. 4, 83	15. 17.198
P C (mean)					11	N. 12.e39	Wr \% sin
$P L$ (mean)	90.3, 31	214, 33 16. ह-	S. 1012.093	W. 1:3 2-1	P	ミ. 40.81	$\begin{gathered} W^{*} .4113 \\ W^{2} .11 .101 \end{gathered}$
P P	15.5103	207 1206.0.3	$\therefore 137.949$	W. is. 40 e		N. 43.480	IS. 20.4 .51
$P \mathscr{L}$	26id. $0: 3$	20 3531.37	N 43.4N6	E. 200.45	\boldsymbol{R}	N. -4.014	I. 211. 380

* This is the K referred to by Lieutenant Galwey in his revort.

NOTES OF GEODETIC FORMULE.

By Liect. F. V. Greene.

The formulæ used in obtaining the offsets from the tansent to the parallel are simple modifications of the general formalse for geodetic latitudes, lougitudes, and
 azimuths. The general problem is, given the latitude and longitude of M, the length of $M M^{\prime}$ and its azimuth at M; required the latitude and lougitude of M^{\prime}, and the azimuth of M at at M^{\prime}.

If the earth were a perfect sphere, the solution of the spluesical triangle, of which three parts are given, wonld afford the desired result exactly; and the early geograpuers used this solutiou, taking as a radins of the terrestrial spute the radius of curvatore, as accurately as their knombedge of the earth's figure gave it, at the midde point of M . M^{\prime}. The error was not so large as mould at first appear, bejug only abont two feet in fifts miles.

In the measurement of the French are of meridian. however, more acenate forwulæ were devised-that is, to the formulx, as derived abore, were applied corrections necessitated bs the spleroidal firure of the earth. And in dedacing the formolx, insteall of using Napier's Analogies directls: formulæ derised from these wele used, in which the ralnes of sines, cosines. Se. were expressed in the form of a series. This is realls on! an apmosimation "of indefinte acenracy." but in its applicatiou it gires results mumerioalls more acenrate than the direet formulæ, owing to the imper feetion of the tables of logarithmic sines, \&e., for very small ares.

The corrections on account of spheroidal figure will le readils apparent fiom the accompansing figure. Inet II and $I L^{\prime}$ be the two points, and P the pole of the eartla: I the nortat at M. aud p the pole of a sphere with that radias: $W^{\prime} I$ the normal at M': Pathe meridiau from which longitudes are reckonet. Now the sulution bs sherical tijgonometre sives for colatitude of V^{\prime} the are ${ }^{\prime} \|^{\prime}=\rho M^{\prime} M^{\prime}$; bat the true colatitude is the angla p I. W'. being the angle betteten the normal at $M H^{\prime}$ aml the asis. The difference betwfen the two is the angle $X^{\prime \prime} I^{N}={ }^{\prime}$.

There is. evidentr. no correction to the longiture for the augle $M P M=M P M$, suce each is the angle cat from two panes her a bame pro. pendicular to their intersection.

The cortection to the azimuth is the diference betreen the angle p, H and $I^{\prime}, I^{\prime} M$. This correction can alwass be neglected, being equal to less than one tenth of a second in a humbed miles.

The gentral formula are then as follows (neglecting terms beyond second order, which ean be done for distances less than fifty miles):*
(a) $\quad H-H^{\prime}=\left(u \cos Z+\frac{1}{2} u^{2} \sin 1^{\prime \prime} \sin ^{2} Z \tan H\right)\left(1+\epsilon^{2} \cos ^{2} B\right)$
(l) $\quad P^{\prime}-P=\frac{u \sin Z}{\cos \Pi}-\frac{1}{2} x^{2} \sin 1^{\prime \prime} \sin 2 Z \frac{\tan I I}{\cos I I}$
(4) $\quad Z^{t}-Z=1 \sin -u \sin Z \tan I I+\frac{x}{4} u^{2} \sin 1^{\prime \prime} \sin 2 Z\left(1+2 \tan ^{2} H\right)$
in which $u=\frac{\pi\left(1-t^{2} \sin ^{2} I I\right)^{\frac{2}{2}}}{u \sin 1^{\prime \prime}}=K^{-1} \frac{1}{\sqrt{2} \| 1^{\prime \prime}}$
and $\lambda^{\circ}=$ Nomal or radias of curvature
H and $I^{\prime}=$ Latitudes.
P and $P^{\prime \prime}=$ Longitudes.
Z and $Z^{\prime}=$ Azinuths.
For our special case, $\left\{\begin{array}{l}Z=2900 \\ H=490\end{array}\right\}$ and the formula become

Or these logarithms the tirst is the logathm uf ℓ, in feet, obtamerim matipling C in are by 101.34 , the valne of one second of lationde at 49°. The of hers are in are

From the se simple formule, by substituting for the lengh of tanemt in feet, we can form a table of offests and azimuths for the areument F. la the table wed in the tich, the arguments were miles and thomsambe of teet ; between the later it was eaty to interpolate. A portion of this table is here eiven.

[^3]OFFSETS AND AZIMUTHS.

Miles.	\boldsymbol{R}	$\Pi-\Pi^{\prime}$.	Z^{\prime}.		
	Fert.	Feet.	-	"	,
	1000	. 03	89	59	48.7
	2000	. 11			37.4
	3000	. 24			2 G .1
	4000	. 44			14.8
	5000	. 69			03.5
1	5280	. 76			00.2
	6000	. 99		58	52.1
	7000	1.34			40.9
	8000	1.76			29.6
	9000	2. 28			18.3
	10000	2.74			07.0
2	10560	3.06			00.5
3	15840	G. 88		57	00.7
4	$211: 20$	12.24		56	00.9
5	26400	19.12		55	01.2
10	52800	76. 49		50	02.4
15	79200	172. 10		45	03.6
20	105600	305.96		40	04.8
25	132000	478.06		35	06. 0
30	158400	688.40		30	07. 2

In this connection, it is a matter of some interest to see how much numerical error would result from neglecting the spheroidal corrections.

These results are shown in the accompanying table, in which the column O contains the accurate offsets, and O_{1} those derived from the formulx, neglecting spheroidal corrections.

Miles.	O.	O_{1}.
F	19.12	19.17
10	76.49	76.97
15	172.10	171.61
20	305.96	305.08

The formulæ nsed in the British Ordnance Surves are derived by solving the spherical triangle by Napier's Analogies, and then introducing the correction to the latitude in the form of a series. Their general form is as follows, the letters representing the same quantities as before:-

$$
\begin{aligned}
& \tan \frac{1}{2}\left(Z^{\prime}+\zeta+P\right)=\frac{\cos \frac{1}{2}\left(90^{\circ}-H-\theta\right)}{\cos \frac{1}{2}\left(90^{\circ}-H+\theta\right)} \cot \frac{1}{2} Z \\
& \tan \frac{1}{2}\left(Z^{\prime}+\zeta-P\right)=\frac{\sin \frac{1}{2}\left(90^{\circ}-H-\theta\right)}{\sin \frac{1}{2}\left(90^{\circ}-H+\theta^{\prime}\right)} \cot \frac{1}{2} Z \\
& \text { N B }-17
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{\prime}-\lambda=\frac{h}{h} \sin \frac{1}{2}\left(Z^{\prime}+\%-Z\right)\left(1+\frac{\theta^{2}}{1 \frac{1}{2}\left(Z^{\prime}+\frac{2}{2}+Z\right)} \cos ^{2} \frac{1}{2}\left(Z^{\prime}-Z\right)\right) \\
& \theta=\frac{\pi}{J}\left(1+\frac{1}{6} \frac{\epsilon^{2} \theta^{2}}{1-\epsilon^{2}} \cos ^{2} H \cos ^{2} Z\right) \\
& \zeta=\frac{1}{4} \frac{\epsilon^{2} \theta^{2}}{1-\epsilon^{2}} \cos ^{2} H \sin 2 Z \\
& \text { For }\left\{\begin{array}{l}
Z=90^{\circ} \\
I I=49^{\circ}
\end{array}\right\} \text { these reduce to } \\
& \tan \frac{1}{2}\left(Z^{\prime}+P\right)=\frac{\cos \frac{1}{2}\left(11^{\circ}-\frac{\pi}{J}\right)}{\cos \frac{1}{2}\left(41^{\circ}+\frac{\pi}{J}\right)} \\
& \tan \frac{1}{2}\left(Z^{\prime}-P\right)=\frac{\sin \frac{1}{2}\left(41^{\circ}-\frac{h}{\Gamma}\right)}{\sin \frac{1}{2}\left(41^{\circ}+\frac{K}{\Gamma}\right)} \\
& \because-\lambda=\frac{\pi}{L^{\prime}} \frac{\sin \frac{1}{2}\left(Z^{\prime}-!n 0\right)}{\sin \frac{1}{2}\left(Z^{\prime}+!n\right)}\left(1+\left(\frac{\pi}{\sqrt{2}}\right)^{2} \frac{\cos ^{2} \frac{1}{2}\left(Z^{\prime}-900\right)}{12}\right)
\end{aligned}
$$

For general purposes of geodetic calculation, these formula are as convenient as those given by Puissant; lut for our special purposes thes are extremely inconrenient, for the raviable quantity K, or length of tangent, does not appear as a factor, but as part of a factor, and all three equations must be solved to obtain a single offset, whereas, as we hare secu, with Puissant's formula only one equation need be solred, viz, $H-H^{\prime}=K^{2} C$. The nnmerical result is exactly the same, in both cases.

CHAPTER V.

THE MEAN AND ASTRONOMICAL PARALLEL.
An astronomical parallel of latitude is the line of intersection of the surface of the earth by a cone whose apex is at the center of normals and whose elements make an angle with the axis of the earth equal to the complement of the latitude.

The earth being considered a spheroid or an ellipsoid of revolution, each parallel of latitude is mathematically a circle. But owing to irregularities of elevation in the surface, the parallel is actually a curve of irregular curvature, approximating, however, very closely, in its general course, to a circle. Rejecting instrumental and local errors, such a curve would be determined by fixing each point astronomically. If the connection between successive astronomical stations on a given parallel of latitude were made by tangents to a small circle, the resulting errors would be very great, depending on the relative altitude of the stations and the latitude. As, however, in practice, the stations are connected by tangents to a great circle, the resulting errors are insignificant and may be neglected. It is manifestly the true and the only possible parallel of latitude, although not a mathematical figure. For purposes of geodetic computation, it must be referred to a uniform sea-level, when it becomes a circle. For all ordinary purposes, this may be assumed as the true shape.

In marking a parallel of latitude on the actual surface of the earth, another and most serious difficulty is at once encountered in the anomalous deflections of the phomb-line, due to local attractions. All astronomical determinations are referred, by means of the level, to the direction of the resultant force of gravity. If, then, this direction is affected by the protrusion above the surface of monntain-masses, or by variations in the density
of the earth's erust below the surface, each astronomical determination will be in error by the amount of such deflection. Science affords only approximate methods of correcting these errors, and they of such difficult and doubtful application as to be of no practical use, except in extreme cases, and for exceptional purposes. In a triangulation, the relation of the rarious points depends solely on the measurement of horizontal angles, and is not appreciably affected by local disturbances, though the whole system will be in error by the amount of the error in position of the astronomical station to which it is referred.

If, therefore, it were desired to lay out upon the surface of the earth a mathematical circle of latitude, the relative positions would be made to depend upon a series of triangles, referred to a measured base and a mean astronomical position. But in the definition of a circle of latitude for the purposes of a boundary, practical rather than mathematical considerations determine the methods to be followed. The ruling conditions may be briefly stated. The boundary must be clearly defined by visible monuments, and the positions of these marks must be such that, in case of their loss, the points can be easily and accurately recorered. The only simple method of recorery is by astronomical observation, and since the local deflections of the plumb-line are supposed not to vary for long periods of time, the process is easy and accurate.

At the time of the organization of this joint commission, the chief astronomers of the English and United States commissions were in accord in this riew, that the parallel of latitude, as defined by astronomical obserration at successive points, was, for the purpose required, a true parallel, and the only one that would fultill the practical condition of being readily recovered. The question as presented, and which at the time gave rise to much discussion, was whether to define upon the ground an astronomical parallel of latitude, as above described, or a uniform line depending upon the mean of the astronomical stations. The recommendation of the chief astronomers was based on the following grounds: 1st. that the portion of the parallel of 49° included within the operations of the commission, being only about one-twentieth of the entire circle of latitude, was not sufficient to fix, with any mathematical accuracy, the true position of the mean line

DIAGRAM

showing ${ }^{\circ}$
METHOD ofTRACING PARALLEL.

Horizontal Scale linch - LU antes
Scale of Ordinates 1 inch $=1000$ feet

of 49°, and that, therefore, if such a parallel were described, depending on the mean of the astronomical stations, no known point of the boundary would be in latitude 49°; 2d, that as the amplitude of the ares included between the mean and the astronomical parallels, would in many cases be very considerable, grave errors and complications might arise in the subsequent recovery of any lost portion of the boundary; 3d, that the definition of a mean line would involve a readjustment of the whole boundary, after the first eareful survey should have been completed, and consequently a very considerable increase of expense, without any practical benefit aceruing; 4th, that for every purpose except that of geodetic computation, a parallel consisting of points determined astronomically (instrumental errors aside) is a true parallel of latitude, and, therefore, fulfills the stipulations of the treaty under which the joint commission was organized.

These views were accepted by the commissioners, and the following scheme adopted for the definition of the boundary: Astronomical positions were to be determined at approximate intervals of twenty miles. These stations were to be comnected by tracing upon the gromd tangents to the prime vertical circles at each successive point. From these tangents, checked and corrected for errors of azimuth, the caleulated offsets to the small circle of latitude were to be measured at comvenient intervals, varying from one to three miles. From the last-measured offset the relative stationerror was to be found, and distributed between the stations in the ratio of the distances.

From this method it results that the bomdary-line, as actually traced, is an irregular curve, affeeted at each astronomical station by instrumental errors and by the local deflections of the plumb-line, but making the closest probable approximation, at every point, to a true astronomical parallel.

In the accompanying diagram I have attempted to explain, by a graphic representation, the amount of the discrepancies between the line actually defined and a mean line, and to show approximately the probable causes of relative errors indicated. I have also added to this report a table of azimuths, showing the actual direction from each monument to the next succeeding one going west (see page 35 to page 40).

As this is a subject with which comparatively few persons are familiar,
a short statement of the amount of such relative errors in other geodetic work, and of the methods by which it has been attempted to correct them, will not be out of place; after which will naturally follow the application of the general theory to the case in hand. (For full and complete discussion, see Encyclopedia of Astronomy, Airy; English Ordnance Survey, Clarke; Figure of the Earth, Pratt, fourth edition.)

Local deflections of the plumb-line, due to the attraction of comparatively small masses, is argued from the general law of attractions, from direct experiment, and from the lack of agreement between the astronomical and geodetic determinations of the relation of points on the earth's surface, as developed in the measurement of certain meridional ares, which discrepancies exceed in amount any possible instrumental error or error of calculation.

The first experiments on local deflection were directed toward the determination of the mean density of the earth. In the progress of this investigation at Shehallein, Scotland, an anomalous deflection, amounting to $11^{\prime \prime} .6$, was found between two stations on opposite sides of the monntain. Varions other measures of deflection were obtained at different times by similar methods, but none of any reliable accuracy until, in investigating the form of the earth by the measurement of meridional ares, relative errors which could not be reconciled were found to exist between most, if not all, of the astronomical points. Even in this case the absolute deflections were not found, since each station was referred to the mean of all by a mean curve which reduced the sum of the errors to a minimum, and which, therefore, only approximately satisfied the conditions-that is, the method would not detect constant or uniformly varying errors.

In the three great measured arcs the local errors due to deflection vary from - $3^{\prime \prime} .384$ to $+4^{\prime \prime} .826$ in the Anglo-Gallic, from — $2^{\prime \prime} .429$ to $+3^{\prime \prime} .809$ in the Russian, and from - $3^{\prime \prime} .155$ to $+3^{\prime \prime} .122$ in the Indian arc, showing an extreme range of $8^{\prime \prime} .210,6^{\prime \prime} .238$, and $6^{\prime \prime} .277$, respectively (Pratt's Figure of the Eartl). As each second of are represents about one hundred and one feet, the discrepancies are quite apparent, and are readily detected by geodetic methods of any tolerable accuracy. Other and much larger relative errors have been discovered, amoming to $20^{\prime \prime}, 30^{\prime \prime}$, and even $40^{\prime \prime}$
(Airy's Figure of the Earth, Encyclopedia of Astronomy), though the data in these extreme cases are not entirely reliable.

The fact of local deflections being established, the attention of mathematicians was turned to the investigation of the causes and probable corrections. In this much ingenuity has been displayed, but with very small results. Starting with the general law that every particle of matter attracts each other particle with a force varying directly with the mass and inversely with the square of the distance, the attraction of masses of mathematical forms on distant particles was found by dividing mountain-ranges and other elevations into volumes bearing known mathematical relations; the probable deflection of the plumb-line due to such causes was found for different distances, on the supposition that the mean density of the large volumes was uniform for different parts of the earth's crust. Thus, it was found that at the northern station of the great Indian are the attraction of the Himalayas should cause a deflection of $28^{\prime \prime}$, which should decrease at the next two prineipal stations by $15^{\prime \prime} .9$ and $21^{\prime \prime} .1$, respectively, while the deficiency of matter in the ocean should produce similar northern deflections. These calculations were not absolute, since the contour of the mountains and of the ocean-bed was only approximately known, but the approximations were supposed to be sufficiently close. It was found, however, that the actual deflections were much smaller than those given by calculation, and that, in many cases, the deflection was toward the ocean. The explanation of this lies in the varying density of the earth's crust. The facts discovered indicate that the density is greatest in the depressed, and less in the elevated portions. This follows naturally, although in reality independent of any special theory, from the fluid hypothesis of the earth's formation. The process of cooling from the surface inward was accompanied by a corresponding contraction and increase of density. From this contraction resulted enormous strains on the interior fluid portion, which were relieved by fractures of the crust and the upheaval of mountain-ranges. While the thickness of the solid portion is now so great as to prevent general catastrophes, such as very probably occurred in earlier times, yet there still remain rast molten masses inclosed within the crust, which from time to time give evidence of their presence by volcanic eruptions.

From this theory of the gradual cooling and contraction of the earth's crust, the attraction of the plumb-line toward the ocean naturally follows, since the density would be greatest beneath the depressed basins into which the waters of the seas gradually flowed.

In calculating the deflections of the plumb-line due to visible mountainmasses, it has been found that the calculated relative errors very largely exceed those derived from the observations and geodetic connections. From this, a deficiency of matter beneath the mountain-ranges was at once inferred, either resulting from vacant spaces or from a decreased density. The latter supposition recommends itself as the most probable, and most in accord with the accepted theory of the gradual consolidation of the earth's crust. The effect of a very slight deficiency in density on the direction of the plumb is strikingly shown by the subjoined table, taken from Pratt's Figure of the Earth:-

Deflections caused by an excess or defect of matter prevailing through a semi cubic space 200 miles in cueh horizontal side and 100 mite's decp, the density of the exeess or defect being $\frac{1}{10} \overline{0}$ of the carth's Aensity at the eenter of the semi-culic space.

From this we see at once how great the local disturbance from this canse may be, and over what immense distances the appreciable effects may extend. It also, as a matmal consequence, indicates that every effort to calculate the amome of the errors resulting from local deflections must be confined to lucalities where the immediate effect of large visible masses, near at hand, will greatly exceed in amount the resultant of all the distant disturbing forces.

The accompanying sketches will illustrate sufficiently the amount of the local deftections along the northem loundary, from the Lake of the Wookls to the Rocky Mountains, and will make clear to land-surveyors,
and others who may have occasion to close their work on this line, the cause of the constant changes in the azimuths, which, unless perfectly understood, might at some time give much trouble in adjusting their work.

The first diagram, showing the "method of tracing the parallel," gives the actual line, as adjusted and marked, between the, astronomical stations at the Mid-Cotean and at the Poplar River, including two intermediate stations, the heavy line being the boundary, as marked, and the light contimuons line the relative position of the mean parallel of latitude, deduced from the entire series of forty-one stations between the Lake of the Woods and the summit of the Rocky Momntains. The remaining lines show the method of comnecting the stations, the calculated offsets, and the manner of distributing the relative errors in latitude due to local deflections of the plumb-line. This discrepancy between suceeeding astronomical points I have been in the habit of designating as the "Station-error."

From the attached table, it will be seen that the station-errors affect the azimuths between different stations by a variable quantity, but in every case by an amount sufficient to be easily appreciable with ordinary surveying instruments.

In regard to the accuracy of the instrumental line, a few words of explanation will be sufficient to indicate at about what amount the limit of error for the astronomical and other instrumental work may be fixed.

Of the forty-one astronomical stations, four were observed jointly by the two commissions, the difference in the determinations in each case being thirty-two feet, twenty-nine feet, seven feet, and twenty-seven feet, respectively. As those were the first stations observed, and as the general quality of the work constantly improved, it is probable that if the others lad been observed jointly, a very considerable reduction in the arerage discrepancies would have been found. Of the remaining stations, seventern were observed by the United States, nineteen by the English astronomers, and one jointly by the Northwestern Bonndary Commission. The mean of the prohable errors of the British stations was $\pm^{\prime \prime} .088$, and of those of the United States $\pm^{\prime \prime} .059$. The average of the probable errors is then a fraction over seven feet. Although such mathematical probable errors are more or less fallacious owing to the fact that constant errors are mot included, still they give
a fair measure of the general character of the work done, and offer sufficient ground for the conclusion that, if re-observed, the difference in any one case would hardly exceed twenty-fire feet, while a general mean would probably not exceed seven feet.

From an examination of the geodetic connections, it will be seen that the mean error of the connecting tangents, in azimntl, is about $14^{\prime \prime}$, which would imply an error of comnection betreen the stations of nine feet.

In agreements between the chief astronomers of the joint commission in begiming the work, the limit of error was supposed to be less than fifty feet in the astronomical positions and the geodetic connection between two neighboring stations. From the results of the work this may safely be taken as the extreme limit, while the average errors, everything included, will doubtless be much smaller. Assuming, then, that the limiting error is fifty feet, we find that the supposition will accome for less than one-fourth of the arerage station-error, which, as will be seen by reference to Table A, amomnts to $\underline{2}^{\prime \prime} .146$, or about two hundred and seventeen feet, each station being referred to the mean of all, or less than one-sisteenth of the extreme deflection, as shown at station 34 .

To illustrate this matter more fully, I have prepared the accompanying diagram, slowing the "relative errors of astronomical stations in latitude, resulting from local deflections of the plumb-line." It must be borne in mind that in tracing a parallel by observed latitudes, only one component of the deflection is detected-that is, the component in the direction morth and south-since that in the direction east and west depends on a determination of longitude more accurate than is compatible with the economic iuterests of such a smres. The diagram referred to shows: 1st. A profile of the line : 2d. The relation of each astronomical position to the mean parallel; 3 l . The topography, so far as known, extending for half a degree on cither side. It is scarcely necessary to say that beyond five miles, which was the linit of actual survey, the contoms are only approximately known.

In examining the profile, the first genemal fact which strikes the eve is that from the lowest point of the basin of the Red River to the foot of the Fondey Monntains, a distance of abont seren hundred and forty miles, there is a gradual rise of about 3,425 feet, or an arerage of 4.6 feet to the mile.

But this profile is not drawn along the axis of greatest slope. The axial lino of the Coteau of the Missouri extends from northwest to southeast, making nearly an angle of 45° with the meridian. As this Cotean consists of a mass of drift deposited by icebergs grounding against the inclined plane when in a state of submergence, it necessarily represents very nearly the line of equal altitude, from which it follows that the line of greatest slope is in a direction from southwest to northeast. The general direction of the base of the Rocky Mountains also conforms to this view. It is then evident that, taking into account both the large mountain-masses and the general slope of the comparatively level country, the deflections should be found toward the southwest, and increasing from east to west, and that the mean parallel, as determined from these stations, probably dips to the south at the western end.

In considering the line more in detail, the effect of purely local attractions is at once seen, strongly predominating over the supposed general direction of the deflection. Beginning at station No. 1 on the Lake of the Woods, the station-errors accumulate rapidly toward the north, reaching a maximum at No. 5. This curious effect is probably due to one of two causes, or perhaps in part to both. The first is the difference in the density of the substratum extending from station 1 to station 4 (Dawson's report on the geology along the forty-ninth parallel, a case very similar to the anomalous deflection observed at Moscow, and attributed by Pratt to the presence of a dike of increased density beneath the surface), while a second cause may be found in an increased density of the strata underlying the system of lakes to the north, represented by lakes Manitoba and Wimnipeg. Going west, these effects diminish, while that of the high plateau of Northern Dakota is sensibly felt, so that at station 9 the line is again in its normal position, and so remains, with slight variations, due to local irregularities, as far as station 23. From this point the attraction of the high divide between the Milk River and the waters of the Saskatchewan makes itself felt, increasing to a maximum at station 29, south of the Cypress Hills. Here the enormous intrusive masses of the three buttes produce a violent disturbing effect, drawing the astronomical parallel to the south, at an average rate of fourteen feet to the mile, for a distance of one hundred miles, reaching

local deflecomox of tie mimb have:

PROFILE

the most southerly point of the boundary at station 34 , which was situated immediately to the northwest of the West Butte, on the slope of the foothills. Relieved from the attraction of the butte, stations 35,36 , and 37 are again found nearly on the mean line. Stations 38 and 39 show, by a marked deflection to the south, the effect of the attraction of the Chief Mountain, a vast precipitons mass lying five miles south of the line, and rising to a height of 8,000 feet above the sea. The extreme deflection at 39 was probably due also, in some degree, to the general mass of the mountain-range. The comections on 40 and 41 are not sufficiently accurate to give a just basis of comparison, but as these stations were both in the midst of the main range, the deflections would probably be found to be anomalous.

The data for computing the amount of the local attractions along this line are very insufficient, except in the case of the station 34 , at the West Butte. As a matter of scientific interest, I append a table of the actual and calculated deflections, as computed by Lieut. F. V. Greene, with an explanation of the methods employed. (See page 402.)
W. .J. TWINING,

Captain of Engineers, Chief Astronomer.

APPENDIX A

TO

REP0RT 0F CAPT. W. J. TWINING,
 corps of engineers,

CHIEF ASTRONOMER.

report of oapt. James f. gregory, corps of engineers, united Stateg Alemy.

Ofrice United States Northeren Boqumary Commission, Washinglon, I). 厄., June 20, 1876.
Cartan: I have the honor to sumit herewith my report of the operations conducted under my charero upon the Survey of the United States Northern Boundary line, from the Lake of the Woods to tho Rocky Mountains.

Very respectfully, your obedient servant,

> TAMES F FiliESOLBY, Captain of Engineers.

Capt. W. J. 'Twiving, Corps of Engineers, Inited States Army, Chirf Astronomer, Uniled States Northern İoundary Commission.

PRELIMINARY.

I was detailed for duty upon this work hy Special Orders No. 131, War Departuent, Adjutimt-CGeneral's Office, June 7, 1872, and accordingly reported in person to the Adjutant-General of the Army, and by sulderpucnt. orders from the same authority, by letter, to the homorable the Seceretary of State. In accordence with instructions from the Assistant Secertary of State then Aeting Sucectary, I reported for daty with the Cuiterl States Northern Boundary Commission, to Maj. F. U. Farpular, Conps of Enoineers, then Chicf Λ stronomer, since which tinc I have been contimumily on duty with the Commission.

The following report comprises a general description, by seasons, of the movements and operations of parties which were under my charge, and detailed descriptions of astronomical, geodetic, and barometric work performed by myself, or under my direction, with appended tabulated records and results.

In the season reports I have merely mentioned the general movements of my parties during the time that I was in company with the Chief Astronomer, and acting under his immediate direction, and have noticed more at length similar movements and operations when performed under my own direction, when acting independently under his general instructions.

During the winter succeeding each season's work in the fietd, I have been engaged in the office of the Commission in supervising and aiding in the computation and compilation of field records and results, and in the preparation of materials, and such computations as were desirable and necessary for the field-work of the succeeding seasons.

$$
\text { SEASON OF } 1872 .
$$

The latter part of June, and the most of July, 1872, were spent in Washington, in making preparations for field-service, procuring, examining, and preparing for transportation the usual expeditionary outfit of instruments, text-books, note-books, \&e., and making such computations as it was desirable to have done in advance of the field-work.

In the latter part of July I was assigned by Major Firquhar to the immediate charge of the geodetic and topographical department of the survey, with Lient. F. V. Greene and Mr. F. yon Schrader as assistants, and directed to proceed to Saint Paul, Minu.

Lieutenant Greene was sent by Major Farquhar in charge of the instruments, \&e., via the Great Lakes, Northern Pacific Railroad, and Red River, to Fort Pembina, Dak., with instructions to report to me there, and Mr. ron Schrader was directed to report to me, at Saint Paul, on the 5th of August.

My party was organized at Saint Panl, and went, in company with the several parties of the Commission, to Fort Abercrombie, Dak., and thence,
after obtaining our wagon-transportation, camp-equipage, rations, and forage, to Fort Pembina, where we arrived on the 5th of September.

Camp was pitched at the boundary-line on the west bank of the Red River on the 7 th, and the interval betreen that date and the 30th was employed in making topographical survers of the comtry adjacent to the boundary-line, the Red River, and the Pembina River.

I may here remark that the autumn of 1872 was an exceptionally mild one for Northern Dakota. The equinoctial storm, which lasted nearly four days (September 22d to the 26th), was very severe and cold, but it was succeeded by three weeks of delightful weather, and the Red River did not close to navigation until the 12 th of November.

On the 1st of October, by Major Farquhar's direction, I divided my party, equipage, \&c., into two parts, and intrusted the larger proportion to the charge of Lieutenant Greene, with instructions to continue the line and topographical work eastward from the Red River, until he should join his work with that of the English parties, who were to work westrard from the Lake of the Woods. He had reached Pointe dorme on the Roseau River, thirty miles east of the Red River, on the i.th of November, when he was recalled by a dispatch from Major Furquhar, which directed him to return to Fort Pembina, and report to me there.

On the 2d of October Major Fargulans Captain Twining with his astronomical party, and myself, with free men of my party, started for the Northwest Angle of the Lake of the Wonds, via Wimnipeg, Manitoba.

We arrived at the Angle on the 9th, and remained there mutil the last of October: (For description of work performed there, see special paper on Northwest Angle.)

I left the Angle, in company with Major Farquhar, on the 31 st of October, and arrived at Pointe de Chêne, eighty mites from the Angle, on the 3 d of Norember. At this point Major Farquhar procured special transportation for himself, and left for Fort I'embina, leaving me with instructions to follow, as rapidly as possible, with the wagon-train.

I reached Fort Pembina on the 8 th instant, with the animals in a much exhansted condition, owing to scanty forage and the very bad condition of the roads. On one day, the 5th, becanse of the almost bottomless mul, we
made but eleven miles, although the wagons were light, and we were on the road from daylight until three hours after dark.

At Fort Pembina I received written instructions from Major Farquhar to await the arrival of Lieutenant Greene, to store at the post such equipage, instrments, $\mathcal{E c}$., as would be needed there the next season, to procure such rations and forage as were necessary, and then to bring the entire train to Fort Abercrombie, where the animals were to be wintered.

Lientenant Greene arrived on the 10 th, and the southward march was begun on the 12th, and finished on the 19th; distance from Pembina one hundred and eighty miles.

The persomel, besides myself and party, were Lieut. O. D. Ladley, quartermaster, Mr. J. E. Bangs, acting secretary, and Dr. Hatch, surgeon of the Commission.

The transportation consisted of thirteen six-mule Army-wagons, three four-mule spring-wagons, and seven or eight spare mules.

On the second day out we were overtaken by a very severe snow-storm of two days' duration, which was succeeded by bitter cold winds, with the thermometer, much of the time, below zero, and as the men were not provided with suitable winter clothing, they experienced much discomfort, though none were serionsly frozen. Several of the animals gave ont on the march, but they were all, finally, brought in safety to Fort Abercrombie.

From Fort Abercrombie, after turning over to the care of the Quartermaster, Lieutenant Ladley, the train, equipage, \&c, we proceeded by rail to Saint Panl, where the men of the party were paid off, and discharged on the 21 st of November.

The office of the Commission was established for the winter at Detroit, Mich., where the usual rontine of office-work was begun about the 1st of December.

SEASON OF 1873.

For the season of 1873 I was assigued, by the Chief Astronomer, to the charge of one of the two astronomical parties which were sent into the field that year. The party was organized, as in the preceding season, at Saint Panl, and proceeded, in company with the other parties of the Com-
mission, by rail and steamboat, to Fort Pembina, Dak,, where we arrived on the 1st of June.

During a week that we remained at Pembina on account of the nonarrival of our wagon-train, which was hindered in its progress from Fort Abercrombie by the high water in the streans tributary to the Red River, we were engaged in general preparations for the field, obtaining materials, rations, \&e., observing for values of instrumental constants of zenith teleseope, and completing organization of parties.

Upon marehing from Pembina, June 9, the organization of my party, which was retained throughout the season, was as follows: Mr. E. L. Mark, computer, Mr. O. S. Wilson, recorder, a foreman, an observatory attendant and meteorological observer, a cook, waiter, three laborers, a momted man to serve as scout and messenger, and five teamsters.

For transportation of party, instruments, equipage, and generallytwenty to thirty days' rations and forage, I had one four-mule spring-wagon, three six-mule Army-wagons, one two-mule Minnesota wagon, and a horse for myself.

The general plan of work proposed for the astronomical parties, contemplated the occupation of stations on the boundary-line, at intervals of twenty miles, more or less, alternately by parties of the British and United States Commissions, and throughont the season this scheme was adhered to, with two exceptions, viz: United States stations Nos. 4 and 5 were consecutive stations, as were the British stations at Sleepy Hollow and East Turtle Mountain.

I began astronomical work at Station No. 3, East Pembina Mountain, on the 12 th of June, observed successively at Stations Nos. 5, 7, 9, 10, 11, and 12 , and completed the astronomical work of the season, at the latter station, on the 30th of September.

During the season all of the zenith telescope observations, both for latitude and vahues of instrumental constants, were made by myself and recorded by Mr. Wilson, as were also sextant observations for time and latitude in camp and upon the march, mintil we reached station No. I; after that time most of the sextant work was done by Mr. Wilson.

The meteorologieal observations were made, under my supervision, by

William Batson, an ex-United States coldier, and an intelligent and efficient man.

Upon the march, while I was engaged in selecting routes for travel, and in the details of advancing the train rapidly and without aceident, Assistants Mark and Wilson were employed in making recomaissauce surreys of the trail, by means of the compass and odometer.

All computations both in camp and upon the march were made by Mr. Mark, assisted, at times, by myself and Mr. Wilson.

The United States stations were occupied alternately by the two astronomical parties, from No. 2 to No 9. Upon completing work at the latter station, August 29, I received instructions from the Chief Astronomer to proceed westward, and oceupy, at least, three more stations, and to so adjust the distances between them that the last one should be, at least, four hondred miles west of the initial Red liver station. This work was accomplished, and the last station, No. 12, four hundred and eight and a ruarter miles west of the Red River station, completed on the 30 th of September, and the Chief Astronomer"s camp, at Wood End depot, was reached, on the retum march, October 6.

During the latter part of the season we were much troubled to obtain water and wood sufficient for cooking purposes. Wood End depot, on the Monse River, was the last locality, going westward, where there was any timber, in the vicinity of the bomdary-line, montil we reached Station No. 11, and for that distance, one hundred and eighteen miles, wood was carried in the wagons. In the ravines, near Station No. 11, there were small groves of stmented trees, whence was drawn the supply which, economically used, and eked ont by occasional supplies of the prairie-traveler's fuel, bois des raches, lasted us during the remainder of our work mentil our return to Station No. 11, where a new store was laid in for use on the return mareh to Wood lind depot.

The water-supply, after leaving the upper waters of the Monse River, sixteen miles west of Station No. ', was scant and precarious, as we had wo information of the nature of the comntry before us. 'Through the "Cotean of the Missouri" we were entirely dependent upon the supply furnished by surfacepools, and those containing fresh water were of infrecuent ocem-

rence. There were many containing alkaline water, some of them large enough to be called lakes; but the water usually held such large quantities of salts that animals conld not drink it. We were frequently compelied to use water sufficiently alkaline to be altogether disgusting to the taste, and the best of the fresh water found was full of insect life and vegetable matter. At Station No. 10 I was obliged to divide my party, and leaving the major portion of it and all of the animals in camp near a pool of surfacewater, in charge of the officer commanding the military escort, to establish the station at a point ten miles farther west. I took with me for the purpose my assistants, three men, and ten soldiers, and had cooked provisions and water sent us, daily, from the main camp. At Station No. 12 I was obliged to adopt the same plan, and, leaving the main camp at a spring, which is the source of one of the tributaries of the Poplar River, to establish the station six miles farther westward. Near Station No. 11 I fortunately found a living spring with an ample supply of good water, which the men of my party at once christened "Bully Spring," and this name I have contimed in the official record.

- On the $23 d$ of September, when the work at Station No. 12 was about half done, there began a furious snow-stom, which continued, almost without interruption, until the 29th, during which time the daily minimum thermometer reading varied from $+14^{\circ}$ to $+34^{\circ}$.

The storm began with mingled rain and snow, which froze unon the grass, and made it impossible for the ammals to get much nomishment. The forage-ration was short, and from this time until their arival at Wood End depot they had only a daily allowance of three pounds, half of which was either flour or hard-bread. They were consequently much exhausted, and, to make matters worse, we fomed, upon our east ward march, the whole Cotean comentry a black desert, as the prairie-fires had passed over it, leaving only here and there, aromed the olges of what had been water-pools, small patches of dried grass coataining little or no mutriment. We lost, however, but two animals, and they belonged to the escort transportation.

We arrived at Wood End depot on the 6th of Octuber, and thence, in company with the Chief Astronomer's party, marchel via Fort 'Totten to

Jamestown, Dak., where the transportation, equipage, \&c., was turned over to the quartermaster, the parties proceeding by rail to Saint Paul.

From the second crossing of the boundary-line with the Monse River, reckoning from the cast, a recomnaissance survey was made of the trail to Fort Totten, and also from the latter place to Fort Seward, the former distance being one hundred and seventy and the latter eighty-one miles.

The military escort to my party was commanded during the entire season - by Lieut. (now Ciplt.) C. O. Bradley, Twentieth United States Infautry. His command consisted, at first, of fourteen enlisted men, of Company K of his regiment. This force was increased by four privates of the Seventh Cavalry, on the 9th of Angust, and again, by six privates of Company K, Twentietl Lnfantry, on the 30th of August.

My relations, both official and personal, with Captain Bradley were always of the most pleasant kind, and I have to thank him and the soldiers of his command, not only for the faithful performance of legitimate duty as military escort, but more especially for frequent aid in helping along the work. In the latter part of the season a few days' delay would have prevented the completion of the work to the point proposed, and these days were saved to me by the assistance willingly rendered by the soldiers in gathering stones and building the mounds which mark the parallel at the stations.

Mr. Wilson was detached from my party at Fort Totten and attached to the line and topographical party, which, under Lieutenant Greene, was to work during the winter from the Red River eastward. Mr. Mark accompanied me to the office at Detroit, but soon after left the service of the Commission. The rest of the party were paid off and discharged upon our arrival at Saint Paul on the $2 S t h$ of October.

$$
\text { SEASONOF } 1874
$$

From the experience of the preceding season, in regard to the relative rapidity with which the varions parties of the survey could accomplish their work, it was believed by the Chicf Astronomer and myself that one astronomical party, with an organization somewhat stronger than that of my party of the preceding seasom, would be alle to accomplisl, in the alloted
time, what astronomical work remained to be done, and to keep it at all times in advance of that of the line and topographical parties. But one astronomical party was therefore placed in the field, to the charge of which I was assigned, with Mr. Lewis Boss and Mr. A. J. Edgerton as assistants.

In order, however, that no untoward accident to the personnel, or instrumental outfit of my party, should compass a failure to attain the purposes of the expedition, the Chief Astronomer kept with him a complete instrumental outfit, a copy of the ephemeris, text and note books, and, in fact, the means of organizing another astronomical party; but, fortumately, the contingencies provided for did not arise, and the one party accomplished in ample time all of the work expected of it.

At Saint Paul, as in the preceding seasons, I employed the men of my party, and with them, in company with the other parties of the survey, left Saint Paul on the 4 th of June, proceeding by rail and steamboat, via Bismarck, Dak., to Fort Buford, Dak., where we arrived on the 13 th of June.

At Fort Buford, pending the completion of arrangements for fieldservice of the transportation for our own parties and the military excort, I observed with the zenith telescope for latitude, and also for the values of the instrumental constants of the instrument used. The results are given in the astronomical report.

My party comprised during the season, besides myself and assistants, one foreman, two cooks, one waiter, five laborers, six teamsters, and one scout. Dr. Elliott Cones, United States Army, Surgeon and Naturalist of the Commission, and three laborers, who were under his especial direction, were attached to my party during the entire season, for our mutual convenience of transportation, supply, and protection.

An assistant to Dr. Cones also joined the party at the Sweetgrass Hills, on the 5th of August. For tramsportation of the whole, instruments, equipage, \&e, and from thirty to forty days' rations and forage, I had one four-mule spring-wagon, three six-mule Army-wagons, two two-mule Minnesota wagons, a horse and buckboard for Dr: Cones, and a horse for myself. The horse ridden by my scont, George Boyd, was his personal property, hut was foraged with the train-animals

The military escort assigned to accompany my party consisted of

280

 UNITED STATES NORTHEIN BOUNDARY COMMISSION.Company D, Sixth United States Infantry, about forty men, and three Indian scouts, commanded by Capt. Montgomery Bryant, Sixth Infantry (now Major Fourteenth Infantry), with Lieut. F. W. Thibaut, Sixth Infemtry, second in command. This escort remained with my party from the time of leaving Fort Buford until we reached the Sweetgrass Ifills depot, on our return from the Rocky Mountains.

On the 21st of June, the entire expedition and the military escort left Fort Buford, taking the Fort Peek trail, along the north bank of the Missouri Rives: We were delayed two days at the Big Muddy River, which, because of the deep mud on the bottom and along the banks, was not fordable. A crib and trestle bridge was constructed across it, on the 23 b and 24th, by my own and Lientemant Greene's parties, and the train crossed on the 25th. On the 26 th, Lieutenant Greene's party and escort left the main colmm, to strike the boundary-line near the point where his last season's work terminated. The main colmm arrised, July 1 , at a point on the north bank of the SIilk River, in longitude about $106^{\circ} 53^{\prime}$, and nearly opposite an old trading-post known as "Tom Campbells houses," where I left it with my party, escort, and a contract wagon-train from Fort Buford, which was carrying rations and forage with which to form a depot of supplies on or near the boundary-line.

My objective point was on the bomelary-line, about the nsual distance between United States stations (forty miles) west of Station No. 12, the last station occupied in 18i3. I therefore twmed northward, July 2 , from the main trail, and essayed to math along the east bank of Rocky Creek, as the general course of that strean appeared to be from the nortlowest, hopiner, in case it did not lead us far enough to the westward, that we might be able to cross it near the boundary-line. I soon found, howerer, that we were getting into a country of bad-lands, impractieable for wagons, and therefore tumed about, and followed the strean down to a pratieable chosing near its forks. Thence, we marched across the broken comntry which is the dividing ridge betwean the locky and Frencliman's Creeks, to the east bemk of the latter: As it was impossible to reach the bed of Frenchman's Creck in the viemity of the print where we approached the bluffs, and as an inspection revaled the same romgh bad-hands for seroma milas farther

-
north, I turned southward again, and made for the known crossing about three miles below the trading-post, Fort N J. Turnay. It was fortunate that we did so, as I afterward learned from the topographical parties that there was no practicable crossing for more than thirty miles, up-stream, from Fort Turnay.

The valley, or rather gulch, of Frenchman's Creek varies from one to two miles in width, and is abruptly terminated, on both sides, by ragged, steep hills, similar in character to those of the bad-lands south of the Missouri River. The bottom is comparatively level, and through it the stream winds sinuonsly. The creek, at ordinary stages of water, is about fifty yards wide, and has a rapid current, probably of about two miles an hour. The water is clear, but very umpleasantly alkaline, and at low stages of water is so strongly impregnated with salts as to be entirely unfit for use. We found Fort Turnay, which was a log structure, comprising storehouse and dwelling, occupied by two independent traders. They informed me that they were so much annoyed, and subjected to so much loss of property, by raids upon them by Indians, and were also kept so much upon the alert for their personal safety, that they purposed burning the buiklings and leaving the country, which purpose was, I believe, carried into effect later in the season. Only the day before our arrival, a party of Sionx, from Fort Peck, lad been entertained by them at a propitiatory feast, atter which the guests displayed their gratitude for favors received by rmming off mine of the eleven horses belonging to their hosts. The two horses left were abandoned only because they were too much broken down to keep up with the rapid movements of the party.

We left Fort Turnay on the 5th of July, and arrived at a pool of water near the boundary-line the same evening. The weather had been intensely Iot every day during our march from the Milk River, and water very scaree. 'The last day's march was twenty-five miles long, without water, and the thermometer at 105°, in the shade, at 3 p . m . Men and animals were, therefore, much fatigued upon arrival in camp, and eagerly sought the muchneeded repose.

On July 6, according to instructions received from the Chief Astronomer; I adjusted accomnts with Mr. Leightom, owner of the wawn-train
which had accompanied us with supplies from Fort Buford, and sent back to Fort Tmay, to be stored mint we could send for them, such rations and forage as I was mable to carry in my wagons.

Astronomical work was begun at Station No. 13 on the 6 th, and finished on the Sth, on which date the march westward along the boundaryline was begun.

From this time forward until our arrival at the Sweetgrass Hills depot, August 3 , the weather was favorable for ast:onomical work, and Stations Nos. $14,15,16$, and 17 were successively established.

The country over which we had traveled from Station No. 13 had been very dry, and much of it alkaline in character. Water was scarce, and usually mpleasantly alkaline. We had found no wood along the line, and were therefore obliged to place our dependence for fuel upon buffilo-chips, which were everywhere abundant. At the East Fork, however, I obtained a load of wood by sending twelve miles down the fork to a small grove of cottonwood-trees, and this lasted us until our arrival at the depot camp, cked out, as before, by "bois des raches."

On the 13th of July, while on the march from Station No. 15 to No. 16, my scout, George Boyd, aided by the Indian scouts, killed the first buffalo we had seen-a lone old bull. After that date we frequently saw small bands, and at times, when we got to close quarters with them, killed more perhaps than our needs justified. Upon our return from the Rocky Mountains to the Sweetgrass Hills, the plains and the eastern slopes of the hills were literally black with the creatmes, and for days, upon om march toward Fort Benton, the plains presented a similar appearance, for nearly 1s0 degrecs of the horizon, from the north around by the east.

The buffalo find every pool of water existing upon the prairie, and are in the habit of standing in them to rid themselves of the flies which are their peculiar pests. Wherever, therefore, the buffalo had preceded us we found the pools were mud-holes, which were loaded with buffialo exercta. Sometimes the water which we were compelled to drink, eren of pools large chough to be called ponds or small lakes, was so impregnated with buffalourine as to partake of its color, and to be altugether disgusting to the swomach.

Between Station No. 15 and the Milk River we saw various camps and hunting-parties of Indians, supposed to be Sionx, and my scout, Boyd, had several interviews with bands of Assiniboines, but we were not, at any time. molested by them.

Upon arrival at the Sweetgrass Hills depot it became necessary to make some repairs to my wagons, which had become much shrunken by the continued dry weather. The 4 th and 5 th of August were therefore spent in resetting tires and reshoeing the animals.

The march westward was resumed on the Gth of August, and Stations Nos. 18, 19, and 20 were, thereafter, successively established. Work at the latter station, which was the last one of the survey, was completed on the 26 th of August

There lad been, therefore, between the 6th of July and the 26th of August, eight astronomical stations established, and three hundred and fiftyfour miles marched. The average number of hours that we were in camp near stations was eighty-nine, and the average length of mavch for every day, excluding those at stations and the depot, was 18.6 miles, the shortest march being four, and the longest thirty-four miles.

Camp at Chief Mountain Lake was broken, and the march eastward, to join the Chief Astronomer's party at the Sweetgrass Hills depot, begin on the 27 th, and fimished on the 31 st of Angust.

At this point the military escort was relieved from duty with my party, as they were to march back to their station at Fort Buford, and we were to go to Fort Benton, and thence, by Mackinac boats, down the Missouri River to Bismarek. I desire to express my sense of grateful appreciation to Major Bryant for the kind cheerfuness with which the movements of his command were always made to correspond with those which I deemed necessary for my party.

On the 4 th of September, in company with the parties of the Commissioner and Chief Astronomer, we left the boundary-line to march to Fort Benton, arriving at the latter place on the Sth instant. A reconnaissance survey of the route traveled was made by Mr. Boss, the initial point being fixed, by triangulation, from the astronomical station near the Sirectgrass Hills depot, and the terminal points at Fort Benton by sextant onservations.

The distance traveled between the two points was one hundred and fomreen miles.

At Fort Benton we were joined by Lientenant Greene's parties, which had come from the boundary-line via Fort Slaw. The transportation, (anp-equipage, \&e, of the parties was turned over to the quartermaster of the Commision fir transportation to Fort Shaw, and the parties, save those men who desired to remain in Montana, and were paid off and discharged at Fort Bentom, embarked on the 12 th of September, in Mackinac boats, to row down the Missomi River to Bismarek.

There were six boats, with an officer or assistimt in charge of each, and the Chief Antronomer in charge of the whole. The erews and fieight were so divided as to give about equal loads to the boats, and as nearly as possible equal power for prombion. We arrived at Fort Buford on the 23d, and at Bismarck on the 3uth of September. The distance, by river, from Banton to Bismarck, as determined by the astromomically-checked boat survey make by Lieutenant Greenes paties, is eight landred and five miles. The same distance is popularly supposel to be, from the estimates of stemboat-men, one thomsand two humbed and fifty-six miles.

Wre left Bismarck, by the Northern Pacific Ratroad, October 2 , and amped in Saint Panl October 3 , where, as in previons seasons, the men of the party were paid off and discharged. The officers and assistants thence procected to Washington, where the usual routine of office-work was ressumed.

In chsing this report, I desire to make mention of the admiable manwor in which all duties required of them were performed by my assistants during the whole progres of the surver. Especially am I indebted to Mr. buss and Mr. Wikon, not only for cheerful performance of the duties devolved umen then, but also for zeal in the furtherance of the work which was coualed only ly the discretion and acemacy with which their work was dome.

I desipe also to mertion my forman, Tilliam Batam, who, by the
 perimal refumsibility, and comtributed not a litile to the hamony and combiot of matarice.

SEASONOF1S75

A portion of the United States Northern bomdary-line which lies across the valley of the Red River, and extends some distance beyond its eastern and western limits, is marked at even-mile intervals (with one exception, which will be hereafter noted) by cast-iron pillars, of which alternate ones were placed in position by parties of the British and United States Commissions, respectively. Those of the British Commission were placed in 1874, and to place those of the United States Commission, I went, under instructions from the Chief Astronomer, to the boundary-linc, in the summer of 1875 .

The United States pillars were made at Detroit, Mich., upon the same general plan and specifications as those which mark ow Northeastern bound-ary-line, differing from the latter only in the inseriptions upon them. They are hollow iron castings, three-eighths of an inch in thickness, in the form of a truncated pyramid, eight feet high, eight inches square at bottom, fom inches square at top, with solid pyramidal cap, and an octagonal flange, one inch in thickness, at bottom. Upon opposite faces are cast, in letters two inches high, the inscriptions "Convention of London," and "October 20, 1818." The inscriptions begin about four and a half feet above the base, and read upward. The interiors are filled with well-seasoned cedar posts, sawed to fit, and securely spiked, through spike-looles cast in the pillars for the purpose. The average weight of the pilliurs, when completed and painted, was two lundred and eighty-five pounds.

I arrived at Detroit August 3, inspected the pillars upon completion, and, finding them all perfect and according to specifications, shipped them, on the Sth instant, via the Great Lakes and Northern Pacific Railroad, to Moorhead, Minn. I then went by rail to Saint Paul, where I cmployed a foreman, obtained such equipage and materials as were necessary for a working party, and left for Moorhearl upon the receipt, August 15, of telegraphic advices that the pillars would arrive there the next day. From Moorhead, I shipped the pillars, equipage, \&e., and myscli' took passage, Angust 16, on the steamboat Dakota, for Pembina, Owing to the low
stage of water in the Red River, we were so fregnently gromded on bars and rapids that we did not arrive at our destination until the ebth instant.

At Pembina 1 organized a working party by employing four additional men and three teams, and began setting the pillars on the od of september.

The smilar pillars which had been placed by the British parties the preceding antum, were at two-mile intervals, reckoning eastward and westward from the point of intersection of the bomblary-line with the principal meridian of the Dominion province of Manitoba, and my instruetions were to place the United States pillars midway between them, in order that the intervals between pillars should be even miles. The momnds erected when the survey of this portion of the boundary-line was made, in 1873 , were at even-mile intervals, reckoning eastward and westward from the initial astronomical station, No. 1, on the west bank of the Red River. The principal meridian of Mantoba crosed the boundary-line five chans eightythree links, or 384.8 feet west of the mound nearest it, and, therefore, cach pillar was to be placed the same distance west of its corresponding monnt. The sites for them hat been marked, over a portion of the line, by the parties which pated the British pillars, with a peg and a small earth mound. When the pegs were found intact the pillars were there placed: if they were missing, or when, as on the line eastward from Rosean Ridge to Rosean River, no sites had been marked, they were established with theodolite and chain, by mems of the distance mentioned and the direction given by the adjacent mound and the next iron pillan.

From the Red River eastram to the twentr-mile point, the monnds were in eroneons positions, owing to an crom male in the field-ealenlations, which was discorered and corrected in the sulsergent office-computations. They were north of the line proportionally to the distances from the east amd west ends of the tangents to the point of junction, the greatest emon being 16.9 feet an the ten-mile point. (For details see Lientenant Greenes report "Details of Tangents.") The emors were corrected, and all of the aron pillas plated in then proper pesitions.

The pillas were all set fone feet in the gromm, with their inseriptionfaces to the north and south, and the earth aromed them wed settled. Ther were placed in their exact sites by means of stakes north and sonth amd
east and west of the pegs marking their sites; upon which alignment was made in the two directions, before and during the time that they were being secured by bowlders and earth.

There were seventeen pillars set east, and forty-three west of the Red River; the most easterly and most westerly being, respectively, 53 miles 55.19 chains and 170 miles 55.19 chains west of the astronomical station at the Lake of the Woods (No. 1 east). The intervening ones are all at their proper intervals, with two exceptions, viz, an extra pillar was placed in the mound marking the initial point of the survey near the Red River (Station No. 1), and the pillar next west of the Pembina River was set in the mound 134 miles 32.07 chains west of the Lake of the Woods station. This latter site was selected for two reasons: first, on account of its conspicuous position, on the crest of the high ridge west of the river; and second, because it wonld have been at a great expense of time and labor to have carried it, by hand, down the precipitous bluffs, to an obscure position in the gulch below.

The work was completed, and the men and teams of the party paid off and discharged on the 7 th of October. From the $2 d$ of September to the latter date, we were accompanied by a military escort, detailed by order of Brigadier-General Terry, commanding Departuent of Dakota, consisting of twelve enlisted men of the Twenticth Infintry, from the garison of Fort Pembina, commanded by Lieut. C. II. Low of the same regiment. To Lieutenant Low and his men I am indebted for much assistance in expediting the work.

Upon my return to Pembina, I found instructions from the Chief Astronomer, directing me to proceed to the Northwest Augle of the Lake of the Woods, for purposes which are detailed in a special paper concerning that locality. I accordingly left Pembina on the 8 th of October, proceeded by stage to Winnipeg, Manitoba, and thence, by special conveyance, to my destination, and having performed the duty with which I was clarged, returned to Pembina, on the 15th; and after adjusting the business affairs of the Commission there and at Saint Panl, I retnmed to Waslington on the 2 d of November.
ASTRONOMV.

The latitudes of all of the astronomical stations were determined by observations, with the zenith telescope, of the differences of nearly equal meridian zenith distances of stars, north and south of the zenith. This method and instrument are now in such gencral use that only such deseription of them is necessary an will explain the features and cireumstances peculiar to our work.

INSTHUNENTs.

The zenith teleseopes nsed were Nos. 9, 11, and 20, Wiirdemamn. Nos. 9 and 11 were of twentr-five inches focal length, of small magnifying power, and were considerably wom ly use upon the surver of our Northwestem boundary-line, from the lacific Ocean to the summit of the Rorky Mountains.

No. 20 was a new instrument, mate for the Commission in 1872 and 'as, of thittr-two inches focal length, aml a magnifying power of sixty diannetros.

Xo. 9 was used by Captain Twining, at Stations Nos. 1 and 1 east, and with it good results were obtained.

No. 11 was msed by myself, at Stations Nos. 3, 7, and 9, and foumd to be entirely umeliable. It was aftermand discovered that during the time of obsemations at Station No. 8 , the telescope was loose upon its horizontal axis. Thomgh this fault was afterward remedied, an irredeemable one was the batly-groumd level attached to the teleacope, which would often suddenly indicate large changes in the adjustments that conld not be detected ly means of the striding-level. The instrmment was, in fact, fanlty to a degree that rembered the attamment of precise results with it impossille. It wats soon discarded amd rephaced her No. 20, whirh was used at sixtech stations and at Fort Buford, and fomed to be in all respects, a perfect instimment.

$$
1 N \leftrightarrow T U C N E N T-S T A N H S
$$

From the beginning of the work up to station No. 5 , the instruments were momatal upon woulen posto, ahont twentre inches in diamoter and six

and the portion above gromd painted to prevent swelling, shrinking, and twisting with atmospheric changes. They served their purpose very well, but as our field of labor was, for the most part, a treeless country, it was very desirable to have some sort of a stand which could be conveniently transported from station to station. Such an one was devised by Captain Twining, and manufactured to his order at the Detroit Locomotive Works. Three pointed steel bars, two inches in diameter and six and a half feet long, were driven four and a half feet into the ground, and formed a part of a rigid system, with a braced triangular frame-work of oak, twenty-nine inches high, whose horizontal section was an isosoles triangle, of about fourteen inches base. The connection between the bars and frame-work was effected by open steel clamps at top and bottom of the frame-work, which were closed by bolts and nuts, after the bars were driven.

The table, which was a solid triangular piece of oak, three inches thick, was joined to the bars by means of bolts attached to its bottom, three for each bar, and intermediate flanged female screws, with bolt-holes, which fitted the corresponding male screws upon the bar-heads.

Between these flanged serews and the table-loottom were placed softrubber washers, to allow the table to be brought to a firm bearing, by means of the bolts and muts, when the top surfaces of the flanges were not in the same plane, or any of them not parallel to the bottom of the surface of the table.

On the bars, below the flanged female screws, were brass chock-screws, which worked against the former, and held them firmly in position.

To place the stand in position, the top soil was first removed from a triangular space a little larger than the table of the stand. The frame-work was then placed upon the hard soil, the bars inserted in the open clamps, and driven with iron-bound wooden malls of twenty-five pomds weight.

The bar-heads were protected during the driving by chilled-iron heads, temporarily screwed on. These were then removed, the clamps tightened, and the table screwed down. The whole was then covered with a blanket bag, to protect the metal from the effects of sudden changes of temperature, and consequent disturbance of the adjustments of the surmounting instrument

N $\mathrm{B}-19$

In hard and gravelly soils the bars were driven with considerable difficulty, sinking slowly morler the impulses given by the twenty-five pound malls, swung hy stalwart men, but in no instance was I mable to use the stand by reason of not leing able to sink the bars. Small bowlders struck, were cither broken or forced aside, and sometimes the bars themselves were slightly sprung, not effecting, however, any damage. In a few cases large bowlders were struck, necessitating the choice of another position for the stand.

I used this stand at thirteen stations, and found it to be sufficiently stable, much more convenient to work around than a post, and there was no settling.

The labor of placing and removal was much less than with posts, and could be accomplished in lalf the time.

I think, however, that the bars would answer their purpose as well if they were made but five feet long; they wonld then have to be driven only three feat in the gromud, which would :Afforl :mple stability, while the labor of driving them, and of digging them out, would be greatly lessened.

At Station No. 20 , the instrument was momed upon a structure of limestone slals and small pieces of rock. As each slab had uneven surfaces, and was of varying thickness, its points of support were three small stomes of selected sizes, so placed on the slab below as to make the top surface of the supported slab as nearly level as possible.

Althongh the arrangement answered tolerably well, it was neither as stable nor as convenient as our instrument-stand. The latter I was umable to trampert up Clief Momtain Lake, and was, therefore, compelled to supply its place in any mamer that I best could.
SEATANTS.

The sextimts used were Nos. 1452 and 1455 , Stackpole \& Bro. They were purchased by the Commissim, and passess some peculiarities which were made from designs by loofessor Harkness, United States Navy. They are of six-inch ratins, are graduated to for, and read by vemier to $10^{\prime \prime}$. The vemier-ptate is beveled, and the attached reading-microseope is indined to the limb in the direction of the graduation-lines, an arrange-
ment which I do not consider desirable, especially for night-work. A find-ing-level is attached to the index-bar, which is a great convenience to inexperienced observers.

An eye-piece shade, with several glasses of various depths of the same color, was found to be a decided convenience for use in sun-observations, obviating the use of the shades of the index and horizon glasses, and, therefore, eliminating the possibilities of errors arising from different refractions by those shades.

The instruments were well made, and were, on the whole, very satisfactory.

Mr. Boss made an extended series of investigations in 1873 to obtain the corrections for eccentricity of No. 1452. They consisted of comparisons of observed angular distances of stars with the same distances computed. As the results obtained do not elsewhere appear, they are here tabulated.

Corrections the to cecentricity-Sextant, 1452, Stackpole di Bro.

At--	Corrections.	At-	Corrections.	
\bigcirc	"	\bigcirc	"	
10	-0.5	80	- 11, 2	For angles not given the
20	- 1.3	90	- 13.6	correction is obtained
30	- $2: 3$	100	- 16.1	by interpolation.
40	-3.6	110	- 1-9	
50	- 5.8	120	- 21.7	
60	-7.0	1:0	- 34.7	
70	- 5.0	140	- 8.7 .7	

CHRONOMETERS.
The chronometers used by my party in 1873 were Negus breakcircuit sidereal No. 1481; Bond sidereal No. 235 ; Negus mean solar No. 1319.

In 1874 I had Negus break-circuit sidereal No. 1513 insteal of 1481, the others being the same.

The break-circuit chronometers were swung in gimbals, and the others were in leather cases. They were usually packed for transportation in a cotton-lined box, and were carried in the spring instrument-wagon.

Their performances were quite satisfactory, as may be ascertained by reference to the special paper on chronmeter performances.

ASTRONOMICALTRANSITS.

I carried, during the season of 1873 , astronomical transit No. 30, Wiirdemam, and, in 1874, No. 4, Würdemamn. These were little used. A few observations for instrumental constants and time were made at Station No. 7.

MANNEROFWORK.

It was customary, when upon the march, to make daily observations with the sextant for time and latitude; sometimes of the sun, but oftener of well-known stars.

When marcling over portions of the country which were not afterward to be surveyed by the topograplical parties, daily observations were made, when practicable, of stars cast and west for time, and north and sonth for latitude. By means of the prismatic compass and odometer as full recomaissance-notes as possible were made of the trail between points of astronomical observation.

When marching along the boundary-line the same care as to survey of route, \&e., was not exercised, as this was to be the field of the topographical parties, and ouly such notes of bearings and distances were kept as would enable ns, at any time, to know our appoximate position with reference to points upon the bowdary-line; chronometers were, however, nsually compared daily, at noom, both in camp and upon the march.

When it happened that we arrived before noon in the vicinity of a proposed astronomical station, a halt was made in sufficient time to take circmmeridian observations if the sum for latitude, for which the correaponding time-observations were made when the sun had attained an hourangle great enough to give suficiently accurate results.

To, make these olservations, and to compute the latitude from the data so obtained, and the longitude from the compass and odometer record of march from the preceding station, or the chronometers, usually involved a delay of two and a half ow three homrs.

From the position so cstablishet, it was easy to proceed, by compass and odometer, to a point naw the 49 th parallel, and at the proper distance from the preceding station.

In case of arrival in such riminity affer nom, it was necessary to go
into camp and await the result of night observations. In several instances, however, I was spared this delay through the eourtesy of the Chief Astronomer of the British Commission, who had driven pickets upon which were recorded the results of observations made by him while on reconnaissance expeditions, thus affording me fixed points on which to base trail-surveys.

A site for camp and the observatory was then selected as near the 49th parallel as the necessities of camp life, such as proximity to water and grass, would pemrit, and the zenith telescope was prepared for use. I rarely found it possible to pat the instrument in perfect adjustment until after sundown, because of the rapid changes in temperature which oceured during the latter part of the afternoon. The difference between the highest temperature on July 6, 1874, and the lowest on the succeeding night was $56^{\circ} .3$; -in many instances the changes inside of twenty-four hours were as much as 40° to 50°.

The instrument was placed in the meridian by means of an observation of Polaris at any convenient even minute of time, for which the azimuth of the star was computed in advance.

It was rarely necessary to repeat this adjustment at any station, though a convenient test of its accuracy was afforded by eye comparison with the micrometer comb-scale of the distances from mid-wire of star's observed at culmination. If these distances, so estimated, did not exceed three micrometer turns (one turn $=62^{\prime \prime}$), the adjustment was considered satisfactory; if unsatisfactory, it could be repcated in about twenty minutes' time.

In latitude observations the star bisection was always perfected at the instant of culmination, which time, as well as that of each even ten seconds and the last even five seconds of the preceding half minute, was called by the recorder, who had before lim the chronometer, and the computed chronometer time of culmination on the programme arranged for the night.

Chronometer corrections were ascertained by means of sextant observations east and west.

The observations of each night were computed the following morning; frequently those of the last night at a station were computed as fast as taken.

On the day following the first nientes work the distance on the meridian
from the center of the instrument to the 49 th parallel, as given by the mean of the results, was carefully measured, and a picket driven there (in latitude $49^{\circ}: 1^{\prime \prime}$ of latitude $=101.34$ feet). The teams were then employed during the remainder of the days at the station in hauling stone for the mound to this picket.

When the requisite number of results were obtained, and the final latitude deduced, the difference between it and the result of the first night's work was laid off on the ground, north or south, from the picket before mentioned, and another picket driven, around which was piled the stone for the mound which marks the boundary-line.

The mounds were conical in form, and raried in dimensions with the comparative difficulty experienced in obtaining stones. The smallest was about five feet high, and eight feet in diameter at base, and the largest. eight feet high, and sixteen feet in diameter at base.

When timber was obtainable there was usumlly a post sunk three feet in the ground, around which the mound was built; otherwise the top soil was removed and a circle of small bowlders laid around a central stone used in the place of the picket. This was then cosered with earth and the mound piled upon it.

Upon completion of the monnd, which was usually before noon of the day succeeding the last night's work at a station, camp was broken and the march begm for the next station.

> LLANK FORMS.

The blank forms used for computations in the field were so convenient that I deem them worthy of preservation, and to that end attach specimens hereto:

1. Time by single altitude.
2. Latitude by Polaris off meridian.
3. Latitude by circummeridian altitudes.
4. Programme for zenith-telescope observations.
5. Comparison of 'hrononders.
6. Recond and rembetion of zenth-telesempe observations.

Nos. $1,2, \therefore$, and + were armaged in bocks of ote lunded forms, from
which each form was detached for file as computations upon it were completed. No. 5 was in book-form of half quires; the specimen shown is onehalf of one page.

No. 6 was in book-form of four quires; the specimens shown are the headings of opposite pages.

RESULTS.

There are appended hereto complete records of the astronomical stations. They are in order as follows:-

1. Star Catalogues, 1872, '73, '74.
2. Latitude determinations with the zenith telescope.
3. Instrumental constants.
4. Abstract of chronometer records.
5. Results at British astronomical stations.
6. Reconnaissance-positions.

The large number of independent observations made with the sextant for time and latitude, are not appended. They, alone, would make a considerable volume, and are not considered essential to a faithful presentation of the record.

```
STAR CATALOGUES.
```

The star lists comprise all stars used for observation with the zenith telescope. Their designating numbers are those of the British Association Cataloguc, and the mean declinations and proper motions those adopted for the year. The list for 1872 was used at but two stations, No. 1 and No. 1 east. The mean dechinations were derived from the catalogues of the Greenwich observatory. The mean declinations for 1873 and 1874 were obtained by homogeneons reduction, according to the method of Argelander, from all reliable anthorities obtainable. This has been the work of Mr. Lewis Boss, to whom great eredit is due for the correct and altogether admirable mamer in which his work has been performed. As he is ongaged in the preparation of an elaborate report upon the subject of these star places, I will not enlarge upon them here, and will only add, that a careful examination of the latitude results obtained, and of the residuals of each pair of stars, referred to the mean latitudes of the sereal stations, affords

296

 UNITED STATES NORTHERN BOUNDARY COMMISSION.ample evidence to warant the conclusion that the errors of determination are almost wholly those of observation, including, of course, instrumental errors, and that the mean places of the stars may be considered as very nearly approaching absolute aceuracy.

The lists for 1873 and 1874 comprise one hundred and twenty-four and one humdred and twenty-eight stars, respectively, in declination from $+17^{\circ} 45^{\prime} 52^{\prime \prime}$ to $76^{\circ} 58^{\prime} 55^{\prime \prime}$, and in right ascension from $13^{\mathrm{h}} 22^{2 \mathrm{~m}}$ to $4^{\mathrm{h}} 05^{\mathrm{m}}$, which were the hours of possible observation during the ficld-seasons.

The ephemeris, as constructed for use in the fiehd, consisted of:-
1st. Table of mean places for the year; R. A. from any reliable authority; ammal precession and proper motion. Logarithns of the constants $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$, corresponding to Bessel's formulæ and notation for reduction from mean to apparent place.

2d. Logarithms of day numbers for the day and sidereal hours specified, computed for a mean longitude of the stations.

3d. Table of apparent places, for every five days of the probable time of field-work.

This time, in 1873, was from May 20 to October 22, and in 1574, from June 21 to October 12 .

Declinations for other dates than those given in the table, were oltained by interpolation, the difference between a declination so obtained, and one directly reduced, being inappreciable.

LATITUDERESULTS

The final result for the latitude of each station is the arithmetical moan of all of the determinations at that station, withont regard to time of observation or the pairs of stars observed. This methool was chosen, because the probable crror of declination is so far inside of that of observation as to render weighting, not only a work of unnecessary refinement, lunt posiitively undesiralle. For the same reason, it is believed that the final accuracy is about the sane at stations, so far as it depends nopon the number of different pairs of stars olserved.

At no station las the time of observation covered a perion of less than fwo entire nights. Lin thase instances, when there were two or there nights
of observation, the number of observations made on the several nights were nearly the same, and the mean result given is nearly that of the mean of the results taken by nights. At those stations where there was a greater number of nights' work, the numbers of observations of the several nights do greatly vary, and it would be manifestly unfair to give, for the final result, the mean of the nights' results, umless less weight were given to the night of few observations, and this is practically done by taking the mean of all the results.

There have been no results rejected by arbitrary selection. At each station, Peirce's Criterion for the rejection of doubtful observations was applied to the results, before striking the fimal mean. While there is much doubt of the actual utility of the application of such mathematical criterion when the results are in the hands of a competent and judicions computer, it nevertheless gives some standard rule for computers to follow, and affords means of comparing results obtained by different. observers, which would not be comparable if results were rejected at will. It also dissipates doubts which might arise as to the constant good judgment of a computer in selecting results for rejection, especially under the pressure of necessiny haste in completing the computations, which always obtained in our field work.

INSTRUMENTALCONSTANTS.

Observations for the ralue of level divisions and micrometer turns of each zenith telescope, were made once or twice each season that such instrument was used, except that the value obtained for the level of zenith telescope No. 20, in 1873 , was used in 1874. The permanent marks used in the level-value determinations were either the crosswires of astronomical transits or transit theodolites.

For value of micrometer turns, observations were made upon a circumpolar star, usually Polaris, near elongation.

For zenith telescope No. 20, those used in 1874 depend upon three series of observations: two of Polaris, and one of B. A. C. No. 240, made at For't Buford.

I desired to reobserve for the constant ralnes of No. 20 , but there were no oceasions, during the season of 1 sitt, when surh observalims wodit
have been practicable, that the time was not employed in latitude work, or that I was not too much fatigued, by such work, to make the results of ralue. It was not considered of sufficient importance to justify a night's delay for the purpose, as the latitude results demonstrated, by accompanying results obtained from pairs of stars with large and small differences of zenith distances, that the micrometer values used were amply good.

No corrections for rum of micrometer, or for variations in the value of micrometer-turns for changes of temperature, have been applicd, the investigations of these errors being considered more curious than useful in their relation to field-astronomy.

The following synoptical table explains the general character of the latitude-mork

The results of observations at all the stations of 1873 and 1874 are included between the limits here given, except those of Nos. 3, 7, and 9, which were determined with the poor instrument (No. 11) before described, and which, though not absolutely bad, are not comparable with the rest of the work.

No star forms a componnd of more than one pair, and the results show that it is better that each pair should be separately observed; that is, that severa? pairs should not be groupet for the same setting.

In the computations for probable orror, the residuals are the differences
between the arithmetical means of all of the determinations and the individual determinations; which is the method nsually, but not universally, adhered to in like field work.

```
RESULTSAT BRITISH STATIONS.
```

The appended list of results obtained at the British astronomical stations is compiled from the record of the British Commission furnished the United States Commission. (See page 198.)

The declinations of stars used by the astronomers of the British Commission were taken from the publications of the Greenwich Observatory, and the individual results obtained were combined by weights.

```
RECONNAISSANCE POSI'IIONS.
```

In the following table are given the astronomical positions of points on line of march from Fort Buford to the boundary-line at Station No. 13. The latitude of Fort Buford was determined, by myself, with zenith telescope No. 20. The large probable error of final result is acconnted for by the facts that there were but twenty determinations, by observation of eleven pairs of stars, and that the declinations of these stars were from other sources than our own catalogue, which did not contain stars of suitable declination for that latitude.

The other positions given are from sextant observations by my assistant, Mr. Lewis Boss.

Positions.	Latitude.			Longitude.		
	\bigcirc	,	" "	-	1	"
Fort Bnford (flag-staff).	47	59	15.58 ± 0.192	103	58	00
ligig liuddy River.	48	09	10	104	54	95. 5
Frenchman's Point (Missouri River)	45	08	33	101	53	4(i.5)
Poplar River (or Qaakiug $A^{\prime} \mathrm{h}$ River)	48	07	58	10.	09	52.5
Littlo Porcupine River	45	04	55	106	00	28.5
Buggy Creek.........	48	16	15	108	35	46.5
Rocky Creek	48			106	59	33
Lake Bosd. .	48	4.			01	
Fort Turnas (Frenchman's Creek)	48	44	05	107	11	

HYPSOMETRYAND METEOROLOGY.

The vertical element of the survey along the boundary-line depends upon the barometric determinations of the altitudes of astronomical camps, $\mathcal{A} c$., upon which, as bases, are adjusted and closed the vertical surveys of the topographical parties.

The instruments used in this connection by each astronomical party were two cistern-barometers, Green, two aneroid barometers, two psychrometers, one maximum and one minimum thermometer, one black-bulb thermometer.

Those under my care were in constant use from the Red River to the Rocky Mountains, and, with the exception of the black-bulb thermometer, which was broken early in the first season and never replaced, were safely carried through all of the vicissitudes incident to two years' service in the field, a piece of grood fortune rarely equaled in the histories of these fragile instruments.

The practice at astronomical camps was to record daily at $7 \mathrm{a} . \mathrm{m} ., 2$ p. m., and 9 p . m. the readings of the barometers, attached themometers, and peychrometer, the extra barometers being real for the purpose of detecting any change of instrumentah errors which might ocemr, and also to afford the muans of continning the record, reduced to the same zero, in case of accident to the standard barometer.

General meteorological phenomena were noted three times daily, and the maximm and minimun themometers were read at $7 \mathrm{a} . \mathrm{m}$. and 9 p m .

The computations of the altitudes of all stations have been made by comparison of daly means with the daily means of synchronous observations mate at a permanent station.

For the season of 1873^{3} the permanent station was Fort Pembina, Dak, where the recond was kept by an observer employed by the Commission.

For seasen of 1874 comparison was made with the record of the United States Signal-Service station at Fort Benton, Montana, a coly of which, for the time of our fiedd-service, was furnished, upon application, ly the Chief Signal-Officer of the Arms.

The formmate amel tables employed in the reduction may be fomed in

Williamson's treatise on the "Use of the Barometer, \&c.", Professional Papers Corps of Engineers, No. 15, and "are those of Plantamour (Guyot's tables D, 72-79), rearranged and adapted to English measures."

The reductions have been made by daily means, and each result thus obtained given equal weight in the final result. In those cases where, for lack of a sufficient number of daily means, single observations have been admitted, much less weight than that given a daily mean has been accorded them-generally about one-quarter.

No corrections for abnormal and horary oscillations of the weight of the atmosphere have been applied, as we had no sufficiently-extended series of observations made under circumstances firorable for the purpose of deducing these corrections. The only hourly series attempted was recorded at Captain Twining's camp, at Wood End Depot, September 23 to 30, 1873, and that time was, unfortunately, the period of the severe equinoctial storm of that year.

The great horizontal distances between barometers compared introduces an element of meertainty in the results, on account of the different local conditions to which the two instruments may be subject at corresponding times of observations. This source of error would be practically eliminated in cases of long-extended series of observations, hecanse abnormal results would be indicated by comparison with a large number of results, and might be rejected, or, if admitted, they would have little weight in the general result, by reason of comparatively small numbers.

This condition obtained at few of our stations, as, in the majority of eases, the determinations depend upon a small momber of daily means, and necessarily so, becanse the time allowed for barometric observation at any station was strictly limited to that required for the purpose of astronomical observation.

The barometric heights of the eight astronomical stations of 1874 have been reduced by comparison with three Signal－Service stations．The results are given in the following table：－

Stition．							Locality of station．
	Fut．	Fict．	Fiect．	Frat．	Fect．	Fect．	
No．1：3．	$\because 1019$	19：	$\therefore 3,01$	$\because, r-1$	\therefore－ 4 ili		Frenchman＇s Creek，west bank．
No． 14.	$\because 210$	26	$\because 089$	2， 41319		3， 014	Pool on prairie．
Su．1\％．	1，9：\％	1010	$\because, \because 2$	$\because 2 \cdot 3$	\therefore, SO	－3．818	Enst Forks Milk River．
No． 1 if．	1， $0:!$	149	3． 16 in	3.219		$\therefore, ~ 593$	Milk River lakes．
No． 17	\because－－	1，049	$\because \sim$	$3,1-2$	： $2,7: 3$	83,700	Last lintto Sweeterass IIIlls．
No． 1	$\stackrel{3}{\sim}, 64$	－	$\because, ら-3$	3.111	： 3,001	3，475	Red River，west bank．
No． 19.	$\therefore 3, \therefore 1$	1，641	1，141	4，3i：	4，315	4，417	North Fork Milk River．
No．$\because 0$.	3，506	1， 239	1，7\％0		4，$\because 13$	4，331	Chief Monntain Lake．
Fort Pembina above sea ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {Tett．}} 760$							
Fort biman above sea ．．． 2,674							

The results obtained by reference to Fort Benton are those accepted for the altitudes of these stations，and are considered the most reliable， becanse the horizontal distances between stations compared are much less than in the other cases，and the general climatic and local conditions more nearly similar．

Appended is a table giving the altitudes of thirty－two positions，on or near the boundary－line，with verbal description of location，latitude，and longitude，and height above station of comparison and above the sea．

Also，record of each station，and of station of comparison，and the work of reduction．

The records at stations Nos．2，4，6，8，Wood End Depot，Lake of the Woods，and Northwest Angle were made moder the supervision of Captain Twining；those at Nos． $2,3,3$ ，and 4 ，cast，mater the supervision of Lien－ tenant Greene，and at the rest of the stations under my orm supervision， except at the British depot，Sweetgrass IIills，where a semi－daily record of an aneroid barometer was kept during the month of August，187．，and a transcript of it forwarded to me by the Chief Astronomer of the British Commission．

By this title is popularly and generally designated the arm or bay of the Lake of the Woods, at whose northwestern extremity is the point decided, by the Joint Commissioners appointed to carry into effect the 7th Article of the Treaty of Ghent, to be the most northwestem point of the Lake of the Woods. To the locality especial interest attaches, from the fact that the most northwestern point mentioned is the initial point of the boundary-line which it was our work to determine, and because a portion of the American waters of the bay, and of one of the streams emptying into it, form a part of the Dominion Government route of travel and transportation from Lake Superior to Wimnipeg, Manitoba.

In order to arrive at a clear understanding of the purpose and methods pursued in the work at the Northwest Angle, I quote the following from the declaration of the Commissioners appointed to establish the boundaryline under the 7th Article of the Treaty of Ghent:-

Section 19. Resolved, That the following rescribed line (also represented ou said maps as before mentioned) is, in the opinion of the Commissioners, so far as the same extends, the true Bommary intended hy the hefore mentioned Treaties:-Namels, * * * * * thence throngh the midule of the waters of this Bay to the Northwest extremity of the same, being the most Northwestern point of the Lake of the Woods, aud from a monoment erected in this Lay, on the nearest firm gronnd to the above Northwest extremity of said Bay, the courses and distances are as follows: viz, 1st, N.
 W. 495.4 feet. 5 th, 工. $5010^{\prime} \mathrm{E} .13 \geq 21$ feet. 6 th. N. $7 \circ 45^{\prime} \mathrm{W} .493$ feet. The vaiatiou being $1 \geq 2$ East. The termination of this 6 th or last comse and distance being the abore said most Northwestern Point of the Lave of the Woods, as desiguated bs the 7th Article of the Treaty of Ghent, and being in Latitnde Forty-nine degrees, treutsthree minntes, and fiftr-fire secomls North of the Equator, and in longitude Ninetyfive degrees, fourteen minntes, and thirtreight seconds, west from the ohsorvators at Greeuwich.

To discover and re-establish this "most Northwestern point," and to trace, thence, the meridian boundary-line, and to make such survers at the Northwest Angle as should be necessary, I was directed by Maj. F. U. Farquhar, then Chief Astronomer of the Commission, to accompany him to the Lake of the Woods, with a portion of my topographical party, and such instruments, rations, camp-equipage, \&e., as would be needed for a month's work.

We accordingly broke camp on the boundary-line, near the Red River, on the morning of the 1st of October, 1872, marched to Wimipeg, Manitoba, in three and one-half days, distance sixty-eight miles, crossed the Red River, and went into camp at Saint Boniface, opposite Wimnipeg, on the evening of October 4. Breaking camp next moming, we marched orer the Camadian Govemment road, known as the "Dawson road," to the Northwest Angle, arriving there upon the evening of October 9, the distance from Saint Boniface being one hundred and ten miles.

We were associated in the work at the Angle with Capt. Samuel Anderson, Royal Engineers, Chief Astronomer of the British Commission, who, with his detachment of English sappers, arrived the same evening. We were also accompanied to the Angle by Cipt. W. J. T'wining, United States Engineers, and Lieut. W. J. Galwey, Royal Engineers, who, with their astronomical parties, were on their way to determine the 49th parallel on the west shore of the Lake of the Woods.

The country in the vicinity of the Northwest Angle is low and swamper, and covered with a dense growth of coniferous trees, mostly tamaracks; the higher ridges, which howerer are of slight elevation, are covered with groves of poplars. Vast tracts of the comntry have been ravaged by forest fires, learing the burnt portions impassable by reason of the dead-fall. The trees are mostly small; few laving a diameter of trunk, at base, of more than six or eight inches, althongh I secured one dead pine of about twentysix incles diameter at four feet above the gromed, the trunk of which was cut into sections eight fect long, and used for observing-posts. The soil is wenerally sandy, corered in most paces with a considerable depth of vegetable mold.

The point of land included between the northrest arm of the lake and the first considerable stremm emptring into it (see accompanying map), on both sides of the meridian bommery-line, is at times ocerpied by considerable numbers of Ojibway hodians, who come there ammally to receive their ammities from the Canarlim Govemment, to fish, to trade at the adjacent Iludsm's Bay Company's store, and to adjust, among themselves, the property acquired, by varions methools of gambling.

The perint marked "Tork" on the map was the teminns of the Daw-
son road, and the landing-place of the Canadian Government boats at the time of our visit to the Angle in 1872. At the present time, 1875, the terminus of said road, the government buildings, and the Hudson's Bay Company's store are located on British teritory, on the north bank of the same creek, and adjacent to the meridian boundary-line.

We found at the Angle the camp of a surveying-party of the British Commission, in charge of Colonel Forrest, who were engaged in making a survey of the entire northwest arm of the lake, which was afterward continued along the west shore of the lake to the 49 th parallel. Colonel Forrest, at various times before our arrival, had songht to discover some trace of the reference momment before alluded to, but his search had been in vain. He had sought information as to its location from the Indians in the vicinity, and elicited to the effect that some of them remembered the visit of the party which erected it, in October, 1824, and that but few years had elapsed since its total disappearance. They however refused to point out the locality, which they claimed to know, except upos payment of extravagant rewards to themselves and their tribe. After several por-wows with them, Colonel Forrest, discrediting their statements, had given up hopes of discovering anything from them, and refused to treat further with them. Colonel Forrest stated to me that some Indians had brought to his camp a portion of an oaken \log, charred and much decayed, which they averred was a portion of the center post of the old monmment. As before, they refused to say where they had gotten it, unless their preposterons demands were complied with, and carried it away with them when they found they were not to obtain the compensation sought.

It is not necessary to seek far for reasons which would explain the disappearance, in the course of forty-eight years, of a wooden post surrounded by a crib-work of logs.

First, it was in a locality frequently visited by Indians, whose habits of wanton destruction are well known; second, the locality in question has been ravaged by forest fires; third, natural decay, which was hastened by the fact, as will hereafter appear, of its being much in the water. We had as data for our search the map of the Commissioners of 1825 , on which were marked the positions of the reference momment, the "most northwestern

N $\mathrm{B}-20$
point," and the place where the astronomical observations were made. We had given, also, the latitude and longitude of the most northwestern point, and the courses and distances connecting this point with the reference monument.

The official map was, howerer, drawn to so small a scale (two inches to one mile), that details of localities, such as the most northwestern point, \&c., were not recognizable; but the points of land marked "monument" and "observatory" were distinguished, and in the vicinity of the former point thorough search was made for some trace of the monument by Major Farquhar, Captain Anderson, and myself, assisted by the men of onr respective parties. This proving unsuccessful, it became necessary to await the completion of Colonel Forrest's detailed survey. During this interval I verified this survey by independent observations for azimuth and by rerumning the transit liues uon the northeastern shore of the bay, and resurveying in vicinity of the point of land marked "observatory" on the official map. Separate plats having been made and found in agreement, several points in latitude $49^{\circ} \because 3^{\prime} 55^{\prime \prime}$ (ofticial latitude of most nortliwestern point) were platted from latitudes obtained by sextant-observations, and from them were platted the oflicial courses and distances to the referencemomment. Failing to obtain by this means any trace of the exact site of the monmment, as was smpposed on acconnt of the probable discrepancy which would reasonably exist between the official latitude and the latitude derived from our observations, and as the joint commissioners who were to follow us from the Red River had not yet arrived, Major Farguhar directed me to select a point on the tomge of land on which we supposed should be the most northwest print, to erect there a station, make azimnth-observations, and begin the cutting of the due-south line. The station, pyramidal, with twenty-foot center post, was erected, and the cutting begm, but suddenly abmondoned for canse, as will appear.

Mr. James Mckiay, then member of Parliament of the province of Manitoba, and manager for the Dominion govermment of the "Dawson route," arrived at the Northwest Angle and became at once interested in the sareh for the lost momment-site. Mr. McKay is of mixed descent, and speaks with fluency the lanumate of the Ojibway, having spent a large
portion of his life among them. On this account, and because of his official position and strong personality, he has much influence with the Indians, and obtained one of the old chiefs, who said he knew the place where the monument had been, to go with him and point it out. Accordingly the Indian, accompanied by Mr. McKay, Major Farquhar, and Captain Anderson, went in a canoe to the point of land which we had searched over so many times, and directed attention to a place, directly off the point, among the rushes which everywhere fringe the shore, and in about two and a half feet of water, which he said he knew to be the place where the monmment had been.

By wading, Major Farquhar discovered what were to him and those accompanying him satisfactory evidences that this was indeed the monu-ment-site, and especially as the descriptions heretofore given proved that it must have been in this immediate vicinity. There were depressions where portions of two logs had evidently lain at right angles with each other, and, in the inchuded angle, a cavity such as would have been left by the removal of a \log, and whence had probably been taken the \log before mentioned as having been brought to Colonel Forrest's camp).

The Indians said that the water-surface was, at the time of our visit to the Angle, eight feet higher than it was at the time the momment was erected, and this statement was partially substantiated by the fact that within the knowledge of the white people living at the Angle, there had been no season in which the water had been so high, in the fall of the year: With the water even four feet lower, this site would have been on "firm ground," as such term would be understood in a country low and swampy, like that in the vicinity of the Angle, and, moreover, in a place very convenient for making the necessary connections with the point marked "observatory," and with the "most northwestern point."

We had been misled by the statement of the commissioners, that it was "A monument erected in this Bay, on the nearest firm ground to the above northwest extremity of said Bay," which induced us to constantly search too far inland, where, to the northeast of the point under discussion, and nearer to the most northwestern point, we had found a ledge of granite, in place.

308

The occupation of this rock, however, would have involved the surveyors in a large amount of heavy timber cutting, which was probably, at that time, not practicable.

To sum up the evidence that the point under consideration is the site of the original reference monument, we find the following:

It is in correct position, according to the offigial map of the commissioners, as nearly as can be selected on a map whose scale is two inches to one mile.

The same is true for the most northwestern point, when connected with this position by the official bearings and distances.

It was pointed out by an Ojibway chief, and recognized by other Iudians, all of whom averred that they remembered the visit, to the Angle, of the party that erected the monument, which they had frequently seen in after years.

The official latitude of the most northwestern point, before quoted, differs from that obtained by Captain Anderson, with the zenith telescope, of the same point (accepting this site as correct) by only $4^{\prime \prime} .7$; a very close agreement, when we consider that the original latitude was determined by sum observations, with a sextant.

It was in a prominent and convenient position for comecting with the point marked "observatory," and with the most northwestern point, involving no timber cutting.

Confirmatory evidence in the shape of a letter from Mr. Barelay, Commissioner of the Commission of $18!4$, who describes the original monument as having been an oaken center post, surrounded by a crib-work of logs seven fect square.

This coincides with the description, given by the Indians, of the monument, and accounts for the relative positions of the depressions discovered by Major Farquhar. As the evidence that the traces fomed were those of the remains of the old momment was considered satisfactory, the site was accepted by the Chief Astronomers of the Joint Commission, and a station there erected was comected with the the south line through the Northwest Point, and with the astronomical station, by means of a triangle whose base-line, upon the opposite shore of the hay, was three times carefully

measured. The correction to the measured angles is all applied to the angle at the monument, becanse that angle was measured with a six-inch Negus theodolite, with verniers, whose least connt was thirty seconds, and the angles at the base-stations were measured by careful repetitions, with an eight-inch Wiirdemam transit, with verniers reading to ten seconds.

It was agreed between the Chief Astronomers of the British and United States Commission, that the due south line should be laid off jointly.

Observations for azimuth of the base-line were made by Captain Anderson, upon Polaris near elongation, and by myself, upon Polaris at greatest eastern and western elongations. My observations at West Base, October 18 , on Polaris at eastern elongation, gave for azimuth of base-line $119^{\circ} 03^{\prime} 14^{\prime \prime} .1$, and at East Base, October 19, at western elongation of Polaris, $119^{\circ} 03^{\prime} 19^{\prime \prime} .2$. The azimuth adopted by the Chief Astronomers of the Joint Commission, after a comparison of results, was $119^{\circ} 03^{\prime} 10^{\prime \prime} .0$. I then planted a post upon the base-line, at a measured distance from West Base of $138^{\prime} .4$, being the point of intersection of the due south line through Northwest Point with the base-line (obtained as in the following pages), and measured, by careful repetitions, with the eight-inch Wuirdemam transit, the angle between the base-line and the die south line. At a distance south from this post of about a lalf mile, another post similar to it was planted; the two giving the direction of the meridian boundary-line. As it was now late in the season, and we were not prepared for winter work, I left the Angle on the "1st of October, by Major Farquhar's order, and arrived at Fort Pembina on the 7 th of November.

The work of cutting through the timbered swamps, on the due south line, to the shore line of the Lake of the Woods, was intrnsted to the supervision of the British parties, and was accomplished in 1872. The permanent iron pillars marking this line, were placed in the fall of 1574.

In the antumn of 1875 , being then engaged in placing the permanent iron pillars on the 49 th parallel, I, by direction of the Chief Astronomer, visited the Northwest Angle, and verified, by observation, the correctness of the positions of the three iron pillars nearest the Northwest Point, and the direction of the cutting to the sonth. I found portions of the various

310 UNITED STATES NORTHERN BOUNDAIF COMMISSION.

wooden posts located at the Angle in 1872 , still standing; but they will soon have disappeared, as the squaws chop their kindling-wood from them.

The Dominion Gorermment has erected several buildings, warehouses, stage-station, \&c., on British territory, immediately adjoining the boundaryline. The present steamboat-dock, and the terminus of the Dawson road are near the buildings.

The government boats are, however, still obliged to pass through nearly a mile of American waters, to reach their dock at the termimus of the Dawson road.

Appended, are the computations of the surveys, comnecting the refer-ence-momment with the due south line through the Northwest Point, and the Northwest Point with the astronomical station. Also, a map of the Northwest Angle, upon which are marked all of the points hereinbefore discussed.

Computations of surveys.

Stations.	Measured angles.		Correc tions.	Corrected angles.			Azimuth and length of base-line.
	'		"	\bigcirc	,	"	$\begin{aligned} & 110^{\circ} 00^{\prime} 10^{\prime \prime} \\ & 8,191.0 \text { feet. } \end{aligned}$
West-base	968	12.3	0.0		53	12.3	
East-base	Hi 11x	3:3.6	0.0			:3.6	
Monnment	:36 5		-5.9			14.1	

The courses and distances from the reference-monnment to the "most Northwestern point," as established by the Commissioners, under the seventh article of the treaty of Ghent, are as follows:-

1st, N. $56^{\circ} \mathrm{V}$	$4 \mathrm{th}, \mathrm{N} .27 \circ 10^{\prime} \mathrm{IV}495 .4$ feet
$2 \mathrm{~d}, \mathrm{~N} .6^{\circ} \mathrm{W}801 \frac{1}{2}$ feet.	5 th, N. 5010^{\prime} E....... 1,3223 feot.
3d, N. 880 W.......615.4 foet	6th, N. $7^{\circ} 45^{\prime}$ W...... 493 feet.

The variation being 12° east.
These courses and distances give, with true bearings, the following results for latitude and departure:-

Northing.			\log dist. $44^{\circ}, \log \sin$		Easting.	Westing.
	3.1946531	1st course.		3.1946531		
	9.8569341	log cos.		9.8417313		
1126.1	3.0515872	Qà course. log cos.	log dist. (io, log sin.	3.0364:44	90.1	1087.5
	2. 935953			2.9352553		
	9.9956143			9. 0192346		
856.8	2.9828696	3d course. $\log \cos$.	$\begin{aligned} & \text { lor dist. } \\ & 16^{\circ}, \log \sin \end{aligned}$	1.9544899		169.6
	2.7891575			$\bigcirc .7801575$		
	9.9825416			9.4403331		
591.6	2.7319991	4th course. $\log \cos$.	log dist. $15^{\circ} 10^{\prime}$, log \sin	2. 2094956		
	$\because .6949560$			9. 6944950		
	9.9846033			9.4176837		
478.1	$\because .6795593$	5th course. $\log \cos$.	 \log dist 2.1126397 17 $10^{\prime}, \log \sin$ 9.4213957 9.00461		390.3	120.6
	3.1213957					
	9.9802081					
1263.6		Gih courso. log cos.	\log dist.$4^{\circ} 15^{\prime}, \log \sin$			
	$9.69 \supseteq 8469$			2.6923469		
	9.9988041			8.8698680		
491.6	2. 6916510			1.5627149	36.5	
4807.8 total northiug.					516.9	1386. 7
						516.9
			Total westing, West-base, west of ref. mon't,			869.8
						990.8
			Northwest Poinl, east of west-base,			121.0

Referring to the accompanying map, in the right angled triangle west-base $A P$, there is given the distance west-base A, and by subtracting the azimutli of the base-line ($119^{\circ} 03^{\prime} 10^{\prime \prime}$) from 180°, is obtained the angle opposite and equal to the angle at P; hence

$$
\begin{aligned}
\log 121.0 & =2.0897854 \\
\text { A.C.Ing } \sin 60^{\circ} 50^{\prime} 50^{\prime \prime} & =0.0584097 \\
138.4 \text { fect } & =2.1411881
\end{aligned}
$$

which is the distance laid off on the base-line, from west-base to tho meridian line through the Northwest Point.

The astronomical latitude post was connected with the post at eastbase, as follows-bearing being true:

Transit post to stake "A" N. $25025^{\prime} 30^{\prime \prime}$; E. 325.1 feet.

CH1EF MOUNTAIN LAKE.
Chief Mountain Lake lies at the eastern base of the main divide of the Rocky Mountains, and across our northern boundary-line, in longitude about $113^{\circ} 53^{\prime}$ west from Greenwich. To the east of it is an outlying range of mountains, which, breaking from the main range some miles south of the head of the lake, trends along its easteru shore, and terminates abruptly near its foot.

The lake consists of two quite distinct basins, comected by a narrow and deep strait. Of these the most southerly is seven miles long, and varies from a half mile to nearly a mile in width. It is by far the larger, constituting, in fact, the body of the lake, and will be understood when in the following narrative the term lake is used.

Hemmed in ou all sides by ranges of towering, precipitons mountains, whose peaks rise from two thousand to six thousand four hundred feet

above it, the lake is unapproachable by any route save by the valley of its outlet, the Waterton River.

By turning northward, therefore, from a point on the boundary-line about twenty miles east of the lake, we headed off the outlying mountainrange described, and following up the valley of the Waterton River, reached the foot of the lake, with our wagons, on the $\mathbf{1 8 t h}$ of Augnst. Camp was pitched the same evening on a fine shingle-beach at the foot of the lake, a position which, besides the practical desideratum of proximity to an abundant supply of pure, cold water, afforded us also a conprehensive view of lake and mountain scenery, which, for picturesque beauty and grandeur, is probably not excelled, if equaled, by any on the continent.

The lake and neighboring mountain-streams abound with delicions fish, and the vicinity of our camp with dusky-grouse. Onc fish, said to be a salmon-trout, weighing over twenty-one pounds, was canght from the lake by a soldier, with a hook fashioned from the rim-wire of some tin utensil; and many red-speckled trout were caught from the mountainstreams that weighed in the vicinity of three pounds.

The water of the lake is, of course, clear and cold, and of great depth. I regret that I had at land no means of taking soundings. A piece of twine over three hundred feet long, with a heavy weight attached, did not reach bottom when let out at a point about two hundred yards from the shore, near Station No. 20. There is no current perceptible except near the ontlet of the northern basin before mentioned.

The purpose of my visit was to establish on the shore of the lake tho last astronomical station of the survey, and to make a geodetic and topographical survey of the lake and neighboring mountain-region.

Having found by observations with the sextant for latitude that our camp was three and a half miles north of the 49 th parallel, I was obliged to cast about for means of water-tramsportation to the boundary-line, as a very cursory examination was sufficient to demonstrate the unfeasibility of a joumey there by land, on account of the precipitous nature of the mountain-sides.

After some experiments with improvised boats composed of wagonboxes with covers of tent-canvas, which failed on accomet of the permea-
bility to water of the thin canvas, I finally achieved suceess in two boats which were modifications of the above. One of these was a wagon-box with the ends and all cracks covered with pieces of raw-hide closely tacked on, and the whole covered with canvas. The other, as the smpply of hide was exhansted, was a wagon-box fastened on top of a raft composed of seven logs, to which additional buoyaney was given by securing empty water-casks between the outside logs on each side of the raft. Paddles were used for propulsion, the paddlers being squatted in the bottom, as the crankiness of the boats would not permit the use of elevated seats such as are necessary for onsmen.

We were ready for the trip up the lake on the evening of the $20 t h$, but a severe storm came up that night which lasted for two days, cansing delay and some damage to our boats, which, howerer, was soon repaired.

On the evening of the 22d, the night, thongh dark, was still, and 1 determined to take adrantage of the lull to make, at least, part of the distance to the boundary-line before daylight. Leaving the main portion of my party in charge of Dr. Elliott Cones, United States Army, I embarked, about S p. m., with my assistants, Mr. Boss and Mr. Edgerton, and five men, the necessary instrmments, seven days' rations, and as much camp-equipage as was absolutely necessary. Once fairly ont upon the lake the darkuess appeared thicker than before, and land-positions were totally unrecognizable. The labor of forcing the mowieldy and heavily-loaded crafts through the water, and onr constrained positions in the bottoms of the boats, which we were mable to relieve by change, as the slightest motion produced mpleasant tips, suggestive of capsize and the certain loss of all our instruments, made us all very tired, and we were glad to find a convenient little beach where we landed about $11 \mathrm{p} . \mathrm{m}$., and bivouacked for the night. We had made, in the three hours of toilsome paddling, about one and a half miles.

In the carly moming we were again mer way, and arriver about 9 a. m. at a grood landing-place on the western shore, which was opposite a point on the eastern shore previonsly detemined, by triangulation from the sextant position before mentional, to he, approximately, in latitude 49°. There we landed our effects, and wear her, on a comvenient bothom-land,
set up the observatory, where astronomical work was begun the same erening.

On the 24 th I made an exploration up the ravine of a creek which tumbles down between the mountains, west of Station No. 20, with the hope of finding some accessible points, by means of which a trigonometrical connection could be effected between my station and the Akamina station-the last station established by the Northwestern Boundary Survey in 1861. The latter is on the main divide of the mountains, and, as I knew, only about seven miles west of Station No. 20. After several hours of toilsome climbing, I became persuaded that the project was impracticable, and reluctantly abandoned it.

The latitude-work was completed, and the stone mound which marks the boundary-line erected, on the 26 th.

The instruments, \&c., were repacked in the boats the same afternoon, and although the wind was blowing almost a gale from the south, making the lake very rough, it was a fair wind for us, and all hands preferred taking the chances of disaster in the day-time, to risking the possibilities of another night-trip. We therefore started about 3 p . m., and by means of square sails extemporized from tent-flies, sped along in quite gallant style. Our unceasing efforts were, however, required to keep the crafts before the wind, and tolerably free from water. The surf was running very ligh upon the beach near camp, and I greatly feared the danger of capsize in the attempt to land there, for which there was no alternative; but this calamity was arerted by several of my men, who from the shore were anxiously watching our progress. They appreciated the situation, and making into the breakers, at exactly the proper moment, seized each boat, as she arrived in shoal water, and bore her upon the wave-crests, high and dry upon the beach.

Immediate preparations were made for the march eastrard, which was begun next morning, August 27.

The geodetic and topographical work, I gave into the lands of my assistant, Mr. Lewis Boss, who, laboring under many difficulties, rapidly and accurately performed it. As soon as boat No. 1 was completed, he used it to transport himself, men, and instruments, from point to point on the lake, until we were ready for our trip to Station No. 20. He accom-

316 UNITED states NORTHER boundary Commission.

panied me there, and finished his work by the same means, during the time that I was busy at the station.

Though the boat was more manageable when not loaded down with freight, it was yet recry unwieldy, and conld be propelled but slowly with great expenditure of power, and as the lake was subject to sudden flaws and squalls, crossing it in such a craft, was not only difficult but a matter of considerable concern as to safety.

The geodetic work consisted of a base-line, 1,199.2 feet long, several times carefully measured with a chain, and twenty-four triangles dependent upon it, whose angles were measured, by repetitions, with a six-inch Negus theodolite, reading by verniers to thirty seconds.

The azimuth of the base-line was determined, by observations of Polaris near eastem elongation, on the nights of August 18 and 19, to be $0^{\circ} 51^{\prime} 36^{\prime \prime}$ 。

There were taken at each of the twenty-one trigonometrical stations occupied, numerons horizontal and vertical angles to prominent mountainpeaks, by means of which twenty such peaks have been platted, and their elevations above the lake determined.

The topography is laid down from continuous shore-line sketches, and mumerous profile sketches made at the various stations.

The accompanying sketch shows, on a scale of $\frac{1}{w, u w,}$, the scheme of triangulation accomplished, and, incidentally, the heights above the lake of the mountain-peaks located. The height of the lake-surface was determined, harometrically, to be four thomsand two hundred and thirteen feet above the sea.

From the mean of mumerous differences between the true bearings of triagulation-lines and the compass-bearings of the same, the magnetic vartation was ascertained to be east $23^{\circ} 19^{\prime}$.

CHRONOMETER PERFORMANCES.

In connection with my work dming the seasons of 1873 and 187 , observations with the sextant, for local time, were made at nineteen points on the bomblary-line where hongitudes were afterward determined. The chronometers med weresulject to conditions similar to those which gene-
8.

9

-
rally pertain to those expeditions of exploration or survey which, from the nature of the country traversed, can use wagons as their means of transportation. Therefore, if the longitudes of these points were accurately known, we should have data for estimating, with considerable accuracy, within what probable limit of error chronometric differences of longitude are reliable, when obtained with similar instruments used under similar circumstances. Unfortunately, the longitude of any station is possibly in error to an amount sufficient to largely increase such estimate, but as it does not probably exceed, at any station, five or six seconds of time $\left(1^{s}=\right.$ 999.75 feet in latitude 49°), there are still data affording some interesting comparisons with chronometer-longitudes.

We may also satisfactorily ascertain how the chronometers were performing at various stages during the progress of the work, inasmuch as only the difference of the errors of the accepted longitude of consecutive stations enters to affect the determination of the traveling rates between those stations, and this is inappreciable, in comparison with the possible errors of rates derived from observations with the sextant, made at short intervals of time.

The great and frequent changes of temperature to which the chronometers were subject, and the incomplete record of the same, the necessarily rough method of transportation, ant the method employed to obtain rates, all combine to preclude refinement in the discussion of results; lont I know of no expedition which covers so great an extent of time and travel, where the checks are as good, and this has induced me to elaborate the accompanying tables.

The chronometers used are enumerated in the tables. Nos. 1481 and 1513, Negus, were new instruments, purchased by the commission in 1873. They were swung in gimbals. 1319 , Negus, was the property of the Nary Department, and was not a new instroment. 235, Bond, was an old instrument, formerly used on the survey of the northwestern boundary-line. The last two were in ordinary leather cases. All were habitually transported from station to station in a four-spring wagon, gencrally, in 187: incased in a cotton-padded box, but in 1874, under the care of an assistant, on the enshioned seat of the wagon. In camp, they were kept in the

Fold-out Placeholder

This fold-out is being digitized, and will be inserted at future date.
observatory tent, where they were free from disturbance, but snbjected to greater ranges of temperature than obtained in the open air; the minimmm temperatures in the tent and outside being about the same, while, on hot days, the maximum in the tent exceeded, by several degrees, that of the open air.

It was minal to compare the chronometers daily at noon, for which time the corrections were deduced when sum-observations for time were made east and west at corresponding hour-angles. When the olsservations were made at night, or only east or west, they were compared at the time of observation.

The longitude of Station No. 1 was determined telegraphically by an officer of the British Commission working at that station, in comection with an observer at the Chicago Observatory. From this is deduced that of the succeeding stations, including No. 19, by means of the chained distances along the line between stations. The longitude of Station No. 20, and onr determination of the longitude of Akamina Station, depend upon traverse-lines comnecting them with the British Station, marked on the joint maps No. 38. The longitude of Akamina Station, so determined, differs from the result obtained by the astronomers of the Northwestern Boundary Survey, by the method of lunar culminations, by 2.1 seconds of time, the latter being the greater.

The longitude of the meridiam-line traced by Lieutenant Greene from the bommary-line to Fort Shaw, Montma, is less than the longitude of the same derived from the land-survey determination of their principal meridian near Fort Shat by 8.5 seconds of time.

Tramsortation of chronometers from Fort Shaw to Bozeman, Mont, of which the longitude is known by telegraph, gave a longitude for our meridia-line 4.1 seconds of time greater than the boundary-detemination of the same.

Taking into consideration all of the circumstances attending the various determinations (for details of these longitudes see Lientenant Greene's report), I think we may safely say that the emor in the accepted longitude of any station does not, in all probability, exceed the amount stated.

Table I gives the errors of the ehromometers on Washington time for
the dates and stations recorded in columns 1 and 2. There are also given the maximum and minimum open-air temperatures for various dates during the seasons. These were recorded from thermometers hung near the tent in which the chronometers were kept, except for dates September 7, 8, and 12, which are from the record: of Wood End Depot.

Table II shows the rates of the chronometers derived from observations on dates given in column 1, which are so selected as to show rates when the chronometers were stationary and traveling alternately.

The sources of error in these rate-determinations are the difference of the errors in longitude of consecutive stations, which enters directly into the traveling rates, but is probably very small, and the algebraic sum of the errors of the chronometer-corrections for the two dates from which the rates are derived, which is diminished proportionately to the number of days intervening between the dates of the observations from which the rates were determined.

I do not think that the error of observation, in any case, is as much as two seconds, as the observations were msually made at corresponding homangles east and west, or with a sextant whose eccentricity had been carefully determined.

The results do not show any decided changes of rates, from stationary to traveling, and vice versa; they are probably small, and are obscured by the error mentioned. The general rates for the seasons were quite well preserved until the time of low mean temperatures. For instance, during the season of 1873 , to the last of August, and of 1874 , the season-rate of any chronometer does not differ from any rate given for it in the table by more than $0^{9} .8$ in 1873 , and $1^{3} .2$ in 1874, reaching those limits only in single instances.

In 1873, however, the rates of chronometers 1319, 1481, and 235, for September, differ from their rates of the rest of the season by $2^{9} .4,1^{s} .6$, and $2^{s} .6$, respectively, and the rates of the last half of September, from the same, ly $3^{s} .6,2^{s} .8$, and $3^{9} .5$, respectively. The reason for the very large losing rates during September, 1873 , is obvious from an inspection of the temperatures to which they were then subject.

There have been many discussions of the effects upon the rates of well-

320

compensated chronometers of varions degrees of temperature, but none that I know of where they were subjected to so great extremes as were ours.

Chronometers on trial at the Greenwich Observatory are, in the course of sereral months, subjected to temperatures between the limits of $+40^{\circ}$ and $+95^{\circ}$, during which time their daily rates are weekly summed, in the order of dates and the order of temperatures, for the purpose exhibited in Table III.

In the discussions of the chronometric expeditions between Liverpool and Cambridge, Professor Bond deduces formula for temperature-corrections to the rate for limits of temperature 20° either way from the compen-sation-temperature. But, in our work, we had at times extremes of temperature of ofer 50° within twenty-four hours' time, and the extremes, during the season of 1873 , were 81° apart, so that none of the discussions are applicable in this case. There only remains to be said in reference to this important point, that our results do not show sensible changes in rates for variation of temperature such as usually occur during ordinary summer and fall weather, say for a variation of 25° either way from 65?." When, however, the minimum was daily below 40° for a continued period, as in September, 1873 , the rates became irregular, and when the minimum was continuonsly 3.5° and below, entirely mereliable Whether, at ordinary winter-temperatures, we might expect uniform losing rates to be established, there are not sufficient datal to decide, lunt from the record of ehronometer 1455 (see Table II), such would appear to be the case. This chronometer was nsed by Lientenant Greene during the smmer of 1873 and the following winter. The record of temperatures for the monthis given is from the record of the Medical Department, United States Army, kept at Firt Pembina. (See Circular No. 8, War Department, S. G. O., 1875.)

It also appears from the talle that chronometers 1481, 235, and 1319, in 187:, and 1513, 235 , and 1319, in 187, were meritorions in the order named. This decision is contirmed in Table III, in which, following the method adopted at the Greenwich Observatory, in the tabulated results of

[^4]the trials of chronometers for purchase, the order of merit is determined by means of the differences between the greatest and least weekly rates, and the greatest differences between the rates of consecutive weeks. The weekly rates in Table III are derived from Table I, by interpolation, and of course are only approximate, but near enough the truth to make the comparisons indicated.

Table IV gives the accepted longitndes of nineteen points on or near the bomndary-line, and the longitudes, by chronometers, of seventeen of them. The rates used in calculating the difference of longitude between consecutive stations, are those obtained at the nearest preceding station, and are used in preference to the mean of those at the stations whose difference in longitude is required, because of the long time elapsed, in some instances, and because at the latter stations in 1574, and at the last in 1873, no rates were determined. In some instances, all of the chronometers were not compared and the differences mentioned depend upon two, and, from Station 20 to Sweetgrass Hills, upon one chronometer. The longitude, by chronometers, of any station given in the table, is the sum of the mean of chronometric differences between the preceding stations; the difference, therefore, at any station, between the accepted and chronometer-longitude, is the total difference, by the two methods, from the initial station.

It is usual with expeditions which determine longitude by transportation of chronometers, to return them to the starting-point, or to arrive with them at some point of which the longitude is known, and by means of the differences of chronometer-errors at the starting amd teminal points, the difference of longitude between the two points, and the elapsed time, to deduce a daily rate, which is assmmed to have been uniform during time of travel, by means of which intermediate points are fixed in longitude.

To make a case nearly similar, I use the data of Table IV, and rates for 1873 derluced from the observations of Junc 7 and 8, and Angnst 31, and rates for 1574 derived from the dates July 5.3, and Ingust 13.3, as given in Table II. There result the chronometer-longitudes given in Table V, which, as was to be expected, agree generally better with the accepted longitudes tham do those of Table IV, excepting of course Stations 10, 11, and 12 , where low temperatures prevailed.
x $13-1$

The mean of the differences between the accepted longitudes and the longitudes of the stations by either of the mentioned methods, or between the latter, excepting the last three stations of 1873 , is less than two seconds of time, and the greatest difference, at any station, only reaches five seconds, the same stations excepted.

If we suppose that the mean error of the accepted longitude increases the mean differences mentioned by two seconds, and that the greatest error at any station increases the greatest difference by six seconds, which is taking the most unfavorable combinations possible, we have, for the mean error of the chronometer-longitudes of stations, four seconds of time, and for the limit of error, eleven seconds, or, in latitude 49°, about four-fifths of a mile and two miles respectively.

Table I.

Errors of Chronometers on Washington time.

Table II.
Daily rates.

Dates.	Mean time chr. 1319, Neghs \& Co.	Sidereal cbr. 14: Negnadio.	Sidereal cbr. 25 Bund \& Sou.	Traveling nir sta. tionary.	Dates.	Mran time chr. 1319, Negns \& Co.	$\begin{gathered} \text { Sidereal } \\ \text { clir. J } 13 \\ \text { Negoco } \end{gathered}$	Sidereal chir. 235, Bond \& Sod	$\begin{gathered} \text { Traveling } \\ \text { or sta. } \\ \text { tionats. } \end{gathered}$
$1873 .$	8.		s.	S.	$1874 .$	${ }_{2}^{8.6} 6 \operatorname{losing}$	8. ${ }^{8.2}$ losing	8. - losing	S.
June 8 to 12.	1. $\%$ losing	0.3 raining	0.3 losing	T	co. ${ }^{\text {cos. }}$				
					Jaly 8.3 to	2.0 losing	0.2 losing	0.7 gainiog	T.
$\begin{aligned} & \text { June } 12.16 \\ & \text { to } 17.17 . \end{aligned}$	2.3 losing	0.9 gaining	0.5 gaining	S.	10. 2. July 10. 2 to	1. 1 lnsing.	0.4 losing	0. 5 gaining	S.
Jnne 17.17	1.6 losing .	1.3 gaiuing		T.	12.				
${ }_{\text {Jnne }}^{\text {to } 26 .} 17 .$			0.3	T.	July 12. 4 to	0.5 losing	0.7 gniaing	0.7 gaiving	T.
toren.					July 15.4 to	0.8 losing	0.4 gnining	0.5 grining	S.
$\begin{aligned} & \text { June } 26 \text { to } \\ & \text { July } 15 . \end{aligned}$	1.2 losing	0.9 gaining		S.		1.9 losing			T.
June 23 to			0.9 gainiug	S.	1092.	1.9 lobias			
July 15. July 15 to 30	1. 2 losing			T.	July w a to	0.7 losing	0.0		S.
July 3010	1. 4 losing .	I. 3 gaiuing		S.	July	1.0 losing	0.6 gaining	0.0.......	T.
Aug. 7.18					\%				
Ang. 71018	$\xrightarrow{\square}$	1. 1 gaining	0.4 caining	$\mathrm{T} .$	Suly 89 to	1.6 losing	1.3 gaining	1. 1 gaining	S.
An5. 31 10	3.5 lusing	0.0 caiving	1.3 lesing	T	Aug. ${ }^{\text {to }} 4 .$.	0.5 losing	1.0gaizing	1.5 gaizing	T.
Sipt. 4.3.					Alıídtur..	0.3 losing	1. 3 griniu¢	1.:3gainin:	T.
Sepit. 4.3 to	2.5 losing	0.4 gaiving	1.3 Josing	S	$\text { Ang } 8 \text { to }$	1. 2 losivg	0.5 gainmg	0.0	T.
Stpit. 7.04 to	3.0 lusing .	0.8 gaining	1.5 losing	T.	A115. 13.55		0.9 gaining		T
S.pot. is. 13	5. 5 losing	1.9 losing	4.9 losing	S.	A 1 It 18.4 to		0.8 gaining		S.
(1) 17.34.					2in) 1.				
$\begin{aligned} & \text { Sut. } 17.34 \\ & 1021 . \end{aligned}$	4.3 losing	0. 8 losing	9. 2 losing	I'.	$\begin{aligned} & \text { lug. as. } 1 \text { to } \\ & \text { Srit. } 1.4 . \end{aligned}$		0.9 gaining		'T.
s.jut. 11 to	5.9 losing	2.1 losing	๑. 810 sing	s.					
$\begin{aligned} & \text { June } \frac{2}{2 n g} \text { to } \\ & \text { Ant. } \end{aligned}$	1. 7 losing	1. 1 gaining		T. aum S .	$\begin{aligned} & \text { July } 5.3 \text { to } \\ & \text { Au, } 23.55 . \end{aligned}$	1. 1 losing	0.5 gainiug	0. 3 gaining	T. nods.
Jume 8 t			0. 3 gaining	T. and S .	Juls 5.3 to		0.6 gaibing		T. and S.
Jumes x to	2. 3 losing	0. 7 gaining	0.3 losing	'T. and	sipl. 4 .				
Scpt. 28.64.									
$\begin{aligned} & \text { Ang } 31 \text { to } \\ & \text { sigt. } 2 \text { on } \end{aligned}$	4.2losing	0.5 losing	2.3 losiug	T. and					
$\text { Sept 15, } 13$	5. 3 losiug	1. 7 losing	3.2 losing	T. and S.		-			

Dates.	$\begin{aligned} & \text { Mran time } \\ & \text { Nelir. } 1455 \\ & \text { Segits \& Co. } \end{aligned}$	$\begin{gathered} \text { Travuliug } \\ \text { or }=a \\ \text { tionary. } \end{gathered}$	FORT PEMEINA.			
			Movth.	'temperatnre		
June 14 to July 4	0.45gaining	T. nod S.		Mean.	Max.	Mio.
July 4 tus.	1.0) lusinat ..	' C . and S .				
July	3. ! lorsin:					
S'pt. 1 \&u 15........	3. 3 lowinu	T. and S゙.			\bigcirc	\bigcirc
	2.3 losimg .	'1'. and si.	Norembry ..	15.65	4.2	- 25
Nore fitu Dice 5	C. 0 losing ..	T. and $\mathrm{S}_{\text {. }}$	December..	6.76i	35	-27 -41
16.c.万tı?	5. 3 lowinit.	M, :lut S.	Janmary	3. 17	37	-41
11.0 .9 to 12	3.1 loning ..	T. $n: 114$ S.				
Whe 13tols 19.	5. 1 laninit	$\text { T. and } \mathrm{s} \text {. }$				
Dere. 14 to 20......... Dec. 20 to J an. $17 .$.	Bi. 7 losingig..	T, and S. 'L. and si.				

Table III.
Weelily rates, 183.

Weelily rates, 1874.

No. of chronometer.	宫				$607 \text { ธ } 7 \sin \pi \bar{y}$			0 0 8 8 8 0 0 0 0 0				
	8.	S. 7	7	8.	${ }^{8}$.	8.	s.	8.	8.	8.	8.	8.
1513.	-13.8	-4.7 +3.5	-7.1 +0.8	-9.2	-9.3	-9.6	\cdots		-13.8	-2.3	11.5	9.1
235.	+1.9	+3.0	+0.8 -0.4	+6.2	-7.7	-4. 6	-5.6	-6.0	- 1.8	-2.7	9.5	31
Temperatures:	+1.	13.0				T6.	-8.9	-2. 1	-0.4	-8.9	9.3	7. 6
Maxituum	101	98	89	84	85	85						
Minimnm.	44	50	57	48	48	33						

Note.-The sign + iudicates a gaining, and - a losing rate.

Table IV.
Relative Longitudes of Stations, by Chronometers from Fort Pembina, and by Chain from Station No. 1.

[^5]Table V.

NoTE.-Resalts obtrined us using uniform rates for tho seasons.
JADES F. GREGORY, Captain of Engincers.
-

APPENDIX B

To

report of capt. W. J. TWINING.
 CORPS OF ENGINEERS.

CHIEF ASTRONOMER.

REPORT OF FIRST LIEUT. F. V. GREENE, UNITED STATES ENGINEERS.

United States Northern Boundary Commissiox, Washington, D. C., June 30, 1876.

Sir: I have the honor to submit herewith the following report of the work done under my charge, upon the survey of the boundary-line of the United States, from the Lake of the Woods to the Rocky Mountains.

I am, sir, very respectfully, your obedient serrant, F. V. GREENE, First Lieutenant of Engincers.
Capt. Wa. J. Twining,
United States Engineers, Chief Astronomer

PRELIMINARY.
By Special Orders No. 131, War Department, Adjutaut-General's Office, June 7, 1872, I was "detailed for duty upon the joint commission for the survey of the boundary-line along the forty-ninth parallel, in accordance with the act of Congress approved March 19, 1872," and was directed to report in person to the Adjutant-General. By letter of July 2, 1872, that officer directed me to report to the Department of State, which I did, by letter, on the 3d of July, and in reply received a letter, dated 6th July, 1872, from Charles Male, Acting Secretary of State, directing me to report to Maj. F. U. Farquhar, Corps of Engineers, then Cliief Astronomer of the Commission. I did so on the same day, and have since been continuously

332

 UNITED STATES NORTHERN BOUNDARY COMMISSION.on duty with the Commission, and under the orders of the Chief Astronomer.

The portion of the survey intrusted to me in the field comprised the immediate charge and direction of the parties engaged upon geodetic and topographical operations, and the making of reconnaissance-surveys of all rontes passed over by these parties, outside of the belt of more accurate surveys. The geodetic work was that necessary to establish and mark the forty-ninth parallel between adjacent astronomical stations; the topographical work was to survey a belt not less than five miles in width, on the United States side of the boundary. In the office, I have had the immediate charge, under your general supervision, of the preparation of all the maps of the Commission.

Before describing these operations in detail, I deem it proper to give a short narative of the rarious seasons' work. This, however, will be limited to the most concise statement of the movements of my parties, and will not include any description of the country, or account of the many details which make up "plains experience," such as means of supply, lack of wood and water, tronbles from praine-fires, hail and snow storms, \&c. Although habitually separated from the parties of other officers, and acting under general instructions only, yet, on the whole, I passed over nearly the same ground as yourself and Captain Gregory, whose experiences mere also about the same as my own, and whose reports, doubtless, give complete information on these points. I shall, however, subsequently speak more in retail of the monument on the summit of the Rocky Mountains, and of the swamps of the Rosean country, as I was the only officer of the United States Commission who visited those localities.

$$
\text { SEASON OF } 18 \text { T2. }
$$

By direction of Maj. F. U. Farquhar, then Chief Astronomer of the Commission, I left Washington on the 1st of August, for Pembina, Dak., charged with the safe transportation of all the instruments for the survey, contained in thirty-two bozes. Mr. Lewis Boss, assistant astronomer, accompanied me. Onr route was via New York and Buffalo, by steamer through the lakes to Duluth, and thence to Pembina by rail and boat. We
arrived at Fort Pembina on the 17 th of August, with the instruments in good order, and began observations with the sextant and chronometers to establish an approximate latitude and longitude for the initial point of the survey. The rest of the commission arrived overland on the 5tlo of September, and the regular work of the season was then begum. While encamped on the Red River, I made a topographical survey with theodolite and chain of the Red River, from the boundary-line to a point five and a half miles sonth of it. This was done under Captain Gregory's direction, between the 10 th and 20 th of September. On the departure of the commissioner and other officers of the commission for the Lake of the Woods, October 2, I was left at Pembina with a party of twenty-five men, witl instrnctions from Major Farquhar to trace a tangent line eastward until I met a British party coming west. By the Gth of Norember I had reached the Roseau River, thirty-three miles from Pembina, without seeing any signs of a British party, and on the 9th I received an order from Major Fargular to return at once to Pembina. There I reported to Captain Gregory, and returned to the States with him. In the office at Detroit, during the winter of 1852'73, the topographical work of the summer was plotted and drawn.

$$
\text { SEASON OF } 1873
$$

The organization for this year comprised a tangent party and two topographical parties, under Mr. F. Von Schader (succeeded in September by Mr. C. L. Doolittle) and Mr. A. Downing, in all about fifty men. Mr. L. Chauvenet acted as recorder and comphter for azimuth observations, and, owing to the pressure of topographical work, a stadia party was organized for him. From September 1 to October 13 I was accompanied by an escort of twenty-five cavalry-men under command of Lient. R. II. L. Alexander, Seventh Caralry: We began work at Pembina on the Sth of June, and contimed it without intermption until the $3 l$ of October: over two weeks (9th to 25 th August) having been deroted to cutting a sight-line in Turtle Momntain. On the 3 d of October we were at the British astronomical station, three hundred and eighty-four miles from Pembina, with the geodetic and topographical work completed up to that point. The lateness of the season and scantiness of supplies on haud precluded the idea of
finishing the topography of the twenty-four miles intervening between us and Captain Gregory's most westerly station, and on the 4th of October I turned eastward. At the supply depot on the Mouse River I formd, October 13, your letter directing me to follow on to Fort Totten. I took a route along the Mouse River on its sonthern bend, in order to make a reconnaissance of its course. Learing this river after it had turned to the north, I struck eastwardly, across the burnt prairies and salt lakes, for Fort Totten, reaching that post October 22. On the 24 th, yourself and the astronomical parties left for Fort Seward and the States, and on the 25th I left for Fort Pembina, muder your instructions, to complete the survey of the bomdary between the Lake of the Woods and Red River. During the winter, Mr. O. S. Wilson was assigned to me as recorder and computer, in place of Mr. Chanvenet. A full account of this winter's work will be given in another place.

We reached Fort Pembina on the 29th of October, and returned there, on the completion of the survey, on the 5th of February, 1874. About half of the men were discharged here, and with the balance I marched to Breckenridge, and there took the cars to Saint Panl, where the parties were disbanded on the 16th February. On the 20th of February I reported to you in the office at Detroit, with my assistants and records.

Before leaving Pembina I sent Foreman Kennedy, with three men and two dog-sleds, to Turtle Momitain, to construct the momends which we had been obliged to leave unbuilt during the summer, the British cutting not being completed until October 5. They performed this service, and reached Saint Paul Marcl 5.

The office-work, at Detroit, was continued from March 1 to Jme 1, 1874. Mr. Doolittle and Mr. Wilson were engaged in adjusting the stadialines; Mr. E. Mahlo and Mr. V. T. McGillycuddy in plotting and draughting. Mr. Downing was obliged by private business to leave the survey from March to November, 1874. During our absence in the ficld the following summer Mr. Mahlo was left in the office engaged in dranglting.

The organization for this year comprised a tangent-party, three topographical parties, under Messrs. Doolittle, McGillycuddy, and Wilson (in addition to the latter's duties as recorder), and a party of mound-buildersiu all, counting scouts and teamsters, about seventy men. Mr. B. Vitzthum was attached to my party as draughtsman. The escort, under command of Capt. E. R. Ames, consisted of Companies E and I, Sixth Infantry, and twelve Indian scouts. The greater part of E Company was detached August 1. The varieus working-parties and their escorts left Fort Buford on the 21st of July, following the Benton trail up the Missouri. On the 26th my parties and escert left the main column near the mouth of Poplar River and struck northward along that stream. At the principal forks I detached Messrs. Doolittle and McGillycuddy, with their parties and a small escort, to follow and reconnoiter the west fork, myself, with the other parties, following the east fork. The east fork brought us, June 29, to Lieutenant Galwey's station, where we had concluded work in 1873, and the next day I moved on to Captain Gregory's station on the west fork, where Mr. Doolittle arrived the day after.

On the 1st of July the regular work of the season was begun at four hundred and eight miles from Pembina (the topography at three hundred and eighty-four miles) and it was carried on without interruption until August 18, when I arrived at your camp on Chief Mountain Lake in the Rocky Mountains, seven hundred and fifty-eight miles from Pembina; the geodetic work was completed to that point, and the topographical and mound parties were a short distance behind.

The country beyond being impracticable for wagons, you directed me to fit out a pack-train, in order to reach the monument placed on the summit of the Recky Mountains by the Northwest Boundary Commission in 1860. We left Chief Mountain Lake on the 20th, and reached Λ kamina Station, near the summit, on the 23 d , the distance being over forty miles by the trail, although only seven in a direct line. Mr. Wilsen carried a stadia-line from Chief Mountain Lake over the divide, by the Kootenay Pass, and connected it on known points of the British traverse carried along the Kisheneln Valley to Akamina Station, in 1860. This connected the sum-
mit-momment with that on Chief Mountain Lake. After completing the triangulation about the summit I returned to Chief Mountain Lake, August 28 , and deroted the following day to locating the peaks in the neighborhood. August 30 we began the return march, and reached the supplydepot at the Sweetgrass Hills September 2. Here my escort was relieved. On the 31st of August, at the British Astronomical Station near Chief Mountain, I met Mr. Doolittle, and joining to his party that of the moundbuilders, making their total strength about twenty men, I directed him to follow and reconnoiter the "Riplinger Road," skirting the base of the mountains, to the Blackfoot agency on the 'Teton River; thence to march to Benton, via Fort Shaw. He reached Fort Benton, without accident, on the 9th of September: I picked up Mr. McGillycnddy's party at the Sweetgrass IIills, and with it and the tangent-party, abont thirty men in all, I started, September 4 , due south, through the Piegan and Blackfoot country, for Fort Shaw, arriving there September 8. The object of taking this route was to reconnoiter the country, and, principally, to rim a meridian-line to Fort Shaw for longitude purposes. This line was traced partly by Mr. Wilson and partly by myself. From Fort Shaw we marched to Fort Benton, where I reported to you September 11. The next day the whole Commission began the boat-joumey down the Missouri. During this journey I had charge of the survey of the river, making the astronomical observations myself. Messrs. Doolittle and McGillycuddy relieved each other in taking compass-bearings and sketches. We reached Bismarck, Dak., on October 1. The office-work was resmmed on the 1st of November, at Washington, and has been carried on, uninterruptedly, to this date. Messrs. Doolittle and Wilson reduced the stadia-readings and adjusted the co-ordinates of the topographical-survers between November 1, 1874, and $\Lambda_{\text {pril }} 1,1875$. The series of preliminary maps was finished October 1, 1875; photo-lithographie copies were made of each sheet as soon as it was finished. The series of final maps was commenced August 1, 1875, and finished April 15, 1876. The series of recomaissance maps was begm November 1, 1874, and finished February 1, 1876. Special tracings of rarions sheets have been made from time to time. The office-force has usually comprised eight dranghtsmen.

SEASON OF 1875.

You directed me to proceed to Fort Shaw and make certain observations there. I left Washington June 30, and, proceeding by way of Salt Lake, reached Fort Shaw July 11. I remained there ten days, and made an extended series of azimuth-observations on the meridian-line of 1874, of latitude-observations with the sextant at Fort Shaw, and a triangulation to connect the meridian, and consequently the boundary-surveys, with Fort Shaw and the land-surveys. I arrived in Washington, on my return, on September 3.

Summary of field-rork.

					\%
Number of azimnth stations	15	8	15	1	39
Number of latitude observatious (sextant).	11	10	58	17	99
Number of time olservations (sextant)...	104	34	00	12	240
Niles of tangent lines	223.3	56.5	176.5	456.3
Miles of timber cuttiug. .	10.3	42			52.8
Number of monuds built....................	93	56	44	198
Miles of topographical lines (stadia) ..	3×0	365	549	1,287
Milcs of reconnaissance Iines (compass)	250	98	550		808
Miles of Missouri River travel and reconnaissance...........	\cdots		${ }^{817}$		${ }_{2}{ }^{8067}$
Miles of march between camps...... .	Ot	542	1,010	.	2,503

This seems to be an appropriate place to acknowledge my indebtedness to the assistants who have been associated with me, and to the officers who have commanded my escorts.

Messrs. C. L Doolittle,* O. S. Wilson, and A. Downing, have been with me in the office and field for more than two years, including the winter campaign in the swamps around the Lake of the Woods. To them I owe my most cordial thanks for their umremitting labors, the excellent character of their work, and their cheerful and ready compliance with all instructions, involving no matter what hardship. Mr. F. ron Schradert was the principal topographical assistant in 1872 and part of 1873 , and rendered excellent service; as did also Dr. V. T. McGillycnddy \ddagger in 1874. Mr. L. Chauvenet

[^6]was recorder in 1873, and showed great aptitude for his work, although somewhat embarrassed by lack of experience and by ill health.

In the office, in addition to Messrs. McGillicuddy and Downing, the draughtsmen have been Messrs. E. Mahlo, A. A. Aguirré, A. von Haake, A. Pohlers, and H. S. Hebarl, all of whom rendered good service. Messrs. B. Vitzthrm and _- Penny were also employed for short periods.

With the officers of the escorts my relations were always of the most cordial nature, and althongh nsially superior to me in rank, they never failed to accerle to my requests in distribnting their commands, if they could do so without violating the positive instructions of their own superiors.

In 1872 , Capt. A. A. Harbach's company of the Twentieth Infantry remained with me when the rest of the commission went to the Northwest Angle. We met no Indians in the short distance which we penctrated eastward, but when we came to an impassable swamp, and had to make a quarter of a mile of corduroy-road, Captain Harbach at once ordered out his whole company to assist in it.

From Jume, 1873, to March, 1874, I was accompanied by an escort only during September and a part of October. This cavalry detachment was commanded hy Lient. R. II. L. Alexander, since deceased, who used every effort to assist us.

In 1874 my escort was considerably larger, consisting nominally of two companies of infantry and twelve Indian sconts, under the command of Capt. E. R. Ames, Sixth Infantry. I say mominally, becanse an officer and fifteen men of one of these companies were left at Fort Buford to escort the Commissioner, and did not rejoin their company, and at the Sweetgrass IIills, August 1, the remainder of that company was detached. Captain Ames, however, did everything in his power to facilitate the work of the survey, and I feel the more grateful to him as his interests were entirely opposite to mine. It was essential to the performance of my work that the topographical and monnding parties, three and sometimes four in number, shonld carry on their operations in rear of my own tangent party, and indepentently of each other ; and as we were in the proximity of Indians, whose peaceful and honest intentions were at least open to donbt, it was also essential that these parties should each have a small escort. On the

other hand, Captain Ames naturally desired to keep his companies together for discipline, supply, and defense. He, however, yielded to my requests, and sent a detachment, with a non-commissioned officer and a scont, with each party, until he soon found his force reduced to fifteen men, and the main body of the escort was over one hundred miles away, and its exact whereabouts unknown. We were in this condition on the 18th of July, my parties being spread ont over a distance of about seventy-five miles, when, on informing Captain Ames of my intention of moving ahead the next day, he replied that his original instructions from Major Reno were very positive, not to separate himself from his detachments by more than forty miles. These instructions were entirely unknown to me, and, although completely binding on Captain Ames, placed me in a very disagreeable position. A large band of Assiniboines had been encamped, only a few days previous, in the very locality where we then were (Astronomical Station No. 28), and the mail-rider had been chased almost into camp, only the day before, by a party of Yankton Sioux; so that I was taking considerable risk in going alnead with my party containing only fifteen carlines, and attempting to work on a tangent twenty miles long, without any escort in camp. On the other hand, it was only by the utmost exertions-often working for twentytwo consecutive hours-that I could keep the tangents up with the astronomy, and if I waited a week for the detachments to close np, there would be another one hindred miles between Captain Gregory and myself. I therefore determined to push on alone, and after bidding good-bye to Captain Ames the next morning, saw no more of him for ten days.

I can only repeat that Captain Ames sacrificed his personal inclinations, and did everything in his power to assist the progress of the survey, but that his force was inadequate and his instructions too circumscribed to have allowed him to materially aid us in case the Indians, who hovered about our trail, had at any time proved tronblesome. The question of the relations between an officer in charge of a surveying-party and the officer in command of his escort, is at best a rexed one, and particularly so when the surveying-officer, who must necessarily direct the movements, is the junior, and I am glad to he able to record my appreciation of the forbearance and kindness exhibited by all the officers who were detailed with me.

On my journey from the Sweet-grass Hills to Benton ria Fort Shaw, I was also without an escort, my party numbering twenty-five men and fifteen carbines. We passed through the country of the Blackfeet and Piegans, and within a few miles of the spot where the latter were so terribly punished by Major Baker, in 1870. These Indians followed us, and once accosted the men at the rear target, but they did not molest us in any way.

In closing these acknowledgments, I wish to record my thanks to Capt. L. Wheaton and Maj. J. E. Yard, successively in command, and Lieut. Paul Harwood, Twentieth Infantry, post quartermaster at Fort Pembina, who during the summer of 1872 , and the winter of 1873 and ' 74 , constantly exteuded farors to us. And I particularly wish to express my gratitude to Gen. John Gibbon, commanding, and Lient. J. W. Jacobs, Seventh Infantry, quartermaster at Fort Shaw. In 1874, I was a day and a half, and in 1875 ten days, at their post; during which I was constantly the recipient of their private hospitality as well as their official courtesy. Being alone in 1875, I was entirely dependent on them for men and transportation to assist in the work I had to do, and these were furnished most kindly and cheerfully.

To the officers at Fort Buford I am also indebted for many-farors, but as I was only there at the same time as yourself, your acknowledgments naturally supersede mine.

CHAPTER I.

GEODETIC CONNECTIONS.

The geodetic operations were those necessary to establish and mark the 49th parallel of north latitude, in the intervals between astronomical stations, which were about twenty miles apart.

There are two methods of tracing a curved line-one by means of chords, and the other by tangents and offsets The latter method was exclusively employed on this survey. A tangent-line (tangent to prime vertical great circle at initial point) was prolonged on the surface of the earth from the meridian of one astronomical station to the meridian of the next, and on each meridian was measured the distance from the tangent to the astronomical determination of the parallel. By the use of proper geodetic formulee the relative positions of the two stations were determined, and the difference between the geodetic and astronomical determinations, inchding the errors of both, was taken as the "Station-error." The astronomical determinations were regarded as an absolute standard, and the station-errorwas distributed between the stations in direct ratio to the distance. To fix intermediate points of the parallel, meridional offsets were measured from the tangent, and the proportional part of the station-error was included in these offsets.

The sticcessive steps in these operations were:

1. Azimuth-observations at initial point.
2. Tracing the tangent-line on the ground.
3. Azimuth-observations at terminal point.
4. Deducing the station-error and computing the offsets for mounds on forty-ninth parallel.
5. Construction of the mounds.

The results of these observations are given in full in the details of the tangents.

1. Asimuth-obserations.-The instrument used was a transit-theodolite. made by William Wurdemann, of Washington. The horizontal limb, eight inches in diameter. was divided to 10^{\prime}, and read to $10^{\prime \prime}$ by two verniers: vertical limb nsed principally as a finder) was four inches diameter. divided To 20, and read to 1^{\prime} by siugle remier. The spindles of the instrument were of sted, all the other parts of brass. There were three foot-screms, a circular level between the standards. and striding-letel for the axis of telescope. All tangent-ecrews workel against springs. which was. I think. a serions lefect. The telescope was of one and one-half inches aperture, and sisteen inches focal lencth. everiece magnitying twentr-five times. it 45° prism. fiting in a slot in front of the ere-piece answered the purpose of a diagomal ese-piece. The mipul consisted of three double legs supporting a solid bhek of wool iwo inche chick. This insurtment was momed in the merillan of the a-rmomical tation. and as near as convenient to the mond markiner the furt-ninth parallel. An apposimate azimuth of 90° was then turneld oft. fom any data arailable. and on this linection was placed a bull--eve lantem. immly fixed to a small post. It was at first chstomary w incluse the lanten in a bos. but this was fonm monecesary. for the lantern was generally at a datance of two mile from the instrument. and at that distance the image of the light was about the same as that of a -econd masnitude star. The true astronomical azimuth of the direction of this lamp was then aberved. The chronometer-error was derived from time-iberations with the sestant. aken in the intervals between azimuthstar. In whereing-liot of these latter stars was prepared for each month. uriving the marnitudn azimuth altitude and chronometer time of elongation For each star. The methond of oferving culminations above and below the pule. and Polari- at any honr-anole. were both tried. but did not give such

 Were nut usel. becane the ithecope did unt define sars below the fourth marnitule with -ufficient accuracs. The methed used was to take five pointinge on the mark, then five on the tar the time being noted for eath; then
revolve the instrument 180° in azimuth, and take five more readings on the star, followed by five on the mark. To each reading on the star was applied a differential azimuth-correction, due to the interval of time from elongation. The mean of the corrected results, with the mean reading on the mark, gave the result for that star. Five stars observed in this manner, and in different parts of the divided are, constitnted a good determination, although three were considered sufficient. The azimuth resulting from each individual reading was also computed, and these were treated in the usual manner (after applying a collimation correction) to obtain the probable error of the mean. This varied from $\pm 0^{\prime \prime} .8$ to $\pm 4^{\prime \prime} .0$ at a station, with a mean of $\pm 1^{\prime \prime} .8$. The average range of forty individual observations was $57^{\prime \prime} .3$. With tangent-screws working in ball-and-socket joints, this range can probably be reduced onc-half. Level-corrections were at one time applied, but were soon given up, in the belief that they only introduced additional error. The length of the striding-level was only six inches, and the value of one division over $4^{\prime \prime}$. A slight inaccuracy in the grinding of the glass would introduce large errors, and the behavior of the level showed such inaccuracies. Hence the instrument was carefully leveled before each set, and examined afterward, in both positions of the axis. If it had been disturbed in level during the observations, they were rejected.

The following formule were employed:
$A_{e}=$ Azimuth of star at elongation.
$\Phi=$ Latitude of station.
$\alpha=$ Right ascension of stan.
$\delta=$ Declination of star.
$T_{e}=$ Chronometer time of elongation.
$\tau=$ Difference between observed time and T_{e}.
$\rho=$ Reduction to elongation.
$E=$ Chronometer-error $\left\{\begin{array}{l}\text { + fast. } \\ \text { - slow. }\end{array}\right.$
$t_{e}=$ Hour angle at elongation $\left\{\begin{array}{l}\text { - east. } \\ \text { + west. }\end{array}\right.$
$\cos t_{e}=\frac{\tan \phi}{\tan \delta} \quad T_{e}=\alpha \pm t_{e} \pm E \quad \sin A_{e}=\frac{\cos \delta}{\cos \phi}$.
$\rho=\frac{2 \sin ^{2} \frac{1}{2} \tau}{\sin 1^{\prime \prime}} \tan A_{c}$

344

 UNITED sTATES NORTHERN BOUNDARY COMMISSION.The value of

$$
\frac{2 \sin ^{2} \frac{1}{2} \tau}{\sin 1^{\prime \prime}}
$$

is given in the usual tables for "reduction to the meridian." I deem it only proper to add that this method was derived from the Coast Survey Mannal by Mr. C. A. Schott, published in Appendix 11 to the Report for 1866. This is the only publication I know of in the English language where the subject of azimuths is treated at any length.
2. Tracing the tangont-line.-After finding the true azimuth of the mark, it was a simple matter to find a point of the prime vertical near it; the required meridional distance being the tangent of the angle equal to 270° or 90° minus the observed azimuth, for a radius equal to the distance from instrument to mark. A stont picket was driven and the point of the tangent was marked upon it with a pencil point; with this and the point of observation, the direction was established, and the line was prolonged to the next station. In 1872 , with the idea of avoiding errors due to error of collimation, the method employed was that of two front-sights, i. e. the two targets were always in front of the instrment, the more distint being aligned with the one nearer. This method was found to work very badly in practice. A little reflection will show that in passing over even a small hill it was necessary to take very short sights, sometimes as short as fifty feet. It fifty feet an error of three-hundredths of au inch subtends an are of \beth^{\prime}, and this, at a mile, gives an error of three feet. From these causes the tangent of 1872 , which was thirty-three miles in length, was found to have an azimuth error at its extremity of $7^{\prime} 44^{\prime \prime}$. It was therefore entirely rejected, and retraced. After 1872 a different methol was pursued, viz, the methol of hack and fore sights, collimation-errors being cut out by taking the mean of two printings in reversed positions of the axis. With this method the average azimuth error at the terminal points was $28^{\prime \prime} .7$. Into this determination enter the local errors due to deflection of plumb, and actual errors of observation at both ends of the line. If we take the whole line to have been in cror ly $14^{\prime \prime} .3$, the deviation of the tangent, at the end of twenty miles, will average nine and a half feet. This shows at once the superiority of the methon by back and fore sights. The same

TARGETS

USED IN

TRACING TANCENTS
devised by
Lieut F. V. Greene, u.s.encrs

SCALE IINCH $=1$ FOOT

FRONT VIEW
SIDE VIEW
instrument was used for tracing the tangert as for azimuth observations, and the objects sighted on were two targets, one in front and one in rear. Their shape is shown in these drawings. The legs of the tripod were fastened to a triangular brass casting, similar to that used on theodolites, and this casting was firmly attached to the under side of the stand A . This stand was made of oak, $24^{\prime \prime}$ long, $6^{\prime \prime}$ wide, and $1^{\prime \prime}$ thick, and was corered, on the upper side and edges, with a thin piece of brass. The target 13 was of three-eighths of an inch pine, strengthened with light iron braces, and was fastened to a slide, C , of oak, tipped with brass. This slide embraced the stand A, and moved freely along it, thus giving a slight motion to the target; and it could be clamped in any position by the binding-screws D . Through a small hole in the center of the target, passed a cord, from which was suspended a plumb-bob, which could thas be lowered to the stake marking the line.

With favorable conditions of the atmosphere, these targets lave been distinctly seen and aligned at a distance of over six miles.

The rear target was set up over the point where the instrument stood in the azimuth observations. The instrument was set up over the point determined near the mark, and the front target sent ahead with three men provided with a telescope-the length of sight depended on the nature of the ground, but was usually about three miles. The telescope was pointed on the rear target, turned on its axis, and the front target ranged approximately into line. Then the target was set up, and slight lateral motion given by the slide until it was bisected by the cross-hair: A point was then marked by the phumb-bob on a cross-piece fixed to a firm stake. The axis of the telescope was then reversed by turning the instrument in azimuth (owing to the presence of dust, the telescope was never taken from the \mathbf{Y}^{s}). The same operation was repeated and another point determined. As it was found impossible to collimate inside of $3^{\prime \prime}$, the two points were about ten inches apart for a sight of three miles. The point midway between them was taken as the point of the tangent. The instrument and targets were then moved forward one station and the same operations repeated, and so on to the terminus of the line. Much time was saved by using the United States Army code, supplemented by a few special signals. The men
quickly learned the system, and to prevent any liability to mistakes, each one was provided with a printed card containing the alphabet. The flags used were of red cloth, six feet square, and containing a white square in the center. These weve easily rearl, with a field-glass or small telescope, at a distance of six miles in ordinary weather. The weight of the instrument precluded the idea of carrying it by hand, and a light, two-wheeled spring-cart was used for this purpose, and to carry the signal-flags, men's lunches, $\mathbb{d c}$. Occasionally, also, the men at the front target were carried in a two-horse wigon, thus saving a great deal of time. With these favorable circumstances as much as eighteen miles of tangent has been traced in a single day. The most favorable state of the weather for this work was a cloudy day, or failing that, the hour just before and after sumrise, and the three hours before sunset. Between $10 \mathrm{a} . \mathrm{m}$. and 3 p . m., on bright days, the radiation and reflection of heated air from the surface of the gromid caused such a dancing of the images in the telescope as often to necessitate an entire stoppage of the work until later in the afternoon. A slight breeze diminished this disturbance, and a strong wind removed it altogether; but this latter introduced other sources of error by deflecting the telescope. The only large azimuth-error in all the tangents (viz, $1^{\prime} 49^{\prime \prime}$, on tangent No. 8), was due to attempting to work in a high wind-being very much pressed for time. This disturbance does not extend more than thirty or forty feet from the ground, and hence gave lut little trouble in sighting over valleys. In a momntainous comtry it is hardly moticeable. The chaining was carried along at the same time as the tangent, the aligmment being correcfed at every instrument-station, and once or twice between them. The tallies were recorded in a book by one of the chainmen, and a small stake was driven at every second tally and marked with its distance from the initial point of the tangent. The instrument-pickets were also marked with their distince. As I rode along the tangent I examined the tally-pickets to avoid the chance of any error. In 1572 and $1: 7: 3$ I had sereral distances, of oyer ten miles in length, chained twice. The results differed by only six inche: in a mile at the most, and it was, therefore, not consilered necessary to chain twice on level gromed. What little hroken country we met was always chained a serond time. The standard of length

was a box-wood rod, tipped with brass, ten feet long and two inches square in cross-section, made by Negus \& Co., of New York. The chain was compared with this for each tangent. We also had one of Stackpole's fifty-feet tape-lines, with level, thermometer, and spring-balance adjustments. This instrument measures to within 1 in 100,000 , but it was foumd to require too much time for our purposes, and was only used occasionally as a standard of comparison. Its length always agreed with the wooden rod. Our longitudes are all deduced from the record of the chaining.
3. Azimuth-observations at the terminal point.-There were 22 tangentlines in all traced by myself. On twelve of these, independent azimuthobservations were taken at the terminal points, similar in every respect to those described above for the initial points. On five of the remainder the azimuth was tested by a series of angles comnecting the tangent with some line whose azimuth was carefully determined-either a British tangent or astronomical meridian. Two tangents (Pembina and Turtle Mountains) were only a few miles in length. This, then, leaves three tangents whose azimuth was never tested beyond the initial point, viz, Nos. 11 and 12, of 1873, and No. 18, of 1874 . At Nos. 11 and 12 the season was very late (October), and we were in the midst of a series of snow-storms and clondy nights. At No. 18 the azimuth-observations gave such unsatisfactory results that they were rejected. A summary of the errors in the tangent, deduced from these observations, has been given above.
4. Deducing the station-error and computing the offsets for the mounds.The formulx employed to find the geodetic latitudes, longitudes, and azimuths at points on a line perpendicular to first meridian, are:-

$$
\begin{aligned}
& H-H^{\prime}=K^{2} \frac{\tan H\left(1+c^{2} \cos ^{2} H\right)}{2 N^{2} \sin 1^{\prime \prime}}=K^{2} C \\
& P^{\prime}-P=K \frac{1}{N \sin 1^{\prime \prime} \cos H} \quad=K C^{\prime} \\
& Z^{\prime} \quad=90^{\circ}-K \frac{\tan I I}{N \sin 1^{\prime \prime}} \quad=90^{\circ}-K C^{\prime \prime}
\end{aligned}
$$

These formulx are discussed on pp. 2 i6, and from them is derived, pp. 257, the table of offsets and azimuths of the tangent. Entering this
table with the argument K, equal to the length of tangent in English feet, the computed offset to 49° is found. If E_{s} represent the station-error, O_{c} the computed offset, E_{i} the error of the initial point, north or south of 49°, E_{a} the error due to azimuth-deviation, and O_{m} the measured distance from the tangent to the second astronomical determination of 49°, then $E_{s}=O_{c}$ $\pm E_{i} \pm E_{a}-O_{m}$. To compute the offset for any intermediate mound let $O_{c^{\prime}}$ represent the computed offset for the given distance, $E_{r^{\prime}}$ the proportional part of the station-error, $E_{a^{\prime}}$ the proportional part of the azimuth-error, and $O_{m^{\prime}}$ the required offset, then $O_{m^{\prime}}=O_{c^{\prime}} \pm E_{r^{\prime}} \pm E_{i} \pm E_{a^{\prime}}$.
5. Construction of the mounds marking the boundary.-While tracing the tangent at each station where it was thonght a mound should be built, the true meridian was turned off, by the aid of the table of azimutls of the tangent, and a picket driven to mark its direction. After finishing the tangent the offsets were computed by the formule given above, and a list containing the position of each mound and its offisct was sent to the chief of the moundbuilders' party, who built the mounds, and kept a complete record of all distances measured, and all the facts relating to his work. Along the Red River Valley, and up to the astronomical station at Long River, mounds were built at intervals of one mile; these were subsequently replaced by the iron pillars planted by Captain Gregory in 1875. Beyond Long River they were built at an average distance of three miles, and placed on the crests of the rolling prairie, the conditions being that each mound should be plainly visible with the naked eye from the two adjacent ones. Wherever a sufficient amount of stone could be form within a matins of five miles the momeds were built of the small prairie bowhers, weighing from ten to eighty pounds cach, and in the form of a cone twelve feet in diameter at the base, and six feet high. Where stone was not available they were built of earth and well rammerl, and in the same shape and size as the others. If there was any timber avaiblyle a large post was sunk two feet in the ground in the center of the momul, and marked on the sonthem face "XLAX PAli." In all cases a picket was driven one foot under ground, with a cross cut on its head marking the exact position of the parallel.
ln the Great Rosean Swamp there was no earth to be fomed within several miles, and, if there had been, it would not have withstood the action
of the water. The mounds here consisted of a pine post, about eighteen feet long, squared to ten inches, and pointed on its lower end. This was sunk, by its own weight, to various distances, from two to ten feet. Around it, from two hundred to two hundred and fifty tamarack poles, four inches in diameter, were driven into the mud, as far as possible, with heavy malls. Their tops were then cut off to give the shape of a rude cylinder with conical top. The center post was marked on its southern face "XLIX PAR."

The computation of the offset and the nature of each mound will be found in the details of tangent-lines.

LONGITUDES AND STATION-ERRORS.

As previously remarked, the longitudes adopted are those derived from the chaining along United States and British Tangent Lines. The origin of longitudes is the joint astronomical station near Pembina. This was observed, in the winter of 1872-73, by the British Commission, in telegraphic communication with Mr. T. II. Safford, at the Observatory in Chicago. The result as commmicated by Capt. S. Anderson, Royal Engineers, is $97^{\circ} 13^{\prime} 51^{\prime \prime} .5$; which was adopted as the basis of all our longitudes. In order to convert the chained distances into arc, I made an examination of the various authorities on the elements of the earth's figure, with the following results:-
$L=$ Length of 1° of longitude on equator.
$L^{\prime}=$ Length of 1° of longitude at Φ.
$a=$ Equatorial radius of the earth. $\quad L^{\prime}=L \frac{\cos \varphi}{\left(1-e^{2} \sin ^{2} \Phi\right)^{\frac{4}{4}} .}$
$b=$ Polar radius of the earth.
$e=$ Eccentricity $=\left(\frac{a^{2}-b^{2}}{a^{2}}\right)^{\frac{1}{2}} \quad e^{2}=2 E$
$E=$ Ellipticity $=\frac{a-b}{a}$
Kater's value of the meter, $39^{\text {in }} .370790$.
Clarke's value of the meter, $39^{\text {in }} .370432$.

	a	b	E	L	$L^{\prime},\left(\Phi=49^{\circ}\right)$.
Bessel's spheroid, Kater's value of meter,	$\{20923644$	20853703	$\frac{1}{299.66}$	365186	240040

$\left.\begin{array}{l}\text { Bessel's spheroid, } \\ \text { Clarke's ralue of meter, }\end{array}\right\} 2092340420853464 \frac{1}{299.66} 365182 \quad 240038$
$\left.\begin{array}{c}\text { Orduance survey, } 1858, \\ \text { Sir Ilenry James, }\end{array}\right\} 2092633020855240 \frac{1}{294.36} 365233240079$
*Ordnancesurrey, 1866,
$\left.\begin{array}{c}\text { Capt. A. R. Clarke, } \\ \text { Spheroid of revolution, }\end{array}\right\} 2092606220855121 \frac{1}{294.98} 365229240076$
"Figure of the earth","
$\left.\begin{array}{l}\text { 1871, Johm H. Pratt, }\end{array}\right\} 2002618420855304 \frac{1}{295.2} 365231240077$
The above results are in English feet, and Clarke's value of the meter is used in deducing all except the first. Clarke's results are obtained by applying Bessel's method to the results of the measurement of the following ares of meridiam, viz, the Anglo-French, $22^{\circ} 10^{\prime}$; the Indian, $21^{\circ} 21^{\prime}$; the Russian, $25^{\circ} 20^{\prime}$; the Cape, $4^{\circ} 37^{\prime}$; and the Perrvian, $33^{\circ} 7^{\prime}$. In Pratt's discrission the last two are rejected, on account of their small length. Bessel's elements have generally been adopted up to the present time, in this country; but Clarke's results were thought to have the most weight, and were adopted for our purposes, with the conemrence of Capt. S. Anderson, Royal Engineers.

The accuracy of the claining is a matter about which nothing certain can be stated. From the trials given above, it was believed to be within a foot per mile, on level ground and twenty-five per mile over a broken comutry. In order to test its acemacy, I ran, by your direction, a meridian-line, over level country, from a point near the Sweetgrass Hills to the neighborhood of Fort Shaw, in September, 1874. It was intended to observe the longitude of Fort Shaw by telegraphic communication with Lieutenant Wheeler's Observatory at Ogden, Utah, whose

[^7]The elements given above are fonnd on 1 . 285 , and pertan to the "Spheroid of Revolution best representing the geodetit measurements."
longitude has been determined, telegraphically, with great care. This scheme fell to the ground, in consequence of the fact that the telegraph line between Helena and Fort Shaw was down, for several miles, in 1875; and to have prolonged the meridian, over the mountains, to the telegraph at Helena, would have involved great expense, and given very doubtful results. The opportunity for determining this valuable and interesting check on our chaining was therefore lost, but it may be accomplished by other parties, at some future day. It was impossible to get azimnth-observations at Fort Shaw in 1874, owing to clondy nights; but the terminal points of the meridian were securely marked, and in 1875 its azimuth was carefully determined, and a connection was made with Fort Shaw, and with the principal meridian of the United States Land Surveys. The observations on this meridian are given herewith.

Fort Shaw Meridian.
Azimuth-observations at initial point.
 O.S. Wilson, C.E]

Mark was moved $12^{\prime} .1$ west, to establish direction of tangent point.
Azimuth-observations at terminal point.

352 UNITED STATES NORTHERN BOUNDARY COMMISSION.

This error was larger than was anticipated, but the notes showing no reason for assigning it to any one place, it was distributed over the whole length, 102.5 miles, of the line, by assigning 1 ' to each fifteen miles. The successive increments in deviation were then computed; giving a total of five humdred and ninety-eight feet at the terminal point, equal to $8^{\prime \prime} .8$ of longitude.

Triangulation at Fort Shau.

Far Staft
Fort Shaw.

	Angle.		Length in feet.	Azimuth.	Lat.	Dep.		Coordinates from $\triangle 47$, in feet.	
	c , "			1 "					
47-S-46	381780.4								
$S-17-46$	9717518	$s-17$	13400	823587.9	1730.5	13308	$\triangle 46$	N. 9302. 7	W. 15.0
$S-46-47$	502443.4	$s-46$	17:23	501802.5	11083	13990			
$40-47-B$	790281.0	47-46	9302.7	3.950319 .1	9302.7	12.1	S	S. 1730.5	W. 1330s.0
$46-B-47$	5.512754 .5	$47-13$	c0.3.6	7 5 55 50	1546.3	7903.			
47-40-1;	45838	46-7)	$110=6.8$	1342344.6	7756.4	2931.7	B	N. 1546.3	E. 7903.8
	$1!15910.4$	46-C	20933. 8	921504.6	3 505.3	26604	C	N. 5437.4	E. 26636.0
46-B-1.	1235080	I-C	19132	751554.2	3591.1	18733.2			
$C-40-B$	360840.0	C-I'	05.50	2.931554 .6	1856.9	1747.8	r	N. 3580.5	E. 24E8x. 2

In order to obtain the longitude of the Principal Meridian, I consulted the plats of the land-office in Helena, and found that, in latitude $45^{\circ} 41^{\prime}$, it was thirty and one-fourth miles west of Lieutenant Wheeler's Observatory in Bozeman, Mont., whose longitude, established by telegraph, is $111^{\circ} 03^{\prime}$ $: 81^{\prime \prime} .9$. By this means, we are enabled to compare our own longitude with those of the Land-Survers, as follows:-
Longitude of Bozeman, Mont., $111^{\circ} 03^{\prime} 31^{\prime \prime} .9$
Thirty and one-fourtl miles of longitude in latitude $45^{\circ} 41^{\prime}$, $37^{\prime}-29^{\prime \prime} .8$

Longitude of Principal Meridian, $111^{\circ} 41^{\prime} 01^{\prime \prime} .7$

Westing from Principal Meridian to Fort Shaw Meridian, 24,888 feet in latitude $47^{\circ} 31^{\prime}$,	$6^{\prime} 02^{\prime \prime} .5$
Longitude of $\triangle 47$, Fort Shaw Meridian, as determined by	
land-surveys,	$111^{\circ} 47^{\prime} 04^{\prime \prime} .2$
Westing to Initial Point, Fort Shaw Meridian, $660^{\mathrm{m}} 18^{\text {ch }} .30$	
Longitude Initial Point, Fort Shaw Meridian,	$11^{\circ} 45^{\prime} 04^{\prime \prime} .9$
Deviation in Azimuth to east,	$8^{\prime \prime} .8$

Longitude of $\triangle 47$, Fort Shaw Meridian, as determined by Boundary Survey, $111^{\circ} 44^{\prime} 56^{\prime \prime} .1$

I also made a chronometer expedition from Fort Shaw to
Bozeman, from which the longitude of $\triangle 47$ was . $111^{\circ} 45^{\prime} 57^{\prime \prime} .6$
It will be seen that the chronometric determination is nearly the mean of the other two, but to this no particular importance is attributed. The difference between the land-survey longitude and our own is $2^{\prime} 08^{\prime \prime}$, equal to 8,795 feet, or 1.67 miles; but the method in which the Principal Meridian was run makes the Land-Office determination of no greater value than our own. The Principal Meridian was one hundred and twenty-six miles in length from the latitude of Bozeman to that of Fort Shaw. Of this length forty-eight miles was traced over the broken country west of the Gallatim River. Here an offset was made of eighteen miles to the west in order to avoid the almost impassable mountains east of the Missouri River. From the end of this offset a meridian was traced north, over the spurs of the Rocky Mountains to Sum River Valley, where an offset was measured eastward again, and a stone post planted to indicate the intersection of the Principal Meridian and Fifth Standard Parallel. The lines were traced by a solar compass. Our own surveys embraced lines agrgregating a length of seven hundred and sixty-three miles from Pembina to Fort Shaw, against N B- 23

354 UNITED STATES NORTHERN BOUNDARY COMMISSION.

one hundred and ninety-two miles of the land-surveys from Bozeman to Fort Shaw; but their methods were not considered sufficiently accurate to warrant a change in our determination. At the monument on the summit of the Rocky Mountains we connected with the surveys of the Northwest Boundary Commission. The longitude of this monument, as determined in 1861 by the method of lunar culminations, is $114^{\circ} 03^{\prime} 28^{\prime \prime} .4$. Our own determination of the same point, by chaining, is $114^{\circ} 02^{\prime} 56^{\prime \prime} .5$. The difference, $31^{\prime \prime} .9$, is equal to 2,124 feet.

It is difficult to say how much importance should be attributed to this result; but, at all events, the results of the land-survey near Fort Shaw were not sufficiently reliable to warrant any change in our chaining, which was adopted for the determination of longitudes.

The following table contains the longitudes of the astronomical stations, and their station-errors, with reference to the Lake of the Woods Station:

Longitudes and Station-errors of Astronomical Stations.

No.	By whom ohserved.	Name of astronomical station.	Longitude.		
			- ' 1	M. Ch.	Fect.
1	British and Uuited States	Lake of the Woods (joint station)	95.1655 .3		
2	British	Pine River..	955901.0	3188.05	$3 \times 8.0 \mathrm{~N}$.
3	--.do	West Roseau	964651.9	6312.83	470.9 N.
4	British and United States	Red River (joint statiou)........	971351.5	8843.36	556.1 N.
5 du	Miclel (joint station)..............	9740	10359.62	$58 \times .4 \mathrm{~N}$.
6	-...do	Pembiua Monntain (joint station)	980033.0	12400.02	533.3 N.
7	Uuited States	Pembina River	951606.3	135 63.07	459.5 N.
8 do	Long River	985152.0	16513.05	376.7 N .
9	British	Sleepy Hollow	991908.0	18339.11	213.4 N .
10do	Turtle Monntain east	994604.3	20377.99	54.9 N .
11	Uuited State	Turtle Monntain west	1003113.8	23215.10	154.9 N.
12	British	1st Mense River	1005789.8	25807.14	240. N .
13	United States.	South Autler Creek	101 23 0\%9	28119.73	20:3.3 N .
14	British	2 d Mouse River	1015756.0	30331.50	40.0 N.
15	Uuited States	Uuited States, No.	1092645.8	$32532.41 i$	7.8 N.
16	British	Short Creek	1025000.9	343 9. 92	183.4 N.
17	United States	3d Mouse River	1031111.3	3.9233 .54	203.2 N .
18	British	Grand Coteau	1033453.7	37789.77	138.8 N
19	United St	Mid Coteau	1040534.0	400 49. ${ }^{2} 5$	414.1 N .
20	British	Big Muddy River	1043953.6	42650.85	40.4 N.
21	Ubited	Bully Spring.	1051921.4	451	151.8 N.
22	Britist	Poplar River	10541 39.2	473 31.54	:33. 5 N
23	Uuited State	West Poplar River.	1061934.4	49669.016	150.7 N.
24	British	Little Rocky Creek	1064631.5	52947.43	390.7 N.
25	United State	Freachmau's Creek	107 23 48.2	5.5067 .40	436.9 N
$\stackrel{26}{ }$	British	Cottourwod Coul6	1074545.9	56732.81	593.6 N .
27	United States.	Pool on Prairie	10813 19.2	583119.31	510.9 N .
28	British .	Near Goose Lak	1084359.5	655 32.02	397.1 N .
29	United State	East Fork	$109 \otimes 107.7$	64203.15	836.0 N.
30	British	West Fork	1094138.2	653 23.57	669.3 N.
31	United States.	Milk River Lake	1101019.5	$1{ }^{13} 702.81$	416.0 N.
32	British.	Milk River	1104346.0	70230.93	166.6 N
33	United States	Last Butte	11111102.5	72303.83	304.3 S
34	British	West Butt	1113302.6	73957.70	571.2 S .
35	United State	Red Creek	1120019.5	76031.60	166.5 N.
36	British	South Brancl Milk River	110830.3	780102.79	181.5 N.
37	Uuited State	North Branels Milk River	1105885.8	80433.61	$115.5 \mathrm{~N} .$
38	British do	Rocky Mountains	113 113 463035.3 40.0	8.5 -361.32 -3.35.	$\begin{aligned} & 1+3.5 \mathrm{~S} . \\ & 38.3 .5 \mathrm{~S} . \end{aligned}$
39 40do \qquad United Stat	Lelly River..........	113 113 113 183989 19.6	-36 836.85. 846.40	383.5 $10.6 ~ S$.
41	British and United States (1861).	Summit of the Rocky Mountains	1140256.5	-53 25. 29	133.4 N.

CHAPTER II.

TOPOGRAPHY.

The sources from which our topographical information was obtained were as follows:

1. The tangent-lines.
2. Meander-lines, with the theodolite and stadia-rods.
3. Minor compass-surveys.
4. Triangulation and intersection in the Rocky Mountains.
5. Reconnaissances.

Tangent-lines.-The topographical information obtained by these was altogether secondary to the main object of making a geodetic connection of the astronomical stations. It consisted of noting the crossings of streams and valleys intersecting distant hills, and sketching the immediate vicinity. The stakes of these lines, however, were the basis of the stadia-lines both for distance and azimutl.

Stadia-lines.-The theodolites employed in this method of survey were made by Wuirdemamn, and were similar in construction to the large eight-
 inch transits used for azimuth work. The horizontal limb was six inches in diameter, divided to 10^{\prime}, and reading, by two verniers, to $10^{\prime \prime}$; vertical limb, four inches in diameter, divided to 20^{\prime}, and reading, by vernier, to 1^{\prime}; telescope of $10^{\prime \prime}$ focal lengtl, magnifying 17 times, and having in the reticle three horizontal and one vertical line, which were fixed. The rods were made of pine, $:^{\prime \prime} \times 0^{\prime \prime} .5$, in cross section, were about twelve feet long, and folded on a hinge at the middle. The inner side was painted white, and marked with figures,
as shown in this sketch. Each rod was adjusted for a particular theodolite, as follows: A distance of 1,000 feet was measured on the ground with great care, and the rod placed at one end, the theodolite at the other. The space covered by the constant visnal angle was noted on the rod, and this space (representing 1,000 feet) was subdivided into equal parts, the smallest of which represented five feet, from which one foot could be read by estimation.

Habitnally two, but sometimes three, rods were used with each theodolite, and all measurements were made twice-i.c., the distance and elevation of a course were recorded once as a foresight and once as a backsight.

The azimuth was taken from the tangent, and was kept throughout the line-i. e, each recorded angle was the angle between the course and the true meridian.

An arerage day's work for a single party was a line of five miles in length, but as much as twelve miles of line have been run by one party in a day.

The notes of the stadia-surveys were reduced in the office-first, each reading for distance (being the hypothenuse of a vertical right-angled triangle) was reduced to horizontal distance and difference of level, then each bearing was corrected by its proportional part of the total error in azimuth: the horizontal distance was then resolved into rectangular co-ordinates, with reference to the first meridian; these co-ordinates were algebraically summed, and compared with the co-ordinates of the terminal point as given by the tangent; the error of the last point, in latitude and longitude, was then distributed in the co-ordinates of each course in proportion to its length; the adjusted co-ordinates were then plotted on the map. For reducing the readings to horizontal and vertical distances, the formule nsed were those deduced by Prof. S. W. Robinson, C. E., formerly of the Lake Survey. They were originally published in the Journal of the Franklin Institute for February, 1865.

$$
\begin{aligned}
& d=-\frac{R^{\prime}}{h}(B-c-f) \cos ^{2} T+(r+f) \cos V \\
& h=\frac{R_{i}^{\prime}}{2 l i}(B-r-f) \sin 2 V+(c+f) \sin V
\end{aligned}
$$

in which-
$V=$ angle of elevation or depression.
$B=$ length of a measured base.
$R=$ reading of stadia on that base.
$f=$ principal focal distance of object-glass of telescope.
$c=$ distance from axis of telescope to object-glass.
$R^{\prime}=$ any reading for which the horizontal distance and difference of level are required.
$d=$ horizontal distance corresponding to R^{\prime}.
$h=$ difference of level corresponding to R^{\prime}.
With these formulæ, tables have been constructed by Alfied Noble and William T. Casgrain, assistants in the United States engineer's office at Milwaukee. They assumed B and P each equal to 1,000 feet, and $(c+f)$ equal to 1.4 feet. These assumptions correspond to our own instruments and rods. The tables are of the same form as traverse tables, the argrments being the stadia-reading and angle of elevation or depression.

The total number of stadia-traverse lines is one hundred and thirty, aggregating a length of ene thousand two hundred and eighty-seven miles. The notes were all reduced in the manner above described. Of these, sixtynine lines (seven hundred and thirty-eight miles) were closed on known points, and their results are brought together in the following table in order to show the degree of accuracy of this kind of surveying:

Staria-lines.

Stadia－lines－Continued．

＊Along Lake of the Woods；closed on sextant－station．

M1：ANS．

	$\frac{j}{5}$	$\begin{aligned} & 3 \\ & x \\ & x \end{aligned}$		Total errors．			1roportional errors．		
				A\％．	Lat．	Dep．	Az．	Latt．	Dep．
				＇ 1	Fect．	Fret．	＂	Iert．	Fut．
Tue 69 lines	10.69	45	1361	1214.6	16\％． 5	146.4	27.3	3.40	3.31
Seasou of 1873	0.83	50	115 I	200501	171.7	1E2．		4.03	4．73
Season of $1573-74$	13．74	54	131：	1046.3	21mi， 3	96.7		2． 3.	$\because 246$
Season of 1874	10．： 0	$\because 4$	11：00	（ 296	153．${ }^{\text {a }}$	1：34．6	．．．	$\therefore 14$	$\because 2.4$
Assistant O．S．W．	78	2.1	16 ± 0	70.5	105． 5	19.5	\ldots	$\because 71$	1． 41
Assistant V．＇T．MeG	！ $1.6 i j$	30	1710	$5^{5} 40.1$	1：20	151.7		$\because .96$	$\because 8$
Assistant C．L．U	1：1． 137	\％	1：310	1285	$17 \approx .1$	1：31．		$\because 9$	$\pm 4!$
Assistant A．${ }^{\text {（）}}$	4． 50	90	1以って，	1：19．：	70.1	59． 3		$\because .51$	3． 59
Assistant l＇．v．${ }^{\prime}$	15． 67%	-4	11：9	16 （1）	5：\％．5	：33－4		4． 8	4.90
Assistant L．C ．	7．1i\％	44	1120	$2: 21.7$	110． 3	801．0		7.52	7.50
According to lenirth：									
From $9.18^{\text {m }}$ to $5.71^{\text {m }}$	3． 49	14	13.36	98.1	－i． 11	－ 6.6			1．79
From 6，59m to 12．98m	\cdots	3.5	1383	10140.3	124.6	1：4i． 6	11.4 110.10	8.5	$\therefore .80$ 3
1＇rom 13． 14^{m} to $46.34^{\prime \prime \prime}$	1\％．14	E4	133\％）	1446.0	370.3	2？S．${ }^{\text {a }}$	110.1	2.51	こ． 3

The, mean of sixty-nine lines shows that the average error of our topographical surveys, by this method, was about one foot in three hundred. The means for the various seasons slow a constant increase in the accuracy. The mean error of 1873 is larger than the others, and arises from the want of experience on the part of one or two assistants. Most of the work of that summer was done under fair circumstances, including several days of high wiuds which eannot be avoided on the plains. The work during the winter of $1873-14$ was done under very unfavorable circumstances. The thermometer was near zero every day, and most of the lines were run orer swamps and ice, where it was almost impossible to keep the instrument in level. The two lines, Nos. 10 and 11, were run on the ice of the Roseau River, and up through the swamp, to the forty-ninth parallel. One, over seventeen miles in length, closed within about three hundred feet ($\frac{1}{\text { (ino }}$), and the other, nearly twenty-six miles long, elosed within about five hundred feet $\left(\frac{1}{300}\right)$.

Line No. 14 was run on the ice of the Lake of the Woods, and meandered the shore from the forty-ninth parallel to Rainy River. It was closed on a sextant latitude station, and a carefully observed azimuth. Although more than forty-six miles in length, its error in azinuth was only $14^{\prime} 20^{\prime \prime}$, or $7^{\prime \prime} .7$ for each course, and in latitude only one hundred and thirteen feet, or $\frac{1}{\text { 2ooge }}$. These lines were run by Mr. C. L. Doolittle, and reflect great credit on his carefulness and precision.

The work in 1874 was all done by experienced assistants, and under the ordinary circumstances to be met on the plains, that is, a high wind and "boiling" of the air on three days out of five. The error is seen to be about $\frac{1}{\text { wion }}$. This I take to be the greatest accuracy that can be expected for a whole season's work, when the party is so pressed for time that it eannot lie over on windy days. Several individual lines are much more accurate. The smallest error is in Line No. 45 by Mr. Doolittle, length about ten miles and error $\frac{1}{2 \text { sound }}$. This of course is accidental; but there are eleren lines whose error is less than $\frac{1}{1 \text { iswe }}$. The last three means are obtained by dividing the lines into three equal sets, according to length. For the first set, with a mean length of about three miles, the error was $\frac{1}{2 m}$; for the second, with a length of about nine miles, $\frac{1}{3.0}$; and for the third, with a length of about
eighteen miles, $\frac{1}{400}$; that is, the longer lines were the more accurate, in proportion to their length. This probably shows a considerable error on one or two courses of the short lines, which, divided by a small distance, gives a large proportional error. The same error distributed over a long line would, of course, be much smaller proportionally. It is also probable that the accidental errors tend more nearly to counterbalance each other in long lines.

As the proportional errors are smaller for the long lines than the short, it would seem probable that there are no cumulative errors, such as lost motion in tangent-screws, \&c.

An error once made, however, is carried through to the end of the line, and as it is impossible to discover where the error is, the only feasible method of adjustment is that which we have adopted; namely, to distribute the azimuth-error, proportionally, in each course, and the position-errors in each course proportionally to its length.

As the result of our own experience, then, the average accuracy of surveys with the stadia is $\frac{1}{3 \overline{010}}$, under good circumstances we may expect $\frac{1}{450}$, and on selected days, with great care, $\frac{1}{1500}$ can be obtained.

This shows that this method is available for surveys for maps of a scale of $\frac{1}{10000}$, or about six inches to the mile.

The plane-table is, of course, superior for minute topography in certain localities, in populated countries, \&c.; but for meandering streams on the plains, I think the stadia-method is the best. If there are ravines to be crossed, its measurements are more accurate than those made with the chain; and it has advantages at all times in its great celerity in giving heights, as well as distances, and in the fact that all the measurements are under the control of the engineer. The plane-table would be useless on the plains, on account of high winds, dust, and sudden storms.

General Comstock, in charge of the Lake Survey, states that he considers $\frac{1}{1000}$ on ordinary ground to be the precision of good chaining and $\frac{1}{260}$ that of good stadia-work. On rongh and broken ground, the stadia was equal to the chain in precision, and on bad ground was superior. He adds, "In topographical work our main lines are chained, or derived from chained bases which have an accuracy of $\frac{1}{20100}$ to $\frac{1}{2,000}$; the side lines diverging from
these, and checked by retmening to them, are all stadia-lines, whose average aceuracy (probable error) I estimate at $\frac{1}{300}$ to $\frac{1}{400}$ for distances of 1,000 feet."

Prof. S. W. Robinson states that the error of stadia-measurement has been found to be about $\frac{1}{800}$ to $\frac{1}{1000}$, and that lines "have been run from one to six miles, and over heights of one hundred and fifty to two hundred feet, in which the final error in height ranged from 0 to 1.5 feet, with no more than ordinary eare." We have no precise data for determining the errors in height. Some of the lines were closed on points whose approximate height was determined by the barometer, or by trigonometrie leveling. The errors ranged from four to one hmodred feet; the greater part of this was probably in the barometric result. The superiority of this method of survey over that with the chain, in very rough eountry, is clearly shown by lines 36, 37, and 38. All of these lines were along the tangent. Nos. 36 and 37 were in the Cotean-a series of irregular hills in close proximityand both of them gave measurements less than the chain, by nearly the same amount, about $\frac{1}{1 n}$. No. 38 was also along the same tangent, but on level ground. It differed from the chained measurement by only one foot in nearly four miles; the intermediate errors-never larger than a few feethaving balanced.

Minor compass-surceys.- In eonnection with these stadia-lines, surveys of small extent along minor features, snch as branch-ravines, \&e., were made with a six-inch eompass, the distances being estimated from pacing.

The variation of the compass was obtained from the true azimnth of the stadia-line, and these compass-smrveys started and elosed on points of the stadia-line. They were of small extent, seldom a mile in length, althongh aggregating about two hundred miles. Their average accuracy is about $\frac{1}{i s}$. They were adjusted in the same manner as the stadia-lines.

The Rockiy Momiains.-The portion of the Rocky Momntains crossed by the 49 th parallel, between the summit and the eastern slope, is about twenty-six miles. In this inaccessible region the method of stadia-survers was not feasible, and we had not the time for a comprehensive triangilation. Hence this protion of our map is not as accurate in detail as the others. We have, however, considerable data for constructing it. These data consist of a stadia-line, by Mr. Doolittle, along the eastern slope, and

extending into the valley of Belly River to comnect with the British Astronomical Station; of a careful triangulation of Chief Mountain Lake, under Captain Gregory's direction, including intersections on neighboring peaks; of a stadia-line by Mr. Wilson, from Chief Momntain Lake, through the South Kootenay Pass, over the water-shed and connecting with a traverse made in 1861, to the Akamina Station; and, lastly, of a triangulation, by myself, of certain peaks in the neighborhood of the summit-monument, from which intersections were taken on all the principal peaks within the five-mile belt. I also obtained cross-intersections on these points from a peak at the head of Chief Mountain Lake, located accurately by Captain Gregory's triangulation.

The principal peaks were approximately located in position and altitude by these means, and the topography was supplemented by numerons profile sketches. To accomplish the triangulation near the summit I followed the old and very blind trail along Akamina Creek to the base of the water-shed, where I identified the astronomical station of $1860-61$ by the observing-logs, old boxes, \&c. Here I observed for azimuth, and measured a base-line. The length of this was one thonsand seven hundred and forty-nine feet, being the mean of four measurements with the Stackpole tape, differing from each other by less than one inch, or $\frac{1}{21000}$. From this base the triangles were expanded to the peaks near the summit-monument, and from them intersections were taken. I had intended to extend the triangles to a point abont two miles south of the monument, where, from an altitude of nearly nine thousand feet above the sea, and five thousand feet above Chief Mountain Lake, the whole country can be seen, but I found it impossible to transport the heavy eight-inch theodolite beyond the monument. This monument is finely placed, upon the very watershed of the Rocky Mountains, at an altitude of six thonsand seven hundred feet above the sea. It is in the center of a flat saddle, about five hundred by one hundred and fifty feet, and is overlooked, on the north and south, by sandstone knobs, from eight hundred to a thousand feet higher than itself. On the east is a sheer precipice of nearly two thousand feet, terminating in a lake which discharges, through the Saskatchewan River, into Hudson's Bay. On the west the slope is steep, but still accessible with
care, and terminates in a lake discharging throngh the Colnmbia River into the Pacific. The momment is a rude pyramid of undressed-sandstone blocks, about ten feet at the base, and eight feet high. It is in as perfect order as when built in 1861. Within a few rods of the cairn the divide is reduced to a mere knife-edge of ragged rock, which must be passed, if at all, \grave{a} cheval. It was at this point that I found it impossible to transport the transit any further. In company with one of the men, named Macey, I passed over this, and, taking an aneroid barometer with me, followed the crest of the divide to a prominent sandstone peak, about two miles south of the line. The climbing was difficult, for the sedimentary sandstone was weathered in vertical cracks. Some of these, not more than eight or ten feet across and one himdred feet or more deep, we easily jumped; but at the larger ones we had to let ourselves down, from ledge to ledge, for two hundred feet on one side, and ascend, similarly, on the other-a tiresome operation, after the novelty of the first two or three trials had worn off.

The view from the peak was, however, very fine. On the east we could see over the tops of the range beyond Chief Mountain Lake on to the brown plains extending indefinitely eastward. To the west we recognized the broad valley of the Flathead River, and beyond that another mass of mountains. In our immediate vicinity was a most tumultnous mass of mountains. From the main divide the ridges curved off in circles, on either side, forming vast amphitheaters. The effect was heightened by the immense masses of snow-some of them more than a mile in extent-covering the northern slopes of these ridges, and frequently terminating in lakes whose intense blue revealed great deptlis.

The barometer gave the altitude of this peak eight thousand six hundred feet. This ought to be about the timber-line for this latitude and distance from the sea, but this line is not at all distinctly marked. The heavy pine timber of the valleys did not seem to extend much beyond the altitude of seven thousand feet, and terminated gradually. Beyond this were irregular bunches of dwarfed epruce; but the greater part of the curved ridges was destitute of any timber, and this, together with the reddish-brown color of the bare rock, and the curions shapes it has assmmed under the effects of

the weather, combined to give an exceedingly wild and rugged appearance to the whole landscape.

Reconnaissances.-Trails passed over, outside the belt of accurate survey, were approximately surveyed. The basis of the survey was the astronomical position of the various camps, where observations were taken, on north and south stars for latitude, and east and west stars for time. The trail generally began and ended at points accurately known, and thus we had the means of determining the traveling rate of the chronometers. Between the camps the courses were kept by a six-inch vernier compass, mounted on a jackstaff. Two light spring-carts were employed, one carrying a man to set up flags on prominent points, and the other the assistant with the compass, who sighted on the flags and sketched the topography. The distance was derived from odometer measurements. The courses and distances were plotted, and then adjusted to agree with the astronomical work. The trails thus reconnoitered were, in 1873, from the Mouse River to Fort Totten; in 1874, from the Missouri to the Boundary along the two branches of Poplar River, the Meridian trail to Fort Shaw, the Riplinger road from the Boundary to Fort Shaw, and the stage road from Fort Shav to Fort Benton. In addition to this, a recomnaissance of the course of the Missouri River was made while descending that stream in boats, in September, 1874. The astronomical camps, as before, were considered as fixed points; the courses between them were kept by compassreadings, and the distance was obtained from a record of the time combined with estimates of the velocity of the current, based upon some rough measurements by floats. To adjust the compass-work to conform to the astronomical positions, the co-ordinates were first computed and summed algebraically between camps.

Let us suppose that the result is $a b$ and $b c$, and that the astronomical co-ordinates are $a B$ and $B C$; each course is then corrected in azimuth by
the angle c a C, and multiplied by a "factor of distance" representing the ratio of $a c$ to $a C$; the co-ordinates are then recomputed, and their sum is found equal to a B and $B C$.

The "factor of distance" varied from 0.85) at Fort Benton to 0.57 near Bismarck, showing that the relocity of the current was always overestimated, and more at the lower part of the strem than the upper; the mean was 0.66 . Our estimated distance, from Fort Benton to Bismarck, was one thousand two hundred and eighteen miles, agreeing closely with that of the steamboat men; but the adjusted survey reduces this to 805.4 miles.

It is believed that this reconnaissance is more accurate than any other of its predecessors, particularly in the matter of longitudes I got good observations at fifteen of the serenteen intermediate camps, and had six chronometers to get the longitudes. The longitude of Fort Benton was fixed by an accurate recomaissance from the Boundary-line. That of Bismarek had been determined by telegraph From observations at these points I deduced the traveling-rates. The most important change from previous maps is in the longitule of the mouth of the Muscle Shell River, near which we camped. We move the month to longitude $107^{\circ} 53^{\prime} 18^{\prime \prime}$ from $105^{\circ} 08^{\prime} 52^{\prime \prime}$, as given on the engineer map of the Department of Dakota.

The information ganed from these rarions recommissances, and those made by other parties of the survey, has been combined to make the recomaissance maps. The land-office plats of the Canadian Dominion and the United States have been utilized to fill up the blanks near Red River and the headwaters of Sun River. Your recomaissances in 1869, in Dakota, have also been used. The rest of the map is our own.

In the appendix is a smmuary of the astronomical work.
Construction of maps.-lin the field, the topographical note-books were forwarded to me by the assistants in charge of small parties. The lines were then platted on a scale of $\frac{1}{3 \text { suve }}$, ipen protractor sheets, and the topography filled m. It was not always possible to keep these field-plats up to the work in the fichl, but they were completed at once on returning to the office. After the starlit-motes had been reduced and adjusted, they were plotted by co-ordinates uron forty-five sheets of super-royal paper,
on a scale of 1 mile $=1$ inch, or $\frac{1}{1 / 3360}$. The topography was filled in by reducing from the field-plats. This formed the preliminary series of maps, and represented a belt of country five miles in width, on the United States side of the line, and extending from Rainy River to the summit of the Rocky Mountains. Photolithographic copies of these were made as soon as they were finished, and these copies were furnished to the British Commission. They, in turn, furnished us with tracings of a similar set of maps, showing their surveys on the northern side of the Boundary. From these two sets of preliminary maps the final joint series las been constructed, on a scale of $1 \mathrm{inch}_{1}=2$ miles, or $\frac{1}{1=n i z a}$, the reduction being made by squares. There are twenty-fom sheets in this series. In both series the projection used was the polyconic. The forty-nintli parallel at Lake of the Woods being taken as the central parallel, each sheet was projected with reference to its own central meridian, and the parallel slown on the map was the parallel actually marked, including station-errors.

The reconnaissance notes were reduced and adjusted in a similar manner, and then plotted on protractor slieets, on a scale of 1 inch $=4$ miles, or $\frac{1}{233+40}$. From these, a reduction was made by squares, to a scale of 1 inch $=$ 8 miles, or $\frac{1}{506850}$. The projection was polyconic; the central parallel being $48^{\circ} 15^{\prime}$, and each shect being projected with reference to its own central meridian; the borders being rectingular, the sheets join on the parallel of $47^{\circ} 30^{\prime}$, and overlap on the parallel of 49°.

Each sheet is 20.54 by 15 inches. Six of these sheets show the general ontlines of the topography from the Rocky Mountains to the Lake of the Woods, and between the parallels of $47^{\circ} 30^{\prime}$ and $4 y^{\circ} 10^{\prime}$. The seventh sheet is a profile along the boundary. The data for this are the barometric heights at the United States astronomical stations, the trigonometric altitudes on the United States tangents, and accurate leveling for forty-five miles west of the Lake of the Woods. The horizontal scale of this sheet is 1 inch $=8$ miles, to agree with the others, and the vertical scale 1 inch $=$ 2,000 feet.

CHAPTER III.

OPERATIONS DURING THE WINTER OF $1873-74$.

The experience gained in carrying on a survey in the depths of winter, in a locality where the temperature reached a point 50° below zero, was of such a novel character that I think a somewhat detailed account of it will not be out of place.

As previously stated, on the conclusion of the snmmer's work at Fort Totten, you directed me, October 24, 1873, to proceed to Fort Pembina with my parties, and complete the geodetic and topographical work between the Red River and the Lake of the Woods; and to adopt, withont examination, the intermediate astronomical stations observed by the British parties during the preceding winter. These two stations were at West Roseau and Pine Ridge, about twenty and fifty-six miles respectively from Pembina; and, together with the joint stations at Pembina and Lake of the Woods, made fom stations in eighty-nine miles. The British parties liad also made topographical surveys of the six-mile belt on their side of the line, had cut sight-lines for their tangents, and had marked the parallel for thirty-one miles from the Lake of the Woods.

We left Fort Totten on the 25th and arrived at Fort Pembina on the 29th of October. The greater part of this journey was over an open prairie from which the grass had been burned, and was made in the face of a northerly snow-storm. As we were insnfficiently clad, having only the ragged remains of the summer's ontfit, we suffered considerably-more perhaps than during the rest of the winter.

On arriving at Pembina I immediately began to reorganize the parties and provide their outfit for the winter. I hired enough additional men to carry the total strength up to forty-seven; of these, eight were teamsters
and seren dog-thivers, the rest being divided into a tangent-party and two stadia-parties.

The outfit to be provided included trimsportation, clothing, snow-shoes, forage, mams, tent-stoves, and iron tent-pins. It wats also necessary to overhanl the tents, tools, and instruments, which had been in constant use throughont the summer, and were all in need of repairs

The best form of tramportation was a subject upon which I asked the opinion of the settlers in the Red River Valley and the officers of the British Commission. I fomm that what was commonly used in freighting along the Red hiver comtry in winter, on hand roads, was dither wagou-beds momed on rumers or single ox-steds; further north, momd lake Wimipeg where there are 100 roads, dog-sleds are in miversal wie. The English oftieces advised me strongly to prowe dog-sleds at once, wiving it as theiropinom, based upon their experience of the previous winter, that large animals could mot make their way through the swamps. I thonght it best, however, to give the mules a trial. I had four govermment wagons (six mules each), an ambulane (fome mules), and there hired temms, two of which were dram hy two mules each, and the other ly a par of oxen. After some difficulty 1 sucected in procuring abont l'embina a sufficient mumber of secondhamd sheightrmmers, known he the freiglters as "Mancite bobs," for all the wagons. These were repaired and fitted with new tonges for long teams, and they answered the puperse very well. On hard rods the wagoms were lomed as high as six thousmb pombs, and the maldes fomd no tronhle in datwing them. Fren in suft show there wan no tromble in handing as murh as combld be haded in the wagons, provided the amimats cond find a hard footing under the sum. In following the winding roads throngh the wools great care wat required in driving the long temms (six mutes), and even this

 woll. They were ocrasionally allowed to rom home hamg the day, but at night were ahways tied olp in the shelter of the thekest brush at hame, hat whome any wering. Their forage allowamer, as was to be experted, had

REPORT OF THE CHIEF ASTRONOMER, APPENDIX I. :37:

to be largely increased. Of hay, each mule consumed about forty pounds per day as food and bedding, an ample supply having been cut and stacked for our use during the summer. There was no corn to be had in the country, and their grain was oats, wheat, and barley. Of this they consumed daily about twelve and one-quarter pounds each; an allowance greater by onethird than the Army ration, and more than twice as large as we had been feeding during the summer. I conld detect no sickness or signs of weakness among the mules, and at the close of the season they were in nearly as good condition as at the begiming. Their superiority over oxen was clearly proved, as I had an ox-team with Mr. Doolittle's party. Their greatest daily travel was eighteen miles, against forty-four for the mules. At the close of the season they could only make eight miles a day, and were abandoned by their owner, whereas the mules carried us from Pembina to Georgetown, one hundred and forty miles, over a heary road, in five days. With these heary teans I was enabled to get all the supplies for the winter transported to a depot at l'oint d'Orme, on the Rosean River, thirty-three miles from Pembina. I also used them for camp tramportation montil we came to the edge of the Great Rosean Swanp, about michay between Red River and the Lake of the Woods. I tried an empty sleigh on this swamp, and, in so doing, mired the mules to their bellies, and laned one quite badly. To my great surprise it was found that the swanp was not frozen at all, in spite of the fact that we had already had the themometer down to 35° below zero. The explanation of it was soon discovered. The swamp is covered with a tall and strong grass. Before the cold weather had come there had been a heary fall of snow, which had bent down the tops of the grass, but not into the water; the swamp was then covered, as with a blanket, with a foot or more of snow, separated from the water by a stratum of air. It formed a perfect protection for the water, whose temperature was slightly above the freezing-point.

The swamp being thus impassable for the teams, I took them back to Point d'Orme, and thence followed up the Rosean River on the ice. which was about eighteen inches thick, to Rosean Lake, and thence up to the Pine Ridge Station. But as it was essential that the tangent shomlal be carried across the swamp, it was necessary to provide some sort of ramsortation
for Mr. Wilson and a small party. To this end I had the carpenters make in camp three "tobogans" or flat trains, each to be driven by a single amimal. These tobogans were made of two pine boards, fastened side by side with transverse cleats, and spring up in front by hot water. This made, in fact, a rude sledge, twelve by two feet. Its load was packed after the fashion of a dog-sled. Before taking an animal on the swamp it was necessary to prepare a road. To do this a party of men were sent ahead on snowshoes, and by passing and repassing over the same ground the snow was packed and pressed into the water; it instantly froze, and in a few minutes was hard enough to hold several tons, and there was no danger of its thawing for the next five months. Mr. Wilson crossed his outfit in this way, and as the route was much shorter than by the river, I had the road widened by the same process of packing, and it was used by the large teams to bring supplies up to Pine Ridge Station. It was not a very safe road, however, for the drifting snow soon filled it n p to the level of the surrounding country. It was not distinguishable by the eye, and had to be followed by feeling, the road being hard, and the rest very soft snow. If, by any carelessness, a sleigh got a rumer off the road and in the soft snow, the whole was instantly upset, and it required several hours to right it again. This mishap oceurred two or three times.

Beyond Pine Ridge the dense windfall along the line rendered the use of large sleighs quite impossible. By following the ice on the streams, however, I managed to carry forward enough supplies to form a depot on the main East Roseau River, about ten miles north of the line, and about thirty miles from the Lake of the Woods station.

Beyond this depot dog-sleds were absolutely necessary, and I procured six of them from Pembina, at a cost of about $\$ 80$ for each train complete, including logs. The dog-sled used in the Saskatehewan and IIudson's Bay country, eonsists of a straight piece of hickory, or ash board, about half an inch thick, ten feet long ame ten inches wide. The fromt end is bent up, in the form of a curl, hy steam. There are five transverse deats Which prevent the sled from splitting, and afford points to which are attached the loops of buffalo thong used in lashing. To pack the sled, a wrapper mate of monse-rkin is laid out flat arross the sled and the load is plared on
it, as compactly as possible; the wrapper is then folded over and the lashrope is passed through the loops on either side in succession, from front to rear, and tightly fastened. The team generally consists of four, or sometimes five dogs, which are driven tandem. The pure Esquimaux dog is the best. His fur resembles that of a grizzly bear in length and color, and he weighs from seventy to one hundred and twenty-five pounds, and is short and thick set. I had only three of these in the whole number, the rest being a motley collection of large curs of all kinds-the only requisite being strength. They averaged about eighty pounds in weight, were soon broken to harness, and worked very well. The most important dog in the team is, of course, the leader. If he is intelligent and willing, all goes well; if not, there is always trouble and often disaster. The harness consists of a light collar of moose-leather, padded with hair around a piece of one-fourth-inch iron, a pair of traces, and back and belly bands. Decorations in the shape of bells, fancily worked cloth covering the back, flags, $\& c$., are added, according to the taste and means of the owner. The drivers which I had were all half-breeds from Pembina. They were lazy and unreliable, and apparently very cruel to the dogs; but they got a great deal of work out of them, and were themselves capable of great endurance in running, and possessed of euormons gastronomic powers. The art of driving dogs consists in the adroit use of a whip, with a short stock, but stout lash about six feet long, and in an unbroken volley of oaths in bad French. When traveling on a well-beaten road, the leader keeps the road, and the driver follows at a half trot, in rear of the sled, cracking his whip and shouting to the dogs. Oceasionally he thinks they are lagging, and he runs out, alongside the team, and gives each dog a sound welting and cursing, begiming with the leader; the howling of the dogs and the shouting of the driver makes a very lively scene, for the time, but everything soon quiets down again. The cruelty of the drivers is more apparent than real, for the dogs begin to howl as soon as they see the whip, and as their fur is nearly six inches long, it takes a good stroke to make any impression. Occasionally, however, their cruelty is outrageous, and they beat their dogs for several minutes in succession. I saw oue driver-not in my employcut off a dog's ear with his whip, and as several of the dogs were minus an

376 UNITED STATES NORTHERN BOUNDARY COMMISSION.

ear when they came to me, I suppose the practice is not uncommon. Some, also, had lost the sight of one eye, which was said to be due to the same cause. On good roads such as ice, hard crust, or well-packed snow, the dogs will travel along at about four miles an hour for ten or twelve hours without showing fatigue, and cary a load of abont four hundred pounds per sled. In soft snow where there is no road the difficulties of this mode of travel are altemately ludicrous and vexatious beyond all patience. Every one las then to put on snow-shoes, and one man goes ahead to break the road; the dogs tug along after him for a few hundred yards when the sled is brought to a stand-still by some twig which has caught fast in the lashing; the dogs lie down to rest with perfect unconcern, and the driver has to maneuver round the sled (no easy matter with snow-shoes) and disengage the lashing, give the sled a start and a few cuts to the dogs. After a few of these mishaps the lashing becomes loose and the pack begins to oscillate: if passing orer windfall (sometimes as high as the shoulder) one dog slips between tro logs, the sled oscillates for a second on top of a \log, and then falls bottom side up, and to crown all, the driver slips astride of a \log, and tripping on his snow-shoe, is precipitated, head first, into the snow. 'Then it is necessary for the whole train to stop, first extricate the diver, then right the sled, take off the load and entirely repack it-an operation requiring a half hour, at the least. On such roads the speed is reduced to about two miles an hour, and the load to about two hondred pounds. The dogs require but little care. Arrived in camp, they are unhamessed and chained to the nearest bush: here they curl up and burrow in the snow, and sleep comfortably until rectuired for work again. Often, in the moning, after a heary fall of show, nothing is visible but their noses. Their food is a pound of pemmican per day. This is chopped off with a hatchet, and thrown to them in one lamp about sumbow, or at the close of the jonmes. If pemmican camot be had, ther are fed on fish (about three pomels), or meat, or, in fact, anything asailable. They are great theves, and shombl never be allowed to rom loose about camp. Oceasionally one will manage to slip his "ollar, and make way with ten poumls of meat during the night. They are never fed before stapting on a jommer, as it makes them lazs. They eat show for water, and on the requar daily meal of a pound of pemmican
keep in good condition. Those tnat I had gained about ten per cent. in weight during the winter.

On account of the extremely cold weather the men were all supplied with a suit of outside clothing, at a cost of $\$ 24$ each. It consisted of-

Head-gear-a close-fitting skull-cap, made of two thicknesses of blanket, and lined with flamel. Sewed to this was a havelock, also of blanket, reaching to the shonlders, and fastening under the nose. This left only the eyes and nose exposed. In addition to this the men generally wrapped around the face and ears a heary scarf of some kind, as it was found that in a wind, on the open swamps, the ears were frozen through the blanket-cap.

Sack-coat-of buffalo-leather, made loose, and fastened around the waist by a scarf.

Trowsers-of buffalo-leather, made "barn-door fashion" to keep out the wind. The coat and trowsers for myself and assistants were made of moose-leather, which is closer and keeps out the wind better. Its cost is about double that of buffalo-leather.

Mittens-of moose-leather, lined with blanket, with gamitlets reaching to the elbow. These were made large so that a pair of gloves might be worn inside of thom, but this was not found desirable. The mittens were suspended from the neck by a string.

Foot-covering-early in the season, while the snow was wet, I tried the Fort Garry "beef-packs," but when the thermometer began to get down in the twenties below zero, these were useless, as the leather froze as stifi as iron. I then procured moccasius for the whole party. They were made after the Sioux pattern, and several sizes too large. The ordinary covering for the foot, throughout the rest of the winter, consisted of one or two pairs of woolen socks, then a pair of "neeps" (slippers made of blanket), then a square piece of blamket wrapped several times around the foot from heel to toe; fually the moceasin was put on, more to keep the blanket and slipper in place than for any other purpose. This method of covering proved to be a perfect protection to the foot, provided care was taken to always lave a dry pair of moccasins and stockings on hand. The feet often got wet in moving about a fire, and to start out on a journey with wet stockings was to insure the freezing of the feet.

The trowsers were always tied tightly around the ankle to keep, ont the snow, and, in addition, we sonetimes wore leggins made of mooseleather or of blanket-the latter being preferable, as the snow did not soak into it as into leather.

The leather clothing was worn over a suit of woolen clothes and two or three suits of woolen underclothes. In the woods where the wind conld have no foree, it formed a perfect protection, and the men worked cheerfully and lustily in temperatures of 20° and 25° below zero. But on the open swamp, a temperature of -5° accompanied by a wind was sufficient to put a stop to all stationary work, such as momnding, de. The building of the mounds across the Great Rosean Swamp oceupicd about ten days, whereas there was not more than three days' real work in it; but the men could not work more than an hour or two at a time, and on some days could not work at all.

We traveled across open places, however, in all sorts of weather, but it was accompanied with emsiderahle suffering, with frozen ears, noses, and fingers, with icicles hanging from the beard, and the eyclashes closed from time to time with ice. Our show-shoes were kindly procured for as, from Monteal, by the British Commissioner. They were well made, but rather small and light for our work among hrush and windfall. They gencrally broke at the point where the sides meet, near the rear end, and at the close of the season not one in fifteen pairs was fit for use. They measured forty inches in lengeth, and sixteen inches in width at the widest part, and weighed one and one-half pounds each. Those made and used by the Indians about the Lake of the Woods measured sixty to seventy inches in length, fifteen inches in width, and weighed three and three-quarter pounds. The sticks of which they are made are an inch in cross-section, and will easily bear the weight of a man withont lucaking when caught on a stump.

In regard to suphies of rations and forage, I had expected to purchase them from the commissary and duatermaster at Fort Pembina, but he could only spare me ten thousimed pomeds of grain, and no rations. It therefore was necessary to procure eroyything from the Hudson's Bay and other stores about Pembina. The supplies were of excellent quality, lout the rations cost 15 per cent. and the forage 60 per sent. mone than the govern-
ment price. The camp-equipage was thoroughly overhauled and repaired as soon as we arrived at Pembina. For heating the tents I had with me six Sibley stoves. In addition to these I had the blacksmith make eight boxstoves of light sheet-iron, $14 \times 10 \times 12$ inches, and the necessary pipe. This gave one stove to nearly every tent, and some of the men's tents were joined together, end to end, so as to make one stove heat both. These boxstoves, although more difficult to transport, were in every other way superior to the Sibley. Water and dishes could be heated on them, which was a very important consideration when everything metallic was so cold in the morning that it could not be held with the naked hand. Morcover, we were often dependent on snow for water, and required some place to melt it, and, worst of all, we sometimes encamped on a frozen swamp where the fire in a Sibley stove would melt the ice, which, in turn, would extinguish the fire. Great care was required in guarding against fire with so many stoves. In spite of our caution, during the winter two tents were entirely destroyed, with a considerable amount of clothing and bedding, and every tent we had was more or less punctured with spark-holes.

Wooden tent-pins were useless in the hard-frozen ground. The iron pins were very grod, but many of them were lost in the snow, the men being rather careless about them, since we always camped in thickets where the ropes could be secured to a bush or tree.

The tents, thens arranged, and banked with three feet of snow on the outside, were very comfortable--that is, the temperature, duriug the day, was 85° or 40° against -20° outside, and this, with our thick clothing, was sufficient. I do not remember hearing a single complaint all winter of loss of sleep from cold, even when the nights were as cold as 45° below zero. With the large Itudson Bay blankets the me? used to make a bed stretching across the tent, abont eight thicknesses of blanket under them. and fonr thicknesses of blanket and a buffillo-robe over them, the whole well tucked in on the sides and ends. In this four men slept. Myself and assistants slept separately, and each had a bag of buffilo-leather, eiplit feet long, and about the same in circumference. This was smrounled, abowe and below, by several thicknesses of blanket, and the whole was strapped up in the cullvass bed-cover. On tirst getting intw it it was very cold, and
it required half an hour for the heat of the body to warm it. After that we slept without intermption till daylight.

While the preparations for the winter were being made at Pembina the parties were not idle. The third day after our arrival enongh leather suits were finished to clothe Mr. Doolittle's party, and a few nights before the thermometer had suddenly gone several degrees below zero, freezing the river to a depth of more than a foot, amd rendering a crossing very simple; consequently I started him out, Norember 4 , to begin topographical work at the twelve-mile virlge. From there he worked on to the east, and arrived at the Rosean River, where I visited him on the $2: 3 d$, and directed him to survey the course of that river on the ice, and close his line on the Pine Ridge Station. We all met there on the 15 th December:

Abont the 5th Norember I moved the other parties from Fort Pembina to the east bank of the Red River, near the Hudson's Bay post; here I observed for azimuth, and begen to trace the tangent eastward, and Mr. Wilson and Mr. lowning marle topographical surveys in the neighborhood. At the sanne time 1 sent out about twenty thonsand pounds of supplies to form a depot near Point drome, on the liosean River: Abont the 20th November I finished the first temgent, and movert the parties to Lientement Galwey's Station at Rosean Ridge. The thermometer lat already been down in the minns twenties, and the winter was fairly begun. Nearly every thing in the commissariat line was frozen hame The beef had to be sawed off in slabs like limestone; rinegar, if keft in an open vessel, had to be chopped out with a lateltet; several novices attempted to drink out of metallic eups withont first waming them in water, and, as a result, left the skin of their lips on the ruls; the dark mules were white and glistening with frost in the momins: ; and varions wher novel and amusing effects of a minimmom temperature were witnessed. At this station I observed for azimuth on thare nights when the themometer wan 20° or more below zero. In anticipation of the cohesion of the parts from the congealing of the oil, I hat previonsly taken cath instrument apart and carefully wiped off every particle of lubricant with wam cotton in a loot room. I have since been told that black leal makes an exedent lubreant in extremely wold weather, hut I did mot lame of this at the time, and it was loperd that, with perfectly
.
clean surfaces, the plates would not adhere to each other. The first night's work was very unsatisfactory. Ont of six sets of observations tluee had to be rejected, and the remaining three had a range of over 1^{\prime}. In those rejected the readings of the are, for lamp cast and lamp west, differed by several degrees from each other; this showed-as the lower clamp was fast and the upper one perfectly loose-that, in turning the instrument 180° in azimuth, the plates had held fast together while the spindles had moved one within the other. Besides this, it was found, on examining the clamp and tangent-motion, that when the tangent-screw was thrned away from the spring, the latter did not follow the screw, the spindies being so frozen together that the spring was not sufficient to move them. After fixing the cross-hairs upon any object, as a slow-moving star, the tangent-screw could be moved away from the spring montil nearly ont of its socket, and still the cross-hair would be on the star, when, suddenly, with a jump, the star would leave the field altogether. The weakness of this spring was partially remedied by strengthening it with rubber bands, but the adhesion of the spindles could not be prevented. The only method to pursice was to place the azimuth mark as nearly as possible in the meridian so that the instrument would have to be turned only slightly in azimuth during the observations; then make a set of observations with lamp east-make a fresh setting-and observe with lamp west.

The meridian mark and tangent had then to be comected by a long. series of repetitions, which gave very discouraging results, the only resource being to take a great number of readings, and reject all which differed very largely from the mean.

The usual momber of sets of observations for azimuth, in the smmmer, was four, and the range of them averaged $34^{\prime \prime}$ in 1873, and $29^{\prime \prime}$ in 1874. During the winter it was found necessary to take from eight to fifteen sets, to get even a tolerable result, and the average range was 1^{\prime} 告 $3^{\prime \prime}$. These poor results were all the more discouraging from the fact that they involved so much labor, and such great personal discomfort. If a tangent serew was tonched with the bare fingers the instantanenus result was a "hurn," and not a temporary sensation, but one like that from a hot iron, lasting sereral minntes. If the fingers were wet the metal chang to them so tightly that
it conld only be removed with the skin. The lamps burned about fifteen minutes before the oil congealed and extinguished them, hence it was necessary to have duplicate sets at the mark and about the instrument, one set being constantly by the fire. For the comfort of the recorder, and as a refuge for the observer, it was found necessary to pitch a tent within a few feet of the instrument, and to keep a bright fire in it. If the wind blew the smoke in the direction of the instrument the observations had to cease, for the fire was essential to thaw out the lamps, keep the observer's fingers flexible, and occasionally unfasten his cyelashes stuck together with frost. The pain in the cyes, from the proximity of the cold eye-piece, was at times very severe, and nccasionally brought tears, which congealed in little icicles depending from the eyelashes, and gave the face a comical look, somewhat like that in the children's pictures of Jack Frost.

The chronometers were packed in straw to protect them as much as possible from sudden changes of temperatures. As the winter went on the nil gradually thickened and the rates changed from about -2^{s} to about -10°, but on the whole they did good service, the change being gradual.

After returning to the East I took them to the makers, Messrs. Negus \& Co., of New York, who said that these sudden changes (say from - 35° outside to $+40^{\circ}$ inside a tent) had injured the metal of some of the more delicate parts so much that they had to be replaced.

The topographical parties had less trouble with their instruments, as their work wats done in the day-time, when the thermometer was from 20° to 80° higher than luring the night. The accuracy of their work (1 in 300) was nearly equal to that of the summer.

Our experience, then, proves that fair topographical work can be done in a semi-arctic climate, and that astronomical work of a certain sort can also be done, but that refinements are ont of the question. While at Roseau Ridge I carried the tangent eastward thirteen miles, to Point d'Orme, on the Rosean River, Mussrs. Wilson and Downing completing the topography, and keeping the fichl-phots up with the survers. On the 27th of November we moved over to Point dOme, and I left Mr. Wilson here to make the necessary azimuth observations and to cary the tangent on to the next junction, at the forty-mile point, while I returned to l'embina to complete the pur-
chase of supplies for the winter. I returned to camp on the 7 th December, and we immediately moved on to the forty-mile point, and made a smug camp in a thick grove of spruces. Here the necessary azimuth observations and horizontal angles were taken, and then Mr. Wilson was left, as previously described, with a small party and two "tobogans," to carry the tangent across the Great Rosean Swamp, while I took the other parties and sleigh-train around the swamp by the ice of Rosean River, and reached Pine Ridge Station December 15. All the parties came together at this point the next day. Mr. Doolittle was then provided with fresh supplies and some "tobogans," and directed to follow the ice on the branches of East Roseau River, and survey their courses until he came to the crossing of the boundary, when I would furnish him with dogs, and he could complete the topography to the Lake of the Woods, and survey its shore-line to Rainy River.

As the British Commission had marked the boundary-line between Pine Ridge and the Lake of the Woods, it was unnecessary for me to retrace their tangents. It only remained to examine their azimuths at one or two points. Consequently, I left the greater number of the men, animals, and heavy sleighs with Mr. Wilson, at Pine Ridge, and directed him to complete the topographical work in that neighborhood, and then begin building the mounds westward. Mr. Downing remained at the same point, to finish the field-plats. The dog-trains arrived, about this time, from Pembina, and I loaded them and a few tobogans with enough supplies to last a month for the few men I took with me, and for Mr. Doolittle's party. With these I went eastward, about twenty-five miles, and found a good location for a small depot on the East Roseau River, about twenty miles from the Lake of the Woods, and accessible for heavy teams from Pine Ridge by the ice of the stream. I then traveled up a branch of this river to the boundary-line, where, at East Roseau azimuth station, the two parts of the British tangent joined. Here I was delayed, by stormy weather, from December 23 to 30 , during which I got azimuths on two nights which were partly clear. A more dismal holiday-week I have never passed. There were six of us in all, but I had no assistant for company. Our camp, of two little tentr, was pitched in an opeming of windfall, close to the post

384

marking the junction of the tangents. Under the intricate lacing of fallen logs, and the three fect of snow in which they were imbedded, was a frozen swamp. My own tent-floor was composed of ice, and in order that the stove might not melt through this and disappear, it was supported on a scaffolding of \log s run out under the tent. In the morning the tent-floor was hard, but, during the diy, the heat of the stove melted a pool under it, with a radius of about two feet, but there was never sufficient heat to soften the ice in the opposite corner, where my bedding lay. It snowed fiercely during the greater part of the week, and our efforts at cooking (the regular cook being left behind), over an open fire, were not the most successful. The appearance of the camp, with a smoldering fire, the dogs curled up in the snow, and the whole shat in by cold-looking pines, was lonely and desolate in the extreme; and to add to its weirdness, at intervals a wolf would approach (amp and utter a low moan, which would be taken up by all the dogs. Begimning gently with a soft sigh, it swelled with a full crescendo, in which every cur joined, and then gradually subsided, only to begin again. Finally, some driver's impatience would orercome his antipathy to learing his warm bed, and he would get up, whip in hand, and go through the pack. Then the would-be musical howl would change into the shap "ki-yis" of pain and fear, supplemented by a choice selection of French imprecations, in which all the other drivers joined from their tent. Then we would have quiet, but only for a few hours. I finally obtained enough azimuth olservations to satisfy myself that the English tangent was correct, within the uncertainty of my observations, and then packed up to move orer to the Lake of the Woods. The breast-high windfall in the intervening space being absolutely impassable for large animals, I had given Mr. Doolittle four dog-sleds, keeping two for myself; so that I had to reduce my party to myself and two others, DucKemey, a Scotch dogdriver, amd King, an observatory attendant. Even then, I had to borrow some of Mr. Doolittle's sleds when I reached his camp, for I had been five hours in making fonu mike The loads were top-heary and upset every humbed yards. With the extra sleds we still made slow progress, and, at the close of the short day, had only traveled twelve miles. We stopped for suppre, and then purhed on along the british cutting, on a cold but bean-
tifully clear and moonlit night. We reached the Lake of the Woods Station a little before midnight. We had been sixteen hours in passing over seventeen miles, and were rather disgusted with snow-shoes and dog-sleds, but we were satisfied that no other animal but a dog could have drawn a load through the thickets, windfall, and swamps over which we had passed.

The next night, December 31, was clear, and I got good azimuth observations, and, on the 1st of January, I started ont to cross the Lake of the Woods to Rainy River. McKenney and King were with me, and we had only the instruments, tent, blankets, and enough provisions for two weeks. The surface of the lake was in fine condition for traveling. A frozen crust of snow, a few inches thick, covered the ice, and gave a good footing, and left no necessity for snow-shoes. The thermometer was a few degrees above zero. The sun was shining brightly near the horizon, and the air was quiet and very bracing. We went along, at a jog-trot, behind the dogs, in high spirits-a marked contrast to our return. We arrived at the month of Rainy River early on the second day, and pitched our tent on the narrow point of land between the river and the lake.

The object of coming to lainy River-which is several miles sontl of the forty-ninth parallel-was to get an accurate survey of all that portion of the lake within our territory. The British had carefulty surreyed the shore line from the Northwest Point to the forty-ninth Parallel; Mr. Doolittle carried on the survey from the forty-ninth Parallel to Rainy River, and, at the latter point, I checked his work by a careful series of sextant latitudes and by azimuth observations. I remained there ton days. The Indians did not receive me very cordially, and there were several pow-wows and a good deal of "bluff" and threats on either side. They did not sncceed, however, either in inducing me to go away, nor in getting any rations (I had barely enough for myself), nor did they molest me. One Indian, indeed, was good enough to invite me to go with him on a moose-hunt, and I had the satisfaction of living on tea ant bad bread for four days, and of trudging after him through the snow all day long for the same period. We were much exhilarated by the sight of several warm ell-trails, but we saw no game.

I had finished my observations, and was only waiting for a storm to N $\mathrm{B}-25$

386 UNITED STATES NORTHERN BOUNDARY COMMISSION.

clear up before I ventured on the open lake to return westward, when, on the night of January 11, about one o'clock, I was awakened by a scuffling of the other men, and beheld our only tent in flames over my head. All our efforts to extinguish it were unavailing, and we were glad to save our bedding and clothes from more than partial destruction, and to have pulled three pound-cans of powder from the edge of a burning mass of leggins. The bright fire lit up the woods and made the dogs blink in an inquiring mamer, and revealed the spirit-thermometer fixed to a neighboring tree. It stood at 18° below zero, and plainly told us that, storm or no storm, we could not remain where we were. So we heaped up a big blaze, and while one man repaired the scorched dog-harness the others prepared a breakfast of indigestible "flippers," strong tea, and rich, fat pork. We dispatched this, packed up our remaining traps, and with light loads, at four in the morning, started out in the black darkness of the cloudy night. With this accident to our tent began a week of misfortunes. The day broke about seven in the morning (we had been traveling by compass), and revealed dark, threatening clouds, and an indistinct line of shore a mile to our left, showing that we were not much out of our course. It was still very cold, but as yet only a few flakes of snow were flying in our faces. One of the lead-dors had a swelling on his shoulder, which pained him a good deal, and caused him to keep circling off out of the course. We put the other sled in front, when its leader slipped his collar and broke loose. He kept along with us, but about a hundred yards to one side, and eluded all our efforts to catch him for nore than an hour. We kept on our course, however, only deviating from it to cross the large cracks and piledup snow, which in the dim light we approached in bad places, and, about ten o'clock, passed Mr: Doolittle's party moving south. It was now snowing quite fist, with a good breeze against us, and still very cold. About noon we reached a point of land where our course turned to the west, and here we found a tent and one of Mrr. Doolittle's men. We had run trentyfive miles, and now took a good rest, and ate an enormous luneh of strong tea and pork. Meanwhile the stom had increased, and was blowing a fierce gale from the north, with such masses of snow that it was impossible to see clearly for a hundred yards. At two o'dock I wanted to start out to reach
the Astronomical Station, about fifteen miles distant, but I found great diffculty in inducing the driver, MeKenney, to venture out in the storm. We finally started, however, and in a few minutes were ont of sight of every thing but blinding masses of snow. We kept our course by compass, and relieved each other in taking the lead, as it was found that, after half an hou's peering into the whirling whiteness, it was impossible for one to keep a straight course. Just at dark (about half past four o'clock) we came in sight of a dark point of timber, and were sheltered from the storm. We felt our way along the shore until about scven o'clock, when I thought I recognized the appearance of a point of land near the station. After several minutes of yelling we brought forth a response from a man named Macey, whom I had left there with one tent. We got to bed about ten o'elock, thoroughly exhansted with forty miles of travel, and twenty-one hours without sleep We were up the next morning at five, and soon ready to continue our journey. McKemey told me he knew a much better trail to return by than the horrible windfall along the boundary cutting, and, as he said it was not much longer, I determined to follow it.

We went south across a bay of the lake, for about eight miles, to an Indian village at the month of War Road River. Here we turned westward, through the woods and across open "muskeages," and kept traveling until nearly dark, when we stopped to rest. McKenney assured me now that it was only about cight miles to the depot on East Rosean River, and which I knew was on the trail. As I was anxious to get on as fast as possible, and had only enough provisions to make two half meals, I decided not to camp, but to consume all our provisions in a hearty supper, and then travel on during the night. If it was only eight miles we could surely make it before midnight, for the storm had broken and left a clear sky. By eight o'clock we had finished our supper, put on dry socks and moccasins, packed up, and started. Midnight did not find us safely at the depot, but only three or four miles from our resting-place. The sky had clouded again; we had lost the road, and had broken throngh some shell-ice in a little brook of whose existence McKenney did not know. One man had floundered in up to his shoulders, and the water had permeated through his socks and "neops" to his foot. The rest of us had gotten out so quickly that only
our leggins were wet; but as the temperature was somewhere about 20° below, our legs were instimtly incased in a garment of ice which rendered locomotion impossible, and the dog-sleds had added abont two hundred pounds to their loads in the shape of ice. The dogs lay down with perfect unconcern, glad of a rest, and we ent sticks and began a vigorous beating, first of our leggins and then of the sleds, to detach the ice. We got our legs pretty well limbered, but could not elear the sleds, which were so heavy and so rough on the bottom that we lad to abandon abont half the loads-everything in fact but our blankets, instruments, and records. Then we went on aghin, Mckenney and King with one sled, in front, and Macey and myself with the other. MeKenney was a better driver than myself, and got more work out of his jaded dogs, and so was soon out of sight. We followed on the trail, however, occasionally losing it in the darkness, until, abont ten oclock, I discorered a fire ahead of us on the trail, and coming up found that King's foot was rery badly frozen, and he was in great pain. We thawed his foot with snow, and bound it in pieces of dry Wanket, and then I particularly wamed Mckenney not to get out of hearing of us, as the trail was very blind. A fow minutes after we had started, however, I broke the corl of my snow-shoe, and had to stop to repair it. We saw no more of MeKemney, our guide, till noon the next day. Macey and I were now on an open mmskeage, where we had never been before, and as we had nothing to eat, and had abandoned our stoves, there was no use of camping, so we kept on. Presently the lead-dog turned sharp to tho right and got the sled stnck in a soft snow-bank. The tried to move it along, but could get no work out of the dogs, and so threw off all the load except the records and chromometers. With an empty sled we managed to make the doge move on slowly, in a westward direction, while we took tums in fecling with our hands fur the hand snow of the "road." But we conld not find it, and conld not retrace onr steps, for our tracks were almost instantly covered up by the drifting show. In a few mimates the dogs stopped short, and earh scratched a little hole in the snow and lay down as if he intended to stay. We were so exhanter that we could hardly use the whip, but we phed it to the utmost of our strength, and acompanied with shonts, to urge

buried himself deeper in the snow. They were utterly exhausted. Then we yelled in hopes of finding McKenney, but without success. The only thing left for Macey and myself was to get ourselves out of the serape as best we could. By the aid of some matches I wound the chronometers ($2.15 \mathrm{a} . \mathrm{m}$.), and covered them and the records with the sleigh-wrapper. Then twisting the whip in the lead-dog's collar, to suggest what was in store for him when he woke up, we bade them good-bye, and started out to the westward, across the muskeage. I had a good compass with me, and the moving clouds occasionally revealed the stars, so that there was no difficulty in keeping our course. I knew, also, that the supply-depot was on a river flowing north, and not more than fifteen miles off at the utmost, and that there was a sleigh-trail to the depot, but not beyond it, so that if we reached the river I would know which way to turn. Hence there was no fear of being lost, but what I did seriously fear was that before we could reach the river we should succumb, to sleep and that terrible languor which is the premonition of freezing, and which we already felt.

During the last forty-eight hours we had run between sisty and seventy miles, and for twenty hours we had had but one meal. The longing for sleep, was so great that whenever I stopped to rest for an instant, I lost consciousness, and was awakened by the thud of having fallen into the snow. I was strongly possessed with the temptation to quietly lie there, it was so comfortable. But I had just enough sense left to know that if I did lie there it would be three or four days before I would be found, for the wind corered up our tracks at once; and in three days I would, undoubtedly, be frozen to death. So we trudged on through the snow, knee-deep, on our broken snow-shoes, tripping, and falling, and making perhaps a mile an hour, through the long hours of the night, into the dim day-loreak and the early hours of the morning. Still going west, we had crossed the muskeage and come into some timber, but, as yet, had found no tracks, although I knen we must be nearing the strean. Finally, near noon, we came to a small stream, and there, nearly covered by fresh snow, but still mmistakable, were snow shoe tracks. Macey and I leaned up against a tree, and getting a good ready we yelled-all the hreath there was in us. Xomswer. We rested awhile and tried it again, and still nomewer! The tracks led

390

 UNITED STATES NORTHERN BOUNDARY COMMISSION.to the northwest, and as they would not take us much out of our course, we followed them. In about half an hour we came upon a track, not three hours old (for the snow had fallen then), and crossing the other at right angles. We sat down on the bank, and gathered breath, and yelled again. We almost jumped as an instantaneous reply came, seemingly not one hundred feet off. It was, in fact, not very much farther, and, moving in its direction, we soon beheld the river, the depot, and two men quietly unloading some hay. Our first question, somewhat enraged, was, "How long has McKemey been here?" McKenney? They did not know anything about McKemey-" had not seen him for a month." So it seemed that he had been lost as well as ourselves. I immediately started a man ont with a sled to find them, and to pick up my dogs and rarious articles which had been abandoned, and then we ate a mighty breakfast, after our thirty-hours' tramp. We were just finishing when we heard the jingle of bells and the "marche! marche!" of a driver, and McKenney appeared with his sled, and King riding on it. It seems that when he discovered that he had left us behind, he waited awhile, and shouted to attract attention. Failing in this he started to go on for a distance, but his dogs refused to move. King's foot now began to pain him so much that he could not walk. In this dilemma there was nothing to do but burrow in the snow, and wait till the dogs were enough rested to go on. So McKenney had unlitched his dogs and dragged his sled to the nearest point of timber. It was at this place that my leader had turned off and we had lost the trail, for McKenney found $m y$ dogs there in the morning. Once in the woods they shoveled ont the snow and got the materials for a fire, but discovered, to their dismay, that all the matches had been in King's pocket, and had been wet in his bath. There was a strong probability of freezing if they could not get a fire, so they searched every particle of their bedding and clothes for a stray match. At last, in the corner of the inside pocket of MeKenney's overcoat, they did find an old stump, about half an inch long, but with the "sulphur enl". They took great precautions against its going out, and collected enough dry shavings for a first-class attempt at arson. Their efforts were successful, and with the fire once going they were all right. They slept till morning and then came on. As soon as they had
arrived I turned in and slept for eighteen hours. During this time my dogs had been brought in, very hungry, but looking as bright and cheerful as possible, except the leader, whose shoulder was fearfully swollen. I had to leave him behind; but, with the others and an empty sled, I started out the next day, January 15, for Pine Ridge, and made the journey of twentyfive miles in six hours. There I found Mr. Downing with the field-plots well advanced, and the next day I rode along in a "carriole" (light sleigh for one horse) to where Mr. Wilson was at work on the mounds across the Great Roseau Swamp. I then sent a telegram to you asking for instructions about cutting the parallel, and received answer to clear it a widtls of ten feet, from the end of the British cutting, near Pine Ridge, to Red River. This was intrusted to Mr. Wilson. He also built the mounds along this interval. Leaving. Mr. Wilson engaged upon this work, I sent word to the East Rosean depot to cache enough supplies for Mr. Doolittle and bring the rest to Pine Ridge, where I collected the sleighs, and moved them to Point d'Orme, January 20. I remained here a week waiting for the other parties and completing my computations. During this week we had the coldest weather of the winter. On every night the thermometer went down to 40° below zero or lower, and during the day it seldom reached as high as 15° below. One night, just before going to bed, I looked at the two spirit-thermometers fastened to a tree, and they read 46° and 47° below. In the morning they recorded the astounding temperature of 50° and 51° below zero. Every one had slept soundly, however, inside of skin and blanket bags.

The parties all arrived at Point d'Orme on the 26th of January, and I sent Mr. Doolittle on to resurvey the Red River, on the ice, and left Mr. Wilson to finish his cutting and mounds. Taking my dogs and an empty sled, I drove in to Fort Pembina, forty miles, in the mine hours of sunlight, on January 27, and began to settle up accounts and get ready to turn toward the States.

On the 6th of February Mr. Wilson's party arrived at Pembina, and the winter's work was over. I had previously turned over the dogs and sleds to the Britisla Commission to be sold or disposed of in :my way they could, and on the evening of the 6 th discharged about hatf the men. The
next morning, with the batance of the men and the six heary sleighs, I started south for the raihoads of Minnesota. We made the journey to Fort Abercrombie, one hundred and eighty miles, in five and a lalf days, during which we suffered greatly on the open prairie from the cold and the driving snow. At Fort Abercrombie 1 sent the train of sleighs, under Wagonmaster Estes, across conntry to Saint Cloud to report there to Lientenant Ladley. With the rest of the men I took the cars at Breckinridge for Saint Panl, where we arrived February 16. The parties were disbanded and paid off the same day.

GENERAL DESClRIPTION OF THE COUNTRY.
The flat, treeless valley of the Red River extends on the east for twelve miles; here a gentle ridge is encountered about thirty feet high and running in a northwest and southeast direction. For the next twenty miles to the Rosean River the comntry is slightly broken. The knolls are covered with small poplars, and the intervening hollows are marshy and full of large granite bowlders. Beyond the Rosean River the country entirely changes. The woods are dense-at first of oak, elm, and ash, gradually giving place to spruce and pine and then to tamamack. The last forty-dive miles to the Lake of the Woods may be chanacterized as one vast tamarack swamp, with large openings of "muskeage." This is not only troe along the Forty-ninth Parallel, but wherever I penctrated back from the shore of the Lake of the Woods the same character of comatry was found. Some of the Norway pine grows to a lare size-three feet amb more in diameter-but nearly all of it has been taken out by lumbermen and rafted down to Fort Garry, so that now there is 10 considerable amome of valuable timber along the line. Except the hed Riser Yalley, the whole comtry is at present not only worthless for agricultural purposes, but is quite impassable in summer, even to Indians, except along the strems, in canoes. All of these swamps, west of about ten miles from the Lake of the Woods, are partially draned inte the Red River hy the Rosean River system. This river rises in two branches-one north and the other south of the line, which, united, are known as the East lincan liser, and flows into a small lake of the same name, which also receives a small atiluent from the north, known as line River. This lake dinchargen inte the Rosean River, which flows sonth of,
and really parallel to, the boundary for about thirty miles, crossing it at Point d'Orme, and continues, in a northwesterly course, till it meets the Red River, about twelve miles north of the line. This Rosean River is about two hundred feet broad throughout its length, and has a rapid current of abont three miles. The depth was about ten feet wherever we sounded it. It would be navigable for small boats but for the presence of of a few rapids. The principal one of these I did not visit. It is about twenty-fise miles below Point d'Orme, and from the description of the half-breeds is quite violent, and must have a fall of fully twenty feet in a quarter of a mile. Logs camot be rafted over it later than the 1st of May.

If land ever becomes so valuable in this region that it is desirable to drain this country, it could be done by cutting through these rapids. The bed of the river is, generally, a soft clay, through which the stream wonld lower its bed, and thus drain the swamps. At present the large swamps are on a level with, or a little lower than, the water of the stream, from which they are separated only by a natural dike of clay and grass, a few feet in height.

The Lake of the Woods contains an area of between six hundred and seven hundred miles. It is very irregular in shape, and its eastern shore has never been carefully surveyed. There are a large number of islands dotting its surface. Some soundings were, I believe, taken by the English parties, and the greatest depth obtained was eighteen feet. As the surrounding country is very low and flat, it is possible that it has no great depth, but we have ro positive knowledge of this. As the ice was from two to three feet thick, I had no opportunity to make soundings. Various small streams drain into it from the surrounding swamps, but the principal affuent is the Rainy River, which empties at its most southern point. This stream comes from Rainy Lake, is about sixty miles long, and a quarter of a mile broad at its mouth. It forms part of the international boundiury.

The Lake of the Woods discharges, by Wimipeg River, into Wimnpeg Lake, and forms part of the great northern chain of lakes, whose waters eventually reach Hudson's Bay.

The Indians residing in this neighborhood are small tribes of the formerly great Ojibway nation. There are about twenty families arombl Lake

Rosean, as many more at the month of War Road River, and about fifty families at the month of Rainy River.

Sereral families also pass the winter on the islands in the lake. They are gencrally paceable, but extremely indolent. Those about Rainy River live on lands which hare never been ceded, and they are the only ones that show any spirit. They have several log houses, and make feeble attempts at agriculture, but many of them live in birel "tepees," and their principal sustenance is fish. Soveral rarietics of whitefish, pike, and pickerel are eaught, through the icc, by the squaws in winter. The men occasionally hunt the moose, elk, deer, and feathered game, using the Iludsons Bay shot-guns, with an oumec-ball. or with shot. They ako do a good deal of trapping: beaver, marten, mink, otter, and fisher being quite plentiful. Those who survive the age of ten years seem to be a healthy race of people, hut many chihlen perish from lung diseases and exposme to the cold. The winter climate of this comntry is excedingly severe: the thermometer going below 40° every vear. Ind in spite of the fact that the maximum is. every Year, nearly 100°, the ammal mean is lower tham at any other point in the Thited States and Territories, and lower than any inhabited point in Europe.

1 insert here the record of the Medical lepartment, at Fort Pembina, for two gears. My orn record, during the winter of 1873 , is a little lower than this, but it was not taken with so much care.

Metenologieal repurt-Port Pembina.

Montl.					18-3-\%.4.			
	Namer.	11:3,	Min.	Latil-fall.	Mi:m.	Max.	Min.	Rain-fall.
	\bigcirc	0	\checkmark	Inelles.	0	0	-	Ine kes.
July	it. Cis	9	:	:3.08	6\%. 10	8.	8.1	1, : 01
Augrast	(1). 11	!1	31	\because	(ivi. 1.3	91	21	\cdots
Erpromber	23. -	\therefore	\cdots	1.15	42, 5	-1)	2:	$\because \mathrm{O}$
Ootuber	4:91	\because	1.1	1. 16	319.35	\therefore	3	5in
Soveruber	1-:	$1-$	- \because	5%	15, 6	45	-	(iit)
Wecomber	-	:1	- 11	2. 5	6.36	$\therefore 3$	-	1-
damatar	- 1.1!	: 1	-.10	41	- S. 1\%	:	- 11	?
lobhruary	4. 13	$3:$	- 31	\therefore	$\because!9$	$\therefore 2$	- $8: 3$	\because
Marbl	1 $\because 0.0$	4i)	-. 111	\therefore	12.11	45	- $\because 1$	\therefore
. 1 mil	Blat	(i)	14	$3: 1$:31. $2: 3$	-1i	- 1	:10
\13\%	5 SiO	$\therefore 1$?	$\therefore 11$	5\%.11	ก-	\because	1. 5 \%
Imiに	(1). $\because 0$!?	: -		(iti, \because)	91	3 i	$\therefore .11$
louthe l	34. 21	9	- $\quad 1$	11.17	3:3.-1	!	- 14	18. 1.4

For purposes of comparison, I add the annual mean temperatures at the coldest posts in the United States, and at a few other points, from data kindly furnished by the Chief Sigual Officer of the Army.

Mcan temperatures.

Forts.	Territory.	Latitude.	Yars.	Annual mean temp.	Authority.
		125		\bigcirc	
Pembin: Semard.	Dakota.	4357	18.0-94	31.0)
liraty	Michisam.	$46: 30$	1870,74	378	
Buford	Dikota.	4800	1880-'2. 1	3.3.0	
Stevenson	-...do	4731	18ว0-\% ${ }^{\text {a }}$	38.5	
Baker.	Montana	$46 \cdot 10$		38.8	
Abercrombie.	Dakota.	4697	1-80-71	39.3	
Ellis	Montana	4545	$\left\{\begin{array}{l}1571-73 \\ 1020\end{array}\right.$	$\} 40.1$	
Rice.	Dikota.	$46 \cdot 10$	18.0-74	41.3	U.S. Army.
Lincoln	...ido	1617	1830-7.1	11.9	
Suelling	Minmesota	445	1-70-7.	12.9	
Sitka...	Alaska	5403	1870-74	13.6	
Phatcourg	New York	414	1-70-71	43.9	
lenton.	Mont:nla	4745	15*0-7.4	4.4	
Shaw	- . do	17:30	1870-7. 4	41.7	
Winniper	Manitoba	4950		33.6	Dawson.
	ledand.	61	184,-71	37.0	Thorlacias.
St. Potershurg	lussia	${ }_{60}^{60}$	18 cia -70	38.0	Will.
Stackholm.....	Sweden	60 59 50		38.5 41.8	v. Kïnt Edliand.

ASTRONOMICAL POSITIONS ON RECONNAISSANCES.

LOSGITUDES.
On reonnaissunce from second erossing of Mouse River to Fort Pembina via Fort Totten, by Lieut. F. V. Grecme, 1873.

Chr.	Error on Washington time.	Error on local time.	Longitace from Wishington.	Station and date.	Remarks.
145 95	$\begin{array}{cccc} \\ & h . & m . & s . \\ \text { Slow } & 1 & 19 & 52.06 \\ \text { Fast } & 4 & 50 & 21.74\end{array}$		$\begin{array}{ccc} h . & \text { m. } & 8 . \\ 1 & 54 & 33.86 \end{array}$	Lient. Galwey's station, on PopJis River, Oct. 30,1073 .	Chr. Rcies. 14.75 Losing... 9.34 Losing... 18.08
1155	$\begin{array}{llllll}\text { Slow } & 1 & 21 & 55.64 \\ \text { Fast } & 4 & 48 & 25.84\end{array}$	$\begin{array}{lll} \text { Slow } & 1 & 1: 3.3 \\ \text { Fast } & 6 & 09 \\ 0 & 0.2 \end{array}$	12042.36	Fort Pembina, Oct. 31.4.	
					Latitudes.
14.5	Slow 12046.1	Funt 175050	13841.4	Mouse River, Oct.	
98.3	Fist 44931.1	Fast $6: 2017.1$	16.0	15.4.	ε Pegrasi ... $3 \leq 13.5$
			Mean 1 3s 43.7	$101^{\circ} 44^{\prime} 01^{\prime \prime} .3$	Mean.. $4 \leq 35$ 3x. 1
$\begin{array}{r} 145 \\ 95.3 \end{array}$	$\begin{array}{llll}\text { Slow } 180 & 50.4 \\ \text { Fast } \\ 4\end{array}$	$\begin{array}{llll}\text { Past } & 17 & 1: 3.8 \\ \text { Fast } & 6 & 27 & 35.9\end{array}$	13304.9 0.9	Monse River, Oct. 11i.4.	$\begin{gathered} \text { Polaris .. } 45: ~ \\ \varepsilon \text { Pegasi ... } \\ \hline 16.3 \\ \hline 16.3 \end{gathered}$
			Mean 1 3-0 (12.5	$101^{\circ}: 34^{\prime} 44^{\prime \prime} .1$	Mean.. 458319.7
$\begin{gathered} 14.5 \\ 6.3 \end{gathered}$	$\begin{array}{cccc}\text { Slow } & 21 & 01.3 \\ \text { Fant } & 4 & 49 & 15.8\end{array}$	$\begin{array}{llll} \text { Finst } & 14 & 20.3 \\ \text { Fiast } & 64 & 25 & 2 \end{array}$	135 30.6 30.1	Oct.1F.0.	
			Mean 13500.0	$100{ }^{\circ} 54^{4} 4{ }^{\prime \prime} .6$	
$\begin{array}{r} 145 \\ 43 i \end{array}$	$\begin{array}{llll}\text { Slow } \\ \text { Fast } & 1 & 21 & 03.0 \\ 40 & 15.0\end{array}$	$\begin{array}{lrrr}\text { Fast } & 11 & 51.1 \\ \text { Fiest } & 6 & 30 & 16.9\end{array}$	13250.1	Oet. 19.3.	
			Mean 13959.4	$100015^{\prime} \mathrm{FB}^{\prime \prime} .8$	a Aquilie .. 450240.3
$\begin{gathered} 15.5 \\ 16: 0 \end{gathered}$	$\begin{array}{lllll}\text { Slow } \\ \text { Fant } & 1 & 21 & 10.8 \\ \text { fil }\end{array}$		$1312 \times .4$	Oet. 20.4 .	
			Mean 13130.1	$990502^{\prime} 34^{\prime \prime} .3$	Meav.. $4=0041.7$
$\begin{gathered} 140.2 \\ 14.5, \end{gathered}$	$\begin{array}{lllll}\text { Flow } & 1 & 21 & 12.1 \\ \text { Foan } & 1 & 49 & 06.6\end{array}$		$\begin{array}{rr}180 & 15.9 \\ 1-9\end{array}$	Oct. 21.4.	Polaria... 47 5i 24. 0 ε Pegasi ... 25.9
			Mean 1 29 17.3	$9902925^{\prime \prime} .3$	Mtan. 4\% 5is 25. 0
$\begin{gathered} 1800 \\ 1000 \end{gathered}$	Slos 1 21 23. 4 Fint f t= 5ib. 0	Fant 6 2n. in Fiast 616 小杖	$\begin{array}{r} 1 \Omega 45 \\ \vdots 1.2 \end{array}$	Camp near fort Tolten. Oet.:21.0.	
			Me:4n 12150.4		

ASTRONOMICAL POSITIONS.

Station.	Latilade.			Longitude.		
	\bigcirc	1		-	1	"
Initial proint, stono monnd		00		101	5.1	50.9
Camp, Oetober 15, 16, Mouse River	48		57.1		41	01. 3
October 16, 17, Mouse River				101	34	44. 1
October 18, 19, Mouso River					51	$4 \times .6$
October 19, 20, Alkali Lakes	48	03	08.3	100	17	\%,
October ${ }^{\text {20, }}$, 21 , Girand Lako		00	4:		56	:37.:3
October 21,92 , Stony Lako		58			82	
October 23, 25 , near Totten	47	58	40.5		00	$4 \because 6$
Fort Totten flag-staff.						3-1

ASTRONOMICAL POSITION OF CAMPS.

Reconnaissance from Fort Buford to Forty-ninilh Parallel, June, 1574, by Licut. F. V. Grecue.

Chr.	Error on Washington time.	Error on local time.	Longitude from Washington.	Station and date.	Remarks.
$\begin{array}{r} 1455 \\ 953 \end{array}$		Slow 1347.7 Slow 19 53. 3	$\begin{array}{rrr} h_{.} & m . & 8 . \\ 1 & 47 & 41.0 \\ & & 41.0 \end{array}$	Furt Buford, Juno 20.	Chr Rates 14.5 Losing...:8.61 9.3 Gaining. 0.145
			Mrean 14741.0	$103{ }^{\circ} 55^{\prime} 20^{\prime \prime}$	
$\begin{array}{r} 1455 \\ 953 \end{array}$	Slow 20006.0 Slow 20729.2	$\begin{array}{lcc} \text { Slow } & 5 & 98.1 \\ \text { Slow } 10 & 51 .: 3 \end{array}$	$\begin{array}{r} 15637.9 \\ 37.9 \end{array}$	U. S. Ast. Station No. 1: hesur West 1’oplar livere, June :30.3:3. $1010^{\circ} 1: 3^{\prime \prime}: 5^{\prime \prime}$	Latitudes. 4. $100_{0}^{\prime \prime}$
			Mean 15637.9		
$\begin{gathered} 14 \% 5 \\ 9.3 \end{gathered}$	Slow 20140.9 Slow 20732.6	Slow 1133.3 Slow 17 96. 2	$\begin{array}{r} 15007.6 \\ \\ 01.4 \end{array}$	Crossing of Mig Muddy, June $2: 3.4$.	
			Mean 15007	$10.4{ }^{\circ} 31^{\prime} 50^{\prime \prime}$	Mcan.. 4s 0s 40.6
$\begin{array}{r} 1455 \\ 953 \end{array}$	Slow 200146.6	Slow 1023.8	$\begin{array}{r} 151 \underset{23.8}{20.4} \\ \hline 0.4 \end{array}$	```\Gammarenchman's Paint, on Missonri River, Jmne:24.94. 104053'40"```	$\begin{array}{rr} \text { Pularis .. } & 4^{2} 0 \\ \text { Sur } & 46.4 \\ & 12.0 \end{array}$
	Slow 20731.8	Slow 1611.4			Sun 12.0
			Mran 151 22. 1		Meath.. 4208029.2
$\begin{array}{r} 1455 \\ 95 \% \end{array}$	Slow 20151.7	$\begin{array}{lrl} \text { Slow } & 9 & 48.0 \\ \text { Slow } & 15 & 2.3 \end{array}$	$\begin{array}{r} 1520.8 .7 \\ 08.8 \end{array}$	C'amp on P'oplar River, June ©b.4.	$\begin{array}{ll} \text { Polaris .. } 43 & \text { l6 } \\ \text { Sun. } 1 \\ \text { Sun.... } & 1 \text { H. } 3 \end{array}$
	Slow 20731.1				
			Meac 15006.9	$105^{\circ} 0.4{ }^{\prime} 40^{\prime \prime}$	Mean.. $4516: 30.7$
$\begin{array}{r} 145.5 \\ 9.3 \end{array}$	Slow 20159.0 slow 20730.2	$\begin{array}{lrl} \text { Slow } & 8 & 32.8 \\ \text { Slow } & 11 & 09.1 \end{array}$	$\begin{array}{r} 15380.2 \\ 90.8 \end{array}$	Camp on Poplar River, June き...	
			Mean 15393.5	$105^{\circ} 84^{\prime} 00^{\prime \prime}$	Mean.. 484417.3

398 UNITED STATES NORTHERN BOUNDARY COMMISSION.

Reconnaissance from Littlc Rocky Creck to United States Astronomical Station No. 13, vit Fort Turnay, by Licut. F. V. Greene, 1874.

Chr.	Error on Washingtou time.	Error on Iocal time.	Longitude from Washington.	Station and date.	Renarks.
	$$	$\text { Slow } \begin{gathered} m .8 .8 . \\ \hline 3 \end{gathered}$	$\begin{gathered} \text { h. m. } \\ 15.53 .7 \end{gathered}$	Littie Rocky Creek,	Chr. Riates. 1455 Losing. . 2 . 74
$\begin{array}{r} 1455 \\ 953 \end{array}$	Slow 20780.7	Slow 8 33.0	53.7	July 4.3.	$\begin{aligned} & 953 \text { Gaining... } 0.518 \\ & \text { Latitudes. } \end{aligned}$
			Mean 15553.7	$106^{\circ} 46^{\prime} 31^{\prime \prime} .5$	490000
$\begin{array}{r} 1455 \\ 953 \end{array}$	$\begin{array}{lll}2 & 02 & 31.0 \\ 2 & 07 & 24.4\end{array}$	Slow 110.0 .2 Slow 6		U. S. Ast. Station No. 13, JuIy 8.35.	
			Mean 20122.8	$105^{\circ} 23^{\prime} 48^{\prime \prime} .2$	490000
$\begin{array}{r} 1455 \\ 953 \end{array}$	2 2 0985.8	$\begin{array}{ll}2 & 13.7 \\ 7 & 14.5\end{array}$	20019 11.0	July 6.4.	
			Mean 20011.5	$108^{\circ} 06^{\prime} 00^{\prime \prime}$	Mean. . 484500
$\begin{array}{r} 1455 \\ 953 \end{array}$	2 2 0228.28	$\begin{array}{ll} 1 & 0 \times .8 \\ 6 & 06.5 \end{array}$	$\begin{array}{r} \because 01 \quad 19.4 \\ 18.5 \end{array}$	July 7.34.	$\begin{gathered} \text { Polaris.a. } \\ \text { QOphinchi } \end{gathered} 4811.7$
			Mean 20119.0	$105^{\circ} 29^{\prime} 50^{\prime \prime}$	Mean.. te 6408.6

Reconnaissance of Riplinger Roat, by Assistant C. L. Doolittle, 1874.

Scxtant latitudes on Shave meridian, by Lieut. F. F. Greene.

Date.	Latitude.	Longitude.	Remarks.
September 4	$\begin{array}{lccc} & & \circ & \prime \prime \\ & \\ \text { Polaris } & \text { \&8 } & 45 & 49.6 \\ \text { a Aquilæ.......... } & & 12.0 \end{array}$	- ' "	
	Mean 434530.8	11146	Ou small lake.
September 2	490000	1114505.1	Initial point of Shaw meridian.
September 8	Polaris 473103.3	11148	About 1,500 feet east of flag-staff at Fort Shaw.

Sextant latitude on trail near spring, about half way between Fort Shaw and Fort Benton, biy Lieut. F. V. Greenc.

Date.	Latitude.	Longitude.	Remarks.
September 10			
.	Mcad 474316.5		

missouri river.
Longitudes and latitudes.

Chr.	Error on Washiugton time.	Error on local time.	Longitude from Washingtou.	Station aud date.	Remarks.
	7. m. s.	h.m. s.	h. m. 8 .		
1319	Slow $2093 \% .4$		$\underset{\sim}{14}$ 2is.		Chr. 1 Mates.
1514	$\begin{array}{lllll}\text { Slow } \\ \text { Fost } & 15 & 56 & 13.8 \\ 1 \% & 0\end{array}$	Fast 5913.6	~ 14 ~!.e	Sept. 10.1.	1319 Losiug. . 29.70
1.13	Slow 14780.6	Fast 2781.8			1514 Gaining.. 0 0.!3
1481	Slow 60056.4				285 1513
188	Fast 45.3			$110^{\circ} 39^{\prime} 48^{\prime \prime}$	
1319	Slow 210102.2				
1514	Slow Fast 1 14 54.0	Fast 2019	135.00	Oct. 1.0.	
1.513	Slow 14714.4				
1481 188	Slow 60047.5 Fast			$100^{\circ} 49^{\prime} 36^{\prime \prime} .6$	Latitudes.
1819	SIow 20939.4	Fast $\quad \sim 10.9$	2115	Sept. 13.	
1514	SLow 11510.8	Fast 5639.1	49.9		a Aquile .- 4900.6
$\stackrel{235}{1513}$	$\begin{array}{lllll}\text { Fast } & 9 & 56 & 09.3 \\ \text { Slow } & 1 & 47 & 04.1\end{array}$				Mean.. 474902.7
14,	$\begin{array}{rrr} \text { Slow } 6 & 00 & 55.3 \\ \text { Fast } & 44.2 \end{array}$	Fast 21240.5	56.3		
			Mean.. ${ }^{2} 1152.8$	$110^{\circ} 01^{\prime} 17^{\prime \prime} .8$	

Longiturles and lutitures－Continued．

Cbr．	Error on Wiash－ ington time．	Error on local time．	Longitude from Washington．	$\begin{aligned} & \text { Station aud } \\ & \text { date. } \end{aligned}$	Remarks．
		h．m． S_{0}	h．m．s．		
$1: 319$	Slor ： 0 00 48． 1	Slow 119.2	90822.9	Sept． 14.	Polaris ．． 4746 53． 2
1514	Flow 1 15 10.0	Fast 53810.8	29．4	－1．	a Aquilæ．．$\quad 53.9$
1．1．：	Rusw 1487	$\begin{array}{llll}\text { Fast } 12 & 04 & 31.6 \\ \text { Fast } & 21 & \mathbf{2 0 . 7}\end{array}$	20.34		Mean．． 474653.5
14－1	Slow 60054.9	Slow 35 5，	25.4		
1 c	linst 40．8	Fast 20911.9	23.1		
				$109609^{\prime} 22^{\prime \prime} .3$	
1：319	Sluw 20947.5	Slow 623，9	203836	Sept． 16.	Polaris ．． 472750.7
151.	Slow 11500.1	Fast 4216.0	21.1		a Aquilio．． 23 01．6
	liast a 56068	Fast 11 59）：3． 3	只 1		
151：	Slow 1 12 150.8	Fast 1680.4	26． 2		Mean．． 478950.1
14－1	Klow 60058.0 Fant 43．0	Slow 3 56\％ 58.8	27.3		
108	F＇ast 43．0	Fast ： 01111.4	28.4		
			Mean．． 203 20．c	$107054^{\prime} 32^{\prime \prime} .8$	
1：31！	Flow 20958	Slow 1131.0	15821.9	Sept． 18.	Polaris ． 474747070
1.11	Slow 1150808	－Fa－t $4: 316.4$	$2 \because 6$		a Aquile ．． 40.50 .5
cin			20.9 23.8		Mean $4^{\sim} 4^{*} 01 \mathrm{z}$
$1.1-1$	Nlow 6 ou 53．：	Sow 40.2 2－． 9	24		Meau．． 44 4، 01．${ }^{\text {a }}$
1－0	l＇ast $4 \div 2$	Fast 15904.4	27.3		
			Mean．． 1 5E23．4	$100^{-5} 33^{\prime \prime} .8$	
1：319	Slow 909 ： 5.4	Slow 10，1：3．9	15641.5	Sept． 19.	Polaris ．． 480187.5
1.181	－	Fint $41: 3 .: \%$	49.5		a Aquilæ ．． 36.
景：10	linst 96503.8	Fast $115.5 \cdot 8$			
151：3	Slow 1 ti 07．5	Fint 912.7	43.2		Mean．． 480136.8
141	Show 610158	Slow 40409.5	43.3		
10－	loant 41.7	Fast 1 \％\％ 2 －	$46.1 i$		
			Mean．． $1564 \% 8$	$106^{\circ} 133^{\prime} 4 \mathbf{4}^{\prime \prime} .8$	
1：31！	Slow $2098 \therefore 1$	Slum 1001．7	15350.4	Sept． 20.	Polaris ．． 430410.0
1.514	Shw 1 1504．1	Fust $5=53.8$	ㄷ․ \because		a Aquila ．．13．7
\％i：		1＇int $114!$ Siti．！	51.5		
$131:$ $11 \sim 1$		Fint li 14．7	57.8		Mean．． 430411.0
$11-1$		Finet 1 is l 13.4	62.1		
			Mean．． 1 －is 5it．${ }^{\text {d }}$	$105^{\circ} 322^{\prime} 32^{\prime \prime} .8$	
1：319	Slow ： 10 （thos	Nlow 1－： 0	15130.4	Supt． 21.	Polaris．． 480609
1.11	Sow 18.50 .65	Fint 318	81.3		a Aquilae．． 05.5
为	1：a	Fant 11117803.7	$\because-16$		
$1.12:$ 11.1		liast $4 \div 1.6$	$30 . \%$		Mean．．4－06 11：
1－	r．al 110	loant $15 \cdots 11.0$	：13．${ }^{\text {a }}$		
			Mean． 1 इो ：30．	$10405.83^{\prime \prime} 46^{\prime \prime} .3$	
1：19	How $\because 1003$	Slow $\because 1$ ：$\because: 3$	142301	S－Lt．	Polaris ．． 4×0 nen
1．1．1	Elow 1 1：l1－\％		$\because 1.1$		a Aquilie ．． 0311.5
1\％			2！！ 9		）$\overline{\text { 1－0：（1）5 }}$
1：1：1	－low f；＋in ol．		31.1		Mexher 4－0：3（12．5
15	l＇an 11.1	1،an 119911.0	$\therefore: 3.10$		
			Mean．． $14^{2} 81.6$	$10100^{\prime} 69^{\prime \prime} .8$	

Longitudes and latitudes-Continued.

Chr.	Error on Washington time.	Error on local time.	Longitude from Washington.	Station and date.	Remarks.
1319		$\begin{gathered} \text { h. m. } \\ \text { Slow } \\ \underset{20}{8.2} \\ 26.8 \end{gathered}$	$h . m .8$.		
1514	Slow 11501.5	Fast 32 34.6	14736.1	Near Fort Brford, Sept. 23.	$\begin{array}{rr} \text { Polaris .. } & 4758 \\ \text { a Aquilco .. } & 58.8 \\ : 0.0 \end{array}$
23.5					
$\begin{array}{r} 1481 \\ 188 \end{array}$					Mean.. 475909.8
			14736.1		
1319	Slow 21009.1	Slow 2435.1	14534.0		$\begin{array}{rrrr} \text { Polaris .. } & 48 & 02 & 09.8 \\ \text { a Aquila .. } & 01 & 13.8 \end{array}$
1514	Slow 11500.6	Fast 3034.9	33.7		
235	Fast 95558.1	Fast 114131.8			
1513	Slow 14710.4	Slow 133.3	37.1		Mean.. $4 \mathbf{S}^{\circ} 0141.3$
1481	Slow 60050.6	Slow 41513.8	36.8		
188	Fast 39.6	Fast 14617.2	37.6		
			Mean.. 14535.8	Sept. 24. $103^{\circ} 27^{\prime} 09^{\prime \prime} .8$	
1319	Slow 21011.8	Slow 2727.5	14944.3	$\begin{aligned} & 103^{\circ} 27^{\prime} 02^{\prime \prime} .8 \\ & \text { Sept. } 25 \end{aligned}$	Polaris .. 480656.7
1514	Slow 114159.6	Fast 2748.2	47.8		
235	Fast 95557.1	Fast 113842.6	45.5		
1513	Slow 14711.0	Slow 421.2	49.8		
1481	Slow $600 \quad 50.1$	Slow 4181801.2	48.9		
188	Fast 39.1	Fast 14397.3	43.2		
			Mean.. 14247.4	$102^{\circ} 44^{\prime} 56^{\prime \prime} .8$ Sept. 26.	
1319	Slow 21014.5	Slow 2926	14048.6		$\begin{array}{cccc} \text { Polaris .. } & 47 & 46 & 21 \\ a \text { Aquilae } & . & & 45 \\ 53.9 \end{array}$
1514	Slow 11458.7	Fast 25 48.6	47.3		
235	Fast 95556.1	Fast 113645.9	49.8		
1513	Slow 14711.5	Slow 619.1	52.4		Mean.. 474607.5
1481	Slow 60049.7	Slow 41956.9	59.8		
188	Fast 38.7	Fast 14131.8	53.1		
			Mean.. 14050.7	$10 \geqslant 015^{\prime} 46^{\prime \prime} .3$	
1514	Slow 11457.8	Fast 23 5:3.0	13850.8	Sept. 27.	$\begin{array}{rrr} \text { Polaiis .. } & 473133.3 \\ a \text { Aquilio .. } & 21.6 \end{array}$
			13850.8		Mean.. 473127.5
1319	Slow 21020.1	Slow 3309.9	13710.8 13.0 11.1 11.7 19.8 13.5	Sept. 23.	$\begin{array}{rrrr}\text { Polaris .. } & 47 & 20 & 58.8 \\ \alpha \text { Arquilz } & 28 & 21 & 16.8\end{array}$
1514	Slow 11456.8	Fast 9316.0			
235	Fast 955 5.4. 1	Fast 11 33 05. $\%$			Meau.. 472107.8
1513	Slow 14719.7	Slow 1001.0			
1.181	Slow 600 42. 8	Slow 49336.5			
18.3	Fast 37.8	Fast 13751.3			
			Meav.. 13712.0	$101^{\circ} 21^{\prime} 05^{\prime \prime} .8$	
1319	Slow 21092.8	Slow 3452.7	$\begin{array}{ll}135 & 30.1 \\ 31.1 \\ & 30.5 \\ & 30.7 \\ & 31.2 \\ & 32.1\end{array}$	Sept. 29.	$\begin{array}{llll} \text { Polaris .. } & 4707 & 118 \\ \text { a Aquilo } . . & & 05.6 \end{array}$
1514	Slow 11455.9	Fast ${ }^{2} 085.9$			
235	Fast 955 5:3.1	Fast $11: 3183.6$			
1513	Slow 14713.3	Slow 11 4.3.6			Mean.. 470708.7
1481 188	Slow 600 Fast				
188	Fast 37.4	Fast 13609.5			
			$\begin{array}{rl} \text { Mean.. } & 13531.0 \\ & 147 \\ 47 & 39.5 \end{array}$	$100^{\circ} 55^{\prime} 50^{\prime \prime} .8$ Fort Buford.	
1319	Slow 21006.3	Slow 22.86			By zenith telescope, Capt. Gregory :485
			14739.5		

N $\mathrm{B}-26$

Station-ErRors on the 49TH Parallel of latitude, LETWEEN THE LAKE OF THE WOODS AND THE ROCKY MOUNTAINS.

Stations.	I. Station crrors, mean $\mathrm{p}^{\text {arallel }}=0$.	```A. Computed deflec- tious 1 to 10 mi'es.```	F. Computed deflections 10 to 40 miles.	$\begin{gathered} D-(A+B) \\ \text { Unexplained deflec- } \\ \text { tions. } \end{gathered}$
1	-2.31		-. 007	-2. 30
2	$+1.52$		0	$+1.52$
3	+ 2.33		0	+ 2.33
4	+ 3.28		-. 15	+ 3.43
5	+ 3.50		- . 23	+ 3.73
6	+ 2.95	-. 42	- . 27	$+3.64$
7	+ 2.28	-. 09	-. 46	+ 2.77
8	+ 1.40		- . 36	$+1.76$
9	- . 21		- . 54	+ . 33
10	-1.78	-. 09	-1.10	+ 11 -. 53
11	-. 78	-. 15	-. 71	$+.11$
1%	+. 06		-. 65	$+.71$
13	- . 30		- . 46	+..16
14	-1.91		-. 63	- 1.23
15	- 2.93		- . 83	-1.40
16	- . 50		- . 10	+ . 42
17	- . 31		- 1.07	+ . 76
18	-. 04		- . 90	$+.05$
19	$+1.77$		-. 38	+ 2.1i
$: 0$	- 1.91		+.10	- 2.01
21	- . 81		$+.-0$	-1.60
22	+.98		$+1.50$	- . $5:$
d	- . 76		$+1.90$	-2.68
21	$+1.54$		+ 3.89	- 1.75
25	+ $\because .00$		+ 2.16	-. 16
2	+ 3.55		+ 9.0	$+.70$
27	+3.03		+ 8.0	+. 23
23	+ 1.61		+ 2.03	- - . 42
89	$+5.91$		+ 1.33-	+ 4.56
$: 3$	+ 4.30		+ . 99	+3.31
31	+ 2.09		+..95	$+1.14$
3:	- .67		-1.43	$+.76$
33	-5.39	-2.31	-1.77	-1.24
84	-7.05	-7.95	-1.37	$+.67$
35	-. 67		- 1.04	$+.37$
36	- .50		-1.00	$+.43$
37	- 1.17	\%	?	
33	-3.42	?	?	
39	-6.09)	?	?	
40	- 2. 42	?	?	
41	-1.00	?	?	
σ	$43^{\prime \prime} .97 \quad 43^{\prime \prime} .93$			$30^{\prime} .09155^{\prime \prime} .83$
Means..	2.146			$1^{\prime \prime} .442$

In the preceeding table, the column D contains the "Station-emors", or the discrepancies between each astronomical determination of the parallel and the mean parallel. The mean parallel is that with reference to which the sum of the discrepancies north is equal to the sum of those south; its
position is determined by referring all the discrepancies to one station and dividing their algebraic sum by 41.

It will be noticed that the first and last stations (Nos. 1 and 40) observed by this commission differ from each other by only $0^{\prime \prime} .11$ in latitude, although 346 miles apart. The least discrepancy between adjacent stations is between Nos. 35 and 36, where at a distance of 24.6 miles from each other, the astronomical latitudes differ only $0^{\prime \prime} .15$; the largest discrepancy is near the Sweet Grass Hills between Nos. 34 and 35, where the latitudes differ by 738 feet, or $7^{\prime \prime} .28$. The most northerly (No. 29) is nearly $14^{\prime \prime}$ north of the most southerly (No. 34). The mean deflection is $\mathfrak{2}^{\prime \prime} .146$.

These results are shown more clearly on the accompanying diagram. The upper figure represents a profile of the country constructed from observations with the mercurial barometer at the astronomical stations and from trigonometric leveling in the intermediate points; the lower figure shows the main featnres of the topograply for a distance of forty miles on each side of the line. The middle figure is a representation (exaggerated more than 200 times) of the relative positions of the astronomical and mean parallels. The scales are given for each figmre (pp. 267).

IIaving given the actual deflections, it now becomes interesting to see how far these can be accounted for by the attraction of masses above the surface, and how many of them must be referred to some attracting force under ground, where, as Pratt says, "we seem to have an mimited resource upon which to draw, to explain any anomalies of local attraction we may perceive on the surface."

The formulæ which I have used for calculating the deflections are those deduced by Lieut. Col. A. R. Clarke, R. E., of the British Ordnanco Survey. The whole discussion is found at lengtl in his "Acconnt of the Principal Triangulation", pp. 576-630, but I shall merely give an outline of the manner in which the deduction is made.
"The plumb-line is acted upon by gravity G in a vertical direction, and by the disturbing force A acting in a horizontal direction; the resultant of these forces $=\sqrt{A^{2}+G^{2}}$ acts in a direction which makes the angle $\tan ^{-1} \frac{A}{G}$ with the direction of gravity. When A is very small in comparison
with G, this angle is identical with its tangent." Using Airy's expression for gravity, Clarke shows that

$$
\begin{equation*}
\psi=12^{\prime \prime} .447 \frac{\mathrm{~A}}{\delta} \tag{1}
\end{equation*}
$$

in which ψ is the deflection caused by an attraction A, and δ is the mean density of the earth.

In order to find the value of A the ground in the vicinity of the station is divided into compartments by a series of radii and circles; and the attraction of one of these compartments is found to be:-

$$
\begin{equation*}
\mathrm{A}=\rho\left(r^{\prime}-r_{t}\right)\left(\sin a^{\prime}-\sin a_{t}\right) \frac{h}{r} \tag{2}
\end{equation*}
$$

in which: $\quad \rho$ is the mean density of the compartment.
h the mean lieight of the compartment.
r^{\prime} and r, the bounding radii.
a^{\prime} and a, the azimuths of bounding radii.
$r=\frac{r^{\prime}+r_{1}}{2}$
It would be extremely inconvenient to compute the attraction of each compartment separately, and the form of (2) immediately suggests a law of division of the lengths and direction of the radii, which will avoid this, and make the second member of the form, constant $\times h$. This law evidently is to make the lengths of the radii in arithmetical progression, and their directions such that their sines shall be in arithmetical progression.

Denoting then by (r) and (s) the common difference respectively of the lengths of the radii and the sines of their azimuths, and by H_{n} the sum of the mean leights of all the compartments between the nth and $n+1$ th circles on the north, and by I_{n}^{\prime} the same on the south, we have:-

$$
\begin{equation*}
\Sigma \mathrm{A}=\rho(s) \leq \frac{\mathrm{II}_{n}-\mathrm{II}_{n}^{\prime}}{n+\frac{1}{2}} \tag{3}
\end{equation*}
$$

and consequently:

$$
\begin{equation*}
\psi=24^{\prime \prime} .894 \frac{\rho}{\delta}(s) \leq \frac{I I_{n}-I_{n}^{\prime}}{2 n+1} \tag{4}
\end{equation*}
$$

ρ may be taken at $\frac{1}{2}$ since the arerage specific gravity of rocks varies
from 2.5 to 3.0 , and the mean density of the earth is about 5.5. If the radii are so drawn that their azimnths are $\sin ^{-1}\left(\frac{1}{10}\right) \sin ^{-1}\left(\frac{2}{10}\right)$, etc., (s) becomes $\frac{1}{10}$; and if H_{n}, etc., be expressed in feet the formula becomes, for $n+1$ circles:
$\psi=0^{\prime \prime} .0002357+\left(\frac{\mathrm{H}_{1}-\mathrm{H}_{1}^{\prime}}{3}+\frac{\mathrm{H}_{2}-\mathrm{H}_{2}^{\prime}}{5}+\ldots \ldots \frac{\mathrm{H}_{n}-\mathrm{H}_{n}^{\prime}}{2 n+1}\right)$
In order to use this formula contoured maps are necessary for finding the mean heights; our stadia surveys supplied these maps in the immediate vicinity of the station, and for distant attractions I have used 200) feet contours on the diagram to which I have before referred.

In the preceding table the system of deflections A was calculated with radii whose common difference was 1 mile, and which extended from 1 to 10 miles, except at station 34, where the common difference of the radii was 2,000 feet. The system of deflections B was calculated with radii, whose common difference was 10 miles, and which extended from 10 to 60 miles Deflections A have been calculated at only six stations-those, namely, in the vicinity of the Pembina and Turtle Mountains, and the Sweet Grass Hills. All the other stations from 1 to 36 are surrounded, in their immediate vicinity, by level plains, on'y broken here and there by the gorge of a stream; the maximum deficiency of attraction of any one of these ravines is $0^{\prime \prime} .3$, and this is less than the estimated uncertainty of the numbers in column D .

Beyond station 36, and in the Missouri Coteau, we have not sufficient data for contours.

It may seem strange at first that the distant attractions should be so much larger than those nearer the station; but this must always be so in a country like the plains east of the Rocky Mountains, where there are few abrupt irregularities, but where large tracts of comntry have a gradual tilt in the direction of the drainage. For instance, let us suppose a tract of country with a radius of sixty miles, which has everywhere a miform slope to the north of only 2 feet in a mile; the plumb-line at the center of this tract will be deflected less than $0^{\prime \prime} .04$ by the attraction within the 10 -mile circle, but $0^{\prime \prime} .36$ by that between the 10 and 60 mile circles.

By inspecting the table given above, we see that some of the observed deflections are accounted for by the irregularities of the surface and some are not.

The column $D-(A+B)$ contains the unexplained deflections, the mean of which is $1^{\prime \prime} .442$, or about two-thirds the mean of the observed deflections. Only one-third of these deflections is then accounted for by the irregularities of the smface. If we correct the latitudes by the deflections $A+B$, the mean parallel will be $0^{\prime \prime} .39$ north of its present position. ${ }^{* * * *}$

The results of this investigation may then be summarized as follows: On the 49 th parallel, between the 95 th and 114 th meridians, the average meridional deflection of the plumb-line is $2^{\prime \prime} .146$. At 29 stations the deflections calculated from the irregularities of the surface are in the same directions as those observed, and at 12 stations they are in the opposite direction. The residual deflections, unexplained by the irregularities of the surface, have an average value of $1^{\prime \prime} .442$, or about two-thirds of the whole deflection.

It is possible that these results might be modified by more extended and detailed topographical survers than it was possible for us to make consistently with our prime duty of marking the parallel beyond the possibility of dispute and without unnecessary expense.
F. V. GREENE, First Lieutenant of Engineers.

APPENDIX H

To

report 0f capt. W. J. TWINING,
 CORPS OF ENGINEERS,

CHIEF ASTRONOMER.

REPORT

0 O
TIIE DECLINATIONS OF THE STARS EMPLOYED IN LATITUDE WORE WITH THE ZENITH TELESCOPE, EMBRACING SYsTEMATIC CORRECTIONS IN DLSclination deduced for various autionities. and a catalogue of FIVE IUNDDED STARS FOR TILE MEAN EPOCII 18\%\%,
iy
ASSISTANT LEWIS BOSS, ! NOW DIRECTOR OF DUDLEY OBSBRVATOLY.

Dudley Oiservatore, Aluany, λ^{\top}. J., Fcbutury $21,187 \pi$.
Dear Sir: After mexpected delay I have the honor to tranmit, herewith, my report on the acenracy of the declinations adopted by the Uuited States Commission in the latitude work of the Northern Foundary Survey. In doing this, permit me to thank you most cordially for the kind interest and generons snjport which you have thronghoat accorded to this undertaking. The sense of obligation is the more lecenly felt, when I reflect upon the many imperfections and defciencies of the work; but your intercourse with me has been uniformy such as to canse me to forget the debt, and leaves only the most pleasint recollections.

I have the honor to be, very respectlinly, your obedient sersant, LEWLS BOSS, Director of Dulley Oisercatory, and late Assistent Astronomer of the Euited Stutes Northern Bonulury Commission.
Cipt. Williail J. Titiniage,
Unitcel States Enginecrs, Chirf Astronomer and
Surveyor of the United states Northern Boundary Commission.

INTRODUOTORE.

The methor of obtaming latitndes with the zenith telescope, which was adopted by the United States Northern Bomndry Commission, rendered it necessary, in 1s: to calculate the declimations of a large mamber of stars. The short time allowed for preparation rendered a critical discussion of these star-places quite impracticable. The declimations adopted in the work of 1872 were, therefore, derived from a limited number of authorities; but were subsequently revisce whenever additional material
could be secured. Thus the catalogue for 1874 was compiled from nearly all the arthorities which conk be obtaiued from the library of the Uuited States Naval Observiltory.

The mothod of reduction was substantially that employed by Argelander in the sereuth volume of Bom observations.* The principal deviations from this plan consisted in the smaller weights given to declimations from the older anthorities, and in aplying no systematic corrections to those of a mean date later than 1860 .

Upen the accuracy of the adopted declinations dejend the latitudes of twenty-two stations in the vicinity of tho forty-ninth parallel. There is every reason to believe that for the majority of the stations the error in location due to instrmmental causes is practically insignilicant, amb that if any considerable correction is needed it may sately be ascrabed to systematic enor in the ralues of declination assigued to the determininis stars.

To ascertain the numerical linits between whioh the value of sneh a correction is likely to exist, and, as lar as practicable, to compote its actual amount, was the onginal purpose of this disenssion.

When the work was about half completed, it appeared that the systematic correc. tions and the declinations of the principal stars, adopted as standard in this paper, winht prove acecptable to others engaged in certain classes of astronomical reductions. This circmastance led to a consiflable enlargement of the original scope of the mork. Only stars of the northern lemisphere, with a lew in the dist ten degrees of sonth declination, had hitherto been considered. The list was now extended so as to include all the stars of the American Ephemeris.

Quite recentls, upon my appointment to the astronomical direction of Dudey Onservatory, the work recelved an additional impulse from my determination, in reducing observations mate with the tamsit ciacle, to nse a stamdard catalogne in derlination as well as right aseension. This comse was adopted for the reason that, Whemever the phaces of the principal fised stars can be predieted from observations already made, with greater aceuracy than they can be determined at any one observators by a single series ot a few sears lamation, a desire for the greatest economy of labor and aceuracy in results should dictate one of two comrses: either a special and digoman researeh, having in vew the independent determination of the places of a smatl mamber of the bighter stans; or, the use of a stambat catalogne, compiled from the best arailable someer, to which the observations of all other objects shonld be essentially refered.

It is much to be regretted that owing to mavoidable circumstanees this change in phan was made too late for the most advantagcons disposition of materiats available fin the purpese in view. On the other hand, the corrections and the resulting declinations ane poohaly very mar those which womh have resurted hom a more systematic ambldabote disomsson, adoptior the same general prinejpes.

This considerable extusion of the origimal phan was detemine mpon at a time when it was ont of the question that the comphtations shmuld be completed during the waintence of the boumbury commission; su that in the perfomance of the work it has been meressar for me to incor many obligations. For material assistance I an

[^8]Without his generous interrention it would have been impossible for we to have completed the worls in its present extent, within the prescribed limits of time. For further aid, I am noder the greatest obligations to the office of the American Ephemeris and Nantical Alwanac ; and to the Dudles Observatory, where the later computations have been carried ou partly for the purpose of constructing a standard catalogue of declinations, for use with the trausit circle, as already explainect.

The services of sereral computers have been engaged from time to time, generally for short periods. For such services, I am chicfly indebted to Assistant C. L. Doolittle, since Professor of Mathematics and Astronomy in the Lehigh Universitr, Pemisylyamia, and to Δ ssistant O. S. Wilson, who have labored on the work in a most disinterested and competent manner. My thanks are also due to Thomas IR. Featherstonhangh, A. M., tormerly assistent at the Dudley Observatory.

The facilities of the Observatory at Washington were most kindly estended to me bs Admiral B. F. Sands, Superintendent, and by lis snceessor ju office, Admiral C. Il. Daris. To the rarions members of the astronomical cons at that institution I desire to express my acknowledgments; particularly to I'rofessors Lastman, Larkness, and Nomse, for special courtesies.
prelininait statement and generil play of the work.
It is well known that troublesome systematic diseordances exist even among independent declination determinations of the highest rank, while the differences which were fond between the earlier results of Bessel, Brimkley, and Pond, and even between different results by the same astronomer, were such as to provoke an acrimonions con troversy and to lead to most erroneous theories. The science of exact measurement of zenith distances was no donbt very much stimntated by the latter circumstances, for in the period extending trom $18=0$ to 1850 we have mere than one-half the entire material now arailable for researches upon the absolnte declinations of the fundamental stars.

For the parpose bere proposed, it will not he necessary to make any extensive enumeration of the attempts which have been made from time to time to ascertan and reconcile these differences. Since the appearance of Bessel's reduction of Bradley's observations,* the miform practice has been to consider these phaces for 1755^{2} as absolute, and to compare them with the results of a single modern series, or with the mean of two or more. With the declimations and proper motions thus formed, the corrections necessary to reduce any given series to the standad could be ascertaned. Maider compard a number of modern catalognes with Pond's Catalogne of 1,112 stars, the proper motions being derived from the Fendementa. \dagger Dr. Gond reduced the starphaces now alopted in the American Ephemeris in a smidar manor, using for the modern catalogue the Abo Catalogute of the late Dr. Argelandert Dr. Wiolems corrected the declinations of Besscl's Tabute Regiomontana, using fir that I urpose eleven modern catalogues. Many series of observations were adapted to the system thas formed throngh the labors of Dr. Argelander and Dr. Auwers.§ The latter has com-

[^9]tributed an exhanstive imdepement investigation of declimation corrections in Astronomische Fuchrichten, Band 64 (1少. 30510352). Takiug the Abo Catalogne, referred to the find amenta, as the medinm of comparison, the corrections necessats to retuce the principal modern series of observed dectinations to the system of the abo are first ascertained and atterward corrected by the usan of foniteen catalogues jadged most suitable for the promes, iu such a way that, for the epoch 170 a , the system is that of the Fundumentu as at first; but for the mean moderu date (about 183i) that of the mean of the fourteen catalognes. Shortly afterward (A. N., Dd. G4, p. 193) Dr. Anwers used these corrections in disenssing the declinations of thetrefour fundamental and wine circumpolar stars. Similar disenssious and compilatious relating to star dechinations

It is evilent in the cases ciocl that, it we denote bs $1 N$ the correction required hy a normal system for the epoch T, which conterponds to the mean of the modern eatalogues emplosed in its formation, and by $\perp B$ the concetion requind for the same system-or what is the same thing, Bessel's Fundementa-at the eqoeh 1750, the correction of the system for any other epoch $T^{\prime \prime}$ will be,

$$
\left.(\lrcorner B-\lrcorner N) \frac{T-T^{\prime}}{T-1.50}+\right\lrcorner N .
$$

If we pht $\lrcorner \mathrm{N}=0$ and $T=1835$, we shall have as the correction of the normal system, when $T^{\prime}=1505$

$$
\left.-\frac{1}{2}\right\lrcorner B .
$$

Thns, if declinations are sernired for the epmed 1sin, a single determination at that date having weight \bar{s}, when the unit of wight is the corresponding detemination ley Latades, is wothy of mure coufindence than that which is derived from a disenssion whith assumes the Fundmenter as ahsolnte at the epoch 1750, eren though modem determinations be absolutely withont error for the epoch 183.5

After the time of Bradiey we met with no important independent determination of declination mutil that of Piazzi for the mean equeh 1800. Dat the instrument nsed in this series was entirely inadequate for the purque, and athongh all the elements of reduetion-- becessim, nutation, and abration exepted-were derived from the observations themselves, the exechtion of the work is mot such as to command our entire momberne. Pasing over the ciremphar cataloge of Groomhidge (epoch 1810), the first which apheals to answer onr requirements results from whervations made with
 maty be regaded as the lisst example in the new era of dectination determinations with meridian instruments. The fura of disenssion there emper has, with slight medifi(ations, sersm as a mond for simitar ind pendent researehes of the highest moder ever since that time ; and sime this eporb there is no lack of material for the fomation of stamand bataduges of derlimation.

[^10]It will be shown that the interral of time between the gronp of early determimations by Dessel (1821), Struvo (1821), and Argelander (18:9), aud the later ones at Leiden, Melbourne, Greenwich, and Washington observatories (not to mention intermediate catalogues), is quite snfficient for an independent judgment as to the approsimate aceuracy and consequent weight of Dradley's results, and that a reliable system of corrections to the various catalogues may be founded on a discussion of recent catalogues alone, takiug as the earliest that of Dessel for the mean epoch 18.

Having premised this mach, for the purpose of a more exact understanding of the scope and coutents of the succeeding pages, the successive steps and objectire points will be indicated in brief. These are:-

1. The selection of stars to form the catalogue, and particulanly of a list of stars most frequently observed, which shall serve as the basis of the normal system and as a medium of comparison between the rarions series of observations.
2. The formation of anproximate positions and proper motions for the fictitious epoch 1875.0. These will be necessary for the compatation of precession coeflicients. Furthermore, the ralues of the assumed o and μ^{\prime} should be fair approximations, tor reasons which will appear in the proper phace.
3. The computation of precession coeficients, and with the aid of these (and in the case of close cireumpolar stars by the rigorons formule) the reduction of the individnal declinations to the required epochs, in order that the assumed declimations maty he corrected by comparison with the observed values.
4. The selection of catalognes and series of observations, which shath serve in varions stages of the work to correct the assumed deelinations. These will be divided into three classes.
5. The application to the declinations given by these catalosues of certain eorrections deemed advisable from an inspection of the constants and mothouls of reduction, and umerons compilations of the results of se reval suceessive yearsat the same observatory into siugle catalogues embracing ponvenient intervals of time. Tluese convetions are such as ean be determined without reconrse to comparisons of the determinations of one instrmant with those of another. The compilations are for the purpose of rendering available a large mass of material that would otherwise be inconvenient or unsuitable for the purpose here proposed. Generally, published catalogues, which combine in one determination the results of several years, have been used without change.
6. The collection of results and formation of the approximate normal srstem from a diseussion of the declinations of the fundamental and prindipal ciremunar stars, using for this purpose only those series of observations which are sumpsed to give determinations of sulficient independence aind weight.
7. Sy the aid of the approximate corrections to the selected list of authorities to enlarge the number of standard declinations, and, in turn, with these to derive the systematic correction required by Bradey's observations as reduced lyy bessel in the Fundamenta Astronomice.
8. With this correction together with those presionsly fomm, and with an increased list of stars, to ascertain corrections to the assumed declination and proper motion of each star; and taking them as a basis, to compute definitive corrections and weights for all the eatalogues exeept those of the thind elass; with which fimal weights and

414 UNITED STATES NORTIERN BOUNDARY COMMISSION.

corrections, the defintive declinations are comphted (as they appear in the eatalogne at the end of this paper), a few excepfed which depend on a small number of aththorities.
9. The computation of a few systematic corrections to catalogucs of the third class; and the formation of all rematining declinations for the fiual cataloguc.
10. A fer deductions relative to the accuracy of the decliuations formerly atopted in obtaining latitudes on the Northern Boundary.

SECTION I .
 SELECTION OF STARS.

The preliminary catalogue necessarily embraces all fle stars used in zenith telescope work ot the United States NortLem Bonudary Commission, 1870-1875.

All of the stars of tho American Ephemeris for which apparent phaces are given in that publication are adhed to this list, Sirius and Proegon excepted. The great majority of these stars are required for the purpose of constructiag the normal system. These were supplemented by a eonsiderable number of the Poulkova Hauptsterne, preference being gisen to those most frequently observed at Poulkova and elsewhere.

At the suggestion of others a few stars were added which might servo for latitude determinations with zenith teleseone on or mear the parallel of 390 north latitude.

Ehectirels, the selection may be regarded, for convenience, as embracing at least firedifferent classes of stars:
a. The fundamental and pincipal circumpolar stars which hare been by common consent quite unirersally observed.
b. A class of stars less frequently observed, but with fle (bservations so distributed in time, that reliable determinations of declination and proper motion can be had withont recourse to Bradey's observations; and which, together with the fumdamental stars, may serve to construct an apmoximate normal system for the epoch 1755.
c. A dass of stars similar to the last, but lacling in satisfactory authonities for the epochs ineluded between 1820 and 1840. After the systematic corrections of the alder anthorities aro aseetained, these will serve equally with the preceding in determining the systematic corrections required be the pincipal authorities.
d. A considerable number of stars, which do mot furnish proper material for ascertaning systematic corrections to the pancipal authoritics, but which will be found rahuble for the purposes of perfectins the system of corrections adopted for a few cataloghes of math weight, and for exteming the system to cafalogues deficient in observations of the tirst there elasses of stars.
e. The remaning declinations are such as depend on few anthorities, and are practically of no servite in ascortaming ssstemate corrections. Ther behong to the class of stars selected and used for observation with the zenth telescope; and it isdesirablo to ealculate their dechations with whaterer precision ean be attained by the use of all athorities that are conrenienty aneessible.

SECTION II.

APPROXIMATE FOSITIONS FOR 1S75.0.

Our pan contemplates the assumption at a giveu epoch of approximate calues of the right ascension and declination, and of proper motion in both co-ordinates. These will serve for the accurate computation of the precession cocflicients. For this purpose it is simply vecessary to avoid errors which are large enongh to introduce appreciable errors in those terms of precession in declination that depend on the higher powers of the time, and in the geometrical part of the ammal variation. It is, however, desirable in order to facilitate subsequent computations that the declination and its proper motion should be so determined that the corrections they may require will not be iuconreniently large; and that the difference between the assumed and concluded proper motions will not be so large, that the neglect of the small difference between the adopted mean epoch of observation for cach catalogne and the particmar mean for a given star will serionsly affect the final result for declination and proper motion.

The epoch of reduction selected for the catalogne is the fictitious or Besselian ероси 1875.0.

Right asconsion.

For the fumdamental stars this is copied from Professor Newcomb's paper, Appendix III., Wastington Observations for 18i0. The proper motions are from the same source.

Exeept for stars sonth of declination -30°, the remaining right ascensions are taken from the American Epluemeris for 1875 , as far as possible. The following inconsiderable corrections are, howerer, appliced in most cases. They are intended to rednco these right asceusions to the staudard of Irofessor Neweomb's paper, above cited.

IIour.	Correction.	Hour.	Correction.	Ilour.	Correction.
	+8. 03	ε	8. 02	16	8. $+\quad .0 t$
0	$+.03$	$\stackrel{8}{0}$	二.03	17	+.0t
1	$+.02$	9	-.02	18	$+.02$
\because	+.01	10	-.02	18	$+.03$
3	+.01	11	-. $0 \cdot{ }^{2}$	19	+.03
4	00	13	-.01	$\therefore 0$	+.03
5	-. 01	13	-. 01	$\because 1$	+ . 03
i	-. 01	14	-. 00	2	--.03
7	-. 02	1.5	$+.01$	2:	$+.133$
8	-. $0: 3$	16	+.01	21	+ .0\%

The proper motions, in A. R., of these stars were taken from the Star Tables of American Ephemeris (Wn., 1869). They are moetly those of Dr. B. A. Gondis Stambard Places of Fundumental Stars, United States Const Surey, secomd cdition (Win, 1866). For other stars the A. R. and h were computed, it possible, from at least two good modern anthorities compared with either Bralley, P'iazzi, or Grombridge, and
oreasionally with all three. The authorities were first corrected by the tables of Professor Newember paper just mentioned. In a few cases where older authonties were Wanting the assumed A. li. and μ were compated with greater care.

Declinations.

In compating assmed declination and proper motion in declination, the preference was given: first, to the Northeru Bonndary catalogue of latitude shars for the epoch
 and contained in Gencrallbericht der Europïischen Grodmessung fïr 1861;* third, exchnding stars sonth of - 300 declination, to the declinations for 185.0 of the American Fphemeris; and fourtl, in the failare of these three sonres of suphly, declinations were computed in a manner entirely analogons to that adopted with right ascensions, cesept that no systmatic corrections were applied. Nealy all the declinations of stars sonth of - 340 declination were formed hrom the mean of Mr. Stones recent catalogne of Maclean's observations at the Cape for 1860, and the First Melbourne Catalogne tor 1870, the assumed proper motions heing copied from the latter. In "Details of Corrections to Assumed Places" the preliminary a and \hat{o} with their assumed variations are given at the head of the table for each star.

SECTION MI.

COMPUTATHON OF PRECESSION TERMS.

The constants of leters and Struse have been adnated. They aret:-

$$
\begin{aligned}
& n=20^{\prime \prime} .0607-0^{\prime \prime} .0000803(t-18 i(0) \text {, }
\end{aligned}
$$

where t is expressed in sears. These are now in very general nes, and probably are not fir from the cormet values. \ddagger

At auy rate, since our object is mot so monch to aseertain the exact amonnt of fromer motion as to know the total change produced hes the amal movement, great
 The dfect of moper motion has heen considered in every case, and fir this purpose the formatic siven by Professor llill in Star Tablesut the Americm Ephemeris (p, xix)
 woulert of small torms. So that, if the first and serond differential coeflicients in hoth

coordinates are known, the computation of $\frac{7^{3}}{d t^{3}}$ will be sufficiently rigorous, simple, and expeditions. In competing

$$
-\frac{n}{n_{1}}\left(\frac{d^{2} u}{d t^{2}}+\frac{n t^{2}}{d t}\right) \sin \alpha
$$

$\frac{d, l}{d t}$ is usnally withont sensible influence on the result. Let
a and $\bar{y}=$ respectively the right ascension and declination of a star,
z and $p^{\prime}=$ the corresponding proper motions,
n and $m=$ coefficients of precession,
$\frac{d n}{d t}$ and $\frac{d m}{d t}=$ their respective annual rariations.

We slall bave:-

$$
\begin{aligned}
& \frac{d a}{d t}=m+n \sin \alpha \tan i+u \\
& \frac{d \grave{\partial}}{d t}=n \cos \alpha+n^{\prime} \\
& \frac{d \mu}{d t}=n \mu \cos \alpha \tan \hat{y}+n \mu^{\prime} \sin \alpha \sec ^{2} \hat{i}+2 \mu \mu^{\prime} \tan \hat{o} \\
& \frac{d \mu^{\prime}}{d t}=-n \mu \sin \alpha-\frac{1}{2} \mu^{2} \sin 2 \Delta \\
& \frac{d^{2} a}{d t^{2}}=-\frac{m}{n} \frac{d n}{d t}+\frac{d m}{d t}+\frac{d n}{d t} \frac{1}{n}\left(\frac{d a}{d t}-n\right)+n\left(\frac{d \alpha}{d t}+n\right) \cos \alpha \tan \delta \\
& +n\left(\frac{d \hat{\partial}}{d t}+\mu^{\prime}\right) \sin \alpha \sec ^{2} \dot{\partial}+2 \mu_{n}^{\prime} \tan \delta . \\
& \frac{d^{2} \dot{\theta}}{d t^{2}}=+\frac{d n}{d t} \frac{1}{n}\left(\frac{d \hat{c}}{d t}-v^{\prime}\right)-n\left(\frac{d x}{d t}+n\right) \sin \alpha-\frac{1}{2} u^{2} \sin \because 20 \\
& \frac{d^{3} \partial}{d t^{3}}=-2 \frac{d n}{d t}\left(\frac{d \alpha}{d t}+\frac{2}{2}\right) \sin \alpha-n\left(\frac{d^{2} \alpha}{d t^{2}}+\frac{d \pi}{d t}\right) \sin \alpha-n\left(\frac{d \alpha}{d t}+n\right)\left(\frac{d \alpha}{d t}\right) \cos \alpha .
\end{aligned}
$$

If a, b, m, and $\frac{d m}{d t}$ are expressed in time, and the factor $\frac{1}{k_{v}}$ supplied, when necessars, we bare the following tables of logarithmic ralues for the coefficients, the argnments being the year, and quantities depending on the pace of the star, except for the first table, which simply gires the ralues of m and n for rarions epochs:-

lear.	m	\%,	$\log n$	$\log \frac{n}{15}$
	8.	1		
1750	3.0690\%	20.0050	1.30210\%	0.126318
175	3.07035	20.0629	1. $30: 393$	0. 124303
1800	3,0708.	20.000%	1. $30.3: 461$	0.109
18.5	3. $0: 129$	$20.05-5$	1. $30 \% 3494$	0. 12020
1859	3.07177	20.0564	1.30:259\%	0.126162
1575	3. $07 \% 25$	20.0542	1. 30 ± 2059	0.106115
1900	3.0725:2	20.0521	1.302159?	0.12006

N B ——27
$\frac{d^{2} \alpha}{d t^{2}}$

Year.	Coustant,	Log. coefficients of-			
		$\frac{d r}{d t}-\mu$	$\left(\frac{d a}{d i}+12\right) \cos a \tan \delta$	$\left(\frac{d \delta}{d t}+\mu^{\prime}\right) \sin a \sec ^{2} \delta$	$\mu \mu^{\prime} \tan \delta$
	+.00003000	(-10)	$(-10){ }^{5.98801}$	$(-10) 4.81192$	(-10)
1755	+.00		5.967	4.81108	${ }^{\text {4. }}$
1800	3240	4. 1333660	5.95792	4.81183	"
1895	321	4. $63: 31111$	5.94 .887	4. 11178	"
1850	3291	4. $6: 3376$	5. $9 \times \sim 83$	4. 81174	"
1875	3201	4. $6: 3880$	5. 91978	4.81169	"
1900	+. 00003222	$4.63385 n$	5.95773	4.81164	"

$$
\frac{d^{2} \omega}{d t^{2}}
$$

Year.	Log. coefficients of-		
	$\mu^{2} \sin 2 \delta$	$\left(\frac{d s}{\mu^{\prime}}-\mu^{\prime}\right)$	$\left(\frac{d a}{d t}+\mu\right) \sin a$
1750	(-10)	(-10)	(-10)
1775		4. 6.412	$7.1641059 n$
1800	"	4. 13.660	7. 164012 ${ }^{\text {a }}$
1825	"	4. $63: 171 n$	7. 16096
1850	"	4. 633386	7. $16391 * n$
1875	"	4. 63300 n	$7.163072 n$
1900	"	4. 63385 "	7.163825 n

$\frac{d^{3} \cdot}{d t^{3}}$

With these tables, and with the assumed values of a, \hat{n}, μ, and $\mu^{\prime}, \frac{d x}{d t}, \frac{d^{2} \alpha}{d t^{2}}, \frac{d \hat{d}}{d t}, \frac{d^{2} \hat{\prime}}{d t^{2}}$, and $\frac{d^{3} \partial}{d t^{3}}$ were computcd for the epoch 1855 for every star. The valnes of all these will be fomed in the definitive catalogne (eul of this Appendix), except that of $\frac{d i}{d t}$, for which the catalogne gives the corrected ralue. The assumed value of $\frac{d y}{d t}$ and $\frac{d x}{d t}$ will be found with assumed values of a and δ at the head of the table for each star in "Details of Corrections to Assumed Places."

Having now assumed dectinations and variatious in precession for 1875.0 , the position for any other date, T will be:-

$$
i+\frac{d \hat{\partial}}{d t}(T-1875)+\frac{1}{2} \frac{d^{2} \hat{\theta}}{d t^{2}}(T-1875)^{2}+\frac{1}{6} \frac{d^{3} \partial}{d t^{3}}(T-1875)^{3} .
$$

By this formula the declinatious of all the Nantical Almanac stars, with otbers most frequently observed, were computed for the dates $1755,1800,1810,1820$, and for each succeeding year until 1875. Stars less frequently observed were computed only to those dates actually required. The compatation in every part was earefully serutinized, and either checked by differences or duplicated.

For stars within 5° of the pole, and for one or two others at particular dates, the abose proceeding will not auswer. These were rigoronsly reduced by the trigonometrical formulx to the required dates before and to every five y cars atter 1820 from places and proper motions assnmed for the epoch 1855. The following formule, taken from Chanvenet's Spherical and Practical Astronomy (sol. i, p. 615), were nsed :-

$$
\begin{aligned}
p & =\sin \theta\left(\tan \hat{i}+\tan \frac{1}{2} \theta \cos A ;\right. \\
\tan \left(A^{\prime}-A\right) & =\frac{p \sin A}{1-p \cos A} \\
\tan \frac{1}{2}\left(\hat{o}^{\prime}-\hat{\partial}\right) & =\tan \frac{1}{2} \theta\left(\frac{\cos \frac{1}{2}\left(A^{\prime}+A\right)}{\cos \frac{1}{2}\left(A^{\prime}-A\right)}\right)
\end{aligned}
$$

in which

$$
A=a+z+\vartheta, \text { and } A^{\prime}=a^{\prime}-z^{\prime}+\vartheta^{\prime}
$$

α and a^{\prime} being respectively the assumed and required right ascensious, ϑ the planetary precession, and \approx, z^{\prime}, and 0 are found from the formule: -

$$
\begin{aligned}
& \tan \frac{1}{2}\left(z^{\prime}+z\right)=\tan \frac{1}{2}\left(y^{\prime}-y^{\prime \prime}\right) \cos \text { 들 }\left(\varepsilon_{1}{ }^{\prime}+\varepsilon_{1}\right) \\
& \frac{1}{2}\left(\tilde{z}^{\prime}-z\right)=\frac{\frac{1}{3}\left(\varepsilon_{1}^{\prime}-s\right)}{\tan \frac{1}{2}\left(\mu^{\prime \prime}-\frac{\prime \prime}{\prime \prime}\right) \sin \frac{1}{2}\left(s_{1}^{\prime}+z_{1}\right)} \\
& \sin \frac{1}{2} 0 \quad=\sin \frac{1}{2}\left({ }^{\prime \prime \prime}-y^{\prime \prime}\right) \sin \frac{1}{2}\left(\varepsilon_{1}{ }^{\prime}+\varepsilon_{1}\right),
\end{aligned}
$$

where the symbols used have the same signification as in the place from which the formulx are cited. Reckoning from 1800, we have $\vartheta=+\tau^{\prime \prime} .584$. For the other quantities I have computed the following table:-

Table giving culues of $n^{\prime}, \approx, \approx^{\prime}, \frac{1}{2} 0, \log$ ．tan $\frac{1}{3} 0$ ，and log． $\sin 0$ ，in the formulce for redueing star places，from 1855，to other alates．

Date．	ϑ^{\prime}	z	\sim	120	$\log \cdot \tan \frac{1}{2} \theta$	$\log \sin \theta$
	＂	＇＂	11		－10）	－10）
175\％	－ 7.293	－ 3831.403	－3389．890	－ 16 42．994	7．6－65806n	7.9878963 n
1790	－ 1.236	－2505．201	－24 58．399	－ 10 51．90．	7． $4997603 n$	7．8007864 n
1800	000	－ $9114.8=1$	－ 2106.567	－ 911.601	7．427：008n	7.723277 n
1－05	$+0.750$	－ 1919.75	－ 1910.650	－821．450	7．3858037 n	7．6868312＂
1－10	$+1.483$	－1724．574	－ 1711.248	－ 731.301	$7.3400421 n$	7． $6410700 n$
1－15	＋2． 213	－ 1529.433	－15 12．841	－ 641.150	7． 2 こごく49n	$7.5849133 n$
1－20	＋ 9.937	－ 1331.834	－ 1320.936	－5 51.005	7． $2: 00835$	7． $5319172 n$
1895	＋ 3.629	－ 11318131	－ 1127.037	－ $500.8 . \mathrm{R}$	7．16393373n	7． 4649665 n
1230	＋ 4.318	－ 9 43．9－9	－ 931.130	－ 410.713	$7.0817517 n$	7． $3.57811 n$
1835	$+4.905$	－ 512.819	－ 7 83． 243	－ 320.568	（6．9578370 n	7． 2858666 \％
$1 \leq 40$	＋ 5.661	－ 553.712	－5：30．300	－ 230.424	6． $86 \%-935 n$	7．1639333n
1845	$+6.314$	－ 38.8 .0 .77	－ 343.459	－ 140.280	6． $6363983 n$	6.9858282 n
18.0	$+6.955$	203.443	－ 147.563	－ 050.140	6．385．631 n	6．6e6i930 n
1855						
1860	$+8.201$	＋ 140.812	$+204.193$	＋ 0 －0．133	6．3850．545	6．6－65－44
1265	$+8.803$	＋ 311.937	＋ $400.05!$	$+140.978$	6，6813591	6．9878093
1870	＋ 9.303	＋ 5 3\％．0361	＋55．5．957	＋ 230.415	6． 5628159	7.10 .50037
1875	$+9.979$	＋ 732.139	＋ 7 B 1.833	＋ 320.551	6.9877097	7．9888：93

SECTION IV．

SELECTION OF AUTHORITIES．

Nearly all anthorities for declination which were conveniently accessible have been selected for use．The seattered obserrations in astronomical journals，and zone observations，with a few others of small weight，have generally been neglected．For convonience I have divided them into three classes，for reasons which will subse－ quently appear．

Clase I．
Embraces catalognes and series of obserrations which have been adopted in eon－ struction of the normal system．The designation of each catalogne is first giren， the principle of nomenclature being that the letters usually indicate the first and final letters in the name of the observatory according to the English spelling，and the fig－ ures the mean zear of observation，roughly estimated．In desiguating the varions anmal eatalognes（as well as complations）in such series as those of Greenwich and Washington，this system is found to be rers conrenient．

Kg：$\underset{y}{ }$ ．Bessel＇s obserrations in 1800 and 1821 with the Reichenbach Circle，pub－ lished in Kön．Boob．Bd．vii．Dölhn：discusson has been adopted，howerer．This is found in＂Recueil de AEmoirä des Astromomes de TObseratoire Centrat de Russie＂，vol． ii， 1 ． $20: 3$ to 23 ．The seconds of derdination are adopted from colnmm headed＂B3＂in tables iii and is．These differ from Bessel＇s own reduction（Fïn．Beol．Bd．vii）by the quantity

$$
+{ }^{11.30}+10^{\prime \prime} .59 \sin Z+{ }^{11} .023 \text { tan } Z
$$

which must be applied as a comection to Bessel＇s declinations．The deelinations so reduced adopt for the horizontal tlexure $+0^{\prime \prime} . \boldsymbol{y b}$ ，which is the mean betreen that found by hessel in 1820－23l，from redection observations，and afterwad by horizontal colli－
mators. The reduction of the obserpations in this manner is found to eorrespond elosely with Bessel's observations of the sum.*

Gh 22. Olufsen's reductiou of Pond's observations at Greeuwich for the year 1822, printed in A:t. Nach. 42?.

Dt 24. Struve's declinations in "Catalogus Primarius, p. xxxxviii, Introductio," "Stcllarum Fixarum imprimis Duplieium ct Multiplicium Positiones Mcdie pro Epocha 1830.0."

ப0 29. The Åb Catalogue of Argelander, "DLX Stcllarum Fixamm Positiones Media, ineunte Anno 1S30."
S. H. 31. Johnstou's St. Helena catalogue. "A Catalogue of 606 Principal Fixed Stars in the Southeru Memisplere, deduced from observations made at the observatory, St. Heleua, from November, $18: 9$, to April, 1833." The epoch of reduction is 1830 .
C. G. П. 33. Heudersou's declinatious derived from observations made at the Cape of Good Hope. The series extends from May 16, 1832, to May 24, 1833, and is reduced to the mean epoeh 1833. It is foum in Memoirs of the Ihoval Astronomical Society, vol. s, p. 80.

Ce 34. Airy's obserrations at Cambridge, England, taken in the years 1833, 34 , and ' 35 , and priuted in the aunnal volumes of the observatory for those years.

Eh 37. Hendersou's observations made at the Royal Observatory in Edinburgh, in the years $183+39$, and printed in the annal volnmes for those years.

Kg 38. Bessel's deelinations observed with the Reicheubach circle in 1836-'40. These are reduced by Buseh, and the results are found in Ast. Nach., 423.

Gli 39. Greeuwich observations, which form the first part of the Greenwieh Twelvesear Catalogue. They are rednced to the epoch 1840 , and embrace the results from two mural eireles, for the period 1836-1841.

Ce 40. These are the first observations made under the directorship of Rev. J. E. Challis. They extend from the year 1836 to 1844 , both inclusive, and are taken from the annual eatalogues of the Cambridge observatory.

Eh 43. Henderson's Edinburgh results fonnd in anmal eatalogues 1841-44. They are reduecd by Professor Smsth.

Kg 43. There are three reduetions of this series. I have used that fonud in Ast. Nuch, 1076 , made by Luther. The observations were made in years $184:-44$, by Bessel, at the Königsberg observatory, with Repsold circle.

Gu 45. Second part of the Greenwich Twelre-year Catalogne, cmbracing Greenwich observations 1849-1847, reduced to the epoch 1845.

Pa 45. The eatalogue of declimations given for the epoch 1845.0 in the fourth volume of "Observations de Poullova" (1. 50). The observations were made with the rertical circle by Dr. Peters, in 1842-1849, and the reductions are partly made by him and partly by Dr. Gylden.

Re 45. First "Radeliffe Catalogne of 6317 Stars ehiefly circumpolar, reduced to the Epoch 18450," Johnson.

Wn 47. The annal catalogues of the Washington observatory for the years $1845-$ 1848 inclusive. The observations are made with the mural direle, by varions observers. (The results of the fon succeeding gears occasionally "xhibit enormous discrep-

[^11]ancies both among themselses and when compared with the approximate places abore mentioned. No use is made of these four catalognes, 1849-1852.)

Ce ts. (:ambridge (Eng.) anmal catalognes, 1845-1851.
Gh 51. Greenwieh Sixyear Catalogue, epoch 1850.
Ps 53. Langiers declinations with the Gambey circle at Paris observatory, prineipally made in the years 1850 and 1853 , and rednced to the epoch 1852 . They are taken trom plo. Ta^{2} to 74 of "Mémoire sur la Détermination des Distances Polaires des Etoiles Fomfamentales, par E. Langier," tome xxvi, ge partic des Mémoires de V'Académie des Necienses.

So 55. Mocsta's declinations with the Pistor and Martin's circle at Santiago in the years 1550-1855, reluced to the epoch 1855, and printed in "Observationes Astronomi. cas hechas en el Observatorio Jucional de Santiago, en los años de 1853, 1854, 5 1855, por el Dr. Cárlos Gnillermo DÏsta, director del observatorio." Tomo I. Santiago de Cbile 1859.

Wa Er . This series embrares observations with the Washington moral circle in the gears $1853-185$. They are rednced and the resnlts pinted in Appendix I I., Washington observations for 1s70. Prof. A. Hall has formed the declinations of the fundamental stars into a single catalogue, printed in Ast. Nach. 1947. I have taken the declinations from the original somre.

Gh 57. The Greenwich Seven-Sear Catalogne of 2022 Stars realuced to the epocb 1860.0. The observations embrace the years 1851-1860 inclusive.
C.G. II. 5s. Observations made with the Cape circle in the years $1856-61$ by Sir Thomas MeClear, reduced to the epoel lsbt) by E. J. Stone, astronomer royal at the Cape of Good Hope, and printed in "The Cape Catalogne of 1159 Stars," ete., Cape Town, 1873.

We 64. Results of obserrations with Wasbington maral circle for the years 18611805 , ${ }^{n}$ inted in the ammat cataloges of the respective pears.

Gb 64. The new sevensear Catalogne of Greenwich, embracing the results of observations with the Greanwich transit circle, for the ran's $1861-1867$, both inclusive.

Ln 67. This semies is takenfrom "Mittlere Deelinationen con 57 Fundamentalsternen, abgoteitet aus Leidener Meridhankreisbeobachtamgen in den Juhren 186t-1868," W. Val-
 herausyegh ben ram Dr. F. Kaiser."

De 6s. "The First Melbomme General Catalogue ol 1227 Stars, for the Epoch 1870. Dednece from Olservations estemding from 1863 to 1870, made at the Melbourne Ohserviatory", ete. li. I.. J. Ehery, helbourne, isit.

Wa bis. Rasalts of observations made with the Wishington transit circle in the years 1 sitit- 8 sia, talien from the ammal rolumes.

Lie 68. Lissults of ohervations mate with the Canington cirele at the Radelitie observatory in the years farb-1sia. These are taken from the anmal catalognes of the Radchife obsuratory. They are timally divided into two series-Re 66 , including

Gh fo. Results of observations made with the Grenwich ransit cirele and printed

 pinted in ammel rohmars. The pesults of 1851 in manneript were generously phated at my disposal hy Prof. I. Li. Eastman.

Class II.

This embraces catalog des supposed to be unsuitable for use in founding the normal system; but excludes a few catalogues of small extent, or weight, which are used only with stars of class e. Many of these are the results of olservatious, which in turn depend on the places of a standatd list of stars; others are independent, but of small weight; or their use for otber reasons was be regarded as of doubtful propriety.

Gb 1752 or Gh 1755. "Fundamenta Astronomice pro Anno MDCCLV. deducta ex Observationilus Viri Incomparabitis James Brudley in Speeula Astronomiea Grenovicensi per Amos 1750-1762 institutis, Auctore Frederico IFilhelmo Bessel." Regiomonti 1818. This is in effect the result of two series of observations-the one of northern stars (stars north of Greeuwich zenith), mean epoch about 1752 ; the other of southern stars, mean epoch 1755 or 1756.

Po 1500. "Preeipuarum Stellarum Incrrantixim Positiones Media inuente saculo XIX. Ex observationibus habitis in specula Panormitana ab anno 1792 ad annum 1s13," Panormi 1514, by Joseph Piazzi.

Bb 10. "A Catalogue of Cireumpolar Stars, deduced from the Observations of Stephen Groombridge, Esq.", \&c., at Blackheath observator.. Reduced to January 1, 1810, and edited by Sir G. B. Airy. Lond. 1838.

Va 29. Professor Littrow's declinations of fundamental stars, from observations made at the Vienna observatory in the rears $1827-8-9$. Thes are reduced to $\mathbf{1 8 3 0}$, and printed in Mem. Royal Λ st. Soc. IV., !!. 328.

Dt 30. Sruve's Positiones Medic, above cited, Catalogus Gencrulis. These places ale quite numerous and appear to be when correctiones ultime are applied, systematically the same as the results of Calulogus Primarius. The observations from which the catalogue is constructed estend over the period $1822-1843$, bowever, and there were consequently doubts whether Dt 24 and Dt 30 should be classed together.

Gh 30 . Pond's catalogue of 111 s stars rednced to 1830 . These are the results of obserrations made with two maral cireles from Jamary 1, 1825, to Jamary 1, 1833.
C. G. H. 31. Results obtained by Fallows, in 1830 and 1831 , at the Cape of Good Hope; reduced to 1830, and printed in Mem. R. A. S. vol. XLX. The catalogue contains but few declinations, and has only been used with a few stars south of - 30 .

Mh 34. The results of Lamont's oliservations at Munich in the years 1899-1840. Most of the observations were wade in 1833 and 1831, and are fonnd in "Obsercotiones Astromice in Specula Regí Monuchiensi," etc., for those sears. I have for convevience taken all from "Annalen der K̈̈niglichen stermarte bei Münehen," Bd. XX., Müncbeı, 1874; and from the detalled positions, commencing p. 264.

Ah 41 aud Ah 52. Robinson's Armagh catalogue of 5345 stars. Owing to the great period o: time embraced in the observations of this catalogue, I have divided them into two series-the first, for the years 1835-1846; the second, 1847-1854. This I have done by a method which will be explained (p. 39).

So 51. The observations of Captain Gillis made at the observatory of Santiago, in Chili, in the gears $1850-1852$. The catalogue rednced to 1850 is printed in Appendir I., Washington Astronomical Observations for 1868.

Bs $56, \mathrm{Bs} 60$, Bs 65 . These are to be fonnd in "Amales de lobsoratoive Royal de Bruxelles", for years 1855-1867. The gronps are: 1855-1850; 1857-180: ; 1860-1867. Ps 56 aud Ps 60. These are found in "Amales de l"Obserctoire Imperial de P'aris."

194 UNITED STATES NORTHERN BOUNDARY CUMMISSION.

The first gromp covers the years 1851-1857, the second 1858-1862; and both are the results of observations of the dambey mural circle.

I's 01 and Ps 66 . These are in coutinuation of the series just mentioned, but the observations are principally mane with the great meridian cincle of Eichens and secretan. The grotps are $180 \%-1864$, and $1805-1867$.

Ce 56 . This series embraces the anunal catalogues in the volumes of the Cambridge (Eng.) observatory for the rears 185 - 1860 .

Re 58. "Second Ladeliffe Catalogne containing 2386 stars; deduced from observations, extending from $185 t^{2}$ to 1861 , at the Radelific observatory, Oxfond; and reduced to the ejoch 1860 ."

Me 6". "Astrumomical Observations made at the Williamstown Observatory in the sears 1861, 1860^{2} and 1860 , under the direction of Robert L. J. Ellery;" ete. Reduced to 1860 . Melbourne, 1860.

Bn 60. Argelande's observations with the transit circle at Bonn observatory, These are found partly in Ast. Nach. No. 1719, aul partly in Conn Beob. Bd. VI.

Le 67. "Resullata aus Beobachtungen auf der Leipziger Stomatere" Dr. Englemanu, 1870; also "Die Ieclinutionen der bei Grudmessumg" etc., Dr. C. Brahns.

Class IlI.

When an authority is of small weight, and especially when it has few declinations in common witb the standard stars of Section V1II, there is danger that the error in adopted systematic correction for comphting the defuitive declinations may work a disadvantage, which will more than comnterbalance ans benefit to be derived from smposed additional weight. This oljection will be, in a measme, removed by the compatation of a large number of definitive phaces, giving more and better standards for comparison.

In making up this list a few series of obsersations have been omitted, either becanse they were not at my disposal, or becanse it was believed that the labor of collating them amd asedtaning the proper rednctions and corrections wond not be repaid by the weight of new waterial thas acpuired. Zone observations for the wost part are neglected on account of their small weight in a disenssion of this kind. A rery few of Latanders ind D'dgelet's observations were, however, used in extreme cases.

Ins 35. "General Catalogne of the Principal Fised Stars, from Observations made at hadas. by T. G. Taylor:" Dadras, 1845 . The declinations are reduced to the rpuch 1atio.

Ms 50. Astronomical observations made at Madras for the years 1845-1552. Madras, 1505 .

Wh 4s. Declinations from the prime vertical transit at Washington, principally in the years 1 sto amd 1 sis.

Eh 5 s, Eh 6a, and Eh 67. Edinburgh astronomical observations. The groups are respectively $1851-1890 ; 1861-1: 01$; and $1560-1569$. The dedimations ate talien from the amemal atalogers.

 determined by Mr. F. A. Ö̈m.

Wn 70. Declinations by Prof. M. Yarnall with the mural circle of the Washington obserratory, 1866-1573, taken from the detailed results in annual volumes of Washington Astrouomical Observatious.

Pa 71. In the niuth volume of " Viertoljahrsschrift der Astronomischen Gesellsehaft (pp. 83 to SS), is givell a catalogue of the "Zusatzsterne" from observations of the Poulkova observatory. The declinations are undoubtedly of a high order of accuracs; but feeling some uncertainty about the proper manuer of deducing systematic correction from them, I have placed them in Class III. ; and in conscqueuce use but one of the declinations for definitive purposes.

SECTION V.

explanation of preliminary corrections and compllation of results.

Before procceding to actual discussion of normal dechnations, it will be necessary to examine each catalogue for the purpose of applying sucb corrections as shall appear advisable from inspection. These corrections may be regarded os of three classes :

First. Those required on account of the reduction of the observations from apparent place to the true epoch of the catalogue. These are principally for nutatiou and proper motion actually employed. In a few eases small corrections have been applient to reduce from epoch "Jan. 1 " (Greenwich), or $\odot=281 \circ$ to the fictitious epoclr $\odot=$ 2500°; and rarely, a correction for precession which is almays practically insignificaut.

Modern researches appear to show that no considenable correction to Peters's mutation is needed; and that ralue is now unisersally used. This salue for 1800 is (Numerus Constans Nutationis p. 37):

$$
9^{\prime \prime} .293 \cos \delta \sin a-6^{\prime \prime} .565 \sin \delta \cos \alpha
$$

Among othervalues of nutation that have been used in reducing observations are these:-

Value employed bs Bessel in Fund. Ast. $9^{4 \prime} .648$
Bradley's (original value) $9^{\prime \prime} .00$
Maskelyne's $9^{\prime \prime} .55$
Groombridge's $9^{\prime \prime} .63$
Lindenau's . $8^{\prime \prime} .977$
Baily's (A. S. C. and B. A. C.) $9^{\prime \prime} . \underset{y}{2}$
The iudividual correctious applied to each catalogue are for the principal terms, and are of the form

$$
\eta \sin \alpha+\gamma^{\prime} \cos \alpha,
$$

which appears to require no explanation.
In most cases requiring it the correction for proper motion has been applied. If t denotes the epoch of reduction of the catalogue and t^{\prime} the mean epoch of the observations of a particular star in the same, u^{\prime}, the assmmed proper motion (Section III.), and $\mu^{\prime \prime}$ the proper motion which was applied in the reductions of the catalogue, we shall have corrections for proper motion, where $\left(t-t^{\prime}\right)$ is expressed in years :-

$$
\left(\mu^{\prime}-\mu^{\prime \prime}\right)\left(t-t^{\prime}\right) .
$$

Where the correction is practically insignificant, where the epoch of observation
is not conveniently ascertained, where reductions are inaccurate, or not carried besond first decimal place of seconds, and, especialls, in a few of the cases where proper motions bave been determined by eomparison with Bradley, this correction is commonly neglected.

The correction, for epoch, i.e., from sum's longitnde $\Omega s 1^{\circ}$ or from "Jan. 1 " to $\odot=$ asto, is applied to most of the English catalogues whose epoch is previons to $\mathbf{1 8 5 7}$, and to W゙n 4 。

The correction for precession is generally insignificant, and is often included in the form, An. Var. assumed - An. Var. of Catalogue. la case of catalogues which Latl been reduced by help ot the Astronomieal Society's Catalogue (Baily 1830) it was convenient to inelude a correction for precession with that for epoch and motation.

Secomb. In many eatalogues, corrections which have been derived by special examimation of the instrmment, or discussions of the observations, are indicated in the introductions, but not applied to the results. Similar corrections sometimes occur through the neglect of certain precautions, and which, diseovered too late for correction of the printed results, are in the nature of croutu, to be applied by the reader. Correctiones Cltime, in Struve's Pos. Med., are of the former class; certain corrections in the introdnctions to the two Radeliffe catalognes are of the latter class. Finally, under this head come aroth wherever found.

Third. In a limited number ef eases it has been thonght advisable to examine cerfain series of ammal eatalogues in order to reduce the discondances in the results of separate vears, and, it possible, to ascertain corrections which seem to be required by preliminary inspection. This is analogons to the work abready done by the anthors in many cases, where catalogucs have beea formed fom those of several separate fears.

Under the designation of each catalogue will be enmmerated all the corrections above specified which have actually been applied in this diseussion. Some of the pecularities in methons of observation or reduction which appear to invite special attention will he noticed in the same conmection. The reasons for gronping, and the metheds of combiniur the resnlts of patial eatalognes, will be explained.

The corvected eatalogue dectinations are then compared with the assumed dechina. tions of this paper (sections II. and Inl.), and the resiluals, in the sense ObserverlAssumed Declinations are exhibited in cohmm " (1, " in "Details of Corrections to Assumed beelimations". To facilitate comparisons of separate jears in the ease of compriation, the subtraction, Observer-Assmmed Declination is mate at the ontset. by which means the varions catalogues are cffectively refered to a common mean efoch, with the assumed ammal variations (section li.). These residuals are then comhined with or without corrertion, as the ease may reguire.
 is ! $\boldsymbol{r}^{\prime \prime} .64$. Talsing the mean epoch of ofservation for northern stars to be 175 , and for sonthern 1655 , the corrections to the declimations will be:

$$
\begin{aligned}
& \text { Turthern stars }-" .34 \text { sin }(a-530.9) \\
& \text { Sonthem stars }-10.425 \sin (6-20.6)
\end{aligned}
$$

Before disenssing the sestematio correction, the corrections applied by Bessel to Bratles stmenations between the parallels $+1 t^{2}$ amd $-1 t^{\circ}$ are subtracted from the (atalogar phates. No attempt was marle to ascertain proper motion corrections on
account of the difficulty of finding the mean epochs of observation, and also trom the fact that Bessel has applied the correction, approximately, by comparison with Po 1800.

Iu Dr. Bruhns' reduction of Gradmessung stars is found a list of declimations which have bean computed by Dr. Anwers from the observations of Bradley. But these are not definitise, nor are they at this stage of their reduetion independent, becatise Bessel's (Königsberg) refractions have been employed. It will be seen that the reight of testimony is in favor of refraetions, on the arerage, at least as small as those which Bessel dedneed from Bradley's observations. Professor Neweomb kindly placed at my disposal similar results for a limited list of stars whieh he was redacing. But both the lists combined embrace less thau half the stars required in this discossion, so that the old results were used.

Po 1800. I have applied correction to this catalogue only for proper motion in a few cases where the latter is large. The effect of the untation correction is included in the A. R. term of the declination correction subsequently ascertained.

Bli 10. The mean epoehs of observation are secured from the first Radeliffe catalogne, and the proper motion eorrection applied in every case. As the catalogne was not inelnded in Class I., the application of nutation correction was not made, but it is included in the \mathbf{A}. R. term subseguently found.

In the use of this catalogue I have encountered a diffealty which introduces some umeertaiuty in the results. For many of the stars most frequently observed two results for deelination are given in the eatalogne. In the introdnction this is explamed by sayiug that the first of the two results was originally reduced to 1807 , and the second to 1812. I have assmed that the observations are distinet, and that the epoch given for these stars in Re 45 is the epoch of the first set. In all these eases the mean of the two results has been takein, without correction for proper motion, as the mean epoeh is probably reay near 1810.

The history of the reductions, for reasons partly unavoidable, is an unfortunate one, and this is the more to be regretted, for the editor says (p. ix, lnt.), "There can be no doubt, I coneeive, that this instrmment at the time of its erection, and for several fears afterward, was the finest in the world." It appears to have been well handled, and was reversed ten times at least dmbing the active period of the observatious makiug up this cataloguc. The materials were probably suited to the formation of an independent catalogue, which wonk have been no mean contribntion to the solntion of the problem of absolnte decliuations.

İg 21. To the results as given by Döllen has been.applied the correction - ". 2.4 $\sin (\alpha+60.5)$, dne to the use of Lindenan's mutation.

Dt 24 . No correction is applied to this eatalogue.
Ao 29. Correction for Lindeman's nutation $+{ }^{\prime \prime} .24 \sin (4-90.3)$, is adopted.
Va 20 . The same untation correction as for Ao $^{20} 2$ is used.
The observations are reduced with Bessel’s Königsberg refractions, but no details are giren whereby an iudependent judgment may be formed of the character and aceuracy of the declinations.

Dt 30 . To all the results havo been applied "Correctioncs Ultime" (Fos. Med., pp. 351 to 371), which is considered as bringing them systematically in accordance with those of Dt "-l. It may be doubted whether this is completely accomplished for the
entire series, and so this catalogue has not been used in formation of Normal System. Whererer the proper motions bave not been ascertaiued by comparison with Fund. Ast. this correction has been applied, using for the purpose the mean date of observation, always suplied iu such cases in the Catalogus Generalis.
S. II. 31. The observations were reduced with Young's refractions. This table is given in the introdnction,]. "2., for "adaptiug the St. Helena declinations to Bessel's retractions."

i	Correction.	i	Correction.
\checkmark	/1	\bigcirc	"
- 85	0.0	+ 5	$+1.4$
- 75	+ . 4	$+15$	+1.5
-65	+ . 0	+25	+1.6
-55	+ . $=$	+ 3.5	$+1.8$
- 45	+ .!	$+4 \%$	+ 2.0
--35	+ 1.1	$+50$	+ 2 2
- 2.5	+1.1	+55	+2.4
-1.5	+ 1. ${ }^{2}$	$+60$	+ $\because 6.6$
-5	+1.3	$+65$	+ $2:$
$+5$	$+1.4$		

These corrections are apllied at the ontset to all the deelinations. The position of the observatory $\left(c=-15055^{\prime}\right)$ does not admit of a determination of the refraction by obserations of circumpolar sans. A eonsiderable namber of catalogues of northern observatorics, which are hased upon Bessel's refractions, have been maitted into Class I. (see p. 1t), and it is likely that emors arising from that comse will be comuterated to some estent by the atoption of the same refractions for the obserrations of the sonthern bemsphere. The results are reduced to the nearest tenth of seconds, and when these are eorrected tor refraction the declinations may be in error, from negleet of hondredths, nearly a tenth of a second. I have, therefore, neglected the small mutation correction, and, execpt in a few estreme eases, that for proper motion. The effect of matation correction is, however, inelnded in the A. R. term foumd in the disenssion of systematic eorrection.

Gh 30 . The employment of Bradles s refractions, the varity of practice in reduetion of declinatious from apmarent to mean place, and the dificulty in searehing out the mean epoch of observation for each star, have led we to neglect ath corrections and to nse the catalogne places nuehanged. Dr. Auwers* has brietly and conchsively shown that a now rednction of this beantiful series of observations is desirable.
C. G. 11. 31. The mutation con rection is $+^{\prime \prime} 2.3$ sin $(a+20.3)$. The observations are rednced with the latitnde subsequently found by llenderson. The results are few and of small weight, but their important bearing on the declinations of stars in the sonthern hemisphere has bed to their ase.
C. (i. II. 23. The constant of matation user in this series is that of the A. S. C., $9^{\prime \prime} .25$. The observations were reduced to $1833, \odot=2810$. The total eorrection for both ranses i.s - ". 07 sin $(\alpha+810.5)$. The observations are rey varefully redned and disumsid; amb, as far ats possible, with a mon-reversible justument, the methods of

[^12]speaking, however, this series does not give independent determinations; for the corrections for flexne from reflection observations, and for refraction from observations of circumpolar stars, are rejected on the anthority of comparisons made with the results obtained ly Bessel, Stunve, and Airy, at northern observatories. A defeet in the instrument ly which the readings of separate microscopes are made to differ very greatly, is exhaustively disenssed by Sir George B. Airy and others (vol. viii, Mem. R. A. S., etc.), and assurance is given that the mean of six microscopes is free from serious error. This appears to be confirmed by the small probable error $t " .93$ for mean of an infinite number of observations fond by Henderson. The precision of the indivilual observations, all made by Hendersou in person, has seldon been excelled iu work of this kiad.

Mh 34. The untation correction is $+" .18 \sin \left(\alpha+82^{\circ}\right)$. The declinations as given in rol. xx, Munich Obs., are combined into single results according to the number of observations in each gear from 1890 to 1840 . In deducing systematic corrections, the unmbers in columu " $B-L$ " in the tables preceding the observations for 1833 and 1834 (in Obs. Astr. in Spec. Reg. Mon.) are used. These are corrections to Bessel's declinations (Tab. Reg.) given by Lamont's observations of fundamental stars; but I have not used them in discussing the places of the fundamental stars.

CAMBRIDGE ANNUAL CATALOGUES.

Ce 34. The annual catalognes at Cambridge for many gears were constructed by the aid of the proper motions and constants of the Ast. Soc. Catalogne (Baily 1830), with the day numbers of Nantical Almanac. By use of Nautical Almauacs previons to 1857 , stars are reduced with mutation 9 ". 25 , to "Jan. $1, "$ instead of $\odot=2800$. Both correctious, with the small correction for precession of A.S.C., can be combined in one formala. The following list of corrections will serve for this and other series shortly to be mentioned.

Year.	Correction for nutation, epoch, àwd precession.	Year,	Correction for mutation, epoch, and precession.
	"		$\prime 10$
1833	$+.08 \sin (a+965)$	1841	$\frac{1}{1} .05 \sin (a+98=)$
1834	+.07 $\sin (a+20)$	1843	$-.04 \sin (a+0-4)$
1835	+. $06 \sin (a+23(i)$	1843	+.02 $\sin (a+270)$
1236	+. $04 \sin (a+393)$	1.41	$+.01 \sin (a+29)$
1837	$+.08 \sin (a+88)$	1845	- $6.16 \sin (a+654)$
1838	+.06 $\sin (a+991)$	1846	$\pm .05 \sin (a+245)$
1839	$+.04 \sin (a+305)$	1847	$+.05 \sin (a+237)$
1840	$+.03 \sin (a+322)$		

These correctious are entirely unimportant, and the neglect of them wonld have produced no serions consequences. The cerrection for proper motion is, bowever, often considerable. But few proper motions are given in λ. S. C., and some of these few are very far from the truth. The approsimate mean epochs of observation f r all stars for which the latter correction is more than " .02 or " .03 were examined and the corrections carefully applied. The barometer used in 1833-1835 gave readings 1 in . too small. This error was disregarded in 1833 and 1834. Among the errata in the
rolume for 1835 a tahle is given, which serves to correct north polar distances to the values they would have had if the barometer had given the correct readings. The table with changed signs, to make it applicable to declinations, is here given:-

δ	Correction.	s	Correction.	δ	Correction.
\bigcirc	"	c	"	\bigcirc	"
50 S . P .	-. 73	$+80$	-. 05	+ 30	- . 23
in S. P.	- . $\because 2$	70	-. 09	+ 20	-. .28
70 Nr .	-. 16	60	-. 13	$+10$	- . 33
80 SL '	-. 0.03	50	-. 16	- 00	- . 40
+90	0:)	+ 40	-. 10	-10	- . 50
				-	- .75
				-80	- 1.50

These corrections were aplicd to all dectinations of 1833 aml 1834.
The peculiar feature of the entire Cambridge series is the frequency of refleation obscrations. Within the limits of zenith distance where they are practicable, their mumber is generaliy equal to those thaen directly, the practice being to observe both at the same transit. The discordance, which is large, is divided equally between the two classes of obscrations. The position of the teleseope was frequently changed on the circle-two or three times each year in the first thre ycars, afterward at the begiming of each year with considerable regulatity until 1852 , ant less frequently after that.

At this observatory the experiment was tried of measuring flexure in different zenith distanees with the help of movable collimators. An abstract of the results is printed in Gould's Astronomical Jommal, rol. 5 , p. $\quad .8$. The correction for flexure determined in this was is much smaller than one half the diseordance between direct and reflected observations, and its torm bears little resemblance to the later. There can be little donht that a portion of the discordance is due to the unequatly beated air of the observingroom; a consideration which serves to modily the treight which this suies might otherwise have had in forming the normal system.

In the ammal catalogues the results tor declination are gisen separately for direct, reflected, above and below pole. In combining, l lare given egnal weight to the two chasses of ohservations, direct and reflected, and have ansed no observations of stars bescond 70 zenith distance berow the pole. To e 60 zenith distance equal weights are assinned; provided in each case eight or more observations were given. lat the fer cases where the number of observations is smaller ant quite mequal, weights nearls in proportion to the square bot of the mmber of observations are given. At 050 zenith tistance determinations below the pole receive weight $\frac{3}{4}$, ant at 6 , 8 . This pration is athered for thronghout the series.
 tematic diflerences, the results of separate gears are combined with ctpal weights, nuless the discrepamey in the monber of observations was great and the sualler momber less than $\overline{5}$, when abitrary weights are assigned.

These ohservations hare been combined in a single eatalogue* by Sir George B.

Airy, in Mem. R. A. S., vol. ii. The proper motions of A. S. C. were used by him, and the determinations of different fears combined with weights proportioned to the mumber of observations. The possible error from these sonces may be considerable; ant the labor of constructing anew the particular places desired, though much greater than would have arisen from the correction of the catalogue for proper motion, is probably worth the while.

Ce 40. The corrections for uutation, epoch, ant precessiou are given above under Ce 34 . No proper motions were used in reduction except those of the Nautical Almanac. In volume for 1838 a new colatitude is given derived from observations of 1837 and 1838. The correction to that used in previous rears is $+{ }^{\prime \prime} .09$; therefore to the declinations above pole of 1836 and 1837 the constant correction - ".09 has been added, after which no correction is required. In order to form a julgment as to the indiridual accuracy of the declinations, the probable error is computed from a few of the stars most frequently observed within 40° zenith distance.

The mean $\pm .56$ is considered as the probable error of a single pointing. A comparison of observations made in different years gives for the minimum error of a single position $\pm .20$. The minimum for a single year for stars observed, both directls and by reflection, would be $\pm .14$. These results are apparently too small. The argument for using the accompanying table of weights is one-half the total number of observations in any one year; and it supposes that the probable error of any star, circumpolars excepted, cannot be less than $\pm .14$. It can only be considered a rough approximation to the true weights.

Wt.	N゙umber of olservations.	Wt.	Number cf observations.	Wt.	Number of observations.
1	1	6	$2 \operatorname{and} 9$	11	291034
2	!	7	10 to 12	12	3.3 to 44
3	3 mand 4	8	13 to 15	$1: 3$	45 to 61
4	5	9	16 to 20	14	6i, , or more.
5	G and 7	10	21 to		

The probable error of the mit is thus supposed to be abont $\pm . t 5$, in the average of cases. With these weights, the residuals formed by subtracting the assumed deelination l'rom the corrected value for each year, are formed into a single conection to assumed place.

The unmerous crrata in these and subsequent jears are curefolly applied.
Ce 48. In 1844 a few madir observations had been taken for practice; and the methof was adopted for obtaining zenith points in 1845 and subsequent rears. It was, howerer, controlled by the results of direct and reffected observations. In 1546 began the use of the $a^{\prime}, b^{\prime}, c^{\prime}$, and a^{\prime} of the $\mathrm{B} . \mathrm{A}$. C. In other respeets the observations are bot different from those of previous years. The long period of time, howerer, rendered these somewhat abitrary divisions necessarr.

These corrections for mutation, cte, are applied in respective years:-

1845	+ ${ }^{\prime \prime} 05 \sin \left(2+254^{\circ}\right)$	1849	$+^{\prime \prime} .07 \sin \left(\alpha+251^{\circ}\right)$
1846	$+^{\prime \prime} .05 \sin (\alpha+2450)$	1850	$+^{\prime \prime} .06 \sin (\alpha+2530)$
1847	+ ${ }^{\prime \prime} .05 \sin (\alpha+2370)$	1851	$+^{\prime \prime} .05 \sin \left(a+255^{\circ}\right)$

$1848 \quad{ }^{\prime \prime} .03 \sin \left(a+214^{\circ}\right)$
Inspection of the observations of cirempolar stars indieate that a considerable correction for latitude is needed. Observations of a and δ Urse Minoris are alone available for ascertaining this correction. The table of weights given under Ce 40 is used, and reflected as well as direct observations included. Following is the sum-mary:-

	Corrections to assamed latitule.	Weight.		Corrections to assumed latitude.	Weight.
	$\stackrel{\square}{6}$		181	- " 30	6
1846	-. 32	8			
${ }_{1018}^{148}$	-.30	11		-. ${ }^{2}$	21
${ }^{1 \times 48}$	-.76	4	(Ref.) ...	-.34	20
1550	二. $\%$	6	Mean..	-. $43 \pm .04$	

Probable error of unit of weight \pm ".56.
The correction - ". 43 is applied to all the declinations of this group. This steads diminution in ralues of latitnde obtained since 1833 with the same instrument, used substantially in the same method, is suggestive of an actual change in that element when it is taken in conncetion with the apparent existence of the like phenomenon at Greenwidh, Washington, Poulkova, and elsewhere.*

Ce 56 . During this period there is a marked falling off both in the number and character of the obserrations. These corrections for nutation and epoch have been employed:-

$$
\begin{aligned}
& 1852+{ }^{\prime \prime} .04 \sin \left(\alpha+265^{\circ}\right) \\
& 1853+{ }^{\prime \prime} .08 \sin \left(\alpha+274^{\circ}\right) \\
& 1854+{ }^{\prime \prime} .06 \sin \left(\alpha+255^{\circ}\right) \\
& 1855 \quad+^{\prime \prime} .05 \sin \left(\alpha+204^{\circ}\right) \\
& 15.50+{ }^{\prime \prime} .0 \pm \sin \left(\alpha+313{ }^{\circ}\right)
\end{aligned}
$$

As in preceding years, only the proper motions of the Nitutical Almanac were used in the ammal catalogues. The position of the telescope on the circle was changed at irregular intervals, but the same relative weights and ssstem of combining, as in Ce 40 and Ce 48, are here employed. As this series is not used in forming the Normal System, no correction for error of assumed latitude is applied, nor do the observations themselres afford adequate means for deducing such a correction independently. The ervetum to reflected observations of 1854 is important.

Ms 35. The results from this catalogue are used without elarge. The proper
*"Lie l'olhöho von Pulkowa. Von Dr. Magnns Nyrén." St. Jetersburg. 1873. Sce also pp. 36 ant 60 of this paper.
motion correction is often large, but it is not always easy to find ont whether it ought to be applied, and the mean date of observation will often be very imexact. The weight of these observations is so small that I have not thought it worth while to construct places anew from the special eatalogues be the help of division corrections on pp. eexix aud cexs, vol. r.

Is 50. The declinations require the full amount of the correction for proper motion, but this is usually small, owing to the small difierence between epoeb of observatiou and that of reduction.

edindurgit annual catalogues.

El 37. The methods of reduction to apparent place are, with few exceptions, those employed at Cambridge in the corresponliug years, so that the sane corrections have been applied. The position of the telesenpe on the eircle was mored at the beginuing of 1839 , and yearly, alterward, cluriog the directorship of Henterson. Strietly speak$10 g$, only the observations of $183 t-5$, in volume I., are independent, and the succeeding catalogues as reduced by Henderson denend upon this first one. Hyorb's cefactions are employed thronghout the catalogues composing Eh 37, so that in this respeet the series is not independent. The discordance in $183-3-3.3$, between direct and reflected obserrations, is quite large, and the latter are rejected by Henderson in making up the declibations. The corrections derived from sun observations in the different years are iu the mean small, and furnish tolerable assurance that the declinations will be found quite free from srstematic error. All determinations of the same star, up to 1839, I have combined with weights proportional to the number of observations. This result is then combined with that for 1839 , on the supposition that the minmmen eror in each case is equal, and one-half the error of a single pointing. This was an orersight, for precions to 1837 ; in most obserrations, six microscopes were nsed ; after that only tro, so that for the first series the minmmen cror might have been talien abont one-fourth the error of pointing. Homever, no serions error has arisen from this cause.

Henderson estimates (1830) the probable crror of pointing at $\pm .5$, and probable division error, when mean of two mieroseopes is taken, $\pm .3$. For the fomer quantity I have fonnd, from a rough trial, \pm ". 6 . It will be seeu in the latitude discussion of Eh 43 that, il error of pointing is assumed to be twice the minmum error, we have for the former $\pm{ }^{\prime \prime} .59$, and for the latter $\pm{ }^{\prime \prime} .29$, in close agrement with abore estimates. It is diffieult to believe that the minimum eror, under the ciramstances, can be so small, and doubtless a more rigorons determination of probable error of pointing wouh show that to be slightls smaller, and the minimbm error would then resnlt in a larger quantity.

The eatalogue for 1840 eannot properly be clussed either with those preceding or following it, and no use is matde of its declinations.

Eh 43. The observations of this series were rednced by Professor Smyth. During the entire period the zenith points were derived from badir observations, a practice begun in 18.1. The observations in 1841-2':3 were rednced with Bessel's retractions, and the help of Nantical Almanac and A. S. C. In 18tt the Nantical Almanae was used with the constants and proper motions of British Association Catalogue. The correctious to tirst three jears for nut, etc., are taken from the corresponding formula for Cambridge. For 1844 the correction is insignificant.

434 United states northern boundary commission.

In reducing from the mean of two microscopes to the mean of six, Professor Smyth continued to nse the results of the investigation made by Menderson (rol. L., p. vii, et seq.). As the telescope was clamped to a different part of the circle in each year, it is evident that any considerable error in the formule of correction would show itself in the difference between the declinations of the sane star in different years, and also in the latitudes deduced from obserrations of ciremmpolar stars. Fortunately, in eath of the years there are a considerable number of the latter well suited to the examination of this question. In Ast. Nach. Bel.65, s. 195, by Dr. Auwers, and in Bonn. Beob. Bd. VII., Theil II., s. 251 , bs Dr. Argelander, we bave the results of such an examination. They are exhibited in the following table:-

Yodr.	Correction to assumed latitude given ly ouservations of each year.	
	Anwers.	Argelauder.
	,	"
1241	- . 00	- . 20
1-4:	- . 95	-. .90
$1-4.3$	$+1.14$	+1.41
$1-44$	- .17	- . 15

Both Auwers and Argelander use these as constant corrections to the declinations of respective rears. The latter says, "Wie diese grossen Vershiedenheiten zu erklären sind, weiss ich nicht zu deuten. Theilungsfehler an dem Orte des Sterns kömen es monöglich sein.; dagegen streitet die nahe Uebereinstimmung bei allen vershiedenen Sternen, ind besouders anch der Umstaud, dass die Untershiede auch bei dem Polarsterne sieh zeigen, bei dem die Puncte des Kreises fiar die OC. mud CO. nur 30 anseinamder liegen. Man erbait aber 1842 ans resp. 66 und 64 Beohachtungen UC.-OC. $-2^{\prime \prime} .5$, im Jahre 1543 ans 48 und 43 Beobachtungen $+3^{\prime \prime} .1$. Nan mass also den Fehler wohl in der Bestimmung des Nadipmuetes sucben, aber anch hier kann min ihn durch Theiluagsfehler alleiu schwerlich erkliben. Es hiesse dies voraussetzen, dass bei einem Gfnssigen Kreise von Troughton and Simms der Theilungsfehler des Kreises an zwei Puncten desselben um $2^{\prime \prime} .4$ verschieden waire, was wohl Niemand, der die aus. gezeichneten Leistmgen dieser Kiinstler kemnt, für möglich halten wird * * * * so kann man die grossen Unterschiode nur dem migliicklichen Zusammentreffen mels. rerer Ursachen zuschreiben."

An examination of the declinations near the equator shows that to apply these constant ditierences will, for this region, in some eases, produce greater systematic discordane than existed before. ln view of all the arguments so strongly put by Argelander, there appeared to be but one avalable hypothesis by the adoption of which the difficulty could be satisfactorily solsed. The reduction for division error actually nsed is supposed to be inapplicable, and an attempt is made to deduce a new one from a comparison of the observations of the same stans in different years. (iranting the eorrectness of the reduction from two microseopes to six, as fond by Henderson (rol. i), we mas easily concere such changes to have taken place in the instrument that these, combined with small errors in zenithal divisions and the possible error of the mean
reading of six microscopes, may have caused the discrepancies actually fonnd. The arrangement of the observations is tolerably favorable to this undertaking. The circle readings increase from the pole toward the equator, and for the zenith were:-

1841	590	58^{\prime}
1843	$344^{\circ} 08^{\prime}$	
1843	79	05^{\prime}
1844	139°	05^{\prime}

The effect of the corrections actually applied to nadirs and zenith distances of stars is first subtracted from the declinations. For that purpose the table of division corrections in the introduction to each volume is used. We now have the declinations as they would have resulted had no correction for division been applied. It is possible that an important part of the discrepancies way have been caused by flexure of the circle, but not likely. If such is the case, it cannot well be determined from the data furnished by the obserrations. It is therefore assumed that the diffculty is due to division error. The mean of two microscopes may be affected by errors requiring corrections of the form:-

$$
x \sin 2 R+x^{\prime} \cos 2 R+x^{\prime \prime} \sin 4 R+x^{\prime \prime \prime} \cos 4 R+\& \mathrm{c}
$$

The coefficients x and x^{\prime}, only, have been determined; which is perbaps to be regretted. The effect of accidental errors of the nadir divisions has also been included. The following notation is adopted:-
$\delta \quad=$ Declination as printed in annual catalogues, but referred to 1843, and corrected by the requisite amounts for nutation and proper motion.
$R \quad=$ Circle reading for a given declination.
$R^{\prime} \quad=$ Nadir readiug for the same.
k and $k^{\prime} \quad=$ Division corrections actually applied to R and R^{\prime}.
x and $x^{\prime}=$ Coefficients of division correction as explained abore.
$v_{1}, v_{2}, v_{3}, v_{4},=$ Correction to nadir divisions respectively of 1841, 1842, 1843, and 1844, for accidental error, or deviation from the law expressed by $x \sin 2 \boldsymbol{R}$ $+x^{\prime} \cos 2 R$.
$\Delta \varphi \quad=$ Correction to assumed latitude, φ.
The application of any of the above quantities is restricted to a given year by the use of subscript figures, $1,2,3$ and 4 , respectively for $1841,1842,1843$, and 1844. The declinations are referred to the common epoch 1843.0 by means of the reduction of assumed places (Section III). The corrected declination will then be:-
(1) $R^{\prime}+k^{\prime}+180^{\circ}+\varphi-R-k+x\left(\sin 2 R^{\prime}-\sin 2 R\right)+x^{\prime}\left(\cos 2 R^{\prime}-\cos 2 R\right)$

$$
+v+\Delta \varphi
$$

We shall then have:-

$$
\begin{align*}
& 0=\left(\hat{o}_{1}-k_{1}^{\prime}+k_{1}\right)-\left(\delta_{2}-k_{2}^{\prime}+k_{2}\right)+x\left(\sin 2 R_{1}^{\prime}-\sin 2 R_{2}^{\prime}\right) \tag{2}\\
& +x^{\prime}\left(\cos 2 R_{1}^{\prime}-\cos 2 R_{2}^{\prime}\right)+v_{1}-r_{2}+x\left(\sin 2 R_{2}-\sin 2 R_{1}\right) \\
& +x^{\prime}\left(\cos 2 R_{2}-\cos 2 R_{1}\right) .
\end{align*}
$$

The comparison for any other years may be derived from this by the substitution of the required figures in subscript. For conrenience, the comparison was confined to stars of the provisional catalogue and to those north of 100 sonth decliuation.

It is erident that r_{1}, v_{2}, v_{3}, and v_{4}, cannot be absolutely determined with the data proposed. It will be necessare to assume:-

$$
r_{1}+r_{2}+r_{3}+r_{4}=0
$$

and to express r_{4} in terms of the other three quantities. This will not affect the declinations; but will prodnce an error in the latitnde of one-fourth the sum of the quantities in question.

Every combination of dilferences that conld be made was nsed. Thus, a declination observed in tbree years furnishel thre differences; and four years, six. There were very few of the latter. The meights are assigned on the supposition that a declination is subject to a constant probable error which is equal to one-balf the error of pointing.

Where a star has been olserved in three jears there are but tro independent comparisons; and for four determinations we bave three independent comparisous. In the former case, each of the three equations received two-thirds the weight it otherwise would have lad, and in the latter, each of the six one-half. The moit of weight is that due to five observations in ench of two gears where there is but one comparison for a given star. It was found that the computation conld be much simplified, without appreciable error, by assmming the simple scale of weights, 1.0, .6, and .3.

The coefficients were computed to the nearest tenth onls; but the equations were not gromped in the solution. There were in all 307 equations of the total weight 188. Every part of the work was either rigorously checked or duplicated. The resnlting normal equations are these :-

$$
\begin{aligned}
& +257.4 r_{1}+90.5 c_{2}+14.9 r_{3}+152.2 x-10.7 x^{\prime}+107.2=0 \\
& +90.5 r_{1}+230.4 r_{2}+103.5 r_{3}+134.3 x+62.5 x^{\prime}+138.2=0 \\
& +74.9 r_{1}+103.5 c_{2}+157.6 r_{3}+81.4 x-57.7 x^{\prime}+36.5=0 \\
& +152.2 v_{1}+134.3 x_{2}+51.4 r_{3}+25.1 x+46.2 x^{\prime}+205.6=0 \\
& -10.7 c_{1}+62.5 c_{2}-57.5 r_{3}+46.2 x+260.2 x^{\prime}+224.4=0
\end{aligned}
$$

The solution gives, with $x_{4}=-r_{1}-r_{2}-i_{3}$

$$
\begin{array}{lll}
r_{1}=-{ }^{\prime \prime} .11 & x^{\prime}=-" .664 & \left(-{ }^{"} .100\right) \\
r_{2}=-{ }^{\prime \prime} .21 & x^{\prime}=-{ }^{\prime \prime} .595 & \left(-{ }^{\prime \prime} .385\right) \\
r_{3}=+{ }^{\prime \prime} .46 & & \\
c_{4}=-{ }^{\prime \prime} .14 &
\end{array}
$$

The differences are well representerl, the error seldom rising as high as ". 3 in the mean of a zone 100 wide. The probable eror camot be estimated from the residnals. It taken trom them, it wonld be murli too small. Assuming the probable error fomm from latitule diseussion, that of the mit of weight mond be \pm ". 5 ; and the probable errors of x and x^{\prime} would be $\pm " .01$ wath; amd of x_{1}, x_{2}, etce, $\pm "$.on each. But in reference to the latter, it mast be bonme in mind that this pothabe mror is that of the relative values, and that thein common mobable eror can be taken roughly at \pm " 15 ; so that the athal pobable error of the fantities in the absohte sense is abont \pm ". 16 .

Thus the values of the zenithal division errors are reduced to gnantities of not improbahle masnitudr. The difference between the coeficients of x and x^{\prime} as hero determined, and as determined bs llenderson, is important.

The farther correction $\Delta \varphi$ is reguired before the declinations can be regarded as definitice. The discussion of $\Delta \varphi$ for the different years will also afford a good test of the corrections already deduced.

The systematic correctious of the zenithal divisions are respectively - ". $19,-$ ". 80 , $+^{\prime \prime} .39$ and $+" .50$ for $1841-3-3$ and 4 . These added to the respective corrections for accidental error, and l^{\prime} for each year, give the following corrections to the declina-tions:-

$$
\begin{aligned}
& (1811)-" .35+" .804 \sin \left(2 R+45^{\circ}\right)+l_{1} \\
& (1842)-" .96+" .894 \sin \left(2 R+48^{\circ}\right)+l_{2} \\
& (1843)+" .72+" .894 \sin \left(2 R+48^{\circ}\right)+k_{3} \\
& (1844)+" .18+" S 94 \sin \left(2 R+48^{\circ}\right)+l_{4}
\end{aligned}
$$

Where k_{1} ete., is to be taken ior each star from the table p. 186 , rolume for 1841 , or from the succeeding volumes. These corrections are, of course, to be applied with opposite sigus to results from observations of lower culmination.

Each year furminhes a considerable number of observations suited to determination of latitude. Except for a and o Ursa Minoris, with a few others, three obserat tions of the same star were generally mate in each colmination. The computation is thus practically nuatfected by the question of relative weights, and is greatly facilitated. Takiug three obserrations in each culmination as the standard mit for $2 f f$, weights were compated for the few that required it on the same assumption as in the preceding portion of the discussion. The latitude observations are all on stars of declination greater than 740 , so that the refraction cannot be examined, and the observations may be assumed to be of equal accuracy in the small range or zenith distance. The results are these :-

Year.	$\Delta \phi$	Mumber of stars.	Wegght.
1841	$-.49[\pm .12]$	18	50
1842	$-.15[\pm .11]$	32	72
1843	$+.15[\pm .01]$	31	69
1841	$+.01[\pm .12]$	27	56
$M e a n \ldots$	$-.09[\pm .06]$	108	247

The differences are not much greater than the probable errors should lead us to expect. The probable error ot the mit of weight calculated from the 108 residnals is $\pm{ }^{\prime \prime} .64$. This gives for probable error of pointing $\pm{ }^{\prime \prime} .59$, and for minimum probable error $1 . " .20$; the latter is in close agreement with the value $\pm " .3$ assumed by Henderson in 1839. The probable enrors of Δc, as given abose, take into acconnt the probable error of the formole derived tor division comection. The probable cror of the mean valne of J_{φ} computed from the residnals is \pm ".04. All the ralnes, however, are subject to a common probable cror of about $\pm{ }^{\prime \prime} .15$, besides the error in adopted refraction; so that, absolutely consilered, the correction to the assmmed latiturle has a probable error not far from \pm ".2. Except for the uncertainty of refraction this increase of probable ertor is without influence on the der linations. The quantity - " 09 is therefore added to each of the corrections marked (A), and, since $R=$
$R^{\prime}+\varphi-\delta$ ，we have by the proper substitutions，the following corrections to the deeli－ nations of Eh 43，as printed in the ammal eatalognes：－

$$
\begin{aligned}
& \text { (1541) - }{ }^{\prime \prime} .47+{ }^{\prime \prime} .594(2800-2 \delta)+k_{1} \\
& (1842)-1^{\prime \prime} .05+{ }^{\prime \prime} .894(2980-20)+k_{2} \\
& (1843)+{ }^{\prime \prime} .63+{ }^{\prime \prime} .594\left(215^{\circ}-20\right)+l_{3} \\
& (1844)+{ }^{" 1} .09+{ }^{\prime \prime} .894(780-20)+k_{4}
\end{aligned}
$$

where $k_{1,}$ ete．，are to be 1 aken，as before，from the tables of division correction in the annual volumes．

The following table exhibits in column I．the values of this expression，computed for every five degrees of declination（and includes k ）．Column II．is the sum of colnmn I．and the definitive correction found for Eh 43 in Table IX．at the end of this paper． To this is still to be added a swall correction depending on right aseension．

Talle of corrections to Edinburgh，1841－184．

δ	1341.		184.		1843.		1844.	
	I．	11.	I．	II．	1.	11.	1.	1 I．
S．r．	＂	＂					＂	
	＋． 13	＋．13	＋1．94	＋1．24	－ 1.37	－ 1.37	＋．34	＋．34
	$\pm .017$	$\pm .017$	＋1．06	＋1．100	－ 1.36	－ 1.36	＋． 37	＋+.37
	－． 23	－． 23	＋． 94	＋． 94	-1.29	－ 1.29	＋．36	＋．36
$\begin{gathered} \text { Aborin pale } \\ +40 \\ +85 \\ +80 \end{gathered}$								
	＋．28	＋． 23	－． 80	－． 80	＋1．18	＋1．18	－． 34	－． 34
	＋．${ }^{+}$	＋． 23	－． 67	－． 67	＋1．04	＋ 1.04	－． 31	－． 31
$\begin{aligned} & +25 \\ & +70 \\ & +60 \end{aligned}$	$+.25$	＋．95	－． 56	－． 56	＋． 90	＋．90	－． 23	－． 23
	＋	＋．86	二． 34	－ .148	＋	＋ 7.50	二． 24	
$\begin{aligned} & +60 \\ & +55 \\ & +50 \end{aligned}$	－． 08	－． 13	－． 31	$-.36$			－． 23	－． 23
	二． 23	$=.318$	二．30	二 8.41	＋	＋	二：23	$=.31$
＋ 45+40+40			． 10					
	二． 67	二．20	二． 5.5	－． 5	$\underline{+.17}$	＋． 14	二． 20	二．${ }^{\text {a }}$
＋35	． 78	－． 88	． 63	． 65	＋．．18	＋．18	.16	－． 16
$\begin{array}{r}\text {＋} \\ + \\ +20 \\ \hline\end{array}$	－． 86	－． 81	－． .78	－．$\% 3$	＋． 18		－． 10	－． 0.5
	－． 91	－． 79	$-.94$	－．${ }^{2}$	＋ 20	＋ 33	－． 09	＋．${ }^{10}$
＋ 0	－． 93	－． 84	-1.09	－． 90	＋．23	＋． 4	＋．09	
15+15+10$+\quad 5$	－． 93	－． 66	-1.23			＋． 54	＋． 21	＋． $4 \times$
	－	二． 53	$\begin{array}{r}1.31 \\ -1.31 \\ -1.43 \\ \hline\end{array}$	－ 1.00	＋	＋ 6.68	＋	＋
$+5$								
$\begin{array}{r}0 \\ -\quad 5 \\ \hline 10\end{array}$	${ }_{81}^{87}$	－． 5.3	-1.48	－ 1.14			＋． 59	
	二． 88	二． 6.9	－ 1.51	二 1.88	＋	＋	＋．79	＋
－ 1.5	． 80	－．in	－ 1.50	-1.48			$+.83$	
	． 810	二．$\%$	－ 1.48 $=1.46$	-1.56 -1.61	＋	＋		＋
－								
-30	－． 99	－1．00	-1.4	－ 1.05	＋$\cdot 4$	＋．．．	＋．．．	$+.53$

With the corrections of eolumn I. added to those for mutation and proper motion all the results for a given star were formed into a single mean, with the following table of weights:-

Weights.	Observations.
1	1
2	2 and 3
2.5	4
3	5 to 9
4	10 to 35
5	36, or more.

Eb 58, Eh 63 and $\mathbf{E b} 67$. There are few observations in this series; but many of them relate to stars for which few observations are found elsewhere. The unimportant correctious for nutation applicd to Cambridge ammal catalogues of corresponding years previous to 1857 are used. The proper motion correction is generally neg. leeted: the differenee between those assumed in this paper and those of B. A. C. used in reduetion of Edinburgh observations being usually small, for the short interval of time intervening between the mean epoeb of observation and the beginning of the year. Tho grouping is determined by constancy of zenith cirele readings, which, however, were often changed during the period embraced in Eh 58.

Kg 43. The reduction by Luther, in Ast. Nach. 1076, emplors Bessel's refractions (I821) and derives the latitude from a Urs. Min., a Aurige and $a \mathrm{Cygni}$. I have foltowed the lead of Dr. Aurers (Ast. Nach. 1549), taling the latitude from a Urs. Mint alone and applying the correction - ". 17 to the declinations of all stars, except a Aurigæ and α Cygni, whose declinations are taken from upper culmination alone, and the catalogue plaees corrected respectively by - ". 44 and - ". 41 . The observations were originally reduced with Peters's untation.

GREENWICII CATALOGUES, 1830-152.

This long and valuable series of observations is remarkable for the muiformity of its plan and methods, the thoronghuess and accmacy of its mmerical reductions, and the vast amount of material it contains, chiefly relating to places of sun, woon, plaucts, and stars of the sisth magnitude, or brighter. The observations are made with non reversible instruments, and the problem of absolute declinations is rendered altogether subordinate to the requirements of routine work on a large number of objeets.* This robs the series of an interest it might otherwise possess; but wheu systematic corrections to its various eatalogues are once ascertained, it becomes the richest mine of information on the deelinations of the brighter stars.

Two mural eircles were used until March, 1839, then a single mural circlet until 1851, when the great transit eircle was mounted, and has been used until the present time. The position of the telescope on each of the mural circles was changed at the begiuning of each year. The relation of the thescope and circle of the tramsit circle is invariable.

[^13]The observations were reduced with Bessel's refitations (Tab. Reg.) motil 186s, when the tefractions of the Fundmenta maltiphed by 0.99797 were adopted on the
 the purpoe observations made witia the tamsit circle of Greenwich 18507-1865.
 begimning of the fear with moproper motion, or with valmes of that element taken fiom A.S. U. Wherever the error from this is considerable, it has been carrably attented to in the crate of later vataloghes. I have not investigated any eases indepemdently of these. The proper motions of the B. A. O. Were used in compiling the general from the special catalosues. Where the difference between these and those assumed in this paper is woth rearading the proper correction has been appled, using for the purpose the mean "pochs of the Twelve year eatalogne, which are only given to the nearest year. For rednction to apparent flace the special catalognes depend upon the Namtimal Ahmanar. The bothowing mean comections for mutation and epoch have been applied :-

$$
\begin{aligned}
& \text { Ghn }: 0+10.04 \sin (x+3050) \\
& \text { Glu } 45.020 \sin (k+(610)
\end{aligned}
$$

Gh 50. The mutation eorrection is:-

$$
-^{\prime \prime} .05 \sin (a+760)
$$

The remarlis moler the precoling catalogues are generally applicable. A portion of the time the mural eirche was used in a temporary observingrom, amb the eiremmstances muler which much of the work was done were necessarily mitarorable. Some meertants in the systematic correction of this catalogne mast arise from the fact that it combines results from two distinet instrments at different imes.
(ih 5\%. This eataloge may be regarded as containing the work ol the transit eircle in its best estate, when the observers hat become atemstomed to its peenliarities, and before any appreciable impertection or wear hat resulted from long use. Though the instrument was med in a single position during the entire period, the cirele readings were mate with sis microseopes. Furthermore the error of division was earefully examimed for erery degree and for some special divisions, and the high repmation of the makers is a gharantere that the aredental erors of division are probably shall. The proper motions of this athe suceroling catalogus of Groenwieh are gemerally in fair agredment with the assmmed proper motions, wh that this correction is seldom appled by me. The sucial watogres, matil ISET, refure small eorrections for mota-

 precoding. Nocormetion is moded sabe that for proper motion, whieh is usmally insig. nitient. During the long period of its mse the instrment underwent slow changes from wear, which might be quate suthedent to canse a real ditherene in the systematie correction reguired (see Gill F 0) .
 aloges Tere sometimes magator. The results of separate pars were then combined with weights aceording to mumber of observations in cach year. I beame arare of the
large ertor due to wear of the micrometer screws too late to make any use of a spectal correction on that aceount. I have taken my information from Mr. Christices pherer in Mouth. Not. R. A. S., for November, 1876.

The series of reflection observations made daning the perion 1836-183, at Greenwich, has attracted wide attention, and has been the subject of some interesting memoirs. A brief consideration of the principal points incolved will be of use in judging the value of the decliuations in the absolute sense. During most of the period occopied by obserrations with the mural circles, the correction $\frac{R-D}{2}$ was found to be so small and so irregular that it could not safely be applied.* The corrections of carlier gears, and for 1850 , were small. It may, therefore, be assumed that the dectinations of that perion ($1836-1850$) are practically minfluenced by the diseordance in question. On the introduction of the great transit cirele in 1851 this discorlance was at oneo potieeable, and a correction has always been applied to all polar distances deduced from the observations of this instrment-this cormetion being assumed to be equal for the two elasses of observations (direet and reflected), but applich with opposite sigus. The division error was disenssed for every degree of pinter reading, first in $1851-2$, again in 1856 , and lastly in 1871 . The results of the three investigations essentially confirm each other. The tirst table of corrections was nsed in the years 1851-1856; the secoul, 1850-1867; the thid, which is the mean of the first and second, 1865 and later. The horizontal flexure was several times determined by the opposing horizontal collimators. Uutil 1866 the teleseope was raised from its bealugs in order to render the collimators intersisible. In the latter part of lifis the teleseope culne was pierced in such a manner is to dispense with the raising. Owing to constrmetion of the instrument a single circular opening conld not be ent, but saveral ralating apertures in the form of sectors were mate. This uecessitated the use of very largo collimators (aperture \bar{i} inches). The value of the borizontal ilexure suddeuly changod at this time uearly one secoms, passing from a decined phas value to a mimus value. In the table to be given it will be observen Hat there is a simultaneons ehange in the opposite direction of the sigu of the corfficient of sin $Z \cos ^{2} Z$. As I rofessor Newembl suggested to we recently that the entire series of observations with the transit cirche could be reconciled to the smposition of aniform coeficichnt of flexure, dementing on sin Z, I have examined this question, not, howerer, in any very critieal or conelusive manuer. It is necessary to remark that the formuta of correction was, until 1862, assumed to be
subsequently to that time

$$
\begin{equation*}
a+b \sin Z \tag{i}
\end{equation*}
$$

(2) $a+b^{\prime} \sin Z \cos ^{2} \%$.

I have reluced b^{\prime} to wake it comparable with b, by supposing that the mean Z, where $D-l^{2}$ ocens, is effectively absut 20°, aud, therefore, that b would have been abont.$S b^{\prime}$, had the lam expressed in (1) the lasell iustead of (2). The groups aro paty determined by the periods during which the same corbliciont hetermined from oppowing collimators was used. The following table exhibits apmoximate woults. The first colnmo gives the year or period ; the second adoped value of the xure depmb-

[^14]ing ou $\sin Z$, whtained from obsersation of collimators; the third, the average value of b for the giren period-for the first three groups directly derived-for all after 1862 from l^{\prime} in the manuer explained ; the fourth, the arerage ralue of the constant term a; the fifth, the sum of second and third columus; the sisth, the reight-the result of oue year being the unit. The spaces indicate epochs of change in division correction used:-

Period.	Collimator flesure.	$b, \mathrm{or}^{3} \mathrm{l}$	a	$\begin{aligned} & \text { Residunt } \\ & \text { flexure. } \end{aligned}$	Weight.
	"	"	*	"	
1551	$+.73$	-. 24	+. 10	$+.49$	1
$1-52$	+. 73	[- . ${ }^{4} 7$	[+.10]		
1853-1856	$+50$	-. 31	$-.03$	--. 19	4
18ご-1861	$+.50$	-. 42	$+.04$	$\pm .11$:
1862-1864	$+.50$	-. 43	+:01	+.13	3
1805	$+.76$	-. 62	-. 04	+.11	1
1866-18.0*	$-.37$	+.62	$+.10$	$\cdots+.85$	5
$10 \% 1$ aud $10 \% 2$	-. 12	$+.51$	-. 01	$+.39$	\because
دean				+.21	21

* The actnal cbange in division correction used took place in $186=$ and is unimportant.

Thus it appears that, if the uniform value of sine flexure, $+^{\prime \prime} .21$, had been employed throughout the series, we sbould hare bad sufficientls good agreement between direct aud reflection observations. This appears to me to throw discredit upon the salue of flexure derived from opposing collimators, and forces me to the belief that the change in the collimator flexure between 1805 and 1860 , if it has indeed ans reality in fact, was much smaller than has been supposed. In this particular case, at least, the foregoing discossion appears to argue strongly for the utility of reflection observations.

It there is a real residual discordance, $R-D$, it would appear from the disenssions of Airy (Mem. R. A. S. sxsiii, and Seren-rear Catalogue, p. siii); Fase (Comptes Rendus, sxi, pp. 401, 635, 757); and Vau de Sinde Backhayzen* (Ast. Nach. 1720), that it is probably due in some measure to the effect of variations of temperature at different altitudes in the observing room. It is quite likels, that the reflection obserrations are prineipally affeeted-as Mebderson and others have supposed.

It mas be interesting to note that, if we assume the latitude derived by Bessel from Bradles's observations (Fumd. Astr.) to be near the truth-and there is good reason for beliecing it is-and if we suppose the mean latitude for the period 18301860 to be that which is affected b_{3} the correction $\frac{R-D}{\underline{2}}$, we shall have:-

$$
\begin{aligned}
& \text { 1705: } c=51^{\circ} 25^{\prime \prime} 39^{\prime \prime} .6 \\
& \text { 1847: } ¢=51^{\circ}{ }^{\circ} \mathrm{us}^{\prime} 3 \mathrm{~s}^{\prime \prime} .17,
\end{aligned}
$$

" Ceber den Limfluss der Strahlonbrechung im Leobachungesaale, auf die mit dem Meridiankreise bestimten Decinationen." This paper freats, most thoronghly, the obervations of Greenmich transit circle, 15:51-1-64, with reference to discrepaneses in polar distance, which are cotemporancous with difierence of realings of outer and inner thermometers. As a partical result, the form of an ideal surface of junction between the outer and inner air is dednced, which appears to explain the discrepancies in a satisfactory manner.

Annnal rariation of latitude - " .0155 , or -". 0139 , if the latitudes are rednced to the same refractions.

Comparing the results found by Airy (p. viii, Seven-year Catalogue), with $\varphi=51^{\circ} 28^{\prime} 38^{\prime \prime} .17-{ }^{\prime \prime} .0139 t$, we have :-

If, on the other hand, we consider the results for latitude as printed in the Greenwich Annual Catalogues later than 1860, we have sceonds of latitude for 1861-67, $38^{\prime \prime} .25$; and (after approximate reduction to the refractions previously used) for 186872, $38^{\prime \prime} .18$, results which contradiet the theory of diminishing latitudes.

radcliffe catalogues.

Re 45. The nutation correction is neglected, bceause the period embraced in the observations is so great, that an error greater thau the correction would often be introduced. The places were corrected, wherever necessary, for the difference between assumed proper motion and that found in the cataloguc. An important correction is found in the Introduction, pp. viii to xi. This has been carefully applied, as well as that for error in reducing three stars specified, p. xii, Int.

The refractions used in this catalogne are those of Bessel (1820) multiplied by .9967. A much smaller refraction was deduced by Johnson (Re Obs. xr, p. xxiv). The iustrument was very imperfect, and was used in a single position.

Re 58. This is esseutially a continuation of the foregoing catalogue. The important correction p. xviii Introdnction to second Radeliffe eatalogue was applied before using the results.

Re 66 and Re 72. The trifling correetion for proper motion bas been applied in a few instances. The telescope was shifted relativels to the circle at the beginning of 1870; so that in the final discussion of declinations the series has been divided into two groups. In making up these gromps the observations were given weights proportional to number of observations, the corrections of Table IX. being first applied. The results were then considered as agreeing with the Normal System and were used withont further correction. But, for preliminary purposes, owing to the large systematic differences in polar distances of different years, stars were onitted which were not observed in at least four different years. Each year was given equal weight nuless the number of observations was less than 4 ; two or three obscrvations were givell weight.7; and 1, weight.4. The following table exhibits correctious to assumed places thus derived:-

Note.-The catabgue lor $1-3$ was not reccired in time to bo used in forming the above correctione, bont is used later in makiog up) (" for he for

In forming the corrections, a few polar distances marked in the catalognes as doubtful. or to be rejected, with a few which result solely from observations below the pole at great zenith distances, were not nsed. The weights of a few others were rednced in forming the means, on account of unusual discordance, or becanse the catalogne p. d. is made up partly of sub polo determinations at zenith distances over 70°.

In geveral, the results are far less exact than we shonld hare expected from the circumstances. Thongh the instrument is of the now-rerersible pattern, the relation of the telescope to the divided circle can be altered at pleasure; yet this precantion was exercised but once, at the beginniug of 1870 . It would be impossible to detail the rarions systematic corrections which hare been applied in the reductions from time to time. The division error was determived on the assnmption that the mean of S microscopes is free from error, and a correction applied after 1862. The values of horizontal flexnre as adopted in rednctions have varied from $+1^{\prime \prime} .13$ to $+2^{\prime \prime} .8^{2}$. The dependence on the time is not manked, the adopted valne in $1802-63$ being $+2^{\prime \prime} .5$; and in $1871-73,+2^{\prime \prime} . S$. In $186 \Omega-^{2} 63-64$ and ${ }^{\prime} 67$, corrections were applied for $\frac{\bar{R}-D}{2}$. Varions corrections were appiied for discordance of zenith points, determined by nadirs and by reflection obserrations, etc. The refractions are tbose deduced by Johnson, and used in the Radeliffe general catalognes. To show the variety of practice in reducing the observations, we have the following table of latitndes adopted in reductions:-

Year.	Adopted latitude.		Year.	Adopted latitude.		
	$\bigcirc 1$			0	,	"
1863	$\therefore 145$	85. 85	1869		45	35. 42
1 663		35. 73				
1,64		35.50	100			31. 20
1865		35. 28	1871			3-. 51
1866		36. 3	18゙3			36.06
1867		35.96	1073			36.33
1868		36.16				

The gronps indicate periods for which the zenithal circle readings mere the same.
Pa 45. The catalogne results are used withont chavge. The instrmout used in these observations is of peculiar construction, and in many respects superior to any yet employed in meridian observations for the purpose of deducing standard decli nations. The results like those of Kg 21 , Dt 24 , and $\mathrm{A}_{\mathrm{o}} 29$ are independent in every essential respect, and are such as to inspire the highest confidence.

Ah 41 and $4 h 52$. It was decided to use the Armagh places for 1840 as tiro catalognes. The first includes the observations 1835-1846; the second, 1847-1854. Where a star had been observed in both periods, the separation was accomplished in this manuer. In the section entitled "Observed Places of Stars" P P'. 1 to 640, tho means, for each period, of corrections to the assmmed polar distance (that of A. S. O., B. A. C., etc.), were taken. The mean of all the resnlts was then subtracted frou the separate means; the resnlts are corrections to the catalogue polar distances for the respective periods. In the majority of instances all the observations of a giren star are embraced in one or the other of the two periods. No eorrection tor matation was

446 UNITED STATES NORTHERN BOUNDARY COMMISSION.

applied. The catalogue places are reduced without proper motion except in a few cases specified by Dr. Robiuson in Ast. Nach. 1x, 75. The proper correction has been carefully applied.

WASHINGTON MURAL CIRCLE, 1845-1873.
The most of this series, together with obserrations of meridian circle, meridian transit, and prime vertical tramsit, have been compiled io a general catalogue* for the epoch 1860, by Professor Yaruall. For the present prrpose it is desirable to separate the work of the various instrmments, and to combine the work of the mural circle into such couvenient groups as appear to be adrisable. The error of division of this instrument though not insestigated is undoubtedly small, and to provide against error from this and other callses the position of the telescope on the circle was frequently changed.

Wn 47. The declinations are reduct in 1845 with Lindenan's nutation; in the three following sears with that of the B. A. C., and to epoch, $\odot=281^{\circ}$. The corrections are :-

$$
\begin{aligned}
& 1845+4.21 \sin (a+3150.2) \\
& 1846+" .05 \sin \left(\alpha+244^{\circ}\right) \\
& 1547+" .06 \sin (a+2440) \\
& 18.18+" .06 \sin (a+246)
\end{aligned}
$$

The proper motions emplosed in the rednctions are those of N. A., 184S, and B. A. C. After 1845 the declinations are reduced to $\mathbf{1 8 5 0}$, so that the correction is often considerable.

The latitude which results from the observations of circumpolar stars in 1845, and which is adopted in snbsequent years, is smaller by ". 25 than that actually employed in the reductions of 1845. Accordingly, the correction - ". 25 has been applied to the catalogue declinations of that year, reversing the sign where the declination results from observations below the pole.

The circle was used in thirty different positions, relative to the zenith, in 1845 ; in 1846 and 1847 the zenith reading remained the same, and was again cbanged at the begiming of 1848 . The process of combination is as follows: The declinations of 1846 and 1847 are combined with weights proportional to the number of observations; to the resulting declinations for $1845,1846-47$ and 1848 weights are assigned according to this table:

Weight.	Numbr ob- servations.	Weight.	Number observa- tions.
1	1	5	8 to 11.
2	2	6	12 to 16.
2.5	3	7	17 to 26.
3	4	8	27 to 50.
4	5 to γ	9	51 and upward.

Wh 56. The simple mean of the separate results in all the years is taken without correction. Professor Mall (Ast. Nach., 1947) finds the correction + ". 19 to the lati-

[^15]tude actually used in reductions ($35053^{\prime} 39^{\prime \prime} .25$). The resulting correction to decliations, I bave not used.

Wn 6t. All the declinations must be corrected for the full amonnt of proper motion-that of a Lyra in 1802 excepted. The latitude assumed in the reductions shonld be corrected by - ". 47 , according to the discussion by Professor Newcomb.* I have applied to all declinations abore the pole the correction - ". 47 ; and to all below, $+^{\prime \prime} .47$. To all the declinations by direct observations in 1861 and 1862, I have applied the correction, - ". 21 for diseordance of direct and reflected observations, on the authority of the discussion, p. xxx, Wash. Ast. Obs. 1863. In combination, the weights were taken from the table given in Wash. Obs., 1864, p. sli, which is here copied for reference:

Weight.	Number of observations in different years.		
	1861-62.	1863.	1864.
1.......	1 ог $2 . .$.	1 or $2 \ldots$	
2......	Above $2 .$.	3 to $5 .$.	2 or 3.
		Above 5.	4 8 8 to 7
			Above 20.

Wn 70. All declinations are corrected tor full amount of proper motion. In 1872 and 1873 the assumed latitude is $38053^{\prime} 38^{\prime \prime} . S$, and this is " 45 smaller than that of previons years. $+{ }^{\prime \prime} .45$ is applied as a correction to the catalogue declinations of 1872-73.

So 51. The declinations of the catalogne are nsed withont alteration.
So 55. Proper motions were emploged by Möstat in a few eases only. These are specified on p. xli, Jnt. The nutation correction is that of Ce 55.

Ps 53. The declinations of the catalogne are used withont change. The position of the telescope on the circle was twice changed dming the observations of this series. There is every reason to believe that the observations are exceptionally free from errors due to the instrnment (Gambey circle). The error of division appears to have been small (vide Laugier's catalogne, p. 55, and Compt. Rent., tome, xxvii, p. 633).

No sensible tlexure is indicated by the few reflection observations which were taken. Caillet's refrac ionst were adopted in the rednctions, and the numerous observations of circumpolar stars do not indicate any considerable correction to them.

PaRis annual catalogues, 1854-67.
The declinations of the amual catalogues require no sensible correction. Uutil 1862 the Gambey mural circle was nsed alone. After that time the declinations depend principally upon observations made with the great meridian circle. The position of the telescope on the circle was changed in September, 1857. A comparison between results ohtained before and after this time shows that there is a constant difference, amomang, approximately, to ".25. In 1863 and 1864 the transit cirele mas used withont any correction for flesüre; afterward the correction - " .77 sin Z was applied in the rednctions.

[^16]Comparison of the results obtained by the two circles, when nsed in common, shows mo appreciable systematic difference between them.

The deelinations are not independent-the polar points being derived from obeervations of the stars of a stambard eatalogne, the plates of which are revised from time to time on the anthority of the observatious themselres. The process is analogous to that commonly alopted in the determination of right asceusions.

The separate results making up each of the four groups-1854-*5, 1858-62, 186304, ad $186.5-67$, are combined with weights proportional to the number of observations.

The observed declinations of stars, not ineluded in the Paris standard eatalogue, are not conreniently accessible, and the apparent places for the days of obserration only are given. Consequently they have been used omly in a few special eases.

brussel a inceal catilogetes.

The declinations of these catalogues are maftected bs the setuetion for proper motion, cxcept forstars of the Bitis! Nantical Almanar. I have applied the proper correction. The nutation correction for 1855 and 1506 is identical with that of Cam. bridge for corresponding sears.

The correction for division was not appled until 185. Thongh there is no appreciable atteration in methots during the period 1857 to 1867 , the observations were divided into two mearly equal groups-1857-62, 1803-66-hy which weans greater accuraty is seforch in the solution of conditional equations according to the adopted metborl. This is the more to be desired beeanse the Brosseds spries contains mumerous observations of stars generally ueslected, elsewhere, in recent times.

The combination of the separate years in each of the three gromps was effected hes means of weishts strietly proportional to the mumber of observations.
 those aswmed in this paper. Where this correction becomes sensible it has been applied. The instrment is a dupleate of the Grecomich transt circle, and is of conrse sulyect to the same theoretical objections. Mr. Stome smpeets that the zenith distances giver las this instrument require a cousiderable correction*, which is proportional to cos Z. This will trad to theow suspicion ngon the results of the discussion of wation correction in intronduction of the Cape catalogne (p. s). This discussion indicates that bescel's refactions should be multiplied by . 9923 in order to correspond to the observations of cireumpolar stars, bat mone is made of this result be Mr. Stone in forming the matalogur.

Ite 6-. The small corrections for difierence betwem assumed and catatosme (Main's) proper motions have been applien, also the table of corrections for thesure, we., given in the catahene (b. xai. int.). The instrment used in these. and subsequent maridian observations at Xelbomene is similar in most respects to the Greenwich transit eirede. It is much smallere, homeres, amb therr are onts fome cirele microseopes.

During the perion embraced in lle Ge the instmment was used at Williamstorn, a short distance trom its pesent site. The instrmmental refoctions are very uncertain,

[^17]and the circumstances were unfarorable for acenrate work. The deelinations are probably mach inferior to those obtained with the same instrument at Melbomme.

Me 68. The catalogue polar distances are reduced to $[570$, with proper motions, which seldom differ much trom those of Section II. Howerer, the resulting small corrections hare been carefully applied. Following the discussion hy Mr. E. J. Stone (Mouth. Not., vol. 28,1 , 27), the declinations are reduced by Mr. Ellery on the assump). tion that for stars culminatiug north of Melbonric zenith, Bessels refractions shouk be multiplied by .9909 , and for stars south by .9063 . The latter mumber resnlts from observations of circompolar stars at Melbourne, the former from comparisou with Greenwich declinations, 1857-65. From circumpolar stars Dr. Gylden has fonnd . 99718 (V. J. S. Bd., ir, 102), and arguments derived from a consideration of Cape of Good Hope and St. Helena declinations, compared with those of northern observations, incline him to the belief that there may be a real difference in the refractions for the two sides of the zenith at Melbourne, though the question is much obsenred by the uncertainty as to division error and flexure of the instrament. Tho instrmment being non-revarsible we must reman in ignorance as to the amonnt of cosine flexure, and while this uncertainty remains it will be difficult to draw decided conclusions about refraction, especially when we consider the necessarily large probable error of refraction determinations at the latitude of Melbournc. The comparison of Washington and Melbourne (1. 66) throws some further light on the matter.

Bu 66. The declinations taken from Ast. Nuch., 1719, are used without change; those from the sixth volume of Bonn observations are corrected for the full amount of proper motion, and for the quantities (applicable to declinations, clamp east) in the following table, which is extracted from the introlnction to the volnme in question (p. xiv):-

δ	Correction.	δ	Correction.
0	11	0	
-25	-.51	35	+.17
-15	-.17	45	+.32
-5	-.38	55	+.50
+5	-.20	03	+.43
+15	+.06	35	+.32
+25	+.31	85	+.13

When the clamp is west the sign of the correction must be reversed. The deeli nations depend essentially upon those of the Berlin Juhrbuch (Wolfers).

Le 66. The declinations must be corrected for the full amount of proper motion, none having been emploged in the reductions. The declinations are founded syste. matically upon the standard catalogue of the German Δ stronomical Socicty (V. J. S., iv, 324).

Ln 67. A few small corrections for proper motion bave been aplicd. In transeribing the deelinations from this series, the order of preference has been-first, Ast. Nach., 1902; second, circumpolar stars, 1. [141], second volume deiden Obs.; third, from the catalogne of Gratmessung stars, p. [1:2] ilit.

Tho stars of the Gradmewsung eatalogue depend upon readings of eircle B alone; for the others both circles rere used. Exceptional care appears to bave been exereised both

[^18]in the obsurations and their reductions. The instrment is of the reversble pattern,
 fom posiásons-(damp) east (lir. and ref.), clamp west (dir. and ref.). The error ef division dom every \tilde{y}^{\prime} math on both cireles has been ancertaned. The corrections for flexure, and to assmmed latilnde and redraction constant, are thoronghy dischssed aceording to the methods of bessel. The Gredmessumy stats were eath ohserved isteen times-ithe others muth more freguently.

These alle priated in the ammal rohmes of the United states Natal Observatory for the resperetive rears, and have been taken hem the sedions entitled "Corrections
 Nitas, "ete. I have not used the results obtaned by Professor Neweomb, fiom the observations of 1866 ams 1867, and pmblished in Appendix Ill. of the Washington solmme for 186 B , nor the ammal catalogmes in the later volumes.

Notwithstanding the large probahle error of sts singe deteminations, this semios appors to be worthy of particular attention, both on acount of the sreat variety of riremstanees moler whin the observations wore taken, and becanse the instrment mader consideration is in latimate mealy 130 fanther south than any other in the nothern hemisphere which has bern used for important indepentent deteminations of derlination in recent times.

The instmment, one of the largest of its elase, is easily reversed. It has two

 and exhanstive theatis ly brobesom Neweomb relating to the theny of erors of the thanst circle, and in the same commection a matical apmbation of the principles derived, to the pationlan ater of the Washimeton transit eirele. The division corree tion of each cirele is aseptamed with great eane at intervals of single degrese; the
 pradioahbe withont recomse to erlestial observation. The reductions of subserpent

 bively to the felesoope, so that atwern polar distance will depend mon difterent

 ater that proded from observations of the madir. A few dhervations ly mection

in the correction for discordance of direct and reflected observations. This correction is assmmed to be constant from 900 to 50 northern zenith tistance, and from 50 to 90° southern zenith distance, different values of the correction being applied according as the object observed is north or sonth. Between the point 50 north and that which is 5° south the value of the correction is interpolated. If we denote by-
ΔZ the corrections actually applied to polar distances betreen 50 and 90° zenith dis. tance sonth,
ΔZ^{\prime} the corresponding correction for polar distances hetween the limits 50 and 90° zenith distance north,
we have for separate years the following valnes of $J Z-J Z Z^{\prime}$.

1860	$-" .17$	1870	$+" .31$
1867	$-" .60$	$1871-9$	$\left.{ }^{\prime \prime} .40\right]$
1868	$-" .68$	1873	$-" .42$
1869	$-" .18$	1874	$-{ }^{\prime \prime} .83$

The difference for $1871-2$ was actually found to be $-1^{\prime \prime} .45$, but its improbable magnitude led to its rejection. Consideration of the values ot latitude derived from the olservations of separate yeas, as well from reflected as disect observations,* strengthens the belief that too much reliance has been placed upon the results of the former. In view of the precautions which were taken, the adontion of a sublen variation in the correction applicable to polar distances near the zenith is at least open to grave objections, while the persistence in the sign of $\lrcorner Z-J Z^{\prime}$ during the entire history of the circle thas far, renders it highly probable that the discordance in question has been prodnced mainly by canses which are indepemdent of the instrument itsclf, and which affect, perbaps chiefly, if not entirely, observations liy reflection. Moreorer, the final results of separate years, as printed, exhiljit considerable systematic discordances.

I therefore resolved to investigate the relatise accuracy of the results for separate years, and, with certain meliminary assumptions, to derive if possible from the observations themselves systematic corrections, which should appear theoretically admissible, and which might at the same time prodnce a colerable degree of harmony. It appeared to me that this would be practicable only in the case of the carlier gears, there being after 1868 few observations of stars at lorer transit or ly reflection.

In 1869 the instrument was dismonnted and placed in a new room especially designed for its nse. In 1870 the object-glass was regromnd and other important chatges accomplished. These aud other considerations have led to a division of the entire series into two distinct portions, viz:

Wh 68, embracing the years 1866-1869.
W⿵ 万2 , jears 1870-187.

$$
\text { Tr11 } 68 .
$$

The following notation is adopted :
$Z=$ Zenith distance, reckoncd from 0° to 360° in nsual direction.
$J Z=$ Required constant correction for a giverr fear to direct zenith distances, as alopted and corrected for division enor.
$D=$ Correction for division error, taken from tables § \mathfrak{F} of deseription of tramsit cirele, Whr. Ast. Obs., 1865.

$I^{\prime \prime}=$ Polar distance of American Ephemeris. For direct observations connted from 10 to 3600°.
$1 p=$ Comection given to P^{\prime} by a single observation of polar distance as printed in the column entitled "Miscellaneons Corrections," in the seetions entithed 6Observations with the Transit Circle;" but this designation is also applied to the same quantity when corrected for crrata and certain corrections required by some of the zenith points of 1867 and 1868.
$J P=$ Menn of n valnes of $\lrcorner p$. Does not inclnde division correction.
$\lrcorner P=\lrcorner P_{1}+D$.
P and P, for stars not in $A m$. Eph, correspond to $\left.P^{\prime}+\right\lrcorner P$ and $\left.P^{\prime \prime}+\right\lrcorner P_{1}$.
$F=$ Пorizontal, or sine Hexure.
$F^{\prime}=$ Zenithal, or cosine flexure.
$1 e=$ Correction to assumed latitude, $-38^{\circ} 53^{\prime} 38^{\prime \prime} .50$.
μ abd $\mu^{\prime}=$ Computed retractions, respectively for the upper and lower enlminatious of a giren star.
$(1-7)=$. Factor by which these must be moltiplied to bring them in accordance with observation of eircumpolar stars.
The true probable error of any tiual result for a given star in a single position of the circle, is supposed to be of the usnal form $\sqrt{z_{1}^{2}+\frac{z^{2}}{\pi}}$; where-
$\varepsilon=$ Probable error of a single pointing, or that bart of the error which diminishes atcording to the value of $\frac{1}{\sqrt{n}}$; and
$\varepsilon_{1}=$ Probable error for a simgle position of the instrment when n is infinite. z is supposid to iucrease with the zeuith distance according to the law $\varepsilon^{2}=\varepsilon_{\prime^{2}}{ }^{2}+\varepsilon_{1 / \prime}{ }^{2} \tan ^{2} Z$; where
$\varepsilon_{11}=$ vitule of : when $Z=1$; amt-
$\because / \prime=$ arbituar eonstant.
$\pi^{\prime}=$ Weight, the mobable error of whose unit is E.
Whenever it is necessary to limit the application of the above quantities to a particular sear or mode of observation it is effected by adding to the expression for the phantity the designations 66, 67, 68, 69, or (Dir), (Rel), ete. These designations are omitted in mans cases where no ambignity can arise from that course.
The rhange in method of ohtaning zenith point, which took phace in $186{ }^{7}$, requipes an examination of the determinations of north polar distance in that year, for the purpose of asorertaining whether there is any constant difference between the resmlts obtained before and after Jme 1 , when the change took phed. To settle this point, the direet ohservations of 70 stars most trequently observed (and at least three times in each period) were selected. The ohservations previons to Jnme 1 sere groned in a single mean, $\lrcorner P_{1}$: and those snbsequent, in another, $\lrcorner P_{\not \prime}$. Weights were assigned atcording to the usual formala: i. ϵ, n, being the number of observathons making mif $\lrcorner P_{\text {, and }} \eta_{\|}$the momber of observations making uj $\lrcorner P_{\prime \prime}$, we have $==\frac{n_{1} n_{\|}}{n_{1}+n_{n}}$. These weights were taken roughly th the mearest unit. The resulting
value of the correction is

$$
\begin{gathered}
\Delta P_{1}-\Delta P_{" /}=-{ }^{\prime \prime} .34 \pm{ }^{" 1} .032 ; \text { weight } 294 . \\
\varepsilon_{67}= \pm{ }^{" .55}
\end{gathered}
$$

All the polar distances subsequent to June 1 were conseduently corrected by - " ${ }^{\text {. } 3.3 \text {, }, ~}$ to bring them into systematic aceordance with those values of Δp obtained previons to that date. Where the number of determinations for a wiven star is small, particular examination of observations made in May was institnted, and such observations in that month as appeared to depend on Nadirs were corrected. ΔP_{67} was then formed amew, respect being had for the list of errata (end of this Appendix).

Eren a snperficial examination of the results for 1868 is sufficient to show that the probable error, ε_{68}, is moch larger than the corvesponding quantily for any other rear, and while it was found to be impracticable if not impossible to assign all the reasons for this, an examination leaves no donbt that it is partly due to comstant errors in the determination of zenith point correction. Some of these errors are quite large, and though extreme cantion should be exereised, I have not hesitated to apply the more important corrections whieh seemed to be regnired. I have followed a method precisely like that adopted by Professor Newcomb in similar eases occuring in 1866.* The suspected periods were quite numarous, but onls those in the smbjoined table were adopted for treatment. ΔP_{f}, for each star common to any one or more of these niglits, was formed from all the remaining observations of the year; and then each compared with the questionable ralues of its corvesponding $J p$. Thus a series of values $\lrcorner P,-\Delta p$ were obtained for each date, and the mean of each set adopted as the correction to the results as printed. The column headed "No." shows the total number of values of $\lrcorner P_{1}-\Delta p$, which are used to form the corresponding correction. The corrections with reversed sigus are applicable to the results of reflection observations.

Date.	Observer.	Correction.	No.	Remarlis.
		"		
March 18.	II	$+1.5$	10	Polaris to к Cancri.
September 7..	F	-1.5	19	
Oetober 1....	T	-2.0	16	
October 13....	F	-2.0	19	
October 16....	F	-1.7	16	
November 6...	E	- 0.9	2	
November 6...	E	- 9.3	11	© Canis Majoris to a Hydro.
December $8 .$.	F	- 1. ${ }^{\text {a }}$	14*	

* The result from a Aquite is excluded.

The corrections ou November 6 , taken in connection with the corresponding "zenith point corrections," which for the first group was $13^{\prime \prime}$. 0 , and for the second $14^{\prime \prime} .3$, shom that the Nadir determinations mar indicate a cousiderable change in the zenith point without any real alteration. The "zeuith point corrections" on Nosember 6 , according to the abore table, shonld have been $12^{\prime \prime} .1$ and $12^{\prime \prime} .0$ respectivels, for the first and second groups; while thes were fomm to be from Nalir observations on

[^19]Nosember $5,11^{\prime \prime} .9$ ，on November $7,13^{\prime \prime} .9$ ，and on November $9,10^{\prime \prime} .6$ ，each tepeading on two scparate observations，－those on November 7 being respectively $14^{\prime \prime} .5$ and $11^{\prime \prime} .97$.

The only remaining corrections adopted to aid in forming $\mathcal{A} P$ in this and in other Sears are for errata，which are to be tound at the ent of this Appendix．Twenty seren obsersations in 1565 which differed more than $3^{\prime \prime} .5$ from the concladed means， were rejected．

In 1866 the values of $\lrcorner P$ resulting from zenith points as corrected are adopted．

Probable Error．

liefore eombining the results of separate years，it is important to know their rela－ tive weights；especially as an examination，merely preliminary，shows that the accu－ racy of a single determiuatiou varies gleatly in different sears．In getting probable error，the corvected results were used in 1866 ；and the results as printed and corrected for ervata，in subsernent years；excent that the rejected observations of 1868 were not included．Each J^{\prime} ，was compared with its $\lrcorner P_{\text {，and the residuals arranged in groups }}$ accorling 10 zenith distance．The probable error a was supposed to follow the well－ known law＊

$$
\varepsilon^{2}=\varepsilon_{/ \prime}^{2}+\varepsilon_{/ \prime \prime} \operatorname{tang}^{2} Z
$$

Whatever the iheoretical objections to this formula，they are nothing in com－ parison with the nocertainty of the detemination；because in this particular case there are lew obsercations at great zenith distances．No distinction is made between observations north or south of the zenith，owing to the considerable number of lisec－ tions taken at eaeh pointing；and these，for northern stars frequently observed，are more nomerons on the arerage than for the southern；so that the greater accuracy in a single loisection of an equatorial star is in this way assumed to give no marked adrantage．In 1866 and 1867 ，stars observed twenty times or more were ased，except at zenith distances greater than 55° ，where the minimum was reduced to 7 observa－ tions of the same star．In the tro succeeding gears the minimum for zenith distances less than 60° is 10 ．The results follow：－

1 － 176.

Gromil．	Mean ${ }^{\text {\％}}$	$\begin{aligned} & \text { No. resid- } \\ & \text { nlals. } \end{aligned}$	Ohaserved ε	$\begin{aligned} & \varepsilon \text { from } \\ & \text { formolal: } \end{aligned}$
	\bigcirc		＂	＂
1	6	210	$\pm .51$	$\pm .57$
\because	20	－10	工．50	$\pm .5 \%$
3	2－	191	士．53	士． 58
1	1：	－10	I． 6.3	
7	51	$: 51$	I．71	I． 13
（；	Er	201	士．${ }^{\text {I }}$	士．17
18.78.				
1	10		$\pm . \pi 1$	$\pm .51$
\because	0	2n	1．5\％	I． 5
$:$	4.9	01.5	E． 58	I． 5
1	2：3	$1: \%$	E．${ }^{\text {a }}$	士． 57
\because	59	8	耳． 5.	I． 59
（i）	03	$: 1$	士．71	$\pm .71$

[^20]| Cronp． | M14．an 7 | $\begin{gathered} \text { No. resid- } \\ \text { 1tal. } \end{gathered}$ | Ohamede ε | \＆from
 formula． |
| :---: | :---: | :---: | :---: | :---: |
| | \bigcirc | | ＂ | ＂ |
| 1 | ， | 199 | $\pm .46$ | 上． 76 |
| \because | $\because 1$ | 20！ | 1． 71 | I2． 76 |
| 3 | 8 | 095 | I． 31 | I． 76 |
| 4 | 50 | ：3：3 | 上． 77 | t－． 79 |
| 5 | 51 | 79 | 士．7： | 上．E1 |
| 6 | （6） | 8 | I． 60 | I． 80 |
| 7 | 72 | 4．） | ± 1.00 | 立．90 |

Two hnomred and eighty－seven residnals of stars most frequently observed in 1869 give $\varepsilon= \pm .67$ ．

One humdred and sixty－five residuals of stars most fregnently observed by reflec． tion in 1867 give $\varepsilon= \pm{ }^{\prime \prime} .50$ ．

The following formula were arlopted for the respective gears：

$$
\begin{array}{ll}
1866 & \varepsilon^{2}=" .323+" .0 .50 \operatorname{tanng}^{2} Z \\
1867 & \varepsilon^{2}=" .061+" .0333 \text { tang } Z \\
1865 & \varepsilon^{2}=" .535+\left({ }^{\prime \prime} .0333\right) \operatorname{tang}^{2} Z \\
1869 & \varepsilon^{2}=\left({ }^{2} .455\right)+\left({ }^{" 1} .0415\right) \operatorname{tang}^{2} Z
\end{array}
$$

For 1868 the factor multiplied bs tang？Z was assumed equal to that fond by experiment in 1867；the result for 1868 being of extremely small reight．

For 1869 the formula fomud from the observations of Wa 1870－1873 was adopted as beiug a close approximation．

With the arguments Z aud jear，tre have the following table of－
Falues of ：

$Z=$	0°	20°	30°	40°	500	50	60	（6．）	700	7.7
	＂	＊	＂	＂	＂	＂	＂	＂	＂	1
1866	． 57	． 5.7	． 54	． 1818	（i）	． 14	． 68	78	81	． 08
173：＊	． 81	． 5.	－28	． 83	．	.58	． 10	． 6.1	．73	． 2.5
1868	． 76	． 66	．$\%$	． 2	． 29	．-11	．	． 8 方	． 91	1．02
1869	． 68	． 18	． 68	． 70	． 72	． 24	． 76	． 810	． 83	1．10

The ralue of ε ，must be determined from a comparison of observations in different positions of the circle．

It will now be assumed that the systematic corrections required by the adopted values of ΔP ，are：a，a correction D for division error．This has been taken from tables in § 72 of the description of the transit circle，Washington Observations tor 1865.
b ，a constant correction，$-\Delta Z$ ，to all of the zenith points of a giren year．The correction to ΔP will be $+\Delta Z$ ．

[^21]c, a correction for thexure, arbitrarily assmmed to be of the form F sin $Z+F^{\prime} \cos Z$.
d, a correction, $-\perp$ e to $\lrcorner P(1866-1869)$ for error in the assumed latitude, 35053^{\prime} $38^{\prime \prime} .80$.

These corrections are of the forms msually adopted, and scem to require no explanation on theoretieal groumfs.

Accepting these, the fimal polar distance bs direct observation will be-

$$
\left.\left.\left.\left.\left.P^{\prime \prime}+\right\lrcorner P_{1}\right\}+7\right)+\right\lrcorner Z+F \sin Z+F^{\prime} \cos Z-\right\lrcorner 0
$$

Of these corrections $\rfloor Z$ will vars with the sear ; fowill be constant; and I, F and F^{γ} will depend upon the readiag of the cirele nsed.

$$
\text { Thrues of 」 } Z, F \text { and } F^{\prime} \text {. }
$$

During the years 1867 and 1865 circle B was used. It was reversed at the beginring of 1568 , but was not shitted relatively to the telescope. In cach year there is a considerable momber of retlection ohservations, both morth and sonth. The neerssary conditions are thas astablished for ascertaining the quantities $\lrcorner Z 67, J Z 6 \mathrm{~A}, F$ and F^{\prime}. F and $F^{\prime \prime}$ have been abready investigated as stated above* (P .44) ; but that portion of F^{\prime} which depents upon the flexure of the teleseope conde onls be ronghly inferred, and was taken as . 00 . So far as this assumption is supported by the present investigation. It will be fomd to be substantially comect. Mowever the discordance between the diret and retlected obsersations of these and other years may originate, if one of the possible canses of cmor is known. and if the form of the difterences can be reconciled, within a dair degre of mobability, to represent the effect of that eanse, we are bomm to arept the latter, provisionally, as the most prohable, or at least as an important somer of the difficulty. If other means of measuring the effect of the known disturbing asmery exist and have been emploged, the question then relates to the weight of each determination or thethod, and, exeept for eonsiderations of expediency, neither shonld be adopted to the exelnsion of others, mnless there is great disparity of Weights.

It is a prime possible that the whole or a part of the discordance in question may be produced by thexure. The horizontal thexure (F) has been weasured by opposing eollimators anm alko be the ain of lexaled eollimators, in the mamer detailed in the Washington volume for $186 \pi . t$ The detinitive result wastaken from the former method. The valmes given by leveled collimators, for reasons stated, are justly regarded as of littre weight, thometh it will he seen that their mean is very near the mean fimally adnoted in this diseussion. Trotessor Neweomb considers the tlexure of the circles and of the telesenpe separately. The former was ascertained be a method of comparing simmltamens readings of the two circles, eombined with a systematic rotation in their relatire positims. The flesure of the teleseope in the horizontal position was determined hy suhtracting from the value of F, fonn by opposing eollimators, that pre. viousty fond for the cirele real in the obsersation. A rongh check on the zenithal tlesure of telesope was obtained in an athagoos manmer hy the aid of nadia observations eombined with realings on lereled eollimators. The result is confessedly of small

[^22]weight. Many of the determinations lyy opposing collimators were known to be inthenced by temperature in the room varsing at different altitudes, and such were rejected. It is not altogether improbable that the measures accepted may have been affected injuriously by the same eanse, thongh in a smaller degree. Thes are also liable to error from other canses, among which may be mentioned personal error, and the error possibly arising trom the small aperture of the collinators.* It wonld be diffent to estimate the probable error in the determination of F and F^{\prime}; but perhaps enongh has beeu said to show that a considerable correction to the adopted values is not altogether iuadmissible.

The reflection-observations of 1867 and 1868 will first be examined to ascertain whether the differences ΔP (Ref) $-\Delta P^{\dagger} \dagger$ will tolerate the supposition that they are caused wholly or maiuly by a constant error in adopted zenith point combined with an error in the assumed coefficient of $\sin Z$ in the formata for thexure. And for the purpose of assigning proper weights to $\lrcorner P(\operatorname{Ref})-\Delta P$ in each case ε, will be ascertained by approsimation. In 1867 there are a few observations of "miscellancons stars" by reflection, and as these are situated almost exelusively near the zenith they will affiord additional evidence as to the character of the change near the zenith in the valne of ΔP (Ref) $-\Delta P$. The following table exhibits the results from these stars aranged in order of zenith distance of stars observed directly, zenith distances being comnted from 0° to 360°. The first colnmn gives the name of the star; the second is P corrected wherever necessary by - $" .34$, to rednce to adopted zenith points; the third is secouds of P (Ref), reckoned from reflected pole throngh nadir, etc.; the fourth gives the number of observations respecticely for P and I^{\prime} (Ref), separated by a hyphen; the filth shows the respective weights on the nit whose probable error is $1^{\prime \prime} .00$. These weights are dedneed on the snpposition that the valne of ε, is \pm ". 2.0 The sixth column shows the valnes of P (Ret') - P^{\prime}, and the last colmm shows the values of Z.

	Name.				I (Ref)	OLs.	π^{\prime}	$P($ Lef $)-1 '$	7
			,					"	\bigcirc
	B. A. C. 1144	24	52	46. 60	46. 16	2-1	2	-. 41	334
	Ursa Majoris		$3:$	15.0.3	13.18	1-1	1...	-1.54	838
β	Ursa Majoris.	32	5.)	18.30	16.99	2-\%	\because	-1.33	348
	Urse Majoris.		59	0.3. 33	05.73	2-1	\because	+ .35	348
	Ursoo Minjoris.		25	33. 07	80.85	2-1	$\stackrel{2}{ }$	+ . 5	8.11
1	Can. Ven.	35	50	31. 17	30.97	$3-1$	\because	- . 20	345
51	Draconis		43	07.39	$0-.28$	≥-1	\because	+ .80	$: 16$
	Anriga		14	03.10	02.81	-1	\because	- . 99	349
	Ursa Majoris		29	61.03	58.57	1-3	\because	- 2.46	350
$\underset{\sim}{\chi}$	Herculis....		34	11.07	11.36	4-1	2	+.20	330
Recapitulation (stars north of zenith).							0	-39	344

[^23]

The probable errors are dednced from the actual vesiduals; hat they been estimated from $\leq \pi \pi^{\prime}$ in each case, they would hare been $\pm " .2$ and \pm ". 20 , respectively, tor the northern aud sonthern groups. At about 15° zenith distance on each side there are gaps withont stars ohserved, more than 5^{5} wide in each instance. Taking ouly the stars nearest the zenith, we have:-

The evidence in finor of an abormal change appears to be wanting. The result has, howerer, but small weight. Collecting now all the waterial which exists in 1867 and 1868 for determining $د Z 67\lrcorner Z$,65 , and F, and collecting the ralues of $J P$ (Ref) $-\lrcorner P$ into groups, including in each group a zone nearly 50 wide, we have the following tables:-
1800°.

No.	Mean 7	$\begin{aligned} & \Delta \Gamma(\text { Ref })-\Delta \Gamma \\ & +{ }^{\prime \prime} . \mathrm{Hisin} Z \end{aligned}$	-	I.	15.	111.
	0	"		"	"	"
(1)	307	-. 54	1.5	-. 49	-. 13	+. 11
(3)	815	-. -8	17	-. 0.0	$+\quad \because 1$	+ - 0
(3)	$3 \cdot 3$. 17	:31	00	+ . 13	+.4-
(4)	$: 189$	-. 16	34	$+00$	+.03	$+.43$
(i)	30.1	-. id	31	+.03	-. 17	+ . . 3
(ii)	$\because 15$	-. 89	28	$+.03$	$-.32$	$+\ldots 3$
(i)	: 0.0	-. -1	\cdots	+.6is	$+\ldots 1$	+.-1
(a)	$1:$	+ . 5	40	-. 15	+ $\because 3$	- . $\because 6$
(1)	15	$+.45$	$\because 2$	$+.10$	+ . in	- . $11-$
(10)	\%	+ . 19	50	+ $\because 5$	+ . 2.	. 111
(11)	: ${ }^{\text {e }}$	+1.11	415	-. 11	-. 16	-. 41
(1:)	:2	+1.1.	15	-. 61	-. $: 19$	-1.01
(1:3)	16	$+1.49$	$\because 11$	-.13	-. 111	-.is
(14)	49	+.7\%	$1-$	$+.11$	$+.10$	-.05
(1i)	\%is	+1.13	B	$+.15$	-. $\because 1$	- .

The correction $+^{\prime \prime} .16 \sin Z$, in column $\Delta P($ Ref $)-\Delta P$, is the reduction for difference of latitndes of instrnment and reflecting surface in reflection obserrations. The weight, π^{\prime}, supposes $\pm 1^{\prime \prime} .00$ as the probable error of the unit. By successive trials it was found that, taking $\varepsilon_{1}= \pm{ }^{\prime \prime} .25$, the assumed and concluded probable errors of nuit of weight in 1868 were exactly alike; and the latter for 1867 was $\pm 1^{\prime \prime} .07$, while from the assumption it should have been $\pm 1^{\prime \prime} .00$. The approximation is considered quite sufficient, especially when it is remembered that there is great uncertainty in the application of the law adopted to represent $J P$ (Ref) $-J I$. We therefore have for any given number (n) of observations the weight

$$
\pi^{\prime}=\frac{1.00}{.0625+\frac{\varepsilon^{2}}{n}}
$$

The table gives:-
Values of π^{\prime} "ith arguments ε and n.

$\mathrm{E}= \pm 1.00$							
n	$\varepsilon={ }^{\prime \prime} .50$	${ }^{\prime \prime} .54$	". 60	${ }^{17} .70$	${ }^{11.80}$	$'$ ' 00	$1^{\prime \prime} .00$
1	3.0	2.8	9.4	1.8	1.4	1.1	. 9
2	5.9	4.8	4. 1	3. 2	2.6	2.1	1.8
3	68	6.3	5.5	4. 1	3.15	2.0	2.6
4	7.7	7.4	6.6	5.4	4.5	3.8	3.8
5	8.6	8.3	7.4	(i.)	5.3	4.5	3.8
6	9.3	9.0	8. ${ }^{\circ}$	6.9	5.9	5. 1	4.4
7	9.9	9.6	8.8	7.5	6.5	5.19	4.9
8	10.4	10.1	9.3	-8. 1	7.0	6.1	5.3
9	10.8	10.5	9.8	E. 6	\%. 5	6.6	5.8
10	11.9	10.9	10.9	9.0	7.9	7.0	6. 2
15	12.4	12.9	11.7	10.5	9.5	8.19	7.7
20	13. 2	13.0	19.4	11.5	10.6	9.7	8.9
95	13.6	13.5	13.0	13.2	11.1	10.6	9.8
30	14.0	13.9	13. 4	13.7	11.9		
35	14.9	14.1	13.7	13.1			
40	14.4	14.3	14.0	13.4			
50	14.7	14.6	14.3	1:3. 3			

These can easily be converted into any other scale whose standard probable error is e, by means of the factor $\frac{\epsilon^{2}}{1.0}$. The value of ε is found on p . 49. The weight $\pi^{\prime}=\frac{\pi^{\prime}(\text { Dir. }) \times \pi^{\prime} \text { (Ref.) }}{\pi^{\prime}(\text { Dir. })+\pi^{\prime}(\text { Ref. })}$ is taken to the nearest unit.

Recurring again to the table of comparisons, ΔP (Ref) $-\Delta P$, (1867), the numbers in column headed I. are the residuals (cale. - obs.), which result from the employment of the following values deduced directly from the observations of 1867, assuming that the differences ΔP (Ref) $-\Delta P$ are due to constant error and flexure.

$$
\begin{aligned}
\Delta Z & =+^{\prime \prime} .00 \pm{ }^{\prime \prime} .027 \\
F & =+{ }^{\prime \prime} .74 \pm^{\prime \prime} .052 .
\end{aligned}
$$

The column marked II. is constructed on the supposition:-

$$
\Delta Z^{\prime} \text { or } \Delta Z^{\prime \prime}=\frac{\Delta P(\text { Ref. })-\Delta P}{\underline{\prime}}+{ }^{\prime \prime} .06 \sin Z ;
$$

i. e., assuming $J Z$ to be different for northern and southern stars, and exchuding the supposed flexure, except that of + " .06 deduced from opposing collimators. We have for nortbern stars, $\Delta Z^{\prime}=-" .29$; for southern stars, $\Delta Z^{\prime \prime}=+^{\prime \prime} .40$.

Professor Neweomb fonnd *:

$$
J Z^{\prime}=-^{\prime \prime} .45 \quad \Delta Z^{\prime \prime}=+^{\prime \prime} .15 .
$$

The difference is mainly the effect of the correction - ". 34 to reduce ssstematically to zenith points derived from collimators. In the first solution the small value of ΔZ shows that the zenith points thas derived are practically tree from constant error.

While the numbers in colnmin I. do not show that agreement of fact with hypothesis, which is desirable, they ought to have some preference over those of column II., especially when we consider that the mamer of using the corrections $J Z^{\prime}$ and $\Delta Z^{\prime \prime}$, is at least lighly questionable on " priori grounds. It may be noted that of the eight comparisous making up line (7), we have :-

	Stars.	Z	$\Delta P(\underset{\text { Ref. }}{ })-\Delta I,$	π^{\prime}	1.
		\bigcirc	"		"
1st	1	349	-1.51	13	+1.3
2 d	4	:	+ 20	9	-. 4

Whaterer the source of these anomalies it is modoubtedly quite irregular in its action, and is suggested with some probability by Faye's hypothesist as to cohmus of heated air in the observing-room, which may principally or solety affeet olservations by reflection.

Explanation of colnmn III. will follow later, (p. 57).
We have a similar table for 1868:-

No.	Mean Z	$\begin{gathered} J P(\operatorname{lncf})-J P \\ +.16 \sin Z \end{gathered}$	π^{\prime}	I.	11.	111.
	\bigcirc	"		"	"	"
(16)	302	-. \because	6	-1.01	-. 69	-. 46
(17)	316	-. 71	3	-. 83	-. 60	-. .41
(18)	30	-1.113	1.1	-- . .3!	- . 34	-. 01
(19)	30	-1.75	20	+.42	$+.40$	+. 7
(20)	:3:	-1.40	13	+. 21	+.mi	+.4!
(21)	334\%	--1.14	10	+ . 1%	-. 16	$+.87$
(-5)	3 H	-1.:30	10	+ . 4 ;	+.02	$+.61$
(28)	11	+ \because	16	-. 71	-. 27	-. 71
(18)	1-	+.2:	20	-. 515	-.	-. 5
(20)	21	-. 017	21	- . \because	$+.10$	-. $\because 1$
(26)	23	-. 10	$2 ;$	- . 13	$+.15$	-. 13
(:7)	: 3	-. 51	$2 \cdot$	+. 47	$+.02$	+.35
(2α)	89	110	11	+..110	+. 101	-. 10
(29)	43	+.51	16	-..34	-. 43	$-.55$

* P. xix, Int. Wianh. Ast. Oles., 1~i\%.
+ Fayce fomptes liemms, xxi.

The explanations under 1867 apply. We have for I. :-

$$
\begin{aligned}
\Delta Z & =-^{\prime \prime} .35 \pm^{\prime \prime} .035 \\
F & =+^{\prime \prime} .60 \pm^{\prime \prime} .070
\end{aligned}
$$

For II.: $\quad J Z^{\prime}=-{ }^{\prime \prime}$.fí and $\rfloor Z^{\prime \prime}=-{ }^{\prime \prime} .02$.
The difference between these numbers and those deduced by Newcomb,* $\mathcal{A} Z^{\prime}=-{ }^{\prime \prime} .78$ and $\Delta Z^{\prime \prime}=-{ }^{\prime \prime} .10$, is probably due to the changes in some of the zenith points (see 1.47,) and in the changes and additions produced by errutce. There is apparently not much to choose between I. and II. I shall, therefore, proceed on the hypothesis that a jortion of the discordance in question is due to atmospheric, or causes other than tlexure depending ou $\sin Z$. Furthermore, the method of obtaining value of F by comparison of direct and retlected observations of Z will be considered as of equal weight with the method which emploss opposing collimators. If we take the mean by weights of the two values of F, deduced from observations of 1867 and 1808 , we have $+{ }^{\prime \prime} .69$, which gives as the mean by the two methods:-

$$
F=+{ }^{11} .37
$$

The observations of 1869 are too few to afford a practical contribution to this result. and those of 1866 were deduced with a different circle.

By comparison of $\lrcorner P 68-\perp P 67$ we shall have an excellent determination of the quantities F^{\prime} (or entire cosine flexure) and $\lrcorner Z 68-\perp Z 67$. To obtain most probable values of $\left.F, F^{\prime},\right\lrcorner Z 67$ and $\lrcorner Z 68$, it will be best to comprise in oue set of conditional equations all determinations which contribute to a knowledge of either of the required quantities, so that each may exert its froper influence upon all others. Vach compar. ison $\triangle P 68 \sim\lrcorner P 67$ furuishes an equation of the form $\lrcorner Z G 7-\lrcorner Z 68+2 \mathrm{~F}^{2} \cos Z=$ $\triangle P 68-\lrcorner P 67$, for direct observations, and $\left.\lrcorner Z 67-\perp Z 68+2 F^{\prime} \cos Z=-\right\rfloor I^{\prime} 68+$ $\Delta P 67$ for reflected observations. The results of 1867 and 1868 furnish "tät such equations of the total weight 908 . Arranging them in the order of zenitl distance in zones abont 50 in width, we have 38 means or gronps:-

1S68-1867.

No.	Mean Z	$\begin{aligned} & \Delta I^{\prime}(i s-\Delta P i ; \\ & \text { or } \Delta P G \text { (Ref.) } \\ & -\Delta I^{\prime} 68 \text { (Ref.) } \end{aligned}$	π^{\prime}	111.	
	\bigcirc	11			"
(30)	288	. 40	11	$+$. 12
(31)	294	- . 57	2)	$+$. 17
(32)	:306	- . 50	只	$+$	$\therefore 0$
(33)	311	-. 33	23	-	. 04
(34)	:316	- 1.29	9	$+$. -4
(35)	:23	-. 06	30	+	. 3
(36)	:38	-. 60	34		00
(37)	382	- . 56	19	-	. 03
(38)	3:3	+ . 01	10	-	. 69
(39)	:4\%	- . -3	16	$+$	
(10)	:. 51	-. 45	22	-	. 31
(41)	360	-. 19	33	-	. 58

* P. xx, Int. Wash. Ast. Ohs., 186 s .
\dagger The comparisons of a Casiop., S. P., and a Cephei, S. 1', are rejected as of mall weight.

1865－1867－Continned．

No．	Mean Z	$\begin{aligned} & -I^{\prime} G-\Delta P G O \\ & \text { or } \triangle P G \text { (Tes. } \\ & -\triangle P \text { Gi Ret. } \end{aligned}$	π		I．
	$=$	＂			＂
（42）	－	－．$=6$	2	$+$	． 10
（4：3）	11	-1.17	40	$+$	－ 4.3
（4i）	17	－－－	1	＋	． 11
（4．）	$\because 1$	－．－ 19	20	$+$	． 17
（11）	$\because 4$	－． 21	51	$\underline{+}$	． 194
（4）	8	．－	60	－	\therefore 为
（1－	： 2	－．13	：2	－	． 16
（ 69	41	－．．110	$4:$	－	.44
（61）	17	－． 4 \％	65	\pm	． 11
（in）	$\therefore 3$	－．－．	12	\div	$\therefore 2$
（ -	39	＋．-	\cdots	－－	． 71
（5）	1.1	－． 10	16	－	－10
（－）	19	－． 412	－	－	． 916
（5）	$\because 31$	T．riij	i	\div	． 4
（ivi）	？ 1	\div ．	3	\div	1.15
（59）	215	± 1.41	1－	－	． 12
（i）	$\because 11$	$\div 1 .-3$	1 ！	－	． 410
（ 0.4	20\％	＋1． 11	1%	$+$	． 10
（ 150 ）	105	-1.40	10		． 15
（bl）	1－3	－1．$\because 1$	$1 \because$	$+$.93
（がい）	1i－	＋1．1\％	13	－	． 3 ri
（0゙： 1	1：1	-1.3	$1 \because$	＋	．$\because 4$
（10i）		－1． 2.4	$\because 1$	$+$	－ 10
（13．）	14．	$+1.0$	$\because 1$	－	． 5
（biti）	10	$+1.10$	$1 i$	$+$	． 15
（1i）	$1: 2$	$+1 . \because 1$	13	－	． 17

Finalis we have from onvoring eollimators：－

$$
(6 i)+{ }^{11.06} \quad{ }^{5} 000
$$

 the reight of F in the solution of normal equations．

Representiag by－n ． or annemitace，the numbers in third column（in the three tables）．We have the forms：－

The solution of momerical equations formed in aceordance rith the abover，leads to these normal equatims．

$$
\perp Z \text { in }=-2 \because 11 \pm " .1330
$$

$$
F^{\prime}=-.51=.124
$$

$$
F=+" 3-1: 0.030
$$

$$
E= \pm 1^{\prime \prime} 117
$$

$$
\begin{aligned}
& \div 100.0-114.2+1955.5-450.40=11
\end{aligned}
$$

$$
\begin{aligned}
& \text { (160) } \quad\{\because \perp Z B \div \div F \sin Z+n=0\} \sqrt{-\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{F-{ }^{11} .0 \%=0^{1}\right\} \sqrt{ } 620
\end{aligned}
$$

It is hardly necessary to remark that the probable error as appled to F has no siguificance; but if we admit that the auomalons conditions affecting $\mathcal{A} P$ (Ref) -$\lrcorner P$ acted with tolerable uniformity in 1807 and 1868 , then the probable ernor of the valne of F^{\prime} is quite real. The value of E is matiavorably influenced be the introduction of equation (68). Using (as in other cases) the separate residuals making np groups (30) to (54) inclusive, we have

$$
E= \pm{ }^{\prime \prime} .994
$$

aud from gromps (55) to (67) iuclusive

$$
E= \pm 1^{\prime \prime} .031
$$

The agreoment of E with assmmed value is all that could be desired.
The nombers in colnmn III are the residnals arising from the adoption of the above values in the individual equations. From groups (30) to (67) there are no evideuces of large outstanding errors of a systematic nature; nor, with one or two exceptions, of residuals larger thau should be expected from the weights. Small errors in the division correction donbtless exist, and it is to me matter of surprise that these gronps are so well represented by the simple law assumed. So much camot be said of the first $: 9$ gromps. The ontstanding residuals in colnmo ILI. mar be attributed to atmospheric disturbances, to error in assumed value of F, and to other possible causes, whose existence is not clearly defined.

It will be assumed that the difficolty is mainly with the reflection observation; and these will accordingly be exchnded from all further participation in the definitive resnlts for 1867 and 1868 . Assmming the correctness of F, the valne of $1 Z 69$ will be dedneed from the eomparison of drect and reflected observations of 1869 , given on p. xxiii, Int. Wash. Ast. Obs. Reversing the signs in column "D - R", correcting by - $.04 \sin Z$, and taking one-half the mean by weights of the outstanding residnals, we have:-

$$
\lrcorner Z 09=+{ }^{\prime \prime} .44 \pm " .00
$$

The circle was shifted at the beginuing of the year 30 relativels to the telescope. In computing tlexare, no acconnt was taken of this circnmstance.

The observations of 1865 afford no opportmity for independent determination of the cosine flesure of the circle used. $J Z 66$ and the sine flexure (F) were lound by Professor Neweomb thom comparison of direct and reflected observations.* The values were-

$$
\begin{aligned}
1 Z 66 & =-{ }^{11.72} \\
F 66 & =-11.78
\end{aligned}
$$

The result of the investigatiou for $F 66$ in the rolume for 1865 is $-1^{\prime \prime} .1^{2 \prime}$; and this was adopted in the reductions. I have adopted the mean of the two resnlts

$$
E 60=-11.9 \%
$$

The mean by weights of $\lrcorner P G 7$ and $\lrcorner P 68$ comected for $\lrcorner Z, F$ and F^{\prime} was then taken

[^24]as standard, with which $\lrcorner P 66$, corrected by - ". 12 - ". 95 sin Z was compared. Arranged in convenient groups the results are these:-

Group.	Mean Z	$\begin{aligned} & \Delta P\left\{\begin{array}{c} 6 \\ 6 \\ -\Delta \end{array}\right\} \text { (corrected) } \\ & P G \text { (corrected }) \end{aligned}$	π^{\prime}	Calc.-ols.
	\bigcirc	"		"
(1)	803	-. 14	21	$+.06$
(${ }^{\prime}$)	817	-. 07	83	-. 03
(3)	31:	+.12	41	一. $\because 8$
(i)	32\%	+ . 02	71	-. 13
(5)	$3: 3$	-. 95	$\therefore 3$	+.14
(i)	349	-. 02	50	-. 10
(7)	2	-.25	67	+.13
(A)	13	+.02	112	-. 14
(9)	23	-. 03	150	-. 097
(10)	-	+.01	166	-. $1 \because$
(11)	41	-. 3	150	+.85
(12)	55	-. 37	62	+ . D
(13)	(i)	-. 35	42	+ . 29
(14)	928	-.98	91	+ $\because 10$
(1.)	214	+. 19	3	-. 80
(1ii)	203	$+.15$	\cdots	-. 110
(17)	$11:$	+.10	:3	-. 10
(1-)	163	-. 37	30	+.37
(19)	133	+. 80	3	-. 21
(10)	140	. 00	14	-.01
(21)	13:2	$-.00$	82	00

The results from (14) to (21) are from reflection observations. The numbers in thind column are ton small and too irregular to eshibit any decided peference for a given law. It will be assumed that the above ralue of $\lrcorner Z$ bif requires correction, and that a term should be introduced for cosine flexure. I have fome :-

$$
-" .06[\pm .04]-" .00\} \pm .04] \cos Z .
$$

The residuals in the last column are, on the whole, very satisfactory. Those in (11), (12), and (1:3), however, show a slight tendency to deviation from the assmed haw. We have arrivel at the following corrections to $J I^{\prime}$, which are adopted.
1566. - " $\because 8-.195 \sin Z-.06 \cos Z$
$1867 .+.05+.35 \sin Z-.57 \mathrm{cos} Z+\left\{\begin{array}{c}\text { Irregular correction for emror of zenith } \\ \text { points. }\end{array}\right\}$
156s. $-29+.33 \sin Z+.57 \cos Z+\{$ Irregnlar corrections. $\}$
1869. $+.44+.38 \sin Z-.57 \cos Z$
or more coureniently :

$$
\begin{aligned}
& \text { 1806. - } \quad \text { " } 8-0.0 \text { sin }\{: 320.5+P\}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 69+.41+.69 \sin \left\{2.8 .6+T^{\prime}\right.
\end{aligned}
$$

These corrections are applimable to polar distances from direct observation.

Latitude and Refraction.

In this series of observations, there is $n o$ material for examining the correctness of the adopted temperature eoefficient of atmospheric expansion. Owing to the low elevation of the pole and the deficieucy of observations at low altitudes of stars at lower transit, the determination of an independent constant of refinction is likewise ont of the question. The process of obtaining $\mathcal{f} \varphi$ may be brietty summarized.

All polar distances by direct observation in each of the years were corrected by (A) ; and supposing the differences between corrected polar distances of the same star from upper and lower culmination to be due to error of assumed latitude and refiaction constant, we hare-

$$
\left.\left.\begin{array}{r}
\lrcorner P(\mathrm{U} . \mathrm{C} .) \text { eorrected } \\
+\lrcorner P(\mathrm{L.C.}) \text { corrected }
\end{array}\right\}=\Omega\right\lrcorner \varphi-\left(\rho+\rho^{\prime}\right) k_{i}
$$

The results of all the years combined in one set of equations, and arranged in convenient groups following the order of polar distance, are these :

No.			π^{\prime}	Calc.-obs.	Stars' name, or number of stars.
		" "		"	
(1)		20-14: $k+.60=0$	14	-. 07	入 Ursem Minoris.
(2)	2	- $143+.60$	29	-. 16	a Vrsie Minoris.
(3)	2	$-144+.55$	1.5	-. 01	51 (1I) Cepheri.
(4)	$:$	- 144 -1-1.09	23	+ . $3:$	() Ursie Minoris.
(5)	2	- 1.50 +1.08	10	+ . 32	3
(6)	9	$-162+.600$	29	-. 10	5
(1)	$\stackrel{1}{2}$	$-171+.80$	31	- . 009	7
(8)	2	- 1-.\% + . 78	$1: 3$	+. 01	3
(19)	2	-20: + .30	21	-. 17	4
(10)	2	-210 +.72	8	-. 110	5
(11)	2	- $238+.91$	$1 i^{\circ}$	+-. 14	4
(1:)	2	- $236+.95$	5	$+.18$	1
(13)	$\stackrel{2}{2}$	- 200 +1.23	4	$+.45$	\because
(14)	2	$-320+.85$	4	$+.00$	1

The coefficients of l are taken at their mean values for the mean temperature at Washington, those from (11) to (14) excepted, which are for lower cumination taken from the detailed observations. From the abore equations result-

$$
\begin{gathered}
\begin{array}{c}
\mathrm{J}=-{ }^{\prime \prime} .369 \neq " .105 ; \text { or }-" .3 S+86^{\prime \prime} .97 \\
k=+.00014 \neq .00119 \\
\{\text { Bessel's refractions }\} \times .99986=\text { Washington }
\end{array}
\end{gathered}
$$

The probable error of k is thus nearly 10 times the quantity itselt, and as the ehange in refraction would be practicalle insignifieant, no use is made of it. The probable error of $A \varphi$ is with respeet to the uncertanny of k. Assmung k to be withont error the probable error of 30 becomes $\pm " .03$. To get the deviations from $A \varphi$ the
numbers in column "Calc. - obs." must be divided by 2 . Excluding all observations where $Z>\pi^{50}$, the results of separate years, for latitude are:

$$
\begin{array}{ll}
& " 110 \\
1866 & -.40 \pm .108 \\
1367 & -.0 \pm \pm .06 \\
1868 & -.46 \pm .106 \\
1869 & -.02 \pm .12 \\
\text { Mean by weights }-.37
\end{array}
$$

The differences are not much greater than the probable errors would lead us to expeet, especially when we consider the nurertaints of $\lrcorner Z$ for each year.

The adopted latitude, $350.33^{\prime \prime} 35^{\prime \prime} .43$, is more than $0^{\prime \prime} . S$ less than that found in 1845,* with the mural circle, and ".35 less than the result with the same instrmment in 1861-2-3-4. \dagger The difference betreen the earliest and latest determination is apparently greater than the snm of ans probable instrumental errors in the two series. It the flexure from opposing collimators had been alopted, the seconds of latitude would have been $3 S^{\prime \prime} .66$ rery nearly. If, on the other hand, we take the results of comparison of Me 68 with Wu 68 , and suppose, accordingls, that the refractions of the latter ought to be multiplied bs . 9953 the secomels of latitude are $38^{\prime \prime} .83$; leaving a difference not accounted for of ". 42 ; and this, too, minder the extrme supposition that the refractions of 1845 are correct, while the same refractions for 1868 ueed to be multiplied be .9953 .

Combining with table (A) the correction $+" .37$, for $-\perp \rho$ already determinet, we arrice at the following definitise correction to P aml $A P$:

$$
\text { (B) } \left.\begin{array}{cc}
\\
1866 & -.41-.95 \sin (312.5+P) \\
1867 & \left.+.45+.69 \sin (2.5 .6+P)+\left\{-{ }^{\prime \prime} .34 \text { to nadir values of } P \text { and }\right\lrcorner I \cdot\right\} \\
1865 & +.08+.69 \sin (5.2+P)+\left\{\begin{array}{c}
\text { lrregular corrections for error of } \\
1869
\end{array}\right\} \\
\text { zenith points. See p. } 47 .
\end{array}\right\}
$$

Column (B) of the subjoined table is constructed from these. In column "Final" are found the systematic comections necessary to rednce the North Poldr Distances, after they are first corrected for dicision error and eror of certain zenith points, to the Normal System of this prper. It is formed her subtacting from (B) the declination correction of $\mathrm{V}^{2} \mathrm{n}$, taken from Tahle 1 N .

[^25]Wn 60－Wn 69．Table of corrcetions to Polar Distances by Airect obscrvation．＊

126 G.			1867.		186\％．		186\％．	
I＇	（ ${ }^{\text {）}}$	Final．	（ ${ }^{\text {）}}$	Final．	（l＇）	Fiual．	（ \quad ）	Final．
0	＂	＂	＂	＂＇	＂	＂	＂	＂
8：35	＋．80	＋．70	－． 05	＋．15	－． 10	$+0.0$	＋．30	＋．50
340	$+.47$	－1． 62	－． 09	$+.06$	－． 10	＋．0\％	－	－ 9
345	＋．43	＋．53	－．13：	－． 013	． 1	＋．07	$+0$	－
350	＋． 39	＋．44	－－．16	－． 11	＋．02	＋．10	＋．17	＋．1！
835	＋．34	$+.36$	． 18	－． 110	＋．11	＋． 11	＋．15	＋．15
360	＋． 29	$+.29$	． 01	2\％	＋$\because 0$	$\pm .18$	＋．11	＋．10
5	＋． 23	＋． 21	－． 21	？	＋．819	＋．01	＋． 13	＋．12
10	$+.17$	＋． 12	\cdots	－－： 3	＋． 3	＋． $0 \cdot$	$+.12$	＋． 03
15	$+.10$	0	－	－	＋．36	＋．92	＋．103	－． $0: 3$
20	＋．03	－． 12	－． 3	－． 43	－． $4: 3$	＋．83	＋．13	－． 017
25	－． 04	－．24	－．．吕	－． 48	－． 48	＋．20	＋． 4	$-.12$
80	$-.12$	－． 88	二． 30	－$\quad .0$	＋．53	＋．20	＋．15	－． 17
35	． 20	－． 5	－． 18	－． 51	$+.57$	＋．${ }^{2}$	＋． 17	－． 19
40	－． 23	－． 64	－． 18	－．	＋．． 11	＋．2．	＋．$: 0$	－． 19
45	－． 37	－． 26	－． 10	－． 2.0	＋．-61	＋． 23	＋． 2	－：$\because 1$
50	－． 4.5	E7	二． 010	－． 0.1	＋．18	＋．	＋．．	－．1！
55	－．58	－． .93	－． 10	－	$+.80$	＋． 23	－1－． 30	－． 17
60	－． 62	－1．09	－． 0.01	－．	＋．7\％	＋． 38	＋$\because 3$	－． 16
6	－． 70	－1．30	－．01	－． 50	＋．7．1	＋．21	－1－83	－． 11
70	－． 87	-1.30 -1.40	+.03 +.08	－． 47	＋．76		＋．41	－． 11
75	－． 85	－1．40	－-1.18	－． $4:$	＋．7\％	+.19 +.19	－-49	－．11：
¢0	－． 92	-1.49 -1.51	＋．11	－． 39	+1.96 .+ .7	＋．19	－－．	－ 11%
55	－． 99	－1． 0.61	$\pm+19$	－． 31		－．19	－． 61	＋．11］
90	－1．0．	－1．61	＋．	－$\quad .1$	＋．．6	＋． 19	－dif	＋．07
9.5	-1.11	－1．80	＋． 30	－$\because 1$	＋．96	+.14 $+\quad .14$		＋．12
100	-1.16	－1．76	＋．$: 3$	－．$\because 1$	＋． 7.4	＋．11	－	＋．15
10.5	－1．91	－1．84	＋．43	－$\because \cdots$	－	＋．09	＋．v1	＋．11
110	－1．9．7	－1．95	＋．43	－	－\％	1：	＋．9n	$\pm .16$
11.5	－1．99	－2．09	＋． 51	－	I． 114	－－	＋\％	． 18.8
130	－1．33	一ツ．97	＋．60	－．	+.61 +.60	－． 49	+1.01 +1.01	－．03
125	－1．34	－ 2.43	－-6.05	－．4．	＋．00		＋1．01	

＊An explanation of the difference between the correnpondine mumbers contained in columns＂（li）＂ and＂Final＂is suggested in the comparinou of Washingtou and Melbourne polar distancee．（See pl． 66 to 68．）

With the corrections in column (B), and the table of weights, on p. 53 the following eatalogne is constructed, which appears to require no explanation, except that the detinitive declinations conrerted from N. P. D. are first given, followed by their respective weights; and after these the secouds of declination converted in like manner for separate years:

Wn 68---Catalogue.

Star's name.		(5 1868.0.	-'	1836.		166%		1868.		1809.		
		δ		π^{\prime}	§		δ	π^{\prime}	δ	$\overline{-}^{\prime}$		
			$\bigcirc 1 /$		"		"		"		/	
a	Andromeda	+ 38.141 .36	44	41.6	13	41.4	12	41.7	10	40.7	9	
γ	Pegasi	+ 112657.84	45	58.4	1:2	58.0	14	56.9	10	57.9	9	
${ }^{a}$	Cassiopea	+ 554345.69	$\because 3$	4.9	6	45.9	8	45. 6	7	44. 6	:	
β	Ceti	- 18 42 43.44	34	4: 1	11	$4 \% .9$		43.1	9	4.29	2	
$\because 1$	Cassiopero	+ 741557.51	38	57.6	7	P6. ${ }^{1}$	3	67.5	5			
21	Cassiopex, S. P			54.3	13	67. 3	8	57.1	5	58.1	4	
ε	Piscinm....	+ 71043.72	35	43.0	14	$4 \% 6$		48.4	9			
v	Prscium	+ $803.30 \times .94$	7			08.9	7					
a	Ura Mmoris	+ $83: 36: 0.33$	112	20.7	15	20.9	15	20.3	1.1	19.9	1%	
a	Unse Dimoris S	†		$\therefore 0.4$	15	20.3	15	20.2	14	20.7	12	
0	Ceti....	- 8.155 .43	18	-3. 6	10	55.4		5s. 4	8	2.		
A	Cassioper	$+693503.07$	3					$0 \cdot 3.1$	3			
7	Piscinm	+ 113951.13	39	51.8	13	20. 7		51.3	10	[0]. 6	2	
${ }^{\circ}$	Precium	+ $8: 031.41$: 1	: 2	11	30. 9	13	31. 2	10	31.	3	
β	Arietis	+ 2001941.09	41	41.4	1.1	40.3	13	11.2	9	4.3.0	i	
50	Cansiopez	+ 214643.78	31	-10. 6	8	4!) 1	3	51.0	\because	$4!5$	2	
50	Cassiopex, S. I'			12.6	4	$4!9.9$	5	49.4	$\stackrel{\square}{1}$	49. 5	2	
${ }^{2}$	Areetis	+ $29501 \because 29$	47	135	14	12. 1	11	1:3 1	9	12.5	10	
ξ^{1}	Ceti	+ 81333:38	32	:3.!	8	233, 3	12	3:3, 3	9	33.0	3	
ι	Cassioper		17	23. 1	6	\because	3	2.6	6	23.0	\%	
γ	Ceti	+ $\quad 4039.9 \%$	$: 1$	40.0	10	40.1	12	39.9	7	38.8	\because	
τ	Persa	+ 52 1313.47	$:$			12.5	3					
a	Ceti	+ 3341214	32	1\%.7	12	1:2		12.2	8	10.5	5	
	C'Thuri (43 II).	+ 771442.20	41	41.8	7	42. 0		42.5	7			
	Cepher (18 11.) S. P			4:88	τ	42. 1	7	41.5	6	43.5	\%	
ζ	Arictiz Persei	+ 20.311 .28	25	11.6	8	11.0	10	11.3	7	11.3	\because	
a δ	Persei Lensei	+ 49231820	$\because 4$	18.5	10	18.4	7	17.5	$\bar{\square}$	17.6	2	
7	Tauri	+ 27413098	8	40.1	10	41. 1	12	13.3 39.9	6 9	46.0 39.1	$\stackrel{3}{5}$	
ζ	Perari	+ 813919.16	13	$1 \times .8$	6	17.9	\%	:0.4	7	30. 1	5	
γ^{\prime}	Erulani	- 135310.10	35	10.5	9	10.3	7	09.6	7	09.1	\%	
γ	Tausi	+ 1518:200	39	$\because 1.8$	9	2: 1	1:3	22.5	7	2:3. 7	2	
ε	Tanmi	+ 13500.69	3:	05.7	7	05.7	:	05.9	13	05.1	10	
a	Tanri	+ 161422.12	4.	2. 2.1	13	20.9	14	28.4	10	27.7	8	
a	Camelopardalis	+ $610064 \% 30$	19	$4!1$	7	19.0	5	1!) 4	5	49.6	3	
$\stackrel{1}{1}$	Ambre	+ $\because 2 \mathrm{O} 13.72$	316	1. 1.8	9	1\%.8	12	11.1	8	13.0	7	
11	Orionis	$+15130399$	$\because 6$	0:. 9	9	(1). 0	$!$	01.6	6	0.i. 0	2	
a	Antira	+ 4i, $31: 86.85$	16	3tis.	4	36.0	5	3-8.8	5	3-3	\because	
β	Orionts	- 2183	3.	2.3 .4	13	23.8	113	: 2.9	7	$\therefore 4.4$	3	
β	${ }^{\text {'rabit }}$		4	31.:	13	81.0	$1: 3$	33.9	11	33. 7	7	
	Groombridge 936.-	+ 715050.81	5					57.7	3			
	Groombridge 966,5							60.3	$\stackrel{3}{2}$			
δ	Orionis	- 0 \%35.43	: 4	5-6	10	58.0	11	5-3	7	5\% 9	i	
a	Leporis	- $17 \ldots 0.9 .93$	*							(1). 3	\because	
ε	Orionis	- $117: 0.19$	36	19.7	$1 \because$	$\because 0.3$	11	20.4	8	$\therefore 0.1$	5	
a	Cuhambe	- : 1110.17 .50	צ	1\%	1			42.0	4	47.0	:	
a	Orimins.	+ 72246.37	43	4ti. 6	11	4ti, 3	13	46.6	7	45.9	8	

Wha 6s-Catalogue-Continued.

Wh 6s＿Cutalogue－Continued．

Star＇s name．	¢ 1－68．0．	π^{\prime}	1860.		186%.		1868.		1869.	
			δ	π^{\prime}	δ	π^{\prime}	δ	π	δ	π
	－，		＂		＂		＂		＂	
a Virginis	－ 1029 17．23	$4{ }^{2}$	17.4	14	17.5	14	16.7	11	17．1	9
ζ Ursa Majoris	＋5．5：060．19	7			－ 0.5	7				
－Virginis．．	＋ 004 47．43	4.2	47． 2	13	42．6i	1：	47.0	10	40.6	7
－1 Cram Majoris	＋ 560181.96	5			$\therefore 0$	5				
13．A．C．4590	＋ 414.50 .8 .79	\checkmark			0.68	8				
η lootis	＋ $190: 38.3$	44	37.0	14	37． 1	$1: 3$	：7． 6	10	37.5	7
η Itrie Majoris	＋ 49 －5 03．05	33	$\because 3.7$	\bigcirc	$\because 3.0$	$1:$	23．0	7	± 1.3	5
11 Lootis．．．．．．	＋ 250181.09	7			31.1	7				
a Dracouis	＋ 050006	20	25.6	6	20.6	9	20.9	4	26.0	7
d 1）${ }^{\text {d }}$ ，	＋ 254004.59	7			04.6	7				
a boo is	＋ 19 Et 11．41；	48	14．3	14	14．5	1：）	14.3	13	11．1	9
a 1sootis	＋ $5: 3241.0$	22	41.6	6	$4!.1$	9	41.4	4	43.7	3
γ 13ootis	＋ 8230313.10	5			1．3． 1	5				
5 Urse Mimoris．	＋ 761854.12	38	5\％． 1	8	$5 \cdots 8$	9	59.3	7	50.8	6
5 Vrse Mmoris， 5.1					58.7	\because	$5 \times .4$	6		
13．A．C． 4038	＋ 4631.37	8			5.6 .8	8				
ε^{3} 1；notis	＋	45	510． 3	12	$\therefore \therefore .2$	11	万， 7	10	54． 6	9
$a^{2} \text { Librx }$	－ 1.5030 .71	82	49.8	11	29.6	11	90.6	8	29． 8	8
B．A．C． 4	＋ 22018300	7			23.0	7				
β Ursx Minoris	＋ 2441.11 .59	48	49.4	8	41.6	11	41.8	7	41.1	8
β Urse Minoris， B			40.8	5	411.9	5	41.7	4		
${ }^{2}$ Euoti		（5）			（04．7）	（5）				
3 lbootis	＋ $40: 1110$	24			4－1	10	4.9	7	44.1	\div
（3）Labro	－－ $53.3-79$	413	32.3	12	31.7	$1: 1$	S－3，	8	$\therefore \sim$	8
k^{\prime} 1 Sootis	＋$: 3$ \％ 31010	：if	＊！！：	10	89\％	11	29．4	7	ジ，\％	6
y^{2} Ursx \linoris	$+7: 16134$	$2 \cdot 2$	14.8	6	13． 4	$\overline{5}$	13．6	6	11.7	3
γ^{2} Cree Minoris，S．I	－．．．．．		14.		$1 . .4$		12．2	\cdots	1.7	3
a Cornuz Burcalis	＋ 270985.30	46	83	11	36.9	11	3 3． 3	9	37.1	9
13．A．C． 1157	＋ 43.2630 .97	7			21.0	7				
¢ 13ootis	＋ 404501.51	7			04.5	7				
γ Coronse Borealis	＋ 204054 （14）	$\overline{5}$			54.0	5				
a Sorpentia	＋ 630038	43	83．	12	33.5	13	32．2	10	33． 1	8
ε sorpontis	＋4 53 36， 3	3.3	331.5	$!$	36.8	1：3	36.9	8	36.5	6
5 Lrae llinotis ．．．	＋ 331157.04	$\because 7$	57.8	8	50.9	5	510.3	5	\％6． 4	4
5 Crse Dhmorn，S．P							57.3	\square		
ε Comoux lioncalis	＋ 2.51511 .5	4							11． 5	4
δ scorpii	－ $3: 1437.14$	20	18.9	6	35． 1	9	36.	3	36.4	$\stackrel{\sim}{\sim}$
13．A．C． $0 ; 1: 1$	＋ 50620.31	2			25．3	8				
31 Scolpiii．．．．	－ 1923810	$3 \cdot$	31．	10	$\because-9$	11	30.7	6	：3， 9	5
－Gimumbridga 3ope	＋6－09 210.31	3							39	3
is Guhiucbi．．．	－ $3 \geqslant 1$ 11－86	36	$0 \leq .9$	10	$11-5$	13	（12．9	9	U1．	6
16 llereulis．	＋ 19 （1o 35.01	7			35， 2	7				．．．
- 1lerculia	$+4637+1.62$	$3 ?$	41.1	10	44.4	10	43.8	6	43.6	7
3：？11encula	＋$\because 32083.47$	7			：3：	7				
a scorpia	－ 06 lia 11．36	33	11.5	10	11．11	10	11.8	Σ	11.0	4
7 1）aconis	＋ 411 ＋ $4=.75$	14			4．3．0	8	1－\％	4		
15 Inacoms．s（ I ）	＋13，11： 10.301	17	1：3．6	1	134	5	105	6	1：3．3	\because
ζ Ophumehi	－ 1115 SO .81	30	510.7	11）	511.9	10	5017	6	51．：	4
n Heroulta	＋ 81111% \％ 7	49	$\because 2$	11）	3	11	号号	6	$\because 2$	$\stackrel{3}{2}$
\because Gphancha	＋$\quad 12181808$	37	53.8	10	57.0	11	亿ic． 7	9	$\therefore \therefore$	7
δ Llurnles．．．．	＋33 40 3： 31	9					39.0	7	411．5	$\stackrel{2}{2}$
ε_{8} Lina Mimmis．	＋－2 1123.46	86	Sh．${ }^{\text {a }}$	11	59， 3	10	$\therefore 1: \therefore$	7	$5!2$	3
ε Lras Minoris，\therefore ．							－19．9	4		

Wn 68_C_Cataloguc-Contisued.

Star's name.	$\delta 1=68.0$.	π^{\prime}	1866.		1867.		1868.		1869.	
			§	π^{\prime}	1	π	§	π^{\prime}	δ	π^{\prime}
	- 1		"		"		"		"	
B. A. C. 5801	+ 55.5611 .70	5			11.7	5				
a^{1} Herculis.	+ 11.3383 .23	35	34.1	13	33.8	12	34.6	9	35.0	4
\& Mercnlis	$+5.550 .74$	7			59.8	7			
I. A. C. $5 \times \frac{7}{4}$	+ $4006 \geq 1.20$	5			$\because 1.3$	5				
44 Ophinchi	- $210030: 50$	30	0:. 9	10	0:3.6	10	08.7	7	01.5	3
x Herculis.	+ 480.819 .8	7			19.8	7				
β Draconis	+ 5\% 23 54. 54	4					59. 4	4		
a Ophincbi	+ 1239 29.50	41	2s.	$1:$	99.6	14	80.4	9	29.4	5
(${ }^{\text {a }}$ Draconis	+ 6×49	23	07.0	8	17.8	8	07.6	7		
μ Herculis.	+ 274858.50	33	50.5	13	58.3	1:2	58.8	7	58.7	6
ψ^{2} Draconis	+ 72 1945. 4	15			46.0	9	45.3	6		
\approx Herculis	+ $48: 5.51 .15$	8			\$1.1	$\stackrel{\gamma}{*}$				
γ Draconis	+ 513019.41	97	19.1	8	19.4	10	19.7	9		
γ^{2} Sagittarii	- 809501.19	9	\because	5			21.9	4		
μ^{\prime} Sugittarii	-210.5.5. (i3	23	$\because 6.3$	\%	9\%. 0	7	26.0	9	24.7	3
\oint Unae Minoris	+ 863818.94	00	$1 \times$.	1.7	$11 \% .1$	11	18.5	12	18.9	4
δ Urse Minoris, S.			12.:	14	18.7	1:3	18.6	9	13.5	10
η Serpentis	- 25580.61	18	51.4	7	50.1	1	50.3	5		
1 Arnila.	- 83001.75	30	${ }^{11} 1.5$	10	01.8	9	01.9	${ }^{1}$	02.1	$\stackrel{2}{9}$
a 1,yrao.	+ 3039 4.0.	49	41.4	15	4:3.9	14	43.6	1 I	44.2	9
110 Herculi	+ 20.2518 .77	7			18.8	7				
β Lyræ.	+ 331239.63	34	39.6	11	39.9	10	39.3	7	39.5	6
σ Singittarii	- 269787.97	22	87.8	7	$2 \times .0$	8	$2 \times .1$	7		
50 1raconis.	$+7516: 36.17$	27	36.3	8	36.6	¢	37.4	5		
50 Draconis, S. P							36.5	5	36.9	1
	+ 134009.63	31	69.7	9	09.8	11	10.0	9	07.7	2
17 Lyro.	+ 3217424	7			42. 4	7				
55 Draconis	+ 60\% 4.527 .64	8			27.7	8				
d Sagittarii	- 19111108	7					06.8	7		
δ Dracouis	+ 678.848 .74	23	45.2	7	46.0	$!$	4.3.3	5	47.7	2
τ Draconis	+ 730634.66	11			31.5	5	3.3. 4	4		
τ Draconis, SP.									33.6	2
δ Aquila	+ 25113.44	$2-$	13.7	\bigcirc	13.5	13	13.1	7		
δ Crmui	+ 211020.89	7			25.4	7				
κ Aquils	- 71907.39	29	118.2	9	17.2	10	07.7	10		
13. A. C. 6748	+ 544054.75	7			54.8	7				
γ Arualm	+ 1017 ? 6.06	41	:30.3	11	31, 3	13	37.0	10	3.3. 2	7
a Aquilie	+ 83117.83	42	12.1	$1: 3$	17. 5	13	$1 \times .7$	11	16.4	5
ε Draconis	+ 695.55 .81	14			5.1	8	53.4	6		
β Aquila	+ 60044.1.04	3.	41.4	$!$	41. 2	$1: 1$	40.8	${ }^{1}$	4:. 6	2
λ Urew Minoris.	+ 885444.93	72	41.9	11	4.9. 1	13	44.9	11		
λ Ursw Minoris, S. P.			$4 \mathrm{~A}, 0$	8	44.9	7	44.8	11	45.1	11
- Aquila	+ 651 20.07	\%	23.0	9	24.6	-	2\%. 6	8		
a^{2} Capricorai.	- 12 57 Ofi. 64	33	06.9	1:	06.7	11	06. 3	10		
κ Cephei	$+751841.85$	$2 \cdot$			45.8	5	44.8	7		
κ Ceplei, S.P.					41.9	1	44.6	3	44.5	3
π Capricorui.	-183×32.6	2	32.9	9	32.1	10)	33. 4	9		
40 Csgoi	+ 360062.51	8		...	$\underline{2 W} .5$	\checkmark				
4: Cygni	+ 3600514	7			56. 1	7				
ε belphini	+ 115150	28	23:3	8	23. 3	11	28. ${ }^{3}$	9		
a Cygoi	+ 144.31 .59	3.7	34.9	$1:$	31.9	10	$31.1!$	9	34.4	4
${ }^{2}$ Alduasii	- ! deation	-	36.4	11	32. 1	$!$	3i.:	11		
2 C Crarni	+ 403380.35	30	38.4	11	319. 4	1:3	\square	7		
61^{1} Cygri	$+3 \times 0150.91$	30	0.10 .4	11	116:	$1:$	0.3. 1	7		
ζ Cygai	+ $29+111.90$	35	11.9	11	1:3	1:	11.7	9	11.5	6

Wncs_Catalogue-Contimed.

The valie of "C" in "Details of Corrections," ete., is computed from these declinations; and in column "obs." the salues of π^{\prime} are given instead of the number of observations.

A comparison of this catalogne with the polar distances of the Melbonrne General Gatalugue (Me 68) mas not be devoil of interest. The mean epochs of observation in each are neany identieal, so that erroneous proper motions will be practically with. out inturnce in the comparison. In the comparison* bs E. J. Stone, of Greeurich and Mellomene (to which reference is chsewhemade), the refraction at the later place is sumposed to he ditferent for equal zenith distances north and south. From cirenmfolar stars olserved at Melboume, with a correction of + ". 15 to co, it was found that tha adoped retimetions should be multiplied by .9062s. From comparisons of stars rommon to Greenwich and Melbourne the latter guantity was fond to be .990 s . These result: were adopted in thmation of Whe tis. Thongh possible on a priori gromuls, this hypothesis is onen to serions olfinctions, when we comsider the difthenty
of determining ($1-k$) independently, at the latitude of Melbonrue, and the small weight of the actual determination, with a circle which was throughout used in a single position. Before comparing I have, therefore, reduced the polar distances of Me 68 to those which would have resulted from circnmpolar stars alone. This I have accomplisked by the application of the correction - $.00542 \rho$ to all polar distauces less than $127^{\circ} 50^{\prime}$. The individual weights are so uniform that to each eomparison I have assigned weight 1, these excepted,- a Aurigæ, a Csgni, o Scorpii, σ Sagittarii, aud a Columbæ, which received weight 0.5; and a Persei and : Ursæ Majoris, which were rcjected for obvious reasons.

It ρ be the computed and $(1-i) \rho$ the required mean refractions at Weshington for a given star, ρ^{\prime} aud $\left(1-k^{\prime}\right) \rho^{\prime}$, the corresponding quantities for the same star at Melbonne, and if $-n=P\left(\mathrm{~W}_{\mathrm{n}}\right)-P(\mathrm{Me})$, we shall have from each comparison $(n), \pi^{\prime}$ being the weight:

$$
\left.\left\{\rho+72 .^{\prime \prime}\right) k+\left(\mu^{\prime}+75 .^{\prime \prime}\right) k^{\prime}+n=0\right\} \sqrt{ } \pi^{\prime}
$$

The two catalogues furnish 87 such equations which, thongh separately formed, are combined for convenience of solutiou in the following groups:

"	"	"	$\pi^{\prime \prime}$	Residuals after substitution. "
+ 65%	+ 5387	$-3.31=0$	1	-1.06
72	314	-. 96	3	$+.51$
79	$\because 2$	-. 73	4	$+.49$
83	205	-1.01	6	$+.12$
90	175	-1.02	9	+ . 03
95	159	-1.60	5	-. 58
100	145	-1.21	S	- . 21
105	$1: 3$	$-1.1 .5$	6	-. 16
109	$13:$	$-.98$	8	+.01
117	12:	$-.80$	7	+. 18
124	115	-1.05	6	-. 05
136	107	-. 87	6	$+.15$
151	100	-1.13	5	-. 06
165	05	- . 72	\because	+. 40
176	91	-1.00	2.5	$+.15$
191	SS	-1.29	3.5	- . 08
$\because 19$	Et	-1.47	3	-. 14
260	79	-1.79	0.5	- . 29

$$
\begin{array}{lrl}
\text { The solution gives } & \quad l_{i} & =+.00468 \pm .00061 \\
l_{i}^{\prime} & =+.00362 \pm .00045 \\
\text { Probable error (when } \left.\pi^{\prime}=1\right) & = \pm{ }^{\prime \prime} .41
\end{array}
$$

The refractions at Melbourne are already (as assumed), Bessel's (Tab. Reg.) \times .09628 . They now become $0.9962 \times(1-.00362)$, or $.99267 \times$ (Cessel's). Those at Washington become $.09532 \times$ (Dessel's). Admitting that ε, for Melbourne is only $\pm .20$, the probable error of an average single P, (wher' $\pi^{\prime}=1$) for He 68 is roughly $\pm " .37$.

Judging from this, the liypothesis adopted to explain the differcnces Wn 68 - Me 68 is not repugnant to the facts, especially when we bear in mind that the Mebourne eircle has remained in an invariable position during the period for which the comparison holds good. But, on the other hand, this very circumstance throws a dombt upon the whole discussion; for we can form but an imperfect idea of the degree to which our work may be affected by errors in adopted division and flexure correction, and by uncorrected flesure, such as has been snspected in the Cape circle. (Month. Not., vol. 33, 1. 69.)

I have formed the following table of -
Corrections to polar distances of II'n 65 and Me 65.

P.	Wu C^{2}.		Mers.		I^{\prime}	Wı68.		Me c8.	
	I.	II.	J11.	1 V .		I.	II.	111.	IV.
\bigcirc	"	"	"	"	0	"	"	"	"
0	00	10			(10)	- . $0.1 ;$	- . 0.9	+ .19	$+.16$
5	-. 06%	-.02			0.3	-. 60	- . 09	+. 20	$+.18$
111	-. 10	-. 0.0			100	- . iij	-. 60	+.88	+. ${ }^{2} 1$
15	-. 14	-. 111			10.5	-. 21	-. 63	+ .	+ . 2i
:0	-. 17	- . 1.7			1111	-. 89	-. 80	+. $\because 4$	$+.30$
8.5	-. $\because 1$	- . 01			11.5	-..-9	-. ${ }^{\text {c }}$	+ . 5	+ . 33
:0	- .	- .			1:0	-1.111	-. 119	+ $\quad .3$	+ . 36
(i5)	- .	- . \because			105	-1.2%	- -1. 119	+ \therefore	+.:30
40	- . $\because 9$	-. 31			1:010		+ .	+.40
4.	- . 1	- . 39			1:1\%			+ . 25	
511	- . 3	-.42	- . $\because 0$	- . ${ }^{\text {aii }}$	110			+ . ぶ?	+ . 34
5	-. 3	-. 45	-. 06	-. is	13.5			+ $\therefore 1$	
(i)	- . S_{5}	- . 47	+. 10	-. 11	$1: 0$			+. 111	+ . 2
(i5)	-. 40	- . 51	+ . 07	- 11.	1:5			+. 16	
70	- . 43	- $\because \%$	+-. 11	$+.15$	11:0			+.11	+.19
7.5	-. 46	- . S	+.1:	+.15	16,			$+.11$	
-0	- . 19	- . ij	+.16	+. 15	120			$+.00$	$+.05$
5	-. . 1	- . ir	$+.17$	+.15	1\%			+. 01	
90	$-.56$	- . 39	$+.19$	+. 16	$1-0$. 00	. 00

Colomn I. exhibits the results of the correction $\left(\rho+7\right.$ On $\left.^{\prime \prime}\right) \times-.0046 \mathrm{~s}$ for Wha 68. Column II., lor purposes of comparison, gives the fima correction of Wh 68 to Normal System. Cohmm III. shows the correcton just estahlished for Me GS ley comparison with Washington. Eor stars of uorth polar distance less than 12.550 , this comection is " $2.27-.0018 \rho$; for the remamder it is, $\left(\rho+75^{\prime \prime}\right) \times .0036 \pm$. These corrections are applicable to the results as printed in the "Gencral Catalogue." Column IV.gives the adoped correction of Me bis to Normal System. The agreement between I. and II., as well as between IIl. ant IV., is such as to strenghen the behet that a great part of the differeuce $W^{\prime} 1168$ - Me 68 is due to error iu the adoped refractions at each olserviztory.

Wn 72. The mean corrections to polar distance of American Ephemeris, or simply polar diatance, with the correction for" Dis. Flex., etc.," are taken as pinted from sections entitled "Corrections to the Star Positions of the American Ephemenis," ete., and "Meam l'laces of Miscellaneons Stars," ete., withont change for stars of polar distance less than $4 \mathrm{H}_{0}$. From polar distance 56° southward certain corrections, which are in.
cluded in the reductions on account of disentlanee betreen direct and reflected obssrrations, are rejected. The effect of this is to apply the following corrections to polar distances, or what is the satme thing, to the correction for "Dir. Flex, etc.," before adding the latter to the polar distance:-

Yrar.	Conrcetion.
	n
1870	+.31
$1871-2$	00
1873	
1874	-.43

Between the limits 56° and 46° (P. D.) these corrections are interpolated so as to become zero at the northern limit. By some accident the correction - " 82 for 1844 was meglected for stars between polar distances 1020 and 1250 . The effect of this has been, quite insignificant, however, since the preliminary systematic correctious depend chietly on residuals of stars whose polar distance is less than 1020 .

Proper motion has not been applied in the reductions of "Miscellaneous Stars." These, I have corrected aceordiugly.

As the results of separate years so taken exhibit considerable systematic discord. ances, for use in the discussion of srstematic corrections I have pursued a course entirely analogons to that explained under Re 66 and 72 . Following is a list of corrections to assumed places, thas resulting:-

	"		/		"
β Itsex Minoris	$+.31$	γ^{2} Sagittarii.......	$-.51$	β Cephei	+.83
313 monis.	+.13	u^{3} Sigittaii.	-.6s	ε Pera*i.	+. $\because 1$
\% linme	-. $: 3$	\% Urea Minoris	+ $\because 2$	$1 /$ Capricorni.	-1.0.
${ }^{2} \mathrm{~L}$ Lumtis............	$-.67$	η Surpentis.	--. 58	a Agharii	+ . 32
γ^{2} Lrate Minoris.....	-. 78	a Lyıie.....	+.29	() Aurigie	-. . 81
a Corone Borealis ..	-. 19	β Lyro	-. 33	7 Aquarii	$+.07$
a scr]entis	-. $\because 1$	σ Singitarii	- . in	ζ Pegasi.	+. 18
\% surpentis.........	-. 76	ζ Arnita	-.02	(Crphei	+. 27
- Ursad Dlinoris	-.4;	43 knyittarii	$-\because 8.3$	λ Apparii	-. .1
δ Scorpii.	- . 2	- Draconis	$+.19$	a I'iscis Australis.	-. 23
3^{31} Scorpii	-. 18	\% Aquile.	+ . $\because 1$	a Pegasi.	-. 28
if Ophinchi.........	-.	к A!nile	-1.-1	i Cephei	+1.33
- 1lerculis	-. .1	γ Aqnilie............	$+.09$	γ Cephei	$+1.17$
a Scorpii .	- . 31		+ \%		
η Draconis	. 57	B Aguilæ...........	-. 62		
η Mercnlis.	-1.01	a^{2} Capricorni.	$-.11$		
¢ Ophinchi	+ . 23	π Cephei..	$+1.5 \%$		
a Iterenlis.	+.EI	π Capricurni.	-1.85		
41 Ophincbi	-. $2:$	a Cysui	$+.41$		
(3) Dracours	+.e6	$\mu \quad$ Aquirii	-1.19		
a Ophinchi	-1. 21	y Cfrri	+. 11		
4 1)naconis	$+.33$	(i1 Cryni	+. $=0$		
14 lumalis	-. 04	ξ Crgni	-. 45		
$\psi^{\prime 2}$ Uracomis	-. 40	a Ctpuei	$+.10$		
\% Dracomis	-. 115	$\beta \mathrm{Aqmarii} ~$	$+.13$		

Diseussion of 3669 residuals of stars most frequently observed in the years 1571-33 gires for the probable error of pointing:-

$$
\varepsilon=\sqrt{.4554(\pm .0122)+.0415(\pm .0056) t a 11^{2} Z}
$$

The ralnes tabulated according to zenith distance are these :-

Z	ε	L	ε	Z	ε
c	"	\bigcirc	"	0	،
0	. 60.5	40	. 606	60	7re
10	. 0.6	4.	. 80.5	(6)	. 804
20	. 689	50	. 317	70	. 8.7
30	. 685	55	. 235	75	1.02

In the final reductions, separate systematic corrections hare been deduced for each year. These are shown in Table 1工. With these corrections and the following system of weights, the definitive ralues of $C_{" /}$ (ride "Details of Corrections to Assmmed Declinations") have been compated:-

Wights for combination of W'n $70-7$.

Nomulore of abservations.	Weight.	Number of olservations.	Weight.
1	1	8 to 11	5
\because	2	12 to 16	6
3	$\because .5$	17 tor	7
1	3	$2>10 \% 1$	8
$\therefore 107$	4	5% or mote	9

Section VI.

FIRst APPROXLMATION TO NORMAL SYSTEM.

It will be assumed that the catalogues to be used in the formation of the Normal System hare received all the corrections which can be applied solely on the authority of the obserratious composing each of them. It will also be taken for granted that the correction furnished by a given catalogue to the assumed declination is of the form:-

$$
\lrcorner \pi+J \cdot \frac{T^{\prime}-T}{100}
$$

where $\Delta \delta$ is the correction of δ for a gisen epoch, T (T^{\prime} being the mean epoch of each catalogue), and $\frac{\Delta \mu^{\prime}}{100}$ the correction to the assumed anmol rariation. This course is only proper when the path of proper motion does not deriate sensibly from the are of a great circle. That there is such deviation in the cases of Sirius and Procson has been pretty well established by Dr. Anwers and others; but these stars are omitted in our catalogne. It is possible that rariable proper motion may ultimately be foum in the large majority of cases, but, a few binary systems excepted, the evidence of such variability at present appears to be wanting.

If now no diserepancies of a constan t character were found to exist betreen the determinations of different observatories, nothiug further would remain except to determine the relative meights, and by means of conditional equations, derive a correction for each assumed declination. On the other hand, granting the existence of these differences, we should be justified in adopting the same course, if the declination of every star in a giveu catalogue were made with equal weight, and if each of the stars under consideration hat been determined in each of the anthorities. This, however, is by no means the case, and in order to prevent the undue influence of large systematic errors in caso of stars for whose decliuations there are fem authorities, it remains to be ascertained what corrections of a constant and periodic chatacter can be applied to each catalogue. This can be accomplished by meats of comparison with standard declimations, which are free from any such error.

From the mature of the case this standard can never be attained. The best that can be done is to consider the combined testimons of all independent determinations arailable for the purpose. To take any two determinations as standard, to the exclusion of all others, would be manifestly an error, for it would be assmming that the weight of these selected catalogues in comparison with the remainder is as iufinity to zero, white all expericnce teaches that the best independeut determinations of declination are subject to comparatively large errors.

There is, however, great difference in the quality of these so called independent determinatious, which vary from such special investigations as those of $\mathrm{Kg} 21, \mathrm{Dt} \Omega 4$, Ao 30 , and Pa 45 , where every precantion has been exercised to remedy the ineritahle detects of instrmments by rariety in the circumstances of observation, and the utmost, skill aud rigor in the computations, with determination of the rarious elements of atmospheric refraction, - to those which assume their refractions from alien anthority, which are made with non-reversible instruments, and with little attention to those details of observation and reduction so essential in the delicate problem of measuring absolute declination. It seems but reasonable to suppose that declinations of the former class are
entitled to mule greater confidence than those of the latier. This I have endearored to express throngh the following system of weights to be employed in the preliminary discussion:-

Weights.

Autherity.	Weight.	Authority.	Weight.	Authorits.	Weight.
Kı21	4	Kig 43	2	Cibis	2
6ib:	1	EL4:	1	CGII 58	1
Dt: 1	5	Cill 45	2	We 6.4	1
A0: 9	E	I'a45	10	Gilat	8
Sli 31	1	Pe 45	1	Lu 67	8
CG11:3	\because	We 47	1	Me C^{2}	9
Ce 34	1	Cel 4	1	Wn (98	3
Eli :3\%	1	Gils 5	1	Rubis	\%
Nir 38	2	Ps 53	3	G14\% 0	3
Cib: 0	*	So 5.5	1	111\%	1
Ce 40	1	15 L 56	1		

For the purpose proposed in this section, weight zero mas assigned to all other catalogues. A few are excluded on the gronud that, although independent, their weight is so small that they would merely encumber the computation with useless material.

These weights are not those which might seem to be required bs comparisons with an approximate mean sastem, but are derived from an indepement study of each catalogne. considered solely on the Lasis of internal evidence, with the assistance of such critical reviews as have been fomd conveniently aecessible.

They result from careful study, but are necessamily abitrary, and ean only bo regarded as mere expressions of ophinion concerning the relative eontibntion made by cach determination to the probem of finding an absolute astem of dectinations. It would therefore be smperthons, and at all erents a tedions task to mention in detail the tacts and argments relied npon in support of each indivilnal reight.

It will be sutticient to notice some of the primeiples adopted, which are of general application and tolerably definite and well established.

An investigation, tomded on a series of observations for declimation, wifl he regarted as inderement, or absolnte, in propertion to its freedom from ans assumption whateser foumbed mon results from other series of observations, having in riew the satue or any other purpose. Practirally, honerer, the determination of aberration, nutation, and precession can be left to special investigations. On the other hamd, it maty be dounted whether the constant of refraction or of atmonpheric expansion is sensibly the same for ditarent regions and climates; even if it were, in practical intanence on observations, mull wond still depend mon local conditions and upon the character and situation of the meteorologieal instruments. Add to this the uncertainty of ans existing single determination, and it will hardly be mana aned that any series of declination obsercations is strictly independent, which does not include the determination of refraction constant and coeflicient of expansion for atmospheric air, by proper methods and adequate means, trom the observations themselves.

Every series of onservations professing to gire independent declinations shoukd contain satisfactors evilence as to the character and amonnt of its instrumental corrections. In this connection the excellence of the mechanical constructiou of the
instrument becomes an important consideration. Thas the work of the older instruments labors under disadrantage. It is plain that the greater the rariets of circumstances under whicb an instrument may be used, other things being a qual, the greater will he the frecdom from constant errors due to instrumental canses. Therefore, results from instruments which admit of reversal have received the preference over others. Furthermore, when the relation of the circle to the telescope is so altered that its readings for a given zenith distance rary from sear to year, this has been regarded as a decided adrantage. This consideration becomes of less importance, however, with finely graduated instruments read he a large number of microseopes. The real adrawtage of reflection obserrations is supposed to be an open question. It bas been ably debated by Bessel, Faye, Düllen, Airy, Kaiser, and others. In cases where the discordance $R-D$ is large, and not accounted for by speeial investigations of the instrument, this circumstance has been regarded as just eause for suspicion.

Where we have a long series of observations made at the same observatory, or witl the same instrment, the weight of each group is considerably reduced from that which would have heen assigned to it when standing as the sole representative of the particular series.

Thoronghness and skill in the methods of reduction were allowed to have an important bearing upon the decision of these reights.

Lastly, the degree of liability to fortuitons errors is an element which has been considered. With the older catalogues it is a lighly important one. The catalogne of Piazzi, for instance, is essentially independent, lut its chanee errors are sueb that had we been assured of its entire freedom from systematic error, it rould still hare received a weight practically insignificant by comparison with the determinations actually used in the present discussion. In a less degree the same is true of Dradley's declinations for 1755.

These weights were applied, without alteration, to all the declinations of the respectire authorities, where the star was observed at least four times at a zenith distance of 70° or less; begond 700 , weights mere diminished by the use of empirical factors, diminisling nearly in proportion to the recipracal of the square of the refraction; being zero for all zenith distances greater than 80°, and in cases where the weight multiplied by the factor is less than . 5 .

The results of the rarious series of determinations made by observatories in the sontbern hemisphere, were never used beyond 700 zenitl distance; so that from the pole down to and ineluding a Virginis, there was no diminution of weights for this cause.

The factors are these:

Z	Factor	Z	Factor.
0	$\prime 1$	0	$" 1$
70	1.0	71	.5
71	0.9	71	.4
72	.8	7	.3
73	.7	71	.3
74	.6	60	.3
75	.0		

Two or three observations received half-weight ; a single observation, weight zern. Now while there is great disparity in the number of authorities relating to different stars, fortmately a considerable number of stars have been guite universalls observed. They are known as the fundamental stars, to whieh may be added a Persei, r, Urse Majoris, y Draconis, 亏Draconis, γ Urse Majoris, a Cassiopear, a Cephei, a Ulse
 a Uram Minoris. Tl sse have each been frequeutly observed in a majority of the series of observations enumerated above (Class 1). It will be possible, therefore, in the case of these stars, withont the intervention of srstematic corrections, to compute decliaiations which shall be measurably free from error, and thas answer the purpose of an approximate normal system, to be snbsequently revised and improved.

The results of this preliminary discnssion are exhibited in Table I. The first colmm contains the name of the star; the secoud and third, respectively, valnes of [\rfloor i] and $\left.[\lrcorner^{\prime} \mu^{\prime}\right]$ determined in the following manner. For each catalogne an equatiou of condition was constructed of the form:

$$
A \therefore+\frac{\left(T^{\prime}-1845\right)}{100} J \because^{\prime}-C=0
$$

The values of C are those given in column C of Table A, "Details of Corrections to Assumed Declinations." The epoch 134 ${ }^{\circ}$ is selected to facilitate the solution of the equations. T^{\prime} is the designation for mean epoch and is sufficiently indieated in the mumerieal part of the designation of the catalognes concerned. These ralnes of [$\mathrm{J} \hat{0}$] and $\left[\mathrm{A}, n^{\prime}\right]$ are those which result from the use of Gh 175, without dinal correction and
 dectinations exclurded and these ralnes are used in furming the preliminary system of eorrections. The sisth and serenth colnmos contain, respectivels, the probable crors of the adopted $\bar{j} \delta$ and J / μ^{\prime}. The eighth contains the probable error of the unit of weight. The last colnmm contains the approsimate declination for 1845.

Table 1.

Name of star.	[\triangle]	[$\left.\lambda_{k^{\prime}}\right]$	$\Delta \delta$	$\Delta \mu^{\prime}$	${ }^{\text {E }} \ \delta$	${ }^{2} \mathrm{~J} \mu \mathrm{M}$	ε	δ
	"		"	"	"	"	"	\bigcirc
(2) Vircinis	$+.04$	-. 49	+ .05	-1.003	. $0 \times$.348	. 47	-10.4
β Or.onis	+.193	-. 1.0	+.1-0	-. 1111	. 016	- 210	. 5.3	- -4
${ }^{2}$ Mralrie	+. 111	-. 430		-. $5=4$. 010	.35\%	. 23	- 8.0
a Equarii	-. 02	-. $14=$	-. 000	-. 415	.07]	. 411	(1i)	-1.1
a Cuti.	-. 17	-. 16	-. 24	+.19	.0\%	.340	. 46	+ 3.
β Aquilie	$-.149$	- . 49%	-. $1: 10$	-. 210	. 0.0	. 34	. 17	+ 6.0
a Smpunt	- .	+ . 123	+ . 0%	- .n¢	, 16.9	. 306	. 0	+ (6.! ${ }^{\text {a }}$
a Gimmis.	+.100	-.0\%	+.013	-. 10	. 16.5	. 349	. 17	+ 7.4
a Ahunlia	+ M3	$+\therefore 5$	+.040	. 14.1	. 10.1	. 319	. 43	+-:
γ Aquile	- . 015	-. 103	$+.003$	- . 0.8	. 10,0	.31	. 46	$+10.9$
(8) Lemic	+.11:	- . 1	+.0.03	-1.1:7	. 116	A-	. 5	+12.
${ }^{2}$ Oibune	+ . 1.	- $\because 1 \%$	+. 111	-1.131	. 11.3	, 24	. $5: 1$	$+12.5$
\% P-ras	- . \because	- $\because \because 4$	- . $2: 31$	-1.1	. 161	. 83	. 81	+11.3
\% 1amas	+ . $\because=$.	-. . 111	+ . 2 \%	-1.-	. $11.1-$	\therefore 20-	. 3.	+11.1
(3) Hetenlis	+. $12:$	+. 111	$+.197$	- . 3 \%	. , inio	:10	. 3	+11.19
3 1.0\%ni*	+ . \because	-1.-11	$+.05$	- $\because 141$. 116	○-	. \because	$+1.8 .4$
(6) Tauri	+.432	- . 219	+.000	-. 230	. 0.12	. 41.5	. 50	+16. 2

Table I－Continued．

Name of star．	［ $\Delta \delta$ ］	$\left[\Delta \mu^{\prime}\right]$	$\Delta \delta$	$\Delta \mu^{\prime}$	${ }^{\varepsilon} \Delta \delta$	${ }^{\varepsilon} \Delta \mu^{\prime}$	ε	δ
	＂	＂	＂	＂	＂	＂	＂	＂
Buotis	－． 265	－1．378	－． 234	-2.020	． 048	． 297	． 40	＋20．0
$\begin{array}{ll}\text { a } & \text { Arietis } \\ \text { a }\end{array}$	． 138	－． 459	－． 128	－． 649	． 047	． 293	． 40	＋23． 7
$\begin{array}{ll}\text { a } & \text { Corons Bor } \\ \text { a }\end{array}$	二． 0667	－． 016	－． 018	二． 9906	．002	． 345	． 43	＋27．
β Geminorum．	二．	－． 184	二． 2016	二．930	． 041	． 38.4	． 46	+8.8 $+\quad .4$
β Tauri	－．297	$-.182$	－． 247	＋．．349	． 047	．292	． 39	＋28．5
a Lyra．	$+.345$	－1．258	$+.362$	－1．627	． 044	． 273	． 36	$+38.6$
a Cygni	＋．027	－． 200	$+.031$	－． 880	． 049	． 309	． 40	$+44.7$
a a	－． 0006	－． 241	$+.010$	－． 579	． 063	． 393	． 51	＋45．8
${ }^{\text {a }}$ Persci．．．．	－．203	＋． 098	－． 230	＋． $3: 33$	． 063	． 306	． 50	＋49．3
η Ursm Majoris	＋． 090	－． 899	＋．09\％	－1．013	． 045	． 276	． 35	$+50.1$
$\begin{array}{ll}\gamma & \text { Draconis } \\ \beta & \text { Draeonis }\end{array}$	＋．031	－．	－．091	+.347 +.411	． 059	． 361	． 46	＋51．5
γ Ursie Majori	＋．192	＋．．964	＋．129	$\pm .051$	． 064	.301	． 87	＋5．4
a Cassiopea．	＋．004	－．452	＋． $0 \div 3$	－． 428	． 059	． 366	． 46	＋55． 7
a Cephei	－． 024	＋．321	$-.067$	＋1．683	． 057	． 35.5	． 45	＋61．9
a Ursm Mlajoris	＋．042	． 725	$+.025$	－． 454	． 053	． 327	． 41	＋62．6
3 Cephei	＋．060	－．088	－． 014	$+1.306$	． 035	． 233	． 29	＋69．9
β Ursw Minoris	－． 009	－． 099	－． 070	＋1．0．0	． 043	． 263	． 33	＋74．8
γ Cephei．	＋． 041	＋1．106	$+.045$	＋1．1\％	． 045	－ 279	．$: 3$	＋ 76.8
ζ Urse Minori	－． 146	－．071	－． 127	－． 393	． 041	． 247	． 31	＋78．3
¢ Ursa Mivoris			$+.009$	＋．659	． 06	． 20		＋ 80.6
a Urswo Minoris．			＋．087	－． 050	． 03	． 10		$+88.5$
a Capricorni			－． 314	＋． 509	．092	． 449	． fi_{1}	-13.0
a^{2} Libra			＋．063	－ $31: 3$	． 081	． $5 \cdot 4$	． 71	－15． 1
a Scorpii ．．．．．．．．			二． 1020	＋．303	－ 086	． 641	－ 4	一第． 1
a Piseis Anstralis			－． 505	－． 30	． 126	．2－2	． 4 ！	－30． 4

The weights assigued in the case of the two polar stars a and δ Cise Minoris，are not those of the table，since the relative weights here depend on principles entirely different from those which have governed in the selections of weights to be used with equatorial stars．The weights are those given in column π of the tables for these two stars．

The four stars a^{2} Capriconi，a^{2} Libre，a Scorpii and a Piscis Anstralis are not fonnd in＂table A ，＂since the snbsequent process with these is exactly the same as for other stars in the same region．

The formation of normal places for the limits -30° to -90° declination is re－ served for a later period of the discussion，and the manner will be hereafter explained．

By the substitution in the equations of condition of the ralnes of $J \delta$ and $J \mu^{\prime}$ con－ tained in colnmos fom and five，we derive the mombers in column＂r＂，table A， ＂Details of Corrections，＂etc．These are the corrections to the catalogue declinations given by the approximate Normal System．These are arranged for each catalogne in the order of declination，and from them systematic corrections derived，which are exhibited in Table IJ

＇TABLE： 11.

\leqslant	$\begin{aligned} & \mathrm{I} \\ & \text { si } \end{aligned}$	$$	$$	$\begin{aligned} & \therefore \\ & \therefore \\ & \therefore \end{aligned}$	－	\because	$\begin{array}{r}5 \\ \vdots \\ \hline\end{array}$	E	些	$\begin{aligned} & \stackrel{5}{*} \\ & \underset{~}{末} \end{aligned}$	E	永	$\stackrel{2}{2}$	过	＋	－	＊
－																＂	＊
＊		（1）			；1．心	（0）	－ 40		\because		－ 21	（1）		（W）			－510
\because		（1）			＋1，	（ ${ }^{\text {（ }}$	－． 41		$\therefore 0$	－1 3	－． 21	（1）		（4）			－ジ
－	Si	（1）			1．${ }^{(2)}$	（1）	－． 11	i	1 ！	＋1 31	－417	（1）		（m）			－tri
－ 3	Se	（i）			1． 11	（t）	（1）	（1）	$1 \therefore$	－1：3	\cdots	（1）	is	（1）			－ 1
ージ	－	（1）	－1． 111		1．15	（1）	－di	（i）	－1．-1	1．12	－ 41	（1）	（1）	（1）		：1	－\％
－－	－\because	（i）	－ 3^{3}	$1 \because$	1．$!5$	（1）	－．+10	（	－ 6 （iv	＋1．14	－+1	（1）	（1）	（4）	＋	－ 4	－51
－IV	． S	（1）	－ご	1．${ }^{\text {a }}$	＋1．	（i）	－0）	（1）	－1（	－． 3	－ 41	（4）	（1）	（1）	＋N	（	－Is
－1i	\cdots	（3）	\therefore	（2）	1．1：2	（	－40	（i）	－1．心	＜i	－\＃	（1）	（1）	－い	－${ }^{-1}$	－	－ 10
-11	－－$\because 2$	（i）	\therefore	\＆	$-1 . \because$	（1）	－ 0	（1）	1．${ }^{2}$ \％	d	－4）	（1）	\cdots	－mじい	W		－14
－	\cdots	（1）	＊	－	－1．$\because=$	（	\cdots	（1）	＋1．1：	\cdots	－． 11	（1）	－こ	$1 *$	＋，tr		－1：
－ 16	$\therefore \because$	（1）	$3:$	－ぐ，	＊．${ }^{\text {a }}$	\because	－．．京1	\cdots	－1．13	－is	－\＄1	in	－80	－ 16	＋4！	S	－ 10
－	－	（1）	St	－（以）	＋．31\％	in	－＋！	－成	＋14	，12	－． 11	－in	－ 3	-16	\cdots	$\cdots 1$	－ 5
－	$\because 1$	（1）	${ }^{*}$	\therefore	－1．13	10	－．4：	－\because	．	－	－ 42	\cdots	－3	T10	\cdots	＋15	－ 0
－	\because	（1）	（1）	\therefore ，	－ 14	11.	－k	$\cdots{ }^{-14}$	－	－ $\mathrm{N}^{\text {a }}$	－48	2	－	T． 16	－15	119	5
－ 1	\because	（t）	． 14	$\therefore 1$	110	1，	－ 4.3	． 14	\because	－$\quad 31$	－tis	\cdots	－．	－ 16	－が	$1:$	－ 1
－	\because	N1	－ 11	＋1	1．N3	1：	－． 41	＋（1）：	ミ1	小	－ 11	\cdots	－	－ 16	T 45	ふ：	－
	\because	（i）	： 1	8）	1 に，	－（x）	－\because	\cdots	il	it	－． 4.5	$\cdots 11$	－7．：	\cdots－16	7． 4	＋$\because 4$	，
－	\because	（ ${ }^{\text {a }}$	－\because	\％	1 に	－心	－لi	＋！	心	． 21	－ 215	$\ldots 11$	\cdots	$\cdots 17$	－r．ts	＋11	＋
＋	い	（i）	－\because	t：	！1：	い	15	心	\because	S	4，	\cdots	－ミミ	－15	\cdots	T 3	\ldots
	い	（i）	－$\because 1$	，${ }^{1}$	！心	－．-1	－13	－心	※	$\therefore 7$	4）	$\cdots 1$.	＋，N－	．．．15	－T． 3	心	\therefore S
－ 8	\cdots	（i）	\therefore	\therefore	－ 11.9	－1：	－．．x	－ 11	－ミ	． 8	（ 1	－s． 11	－－心1	－1，	T． 14	－． 14	＋
\cdots	$\because 1$	（2）	－\because	Si．	！！！		－	－	＋＋5	－	ぶ	－ 13	\cdots	－193	\cdots	－ 13	
3	$\because 1$	（1）	\therefore	$\therefore 4$	$1 \because 3$	－．${ }^{1}$	－．．	－， S^{3}	＋． 3		－	－ 46	\cdots	－S1	－81．	－：	$\because 10$
－1．3	10	（1）	\because		$\therefore \therefore$ ？		－．．心	－心6	※	－	C！	\cdots	－－	\cdots	－ 11	－ぶ	－ 15
\because	－	（b）	\because	吅	14	い	－ぶ，	－in	\rightarrow－！	\because	al	\cdots	－． 11	－$\because=$	\cdots	－ 17	\cdots
－\because	$\square 1$	（w）	ㄴ：	－\because	1 is	\because	23	－． 11	－Civ	－15	：	－こ！	\cdots	－1：	－\quad \％	－ix	－
\therefore	－it	（i）	－－	\because	$1 \because$	\therefore		－． 11	．．${ }^{3}$	－． 11	\because	－\because	（1）	\cdots	－ast	－（－4）	－is
－	\cdots	（1）	－1－	－	1 1 11	\cdots	－ 3	－ 15	， 17	－ 11	－1	い ジ	－N	－ 5	\cdots,	－3	5
－ 3	$\rightarrow-1:$	（	－1． 11	－12	：19	（i）	－ 31	－ 3	シ	～\because	－\because	．	－W	－	－：	－	$\rightarrow+10$
1，	．1：		$1+$	－ 2	$\because \because$	．．．	－．！！	－\because	－\because ミ	－${ }^{3}$	－，लi	\cdots	－in	－190	－－．	－ 18	－15
\cdots	－ 11		$\rightarrow \quad$ 1．	1%	－${ }^{2}$		－	－\because	－\％	－，川	－ 1	－※	－ 110	－ 11	＋	＋${ }^{2}$	\cdots
\cdots	－に゙		\cdots	－1：	Q		－ 41	－シi	－111	（1）	－ 15	－．心			－い	い。	－ミ゙，
\cdots	い		－ 10	－ 11	1			－M					（i）	is	$\cdots 1 i$		－心
－${ }^{\text {c }}$	i		－．	－N	－1 13			－\because	（		－1．		in	（	－11	シ	－ふ
\cdots	\cdots		－				に	－	－in	（i）	（1）	．．．	iv	（i）	－ 11	N	－
\cdots	心		－ 16	－ 68			i：	$1!$	－心	（1）	（1）		（i）	（i）	$\rightarrow 0$	－ 5	\cdots
$\therefore 1$	（》）		- it	$-1+t$									(i)	（1）		－：	
－${ }^{(2)}$	\therefore	心	（N）	ふ			（	\therefore	い	（1）	心		（2）	（ ${ }^{\text {a }}$	(－ N^{\prime}

TASAL：II－Contimmer．

8	\％	$*$ 4 4 i	\％	\％	\％ 8	E	：	年	$\begin{aligned} & \text { ت } \\ & \stackrel{y y y}{*} \end{aligned}$	2 E	$\begin{array}{r}\text { ！} \\ \text { H } \\ \hline\end{array}$	－	告	－	E E	F	）
\bigcirc		＂	＂			＇				＂							
－${ }^{3}$	（ii）			＋．$\%$	＋：28	6		－\％0	－．41			9	， 01			（1）	－：31）
－2x	－．0．）	(10)	00	1－200	＋．${ }^{\text {d }}$＋4	－ 10.	＋． 313	－． 81	－． 4	1）！	（11）	－： 51	L． 117	－，\％	－1． 41$)$	60	－
－4i	-110	110	00	1．${ }^{\prime \prime}$	－1．	－． 11	1－．．．	$\therefore 11$	－．$\because 1$	（14）	100	－\％	1．． $1: 1$	－？ 5	－1． in $^{\prime}$	111	－ 20
－ 51	－． 15	00	00	1．15	＋－${ }^{3}$	－． 1.5	＋．in	－${ }^{4}$	－$\because 1$	（1）	011	－．$\%^{\prime}$	1．．+7	一，兄	－1． 111	（1）	－ 1
－ 42	－\％	（11）	00	1．13：	－1．${ }^{\text {a }}$	－．${ }^{1}$	＋\quad ： 11	－： 21	－． 1	101	0,	－，景 4	，4＇3	－	－1． 51	（10）	－4．
$-: 11$	－． 2.4	00	(11)	－．0；	－1．${ }^{\text {dem }}$	－．${ }_{\text {d }}$ ，	1－．${ }^{\text {a }}$	－． 211	－．$\because 1$	10.1	181	－．${ }^{4}$	＋． 715	－．	－1．	101	－${ }^{(0)}$
－18	－． 311	04	10	－． 019	－	－． 30	f． 36	$\therefore 10$	－．！！	1015	（11i）	－． 93	＋． 75	－\square^{-4}	－1．：1		－Id
－11．	－． 4.5	0.1	（0）	$-.17$	－ 1.2 －	－． 5%	1－． 30	11	－－${ }^{4}$	（1）	（10）	－． 23	1．78	－．${ }^{3}$	－1．25	（10）	－16i
-14	－． 411	00	011	一， 64	1－2 ${ }^{\text {d }}$－	－． 16	1－36	－ 61	－．${ }^{1} 1$	－． 116	(1)	－恕	1．70	－号	-1.111	101	－ 11
$-1: 3$	－．47	00	00	－，娭	＋．${ }^{\text {a }}$－	－． 45	1－． 30	－：	－．： 1	－．1：	100	－．2：	1．6\％	－\％${ }^{5}$	－1．12	－． 0.3	-12
－10	－． 50	－． 30	－1． 0.5	－， 31	－${ }^{\text {－}}$－${ }^{\text {a }}$	－． 011	1－3：30	－8il	－：$\because 1$	－． $1+$	1．，1： 1	－， 18	$1+$ fin	－．$\%$	－1． 11 m	－． 11	111
-8	－．4！	－． 59	－1．04	~ 3	－1．${ }^{\text {d }}$	－． 5	1－．潮	－－ 210	－．	$-.11$	1.10	－－8	＋ 60	－． 41	－1．113	－． 111	$\stackrel{H}{r}$
－${ }^{5}$	－． 14	－． $\mathrm{S}^{\text {K }}$	1.08	－． 30	1．${ }^{\text {d }}$	－． 0	1．：35	－． 21	－．${ }^{\text {a }}$	－． 11	1． 10%	－澵	$+.151$	－．is	－． 1.	－． 111	$-\mathrm{i}$
-5	－． 47	－． 27	＋．08	一，呺	1．勻	－．\square^{\prime}	＋． 3 （ ${ }^{\text {a }}$	－． 0_{1}	－．兄，	－． 19	1．15\％	－，	1－． 1010	－．il	－． m_{1}	，11）	\％
－ 4	－． 47	－，67	4． 149	－． 64	－1．${ }^{\text {a }}$－	－小＇	1．， 39	一，景	一．碞	－－， 02	1． 111	－，\％0	1．．5，	－． 36	－． 11	－． 111	1
－	－，43	－． 24	4.11	－	4.94	$-.17$	＋，in	－．${ }^{\circ}$	－\％ 0	－． 113	＋． 111	一，结	｜品	－．$: 1 \%$	－．r！	$-.111$	－ 4
0	－． 1.11	－．48	＋1．12	一，景1	－1．	－113	1．：\because	－． 810	－． 27	（1）．	－．11：	－．19	1－．al	－ 11	－．41	－．111	1
－1	－． 11	－． 25	＋． 11	－，	－1．24	－ 15	1－331	－．${ }^{\circ} 4$	一．	＋．8is	－． 0.5	$-.18$	j－in	－． 11	$\rightarrow .40$	-11	1.8
＋1 4	－．43	－． 25	$+.10$	－ 20	－1． 2 M	－i．	1．． 30	－．1！	一，${ }^{2}$	－1． 10	－． 11	－1 1	＋． 53	－． 116	－． 75	-13	－4． 1
＋5	－． 11	－ 25	－1．17	－． $1!1$	1．	－1：3	1．310	－．11	－．${ }^{\text {P }}$	－1．0． 14	－． 10	-17	1． 5	－． 46	－． 73	－． 13	－1．
＋${ }^{\text {d }}$	－． 11	－． 20	＋． 17	－．1\％	＋． $2=$	－． 31	1．． 3	－．1\％	－． 2^{14}	＋． 10	－．12	-17	＋．．tr	－． 14	$-.71$	－． 11	－${ }^{\text {－}}$
＋ 8	－． 31	－． 5	＋1． 19	－． 11 i	＋．${ }^{\text {a m }}$	－． 811	1－230	． 17	\％	＋．13	－． 15	－． 11	1－．61	－． 3 m	－．ifi	－ 11.	＋M
＋110	－． 38	－． 2.	1． 18	$-.11$	－1．94	－：im	＋． 30	． 15	－． 30	＋．14i	－IN	－． 16	＋．1！	－，品	－．it	$-.17$	－119
$1{ }^{5}$	－． 31	－． 312	1.17	－． 10%		－．B^{3}	＋，	． 111	－ 84	＋．1k	－．${ }^{2} 6$	－ 13	＋． 114	－．\％$\% 10$	－． sis	－． 1	1．i
90	－． 30	$-.40$	＋1． 10	－． 191	－1．98	－ 811	1．30	－． 1114	－．．．	－． 20	－ا	－． 11	1． 14	－． 113	－． 45	－．${ }^{\text {a }}$	5
2.1	－． 24	－． 50	1．131	4.11	＋．${ }^{\text {den }}$	－：${ }^{\prime \prime}$	1.85	$-.13$	－－． 21	＋．17	－， 8	－． 67	1．． 10	－． 37	－． 3 －	－． 59	2．5
30	－．92	－ 60	-114	4． 119	4．心m	－ 21	1－． 26	－．12	－． 11	－ 4.14	－． 30	－－，12：	1．．im	－ 96	－． 3		311
： 5	-1.14	－． 96	－． 11	－1． 11	1．9x	$-.17$	1． 20	－．${ }^{2} 8$	－． 0 OH	－4．0．19）	－：${ }^{\text {a }}$	1－，10：	1－． 3	－．15	－．$: 11$	\cdots	\％$\%$
19	-11	－． 70	－． 15	1．11；	＋${ }^{2}$	$-.13$	t． 331		011	＋．01	－．in	1－20	1－． is_{3}	－．H1	－． 21	． 21	11
4.5	－． 10	－．16\％	－ 11	1．台：	－	－． 17%	＋． 51		（1）15	010	－． 31		＋． 31	1． $18 f^{\prime}$	－．itur	－．${ }^{4}$	4．）
50）	－， 100	－12\％	－．13	＋${ }^{2}$	\cdots	－． 10%	t．		（19）	013	－		1．． 8 ： 1	1．13	－．24	－．${ }^{11}$	511
5＇5	－． 01	－－in	－． 11	＋． 30		＋． 17%	1－2：4		（ii）	（1）	－． 2^{5}		＋． Lf_{4}	1.17	－．id	－．IM	St
CO	$+.01$	－． 411	－． 110	＋． 33		1.17	1－35		(10)	（1）	－． 81		1．．23	＋．${ }^{\text {d }}$	$\therefore \mathrm{H}$	$-.17$	f．1）
\％is	＋1．12	－－． 27	－． 110	4． 31		\therefore ：${ }^{\circ}$	＋－${ }^{2}$		010	10	－．14i		＋．［ ${ }_{1}$	1．20：	－．	－． 11	fi．
$i 0$	＋．40	－． 1.	－． 116	＋．30		4－4：$\%$	＋．${ }^{\text {d }}$		（1）	（1）	~ 10		＋． 17	1．1H	－．8．7	$-.111$	70
75	4．20	-07	－． 11.1	＋．24		t．${ }^{\text {an }}$	1．14		(10)	119	1,1		＋．11	1． 015	－． 0^{0}	－ 110	7.5
80	－1．2．	100	$-.103$	＋． 1.1		＋． 86	． 11		1010		111		（ 111	161	－．1i	1.11	\｛01）
（1）	＋． 10	10	（1i）	（6）		＋，90）	110		100	1111	（1）1		1．10，	011	（1）	（11）	111

＇The lollowing explatations will surve to show the manmer of comphting thess corrections．As the points of comparison were relafively few，shdern flactuations in
 jostified by the testimony of the observations．Whencerer a general expression such as a（sin $Z+\sin Z^{\prime}$ ），or，$\neq\left(\right.$ tan $Z+$ tan $\left.Z^{\prime}\right)$ ，（where Z^{\prime} is the \％enith distance of the pole），was fonme to represent，apmoximately，the residuals，r ，it was adopted．In the derivation of the comections from $-100^{\circ} t 0+900$ dechanation，only stas within these limits were nsed．From－ 100 to－ 3 ，the comections ame very romgh appoxima－ tims，there beine bat four standam declinations within these limits fo control the carves．In fact，the curves were continusd，in many eases，acoording to the lan
 strongly opposed to the residuals given by the lom somhem stars．＂

We proceal to notice such peculiarities in the individnal eormetions as apmar to be worthy of remarik．

[^26]Kg 21. I have supposed that the systematic error in this catalogne is more likely to be due to error in the constant of flexure emploged than to anything else. This is found to correspond well with the residuals. Assuming the correction to be of the torm, a (sin $Z+\sin Z^{\prime}$), we have for $a+{ }^{\prime \prime} .16$. The use of this formala was continued to the extreme southern limit.

Gh 응. The correction is so small and so uncertain, that zero has been adopted for all declinations.

Dt 24 . The correction is assumed to be of the form $* \frac{\left(\rho+\rho^{\prime}\right)}{100}$ where ρ and ρ^{\prime} are respectively the mean refractions for a giveu star and the pole. We have:

$$
x=-.299
$$

The Dorpat observations are reduced with a refraction constant which is Bessel's multiplied by . 90545. From the formula we sball have as the true factor, $.09545 \times$ $1.00290=.99843$. The following table shows the agreement of the formula with the means of the several groups of residuals.

Mean δ of group.	Number of stars.	Mean value of r.	Formula.	Residual.
0		"	"	"
- $=.9$	3	-. 49	-. 83	-. 04
+ 5.2	6	-. 33	-. .31	$+.19$
+ 13.8	\cdots	-. 21	-. 27	-. 06
+ 8.8 .8	${ }^{6}$	-. 03	- . 23	-. 19
+ 43.0	3	-. 17	-. 15	+.02
+ 53.3	5	-. 35	-. 13	+.10
+63.3	\because	-. 18	-. 10	$+.08$
+ 75.0	4	--. 08	-. 06	$+.02$

Ao 29 . The process with this correction mas exactly similar to that pursued with Dt 24. We have:and the following comparison :-

Mean δ of group.	$\begin{aligned} & \text { Number } \\ & \text { ofstars. } \end{aligned}$	Mean rialue of r.	Formula.	Residual.
-			"	"
- $\quad .5$:	- .in	-.63	-. 04
+ $\quad 6.3$	6	- . 34	-.39	-. 05
$+13$.	\because	- . 316	- . $\because 2$	+.04
+ 3\% =	6	- . 3.	- .	$+.03$
+ 43.0	;	- . \because	-. 17	$+.11$
+ 5י:	1	- . $11:$	-. 11	-. 11
+ 60. ${ }^{\text {a }}$	3	-.03	-.111	-. 07
$+5.0$	4	+ . 110	-. 016	-. 11

S. II. 31. From declination +660 to -100 , the curve was formed bs adding to the numbers given by Dr. Auwers for S. I. 31 (Ast. Tach. Bd. 64, S. 378), the difference
between the correction just deduced for Ao 29 and that given by Dr. Anwers (ibid.), the difference being taken in the sense Normal-Auwers. For the limits -10° to -30°, the catalogue places corrected to Bessel's refraction, were takell without change.
C. G. H. 33. The correction for this catalogne was formed in precisely the same manner as that of S. H. 31, and between the limits -10° and $-30{ }^{\circ}$, correction zero is arbitrarily adopted.

Ce 34. The residuals were plotted on a conceuient scale as ordinates, both singly aud in groups, with the mean declinations as abscisse. A curve of the simplest form was then drawn by hand, passing as nearly as possible throngh the mean of the points.

Eh 37 and Eh 43. Constructed on similar prineiples to that of Ce 34.
Kg 33. A hand-enrve was drawn, but was found to be very uncertain.
Gb 39. In the interval $+900^{\circ}$ to +520 , the correction zero was assumed. The remaining interral is well represented lys the tormml:, - ". $61 \tan Z$, which is adopted. Ce 40 and Ce 48. Process same as for Ce 34.
Kg 43. The formula of correction assumed is :-

$$
\pi+* \frac{\rho}{100}
$$

The values derived are these: $K=+{ }^{\prime \prime} .30 \pm{ }^{\prime \prime} .09 ; x=-.24 \pm .15$. The correction zero is assumed between the limits -10° and -30°, though from the formula a small minns correction would result.

Pa 45. The adopted form of correction is a (sin $Z+.503$), the decimal number being the approximate sine of the co-latitude. This would closely represent the effect of an error in the adopted coefficient of sine flexure. There is room for reasouable donbt whether the constancy of the cocfficient of Gexnre can be relied upon where the ocular and objective are interchanged as at Ponlkora. At any rate, as will appear from the suljoined table of comparison, this formula acconnts very accurately for the difference, Normal - Poulkora. The value of the constant is $+{ }^{\prime \prime} .341 \pm " .015:-$

Mean δ of group.	Number of stars.	Menn value of r.	Formula.	Residual.
		"	"	"
- 8.9	3	$+.49$	+.49	. 00
+ 5.2	6	+.43	$+.45$	$+.03$
+ 13.8	8	$+.48$	+.4\%	-.06
+ 25.8	1	+.31	$+.36$	$+.05$
+ 43.0	3	$+.85$	+.27	$+.02$
+ 52.3	6	$+.16$	$+.21$	+.05
$+62.3$	2	$+.38$	$+.16$	-. ${ }^{2}$
+ 75.0	4	-. 02	$+.08$	$+.10$

The use of this formula is continued to the sonthern limit.
Gh 45. A simple hand curve is drawn.
Ke 45. Owing to the large probable error of this anthorits, and the nneertainty of the curve, a comparison with Pa 45 and Gb 45 is iustituted for every star in common with these catalogues and that at the end of this paper. The comprisons are included within the limits $+90^{\circ}$ and -10° declination, and are in the sense of corrections to

Le 4.5. The weights were adopted without reference to the number of observations in Pa 45 or Gla 45 , muless the umber in the former is less than 4 and in the latter less than i. With this exception, the weights are these:-

	Wright.
1	. 1
\because	. 6
3 OH 4	.
\therefore or more	1.0

These were multiplied by . 5 when the momber of obervations in either of the other eatalognes is 1 , by . 7 when in Gh 45 the number is $2, b y$ when in Pa the number is either \because or 3 , and in Gh 45,3 or 4. It was seldom necessary to use these factors. The following table contains in the tirst colum the mean declinations of the groups Pa-lie: in the second, the mean residual Pa-Re for each group; in the thind, the weight; in the fourth, the probable error of the unit of this weight determined trom cale group.

The tiftl, sixth, and serenth colums contain corvesponding particulars for Glo $4 \overline{0}-$ lie ti, omitting the probable errors, which were not determined. The eighth and ninth columns show respectively the sums of mmbers in columms two and six atded to the corresponding eorrections of l'a 45 and Ghta, taken from Table 1 . The tenth eolumn contains the means of columns eight and nine. giving the numbers in column eight double weight exeept for the tirst gronp. From this last column the eurve of eorree tion is constmeted graphically ly the usual method.

1.	\because 。	\therefore :	1.	-	1.	7 .	$\stackrel{*}{*}$	$!$.	10.
${ }^{\prime}$,			こ	"		/	$1 /$	"
- -1	- $\because \because \%$	13	$\pm .101$	- - . 10	$+.10$	\cdots	$+.16$	$+.96$	+ t ib
-11.	$+.15$	$1 ;$	-.4\%	- 1. \because	+ . i 3	$!$	+ . i 12	+ . 69	+..1.1
+	-. -	$\bar{\square}$.41	+ 3.0	-. 811	ii	- . 23	-. 4 ;	-. $\because 15$
$+\cdots 1$	-. . ini	1.7	: $: 1$	$+=0$	-. 18	15	- . 30)	C.1)	- . 1\%
+1 1:3	-..	9	. $4: 3$	+ 1:3.1;	-. 11	10	- . .i6	-. 20	- . il
+ $1 \div 1$	-. 12	$1 ;$. 41	$+1-3$	-. 23	1	-. 0.2	-. 11	-.00:
+ ? -	-1.111	1	. is	+ :3.3!	-. -9	$!$	-. $-\frac{1}{\square}$	-. 80	-. .71
+ $\because-1$	-. -1	7	. 4^{11}	+ $2-1$	-..3	i	- . 5	-. 4.3	-. 43
+ in. 1	-1. $\because 1$	-	. 410	+ \because - 1	-. -1	:	-1.133	- . 76	- . 111
+11.1	-. .1i-	$\because 11$. 45	+ 11.4	-. 03	201	-. 10	-. 110	- . . $\because 1$
+ 11.2	- . 2.1	19	. 41	+ 47.2	+	$\because 1$	-. en	$+.111$	-. 111
+ -13.11	— . $\because 1$	$1 ?$. 3 i	+ 51.	+.1.3	1.1	-.12-	+..01	110
+ 718.4	-.11\%	111	. il	+ + Sil. 7	+.15	11	$+1.12$	+.12	+ .1:
+ lil.11	- . 11	$1: 3$. 21	+ 10, 10	+. . 170	$\because 1$	$+.119$	$+.110$	$+.110$
+ lii.1t	+. 011	$1 i$. 1:	+ 6in. 1	+ .	9	$+.14$	$+. .15$	+ . 1-1
+ 211.11	+ . titi	11	, $3:$	+ 711.1	+ . 1.1	111	+ . 21	$+.16$	
+ $81 . \therefore$	$+1.11 . \%$	7	: ii:	$+7 i .=$	+	$!$	+1.1\%	+ $\therefore=$	+ .11:
$1-7,0]$	$[-, 1 \%]$	[8]		[$-1 . \%$]	$[+\ldots 3]$	[7]			

The correction of the table is mot considered appleable between the limits soo and aro declination when stars are observel both ahose and below the pole between the limits - 10 ant - 202 the come was constrated by the help of Dr. Anwerss

cover any which it was thought sate to apply. Dr. Gould finds a considerable correction of this kind (Ast. Nach., Bd. 65, s. 182), and Dr. Auwers (Ast. Nach., Bd. 6.I, s. 335) finds by comparison with $1029:+{ }^{1 "} .285 \sin \alpha-{ }^{\prime \prime} .146 \cos \alpha$. My comparison inchuces stars between -10° and $+74^{\circ}$ declination, and, after subtracting the difference of declination corrections from the separate differences Pa-lie and Gh-Re, I find:-

$P_{i} 45-\mathrm{Re} 45$.			Gh 45-R045.		
Mean α of group.	Weight.	Difference.	Mean a ot group.	Weight.	Differerca.
h.		"	h.		f
0.2	11	-. 11	0.1	17	-.02
2. 2	17	$+.10$	2.2	18	+.21
4.8	13	+.13	1. \%	13	+.21
5.8	11	-. 13	F. ${ }^{\text {b }}$	13	- 10
8.1	10	+.01	Q. 1	11	+.110
10. 1	1.5	- . i	10.1	11	- . 础
12. 1	$*$	-. 01	12.2	1.1	+. 01
14.0	11	. 00	14.1	1.1	+ . 3
16.0	1.5	-. 30	16.0	1 (;	-. 5
18.0	,	-. 34	15.0	12	+.
19.9	1.7	+.02	19.9	18	+ $\therefore 0$
2.0	15	-. 06	28.0	$\because 1$	+ 24

Wu 47, Wn 56, Wn 64 . The corrections were derived by the graphical process. None of these curves are very certain for declinations north of 400 .

Gh 51 , Gh 57 , and Gib 64 , Ps 53 , C. G. H. 58 , Ln 67 , Fie 68 , and Wn 72 were also discussed by means of hand curres.

So 5 . A uniform ralue of the correction was adopted, since sufficient material for drawing the curve with requisite certainty was not available.

Me 68 and $W \mathrm{~W}$ 68. Comparison with the residuals r shows that the results of the discussion of Washington and Mebourne declinations (p. 68) answer sufficiently well for the first approximation to their respective corrections. This oninion is supported by the final disenssions.

Gh 70. The empirical formula $a\left(\sin ^{3} Z+\sin ^{3} Z^{\prime}\right)$, which differs little in practical effect hom that employed with Dt of and Ao "at , thongh it does not very closely represent the mean values of r, is alopted. Discussion of the separate residuals gives for $a-1^{\prime \prime}$.17. The comparison with means is as tollows:-

Dlean δ of group.	Number of stats.	Neanr.	Forumla.	c-o.
\bigcirc		"	"	"
- 8.9	3	-1.12	- 1.05	$+.117$
+ $\quad \therefore$.	G	. 74	- . $7: 3$	+. 114
+ 13.8	\checkmark	- . 33	- . 5.5	- . 28
+ 25.8	6	- . 3	- . 39	-. 111
+ 43.0	3	. 3 s	- . 89	+.0.
+ 52. 3	6	- . 50	- . $\because=$	+ $\because 2$
+ 62. 3	2	- . 37	- . 2	$+.10$
+ 50.0	1	- . 46	$\therefore 11$	+ .

If, for instance, observations have been correctell by the formula a $\sin Z \cos ^{2} Z$, when the true formma is $a \sin Z$, then the correction $a \sin ^{3} Z$ would be required for the pular dintances, as published. The average correction to zenith distances ly direet observation during the years $1868-9$ for $l-D$ is

$$
+^{\prime \prime} . \pi 5 \sin Z \operatorname{tos}^{2} Z .
$$

If we suppose that this correction should have been approximately + ". 75 sin Z, then declinations would require the correction - ".75) $\sin ^{3} Z+$ (the proper correction for latitnde).

It is, however, probable that a great part of the correction is due to error in the adopted constant of refraction.

SECTION VII.

CORRECTIUN OF BESSEL'S FUNDAMENTA ASTRONOMLA.

With the systematic corrections of Table II, and with the system of weights already used, we proceed to eorrect the assmmed declinations of stars of elass " b " (p. 8). The olject of this is to secure a greater number of points with whith to compare Bradey's declinations, and even this additional number is insutficient for the satisfactory solution of the poblem. The criterion af selection of these additional stars is that there shall be none for which the reight of $\lrcorner_{\mu}{ }^{\prime}$ is less than . 5 . The formation and solution of conditional equations was conducted on precisely the same principles as for the fumlamental stars. The same authorities were used (Gh1752 and 1850 being of eourse exeluded), but they were tirst corrected by Table II. in order to diminish the effect of nueven distribution of systematic errors in the series of correetions for a given star.

The results are shown in Table 1H. where the adopted corrections of fundamental and circompolar stars (Section VI.) are repeated for consenience. The explanation follums:

Table 111.

Name of star.		1755.		Jir	$\bar{\sim}$	$>_{\mu}^{\prime}$	$\pi^{\prime} \mu^{\prime}$	Cor. to Bradley.	π^{t}	Resiclual.
		a	§							
		0	\bigcirc	"		"		"		"
	[rear Minoris	:319. 6	+-2.5	+.250		$+1.1=$		-1.1	. 7	+. 3
	Lrate Minoria	11.9	+-8.11	$+.01-2$		-. 36		-1.9	$\because .0$	+. 3
δ	Kras Mmmors	2-3.7	+-5.5	$+.009$		+. 630		-4.1	1.0	
	Canclur. (3: II. $)$	129.0	+-4.7	+ . E (0)		+3. -3		-. 2	1.10	$+.7$
	[raa Minuris...	号- 0	$+-1.1$	+.1-1		-.63		-. ${ }^{11}$. 4	-.7
	1 rear Minotis	38: 2	+52.	-. 127	28.9	-. 39	1.5ti	-1. \because	1.11	+.ii
	(2 ¢ ${ }^{\text {drei }}$ -	30.4	+76.3	+.01\%	6i1. 4	+1.13	1. 16	+. 5	1.0	+! \because
	1 resp Minoris	817.1	+56.	+.005	3\%.11	+1.02	$\therefore 3$	-3. 3	1.11	-1.3
β	Urese Mmoris	-18	+5.53	+.170	iil. 4	$+1.15$	1. 2.9	-3.1	. 4	$-2.1)$
1	1)raconio...	$\because 71.4$	+-30	+.451	2i.3	-1.3	. -11	+1.:	1.11	-1.8
y^{\prime}	1rar Minoris	? 210.3	+20.	-.08:3	13. 4	-1. 38	1.1-	+1.0	1.0	
3, 1	Mracoris. -	96icis	+ $\because 3$	+.11-1i	15. 11	- . : 0	. 51	-. 7	1. ${ }^{19}$	+1.01
λ	Dracounis	16.\% 1	$+80.7$	+.10\%	11.11	+1.18	. $!1$	-:3.	1.11	--: 1
	(r-1/4i..	$3: 3.1$	+150. ${ }^{\text {+ }}$	-. 114	1i1.11	+1.3:3	1. 116	- $\because .7$	1. 10	$\cdots 11$
a	Draconis	艮l. 6	+6-. 9	-. 10.	1-9	+ $\because 9.11$. $8:$	- $\because 10$	1.0	-1.9

Table III-Continued.

Table III-Continned.

Table III-Continued.

Columus one, two, and three require no explanation. Columas four and fire contain the correction to the assumed declination for the epoch 1845 , with the weight as determined from the equations of coudition. Colnmn six contains one hundred times the correction to the annoal rariation assumed, and colnon seven its weight. In reference to the weights, it should be remarked, that for the first fire stars the weights were assmmed on different principles from those which presail with other stars. Thu manner of assigning weights to the stars from a^{2} Caprieorni to a Piseis Australis has been alreads explained. As they are not, therefore, strict? comparable with the precediug thes are omitted. Column eight contains the cortection to Gh 1752 and Gh 1755, resulting from the preceding values of \rfloor is and $J^{\prime \prime}$. The process of obtaininis these corrections was this: The eatalogne declinations were correcter] for mutation as explained ($\mathbf{p} .20$). The dechnations between $+14^{\circ}$ and -14^{2}. have been conected by

Bessel for certain quantities necessary to make them agree with Bradley's obserrations of the smin. The following table is given in Fundamenta Astronomice (p. 62).

δ	Correction.	δ	Correction.	δ	Correction.
0	"	-	"	0	"
-13	$+.71$	- 3	$+.67$	$+7$	+1. 2
- 11	$+.63$	-1	+2.36	+ 9	+ 1.47
- 9	$+.94$	+1	+1.03	+ 11	+ . 93
-	+.32	$+3$	$+1.4=$	$+13$	+ . 49
- \quad	-. 06	$+5$	+ + 40		

These eorrectious I hare subtracted from the catalogne declinations; by which means we are able to assume the same system for all stars south of Greenwich zenith. The standard declination for 1752 is equal to the assumed declination $+4 n^{\prime}-.93 \mathrm{~J} n^{\prime}$. From the standard so formed is subtracted the corrected declination of the catalogue. The resnlt is the "Correction to Bradles." For the stars ennmerated below the corrections to declinations from lower culmination are given with reversed sign, as the above table deals with upper culmiuation onls.

Stars observed sub polo.

The ninth column gires the we ight used in solving the equations of condition. The following is the scale:

Obs.	Weight.
1	.4
2	.7
$3-9$	1.0
$10-9$.	
over 2.	1.5
	2.0

In estimating these meights, no account is taken of the uncertainty of the standard plates. Their probable error seldom execeds ". 45 , amd for the fundamental stars avorages abont ":3. The probable error of the unit of weight for the additional stars is aproximatels ".35.

Owing to the mertain character of the residnals I did not think it wafe to attempt the drawing of a curve. Careful preliminary examination showed that the error varies
greatly with the Right Ascension, according to what law it is difientt to conjecture. I assumed at first the simple periodic formula of correction,

$$
x \sin \alpha+y \cos \alpha
$$

The form of the declination correction (order of declination) especially for southern stars, appears to be tolerably well represented by the expression-

$$
v+u \sin 2 Z+u \tan Z
$$

For sonthern stars alone the normal equations are these :

$$
\begin{aligned}
& +109.2 v+77.2 w-0.6 x+5.9 y+111.0 u-100.0=0 \\
& +77.2 v+63.5 w-3.3 x+3.9 y+82.3 u-85.5=0 \\
& -0.6 v-3.3 v+59.6 x+1.8 y-9.2 u+30.1=0 \\
& +5.9 v+3.9 w+1.8 x+49.6 y+4.2 u+8.5=0 \\
& +111.0 v+82.3 v-9.2 x+4.2 y+24.2 u-121.8=0
\end{aligned}
$$

From whith-

$$
\begin{aligned}
v & =-21 \\
w & =+1.50 \\
x & =-.41 \\
y & =-.25 \\
u & =+.05
\end{aligned}
$$

Arranged in fom nearly equal groups, we bave the following values of v, x, and y, the residuals being first corrected for $+1^{\prime \prime} .50$ sin $2 Z+" .08$ tan Z.

Mean δ	v	x	!	$\begin{gathered} \text { Weight } \\ \text { of } y . \end{gathered}$	Arlopted y.
\bigcirc	"	/	"		"
-13.0	-. 20	-. 17	-. 88	10	-. 98
+ 08.3	-. 07	-. 5	-.70	16	-. 48
+ 25.6	-. 42	-. 49	$+.09$	11	-. 06
+43.4	-. 19	-. 99	+. 36	10	+.37

The constancy of v and x is as good as we might expect, but such is not the case with y. In the nocertainty, I have supposed y to rary directly with the declination, and find-

$$
y=-11.24\left(\frac{28^{\circ}-o}{10}\right)
$$

The equations for northern stars are:

$$
\begin{aligned}
& +60.9 v-27.6 w-13.1 x+0.5 y-25.9 u+63.8=0 \\
& -27.6 v+20.3 u+1.3 x+0.2 y+21.5 u-3.5 .2=0 \\
& -13.1 v+1.3 w+31.1 x-1.8 y-3.9 u-13.5=0 \\
& +.5 v+0.2 w-1.8 x+39.5 y-2.8 u+17.2=0 \\
& -29.0 v+21.5 w-3.9 x-2.8 y+43.9 u-31.5=0
\end{aligned}
$$

Whence-

$$
\begin{aligned}
v & =-.63 \\
v & =+1.95 \\
x & =+.04 \\
y & =-.61 \\
u & =-.35
\end{aligned}
$$

The number of stars and the weights are too small to admit of any valid argument from the process of gromping; the residuals, howerer, are not remarkably well repre. sented by the formula. The real correction is probably much more variable. The equality of the two ralues of x derived from northern and southern stars is quite striking. The smallness of u in each case is an argument that the reftaction deduced by Bessel correspouds well with Bradley's obsercations. For the definitice correetion 1 have dropped u and combined the equatious for both northern and southern stars. Two sets of coefficients for $\sin \alpha$ and $\cos \alpha$ are separately determined. For vortheru stars these are denoted by x^{\prime} and y^{\prime}. y is introduced into the equations in order to eliminate its mean influenee on the determination of the remaining quantities.

The equations follow.

$$
\begin{aligned}
& +170.1 v+49.6 v-13.1 x^{\prime}+0.5 y^{\prime}-0.6 x+5.9 y-30.2=0 \\
& +49.6 c+53.8 u+1.3 x^{\prime}+0.2 y^{\prime}-3.3 x+3.9 y-121.0=0 \\
& -13.1 v+1.3 v+31.1 x^{\prime}-1.8 y^{\prime} \quad 0.0 x \quad 0.0 y-13.7=0 \\
& +\quad 0.5 v+0.2 v-1.5 x^{\prime}+29.8 y^{\prime} \quad 0.0 x \quad 0.0 y+17.2=0 \\
& +\quad 0.6 v-3.3 w \quad 0.0 x^{\prime} \quad 0.0 y^{\prime}+59.6 x+1.8 y+30.1=0 \\
& +\quad 5.9 x+3.9 w \quad 0.0 x^{\prime} \quad 0.0 y^{\prime}+1.8 x+49.6 y+8.5=0
\end{aligned}
$$

The solution gives:

$$
\begin{aligned}
& v=-. .1 \pm .06 \\
& u=+1.56 \pm .10 \\
& x^{\prime}=+. .5 \pm .16 \\
& y^{\prime}=-.57 \pm .16 \\
& x=-.41 \pm .10 \\
& y=-. .5
\end{aligned}
$$

The probable error of the unit of weight is $\pm{ }^{\prime \prime} .79$. For northern stars it is $\pm 1^{\prime \prime} .03$; and for southern $\pm^{\prime \prime} .65$. These probable errors are somewhat larger than can fairly be ascribed to Bradley's decliuations, since they include the effect of the prebable error of the normal paces themselses. In order to be on the safe side I have adopted the following weights in final disenssion, the supposed probable error of the unit being $\pm " 30$, as will be explained hereafter.

Weight.	Number of ohservations.	
	Northern stars.	Southern stars.
00	1	1
.05	3 tom	
. 1	9. or more.	\cdots
. \because		4 10:0
. 3		21. ar mare.

In computing Table V., weight 5 is assigned to 4 or more observations, and weight .3 to less than that number. Declinations of Gb $175 \Omega-55$, from one observation are rejected. If the corrections above determined are combined with those for motation we have-

For northern stars (north of 510.50)

$$
-{ }^{\prime \prime} .21+1^{\prime \prime} .56 \sin Z+{ }^{\prime \prime} .05 \sin a-{ }^{\prime \prime} .29 \cos a
$$

For southern stars (south of 510.5 a)

$$
-.21+1.56 \sin Z-" .82 \sin \alpha-. .4\left(\frac{250-b}{10}\right) \cos \alpha
$$

Z is reckoned in the usual direction from 0° to 360°.
For convenience the following tables have been constrncted:
Table IV.
Definitive corrections for Bessel's Fundamenta Astronomice.
Northern stars, +510.5 to $+!\omega$.

Note.-The corrections are applicable to declinations directly, whether observed above or below pole. The entire correction for northern stars is $1+b$.
$B\left\{\begin{array}{ccc}a & \text { Corr. } & a \\ 1 & " & 1 \\ 0 & -.99 & 13 \\ 1 & -.27 & 13 \\ 2 & -. .3 & 14 \\ 3 & -.17 & 15 \\ 4 & -.10 & 16 \\ 5 & -.03 & 17 \\ 6 & +.05 & 18 \\ 7 & +.12 & 19 \\ 8 & +.19 & 20 \\ 9 & +.24 & 21 \\ 10 & +.25 & 23 \\ 11 & +.30 & 23 \\ 12 & +.29 & 24\end{array}\right.$

From $19^{\text {b }}$ to $94^{\text {ha }}$ the correction has the opposite sign.
(*)
For stors south of 510.5%.

* Between $+14^{\circ}$ and -14^{7}, δ, the entire correction is, $C+$ correction taken with opposite sign from table, p. Gi, Fund. Ast.

SECTION YIII.

discussion of final corrections and weigints.

With the conection jost dednced, we shall be able to add a considerahle mumber of standard stars to the list embraced in Table III. The places of the forr extreme southern stars of Table I., as well as the additional stars ot Table Ill., will be revised ly the addition of Gb, 1752 or ${ }^{2} 55$, as an authority. Forty fundamental and circumpolar stars of Tible I. wonld not be materially affected by this aldition. For the present, their declinations as already corrected, will be regarded as standard.

Two or three stars, which shonld have been ineluded in the list, were omitted by aecident.

The manner of deducing $d o$ and $d \mu^{\prime}$ has been sufficiently explained under sections VI. and VII. Their values will be found to be not materially different from those fimally deduced.

Table V.
Valucs of Δi and $J^{\prime} u^{\prime}$ adopted in computing final systomatic corrections for the principal catalogues.

Star's name.	1845.		Star's uamb.	1845	
	$\Delta 1$	Δu^{\prime}		$\Delta \delta$	$\Delta \ell^{\prime}$
	"	"		"	"
a Andromedr.	-. 14	$-.90$	a Leporis	-. 14	+.17
β Cassiopew	-. 31	$+1.11$	ε Oriouis	- . 35	-. 24
γ Pegasi....	-. 23	$-.16$	a Orionis	$+.02$	-. 03
ζ Cassiopea.	-. 13	$+.47$	(${ }^{\text {Aurigm }}$	$-.05$	-. 60
$a \quad$ Cassiopea	$+.02$	-. 43			
β Ceti	-. 23	+1.20	η Creminorum	-. 03	$+.21$
7 Cassioper	-1.80	$+1.62$	μ Geminoram	-. 46	-1.15
γ Cassioneæ	- . 89	+ $\because 6.68$	γ Craninornm.	+.22	-1.59
ε Piscilma	-. 20	-.899	Cophei, (311)	$+.10$	-. 68
β Andromeda	+ - 4	-1.97	ε Canis Majoris	-. 68	$+2.00$
a Ursm Minoris	$+.09$	-. 96	ζ Gemidorum	+.72	-1.54
δ Cassioper	$+.03$	+.	¢ Geminorum	-. 17	-2.48
θ^{1} Ceti......	$+.13$	-..99	(3) Canis Minoris	+. 09	-.7:3
7 Pisciam	- . 53	-2.86	\because Geminornm	$+. \leq 1$	-1.51
51 Andromedio.	-. 33	+.06	β Ceminoram	-. 21	-. 43
54 Andromedro.	+.43	- 2.9	¢ Geminorum	+.01	-1.40
- Piscium	-. 13	-1.59	ρ Argus	-. 10	-. 62
ε Cassioper	+.13	$+.85$	β Cancri	-. .31	$+.04$
β Arietis...	-. 01	-1.76	o Ur=x Majoris	+.06	+.93
50 Cassiopers	$+.44$	+20\%	δ Cancri	+.03	-1.08
γ Acdromedro.	+.26	+.96	ε Ilydre....	-. 27	-6.54
${ }^{a}$ Arietis	-. 13	- . $\because \sim$	$\stackrel{L}{ } \varepsilon^{2}$ Urser Majoris	-	- 4.46
${ }_{5}{ }^{1}$ Cuti	-..01	-. 57	$\&$ Cancri...	-. 10	-4.72
ξ Ceti	- . 13	$+.40$	a Ļ̧ncis	-. 12	-. 20
γ Ceti	-. 40	-1.14	a Mrelra	+.13	-. 78
a Ceti	- . $\because 1$	+.49	0 Ursto Majo	-. $3: 3$	$+.00$
β Persei	+. 4.4	-. 93	- Leouis	$+.47$	-. 60
a Persei	-. 23	+ . $3:$	ε leronis.	+.03	-1.57
ξ Tamri	$+1.37$	+.58	2 Ursio Major	$+.33$	-. 24
δ Persei	-. 05	$+.01$	μ Leonis	-. 30	$-.15$
η 'Tauri	-. 13	-. ${ }^{-1}$	${ }^{4}$ Leodis	+.00	-1.18
γ Eridat	-. 41	+.06	λ Ulsx Major	-. $5 \times$	$+1.46$
ε Tunti.	$+.19$	-1.:30	γ^{\prime} Leonis.	-. 33	-3.10
a Tauri	+.06	-.73	μ Ursa Majoris.	+.20	-1.11
4 Camelopardalis	+.95	+.20	p Lennis	-. 29	-1.11
a Camelopardalis	+.35	-3, 1:	53 Leunis	-. 36	- $\because 24$
¢ Aurigio.	-. 41	-. 76	β Urso Mlajoris	+.89	- ${ }^{\text {a }}$ 16
β Camelopardalis	+.93	-.12	a Lrse Majoris	$+.02$	-. 45
$\varepsilon \operatorname{Auri}_{j} \boldsymbol{0}$.	+.13	$-.91$	ψ Ursso Majoris	-. 15	-. 51
η Aurigm	+. 23	-1.11	δ Leonis.	$+.19$	-. 09
a Anrigio	+.01	-. 53	δ Crateris	-. 59	+..31
(3) Orionis	+. 19	-. 01	τ Leonis	$-.11$	-1.80
β Tauri.	-. 24	$+.35$	λ Dracouis	+.42	$+3.83$
¢ Orionis	-. 4 S	-1.18			

N $\mathrm{B}-32$

Table Y-Continued.

Star's namo.		1815.		Star's name.	1845.	
		31	$J \mu^{\prime}$		$\Delta \delta$	$\nu \mu^{\prime}$
		"	"		"	"
	Leonis	-. 68	+1.03	ε Merenlis	$+.35$	-2. 31
	Vrsa Majoriz.	$+.04$	-. 43	ε Urse Minoris	$+.19$	-. 63
β^{3}	Leouis	+.20	-3. 41	a ${ }^{1}$ İerculis	+. 20	-. 34
β	Virginis	-. 11	-1.00	β^{2} Herculis	$-.11$	-1.14
γ	Ursat Majoris.	+. 20	- . 25	β braconis	$+.13$	$+.41$
0	Vircinis	-. 40	-2.54	a Ophinchi	$+.11$	-1.05
¢	Ursa Majoris	-. 14	-. 115	ω Dracouis.	-. 31	$+1.76$
7	Vircinis	-. 39	-1.76	μ llerculis	+. 02	-1.47
β	Corvi	-. 34	-. 06	ψ^{1} Draconis	-. 01	$+.59$
κ	Draconis	-. 63	+2.80	γ Draconis	$-.0 .5$	$+.35$
	B. A. C. 1342.	+ .5\%	+3.83	4 Sagittarii	-. 42	$+.34$
ε	Ursm Majuris.	+.31	+3.13	δ Urem Minoris	$+.01$	$+.66$
a	CannmVenatico	-.06	-.83	η Serpentis	$+.36$	-2.02
0	Virginis	-.03	-2. 34	x Dracouis.	$+.46$	$+.03$
a	Virginis	+.01.	-1.00	a Lyre	$+.36$	-1.63
5	Yrse Majoris	+.00	+.25	ε^{1} Lऽг\%	-. 68	$+.91$
-	Virginis	-. 33	-2.711	3 Lire	$+.21$	-2.5.5
η	Treae Major	$+.10$	-1.01	σ Sigittarii	-. 02	-. 0.5
η	Bootis	-. $\because 1$	-1.45	- Draconis	$+.25$	-. 84
${ }^{2}$	Draconis	+.23	+ . $\because 2$	ε Aquilie	-. 23	$+.35$
a	Bootis	-. 23	-2.03	λ Aquilae	+. 13	-. 73
λ	Buoctis	-. 43	$+2.10$	ζ Aquil: 0	+.13	-. 47
1	Buotis	-. 11	-. 70	δ Dracouis	$+.11$	$+.81$
ρ	Buotis	+. 22	-1.11	к Crarui	-. 38	$+.60$
γ	Bootis	+1.12	-1.41	T Draconis	+.42	$+1.17$
5	Ursme Minoris	$+.63$	+3. 20	δ Aquilse	$+.05$	+.45
ϵ^{\prime}	Buotis	--. 113	+. ${ }^{\text {r }}$	ι^{2} Cryui	-. 03	-. 43
a^{2}	Librie	+.05	-1.07	- Alquila	-1.27	-2.81
β	\irmo Minori	-.07	$+1.05$	θ Cugni	-. 45	+1. 5
β	Bnotis	-. 02	$-.70$	γ Aquilse	$+.00$	-. 25
β	Librem	+.01	- . $\mathrm{ar}^{\text {r }}$	¢ Creni	+. 20	-2. 61
$1 /$	Buootis	-. 30	-. 50	a Aŋrila	$+.0 .4$	-. 10
8^{8}	Trse Minoris	-. 10	-. 13	3 Arfuilm	-. 14	-. 7.7
\bullet	Draconis.	+.12	-. 23	2. Urim Minoris	$+.26$	$+1.13$
a	Coronae Borealis	-. 10	-1.00	0^{2} Usgui	-. $\because 1$	+. 10
a	Serpentis	$+.03$	-. $\because 7$	a^{2} C'apricorni	$-.30$	+ 53
ε	serpentis	-.	-1.8.7	* Crphei	+.36	+2.50
5	Iusie Minoris	-. 13	-. 39	γ Chini	$+.42$	-1.97
δ	Serryi	+.6il	-:. 71	o Cuphei.	+.10	+.71
3^{1}	Scorpii	$+1.60$	-5.7	a Welnhini	$+.61$	-1.76
A	Dramonis	+.03	+ .78	a Crgni	$+.03$	-.83
δ	Ophinchi	-. 3.4	+. 5.9	ε Oymi	+1.69	-2.11
T	lleraulis	- . 210	--. ${ }^{\text {a }}$	7 (eplie	-. $: 39$	$+1.37$
\square	Scorpia	-. 11.5	-1. 20	12 Aquari	-.62	$\cdots-1$
η	Draconis.	$+.10$	-. 43	v Csign -	-27	$+1.41$
1.5	Driconia	$+.01$	+.-4	61^{1} Crgoi	+.61	$+.10$
σ	Heronis	-. 17	+ 4.4	ζ Crgni	-. 40	-1.39
5	Herculis	+.0.3	+。边	a Cepluei	-. 07	+1.63
η	Ilerculis	-. 69	-3. 00	13 Aquari	+.0\%	-..34
κ	Ophinehi	-. 01	- . 3	β Cetmej	-.01	$+1.33$

Table V－Coatimued．

Star＇s name．	1845.		Star＇s name．	1845.	
	± 8	$\Delta \mu^{\prime}$		$\Delta \delta$	$\Delta \mu^{\prime}$
ε Pegasi．		－． 65		－． 46	＋9．01
ν Ceplei．	＋． 13	＋1．20	2．Pegasi．．	二． 10	$\pm .01$
${ }_{a}^{16}$ Pegasi．．	$\pm .06$	二．70	${ }_{2}$ Cephei	＋．07	＋1．20
${ }^{\text {a }}$ a ${ }^{\text {Anquarii．}}$	－+1.24	－	$\begin{array}{ll}\lambda \\ a & \text { Arfuarii } \\ \text { Piscis Australis }\end{array}$	二． 86	${ }_{+}^{+3.07}$
0 Aquarii．	－． 36	-1.53	a Pegasi．．	＋．33	-1.82
	干 $\begin{array}{r}.16 \\ +.00\end{array}$	＋+ ＋ 49	－Cephei．．	$\pm .53$	+4.63 +1.21
	+.00 +.08	$\underline{+1.9}$		－． 04	$\stackrel{+1.12}{+1.12}$
刀 Aquarii．	$-.66$	$+\because \therefore 0$	ω Piscium	－．4i	-1.04

The general condition in the selection of the stars of Table V．is，that the weight of $\Delta^{\prime} \mu^{\prime}$ as determined by the adopted weights（ p .72 ）shall be at least ．5．In two or three instances it fell below this amount by trifing quantities．Columu C_{0} ，＂Details of Cor－ rections to Assumed Declinations，＂contains the values of C，corrected for the proper quantities taken from Tables II．and IV．From these $\Delta \delta$ aud $\Delta \mu^{\prime}$ are computed． With the Lelp of $\Delta \delta$ and $\Delta \mu^{\prime}$ ，the correction to the assumed declination was computed for every epoch required．Denoting these corrections by $\Delta \dot{o}^{\prime}$ ，we have：

$$
r=\Delta \hat{o}^{\prime}-C .
$$

These are the corrections＊to various catalogues given by the standard declina－ tions of Table V ；and from these，arranged by catalogues and successirely in the order of declination and right asceusion，the definitive systematic corrections are derived for all catalognes；a ferr excepted which were of small weight，or which con－ tained few obserrations of standard stars．

Determination of Definitive Systcmatic Corrections and weights．

For convenience the residuals were combined in groups embracing generalls not more than 5° ，when discussed in order of deelination，and two hours in order of right ascension．To effect these combinatious，weights are assigned in each particular case， which are based either on special investigations made in this paper，or elsewhere；or upon an empirical lar derived from a consideration of the circumstances surrounding the observations，or their reduction．The usual form of this law has been：

$$
\pi^{\prime}=\frac{E^{2}}{\varepsilon^{2},+\frac{\varepsilon^{2}}{n}}
$$

Where E is the probable error of a single obsersation，or of the unit of weight，and the other quantities have the same signification as in the discussion of Washington

[^27]deelinations (p. 46). For the ratio $\frac{\varepsilon}{\varepsilon}$, an integer mas always used, since it must neeessarily be a mere approximation. The weights attached to means of groups were made use of in the graphic process, by means of which the corrections in order of declination are incaiabls dedneed. The choice of seale in plotting the residnals, depends upon the aceuracy of the eatalogne places under consideration, and was always such, that the relative weights cond be elearly represented by circles drawn about the points to whieb they respectivels belong.

It was mer origimal inteution to incestigate nearly all the correetions by the use of periorlic formule; but the time at my disposal proved too limited for the purpose, and it may be doubted whether such a course is realls desirable for the eorrections which depend upon the order of cleclination.

Extreme acenracy is not to be expeeted in the correetions derived from graphie process. The temptation to make abrupt changes in direction of the curve, in order to represent what may be mere accilental accumalation of errors, has been steadily resisted. On the other hand, where eren a slight peculianits is found to be persistent for a number of eatalognes under the same eircumstances (i.e., at the same observatory or with the same instrument), it has been respected. Such peenlianities have been noticed in the later Greenwich and Radclitie catalogues, and in others. Theoretieal considerations have sometimes received weight in deciding the gencral direction of curres, espeeially where refraction exerts an important influence.

Corrections depending ou right ascension have generally been riewed with suspicion. In many eases, howerer, they are important and cleanly indicated, and in others they might have been safely expected. Where the correction appears to follow approximately the same law in suceessive catalogues of the same series me may adopt it withont hesitation. The separation of the residuals into two or more zones has always been made before aceepting a correction as definitive.

The adopted form, -

$$
x \sin \alpha+y \cos \alpha
$$

Las some support in theory, and is here invatiably adopted in corrections of this class.

$$
\text { Corrections to Declinations firm - } 300 \text { to }-900 \text {. }
$$

The continnation of the curces of correction from - 300 to -900 offers ouls a rough approximation.

The cortections to C. G. 1I.31, S. II. 31, C. G. I. 33, So 51 , So 5 , C. G. II. 58 , Me 63, and the bes, were tirst approximately determined betreen the limits - 100 and - 300 . These anmoximations ane almost identically those of the final table, and are formod on the same basis- the ouly ditierence being that the general direction of the eurve of correction was better ascertained after its apmoximate character was known for the sonthern limit. A vatue of the correction leing assumed for arelination - 300 , the remaning valnes wore diredly interpolated from this point, so as to have the value zero at declination - - 900. These preliminary values are in some cases quite different trom those of the definitive talle (IX.). The fillowing tahle contains these preliminary corrections as actualty nsed. Under the designation of each anthority, is also given the meght assigned to it in the discussion of 70 and $d \mu^{\prime}$. When the number of observations is thre or four, the weight is one-half that which otherwise would
bave been assigued; mhen it is two, the weight is three-tenths, and one observation is always rejected.

Table VI.

δ	C. G.II. 81.	S. II.:31.	C. G.11.33.	So 51	So 55	C. G. 11.58.	Ne 6?.	Me 63.
-		"	"	"	"	"	"	"
- 80	00	+ . $50 *$	+ . 20	$+. .0$	-. 50	10	- . . 27	-. 57
- 40	00	+.43	+ .	+. 60	-.12	00	+. 38	-. 1.
- 50	00	+.31	+.60	+ . 23	- . 31	00	+..88	-. 38
- 60	00	+.85	+. 45	+ . 40	- . 2.0	00	+ . 41	-.
- 70	00	+. 17	+ . 30	+ . 4	-. 12	OU	+ . 29	-. 19
-80	00	$+.03$	+.15	+.13	-. $0-$	00	+ . 15	-. 10
- 90	00	+00	00	00	00	00	00	00
Weight..	1	2	2	2	$\stackrel{\sim}{\sim}$	4	2	3

* Tho corrections S. H. 31 aro applicable directly to catalogue places.

For courenience, the epoch of $\lrcorner \delta$ is taken for these few stars at 1850. The ralues of Δi and $\Delta \mu^{\prime}$ thus determined, are shown in Table VII., which coutains only stars whose declinations are gireu both in S. H. 31 and C. G. H. 33 .

Table TlI.
First approximation to $5 \hat{0}$ and $J_{\mu^{\prime}}$ for stars betecen - 30° and - 90°.

Star's name.	$\Delta \delta 1=30$.	$\pi \Delta \delta$	$\Delta \mu^{\prime}$	$\pi{ }^{*} \mu^{\prime}$
	"		"	
β 1ITrdri	-.03	17.7	+-.57	. 83
γ Tbonicis	- $+\therefore .8$	7.1	-:3.71	. 18
a Eridaui	- . $3: 3$	15.9	-1.1:	. 3
$\theta{ }^{2}$ Ericlani	-. 1:3	10.5	-. 81	- 2
a Columbe	-. $\because 1$	15.9	-. 97	. $3:$
β Columbro	+ . 07	11.8	-. 65	-
a Argns.	-. 43	17.7	+1.33	. 33
5 Argus	--.0.5	-. 5	-. 80	. 21
λ Argus	- 8.8	10.5	-2.1:	. 2
ι Argils	- . 33	12.9	+1.30	. 25
η Argus	-. 03	16.3	-. 43	. 23
β Chameleontis	+ . $\because 1$	16.1	+.01	. 27
a^{1} Crucis	+.15	19.6	-2.69	. 29
β Centauri	+1.13	16. 1	-5. ${ }^{4}$.
a^{2} Ceutauri	+ . 51	13.0	- - 3	. 22
a 'Triang. Australis	+.73	14.4	-4.58	. 27
η Scorpii .	-.43	9.4	+ .	$\because 0$
σ Octantis	[+.11]		[-.70]	
a Paronis	+.4i	11.7	- 2.89	- 21
a Gruis	-. 38	13.7	+:3.06	. W

I estimate the probable error of the unit of weight to be $\pm .4$. This would gire for average probable error of $\rfloor 0 \pm .1$, aud for $J^{\prime} \mu^{\prime} \pm .8$.

In diseussing the probable error of tho unit of weight for each catalogue, the stars from -30° to -90° were not used in amy case.

Discussion of Individual Catalogues.

The examination of the systematic corrections and 1 ,robable errors of each catalogue will now be presented. A brief explanation will probably suffice to make the process easily understood. The relative weights of the individual ralues of r for a given catalogue, were first assigued, usualls, by deciding upon a value for $\frac{\varepsilon}{\varepsilon}$; The folloming table is constructel with the arguments, number of observations, and $\frac{\varepsilon}{\varepsilon}$, where ε is that part of the probable error, which is supposed to diminish in proportion to $\frac{1}{\sqrt{n}}, n$ being number of observations, and ε, the minimum probable error, or probable crror when n is a maximum.

Table Vili.

$\frac{\varepsilon}{\varepsilon_{1}}=2$		$\begin{aligned} & \varepsilon_{-}=3 \\ & \varepsilon_{i} \end{aligned}$		${ }_{\varepsilon_{t}}^{\varepsilon_{2}}=4$	
n	π	n	π	n	π
$\begin{gathered} 1 \\ 2 \text { and } 3 \\ 4 \\ 5 \text { to } 9 \\ 10 \text { to } 35 \\ 36 \text {, or more. } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \underset{2}{3} \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$		1 2 2 9.5 3 4 5 5 6 2 8 9	$\begin{gathered} 1 \\ 2 \\ 3 \text { and } 4 \\ 5 \\ 6 \text { and } \\ 8 \\ 8 \text { and } 9 \\ 101019 \\ 13 \text { to } 16 \\ 17 \text { to } 20 \\ 21 \text { to } 25 \\ 26 \text { to } 33 \\ 34 \text { to } 44 \\ 43 \text { to } 42 \\ 63 \text { to } 92 \\ 93 \text {, or more. } \end{gathered}$	1 2 3 4 5 6 7 8 9 10 11 19 13 14 15

With the chosen weights, the values of r were combined in order of declination into convenieut gromps, r_{0}, embraciug generalls not more than 5° of declination. From these the curve is carefully Jrawn. The salues in column C_{0} are taken from this corre.

The outstamling residuals r^{\prime} (formed bs subtracting from the individual ralues of r the correction from the curve) are then arranged in orter of right ascensiou and in gronps, cmbracing each about two hours. Mean a is usually given to nearest hour, unless the fractional difference is, more than two or three tenths. In discussion, the nearest degree of a was taken. lo order to facilitate examination, the corrections in order of a hare been in all eases aranged in two or more zones of declination, but where such an arrangement is of no particular interest it is here omitted.

In a few eases the correction in order of declination has been redisenssed after subtracting from r the respective ralues of $x \sin a+y \cos a$, but this has not usualls been considered necessary.

Foflowing the discussion of correction of each catalogne is a statement of the probable error, desived from the outstanding residuals atter subtractiug the proper
systematic correction from the separate values of r. The result of no star was taken, which at the given observatory culminates at a zenith distance greater than 70°. These probable errors are somewhat too small for the catalogues used in forming Table V., and slightly too large for all others. The former difficulty is remedied in a few instances by the adoption of probable errors founded on special discussions. Kg 21, Dt $24, \operatorname{Pa} 45, \mathrm{Wn} 68$, and Wn 72 , are examples of this kind. These probable errors are, of course, not the absolnte probable errors; they express siuply liability to fortuitous errors, after systematic corrections have been applied. They are required for the purpose of constructing a table of relative weights to be used in the discussion of definitive places.

In deriving the probable error (E) of a single observation, a quantity m was always subtracted from the uumber of residuals before dividing the sum of squares multiplied by weights-that is, the probable crror of the unit is derived on the estimate that an equal degree of accordance could have been secured with a formula of correction containing m terms.

Po 1800.

Each declination is supposed to be entitled to the same weight. The groups embrace each about 20 of δ.

Residuals in order of declination.

Mean d	π^{\prime}	r_{0}	C_{0}	Neau d	π	r_{0}	C_{0}
\bigcirc		"	,	\bigcirc		"	"
$+86.7$	5	-. 93	. 00	+ 23.9	4	-1.70	- 1.22
+ 76.3	6	$+.90$. 00	+ 2.11	1	-. 88	-1.97
+ 7.0	5	-. 71	. 00	+ 19. ${ }^{\text {i }}$	0	- . 94	-1.41
+ 69.5	4	-. 54	. 10	$+15.3$	8	- 2.02	-1.83
+ 07.2	4	+. 26	. 00	$+13.5$	5	-2.17	-1.85
+ 65. 3	2	+.15	. 00	$+10.3$	9	-1.79	-1.61
+62.0	7	+. 35	. 10	$+8.4$	γ	- 1.35	-1.36
$+50.7$	8	-. 11	. 10	+ 6.6	5	- . 20	-1.20
$+57.3$	8	-. ${ }^{1}$	-. 0.05	+ 3.6	7	-.71	-1.13
+ 55.3	3	+.12	-. 015	- 0.5	7	- 2.04	-1.59
+ 53.4	7	+. 19	-. 15	- 3.6	5	- 2.70	-2.04
+ 49.4	7	-. 60	-. $\because 2$	- 7.2	3	- 2.30	-2.24
$+40.8$	5	-. 80	-. 40	- 9.1	7	-1.76	- 2.22
$+44.5$	${ }^{3}$	-. 8°	-. 51	- 14.1	4	- 2.40	-1.79
+ 41.7	5	-. 24	-. 90	-18.7	3	-..80	- 1.25
+ 39.5	7	-1.19	-1.04	- 2.4	4	-1.12	-1.05
+37.7 +310	3	-3.33	-1.19	- 27.1	3	-1.08	-1.00
+ 34.0	6	$-2.0 .5$	-1. 11	- 30.0	1	-1.40	-1.00
+ 31.4	3	-1.19	-1.45	-3\%.0	\%	+	-1.00
+28.4	6	-. 78	-1.:0	$-4: 1$	5	- 2. 21	-1.00
+20.6	4	-1. 33	-1.:3				

In drawing the curve monch assistance was derived from the comparison of Ao 29 and Po 1800, made by Argelander (A bo Catalogue, $]$. xi). If we denote by β the correction to Gh 1755, and by ξ^{\prime} the defiuitive correction to $\Delta 029$ (Table IX.), we shall have $\frac{29}{74}\left(\beta-\beta^{\prime}\right)+\beta^{\prime}$ for stars south of 510.5 declination, and $\frac{29}{77}\left(\beta-F^{\prime}\right)+F^{\prime}$ for the remainder, as the correction to be applied to the comparison. The drawing of the curre froved to be extremely difficalt, bat its values are adopted in the discussion of all stars except the few reserved for treatment with catalognes of Class III.

The separate outstanding residuals, grouped in the order of a, give:-

504 UNITED STATES NORTHERN BOUNDARY COMAISSION．

Residuals in order of right ascension．

Mlean a	Declination limits．		$\begin{aligned} & \text { 1) clination limits. } \\ & -30^{0} \text { to }+60 \end{aligned}$		Declination limits．		
	π	$r,{ }^{\prime}$	F^{\prime}	10^{\prime}	$\pi{ }^{\prime \prime}$	ro＇	$c_{0}{ }^{\prime}$
1.							
1	$\stackrel{11}{7}$	\pm	\％	$\pm .90$	10	＋	$\mp .0 \pm$
	10	＋\％	＂	＋．90	16	＋． 96	＋．46
\％	13	＋．${ }^{+1}$	\because	\cdots	$1: 3$	＋． 23	＋． 56
		$\pm .6$	1	$\underline{+1.109}$	${ }_{19}^{1.4}$	$\pm .81$	$+.50$
11%	$\%$	于． 9	\％	干管	$1: 2$	干	＋．04
1．7	19	＋． 40	：	＋．50	20	＋．52	－．
17	11.	－． 91		－．-0	19	二． 8.9	二． 46
19	13	－． 90	5	二．${ }^{\text {－}}$	$\because 1$	二． 89	二．
1	11	－． 91	4	－． 90	21	－． 32	－． 0
23	10	－． 93	5	－． 24	16	－． 47	－． 31

The ralues of ro＇taken between the limits－ 33° and $+90^{\circ}$ of declination gire the following correction：－

$$
-{ }^{\prime \prime} .04+\left({ }^{\prime \prime} .53 \pm{ }^{\prime \prime} .05 .5\right) \sin \alpha-\left({ }^{\prime \prime} .18 \pm{ }^{\prime \prime} .085\right) \cos \alpha
$$

The formula reluces the sums of squares from 351＂to $312^{\prime \prime}$ ．With $m=10$ ，

$$
E= \pm " .85 .
$$

To derive the final curve（order of i）for use with stars of Section \mathbf{X} ．，the resid－ mats resulting from the definitive places of 380 stars were first diminished by the value of the periodic term + ＂ $.53 \sin \alpha-" .18 \cos \alpha$ ．The result of no star is accepted where the probable error of $\perp^{\prime \prime}$＂is estimated to be grater than＂． 8 ，and where the same is between＂． 6 and＂． 3 the corresponding residual is given half weight．

Never more than j^{3} ，and generally not more thau t^{2} ，of declination were included in a single gronp．The results follow：－

Resituals in order of Aeclination．

Mean δ	π^{\prime}	$r_{0}{ }^{\prime \prime}$	C_{0}	Mean δ	π^{\prime}	$r_{0}{ }^{\prime \prime}$	C_{0}
\bigcirc		＂	＂	\bigcirc		＂	＂
＋－；	7	－． 15	＋． 13	$+21$	3.5	-1.90	-1.5%
＋ $\mathrm{i}=$	9	＋． 81	＋．$\because 1 ;$	＋ 16	19	－$\because .0 .3$	－1．10
＋ 7.	1：	＋． 20	＋． 4	＋11	14	－1．－1	－1．40
＋69	11	＋．4．	＋．	＋6	30	－．-15	－ 1.30
＋ 181	1：	＋．－，	＋．$\overline{1} 1$	＋11	1：3	－1．43	－1． H 1
＋ 89	$\because 0$	＋．$: 1$	＋．	－	：	－$\because 17$	－1，－${ }^{\text {a }}$
＋ 51	1.1	＋．$:$ \％	＋： 0	－！	11	－$\because .0 \%$	－1．91
＋ 13	$\because ;$	$+.15$	＋．$!$	－ 11	5	－2．13	－1．8．5
＋ 41	1.	－．．1	－． 10	－19	\therefore	－．ic	－1．86
＋ 5	：11	－1．	－．．-3	只	$\bar{\square}$	－ 1.70	－1．30
＋ 34	1 ；	－1．1i	－1．11	－	$1 ;$	－． 72	－1．11
＋ 30	－1	－． 3.3	－1．111	－	\because	－． 711	－1．31
＋$\because 19$	洤	－1．80	－1．11	－42	＂	－$\because .08$	－1．5

＊Pularis is wiven weight：

Of the 380 stars employed, 50 received weight .5. The carve is still sery uncertain. From 0° to 40° declination it is particularly nnsatisfactory. Be making abrupt changes in the direction of the curve at $+35^{\circ},+30^{\circ},+150$, and $+50^{\circ}$, the observations would be much better represented. I did not, bowever, feel justified in taking this conrse. The plos residuals from 40° to 90° average much larger than in the former discussion. This appears to be almost solely due to accidental causes. Had $r_{0}{ }^{\prime \prime}$ been constrncted without correction for terms in α, the plus residuals mould have been reduced less than one-tenth of a second. The probable error of the unit of weight, using only the 329 residuals with weight 1 , north of -300 , is \pm ". 78 , and considerably smaller than before. For stars from $+40^{\circ}$ to $+90^{\circ}$ it is $\pm^{\prime \prime} .88,+30^{\circ}$ to $+40^{\circ} \pm 1^{\prime \prime} .02$, and from -30° to $+30^{\circ} \pm{ }^{\prime \prime} .66$. I did not think it worth while to repeat the investigation of terms in α.

Bl 1810.

From r_{0} a prelimiuary correction was derived and used before discussing terms in a. Colnmn $r_{0}{ }^{\prime \prime}$ is formed, takiug into account the effect of these terms. C_{0} contains values derived from the definitive curre.

Residuals in order of declination.

Mlean δ	π^{\prime}	r_{0}	$r_{0}{ }^{\prime \prime}$	C_{0}	
\bigcirc		"	"	"	
86.5	24	+.35	$+.07$	+. 10	
76.2	21	+.66	+.	+.36	$\bar{\varepsilon}_{1}=2$
70.8	33	+. 57	+ - 3	$+.31$	
66.5 60.8	5	工. ${ }^{7}$	+.80	+.10	
56.7	50	-. 04	-. 0.03	-. 02	
50.9	65	+.25	$+.13$	+. 10	
45.6	55	$+.03$	$\pm .01$	+.100	
40. 2	57	$+.06$	-. 01	. 00	

The residuals are arranged in order of a withont separation into zones of δ. As has beeu stated, they result from the use of a preliminary correction derived from colume r_{0}.

Residuals in order of right aseension.

Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
7.		.1
0.99	49	-.10
3.02	13	-.06
5.09	34	-.13
2.34	30	-1.30
11.73	43	-.30
14.48	49	-.10
16.79	79	+.10
19.63	33	+.33
22.30	37	+.37

The discussion gives, in fair accordance with those of Argelander and Δ urers, this correction:

$$
-{ }^{\prime \prime} .080 \pm{ }^{\prime \prime} .051-\left({ }^{\prime \prime} .531 \pm{ }^{\prime \prime} .077\right) \sin a+\left({ }^{\prime \prime} .101 \pm{ }^{\prime \prime} .073\right) \cos a
$$

With $m=7$, we hare:-

$$
E= \pm 1^{\prime \prime} .03 .{ }^{*}
$$

Kg 21.
Within the groups the rariation in precision is small. Each r is therefore given weight 1.

Residuals in order of declination.

Mean \&	π^{\prime}	r_{0}	C_{0}
"		"	"
+ 8.8 .6	2	$-.13$	$+.01$
+ 71.6	;	-. 09	$+.05$
$+70.8$	4	+.83	$+.19$
+ 60.9	7	$\underline{+.03}$	$+.18$
+ 5i, \%	4	+.89	$+.17$
+51.1	7	-. 03	+. 14
$+41.7$	8	-. 07	$+.09$
+ 40.0	7	$+.13$	+.06
+	4	+. $\because 9$	$+.06$
+ 21.3	2	-. 115	+. 10
+ 11.5	7	$+.00^{\circ}$	$+.13$
+ 8.0	4	$+.16$	$+.17$
+ 4.0	3	$+.36$	+ .20
- 1.1	1	$+.44$	+ .
- 9.1	3	+ . 89	$+.41$
- 14.2	2	+ . 26	+ . 5%
- 27.6	2	+1.85	+.E4

With catalogne probable errors as au argument, and with the probable error of mit of weight $\pm .30$, taking $m=4$, we have from the outstanding residuals $E= \pm .30$. The probable errors given in the catalogue are therefore adopted in the construction of definitive weights.

Residuals in order of right aseension.

Declination limits.$-30^{\circ} t 1+90^{\circ}$			Declination limits.$-30^{\circ} t u+90^{\circ}$		
Meana				π	$r_{0}{ }^{\prime}$
		"			"
1	6	+. 15	13	3	-. 03
3	3	-. 13	15	8	-. 26
5	$\hat{}$	-. 21	17	8	-. 03
7	1	+. 10	19	8	$-.17$
0	\because	-. 05	:1	8	$+.11$
11	5	+.06	2)	4	+.08

- In forming an opinion as to the precision of the dcelination determivations of rarious catalognes it is, of conrse, necessary to consinler the ralne of E in connection with the ratio $\frac{\varepsilon}{\varepsilon}$. In many eases the Valur of E does not refer at all to the probable error of a single olservation; and when it can be so construed, it is offen amu necessarily a rough approximation. The most that can le faid is that the adopted law of probable errors for a given catalonut is calcalated togive with tolerable fideliry tbe probable errors due to the numbers of observation most frequently occarring with the stars of Table V.

Gh 22.

The use of the correction zero adopted in Section $V I$ ．is continned，since no further material is arailable．The correction－＂． 11° actually results．

Residuals in order of right ascension．

Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	Meana	π^{\prime}	$r_{0}{ }^{\prime}$
		＂			＂
1	3	$-.06$	13	1	－． 10
3	1	$-.70$	15	4	$+.10$
5	4	＋．08	17	3	－． 12
7	1	． 00	19	3	
9	2	二． 65	${ }_{23}^{21}$	$\stackrel{3}{2}$	二． 2.2
11	1	－． 20	23	2	

Dt 24.
The weights correspond to the probable errors of the catalogne，and the unt of weight，to a probable error of $\pm{ }^{\prime \prime} .25$ ．

Residuals in order of declination．

Mean δ	π^{\prime}	r_{0}	C_{0}
－		＂	＂
$+86.5$	10	－． 07	－． 04
＋ 76.3	11	－． 04	－． 16
＋71．1	13	－． 27	－． 20
$\underline{+66.1}$	11	－． 19	－． 23
＋61．4	16	－．83	－． 25
＋56．4	10	－． 29	－．27
+50.4	18	－． 25	－． 25
＋ 45.2	12	－．83	－． 22
＋ 40.0	13	－． 23	－． 19
＋ 32.1	3	－．． 74	－． 14
＋28．1	8	－． 09	－． 13
＋21．3	4	$+.14$	－． 14
＋14．6	14	－． 19	－． 28
＋ 8.2	8	－． 48	－． 32
＋ 4.0	6	－－． 66	－． 40
－ 1.1	$\stackrel{2}{6}$	－． 50	二． 81
－ 9.1	6	－． 49	－． 80
－ 14.0	1	－1．82	－． 88

Excluding a and δ Ursa Minoris，and with $m=4$ ，we have：－

$$
E= \pm " .26
$$

The catalogne probable errors are adopted．

Residuals in order of right ascension.

Declination limits.$-300 \text { to }+100^{\circ}$			Declination limits.$-30^{\circ} \text { to }+90^{\circ}$		
Mean a	π	r_{0}^{\prime}	Mean a	π^{\prime}	10^{6}
1	13	11 -.09	13	10	11 $+\quad .02$
3	7	+.016	15	24	+.10
5	17	-. 10	17	19	-. .13
7	2	+.:0	19	18	-. 02
9	11	$\pm .11$	21	13	-. 0.12
11	19	$-.02$	23	11	$+.12$

Va 29 .
Each r receires weight 1.
Residuals in order of declination.

Mean δ	π^{\prime}	r_{0}	6
\bigcirc		"	"
$+21.8$	1	+.80	$+.40$
+ 69.9	1	$+.-1$	+. 40
+ 6	\because	-.3n	+. 40
+ 5.1	\%	+ . -0	+. 28
+ 50.3	3	+. .11	$+.31$
+ 15.9	2	$-.113$	$+.24$
+ 38.7	1	+ . - 1	$+.14$
+ 20. 1	4	-. 19	-. 08
+ 21.3	2	-.:31	-. 19
+11.3	7	$\pm .15$	-. 15
+ 8.8	4	-. 14	-. 13
+ 4.8)	-. 18	-. 10
- 1.1	1	-. 03	-. 06
- 9.1	3	-. 13	-. 01

No attempt is made to discuss terms in a. With $m=4$, whare:-

$$
E= \pm " .47
$$

A0 29.
Resituals in order of declimation.

Mean δ	π^{\prime}	r_{0}	C_{0}	
\bigcirc		"	"	
$+88.9$	7	+.90	00	
+ 76.6	33	+. 10	00	$\overline{\varepsilon_{1}}=3$
+ 71.6	34	-. . 01	00	
+65.3	33	$+.02$	00	
+61.9	-0	-. 05	00	
$+56.5$	58	-. 02	00	
+ 50.6	74	$+.09$	-. 03	
+ 45.6	77	-. 13	-. 07	
+ 39.3	10	-. 15	-. 14	
$+34.0$	46	-. 21	-. 17	
+ 27.4	47	-. 20	-. 24	
+80.9	43	- . 30	-. 63	
+14.4	动	-. 33	-. 32	
+ 8.4	41	-.32	-. 33	
+ 4.6	53	--. 47	-. 44	
- 1.5	25	--. 67	-. 54	
- 9.1	97	-. 58	-. 66	
-14.0	21	-. 88	-. 70	
-18.8	5	--. 80	-. 70	
- 20.1	9	-. 70		

With $m=4$, we hare:-

$$
E= \pm " \cdot 40 .
$$

Residuals in order of right ascension.

Declination limits. -30° to $+30^{\circ}$			Declination limits.$-: 0^{\circ} \text { to }+9 i^{\circ}$		
Meana	π^{\prime}	ris'	Meana	π^{\prime}	$r_{0}{ }^{\prime}$
1.		"	h.		"
1	110	-. 16	$1: 3$	49	+.08
8	82	-. 0.5	15	90	+.03
E	69	-.03	17	80	+.010
7	9	. 00	19	83	-. 0.9
9	71	+ .84	21	93	$+.07$
11	$7!$. 00	23	56	$-.05$

Gh 30.
Each r is given equal weight.
Residuals in order of declination.

Mean δ	π^{\prime}	r_{0}	C_{0}
\bigcirc		"	"
+ 80.3	6	$+.55$	+. 11
+ 76.7	5	$-.18$	$+.15$
+ 70.8	9	+.23	+. 13
+ 66.0	4	$-.17$	+.09
+ 60.8	15	$-.05$	+.03
$+57.5$	10	-. 18	-. 06
+50.9	11	+.03	-. 28
+ 45.7	13	-. 47	-. 50
+30.9	16	-1.00	-. 76
+33.1	9	-1.14	-1.03
+ 27.2	11	-1.29	-1.19
+21.2	11	-1.09	-1.89
+11.6	13	-1.51	-1.31
+ +	19	-1.36	-1.31
+ 4.1	9	-1.11	-1.84
- 1.8	12	-1.51	-1.41
- 8. 5	10	-1.83	-1.60
- 14.1	4	-2.00	-1.91
-1*.7	3	-2.10	-2.36
- 89.4	4	-2.75	-9.1.7
- 37.9	4	-2.9	-2.9
- 34.1	1	$+9.3$	

With $m=5$, we have:-

$$
E= \pm{ }^{\prime \prime} .33
$$

Residuals in order of right ascension.

Declination limits.$-30^{\circ} \text { to }+50$			Declination limits. $+40^{\circ}$ to -30°		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Meaua	π	$1{ }_{0}{ }^{\text {a }}$	π^{\prime}	$r_{u}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	2	-. 85	11	+.15	21	+. 20
3	3	$+.43$	7	+.94	10	$+.13$
5	4	+ . 57	10	+.12	16	-. 04
7	-	+ .50	12	+.13	13	+.33
9	,	-. 30	9	-. 16	$1: 3$	+.06
11	4	-. 10	10	-. 11	19	-. 07
13	5	$+.12$	7	+.09	13	. 00
15	5	+ . 20	12	+.03	80	-. 04
17	2	- . +0	10	-. 45	20	-. 35
19	5	-. 06	13	-. 15	$\because 1$	-. 03
21	4	$-.17$	10	-. 18	20	-. 16
23	5	+.30	9	$+.17$	11	$+.03$

A small corection, depending on the right aseension, may be indicated. The discussion was not, howerer, undertaken.
C. G. H. 31 .

Residuals in order of declination.

Mean δ	π^{\prime}	r_{0}	C_{0}	
-		"	"	
$+12.7$	2	-. 88	+.35	
+ +8.2	9	$+.00$	+ . 35	$\overline{\varepsilon_{1}}=2$.
+ 3.3	3	+.61	+.33	
-0.7	7	$+.55$	$+.35$	For the last five gronps
- 8.4	11	+.97	+ . 35	the weights aroestimated.
-17.9	2	$+1.03$	+.35	
- 21.1	4	-. 60	+.35	
- 26.5	3	+.61	$+.35$	
-35.0	2	$+1.03$	$+.17$	
-41.4	2	-. 51	$\uparrow .03$	
-53.6	1	+. . 3	. 00	
-59.9	5	-. 40	. 00	
-78.1	1	+ . . 90	. 00	

The correction is extremely uncertain, owing to the small unmber of observations, as well as large probable error. The value of E is estimated to be $\pm 1^{\prime \prime} .2$.

The declinations have not been employed in the reduction of any stars between the limits of deelination $+90^{\circ}$ and $-30 . \circ$
S. H. 31.

The values of r are applicable to the catalogue places as reduced with Yonog's refractions.

Residuals in order of declination.

Mean ${ }^{\text {d }}$	π^{1}	r_{0}	CO_{0}	
\bigcirc		"	"	
+ 73.1	15	+1.0	+1.30	$\underline{\varepsilon}=2$
+ 65.1	4	+ .1	+1.30	$\overline{\varepsilon_{1}}=\sim$
+ 62.4	10	+ 1.37	$+1.30$	
$+56.2$	11	+ 1.20	+ 1.80	
+ 51.0	19	$+1.76$	+1.30	
+ 41.7	7	+ 1.20	+1.30	
$+38.7$	8	+ .90	$+1.30$	
$+33.2$	6	+ 1.21	+ 1.30	
+ 27.9	33	+1.18	+ 1.80	
+ 21.3	15	$+1.85$	+ 1.30	
+ 14.6	53	$+1.96$	+1.30	
+ 82	85	$+1.00$	$+1.26$	
+4.1	24	$+1.35$	+ 1.21	
- 2.4	55	+ . 79	+1.13	
- 8.5	70	+ 1.93	+ 1.00	
-14.1	30	+1.83	+ .80	
-18.5	18	+.24	+ . 74	
- 2.2.9	17	- 1.09	+ . 65	
- 22.1	31	+ . 31	+ .61	
- 35.0	2	- . 13	$+.60$	
- 42.1	5	+.69	+-.60	
-50.4		+ 1.11	+ .60	
- 59.2	6	+.63	+ . 41	
- 74.8	3	+.14	+ .35	

There appears to be a well-manked correction depending on a, as is shown in the following table:-

Fesiduals in order of right ascension.

Declination limits.$-30^{\circ}+0+50$			Declination limits.$+5010+00^{\circ}$			$\begin{aligned} & \text { Declination Imimis. } \\ & -30^{\circ} \text { to }+60^{\circ} \end{aligned}$		
Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	Me:hls a	π^{\prime}	j ${ }^{\prime}$	Meana	π^{1}	$r_{0}{ }^{\prime}$
h.		"	h.		"	h.		"
1.0	16	+ .	\%	29	+ . 58	0.7	46	+. 46
3.3	16	+.73	$\because 5$	16	$+.98$	8.6	32	$+.86$
5. ${ }^{\text {¢ }}$	-	+ . 2;	5.	12	+ . 30	5.7	42	+. 02
7.1	11	-. - 3	7.15	$!$	$+.10$	E.:	$\because 1$	- . 25
9. 3	9	$-.10$	11.:	21	-. 75	11.8	$\because 1$	-. 46
11.9	7	+.50				1:3:	:31	-. 10
1:3.0	20	- . 39	11.9	$: 31$	-. 88	1.5.5	09	-. 60
1-. 6	41	-. . 81	12.0	$: 11$	$-.1 \stackrel{*}{*}$	18.2	$5:$	-.
12.0	23	- $\therefore=$	19.!	S	-. 10	19.9	56	-. 115
$\stackrel{\square}{1.8}$	56	$+.18$				\cdots	$5{ }^{2}$	+.38

r_{0}^{\prime} in limits -30° to $+60^{\circ}$ gives the correction $+{ }^{11} .27 \sin \alpha+{ }^{\prime \prime} .47 \cos \alpha$. The probable error of each coefficient is $\pm{ }^{\prime \prime} .0$.

With $m=6$, we have:-

$$
\begin{aligned}
& D= \pm 1^{\prime \prime} .31 \\
& \text { С. A. П. } 3 \%
\end{aligned}
$$

Each r is given weight 1.
Residuals in order of Acelination.

Mean s	$\pi{ }^{\prime}$	r_{0}	C_{0}
\bigcirc		"	"
十 $2: 8$		+ \therefore S	+ . 81
+ 27.7	7	+.41	+-.54
+ 21.7	7	+ . 0 !	+. 43
+11.	8	-. 5	+. 11
$+8.1$	7	- . \because	-. 019
+ 3.7	$1 ;$	+	-. 11
- 2.	5	-. 10	-. 10
- 8.10	6	-. 0.2	$+.10$
-11.1	4	+ . $\quad 3$	+. 40
- 1-. 7	:	+. 50	- 6.6
- $\because 2.1$	I	+1.05	-1-. 59
- 27.3	4	+. m^{2}	+.89
- 2.01	\because	$+1.15$	+. 71
-4. 41	5	+.114	+ . 82
- $\therefore .1$	2	-. 161	+.05
-59.3	\%	+.111	- . 01
- 85.1	$:$	-. 11	-. 09

With $m=6$, we have:-

$$
E=+" .30
$$

Residuals in order of right ascension．

Declination limits．$+40^{\circ} \text { to }-30^{\circ}$			$\begin{aligned} & \text { Declination limits. } \\ & +40^{\circ} \text { to }-30^{\circ} \end{aligned}$		
Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	\％ 0^{\prime}
h．		＂	h ．		＂
0.35	5	＋．10	13． 40	4	$+.25$
3.00	5	－． 13	15． 53	9	＋．0\％
5.41	8	＋． 19	18.31	7	＋． 09
7.66	5	－．31	19.72	5	－． 04
10．67	7	＋． 09	92． 06	7	－． 33

Ce 34.
Residuals in order of declination．

Mean δ	π^{\prime}	ro	C_{0}	
\bigcirc		＂	＂	
＋87．9	25	－． 08	． 00	
+75.5 +69.7	14 14	$\begin{array}{r}\text { a } \\ +.06 \\ \hline .05 \\ \hline\end{array}$	二．04	$\bar{\varepsilon}_{,}=3$
＋66．2	17	－． 18	－． 24	
＋61．2	31	－． .59	－． 38	
＋ 50.6	43	－． 0	－． 52	
＋50．3	23	－． 71	－． 70	
＋ 45.0	21	－．-7	－． 78	
＋ 394	15	－．． 79	－． 83	
＋ 33.2	8	－． 57	－． 80	
＋27．8	45	－．． 3	－． 86	
＋ 20.4	50	－． 41	－． 56	
+14.3 $+\quad 8.5$	53 57	二．	二． 39	
＋ 4.1	24	－． 46	二． 40	
－ 0.8	$2{ }^{2}$	－． 19	－． 49	
－ 8.4	36	－． 85	－． 70	
-14.0 -19.2	10	－1．23	二． 85	
二 21.7	9	二． 79	－．．99	
－ 2.24	13	-1.25	－1．00	
－34．1	\because	-1.4		

With $m=5$ ，we have：－

$$
\omega \pm " .70
$$

N $\mathrm{B}-\mathrm{-33}$

Liesintuals in order of right ascension．

$\begin{gathered} \text { Declination limits. } \\ +40^{\circ}+10-30^{\circ} \end{gathered}$			Declination limits．$+40^{\circ}+6+90^{\circ}$		Declination limits．$-300+50$		Declination limits$-30^{\circ} t o+90^{\circ}$	
2lt：Lta	π^{\prime}	$r{ }^{\prime}$	π	ru＇	π^{\prime}	r_{0}^{\prime}	π^{\prime}	\cdots
h.				－		＂		＂
1	：	． 16	㫛	－． 3	3	$-.80$	17	$-.01$
3	里	＋．	111	－． 44	8	＋．30	：	± 26
\square	31	－$\because 1$	11	－． 35	5	－．	42	¢
7	$\because 4$	＋． 11					\％ 2	＋．0．
11	㫛	＋ 819 $+\quad .10$	：3＇	＋．30	令	＋．40	\％	＋．03
13	2	$+.11$	4i，	＋－	20	＋． 21	i）	＋．17
15	（1）	－． 610	9	$+.20$	11	＋ 42	5	－．03
17	\because	－ 6.118	9	$+.12$	7	＋． 4	$: 3$	＋．06
19	$4!$	－． $1: 3$	17	$-.05$	7	－． 5.4	011	－． 11
\％1	家	－． 10	：	＋．10	\％	$-.10$	5	－． 00
2	\cdots	－． 45	7	－． 06	4	－	23	－．．n

No certain correction following arpears to be indicated．
Mh ：3．
In Observationes Astromomicer， 1 sisis and 1834 ．Lamont rompares his declinations of fimdamental stars with those of bexsel and Streve．The eompaisons are used in fimting the curve of correction，lont no use is made of the declimations of the stars so comp：ned．

Rersiduals in omer of declimation．

M6：11 ${ }^{1}$	π	I＇I	\％	
		＂	$1 /$	
＋－1．1	$1:$	． 39	－．$\because 6$	
＋ 0.2 .10	11	－． 3 B	－．4！	
＋\therefore \％i	7	－．${ }^{\text {a }}$	－． 26	
＋15．${ }^{6}$	9	－． 71	－．182	
＋11． 1	3	－．\because	．$\quad 1$	
＋$\because 2.0$	1.5	－$\because=$	－$\because 1$	
＋ 3.7	8	＋．111	＋．．11	
＋$\because 1.0$	（ii）		＋．\because ！	
＋11．1\％	\because	＋． $1: 3$	＋－． 77	
＋！！I	$3!$	＋－． $1 . i$	＋．50	
＋ 1.3	$4 \cdot$	＋． 91	＋． 49	
－1． 5	19	－－．11	＋\therefore Sx	
－ 911	1：3	＋．\quad－	＋． 17	
－－1．1．：	1！	＋．711	－． 111	
－ 119.	：	－． 1%	－． 19	
－$\because 1$.	$\because 11$	－． 01	－．	

Inadrestently the untation correction was not applied to the values of r previons to the above discussion. The ontstanding residuals are:-

Residuals in order of right ascension.

Declination limits. -25 to +5			Decliuation limits. +50 to +350		Dedination limits.$+2.010-8.0$	
Meat a	π^{\prime}	$r{ }^{\prime}$	π^{\prime}	ru'	π^{\prime}	$r{ }^{\prime}$
h.		"		/		"
1	\because	$+1.80$	42	+ . 49	11	+ .-3:
3	$1{ }^{17}$	$\underline{+} .83$!	$+.11$	1.9	$+.44$
\%	17	- . 11	\because	--. 11	4.	+ 0:i
7	1	- 1.50	4	- . .	413	-.42
$!$	1!	f. . 111	2	+.11i	$\because 7$	$+.14$
11	211	- . 15	5.	-. . 111	8	-. 41
1:;	$\therefore 1$	-. 14	7	-. $0: 3$	87	-. 14
1.5	17	+ . 3.8	ai.	$+.17$	\because	+ $\quad 31$
17	4	- . 10	44	-.1\%	$4{ }^{1+}$	-.1!
19	1:3	--. 10	31	- . \because	11	+ 17
$\because 1$	16	- . 07	211	+. 17	Sk	+. 26
23	19	+ . 41	11	+.63	\because	+ 414

Discassed for terms in a, the last columu (+750 to - $\because 50)$ gives:-

$$
+^{\prime \prime} .03 \sin \alpha+1.27 \cos \alpha
$$

which agrees well with the mutation correction $+{ }^{\prime \prime} .02$ sin $u+.18$ cos α. The latter is therefore adopted.

With $m=\overline{5}$, we bare:-

$$
E= \pm 1^{\prime \prime} .05
$$

Eh 37.
Residuals in order of dectination.

With $m=s$, we have:-

$$
E= \pm \prime \prime 2
$$

Tesiduals in order of right ascension.

$\begin{aligned} & \text { Declination limits. } \\ & -30^{\circ} \text { to } 050 \end{aligned}$			Declination limits.$+50 \text { to }+40^{\circ}$		Declination limits.$+40^{\circ} \text { to }+90^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π^{\prime}	r_{0}^{\prime}	π^{\prime}	$r_{9}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$3_{0}{ }^{\prime}$
h.		"		"				"
1	$1{ }^{1}$	-1.05	20	+. 14	15	$+.16$	47	. 00
:	10	+ .	10	+. 118	5	-. 04	25	+ . 12
5	14	+. 16	$\because 10$	- . 5.6	1%	+.30	46	-. 11
\%			21	+.08	5	-.02	99	$+.00$
$!$	1	+.:0	15	-. 17	11	+.11	:33	-. 02
11	13	+ . $0 \cdot$	\because	+. 11	10	-. 05	$4!$	+.03
13	1.5	+. 19	8	- -15	111	. 00	33	+.03
15	14	+.66	14	-. 43	$!$	- . 83	11	+.83
17	$1 i$	-. 15	11	-. 04	19	. 10	86	-. 01
$1!$	7	-. 12,	$\because 7$	-. 01	7	+. 11	11	-. 06
$\because 1$	1.5	- . 23	17	- . 199	23	-. 11	5	-. 03
2:	1:	- . 31	1 \%	+ $\because \because 1$	10	-. 06	11	-. 02

A correction is indicated, such as might be due to an error in the adopted temperature coefficient in refraction. Very little correction is shown in the summary. I hare thought it safest to neglect the discussion of terms in a. (Vide Eh 43).

$$
\mathrm{Kg} 3 \mathrm{~s} .
$$

Each r was given equal weight. The numbers in colnmn $r_{0}^{\prime \prime}$ result from a redis cussion adopting the salue of the periodic formula deduced below for terms in a.

Residuals in order of dectination.

Mean δ	$\pi{ }^{4}$	ro	C_{0}	$r_{0}{ }^{\prime \prime}$
\bigcirc		"	"	"
+ -7. 5	\because	. 0.5	$-.05$	-. 117
+ +3.	\because	. $\because 1$	- . 26	. 11
+ 71.3	\because	. 75	. $: 3$. 51
+ 10.	\because	- . 10	-. 34	-. 810
+ \%\%. 1	\because	+ . 44	$+.10$	+..111
+ 51.1	7	+ . in^{5}	+ . $\because 1$	+ - - 4
+ 15.9	:	+ 1.0%	+ .30	$+.-0$
+ 29	6	-. 118	+ . $2:$	-. 01
+ 2×1	1	-. 017	+ .08	- . 11
+ 21.3	$\stackrel{3}{ }$	-. 011	+ . $1: 3$	-. 111
+ 14.:	7	+ . 39	$+\ldots 1$	+ . 49
+ $\quad \because$	1	$+.09$	+ . 16	+ . 41
+ 1.11	\therefore	+1.10	+ . 59	+ 1.10
- 1.1	,	+1.10	+ . 37	$+1.11 \%$
- 0.1	8	+ . 9.9	+1.19	+ . 978
- 11.:	\because	$+1.36$	+ 1.31	+ 1.1\%
- 2.1	I	+ 2.8	$+1.8$	+ 3.11

The declination eurve fommed on r_{0} is adopted.

Residuals in order of right ascension.

Declination limits.$-30^{\circ} \text { to }+90^{\circ}$			Declination limits.$-30^{\circ} \text { to }+90^{\circ}$		
Mean δ	π^{\prime}	$r_{0}{ }^{\prime}$	Mean δ	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	h.		"
0.9	6	+.27	13.3	2	-. 45
3. 1	4	+ . 75	14.9	7	-. 44
5.2	5	+.50	17. 1	5	+.42
7.6	1	+. 20	19.3	8	+.13
9.7	$\stackrel{\square}{2}$	-.05	20.9	5	+. 04
11.5	4	-. 30	28.3	2	$+.15$

The correetion depending on a is quite marked. The result is $+{ }^{\prime \prime} .14+" .24$ sin $u+{ }^{\prime \prime} .32 \cos \alpha$. The probable errors of the terms in a are each $\pm .07$. The formula of correction is adopted.

With $m=8$, we have:-

$$
E= \pm{ }^{\prime \prime} .39
$$

Gh 39 .
Residuals in order of declimation.

Mean δ	π^{\prime}	r_{0}	C_{0}	
-		"	"	
+ 86.5	39	+.07	+. 01	
+ 76.7	71	+.05	+.04	$\overline{p_{1}}=4$
+ 70.5	67	+. 10	$+.08$	
+66.2	62	-. 10	+.0!	
$+60.9$	176	+. 06	+. 10	
+56.8	147	+. 07	+. 11	
+50.9	13\%	+.20	+.10	
$+45.5$	136	+.02	+.12	
+ 39.7	98	+.07	+.13	
+ 32. 9	54	+ . ${ }^{\text {d }}$	+.11	
+ 27.4	111	+. 19	$+.16$	
+ 21.1	131	+.15	+.19	
+ 14.5	130	$+.26$	+.84	
+ 8.9	135	+.29	+. 29	
+ 3.9	85	+. 37	+. 35	
- 1.6	90	+. 40	$+.43$	
- 8.6	97	+. 53	$+.56$	
-14.1	51	+.71	+..68	
-18.7	36	+. 53	$+.80$	
- 22.5	44	+1.04	+.90	
- 28.1	44	+1.24	+1.05	

With $m=4$, we have :-

$$
\mu= \pm{ }^{\prime \prime} . \pi 1 .
$$

Resimluds in order of right asconsion.

$\begin{gathered} \text { Declination limits. } \\ -30^{\circ} t o+5^{\circ} \end{gathered}$			$\begin{aligned} & \text { Decliuation limits. } \\ & +100 \text { to - }: 100^{\circ} \end{aligned}$		Declination limits. -30° to $+90^{\circ}$	
M"ata	\because	bit	π^{\prime}	",'	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"				"
1	95	- $\because 1$	96	-. 15	212	-. 13
$:$	$3: 1$	-. 13	17	-. 24	95	-. 13
5	45	-. 11	107	-. $\because 0$	$1 \% 1$	-. 18
7	2.7	$+.31$	c!	+. 11	$10: 3$	$+.10$
$!$	13	- . 310	78	-. 11	$1: 7$	-. 11
11	$\therefore 3$	$+.01$	C!	$+.13$	$8: 107$	$+.13$
13	49	$+.17$	71	+ . 10	152	+.19)
1.5	45	+.11	108	+. 0^{0}	20	$+.10$
17	2.5	-. 0.4	\%	$+.08$	168	$+.0 .0$
19	$2 i$	+ $\because 0$	119	-. 17	211	+.05
$\because 1$	45	+ \because	$0 \cdot 1$	--. $\quad .11$	$\because 12$	-. 06
23	$3 i$	- . $1: 3$	84	-. 10	14	-. 11

A tolerably well-marked correction depending on α is indicated. No disenssion is undertaken, horever, as the correction would in any case be rery small.

$$
\text { Ce } 10 .
$$

The weights formed in the manmer explained in seetion V. evidently increase ton rapidly with the nomber of observations.

Residucts in order of declinction.

Residuals in order of right ascensiou.

Declination limits. -30° to $+5^{\circ}$			$\begin{gathered} \text { Declination limits. } \\ +5^{\circ} t o+400 \end{gathered}$		$\begin{aligned} & \text { Decliuation limits. } \\ & +40^{\circ} \text { to }-300 \end{aligned}$		Declination limits.$+40^{\circ} 10+902$		Declination limes.$-800 \text { to }+800$	
Meina	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r{ }^{\prime}$	$\pi{ }^{\prime}$	$r_{u}{ }^{\prime}$	π	70^{\prime}	π^{\prime}	$r{ }_{19}{ }^{\prime}$
h.		"		"		"		"		"
1	6	$+.45$	62	-. 09	68	-. 0.4	79	+. nit	147	+.01
3	20	+. 16	13	-. 15	33	$+.04$	80	-. 118	(is)	-. 01
5	16	+.23	43	$+.09$	59	+.13	44	-. 11	103	+.03)
7	.		54	+.80	54	+. 26			51	$+.20$
9	9	$+.40$	44	+ .31	5%	+.35	83	- .9\%	8	+.11
11	13:	$+. .39$	43	+.04	61	+.13	78	-. 12	1:3)	- 60
13	≥ 0	+.14	24	-. 103	44	+.15\%	46	+. 119	(1)	+.12
15	$\because 9$	+.02	63	+.14	920	+.10	46	-. 02	1:3\%	+..06
17	10	+.06	$4:$	-. 03	5	-. 01	45	-. 0	97	-. 01
19	14	-. 06	86	-. 04	100	-. 04	50	-. 11	1.11	- . 0 \%
21	41	-. 30	32	-. 19	73	- . 05	76	+.01	$14!$	$-.12$
23	2.	- . $1: 3$	30	-. 28	54	-..31	喪	+.85	$\therefore \mathrm{A}$	-. . 04

A comection varying with the right ascension is well marked in the zone $+40^{\circ}$ to - 30° (and is supported in some degree by Ce 34). I find + (${ }^{\prime \prime} .15 \pm .025$) sina$\left(^{\prime \prime} .15 \pm .025\right) \cos \alpha$ 。

With $m=S$, we have:-
$E= \pm{ }^{\prime \prime} .46$, Ce 48 gives $\pm{ }^{\prime \prime} .62$, and Ce $56 \pm{ }^{\prime \prime} .60$. I have adopted $E= \pm 60$.

Ah 41 and Ah $5:$.

These were at first treated as separate catalonnes, but the expeximent proved that there exists between them no difference, which can be safely predicatrd from the material. Ö̈ms's rery thorough comparison of hohimson's Armagh Catalogne (Ast. Nuch. Bd. 59, ю. 248), atter the proper cormetion, has been relied upon to a great extent in drawing the curve.

Residunts in order of declination.

Direet comparison.				- Through Ao 29.			
Mean δ	π^{\prime}	r_{0}	C_{0}	Mean ${ }^{\text {d }}$	Number of stars.	Differenco uneorrected, applicable to Armagh declination.	Difference corrected.
\bigcirc		"	"	\bigcirc		"	"
+ 76.2	11	+. .21	+ . 20	$+81.2$	4	$+.59$	$+.88$
+ 71.2	20	+ .05	+..20	+ 77.1	6	+ .83	+ . 56
+66.4	17	-. 06	+ $\because 0$	+ 72.4	8	+ . 34	+ . 63
$+61.0$	33	+.11	+.17	$+66.7$	8	- . 39	- . 10
$+56.5$	32	-+ . 08	+ .05	+63.4	11	+..38	$+.56$
+51.4	38	+. 07	-. 10	+57.5	15	- . 35	-. 23
$+45.5$	46	-1.13	-. 71	+51.6	15	-. 31	-. 27
+ 40.1	49	- . 40	-. 81	+ 4\% \%	15	-. .69	- . .75
+ 32.9	20	-. 66	-. 54	+42.9	23	-. 85	-1.02
+ 26.5	34	- . 20	-. 30	+ 37.5	32	- .18	- .49
+21.0	95	- . 16	- . 27	+ 32.7	17	- . 10	- . 52
+ 15.1	16	-. 83	- . 47	+ 27.4	99	+..04	-. 17
+ 9.3	41	-. 61	- . 78	+ 20.3	$\bigcirc 3$	+ . 41	- . 18
+ 3.7	15	-. 24	-1.08	$+17.7$	31	$+.30$	-. 36
-1.7	20	-1.14	-1.21	+ 12.4	18	$+.03$	- . 56
- 8.2	14	-. 54	-1.15	+ 7.6	$\stackrel{2}{21}$	-. 45	-1.05
				+ 3.0	31	-. 46	-1.07
π^{\prime} is formed with $\frac{\varepsilon}{\varepsilon}=2$.				- 2.5	17	-1.21	-1.98
				-13.1	19	- . .21	-1.94
				-16.8	24	$+.53$	- .17
				- 23.6	2	-2.05	-3.0

With $m=6$, we have:-

$$
E= \pm 1^{\prime \prime} .1
$$

Residuals in order of right asconsion.

Mean ${ }^{\text {a }}$	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	h.		"
1	48	$-.03$	13	37	-. 16
3	19	$+.05$	15	40	$+.05$
5	33	-. 34	17	35	-. 37
7	30	-. $0: 2$	19	35	$+.18$
9	34	+. 64	21	48	+. 01
11	5.9	$+.03$	$\because 3$	38	+ . $\because 6$

$K g 43$.
The correction in order of declination is adopted as it resnits from the discnssion in Section VI. (Table II.). In the following table, each value of r^{\prime} is supposed to have an equal degree of precision.

Residuals in order of right ascension.

Declination limits.$-30^{\circ} \text { to }+42^{\circ}$			Declination limits. -30° to $+42^{\circ}$		
Meлn a	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
${ }_{0}{ }_{\text {b }}$	3	" -.40	${ }_{13}{ }^{\text {a }}$	1	- 90
2.9	1	-. 40	15.0	4	-. 12
5.4	5	+.14	17.0	3	+. 10
7.6	1	-. 30	19.4	4	+. 40
9.7	2	-. 20	20.9	3	+. 40
11.7	1	-. 30	22.9	1	+.90

The division into two zones, which was made, is of no interest, owing to the small number of stars. From the above is fonud as a correction:-

$$
-\left(\prime \prime .16 \pm{ }^{\prime \prime} .06\right) \sin a+\left(^{\prime \prime} .13 \pm{ }^{\prime \prime} .07\right) \cos \alpha ;
$$

and this is adopted.
Dr. Anwers found (Ast. Nach., Bl 65, S. 230):-

$$
-^{\prime \prime} .139 \sin \left(\alpha-25^{\circ} 38^{\prime}\right)-2.239\left(\sin 2 \alpha+65^{\circ} 27^{\prime}\right)
$$

The term depending on $2 a$ is indeed indicated, but I have preferred to neglect it, siuce the number of residuals is small.

With $m=4$, we have:-

$$
E= \pm{ }^{\prime \prime} .26
$$

Eh 43.
Resinuals in order of Ieclination．

Meand	Π^{\prime}	$\%_{0}$	r_{0}	
		／	＂	
＋ 80.8	1．0\％	＋．100	． 00	The weights（ s^{\prime} ）are
＋ 71.5	\therefore	＋． 14	． 011	constructed accoming
＋ 711	$\because 4$	－． 44	． 011	to Section V．．which
＋ 68.5	7	.211	－． 01	supposes：
＋ 11.3	$\because 3$	－． 11	－．04	
＋ 86.5	5.1	－． 14	－． 08	$\varepsilon_{i}-\cdots$
＋ 50.6	$\because 1$	＋．118	－． 08	Thearigument for form－
＋4．5	：	－． 19	－． 06	ing π^{t} is not thoretore
＋ 34.4	4	－1－0：3	－． 03	the total mamber of ob－
＋	1.	＋． 30	＋．0：	sorvations，bat the sum
＋ 97.1	163	＋．14	＋． 09	（fit the vilues of π^{\prime} in
＋$\because 1.3$	6ii	－． 111	$+.17$	eachyyar．
$+14.2$	6	$+.10$	$+\cdots{ }^{2}$	
＋	1315	＋．40	＋． 3	
＋ 1.1	$4 \cdot$	$+.10$	＋． 36	
－ 1.4	「䍖	$+.41$	＋．31	
－8．7	11.1	＋$\because 3$	＋． 110	
$-1.1 .1$	： 11	－． 117	－． 04	
－1ヵ－	21	－． 80	－． 016	
－ジ．0	17	－．\because	－．12	
－$\because 2.0$	10	＋．${ }^{11}$	－．03	

Residludes in order af right aseensione．

Jectination limits．$-310+5^{2}$			Declination linnits． $+810+40^{3}$	$\begin{gathered} \text { Declination limits. } \\ +4 n \text { to }-: 0 \end{gathered}$		Declination limits．Declimation limits．$+400+90+30+30+30$			
Meama		$r_{10}^{\prime \prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	$r i$	π^{\prime}	$r_{0}{ }^{\prime}$	－	$r_{0}{ }^{\prime}$
h.		＂					＂		\％
1	1.7	－． 5	$\therefore 10$－．	－3．）	－．${ }^{11}$	8.5	－． 11	1：0	－．34
\because	$1: 1$	－． 10	18 ）－． 10	－	－．．24	1.1	－． $1:$	40	－． 20
\therefore	：31	＋．01	$\because 4+.12$	S1	＋．$\quad 11$	$\because 1$	＋． 111	\therefore	$+.0 .5$
7	1	＋． 311	$10+.00$	16	＋． 010	$\because 4$	． 111	711	＋．06
9	$!$	＋．6il	$: 1 \%$＋． 11.9	16	＋．1！	14	＋．93	610	＋ 20
11	$16 i$	－． 3	$\therefore 10$	41	－． 0.3	\because	＋． 11.	7	＋．11
1：i	11	－． 30	$1 \%+.11$	： 3	＋．$\because 2$	：$: 1$	＋．16i	1i－	＋．14
1.1	\because	－． 117	：4i＋． 31	111	＋．11	mis	＋．30	$1 \cdot 7$	＋．20
1%	$1 \because$	－． 11.	$\because 7$	391	－． 01	$\therefore 1$	＋ $3:$	1%	＋． 13
$1:$	$\because 1$	＋．11	1：－．11\％	63	． 16	！$: 1$	＋． mi	1067	＋． 112
：1	：3i］	－． 110	$\because 115$	\cdots	－． 11	\％	－． 114	110	－． 111
？：	31	＋．11．	$1-\quad-3$	$3-$	－． 019	$: 1$	－$\because \cdot$	6	$-.17$

A correction depending on α is quite well marlsed in all the zones．The disension gives：－

$$
-\left({ }^{\prime \prime} .0 .5 \pm{ }^{\prime \prime} .0: 3\right) \sin a-\left({ }^{\prime \prime} .19 \pm{ }^{" 1} .(0.3) \cos \right. \text { u. }
$$

 fom．This corresponds toberably weh whth Eh at，hetween the deelination limits－ 300
to $+5^{\circ}$, as exhibited above. Later (Ast. Nach., Bd 65, p. 297), Dr. Aumers finds that two-thirds of the correction best corresponds with residuals derived from his discussion of fundamental stars. This accords almost perfectly with the formnla given above for Eb 43. But Dr. Auwers supposes this formala not to be applicable to the later observations of Henderson.

With $m=8$, we have:-

$$
H= \pm{ }^{\prime \prime} .67
$$

$\pm{ }^{\prime \prime} .60$ results from the disenssion in Section V. The former is adopted.
Gh 45.
Residuals in order of declination.

Meau is	π^{\prime}	r_{0}	c_{0}	
c		"	"	
+86.8	\therefore	-.17	. 00	
16.7 +30.3	5	$\pm .10$	+.01	${ }^{8}=4$
+66.2	19	$\overline{+.07}$	+.04 +.05	
+60.9	1.0	$+.11$	$+.08$	
$+56.7$	116	+.31	+.0i	
+ 50.6	123	-. 10	$+.01$	
+ 4\%3	94	-. 01	-. 04	
+ 39.9	107	-. 11	-. 0^{2}	
+328	25	$\pm .27$	+.03	
+	11.4	+ 211 $+\quad 11$	+.14 +.11	
$+14.5$	$1: 0$	+. 13	+. 09	
+ 2.9	11\%	-. 19	+. 05	
+ 4.0	\cdots	+ - 枵	+. 06	
-1.5	83	+.14	+.09)	
- $\quad .6$	\%	+.19	$+.11$	
- 14.0	818	+.15 +.18	+.17	
- 2.4	31	$+. \because 4$	+.24	
- 29.1	:9	+ .	+ . . ${ }_{\text {- }}$	
-34. 1	${ }^{10}$	+1.93		

From the equator to the pole it is a matter of indifference whether any correction be applied or not. The correction $\frac{R-D}{2}$ at Greemwich was neglected as insensible during this period.

With $m=5$, we have:-

$$
E= \pm{ }^{\prime \prime} .65
$$

Ticsiduals in order of right aseension.

Declination limits.$-\because 0010+90^{\circ}$			Declination limits.$-30^{\circ} \text { to }+90^{\circ}$		
Mean a	π^{\prime}	ro'	Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	n.		"
1	129	+.06	13	130	+.03
3	Et	+.01	15	185	+.10
5	110	$+.0 .7$	17	15:	-. 03
7	101	$+.02$	19	200	-. 10
9	116	$+.12$	21	181	-. 18
11	164	+.12	23	120	-. 13

A slight correction following the right ascension is indicated. It differs, however, quite sensibly from that shomn in Gh 39, and I have, therefore, undertaken no discussion.

$$
\text { Pa } 45 .
$$

In forming x^{\prime}, one observation is giren weight I; two to fire, weight 2; six or more, weight 3.

Residuals in order of declination.

Nean \&	\sim^{\prime}	r_{u}	Form.	C_{0}
		"	"	"
+ -6.6	1:3	-.10)	+.113	. 00
+ 76.0	1:3	+. 04	+.03	. 00
+ 70.9	21	. 00	+. 10	+. 05
+ 60.0	1:	+. 18	+ . 13	+. 11
$+60.7$	11	$+.18$	+. 16	$+.17$
$+56.8$	29	+.91	$+.19$	$+. \because 1$
$+50.8$	$\because 0$	+. 27	+ . 23	+.25
+ 4\%.6	31	+ 84	+ . 26	+ . 80
+ 30.9	44	+ . 36	+ . 29	+ . 30
+ $3: 0$	21	+.40	+ . 32	+ . 30
+ 26.9	25	+ . 29	+ . 36	+ . 32
$+21.0$	Sis	+ . 84	$+.39$	+ . 819
+14.5	33	$+.45$	+. 41	+.43
+ 9.1	46	+.42	+. 43	$+.44$
+ 4.:	19	+. 59	+. 41	$+.4 \%$
- 1.9	23	+. 60	+ . 47	+ . 51
- 2.4	17	+. 54	+ . 49	+ . 58
- 14.1	10	+.59	$+.50$	$+.6 i$
- 19.1	3	+ ..33		+. ${ }^{0}$
- $\because .9$,	$[+1.01]$		[+1.0]
- 36.1	3	$[+1.7]$		[+1.3]

Column "Form" is terised from the expression (Section VI.)

$$
+{ }^{" .34(\sin Z+.503)}
$$

Had the constant + " 34 been increased to $+^{"} .37$, the accord with C_{0} wonld have been almost perfect down to - 80.4 . The carve from which C_{0} is taken was drawn without the slightent reference to the previous correction.

The value of E, taken from the ontstanding residuals, is of no interest, since, on account of the great weight given to Pa 45 in the discussion of standard places, it would be entirely too small. In the introduction to the fourth volume of Ponlkova observations, we have a thoroughly reliable discussion of the probable error of the declinations. The final weights were founded on these probable errors, which inerease rapidly with the zenith distance.

From the final residuals $\left(r_{l}\right)$ of 37 findamental and circumpolar stars (excluding a ant δ Urse Minoris), I derive $\pm " .273$ as the probable error of the unit of adopted weights. Supposing the arerage weight of a Poulkosa declination 4, and of the final $\Delta \delta$ for 1845,80 , we should have approximately $\pm " .29$ as the probable error of the unit corresponding to a probable error of $\pm " .30$, as given in the introduction of volume iv. A like discussion of the residuals $\left(r_{1}\right)$ of 50 other stars, for which the weight of a position for 1845 is 40 , or greater (averaging about 50), gives $\pm " .255$, or about $\pm " .305$ for the corrected probable error, which should comespond to the $\pm " .30$ assumed. It may therefore be assumed that the weights for Pa 45 , constructed in the manner explained above, are entirely reliable, and correspond well with the general system adopted in the definitive discussion of J ond $J i^{\prime}$.

Residuals in order of right ascension.

Declination limits.$-20^{\circ} \text { to }+90^{\circ}$			Declination limits.$-: 20^{\circ} \text { to }+90^{\circ}$		
Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	Meana	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	h.		"
1	56	+. 11	13	30	+.03
,	90	-. 11	15	51	-. 04
5	37	+.01	17	50	. 00
7	33	-. 06	19	50	+. 10
9	33	-. 06	21	45	-. 09
11	47	-. 02	23	31	$+.05$

Ie 45.
Risuluals in order of declination.

c		"	"
+ 60.6	[จ\%]	$[+.1-]$	[+.17]
+ 26.3	20	+ + . 83	+.60
$+71.5$:3	+ . 72	+. . ${ }^{\text {d }}$
+ rif. 4	$\because 1$	+.83	$+.47$
+ (in.	1.7	$+.05$	+ . 80
+ 51i,	:10	+ . 30	+.16
+ 50,	4.5	+ .00	-. 0.4
+ 4\%.6	\therefore	-. 117	-. 18
+ 40.0	4:	-. 47	-. .34
+ 30.4	111	- . $: 11$	-. $\quad 1$
+ 2.8 .4	$\because 7$	-. 4.1	- .is
+ $\because 1.1$:3,	-.65	-. 59
+ 11. $:$	$\therefore 3$	- . 3	-. 41
$+0.8$	Fir	- .	-. 1.1
+ 3.9	2r	-.00	+.00
- 1.4	Of	+.63	+ . $\because 1$
- -6i	27	+. 99	+. 49
-14.0	11	+. 9.5	+.IS
- 19.0	:	$+.15$	+ . 36
- $\because 3$	$!$	+.36	+ 8
- $\because 1$	13	- . 31	+.06

There is come doabt about the correction from +750 to +900 . For stars observed both above and below the pole, it is probably quite small.

With $m=\bar{b}$, we have:-

$$
E= \pm{ }^{\prime \prime} .73
$$

I adopt $\pm " . i 7$, the mean betreen this determination and that for Re 58 .
Resituals in order of right ascension.

'The perious diseussion (Section VI.) is substantially confirmed.

Wn 47.

The weights are adopted as ther resuit from the combination of separate years in the mamer explained in Section V ．This supposes $\frac{\varepsilon}{\varepsilon_{1}}=3$ ．

Residuals in order of declination．

21ean d	π	\cdots	c_{0}
\bigcirc			
＋ 26.9	7\％	＋． 111	＋．13
＋ 816.6	81	＋．4i	＋．14
＋	19	＋$\quad 21$	＋．10 +.00
＋62．3	：	＋．11	$\pm .05$
$+50.6$	\％	－． 11 i	－．0\％
$+45.1$	：1	． 3	－． 05
＋3\％ 5	5is	－． 10	－． 00.
＋	：0	＋．．${ }^{\text {ini }}$	－．06i
＋27．${ }^{2}$	－	－．${ }^{11}$	－． 11
＋ 21.10	－3	－： 21	二．
＋14．	$1 \cdots$	二－3	二．：30
＋+3.9	17	－．：	－． 3
－ 1.18	49	－． 51	－． 33
－E．5	（\％）	－． 16	．
－ 14.1	5	－． .30	－．${ }^{4}$
－19．1	－	＋． 06	－． 19
－呮：${ }^{\text {a }}$	36	－．	－ 10
－י゙ロ	49	－．0．0	－． 0.

Resithuls in order of right asension．

Declination limits．$-8010+50$			Declimation limits．$+40 \text { to }-30$		Declination limits．$+40-t 10+910$		Durlimation limits．$-300+10+910$	
Mean ${ }^{\text {e }}$	T	10	\square^{\prime}		π	10	－	rot
h．						10		
1	10	+ ＋	510		48	-.10 -.70	79	＋．06
3	40	+ ．	70；		18	－．．10	$\times 1$	－． 8
5	24	－．	70		10	F． 10	68	－． 16
7	20	－．	58	－	11	＋$\because 1$	\％	－．1：
${ }_{11}^{9}$	10		18	－	119	$\pm .03$	（ii）	－． 12
11 13	11	－．	$\because 7$		14	$+. .00$	51	＋．12i
15	183		102		\therefore	＋．6 6	1：30	＋．$: 3$
17	$: 31$	$+$			\％	＋．10	938	＋$\because 1$
19	30	$+$	149		$1: 3$	． 10	112	＋\because
$\because 1$	44	－	9.3		6ii	－． 04	161	＋－08
$\because 3$	27	－	1.0			－． 10	83	

From discussion of the values of r_{0} in the tinal gromping（ -300 to +90 ）， 1 derive：－

$$
-{ }^{11.27 \sin u-" .08 \cos \alpha}
$$

Examination of Wh 56 and $W_{n} 64$ shows that they are in need of a similar cor－ rection；and the separation into zones renders it highly mobable that this correction is almost equally applicable to all limits of a eclination．

For Wrin 56, we have:and for W'n 64 ,

$$
-^{\prime \prime} .16 \sin \alpha-{ }^{\prime \prime} .19 \cos \alpha
$$

— ${ }^{\prime \prime} .22 \sin \alpha-{ }^{\prime \prime} .12 \cos \alpha$.
The same form of correction is indicated in W'n 50.
It is undoubtedly real and sensibly constant for the Washington mural circle throughont the period of its use. From the combined residuals (-30° to $+90^{\circ}$) of Wn 47,56 , and 64 , we have:-

$$
-\left({ }^{\prime \prime} .21 \pm{ }^{\prime \prime} .03\right) \sin \alpha-\left({ }^{\prime \prime} .12 \pm{ }^{\prime \prime} .03\right) \cos \alpha
$$

as the correction; and it is adopted.
It reduces the sums of squares as follows:-

Year.	Betore.	After.
1847	144	101
1856	258	230
1864	139	16π

From the final residuals for 1847 , with $m=7$, we bare:-

$$
E= \pm{ }^{\prime \prime} .74
$$

Ce 48.
The weights are derised in the manner explained under Ce 40 .
Residuals in order of declination.

Mean δ	π^{\prime}	r_{0}	C_{0}
\bigcirc		"	"
+ 57.9	35	+.90	. 00
$+76.9$	1.	-. 15	. 10
+70.2	19	-. 01	. 00
+ 65. 10	20	+. 03	-. 09
+61.0	8	-. 21	- . 23
+ 510.6	36	-. 41	-. 37
+ 4! 5	4	-. 51	-. 50
+ 45.4	64	-. F^{2}	-. 68
+ 39.0	35	-1.19	-. 82
+ 30.6	16	-. 71	-.86
+ シi.	$5{ }^{2}$	-.70	-. 75
+ 21.3	iil	-. 40	-. 41
+ 14.5	E-	- . 02	-. 09
+ 8.1	nis	-. 0.3	-. 015
+ 4.	89	- . O	-.05
- 1.0	\because	-. $0:$	-.08
- -.0	3	- . 15	-. 12
-11.1	1.5	$+.13$	-. 12
- 1-.5	1	+. 31	-. 119
- 21.5	ti	-. 9	-. 09
- 3	:	-. ${ }^{*}$	-. 03

With $m=5$, we have:-

$$
E= \pm^{\prime \prime} .6^{2}
$$

t. 60 is adopted, as explaintad under Ce 40 .

Residuals in order of right asconsion．

Declination limits．$-30^{\circ} \text { to }+90^{\circ}$			Decl nation limits． -30^{c} to +90		
Meana	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	$\gamma_{0}{ }^{\prime}$
h.		＂	h.		＂
1	84	$+.07$	13	52	＋． 10
3	29	－． 19	15	50	－． 08
5	74	$+.06$	17	47	－． 09
7	47	－． 03	19	119	－． 09
9	53	－． 04	$\stackrel{1}{2}$	79	－． 02
11	73	$+.01$	23	35	$+.21$

Gh 51.
Residuals in order of declination．

Mean δ	π^{\prime}	r_{0}	C_{0}	
0		＂	＂	
$+86.6$	7	－． 16	－． 13	$\stackrel{\varepsilon}{e}=4$
+76.4 +70.6	50	二． 12	二． 14	$\varepsilon_{1}=4$
＋60．9	23	－．	－． 16	
＋61．1	95	－． 14	－． 17	
$+56.7$	78	－． 17	－． 19	
＋50．9	102	－． 1.5	－． 21	
＋ 456	6－3	－．	－． 20	
＋89．4	95	－． 17	－． 1.5	
＋ 32.5	2	＋．010	－．113	
a +2.3 +21.2	14%	－． 01.	＋． 1119	
+21.2 +14.5	16	＋シ	＋．13	
＋ 9.0	\cdots	＋． 2	＋．15	
＋ 4.1	102	． 010	$+.10$	
－ 1.7	129	－． 01	＋．03	
－ 0.5	110	－． 07	.10 +.03	
114.1 -12.8	5	+.01 +.17	a +.03 +.11	
－ 22.4	$4-$	＋．．n1	$+.16$	
－ 28.2	43	－．103	＋$\because 2$	

With $m=5$ ，we have：－

$$
E= \pm " .70 .
$$

There is a trace of the same peculiarity in the values of r_{0} ，as has appeared with Gh 45 ．In any case，the required correction is so small that its meglect is of little consequence to the final result．

N $\mathrm{B}-\longrightarrow 34$
hesiduals in order of right ascension.

$\begin{aligned} & \text { Declination limits. } \\ & -300 \text { to }+5^{\circ} \end{aligned}$			Declination limits.$-30^{\circ} \text { to }+90^{\circ}$		
Mean ${ }^{\text {a }}$	π^{\prime}	$r_{0}{ }^{\prime}$	$\pi{ }^{\prime}$		0^{\prime}
h.		"			"
1	97	-. 04	214	-	. 15
3	38	-. 14	94		. 04
5	47	+.01	13%		. 06
7	20	-. 15	131		. 11
9	14	-. 20	$1: 9$. 01
11	39	$+.06$	$1: 7$. 14
13	60	$+.10$	$1: 3$. 1:3
15	54	$+.01$	19.5		. $0: 3$
17	9	-. 20	169		. 06
19	53	+ . 0.5	$1-3$. 03
$\because 1$	40	-. 31	17.1	-	. 02
23	54	$-.06$	139		. 01

$\therefore \mathrm{So}$ II.
Residucts in orred of aleclinntion.

210:11 :	π^{\prime}	ru	$\%_{0}$	
\checkmark		"	"	
+ 4i, 8	4	$+1.06$		
+ 20	13	- . $10: 3$	+ . 14	
+13:	4	- . 114	+ 5	$\varepsilon_{1}={ }^{\prime}$
+ 27.5	33	$+.77$	$+.74$	
$+\because 1.3$	40	+ . 8	+.-7	
$+14.5$	410	$+.92$	+ .99	
$+8.7$	43	+ 1.83	+ 1.05	
+ 8.8	3	$+1.01$	$+1.09$	
$\cdots \because$	14	+ 1.90	$+1.1 \%$	
- 5.5	\because	$+1.0$	$+1.12$	
-14.1	15	$+1.10$	$+1.10$	
- 12. 3	1:	$+.-1$	$+1.010$	
-	16	+ .0\%	$+1.08$	
- $2 \cdots .2$	17	+ . 00	$+1.00$	
- 31.9	1	+	+ . 96	
- 41.9	$\stackrel{3}{*}$	$+1.94$	+ .!1	
- 50.6	1	+ .04	+ . 79	
-56. 6	6	$+. \infty$	+ . 10	
-73.1	3	+	+.83	

Residuals in order of right aseension.

Declination limits.$-30^{\circ} \text { to }+40^{\circ}$			Declination limits. -30 to $+40^{\circ}$		
Meana	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	h.		"
0.9	24	-. 37	13. 1	21	-. 16
3.1	93	+. 15	14.9	30	-. 07
5. 1	29	$+.49$	16.7	119	-. 31
7.1	32	+.01	19.0	40	-. 16
9.3	97	$+.10$	21.2	20	-. 19
11.3	22	+. 3	22.9	1.	-. 66

There is an evident progression of $r_{0}{ }^{\prime}$ with a. The discussion gires, as the correction to be applied :-

$$
+\left({ }^{\prime \prime} . \Omega 4 \pm{ }^{\prime \prime} .07\right) \sin a-\left({ }^{\prime \prime} .185 \pm^{\prime \prime} .075\right) \cos a
$$

There is some reason to expect sueh a correction for this series, and it is adopted. With $m=6$, we have:-

$$
\pm " .86
$$

Ps 53.
Residuals in order of declination.

Mean δ	π^{\prime}	r_{0}	Cu	
		"	"	
+ ris. 3	37	-. 10	+.11i	ε ¢ -3
+ 30.7	23	$+.18$	+. 19	
+ 80.6	31	+..83	+.95	
$+180$	15	+.20	+.38	
+ 61.9	29	+. 40	+ . 3 !	
+ 58.5	40	+ $\quad 89$	+ $\because \because \sim$	
+50.6	33	$+.05$	+ . 3	
+ 46.0	16	$+.43$	+. 19	
+ 30.5	21	$+.17$	$+.1 \%$	
+33.2	13	-. 03	+.05	
+ 27.7	30	-.00	-. 030	
+ 21.5	35	-. 15	-. 10	
+ 14.4	33	-. 01	-. 19	
+ 8.7	4!	-. 31	-. 23	
$\underline{+3.9}$	83	-. 41	-. 34	
- 1.2	23	-. 15	-. 37	
- 9.0	19	-. 47	-. 31	
-14.1	19	-. 16	-. .21	
-18.7	13	-. 21	-. 06	
- 80. 3	10	$+.10$	$+.12$	
- 22.6	13	+.92	$+.6$	

With $m=5$, we bave:-

$$
E= \pm{ }^{\prime \prime} .5 \overline{0}
$$

Residuals in order of right ascension.

Declination limits.$-3 u^{\circ} t 0+50$			Declination limits.$+40^{\circ} \text { to }-30^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Meana	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	9	-. 08	39	-. 02	59	-. 05
3	16	+.35	24	+. 10	41	$+.13$
5	17	-.02	31	+.26	42	$+.03$
7	6	+.20	25	$+.17$	31	+. 15
9	3	+.60	13	-. 09	-2	-. 02
11	8	-.4i	22	-. 06	56	-. 11
13	13	+. 13	80	+. 10	44	-. 11
15	16	- \therefore -	27	-. 14	5.5	-. 11
17	8	+.05	20	--. 44	51.	-. 10
19	9	. 00	36	-. 21	4.	$+.12$
21	10	$-.10$	35	+.01	61	$+.15$
23	15	+. 10	5	$+.60$	24	$+.35$

So 55.
Residuals in order of hectination.

Nean δ	π^{\prime}	r_{0}	C_{0}	
\bigcirc		"	"	
+ 45. 5	1	-.50		
+ 30.3	2	+1.19	$+.50$	$\overline{\varepsilon_{1}}=2$.
+ 2.5	4	+ +67	$+.18$	
+ 20.9	13	+..51	+.45	
+ 14. 2	97	+.30	$+.29$	
+ 8.3	d9	-. 013	$+.18$	
+ 3. ${ }^{\text {+ }}$	1.5	+. 46	+. 18	
- 1.9	1:	+.45	+ . 32	
- E.7	:0	+ . 35	+. 39	
- 11.0	12	+ . 50	+. 17	
- 19.0	7	-. 07	-. 113	
- 2.29	11	-.i3	-. 10	
-23.6	12	-. 81	-. 1.5	
-12.8		+.84	+.07	
- 51. ${ }^{-1}$	1	$+.42$	+..94	
- 89.3	:	+.19	$+.12$	
-78.3	\cdots	-. 4.	. 00	

With $m=6$, we hare:-

$$
E= \pm{ }^{\prime \prime} .91 .
$$

Residuals in order of right ascension．

Declination limits．$-30^{\circ} \text { to }+40^{\circ}$			$\begin{aligned} & \text { Declination limits. } \\ & -30^{\circ} \text { to }+40^{\circ} \end{aligned}$		
Mean δ	π^{\prime}	$r_{0}{ }^{\prime}$	Nean if	π^{\prime}	$r_{u}{ }^{\prime}$
h ．		＂	h．		＂
1． 1	7	＋．04	18.9	12	－． 41
2.5	13	－． 17	15．${ }^{2}$	1 （i）	＋． 61
¢． 0	14	－． 09	16．\％	16	－． 15
7.0	8	－． 38	19．2	25	＋．02
9.4	13	－． 39	－1．9	13	$+.40$
11.3	19	－． 16	2.7	8	$+\therefore 1$

If there is a real variation of the correction，proceediug with the right asceusion， it is apparently of an entirely different nature from that adopted for So 51．The weights are small，and the observations are assumed to be practically free fiom any error of this kind．

$$
\text { Wn } 56 .
$$

Residuals in order of declinution．

Mcan d	π^{\prime}	r_{0}	c^{\prime}	
\bigcirc		＂	＂	
＋${ }^{80} 8$	\％${ }^{6}$	－ 18	－． 10	$\frac{\varepsilon}{6}=4$
＋ 70.2	6	＋．50	$+.17$	
＋66．3	\％	＋．：30	$+.18$	
＋ 6.8 .1	$\stackrel{27}{15}$	＋	＋．17	
＋ 510.3	51	－． 16	＋．10	
+4.3 +3.9	8	－	$\pm .01$	
＋ 32.6	15	＋	－． 0.06	
＋	$\stackrel{8}{811}$	＝ 0.0 .3	－． 11	
＋+1.5	尔	－： 16	－． 24	
＋ 2.7	8	－． 16	－． 26	
+4.9 1.5	628	二． 6	二－	
－ 8.5	5	－． 13	－． 19	
$\begin{array}{r}14.0 \\ -18.9 \\ \hline\end{array}$	3180	－	$=.11$	
二	20	＋ 0	＋ 0^{2}	
－．20． 5	31	＋．19	＋．13	

The probable error，E ，is derived from the outstanding residuals corrected further for the effect of terms in a given under Wu 47.

With $m=6$ ，we have：－

$$
E= \pm{ }^{\prime \prime} .88 .
$$

With a smaller value of $\frac{\varepsilon}{\varepsilon}$ ，we should have a smaller and probably more acomate valne of E ．

Residuals in order of right ascension．

Declination limits．$-30 \text { to } 0$			$\begin{aligned} & \text { Declination limits. } \\ & +40^{\circ} \text { to }-: 30^{\circ} \end{aligned}$		Declination limits．$+40^{\circ} \text { to }+90^{\circ}$		Declination limits．$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π^{\prime}	30^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{i,}{ }^{\prime}$	π^{\prime}	r_{0}^{\prime}
h．		＂		＂		＂		＂
1	19	－． $\mathrm{in}^{\text {a }}$	1.1	－． 11%	\because	$-.10$	83	－．lis
3	27	－． .77	42	－． 85	10	-1.00	「2	－．．${ }^{1}$
5	18	－． 134	$4 \times$	－． 11	1：	－． 4.5	60	－． 41
7	1%	－．$\because 2$	4！	－． 01	14	－． 10	63	－． 114
9	8	－． 30	$\because 4$	＋．25	10	＋．13	84	＋．23
11	16	＋． 19	10	＋． 17	$\because 5$	＋．4i	65	＋．${ }^{\text {d }}$
$1: 3$	：30	－．112	47	． 00	$1 \because$	$+.05$	59	＋．11：
15	8	$+.45$	7\％	＋．34	$\because 1$	－．	！？	＋．21
17	17	＋$\quad \therefore 7$	53	＋．0s	98	＋．0．1	－1	＋$\because 0$
19	15	－． 0.0	81	－． 04	$\because 1$	－． 111	10：	－． 117
\％1	32	＋	76	$+.07$	：${ }^{\text {\％}}$	－． 0.0	114	＋． 03
93	43	＋．18	70	＋．1\％	11	－． 110	ह11	$+.11$

For further explanatiou see Wn 47.

$$
P s 5 \%
$$

Liesiduats in order af dectination．

Meau d	$\pi{ }^{\prime}$	r_{0}	10	
		＂	，	
＋Nir．6i	26	－． 35	－． $3: 2$	－$=2$
＋ 71.6	15	－．${ }^{3} 1$	－． 20	
＋ 70.2	17	－． 0.4	－． 16	
＋8i6．\because	10	＋．min	－． 13	
＋ 81.0	30	－．	－． 10	
＋8in． 7	S	$-.17$	－． 09	
＋ 518.1	？	$+.115$	$-.11$	
＋ $4 . \underline{3}$	：0	－． 010	－－． 15	
＋ 2.1	品	－． 17	－．$\because 1$	
＋：$: 3.11$	2	－． 5 2	－． 20	
＋ 9.6	：i7	－． 17	－． 80	
＋ P 1.1	に	－$\because 3$	－． $3 \cdot$	
＋14．5	53	－． 237	－． 310	
＋$\times .9$	20	－． 3 l	－． 36	
＋ 1.11	3	－． 23	－． 3.0	
-1.7	17	－．：1	－． $3: 3$	
－$\times 5$	43	－．$!9$	－$\because 8$	
－14．1	1.7	－． 118	－． 118	
$-1 \cdots$	$1:$	＋． 11	＋．12	
－$\because 1.9$	$1: 3$	$+\therefore 0$	$+.13$	
－$\because \sim 1$	17	＋．4：	$+\ldots$	

Niter the further eorection depending on a（to be explained），the ontstandmer resilluals，with $m=7$ ，give：－

$$
\theta^{\prime} \quad \mid " 16 i
$$

Residuals im order of right asconsiom.

$\begin{gathered} \text { Deelination limits. } \\ -80^{\circ} \text { to }+6^{\circ} \end{gathered}$			$\begin{aligned} & \text { Declination Jimits. } \\ & \quad+40 \text { to }-300 \end{aligned}$		Declimation limits.$+400 t 0+90^{\circ}$		Declination limits. $-30 \mathrm{c} 10+30$	
Mean a	π^{\prime}	r_{0}^{\prime}	π^{\prime}	$x_{0}{ }^{\prime}$	$\pi{ }^{\prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{11}{ }^{\prime}$
h.		${ }^{\prime \prime}$.		"		"
1	8	$-.15$	21	+. 05	25	+ $\because: 3$	46	$+.15$
3	11	$+.15$	93	+.13	13	+.01	36	+ .08
5	15	$+.07$	37	$+.09$	13	-1. 13	50	$+.10$
7	4	+. 70	32	$+.17$	4	$+.10$	36	$+.16$
9	4	+..30	24	+.85	4	+ . 20	28	+ . 8
11	10	+. 55	33	$+.11$	27	+.119	01	+.10
13	29	+.21	30	$+.15$	22	-. 11	5	+.0.4
15	19	+.04	40	-. 05	2:	-. 01	(i)	-. 103
17	10	-. 25	33	-. 85	19	-. 13	53	-. $\because 1$
19	20	-.28	50	-. 31	14	-. 01	64	-.25
$\because 1$	19	+.01	14	-. 17	20	-. 03	64	-. . 13
23	$\therefore 5$	-. 80	38	-. $\because 4$	11	-.23	49	- . $\because 3$

The dependeuce of $r_{0}{ }^{\prime}$ on right asceusion is undoubted.
From the columm - 30° to $+90{ }^{\circ}$, I derive:-

$$
+" .19 \sin \%-" .117 \text { cose }
$$

From the tables exhibited successi vely under P's 60, 1's 6.4, alld P's iti, 1 tind :-

Yoas.	Formmla of conturt un.
	"
183\%	
1-6id	+.17 sina - . 1101 cos a
1-6is	+. $19 \sin a-.111 \mathrm{cos} a$

From the proper combination of the four sets, we have :

$$
+\left({ }^{\prime \prime} .20 \pm{ }^{\prime \prime} .01\right) \sin \alpha-\left({ }^{\prime \prime} .05 \pm{ }^{\prime \prime} .01\right) \cos \alpha .
$$

This is adopted as the defintive correction for each of the four catalogres, since there appears to be no marked increase with the time.

This correction might be approximately comphed in the following mannes:-
lif in the definitire formmata of correction* for the declibations of the Jumbementa south of +510.5 we substitute 300 for δ, we shall have for that part of the correction depending on a:-

$$
-" .82 \sin \alpha+" .07 \cos \alpha
$$

If, further, we smppose that the mean declimation of the stam of the latis standand catalogne, ehaefly used for ohtaining zenith points, is about + ibo, that the catalogues making up the Paris standard are free from eroos depending on a, abl what their mean epoch is about 1845 , we shall have for the epoch 1801 (abont the mean of the entire Paris series) as a corcection to Paris observed declinations:-

$$
\left(+{ }^{\prime \prime} .82 \sin a+{ }^{\prime \prime} .07 \cos \alpha\right) \times \frac{10}{90}=+" .140 \sin \alpha-" .01 \underline{2} \cos \alpha
$$

Of course, if the mean epoch of the eataloges making up the stamdard is rarlior than 1845 , this correction will be lareser.

Bs 56.
Residuals in order of declination.

Mean δ	-	r_{0}	C_{0}	
"		"	,	
+ - 6.9	-	+ . . 0	$+. \because 1$	
+ 76.4	19	+.93	$+.31$	$\ddot{\varepsilon_{1}}=3$
$+80.8$	11	+ .63	+ . 31	
+ 61.8	$\because 0$	+ . 30	+.25	
+56.9	17	+.15	+.13	
+ 50. 6	:!	-. 07	-. 10	
+ 45.6	If	-. 83	-. 33	
+ $\because 8$:111	-. 6.4	- . O_{0}	
+ 30.2	$\cdots 1$	-. $\because 5$	-. 511	
+ 27.4	: ${ }^{\prime}$	-. 23	-. 41	
+ $\quad 1 . \%$:1	-. 31	-. 4.	
+ 14.0	3	-. 54	- . $\mathrm{li4}$	
+ 0.6	: ${ }^{\text {i }}$	-. 44	-. 73	
$+4.6$	$\because 4$	-1.80	-. 71	
- 2.0	$\because 1$	-. 83	-. .99	
- 2.4	1-	$+.15$	- . $\because 0$	
-14.1	1.	-. 23	- . $\because 1$	
- 19, 3	9	-. 11	- . 23	
-	11	-. 37	- 24	
- is. ${ }^{\text {a }}$	10	-. 83	-. 29	

With $m=$ i, we have:-

$$
E= \pm{ }^{\prime \prime} .95
$$

Residuals in oreler of right ascension.

Declimation limits.$+4 u^{\circ} \text { to }-30$			$\begin{aligned} & \text { Declination limils. } \\ & +40^{\circ} \text { to }+900^{\circ} \end{aligned}$		Declination limits.$-36010+90^{\circ}$	
Meana	\cdots	r_{11}	-	$\gamma_{0}{ }^{\prime}$	\cdots	$r_{0}{ }^{\prime}$
h 1	21			1"		
:3	13	-1. 310	10	-. 11	19	-1.
\square	14	$+.11$	7	+. $\because 1$	$\because 1$	+ . 5
\%	10	$+.12$	1	+ . 31	11	+. -
9	景	- . 11	13	+.10	:ir	+.06
11	:	-. li	16	+ . $\because 2$: 2	+.04
$1: 3$	10	-.11	11	$+.11$	$\because 1$	+ .05
1.1	41	+ $\because=$	1.2	-. NT	S1	$+. .11$
13	80	+ .19\%	$1: 1$	+.119	$4!$	$+.05$
$1: 1$	13	+.11\%	$1 \because$	-. 114	\therefore	$+.04$
$\because 1$	\cdots	- $\therefore 1$	9	-. 13	[1)	-. $\because 1$
2;	34	-. 10.3	10	- . $\because 1$	4	-. 09

A considerable correetion depmalimen a is indicated. The residnals from momits - $30010+900$ give:

$$
\text { - " } 0.4 \text { simu - ". } 2 \mathrm{~s} \text { S cos c. }
$$

But, sime this result is entorels oplased to that derived drom the later Bassels work, the correction is meglected. This conld dobut lithe harm, simer the observations receive small weight.

Ce 50.

The weights are formed as in the two preceding Cambridge catalogues.
Residuals in order of declination.

Meau δ	π^{\prime}	r_{0}	0
\bigcirc		"	"
$+87.5$	32	-. 10	-.22
$+75.8$	12	-. 50	-. 30
+ 70.7	1:	-. 51	- . 3%
+65.7	11	-. 03	-. 4.3
+60.7	44	-. 6.4	-. 53
+ 56.9	30	-. 45	-. 69
+ 49.2	23	-1.25	-1.16
+ 45.4	30	-1.39	-1.36
+30.3	23	-1.47	-1.4.5
+ 32.7	14	-1.29	-1.3n
a $+\quad 07.9$ $+\quad 00.5$	+	-1.91	-1.
+14.5	52	-. .09	. ${ }^{\text {difi }}$
+ 8.9	33	-. 56	- . w
+ 5.2	9	-. 96	-. 57
- 0.9	10	-. 5.3	-. 5
- 8.3	19	-. 68	-. 50
- 13.9	$1: 3$	-. 32	-. 47
- 19.1	1	-. 29	-. 43
- 21.6	3	+ . $\%$	-. 41
- 26.2	4	-. 47	-.3

With $m=5$, we have:-

$$
E= \pm{ }^{\prime \prime} .60
$$

Residuals in order of right uscension.

Declimation limits. -30° to $+90^{\circ}$			$\begin{gathered} \text { Declination limuts. } \\ -30^{\circ} \text { to }+90^{\circ} \end{gathered}$		
Mean ${ }^{\text {a }}$	π^{\prime}	$r_{6}{ }^{\prime}$	Nean a	π	$r_{0}{ }^{\prime}$
h.		"	h.		"
1	41	+. 09	$1: 3$	89	+ . 3
3	8	+. 06	15	54	-. 11
5	32	$+.02$	17	14	-. 10
7	37	+.01	19	6.1	$+.12$
9	41	-. 24	$\because 1$	51	-. 09
11	48	$-. .02$	$\because 3$	20	+ 8 ?

Gh 57.

Residuals in order of declimation.

Meam	$\pi \pi^{\prime}$	r_{n}	C_{11}	
\checkmark		"	"	
$+8.7$	4.	-+ . 11.1	+ . W2	
+ 712.2	30	$+.05$	+ + ()-	$\overline{\varepsilon_{d}}=3$
$+80.4$	4:	$+.19$	+.15	
+ 016.7	31	+ . $\because 1$	+.19	
+ 11.0	tix	+ . $\because 1$	+ . $\because 3$	
+ 828.7	: 4	+ . 12	+ $\because 2$	
+ 51.0	1%	+ . $\because 6$	+ . 16	
+ 4.0.	:1i	$+.10$	$+.11$	
+ 410. \because	6i3	+.05	$+.11$	
+ 8 \% 5	St	+ $\because 6$	+ . $\because 0$	
+ 58.8	!11	+.	+ . $\because 9$	
+ $21 . \ddot{ }$	110	+ . . ${ }^{1}$	+ . 316	
+ 14.6	110	+ . $: 3$	+ . $\because=$	
+ 9.0	$14 i$	+ .4.	+ . 31	
+ 4.1	$\bigcirc 1$	+ 20	+ . 36	
-1.5	E1	-. 04	$+.17$	
- 96	6.1	+ \because	+. $\because 1$	
-11. 1	: 11	+ . 31	+ $\therefore \therefore$	
- 1-3.4	\because	+. 1%	+ $\quad 81$	
-	:1	+	+ .	
- $\because-.:$	$\because 4$	+ 110	+ . 3	

With $m=6$, we hate:-

$$
E= \pm " \cdot 46
$$

The same quantity for 1864 is $\pm^{\prime \prime} .49 ; \pm^{\prime \prime}$ \& 48 adopted in consturting the definitare
 and this becomes $\pm "$. 85 at 70 . It is probable, therefore, that $\frac{\varepsilon}{2}$ is taken tou smath.
liesiduals in order of right asechsion.

Declination limits. $-30 \cdot(1)+\therefore$			Dechimation limits. - : $20-10+40$		Declination hants. - 0^{2} to +100	
Mean ${ }^{\text {a }}$	τ^{\prime}	$\gamma_{\mathrm{f}}{ }^{\prime}$	π	$r_{4}{ }^{\prime}$	π	r_{0}
h.				,		"
1	16	- . 5	-61	+.111	129	-.03
3	Q	+.112	1.)	+.01	\therefore	$+.115$
\therefore	$\because 1$	+.11	7	+ . 117	10.1	$+.11=$
3	11	+. 15	\because	$+.15$	91	$+.1 \%$
$!$	-	+ $\because 1$	141	+.117	5	+.00
11	:20	-. 1:	78	- . 195	9.9	. 010
$1: 1$:3)	- \because	if	- . $\because=$	i-	-. 11i
1.5	:9	$+.11$	-:	-. ${ }^{111}$	1112	-. 1.2
13	11;	-. 4.1	131	-. 119	$1: 7$	+ 0.0
1!	$\because 1$	+.115	! 11	-. 110	1:1	-. 10
91	37	-. 014	7	- 11.	146	--.13
$\because 3$	$3-$	-.mi	31	+ 11%	! 3	-1. 111

C．G．II． 58.
Residuals in order of declinetion．

Mean ${ }^{\text {d }}$	π^{\prime}	r_{0}	C_{0}	
0		＂	＂	
＋ 418.8	：	－3．47		
＋ 14.7	3	－ 1.05		$\varepsilon_{1}=\stackrel{ }{\sim}$
＋3心．6	b	． 00	－． 16	The weimhts of the last
＋ 3	10	－． 23	－． 16	five grouns are arbi－
＋ 27.	：3．）	$+.10$	－． 00	alloi－ trarily selected，amd
＋$\because 1 . \%$	12	－．$\because 1$	－． 09	tramy selecter，amd lave no reterence to
$+11.5$	45	－． 13	－． 1.5	have no reference to the scale anlopted
＋ 8.9	58	－． 20	－． 15	above．
＋ 3.9	31	－． 19	－．$\because 1$	
－ 0.8	31	－． 3	－． $2: 3$	
－8．5	：3	－． 3 ；	－． 23	
-14.1	19	－． 3 m	－． 21	
－1－．9	1：	＋． 21	－． 110	
－ 4	19	$+.17$	－． 18	
－20．0	$\therefore 0$	－． 16	－． 07	
－34．9	2	－． 01	． 01	
－ 4.1	1	＋． 18	＋．09	
－5．3 1	2	－．$: 10$	$+.17$	
－5\％． 7	${ }_{6}$	＋． 48	＋． 5	
－ 75.1	：	＋． 36	＋．1！	

With $m=4$ ，we have：－

$$
E= \pm " .50 \text {. }
$$

Dr．Gylden finds（V．J．S．，ズ，197）for ε from 150.2 to 410.4 zenith distance $\pm " .45$ ，ami but a slight increase to $600^{\circ} \mathrm{Z}$ ．D．Assmming ε ，to be $\pm \frac{" .24^{*}}{\sqrt{2}}= \pm{ }^{\prime \prime} .17$ ，we have：－

$$
E= \pm{ }^{\prime \prime} .48
$$

for the zenith．The above value，\pm＂．j0，appears to be quite trustworthy．
Residuals in orrler of right asecnsion．

$\begin{gathered} \text { Declination limits. } \\ -: 3 \text { to }+, \infty \end{gathered}$			$\begin{aligned} & \text { Deqlination limits. } \\ & +50+40^{\circ} \end{aligned}$		$\begin{gathered} \text { Declination limits. } \\ -30^{\circ} \text { to }+40^{\circ} \end{gathered}$	
Mean a	π^{\prime}	$r_{11}{ }^{\prime}$	π	$r_{0}{ }^{\prime}$	π^{\prime}	m^{\prime}
h.		＂		＂		＂
1	10	＋．15	23	＋． 14	：7	＋．11
3	12	＋．03	$!$	－． 16	21	－． 0.5
5	18	＋． 10	$\therefore 2$	－． 19	（1）	－． 17
7	10	$+.20$	30	＋． 13	411	＋．13
9	5	＋．10	91	－． 01	$3 ;$	＋．01
11	17	＋．：21	19	－． 110		－．13
13	19	． 00	8	$-.17$	－	－． H^{2}
15	19	$+.37$	14	－． 118	：$: 1$	＋． 11
17	9	＋． 04	1.5	$-.11)$	$\because 4$	－． 11.
19	14	＋．$\because 0$	！	＋． 111	39	＋． 10
91	14	－．${ }^{3}$	$1 \because$	＋ 83	\because	＋．13
23	≈ 1	－． 0.3	10	－． 113	：i	－． 4

－Dr．Gylden finds \pm ． 21 as the［robable minimum crot of a ditherence of

lie 58.
Residuals in orter of declination.

N1:0nd	π^{\prime}	r_{0}	Col	
c		"	"	
+ 6.8	17	[-.02]	$+.40$	
+ 2 Br	14	$[+.11]$	+ . 62	$\overline{\varepsilon_{1}}=2$
+ 71.3	12	+.e2	+ +.71	
+ 816.9	11	+. 76	+. 71	
+ 81.1	P1	+ .5\%	+ . 00	
+ 516.7	$\because 19$	+.50	+ . 51	
+ 50.6	47	+ .3n	- . 23	
$+\ln \times$	1.1	+.48	-. 16	
+ 30.4	:110	-. 618	$-.45$	
+ $3: 3.1$	21	-. 63	-. 71	
+ 27.4	311	-. -2	-. 87	
+ +1.1	3.1	-. 1i3	-. ${ }^{\text {dio }}$	
$+14.6$	(3i)	-. 41	-. $\because 2$	
+ 9.1	4	-. 11	-. 03	
$+4.3$	$8: 3$	+. 18	+ $\because 4$	
- 1.5	P9	+ . 50	+ .5\%	
- E.5	\because	+.92\%	$+.76$	
- 18.9	17	$+.6$	+ 77	
- 9.3	11	+1.1	$+.54$	
- 23.9	1i	-. 11	+ . ${ }^{\text {\% }}$	

With $m=5$, we have:-

$$
E= \pm{ }^{\prime \prime} .80
$$

$\pm " .77$ is adopted. (See Re 45.)
In draming the enrve I have been much assisted by the very complete dis. cussion of this eatalogne in Polnme V. of the Fierteljursschift der Ast. Ges. The examination for terms in o, however, fails to confirm Table IV., given in the place eitet, as will appear from the following :

Thesiduals in order of right aseension.

Declination limits. -30 to 0			$\begin{gathered} \text { Declination limits. } \\ -: 30^{\circ}+0+40^{\circ} \end{gathered}$		Declination limits.$-30^{\circ} \text { to }+900$	
Mr:111a	$\pi{ }^{\prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{u}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	4	-1.4	日8	- . $:$	54	-. 01
3	7	-. 38	1:3	-. 30	$1!$	$+.02$
5	19	-. 30	"r	-. 51	37	- . 32
7	is	-. 15	31	$+.05$	\% 4	-. 01
3	$:$	+..90	8	-. 01	$: 17$	-. 1\%
11	$!$	+-.	\therefore	-. 103	:18	-.20
$1: 3$	11	+.011	$1!1$	+	33	+ .26
15	13	-. 117	29	+. 17	45	-. 18
$1 ?$	5	- .mi	\#5	- . 5	44	-. 32
$1!1$	$!$	- . $: 1$:11	-. 112	44	$+.0 .7$
$\because 1$	$!$	+. 23	18	+ . 5	41	+ .51
23	11	- .03	$\because 6$	+ 2	43	+ . 316

The correction dependigg on a, if it exists, is so uncertain, from the small weight, that mo attempt at diseussion is mate. The probable error of the residmals in last column varics from $+" .12$ to 1 "小s.

［135］

Ps 60.
Residuals in order of declination．

Meau δ	π^{\prime}	ro	C_{0}	
\bigcirc		＂	＂	
＋ 66.8	80	－． 15	． 19	
\％ +76.6 +70.8	13.3	二．47	二． 10.9	$\varepsilon_{1}=\sim$
+80. +86.0	13	耳．03	－． .00	
＋60．8	29	＋．05	＋． 04	
＋56．6	28	＋．03	$+.06$	
＋ 49.7	品	＋．07	\pm	
＋ 40.2	20	$\pm .1 \%$	＋．．10	
＋ 33.0	：31	－． 19	＋．03	
＋ 27.4	4	－． 061	－． 03	
＋$\because 1.1$	5	－． 03	－． 11	
＋14．6	5	－． 20	－． .19	
＋ 4.1	33	－． 15	－． 20	
－ 1.7	5	－． 16	－． 16	
－ 8.7	15	－．03	－．06	
－ 14.1	17	$\pm .03$	\pm	
－18．9	13	＋	＋．．41	
－ 27.9	119	＋． 80	$+.62$	

The outstanding residuals are first corrected for the cfect of terms in a，as found for the entire Paris series．（See Ps 56．）

With $m=7$ ，we have：－

$$
E= \pm{ }^{\prime \prime} .35
$$

Resicluals in order of right aseension．

Declination limits．$-30^{\circ} \text { to }+5^{\circ}$			Declimation limits．$-30^{\circ} \text { to }+40^{\circ}$		$\begin{gathered} \text { Declination linits. } \\ +40^{\circ} \text { to }+90^{\circ} \end{gathered}$		Deelination linits．$-30^{\circ} t 0+90^{\circ}$	
Mean a	π	$r_{0}{ }^{\prime}$	π^{\prime}	r_{u}^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$	π	ro＇
h		0		00		＋．09		$\begin{array}{r} \prime \prime \\ +.03 \end{array}$
1	10	－． 05		.00 $-\quad .10$	11	+.08 +.38	38	＋．03
3	13	＋	11	－． 10	$1: 1$	＋－	50	$+.17$
5	15	＋．25	89	＋．11\％	1	＋	40	＋．18
7	$\stackrel{4}{5}$	+.50 +.00	\％	＋	5	－． 0.10	40	＋ 20
$\stackrel{9}{11}$	$\stackrel{3}{12}$	＋	40	＋．12	9	＋．02	rid	＋．10
13	$\stackrel{23}{19}$	＋．07	32	＋．03	1.	－． 09	17	－． 12
15	19	－． 04	43	二． 11	31	－． .11	63	－． 13
17	10	－． 10	37	－． 14	31	－． 115	－4	－． 21
19	19	－． 24	49	二． 2.8	20	二． 0.05	20	－． 20
${ }_{2}^{21}$	20 20	二． 07	50 40	－． 201	3	－． 10	43	． 00

For general explamation see Ps． 5% ．

Bs 6J．
Tisidutls in order of declination．

Mean	$\bar{\square}$	r_{0}	C_{0}	
\bigcirc		＂	＂	
＋-6.7	3	$+\because 1$	$+\quad \because 1$	
＋ 76.6	19	＋．31	＋． 313	$\bar{r}_{1}=3$
＋ 71.4	1．－	＋．61	＋．40	
$+6 i 6.4$	1	＋ 83	＋． $3: 11$	
＋81．1i	：3	＋． 3 B	＋． 30	
＋ 28.	：II	＋．113	$+.14$	
＋ 81.3	$4: 3$	－． 15	－． 11	
＋ 5.6	$1: 1$	－． 47	－．2s	
＋ $3=.15$	3	－． 44	－．31	
＋ $3: 30$	$\because 7$	－． 20	－．$\because 1$	
＋ 27.5	5	－． 14	－． 01	
＋ 21.5	134	＋． 11	－． $0 \% 3$	
＋14．	6．7	－．32	－． 0 O	
＋ 9.8	E3	－． 01	－． 09	
＋ 3.	3	－． 97	－． 05	
－ 1.6	$\therefore 3$	＋．10	－． 02	
－E．5	4.5	－． 10	． OH	
-14.0	$\because 1$	＋．03	． 00	
－1－．8	14	－+ ． $1: 3$	． 110	
－29．4	19	$+.91$	． 00	
－ジ，シ	19	－．	． 130	

The curve from which C_{0} is taken is derived from the mean of Bs 00 and bis 6 ， sime there is no reason for supposing the two to differ．
liesiluals in wraler of right ascension．

$\begin{gathered} \text { Teclination limits. } \\ -30-10+5 \end{gathered}$			$\begin{aligned} & \text { Declination limits. } \\ & -30-10+40 \end{aligned}$		Declination limits． $+40.10+10$		Declimation limits．$-: 30+0+90$	
116ata a	$\pi{ }^{\prime}$	$r{ }^{\prime}$	π	$r{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	10^{4}
h．		＂		t		${ }^{\prime \prime}$		＂
1	11	－． 11.5	47	－． 14	29）	＋．01	36	－． 10
：	1－	－$\because 4$	30	$+.17$	－	＋． 20	：3＇	$+.10$
\％	1	＋． 31	（1）	＋． $11 i$	$1:$	－． 08	（i）	＋． 11
7	11	＋． 7.7	46	＋． 1^{19}	6	＋． 10	$5 \sim$	＋． 40
$!$	7	－． 10	\％	－． 114	1	＋． 12	51	－．03
11	1.7	$+.15$	43	＋． 11.	1	－． 31	61	－． 0
$1: 3$	？－	－\because	40	－． 17	11	－．． 39	51	－．${ }^{3}$
15	1－	－． 11	51	－．	14	－． 3	6	－．$\because 4$
15	$1 \because$	－． 11	$4!$	－．-2	？	＋．13	i	－． 16
19	$11 i$	＋．1：i	5：3	－． 118	\cdots	$-.17$	$7: 1$	－． 10
21	： 1	＋．111	44	－． 110	\％ 0	＋．69	－0	＋．03
23	2）	＋．1\％	41	$-.12$	$1 \because$	$-.12$	in	－．1：

There is a tolembly well－matked contection indicated，which is substantiated by the exammation of IS fin．From the combined ralues of $r_{0}{ }^{\prime}$ in the limits－ 300 to $+90^{\circ}$ ．we hatro：－

$$
-\left({ }^{\prime \prime} .17+{ }^{\prime \prime} .00 .0\right) \sin a+\left({ }^{\prime \prime} .005+" .000100 \mathrm{sa}\right.
$$

This is very nearly what might hare been predicted from the disenssion of Bradley's dechation, the zenith-points at Brussels being derived from a standard catalogue of a much enrlier epoch, with proper motions computed from the Fundementa.

Correcting the values of r for the enve and the above formula, with $m=8$, we have for Bs $60:-$

$$
E= \pm{ }^{\prime \prime} .59
$$

Me 62.
Residuals in order of declination.

Meand	π^{\prime}	r_{0}	C_{0}	
\bigcirc		"	"	
+ 48.6	3	-1.87		${ }^{\varepsilon}=9$
+ 45.4	5	-. 99		$\overline{\varepsilon_{1}}=$
$+38.7$	4	+ . 98	$+.49$	
+ 32.4	10	+ . 58	+. 44	
+27.1	85	+ . 54	+. 40	
+ 21.0	23	+ . 36	+ . 3	
+14.7	37	+ . 3	+.38	
+ 9.0	89	+ . 35	$+.50$	
+ 4.2	29	+ . 75	$+.74$	
- 1.2	31	+1.13	+.88	
- ヶ.5	24	+ . 83	$+.87$	
- 14.0	15	+ . 48	$+.77$	
-18.15	11	+ 1.38	$+.66$	
- 22.6	12	+ . 0	+. .57	
- 28.3	1.4	+ . 33	$+.46$	
-34.8	\because	+ .53	+ . 21	
- 41.1	1	- . 08	+.06	
-50.1	4	- . 12	-. 04	
-59.4	${ }^{6}$	- . 30	-. $\because 0$	
-75.1	3	- . .99	-. 14	

The correction here determined is applicable in addition to the correction given in Iutrodnction to Willianstown, 186I-63 (1P. sxi and axii).

With $m=6$, we hare :-

$$
E= \pm{ }^{\prime \prime} .90
$$

This large probable error, nearly twice that of Me 68 , found in precisely the same way, may be partly owing to the neglect of correction proceeding according to a. The observations themselves are kown to be less exact* than those of Me 68, but apparently not in the ratio indicated above.

In the comparison of Gh 57 - Mo 62 \dagger Dr. Gylden finds:-

$$
+{ }^{\prime \prime} .07 \cos a+{ }^{\prime \prime} .14 \sin a-{ }^{\prime \prime} .40 \cos 2 \alpha-{ }^{\prime \prime} .34 \sin 2 \alpha
$$

Something like this is indieated in the examination below, and probably has a real existence. On the whole, I thought it not advisable to investigate the correction, whatever it is, depending on α.

Residuals in order of right ascension.

Declination limits. - 30° to +5			Declination limits.$+50+0+40^{\circ}$		$\begin{gathered} \text { Declination limits. } \\ -30^{\circ} \text { to }+40^{\circ} \end{gathered}$	
Meas a	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	7	-.17	19	-. 03	96	-. 10
3	11	- $\because 0$	3	-. 30	14	-. ${ }^{4}$
5	16	$+.1{ }^{\text {+ }}$	26	-. 101	42	- . 33
7	8	$+.10$	13	-. 13	26	-. 06
9	4	$+.10$	11	$+.15$	$1 \times$	+. 14
11	10	+.12	14	+. 41	$\because 1$	+.89
13	1.1	+.60	\because	+.100	16	+ .6.)
1.5	9	+	11	+.92	14	$+.62$
17	i	-. 70	1:	-. 19	13	-. 36
19	7	-. 05	14	-.	$\because 1$	-. 31
1	12	+.37	10	+. 89	边	-. 07
23	18	$+.19$	10	$+.1 \%$	2	$+.16$

Wn 64.
The weights (π^{\prime}) are constructed as explained in Section V.
Residuals in order of declination.

Mean d	$\pi{ }^{\prime \prime}$	$r_{0}{ }^{\prime}$	C_{0}
\bigcirc		"	"
+ 2 s .1	9.7	$+.10$	+. 10
+ 71.1	51	+. 26	+.11
+ 70.7	51	+ .	+ .lla
+ 8ici. 1	is	-. 0%	+. 110
+ 6.0	$4:$	-. 41	+.03
+ 610.3	1.9	--. 07	-. 111
+ 50.4i	\%	+ . $\because 2$	-. 115
+ 50.7	\because	+. 11	-. 119
+ $3-8$	$\because 1$	+.11-	-. 11
+ 33.0.1	11	-. 011	-. ${ }^{2} 1$
+ 28.1	59	-. 83	-. ${ }^{3}$
+ 31.4	17	-. 44	- . in
+ 14.5	30	- . 31	-. 4.5
+ -. 3	-11	-. $5: 1$	-. 41
+ 4.5	$3-$	-. 41	-. 11
- 1. \because	411	-. 11	-. 39
- -.-	38	- . i	-. 29
- 13.9	1.	-. 100	-. $\because 1$
- 1-. 9	\checkmark	$+.4$	-. 12
- 31.4	$\bar{\square}$	$+.0$	-. 118
- : - : ${ }^{\text {a }}$	1.5	-. 1	+.06

Correcting the ontstanding rexiluals by the formula embracing terms in a (see Wı 47) and with $m=6$, we have:-

$$
E= \pm " . \pi 1
$$

Residuals in order of right asecnsion.

Declination limits.$-30^{\circ} \text { to }+5^{\circ}$			Declination limits.$-30^{\circ} \text { to }+40^{\circ}$		Declination limits.$+10^{\circ} t 0+90^{\circ}$		Declination limits.$-30^{\circ} 10+90^{\circ}$	
Mexn a	π	$r_{0}{ }^{\prime}$	π^{\prime}	$3{ }^{\prime \prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"		"
1	3	-. 50	50	$-.19$	62	-. 05	11%	-. 12
3	8	-. 25	22	-. 12	8	-. 36	30	-. 18
5	11	+.04	86	-. $5: 3$	17	-. 03	53	-. 37
7	9	-. 20	$\because 9$	-. 84	11	-. 50	40	-. 31
9	2	+.20	$\because 9$	+.17	10	$+.48$	39	+.25
11	6	-. 20	8	-. 16	29	-. 32	64	- . 23
13	20	$+.97$	34	$+.32$	32	+.88	196	+.80
15	16	$+.33$	45	+. 40	48	+. 25	93	+.31
17	12	+. 10	41	+ .31	32	+. 26	33	$+.30$
19	12	-. 37	54	-. .0s	31	-. 37	85	$-.19$
21	20	+.21	41	-. 02	45	+..83	86	+. 11
23	30	-. 09	$\square 1$	$+.05$	25	$-.06$	76	$+.01$

The general explanation is giren under Wn 47.

Gli 64.
Residunls in order of Ieclimation.

Mean δ	$\pi^{\prime \prime}$	0	C_{0}	
\bigcirc		"	"	
$+86.7$	47	+. 11	. 00	${ }^{\varepsilon}=3$
+ 76.5	41	-. $2 \cdot$. 10	$\overline{\varepsilon_{1}}=$
$\therefore 70.7$	47	-. 12	. 00	
+66. +	41	+.06i	. 00	
+ 61.4	5	+. 117	. 00	
+ 55.9	24	-. 14	. 110	
+51.0	\%	+. 20	. 00	
+ 45.1\%	\%	-.1\%	. 00	
$+40.2$	dis	+.12	. 00	
+ 32.8	55	-. 03	+. 07	
+27. 2	87	+.16	+.10	
+21.1	101	+.13	+.1.	
+14.6	10 .	+.15	+.12	
+ 8.9	122	+.05	+.05	
+ 4.9	50	+. 19	. 010	
- 1.8	64	-. ${ }^{6}$	-. 109	
- 8.6	6.5	-. 07	-. 03	
-14.1	26	$+.07$	+. 11	
-18.8	17	+.81	+. 21	
- 29. 1	21	+.25	+.3.	
- 28.1	23	+. 55	+ . 49	

With $m=5$, we have:-

$$
E= \pm{ }^{\prime \prime} \cdot 49
$$

$\pm{ }^{\prime \prime} .48$ is adopted for the definitive weights, as explained under Gh 57.
N B- 35

Tesiduals in order of right asconsion.

Declination limits.$-300 \text { to }+5^{\circ}$			Declination limits.$-30^{\circ} \text { to }+40^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π	r_{0}^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	rof
${ }_{i}$		+ 57		"		+ ${ }^{1}$
1	11.	$+.57$	76	+. 14	114	+.05
3	16	+.09	37	$-.09$	54	-. 01
5	2.5	-. 01	73	+. 03	104	+. 04
7	7	-. 49	(is	$-.15$	77	-. 13
9	7	-. 40	58	-. 14	70	-.02
11	21	-. 14	60	-. 0.5	91	-. 11
13	33	-. 14	49	$-.12$	79	-. 05
15	23	$-.06$	76	+. 01	116	-. 03
17	,	. 100	61	+. 11	103	+. 09
19	29	+.02	78	$-.02$	121	$-.06$
21	27	$+.43$	69	+. 18	138	+. 14
23	33	+.05	60	+. 13	85	$+.04$

For remarks see Bn 60.
Ps 64 .
Residuals in order of acclination.

Mean δ	π^{\prime}	r_{0}	C_{0}	
\bigcirc		"	"	
$+86.6$	20	$-.18$	-. 22	
+70.6	1:	-. 40	-. 20	$\overline{\varepsilon_{1}}=2$
$+70.7$	11	-. 16	-. 27	
+60.2	8	-. 01	-. $: 17$	
+61.1	21	-. 30	-. 05	
$+50.3$	-1	-. 17	- .	
+ 50.15	30	-. 17	-. 28	
+ 45.3	0	- . $3: 3$	-. $\because 6$	
+ 39.5	0	-. 39	-. 30	
+ 32.8	$: 33$	-. . 31	-. 88	
+ 27.2	47	-. 15	-. 16	
+ $\because 1.0$	51	- . 11:	-. 06	
+ 14.6	53	-. 016	-. 07	
+ 9.1	77	-. $\because 1$	$-.16$	
+ 4.0	2.	-. 29	-. 2	
-1.8	51	-. 16	-. 21	
- 8.5	411	-. 15	-. 13	
-14.1	15	+.02	$+.04$	
-18.9	10	+. 41	+.99	
- 21.9	13	-. 08	+.43	
- 27.9	15	+1.01	+.90	

With the correction depending on α, and with $m=9$, we hare:-

$$
E= \pm " .37
$$

From Ps 66, wo have:-

$$
l= \pm{ }^{\prime \prime} \cdot 41
$$

The mean is adopted, since both series aro essentially the same.

Residuals in order of right aseension.

Declination limits.$-30^{\circ} \text { to }+5^{\circ}$			Declimation limits. -30° to $+40^{\circ}$		Declination limits.$+40^{\circ} \text { to }+90^{\circ}$		Declination limits.$-30^{\circ} t 0+90^{\circ}$	
Mean e	π	$\cdots{ }^{\prime}$	Π^{\prime}	$r_{0}{ }^{\prime}$	π	r_{0}^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$
1.		"		"		"		"
1	8	-. 05	42	$+.04$	25	+.14	67	$+.08$
3	12	+. 13	24	$+.05$	13	$+.05$:38	$+.05$
5	16	$+. .38$	45	+. 19	9	$-.07$	54	$+.14$
7	4	+.60	40	+.13	1	+. 30	41	+. 14
9	5	+. 20	36	+.08	8	$+. .30$	44	+.12
11	10	+.22	37	-. 0.01	23	+. 16	60	+. 05
13	23	-. 10	$3:$	-. 0.3	14	+.03	46	-. 01
15	20	+.03	42	-. 15	15	-. 09	57	-. 14
17	10	-.. . 06	34	-. 15	15	-. 17	49	-. 16
19	13	-. 05	48	-. 87	12	-. ${ }^{\text {d }} 4$	60	-. 87
21	21	+.05	39	-. 19	17	-. 01	56	-. 14
93	16	-. .0s	39	$+.50$	4	. 00	36	$+.04$

The correction is derived under Ps 56.

Bs 65.
Residuals in order of declination.

Mean δ	π	ro	C_{0}	
\bigcirc		"	"	
$+87.0$	20	+.97	+. 24	
$+76.6$	18	+ •況	+ . 34	$\overline{\varepsilon_{1}}=3$
$+70.5$	9	+. 17	+.40	
+ 67.3	1	$+. .5$	+ . 29	
+ 61.8	16	+. 37	+.31	
$+5.9$	17	-. 101	+.111	
+50.9	30	-. 06	-. 17	
+ 4\% $\%$	21	- . ${ }^{2}$	-. 29	
$+30.0$	26	-. 30	-. 81	
+ 3.5	8	+.13	-. 19	
+27.4	51	-. 05	-. 03	
+ 21.3	47	+.28	+.0	
+14.4	43	-. 118	-.00	
+ 8.8	67	+.07	-.09	
+ 4.	27	+.14	-.0.	
- 1.6	47	-. 10	-. 03	
-8.6	42	+.03	. 00	
- 14.0	$2:$	+.26	. 00	
- 18.8	15	$+.15$. 00	
-22.3	18	+.13	. 00	
- 28.9	8	-. 05	. 00	

From the final residuals, corrected as in the case of $\mathrm{B} s$ 60, we have (with $m=S$): -

$$
E= \pm^{\prime \prime} \cdot 44
$$

I have considered this large increase in precision to be real, and have adopted the respective ralues of E, as determinct, in constructing the definitise table of weights for Bs 60 and Bs 65.

Residuals in order of right ascension.

Declination limits.$-30^{\circ} \text { to }+50$			$\begin{gathered} \text { Declination limits. } \\ -30^{\circ} \text { to }+40^{\circ} \end{gathered}$		Declination limits.$+40^{\circ} \text { to }+90^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	r_{0}^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"		"
1	11	- +.35	4.3	+. 16	20	-. 03	63	+. 08
3	13	+. 55	2:3	+. 39	7	+. 10	30	+. 32
5	13	+.19	$: 37$	+ . 35	7	+-. 13	44	+.32
7	5	+.00	$\because 8$	+.32	;	- . 20	31	+.31
9	7	. 40	28	+-.14	10	+. 29	38	$+.18$
11	12	+-.10	36	+.20	13	+.20	54	+.93
13	26	- $\because 0$	is	-. 06	10	+. 10	43	-. 03
15	20	+.14	41	. 00	13	$+.07$	54	+. 01
17	10	-. 06	44	-. 04	1.5	-. 11	59	-. 06
19	13	-. 05	45	-. 15	7	+. 19	52	-. 13
21	$\because 1$	+.05	43	+.05	19	-. 07	62	+.01
23	16	-. 08	34	. 00	8	-. 34	42	$-.06$

For further explanations see Bs 60.

$$
\text { Ps } 66 .
$$

Resinuals in order of Ieclination.

Meau \&	π	r_{0}	10	
a		"	"	
+ 57.1	16	-. 32	-. 20	
$+71.7$	7	- . 10	-. 0	$\bar{\varepsilon}_{1}=2$
+ 70.9	5	-. 15	-. 13	
+ 60.0	5	-. 19	- . 12	
+615.9	19	+-.01	-. 03	
+ 50.	19	$+.07$. 10	
+ 0.0 .4	90	$+.14$	-. . 01	
+ 4\%. ${ }^{\text {a }}$	27	-. 13	-. 07	
- : 4.4	26	-. $\because 10$	-. 15	
- $\because 2.9$	31	-. 19	-. 16	
+ :7.4	47	-.06	-. 10	
+ 21.8	¢1	-. 03	-. 06	
$+11.7$	S	-. 11	$-.16$	
+ ! 1.1	\%	--.89	- . $\because 5$	
+ 1.1	\cdots	- . $\because 2$	-. 87	
- 1.8	4	-. 21	-. 94	
- $\quad .5$	41	- $\because 5$	$-.19$	
-11.1	11	$+.01$	-. 00	
-1.7	19	-. 11	+. 但	
- 21.9	13	$+.11$	+. 11	
- 23.0	1.5	+ . it	+ . 89	

In the same manner as with Ps 64 , we have:-

$$
E= \pm{ }^{\prime \prime} .41
$$

$\pm .39$ is adopted, as preriously explained.

Residuals in order of right ascension.

Declination limits.-300 to $+5^{\circ}$			Declination limits.$-: n+400$		Declination limits+400 to $+900^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean α	π^{\prime}	r_{0}^{\prime}	*	10^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"		"
1	8	$+.35$	45	-. 08	18	+. 18	63	. 00
3	10	\cdots	2	-. 21	13	+. 18	35	$-.07$
5	16	$+.10$	42	+.26	8	+.05	50	+.26
7	3	+1.40	36	+.28	0	. 00	36	+.28
9	4	+. 30	33	$+.11$	8	-. 04	41	$+.08$
11	10	+.52	32	+.24	16	+.13	48	+.20
13	22	+.14	31	+.10	11	- +.37	42	+.17
15	16	$-.15$	40	-. 17	12	+. 27	52	$-.07$
17	9	+.39	35	-. 20	9	+.03	44	-. 15
19	19	-. 11	45	-. 21	10	-. 64	55	-. 29
21	16	$-.08$	46	$-.14$	16	-. 22	62	-. 16
23	20	$+.04$	36	$+.03$	7	-. 31	43	-. 02

The discussion of correction is given nnder Ps 56 .

Bn 66.

Each value of r receises weight one.
Residuals in order of declination.

M4.an δ	π	r_{0}	C_{0}
\bigcirc		/	"
+ 85. 6	3	$+.34$	$+.41$
+ 76.3	4	$+.47$	$+.67$
+ 71.0	(+. 82	$+.71$
+60.1	3	+.72	+.5\%
+ 62.0	5	+.26	$+.25$
+ 56.0	4	-. 45	-. 23
+50.6	10	-. 55	-. 54
+ 45.4	6	-. 63	-. 59
+ 39.2	3	-. 63	-. 56
+ 32.8	5	. 27	-. 45
+ 27.0	5	-. 58	-. 32
$+20.7$	9	-. 19	-. 25
+ 15.0	4	-. $4: 3$	-. 20
+ 9.11	8	. 00	-. 21
+ 4.1	4	-. 34	-. 2 2
- 1.3	8	-. 36	-. 35
- 8.2	4	-. 35	-. 40
- 14.0	2	$+.05$	-. 40
-18.7	3	-. 76	-. 40
-20.5	3	-. 4^{-}	-. 40
-28.8		[+.51]	$[-.40]$

The correction in order of derlimation, as well as right ascension, appears to re produce in proper proportion and with opposite signs the peculiarities noticed in the correction for Bradley's declinations.

Residutls in order of right ascension.

Declination limits. $-: 300^{\circ} 10+6^{\circ}$			$\begin{gathered} \text { Declination limits. } \\ -:: 00 \text { to }+10^{\circ} \end{gathered}$		Declination limits.$+40^{\circ} 10+90^{\circ}$	
Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	π	$r_{0}{ }^{\prime}$	π	$r_{0}{ }^{\prime}$
h.		"		"		"
1	2	-. 30	6	-. 80	5	+.14
3	\because	+.	4	$+.37$	2	+. 10
5	3	+.13	6	$+.07$	1	$+.08$
7	"	+. CO	5	+.43		
9			3	+.03	1	+.12
11	\because	-1. 615	6	+.67	4	-. 33
13	4	+ . 12	6	. 00	2	+.25
15	2	- . 55	4	-. 45	4	-. 30
17	1	- . 30	4	-. 10	5	$-.14$
19	$\stackrel{\sim}{8}$	-. 6.4	4	-. 31	\because	$+.90$
21	1	$+.10$	5	-.33	6	-. 30
23	4	$-.10$	5	-. 06	3	-. 03

The "Northern stars" were redneed on other principles than those adopted for the zone -31° to +400 . Anedanderhas given (in Volume V L. of the V. J. S. der Ast. Ges., 1. 100) the results of a very carefnl companison of the difternce of declination between Gh 64 and Bn G6. He finds (p. 114, ilhid) for the zone -300 to +100 :

$$
\text { (1) }-{ }^{\prime \prime} .4 .5+0^{\prime \prime} .313 \sin \alpha-0^{\prime \prime} .201 \cos \alpha
$$

as the difference "Gr. - Bom." From the abore table, declination limits - 30° to $+40^{\circ}$, 1 find:-

$$
(2)+0^{\prime \prime} .309 \sin \alpha-0^{\prime \prime} .151 \cos \alpha
$$

as the correction to Bn 66. This coincidence bet ween the petiodic terms of (1) aud (2) temds to prove that the diserepancy between Gh 64 and Bn 60 is almost wholly due to entor of the latter.

Thking the uean epods of the eatalogues noon which are based the dechations of Wolters Tabulte Reductionum (also Eerlin Jehrbuch, on which Adgelander's (1866) deci-
 eror, proceding arombing to hight acemsion, we wall have as the correction to these

$$
\frac{\because 4}{\#} \times\left(+{ }^{\prime \prime} .4 \sin a+{ }^{\prime \prime} .17 \cos a\right)=+{ }^{\prime \prime} .3 \pi \sin a+{ }^{\prime \prime} .06 \cos a{ }^{*}
$$

Considering the great umertainty of the intividual positions of Wolfers catalogue
 the detiative eorrection dor the zone $-30^{\circ} t o+40^{\circ}$. The Northern stars appear to reguire no such comection.

With $m=s$, wheres:

$$
E= \pm^{\prime \prime} .: 31 .
$$

[^28]
Re 66.

Owing to the extreme nncertainty of the individual corrections, the eomparisons with definitise eurves are of litte interest, and for convenience they are here omitted. The residaals were all plotted on a single sheet, so that peculiarities common to all the years were easily detected.

Residuals in order of dectination.

$$
\frac{\varepsilon}{\varepsilon_{1}}=\because
$$

Mean δ	Re 62.		Re 63.		Re Ct.		Tefor.		Rego.		Regat.		Te 68.		Re 69.	
	π^{\prime}	r_{0}	π^{\prime}	r_{0}	π^{\prime}	r_{0}	π	r_{0}	π^{\prime}	γ_{0}	π^{\prime}	r_{0}	π^{\prime}	r_{0}	π^{3}	r_{0}
\bigcirc		"		"		"		"		"		"		,		,"
+ 87	31	-.	38	. 12	: 4	+ . 3	27	+.81	$\because 2$	$+.84$		+. 16		. 10	36	+.05
+ 26	12	-. 10.3	8	-1.41	18	+ . $: 19$	8	+. 91	8	+1.4i		-. 01		$+.05$	$\because 1$	-. 04
+ 70	. 5	$+.60$	8	- . 5.5		-.43	4	+1.30	\checkmark	+1. 3		+.15	28	+. 74	41	-. 03
+ (洨			2	-. 15	4	+ . 30	5	+ . 5.3	~	+1.40		+. 01		-. 47	17	-. $4 x$
+ 6	5	-1.59	4	-1.60	17	-1.09	1.	+.11	4	+1. 60	il	-. 10	$\therefore 1$	+.02	$3{ }^{3}$	-. 11 i
+ 56			1	-3. 10	7	. 93	1	+1.00	3	+ . 80		-. 17		. 34	49	. 10
+ 81	6	-1.60	1	-1.00			6	-. ${ }^{\text {dex }}$	5	+1.90	17	-. $2 \times$		-. 16	36	-. ${ }^{41}$
+ 45	5	-1.50	1	$+.60$!	-1.10	\because	+1.03	9	+. 14	0	-1.03		+1. 26	: 2	-. 44
+ 39	4	-1.45	6	+.00			1	. 37	,	--6:3	1.1	. 5.5		. 40	\because	\cdots
+ 32	17	-1. 5.7	13	- . 37	10	-.5	20	-. 53	24	- -43	1 \because	- . 10		-. 01	$\because 4$	- 3.75
+ 27	52	-1.:31	41	-. 6 :	:33	-. 60	$\because 4$	+.02	41	- . 115	$3:$	-. 59	. 30	+. 12	5%	$\therefore 9$
+ 21	44	-1.51	52	-1.15	32	-. 43	27	+. 11	41	-. 50	S\%	- . 51		+.12	$: 34$	- . 3
+15	58	-1.88	56	-1.82	24	-. 45	$4: 3$	-. 40	44	-. -8	:	- . 56	37	-. 15	5.1	- . $\mathrm{in}_{0}{ }^{\text {a }}$
+ 9	66	-1.c0	63	-1.16	:3	-. 49	54	-. 41	5%	-1.29	16	-. 98		$+.04$	$\square 1$	5.5
+ 4	:30	-1.44	28	-. .37	21	+.43	2	-. 16	1.9	-. 617		-1.cu		-1.14	18	5
- 1	31	- . c.	40	$+.15$	24	+.07	景:	+. ${ }^{3}$	- 31	-1.16		-. 07		-. 71	9	-. 70
- 8	34	-. 61	31	-. 27	18	+ . . ${ }^{\text {li }}$	314	+. 16	$\because 1$	-. 515		- . E:		-.64	19	-. $\because 4$
-14	12	-.33	18	-. ${ }^{1} 1$		+.53	15	- 50	$1: 3$	-1. 111		+.co		+.43	10	4
- 19	10	+. 01	10	-. 16	c	-. 45	9	+. 72	10	-1.80		-1.18		-1.1.	7	.67
- 2.2	11	- . 138	16	+. 14	7	+ . 46	8	-. 48		-1.96		-1.20		+. 30	7	-. 5
-28	10	+2.85	-	$+.83$	4	$+.10$	3	$+.06$		- 28.6		-		. 66	10	$+.15$

For the earlier years the curve of correction for star: from +350 to +900 is necessarily largely ideal.

With varions values of m, I deduce roughly .

$$
E= \pm 1^{\prime \prime} .1
$$

From Re $2 \boldsymbol{2}$, we have :-

$$
E= \pm " .9
$$

The mean $\pm 1^{\prime \prime} .00$ is adopted in forming the definitice table of weights.

Residuals in order of right esecusion.

Mean a	Re 6)		Re 63.		Re 64.		Re 65.		Re 60.		Re 67.		Re 68.		Re 69.	
	4	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{1}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	10^{1}	τ^{\prime}	$r_{0}{ }^{1}$	π^{t}	$r_{0}{ }^{\prime}$	π^{\prime}	$\mathrm{ra}_{0}{ }^{\text {a }}$
h.		"		"		"		"		"		"		"		"
1	37	+.15	37	$-.11$	is	-.85	44	+. 53	40	+.05	33	-. 04	40	-. 19	61	$+.17$
:	15	-. 04	21	-. 30	11	+.04	16	+ . 24	19	+ . 2:2	¿1	-. 89	8	-. 29	18	+.28
5	37	+ . 29	31	-. 18	12	-. 0.0	\because	-. 06	50	+.18	24	-. 19	26	$+.79$	$\because 1$	+. 13
7	: 3	+. 41	$\because 6$	+. 30	29	-. 39	$\because 1$	-. 36	36	-. 43	30	-. 19	\because	+. 67	24	-. 28
9	$\because 7$	+.52	26	-. 50	19	-.0i	14	+. 13	11	-.02	16	+ . 35	11	-. 05	39	$-.10$
11	$\because 6$	+.09	3.1	- . ${ }^{4} 4$	28	-. $: 5$	$\because 7$	-. 03	2:	-. 12	38	+ . 37	27	+.39	57	-. 05
13	$\because 7$	+.06	80	+.20	17	- . 35	17	-. 21	$\because 1$	+.12	30	$+.03$	$\because 1$	-. 04	52	+.20
15	5	-. 11	45	+. 10	31	+.15	4	-.02	:3	+. 18	44	+. 27	46	-. 06	69	+. 11
17	83	-. 65	45	+. 17	15	+.31	31	-. 98	45	- . $\because 5$	46	+. 00	43	+.0:	85	-. 06
19	51	-. 48	43	+..34	33	+ . 31	37	-. 66	38	-. 58	35	+.12	:30	-. 28	74	-. 15
$\because 1$	54	$+.13$	52	-. 017	-0	-. 19	53	$+.17$	31	$+.19$	32	-. 39	38	-. $\because 1$	50	$+.16$
83	34	-. 04	39	+.33	37	$+.50$	41	$+.44$		$+.31$		$-.08$	29	-. 88	40	+. 11

There appears to be no consistent, well-defined correction depending on A.P. The division into zones proved equally mavailing for the discovery of such a correction.

Le 67.

Each value of r receives weight one.
Residuals in order of dectination.

Mean δ	π^{\prime}	$r 0$	C_{0}
\bigcirc		"	"
+ 80.7	5	$+.38$	+.38
+ 76.8	4	+ .83	+. 07
+ 71.0	6	$+1.20$	-1.99
+66.4	5	+1.18	$+.93$
+ (i0). ${ }^{\text {a }}$	13	+	+.74
+ 56.	8	+ . 36	$+.52$
+50.9	14	. 010	+
+ 4\%.6	11	- . $2:$	-. 01
$+40.1$	11	$+.10$	-. $\because 3$
-1-33. 2	\checkmark	- . 09	$-.40$
+ 27.5	9	-. . 49	-. 50
+ $21 . \ddot{\sim}$	10	-..1	-. 5.5
+ 15.	11	-. 48	-. 5.3
+ -.8	13	-. .83	-. 46
+ 4.0	7	- . 35	-. 4 \%
- 1.7	11	- . 54	-. 4 :
- E.ib	7	- . 51	-. 43
-14.0	\because	- . 20	-. 10
- 1-.7	:	. 00	- . $2 \cdot \mathrm{l}$
- 20.5	3	- . .i3	-. $\because 4$
- 2-. ${ }^{\text {c }}$	1	-. . 40	-.0.

With $m=s$, we have:-

$$
E= \pm " .27 .
$$

Residuals in order of right aseension.

Declination limits.$-30^{\circ} \text { to }+5^{\circ}$			$\begin{gathered} \text { Declination limits. } \\ -30^{\circ} \text { to }+40^{\circ} \end{gathered}$		Declination limits. -30° to $+90^{\circ}$	
Meana	π^{\prime}	r_{0}^{\prime}	π^{\prime}	$\cdots{ }^{\prime}$	π^{\prime}	$r_{\text {a }}{ }^{\prime}$
h.		"		"		"
1	2	-. 05	10	. 00	18	-. 03
3	3	+.07	5	+. 12	8	-. 04
5	4	+.25	10	+.14	17	$+.16$
7	2	. 00	7	+. 01	3	-. 01
9	1	. 00	5	+.22	10	$+.06$
11	3	+.10	8	. 00	17	-. 15
13	5	-.28	7	$-.33$	10	$-.12$
15	2	+.05	7	$+.14$	14	- +04
17	1	+. 10	7	+. 21	15	+. 16
19	3	+.20	10	$+.07$	18	+. 04
21	2	$-.30$	8	+. 09	16	+.03
23	4	-. 20	\checkmark	-. 19	12	$-.14$

Ln 67.
Each value of r receives equal weight.
Residuals in order of deelination.

Mean δ	π^{\prime}	r_{0}	C_{0}
\bigcirc		"	"
+86.7	5	$\pm .00$. 00
+ 76.8	3	+. 04	-. 01
$+69.9$	1	-. 22	-. 05
+ 66.3	3	-. 16	-. 09
+60.7	10	-. 3	-. 16
-1. 56.4	7	- . $\because 0$	-. 21
+ 51.1	$1: 3$	-. 25	-. 24
+ 45.6	10	-. .33	-. 26
+ 40.0	11	-. 09	-. 26
+ 83.6	5	-. 26	-. 26
+27.2	8	-. 21	-. 26
+ 20.7	7	-. 40	-. 26
+ 14.5	9	-. 2	-. 24
+ 8.6	11	-. 37	-. ${ }^{2}$
+ 3.9	5	-. 19	-. 16
- 8.8	6	+. 06	-. 09
- 8.6	6	+. 17	$+.01$
- 14.1	3	-. 14	+.09

With $m=4$, we have:-

$$
E= \pm^{\prime \prime} .137
$$

The weight (on the adopted scale) from this ralue of E is 4.8 As the fundamental and cirenmpolar stars are, without doubt, more exactly determined than others at Leiden, to them in definitive discussion, is assigned weight 5.0 , and to all others weight 4.0

Resiluals in order of right asconsion.

Declination limits. -30° to $+5^{\circ}$			Declination limits. -30° to $+40^{\circ}$		Decliuation linuts.$-30^{\circ} \text { to }+90^{\circ}$	
Mexana	π	$r_{0}{ }^{\prime}$	\sim^{*}	30^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$
\%.		"		$1 /$		"
1	1	+. 46	11	-. 05	23	-. 01
:	8	-. 2 e	4	-. 21	14	$-.02$
5	:	$+.01$	14	$+.01$	29	-. 03
\%			8	+.0s	13	+. 11
9	2	$+.17$	8	+.02	11	-. 03
11	\because	$+.118$	6	-. 015	\because	$+.01$
1:3	2	+.05	4	+.08	$1: 3$	-. 05
15	3	-.18	11	-.05	23	-. 01
1%	\%	-. 118	2	-. . 01	89	-. 05
19	4	$+.19$	16	$+.14$	$: 3$	+.07
:1	6	+.118	- 16	+. 11	85	+.03
?3	4	+.33	1:3	$+.07$	$\because 4$	+..06

Me 68.
Fesiducts in order of aeclination.

Meaus	π^{\prime}	x_{0}	C_{0}	
\bigcirc		"	"	
+ 40.0	\because	$[+1.8]$	$+1.2$	${ }_{-}^{\varepsilon}=9$
+ 4-5. 8	11	+1.1	$+1.10$	$\bar{\varepsilon}_{1}=2$
$+2.60$	$1:$	+ . 10.3	+.61	
+ 32.3	$11 i$	+ 4.47	+ . 29	
+ 2.4	: 1	+ .16	+ . 011	
$+\because 1.1$	41	- . 06	- .11	
+ 14.6	4.1	- . 46	- . 15	
$+8.8$	5.11	-. .03	- . 15	
+ 1.4	:	-.12	-. 15	
- 1.3	::1)	-. 09	- . 17	
- \quad - 0	:31)	- $\because 4$	- . 20	
-14.4	17	-..11	- . ${ }^{5}$	
-1-.8	$1: 3$	-. 06	- . 29	
-	11	- . 4.0	- .31	
- $\because-.1$	17	- . 3	- . 34	
-:3.8	\because	- . ${ }^{7}$	- . 38	
-4.1	8	-.4-	- . 39	
- 51.1	\because	$\div .109$	- . 34	
- 5.2	7	- . 3	- . 23	
- 3 - 1	\%	-. 05	-. 09	

W"ith $m=$. We have:-

$$
E= \pm^{\prime \prime} .47
$$

Dr. Gyblen found, from the results of 186:-"'s:-

$$
\left.* E=\sqrt{(0.26)^{2}+\frac{1}{n}\left\{0.203+0.0166\left[\begin{array}{c}
1011 \\
100
\end{array}\right]\right.}\right\}
$$

This wonld give nealy \pm " f as the probable error corresponding to E above.
As it is proballe that in later work the aremacy of observation improved, the value for $E, f^{\prime \prime} . \operatorname{li}^{-1}$, is allomed to.

Residuals in order of right ascension.

$\begin{aligned} & \text { Declination limits. } \\ & +50^{\circ} \text { to } 30^{\circ} \end{aligned}$			Declination limits. +50 to $+30^{\circ}$		Declination limits.$-30^{\circ} \text { to }+40^{\circ}$	
Mean ${ }^{\text {a }}$	π	$\gamma_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	8	$+.05$	24	$+.15$	32	$+.11$
3	12	. . 10	8	$+.15$	20	. 00
5	16	$+.10$	24	. 00	40	+.04
7	10	-. 15	16	-1.50	26	-.03
9	4	-. 30	12	+. 20	16	+.07
11	9	+.12	20	-. 10	$\because 9$	-. 03
13	23	- . 02	8	-. 10	30	-. 04
15	20	+. 25	20	-.08	40	$-.19$
17	10	$+.15$	20	-. 14	$: 30$	-. 04
19	10	-. 10	26	. 00	$: 16$	-. 03
21	13	-. 19	27	+.06	30	-. 03
23	13	$+.03$	1:	-. 43	30	-. 16

For further remarks see Section V., comparison of Me 68 and Wn 68.

> Wn is.

The weights are adopted from the disenssion in Section V .
Residuals in order of declination.

Mean δ	π	r_{0}	C_{0}
\bigcirc		"	"
+87.0	405	$+.04$	$+.01$
+ 76.5	$1-1$	-. 02	$+.08$
+ 70.7	172	$+.15$	+. 14
+64.7	$1: 1$	+. 10	+. 18
+ 62. 1	73	+ . 84	+. ${ }^{4}$
+ 5.3	66	+. 3	+.82
+ 50.4	1.5	+.42	+.30)
+ 4.5	E4	+ .35	+-.89
+30.1	247	+ . .in	$+.43$
+ 33.	73	+. 41	$+.40$
+ 27.6	406	$+.43$	$+.43$
+ 21.1	:399	+ . \quad-1	+. 52
+11.5	410	+ . 50	+. 56
+ 8.9	594	+. 69	+ . 5%
+ 4.8	200	+. 45	+.58
- 1.3	2:36	+. 76	$+.59$
- 8.7	$: 11$	+.4	+-.60
-14.1	105	- . 5 \%	+.62
-19.1	(8)	+. 51	+.69
- 20.5	109	+. 61	+-.55
- 27.8	107	- .95	+.es

The ralnes of r_{0} would hare been rery well represented by the correction derired in Section V. from a comparison of Wh 63 and Me 68.

I find:-

$$
E= \pm^{\prime \prime} .91
$$

The weights were constincted on a unit whose probable error was supposed to he $\pm 1^{\prime \prime} .00$. The latter value for L is adopted.

Residuals in order of right ascension.

Declimation limits.$-30^{\circ} 10+50$			Declimation limits. -30° to $+40^{\circ}$		Declination limits. $+40^{\circ} 10+90^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	20^{\prime}	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"		"
1	CP	-. 80	350	-. 0.5	17%	. 00	527	-. 03
3	91	-. 50	103	-. 18	2.1	+. 5.4	186	$-.08$
5	-5	+..07	807	-. 02	35	-. 13	$34 *$	-. 03
7	(i)3	+. 17	259	+.03	90	$+.16$	349	$+.07$
9	39	-. 08	2:30	$+.14$	49	- . $: 0$	285	$+.06$
11	4.4	$+.18$	38%	$+.07$	97	-. 04	$4 \cdot 4$	+.05
13	$1!3$	-.1:	2	-. 06	118	-. 14	401	-. 03
1.5	130	$+.0 \%$	351	$+.01$	1×1	-. 02	53	. 00
17	(i8	$+.19$	251	$+.05$	136	. 00	387	$+.04$
19	101	-. 16		-. 21	118	$+.12$	409	-. 12
21	129	$-.12$	203	-.1:	219	+. 18	45%	$+.01$
$\because 3$	133	+.14		$+.11$	140	$+.13$	377	+.12

Gh 70.
Residuals in order of deelination.

Mean δ	π	20	C_{0}	Form.	
0		"	"	"	
+ 86.6	48	-. 15	-. 06	-. 0.0	
+ 70.4	49	$-.51$	-. 19	-. 19	$\varepsilon_{\text {c }}=3$
+ 70.6	59	-. 09	-. ${ }^{2} 4$	-. ${ }^{1}$	
+60.4	: 3	-. 04	-. 20	-. 66	
+61.1	89	-. 31	- . 3	-. 28	
+ 56.6	36	-. 91	-. 36	-. 28	
$+51.1$	71	-. 40	- . 89	-.88	
+ 4\%.6	61	-. 99	-. 41	-. 28	
+ 39.8	E)	-. 5.5	-. 42	- . $\because 9$	
+ 20.9	61	-. 42	-. 40	-. 32	
+ 27.3	87	- . 32	-. 85	-. 36	
+ $\because 1.1$	96	-. $\because 1$	-. 33	-. $4: 3$	
+ 14.6	97	-. 41	-. 41	-. 54	
$+8.9$	$1: 6$	-. 55	-. 54	-. 64	
+ 4.3	51	-. 67	-. 69	- . 75	
- 1.7	73	-1.15	-. 8.8	-. 88	
- 2.7	59	-1.15	-1.15	-1.05	
-11.1	19	-1.05	-1.3-	-1.16	
- 18.6;	15	-1.61	-1.60	-1.25	
-23.6	$\because 0$	-1.18	-1.80	-1.89	
- 27.8	19	-9. 11	-2. 1	-1.4	

The prelimiuary correction $-1^{\prime \prime} .17$ ($\sin ^{3} \approx+-\sin ^{3} \tau^{2}$) found from the fundamental and circmopolar stars is musual ; column "Form" is theretore computed from it in order to show its general agreement with the definitive curve. A slight inerease of the coeticient wonld make the agreement better.

With $m=5$, we have:-

$$
N= \pm " .58 .
$$

This increase over the values of E fomed for Ghat and Gh 64 is most likely due to the error in microseope micrometers, lately discovered at Greenwich.

Residuals in order of right ascension.

Declination limits.$-30 \text { to }+50$			Declination 1 mits.$-30^{\circ} t 0+40^{\circ}$		Declination limits.$-30^{\circ} \text { to }+90^{\circ}$	
Mean a	π	10^{\prime}	$\pi{ }^{\prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"		"		"
1	11	-. 0.3	74	+.01	146	-. 03
3	11	+. 53	33	+.83	46	$+.17$
5	24	$+.11$	70	-. 04	111	+. 02
7	5	+. 28	65	-. 09	74	-. 08
9	7	-. 20	55	+ 003	$8 \cdot$	-. 01
11	17	-. 14	60	$+.01$	121	-. 14
13	33	-. 18	49	-. 02	84	-. 03
15	32	. 00	78	$+.01$	129	-. 13
12	15	-. 17	72	-. 05	133	$+.05$
19	23	+. 40	84	+.09	116	+. 11
21	18	$+.08$	64	-. 03	129	. 00
23	29	-. 33	59	-. 86	84	$-.14$

Re 7.
The corrections for this series of annual catalogues are determined in the same manner as those for Re 66.

Residuals in order of dectination.

Mean δ	Re 30.		Re 71.		Re7 7.		Re:3.	
	π^{\prime}	r_{0}	π	r_{0}	π^{\prime}	r_{0}	π^{\prime}	r^{0}
0		"		"		'		"
$+87$	36	+.21	31	+.97	316	+.	34	+ . 20
+ 76	23	-. 016	19	$+. .20$	20	+.30	$\because 1$	+.63
+ 70	32	+.31	32	+.88	33	+. 46	80	+. 52
+ 65	15	+ •	16	+.97	19	+ . 79	15	$+.85$
+69	45	-. 10	413	+ . $: 8$	46	$+.10$	$\because 8$	+. 31
+ 56	: 8	+ . 33	83	+.0ns	40	+.93	39	$+1.09$
$+51$	35	+.09	28	$+.45$	33	+.42	97	+.39
+45 +	30	+ 20	21	-. 01	19	+ 12	17	+. 59
+39	29	-. $\because 9$	$\because 1$	+. 80	26	+. 17	97	+.03
$+32$:31	-. 66	$\because 0$	- . $\because 3$	30	-. 89	㫛	-. 01
+ 2%	5:	-. 18	$t 0$	-. 39	Sil	-. 29	6.3	$-.35$
+ 21	13	-. 56	44	-. 11	43	- . 02	: 3	$+.17$
+ 15	51	-. 01	51	$+.17$	0.5	+.33	59	+ . 29
+ 9	60	+.4.5	(i0	+. 48	5.1	$+.10$	(i)	+.31
+ 4	$\because 2$	-. 11	4	+ .	94	+. 23	19	-. 37
- 1	26	-. 15	\therefore	+.14	28	+. 37	31	$+.07$
- 8	$\because 5$	-. 40	\cdots	$-.04$	29	$+.13$	13	-. 97
- 11	11	-. 90	9	$+.01$	10	+.15	10	-. 12
- 19	5	-1.01	6	-. 80	3	$+.17$	7	+.02
- 28	G	$-.15$	7	+..30	9	-. 32	5	-1.56
- 23		-1.65	6	-. 38	¢	-. 40	9	$+.12$

We hare:-

$$
E= \pm^{\prime \prime} .9
$$

$\pm 1^{\prime \prime} .00$ is atopted, as presiously explained.

Residuals in order of right ascension.

Dleana	Lee 70.		$R \mathrm{t}^{7} 1$.		Res:.		Re $7:$		Re 62--3.
	π^{\prime}	ro'	π	ró	$\overline{-1}^{\prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	ro ${ }^{\prime}$	$r_{0}{ }^{\prime}$
h_{1}	67	+ 2.03	6.4	- ". 9%	53	+ ". 55	59	+ ${ }^{1} .46$	+ . 10
3	20	+. 03	17	+ .4!	21)	+ . 2	20	+ 8.37	+. 01
5	41	$+.5$	35	$+.37$	$: 36$	-. 14	41	+. 40	$+.19$
7	$\because:$	-.	43	-. 0.5	41	$-.15$	23	+.09	-. 07
9	$2!$	-. 21	32	+ $\because 4$:30	+.15	26	+ . 23	$+.03$
11	(i)	-. 019	5	-. 17	43	- $\because 1$	59	$+.04$	-. 04
13	$: 3$	-. 11	$5:$	-.0.	45	+.013	35	$-.09$	$+.04$
1.7	(i)	-.	76	+-. 10	616	-. 24	69	-. .08	-. 01
1%	71	- . $\because 1$	50\%	+.05	(15)	-. 02	$5!$	-. 46	-.10
19	(6)	+ . $3:$	56	-.	. 0	-. 15	72	$-.45$	-. 1\%
21	7	+.11	50	-.0*	76	-. 01	$6{ }^{\circ}$	$-.02$. 00
$\because 3$	39	-. 09	4.	+. 100	$4: 3$	$+.60$	30	-. 01	$+.16$

For lie 33 there is an apmarently wellmanked conection depending ou α; but as it is not snpported by the results of other rears, I have thought it best to omit the discassion.

Wı
The residuals are computed from the standard places for each sear. In the discussion. $\frac{\Sigma}{z}=3$ is assumed.

Residuuls in order of declimation
DECLINATION SUB POLO.

[^29]The probable error is derived by comparing the corrected residuals (collected as one for each star) with the standard $\Delta \delta^{\prime}$.

With $m=4$, we have:-

$$
E= \pm{ }^{\prime \prime} . \mathrm{st}
$$

Taking ε as found in Sectiou V., and ε, as found for Wn 68 in the same section, we have:-

$$
E= \pm \sqrt{(.70)^{2}+(.25)^{2}}= \pm^{\prime \prime} .74
$$

The agreement is far from satisfactory. The former result, \pm ". St, is arlopted.
The combined results of all the years are nest arranged in order of right ascension.

Residuals in order of right aseension.

Declination limits.-80° to +50			$\begin{gathered} \text { Declination limits. } \\ +55^{\circ} \text { o }+40^{\circ} \end{gathered}$		Decliuation limits.$+40^{\circ} 10+90^{\circ}$		$\begin{aligned} & \text { Declination limits. } \\ & -30^{\circ} \text { to }+90^{\circ} \end{aligned}$	
Meau a	π^{\prime}	$r_{0}{ }^{\prime}$	$\pi{ }^{\prime}$	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	$r{ }^{\prime}$
${ }_{1} \mathrm{l}$	39	$+.31$	162	+. 16	E8	11 $+\quad .37$	989	+ 05
3	15	+.01	40	$\pm .18$	3	$\pm .07$	90	+.10
5	64	-. 35	109	+.23	24	+. 5	197	+. 04
7	33	$+.15$	119	+. 15	42	-. 36	194	-. 0.2
9	20	-. 13	48	-. 14	19	-. 0 s	1:7	$-.13$
11	58	--. 16	131	-. 09	36	$-.57$	295	-. 18
13	119	$-.05$	53	+ -	60	+.12	-	+..n
15	87	+.03	121	+. 16	100	+. 01	305	+. 03
17	33	$-.05$	11.3	$-.29$	80	+.03	296	$-.14$
19	64	$\pm .01$	148	$\pm .01$	70	二.02	2-2	+.00
${ }_{2}^{21}$	68	$\underline{+}$	62	-. 10	111	-. 14	241	-
23	69	+. 05	51	$+.39$	2	-. 17	147	+. 13

As shown nuder Wh 68, the corrcetion in order of A. R. found for the deelinations of the mural cirele is peculiar to that instrument or observing room alone.

The following tables exhibit the results dednced for systematic correction and weight of the rarions catalogues.

TABle IX.-Corrections to declinations.
ORDER OF DECLINATION.

t biblern's redactina.
\$ A sumall mimns curtertion dealneal.
 l'os. MCd.) laxe bepa added.
** The eorrection fur E II 31 is alphicable alirectly to the catalogne results an rednced with Yonner's: reftactions.

 of this cormetion mant be admed to the almere.

Table IX.- Corrcctions to declinations-Continued.
ORDER OF DECLINATION.

* To the declinations of years 1836 and 1837 - " 09 was added before deriving the abore.
t Applicable to declinations as reduced in this praper (1 pr, 27 to $3:$).
\ddagger To declinations of Win 1 sth, -".25 was first aded for error of assumed latitnele, before derinmin the above table.
$\|$ The correction - " 43 wats first applied to all declinations on the : anthonity of latitude disenssion made in this paper (p.26). The true correction to catalorne-plares is therefore - ". $4:+$ valucg tak+11 from the above table for Ce 4^{2}.

Table IX.-Corrections to declinations-Contitued

ORDER OF DECLINATION.

* The comection for ermor of asmmed latitade, flexare, division, \& c ., given in the introluction to the Willizastown catalogne, mast also bo applied. The frue correction is, therform: Cortect on taken from introduction Me fie + eorrection of abovo table.
t To the eatalogne declinations from direct observations above pule for 1 whi and 1 age was lirst
 secerding as the dechation results from ohservations above or below the pule. The actald correction is, therefore: Thise quantities + corrections from above table.

Table IX.-Corrections to declinations-Continued.
ORDER OF DECLINATION.

*Applicable to declinations derived in this paper (Section V.).
\dagger Applicable to declinations of sonual catalognes atter eorrection, as explained in Section V .
\ddagger As exphaned elsewhere the correction, $+^{\prime \prime} .5$, to the declinations of 1874 , south of Wu. zenith was neglected by accident for stars south of -120 declination, and tbe error discovered too late to be corrected in the succeeding results. As actually used in making np the idfinitive $C_{\text {, }}$ of the final dis.

Table IX.-Corrections to declinations-Continned.
RADCLIFPE ANNUAL CATALOGUES.

δ	62.*	63.	64.	6.	66.	(i\%.	68.	69.	80.	81.	2.	73.	δ
\bigcirc	"							"	"	"			
+90	00	00	+. 40	+.. 10	+.74	00		00	$+.10$	+. 23	+.17	. 00	$+!6$
+-5	-. 26	$-.17$	2	+.2i	$+1.00$	00	$+.15$	00	$+.13$	+. 27	+.:3	$+21$	$+\infty$
+ 80		. 34	+. 13	+ . 3	+1.20	00	+. 18	00	. 17	+.31	+.3\%	+. 39	+ ${ }^{-0}$
+ 7	-	-. 5.0	00	+.41	+1.42	00	+. 19	-. 03	+. 19	+. 36	$+.40$	+. 5	+i5
+i0	-. ${ }^{-6}$. 6.2	-. 13	+.40	+1.50	00	+.20	-. 06	+.20	+. 40	+.48	+.67	+81
+65	$-1.0 .3$. 83	-. 26	+ . 31	+1.41	00	$+.18$	-. 12	$+.19$	+.42	+. 50	+.80	$+65$
+	-1.21	-. 81	-. 40	+. 20	+1.21		+.17	-. 23	+. 17	$\pm .44$	+. 51	,	$+60$
+ 55	-1.36	8	-. 50	+.03	+.96	-. 10	+.08	-30	+.12	$+.11$	$+.49$		+55
+50	-1.49	. 90	-. 80	. 03	+ . 6	. 2 2		-. 34	$+.11$	+.35	+.4:	+. 80	+50
+45	-1. 56	-. 90	-. 75	-. 10	+. 47	. 37	-. 06	-. 32	-. 01	+.23	+.33	+. 47	+45
+40	-1. (i)	. 90	. 80	-. 14	+ .201	.46	.10	-. 27	-. 22	+.16	+.15	+.21	+40
$+35$	-1.60	8	. 84	12	-. 02	1	. 09				-. 07	-. 02	+33
+30	-1.52		-. 62		. 14	. 47	$+.03$	-. 28	. 63	-. 27	-. 21	- 13	$+30$
+	-1.51	-1.00	-. 55	. 15	-. 30	-. 49	+. 13	-. 33	. 65	-. 5	-. 17	-. 016	+25
+20	-1.60	-1.20	-. 50	. 21	-. 51	-. 58	$+.07$	-. 48	. 40	-. 10	+.08	$+.10$	+
$+$	-1. (ie	-1.80					-.06	-. 62	00	+. 20	+.30	$+.21$	+15
+10	-1.68	1.20	-. 42	. 12	-1.00:	-. 68	-. 10	-. 66	$+.26$	+.40	+. 41	+.23	$+10$
$+5$	-1.54	-	.20	20	-1.11	-1.00	-. 10	-. 56	$+.20$	+.ab	$+.40$	+. 11	$+5$
0	-1.14				- . 03	-. 68	-. 10	-. 47	00	$+.1$. 30	-. 09	0
-5					-. 01	. 34	. 20	-. 40	.	+. 02	+. 15	-. 26	-.
-10	-. 59	+.02	+. 66	$+.53$	-1.0ti	-.79	-. 33	-. 40	-. 31	-. 11	+. 0.1	-. 34	-10
-15	-. 43	+.09	+. 50	+. 62	-1.30		-. 51	$-.40$	-. 65	-. ${ }^{2} 4$. 12	-.35)	-15
-20	-. 30	+.13	+...	$+.80$	-1.6\%	-1.0.	-.67	-. 40	-. 80	-. 34	-. 11	-. 30	- ${ }^{10}$
-95	-. 20	$+.16$	+. 6	$+.90$	-1.83	-1. 哭	-. 8	$-.35$	-.90	- 40	-. 90	25	- -
-:30	$-.10$			+1.00	-2.10	-1.40	-1.00	$-.30$	-1.00		-. 25	0	-

cnssion of declinations, We 74 was used as ahove from $+90^{\circ}$ to $+155^{\circ}$. From that point the corrections were virtually computed aceorling to this table:

δ	Corr.	δ	Curr.
\bigcirc	"	0	"
+10	$-.78$	- 15	-. 99
+	-.72	- 20	-. 87
(14)	-.65	- 25	-. .55
- 10.5	$-.55$	- 30	-. 34
-10	-..38	- 5	-. 13

That is, as actually used, a declination of W_{n} it $\left(+10^{\circ}\right.$ to - $\left.35^{\circ}\right)$, ax wen in the catalogue, was corrceted by +". 8 + the values giren in this table.
 lee bif are deserving of little confidence.

Table X.-Corrections to declinations.
ORDER OF RIGHT ASCENSION.

n		$\stackrel{8}{7}$	$* 3$	$\begin{aligned} & \dot{x} \\ & =0 \\ & =0 \end{aligned}$	\%	$\begin{aligned} & \text { 第 } \\ & \text { 化 } \end{aligned}$	$\underset{\sim}{\sim}$					$*$ $\stackrel{*}{*}$ $\stackrel{\sim}{*}$	a
h.	"	"	"	"	"	"	"	"	"	"	"	"	h.
0	-. 18	+. 40	+.47	+. 32	-. 15	+. 13	-. 19	-. 12	-. 18	-. 05	+. 01	-. 15	12
1	-. 04	+. 25	+. 53	+.33	-. 11	$+.08$	-. 19	-. 17	-. 12	00	+.0.	-. 61	13
2	+. 11	$+.08$	+. 55	+. 40	-. 06	+. 03	-. 19	-. 21	-. 04	+.0.	+. 09	+.02	14
3	+.25	-. 09	+. 53	+. 40	-. 00	-. 02	-. 17	-. 23	+. 04	+. 10	+.1:	+. 11	15
4	+. 37	-. 26	+.47	$+.37$	+. 06	-. 07	-. 14	-. 24	+. 12	+. 11	+. 15	+. 19	16
5	$+.46$	-. 41	$+.39$	+.32	+. 11	-. 12	-. 09	-. 24	+. 19	$+17$	$+16$	+.23	17
6	$+.53$	-. 53	+.27	+.24	$+.15$	-. 16	-. 05	-. 21	+. 24	+. $\because 0$	+. 17	+.31	18
7	+. 56	-. 62	$+.14$	+. 15	+. 18	-. 19	00	-. 18	+. 28	+.20	+.16	+. 34	19
8	$+.55$	-. 66	00	+.05	$+.20$	-. 20	+. 05	-. 13	$+.30$	$+.19$	+. 11	+. 34	20
9	$+.50$	-. 66	-. 14	-. 06	+. 21	-. 20	$+.10$	-. 67	+. 30	+. 17	+. 12	+.33	21
10	+. 49	-. 69	-. 37	-. 16	+. 20	-. 19	$+.14$	-. 00	+. 28	$+.14$	+.63	+. 29	2
11	$+.31$	$-.53$	-. 39	-. 25	+.12	-. 16		$+.06$			+.04	+ 23	\because
12	+. 18	-. 40	$-.47$	-. 32	+. 15	-. 13	+. 19	+.12	+. 18	+. 05	-. 01	+. 15	$\because 4$

Note. When a is taken from right-hand ($1 \times h$ to $g t h$) the signs of the table are reversed.

* Tbe corrections for Ce 40 and Bn 66 are applicable only within the dechnation limits -30° to $+40^{\circ}$.

In compnting from the valnes of E, given in the preceding pages, the definitive weights to be used in the final discussion, $\pm{ }^{\prime \prime} .30$ was taken as the probable error of tho unit, and 5 (corresponding to a probable error of $\pm^{\prime \prime} .134$) as the maximmm weight. Weight .05 is used in a few cases. As the probable errors are nomewhat uncertain, especially in their respective retation to umber of observations, only the denominations of weight presented in the table were actually used.

For conrenience, a few weights deduced in Section IX. are also collated liere.
With the "Catalogne" as an argument, the corresponding horizontal line is followed until the number of observations is reached, or, at least, the limits which include it. At the top of the column is fonnd the corresponding weight.

The second argument is, however, often a probable error (as Kg 21, Dt 24, etc.), or weight resulting from the system of compiation (as with Ce 40, Eh 43, ete.).

Table NI.-Weights used in discussion

of definitive deelinations.

Note 1.-The Ponlkova ohservations are weighted aceording to tho probable errors given on jp. (24) and (30) of introduction (Vol. V.). The weight is slightly reduced in two cascs. Following is the table of wights. Between $+55^{\circ}$ and $+65^{\circ}$ declination, when the observations are above the pole, the weights of the first line are multiphied by . 4 :

δ	1 obs.	2 olse.	4 olus.	8 ohs.	16 ous.
+400 to 55° and 65° to $=0^{\circ}$	1	\because	3	4	5
+ 30 or +30 .	1	\because	3	4	\%
+ 0_{0} or +20 s. P .	1	\because	3	4	5
+ 100 or $+700 \mathrm{s.P}$. 8	1.5	9.5	8.5	4
+ $000 \mathrm{or}+100 \mathrm{S.J}$. 5	1.0	1.5	$\because 5$	3.5
- 100 or $+50^{\circ}$ S. P.	. 3	. 5	1.0	1.:	3.5
-150 or $+4.5 \mathrm{S.1}$.	$\stackrel{2}{2}$.3	. 7	1.0	2.0

Note 2.-When the zenith listance of a star observed at a given ofservatory is greater than 7u the above weights are multiplied ly the following arbitrars mumers:

Z I	Factor.	$Z D$	Factor.
\bigcirc		\bigcirc	
70	1.0	86	\therefore
71	. 9	\because	. 4
7-	. 8	78	. 3
78	. 7	79	. 3
74	. 6	co	. 2
75	. 5		

Note 3.-lu using the later Greenwieh eatalognes (Gh54, 64, and 70), Ps 64 and Ps 66, and Bs 60 and Dis 65, a considerable modification of the above weights takes place, whenever the same star is observed in two or more series at each observators. The maximum weight given to Gh 57,64 , and 50 combined, is 7.0 ; to Ps 64 and $\mathrm{Ps} 66,4.0$; ind to Bs 60 and $\mathrm{Bs} 65,5.0$. Where the combined weights were smaller than these totals, arbitrary reductions of each are made; these reductions being proportionally less, tho fower the obserrations. This course is taken beause, strietly speaking, the catalogues of the respeetive gronps are really barts of the samb series and have to fome extent the same errors. Of course, when either of the abore-mentioned catalognes stands as the sole representative of its observatory it receives the mill tabular weirht. In a less dogree this reduetion of weights is appleable to gronjs of catalegnes not ineluded in the above enumeration; but in all sneh cases it is believed that the reduction of weights required is without practical consequence to the fual result.

With the values of C computed in Section V., and with the corrections and weights of Tables IX., Σ., and XI., the detinitive values of $J i$ and $J \mu^{\prime}$ are next computed for 436 stars. a and o Crse Minoris are allowed to stand as first computed, and 62 others are reserved until systematic corrections shall have been derived for certain authorities from the defnitive plates.

The conditional equations are so constructed as to give j if for 1875. Much care has been exercised in these compntations, and the usmal checks have been faitufully employed.

Column $C_{1 /}$ in "Details of Corrections to Assumed Declinations" is computed from C, by the addilion of correetions taken from Tables $I X$. and X. Cohmm - is nest formed from Tabie XI., subject to the limitations expressed in motes 2 and abore. The epochs are taken from colum "Cat." The resulting values of sia and du' are
given in the catalogue at the end of this paper. With these, column r, is computed from the expression:-

$$
\Delta \delta+\Delta \mu^{\prime}\left(\frac{T^{\prime}-1875}{100}\right)-C_{1}
$$

By the addition of $\Delta \delta$ and $\frac{\Delta \mu^{\prime}}{100}$, respectivels, to the declination and annual variation at the head of the table for each star ("Details of Corrections," ete.), we derive the definitive ralues of those quantities given on the righthand pages of the catalogue.

The probable errors there given do uot result fiom the sums of squares of residnals, but are computed from the weights of $\Delta \delta$ and $\Lambda^{\prime} \mu^{\prime}$; assmming the probable error of the unit to be $\pm .30$. A few trials showed that these probable errors are a little larger, on the average, than those which actually result fiom the sums of squares of $r_{\text {r }}$, In deriving these sums accurately the full weight must be given to each of the catalognes of the Brussels, Paris, and Greenwich series, though as explained (note 3, p. 162), less than the tabnlar ralnes of the weights are sometimes assigued to them.

For the fundamental and principal ciremmolar stars, the probable error of the unit of weight, as it actually results from the residuals of each star, is given below. It will be seen that in the mean it is moch smaller than the standard, $\pm " .30$, to which it should corresjond. The difference is not so great for the remaining stars.

Probable errors of unit of π, derived from calues of r_{r}.

a Andromedas . . 士. ${ }^{\prime \prime} 4$	a Orioms....... ${ }^{\text {a }}$. ${ }_{2} 7$	β Urs: Minoris... \pm.	
γ Pegasi 31	β Geminorum. . . 23	a Corone Borealis . $0^{\text {a }}$	\% Aquilæ..-... . 24
¢ Cassiopere.... . 25		a Serpentis ${ }_{\text {S }}$;	a Cyrui...... . 25
a Arietis 23	a Leonis- . 30	\% Ursio Minoris... . 89	a Cephei ${ }^{4} 4$
a Ceti.......... . ${ }^{5} 5$	a Uuso Majoris . . ${ }^{\text {a }}$	7 Draconis 24	β Cephei...... . 24
a Persei23	β Leonis 23	a Herculis...... . 32	a Arpuarii 28
a Tauri 30	γ Ursa Majoris . . 31	a Ophinchi...-.-. .24	a Pegasi 27
a Aurigie....... . \because	a Virginis...... . ${ }^{7}$	γ Dracouis 26	γ Cephei 30
β Orionis....-. . 23	7 Urse Majoris . . 29	a Lyre 5	
β Tauri24	a Bootis........ . 24	γ Aquilit ...-. . . . 2	

It must be noderstood, of course, that the meertainty of the Normal System is not represented in these probable errors. This uncertainty will vary with the polar distance, being least at the north pole of the hearens, and probably greatest in the zone -20° to -50° declination, or in that vicinity. From - 300 to -90°, with our present means of information, very little can be known of the systematic corrections refurired. But northward, from -10° declimation, we can form an approsimate judgment as to the degree of accuracy attained. I estimate the probable error for 1875 of the Normal System for the Equatorial region to be not greater than \pm ". 15 , and less than this tor any given point between the Equator and the North Pole. By actual computation, using the Equatorial systematic corrections of the 32 catalognes noon which the system is based, with the same weights as were nsed in Scetion V1, we find that the system best corresponds to $\mathbf{1 8 1 7 . 7}$. For that epoch its probable error is \pm ".0n. For 1875 it is $\pm .10$; and for 1900, $\pm^{\prime \prime} .17$. But these probable errors may be somewhat
too small since more than half the determinations are rednced with the same refractions (Bessel's), amb ouly fire* may be regarded as fundamental determinations in a rigorous sense.

It wonld have been for me a pleasint task to have nudertaken, with the help of the places now arailable, a third approximation to the systematic corrections and weights. But the real object of the wom has been already sufficiently accomplished, and the time is not at mr disposal for the purpose. Indeed, some few experiments tanght me that the changes to be therebr induced were likely to be fers and unimportant, except for some of the weights, for whieb the relation to number of observations ean now be ascertained with considerable precision. The systematie correction of one catalogne, Po 1800 , has, however, received a new examination, the results of which bave already been given.

SECTION IN.

CORRECTIONS TO CATALOGUES OF CLASS III.

There are a few additional catalognes either of small weight, or with few observations of standard stars (deseribed moder Class III), which will prove desirable auxiliaries in the computation of \int^{\prime} amd $J^{\prime} h^{\prime}$ for the remaining 62 stars.

These we proced to enmmerate, and under each will be given a brief examination of the sistematic correction required.

The corrections to the catalogue ieclinations were fonnd by subtracting from the detinitive $d b^{\prime}$ for the required epoch the corresponding value of C.

Ms 35.
Weight one is assigned to all declinations, which at Madras depend on more than 5 observations, and for which the weight of a standard declination at 1855 is 1.5 , or more. To all decliuations, from two or three observations at Madras, meight .is is assigned; and the same weight to a fer others from four or five obserrations.

[^30]Residuals in order of deelination.

Mean δ	π^{\prime}	r_{0}	C_{0}
-		"	"
+ 86	5	+ . 43	+.54
+ 78	5	+.62	+. 63
+ 73	10	+ . 92	$+.67$
+69	15	+.76	+.69
+64	12	+.41	+. 64
+ 59	2\%	$+.44$	$+.60$
+ 54	14	+. 59	+ .62
+ 49	07	+.80	+.72
+ 44	$: 20$	$+.71$	+. 70
+ 39	30	+. 47	+. 59
+ 34	17	+.03;	+. 44
+ 30	21	+.6!	+. 26
+ 26	22	-. 05	+. 04
+ 21	34	-. $2 \times$	-. 06
+16	19	-. 88	-. .53
+ 11	14	-. 50	-. 66
+ 6	30	-.43	-. 67
+1	11	-. 80	-. 62
- $\quad 1$	7	- . 37	-. 57
- 9	11	-. $\%$	- . 51
- 14	5	-.13	-. 92
- 19	5	00	-. 32
- 9	5	+. Bin^{-1}	-. 02
- 20	$\overline{5}$	-. 98	-. 10
- 5	$\stackrel{3}{5}$	+.70	+.0\%
- 4	5	$+.10$	+.80
- 50	2	$+.45$	+.40
- 59	${ }^{6}$	$+.54$	+.0?
- 69	[0]	[十 . 5\% $]$	

Three hundred and thirty-two residuals, from -35° to $+90^{\circ}$, which received weight one, give, with $m=8$:-

$$
E= \pm{ }^{\prime \prime} .62
$$

Residuals in order of right aseension.

Declination limits. $+15^{\circ}$ to $+90^{\circ}$			$\begin{aligned} & \text { Declination limits. } \\ & +150 \text { to }-35 \end{aligned}$		Dcelination limits.$-3 \text { to }+90^{\circ}$	
Nean a	π^{\prime}	$r_{0}{ }^{\prime}$	π^{\prime}	rin	π^{\prime}	$r_{11}{ }^{\prime}$
h.		"		"		"
1	98	-. 34	i	-. 4.7	31	-. 29
3	39	-. 34	7	$+.14$! 9	-. 32
5	19	-. 11	7	+..31	\because	-. 0%
7	15	$+.07$	3	-. 117	18	+.0.
9	13	. 010	$1 ;$	- . ${ }^{5}$	19	-.02
11	16	- . 39	-	+ .10	$\because 4$	-. 24
13	13	-. 89	5	-.09	1.	-. 19
1.5	26	$+.78$	7	+.-9	: $: 3$	+.-11
17	30	+.4.	-	+.11i	:	+.4*
19	号	-. 12	13	$+.14$:	-. 10%
©1	33	-. 88	13	-. $11=$	16	- . 3 : 18
$\because 3$?	$-.12$	11	-. 11	$\because 1$	-. 1%

Wn 48 (prime vortieal transit).
Sixty one observations in 1847 of 13 stars gave as the mean correction:-

$$
-{ }^{\prime \prime} . S 2 \pm " .09
$$

The probable error, E, of a single observation, is $\pm{ }^{\prime \prime} .70$.
Ms 50.
The correction is ascertained from the declinations of the prineipal stars given in the introdnction. Eaeh residual is given weight oue.

Residuals in order of declimution.

Mean S	π^{\prime}	r_{0}	C_{0}
\bigcirc		"	'
+ 87	5	$+.10$	$+.06$
+. 75	4	$+.37$	$+.25$
+ 63	\pm	+.54	+.30
+50	8	$+.16$	+.30
$+41$	5	+. 37	+.23
+	8	-. 069	-.108
+ 2	\checkmark	-. 41	-. 40
+14	8	-. 96	-. 13
+08	$!$	-. 64	-.92
0 $-\quad 9$	7	-1.17	-1.0.0
	6	$-.99$	-. 99

With $m=4$, we have, probable error of a single deelination:-

$$
E= \pm^{\prime \prime} .32
$$

If we assume $\frac{\varepsilon}{\varepsilon_{1}}=?$, we shall have for 3 to 5 observations, approximatel y, weight .3 in the system of Table XI.

Residuals in order of right ascension.

Mean a	π^{\prime}	$r_{0}{ }^{\prime}$	Mean a	π^{\prime}	$r_{0}{ }^{\prime}$
h.		"	h.		"
1	5	-. 17	13	1	. 00
3	5	-. 30	15	7	+. 19
5	6	-	17	1	-. 01
7	5	+.	19	$!$	+.3.)
$!$	5	- .3i	21	8	$+.40$
11	5	- . $: 3$	$\because 3$	4	-. 96

Eh $58, \operatorname{Eh} 63$, and $\operatorname{Eh} 67 . \frac{\varepsilon}{\varepsilon_{1}}=2$.

EL 58.				Eh 63.				EL 67.			
Mean δ	π^{\prime}	ro	C_{0}	Mean δ	π^{\prime}	r_{0}	C_{0}	Mean δ	π^{\prime}	r_{0}	C_{0}
\bigcirc		"	"	\bigcirc		"	"	-		"	"
$\begin{array}{r}+89 \\ +\quad 3 \\ \hline\end{array}$	4	-. 63	+ 89 +83	2	-. 40	+89	$\stackrel{2}{5}$	+.86	
+55	20	$+.06$	$-.33$	+ 55	19	+.37	+. 51	+54	16	+. 38	00
+ 32	26	-. 52	-.. 33	+ 32	20	+. 35	+. 51	+ 32	18	$-.45$	00
+19	$\stackrel{2}{ }{ }^{2}$	$+.53$	-. 33	+ 19	30	+. 72	+.51	+19	28	+. 50	00
+ 7	31	-. 36	$-.33$	+ 9	18	$+.59$	+. 51	+07	17	+. 61	00
- 5	37	-. 22	-.3:	-1	14	+.39	+. 51	+05	17	-1.30	00

The corrections to these catalogues can only be ronghly ascertained. It is assnmed to be constant from -10° to $+60^{\circ}$. We have, $E= \pm{ }^{\prime \prime} .60$ for Eh 58 (excluding β Lyras), $\pm{ }^{\prime \prime} .77$ for Eh 63 , and $\pm 1^{\prime \prime} .33$ for Eh $67 . \pm^{\prime \prime} .69$ is adopted in constructing weights for Eh 58 and Eh 63.

Pa 62 (prime vertical transit).
Twenty-one observations of 5 stars give the correction:-

$$
+^{\prime \prime} .25 \pm{ }^{\prime \prime} .05
$$

and for probable error of single observation $\pm{ }^{\prime \prime} .23$, which is considerably larger than the valne supposed in the third volnme of Ponlkora observations (pp. 213, 214). But even this requires the maximum weight (5.0) for 3 observations, and is adopted.

Pa 71.
But one declination is used from this catalogne-that giren for B. A. C. 5313. For its correction, I find $+^{\prime \prime} .50$ from eight stars between $+50^{\circ}$ and $+60^{\circ}$ declination. For this declination the arbitrary weight 1.0 is assigued in deducing corrections to assumed place.

Wn 70.
Residuals in order of Aeclination.

Mean δ	π^{\prime}	r_{u}	C_{0}	
\bigcirc		"	"	
$+86$	21	+.82	00	
+ 75	57	-. 04	00	$\overline{\varepsilon_{1}}=2$
+65	67	-. 43	-. 95	
+ 5.5	17	+.12	-. 43	
$+45$	31	-. 63	- . 57	
+ 35	$\because 0$	-. 44	-. ${ }^{\text {a }}$	
+ 5	33	-. 7.	-. 7.3	
+15	24	-. 49	-. $\%$	
+ 05	29	-1.00	-. 70	
- 07	14	-. 05	- . 36	

With $m=4$ ，we have：－

$$
E= \pm 1^{\prime \prime} .01
$$

The curve resembles that of Wn 56 closely，exeept that its minus values are about ＂． 40 larger．From－ $16{ }^{\circ}$ southward，Wn $56-{ }^{\prime \prime} .40$ can probably be used withont scrious error．

Residuals in order of right ascension．

Declination limits．$-10^{\circ} \text { to }+40^{\circ}$			$\begin{aligned} & \text { Declination limits. } \\ & +40^{\circ} \text { to }+90^{\circ} \end{aligned}$		Declination limits．$-10^{\circ} \text { to }+90^{\circ}$		
Meana	π^{4}	$r_{0}{ }^{\prime}$	π^{\prime}	$r_{0}{ }^{\text {b }}$	π^{\prime}	$r_{0}{ }^{\prime}$	$C_{0}{ }^{\prime}$
h.		＂		＂		＂	＂
，	11	$+.21$	25	－． 14	36	－． 04	－． 17
3	1：	＋．112	15	－． 59	27	$-.32$	－． 23
5	4	－．	13	－． 81	17	－． 76	－． 24
7	14	＋．09	5	－． 30	19	－． 01	－． 18
11	9	$\cdots \cdot 0$	11	－． 21	20	$-.03$	－． 118
11	4	－． 8	15	－． 99	19	－． 38	＋． 116
13	9	－． 36	15	－． 23	$\stackrel{4}{2}$	－．28	＋．17
15	${ }^{6}$	＋． 20	19	＋．80	${ }^{25}$	＋．78	＋．23
17	12	＋．100	20	＋．33	32	＋．43	＋．24
19	15	－ご	17	＋．26	32	$-.83$	＋．18
$\stackrel{21}{9}$	16	$+.35$	21	＋．04	37	＋． 18	＋． 07
23	12	－． 23	18	$-.16$	30	－． 20	－． 06

Columm $C_{0}{ }^{\prime}$ is taken from the correction found to be applieable to the previous series of observations with the Washington mural eirele．There is sufficient resem－ blance between it and the valies of $r_{0}{ }^{\prime}$ in the last colnmu to justify its continued use for this catalogue．

Table XII．－Corrections to catalogues of Class III（and to Po 1800）．
order of declination．

Mran δ	Po 1800	Ms 3 3．	11850．	Wu \％0．＊	Mean δ	Porate．	1s 35.	Ms 51.	$W_{11} 80$.
\bigcirc	＂	＂	＂	＂	\bigcirc	＂	＂	＂	＂
＋90	00	＋． 5.11	00	10	$+15$	－1．62	－． 50	$-.70$	－．i
＋	＋．11i	＋． 5	＋．10	19	＋10	－1．35	－． 68	－． 20	－．70
＋－ 0	＋．30	＋．fio	＋． 20	110	＋ 05	－1．09	－． 67	-1.00	－． 80
＋ 5	$+.44$	＋． 8 in	＋．	110	0	－1．56	$-.61$	-1.05	－．． 5
＋	＋ 5	＋．70	＋．30	－ 14	－ 0.0	－1．86	－． 58	-1.15	－． 4.4
＋63	＋． 52	＋．6\％	＋．30	． 24	－ 10	－－1．96	－． 50	－． 97	－．
＋601	$+.42$	＋．（6）	＋．30	－． 34	－ 1.	－1．	－． 90		
＋	＋． 3	＋．60	＋．30	－． 43	－景	－1．511	－． 30		
＋50	$+.10$	＋．$i 2$	$+.30$	－． 50	－号	－1．16	－． 17		
＋ 45	－． 311	＋．iv	＋\because	一．	－ 30	－1．11：	$-.05$		
＋ 40	$\square_{-1.2110}$	\pm	＋．${ }^{\text {P }}$	二．	二	－1． 111	$+.05$		
	－1．0．	＋．．	$+.10$	－．tir	－	－1．410	＋．0．		
＋ 311	-1.10	＋．	－． 04	－． 20	－ 50		$+.10$		
＋	-1.33	－．${ }^{\text {a }}$	－．	－． $3: 3$	－ 80	\ldots	＋． 0.0		
＋ 3	－1．6：	－． 32	－． 49	－． i					

[^31]Table XII.-Coutinued.

Catalogue.	Correction.	Remarks.
	"	
Wn 48	-. 82	Constant.
Eh 58	-. 33	Coustant from - 10° to $+60^{\circ}$.
Eh 63	$+.51$	Constant from - 10° to $+60^{\circ}$.
Pa 62.	+.25	Constant.
EL 67	00	Constant from - 10° to $+60^{\circ}$.

The corrections in order of a for Po 1800 and Wu 70 are to be taken from Table X . With these additional corrections the valnes of $J \delta$ and $J \mu^{\prime}$ were computed for the 62 remaiuing stars. These are sufficiently indicated in the "Details of Corrections to Assumed Declinations" by the nse of one or more of the catalogues of Class III.

Section X.

GENERAL REMARKS RESPECTING THE CORRECTIONS AND PROBABLE ERRORS OF

 STARS USED BY THE NORTHERN BOUNDARY SURVEY FOR LATITUDE.The preceding pages afford the means, to some extent, for answering the question as to the probable errors of the deelinations used in latitude work on the Northern Boundary. These declinations in the general catalogne of 500 stars at the end of this paper are distinguished by an asterisk, affixed to the current number. Opposite each star, on the right-band page (and in the third column), will be found its probable error estimated in the manner described in Section VIII. This, taken together with the corresponding ralne of \rfloor, given on the left-bant page, will aid in forming some judgment as to the probable limits within which any correction is likely to be included. These valnes of $J \delta$ refer to the declinations adopted in the work of 1874 . Those of the preceding years are less accurate, and differ slightly from these, but the differences are not systematic.

The general correction required by the latitnde work of 1874 has been ronghly computed in three different ways:-

First. Fitty different pairs (100 stars) were observed for latitude during the spar. Six of these, however, were used but once; one, three times; three, four times; nine, five times; and others more frequently-eighteen times being the maximnm. Taking the simple mean of all the ralues of d dor the one hundred stars, we have:-

$$
+^{\prime \prime} .042
$$

as the common correction to the declinations actually used; and this is, of comrse, applicable to the latitudes.

Secomd. If, however, we take into account the number of times cach pair was used, giving weights proportional to the numbers, we bave:-

$$
+^{\prime \prime} .068
$$

as the common correction to all the latitudes.
Third. If, still further, we take into account the weights of the stars as computed in this paper, and it we suppose that each observation of a pair with the zenith tele-
scope gives an instrumental probable error for latitude of $\pm{ }^{\prime \prime} .3$, we hare as the mean correction:-

$$
+{ }^{\prime \prime} .009
$$

I regard it as quite improbable that a common correction larger than $\not \pm^{\prime \prime} .1$ is needed for the latitudes as actually established in the field. In this paper the stars of the latitnde list were reduced without the slightest reference to the presious work performed on them-even the seconds of declinations being transeribed from the various catalognes aner. Under these circumstances the present work may be regarded as an efficient check on the values of declination adopted in the former discussion.

EXPLANATION OF TABLES.

rechpitulation of systematic corregtions.

This table shows as nearly as possible the total systematic corrections applied by me (either before or after diseussion of Normal System) to the catalogue places as I find them. If to these be added errata and corrections due to proper motion, with a fem corrections specilied in the notes at the end of the table, we shall have declinations according to the system adopted in this paper. In order, howerer, to accertain the degree of confidence to be placed in eertain ralues from the curres (especially those from -10° to -30°), it will be necessary to recur to the detailed reductions.

DETAILS OF CORRECTIONS TO ASSUMIED DECLINATIONS.

These embrace Table A, Table B, and Table C.
Table A contains particulars of reduction for the fondanental and principal circumpolar stars. However, fonr sonthern stars, usually regarded as fumdamental. and a^{2} Geminormm will be found elsewhere.

Tuble B contains details for all other stars (i. c., stars not insluded in Table A) situateat between $+90^{\circ}$ and -10° declination. In this region the weights are in no case affected by the question of zenith distance.

Table C contains details for all stars situated south of $\mathbf{- 1 0 0}$ declination.
With one exception the construction of all the tables is alike. At the head of the tabular statement for each star is given its assumed right ascension and declination, with the anman variation of each as computed in Sections II. and III.

Columu" Cat." contains the desiguation of each catalogue or series of observations. The explanation of these designations is found in Section IV. It is sufficient here to state that the figures refer to the mean year of observation, and the letters are nsually the first and last in the mame of the observatory according to the English spelling.

Colnmn "Obs." contains either the mmber of observations, weight, or probable error, aceording as either is made an argument for computation of weight from Table N.

Column C contains the correction to assumed declination given by the respective catalogues in the manner detailed in Seetions III. and V. For the later Radeliffe catalognes, and for Wh 7 , values of C are contained in Seation V .

Column C_{A}, in Tables B and C , contains for a limited number of stars the sum of C and of the systematic correction taken from Table II.

The place of this is supplied in Table A by column r_{m}, which contains the correction given to each anthority by the declination computed according to the principles of Section VI., but with the addition of the Fundamenta as an anthority, with weight one.

Column r contains the quantities from which definitive systematie corrections were computed. It is formed by subtracting C from the valne of the expressiou $\Delta \delta+\left(\frac{T^{\prime}-1845}{100}\right) \Delta \mu^{\prime}, \Delta \delta$ and $\Delta \mu^{\prime}$ being taken from Tables V. and VII.

Column C_{n} is formed by the addition of the systematic corrections of Tables IX. and X. to column C. For Re 66 and Re 72 , as well as Wn 72 and SH 31 , the value of $C_{/ \prime}$ is specially computed.

Column π contaius the weight computed from Table XI., with the argument in column "Obs."

Column r, eontains the ontstanding residual found by subtracting $\mathrm{C}_{\text {/ }}$ from $\Delta \delta+\Delta \mu^{\prime}\left(\frac{T-1875}{100}\right)$, where $\Delta \delta$ and $\Delta \mu^{\prime}$ are to be taken from the left-luand page of the "Catalogue of 500 Stars" at the end of this paper.

OATALOGEE OF 500 STARS.

On the left-hand page :
Columns $1,2,3$, and 4 appear to require no explanation except the caution that the latter columu is simply copied from the catalogue of the British Association.

Column 5 contains the approximate right ascension as deduced in Section VII.
Column 6 contains the anuual variation, and colnmn 7 the secular variation in Right Ascension giren in units of the fifth deeimal place.

The eighth aud ninth colnmus gire $\Delta \delta$ and $d_{a^{\prime}}$ as they result from the final com. putation, using columns C_{H} and π of "Details," etc.

On the right-band page, in column 1 , the current number is repeated for convenicuce.

Colnmn 2 is the definitive deelination formed from the assumed declination given with each star in "Details," etc., by the addition of $\Delta \delta$ from the preceding page.

Column 3 contains the probable error ascertained in the manner explained near the end of Section VIII. In a tew eases this colnma is left blank. It is to be understood in such eases that a definite estimate is declined, either becanse the error is large or cannot readily be aseertained.

Column 4 contains the weight to nearest nnit, from which the preceding column is estimated. The probable error of this unit is supposed to be uniforuly $\pm{ }^{\prime \prime} .30$. It is likely to be smaller than larger (p. 103). When this column is left blank it is to be understood that the computed weight is less than .5

Column 5 contains the defiuitive annual variation, computed by adding to the annual variation of "Details," etc., $\frac{\Delta \mu^{\prime}}{100} ; \Delta \mu^{\prime}$ being taken from the left-baud page.

Column 6 contains the probable error of the annual variation computed from the weight of $\rfloor \mu^{\prime}$ in conditional equations.

Columns 7 and 8 contain the secnlar rariation and third term of precession in declination which are given respectively to the sixth and eighth phaces of decimals. The mode of their computation is fully explained in Section III.

Column 9 contains the proper motion formed by subtractiug from the aunual rariations $20^{\prime \prime} .0542 \cos \alpha$. The number is Peters' constant of precession (n) for 1875.

RECAPITULATION

of

SYSTEMATIC CORRECTIONS TO DECLINATIONS.

RECAPITULATION OF SYSTEMATIC CORRECTIONS.

When the argument is 122^{h} to 24^{h} the sigus are to be 1 eversed.
[175]

Recapitulation of systematic corrections-Continued.

	$=$		$=$																				
	S. 11.31.		S. II. 31.																				
++++++1 \| $1 \mid 11$ 	C. (1. II. 33.	$11+++++++++1 \mid 11+++++1!!$ 	C. G. H. 33.																				
	Ces3, Ce 34.		$\mathrm{Ce} 33, \mathrm{Ce} 34$.																				
t+t t+t+1\|				 	Cus3.	11\|	1														1	 	Co 35.
	M1:34.	$\|1\|+++++t+t\|1\| 1\|1\| 1 \mid 1$	Mh. 34.																				
$\begin{array}{lllllllllll}\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \\ 0\end{array}$	Ms. 35.		Ms 35.																				
	Eh 37.		Eh 34 to Eh																				
	Kı:		Kg 35.																				
	(ih :3).		Gh 39.																				
	$\begin{gathered} \text { Cr } 40(+10= \\ \left.10+100^{\circ}\right) . \end{gathered}$		Ce $36, \mathrm{Ce} 37$.																				
		$\|\|\|\|\|\|\|\|\|\|\|\|\mid t+t+t+t+t++t+t+t$ 	a																				

When the argument is 1 gh to $24^{\text {h }}$ the sing are to the reversed.

Recapitulation of systematic corrections－Continued．

δ				$\begin{aligned} & \dot{7} \\ & \overrightarrow{7} \end{aligned}$	$\begin{aligned} & \stackrel{9 i}{J} \\ & \underset{y y}{\mid c} \end{aligned}$	$\begin{aligned} & \text { 守 } \\ & \text { 品 } \end{aligned}$			$\begin{aligned} & \dot{\leftrightarrows} \\ & \stackrel{ே}{\Xi} \end{aligned}$		δ
	＂ 10	＂00	＋	＋＂． 23	－＂．94	＋1．1．29	－＂．36	＂ 00	${ }^{\prime} 00$	＂00	＋
+90 +85	10 00	$\begin{array}{r}00 \\ +\quad .10 \\ \hline\end{array}$		＋．98	二． .80	＋1．18	－．34	00	30	＋+ 20	＋88
+85 +80 +85	${ }_{00}^{00}$	＋	$+$	＋．23	－． 67	＋1．01	－． 31	00	00	$+.50$	＋ 8
＋ 5	00	＋． 20	＋	＋． 25	－． 56	＋．90	－． 28	＋．03	$\begin{array}{r}.00 \\ +.06 \\ \hline\end{array}$	＋．66	+7. +80 80
＋ 70	－． 07	＋． 20	＋	＋．16	－． 44	＋． 75	二． 26	＋．04	＋．12	＋．42	＋65
＋ 65	$-.18$	＋．20		＋． 03	． 38	＋．．87					
＋60	－． 32	$+.16$		－． 13	－． 36	＋	二． 28	＋．06	＋．18	＋．20	＋
＋ 55	－．${ }^{43}$	． 60	a $+\quad .30$ $+\quad 09$	二． 31	二． 38	＋．	二 ．． 31	＋．00	＋． 26	－． 07	＋ 50
＋ 50	$-.54$	－．35	＋． 29	－． 17	－． 41			－． 14	＋． 30	－． 20	＋ 5
＋ 45	－． 65	二． 75	＋ 97 +.96	－． 60	二． 46	+.14 +.14	二． 273	二．0．03	＋	－． 31	＋ 40
＋40	二． 85	二． 81	＋．26	－． 78	－． O_{5}	＋．14	－． 16	＋．15	＋． 35	－． 45	＋ 3
＋ 35	． 83	－．63	+.94 +.93		－． 73	＋． 23	－． 05	＋．12	＋． 38	－． 56	＋ 30
＋ 30	－． 88	二． 42	+.93 .+ .91	二． .89	二． 88	＋+3	＋． 10	$+.15$	＋． 38	－． $\mathrm{i}^{0} 0$	＋
＋	－． 980	二． 27	＋．21	二．．94	二． .90	＋．42	＋．28	＋． 14	＋． 20	－． 59	＋ 21
＋ 20	-.80 -.60	－． 27		－． 66		＋．54	＋．4－	$+.10$	＋． 41	－． 4.	＋ 15
+15 +10	二． 60	－． 47	.+ .18 +.16	二． .68	－1． 10	＋	＋．60	＋．6\％	＋．44	－ 00	a +10 +5
+15 +10	二． 50	－1．04	＋．18	－．．5i	-1.07	＋．6is	＋．8	$+.05$	＋． 46	＋．04	＋5
	－． 62	-1.20	＋． 10	－． 53	－1．14	＋．${ }^{\text {dios }}$	＋．93	＋．00	+.49 $+\quad 53$	+.26 +.44	
－ 5	－． 70	-1.24	＋ 06 +00	－． 69	－1．20	＋． 56	＋ 96	＋．．12	＋． 59	＋． 51	－ 10
-10	－． 70	－1．11		－． 03							－ 1.
－ 15	－．68	－． 87		二． 78	$\begin{aligned} & -1.4^{2} \\ & -1.56 \end{aligned}$	＋．33	＋	＋	＋．．4	＋． 33	－
二\％	－． .45	$-.48$		二． 8.95	$\begin{aligned} & 1.56 \\ & -1.61 \end{aligned}$	$\begin{aligned} & +.27 \\ & +.23 \end{aligned}$	＋． 60	＋． 26	＋1．1	$+.16$	－
30				-1.00	－1．65	$+.24$	＋． 53	＋． 30			－ 30
－ 35											－ 40
－ 40											
－ 50											（10）
二 80											－ 20
－－0											二－90
A．R．		$\stackrel{-1}{ \pm}$	$\xrightarrow[\substack { \text { cos } \\ \begin{subarray}{c}{4{ \text { cos } \\ \begin{subarray} { c } { 4 } } \\{4}\end{subarray}]{ }$	\square $⿻ コ 一$	＋	$\stackrel{\text { \％}}{\stackrel{y}{*}}$	\ddagger 7 7	$\stackrel{10}{3}$	\％	＋1930	A．R．
									＂	＂	${ }^{h}$.
0	－． 19		＋．13	二．${ }^{4} 4$	二．	二． 21	－． 19	二．02			13
$\stackrel{1}{2}$	－． 14		＋．08	二．04	二．	－． 21	－． 19	－． 112			14
$\stackrel{3}{2}$	二．09		－． 02	－． 19	－． 19	1	－． 17	． 12	．．．		
4	＋． 05		－． 07	－． 15	－． 15	－． 15	－． 14	－． 01			16
5	+.11 .+ .17		－．12	二． 0.09	二． 09	－． .10	－． 09.9	－． .01			17 18
	+.17 +		－． 16	－． 03	＋．02	＋． 01					19
7	＋		－． 19	＋．019	＋．．18	＋． 01	＋ 0	1			\because
9	＋		二． 20	＋	＋．．13	＋． 11	＋．10	．11			$\because 1$
10	＋．${ }^{4}$		－． 19	＋． 19	$+.17$	$+.16$	＋． 14	$+.11$			－2
11	＋\therefore		－． 16	＋	$1+$	＋$+1!$	$1 \begin{aligned} & 1 \\ & +.19\end{aligned}$	＋．112			2
1：2	＋．． 19		－． 13	＋．$\because 4$	$1+.23$	＋． 21					

When the argument is 10^{h} to $21^{\text {th }}$ the sinns are to be reversed．

Recapitulation of systcmatic corrections-Continued.

		\|												$++++++++r+++++++++$ 	a										
	Wil 45.	\|																						 	Wn 4.5.
	Wn. 16 to	\|																		+ + + + + + 	$\begin{gathered} \text { Wh } 46 \text { to } \mathrm{Wn} \\ 48 . \end{gathered}$				
			$\begin{gathered} \text { Wn } 48 \text { (P. V. } \\ \text { T.). } \end{gathered}$																						
	$\begin{gathered} \text { Ce } 4.5 \text { to } \mathrm{Ce} \\ 51 . \end{gathered}$		Ce 45 to Ce 51.																						
	Gh 51.	$++++\quad+++++++!1!!1!1!1!1!$ 	Gh 51.																						
	So 51.		So 51.																						
	Ms 50.		Ms 50.(c)																						
京 $\begin{aligned} & 0 \\ & \vdots\end{aligned}$	Pa 53.		Ps 53.																						
	So 50.	$++++1 \quad 11++++++++++++\vdots$ 	So 55.																						
++ \|			!				 	Wn 54 to Wn 58.	$++1 \mid$ \|									+ t+t $+t+$ + \|	 	$\begin{gathered} \text { Wn } 54 \text { to } \mathrm{Wn} \\ 58 . \end{gathered}$					
		\|												+ + + + + + + + + + + + + + + + + + 	\cdots										

When the areument is 12^{1} to 21^{h} the signs are to be raversed,

Reeapitulation of systematic corrections－Continued．

d			$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & 08 \\ & 080 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 030 \end{aligned}$				8 0 0 0 0 0 8 8	E ¢ ¢	$\underset{i}{i}$	δ
＋90	－． .35	＋＂＇22	－． 20	${ }^{\prime \prime} 0$	＂	$+{ }^{\prime \prime} 30$	－． $0^{\circ} 0$	＋． 20	＂	＂	＋${ }_{\text {O }}^{1}$
＋85	－． .30	＋．．26	－． 23	＋． 02		＋．44	$-.19$	＋． 20			＋85
＋80	－． 25	＋． 30	－． 26	＋． 05		$+.56$	－． 16	＋．32			＋ 80
$+75$	－． 20	$+.31$	－． 31	＋．09		＋． 66	－． 10	$+.38$			＋ 8
＋ 80	－． 15	$+.31$	－． 36	＋． 15		＋．73	－． 04	$+.40$			＋ 70
＋65	－． 12	＋． 30	－． 44	＋． 21		＋． 70	$+.01$	＋． 39			＋ 65
＋ 60	－． 10	＋．22	－． 55	＋．23		＋． 60	$+.04$	＋．26		＋．25	＋60
＋ 65	－． .09	＋． 07	$-.77$	＋． 21		$+.46$	＋．07	＋． 06			＋55
$+50$	－． 11	－． 13	-1.12	$+.15$	$[+2.4]$	＋．20	＋． 10	－． 17			＋ 50
＋ 45	－． 15	－． 36	-1.40	$+.11$	［－1．5］	－． 12	$+.10$	－． 29			＋ 45
＋40	－． 20	－． 52	-1.45	＋． 11	－． 80	－． 42	＋．08	－． 32	$+.50$		＋ 40
＋ 55	－． 24	－． 52	-1.41	$+.15$	－． 30	$-.65$	＋． 04	－． 57	$+.46$		＋ 35
$+30$	－． .88	－． 46	-1.29	＋． 24	－． 06	－． 80	． 00	－． 11	＋．42		＋30
＋ 25	－． 33	－． 37	－1．12	$+.33$	－． 05	－． 74	－． 00	$+.04$	＋．39		＋
＋ 20	－． 35	－． 47	－． 87	$+.37$	－． 10	－． 56	－． 12	$+.03$	＋． 38		$+20$
＋ 15	－． 36	－． 62	－． 67	$+.38$	－． 15	－． 35	$-.15$	－． 08	＋． $3-$		＋15
＋ 10	$-.36$	－． 70	－． 58	＋．35	－． 18	－． 09	－． 19	－． 10	＋ 5.5		＋ $+\quad 5$ +
＋ 5	$-.35$	－． 75	－． .7	$+.23$	－． 20	＋． 20	－． 20	－．．06	＋． 71		＋5
	－． 34	－． 68	－． 55	＋． 20	－． 23	$+.51$	－． 18	$-.03$	$+.81$		
－ 5	－． 30	－． 45	－． 53	$+.15$	－． 26	＋． 70	－． 13	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	＋．90		二 ${ }_{10}^{5}$
－ 10	－． 20	－． 23	－． 49	＋． 21	－．． 26	＋． 20	－． 04		＋．86		－ 10
－ 15	－． 05	－． 20	－． 46	＋． 26	－． 20	＋． 79	$+.10$	00	＋．75		－ 15
－ 20	$+.14$	－． 23	－． 42	＋． 26	－． 15	$+.68$	＋．$\because 8$	00	＋．633		二80
－ 25	$+.35$	－． 27	－． 39	＋． 25	－． 10	＋．40	$+.50$		＋．50		－ 8
－ 30	$+.60$	－． 30	［－．35］	$[+.20]$	$-.05$	$[+$ ． 10$]$	＋． 70	00	$+.4$		－311
－35					＋．00				＋		二 40
－ 50					＋． 15				－． 14		－ 50
－ 60					＋． 27				－． 20		－ 60
－ 70					＋．00				－． 00		二80
－90									00		－ 90
	$\stackrel{\infty}{\infty}$	$\stackrel{n}{3}_{3}^{3}$	$\begin{aligned} & 8 \\ & 9 . \end{aligned}$		－8		$\begin{aligned} & s_{i}^{x} \\ & e_{-1} \end{aligned}$	$\begin{aligned} & \frac{7}{3} \\ & 3 . \end{aligned}$		E	
A．R．		룰	인	8	$=$	${ }^{8}$	x_{0}	15	$\dot{6}$	웅	A．R．
	$\underbrace{20}_{n}$	$\begin{aligned} & \text { 第 } \end{aligned}$		己		令	${ }^{2}$	＋	$\stackrel{ \pm}{\sim}$	$\stackrel{3}{3}$	
h．			＂	＂	＂	／	－＂05	＋． 0101	＂	＂	$\stackrel{h}{1} \times$
0		二． 0.03					－．c0	＋． 05			13
2	$+.05$	－． 02					＋．05	＋． 09			14
3	＋． 10	－． 01					＋． 10	$+.12$			15
4	$+.14$	00					$+.14$	$+.15$			16
5	$+.17$	$+.01$					＋． 17	＋．16			17
6	＋． 20	＋． 02					＋．20	$+.15$			18
7	＋． 20	$+.03$					＋． 20	$+.16$			19
8	$+.19$	＋．03					＋．19	＋．14			\because
9	＋． 17	＋．01					＋． 17	＋． $1:$			$\because 1$
10	＋．14	$+.04$					＋． 11	＋． 0			呰
11	＋． 10	＋．01					＋．10	＋．04			2
12	＋．05	$+.03$					＋．05	－． 01			24

When the argument is $1 \approx^{b}$ to $? 1^{b}$ the signs are to be reversed．

Recapitulation of systematio corrections－Continued．

	$\stackrel{7}{7}$	｜｜｜｜｜｜｜｜｜｜｜｜｜++++++++++++++++++ 	\approx
$++1\|1\|\| \| 1\| \| \mid$ 			
		「｜।｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜ 	
$\vdots=$	cincis．		（GL 6.4.
	186．4．		Ps 61.
	Lis 6.5	｜｜｜｜＋＋｜｜｜｜ $1++++++++$ 	Bs 6% ．
	Psticit	＋t＋t｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜ 	Ps 66.
	Eltis．		$\begin{gathered} \mathrm{E} 1 \mathrm{5} \frac{5 \mathrm{t}}{60 \mathrm{to}} \mathrm{EL} \\ 60 . \end{gathered}$
	Eh 63.	$+++++++++++++++$ 身	
$\begin{array}{l:llllllllll}\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array}$	Ela 67.		Lh G5 to 69.
	$\begin{aligned} & \text { In fiti(-: }: 10 \\ & \left.10+40^{\circ}\right) . \end{aligned}$	｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜＋＋＋＋＋＋ 	Bu 66．（f）
		｜｜｜｜｜｜｜｜｜｜｜｜｜+ ＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋ 	\cdots

Whon the arennent is 1 ghtor the signs are to be mensed．

Recapitulation of systematic corrections－Continued．

δ	بٌ	$\begin{gathered} \underset{G}{E} \\ \underset{y}{2} \end{gathered}$		$\begin{aligned} & \text { 灾 } \\ & \underset{\sim}{3} \end{aligned}$		$\begin{aligned} & E=S \\ & =E \\ & =E \end{aligned}$	$\begin{aligned} & \text { E } \\ & =0 \\ & =0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0=6 \\ & =0 \end{aligned}$	$\begin{aligned} & B \\ & \\ & \end{aligned}$	δ
＋ 9	＋．${ }^{\text {¢ }}$－	＂00	＂	00	－． 29	＋． 20	＋．54	－＂．14	－． 15	＋！
$+8$	＋．97	00		－．09	－． 21	－．．	＋．57	$-.18$	－．12	＋
＋80	＋．i2	00		－． 15	－． 13	＋－	＋． 0	－．$\because 1$	$0 \cdot$	＋ 5
＋ 7	$+.04$	－． 01		－． 0	（10）	＋． 33	＋．ii	－ 2	－． 0	$+5$
＋ 30	＋1．00	－． 05		，85	＋．12	＋．${ }^{\sim}$	＋．72	－．	＋．0：	＋ 70
＋ 6	$+.90$	－． 10		－．30）	＋． 4	＋．4i	＋． 7	－．$\because 3$	＋．07	
＋60	$+.70$	－． 17		－． 34	＋． iz	$+.{ }^{2}$	$+.83$	－．\because	$+.10$	＋ 0
+55 +50	+.44 +.18	二．${ }^{5}$		二． 37	＋．59	＋．53	＋．e6	－ 80	＋ 17	＋
＋50	$+.18$	－．${ }^{5}$	$[+1.20]$	－． 40	＋．64		＋－			
＋ 45	－．04	－．${ }^{2}$	$[+1.00]$	－． 41	＋	＋．55	\pm	二－	＋． 39	+45 +40
＋40	－． 3	二．26		二．	＋	＋． 5	＋．8	－	＋．019	＋ 40 +3.5
$+35$	－． 37	－． 26	$+.48$	－． $4:$	＋．！	＋． 3	＋．+	－． 3	＋． 19	
＋ 30	－． 47	－． 20	＋． 11	－． 3π	＋1．199	＋． 5	＋．e6	－．$\because 3$	$+.17$	＋
＋ 25	－． 54	－．26	－． 08	二	＋1．20	＋． 51	＋	－	＋．17	＋ 20 +20
$+20$	－． 55	． 26	－． 15	－． 3	＋1．：30	－1． 50	$+.84$	－．$\because 1$	$+.14$	＋ 20
$+15$	－． $5:$	－． 25	－． 15	－． 40	＋1．111	＋．47	$+.61$	－． 21	$+.11$	＋ 15
＋ 10	－． 47	－．23	－． 15	－． 0	＋1．49	＋．43	＋．ii	－． 119	$+.05$	＋10
＋ 5	$-.43$	－． 19	$-.15$	－．（iir	－1． 1.58	＋．39	＋．73	－． 19	＋．03	＋5
	－． 43	－． 13	－． 16	$-.80$	＋1．64	＋．31	＋．68	－． 19	－． 01	5
-5	－． 48	$-.05$	－． 18	-1.00	$+1.70$	＋－㫛	＋．63	－． 19	二．04	－ 5
-10	－． 4	$+.03$	－． 21	-1.90	$+1.76$	＋$\because 1$	＋． 5	－． 14	$-.12$	
-15	－． 39	＋． 11	－． 6	$-1.4: 3$	＋1．4 4	＋．$\because 1$	＋．	－． 03	－． 11	
－20	二． 30		－． 30	－1． $17 i$	+1.9 $+\cdots 110$	＋浞	＋． +.60	.00 +.13	－． 11.1	－
－ 25 -30	－． 18		－．32	$\left[\begin{array}{c}-1.93 \\ {[-2.29]}\end{array}\right.$	$\begin{aligned} & +\because 05 \\ & +2 . \end{aligned}$	$+\ldots 3$ +.3	$\begin{aligned} & +.60 \\ & +.6 i \end{aligned}$	$\begin{aligned} & +.13 \\ & +.29 \end{aligned}$		
－30	－． 05		二． 38	［－2．20］	＋2：	＋．333	＋．6i\％	＋ 93 $+\quad .99$	干．00	－
－ 40			． 49							－ 411
－ 511			－． 34			．．．				－：0
－ 60			－． 9							－ in_{10}
-70 -80			二． 105							－ 80
－ 90			－． 00							－
A．R．	$\begin{aligned} & \text { 菖 } \\ & 0 \end{aligned}$	$\begin{aligned} & \mathscr{E} \\ & \stackrel{\Xi}{3} \end{aligned}$		$\stackrel{\text { E. }}{\text { B }}$	$\begin{aligned} & \dot{\bigotimes} \\ & E \\ & = \end{aligned}$	$\begin{aligned} & E \\ & \text { E } \\ & = \end{aligned}$	－	2080	$\begin{aligned} & \dot{S} \\ & \text { B } \end{aligned}$	A．R．
${ }_{0}$	＂	＂	＂	＂	＂	／	＂	＂	＂	h：
1										13
2										14
3										15
4										$11{ }^{11}$
5										11
6										
\％										19
9										91
10										\because
11										$2 ;$
1：										$2 \cdot 1$

When the argument is $1: \theta^{h}$ to 2 tee sigus are to be reversed．

Recapitulation of systematic corrections－Continued．

δ			$\begin{aligned} & 3 \\ & =3 \\ & = \end{aligned}$		$\begin{aligned} & \text { B } \\ & \text { E } \\ & 2 \end{aligned}$		Ei 	\％	8 3 -3	δ
9 +90	${ }^{\prime \prime} \mathrm{CO}$	${ }^{10} 10$	${ }^{\prime \prime} 0$	$+\ldots$	＂00	＋．． 45	＂00	＂00	＋$\quad .40$	＋ +90
$+5$	110	00	0	－． 0.4	00	$+.45$	－． 26	－． 17	$+.26$	＋85
＋＝0	10	0	00	－． 14	00	$+.45$	－． 40	－． 34	$+.13$	$+80$
＋ 5	0	00	$+.02$	－． 24	00	$+.45$	－． 66	－． 00	00	＋ 55
＋ 30	00	（10）	＋．04	－．：33	－－． 14	$+.31$	－．． 6	－． 63	－． 13	＋ 70
＋69	co	00	$+.65$	－． 41	－．$: 15$	＋． 20	-1.03	－． 83	－． 26	＋65
＋ 60	． 00	． 00	$+.10$	－． 49	－． 37	$+.08$	－1．$\because 1$	－． 81	－． 40	＋60
－ 55	－． 03	－． 015	$+.14$	－． 60	－． 43	＋．02	-1.36	－． 51	－． 55	＋ 5
＋	－． 06	－． 10	＋．12	－． 62	－． 50	－． 05	－1．49	－． 90	－． 20	＋ 50
$+45$	－． 19	－． 16	$+.94$	－． 63	－． 50	－． 12	-1.50	－． 90	－． 75	$+45$
＋ 40	－． 23	－． 2.2	$+.96$	－． 40	－． 63	－． 17	-1.10	－． 90	－． 20	＋ 40
＋ 35	－． 41	－$\therefore 6$	$+.75$	－． 03	－． 66	－．21	-1.60	－．-5	－． 31	$+35$
＋ 30	－． 45	－． 30	＋．8－	00	－． 70	－． 25	－1． 2.2	$-.85$	－． 62	＋ 80
＋ 35	－． 16	－． 33	＋．	00	－． 73	－． 28	－1． 1.1	-1.60	－． 05	＋85
＋ 20	－． 41	－． 31	$+.36$	00	－． 75	－． 30	-1.60	-1.20	－． 50	＋20
$+15$	－． 47	－． 33	$+.95$	00	－． 75	－． 30	－1．68	-1.83	－． 50	$+15$
$+10$	－． 47	－． 80	$+.99$	09	$-.75$	－． 30	－1．67	-1.20	－． 42	$+10$
＋i	－． 40	－． 31	$+1.00$	00	－． 70	－．$\because 5$	-1.54	－． 0.	－． 20	$+5$
0	－． 41	－．30	$+1.18$	10	－． 59	－． 14	-1.14	－． 38	$+.85$	0
－ 5	－．$\because 6$	－．$\because 9$	$+1.11$	10	－． 44	$+.01$	－． 78	－． 10	＋． 45	－ 5
-10	－． 31	－．	$+1.19$	00	－．25	$+\therefore 20$	－． 59	＋．02	$+.50$	-10
－15	－． 31	－． 25	＋1． $3=$	$+.14$			－． 43	＋． 09	＋． 86	-15
－ 20	－． 31	－．$\because 3$	$+1.30$	$+.16$			－． 30	$+.13$	$+.58$	－20
－ 25	－． 31	－． 21	$+1.45$	＋．$\because 9$			－． 20	$+.16$	＋．6．0	－25
－30	－． 31	－． 19	＋1．33	$+\ldots 2$			－． 10	$+.18$	$+.72$	－ 30
－ 35	－． 31	－． 17		$+.53$						－：35
－ 40	－． 31	－． 15	．							－ 40
－ 50										－50
－ 60										－C0
－ 20										-70 -80
－ 90										－ 90
A．R．	$\begin{aligned} & \dot{8} \\ & \underset{Z}{2} \end{aligned}$	$\begin{aligned} & \Xi \\ & E \\ & E= \\ & E \end{aligned}$	$\begin{aligned} & \text { مٌ } \\ & \stackrel{y y}{=} \end{aligned}$	$\begin{aligned} & \text { E } \\ & =3 \end{aligned}$	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$	$\begin{aligned} & \overline{3} \\ & 3 \\ & \equiv \end{aligned}$	E	2083	3 3 3	A．R
$\begin{aligned} & h_{0} \\ & 0 \\ & 1 \end{aligned}$	＂	＂	＂	${ }^{\prime \prime}$	＂	＂	＂	＂	＂	h. 12 1.3
$\stackrel{2}{2}$										14
3										15
4										16
5										17
6										18
7										19
B										$\because 0$
9										$\because 1$
10										\bigcirc
11										$\because 3$
12										24

When the argument is 12 b to $2 t^{\mathrm{b}}$ the sinns are to be reversed．

Recapitulation of systematic corrcctions-Continued.

When the argument is 12^{h} to 24^{h} the signs are to be reversed.
For general explanation scc Scctions V11I. and X.
Notes.-In a few cases the corrections of the table are only applicables to declinations by direct observations above the pole. For these, where it is thought to be worth while, the corrections to declinations, as they result from observations below the pole, are given in the following table.

For observetions belore the pole.

δ	$\text { Ce } 36 \text { and }$ $\mathrm{Ce} 37 .$	Eh 41.	Eh 4.	Eh 43.	Eh 41.	Wn 40.	Ce 45 to Ce51.	$\begin{gathered} W_{n} 61 \text { and } \\ W_{n} 6 \% . \end{gathered}$	δ
\bigcirc	"	"	"	"	"	" ${ }^{\prime}$	"	"	\bigcirc
$+90$	$+.09$	-. 23	+.94	-1.89	+.36	$+.35$	+.43	$+.76$	+ 90
$+\infty$	+.09	-. 17	$+1.06$	-1.36	+ . 37	+ . 39	$+.43$	+. 79	$+8$
+80	+.09	+. 01	$+1.16$	-1.39	$+.37$	$+.40$	$+.43$	+. 80	+ 80
+ 5	+.09	$+.13$	+1.24	-1.37	+.34	+.39			+ 75
+ 70 +68	+.02					+ . 35			+ 70
+60	-. 23								+
δ	$\left\lvert\, \begin{array}{c\|c} W_{n} & 63 \\ W_{11} & \text { to } \end{array}\right.$	Washington transit circle.							δ
		Wa 66.	Vno tore J	$\begin{aligned} & \text { (he- } W_{n} \text { n }{ }_{51} \end{aligned}$	$\begin{aligned} & \text { (aiter } \\ & \text { e i.) } \end{aligned}$	Wa 68.	Wu 60.	Wn ${ }^{\text {a }}$ \%	
${ }^{\circ}$	"	"			"	"	"	"	${ }^{\circ}$
$+90$	+. 55	+. 29			. 51	$+.14$	+. 15	-. 07	$+90$
$+\cdots$	$+.58$	+.3i			. 50	$+.10$	$+.19$	-. 17	+ 5
+ 80	$+.59$	$+.44$			45	$+.07$	$+.85$	-. 28	$+80$
$+75$	+.53	$+.53$. 37	$+.06$	+.33	-. 38	$+75$
+ 70	$+.55$	+.6			. 28	$+.05$	$+.41$	$-.48$	+70

These corrections are in the cases of Ce 36 to Ce 37 , W'n $45, \mathrm{Ce}$ 5is to Ce 51 , Wn 61 and Wn 62 , and Wh 6i月 to Win 6., derived merely bes the addition of a constant to the correction for declinations above the pole.
 the correction of Dt $\because 1$, in order to make it applicable to Dt 30 .
(b) Re 45. The corrections, with reversed nigns, pp. wiii to xi lat. to Radeliffe catalogne for 1845 must be added.
(c) The curve sonthward from - 100^{2} is probahly very near Ms $35-0^{\prime \prime} .4$.
(d) Re 5 s. The correction, fre sviii and xix Int. to secoud Radcliffe catalogne, must be added, with reversed sigus.
(\cdot) Me 6%. The important eftect of the correction given in the table, ppe xai to xxiv, introduction to the catalogne, varies toe rapidy to he included here. The two corrections must theretore be added.
(f) Obserwations taken from Bonn Beob, Bed. vi require the further correction given in lnt., p. xiv.
(9) The corrections to Wu 66-69 (transit carcle) ate applicable to the wean declinations of the detailed observations after these have been corrected for division error ouls. The effect of the latter might hare been included; but greater accuracy, in interpolating, results from the above course.
(h) Applicable to declinations of the catalogucs.

CATALOGUE OF 500 STARS
 10に

THE EPOCH 1875.O,

CONTAINING DECLINATIOXS WITH THEIR AXXUAL VARLATIOXS AND OTHER TERUS OF PRECESSION.

COMPILED FROD ORIGLNAL AUTLORITIES.

Catalogue of 500 stars

$\stackrel{\dot{U}}{\stackrel{y}{y}}$	$\left\lvert\, \begin{gathered} \dot{\Xi} \\ \dot{\Xi} \\ \dot{B} \\ \dot{B} \\ \dot{y} \\ \dot{-} \end{gathered}\right.$	Name.				$\frac{a}{d t^{2}}$	د ${ }^{\text {d }}$	$\Delta \mu^{\prime}$
				h.m. 8.	8.	8.	"	"
1		${ }_{3}$ Andromedæ		00155.8	$+3.089$	+ 18	-. 43	-. 99
3	26	${ }_{\gamma}$ Pegasi..	2	0234.0	+	+ 51	-. 07	+.81
${ }^{4}$	46		G	$10 \mathrm{15}$.	+	$+\quad 10$ $+\quad 60$	-. 41	- 0.4
*5	67	ρ Andromeda	5.5	1432.4	+3.141	+	$\pm .36$	± 1.00
6	83	β Hydri	3	1909.1	+3.266	- 154	-. 11	-1.30
* 7	120		6	2447.6	+ 3.116	+ 24	-1.15	-8.30
8	126	${ }^{k}$ Cassiopea	4	2.54 .5	$+3.358$	+ 70	+.78	+. 23
9	153	ζ Cassiopta	4	3001.0	+3.309	$+\quad 49$	$\underline{+} .10$	$-.14$
10	155	π Audromed	4.5	3012.5	$+3.183$	+ 24	$+.93$	$+.30$
11	166	\% Andromedz	3	3238.8	+ 3.192	+ 22	$+.35$	+1.45
12	169	a Cassiopeæ	$?$	3382.5	+ 3.363	+ 5.5	-. 01	$-.17$
-13	175		6	3427.5	$+3.510$	+ 87	$+.51$	+1.i.
14	196	β Ceti.	2.5	3715.8	+3.012	- 6	$\underline{+.03}$	+. 49
15	194	21 Cassioper	5.5	37×5.6	+ 3.834	+ 160	$+1.11$	+2.43
*16	193	- Cassiopere	5.5	3745.9	+ 3.814	+ 41	- . 2	-. 47
17	215	ζ Audromedx	4	4043.0	+ 3.169	+ 13	+.79	+2.92
+15	$\because 18$	η Cassioper	4	4138.8	$+3.881$	+ 61	+. 43	+1.3.5
${ }^{*} 19$	219	y Cassiopex	5	414.3	+ 3.307	+ 46	$+. .97$	+1.34
*20	239		5.5	4535.5	+3.530	+ 31	+.50	+1.44
21	253	γ Cassiopere	3	49 l 10.7	$+3.566$	+ 71	+.26	$+1.57$
* 2		μ Andromed:	4	4949.2	+3.304	+ . 30	-. 35	$-.86$
23	200	ε Piseium	4	2168.4	$\underline{+3.109}$	+ $\quad 19$	-. 41	$-. .37$
* 24		(LL. 195\%)		10209	+ 3.966	+113	+. 60	+1.20
25	334	β Andromedio	2	(1) 44.3	+3.340	+ 29	-. 51	-2.63
-26	345	32 Piscium	5.5	0413.4	+ 3.291	+ 25	$+.47$	$+1.36$
2	303	v Piscium	5.5	1336.0	+3.243	+ 22	-. 817	-1.15
23	360	${ }^{\text {a }}$ - Uram Mid	2	1300.2	+60. 263	$+15065$	+.02	-. 25
* 29	401	91 Piscium	6	14139	$+3.301$	+ 23	$-.46$	-. 71
30	416	δ Cassiopeto	3	1739.3	+ 3.880	+ 70	+.03	$+.34$
31	420	θ^{1} Ceti	3	17465	+2.993	+ 03	+. 01	-. 53
* 32	43	3\% Casniopee	5	21.674	+ 4.357	+144	-. 88	-3. 0^{0}
33	417	γ 1henicis	3	2920. 51	+ 2.612	- 131	-. 43	-3.38
34	438	7 Piscinum	4	24 di. 7	+3.199	+ 14	-1.15	-2.54
*33	484		6	2349.2	+ 3.130	+ 43	-. 5	+.20
*313	15	il Andromedre	3.5	3019.6	$+3.613$	+ 43	-. 17	+.61
37	507	a E'ridani	1	33303.3	+ 9.240	- 13	$-.00$	-1.34
${ }^{* 3-}$	5	51 Andromeda	4	3.7) $010 \cdot 8$	+ 3.208	+ 53	-. 53	-2.49
+39	537	\bigcirc	5	$324 i .5$	+ 3. 112	+ 11	-. 67	-1.17
* 40	560	\because Persri	6	4413.1	$+3.801$	+ 51	$+.61$	+.61
41	564	ε Catsiopere.	3	4585	+4.915	$+\quad 09$	+. 09	-. 47
$4 \cdot$	519	a Triaumuli	3.5	4.585	+ 3.40.	+ 25	+.23	+..33
43	577	3 Arietis	3	4\% 4.4. 2	+ 3.301	+ 13	$-. .53$	-1.40
- 4.4	600	50 Casiopea	${ }_{6}$	5247.9	+ 4.154	$+126$	+1.06	+2.35
- 40	611	53 Cassiopero	6	5346.4	$+4.365$	+ 11	$+.45$	$+.95$

for the epoch 1875．0．

$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{0}{g} \\ & \underset{Z}{z} \end{aligned}$			苞			$\frac{d 2 \delta}{d t^{2}}$	$\frac{d^{3} \delta}{d t^{3}}$		
	\bigcirc	＂		＂	＂	$1 /$	＂		＂
1	＋28 2400.79	.06	26	$+19.5866$	． $00 \supseteq \mathrm{I}$	－124	－102	－	． 1669
2	＋ 582736.13	． 13	15	＋ 19.8601	0036	－ 140	－109	－	．1029
3	＋ $11 \begin{array}{lll}19 & 18.67\end{array}$	． 06	$\stackrel{1}{2}$	＋ 20.0269	．1029	－ 200	－ 101		． 0185
＊ 4	$+60 \quad 50 \quad 18.60$	． 3.5	1	＋20．0．36	． 0102	－ 294	－ 111	$+$	．00： 4
＊5	＋ $3716 \quad 33.11$	． 10	8	＋ 19.9469	． 0050	376	109	－	．Oiz\％
$1 ;$	－\％ 51730.11	． 26	1	＋20．2012	． 0099	－456	－114	$+$	． 8070
＊	＋32 53 28．25	． 29	1	＋19．280	． 015	－ 584	－107	－	． 0.51
ε	＋63 14 29.68	． 21	$\stackrel{*}{2}$	＋19， 220%	． 00.57	－ 638	－130	－	1108
9	＋53 10 30．94	． $1: 3$	5	$+19.8021$	． 00.41	－ 216	－134		． 11204
10	$+330150.93$	． $2 \cdot$	2	＋19．6023	． 0057	－ 69%	－ 111	－	－Mreo
11	+30 10 35.67	． 19	3	$+10.7476$	－．00．35	748	－ 111	－	． 1085
1：	$+5.5510 .15$	． 05	20	＋ 119.8006	．002：	－ COO	－130	－	． 041%
＊ 13	＋ 6527 41．63	． 9.1	\because	$+19.4050$	． 0111	－ 038	－E56	－	－ 02.208
14	－ 18 40 $\quad 33.3$	． 04	16	＋19． 2139	．003：3	－Ev0	－ 93	$+$	． 0249
15	+ 4 $18 \quad 15.68$	．1\％	（i	＋ 10.31867	． 0045	－ 901	－1！11		． 0207
${ }^{*} 16$	＋ 473050.40	． 12	${ }_{6}$	$+19.7515$	． 0018	－8ir	121	－	． 007%
17	＋ 23 35 12．69	． 17	3	＋19． Ci （its	． 1008	－ 100	－10\％		． 11738
18	+5709 06． 23	． 11	7	$+19.451$	． 00338	－ 1061	－165	－	． 4755
＊ 19	＋ 5017 109．37	.27	1	＋10．6805	．0070	－984	－1：9	－	． 0206
＂ 20	＋ $60 \% 17.8$	． 26	1	$+19.8180$	． 0081	－ 1100	149	$+$	． 1604
21	＋60 02 21．50	． 10	9	＋19．65－0	.10041	－ 1191	－15\％	－	． 01013
＊ 23	＋ 3749 14．69	． 13	7	＋19．503\％	．note	－11：1	－120	$+$	． 01024
23	＋ 712 \％ 0.93	.07	17	＋19．17\％1	．U0：3：	－ 1180	－ 101	$+$	－11833
＊ 21	＋ 6711043.88			＋19， 3148		－ 1 （i02）	－ 605	＋	． $110 \cdot$
95	＋ 345726.09	． 10	10	＋19，1－3\％	． 1031	-1406	－1：5	－	－ $1 \because 23$
＊26	＋ $8045 \quad 33.04$	． $3: 3$	1	＋19． 2096	． 0121	－ 1411	－ 119	－	．002 4
28	＋ 26 \％ 36 20．53	． 16	3	$+19.05 \% 9$	． 00.51	－ 1524	－ 117	－	． 0175
28	＋Eo ：35 3i．e． 6	． $0: 3$	03	＋19．0408	． 0610	－ 080	－11：00	＋	－ 11004
＊$\because 2$	＋ 230503038	． 21	1	＋18．9158	． 000619	－ 1613	－119		－（i）2i1
30	＋59 35 04．9\％	． $1: 3$	5	$+10.5594$	．00：3	－1978	185	－	． 11.246
：31	－ 849 44．31	． 17	17	＋1－600	．000：：	－ 10.31	－ 90	－	． 2903
${ }^{*} 30$	＋ $69 \quad 3712.29$	． 17	：	＋18．7100	． 00.7	－\％31．4	－\sim_{1}	－	． 17506
：3	－ 43858	． 20	1	＋18．540）	． 0105	－ $14: 3$	－ 60	＋	． $1: 312$
81	＋ 14.1202 .15	． 08	16	$+18.0098$	．00：5	－1719x	－ 10%		． 0154
＊35	＋ 4005010.3	．${ }_{\text {c }}$	1	＋18．5．50	．0093	－2033	－ 155		． 01910
＊：36	＋ 475938.17	． 11	7	＋12．3\％	． 00.6	－ 210.5	150	－	． $11=9$
37	－ 505	． 2	2	＋18．3湤	． $00-11$	－13\％\％	－ 40		． 1124
＊ 33	＋ 5.003 こe． 61	． 10	9	＋1－2059	． 00411	－	－16．4		． 11303
39	＋ 831339.81	． 09	12	＋1－2459	．00．is	－2009	$10: 3$	＋	． 11043
＊ 40	$+50 \quad 10 \quad 25.57$	． 33	1	＋17．0714	．006iz	－ 2460	108	－	． 0149
41	$\begin{array}{llll}+63 & 03 & 11.63\end{array}$	11	\cdots	－ 17.04 .0	． 018.4	－20．2R	－呺	－	． 01377
4：	＋ 4858 08．16	． 21	\because	＋17．71：31	．U10：－	－0wn	125		． 280
43	＋ 2011145.04	． 08	19	＋ $17.76{ }^{\text {a }}$	． $100: 5$	－\％	－11：3	－	．11－1）
44	＋ 714353.84	． 10	10	$+17.6275$	． 1101 B	－ 3 BH	－$: 3.8$	＋	－（123）
＊ 45	＋63 4706.75	． 32	1	$+17.13460$	． 0079	－Sil0	－${ }^{3}$	$+$	． 0135

Catalogue of 500 stars

$\frac{\ddot{c}}{\bar{y}}$		Name．				$\frac{d a^{2}}{d l^{2}}$	Δ	$\Delta \mu^{\prime}$
				h．m，s．	8.	8.	＂	＂
46	128	γ Abdromedre	3	15013.9	＋ 3.03	＋ 39	＋．31	$+.46$
47	16.15	4 Arietis	$?$	20007.8	＋3．36\％	＋$\because 1$	－． 35	－． 75
＊ $4-$	Bis 0	β Trianguli	1	0.203 .7	＋ 3.5 .0	＋ 30	－－． 32	－． 10
49	1884	¢ Ceti．	5	0638.5	$+3.150$	＋13	－． 20	－． 43
＊ 50	714	¢ Cassioper	1	1547.5	＋4．8．4	＋1 $1: 1$	－．（13）	$+.7 \%$
$* 5$	75	11 Trianguli	10.5	2003.8	＋ 3.35	＋ 9	－． 42	$+.07$
\％	760	5 Ceti．．．．	4	21.30 .4	＋3．1－1	＋13	－． 115	＋．23
ais	73		5.5	$33^{3} 11.4$	＋5，503	＋ 200	＋．$\because 5$	＋1．85
\cdots	－25	4 Arietis	$1)$	3－10， 10	＋ 3.331	＋19	－． 20	－． 28
55	E\％	＊Persei	4	3.340 .0	$+4.061$	＋ 31	＋1．14	$+1.29$
56	837	γ^{2} Crati	3	3549.5	＋3．103	＋ 9	－． 56	－． 4.5
57	863	η 1＇eree	1	4185	＋1． $3: 3$	＋63	$+.66$	＋3．10
5	－7：	11 Irietis	3	$4: 38.5$	＋$\because 2.314$	＋	－． 69	＋．15
59	88	T Pezsel	5	4． 34.3	＋ $4.81 \because$	＋5x	－． 13	＋．46
＊ 60	－ 110		1	$4033=$	＋ 7.68 m	＋ 407	＋． 5	＋2．19
111		tr Eridami	$\therefore 3$	2331.2	＋ 3.34	＋ 7	－． 43	－1．
1i，	（11）	a Ceti	2．5	$5.54 .=$	＋ 2.129	＋ 10	－． 17	＋．${ }^{1} 1$
13.3	！15	γ Persei	：3．5		＋ 4.315	＋ 59	＋． 49	$+1.17$
1.4	为；	（）Pers	4	$\therefore 10 .:$	＋：$: 3-1$	＋ 23	－． 41	－1． 28
15	！ 13.3	3 Purat	$\because 5$	30040.4	＋ 2 －－－	＋35	－． 11	－1．tio
1318	903	Persei	1	00 02． 3	＋ 4.394	＋ 5	＋．	－1．1．
＊ 117	017		5， 5	0483	＋ 7.300	＋ 33	＋．48	＋1．41
＊im	019	ζ Arictis	：	11748	＋ 2.436	$+1-$	一． 33	－．it
＊193	1029	60 Arintis	7	1：3 11． 2	＋3．512	＋ 20	一． 4	＋．：3
50	114：3	1：l＇elsei．	2． 5	$15 \div 4.4$	＋4．219	$+48$	－． 04	＋． 0
71	10．\％	－＇］＇ansi	4.5	1505.3	$+3.201$	＋ 11	－．	－． 5.5
7	1117	ξ T＇auri	4	－ 0 29，	＋ 3.214	＋12	＋1．32	＋．73
－73	10.7		（i）	$\because 1.33 .3$	＋ 13.4311	＋ 214	＋．132	＋2．78
－1	1101		6	$\because 51.4$	＋3．702	＋ 24	$+.12$	＋．90
\％	11：9	δ Pers	；	$\therefore 2.101 .2$	＋4． 241	＋ 41	－． 30	－． 08
－\％	11：\％		6	B1 12．	＋\therefore 保	$+110$	－． 18	＋． 81
75	1160	7 ＇Tanri	3	4003.4	＋3nn	$+1$	－． 38	－．is
5	$1 \geqslant 07$	\bigcirc Per	3.5	4616.6	＋ 3.75%	＋33	－． 39	－．73
－5！	$120: 3$		5	$46: 4.7$	＋ 5.842	＋ 21	－． 21	－$\because 6$
＊－11	1208	ξ Perse	－	5031.5	＋3． 273	＋ 95	－． 8.4	.71
－1	12：34	7^{1} Eidani	\because	$\therefore 11.8$	＋－ 2.71	$+4$	－． 31	＋．41
－3）	12．1	¢ P＇ersei	4.5	5716.5	＋ 4.441	＋ 43	－． 15	－． 37
8．：	$1 \because 3$		1		＋11．s．	＋1－11	＋，－	＋3． 23
－1	1 2 隹		\therefore	50.83	＋4． $2: 31$	＋ 38	－．－${ }^{-1}$	－． 91
－ 85	1：－7	12 lirat i	4.5	40.540 .5	＋4．$: 30$	＋ 3	＋．13	＋－is
-6	1：30	γ Tauri	3	1240.9	＋ 8.410	＋ 11	－，$=$	－3． m
－ 7	1：193	ε Tauri	33.5	$\because 119.1$	＋ 3.419	＋10	－． 13	－1．15
Q＊	1400	（2 Taluri	1	2－15， 0	－1－2．1：3\％	＋ 10	－\therefore	－1．102
C）	14.11	4 Camelopardi	－	（3）：3 9	＋1． 969	＋ 40	＋．$\because 2$	＋．60
（9）	1．1\％ 4	c：Camelopardi	4	41 ：3．0	＋5． 01%	＋ 69	－．$\because 1$	－2．14

for the epoch 18i5．0－Continued．

$\begin{aligned} & \dot{3} \\ & \frac{\Delta}{3} \\ & \text { B } \end{aligned}$	Declination，1845．0．					$\frac{d^{2} d}{d t^{2}}$	$\frac{d^{3} \delta}{d t^{3}}$	$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	－＇＂	＂		＂	＂	／1	＂		＂
16	$+414343.50$	． 13	5	＋17．4676	． 0936	－2663	－ 149	－	4
47	$\begin{array}{llll}+ & 21 & 52 & 13.17\end{array}$	． 06	95	＋ 17.310%	． 00121	－ 2543	116	－	1515
＊ 48	＋ $24 \quad 23$ 41．73	． 11	7	＋17．	． 0138	2711	136		． 0496
49	＋ 81533.55	． 11	8	＋17．0660	． 0040	－ 2498	－ 97		．0153
＊50	＋ 665019.97	． 11	7	$+16.4596$	． 0043	－ 4097	－ 210		048
＊51	$+311419.64$	． 27	1	$+16.3230$	． 0075	－3031	－ 199		． 0373
52	＋ 75355.03	． 0.4	14	＋116．3：369	．00： 6	－iss	－ 05		$.014{ }^{3}$
53	＋ 521609.56	． 19	3	$+16.112 \%$	． 0063	－4－3	－4：3		． 0018
＊ 54	＋ $19 \quad 23 \quad 38.91$	． 29	2	$+15.5602$	－（0）：3	－314	－ 10%		0012
55	＋ 484153.24	.20	\because	$+15.5150$	． 0051	－ $2-19$	151		．002 1
56	＋ 24228.16	． 08	16	$+15.3820$	． 0089	－ 2019	－ 85	－	． 1585
57	＋ 5.5229 .46	． 23	＇	＋15． 2466	． 0006	－ 4160	213	－	－126 119
58	＋ 26443878	． 11	7	＋ 15.1941	． 0042	－ 3407	－ 118		－119\％
59	＋52 14 50．91	． 13	5	$+15.0107$	． 0048	－4102	－194		． 0114
＊60	＋ 785516.59	． 16	4	$+14.8183$	． 003.3	－ 7610	904	＋	． 1069
61	－ 4045 9？．6．3	29	1	$+14.622$	． 0101	－ 2336	－45	$+$	． 0465
62	＋3 3 5\％，	． 06	吅	＋14．3．5\％	． 0023	－3096	－¢゙		－ 0×29
63	＋ $5: 30054.54$	． 28	2	＋14．43－4	． 0068	－4484	198	－	． 0083
64	＋3－9115． 29	$\because 0$	\because	$+14.2417$	． 0061	－396\％	－ 141	－	.1107 .0192
65	＋ $40 \sim 8 \geqslant 0.43$	． 09	12	＋14．14\％\％	－ 00 2：${ }^{5}$	－ 4058		－	
66	＋ 490801.38	． 21	\because	＋14．0－53	． 00631	－ 40.31	19\％	－	0710
＊67	＋ 77161619.19	． 11	7	－13．845	． 00.31	－ $7-19$	－ 713	－	0.19
＊68	＋ 203446.86	． 11	7	＋13．6107	－ 1040	－3\％16	－ 101		04M
${ }^{*} 69$	＋ 25103020	． 24	\because	＋10．3099	－ $010-3$	－ 316110	－ 108	－	－0， 0 ， 4
70	＋ 492451.43	． 05	$1: 3$	$+13.1605$	． 00.5	－13：	－ 175	－	． 03.4
71	＋ 83514.64	.14	$\bar{\square}$	＋13．9290	．004－	－3024	－ 81	－－	－0ッー．）
72	＋ 917 43．17	． 12	1	＋10，－07	． 0044	－30－	－${ }^{82}$	－	－ 0.311 .3
＊－3	＋ 725512.80	． 69	1	＋13．734	． 01218	－703	－50\％	－	－ 0112
＊ 74	＋ $3115 \quad 3-.51$	． 97	1	＋ 13.30 .6	． 015	－4316	－ 114	－	
75	＋ 472308.49	． 03	13	＋11．858	． 0029	－5024	1.05		
＊ 26	＋ 6643 24．09	．21	\because	＋11．203	.0079	－6642	－ 399	－	． 0910
78	＋$\because 34300.58$	． 07	18	＋ 11.4489	． 0128	－4093	－ 91	－	． 0.058
78	＋ 3130 37．56	． 01	11	＋11．0151	． 10038	－4621	－ 101 j	－	． 0313
＊－9	＋100 4010.78	． 20	，	＋11．0480	． 0094	－ 6482	－2\％\％	\pm	． 0109
＊80	+ +55	． 20	2	＋10．6mai	． 0002	－48\％			
81	－ 135156.04	． 08	16	＋ 10.4105	． 0038	－350\％	－ 46	－	． 1100
＊-2	＋5000 34．55	． 12	6	＋ $10.1-510$	． 0043	－ 5617	－ 1.54	－	． 01137
83	＋85 13	． 19	3	＋11．313－7	－niolif	－21：219	－$\pi=6$	$+$	． 1102
84	＋ $47 \quad 29 \quad 34.17$.23	$\stackrel{2}{2}$	＋10．0150	－0080	－ 5510			
＊ 85	＋ $4805 \geqslant 1.69$	． 8	2	＋9．53\％！	． 00.7	－500\％			
86	＋1519 20． 23	． 09	11	＋9．023－	． 0040	－4．4－6	\ldots	－	0037
67	＋10 $5+18.04 .44$	． 05	16	+ ＋	． 000%	－ 4639	－liti		－114
88	＋ 161521.78	． 06	26	＋7．5－哏	－002 1	－ 6×10	－ 141		． 1.510
－9	＋ 063156.13	． 11	7	＋6．9020	－ $0102{ }^{\circ}$	－6819	－$\quad 113$	－	． 001
90	＋ 600730.73	． 10	\mathcal{L}	＋6．32：	． 1003	－E1ol			

Catalogue of 500 star：s

$\frac{2}{B}$		Name．				$\frac{d^{2} a}{d l^{2}}$	\wedge	$\Delta \mu^{\prime}$
				h．m． 8 ．	\checkmark	＂	＂	／
$!1$	1520	ℓ Aurigx	4	$44 * 51.3$	$+3.297$	＋ 14	－． 81	－． 85
92	1536	β Camelopardi	4.5	呺 1－． 3	＋ 5.309	＋ 42	＋．13	－． 34
93	1540	ε Jurige．．	4	5300.0	＋ 1.29%	＋${ }^{1} 0$	－．	-1.29
94	1.011	\bigcirc Anrgze	4	53.44 .5	$+4.181$	$+13$	$+.81$	＋0．48
93	1505	11 Orionis	5	3585.7	$+3.45$		-1.07	－3．5
96	1．n2	3）Anrigex	4	3\％40． 1	＋4．19\％	$+17$	－． 23	-1.12
07	1613	a Iuriga	，	$510 \% \%$	＋4． 103	＋ 16	－． 16	－． 74
9－	11033	β Orionis	1	$0=31.9$	＋$\because .001$	$+1$	＋．10	－． 11
08	$16 \div 1$	3 Tami	：	1－2．2．5	＋ 2.508	＋ 8	－． 36	－． 47
100	1706		5	4\％ 01.6	＋ 7.990	$+7$	＋．c．3	＋3．11
101	17.30	δ Orionis	2	25 37．3	＋ 3.05	$+1$	＋． 09	＋2．00
$10 \cdot$	1741	a Leporís	8.5	9713.1	＋$\because 6.6$	＋ 3	－． 36	－． 010
10：3	120.0	ε Orionis	－3．5	3083	＋ 3.040	＋ 4	－． 46	－．3i
114	$1-103$	－Colnmbat	？	8507.4	$+\because 175$	$+3$	$-.02$	－． .11
105	1－1．5	2．Amrige	5	$4 \because 49.6$	$+4.150$	$+6$	$+.10$	－． 31
106	1－9	3 Conlmmb	：	－16：33．${ }^{3}$	－$\because 11 \%$	＋	－． $1{ }^{3}$	－． 11
117	1－：	\therefore Onmmis	1	$4=9.3$	＋ 3.34	$+3$	－． 01	－． 113
$10=$	1－－：	¢ Aunira	3.5	1！！ 11.1	＋1．93：	＋ 6	－． 0.11	－．ie
109	1－6	3 Anrig	\because	8.011 .7	$+1.305$	$+\quad 4$	－． 11	－\because
110	1！110	（1）Anrig	1	$\therefore 1$ 11．－	＋4．090	＋ 3	＋．	＋2．80
111	19－11		7	（\％0：5 0．3．：1	＋（i． 213$)$	－	－． 40	-1.13
11：	20012	2）Geminorum	4	11920.1	＋ 8.603	＋ 1	＋．08	＋． 19
113	3）！ 19	μ Ceminorum	8	15.3 .9	＋$\because 20.3$	－ 1	－． 83	-1.16
111	－1\％9，	\％Arens．	1 －		＋1．330	＋ 1	－． 13	＋．
115	$\because 16$	γ（ieminorum	2.5	$30-29.4$	＋3．419	－ 1	－．$\because \sim$	－1．3t
110	9194	๕ Geminorum	8	2611.5	＋3．694	－ 3	＋ 83	－． 19
11%	－1：\％		\square	4111.7	＋：30．2：1	－2101	＋．03	－． 11
11：	－0．：3	0 Grminorum	5	118.3	＋3．360	－	－．89	－1．112
119	3．29：\％	ε Canis Majori	2．	20 4\％．	＋	＋$\ddot{\square}$	－．48	＋\because
$1: 30$	83	，Cieminorum．	4	$5 \mathrm{id} 41 . \mathrm{T}$	＋3． 363	－$\overline{0}$	＋．37	－1．14
$1: 1$	384．7	δ Cans Majoris	3.0	70812.5	＋ 3.439	$+1$	－． E^{1}	＋． 43
1：3	－	\％Geminorum．	4.5	10 －4． 5	＋3． 10%	\cdots	＋．60	－． 9
13：	$\because+110$	δ Geminorum	：	19：39．4	＋3． 6.71	7	－． 046	－$\%$ \％
$1 \because 4$	－10：9		5	1781.4	＋13．：311	－ 51	$+1.3=$	＋ 3 ，
125	$\because 14:$	ι Geminorum．	1	1758.7	＋ 2.736	10	－． 05	一．0－
130	3100	3 Camis Major	：	20823	＋ 2.85	－ 4	－． 13	－．．＂
$1: \%$	$\because 15$	＜－Ceminarum．	1．5		＋ 2.803	－ 10	$+.03$	－． $1: 3$
10＝	－5． 1	\％litmintorum	4	$\because 17510$	＋ 2.603	－ 11	＋．	－1．1：
1：19	0.05	3 licminoman	\because	：i，：3．9	＋ 8.601	1.	． 3	－． 3
130	$261:$	9 licmilorum	J	4580.	$+3.6-1$	1：	－．33	-1.06
131	3710	C Argus	a is	5911.5	$+\because .10-$	＋ 1	＋．n2	－． $0: 3$
1：3	2，	汸 Cammonmad	－	$=11100$	＋12． 11 il	－11：1	＋． 015	＋1． 30
$13: 3$	2002	¢ Arous．	$\because \therefore$	1，1：3， 3	＋$\because \therefore .01$	＋	－．${ }^{1}$	－1． 410
$1: 4$	？\％－	（3）${ }^{\text {chatori }}$	4	（1） 44.1	＋$\because 2.03$	－ 3	－． 3	－． 10
1：5	$: 2-19$	n Ureit Majoris	4	1951.9	＋5．043	－ 76	＋．	$+.34$

for the epoch 1875.0 -Continued.

Catalogue of 500 stars

$\sum_{z}^{\frac{2}{3}}$	$\begin{aligned} & \dot{\Xi} \\ & \vdots \\ & \dot{y} \\ & \dot{y} \\ & \dot{y} \end{aligned}$	Name．				$\frac{d^{2} a^{2}}{d t^{2}}$	－	$3 \mu^{t}$
				h．m．s．	1	8.		
136	20.33	¢ C＇ancri	4.5	区 ：3734．8	＋ 3.419	－ 13	＋． 00	－． 18
137	2013	ι Cameri	5	：307．8	＋ 2.614	－ 20	－． 2.	-1.15
$1: \%$	29.1	ε Hydrw	4	$10 \quad 19.4$	$+3.1-1$	－ 7	-1.17	-3.17
1：39	304－	¢ Urer Majoris	3.5	$\therefore 0: 3.4$	＋4．139	－ 44	－． 20	$+.02$
140	3075	κ Urea Majoris	\pm	$\therefore 050$	＋ 4.195	－ 44	＋．！ 11	＋2． 29
1.11	： 0099	σ^{2} Uree Majoris	\because	－9820．0	＋ 5.374	－10．4	$+1.95$	$+3.92$
14：	2111	κ Caucri．	\because	91058	＋3．0\％	－ 9	－． 87	-2.47
14.3	31：	λ Argus	3	$0: 323.9$	＋29\％ 20	$+4$	－． 04	－－1．74
144	3176	a Lyucis	4	$13: 30.1$	＋ 3.168	－ 27	－．0s	－． 18
145	$\because 1=6$	ι Argus．	2	13 44．6	＋ 1.600	－ 2	$+.20$	＋1：
146	3199		\％	1905.9	＋ 0.113	－ 8.95	-1.06	－3．3．1
14%		a Hydrie	$\stackrel{3}{ }$	2100.8	＋ 2.949	－	－． 03	－． 43
145	濐：	－4 Itrab Majori	5	2383.5	$+5.45$	－ 169	－． $3 \cdot$	－． 111
141	：$\because 2$	＊Uram Majoris	\because	$\because 489$	＋ 4.1150	－ 50	－．13：	$+.85$
150	：3：3\％	－Leonis	1	$34: 6$	$+3.30 \%$	－！	＋．38	－． 013
151	33：31	ε Lernis	：	89 4．9	＋ 3.419	－17	－． 43	-1.43
15%	3.116	y Trre Majo	4	$4 \div 0.0 .1$	＋4．：301	－R2	$+.17$	－．42
15：3		11 Lenuis	3	4530	＋ 8.424	－ 20	－． 54	－． 605
154	：483	7 Leonis	3.5	10 0n ：31．0	＋ 3.98	－1：3	－．．ib	－1．24
15．）	24．0．4	r Leonis	I	1148.2	＋ 8.302	－ 10	－． $3 \cdot$	－1．30
1：\％	3498	St Urar Majoris	\％	08.650	＋4．437	－ 115	＋．61	$+.95$
157	35305	λ ，lrame Majoris	2． 5	$00: 33.1$	＋ 3.1446	－$\because 2$	－． 27	＋． 11
15e	：2s	γ^{2} Lrese Majoris．	\because	1304.7	＋3．317	－15	-1.24	－3．130
15.1	30， 3	μ Urse Majoris	：	14.8	＋ 3.603	－ 33	－． 1 －	-1.36
1611	4n93：		5．5）	$24: 50$	＋5．303	－ 980	－． 51	－1．11
111	3009	ρ Lennis	4	Of 13.7	$+3.140$	－	－． 51	－．08
168	：3\％\％	3）Argus	2	40） 12.0	＋ 2.310	＋ 23	－． 06	－． 38
$11: 3$	：alls	53 Lembis．	i	1 ± 41.1	＋ 3.15	－ 8	-1.10	－－3．80
164	：317	β Crae Majoris	＊	5417.8	＋ 3.36	－63	－． 64	－2． 50
165	$\because 6$	${ }_{6}$ Urse Majonis	1.7	$580 . \mathrm{c}$	＋3．50	－Σ I	$+.01$	＋．04
1 tif	$\because 212$	\％Urso Majoris	：3，	110383	＋ 3.398	－ 3	－	－．1－
16%	3－： 4	d Leonis	2.5	11.5	＋3．212	－13	－． B 4	－：3．31
16	ごい	A Lronis	：	0740.2	＋ 3.15	－ 111	$+.34$	-1.20
169	\％－5	3）Lisar Majoris	4.	11.43 .4	＋3． $2-5$	－23	－． 01	-1.2
1111	3－5！	d Crateris	\therefore S．	$1: 405$	＋2．905	$+i$	－． $5:$	$+.35$
171	3906	Lion＇s	4	$21: 30 \cdot 5$	－3．082	－ 2	－－． 3	－1．20
17.3	：311	Iramou	$\therefore 5$	8850.6	＋3．63\％	－ 111	＋1．83	＋3． 54
173	：344		4.5	31） $3: 3.1$	$+3.02 \%$	$1)$	－．－1i	－1．$=0$
17.4	$30=1$	X 「1－il 入	4	36.66 .7	$+3.197$	－ini	－．1：3	－． 5
175	3095	β Leonis	$\therefore 5$	$4: 41.11$	$+3.06 .5$	－\quad	－． 17	-3.31
176	100：	β Virsinis	3.5	4411.0	$+3.105$	0	－．4\％	－1．05
175	4117	\％lore Maju	\％	4\％ 14.0	＋\％1ex	－ 44	＋$\therefore 2$	－． 10
17－2	4119	0 Virginis．	45	$5-50.5$	＋3．15－	－ 3	－．76	－1，29
159	411.		5	$120611 \% .4$	＋ 3.90 .4	－1313	＋1．67	＋2．13
120	4123	¢ Ursx Majoris	：	0913.9	$+3.003$	－ 43	$+.10$	$+.92$

for the epoch 1875.0-Continued.

Catalogue of 500 stars

		Name．				$\frac{d z a}{d l^{2}}$	Ja	$\Delta \mu^{\prime}$
121	41.31	3 Chameleontis．	．		＋ $8: 3.3=0$	$\begin{array}{r}8 \\ +180 \\ \hline\end{array}$	$\prime \prime$ $+\quad .81$	－． 68
1×3	4145	${ }^{7}$ Virginis．．	3.5	1330． 3	＋ 3.063	＋ 3	－． 87	－1．58
$1 \sim 3$	4187	（a）Crucis	1	1933.5	＋3．22．	＋ 6	－． 76	－2．17
＊1－4	4191	11. Coma	5	2002.9	＋ 2.003	－12	－． 03	$-.80$
＊1－5		\＆Draconis．．．．．．．．	5．5	$\because 437.5$	＋	$5{ }^{5}$	－ 14	-1.02
186	19：34	a Corvi	3.5	\％ 49.3	＋3．13：	＋ 10	－． 25	＋． 41
157	1233	¢ Draconis	3.5	2－ 08.3	＋ 2.600	－ 51	＋1．41	＋2．93
＊188	405	9 Camum Venaticorum．	0．5	3845	＋ 2.904		－． 93	－1．42
149 $* 100$	4384		5.5	4813.8	a $+\quad 0.361$ $+\quad .661$	＋	+1.72 +1.4	+3.38 +3.96
＊190	4335	ε Ursm Majoris．．．．．．．．	3	4831.5	$+2.601$	－ 273	＋1．4	$+3.96$
191	4345	a Camm Venaticorum．	2.5	5010.7	＋2．817	15	$-.34$	-1.09
＊ 193	436	78 Urse Majuris	5	53） 31.2	＋ 2.592	－ 2.5	． 6	－ 4.46
193	4401	${ }_{*}{ }^{\text {a }}$ Virginis	4.5	13 0：3 ํ．．${ }^{\text {\％}}$	＋ 3.101	＋ 8	－． 86	－2． 12
19.1	44.1	B Cuma	4.5	06） 02.3	＋ 0.207	－	－． 27	－1． 194
＊ 195	4433		5	0802.7	＋2．730	-14	－． 13	－1．79
196	41－0	a Viruinis	1	1336.6	＋3．15	＋ 11	－． 14	－．188
197	1154	ζ^{1} Ursie Mlajoris	3	183．4	＋ 2.421	－ 17	－． 07	－． 12
＊192	4506		6		＋1．618		－． 01	
$* 199$ $\times 200$	4：13		6		＋304	－ +	＋1．0．3	＋8．00
＊201	4540	\＆Ursa Majoris	5.5	2918.9	＋2．220		$-.15$	＋1．02
－ロ ハ	． 1593		6	4055.1	＋	－ 9	－． 18	－． 35
23	1402	η Ursa Majuri	2.5	4286.4	＋3．354	－111	－． 20	－． 75
20.4	4618	6 Bootis	6	43482	＋2．840	－9	－． 08	-1.37
＊ 215	． 1637	7 Bootis	6	4714.6	＋3．807		． 72	－2．67
206	4613	Boot	3	$48+1.0$	＋ 9.859	0	－． 67	－1．79
＊－917	4 tin		6	$50 \div 9.3$	-10.011	＋183	$+.06$	＋．08
382	466^{2}	β Ceutanti	1	5111.1	＋4．170	＋ 81	－． 14	-4.71
＊ 2119	41525	11 Bootis	6	5530.4	＋2．2．4	－ 3	－． 08	－． 8.3
210	4646	Dracot	3.5	140100.4	＋ 1.623	$+$	＋．$\because 1$	． 11
211	4700	12 Boot	\％．	0442.0	＋2．739	－ 2	$-.40$	-1.26
＊21：	4730		5	09 45．0	＋ 1.093	＋ 29	＋．34	＋． 18
$\because 1: 3$	429	a Bootis	1	（19） 52.6	＋ 2.85	＋ 2	－．86	－2．04
$\because 11$	4241	λ Routis	1	1137.8	＋	－ 5	－． 213	－． 60
215	fiel	a lioutis	4	20.56 .5	＋2．043		－． 16	． 32
＊211i	$1-01$	24 Buotis．	6	$2+10.9$	＋ 2.088		－． 13	－． 68
317	（－0）	1）Boots．	1	26.6	＋ 2.587	－ 2	－． 33	－1．5．
215	412	y Buotis．	3.5	2702.6	＋\quad－ 418	－${ }^{3}$	$+.30$	－1． 24
91.1	＋15020	E Ursa Minori	4	27.45 .8	－0．2118	＋1：1	$\underline{+1.61}$	$\underline{+3.89}$
＊－	$1-24$		6.5	2981.8	＋ 2.186	－2	－． 16	－． 53
吅1	1－20	a^{2} Centauri	1	：3107．2	＋ 1.109	＋ 71	－1．13	-6.43
边	$1-101$	34 1，	4.5	375	＋2．639		＋．21	－． 31
里3	$1-66$	ε^{2} Bootis．	3	$39: 11.7$	＋ 9 ．19	－ 0	＋．30	＋1．43
$\because 1$	189	a^{2} Libra	3	4357.9	＋3．309	＋ 15	－． 0.17	－1．86
＊－35	$1-17$		6.5	$4.1 \% 3$	＋ 2.85	－ 1	-1.16	-1.52

for the epoch 1875.0-Continued.

N $8-76$

Catalogue of 500 stars

	$\begin{aligned} & \dot{\tilde{E}} \\ & \dot{B} \\ & \dot{y} \\ & \ddot{y} \end{aligned}$	Name．				$\frac{d^{2}}{d t^{2}}$	$\Delta \delta$	$\Delta \ell^{\prime}$
				h．m．s．	8.	8.	＂	＂
－ 2906	4918		5.5	14.4816 .1	＋1．51\％	＋ 9	－． 69	－2．51
8.87	49：3	β Ursa Minor	；	510.4	－0．3d6	＋ 103	＋．39	＋1．54
こここさ	4037		6	5214.1	$+1.981$	＋ 1	－． 0.5	-1.48
299	49.58	i Bootis	3	［1）14．：	＋$\because 260$	0	－－－． 27	－．． 73
＊ 26	4914	442 Bootis．	5	5940.3	$+1.959$	＋ 1	－． 05	－． 64
＊231	5006		6	150850.0	＋2． 281	＋ 1	－． 47	-1.18
2%	5024	：3 Serpent	6	08587	＋ 2.6170	＋ 7	－． 18	－． 115
23：	50：31	β Labreo	2.5	10 16．！	＋3． 200	＋12	－． 24	－． 19
－	531		i	$16: 4.7$	＋ 1.759	＋ 5	－． 51	－2． 10
2\％）	$50-1$	μ^{2} Boo	4	$1940 . \%$	＋ 2.26	＋ 1	－． 56	－1．06
896	5094	γ^{2} Ursw Minoris．	3.5	2050.5	－0．144	＋ 75	－． 51	-1.03
＊2：37	5097	ι Draconis	：	2209.1	$+1.35$	＋ 11	＋ 00	－． 23
2：\％	50109	β Comone Borealis	4	2240.6	＋ 2.476	＋	＋．34	－．． 0.3
＊：39	511\％		1	？\％$\because 9$	＋1．1：！	＋ 17	＋．．32	$+1.51$
240	51%	r^{1} Bootis	5.5	21004	＋2．16\％	＋z	$+.033$	－． 20
041	5180	2^{2} Bootis．	5． 5	$\because 180$	＋ 2.145	＋ 2	＋． 5	－． 03
＂4＂	51：1	（1）Coronse Borealis	4． 5	$9 \mathrm{O}-3.4$	＋ 2.411	＋ 2	－． 32	-9.17
：3：3	S11：\％	a Coronw Borealis	2.5	49.3 .8	＋ 2.5029	＋ 2	－． 37	－． 77
211	51\％		6	3085	＋ 2.0 .06	＋ 3	－．${ }^{1}$	－． 59
215	516－2	¢ Booti	5.5	（i．） $20 .: 3$	＋2．154	＋ 2	－1．08	－2．50
＊ 2116	5178	ζ Corone Rorealis	5	15 if 40.3	＋ 2.80	＋ 2	－． 19	－． 18
$\because 17$	－1192	γ Coronas Borealis	\％	2389.7	＋2．515	＋ 3	$+. .26$	-3.96
218	5196	a Serpentis	2． 5	3506.7	＋2．931	$+6$	－． 80	－． 71
249	51216	3 Serpentis	8.5	$40 \cdot 3.9$	＋ 9.76	$+4$	$+1.01$	－1．77
8	59\％）	ε Scrpentis	3	44×8	$+2.9 z 8$	＋ 7	－． 66	－1．19
＊251	597	x 1lerenlis	6	4－21．8	＋ 2.071	＋ 2	$+1.00$	＋2．99
－5：	5＊－	ζ Ursae Minor	4	1－： 3.6	－$\because: 8.1$	＋ 203	－． 11	＋．14
処：	59，	1 Ilerculis	6	511%	＋ 2.012	$+4$	－．$\because 1$	－1．07
边	5，300	ε Coronce Dorealis	4.5	$5 \because: 4.1$		＋ 3	－1．69	－2．75
ご5	5300	δ Scorpii ．	，3	50806．6	＋ 2.803	＋ 16	－． 24	－2． 65
＋0\％${ }_{\text {－}}$	$5: 313$		5.5	54.4	＋ 1.410	＋ 10	＋．98	＋1． 23
2	53： 2 ！	β^{1} Scotpii	\because	$5811 .:$	＋3． 487	$+14$	－． 16	－\％．+0
？－\％	5：311		5，	5854.2	＋ 1.525	＋ 9	＋．72	＋1．100
$\therefore 9$	$\therefore 8.18$	（1）Draconis	：	5983.0	＋ 1.111%	＋ 14	＋$\because 27$	＋．68
$\because 6$	5380	ϕ Ilerculis	5	160449.9	＋1．204	＋ 5	$+.07$	－． 40
$\because 61$	5106		\square	0.559 .1	$+0.131$	＋ 40	$+.18$	－． 10
＊ 26	5．415		1	1686.1	＋ 1.150	＋ 14	－． 32	－2． 70
晃 6	5111	d Ophinchi	：	（i） 17.8	＋3．13－	＋ 8	－． 9	$+.16$
4 St	5196	16 Nercolis	15．5	（19） 516.3	＋ 2.150	＋ 1	$+.07$	－3．11
＊265	5140		6	$158-1$	＋2．043	＋ 4	＋． min^{2}	＋1．90
Q 410	5103	－Ilerenlis	4	1550.9	$+1.30$	＋$\quad=$	－． 3.	－．31
367	$\therefore 1134$	γ^{2} Ilerculis	\therefore ：	$16: 31.4$	＋\because ． 614	＋ 4	－． 03	－． 80
\because	5173	5 Corona	\therefore	17 13．7	＋$\because 2040$	＋\because	－．	－1．64
Wir！	5121	20：Herculis	（i		＋$\because 2$	＋ 3	$+.12$	－1． $3:$
＊2：01	S．0）		：	9141.5	＋ 1.305	＋ 10	＋1．15	＋3．419

for the epoch 1875.0—Continued.

它	Declination, 1875.0.	$\begin{aligned} & 6 \\ & B_{0}^{\circ} \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	范			$\frac{d^{2} \delta}{d t^{2}}$	$\frac{d^{3} \delta}{d t^{3}}$	
	- , "	"		"	"	"	"	"
*226	+ 694803.67	. 25	1	- 14.7446	. 0082	+ 1531	+ 20	+ .1429
227	+ 743958.82	. 16	23	-14.7165	. 0021	- 187	+ 103	+ .0044
* 228	+ $5008 \quad 25.11$. 25	1	-14.8935	. 0083	+ 2043	+ 30	. 2108
229	+ $40 \quad 5304.0 \%$. 08	14	- 14.3957	. 0035	+ 2359	+ 37	- . 11453
*230	+ 480830.91	. 23	\because	-14.1601	. 0065	+ 2057	+ 28	+.0406
*231	+ 38 4402.28	. 27	1	- 13.6423	. 0114	+ 20.04	$+36$	- , 0193
232	+ 52417.12	. 28	2	- 13.63369	. 0075	+ 3249	+ 68	- . 0×29
233	- $8 \quad 5513.00$. 07	20	- 13.5611	. 0029	+ 3518	+ 81	- . 03309
234	+52 2433.59	. 33	1	- 13.1505	. 017	$+1900$	+	- .031
235	+ 374859.73	. 10	9	- 10.6177	. 00:33	+ 2575	- 31	$+.1884$
236	+ 721643.62	. 08	14	- 19.8097	. 0021	- 107	+ 81	+ .0177
* $2: 37$	+59 24 16.68	. 19	13	- 12.7252	. 004.3	+1547	+ 26	$+.0207$
238	+ 293315.34	. 19	3	- 12.64:8	. 00:37	+ 920in	+ 41	+ .06\%
* 239	+ 610607.12	. 31	1	- 12.539\%	. 0103	+ 1337	+ 26	-.0199
240	+ 411530.63	. 24	\%	- 1:2.4559	, 0081	+ 2515	+ 31	-.00:30
241	+ $4119 \quad 28.32$. 24	2	- 12.4035	. 00\%0	+ 9509	+ 30	. 0093
242	+ 314655.88	. 26	1	- 12.3759	. 0099	+ 2×20	+ 39	-. 0317
243	+ $27 \quad 0811.55$. 06	6\%	- 12.3498	. 0001	+ 899%	+ 4:3	-. 0997
24.	$+433456.59$. 23	\because	- 12.1038	. 0095	+ 2433	+ 20	$+.0431$
245	+ 404541.21	. 23	"	- 11.917	. 00063	+ 2587	30	+ . 0.580
*246	+ $3702 \quad 33.81$	- 20	2	- 11.8768	. 0067	+2700	+ 32	+ .005\%
217	+ $\because 6 \quad 41 \quad 33.66$. 19	3	- 11.6641	. 00, 4	+ 30:37	+ 40	+ .0174
248	+ 64912.87	. 06	24	- 11.6037	. 00: 2	+ 3565	+ 5 2	+ .0839
249	+ $1548 \quad 5.501$. 19	3	- 11.5206	. 0022	+ 3360	+ 49	- . 0177
250	+ 4 \%1 19.6\%	. 10	10	- 11.1035	. 1009	+ 3677	+ 58	+.0183
${ }^{+} 251$	+ $42 \quad 4808.07$. 26	1	- 10.2901	. 00013	+ 2620	+ 24	+.0159
252	+ $7810 \quad 40.77$. 07	18	- 10.8024	. 01:24	- 2731	+ $2 \sim 0$	-. 0016
253	+ 425549.89	. 34	1	$-10.6 \mathrm{e} 95$. 0099	+2539	+ 85	-. 0107
254	$\begin{array}{llll}+87 & 14 & 97.75\end{array}$. 15	4	-10.6588	. 005:3	+ 3120	+ 3i\%	. 0615
255	$\begin{array}{llll}-22 & 15 & 50.64\end{array}$. 10	9	- 10.59:4	. 0046	+ 4429	+ 02	. 03305
*256	+55 0613.04	- 20	2	- 10.3006	. 0089	$+17 \% 2$	+ 21	. 1169
257	- $19 \quad 27 \quad 41.36$. 08	16	- 10.9034	. 00032	$+4413$	+ 75	-.0330
258	+ 5315 49.12	. 59		- 10.0141	. 016	$+1961$	+ $\quad \because 1$. 03.3
259	+ 585358.60	. 11	8	- 9.7203	. 0030	+1408	+	.3108
260	$+451548.77$. 16	3	- 9.6\%5	. 00.81	+ 2443	+ 22	. 0330
261	+ 6808 29.03	. 16	3	- 9.5012	. 0065	+ 204	+ 58	+ .0690
*20:2	+ $5815 \quad 50.87$. 3.7	1	- 9.48:27	. 033	+ 1542	+ 23	+ . 040
263	- 30214.98	. 07	17	- 9.5740	. 0082	+ 4035	+ 56	-.1434
264	+ $1907 \quad 29.87$	- 8	2	- 9.3579	. 0113	+ 3460	+ 37	-. 00031
* 265	+ 400031.66	. 49		8.8149	. 014	+ 2699	$+23$	$+.005$
266	+ 463642.79	. 10	9	- 8.7700	. 0037	+2391	+ 20	+ .0326
267	+ 192653.32	. 13	6	- 8.714\%	. 01043	+ 3503	+ 31	+ .0730
268	+ 311059.72	$\therefore 80$	2	- 8.5028	. 0065	+ 3116	$+\quad 3$	+ . 1016
269	+ 32 3733.02	-	$\stackrel{2}{2}$	- 8.6424	. 0076	+ 3012	+ 20	+.000
*270	+ 55 99 24.26	.25	1	- 8.3192	. 0090	+ 1765	+ 20	+ .0216

Catalogue of 500 stars

烒	$\begin{aligned} & \dot{\#} \\ & \dot{B} \\ & \dot{4} \\ & \dot{4} \\ & \dot{\sim} \end{aligned}$	Name．		을 E 들 Eッチ		$\frac{d^{2} a}{d t^{2}}$	$\Delta \delta$	$\Delta \mu^{\prime}$
				h．m． 8.	8.	8.	＂	＂
271	5.198	a Scorpii．	1	15.214 .7	＋3．603	＋ 15	－． 18	－． 67
2\％：	5.10	7 Draconis	3	221×2	$+0 . c 05$	＋ 18	＋． 06	－． 5.4
＊273	5503	：30 Herculis．	5	$24 \leq 3$	＋ 1.963	＋ 4	－1．35	－3．711
5	550	λ Ophinch	4	$21: 31.6$	$+3.021$	$+6$	$-.07$	-1.42
2.5	5003	：3 Herculis	6.5	$\therefore 640.2$	$+1.644$	＋ 6	$+.75$	＋1．ご
－${ }^{2} 76$	－5， 5.15	15 Draconis	4.5	2314.3	－0．141	＋ 41	． 00	－． 41
2%	5 SO 4	32 Merculis．	6	$48: 77.0$	＋ 2.83	$+3$	＋．65	－． 47
ジく	555%	σ Herculis	4	8004.5	＋ 1.930	＋ 4	－． 05	$+.40$
2\％	$\underline{0} 548$	ζ Opliuchi	3.5	3016.6	＋ 2.390	+9 $+\quad$	-1.65	－3．58
200	ᄃ⿹̄68		1	：2\％：$: 2.4$	＋ 1.741	\pm	＋．93	$+1.16$
$2 \sim 1$	50.96	42 Herculis	5	16 m 21.4	＋1．630	$+6$	＋． 27	－． 41
2	5038	a Thianguli A	$\stackrel{3}{2}$	$: 35: 6.9$	$+6.25$	＋ 91	－． 09	-1.63
2－：	5064	ζ Herculis	3	3634.5	＋20．20；	＋ 3	－． 14	－． 10
$\because 1$	ittil	η Herculis	3	3s ：3i． 7	＋ 2.015	$+\quad 4$	－1．41	－i．63
＊$-2-5$	5694	46 Herculis	\％	4006.7	＋ $2 . \therefore$－	＋ 3	＋．20	＋1．11
2－6	31043		3	4255.7	$+1.134$	＋ 10	－． 81	－1．85
＊ $5-7$	5144		f	4319.8	＋1．911	＋ 4	－． $2: 3$	－． 60
＊ $2-2$	，N\％		6	4117.8	＋1． 20	＋ 10	＋．05	$+.81$
＊2－9	51.93	（ii）Herculi	5	4×13.0	＋ 2.260	＋ 3	． 00	-1.00
$\because 910$	5.146		6	5143.9	$+1.721$	＋ 5	－1．is	-4.12
$\stackrel{9}{\sim} 91$	5.003	κ Ophinchi	4	514.1	＋2．835	＋－4	－． 21	－－6
20，	51：31	ε Herculis．	\％	$55 \quad 30.5$	＋ 2	＋ 3	－．．34	－2．15
2！$\%$	515	69 Herculis	5	5059.3	＋ 20	＋ 3	－1．49	－2．93
294．4	5780	ε Uraic Minor	4	5850.9	－－13， 36	＋ 30	$+.02$	－． 59
29	$5: 36$		i	170131.0	＋ 1.51	＋${ }^{\text {a }}$	－． 01	＋2．89
296	5168	η Scorpii	3.5	0.312 .1	$+4.280$	$+17$	－． 25	
295	5） 01		13	05.23 .9	＋ 1.151	＋	＋． 90	$+3.90$
＊2013	5－23	ζ Draconis	\therefore	（1）－9．7	$+0.16$	＋ 19	－．0\％	＋
$8!5$	$5 \cdots 1$	${ }_{1}{ }^{1}$ Herculi	：3． 5	1856.9	－1 0．73：3	＋\because	＋．13	－．26
：00	50.31	\％Herculi	B．	10 41．1；	＋ 20.10	＋ 3	－． 06	－．r
301	504	69 Hercalis	4.5	$13 \sim 1.6$	－＋－ $0.11 i$	＋ 3	－． 63	－3． 49
＊3以＂	5－53		1	1337.8	＋ 1.0%	＋ 5	－． 56	－4．1－
： 14	5 Er 4		6	1783.6	＋1． m \％	$+4$	－． 29	＋．13
：314	号呺 6	41 Ophinch	5	$1244 .:$	$+3.105$	＋	－． 50	-1.11
$\therefore \%$	S－Et	ρ^{2} 1lerculis	4	$19 \sim 2$	＋2．030	＋ 3	－． 10	－1．0
＊300	5011	\％Herenli	5.5	2085.4	$+1.50$	$+4$	－． 30	＋．01
31\％	5：172		O	2413	＋0． 0.0	＋	＋．50	＋1．94
： 110	20：37	β Draconi	2.5	278	＋ 1.3	＋$\quad \therefore$	＋．0．	－． 06
314	59.11	a Ophinchi	$\stackrel{\square}{\sim}$	2908.0	＋ 2.70	$+3$	－	-1.11
：311	5307		1	8650.6	＋1．81．	＋	＋．$\quad 1$	． 00
：311	6006 t	（6）Draconis	4	8741.1	－0．35	＋． 11	$+.46$	$+1.97$
81：	（1）	μ Herculis	4	$41: 34.0$	＋$\because 231$.	＋！	－． 41	-1.49
：31：	Alar：	－\％1leveuho	1	4：3 4\％， 0	$+\because .430$	＋	－． 13	－1．17
： 11	tiow		．	$4: 146.7$	＋ 1.611%	$+3$	$+.19$	＋1．：30
＊${ }^{\text {a }}$	（i0） 4	ψ^{1} Draconis	1.5	4409.9	－1．f1－2	＋\because	$+.05$	－． 41

for the cpoch 1875．0－Continued．

								co	Number．
	t＋十＋十 		$++++1$ 	$+十+1+$ 				$++十+1$ 出に灾の家。 	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
出禹河	¢ ¢ ¢ ¢	－－9－			它它穿		古ご心灾		Probable error of $\delta, 1875$ ．
ヘッチン29	ごったく	\because		\％		こ	0	（0ッロース，	Weight．
	｜｜｜｜｜ 								Anmual varia． tion 15：5．0．
		象象象		気要要心	象象密灾		S		Probable error of annual via－ riation．
$\begin{aligned} & 1+++1 \\ & 6 \\ & 0 \end{aligned}$									¢
$\begin{aligned} & +++++ \\ & \ddot{\theta}-1+\infty \end{aligned}$	$\begin{aligned} & +++++ \\ & \text { =心が心•O } \end{aligned}$	$+++++$ ら乌゙ちธニ	$+++++$ ご呂ぎき		$+十+++$ さたが,		$\begin{aligned} & +++++ \\ & \rightarrow \text { に灾 } \end{aligned}$	$\begin{aligned} & +++++ \\ & \infty=190: \end{aligned}$	$\underset{\omega}{\text { Fim }}$
	$\begin{aligned} & +11+1 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1+++1 \\ & 08 \\ & 4 \end{aligned}$	$\begin{aligned} & 1++1 \\ & \text { 事总总 } \end{aligned}$	$\begin{aligned} & 1111+ \\ & \text { 坴总总总 } \end{aligned}$				Proper motion iu δ ．

Catalogue of 500 stars

for the epoch 1875.0-Continued.

Catalogue of 500 stars

$\frac{\stackrel{\dot{5}}{=}}{\underset{y}{\Xi}}$		Name．				$\frac{d^{2} a}{d l^{2}}$	Δd	$\Delta \mu^{2}$
				h．m．s．	8.	s．	＂	＂
361	66%		5.5	15） 2015.4	＋$\because .4-0$	＋ 2	－． 33	-1.65
3160	titith	5 Vulpeeu	13.5	20 4in ！	＋ 9.619	－ 1	$+.03$	－3．04
＊：3\％	6ins 1		（6．5）	13：31．	＋ 1.000	－${ }^{-1}$	－． 07	＋．85
3ib 1	6it90	（3）Crun	：	2．540．0	＋ 3.41%	＋ 1	$+.06$	－． 0.4
36	6i9\％	2^{2} Crgui	5	24383	＋1．514	－：	$+.08$	＋． 5.5
396	0009	8 Cxyui	6	9.02 .3	＋3．20：4	\pm	$-.10$	－1．33
8 3	（i） $1: 3$	A Ájuilio	4	3010.0	＋ 3.200	－ 4	－1．92	－ 2.12
＂：3＊＊	6゙ご		5.5	：2 ：3．3	＋ 1.910	0	＋． 10	$+1.80$
309	6731	0 Crg	4	：33 0.5 .4	＋ 1.6049	\sim	－．0	$+1.15$
＊3．0	67.15		5	35050.7	＋1． 5.30	－$\quad 1$	$+.17$	$+1.80$
：31	0inc	10 Vujpernl	6	$3=31.1$	＋ $2.4 \% 3$	＋－	－． 13	－1．45
：15	6	Y Aquilio	\because	4 4119.0	＋ 2.80	－	－．11－	－． 34
＊：363	（i）－1		5	（1） 19.6	$+1.15$	－ 7	－．12	－． 57
3 S 1	173）	（ Cymi	3．5	410.1	$+1.876$	1	－． 10	-1.12
	6－02	－Aiguile	1.5	4441.1	＋$\because 9 \%$	－\because	＋．14	＋． 31
＊ 216	6－12		5	$41 \% 00$	＋ 2000	$+1$	－． 10	＋．03
＊ 3%	（－．：6）		13	$4-24.3$	＋1．00\％	0	－ EMi	－．．tis
：3－	（0－26	ε Draconi	5.5	4－：3．1	－ 11.173	－ 11	＋1．41	＋3． 11
：3： 1	（i－：$: 3$	13 Agnila	3.5	$4!311.4$	＋ 2.04	－ 1	－．$\because 3$	－．－${ }^{\text {a }}$
：－0	1：909	A Lisib Minor	（i）	191\％－	－60． 647	-29716	＋． 5	$+1.16$
$\therefore=1$	OETH	\％Cygn	5.5	5×2	＋1．5n近	－\because	＋．20	＋8． 19
＊：3－3	（－1\％）		1	5：3 15． 1	＋ 1.60%	－	＋．411	$+1.50$
$3-3$	12：－9	15 Yalpern	5	550	＋ 2.11 i	＋ 1	－0．01	－5．04
：3－1	（i－ 0 ？	T Antilae．	5.5	$5-10.0$	＋	：	－1．3is	$-1.1 .1$
$\because \because \square$	10．0	$\because \sim$ Cy＊ui	5	$\because 00.45 .2$	＋ 2.200	＋\because	$-1.1 .1$	－ 0.3
＊ぶい	100	（i）1）racmis．	G	（1） 31.8	$+0.092$	－ 11	＋．$\overline{-1}$	$+\because .199$
：－	1：3\％	o＊（＇y世nil	4	119） 41.8	＋1．-9	1	－． 17	＋．1i
－	129	c：Cisulimor	3	1111%	－：\％： 3.11	－	－$\therefore 3$	＋．03
：- －！	（1）10．	－Coblui	1． 5	183 110.7	－1．－9！	－11in	＋1．-2	＋3，93
： 8	701！	a P＇avonis	：	15．4．7	＋1．7．		－．303	－4．10\％
＊：91	512．	Ol Draconis	$6 . \overline{3}$	$17: 31.3$	＋1．111	－ 11	＋．3i	＋．61
： $1:$	$710:$	γ（＇ygni．．	：	174.5	＋$\because 150$	＋$\ddot{\square}$	－．11i	-1.89
39：	711：1	π（＇spricomi	5	2000.9	＋ 2.111	11	－1．	＋1． 27
\％ 1	7mil	40 （9x\％	6	\％ 516.4	＋$\because \because \cdots$	－${ }_{\sim}^{*}$	－． 1.7	－2． 11
＊：36．	$711: 3$	fore	1	24.34 .4	$+\because \because-7$	＋	－． 13	＋1．0．1
8	710－	$\varepsilon \mathrm{DtMph}_{\text {chini }}$	4	9\％14．4	＋ 2.80	！	－． 13	$-.19$
811	：119－	（\％Cophue	5	87	＋1．116	－ 15	＋$\because 1$	＋
＊ 01%	－11\％		6	$\because: 81.8$	$+\because 11-18$	$+\quad \ddot{z}$	－． 010	－00
3： 3	：11：1		5.5	：311：31．91	－ 11.2111	－ 61	－．$\because 3$	＋$\because 11$
1110	：1：1	13 Dodphini	4	$: 3141.2$	＋-8.11	U	－2：	－1． 11
101	－110	29 Vouluecnls．	5.5	：3，\％i，	＋$\because 6.20$	＋ 1	＋．11	－．E2
は以	：11！	a Welphini	： 3.5	：3：\％11． 11	＋ $9.7-1$	0	－． 0.5	－． 18
＊ $411:$	－14il		（	：in 4n， 3	＋1．8til	－\％	－． 17	＋． 01
411	［1：1	a（ymil	1	：i\％10．3	＋ 2.0111	＋ 2	－$\because 5$	－． 1.1
41.5	717：	d Dejphini	4	3is ：\％ 14	＋ 2.000	0	－．33	-1.81

for the epoch 1875．0－Contimned．

苞	Declination，1875．0．	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{3} \\ & \frac{5}{2} \\ & =2 \end{aligned}$			$\frac{d \cdot \delta}{d c^{2}}$	$\frac{d m^{3}}{d c^{3}}$	
	－ 1	＂		＂	－${ }^{\prime}$	＂	＂	＂
361	＋2441 17．63	． 21	2	＋ 6.9286	． 0057	＋ 3343	－ 22	． 60.5
：3\％	＋ 195103.13	． 2.5	1	＋ i .8 .854	．OMal	$+30.05$	－ 27	－．0：311
＊363	$+574633.43$	． 40	1	＋7．1371	． 6103	＋ 1455	－15	－．0105
364	＋ 274150.065	． 09	11	＋ 7.3094	－ $000: 38$	＋ $3: 47$	－ 21	－． 0111
365	＋ 512851.12	．12	7	＋ 7.5195	． $003 \cdot 3$	＋20．2	14	+ ＋．1245
366	＋341117．40	． 17	3	$+7.4321$	． 0068	＋3001	－ 21	－．004：
367	－ 7 18 13．03	． 10	9	$+7.6-26$	． 0044	＋43317	－ 3%	＋．0n08
＊：368	＋ 432538.83			＋ 7,9083		＋ 2506	－ 17	＋．0．1
：69	＋ 495558.68	． 11	8	＋ 2.1709	． 003.3	＋ 2123	－11i	＋． 217%
＋380	＋54 40 5\％． 55	.35	1	＋8．30：0	． 017	＋178．	1.5	＋．18\％
371	＋2．0 $23 \quad 20.97$.19	2	＋ 8.8641	． 0087	＋ 300	－ 99	＋．0065
372	＋ 1018336.31	． 013	25	＋+8.4920	． 10021	＋373	－ 41	－．000－1
＊373	$+57430203$	． 2^{2}	1	＋8．4720	． 01015	$+154.0$	－ 17	－．06i\％
374	＋ 4449 \％\％．66	． $1: 2$	6	＋8．8．000	． 0044	＋2144	－15	$+.00302$
375	＋ 83282.55	． 06	27	＋9．： 151	． 00220	＋3041	410	＋．3701
＊376	＋ 4016 56． 92	.41	1	＋ 8.9337	． 0102	＋ 2647	－ 21	． 0336
＊ 377	＋ 4786838.95	． 21	2	＋9．119i	． 0095	＋ 20.56	－ 13	－． 018 －
378	＋ 695658.38	．12	7	＋ 9.1728	． 10041	－ 24.	－ 515	＋．021
379	＋ 60.545 .45	． 06	21	＋8． 80.19	． 0021	＋ 37×3	－ 19	－．490\％
$3 \leq 0$	＋ 885551.45	． 06	23	＋ 9.2120	． 00226	－6：515	－56\％－5	＋011i
381	＋52 06 23．04	13	5	＋ 9.415	． 0047	＋19\％\％	17	－．1以边
＊ 3×2	＋50 3100.65	． 56	\ldots	＋！5．546	． 1115	＋+2016	$1 \times$	－1．． 0 隹
3×3	＋ $9724 \quad 32.69$	$\therefore 1$	3	＋ $51.31-.3$	． 11067	＋ 3110	－3：3	． 01401
3 4	＋ 65033507	． 15	4	$+9.0$	． 10061	＋：	－5］	＋．110\％
＊3－5	＋ 3623 21．93	． $\mathrm{B}^{\prime \prime}$	9	＋ $10.30 \% 3$	． 0067	＋973：3	28	＋．000\％
＊356	＋ 614201.60	． 26	1	$+10.81-3$	－monci	＋ 1191	－ 21	＋．115\％
387	＋ 46 \％1 46．e4	． 12	7	$+10.350 .1$	－ 11048	＋ 2259	2	$+.0038$
$3-2$	－12 5\％50．43	． 07	19	＋ 10.0 .05	－（1）	＋ 40.39	77	＋． 600%
3－9	＋ 7720 02．43	． 10	9	＋11．00－4	． 11008	－ 2830	－230	＋．02－3
390	$\begin{array}{lllll}-57 & 07 & 59.13\end{array}$	$\therefore 4$	\because	$+11.105$	． 0100	＋ 22.41	－21：	． 110102
$\times 391$	＋61 518.15	． 31	1	＋11．3191	． 0091	＋ 1165	－ 21	＋．030］
：$: 2$	＋ 3951845	． 119	1：	＋11．3n：	． 11010	＋ 20.39	－！	－（6）9\％）
39：3	－ 153711.65	． 11	7	＋11．4！\％	． 0041	＋ $40 \% 0$	e9	－． 1178
314	＋ 350180.83	． 15	$:$	$+11 . \%-3$	． 10120	＋20\％	：	．11， 011
＊：93	＋ 360216.19	． 19	4	＋11．219\％	－ 060	＋ 26	：3	
396	＋ 10 52 47．17	． 0	1.1	＋ 11.9039	． 0024	＋ 2291	Eij	．（10）1！
839	＋63 31 27.40	． 10	1	＋1\％100\％	．U0：＇s	＋1133	20	－． 1120
＊：3才	＋42 4000.62			＋12．12－1		＋5י\％ 4	\because	＋．17：3
：399	＋ 7206020.99	． 15	4	$+12.285$	． 0006	－ 299	3	－M194\％
400	－1． 1409041.07	．	\because	＋13．200\％	． 01064	＋315\％	55	． 1.511
401	＋ 20 45 40．44	.87	1	＋1 3.3	． 015%	＋ 2015	－ 49	－．．11－
410	＋ $15 \% 3000$	． 10	8	＋1230 40	． 0042	＋310	51	＋． $1112-2$
＊ 411 ；	＋ 5 － 33.30 .71			＋12．51．00		$+1711$	$:-$	．11，0\％
414	＋ $44 \quad 80 \quad 03.97$	． 06	21	＋13．6316	． 11010	＋ 293	－\because	
10.5	＋ 14.3737 .67	－	\because	＋1280	． 1.060	＋ 305	－51	． 00.3

Catalogue of 500 stars

苞	$\begin{aligned} & \dot{\Xi} \\ & \dot{\Xi} \\ & \hdashline \dot{\Xi} \\ & \dot{y} \\ & \ddot{二} \end{aligned}$	Name．		$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$		$\frac{d r}{d t^{2}}$	$\Delta \delta$	$\Delta \mu^{\prime}$
406	T200			h．m．${ }^{4}$		${ }^{8 .}$	－ 30	－1． 10
416	－204	γ_{ε} Cogni	3	20 410	＋2．10	$+$	－+1.80	－1．40
dtio	\％ 20	13 DeTphini	5． 5	4137.0	＋2．955	－ 3	－． 02	－． 0.1
－409	i 1 1－		5	1！14．${ }^{\text {c }}$	＋1．4－9	－ 4	＋． 016	＋1．：3
410	TE0	n Cephei	3.5	4.44 .8	＋1．230	－ 14	＋．02	＋1．29
411	－239	μ Aquarii	4.5	1： 54.6	＋ 2.240	－	-1.86	－2．30
4 413	2077	v Csgui	4	530	＋2．23．1	＋ 4	＋．09	＋$\because i$
41.3	7299		\％	511.6	－2．501	－309	＋$\because 2$	＋1．
－ 11.1	2304		6．5	5－1：\％9	＋ 2.323	＋ 4	－． 31	－． 93
415	－3：3	ξ Cygui	4	210023.1	＋2．100	$+$	$-.10$	－． 9 ；
416	7336	$61^{1} \mathrm{Crgni}$	的亏	0117.8	＋2．6－4	＋15	＋． 3 B	－． id
－ 417		（Fed．：M9）		11138	＋1．402	－i	＋．	＋6．11
－ $41 \times$	234	6：Cygui	5	$1: 17.9$	＋ 21164	+4 $+\quad 1$	－． 15	－ 214
419	7315：	ζ Cygu	3	1183	＋ 2.000	$+$	－．i	－1．13
－4：0	2：3\％		5	15 37． 2	$+1.230$	－ 4	＋．09	＋\cdots
$1 \div 1$	7300	a Erpmului	4.5	210983	＋ 2.0101	－	$+.07$	－．0\％
120	湤－	－Crani	，	$19 \begin{gathered}\text { 小，} \\ \end{gathered}$	＋ 2.31	$+$	－． F	－2．16－
－	734－	－Cryui	4.5	$1: 310.4$	＋ 23	＋	＋． 0 ： 1	＋2．13
424	8319	v Cugni	4.5	13和，	＋2．463	＋	－． 10	
＊ 4.5	Til16	a Ceplue	\％	15 \％	＋1．4．a		＋． 41	＋1．5－
426	741	1 l＇egasi	4	1\％ 18.4	＋ 2.3 .5		＋．0	－． 89
＊ 22	7418		6	19 413．！	＋ 3.1416	＋	－1．04	－3．38
＊ $12-$	ifin	19 Csgui	6.5	2014 41.6	＋ 214%	＋ 13	＋\because	$+.14$
1：9	21－4		－	2：3 31． 11	－ 4.100%	－－ 11	$+.16$	＋． 17
＊4：0	74.0	71 Cygn	万	$\because 18112$	＋ 20	＋	－． 0.4	－． 33
$4: 3$	740	β Alduari	3	24：3\％	＋3．164		＋． 111	－． 4.5
4：3	719	3 Ceple	3	9710 d	＋ 11.83	－ 84	＋． 30	＋1．\because
＋ 4×3	71：9		6	2t 1\％\％	＋ 8.017	＋	＋1． 2.8	＋1．111
＊ $8: 3$	\％otio	7 （＇smi	5.5	$2{ }^{3} 110.3$	＋ 3.416	＋	－． 3 \％	－． 111
4：\％	7314	${ }_{5} A_{\text {q }}$ liaril	$\overline{5}$	8115.0	＋ 3.110		－． 92	-1.3
436	2501	if Crgni	［ 3	3150.4	＋－．400		－．\％1	－1．02
$4: \%$	$1 \cdot \mathrm{H}$	is Cysmi	13	3630.7	＋$\because 410$	$+$	－． $1=$	－：$-\cdots$
12\％	2361	ε lugas	$\therefore 5$	： 3 （12．6	＋$\because 44$	－ 1	$-.13$	一．．in
＊ $1: 3$	Tisif	2： 0 Cryi	4	\％ 15.4	$+\therefore 420$	$+$	－1．19	－3．310
4111	2581	\％l＇equsi	4	3 30.1	＋$\because .711$		－． 6 \％	－：－－
411	\％	11 Cemes	4.8	100.81	＋0．80．	－ 33	＋．4：	＋1． 6.5
＊ 112	209\％	${ }^{2}$ Cerbiu	4.5	41 \％！	＋1．730	＋	＋．09\％	＋
＊ 41.8	$8 \mathrm{Cin} \mathrm{\%}$	1：Compi	${ }^{\text {a }}$	434.410	＋1． 26 ti	＋ 3	＋．${ }^{\text {c }}$	＋1． 11
＋111	Cils	2．${ }^{\text {apmom }}$	\therefore	46－3．	＋ 3 \％ 20	－ 11	－1．0？	－ 3 ， 3
＊ 4.1	208	16．1＇exsini	5.5	47 3： 5	＋ 3.73	＋	－．$\because 1$	－．$\quad 1$
＊ 411 i	5136		i	1－21． 1	＋ 3.011	＋	＋．61	＋$\because 17$
412	21.1	23 1rarohi	${ }^{1 i}$	51.18	＋0．336	－ 14	＋．69	＋1．112
＊ 41	30－	15 Cephei	\because	If 27，	＋ $11 . \cdots$	－：	－$\because 1$	－． 3
＊ 41 ！	？1i．1		1	\％${ }_{\text {a }}$	＋\because 1－	＋ 10	＋1．11；	＋3．3
4i， 1	76－	a Apmarii	3	6．）：1．	＋3．12．		－．01	＋． 111

for the epoch 1875.0-Contimued.

Catalogue of 500 stars

$\frac{\square}{y}$		Name．				$\frac{d^{2} z}{d c^{2}}$	$\Delta \delta$	S μ^{\prime}
				h．m．s．	ε ．	s.	＂	＂
4.1	7680	v Iegasi	5	$\because 159$ 9．3．5	＋3．108	－	－． 43	－．
45.3	76：12	a Gimis．	3	298000.7	＋3．210	－ 46	－． 37	－1．23
453	7716	1 Pegani	4	Ot 11．6	＋ $3.5-9$	＋ 0	$+.11$	－1．41
451	713：3	－3 Pryasi	1	14.438	＋$\because 8.3$	＋	$+.3 i$	－1．5！
4 F	2744	；Cequei	4	$06 \ldots 2$	＋2．033	＋ 11	$+.01$	－． 6.3
＊ 40.18	28.5	2．Cephei	5.7	$07 \quad 16.3$	$+2.036$	$+11$	－． 11	01
＊ 4.5	T515		5	0×30.9	＋ 3.862	＋ 11	＋．40	＋1．43
45	$\because 37$	0 Aquatii	4.5	$1014 . \%$	$+3.130$	－ 8	－． 34	－1．3s
＊．49	5257		6	1：：4s． 4	＋$\because .310$	＋ 14	＋．30	＋\％50
460	7\％！	γ Aruanii	3	$151 \because 0$	＋3．102	－ 4	－．02	＋．6s
＊ 461	5000	\because Lacertio	5	1.558 .0	＋ 2.46	＋11	－．$\because 8$	－ 92
$40: 3$	IE1．1	－Annati	5	1－5：3．6	＋$\because 1616$	－：	－． 17	－． 71
＊ 463	In：	4 Lacerta	\square	1：1 2.9	＋ 2.419	$+15$	－． 54	－． 71
464	T－4：3	： 8 lepasi	6	9416.9	＋$\because 7.3$	＋ 11	－\because	－．－！
465	TS48	d^{2} Cephnei	4.5	9431.9	＋ 2.215	$+17$	＋． 56	＋ 0.0
406	－505	c Lacerta	1	$290^{2} .6$	＋ 2.40	$+17$	$+.00$	＋． 55
46	I－65	\％Supuri	－1	$\because 50$	$+3.11-4$	－ 3	－． 13	＋1．ジ
46 s	「－－1		5.5	：1104．4	＋1．Coz	－： 3	＋．89	＋．．11
＊ 469	5ージ		${ }^{1}$	：11 43.1	＋ 3.4%	＋ 17	－． 05	$+1.40$
＊ 470	す！		6	： 4 ： 11.9	＋ 1.301	－10	＋． 76	$+3.80$
411	3908	ζ Pegasi	：	$\therefore 13.6$	$+2.900$	＋ 2	00	＋1．6is
$47: 3$	7！2：	7 1＇arasi	3	：30．7	＋2．－14	＋ 11	－． 30	-1.15
＊ $47:$	7945	\therefore Pegras	4．	$411: 30.1$	$+\because .8-3$	＋i	－． 11	－．08
424	5110	12 Perrasi	1	$4: 35$	＋\because－－－	＋！	－． $0: 3$	＋．0i
－47．	7．163	1.1 Lacertie	${ }^{6}$	$444 \% .7$	＋ 2.64	＋ 17	$+.18$	－． $5: 3$
4010	796	Cuphei	4	4.514 .0	＋2． 119	＋ 22	$+.96$	$\pm .50$
17%	7！170	\％Ayparii	1	4100.5	＋ 3.131	－ 6	－． 94	－1． $8: 3$
何	71910	e l＇iscis dustra	1	50 4 4.3	＋ $3.20 \% 7$	－ 21	－． 23	＋．02
479	－	o Audiomedie	1	$5 \cdot 10.4$	＋$\because .747$	＋ 111	－．．i4	－$\because 1.1$
＊ $4=0$	50.4		6.5	5614.11	$+2.319$	＋ 20	－． 10	－1．31
1－1	20： 3	1）Pexasi	\because	50.3 .1	＋$\because 90.1$	$+1 \%$	－． 58	－1． 17
40゙，	E11：31	${ }^{6}$ Tensasi	\because	5－3： 1	＋$\because 3.124$	＋ 6	－． $3:$	－1．－1
＊4－3	－11．if	\because Audrombde	5.5	5x 21.5	＋ 606	＋\because	－．$\because 9$	＋．13
＊－1	－110，	$\bar{\square}$ Andramedio	1	3030801.9	＋\because \％	＋$\because 4$	＋． 111	＋．11
$\cdots \mathrm{H}$	2lla		i	0716.2	＋$\because 20.61$	＋ 37	00	＋．1：9
483	F1：1	\bigcirc－Cepres	5.5	1380.1	＋ 0.438	$+41$	＋1．61	＋3，6：
＊ 407	210	10 Arahomedx	${ }^{(1)}$	$1: 3505$	＋ 2.43	＋ 31	－． 45	－1．15
488	－15	（\％）li－cinm	\square		＋$\because 1241$	＋ 3	-1.61	－3．11：
＊ 48	Steri	72 1usasi	3.3	2t 4． 2	＋$\because 9.963$	$+11 \%$	－． 21	－． $5:$
490	854	\％Auhromedie	4.5	：11 97.1	＋ 9.917	＋ 2	＋．93	10
491	－209	Andromela	4	$23: 2200.6$	＋ 29.3	＋ 25	＋．20	-1.50
$45:$	－3：3	¢ l＇iscuma	4.5	3： 31.4	＋ 3.110.	－ 3	－． 10	＋1．1－
4．1：	－\％：－	y Crbhei	：	：34 1：3．	＋$\because 110 \%$	＋$\because 3$	＋．43	$+1.15$
141	－$-2: 17$	¢ Audromedie	1．${ }^{\text {a }}$	341.7	＋ 3.13	＋$\because 6$	＋．47	－． 41
＊ 12.8	ごき：		，	41 51．6	＋ 3 － 83	$+60$	－． 8	－1． 3

for the epoeh 1875.0-Continued.

Catalogue of 500 stars

		Name.				$\frac{d^{2} a}{d a^{2}}$	$\Delta \delta$	- μ^{\prime}
196	831.4		5	h. m. ${ }_{\text {cos }}$	$\begin{array}{r}\text { a } \\ +\quad 2.850 \\ \hline\end{array}$	+ 8.	10 -.85	- " ${ }^{\prime \prime}$
* 497	8324	3) Tegasi	5.5	5183	+ 3.047	+ 15	-. 0.06	$-.10$
+498	E):	ω Piscium	4.5	5953	+ 3.118	+ 5	-. 7	-1. 26
* 499	8341		$\stackrel{5}{5}$	55150	+ 3.026	+	+ . 36	+1.69
*500	836		5	5830.4	+ 8.061	+ 54	$-.16$	+.90

for the epoch 1875.0-Continued.

$\begin{gathered} \stackrel{\dot{\Phi}}{\stackrel{1}{3}} \\ \stackrel{y}{z} \end{gathered}$	Declination, 1875.0.	$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\#			$\frac{d d r}{d d^{2}}$	$\frac{d^{3} \delta}{d l^{3}}$	
	- , "	"		"	"	"	"	"
* 496	+ $73.48 \quad 53.04$. 13	5	+80.0211	. 00 g6	$+117$	- 80	. 0090
* 497	+ $24 \quad 26$ 47.71	. 15	4	+ 19.990	. 0054	+ ह1	- 93	-. 0440
498	+ 61016.47	. 08	16	$+19.9300$. 0032	+ 53	- 101	- . 11.46
* 413	+ 603135	. 25	,	+ 20.0299	. 1077	+ 5	- 9.5	-. 0201
*500	+ $60 \quad 37 \quad 04.34$. 47		+20.0599	. 016	- 60	- 99	+..006

SPECIAL INDEX TO APPENDIX H.

Corrections, preliminary 19Paga.- to assmed decimations
First approximation (Table III) 89Second approximation (Table V)
First approximation for stars -30° to-90° (Table VII)95

- Systematic, Tables of:
First approximation (Table II) 76
For Fund. Astr., final 89,90
Tables IX and X 154
Table XII 168
Reeapitnlation of. 173
Correction, Probable eommon, to northern bonndary field eatalogne (section X)..... 169
Curves. (See graphic curves.)
D'Agelet. (See Gould.)
Davis, Admikal, C. 1 I 5
Derinitive eorrections. (See Corrections.)
Discordance of reflection obs. (See reflec-
tion obs.)Division Erbor:
Cape circle 23
Edindurgh circle $\because 3$
Greenwich transit cirelo 34,35
Washington, Mural cirele 40
Washington, Transit eirclo 44
Paris, Mural cirele 41
Leiden, Transit eircle 44
Dölles. 14,21
Doolittle, Fhof. C. L 5
Doneat Obs $7,15,17,20,21,78,101$
Dldley Obsenvatory $3,1,5$
Eastians, Professor (See Washington Olns.).. 5,16Edinbergit Ohs 15, 18, $27,48,33,79,109,116,167$-, Speeial diselusion of Ch 4:
-, Special table of corrections to Eh $43 \ldots .32$
Ellery, R. I. J. (See Mclhourne.)Englemanx. (See Leipzig.)

Page.	Page.
Efhemeris. (See Am. Eph. Nant. Alm, ete.)	Lamust. (Sce Munich Obs.)
Explatatiox of talles.................... $1: 0$	Lavgier (Sce Paris Obs.) 6, 16
	Leides Obs....................... $7,16,43,81,147$
Fallows. (Sec Cape of Good Hope Obs.)	Leirzig Obs.............................. 18, 43, 146
Fate.................................... 30, 5t	Littiow. (Sce Vicma.)
Featherstonilaghi, T. R	Luther. (Sec Kïn. Beolj.)
Flexure, Cambridge...................... ${ }^{\text {d }} 4$	
-, Cape................................... 42	Midler
, Greenwich-. -...-... 35	Madras Obs18, 26, 164,166
, Melbourn	Man, Rev. Robert. (Sec Radeliffe.)
, Radcliffe 39	Mattil, A . 33
-, Paris 41,42	Melbocrne Obs........7, $10,16,18,42,81,137,148$
, Ponlkora............................... 29,118	-, comparison with Wn 68................. 66
-, Washington Transit circle44, 50,54	Müsta. (Sce Sanfiago).
Findamenta Astronomle.......5, $6,17,20,36,82$	Muxicil Obs 17, 23,108
-, discussion of syst. corr है	
-, defimitive tables of srst. corr 80,90	Nactical Almanac, brit23, $20,2 \pi, 42$ Newcomb, Prot. S. (See Washington Obs.).4, 9,21,
Gillis. (See Washington and Santiago.)	:8, 41,44
Goucld, Dr. B. A..........................r, $9,18,81$	Nomimclatibe of anthorities............. 14
Grapinc Curves, remarks on............. 94	Yormal ststem, first approximation to... il
Gremenich observations............... 33	Notation in discussion of Wa 68......... 45
-, Bradley (See Fund. Astr.).	Younse, Professor
-, Pond5, 15, 17, 21, 22, $28,101,104$	Nutation, values of'........................ 19
-, Twelve-5ane (1840 and 1845) .. 15, 34, $29,111,117$	Nitex, Dr. Maguns d 6
-, Six-year (1850) 16,34, 81, 123	
-, tirst Seren-year (1800)............ 16, 34, 81, 132	OLLTSEN: (ste Greenwich, Pond.) 19,113
-, New Seren-year (1261)............16, 31, 81, 189	Oom,
-, receut annual results 16,34, E1, 14, 1:.0	
-, recent, special remarks on34, 81, 144	
Groombrimge. (Sce Drackheath.)	Paris Observations17,18,41,12e, 155, 140, 142 -, Langiel's catalogue16, 41, 81, 125
Grilder, 11 cio. (Nec Poulkowa)..43, 133, 137, 148	Peters, Di. C. A. F. (Sce Poulkowa)....... 10,19
Hall, Professor (Sec Washington Obs.) 16, 40	Piazzi. (Sec Palermo.)
Haticiess, Professor (Sec Washington Obs.) - j	Post. (sec (irecumich.)
Heatoerson. (Sec Cape of Good IIope and Edinlburgh.)	Positionis mid., Strnve. (Sce Dorpat.) Pochnow. Olservations18, 19, 16~
Hill, G. W. 10	-, catalogne for 134515, 39, 29,113
	Precrssiox terms, compntation of......... 10, 13
ory's refractions........................	-, formnl: 11,13
inson. (Sce St. Helena.)	-, coefficients............................ 11
	-, of stars within 100 of pole 14
Wisete	Probable remor, frequently diseussed
$-\operatorname{licssel}, 1=01$	Proref motion, frequent allusio
- Bessel and busch, 1882.............15, 79, 110	-, inllucuce on precession 10, 11
- Bessel amel Luther, 1:43......... 15, 3:, 79, 115	-, values of. in declination (Seceatalogne.)
Lamavde 18 .	Quetrlet. (Mee Prussels Ohs.)
-, of Edinhurghf. .f	Rapclifet Ols.
—, of Crenwich \ldots....................... . 8	for 184....................15, 21, $37,79,120$
-, of Ratclifio $: 9$	for 1\%is, speriat comparison with Eh do
ot Washington 40,41 , 60	and 1ra do........................... 79
13,37,	fir 1-60 $19,37,134$

cliffe Obs．－Continued	Taylor，＇t．G．（See Madras．）Pago．
37	Vimana Obs．．．．．．．．．．．．．．．．．．．．．．．．．．．17，21，102
narks on ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39	
Reflection Observations：	－，Mural Circle．．． $15,16,19,40,81,121,127,1: 8,167$
Cambridge ．．．．．．．．．．．．．．．．．．．．．．． 24,25	－，Primo Vertical Transit．．．．．．．．．．．．．．．．．18，166
at Greenwich．．．．．．．．．．．．．．．．．．．．．．．．．． 35	－，Transit Circle，186ĩ－1360，Special discus－
adcliffo ．．．．．．．．．．．．．．．．．．．．．．．．．． 39	
at Washington．．．．．．．．．．．．．．．．．．．．．．．44，50，54	－
Refraction．．．．22，27，34， $37,41,42,43,59,66,68,88$	mparison with Me 68．．．．．．．．．．．． 66
Robinson．	－，－－description of observations ．．．．．．．． 44
	－，－discordance＂R－D＂．．．．．．．．．．．．．． 50
	ー，
Sands，Admiral B．F ．．．．．．．．．．．．．．．．．．．．．．．． 5	
Santiago Obs．，Gillis， 1851 ．．．．．．．．．．．．17， 41,124	－latitude ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 59
－，Мø̈sta，1855 ．．．．．．．．．．．．．．．．．．．．．．16，41，81， 126	0
Smytir，Prof．Piazzi．（See Edinburgh Ols．）	nadir
Stars，Selection of，to form catalogue．．．．．． 8	8
Stone，E．J．（See Greenwich and Capo of Good Hope）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．34，42，4？，6f	－refraction ．．．．．．．．．．．．．．．．．．．．．．59，66， 81
Struve，O．（See Poulkowa．）	－systematic corrections ．．．．．．．．．．．．61，68
Strute，TV．（See Dorpat．）	
Systematic Cornections in declination	－，results for 1888－1869．．．．．．．．．．．．．．．．．．．．．．． 81,149
	一，results for 1870－1871．．．．．．．．．．．．．6s， $00,81,150$
	－，special table of corrections to ass＇d $\delta \ldots . .69$
，Table 11，first approximation．．．．．．．．．．．．． 76	Weigits，preliminary，for normal system．． $7:$
，definitive determination of ．．．．．．．．．．．．．．93－169	－，final．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $93,96,163$
－，depending on A．R．，remarks on．．．．．．．．．．94，96	－，Talble XI（definitive）．．．．．．．．．．．．．．．．．．－ 160
－，to declinations from－300 to－900 ．．．．．． 94	Wren．（Se Viemua．）
－，Table VI，preliminary ．．．．．．．．．．．．．．．．．．95	Tilsox，O．S．．．．．．
－，definitive，Table IX，order of declination．． 154	ers，Tabula Rech
－，一，Table X，order of A．R ．．．．．．．．．．．．．． 159	Li，Prioll（See Washmyton，Mmral
－－，Tablo XII．．．．．．．．．．．．．．．．．．．．．．．．．．．． 168	19，40
apitulation	

Explanation－It has been found necessary to omit Fart 2 of Appendix 11，containing the details of corrections to assumed places．

INDEX TO SUBJECTS.

	Page.
Report of the Commissioner................ 9-40	Report of the Chief Astronomer-Continued.
Letters of transmittal 11-13	Chapter V. The Mean and Astronomical
Treaties and official documents......... 17-19	Parallel......259-268
Narrative $20-30$	Appundix A. Report of Captaiu Cregory:
Record of final meeting of commissioncrs. 31-3\%	Narrative $271-287$
List of astronomical stations........... 34	Iustruments used and methods em-
List of monuments 35-40	ployed 2888 -302
Report of the Chicf Astronomer............43-268	Northwest Angle, Lake of the Woods...303-312
Letters of transmittal 43-44	Chict Mountain Lake..................312-316
Chapter I. Gencral characteristics of the country \qquad	Chromometer performances.............. 316 -327 Appendix B. leport of lientemant Greme:
Chapter 1I. General narrative.......... 67-78	Narrative............... $331-340$
Chapter III. The Northwest Point, Lake of the Woods. \qquad	Chapter 1. Georetic conncetions341-350 Chapter II. Topography357-370
Chapter 1V. Astronomical determinations of latitude and methots of sur-	Chapter III. Operations during the winter of 1873-74............................ $371-395$
vey 8_{5-94}	Astronomical positions on reconnais-
$A_{\text {Ippentix }}$ D. Records......9-1-233	sances 890.401
Abstraet of Appendix C................ 198-199	Station-crrors, computation of........40:-406
Notes on Gcodetic Formulx........... 255 -258	Appeudix 11. Report of Assistant Boss..... 409

GENERAL INDEX.

Act authorizing the surver ${ }^{\text {Page. }} 19$	Dectimation of fixed stars, computation of Page.
Agreements of the commissioners.. $20,27,31,: 3,261$	B.A.C. 240 197
Appropriations . 19, A $_{\text {, }}^{2} 4,25$	B.A.C. G7 89-91 $^{\text {8 }}$
Aljommment of the Joint Commission...... 3 S	
Astrommical stations observed loy the Joint	Dogr-sleds................................ 821
Commission 34	Estimate of the Chicf of Enginecrs........ 18, 19
Astronomical stationsolserved ly the United	Extract from report of Colond long (1-31).. \quad \% 1
States Commission 95	Ephemeris, nsed in the fidti................ ${ }^{\text {ght }}$
Arable lamds, Extent of. 49	Forests 5 .
Azimuths 01	Frenclman's Crepk......................... 881
Are of parallel, Length of.................... 94	Fort N. J. Turnay $2=1$
Astronomical camps, Altitudes of.......... 192, 199	Guodetic Formulx, Notrs on 25.5088
Astrommical party, Manur of conducting work	Ilill of the Durdered Scont.................. (in), 61 Itmricane Lake..................................
	Ifypimmetry . 300 .-3in
Convention of Lonthen, Octoher 20, 1818..5,6, 17, 31	Irrigation
	1nstrmancats, Astronmia
Cotmin of the Missouri 6 . 6 , 6\%	Surwring $!1$
Cfrrommetrrs, Corrections, 1872 188	Instrmumbal Comstauts 86,808
	No. 7. Minmmetre...-................ 100
Chrommeters, corwetious, 1544............ 192, 193,	No. i. Livel.......................... 1:1
	No. 20. Lerel......................... 1i2
Table of crors .	Nio. 20. Micrometer 174, 175, 184, 185, 1-6
Table of daily ratus....................	No. 11. Mierometrer1-1,1-3
Table of weekly rates 湤	No. 11. Lavel . 126i, 102
Lamgitudes ly 300 , 28	Instrmment Stands
	Lutter of the Semetary of State............ 5 - -7
	Letter of the Commissimer................ 11-41
Azimuth ohservations 3 a--34, 3 , 317	Lak' of the Wordy . 3 , 3 , 6
	Lake hasan.
	Latitules, 1'. S. Observatioms:
Construction of monds............... .f ${ }^{5}$	
(hidf Mmutain Lake, Surver of.31-316	
(riterinn, Application of...................	Station No. 4, Prombina Mt., Went Nind. $11 \%-115$
1)awson foml 51	Statim No. 5. Loug lixar
Weelination of lixed stars, Comphation of.. Si, 31	Ntation Xo. 6, Tutle Mt. 1.0-123
Duclination of fixml stars, adopted........-191-199	

Latitudes，U．S．Observations－Continued．
Page

Ofrsets，Computation of．．．．．．．．．．．．．．．．．．．．．．．．\quad Page．Station No．8，Niviere des Lacs．．．．．．．．．198－181
Station No，9，Monse River．．．．．．．．．．．．．．13：-135
Station No．10，Mirl Cotean 1：6i－188
Station No．11，Bully Spring 130－141
Station No．10，West Popliu 14：－144
Station No．1：3，Frenchmon＇s Creck．．．．．．f．－147
Station No．14，Pool on Prairie 148－1：0
Station No．15，East Fork 151－153
Station No．16，Milk River Lalies． 1．2－1－152
Station Nu．17，Last Butte $15-160$
Station No，18，Red River 16i－1 183
Station No．19，North Fork，Milk River．164－16if

Summary of Lritislo Stations 10.
Summary of results． 29 a
Letter of Captain Gradory 201
Letter of Liontemant Grcene 381
Little Rorky Crow 280
Longiturl＇s 349－355
Message fimm the J＇resintent． 5
Monmments，Jist uf f．．． $35-40$
at Norlhwrst loint． 81，305－309
Dexeriphion of irm monmments 285
Monse Jijvar 59
Milk Rives lidge 64
Maps，Projowtion of 94
Construction of $36=-36$
Whan and atstronomical parallel $2-9-26$
Morinian of fort Sham $\therefore 31-34$
Batrorologs ：300， 301
Northwost Joint，Lake ot the Wonds．．83，7！－8：3，803
Computation of surreys at ： 10 （1）$: 12$
Natumal divisions of the combers 5．0－5． 1
Nouthwast ：menta，Lake of the Whods $5 \%, 303$
Charative of the（hitet Astronomer fif－is
Cantain Creqory 2゙ロージ
Jicutruant Grme ． $332-310$
Officers thtajed 20

Olisets，Table of ．．．．．．．．．．．．．．．．．．．．．．．．．．．
Pxairic streams，Characteristics of．．．．．．．－－－－ 51
Pembina Monntains ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 58
Peport of the Commissioner．．．．．．．．．．－．．．．．．．．．1\％－40
Rainy River－．．．．．．．．．．．．．－．－．－．．．．．．．．．．．．． $5: 3,385$
Roseau River－．．．．．．．．．．．．．．．．．．．．．．．．．．．55－56
Reū River ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $56-58,392$
Rivicre drs Lacs ．．．．．．．．．．．．．．．．．．．．．．．．．．． 60
Rocky Munntains ．．．．．．．．．．．．．．．．．．．64，364－360
Recounaissances，Astronomical pusitions
011 ．．．．．．．－．－．－．．－．．－．．．．．．．．．．．．．．．．． $399,396-401$
Settloments on the Red River．．．．．．．．．．．．．．．．． 47
Soxtants ．．．
Station－errors，Diselussion of ．．－．－．．．．．．． $402-406$
Station－4rrurs，Talide ot．．．．．．．．．．．．．．．．．． $8: 25,402$
Stalia－linem，Errors of ．．．．．．．．．．．．．．．．94，：300－361
Snow－shoes ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 275
Turtle Monntain ．．．．．．．．．．．．．．－．．－．．－．．．．．．．．． 80
Threo Bnttes．．．．．．．．．．．．．．．．．．．．．．．．．．．． 63

Tupographical work．．．．．．．．．．．．．．．．．．94， $25 \%-3 \%$
Tangent－lines ．．．．．．．．．．．．．．．．．．．．．．．． 30% ．
Stanlia－lines．．．．．．．．．．．．．．．．．．．．．．．．357－3
Ninur compass survers ．．．．．．．．．．．．．．． 8 ． 84
Jecemnaissancrs．．．－．．－－－．－－－－．．．．．． 36

Trpaty of Cblant，Duclaration of Commis－ 203

Wionl End ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 70
Wintrr trancinotation ．．．．．．．．．．．．．．．．．．．．． 383
Clotliin！－．．．．－．－．－．．．．．．．．．．．．．．．．．．． 387
Ohservations during．．．．．．．．．．．．．．．．．．．．．．．．． 200
Tenperatures．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 391

1
.

[^0]: N $\mathrm{B}-\mathrm{C}$

[^1]: 104 detrminations
 Mran latitade, $\quad 43^{3} 59^{\prime} 55^{\prime \prime 2}$
 Value of one division of level,

[^2]: State: Euginerers, aty follors:

[^3]:

[^4]: * In other words the changes dae to variation of temperatare are obscared by errors in rate-determinations and by changes of rate due to jolting, Sc., of the chronometers.

[^5]: - luitald station for chronomoter louge thdes loit.

[^6]: * Now Professor of Mathematics and Astronomy at Lehigh Uuiversity, Penusylcania.
 \dagger Now Second Lientenant Trelfth Infantry, United States Army.
 \ddagger Since Topographer of the Black Hills Expedition, 1875.
 N $\mathrm{B}-22$

[^7]: * Ordnance Surve-Companison of Standards of Length. London, 1sil. On 1. 285 are given the following elements:-

 Major semiaxis $=a_{1}$ of equator, longitude $15031^{\prime} \mathrm{E} . \quad 20,926,350$ feet.
 Minor semiaxis $="_{\prime \prime}$ of equator, longitude $10503 t^{\prime}$ E. 20,919,972 feet.
 Polar axis, $\quad=c_{\|} \quad 20,553,429$ feet.

 $$
 \frac{a-c}{c}=\frac{1}{355.96} ; \frac{b-c}{c}=\frac{1}{313.65} ; \quad a-b=\frac{1}{a}=\frac{326.5}{32} .
 $$

[^8]:

[^9]: "Fundamenta dstronomide pro anno 1555, ex obecrationbus J. Bathey, Anelore F. W. Bessel. Liegiomon/i, 1s18.
 f Dorpat observations, vol. xiv. J. H. Mällar.

 ten. Dr. Argelander, Astronomisthe Nechrichten, Lom Eubo, Ihd. vii, cte.

[^10]:

 Zime section, 1. $\bar{\sigma}$.

[^11]: - Tiule Döllen's Memoir, p. i2l.

[^12]:

[^13]: * In a critical examination of Greenwich polar distances for 1-51-1854 Mr. A. Marth has pointed out very conclusively the defects of the Greenwich transil circle, as apmied to the prublem of absuluto declinatious. (Ast. Nach., 12b0.)
 \dagger In 1848, for a short time, the Jones Cape circle was used.

[^14]:
 thou for $I_{i}-L^{\prime \prime}$ This remark is substantially repeated in each volume untal $1=00$.

[^15]: * Catalogne of stars observed at the United States Naval Otservatory doring tho years 1845 to 18.1." Appendix III., Wasbington Astronomieal Obrervations for 1871.

[^16]: * Appendix to Washington Astronomical Observations for 1864.
 tAdditions a la Cono. des temps, 1851 .

[^17]:

[^18]: N $\mathrm{B}-29$

[^19]: * Washington Astronomical Obsarpations, 18nt, p. xvii. Introduction.

[^20]: ＊Fide Lamrier＇s Memoir；Kaiser，Second Vohme Leiden Observations，etc．

[^21]: ＊The ralue of ε_{67} at $500 Z$ agrees precisely with that foumd in another was（kef p．47）．The value there found corresponds to a zenith distance of about 40 ．

[^22]:

[^23]: * The aperture of the collimators is only 21 inches, while that of the telescope is 8.5 inches.
 $\dagger \Delta P=\Delta P,+D$.

[^24]: * Introtuction to Washington Astronomical Observations for 1 - (ifi, p. xaiii.

[^25]: *Appendix to Washington Astronomical Ob-ervations for 1845.
 t Appendix to Washington Astronomical Observations for 1864.

[^26]:
 （心．4 1．［1］．）

[^27]: ＊For the values of r consult＂Dctails of Corrections，＂etc．

[^28]:

[^29]: * Fre exphanation, 1. 15\%.

[^30]: - These are: Bessel's, 1821; Shruve"s, 1-24; Irgelanter's, 1829 ; Peter's and Gylden's (Poulkora), 1-65; i.ml Kaiser's. 1=6\%.

[^31]:

