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Executive Summary

This document consists of progress reports on three activities

collectively referred to as the "experimental system effort." They are:

1. a system, "nexus", implemented to explore the feasibility of

one class of distributed data management system architectures,

2. the first level design of a network virtual file system (nvfs )

,

and

3. a report on progress in the area of query strategies.

Each of the three sections is relatively independent. For the reader

who would like a brief review of the relational model terminology used

in the first and third parts, we have included an appendix.

Nexus

Nexus was built to experiment with distributed data management

systems built within existing, conventional operating systems. Nexus

creates an environment where independent activities are multiplexed onto

a single real process. Systems like nexus are appropriate in cases

where:

1. real processes are cumbersome and/or expensive to create,

2. multiple independent user requests must be serviced, and

3. the operating system can provide non-blocking I/O, so the

I/O wait times of one activity can be used by another activity.

Nexus was successfully implemented at MIT-Multics. Its implementation

deliberately avoids any system dependent tricks. Thus, the nexus

architecture could be used on other machines. Due to its significant

expense, a full distributed data management facility was not created.

Facilities were provided to do brute force (i.e., no index use, no

optimization) retrievals from moderate size data bases. The communica-

tion facilities implemented are closer to a prototype. All communication
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uses a simple conceptual mechanism called pipes . Two communicating

activities use the same pipe interface whether they are within the same

process, in separate processes on one host or are on separate hosts.

The main things learned from the implementation of nexus are

1. the required environment can be created cleanly and effi-

ciently, and

2. transparent, cross-network interprocess communication is

feasible.

Network Virtual File System

The network virtual file system is intended to provide trans-

parent access to files located throughout a network. The main features

of this initial nvfs design are:

1. a single, easily conceptualized name space supported by net-

work directory services,

2. selective file access,

3. automatic data translation, and

4. support for multiple copies of critical files.

Name space . The nvfs file name space is a tree with no depth

limit. The name of an object has two parts, the name of a directory

and the name of an entry in that directory. Thus, the full name of an

object is a sequence of directory names starting with the root, and ending

with an entry name.

Selective access . The nvfs provides an alternative to bulk

transfer of files. An nvfs file may be accessed on a record by record

basis. Positioning operations allow records to be skipped. Keyed access

is also supported. However, indexed sequential access is not supported.

The "correct" logical sequence of an indexed sequential file depends

upon the collating sequence of the machine. In a heterogeneous network



the collating sequences of some machines can be incompatible with

others. Accomodating indexed sequential access is possible. However,

the added complexity was sufficient to cause us to omit it from this

initial design.

Automatic data translation . By "remembering" the record

template(s) of a file, the nvfs can translate the records as they are

used. This document suggests only a very modest translation capability,

translation between character sets. However, there are no serious

barriers to more extensive translation capabilities.

Multiple copies . Ultimately the nvfs should support multiple

copies of critical files. Reliability is a "weak link" phenomenon.

Data which is critical to file access must also be reliably supported.

We have identified some of this data in the nvfs. The most important

data are the record cursors which define the record to be affected by

the next nvfs primitive. For reliable access, these cursors should be

maintained by the user side of the nvfs rather than the server. To

minimize the impact of the eventual support of multiple copies, we

suggest that the cursors be maintained by the user side even in single

copy environments.

The design of the nvfs has served to make some formerly

abstract issues (e.g., name space management) far more concrete. It has

also focused attention on practical issues like directory services, and

failure recovery. The next step is to allow the design to be critically

evaluated. Only when the evaluation process is complete is it reasonable

to consider prototype implementation.

Query Strategies

In a distributed data management system it is desirable to

present the user with a high level interface. That way, the user need



not be concerned with the exact configuration of the system, etc. A

given user request can often be satisfied in a number of different ways.

The system trys to select the query strategy which would be the optimum

under some metric.

Theoretically, this is fairly simple mathematical programming

problem. As a practical matter, it is anything but simple. The basic

problem stems from the fact that many strategy decisions are based upon

how much output a particular part of the query produces. These estimates

are unimportant in single-site systems, because they have scant impact

on query performance. In a network environment, the size of intermediate

results determines, to a large extent, the overall performance. This is

because cross-network communication of intermediate results is very

slow.

Conventional techniques for estimating intermediate result

volumes are inadequate even in simple cases. We have adopted an innova-

tive approach based upon sampling. A small sample of a relation is

selected. Queries are run against this sample. The size of the inter-

mediate result from the actual relation can be estimated from the corre-

sponding intermediate result from the sample. In this preliminary

report two different sampling strategies are used. Both have strengths

and weaknesses. However, the sampling techniques are clearly superior

to classical techniques. This is demonstrated in approximately 30

queries run against a 10,000 record file. In each case the sampling

techniques accurately predicted the intermediate result volumes.



The Design and Implementation of an

Experiment in Distributed Data Management

This section describes the design and implementation of an

experimental distributed data management system called "nexus". The

goals of the nexus effort were to explore the limits of feasibility of a

selected architecture, and to consider some of the problems that would

be encountered in designing a more complete system. These goals were

met. Due to the expense of creating a complete system, nexus did not

progress beyond the feasibility study version. However, it has been

successfully used on a continuing basis as part of the query strategies

research. In that work, a relation of 10,000 tuples is processed in a

brute force way. Response time is acceptable to terminal users.

The following is a "top-down" discussion of the system. To

begin, the basic problem of doing relational model queries is presented.

Next, we discuss the alternative ways to build a server. One choice is

to use a separate real process for each operation currently being per-

formed on that host. We have elected a second choice, that of multi-

plexing all the operations into a single process. This choice has many

impacts on the design which are discussed. Finally, the major features

of the actual system are presented.

Conceptual Foundations

The system is based upon the relational algebra.* The user

views the data base as a collection of relations which can be operated

upon by algebraic operators to produce other relations. By suitably

combining these operations, the desired output relation may be obtained.

For a brief review of relational model terminology, please see Appendix A.



To support a more dynamic environment, tuples selected by a query may be

modified. This is expressed by adding a modification clause onto the

query. Such modification requires synchronization. (This topic is

discussed in detail in another report [2].) We have chosen a relational

algebra view because the algebraic operators represent actions to be

performed. These actions are well defined and easily conceptualized.

They lend themselves quite well to direct implementation.

This algebraic view should be contrasted with the user (pro-

grammer) interface languages of contemporary, plex-structured data

management systems. In these contemporary systems the logical action

being performed must be implemented as a sequence of low level actions.

It becomes quite difficult to "see the forest". The programmer must be

intimately familiar with implementation details such as sort orders and

synchronization mechanisms. In the network environment, there will be a

large and diverse community of programmers and users. Further, such an

environment is likely to be dynamic, as hosts' load and availability

change. Incorrect actions caused by an imprecise understanding of a

critical detail can have disasterous consequences. Even correct pro-

grams can lead to difficult recovery/restart problems due to incon-

venient host failures. Many of these problems result from the fact that

the "system" cannot "know" what the user intended to do. Thus, to

recover, it must back out of all actions performed by the user.

In a relational algebra based system, many of these problems

are mollified. The logical action requested by the program is explicit.

Its synchronization requirements are defined by this action. Because

the entire logical action is specified, it can be run to completion even

if the originating host fails. If it is desirable to back out of a

partially completed update, this can also be done.



Query Execution

As is discussed in the section on query strategy research,

there may be many different possible strategies for performing a given

query. Eventually, the operations in the query are assigned to the

hosts of the network. If the query is viewed as a tree, the leaves are

the actual stored relations. Each of the nodes represents an operation

in the relational algebra. These operations must be assigned to hosts,

connected logically to the neighboring nodes of the query and initiated.

The process of query execution can be viewed as moving tuples up the

tree. An operation that has been assigned to a host will be referred to

as a component .

The mechanization of the data transfer between components

represents a design choice. However, this design choice is fairly easy.

It is possible to start all the components at the lowest level of the

tree (nearest the leaves), and let them run to completion. Their output

(sometimes called hit files ) can be transferred to the next level compo-

nents and so on up the tree. Where two communicating components are on

different hosts, the existing file transfer protocol mechanisms can be

used in the transfer. When both are on the same host, simpler mechanisms

can be used.

A better alternative is to allow tuples to flow, even though

the component has not completed. Thus, the output of one component

would be immediately available as the input to the next component. Hit

files are needed only when all the tuples are needed to perform some

operation, such as a sort. (Certain cases of join have similar require-

ments. )

It is desirable to isolate the communication function. This

allows other parts of the system to be implemented using a single



communications interface. A pair of communicating components use the

same interfaces whether they are implemented in one process, in two

processes on the same host or on separate hosts. The inter-component

communication mechanism in nexus is called pipes . (Similar mechanisms

have been called "queues" or "mailboxes".)

Component Environment

One of the main functions of the system is to create an envi-

ronment in which components can be created, destroyed, monitored, and

inter-connected. There has been recent interest within the ARPA Network

community in the creation of a Network Operating System (NOS) [3]. Such

an operating system would provide the environment required. Each of the

components would be a task in the NOS. However, an NOS is not an

immediate prospect. Nexus was implemented to create and maintain the

necessary environment. In operation, each participating host runs nexus

as a server. In response to user requests, the various copies of nexus

create the appropriate components, inter-connect them, monitor their

execution, and destroy them when they are done.

A component has needs similar to that of a process in conven-

tional operating systems. A process is created at the request of a

user. The process has its own distinct address space. The process

shares resources such as CPU time and data with other processes con-

trolled by the operating system. The operating system monitors the

process, keeping track of the resources consumed such as CPU time and

real time, etc. The process is deleted either at the request of the

user or when it encounters a fatal error (e.g., an address exception).

Operating systems also commonly provide device independent

I/O. This relieves the programmer from the burden of device specific

I/O by presenting him a uniform interface. In nexus, similar steps were



taken in the area of component to component communications through the

use of the pipe mechanisms introduced earlier. All communication

between components uses a single interface, whether the two components

are within one process, are two processes on the same host, or are on

separate hosts. Thus, only the modules which maintain the pipes need be

aware of the locations of the communicating components. As evidence of

the success of this approach, there were no code changes in the compo-

nents when cross-network communications were introduced. (Early ver-

sions had no network communication facilities.)

There are two possible architectures for implementing the

component environment. In the first a process is allocated for each

component. The second architecture involves creating a mini operating

system which will multiplex many components onto one process.

Single component per process . The server starts a component

by directing the host operating system to initiate a real process to

execute the component. This architecture has many advantages. The host

operating system is responsible for scheduling, address space management,

and process creation and deletion. The components are isolated. If one

component blocks, the other components can proceed. A component error

which causes the process to abort will not harm any other components.

However, not all operating systems can support this architecture.

A server must be able to create processes. On many systems

(such as Multics and GCOS) process creation is cumbersome. Many oper-

ating systems support only a very limited number of process (e.g., 64

in GCOS, about 85 for MIT-Multics) and are often near their limit. If

the server ran out of processes throughput would be severely degraded

because no new components could be started. Finally, on Multics, pro-

cess creation is also relatively expensive. This can add substantially

to the cost of experimentation.
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Multiple components per process . In this architecture, the

server acts as a mini operating system, multiplexing the CPU and other

resources among the components. Each component has an address space,

open files, and pipes managed by the mini operating system. This

architecture does not suffer from the limitations of the first archi-

tecture. However, the bandwidth of a single process may not be suffi-

cient. A single process can also be stopped by any component.

The operating system must provide non-blocking I/O for this

architecture to be viable. If not, any activity which blocks (e.g., a

network read) stops all components.

This architecture was chosen for the implementation of nexus

at Multics for the following reasons:

1. process are difficult to create and are a scarce resource,

2. non-blocking network I/O can be provided.

Implementation Considerations

The implementation of multiple components per process archi-

tectures has requirements similar to those of contemporary operating

systems. Let us quickly outline the required capabilities.

Component creation . Nexus starts components at the request of

other components. Nexus makes table entries describing the state of the

component including next location to be executed, monitoring information,

and the address space. A component is deleted by halting it, logging

monitoring information, and freeing all resources used by the component.

Block and wakeup . Components, like operating system pro-

cesses, need a mechanism to manipulate events. A component may need to

wait until an event has occurred, or inform another component that an

event has occurred.

Scheduling . A component may be in one of three states

:

blocked (waiting for an event), ready, and running. A running component

10



can request to block until an event occurs. When the event occurs, the

component is made ready. Sometime later a running component will be

stopped and put on the ready list so other ready components can proceed.

Stack (address space) management . The state of a blocked (or a

ready but not running) component has to be saved until the component is

again running. This includes the component's registers and local

variables.

Multics provides each process with a stack. Dynamically

allocated local variables and registers are stored on the stack. (Static

variables are stored in another table.) Each time a procedure is called

the registers of the calling procedure are put on the stack followed by

the dynamic local variables of the called procedure.

Because there are multiple components being supported by a

single process, the use of the stack must be shared. There are two

mechanisms to allow components to share the stack. Each component can

have its own stack or a component can be forced to remove everything

from the stack before it blocks. Giving each component its own stack

makes component coding easier because no restrictions are needed.

However, this technique would require sophisticated and extremely

system dependent mechanisms to manage the multiple stacks. In nexus

a component is forced to remove everything from the stack before

blocking.

Rescheduling opportunities . As in conventional systems, I/O

bound components should be allowed to run when they are ready. Time

slicing is the usual approach taken. In a time slicing operating

system, once every time interval the running process is halted and

another one started. A process using less CPU than the time interval

before blocking will proceed near its maximum rate. Nexus uses a

11



second strategy. It requires components to frequently return to the

scheduler.

This second strategy was chosen for two reasons. A Multics

process cannot set a timer to interrupt itself while the process is

running (or ready) . The interrupt will not be seen until the process

blocks. Second, if a component can be preempted by another component,

data sharing becomes difficult. Critical sections have to be supported.

Static variables . Components share procedures to perform I/O

and other functions. In addition, components from several queries may

be doing the same thing. Shared procedures are also used here. Some of

these procedures have to remember small amounts of information across

invocations. For example, a procedure is reading from a file must

remember where the file control block is located. These are called

static variables.

When the procedure is being used by different components,

separate copies of the static variables are required for each component.

The chosen solution is to forbid the use of PL/1 static variables.

Instead, a work area (state vector) is provided for each component where

the equivalent of static variables are stored.

Component Architecture

Each component consists of a number of procedures. The pro-

cedures are called by the main part of nexus, do their task, and return.

This return provides an opportunity to reschedule another component

(i.e., call one of the procedures). It also "empties" the stack,

leaving only the scheduler variables on it. Thus, any other component

procedure can be called with no problems of stack management.

This architecture for the components leads naturally to their

characterization as finite state automata. Each procedure is a state.

12



Inside the procedure, the next state is determined and passed back to

the scheduler. The scheduler transitions a component from one state to

the next by calling the appropriate procedure. The scheduler lets a

component run for 100 transitions (about 200 milli-seconds) before

checking for another ready component. This continues until no ready

components are found at which time nexus itself blocks. When an event

occurs, nexus readies the component (if any) waiting for that event.

A component can block only at a transition boundary. A com-

ponent makes a transition by setting variables describing the next state

and optional event. If the event is specified, the scheduler blocks the

component until the event occurs. Then the component is started at the

specified state.

To illustrate this more concretely, we will discuss a compo-

nent called the relation manager (RM) . This component is responsible

for retrieving tuples from relations and passing them through the

Boolean qualification.

The RM retrieves tuples from a relation and writes the ones

satisfying the Boolean criteria to the output pipe. The RM has seven

states:

1. init: Parses the request and opens the input file.

2. open_pipe: Opens the output pipe.

3. write_header: Writes a record into the pipe describing the

tuples to follow.

4. get_a_tuple: Reads a tuple from the relation.

5. restrict: Tests the tuple to determine if it meets the

Boolean criteria.

6. write_tuple: Writes tuples into the output pipe.

7. fatal_error: Gives the user an error message.

13



The state transitions are specified in a symbolic table. For

the relation manager this table is:

Current State

init
open_pipe
write_header
get_a_tuple
restrict
write_tuple
fatal error

RM State Table

Next State

Normal

open_pipe
write_header
get_a_tuple
restrict
write_tuple
get_a_tuple
terminate

Block

open_pipe
write_header
get_a_tuple
get a tuple

Error

fatal_error
fatal_error
fatal_error
fatal_error
fatal_error
fatal error

EOF

terminate

The entries in the next state columns are the return codes describing

the next state. For example, if the component has just entered the

open_pipe state there are three possible next states. If all goes well

and it doesn't have to wait for anything the next state is write_header.

If network I/O is required to open the pipe it will probably go to a

blocked state waiting for I/O completion. When the I/O completion

event occurs the component will again attempt to open the pipe, thus the

entry in the block column. Finally, something unexpected may happen,

resulting in a transition to fatal_error.

To facilitate easy modification, the table is compiled at each

nexus invocation. The ability to modify the transition table has proved

very useful particularly during development. If a state is suspected of

having bugs, a monitor state can be inserted to check its actions. States

can be added to count the number of times a particular transition is made.

Dummy states were sometimes substituted for states not completed. The

dummy state would simulate the real state. This allowed the development

of components needing that state to proceed.

14



Implementation of Nexus

The global status of nexus and its components is contained in

three tables. The first is the component description table containing

data on each component. This includes the next state the component will

execute, the address of the component's state vector (static variables),

and whether or not the component is blocked. Accounting information on

each component is also kept in this table. For each component the

following are monitored:

1. cpu time used,

2. page faults taken,

3. real time spent running,

4. number of state transitions, and

5. number of times blocked.

The second table, the channel table, contains information on

each event channel in use. Associated with each channel is an event

counter initially set to zero. When an event is received the counter is

incremented. When a component asks to block on the channel, the counter

is decremented. If the counter is non-negative the event has been

received and the component can continue. Otherwise it must block.

Other information is kept for each channel including:

1. real time blocked on the channel,

2. number of times blocked, and

3. the ID of the component that declared the channel.

The third table is the state monitoring table. For each state

the following information can be monitored:

1. CPU time used,

2. real time used,

15



3. page faults used, and

A. number of times this state was executed.

Six procedures and the scheduler manipulate the component description

table. They are:

Initialize. The table is initialized to an empty system.

Create. Create is called with the first state of the com-

ponent and an optional parameter. An empty slot is found in the com-

ponent state table and next state is set to the component's first state.

A state vector is allocated to the new component. The input parameter

is copied into the state vector. The new component is now ready to run.

Remove. The specified component is removed from the system.

Any system resources used by the component are freed. (In particular,

dynamic memory is freed.) The slot in the component description table

allocated to the component is then reinitialized.

Display. The state and monitoring information for the given

component are displayed on the user's terminal.

Channel_wait. Channel_wait and channel_post manipulate the

component description and channel description tables. These two rou-

tines are only used by the scheduler. Channel_wait blocks a component

on a channel. The component description table is modified to show that

the component is blocked. The channel description table is modified to

show the channel on which the component is waiting.

Channel_post. Essentially channel_post does the opposite of

channel_wait . Channel_post is used when an event arrives on a channel.

The post_count associated with the channel is incremented. If a compo-

nent was blocked on the channel, the component is marked ready.

Four other procedures exist to manipulate the channel table.

Since they are analogous to the first four routines which manipulate the

component description table they will only be briefly mentioned.

16



Initialize. The channel table is set to empty.

Add. A channel is added to the channel table.

Remove. A channel is removed from the channel table.

Display. Monitoring information on all the channels owned by

the component is displayed.

Scheduler . The scheduler is responsible for running compo-

nents. It searches the component description table for a ready compo-

nent. If one is found the scheduler steps it through 100 states or

until it requests to be blocked on a channel.

If the latter case happens, channel_wait is called. Channel_

wait marks the component as blocked. In either case the scheduler

checks the component description table for any ready components. If

none are found, the scheduler does a Multics block on all channels that

the various components are blocked on, blocking nexus itself. When the

Multics block routine returns, at least one channel has received an

event. Channel_post is called to ready some component. Next the

scheduler again checks for ready components.

The scheduler does not itself start components. Instead

special components are started with the system which handle component

creation and destruction. One of these special components "listens"

to the terminal controlling nexus. The user can direct nexus to start,

display, or terminate components.
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On the Conceptual Design of a

Network Virtual File Sytem

This section is a first level design of a network virtual file

system (nvf s) . There are three parts to the presentation:

1. an overview of the nvfs logical design,

2. a presentation of the nvfs primitives, and

3. a discussion of the problems of multiple copy management in

an nvfs.

Let us make clear at the outset that there are a great many issues in

the design of an nvfs that defy rational evaluation on technical grounds.

It has been necessary, even in this preliminary design, to make decisions

on many of these issues. In the interests of stimulating discussion we

have often tried to include both sides of the issue.

Ultimately, the nvfs should be integrated into the operating

and file management systems of the participating hosts. In this case,

the user could access network-wide data holdings with no program changes.

However, such a task would be extremely expensive. Furthermore, until

nvfs experiments are performed, it is too early to freeze a design

sufficiently to allow its widespread implementation.

The system proposed in this document is much more modest. We

suggest that a limited prototype be built. Such work will allow experi-

ments and analysis which will lead to the design of an operational nvfs.

The system discussed here is an attempt to suggest the minimum level of

meaningful nvfs support. There are numerous potential extensions or

enhancements, only a few of which are explicitly identified here. This

is not to suggest that the system is without substantial new capabilities

(i.e., capabilities not currently available from services like file

transfer protocol). Briefly, three major contributions are made:
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1. a generalized network-wide directory service,

2. selective remote file access, and

3. automatic data translation.

NVFS Logical Design Overview

The basic unit of the nvfs is a named file. The user of an

nvfs file need not know its physical location. A uniform, easily

conceptualized nvfs name space replaces the wide variation of file

naming conventions found on the various network hosts. These nvfs names

must be interpreted to determine which host(s) have the corresponding

real file(s). Then, communication must be established to those host(s).

Once established, the communication paths allow nvfs commands to be sent

and executed.

NVFS structure. The nvfs is composed of four parts:

1. the user_nvfs,

2. the server_nvfs

3. the logger, and

4. the central directory service.

Every host need not have all four parts.

User_nvfs. The user_nvfs modules are located on the same host

as the real user (person) who desires access to nvfs files. They

translate his requests into nvfs commands, issue those commands to

server_nvfs modules for execution, and interpret the results.

Server__nvfs . The server_nvfs modules actually do the requested

file accessing. They must be located on the host where the file is.

Logically, a server is dedicated to each open file. Thus, if a person

has several files on the same host open, there will be several servers

operating independently there. Whether or not these servers are in

separate processes is left up to the implementer.
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Logger. To begin operations at a host, the nvfs must provide

a third component, a logger. The logger listens on a well-known socket

as part of the initial connection protocol for the nvfs. When a user_nvfs

requires service, it engages in an initial connection protocol with the

logger at the desired host. The logger starts up a server and performs

the required socket allocation. From then on, the user_ and server_nvfs

modules engage in their own protocol. There is no further intervention

from the logger. The logger returns to listening on the well-known

socket for other service requests.

This formulation of the nvfs is different from the logical

organization of the FTP service [6]. In FTP two sets of connections are

established. A duplex TELNET connection is used by the user to issue

commands and receive responses. The data itself is transferred over

another connection. We have adopted the simpler model for two reasons.

First, there seems to be no need for the nvfs to provide data access

between two remote hosts. (That is, a user on host A initiates nvfs

access actions from host B to host C.) Second, the programs using the

nvfs will interpret reply codes etc., reducing the need for a TELNET-

type of control connection. The required control information can be

multiplexed onto the data connection.

Central directory service. The final component of the nvfs,

the central directory service, is really a specialized server_nvfs. The

function of the central directory service is name interpretation. That

is, the central directory service takes an nvfs name and maps it into

another name. The complete name interpretation function may comprise

efforts by the user_nvfs, the central directory service and the server_

nvfs. The eventual output of the name interpretation process is the

identification of the server which has custody of the real file corre-

sponding to the nvfs name, and the information that server needs to open
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the file. This information will likely vary from host to host, because

operating systems differ in what is required to open a file. We have

separated central directory services from server_nvfs because its

functions are significantly different from the file access function

provided by the server_nvfs. In some ways, central directory service is

a misnomer. There is no logical necessity that a single host provide

all the central directory services. Indeed, this single host would

likely be a severe bottleneck on an operational environment. Rather the

"central" is meant to be the opposite of "extreme". The central directory

services are those not performed by either the server_ or user_nvfs. It

may be desirable that no such central services exist. Rather, all the

required interpretation is performed by the user_ and server_nvfs. The

exact nature of the directory service function is an important research

question. We have included central directory services for completeness.

Nvfs names . The name of an nvfs file can be divided into two

parts: the name of a directory, and the name of an entry in that direc-

tory. Since an entry may itself be a directory, the naming convention

can be applied recursively. Thus, the complete name of an nvfs file is

a sequence of names starting from the root name. The resulting directory

structure is a tree. There is agreement that entry names should be

long, but exactly how long is not resolved. A strong case can be made

for no length restrictions, because the restrictions serve no logical

purpose. Name length restrictions exist due to implementation con-

siderations. It is also unresolved whether the directory hierarchy

should have depth limits. The feeling is that depth limits exist to

bound the name interpretation process again as an implementation con-

sideration. Thus, they do not represent a meaningful logical construct.

The choice of this multi-level directory structure is moti-

vated by two factors. First, the multi-level structure is more general
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than single-level structures. That is, single-level structures can be

incorporated as a special case of multi-level structures. However, this

generality would be an unwise choice if it did not serve a useful pur-

pose. This brings up the second factor, isolation. Users typically

have several different tasks in various states of completion. The

existence of a generalized multi-level directory allows the user to

establish sub-directories which contain only the objects of interest for

a particular task. These sub-directories allow his file space to be

partitioned analogously to the partitioning of his current workload.

Sub-directories also allow for reference to composite objects, i.e., an

entire sub-tree, e.g., "Print all the files in >udd>Pollux>source_files".

A third point is that all major existing system file structures can be

accomodated into the nvfs structure. Many of these existing systems

(in particular, GCOS) are also tree structures of significant depth.

Notice that this directory structure is completely independent

of the locations and physical organization of the files. Contrast this

with the RSEXEC [5] structure. In RSEXEC file names are of the form

"host_name local_file__name". The host structure adds a level "above"

the roots of the local file systems. This seriously reduces the flexi-

bility of the RSEXEC structure. First, the user must know exactly where

(at which host) each file is stored. Second, it is impossible to have

related files stored at several hosts be logically grouped in one direc-

tory. Finally, the RSEXEC directory structure does not adaquately sup-

port sub-directories.

Any nvfs object may be assigned additional names. Such addi-

tional names can be used as shorthand abbreviations for longer, more

descriptive names.

The nvfs supports links . A link is a means for allowing an

entry in one subtree to be logically included in another subtree without
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being stored there. A link is another nvfs name. Links can be thought

of as symbolic pointers to other entries in the nvfs directory struc-

ture. They are symbolic because they are re-interpreted each time they

are used. Thus, the linked-to entry may be deleted and recreated in

between two link uses, and both will work correctly. Links are useful

when an entry should be logically included in two distinct subtrees.

Rather than wastefully duplicating it in both, a link can be created in

one subtree to the entry actually stored in the other. Because a link

can refer to a directory, it is possible to include an entire subtree in

another one. This can be used to make, say, a library appear in each of

several different projects' directories. Links may not be used to

create recursive names, i.e., a link that points, perhaps indirectly, to

itself. Exactly how this is prevented is not clear. The check cannot

be done at link creation time, but must be done as part of the link

interpretation process. This is because the link might be legal at

creation. Subsequent changes to the directory structure might cause

the looping to occur when the link is used.

Protection . The protection mechanisms of the nvfs must be

viewed in the light of their intended purpose, to prevent browsing.

Since security is a weak-link phenomemon and thus may depend on system

factors external to the nvfs, expending significant amounts in providing

elaborate nvfs protection facilities is "putting a steel door in a paper

wall." If the nvfs is significantly hardened, the potential penetrator

will simply chose some other path to the data. In the following dis-

cussion of the nvfs protection problem several assumptions are made.

First, the network is assumed to be secured. Messages cannot be altered

in transit or given a false "return address". Second, the nvfs is imple-

mented on a secure system. No other process can alter the nvfs internal
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data. Third, all the parts of the nvfs cooperate benevolently. These

assumptions mean that part of the nvfs on one host can trust data sent

from another part of the nvfs on a different host. Most of these assump-

tions can be challenged today. However, the on-going research in oper-

ating system security suggests that in the future they will be far less

questionable.

The nvfs faces a fundamental problem in its protection mech-

anism, that of reliably identifying a user. In a single-site file

system, the identity of the user is available from system tables. These

tables are filled in as part of the login procedure. In the nvfs it is

likely that a person will invoke nvfs services on another machine. The

server_nvfs must determine the person's identity by cooperating with the

user_nvfs where the person is. Such a mechanism is employed in RSEXEC,

the BB&N distributed system experiment [5], to avoid what they call the

"two login" problem. One could clearly accomplish the identification by

requiring the person to login to the server_nvfs whenever services were

desired. However, this defeats the transparency which is a major goal

of the nvfs.

In the nvfs the required cooperation between the user_ and

server_nvfs operates as follows. The person requests the user_nvfs to

perform some service (e.g., open an nvfs file). The user_nvfs deter-

mines the person's identity from local tables. This local identifica-

tion is translated into a network-wide unique person name. The trans-

lation is required so that the nvfs protection mechanisms can work in a

uniform person name space. The user_nvfs then engages in an initial

connection protocol with the logger on the nvfs contact socket. The

logger initiates a server_nvfs. The user__nvfs then sends the person's

nvfs identification to the server. The connection is now associated
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with a particular user. In the design of the user_nvfs and server_nvfs

care must be taken to ensure that the person-connection association is

not broken or altered. This mechanism also relies upon the network

control programs in both hosts to retain the integrity of the socket

space.

Since the connection is now associated with a particular

person, the requests issued over that connection can be validated. The

two alternative validation points, the user and server ends, correspond

to capability lists and access lists repsectively . In a capability list

system each user has a list of accessible objects. When an access is

attempted, the capability list is consulted, to see whether the attempt

should be permitted or denied. This would mean that the user_nvfs does

the checking. If a given person can operate in several different environ-

ments (e.g., accounts on several hosts), each environment must contain

the appropriate capability lists. There is no simple way to determine

which hosts "know about" a particular person. Thus, to change his

capability list, we may have to poll the hosts. Finally, if I wish to

grant you access to one of my private files, I_ must write information on

your capability list. Although this capability list update would be

handled by system procedures, there is still vulnerability here.

An access list system has somewhat more attractiveness. Since

the access control information and the object are co-located, the syn-

chronization problem is reduced or eliminated. (When one goes to multi-

ple copies of files, the problems may re-appear, however.) If desired,

the access list allows a person to access the object from different

environments. There is no problem in determining what access control

information needs to be updated when a change is to be made. Finally,

to grant you access to my file, I change one of my_ objects not one of

yours. This is inherently somewhat safer.
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We have already touched upon the issue of network-wide unique

person names. However, this may not be sufficiently general. The

access control mechanism must allow the possibility of including identi-

fication of the person's environment. This could include such facts as:

1. the host the person is logged on to,

2. his terminal identification,

3. his project and/or account, and

4. identification of the procedure requesting the nvfs service.

The identification of the requesting procedure allows nvfs objects to be

manipulated only through pre-specif ied procedures. Multics presently

implements this for two classes of objects, directories and mailboxes.

There is sufficient future potential here to include procedure identifi-

cation in the nvfs protection mechanisms. One does face the problems of

remote procedure identification and of the procedure name space defini-

tion. These issues are quite similar to the remote person identifica-

tion problem which introduced this section.

The nvfs has three access types for files: change_protection,

read and write. These have the usual interpretations. There is some

question as to whether write access implies read access. The more

general choice appears to be to place no such restriction. However,

this means that care must be taken with the default effects of certain

primitives. These are discussed in the next section. There are four

access types for directories: change_protection, status, modify and

append. Status and modify correspond to read and write respectively.

However, only directory access and maintenance procedures may access the

directory, hence the separate access types. The third access type,

append, allows the user to add entries to the directory, but not to

alter existing entries.
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In Multics, the access control list for an object is logically

part of the containing directory of the object. This is not possible in

the nvfs for two reasons. First, the directory and the object may not be

co-located. Second, there may be multiple copies of a given directory.

Both these two facts lead to possibly troublesome synchronization

problems. In the nvfs, the access control list for an object is logi-

cally part of that object, and is located where it is.

File structure . An nvfs file is made up of logical records.

When the file is created, the user must specify whether the file is to

use fixed or variable length records. Fixed length records allow faster

and more simple record positioning operations because the offset may be

calculated from the desired record number. In effect, the fixed length

records allow a "virtual index" to be maintained. Variable length

records are more general. There has been internal debate as to whether

the only type should be variable length. Since accomodating fixed

length records is really not that difficult, the nvfs will support both

types. In both cases the length of the record must be explicitly

specified for writes, and is returned on reads. This frees the user

from needing any knowledge of how a particular host implements its

files.

There has also been debate on whether to support stream files,

i.e., files with no record structure. The decision was made that such

files can be supported with the variable length record structure. The

reverse is also true, that a stream oriented system can easily support

variable length (or fixed length) records. Since many hosts retain a

record orientation, it was felt that the nvfs should also.

Associated with each file opened by the user are two cursors

which point to the beginning of logical records. All I/O operations
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utilize these cursors. For example, a read operation will read the

record pointed to by the next_record cursor, and afterwards advance the

cursor to beginning of the next logical record. The second cursor

points to the last record accessed and is used to rewrite a modified

record. The existence of these cursors allows the user to move around

in a remote file, transmitting only selected parts of that file.

As an option, an index may be created for an nvfs file. The

index allows the movement of the cursor to a record having a particular

key. The key of each record is specified when the record is inserted.

Normally, the creation of the index is specified as the file itself is

created. When a record is accessed via an index, the next_record cursor

is left undefined. Thus, the nvfs does not support indexed sequential

files. This decision was made because of the dependence of algebraic

comparisons on the collating sequences of the machines. In an indexed

sequential file there is a sequence of records with one key followed by

a sequence of records with an algebraically greater key. Suppose that

there are the following two keys "AB123" and "ABC45". On an ASCII

machine "ABC45" is greater than "AB123". On an EBCDIC machine, the

opposite is true. Without restricting potential key values, an indexed

sequential file physically maintained on an EBCDIC machine will appear

to be out of sequence when accessed by an ASCII machine. Because

equality comparisons on keys pose no severe probelm in random access

files, they can be supported.

Data translation . The major underlying goal of the nvfs is

transparency. Thus, it is desirable to automatically perform data

translation if it is required. The general data translation problem is

one which has had a great deal of research interest in the recent past.

However, most data translation projects have had much broader scope than
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what we are proposing for the nvfs. The nvfs itself represents a

canonical intermediate between the stored representation of the file and

the internal representation needed by a particular program. We are pro-

posing only simple translation of fields within a record from their

stored representation to their intended form in the target program.

Initially, only one kind of translation will be provided, that of moving

between character sets. The file will be assumed to be in the native

character set of the host where it is stored. The translation will be

to the native character set of the host from which the file is being

accessed.

The next step in generality is to allow a richer internal

structure for each record. A greater variety of transformations would

have to be furnished. A definition of internal structure would allow

the nvfs file to be more self-defining. It would add a level of error

detection which does not now exist in any file system, in that the nvfs

could detect when a user assumed an incorrect record format. Incorrect

format detection would occur before the user's program aborts due to

data inconsistencies. Since the internal structure definition and

translation is a longer range project, only preliminary thinking has

gone into it. The major unresolved issues are:

1. allowable data types,

2. undefined mappings (e.g., 2**34 is a legitimate single

precision integer on Multics or TENEX, but is not on IBM

370's),

3. allowable mapping complexity (i.e., can fields be omitted,

can aggregation operations be performed, etc.), and

4. support of multiple record types in the same file.

Another difficulty with generalized internal record structures is that

the translation requires knowledge of the data structures used by a
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particular compiler on a particular host. For example, consider a two

dimensional array. PL/1 and FORTRAN store this array in different ways.

The nvfs becomes substantially more complicated if such differences must

be accommodated.

NVFS Primitives

Introduction . In this section we present the basic nvfs

primitives. For each, we give the name of the primitive, a list of its

arguments, and a discussion of its effects. Included in this discussion

is a list of possible return codes. Each primitive returns a code which

describes its success or failure. We have grouped the primitives as to

their function.

Directory Primitives

create_directory

containing directory name

new directory name

return code

Causes the logical creation of an empty directory subordinate to the

containing directory name. The creating user is given change_protection,

status, modify and append access to the new directory if the creation is

successful.

Possible return codes:

operation successful

improper access on containing directory - user requires either

append or modify access

containing directory full - it is not clear if this can ever happen

name already exists

containing directory unknown

31



delete_directory

containing directory

directory to be deleted

real file delete switch

return code

Causes the logical deletion of a directory and all its subtree . If

the real file delete switch is "on", then the nvfs will direct the local

file systems to delete the files in the subtree. If the switch is

"off", the files will be removed from the nvfs, but will still be there,

accessible through the native file system(s). This primitive is extremely

powerful, and must be used with great care. Its power is unavoidable,

since there is no good mechanism for handling "orphans", files and

directories under a deleted directory.

Possible return codes:

operation successful

improper access on containing directory - user requires modify

access

containing directory unknown

name unknown

not a directory - entry is either a link or a file

create_file

containing directory

new file name

return code

Causes a new nvfs file to be made in the specified directory. Initially,

no real file is associated with the nvfs file. This association is done

with another primitive. The creating user has change_protection, read

and write access to the new nvfs file.
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Possible return codes:

operation successful

containing directory unknown

name already exists

containing directory full

improper access on containing directory

associate_real_f ile

containing directory

nvfs file

host where real file is located

real file name

real file description

return code

Associates a real file with an nvfs file. The real file may be empty.

Eventually, multiple real files could be associated with a single nvfs

file by several calls to associate_real_f ile. This capability would

require a great deal of support, and is not planned for the initial nvfs

implementation. The user must have write access to the entry. If the

nvfs entry did not exist, it is created and a descriptive code is

returned. The real file description is intended to serve two purposes.

First, it is a means to eventually include the record template informa-

tion discussed above. Second, the description may include information

such as the existence of indices, etc. This second category can be used

by servers to determine the most effective way to access a file. In the

initial version of the nvfs, the following describes the permitted

record descriptions. (Defaults are underlined.)
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'ASCII

>

FIXED_SIZE_RECORDS

,

LENGTH - record_length

VARIABLE SIZE RECORDS
>

KEYED

NON-KEYEDEBCDIC

UBCD

Possible return codes:

operation successful

containing directory unknown

host unknown - or known not to support server_nvfs

real file name invalid - later feature

real file description invalid

file full - there are already the maximum number of real files

associated with the nvfs file

new file created - nvfs file name did not exist, but now does

incorrect access to entry

entry is not a file - one cannot associate real files with nvfs

directories or links

delete_file

containing directory

nvfs file name

real file delete switch

return code

Deletes the nvfs file from the nvfs directory. If the real file delete

switch is "on", the nvfs causes the host file system(s) to delete the

real file(s) corresponding to the entry. If the switch is "off", the

entry is still removed from the nvfs, but the real files are not deleted,

The user must have write access on the file and modify access to the

containing directory.
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Possible return codes:

operation successful

containing directory unknown

incorrect access to entry

entry unknown

entry is not a file

disassociate_real_f ile

containing directory

nvfs file name

host where real file is located

real file name

real file delete switch

return code

Breaks the association of a real file with an nvfs file, and optionally

causes the deletion of the real file. The user must have write access

to the entry.

Possible return codes:

operation successful

containing directory unknown

entry unknown

incorrect access on entry

real file not associated with entry

entry is not a file

link

containing directory

entry name

linked_to name

return code
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Creates a link. The linked_to name is checked for syntax, but not

semantics. The user must have modify or append access to the containing

directory. The user is given change_protection, read, and write access

to the new link.

Possible return codes:

operation successful

containing directory unknown

name already exists

incorrect access on containing directory - user must have modify or

append access

bad linked_to name syntax

unlink (delete_link)

containing directory

link name

return code

Logically deletes a link. The user must have write access to the link.

Possible return codes:

operation successful

containing directory unknown

name unknown

not a link

incorrect access on entry

create_real_file

host

real file name

host-specific parameters

host-specific reply information

return code
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Asks a host file system to create a real file. Strictly speaking, this

is not an nvfs operation. It requires the specific information needed

to create a file on a particular host. A parameter is provided for the

return of host specific reply information. This primitive is included

for completeness.

Possible return codes:

operation successful

host not available

host name invalid

host did not create file

add_name

containing directory

entry name

additional entry name

return code

Adds an additional name to an nvfs object (directory, file, or link).

The user must have modify access if the entry is a directory or write

access if the entry is a file or link.

Possible return codes:

operation successful

containing directory unknown

entry not found

name already exists - added name duplicates some other name

incorrect access

delete_name

containing directory

name to be deleted

return code
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Causes the removal of a name from an object. The last remaining name

cannot be removed. The user must have write access if the name is on a

file or link. If the name is on a directory, modify access is required.

Possible return codes:

operation successful

containing directory unknown

name not found

last name on object

incorrect access

Protection Primitives

set_access

containing directory

entry name

access mode

nvfs person name

additional constraints

return code

Causes the access control list for the entry to include the specifica-

tion contained in the primitive. The user must have change_protection

access to the entry. The access modes specified must be appropriate for

the entry. The additional constraints parameter is presently not used,

but is intended to eventually allow a more detailed description of the

environment as was discussed above.

Possible return codes:

operation successful

containing directory unknown

entry unknown
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incorrect access on entry

invalid access mode

delete_access

containing directory

entry name

nvf s person name

return code

Deletes all access privileges of the person to the entry. The user must

have change_protection access to the entry.

Possible return codes:

operation successful

containing directory unknown

entry name unknown

incorrect access on entry

person name not found - this is mostly for information

File access primitives . These primitives are used to access

nvfs files. The normal sequence is:

open

{read, write, position, seek}

close

Associated with each open file are two cursors. They point to the last

logical record read or written (last_record) and to the record which

would be accessed by the next read or write (next_record) . Nearly all

the primitives both use and alter these cursors. Some operations

invalidate one or both cursors. An attempt to use an invalid cursor

returns a descriptive code.
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open

containing directory

entry name

user logical channel - subsequent operations are in terms of the

user logical channel, rather than the longer nvfs file name

open mode - "random"

> , ("sequential'!)

"read"

"write"

"both"

sharability - with what classes the file can be shared

"none" - no sharing

"readers" - sharable with other readers (not valid if write or

read-write use is specified)

"writers" - this user is willing to share the file with other

writers any synchronization is externally provided,

a highly dangerous operation. All nvfs guarantees

is that a given operation (e.g., read, write) is

atomic

time__out - the desired sharing mode must be available within this

many seconds or else the open fails

return code

Open initiates the processing needed to access nvfs files. The open

process consists of the following steps:

1. name interpretation to determine the appropriate server,

2. connection establishment and identification, and

3. issuance of an open request down the connection.

The server will either accept or reject the open request based on con-

siderations such as security and other users of the file. In any case,

a descriptive code is returned. For a successful open, the user_nvfs
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sets up a control block and associates it with the user-specified

logical channel. All subsequent accesses are made in terms of this

logical channel. The logical cursors are set in accordance with the

following:

last_record

null

null

null

next_record

first record in file

last record in file + 1

first record in file

open mode

read

write

both

Possible return codes:

operation successful

host not available

invalid mode - either open mode or sharability not valid

logical channel in use

file not closed

desired access mode not supported

containing directory unknown

name not found

incorrect access on entry

not a file - entry was a directory

read

user logical channel

address of (or pointer to) user's buffer

length of the buffer (characters)

number of characters actually read

return code

Reads the logical record pointed to by next_record, translates it as

required, and fills the user's buffer with the results. If the file is

opened for sequential access, last record is set to the current value of
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next_record, and next_record is advanced to point to the next logical

record. If the file is opened for random access, last_record is set to

the current value of next_record and next_record is set to null. If the

next logical record (i.e., the one to be read) is larger than the

user's buffer, no data is transferred, and a descriptive code is returned.

There is internal debate over whether the buffer should be filled. This

would allow multiple reads using small buffers to access a large record.

The problem is that it requires an inter-record cursor. A second pro-

blem is that the future extensions in internal record structure (i.e.,

words) may cause other problems. For example, suppose there were three

bytes left in the buffer and the next field is four bytes long. Thus,

the decision was made not to support partial record reads (or writes)

.

Possible return codes:

operation successful

incorrect access on entry - it got changed since the open. (There

is debate on whether this is reasonable or not.)

record too long

invalid logical channel - we could use this for signalling any

condition which denies access, i.e., server or net

failures, access alterations, files not opened, etc.

invalid cursor

end of data - nothing is in the buffer, user has attempted to

read beyond the end of the file. Cursors are not

changed

.

rewrite_record

user logical channel

address of (or pointer to) buffer

length of data in buffer (characters)

return code
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Causes writing of the logical record pointed to by last_record (i.e.,

rewriting it) . The length of the data must be equal to the length of

last_record. Neither cursor is changed.

Possible return codes:

operation successful

invalid logical channel

record too long

invalid cursor

incorrect access on entry

read_length

user logical channel

length of next_record (i.e., record pointed to by next_record)

return code

Returns the length of next_record. This can be used in buffer alloca-

tion. If the next_record cursor is invalid, the length is set to -1.

(Guaranteed to blow-up most allocators, if the user doesn't check the

code.) If next_record is at the end of file, a length of is returned,

Possible return codes:

operation successful

invalid logical channel

invalid cursor

incorrect access on entry

end of data

write

user logical channel

address of (or pointer to) buffer

length of data in buffer

return code
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Writes the data in the buffer into the next_record . If next_record is

not at the end of the file, the file is effectively truncated, so that

the record being written is the last record of the file. If the file

has been opened for sequential access, last_record is set after the

write to point to the record just written. Next_record is set to point

just beyond the end of the file, so that the next write will operate

correctly. If the file is open for random access, last_record is set as

in sequential access openings. Next_record is set to null. If the file

has been opened for fixed length records records of the wrong length are

not written and a descriptive code is returned. The cursors are not

changed

.

Possible return codes:

operation successful

invalid logical channel

incorrect access on entry

invalid cursor

incorrect record length

position

user logical channel

base - "current", "beginning" or, "end": What displacement is

relative to. Current means use last_record.

displacement - signed integer number of records

return code

Adjusts cursors by moving a specified number of records from the speci-

fied starting point. Next_record points to the desired record, and

last_record is set to null. Any combination of base and displacement

which results in an effective position that is either beyond the end of

the file or in front of the beginning is illegal. There has been
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discussion on whether positioning beyond the end of file should be

allowed. If it were, complex structures could be built up. Many hosts

allow comparable actions. However, the decision was made that in the

initial versions of the nvfs, this type of positioning would not be

supported. Such an attempted positioning will return a descriptive

code, next_record will be set to null, and last_record will be set to

the current value of next_record.

Possible return codes:

operation successful

invalid user logical channel

invalid position

invalid cursor - attempted to use "current" but last_record was

not valid

seek

user logical channel

key

return code

Causes next_record to point to the record with the specified key. If

the file has been opened for write or read/write, this primitive sets

the key for the next write operation. As part of that operation (i.e.,

not as part of the seek) the index will be updated. Duplicate keys are

not allowed. This decision was made because it complicates the updating

of the cursors if duplicates are allowed. However, this complication is

not so severe as to completely preclude the possibility of duplicate

keys being allowed in later applications. We have also not included the

notion of additional indices. This issue is not clear enough to allow

primitives to be specified. Our preliminary thinking is that additional

indices can be specified by adding an argument to the seek primitive.
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The problem occurs on record insertion. The user would have to have

calls to seek for each index so that all the required keys would be set.

There is debate on whether a single primitive is more appropriate for

this function.

Possible return codes:

operation successful

invalid logical channel

duplicate key

key not found - normal for insertion

no index - operation is not supported

Multi-copy Management

Introduction . This section discusses some of the features

need to support multiple copies of nvfs files. Although some of these

features have been alluded to before, this topic is sufficiently impor-

tant to deserve separate coverage. It begins by presenting a conceptual

model of multi-copy management. This model is used to illustrate the

basic requirements of the system. Next it discusses some design princi-

ples derived from the model. To conclude, the nvfs primitives are

examined from a multi-copy environment viewpoint.

A model for a multi-copy nvfs . By having multiple copies of

selected nvfs files, significant gains in system reliability and avail-

ability can be achieved [3,4], However, considerable effort must be

expended to assure that the copies remain consistent. Basically, each

copy must receive all updates, and the sequence of updates must be

equivalent for each copy. These requirements must be met at all times,

including those times when a host with custody of a copy is down. Since

the failed host (obviously) cannot process updates during the outage,

they must be saved and processed before that copy can be used.
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It is desirable that the nvfs mask the existence of multiple

copies of its files. The user should not have to "act differently" when

a particular file is supported by multiple copies. It is similarly

desirable that the nvfs modules be as unaware as possible that they are

supporting a multiple copy environment.

Sequencer. To accomodate these requirements, we suggest an

extension to the basic nvfs conceptual architecture. The extension adds

a functional component, the sequencer, in between the user_nvfs and the

server_nvfs. The sequencer is responsible for merging together the

streams of primitives from the user_nvfs modules acting for different

people using the same file. The sequencer then forwards the composite

stream to each of the servers with custody of a physical copy. This

mechanism has been also called a primary copy scheme [1,2,3]. The

person using a nvfs file with multiple copies actually "talks" to the

sequencer rather than to the server_nvfs directly. However, there is no

change in the protocol.

Server. Notice that the role of the server_nfvs must change

in the multi-copy situation. Each copy must process the update stream

in the same order. Thus, the update stream from all concurrent users

must be treated as if it came from a single user. In the single copy

case each concurrent user of the file had an independent server oper-

ating at his behest. If this were continued in the multi-copy case, the

nvfs could not guarantee that all copies applied their updates in the

same sequence. The sequence for each copy would be determined by con-

tention among the servers. Thus, a single server should process the

composite request stream. Since each copy will receive the same stream,

these single servers can guarantee that all copies will remain consistent

during normal operations. This altered server role introduces other
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changes. These are required to prevent user-user interference. They

are discussed below.

Flexible pipes. To discuss failure recovery, we introduce a

conceptual device. Let each of the communication paths (i.e. user to

sequencer and sequencer to server) be a flexible pipe . A flexible pipe

has the following properties:

1. messages are inserted in the end,

2. messages may be removed from the beginning (FIFO read) or the

end (LIFO read)

,

3. once inserted, a message does not disappear until it has been

explicitly deleted either by the sender or the receiver, and

4. either end may be detached and re-attached without losing any

messages.

It is important to emphasize that flexible pipes are a conceptual tool.

Their utility lies in the fact that they are a device to understand the

necessary actions for recovery. In any nvfs implementation, these

recovery actions would have to be performed.

Design principles of a multi-copy nvfs . The nvfs must guaran-

tee that multiple copies of a file remain consistent. During normal

mode operation, this is done by the basic model which assures that each

copy receives an identical sequence of updates. However, the guarantee

of consistency must extend to operations during and after failures.

In the following paragraphs we will discuss a variety of failure modes.

We will attempt to suggest the design features that the nvfs must

possess to accomodate these failures. In general we will consider

failures of only the user, sequencer and server components. The flex-

ible pipe mechanism will be assumed not to fail. This seeming rash

assumption is really not that unreasonable based on the recent work on

48



resilient protocols [3]. By correctly sequencing messages and acknow-

ledgments ("ack's"), extremely high reliability communications can be

provided.

User failures. Perhaps the simplest failure is that of a

user_nvfs. To recover, we insert a "close" in the primitive stream.

Such a mechanism assumes that the individual nvfs primitives are atomic

and unrelated. That is, the actions performed do not require the use of

two primitives to be complete. This is true for simple file applications

such as those supported by the basic nvfs. When more complicated actions

are required, some mechanism must be provided to group related primitives

and execute them collectively. Such collective execution avoids the

potentially ugly task of rollback from a partially completed composite

action. When composite actions are supported, the "close" must be

inserted just behind the last complete composite action. The flexible

pipe mechanism can be used to achive this by not deleting any messages

in the user-sequencer pipe until a complete composite action has been

received by the sequencer. (For increased reliability, the deletion

should not occur until after receipt by the servers.) Exactly how

composite action bracketing is accomplished is an open issue. For

this reason, no attempt was made to include primitives for it.

Server failures. The failure of a server is also handled

naturally in this model. The server is no longer there, so messages in

that sequencer-server pipe are not deleted, since their receipt is not

acknowledged. When the server comes back up, it re-attaches the sequencer

-

server pipe and begins to process the messages in it. Because requests

for exclusive control of the file are also sent via the pipe, the primi-

tives will be processed in a similar exclusive control "state" for all

copies of the file. Eventually the failed server will be caught up and
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can begin processing current primitives. This catching up does not

require any action by the server or the sequencer. The server simply

empties the pipe and begins waiting for more input. In systems which do

not employ a flexible pipe model, the transition from catch up to normal

processing is a very vulnerable point. If failures occur during this

transition, they can be rather complex to sort out correctly.

As the server processes messages it acknowledges them back to

the sequencer. When the sequencer receives acknowledgments from all the

servers it deletes the message from all the pipes in which it was placed,

Further, the input message from the user is also deleted. Such a scheme

guarantees that messages are available for recovery purposes from two

sources, the user and other servers. Care must be taken in the design

of the sequencer acknowledgment processing. If this is not done, there

may be critical data known only by the sequencer. It is a broad design

principle that no such data may exist. If there is data that is criti-

cal to the correct functioning of the multi-copy nvfs, access to that

data must also be reliable. Normally this would be done through a

redundancy scheme, so that critical data is located in several places.

The designer then faces the problem of synchronization of the use of

this data.

To complete this discussion of server failures, we must men-

tion an additional capability needed by the server: duplicate message

elimination. During normal operation the basic mechanisms preclude the

possibility of duplicate messages to the server. However, during many

recovery scenarios the possibility of duplicate messages exist. The

server must eliminate these. In the elimination process the server

cannot depend upon a sequencer assigned sequence number. When the

sequencer fails the nvfs may not be able to re-establish the sequence
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exactly. It is less complex to resubmit all pending user requests in an

arbitrary order defined by the new sequencer. The server compares these

messages with those already on hand and eliminates any duplicates.

Logically, this comparison can be done on the basis of message content.

Practically, the use of user_nvfs assigned sequence numbers seems well

advised. Notice that the user_nvfs internal variable "last_seq_number"

is not a critical data item. If the user_nvfs fails, the system knows

the highest message from him that has been received is known. In the

recovery a "close" is inserted in the user to sequencer pipe. There is

also now no real need for sequencer assigned sequence numbers. However,

they are useful for internal bookkeeping purposes.

Sequencer failures. The failure of the sequencer is the most

complex single failure. This is because a new sequencer must be estab-

lished. In the initiation of the new sequencer, the correct "state" of

the system must be re-established. As was mentioned above this requires

the foresight to have reliable access to any critical variables needed

to establish the correct state. So far the only critical data identi-

fied are the tables reflecting the acknowledgment status of user mes-

sages. These can be reliably maintained if instead of thinking of a

single table maintained by the sequencer, the distributed tables dis-

cussed in [3] are used.

In the recovery of the sequencer function the first step is to

select the host where the new sequencer will be. This can be done in a

variety of ways, the details of which are not important here. Now the

new sequencer must re-establish the state of the system. First, the

new sequencer reconnects to all the user and server pipes. Next, the

server pipes must be "balanced". That is, the sequencer must assure

that each has the same number of messages in it. An imbalance can occur
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due to messages being lost in the network control program of the failed

server's host, or because a given message was not inserted in all of the

required pipes. This balancing is accomplished by doing LIFO reads on

each server pipe. The imbalance is detected, and the messages in the

"long" pipe are sent to the "short" one. The next step is to request

each user to retransmit any nondeleted requests. As was mentioned

above, the requests are only deleted in the user-sequencer pipe when

they have been received by a server. This is in keeping with the n-host

resiliency concepts contained in [3]. Briefly, an information destroying

failure can only occur if n hosts all fail within a critical time.

Because the sequence of messages is established in part by their arrival

times, the new sequencer may not choose the same composite sequence as

the old, failed sequencer. This could happen because the users all

retransmit their nondeleted messages. It is possible that the message

had been placed in the composite sequence, but not yet acknowledged back

to the user for its deletion. Fortunately, the duplicate elimination

feature of the servers solves this problem. Basically, those messages

already inserted into the composite sequence and received by a server

will be eliminated as duplicates by the servers when they are resub-

mitted by the new sequencer. As was mentioned above, this duplicate

elimination should utilize user_nvfs assigned sequence numbers rather

than sequencer assigned numbers. After receiving and resubmitting the

messages from the users, the new sequencer begins normal operations.

Again there is no explicit transition from recovery to normal operation.

There is a question about what to do when the old sequencer

becomes available again. One argument is as follows. The old sequencer

was selected for some reason, (e.g., most of the traffic originated on

that host) . This reason is not changed by the failure and therefore the

52



old sequencer should go back to its former role immediately. This can

be accomplished by a simulated failure of the new sequencer. The rules

for selecting his replacement will cause the original sequencer to be

reinstated.

The argument against such a policy is equally valid. The

sequencer is a temporary role. The new sequencer will continue to

perform it until either he fails or there are no more users of the file.

Simulating a falure does cause extra messages to be sent and extra work

to be done. To avoid this extra work, the system will do nothing until

a real failure occurs or there are no more users.

Multiple component failures. The failures of multiple com-

ponents are, of course, more complex than single component failures.

The main problem that arises is that multiple component failures seri-

ously impair the system's ability to maintain the characteristics of a

flexible pipe. In particular, unless care is taken in the implementa-

tion, message loss is unavoidable. At first glance, multiple component

failures might seem statistically remote. However, since several

components may be actually located on a single host, multiple component

failures are not uncommon. Each individual component must participate

in the recovery actions discussed above. In addition the normal opera-

tion of the system must include activities to allow the recovery to

proceed. At present, the resilient protocol mechanisms appear to give

us the required capability. However more research is needed.

Nvfs primitives in a multi-copy environment . Most of the nvfs

primitives operate on the internal data structures of the nvfs: direc-

tories, access control lists, etc. These primitives are logically

unaffected by the presence of multiple copies of files. In fact, for

some of the primitives the most reasonable implementation strategy is
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to use the nvfs file access primitives to implement things like direc-

tories. Thus, we will discuss only the file access primitives.

Open. Because open may be used to gain exclusive control over

a file it must operate slightly differently in a multi-copy situation.

The exclusive control state of the file must be made a reliable data

item. Each server needs to know who is in control anyway, making the

exclusive control state inherently reliable. During server recovery

activity the exclusive control state will not be current, since it is

catching up on old updates. However, the flexible pipe mechanism

guarantees that the correct sequence of messages is retained. Thus,

even though the exclusive control states of the servers may not be

identical at any given instant, they will follow the same sequence of

states.

Read. There is a fundamental problem with all the actual file

access primitives (read, write, rewrite and position). They are context

dependent because they depend upon the values of last_record and next_

record. Further, each user has its own context. The situation is

analogous to a shared disk drive. The effect of a read depends upon

where the heads are. It may be desirable to allow highly reliable

reads, i.e., a read which can be automatically switched to a backup copy

should the primary fail. Further, it is desirable to do this automati-

cally, because if we did not, user programs would require complex inter-

nal error recovery mechanisms. There is temptation to suggest that the

cursors be made reliable data, i.e., supported with multiple copies.

However, this is unnecessary. All that is required is that the location

of the cursor be shifted from the server to the user. If the user fails

there is no need to recover, since it cannot (obviously) continue to

access the file. To achieve this, each request to the server must
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include the value of the cursors to be used. Each reply will contain

their updated values. This mode of operation also simplifies the server

design somewhat. It is no longer necessary to maintain the cursor

values for each user. It is an open design question whether this exter-

nalization of the cursors is useful or desirable for the single copy

case. The initial feeling is that even though externalized cursors are

somewhat more complex, the problems associated with supporting two

different server and user nvfs configurations are worse.

55



References

1. Alsberg, P. A. et al. "Preliminary Research Study Report," CAC
Document No. 162 (CCTC-WAD Document No. 5509), Center for Advanced
Computation, University of Illinois at Urbana-Champaign, May 1975.

2. Alsberg, P. A. et al. "Synchronization and Deadlock," CAC Document
No. 185 (CCTC-WAD Document No. 6503), Center for Advanced Computation
University of Illinois at Urbana-Champaign, March 1976.

3. Alsberg, P. A. , Belford, G.G. t Day, J.D. and Grapa, E. "Multi-Copy
Resiliency Techniques," CAC Document No. 202 (CCTC-WAD Document No.

6505), Center for Advanced Computation, University of Illinois at

Urbana-Champaign, May 1976.

4. Belford, G.G., Schwartz, P.M. and Sluizer, S. "The Effect of
Backup Strategy on Data Base Availability," CAC Document No. 181

(CCTC-WAD Document No. 6501), Center for Advanced Computation
University of Illinois at Urbana-Champaign, February 1976.

5. Cossell, B.P. et al. "An Operational System for Computer Resource
Sharing," Proc. of the Fifth Symposium on Operating System
Principles, Nov. 1975, pp. 75-81 (available from ACM, P.O. Box
12105, Church St. Station, New York, NY 10249).

6. Feinler, E. and Postel, J. "ARPANET Protocol Handbook April 1976,"

NIC Document No. 7104, Network Information Center, Stanford
Research Institute, Menlo Park, CA, April 1976.

56



Query Strategy Research

This section deals with one part of the problem of selecting a

strategy to perform a user's query. The user of a distributed data

management system should be given a high level interface. This mini-

mizes the impact of changes in the data base organization or the net-

work. The data management system must transform the high level request

into a series of lower level actions to be performed at the various

hosts. There are often many of these possible strategies for a given

high level request. The system should automatically select the optimum

strategy. The problem is a lack of accurate data. If the system re-

ceived the same query twice, it could in theory do the second one

optimally. The necessary data would be available from the execution of

the first. So, in selecting a query strategy the system must make

estimates of the required data.

The types of data needed for distributed query strategy selec-

tion differ from those in single-site environments. Because the network

bandwidth is low, the amount of data shipped must be minimized. The

data being shipped are intermediate results (sometimes called hit

files ) . Accurate estimation of their volume is of critical importance.

Very little work has been done previously because estimates of hit file

sizes are not very important for single-site cases. What work has been

done, has relied upon very questionable assumptions such as uniform

distribution of domain values* and independence of domains.

We have devised a novel technique for estimating hit file

volumes. A small sample of the data base is created. By running a

* For a brief review of relational model terminology, please refer to

Appendix A.
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query against the sample, the size of the hit files on the actual

relation can be estimated. Furthermore, statistical techniques allow

the error to be bounded. The initial results from this work have been

encouraging. In the test cases run, the sampling techniques performed

quite well.

We include the integer linear programming formulation to find

the optimum query strategy based on the sampling. Integer linear pro-

grams are often computationally unattractive. We have developed a much

simpler formulation which achieves the same result. Our method uses two

passes over the query tree, and can be shown to find the optimum strategy,

As should be clear there is much work yet to do in the area of

query strategies. We are pursuing several promising avenues, including

more sophisticated sampling techniques, and strategy selection algorithms,

Introduction

It is clear that a distributed relational data base system

will have to perform some kind of query optimization in order to deliver

reasonable service. In such a system, one of the major factors in

determining cost and response time will be the volume of data shipped

over the communications network. Therefore, the optimizer must be able

to estimate the volume of output from each operation in the relational

algebra query. The sampling techniques discussed in this section should

make it possible to make such estimates.

Once volume estimates for the intermediate results and esti-

mates of the costs of performing individual operations are obtained, it

is possible to find an optimal query strategy using an integer linear

programming model or a bottom-up, top-down tree-traversal algorithm.

These deterministic methods based on imprecise inputs will yield a query

strategy which might not be optimal when run against the full data base.
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One would like to know the "probability of correct guess," or how likely

it is that this is actually the optimal strategy. It is also desirable

to know the "expected excess cost," or how much loss is expected as a

result of not always picking the optimal strategy.

The vast majority of contemporary researchers who attempt to

predict the performance of queries assume independence between the

domains (fields) of the data base. (See, for example, Hammer [1] and

Vallarino [2]. They assume that the selectivity of a simple expression

(e.g., "salary > 15000") in a complex query is the same as when the

expression appears alone, and does not depend upon the rest of the

query. For instance, if 80% of all employees have salary > 15000, and

5% of all employees are janitors, the independence assumption would

imply that 80% x 5% = 4% of all employees are janitors with salaries

greater than $15000.

This assumption of independence has some major drawbacks. For

one thing, it begs the question of how the selectivities of the simple

expressions can be estimated. (This is generally done by keeping

histories of past queries, or by a priori knowledge of the data base.)

Perhaps more important is the fact that there is no quantitative indica-

tion of the accuracy of the estimate.

In this section we will discuss a method of query performance

prediction which is based on statistical sampling. From the relations

of the full data base we will construct sample relations. These sample

relations will be small compared to the full relations, so they can be

stored at any host which might be called on to optimize a query. Using

the samples, it will be possible to extrapolate the performance of a

query on the full data base. There will also be quantitative error

tolerances associated with the performance estimates.
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Strictly speaking, we should make sure that any updates to the

data base are reflected in the stored samples. However, the statistical

properties of the data base should not change rapidly over time. The

samples can be kept, unupdated, until they become poor estimators of

query performance. At that time, they can be recreated from the modi-

fied data base.

Restrict Prediction

The simplest discussed query consists of a restrict function

for each of the two relations, and a binary operation (join, for instance)

to be performed on the results of the restricts. We assume that the

relations in question are stored on different hosts, so at least one of

the intermediate results must be shipped over the network. We will

further assume that it doesn't matter where the final result ends up, so

the choice of where to do the binary operation depends only on the sizes

of the intermediate results. To give an example, we are assuming that

the query looks something like R[B ] * S[B ]. (We use the symbol * to
R S

denote a join.) If relation R is stored on host 1 only and relation S

is on host 2 only, then the result of R[B ] should be shipped to host 2
R

if and only if the size (defined as the number of bytes in a tuple

multiplied by the number of tuples) of R[B ] is less than the size of
R

S[B 1. We write this as |R[B ]| < |S[B ]| . From now on, for notational

simplicity, we assume that all tuples are the same size. Therefore, the

volume is just the number of tuples. A tuple size factor could be

easily added to the equations if necessary.

Sampling a relation . What is needed is an estimate of P, the

proportion of tuples in a relation which satisfy the restrict function.

Our approach is to take a random sample of the relation and find p, the

proportion of tuples in the sample which satisfy the restrict function.
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It should be obvious that p is an estimate of P, but how good is it? A

larger sample will give a more accurate estimate, but a quantitive

error estimate would be desirable. Yamane [3] gives a formula which

relates p, the sample size n, the population size N (i.e., the size of

the unrestricted relation), and the precision d. We will omit the

lengthy derivation. The formula is:

d . W (N-n) S pd-p)
(1)

The constant z is a reliability factor which comes from the normal

distribution, and is dependent on the desired "confidence level". For a

confidence of 95%, z is 1.96. A z of 3 will give a confidence of 99.7%.

A confidence level of 95% (for instance) means that | P-p | will be less

than d 95% of the time.

We should note here that this and later formulas for the preci-

sion d are not exact, but rather are unbiased estimates. To get an exact

value for d generally requires an exact value for some parameter (p in

this case) which could only be obtained by searching the entire data

base. In this case, using P in place of p would yield an exact value

for d. This is clearly impractical, given that P is the quantity being

estimated in the first place. The fact that the formula yields an

inexact figure, the precision of which is not computed, is generally

not bothersome; it is a second-order effect.

Example: Start with a relation containing 10 tuples. After

taking a random sample of 500 tuples, it is found that 50 satisfy the

restrict function. Therefore, p=0.1. Evaluating Yamane' s equation

(using z=1.96) gives d=0.026. This means that P will be in the interval

(0.074, 0.126) 95% of the time. (This phrasing may be a little
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misleading. P is a constant. This is really the confidence that the

estimate p is accurate within precision d.) Therefore, it would be

reasonable to expect 10,000 + 2600 tuples from the restrict.

In a practical case, it will be useful to know how large the

sample should be to give a desired precision. The equation can be

easily inverted to give

_ N2
2
p(l-p)

2 2
Nd +z p(l-p)

Since n depends on p, it will be necessary to take a small sample to get

a provisional value for p. This p can be used to find n. If this n is

larger than the original sample size, then that sample can be enlarged

to size n. This yields a new value for p, which might necessitate a

still larger n. The process can be repeated until the desired precision

is obtained. When constructing a semi-permanent sample, p = 0.5 will a

worst-case value for n. It should be noted that the equations given are

invalid if n is not small compared to N. It appears that N/2 is about

the largest reasonable value for n.

Table 1 was adapted from Yamane's book. It shows the required

sample sizes for various population sizes and precisions.

Probability of correct guess . Having gotten p , d
, p , and

K K b

d for the two relations in the query, one can decide which intermediate

result to ship over the net. It would be useful to know the probability

that that choice is, in fact, optimal. If |r| and |s| are the sizes of

the unrestricted relations, then the estimates of | R [B
]

J and |s[B ]|R b

are P^IrI and p Isl. Assume that p j
R | >p c |s|. The best strategy then

R S R o

is to ship the restricted relation S. The true values of |R[B ] I and
R

|S[B ]| usually will be different from the predicted values, but as long

as |R[B
]

| > | S [B ] |
, the correct decision still will have been made.

R b
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The confidence in the decision is merely the probability that

|

R[B ]
|
_>| S[B ] |

is true. If it is assumed that the two values are

normally distributed around the estimated values, then it can be shown

that the "probability of correct guess", if relation S is shipped, is

(Pr |r|-p s
|s|)z

'(d
R
|R|)

2
+(d

s
|s|)

2

where F(x) is the cumulative, unit-normal distribution function. Sample

values of this, assuming that d | R j =d c |s|, are presented in Table 2.
R S

For instance, suppose
j
R I

-=
|
S | =10

, p =0.100, p =0.086, and d =d =0.02,
K b R b

then d lR|=d_| si =200, and p |

r| -p
|

s| =1000-860=140. From the table,
R S R S

one can deduce that shipping the output from S, one will make the correct

decision 83.4% of the time.

Expected excess cost . With the above formulas, one can find

the likelihood of making the wrong decision. One would also like to

know how much will be lost as a result of not always making the right

decision. To answer this requires the evaluation of a double integral

with no closed-form solution. We have evaluated this numerically, with

the results presented in Table 3. The table entries are the number of

extra tuples one should expect to have to ship, for given precisions

and differences in expected volumes. In the example for Table 2, where

d I Rl =d I s| =200 and p I RJ —p J

S | =140, one we would expect, on the average,Kb R b

to ship 12.72 tuples more than necessary (83.4% of the time no more than

optimal will be shipped, and 16.6% of the time an average of 12 . 72/. 166=76. 63

extra tuples will be shipped.)

Join Prediction

The above random sampling technique will allow prediction of

the volume of output from a restrict on a relation. Unfortunately,
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p,i»i - p,isi

20 to • 100 1*0 160 110 200

10 0.500 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 0.500 0.917 0.997 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 1.000

30 0.500 0.622 0.968 0.997 1.000 1.000 i.opo 1.000 1.000 1.000 1.000

40 0.500 0.756 0.917 0.981 0.997 1.000 1.000 1.000 1 .000 1.000 1.000

50 0.500 0.710 0.866 0.952 0.987 0.997 1.000 1.000 1.000 1.000 1.000

60 0.500 0.678 0.822 0.917 0.968 0.990 0.997 0.999 1.000 1.000 1.000

70 0.500 0.654 0.786 0.883 0.943 0.976 0.991 0.997 0.999 1.000 1.000

80 0.500 0.636 0.756 0.851 0.917 0.958 0.981 0.992 0.997 0.999 1.000

10 0.500 0.621 0.731 0.822 0.891 0.938 0.968 0.984 0.993 0.997 0.999
100 0.500 0.609 0.710 0.797 0.866 0.917 0.952 0.974 0.987 0.994 0.997
110 0.500 0.599 0.693 0.775 0.843 0.896 0.935 0.961 0.978 0.988 0.994
120 0.500 0.591 0.678 0.756 0.622 0.876 0.917 0.947 0.966 0.981 0.990

130 0.500 0.58* 0.665 0.739 0.803 0.857 0.900 0.932 0.956 0.973 0.984
110 0.500 0.578 0.654 0.724 0.786 0.839 0.883 0.917 0.943 0.963 0.976

150 0.500 0.573 0.644 0.710 0.770 0.822 0.866 0.902 0.930 0.952 0.968
160 0.500 0.569 0.636 0.698 0.756 0.807 0.851 0.887 0.917 0.941 0.958
170 0.500 0.565 0.628 0.688 0.743 0.793 0.836 0.873 0.904 0.929 0.949
ISO 0.500 0.561 0.621 0.678 0.731 0.779 0.822 0.659 0.891 0.917 0.938
190 0.500 0.558 0.615 0.669 0.720 0.767 0.809 0.846 0.878 0.905 0.928
200 0.500 0.555 0.609 0.661 0.710 0.756 0.797 0.834 0.866 0.894 0.917
210 0.500 0.553 0.604 0.654 0.701 0.745 0.786 0.822 0.855 0.883 0.907
220 0.500 0.550 0.599 0.647 0.693 0.736 0.775 0.811 0.843 0.872 0.896
230 0.500 0.548 0.595 0.641 0.685 0.727 0.765 0.801 0.833 0.861 0.886
2*0 0.500 0.546 0.591 0.636 0.678 0.718 0.756 0.791 0.822 0.851 0.876

250 0.500 0.544 0.588 0.630 0.671 0.710 0.747 0.781 0.812 0.841 0.866
260 0.500 0.542 0.584 0.625 0.665 0.703 0.739 0W72 0.803 0.831 0.857
270 0.500 0.541 0.581 0.621 0.659 0.696 0.731 0.764 0.794 0.822 0.848
260 0.500 0.539 0.578 0.617 0.654 0.690 0.724 0.756 0.786 0.814 0.839
290 0.500 0.538 0.576 0.613 0.649 0.684 0.717 0.746 0.778 0.605 0.830
300 0.500 0.537 0.573 0.609 0.644 0.678 0.710 0.741 0.770 0.797 0.822

310 0.500 0.536 0.571 0.606 0.640 0.673 0.704 0.734 0.763 0.790 0.814

320 0.500 0.535 0.569 0.603 0.636 0.668 0.698 0.728 0.756 0.782 0.807

330 0.500 0.533 0.567 0.599 0.632 0.663 0.693 0.722 0.749 0.775 0.800
3*0 0.500 0.532 0.565 0.597 0.628 0.658 0.688 0.716 0.743 0.768 0.793
350 0.500 0.532 0.563 0.594 0.624 0.654 O.683 0.710 0.737 0.762 0.786
360 0.500 0.531 0.561 0.591 0.621 0.650 0.678 0.705 0.731 0.756 0.779
370 0.500 0.530 0.560 0.589 0.618 0.646 0.673 0.700 0.726 0.750 0.773
380 0.500 0.529 0.558 0.587 0.615 0.642 0.669 0.695 0.720 0.744 0.767
390 0.500 0.526 0.557 0.584 0.612 0.639 0.665 0.691 0.715 0.739 0.761
«00 0.500 0.528 0.555 0.582 0.609 0.636 0.661 0.666 0.710 0.73» 0.756

Table 2 - Probability of oorreot guesa
whan relation 3 la ablppad

P„l»l - ps
isi

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
360
390
400

20 40 60 80 100 120 140 160 180 200

2.88 0.00 0.00 0.00 O.OO 0.00 0.00 0.00 0.00 0.00 0.00
5.76 0.55 0.01 0.00 0.0c 0.00 0.00 0.00 0.00 0.00 0.00
8.64 2.06 0.27 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11.51 4.17 1.09 0.20 0.02 0.00 0.0 0.00 0.00 0.00 0.00
14.39 6.55 2.43 0.72 0.17 0.03 0.00 0.00 0.00 0.00 0.00
17.27 9.08 4.16 1.64 0.55 0.15 0.04 0.00 0.00 0.00 0.00
20.15 11.71 6.16 2.90 1.22 0.45 0.15 0.04 0.01 0.00 0.00
23.03 14.40 8.35 4.46 2.18 0.97 0.40 0.15 0.05 0.01 0.00
25.91 17.13 10.67 6.24 3.41 1.74 0.62 0.36 0.15 0.05 0.02
28.79 19.89 13.10 8.20 4.87 2.73 1.44 0.72 0.33 0.15 0.06
31.67 22.67 15.60 10.30 6.51 3.93 2.26 1.24 0.65 0.32 0.15
34.54 25.46 18.17 12.52 8.32 5.32 3.27 1.93 1.09 0.59 0.31
37.42 28.27 20.77 14.83 10.26 6.86 4.46 2.80 1.69 0.99 0.55
40.30 31.09 23.42 17.21 12.32 8.58 5.81 3.82 2.44 1.51 0.90
43.18 33.91 26. 10 19.65 14.46 10.40 7.30 4.99 3.33 2.16 1.37
46.06 36.75 28.80 22.14 16.69 12.33 8.92 6.31 4.37 2.95 1.95
48.94 39.59 31.52 24.68 18.99 14.35 10.65 7.75 5.53 3.87 2.65
51.82 42.43 34.25 27.25 21.34 16.46 12.48 9.31 6.82 4.91 3.47
54.69 45.28 37.01 29.85 23.75 18.63 14.40 10.97 8.22 6.07 4.41
57.57 46.13 39.77 32.48 26.20 20.67 16.40 12.72 9.73 7.34 5.46
60.45 50.96 42.55 35.13 26.69 23.16 18.47 14.56 11.34 8.71 6.61
63.33 53.83 45.33 37.80 31.21 25.50 20.61 16.48 13.03 10.18 7.86
66.21 56.69 46.12 40.49 33.75 27.88 22.60 18.46 14.80 11.74 9.21
69.09 59.55 50.92 43.19 36.33 30.30 25.04 20.51 16.64 13.38 10.65
71.97 62.41 53.73 45.91 38.93 32.75 27.33 22.61 18.55 15.09 12.16
74.85 65.27 56.54 48.64 41.55 35.23 29.65 24.77 20.52 16.87 13.76
77.72 68.13 59.36 51.38 44.19 37.74 32.02 26.97 22.55 18.72 15.42
80.60 71 .00 62.18 54.13 46.84 40.28 34.41 29.21 24.63 20.63 17.16
83.46 73.86 65.00 56.89 49.51 42.64 36.84 31.50 26.76 22.59 18.95
86.36 76.73 67.83 59.66 52.19 45.41 39.30 33.81 28.93 24.60 20.80
89.24 79.59 70.66 62.43 54.88 46.01 41.76 36.17 31.14 26.66 22.71
92. 12 82.46 73.50 65.21 57.59 50.62 44.28 38.55 33.39 28.77 24.66
95.00 85.33 76.33 68.00 60.31 53.25 46.81 40.96 35.67 30.91 26.66
97.87 88.20 79.17 70.79 63-03 55.89 49.35 43.39 37.98 33.09 28.71
100.75 91.07 82.01 73.58 65.77 58.55 51.92 45.85 40.32 35.31 30.79
103.63 93.94 84.66 76.38 66.51 61.22 54.50 48.33 42.69 37.56 32.91
106.51 96.81 67.70 79.19 71.26 63.89 57.09 50.83 45.08 39.84 35.07
109.39 99.68 90.55 82.00 74.01 66.56 59.70 53.34 47.50 42.15 37.26
112.27 102.55 93.40 64.81 76.77 69.28 62.32 55.68 49.94 44.48 39.48
115.15 105.42 96.25 87.63 79.54 71.99 64.96 58.43 52.40 46.84 41.73

Tabla 3 - Itpaotad aioeea ooat. In tuplaa,
whan ralatlon 9 la ahlppad
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optimizing more complex queries involving several levels of joins will

require estimating the volume of output from join operations. In the

following sections we will discuss the case of two relations joined on a

single domain.

There are three major variables which determine which of

several strategies to use. One is the number of distinct domain values

in the joining domain as compared to the number of tuples that would be

required in a sample of one of the relations. The other two are the

sizes of the respective relations. The eight possibilities are outlined

in Table 4, and are discussed in more detail below.

Small number of distinct domain values . If there are only a

relatively small number of distinct domain values in the joining domain

(no more than a few hundred), then for each relation it can be assumed

that either the relation itself is small, or the "multiplicity" (average

number of occurrences of each domain value) of the domain is large. If

the relation is small, then sampling will not be worthwhile. To get

statistically significant results would require sampling a large part of

the relation. If the multiplicity is large (implying that the relation

is large) , a simple random sample can be expected to produce a repre-

sentative sample of the relation. All of the joining domain values will

appear in the sample in "reasonably" large numbers.

As shown in the first part of Table 4, there are three possi-

ble situations when joining on a domain with a small number of distinct

values. We will elaborate on them here.

The multiplicity of the joining domain may be large in both

relations. While this situation is theoretically possible in the

relational model, it is not likely to occur in practice. The volume of

output produced by such an operation would be very large. If such a
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Small wumber of Values

Relation R
Small

Relation R
Large

Relation S

Small
Don ' t sample Join random sample of

R to full S

Relation S
Large

I
Join random sample of

I S to full R
won't happen under

normal circumstances

Large Number of Values

Relation
Small

Relation R
Large

Relation S

Small

Relation S

Large

Don * t sample

Sample using values of
joining domain as basic

sampling unit
or

Join random sample of
S to full R

Sample using values of
joining domain as basic

sampling unit
or

Join random sample of
R to full S

Sample using values of
joining domain as basic

sampling unit

Table 4 - Strategies for join volume prediction.
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situation does occur, the techniques to be discussed in the next section

could be still used, but the required sample size may be unreasonably

large.

The multiplicity of the joining domain may be small in both

relations. In this case the relations themselves are both small, and

sampling is probably not worthwhile.

The multiplicity of the joining domain may be large in one

relation and small in the other. In this case it will be worthwhile to

sample the larger relation but not the smaller. The system would take a

sample of size n from the N tuples in the larger relation and join this

sample to the smaller relation after applying the respective restrict

functions. If this sample join yields x tuples, then the full join can

be expected to yield Nx/n tuples. The precision of this estimate can be

expressed as:

where
n n
V ( x \ 2

2
Z (xj^

s " J
(n-1)

where x. is the number of tuples in the sample join which come from the

n
jth sample tuple from the larger relation. Note that E x.=x.

J
J

Large number of distinct domain values . When confronted with

the problem of modeling the join between two large relations, one might

be tempted to take a simple random sample of each relation, form the

join of the samples, and use this sample join to model the actual join.

Unfortunately, because each sample will contain only a small fraction of

the possible domain values, the sampled join will not "mesh" the same as

the actual join. To illustrate the problem, consider joining samples of
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100 tuples each from relations of 10,000 tuples which have multipli-

cities on the joining domain of 1. Each of the 100 tuples in one sample

will have only a 1% chance of matching a tuple in the other sample, so

only one tuple can be expected from this sample join. This is true

even if there are no restrict functions. The full join, without restricts,

should have 10,000 tuples, so in effect this is a sample of size 1 from

a population of 10,000. This will give a poor precision, indeed. What

is needed is a sampling technique which will estimate the output from

each relation and also estimate the action of the join.

Toward this end, let us introduce a variation of the sampling

technique. In our previous discussions the basic sampling unit was a

single tuple. Instead, take individual values of the joining domain to

be the basic sampling unit. Before, the output volume was estimated by

estimating the probability that each tuple would be included, and mul-

tiplying this probability by the total number of tuples. Instead, esti-

mate the number of tuples which will have each domain value and multiply

by the number of distinct domain values.* If m of the M possible domain

values are picked as the sample, and n. is the number of tuples with the

jth sampled value, then the total number of tuples can be estimated as

~ M
m

N = - £ n.

* In cases where the possible domain values are easily identifiable
(e.g., employee number or supplier code) then the "number of possible
values" will be easy to find. However, when the domain value is a

numeric quantity, the number of possible values may be large, parti-
cularly when compared to the number of values actually used. If such a

numeric domain is to be used in a join (which will probably be an
unusual occurrence) it might be necessary to define equivalence classes
to join on, rather than try to use the normal equality join. In this
case, it is the equivalence classes which must be sampled, rather than
the individual values.
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The precision of this is:

where

(m-1)

The equation for d can be easily inverted to yield the sample size m

2
required to produce a given precision when the sample variance is s .

To implement this method for predicting join output, first

take a sample of the joining domain values. From each relation select

and save all tuples which have one of these values. The query in ques-

tion is run against these samples. The above formulas can then be used

to predict the performance of the query when run against the full

relations.

There are, of course, disadvantages to this scheme. If the

2
multiplicity and the variance (s in the above equations) are not small,

then the number of tuples required for a given precision will be larger

than for simple random sampling. Also, because constructing a sample

will require searching the relation instead of just picking random

tuples, the cost of constructing the sample will be much higher. (The

presence of an appropriate index would reduce this extra cost factor.)

Another problem more inherent with the scheme has to do with

the fact that the sample is no longer truly random. In particular, if a

restrict function mentions the joining domain explicitly, the prediction

could be off. There are two ways of coping with this problem. It could

be ignored (with some justification) in the hope that the sample will be

large enough to smooth out this effect. Alternatively, the query pro-

cessor could be made smart enough to separate the restrict into parts
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that do not depend on the joining domain. These parts could be run

separately against the sample and the results combined using an inde-

pendence assumption. For instance, suppose the join is on domain

"location" and the query is "(location = 'London' & stock > 1000) or

(location = 'Paris' & stock > 5)." If the sample shows that the "average"

location has five tuples with stock > 1000 and ten with stock > 5, then

expect 15 tuples to result from this query. It will sometimes happen

that the domain value (s) tested in the query will be in the sample. In

this case it is not necessary to look at the full relation at all. If,

in the above example, both "London" and "Paris" were in the sample, the

query could be processed using only the sample. (In light of this, it

is tempting to place the most frequently referenced domain values in the

sample. This would have to be done with extreme care, however, to

preserve the statistical properties of the sample.)

Experimental Confirmation

In order to gain some emperical evidence for the value of

sampling, we have run experiments using a test data base. This data

base contains 10,000 records with information on fuel storage at mili-

tary sites. We used two sampling techniques and "classical" indepen-

dence assumptions to predict the performances of twenty-nine queries.

We also ran the queries against the full data base to allow us to observe

the accuracy of the predictions. The two sampling techniques used were:

A simple random sample of 100 records. The predicted volume,

in records, for the query run against the full data base is 100

times the volume from the query run against the sample. The

precision is obtained from equation (1)

.

A sample by domain value. 100 of the 1553 values of the field

called "location" were selected, and the 663 records which had one
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Table 5 - Two <ll ffer'nt sampling technlquea as •stlntors of query performance.
Preoeslons are at 95J confidence level.

Query
Actual
Volume
Produced

Est 1 ma ted From
100 Random
Tuples

Estimated From Estimated From
100 Random Classical
Looatlona Assumptions

state=98 1752
(Means a ship)

state=uk 190

statei06 701

fuel=115 1015

fuelrjpl 1227

fuel=Jp1 ! fuel=115 2212

comma nd = sac 161

command =mac ! command =sac 607

fuelrjpl A comma nd =roac 27

reclepts_dod> 100000 9

atock<10000 6268

state=98 A fuel=115 55

state = 98 A fuel=Jp1 1

fuel=Jp1 4 stock<10000 638

stock<5000 A stoek>0 5130

stock<5000 * stock>0 A 55
state=98

open_l nventory <s took 1953

open_lnvent ory >s t ock 4 239
command =sac

atater98 A stock<10000 1608

state=98 A stock<10000 & 3

fuelxjpl

recelpts_dod>recelpts_eomm 1528

command I sac A commandimac 1110
A fuel=Jp1

looatlon>us 267 1

locatlon>us A state=98 1710

recelpts_dod>10 1551

recelpts_eomm> 10 2505

reeelpts_comm> 10 A recel pts_dod> 10 221

command = pac /sh 1 ps I command = pacfl t 663

( command r pac/sh 1 pa ,' comma nd = pac fl t ) 583
A etate=98

1900*765

100+382

700+198

600+163

1100+677

2000+780

300+333

700+198

0+191*

0+191*

8300+733

100+191

0+191*

900+561

5100+972

100+191

1800+719

100+191

1800+719

0+191*

1600+715

1100+677

2300+821

2000+780

1600+715

2500+811

0+191*

300+333

300+333

1755+626

93+.176

991+731

1196+338

1398+355

2591+620

186+352

119+560

17 + 88

31 + 59

7812+1167

121+123

16+29

668+261

1923+.1250

62+92

2019+538

109+205

1160+193

16 + 29

1600+152

1305+316

2791+890

1739+627

1581+172

2252+665

218+203

373+236

311+225

109 E

109 E

109 E

100 E

100 E

800 E

86 E

172 E

18 I

7

7

177 I

215 I

1011 I

7

899 I

7

90 I

1119 I

178 I

7

1153 I

7

167 I

7

7

389 I

172 E

116 I

Actually, alnce piO, this should be 0+0. We give a nor* conservative precision based upon
p = .0 1 .

E - This Is based on the assumption that eaoh distinct domain value Is equally probable.

I - Thla la baaed upon lndependanoe between domains.
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of those values were collected. The predicted volume is 155.3

times the volume from the query run on the sample, with a pre-

cision obtained from equation (2)

.

The results of these tests are presented in Table 5. In most cases,

sampling predicted the actual query performance well within the theo-

retical limits. Additionally, the sampling generally yielded better

results than predictions based upon classical assumptions.

An Integer Linear Program Model for Optimization

In this section we will outline an integer linear program

model which could be used to find a suboptimal query strategy. The

global optimum is not guaranteed because permutations in the order of

execution of the individual operations are not considered. (Join, for

instance, is often an associative operation.) We assume that the query

is expressed in a tree format, where each tree node contains a rela-

tional operator, that the volume of traffic along each branch is known,

and that the cost of performing each operation at each host (assuming

the inputs are locally available) is known. The variables and constants

which appear in the integer linear program are as follows:

N is the number of operations in the query. The numbering of

the operations is considered immaterial, except that operation

N is a dummy, final operation which merely collects the

resulting tuples.

M is the number of hosts.

J is the host on which the final operation (operation N)

should be performed.

V. is the cost of shipping the output of operation i over the

network. (V = 0)

s . is the index of the successor to operation i.
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E . is the expense of performing operation i on host j

.

x is a binary variable with the value one if operation i is

performed on host j, and zero otherwise,

t. is one if the output of operation i must be transmitted over

the net and is zero otherwise.

For a given legal assignment of the x's and t's (a legal

assignment corresponds to a query strategy) , the cost is

N M
C = Z [V.t. + Z x. .E. .]

i J

The integer linear program then, is to minimize C subject to the

constraints.

M
Z x. . =1 i=l,...,N This assures that every operation

j is performed exactly once.

x. . + x . - t. < 1 This assures that t. will be oneijs.ki— . . ..,i
i if operation i and operation s.

i=l,...,N-l are performed on different

j,k=l,...,M

j * k

hosts. (t. will be zero unless
l

forced to 1 by one of these
inequalities.

)

x. . = or 1

t. = or 1
i

*NJ
= 1

It would probably not be practical to use this formulation in

a production system. Solution of a large integer linear program can be

very expensive. A more practical solution is a two-pass algorithm we

have developed. Briefly, the first, bottom-up pass through the tree

computes the optimal cost for producing each intermediate operation at

each host. The second, top-down pass selects the hosts on which to do

the operations.
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Further Research

The techniques discussed above still will not handle the most

general queries. It would be desirable to be able to construct and use

samples when there are three or more relations to be joined on several

domains. When a single relation is being joined to two (or more) other

relations, each on a single domain, the goal is to be able to take a

single sample from each relation such that the samples, when taken

together, will allow prediction of the performance of the entire query.

Also, it is now possible to compute the probability of correct

guess and expected excess cost only for simple queries where the various

volumes can be assumed to vary independently. In the general case this

will not be so. For instance, if the volume of one of the inputs to a

join varies by a given relative amount, then the volume of the join

output will tend to vary by an equivalent relative amount. More advanced

techniques should allow computation of these quantities for more general

queries.
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Appendix A

Relational Model Terminology

(This appendix is derived from the Preliminary Experimental System

Design Report, CAC Document No. 170, CCTC-WAD Document No. 5512.

Another similar tutorial which also contains a very comprehensive

reference list appeared in the March 1976 issue of the ACM Computing

Surveys on pages 43 to 66.)

The relational model was proposed as an attempt to improve the

theoretical foundations of data base management and to provide a very

simple user structure. In the short time since its initial suggestion,

the relational model has generated tremendous interest within the

academic and research communities.

A relation , R, may be thought of as a table whose columns are

labeled. Since the columns (which are called domains ) are always

referred to by name, their order is unimportant. The number of domains

is called the degree of R. The rows of the table (which are called

tuples ) have the following properties:

1. each tuple is distinct,

2. the ordering of the tuples is insignificant, and

3. the domain values in the tuple are atomic, e.g. character

strings, integers, etc. but not structures or repeating

groups.

Why has such a simple concept generated such interest? First, because

the model is so simple, even the most computer-naive user can understand

it. Second, because the relational model has no user-supplied structure,

the system designer and data base administrator are free to provide any

structure they wish "underneath" the user interface. The data base
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administrator is free to index, sort, or cluster a relation in any way

he wishes. Further, such structures may be changed at will, with the

only impact being on system response times. The user interface is

fundamentally an associative view of the data. The user supplies

criteria and the system gives back the tuples meeting those criteria.

Previous work on the relational model has led to the defini-

tion of two different sets of operators: the relational calculus and

the relational algebra. In the calculus the user gives a first-order

predicate calculus description of his output tuples. In the algebra the

user describes explicitly the operations necessary to achieve a desired

output relation. Since it can be shown that the two languages are

comparable in their expressiveness, there is no loss of generality by

our choice of the algebra for examples.

Only three operators are used in examples: projection, restric-

tion and join. Each takes one or more relations as operands and produces

a relation as output. To aid in the definition, examples using the

following relations will be presented.

SUPPLIER: SPLR.NAME

Ajax
Acme
Widget
Bomad

SPLR.//

10

20

30

A0

STATUS CITY

Tuscola
Areola
Mattoon
Urbana

PARTS: PART.// PART. NAME COLOR WEIGHT

1234 widget blue 100

1235 widget green 100

1236 bolt blue 1

1237 bolt green 1

1238 nut purple 1

1239 nut blue 1
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SP: SPLR.// PART.//

10 1234
10 1235
10 1238
20 1239
20 1237

30 1234

30 1235
40 1236
40 1238

Projection takes as input a relation and an ordered domain

list and produces a relation containing only the domains specified in

the domain list. For example, to produce a list of the suppliers and

their locations we write:

SUPPLIER [SPLR. NAME, CITY]

which produces the following relation:

SPLR. NAME CITY

Ajax Tuscola
Acme Areola
Widget Mattoon
Bomad Urbana

The domain list is enclosed in square brackets immediately after the

relation. Projection may also be used to simply re-order the domains of

a relation by including all of them in the projection domain list.

Restriction takes as inputs a relation and a Boolean expres-

sion of the domains of that relation. It produces a relation with the

same domains as the original input relation. The tuples of the output

relation are exactly the tuples of the input relation which satisfy the

input Boolean expression. To find the suppliers whose status was

greater than 6 we would write:

(SUPPLIER where STATUS > 6)

which would produce the following relation:
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SPLR.NAME SPLR.// STATUS CITY

Ajax
Bomad

10
40

9

8

Tuscola
Urbana

Restriction may be combined with projection, both by projection on the

input relation or on the output. For example, to find the supplier

names and status of suppliers whose status is greater than 6 we write:

(SUPPLIER where STATUS > 6) [SPLR.NAME, STATUS]

or

(SUPPLIER [SPLR.NAME, STATUS] where STATUS > 6)

Either one produces the following output relation:

SPLR.NAME STATUS

Ajax
Bomad

9

8

As was shown in this last example, many alternative statements exist to

do the same thing. This fact allows a variety of optimization tech-

niques to be applied, as is discussed in the section on query strategy

research.

The simplest type of join takes as input two relations Rl and

R2 that have a common domain D. It produces a new relation whose tuples

are formed by concatenating a tuple from Rl to one from R2 with the same

value for D. For notational convenience we will assume that D is the

last domain of Rl and the first domain of R2. To find the supplier

numbers of suppliers who supply green parts we write:

((PARTS where COLOR = green) [PART. #] * SP [PART. //, SPLR. #]) [SPLR. //]

The join is denoted by the *. This example produces this output relation:

SPRL.#

The following example may help to show what join does. We will go

through join on a tuple by tuple basis.
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SP[SPLR.#,PART.#] * PARTS [PART.//, PART. NAME, COLOR, WEIGHT]

taking the first tuple from SP, <10, 1234> , we find the tuple in PARTS

that has the same value for PART.//, <1234, widget, blue, 100>. The

concatenated tuple <10, 1234, widget, blue, 100> is now output, it is in

the output join relation. This process is repeated for each tuple in

SP. Of particular interest is the SP tuple <30, 1234>. Semantically

this means that both supplier 10 (Ajax) and supplier 30 (Widget) supply

part number 1234, the blue, 100 pound widget. Thus, both the following

tuples are in the join.

<10, 1234, widget, blue, 100>

and

<30, 1234, widget, blue, 100>

This example eventually produces the following output relation:

SPLR.# PART.# PART. NAME COLOR WEIGHT

10 1234 widget blue 100
10 1235 widget green 100
10 1238 nut purple 1

20 1239 nut blue 1

20 1237 bolt green 1

30 1234 widget blue 100
30 1235 widget green 100
40 1236 bolt blue 1

40 1238 nut purple 1
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