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PREFACE.
THIS book contains the substance of my lectures to the Senior Class

in Civil Engineering, in the University, during the past few years, on

the Resistance of Materials. The chief aim has been to present the

theories as they exist at the present time. The subject is necessarily

an experimental one, and any theory which has not the results of ex

periments for its foundation is valueless. I have therefore presented

the results of a few experiments under each head, as they have been

obtained in various parts of the world, that the student may judge
for himself whether the theory is well founded or not. It is hoped
that this part of the work will be valuable to the practical man.

The descriptive parts are given more fully here than they were in

the lectures, because they can be consulted more profitably on the

printed page than they could in the manuscript, and will be examined

more by the general reader than the mathematical part. But, on the

other hand, the mathematical part is much more condensed here than

it was in the class-room. This was done so as to keep the work in as

small a space as possible ;
and also because a student is supposed to

have time for deliberate study, and can take time to overcome his dif

ficulties and secure his results. It is intended, however, in the next

edition, to publish an appendix, in order to explain the more difficult

mathematical operations of the text.

I have taken special pains to make frequent references to other

books and reports from which I have secured information. This will

enable any one to verify more fully the positions which have been

taken, and will be convenient for those who desire to secure a more

thorough knowledge of any particular topic.

I do not deem it necessary to indicate those topics which are wholly

original. To the reader who has never before given the subject any

attention, all will be new
;
and the well-informed reader will readily

detect what is original.

A large amount of labor and study has been given to this subject

in nearly all civilized countries, and yet the theories in regard to re

sistance from transverse stress are not very satisfactory. In regard

to the strength of rectangular beams, the &quot; Common Theory,&quot; as I
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have called it, is sufficiently correct for ordinary practical purpose?,

especially if the modulus of rupture, as determined by direct experi

ment upon rectangular beams of the same material, be used. Bar

low s
&quot;

Theory of Flexure &quot;

appears to be more nearly correct in

theory when applied to rectangular beams and beams of the I section,

or other forms which are symmetrical in reference to the neutral axis.

But when the sections are irregular none of the theories can be relied

upon for securing correct results. Whatever theory may yet do for us,

it is quite evident that no theory will ever be devised, of practical

value, which will be applicable to the infinite variety of forms of

beams which are or may be used in the mechanic arts. That I may

not be misunderstood upon this point, I will be more specific. We
know that our present theories do not always give correct results, and

that the more irregular the form the greater the discrepancy between

the actual and computed strengths of a beam. Now, if a theory is

ever devised which will take into account all the conditions of strains

in a beam, I think it will be too complicated to be of practical value

to the mechanic. I do not desire by this remark to disparage theory.

Theories are valuable. Without them we would make little or no

progress. Fortunately for the engineer, it is not the mathematically

exact result that he desires, but the reliable result. He does not so

much desire to know that one pound more of load will break his

structure, as he does that he may depend upon it to carry from four

to six times the load which he intends to put upon it. The theories, as

now developed, are safe guides to the mechanic and engineer ;
still we

learn to depend more and more upon direct experiment. The theory

also in regard to the deflection of beams under a transverse strain,

has recently received a modification, due to a consideration of the

effect of transverse shearing ;
but the modification is sustained both

from mathematical and experimental considerations. May not more

careful experiments yet teach us that it must be still further modified

on account of the longitudinal shearing strain?

The author will be pleased to receive the results of experiments

which have been made in this country, so that if this work is revised

in the future, it may be made more profitable to the engineering

profession.

Axx ARBOR, MICH., Sept., 1871.
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A TEEATISE

THE RESISTANCE OF MATERIALS.

Library.
INTKODUCTIOK

1. IN PROPORTIONING ANY MECHANICAL STRUCTURE,
there are at least two general problems to be considered :---

1st. The nature and magnitude of the forces which are to be

applied to the structure, such as moving loads, dead weights,

force of the wind, etc.
; and,

2d. The proper distribution and magnitude of the parts

which are to compose the structure, so as to successfully resist

the applied forces.

These problems are independent of each other. The former

may be solved without any reference to the latter, as the struc

ture may be considered as composed of rigid right lines. The

latter depends principally upon the mechanical properties of

the materials which compose the structure, such as their strength,

stiffness, and elasticity, under various circumstances.

The mechanical properties of the principal materials wood,

stone, and iron * have been determined with great care and

expense by different experimenters, both in this and foreign

countries, to which reference will hereafter be made.

* The properties of mortars have been thoroughly discussed by Gen. Q. A.

Gilmore in his work on Limes, Mortars, and Cements. 1862.

1



2 TIIE RESISTANCE OF MATERIALS.

. DEFIMTIOXS OF TERMS.

STRESSES are the forces which are applied to bodies to bring

into action their elastic and cohesive properties. These forces

cause alterations of the forms of the bodies upon which they

act.

STRAIN is a name given to the kind of alterations produced by

the stresses. The distinction between stress and strain is not

always observed
;
one being used for the other. One of the

definitions given by lexicographers for stress, is strain and in

asmuch as the kind of distortion at once calls to mind the

manner in which the force acts, it is not essential for our pur

pose that the distinction should always be made.

A TENSILE STRESS, or Pull, is a force which tends to elongateft O

a piece, and produces a strain of extension, or tensile strain.

A COMPRESSIVE STRESS, or Push, tends to shorten the piece,

and produces a compressive strain.

TRANSVERSE STRESS acts transversely to the piece, tending to

bend it, and produces a bending strain. But as a compressive

stress sometimes causes bending, we call the former a transverse

strain, for it thus indicates the character of the stress which

produces it. Beams are generally subjected to transverse

strains.

TORSIVE STRESS causes a twisting of the body by acting tan-

gentially, and produces a torsive strain.

LONGITUDINAL SHEARING STRESS, sometimes called a detrv-

xive strain, acts longitudinally in a fibrous body, tending to draw

one part of a solid substance over another part of it
; as, for

instance, in attempting to draw the piece A B,

Fig. 1, which has a shoulder, through the mortise

C, the part forming the shoulder will be forced

longitudinally off from the body of the piece,

so that the remaining part may be drawn

through.

TRANSVERSE SHEARING STRBSE ie a force which acts trans

versely, tending to force one part of a solid body over the adja-
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cent part. It acts like a pair of shears. It is the stress which

would break a tenon from the body of a beam, by acting per

pendicular to the side of the beam and close to the tenon. It

is the stress which shears large bars of iron transversely, so

often seen in machine-shops. The applied and resisting forces

act in parallel planes, which are very near each other.

SPLITTING STRESS, as when the forces act normally like a

wedge, tending to split the piece.

$. THE EFFECT OF THESE STRESSES IS TWOFOLD:
1st. Within certain limits they only produce change of form

;

and, 2d, if they be sufficiently great they will produce rupture,

or separation of the parts ;
and these two conditions give rise

to two general problems under the resistance of materials, the

former of which we shall call the problem of ELASTIC RESIST

ANCE
;

the latter, ULTIMATE RESISTANCE, or RESISTANCE TO

RUPTURE.

4. GENERAL PRINCIPLES OF ELASTIC RESISTANCES.

To determine the laws of elasticity we must resort to experi

ment. jBars or rods of different materials have been subjected

to different strains, and their effects carefully noted.

From such experiments, made on a great variety of materials,

and with apparatus which enabled the experimenter to observe

very minute changes, it has been found that, whatever be the

physical structure of the materials, whether fibrous or granu

lar, they possess certain general properties, among which are

the following :

1st. That all bodies are elastic, and within very small limits

they may be considered perfectly elastic
;

i. e.,
if the particles

of a body be displaced any amount within these limits they will,

when the displacing force is removed, return to the same posi

tion in the mass that they occupied before the displacement.

This limit is called the limit ofperfect elasticity*

* Mr. Hodgkinson made some experiments to prove that all bodies are non-

elastic. (See Civil Eng. and Arch. Jour, vol.vi., p. 354.) He found that the

limits of perfect elasticity were exceedingly small, and inferred that if our
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2d. The amount of displacement within the elastic limit ia

directly proportional to the force which produces it. It follows

from this, that in any prismatic bar the force which produces

compression or extension, divided by the amount of extension or

compression, will be a constant quantity.

3d. If the displacement be carried a little beyond this limit

the particles will not return to their former position when the

displacing force is removed, but a part or all of the displace

ment will be permanent. This Mr. Ilodgkinson called a set, a

tenn which is now used by all writers upon this subject.

4th. The amount of displacement is not exactly, but nearly,

proportional to the applied force considerably beyond the elastic

limit.

5th. Great strains, producing great sets, impair the elasticity.

5. COEFFICIENT (OR MODULUS*) OF ELASTICITY.

If a prismatic bar, whose section and length are

unit}-, be compressed or elongated any amount with

in the elastic limit, the quotient obtained by

dividing the force which produces the displacement

by the amount of compression or extension is called

the COEFFICIENT OF ELASTICITY. This we call E.

Let K= section of a prismatic bar (See Fig. 2),

fcits length,
Pio. 2.

powers of observation were perfect in kind and infinite in degree, we should

find that no body was perfectly elastic even for the smallest amount of dis

placement. And although more recent experiments have indicate I the same

result in cast-iron, yet the most delicate experiments have failed to thoroughly
establish it. I have, therefore, accepted the principle of perfect elasticity,

which, for the purposes of this work, is practically, if not theoretically, correct.

It does not appear from Mr. Hodgkinson s report how soon the effect was

observed after the strain was removed. If he had allowed considerable time

the set might have disappeared, as it is evident that it takes time for the dis

placed particles to return to their original position.

The terms cofjfiricnt and modulm are used indiscriminately for the con

stants which enter equations in the discussion of physical problems, and are

sometimes called physical comtant*. The! modulus of elasticity, as used by
moat writers on Analytical Mechanics, is the ratio of the force of restitution to
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and A=the elongation or compression caused by a force, P,
which is applied longitudinally. Then

-= force on a unit of section, and

-=the elongation or compression for a unit of length.

Hence, from the definition given above, we have

-p
P x PI mk = K
~

T
=

KX
* * * -

I
1
)

From this equation E may be easily found. It will here

after be shown that the coefficient is not exactly, but is nearly

the same for compression as for tension.

For values of E, see Appendix, Table 1.

6. PROOFS OF THE LA.WS GIVEN IN ARTICLE FOUR.
Article 5 has preceded these proofs, so as to show how the results

of experiments may be reduced by equation (1). The 1st and 2d

laws seem first to have been proved by S. Gravesend, since which

they have been confirmed by numerous experimenters. One of

the most extensive and reliable series of experiments upon various

substances for engineering purposes is given in &quot; The Report of

Her Majesty s Commissioners, made under the direction of Mr.

Eaton Hodgkinson.&quot; The results of his experiments are pub
lished in the Reports of the British Association, and in the 5th

volume of the Proceedings of the Manchester Literary and

Philosophical Society, from which extracts have been made

and to which we shall have occasion to refer. The experiments

were made not only to prove these laws but several others,

principally relating to transverse strength.

Barlow made many experiments, the results of which are given

in his valuable work on the &quot;

Strength of Materials.&quot; The series

of experiments on iron which had been commenced and so ably

that of compression. It relates to the impact of bodies, and, as thus denned,

depends upon the set. But the coefficient of elasticity depends neither upon

impact nor set. Another term should therefore be used, or else a distinction

should be made between the terms coefficient and modulus, so that the former

shall apply to small displacements, and the latter to the relative force of resti

tution. For this reason I have used the former in this work, and avoided the

latter when applied to elasticity.
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conducted by Mr. Ilodgkinson were continued by Mr. Fairbairn.

The latter confined his experiments mostly to transverse strength,

the results of which are given in his valuable work on &quot; Cast

and Wrought Iron.&quot; A valuable set of experiments has been

made in France at &quot;le Conservatoire des Arts et Metiers.&quot;

In this country several very valuable sets of experiments have

been made, among the most important of which are the experi

ments of the Sub-Committee of the Franklin Institute, the re

sults of which are published in the HHh and 20th volumes of

the Journal of that Society, commencing on the 73d page of the

former volume. The experiments were made upon boiler iron,

but they develojnjd many properties common to all wrought

iron. They were conducted with great care and scientific skill.

The report gives a description of the testing machine; the

manner of determining its friction and elasticity ;
the modifica

tions for use in high temperature ;
the manner of determining

the latent and specific heats of iron
;
and the strength of differ

ent metals under a variety of circumstances.

Another very valuable set of experiments was made by Cap-

taiii T. J. Rodman and Major W. Wade, upon &quot;Metals for

Cannon, under the direction of the United States Ordnance

Department,&quot; and published by order of the Secretary of War.

Numerous other experiments of a limited character have

been made, too many of which have been lost to science be

cause they were not reported to scientific journals, and many
others were of too rude a character to be very valuable.

The results of these experiments will form the basis of our

theories and analysis.

* See &quot; Morin s Resistance des Matcriaux,&quot; p. 126.



EXPERIMENTS ON WROUGHT IRON.

CHAPTEE I.

TENSION.

7. TAKING THE PHENOMENA IN THEIR NATURAL, OR-

DEK, the first thing which claims attention is the elastic re

sistance due to tension, or, as it is sometimes called, a pull, or

elongating force.

EXPERIMENTS ON WEOUGIIT IRON.

Experiments for determining the total elongation and permanent elongation &quot;pro

duced by different weights acting by extension on a tie of wrought iron of
the best quality, by Eaton Hodgkinson.

Weight in
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EXPERIMENTS ON WROUGHT IRON. Continued.

Weight in
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When the construction is made on a large scale it makes the

results of the experiments very evident.

axil UAtuiinia- duuu

tion of Fig. 3

shows :

1st, That to a

load of 1499.T2

kil. pr. square
24(

centimetre, the 2000

total elongations
are practically

proportional to ^200

the loads
;

3d. That with- 80

in the same lim- AOQ
its the perma
nent elongations t

are nearly pro-
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have resulted from an erroneous measurement of the exceed

ingly small total elongation. From the experiments made on
another bar, Ilodgkinson found

E = 19,359,458,500 kil. per sq. metre
;

= 27,700,000 pounds pr. square inch
;

which is but little less than the preceding.
Mr. Ilodgkinson infers from these experiments that the small

est strains cause a permanent elongation. But Morin for

cibly remarks * that none of these experimenters appear to have
verified whether time, after the strains are removed, will not

cause the permanent elongations to disappear. Also that the

deflections of the machine cannot be wholly eliminated, and
hence appear to increase the true result. In practice such small

permanent elongations may be omitted.

The preceding example has, for a long time, been given to

show the law of relation between the applied force and the

total and permanent elongations ;
but we should not expect to

find exactly the same results for all kinds of iron. Even wrought
iron has such a variety of qualities, depending upon the ore of

which it is made, and the process of manufacture, that it cannot

be expected that the above results will always be applicable to

it. Only a wide range of experiments will determine how far

they may generally be relied upon.
It is found, however, that the GENERAL RESULTS of extension,

of set, of increased elongation with the duration of the stress

within certain limits, and of the increase of set with the in

crease of load, are true of all kinds of iron.

EXPERIMENTS TPON CAST IRON.

9. THE FOLLOWING EXPERIMENTS UPON CAST IRON sllOW

that the numerical relation between the applied force and the

extension is somewhat different from the preceding. The expe
riments were made under the supervision of Captain T. J. Hod
man : f

u The specimens had collars left on them at a distance of thirty-five inches

* Morin s Resistance des Matcriaux, p. 10.

f Experiments on Metals for Cannon, by Capt. T. J. Rodman, p. 157.

For a full description of the testing apparatus, with diagrams, see Major
Wade s Report on the Strength of Materials for Cannon, pp. 305-315. The
machine consists principally of a very substantial frame and levers resting on

knife edges.
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apart, the space between the collars being accurately turned throughout to a
uniform diameter.

&quot; The space between the collars was surrounded by a cast-iron sheath, eight-
tenths of an inch less in length than the distance between the collars

;
it was

put on in halves and held in position by bands, and was of sufficient interior

diameter to move freely on the specimen.
&quot; When in position, the lower end of the sheath rested on the lower collar of

the specimen, the space between its upper end and the upper collar being sup

plied with and accurately measured by a graduated scale tapered 0.01 of an inch

to one inch.
u The upper end of the sheath was mounted with a vernier, and the scale

was graduated to the tenth of an inch.
&quot; This afforded means of measuring the changes of distance between the

collars to the ten-thousandth part of an inch, and these readings divided by the

distance between the collars gave the extension per inch in length as recorded

in the following table :

TABLE

Shoiving tlie extension and permanent set per inch in length caused by the under

mentioned weights, per square inch of section, acting upon a solid cylinder 35

inches long and 1.866 inches diameter. (Cast at the West Point Foundry in

1857.)

Weight per
square inch of

section.
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1O. I K.I 1C i: 4 IS A GRAPHICAL, REPRESENTATION OF
THE ABOVK TABLE, constructed in the same way as Figure 3.

Experiments were made upon many other pieces, from which

I have selected four, and called them A, B, C, and D, a gra

phical representation of which is shown in Figure 5. The right

hand lines represent extensions, the left hand sets.

A is from an inner specimen of a Fort Pitt gun, No. 335,
and the others from different cylinders which were cast for the

purpose of testing the iron.

From these we observe :

1st. That for small elongations the ratio of the stresses to the

elongations is nearly constant.

2d. There does not appear to be a sudden change of the rate

of increase, as in Mr. Ilodgkinson s example, but the ratio gra
dually increases as the strains increase.

3d. The sets at first are invisible, but they increase rapidly
as the strains approach the breaking limit.

It appears paradoxical that the first and second experiments
in the preceding table should give a less coefficient than the

third, but the same result was observed in several cases.

11. THE FOLLOWING TABLES ARE THE RESULTS
SOIflE i:\IT1C I irvrs IVIADE.BY flit. HODGKINSON t

OF
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Direct longitudinal extension of round rods of cast iron, fifty feet long.
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Let P = the elongating force and

\ = the total elongation in inches due to P.

Then Ilodgkinson found, from an examination of the table,

that the empirical formula

P = 116117Ae
- 201905*;

represented the results more nearly than equation (1). This for

mula reduced to an equivalent o^p for I in inches (observing
that the bar was 10 feet long), becomes

P =-- 13,934,000 _Ae 2,907,432,000^

Although this equation gives the elongations for a greater range
of strains than equation (1) for this particular case, yet the

law represented by it is more complicated, and hence would

make the discussions under it more difficult, without YieldingV

any corresponding advantage. It is the equation of a parabola
in which P is the abscissa and A

e the ordinate.

We also see that when the elongations are Yen- small, the

A2

quantity
-*- will be very small, and the second term may be
C

omitted in comparison with the first, in which case it will be re

duced to equation (1). The coefficient in the first term is the

coefficient of elasticity, hence it is nearly 14,000,000 Ibs.

for extension.

MALLEABLE IRON.

1&amp;lt;J. ACCORDING TO BARLOW S EXPERIMENTS malleable

iron may be elongated T7Vir ^ ^ length without endangering
its elasticity.* To ascertain this, the strains were removed
from time to time, and it was found that the index returned to

zero for all strains less than 9 or 10 tons. The mean extension

per ton (of 2,240 Ibs.) per square inch, for four experiments, was
0.00009565 of its original length. Hence the mean value of

the coefficient of elasticity is

E = -= - _22_42_ = 23,418.000 Ibs.
A O.OU009565

* Journal Frank. Lost., voL xvi., 2d Series, p. 126.
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ELASTICITY OF WOOD.

13. EXPERIMENTS BY MESSRS. HEVANDIER ANI* WER-
THEiM.-The following are some of the results of the recent

experiments of Messrs. Chevandier and Wertheim on the resis

tance of wood. These experimenters have drawn the follow

ing principal conclusions :

1. The density of wood appears to vary very little with age.

2. The coefficient of elastiok}
r diminishes, on the contrary, be

yond a certain age ;
it depends, likewise, upon the dry-

ness and the exposure of the soil to the sun in which the

trees have grown ;
thus the trees grown in the northern

exposures, north-eastern, north-western, and in dry soils,

have always so much the higher coefficient as these two

conditions are united, whereas the trees grown in muddy
soils present lower coefficients.

3. Age and exposure influence cohesion.

4. The coefficient of elasticity is affected by the soil in which

the tree grows.
5. Trees cut in full sap, and those cut before the sap, have not

presented any sensible differences in relation to elasticity.

6. The thickness of the woody layers of the wood appeared to

have some influence on the value of the coefficient of

elasticity only for fir, which was greater as the layers w
Tere

thinner.

7. In wood there is not, properly speaking, any limit of elasti-

ticity, as every elongation produces a set.

It follows from this circumstance that there is no limit of

elasticity for the woods experimented upon by Messrs. Chevan

dier and Wertheim, but in order to make the results of their ex

periments agree with those of their predecessors, the authors

have given for the value of the limit of elasticity the load under

which it produces only a very small permanent elongation ;
the

limit which they indicate in the following table for loads under

which the elasticity of wood commences to change, corresponds
to a permanent elongation of 0.00005, its original length.
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TABLE CONTAINING TIIE MEAN RESULTS OF THE EXPERIMENTS OF

MESSRS. CllEVANDIER AND WERTIIEEM.
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MEAN RESULTS OF THE EXPERIMENTS OF MESSRS. CIIEVANDIER

AND WERTHEIM.

^PECIES.
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Also from (1) we have

P =
?
EK (3)

Fio. 6.

Equations (1), (2), and (3) are equally applicable
to compressive strains, as will hereafter he shown.

If in (3) we make K= l and *=l we shall have

P = E
; hence, the coefficient of elasticity may he de

fined to he a force which will elongate a lar whose

section is unity, to double its original length, pro
vided the elasticity of the material does not change.
But there is no material, not even a perfectly elastic

body, as air and other gases, whose coefficient of

elasticity will not change for a perceptible change of volume.

The material may not lose its elasticity, but equation (1) only
measures it for small displacements. To illustrate further, let

it be observed that, according to Mariotte s law, the volumes of

a gas are inversely proportional to the compressive (or exten

sive) forces
;
double the force producing a compression of half

the volume
;
four times the force, one-fourth the volume, and

so on, the compressions being afractional part of the original

volume
;
but in equation (2),

A is a linear quantity, so that if

one pound produces an extension (or compression) of one inch,

two pounds would produce an extension of two inches, and

so on.

Examples. \. If the coefficient of elasticity of iron be 25,000,000 Ibs.,

what must be the section of an iron bar 60 feet long, so that a weight of 5,000

Ibe. shall elongate it i inch ?

PI
From (1) we obtain K = -- which by substitution becomes

- = 0. 288 square inches. /_ 5,000.12x60K =
25,000,000 x

2. How great a weight will a brass wire sustain, whose diameter is 1 inch
;

coefficient of elasticity is 14,000,000 Ibs., without elongating it more than^
of its length? Ans. 13,744.5 Ibs.
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* REQUIRED THE ELONGATION (OR COMPRESSION) OF
A PRISMATIC BAR WHEN ITS WEIGHT IS CONSIDERED.

Let I = the whole length of the bar before elon

gation or compression,
x = variable distance = A5,
dx = 1)0 = an element of length,

w = weight of a unit of length of the bar,

W = weight of the bar, and

Pj = the weight sustained by the bar.

Then (I x) w + P, = P the strain on any

section, as be.

Hence, from equation (2), we have FlG 7

EK

. the total length will become,

(5)

wT
If P

x
=

0, X = T
= Wl
2FK one-

half of what it would be if a weight equal to the whole weight
of the bar were concentrated at the lower end.

REQUIRED THE ELONGATION (OR COMPRESSION) OF A CONE IN A

VERTICAL POSITION, CAUSED BY ITS OWN WEIGHT WHEN IT is SUS

PENDED AT ITS BASE (OR RESTS ON ITS BASE).

Take the origin at the apex before

extension, Fig. 8, and

let K = any section,

K = the upper sectien,

I = the length or altitude of

the cone,

x = the length or altitude of

any portion of the cone,

and

B = the weight of a unit of volume.

Then, because the bases of similar cones are as the squares

a?
2

of their altitudes, K = K -

FIG. 8.
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The volume of the cone whose altitude is x

X s*X 3?

K^=/
o

K.-

and the weight of the same part

/

(from equation (2)) X=

from which it appears that the total elongation is independent
of the transverse section, and varies as the square of the length.

18. THE WORK OF ELONGATION. If P be the force which

does the work, and x the space over which it works, then the

general expression for the work is

............
(6)

o

To apply this to the prism, substitute P from Eq. (3) in (6),

and make dx = d\ and we have

/EK1

i E^
7,U = / r d\ =

which is the same result that we would have found by suppos

ing that P was put up by increments, increasing the load gradu

ally from zero to P.

Example. If the coefficient of elasticity of wrought iron be 28,000,000 Ibs.,

and is expanded O.OOOOOC98 of its length for one degree F., how much work is

done upon a prismatic bar whose section is one inch, and length 30 feet, by a

change of 20 degrees of temperature ?

Walls of buildings which were sprung outward have been drawn into an erect

position by heating and cooling bars of iron. Several rods were passed through
the buildings, and extending from wall to wall, were drawn tight by means of

the nuts. Then a part of them were heated, thus elongating them, and the

nuts tightened; after which they were allowed to cool, and the contraction

which resulted drew the walls together. Then the other rods were treated in

a similar manner, and so on alternately.
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19. VERTICAL, SCIL,L,ATIONS._If a bar Aa, Fig. 9,

with a weight, P, suspended from its lower end, be pressed down

by the hand, or by an additional weight from a to
,
and the addi

tional force be suddenly removed, the end of the bar on returning

will not stop at
,
but will move to some point above, as c, a dis

tance ac = ab. From a principle in Mechanics, viz.
,
that the living

force equals twice the work, we are enabled to determine all the

circumstances of the escillation when the weight of the bar is

neglected. The weight P elongates the bar so that its lower ex

tremity is at
,
at which point we will take the origin of co-or

dinates.

Fig. 9.

Let X = ab = the elongation caused by the additional force,

x = ad any variable distance from the origin,

v = the velocity at any point, as d, and

M = the mass of the weight P.

If the weight of the rod be very small compared with P, the vis viva is

= 2
very nearly.

The work for an elongation equal to X, is by Eq. (7),

Wr t L tvwv
EK

for half an oscillation

PI

and the time for a whwe oscmation is

m PI / X
TTA / - - - (8)

hence the oscillations will be isochronous. ... ^ I ~

It is evident that by applying and removing the force at regular intervals, the

amplitude of the oscillations may be increased and possibly produce rupture.

In this way the Broughton suspension bridge was broken.*

As a second example take the case in which P is applied suddenly to the end

of the rod. It is evident that the total elongation will be greater than X, the

permanent elongation. For the fundamental equation we may use another

* Mr. E. Hodgkinson, in the 4th volume of the Manchester PhilosopJiicol

Transactions, gives the circumstances of the failure, from this cause, of the

suspension bridge at Broughton, near Manchester, England. And M. Navier, in

his theory of suspension bridges (Fonts Suspendus, Paris, 1823), states that

the duration of the oscillation of chain bridges may be nearly six seconds.

r
ctt
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J
principle in Mechanics, which might have been used in the preceding problem,

viz., that the mass multiplied by the acceleration equals the moving force. The

EK*
resisting force for an elongation x is -y (See Eq. (3) ), and the moving force is

P
P, whose mass =

;
hence

^ M^=P -55*.
d*tt~ I

=

e=4/-

x

x

Hence, the amplitude is twice the permanent elongation. If x = 2 A we have

t = T -i/ -= = * / . Investigations of this kind give rise to a divi

sion of the subject called Resilience of JPmwa.
The investigations are interesting, but the results are of little use beyond

those which have already been indicated. From the last problem we see that a

weight suddenly applied produces twice the strain that it would if applied

gradually.
As additional exercises for the student, I suggest the following : Suppose the

weight be applied with an initial velocity. Suppose ti weight P is attached to

one end, and the weight P is placed suddenly upon it
;
or it falls upon it.

To find the velocity at any point in terms of t, also A in terms of t.

If a weight W is suspended at the end, and another weight W, falls from a

height A, giving rise to a velocity fl,
we have for the common velocity of the

TIT

bodies after impact, if both are non-elastic, V = J
_, and the ?i8 viva of

both will be

W TJ* FK
MV&quot; = which equals^ X-, or twice the work.

* X
-V(W. + W) V EK*

This is only an approximate value, for the inertia of the wire is neglected.

2O. VISCOSITY OF SOLIDS. Experiments show that the prin-

ciple of equal amplitudes, referred to in the preceding article, is

not realized in practice. This is more easily observed in trans

verse vibrations. The amplitudes grow rapidly less from the

first vibration, and the diminution cannot be fully accounted for

by the external resistance of air. Professor Thompson of Eng-
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land has shown that there is an internal resistance which opposes
motion among the particles of a body, and is similar to that

resistance in fluids which opposes the movement of particles

among themselves. He therefore called it viscosity* He proved :

1st. That there was a certain internal resistance which he

called Viscosity, and which is independent of the elastic pro

perties of metata;
2d. That this force does not affect the co-efficient of elasticity.

The law between molecular friction and viscosity was not

discovered.

The viscosity was always much increased at first by the in

crease of weight, but it gradually decreased, and after a few

days became as small as if a lighter weight had been applied.

Only one experiment was made to determine the effect of con

tinual vibration
;
and in that the viscosity was very much in

creased by daily vibrations for a month.

This latter fact, if firmly established, will prove to be highly

important ;
for it shows that materials which are subjected to

constant vibrations, such as the materials of suspension bridges,
have within themselves the property of resisting more and more

strongly the tendency to elongate from vibration. Experi
ments will be given hereafter which tend to confirm this fact,

when the vibrations are not too frequent or too severe.

But the true viscosity of solids has been fully proved by Mr.

Tresca, a French physicist, who showed that when solids are

subjected to a very great force, the amount of the force

depending upon the nature of the material, that the particles in

the immediate vicinity of pressure willow over each other, so

as to resemble the flowing of molasses, or tar, or other viscous

fluids. Thus, the true viscosity differs entirely in its character

from the property recognized by Professor Thompson.

RESISTANCE TO RUPTURE BY TENSION.

21. MODULUS OF STRENGTH. Many more experiments
have been made to determine the ultimate resistance to rupture

by tension, than there have to determine the elastic resistance.

In the earlier experiments the former was chiefly sought, and

more recently all who experimented upon the latter also deter

mined the former.

* Civ. Eng. Jour., vol. 28, p. 322.
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The force which is necessary to pnll asunder a prismatic bar

whose section is one square inch, when acting in the direction

of the axis of the bar, is called the modulus of strength. This

we call T. It expresses the tenacity of the material, and is

sometimes called the absolute strength and sometimes modulus

of tenacity.

S2. I OK Ml I. A FOR Till: HODI M S OF STRENGTH ; OT the

force necessary to break a prismatic bar, when acted upon by
a tensile strain.

Let K=the section of the bar in inches,

T=the modulus of tenacity, and

P:=the required force.

It is proved by experiment that the resistance is proportional
to the section

;
hence

P=TK ... (9)

.-. T=? (10)
Iv

&quot;&quot;From (10) T may be found. In (10) if P is not the ultimate

resistance of the bar, then will T be the strain on a unit of section.

From (9) we have

K=? (11)

which will give the section.

The following are some of the values of T which have been

found from experiment by the aid of equation (10).
Cohesive force or Tenacity
in pounds per square inch.

Ash (English} 17,000
Oak (English] 9,000 to 15,000
Pine (pitch) 10,500
Cast Iron *

14,800 to 16,900
Cast Iron ( Weisbach &amp;lt;& Overman) . 20,000

Wrought Iron 50,000 to 65,000
Steel wire 100,000 to 120,000
Bessemer steel f 120,000 to 129,000

&quot; &quot;

i . . . . ; 72,000 to 101,000
Bars of Crucible Steel . . . . 70,000 to 134,000
The most remarkable specimen of cast steel for tenacity which

*
Hodgkinson, Bridges. Weale, sup., p. 25.

f Jour. Frank. Inst. Vol. 84, p. 366.

| Also experiments by Wm. Fairbairn, Van Nostrand s EC. En. Mag., Vol.

I., p. 273. Do. p. 1009.
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is on record, was manufactured in Pittsburgh, Pa. It was
tested at the Navy Yard at Washington, D. C., and was found
to sustain 242,000 pounds to the square inch !

*

For other values see the Appendix.
23. A vertical prismatic bar is fixed at its upper end, and

a weight P l
is suspended at the other what must he the upper

section^ at A, Fig. 7 9 so as to resist n times all the weight below

it, the weight of the bar being considered ?

Let &amp;lt;J = the weight of a unit of volume of the bar, and the

other notation as before.

ThenKT = n

If n 1 K = p
_L of,

T

;
and if 2 1 = T, K= oo, or no .section is pos-

sible, and I _ is the corresponding length of the bar.
a

BAR OF UNIFORM STRENGTH. Suppose a bar is

fixed at its upper extremity, Fig. 1O, and a weight P, is sus

pended at its lower extremity ; it is required to find the form
of the bar so that the horizontal sections shall beproportional to

the strains to which they are subjected the weight of the bar

being considered.

Let &amp;lt;J = weight of ak unit of volume,
W = weight of the whole bar,

K = ?l= the section at B (Eq. (11) ),

Kj = the upper section,

K variable section, and

x = variable distance from B upwards.
Also let the sections be similar :

Then P = P
t + J /*K dx strain on any section, ^^--\

as D C. But TK is the ability to resist this strain
;

FIG - 10 -

. . Pj -f- &amp;lt;J flLdx =1 TK. Differentiate this and we have

J K 6fo= TdK
or

^_ fa
_ _ which by integrating gives

I

Tpj = :N&quot;ap.logK + C (12a)

* Am. K. E. Times (Boston), Vol. 20, p. 206.
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But for x = 0, we have K = K .-. C = Nap. log K = -

Nap. log tJ. Hence, Eq. (I2a) becomes.! x = Nap. log
K Or,.

(

K

T
,

passing to exponetials, gives
T =

. K .-K.i-.&amp;gt;. . JV iv e _ (13)

A
For the upper section K = K, andxl:. K, = je* (14)

W equals,

Example. What must be the upper section of a wrought-iron shaft of uni

form resistance 1,000 ft. long, so that it will safely sustain its own weight and

75,000 Ibs.

Let T = 10,000 Ibs., and
2 0.27 Ibs. per cubic inch.

Then Eq. (11) gives K = 7.5 sq. inches, and

equation (14) gives K, = 10.37 inches.

In these formulas the form of section does not appear. For

tensile strains, the strength is practically independent of the form,
but not so for compression. When it yields by crushing, the

influence of form is quite perceptible, but not so much so as

when it yields by bending under a compressive strain. The
latter case will be considered under the head of flexure.

STRAINS IN A

Fio. 11.

CLOSED CYLINDER.
If a closed cylinder is subjected to

an internal pressure, it will tend to

burst it by tearing it open along a

rectilineal element, or by forcing the

head off from the cylinder, by rup

turing it around the cylinder. First,

consider the latter case. The force

which tends to force the head off is

the total pressure upon the head, and

the resisting section is the cylindrical

annulus.
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Let D = the external diameter,
d = the internal diameter,

p the pressure per square inch, and

t = the thickness of the cylinder.

Then fard*p=tke pressure upon the head
;

6^)= the area of the cylindrical amiulus
;

2

eT) the resistance of the annulus
; and,

2t=D-d.

Hence, for equilibrium,

J^=i&amp;lt;rT(D
2

-6r)

or, &amp;lt;Fp=2Tt(T&amp;gt; + d)=4:T(t*+ dt)
- - -

(16)

which solved gives t=( l+\/l-fp &quot;
&quot; C^)

Next consider the resistance to longitudinal rupturing. As
it is equally liable to rupture along any rectilinear element,

suppose that the cylinder is divided by any plane which passes

through the axis. The normal pressure upon this plane is the

force wrhich tends to rupture it, and for a unit of length is

&+.
and the resisting force is

hence, for equilibrium,

2T,

pd - - -
(18)

The value of t from (18) divided by that of t from (16) gives

the ratio
-j

? and since D always exceeds d, this ratio is greater

than 2
;
hence there is more than t\vice the danger of bursting

a boiler longitudinally that there is of bursting it around an

annulus when the material is equally strong in both directions.

The last equation was established by supposing that all the

cylindrical elements resisted equally, but in practice they do

not
; for, on account of the elasticity of the material, they will

be compressed in the direction of the radius, thus enlarging the

internal diameter more than the external, and causing a corre

sponding increase of the tangential stress on the inner over the

outer elements. In a thick cylindrical annulus it is necessary

to consider this modification.
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To find the VARYING LAW OF TANGENTIAL STRAINS, let D and d
be the external and internal diameters before pressure, and
D+ 2 and d+y the corresponding diameters after pressure.

Then, as a first approximation which is near enough for prac
tice suppose that the volume of the annulus is not changed,
and we have

or, ~Ds=dy nearly
........

(19)

But the strain upon a cylindrical filament varies as its elon

gation divided by its length; see equation (3). Hence the

strain on the external ammlus, compared with the internal,

is as

z y
I JT ~ or as D to d

which combined with (19) gives

d I

jy
a to ^ or as d* to D

,
or as r* to IT

where r and R are radii of the annulus.

Hence, tfie strain varies inversely as the square of the dis

tance from the axis of the cylinder.

To FIND THE TOTAL RESISTANCE, let

x = the variable distance from the axis of the cylinder,
T = the modulus of rupture, or of strain, and

t = the thickness of the annulus.

Then Tdx is the strain on an element at a distance r from

the axis of the cylinder, or otherwise upon the inner surface of

the cylinder ;
and according to the principle above stated,

r
T t dx is the strain on any element, and the total strain on both
x

sides is

/Kf=21
r

If t = r, this becomes

(20)

Tt

which compared with equation (18) shows that when the thick

ness equals the radius, the resistance is only half what it would
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be if the material were non-elastic. In (20) if t is small com

pared with
T*,

it becomes 2T nearly, which is the same as

equation (18).

If the ends of the cylinder are capped with hemispheres, the

stress upon an elementary aimulus at the inner surface is

%*Trdx.* Proceeding as before, and we find that the total

stress necessary to force the hemispherical heads off is

which is also the stress necessary to force asunder a sphere by
internal pressure, when the elasticity is considered.

If cylinders are formed by riveting together plates of iron,

their strength will be much impaired along the riveted section.

The condition of the riveted joint will doubtless have much
more to do with the strength than the compressibility of the

material, and will hereafter be considered.

* T. J. Kodman says the resistance on any elementary annulus is ^^xdx

(Exp. on metal for cannon, p. 44) ;
but it appears to me that, to make his

expression correct, T must be the modulus at any element considered, and

hence variable, whereas it should be constant. The strain on any elementary
r -2

annulus whose distance is x from the centre of the sphere, is T2*rdx, 2

dx
2n-r

3T
;
and the total resistance is the integral of this expression between

05

the limits of r and r+t.
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RESISTANCE OF GLASS GLOBES TO INTERNAL PRES
SURE.

EXPERIMENTS OF WM. FAIRBAIRN.

Description of the glass.
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As might have been anticipated, the tenacity of bars is much
less than globes ;

for it is difficult to make a longitudinal strain

without causing a transverse strain, and the latter would have a

very serious effect
;

it is also probable that the outer portion of

the annealed glass is stronger than the inner, and there is a

larger amount of surface compared with the section, in globes
than in cylinders.

RIVETED PLATES.

RIVETED PL.ATES are used in the construction of boil

ers, roofs, bridges, ships, and other frames. It is desirable to

know the best conditions for riveting, and the strength of riveted

plates compared with the solid section of the same plates. The
common way of riveting is to punch holes through both plates,

into which red-hot bolts or rivets are placed, and headed down
while hot. The process of punching strains, and hence weakens,
the material. A better way is to bore the holes in the plates,
and then rivet as before.

The holes in the separate

plates should be exactly

opposite each other, so that

there will be no side strain

on the plates caused by
driving the rivets home,
and to secure the best ef

fects of the rivets them
selves. They are some
times placed in single and
sometimes in double rows,
and experiment shows that the latter possesses great advantage
over the former. Experiments have been made upon plates of

the form shown in Fig. 12, both with lap and butt-joints, and
with single and double rows of rivets.*

* Lond. Phil. Transactions, part 2d, 1850, p. 677.

-

FIG. 12.

Library. J



32 THE RESISTANCE OF MATERIALS.

Table dwwing Hie strength of single and double riveted plates.

Cohesive strength of the plates
iu Ibs. per square inch.

T.
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Table showing the strongest forms and best proportions of rivetedjoints, as deduced

from expei*iments and actual practice. ( Useful Information for Engineers,
1st Series, p. 285.)

Thickness of

plates in

inches,
t.
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Had we compared the mean instead of the least strength of bars

as given in the table, the result would not have differed materi

ally in regard to the relative strength in the respective directions.

The boiler-iron manufactured by Messrs. E. II. & P. Ellicott,

which was tried in all these modes of preparation of specimens,

gave the following results :

1. When tried at original sections, seven experiments on

length-sheet specimens gave a mean strength of 55285 Ibs. per

square inch, the lowest being 44399 Ibs., and the highest
59307 Ibs. Fourteen experiments on cross-sheet specimens gave
a mean of 53890 Ibs., the lowest result being 50212 Ibs., the

highest 58839 Ibs.
;
and six experiments on strips cut diagonally

from the sheet exhibited a strength of 53850 Ibs., of which the

lowest was 51134 Ibs., and the highest 58773 Ibs.

2. When tried by filing notches on the edges of the strips, to

remove the weakening effect of the shears, the length-sheet bars

gave, at fourteen fractures, a mean strength of 63946 Ibs., vary

ing between 56346 Ibs. and 78000 Ibs. per square inch. The

cross-sheet specimens tried after this mode of preparation

exhibited, at three trials, a mean strength of 60236 Ibs., vary

ing from 55222 Ibs. to 65143 Ibs.
;
and the diagonal strips, at

four trials, gave a mean result of 53925 Ibs., the greatest differ

ence being between 51428 Ibs. and 56632 Ibs. per square inch.

3. Of strips reduced to uniform size by filing, four compara
ble experiments on those cut lengthwise of the sheet gave a mean

strength of 63947 Ibs., of which the highest was 67378 Ibs., and

the lowest 60594 Ibs.

Cross-sheet specimens, tried after the same preparation, ex

hibited, at thirty-three fractures, a mean of 50176 Ibs., of which

the highest was 65785 Ibs., and the lowest 52778 Ibs. No bar

cut diagonally was reduced to uniform size.

From the foregoing statements it appears that by filing in

notches and filing to uniformity, we obtain results 63946 Ibs.

and 63947 Ibs. for the strength of strips cut lengthwise, differing

from each other by only a single pound to the square inch, and

that by these two modes of preparation the cross-sheet speci

mens gave respectively 60236 Ibs. and 60176 Ibs., differing by

only 60 Ibs. to the square inch. This seems to prove that by
both methods of preparing the specimens the accidental weak

ening effect of slitting had been removed by separating all that
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portion of the metal on which it had been exerted. Hence we

may infer that the differences between length-sheet and cross-

sheet specimens are really and truly ascribable to a difference of

texture in the two directions, which will be seen to amount, in

the case of filing in notches, to 6.15 per cent., and in that of

filing to uniformity, to 6.26 per cent, of strength of cross-sheet

specimens.
Table of the comparative mew of the strength of specimens of ten different

sorts of boiler and one of bar iron, in the longitudinal, transverse, and diago

nal direction of the rotting, as deduced from the least strength of each specimen,

and the average minimum of each sort of iron, in each direction in which it was

tried.

_J
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The specimens from 42 to 74 were partly puddled iron, and

partly Juniata blooms, hammered and rolled into plate. The

length and cross-sheet specimens of these two kinds must be

compared separately.

All the experiments on No. 228 (cross) and 230 (length) were

made at ordinary temperatures with a view to this comparison.

29. TENSILE STRENGTH OF WROUGHT IRON AT VARIOUS
TEMPERATURES.

Mr. Fairbaim has made experiments upon rolled plates of

iron, and rods
ojprivet iron, at various temperatures. The for

mer were broken in the direction of the fibre and across it.

The specimen when subjected to experiment was surround

ed with a vessel into which freezing mixtures were placed
to produce the lower temperatures, and oil heated by a fire

underneath to produce the high temperatures. The experi
ments were made upon Staffordshire plates, which are inferior

to several other kinds in common use. The following table

gives a summary of the results :

Table showing the Resistance of Staffordshire Plates at Different Temperatures.

1
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The mean values given in the sixth column of this Table

exhibit a remarkable degree of uniformity in strength for all

temperatures, from 60 degrees to 395 degrees. The single ex

ample at degrees gives a higher value than the mean of the

others, but not higher than for some of the specimens at

higher temperatures. At red heat the iron is very much
weakened. This fact should be noticed in determining the

strength of boiler-flues, as they are often subjected to in

tense heat when not covered with water.

The experiments upon rivet iron were made with the same

machine, and in the same manner, the results of which are

shown in the following table :

Table showing the Results of Experiments on Rivet Iron at Different Tem

peratures.

1
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Mr. Johnson, when in the employ of the Navy Department,
in 1844, made some experiments to determine the effects of

thermo-tension upon different kinds of iron.* lie took two
bars of the same kind of iron, and of the same size, and broke

one while cold. He then subjected the other to the same ten

sion when heated 400 degrees, after which the strain was re

lieved, and the bar was allowed to cool, and the permanent
elongation noted, after which it was broken by an additional

load. It will thus be seen that the experiments were not con

ducted in the same way as those by Fairbairu. The following
table gives the results of his experiments :

TJw Results of Experiments on Thermo-Terwion, at 400 Temperature.
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ABSTRACT OF A TABLE

Of the comparative view of the influence of higli temperatures on the strength of

iron, as exhibited by 73 experiments on 47 different specimens of that metal,
at 46 different temperatures, from 212 to 1317 Fahr., compared with tlie

strength of each bar ichen tried at ordinary temperatures, the number of expe
riments at the latter being 163.

No. of the experi
ment.
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This formula appears to be sufficiently exact for all tem

peratures between 520 and 1317.

EFFECT OF SEVERE STRAINS UPON THE CTI/TITTIATE

TENACITY OF IRON RODS. Thomas Loyd, Esq., of England,
took 20 pieces of If S. C.

^&amp;gt;

bar iron, each 10 feet long, which

were cut from the middle ot as many rods. Each piece was cut

into two parts of 5 feet each, and marked with the same letter.

A, B, C, etc., were first broken, so as to get the average breaking
strain. A2, 132, tfcc., were subjected to the constant action of

three-fourths the breaking weight, previously found, for five

minutes. The load was then removed, and the rods afterwards

broken.

Results of the Experiments.*

FIRST.
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These experiments indicate that a frame or bridge may be

subjected to a severe strain of three-fourths of its strength for

a short time without endangering its ultimate strength.

3 1 . EFFECT OF REPEATED RUPTURE. The following eX-

periments were made at Woolwich Dockyard, England. The
same bar was subj ected to three or four successive ruptures by
tensile strains. They show the remarkable fact, that while great
strains impair the elasticity, as shown by Hodgkinson, yet they
do not appear to diminish the ultimate tenacity. This fact is

important, for it shows that iron, which has been broken by
tension in a structure, may safely be used again for any strain

less than that for which it was broken.

Table shamng the effect of repeated Fracture cm Iron Bars.
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them more ductile. To secure this, the metals are subjected to

a high heat and then allowed to cool slowly. Steel is softened

in this way, so that it may be more easily worked. Campin
*

says that steel should not be overheated for this purpose.
Some bury the heated steel in lime

;
some in cast-iron borings ;

and some in saw-dust. He (Campin) says the best plan is to

put the steel into an iron box made for the purpose, and fill it

with dust-charcoal, and plug the ends up to keep the air from

the steel
;
then put the box and its contents into a fire until it

is heated thoroughly through, and the steel to a low red heat.

It is then removed from the fire, and the steel left in the box

until it is cold. Tools made of annealed steel will, in some

cases, last much longer than those made of unannealed steel.

But it appears from the following table that it weakens iron

to anneal it.

Table of the strength of Wrought Iron Annealed at Different Temperatures.
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34. PROLONGED FUSION OF CAST IRON. Cast iron is also

subjected to great modifications of strength on account of

the manipulations to which it is or may be subjected in its

manufacture and preparations for use. The strength in some
cases is greatly increased by keeping the metal in a fused state

some time before it is cast. Major &quot;Wade made experiments

upon several kinds of iron, all of which were increased in

strength with prolonged fusion (see Rep. p. 44), one example
of which is given in the following

Table shoioing the Effects of Prolonged Fusion.
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determined that the results which will follow from any given
course of treatment may be predicted with much certainty.

(Rep., p. 245.)

By mixing grades Nos. 1, 2, and 3, and subjecting them to a

third fusion, one specimen was obtained whose density was 7.304,

and whose tenacity was 45,970 pounds, which is the strongest

specimen of cast iron ever tested. (Rep., p. 279.)

As a general result of these experiments, Major AVade re

marks (p. 243),
&quot; that the softest kinds of iron will endure

a greater number of meltings with advantage than the higher

grades. It appears that when iron is in its best condition for

casting into proof bars (that is, small bars for testing the metal)
of small bulk, it is then in a state which requires an additional

fusion to bring it up to its best condition for casting into the

massive bulk of cannon.&quot;

36. THE MANNER OF COOLING also affects the strength.
It was found that the tensile strength of large masses was in

creased by slow cooling ;
while that of small pieces was

increased by rapid cooling. (Rep., p. 45.)

37. THE MODULUS OF STRENGTH IS MODIFIED, WC thllS

see, by a great variety of circumstances
;
and hence it is im

possible to assign any arbitrary value to it for any material,

that will be both safe and economical
;

but its value must be

determined, in any particular case, by direct experiment, or

something in regard to the quality of the material must be

known before its approximate value can be assumed.

O 38. SAFE LIMIT OF LOADING Structures should not be

strained so severely as to damage their elasticity. According
Article 9, it appears that a weight suddenly applied will

produce twice the elongation that it will if applied gradually
or by increments. Hence, structures which are subjected to

shocks by sudden applications of the load, should be so propor
tioned as to resist more than double the load as a constant

dead-weight without straining it beyond the elastic limit.

This method of indicating the limits, suggested by M. Pon-

celet, is perfectly rational
; but, unfortunately, the elastic limits

have not been as closely observed and as thoroughly determined

by experimenters as the limit of rupture. The latter was for-
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merly considered more important, and hence furnished the

basis for determining the safe limit of the load. Observations

on good constructions have led engineers to adopt the following
values as mean results for permanent strains on bars :

For wood, TV ) The ]oad which would
For wrought iron,

|
toU

d
For cast iron, i to

-J- )

Further observations will be made upon this subject in the

latter part of this volume.
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CHAPTER II.

COMPRESSION.

38. RESISTANCE TO COMPRESSION also divides itself into

two general problems elastic and ultimate. The law of elastic

resistance for compression may be as readily found as that for ten

sive resistance
;
but the law of resistance to crushing is very com

plex. If the pieces which are subjected to this stress are long,

they will bend under a heavy stress, unless they are confined, and

when they bend they break partly by bending and partly by crush

ing. If the pieces are very short, compared with their diameter,

they may be crushed without being bent
;
but even in this case,

with granular substances, the yielding is more or less peculiar,

dividing off in pieces at certain angles with the line of pressure.

The results of some experiments will now be given, which will

enable us to test the prevailing theories upon this subject.

ELASTIC RESISTANCE.

TABLE

Showing the compression, permanent set, and coefficient of elasticity
*
of a solid

* &amp;gt;&quot;*

vw cylinder 10 inches long and 1.382 inch diameter.

Weight per
square inch of

section in IDS.
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. COMPRESSION OF CAST-IRON. Captain T. J. Rodman,
in his report upon metals for cannon, page 163, has given the

results of experiments upon a piece of cast-iron, which was
taken from the body of the same gun as was the specimen re

ferred to on page 11 of this work, the results of which are given
on the preceding page.

We observe that the coefficient of elasticity is much less for

the first strains than for those that follow. It thus appears that

this metal resists more strenuously after it has been somewhat

compressed than at first. The coefficient of elasticity is con

siderably less than for the corresponding piece, as given on page
11. The difference is very much greater than that found by
Mr. Hodgkinson in the specimens which he used in his experi
ments, lie took bars 10 feet long, and about an inch square,
and fitted them nicely in a groove so that they could not bend,
and occasionally, during the experiment, they were slightly

tapped to avoid adherence. The metal was the same kind as

that used in the experiment recorded on page 13.

TABLE

Giving the results of experiments by Mr. Ilodgkinson on bars of cast-iron 10 feet

lonp.

Pressure per
square inch of

section.

P.
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Iii this case the highest coefficient of elasticity results from

the smallest strain which is recorded. The difference in this

respect between this example and the preceding one results

doubtless from the internal structure of the iron. The coeffi

cient in both these cases is much less than that found for

other kinds of cast-iron, as is shown in the table of resistances

in the Appendix.
Mr. llodgkinson proposed the empirical formula, P=

170,763XC 36,318X2, to represent the results of the experi

ments
;
and although it may represent more nearly the results

of a greater range of strains than equation (3), yet there is no

advantage in its use in practice.

I O. COMPRESSION OF WROUGHT, IRON.

Mr. llodgkinson also made experiments upon bars of wrought
iron in precisely the same manner as upon those of cast iron,

the results of which are given in the following

TABLE

Giving the results of experiments by Mr. E. HodgJdnson on bars of wrought iron,

each of which was ten feet long.*

Weight producing
the compression.
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GRAPHICAL, REPRESENTATION. TllGSG tWO
are graphically represented in Fig. 13. It is seen from the tables

that the compressions are quite uniform for a large range of

strains, and hence equation (2), page 17, is applicable to com-

pressive strains when within the elastic limits. In the case of

the wrought-iron bars, the first one attains its maximum coeffi

cient of elasticity for a strain somewhat less than one-half its

ultimate resistance to crushing, and the second bar at about one-

third its ultimate resistance.

30000

20000

10000

2000

I

0-02 in. 0-10

FIG. 13.

-20

43. COMPARATIVE RESISTANCE OF CAST AND WROUGHT
IRON. The coefficient of elasticity is a measure of the com

pressibility of metals. Hence, an examination of the two

preceding tables shows that of the specimens used in these ex

periments, the cast iron was compressed nearly twice as much
as the wrought iron for the same strains. An examination of

the table of resistances, in the appendix, shows that for a mean
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value wrought iron is compressed about two-thirds as much as

cast iron for the same strain. The same ratio evidently holds

for tension. This is contrary to the popular notion, that cast

iron is stiffer than wrought iron
;
for it follows from the above

that a cast-iron bar may be stretched more, compressed more,
and bent more, than an equal wrought iron one with the same
force under the same circumstance, and in some cases, the

changes will be twice as great. One reason why cast is con

sidered stiffer than wrought iron probably is, that wrought iron

does not fail suddenly as a general thing, but it can be seen to

bend for a long time after it begins to break
;
while cast iron, on

account of its granular structure, fails suddenly after it begins,
and the bending which has previously taken place is not

noticed. It is not safe to trust to such general observations for

scientific or even practical purposes, but careful observations

must be made, so that all the circumstances of the case may be

definitely known. It will hereafter be shown that the ultimate

resistance to crushing of cast iron is double that of wrought
iron, and yet Fairbairnand other English engineers have justly

insisted upon the use of wrought iron for tubular and other

bridges. For, without considering the comparatively treacherous

character of cast iron when heavily loaded, it appears that

within the elastic limits (and the structure should not be loaded

to exceed that), a wrought iron structure is stiffer than a cast

iron one of the same dimensions, and will sustain more for a

given compression, extension, or deflection.

44. COMPRESSION OF OTHER MATERIALS. All materials

are compressible as well as extensible, and it is generally
assumed that their resistance to compression, within the elastic

limits, is the same as for extension
; but, as has been seen in

the previous articles, this is not rigorously correct. Indeed the

same piece resists differently under different circumstances,

depending upon its temperature, the duration of the strain, and

the suddenness with which the force is applied. But these

changes are not great, and the mean value of the coefficient of

elasticity is sufficiently exact for practical cases.

ULTIMATE STRENGTH.

45. MODULUS FOR CRUSHING. The modulus of resistance
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to crashing is the pressure which is necessary to crush pieces of

a material whose length does not exceed from one to five

times its diameter, and whose section is unity. The value

thus found we call C. It is found by experiment that the re

sistance of all substances used in the mechanic arts varies very

nearly as the section under pressure. Hence, if

P = the crushing force, and

K = the section under pressure, we have

P = CK (22)

46. MODULUS OF STRAIN. If the force P is not sufficient

to crush the piece, we have for the strain on a unit of section

c,=|. ....
It is necessary to use short pieces in determining the value of

C, because long pieces will bend before breaking, and will not

be simply crushed, but will break more like a beam.
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47. RESISTANCE TO CRUSHING OF CAST-IRON.
TABLE

Of the results of experiments on tJie tensile and crushing resistance* of cast iron of
various kinds, made by Eaton Hodykinoit,*

Description of the iron.
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In this table the ratio of resistances range from less than 4

(Clyde, No. 3) to more than 7 (Blaenavon, No.l). The same ex

perimenter once obtained the ratio of 8.493 from a specimen
of Carron iron, No. 2, hot blast ;* and the mean of several ex

periments, made at the same time, gave 6.594. Hence we have,
as the mean result of a large number of experiments, that the

crushing resistance of cast iron is about 6 times as great as itso o

tenacity ;
but the extremes are from 4J to 8-J- times its tenacity.

48. RESISTANCE OF WROUGHT IRON TO CRUSHING.

Comparatively few experiments have been made to determine

how much wrought iron will sustain at the point of crushing,
and those that have been made give as great a range of results

as those for cast iron. Wrought iron being fibrous, does not in

dicate the point of yielding as distinctly as cast iron and other

erranulons substances.o

Ilodgkinson gives C= 65000 f

Kondulet &quot; C= 70800 J

Weisbach &quot; 0=72000
Eankine &quot; C= 30000 to 40000

|-------- ...... ii __^
, Q

Hence it appears that the crushing resistance
1

of wrought
is from \ to f as much as its tenacity.

RESISTANCE OF woo TO CRUSHING. The resistance

of wood to crushing depends as much upon its state of dryuess,
and conditions of growth and seasoning, as its tenacity does.

The following are a few examples :

Kind of Wood.
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article 22, show that these kinds of wood will resist from

nearly 2 times as much to tension as to compression.

to

RESISTANCE OF CAST STEEL TO CRUSHING.-Major
&quot;Wade found the following results from experiments upon the

several samples, all of which were cut from the same bar and

treated as indicated in the table.*

Specimen.
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may partially account for the great difference in the two sets of

experiments. The cubes gave way more gradually than the

cylinders, but both fractured some time before they entirely
failed. The cylinders failed very suddenly at last, and were

divided into very small fragments. The specimens had rubber

bearings at their ends, so as to produce an uniform pressure
over the whole section.

L STRENGTH OF PILLARS. The strength of pillars for

incipientflexure has been made the subject of analysis by Euler

and others, but practical men do not like to rely upon their

results. Mr. llodgkinson deduced empirical formulas from ex

periments which were made upon pillars of wood, wrought iron,

and cast iron. The experiments wrere made at the expense of

&quot;Wm. Fairbairn, and the first report of them was made to the

Royal Society, by Mr. llodgkinson, in 1840. The following are

some of his conclusions :

1st. In all long pillars of the same dimensions, when the

force is applied in the direction of the axis, the strength of one

which has flat ends is about three times as great as one with

rounded ends.

2d. The strength of a pillar with one end rounded and the

other flat, is an arithmetical mean bet\veen the two given in the

preceding case of the same dimensions.

3d. The strength of a pillar having both ends firmly fixed, is

the same as one of half the length with both ends rounded.

4th. The strength of a pillar is not increased more than ^th

by enlarging it at the middle.

To determine general formulas, bars of the same length and

different sections were first used
;
then others, having constant

sections and different lengths ;
and formulas wrere deduced from

the results. The formulas thus made were compared with

the results of experiments on bars whose dimensions differed

from the preceding. The following are the results of some of his

*/&quot;&quot; 3^y^Tr%/K- / //
,

j
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EXI EKIMKNTS ON SQUARE PILLARS.

Lenpth of

the lu-rt.
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in which substitute the values from any two experiments. Thus

if we take from the table

I = 10 feet, d! = 1 inch, P = 4225 Ibs., and

I = 5 feet, d = 1 inch, and P = 18038 Ibs., we have

18038

4225

log. 4.2694
/. y = -V - = 2.094.

log. 2

Proceed in a similar way with each of the others and take

the mean of the results for the power to be used. In this way
was formed the following

TABLE

For the absolute strength of columns.

In which P = crushing- weights in gross tons,

d the external diameter, or side of the column in inches,

dl
= the internal diameter of the hollow in inches, and

I the length in feet.

Kind of Column.

Both ends rounded, the

length of the column ex

ceeding fifteen times its

diameter.

Both ends flat, the length of
the column exceeding thirty

times its diameter.

Solid Cylindrical Columns of )

cast iron ]

Hollow Cylindrical Columns )

of cast iron )

Solid Cylindrical Columns of )

wrought iron f

Solid Square Pillar of Dant-
zic oak

Solid square Pillar of red )

dry deal [

P = 44.16-

P = 13
z
8
;!_V76

P = 44.34

I
1

3.65 3.55
d di

P =
3.76

P = 133. 75-

3.

P = 10.95 jt

P = 7.81 7j

The above formulas apply only in cases where the length is

so great that the column breaks by bending and not by simple

crushing. If the column be shorter than that given, in the
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table, and more than four or five times its diameter, the strength
is found by the following formula :

in which P the value given in the preceding table,

K = the transverse section of the column in square

inches,

C = the modulus for crushing in tons (gross) per

square inch, and

AV= the strength of the column in tons (gross).*

Experiments have been made upon steel pillars which gave

good results.f

53. WEIGHT OF PILLARS. From the first formula of the

preceding table we find

The area of the cross section is % * d2
,
and the volume ki

inches =-
if.

* d* I -

i

Cast iron weighs 450 pounds to the cubic foot, hence the

450 450
weight= T^-OO x 3 x *-# 2 x I =-&rfi x 3.141C x

which by reduction gives

weight = 0.0152803
(?.

Z
S&amp;lt;58

)
TW . _ \

(24.)

If P is given in pounds, this coefficient must be divided by

If the pillar is hollow the section of the iron is J *
(d? d*),

.and if n is the ratio of the diameters, so that d
l
=nd this be

comes

12
J * d*(l 7i

9

) ;
and its volume in inches = -r * d2

(I if) I;

* James B. Francis, C. E., has published a set of tables which gives the

strength of cast-iron columns, of given dimensions, by means of equation (23),

and also by those in the above table,

i... f London Builder, No. 1211.
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450
and its weight in pounds = - x 3 x * d? (I n2

)
L

59

If the value of d from the second equation of the first column
in the preceding table, be substituted in the preceding equation,
we find the

weight inpounds =

25__?r_

32
2240 x

(P.*-

Proceeding in this way with each of the cases given above
and we form the following :

TABLE

Of the weights in pounds of pillars in terms of their lengtJis in feet, and
crushing forces in pounds. -1- ^

Kind of Pillar.

Solid Cylindrical Column
of cast iron.

Hollow Cylindrical Col
umns of cast iron,

if 71=0-98

if 71=0-95

if 71=0-925

if 7i=0-90

if 7i=0 -875

if 71=0-85

if 7i=0-80

71=0-75

Solid Cylindrical Columns
of Wrought Iron,

Square Column of Dant-
zic Oak.

Weight in pounds.

Both ends rounded.
1

&amp;gt;
15 d.

0-0101645

(l_ft*-
Ta

)

0--001349014 (P.Z
3 -58

)

0-002549688 (P. I
s

04)03000033

0--005649247

.jQ -00599670 (P. Z
s -M

)

(Cubic foot weighs 47.24

pounds. )

Both ends flat.

Z
&amp;gt;

30 d.

0-OG37

A n(VJ-~ ~,Y^&amp;gt;\r \J\Mj t CTwU&amp;lt;O

1 n*

-9-000060628 (P.^

0-00120664

0-00152392 (P.I
3 -

0-00165855 (P.Z
1 -

0-00189914

0-00211346

0-00201664 (P.I
3

-i^600547291 :
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If the thickness of the metal (t) and the external diameter

are given, n may be found as follows: d2t= internal diame

ter, hence n= ~*= \. *. For instance, if the external diameter

is 6 inches, and the thickness f of an inch, the internal diame

ter is 5J inches and 71=^=0.875.
The iron used in the preceding experiments was Low Moor

No. 2, whose strength in columns is about the mean of a great

variety of English cast iron, the range being about 15 percent,
above and below the values given above.

54. CONDITION OF THE CASTING. Slight inequalities in

the thickness of the castings for pillars does not materially af

fect the strength, for, as was found by Mr. Ilodgkinson, thin

castings are much harder than thicker ones, and resist a greater

crushing force. In one experiment the shell of a hollow column
resisted about 60 per cent, more per square inch than a solid

one.* But the excess or deficiency of thickness should not in

any case exceed 25 per cent, of the average thickness.f Thus,
if the average thickness is one inch, the thickest part should not

exceed 1J inch, and the thinnest part should not be less than
of an inch.

It is also found that in large castings the crushing strength
of the part near the surface does not much exceed that of the

internal parts.

55. EXPERIMENTS MADE BY THE NEW YORK CENTRAL,
RAILROAD COMPANY. The immediate object of these experi
ments was to determine the relative values of different sorts and
forms of wrought iron of lengths greatly exceeding their dia

meters, when subjected to longitudinal compression. The pieces
wrere not in all cases broken, nor even materially altered in

form by the compressions to which they were subjected, the

experiments being generally discontinued as soon as the pro

gressive rate of flexure due to a regularly increased load was
ascertained.

The testing machine used in the experiments was designed by
C. Hilton, and was made at the Company s carpenter shop, at Al

bany, by order of the Chief Engineer ;
its arrangement and all its

principal details were afterwards found to be exactly similar to

*
Phil Trans., 1857, p. 890. f Stoney on Strains, vol. ii., p. 206.
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those of the machine used for the same purpose by Mr. Eaton

Hodgkinson, at Manchester, England (for a description and draw

ing of which see &quot;

Tredgold on the Strength of Wrought and Cast

Tron,&quot; Weale, London, 1847), with this difference, that the ma
chine made at Albany was of wood, while that used by Mr.

Hodgkinson was of iron.

EXPERIMENT No. 1.

Made upon a bar of English Crown Iron from the works of Hawkes, Crawsliay
& Co., Gateshead, planed at both ends and perfectly straight, exactly $ feet in

length, and of cross section as sketched in Fig. 14.

lio. 11.

Weight applied in Ibs.
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EXPERIMENT No. 2.

Made upon a bar of English Crown Iron from ihe same works, planed at both

ends and perfectly straight, exactly 8 feet in lengthy and of the cross section

sluncn in Fig. 15.

FIG. 15.

Weight applied in Ibs.
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EXPERIMENT No. 3.

Made upon a bar of English Crown Iron from the same works, 8

planed at the ends, and cross section sketched below in Fig 16.

. 16.

Weights applied in Ibs.
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EXPERIMENT Xo. 4.

Made upon a piece of English Crown Iron from the same work*, of the section

thown in Fig. 17, planed at both ends and exactly 5 feet in length.

Fig. 17.

Weight in Ibs.
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EXPERIMENT No. 5.

A Bar of Angle Iron, 5 feet in length, planed at both ends and quite straigJit, of
the cross section shown in Fig. 18, furnished by the Albany Iron Works,
Troy, of ordinary quality.

FIG. 18.

Weight in Ibs.
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#6. COMPRESSION OF TtiBEs.-BtirKi.iNG. Wrought iron

tubes when subjected to longitudinal compressive stresses may
yield by crushing like a block, or by bending like a beam, or by

buckling. The first takes place when the tube is very short
;
the

second, when it is long compared with the diameter of the tube
;

and the last, for some length which it is difficult to assign, inter

mediate between the others.

The appearance of a tube after it has yielded to buckling i&amp;gt;

shown in Figs. 19 and 20.

The experiments heretofore made do

not indicate a specific law of resistance

to buckling ;
but the following general

facts appear to be established :

1. The resistance to buckling is al

ways less than that to crushing ;
and is

nearly independent of the length.

2. Cylindrical tubes are strongest ;

and next in order are square tubes, and

then rectangular ones.

3. Rectangular tubes, Q ^], are not as

strong as tubes of this form Q ^]. The FIG. 19. Fiu. 20.

tubes in bridges and ships are generally rectangular or square.

COLLAPSE OF TUBES.

57. THE RUPTURE OF TUBES wliich are subjected to

great external normal pressure is called &quot; a
collapse.&quot;

The
Hues of a steam-boiler are subjected to such an external pres

sure, and in view of the extensive use of steam pow
r
er, the subject

is very important. The true laws of resistance to collapsing were

unknown until the subject was investigated by Wm. Fairbairn.

Experiments were carefully made, and the results discussed by
him with that scientific ability for wliich he is so noted. They
were published in the Transactions of the Royal Society, 1858,

and republished in his &quot; Useful Information for
Engineers,&quot;

second series, page 1.

* Civ. Eng. and Arch. Jour., vol. xxviii., p. 28.
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The tubes were closed at each end and placed in a strong
cylindrical vessel made for the pur
pose, into which water was

v
forced

by a hydraulic press, thus enabling
him to cause any desirable pressure

upon the outside of the tube. In
order to place the tube as nearly
as possible in the condition of a

flue in a steam-engine, a pipe which
communicated with the external air

was inserted into one end of the tube.

This pipe permitted the air to escape
from the tube during collapse.
The vessel, pipe, tube, and their

connections were made practically

water-tight, and the pressure indicated

by gauges.

Fig. 21 shows the appearance and
cross-section at the middle of the

short tubes after the collapse ;
and

Fig. 22 of a long one. Although no
two tubes appeared exactly alike after

the collapse, yet the examples which
I have selected are good types of the

appearances of thirty tubes used in

the experiments.
The tubes in all cases collapsed

suddenly, causing a loud report. In the first and second
tubes the ends were supported by a rigid rod, so as to pre
vent their approaching each other when the sides were com

pressed.

The following tables give the results of the experiments :

FIG. 22.

FIG. 21.

V\
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TABLE I.

Mark.
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58. DISCUSSION OF RESULTS By comparing the tubes of

the same diameter and thickness, but of different lengths, we
see that the long tubes resist less than the short ones

; hence,
the strength is an inverse function of the length, and an ex

amination of the seventh column shows that it is nearly a sim

ple inverse function of the length. The first of the 4-inch

tubes is so much stronger than the others, it may be neglected
in determining the law of resistance, although it differs from a

mean of all the others by less than of the mean. An exami

nation of the several cases indicates that wre may safely assume

that the resistance to collapsing varies inversely as the lengths

of the tubes*

The mean of the results for the several diameters in the

last column shows that the resistance diminishes somewhat

more rapidly than the diameter increases
;
but this includes the

error, if any, of the preceding hypothesis. As the power of

the diameter is but little more than unity, it seems safer to con

clude, for all tubes less than 12 inches in diameter, as Fair-

bairn does, that the resistance of tubes to collapsing varies in

versely as their diameters.

59. L.AW OF THICKNESS Experiments were also made
to determine the law of resistance in respect to the thickness.

Comparatively few experiments were made of this character,

but these few gave remarkably uniform results. One of the

* A more exact law may be found as follows : Let P the compressing
force per square inch

;
C = a constant for any particular diameter and

thickness, I = the length, and n the unknown power. Then

CP = for one case.

o
PI == for another.

M/v

n -

1^1
ft

By means of this equation, and any two experiments in which the thickness

and diameter are the same, n may be found, and by using several experiments
a series of values may be found from which the most probable result can be

obtained. But in this case the mean result is so near unity, there is no prac
tical advantage secured by finding it.

-/&amp;lt; ///

*r*fttyV &amp;lt;/
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tubes (No. 24), was made with a butt joint, as shown in Fig.

24, and the others with lapW joints, as in Fig. 25.

FIG. 24. FIG. 25.

The following are the results of the experiments

TABLE II.

Mark.
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and for another tube

&amp;lt;7*5

W

Pl =
5^T *Pi^=l&amp;gt;i=^&quot; (25)

Hence we have

log. &amp;lt;

-
log. *,

(26)

(27)

TO FIND THE CONSTANTS U AND O.

The mean of the mean of the values of p from Table I. is

jp = |[10253+10T96+9754:+9TOO+8256]=9T52and #=0-04:3.

Using these values and others taken from the preceding

tables, and the following values may be found for n :

In equation (26) make^? = 480375, t = 0-25, jpl= 9752, t,=

0-043; and we get

Jog. 480375 -log. 9752

Similarly, taking^? = 480375,= 0-25,^= 10253, ^= 0-043
;

and we get

log. 480375 -log. 10253

log. 0-25 - log. 0-043

The mean value of j? for all but the 12-inch tubes in Table I. is

p = i (10253 + 10796 4- 9754 + 9700) = 10125
;

hence, using^ = 125874, t 0-^,4, p, 10125, 1= 0-043
;
and

we get

_ Iog.l25874-log. 10125 _
log. 0-14 - log. 0-043

and taking p =108750, t = 0-125, ^=10125 and t,= 0-043;
we get

log. 108750 -log. 10125

Tog. 0-125 - log. 0-043
:

and the mean of these results is, n = 2-18.

Fairbairn made it 2*19 by including some data which I have

rejected as paradoxical ;
I have also given more weight to those
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cases which gave nearly uniform results. The difference, how

ever, of 0-01 is too small to seriously affect practical results.

To determine the constant, Cy
substitute the proper values

taken from the preceding tables in equation (27), and we have

for four cases the following :

= ^98,900.

= 9,864,300.

The mean of which is (7= 9,604,150. Calling C ^ 9,600,000
and equation (&fa

becomes:

P= 9,600,000 --^
- &amp;gt;V ^^ (28)

If L be given in feet, so that L = 121^, we have

P = 800,000-^4- ......... C29)
(I. Jy,

The coefficient, 9,600,000, applies only to the kind of iron

used
;
but the exponent, 2*18, is supposed to be constant for

all kinds of iron.

OO. roic i i i. \ FOK THICKNESS TO RESIST COLLAPSING.

Equation (28) readily gives the following expressionforjind-
\L ing the thickness in inches of a tube to resist cottapriny :

l^^+i:!^- 1-203 -
(30)&quot;

Ol. ELLIPTICAL TI BES. Experiments made upon etiipti-

oal tube* showed that the preceding formula would give the

strength, if the diameter of the circle of curvature at the extremity
of the minor axis is substituted for d. The diameter of curva

ture is -^-, in which a is the major and b the minor axis.
b

Experiments made upon tubes in which the ends were not

connected by internal rods, showed that the resistance was in-

MTM ly as their length.

Zo 6&&amp;lt;i-(&
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VERY LONG TUBES. Some experiments were made

upon a tube 35 feet long and one 25 feet long. Sufficient pres

sure was applied to distort them, but not to collapse them, and

it was found that equation (28) erred by at least 20 per cent,,

giving too small an amount. It was, however, very evident

that the length was still a very important element in the

strength.

63. COMPARISON OF STRENGTH FROM EXTERNAL, AND
INTERNAL PRESSURE. Let p be the internal pressure per

square inch at which the tube is ruptured, then for tubes of the

same thickness and diameter we have from equations (18) and

(29), by calling T = 30,000 Ibs.,

p 1 L
F^T^^.^n* /. A _/

Ifp = P, then L = I $,3;j t^*.

Ift = 0-25, then we find L = 3-56 feet, that is, a tube whose

thickness is J of an inch, and whose length is 3 56 feet, is equal-

ly strong whether subjected to internal or external pressure.
If the tube is so thick that the unequal stretching of the

fibres must be considered, then equation (20) must be compared
with equal ion (29), in which case we have :&amp;gt; T? 7*

P- _T _***_P~ 800,000 (r+*)*i-i8
o

Ifp = P, T = 40,000 Ibs., and 2;&amp;gt;
= d = 4 inches

; /

then&amp;lt;|-&amp;lt;
*+*&quot; =*I*

If t = t inch, L = 5-504 feet.

If t = I &quot; L = 15 feet.

***&quot;

64. RESISTANCE OF GLASS GLOBES TO COLLAPSING.-
Fairbairn also determined that glass globes and cylinders fol

lowed the same general law of resistance. For globes of flint

glass lie found :

^=28,300,000^ ,,:, (32)

and for cylinders of flint glass :

Pi==740,000 j^
.....

(33)

provided that their length is not less than twice, nor more than

*,-t t &amp;lt;a^ ^v^
&amp;lt;-
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six times their diameter. Dividing equation (33) by (28) gives

P, 0-0770,

P &quot;JO-IS

P
If t = 0-043 in., p-

1 = 0-896
;
or the glass cylinder is nearly -^

as strong as the iron one. If they are equally strong, P = P,
..*= 0-0373 of an inch.
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CHAPTER III.

Library.
California

THEORIES OF FLEXURE AND RUPTURE FROM TRANSVERSE
STRESS.

65. REMARK. The ancients seem to have been entirely

ignorant of the laws which govern the strength of beams.

They made some rude experiments to determine the absolute

strength of some solids, especially of stone. They may have

recognized some general facts in regard to the strength of

beams, such as that a beam is stronger with its broad side ver

tical than with its narrow side vertical, but we find no trace of

any law which was recognized by them. This department of

science belongs wholly to modern times. A very brief sketch

of the history of its development is given below.*

GO. GALILEO S THEORY. Galileo was the first writer, of

whom we have any knowledge, who endeavored to establish the

mathematical laws which govern the strength of beams. f He
assumed

1st. That none of the fibres wrere elongated or compressed.
2d. When a beam is fixed at

one end, and loaded at the other, it

breaks by turning about its lower

edge, B, Fig. 26
;
or if it be sup

ported at its ends and loaded at the

middle of the length, it would

turn about the upper edge ;
hence

every fibre resists tension.

3. Every fibre acts with equal

energy. From these he readily

deduced, that, when one end is firmly fixed in a wall or other

* For a more complete history, see introduction to
&quot; Resistance des Corps

Solides,&quot; par Navier. 3d edition. Paris, 1864.

f Opere di Galileo. Bologne, 1856.
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immovable mass, the total resistance of the section is equal to

the sum of all the fibres, or the transverse section, multiplied

by the resistance of a unit of section, multiplied by the dis

tance of the centre of gravity from the lower edge. Hence, in

a rectangular beam, if

T = the tenacity of the material,

b = the breadth, and

d = the depth of the beam
;

the moment of resistance is

(34)

67. ROBERT HOOK i:-x THEORY. Kobert Ilooke was one

of the first, and probably the first, to recognize the compressi

bility of solids when under pressure. In 1678 he announced

his famous principle, Ut tensio sic vis ; which he gave in an

anagram in 1676, and stated as the basis of the theory of elasti

city that the extensions or contractions were proportional to the

forces which produce them, and also that when a bar was bent

the material was compressed on the concave side and extended

on the convex side.

68. MARRIOTTE S AND LEIBNITZ S THEORY.-Mamotte,
in 1680, investigated the subject, and finally stated the follow

ing principles:

1st. The material is extended on the convex side and com

pressed on the concave side.

2d. In solid rectangular sections the line of invariable fibres

(or neutral axis) is at half the depth of the section.

3d. The elongations or compressions increase as their distance

from the neutral axis.

4th. The resistance is the same whether the neutral axis is at

the middle of the depth or at any other point.

5th. The lever arm of the resistance is $ of the depth.
We here find some of the essential principles of the resist

ance to flexure, as recognized at the present day ;
but the two

last are erroneous. As hereafter shown, the neutral axis is at

half the depth, and the lever arm is f of the depth.

Leibnitz s theory, given in 1684, was the same as Marriotte s.

69. JAMES BERNOUILLI S THEORY was essentially the same
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as Marriotte s, except that he stated that extensions and compres
sions were not proportional to the stresses.

&quot;

For,&quot;
said he,

&quot;

if

it is true, a bar might be compressed to nothing with a finite

force.&quot; On this point see Article 16. He was the first to give
a correct expression for the equation of the elastic curve.

70. PARENT S THEORY Parent, a French academician

of great merit, but of comparatively little renown, published, in

1713, as the result of his labors, the following principles, in

addition to those of his predecessors:
1st. The total resistance of the compressed fibres equals the

total resistance of the extended fibres.

2d. The origin of the moments of resistance should be on

the neutral axis.

By the former of these principles the position of the neutral

axis may be found, when the straining force is normal to the

axis of the beam
;
and by the latter he corrected the error of

Marriotte and Leibnitz
; showing that the ratio of the absolute to

the relative strength is as six times the length to the depth, in

stead of three, as will be shown hereafter.

71. COULOMB, IN 1773, PUBLISHED the most scientific

work on the subject of the stability of structures wilich had

appeared up to his time. He deduced his principles from the

fundamental equations of statics, and generalized the first of

the principles of Parent, which is given above, by saying that

the algebraic sum of all the forces must be zero on the three

rectangular axes. This establishes the position of the neutral

axis when the applied forces are oblique to it, as well as when

they are normal. He also remarked, that if the proportionality

of the compressions and extensions do not remain to the last, or

to the point of rupture, the final neutral axis will not be at the

centre of the section.

MODULUS OF ELASTICITY. In 1807 Thomas Young
introduced the term modulus ofelasticity, which w

re have defined

as the coefficient of elasticity in Article 5. After this several

writers, among them Duhamel, Navier in his early writings, and

Barlow in his first work, stated the erroneous principle, that the

sum of the MOMENTS of the resistances to compression equalled

thosefor tension.
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73. IN 1821 NAVIER PUBLISHED the lectures wllicll he

had given to V&cole des Fonts et Chaussees, in which he estab

lished more clearly those principles of elastic resistance, and

resistance to rupture, which have since his day been accepted

by nearly all writers. He was the first to show that when the

stress is perpendicular to the axis of the beam, the neutral axis

parses through the centre of gravity of the transverse sections.

His most important modifications in the analysis was in making
ds = dx, or otherwise, considering thatfor small deflections the

tangent of the angle which the neutral axis makes with the

original axis of the beam is so small compared with unity that

it may le neglected and also, that the lever arm of the force

remains constant during flexure. These principles we have

used in Chapter V. He resolved many problems not before

attempted, and became an eminent author in this department
of science.

74. THE COHUION THEORY. The theories of flexure and

of rupture which result from these numerous investigations,

I will call, for convenience, the common theory. It consists

of the following hypotheses :

1st. The fibres on the convex side are extended, and on the

concave side are compressed, and there are no strains but .cj^in-

pression and extension.

2d. Between the extended and compressed fibres (or elements)
there is a surface which is neither extended nor compressed, but

retains its original length, and which is called the neutral surface,

or in reference to a plane of fibres it is called the neutral axis.

3d. The strains are proportional to their distance from the

neutral axis.

4th. The transverse sections which were normal to the neu

tral axis of the beam before flexure, remain normal to the iieu-

tral axis during flexure.

5th. A beam will rupture either by compression or extension

when the modulus of rupture is reached.

6th. The modulus of rupture is the strain at the instant of

rupture upon a unit of the section which is most remote from

the neutral axis on the side which first ruptures. This is

called R
The remainder of this article properly belongs to Chapter
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YL, but it is given here so that the reasons for Barlow s theory

may be understood.

If a beam ruptures on the convex side, it appears that it

ought to break when its tenacity (T) is reached
;
but it is found by

experiment that in this case R always exceeds T. Similarly, it

would seem that if it failed by crushing on the concave side, as

in the case of rectangular cast-iron beams, R ought to equal C,
but experiment shows that in thia_case JJ-exeeeds C ;

and gen
erally the value of R is always &&twee those of T and C for

the same material; b^ing groatc^^Jt^4hes
The values of R in the tables were deduced from

experiments upon rectangular beams, as will hereafter be
shown

;
and hence, if the common theory is correct, R should

equal the value of the lesser resistance, whether it be for com

pression or extension
;
but it does not. This discrepancy be

tween theory and the results of experiment
* has led Barlow

to investigate the subject further, and it has resulted in a

new theory which he calls &quot; Resistance to Flexure &quot; an ex

pression which I consider unfortunate, as it does not express his

idea. &quot;

Longitudinal Shearing
&quot; would express his idea better,

as will appear from the following article :

75. BARLOWS THEORY. According to the common theory

*
Mosley s Mech. and Arch.

, p. 557. The elasticity of the material has been

supposed to be perfect up to the instant of rupture, but the extreme fibres are

strained much beyond their elastic limits before rupture takes place, while the

fibres near the neutral axis are but slightly strained, and hence the law of pro

portionality is not maintained, and the position of the neutral axis is changed,
TJT

and the sum of the moments is not accurately
-
(see equation 171). To de

termine the influence of these modifications we must fall back upon experiment,
and it has been found in the case of rectangular beams that the error will be

corrected if we take T (= B) instead of T, where m is a constant depend

ing upon the material.&quot;

Weisbach, vol. ii., 4th ed., p. 68, foot-note says, &quot;Excepting as exhibiting

approximately the laws of the phenomena, the theory of the strength of mate
rials has many practical defects.

&quot;

In the Report of the Ordnance Department, byMaj. Wade, p. 1, it says:
&quot; A trial was made with cylindrical bars in place of square ones. These gen
erally broke at a point distant from that pressed, and the results were so ano
malous that the use of them was soon abandoned. The formula by which the

strength of round bars is computed appears to be not quite correct, for the unit

of strength in the round bars is uniformly much higher than in the square bars

cast from the same iron.&quot;
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the resistance at a section is the same as if the fibres acted in

dependently of each other, and the transverse section remained

normal to the neutral axis. But Barlow correctly considers

that in order to keep the transverse sections normal to the

neutral axis, the consecutive planes of fibres must slide over

each other, and to this movement they offer a resistance.

He presented his view to the Royal Society (Eng.), in 1855,
and it has since been published in the Civil Engineer and
Architects Journal, vol. xix., p. 9, and vol. xxi., p. 111.* The

subject is there discussed in a very able and thorough manner,
and although he may have failed to establish his theory, by not

taking into account all the incidents which exist at the instantO
of rupture, yet the results of his analysis seem to agree more

nearly with the results of experiment than those obtained by

any other theory heretofore proposed.
It is admitted in this theory that a beam will rupture when

the stress upon any fibre equals its tenacity, or its resistance to

compression, as the case may be. But, on the other hand, when
the adjacent fibres are unequally strained, as they are in the

case of flexure, it requires a greater stress to produce this

strain than it would if the fibres acted independently, ac

cording to the previously assumed law. This,

Barlow makes evident from the following

example :

If a weight, P, Fig. 27, is suspended on

a prismatic bar, BCEF, all the fibres will

be equally strained, and hence equally elon

gated.
But if the bar ABCD be substituted for

the former, and the weight P acts upon a part

of the section, as shown in the figure, it is evi

dent that all the fibres will not be equally

strained, and hence will not be equally elon

gated ;
and if the force P was just sufficient to

rupture the bar FBCE, it will not be sufficient

to rupture the bar ABCD, although P acts

directly upon the same section, for the cohe-

* Civ. Eng. and Arch. Jour., Vol. xix., p. 9, Barlow says that the strength

of a cast-iron rectangular bar, as found from existing theory, cannot be recon-

.d:
-

1

^/
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sion of the particles along FE will not permit the fibres next

to that line to be elongated as much as if the part AFED
were removed

;
and these fibres will act upon those adjacent, and

so on, till they produce an effect upon BC. From this we
see that it takes a greater weight than P acting upon the section

EC to produce a strain T per unit of section, when the part
ADEF is added. It is also evident that if the section of

ABCD is twice as great as FBCE, it will not take twice P to

rupture the fibres on the side BC.

A phenomenon similar to this takes place in transverse

strain. One side is compressed and the other elongated ;
arid

the fibres less strained aid those which are more strained by
virtue of the cohesion which exists between them, and it takes

a greater force to cause a strain, T, longitudinally upon the

fibres than it would if there were no cohesion.

There is, then, at the time of the rupture of a beam, a tensile

strain on the extended fibres, and a compressive strain on

the other fibres, and a longitudinal shearing strain between the

fibres, due to cohesion. These remarks will, I trust, enable the

reader to understand the difference between the &quot; Common

Theory
&quot; and &quot; Barlow s.&quot;

Barlow s Theory consists of the following hypotheses :

1st. The fibres or elements on the convex side are extended,
and on the concave side compressed.

2d. There is a neutral surface, as in the common theory.

3d. The tensive and compressive strains on a fibre are pro

portional to the distance of the fibre from the neutral axis.

4th. That in addition to these there is a &quot; Resistance to

flexure
&quot;

or longitudinal shearing strain, which consists of the

following principles :

a. It is a strain in addition to the direct extensive and com

pressive forces, and is due to the lateral cohesion of the adja-

ciled with the results of experiment if the neutral axis be at the centre of the

sections. He then proceeded to show by experiment that the neutral axis is

at the centre, and then remarked that the formula commonly used for a beam
2 Tbd2

supported at the ends and loaded in the middle, or W = ^ , did not give

half the actual strength if T is the tenacity of the iron. He then pro
ceeds to point out a new element of strength, which he cal|s &quot;Resistance

to Flexure.&quot;

!
~a
r-* a -

:
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cent surfaces of fibres or particles, and to the elastic reaction

which ensues when they are unequally strained.

b. It is evenly distributed over the surface, and consequently
within the limits of its operation its centre of action will

be at the centre of gravity of the compressed or of the ex

tended section. This force for solid beams Barlow calls $, and

for T r I sections, or open-built beams, it is easily deduced

from the following principle :

c. It is proportional to and varies with the inequality of

strain between the fibres nearest the neutral axis and those

most remote.

From this it appears that if d is the depth of the horizontal

flanges of the I section, and d
l
the distance of the most remote

fibre from the neutral axis, then the resistance to flexure of the

d
flanges will be

&amp;lt;P -y and similarly for other forms.

5. Sections remain normal to the neutral axis during flex

ure.

6. Rupture of solid beams takes place when the strain on a

unit of section is T-f- p, or C + ,
whichever is smaller, or

rather, whichever value is first reached.
V

76. REMARKS UPON THE THEORIES. For scientific pur

poses it is desirable to determine the correct theory of the

strength of beams, but the phenomena are so complex that it

is not probable that a single general theory can be found

which will be applicable to all the irregular forms of beams

used in practice. Although Barlow s theory appears plausible,

yet according to principle c the resistance to flexure, &amp;lt;?&amp;gt;,

can

not be uniform over the surface, as stated in principle &, because

the proportionality of the elongations and compressions do not

continue up to the point of rupture. The common theory is

faulty beyond what has already been said in the I section
;
for

in the upper and lower portions the strains on all the fibres are

not proportional to their distances from the neutral axis, to

realize which the material should be continuous
;
and Barlow s

theory is defective in the same case, on account of the peculiar
strains upon the fibres at the angles where the parts join. For

rupture, then, we can use these theories to ascertain general facts,
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and make the results safe in practice by using a proper coeffi

cient of safety ;
but for flexure the common theory is suffi

ciently exact if the elastic limit is not passed, and this is for

tunate as the conditions of stability should be founded on the

elastic properties rather than on the ultimate strength of the

material. For the rupture of rectangular beams the common

theory will be sufficiently exact if the value of R is used instead

of T or C in the formulas.

POSITION OF THE NEUTRAL AXIS.

77. POSITION FOUND EXPERIMENTALLY. According to

Galileo s, Marriotte s, and Leibnitz s theories, the neutral axis is on
the surface opposite the side of rupture.

Professor Barlow made the following experiments : He took

a cast-iron beam and drilled holes in its side, into which were fit

ted iron pins. He carefully measured the distance between the

pins, before and after flexure, by means of a micrometer, and thus

found that in solid cast-iron beams bent by a normal pressure
the neutral axis passes through the centre of the sections (Civ.

Eng. Jour., vol. xix., p. 10). He also made the same kind of

an experiment on a solid rectangular wrought-iron beam, and
with the same result (Civ. Eng. Jour., vol. xxi., p. 115).
Some years previous to the preceding experiments, he took a

bar of malleable iron and cut a transverse groove in one side, into

which he nicely fitted a rectangular key. When it was bent, the

fibres on the concave side were compressed, and the groove made

narrower, so that the key would no longer pass through, and thus

he showed that the neutral axis was between -J and -J-
the depth

of the beam from the compressed side (Barlow s Strength of

Materials, p. 330
;
Jour. Frank Inst., vol. xvi., 2d series, p. 194).

Experiments made at the Conservatoire des Arts et Metiers,
in 1856, on double T sections, show that it passes through the

centre of the sections (Morin, Resistance des Materiaux, p.

137). And experiments made at the same time on rectangular
wooden beams showed that it passed at or very near the centre

of gravity of the sections.

In these experiments the elasticity of the material was not

seriously damaged by the strains. To render them complete,

eM^l *-&quot;~^ &amp;lt;w--
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the strains should have been carried as near to the point of nip
ture as possible.

78. POSITION DETERMINED ANALYTICALLY*-We knOW
from statics that the algebraic sum of all the forces on each of

the rectangular axes must be zero for equilibrium ; hence, if the

deflecting forces are normal to the axis of the beam, the sum of
the resistances to compression must equal thosefor tension.

1st. Suppose that the coefficient of elasticity for compression

equals that for tension. Then will the compressions and exten

sions be equal at equal distances from the neutral axis. In Fig.

28, let Rc be the strain on a unit of fibres most remote from

the neutral axis on the compressed side, and dc
= the distance

of the most remote fibre on the same side
; then,

L= s = strain at a unit s distance from the neutral axis.
dc

-r i A */ r V &amp;lt;

&quot;

-L
rk kfr*-* A^ / / -T

1 *Vfc^x i

Let & A*,, &c., be the sections of fibres on one side of the

neutral axis, at distances of

^u 2A? 2/3?
&c

-j
fr m the axis, and

k
, k&quot;,

k&quot;

1

, &c., and y , ?/&quot;, y
&quot;

, &c., corresponding quan
tities on the other side.

=s (k y +k&quot;y&quot; +k&quot;
y&quot;

f + &c.),

or,% 1+^a+ %,H-&c.-(&amp;gt;?:y+^y
/

-f^
/y // + ifcc.)

=
0,

or, *ky = ........
(35)

or the neutral axis passes through the centre of gravity of the

sections.*

If the resistance to compression is greater than for tension,

the neutral axis will be nearer the compressed side than when

they are equal.

2. Suppose that the coefficient of elasticity is not the same

for tension as for compression.

* The analytical expression for the ordinate to the centre of gravity is

&c. k y +
k&quot;y&quot;

+ &c., or -

IP

/

/t_
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Let Fig. 28 represent the beam. Suppose that the sections

CM and EF were parallel be

fore deflection. If through K,O 7

the point where EF intersects

the neutral axis, KH is drawn

parallel to CM, the ordinates

between EF and KH will re

present the elongations on one

side, and the compressions on

the other, for those fibres

whose original length was LN-

Let 1= LIST,

A == Jce = the elongation of a fibre at Jc ;

p = a pulling or pushing force which would produce A

y = 7$k = distance of any fibre from the neutral axis
;

k section of any fibre
;

E^ coefficient of elasticity for tension
;
and

Ec = &quot; &quot;

compression.
From equation (3) we have,

FIG. 28.

P =
I

But A is directly proportional to its distance from the neutral

axis
; hence, if c be a constant quantity, whose value may or

may not be known, we shall have A = cy

(
36

)

Or, if we adopt the same notation as in the preceding case, we
shall have for the total force tending to produce extension,

-j
j

viyi

Similarly for compression

0E,

&c.) (37)

&c.)
-

(38)

Placing these equal to each other and we have,

,(%, + %2 + %, + &c.) = Ec (k y
r + k&quot;y&quot; H-

or, in the language of the integral calculus,

E, v^dydx Ec s_ ydydx, (39)
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in which y is an ordinate and x an ab.wissa. Equation (30)

enables us to find the position when the form of section is

known. In most cases, however, the reduction is not easily

made.

Example. Suppose the sections are rectangular.

Let b = AC,
d = AB,
E&amp;lt; = a, and
EC]

y = AE for the superior limit.

Then equation (39) becomes

r *&amp;gt; ry r b rd-y
I I ydydx = I j ydydx,
/fl ^ J J which reduced becomes

(40)

a = X), y =
a 0, y = d.

If y is known in equation (40), the ratio of the coefficients may easily be

found; for, we have from (40)

(41)

3d. Suppose that the deflecting force is not perpendicular to

the axis, and Ec = E, = E.

Let the angle which P makes with the axis of the beam

Fig. 30;

P, = P cos f = the com

ponent of P in the direction . IA
of the axis of the beam; . \ -!B-

P, = P sin t = the com

ponent of P perpendicular^
to the axis of the beam

;

h = the distance of the

neuti al axis from the centre of gravity of the section AB, and

K = the transverse section.

Fio. 30.
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The whole force of compression equals the whole force of

extension, equations (37) and (38).

cE r/Jt cE rr
.*. P cos 8 +

-y-JJ y ay ax = -j-JJ y dy dx

But the ordinate to the centre of gravity is (see foot-note on

page 84),
--

.-. P cos 6 = ~Kh
L

PZ
or A

--pjr-
cos d .......

(42)

If 6 = 90, h = as before found.

If & = there is no neutral axis, for the force coincides with

the axis of the beam. The equation would show the same re

sult, if the value of c -
-, equation (45), were substituted

y i

in the formula, for then p would be infinite, for 0=0, and
h becomes infinite.

4th. Let the law of resistance be according to Barlow s

theory offlexure, and the deflecting forces normal to the axis

of the beam.

Using the same notation as before, also

d
l
= the distance of the most remote fibre frcan the neutral

axis, and

Q = the coefficient of longitudinal shearing stress.

/yy dx the resistance to shearing for tension,

r
and

&amp;lt;p
I y dx = the resistance to shearing for compression,
-y

and, proceeding as we did to obtain equation (39), we have

T *2 T r

Examples. Let the sections be rectangular, b the breadth, d = the depth.

Then (43) becomes

*di = ~ (d - dtf + t (d-d,)

or,

Td
.:dl =id- or, dl

= -
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the former only of which is admissible.

If the section is a double
T&amp;gt;

as in Fig. 31, with
the notation as in the figure, &amp;lt;/&amp;gt;

will be used in find

ing the resistance of the vertical rib, and according

of the lower flange, and
d

to Article 75, &amp;lt;j&amp;gt;-

-

(t Ct

of the upper flange.

id,

d

FIG. 31.

It appears from these several cases that the neutral axis

passes near the centre of gravity in most practical cases, and it

will be assumed that it passes through the centre unless other
wise stated.
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(

CHAPTER 1Y.

[SHEARING STRESS.

79. GENERAL STATEMENT. Two kinds of shearing stress

are recognized longitudinal and transverse both of which have

been defined in Article 2. Materials under a variety of cir

cumstances are subjected to this stress such as, rivets in shears
;

the rivets in riveted plates; pins and bolts in spliced joints;

beams subjected to transverse strains; bars which are twisted;

and, in short, all pieces which are subjected to any kind of distor-

sive stress in which all parts are not equally strained. In the

first examples above enumerated, all parts of the section are

supposed to be equally strained. Shearing may take place in

detail, as when plates or bars of iron are cut with a pair of

shears, when only a small section is operated upon at a time
;
or

it may be so done as to bring into action the whole section at a

time, as in the process of punching holes into metal, where the

whole surface of the hole which is made is supposed to resist

uniformly.

80. MODULUS OF SHEARING. The modulus of resistance

to shearing is the resistance which the material offers per unit

of section to being forced apart when subjected to a shearing
stress.

This we call Ss. The resistance for both kinds of shearing
has been found to vary directly as the section

;
so that if

K = the area of the section subjected to this stress the total re

sistance will be

K.&.
The value of Ss has been found for several substances, the

principal of which are as follows :
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METALS.

Fine cast steel *

Rivet steel f -

Wrought iron *

Wrought-iron plates punched \

Wrought iron hammered scrap punched
Cast iron

Copper [

WOOD.

With the filres.

White pine

Spruce

Hemlock **

Oak
Locust

Ss in Ibs. per square
inch.

92,400

64,000

50,000

51,000 to 61,000

44,000 to 52,000

30,000 to 40,000

33,000

480

470

592

540

780

1,200

Across the fibres.

Eed pine 500 to 800

Spruce 600

Larch ft 970 to 1,700

Treenails, English oak JJ 3,000 to 5,000

It will be seen from these results that the shearing strength
of wrought iron is about the same as its tenacity ;

of cast steel

it is a little less than its tenacity ;
of cast iron it is double its

tenacity, and about its crushing resistance
;
and of copper it

is about its tenacity.

The following table, which gives the results of some experi

ments upon punching plate iron, illustrates the law of resistance,

and gives the value of 8s for that material.

* Weisbach Mech. and Eng., vol. i., p. 407.

f Kirkaldy s Exp. Inq., p. 71.

i Proc. Inst. Mech. Eng. England, 1858, p. 76.

Proc. Inst. Mech. Eng. England, 1858, p. 73.

| Stoney on Strains, vol. ii., p. 284.

^[ Barlow on the Strength of Materials, p. 24.

**
Engineering Statics, Gillespie, p. 33.

ft Tredgold s Carpentry, p. 42.

\\ Murray on Shipbuilding Wood and Iron, p. 94.
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TABLE
Of Experiments on Punching Plate Iron.

:

Diameter of the
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~ ^ rt_.
T 1000

F.r,,mpk. For Oak ~ = - - = 15^ nearly ;
hence AB should be about 15fr

o* toO

times the remaining depth.

8 . RIVETED PLATES Given the diameter of the rivets ;

it is required to find tfie distance between them from centre to

centre, so that tJie strength of the rivets for a single row sJiall

equal the strength of the remaining iron in the plates.

Let d = the diameter of the rivets,

c = the distance between them from centre to centre,

k = the section of the rivet,

K = the remaining section of the plate, and
t = the thickness of the plate.

For iron T = &s ; hence, proceeding as above, and we have

k *d*- 0.785W

x^^z^r 1 = -+

.. If t = i inch, and d = i inch

thenc = 1.2854, inch,

and- - =
c

Ift = inch, and d = f inch
;
then c = 0.8238 and - = 0.544, which ia

c

nearly the value given by Fairbairn for the strength of single riveted plates.

See Article 27. To insure this strength the rivet should fit tightly in the hole.

83. LONGITUDINAL, SHEARING IN A RENT BEAM.-&quot;When

a beam is subjected to a transverse stress, we have already seen,

Articles 74 and 75, that the fibres are unequally strained,

and hence are unequally elongated and compressed. This can

not be done without producing a shearing stress between the

adjacent elements or fibres, as shown in Figs. 27 and 28. This

shearing strain rarely overcomes the cohesion of the particles,

but if they were held only by friction it might overcome that.

To illustrate this latter idea, suppose several boards from

ordinary lumber are placed upon each other, and the whole

supported at the ends in any convenient way. When in this

condition draw several straight lines across the pile, perpen
dicular to the central board. Then deflect the whole by a

weight at the middle, or in any other convenient manner, and it

will be observed that the lines are no longer straight, but bro

ken, and the general direction does not remain normal to the

axis or central board. In the experiment the top layer, instead

t si
a^i^t^u^f *Ar /tceX OuJis fa { Kt-vv^^

&amp;lt;

&amp;lt;&amp;lt;/

^t^e*~ c :si\*A }
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of being shortened as in a solid beam, retains its length by

overcoming the friction between the top board and the one im

mediately under it. The friction, whether it be much or little,

represents the shearing stress in a beam.

The elongations and compressions of the fibres in a bent i

beam being proportional to their distances from the neutral

axis. Article 74, it follows that the shearing stress is evenly dis- ^
tributed over the cross section

;
and that, beginning at the ^L

axis, the total shearing stress increases uniformly with the dis

tance from the axis. In a beam which is bent by forces

pendicular to the axis the shearing resistances to compression
- -

&amp;gt;4fa

and tension form a couple whose arm is the distance between r.

the centre of the compressed section and the centre of the
,

extended section. This resistance in bent beams is generally
elastic. The coefficient of elasticity for this case for fibrous

bodies has not been determined.

84. TRANSVERSE SHEARING IN BENT BEAMS. Quite

analogous to the preceding case is that of transverse shearing in

a beam which is bent by external forces. Referring to Fig. 28,

in order that the weight P should be sustained by the horizon

tal beam, there is necessarily a vertical force, or a vertical com

ponent of forces in the beam, and it is the same at all sections

between A and B. This is easily shown by the principles of

mechanics.

In order to simplify the problem, suppose that all the bend

ing forces are in a plane, and let

P, Pn P 2 , &c., be the bending forces,

F, F 1?
F

u , &c., be the forces in a beam, each of which is the re

sultant of all the forces concurring at that point,

&quot;&amp;gt; *u *2&amp;gt;

&c
-j
the angles which P, P 1? &c., make with the axis

of x,

a, # #
2 , &c., the angles which F, F,, F2 , &c., make with the

axis of #, and y an axis perpendicular to x.

Then the principles of statics give the following equations :

sP cos * + sF cos a = 0,

zP sin + sF sin a = 0,

s(Py cos a, Yx sin *) -f- s (Fy cos a F^ sin a) = 0.

Let x coincide with the axis of the beam, and let all the forces

be vertical
;
or * 90 or^0 ;

then ^^
r Ftju UH^yfar i vi&A\*jtc M

&**fai&amp;lt;

t ^ r

i*^(&amp;lt;LeuJ!Ls
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(1) ZF COS a =
(2)

- z + P + zF sin a =
(3) z Pa? + zFycosa - zF^sina =
The first of these equations shows that the sura of the resist

ing forces parallel to the axis is zero
;
or that the total compres

sion equals the total tension. This is equation (35) in another
form. The second shows that the sum of the bending forces

equals the sum of the vertical components of the resisting forces.

If we let Ss represent a strain as well as a modulus, this equa
tion becomes zP = zF sin a = Ss, which is the result sought.

This is as far as it is necessary to carry the investigation in

this connection
;
but it may be well to show the use of the

third equation. If we use a resultant moment for each of the

above sets of moments the equation becomes

P x x&quot; zF sin a = Y y , OxM a 14 ffir^l^t^-
or, PV x&quot; Ss = Fy ;

but Ss = zP = P
,
? (

.-. P (x
r -

x&quot;)
= Fy ;

/3L- f e CM /3 * i ~~^~~ (l

hence the shearing stress forms a couple wiui the applied force,
or resultant of applied forces. This equation under the

form . 7\^ .

zP^ = zFy

is an essential one in Articles 86 and 136.

Examples of transverse shearing stress. The second of equations (44a), as

reduced is,

1. Let a beam be uniformly loaded over its whole length, and supported at

its ends as in Fig. 42,

and let w = the load on a foot of length,
I = the length of the beam,
V = $wl the amount sustained at each support,
x = any distance from either end

;
then

wx = the load on the length .r; and the expression for the shearing
stress becomes

which is the equation of a straight line (see Fig. 100). Its value is greatest for

x = 0, for which it is \id $ W ;
and is zero for x = 41

2. Suppose the beam is supported at its ends, and has a weight at the

middle of its length.

Let P = the weight, and the other notation as before
;
then V = |P, and

&amp;gt; 9 |P - to the middle, and beyond the middle Ss = iP P = iP ;
and

hence it is constant over its whole length.

rT,^
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3. If the beam sustains a uniform load, and also a uniformly increasing
load from one end, as in Fig. 98, in which Wi is the total load which

we have & = V - wx - W^ . . ^

85. SHEARING RESISTANCE TO TORSION. When a piece is

twisted there is a tendency in one section to slip over the

adjacent one, and the corresponding resistance constitutes

a shearing strain. It is least at the axis, and increases gradu

ally as we proceed from it.
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CHAPTER v.

FLEXURE.

ELASTIC CURVE.
WIIKN a beam is bent by a transverse strain, equilibrium is

established between the external and internal forces
; or, to be

more specific, all the external forces to the right or left of any
transverse section are held in

equilibrium by the elastic

resistances of the material

in the section. When in

this state the curve assumed

by the neutral axis is called

the elastic curve.

To rind the general equa
tion of the elastic curve, let

&quot;

FlG

Fig. 33 represent a beam,
fixed at one end, or supported in any manner, and deflected

by a weight, P, or by any number of forces. AB is the

neutral axis. Take the origin of coordinates at B (or at anj
other point on the neutral axis), and let x be horizontal and

coincide with the axis of the beam before flexure, y vertical

and u perpendicular to the plane of xy. The transverse sections

CM and EF being consecutive and parallel before flexure, will

meet after flexure, if sufficiently prolonged, in some point, as

o. Through N draw KII parallel to CM^hen will ke be the

elongation of a fibre whose original length was ck. We have

the following notation :

dx = LN the distance between consecutive sections,

y = N&amp;lt;? = any ordinate of the surface,

u &quot;Na or N#
,

1) = NN the limiting value of u,

f (y,u)
= equation of the transverse section,

* Several of the more important probbms of this chapter are solved in Arti

cles 93 to 103, without the use of the calculus.
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dy du = the transverse section of a fibre,
/, _ N N limiting value-of ^,

p = ON the radius of curvature at ~N
9

p = the force necessary to elongate any fibre an amount equal
to A when applied in the direction of its length,

1 = the moment of inertia of the section,

E = the coefficient of elasticity of the material, which is sup

posed to be the same for extension and compression,
2 P# = a general expression for the moment of applied

forces.

We suppose that the strain is within the elastic limit, and
establish the algebraic equation on the condition that the sum of

the moments of the applied or deflecting forces equals the sum of ?

the moments of the resisting forces. We also assume that the

neutral axis coincides with the centre of the transverse sections

of the beam.

By the similarity of the triangles LON and &Ne, we have

Ne : : LN : ke, or f : y : : dx : A

- - - -
(45)

The force necessary to produce this elongation is (see equa
tion (3) ),

which becomes, by substituting A from (45), J?.
TJI

p ydydu .......
(46)

and the moment of this force is found by multiplying it by y
E

- py = -&amp;gt; y dy du - -
(47)

The total moment of all the resisting forces to extension and

compression is found by integrating (47) so as to include the

whole transverse section, and this will equal the sum of the

moments of the applied forces :

p rt r+y r$ /*o

/ / ydydujr I I tfdydu

L^/o c/0 i/O / -J
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9

,- . - ;T ... , (48)

The quantity ^Ltfdy du, which depends upon the form of

the transverse section and nature of the material, is called the

moment offlexure.

The quantity ft y*dy duy
when taken between limits so as to

include the whole transverse section, is called the moment of

inertia of the surface.* Calling this I and equation (48)
becomes

El

j
= XPX, --- .* , * : P - :- -

(49)

which is the equation of the elastic curve.

An exact solution of equation (49) is not easily obtained in

practice, except in a few very simple cases
;
but when the deflec

tion is small an approximate solution, which is generally com

paratively simple and always sufficiently exact, is easily found.

cFydx (Ty

=
-p- nearly, since for small deflections

-r- (which is tlie tangent of the angle which the tangent line, to

the curve makes with the axis of x) is small compared with

unity, and hence may be omitted. Hence equation (49) becomes

Elg = zP*, ......... (50)

which is the general approximate equation of the neutral axis.

87. THE MOMENT OF INERTIA t of all transverse sec

tions of a prismatic beam, is constant, and hence I is constant

for prismatic beams.

* See Appendix. f See Appendix.

t
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For a rectangle, as Fig. 34, we have

1= / / ifdydu= Jil& -
(51)

99

/b
(* + \d

I y*dydu

J-\d
Fio. 34.

For a circle, the origin of coordinates being at

the centre
;

/V /^2?r

. .!=/ / r*drd*sm*t

JoT Jo

Fio. 35.

- -
(52)

SPECIAL CASES OF PRISMATIC BEAMS.

88. REQUIRED THE EQUATION OF THE NEUTRAL AXIS, AMOUNT
OF DEFLECTION, AND SLOPE OF THE CURVE OF A PRISMATIC BEAM,
WHEN SLIGHTLY DEFLECTED, AND SUBJECTED TO CERTAIN CONDITIONS

AS FOLLOWS I

89. CASE i. SUPPOSE A HORIZONTAL BEAM is FIXED AT ONE
EXTREMITY AND A WEIGHT P RESTS UPON THE FREE EXTREMITY;
REQUIRED THE EQUATION OF THE NEUTRAL AXIS AND THE TOTAL

DEFLECTION.

Fio. 37.

FIG. 36.

The beam may be fixed by being imbedded firmly in a wall, as

in Fig. 36, or by resting on a fulcrum and having a weight ap
plied on the extended part, which is just sufficient to make the

curve horizontal over the support, as in Fig. 37. The latter
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case more nearly realizes the mathematical condition of fixed

ness. In either case let

I = AB = the length of the part considered,

i the inclination of the curve at any point, and

A = BC the total deflection.

Take the origin of coordinates at the free end, A; x horizontal,

y vertical and positive downwards. The moment of P on any

section distant x from A is Pa;, which is the second member of

equation (50) in this case. Hence the equation becomes

*
Elg = P* -..

- -* V * \ V (53)

Multiply both members by the dx and integrate, and we have

El^iPrf + C, - - - - - - - -(64)
CttL ,

AVhcn the deflections are small, the length of the beam re

mains sensibly constant, hence for the point B, x = l\ and at

the fixed end ~- = 0. Substitute these values in equation (54),
ttx

and we find C, = - 4 PF, and (54)

d

The integral of equation (55) is

yVflgirf-sroO + c.

But the problem gives y = for x = /. C
a
= 0;

y = &-$
which is the equation of the neutral axis, and may be discussed

like any other algebraic curve.

The greatest slope is at A, to find which make x = in equa
tion (55)

P }_
/. tang i (at the free end) = ^_2LI Sj

B

The greatest distance between the curve and the axis of x is

at B, to find which make x I in equation (56), and we have

FT8

A= ~ ........
(5T)

^ #*^ / -

ZZ:.-
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If y were positive upward, everything else remaining the

same, the second member of equation (53) would have been

negative, for it is a principle in the differential calculus that

when the curve is concave to the axis of
x&amp;gt;

the second differen

tial coefficient and the brdinate must have contrary signs. This

would make tang i and A positive. It will be a good exercise for

the student to solve this and other problems by taking the origin
of coordinates at different points, only keeping so horizontal and

y vertical. For instance, take the origin at B
;

at C
;

at the

point where the free end of the beam was before deflection
;
at

the middle of the beam
;
or at any other point.

Example. If I = 5 ft.
,
I - 3 in.

,
d = 8 in.

1

,
E = 1,600,000 Ibs.

,
and P = 5,000

Ibs.
; required the slope at the free end and at the middle, and the maximum

deflection.-X j&]& c(
&amp;lt;

-^
, Z % /fV^

90. CASE II. SUPPOSE THAT THE BEAM IS FIXED AT ONE END,
IS FREE AT THE OTHER, AND HAS A LOAD UNIFORMLY DISTRIBUTED A ST *J.

*

OVER ITS WHOLE LENGTH. The beam may be fixed as before, as

shown in Figs. 38 and 39.

FIG. 38.

FHJ. 39.

Let w = the load on a unit of length. This load may be the

weight of the beam, or it may be an additional load.

W = wl =.the total load.

Take the origin at A.

Then wx = the load on a distance
a?, and

\wx* the moment of this load on a section distant
x from A.

Hence equation (50) becomes

EIf=iW - - -
(58)

w
i (a(l

&quot; 4?a
&amp;gt;

-
&amp;lt;

/ ^rrj^jju

\
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8EI
-

/
*

In which ~ = fora? = Z /. 6? =
^y-,

y = fora; = /. C\ = 0, and

y = A for x = l.

If the origin of coordinates were at the fixed end, 2 Pa? in the

J first case would be P (I x\ and in the second -= (I )*.
The

student may reduce these cases and find the constants of inte

gration. This case may he further modified for practice by

taking the origin of coordinates at- different points.

9 1 . CASE HI. LET THE BEAM BE FIXED AT ONE END AND A
LOAD UNIFORMLY DISTRIBUTED OVER ITS WHOLE LENGTH, AND A
WEIGHT ALSO APPLIED AT THE FREE END. This is a combination

of the two preceding cases, and is represented by Figs. 36 and

37, in which the weight of the beam is the uniform load.

and A- -

hence the deflection of a beam fixed at one end and free at the

other, and uniformly loaded, is f as much as for the same weight

applied at the free end.

. CASE iv. LET THE BEAM BE SUPPORTED AT ITS ENDS

AND A WEIGHT APPLIED AT ANY POINT. Figs. 4:0 and 41 represent
the case.

Pia. 40.

Fio. 41.

.

Let the reaction of the supports be Y and V,. Take the
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origin at A over the support, and let AD = c = the abscissa

of the point of application of P.

Then, Y =^f? P, and Y, = j P.
1 V

,
,

J

The case is the same as if a beam rested on a support at D,
and weights equal to Y and V, were suspended at the ends.

For the part AD, equation (50) becomes :

^Elg=-V=-^P; -

-;-:-. (63)

dy -P(l-c)= ~ x - C
&quot;

+ (G, = 0); (65)

in the last of which, y for x = /. C, = as indicated.

For the part DB, the origin of coordinates remaining at A,

we have :-

El = - V+P(-o) -Fc~= -V&amp;gt;(l-x) ; (66)

C&quot;. --.. (68)

To find the constants, make x = e in equations (64) and (67)

and place them equal to each other
;
do the same with (65) and

(68) ;
and also observe that in (68) y for x = I. These con

ditions establish the three following equations :

PC
C
-27EI (&amp;lt;!
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From these we find

C&quot;

iv

GEI

Hence, for the part AD we have

or, -F- = 6EU

i

6EIZ

(09)

- -
(70)

To find the maximum deflection, if c is greater than J7, make

,/,,
= in (69) and find x~ then substitute the value thus found in

equation (7 ()
).

If c &amp;lt;4/make ^ = in equation (67) and substi

tute the value thus found in equation (68).

If D is at the middle of the length, make c = \l in equations

(63), (69), and (70): and we have for the curve AD

El -I IV an
,/

2 j
V&amp;lt; )

-&amp;lt;

and A =

- -

(if x = i? in (72) )
- -

(73)

The greatest stiv.-s is at the centre, and the nuixinium ino-

incnt is found by makini; 25 = II in the &amp;gt;ec..nd member of
e&amp;lt;]ua-

tinuli. Hence, M&amp;lt;. //- moment
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111 this case the curve DB is of the same form as AD, but its

equation will not be of the same form unless the origin of co

ordinates be taken at the other extremity of the beam.

93. CASE v. SUPPOSE THAT A BEAM is SUPPORTED AT OR

NEAR ITS EXTREMITIES, AND THAT A LOAD IS UNIFORMLY DISTRIB

UTED OVER ITS WHOLE LENGTH.

No account is made of the small por
tion of the beam (if any) which projects

beyond the supports. The distance be

tween the supports is the length of the

beam which is considered.

Let the notation be the same as in the FIG. 43.

preceding cases.

Then Y= \wl = W= the weight sustained by each support ;

~Vx = \wlx = the moment of V on any section, as c
;

wx is the load on #, and the lever arm of this load is

the distance from its centre to the section c, or \x ;
hence its

moment is ^wz?, and the total moment is the difference of the

two moments. Hence equation (50) becomes

-M 3 &quot;

x
fo +

&amp;lt;**); (74)

&amp;gt;~

- -
(T3)

In these equations ^=0 for x = $, . . C, =
cLx ,

and y = 0forx = 0, /. &amp;lt;7

a
= 0.

94. CASE vi. LET THE BEAM BE SUPPORTED AT ITS ENDS,
UNIFORMLY LOADED, AND ALSO A LOAD MIDWAY BETWEEN THE

SUPPORTS.

This case is a combination of the two preceding ones, and
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may be represented by Fig. 40
;
for the weight of the beam

may be the. uniform load. Hence,

(77)

Experiments on the deflection of beams are generally made
in accordance with this case. If the beam be rectangular, we
have from equation (51),

I =
To^&amp;gt; which in (78) gives

In making an experiment to determine E, the beam is weighed,
and that portion of it which is between the supports and unbal

anced will be W, and all the quantities except E may be directly
measured. If E be known, we may measure or assume all but

one of the remaining quantities, and solve the equation to find

the remaining quantity, as the following examples will illus

trate :

Examples. 1. If a rectangular beam, 5 feet long, 3 inches wide, and
3 inches deep, is deflected -fo of an inch by a weight of 3,000 Ibs. applied at the

middle
; required the coefficient of elasticity. E = 20,000,000.

2. If b = 2 inches, d = 4 inches, and I = 6 feet, the weight of the beam 144

Ibs., and a weight P=10,000 IDS, placed at the middle of the beam deflects it i
an inch

; required E. / Y- / //, L 1 0. E = 14,580,000 Ibs.

3. A joist, whose length is 16 feet, breadth 2 inches, depth 12 inches, and co

efficient of elasticity 1,600,000 Ibs., is deflected inch by a weight in the

middle
; required the weight ;

the weight of the beam being neglected.
Ans. P = 1,562 Ibn.

4. An iron rectangular beam, whose length is 12 feet, breadth Ifc inches, co

efficient of elasticity 24,000,000 Iba, has a weight of 10,000 Ibs. suspended at

the middle
; required ite depth that the deflection may be^ of its length.

Ans. 8.8 in.

5. A rectangular wooden beam, 6 inches wide and 30 feet long, is supported

at its ends. The coefficient of elasticity is 1,800,000 Ibs.
;
the weight of a
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cubic foot of the beam is 50 Ibs.
; required the depth that it may deflect 1 inch

from its own weight. & j V **/&amp;lt;& 4
How deep must it be to deflect 4^ of its length ? JT faA*sbjL*t, t

6. A cylindrical beam, whose diameter is 2 inches, length 5 feet, weight of a

cubic inch of the material 0.25 lb., is deflected | of an inch by a weight P =
3,000 Ibs. suspended at the middle of the beam. Required the coefficient of

elasticity. VK&quot;

To solve this substitute I = far* (equation (52)) in equation (S^. This gives

E = .

7. Required the depth of a rectangular beam which is supported at its ends,
and so loaded at the middle that the elongation of the lowest fibre shall equal

of its original length. (Good iron may safely be elongated this amount.)

Equations (49) and (73a) become = PZ . . f=^. In this substitute the

value of I, equation (51), and it becomes

= __ . By .ito -problem find p = 700d
3P2 _

2100PZ

8. Required the radius of curvature at the middle point of a wooden beam,
when P = 3,000 Ibs.

;
I = 10 ft.

;
b = 4 in.

;
d = 8 in.

;
and B rr 1,000,000 Ibs.

9. Let the beam be iron, supported at its ends. Let b = 1 in., d = 2 in., I =
8 ft., E = 20,000,000 Ibs. Required the radius of curvature at the middle when
the deflection is of an inch. Use eqs. (49) and (73) for P at the middle.

from which it appears that it is independent of the breadth and depth.

10. The centrifugal force caused by a load moving over a deflected beam

may be found from the expression ,
in which m is the mass of the moving

P

load, v its velocity in feet per second, and p th radius of curvature of the

beam. (See Mechanics.)

11. All these problems may be applied to beams fixed at one end, and P ap

plied at the .free end, or for a load uniformly distributed over the whole length,

by using the equations under Cases I.
,
II.

,
and III.

According to equation (79) the deflection varies as the cube

of the length ; and inversely as the breadth and cube of the

depth, and directly as the weight applied. AA^}
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96. BABI,OWS THEORY has not, to my knowledge, been

applied to flexure, but it may In- well to inquire what effect it

would have. In the common tln-i.ry,
it i- a iimed that the total

is expended in
elongating

and compressing the fibres j

but, according to Barlow s theory, u portion of the, force is

absorbed in drawing (so to speak) one fibre over the adjacent
one

;
hence the deflection should be less by this theory than by

the common one.

An experiment made by Mr. Hatcher, England, showed

that it was less. (See Mosley s Mechanics and Engineering, p.

514.)

To find E by this theory, &amp;lt;

will represent &fractionalpart of
the strain (not of the ultimate resistance).

Then &amp;lt; fTy dy dx is the moment of resistance to longitudinal

shearing.
Hence we have

Or for a rectangular beam su
i ported at the ends, we have,

by combining the general moments of equations (71)
and (74) and

using y positive upwards :

ftP+iW- \w*)*
-

Ifcfy = El (81)

&amp;lt;j&amp;gt;

is /v/v/ xirmll fin* small deflections but, whatever its value,

we see that E found by this method will be less than that found

by the common theory ;
and hence less than that gi\en by the

method in Article 7.

97. CASE vii. LET TUT: T.KAM in: rrxrn AT ONI:
i-:.\Tin:&amp;gt;nTY,

SUPPORTED AT THE OTIIi:i:, AM) JIAM-J A WKioHT,! , AIM LIKD AT

A.NY PODsT.

A j)
e

i A
A

i
Fio. 44.
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The beam may be fixed by being encased in a wall, Fig. 43,
or by extending it over a support and suspending a weight on
the extended part sufficient to make the beam horizontal over

the support, Fig. 44
;
or by resting a beam whose length is %l

on three equidistant supports, and having two weights, each

equal to P, resting upon it at equal distances from the central

v,

PIG. 45.

support, Fig. 45. In the latter case each half of the beam fulfils

the condition of the case.

Let I = AB, Fig. 43, be the part considered,
Y = the reaction of the support,
nl = AD the abscissa of P, and

f =2 the deflection of the beam at D.

Take the origin at A, the fixed end. We may consider that the

curve DB is caused by the reaction of Y, while all the forces at

the left of P hold the beam forY to produce its effect. Similarly
the curve AD is produced by the reaction Y and the weight P,
while all the forces at the left of them hold the beam. In all

cases we may consider that the applied forces on one side of the

transverse section are in equilibrium^with the resisting forces

of tension and compression in the section. It is well also to

observe that the origin ofmoments is at the centre of the trans

verse section, wiiile the origin of coordinates may be at any

point.

clfu

For the curve AD we have, observing that -~ = for x = 0,

and y = for x = :

El = -P(nl
-

x) -V(l
-
x\ -

(82)
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For the point D, we have, by making x = nl
y

J = tan = OT -
(n
- K)V]^ ; (85)

y =/= [KP-(K-K)T1 If (86)

For the curve DB, observe that 3- = tang^ for a; = n, and
W*C

y =y for a; = wZ, using for their values (85) and (86) in deter

mining the constants in the following equations, and we have :

Elg=-V (?-*), ,--:- - --
&amp;gt;..

//^
S

{T
$
\

Ely = (*
-^)PV -

V(
--

-).
- , -

(89)

To find the reaction Y, observe that y = 0, for aj = I in (89),

and we obtain :

= (3
-
n)Pn ? -

..V = -Jn
f

(3-n)P. (90)

By substituting this value of Y in the preceding equations,

they become completely determined. For the curve AD we
shall have :

El = P[nZ
- x- K(3 - n)(l

-
x}~\ ; (91)

-
flOL -

(92)

and for the curve DB :

EI 2?
= -*ptt

&amp;lt;

8
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r
~ ~= [2P~ (3

~
w) (2fe

-^ : -
(95)

The points of greatest strain in these curves are where the sum
of the moments of applied forces is greatest, and this is greatest
when the second members of (91) and (94) are greatest. Neither

of these expressions have an algebraic maximum, and hence

we mustfind by inspection that value of x which will give the

greatest value of thefunction within the limits of theproblem.

Equation (91) has two such values, one for x = 0, the other for

x = nl, and equation (94) has one such for x = nl, which value

will reduce (91) and (94:) to the same value.

Making x = in (91) gives for the moment of maximum
strain,

z?x = $Pl[2n-3ri +ns

]
------

(97)

For the moment of strain at P, make x = nl, in (91) or (94),

and we have

sPaj = i Pfo1

[-3 + 4n- -
&amp;lt;]

- - - - -
(98)

To find where P must be applied so that the strain at the point
of application shall be greater than if applied at any other

point, we must find the maximum of (98) :

.-. D = =- 6n + 12n-
f- 4rf -

.&amp;gt;*,,,

-
.

- -
(99)

..71 = 0.634 + ..........
(100)

or the force must be applied at more than -ffo of the length of

the beam from the fixed end. This value of n in (98) gives,

.174

Equation (99) has two values of n, but the other is not within

the limits of the problem.
The position of the weight, which will give a maximum strain

at the fixed end, is found by making (97) a maximum. Pro

ceeding in the usual way, we find :

&quot;=1* |/3 = 0.422+ ....... (101)

which in (97) gives, sP# = PI x 0.181 ....
(102)

and in (98) tPx =Ylx 0.131 + ^fr~

To find where P must be applied so that the strain at the
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point of application will equal the strain at the fixed end, make

equations (97) and (98) equal to each other, and find n. This

gives,

n =
\ 3. 4141+ ;

- - - - -&quot; - - - I: ^ :

(103)

( 0. 5858 + .

But n = 0.5858 -f- is the only practical value.

To find where P must be applied so that the curve at that

point shall be horizontal, make -j-
=

0, and x = nl in. (95).

(1.
This gives n = 1 3.4141

(
0.5858

which are the same as the preceding values of n. To find the

corresponding deflection, make x = nl, and n = 0.5858 -f, in

(93), and we find

P73

A = o.oo98 ~ -

v
-

r
v -

k

-
I
.
ijt1

-.
-

For n &amp;lt; 0.5858, tang i is + )

n &amp;gt; 0.5858, tang i is V &amp;gt; ^- ;-;
-

(105)n= 0.5858, tang i is
)

Tofiiid the maximum deflection when n = O.G34, make -- = in
dx

(92) or (95), according as the greater deflection is to the right
or left of P. But, according to (105), it belongs to the curve

AD
;
hence use (92). Making n = 0.634 in (92), placing it

equal zero, and solving gives,

x = 0. 60457
;

which in (93) gives,
P/3

y = A = 0.00957 ~. .....
(106)

To find where P must be applied so as to give an absolute

maximum deflection
;

first find the nl-.-ci-Mi of the point of

maximum deflection, when P ifi applied at any point by making

= in (92), and thus find

which, substituted in (93) gives the corresponding maximum
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deflection. Then find that value of n which will make the

expression a maximum.
The point of contra-flexure in the curve AD is found by

ctfii

making -r4= in (91) (see Dif. Cal.) which gives,
Cvdj

_ 3ln* - n3

l - 2nl
:

3n*-n^2~
If n =

J-,
x = T

3
TZ.

The second member of (91) is the moment of applied forces,

and as it is naught at the point of contra-flexure, it follows -that

at that point there is no bending stress, and hence no elongation
or compression of the fibres, tut only a transverse shearing

stress, the value of which is determined in Article 153.

If a beam rests upon three horizontal equidistant supports,
and two weights, each equal P, are placed upon it, one on each

side of the central support and equidistant from it, it fulfills

the condition of a beam fixed at one end and supported at the

other, as before stated, and the amount which each support will

sustain for incipient flexure may easily be found from the pre

ceding equations.
The three supports will sustain 2P, and the end supports each

sustain V = %n\3 - ri)P. (See Eq. (90).)

Hence, the central support sustains

y = 2P-?i (3-7i)P.
If n = i, Y = A P, and V - ff P.

CASE viii. LET THE BEAM BE FIXED AT ONE ENDJ SUP

PORTED AT THE OTHER, AND UNIFORMLY LOADED OVER ITS WHOLE
LENGTH.

FIG. 46.

Take the origin at A, Figs. 45 and 46, and the notation the

same as in the preceding cases, then equation (50) becomes

(108)

,.&amp;gt;

t-
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Integrating gives
d
-ji

=
gjJ^^+^El ^

~ ^

in which _^ = for x =
I,
and y = for x = 0.

dx

If Y = 0, these equations become the same as those under

CASE II.

In equation (110) y is also zero, for x = I
;
for which values

This value substituted in equations (108), (100), and (110)

gives :

=
-J-
wx (4 x 3Z) ; (112)

:*).
(H4)

The point of maximum deflection is found by placing equa

tion (113) equal zero and solving for x. This gives

x = **~^l = 0.4215Z
;

and this in (114) gives

y = A =0.0054^- (115)

There are two maxima strains
;
one for x = I

;
the other for

x = %L The former in (112) gives

and the latter gives

The point of contra-flexure is found from equation (112) to

be at x %l, at which point the longitudinal strains are zero,

and there is only transverse shearing. (See Article 84.)

If the beam is supported by three props, which are in the

same horizontal, Fig. 46, then each part is subjected to the same

conditions as the single beam in Fig. 45. llence, ifW is the load
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on half the beam, each of the end props w
r
ill sustainY = f &quot;W,

(Eq. (Ill) ), and the middle prop will sustain 2W fW = fW.
Such are the teachings of the &quot; common

theory.&quot; But the

mathematical conditions here imposed are never realized. It is

impossible to maintain the props exactly in the same horizontal.

As they are elastic they will be compressed, and as the central

one will be most .compressed, the tendency will be to relieve the

strain on it and throw a greater strain upon the end supports.
If the supports be maintained in the same horizontal, the results

above deduced will be practically true for very small deflec

tions, but will be somewhat modified as the strains approach the

breaking limit.

9f&amp;gt;. CASE ix. LET THE BEAM BE FIXED AT BOTH ENDS AND
A WEIGHT REST UPON IT AT ANY POINT.

To simplify the case, sup

pose that the weight rests

at the middle of the length.
Let the beam be extend

ed over one support and a

weight, Pj rest at C, sufficient

to make the curve horizontal

over the support A. &quot;We

have Y = P, + iP.

Let AC = ql.

Then for the curve AD we have,

FIG. 47.

To find P, observe that = for x = \l\

This reduces the preceding equations to the following

:-4a?)
- - - -

(117)

(118)

and by integrating again, we find :
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For x = $ in (110), y = A =
j (120)

There is no algebraic maximum of the moment of strain as

given in the second member of equation (117), but inspection

shows that within the limits of the problem the moment is

greatest for x = or x = %L These in (117) give the same value,

with contrary signs ;
hence the moment of greatest strain is

*Px=fPl (121)

The moment is zero for x = \l.

1OO. CASE x. LET THE BEAM BE FIXED AT BOTH ENDS AND

A LOAD UNIFORMLY DISTRIBUTED OVER ITS WHOLE LENGTH.

FIG. 48.

The notation being the same as before used, we have

Y = P, +
Let ql = AC.

The equation of moments is

El = x)

Integrating, and observing that
-j-
= for x =

;
also y= for

x = 0, and we have

But -/-
= for x = I

;
also y = for a? = I

;

/.pt
=
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which substituted in the previous equations give :

1 W73

(125)

Making -^-^
we find for the points of contra-flexure

_ ( 0.788
~

(
0.211

.7887Z

2113Z

at which points there is no longitudinal strain, but a transverse

shearing strain. (See Article 84.)

The maximum moments are for oj = and x = \l.

For x 0, the second member of Eq. (122) gives TyW7. (126)
Force = JZ, jj-W^.
Hence the greatest strain is over the support, at which point

it is twice as great as at the middle. If W P, we see that

the strain over the support is f as great in this case as in the

former.

-X
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IOI . RESULTS &amp;lt; OI.M:&amp;lt; i i:i&amp;gt;.

;NO. OF
TUB
CASK.
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it in Article 119. The maximum strains in Cases VII. and
VIII. do not occur at the points of maximum deflection.

Although the moment in the 1st case is to that in the 2d as 2

to 1, yet the deflections are as 8 to 3
;
and in the 4th and 5th

cases the deflections are as 8 to 5.

A comparison of Cases IV. and IX. shows the advantage of

fixing the ends of the beam. The same remark applies .to Cases

V. and X. In the former cases the strain is only one-half as

great when the beam is fixed at the ends as when it is supported,
and in the latter two-thirds as great.o

Other interesting results may be seen by examining the table.

1O3. MODIFICATION OF THE FORMULAS FOR DEFLEC
TION. It will be observed that the general form of the expres
sion for the maximum deflection of rectangular beams is

PZ3

A = constant x
Ebd3

Prof. &quot;W. A. Norton, of New Haven, Ct., has made experi
ments to test the correctness of this expression. (See Van fflos-

trancPs Eclectic Engineering Magazine, vol. 3, page 70.) Ac

cording to his experiments,^^ beams supported at their ends

and loaded at the middle, the expression should be

p/3

For the pine sticks which he used he found the mean value

of C to be

C = 0.0000094.

A consideration of transverse shearing stress, in combina

tion with the stretching and compressing of the fibres, leads to

an expression of this form. For, as we have before seen, the

strain is evenly distributed over the whole transverse section,

and hence the deflection will vary inversely as the area, or as

bd
;

it is also uniform over its whole length, and equal P (see

Example 2, Article 84) ;
and hence the amount of deflection

will vary as JP; and the total deflection at the middle will
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evidently vary as the length ; or, in this case, as %l. Hence,
ip \i

the total deflection due to transverse shearing is, C
j^-

=

C PZ
2 -y-r,

which is the same form as that given by Professor Norton.

The same form of expression is also reached, in a more circuitous

way, by Weisbach, in his Mechanics of Engineering, 4th edi

tion, vol. 1, page 522 of the recent American edition.

In Professor Norton s formula \ C is the reciprocal of the co

efficient of elasticity to transverse shearing of whitepine / hence

the coefficient is 425,531 pounds. The mean value of E in the

above experiments was found to be 1,427,965 Ibs.
;
and hence,

in this case, the reciprocal of ^C is a little more than J^ of E.

Weisbach, in the reference above given, says :
&quot; The coefficient

of elasticity for transverse shearing is generally assumed to be

equal to E.&quot;

If the load is uniformly distributed over the whole length,
the shearing stress on any section, distant x from the end, is

wl wx. (See Example 1, Article 84.) Hence the deflection for

an element of length of a rectangular beam due to this cause, is

and for a distance x this becomes by simple integration,

C -*

and for half the length, make x = $1, and the expression be

comes
t* wr

from which we see that the same load, distributed uniformly
over the whole length, produces half as much deflection due to

transverse shearing as the same load concentrated at the middle.

Equation (76) when corrected for this effect becomes

r A =

from which we see that if the depth be constant the deflection
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due to transverse shearing will be more apparent compared with

that due to the other cause, as the piece is shorter. If the piece
is very long, the effect due to C is comparatively small. If

p-
= ^E, as assumed by Weisbach, the deflection becomes

Wl
A =

SEbd

If I d the quantity in [ ] becomes f+ 12
;
or the effect due

to C is ^8. of that due to E.

If I = 20d, the effect due to C is -fa nearly of that due to E.

1O4. ADDITIONAL PROBLEMS WHICH ARE PURPOSELY
LEFT UNSOLVED.

1. Suppose that a beam is supported at its extremities, and

has two forces at any point between. In this case the curve

between the support and the nearest force will have one equa
tion

;
the curve between the forces another

;
and the remaining

part a third.

2. In the preceding case, if the forces are equal and equidis

tant from the supports, the curve between the forces wr
ill be the

arc of a circle.

3. Suppose that the beam is uniformly loaded and rests on

four supports.
4. Suppose that the beam is supported at its extremities and

has a load uniformly increasing from one support to the other.

5. Suppose that the beam is uniformly loaded over any por
tion of its length.

6. Suppose that ft has forces applied at various points.

These problems will suggest many others.

Y. Suppose that a beam is supported at several points, and

loaded uniformly over its whole length.
Let &quot;W = the weight between each pair of supports,

Yn Y3 ,
Y

8 , &c., be the reactions of the supports, counting
from one end,

and let the distances between the supports be equal.
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Then we have :

No. of

Sup-
!

-

2
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equation (50) before the integration can be performed. As an

example, let the beam be

fixed at one extremity, and
a weight, P, be suspended at

the free extremity, Fig. 50.

Let the breadth be constant,
and the longitudinal vertical

sections be a parabola. Then
all the transverse sections

will be rectangles.
Let I = the length,

F G- 50 -

~b =. the breadth, and

d = the depth at the fixed extremity.
If y is the whole variable depth at any point, we have, from

the equation of the parabola,

cF pi, :. p = 27,
in whichp is the parameter(-J-?/)

2 =

of the parabola.

From equation (51) we have

(127)

I = -fjby*, m which substitute
?/,

from equation (127), and we

** - ri2Na W l

(M&)

The equation of moments is, see equation (50),

cCyEl
-j-i

P^, in which substitute I, from equation (128), and

we have

12PZ1

-x~~b

Multiply by the dx and integrate, observing that
j-
= Ofor a? I

and we have

dy_
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Integrating again gives

y is zero for x 0.

y = A for x = I

Eb(F~

If, in equation (57), we substitute I =
comes

- -
(129)

(Eq. (51)), it be-

which is one-half that of (129) ;
hence the deflection of a prismatic

beam is one-half that of a parabolic beam of the same length,

breadth, and greatest depth, when fixed at one end and free at

the other, and has the same weight suspended at the free end.

In a similar manner the equation of the curve may be found

for any other form of beam, if the law of increase or decrease

of section is known. Several examples may be made of beams
of uniform strength, which will be given in Chapter VII.

1O6. BEAMS SUBJECTED TO OBLIQUE .STRAINS. Let the

beam be prismatic, fixed at one end, afid

support a weight, P, at the free end; the

beam being so inclined that the direction of
the force shall make an obtuse angle with the

axis of the beam, as in Fig. 51.

Let PI = P sin 6 = component of P per

pendicular to the axis of the beam,
and

P3 = P cos = component parallel to

the axis of the beam.
Take the origin at the free end, the axis

of x being parallel to the axis of the beam
?

and y perpendicular to it.

Then equation (50) becomes Fia. 51.

or,
-
t
= p-x + q-y

P,

(130)

in which p* = ~ ;
and q* = . The complete integral of (130) is (see Appen-

El Er
dix III.)
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* e +

The conditions of the problem give

dy = for x = I-
u*o

y for x =
;
and these combined with the preceding equation

give :

gi ql

= ft + &amp;lt;7a ;

From which Ci and C 2 may be found, and the equation becomes completely
known.

We also have y = A for x
;

ql ql p3
*&quot;

Next, suppose that the force makes an acute angle with the axis of the beam, as

in Fig. 52.

For the sake of variety, take the origin at A, the fixed end, x, still coin

ciding with the axis of the beam before flexure. Using the same notation as

in the preceding and other cases, we have

-y) (131)

The complete integral is

vs
A -y = -4-(Z-z) (132)

FIG. 52.

in which A and B are arbitrary constants.

From the problem we have

y for x =
;

-/-=0foraj = 0; and
dx

y A for x = I
;

by means of which the equation becomes

completely known.

From these examples we see how easily the problem is com

plicated. One difficulty in applying these cases in practice is

in determining the value of I. Before it can be determined,
the position of the neutral axis must be known. According to

Article 78, 3d case, it appears that the neutral axis does not

coincide with the axis of the beam. Indeed, according to the

same article, it is not parallel to the axis, and hence I is varia

ble, and the equations above are only a secondary approxima
tion

;
the first approximation being made in establishing equa-
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tion (50), and the next one in assuming I constant. All writ

ers, within the author s acquaintance, who have investigated this

and similar cases, beginning with Navier, have assumed that I is

constant, and that the neutral axis coincides with the axis of

the beam. These assumptions may be admissible in any prac
tical case were extreme accuracy is not desired. Many other

practical examples might be given, the solutions of which are

more difficult than the preceding; but enough have been

given to illustrate the methods.

FIG.

1O7. FLEXURE OF COLUMNS.
If a weight rests upon the axis

of a perfectly symmetrical and

homogeneous column, we see no

reason why it should bend it
;

but in practice we know that it

will bend, however symmetrical
and homogeneous it may be, and

however carefully the weight may
be placed upon it. If the weight
be small, the deflection may not be

visible to the unaided eye. If the

weight is not so heavy as to crush

the column, an equilibrium will be established between the

weight and the elastic resistances within the beam. Let the col

umn rest upon a horizontal plane, and the weight P on the upper
end be vertically over the lower end. Take the origin of coor

dinates at the lower end of the column, Fig. 53. x being ver-O /
t&quot;&amp;gt;

tical, and y horizontal. They must be so taken here, because x
was assumed to coincide with the axis of the beam when equa
tion (50) was established. Then y being the ordinate to any
point of the axis of the column after flexure, the moment of

P is Py, which is negative in reference to the moment of re

sisting forces, because the curve is concave to the axis of x, in

which case the ordinate and second differential coefficient must
have contrary signs (Dif. Cal.). Hence we have,

(133)
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Multiply by dy and integrate (observing that dx is constant),
and find

-v- = for y = A = the maximum deflection. These

PA&quot;
values in the preceding equation give C( = -^y, which being

substituted in the same equation and reduced gives

dy

/**=?

But y = for a? = /. &amp;lt;7

2
= 0. Hence the preceding gives

y = A sin ^^ a&amp;gt; (134)

But y for a? = Therefore, if n is an integer, these val-

ues reduce (134) to

P

This value of P reduces (134) to

y =A6m,r 7 v Library.
which is the equation of the curve. It is dependent&quot;

the length of the column and the maximum deflectionTTSF

n = 1, the curve is represented by a, Fig. 54
;

if n = 2, by
5

;
if n = 3, by c.

If n = 1, equation (135) becomes

*&quot;

P =
? EI - -

(136)

which is the formula to be used in practice. We see that the
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resistance is independent of the deflection. If the column is

cylindrical,
I = i * r* (see equation (52) ) ;

/. P = ^ (137)

hence the resistance varies as the fourth power of the radius (or

diameter), and inversely as the square of the length. If the

column is square, I = ^b* (equation (51)),

*- E V
P==

12-Xjr (133)

These formulas, according to Xavier * and &quot;Weisbach,t should

be used only when the length is 20 times the diameter for

cylindrical columns, or 20 times the least thickness for rectangular
columns

;
and Kavier says that for safety only -^ of the calcu

lated weight should be used in case of wood, and J to
-J-
in case of

iron
;
but Weisbach says they should have a twenty-fold security.

Examples 1. What must be the diameter of a cast-iron column, whose length

is 12 feet, to sustain a weight of 30 tons (of 2,000 Ibs. each) ;
E = 1C. 000,000

Ibs.
;
and factor of safety ^- -. Ans. d = 7.52 in.

2. If the column be square and the data the same as in the preceding exam

ple, equation (138) gives

=&amp;lt;/&quot;

12 X 00,000 X (12 X 12)- X 20 _ . ,= G.G inches.
(81416)* X 16,000,000

In the analysis of this problem I have followed the method of

Navier
;
but as it is well known that the results are not relied upon

by practical men, I have given only one case. For other cases

see Appendix III. There are some reasons for the failure of

the theory which are quite evident, but it is not easy to remedy
them

;
and for this reason the empyrical formulas of Article 52

are much more satisfactory. It will be observed that the law of

strength, as given in the formulas in that article, are the same as

those given in equations (137) and (138) for .wooden columns,
and nearly the same as for iron ones. The chief difference is in

the coefficients, or constant factors. In the analysis it was as

sumed that the neutral axis coincides with the axis of the beam,
but it is possible for the whole column tobe compressed, although
much more on the concave than on the convex side, in which

*
Navier, Resume des Le9ons, 1839, p. 204.

f Weisbach s Mechanics and Engineering. Vol. 1, p. 219. 1st Am. ed.
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case the neutral axis would be ideal, having its position entirely
outside the beam on the convex side. In this case, if the ideal

axis is parallel to the axis of the beam, it does not affect the form
of equation (136), but it does affect the value of I

;
and hence

the values of equations (137) and (138). The problem of the

flexure of columns is then more interesting as an analytical one

than profitable as a practical one.

GRAPHICAL METHOD.

1O8. THE GRAPHICAL METHOD consists in representing

quantities by geometrical magnitudes, and reasoning upon them,
with or without the aid of algebraic symbols. This method has

some advantages over purely analytical processes; for by it

many problems which involve the spirit of the Differential and

Integral Calculus may be solved without a knowledge of the

processes used in those branches of mathematics
;
and in some

of the more elementary problems, in which the spirit of the

Calculus is not involved, the quantities may be directly presented
to the eye, and hence the solutions may be more easily retained.

It is distinguished, in this connection, from pure geometry by
being applied to problems which involve mechanical principles,

and to use it profitably in such cases requires a knowledge of

the elementary principles of mechanics as well as of geometry.
But graphical methods are generally special, and often re

quire peculiar treatment and much skill in their management.
It is not so powerful a mode of analysis as the analytical one,

and those who have sufficient knowledge of mathematics to use

the latter will rarely resort to the former, unless it be to illus

trate a principle or demonstrate a problem for those who cannot

use the higher mathematics. A few examples will now be given
to illustrate the method.

1O9. GENERAL PROBLEM OF THE DEFLECTION OF
BEAMS. Tofind the total deflection of aprismatic beam which

is bent by a force acting normal to the axis of the beam

without the aid of the Calculus.

Let a beam, AB, Fig. 55, be bent by a force, P, in which

case the fibres on the convex side will be elongated, and

those on the concave side will be compressed. Let AB be the

9
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axis.

ON:

Take two sections normal to the neutral axis

at L and N, which are in

definitely near each other.

These, if prolonged, will

meet at some point as O.

Draw KN parallel to LO.
Then will ke, = A, be the

distance between KN and

EN at &, and is the elonga
tion of the fibre at k. Let

eN = y, then from the

similar triangles fcNe and

LON we have

LN LN
FIG. 55.

LN: fo = A =
ON

If, now, we conceive that a force p, acting in the direction of

the fibres, or, which is the same thing, acting parallel to the

axis of the beam, is applied at k to elongate a single fibre, we
have, from equation (3) and the preceding one,

. ke E
~ = A

in which A# is the transverse section of the fibre. As the sec

tion turns about N on the neutral axis, the moment of this

force is

E . T-?

which is found by multiplying the force by the perpendicu
lar y.

This is the moment of a force which is sufficient to elongate
or compress any fibre whose original length was LN, an amount

equal to the distance between the planes KN and EN measured

on the fibre or fibre prolonged. Hence, the sum of all the

moments of the resisting forces is

E

in which z denotes summation
;
and in the first member means

that the sum of the moments of all the forces which elongate

and compress the fibres is to be taken
;
and in the second mem-
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her it means that the sum of all the quantities if &a included in

the transverse section is to be taken. The quantity, Sy
1 A# is

called the moment of inertia, which call I.

But the sum of the moments of the resisting forces equals
the sum of the moments of the applied forces. Calling the latter

sPX, in which X is the arm of the force P, and we have

In the figure draw U tangent to the neutral axis at L, and
N0 tangent at N. The distance ab, intercepted by those tan

gents on the vertical through A, is the deflection at A due to the

curvature between L and N. As ~LN is indefinitely short, it

may be considered a straight line, and equal x
;
and U LC

very nearly for small deflections
;
and LC = X. (L stands for

two points.)

By the triangles OLX and aU, considered similar, we have

OJNT :x :: U:at

in which substitute ON from equation (139) and we have

, ~Xx sPX

which is sufficiently exact for small deflections. If, now, tan

gents be drawn at every point of the curve AB, they will divide

the line AC into an infinite number of small parts, the sum

of which will equal the line AC, the total deflection. But the

expression for the value of each of these small spaces will be of

the same form as that given above for ab, in which P, E, and I

are constant.

This is as far as we can proceed with the general solution.

We will now consider

PARTICULAK CASES.

114). CASE 1. L.ET THE BEAM BE FIXED AT ONE END,
AND A LOAD, P, BE APPL.IED AT THE FIIEE END.-TlllS is a

part of Case I., page 99, and Fig. 37 is applicable. The moment
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of P, in reference to any point on the axis, is PX. Hence

is simply PX, which, substituted in equation (140), gives

=

-I
sX -*

&amp;lt;

U1
&amp;gt;

This equation has been deduced directly from the figure. It

now remains to find the sum of all the values of X 2

#, which

result from giving to X all possible values from X = to

X = I*. To do this, construct a figure some property of which

represents the expression, but which has not necessarily any
relation to the problem which is being solved. If X be used

as a linear quantity, Xa

may be an area and X3
E will be a small

volume. These conditions are represented by a pyramid, Fig.

56, in which

AB = I = the altitude, and the base BCDE is a square, whose

sides, BC and CD, each = I. Let Icde be

a section parallel to the base, and make
another section infinitely near it, and call

the distance between the two sections x.

Then Al = X = Ic = cd,

Xa = area bcde, and

Xa = the volume of the la

mina bcde,

which is the expression sought. The sum ^ f~~ ~~s

of all the laminae of the pyramid which Fl - 5f) -

are parallel to the base is limited by the volume of the pyramid,
and this equals the value of the expression sXa# between the

limits and I. The volume of the pyramid is the area of the

base (= F) multiplied by one-third the altitude (-/), or ^Z
3

,

which is the value sought.

Hence, AC = ^g-j

wliich is the same as equation (57).

The value of Xa# may also be found by statical moments as

follows : Let ABC, Fig. 57, be a triangle, whose thick-

* This by the calculus becomes / x&quot; dx {^
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ness is unity, and which is acted upon by gravity (or any
other system of parallel forces which is the same c

on each unit of the body). Take an infinitely

thin strip, be, perpendicular to the base, and

let AB = I = BC,
Ab = X = be, and

p the weight of a unit of volume.

Then X# the area of the infinitely thin strip be, and
= the weight of the strip be, and

*x the moment of the strip, when A is taken as the

origin of moments. If the weight of a unit of volume be taken

as a unit, the moment becomes X2

a?, which is the quantity sought,
and the value of sX2^ from to Zis the moment of the whole

triangle ABC. Its area is -JZ
2

,
and its centre of gravity \l to the

right of A. Hence the moment is \l? as before found.*

111. CASE II. LET THE BEAM BE FIXED AT ONE END,
AND UNIFORIttLY LOADED OVER ITS WHOLE LENGTH.-
This is the same as a part of Case II., page 101, and Fig. 39 is

applicable.

Let X be measured from the free end, and

w the load on a unit of length ;
then

^X = the load on a length X, and

J-X = the distance of the centre of gravity of the load from
the section which is considered.

Hence the moment is ^X2

,
which equals sPX, and equation

(140) becomes

, w
ao =

^pi-j
X

a?,
and

w x= l

AC = FT 2X3^ = the total deflection.

To find the value of sX 3

#, observe, in Fig 56, that Xa# is

the volume of the lamina bcde, and this multiplied by the alti

tude of A bede, which is X, gives X 3

#, the expression sought.
Hence the sum sought is the volume of the pyramid A BCDE,

X = I

* This may be written 2 XQ# = J
3 Z

3
.
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multiplied by the distance of the centre of gravity of the pyra
mid from the apex ; or,

where TV is the total load on the beam.

112. CASE III. LET THE BEAItt BE SUPPORTED AT ITS
ENDS AND LOADED AT THE MIDDLE BY A WEIGHT P, as in

Fig. 40. The reaction of each support is P, and the moment
is J-PX, and equation (140) becomes

oJ^^jX s.

But in this case the greatest deflection is at the middle, and
the limits of zX 2# are and \l. Hence, in Fig. 56, let the

altitude of the pyramid be
,
and each side of the base also

/,

and the volume will be

lx$lx I of

\C-~
48E.I

which is the same as equation (73).

113. CASE IV. LET THE BEAItt BE SUPPORTED AT ITS
ENDS AND UNIFORMLY LOADED, AS IN FIG. 42.

w being the load on a unit of length, the reaction of each

support is %wl, and its moment at any point of the beam is

$wHi. On the length X there is a load 10X, the centre of

which is at J-X from the point considered
;
hence its moment is

3

,
and the total moment is the difference of these moments

;

and equation (140) becomes

o$= ~
*jji&amp;lt;. _

and the total deflection at the middle is,
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The values of the terms within the parentheses have already
been found, and by subtracting them we have

__
~384 E.I

114. REMARK ABOUT OTHER CASES.-This method,
which appears so simple in these cases, unfortunately becomes

very complex in many other cases, and in some it is quite pow
erless. To solve the 9th and 10th cases, pages 115 and 116, ne

cessitates an expression for the inclination of the curve, so that

the condition of its being horizontal over the support may be

imposed upon the analysis. But the 9th case may be easily

solved if we find by any process that the weight which must

be suspended at the outer end of the beam to make it horizontal

over the support is |P divided by AC,* Fig. 4:7. For, the

reaction of the support is JP -f-P ;

- (fp+P,)X

KI

p
and the deflection at the centre - i (teXas 4sX2

a) taken

between the limits and \l.

The part sX# is the area of a triangle whose base and alti

tude are each JZ, /. sX# = %F, and sX2# between the limits

P I
3

and is

All these expressions contain I, the value of which remains to

be found by the graphical method.

* This &quot; AC &quot; refers to Fig. 47.

f This &quot; AC &quot;

refers to Fig. 55.
,
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rectangle

115. MOMENT OF INERTIA OF A RECTANGLE. Required
the moment of inertia of a rectangle about one end as an oasis.

Let ABCD, Fig. 58, be a rectangle. Make BG perpendicu
lar to and equal AB, and complete the

wedge G - ABCD.
Let A = the area of a very small sur

face at E, and

y = AE = EF, then

yA = the volume of a very small

prism EF, and this multi

plied by y gives

y*A# the moment of inertia of

the elementary area at E,
which is also the statical

moment of the prism EF, and

^y* Act = I = the moment of inertia of the

ABCD.
Hence the moment of inertia of the rectangle is represented

by the statical moment of the wedge G ABCD. If

AB = d = BG, and

AD = 6,

then the volume of the wedge is

Id x $d =W
and the moment =

$&amp;lt;F
x fi = $hF - - - -

(143)
If the axis of moments passes through the centre of the rec

tangle, and parallel to one end, we have BE = GB = \d in

Fig. 59. Hence the moment of inertia of the rectangle
=

2x5xi^xi^x|of^= TV Id*

which is the same as equation (50).

116. THE MOMENT OF INERTIA OF A TRIANGLE about

an axis parallel to the base and passing through the vertex is,

in a similar way, the statical moment of the pyramid ABCDE.

Fig. 60.

Let b = CB = base of the triangle, and

d = AB = BD = CE = altitude of the triangle and

pyramid and sides of the base of the pyramid.
The volume of the pyramid = J bcF.

The centre of gravity is J/Z from the apex, consequently the

statical moment is J bcF x $d = tyd
3

.
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But in a triangular beam the neutral axis passes through the

centre of gravity of the triangle, and it is desirable to find the

moment of inertia about an axis which passes through the centre

and parallel to the base.

This may be done as in the preceding Article
;
but it may be

FIG. 59.

FIG. 60.

more easily done by using theformula of reduction, which is

a? follows: The moment of inertia of a figure about an axis

passing through its centre equals the moment of inertia about an
axis parallel to it, minus the area of the figure multiplied by
the square of the distance between the axes. (See Appendix III.)

This ffives for the moment of inertia of a triangle about anO O
axis passing through its centre and parallel to the base

\bd*
- \bd x (W = ^V^ (143)

117. THE MOMENT OF INERTIA OF A CIRCLE maybe
represented in the same way, but it is not easy to find the vol

ume of the wedge, or the position of its centre of gravity,

except by analysis which is more tedious than that required to

find the moment directly, as was done in equation (51). But it

may be found practically, by those who can only perform

multiplication, as follows : Make a w^edge-shaped piece out of

wood, or plaster of Paris, or other convenient material, the base

of which is the semicircle required, and the altitude is the

radius of the circle
;
then find its volume by im

mersing it in a liquid and measuring the amount of

water displaced. Then determine the distance of

the centre of gravity of the wedge from the centre

of the circle by balancing it on a knife edge, holding
the edge of the knife under the base of the wedge,
and parallel to the edge, ab, of the wedge, keeping the side
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vertical, and measuring the distance between the edge ab and

the line of support. Then the statical moment is the product

of the volume multiplied by the horizontal distance of the

centre from the edge. Its value for the whole circle, or for

both wedges, is \^r\
There are, however, many methods of calculating the moment

of inertia of a circle without using the Calculus. The following

method, which the author has devised, appears as simple as

any of the known methods :

The moment of inertia of a circle is the

same about all its diameters. Hence the

moment about X in the figure, plus the

moment about Y, equals twice the moment

about X. The distance to any point A is

P, and equals ^ tf + if ;
or f x* + if ;

and if ~Ati be an elementary area, as be

fore, we have Fio606

+ V Atf#
a = V A f,

the latter of which is called the polar moment of inertia, in

reference to an axis perpendicular to the plane of the circle, and

passing through its centre C. To find the value of J A# p
a

,

take a triangle whose base and altitude are each equal to r, the

radius of the circle, and revolve it about the axis through C,

and construct an infinitely small prism on the element A# as a

base.

We have f
= CA = AB, Fig. 60 c.

A p
= volume of the small prism AB.
A = /\af=t\\e moment of AB,

the form of the quantity sought.

f is the product of the volume of the

solid generated by the triangle, multiplied by the

abscissa of its centre of gravity from C. The solid is what re

mains of a cylinder after a cone has been taken out of it, the

base of the cone being the upper base of the cylinder, and

the apex of which is at the centre of the base of the cylinder.

Hence the volume of the solid is the volume of the cylinder,

less the volume of the cone
;
or vr* x r w/ 1

&quot;

x l r = far*.

Hence
FIG. 60 c.
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If now the solid be divided into an infinite number of pieces,

by planes which pass through its axis, each small solid will be a

pyramid, having its vertex at C, and the abscissa to the centre

of gravity of each is %r from C. Hence we finally have

equals 2

3

*T4 which

118. M01WENT OF INERTIA OF OTHER SURFACES.-The

general method indicated in the preceding articles is applicable
to surfaces of any character, and with careful manipulation ap

proximations may be made which will be very nearly correct,

and, as we have seen above, in some cases exact formulas may
be found.
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CHAPTER VI.

TRANSVERSE STRENGTH.

119. STRENGTH OF RECTANGULAR HE A.US. The tll6-

ories which have been advanced from time to time to explain

the mechanical action of the fibres, have been already given
in Chapter IV. Both the common theory, and Barlow s theory

of &quot; the resistance to flexure
&quot;

will be considered in this chap
ter.

First, consider the common theory, according to which the

neutral axis passes through the centre of gravity of the trans

verse sections, and the strain upon the fibres is directly propor
tional to their distance from the neutral axis.

Continuing the use of the geometrical method, let Fig. 61

represent a rectangular beam
which is strained by a force P
applied at any point. Let de be

on the neutral axis, and al) repre
sent the strain upon the lowest

fibre. Pass a plane, decb, and

the wedge so cut off represents
the strains on the lower side, and

the similar wedge on the other

side represents the strains on the

upper side.

Let R the strain upon a FIO. i.

unit of fibres most remote from the neutral axis on the side

which first ruptures, on the hypothesis that all the fibres of the

unit are equally strained, and b = the breadth and d = the

depth of the beam.

Let ab = R
; then, the total resistance to compression = R

x \d = JR&/, = the volume of the lower wedge ;
and the mo-



TRANSVERSE STRENGTH. 141

ment of resistance is this value multiplied by the distance of

the centre of gravity of the wedge from de, which is f of \d =
\d\ consequently the moment is

and as the moment of resistance to tension is the same, the total

moment of resistance is

iKM, =-.( (145)
which equals the moment of the applied or bending forces.

If the beam be fixed at one end and loaded by a weight, P, at

the free end, w^e have for the dangerous section, or that most
liable to break,

PI = Rbd\

In rectangular beams the dangerous section will be where the

sum of the moments of stresses is greatest, the maximum values

of which for a few cases are given in a table on page 118. Using
those values, and placing them equal to I RbcF, and we have for

solid rectangular beams at the dangerous section, the following
formulas :

FOR A BEAM FIXED AT ONE END AND A LOAD, P, AT THE FREE

END; PZ = |K&F; (146)
AND FOR AN UNIFORM LOAD

; $Wl ^Rbd*
- -

(147)

FOR A BEAM SUPPORTED AT ITS ENDS AND A LOAD, P, AT THE
MIDDLE

; %Pl = R&?
;

-
(148)

AND FOR AN UNIFORM LOAD
; $Wl. = ^Rbd* ;

-
(149)

AND FOR A LOAD AT THE MIDDLE, AND ALSO AN UNIFORM LOAD
;

t(2P + W)l = iRfof (150)

FOR A BEAM FIXED AT BOTH ENDS AND A LOAD, P, AT THE

MIDDLE; PZ = Rfof; - -
(151)

AND FORAN UNIFORM LOAD, END SECTION
; -^Wl= ^~RM ; (152)

MIDDLE SECTION
; &WI R&F - -

(153)

These expressions show that in solid rectangular beams the

strength varies as the breadth and square of the depth, and

hence breadth should be sacrificed for depth. In all the cases,

except for a beam fixed at the ends, it appears that a beam will

support twice as much if the load be uniformly distributed over

the whole length as if it be concentrated at the middle of the

length. The case in which a beam is fixed at both ends and

loaded at the middle has given rise to considerable discussion,
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for it is found by experiment that a beam whose ends are fixed

in walls or masonry will not sustain as much as is indicated by
the formula, and also that it requires considerably more load

to break it at the ends than at the middle, but the analysis
shows that it is equally liable to break at the ends or at the

middle. But it should be observed that there is considerable

difference between the condition of mathematical fixedness, in

which case the beam is horizontal over the supports, and that of

imbedding a beam in a wall. For in the latter case the deflec

tion will extend some distance into the wall.

Mr. Barlow concludes from his experiments that equation

(151) should be

$&amp;gt;l
=

^b&amp;lt;?
- - - -

(154)

and this relation is doubtless more nearly realized in practice
than the ideal one given above. In either case, it appears that

writers and experimenters have entirely overlooked the effect

due to the change of position of the neutral axis, which must

take place. It has been assumed that the neutral axis coincides

with the axis of the beam, and that its length remains unchanged

during flexure
;
but if the ends of the beam are fixed, the axis

must be elongated by flexure, or else approach much nearer the

concave than the convex side, or both take place at the same

time, in which case the moment of resistance will not be Jll/W.
The phenomena are of too complex a character to admit of a

thorough and exact analysis, and it is probably safer to accept
the results of Mr. Barlow in practice than depend upon theoreti

cal results.

12O. MODULUS OF RUPTURE. When a beam is support
ed at its ends, and loaded uniformly over its whole length, and

also loaded at the middle, we find from equation (150)

_W
in which W may be the weight of the beam. Beams of known

dimensions, thus supported, have been broken by weights placed
at the middle of the length, and the corresponding value of R
has been found for various materials, the results of which have

been entered in the table in Appendix IV. This is called the

MODULUS OF HUPTURE, and is defined to be the strain upon a,
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square inch offibres most remote from the neutral axis on the

side which first ruptures. It would seem from this definition

that R should equal either the tenacity or crushing resistance of

the material, depending upon whether it broke by crushing or

tearing, but an examination of the table shows the paradoxical
result that it never equals either, but is always greater than the

smaller and less than the greater. For instance, in the case of

cast iron :

The mean value of T = 16,000 Ibs.

&quot; &quot; C = 96,000
&quot;

&quot; Rz= 36,000
&quot;

nearly,

hence R is about 2J times T, and a little over -J of C.

For English oak

T = 17,000 Ibs.
;

C = 9,500 Ibs.
;
and

R = 10,000 Ibs.
;

hence R exceeds C, and is more than half of T.

For ash

T = 17,000 Ibs.
;

C = 9,000 Ibs.
;
and

R = 12,000 Ibs.
;
hence

R = 1-J- C and about f T.

These discrepancies have long been recognized, and the cause

has generally been attributed to a departure from the law of

perfect elasticity and a movement of the neutral axis away from
the centre of the beam in the state bordering on rupture ;

but as

the laws of these variations were not assigned, their influence

could not be analyzed. (See Articles 74 and 75.)

The tabulated values of R being found from experiments up
on solid rectangular beams, they are especially applicable to all

beams of that form, and they answer for all others that do not

depart largely from that form
;
but if they depart largely from

that form, as in the case of the i (double T) section, or hollow

beams, or other irregular forms, the formulas Avill give results

somewhat in excess of the true strength ;
and in such cases Bar

low s theory gives results more nearly correct.

But if, instead of R, we use T or C, whichever is smaller, in the

formulas which we have deduced, and suppose that the neutral
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axis remains at the centre of the beam, we sJiall always le on

tJie safe side / but there would often be an excess of strength, as,

for instance, in the case of cast iron the actual strength of the

beam would be about twice as strong as that found by such a

computation.
The difficulty is avoided, practically, by using such a small

fractional part of R as that it will be considered perfectly safe.

This fraction is called the coefficient of safety. The values com

monly used for beams are the same as for bars, and are given
in Article 38.

Experiments should be made upon the material to be used in

a structure, in order to determine its strength; but in the absence

of such experiments the following mean values of II are

used :

850 to 1,200 Ibs. for wood,

10,000 to 15,000 Ibs. for wrought iron, and

6,000 to 8,000 Ibs. for cast iron.

. PRACTICAL, FORMULAS.

If R =: 1,000 for wood, and

12,000 for wrought iron,

we have for a rectangular beam, supported at its ends and

loaded at the middle of its length, / M&amp;gt;

666 W -

P =
j

-- for wooden beams
;
and

8000 &?.
1 = --

j
--- tor wrougnt-iron beams.

t&amp;gt;

The length of the beam, and the load it is to sustain, are gen

erally known quantities, and the breadth and depth are required ;

but it is also necessary to assume one of the latter, or assign a

relation between them. P\&amp;gt;r instance, if the depth be n times

the breadth, the preceding formulas give

7&amp;lt;

5=V;=1 for wood; (156)

and b =V/r 5
andrf = V &quot; f r wrouSht iron

&amp;gt;



TKANSVEKSE STRENGTH. 145

THE RELATIVE STRENGTH OF A BEAM Under

the various conditions that it is held is as the moment of the

applied forces
; hence, all the cases which have been con

sidered may, relatively, be reduced to one, by finding how much
a beam will carry which is fixed at one end and loaded at the

free end, equation (146), and multiplying the results by the fol

lowing factors :

FACTORS.

Beam fixed at one end and loaded at the other - 1
&quot; &quot; &quot; &quot;

uniformly loaded - - 2

Beam supported at its ends and loaded at the middle 4
&quot; &quot; &quot;

uniformly loaded 8

Beam fixed at one end and supported at the other,

and uniformly loaded - - - - __8
Beam fixed at both ends and loaded at the middle - - 8

&quot; &quot; &quot; &quot;

uniformly loaded - 12

If it is required to know the breadth of a beam which will

sustain a given load, find 5, from equation (146) ;
and for a beam

in any other condition, divide by the factors given above for

the corresponding case.

If the depth is required, find d from equation (146), and di

vide the result for the particular case desired by the square
root of the above factors.

EXAMPLES.
1. A beam, whose depth is 8 inches, and length 8 feet, is supported at its

ends, and required to sustain 500 pounds per foot of its length ; required

its breadth so that it will have a factor of safety of -fa R being 14,000

pounds.
From equation (146) we have,

QPl 6x500x8x8x12

and by examining the above table of factors we see that this must be divided

bv 8 . . . Ans. = 3i
a
4
- inches.

2. If I
- 10 feet, P at the middle = 2,000 Ibs., b = 4 inches, E = 1,000 Ibs.,

required d.

3. If a beam, whose length is 8 feet, breadth is 3 inches, and depth 6 inches,

10
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is supported at its ends, and is broken by a weight of 10,000 pounds placed at

the middle, and the weight of a cubic foot of the beam is 50 pounds; required
the value of R. Use equation (150).

4. If R = 80,000 Ibs., I = 12 feet, b = 2 inches, d 5 inches, how much
will the beam sustain if supported at its ends and loaded uniformly over its

whole length, coefficient of safety i ? Ana W = 9,259 Ibs.

5. A wooden beam, whose length is 12 feet, is supported at its ends
;
re

quired its breadth and depth so that it shall sustain one ton, uniformly distri

buted over its whole length. Let R = 15,000 Ibs., coefficient of safety j

1
,,,

and

depth = 4 times the breadth. Ans. b = 2.08 inches.

inches.

6. A beam is 2 inches wide and 8 inches deep, how much more will it sustain

with its broad side vertical, than with it horizontal ?

7. A wrought-iron beam 12 feet long, 2 inches wide, 4 inches deep, is

supported at its ends. The material weighs Ib. per cubic inch
;
how much

load will it sustain uniformly distributed over its whole length, R = 54,000
Iba. ? Ans. Without the weight of the beam, 15,712 Ibs.

8. A beam is fixed at one end
;

I 20 feet, b\\ inch, R = 40,000
Ibs.

; weight of a cubic inch of the beam ^ Ib. Required the depth that it may
.sustain its own weight and 500 Ibs. at the free end. Ans. 4. 05 inches.

9. The breadth of a beam is 3 inches, depth 8 inches, weight of a cubic foot

of the beam 50 pounds, R 12,000; required the length so that the beam
shall break from its own weight when supported at its ends.

Ans. I- 175. 27 feet,

RELATION BETWEEN STRAIN AND DEFLECTION.
When the strain is within the elastic limit we may easily find

the greatest strain on the fibres corresponding to a given deflec

tion. For instance, take a rectangular beam, supported at its

ends and loaded at the middle of its length, and we have from

equation (148)

-
and from equations (73) and (51) A

A == J .
,
which becomes, by substituting P frouj the preeed

{M
f % d&~~?5

g3 A ~v ^^^ r.

A = i E^
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p 6EdR=-7rA (158)

Examples. 1. If I 6 feet, b = li inch, d = 4 inches, coefficient of elas

ticity = 23,000,000 Ibs. is supported at its ends and loaded at the middle so as

to produce a deflection at the middle of A = f inch
; required the greatest

strain on the fibres. Also required the load.

2. On the same beam, if the greatest strain is R 12,000 Ibs., required the

greatest deflection.

3. If the beam is uniformly loaded, required the relation between the

greatest strain and the greatest deflection.

. 4. Generally, prove that R = constant x --- A .

125. HOLLOW RECTANGULAR REAMS If a rectangular
beam has a rectangular hollow, both symmetrically placed in

reference to the neutral axis, as in Fig. 62, we may
find its strength by deducting frojao..

the strength
of a solid rectangular beam the slpbhgtk-o a solid

beam of the same size as the hollow. But in. this

case, when the beam ruptures at &, the strain at V
will be less than R. As the strains increase di

rectly as the distance of the fibres from the neutral axis, we have,

if d and d! are the depths of the outside and hollow parts re

spectively,
d

\d : \d : : R : strain at V R -j.

Fl - 62-

If 5 = the breadth of the hollow, the stress on that part, if it

TJ U J A /-I ^K\TJ U J A /-I ^K\were solid, would DC, according to equation (145),

which, taken from equation (145), gives for the resistance of a

hollow rectangular beam,

If the hollow be on the outside, as in Fig. 63,

a forming an II section, the result is the same.

_

FIQ. 63,

L&amp;gt;r4A4+ , i fr&lw

;6-

^^ ^
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IF THE UPPER AND LOWER FLANGES ARE UN

EQUAL it forms a double T, as in Fig. 64. Let the notation

be as in the figure, and also d\ equal the distance from the

neutral axis to the upper element, and x the distance from the

neutral axis to the lower element.

Fio. 64.

To find the position of the neutral axis, make the statical

moments of the surface above it equal to those below it. This

gives

d I (d,
- i d ) + i V&quot; (d,

- dj = d&quot; I&quot; (x
- i d&quot;) + i V&quot;

l 41 &amp;lt;

We also have d
t
= d - = d 4 d&quot; + d&quot;

- x

These equations will give x and dr
Constructing the wedges as before, and the resistance to com

pression is represented by the wedge whose base is 1) d
l
and

altitude R, minus the wedge whose base is (& V&quot;) (dl
d )

d-d
and altitude -

j R. Hence the resistance to compression is

- R (V

**$-
*/,.& -&amp;lt;?r~ *
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The centre of gravity is at f the altitude, or ^dl
for the for

mer wedge, and f(dl d) for the latter, and if the volumes

be multiplied by these quantities respectively, it will give for

the moment of resistance to compression

Next consider the resistance to tension. Since the strains

on the elements are proportional to their distances from the neu

tral axis, therefore

d
l

: x : : ~R : strain at the lower side of the section j #,
ct

l

and similarly,

d
l

: (x d&quot;}
: : R : strain at the opposite side of the lower

K
flange = -y- (x d&quot;).

Hence the tensive strains will be represented by a wedge whose

base is l}&quot;x and altitude
j-x,

minus a wedge whose base is( ~b&quot;

P- K
by and altitude -T (x \d&quot;).

Hence the moment of resistance is

The total moment of resistance is the sum of the two moments, or

* J I}
d * ~ ^ ~

?- &quot;)

~ d + V&amp;gt;

&quot; ~ J///

. -
(102)

For a single T make ~b&quot; and d&quot; = in the above expression.

The method which has here been applied to rectangular

beams may be applied to beams of any form
;
but it often re

quires a knowledge of higher mathematics to find the volume of

the wedge, and the position of its centre of gravity ;
or resort

must be had to ingenious methods in connection with actual

wedges of similar dimensions.

v
y^^z^xi^ixu-^t^-c--*M 5&. ^
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197. TRUE VALUE OF d
l
AND AN EXAMPLE. In this

and similar expressions

d
l
= the distance from the neutral axis to the fibre most re

mote from it ON THE SIDE WHICH FIRST RUPTURES.

di is usually taken as the distance to the most remote fibre,

without considering whether rupture will take place on that

side or not
;
but this oversight may lead to large errors.

For example, let the dimensions of a cast-

iron double T beam be as in Fig. 65, and 228

inches between the supports. Required the

load at the middle necessary to break it.

The position of the neutral axis is found

from equations (160) and (161) to be 7.96

inches from the lower side, and 11.54 inches

from the upper. As cast iron will resist from

four to six times as much ^compression as/ff

tension this beam will rupture on the lower

side first
;
hence d

l
in the equation = 7.96 inches. As the

value of R is not known, take a mean value = 36,000 Ibs. The
moment of the rupturing force neglecting the weight of the

beam is ^ IV, which placed equal to expression (162) and re

duced gives

A
f\p AAA

P = o x ~a ~ X i?672 = 132,0:0 Ibs. =58.9 tons gross.^ T.vt)

Had we used d
l
= 11.54, it would have given P = 40.4 tons.

Such beams actually broke with from 50 to 54 tons
; or, in

cluding the weight of the beam, with a mean value of 52 tons.

By reversing the problem, and using 52 tons for P, we find

that R is a little more than 32,000 pounds. Had this value of R
been used in the first solution, and dl

made equal 11.54, it would

have given for P a little more than 36 tons, which would be the

strength if the beam were inverted. If the upper flange were

smaller or the lower larger, the discrepancy would have been

greater.
The strain upon a fibre in the upper surface is to the strain upon

y^ one in the lower surface aaf^Jto^cJ hence, if the material resists

more to compression than to tension (as cast iron), it should

be so placed that the small flange shall resist the former, and

^&quot;^
Terr
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the large one the latter. If a cast-iron beam be supported at

its ends, the smaller flange should be uppermost, and as it re

sists from four to six times as much compression as tension, the

neutral axis should be from four to six times as far from

the upper surface as from the lower, for economy. Using the

same notation as in Fig. 64 and we have,

d^ greatest compressive strain ^t*^ ^-

x
~

greatest tensive strain

and for economy we should have,

d^ ultimate compressive strength

x
~

ultimate tensile strength

The ultimate resistance of wrought iron is greater for ten

sion than for compression ; hence, if a wrought-iron beam is

supported at its ends, the heavier flange should be uppermost.
The proper thickness of the vertical web can be determined

only by experiment, and this has been done, in a measure, by
Baron von Weber, in his experiments on permanent way.

1S8. EXPERIMENTS OF BARON VON WEBER for deter

mining the thickness required for the central web of rails.

Baron von Weber desired to ascertain what was the mini

mum thickness which could be given to the web of a rail, in

order that the latter might still possess a greater power of re

sistance to lateral forces than the fastenings by which it was

FIG. 65a.

secured to the sleepers. For this purpose a piece of rail 6 feet

in length, rolled, of the best iron at the Laurahutte, in Silesia,

was supported at distances of 35.43 in., and loaded nearly to the

limit of elasticity (which had been determined previously by ex-

//a.
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periments on other pieces of the same rail), and the deflections

were then measured with great care by an instrument capable
of registering 1-1000 in. with accuracy. This having been done,
the web of the piece of rail was planed down, and each time

that the thickness had been reduced 3 millimetres the vertical

deflection of the rail under the above load was again tested, and
the rail was subjected to the following rough but practical ex

periments. The piece of rail was fastened to twice as many fir

sleepers by double the number of spikes which would be em
ployed in practice, and a lateral pressure was then applied to the

head of the rail by means of a lifting-jack, until the rail began
to cant and the spikes were drawn. The same thing was then

done by a sudden pull, the apparatus used being a long lever fas

tened to the top of the rail, as shown in Fig. 65a. The lifting-

jack and the lever were applied to the ends of the rail, and the

FIG. 65b.

web of the latter had, in each case, to resist the whole strain re

quired for drawing out the spikes. The results of the experi
ments made to ascertain the resistance of the rail to vertical

flexure with different thicknesses of web, and under a load of

5,000 Ibs., were as follows :
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Thickness of web.

In.

15 millimetres = 0.59

12 0.47 -

9 &quot; 0.35 -

6 &quot; 0.24

3 &quot; 0.12 -

Vertical deflection.

In.

- - - 0.016

0.016

0.019

0.0194
- - - 0.022

These results showed ample stiffness, even when the web was

reduced in thickness to 0.12 in. To determine the power of

resistance of the rail to lateral flexure, an impression of the sec

tion was taken in lead each time that the spikes were drawn.

Theforces applied in these experiments were veryfar greater

than those occurring in practice, yet it was found that with the

web 12, 9, and even 6 millimetres thick, no distortion took place,

and only when the thickness of the web was reduced to 3 milli

metres (0.12 in.) was a slight permanent lateral deflection of the

head caused just as the spikes gave way. The section shown in

Fig. 65b had then been reduced to that shown in Fig. 65c.

&quot;985
1it

FIG. 65c.

Next, a rail, with the web reduced to 3 mill. (0.12 in.) in

thickness, was placed in the line leading to a turn-table on the
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Western Railway of Saxony, where it has remained until the

present time, 1870, receiving the shocks due to engines passing
to and from the turn-table more than one hundred times daily.

It follows from these experiments that the least thickness ever

given to the webs of rails in practice is more than sufficient, and

that if it were possible to roll webs J in. thick, such webs would

be amply strong, if it were not that there would be a chance of

their being torn at the points where they are traversed by the

fish-plate bolts. Baron von Weber concludes that webs f in. or

J in. thick are amply strong enough for rails of any ordinary

height, and that, in fact, the webs should be made as thin as the

process of rolling and as the provision of sufficient bearing for

the fish-plate bolts will permit.

129. ANOTHER GRAPHICAL ittETHOD. If manipulating

processes are to be used for determining the strength, the fol

lowing method possesses many advantages over the former.

Since the strains vary directly as their dis

tance from the neutral axis, the triangle
ABC (Fig. 66), in the rectangle BCDE,
represents the compressive strains if each

element of the shaded part has a strain

equal to R; and its moment is R times

the area multiplied by the distance of the

centre of gravity of the triangle from the

neutral axis
; or,

R x (b x \ of \d) x f of $d = ^EbcT,

and the moment of tensile resistance is the same, hence the

total moment is double this, or ^HbcF, as found by the preced

ing process.

130. IF A SQUARE BEAltt HAVE ONE OF ITS DIAGONALS
VERTICAL, (Fig. 67), the neutral axis will coincide with the

other diagonal. Take any element, as ab, and project it on a line

cdj which passes through A and is parallel to BC, and draw the

lines Ocand ()//, and note the pointsf and
&amp;lt;j

where they intersect

the line ab. If the element were at cd, the strain upon it would

be R, multiplied by the area of cd, or simply R.cd
;
but because
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the strains are directly proportional to the distances of the ele

ments from the neutral axis, the strain on ab is ^&.fg. Proceed

in this way with all the elements and construct the shaded

figure. The strains on the upper part of the figure ABC, which

FIG. 67.

begin with zero at BC, and increase gradually to R, at A, will be

equivalent to the strains on the shaded figure AC, if the strain

is equal to R on each unit of its surface. Hence the total strain

on each half is the area of the shaded part AO, multiplied by
R, and the moment of the strain of each part is this product

multiplied by the distance of the centre of the shaded part from

the axis BC.

By similar triangles we have

Aa : ab : : AB : BC, and

cd= ab \fg : : AO : x : : AB : Ba or AB - Aa
;

x being the distance offg from O.

From these eliminate ab, and find

hence the curve which bounds the shaded figure is a parabola

which is tangent to AB, and whose axis is parallel to BC.

Let d = one side of the square, then

= AO, and
= the widest part of the shaded figure.

The area of a parabola is two-thirds the area of a circumscribed

rectangle.
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Hence the area of AO is

and the moment is

2 =K
and the moment of both sides, multiplied by R, is

i;

64/2
(163)

If I = d in equation (145) and the result compared with the

above, we find :

The strength of a square beam with its side vertical : strength
of the same beam with one of its diagonals vertical : : \/2 : 1

or as 7 : 5 nearly.
So that increased depth merely is not a sufficient guarantee

of increased strength. The reason why the strength is dimin

ished when the diagonal is vertical, is because there is a very
small area at the vertex where the strain is greatest, but when
a side is horizontal the whole width resists the maximum strain.

131. IRREGULAR SECTIONS. This method is applicable
to irregular sections, as shown by the following example.

Fio. 68.

Let Fig. 68 be a cross section of a beam. In a practical
case it may be well to make an exact pattern of the cross



TRANSVERSE STRENGTH. 157

section, of stiff paper or of a tliin board of uniform thick

ness. To find the position of the neutral axis, draw a line

on the pattern which shall be perpendicular to the direc

tion of the forces which act upon the beam, that is, if the

forces are vertical the line will be horizontal. In a form

like Fig. 68 this line will naturally be parallel to the base of

the figure. Then balance the pattern on a knife-edge, keeping
the base of the figure (or the line previously drawn) parallel to

the knife-edge, and when it is balanced the line of support will

be the neutral axis. Proceed to construct the shaded part as

shown in the figure, by projecting any element, as ab on the line

cd, and drawing cO and d 0, and noting the intersectionsf and g,

the same as in Fig. 67. The elements on the lower side must
be projected on a line mn, which is at the same distance from
the neutral axis as the most remote element on the upper side.

The area of the shaded part above the neutral axis should equal
that below, because the resistance to extension equals that for

compression. The area of the shaded part may be found ap

proximately by dividing it into small rectangles of known size,

and adding together the full rectangles and estimating the sum
of the fractional parts. Or, the shaded part may be cut out and

carefully weighed or balanced by a rectangle of the same mate

rial, after which the sides of the rectangle may be carefully
measured and contents computed. The area of the rectangle
would evidently equal the area of the irregular figure.

The ordinate to the centre of gravity of each part may be

determined by cutting out the shaded parts and balancing each

of them separately on a knife-edge, as before explained, keeping
the knife-edge parallel to the neutral axis. The distance be

tween the line of support and the neutral axis will be the ordi

nate to the centre of gravity. The moment of resistance is then

found by multiplying the area of each shaded part by the dis

tance of its centre of gravityfrom the neutral axis, and multi

plying the sum of theproducts by R.

These mechanical methods may be managed by persons who
have only a very limited knowledge of mathematics, and if

skilfully and carefully done will give satisfactory results. It

does not, however, furnish such an uniform, direct and exact

mode of solution as the analytical method which is hereafter

explained.
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FORMULA OF STRENGTH ACCORDING TO BARLOW S

TiiEORY.-Either of the above methods may be used. One

part of the expression for the strength is of the same form as

that found by the common theory; but instead of R we must use

T, or C the former if it ruptures by tension, the latter if by
crushing. The other resistance, &amp;lt;,

for solid beams is evenly dis

tributed over the surface. For example, take a rectangular

beam, Fig. 61, and the resistance to longitudinal shearing on the

upper side is &amp;lt; b x \d = &amp;lt; bd, and its moment is -J &amp;lt; bd x %
of \d = -J- &amp;lt;f&amp;gt; bd?, and for both sides, J &amp;lt;f&amp;gt;

bd1

. Hence, according
to Barlow s theory, the expression for the strength of a rectan

gular beam is

[J &amp;lt; + fT] bcT for cast iron, and

[t &amp;lt;t&amp;gt;

+ C] bd* for wrought iron and wood - -
(164)

If the beam is supported at its ends and loaded at the middle,
we have

iPZ = [J &amp;lt;f&amp;gt;

+ -J-T] bd
1

for cast iron ..... (165)

The volume which represents the resistance due to
&amp;lt;/&amp;gt;

is

always a prism, having for its base the surface of the figure and

&amp;lt;/&amp;gt;,

or some fraction of
&amp;lt;/&amp;gt;,

for its altitude. If the second method
of illustration be used, it will take two figures to fully illustrate

the strains. For instance, if the section be as in Fig. 68, the

moment of the shaded part will be multiplied by T or C, as the

case may be. To find the remaining part of the moment, find

the area of each part of the transverse section, also the distance

of the centre of gravity of each part from the neutral axis.

Then, to find the moment of re

sistance due to longitudinal shear

ing, multiply the area of each part

by the distance of its centre ofgrav
ity from the neutral axis, add the

products and multiply the sum by &amp;lt;f&amp;gt;.

This is true for solid sections
;

but

for hollow beams, T and II sections,

where there is an abrupt angular

change from the flange to the verti

cal part of the beam, the factor
&amp;lt;f&amp;gt; requires a modification. For

instance, take the simple case of a single T, Fig. 69, in which
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the breadth of the T is b and its depth d ,
and the other nota

tion as in the figure.

The resistance of the upper part is represented by the prism
whose base is fcc, and whose altitude is

&amp;lt;, plus the prism whose

base is d (J -J), and whose altitude is
&amp;lt;/&amp;gt;.

The resistance of
#?

the lower part is &amp;lt; bd
v
. The total moment of this resistance is

-f

To this add the moment of resistance for direct extension

and compression, the expression for which is of the same form

as for common theory, and we have for the total moment :

+ W- b) (x- K) +&
(x-d )

3

] (166)

From numerous experiments made upon cast-iron beams

having a variety of cross sections, Barlow found that $ varied

nearly as T, that practically it was a fraction of T, the mean
value of which was 0.9T.

For wrought iron he found
&amp;lt;j&amp;gt;

= 0.53T

z= 0.8C nearly.
Peter Barlow, F.K.S., father of W. II. Barlow, F.RS., the

latter of whom proposed the &quot;

theory of flexure,&quot; in an article

in the Civ. Eng. Jour., Yol. xxi., p. 113, assumes that
&amp;lt;/&amp;gt;

= T.

From the above it is inferred that the practical mean values

of
&amp;lt;/&amp;gt;

are :

16,000 Ibs. for cast iron.

30,000 Ibs. for wrought iron.

8,000 Ibs. for wood.

Examples. 1. How much will a beam whose length is 12 feet, breadth 2

inches, depth o inches, sustain, if supported at its ends, and uniformly loaded

over its whole length, and C = 50,000 Ibs., &amp;lt; = 30,000 Ibs., and coefficient of

safety ? Am. 11,000 Ibs. nearly.

~2. If = T = 16,000 Ibs., b = 2 inches, d = 5 inches, I = 8 feet
; required

the uniform load which it will sustain with a coefficient of safety of .

~~3. Ifb d = 2 inches, 1=6 feet, R= 50,000 Ibs., is broken by an uni

form load of 10,000 pounds, required 0.

BEAUIS LOADED gAT ANY NTJlttBER OF POINTS.-
If the beam is loaded otherwise than has heretofore been sup

posed, it is only necessary to find the moment of all the forces
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-&OL + \
Then AD = ^-0, and DF = a? -

Z&amp;gt;
+ a.

Load on DF = w (x l
r
+ #),

By the principle of moments

The moment of stress at F is

Vx - %w (x
-

It + af ty -Cc(v

- -
(167)

That value of a? which will make equation (167) a maximum,
gives the position of the dangerous section. Differentiate, place ,

v

equal zero, and make Z, +, = ,
and solve for

a?,
and find

If I,=* =
!, 3

~
l^^~2f^/- + %^-2/f.

l
l &amp;lt; \l, x

&amp;gt;Zj ;

Zj &amp;gt; -i^ aj
&amp;lt;

l
l ;

so that the maximum strain is at the centre of the loading only
when the centre of the loading is over the centre of the beam

;

and in all other cases it is nearer the centre of the beam than the

centre of the loading is.

The maximum strain is found by substituting the value of x

equation (168) in equation (167).

The following interesting facts are also proved.

Let A D = y /. a = 1^ y which in equation (168) reduces it to

vj

+
which is a maximum for y = ;

hence so far as A D is con

cerned, equation (168&) is a maximum when one end of the load

is over the support, and for this case the equation becomes

$

which is a maximum for I
Y
= J I or 2^ = %l, or the load must

11
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extend to the middle of the beam.

equation (108) becomes
Making a = l

l
= J Z,

and

and these values of
Z, and x in equation (167) give for the max

imum moment of stress,

(169)

in which TV is the load on half the beam.

Equation (167) gives the stress at the middle of the load, by

making a = l
v
= % I and x = J I. This gives iW J for the stress

at the middle of the loading ; hence, the maximum stress is 1

times the stress at the middle of the loading when the load

extends from the one support to the middle of the beam.

135. OBLIQUE STRAINS. If the force be inclined to the

axis, as in Figs. 72 and 73, let t = the angle which P makes

with a normal section.

Fio. 72. Fio. 73.

Then, P cos 6 = normal component,
P sin 6 = longitudinal component.

If K = the transverse section, then
P sin 9

Tr = the tension or compression upon a unit or sec

tion which arises directly from the longitudinal component.
This tends directly to diminish R in the formula whether * be

obtuse or acute. If the beam be fixed at one end and free at

the other, as in Fig. 72, the equation of moments becomes :

Psin

~TT Jd,

- fa\jwl ^ l

dL, CU^j
~) 7^r W_y. ./ .

rfc
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which for rectangular beams becomes

P sin

136. GENERAL, FORMULA. The preceding methods are

easily understood, and are perhaps sufficient for the more simple
cases

;
but for the purposes of analysis a general formula is bet

ter, by means of which a direct analytical solution may be

made for special cases.

Let R = the modulus of rupture, as explained in article 120
;

x and u horizontal coordinate axes, the former coinciding
with the axis of the beam, and y a vertical axis

;

Then ~Rdudy = the resistance of a fibre which is most remote

from the neutral axis.

Let d
:
= distance between the neutral axis and the most remote

fibre
; then, according to the common theory, since

the strains vary as the distance from the neutral axis

di : y : : Hdudy : resistance of any fibre -j y dy duu
l

E
*

~j y
1

dydu the moment of resistance of any fibre,
0|

and the sum of all the moments of resistance of any section is

^r 1

y
I* C
J J

which is called the moment of rupture, and must equal the

sum of the moments of straining forces
;

(171)

The second member of this equation involves the character of

the material (R) and the form of the transverse sections (~) ;
the

latter of which may be determined by analysis, and the former

by experiment. The second member shows that for economy
the material should be removed as much as possible from the

neutral axis. A few special cases will now be given.

~
&quot;J /v
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. LET THE m \ M BE RECTANGULAR, I the breadth,
and d the depth, as in Fig. 61,

Then I = y dy du =

. .
-j

I = $ II for which is the same as expression (145).

138. IF THE SIDES OF THE BEA3I ARE INCLINED to the

FIG. 74. Fio. 75.

direction of the force, as in Fig. 74, let i be the inclination of

the side to the horizontal
;
then

I = jLybd^irfi + Fees
1

*)*

di Jdisim

inV 4- J 308*^ &quot;I

JOS Jd&iui +
Tliis expression has an algebraic minimum,! but not an alge

braic maximum. By inspection, however, we find that the

practical maximum is found by making 2 = 90, if d exceeds /&amp;gt;.

Hence, a rectangular beam is strongest when its broad side is

parallel to the direction of the applied forces.

Hence, the braces between joists in flooring, as in Fig. 75, not

* See Appendix III.

\ See an article by the author in the Journal of Franklin Institute, VoL

LXXV., p. 200.
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only serve to transmit the stresses from one to another, but

also to strengthen them by keeping the sides vertical.

If i = 90, equation (172) becomes |K^
a - -

(173)

If b = d and i = 45, equation (172) reduces to

62
(which is the same as equation (163)),

and if J = d, and i = or 90, it becomes

Hence, the strength of a square beam having a side vertical

is to the strength of the same beam having its diagonal vertical,

as

1: V*,

or -y/2 to 1 or as 7 to 5 nearly,

In establishing equation (172) it was assumed that the neutral

surface was perpendicular to the direction of the applied forces,

which is not strictly true unless the forces coincide with the

diagonal ;
for in other cases there is a stronger tendency to

deflect sidewise than in the direction of the depth. In this case,

as soon as the beam is bent there is a tendency to torsion. Both

these conditions make the beam weaker than when the sides are

vertical. If the tendency to torsion be neglected, the case may
be easily solved

;
but as the result shows the advantage of keep

ing the sides vertical, the solution is omitted.

1 39. THE STRONGEST RECTANGUL,AR BEAM which Can

be cut from a cylindrical one has the breadth

to the depth as 1 to / 2, or nearly as 5 to 7.

Let x = AB the breadth,

y = AC = the depth, and

D = AD the diameter.

and equation (173) becomes

(D
a -
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which by the Differential Calculus is found to be a maximum
for

/. x : y : : 1 : \/2 or nearly as 5 to 7.

Example*. How much stronger is a cylindrical beam than the strongest

rectangular one which can be cut from it ?

(For the strength of a cylindrical beam, see equation (180)).

An*. About 53 per cent.

How much stronger is the strongest rectangular beam that can be cut from
a cylindrical one, than the greatest square beam which can be cut from it ?

14O. TRIANGULAR BEAMS If the base is perpendicular
to the neutral axis, as in Fig. 77

;

Let d = AD = the altitude, and

I = BC = the base.

Take the origin of coordinates at the cen

tre of gravity of the triangle, y vertical and

u horizontal.

Then, by similar triangles,

ib : y : : d

FIG. 77.

.y = ^-f^-. .du=~dy

We also have

/ ly du =

tJ J
^t-w.- -z /

- / f

Us &quot; /!*/

(175)

in which A is the area of the triangle.

If the base is parallel to the neutral axis, as in

Fig. 77 #, then, by similar triangles,

d : Jb : : %d y : u

b
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We also have

(176)

Equations (173) and (175) show that a triangular beam which

has the same area and depth as a rectangular one, is only half as

strong as the rectangular one.

Some authors have said that a triangular beam is twice as

strong with its apex up as with it down, but this is not always
the case. If the ultimate resistance of the material is the same

for tension as for compression, the beam will be equally strong
with the apex up or down.

If the beam is made of cast iron, and supported at its ends, it

will be about 6 times as strong with the apex up as down
;
but

if the beam be fixed at one end, and loaded at the free end, it

will be about 6 times as strong with the apex down as with it up.

141, TRAPEZOIDAL BEAM. Required the strongest trap
ezoidal beam which can be cutfrom a given triangular one.\

c Let ABC be the given triangle,

ABED the required trapezoid,

d = CG- = the longest altitude,

w, and v = DE.

IJ is the neutral axis of the trapezoid,

which passes through its centre of gravity
II. We may then find :

* This is more easily solved by taking the moment about an axis through the
J^

vertex and parallel to the base, and using the formula of reduction. See Ap
pendix.

f See an article by the author in the Journal of Franklin Institute, vol. xli.
,

thi^d Beries, p. 198.
^^ fit ^ vL _ ^ *&amp;gt;

^ ^ J

3
d&quot; ^V ^

+J3*y

r*
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^ = tjx
* + Vv - 8ftV + 85V

S *
- 8bV

which is to be a maximum. By the Calculus we find, after re

duction, that

for a maximum, which solved gives

v = 0.13093& or 0.136 nearly, and hence

w = 0.130936? or 0.13d ....
(ITS)

which substituted in (177) gives

Rj = 0.545625^ .....
(179)

Dividing equation (179) by equation (176) gives 1.09125
;
hence

from (178) and (179) we infer that if the angle of theprism le

taken off 0.13 of its depth, the remaining trapezoidal beam
will be 1.091 times as strong as the triangular one, which is

a gain of over 9 per cent.

In order to explain this paradox it must be granted that the

condition does not require that the beam shall be broken in two,
but that a fibre shall not be broken in other words, the beam
shall not be fractured. The greatest strain is at the edge, where

there is but a single fibre to resist it
; but, after a small portion

of the edge is removed, there are many fibres along the line

DE, each of which will sustain an equal part of the greatest
strain.

If the triangular beam were loaded so as to just commence

fracturing at the edge, the load might be increased 9 per cent.

and increase the fracture to only thirteen-hundredths of the

depth ;
but if the load be increased 10 per cent, it will break

the beam in two.

These results are independent of the material of which the



TRANSVERSE STRENGTH. 169

beam is made. If the beam be cut off the depth, its strength
is found from equation (177) to be

0.465608
12

which is 0.93101 of equation (176).

Mr. Couch found, for the mean of seven experiments on tri

angular oak beams of equal length, that they broke with 306

pounds. The mean of two experiments on trapezoidal oak

beams, made from triangular beams of the same size as in the

preceding experiments, by cutting off the edge one-third the

depth when the narrow base was upward, was 284.5 pounds.
This differs by less than half a pound of 0.931 times 306

pounds.

\. CYLINDRICAL BEAMS. The moment of inertia of a

circular section in which r is the radius, is

+ r r+v*
I

J-r
IL &amp;lt;L

3
--=

KI
/.

-j iR*r
3

(180)

If polar co-ordinates are used, we have

dudy gdgdff),

where f is a variable radius and
&amp;lt;f&amp;gt;

a variable angle.

Also y = { sin
&amp;lt;j&amp;gt;

/T
/*2*

/ ^sin
2

&amp;lt;bd$d&amp;lt;b

t/0

=
%f\JQ i(l cos 20) d&amp;lt;b

= ^irr
4
. as before.

V-T- &amp;gt;

For a circular annulus we have

^- ^( -n)-
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r* X

^

By comparing equations (180) and
(!&&amp;gt;)

we see that the

strength of a cylindrical beam is to that of a circumscribed

/ *
rectanular one as -, : or -:1.

/
&quot;I a 1 * i I

Also the strength of a cylindrical beam is to that of a square
one of the same area as ^Ad f

to ^RAd (d being the diameter

of the circle),

or as 1 : (-3, = IV*&quot;)
or as 1 : 1.18 nearly.

143. ELLIPTICAL III: \ TBS.

Let b = the conjugate axis, and

d = the transverse axis
;
then

if d is vertical (Fig. 80), we have

I = -fa *ld? and d
l
= \d.

If b is vertical (Fig. 81), we have

Fio. W.

141. PARABOLIC. BEA31S.

Fio. 82. Fio. 83.

If b = the base, and

d = the height of the parabola, and

if d is vertical (Fig. 82), we have
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If I is vertical (Fig. 83), then

I = -gV^
3

,
and d

v
= \l.

145. ACCORDING TO BARLOWS THEORY W6 have

+ tfjydydu = SP* (isi)

which must be integrated between the proper limits to include

the whole section.

If the neutral axis is at the centre of the sections, and the

beam is rectangular, we have

T

which reduced gives

hence, if $ has any ratio to T, the law of resistance in solid rec

tangular beams is the same as for the common theory only,

If $ = T, this becomes
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CHAPTER VII.

BEAMS OF UNIFORM RESISTANCE.

146. GENERAL EXPRESSION. If beams are so formed

that they are equally liable to break at every transverse section,

they are beams ofuniform resistance, and are generally called

beams of uniform strength. The former term is preferable, be

cause it applies with equal force to all strains less than that which

will produce rupture. In such a beam the strain on the fibre

most remote from the neutral axis is uniform throughout the

whole length of the beam. The analytical condition of such a

beam is: The sum of the moments of the resisting forces must

vary directly as the sum of the moments of the applied forces ;
hence equation (171) is applicable; or

(182)

which must be true for all values of x. But to obtain practical
results it is necessary to consider

PARTICULAR CASES.

147. BEAMS FIXED AT ONE END AND LOADED AT THE FREE
END. Required the form of a beam of uniform resista/nce

when it isfixed at one end and loaded at thefree end.

1st. Let the sections be rectangular, and

y = the variable depth, and

u = the variable width.

Then I = -fauy* (see equation (51)),

d* = iy, and
= P = the variable load.*

* For 2P.r use the general moments as given in the table in Article 101, so

far as they are applicable.
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Hence equation (182) becomes

173

(183)

a. Let the breadth be constant
;

or u = ~b
;
then (183) be

comes

Px = |I%2

, (184)

which is the equation of a parabola, whose axis is horizontal

and parameter is
|ry.

See Fig. 84.

FIG. 84. FIG. 85.

b. Suppose the depth is constant, or y = d. Then (183) be

comes

Px = R^X (185)

which is the equation of a straight line
;
hence the beam is a

wedge, as in Fig. 85.

c. If the sections are rectangular and similar, then

u : y : : 1&amp;gt; : d
I

and equation (183) becomes

K5

which is the equation of a cubical parabola.

2d. Let the sections be circular. Then
I -fairy* (equation (52), in which y is the

diameter of the circle), and d
1
= %y\ hence

(182) becomes

FIG. 86.
which is also the equation of a cubical para

bola, as shown in Fig. 86.

3d. Let the transverse sections be rectangular, and I con-
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stant, the breadth and depth both being variable, then equation

(182) becomes

P = R-^^ = K^- (186)
2^ (&amp;gt;y

in which c is a constant, = bd*, ft and d being the breadth and

depth at the fixed end. Equation (186) is the equation of the

vertical longitudinal sections, and is the equation of an hyperbola

Fio. 87. Fio. 88.

referred to its asymptotes. See Fig. 87. If the value of y from

this equation be substituted in the equation uif = &amp;lt;?,

it gives

216PVW
v

IS-

\.*\

z.n

which is the equation of the horizontal longitudinal sections
;

hence they are cubical parabolas, as in Fig. 88. For x and u= 0,

y ==
oo, and for x =

I,
u = b =,-

4th. If the breadth is the wth power of the depth, and the sec

tions are rectangular, then u = y*, and equation (183) becomes

which is the general equation of parabolas.

148. BEATVIS FIXED AT ONE END AND UNIFORMLY
&amp;gt;. Required theform of a learn, of uniform resistance
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when it isfixed at one end and uniformly loaded over its whole

length&quot; the weight of the beam being neglected.
The origin of co-ordinates being still at the free end, we

have

wx = the load on a length x, and

Jmzr* = the moment of the load (equation (53)).

Hence, for rectangular sections, equation (182) becomes

%wx?
-

%Ruy* (188)

a. If the breadth is constant, or u = b in (188), it becomes

which is the equation of a straight line
;
and hence the beam

will be a wedge, as in Fig. 89.

FIG. 89.

. Let the depth be constant
;
or y = d in (188)

a parabola whose axis is perpendicular to the axis of the beam,
as in Fig. 90.

c. Let the sections be similar
;

then d : b : : y : u =
^y,

.*. equation (188) becomes \wy? = -J-jR-^

8

;
CL

a semi-cubical parabola, as in Fig. 91.

FIG. 90. Fio. 91.
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d. Let I be constant, or -fauif = -fabd*. Then equation (182)

becomes

bd*
wx* = |K ---

;
an hyperbola of the second order.

J

149. PREVIOUS CASES COMBINED. Required the form
of the beam of uniform resistance when it is iixed at one end

and loaded uniformly, and also loaded at thefree end.

The moment of applied forces is Px+^wx*; hence equation

(182) becomes, for rectangular beams,

Pa? + wz* = $Ruy*.

Hence, if the depth is constant, PJJ -f %wx* = %Rud* ;
a

parabola ;

Hence, if the breadth is constant, P# + \wj? = R%* ;
an

ellipse ;

Hence, if the sections are similar, ~Px + %wx* -J-ll -ry
1

;
a

a i

semi-cubical parabola.

150. AVEIGHT OF THE BEAItt CONSIDERED.-Required
theform of the beam of uniform resistance wJien the weight of
the beam is the only load / the beam beingfixed at one end and

free at the other.

a. Let the sections be rectangular and the breadth constant.

Let x = AB
; Fig. 92,

b = the breadth, and

8 = the weight of a unit of

volume.

Then fydx
= the area of ADC,

and

= tlie weight of

ADC
;

the limits of the integration

F, . 92.

being and x.

If F is the centre of gravity of ADC
;
we have, from the

/* ^J

principles of mechanics, the distance AF= -;.--7
*
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The moment of the applied forces is the weight of ADC
multiplied by the distance BF = x AF. Hence, equation

(182) becomes

which reduced gives

2K

which is the equation of the common parabola, the axis being
vertical.

If there is a single curve, -~- is its parameter ;
but if two

T&amp;gt;

curves, as in the figure, -* is the parameter of each.

1). Let the depth be constant. In a similar way we find

This solved gives

in which C and C are constants of integration, and involve

the position of the origin of co-ordinates and direction of the

curve at a known point.

c. Let the beam ~be a conoid of revolution, as in Fig. 93.

We have, as before

which reduced gives

FIG. 93.a 10. ya. v

which is the equation of the common parabola.

d. Suppose, in the preceding cases, that an additional load,

P, is applied at thefree end.

Some of the equations which result from this condition can-

12
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not be integrated in finite terms, and hence the curves cannot

be classified.

151. HE: Mis SUPPORTED AT THEIR ENDS.

A. Let the beam be supported at its ends and loaded at the

middle point.
For this case, equation (182) becomes, for rectangular sec

tions,

JP&amp;lt;
B = iEWy (192)

a. If the breadth is constant, we have

which is the equation of the common parabola.

Fio. 94. FJG. 95.

The beam consists of two parabolas, having their vertices,

one at each support, as in Fig. 94.

b. If the depth is constant, w
re have

Px = lTUl*y;
-

(193)

a wedge, as in Fig. 95.

E. If the beam is uniformly loaded^ we have from equations

(74) and (182),

fro (fa x*)
= $R?ty* if rectangular, and if the breadth is

constant, \w (fa a?)
= -J-1%

2

;

- - -
(194)

an ellipse, Fig. 96.

If the depth is constant, fro (fa a?
2

)
= fR^X a parabola,

Fig. 97.

FIG. 96. FIG. 97.

C. Let the beam have an uniform load and also an uni

formly increasing load from one end to the other, as in Fi^.
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&amp;lt;

Let W = the weight of the uni- v
form load,

&quot;VV,
= the weight of the uni

formly increasing

load, and

V= the reaction of the sup

port at the end which has the least load.

Then V=$W+$Wl
.

Let x be reckoned from A, then the load on x is

W W, 2

T* + y^
and the moment of this reaction and load on a section which is

at a distance x from A is

(195)

which equals ^R by* for rectangular beams of uniform breadth.

To find the point of greatest strain, make the first differential

coefficient of (195), equal to zero. We thus find

If W =
0, this gives

x =
When &quot;W&quot; = 0, this becomes the case of water pressing against
a vertical surface.

BEAMS FIXED AT THEIR ENDS. If the beam IB

fixed at its ends and loaded at the middle with a weight, P, we

have, from equations (117) and (182), wiien the breadth is uni

form,

which is the equation of a parabola. The beam really consists

of four double parabolas with their

vertices tangent to each other, as in

Fig. 99. The vertices are iZ from .4-^ A

the end.

If the load were uniform we would

obtain, in a similar way, a beam com- FIG. 99.

posed of four wedges. These are di

rect deductions from theorv, but it is evident that there is some-
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thing wanting, for a beam like Fig. 90 has no transverse

strength. The same result, though not quite so glaringly appa
rent at first sight, exists in all the cases which we have discussed.

For instance, in figures 85, 86, and 87 the sections at the free

end must have a finite value to resist the shearing stress, and
the beams must be enlarged, as determined in the next article.

If the section is reduced to naught, it can sustain no weight. In

the present case, there is neither tension nor compression at A
and B, as was shown in articles 99 and 100

;
but there is a

transverse shearing stress at those points, and there must be suf

ficient transverse section to resist it. The same remark applies
to the preceding cases, and the forms must all be modified to

meet this condition, as is shown in the next article.

] 53. EFFECT OF. TRANSVERSE SHEARING STRESS Oil

modifying the forms of the beams of uniform resistance.

The value of the transverse shearing stress is given in Article

84. For instance, in the case of a beam uniformly loaded, it is

V wx = fywl wx = %w(l 2#) at any point in the length.
This quantity, divided by the product of the breadth and modu
les of strength for transverse shearing, gives the depth neces

sary to sustain this force. Take, for example, case A, Article

134:. The load being uniform, we have S = fyo(l 2x) as

given above, which is the equation of a straight line, Fig. 100,
in which

Fio. 100. Fio. 101.

AB = $wl ~-
(b x modulus of shearing).

Hence we would at first thought naturally infer that the form

of the beam of uniform strength in this case would be found by

adding the ordinates of the straight line, AC, to the correspond

ing ordinates of the ellipse, thus giving Fig. 101. But as soon as

this is done the equation of moments is changed ;
for the lever

arm of the force is increased, and the moment of resisting
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forces is greater. To avoid this difficulty we would add the

section which is necessary for sustaining the shearing stress,

to the side of the beam. But in all those cases where the

depth, as found by moments, is zero, this method is imprac
ticable, for the thickness to be added would be infinite. It

seems, then, that to solve this case theoretically, we must add
some arbitrary quantity to the depth as found by moments,
which quantity shall increase the section so as to fully resist

the moment of the applied forces, and, in addition thereto,

PARTLY resist the shearing stress, and then a section must le

added to the side of the beam which shall sustain the remain
der of the shearing stress.

Tabulated values of shearing stressesfor several of the cases

which have been considered. The values in the fourth column

of the following table may be found according to the principles

given in Article 84, or they may be found by taking the first

differential coefficient of the moments of applied forces.*

* The third of equations (42a) is P# F sin. a x x = EF,y, and since the

lever arms, x and y, of the forces are always linear quantities, we may enter

under the sign and differentiate them. This gives LPdx F sin adx

dx
(SPi)e^, or [P F sin a] = F, which, combined with the second of

(42), gives P=EF sin a=&s. Hence we have this simple rule : Ss is

the first differential coefficient of the moments oftlie appliedforces.

When the bending moment has an algebraic maximum, the abscissa of the

point of greatest bending stress may be found by making the first differential

coefficient of the moment of the stress equal to zero, and solving for x ; hence,
in this case, the bending moment is greatest where the shearing stress is zero,

w

T~.
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A TABLE OF MOMENTS AND SHEARING STRESS.

Number of

the CascV

Seepage^
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If a beam is supported at its ends, and loaded with several

weights P
t ,
P

2 ,
P

3 , etc., as in

Fig. 102, we may readily find

the shearing stress at any point

by article 84. It is there

shown that the shearing stress

FfG. 102
= .TP, where 2,P equals the

algebraic sum of all the ver

tical forces, including the reaction at the abutment. Hence,
we have for the shearing stress

between the end and P, == Y
;

between P, and P
2

= Y - P, ;

between P
2 and P3

= Y - P
x

P
2 ;

between P
3
and P

4
= Y - - P, - P

2

- P
3 ;

etc.

If the weights are equal to each other = P, we have P = P t

= P
2
=P

3 ,
etc.

;
and if there are n of them, and they are sym

metrically placed in reference to the centre of the beam, we have

Y = JwP.

If n is even, we have, at the centre of the beam, the

transverse shearing stress = &iP %nP = - -
(197) ;

and if n is odd, there will be a weight at the centre, and each

side of the central weight we have

transverse shearing stress = %n~P J(?il)P JP -
(198).

154. UNSOLVED PROBLEMS Many practical problems in re

gard to the resistance of materials cannot be solved according
to any known laws of resistance. Some of these have been
solved experimentally, and empirical formulas have been de

duced from the results of the experiments, which are sufficiently

exact for practical purposes, within the range of the experi
ments. The resistance of tubes to collapsing, the strength of

columns, and the proper thickness of the A7ertical web of rails,

are such problems which have been solved experimentally. The

following problems are of this class, and have not been solved.

The first four are taken from the Mathematical Monthly, Yol.

1., page 148.

1

1. Required a formula for the strength of a circular flat iron
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plate of uniform thickness, supported throughout its circumfer

ence and loaded uniformly.

2. Required the strength of the same plate if the edges are

bolted down.

3. Required the equation of the curve for each of the pre

ceding cases, that they may have the greatest strength with a

given amount of material.

4. In the preceding problems, suppose that the plate is square.

5. Required the form of a beam of uniform strength which is

supported at its ends, the weight of the beam being the only
load. Suppose, also, that it is loaded at the middle.

The latter part of this problem has received an approximate
solution under certain conditions, as will be seen from the fol

lowing experiments.

15*&amp;gt;. BEST FORM OP CAST-IRON BEAM AS FOUND EXPERI-

3IENTAL.L.Y. Cast-iron beams were first successfully used for

building purposes by Messrs. Boulton and Watt. The form of

the cross-section of the beams which they
used is shown in Fig. 103. More recent

experiments show that this is a good

form, but not the best.

About 1822 Mr. Tredgold made an

experiment upon a cast-iron beam of the

form shown in Fig. 104, to determine

its deflection. lie recommended this

form for beams.

Mr. Fairbairn has justly the credit of

making the first series of experiments
for determining the best form of the

Ifcam. These experiments were prose
cuted by himself for a few years, beginning about 1822, and

continued still later by Mr. Ilodgkinson.
The experiments quickly indicated that the lower flange

should be considerably the largest.

Fig. 103. Fig. 104.
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The following experiments were made by Mr. Ilodgkinson

(Fairbairn on Cast and &quot;Wrought Iron, p. 11).

Fig. 105.

Fio\ 105 shows the elevation and cross-section of a beam

whose dimensions are as follows :

Area of top rib =1.75 x 0.42=0.735 inches.

Area of bottom rib=1.77 x 0.39= 0.690

Thickness of vertical rib, 0.29 &quot;

Depth of the beam,-
- 5.125 &quot;

Distance between the supports, 54.00 &quot;

Area of the whole section,
- - 2.82 square inches.

Weight of the beam,
- 36J pounds.

Breaking weight, 6,678 pounds.

The form of the fracture is shown at b n r. It broke by
tension.

EXPERIMENT IV.

Dimensions. Inches.

Thickness at A = 0.32

B = 0.44
&quot; C = 0.47

FE = 2.27
&quot; &quot; DE = 0.52

Depth of the beam = 5.125 R* ioe.

Area of the section = 3.2 square inches.

Distance between the supports = 54 inches.

Weight of casting = 40| Ibs.

Deflection with 5,758 Ibs. = 0.25 inches.

&quot;

7,138
&quot; =0.37 &quot;

Breaking weight 8,270, Ibs.
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FIG. 107.

Dimensions in inches :

Area of top rib = 2.33 x 0.31 = 0.72.
&quot; &quot; bottom rib = 6.67 x 0.66 = 4.4.

Ratio of the area of the ribs = 6 to 1.

Thickness of vertical part
= 0.266.

Area of section, 6.4.

Depth of beam, 5-J.

Distance between the supports, 54 inches.

&quot;Weight
of beam, 71 Ibs.

This beam broke by compression at the middle of the length
with 26,084 Ibs.

It is probable that the neutral was very near the vertex n, or

about the depth.

EXPERIMENT 21.

pr
n&amp;lt;

Fio. 108.

This was an elliptical beam, Fig. 108.

Dimensions in inches :

Area of top rib = 1.54 x 0.32 = 0.493.
&quot; &quot; bottom rib = 6.50 x 0.51 = 3.315.

Ratio of ribs, 6 to 1.

Thickness of vertical part = 0.34.

Depth of beam, 5J-.

Area of the section, 5.41.

Distance between supports, 54 inches.

Weight of beam, 70f Ibs.
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Broke at the middle by tension with 21,009 Ibs.

Form of fracture 1) n r
;

l&amp;gt; n = 1.8 inches.

As these beams have all the same depth and rested on the

same supports, 4 feet 6 inches- apart, their relative strengths
will be approximately as the breaking weight f

divided by the

area of the cross section.

In Experiment 1, 6,678
~ 2.82 = 2,368 Ibs. per square inch.

&quot;

14,8,270 ^3.2 =2,584
&quot;

&quot; &quot;

19,26,084-^6.4 =4,075
&quot; &quot;

21, 21,009 ~ 5.41 = 3,883
&quot;

It is evident from these experiments, that when the vertical

rib is thin, the area of the lower rib should be about 6 times

that of the upper. In the 19th experiment it has already been

observed that the beam broke at the top, and in the 21st it

broke at the bottom, although the lower flange was larger in

proportion to the upper than in the preceding case, and the

comparison shows that they were about equally well propor
tioned. They should be so proportioned that they are equally
liable to break at the top and bottom.

A beam proportioned so as to be similar to either of the two

last forms above mentioned may be called a &quot; TYPE FORM.&quot;

156. HODGKiNSON s FORMULAS for the strength of cast-

iron beams of the TYPE FORM.

Let TF the breaking weight in tons (gross).

a the area of bottom rib at the middle of the beam.
d = the depth of the beam at the middle.

and I = the distance between the supports.
Then according to Mr. Hodgkinson s experiments we have

W= 26 y- when the beam was cast with the bottom
i

rib up, and

TF&quot;=24-- when the beam is cast on its side.

157. EXPERIMENTS ON T RAILS. Experiments onT bars,

supported at their ends and loaded at the middle, gave the fol

lowing results :

*

* Mahan s Civ. Eng., pp. 88 and 89; Barlow on the Strength of Materials,

p. 183.



L

188 THE RESISTANCE OF MATERIALS.

Hot blast bar, rib upward, J_ broke with -
1,120 pounds.

&quot; &quot;

downward, T broke with 364

Cold blast
&quot; &quot;

upward, J_ broke with. 2,352
&quot;

&quot; &quot;

downward, J broke with - 980 &quot;

The ratio of the strengths is nearly as 3 to 1, but according
to the table in Article 47, we might reasonably expect a higher
ratio. If a greater number of experiments would not liave

given a higher ratio, we would account for the discrepancy by
supposing that the neutral axis moved before rupture took

place, or that the ratio of the crushing strength and tenacity is

less for comparatively thin castings than for thick ones. It is

known that the crushing strength of thin castings is proportion

ately stronger than thick ones. Ilodgkinson found that for

castings 2, 2-, and 3 inches thick, the crushing strengths were
as 1 to 0.780 to 0.756

;
and Colonel James found a greater in

crease being as 1 to 0.794 to 0.624. See also Article 37.

158. WROUGHT-IRON ii i-:.%.TIN. The treacherous character

of cast-iron beams, on account of the internal structure of the

metal, and the unseen cracks and flaws which may exist, has

led to the introduction of solid wrought-iron beams. When cast-

iron beams were first used, it was practically impossible to

manufacture solid wrought-iron ones, but the great improve
ments which have been made since then in the processes of

manufacturing, have not only made their construction possible,

but they have enabled the manufacturer to produce them so

cheaply as to bring them within the means of those who desire

such articles. At Trenton and Pittsburg they make rolled

beams from a single pile,* but it is stated that by this method

they can make beams only about nine inches in depth. At
Buffalo and Pho3nixville they use Mr. John Griffin s patent,

which consists in rolling the flanges separately, piling the plates

for the web between them, and then rolling and welding the

whole together. By this method they can make beams at least

twenty inches deep, and of any desired length. There is no

attempt to make them of uniform strength. They are of the

double T (I) pattern, and of uniform section throughout.

* Jour. Frank. Inst., Vol. 80, p. 231.
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CIIAPTEE VIII.

TORSION.

159* TORSIVE STRAINS are very common in machinery.
In all cases where a force is applied at one point of a shaft to

turn (or twist) it, and there is a resisting force at some other

point, the shaft is subjected to a torsive strain. The wheel and
axle is a familiar case in which the axle is subjected to this

strain. To produce torsion without bending, two equal and par
allel forces, acting in opposite directions, and lying in a plane
which is perpendicular to the axis of the piece, must be so applied
to the section that the arms of the forces shall be equal. In other

words, mechanically speaking, a couple whose axis coincides

with the axis of the piece, must be applied to the piece. If

only a single force, P, is applied, as in Fig. 109, the piece is

pushed sidewise at the same time that it is twisted
;
but the

amount of twisting is the same as if the force, P, were divided

into two, each equal ^P, and each of these acted on opposite
sides of the axis and in opposite directions, and at a distance

from the axis equal AB, Fig. 109. For, the moment of the

couple thus formed, is -|Px2x AB=P.AB, which is the

moment of P.

16O. THE ANGI^E OP TORSION is the angle through which

a, fibre whose length is unity, and which is situated at a unit s

distance from the axis, is turned by the twisting force. It

depends for its value, in any case, upon the elastic resistance to

torsion, as well as upon the dimensions of the piece and the

twisting force. The analysis by which its value is determined

is founded upon the following hypotheses, which are approxi

mately correct.
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1st. The resistance of any fibre to torsion varies directly as its

distance from the axis of the piece.

2d. The angular amount of torsion of any fibre between any
two sections, or the total angle of torsion, varies directly as the

distance between them.

It is found by experiment, that these hypotheses are suffi

ciently exact for cylinders and regular polygonal prisms of

many sides. They assume that transverse sections which were

plane before twisting, remain so while the piece is twisted, but

in reality the fibres which were parallel to the axis before

being twisted are changed to helices, and this operation pro
duces a longitudinal strain upon the fibres

;
and this, in turn,

changes the transverse sections into warped surfaces.*

To find the angle of torsion :

Let I = AD = the length of the piece,

Fig. 109.

a = AB = the lever arm of P.

P = the twisting force.

* = aAL = the total angle of tor

sion, or angle through

Fig. 109.

which Aa has been twist

ed.

6 - 7 = &quot; The Angle of Torsion,&quot;
f/

supposed to be small.

y(, &amp;lt;p)

== the equation of a transverse section, and

G = the coefficient of the elastic resistance to torsion, which

is the force necessary to turn one end of a unit of area and
unit of length of fibres through an angle unity, the vertex

of the angle being on the axis of torsion, one end of the fibres

being fixed and the twisting force being applied directly to

the other end, and acting in the direction of a tangent to the

arc of the path described by the free end.

As a unit of fibres cannot be placed so that all of them will

be at a unit s distance from the axis, we must suppose that the

resistance of a very thin annulus, which is at a unit s distance,

is proportional to that of a unit of section
;
or the resistance

* Resume des Lemons, Navier, Paris, 1864, p. 270 and several other pages
following.
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of an element at a units distance from the axis is G multiplied

by its area
;
which expressed analytically is

Grpdpd&amp;lt;f&amp;gt;,

and according to the first law

Gp*dpd(f&amp;gt;
= the resistance of any

fibre whose length is unity, to being twisted through an angle

unity ;
and the moment of resistance = Gp

3

dpd&amp;lt;f&amp;gt;

for an angle

unity ;
and for any angle 6 the moment is, according to the

second law,

Gdp dpd&amp;lt;f&amp;gt;

and the total moment equals the moment of the applied force,

or moments of the applied forces
;
hence

Pa = G&p dpdf = GI;J ,

where T.p is the polar moment of inertia of the section.

r r:
I jP dpd&amp;lt;j&amp;gt;

Jo Jo
/ / p

3

dpd&amp;lt;j&amp;gt;

= -7iT
4

(199)

ttffr 7r*r*

2Pa
or, 6 = ~

4
GTJT

161. THE VALUE OF THE COEFFICIENT G may be found

from equation (200). M. Cauchy found analytically on the con

dition that the elasticity of the material was the same in all

directions, that G = f E.* M. Duleau found experimentally
that G is less than

J- E, and nearly equal -J- E, f and M. Wert-

heim found G = f E nearly. $ M. Duleau s experiments gave
the following mean values for G : f

Pounds.

Soft iron - -- 8,533,680

Iron bars 9,480,917

English steel - - 8,533,680

Forged steel (veryfine)
----- 14,222,800

Cast iron - 2,845,600

* Resume des Lemons, Navier, Paris, 1856, p. 197.

f Resistance des Materiaux, Morin, p. 461.

$ L Engineer, 1858, p. 52.
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Pounds.

Copper ......... 6,209,670
Bronze -

1,516,150
Oak ..... 568,912
Pine -

615,472

Example. If an iron shaft whose length is 5 feet, and diameter 2 inches,

is twisted through an angle of 7 degrees by a force P = 5,000 Ibs.
, acting on a

lever, a 6 inches, required G. The 7 degrees is first reduced to axe by multi

plying it by ~
Q

,
which gives a = ^, and Eq. (200) gives,

2~ Tf
1G3. TORSION^ ABlflnriiUM.If a prism is suspended from its

l\ upper end, and supports an arm at its lower end, and two weights each equal

\ W are fixed on the arm at equal distances from the prism, and the prism be

twisted and then left free to move, the torsional force will cause an angular

movement of the arm until the fibres are brought to their normal position,

after which they will be carried forward into a new position by the inertia

of the moving mass in the weights | W until the torsional resistance of the

prism brings them to rest, after which they will reverse their movement, and

an oscillation will result. The conditions of the oscillation may easily be inves

tigated if the prism is so small that its mass may be neglected.

For, equation (200) readily gives :

V

from which it appears that the torsional force P varies as the space (ao) over

which it moves.

It is a principle of mechanics that the moving force varies directly as the

product of the moving mass multiplied by the acceleration. Hence, if x = (flo),

the variable space, and t = the variable time, and M = the mass moved, and

observing that t and x are inverse functions of each other, and the above prin

ciple of mechanics gives the following equation :

*-*?
Multiplying both members by the dx, gives

W dxffix _ irGr4

g df 2la*
a

where W is the weight of the mass moved, and g is the acceleration due to

gravity. The oscillations commence at the extremity of an arc whose length
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is
s, at which point the velocity is zero. The integral of the last equation

between the limits s and x is

&quot; r -Vi *
_ I TrWto2

* L
S1D T--2G~

which is the time of half an oscillation. For a whole oscillation :

This is essentially the theory of Coulomb s torsion pendulum. A torsion

pendulum was used by Cavendish in 1778 to determine the density of the

earth. (See Royal Philosophical Transactions: London, Vol. 18, p. 388.) He
found the mean density of the earth by this method to be 5.48 times that of

water. This is considered the most reliable of all the known methods, but

the results of other methods exceed the value given above by a small amount

only, thereby confirming this result and showing that the mean density of the

earth is about 5 times that of water.

1 63. RUPTURE BY TORSION The resistance which .a bar

offers to a twisting force is a torsional shearing resistance, and

in regard to rupture, the equation of equilibrium is founded

upon the following principles :

1st. The strain upon any fibre varies directly as its distance

from the axis of torsion
; and,

2d. The sum of the moments of resistances of the fibres

equals the sum of the moments of the twisting forces.

Let S = the MODULUS OF TORSION, that is, the ultimate resist

ance to torsion of a unit of the transverse section which is

most remote from the axis of torsion. It is the ultimate shear

ing resistance to torsion, but may be used for any shearing strain

which is less than the ultimate,

dt =. the distance of the most remote fibre from the axis of

torsion,

f (0 ? 0) the equation of the section,

P the twisting force, and

a = the lever arm of P.

Ip = the polar moment of inertia of a section.

Then pdpdQ = dA. = the area of an element of the section
;

13
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= the shearing strain of the most re

mote element
; and, by the first prin-

ciple given above,
= the shearing strain of any element,

which is at a unit s distance from the

axis of torsion, according to the first

principle above
;
and from the same

principle we have

p dpcfy = the shearing strain of any element,
1/1

,, ;
(

and this, multiplied by the distance of

the element, p, from the axis, gives
Q

p\lpd&amp;lt;f&amp;gt;

= the moment of resistance to torsion.
- di

Hence, according to the second principle we have

A.= lP -
(20!) .

For circular sections, we have already found, Eq. (199),

lp = i- TT/.

For square sections, whose sides are &, we may find .*

Ip = -J- ,
and A =1&amp;gt;V

iUu&amp;lt; *-
164. PRACTICAL FORMULAS. Equations (199) and (201)

give for cylindrical pieces, observing that d, = r,
J&amp;gt;

9 T*/7

.
P* = ^s,-,.s = -_^. &amp;gt;(

202)^
(/ &_ ^L-

&quot;&quot;7^

If cylindrical pieces are twisted off by forces which form a

coujtKe, and P, ,
and r measured, the value of S may be found

from equation (202). Cauchy found S = % H,f which is con

sidered sufficiently ex^efc
when a proper coefficient of safety is

used. Calling S = 25,000 pounds for iron, and using about a

We have AH/A = ff^+y*] &amp;lt;?A = /zVA +//KA, that is, the polar

moment equals the sum of the rectangular moments, the origin being the same
in both cases. In this case the origin being at the centre of the square, we

r /* r
have / ortfA = / y dfA .: Ip = 2/y?efA =2 x &P (see Eq.l^)/ *)

..,

f Resume des Lemons, Navier. Paria, 1856, pp. 193-203, and p. 507.

v
f j fo,.c-^~4-4--y. I,&amp;gt;CL

r-c^-^ w

\

....*
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five-fold security ;
and S = 8,000 pounds for wood, and using

about a ten-fold security, and we may use for
.

ROUND IRON SHAFTS (wrought f\ ^

or cast), diameter 9^=^^J:
SQUARE IRON SHAFTS (wrought

or cast), side of the square-j= -J^f/Pa
SQUARE WOODEN SHAFTS,

side of the squares T =
-J- ftPa)

The dimensions given by these formulas are unnecessarily
large for a steady strain, but shafts are frequently subjected to
sudden strains, amounting sometimes to a shock, and in these
cases the results are none too large.

Practical formulas may also be established on the condition
that the total angle of torsion shall not exceed a certain
amount. Making G = | E, and solving (200) in reference to

/-,

and we have for cylindrical shafts,
Y_ 2/&quot;L ^ : . J5U

r _ 4 /16 Pal

~~V 3?rE*

and similarly for square shafts,

= .v^^
In these expressions P should not be so great as to impair

the elasticity, say for a steady strain P should not exceed the

values given by equation (203).
If is given in degrees, it is reduced to arc by multiplying

^ ^ 180
S tllat &quot; ~

180*
nence tlie Precediiig equations be

come : for cylindrical iron shafts,

= 3 -14

v-w- ;
-

C A
and for square iron shafts,

Examples \. A round iron shaft fifteen feet long, is acted upon by a-,

weight P = 2,000 Ibs. applied at the circumference of a wheel which is on the
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shaft, the diameter of the wheel being two feet
;
what must be the diameter

of the shaft so that the total angle of torsion shall be 2 degrees ?

If the shaft is cast-iron E = 10,000,000, and

2000x12x15x12-

2. A round wooden shaft, whose length is 8 feet, is attached to a wheel

whose diameter is 8 feet. A force of 200 pounds is applied at the circumfer

ence of the wheel, what must be the diameter of the shaft so that the total

angle of torsion shall not exceed 2 degrees ?

&amp;gt; =,.,..

For further information upon this subject see u Resistance des Materiaux,&quot;

Navier
; Paris, 1856, pp. 237-509, and the exhaustive articles of Chevandier

and Wertheim in &quot; Annales des Chemie et Physique,&quot; Vol. XL. and Vol. L.

165. RESULTS OF WERTHEIItt S EXPERIMENTS. A few

years since M. G. Wertheim presented to the French Academic
des Sciences an exhaustive paper upon the subject of torsion, the

substance of which was published in the Annales de Chimie et

de Physique, Yol. XXIII., 1st Series, and Yol. L., 3d Series.

These articles would make a volume by themselves, and hence

we will content ourselves at this time with presenting his

CONCLUSIONS.

When a body of three dimensions is subject to torsion the

following facts are observed :

1st. The torsion angle will consist of two parts, one tempo

rary, the other permanent ;
the latter augments continually,

though not regularly.

2d. The temporary displacements augment more and more

rapidly than the moments of the applied couples, and the increase

of the mean angle, which in hard bodies continues until rup

ture, in soft bodies continues only to the point where the body
commences to suffer rapid and continuous deformation.

3d. The temporary angles are not rigorously proportional to

the length, and, all else being equal, the disproportionality in

creases in measure as the bar becomes shorter.

4th. In all homogeneous bodies, torsion caused a diminution

of the volume, which is proportional to the length and square
of the angle of torsion, and each point of the body, instead of
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describing an arc of a circle, follows the arc of a spiral. The

condensation of the body increases from the centre to the cir

cumference.

5th. In bodies with three angles of elasticity, the change of

volume and resistance to torsion are functions of the three axes,

and the relation between them may be such that the volume

will augment.
6th. Circular or turning vibrations of great amplitude are

difficult to produce, and as small angles of torsion only are used,

the preceding conclusions apply to this case.

7th. Rupture produced by torsion usually takes place at the

middle of the length of the prism ;
it commences at the dan

gerous points, and operates by slipping in hard bodies and by

elongation in soft ones.

8th. With regard to the influence of the figure and absolute

dimensions of the transverse sections of the bodies, we derive

the following conclusions :

9th. In homogeneous circular cylinders the diminution of the

volume is equal to the original volume multiplied by the prod

uct of the square of the radius, and the angle of torsion for a

unit of length (the angle being always very small). Further,

under torsion the radius of the cylinder equals the primitive

radius multiplied by the sine of the angle of inclination of the

helicoidal fibres. This last gives a means of calculating the

diminution of volume. But in reality the twisted cylinder

takes the form of two frustra of cones joined at the smaller

bases
;
and although this does not sensibly affect the theoretical

results for long cylinders, yet it deprives our formulas of all

their value in ordinary practical cases.
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CHAPTER IX.

EFFECT OF LONG-CONTINUED STRAINS OF OFT-REPEATED
STRAINS, AND OF SHOCKS REMARKS UPON THE CRYSTAL
LIZATION OF IRON.

EFFECT OF LONG-CONTINUED STRAINS. .

166. GENERAL EFFECT. The values of the coefficients of

elasticity and the moduli! of tenacity, crushing, and of rupture
were determined from strains which were continued for a short

time generally only a few minutes or until equilibrium was

apparently established
;
and yet it is well known that if the

strain is severe, the distorsion, whether for extension, compres

sion, or bending, will increase for a long time
;
and as for rup

ture, it always takes time to break a piece, however suddenlv

rupture may be produced. By sudden rupture we only mean
that it is produced in a very short time.

The increased elongation due to a prolonged duration of the

strain beyond a few minutes, will affect the coefficient of elas

ticity but very slightly, for the strains which are used in deter

mining it are always comparatively small, and the greater part

of the effect is produced immediately after the stress is applied.

Still, if the distortion should go on indefinitely, no matter how

slowly, the elasticity, and hence the coefficient, would be greatlv

modified by a very great duration of the stress, however small

the stress may be
;
and at last rupture would take place. If the

basis of this reasoning be well founded, we might reasonablv

fear the ultimate stability of all structures, and especially those

in which there are members subjected to tension. But the con

tinued stability of structures which have stood for centuries,

teaches us, practically at least, that in all cases in which the

strain is not too severe, equilibrium is established in a short

time between the stresses and strains, and in such cases the

piece will sustain the stress for an indefinitely long time.
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. IIODGKINSON S EXPERIMENTS TllC results of the

experiments which are recorded in Article XL., page 48, show

that in one case the compression increased with the duration of

the strain for three-fourths of an hour. In the case of exten

sion 011 another bar, as shown in Article VII., page 7, it ap

pears that the same weight produced an increased elongation

for nine hours
;
but during the last, or tenth hour, there was no

increase over that at the end of the ninth hour.

In both these cases the strain was more than one-half that of

the ultimate strength.

1&amp;lt;58. VICATS EXPERIMENTS. M. Yicat took wrought-
iron wire and subjected it to an uniform stress for thirty-three

months. The elongations produced by the several weights were

measured soon after the weights were applied, and total lengths

determined from time to time during the thirty-three months.

It was found for all but the first wire, as given in the following

table, that the increased elongations after the first one were

very nearly proportional to the duration of the stress. (Annales

de Ohemie et Physique, Vol. 54, 2d series.)

TABLE

Of the Result* of M. VicaVs Experiments on Wrought-iron Wire.

Amount of Strain.
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to remain there several years, as indicated by the tables. The
deflections were noted from time to time, and the results were

recorded.

TABLE I.

In icJiicJi the Weight Applied was 336 pounds.

TEMPERATURE.
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with a continuance of the load. Admitting that the small in

crease of deflections during the last two years are correct and

not due to errors of observation, and we see no reason why the

deflections would not be as likely to decrease after a time as

they were after the first year.

TABLE II.

In which the Bar was Loaded with 392 pounds.
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TABLE III.
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OFT-REPEATED STRAINS.

Xearly all kinds of structures are subjected to greater strains

at certain times than at others, and some structures, as bridges

and certain machines, are subject to almost constant changes in

the strains. Loads are put 011 and removed, and the operation

constantly repeated. The only experiments to which we can

refer for determining the effect of a load which is placed upon
a bar and then removed, and the operation of which was fre

quently repeated, are those of

Win. Fairbairn, made in I860.*

The beam was supported at its

ends, and the weight which pro
duced the strain was raised and

lowered by means of a crank and

pitman, as shown in Fig. 110.

The {rearing; was connected
C5 c5

with a water-wheel, which was

kept in motion day and night,

and the number of changes of

the load were registered by an automatic counter. The beam
was 20 feet clear span and 16 inches deep. The dimensions of

the cross section were as follows :

Top Plate, 4 x i= 2.00 sq. inches

Angle irons, 2 x 2 x^= . . . 2.30 &quot; &quot;

Bottom Plate, 4 x i= f.00
&quot; &quot;

AngleIrons,2x2xfV=1.40
&quot; &quot;

Web Plate, 15J x = 1.90

Total 8.60 &quot; &quot;

Weight of beam, 1 cwt. 3 qr. 3 Ibs.

Probable breaking weight, 9.6 tons.
~3

r
~V Z

First Experiment. Beam loaded to J the breaking weighf:

Total applied load 5,809 Ibs. - J? fa
Half the weight of the beam 434

Strain on the bottom flange 4.3 tons

Margin of strength by Board of

Trade v ....,...
:i:^ 3.4

*
t!iT. Eng. and Arch. Jour., Vol. xXIlt, p. 257/and Vol. XXIV., p. 237.
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TABLE

Of the Results of Experiments made upon a Beam which was Supported at its

Ends, and a Weight repeatedly but gradually Ajyplied at the Middle.

DATE.
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The beam had now received 1,000,000 changes of the load,

but it remained uninjured. The moving load was now in

creased to 10,050 Ibs. or one-half the breaking weight and it

broke with 5,175 changes. The beam was then repaired by

riveting a piece on the lower flange, so that the sectional area

was the same as before, and the experiment was continued.

One hundred and fifty-eight changes were made with a load

equal to one-half the breaking weight ;
and the load was then

reduced to two-fifths the breaking weight, and 25,900 changes
made. Lastly, the load was reduced to one-third the breaking

weight, with the following results :-T

DATE.
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eleven per minute, which is very slow compared with the stroke

of some machines. Tilting-hammers often run from ten to

twenty times this speed.

SHOCK CRYSTALLIZATION.

171. SHOCKS When a weight is applied to another body

suddenly it produces a &quot; shock &quot;

upon the materials which com

pose the bodies. We cannot, practically, tell how frequently or

with what force bodies must come in contact with each other in

order to produce, a &quot; shock
;

&quot; but theoretically any small body
which is suddenly arrested in its movement, or suddenly devi

ated in its course by another body, produces a shock. Mass is

necessary to the production of a shock, and the masses must im

pinge upon each other. If a force could manifest itself inde

pendent of matter, arresting the movement of it, however sud

denly, by another force, would not produce a shock. Also,

changing the movement of a mass by such a force, however

sudden, will not produce a shock. These ideas are approxi

mately realized in the movements of steam, air, and other gases.

Steam impinges against air without producing shock, practically

speaking. A moving piston (in some machines) is brought to

rest by the reaction of steam, or by a steam cushion, without

producing shock. The alternate expansions and contractions of

a piston-rod, or pitman, or other similar piece in steam machin

ery, which are caused by the alternate pull and push of the

moving force, do not produce a shock. The pieces may be

&quot;shocked&quot; on account of working with loose connections, but

that cause is not here considered. In the first example above

cited there is very little mass in the moving or resisting bodies
;

in the next one the motion of the moving mass is changed, and

may be brought quite suddenly to rest by the action of a highly
elastic medium which has but little mass

;
and in the last exam

ple the particles are contiguous and are only slightly moved in

reference to each other, as the forces of extension and compres
sion are transmitted through the bar. The particles are not

permanently displaced in reference to each other, as they are

liable to be by a blow or &quot;shock.&quot;

Shocks are practically prevented in many cases by the
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introduction of elastic substances which possess considerable

mass. Thus steel, rubber, and wooden springs in vehicles and
in certain machines are familiar examples. But elasticity alone

is not a sufficient protection, for, as has been previously observed,
all bodies are elastic. When masses are used for springs they
must be so arranged as to operate through a perceptible space
in bringing the moving body to rest, or in changing its velocity
a perceptible amount.

Springs, however elastic, will not always prevent a shock, al

though they may greatly relieve it. Thus, the springs under a

car will not prevent the shock which always follows when the

car-wheel strikes the end of a rail, although the shock is not as

severe as it would be if the body of the car were rigidly con

nected with the axle. So, too, the springs between the buffers

on a car and the body of the car will not prevent one buffer

striking another so as to produce a &quot;

shock.&quot; In these cases the

springs may prevent the shock from being transmitted in a

large degree to the body of the car. The springs in certain

forge-hammers operate in a similar way to prevent a &quot; shock &quot;

upon the working parts of the machinery.
&quot; Shocks &quot;

are very injurious to machinery, and hence should,

so far as possible, be avoided. All machines in which &quot; shocks &quot;

are necessary, or incidental, or accidental, such as steam forge-

hammers, morticing machines, stone-drilling machines, and the

like, are much more liable to break than those that operate by
a steady pull and push. Metals are so liable to break under

such circumstances that many have supposed that the internal

structure is changed, and the metal becomes more or less crys

tallized.

The strength of the metal which is subjected to shocks is also

greatly modified by the temperature the lower the temperature
the more damaging is the shock. It has been shown in Article

29, that wrought iron is somewhat stronger at a low tempera
ture under a steady strain than at a higher temperature. Not

withstanding this is contrary to the &quot;

popular notion,&quot; it has

been further confirmed by the very careful experiments of the
&quot; Committee appointed by His Majesty the King of Sweden,&quot;

and reported by Knut Styffe, Director of the Royal Technolog-
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ical Institute of Stockholm.* Their first conclusion was : f
&quot; The absolute strength (tenacity) of iron and steel is not dimin

ished by cold, but that even at the lowest temperature which

ever occurs in Sweden, it is at least as great as at the ordinary

temperature or 00 Fahr.&quot;

These results are confirmed by the more recent experiments
of Joule of England, and by several other experimenters.
But it is generally supposed that machinery, railroad iron,

tyres on locomotives, and tools, break much more frequently
with the same usage when very cold than they do when warm.

Is this a mere, notion ?

Is it because breakages are more annoying in cold than in

warm weather, and hence make a more lasting impression upon
the minds of those who have to deal with them

;
so that they

think they occur more frequently? Impressions are not safe

guides in scientific investigations. Our observations on the use of

out-door machinery in cold and warm weather lead us to believe

that they do break much more frequently with the same usage
in winter than in summer. The same fact, in regard to the

breaking of rails on railroads, was admitted by Styffe ;
but

after arriving at the conclusion which he did in regard &quot;to the

effect of cold upon the absolute strength of iron, he concluded

that the cause of the more frequent breakages was due to the

more rigid and non-elastic foundation caused by the frozen

ground. But Sandberg, the translator of StyfFe s work, thought
that iron when subjected to shocks might not give the same

relative strength at different temperatures that it would when

subjected to a steady strain. He therefore instituted another

series of experiments to satisfy himself upon this important

point, and aid in solving the problem. The following is an

abstract of his report :

The supports for the rails in the experiments were two large

granite blocks which rested upon granite rocks in their native

bed. The rails were supported near their ends on these blocks.

They were broken by a ball which weighed 9 cwt., which was

permitted to fall five feet the first blow, and the height increased

* The Elasticity, Extensibility, and Tensile Strength of Iron and Steel. By
Knut Styffe. Translated by Christcr P. Sandberg. London,

f Ibid., p. 111.
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one foot at each succeeding fall, and the deflection measured
after each impact. A small piece of wrought iron was placed
on the top of each rail to receive the blow, so as to concentrate

its effect.

The rail was thus broken into two halves, and each part was
afterwards broken at different temperatures. As the experi
ments were not made till the latter part of the winter, the

lowest temperature secured was only 10 Fahr. Fourteen rails

were tested: Seven of which were from Wales; five from

France
;
and two from Belgium. From these the experimenter

drew the following conclusions :

*

1.
&quot; That for such iron as is usually employed for rails in the

three principal rail-making countries (Wales, France, and Bel

gium), the breaking strain, as tested by sudden blows or shocks,
is considerably influenced by cold

;
such iron exhibiting at 10

F., only one-third to one-fourth of the strength which it pos
sesses at 84 F.

2.
u That the ductility and flexibility of such iron is also

much affected by cold, rails broken at 10 F. showing on an av-

erage^a permanent deflection of less than one inch, whilst the

other halves of the same rails, broken at 84 F., showed less than

four inches before fracture.&quot;

This seems to be the fairest and most conclusive experiment

upon this point that we have met with, but it is not satisfactory

to all, or else they are ignorant of the experiment, for there has

been of late considerable discussion upon the subject in the

scientific journals. Some take the experiments of Fairbairn

and Joule as conclusive upon the point, and attribute the cause

of the failures, in many cases, to an inferiority of the iron, and

in the case of tyres to an over-stretching of the metal when it

is put on the wheel. By many, the presence of phosporous
is considered especially detrimental to iron which is subject

ed to shocks in cold weather. But until the fact is estab

lished that cold iron is weaker than warm iron, when subjected

to shocks, it is worse than useless to speculate upon the cause.

More experiments are needed on this point, in which the quality

of the metal, and all the conditions of the experiments should be

definitely known.

*
Styffe s work on iron and steel, translated by Sandberg, p. 157.

14:
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The following experiments, by John A. Roebling,* bear upon
this subject, although they are not conclusive, for it is not re

ported that the same metal was tested when warm :

&amp;lt;v The samples tested were about one foot long, and were re

duced at the centre to exactly three-fourths of an inch square,
and their ends left larger, were welded to heavy eyes, making
in all a bar three feet long. These were covered with snow and

ice, and left exposed several days and nights. Early in the

morning, before the air grew wanner, a sample inclosed in ice,

was put into the testing-machine and at once subjected to a

strain of 20,000 pounds, the bar being in a vertical position, and

left free all around. The iron was capable of resisting 70,000
Ibs. to 80,000 Ibs. per square inch. A stout mill-hand struck the

reduced section of the piece, horizontally, as hard as he could,

with a billet one and a half inches in diameter and&quot; two feet

long. The samples resisted from three to one hundred and

twenty blows. With a tension of 20,000 Ibs. some good sam

ples resisted 300 blows before breaking.&quot;

The finest and best qualities of iron, or those that have the

highest coefficient elasticity will resist vibration best. It is

generally supposed that good iron will resist concussions much
better than steel. Sir AVilliam Armstrong, of England, says :

&quot; The conclusion at which I have long since arrived, and which

I still maintain, is, that although steel has much greater tensile

strength than wrought iron, it is not as well adapted to resist

conclusive strains. It is impossible, then, that the vibratory
action attending concussion is more dangerous to iron than to

steel. The want of uniformity is another serious objection to

the general use of steel in such cases.&quot; This has been used

as an argument against the use of steel rails, but practically

this has proved not to be a serious difficulty. So many ele

ments must be considered in the use of steel rails, aside from

fracture, that the problem must be solved by itself, and princi

pally upon other grounds.

1 7. CRYSTALLIZATION. A crystal is a homogeneous in

organic solid, bounded by plane surfaces, systematically arranged.
The quartz crystal is a familiar example. Different substances

* Jour. Frank. Inst., vol. xl., 3d series, p. 361.
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crystallize in forms which are peculiar to themselves. Metals,

under certain circumstances, crystallize ;
and if they are broken

when in this condition the fracture shows small plane surfaces,

which are the faces of the crystals. It is found in all cases

that crystallized iron is weaker than the same metal in its or

dinary state. By its ordinary state we mean that wrought
iron is fibrous, and cast iron and steel are granular in their

appearance.
Iron crystallizes in the cubical system.* Wholer, in break

ing cast-iron plates readily obtained cubes, when the iron had

long been exposed to a white heat in the brickwork of an iron

smelting furnace.

Augustine found cubes in the fractured surface of gun barrels

which had long been in use.

Percy found on the surface and interior of a bar of iron,

which had been exposed for a considerable time in a pot of

glass-making furnace, large skeleton octahedra. (He seems

to differ from the preceding in regard to the form of the

crystals.)

Prof. Miller, of Cambridge, found Bessemer iron to consist

of an aggregation of cubes.

Mallet says :

&quot; The plans,
of crystallization group themselves

perpendicular to the external surfaces.&quot;

Bar iron will become crystalline if it is exposed for a long

time to a heat considerably below fusion. Hence we see why
large masses which are to be forged may become crystalline, on

account of the long time it takes to heat the mass. Forging
does not destroy the crystals, and forging iron at too low a

temperature makes it tender, while steel at too high a tempera
ture is brittle. The presence of phosphorous facilitates crystal

lization. Time, in the process of breaking iron, will often

determine the character of the fracture. If the fracture is

slow, the iron will generally appear fibrous
;
but if it be quick,

it will appear more or less crystalline. Many mechanics have

noticed this result. At Shoeburyness armor-plates were shat

tered like glass under the impact of shot at a velocity of 1,200

feet to 1,600 feet per second. The iron was good fibrous iron.

Many engineers are of the opinion that oft-repeated and long-

* See Osborn s Metallurgy, pp. 83-86.
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continued shocks will change fibrous to crystalline iron. Opin
ions, however, are divided upon this subject. In view of the

immense amount of machinery and other constructions, parts of

which are constantly subjected to shocks, the importance of the

subject can hardly be overestimated.

William Fairbaini says:
*

&quot;We know that in some cases

wrought iron subjected to continuous vibration assumes a crys
talline structure, and that then the cohesive powers are much

deteriorated; but we are ignorant of the causes of this
change.&quot;

The late Robert Stephenson f referred to a beam of a Cor

nish engine which received a shock eight or ten times a minute,

equal to about fifty tons, for a period of twenty years without

apparent change. These shocks were not very frequent, and

would not be considered as detrimental as if they occurred a

few times each second. He also says :
&quot; The connecting-rod of a

certain locomotive engine that had run 50,000 miles, and re

ceived a violent jar eight times per second, or 25,000,000 vibra

tions, exhibited no alteration.&quot; In all the cases investigated by
him of supposed change of texture, he knew of no single in

stance where the reasoning was not defective in some important
link. These are not fair examples of shocks, as the vibrations

referred to seem to be only changes from tension to compression,
arid the reverse.

Mr. Brunei accepted the theory of molecular change, for a

time, as due to shocks, but afterwards expressed great doubts

as to its correctness, and thought that the appearance depended
more upon the manner of breaking the metal than upon any
molecular change.

Fairbaini has speculated a little upon the probable cause of

the internal change when it takes place. In his evidence before
the Commissioners appointed to inquire into the application

of iron to railway structures, he says :
&quot; As regards iron it is

evident that the application and abstraction of heat operates
more powerfully in effecting these changes than probably any
other agency ;

and I am inclined to think that we attribute too

much influence to percussion and vibration, and neglect more

obvious causes which are frequently in operation to produce

* Civ. Eng. and Arch. Jour., vol. lit p. 257.

\ Am. R. Times, March 0, 1809, Boston.
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the change. For example, if we take a bar of iron and heat it

red hot, and then plunge it into water, it is at once converted

into a crystallized instead of a fibrous body ;
and by repeating

this process a few times, any description of malleable iron may
be changed from a fibrous to a crystalline structure. Vibration,

when produced by the blows of a hammer or similar causes,

such as the percussive action upon railway axles, I am willing

to admit is considerable; but I am not prepared to accede to

the almost universal opinion that granulation is produced by
those causes only. I am inclined to think that the injury done

to the body is produced by the weight of the blow, and not by
the vibration caused by it. If we beat a bar with a small ham

mer, little or no effect is produced ;
but the blows of a heavy

one, which will shake the piece to the centre, wrill probably give

the key to the cause which renders it brittle, but probably not

that which causes crystallisation. The fact is, in my opinion,

we cannot change a body composed of a fibrous texture to that

of a crystalline character by a mechanical process, except only
in those cases where percussion is carried to the extent of pro

ducing considerable increase of temperature. We may, how

ever, shorten the fibres by continual bending, and thus render

the parts brittle, but certainly not change the parts which were

originally fibrous into crystals.

For example, take the axle of a car or locomotive engine,

which, when heavily loaded and moving with a high velocity,

is severely shocked at every slight inequality of the rails. If,

under these circumstances, the axle bends however slightly it

is evident that if this bending be continued through many
thousand changes, time only will determine when it will break.

Could we, however, suppose the axle so infinitely rigid as to re

sist the effects of percussion, it would then follow that the in

ternal structure of the iron will not be injured, nor could the

assumed process of crystallization take
place.&quot;

The late John A. Roebling, the designer and constructor of

the Niagara Railway Suspension Bridge, in his report on that

structure in I860,* says he has given attention to this subject

for years, and as the result of his observation, study, and experi

ment, gives as his view that
&quot; a molecular change, or so-called

* Jour. Frank. lust., vol. xl., 3d series, p. 361.
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granulation or crystallization, in consequence of vibration or

tension, or both combined, has in no instance been satisfactorily

proved or demonstrated by experiment.&quot;
&quot; I further insist that

crystallization in iron or any other metal can never takeplace in

a cold state. To form crystals at all, the metal must be in a

highly heated or nearly molten state.&quot; Notwithstanding these

positive statements, he still hesitates to express a decided opinion
which will cover the whole field of investigation. Still furtherO
on he states that he is witnessing the fact daily that vibration

and tension combined will greatly affect the strength of iron

without changing itsfibrous texture. Wire ropes and iron bars

will become weakened as the vibration and tension to which they
are subjected increase.

Certain machines in which the working parts are subjected
to frequent shocks, more or less severe, are constantly failing,

and the general impression is that the failure is due to crystal

lization. In speaking of the rock-drilling engines used in

Iloosac Tunnel, Mass., which were driven by compressed air,

the committee say :
* &quot;

Gradually they begin to fail in strength ;

the incessant and rapid blows counted by millions to which

they are subjected, appearing to granulate or disintegrate por
tions of the metals composing them.&quot; Having had some experi
ence with this class of machines, I know something of the diffi

culties which surround them.f During the winter of 1866-7

my assistant in the University, Professor S. W. Hobinson, and

myself made several experimental machines, in the use of which

we learned many essential conditions which must be observed

in order to avoid frequent breakages in the use of iron which

is subjected to frequent and long-continued shocks. As first

designed, the breakages in the several working parts were ex

ceedingly numerous, the remedy for which was not in making
those parts larger and stronger, for that only aggravated the

evil in most cases, but in arranging the moving parts so that

they would be moved and brought to rest with as little shock as

possible, and then making them as light as possible consistent

* Annual Report of the Commissioners on the Troy and Greenfield Railroad

and Hoosac Tunnel. House Doc.
,
No. 30, p. 5, Boston, Mass.

f Notice of, by B. H. Latrobe, C. E. Sen. Doc. No. 20, 18G8, p. 31, Boston,
Mass.
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with strength. But at the rapid rate at which we ran them,
which was from 300 to over 500 blows per minute, it was not

easy to comply with these conditions. No especial difficulty

was experienced from the general shock caused by the striking

of the tool upon the rock
;
but the chief difficulty arose from

the blow or shock to which the working pieces were directly

subjected in operating them. At last, however, according to

the report of the superintendent of the Marmora Iron Mine,

Out., at which place they have been in use for some time, we so

far overcame all the difficulties as to make it a decidedly prac
tical machine. In the experiments we found that it was a bad

condition to subject a piece to a blow crosswise of its length ;

that is, perpendicular to its length.* It was also found that a

piece struck obliquely would sustain a much greater number of

blows than if struck perpendicularly. Many pieces evidently

broke slowly, and was analogous to breaking a piece of tough
iron on an anvil by comparatively light blows. If the blows

were so severe as to start a crack in the piece, it would ulti

mately break if the blows were continued sufficiently long.

Several of the broken pieces were critically examined to see if

they were crystallized, but there were no indications of any

change in the internal structure of the metal.

All sharp angles in pieces which are shocked should, ifpos

sible, be avoided for in the process of manufacture they are

liable to be rendered weaker at such points, and if they are

equally strong so far as manufacture is concerned, a greater

strain, at the instant they are shocked, is liable to fall at such

points, thus rendering them relatively weaker there. At least

it is found that such pieces are more liable to break at the

angle. Hence, in the construction of direct-action rock-drills,

direct-action steam-hammers, and similar percussion machines,

the steam piston is not only generally made solid with the rod,

but it is connected with it by a curve. In other words, the rod

is more or less gradually enlarged into a piston. At first, much

difficulty was experienced in this regard with steam-hammers,

* I have seen it published that a small hammer was made to strike a blow

upon the side of a bar which was suspended vertically, the blows being repeated

night and day for nearly a year, when the bar broke
;
but as the force of the

blow and size of the bar were not given, I have thought that the statement

was too indefinite to be of any scientific value.
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for in some cases the piston broke away from the rod, and

slipped down over it.

In certain steam forge-hammers the piston-rod is liable to
break where it joins the hammer. In this case the worst pos
sible arrangement is to make a rigid connection between the
hammer and rod. The author once saw a rod three and one-
half inches in diameter nicely fitted into a conical hole in a 400-

pound hammer, the taper of the rod and hole being slight, so
that it would hold by friction when once driven into^place.
The connection was practically rigid. The rod broke twice with

ordinary use inside of twenty days. Probably it would have
lasted a long time if the blow could always have been exactly
central

;
but in ordinary use it would very naturally be sub

jected to cross strains by making a blow wrhen the material was
under one edge of the hammer. By a repetition of these cross

strains, rupture might have been produced without any crystal
lization.

Fio. 112.

This difficulty is practically overcome in several ways, one of

the most common of which is to place blocks of wood or other

slightly elastic body between the end of the piston-rod and the

hammer. Morrison overcame the difficulty by making the rod

so large that it (the rod) became the hammer, and a small block

of iron or steel was fitted into the forward end of the rod to

serve avs a face for the hammer.
A Mr. Webb, of England, proposed to overcome the difficulty

by a device which is shown in Fig. 112.
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Keferring to the figure, it will be seen that the piston-rod,

which is for the main part of its length 4 in. in diameter, is en

larged at the lower end to 6f in. in diameter, and is shaped

spherically. This spherical portion of the rod is embraced by
the annealed steel castings, B B, which are secured in their

place in the hammer-head by the cotters, A, and the whole

thus forms a kind of ball-and-socket joint, which permits the

hammer head to swivel slightly on the rod without straining

the latter. Mr. Webb first applied this form of hammer-rod

fastening to a five-ton Nasmyth hammer with a 4 in. rod. With

the old mode of attachment, with a cheese end, this hammer
broke a rod every three or four weeks when working steel, while

a rod with the ball-and-socket joint, which was put in in No

vember, 1867, has been working ever since, that is, to some time

in 1869, without giving any trouble. The inventor has also ap

plied a rod thus fitted to a five-ton Thwaites and Carbutt s ham
mer with equal success.

These examples seem to indicate that if iron is crystallized on

account of shocks, the progress of the change may be slackened

by a judicious arrangement of the pieces and by proper connec

tions. But it does not follow that because a metal breaks so

frequently when subjected to shock, that it has become crystal

lized. It has been observed by those who have made the experi

ment, that a piece of bar iron which is broken by heavy blows,

when the piece is so supported as to bound with each stroke,

will present a crystalline fracture
;
but if the same bar be broken

by easy blows near the place of the former fracture, it will pre
sent a fibrous texture

; showing that in the former case the in

ternal structure was not changed, unless it were in the immedi

ate vicinity of the fracture. In such cases the appearance of
the s^irface of the fracture does not indicate the true state of

the internal structure. One reason why metals fail which are

subjected to concussions, without crystallizing, is
;

an excessive

strain is brought upon some point, thus impairing the elasticity

and weakening the resisting powers, in which case, if the strains

be repeated sufficiently long, rupture must ultimately take place.

Or, if the concussion be sufficiently severe and local, it may dis

place the particles, and thus begin a fracture. This frequently
takes place in the case of anvils, hammers, hammer-blocks, and

the like.
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If a bar is bent by a blow sufficiently great to produce a set, and
the bar be bent back by another blow, and so on, the bar being
bent alternately to and fro, rupture would probably take place
at some time, however remote. It is often difficult to determine

the strain which falls at a particular point of a piece when it is

subjected to a shock, but if we could determine its exact amount,
we might find it to be sufficiently large to account for rupture

by shocks, without considering any mysterious change in the

internal structure of the metal.

Note. Since the above was written, several articles have

appeared in the scientific journals, giving the results of obser

vations and experiments upon the strength of iron at low tem

peratures, and they all confirm the position above stated, that

iron will not resist shocks as effectually at very low temperatures
as it will at ordinary temperatures.
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CHAPTER X.

LIMITS OF SAFE LOADING OF MECHANICAL STRUCTURES.

173. RISK AND SAFETY. We have now considered the

breaking-strength of materials under a variety of conditions,

and also the changes produced upon them when the strains are

within the elastic limits. In a mechanical structure, in which

a single piece, or a combination of pieces, are required to sus

tain a load, it is desirable to know how small the piece, or the

several pieces, may be made to sustain a given load safely for

an indefinite time
; or, how much a given combination will sus

tain safely. The nature of the problem is such that an exact

limit cannot be fixed. Materials which closely resemble each

other do not possess exactly the same strength or stiffness
;
and

the conditions of the loading as to the amount or manner in

which it is to be applied, may not be exactly complied with.

Exactness, then, is not to be sought ;
but it is necessary to find a

limit below which, in reference to the structure, or above which,

in reference to the load, it is not safe to pass.

It is evident that to secure an economical use of the material

on the one hand, and ample security against failure on the other,

the limit should be as definitely determined as the nature of the

problem will admit
;
but in any case we should incline to the

side of safety. No doubt should be left as to the stability

of the structure. There is no economy in risk in permanent
structures. Risk should be taken only in temporary, or experi

mental, structures
;
or where risk cannot, from the nature of

the case, be avoided.

U&amp;gt;

174. ABSOLUTE MODULES OF SAFETY. In former times,

one of the principal elements which was used for securing

safety in a structure, was to assume some arbitrary value for

the resistance of the material, such value being so small that
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the material could, in the opinion of the engineer, safely sus

tain it. This is a convenient mode, but very nnphiloBOphical,

although still extensively used. The plan was to determine, as

nearly as possible, what good materials would sustain for a long

period, and use that value for all similar materials. But it is evi

dent, from what has been said in the preceding pages, that some
materials will sustain a much larger load than the average,
while others will not sustain nearly so much as the average.
In all such cases the proper value of the modulas can only be

determined by direct experiment. In all important structures

the strength of the material, especially iron and steel, should be

determined by direct experiment.
The following values are generally assumed for the modulas

of safety.
Pounds per square inch.

Wrought, iron for tension or compression, from 10,000 to 12.000

Cast iron, for tension, from 3,000 to 4,000
Cast iron, for compression, from 15,000 to 20,000

Wood, tension or compression, from 850 to 1 ,200

f granite, from 400 to 1,200

) quartz, from 1,200 to 2,000
Stone, compression

j
8

4

andstonei from 300 to 600

[limestone, from 800 to 1,200

The practice of French engineers,* in the construction of

bridges, is to allow 3.8 tons (gross) per inch upon the gross sec

tion, both for tension and compression of wrought iron.

The Commissioners on Railroad Structures, England, estab

lished the rule that the maximum tensile strain upon any part
of a wrought iron bridge should not exceed five tons (gross)

per square inch, f
In most cases the effective section is the section which is sub

jected to the strain considered.

1 75. FACTOR OF SAFETY. The next mode, and one which

is also largely in use, is to take a fractional part of the ultimate

strength of the material, for the limit of safety. The recipro
cal of this fraction is called thefactor ofsafety. It is the ratio of

the ultimate strength to the computed strain, and hence is the

* Am. R. R. Times, 1871, p. 6.

f Civ. Eng. and Arch. Jour. Vol. xxiv., p. 327.
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factor by which the computed strain must be multiplied to

equal the actual strength of the material, or of the structure.

Experiments and theory combine to teach that the factor of

safety should not be taken as small as 2. See articles 19, 166,

167, and 168.

Beyond this the factor is somewhat arbitrarily assumed, de

pending upon the ideas of the engineer. For instance, the fol

lowing values were given to the -Commissioners on Railway
Structures, in England.*

Factors.

Messrs. May and Grissel ...... ......................... 3

Mr. Brunell ....................................... 3 to 5

Messrs. Rasbrick, Barlow and others ...................... 6

Mr. Ilawkshaw ........................................ 7

Mr. Glyn ........................................... 10

The following values are also given by others :

Factors.

Bow, for wrought-iron beams .......................... 3.5

Weisbach, for wrought iron f ........................ 3 to 4

Vicat, for wire suspension bridges .............. more than 4

Eankine, for wire bridges
steady fT ..............

f
to 4

movin load ............... 6 to 8

Fink, iron - truss bridges j

*or Poste and ^f8 ........ 5 to

( for cast-iron chords ............. 7

Fairbairn, for cast iron beams ^ ...................... 5 to 6

C. Shaler Smith, compression of cast iron ................. 5

Rankine and others, for cast-iron beams ............... 4 to 6

Mr. Clark in Quincy Bridge, lower chord .............. 6 to 7

Washington A. Roebling, for suspension cables ............. 6

Morin, Yicat, Weisbach, Rondelet, Navier, Barlow, and

many others say that for a wooden frame it should not

be less than ......................................... 10

For stone, for compression ................ . ....... 10 to 15

From the experiments which are recorded in Article 170,

Fairbairn deduced the following conclusions in regard to beams

* Civ. Eng. and Arch. Jour.
,
Vol. xxiv, p. 327.

f Weisbach, Mech. and Eng. Vol. 1, p. 201.

J Fairbairn, Cast and Wrought Iron, p. 58.
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and girders, whether plain or tubular. * &quot; The weight of the

girder and its platform should not in any case exceed one-fourth

the breaking weight, and that only one-sixth of the remaining
three-fourths of the strength should be used by the moving load.&quot;

According to this statement the maximum load, including the

live and dead load, may equal, but should not exceed,

i + i of f == I

of the breaking 1&amp;lt; &amp;gt;ad. Hence the factor of safety must not be less

than 2.C6 when the above conditions are fulfilled. This value

is, however, evidently smaller than is thought advisable by most

engineers.
The rule adopted by the Board of Trade, England, for rail

road bridges is f
u to estimate the strain produced by the greatest

weight which can possibly come upon abridge throughout every

part of the structure which should not exceed one-fifth the ulti

mate strength of tlie metal? They also observed that ordinary
road bridges should be proportionately stronger than ordinary
railroad bridges.

176. RATIONAL, L.IMIT OF SAFETY. It is evident that

materials may be strained any amount within the elastic limit.

Their recuperative power if such a term may properly be

used in connection with materials lies in their elasticity. If that

is damaged the life of the material is damaged, and its powers
of resistance &quot;are weakened. As we have seen in the preceding

pages, there is no known relation between the coefficient of elas

ticity, and the ultimate strength of materials. The coefficient of

elasticity may be high and the modulus of strength comparatively
low. In other words, the limit of elasticity of some metals may
be passed by a strain of less than one-third their ultimate

strength, while in others it may exceed one-half their ultimate

strength. We see, then, the unphilosophical mode of fixing an

arbitrary modulus of safety, or even a factor of safety, when

they are made in reference to the ultimate strength. But an

examination of the results of experiments shows that the limit

of elasticity is rarely passed for strains which are less than one-

third of the ultimate strength of the metal, and hence, according

* Civ. Eng. and Arch. Jour., Vol. xxiv., p. 329.

f Civ. Eng. and Arch. Jour., Vol. xxiv., p. 226.
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to the views of the engineers given in the preceding article,

the factor of safety is generally safe. But if the limit of elas

ticity were definitely known it is quite possible that a smaller

factor of safety might sometimes be used.*

This method of determining the limit has been recognized by
some writers, and the propriety of it has been admitted by many
practical men, but the difficulty of determining the elastic limit

has generally precluded its use. The experiments which are

necessary for determining it are necessarily more delicate than

those for determining the ultimate strength.
There is also a slight theoretical objection to its use. The

limit of elasticity is not a definite quantity, for it is not pos
sible to determine the exact point where the material is over

strained. But this is not a fatal objection, for the limit can be

determined within small limits.

In regard to the margin that should be left for safety, much

depends upon the character of the loading. If the load is

simply a dead weight, the margin may be comparatively small
;

but if the structure is to be subjected to percussive forces or

shocks, it is evident, as indicated in articles 19 and 171, that

the margin should be comparatively large, not only on account

of the indeterminate effect of the force, but also on account of

the effect of such a force upon the resisting powers of the

material. In the case of railroad bridges, for instance, the

vertical posts or ties, as the case may be, are generally subjected
to more sudden strains due to a passing load, than the upper
and lower chords, and hence should be relatively stronger.

The same remark applies to the inclined ties and braces which

form the trussing; and to any parts which are subjected to

severe local strains.

The frames of certain machines, and parts of the same

machines, are subjected to a constant jar while in use, in which

cases it is very difficult to determine the proper margin which

is consistent with economy and safety. Indeed, in such cases,

economy as well as safety generally consists in making them

* James B. Eads, in his Report upon the Illinois and St. Louis Bridge, for

1871, states that he tested samples of steel which were to be used in that

structure, which showed limits of elastic reaction of 70,000 to 93,000 pounds

per square inch.
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excessively strong, as a single breakage might cost much more
than the extra material necessary to fully insure safety.

The mechanical execution of a structure should be taken

into consideration in determining the proper value of the mar

gin of safety. If the joints are imperfectly made, excessive

strains may fall upon certain points, and to insure safety, the

margin should be larger. No workmanship is perfect, but the

elasticity of materials is favorable to such imperfections as

necessarily exist
; for, when only a portion of the surface which

is intended to resist a strain, is brought into action, that por
tion is extended or compressed, as the case may be, and thus

brings into action a still larger surface. But workmanship
which is so badly executed as to be considered imperfect
would fail before all its parts could be brought into bearing.

17O. EXAMPLES OF STRAINS THAT HAVE BEEN USED
IN PRACTICAL CASES. The margin of safety that has been

used in various structures may or may not serve as guides
in designing new structures. If the margin for safety is so

small that the structure appeal s to be insecure and gives indi

cations of failure, it evidently should not be followed. It

serves as a warning rather than as a guide. If the margin
is evidently excessively large, demanding several times the

amount of material that is necessary for stability, it is not a

guide. Any engineer or mechanic, without regard to scientific

skill or economy in the use of materials, may err in this direc

tion to any extent. But if the margin appears reasonably safe,

and the structure has remained stable for a long time, it serves

as a valuable guide, and one which may safely be followed

under similar circumstances. Structures of this kind are

practical cases of the approximate values of the inferior limits

of the factors of safety. The following are some practical

examples :
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IRON TRUSSED BRIDGES.

NAME OF THE BKIDGE.
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CAST-IRON ARCHES/

NAME OF THE ARCH.
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SUSPENSION BRIDGES.

NAME OF THE BBIDGE.
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STO1TE FOUNDATIONS.
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to bring into action the other members which at first were

more lightly strained. In this way there is a tendency to bring
about an equilibrium of strains on all those parts which were

calculated to carry equal amounts.

According to the *
principles which have been discussed

in the preceding pages, it is evidently better for the struc

ture, and should be more satisfactory, to apply a moderate

proof load for a long time than an excessive one for a short

time.





APPENDIX I.

PRESERVATION OF TIMBER.

(The Graduating Thesis of Mr. H. W. Lewis, of the class of 18G6, and more

recently engineer on the Missouri Valley Railroad, forms the basis of this

article. I have added to it such new matter as I find in the Graduating Thesis

of Mr. A. B. Raymond, of the class of 1871. AuTiioil.)

1. THE IMPORTANCE OF THIS SUIJJECT maybe shown by many familiar

examples in practical life.

Although iron is coming more and more extensively into use, yet the amount
of wood which is used at the present time in mechanical structures, and which

will, in the nature of things, be used for a long time to come, is enormous.

For instance: in 1885 there was sold in Chicago alone 900,000,000 pieces of

lath, 2,000,000,000 of shingles, and 5,000,000,000 feet of lumber.*

In the matter of railroad ties alone, any process which could be easily and

cheaply applied, which would double their life, would literally save millions to

the country. This may be shown by an approximate calculation, thus : Al

lowing only 2,000 sleepers to the mile, at a cost of fifty cents each, and admit

ting that the average life of American sleepers is only seven years, f and that

it costs ten cents to treat each tie in some way so as to make it last fourteen

years, then the saving at the end of seven years is $(500 per mile. For ten

cents at compound interest at ten per cent, for seven years amounts to twenty

cents, which from fifty cents leaves thirty cents as the net saving on one
;
and

on 2,000 it amounts to $600.

There are in the United States about 45,000 miles of railroad
;
and hence,

if the above conditions could be realized of all of them, the annual saving

would be about $3,400,000 ! Other uses of timber would show a correspond

ing saving.

2. CLASSIFICATION OF CONDITIONS. Timber may be subjected to the

following conditions :

It may be kept constantly dry ; at least, practically.

It may be constantly wet in fresh water.

It may be constantly damp.
It may be alternately wet and dry.

It may be constantly wet in sea water.

3. TOIBER KEPT CONSTANTLY DRY will last for centuries. The roof

of Westminster Hall is more than 450 years old. In Stirling Castle are carv

ings in oak, well preserved, over 300 years old
;
and the trusses of the roof of

* Hunt s Merchants 1

Magazine.

t New American Cyclopedia, vol. xiii., p. 734.
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the Basilica of St. Paul, Rome, were sound and good after 1,000 years of

service.* The timber dome of St. Mark, at Venice, was in good condition

850 years after it was built, f

Artificial preservatives seem to be unnecessary under this condition.

4. TIMBER KEPT CONSTANTLY WET IN FUESH WATER, under such

conditions as to exclude the air, is also very durable. The pillars upon which

dwellings of the Canaries rest were put in their present place in 1402, and

they remain sound to the present time.:}: The utensils of the lake dwellings
of Switzerland are supposed to be at least 2,000 years old.g
The piles of the old London Bridge were sound 800 years after they were

driven. The piles of bridge built by Trajan, after having been driven more
than 1,000 years, were found to be petrified four inches, the rest of the wood

being in its ordinary condition.

Beneath the foundation of Savoy Place, London, oak, elm, beech, and
chestnut piles and planks were found in a perfect state of preservation after

having been there 050 years.

While removing the old walls of Tunbridge Castle, Kent, there was found,
in the middle of a thick stone wall, a timber curb which had been enclosed

for 700 years.

It is doubtful if artificial preparations would have prolonged the life of the

timber in these cases.

5. TI3IBEU IN DAMP SITUATIONS. Timber, in its native state, under

these circumstances, is liable to decay rapidly from the disease called
&quot;dry

rot.&quot; In dry rot the germs of the fungi are easily carried in all directions in

a structure where it has made its appearance, without actual contact between

the sound and decayed wood being necessary ;
whereas the communication of

the disease resulting from wet rot takes place only by actual contact. The

fungus is not the cause of the decay, but only converts corrupt matter into

new forms of life.
|

There are three conditions which are at our command for prolonging the life

of timber in damp situations :

1st. Thoroughly season it;

2d. Keep a constant circulation of air about it
;
and

3d. Cover it with paint, varnish, or pitch.

The first condition is essential, and may be combined with either or both of

the others.

By seasoning we do not mean simply drying so as to expel the water of the

sap, but also a removal or change of the albuminous substances. These are

fermentable substances, and when both are present they are ever ready, under

suitable circumstances, to promote decay. The cellulose matter of the woody
fibre is very durable when not acted upon by fermentation, and it is this that

we desire especially to protect.

* The London Bulkier, vol. iL, p. filfi.

t Modern Carpentry, Silloway, p. 40.

$ Journal oft/ie Frank. Iwt., 1870.

Moilern Carpentry, Silloway, p. 39.

|

&quot; There is no reason to believe that funpri can make use of organic compounds in any other than

a etate of decomjKwition.&quot; Cari&amp;gt;enter 8 Comp. Physiology, p. 1G5. (See also EncyclopoKdia Lri-

t* i H irii on this subject.)
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Unseasoned timber which is surrounded by a dead air decays very rapidly.
The timber of many modern constructions is translated from the forests and
enclosed in a finished building in a few weeks, and unless it is subject to a free

circulation of air it inevitably decays rapidly.
*

Thorough ventilation is indispensable to the preservation of even well-sea

soned naked wood in damp localities. The rapid decomposition of sills, sleep

ers, and lower floors is not surprising where neither wall-gratings nor venti

lating flues carry off the moisture rising from the earth, or foul gases evolved

in the decay of the surface mould. In the close air of cellars, and beneath

buildings, the experiments of Pasteur detected the largest percentage of

fungi spores. Remove the earth to the foot of the foundation, and fill in the

cavity with dry sand, plaster-rubbish, etc., or lay down a thick stratum of

cement to exclude the water, and provide for a complete circulation of air,

and lower floors will last nearly as long as upper ones.f
A covering of paint, pitch, varnish, or other impervious substance upon un-

dried timber is very detrimental, for by it all the elements of decay are re

tained and compelled to do their destroying work. The folly of oiling, paint

ing, or charring the surface of unseasoned wood is therefore evident. Owing
to this blunder alone, it is no unusual thing to find the painted wood-work of

older buildings completely rotted away, while the contiguous naked parts are

perfectly sound.

While an external application of coal tar promotes the preservation of dry

timber, nothing can more rapidly hasten decay than such a coating upon the

surface of green wood. But this mistake is often made, and dry rot does the

work of destruction. \ Carbonizing the surface also increases the durability of

dry, but promotes the decay of wet timber. Farmers very often resort to

one of the latter methods for the preservation of their fence-posts. Unless

they discriminate between green and seasoned timber, these operations will

prove injurious instead of beneficial.

There are numerous methods for promoting the process of seasoning.

Some have in view simply drying, a process which is important in itself, but

which will not in itself prevent decay in damp situations unless the moisture

be permanently excluded. Some dry with hot air, and some with steam. In

the latter case, if the steam be superheated the process is very rapid, but it

seems to damage the life of the timber.

Others have in view the expulsion of the albuminous substance. Water-soak

ing the logs and afterwards drying the lumber, seems to be a cheap and quite

effectual mode. But there are many patented processes for securing this end,

or for changing the albuminous substances
;
and in many cases the latter end

is not only secured, but the salts which are used act directly upon the cellulose

and lignite of the wood, thereby greatly promoting its durability.

* For an account of the rapid destruction of the floors and joists of the Church of the Holy

Trinity, Cork, Ireland, by dry rot, see Civil Engineer s Journal, vol. xii., p. 303. For an ac

count of the decay of floors, studs, &c., in a dwelling, see the London Builder, vol. vi., p. 34.

&quot;In some of the mines in France the props seldom last more than fifteen months. &quot; Annalea

des Mines.

t The Builder, vol. xi., page 46.

J According to Col. Berrien, the Michigan Central Eailroad bridge, at Niles, was painted,

before seasoning, with &quot;Ohio fire-proof paint,&quot; forming a glazed surface. About five years after,

it was so badly dry-rotted as to require rebuilding.
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The following are the principal processes which have been used : Mr. P.

W. Barlow s patent* provided for exhausting the air from one end of the log,

while one or more atmospheres press upon the other end. This artificial

aerial circulation through the wood is prolonged at pleasure. However excel

lent in theory, this process is not practicable.

By another method, the smoke and hot gases of a coal fire are conveyed

among the lumber, placed in a strong draft. Some writers recommend the re

moval of the bark one season before felling the tree. All good authorities

agree that the cutting should take place in the winter season. \

Kyan s process, which consists in the use of corrosive sublimate, was pat
ented in 1833. His specific solution:}: was one pound of chloride of mercury
to four gallons of water. Long immersion in the liquid in open vats, or great

pressure upon both solution and wood, in large wrought-iron tanks, is neces

sary for the complete injection of the liquid. The durability of well kyanized
timber has been proved, but the expensiveness of the operation will long for

bid its extensive adoption.
For &quot;

Burnettizing,&quot; ^ a solution of chloride of zinc one pound of salt to

ten gallons of water is forced into the wood under a pressure of 150 Ibs. per

square inch.

Boucherie employs a solution
||
of sulphate of copper one pound to water

twelve and a hilf gallons, or pyrolignite of iron one gallon to six gallons of water.

He enclosed one end of the green stick in a close-fitting collar, to which is at

tached an impervious bag communicating through a flexible tube with an
elevated reservoir containing the salt liquid. Hydrostatic pressure soon expels
the sap at the opposite end of the log. When the solution makes its appear
ance also the process is completed.
He finds the fluid will pass along the grain, a distance of 12 feet, under a

lower pressure than is required to force it across the grain, three-fourths of an

inch. The operation is performed upon green timber with the greatest fa

cility.^

In 1846, eighty thousand sleepers of the most perishable woods, impregnated,

by Boucherie s process, with sulphate of copper, were laid down on French

railways. After nine years exposure, they were found as perfect as when laid.**

This experiment was so satisfactory that most of the railways of that empire
at once adopted the system. We would suggest washing out the sap with

water, which would not coagulate its albumen. The solution would appropri

ately follow.

Both of the last-named processes are comparatively cheap. The manufac

turing companies of Lowell. Massachusetts, have an establishment for &quot;Bur

nettizing&quot; timber, ff in which they prepare sticks fifty feet in length. Under

* Civ. Eng. Jour., vol. xix., p. 422.

t Experiments detailed in the Common show conclusively that winter-cut pine is stronger and
more durable than that cut at any other season of the year. .-!. f!c. Discovery for liSfil, p. 340.

&quot;Oak trees felled in the winter make the best timber.&quot; The JluiUler, 1859, page 138.

J Civ. Eng. Jour., vol. v., page 202.

Civ. Eng. Jour., vol. xiv., p. 471. Invented by Burnett in 1838.

I Civ. Eng. Jour., vol. xx., p. 405.

1 As a modification of this method he also cut a channel in the wood throughout the circumfer

ence of the tree, fitted a reservoir thereunto, and poured in the liquid. The vital forces speedily
disseminated tke solution throughout the tree.

** Jour, of the Frank. fnt., vol. xxxii., pp. 2, 3.

tt yew American Cyclopedia.
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a pressure of 125 pounds per square inch they inject from two to eight ounces

of the salt into each cubic foot of wood. The cost, in 1861, was from $5 to

$0 per 1,000 feet, board measure.* Boucherie s method must be still cheaper.
It costs less than creosoting by one shilling per sleeper, f

An American engineer, Mr. Hewson, for injecting railroad sleepers, proposes
a vat deep enough for the timbers to stand in upright. The pressure of the

surrounding solution upon the Idwer ends of the sticks will, he thinks, force

the air out at their upper extremities, kept just above the surface of the

solution, after which the latter will rise and impregnate the wood. In 1859

he estimated chloride of zinc at 9 cents per pound, sulphate of copper at 14

cents per pound, and pyrolignite of iron at 23 cents per gallon. He found the

cost of impregnating a railway tie with sufficient of those salts to prevent

decay, to be : for the chloride of zinc 2 8 cents, for blue vitriol o 24 cents, for

pyrolignite of iron 7 5 cents.:}:

By Earle s process the timber is boiled in a solution of one part of sulphate
of copper, three parts of the sulphate of iron, and one gallon of water to

every pound of the salts. A hole was bored the whole length of the piece

before it was boiled. It was boiled from two to four hours, and allowed to cool

in the mixture.

Ringold and Earle invented the following process : A hole was made the

whole length of the piece, from one-half to two inches in diameter, and boiled

from two to four hours in lime-water. After the piece was dried the hole was

filled with lime and coal tar. Neither of these methods was very successful.

A Mr. Darwin suggests that the piece be soaked in lime-water, and after

wards in sulphuric acid, so as to form gypsum in the pores.

BethelFs process consists in forcing dead oil into the timber. This is called

creosoting. He inclosed the timber and dead oil in huge iron tanks, and sub

jected them to a pressure varying between 100 and 200 pounds per square

inch, at a temperature of 120 F. about twelve hours. From eight to twelve

pounds of oil are thus injected into each cubic foot of wood. Lumber thus-

prepared is not affected by exposure to air and water, and requires no painting. |[

A large number of English railway companies have already adopted the

system.^&quot; Eight pounds of oil per cubic foot is sufficient for railway sleepers.**

One writer has said that if creosote has ever failed to prevent decay, it has

been because of an improper treatment, or because the oil was deficient in car

bolic acid.

Sir Robert Smirke was one of the first architects to use this process, and

when examined before a Committee on Timber, stated that this process does not

* The Philadelphia, Wilmington and Baltimore Railroad Company have used the process since

I860 with complete success. The Union Pacific Railroad Company have recently erected a large

building for this purpose. Their cylinder is 75 feet long, (51 inches in diameter, and capable of

holding 250 tics. They
&quot;

Burnettize&quot; two batches per day. Report on Pacific Railroad, by Col.

Simpson, 1865.

t Jour. Frank Inst., vol. xxxii., pp. 2, 3.

J Ibid., vol. xxvii., p. 8.

&quot; Creosote from coal undoubtedly contains two homologous bodies, CisHoOa and CuIIsOa,

the first being carbolic and the second crysilic acid.&quot; Ure s Diet, of Arts, Manu., and Mines, vol.

ii., p. 623.

B Ure s Diet, of Manu. and Mines.

^ The Great Western, North-Eastern, Bristol and Exeter, Stockton and Darlington, Manchester

and Birmingham, aad London and Birmingham. Ure s Diet, of Manu. and Mines.

** Jour. Frank. Inst., vol. xliv., p. 275.
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diminish the strength of the material which is operated upon. He afterwards

said,
&quot;

I cannot rot creosoted timber, and I have put it to the severest test I

could apply.&quot;

The odor of creosote makes it objectionable for residences and public

buildings.

Mr. S. Beer, of New York City, invented a mode of preserving timber by
boiling

1

it in borax with water. But this process has been objected to on the

ground that it is not a good protection against moisture.

Common salt is known to be a good preservative in many cases. According
to Mr. Bates s opinion,* it answers a good purpose in many cases if the pieces

to which it is exposed are not too large.

6. TIMBER AI/TEKNATELY WET AND DRY.-The surface of all timber

exposed to alternations of wetness and dryness, gradually wastes away, be

coming dark-colored or black. This is really a slow combustion, but is com

monly called wet rot, or simply rot. Other conditions being the same, the

most dense and resinous woods longest resist decomposition. Hence the su

perior durability of the heart-wood, in which the pores have been partly filled

with lignine, over the open sap-wood, and of dense oak and lignurn-vitas

over light poplar and willow. Hence, too, the longer preservation of the

pitch-pine and resinous u
jarrah

&quot;

of the East, as compared with non-resinous

beech and ash.

Density and resinousness exclude water. Therefore our preservatives

should increase those qualities in the timber. Fixed oils fill up the pores and

increase the density. Staves from oil-barrels and timbers from whaling ships

are very durable. The essential oils resinify, and furnish an impermeable coat

ing. But pitch or dead oil possesses advantages over all known substances for

the protection of wood against changes of humidity. According to Professor

Letheby,f dead oil, 1st, coagulates albuminous substances
; 2d, absorbs and

appropriates the oxygen in the pores, and so protects from eremacausis
; 3d,

resinifies in the pores of the wood, and thus shuts out both air and moisture
;

and 4th, acts as a poison to lower forms of animal and vegetable life, and so pro

tects the wood from all parasites. All these properties specially fit it for im

pregnating timber exposed to alternations of wet and dry states, as, indeed,

some of them do, for situations damp and situations constantly wet. Dead oil

is distilled from coal-tar, of which it contains about .30, and boils between

390 and 470 Fahr. Its antiseptic quality resides in the creosote it contains.

One of the components of the latter, carbolic acid (phenic acid, phenol),

CiaHnO..., the most powerful antiseptic known, is able at once to arrest the de

cay of every kind of organic matter.^ Prof. Letheby estimates this acid at

* Report of the Commissioner of Agriculture. t Civ. Eng. Jour., vol. xxiii., p. 216.

&quot;

I have ascertained that adding one part of the carbolic acid to five thousand parts of a strong

solution of glue will keep it perfectly sweet for at least two years Hides and

skins, immersed in a solution of one part of carbolic acid to fifty parts of water, for twenty-four

hours, dry in air and remain quite sweet Prof. Grace Calvert, Ann. Sc. /Hscor., 1865, p. 55.

&quot;Carbolic acid is sufficiently soluble in water for the solution to possess the power of arresting

or preventing sjwntaneous fermentation. Saturated solutions act on animals and plants as a viru

lent poison, though containing only five per cent, of the acid.
1

Civ. Eng. Jour., vol. xxii., p. 216.
&quot; Parasites and other worms are instantly killed by a solution containing only one-half per cent.

of acid, or by exposure to the air containing a email portion of the acid By
examining the action on a leaf, we find the albumen is coagulated. All animals with a naked skin,

and those that live in water, die sooner than those that live in air and have a solid envelope.&quot;

Dr. I. Lemaire, Ann. Sc. Discov., 1855, p. 238.
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to 6 per cent, of the oil. Chrysilic acid CM H,,O,., the homologue of carbolic

acid, and the other component of creosote, is not known to possess preservative

properties.

Creosoting, or Bethell s process, is the most valuable of all the well-tried pro
cesses in this case. For railway sleepers eight pounds of oil per cubic foot of

timber is sufficient.
* If the timber is dry, a coating of coal-tar, paint, or resin

ous substance, is valuable.

A Mr. Heinmann, of New York City, proposes the following process, which

appears to be very promising :

The sap is first expelled and then the timber is injected with common rosin.

The latter is introduced while in a liquid state, under high pressure, while in

vessels especially constructed for the purpose.
In an experiment made by Prof. Ogden, one cubic foot of green wood ab

sorbed 8.90 pounds of rosin, while a cubic foot of well-seasoned wood absorbed

only 2.06 pounds. The strength of the timber was increased by this process,
as is shown by the following experiment :

Woo]



238 APPENDIX.

surface of the mud to eight feet above low-watermark, spring- tide; and out of

38 fir-timber piles and various oak-timber piles, not one remained perfect after

being up only three years.&quot; Specimens of wood, taken from a vessel that

had made a voj-age to Africa, are in the museum, and show how this rapid de

struction is effected.
&quot; None of our native timbers are exempt from these inroads. Robert Stephen-

son, at Bell Rock, between 1814 and 1843, f found that green heart oak, beef-

wood, and bullet-tree were not perforated, and teak but slightly so. Later

experiments show that the u
jarrah

&quot; of the East, also, is not attacked. \ The

cost of these woods obliges us to resort to artificial protection.
4 The teredo never perforates below the surface of the sea-bottom, and proba

bly does little injury above low-water mark. Its minute orifice, bored across

the grain of the timber, enlarges inwards to the size of the finger, and soon be

comes parallel to the fibre. The smooth circular perforation is lined through

out with a thin shell, which is sometimes the only material separating the ad

jacent cells. The borings undoubtedly constitute the animal s food, portions

of woody fibre having been found in its body. While upon the surface only
the projecting siphuncles indicate the presence of the teredo, the wood within

may be absolutely honey-combed with tubes from one to four inches in

length.

It was naturally supposed that poisoning the timber would poison or drive

away the teredo, but Kyan s, and all other processes employing solutions of

the salts of metals of alkaline earths, signally failed. This, however, is not

surprising. The constant motion of sea-water soon dilutes and washes away
the small quantity of soluble poison with which the wood has been injected.

If any albuminate of a metallic base still remains in the wood, the poisonous

properties of the injection have been destroyed by the combination. More

over, the lower vertebrates are unaffected by poisons which kill the mammals.

Indeed, it is now known that certain of the lower forms of animal life live and

even fatten on such deadly agents as arsenic.
|

&quot;

Coatings of paint or pitch are too rapidly worn away by marine action to be

of much use, but timber, thoroughly creosoted with ten pounds of dead oil

per cubic foot, is perfectly protected against teredo navalis. All recent au

thorities agree upon this point. In one instance, well authenticated, the mol-

lusk reached the impregnated heart-wood by a hole carelessly made through the

injected exterior. The animal pierced the heart-wood in several directions,

but turned aside from the creosoted zone. *[[ The process and cost of creo-

soting&quot; have already been discussed.&quot;

A second destroyer of submarine wooden constructions is limnoria terebrans,

(or L. perforata, Leach) a mollusk of the family Assellotes, Leach, resembling
the sow-bug. It pierces the .hardest woods with cylindrical, perfectly smooth,

winding holes, -^th to -j^-.th of an inch in diameter, and about two inches deep.**

From ligneous matter having been found in its viscera, some have concluded

that the limnora feeds on the wood, but since other mollusks of the same ge-

* Civ. Eng, Jour., vol. xii., p. 382.

t The Builder for 18(52, p. 511.

Civ. Eng. Jour., vol. xx., p. 17.

$ C/r/ Eng. Jour., vol. xii., p. 382. Also Diet, Univ. cfHist. Xatur. tome xii.

j British and Foreign Medical Kevitio.

^ Cic. Eng, Jour., vol. xii., p, 191.
** Diet. Univ. tfllixt. Xatur.
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mis, Pholas, bore and destroy stone-work, the perforation may serve only for

the animal s dwelling. The lumnoria seems to prefer tender woods, but the
hardest do not escape. Green-heart oak is the only known wood which is not

speedily destroyed.* At the harbor of Lowestoft, England, square fourteen-

inch piles were, in three years, eaten down to four inches square, f
While all agree that no preparation, if we except dead oil, has repelled the

limnoria, an eminent engineer has cited three cases in which that agent afford

ed no protection.^:

We do not find that timber impregnated with water-glass has been tested

against this subtle foe. The experiment is certainly worthy of a trial.

A mechanical protection is found in thickly studding the surface of the tim
ber with broad-headed iron nails. This method has proved successful. Oxy-
dation rapidly fills the interstices between the heads, and the outside of the

timber becomes coated with an impenetrable crust, so that the presence of the

nails is hardly uecessaiy.

In conclusion, we cannot but express surprise that so little is known in this

country concerning preservative processes. Their employment seems to excite

very little interest, and the very few works where they are being tested at

tract hardly any attention. Those railroads which have suspended their use

assign no reasons, and those upon which the timber is injected publish no re

ports concerning the advantages of their particular methods. Even the Na
tional Works, upon which Kyan s process was formerly employed, have laid it

aside, and now subject lumber to dampness and alternations of wetness and dry-

ness, without any preparation beyond seasoning. When sleepers cost fifty

cents and creosoting thirty cents each, it is cheaper to hire money at seven per
cent.

, compound interest, than to lay new sleepers at the end of seven years.

Allowing any ordinary price for the removal of the old and laying down the

new ties, the advantage of using Bethell s process seems evident. If some

cheaper method will produce the same effects, the folly of neglecting all means
which aim at increasing the durability of the material is still more palpable.

* Civ.
En&amp;lt;j&amp;lt;

Jour.
, vol. xxv., p. 206,

t Ibid., vol. xvi., p. 7(i.

t Ibid., vol. xxv., p. 206.
_
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8. THE FOl/l.OWINC; is A S1TM.1IAKY of the different processes that have

been invented from time to time, with the names of their inventors :

Numcs of Inventors. Chemicals Used. Manner of using them.

Bethell . .

Kyan
Margery .

Burnett . .

Ransome .

LeGras...

Margary. .

Payne . . .

Bouchere. .

Gemini. . . .

Heinmann. ,

Earle

Ringold . . .

Tregold
S. Beer. .

Creosote, or pitch-oil
iChloride of mercury
Sulphate of copper
Chloride of zinc

;Liquid silicate of pota-ssa

Manganese, lime, and creosote . .

[Solution of acetate of copper. . .

Sulphate of iron, carbonate of )

soda f

Pyrolignate of iron, sulphate {

of copper (

.JTar

By injection.

j

Rosin, or colophony.
! Sulphate of copper. .

Lime
i Sulphate of iron

.! Borax. .

Dorset and Blythe

Huting and
j

Boutigny {

Vernet. .,

Same as Bouchere.

Oil of schist, tar, pitch, and )

shellac
\

Arsenic
Salt . .

boiling.

By means of a vacuum and

injection.

By immersion, and by fire

or burning.
By saturation.

External application.
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TABLE

Of the Mechanical Properties of the Materials of Construction.

NOTE. The capitals affixed to the numbers in this table refer to the following authorities :

B. Barlow. Report of the Commissioners of I

the Navy, etc.

Be. Bevan.
Bn. Buchanan.
Br. Belidor, Arch. Hyclr.
Bru. Brunei.
C. Couch. .

01. Clark.
D. Darcel, Annales for 1858.
D. W. Daniell and Wheatstone. Report on

the stone for the Houses of Parliament.
E. Eads.
F. Fairbairn.
G. Grant.
H. Hodgkinson. Report to the British Asso

ciation of Science, etc.

Ha. Haswell. Eng. and Mech. Pocket-Book,
1809.

J. Journal of Franklin Institute, vol. XIX.,
p. 451.

K. Kirwan.

Ki. Kirkeldy.
La. Lame.
M. Mischembroeck. Introd. ad. Phil. Nat. I.
Ma. Mallet.
Mi. Mitis.

Mt. Mushet.
Pa. Colonel Pasley.
R. Roudelet. L Art de Batir, IV.
Ro. Roebling.
Re. Reunie. Phila. Trans., etc.
S. Styffe. On Iron and Steel.
T. Thompson.
Te. Telford.
Tr. Tredgold. Essay on the Strength of Cast

Iron.

W. Watson.
Wa. Major Wade.
Wn. Wilkinson.

* Calculated from the experiments of Fair-
bairn and Hodgkinson.
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ERRATA.

Page 14, line 9, for P = 13, 934,000y
=

2,907,432,000^,
read,

P =
13,934,000y

-
2,907,432,000^

&quot;

22,
&quot;

5, for cFt, read, dt-.

&quot; &quot;

&quot;at the middle of the page, for Resiliance of Prisms, read, Kesi-

fance of Prisms.

&quot; &quot; 10 from the bottom, for -
&amp;gt;

A2
, read, -y-A

2
.

6 6

26,
&quot;

3, for exponetials, read, exponentials.

36,
&quot;

10, for rods or rivet iron, read, rods of rivet iron.

53, &quot;2,
for No. 1, read, No. 2.

56,
&quot; 3 from the bottom, for

, read, y.

68,
&quot; at the bottom of the table, for Mean 6852, read, 685 2.

72,
&quot;

15, for equation (26), read, equation (24).

96,
&quot;

1, for 82, read, 6.
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