

UNIVERSITY OF
.
r ILLINOIS ypRARy

AE -URBANA-G^MPAiaN
£NGLN£ERI^N

NOTICE: Return or renew all Library Materials! The Minimum Fee for

each Lost Book is $50.00. '

, MS% j f&

The person charging this mateTiaTisT-espBuible for

its return to the library from which it was withdrawn
on or before the Latest Date stamped below.

TheftfrnAalcf!%Uwaf^Pufl MTreasons for discipli-

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

A
• £*«*»< T %$f+

jm&- a Si
!

* t*£ II i* v fc i*

Center for Adva >uiaTion

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
JGINEERING LIBRARY urbana. Illinois eisoi

IIV. i HV OF ILLINOIS
URBANA, ILLINOIS

The library of the

University

at Urbana -Cham

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons

for disciplinary action and may result in dismissal from

the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

» m^? b* Ss .••'-.-'7

* H £ s | s

SifflmSU

L161—O-1096

CAC Document Number 169

JTSA Document Number 5511

Research in

Network Data Management and
Resource Sharing

Initial Mathematical Model Report

by

Geneva G. Belford
John D. Day

Suzanne Sluizer
David A. Willcox

Prepared for the
Joint Technical Support Activity

of the
Defense Communications Agency

Washington, D.C.

under contract
DCA100-75-C-0021

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

August 20, 1975

Approved for release: k.
Peter A. Alsberg, Principal!

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/researchinnetwor169belf

Table of Contents

Page

Summary 1

Goals of the Modeling Program 3

Long-Term Goals 3

Goals of this Preliminary Study 4

Models in the Literature 6

Introduction 6

Models for Response Time 7

Models for Throughput 12

Models for Availability 14

Models for Cost 17

A Cost Model for Data Distribution 21

Introduction 21

A Review of the LSWL Model 22

Network Model 26

Revised Model: Partial Staging 37

Application of the Model to Multi-Site Usage 37

Plans for Further Work 40

A Model for Distributed Data Availability 43

Introduction 43

The Model 43

Experiments and Discussion 48

Conclusions and Plans for Future Work 53

A Response-Time Model for Distributed Data 55

Introduction 55

Page

The Model
56

Use of the Model rg

Generalizations ^
References

ft7

Summary

Overview

This document is a preliminary report on one aspect of the

initial phase of a proposed three-year research program on distributed

data management. The work dealt with here is the development of models

for data distribution. These models consist of equations for system

cost, availability, and response time in terms of appropriate parameters

describing system behavior, usage patterns, etc. This interim report

deals with models which look at the system from a very high level. Low-

level features - strategies, policies, etc. - will be built in later so

that their effects on cost, response, and availability can be assessed.

Cost Model

Besides providing a tool for further research, the modeling

effort has yielded some immediate insights into the advantages - and

problems - of distributed data management. We have found, for example,

that data distribution can be cost effective - in the sense that it may

be actually cheaper to store at a remote site - for reasonable parameter

values and a not excessive cost differential between sites. In addition,

it appears that this result is fairly insensitive to the size of the

data set to be transferred, but it does require that the data be compressed

for shipment.

Availability Model

Perhaps the most interesting result of the availability study

is the following. If there are two copies of the data base (located at

different sites) and both are kept immediately accessible and as up to

date as possible, at least one copy of the data base is available more

than 99 percent of the time. (This result does not take into account

1

scheduled down-time or the (small) possibility that both sites are down

concurrently.) If the remote copy is not a true "running spare" - i.e.,

is an inactive backup stored, say, on tape - the improvement in avail-

ability seems hardly enough to make such backup worthwhile. This result

serves to emphasize the importance of developing techniques for on-line

data base synchronization.

Response Model

The study of response time has led to some simple relations

which should be useful in algorithms for determining when a site should

share its query load with other sites holding a copy of the data base.

Rather than being amenable to a priori study, the parameters appearing

in this model are envisioned as being provided by real system monitoring

and measurement, so that they are appropriate for decision making in a

dynamic environment.

Report Format

In the next section we discuss the goals of the modeling

program, both in the long term (as a research tool) and in the short

term (i.e., for the work presented here). Following this, we briefly

review work reported in the literature which seems pertinent to our

effort. The major part of the document is then devoted to detailed

reports on the three models: cost, availability, and response time, in

that order.

Report Validity

The reader should note that the results given in this report

are to be considered tentative. The models are in the process of revision

and refinement, as well as more thorough testing. This is only a prelimi-

nary report; conclusions reached from the models in their present state

should not be relied upon or widely disseminated.

2

Goals of the Modeling Program

Long-Term Goals

Developing models to describe the various aspects of distributed

data management is an integral part of our research program. Model

building - the development of equations to describe system behavior,

costs, etc. - is an essential tool in computer science research. Using

a good model, one can study alternative design options, compare decision

strategies, etc.

It is important that the model effectively reflect the real

world that is to be studied. For this reason, we plan to build a model

which is highly modular and highly parameterized. The modularity will

provide flexibility and allow us to study some aspects of the problem

independently of having a detailed model of a whole system. For example,

network problems of synchronization and deadlock can probably be studied

through a high-level networking model which does not concern itself with

details of data management. The parametrization will allow us to put

into a high-level model guessed values for the effects of lower-level

systems. In this way we can generate some insights into what is going

on before building a complete model. Parametrization also should allow

us to mimic real PWIN system behavior as closely as available measurement

data will allow. This will maximize the PWIN-relevance of our research

results

.

The actual research areas which we plan to study in part

through modeling have been described in some detail in our Research Plan

(CAC Doc. No. 164, JTSA Doc. No. 5510). In the interests of brevity, we

will not repeat that information here.

3

Goals of this Preliminary Study

In this preliminary work, we have been limited by time constraints

to the construction of fairly superficial models and to the identification

of some promising directions for further work. In order to get a good

feel for the broad range of model components that may be useful to us,

we planned a three-pronged effort, directed towards assessing the gross

effects of data distribution on costs, availability, and reponse time.

Our approach has been to survey the modeling literature for work which

seemed relevant to our program and to begin to extend such work to

study the problems of distributed data management.

In order to develop a cost model for network data distribution,

we have begun with a cost model of a hierarchical storage system

and extended it by including storage at a remote site as part of the hierarchy,

We have then attempted to identify the major cost components which the

network introduces into total cost. By carefully including these

network components, we hope to have designed a basic model which we

may then expand on (by providing a greater level of detail) to study

such things as the cost overhead of various synchronization strategies.

To study availability, we have taken a similar approach.

We have begun with a model for single-site data base recovery strategies

and tried to see how the assumptions and results of that model are affected

by locating the backup copy at a remote site.

The complexity of response-time models (involving, as they

usually do, heavy usage of stochastic analysis and queueing theory)

precluded our getting very deeply into this area in the short term.

Instead, we undertook a rather superficial investigation into the conditions

under which mutiple data copies and query distribution may lead to an

improvement in system responsiveness.

In summary, the primary goal of this preliminary effort has

been to gain an understanding of the components needed to model the

major features of a distributed data management system. But we feel

that the models developed, although crude, do form a solid basis for

future work and have already provided us with some insights into the

value of data distribution.

Models in the Literature

Introduction

The first step in our modeling program has been to look closely

at relevant models reported in the literature. Actually, modeling is an

extensively used tool in computer science, and models of one sort or

another are found throughout the literature. For example, models are

used for comparisons and evaluations of alternative system designs.

Such mathematical design analysis is much less costly and time-consuming

than actually building alternative systems and trying them out. Models

are also heavily used in optimization studies. For example, optimal (or

near optimal) file allocations can be derived from rather simple formulas

for cost and response time. The simplicity of the formulas, it should

be noted, is not a drawback of the model but an advantage. Working with

models instead of the complex real world allows one to focus attention

on only those features that one wishes to study.

The models that we review in this section are therefore generally

not complex and all-encompassing, but are simple formulas which seem to

have some relevance to problems of interest to us. The discussion is

organized primarily according to the output of the model, and only

secondarily according to its context or application. First, we consider

response-time models and, under this heading, other types of models

dealing with time delays (e.g. in a network) or the time it takes a

process to be carried out. Thus we have collected together various

models which may have some relevance to the overall response time of a

distributed data base. Second, we consider very briefly the closely

related concept of throughput , and techniques for modeling it.

Third, we review various models which may be useful to the

study of data availability - essentially the probability that the data

base is accessible when needed. Overall availability may involve such

factors as network reliability, system failures, and recovery strategies -

all of which have been individually modeled in some context. Finally,

we look briefly at cost models - valuable for their ability to encompass

all kinds of resource utilization, but not nearly so extensively studied

as the other types of models.

Models for Response Time

An important quantity for the evaluation of a data management

system is the expected response time , which may be defined as the average

waiting time from the initiation of a data request (or from the input of

a query) to the receipt of the information. Many different aspects of a

data management system have an effect on the total response time. These

aspects run from the low-level physical organization of data to (in a

distributed environment) network delay times. In this section we briefly

review some important past work on modeling these various aspects and

indicate where further work appears needed to model a complete system.

Data structure modeling . At the lowest level, models have

been developed to aid in choosing storage schema. A typical approach is

that of Gotlieb and Tompa [1974]. They consider a number of alternative

structures - trees, linked lists, etc. - and assume an expected usage

pattern which involves the probabilities that the various nodes in the

schema will be accessed. They then compute expected run-time costs for

the alternatives. These "costs" are actually timing estimates, being

computed as a simple linear combination of "the number of executions of

each of three primitive instruction types: memory accesses, arithmetic

and logical instructions, and transfers of control". The expected

number of executions of the different commands are obtained by simulation

studies of application programs. This last point is an important one -

at some stage in almost any modeling effort, data from simulations or

from the measurement of real system behavior is needed. Another point

to note in Gotlieb and Tompa's work is that some very important considera-

tions in choosing storage schema appear only as constraints. For example,

an upper bound on the allowable amount of storage space is used to

eliminate certain schema from further scrutiny. A model which would

allow for a trade-off between storage cost and access efficiency would

seem to have more validity.

At what is perhaps a higher level, Shneiderman [1974] has

developed a model for optimizing the structure of multilevel indexes.

Again, he describes his model as a "cost" model, but he is explicitly

computing access times . His approach is a very simple one. Assuming

1. a given number of levels,

2. the branching pattern of the index tree,

3. a strategy for searching the tree,

4. the costs (times) for moving from node to node in the search,

and

5. an equal probability of request for all items,

he derives a straightforward algebraic formula for expected search time.

As an obvious (and necessary) generalization, he suggests relaxing

assumption (5). Shneiderman' s basic approach, however, appears to be a

useful one which may be readily incorporated into any analyses of tree

structures which arise in our modeling effort.

8

A more ambitious effort in the use of modeling to evaluate

file structures was carried out by Winkler and Dale [1971] . In their

words, they study "the processing time required to evaluate Boolean

functions defined on data values ... [and to] select elements from the

structure satisfying the expression". They derive some rather complex

algebraic formulas for expected processing time. There are over twenty

input parameters describing such things as properties of the average

query, file size and timing data. Specific, alternative structures are

modeled in the sense that processing time formulas are developed for

them. This paper merits closer study in our proposed work on data

structuring.

Computer system modeling . Many of the response-time models in

the literature that may be of use to us are not specifically concerned

with data management but with computer systems in general. Both time-

sharing systems and multiprogramming systems have been the subject of

considerable analysis. Both situations are characterized by competition

for shared resources. Several jobs reside in the system simultaneously

and must occasionally wait for processing, I/O, etc. The natural mathemat-

ical models to describe the progress of jobs through such a system of

waiting lines and processors are those of queueing theory. Indeed,

queueing theory has been heavily and successfully used to develop formulas

for response time in such systems.

A classic example is Scherr' s analysis of response time for

time-sharing systems [Scherr, 1967]. Scherr defines response time as

the mean length of time the user spends in the "working part of the

interaction" - i.e., the time between when he finishes typing in his

query and when the response is returned to him. The main input parameters

are the mean time per interaction that the user spends in thinking and

typing, and the mean processor time per interaction. Simplifying assump-

tions are that the system is in a steady state (i.e., essentially that

the total number n of users on line is constant) and that there is no

overhead due to additional swapping as n increases. The latter assump-

tion is questionable and leads to the result that response time increases

only proportionately to n for large n. The mathematical analysis is

quite simple. A Markov process describes the probability distribution

for the number of users actually inside the system and the resulting set

of recursive equations are readily solved. Expected response time can

be immediately calculated from this probability distribution. The

validity of this simple queueing model was demonstrated by comparing its

predictions with real system measurements. The agreement was extremely

close.

More elaborate analyses of time-sharing systems have been

carried out by Kleinrock. (For a good review of this work, see [Kleinrock,

1973].) Kleinrock' s analyses include various queueing disciplines

(scheduling algorithms) and various probabilistic assumptions on job

arrival times and processing time required. He has extended this type

of model virtually to its limit, in the sense that further generaliza-

tions lead to intractable mathematical formulations.

Queueing models also play a key role in the study of multi-

programming systems. These differ from time-sharing systems primarily

in that there is no assumed interlude when the user is thinking and

typing. That is, a certain steady-state population of jobs is assumed

to be continually moving through the system. A model which seems

10

especially relevant to our work Is that of Arora and Gallo [1971], who

are particularly interested in the optimal storage of data in a multi-

level memory. They define the expected response time of a. transaction

as "the serial sum of the service times along with the respective

waiting times at all facilities", and emphasize the importance of this

statistic in evaluating data management systems. The most important

parameters in their model are the I/O dependent timings, such as the

access times to various memory devices and the time required to transfer

a block of data from auxiliary to main memory. The model is rather

detailed and complex, but has the obvious potential to be extended to

the study of data distribution in a network. One need only consider

some memory levels to be located remotely and take into account network

delay times.

File allocation modeling . Models which have been devised to

study data distribution are usually developed from higher level (and

less sophisticated) analyses than those referred to above. An example

is the response-time formula derived by Chu [1973] in his study of

optimal file allocation in a network. Variables in his formula include

line traffic between nodes (assuming it is all generated from data base

access), usage rates of files by users at various sites, and average

lengths of messages. An interesting feature is the result that network

transmission delays increase with line traffic according to the simple

factor P/(l-P), where P denotes the fraction of line capacity used by

the given traffic, or traffic intensity . Indeed, Chu's expected response-

time formula (for queries initiated at one given site and responded to

by another) is simply

Response Time ~ tP/(l - P)

,

where t = average time to transmit a reply message. One sees that many

11

features are lacking in this simple model - time to transmit requests,

time to access the data at the remote site, protocol overhead time, etc.

In addition, there appears to be an implicit assumption that all pairs

of sites are connected by a direct line used only for the query traffic.

Network delay modeling . As we noted in discussing Chu's

simple model for response time from a remote site, real network delays

involve many complex factors. Fortunately, much work has been done on

developing realistic formulas for network delays. (For a good review

see [Kleinrock, 1973].) This work has been largely done in the setting

of network design and analysis. For example, queueing models have been

used to compute average packet delays for given network topology, routing

strategy, and network traffic (including overhead for routing, flow and

error control, etc.). There seems to be no reason why such models can

not be incorporated into overall models of response time for a distributed

data base. Detailed modeling of network delays will provide a necessary

tool for studying synchronization strategies and other network-related

features of distributed data management.

Models for Throughput

Some authors argue that response time is not as important a

statistic as is throughput . For example, Arora and Gallo [1971] put the

case as follows: "In a multi-programming environment the response time

does not measure the efficiency of the system, because of the concurrent

processing of several transactions. For this reason, we introduce

throughput rate as a performance measure for the multi-programming

systems. It is the rate of completion of transactions per unit time .

"

(The underlining is ours.) In his analysis of multiprogramming systems,

Buzen [1971] takes the same point of view, defining "overall system

12

performance" as the "average number of jobs processed per unit time". A

queueing theory analysis will, however, generate either response time or

throughput rate with equal ease. That is, these models assume that a

certain number of jobs are in the system and essentially it is the time

the average job spends in the system that is computed. Thus "response

time" in these models never means the absolute time it takes an other-

wise empty system to do the job, but is always in the context of com-

petition with other jobs.

In network analysis throughput has also been a useful statistic.

For example, in ARPANET analyses the network throughput has been defined

as the average traffic per node when average packet delay equals 0.2

seconds [Frank and Chou, 1974]. This maximum acceptable average time

delay then gives meaning to the notion of throughput or "the level of

traffic that the network can handle". However, it is again queueing

analysis which is used to model the flow of packets through the network

and to compute throughput under various conditions.

Once throughput or level of traffic flowing through a system

becomes a statistic of interest, the possibility of using models analogous

to those used for physical flow systems arises. The stochastic models

and recursion equations of queueing theory may be replaced by the contin-

uous models and differential equations of diffusion theory. There has

recently been considerable interest in applying this type of model to

queueing networks (see, for example, [Reiser and Kobayashi, 1974]),

since more complex initial and boundary conditions can be imposed than

are tractable in stochastic models. Of course, the close connection

between throughput and average response time means that diffusion models

could be very useful in response-time studies. We therefore plan to

look closely into the applicability of diffusion models to our research.

13

Models for Availability

We here use the term availability to mean the fraction of time

that a data base is available to respond to user requests or queries.

In any setting, and particularly in a network, availability is a func-

tion of the reliability (or availability) of man;/ components - host

computers, network communications lines, etc. - as well as of strategies

for backup and recovery. In this section we discuss some of the past

modeling research that has yielded results useful to us in our concern

with database availability.

File allocation modeling . One of the factors to be taken into

account in distributing copies of a file to various network sites is the

number of copies needed for an acceptable degree of availability. Chu

[1973] takes account of this factor in the following way. First, he

defines the availability of a piece of equipment (e.g., communication

line or computer) as

F
Availability = ——;—

—

F + X

where F is the mean time between failures and X is the mean time to

repair. Then, assuming

1) all computers in the network have identical availability A,

2) all communication channels have identical availability c, and

3) the network is completely connected;

Chu obtains the following formula for the availability of the j th file:

r

.

A(l - (1 - Ac) J
),

where r. is the number of copies of the i th file in the network. Once A
J

and c are known, it is a simple matter to choose r. so as to bring the

availability of a remote copy up to a satisfactory level. Overall

14

availability is bounded by A, the availability of the requesting com-

puter, which is apparently assumed not to possess a copy of the file.

Although Chu's model, with its assumption of complete homo-

geneity of network components, may seem oversimplified, an analogous

analysis can be readily carried out in the heterogeneous case to yield

more complex expressions. Notice, however, that this model presents

another problem. It implicitly assumes that the files are static, or

are simultaneously kept up to date by some trouble-free process. In

fact, the development of algorithms to keep segments of a data base

identical (or nearly so) is a topic of current research. (See the

chapter on Automated Backup in CAC Doc. No. 162, JTSA Doc. No. 5509.)

Network reliability modeling . Another simplification in Chu's

model is the assumption that a direct communication line connects every

pair of sites. This assumption allows Chu to use a single parameter to

describe availability of a link from one site to another. In a general

network, this availability will depend in a complex way upon network

topology. Several alternate paths may exist between two given sites.

Each of these paths may involve more than one "hop" and so more than one

piece of subnet hardware. Indeed, in the ARPA network it has been found

that the failure rate for IMP's is about the same as that for communica-

tion channels, and that IMP failures therefore have the more drastic

effect on communications reliability [Frank, Kahn, and Kleinrock, 1972].

Graph theoretical techniques for computing availability from component

reliabilities are, however, well known. The paper by Frank et al. con-

tains a brief review of these techniques. No great difficulty is envi-

sioned in applying them to any given network (such as the WIN) to obtain

availabilities which may then be used in a straightforward extension of

Chu's model to obtain rough estimates of file (or data base) availability,

15

Modeling computer system reliability . Another parameter in

Chu's model that requires more detailed analysis for complete understanding

is computer availability. One source of information on computer avail-

ability is direct system measurement. On a lower level, however,

failures can be modeled to yield, in addition to overall figures on

expected system reliability, useful insights into repair and backup

strategies

.

Borgerson and Freitas [1975] recently published a fairly

detailed stochastic model for computer system failure. Their model is

based on four distinct causes of crashes and their interrelationships.

Their ultimate result is a formula giving the probability density for

the event that the system crashes due to a failure. The effects of

mechanisms for detecting and recovering from a failure (before the

system actually crashes) are included in the analysis. Although our

research is unlikely to be concerned with modeling computer systems at

this level of detail, the analytical techniques of Borgerson and Freitas

may well apply to reliability problems which we may wish to model (e.g.

protocol resiliency)

.

Modeling backup and recovery strategies . This section has

previously dealt with availability questions involving network and site

reliabilities. On a lower level, the data base itself may "crash" or

may acquire errors. It is important that strategies for returning a

data base to its correct state be devised and studied.

A recent paper [Chandy et al. , 1975] provides models for

rollback and recovery strategies. These strategies run as follows. At

certain points in time (checkpoints) , a copy of the data is made and

stored. A listing of subsequent data updates (i.e. an audit t rail) is

16

then kept. When the master data base fails, it may then be recovered by

beginning with the old copy from the checkpoint and using the audit

trail to bring it up to date. Chandy et al. use queueing theory to

model the processing of the audit trail. From the expected time to

complete this process, they can compute the total recovery time. The

length of the audit trail, and hence the time to recover, is a function

of the time interval between checkpoints. Optimization of availability

with respect to intercheckpoint time can then be carried out. Models of

some complexity are developed which take into consideration the possi-

bility of errors during recovery and the possibility of a transaction

arrival rate which varies in a cyclic manner (as opposed to being con-

stant) . The results appear to be very useful for developing insights

into recovery strategies, particularly for single-site systems. In a

network environment, however, it may be reasonable to assume that the

backup copy is stored remotely. In this case it does not make sense to

assume that the data is always restored from the backup, because of the

long time required to transfer a data base through the network. The

strategy then is to transfer the queries to the available copy. (See the

later section on the availability model.)

Models for Cost

Cost is both a very vague and ambiguous measure of system

performance and a very important one. The ambiguity comes about through

the difficulty of assigning dollar costs to all factors of interest.

One way, of course, is to carry out experiments - i.e., to run test

programs at various sites and compare the bills received. This method

yields cost comparisons which are heavily dependent on the pricing

policies of the various sites, as well as on site hardware and software.

17

Untangling all of these factors to determine what a set of cost figures

really means is no easy task. On the other hand, cost is very important

in that it serves as an overall measure of system resource utilization.

For example, by assigning costs to them, such diverse factors as CPU

time and storage used can be added together. In short, costs are a

device by which one can add together apples and oranges.

Assignment of specific costs to various factors is of importance

to the model user, but not necessarily to the model builder. The latter

can consider costs of various resources to be simply weighting coeffi-

cients, which can be adjusted at will to reflect a specific environment.

It may be, for example, that no real money changes hands. But a user

may still wish to evaluate a certain system or piece of software by

using a formula which weights storage (which may be in short supply)

much more heavily than CPU time.

In this brief review of cost models, we will be only concerned

with those which use "costs" to add together heterogeneous factors. In

our search of the literature we found that several so-called "cost"

models actually dealt only with time factors. Such models are therefore

discussed elsewhere.

Modeling Network File Allocation . Of particular relevance to

our study of distributed data management are the cost analyses developed

for the network file allocation problem. A good example of such an

analysis is that given by Casey [1972], The parameters in his model are

1. the cost ("mainly for storage") of locating the file at any

site k,

2. the costs of transmitting a given amount of data between two

given sites (with the possibility that update and query trans-

actions may be transmitted at different costs)

,

18

3. the amount of update traffic emanating from each site, and

4. the amount of query traffic emanating from each site.

Given values for these parameters, the cost of a particular allocation

is readily computed.

Casey states that transmission costs may be "a rather complex

monotonically increasing function" of traffic, but he feels that his

linear model is a good first approximation. A better idea of transmission

costs would require a model which goes into the transmission process in

some detail and analyzes the various cost components and how they are

affected by the amount of network traffic. The site costs might also

profit from a detailed breakdown; note that Casey remarks that factors

other than storage are being lumped into one term. It is important to

realize, however, that for file allocation Casey's model is probably

quite adequate. It is only when one wishes to study other aspects of

data distribution - backup and recovery strategies, say - that more

detail is needed.

Modeling storage hierarchies . Even before networks existed,

the file allocation problem was of importance. The question arose as to

where one should place a given file in a storage hierarchy - i.e., a set

of memory devices of varying accessibility (core, disk, tape, etc.)

connected to a single computer. A particularly comprehensive cost model

for this problem has recently appeared [Lum et al. , 1975]. This model

differentiates between random and sequential forms of data access and

includes considerations of staging, channel costs, CPU overhead, etc.

Because of its completeness, we considered this model an appropriate one

for extension to the network case. That is, memory devices at a remote

site may simply be considered as parts of the storage hierarchy, provided

19

that network costs are properly taken into account. A detailed discussion

of the model of Lum et al. will therefore appear below in the discussion

of our cost model.

The distributed data management problem is of course far more

complex than the storage hierarchy problem. The model of Lum et al. (and

our extension of it) assumes that all data processing (updating and

responding to queries) takes place in local core. No provision exists

for sending a query to a remote site for processing. Thus, although our

straightforward extension of Lum's storage hierarchy model has provided

some insight into data distribution, it is grossly inadequate for studying

all the many facets of distributed data management. Unfortunately, the

literature contains little modeling work that is readily applicable to

distributed data management. Much more work needs to be done to develop

models which realistically describe the distributed environment.

20

A Cost Model for Data Distribution

Introduction

The advantages of distributing a data base in a network

environment have been discussed at length in various papers, panel

discussions, and bull sessions. But it has been somewhat difficult to

quantify these advantages or to investigate the various tradeoffs and

determine just how great the advantages are. In this section, we will

attempt to shed some light on this subject. As mentioned above, a

recent paper by Lum et al. [1975] develops a cost algorithm for allo-

cating files in a storage hierarchy. Their cost model is rather com-

plete and lends itself well to extensions relevant to storage hierarchy

problems in distributed data base systems.

For many of the cost-related questions that arise in the

development of a distributed data base system (such as those concerned

with the costs of queries, updates, back-up, recovery, etc.), the system

can at first be viewed as a storage hierarchy. That is, to a local

process or user the remote sites appear as further levels of the hier-

archy. From this point of view the network is another channel with some

special cost considerations. In future refinements of this model, we

plan to include effects of remote processing of data. We were unable

to do so in this short-term effort.

In what follows we will first review the model described in

[Lum et al., 1975]. (In order to facilitate the discussion, this model

will be referred to henceforth as the LSWL model.) Next we will extend

the LSWL model to include a network. Then we will use the model along

with some relevant data to investigate some interesting questions, and

21

we will draw some conclusions about the advantages of distributed data

base systems. Finally, we list some ideas for refining the model.

A Review of the LSWL Model

Overview . The LSWL model primarily addresses the problem of

"data staging" or "data migration". In other words, when a file or data

set is not being used (i.e., is inactive) it is stored on one device

(usually a slower, less expensive one). Then, when the data set is

accessed, it is moved to a faster, more expensive device so that the

program will waste fewer resources waiting for data. The question we

are concerned with here is, given the accessing characteristics (number

of reads and writes, proportion of time the file is in use, etc.), where

in a given hierarchy should the data set be stored when it is inactive

and where should it be moved when it is active?

The authors develop an objective function which gives the cost

of accessing a data set which is stored on one device when inactive and

another (possibly the same device) when active. The authors assume as a

first approximation that the entire data set is moved from the inactive

device to the active one.

The selection algorithm is quite straightforward. The objec-

tive function is evaluated for a given set of variables for each pair of

devices in the hierarchy. The lowest cost then indicates on which pair

of devices the data should be located.

Assumptions . The authors make several simplifying assumptions,

most of which can be relaxed at the cost of a more complex cost function.

They assume that for data sets system paging activity will not signifi-

cantly affect cost. However, it would probably be necessary to relax

this constraint if one wished to consider costs incurred by program

activity. They further assume that transfers are direct rather than

22

through core and that there are no flow control problems (i.e., a fast

device can always accept data from a slow device) . It is also assumed

that transfers are not constrained by the capacity of the device the

data set is being moved to. These last two assumptions can both be

dropped at the cost of a more complex equation. As we shall see, when

we add a network to the hierarchy, flow control can not be ignored.

When a process or user accesses a data set, it often must wait

for the access to complete. Clearly, this wait time must be figured

into the total cost. However, multiprogramming systems take advantage

of this wait time by letting other processes utilize the processor. To

account for this the authors define an adjusted machine cost, m. For

lack of a better formulation, they have defined this cost to be the

percent of CPU idle time times the dollar cost associated with the CPU.

There are some problems with such a definition. For example, as the

load on the system increases and so does CPU utilization, queueing

delays and system overhead also increase, thus increasing cost. The

objective function does not account for this phenomenon.

The objective function . Now that we have reviewed the assump-

tions behind this analysis, let us look at the cost function itself in

some detail. The reader should consult Table 1 for a key to the defini-

tion of the symbols used and Figure 1 for a summary of the objective

function.

Let us assume that the data set is at level i of the hierarchy

when inactive and level j when active. (For consistency we will adopt

the nomenclature used by Lum et al. whereby the first subscript will be

the inactive device, and the second the active one. Also the higher

levels (i.e., those with faster access) of the hierarchy will have

23

Data Set Characteristics:

q = number of sequential block assesses.
r = number of random block accesses.
S = data set size,

s = physical block size.

t. =• fraction of time data set is on level i.
1

d = number of times the data set is opened.
A = the proportion of time to write the data set back to its

original position. For read only data sets, X = 0; for
full write back at read speed X = 1.

Storage Device Characteristics:

t = random access time for level i.
r

t = sequential access time for level i.
q

t = transmission rate for level i.
s

t = average revolution latency time for level i.

t = minimum access arm movement time,
c

n. = unit cost of storage space at level i for the given time
period.

b. = transfer size per access when data set is being moved from
a lower level i to another level (or from a higher level to

level i)

.

B. = largest size that can be transferred without additional access
i

cost

.

CPU and Channel Characteristics:

m = adjusted cost per unit time for cojpputer system excluding
channel

M = unadjusted computer system cost per unit time
u = cost of channel per unit time

3 = number of buffers
W = computer setup time for opening a data set

Table 1

Parameters in the LSWL Model
(from [Lum et al. , 1975])

24

higher indices.) The objective function can be considered to have

three major terms:

i i staging
storage ,

local process °
f . . = ° + r + transfer
it cost access costsJ costs

The first term is the cost of storing the data on the active

and inactive devices.

{storage cost} = [x.n. + T.n.lS
i i J 3

When a data set is moved from level i to level j it is not necessarily

deleted from level i; therefore it should be noted that x. + t. > 1.
i J

-

The second term is the cost for the user or process to access

the data from the active device. This term takes into account the CPU

costs and transfer overhead as well as channel costs for both random and

sequential accesses.

CPU costs for r/ j ...
, / / i N1

«_. ,
= mq[(t J

/3) + (s/t J
)lsequential access q s

CPU costs for r \ , i 1m
,

= mr[t J + (s/t J
)

]

random access r s

random access _
r

j . , j. ,

channel costs 1 s

sequential access r/ \ ... , , i . ,

channel costs
-^[(t^/3) + (s/t J

)]

The final term computes the cost of moving the data from level

i to level j and includes factors for writing the data back to level j

if necessary, preparation for transfer, latency waiting for the next

block, and block transmission costs.

cost to move data from ,.
, , N , , T ,,„.,», i , , , i.

level i to level j

= (1 + A)d{MW + (S/V [mt
l

+ (mb
i
/fc

s
}

+ (ub./t
X
)] + (mS/B.)t

1
}r(i - j),

where f(x) is if x = and is 1 otherwise.

25

f . .
= (t.ti. + T.n.}S + storage cost

mq[(t j
/3) + (s/t j

)] +
q s

mr[t j + (s/t h] +

(uqfCt^/3) + (s/t
g

j
)] +

ur[t
x

j + (s/t
s

j
)]} +

(1 + A)d{MW + (S/b.) [mt
1

1
+ (mb

i
/t

s

1
) +

(ub./t
1
)] + (mS/B.)t

X
}{r(i - j)}

1 s 1 c

CPU cost: sequential
access + transmission

CPU cost: random
access + transmission

channel cost

cost to move the
data set between
levels i and j

Figure 1

Objective Function for the LSWL Model

Network Model

Further extensions than those discussed here are necessary to

model the cost of a distributed data management system in complete

detail. However, the model developed here is a good first approximation

and will allow investigation of the tradeoffs between storage and access

economy. It will also provide an accurate model of file or data set

staging in a network.

As mentioned earlier, a primary concern in extending the LSWL

model to allow for a network in the hierarchy is to account for the flow

control and other protocol related costs that will be incurred. The

cost function used has the basic form:

c . .

ij

i > k

i < k
> (j always greater than k)

S
where k is the first remote level of the hierarchy. (Here we are

tacitly assuming that all staging will be done to a local device.) We

26

have already discussed the original objective function, f... We will

now proceed to consider the cost function that deals with the network.

The reader is directed to Table 2 for a key to additional symbols and to

the summary of g.. in Figure 2. The network cost function can be char-

acterized as:

cost to move from inactive cost to move from
storage

e.. = + remote level to highest + highest remote
ii costJ remote level level to the net

network cost to move from net to process access
cost active level costs

The major differences in this equation from the purely local

version are the added network costs and the distinction between local

and remote charging rates. Otherwise most of the terms are special

cases of the original and we will not discuss them in detail.

The network costs consist of two major components: the set-up

costs for using the network and the cost of the traffic sent on the

network.

network costs = de{ (m + til) t + (M + M) t }{l + T(X)}

+ (1 + X) (SKn /b)d

+ 2en d{l + EjQt)

}

The first term is the cost of setting up the transfers in

terms of the number of message exchanges required (protocol negoti-

ation) , network delay and protocol processing. The other two terms are

network charges for the packets actually sent. The first of these is

the cost for the data sent and the second is for the messages sent for

the set-up negotiation. The constant K in the first term is a "com-

pression" factor to allow inclusion of data compression and protocol

overhead in data transmission (headers, restart markers, etc.). The

27

e = number of message exchanges necessary to set up the transfer

t ,
= message round trip delay time in the network

nd

t = CPU time for protocol overhead (on a per protocol message basis)
np

K = "compression" factor

t = network CPU time to receive data
nr

t = network CPU time to transmit data
nt

u = remote channel cost
r

u = local channel cost
Li

m = adjusted remote system cost
r

itl. = adjusted local system cost

N = number of data set copies necessary to achieve a desirable
level of reliability

n. = network transmission cost
k

M = unadjusted remote system cost

>L = unadjusted local system cost

b, = network packet size
k

Table 2

Supplementary Parameter List for Network Model

28

g.. = {x.n. + T.n.}S + (1) storage cost
ij i i 3 3

(1 + X)d{(SK/b.) [m b,/t
k
+ u b, /t

k
]} + (2) cost to move betweenkrks rks , . , , ,highest remote level

and net

(1 + X)d{M W + (S/b.)[m t T

X
+ (m b./t

1
) + (3) cost to move between

L irL ris . ._._....
inactive level i and

(u b./t)] + (m S/B.)t } + highest remote levelrisric
de{(m + m)t + (M + M) t }{1 + T (X) } + (4) protocol set up cost

2en d{l + f(X)} + (5) network charges for

protocol messages

(1 + X)(SKn /b)d + (6) data transfer network
costs

(M t + M^ t)(S/b
1
)d + (7) network software cost

r nt L nr k. , . .

to send data and
A(M t + M, t J (S/b.)d + receive it

r nr 1 nt k

ni q[(t J
/3) + (s/t J

)] + mjTtt 3 + s/t J
] + (8) CPU costs for random

and sequential access
and for retrieval from
active location

uT q[(t.
J
/g) + (s/t h] + u

T
r[t

T

^ + (s/t h + (9) channel costs forLL s LL s ,local retrieval

(1 + X)d{SK/b.[(nLb /t
k

) + (u
T
b./t

k
)]} (10) cost to move from net

buffers to active
device

Figure 2

Objective Function for the Network Model

29

transmission cost of the network, il , is calculated in terms of packets

sent, a charging structure in use in the commercial domain. (It should

be noted that the symbols with the subscript k do not refer to the

properties of the highest remote level of the hierarchy but to proper-

ties of the network, such as transmission rate, packet size, etc.)

Factors involving A are included in the network costs to take account of

the possibility of shipping the data back to inactive store. Notice

that a transfer must be set up no matter how small an amount is sent

back - hence the appearance of F(X) in the formula.

Example . Consider a situation in which there is a four-level

hierarchy (core, drum, disk, and archive), both locally and at a remote

site. Assume that values of the relevant parameters are as given in

Table 3 (taken from Lum et al. [1975]) and that they are the same at

both sites.

Parameter Core Drum Disk Archive Units

t
i

r
lO"

6
5 X 10" 3

60 X 10" 3
5 second

t
i

s
ou 10

6
3 X 10

5 4
5 X 10 byte/sec

i
t
q

8 X 10~ 3
13 X 10" 3

25 X 10~ 3
second

i
8 X 10" 3

12 X 10~ 3
20 X 10" 3

second

t
*

c
25 X 10" 3

40 X 10" 3
second

n. 2 X 10" 2 -4
5 X 10 3 X 10" 5 3 X 10~ 7

$/byte/
i

month

b.
i

* 20,000 7,000 2,000 byte

B.
l

* 4 X 10
6

140,000 10,000 byte

* Irrelevant

Table 3

Parameters for Storage Hierarchy

30

It does not, of course, make sense to consider inactive storage at

remote core, and this case is omitted. Let the number of local buffers

be two (3 = 2) and assume that there is no setup time to open a data set

Q

(W = 0) . Suppose that a data set of 10 bytes is active for one eight-

hour shift per day, so that on a per-month basis d = 30 (i.e., the data

set is opened once per day). Furthermore, the set is then active 1/3

of the time (x. = 1/3), and we shall assume that x. = 1 (i.e., that the

set is permanently resident at the inactive location) . Let the set be

blocked into 1500-byte physical records (s = 1500) and suppose that

A = 1 (so that the data set is always written back at the end of each

day). Finally assume that there are 90,000 sequential accesses to the

active copy per month and 210,000 random accesses (i.e., q = 90,000 and

r = 210,000). These values all correspond to those used by Lum et al.

in their example.

Next, network parameters are needed. We have taken b, = 125
k

k 3
bytes, the ARPANET packet size; t n

= 200 ms and t = 5 x 10 bytes/sec,J nd s

both ARPANET figures; t = 1 ms , which is roughly the time for an ARPA

NCP to handle one protocol command (including response); t = 1 ms , an
nr

average figure which runs from about .5 ms NCP time to 2 ms if the

process must be awakened; and t = 2 ms , which consists of about 1 ms
nt

to get to the NCP and 0.5 to 1 ms to use it. (These estimates for t ,

np

t , and t
J
were supplied to us by G. Grossman of the Center for

nr nt J

Advanced Computation.) It should be noted that both t and t should
nr nt

be slightly larger to allow for data processing by the file transfer

protocol. This is particularly true if data compression is being

carried out. But for this example we initially assume K = 1. Also, t

and t as given are times per message ; we have divided by 8 to get a

per-packet estimate, since a maximum of 8 packets per message is

31

nr

allowed. The parameter e was set at 15. This is arrived at as follows.

In the ARPANET, it requires 7 exchanges to open an FTP connection, plus

from 4 to 7 commands to set parameters and 3 more to open the data

connection. It should be noted that by using ARPANET data and the

values supplied by Grossman we are essentially computing lower bounds on

network costs. In other environments the network costs will be higher

and results are likely to be quite different.

Finally, cost estimates are needed. For network transmission

we assumed n, = $1.25 per 1000 packets, a quoted Telenet commercial rate.
K.

To begin with we have assumed that = m = $10/hr., M = M
r

= $100/hr,
°L r

and u = u = $8/hr. Clearly under these assumptions remote storage

will not be cost effective; but by adjusting the cost of the remote site

relative to that locally, we should reach a point where remote storage

is cheaper. The values calculated for costs c.. (see Figures 1 and 2) are

given in Table 4. As expected, remote storage is not economical for the

assumed cost structure. The cheapest method is for the inactive data to

be stored on local archive and transferred to local disk when active.

Active Location (j

)

Local
Core

Local
Drum

Local
Disk

Local
Archive

•H

c
o
•H
4-1

CO

u
o
hJ

>
•H
4-1

u
cO

aH

Local Core

Local Drum

Local Disk

Local Archive

Remote Drum

Remote Disk

Remote Archive

2000

717

670

668

724

677

675

50.0

19.8

17.5

73.7

26.9

24.9

3.05

1.91

58.1

11.3

9.27

3.01

60.0

13.2

11.2

Table 4

Computed values of total costs c. . for the basic example,
ij

Entries are in thousands of dollars per month.

32

In an attempt to determine for what relative costs it becomes

cost-effective to store remotely, we recomputed the c.'s for a decreasing

sequence of values of M , m , and u . All other parameters were kept
m r r r

the same. Even when the cost ratio Z was

m M u

™L \ U
L

the best strategy was still to store on local archive and transfer to

local disk. At this point, however, the best remote strategy (remote

archive to local disk) was less than twice as expensive as local archive

to local disk (compared with a factor of more than 4 in the Table 4

example) . Closer examination of the individual terms computed showed

that what keeps remote storage from becoming cost effective are fairly

large contributions from terms (2) and (6) (cost to move from highest

remote level to net and data transfer network costs, see Figure 2). In

Q

short, shipping a data base of 10 bytes back and forth across a network

daily is just not likely to be cost effective under most conditions!

If costs for shipping through the network are, as it appears,

making remote storage uneconomical, compression of the data before

shipment should help. We therefore inserted a compression factor

K = 0.1 (about as small as is realistic) into the model and recomputed

the c.. for cost ratio Z = 0.1, and all other parameters the same as for

the Table 4 example. Remote storage now becomes cost effective - the

best strategy is to transfer from remote archive to local disk. (See

Table 5.) The reader should keep in mind throughout this discussion

that the numbers and comparisons given here should not be taken too

literally. The simplistic hierarchical storage model we are using does

not take into account, for example, cost advantages which may occur due

to remote data processing.

33

Active Location (j)

Local
Core

Local
Drum

Local
Disk

Local
Archive

•H

c
oH
4-1

CO

CJ

O
kJ

>
•H
4-1

a
cfl

eH

Local Core

Local Drum

Local Disk

Local Archive

Remote Drum

Remote Disk

Remote Archive

2000

717

670

668

717

670

667

50.0

19.8

17.5

67.1

20.1

17.2

3.05

1.91

51.4

4.46

1.59

3.01

53.4

6.39

3.52

Table 5

Computed values of c. for K = 0.1, cost ratio Z = 0.1

Entries are in thousands of dollars per month.

Starting at this point, we increased Z (since a ten-to-1 cost

ratio is probably unrealistic) to see at what value of Z remote storage

begins to become cost effective (for K = 0.1). Throughout the range of

Z values, the best local strategy is archive to disk; the best remote

strategy is remote archive to disk. We have graphed the costs of these,

versus Z, in Figure 3. The local strategy cost is, of course, independent

of K or of remote costs (and hence of changes in Z) . Notice that the

crossover occurs at Z = 0.3 - a value which might well occur in practice.

Another interesting feature is the linearity of the curve, which may

make the model more useful as input into decision algorithms.

An unexpected result was that decreasing S (the data base

7 f\

size) to 10 bytes and then to 10 bytes led to virtually no change in

this crossover value of Z. Even at 10 bytes the local and remote best

strategies are nearly of equal cost at Z = 0.3. But for this small a

34

4.0

3.5

3.0-

COST

2.5-

2.0

1.5

/
s = io

8 /
/

/
K=0.2

/
/

/
/

/
/

/
/

/
/

/
jL.

K = 0.l

0.1

J.

0.5

Z

j

1.0

Figure 3

Comparative costs (in thousands of dollars per month)
— Best local strategy

Best remote strategies

35

data base the best active storage becomes local drum instead of local

9
disk. For larger data bases (10 bytes or more) , however, the main

costs are those for storage, and the minimum in the matrix corresponds

to permanent storage in local archive (no staging)

.

Though insensitive to S, it is clear that the crossover point

is sensitive to K. To investigate this feature further, we generated

the second curve in Figure 3, for which the only difference in para-

meters is that K = 0.2. As expected, the crossover point has decreased,

and to about Z = 0.17. To a good approximation, as we decrease the

amount of compression, the remote costs must decrease proportionately

for remote storage to remain cost effective. (A quick check showed the

trend holding for K = 0.5. In this case remote storage is almost - but

not quite - cost effective for Z = 0.1.)

In conclusion, we have seen that remote storage of even very

large data bases may be economical, providing the data is shipped com-

pressed and there is a sufficient differential between local and remote

costs. However, it perhaps is not reasonable to assume that the whole

data base is transferred.

A more realistic model would allow for transferring only a

portion of the data. One approach would be to transfer a block of data

only when needed. Suppose it is assumed that each access request

initiates a transfer of the relevant block or blocks. This supposition,

however, contradicts the whole basis of the present staging model -

namely, that the data base is transferred from inactive to active

storage and then accessed on a block by block basis. A compromise can

be achieved by assuming that only a portion of the entire data base is

staged daily, as discussed below.

36

Revised Model: Partial Staging

In this paragraph, we will consider the effects of altering

the model to take account of the possibility that only a part of the

data base is transferred from inactive to active storage. We introduce

a new parameter:

S' = size of data set transferred.

Then the following changes are to be made in the equations:

In Figure 1, the storage cost becomes x.n.S + T.n.S', and in

the last term S is replaced by S '

.

In Figure 2, the storage cost (term (1)) is changed just as in

Figure 1. In addition, all other occurrences of S are changed to S'.

Figure A shows the results of some computations for partial

staging. The parameters chosen were such that results are directly

comparable to the K = 0.2 curve in Figure 3. The absolute costs have

of course decreased considerably. However, the interesting feature

to notice is that the crossover point is virtually unchanged from

when the entire data base is transferred. This seems to be another

aspect of the relative insensitivity of cost effectiveness to changes

in data base size.

Application of the Model to Multi-site Usage

There is another type of strategy question that may readily

be studied by using the model. Suppose users at two sites wish to use

the data base, but it will be used more heavily at one (Site A) than

at the other (Site B) . Should Site B use Site A's copy or store its

own locally? In this section we give an example of this type of problem

and its solution.

37

500

400

S = I0
8

K= 0.2

S'=I0
7

300

COST

200

S'=IO'

100

L

1.00.1 0.5

z

Figure 4

Comparative costs (in dollars per month)
Best local strategies
Best remote strategies

38

o

Suppose that the data base is 10 bytes in size, and suppose

that costs and other parameters (except those describing usage) are

the same for both sites and are those assumed in the computation of

the Table 4 entries. Let the usage at Site A also be the same as was

assumed in computing Table 4. Then we know that the best strategy from

Site A's point of view is to store the data on local archive and stage

it to local disk. We therefore assume that this is done, at a cost

of $1,914 per month (from the computation for Table 4).

Now suppose that Site B only uses 10 percent of the data

base (perhaps a different 10 percent on different days) and that Site B

performs far fewer accesses, say again by a factor of 10. We now rerun

the model to obtain the c.. matrix from Site B's point of view. The

parameter changes to do this are: S = 10 , q = 9000, r = 21,000, and

A = 0. (This last change is made because we assume that Site A makes

all the changes in the data; Site B just retrieves it.) The resulting

matrix of c . . values is shown in Table 6. (We have omitted the "local

core" column here because the storage options involving core are too

expensive to be interesting.)

Active Location (j

)

Local Local Local
H Drum Disk Archive

o
Local Drum 5001

H
cd

Local Disk 1974 305

O Local Archive 1712 150 301

>
Remote Drum 7021

I

5458 5652
•H

U
Remote Disk 2329 767 960

CO

(3H
Remote Archive 2081 518 712

Table 6

Matrix of costs c. for Site B. (See text.)

Entries are in dollars per month.

39

From the table, we see that Site B's best local strategy is to store on

archive and stage to disk, at a cost of $150. Furthermore we see that

the best strategy involving A's archive as inactive storage is to stage

the data to disk, at a cost of $518. This includes, however, a cost of

$3 per month to store 10 bytes in A's archive and this storage cost is

already assumed to be paid for by A. Thus the net cost to B is $515 per

month. Finally we make the comparison:

Total cost, storage at both A and B = $2064 per month.

Total cost, storage at A only = $2429 per month.

Not surprisingly (since the cost of storage itself is so small) the

first option is the cheaper. However, the increased cost of the second

option is only $355 or 17 percent. This may be very much worthwhile in

view of the problems that arise in trying to keep more than one copy up

to date. Furthermore, this computation was carried out with K = 1 (no

data compression) . If the data is transferred in compressed form, say

K = .25, site B's best local strategy is as before. However, the best

strategy involving A's archive as inactive storage is to stage the data

to disk, at a cost of $258 (subtracting off the duplicated storage costs

as before) . Thus the total cost of the second option is $2172 per

month, which is an increase of only $108 or 5 percent.

Plans for Further Work

Clearly, much more can be learned by experimentation with the

present model. By using parameters that describe specific systems and

their costs, we should be able to develop cost comparisons for important

real applications. In addition, we have looked carefully at the effects

of varying only a few of the many parameters in the model. By varying

others, we should gain further insights into costs.

40

We might also investigate other approaches to deciding on a

"best" storage policy which might be relevant in some situations. For

example, since protocol implementations reside as user-level processes

in many operating systems, and since it is often useful to consider the

data set as being staged in the remote system, it might be interesting

to consider an alternative approach which runs as follows. The data set

allocations on the remote site are determined according to the LSWL

model, and the lowest-cost strategy is selected. The cost of this

strategy plus the relevant network costs are then used to form the

lowest level of the local hierarchy, where the cost for the local levels

is computed using the LSWL model and the last level (the remote one)

uses a slightly modified form. Further study is needed to determine

whether this approach will yield useful data for decision making.

There are a number of refinements that could be added to the

model. We list a few of these here.

1) There could be a provision for allowing some fraction of the

queries to be answered locally, while the rest require remote

access. (This feature may be useful in analyzing the cost

effectiveness of intelligent terminals or network front-ends.)

2) The effects of the finite size of the storage devices might be

included

.

3) As mentioned earlier, the definition of the adjusted system

cost does not appear to reflect the effects of increased load

on the system. This point requires more investigation to gain

a better understanding of this parameter and of how, if

necessary, system loads may be inserted into the model.

4) The model developed by Lum et al. was intended to represent

file migration or data staging. Thus, when a data set is

41

written back to the inactive device, the operation is con-

sidered to be symmetrical to the original read. If this model

is to be an accurate characterization of a data management

system, it will be necessary to include the cost of performing

updates

.

5) Since data base reliability appears to be one of the major

advantages of distributing, it is very important that the

model be capable of evaluating the cost of various multi-copy

backup schemes with respect to the level of reliability they

provide. We have therefore provided a parameter, N, to

indicate how many copies exist in the network. Unfortunately,

we have not yet determined how this parameter should be

inserted into the model.

42

A Model for Distributed Data Availability

Introduction

In this section we attempt to quantify the improvement in data

base availability which can be achieved by storing a backup copy at one

(or more) remote sites in a network. We also discuss the practicality

of certain alternative management strategies.

Availability is defined as the probability that at least one

copy of the data base is up and usable as a master copy for queries and

updates. Alternatively, availability can be thought of as the fraction

of time that the data base is expected to be available for use.

To simplify the analysis, we will not consider various possible

causes of data base failure, but will assume that the data is available

when the host computer is. Furthermore, we will not take into account

scheduled down time of the host computer, on the assumption that if down

time is scheduled, transfer to a backup copy is automatic and immediate,

and leads to no loss in availability. (The very existence of a backup

copy at an alternate network site will of course improve availability

considerably over the case where only one site has a copy.)

The Model

Parameters . The parameters in the model are as follows:

F = mean time between computer failures, assumed to be the same

for all host computers.

X = expected time to repair computer.

L = expected time to load the data base copy at the remote site.

Y = time that the audit trail of updates has been growing (i.e.,

time since the copy was correct)

.

43

k = the ratio of update arrival rate to update processing rate,

so that kY = time to process the audit trail.*

D = time delay between when the master fails and when the remote

site determines this fact and starts to get its copy ready

for use.

The equations . First, consider the case where there is a

single copy of the data base. The availability of this copy is then

A = I '

o F + X + kX

This is the usual formula for availability (mean time between failures

divided by mean time between failures plus mean time to recover) , where

the mean time to recover includes repair time X plus the time kX to

process the updates accumulated while repairs were made. (This formula

for recovery time is that used by Chandy et al. [1975].) There is a

question as to whether the term kX should be included here, since the

site is technically "up" after time X. But in a network setting, it

does seem appropriate to assume that updates initiated at remote sites

are being logged somewhere, so that there does exist an update list to

be processed. In addition, we are interested primarily in comparing A

with availabilities computed for multi-copy strategies, where the copies

are assumed to be up to date.

Consider Strategy 1 for transferring usage back and forth between

master copy and backup copy. After the master copy is determined to

have failed, the remote copy is then brought up (after a time lapse of

D + L + kY) and usage is transferred to it. Meanwhile the old master is

* The parameter k is referred to in the literature as a "compression"
factor [Chandy et al., 1975]. This is not to be confused with the

usual data compression factor denoted by K in the previous section.

44

being repaired. Queries and updates are sent to the new master, how-

ever, until it fails, at which time the process repeats: another "new'

master is identified and activated. (This may or may not be the "old"

master.) This strategy is diagrammed (but not to scale) in Figure 5.

Since the remote site may have been up for some time since its last

failure, it is assumed that, after the data base comes up, the expected

time until failure is only F/2. (Actually a smaller number may be more

reasonable, since some host time has already been spent in the recovery

operation.) Notice that an obvious built-in assumption can be read from

the figure.

(1) D + L + kY < X + kX

If this inequality is not satisifed, it theoretically does not pay to

store a remote copy, since the master is expected to be repaired and

updated before the remote copy can be activated. The formula for avail-

ability under Strategy 1 can then be read off Figure 5 as

A = I •

1 2D + 2L + 2kY + F

Strategy 2 is to immediately replace the copy by the old

master as soon as the latter has been brought back up. This scheme is

diagrammed in Figure 6. Again, inequality (1) must hold in order for

the diagram to be meaningful. There is an additional assumption which

must be made in order for our model of either strategy to be valid.

This assumption is that D + L + kY is sufficiently small compared to F

that there is little likelihood of a failure of the remote host during

the recovery process. In addition, Strategy 2 requires that

(2) X + kX < |-

If this is violated, there is a good probability that the copy may fail

before the master is ready. For reasonable values of F, however,

45

U-X + kX-*|

iC:K F/Hc:h F/H
MASTER UP

kY
COPY
(NEW

MASTER)
UP

kY
COPY
(NEW
MASTER)

UP

TIME

Figure 5

Diagram of Strategy 1

|^ X+kX-

D + L + kY U-

TIME

Figure 6

Diagram of Strategy 2

46

inequality (2) is readily satisfied; it is inequality (1) that must be

carefully checked in using the model. Finally, the availability formula

can be read from the diagram:

D + L + kY .

2 F + X + kX

Keeping inequality (1) in mind and comparing formulas, we see that

Strategy 1 is generally poorer than Strategy 2, and indeed A., is often

less than A . We will therefore restrict consideration to Strategy 2.
o

Sensitivity to parameter values . In any model, it is useful

to determine how sensitive the output values are to changes in the

inputs. Obviously, the inputs are only known approximately or are

statistical averages. If the output changes drastically for a small

change in an input value, the model is rather useless for predictive or

decision purposes. Chandy et al. [1975] use the elasticity E(f,y),

essentially the "percentage change in f caused by a percentage change in

y", to investigate the sensitivity of a function f with respect to a

parameter y. Formally, E is defined by

We have investigated the elasticity of U = 1 - A„ with respect

to all of the input variables. (Working with U instead of A„ simplifies

the algebra without changing the conclusion.) We find that for all

parameters

\¥ Z
\

< 1.
'3y U 1

For example, taking y = k,

iH = FY + XY - DX - LX
^ and

3k
(F + X + kX)

2

47

|9U.ki = I k(FY + XY - DX - LX)
' 3k*u' I (F + X + kX) (D + L + kY) '

|

kFY + kXY - . . . I

<
1 kFY + kXY + . . . '

And for y = Y,

I
9U Y

i
kY F + X + kX kY

< 1.
1 9Z U ' F+X+kX D+L+kY D+L+kY

Similar computations show that the elasticities of U with respect to D,

L, X, and F are all less than one. Elasticities of U are connected to

those of A
9

through

3A
2_y I = |_3U.y_

< |_9U|Z
1 3y *A

2
' '3y'A

2
Uy'u'

as long as A
?

> U. We may conclude therefore that our model is stable,

being relatively insensitive to small changes in parameter values.

Experiments and Discussion

Remote journaling . In order to model a remote journaling

process, we assume that the parameter Y is large; for simplicity we

assume that it is equal to F. Thus we are essentially assuming that,

whenever the master comes up after a failure, a copy of the up-to-date

data base is shipped off to any remote site which contains a copy of the

data base. (Or that the remote data base, having been used as a master

copy while the master was down, already possesses an up-to-date copy at

this time.)

It is interesting to note that journaling remotely by shipping

the data base over the network is not feasible on a regular basis. For

example, consider a data base of 4 x 10 bytes (roughly FORSTAT size).

At a network throughput of 15 kilobits per second (faster than normal

for the ARPANET) , it would take approximately 6 hours to ship a data

48

base of this size. Daily backup by, say, sending tapes by courier

would, however, be feasible in many situations.

The data copy at the remote site will be generally assumed to

be on tape. The value L = 0.5 hr . has been assumed in the computations

since it is approximately the time to read two to three tapes. The

parameter D is probably on the order of one or two seconds, but we have

taken it to be .01 hr. as an absolute upper bound. X = 1 seems to be a

reasonable mean value for repair time. With these parameters, we get

the following formula for improvement I in availability as a function of

F and k.

A
2

" A
o _ 0.49 + k(l - F)

A F
o

It is difficult to estimate what a reasonable value of k should be. In

a similar analysis, Chandy et al. [1975] take k = 1/8. Clearly the

value will depend on the usage pattern for the data base; doubtless ways

of measuring it for a real system could be devised. However, notice

that, with k = 1/8, inequality (1) states that

.51 + F/8 < (1 + 1/8).

Hence for this large a k the time to process the audit trail is so long

that the master is able to get up before the backup copy whenever F > 4.92

hrs., which is an unreasonably low value.

To get a feel for the value of remote journaling, we therefore

take k = .01; i.e., we assume that there are few updates. In this case

inequality (1) restricts the model to F < 50. A graph of I vs. F in

this case may be seen in Figure 7. Notice that for reasonable values of

F the improvement in availability is less than 5 percent which may not

be enough to make remote iournaling worthwhile. Values of A have also

been plotted in the figure for reference.

49

0.1
^

A

0.05

I ^^^^^
1 1

—

i i

10 20 30 40

- 0.5

50

Figure 7

Single-site availability A and fractional improvement I

through use of Strategy 2. Parameters are k = 0.01,
D = .01 hr., X = 1 hr., L = 0.5 hr., and Y = F.

0.1

_ /

-<•» A

0.05 -

I

i i i i

10 20 30 40

1.0

50

Figure 8

Same as Figure 7, except that Y = 1 hr,

50

As a final comment on the remote journaling strategy described

here, we note that availability may actually decrease as F increases.

For example, suppose X = 2, k= 0.25, L = 0.5 and D = 0. Then A = .7692

for F = A and A_ = .7647 when F = 6. Differentiating A (for Y = F)

with respect to F shows that this decrease will occur whenever

k(k + 1)X > D + L.

Intuitively, this phenomenon occurs because for large k the effect of

the lengthening audit trail to be processed outweighs that of the

increasing reliability of the host computer.

Frequently updated remote journal . The lack of effectiveness

of the remote journaling strategy described in the last section seemed

to be caused by the necessity of processing an extremely long audit

trail. Suppose, then, that we drop the assumption that Y = F and assume

instead that the remote copy is periodically brought up to date. As an

example, we might assume this updating to take place every two hours, so

that the average length of audit trail to process to bring up the remote

copy is 1 hour. With all other parameters as specified for Figure 7,

but with Y = 1,

I = .49/F.

This result, which is graphed in Figure 8 is independent of k (because of

the cancelling of kX and kY terms) , as long as k and F are such that the

model is valid. Unfortunately, the improvement is still generally less

than 5 percent

.

Indeed, the curves in Figures 7 and 8 are nearly identical.

To see why this should be so, consider more closely the formula for I.

T =
A
2

" A
o = X+kX-D-L-kY

A F
o

51

As long as k is small (or when X = Y as above) it is clear that

Running spares . Here we assume that the backup copy is stored

on disk for virtually instantaneous access and is kept almost up to

date. Reasonable parameters for this case might be L = 0, Y = .1 hr.,

and (for comparison with the results above) X = 1, k = .01. Then we

have

= 0.999 .

F

We will not bother to graph this; this curve looks just like the earlier

ones, only the values of I are approximately doubled . In this case,

improvements of 5 to 10 percent are seen for F between 10 and 20 -

certainly enough to make the strategy worthwhile. In fact, what happens

in this case is that, under our assumptions, availabilities are brought

up to very nearly unity. To see this, note that

.01 + kY
2 F + (1 + k)X

and for our example kY = 0.001. Increasing k will cause somewhat smaller

values of A , but A will be over 99 percent for a wide range of reasonable

parameter values.

Effect of varying Y . We have looked at three separate cases

which differ from one another in large part in the widely differing

values for the parameter Y. To better understand the effect of this

parameter, we select typical values of the other parameters (X = 1,

L = 0.5, D = 0.01, F = 20) and consider A
?

as a function of Y for

several different values of k. When k = .01, we have

0.51 + 0.01Y .

2
=

" 21.01

52

The small coefficient of Y in this case makes the effect of Y minimal.

As Y ranges between and 20, A
?
decreases linearly from 0.976 to 0.966,

Now suppose that k is increased to 0.05. In this case as Y goes from

to 20, A decreases from 0.976 to 0.953 - still not a very dramatic

change! To a large extent what makes the "running-spare" approach so

worthwhile is not the small value of Y but the instantaneous access

(L : 0).

Conclusions and Plans for Future Work

We have presented here a model for data availability which,

while superficial, does seem to reflect the realities of various strate-

gies for backup. We have seen that remote journaling, in the sense of

storing a copy in archival storage (e.g. tape) at a remote site, leads

to very little in the way of availability improvement - perhaps 5 per-

cent at best. On the other hand, the running spares strategy, in which

the remote copy is nearly up to date and almost immediately accessible,

brings availability up to over 99 percent and appears to be worthwhile.

It should be noted, however, that the running spares strategy is bound

to be relatively expensive. Furthermore, before this strategy can be

effectively used, many of the problems of multi-copy management must be

solved. For example, updating must be synchronized in order for the

backup copy to be effectively kept up to date.

One point to notice about the model is the importance of the

parameter k. We found that remote journaling was theoretically of no

value unless k was fairly small. The parameter k is essentially a

proportionality factor, determining how long it takes a processor to

"catch up" when there has been a backlog of updates accumulating. The

53

value of k will depend on many factors - the rate at which updates are

generated, the complexity of the updating procedure, the processor

speed, etc. Some of these factors and how they enter into k are amen-

able to theoretical study; others require system measurement.

Another feature of the "catch-up" time deserves some thought.

Is kY an adequate expression for this? Or should one then add on k*kY

to take account of the updates that have been entered while the first

set was being processed, and so forth? Adding on these terms would add

little complexity to the model; but it seems hardly worthwhile as long

as k is so uncertain. That is, k as an effective proportionality con-

stant can be assumed to include the effects of the higher order terms.

Finally, further work on this model should include some care-

ful statistical analysis of a number of questions. What is the proba-

bility that a host will fail during the recovery process? What is the

probability that a "new" master copy will fail before the old one has

been repaired? (In both of these cases more than two copies would be

advantageous.) How many copies are needed to achieve a given level of

availability? Is there some "optimum" number of copies? In short,

there are a number of interesting questions which can be addressed if

the parameters in the model are considered to be random variables

instead of simple average values.

54

A Response-Time Model for Distributed Data

Introduction

The hypothesis to be studied in this section is that, because

of disparity in site loads, sending queries to a remote site may improve

response time, in spite of network delays. (Response time we define

here to be the length of time between when the user inputs a query and

when he receives the response.) We assume that the data base is equally

available (stored on disk and kept up to date) at all of the alternate

sites. We also will ignore such things as the effect of increased

availability on real response time. (That is, if there is only a single

copy and that goes down for several hours, the response time during that

period is clearly very poor. But this effect is hard to include in our

model in its present primitive state.)

The problems which arise in trying to develop a model of this

type are extremely difficult. First of all, the question of how machine

"load" is to be defined and measured has never been satisfactorily

resolved. We are forced to simply assume that there is such a quantity

and that it increases in proportion to the number of jobs in the system.

Second, it is uncertain as to how response time is affected by system

load. The most relevant work that we have been able to find in the

literature is in Scherr's monograph [Scherr, 1967] on time-shared

systems. Scherr carried out both theoretical and experimental studies

of response time as a function of the number of users on the system. He

found that, for a small number of users, the response time is nearly

constant, showing only a slow rise as the number of users increases.

55

At a certain point (defined as the "saturation" level) the response curve

takes a sharp upward turn, rising linearly with number of users there-

after. This general shape is pictured below.

Response
Time

Number of Users

Since Scherr assumes that the users are keeping busy, it seems to be

a valid assumption that response time will also increase linearly with

load, when the load is reasonably heavy. That is, we assume that the

region of this curve that is pertinent to our study of the advantages

of data distribution is the steep linear rise.

The Model

Parameters . The parameters in the model are as follows:

N = number of computers in the network which possess a copy of the

given data base.

G. = that part of the load at computer i which is not related to

data base use.

V = number of updates per unit time.

H = number of queries per unit time.

56

v = load induced by an update rate V = 1 (so that Vv is the total

load due to updates)

.

h = load induced by a query rate H = 1 (so that Hh is the total

load due to queries)

.

a, H = parameters describing the linear increase in response time

as load increases. That is, at a single site,

Response time = a(load - £)

.

We assume these parameters are the same for all sites.

T = increase in response time due to network delays and overhead
n

of sending a query to a remote site.

The equations . Suppose, for simplicity, that all queries are

entered at a single site (at computer 1, say) that possesses a copy of

the data base. If the site opts to respond to the entire query load

itself, then its total load is

Vv + Hh + G .

The single-site response time R is then given by

R = a(Vv + Hh + G, - £) .

s 1

Now if the site decides to distribute the queries equally among the N

sites which have a copy, the load on computer i is

Vv + Hh/N + G.

.

l

Notice that all sites are assumed to have equal update loads, since all

sites have the responsibility of keeping their copies as up to date as

possible. The response time for a query answered locally is then

R
±

= a(Vv + Hh/N + G - I)

,

while the response time for a query answered at remote site i is

where i ^ 1

.

R. = a(Vv + Hh/N + G. - £) + T ,i in
57

The average response time R is then

R=i(R
1
+ E2+ ... + R

N
).

The quantity of interest is the ratio

R " R
'

s

If R < 1, response time is improved by distributing the queries. We

therefore would like to obtain some idea of the conditions under which

R < 1.

Use of the Model

For simplicity, consider the case N = 2. Then

R- + R_ G - G. - Hh + T /a

R = _i 2 = 2 1 n__.

2R 2(Vv + Hh + G, - £)
s 1

The denominator of the second term is always positive, by our assumption

that loads are large enough that response time is described by the

steeply rising line. Therefore the sign of the numerator determines

whether R is greater than or less than one. That is, we have the

result

:

Distribution of the queries improves response

time if and only if

aHh + a(G. - G_) > T .12 n

Now the parameter a is the rate of increase of response time with respect

to load - the slope of the response-time curve. Thus the left side of

the above inequality is just an increase in response time due to the

query load and the load differential between sites 1 and 2. It is intu-

itively reasonable that when this quantity becomes greater than T (the

increase in response time due to network delays and overhead) , it pays

to distribute. For general N the inequality becomes hardly more complex:

58

Distribution improves response time if

and only if

(I) aHh + a(G - G) > T ,

where G is the average load at the remote sites;

i.e., G = (G
2
+ G

3
+ ... + G

N
)/(N - 1).

An interesting point to notice is that, if the query load is suffi-

ciently large, distributing the queries may improve response even if the

local site is less heavily loaded than the remote sites.

Determination of the parameter values to use in this model

poses a difficult problem. As was noted earlier, the concept of load is

not well defined. Values for the G. are difficult to come by. It may

be possible, however, to make simple assumptions. For example, one

could assume that all sites are approximately equally loaded. In this

case, inequality (I) becomes

(I') aHh > T .

n

At this point we have quantities which undoubtedly can be measured.

Even though we don't know what "load" is and would find it hard to

determine a and h individually, the term aHh can be determined as

follows. Measure the response time R(H) and R(H) for two different

query rates H and H . Then, assuming that the system is sufficiently

heavily loaded so that these points fall on the steep linear rise of the

response-time curve (this point can be checked by further measurements),

R(H) - R(H)

ah :
H
l

" H
2

Once we have a good estimate for ah, we can estimate aHh for arbitrary

H. Notice that this same approach will yield estimates of the left side

59

of the inequality above even if we are not measuring a true query rate

H, but only some parameter H ? proportional to H. If the network is

homogeneous, T can simply be measured by sending off some queries and

comparing the response time to that for locally handled queries. A data

management system can then automatically monitor query rate and response

times and use inequality (I 1

) to decide when queries should be distributed,

Generalizations

Unequal distribution of queries . Suppose that the queries,

instead of being divided equally among N sites, are divided arbitrarily,

a fraction w. being handled by the ith site. Then

N
E w. = 1

1=1
X

and the appropriate quantity to take for the average load G at the

remote sites is the weighted average

N

G = I w.G./U - w).

i=2
1 1

Inequality (I) then becomes

N
2

(II) aHh(l - E w.)/(l - w.) + a(G
n

- G) > T .

. -, i 1 1 n
i=l

Once the concept of distributing the query load unequally among the

various sites is introduced, it becomes of interest to study optimi-

zation of the distribution. What we mean by optimization is the deter-

mination of a set of weights w- , w» , ..., w such that R is a minimum.

Let us consider how this problem can be solved for N = 2. In this case

w„ = 1 - W- , and we can write R in terms of the single variable w , the

fraction of query load to be handled locally. In detail,

60

R = w
1
R
1
+ (1 - w

1
)R

2

= a{w (Vv + w^h + G
1

- I)

+ (1 - w) (Vv + (1 - w)Hh + G
2

- I)}

+ (1 - Wl)Tn

2 2
aVv + aHh(w + (1 - w)) + w G^a

+ (1 - w.)G a - a£ + (1 - w.)T .12 In

Then

^- = aHh(4Wl - 2) + a(G. - G_) - T .

3w
1

1 1 I n

If we set this derivative equal to zero, we find that there is a pro-

spective extremum at

T - a(G, - G„) + 2aHh
n i I

W
l

" 4aHh

w„ =
a(G

n
- G.) - T + 2aHh

1 2 n

2 4aHh

Since the second derivative (4aHh) is always positive, this extremum is

in fact a minimum, as desired. We must, however, examine another con-

straint - that the weights w and w„ must both be positive. We can

rewrite w, and w„ as

T
n

- a(G - G)

W, = -r- +
1 2 4aHh

w^ = 1
T
n " a(G

l
- V

2 2 4aHh

The weights w and w„ can be seen to be positive under a wide range of

conditions; for example, if G, = G„ and inequality (I') holds.

Some interesting conclusions can immediately be read from the

equations for w and w . First, we note that if the loads are equal

61

(G = G) the local site should always handle more than half of the

queries. Only when T = a(G - G~) , so that the network delay equals

the increase in response time due to load differential, should the query

loads be equalized. And only when T is less than a(G.. - G„) should the

local site send off more queries than it keeps.

It must again be emphasized that careful measurements are

required for these relationships to be useful for real decision making.

It is easy to estimate that T , aHh, and a(G - G) may all, under

reasonable assumptions, be on the order of one to two seconds. This

information is not at all helpful for developing long-term strategies,

but merely demonstrates that the optimum decision on query sharing

should be done dynamically and only after monitoring current system

usage and response.

The above analysis for optimum distribution strategy was

done for the N = 2 case. The general case can be handled similarly,

but is more complicated because of the multi-variable minimization.

Setting the derivatives to zero and solving yields the following

equations for i ^ 1.

T - a(G - G)
I/t v x n 1 r

w. = -^(1 - S w.) ——
i 2 .,. _ i 4aHh

Clearly this reduces to the simple formula found above for N = 2, i = 2.

But in this case we have a set of simultaneous, linear, algebraic equations

in w„, ..., wXT to solve. It is a simple matter to show that this set of
2 N

equations has a unique solution, readily obtainable by computation, and

that this solution does minimize R. Again, it is necessary to check

that the weights w. that are computed are all positive, in order that

the solution be meaningful.

62

Usage from various sites . All of the analysis so far has been

under the assumption that the query load all originates at a single

site. Suppose instead that each site i generates some fraction f of

the total query load H. Site i then distributes its query load with a

strategy described by weights w(i) , w(i)
2> ..., w(i>

N
. The net rate of

input of queries that a site i must respond to is then given by

H. = E f .Hw(j) . ,

J
3

so that site i's response time (i.e. time to respond to a query) is

R. = a(Vv + H.h + G. - £)

.

1 11
From the point of view of site j , the average response time seen is

computed as

R. = E w(j)
i
R
i
+ (1 - w(j))T

n ,

since a network delay of T is observed for the fraction of queries
n

answered remotely. Now to get an average response time for queries

originated throughout the network, we must take another weighted

average:

R = E f .R.

.

i
: J

Combining the preceding four equations, we get an equation for R in

2
terms of the N variables w(j).. As above, we can carry out an optimi-

zation analysis or compare various strategies. (For example, the strategy

where each site handles its own queries is described by w(j). = 1 when

i = j and w(j). = otherwise.) We will not go into further details on

this generalization in this brief report.

Proposed further generalizations . We list here several other

ways in which assumptions may be relaxed and the model made more flexible.

63

1) We have assumed that T is a constant. To be realistic, T
n n

should depend upon the two sites between which the messages (query and

response) are traveling. Thus we need to insert into the model a set of

values T (i,j). In addition, the values of T (i,j) may vary depending
n n

upon what routes are taken - but it is undoubtedly adequate to take

average values. Finally, the values of T (i,j) will vary with the

amount of network traffic. In particular, if we assume that query

traffic forms a non-negligible percent of net traffic, T (i,j) will be

some function of H. Theoretical analysis (e.g. by queueing theory) can

probably be used to determine this function, which will depend on network

parameters as well as on H and the distribution strategy.

2) We have assumed that the parameters a and £, which describe

response time as a function of "load," are the same for all sites. This

assumption is not true in a heterogeneous network, or for a network of

dissimilarly configured "homogeneous" hosts (e.g. the PWIN) . It should

be noted, however, that the parameter I did not enter into any of the

decision relations, except in the assumption that "load" must be large

enough compared to £ so that the linear expression for response time

holds. In addition, we have seen that a is measured only as it occurs

combined with other factors. That is, differences in a may be taken

into account by varying the H.. (See preceding section.) Thus the

practical impact on the model of allowing a and Z to vary from site to

site is probably minimal.

3) We have assumed that all sites have an equal load asso-

ciated with updating the data base. This will not in general be true.

If, say, the updates all originate at Site 1, the other sites will all

incur network overhead in processing the updates. On the other hand,

64

Site 1 may do much preprocessing to make the update task simpler at the

remote sites. Details of this sort could be built into the model.

Results can not be too different, however, since site differences in the

terms Vv can always be subsumed in the G..

4) We have assumed that N sites in the network have up-to-date

copies of the data base and the problem is to determine a strategy for

distributing the queries as they are entered into the system. A some-

what different, but very similar, model is needed to study the problem

of setting a policy for distributing the data base - i.e., for deter-

mining which sites should have copies. In this case a careful analysis

of the effects of updates will be essential. The sites at which updates

originate will find their loads increased by the necessity of distri-

buting the updates to other sites having a copy of the data base.

Remote sites holding a copy of the data base will all have increased

loads due to the processing of updates and associated network overhead.

Strategies for synchronization and aspects of multi-copy management will

affect loads and hence response times. These effects will, of course,

implicitly enter into the query distribution model, but there we assumed

that response times were obtained by direct system measurement, so that

lower-level details were not modeled, but included in measured para-

meters. To determine a distribution policy a priori requires modeling

these lower-level effects and, if possible, optimizing the lower-level

strategies (e.g. for synchronization) so that the policy is based on the

best up-to-date technology.

5) The four proposed generalizations listed above involve

relatively straightforward extensions of the approach described in this

report. In addition, however, the approach itself needs investigation.

65

That is, we have assumed that response time is a simple linear function

of "load," and that "load" can be described as a simple linear combina-

tion of updates, queries, etc. It should be possible to examine these

assumptions - both by measurement and by stochastic queueing analysis.

A careful examination of this type is expected to yield some refinements

in the relations studied here.

66

References

Arora, S.R. and Gallo, A.

1971 "The Optimal Organization of Multiprogrammed Multi-level Memory,"

ACM SIGOPS Workshop on System Performance Evaluation, pp. 104-141,

Borgerson, B.R. and Freitas, R.F.

1975 "A Reliability Model for Gracefully Degrading and Standby-

Sparing Systems," IEEE Trans. Computers, C-24 , pp. 517-525.

Buzen, J.

1971 "Analysis of System Bottlenecks Using a Queueing Network Model,"
ACM SIGOPS Workshop on System Performance Evaluation, pp. 82-103.

Casey, R.G.

1972 "Allocation of Copies of a File in an Information Network,"
Proc. AFIPS Spring Joint Computer Conference, AFIPS Press,
Montvale, N.J., pp. 617-625.

Chandy, K.M. ; Browne, J.C.; Dissly, C.W.; and Uhrig, W.R.

1975 "Analytic Models for Rollback and Recovery Strategies in

Data Base Systems," IEEE Trans. Software Engineering, SE-1,

pp. 100-110.

Chu, W.W.
1973 "Optimal File Allocation in a Computer Network," Computer-

Communications Networks, N. Abramson and F. Kuo , eds
.

,

Prentice-Hall, pp. 82-94.

Frank, H. and Chou, W.

1974 "Network Properties of the ARPA Computer Network," Networks

4, pp. 213-239.

Frank, H. ; Kahn, R.E.; and Kleinrock, L.

1972 "Computer Communication Network Design - Experience with
Theory. and Practice," Proc. AFIPS National Computer
Conference, AFIPS Press, Montvale, N.J., pp. 255-270.

Gotlieb, C.C. and Tompa, F.W.
1974 "Choosing a Storage Schema," Acta Informatica 3_, pp. 297-319.

Kleinrock, L.

1973 "Scheduling, Queueing, and Delays in Time-shared Systems
and Computer Networks," Computer-Communication Networks,
N. Abramson and F. Kuo, eds., Prentice-Hall, pp. 95-141.

Lum, V.Y.; Senko, M.E.; Wang, C.P.; and Ling, H.

1975 "A Cost Oriented Algorithm for Data Set Allocation in
Storage Hierarchies," CAM 18, pp. 318-322.

Reiser, M. and Kobayashi, H.

1974 "Accuracy of the Diffusion Approximation for Some Queueing
Systems," IBM J. Res. Develop., March 1974, pp. 110-124.

67

Scherr , A.L.

1967 An Analysis of Time-shared Computer Systems, MIT Press.

Shneiderman, B.

1974 "A Model for Optimizing Indexed File Structures," International
J. of Comp. and Inform. Sci. _3, pp. 93-103.

Winkler, A.J. and Dale, A.G.
1971 "File Structure Determination," ACM Proc. Symp. Inform. Stor.

and Retr., J. Minker and S. Rosenfeld, eds., pp. 133-146.

68

UNCLASSIFIED
ilCURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

I

1

<5ffi°BoSS!Snl Number 169

JTSA Document Number 5511

2. GOVT ACCESSION NO

TITLE (and Subtitle)

Research in Network Data Management and Resource

Sharing - Initial Mathematical Model Report

AUTHORf*,)

G.G. Belford, J.D. Day, S. Sluizer, and

D.A. Willcox

I. PERFORMING ORGANIZATION NAME AND ADDRESS

Center for Advanced Computation

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT 4 PERIOD COVERED

Research Report - Interim

6. PERFORMING ORG. REPORT NUMBER
CAC #169

8. CONTRACT OR GRANT NUMBERf*,)

DCA100-75-C-0021

10. PROGRAM ELEMENT, PROJECT, TASK
AREA * WORK UNIT NUMBERS

t. CONTROLLING OFFICE NAME AND ADDRESS

Joint Technical Support Activity

11440 Isaac Newton Square, North

Reston, Virginia 22090
U. MONITORING AGENCY NAME ft ADDRESSfM diiterent from Controlling Office)

12. REPORT DATE

August 20, 1975

13. NUMBER OF PAGES

72
15. SECURITY CLASS, (of thia report)

UNCLASSIFIED

15«. DEC LASSIFI CATION /DOWN GRADING
SCHEDULE

6. DISTRIBUTION ST ATEMENT (ol this Report)

Copies may be requested from the address in (11) above

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

No restriction on distribution

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side it necessary and identify by block number)

information system modeling network modeling

data base availability distributed data management

data base backup information system response time

hierarchical storage

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This is a preliminary report on a project to build mathematical models for

the study of distributed data management. Under simplistic assumptions,

equations for cost, availability, and response time are developed and

studied.

DD
FORM

1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

