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Disclaimer

This report was prepared by the Illinois State Geological Survey (ISGS) for work

sponsored by the state of Illinois and the U.S. Department of Energy. It presents

reasonable interpretations of available scientific data. Neither the ISGS, nor any

individual members of the ISGS staff, nor the U.S. Department of Energy assume

any liability with respect to the use of any information contained in this report or for

damages resulting from it.
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ABSTRACT

m^hln
1^ '°Ca

l
ed in Jefferson c°unty, Illinois, was discovered in 1 942 The traooinamechan.sm .s structurally and stratigraphically controlled, with the princ oil omduc

The Aux Vases Formation at King Field averages 50 feet thirk Pn»»„e ann
permeable reservoir sandstones are rare.y thiSThan 2oteX arelicaHvtantaitar. Clean, porous sandstone may, wrthin one well loca'on (660^ £a llvgrade mto s.ltstone, nonporous calcareous sandstone, shale, or limestone

The Aux Vases Formation at King Field was deposited in a mixed carbonate-silici
elastic, nearshore, shallow marine environment The large degree o lateral ctmpartmentalization of the reservoir is due to this mixture of catenate and cS"
abil ?L^f

Ca^nate lith0l°9y COmmon,y is not Productive and has low per^ability, therefore, it is interpreted to be a barrier to fluid flow.

The original drive mechanism at King Field was solution gas. There is no consistent

22?
^°ntaCt

"V?
fie 'd because of the heterogeneous natu e of the^esetoi

Tl h^°Tal

u
' 1 in Place is ca,cu,ated t0 hav* been about 1 7 minfon barrelsof which 4.1 million barrels has already been produced. An estimatedM to 2 mi tonbarrels of recoverable reserves may remain for primary andSooS^ve™

wl2,n
S
H
An mpTT6 0H reCOvery infi" dril,ina Program combined w°h seSwaterftooding may be able to recover most of these remaining primary rSe^es

technlq "as"
*
"*"" "'" "*" the imP|em^ation of er^cSS^S
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Figure 1 Regional map showing King Field with respect to Aux Vases production within the

Illinois Basin (after Howard 1990).



INTRODUCTION

ronment to rese^contfnuTv nfZ JL
9^ (2) rela,e *<P<»i«onal envi-

PRODUCTION HISTORY

from the interval 2 740-2 762 fee^ within tL a
1

?
barre 's of water Per day (BWPD)

30,000 barrels rt,^^^^ again climbed above

waterfloods in the field Also ,«»1f*fT T B
?

1964
'
there were four active

resulted in theSnSonSiSES?ST" ,"
,he western P3* °' th« «<*

caused a signi,icaM incn3aseTnSSStaS*SSS. h "^^ *aC,0rs

5b, even, 4). Since 1966,**£i£Z22^££g^
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Figure 6 Annual crude oil production for Illinois from 1905 to 1989. Note the increase in

production due to fracture treatment of the sandstones beginning in 1954 (from Samson and

Bhagwat 1989).

shales that lie between the carbonates and the Karnak Member of the Ste.

Genevieve. In this paper, I included rocks of the Joppa Member as part of the

discussion of the Aux Vases Formation because I interpret the Joppa as a facies of

the Aux Vases.

The Aux Vases is underlain by oolitic limestones of the Karnak Member of the Ste.

Genevieve Formation. These oolitic facies have been productive within the field (fig.

3). There is also a small amount of production from the Spar Mountain Sandstone

member of the Ste. Genevieve Formation. The Spar Mountain Sandstone has

sometimes been incorrectly called the "Rosiclare" by drillers in the basin (Willman

etal. 1975).

Structure

Structure maps of the top of the lower limestone in the Renault Formation (fig. 8)

and the top of the Karnak Member of the Ste. Genevieve Formation (fig. 9) show

an anticline with 40 feet of closure. The Ste. Genevieve structure map is less

complex than the Renault structure map because fewer wells have penetrated the

Ste. Genevieve horizon. The principal axis of the King Field structure trends

north-south. The structure is about 3.5 miles long and 1 .5 miles wide. In the shallow

Pennsylvanian Shoal Creek Limestone Member, there is 30 feet of closure (Folk

and Swann 1946). The crest of the Shoal Creek Limestone is located in sections 33

and 34, whereas the structural crests of the deeper Renault (fig. 8) and Ste.

Genevieve Formations (fig. 9) are located in sections 27 and 28. This change in the

structural crest locations between the deeper and shallower horizons suggests

either (1) a differential compaction due to loading of intervening sandstones and

shales or (2) regional tilting of the basin.

Paleogeography
Regional studies of the Aux Vases indicate relatively shallow water deposition

across the Illinois Basin (Swann and Bell 1958, Wilson 1985). No evidence indicates

any deep water Aux Vases deposition in either the outcrops (Cole 1990) or the

subsurface of the Illinois Basin. As discussed later, the Aux Vases Formation at King

8
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Figure 14 Cross section B-ff. Note that oil-producing wells can be found structurally

downdip from dry holes (location of this cross section is shown on fig. 10).

Carbonate and clastic lithofacies interrelationships The mixture of carbonate and

siliciclastic lithofacies at King Field was probably caused by temporal fluctuations

in the supply of siliciclastic sediment coupled with the presence of an extremely

broad tidal zone. A decrease in the input of siliciclastic sediment could give the

appearance of a relative rise in sea level, when base level is raised and marine

18
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Figure 15 Cross section C-C. This section is along the axis of one of the principal Aux

Vases sand bodies (location of this cross section is shown on fig. 10).

An isopach map constructed for the interval from the top of the Renault Limestone

to the top of the Karnak Member of the Ste. Genevieve Formation (fig. 17) shows

a pattern of thickening and thinning that is inversely similar to the pattern on the

map of the percentage of calcareous offshore high-energy facies in the Aux Vases

(fig. 12). Although differential compaction of the Aux Vases may be responsible for

some anomalies, this isopach map (fig. 17) may represent paleotopography during

deposition. I interpret the areas of thinner Aux Vases-Renault to generally represent

paleotopographic highs. In these areas, the calcareous facies (fig. 12) is relatively

thick and the sandstone facies (fig. 16) is relatively thin, suggesting topographic

control of tidal channels. The correlation between the thick and thin intervals on the

net clean sand isopach (fig. 1 6) and the Renault Limestone-Ste. Genevieve isopach

(fig. 17) might have been even stronger, except that differential compaction caused

by discontinuous beds of shales and sandstones within the Aux Vases probably has

distorted overlying beds.

Sediments deposited in offshore environments commonly are widespread (Weber

1982), yet, at King Field, the calcareous offshore high-energy facies apparently is

restricted (fig. 12). This limited distribution suggests that the calcareous offshore

high-energy facies is truncated by channels interpreted to be of tidal origin and

composed of Aux Vases sandstones. Cross section A-A ' (fig. 13), the northernmost

section, is constructed in an east-west direction roughly perpendicular to the

structural and stratigraphic strike of the field. None of the wells along this cross

section produce from the Aux Vases sandstone facies because the reservoir there

is structurally low and contains water. The calcareous offshore high-energy facies

on this cross section is represented by the highly resistive Aux Vases log character
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oil well
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water injection well
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Fiaure 16 Net thickness (ft) of clean Aux Vases sand (contour interval, 5 ft). A clean

sandstone is defined as having an SP response that is at least 50 percent of the SP response

of clean, thick Cypress sandstone. This map also shows the axis of the more significant sano

units (x-'x ' y-y' and z-z '). Areas with more than 20 feet of sand are highlighted.
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tidal channel sandstone

barrier bar sandstone

Figure 18 Block diagram illustrating the hypothetical depositional environment that existed

when the sandstone facies of the Aux Vases was deposited at King Field.

The deposition of the Aux Vases in a mixed carbonate-siliciclastic nearshore shallow

marine environment resulted in a heterogeneous reservoir at King Field composed

of an intercalated sequence of sandstones, siltstones, shales, and carbonates. This

heterogeneity resulted in compartmentalization of the reservoir, making a deline-

ation of the true limits of the field difficult. Dry and abandoned wells do not

necessarily signify the limits of the Aux Vases reservoir at King Field. Indeed, good

oil production is possible downdip from wet sands (fig. 1 4). This reservoir heteroge-

neity has a significant impact on the ideal well spacing for primary and especially

secondary recovery. As discussed later, 10-acre well spacing may not be adequate

for effective oil recovery.

Diagenesis and Its Effect on Reservoir Quality

Cement The Aux Vases reservoir sandstones at King Field contain three types of

cement: quartz, clay, and calcite. Most samples contain all three types of cement.

Silica cement in the form of quartz overgrowths is one of the principal agents in

occluding primary porosity. Porosity rapidly decreases with an increase in quartz

cement because, unlike clay minerals, quartz grains do not contain micropores.

Continuous clay mineral coatings seem to inhibit the formation of quartz cement

(Pittman and Lumsden 1968, Thomson 1982). The best Aux Vases reservoir rock

has a thin relatively continuous dusting of clay mineral around each quartz grain.

Only at the grain-to-grain contact is the clay coating missing (fig. 20). Clay mineral

coatings are more discontinuous in the less porous part of the Aux Vases and calcite

and quartz cement are more abundant. The clays were identified from X-ray

diffraction and constitute less than 10 percent of bulk volume (see detailed analysis

of clay mineralogy in appendix B). These clays occur as various proportions of illite,

mixed-layered illite-smectite, and chlorite. Preliminary results from X-ray diffraction

indicate that a large percentage of the authigenic clay in the more porous rocks is

a type of iron-rich chlorite (Moore and Hughes 1990). However, analyses by
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Scanning electron photomicrograph showing authigenic clay minerals coating

detrital grains Clay coatings are absent where there had once been grain-to-grain contact

(a) (Lewis Production, State Game Farm No.1 ; 2,747 ft).

Figure 21 Scanning electron photomicrograph showing the dissolution of a potassium-rich

feldspar grain (Lewis Production, State Game Farm No.1 ; 2,747 ft).

energy-dispersive X-ray do not seem to confirm these results; the chlorite samples

do contain iron but not enough to categorize them as iron rich.

Two types of calcite cement are present in the Aux Vases at King Field. Type I calcite

cement completely occludes all original porosity and is pervasive throughout the

rock (plate 1). Type II calcite cement occurs as patches of randomly distributed

pore-filling cement (plate 3). Some of the smaller patches of type II calcite cement

apparently precipitated around whole and fragmented echinoderm grains (plate 3)

and formed early in the diagenetic sequence. Not all of the type II calcite cement is

early. For example, scanning electron microscopy analysis shows quartz cements
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Figure 23 Clay platelets, (a) Scanning electron photomicrograph of clay platelets (chlorite)

coating detrital grains. These clay platelets are oriented perpendicular to the grain face and

therefore create abundant microporosity (Gulf Ford No. 1; 2,745 ft), (b) Energy-dispersive

X-ray analysis indicates that the chlorite clays contain some iron.

a large internal surface area, which can impede enhanced oil recovery. Surfactants

and polymer solutions injected into a formation can be adsorbed by clays (Ebanks

1987), forcing the use of greater amounts of reagents and significantly increasing

the cost of the project.

Diagenetic history Sandstones in the Aux Vases at King Field have undergone

a complex diagenetic history (fig. 24). The major events include (1) precipitation of

calcite cement around echinoderm plates and fragments of plates, (2) formation of

28



T!h
te

\
Ph°tomicr°graph of the limestone lithofacies. Note: ooid (o) quartz qrains (a)

Wallace. iTS$' "" Pr°bab,e bry°ZOan fra9ment (b) (BudiseKKert,?'

Plate 2 Photomicrograph showing porosity totally occluded by calcite cement (ca) DPtritai



t -.C| aagpfe'-- .*^?J
:
-> - ^s- -St-' \-. •• /^

l£Bfif
rfflPr

Plate 3 Photomicrograph of quartz grains (q) and calcite cement (ca) partly filling the pore

space. In this instance, the calcite cement has precipitated around an echinoderm fragment

(e) (Gulf Ford No. 1; 2,725 ft).

Plate 4 Photomicrograph of a degraded feldspar (f). Note the abundant microporosity and

the honeycombed texture (Lewis Production, State Game Farm No. 1; 2,747 ft).
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Figure 24 Diagenetic history of the Aux Vases at King Field.
"

SSS*.^' (3) C

J

UartZ overarowths
. (4) dissolution of feldspars, (5) a second

ffintSay^ Ca 'Cite Cementati°n
' and <6> the»n o!hyS

Porosity was reduced through cementation by carbonate minerals Silira in theWm
of overgrowths on detrital quartz grains, is also a signKit&^££S
SnShiSfS9 dissolution^fel^Pars created new but fi£&So£rosrty. Authigenic clay occurs as both an early and late diagenetic event The earlv£«!? The .r

fiCia

'n

SinCe rt

,

aPParem,y inhibited

'
he £S£ o quartz"overgrowths. The later authigenic clay occludes the original porositv and akodecreases permeability by clogging the pore throats.

V

PRODUCTION CHARACTERISTICS

Drilling and Completion Practices
Nearly all of the wells at King Field were drilled with a bentonite mud plus drill cavinossuspended in freshwater. Many of the early wells in th fieW (pre'iSsSScompleted open hole, and casing was set jus! above the Aux ZnVswl
The standard early completion practice (before hydraulic fracture technoloav^ forAux vases wells at King Field is typified by the Texas Compan/^pu No 2 f n25). I was completed by stimulating the Aux Vases sand wrth 20 Quarts oi

%*$nZn?
th

ffa' Pr0dUCti°n test in APril 1943 ' SE^eTb^mpirS47 BOPD and no water from an open-hole completion at 2 720-57 In Aori iqTi?years later, the Bumpus No. 2 was producing 6 BOPD.a*In >w£*£&«thelong sustained production at a fairly constant rate, this well wa Tconsidered agood candidate for fracture treatment (comments from ISGrwelfNirdo^m^t
3

fled by Texaco). The well was fractured wrth 5,000 galtonlofoS*«£££
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Figure 25 Map of King Field showing location of leases discussed in this report. Water

injection wells have been circled. The two wells that have a triangle around the location have

had both the oil and the water chemistry analyzed.
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Figure 26 Waterflood information from the Baker-Bumpus-Smith lease at King Field.

of sand After treatment, the well began producing at a rate of 104 BOPD with nowater.Many of the other wells at King Field werefracture treated with simLr refults

Results of Waterflooding
Waterflooding of the Aux Vases Sandstone at King Field was initiated in 1 961 Fourwaterflood projects were established in the southern part of the field. No sucLsfuwaterfloods were reported in the northern part of the field. In this sectionTr ewthe results of one waterflood and its favorable effect on oil production The fol ow noanalysis is an interpretation based on reported production data.
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Figure 27 Decline curve for Ford No. 1 showing yearly production of oil from its discovery

in 1943 until abandonment in 1980.

Aux Vases completions. Figure 26c,d depicts the production history of the first 9

years of this flood.

Before injection in early 1960, the unit was producing an average of 400 barrels of

oil per month. Within 5 months of when injection was begun, production had

increased to 1 ,300 barrels (fig. 26d, event a). Oil production began to decline in late

Figure 28 Cross section

across the Gulf Ford No.

1 showing the lack of res-

ervoir facies (location of

this cross section is

shown on fig. 10).
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decreased significantly. In 1964, water production began to increase because the2S£r^ had reached additional producing wells. Average well head pressurerecorded at the injection wells increased from 300 to more than 1,000 psi as thepore volume in the Aux Vases reservoir was filled with the injected water (fig. 26a).
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l0°d VhQ Baker-BumP"s-Smith lease also affected the production onadjacent leases Forexample, the Ford No.1 , located in the southwest part of King

Field, less than 2,000 feet from an injection well, experienced increased production
corresponding with waterflooding the Baker-Bumpus-Smith unit (fig 25) The FordNol was completed in 1 943 in the Aux Vases sandstone by fracturing with 30 quarts
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hydraulic fracture treatment of this well in 1953, production increased to more than
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Production from

the Ford No. 1 increased from a low of 2,000 barrels of oil to a peak of 39 000 barrels
of oil per year (fig. 27, event c). This nearly 20-fold increase in production wascaused by the waterflood at the adjoining Baker-Bumpus-Smith Unit. As seen in
figure 26c, Texaco was injecting more than 20,000 barrels of fluid into the Aux Vasesand recovering less than half that amount of water. The porous reservoir sand
encountered at the Ford No.1 grades to siltstone to the north, south, and west (fig
28). The injected water from the Baker-Bumpus-Smith lease was constrained by
these less permeable siltstones, and this is interpreted to have increased the
effectiveness of the waterflood toward the Ford No 1 well
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Figure 29 Total cumulative production of oil through time for Ford No. 1 . The lower curve

is the estimated production from only primary recovery. The upper curve is the actual

production and combines both primary and waterflood recoveries.

Without the waterflood, the ultimate cumulative oil production is projected to have

been about 170,000 barrels of oil and the Ford No.1 would have reached its

economic limit by 1978 (fig. 29). After the adjacent waterflood, the cumulative

production was 240,000 barrels. The waterflood apparently increased ultimate

recovery in this well by more than 70,000 barrels of oil.

Original Oil in Place

A major objective of this study was to estimate the remaining mobile oil in place and

the original oil in place (OOIP). A volumetric method was used to determine OOIP.

For heterogeneous reservoirs, material-balance computations give OOIP values

that are too low because the method fails to include all parts of the reservoir (van

Everdingen and Kriss 1 980). No reliable pressure data were available, and therefore

the material-balance equation could not be used to calculate OOI P. The volume of

the original oil in place (OOIP) in the reservoir is estimated by

OOIP = (7,758Af7 0)(1-SW) [1]

where 7,758 = conversion factor from acre-feet to barrels

A = reservoir area in acres

h = average reservoir thickness in feet and is identical to net sand

isopach

= average reservoir porosity

Sw = average water saturation
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Figure 31 Map of calculated percent porosity of Aux Vases reservoir sand using the

normalized SP method (contour interval, 4 ft). Areas with greater than 16 percent porosity

are highlighted.
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A computer-generated percent porosity map shown in figure 31 was used in the
volumetric calculations. The estimated percent porosity was multiplied by the net
sand thickness across the field (fig. 17) to get a porosity-net thickness map (fig. 32).
This porosity-net thickness map was used in the final estimation of 00 I P. The areal
extent of the field as shown in figure 32 was defined by structural position and dry
holes. Sandstones with estimated porosities of 1 1 percent or less and permeabilities
of less than 5 md (Leetaru 1990) are not productive and were not used in OOIP
calculations.

The reservoir volumetrics were calculated using a single average water saturation
for the entire field. Water saturations are difficult to estimate in the Aux Vases
Sandstone because of bound water in the abundant microporosity in the clays and
degraded feldspars. Pickett plots or log-log plots of resistivity versus porosity are a
graphic method of estimating water saturation of a formation. Pickett plot analysis
of the sandstone intervals at King Field gives an average water saturation in the
range of 40 to 50 percent (Leetaru 1990). The OOIP for the Aux Vases sandstone
reservoir at King Field was between 15.8 and 18.9 million barrels of oil, assuming
water saturations of 40 and 50 percent, respectively. The STOOIP was between
13.7 and 16.4 million barrels of oil. Industry commonly uses a recovery efficiency in
the Aux Vases of 18 to 24 percent, which is typical of a solution gas reservoir. With
a recovery efficiency of 22 percent, estimated primary recoverable reserves are
between 3.0 and 3.6 million barrels. The actual primary recovery at King Field was
about 3.5 million barrels of oil.

Remaining Oil in Place

The remaining recoverable reserves both primary and waterflood are calculated
using the following equation.

Remaining recoverable reserves = (STOOIP x RE) -TPO
[3]

where STOOIP = stock tank barrels of original oil in place
TPO = total produced oil

RE = recovery efficiency

A numerical value for the recovery efficiency is difficult to estimate because of the
reservoir heterogeneity of the Aux Vases. The recovery efficiency of the reservoir
after primary recovery and waterflooding is considered by industry to be in the range
of 30 to 40 percent of the STOOI P. If 16.4 million barrels of oil is a realistic value
for STOOIP, then the remaining recoverable reserves are estimated to be between
1 and 2 million barrels of oil. Calculations done on individual leases at King Field
indicate that 2 million may be closer to the actual value for ultimate mobile oil in
place in the field.

DEVELOPMENT AND PRODUCTION STRATEGIES

Recommendation for Infill Drilling and Waterflooding
One objective of this study was to try to determine the maximum well spacing that
will effectively drain the Aux Vases reservoirs. This objective was not accomplished
What is demonstrated here is that the current spacing does not effectively drain the
reservoir. Barber et al. (1983) have shown that pay continuity calculations made
before infill drilling are not accurate in heterogeneous reservoirs. The pay zones are
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Figure 32 Porosity-net thickness map of the Aux Vases sand at King Field with an outline

of the productive area of the field (contour interval, 1 ft). This outline was used as the area

limits in the volumetric calculations. The light orange areas have a good potential for improved
oil recovery through infill drilling and waterflooding. These high-potential areas have the

thickest sand and the best porosity.
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more discontinuous than is implied by widely spaced wells. This analysis probably
holds true for the Aux Vases at King Field. Although the electric logs indicate that
the sand is correlative, production tests, as listed on the scout ticket, show that many
of tnese reservoirs are not in communication.

Discussion with members of the Illinois oil industry indicates that the actual results
of waterfloods in the Aux Vases commonly do not match the expectations based on

l2Sf°5?f
m° (e

,
9" Bemard Podolsk

y- Persona' communication, Podolsky Oil,
1990). Water injected into the Aux Vases reservoir does not always go where
Planned. On the basis of waterflood effects on nonunitized wells, such as the Ford
No.1

,

large areas of the Aux Vases at King Field probably are not swept by water.

A carefully planned infill program at King Field and at similar Aux Vases fields should
be able to recover most of the remaining recoverable reserves. For a waterflood tobe successful, the number of producers should be equal to or less than the number
of injection wells (van Everdingen and Kriss 1980), and all of the wells should be
drilled on a pattern that is based on geology. The injection wells should not be
fracture treated (van Everdingen and Kriss 1980), because the mechanically
induced fractures could cause channeling of the injection fluid. This type of careful
development has not been done at King Field. Instead, the poorest producers were
selected for conversion to injection wells. The injector-producer well pattern is
semirandom; therefore, even those leases that have been subjected to waterfloodmay contain large amounts of unswept oil. Many of the converted injection wells
had formerly been fracture treated.

Those areas with greater than 3 porosity-feet of Aux Vases pay should be considered
first for a detailed, geologically targeted infill and waterflood program (fig 32) An
initial 5-acre infill spacing may be able to recover much of the unswept oil Not
enough data are available at this time to make an evaluation of the waterflood well
pattern.

Aselective infill drilling program has been used successfully in other areas At Hewitt
Field in Carter County, Oklahoma, an infill program was started in a field where the
original spacing was 2.5 acres. A 15-well infill program was combined with a
waterflood to recover an additional 400,000 barrels of oil (Barber et al. 1983).

Another example is Louden Field, located in Fayette and Effingham Counties
llhnois which produces from Mississippian sandstones including the Aux Vases A
50-wel infill program was designed in conjunction with a waterflood to infill from the
original 20-acre spacing to a 10-acre spacing. An additional 970,000 barrels of oilwere recovered because of this program (Barber et al. 1983).

Clays and Potential Problems in Drilling, Completion,
and Enhanced Oil Recovery
The pores of the Aux Vases sandstone are lined by three different types of claysOf the three, mixed-layered illite/smectite and chlorite containing iron could cause
the most significant problems. The mixed-layered illite/smectite is susceptible toswe mg in freshwater (Almon and Davies 1 981 ), which can clog pore throats and
grea ly reduce permeability. These mixed-layered illite/smectite clays are a potential
problem when drilling with freshwater muds and during waterflooding. Smectite also
readily adsorbs surfactants (Pittman 1989). Laboratory corefloods should be done
first to determine the retention of surfactants by the Aux Vases clays beforecommencement of any field testing.

y
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Chlorite that contains iron can be a problem when treated with hydrochloric acid.

Iron is liberated from the clay by acid and reprecipitated as ferric hydroxide. The

precipitate fills the pore throats and lowers the permeability of the reservoir (McLeod

1984). Iron removal can also remove the brucite layer from chlorite and produce a

smectite-like clay in the process (Randall Hughes, personal communication, ISGS,

1990).

Formation damage in the Aux Vases Formation is a significant problem at King Field.

All of the typical industry solutions for prevention of formation damage during drilling

and completion of the well have restrictions. One solution to formation damage is

fracture treating the reservoir. After hydraulic fracturing, the damaged areas are

bypassed and the drainage area of the well is increased. I hypothesize that in the

Aux Vases sandstones at King Field, possible swelling of the mixed-layered il-

lite/smectite clays by fluids containing freshwater (both drilling muds and completion

fluids) may be the reason that these wells have to be fracture treated.

RESERVOIR CLASSIFICATION

King Field is a combination structural-stratigraphic trap defined primarily by a large

anticlinal structure. However, the stratigraphic component of this trap has signifi-

cantly increased the compartmentalization of the Aux Vases into numerous distinct

reservoirs. The Aux Vases was deposited in a tidal to subtidal mixed siliciclastic-car-

bonate nearshore shallow-marine system.

Weber and van Geuns's 1990 classification scheme would designate the deposi-

tional facies of the Aux Vases at King Field as a jigsaw puzzle to labyrinth-type

reservoir. The significant characteristic of the jigsaw puzzle to labyrinth reservoir

class is the lack of sand continuity. Sweep efficiency in a waterflood and the radius

of drainage of individual wells are very low in this type of reservoir. In particular, the

Aux Vases carbonate lithofacies forms impermeable barriers that laterally separate

the sandstones into distinct compartments. The lenticular nature of the tidal channel

and offshore sandstone lithofacies further increases the compartmentalization of

the Aux Vases. This lack of lithologic continuity is illustrated by the difficulty in

correlating electric logs.

CONCLUSIONS

The facies mosaic formed by the mixed carbonate and siliciclastic nearshore

shallow marine system is the principal reason for the high degree of reservoir

heterogeneity. The impermeable to poorly permeable siltstones, shales, and lime-

stones of the offshore low-energy and tidal flat facies and the calcareous offshore

high-energy facies separate the sandstones of the tidal channel-offshore bar facies

into distinct reservoir compartments. The compartmentalization has resulted in an

oil-water contact that is not at the same depth across the entire field. The complex

lithology is also the cause of a number of dry holes on the structure. These wells

did not encounter reservoir quality rocks.

The presence of mixed-layered illite/smectite can have detrimental effects on oil

production. These clays can swell when in contact with freshwater and thereby

reduce permeability. This could be a problem when drilling with freshwater and

during waterflooding of the reservoir. Hydrochloric acid must be used with caution
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when injecting as a completion fluid because the iron minerals in the chlorite can
precipitate and clog the pore throats.

'SSSS'SSS^S^,
of the reservoir has al,owed large areas of the Aux Vases

reservoir at King Field to remain unswept by the waterflood projects. The original
oil in place calculations indicate that there may be between 1 and 2 million ba? efs
of oil stil recoverable with a geologically targeted infill drilling program ombtedwith additional well-designed waterflooding of the reservoir

como.nea
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APPENDIX A RESERVOIR FLUID ANALYSIS

API number 1208100498

Operator Baldridge Oil

Well name Bumpus No. 2

Location T3S R3E Sec. 34 SW NW
County Jefferson County

Field name King Field

Producing formation Aux Vases

Perforation depth (ft) 2,720 to 2,739

Surface elevation (ft) 469 (drilling floor)

Waterflooded yes

Brine Analysis

Brine sample number EOR-B8

Temperature (°C) 20.8

Resistivity without ATC, 0.0649 ohm-m (estimated from Na data)

Eh (mV) 238

pH 6.35

Comment high gas; not enough oil for sampling (%)

Anion chemistry (in mg/L)*

Br NA I NA
CI" 79,485 NH4 NA
C03 NA NO3 NA
HCO3 NA S04 NA
*NA, not analyzed.

"Estimated from Na data.

Cation chemistry (in mg/L, unless noted)

Al 2.5 Cr NA Na 46.0 g/L Sr 173

As NA Cu NA Ni 0.15 Ti NA
B 3.8 Fe 5.7 Pb <0.4 TI <0.4

Ba 0.49 K 205 Rb NA V NA
Be NA La <0.01 Sb NA Zn <0.02

Ca 3,260 Mg 1,260 Sc <0.01 Zr 0.08

Cd <0.05 Mn 0.62 Se NA
Co <0.07 Mo <0.08 Si 4.68

Oil Analysis

Oil sample number EOR-08
Sara analysis

saturates 56.2%

aromatics 11.7%

resins 13.5%

asphaltenes 1 .4%

"lost"* 17.2%

•highly volatile compounds and compounds adsorbed by chromatography column.

Selected hydrocarbon ratios

C17/C18 1.08

pristane/phytane 1 .80

C17/pristane 1.21

C18/phytane 2.02

Comment interpreted to be Devonian oil

44



APPENDIX A (cont.)

API number 1208100167
Operator Baldridge Oil

Well name State Game Farm A-2
Location T3S R3E Sec. 28 NW NE
County Jefferson County
Fieldname King Field

Producing formation Aux Vases
Perforation depth (ft) 2,744 to 2,752
Surface elevation (ft) 492 (drilling floor)

Waterflooded possibly not effected by flood

Brine Analysis
Brine sample number EOR-B9
Temperature (°C) 17.8

Resistivity 0.0621 ohm-m
Eh (mV) 287
pH 6.81

Comment high gas

Anion chemistry (in mg/L)
Br 180 | 39
CI 85,000 NH4 36
C03* <1 N03 0.06

#

HC03 120 S04 72
*as CaC03,

Cation chemistry (in mg/L, unless noted)
Al

0^3 Cr < .07 Na 48.50 g/L Sr 199As <os Cu <0.05 Ni <0.1 Ti 0.04

S °JL- ? ±°6 Pb <04 TI <0.4Be <30g/L K 280 Rb NA y <0 .08B 3.4 La <0.01 Sb <0.3 Zn <0 02Ca 4,710 Mg 1,720 Sc <0.01 Zr <0 02Cd <0.05 Mn 0.56 Se <0 7
Co <0.07 Mo <0.08 Si

Oil Analysis

Oil sample number EOR-09
Sara analysis

saturates 50.3%
aromatics 8.4%
resins 8.0%
asphaltenes 2 8%
"lost" 30.5%
Selected hydrocarbon ratios
C17/C 181.04
pristane/phytane 1 .80

Cl7/pristane 1.20

C!8/phytane 2.06

4.4
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APPENDIX A (cont.)
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n,™^'* B M,NERAL COMPONENTS FROM X-RAY
DIFFRACTION ANALYSIS

API Depth Clay
"umber (ft) index %| %l/s %c %q yM yjps y>cc yJQ

081496 2,736 0.08 4 3 tr
~*\ ^ i I

~
081496 2,739 0.39 22 13 3 M

'

2 J 15 iS081496 2,744 0.40 19 16 5 57 2 i o n
081488 2,725 0.11 5 4 2 69 14 I £ J
081488 2,732 0.04 2 1 7 73 2 I ,1 J
081488 2.738 0.06 3 2 2 64 16 I \l ?
081488 2,745 0.02 tr 1 7 77 ? I \\ I
081488 2.746 0.02 1 1 tr 21 i Jc ?
081488 2.748 0.08 3 4 1 36 1 2 a
081488 2.750 0.01 tr tr 66 I J £ £
081490 2.732 0.06 2 1 3 77 ^ ?2 ?
081090 2,722-27 0.18 8 5 6 72 3 I ^ J
081090 2,747-48 0.15 6 4 5 63 tr I - °

081459 2,735 0.03 7 tr 3 * 2 1 ?
081374 2,747 0.09 3 2 4 81 3 2 I 2
081374 2,750 0.02 1 1 1 76 T I if 2
081496 2,736 0.08 4 4 tr g 11 I

"
g

Abbreviations: I, illite; l/S, mixed layer illite/smectite; C, chlorite- Q Quarto- Ki r*ta**u,m
feldspar; Pf, plagioclase feldspar; CC, calolum carbonateT^

clay index =
4 x 020 clay peak (19.920^

adjusted sum nonclay peaks
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RESERVOIR SUMMARY

Field King Field

Location Jefferson County, Illinois

Tectonic/Regional Paleosetting Illinois Basin

Geologic Structure anticline

Trap Type structural stratigraphic

Reservoir Drive gas depletion drive

Original Reservoir Pressure unknown
Reservoir Rocks
Age Upper Valmeyeran Series of the Mississippian System

Stratigraphic unit Aux Vases Formation

Lithology sandstone

Wetting characteristics (oil/water) NA
Depositional environment mixed siliciclastic-carbonate nearshore

Productive facies tidal channel offshore bar

Petrophysics (0, k from unstressed conventional core; Sn from logs)

Porosity type 0total= 18%: primary, NA; secondary, N

A

Average 1 8%, range 7 to 27%, cutoff 11%
k air NA
k liquid NA
Sw 45%
Sor NA
Sgr NA
Cementation factor 1 .7

Source Rocks
Lithology and stratigraphic unit New Albany (Devonian) Shales

Time of hydrocarbon maturation NA
Time of trap formation NA

Reservoir Dimensions
Depth (absolute and subsea) 2,750 (2,250) feet

Areal dimensions 1 ,700 acres

Productive area 1 ,700 acres

Number of pay zones 4
Hydrocarbon column unknown
Initial present fluid contacts no clear oil/water contact

Average net sand thickness 1 5 feet

Average gross sand thickness NA
Net/gross NA
Initial reservoir temperature

Fractured natural, NA; artificial (type), NA
Wells

Spacing 10 acre

Pattern NA
Total 1 63 : producer, 1 08; dry holes, 55

Reservoir Fluid Properties

Hydrocarbons
Type NA
Gas/oil ratio NA
API gravity NA
Formation volume factor 1.15

Viscosity NA
Bubble point pressure NA

Formation water
Resistivity NA
Total dissolved solids (ppm) NA
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Volumetrics
In-place 1 7 million barrels of oil (MMBO)
Cumulative production 4.1 MMBO
Ultimate recovery primary, 3.5 MMBO; secondary, 0.6 MMBO
Additional recovery from infill drilling and secondary 2 5 MMBO[secondary (incremental), NA; tertiary (incremental) NA1
Recovery efficiency (factor) primary, 22%; secondary 8%- tertiary NATypical Drilling/Completion/Production Practices
Completions open hole, NA; cased NA
Drilling fluid bentonite

AcldizaTion^NA
m 5'°00 9a"°nS

°f 0l
'

and 7,50° P°Unds of sand

Other NA
Producing mechanism

Primary (indicate any period of flow) gas depletion
Secondary waterflood
Tertiary NA

Typical Well Production (to date)
Average daily 80 bbl

Cumulative 38,000 bbl
Water/oil ratio (initial/cumulative) NA
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