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Cover: A two-channel restoration of a simulated Planetary Camera image of a QSO with underlying

spiral galaxy; the QSO point source is located at the nucleus of the galaxy as is 100 times as bright

as the underlying peak brightness. Top left: test image, convolved with HST PSF and noise added.

Bottom left: true, noise free image of QSO and galaxy. Top right: result standard Richardson-Lucy

restoration. Bottom right: two-channel restoration. For details see Hook & Lucy, pp. 86-94.
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Preface

This volume contains the collected papers presented at the Second Workshop on the Restoration

of Images and Spectra from the Hubble Space Telescope, which was held at the Space Telescope

Science Institute, Baltimore, Maryland, on 18 and 19 November 1993. The Workshop was attended

by 126 registered participants. Fifty-five papers were presented in a combination of oral and poster

sessions.

The Workshop was sponsored by the Image Restoration Project of the Space Telescope Science

Institute. Although work on image restoration began soon after the spherical aberration problem of

the HST was discovered in the summer of 1990, a dedicated effort in the area of image restoration

did not get underway until the fall of 1992. Since that time, however, a small group led by Bob
Hanisch and Rick White has been doing research and implementing software aimed at improving

the quality of HST images. The members of this group included Ivo Busko, Jinger Mo, Nailong

Wu, and Nancy Hamilton. Collaborators in the project included Don Lindler, John Krist, and

Dave Baxter. Our work was also supported (through several small research contracts) by Aggelos

Katsaggelos, Bobby Hunt, David Redding, and their co-workers. The Project was run out of the

Advanced Systems Group of the Science Computing and Research Support Division of ST Scl.

The first workshop on HST image restoration (August 1990) presented a large variety of

algorithms and approaches, but relatively little had been done to adapt these approaches to the

peculiarities of HST images and spectra. The attitudes were both optimistic and, perhaps, a bit

naive. HST image restoration turned out to be extremely complicated, with both spatially and

temporally variable point spread functions and a variety of other instrumental effects that made high

quality restorations difficult. Over the past eighteen months we have learned how to deal with many

of these problems, and how to modify algorithms and generate better quality PSFs. Although HST
image restoration is far from the point where an arbitrary image can be tossed into a "black box"

deconvolution machine, good quality restoration can indeed be obtained in a large number of cases.

The papers in the current volume demonstrate this quite convincingly. Perhaps the most stringent

requirement on image restoration has been to retain photometric linearity. Through studies of the

convergence properties of algorithms such as the Richardson-Lucy method and various Maximum
Entropy approaches, we now have a good understanding of how to proceed with an image restoration

so that photometric integrity is maintained. Perhaps the most profound effect of the efforts on image

restoration has been to open up a new method of dealing with optical imaging data that had previously

been utilized only in a segment of the astronomical community (e.g., radio astronomy).

The wonderfully successful HST Servicing Mission in December 1993 has led to HST recov-

ering virtually all of its original design goals for optical performance. The first science images to be

returned to the ground are simply awesome. The improved optical performance of the telescope al-

lows HST to recapture the sensitivity that was irretrievably lost in the aberrated images and to tackle

the observational problems that require high dynamic range. It is our expectation, however, that

the algorithms and PSF modeling expertise we have developed to deal with pre-servicing mission

images will continue to be useful on WFPC-II and FOC+COSTAR data. It should be possible to

increase dynamic range in crowded fields, where the diffraction spikes of stars overlap to create an

apparent background haze, and allow studies of the galaxies underlying quasars that are otherwise

obstructed by features of the unaberrated PSF. In some cases super-resolution may be possible,

extending HST's capacity for seeing detail to beyond the diffraction limit.

With any printing process it is possible to lose some of the contrast and definition of gray-scale

figures. As there are many half-tones in this volume, and since subtle features may be lost in the

reproduction process, we wish to point out that the papers will be available via the Internet for the

indefinite future. The Proceedings is available via ST Scl's home page on the World-Wide Web
(URLhttp: //stsci . edu/ top. html) under the Documentation item. You may retrieve any

paper and its associated figures in PostScript. Not all authors were able to provide us with original

PostScript format figures, but we scanned the figures we were given to produce a totally digital

version of the Proceedings.
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Abstract. This paper analyzes the performance of two set theoretic-based iterative image

restoration algorithms for Hubble Space Telescope (HST) degraded images. The iterative

adaptive constrained least squares and frequency adaptive constrained least squares algo-

rithms are optimized here for HST data, and applied to several simulated and real degraded

HST images. Evaluations of both the flux linearity and resolution enhancement of these al-

gorithms are presented and compared to results obtained by the Richardson-Lucy algorithm

(Lucy 1974). These results indicate that the iterative algorithms investigated here are quite

suitable for HST data, and provide excellent results in terms of all evaluation criteria tested.

1. Introduction

There have been a variety of techniques applied to the restoration of HST images over the last

several years (White 1991, Weir 1991). Most of these approaches have concentrated on algorithms

already developed and well accepted by those in the astronomical community. At the same time,

however, the signal and image processing community was developing a number of digital image

restoration techniques which were motivated largely by non-astronomical problems (Andrews and

Hunt 1977). For a recent review and classification of image restoration algorithms, see Katsaggelos

(1991). For the most part, the algorithms introduced by image processing scientists tend to be very

general and applicable to a variety of imaging problems. In examining the HST degraded images, it

is apparent that many of the image restoration techniques, and in particular the iterative techniques,

developed in the realm of signal and image processing would be well suited for application to this

special problem.

In this paper two iterative image restoration techniques are applied to the HST data restoration

problem. These are the generalized iterative adaptive algorithm (Kang and Katsaggelos 1993) and

the frequency domain iterative adaptive algorithm (Kang and Katsaggelos 1992). Both are based

on a set-theoretic approach to image restoration. The critical factor in choosing these algorithms

is that, unlike many regularized restoration techniques, these algorithms need no prior information

about the signal and no knowledge of the noise variances present. These are also relatively fast

algorithms, and have been developed with convergence speed as a consideration. The generalized

iterative adaptive algorithm allows for spatial adaptivity and is applicable to the case of spatially

variant degradation.

The performance of these algorithms is very good with the HST data that we have tested. The
criteria which are most important to the astronomical community have been utilized in compiling

the results here. It can be seen from these results that there is much potential for use of these

iterative constrained least squares algorithms from the viewpoint of not only quality of results, but

also convergence speed. In the next section, we describe the fundamentals of set theoretic image

restoration, and describe the iterative techniques that we have developed through this approach.
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2. Iterative Image Restoration

For the algorithms discussed here, the restoration approaches have been formulated to handle the

problem of an image degraded by a spatially invariant or spatially variant blur operator with additive

Gaussian noise. This description represents the degradation present in the HST WFPC images. The
image degradation process can be modeled according to

y = Dx + n
, (1)

where a lexicographical ordering of the observed digital image, y, the original image, x, and the

additive noise, n, is used. D represents the degradation operator of the imaging system. The image

restoration problem calls for obtaining an estimate of x given y, D, and some characterization of

the noise process, n.

Iterative approaches may be used to solve this inverse problem very effectively. The primary

advantages of iterative techniques are (Schafer et al. 1981, Katsaggelos 1989): (i) there is no need

to explicitly implement the inverse of an operator; (ii) knowledge about the solution may be directly

incorporated into the restoration process; (iii) the process may be monitored as it progresses; (iv)

the effect of noise may be controlled with certain constraints; and (v) parameters determining the

solution can be updated as the iteration progresses.

The iterative techniques applied here to HST data are developed through a set theoretic ap-

proach. In this approach, prior constraints on the solution are imposed by (Katsaggelos et al. 1985,

Katsaggelos 1989, Katsaggelos et al. 1991)

Qx = {x
|

||Cz||
2 < E2

} , (2)

and

Q xly
= {x\\\y-Dx\\ 2 <e2

}, (3)

where the solution belongs to both ellipsoids described by Eqs. (2) and (3). In Eq. (2), the operator

C represents a highpass filter which bounds the high frequency energy of the restored image. If the

bounds e
2 and E2

are known, and the intersection ofQx and Qx
\y

is not empty, the solution may be

found by solving

(DTD + aCTC)x = DTy , (4)

where a, the regularization parameter, is equal to (e/E)2
, which controls the trade-off between

fidelity to the data, and smoothness of the solution.

2.1. Generalized Iteration Adaptive Algorithm

The first algorithm we tested for HST data was the generalized iterative adaptive algorithm which

simultaneously restores the image and determines a single regularization parameter based on the

restored image at each iteration. This algorithm does not depend on the initial conditions. In

other words, the smoothing functional to be minimized can be shown to have a unique minimizer.

An accurate estimate of the noise variance is also obtained at convergence. The approach we
have proposed (Kang and Katsaggelos 1993) extracts the properties of the original image from the

partially restored image at each iteration step.

In order to solve for an optimal restored image and regularization parameter at each iteration,

we use

M(a(x),x) = \\y
- Dx\\

2
A(x) + a{x)\\Cx\\

2
B{x) , (5)

as the functional to be minimized. The weighting matrices A(x) and B(x) are included to make the

restoration algorithm spatially adaptive. The necessary condition for a minimum is that the gradient

of M(a(x),x) with respect to x be equal to zero. This results in

[DT(A(x) + A(xf)D + aw(x)C
T(B(x) + B(x)T )C]x + \\Cx\\

2
B{x)Vxaw (x)

= DT
(A(x) + A(xf)y. (6)
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When the noise and the high pass filtered image are stationary, the weighting matrices A(x) and

B(x) become symmetric, and thus the equation can be rewritten as

[DTA(x)D + aw(x)C
TB(x)C]x + \\Cx\\

2

B{x)Vxaw (x) = DT A(x)y
, (7)

and it becomes

[DTA(x)D + aw (x)C
TB(x)C]x = DT A(x)y . (8)

since Vxaw (x) = with a proper choice of aw (x). When the noise and the high pass filtered

image are uncorrected with themselves, even though they are nonstationary, A{x) and B(x ) become

diagonal, and therefore we obtain the solution for Eq. (7). When the noise and the high pass filtered

image are white, then the weighting matrices become constant identity matrices multiplied by the

constant variances. The highly nonlinear term ||Cx||g, ^xaw (x) can be removed by the proper

choice of the regularization functional, based on the global convexity of the smoothing functional.

Since Eq. (8) is nonlinear, we can not solve for x in a direct way, but we can use an iterative

technique.

The regularization parameter is defined here as a function of the original image (but in practice

becomes a function of an estimate of the original image). The form of the smoothing functional to be

minimized is of great importance since it preserves convexity and exhibits only a global minimizer.

After investigating the desirable properties for the regularization functional to satisfy, the following

two forms have been shown to provide optimal solutions (Kang and Katsaggelos 1993)

12/ - Dx\\ 2

l/7.)-||Cx|||
(i)

*(')= /,/. uZ\* » ^

where 7i = l/(2||y||
2
), and

a(x) = 72||Cx||
2

S(r)
- 1 + ^(\- l2 \\Cx\\

2

B{x/ + 2l2 \\y-Dx\\iA{r) ^ (]0)

where 72 = 3/(4||y||
2

) controls convergence and convexity.

Given an optimal choice for a(x), we can solve Eq. (8) by the method of successive approx-

imations with (Schafer et al. 1981, Katsaggelos et al. 1985, Katsaggelos 1989, Katsaggelos et al.

1991):

xk+] = x k + [DTA(x)y-(DTA(x)D + a(x k )C
TB(x)C)x k ]

. (11)

Using either choice of regularization functional (Eq. (9) or Eq. (10)), the iterative algorithm does

not depend on the initial condition despite the nonlinearity of the iteration. This is due to the

convexity of the functional and the convergence criteria satisfied by the globally optimal iteration.

The algorithm is applicable to any type of degradation D and stabilizing matrix C (both of which

may be spatially varying). So, there is no requirement that D and C be block circulant matrices. It

is also important to note that no knowledge of the noise variance, or of the bound which determines

the ellipsoid that expresses the smoothness of the image, is assumed.

2.2. Frequency Domain Iterative Adaptive Algorithm

The second iterative algorithm examined here is a nonlinear frequency domain algorithm in which

the regularization parameter is frequency dependent, and updated at each iteration step. In this case,

the algorithm considers that D is a block circulant matrix representing a spatially invariant blur.

Also, the set-theoretic formulation is constructed in a weighted space, such that

Q T = {x\\\Cx\\
2

R <E 2

R }, (12)

and

Qx \y
= {x\\\y-Dx\\p<(p}

, (13)
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where P and R are both block circulant weighting matrices. These matrices are chosen to maximize

the speed of convergence at every frequency component, and to compensate for the near-singular

frequency components of the iteration. The solution which belongs to the intersection of the

ellipsoids given by Eqs. (12) and (13) is given by

(DTPTPD + XCTRTRC)x = DTPTPy . (14)

We define PTP = B, R = PQ and \QTQ = A. The block circulant matrix B is the spatial domain

representation of the relaxation parameter which will be called (3(1) in the frequency domain, and A
is the block circulant spatial domain representation of the regularization parameter which is shown

next in the frequency domain as ot k (l_). Again, successive approximation may be used to solve

Eq. (14). Since all of the matrices in this equation are block-circulant, the iteration may be written

in the discrete frequency domain as

Xo({) = /?(/)Z>*(Z)y(/)
,

(15)

Xk+l (L) = Xk (L) + /3(l) [D*m(Q - (\D(l_)\
2
+ ak (l_)\Ca)\

2)Xk a)] , (16)

where / represents a single 2-D frequency component. In this case,

m ^\Y(rn)-D(m)Xk(m)\
2

ak{J ~ ZJC(n)Xk(n)\2 + 6k (f)
" {U)

Here, the 6k(Q term we use is defined by

Ksed
a) = t

crv
(i) + 7(*r - «r"(0)

.

(is)

where < 7 < 1 , and

8f = 7V
2 max(|X,(/)|

2
|C({)|

2
)
-£ \C(m)Xk(m)\

2
, (19)

m

and

,m _ -2p(/)| 2Eg,
\C(m)Xk (rn)\

2 - Z„\Y{n) - D(n)Xk (n)\
2
\C(l)f

(U —
nl n/;\|2

+

2\D(L)\
7

\Ca)\^/\C(l_nj:jY(n) - D(n)Xk(n)\
2
)
2 + a\D(L)\*\C{QXk(V)\*Z„\Y(n) - D(n)Xk (n)\<

(20)

2|£>(/)P

The optimized parameter (3 is given at each frequency component by (Strand 1974)

(3(1) = F(\D(l_)\
2
)

= 31.5 - 315|Z>(I)|
2 + 1443.75|£>(/)|

4 - 3465| JD(/)|
6 + 4504.5|£>(/)|

8

-3003|Z>(/)|
10 + 804.375|L>(()|

12
. (21)

According to this iteration, since (3 and Sk are frequency dependent the convergence of the iteration

can be accelerated, making this an attractive algorithm where speed is a concern.

2.3. Optimization for HST Data

In the course of testing our algorithms, we have made appropriate consideration of the optimization

of these algorithms for HST data. In particular, we have included a positivity constraint at each

step of the iteration. This imposes the condition that there should be no negative flux in our image

source. The algorithms were developed with additive Gaussian noise as the observation noise in

the model. So, these algorithms are well equipped to deal with the read-out noise problem of the

WFPC.
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Figure 1. Blurred image "siml.fit" and Richardson-Lucy restoration of "siml.fit".

Figure 2. Generalized iterative adaptive restoration of "siml .fit" and frequency adap-

tive restoration of "siml.fit".

3. Results

All of the results presented here use the test data prepared by ST Scl and obtained from the

directory software/stsdas/restore at the stsci.edu Internet site. Using the image "siml.fit",

which represents a star cluster with a globular cluster-like luminosity function, with the point

spread function (PSF) "mpsfl2.fit", we generated restored images using the two iterative algorithms

presented in this paper. The image "siml .fit" simulates a monochromatic observation from the Wide
Field Camera with a space invariant blur. For comparison purposes, we utilized an implementation

of the modified Richardson-Lucy algorithm developed at ST Scl. This algorithm has modifications

which address the constant readout noise problem. Fig. 1 shows the original blurred image and

the Richardson-Lucy restoration. Fig. 2 shows the restored result using the generalized iterative

adaptive algorithm and the frequency adaptive algorithm. For all cases where we have used the

generalized iterative adaptive algorithm in this paper, we have taken the weighting matrices in

Eq. (1 1) to be equal to identity, although a spatially adaptive approach may easily be employed as

well.

For all of the iterative algorithms, we set the maximum number of iterations to be 300. In

addition, each algorithm used another termination criterion. For the Richardson-Lucy algorithm,

the convergence criteria was that the value of \
2 between the data and the blurred model was equal
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to unity per degree of freedom (Lucy 1974). For the other two algorithms, a convergence criteria

based on the L2 norm of the residual was used. In this case, we used a measure of the normalized

error at each iteration, defined as
||
Xk - Xk-i\\

2
/\\xk-i\\

2 < 10
-6

. The Richardson-Lucy algorithm

reached 300 iterations before the parameter x
2 was equal to 1 , but the value of x

2 was changing

very slowly at this point, such that further iterations resulted in little change in the restored image.

The generalized iterative adaptive method took 292 iterations while the frequency adaptive method
required only 39 iterations. The form of the iterations are somewhat different for the Richardson-

Lucy algorithm and the two algorithms presented here, so a direct comparison in terms of iteration

counts is not completely straightforward. However, each iteration of the three algorithms requires

approximately the same amount of time, so it can be seen that the frequency adaptive algorithm

provides a very fast solution. The mean square error (MSE) was measured for each of these results

after normalizing the restored images to the maximum value of the observed image in order to

account for any linear scaling present in the different algorithms. The Richardson-Lucy algorithm

had an MSE of 1083.69. The generalized iterative adaptive algorithm had an MSE of 1 177.41, and

the frequency adaptive algorithm had an MSE of 26.27. The MSEs were measured in terms of the

470 stars in the truth list.

For images having a spatially varying PSF, it is possible to apply the generalized iterative

adaptive algorithm as well. We have applied the spatially varying implementation of this algorithm

to the synthetic image "sim3.fit" which represents a star field with a spatially varying blur. For this

image the PSF changed between 25 different PSFs at various positions in the image. The varying

PSF is easily represented by a full degradation matrix in Eq. (1)., as opposed to a block circulant.

For the restored image, the MSE was equal to 3316.3.

These simulated star field images provide the best data for testing the flux linearity of the

restoration algorithms. We have evaluated the flux linearity of these three results according to the

following method. The linearity was measured by taking the residual (measured as: original (truth)

image - restored image) for each star in the truth image. The results are displayed by ordering

the 470 stars in this image by increasing magnitude. So, the faintest stars are at the left, and the

brightest stars are at the right. The flux linearity of the blurred image is shown in Fig. 3. The graph

for the Richardson-Lucy implementation is seen in Fig. 4, the spatial iterative adaptive algorithm's

graph is seen in Fig. 5, and the frequency adaptive algorithm's is seen in Fig. 6. The frequency

adaptive algorithm produces the most linear curve for this test, with a very noticeable reduction in

the number of outlying stars having a large error. The flux linearity results for spatially varying PSF
case ("sim3.fit") are shown in Figs. 7 and 8.

For testing the resolution enhancement properties of our algorithm, we generated a synthetic

image containing points of equal intensity separated by progressively increasing distances. These

points represent simulated neighboring stars. This image was then blurred with the Gaussian point

spread function having a variance of 9, and a support of 50x50 pixels. Using this PSF allows us to

test the resolution enhancement for binary pairs of stars which are poorly resolved in the blurred

image. The minimum separation between a pair of points in the synthetic image was one pixel,

and we measured the resolution of each pair according to the modified Rayleigh criterion (Wu, in

Hanisch 1993). Table 1 shows the numerical values of the measured resolution criterion for the

blurred image, the Richardson-Lucy algorithm, the generalized iterative adaptive algorithm, and

the frequency domain adaptive algorithms. All stars in our simulated image were chosen to be

of intensity value (100). The distance separating each pair of stars (in pixels) is given in the first

column. Neighboring pairs were all separated by a large distance, so that the PSF never covered

more than one pair at a time. The measure expressed here is R\ = (2l2)/{I\ + h) where I\ and It,

are the peak intensities of the stars in the pair, and Ii is the intensity at the middle point between

them.

These resolution tests show that the frequency adaptive algorithm performed quite well in terms

of peak resolution enhancement. It performed better than the Richardson-Lucy algorithm for most
pairs. Although the generalized iterative adaptive algorithm and frequency adaptive algorithms

did not perform better than the Richardson-Lucy algorithm for all pairs, the amount of resolution

enhancement provided by them was significantly better than that of Richardson-Lucy for a large
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FLUX LINEARITY TEST

Figure 6. Frequency adaptive restoration of "siml .fit".

FLUX LINEARITY TEST
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Figure 9. Blurred image "j413_crr.fit".

Figure 10. Frequency adaptive restoration of "j413_crr.fit'
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Abstract. This paper presents the theory of the pixon, the fundamental unit of picture infor-

mation, and its application to Bayesian image reconstruction. Examples of the applications

of these methods to artificial and real data are presented. These examples demonstrate that

pixon-based methods produce results superior to both pure Goodness-of-Fit (i.e. Maximum
Likelihood) methods and the best examples of Maximum Entropy methods.

1. Introduction

The act of measurement of physical quantities inevitably introduces artifacts. These artifacts can

be associated with the statistical limits of the measurement, e.g., counting statistics, as well as

characteristics of the measurement device, e.g., finite resolution. Modern approaches for deducing

the underlying, uncorrupted physical quantities from the recorded data often turn to Bayesian

estimation in which the measurement process is statistically modeled. For astronomical imaging,

the relationship between the data, D(x), the underlying image, /( x ), and the noise, N( x ), is given

by

D(x) = JdVy
H(x -y)l(y) + N(x). (1)

where H( x ) is the Point Spread Function (PSF) and the integration is over the volume in y-space.

The most successful methods for inverting Eq. (1) are non-linear in their approach. The
simplest define a figure-of-merit, or Goodness-of-Fit (GOF) criterion, for the image and then use

multi-dimensional optimization methods to maximize this function. Such methods include the

familiar Least-Squares method as well as the Richardson-Lucy method (e.g., Lucy 1974). While

these pure GOF techniques typically give superior inversions to Eq. (1) than do Fourier methods,

they still have many undesirable properties. A common problem is over-resolution in which the

algorithm attempts to fit the noise and introduces features which are unnecessary to fit the data.

Lucy-Richardson reconstructions, for example, are typically stopped after an arbitrary number of

iterations in an attempt to overcome this difficulty. This leaves the unpleasant (and difficult) task

of determining which features are "real" and which are not. More sophisticated approaches such

as Maximum Entropy (e.g., Skilling 1989) place additional constraints upon the solution based

on prior expectations. These additional constraints greatly improve the quality of the solution by

regularizing the problem and controlling over-resolution.

Recently, we have introduced a new image reconstruction method based on the pixon (Pina

and Puetter 1993, Puetter and Pina 1993a). This method greatly expands upon ME methods by

introducing a prior with a variable local scale. In fact, our Uniform Pixon Basis (UPB) method

(Pina and Puetter 1993a) results in a "Super-Maximum Entropy" reconstruction in which entropy

is maximized exactly. In our use of variable correlation length scales, pixon-based methods are

similar in some respects to the multi-channel methods of Weir (1991, 1993a) or the Pyramidal

Maximum Entropy techniques of Bontekoe, Koper, and Kester (1994). Unlike these techniques,

however, pixon-based methods explicitly determine the appropriate local scale based on various

14
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criteria. Our most recent Fractal Pixon Basis (FPB) method (Puetter and Pina 1993a, 1994) selects

the local correlation length based on the local structural scale of the image and represents the highest

performance image reconstruction method we are aware of to date.

2. The Pixon and Bayesian Estimation

To statistically model the measurement process, a number of issues must be addressed. First, there

is the physics describing the measurement process. This, however, is assumed to be set down in

Eq. (1). Second, a number of details related to the measurement process itself, must be properly

incorporated. These include the manner in which the data was collected, e.g., as a rectangular

grid of counts as is the case for astronomical imaging with a solid state detector, as well as the

characteristics of the noise, etc. Finally, a number of decisions must be made regarding how Eq. ( 1

)

is to be inverted mathematically. Common assumptions here are that the image can be represented

by a grid of numbers and that the integral represented in Eq. (1) can be approximated by a discrete

sum over this grid. Each of these aspects of the problem, i.e., the physics, the particulars of the

measurement, and the mathematical assumptions are part of the model, M, which links the image

and the data.

The Bayesian approach to inverting Eq. (1) is to use Bayes' Theorem to develop a formula for

the most probable value of /( x ). This begins by factoring the joint probability distribution of the

data, image, and model triplet, D, I and M, i.e., p(D, I, M):

p(D,I,M) = p{D\I,M)p{I,M) = p(D\I,M)p(I\M)p(M) (2)

= p{I, M\D)p(D) = p(I\D, M)p(D\M)p(M)

where p(A'|F) is the probability of X given that Y is known. [Bayes' Theorem states that

p{X, Y) = p(X\Y)p(Y) = p(Y\X)p(X).] Equating the various terms in Eq. (2), we find

p( ,,M|D) = iWMM/,M)
(4)

p{D)

From Eq. (4) we can find the M.A.P. (Maximum A Posteriori) image using

p{I\D) = f dM p(I, M\D)= [ dM^ 1, M̂ ^ M
"l

oc p(£)|/, M )p(I, M ) (5)

where M is the model from the M.A.P. image/model pair. (The proportionality in Eq. (5) should

really be an "approximately-proportional" symbol since we have dropped some terms [e.g. p{D)]

and we have assumed that the peak in the probability distribution is representative of a typical

sample from the posterior probability distribution. While this is usually the case, this is not

absolutely guaranteed.)

Eq. (3) is the typical starting point of Bayesian image reconstruction in which one wishes to

determine the M.A.P. image, i.e. the image which maximizes p(I\D, M). (The M.A.P. image, of

course, is only one of several choices for the "best image". Another sensible choice might be the

average image, (/) = fDM dMdD I p(I\D, M).)

Eqs. (4) and (5) are our preferred prescription for Bayesian image reconstruction in which

both the image and the model are varied simultaneously to obtain the best combined image/model
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solution, e.g., the M.A.P. image/model pair. Eq. (4) might be used directly to find the optimal image,
i.e., the image paired with the model in the M.A.P. image/model pair. Alternatively, the M.A.P.
image can be found using Eq. (5).

The significance of the terms in the above equations are well known. The first term, p(D \I, M),
is a goodness-of-fit (GOF) quantity. A typical choice for p(D\I,M) is to use p(D\I,M) =
exp(-x2

/2), where x
2

is the chi-square of the residuals. This form for the GOF statistic allows

the best unbiased estimate for the image to be determined. However, it produces a value for x
2

which is uncharacteristically small (i.e., x
2 = 0)- Another approach that we have explored is to

use p(D\I, M) = px2(x
2

) where pxj{x
2
) is the actual chi-squared distribution. This choice for the

GOF criterion recognizes that the most probable value for x
2

is not zero, but depends on the number
of random variables. This GOF criterion also seems to produce quite good image reconstructions

and to avoid problems associated with "over-fitting" the data.

The terms p{I\M) and p(I, M) are "priors". Since they do not depend on the data they can be

decided a priori. The first of these, i.e., p(I\M), is normally termed the image prior and expresses

the a priori probability of an image given the model. The second, i.e., p(I, M), we have termed

the image/model prior, and expresses the a priori probability of both / and M. In GOF image

reconstruction the prior is ignored or is effectively set equal to unity, i.e., there is no prior bias

concerning the image or the model. In Maximum Entropy (ME) image reconstruction, the image

prior is based upon "phase space volume" or counting arguments and the prior is expressed as

p(I\M) = exp(ct5), where S is the entropy of the image and a is an adjustable constant that is

used to weight the relative importance of the GOF and image prior.

The final quantity, p(D\M), is termed the "Evidence" for the model. Actually, we normally

refer to p(M\D) as the Evidence, but p(D\M) is proportional to this quantity under the common
assumption that p(D) = const and p(M) = const (there generally is not an a priori manner for

choosing between valid data sets nor between "sensible" models.) Choosing models on the basis of

the Evidence allows one to "peak-up" on more favorable solutions.

3. The Pixon Concept

Eqs. (4) and (5) indicate that two quantities, the GOF criterion, p(D\I, M), and the image/model

prior, p(I, M), are of key importance in obtaining the most probable (i.e., M.A.P.) values for the

image/model. In this section we shall concentrate on the development of a pixon-based prior.

3.1. A New Pixon-Based Prior

Eq. (4) will form the basis of our pixon-based methods; our goal is to determine the M.A.P. im-

age/model pair. Like ME methods we shall base our image/model prior on counting arguments.

Unlike standard ME methods, however, we will allow certain aspects of the model to vary simul-

taneously with the image. By allowing both the image and model to vary simultaneously, we are

optimizing our solution over a considerably larger solution space than methods which hold the

model constant. Previous workers (Gull 1989, Sibisi 1989, Skilling 1991, MacKay 1992a,b) have

already demonstrated the merits of varying the model and have shown the efficacy of selecting

between models by maximizing the Evidence for the model.

Our pixon-based methods attempt optimize the quality of the image reconstruction by varying

the portion of the model that deals with the way in which the image is mathematically. To show

how the selection of image representation (we shall use the term "basis") affects the quality of

the reconstruction, let us first consider the abstract nature of an image and how a generalized

image/model prior might be constructed. To do this we shall follow closely the development of

Pifia and Puetter (1993) and Puetter and Pina (1993a). They pointed out that in an abstract sense,

an image is a collection of distinguishable events which occur in distinct cells. Hence the value for

the image/model prior can be determined from simple counting arguments. If there are TV, events
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in cell i, and a total of n cells, then the prior probability of that particular image is:

p({iv
' ) '"'" )

= ^iuw '"''" 1 ' <6)

where {N,} is the set of all numbers of events in cells i, N is the total number of events, i.e.,

N = Y, Nit ^d tne image is now considered to be made up of these events. [In practical terms, an

event is a photon count in a photon counting detector or the number of counts in units of the standard

deviation of the noise in non-photon counting systems. Furthermore, these "events" are, in fact,

units of information, i.e., the knowledge that something (an event) has occurred is the minimal unit

of information— see Pina and Puetter ( 1 993) for a discussion. This sense of the term "information"

is somewhat different than the classical definition which is in terms of the logarithm of the number
of states, i.e., Shannon information.] Also note, that the cells used in Eq. (6) are quite general. In

their definition we have not specified a size, shape, or position for the cells. The cell concept simply

serves to localize some collections of events.

Since the goal of our reconstruction is to determine the M.A.P. image/model pair, we must

maximize the product of the image/model prior given in Eq. (6) and the GOF term. Most people

have a well developed intuition regarding how to maximize the GOF term, i.e., the residuals,

R( x ) = D(x) - f dVy H(x - y)I(y ), must be comparable to the noise (strictly speaking, they

should be exactly equal to the noise). Intuition concerning priors is usually less well developed.

Eq. (6), however, points out the a priori desirable properties of the model for the image. These

are that the model should contain the fewest number of cells with each containing the largest

number of events consistent with maintaining an adequate GOF. We shall call these generalized

cells pixons. The pixon name recognizes the pixel (or cell) heritage, and the "-on" suffix recognizes

the fundamental nature of the pixon in that the pixons represent an optimal set of cells. Ideally, an

image's pixons represent the smallest number of cells (of arbitrary shape, position, etc.) required to

fit the data, and represent the minimum Degrees of Freedom (DOFs) necessary to specify the image.

If properly selected, this set is irreducible to a smaller set. Hence pixons are the fundamental units

of information in the image. Using a pixon basis for the image is the fulfillment of Occam's Razor
formalized in Bayesian terms — it forces the use of the simplest model consistent with the data.

3.2. Fuzzy Pixons: A Practical Pixon-Basis Choice

The simple counting arguments presented in the section above point out the crucial features of the

pixon basis: there should be the fewest number of pixons consistent with fitting the data within the

accuracy allowed by the noise. In our attempts to derive suitable, practical pixon bases for image
reconstruction, we adopted techniques which are similar to those adopted by other authors, i.e., a

correlation length method (c.f. Weir 1991, 1993a). This approach controls the number of DOFs
by reducing the independence of different parts of the image through explicit spatial correlation.

This also causes the resulting degrees of freedom (or pixons) to be "fuzzy", i.e., to be localized but

without hard boundaries. This still allows the use of the pixon prior of Eq. (6), although it does
introduce a few computational complexities and mental hurdles for the intuition of the uninitiated.

Nonetheless, the practical and performance merits of this approach seem to warrant these modest
burdens.

Explicitly, then, our procedure for reducing the DOFs in the image reconstruction is to define

the image in terms of a pseudo-image, /pseudo( «), convolved with a local correlation length, b(x):

I(X) =
J

dV
y A'piX0n \^-^- ]/pseudo(V) , (7)

Jv
y y s(x)

)

where A'pjxon is a pixon shape function and fv dV
y Kpix0tt(y /b) = 1. Hence our procedure is

somewhat akin to representing the image in terms of non-orthogonal wavelets. As a matter of
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practicality, the pseudo-image is defined on a pseudo-grid which typically has a resolution as fine

or finer than the data pixel grid. The image is then also defined on a grid with the resolution of

the pseudo-grid. Because of the local correlation in Eq. (7), however, the number of DOFs in the

image can be greatly reduced from the number of pixels in the pseudo-grid. For example, if the

local correlation length at position a; is 10 pseudo-pixels then each 100 pixels (10 by 10 pixels)

represent a single DOF at this location. Reduction in the DOFs greatly improves the formal value of

the image/model prior and removes many of the problems commonly seen in competing methods,

such as signal correlated residuals and the production of spurious sources— see below.

3.3. An Iterative Procedure for Pixon-Based Reconstruction

The iterative scheme we typically employ for calculating the M.A.P. image/model pair starts with

an initial guess for the model, i.e., the spatial correlation lengths. A common starting point is to

assume that the scale lengths are all equal to 1 pseudo-pixel. This is equivalent to starting out

with the standard ME solution for the image. In other words, for the first estimate for the image

the fuzzy pixon prior is essentially the ME prior and the GOF criterion can be chosen to be the

standard chi-squared value of the residuals. In practice, however, we typically use a simple GOF
solution and ignore the ME prior. This is considerably faster in practice and results in a very good

first guess. The next step estimates the new local scales, holding the image fixed. This is done by

maximizingp(M \ D) = / dI?lLM¥MLMl a p(D\I , M)p(I , M), i.e., finding the M.A.P. model

given the fixed data and current image estimate, I . [Note the parallel and complementary nature

of the M.A.P. model estimate relative to the M.A.P. image estimate of Eq. (5).] In our current

implementations, this M.A.P. model is determined in only an approximate manner. We simply note,

for example, that the prior term, p(I ,M), will insist on the largest possible correlation lengths

consistent with the GOF, while the GOF term is indifferent to very small correlation lengths since

they should always produce acceptable fits. Our procedure is thus simply to find the largest local

correlation lengths that provide an acceptable fit. Once the local scales have been determined, a

new image is calculated, etc., and the entire procedure iterated until convergence is obtained.

A bit of intuition into this procedure reveals the fundamental reasons for this method's success.

Effectively, this is a fractal technique. Here we use the term "fractal" in a limited sense. Independent

of the exact method for obtaining the local correlation lengths (e.g., the brute force method or an

iterative method as described above), our procedure explicitly seeks the local smoothing scale at

which the GOF ceases to be sensitive, i.e., we are looking for the smallest scale for which there is

evidence in the data. The use of the pixon prior ensures that our procedure takes the largest, or least

informative, scale consistent with fitting the data. To be explicit about our use of the term fractal,

we do not mean to suggest that self-similarity plays a central role in our methods, but rather that just

as in many fractal concepts, our procedure analyzes how a geometric quantity varies as the local

scale is varied. In this case we ask how p(I, M\D) varies as the local scale is varied, just as the

definition of fractal dimension asks how does the measure (length, area, etc.) of a geometric object

vary as the local scale is changed. For this reason, we have named this entire class of methods

Fractal-Pixon methods and the pixon representation of the image the Fractal-Pixon Basis (FPB).

4. Sample Image Restorations

To demonstrate the advances represented by our methods, we present in this section reconstructions

from both real and "mock" data sets. We have done this for several reasons. In the mock data case,

the image reconstruction conditions are essentially perfect — the noise, PSF, and true answer are

known a priori with arbitrary precision. This leaves no uncertainty in how well each algorithm

has performed. However, in imaging situations we rarely encounter such benign conditions. For

this reason, we have also included a real data test case in which the noise and PSF characteristics

are experimentally determined. Unfortunately, the true answer is also imperfectly known, making
validation of the technique more difficult.
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Figure 1 . FPB/MEMSYS 5 Comparison for the mock data set described in the text.

Reproduced from Puetter and Pina (1994).

In order to make the comparisons as fair as possible, we compare our reconstructions to those

performed by other professionals well versed in the competing techniques. This avoids issues

of whether the competing reconstructions are the best possible. For the real data test, we have

chosen IRAS (Infrared Astronomical Satellite) 60//m survey scans of the interacting galaxy pair

M51 (the "Whirlpool"). This data was used for an international image reconstruction contest at

the 1990 MaxEnt Workshop (see Bontekoe 1991), which was attended by leaders in the field of

image reconstruction. Hence our reconstruction ofM5 1 will be compared to the best state-of-the-art

reconstructions circa 1990. From comparisons like the M51 contest, experts generally agree that

ME produces results superior to GOF methods (e.g., Least-Squares and Richardson-Lucy). For this

reason, we shall concentrate on comparing our reconstructions to ME reconstructions (although we
shall present a Richardson-Lucy reconstruction of the M51 data set as well, allowing the reader to

judge the validity of these claims). The ME code we shall make our comparisons to is MEMSYS, a

powerful set of ME algorithms developed by Gull and Skilling (1991). The MEMSYS algorithms

probably represent the best commercial software package available for image reconstruction. The

mock data reconstruction example compares our fractal pixon methods with MEMSYS 5, the most

current version of the MEMSYS algorithms (see Gull and Skilling 1991). The M51 example

compares our results to those of MEMSYS 3, the current version of MEMSYS at the time.

4.1. Example 1: A Mock Data Set Reconstruction

Fig. 1 presents FPB and MEMSYS 5 reconstructions of a mock data set. The MEMSYS 5

reconstructions were performed by Nick Weir of Caltech, a recognized MEMSYS expert, and were

supplemented with his multi-channel correlation method which has been shown to enhance the

quality of MEMSYS reconstructions (Weir 1991, 1993a). The true, noise-free, unblurred image

presented in the top row is constructed from a broad, low-level elliptical Gaussian (a two-dimensional
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Gaussian with different FWHMs in perpendicular directions), and two additional narrow, radially

symmetric Gaussians. One of these narrow Gaussians is added as a peak on top of the low-level

Gaussian. The other is subtracted to make a hole. To produce the input image, the true image

was convolved with a Gaussian PSF of FWHM=6 pixels, then combined with a Gaussian noise

realization. The resulting input image is displayed in the top row. The signal-to-noise ratio on the

narrow Gaussian spike is roughly 30. The signal-to-noise on the peak of the low level Gaussian is

about 20. The signal-to-noise at the bottom of the Gaussian hole is 12.

As can be seen, the FPB reconstruction is superior to the multi-channel MEMSYS result. The

FPB reconstruction is free of the low-level spurious sources evident in the MEMSYS 5 recon-

struction. These false sources are due to the presence of unconstrained degrees of freedom in the

MEMSYS 5 reconstruction and are superimposed over the entire image, not just in the low signal

to noise portions of the image where they are most evident. Furthermore, the FPB reconstruction's

residuals show no spatially correlated structure, while theMEMSYS 5 reconstruction systematically

underestimates the signal, resulting in biased photometry.

4.2. Example 2: 60 Micron IRAS Survey Scans of M51

We have also reconstructed an image from 60/im IRAS survey scans of the interacting galaxy pair

M51. This data was selected for several reasons. First, M51 is a well studied object at optical,

IR, and radio wavelengths. Hence "reality" for this galaxy is relatively well known. Second, as

mentioned before, this particular data set was chosen as the basis of an image reconstruction contest.

Consequently, there have been a number of serious attempts at performing image reconstruction

on this data set by specialists in the field. Finally, the IRAS data for this object is particularly

strenuous for image reconstruction methods. This is because all the interesting structure is on

"sub-pixel scales" (IRAS employed relatively large, discrete detectors— 1 '.5 by 4'75 at 60^m) and

the position of M51 in the sky caused all scan directions to be nearly parallel. This means that

reconstructions in the cross-scan direction (i.e. the 4'75 direction along the detector length) should

be significantly more difficult than in the scan direction. In addition, the point source response of

the 15 IRAS 60/zm detectors (pixel angular response) is known only to roughly 10% accuracy, and

finally, the data is irregularly sampled.

Our FPB reconstruction appears in Fig. 2 along with Richardson-Lucy and Maximum Correla-

tion Method (MCM) reconstructions (Rice 1993) and a MEMSYS 3 reconstruction (Bontekoe et al.

1991)— see Gull and Skilling (1991) for a description of the MEMSYS algorithms. The winning

entry to the MaxEnt 90 image reconstruction contest was produced by Nick Weir of Caltech and is

not presented here since quantitative information concerning this solution has not been published;

however, see Bontekoe (1991) for a gray-scale picture of this reconstruction. Nonetheless, Weir's

solution is qualitatively similar to Bontekoe's solution (Weir 1993b). Both were made with MEM-
SYS 3. Weir's solution, however, used a single correlation length channel in the reconstruction. This

constrained the minimum correlation length of features in the reconstruction, preventing break-up

of the image on smaller size scales. This is probably what resulted in the "winning edge" for Weir's

reconstruction in the MaxEnt 90 contest (Weir 1993b).

As can be seen from Fig. 2, our FPB-based reconstruction is superior to those produced by

other methods. The Richardson-Lucy and MCM reconstructions fail to significantly reduce image

spread in the cross-scan direction, i.e., the rectangular signature of the 1 '5 by 4'75 detectors is still

clearly evident, and fail to reconstruct even gross features such as the "hole" (black region) in the

emission north of the nucleus; this hole is clearly evident in optical images ofM5 1 . The MEMSYS 3

reconstruction by Bontekoe is significantly better. This image clearly recovers the emission hole

and resolves the north-east and south-west arms of the galaxy into discrete sources. Nonetheless,

the level of detail present in the FPB reconstruction is clearly absent, e.g., the weak source centered

in the emission hole (again, this feature corresponds to a known optical source).

To assess the significance of the faint sources present in our FPB reconstruction, in Fig. 3 we
present our reconstruction overlaid with the 5 GHz radio contours of van der Hulst et al. (1988). The

radio contours are expected to have significant, although imperfect, correlation with the far infrared
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Figure 2. Image reconstruction of the interacting galaxy M5 1 . (a) FPB-based re-

construction, (b) MEMSYS 3 Reconstruction, (c) Richardson-Lucy reconstruction,

(d) MCM reconstruction, (e) Raw, co-added IRAS 60//m data. Figure of panel (b) repro-

duced from Bontekoe et al. (1991), by permission of the authors. Figures of panel (c) and

(d) reproduced from Rice (1993) by permission of the author. This figure is reproduced

from Puetter and Pina 1 993b.

emission seen by IRAS. Hence a comparison of the two maps should provide an excellent test of

the reality of structures found in our reconstruction. Also identified in Fig. 3 are several prominent

optical sources and Ha knots.

As can be seen, the reconstruction indicates excellent correlation with the radio. The central

region of the main galaxy and its two brightest arms align remarkably well, and the alignment of the

radio emission from the north-east companion and the IRAS emission is excellent. Furthermore,

for the most part, whenever there is a source in the reconstruction which is not identifiable with

a radio source, it can be identified with either optical or Hq knots. An excellent example is the

optical source in the hole of emission to the north-east of the nucleus of the primary galaxy or the

bright optical source to the north-west of the nucleus (both labeled "Opt" in Fig. 3). Because of the

excellent correlation with the radio, optical, and Hq images, we are quite confident that all of the

features present in our reconstruction are real.

Aside from the fact that most of the sources can be identified with emission at other wavelengths,

the residual errors in our reconstruction are much smaller than in the MEMSYS 3 reconstruction.

As pointed out by Bontekoe et al. (1991) the peak flux in the MEMSYS 3 reconstruction is 2650
units. The residual errors are correlated with the signal and lie between and 430 units. By
contrast, the peak value in the FPB reconstruction is 3290 units, the residuals are uncorrected with

the signal, and the residuals lie between -9 and 17 units. (The contour levels for the MEMSYS
3 and FPB reconstructions of Fig. 3 are identical and are 150, 300, 600, 1200, and 2400 units.)

Furthermore, the large deviation residuals in the FPB reconstruction are due to systematic errors

involving incomplete scan coverage of M5 1 . Fortunately, these errors do not lie under the significant

flux emitting portions of the M5 1 image. The residual errors associated with emitting regions in M5

1

are significantly smaller (ct ss 1 unit) and show a roughly Gaussian distribution. Full appreciation

of the sensitivity of our technique is only obtained once the reconstruction has been flux calibrated.

Formally, the residual error over the majority of the image is 2.7 mJy. This compares with the 280
mJy, 90% completeness limit for the IRAS Faint Source Survey. The largest residual systematic
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Figure 3. Details of the FPB reconstruction of the IRAS 60/.im survey of M51. The

overlaid contours are the 5 GHz data of van der Hulst et al. (1988). Also noted are several

of the stronger 60/*m features that can be identified with optical features or Ha knots.

Figure reproduced from Puetter and Pina (1994).

errors associated with incomplete sampling of the M51 region correspond to 50 mJy. This is still a

factor of more than five times fainter than the IRAS Faint Source Survey limit.

5. Conclusions

In conclusion, we have introduced a new concept, the pixon, the use of which provides large

improvements in the ability to reconstruct images from blurred, noisy data. The pixon is the

fundamental and indivisible unit of information required to describe the underlying signal within

the accuracy allowed by the data. In this regard it is an idealized concept. However, this paper also

presents a practical and capable approximation to this ideal for a broad range of problems, i.e., the

fuzzy, Fractal-Pixon Basis (FPB). This basis uses the local spatial scale relevant to the underlying

signal to constrain the inversion of the equations governing the measurement process. In doing so,

this method provides performance superior to pure GOF (Maximum Likelihood) and ME methods.

Some of the advantages of pixon-based methods are the elimination of signal-correlated residuals
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and the production of spurious sources typical of other methods. Practical examples from the realm
of astronomical image reconstruction show that pixon-based methods can offer large improvements
in resolution as well as the detection of extremely weak features in the data.
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Abstract. A new deblurring algorithm has been developed involving both iteration and

recursion and that is linear, flux-conserving, noise resistant, and faster to converge than extant

iterative deblurring methods. Mathematical analysis shows that the recursive component of

the algorithm provides the accelerated convergence. A demonstration is provided using a

simulated star field image blurred using an approximation to the point spread function of the

Hubble Space Telescope.

1. Introduction

The problem presented by the blurred images obtained from the Hubble Space Telescope is a

common one throughout science. Given a digital signal degraded by (approximately) stationary

blurring and an estimate of the point spread function defining the blur, we seek to recover an

improved approximation to the unblurred signal. Such blurs occur in 1-D chemical spectra and 2-D

and 3-D images from microscopes, telescopes, photographs, CT and MRI scanners, satellite sensors,

and scintigrams (nuclear medicine images). Lucy (1974) lists a series of problems in astronomy

that depend on the ability to remove blur from image or spectral measurements. Jansson and his

associates ( 1 968, 1 970a, 1 970b) have studied extensively the problem of removing or characterizing

the blurring function of spectrographs.

The same basic iterative deconvolution algorithm has been independently developed in as-

tronomy and medical image processing and has migrated from those fields to many others. This

iterative algorithm is highly sensitive to image noise and to errors in the estimate of the point

spread function. Similar modifications to the basic algorithm have been proposed in both fields.

One common modification involves introducing a nonlinear relaxation factor into the algorithm to

accelerate convergence and suppress noise, but then image flux is no longer conserved. Thus, in

astronomy for example, the deblurred image is no longer suitable for photometry since nonlinear,

spatially varying changes in intensity are produced by the modified deblurring procedures.

This paper introduces a new iterative and recursive deconvolution procedure that is flux-

conserving, linear, and relatively insensitive to noise or to error in the estimate of the point spread

function. Results of a mathematical analysis of the iterative/recursive method will be presented,

and a demonstration of the algorithm will be presented based on the blurring function of the Hubble

Space Telescope.

2. Blurring

The blurring characteristics of a shift-invariant linear system are characterized by the point spread

function (PSF) of the system. The observed image, z, is the result of convolving the PSF, h, with

24
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the true image, t:

i = t*h. (]

)

Since convolution in space is equivalent to multiplication in frequency, the blurred image can be

also be obtained as follows:

I = TH
i = F~ l

(I)

where capitals T and H denote the Fourier spectra of images t and h, respectively.

A diffraction-limited Hubble Space Telescope (HST) would have a PSF just over 2.5 pixels in

radius ((X'l at 633 nm) which would include half of the second bright Airy ring. The actual PSF is

over 68 pixels in radius (3'.'0) due to the spherical aberration caused by malformation of the HST's
primary mirror (Burrows 1991).

The PSF of an imaging system can be estimated mathematically or empirically. The com-
putational construction of a PSF involves complicated and computationally demanding ray tracing

methods based on a complete description of the optical system. Empirical estimates of the PSF can

often be obtained by imaging a relatively bright, isolated point source. For example, an empirical

estimate of the PSF of a fluorescence microscope can be obtained by imaging a tiny polystyrene

bead coated with a fluorescent marker dye (Fay 1986). PSFs derived by either the computational or

empirical approach can be used in iterative deblurring methods. Inaccuracies in the PSF estimate

will cause some aspects of the true image data to be interpreted as image noise and limit the degree

to which the image can be deblurred.

A PSF can be summarized compactly by encircled energy, the integral of the PSF as a function

of distance, p, from the center of the PSF. Indexing the PSF using polar coordinates (/?,#) with the

origin at the center of the PSF, the encircled energy is

=/7Jo Jo

It;

i{p,6)d9dp (2)

Since optical systems do not add energy to a signal, E(p) — 1 as p — oc. Thus, a spatially

extensive PSF attenuates the signal at the center, in-focus location, complicating detection of faint

structures in complex images. In crowded fields, the blurred images of nearby objects can interfere

with each other, requiring detection algorithms to distinguish intensity peaks due to objects from
intensity peaks of artifacts arising from constructive interference between the blurred images of

separate objects. Nonlinear algorithms are prone to create false objects at intensity peaks due to

constructive interference or to overfitting particularly bright noise peaks.

The effect of a deblurring algorithm can be summarized by plotting the encircled energy of a

point source as a function of radius. This measure is computed in the same manner as E(p) above
with the polar coordinate system centered on the correct location of the point source.

3. Inverse Filtering

Since blurring can be implemented by a product in the frequency domain, it may be possible to

deblur an image by a division in the frequency domain,

This works if the modulation transfer function (MTF), H , contains no zeros, but such a situation

rarely occurs in practice because MTFs of most image acquisition systems do contain zeros through-
out the measured spatial frequency range. When H contains no zeros but has components with very
small values, limited numerical precision can create significant errors in the image estimate. Such
a blur irretrievably discards some information about the structure of the true image, and there is
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no longer a unique solution to the deblurring problem. In practice, constraints on the form of the

reconstructed image (e.g., smoothness constraints) can be used to infer appropriate values for the

deleted components.

When inverse filtering is not possible, the objectives of deconvolution are modified. Given an

observed, blurred image, io, and an estimate of the PSF, h, derive an image i such that io = i * h.

The image i is the estimate of the true image, t. This operation is called pseudoinverse filtering, or

approximate deconvolution, which is usually implemented using iterative methods.

4. Iterative Deconvolution

Iterative deconvolution begins by guessing what the true image, t , might be. This initial guess is

denoted i\ . If this guess is correct, then the convolution i\ * h will produce the observed image, io.

If the guess is wrong, it can be corrected based on the residual between the observed image and the

blurred guess: (io - i\ ) In fact, the correction might be simply to add that difference to t\

.

The observed image will serve as the initial guess. The first step in an iterative deblurring

method, then, is to blur the observed image again. While this might seem surprising, it is correct

because the observed image is the closest data we have to the true image. A flat field could be used

as the initial guess, but then the correction factor would be the observed image, so the estimate used

for the second iteration would be the observed image anyway.

Formally, the Basic Iterative Deconvolution (BID) procedure is defined as follows:

i\ = io (4)

ifc = 4 * h (5)

h+i = h + (i -ik) (6)

This approach is essentially the Jacobi method for solving simultaneous linear systems as applied

to signal processing by Van Cittert (1931), extended by Jansson (1968, 1970a, 1970b) and indepen-

dently developed by Iinuma (1967a, 1967b). It converges to the correct inverse filter if one exists;

otherwise it can be terminated after a finite number of iterations to obtain an approximation to the

true image. The iterative method can also be understood as computing a power series expansion of

the inverse filter \/H based on the identity

l
= t^-*Y (7)

Convergence is slow after the first few iterations, with rapidly diminishing returns. The approach

also is very sensitive to noise in the signal or error in the estimate of the PSF.

Mathematically, the effect of the BID algorithm is most easily understood via the frequency

domain. This discussion follows Metz (1969) and Kawata( 1980a, 1980b). Transforming equations

5 and 6 into the frequency domain gives

f,+ 1
= fk + (I - fkH) (8)

Reordering the terms and factoring yields

tk+1 = fk(l -H) + I (9)

This equation shows how each iteration is obtained from the previous one. Combining this form of

the iteration with the initial condition in Eq. 4, one can construct successive iterates

T, = /o

T2 = J (l + (1 - H)) (10)

T3 = I (l + (1-H) + (1-H)2
)
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5. Constrained Iterative Deconvolution

The BID algorithm converges slowly, so its convergence might be accelerated by multiplying the

residual by a constant before adding it into 4. thereby boosting the correction factor. The reason

this method fails requires examination of the content of the residual image.

The residual image contains (a) the aspects of the image that have not yet been accounted for as

instances of the PSF, and (b) any structure in the observed image that arises from any process other

than a convolution of the original image with the PSF. Any such extraneous information is noise.

Sources of such noise include data errors occurring after the optical image is formed, errors in the

estimate of the PSF, variations in the real PSF across the image field, Poisson-distributed photon

noise in imagery of faint sources, or image effects caused by signals (cosmic rays in astronomy,

scattered X-rays in medical imaging) impinging on the detector that are not subject to the blurring

effects of the optical system. The portion of the residual image attributable to the PSF decreases in

each iteration, but the noise content passes through essentially unchanged. Multiplying the residual

image by some factor to boost the speed of convergence also strengthens the noise being added back

into the estimate of the object. This noise quickly dominates the signal and makes the procedure

unstable.

The instability can be fought by introducing nonlinear constraints intended to suppress correc-

tions due to noise. Typical constraints include clamping the values in tk so that they lie within a

known reasonable dynamic range, or limiting the amount of adjustment that can occur at any pixel

(i.e., clamping (io — ik))- These limits may be imposed by setting thresholds or by introducing a

damping, or relaxation function.

Such constraints have two problems. First, they actually just delay the inevitable; noise

problems are still serious. Second, the nonlinearities introduced in the constraints may cause

artifacts in the estimate of the true image, destroying the quantitative information that is the point of

many scientific studies. The mathematical analysis of the nonlinear methods is much more difficult;

depending on the nonlinearity employed, a closed form for the estimate may not exist since different

pixels may be treated in different ways.

6. A New Enhancement to the Iterative Method

We propose a new method for deconvolution that extends the BID algorithm by recursively invoking

itself on the residual at each iteration.

The residual image, io — ik, used to correct tk in the BID algorithm is the difference between

blurred images, therefore it is a blurred image itself. The correction to tk that is needed is a

deblurred version of z'o - ik- An estimate of this deblurred residual can be obtained by recursively

invoking this deblurring procedure on the residual image along with the same estimate of the PSF.

The residual image of the previous recurrence serves as both the observed image v
Q

r
' and the

initial estimate, i\
r

, in the new recurrence. The new recurrence blurs its observed image and

computes the residual as before. The procedure recurs again to deblur this residual image. The
recursion continues for as many levels as desired. Finally, at the deepest recursion level, the BID

~(r)
algorithm is applied for some small number of iterations. The resulting t\ ' is passed up to the next

'It— I)
higher recurrence and used to correct t\ '

.

This algorithm has several advantages over the previous approaches. First, there are no

nonlinear steps in the algorithm, so its results are free of artifacts; in particular, flux is conserved.

Second, by applying only a few iterations at each level (except perhaps the top level) the algorithm

converges rapidly because no recurrence of the procedure is allowed to proceed far enough to

enter the range of minimal returns. Third, the method is stable because during each iteration the

restoration is stopped, a simpler, related problem is defined, and the restoration continues. The
Discussion section will elaborate on the stability of the algorithm.
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7. Mathematical Analysis of the Iterative/Recursive Algorithm

This section presents the results of a mathematical analysis of the Iterative/Recursive Algorithm.

(For details of the analysis procedure, see Coggins 1993.) This analysis is based on an itera-

tive/recursive deblurring procedure with k iterations at each of r recursion levels. The number

of iterations could be different at different recursion levels, but keeping them equal simplifies this

analysis. An expression will be derived for the effective linear filter applied by the entire itera-

tive/recursive deblurring process for several values of k and r. The examples will be developed

in the frequency domain, with capitals representing the Fourier spectra of the image given by the

corresponding lower case letter.

The deblurring algorithm at the lowest recursion level is the BID algorithm, the effect of which

is given in Eq. 14.

The key to understanding the iterative/recursive algorithm is to expand the restoration function

Rr \x) for various values of r and k. We have worked out these effects for various (r, k) pairs.

The method involves algebraically bootstrapping the expressions for (r, k) from the expressions for

(r - 1 , k) and (r,k— 1 ). This analysis unrolls the iterations and unfolds the recursions, resulting in

a complicated expression in terms of BID iterations. The contributions of iteration and recursion to

this algorithm can be compared by converting the BID iterations into truncated power series form

and then algebraically simplifying into a sum of powers of (1 — H). That is, we can express the

restoration functions in the form

H#>(x) = *E(1 - H)*\ (16)

where the limit of the summation, /, is a function of r and k. We have worked out the summation

relationships shown in Table 1 . Line 1 describes the BID algorithm. Line 2 describes an algorithm

consisting of recursions alone. Subsequent lines explore the interaction of recursions and iterations.

Clearly, the iterative/recursive algorithm is producing a closer approximation to l/H, as indicated

by the rapidly growing summation limit, than either the recursions or the iterations alone.

Table 1 . Summation Limits / for r Recursion Levels with k Iterations Each

r k f
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which are similar to the V and / filters of the ground-based Johnson photometric system. Our
artificial image simulates a 600 second exposure from PC 7 with the F555W filter. Busko (1993)

presents results from this algorithm for the simulated cluster image available from ST Scl. We
present restoration results for real HST data in a separate paper (Fullton 1993).

To generate the artificial image, we used the color-magnitude diagram (CMD) of NGC 6293

as determined from ground-based photometry (Janes 1991). We used the stellar coordinates as

measured by Janes and Heasley in their images (Janes, private communication), to generate a

300x300 pixel (about 13x13 arc second) image in which the measured magnitudes, V, were

converted into photon counts and the stellar coordinates were used as the location of point sources

with these fluxes. It was necessary to correct for the difference in pixel scale between the ground-

based CCD images and those obtained with HST.

Because the photometry of Janes and Heasley is not complete at fainter magnitudes, i.e.,

V > 21 , it was necessary to correct the observed data to account for those stars which were missed

either because they were too faint to be detected or because of crowding effects. In order to do

this, we used the luminosity function of the globular cluster M92 (Stetson and Harris 1988) which

tells us how many stars we expect to see as a function of magnitude. M92 was chosen because its

luminosity function has been well-determined and because its CMD morphology is similar to that

of NGC 6293, indicating that the two clusters are likely similar in age and chemical composition.

The number of artificial stars generated in each 0.25 magnitude bin from V = 21 to V = 24.25

was determined from the luminosity function and corrected for the observed area of NGC 6293 by

a multiplicative factor determined by requiring that the luminosity function reproduce the observed

counts from Janes and Heasley brighter than V = 21 . The magnitude and position of each star were

selected randomly using an algorithm for generating uniformly-distributed random numbers based

on Convex's pseudo-random number generator ran. The generated magnitudes were constrained

to fall within the given magnitude bin for each star. The final frame contained 425 artificial stars

which were added to a uniformly bright image whose intensity was chosen to be representative of

the sky background in actual HST images of the cluster.

The image was blurred by convolution with an estimated HST PSF computed using the Tiny

Tim software (Krist 1992). Additive Poisson noise was simulated in the blurred image by adding

to each pixel a random value drawn from a Poisson distribution with a mean equal to the square

root of the intensity at each pixel. The resulting image is shown in Fig. 3. No attempt was made

to simulate cosmic ray hits or saturation effects which are often present in real HST data. These

effects create portions of an image that are not the result of convolution of a light source with the

PSF, so such areas will need to be removed or ignored when using the iterative/recursive deblurring

algorithm on real HST images.

The simulated image was deconvolved using the iterative/recursive method coded in C++ on a

Convex C-240. The restoration reported here used 5 recursion levels with 3 iterations per level. Thus,

3
5 = 243 iterations of the BID algorithm at the lowest recursion level were performed. Restoration

of the 300x300 image took approximately 38 CPU minutes, but this computation involved forward

and inverse discrete Fourier transforms in each iteration. This time can be drastically shortened by

performing the entire computation in the frequency domain, but it is then not possible to observe

intermediate results during the restoration.

The restored image is shown in Fig. 4. The Fourier transform-induced ringing may appear

exaggerated due to contrast stretching for this display. Fig. 5 shows intensity plots through the same

row in the blurred and deconvolved images. The star located at column 163 in Fig. 5 has a simulated

magnitude of 23.44. The star at pixel 194 has magnitude 2 1.1 4. The plot from the deconvolved image

demonstrates the low amplitude of the ringing compared to the flux in the central peak of the star.

This ringing does not violate flux conservation and does not interfere with intensity measurements

of the stars in the restored images. The ringing may interfere with detection of stars at the faintest

limits. As a star's magnitude decreases well below the sky brightness, it becomes increasingly

difficult to distinguish the star from the star combined with the sky background. However, detection

in the deconvolved image will be easier since the light from the star is not blurred over such a large
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Figure 4. The deconvolved simulated image of NGC 6293 after 3 iterations at each

of 5 recursion levels of the iterative/recursive deconvolution algorithm described in this

paper.
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Figure 5. (a) An intensity plot of row 106 in the simulated image shown in Fig. 3. The

centers of two stars lie in this row, a 23.44 mag star at pixel 163 and a 21 .14 mag star at

pixel 194. (b) An intensity plot of the same row in the deconvolved image. The signal at

pixel 232 is from a star centered in a nearby row, so its signal disappears in the deblurred

image. Note the different intensity scales in these two plots.
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To test the suitability of this deconvolution technique for astronomical purposes, we have
measured the brightnesses of all the stars in the deconvolved output image. For each star in the input
star list, the sum of the pixel intensities in circular apertures of various radii centered on the stars'

input coordinates was computed. The brightness of the uniform sky background was estimated by
taking the mean of the median pixel values in several "star-free" regions in the deconvolved image.
This sky value was subtracted from each pixel within the stellar apertures to correct for the flux

contributed by the sky.

Fig. 6 is a plot of input magnitude (the magnitude used to create the artificial image) vs. the

magnitude measured in an aperture of radius 3 pixels centered on each star in the output image after

correcting for the sky background. A 45 degree line indicates perfect agreement between input and
output magnitudes. A constant additive aperture correction was applied to the magnitudes since an

aperture of only 3 pixels does not properly account for all the stellar flux due to the ringing apparent

in the image. The aperture correction was determined by plotting the measured magnitudes of 10

bright, relatively uncrowded stars as a function of aperture radius. It was estimated from these

growth curves that at an aperture of radius 6 pixels the ringing had subsided sufficiently that an

accurate measurement of the stellar flux could be made. Thus the average difference between the

magnitude in the 6 pixel aperture and the 3 pixel aperture (0.008 ± 0.001 mags) was defined to

be the aperture correction and was added to the magnitudes of all the stars shown in Fig. 6. This

correction corresponds to less than 1 % of the stellar flux. Note that in the smaller aperture, all the

stars were measured too bright. Thus, while one might expect the smaller aperture to yield a fainter

estimate of the stellar brightness, this is not necessarily the case in the restored image. Due to the

requirement of flux conservation, the central pixels are enhanced in brightness to compensate for

the ringing, which may include negative flux values. However, as shown in Fig. 6, the aperture

correction is constant with magnitude. Thus the percentage overestimate of brightness is the same
for all the stars. Six stars with input coordinates within 1 pixel from another star were omitted from
Fig. 6. Twenty-nine other stars had coordinates so near the edges of the frame that the 3 pixel radius

aperture extended outside the boundaries, so these stars were also omitted.

There are two important observations to be made concerning Fig. 6. First, it is obvious that the

relationship between input and output magnitudes is linear. This is to be expected since there are

no nonlinear operations in the iterative/recursive algorithm. Second, the agreement between input

and output magnitudes is extremely good, with most stars falling on the line of slope unity. Stars

whose nearest neighbor was less than 2 pixels away are plotted as squares, those whose nearest

neighbor was greater than 2 but less than or equal to 5 pixels away are plotted as crosses, and those

whose nearest neighbor was over 5 pixels away are plotted as dashes. Almost all of the stars whose
output magnitudes deviate substantially from the input magnitudes are stars with nearby neighbors,

some of whose light is being included in the 3 pixel aperture used. This problem would be worse
if a larger aperture had been used to encompass all the light from the star. All the affected stars are

measured systematically too bright because of this added light from nearby stars. It is important

to note that this is a result of our use of aperture photometry in crowded conditions and is not an

artifact of the deconvolution.

9. Comparison With Other Techniques

There have been several investigations of the photometric properties of HST image restoration

techniques utilizing a range of different algorithms. While we do not intend to describe each in

detail, it is interesting to compare the results of our simulation with those obtained using some other

methods. Holtzmanet al. (1991) studied the use of the Richardson-Lucy method (Richardson 1972,

Lucy 1974) in restoration of PC images. They used that technique to restore a simulated image of

a crowded field. The scatter in the magnitudes measured in the deconvolved data was comparable
to that in the original blurry image, so the restoration did not provide a quantitative improvement.
Additionally, they found a systematic nonlinearity of several tenths of a magnitude over a 4 mag
range. In their deconvolution of an actual image of stars in the 30 Doradus nebula, the errors in the
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Figure 6. A plot of input magnitude vs. the magnitude derived from a 3 pixel aperture

radius in the deconvolved image. An additive aperture correction determined from 10

bright stars has been applied to all the magnitudes. Stars whose nearest neighbor was

within 2 pixels are plotted as squares. Stars whose nearest neighbor was greater than 2

but less than or equal to 5 pixels away are plotted as xs. Stars whose nearest neighbor

was over 5 pixels away are plotted as small dashes.
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deconvolved photometry judged by calculated sigmas and residuals were worse than those in the

original image. Additionally, the deconvolved image was noisier and revealed no new sources not

present in the original image.

Cohen ( 1991 ) investigated the reliability of the Maximum Entropy method (Skilling 1 989, Gull

1989) in restoring astronomical images while preserving photometric accuracy. Her investigations

involved restoring simulated images created by blurring point sources with a 3 pixel FWHM
Gaussian. She discovered that the Maximum Entropy software systematically recovered the fainter

objects as too faint. This nonlinearity was a function of the degree of contrast of the object with

the sky and the degree of crowding. She concluded that then currently available Maximum Entropy

software could not be used where photometric reliability was required.

Finally, while it is more difficult to compare the previous results with those from Faint Object

Camera (FOC) data, primarily because of its lower signal-to-noise ratio (SNR), Thomson et al.

(1992) studied photometric techniques with FOC images. They used Maximum Entropy and did

one test with the Richardson-Lucy method. They found that they needed a magnitude-dependent

aperture correction, a nonlinearity correction (to account for the nonlinearity of the Maximum
Entropy method which systematically underestimated the flux in point sources by about 1 standard

deviation) and a zero-point correction which depended on the SNR of the observed image. Their

photometric error was typically about 0.1 mag from the deconvolved data, comparable to what they

derived using standard profile-fitting photometric techniques on the original images (see Stetson

1987, 1993).

Busko (1993) has performed a systematic investigation of the photometric properties of several

restoration algorithms including the iterative/recursive algorithm presented here. He found that

photometry performed on images restored with the iterative/recursive algorithm produced the best

results in terms of linearity and reduction in confusion between neighboring stars. Thus, it is

not surprising that in comparison with the studies mentioned above, our simulation indicates that

photometric results from the iterative/recursive procedure may be more reliable (and certainly

less complicated) than those obtained with either the Richardson-Lucy or the Maximum Entropy

algorithms. An application of the iterative/recursive algorithm to HST images of the globular cluster

NGC 6352 is presented elsewhere in this volume (Fullton 1993) and demonstrates the excellent

photometric restoration possible with this algorithm.

10. Discussion

The iterative/recursive algorithm at all but the lowest-level recurrence interrupts each iteration of

the BID algorithm, defines a new, related deblurring problem, and then executes the algorithm on

the related problem. The power of the algorithm lies in the way the new problem is defined.

Repeated blurring by the PSF produces a progressively simpler image, eventually blurring the

image to a constant. Only a Gaussian blur is guaranteed not to create spurious local structure during

progressive blurring (Koenderink 1992), but any realistic PSF will eventually blur an image to a

constant.

Each difference image (Iq - IJ ) estimates the derivative of image intensity with respect to

blurring by the PSF. This kind of derivative is central to the multiscale geometric image decom-

positions used in recent computer vision research; Coggins (1992) has called the computer vision

approach based on progressive blurring spatial spectroscopy. Each recursion level implements the

next higher order of this differentiation. The revised problem defined in each recursion, then, is to

deblur a higher-order derivative of the image with respect to blurring by the PSF.

Blom ( 1 993) has recently shown that the computation of higher-order derivatives is more robust

against noise than the computation of lower-order derivatives in the presence of (white) noise. This

result is surprising because the ill-posedness of differentiation has become an informal axiom of

image and signal processing. Blom's result can be partly explained by the larger spatial extent

of higher-order derivative kernels. The larger spatial extent, required to fit in all of the ripples of

the high-order derivative operator, regularizes the data by smoothing out small scale noise. In the
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present application, the higher-order derivatives are simpler, more regular images, so the iterative

deblurring algorithm in the last recursion level is executed on a simpler deblurring problem having

less noise contamination. The deblurred result is then used to correct the estimates of the true image

at the previous recurrence.

Some reblurring algorithms (Kawata 1980b) that blur the observed image before iterating in

order to suppress noise appear to be roughly equivalent to performing one recursion level of the

iterative/recursive algorithm.

The iterative/recursive restoration algorithm will still encounter numerical problems if the

noise is severe enough to persist in the lowest recursion level. However, the recursions make the

iterative/recursive algorithm more robust than the BID algorithm, linear and flux-conserving, faster

to converge toward the inverse filter than the BID algorithm, and faster to run than other deblurring

algorithms (Busko 1993). The power of this algorithm suggests that research into restoration of

chemical spectra, medical images, and other restoration problems should be revisited using this new

algorithm.
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Abstract. This paper presents a regularized least squares algorithm for the restoration

and reconstruction of images. A whitening filter of short length provides the regularization

function. An adaptive version of the algorithm is developed by matching a weighting

function to the regularization function. The adaptive regularization simultaneously leads to

proper noise suppression and enhanced resolution of discontinuities.

1. Introduction

The restoration or reconstruction of signals which are degraded by a low pass type system repre-

sented by the point spread function h{j\,J2) and corrupted by noise is a typical ill-posed problem.

Nevertheless, image restoration has proven to be a valuable tool to compensate for the degradation

of the imaging quality of the Hubble Space Telescope (HST). Fig. 1 schematically shows the gen-

eration of the measured data. Basically we want to estimate the signal s, e.g., an image written as a

vector, from the measured data g which contains a noise term n. This signal can not be measured
directly but only after having passed a linear system represented by the matrix H:

g = Hs + n.

In the case of a shift invariant system H is a Toeplitz matrix.

(1)

s(i„i,)

>
hCkpipk^)

h(k ri,,k 2
-i

2)

n(k, .kj

)

^ g(k,.k2)

/V*

Figure 1 . Generation of the measured data.

2. Restoration Based on Adaptively Weighted Regularization

Since linear shift invariant algorithms only lead to an unsatisfactory compromise between resolution

and smoothness of the estimate s (Andrews and Hunt 1977), we derive an adaptive method. This

40
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is done by incorporation of the inverse weighting matrices V ' and A -1
into the quadratic error

term Eq. The Toeplitz matrix F determines a linear shift invariant regularization function:

EQ = s • FTV-'F • s + (g - Hs)T • A-1
• (g - Hs) = min.

, (2)

s = (HTA- 1H + FTV- | F)-' HTA _I g . (3)

The optimization of V and A is carried out by minimization of the expectation Dq of the squared

distance between the original signal and the estimated signal:

DQ = ((s - s)
T -(s-s)) = min. , (4)

dDQ/dV = A dDQ/dA = 0. (5)

Application of matrix differentiation rules and matrix algebra leads to the same matrix equation

in both cases which means that the results are not independent of each other:

FTV-'
t
F • (ss

T
)

• HT = HTA-
p

'

t

• (nnT
) (6)

Since there are infinitely many solutions we are free to select one of the matrices such that the

simplest solution is obtained:

Aopt = (nnT )| Vopt = F-{ssT )-F7
'

(7)

The matrices are determined by the statistics of the original signal and the noise which are

described by the autocorrelation matrices. If Eq. (7) is inserted into Eq. (3), the resulting estimate

is similar to the estimate provided by a shift variant Wiener filter (Andrews and Hunt 1977). If

the signal and the noise are Gaussian distributed it is also similar to a Maximum a Posteriori

estimate (Andrews and Hunt 1977). Theoretically this is the optimal least squares solution of our

restoration problem. But there are two reasons why it does not work in practical applications. First,

the autocorrelation matrix of the original signal must be known quite accurately. Therefore, the

algorithm is extremely sensitive against modeling errors and usually (ssT ) can not be estimated

from the data at hand with sufficient accuracy. Second, its size is prohibitively large. In the case of

a 512x512 pixel image the size of the matrix is 262144x262144, which exceeds even the memory
capacity of today's computers.

A suboptimal but practical algorithm is obtained if we replace the general weighting matrices

V and A by the diagonal matrices VD and Ad- Now the number of parameters of the statistical

model is drastically reduced and this makes the algorithm much more robust. Eq. (2) and Eq. (3)

must be replaced by

EQ = s-FTVo l F-s + (g-Hs)T -Ao
l

(g - Hs) = min. , and (8)

s = (HTAD
,H + FTVD

{ F)- l -HTAD
l -g. (9)

The optimization of Ad and VD is again carried out by minimization of the expectation Dq of the

squared distance between the original signal and the estimated signal:

DQ = ((s - s)
T

• (s - s)) = min.
, (10)

dDQ /dvu = 0Vi A dDQ /dakk = V k . (11)

Application of matrix differentiation rules and some matrix algebra show that the diagonal elements
of the optimal diagonal matrices must be equal to the diagonal elements of the previously determined
optimal general weighting matrices so that

a/tit p t
= (nn7

) \kk v110pl = F • (ss
T

)
• Fr

\
u . (12)
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Now we can derive a linear adaptively regularized restoration algorithm. Eq. (3) is rearranged,

and using components we obtain a linear system of equations:

dEQ /ds(qi,q2 ) = 0Vqu q2 =>

£;, E; 2
*(t'i,t2) £j, £j2

w{ju J2)f{ji - h,J2 - h)f{j\ - qi,J2 - ft)+

+ E;
1
E4

-

2
S(ii,i2)£fc, Y,k2 °n

2 {ku k2)h{k x
- i\,k2 - h)h(k x -qi,k2 -q2 ) =

= Hki'Ek1
<rn

2
(
kU k2)9(ki 1

k2)h(ki -qi,k2 -q2 ) (13)

a^opt is determined from the local noise variance. Basically this means that in the case ofHST data,

the Poisson distributed noise is approximated by Gaussian distributed noise with signal dependent

variance:

Ukkopt = (
nnT

) \kk = an
2
(
kU kl) (

14
)

a~ 2
(k\, k2 ) is estimated from the measured data. Since noise is Poisson distributed its variance is

proportional to the local signal value. The HST point spread function leads to strongly smoothed

images so that some additional smoothing using the operator sm.(k\,k2 ) causes only minor errors

in the estimation of the underlying noise-free signal. Therefore we estimate:

o- 2
{k

x
,k2)K(g{k u k2)*sm{k u k2))-

X

(15)

The reciprocals of the diagonal elements of the inverse weighting matrix determine the optimal

weighting function w(i\, i2 ):

vd

=>w(i
l
,i2 ) = /I ^2^2f(JiJ2)s(i\-Ji,i2-J2)\ ) (16)

Obviously the weighting function is matched to the regularization function in a remarkably simple

way. Unless a simulation is performed, s(i\
, j\ ) is not known a priori! Therefore, an estimate must

be determined from the available data. Before the iteration starts the measured data themselves

provide the best available estimate of the original signal. If we assume that during the iteration

the estimate converges to the original signal, estimates of the optimal weighting function can

be determined successively from intermediate results of the iteration. In practical applications this

tricky approach converges. The algorithm is self-updating at least up to a certain degree (Bundschuh

1992):

w(i\, i2 ) = I 53 5Z /O'l

>

h)s'n(ii - j\ , h - h) iteration no. fi + 1 . (17)

\ ji h J

3. Optimization of the Regularization Function

In order to complete the design of the restoration algorithm we have to select the regularization

function f(i\,i2 ). In Eq. (8) diagonal weighting matrices were introduced which means that

correlations are neglected. The result of the convolution operation Fs should be uncorrected, or

in other words, "white". Therefore f{ii,i2 ) is also called a "whitening filter" (Yaroslavsky 1985).

Approximations to this type of filter are differential operators (Twomey 1963), the Laplace operator

(Pratt 1978), and the linear predictor (Bundschuh 1993):

•Swhite(il,«2) = /opt(s'l,*2) **s(ii, i2) (18)



Adaptive Least Squares Image Restoration 43

The application of the optimal whitening filter leads to a constant power density spectrum. Obviously
the modulus of the transfer function of the optimal whitening filter must be reciprocal to the modulus
of the transfer function of the original signal. Its phase still remains to be determined by some other

optimality criterion. The resulting whitening operator is obtained by means of an inverse Fourier

transform:

fopt(mi,m2 ) = |5(mi,m2)|-
| e"(m ''m»)

(19)

/op.(M,'2) = T-rVV |5(m,,m2)r
l

eJ^ m|
'
m2

)e
2^< m|1 '/ /l+m 2 , 2/ /2)

(20)

The size of the whitening operator which is used in practice should be as small as possible in

order to save computer time. In this paper an operator with 5x5 coefficients is used for the processing

of simulated as well as measured data. Basically this truncation reduces the decorrelation properties.

The optimality criterion for the phase function is minimal spatial dispersion which minimizes the

truncation error. Partial differentiation with respect to the unknown phase function and equating the

result to zero leads to a system of non-linear equations:

mi ?M/opi(M^'2)/opt(M^'2) = min. (21)

dl[k k )
EE »M/opt(M, »2)/opt(M» «2) = 0V *,,**. (22)

A general solution cannot be found analytically, but some special solutions can easily be

obtained. The restriction to real operators enables the use of symmetry properties of the phase

function. A special solution which leads to minimal dispersion is

7(*i,**) = 0. (23)

From Eq. (19) we see that basically the power density spectrum $ss(mi, 77*2) and the autocorrelation

function yss (t'i, ij) of the original signal should be known. If available, some a priori knowledge
of the statistics of the original signal can be used. In many cases images can be modeled quite well

as two-dimensional first order Markov processes (Pratt 1978):

$M(m,,m 2 )
= /'

2T (
24

)

Since the coarse structure of the underlying signal can be seen from the measured data, the power
density spectrum of the measured data was used for the processing of simulated as well as measured
data instead of the unknown power spectrum of the original signal:

$ S5(m,,m2)^|G(m,,m 2 )|

2
. (25)

Eventually the self-updating iterative procedure which is used for the weighting function w(i\, i2 )

using the intermediate results of the iteration can be used for the power density spectrum:

$ ss (m|, m2 ) = 1^(7771, m2 )|

2
iteration no. /i + 1 . (26)

Generally a variation of the regularization function within the image should enable the adaptation

to local statistical image properties. Fig. 2 shows an example for whitening operator /(ii,j 2 ).

Obviously it is a high pass filter which is reasonable for regularization functions. Qualitatively it

shows some similarity to the Laplace operator.
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Figure 2. Whitening (decorrelation) operator.

4. The Boundary and Resampling Problem

As sketched in Fig. 3, registered images are influenced by fractions of the original signal from

outside the domain of measured data. We distinguish three characteristic regions:

Inner Region Points in this region are covered by the complete point spread function. Therefore

we can use the maximum available information on these data and should be able to obtain a

reasonable restoration.

Outer Region Points in this region are not covered by the point spread function at all. Therefore

we do not have any information on these data and they cannot be restored.

Intermediate Region Points in this region are covered by only a fraction of the point spread

function. Ifwe move from the inner region towards the outer region, the available information

on these data decreases more and more. Therefore, the quality of the restoration decreases in

the same manner.

If the region of the restoration covers only the inner region, it is assumed implicitly that the

original signal has a region of support which is equal to the support of the restored data. But

in reality the underlying original signal (the whole sky in astronomy) has an unlimited region of

support. Therefore the assumption of a limitation can lead to inconsistencies and to oscillations at

the boundaries of the region of the restoration.

A reduction of the boundary problem is possible by suitable pre-processing of the measured

data, e.g., by even continuation (Yaroslavsky 1985). A rigorous solution which completely avoids

the boundary problem is the extension of the region of restoration by the extent of the point spread

function. If the extent of the measured data is 5 1 2 x 5 1 2 and the extent of the point spread function

is 256x256, the extent of the region of the restoration should be (512 + 256) x (5 12 + 256) =

768x768. In this way the measured data are not influenced at all by original data from outside

the region of restoration and no inconsistencies can occur. Basically this means that the measured

data are padded with zeroes up to the extent of the real measured data plus twice the extent of the

point spread function. The extent of the region of virtual measured data should be (512 + 256 +

256) x (5 12 + 256 + 256) = 1024x 1024. The concentration on the real measured data is obtained

by means of the weighting function a~2
(k\, k-j) = outside the region of real measured data. We
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Figure 3. Characteristic categories of data.

would obtain the same effect if all the padded data were available with infinite variance of the noise

outside the region of real measured data.

A fact which first appears to be peculiar is that the domain of restored data must be larger than

the domain of available measured data!

The weighting function a~ 2
(k\ , ki) can also be used to incorporate resampling on a finer grid

directly into the restoration process. The measured data are again padded with zeroes, but now the

zeroes are positioned between the real data points (see Fig. 3). Again we assume that the variance of

the noise tends to infinity where we do not have measured data. Of course this kind of resampling is

only possible if the point spread function is known completely on the finer grid. Basically it should

even be possible to incorporate an interpolation directly into the restoration process if the measured

data are given on a non-uniform and/or a non-rectangular grid.

5. Processing of Simulated Data

Fig. 4 shows a simulated original signal which consists of a random collection of clouds and impulses

.

The clouds are created by threshholding a superposition of two arrays of strongly correlated and

weakly correlated random numbers so that a pre-specified fraction of the image remains black. The
stars are simulated as a random collection of impulses which are distributed randomly over the

image. The measured point spread function from the data file F372M.FTTS, which was used to

generate the simulated measured data, is also displayed.

Fig. 5 shows the simulated measured data together with the restored image. The noise is white

and Poisson distributed with an SNR of 10 dB. The degree of blurring as well as the noticeable

amount of noise is clearly visible. The restoration of the clouds is excellent, while the stars remain

somewhat blurred. The reason for this difference is the use of the power density spectrum of the

measured data which overestimates the correlation inherent in the data.
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Figure 4. Random test signal and measured point spread function.

Figure 5. Simulated measured data and restored image.
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Figure 6. Measured Saturn image and point spread function.

6. Processing of Observed Data

Fig. 6 shows an image of Saturn which was recorded with the Wide Field / Planetary Camera.

It is stored in the file SATURN.FITS. The measured point spread function from the data file

SATURN.PSF.FITS is also displayed.

Fig. 7 shows the result of restoration. The restored image appears much clearer, with higher

contrast than the measured data. The edges, which are considerably blurred in the measured data,

can now be located exactly. Therefore the improvement provided by the restoration is obvious.

7. Conclusions

The adaptive least squares restoration method presented in this paper is based on three fundamental

properties. First, the regularization operator should be selected such that it removes the correlation

contained in the original signal as far as possible. Therefore it should approximate a whitening

filter as close as possible. Second, the function which provides the locally adaptive weighting of the

degree of regularization must be matched to the regularization operator. Third, a suitable weighting

of the noise term depending on the reliability of the measured data is introduced. The weighting

function can also be used to incorporate the solution of the boundary problem as well as of the

resampling problem directly into the restoration. The resulting adaptive restoration method leads

to proper suppression of noise as well as of oscillations without strong blurring of discontinuities.

The whitening operators can be calculated approximately from the data at hand and we do not have

to select a particular regularization operator in advance.

Acknowledgments. A special acknowledgment is due to Prof. Leonid P. Yaroslavsky from the

Russian Academy of Sciences who provided the basic idea to use whitening filters as regularization

operators in adaptive least squares restoration.
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Abstract. A new instrument paradigm is proposed based on the discovery of a method
to determine a robust inverse point spread function for a scientific observing instrument

modeled as a linear system. As a result of this discovery, it is possible to contemplate an

instrumental extension which results in the recovery of a major portion of lost resolution

due to the blurring effects of the PSF. Implementation of the instrumental extension and

the resulting resolution enhancement is independent of prior knowledge of or access to the

observed data. The method is applied to HST images as well as several one dimensional

spectral data sets. Results of HST recoveries are compared to Richardson-Lucy recoveries.

1. Introduction

All scientific instruments share a common basis when viewed as a linear system. An observing

system /, for example, has an input 0, and an output D, a response (or point spread function) p,

and additive noise n, as represented in Eq. 1

:

(-) I(p) -^D + n (1)

We can characterize such a system mathematically using the definition in Eq. 1 , which describes

a linear instrument model in continuous space. We can define an extended instrument, as in Eq. 2,

by adding another linear processing system L, having a response function q that produces an output

4> given the input D

-^
|

I(p)
|

^i
\

L(q)
|

-^
<f> (2)

The idea of an extended instrumental system such as Eq. 2 gives us a powerful way of looking

at the processes that we wish to describe in this paper.

Using the extended linear system instrument model, our goal is to obtain an enhanced instrument

with useful, data independent properties;
<f> may be, for example, a simple estimator of </, in which

case our extended instrument model can be used for resolution recovery for both spectra and images.

Or the model can be used to transform from one type of point spread function to another such as

a positive semi-definite estimator of q in order to make possible an accurate determination of the

continuum level from a sine apodized spectrum as from an Fourier Transform Spectrometer. We will

first give examples of these applications below. Then we will briefly explain our methodology in

obtaining the linear filter q from a novel application of a neural network, specifically a convolution

network.

49
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Figure 1 . Left: Gaussian based HST-like PSF. Right: Tiny TIM based HST PSF.

2. Image and Spectrum Recovery

2.1. General Procedure

The procedure used to recover both spectra and images or, alternatively, to map from one type of

PSF to another, is the same and is outlined below:

1

.

Generate a model instrumental point spread function or obtain an observed one.

2. Determine the net instrument response desired. That is, determine what p ® q, the effective

PSF of the extended instrument should be.

3. Use a numerical algorithm, the convolution network (discussed in detail below), to search for

the solution that provides the desired mapping of the observed data to the desired form. That

is, find a q such that p £g) q is the desired extended instrument PSF Note that the extended

instrument is implemented totally independent of the specific output data of the instrument,

i.e., q is data independent.

4. Apply the convolution network's solution to the observations to be mapped, i.e., compute

D ® q = -^enhanced-

2.2. HST-Like and HST Image Reconstruction

We first made preliminary studies investigating recovery of images that have been broadened by the

HST's mirror by modeling its PSF as shown in Fig. 1 . At left is a simple PSF based on a superposition

of two Gaussians, and at right is a typical Tiny TIM PSF for HST's Wide Field/Planetary Camera.

The results of applying our procedure outlined above are given in Fig. 2. At left is the original

ground-based image of M82. The middle image shows the M82 data degraded by our model PSF.

At right is the recovered estimate of the image using the procedures outlined above. Note that the

estimated image does not use any knowledge of the original image. Fig. 3 shows how well the

recovery process works in the presence of artificially added noise.

We have also applied our recovery procedure to HST images accessible from the ST Scl image

restoration test data sets. Our results for HST images are shown in the following figures. Fig. 4 is an

HST image of Jupiter, our enhancement, and a comparison with a Richardson-Lucy enhancement

(provided by Bob Hanisch). The PSF used is a Tiny Tim model PSF. Fig. 5 shows our recovery of

an HST image of Saturn using an observed 53x53 point HST PSF. Fig. 6 is based on an IRAF M5

1

image from the ST Scl test data set. The Tiny Tim-PSF processed image used as a starting point

in our processing is also from the image restoration test data set. Our recoveries from test images

with and without noise are shown with a Richardson-Lucy recovery with noise (also from the ST
Scl test data set). We believe that our method compares well with the Richardson-Lucy method,

but have not made any quantitative comparisons.
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Figure 2. Recovery of M82 based on a noise free blurring of the image by an Hubble-
like PSF.
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Figure 3. Recovery of M82 based on a random noise blurring of the image by an

Hubble-like PSF.

Original Image Recovered Imag Lucy-Richardson Imoge

Figure 4. Sample recovery of an HST image of Jupiter compared with a Richardson-

Lucy recovery.
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Original Image Recovered Image

Figure 5. Sample recovery of an HST image of Saturn.

2.3. Recovery of Spectra

Tunable Diode Laser Spectroscopy Our recovery procedure was applied also to spectral data, in

this case to a tunable diode laser (TDL) spectrum. The TDL observation of 1 3 //.m propane is shown
in Fig. 7. The second row shows an example of a constrained signal space deconvolution of this

spectrum, using a nonlinear method (after Blass and Halsey 1981 and Jansson 1984). The other

plots are examples of resolution enhancement using the our procedure with the target function being

Gaussians having a full width at half maximum (FWHM) of 2 data points, 3 data points, and a unit

impulse function, respectively. The TDL PSF is modeled with a Gaussian having a FWHM of 6

data points. The use of targeted PSFs is discussed in more detail below.

Numerical Apodization Fig. 8 shows that it is practical to map a spectrum from a sine apodization

to a positive semi-definite distribution using our numerical procedure. A sine point spread function

(top, Fig. 8) is mapped to a sine 2 function (middle, Fig. 8), and to a Gaussian function (bottom, Fig.

8) using the linear filters derived from our procedure.

Numerical Apodization Plus Spectral Recovery: FTS Spectrum One benefit of applying our

extended instrument model is the ability to cascade a series of filter functions to achieve a desired

end result. For example, we can model the response of a Fourier Transform Spectrometer (FTS)

spectrum whose PSF is a sine function and to map its response to a sine 2 apodized spectrum using our

procedure. The numerically apodized spectrum was then deconvolved (restored) using a nonlinear

constrained signal space deconvolution algorithm. The "true" spectrum (before observation) is

shown at the top of Fig. 9. The second row of Fig. 9 shows an observation from a simulated FTS
spectrometer. The third row shows the sine

2 apodized spectrum. An estimate of the true spectrum

derived from the apodized spectrum is shown in the bottom row by applying a further inverse filter.

2.4. Deconvolution by a Novel Neural Network

The instrumental convolution is characterized by Eq. 1, a Fredholm integral equation of the first

kind. In principle, one can analytically solve for q by using Fourier transform theory. The instrument

model equation is d = p® + n and its Fourier Transform then is D = PQ + N . Rearranging and
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True Image Lucy- Richard son Recove ry

Recovery w/o Noise Recovery w/ Noise

Figure 6. Example recovery of a simulated HST image based on the IRAF test image

ofM51.
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fig. 7a Observed Propone Oolo
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Fig. 9o Simuloted Goussian Spectrum

Figure 9. Simulated deconvolution of high resolution spectrum.
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using the inverse Fourier Transform, one recovers an estimate of

=
r. yi;),-,^

This direct inversion has serious problems: ' >~£ '
"'

is not well behaved, in particular it amplifies

noise. The convolution network searches for an approximate q that minimizes an error function,

f2 = (P © <7
_ T) 2

, where T is the target function. The convolution network is derived from

the error-backpropagation neural network model with a slightly more complex, yet more natural

connection scheme for imaging systems. Many deconvolution algorithms use a correction term, e,

of the form:

e = p (V) "enhanced — "observed (4J

The convolution network involves a correction that has the form:

e = p ® q - desired (5)

where p is the point spread function and desired is the desired result of the mapping (i.e., for a sinc(x

)

function mapped to asinc2
(a:/2) function, desired is the sinc

2(i/2) function, p isasinc(x) function,

and q is the function that minimizes e). After determining q, the application of the convolution

network is computationally inexpensive since it involves only a convolution. It is feasible to build an

instrument that can be tailored for real-time data enhancement/processing via several filter functions,

qi, as shown in Fig. 6.

f — l

-* u Positive Definite
9.iCp^l^rUq) —'-> t Arbitrary Mapping (6)

I
—^ 4> Resolution Recovery

3. Conclusions

As a result of our explorations, we can set forth several points in conclusion.

• The convolution network has proven to be a robust method for determination of an effective

solution to a class of Fredholm integral equations of the first kind.

• The convolution network was originally developed to search for an efficient, data independent

method of image reconstruction of Hubble Space Telescope imagery. This has proven to be

highly satisfactory and work is continuing.

• The convolution network has proven successful in resolution enhancement of many imaging

systems.

• The convolution network can successfully be applied for the processing of sine apodized

spectra to obtain a positive semi-definite representation of the spectra. This provides a means
for obtaining a baseline for the sine apodized spectra.
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Abstract. The model updating technique used in the Maximum Entropy Method (MEM)
task for image restoration in IRAF/STSDAS is described in detail. The properties of the

method, including faster convergence in iteration and reduced nonlinearity of the solution in

photometry, are discussed and shown by statistics and illustrations.

1. Introduction

The memO package version B in IRAF was released in October 1992. Since then the task irmeOb
for image restoration by MEM in this package has undergone major changes. The latest version

of this task, with the name mem, will be included in the STSDAS V. 1.3.1 patchkit scheduled to be

released in late 1 993. Currently its executable code cmem . e for Sun workstations, together with the

parameter and help files, are stored in the NOAO anonymous FTP site (iraf.noao.edu, ~/contrib/).

The model updating (MU) technique has greatly improved the performance of the task, tem-

porarily named cmem, of the new version. The iterations converge much faster, and the photometric

nonlinearity of the results have been reduced.

In the following we will elaborate on the MU technique and its implementation in cmem.

Statistics and illustrations will be used to show the aforementioned merits.

2. Model Updating

The entropy expression generally accepted in image restoration is (in 1-D notation)

S
(
h

) = J2 h3~ mi ~ h
i
XoZ(hilmj) (

1
)

3

where h = {hj} represents the image to be restored, and m = {m,j} is the model or prior estimate

of the image.

The model m in the entropy expression plays a special role in MEM image restoration. In

most cases, e.g., using the x
2 data constraint, the MEM solution is unique, depending on the model.

More specifically, once the model is given, the solution is unique. However, any change of the

model will result in the change of the solution even if the data constraints remain the same. This

will be shown specifically in the next section.

Let us consider the following specific formulation in the MEM algorithm. The entropy of an

image defined as in Eq. (1) is maximized subject to the data fitting constraint in the image domain

E = X
2 = Yl I

^Pjk hk - d
j\

2
/ v3 = Ec

i k

'Also with Beijing Astronomical Observatory, CAS, Beijing 100080, China.
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and the total power constraint

F = H h
J'

= Fob
3

where {d
} } represents the data, i.e., degraded image, {v

3 } the noise variance, and (j)jk) the PSF
(point spread function) combined with the ICF (intrinsic correlation function); the subscript c stands

for critical value, and ob for observational value.

The method is implemented by forming the objective function

J = S -
X

-aE-(3F

and using the Newton method to find ME solutions, i.e., to maximize J for particular values of the

Lagrange multipliers a and [3 (inner iteration). The desired values of E and F are achieved by

choosing appropriate a and (3 (outer iteration). In what follows we will concentrate on a and pay

minimum attention to f3 since the total power constraint is of little interest in the problem.

The iterates are updated according to

h<*+') = h<*> + //Ah

where /j. is an optimal step determined by a one-dimensional search. In order to calculate the change

Ah = {Shj}, we need to solve a set of linear equations of very large size:

(-VVJ)Ah = VJ

where the gradient and matrix elements are calculated from h'
fc
', i.e., the current h and given by,

respectively,

(VJ)j = -\og{hj/mj) - aJ2C%2pnk h k - dn )/vn pnj - (3 (2)

n k

and

(-VVJ)jfc = h
J

l

6jk + aY^PnjPnk/vn • (3)

This is a time consuming operation.

In the underlying algorithm for the program, the non-diagonal elements of the PSF matrix are

simply ignored in calculating the Hessian VVJ under the assumption that the diagonal elements

dominate, so that the matrix becomes a diagonal one:

(-VVJ)jfc = h~ x + aq
3

for j = k\ =0 otherwise

where

n

In this way the solution of the equations becomes a simple operation, specifically,

% = TZl4 (VJ)'-
h
J

+ aq
3

The scheme described above is attractive because of its simplicity. However, it has the following

drawback: At the beginning of iteration, a is zero and h = m. Normally the model m is a flat

image. In order to reduce the value of E, a gradually steps up in the course of the iteration as

depicted schematically by the lines located in the upper part of Fig. 1 . As such, it is fairly easy to find

the ME solutions for the particular as at the early stage of iteration since the ignored non-diagonal

elements in Eq. (3) are relatively insignificant. However, as the iteration advances, it becomes more

and more difficult to find the ME solutions for the particular a's because the ignored non-diagonal
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the ME solution hS ', determined from = (VJ)j in Eq. (2) with rrij = 1, satisfies

ftJ'^expf-a^riV-/?,)
n

where a\ and /?i are a and /? used in the iteration, and the residual

r^ = (Y,Pnkh[
[) -dn )/vn .

k

Without Model Updating The second outer iteration starts off with the initial value h- , and ends

(2)
up with the solution hj satisfying

hf' = exp(-a2 ^(^Pnkh^ ~ dn )/vn pnj - 2 ) • (4)

n k

Note that we still have m
}

;
= 1

.

With Model Updating The ME solution from the first outer iteration is used as the model, i.e.,

rrij in Eq. (2) is equal to /r . The initial value in the second outer iteration is still h . Now the

solution hS "
satisfies

hj'' = rrij exp(-a2 £(£pnfc/ijt
2)/ ~ dn)/vn • Pnj ~ P'2 )

n k

= exp(~^ a ^n
) -Pnj+ a2(T,P^h[

2)'-dn )/vn -pnj )-(p l
+/3'

2 )). (5)

n k

Note that Qir„ 'pnj is fixed in the iteration.

The \
2 values are equal for both cases:

Ei = £ i $>42)
- djf/vj = e2 = y, IE^42)/

- ^i
2
/^ = £c

J k j k

Theequalityof £,

2and£2 rneansthatmetwoso l ut 'ons h'
2

' = {hj }andh' 2''= {h. } are located

in the same hyper-ellipsoid of x
2 = Ec . They are two distinct points when Ec ^ 0. Assuming that

exact data fitting could be achieved, Ec = 0, then the hyper-ellipsoid would shrink to a single point

representing both h'
2

' and h'
2
''. Even in this case, h'

2
' and h'

2 *' would be two solutions that are

not equal because the "solution space" (a set formed by all the possible solutions) without model

updating is different from that with model updating. This can be understood by comparing Eq. (4)

with Eq. (5) and noticing the term a\rn 'pnj in the latter's exponent. The situation here is similar

to that in which we have two different coordinate systems in a space; the same point in the space

has different coordinate values in different systems.

Now we revert to the case where Ec ^ 0. Based on the above discussion, it is easy to see that

h'
2

' and h'
2 )' are different.

As a digression we would like to point out that the consistency of MEM solution ensures that

the final solution depends only on the given data but not on the order in which these data are used

(Wu 1991 ). However, the argument given there does not apply to the current case concerning image

restoration.

In the case where more than two outer iterations are performed, it is clear from the above

discussion that the final solutions for a certain value, say iVd ata , of Ec are different with and without

model updating. But we are not able to quantify theoretically the difference between them.



62

We have observed in experiments that the solutions with and without model updating are

similar in morphology but noticeably different in photometry. The former is less biased or has

reduced nonlinearity in photometry. Why is that? It is generally accepted that better models will

result in solutions better in photometry. The flat model used throughout the iteration is by no means

the best one. In the iteration, as a is increasing and data fitting becomes tighter and tighter, the

large-scale structure of image is built up first and the small-scale structure comes later. The model

is improving by updating it in a reasonable way. This explains the improvement of the solution in

photometry. Model updating does make difference to the solution. Fortunately, it becomes better,

not worse.

4. Tests Using a Simulated Image

A simulated globular star cluster for the WFC of HST before the servicing mission has been used

as a test case. The image was retrieved from a set of test data created for image restoration work in

the ST Scl anonymous FTP area.

The image contains 470 stars with approximately the maximum and minimum pixel values

(2500 and 10 DN, respectively), covering a range of magnitude of 6. A standard (not subsampled)

PSF is used. The image size is 256x256 pixels.

4.1. Convergence Speed

Convergence speed is expressed in terms of the number of FFTs needed to obtain the final MEM
solution. The number listed in Table 1 is decomposed into two factors as (the total number of

iterations) x (the number of FFTs per iteration), cmem is the latest version of my MEM program.

Values of m_update = 1 and 3000 correspond to the most frequent model updating and no model

updating, respectively. Comparisons have been made with the lucy task (Richardson-Lucy method)

in the IRAF/STSDAS package and MEM/MemSys5, a commercial software package.

Table 1 . The number of FFTs for convergence.

cmem lucy MEM/MemSys5
m_update=l =3000 historic classic

108x4 1881x4 302x4 375x2 not converged

after 10016x2

From the table we can see that the convergence is speeded up dramatically because of model

updating. With this technique, cmem converges fastest.

4.2. Photometry

In Fig. 2 "Difference" gives the stars' magnitudes estimated from the true image ("True magnitude")

minus those from the restored image. The radius for aperture photometry is 3 pixels. Without errors

in photometry, the points would lie on a horizontal line as additionally drawn in each plot. Without

bias, the points would symmetrically distribute below and above the line.

In Fig. 2 we see that the restored image C by lucy exhibits quite good linearity in photometry.

cmem with model updating (A) is comparable to lucy except near the fainter end of the magnitude

range where cmem shows some systematic errors. The extreme differences between A and C are

+0.20 and -0.45 mag.

The result in the case of no model updating (Fig. 2B) is noticeably worse. The result from

MEM/MemSys5 historic (D) is worse still. The rather large amount of offset in D is due partly

to the lack of total power constraint in the program. (The total power errors correspond to offsets

of 0.011, 0.017, 0.035 and 0.12 in A, B, C, and D, respectively.) The extreme differences are
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A. cmem, m_update=l. B. cmeni, m_update=3000.

C, lucy. D. MEM/MemSys5 historic.

-10 -8
True magnitude

Figure 2. Difference between the true and restored images in photometry.

+0.60/-0.35 mag between B and C, and +0.90/-0.45 mag between D and C. Intermediate values

of differences are scattered to a much greater degree compared with those between A and C.

5. Conclusion

It is a common view that MEM is slow in convergence and highly nonlinear in photometry. Now
this view should be changed. With the model updating technique, we are able to make things with

MEM better: the iteration converges fairly fast, and it is comparable to the Richardson-Lucy method

in photometry.
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Abstract. In the general framework of regularization of inverse problems, we define the

main contours of the reconstruction algorithm IDEA {Interactive Deconvolution with Error

Analysis) that is developed in our group, giving only some methodological principles. The
deconvolution problem is stated in terms of weighted spectral interpolation: the amount

and the nature of the interpolation to be performed is related — in a quantitative manner
— to the choice of a synthetic coverage linked to the target resolution. We illustrate this

deterministic viewpoint on the SN1987A image of HST and compare the result with two

Bayesian approaches: the Richardson-Lucy Method (RLM) and the Maximum Entropy

Method (MEM) in terms of gain in resolution, error propagation, speed of convergence, and

some relevant astrophysical criteria.

1. Introduction

The underlying principle used to restore an image is known generally as a reconstruction or inverse

problem. This usually involves finding a method of inverting certain classes y = Ax of integral

equations. In the case of a deconvolution problem, these equations are of the type (f>i{z) —

ffh(z - z')4> (z')dz' where h is the kernel associated with the operator A. This is basically

an ill-posed problem (Tikhonov and Arsenin 1977) because it does not fulfill the three Hadamard

conditions of existence, uniqueness, and stability of the solution. The last condition of stability

causes the main problems because if A-1
is not continuous, the solutions x are unstable with respect

to slight variations of initial data y. This means in practice that a slight error in the data may lead

to a very large error in the solution.

When the problem is discretized, its transposition into finite dimension certainly eliminates

the question of continuity of A~ ' , but the difficulties of the underlying infinite problem result again

in numerical instabilities due to the ill-conditioned nature of the matrix of the system. As a result,

the noise is enhanced and the solutions may be singular. Let Sy be some variation of the data

y. Denoting by Sx the corresponding variation of x, one has ||&c||/||a:|| < C ||^j/||/||j/||, where

C = UmaxlHmin, mLi ana< Aiin being the largest and the smallest eigenvalues of the imaging

operator. The condition number C provides then a measure of the difficulty about the resolution of

equation y = Ax, and hence a measure of the robustness of the problem under consideration.

To circumvent the ill-conditionedness nature of this problem, one is led to postulate that the

properties of the solution are not entirely contained in the equation to be solved. One is then led to

introduce a priori information on the solution which takes a regularizing part in the deconvolution

process. This information is the basis for classes of linear or non-linear methods which are known

as deterministic or Bayesian ones.

2. IDEA: Methodological Principles

The reader will find extensive studies in Lannes et al. (1987a-b) where the method summarized here

is presented in a closed form, and some astrophysical applications in Fraix-Burnet et al. (1989),

Roques et al. (1993) and Bouyoucef et al. (1994). To a first approximation, the experimental data

64
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<f>i are related to the original object
<f> , the intensity of the source at some high level of resolution,

by an experimental transfer relation:

<t>i{z) = (<j) * h)(z) + error term

where h is the Point Spread Function. The error term includes random or systematic errors (e.g.,

errors on the determination of the PSF, linearity assumption of the imaging relation, image sampling)

and signal-uncorrelated random noise (telescope, detectors, atmosphere, guiding, etc.).

The accuracy of the approximation considered when writing the convolution equation is con-

trolled in Fourier space by a pointwise image-error bound o
t
(u) such that \4>,(u) - h(u)4> (u)\ <

<7,(u). Moreover, 4> can be regarded as a member of a certain family of objects. For each spa-

tial frequency u, it is possible to exhibit a suitable upper bound of the Fourier transform of
<f>

:

\4>o\ < <70{u)-

Due to the noise-type and systematic errors characterized by the pointwise Signal-to-Noise

Ratio (SNR) in the frequency space:

SNR(u)= iV

a
t
(u)

it is preferable to give up trying to determine <j> at its highest level of resolution. One then

defines the "object to be reconstructed" 4>s as a smoothed version of 4> by a relation of the form

(f>s (u) = s(u)<fi (u), where s(u) is some synthetic transfer function small in the mean square

sense outside some extent Hr . This domain is the frequency coverage to be synthesized and

regularizes the effective support H of the transfer function h. The choice of its diameter is of

fundamental importance because it is closely related to the resolution limit of the reconstruction

process. Intuitively, the greater is H T with respect to H , the greater is the gain in resolution, but at

the same time, the less stable is the deconvolution process. The problem is then to define the best

compromise between the resolution to reach and the stability of the solution. The support of 4>s is

contained in some finite region V a priori known, which size and shape, determined in an interactive

manner, will prove to play, together with Hr , an essential part.

This filter s fulfills three conditions:

1

.

As the support of h is essentially in H , the support of s is essentially in H T (say for instance

95% of its energy in Hr ). One imposes a condition of the form:

—l^
/ \s(u)\

2du = e
\\s(u)\\ JHr

2. The support of s must be as small as possible (with respect to the choices of HT and £) to

ensure the best possible resolution for <f>s .

3. s(0) = 1 what secures flux conservation.

A first approximation <j> t
of <ps of the object to be reconstructed is:

[ otherwise

where a
t

is some threshold value of the order of unity.

In the frequency domain where the SNR is considered as good (SNR(u) > a t ), <f> t
is more

or less reliable. One then assigns to the data a weight depending on the values of SNR. Let a'
t
be

the threshold value beyond which the whole information contained in 4> t
is considered as entirely
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reliable. Let g(u) be the "weight function" characterizing the weight attached to this information.

The function g(u) is defined as follows:

1 outside Hr

1 in Hr if SNR(u) > o{

(information entirely reliable)

g(u) = <

SNR(u) - a t

®t
in Hr if a t

< SNR(u) < a'
t

(information partially reliable)

in HT if SNR(u) < a t

(information non reliable)

One supposes that SNR(u) < at outside Hr . So defined, g characterizes the way of ground-

ing the reconstruction on the information. Our deterministic procedure based on a least squares

minimization defines the reconstructed object as the function which minimizes the functional:

q{4>) = Hfftfi - 4>)\\

2
.

The stability of the reconstruction problem is conditioned by the smallest eigenvalue p?min of

the imaging operator. It can be analytically estimated by examining some physical parameters: v,

characteristic functions of V, and w = 1 - g
2
related to the choice of HT and to SNR. Indeed, this

eigenvalue is a function of the "interpolation parameter" :

'/2 / r \ '/2

77 = rv I / v(z)dz 1 ( / (w(u)du

characterizing the amount the interpolation to be performed both is real and in Fourier spaces. One
has the following relation:

m=0

where the km 's depend on v and w and are of the kind "moment of inertia" relatively to V and HT .

This equation provides useful approximation of the minimum eigenvalue of the imaging operator

occuring in the expression of an upper limit of the reconstruction error:

e = l|A0|| ^ 1 P

\\<t>\\ Vmin \\4>\\

When this analysis is implemented before the reconstruction, one has only an estimation p e of pmin

and the estimation </>* of 4>. The upper bound of the quadratic reconstruction error is given by:

e. = -— •

Me Ut\\

In these two expressions, p and e can be regarded as errors resulting from the noise analysis and

from systematic errors related to the choice of Hr .

Note that these majorants correspond to the case where the overall error would be concentrated

in the eigenspace associated with the minimum eigenvalue, what is not the case in practice (the

error is generally distributed amongst all the eigenspaces).

Once the stability conditions are fulfilled, the solution can then be obtained by several well

known minimization iterative methods. We apply the conjugate gradients method (Hestenes et al.,
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1952) because a particular implementation allows to compute the spectral decomposition of the

imaging operator (then a more precise error can be calculated). The convergence is superlinear,

and the least squares solution <j> is reached in a number of iterations of the order of the number of

degrees of freedom of the reconstruction process.

3. Example of Deconvolution: The HST Image of SN1987A

For illustration of IDEA, we present the deconvolution of an HST image of SN1987A because

of its relatively simple structure (a bright core together with a well delimited extended object,

the ring). We compare the result of the deconvolution with IDEA with two Bayesian methods:

the Richardson-Lucy method (RLM) and the Maximum Entropy method (MEM). For these two

methods, we use softwares available in IRAF at STScI.

This 128x128 pixel image is an 822s FOC exposure (f/96 mode, pixel size (X'022) through the

F501N (OIH) filter, obtained on 1990 August 24. It is described in Jakobsen et al. (1991) and a

RLM deconvolution of this image is presented in Panagia et al. (1991). We use a PSF obtained on

a star on 1990 August 28 in the same telescope conditions as for SN1987A.

We show in Fig. 1 the original image, and the solutions obtained with IDEA, RLM and

MEM. The RLM deconvolution is obtained after 50 iterations. For the MEM deconvolution, the

result is obtained after 30 iterations with an uniform noise of 2.56, a Poisson noise coefficient of

0.35, a quadratic noise coefficient of 0.03, and after final smoothing by 2 pixels. For the IDEA
deconvolution, we choose a gain in resolution of 1 .9 yielding an upper limit of 1 7% to the quadratic

error. As noticed above, the least squares solution is reached in IDEA in a number of iterations

corresponding to the number of degrees of freedom of the reconstruction process (8 in this case).

The supernova star is anisotropic in all images: the RLM and MEM solutions show several

spikes which are residuals of the PSF. But on the IDEA solution this anisotropy is essentially an

elongation at P.A.~ 45° that could be physically related to the elliptical projected shape of an

envelope around the supernova (see below).

At first glance, the RLM solution seems to reach the highest resolution. A comparison of the

profiles of the supernova between the different images is shown in Fig. 2. These profiles are obtained

by plotting the intensity of each pixel as a function of its distance to the center. A polynomial fit

of the profile of the PSF is presented on Fig. 2a, together with the profile of the faint star visible

SE of the supernova. The two bright stars close to the supernova cannot be used as PSF because of

distortions introduced by saturation effects in the camera, but they have nevertheless radial profiles

indistinguishable from that of the PSF. The first ring caused by the spherical aberration is clearly

seen. The inner part of the PSF has FWHM= 0'.'06 corresponding to the unaberrated telescope. On
the five other plots, the profile of the supernova on the raw and deconvolved images is compared to

the profile of the PSF.

Clearly, the supernova on the raw image does not have the profile ofthe PSF, meaning that it is

non-stellar (FWHM= ft' 13). This has already been found by Jakobsen et al. (1991), and its width

indeed corresponds to the expected size of the envelope that was ejected in the 1987 explosion.

Hence, the deconvolution should preserve the profile of the supernova. This is exactly the case with

IDEA (FWHM= 0712, Fig. 2b) and MEM (FWHM= 071 1, Fig. 2c). In addition, even if we try to

increase the gain in resolution with IDEA (at the expense of the quadratic error), the profile remains

larger than the PSF (FWHM= 0710). By contrast the supernova on the RLM solution (Fig. 2d) has

exactly the profile of the PSF, revealing over-resolution. Because one could argue that the number

of iterations on the RLM solution is too high, we present results with 10 and 30 iterations (Fig. 2e

and f): the supernova is already over-resolved at 10 iterations. So whatever the stopping criterion

that could be implemented in RLM, the solution would be over-resolved.

The total width of the bright structure of the ring W of the supernova (Fig. 1) is 0709 with

IDEA and 0708 with RLM (50 iterations). This shows that this structure is slightly resolved. This

confirms that the "large" profile of the supernova seen on the IDEA solution is really due to an

envelope around the star and not to a lack of resolution. We also note that the smoother shape of
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Figure 1. Top left: raw image of SN1987A. Top right: IDEA deconvolution. Lower
left: MEM deconvolution. Lower right: RLM deconvolution. The lut is linear and the

IDEA and RLM images are thresholded at the same levels.
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Figure 2. a: radial profiles of the PSF and the star SE of SN1987A. The curve is

a polynomial fit to the PSF. On the other plots: profile of the PSF and profile of the

supernova on the raw image compared with profiles of the supernova after the different

deconvolutions (b: IDEA, c: MEM, d: RLM 50 iterations, e: RLM 30 iterations, f: RLM
10 iterations).
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the supernova after deconvolution with IDEA is more reminiscent of an envelope around the star

than on the other deconvolutions.

On the IDEA solution, the ring is more filamentary and less noisy than on the other deconvo-

lutions. It is rather blobby on the RLM solution suggesting some over-resolution as shown in the

analysis above. It is very noisy on the MEM solution probably because MEM fails to gather the

information from the wings of the PSF which are of very low signal-to-noise ratio.

The fluxes of the supernova and the ring measured within the supports used in IDEA are listed

in Table 1 . For the raw image, we use the values estimated by Jakobsen et al. (1991) for comparison.

Table 1. Absolute fluxes in 10
-14

erg s
_1 cm-2 . The values for the raw image are

taken from Jakobsen et al. (1991).

Image
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Abstract. The open problem of restoring full Wide Field and Planetary Camera (WF/PC)

image frames is considered. Several novel algorithms or modifications to existing algorithms

are described useful for restoring undersampled (multi-) frames degraded by a space-variant

point spread function (SV-PSF) and by irregular faults. The algorithms comprise a faithful

rotation operator for sufficiently sampled images, an alternative method for treating regu-

lar and/or irregular missing data, and an algorithm for SV-PSF restoration combining the

classical sectioned restoration method of Trussel & Hunt with the generalized "co-addition"

restoration method of Lucy & Hook. With these algorithms a comprehensive full-frame

WF/PC restoration now appears to be feasible.

1. Introduction

The restoration of images obtained by the Hubble Space Telescope's first Wide Field and Planetary

Camera (WF/PC- 1), is still an unsolved problem. This is mainly due to the spatial variability of

its point spread function (PSF), in conjunction with a variety of other factors. The purpose of this

contribution is to investigate the algorithmic requirements for a comprehensive space-variant PSF

(SV-PSF) restoration procedure, and to show that, based on the developments of the past three years,

a full-frame WF/PC restoration has become feasible.

A comprehensive WF/PC restoration process (Fig. 1) has to address the following problems:

1

.

The point-spread function is spatially variable and relatively large. Restoration with a SV-

PSF is known to be notoriously difficult, and generally demanding in terms of CPU-power.

The PSF has to be computed from a parametric model, or somehow estimated from the data

frame(s). An efficient algorithm must be used in view of the large data and PSF frame formats.

2. The data frames are undersampled. Observations must therefore be carefully designed in

terms of splits, sub-pixel shifts and rotations. Often the registration parameters must be

estimated post-facto, and different overlapping frames have to be combined.

3. Long exposures suffer from numerous cosmic ray (CR) hits. These have to be detected—
a daunting task in the presence of undersampling— and the missing data have to be treated

somehow.

4. There are other problems, such as detector contaminations dubbed "measles" and flat-field

uncertainties.

In the following several algorithms addressing problems (1) to (3) above are presented. Firstly,

the problem of restoring undersampled (multi-) frames is discussed. It is argued that the cosmic ray

problem and the undersampling problem can be treated on the same footing. The proposed algorithm

for irregular missing data with masks largely follows treatments by Adorf et al. (1993), White

(1993), and recently by Freudling (1993), except for the up- and down-sampling aspects. Secondly,

an algorithm for SV-PSF restoration is presented which combines the generalized "co-addition"
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(e.g., shifted or rotated) sampling patterns, and to subsequently combine them. The generic

procedure for reconstructing an image from a set of undersampled multi-frames consists of carrying

out ajoint restoration following the standard Lucy-Hook recipe, which internally requires algorithms

for shifting, stretching, or rotating the model (= best restoration) in order to map it onto the sampling

patterns of the different observations. It is important that these mappings are carried out faithfully.

Of these operators the rotation operator is the most difficult one to realize in a faithful manner.

2.1. A Novel Faithful Rotation Algorithm

The rotation algorithm described here strictly preserves the spatial Fourier-spectrum and is based on

the fact that a 2 x 2 rotation matrix R(6), which rotates an image by an angle 9, can be decomposed

in several ways, including one consisting of three consecutive 2x2 shear matrices

R{9) = Sx(-0/2) Sy (arctan(sin(0)) Sx(-9/2) (1)

Here Sx (9) and Sy(0) designate a shear by an angle in the x- and y-direction, respectively.

Since a sufficiently sampled image can be faithfully sheared using efficient ID sine interpola-

tions (based on fast Fourier tranforms, FFTs), the whole rotation operation can also be carried out

faithfully. The only problem to watch out for are potential Nyquist frequency components, which

can only appear in even-sized frames. Since the three shears, out of which the rotation is composed,

are carried out independently on individual rows (or columns), the faithful rotation algorithm is

particularly suited to a vector-parallel computer architecture.

The rotation algorithm can be incorporated into the generalized Lucy-Hook "co-addition"

scheme, in order to faithfully rotate the current best restoration from model to observational space,

and then to rotate the correction factor back

4>\x) = p(x)o[R(6)yk
(x)} (2)

c
k
(x) = R(-e)[pk(x)*p(x)} (3)

Note that neither the WF/PC PSF nor the pixel response function are isotropic.

2.2. Restoration to a Finer "Subsampled" Grid

The standard implementations of the RL-algorithm include a subsampling option (Lucy 1991b;

White 1993), so the problem of restoring to a finer grid is widely considered to be "solved."

However, it has not been proven so far that the RL-algorithm with subsampling is unique or has

desirable properties when unaliasing or reconstructing missing high spatial frequency components.

When the RL-method with subsampling option is used to restore an undersampled "image"

frame, it will create a restoration that, while consistent with the data, is not smooth, but rather

maximally pixelated (see the Appendix). So the question emerges which method to use in the

case of an undersampled optical PSF, and a detector with non-ideal pixel response, as expected for

WF/PC-2.

The following observations show that there is indeed some opportunity for algorithmic devel-

opment:

1. The sampling theorem states: It is possible to exactly reconstruct a continuous bandlimited

signal from discrete samples, if the signal is sufficiently densely sampled (and noise-free).

The sampling theorem, however, does not state: an undersampled continuous signal cannot

be reconstructed from discrete samples.

2. An undersampled signal is data with missing values (e.g. every other data row and column is

missing).

3. One possesses some prior knowledge, to help in filling in the missing values:

- the continuous signal is non-negative (apart from noise);
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- the observed signal is strictly bandlimited (apart from noise);

- the PSF is known, and since its Fourier-transform (the optical transfer function, OTTO,
has a finite support, it always stretches beyond more than one pixel (it is in fact infinitely

large).

4. The interplay between the (linear) band-limitation and the (non-linear) non-negativity con-
straint is not yet completely understood. So there is latitude for theoretical developments and
experimentation.

In order to overcome the pixelation effect of the classical RL-algorithm, the following modified
RL-algorithm is suggested which operates solely on the fine grid:

1

.

Create a static mask m(x) which is 1 where data values have been observed and elsewhere.

2. Replace the predicted values 4>
k
(x) by the observed ones 4>*{x) wherever the latter are known,

i.e., where the mask m(x) = 1 and apply other constraints such as non-negativity (projection

onto convex set, POCS); a dynamically relaxing band-limit constraint should presumably be
included here.

3. Proceed with a standard RL-restoration.

This algorithm allows some direct control over the extent of high frequency components introduced

by the restoration algorithm in its unaliasing attempt.

2.3. Detection and Treatment of Cosmic Ray Hits

The cosmic ray (CR) problem involves two separate parts: detecting CR-hits and somehow "filling

in" the missing data.

Several stand-alone algorithms have previously been published to detect CR-hits (Murtagh

1992; Murtagh & Adorf 1992; Adorf et al. 1993). However, it is clear that if a restoration is carried

out anyway, the CR-contamination problem is best treated within that restoration process (Freudling

1993; White 1993). For sufficiently sampled images these algorithms work well. However, for

undersampled images they are affected by the pixelation problem described above.

Let us, for a moment, consider how the human visual system would find cosmic ray hits:

suspicious pixels are compared with their respective neighbourhoods. More precisely, the brain,

using PSF-knowledge, predicts how the observation ought to look, and the eye compares this

prediction with the actual data.

The essence of this detection method can be captured in mathematical terms, using Lucy's

(1974) original notation, as: The prediction 4>
k
(x), computed from the current best restoration

ip
k(x) via convolution with the PSF, represents our current understanding of the observation. Thus

any faults in the observed data 4>*(x) are best detected by comparing the data 4>*{x) with the

prediction <t>

k
{x). We are led to the following spatially adaptive, dynamic k-o clipping algorithm

for detecting CR-hits (and potentially other faults):

1

.

Estimate a map of spatially variable standard deviations o(x). If the Poisson-noise assumption

holds, one can simply take the square root of the signal counts. Otherwise one may estimate

cr{x) from the spatial variance within a small neighborhood around location x.

2. Flag all those pixels whose data values <j>*(x) are outside
<fi

k (x) ± ku(x) thereby producing

a dynamic mask m k
(x), which is 1 where the data <j>"{x) is "good" judged via <j>

k
(x), and

elsewhere. Here k denotes a threshold value.

Since the map of standard deviations a(x) may be corrupted by initially missed CRs, it is best made
dynamic too by updating it regularly after every m th

RL-iteration. This double dynamization of the



4>
k
{x) = p{x) o i/)

k
(x)
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It is obvious that the formula above may be generalized to multiple input data frames.

Presently, it is an open question which weighting function w^(x) to best use. A "hard" hat-

shaped function may again lead to the problem of potential discontinuities at the section boundaries.

Triangular or cosine bell-shaped weighting functions are better behaved in that respect. One could

possibly "derive" a weighting function by cross-correlating a series of interpolating PSFs and use

the correlation coefficient as a guide to the spatial variability of w^(x). Or one might apply a

minimum mean-square-error criterion to optimize the choice of the functional form of the w^(x).

The proposed SV-PSF algorithm can be generalized in various ways. One could adapt the

spatial density (and corresponding size) of the sections to the local signal-to-noise (S/N) level,

since it does not make sense to restore low S/N regions very accurately. Another way of saving

CPU-time might be to use a denser patch grid where the PSF changes more rapidly, e.g., at the

frame edges, or in areas of increased astronomical interest (White, pers. comm.).

Of course, the success of the proposed SV-PSF algorithm hinges upon the ability to produce

suitable PSFs. Whether one has to rely on theoretical models or use one of the "blind deconvolution"

PSF-estimation techniques (Lucy 1994) is currently an open question.

A final remark: The proposed SV-PSF algorithm is ideally suited to a coarse-grained vector-

parallel computer architecture such as TMC's Connection Machine 5.

4. Summary

Two problems related to WF/PC imagery have been addressed: restoration in the presence of

undersampling and restoration in the presence of a space-variant point-spread function.

It has been argued that the process of Richardson-Lucy (RL) restoration with subsampling is not

fully understood in the presence of undersampling and that further work is required. A POCS-based
variant of the RL-algorithm with subsampling has been suggested for further examination. Also an

alternative model-based algorithm for detecting irregular random missing data such as cosmic ray

(CR) hits has been proposed. The algorithm is based on a spatially adaptive, dynamic k-o clipping,

which should be optimal, at least for single-pixel CR-hits.

A novel, easily parallelizable algorithm for faithful image rotation has been stated. It is based

on a sequence of three successive shears which in turn can efficiently be implemented using fast

Fourier transforms (FFTs). The rotation algorithm is required within a joint restoration of multiple

rotated WF/PC frames.

Finally a novel algorithm has been proposed for restoring full-frame WF/PC images distorted

by a space-variant point spread function (SV-PSF). The algorithm is efficient and parallelizable. The
algorithm allows several interesting generalizations which promise to either increase performance

or restoration quality or both.

With these algorithms a comprehensive full-frame SV-PSF restoration of single or multiple

WF/PC frames now appears to be feasible.

Appendix

Some simulations have been carried out to investigate how much pixelation the conventional RL-
method with sub-sampling option (where the data-to-prediction ratio is upsampled by pixel repli-

cation) imprints onto the restoration of an undersampled distorted image frame.

Two grids were used, a "fine" grid with 64 x 64 pixels and a "coarse" grid with 32 x 32 pixels,

i.e., half the sampling rate of the fine grid. As an image model a single sine wave was used with a

wavelength of 6 pixels on the fine grid, which is still sufficiently sampled on the coarse grid (2/3 of

the coarse grid's Nyquist frequency). A value of 1 was added to create a non-negative image.

Four different PSFs were used: a delta function (PSFO) and 3 diffraction limited PSFs with

"aperture" radii of 31, 15, and 7 pixels (PSF1 to 3), respectively. PSF1 is approximately two-fold
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(four-fold) undersampled on the fine (coarse) grid. PSF2 is sufficiently sampled on the fine grid,

but about two-fold undersampled on the coarse grid. PSF3 is sufficiently sampled on both grids.

The model was convolved with each of the PSFs, then 2x2 block-averaged and down-sampled

(decimated) to 32 x 32 pixels, generating four simulated data frames (RESTO to 3). No noise was

added. The ST-ECF's IRAF code for the RL-method with sub-sampling option was used to restore

the four simulated "data" frames.

As expected, the restoration RESTO (after some 20 accelerated iterations) clearly showed

the coarse-grid pixel pattern: pairs of two pixels on the fine grid had exactly the same value.

The restoration REST3 on the other hand showed very little pixelation, if any. The intermediate

restorations REST2 and REST1 showed a degree of remnant pixelation on the fine grid which

increased with the degree of undersampling.

Acknowledgments. Thanks are due to Bob Hanisch, STScI, for suggesting the SV-PSF restora-

tion problem and to Richard Hook, ST-ECF, who helped to improve the written version of this

contribution. I am particularly indepted to Rick White, STScI, for enlightening discussions and

several valuable suggestions.

References

Adorf, H.-M. 1989a, ST-ECF Newsletter, 12, 9

Adorf, H.-M. 1989b, in 1st ESO/ST-ECF Data Analysis Workshop, P. J. Grosb0l, F. Murtagh, & R.

H. Warmels, eds., European Southern Observatory, Garching, 215

Adorf, H.-M. 1990, in Errors, Bias, and Uncertainties in Astronomy, C. Jaschek & F. Murtagh, eds.,

Cambridge University Press, Cambridge, 71

Adorf, H.-M., Hook, R. N., & Lucy, L. B. 1993, in Space Astronomical Telescopes and Instrumen-

tation II, SPIE, in press

Burrows, C. 1994, this volume

Fosbury, R. 1993, in The Future ofSpace Imaging, R. Brown, ed., Space Telescope Science Institute,

Baltimore, 83

Freudling, W. 1993, ST-ECF Newsletter, 20, 8

Hook, R. N., & Lucy, L. B. 1992, ST-ECF Newsletter, 17, 10

Hook, R. N., & Lucy, L. B. 1993, ST-ECF Newsletter, 19, 6

Lucy, L. B. 1974, AJ, 79, 745

Lucy, L. B. 1991a, ST-ECF Newsletter, 16, 6

Lucy, L. B. 1991b, in The Restoration ofHST Images and Spectra, R. L. White & R. J. Allen, eds.,

Space Telescope Science Institute, Baltimore, 80

Lucy, L. B. 1994, this volume

Lucy, L. B., & Hook, R. N. 1992, in Astronomical Data Analysis Software and Systems I, ASP
Conference Series 25, D. M. Worrall, C. Biemesderfer, & J. Barnes, eds., 277

Murtagh, F. D. 1 992, in Astronomical Data Analysis Software and Systems I, ASP Conference Series

25, D. M. Worrall, C. Biemesderfer, & J. Barnes, eds., 265

Murtagh, F. D., & Adorf, H.-M. 1992, in Data Analysis in Astronomy IV, V. Di Ges'u, et al., eds.,

Plenum Press, New York, 103

Richardson, W. H. 1972, J. Opt. Soc. Am., 62, 55

Trussel, H. J., & Hunt, B. R. 1978a, IEEE Trans. Acoust. Speech Sig. Proa, 26, 157

Trussel, H. J., & Hunt, B. R. 1978b, IEEE Trans. Acoust. Speech Sig. Proa, 26, 608

White, R. L. 1993, in Restoration Newsletter, R. J. Hanisch, ed., Space Telescope Science Institute,

Baltimore, 1,11



The Restoration ofHST Images and Spectra II

Space Telescope Science Institute, 1994

R. J. Hanisch and R. L. White, eds.

Image Restorations of High Photometric Quality

L. B. Lucy 1

Space Telescope - European Coordinating Facility, European Southern Observatory,

Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen, Germany

Abstract. An image restoration technique is described that achieves high photometric

accuracy for both stars and distributed emission. The technique makes use of observer-

supplied information that some objects in the field are point sources and thereby eliminates

the ringing and photometric bias that arise with conventional restoration procedures. A
hierarchy of codes is described based on this two-channel decomposition of astronomical

images. The more sophisticated of these codes incorporate simultaneous estimation of the

PSF and are thus especially relevant for ground-based imaging. Observing programs are

described in which these codes effectively transfer the resolution of HST to ground-based

images.

1. Introduction

Astronomical images are commonly taken with the intent of making photometric measurements

of objects in the field. For pre-COSTAR HST images, the question then arises: should these

measurements be made on the original or on the restored image? When the objects of interest are

stellar, we might intuitively expect that higher accuracy will be achieved using the restored image.

The reason for this is that the sharpening of point sources should allow the photometry to be carried

out with a smaller aperture, thus reducing contamination by light from nearby sources and from the

background.

Unfortunately, two effects have hindered the realization of this expected gain in accuracy.

The first arises when the stars to be measured are superposed on an extended background source

— nebular emission or numerous unresolved stars. In this circumstance, non-linear restoration

techniques — e.g., Richardson-Lucy (R-L) or Maximum Entropy (ME) — give rise to Gibbs

oscillations or "ringing" as they attempt the impossible task of recovering delta functions. Because

of this effect, image restoration does not necessarily increase the rate at which a photometric

measurement of a stellar object converges with increasing aperture.

The second effect is statistical bias and is of particular concern for ME restorations. When
entropy is defined relative to a uniform prior (or default) image, the restored ME image departs

from uniformity because of real structure in the observed image, but only by the amount required

by the adopted goodness-of-fit criterion. Accordingly, the restored ME image is biased in favor of

uniformity (flatness), and this implies that the highest intensity peaks are underestimated.

For stellar photometry, these problems have led to the suggestion that the restored HST image

be used merely to identify and locate point sources, with the actual photometric measurements

being then made on the original image. Here, however, the possibility is explored of developing

more powerful restoration procedures that eliminate the above difficulties. Some years ago already,

Frieden and Wells (1978) implemented a scheme that effectively solved the first of the above

problems. Their scheme comprised the following discrete steps: 1) a model of the slowly varying

background is constructed; 2) this model is subtracted from the original image and the resulting

'Affiliated to Astrophysics Division, Space Science Department, European Space Agency
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residual image is deconvolved; 3) the background model is added to the deconvolved residual image
to obtain the final restored image. In this paper, a somewhat related procedure is described, leading

to a hierarchy of fully automatic codes of increasing sophistication which yield restorations of high

photometric precision for both stars and distributed emission. The performance of these codes is

tested and illustrated in Paper II (Hook & Lucy 1994).

2. Method

The method adopted might be described as image restoration incorporating designated sources

having specified shape and known positions. For astronomical images, the designated sources are

naturally taken to be point sources (stars, QSOs, AGNs), so the specified shape is the delta function.

Clearly, an observer can commonly, with high confidence, identify many objects in an image as

point sources. Accordingly, it makes sense to develop codes that use this extra information and, at

least for these designated point sources, thereby eliminate the ringing associated with failed attempts

to recover delta functions.

In 1-D vector notation, the adopted model for \P(f , rj), the intensity distribution on the celestial

sphere, is

9j = ifj + ^. (1)

Here ipj represents distributed emission and ipj the designated point sources. This latter representa-

tion is achieved by defining ipj to be zero everywhere except at the locations (j = j\ , J2, .
, Jn)

of N point sources.

This model of the object can be mapped onto the image plane using the equation of image

formation, and the resulting prediction 3>; for the intensity distribution in the image plane can

then be compared to the observed distribution $;. The posed image restoration problem is thus to

determine ipj and ipj in order to achieve an optimum fit of $ t to $ t .

An obvious first thought is to adopt the R-L procedure and determine ipj and ipj with an iterative

scheme that asymptotically yields Maximum Likelihood estimates subject to the appropriate non-

negativity and normalization constraints. But this results in indeterminacy since an individual star

can be represented either in the ipj vector or by the corresponding single-pixel peak added to the ipj

vector, or indeed by any linear combination of these extremes.

To eliminate this indeterminacy, we must impose a constraint on ipj that excludes single-pixel

peaks. In other words, we must impose a resolution limit on ipj that is somewhat larger than the

limit implied by the numerical discretization. This is achieved by introducing regularization into

the optimization problem for determining ipj and ipj. Of the many possible regularization terms

(see, e.g., Titterington 1985), we choose the entropic form

5 = -E^ln^, (2)
CT Xj

where a = Eipj and where the floating default (Home 1985, Lucy 1994)

Xj = T,Rjm ipm . (3)

Here the resolution kernel Rjm is a bell-shaped function whose width is the required resolution

limit. Structure in ipj on a smaller scale results in a decrease in the entropy S and so is disfavored.

3. Code I: Known PSF

In image restoration, the PSF P (x\^) is usually regarded as known. For this standard case, the

ideas of §2 lead to the following optimization problem: the quantities ipj and ipj are determined by

maximizing the objective function

Q(iPj,iP;;n) = H + aS + n(ZVj-l). (4)
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1

Here H denotes the reduced log-likelihood of the observed image and is given by

H = S$,ln$,
, (5)

with

*i = £ifc*j • (6)

The regularization parameter a controls the weight given to the regularization of ij>j, and the

Lagrange multiplier f.i allows overall flux conservation to be imposed.

4. Construction of Algorithms

The R-L algorithm (Richardson 1972; Lucy 1974) was initially derived from Bayes' theorem, but

in fact its use is really justified by the subsequent discovery (Lucy 1974; Shepp and Vardi 1982)

that every iteration increases the likelihood assigned to the observed image. Thus, in the usual case

where no stars are designated point sources, the objective function that is asymptotically maximized
by the R-L algorithm is

g(^i ;Ai) = JT + /i(E^
i -l). (7)

Knowing this, we can rewrite the R-L algorithm as an operation on Q. The result for the

increment ifi

T+i — ip
T

is

where the asterisk indicates that /t has been evaluated by requiring that

SAVj = . (9)

Eq. (8) suggests an operational procedure for deriving potentially effective algorithms: write down
the function Q whose optimization defines the restoration problem, then derive an iterative correction

scheme by applying Eq. (8).

With Q given by Eq. (4) and S by Eq. (2), the resulting algorithm simplifies to

**-*(<*-«!£) o°)

and

av; = ^c,, (ii)

where Cj is the R-L correction factor.

5. Comments

The use and performance of Code I will perhaps be clarified by the following remarks:

Initialization The positions of the designated point sources (j = j\, J2, . .
. , Jn) must be given

as well as initial amplitudes for xpj and ip*
t

. These are taken to be constant and such that Eipj -

Normalization The integrated flux of the point sources (V>*) plus that of the distributed emission

(4>j) is constrained to equal that of the observed image ($ t ). The allocation of flux between these

two channels (initially 1 : 1 , see above) is adjusted iteratively as Q is maximized.
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Regularization Applies only to the distributed emission. This implies that the converged point-

source amplitudes ipj are Maximum Likelihood estimates relative to the highly flexible model of

background emission provided by ipj. This latter aspect is to be compared with the mathematically

simple background models used in standard photometric software packages.

Spatially-Variant PSFs As implemented, Code I assumes a spatially-invariant PSF but only in

order to use FFTs. As with the R-L algorithm, this assumption is not otherwise necessary.

Point Sources These are modelled as single active pixels in a sea of zeroed pixels. If more accurate

centering is necessary, sub-pixelation is readily introduced (Lucy and Baade 1989; White 1990).

Such representations of delta functions facilitate the use of discrete FFTs and lead to simple code.

Nevertheless, for highest accuracy, continuous positions should be used.

Floating Default A ME restoration with uniform prior gives the most probable distribution of

photons in the restored image for a specified goodness-of-fit to the observed image. Although intu-

itively appealing, this solution, as noted earlier, is photometrically biased as a result of redistributing

photons from high to low intensity regions. Moreover, when the PSF is compact, this redistribution

is physically inconsistent with the independence of different "picture elements." However, for a

floating default computed with a compact kernel, this bias is greatly reduced (e.g., Lucy 1994) as is

this inconsistency.

Because the entropic form with floating default is probably not derivable by combinatorial ar-

guments, it should be regarded as a useful mathematical device and not ascribed a more fundamental

status than other regularization functions (Titterington 1985).

Non-Negativity As implemented, Code I maximizes Q subject to the constraints ipj > for all j

and ipj > for all t. There would be some merit in changing the second constraint to ipj + ipj
t
>

for all I. This would then allow ipj < 0, which, though unphysical, avoids bias when estimating

magnitudes near the noise limit, as happens, for example, in following the fading of a SN. An
algorithm that achieves this has been constructed.

Non-Designated Sources Given the resolution limit imposed on distributed emission, the question

arises as to how well point sources are represented that are not designated as such. This is investigated

in Fig. 1 where all emission derives from point sources but only one— the brightest— is designated

as such. Despite the resolution limit, the restored background (ip) shows sharp peaks at the positions

of several stars. Accordingly, this model of the background could be used to identify and locate

additional point sources and thus form a step in an iterative procedure that maximally decomposes

the crowded field into individual stars, whose magnitudes are then derived from the final solution

forV£-

6. Code II: Unknown PSF

In the standard case of known PSF (Code I), knowledge of the PSF is often derived from the

very image to be restored. This is of necessity true for ground-based images where the seeing-

dominated and thus time-variable PSF must be determined from suitably isolated stars in the field.

For such cases, a natural generalization of Code I is a code that incorporates these "PSF stars" into

the list of designated point sources and treats the PSF as an unknown function to be determined

simultaneously with ipj and ipj . Clearly, this generalization effectively mandates the assumption

of a spatially-invariant PSF.

The objective function whose maximization defines the above restoration problem is

Q(iPj, V*, Pk\ p,X) = H + aS + p(ZVj - 1) + \{Epk - 1) . (12)
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Figure 1 . One-dimensional illustration of application of Code I to crowded star field.

The brightest star at x = is a designated point source, the others are not. The observed

image (l>) is plotted as a histogram and the predicted intensity distribution in the image

plane ($) as a dashed curve. The continuous curve is the restored and regularized model

(ip) of the distributed emission— background stars, in this case. Further individual stars

can be recognized in ip.
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The new symbols introduced here are pk the unknown PSF and a second Lagrangian multiplier A to

impose normalization of the PSF. Because the PSF is now assumed to be translationally invariant,

the predicted intensity distribution in the image plane is

*,• = Ep,--,-*,-

.

(13)

As with Code I, an algorithm for maximizing Q is derived following the operational procedure of

§4. Details are omitted.

6.1. Remarks

Code II is not without pitfalls. The first is that Q has multiple maxima of approximately equal

height. In fact, if N point sources are designated, there are N + 1 such maxima, with each of the

N spurious maxima corresponding to the entire image ($) being attributed to the PSF-broadening

of just one of the point sources. These spurious solutions (m = 1, 2, . .
.
, N) thus have the form:

tpj = all j, ipj = for £ / m, VJm = 1. and pk = $jm+ k. Fortunately, these unwelcome

solutions are readily avoided with sensible initialization (see §5) and would in any case be readily

recognized as spurious.

A more serious problem arises when all the designated point sources are superposed on

distributed emission. The resulting PSF and the allocation of emission between point sources

and background are then determined by and sensitive to the regularization procedure. Limited

experiments suggest that sensible results in this circumstance require strong regularization with a

rather broad resolution kernel in Eq. (3).

Code II might seem to be an example of blind deconvolution (Nisenson et al. 1990) since both

the restored image and the PSF are derived simultaneously from a single observed image. However,

in contrast to blind deconvolution, the designated point sources here play an essential role in making

the PSF determinate. Accordingly, as noted above, this code should be regarded as consolidating

conventional image-processing procedures into a single, automatic code.

7. Code III: Regularized PSF

Even when there are numerous designated point sources, the empirical PSF derived with Code II

will be noisy at low intensity levels. For the seeing-dominated PSFs of ground-based images, this

must be expected in the outer halo that surrounds the approximately Gaussian core (King 1 97 1 ). An
obvious next step, therefore, is to regularize the PSF in order to damp out such noise fluctuations,

and this can be achieved simultaneously with the estimation of tpj, ip^ and pk if an extra entropic

term is added to Eq. (12). Moreover, if this new term also has a floating default, its kernel can be

chosen to optimize the regularization by taking advantage of prior information about the PSF. For

example, apart from diffraction spikes, a ground-based PSF should be circularly-symmetric. It is

useful then to take the floating default to be the azimuthally-averaged pk- The final pk then departs

from circular symmetry only if the stellar images demand it— perhaps due to tracking errors —
and such distortions are corrected in the restored image.

Thus far only a 1-D experimental version of Code III has been tested.

8. Scientific Opportunities

The successful tests of Codes I and II reported in Paper II prompt thoughts as to the scientific

programs that could benefit from their application. Some of these might be described as software-

driven observing programs.

Host galaxies Conventional deconvolution of images of QSOs does not usefully contribute to

morphological studies of host galaxies because of the ringing centered on the deconvolved quasars.
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But with Codes I or II, the quasar can be treated as a designated point source. This not only

eliminates ringing but also provides the restored and regularized image (V'j) of the host galaxy with

quasar removed. With the alternative technique of PSF fitting and subtraction, the residual image

is not restored and also suffers from the Poisson noise associated with the bright quasar and left

behind on subtraction.

Measurement of Hq Major programs underway with HST aim to discover Cepheids in relatively

distant galaxies and thus to determine Hq using the locally calibrated period-luminosity relation. In

these programs, the HST resolves crowded fields into stars thus allowing Cepheids to be discovered

and photometered.

An alternative approach is the following: First, a single HST image is used to resolve the field

into stars and to determine accurate star positions. Multiple ground-based images of the field are

then decomposed into stars using Codes I or II with the HST star positions as input. Finally, from

the values t/'! on the different frames, Cepheids are discovered numerically and their periods found.

When so used, Codes I and II effectively transfer HST's resolving power to ground-based

telescopes. Besides thus being highly economical of HST time, this technique has the further

advantage that the photometry is in well-understood systems established with and for ground-based

telescopes.

Imaging ofNebulae Many planetary nebulae and supemovae remnants occur in extremely crowded

star fields, to the point that scientifically useful measurements are hard to make. Again Codes I or

II could be used with star positions from one HST image to obtain star-free ground-based images

of such nebulosities in diagnostically-important emission lines.

Supemovae Light Curves Because of variable seeing, conventional fixed-aperture photometric

measurements of SNe are contaminated with variable amounts of light from the host galaxy. But

with Codes I or II the SN can be designated as a point source; its intensity is then determined relative

to a detailed model of the host galaxy with seeing taken into account.
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Abstract. A generalized form of the Lucy-Richardson restoration method is described in

which images in the object plane are divided into two channels. One of these contains point

sources (i.e., ^-functions) and the other models a smooth background distribution. The latter

image is regularized by the use of an entropy term and hence has enforced smoothness.

This approach avoids problems encountered in the photometry of the results of non-linear

restoration methods. Examples of the use of this technique on standard simulated HST data

frames are given, including some assessments of its photometric accuracy. Implementations

running under both IRAF and MIDAS are available.

1. Introduction

The most popular and effective methods for the restoration of HST data are non-linear and hence

redistribute flux in a way which often degrades the photometric content of the data. They also cause

artifacts in the background to appear when large numbers of iterations are used, and the number of

iterations which will give best results is often difficult to estimate. Several studies (e.g., Cohen 1988,

Linde & Spannare 1 993) have suggested that a workable compromise for point source photometry is

to use restored images, which show better contrast and object discrimination, to identify objects and

then to perform photometry by using standard PSF fitting packages (e.g., DAOPHOT, Stetson 1987)

on the unrestored data. Other work (Busko 1993) has shown that there is often a tradeoff between

photometric accuracy in the measurement of point sources and the quality of the background in the

resultant restored image.

Many astronomical images do not contain a uniform spread of spatial frequencies. Instead they

consist ofmany point sources and a smoother background intensity distribution. Standard restoration

methods do not use this information and hence cannot significantly sharpen point sources without

causing the background to break up into speckles. Other methods, such as those based on Maximum
Entropy considerations, can impose smoothness but generally underestimate point source fluxes.

We have adopted a different approach which separates the known point sources, which are forced to

be ^-functions, from a background which is forced to be smooth. Hence we obtain the best of both

worlds by using extra information about the image. As a further generalization, the method may be

used to iteratively find the PSF using a form of "blind iterative deconvolution." A description of the

logical steps in the development of this method and more detailed mathematics are given elsewhere

in this volume (Lucy 1994). In this paper several illustrations of its use on different classes of

problem are presented along with details of the implementation. The test images are taken from

those prepared by the STScI Image Restoration Project.

This technique suggests several new possible observational projects using both space and

ground based telescopes.
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2. Technique

Let an estimate of true intensity distribution on the sky be represented as the sum of two components:

$ = 0* + V, (1)

where 0* is the intensity of the point sources (mainly zero apart from (5-functions at the positions

of designated sources) and is the intensity of the background. The corresponding estimates for

the components which are observed are <j>* = 4>* ® P and <j> = V> ® P where P is the point spread

function and is the convolution operator. The predicted total observed intensity is <fr = (p* + <p.

We wish to obtain the "best" estimates for 0* and ip and choose to maximize the quantity:

Q = X) $,-/n$,- + a5 (2)

where $ is the observed intensity distribution, and the summation is performed over all pixels in

the image. The second term is only evaluated over the background image and it has a regularizing

effect. The quantity a is a free parameter specified by the user and controls the strength of the

regularization in comparison with the first term which is the logarithm of the likelihood. When a
is zero the objective function becomes the same as that of the standard Lucy-Richardson technique.

5 takes the form of an entropy expression which may be calculated in two ways, relative to a flat

background:

S = — ~^2<f>iln4> t (3)

or as relative to a floating default \:

Note that <j> must be renormalized in calculating these entropy terms (Lucy 1994). The floating

default is most conveniently chosen to be a smoothed version of the current estimate for the

background. In practice the constant default works well for images in which the background is

roughly flat such as those used for star cluster photometry. For cases where there is significant

structure, such as stars superimposed on a galaxy, the floating default method works dramatically

better and is essential for good results. Examples of both types of default are given below.

An iterative scheme has been developed to maximize the above objective function. It has also

proved possible to accelerate this algorithm in a manner analogous to that which has been described

for the standard Lucy-Richardson restoration scheme (Hook & Lucy 1993). The addition of the

entropy term removes the automatic non-negativity conservation of the standard Lucy-Richardson

method so care must be taken to avoid negative points which lead to gross instabilities. This may be

done using the acceleration option which will act in these cases as a deceleration. The regularization

of the background means that no ugly artifacts appear and the iterations may, and normally should,

be allowed to continue as far as convergence.

3. Examples and Photometric Tests

This method has been tested on many kinds of data both real and simulated. Here we present

three examples in which the structure of the background is of increasing interest and photometry of

point sources of diminishing importance. All three examples use simulated data from the collection

prepared by the STScI Image Restoration Project and available from the STEIS anonymous FTP
service (Hanisch 1993). A final example illustrates how the "blind iterative restoration" option may
be used to obtain a PSF image from a data frame.
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3.1. A Crowded Field Observed With HST WFC

Photometry of crowded fields is a very important problem for which many highly developed and

thoroughly tested codes exist. Most of these were developed for ground based images and there may
be special problems with handling HST data where images are badly undersampled and the greater

extent of the PSF wings makes the crowding problem very severe. The photometric performance

of the new algorithm has been tested using the WFC star cluster simulation which is available from

STEIS. We used just the lower left quadrant of the image which includes the very dense core. The

image was expanded by a factor of four in x and y before processing. Fig. 1 shows the results of this

and Fig. 2 shows the photometric accuracy and also a histogram of the background image. These

can be compared to similar graphs given for different restoration methods by Busko (1993). The

photometry is seen to be highly linear and to lack bias. The scatter is larger than predicted from

pure noise considerations because of the high degree of crowding.

3.2. Stars Superimposed on a Galaxy

Many interesting problems in astronomy involve trying to do photometry of point sources on a

highly structured background. An important example is the photometry of Cepheid variables in

nearby galaxies. The new algorithm is particularly suited to this problem because it can effectively

model any background simultaneously with measuring the point source magnitudes. There is no

assumption about the background structure except that it must be smooth to some (user controllable)

degree. A good test for this kind of work is shown in Fig. 3 where the input data is a ground-based

image of the nearby galaxy M51 on which some point sources of known brightness have been

added. Fig. 4 shows the quality of the resulting photometry. The output image (upper left) also

illustrates how the regularization effectively suppresses the speckles in the background which are

so prominent in the standard restoration (lower right).

3.3. A QSO "Fuzz" Simulation

In an important class of problem there is only a single point source but this is so bright as to swamp
interesting structure lying underneath. Fig. 5 shows the results of processing a simulated PC image

of a QSO with an underlying spiral galaxy. Although conventional restoration manages to recover

the spiral arms well, there is still an inaccurate restoration of the regions close to the nucleus and

the familiar speckles. This method has also been found to be among the most effective for this kind

of work on real images obtained from the ground (Stockton & Ridgway 1993).

3.4. Blind Iterative Restoration

In many cases the PSF cannot be reliably predicted and must be obtained directly from the data

image. The two channel method may be generalized to simultaneously improve both the estimate of

the true object intensity distribution and the PSF. This is more stable and effective than other blind

iterative methods because the point sources are at designated positions. Fig. 6 shows an example

of obtaining an improved PSF from a subset of the simulated WFC image which was used in the

crowded field example given above. More details of the method are given in Lucy (1994).

4. Implementation

This method has been implemented as a FORTRAN code called PLUCY which uses the F77/VOS

as an interface to the IRAF package. Both stationary and floating defaults are available as well as

acceleration, sub-pixelation, blind iterative restoration, and several other options. It is not fully sup-

ported but there is a detailed help file and it is made available to anyone who wishes to try it out. All

the files and instructions necessary to build a local version are available on the ST-ECF anonymous

FTP archive (ecf.hq.eso.org = 134.171.11.4) in the directory pub/swiib/restoration/iraf. The

same core code is also available to run within the MIDAS system and this may be collected from the
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Figure 1 . 7b/? left: A section from a simulated HST WFC image of a globular cluster.

The PSF is spatially invariant and the positions of all stars are known exactly. Top right:

the result of 100 iterations of the standard Lucy-Richardson restoration. Bottom left: the

result of a two channel photometric restoration as described in the text. A floating prior

with a smoothing kernel with <r = 5 pixels was used and 50 (accelerated) iterations were

applied. Bottom right: the same image as at bottom left except with the display levels ten

times as deep to reveal the residual (smooth) background structure.
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Figure 3. Bottom left: a section of a simulation of a spiral galaxy which has had

several point sources of known brightness added as <5-functions. Top right: the result

of subsequently convolving this with the HST WFC PSF and giving appropriate noise.

Bottom right: the result of applying 200 iterations of the standard Lucy-Richardson

restoration method to the image at upper right. Top-left: the result of 100 iterations of the

two-channel restoration method using the known positions of the stars.
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Figure 4. The photometric accuracy of the measurements of the stars shown in Fig. 3.

The magnitudes on the x axis are arbitrary.

same FTP site in the directory pub/swlib/restoration/midas/lucy. It is planned to incorporate

these codes into future releases of both STSDAS (in the contrib package) and MIDAS.
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Figure 5. The results of applying the two-channel restoration technique to a simulated

HST PC image of a QSO consisting of a spiral galaxy having a point source added at

the nucleus which is 100 times as bright as the peak in the underlying galaxy. Top
left: the original input image with appropriate noise. Bottom left: the true, noise free

image of the QSO plus galaxy. Top right: the result of applying 30 accelerated standard

Lucy-Richardson iterations to the image shown at top left. Bottom right: the result of
50 iterations of the two channel method using a floating prior with a smoothing kernel

having a = 1 pixel.
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*•

Figure 6. An example of "blind iterative restoration." Top left: a small section of a

WFPC simulated star cluster image. Top right: an initial estimate for the PSF, a "top hat"

with a rounded edge. Bottom left: the result of restoration using the two channel method

with PSF modification switched on. Bottom right: the resultant PSF derived from the

data.
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Abstract. This paper presents a criterion for stopping non-linear iterative algorithms,

specifically the Richardson-Lucy algorithm that is widely used to restore images from the

Hubble Space Telescope. The criterion is based on generalized cross-validation and is also

computed iteratively. We will present examples displaying the power of the stopping rule,

and will discuss the abilities and shortcomings of this method. We also present a caveat

about the method.

1. Introduction

The restoration of the Hubble Space Telescope (HST) image data is currently being done using

several different algorithms. One of these algorithms is the Richardson-Lucy (R-L) algorithm

(Richardson 1972, Lucy 1974), which is a realization of the Expectation-Maximization (EM)

algorithm (Dempster et al. 1977). The R-L method is iterative in nature, and converges to the

maximum likelihood solution (Shepp and Vardi 1982). Unfortunately, due to the noise inherent

in the problem, this maximum likelihood solution may not be the most visually pleasing solution.

This noise amplification problem has been observed in other iterative algorithms, and the method

of stopping the algorithm before it has reached convergence has been shown to be a valid method

of regularizing the solution (Biemond et al. 1990). The reasoning behind stopping the iterations is

as follows: the algorithm attempts to fit the solution to the observed data, but the observed data is

degraded with noise. Thus, at some point in the process, the solution is being fit more to the noise

than the image data. Therefore, the process should be stopped at the point where there is a balance

between the fit to the image data and the amplification of the noise. The randomized generalized

cross-validation (RGCV) criterion has been used as a stopping rule for linear iterative restoration

algorithms (Reeves and Perry 1992). In this paper, we will show how the RGCV criterion can be

applied to nonlinear algorithms, specifically the R-L method.

For our purposes, the observed image <j shall be modeled as the result of a blur operation D
upon the original image / with an additive term to model any noise from the physical system or the

observation system. Therefore,

9 = Hf + n,

where the images and noise are ordered as vectors. The problem is then to determine / given the

observation g and often the blur operation D. Some information about the statistical nature of the

noise may also be available. The problem is generally ill-posed.

2. The Richardson-Lucy Algorithm

The algorithm credited to Richardson and Lucy has the following form:

/n+l = / 11'

97

_y_
Hfn
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Note that in this form of operator notation, an operation between two vectors is done point-by-point.

For example, the division by H fn is point-by-point, and the multiplication by /„ is point-by-point.

3. The Randomized Generalized Cross Validation (RGCV) Criterion

Cross-validation divides the data into two sets. It uses one set to determine some characteristics

of the data, and then uses the other set to verify the characteristics. Extending this concept,

generalized cross-validation (GCV) uses each data point as the testing set, and then averages a

weighted prediction error over the entire data set (Golub et al. 1979).

The GCV criterion can be stated as

V(n) = k\\V-An)9\\\

[X'-^n)]
2

where N is the number of data points. The matrix An is called the influence matrix at the nth

iteration. If we define fn as the nth estimate for the original data as determined by some iterative

algorithm, then An is denned as

Ang = Hfn .

The main drawback of the GCV criterion comes from the denominator of V(n). Unlike

the numerator, which can be easily computed at each iteration, the denominator term, needs the

equivalent of iV restoration computations to be computed explicitly. This computational expense is

due to the trace term. Therefore, we estimate the trace term using the following lemma.

Lemma 1 Let B be an N X N symmetric matrix and let u = (u\, ..., uj^)
T be a vector of N

independent samples ofa zero-mean random variable U with a variance ofone. Then

E[uTBu] = WB .

Proof The proof is straightforward.

Several researchers independently observed that the denominator term can be estimated using

this property (Girard 1989, Hutchinson 1990, Reeves and Mersereau 1991). So the denominator of

V(n) can be computed as

1 T—ux (I-An )u
1 I

2

—(u
Tu - uTAn u)

and V(n) is now called the Randomized GCV (RGCV) criterion. Still, we do not want to compute

An . So using the relationship Ang = H /„, we define a new image wn that satisfies

An u = Hwn ,

which means that wn is like a "restored" version of u at the nth iteration.

Therefore, instead of computing An explicitly, we can compute wn by restoring u in the same

manner as we restore g. Thus, V(n) now has the form

V{n) = M\s-Hfn \\

2

[±(uTu - uTHwn)Y
'

The computation of the RGCV criterion simply boils down to the computation of wn . The factor

we must deal with is "restoring" u in the same manner as g. Fortunately, the influence matrix An

can also be defined as (Wahba 1983)

_ dgn ,j

dgi
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where an
,

, is the (i, /)th entry in the matrix An , and

9n = Hfn .

Therefore, if one computes -f^
1 for each iteration, and uses

fft&n , = £%!«,
' V ^

as the update for wn , then the "restoration" on u proceeds as the restoration on g. Equivalently,

from^n = Hfn ,

"'Jn,i
}n,i ~ /__,

dgi

Thus, if the derivative -j^- can be computed analytically for all n, then the update for wn can be

established.

4. RGCV for Steepest Descent

In order to demonstrate the use of the derivative method for computing the RGCV criterion, we
will derive the update for w„ for the steepest-descent algorithm. We have presented this method in

a previous paper, but we did not present the vigorous justification at that time (Reeves and Perry

1992).

The basic form of the steepest-descent method is

L+Ui = fn,i+Pn[H
T
{9-Hfn)]i.

Note that [3n , the relaxation parameter, can be a fixed scalar, or it can be computed as a scalar

function of the current estimate /„. In any case, it is considered to be a constant with respect to gi.

The first step is to take the derivative of /n+i,« vvith respect to gi. The result is

dfn +1, dfn,

i

+ Pn hi-i+\ - ]T hj-i+ i ^2 hj-k+

J k

dfn,k

dgi dgi

Then, multiplying both sides by u; and taking the summation over / you have

Edfn +\,i \-^ dfn i—, U, = 2^ — Ul + (in

l

dgi Y d9i
Y^h^ l+l ui - ^2hj-i+ i ^hj-k+i ^2

dfn ,k

dgi
l j k l

Finally, making the substitution for the definition of wn , we get

u)„+ i,i = wn ,i + (3n [H
T
(u - Hwn )]i ,

which is the steepest-descent algorithm operating on u, but using the same f3n that was used for g.



100 Perry & Reeves

5. RGCV for Richardson-Lucy

We can follow the same derivation for the Richardson-Lucy algorithm. The basic Richardson-Lucy

iteration is

Jn+l,i — ]n,% 2_^ „ . i
'

j l^k nj-k+\Jn,k

Taking the derivative with respect to a particular pixel in the observed image, gi, we have

dfn+l,i

dgi

"Jn,i v-v hj—i+ldj
,

fn,i

hi. i+l

Y,khl-k+\fn,k
-E

(hj-i+l9j) ( Em hj-m+l%dgi
(Efc^j-A:+l/n,fc)

Then, multiplying by u; and summing over /,

Edjn+l.i V~^ "-Jrii
; -Ul = > M; ,

, ^ r ^ yzkhj-k+ifn*
y^ "j-t+igj j

Jn,i

l T,k hl-k+\fn,k
-E

d/n.,

(
hj-i+\9j) Em fy-m+1 E/ -^f"

U /

{J2k hJ-k+\fn,k)

Using the definition of wn , we get

%+l, H>
Hfn

t /n,t //
J

#/n
-# j [5] [irt&„]

#/n

6. Using the RGCV Criterion as a Stopping Rule

The RGCV stopping rule canbe summarized by the following steps:

n =
do until V(n) > V(n - 1)

{

Increment n.

Compute /n .

Compute wn .

Compute V(n):

7. Experiments

Two experiments were performed to demonstrate the RCGV stopping rule. The first was done with

artificial data, and the second with HST data.

For the first experiment, an image was created that simulates a scene that might be typical for

the wide-field planetary camera (see Fig. 1). The image was then blurred using various "simple"

blurs, and Poisson noise was added using an ADU gain of 8.0 e-/DN. Read-out noise was neglected
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Figure 1 . The simulated image used for the first experiment. (64 by 64 pixels)

to simplify the problem. The R-L algorithm was performed, and the RGCV stopping rule was

computed. The mean-square error between the estimate and the original was also computed at each

iteration. Finally, the \-square measure was computed for further comparison. The results are

summarized in Table 1

.

Table 1 . Summary of stopping rules for simulated image blurred with "simple" blurs.

Blur Type

7 point uniform horiz.

9 point uniform horiz.

3 by 3 point flat

1 1 by 1 1 point flat

n

MMSE
MSE

\-square

MSE n

RGCV
MSE

26

31

30

156

74.5

87.8

67.4

558.5

17

22

13

81

90.7

100.3

97.7

599

44

35

24

147

89.3

89.0

69.4

558.9

The second group of experiments used the HST data for images of Jupiter, which are part of the

simulation data available from the Space Telescope Science Institute database. The R-L algorithm

was performed with the RGCV stopping rule. The results are shown in Fig. 2.

8. Conclusions

The application of the RGCV criterion as a stopping rule for non-linear iterative algorithms appears

to have both analytic and experimental justification. The comparison to the \-square criterion shows

that the RGCV criterion more closely approximates the minimum mean-square error stopping point,

and does so without any prior knowledge of the noise present in the system.

Unfortunately, there is one major drawback to the RGCV criterion, namely computation. The
normal R-L iteration involves two convolutions. The computation of wn uses previously computed
convolutions and adds an additional three convolutions. Thus, by using the RGCV criterion, one

increases the computation time by approximately a factor of 2.5. The advantage of the RGCV that

may counter this disadvantage is the fact that the RGCV stopping rule is autonomous.

9. Caveat

The authors wish to warn the readers that while the analytical justification of the RGCV method

appears to be valid, and several examples (including real HST data) demonstrate its ability, there

have been cases in simulated data sets where the RGCV criterion failed to perform as a stopping

rule. In other words, for some images, the RGCV criterion continues to decrease indefinitely, even

after the noise amplification has completely destroyed the restoration. Other authors have noticed

similar problems with other GCV based measurements (Thompson et al. 1989).

The authors have noticed this problem in several scenarios, and have tried to qualify the

situations where it may occur. The factors that the authors have witnessed as contributing to the

problem are a complex point-spread functions (PSF) and a low ratio of data points to PSF points.
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Figure 2. Summary of RGCV stopping rule on HST data. Upper left: The recorded

image of Jupiter using the F413M filter (data set W0VI0207T), and with the bad data

pixels adjusted. Upper right: The restored image after 42 iterations (as chosen by the

RGCV criterion). Lower left: The recorded image of Jupiter using the F889N filter (data

set W0VI0106T), and with the bad data pixels adjusted. Lower right: The restored image

after 40 iterations (as chosen by the RGCV criterion).
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Abstract. A modification ofthe Richardson-Lucy iteration that reduces noise amplification

in restored images is described.

1. Introduction

The Richardson-Lucy (R-L) algorithm (Richardson 1972, Lucy 1974) is the technique most widely

used for restoring HST images. The standard R-L method has a number of characteristics that make
it well-suited to HST data:

• The R-L iteration converges to the maximum likelihood solution for Poisson statistics in the

data (Shepp and Vardi 1982), which is appropriate for optical data with noise from counting

statistics.

• The R-L method forces the restored image to be non-negative and conserves flux both globally

and locally at each iteration.

• The restored images are robust against small errors in the point-spread function (PSF).

• Typical R-L restorations require a manageable amount of computer time.

The R-L iteration can be derived very simply if we start with the imaging equation and the

equation for Poisson statistics. The imaging equation tells how the true image is blurred by the PSF:

/(0 = £p(ib')o(j), (i)

3

where O is the unblurred object, P(i\j) is the PSF (the fraction of light coming from true location

j that gets scattered into observed pixel i), and / is the noiseless blurry image. If the PSF does not

vary with position in the image, then P(i\j) = P(i - j) and the sum becomes a convolution. The

probability of getting N counts in a pixel when the mean expected number of counts is N is given

by the Poisson distribution:

e- ffNN*W0 = —yj- (
2

)

and so the joint likelihood £ of getting the observed counts D(i) in each pixel given the expected

counts I{i) is

ln£ = J2 £(*') ln/(0 - *(*') " In-D(i)! • ( 3 )

i

The maximum likelihood solution occurs where all partial derivatives of C with respect to 0{j) are

zero:
d ln£ _ n
dou)

- u

D{t)

104

^
' m

(4)
P(i\j)
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The R-L iteration is simply

new (j) = 0(j)
*

Df .... (5)

i

It is clear from a comparison of Eqs. (4) and (5) that if the R-L iteration converges (as has been

proven by Shepp & Vardi 1 982), meaning that the correction factor approaches unity as the iterations

proceed, then it must indeed converge to the maximum likelihood solution for Poisson statistics in

the data.

2. Noise Amplification

Despite its advantages, the R-L method has some serious shortcomings. In particular, noise

amplification can be a problem. This is a generic problem for all maximum likelihood techniques,

which attempt to fit the data as closely as possible. If one performs many R-L iterations on an

image containing an extended object such as a galaxy, the extended emission usually develops a

"speckled" appearance (Fig. 1). The speckles are not representative of any real structure in the

image, but are instead the result of fitting the noise in the data too closely. In order to reproduce a

small noise bump in the data it is necessary for the unblurred image to have a very large noise spike;

pixels near the bright spike must then be very black (near zero brightness) in order to conserve flux.

The only limit on the amount of noise amplification in the R-L method is the requirement

that the image not become negative. Thus, once the compensating holes in the image are pushed

down to zero flux, nearby spikes cannot grow any further and noise amplification ceases. The
positivity constraint alone is sufficient to control noise amplification in images of star fields on a

black background; in that case one can perform thousands of R-L iterations without generating an

unacceptable amount of noise. However, for smooth objects observed at low signal-to-noise, even

a modest number of R-L iterations (20-30) can produce objectionable noise.

The usual practical approach to limiting noise amplification is simply to stop the iteration when
the restored image appears to become too noisy. However, the question of where to stop is a difficult

one. The approach suggested by Lucy ( 1 974) was to stop when the reduced \
2 between the data and

the blurred model is about 1 per degree of freedom. Unfortunately, one does not really know how
many degrees of freedom have been used to fit the data. If one stops after a very few iterations then

the model is still very smooth and the resulting \
2 should be comparable to the number of pixels. If

one performs many iterations, however, then the model image develops a great deal of structure and

so the effective number of degrees of freedom used is large; in that case, the fit to the data ought to

be considerably better. There is no criterion for the R-L method that tells how close the fit ought to

be. Note that there is such a criterion built in to the MEMSYS 5 maximum entropy package (Gull

and Skilling 1991), and the pixon approach of Pinaand Puetter (1993) uses similar ideas.

Another problem is that the answer to the question of how many iterations to perform often is

different for different parts of the image. It may require hundreds of iterations to get a good fit to

the high signal-to-noise image of a bright star, while a smooth, extended object may be fitted well

after only a few iterations. In Fig. 1, note how the images of both the central star and the bright

star at the top center continue to improve as the number of iterations increases, while the noise

amplification in the extended nebulosity is getting much worse. Thus, one would like to be able to

slow or stop the iteration automatically in regions where a smooth model fits the data adequately,

while continuing to iterate in regions where there are sharp features (edges or point sources).

Another approach to controlling noise amplification is to smooth the final restored image. This

method has been developed and mathematically justified by Snyder and his co-workers (Snyder
and Miller 1985, Snyder et al. 1987). Unfortunately, for HST images the amount of smoothing
required to reduce the noise amplification is very large. Fig. 2 shows the effect of various amounts



106 White

True,

too 200.

50

4.00,

;

-
•*

Figure 1 . R-L restoration of simulated 85 x 85 pixel HST PC observation of a planetary

nebula. Restored and true images are 256 X 256 (method of White 1 990 was used to restore

image with finer pixels than data.) As the number of iterations (shown at top of each

image) increases, the images of bright stars improve, but noise is amplified unacceptably

in the nebulosity.

Signal Sigma=2 Sigma=3

Figure 2. Results of smoothing 400-iteration R-L restoration from Fig. 1 with a Gaus-

sian. The width of the Gaussian is a = 1,2, and 3 pixels for the three cases shown.

Images of stars are grossly blurred when the R-L image is smoothed heavily enough to

substantially reduce the noise in the nebulosity.
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of smoothing on the restored planetary nebula image. By the time the noise amplification in the

nebulosity has been reduced to a visually acceptable level, the images of stars have been grossly

blurred. For most purposes, one must pay far too high a price to avoid noise amplification using

this method.

3. The Damped R-L Iteration

An effective approach to such an adaptive stopping criterion is to modify the likelihood function of

Eq. (3) so that it becomes flatter in the vicinity of a good fit. The approach I have taken is to use a

likelihood function that is identical to Eq. (3) when the difference between the blurred model I and

the data D is large compared with the noise, but that is essentially constant when the difference is

smaller than the noise.

There are two important advantages to using a modified form of the likelihood function to

control noise amplification:

• The end point of the iteration is well-defined, allowing properties of the final solution to be

studied.

• Acceleration techniques may be used to reach the solution more quickly without changing

the final answer.

It is appropriate to prevent noise amplification by recognizing its effects in the data domain

rather than by applying regularizing constraints on the restored image. Residuals that are smaller

than one expects based on the known noise properties of the data should be avoided by using a

likelihood function that does not reward overfitting the data. Of course, it may be necessary to use

constraints on the model image in order to select one of the many possible restored images that fit the

data adequately well, but in my opinion it is important to first establish better goodness-of-fit criteria

so that the set of possible restored images is as small as possible before applying regularization

to select one of those images. The work of Pina & Puetter (1992) on the Maximum Residual

Likelihood criterion for data fitting is a notable attempt in this direction.

The damped R-L iteration starts from the likelihood function

where

ln£ = 53/(^), (
6)

(7)D(i)ln^r-I(i) + D(i]

and

f(x) = #=}(l -*"+')+*", x<\
(8)

= X
,

X > 1 .

f(x) is the "damping function". It is chosen to be a simple function that is linearly proportional to

x for x > 1, is approximately constant for x ~ 0, and has continuous first and second derivatives

at x = 1 (this allows acceleration techniques to be used to speed convergence of the method). The

constant N determines how suddenly the function / becomes flat for x < 1. For N = 0, f(x) = x

and there is no flattening at all. The larger the value of TV, the flatter is the function. The results

reported in this paper use N = 10, but the value of N has little effect on the results as long as it is

larger than a few.

I
r
, is a slightly modified version of the In C function of Eq. (3). The constants and multiplicative

factors are chosen so that the expected value of U in the presence of Poisson noise is unity if the

threshold T = 1. The threshold T then determines at what level the damping turns on: if T = 1

the damping occurs at 1 er, if T = 2 at 2a, etc.
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Figure 3. Restoration of data from Fig. 1 using the damped iteration with noise thresh-

olds of 2 and 3a. As number of iterations increases, images of bright stars continue to

improve, but noise amplification is much better controlled than for standard R-L iteration.

With this new likelihood function, we can follow the steps outlined above to derive the damped

R-L iteration:

Onew (j) = 0(j)-

\ + U?-\N-{N-\)U<
-,D(i)-I(i)

I(i)

E Pd\J)

(9)

where

Ui = min( Ui,l) (10)

Note that in regions where the data and model do not agree, U = 1 and so this iteration is exactly

the same as the standard R-L iteration. In regions where the data and model do agree, however,

the second term gets multiplied by a factor which is less than 1, and the ratio of the numerator

and denominator approaches unity. This has exactly the desired character: it damps changes in the

model in regions where the differences are small compared with the noise.

Fig. 3 shows the results of applying the damped iteration to the planetary nebula data of Fig. 1

.

Note that the noise amplification in the nebulosity has been greatly reduced, but that the stars are

still very sharp. Fig. 4 shows the result of applying both the standard R-L method and the damped

iteration to HST observations of Saturn; again, the noise in the restored image is greatly reduced

without significantly blurring the sharp edges of the planet and its rings. This is perhaps more easily

seen in Fig. 5, which shows the brightness of the restored image along a cut through the planet

and rings. Sharp features such as narrow gaps in the rings are essentially identical in the R-L and

damped images, but the disk of the planet is much smoother in the damped image. Note that the
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mean brightness in the disk of the planet is the same in the damped and R-L images, indicating good

photometric linearity.

4. Summary

This paper describes an iterative image restoration technique that closely resembles the R-L iteration

but that avoids the amplification of noise that occurs in the R-L iteration. I call this the "damped"

R-L iteration because the modification appears as a damping factor that slows changes in regions of

the model image that fit the data well while allowing the model to continue to improve in regions

where it fits the data less well.

The approach used is to modify the likelihood function so that it is "flatter" in the vicinity of a

good fit. It is unlikely that this ad hoc approach represents the best solution to the noise amplification

problem, but it does have the advantages that it is easy to implement and robust, and it appears to

produce better results than the R-L method in many cases. The method produces restored images

that have good photometric linearity and little bias.
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Abstract. This paper shows how an effective noise suppression strategy can be incorpo-

rated into algorithms for the solution of the inverse problem. The residual in the fit of the

restored image, at each iteration, is analyzed using a wavelet transform. In order to suppress

noise, only significant wavelet coefficients are retained. The effectiveness of this procedure

is demonstrated.

1. Introduction

Consider an image characterized by its intensity distribution I{x,y), corresponding to the ob-

servation of an object 0(x,y) through an optical system. If the imaging system is linear and

shift-invariant, the relation between the object and the image in the same coordinate frame is a

convolution:

I{x,y) = 0(x,y)*P(x,y) + N(x,y). (1)

P(x, y) is the point spread function (PSF) of the imaging system, and N(x, y) is additive noise. We
want to determine 0(x, y) knowing I[x, y) and P(x, y). This inverse problem has led to a large

amount of work, the main difficulties being the existence of: (i) a cut-off frequency of the PSF, and

(ii) an intensity noise (see for example Cornwell 1988). Eq. 1 is always an ill-posed problem. This

means that there is no unique least-squares solution of minimal norm
||
I{x, y) — P(x, y)*0(x, y) || ,

and a regularization is necessary.

The best restoration algorithms are generally iterative (Katsaggelos 1991). Van Cittert (1931)

proposed the following iteration:

{n+[)
(x, y) = {n)

(x, y) + q(/(x, y) - P(x, y) *
(n)

(x, y)) (2)

where a is a convergence parameter generally taken as 1 . In this equation, the object distribution is

modified by adding a term proportional to the residual. Another iterative algorithm is provided by

the minimization of the norm
||
I(x,y) - P[x, y) * 0(x, y) \\

2 (Landweber 1951) and leads to:

{n+l
Hx,y) = (n)

(x,y) + aPs (x,y)*[I(x,y)-P(x,y)*0
{n)

(x,y)] (3)
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where Ps (x, y) = P(—x, -y). The Richardson-Lucy method (Lucy 1974, Richardson 1972) uses

an iterative approach to compute a maximum likelihood estimate:

g{n+\) _ q(u)

and

-L*p* (4)

/(") = P *
{n)

(5)

where P* is the transpose of the PSF.

2. The Wavelet Transform

Extensive literature exists on the wavelet transform and its applications (Meyer 1991, Daubechies

1988, Chui 1992, Meyer 1990, Meyer 1992, Ruskai et al. 1992). In this paper, our discrete approach

of the wavelet transform is implemented with a version of the so-called a trous (with holes) algorithm

(Holschneider and Tchamitchian 1990, Shenasa 1992, Starck and Bijaoui 1993). One assumes that

the sampled data {c {k)} are the scalar products at pixels k of the function f(x) with a scaling

function 4>(x) which corresponds to a low pass filter:

c (k)=<f(x),<f>(x-k)> . (6)

The scaling function satisfies the dilation equation,

!#!) = E*(o#*-o, (7)

with h being a discrete low pass filter. Consequently the scalar product c,-( k ) = ~ < f(x), $(*=£) >

is obtained by:

c l (k) = J2h(l)c t _ l
(k + ?- l

l) (8)

/

and the signal difference Wi by

Wi(k) = Ci-i(k) - *(k) (9)

or

Mk) = ji
<f(x)M^)> do)

when the wavelet function ip is defined by

^(|) = ^)-^(|)- («)

The B-spline of degree 3 was used in our calculations. A reconstruction algorithm uses the

last smoothed array cnp (x,y) added to all the differences wf.

Up

co(fc) = c„
p + X>(fc) (12)

t=i

The above a trous algorithm is easily extendible to two-dimensional space. This leads to a

convolution with a mask of 5x5 pixels for the wavelet related to a 53 -spline. At each scale i we

obtain a set {wi(k, I)} (we will call this a "wavelet plane" throughout the following discussion),

which has the same number of pixels as the image.
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2.1. Regularization using Significant Structures

Gaussian Noise If we use an iterative deconvolution algorithm such as Van Cittert or Richardson-

Lucy, we define W-n>(x, y), the error at iteration n:

R^(x,y) = l(x,y)-P(x,y)*0^\x,y). (13)

By using the a trous wavelet transform algorithm, /?'"' can be defined by the sum of its np wavelet

planes and the last smooth plane (see Eq. 12):

np

R(
n\x, y) = cnp (x, y) + J2 wi(x > V) • ( |4 )

i=\

The wavelet coefficients provide a mechanism to extract from the residuals at each iteration only

the significant structures. A large part of these residuals are generally statistically insignificant. The
significant residual is

Tip

R {n)
(x, y) = cnp (x, y) + J2 a(wj(x, y), Nj) w t

(x,y) . (15)

7=1

Nj is the standard deviation of the noise at scale j, and a is a function which is defined by

Q(G
'
a)=

l if \a\<ka (16)

The standard deviation of the noise N
3

is estimated from the standard deviation of the noise in the

image. This is done from the study of noise variation in the wavelet space, with the hypothesis of a

white Gaussian noise.

Poissonian Noise If the noise in the data / is Poissonian, the transform

r(/(a,y)) = 2t//(«,y)+| (17)

acts as if the data arose from the Gaussian white noise model (Donoho 1 992) with o - \. The noise

in 5' n ' = T{I)- T(/' n
' ) (with /(") = P * 0' n

>) can be suppressed in the same way as previously.

5 (n
' is decomposed into wavelet coefficients, and only the significant coefficients are kept. The

reconstruction gives 5' (n)
. The residual # (n)

can be expressed as a function of ,S'
(n)

(see Appendix)
by

RM(x,y) = S^(x,y)[
S{n){

^
y)
)+ JlW(x,y)+

|]
(18)

and #'"' is obtained by

#">(*,y) = S in
Hx,y)[

Sin)

[

X
' y) + Jln (x,y)+l] . (19)

We show now how the iterative deconvolution algorithms can be modified in order to take into

account only the significant structure at each scale.
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Regularization of Van Cittert 's Algorithm Van Cittert's ( 1 93 1 ) iteration is

{n+i)
(x, y) =

{n)
(x, y) + aR^n\x, y) (20)

with l6n\x, y) = I(x, y) - P(x, y) * 0^n\x, y). Regularization using significant structures leads

to:

0(n+l \x,y) = 0(n\x,y) + aR^n\x,y) . (21)

The basic idea of our method consists of detecting, at each scale, structures of a given size in the

residual R^n\x, y) and putting them in the restored image 0^n
'(x, y). The process finishes when

no more structures are detected. Then, we have separated the image I(x, y) into two images 0(x,y)

and R(x, y). O is the restored image, which does not contain any noise, and R(x,y) is the final

residual which does not contain any structure. R is our estimation of the noise N(x, y).

Regularization of the One-Step Gradient Method The one-step gradient iteration is

{n+l)
(x, y) =

{n\x, y) + P(-x, -y) * R^
n)

(x, y) (22)

with R(n\x,y) = I(x,y) - P(x, y) * 0^n\x, y). Regularization by significant structures leads to

0(n+l \x, y) = 0(n\x,y) + P(-x, -y) * R^(x, y) . (23)

Regularization ofthe Richardson-Lucy Algorithm Define I^
n\x, y) = P(x, y)*0^n\x, y). Then

RW(x, y) = I(x, y) - i"(
n
)(z, y), and hence I(x, y) = l(

n\x, y) + R^n\x, y). The Richardson-

Lucy equation is

~lW(x,y) + R(n\x,y){n+x \x,y) = {n)
(x,y)

and regularization leads to

{n+l \x,y) = 0(n)
{x,y)

lW(x,y)

l(
n)(x,y) + R(nXx,y)

I(n)(x,y)

* P(-x,-y)

* P(-x,-y)

(24)

(25)

Convergence The standard deviation of the residual decreases until no more significant structures

are found. Convergence can be estimated from the residual. The algorithm stops when

CTfi( "-' )

- (7*(
"

) < e . (26)
CTR(")

3. Example

As an example of typical results, Fig. 1 shows a simulated HST Wide Field and Planetary Camera
(WF/PC I) image of a distant cluster of galaxies. Its construction was described in Freudling and

Caulet (1993). The upper left is the "ground truth" image, the upper right the image degraded

through convolving with a spherically aberrated PSF and adding noise, the lower left is a restoration

with noise removal, and the lower right is a Richardson-Lucy restoration. These restorations used,

respectively, 28 and 40 unaccelerated iterations using a Gaussian noise model. Various tests were

carried out on the object detection potential of the two restored images, with a conclusion pointing

narrowly in favor of the noise-suppressed restoration. Further details are to be found in Starck and

Murtagh (1993).

Another area where the strategy described in this paper works well is when the image back-

ground varies. Richardson-Lucy, without intervention in wavelet space, must first model the

background and remove it. It appears that the wavelet-based approach handles such a situation well,

and without such removal of the background, due to the fact that it detects significant structures in

differenced (smoothed) images. An example of this may be found in Starck and Murtagh (1993).



Restoration with Denoising 115

Figure 1 . Upper left: "ground truth" image; upper right: the image degraded through

convolving with a spherically aberrated PSF and adding noise; lower left: restoration with

noise removal; lower right: Richardson-Lucy restoration.
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4. Conclusion

An adaptation of widely-used image restoration methods has been presented, which uses a wavelet

transform to suppress noise. The examples carried out on a range of images show the powerfulness

of this approach. Unlike in various other approaches, there is no regularization coefficient to be

estimated; and the problem of appropriate result is addressed directly in terms of noise and not in

terms of smoothness or other such constraints. Photometry tests, using the approach described here,

did not necessarily show an improvement over Richardson-Lucy restorations. Hence we propose, as

work to be carried out in the future, an assessment of the usefulness of "soft" or adaptive alternatives

to the noise suppression strategy adopted here, which was based on a "hard" threshold.

Appendix

We have the following relations:

$<">(*,») = T(I(x,y))-T(lW(x,y))

R(
n\x,y) = I(x,y)-lW(x,y)

lW(x,y) = P(x,y)*0(n\x,y)

and the transform T is defined by

T(I(x,y)) 2dl(x,y)+l

Then we have

[T(I(x,y))}
2 = [S^(x,y) + T(I^(x,y))]2

= (Sln\x, y))
2 + 4(/(")(z, y) + |) + 4S^

n\x, y)Jnn)(x, y) +

and

[T(I(x,y))}
2 = 4(I(x,y)+h

We deduce from the two last equations that I(x, y) can be expressed by

I(x, y) = \[(SW(x, y)f + 4(/W(z, y) + \) + 4S(n)
(*, v)Jfi

n
K*, v) + |] " \

By replacing / by its expression in R(nXx, y) = I(x, y) - I^
n\x, y), we have

*(">(», y) = 5W(«, y)[^-^ + ^/W(*,y) + |]
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Abstract. Following the Bayesian paradigm for image restoration we show how smooth-

ness constraints can be incorporated into the R-L method. We also examine different noise

models and study their approximation by Gaussian models that are robust to detector errors.

1. Introduction

Image restoration refers to the problem of recovering an image, f , from its blurred and noisy

observation, g, for the purpose of improving its quality or obtaining some type of information that is

not readily available from the degraded image. Blur is frequently due to the relative motion between

the subject and the camera, atmospheric turbulence, out of focus lenses, and/or the image sensor.

Film grain, electronic noise, and quantization are the major sources of noise in a digital image.

In this paper we describe how the Bayesian approach to image restoration can be used to

incorporate prior information, in the form of smoothness constraints, to the R-L restoration method

(Lucy 1974). We also examine the noise models and study how to remove detector errors.

The work is divided as follows. In §2 we describe briefly the Bayesian paradigm. In §3 we
study the observation process and how to remove detector errors. §4 is devoted to the study of

prior models that take into account smoothness constraints and also to the study of the prior model

used in the R-L restoration method. The next step is to calculate the estimate of the real underlying

image, f; the algorithm implementing this task and its relationship to the R-L restoration method

are described in §5. Finally, a test example is shown in §6.

2. Bayesian Paradigm

The philosophy within statistics known as Bayesian inference has a very long history. It is distin-

guished from the perhaps more familiar classical statistical ideas by using prior information about

the images being studied.

Bayesian methods start with a prior distribution, a probability distribution over images f , p(f),

(it is here that we incorporate information on the expected structure within an image), it is also

necessary to specify the probability distribution p(g|f), of observed images g if f were the true

image. The Bayesian paradigm dictates that inference about the true f should be based on p(f |g)

given by

p(f |g) oc p(f)p(g|f ) •

To show just one restoration, it is common to choose the mode of this posterior distribution, that is

to display the image f which satisfies

f maximizes p(f)p(g|f) .

This is known as the maximum a posteriori (MAP) estimate of f

.

Equivalently, we can choose f to minimize

- logp(g|f) - logp(f) . (1)

118
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The first term in (1) is the familiar log likelihood of f. The second term can be thought of as a

roughness penalty, as images f which do not correspond to our prior conceptions will be assigned

a small p( f ) and hence a large penalty.

In statistical physics it is common to define probabilities by the energy U of a system, so that

p(f) oc «p[-/W(f
)] (2)

where (3 is 1/kT, T being the temperature and k Boltzmann's constant. If we adopt this notation, f

minimizes
- log (likelihood) + (3U(f) . (3)

We can recognize this as a Lagrangian form, so its solution is equivalent to solving

max (likelihood subject to energy) < constraint
,

and to

min (energy subject to likelihood) > constraint

,

which correspond to the regularization approach to image restoration.

Many other deconvolution principles fit into one of these forms; in particular — as we will

see later — the R-L restoration method. Maximum entropy methods also fit into this framework

(Molina et al. 1992a).

Having described the Bayesian paradigm let us move on to examine the two ingredients of this

paradigm, the observation process, p(g|f ), and the prior model or image model, p(f ).

3. Observation Process

The observed image g differs from the true brightness distribution f in having been blurred and

encountering statistical noise in the recording process.

If p = m x n is the size of the image, the blurring process is described by Df where f is a

p x 1 vector and D is the p x p point spread matrix defining the systematic blur and assumed to be

known.

Let us describe the noise models. For each component i, i = 1 , 2, . .
.

, m x n of the observed

vector g we could use a Poissonian model, thus obtaining g, ~ ^((Df ),). This model can be

approximated, at least for high brightness values, by the Gaussian distribution 7V((Df )i,(Df ),•).

An alternative model would be to assume g, = Xz, where z, ~ P(Df),. For this model we
could use the following Gaussian approximation:

gi ~AA((D(Af)) M A(D(Af)K).

Substituting Af by f , we would have

g: ~7V((Df)f,A(Df)t).

Finally, a model like

and the corresponding \z
t
+J\f(0, a 2

) can be approximated by normal distributions having the form

Af((Df )i,a + 6(Df ),-) for appropriate constants a and b.

If we use the Gaussian approximation we have

- 2 logp(g|f) = const + ^ £>? (4)

with D
t
= [(g, - (Df

t
))/<7(Df,)], er((Df)i) being the standard deviation, ^a + b(T)f)

t , in the

noise model just described.
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This Gaussian approximation allows the easy incorporation of robust statistics concepts to deal

with detector errors (Molina and Ripley 1989). The idea is to down-weight observations which are

far away from their means. Such values are given too much weight in (4). The squared term in

Di represents the number of standard deviations that g, is away from its mean. In robust statistics

Y^ i D 2
is replaced by p(D{) for a function p which penalizes extreme values less severely. A typical

function p is the Huber's 'Proposal 2' function defined by

, s f x2 for Ixl < c

,

p(x) =
| 2c\x\ - c for \x\ > c .

This is quadratic in the center, but penalizes large deviations linearly rather than quadratically.

Equivalently, observations Di are down-weighted if |Z?,-| exceeds 2. In practice c is chosen at about

2, which down-weights only those observations more than two standard deviations away from their

means.

The noise model we will use in this paper is Poissonian; see Molina and Ripley (1989) for the

use of robust Gaussian noise models.

4. Prior Models

Consider an image with no stars but only with regions of smoothly varying luminosity. We then

expect ft
> and f to be spatially smooth. Probably the simplest probability models that can be

used to model smoothness are spatial autoregressions (Ripley 1981).

The conditional autoregression (CAR) model is defined by

p(f) oc expj-^af^/- <j>N)f}

where a is the unknown hyper-parameter, matrix N is such that Nij = 1 if cells i and j are spatial

neighbors (pixels at distance one) and zero otherwise, and scalar
<fi

is just less than 0.25. The term

f'(7 - 4>N)f represents in matrix notation the sum of squares of the values f; minus
<f>

times the

sum of fjfj for neighboring pixels i and j

.

The parameters can be interpreted by the following expressions describing the conditional

distribution

E(ti\tj,j^i) =
<f> £ f,

j nhbr i

var(f;
|
fj, j ^ i) = a

-1

where the suffix 'j nhbrz' denotes the four neighbor pixels at distance one from pixel i. The

parameter a measures the smoothness of the 'true' image.

Assuming a toroidal edge correction, the eigenvalues of the matrix / — <pN are A;j = 1 —

20(cos(27rz7m) + cos(27ri/n)),i = 0, 1,2, . ..,m - l,j = 0, 1,2, .. .,n - 1. So, the density of f

has the form

^prioria) 2

where Zpiioi(a) = (Hij Au )- 1 /2(27r/a)P/2
, C = 4>N

.

This prior model can be easily modified to work at log scale, which is the right scale for the

deconvolution of galaxies (Molina et al. 1992a). Furthermore, this model can also take into account

the existence of different objects in the image (Molina et al. 1992b).

Let us now examine the prior model used in the R-L restoration method. This method aims at

maximizing p(g|f) when this conditional distribution is Poissonian. Under the Bayesian framework

this is the same as maximizing the posterior distribution for the prior model p(f ) = const, together

with the Poissonian noise model. The meaning of this prior is simple; all possible restorations have

the same probability.
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5. Algorithms

Having defined the prior and observational models, let us move on to estimate the MAP.
Following the R-L method, which, as we have said, corresponds to maximum a posterior

estimation with a uniform image prior, we seek to find

fRL = argmax{nexp[-(Df),][(Df)
I
]8'/g

I
.!} . (5)

* ;=i

Applying logarithms and differentiating with respect to f we obtain the following equation:

D'(g/DfRL ) = 1 (6)

where we have assumed that D (
l = 1. To solve (6) Lucy uses the iterative scheme

f; = f;[D
(

( g/Df%

where i denotes iteration and j component of the vector. This iterative scheme is justified as an

iterative scheme derived from EM principles. However, it can also be obtained by multiplying both

sides of (6) by f.

Let us now assume that we want to impose smoothness constraints on the solution by using a

CAR prior model, we have

p(f|g)ocexp[-|f ((/-C)f]nexp[-(//f) 1
][(//f) ip/5l !. (7)

Differentiating - logp(f|g) with respect to f we obtain

a(/-C)f+l-// (

(g/i/f) =

or

f + Q-'l = Ci + aH t {g/Hf). (8)

Multiplying both sides of (8) by f we obtain the following iterative scheme:

^+ l =(^[Cf']i -ra-
1fj^(g/ Jr7f%)/(^ + a- 1

) (9)

where i denotes iteration and j component of the vector. This equation can be rewritten as

IJ+
1 =n)[Cf]j + (l-ix))rjH

t

(S/Hf
i

)]j

where p' = fj/(fj + a" 1

), p} =0 corresponds to the classical R-L restoration method.

Before examining an example, let us briefly comment on the problem of estimating a. Although

it is possible to estimate a on a trial and error basis we are currently working on the use of the

hierarchical Bayesian approach to image restoration (Molina 1993). The idea is to use the joint

distribution defined as

p(a,f,g) = p(a)p(f|a)p(g|f), (10)

integrate ( 1 0) on q to obtain p( f , g ), and then find f which satisfies

f maximizes p(f , g) .

For the problem we have at hand we can use improper noninformative priors, p(a) oc const, and also

gamma distributions. The relationship between this hierarchical model and the method developed

by Katsaggelos, Kang, and Banham (1994) are under investigation.
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Figure 1.

iterations.

(a) Observed Saturn image, (b) Restoration with a ' = 106,000 after 50

6. Examples

We shall apply the algorithm just developed to the restoration of a WF/PC image of Saturn.

The distorted and restoration images obtained by our method after 50 iterations, using (9), with

a -1 = 106, 000 are shown in Fig. 1.
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Abstract. Bayesian and maximum entropy algorithms that use a constant balancing pa-

rameter present large residuals in the low or the high S/N regions depending on the value

chosen for the parameter. We present the development of a variant of the Bayesian algorithm

with entropy prior (called FMAPE) that uses a balancing parameter that is variant in space.

This variation of the balancing parameter implies a variable resolution in the restoration,

allowing high resolution with low bias in high S/N regions and a lower resolution with lower

artifacts in poor S/N regions. We have applied the algorithm to the FOC and WF/PC cameras

of the HST.

1. Introduction

Since the discovery of the spherical aberration problem of the Hubble Space Telescope in 1990, a

substantial amount of work has been done in image restoration directed towards optical astronomy.

During the past few years, we have been developing statistically based algorithms for image
restoration (Nunez and Llacer 1991, Nunez and Llacer 1993, Llacer and Nunez 1990, Llacer et

al. 1993). In particular, we have developed Bayesian algorithms with entropy prior (FMAPE),
and methods based on feasibility and cross-validation in order to compute the balancing parameter

between the entropy prior and the likelihood term. The balancing parameter defines the degree of

smoothness of the solution.

Bayesian and maximum entropy solutions are increasingly being used for the restoration of

images from noisy and incomplete data. The Bayesian strategy seeks the image of highest probability

given the data. The Bayesian target function and the likelihood are related through Bayes' Rule,

which includes the probability distribution of the image, also known as image prior. We use entropy

to define this prior probability.

2. Notation and Model

The notation that will be used in this paper can be summarized as follows:

projection (measured) data

emission density in the image (parameters to be estimated)

Point Spread Function (PSF) or probability that an

emission in pixel i in the source be detected at detector j
background in the data

read-out noise in the data

detector gain corrections (flat field)

123

Pjj = 1,
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/j. = fji/Cj corrected PSF

Qi = J2f=i f'ji
total detection probability for an emission from pixel i

hj = Ylf=\ f'ji a i + &j forward projection or blurring operation

Qi prior distribution density or default image (if any)

p, a, f , b, n, C, f', q, h, Q corresponding arrays

We shall work with the following model: an object emits light with intensity given by a spatial

distribution a. The light is focused by the optical system over a detector array consisting ofindividual

discrete and independent detectors. Each detector has a different quantum efficiency characterized

by a gain correction distribution C. A certain background radiation b, coming mainly from the sky

but also from sources internal to the detector, is detected along with the spatial distribution a. We
assume that the detection process is Poisson distributed. Finally, the detector is read by an electronic

process which adds a Gaussian read-out noise n with zero mean and known standard deviation a.

The imaging equation corresponding to this model is:

f'a + b + n = p . (1)

Equation (1) in discrete form becomes:

B r.

YItt a-i + bj + rij = P] j = l,...,D.

Most of the imaging systems used in astronomy, such as charge coupled device (CCD) cameras and

image pulse counting systems (IPCS), are described by Eq. (1).

3. The FMAPE Algorithm

We use the Bayesian strategy to obtain an iterative algorithm for image restoration. The application

of Bayes' theorem to the image restoration problem gives

P(a|p) =«W. (2)

The most probable image a, given data p, is obtained by maximizing P(a|p) in Eq. (2) or the

product P(p|a)P(a) since P(p) is constant.

The conditional probability P(p|a) describes the noise in the data and its possible object

dependence. It is fully specified in the problem by the likelihood function. As indicated above, we
have two processes: the first to form the image on the detector array and the second to read the

detector. Taking the whole process into account, the compound likelihood is (Nunez and Llacer

1993)

L = P(P|a)=nE^-

and its logarithm is

k\

D
logL = £

3=1

log(v
/2^a) - hj + log£ e~^^^

fc=o V
K -

(3)

The authors first introduced this compound likelihood for restoration of Poisson data in the presence

of read-out noise (Llacer and Nunez 1990). Snyder et al. (1993) use the same likelihood form for
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CCD cameras. If the process were purePoisson (no read-out noise), the logarithm of the likelihood

would be the classical expression

D
logL = Yl {-hj+Pjtoghj - \og( Pj \)} . (4)

i=\

We use entropy to define the prior probability P(a) in a generalization of the concepts originally

described by Frieden (1972). Let N be the total energy (usually the number of counts or photons)

in the object. Assume that there is an intensity increment Aa describing an intensity jump to which

we can assign some appropriate physical meaning.

Assume, in addition, that we have prior information regarding the statistical makeup of the

object obtained for example, from previous observations or from observations at other wavelengths.

If Qi i = 1, . .
.
, B is the prior energy distribution, the prior probability of a photon going to pixel

z is given by
B

9i = Qi/YlQi-

In that case, the number of ways that the object can occur is

W(a)
(N/Aa)\

nf= .(a./Aa)!,
A
=
lite)

a,/Aa

We take the prior probability P(a) of the object to be proportional to its multiplicity, as given

by Eq. (5). Using Stirling's approximation and taking into account that both £a, and J2Qi are

constants, it is easy to show that the logarithm of the probability P(a) is

logP(a) - y^ -r-i- log— + constant terms
Aa

This expression is the Shannon form of entropy with the inclusion of the parameter Aa and the

spatial prior information Q. This form of the entropy is also called cross-entropy.

The Bayesian function to be maximized is

ai- = -££"*£ +£Aa Q t 3=1

]og(V27rc7)-/i
J
-(-log^ e i" 2

£«<»<- £pj +H 6
;

(61

where h
3

is given by

hj = Ylf'ii ai + b
J

and /i is a Lagrange multiplier for the conservation of counts. Note that the relative weight of the

two terms in the Bayesian function Eq. (6) is controlled by Aa.

To obtain the maximum of Eq. (6), we set dBY/da
t
= and apply the method of successive

substitutions, which affords us greater flexibility than other methods and results in rapidly converging

algorithms. The Bayesian maximum a posteriori algorithm with entropy prior (FMAPE) is given

by the iterative formula

^+,, = A'a'
fc) £

fjiPj

E/=i fji a
i

w + Cjbj 9tAa

(*)
a

1061 + 1 + C \,...,B
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where
(fc-pj)2

J±3jL w
e i°2 Hr-

(8)

In Eq. (7) k is the index of the iteration, K is a constant to preserve the energy in the

form Ya=\ 1i a i
= ^2?=i Pj< computed at the end of each iteration; C is an arbitrary constant

(usually C = 1) to secure positivity in the solution; n is a constant to accelerate convergence up to

approximately three times (n = 3). Constants C and n do not affect the point to which the algorithm

converges. The parameter Aa determines the point ofconvergence of the solution between the trivial

solution and the maximum likelihood solution. Aa is thus the balancing parameter of the Bayesian

approach and it is the inverse of the weight of the entropy versus likelihood.

The iterative algorithm in Eqs. (7) and (8) has a number of desirable characteristics: (1 ) it solves

the cases of both pure Poisson data and Poisson data with Gaussian read-out noise, (2) it maintains

positivity of the solution, (3) it is easy to implement, (4) it includes case-specific prior information

(default map) and flat field corrections, and (5) it removes background and can be accelerated to

be faster than the Richardson-Lucy algorithm (Lucy 1974). The main loop (projection and back-

projection) of the algorithm is similar in nature to the Expectation Maximization algorithm. The

algorithm can be applied to a large number of imaging situations, includingCCD and pulse counting

cameras both in the presence and in the absence of background.

We can obtain a maximum likelihood algorithm from the general FMAPE by taking the limit

when Aa —> oo. The algorithm for the maximum likelihood (MLE) case in the presence of read-out

noise and background is

(k+i) v (k)
a) — ha) '

1 y fiiPj i= \,...,B
, (9)

where p- is given by Eq. (8).

In the case of no background and no read-out noise, Eq. (9) becomes

„(*+») ,(*) fjiPj-T .,B . (10)

For n — 1 and disregarding the gain (flat field) corrections (<?; = 1), Eq. (10) is identical to the

Richardson-Lucy algorithm.

4. New Approach: Space Variant Hyperparameter Aa

The hyperparameter Aa is a key parameter in the Bayesian framework. It determines the relative

weight between the prior information and the likelihood in the Bayesian function and therefore

determines the chosen solution between the default image and the maximum likelihood solution.

Ultimately, it defines the degree of smoothness of the solution. Up to now, we have considered Aa
to be an adjustable parameter belonging to object space that is constant for a given image. The

value of Aa can be adjusted by cross-validation (Nunez and Llacer 1991; Nunez 1993).

The use of a single Aa in Bayesian restoration produces a good global fit of the data, but

usually the part of the image in which the light level is usually noisy (over-restored) while the bright

objects (stars) are too smooth (under-restored). This effect is also present in the Richardson-Lucy

algorithm at the stopping point. Furthermore, Bayesian methods with entropy and MEM present

photometric linearity problems.
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The effect can be observed in the image of residuals:

E,= ! fjiai

!,...,£>

If the data are Poisson, the R
}
values should be randomly distributed around unity. However, for

low values of the hyperparameter the residuals are strongly correlated with the data. For a very high

value of the hyperparameter, the residuals are not correlated with the data but they are very near

zero. In this case the data are overfitted and the resulting image very is noisy with high peaks and

low valleys. In general, after obtaining the optimum value of Aa by cross-validation, the residuals

for the background part of the image are random but too low, resulting in a noisy restoration. On
the other hand, the residuals at the bright stars are large and still correlated with the data, giving

a too smooth restoration for the bright objects. As stated above, this effect is also present in the

Richardson-Lucy algorithm for a given stopping point.

To solve this problem several approaches have been presented in this conference (Katsaggelos

1994, Lucy 1994, Puetter 1994, Stark et al. 1994, White 1994). Our approach consists in the

introduction of a space variant Aa hyperparameter in the Bayesian framework. A variable Aa
allows different degrees of smoothing in different regions, ranging from very smooth (or very

similar to the prior) regions (Aa —* 0) to MLE regions (Aa —
> oo). We have used this variable

hyperparameter in connection with known default images for medical tomography (Llacer, Veklerov,

and Nunez 1991).

Assume that the intensity increment Aa described in §3 is space variant in the object space.

Let Aa, i = 1, . . ., B be the variable increment. Now, in place of N/Aa units we distribute

J2iL\ di/Aai units. The number of ways in which an object can occur is then

w(a)=
(ZLa>/AalV.

nf= ,K/Aa,)! ^
A natural choice for the prior energy distribution is

Qi/Aai

U(9i
ja./Aa,

E^.^/Aa,

Using the Stirling approximation and taking the prior probability to be proportional to the multi-

plicity, its logarithm is

'0SP(a) = (g^).0g(|:^
B

a, ciiQ—— log — h constant terms
,Aa a Q t

where

Q' = E (h_

Aa,

With the modifications described, the algorithm FMAPEVAR is

(fc+i)
T

. (k)
a) = A a

fjiPj-Y-
Hx

j = \ l^l=\ Jjl a l
+^jOj *« '

Q
log- + c !,...,£

The modified algorithm has the same desirable characteristics as the FMAPE algorithm, but now it

is possible to change the values of Aa, in order to determine the degree of smoothing in different

regions or, in connection with known default images, to adjust the proximity between the restoration

and the default image Q.
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Figure 1 . Left: Raw image for the planetary nebula simulation. Right: Restoration of

the planetary nebula using the FMAPEVAR algorithm with three channels.

To compute the Aa, for the different regions, we can use segmentation techniques in conjunc-

tion with local cross-validation to define several levels of data fitting, depending on the signal-to-

noise ratio. We are currently studying the suitability of the different segmentation algorithms to this

problem.

5. Results

To illustrate the use ofthe algorithm to control noise amplification, we have reconstructed a 256 x 256
pixels planetary nebula simulation for the PC camera prepared by R. Hanisch at ST Scl. The PSF
has a similar radius to the ring of the planetary nebula. The images combine background, a diffuse

object, and several bright stars. Fig. 1 (left) shows the raw image.

We have reconstructed the raw image using the FMAPEVAR algorithm with a space variant

Aa parameter. We set Aa = 200 for the background, Aa = 500 for the diffuse planetary nebula and

a high value for the bright stars of Aa = 106 allowing the algorithm to reach maximum likelihood

in the stars.

Fig. 1 (right) shows the result of this three-channel restoration. We obtained a smooth back-

ground, a well reconstructed nebula, and sharp images of the stars. We suppressed the noisy

amplification in the background and in the nebula, while fully developing the images of the stars.

In order to compare the new algorithm with the constant Aa approach and to study the

photometric properties of the restoration, we made two restorations of the raw image using a

constant value of Aa = 200 and a constant Aa = 500 respectively. Since this is a simulated

image, we can quantitatively study the restorations with respect to the true unblurred image. For

the restorations, we computed the percentage of energy recovered in a 7x7 box located in the

background, the ring, the central star and the brightest star.

Fig. 2 shows the results. The restoration with constant Aa = 200 only has correct photometry

for the background. The restoration with constant Aa = 500 performs well in the background and

in the ring (although the background is too noisy in the restoration) but the photometry is poor in

the stars because the stars are not properly developed. However, the restoration with variable Aa
in three channels performs much better in the stars, while maintaining the quality the photometry

in the ring and the background. We obtained an accuracy better than 95% (or 0.05 mag.) for the

whole image. We adjusted the values of the variable Aa approximately without any local cross-
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Abstract. Two numerical methods for the restoration of noisy images from the Hubble
Space Telescope are presented. The first one stems from a B-spline expansion followed

by the Tikhonov regularization method. The second one is based on a coarse smoothing

coupled with the Tikhonov regularization. The effectiveness of these methods is illustrated

by the restoration of some images already proposed in the literature.

1. Introduction

From the mathematical point of view the problem of the restoration of the images generated by the

Hubble Space Telescope (HST) consists of the solution in L 2(M2
) of the convolution equation

(k * f)(x) = g(x) ^=>
J

k(x - y)f(y)dy = g(x) (1)

where the kernel k represents the Point Spread Function (PSF), the symbol z = (zi, zj) denotes

a vector of 1R and / is the unknown function, that must be non-negative. As the image g is

contaminated by noise, the deconvolution of equation (1) by the usual Fourier methods, that is the

Fourier inversion of the solution of the equation

*(a)/(a) = s(faO , (2)

where the notation u(u) denotes the Fourier transform of u, is not effective. Many methods exist,

both statistical and deterministic, linear and non-linear, for solving Eq. (1). They are essentially

regularization methods, in the sense that the quality of the results, that is the value of the signal-

to-noise ratio of the restored images, strongly depends on a non-negative parameter. In the case of

iterative methods this parameter is the number of iterations. A different approach, based on the usual

Fourier techniques applied to images previously smoothed, could also be adopted. Unfortunately

the smoothing techniques are really effective only if the noise is white, but this hypothesis is not

acceptable in our case.

In this work we use two different approaches: the first one is based on both the finite dimensional

approximation of the unknown function and on the so-called Tikhonov regularization method; the

second stems from a coarse smoothing and also exploits the above regularization method.
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2. Finite Dimensional Approximation and Tikhonov Regularization Method

The Tikhonov regularized solution of the convolution equation (1) is the minimizer in H of the

regularization functional (Tikhonov & Arsenin 1977, Morozov 1984, Groetsch 1984):

</A(/)=||fc*/-5|| 2 +A||/|| 2
, (3)

where A 6 M+
is the regularization parameter to be chosen depending on the noise level. This

functional can be expressed by the Plancherel theorem in the frequency space as follows:

Jx(f)=\\kf-g\\
2
+\\\f\\

2
(4)

Hence it is straightforward to prove, by variational calculus, that the minimizer f\ of J\ (fj is the

solution of the equation

(fe)|
2 + A)/^) = r(uO£(u>)

, (5)

where a* denotes the complex conjugate of a.

Since any image is numerically represented as a non-negative function with finite sup-

port R (in other words: f(x) = outside R), we restrict our considerations to the rectangle

R = [0, 2L] x [0,2L] . The regularized solution f\, in a discrete set of equally spaced points of

R, is then the inverse discrete Fourier transform of

\k(ui)\
z + A

which can be evaluated easily by the Fast Fourier Transform (FFT) method.

Let V = {yrs = (rh,sh) : r, s = 0, l,...,N —1, h = 2L/N} be the set of knots of a regular

mesh of the space domain R and Bm ,i be the B-spline of order m relative to the m + 1 equally

spaced knots {lh, (I + l)/i, ..., (/ + m)h} of the extended interval [0, 2L + (m - l)h]. Then, the

unknown function / can be approximated by the m — th order spline

JV-1JV-1

sm{y\,yi)= J2 J2 crsBm,r{yi)Bm<s(y2) , (7)

r=0 s=0

whose coefficients, as a direct consequence of (6), may be obtained solving in a regular mesh of

points the system

N-lN-\ ^ ^ %*(u u \

J2 Y, CrsBmAu\)Bm,s{U2) = 7T, 'l,,', . ff(^b^) , (8)

r=o ,=o \k{uu u2 )\
2 + X

where

Bm ,i{u) = he~ llhui
(e-

ih"'2smc(hu/2J)
m

, sinc(s) =— , i = y/-l. (9)

Let $7 = {u>rs = (x
1

, x") : r, s = 0, 1, ...,N — 1} be the set of knots of a uniform decomposition

of the frequency domain [0, nN/L] x [0, irN/L]. The matrix (A

)

rs = e~ irhuj3
is an orthogonal

matrix since A*A = NI, where A* is the adjoint of A and / is the identity matrix of order N; then

we can solve the system (8) using the inverse discrete Fourier transform. Thus we obtain:

Crs4EE e
2^r/N

e
2,iks/N

HT{j ^ fc
.

fc)
? (1Q)

4iy
j=0 fc=0
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where m m
/ ikuj/2 \ m ( e

ihu,k/2 \
m

„

H?(J, k\ h)=[ . ... ,, n . h(Ujk) ,

ys\nc(hu>j/2)J ys\nc(hLjk /2)J

ui = lir/L and /x(wjjt) is the Tikhonov regularized solution in the frequency space.

Since the approximation properties of splines are only asymptotically satisfied, that is they

hold only if h converges to 0, we replace the above expression of crs by its limit for h —> 0. In this

way H™(j, A:; h) converges to /x(wjfc) and then, excep for edge effects, cTS —> f\{yrs )- In other

words, the coefficients of B-splines converge, for each value of m, to the values of the Tikhonov

regularized solution obtained by the discrete Fourier transform applied to f\(wjk)-

This regularization technique, based on approximation by splines, can then be seen as a method,

with a very low computational complexity, for recovering the image in all the points (except for

the edges) of its domain and not only in the knots of its mesh. It is remarkable that these limits

can also been obtained by expressing / as a linear combination of sine functions and then applying

the Tikhonov regularization method in the frequency space. Such an expansion is usual for band

limited functions, as a direct consequence of the sampling theorem which states that, if f(u) =

outside the domain ilQ = [-u> ,u;o] x [-u; ,u;o], then the values of / at the sampling points

{(rTr/uo,sn/u>o) , V integer r, s} can be interpolated by a bi-infinite series of sine functions to

reproduce /. In our numerical computations we approximate this series by the finite sum

yv-i n-\

f{y { ,y2)~ Yl Yl /(2/rs )sinc(u;oyi - r7r)sinc(w t/2 - STr)
, (11)

r=0 s=0

where the coefficients f(yTS ) are the values of / at the sampling points. We recall, for the reader's

convenience, that the Fourier transform of a sine function is a square pulse. More precisely

smc(w) = irx[-i,i] where X[-i,i] =
| , |w| > 1 .

Therefore the Tikhonov regularized solution of equation (1) sought in a finite-dimensional span of

sine functions, is the solution on a discrete set of u values of the problem

N-l/V-l / \2 Z'(uj)

=0 s=0
t/ \k(u)\ 2 + y

For each value of A > we have a regularized solution f\ whose expansion by sine is uniquely

characterized by the coefficients f\(yTS ) which can be easily obtained applying the FFT to relation

(12). These coefficients, as already remarked, are the limits (for h —<• 0) of the coefficients of the

same regularized solution spanned by B-splines. This fact is not completely surprising because the

interpolation in the sampling points by splines of order m, form —> oo converges to the interpolation

in the same points by sine functions (Schoenberg 1973).

3. Smoothing and Regularization

The recovery of HST images has also been obtained by a method based on the following two steps:

1. The blurred image is partially smoothed using the public domain package WAVE II of

S. Mallat;

2. The convolution equation with the data function partially smoothed is then solved by the

Tikhonov regularization technique.
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ELLIPTICAL GALAXY STAR CLUSTER
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mainly impute this fact to the strong difference existing between the signal-to-noise ratio associated
with the Star Cluster and with the Elliptical Galaxy. Indeed their ratio is approximately 3.6.

We recall that any linear system Ax = b, where
||

<56
|| / ||

6
||

is the inverse of the signal-to-

noise ratio of the noisy data and
||
6x

|| / ||
x

||
is the corresponding ratio for the solution, provides

the following inequality (Stoer and Bulirsch 1980):

Therefore, as the condition numbers of the Fourier transforms of the two PSFs provided by R.

Hanisch have approximately the same value, we must expect a better signal-to-noise ratio in the

restoration of Star Cluster images. For this reason we feel that, for solving Eq. (1), the use of a

regularization method is recommended in the case of the Star Cluster and it is mandatory for the

Elliptical Galaxy. Furthermore we believe that, as a consequence of its worse signal-to-noise ratio,

the latter case provides a more critical but significant test to assess the effectiveness of the numerical

methods used for the restoration.

Fig. 2 shows the comparison among the true image (top left), the simulated data (top right)

and the Tikhonov regularized solution (bottom left). The image at the bottom right of Fig. 2 will be

called into play later on. The most evident effect is that the regularization method is only partially

effective in cleaning up the image background contaminated from the simulated noise (compare the

true image with the simulated data). The problem is not of particular relevance in this case but it

could be if we treat images including low-intensity sources distributed in the background. It can

be noticed that while the inside structure of the Galaxy is satisfactorily well restored in the center,

where the image function takes its highest values, the restoration is more critical near to the edge,

where the Tikhonov method is not fully effective in discriminating between the low values of the

true image and the noisy background.

As an example of numerical computation based on relations (1 1)-(12) we used J413, a real

image of Jupiter observed on 4 March 1992 with the WFPC. This is an extended image (without

sharp cut-offs) which is essentially band limited. Tikhonov regularization coupled with interpolation

by sine functions allows to restore images on an additional "shifted" grid {£hk} by the following

relation:

fxithk) = Shn f\{ynm )Skm where Shk = 77 :—
<^o(6i - Vk)

The overall computational complexity is 0(N 3
), which must be compared with 0(N 2 log

2
N) for

the Tikhonov restoration. The use of effective BLAS 3 routines for matrix-matrix product (ESSL
2, 1992) makes acceptable the CPU-time increase. As a result, Tikhonov regularization takes about

7 sec on the initial 512 x 512 mesh and 24 sec on an extended 1024 x 1024 mesh (IBM RISC
6000/560 with ESSL 2). Fig. 3 shows two Tikhonov restorations of J413 on the above mentioned

grids. For validating the method described in § 3 we use again the already shown Elliptical Galaxy
image. We partially restored the simulated image using WAVE II and got a whole set of smoothed
images corresponding to different scale edges. Taking the smoothed image characterized by the

finest scale and treating it by the Tikhonov method, we obtained a significant improvement of the

accuracy, as shown in Fig. 4. It can be appreciated that the new minimum of the accuracy takes the

value 77 = 0.29 instead 77 = 0.36 provided by the Tikhonov method. It is worthwhile to note that

the improvement is appreciable for low values of the regularization parameter. The restored image

obtained by this method is shown in Fig. 2 (bottom right).

5. Conclusions

Our numerical experiments suggest that the approximation by sine functions coupled with the

Tikhonov regularization technique is an effective restoration method. For images satisfying the

band limited hypothesis underlying the sampling theorem restoration on finer grids can be obtained

without an appreciable overload.
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Figure 2. Comparisons of the true image ofthe Elliptical Galaxy (top left), the simulated

image (top right) and two restorations. Bottom left: Tikhonov restoration with A =
0.04. Bottom right: restoration obtained by multiresolution smoothing and Tikhonov
regularization with A = 0.01.
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Figure 3. Restorations of Jupiter (J4 13). Upper left: observed data. Upper right:

Tikhonov restoration with A = 0.01 on a 512 x 512 mesh. Lower left: detail of the Red

Spot on a 512 x 512 mesh. Lower right: Red Spot restoration on a 1024 x 1024 mesh.

A square root scaling has been used.
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denoising + Tikhonov

Tikhonov

0.00 0.05 0.10

regularization parameter

Figure 4. Accuracy improvement of the Tikhonov restored images provided by the

multiresolution analysis. The figure refers to the Elliptical Galaxy.

The multiresolution analysis coupled with the Tikhonov regularization brings a remarkable

improvement of the accuracy. However it is not clear how this method performs in smoothing

images affected by Poisson noise. We feel it will be possible to refine this smoothing method in

order to obtain the same accuracy ofthe most popular restoration techniques (mainly the Richardson-

Lucy one) but characterized by a much lower computational effort.
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Abstract. Data acquired with the charge coupled device camera on the HST are modeled

as an additive Poisson-Gaussian mixture, with the Poisson component representing cumu-

lative counts of object-dependent photoelectrons, object-independent photoelectrons, bias

electrons and thermoelectrons, and the Gaussian component representing read-out noise.

Two methods are examined for compensating for read-out noise. One method is based

upon approximating the Gaussian read-out noise by a Poisson noise and then using the

expectation-maximization (modified Richardson-Lucy) algorithm for Poisson distributed

data to effect the compensation. This method has been used for restoring HST images.

The second method directly uses the expectation-maximization algorithm derived for the

Poisson-Gaussian mixture data. This requires the determination of the conditional-mean

estimate of the Poisson component of the mixture, which is accomplished by the evaluation

of a nonlinear function of the data. The second method requires more computation than the

first, but modest improvements in the quality of the restorations are realized, particularly for

fainter objects.

1. Introduction

Various methods are being used to compensate for the resolution loss that is present in image data

acquired by the Hubble Space Telescope. The common goal of these methods is to invert the excess

point spreading caused by spherical aberration in the primary mirror so as to restore the images to

their original design resolution. Inverse problems of this type are notoriously ill-posed. Not only can

noise amplification cause serious degradation as improved resolution is sought for such problems

but, also, the details of the implementation of any restoration method can have a significant impact

on the quality of the restoration, with seemingly insignificant design choices having the potential to

cause large changes in the result.

There are a variety of noise sources present in HST image data acquired with a CCD camera.

The photo-conversion process by which object light is converted into photoelectrons introduces

object-dependent noise characterized statistically as a Poisson random process. Nonideal effects

introduce extraneous electrons that are indistinguishable from object-dependent photoelectrons.

Examples of this excess "noise" include object-independent photoelectrons, bias or "fat zero"

electrons, and thermo-electrons. We use the term background counts for the cumulative effect of
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these extraneous electrons. Background counts are Poisson distributed. Read-out noise further

contributes to the degradation of images acquired with the charge coupled device camera aboard

the HST. This noise is characterized as a Gaussian random process.

We use the following mathematical model due to Snyder, Hammoud, and White (1993) for

describing CCD image data acquired by the HST:

r(j) = nobi(j) + no(i) + 9(j), 3 = 0, 1, • • , J - 1 (1)

where r(j) are the data acquired by reading out pixel j of the CCD-camera array, n bj(i) is the

number of object-dependent photoelectrons, no(j) is the number of background electrons, g(j) is

readout noise, and J is the number of pixels in the CCD camera array. The statistical description

of these quantities is as follows. The random variables rc bj(j), no(j), and g(j) are statistically

independent of each other and of n bj(fc), no(k), and g(k) for j ^ k. Object-dependent counts

inobi(j)ij = 0,1,- • •, J - 1} form a Poisson process with mean-value function {fJ, bj(j),j =
0, 1,-, J- 1}, where

/Wi) = /3(i)I>(il0A(0, (
2

)

t'=0

where {(l(j),j = 0, 1, ••-,</— 1} accounts for nonuniform flat-field response, detector efficiency,

and the spatial extent of the detector array,

{p(j\i), i = 0,l,..-,/-l, j = 0,l,--,J-l}

is the HST point spread function (PSF), {\(i),i = 0, 1, ••,/- 1} is the object's intensity

function. The flat-field response function /?() is assumed to be known, for example, through

a flat-field calibration measurement. The PSF p(-\-) is also assumed to be known, for example,

from a theoretical model of HST optics or through observations of an unresolved star. Back-

ground counts {rao(j), j = 0, 1,- • , J — 1} form a Poisson process with mean-value function

{no(j),j = 0, 1, • • • , J - 1}; this mean-value function is assumed to be known, for example,

through a dark-field calibration measurement or from HST images taken near but not including the

object of interest. Read-out noise {g(j),j = 0, 1, • • •, J - 1} forms a sequence of independent,

identically distributed, Gaussian random variables with mean m and standard deviation a; the

constants m and a are assumed to be known.

One approach for compensating for blurring while recognizing the statistical properties ofnoise

encountered in charge coupled device cameras is based on the method of maximum-likelihood

estimation, as discussed by Snyder, Hammoud, and White (1993). This leads to the following

iteration for producing a maximum-likelihood estimate of the object's intensity function:

where

£(0=X>OW(i), (4)

j=0

A
OId

(i) = /3(i)EKil0A
old
(0 + Mj) , (5)

and where

F [r(i),/z,a] = E [nobj (j) + n„(i)|r, A°ld
l = E \r(j) - g(j)\r, A old

l (6)
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1

is the conditional-mean estimate of n bj(j) + ^o(i) in terms of the data r and the intensity estimate

Aold
to be updated. Evaluation of the conditional mean (6) yields

p(r — m - 1 : p, a)
F[r,p,a) = p^- ^ , (7)

p(r — m : p,cr)

where p(x : p., a) is the Poisson-Gaussian mixture probability density given by

1 » _.. 1

p{x:p,a) = ^—pn
e ^-y=^e\p -—( x - n

This iteration is used as follows:

STEPO. Initialization: select Aold
()

STEP 1. Compute Anew (-) using (3)

STEP 2. If done, display Anew (-) else A old
(-) *- Anew (-) and perform STEP 1

Special cases of the iteration (3) have appeared previously in the literature. If (3(j) = 1 and

Mo(i) = for all j, then (3) is the same as that given by Llacer and Nunez (1990). As a tends

to zero, the Gaussian exponentials in Eq. (7) become very concentrated about n = r — m, and

F [r,p, a] tends towards r - m, in which case the iteration (3) is that of Politte and Snyder (1991)

for image recovery from Poisson-distributed data in the presence of nonuniform detector response

and background counts. If, in addition to a = 0, there hold f3(j) = 1 and po(j) = for all j,

then (3) becomes the Richardson-Lucy iteration (Richardson 1972, Lucy 1974) and the Shepp-Vardi

(1982) expectation-maximization algorithm for Poisson-distributed data.

2. Implementation

The computational burden of implementations of the iteration (3) has motivated the use of approx-

imations for the function (7). However, as we have commented, there is a potential for errors

introduced by approximations to be magnified when realizing solutions to ill-posed stochastic

inverse-problems. For this reason, we have studied two implementations of (3). The first, which is

already in use for restoring HST images, relies on an approximation to F[r, /z, a) obtained by sub-

stituting a Poisson variate for the read-out noise g(j) in Eq. (1). The second relies on an evaluation

of F[r, p, a] via a saddlepoint approximation.

We describe these two approaches in the remainder of this section. Results we have obtained

using them are presented and compared in the next section.

2.1. Implementation via Poisson Approximation

For this approximation, we follow the discussion given by Snyder, Hammoud, and White (1993,

p. 1017). The read-out noise g(j) from they'th pixel is a Gaussian-distributed random variable

with mean m and standard deviation a. If the data r(j) are modified to form r(j) - m + a2
,

thereby converting the read-out noise to g(j) - m + a 2
, which is Gaussian distributed with mean

and variance equal to a2
, and if a2

is large, then according to Feller (1968), g(j) - m + a2
is

approximately equal in distribution to a Poisson-distributed random variable with mean a2
. With

this approximation, the CCD data (1) become

r(j)- m + a2 = nobj (j) + n (j) + nread_ out (j), j = 0, 1, • • -, J - 1 (9)

where nread_out(i) is Poisson distributed with mean a2
. Under this approximation, the data

{r(j) - rn + a2
, j = 0, 1 , • •

, J -
1 } form a Poisson process with mean-value function

{/Wi) + Mo(j) + tf
2

, i = 0, 1 ,
- • - , J -

1

}
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As there is now no Gaussian read-out noise, the iteration (3) becomes

*-(o-no^g
L 0(i) E/=o p(ilOA°

ld
(0 + /io(i) + *2

J

[r(j)-m + a2

]
, (10)

which is the Richardson-Lucy iteration modified to accommodate nonuniformity of flat-field

detector-response and background noise. This is equivalent to making the following approximation

to F[r, (i, a] in Eq. (7) when the standard deviation of the read-out noise is large:

f[r,f*,*]«—L(r-m + <7
2
) . (11)

We note also from Eq. (7) that as a tends to zero, F[r, fi, 6} tends towards r - m, suggesting that

the approximation (1 1) for large values of a will be a good choice for small values of a as well.

2.2. Implementation via Saddlepoint Approximation

An alternative to the Poisson approximation is to evaluate the function (7) as needed for use in

Eq. (3). However, this function depends on r, /j,, and a in a complicated way, so some numerical

method of evaluation is necessary. We have used the saddlepoint integration and saddlepoint

approximation methods introduced by Helstrom (1978) for calculating tail probabilities.

The Laplace transform of the Poisson-Gaussian-mixture density (8) is

L\p(- : fi,<r)](s) = r p(x : ^a)e~ sxdx = exp[/<e-
s - 1) + -a2

s
2
} , (12)

./-oo *•

and, by the inverse Laplace transform,

J
rc+joo

p(x :n,a)=—-.l exp[$(s)]c(s
, (13)

£R3 Jc—joo

where

$(s) = xs + -a2
s
2 + n{e~

s - I) . (14)

The saddlepoint integration and saddlepoint approximation methods can be used with (13) to

produce accurate evaluations of the function F [r, /x, a] in (7). The saddlepoint s, which is real, is

the root of

$'(5) = ^1
\a=s = x + oH - »e- s = . (15)

This root can be determined numerically using a Newton iteration,

$'(sold
)5"— = s —

$"(s°ld
)

' (16)

where $"(s) = a2 + \ie~~
s

. We iterate Eq. (16), from starting values described below, until

K^new _ joid^ /jnewj < C) where we have used e = 10
-6

as the tolerance parameter. The saddlepoint

approximation to Eq. (13) is

t-WiaqF'- (,7)
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Starting Values Useful starting values for the Newton iteration (16) can be obtained by making
approximations to the exponential in Eq. (15). For example, replacing the exponential by two terms

of its Taylor series,

e^wl-S, (18)

and then solving x + a2
s — p( 1 — 5) = suggests using

s
-o.d = i^L (19)

p-\-a2

as a starting value. Although this is adequate for some values of x and p, for low values of x
combined with large values of p, this resulted in starting values so far from the saddlepoint that

hundreds of Newton iterations were required for convergence (see Table 1 ). We have developed

two alternative approaches for establishing more efficient starting values. One of these is obtained

via the Pade approximation (Newton, Gould, and Kaiser 1961):

•-* « M? (20)
1 +

Solving this for s in terms of e
s and substituting the result into Eq. (15) suggests using

(2i;

(x - 2o2 - p) + yj(x - 2a2 - p)
2 + Ap (x + 2a2

)

2p

as the starting value, where the sign of the radical is selected to make the argument of the logarithm

positive. Although the Pade approximation (20) is inaccurate for \s\ > 2, we have found that the

Newton iterations (16) started with (21) converge, to within a tolerance parameter e = 10~ 6
, in no

more than five iterations for x and p ranging from 10
-1

to 105
for both a = 3 and a = 13 (see

Table 1). For this reason, we have generally used starting values based on this approximation in all

of our studies for a read-out noise level of a = 13 electrons. Another alternative is to use a small

number of Picard iterations

In
X + «7

2 5old
(22)

to solve Eq. (15). We start these iterations using (19) and only perform a small number of them,

typically three, before converting to Newton iterations. Also, if the argument of the logarithm in

(22) becomes negative during the Picard iterations, we revert to using (19) to start the Newton

iterations. With this approach, no more than five Newton iterations were required for convergence

to within a tolerance parameter of e = 10
-6

in evaluating either the numerator or denominator of

(7), and often one or two sufficed.

Shown in Table 1 are the starting values and the numbers of Newton iterations required for

convergence to a tolerance parameter of e = 1
-6

for each of the Taylor, Pade, and Picard methods

for determining starting values for a — 13 and a wide range of values of p and r - m. While a

variety of starting values and numbers of Newton iterations are seen, all three methods converged

to the same saddlepoints to the degree of numerical precision shown in the table. Both the Pade and

Picard methods required no more than 5 Newton iterations, while the Taylor method often required

many more.

Accommodation of Wide Dynamic-Range Because of the wide dynamic range encountered in

HST images, with values of p ranging over several orders of magnitude, it is necessary to modify

Eq. (7) to avoid overflow and underflow, writing it as

F[r,p,o] = ^jexp[lnp(r - m - I : p,o) - lnp(r - m : p,o)]
, (23)
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Table 1 . Comparison of starting values for Newton iterations.

logwti
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Starting values for the Newton iteration were determined by the Picard method. The saddlepoint

approximation is seen to agree closely with the results of saddlepoint integration. If we take the

values of F[r : p,a] obtained in Table 2 by saddlepoint integration as "exact," then the sum of

absolute errors for the saddlepoint and Poisson approximations differ by several orders of magnitude,

being 0.0004 and 19.81, respectively.

Table 2. Evaluations of F(-).

o'
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Table 3. More Evaluations of F( ).

g\ov
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Figure 1 . Simulated star cluster (left) and simulated HST image of star cluster (right).

3.1. Experiment 1: Restoration of Star Cluster Data Using 50 EM Iterations

We performed restorations for the simulated star cluster (file "truth.fit") provided by the Space
Telescope Science Institute. The star cluster, shown in the left panel of Fig. 1, consists of a field

of unresolved stars at random locations and having randomly selected brightnesses. We simulated

an HST image of the star cluster using a space-invariant PSF (file "mpsfl2.fit" provided by ST Scl)

representative of the HSTs PSF, Poisson-distributed photo-counts, and a read-out noise level of

<t = 13 electrons r.m.s. This is shown in the right panel of Fig. 1 . In these and the following images,

gray scale values are shown in a logarithmic scale so that low level noise and distortions can be
seen.

The restorations obtained from the simulated data by performing 50 EM iterations (Eq. 3)

based on the Poisson (Eq. 11) and saddlepoint (Eq. 23) approximations are shown in Fig. 2. It is

difficult to compare these two restorations directly, so we have summarized one feature of them
in Fig. 3 where shown are the ratios of estimated to true brightness versus true brightness for the

restorations in Fig. 2. These scatter diagrams were obtained by placing a point at location (tb, eb/tb)

for each star in the star cluster for restorations based on the Poisson (left) and saddlepoint (right)

approximations. The solid lines were obtained by averaging the logarithmic values in the scatter

diagrams with a rectangular window of width 0.1 moved in steps of 0.05.

The two solid lines in Fig. 3 are redrawn together in Fig. 4 so they can be compared more readily.

It is evident from this graph that, for 50 EM iterations, the saddlepoint approximation tends to yield

more accurate brightness estimates, especially for fainter stars. The difference does not appear to

be enormous, but it is present, with the saddlepoint approximation yielding brightness estimates

closer to truth than with the Poisson approximation. Recognizing that these are logarithmic plots,

there is seen to be an improvement in the accuracy of the brightness estimate by a factor of about

1.5 for fainter objects, which can be significant when accurate photometry is sought.

3.2. Experiment 2: Averages for 25 Repeated Star Cluster Simulations, 50 Iterations Each

For this experiment, we simulated 25 independent realizations ofHST images that would be acquired

by the HST for the star cluster field. These images were produced in the same manner as the image
in the right-hand panel of Fig. 1 . We then restored each of the 25 images using 50 EM iterations for

both the Poisson and saddlepoint approximations. Shown in Fig. 5 is the average ratio of estimated
brightness to brightness versus brightness for the star cluster data; this graph was obtained by
averaging the 25 versions of Fig. 4 obtained in the multiple simulations.
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Figure 2. Restorations of simulated HST star cluster data using the Poisson (left) and

saddlepoint (right) approximations and 50 EM iterations.

PoltMtfi approximation (50 EM iteration) Saddle -pom! approximator! (60 EM itorattona)

Figure 3. Ratio of estimated to true brightness vs. true brightness for simulated star

cluster data. Obtained using 50 EM iterations and the Poisson (left) and saddlepoint

(right) approximations.
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Figure 4. Smoothed ratio of estimated to true brightness vs. true brightness for star

cluster data. Obtained from one restoration of a simulated HST star cluster image

using 50 EM iterations and the Poisson (dashed line) and saddlepoint (continuous line)

approximations.

Figure 5. Smoothed ratio of estimated to true brightness vs. true brightness for star

cluster data. Obtained by averaging 25 restorations of simulated HST star cluster images

using 50 EM iterations each and the Poisson (dashed line) and saddlepoint (continuous

line) approximations.
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Potsaon approximation (50 EM iteration*)
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Figure 8. Mean and standard deviation of error for the saddlepoint (solid line) and

Poisson (dashed line) approximations. Obtained by averaging restorations of 25 simulated

HST images of the star cluster, each restored with 50 EM iterations.

Figure 9. Ratio of estimated to true brightness vs. true brightness for simulated star

cluster data. Obtained using 500 EM iterations and the Poisson (left) and saddlepoint

(right) approximations.

noise is reduced substantially in Fig. 1 1 , which is the average of 25 restorations of HST star cluster

images, each being the result of performing 500 EM iterations. The average results shown for the

Poisson and saddlepoint approximations are virtually identical at 500 EM iterations and low level

noise is greatly reduced.

4. Conclusions

Use of the Poisson approximation of the function F (r, fi, a) that accounts for read-out noise does

not introduce significant errors in the restoration of HST images. However, some improvement in

photometric performance can be obtained at the expense of computation time by a more accurate

evaluation of this function. The improvement is seen most for faint objects when 50 iterations

of the expectation-maximization algorithm are used to perform the restorations. For star cluster

fields, performing more iterations of the expectation-maximization algorithm yields significantly

improved restorations, and the Poisson approximation is not improved noticeably by a more accurate

approximation of the function.
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Figure 10. Restorations of one simulated HST star cluster image obtained using 500

EM iterations and the Poisson (left) and saddlepoint (right) approximations.

Figure 1 1 . Average of restorations of 25 simulated HST star cluster images obtained

using 500EM iterations each and the Poisson (left) and saddlepoint (right) approximations.
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Appendix: C Subroutine for Saddlepoint Method

#include <stdio.h>
((include <math.h>

((define EPSILON 0.000001

/* Number of Picard iterations to use */

((define NUM_PICARD 3

float the_function( )

;

double sp_approx ( ) , newton_iteration( ) , pade ( ) , picard ();

/* As listed below, the_function uses the Pade approximation. To use */

/* the Picard iteration, change the "pade" to "picard" in the code */

/* for the_function */

/* Function: the_function */

/* Evaluates F given v, mu, and sigmasquared, where v = r - m */

/* Returns evaluation of F */

/* Remember the normalizing 2*PI factor has been left out */

float the_function (v, mu, sigmasquared)
float v, mu, sigmasquared;
{

double log_q0, log_ql, saddlepoint

;

float v_minus_l

;

v_minus_l = v - 1.0;
saddlepoint = pade (v,mu, sigmasquared)

;

saddlepoint = newton_iteration(v,mu, sigmasquared, saddlepoint)

;

log_q0 = sp_approx (v,mu, sigmasquared, saddlepoint )

;

saddlepoint = newton_iteration (v_minus_l,mu, sigmasquared, saddlepoint)
log_ql = sp_approx (v_minus_l ,mu, sigmasquared, saddlepoint )

;

return! (float) (mu * exp(log_ql - log_q0)));
) /* end the_function */

/* Function: sp_approx */

/* Returns the saddlepoint approximation to the the log of */

/* p(x,mu, sigmasquared) given the saddlepoint found by the */

/* Newton iteration. Remember 2*PI factor has been left out. */

double sp_approx (x, mu, sigmasquared, saddlepoint)
float x, mu, sigmasquared;
double saddlepoint;
{

double mu_exp_minus_s, phi2;

mu_exp_minus_s = mu * exp (-saddlepoint);
phi2 = sigmasquared + mu_exp_minus_s

;

return(-mu + (saddlepoint * (x + 0.5 * sigmasquared * saddlepoint))
+ mu_exp_minus_s - 0.5 * log(phi2));

) /* end sp_approx */

/* Function: newton_iteration */

/* Returns the saddlepoint found by Newton iteration for a given */

/* x, mu, sigmasquared and an initial esimate of the saddlepoint */

/* (found with either the Pade or Picard approaches */

double newton_iteration(x, mu, sigmasquared, initial_saddlepoint)
float x, mu, sigmasquared;
double initial_saddlepoint

;

{

double mu_exp_minus_s , saddlepoint, change;

saddlepoint = initial_saddlepoint

;

do {

mu_exp_minus_s = mu * exp ( -saddlepoint )

;

change = (x + sigmasquared * saddlepoint - mu_exp_minus_s)
/ (sigmasquared + mu_exp_minus_s)

;

saddlepoint -= change;
) while (( fabs (change) > EPSILON * fabs (saddlepoint) ))

;

return (saddlepoint )

;

) /* end newton_iteration */
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/* Function: pade */

/* Returns the initial saddlepoint estimated by the Pade approx. */

double pade(x, mu, sigmasquared)
float x, mu, sigmasquared;
{

double bterm;

bterm = x - 2*sigmasquared - mu;

return!- log (0 . 5 * (bterm
+ sqrt (bterm*bterm + 4*mu* (2*sigmasquared + x) ) ) / mu));

} /* end pade */

/* Function: picard */

/* Returns the initial saddlepoint estimated by the Picard iter. */

double picard (x, mu, sigmasquared)
float x, mu, sigmasquared;
{

int i ;

double argument_to_log, saddlepoint, taylor;

/* Use Taylor approx. to get starting point for Picard iteration. */

saddlepoint = taylor = (mu - x) / (mu + sigmasquared)

;

for (i = 0; i < NUM_PICARD; i++)

{

argument_to_log = mu / (x + sigmasquared * saddlepoint)

;

if (argument_to_log <= 0.0) /* Break out of loop if */

return(taylor)

;

/* arg. to log goes neg.*/
else saddlepoint = log (argument_to_log)

;

}

return (saddlepoint)

;

) /* end picard */
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Abstract. The effect of short term focus changes on Hubble Space Telescope images

after the refurbishment mission is examined. Based on simulations we conclude that image

quality will not be degraded significantly for the cameras if focus variations are within ±5
microns in the blue and within ±2 microns in the UV. The tolerance for the spectrographs is

wider, about ±10 microns.

1. Introduction

Short term focus changes caused by small (~ 5 microns) motions of the secondary mirror of the

Optical Telescope Assembly (OTA) of the Hubble Space Telescope (HST) are referred to as OTA
"breathing". Though the cause of the secondary mirror movement is not fully understood, it is now
apparent that the motion is thermally induced (Hasan and Bely 1993). Secondary mirror variations,

ASM, are related to the mean temperature of four sensors in the light shield around the secondary

mirror, denoted LS, and the mean of LS over the previous orbit, MLS, by the equation

ASM = 0.7(LS - MLS) + K ( 1

)

where K is an arbitrary constant.

OTA breathing may be only a minor nuisance for now, but could become more serious once

the spherical aberration has been corrected with COSTAR and WFPC II. These focus changes can

affect the quality of the science data in many ways. The most obvious effect is loss of sensitivity

resulting from image blur. However, there are many other ramifications such as the difficulty in

performing image enhancement with an unstable point spread function (PSF), or the impossibility

of doing photometry with the cameras or the spectrographs. There are also secondary effects due

to focal plane shifts induced by the fine guidance sensors (FGS) reacting to focus variation (when

guiding in fine lock).

These effects can be very subtle and certainly depend on the type of observation (limiting

detection, crowded fields, etc.), and complex simulations may be required in order to pinpoint

the level at which a focus change becomes intolerable. In order to make a first order estimate of

this "pain level" we have determined the PSF at various wavelengths and focus values using the

following criteria:

• Imaging: Strehl ratio not degraded by more than 20%.

• Spectroscopy with small aperture: not more than 10% energy loss.

• Spectroscopy with large aperture: not more than 1 % energy loss (in order to maintain adequate

photometric calibration).

Affiliated to Astrophysics Division, Space Science Department, European Space Agency

157



158 Hasan & Bely

Variation of Strehl Ratio with defocus for WFPC2

SM position (microns)

Figure 1 . Variation of strehl ratio with defocus with WFPC2. Negative values of the

secondary mirror (SM) position correspond to a movement towards the primary.

2. Simulations and Results

The point spread function (PSF) has been determined using the Telecope and Image Modelling

(TIM) software (Hasan and Burrows 1994) with mirror wavefront errors (excluding spherical

aberration) as measured pre-launch and a A/ 13 wavefront error at 632.8 nm for the rest of the

optics (secondary mirror residual misalignment, COSTAR and FOC/FOS/HRS or WFPC II internal

wavefront errors). For the FOS an astigmatism term has been included to account for the off-axis

position of the instrument. The PSF has been finely sampled on 5 milliarcseconds pixels. Although

the simulations have been performed for WFPC II and FOS, the results are expected to apply to the

FOC and GHRS, respectively.

The results are shown in Figs. 1 to 7. The variation of Strehl ratio with focus for eight

wavelengths varying from 125 nm to 700 nm for the cameras is plotted in Fig. 1. For the same
wavelength set, variation with focus of ensquared energies within 0.25x0.25 arcsec and lxl arcsec

apertures is plotted in Figs. 2 and 3, respectively.

Fig. 4 gives the tolerable focus error for the cameras as a function of wavelength (using the

20% Strehl ratio degradation criterion), and Fig. 5 the tolerable focus error for the spectrographs.

In the case of the spectrographs, the small aperture criterion is the only driver, the 1% degradation

for the large aperture always being met even for very large focus errors.

For the cameras we have also studied the effect of focus change on the radius containing 80%
of the energy as well as on the sharpness criterion S defined as

s = E p?/(E pi)
2

(2)

where Pi is the intensity at pixel i. These are plotted in Figs. 6 and 7, respectively. Note that in

Fig. 6 the best focus shifts for the 300 nm and 400 nm wavelengths. This is the result of mirror

figure errors and the additional A/ 13 (at 632 nm) aberration added to the system.
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Effect of focus on ensquored energy (spectrograph)
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Figure 2. Variation of throughput in the (X'25 x0725 aperture of the spectrographs with

defocus.

Effect of focus on ensquored energy (spectrograph)
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x

700.0 nm
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Figure 3. Variation of throughput in the l"x 1" aperture of the spectrographs with

defocus.
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Criterion: Strehl ratio degraded by 20 % (cameras)
"T

400
Wavelength in nm

Figure 4. SM despace for which Strehl ratio degrades by 20% in the cameras as a

function of wavelength.

Criterion: .25"x.25" ensquared energy degraded by 1 % (spectrograph)
40

400
Wavelength in nm

Figure 5. SM despace for which ensquared energy in the 0/.'25x 0/25 aperture in the

spectrographs degrades by 10% as a function of wavelength.
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Effect of focus on radius encircling 80% energy (camera)

0.25

0.15

125.0 nm
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_ 175.0 nm

0.05 k 200.0 nm
_ 300.0 nm
_ 400.0 nm
... 500.0 nm

, . 700.0 nm

-15 -10 -5 5 10 15

SM defocus (microns)

Figure 6. Variation of radius containing 80% encircled energy with defocus.

As expected, the most stringent focus requirement is set by the cameras. For them, the focus

should not change by more than ±2 microns when working in the far UV, and by not more than

±5 microns in the blue. In terms of the radius encircling 80% of the energy, these tolerances roughly

correspond to a radius increase of about 10%, while the sharpness criterion indicates an increase in

exposure time from ~4% in the red to ~35% in the UV. The effect of focus changes on throughput

in the large aperture in the spectrographs is barely noticeable, while the small apertures will tolerate

a focus variation of about ± 1 microns without showing a degradation of throughput > 1 0%.

It should be emphasized that these tolerances apply only to the variation of focus as seen by the

instrument, and not to the pointing errors resulting from Fine Guidance Sensor (FGS) sensitivity to

focus changes. The pointing error appears to be of order 20 mas, and may be more detrimental to

science than the focus change itself, if left uncorrected. This pushes for establishing a deterministic

model of the FGS pointing error in order to correct it via the Pointing Control System (PCS) (similar

to the way corrections are done for velocity aberration or for moving targets).
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Abstract. A demonstration of HST WFPC image restoration has been made using both

empirical and simulated PSFs. Empirical PSFs are obtained from the WFPC PSF library

and also extracted from the image to be restored. Simulated PSFs are generated by the Tiny

TIM package. The best results obtained thus far rely upon being able to determine a high

S/N empirical PSF from the data frame. In order to achieve accurate restorations of data

with high dynamic range excellent PSF models are required. PSF models are less critical

when the intrinsic source structure is smooth compared to the size of the PSF.

1. Introduction

The quality of the point spread function is the primary factor limiting the quality of image restoration

for the HST. This has been demonstrated using several types of PSF for HST WFPC image restora-

tion: (1) an empirical PSF extracted from the image to be restored, (2) an empirical PSF retrieved

from the WFPC PSF library (Baggett and MacKenty 1992), and (3) a model PSF computed using

the Tiny TIM software (Krist 1993). Similar results were obtained for HST WFPC images by Krist

and Hasan (1993) who attribute the inaccuracies of the Tiny TIM models to incomplete knowledge

of the HST primary mirror zonal error map.

Unfortunately, none of these methods yields an ideal PSF. The empirical PSFs contain noise

and non-zero background levels. Frequently it is difficult to find a good PSF star in the image to

be restored, and a PSF image that is well-enough exposed to show the details in the halo will often

have a saturated core. Spoiler stars must be removed from the PSF image, a procedure which can

itself introduce artifacts into the PSF. In using the WFPC PSF Library, care must be taken to find

well-exposed images. Some images were taken with very short exposures where the effects of finite

(and non-linear) shutter travel speed cannot be neglected. In addition, use of Library PSFs can

introduce artifacts into the restoration owing to the known time variability of focus. Model PSFs

do not reproduce all features of observed PSFs accurately, and short-term focus variability is not

currently taken into account.

2. Data

2.1. Blurred Images

Tests have been carried out using three the WFPC images retrieved from the HST Archive.

R136 Observed with PC6, F555W, on 1 1 April 1991. This is a 256x256 subimage centered at

pixel (253,638) in the original 800x800 pixel frame.

R136 Observed with PC6, F547M, on 25 August 1990. This is a 256x256 subimage centered at

pixel (319,393) in the original 800x800 pixel frame.

M87 Observed with PC6, F547M, on 22 November 1991. The image is a 256x256 subimage
which includes the nucleus of M87 as well as the famous jet.
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2.2. PSFs

The Library PSFs, Image PSFs, and Tiny TIM PSFs are used for image restoration in this experiment.

Library PSFs The PSFs retrieved from the WFPC PSF Library cover regions of 200 x 200 pixels

(8'/8 square). The available PSFs include one for F547M centered at position (337,328) and three

for F555W centered at positions (138,525), (338,527), and (336,728). The exposure times for these

PSF images may not be long enough to be totally free of the effect of the finite shutter travel speed

for WFPC camera (Holtzman 1 99 1 ).

Image PSFs An empirical PSF has been extracted from the Rl 36 PC images at the position shown

in Figs. 2 and 4).

Tiny TIM PSFs PSFs were computed using Version 2.4 of Tiny TIM. For the PC6 images of R136
the PSF position coincides with the position of the empirical PSF star used above. For the M87
image the PSF position coincides with the nucleus of the galaxy.

3. Image Restoration

3.1. R136 (PC6 F555W)

Two sets of restoration experiments have been done using the accelerated Richardson-Lucy method

as implemented in STSDAS (200 iterations). In order to compare the quality of empirical vs. model

PSFs, the R136 image was deconvolved using a) the PSF determined empirically from a star in the

same image, b) a PSF from the WFPC PSF Library, and c) the Tiny TIM PSF. Then, in order to

determine the quality of the Library PSFs and sensitivity to the space variance of the WFPC PSF,

the R136 image was deconvolved using Library PSFs for three different positions in the field of

view. Fig. 1 shows the normalized PSF images, with the three Library PSFs in the top row, the

empirical PSF from the R136 image at bottom left, and the Tiny TIM PSF at bottom right.

Figs. 2 and 3 show the original R136 image and the various restorations. In Fig. 2 we show

the original R136 image and restorations done using the empirical PSF from the same frame, the

Library PSF, and the Tiny TIM PSF. Fig. 3 shows the three restorations done using Library PSFs

for various field positions. The PSF star and the location of the Library PSFs are indicated by an

arrow and a cross, respectively.

3.2. R136 (PC6 F547M)

Fig. 4 shows the original image of R136 in PC6, F547M. At top right is a restoration computed

using the empirical PSF from the same frame. At bottom left is the restoration computed using the

Library PSF, and at bottom right is the result obtained using the Tiny TIM PSF. The PSF star and

the location of the Library PSFs are indicated by an arrow and a cross.

3.3. M87 (PC6 F547M)

The M87 image has no candidate star that can be used for extracting an empirical PSF. Thus, our

experiments have been based on a Library PSF for PC6, F547M, centered on pixel (337,328), and

the Tiny TIM PSF. The accelerated R-L method reaches a reduced x-square of 0.4 after just 20

iterations. The results are shown in Fig. 5.

4. Discussion

Fig. 6 gives three sets of the azimuthally averaged profiles and the encircled energy plots. These

are shown for (1) the PSFs (Image, Library, and Tiny TIM) for the image R136 F555W, and (2) the
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LIB<336;?28> LIB< 138^525) LIB<338=527>

STAR TINY TIM

Figure 1. Normalized PSF images. Top row: Three Library PSFs with positions

(336,728), (138,525), and (338,527). Bottom left: The empirical PSF from the R136
image. Bottom right: Tiny TIM PSF.
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Figure 2. The original R136 PC6 F555W image taken on 1 1 April 1991 and the various

restorations. Top left: The original R136 image. Top right: The Lucy restoration done

using the empirical PSF from the same frame. Bottom left: Lucy restoration using the

Library PSF. Bottom right: Lucy restoration using the Tiny TIM PSF.



Observed and Model PSFs in WFPC Restorations 167

R136 PC6

F555W aiMM/Sl)
PSF_LIB

PC6 F555W < 336 >728>

PSF_LIB

PC6 F555W < 138: 525)

PSF-LIB

PCS F555W < 338 =52?)

.#

,. < ,

:^T :¥'

+

Figure 3. The original R136 PC6 F555W image taken on 1 1 April 1991 and the three

restorations done using Library PSFs for various field positions. Top left: The original

R136 image. Top right: Lucy restoration done using the library PSF at position (336,728).

Bottom left: Lucy restoration using the library PSF at position (138,525). Bottom right:

Lucy restoration using the library PSF at position (338,527).
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Figure 4. The original R136 PC6 F547M image taken on 25 August 1990 and the

various restorations. Top left: the original R136 image. Top right: The Lucy restoration

done using the empirical PSF from the same frame. Bottom left: Lucy restoration using

the Library PSF. Bottom right: Lucy restoration using the Tiny TIM PSF.
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Figure 5. The original M87 PC6 F547M image, two PSFs and the Lucy restorations.

Top left: The original M87 image. Top right: The Library PSF for PC6, F547M, centered

on pixel (337,328) and the Tiny TIM PSF Bottom left: The Lucy restoration done by the

library PSF. Bottom right: The Lucy restoration done using the Tiny TIM PSF.
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vicinity of the restored PSF star, centering on the PSF star with a radius 2'/5, for the image R136
F555W, and (3) the PSF star area in the restored image of R136 F547W.

The FWHM of the PSFs generated from different methods are all nearly the same (C.'l). The

radius of the first ring of the Image PSF is very close to that in the Tiny TIM model (~076) and

smaller than the radius measured for the Library PSF (~0775). The second ring can clearly be seen

in the Tiny TIM PSF but not in the others because of the noise and background (see Fig. 6, top left

panel).

On the basis of the effective resolution and enhancement in dynamic range, the empirical PSF
extracted from the data frame gives the best result. The peak value of the brightest star in the image

restored using a PSF extracted from the same image is about four times higher than that obtained

using the Library or Tiny TIM PSFs.

More residual PSF structures appear in the image restored using the Library and Tiny TIM
PSFs. Bright stars sometimes split into a bright core with several faint neighbors. This may lead to

the generation of a number of erroneous detections of faint stars in the restored images.

The encircled energy plot and the profile of the jet of M87 are illustrated in Fig. 7. The left

panel shows the encircled energy plots in the vicinity of the galaxy nucleus in the restored images,

and the profiles of the jet in the restorations are given in the right frame. The solid line in Fig. 7

shows the Library PSF for PC6, F547M, centered on pixel (337,328), and the dashed line shows the

Tiny TIM PSF. The differences between the two encircled energy curves are minor. The structure

of the faint jet is consistent in both M87 restorations.

There are several rings surrounding the nucleus of the galaxy in each restored image of M87.

This is almost certainly an artifact of the mismatch between the true PSF and the models used,

since the structure of the unrestored image is clearly dominated by the familiar features of the PSF
(Fig. 8).

5. Conclusions

The best results in image restoration rely upon being able to determine a high S/N PSF from the

same frame. Current PSF modeling code provides acceptable PSFs when high quality empirical

PSFs are not available. PSFs from the WFPC PSF Library are about of equal value as model PSFs.

Their use is limited owing to non-optimum exposures and time variability of focus. Improved

modeling of the HST optical system (e.g., Redding 1994) should allow for better results in image

restoration using model PSFs. In order to achieve accurate restorations of data with high dynamic

range excellent PSF models are required. PSF models are less critical when the intrinsic source

structure is smooth compared to the size of the PSF.
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Jet Profile of M87

Arcseco'nd

Figure 7. The encircled energy plot and the profile of the jet of M87. Left: The
encircled energy plots of the vicinity of the galaxy nucleus in the restored images. Right:

The profiles of the jet. The solid line indicates Library PSF for PC6 F547M, centered on

pixel (337,328). The dashed line indicates Tiny TIM PSF.
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Figure 8. The profile of the Library PSF and the vicinity of the galaxy nucleus ofM87.
Bottom: PSF. Middle: blurred image of M87. Top: restored image of M87 using the

Library PSF.
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Abstract. We describe our image restoration efforts which use an analytical model of the

point spread function (PSF) of the Hubble Space Telescope Faint Object Camera (FOC).

Our approach is based on the Zernike polynomial modeling of the wave front phase using

two phase retrieval algorithms. The difficulties involved in modeling the PSF and validating

our approach are illustrated using actual FOC and simulated data which have been processed

on a massively parallel computer.

1. Introduction

For a particular wavelength, given two FOC scenes of the same extended astronomical object taken

within a few hours of one another and an observed FOC point spread function taken at nearly

the same epoch, deconvolution of the extended images using the observed PSF should lead to

similar small-scale structure. We have found that this is not the case. The probable reason for

such differences is that the FOC system is time variant, coupled with the complication of noise on

both the images and the observed PSF. It is well-known that observed PSFs taken in a sequence

seem to "breathe" as if the focus of the camera system is changing with time. Parametric Zernike

polynomial modeling of the point spread function core and wings, coupled with phase retrieval

techniques constrained by the observed PSF, can produce a calculated noise-free (analytic) PSF. It

may be that this analytic PSF can be used in the deconvolution of both observed extended scenes to

obtain similar small scale structure by empirically changing only a few Zernike coefficients (e.g.,

the focus term).

2. Approach for Calculating an Analytical PSF

Since image restoration algorithms are highly sensitive to the accuracy of the calculated PSF, a

significant portion of our research effort is devoted to accurately modeling the PSF which is a highly

non-linear problem. Our approach is based on analytical modeling of the wavefront phase using

Zemike polynomials. The wave front phase is reconstructed using a phase retrieval algorithm. First,

we must make reasonable guesses of significant Zernike polynomial coefficients, and use these as

input to a phase retrieval algorithm (i.e., Gerchberg and Saxton 1972, Fienup 1982) to produce an

estimate of the FOC phase map, which is an array of complex numbers. In the Fourier domain, we

scale the phase map by an observed PSF to more accurately account for the HST/FOC combination.

After scaling, the inverse transform provides the required information in the pupil domain. We mask

and scale the inverse transform data by the well-known geometry of the components contributing

to the pupil (e.g., spider supports, mirror handling pads, central obscuration, as well as primary and

secondary mirror surface errors). We then repeat this process several times to converge with minimal

differences between the result and the observed PSF. The final result is an improved estimate of the

phase map. The resulting map has to be smoothed and unwrapped to obtain a continuous phase
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map. We then use this result as input to a total least squares estimate algorithm (QR factorization)

to provide improved Zernike coefficients which ultimately permit a final calculated PSF whose

point-to-point differences are minimized with respect to the observed PSF. Of course, at this point,

the observed and calculated PSFs are compared by a variety of other means including inspection

of the core and wings to insure that morphologically they are as close as possible— if not, some

important Zernike term may have been left out. Moreover, one has to contend with achieving a

local rather than a global minimum in this process, a problem that has yet to be solved for the phase

retrieval stage. We present the mathematical methodology for modeling the PSF in the next section.

3. Mathematical Methodology

The observed PSF is proportional to the power spectrum of the plane wave incident at the entrance

pupil of the telescope (Goodman 1968). This can be written as:

/oo foo
/ e

<j>(x,y)
e
-i(uix+»2y)dxdy \2 (j)

-oo J —oo

where </>(a;, y) is the phase of the plane wave incident on the entrance pupil of the telescope and

A; is a proportionality constant. Eq. (1) assumes that the effect of the telescope assembly can be

expressed by a single equation and, hence, is an approximation in itself. However, Eq. (1) expresses

the PSF as a function of the wave front phase at the entrance pupil. Hence, the observed PSF can

be useful in reconstructing the wavefront at the entrance pupil of the telescope.

Zernike polynomials and their variants are known for better modeling of different aberrations

of the phase function ( Zernike 1935). Analytical representation of the phase in terms of the Zernike

polynomials is given by:
i=N

4>(x,y)=J2 zipi(x >y) (
2

)

i=\

where Zj is the Zernike coefficient corresponding to the Zernike polynomial Pi(x,y) and TV is the

number of Zernike polynomials that are necessary to represent the analytical phase. Hence, the

problem of analytic PSF generation reduces to estimating the Zernike polynomial coefficients that

are necessary to represent the entrance pupil wave front.

For phase retrieval we used the iterative transform algorithm (ITA) of Fienup (1982), who
based much of this ITA on the Gerchberg and Saxton (1972) algorithm, and a variation of the

ITA. These two algorithms are shown in Fig. 1. For Algorithm 1, which corresponds to annular

Zernike polynomials, we used the telescope geometrical information such as the mirror sizes, mirror

pads, spiders and the obscuration geometry in the pupil plane and the observed PSF in the Fourier

transform domain. Algorithm 1 stagnated after a few thousand iterations. We used a robust QR
algorithm (Golub and Van Loan 1992) to analytically represent the phase using the annular Zernike

polynomials. When compared with the observed PSF, we noted that the simulated PSF did not

have detailed structures such as the clover and pronounced wings that are so essential for the image

restoration.

In an attempt to improve the phase retrieval results, we used Algorithm 2, which corresponds

to the classical radial Zernike polynomials. Unlike Algorithm 1, Algorithm 2 does not impose any

constraint in the pupil domain. This is equivalent to assuming that the wave front is continuous at

the entrance pupil. We used a circular mask in the pupil domain region of interest and retrieved

the phase. This algorithm also stagnated after a few thousand iterations. Since the classical radial

Zernike polynomials are orthogonal over the circular pupil domain, the corresponding Zernike

coefficients are obtained using a simple inner product. PSFs generated with Algorithm 2 led to

better representation of the inner core structures than Algorithm 1 , but still did not compare favorably

to the observed PSF for better image restoration.

Fig. 2 presents the schematic diagram of the process involved in the PSF simulation. All the

functions shown in the diagram are implemented on a massively parallel computer— the MasPar
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Figure 1 . Schematic diagram of the phase retrieval algorithms.

with 16,384 processors. Zernike polynomials are generated "on-line" during the computation and
are not stored.

4. Results and Discussions

In this section we describe different restoration results with FOC and simulated data,

describing the restoration details we discuss the restoration method.

Before

4.1. Maximum Entropy Image Restoration

We used the maximum entropy method (MEM) of Hollis, Dorband, Yusef-Zadeh (1992) who
restored images that were plagued by the FOC detector saturation which corrupted the data in

certain regions. Use of a mask was required to ensure that the saturated data were ignored in the

resultant restoration which these authors obtained with an observed PSF We have determined that

the size and shape of the mask affects the detailed structures of the MEM restoration for a given

number of iterations, but not the global structure. Moreover, we found the detailed structures are

independent of the mask geometry when allowed to iterate long enough.

4.2. Deconvolution: Observed Versus Analytic PSFs

Hollis and colleagues obtained two public domain FOC F/96 images of the binary system R Aquarii

and an observed PSF both in the light of twice ionized oxygen which emits a spectral line at 5007 A.

These images were plagued by spherical aberration and, in the case of R Aquarii, also by detector

saturation. The MEM technique described above was used to restore one R Aquarii image with

the observed PSF to the original design resolution of the HST/FOC combination. It was precisely

because the observed FOC PSF was larger than the saturated region of the R Aquarii image that

the restoration was successful (see Hollis, Dorband, and Yusef-Zadeh 1992). However, as noted

in the Introduction, restoration of two extended FOC images taken at two different times does not

lead to similar small-scale details when using the observed PSF. We used the two FOC images
and the observed PSF used by Hollis, Dorband, and Yusef-Zadeh (1992) and repeated the MEM
deconvolution. Restored images after 1000 iterations are shown in Fig. 3. These images are not
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Figure 2. Schematic diagram of the PSF generation procedure.

identical in details, suggesting that that the observed PSF does not correspond well enough to the

images for deconvolution purposes. Hence, it is desirable to be able to synthesize two different

analytical PSFs to remedy the differences between the two extended images of interest.

In our effort to compute and use an analytical PSF in the restoration process, we noted that

the structures prominent in the center core of the observed PSF are better modeled by the 31 st and

the 32nd Zernike "clover" coefficients which correspond to the cos(30) and sin(3#) polynomial

terms. Restoration results of the FOC R Aquarii images using an analytical PSF, computed using

our estimated annular Zernike polynomial coefficients ( 24 — -1.65, zn = -0.52,231 = -0.0214,

and 232 = —0.0214), are shown in Fig. 4. It can be noted that this single analytical PSF leads to

fairly consistent enhanced details compared to the restoration using the observed PSF. This may be

due to the noise-free analytical PSF. However, some of the faint structures shown in the restoration

using the observed and the analytical PSf are computational artifacts. This suggests that neither the

observed PSF nor the analytical PSF matches the scene to be restored and, moreover, two different

analytical PSFs will be eventually required to restore two images separated in time. The following

simulation study demonstrates that these artifacts are a measure of the accuracy with which the

PSFs are modeled.

4.3. Effect of PSF Mismatch on the Deconvolution

A test image was generated by convolving five spatially distributed delta functions with the "correct"

PSF which was calculated by means of Zernike coefficients. Using the MEM algorithm, the test

image was subsequently deconvolved with both the correct PSF and a "mismatched" PSF which

was calculated using the same Zernike coefficients as in the correct PSF except that 24, the focus

term, was changed by 0.1 waves rms. When logarithmically stretched, both image restorations

gave a subtle mottled pattern with extremely weak linear artifacts that seem to bridge the gaps

between delta functions, but the mismatched PSF artifacts were more exaggerated. Increasing

the number of iterations for each type restoration reduces the prominence of the artifacts in the

correct PSF case. Moreover, the mismatched PSF restores more slowly than the PSF which

was used to generate the image in the first place. Hence, for a given number of iterations, the

correct PSF will restore points to larger numerical values with fewer artifacts than the mismatched

PSF. This property of "maximized signal and minimized artifacts" could be used in an empirical
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Figure 3. Restoration of FOC R Aqr data using an observed PSF Left: R Aqr image

taken 8/23/90 at 00:26 UT and right: R Aqr image taken 8/23/90 at 02:01 UT. The
observed PSF image used in these restorations taken on 8/28/90.

Figure 4. Restoration of FOC R Aqr data using an analytic PSF with Zernike coeffi-

cients that include clover terms (see §4.2). Left: R Aqr image taken 8/23/90 at 00:26 UT
and right: R Aqr image taken 8/23/90 at 02:01 UT.
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Figure 5. The right image is the result of restoring FOC R Aqr data using an analytical

"ST Scl PSF" (see §4.3). The left image is the result of restoring a test image using

an analytical PSF which is different from the PSF that created the test image in the first

place. Comparison of the left and right images shown here suggest that the subtle mottled

structure and other artifacts are caused by a mismatch of the PSF used to deconvolve each

scene.

fashion to decide between the results given by two different PSF restorations for a fixed number of

iterations when using this algorithm. Unfortunately, this method would be very time consuming,

and thus, a convergence criterion based on some statistical property of the converging image, or

some property grounded in the physics, or some smoothness property is sorely needed. Fig. 5

shows a 1000 iteration restoration of the test image with a mismatched PSF along side of a 1000

iteration restoration of FOC data of the R Aquarii Jet using a calculated PSF whose Zernike

coefficients (z4 = -1.267,z5 = 0.077, z6 = -0.021, 27 = -0.025, z8 = 0.0881, zn = -0.533)

were published in the STScI Newsletter of March 1992 (hereafter the "ST Scl PSF"). Comparison

of these highly similar results suggest that both the test image and the actual HST data restorations

are plagued by mismatched PSFs.

Our objective is to be able to calculate the correct PSF for use in subsequent deconvolution of

an extended image. Thus, it is of interest to compare the results of a 1000 iteration restorations of

FOC data of the R Aquarii Jet using the ST Scl PSF and an observed PSF, and these two results

are shown in Fig. 6 as a three-dimensional plot. The results are very similar, and from a science

information point of view, are indistinguishable. Considering the fact that the observed PSF data

were taken 5 days later than the R Aquarii Jet data by the FOC and HST secondary mirror movement
is suspected, it is not unexpected that this observed PSF would be mismatched to R Aquarii Jet data

for restoration purposes. However, in a relative sense, note that the signal-to-noise on the image

produced with the observed PSF is less than the image produced by the ST Scl PSF. Here the noisy

areas lay outside of the areas dominated by regions of intense signal. This suggests that the observed

PSF is better matched to the data than the calculated ST Scl PSF.

In conclusion, we still need to restore two scenes of the same object separated in time to

validate the contention that we should be able to do better with a calculated PSF than an observed

PSF. Once we are able to do this, then, in principle, we can sample a calculated PSF at any desired

resolution and generate imagery that exceeds the design resolution of the HST/FOC combination

(see Dorband and Hollis 1992). Our quest in this effort is still on-going.
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Figure 6. Upper: A three dimensional perspective of a restoration using FOC R Aqr

data and an observed PSF after 1000 iterations. Lower: Same as above, but restoration

performed using the analytic "ST Scl PSF'. Note that the relative signal-to-noise on the

upper figure is higher than on the lower figure, suggesting that the noisy observed PSF
has provided a better restoration than the noise-free analytic PSF (see §4.3).
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Abstract. A method is presented in which a signal, degraded by a linear shift-variant

system, will undergo a warping such that the resulting warped signal will be approximately

described by a warped original signal filtered by a linear shift-invariant system. The warping

is a limited class of coordinate transformations, for which adjacent points do not cross each

other after the transformation. This results in a signal that may appear stretched in some

places and compressed in others (and curved if the signal is two-dimensional). The purpose

of this distortion is to make the space-variant impulse response (which can be viewed as a

space-invariant impulse response which has been warped in the original signal domain) vary

as little as possible. In particular cases, a transformation can be found which will result in no

impulse response variations. For most cases, however, the impulse response will still have

some space variance, which the warping seeks to minimize. The residual variance will be

ignored (this error must be small in order for this method to work well), and an "average"

impulse response in the warped domain will be assumed. This allows for space-invariant

restoration of the warped signal, with all of its attendant advantages in speed and reduced

complexity.

1. Introduction

Image formation is typically described as a linear process. Such systems are described by the

Fredholm equation of the first kind,

g(x) = duh(x,u) f(u), (1)

where, for 2-dimensional systems, the object coordinates are u —
(
u

\
, U2) and the image coordinates

are x = (x\, X2).

Such a general description of a linear system is termed shift-variant, because the shape of

h, the impulse response (or point spread function, PSF), might change as the object position, u,

is shifted. The Hubble Space Telescope (HST) is an example of a shift-variant imaging system.

The primary contribution to image degradation in the HST is spherical aberration. This aberration

varies only with the exit pupil geometry, and not with field position — it is intrinsically space-

invariant. The exit pupil geometry itself, however, changes with field position. This is due to the

different longitudinal positions (for the unfolded system) of the stop (primary mirror), the central

obscuration, and the primary and central obscuration of the Cassegrain relays in the WF/PC, all of

which undergo effective lateral shifts for different field positions (causing vignetting). Hence, the

exit pupil geometry changes with field position, so the system response changes with field position

(i.e., is shift-variant). The field extent (thus the vignetting in the exit pupil) for the WF/PC is large

enough that the shift-variance of the imaging system is substantial.

If the shape of h does not change as the object position is changed, then h is said to be

shift-invariant (alias space-invariant, isoplanatic, or stationary), and the problem is substantially
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simplified. Of course, the position of h in the image plane changes as the object position changes.

The formulation of image formation after this simplification is

g(x) = duh(x - u) f(u). (2)

Shift-invariant systems are much more easily inverted (given g, find /) than shift-variant systems.

All shift-invariant systems have complex exponentials as eigenfunctions (Gaskill 1978), so Fourier

transforms reduce the above convolution into a simple scalar multiplication. Inversion, within the

pass-band of the system, then consists simply of a scalar division (in the complex exponential basis),

possibly combined with a regularization term to attack the problem of noise amplification. Since

very efficient algorithms are available to take these transforms for discrete systems (FFTs), the

solution time of / is quick in comparison to space-variant inversion. Shift-invariance also has the

advantage of being well and widely understood; there are many restoration and processing tools

in place which depend upon this simplification (Wiener filtering (Jain 1989), statistical estimation

(Jain 1989), and super-resolution (Gerchberg 1989 and Papoulis 1975), to name a few).

Space-variant inversion, excluding null functions, can be achieved from a singular value

decomposition (SVD) of h (Andrews and Hunt 1977). This method involves finding two sets of

eigenvectors, and transforming g into one of the eigenvector bases and / into the other. Although

theoretically this is the same process as discussed above, in practice it is intractable for large systems

due to the need to explicitly solve for two (typically large) sets of eigenvalues (whereas one set,

complex exponentials, were needed for shift-invariant systems, and were known a priori).

The Landweber algorithm (Landweber 1951) provides an iterative solution to this space-

variant problem without having to resort to finding the eigenvectors and eigenvalues needed for

SVD. However, even if the impulse response does not change, the algorithm must be fully repeated

for each image. This algorithm is an inefficient way to restore a large number of images generated

by the same imaging system.

A formulation of space-variant imaging is desired for which the image and object can both be

expressed in a common basis (complex exponentials are preferred, since efficient mechanisms for

their manipulation are already in place). This amounts to reformulating the space-variant problem

into a space-invariant problem. Sawchuck (1972, 1973, 1974), Robbins (1970), and Robbins and

Huang (1972) found that for certain problems (coma-like aberrations and motion blur), the image

plane could be remapped so that the space-variant problem could be exactly transformed into a

space-invariant form. But only impulse responses which could be decomposed into

h{x,u) = a{x)(3(u)hI(c(x)-b{u)) (3)

<- h(y,v) = a(c-\y))0(b-\v))hi{y - «),

where the coordinate transformations are

c(x) = (ci(xi,x2 ), c2 {x u x2 )) = (2/1,2/2) = y

b(u) = (&i(ui,u2 ), h(u\,

u

2 )) = (vi,v2) = u

(c(x)-b(u)) = (yi - vi , ?/2 - n) = y-v,

could be transformed. No general method for finding this decomposition was given; this is the

goal of this paper. The advantage of obtaining this formulation of imaging is clear: the hard

work is done up front — once an impulse response is given and the coordinate transforms are

found, the restoration can be done using the space-invariant tools already mentioned. In general,

it is impossible to decompose every possible shift-variant impulse response into equivalent shift-

invariant responses. If this exact representation is unattainable, then an approximate shift-invariant

response is sought.

From Eq. 3, note that the object and image planes can be warped by different transformations

(6 and c, respectively). Different transformations are desired only if there is a warping caused
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by the imaging system (e.g., the Seidel distortion aberration, non-perpendicular imaging system

geometries, magnification, etc.). Under many imaging processes (e.g., blurring, for which the

centroid of the impulse response is at the intended image location), the sample positions in the

restoration plane must be the same as the sample positions in the image plane. For most restoration

procedures, the sample positions in the image plane define the sample positions in the object plane.

A geometric warping caused by the imaging system may be corrected separately. For non-warped

imagery, which is assumed in all that follows, the object and image planes will undergo the same

transformation: (x,u) —> (b{x),b(u)). The dimensionality of the problem is then reduced by

one-fourth. a(x), f3(u), and b{.) still need to be found.

2. Sample Shifting

Moving the sample locations to achieve the desired warping will result in an irregularly sampled

image plane. These irregularly spaced samples will then be brought back to regularly spaced

positions, hence warping the image. Typical restoration techniques can then be performed using

these regularly spaced samples. A method of optimally finding these sample positions is given

below. Only the one-dimensional case will be considered here; the two-dimensional case will be

attempted in the future.

2.1. Error Metric

The linear mapping of Eq. 1 is put into discrete form, with uniformly spaced samples of g(x) and

/(it). In one dimension, Eq. 1 then becomes

g(x i ) = ^2h{xi,uj )f(uj ), (4)

i

where uniform sampling, r, = x + iAT and Uj - u +jA u , is often assumed. The sampled impulse

response, h(xi,Xj), is a function of the n sample positions, {zt'}"=o- In particular, h(x l+k,x l )

describes the amount the ;' th object sample affects the image k samples away from the i
lh image

sample.

The sample locations are to be moved so that the resulting impulse response is approximately

space-invariant. To this end, the invariant term of Eq. 3 can be found, in sampled form for a one

dimensional mapping, to be

h{xj,xj)
h[{Xi,Xj) = — r-rj r.

Since a and (3 are not predetermined, their explicit dependence on x is unnecessary. Let a\ =

1 /a(x,) and /3' = \/f3(xj). A space-invariant impulse response should not depend on the coordinate

of the object, i.e., a space-invariant impulse response should obey hi(xi+k,Xi) = hi(xj+k,Xj),

Vi, j, k. If this equality does not hold, then the difference between the different impulse responses

describes an error from the assumption of shift-invariance.

A metric which measures the total error over the field is

E = £ E £ [oit-kfiK'H-kiXd-c/j+kftHzj+ktXj)] (5)

t=N, j = i+\ k=N[-i

, Nu Nu Nl-taax(iJ) .

!=7V, j=N
t k=N[-min(i,j)

where the limits of the image are TV/ < i,j < Nu . The limits on the summations keep the sample

points within the image boundaries. Allowing the k sum to go outside the image boundaries
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(N[ < Ni or N'u > Nu ) includes some "anchor" samples outside the image, which tends to stabilize

the solution trajectory when E is minimized. For example, if all of the sample positions may be

moved, there is a global minimum (E = 0) when all of the samples are co-located. If all of the

sample positions which start off inside the image are forced to remain in the image, then keeping

a fixed sample position outside the image removes this zero point. Note also that k describes the

distance from the "center" of the space-variant impulse response. The limits on k could therefore

be constrained PSFs with support more compact than that of the entire image (which is usually the

case). However, it is the actual distance X{+k - X{, not just the magnitude of k, which needs to be

within the support of the PSF. Since the solution will necessarily change the sample locations, the

limits on k will depend upon the resulting sample locations.

The goal here is to minimize E. This will provide a sampling scheme which will yield the

most space-invariant impulse response.

2.2. Gradients

For minimization, the gradient elements dE/dxn are needed.

dE Nu Nu 7Vi-max(t',j)

= ££ £
i=Ni j=Nt k=N[-min(i,j)

a'i+kP'iHx'+ki x i) - a'j+kP'jh (
X3+k,Xj)

< K+fc#^-fc(*i+*»: *'j+kPj-farHxj+k,xj)

An application of the chain rule gives

d

dxn
h(Xi+ki xi)

dx
h(x,u)

dxi+ k d , .—^- + —h(x,u)
x = X{+ k dxn du
u = Xi

Xi+k

dxi

hx (xi+k,Xi)6i+ k zn + hu (xi+ k-,Xi)8iin .

When expressed in the form of Eq. 6, the value inside the summations of E are symmetric with

respect to i and j, so there are redundant terms when forming the product in the summations of

dE/dx n . Accounting for these redundant terms with a scaling factor of two, and rearranging,

i=N
t j=Ni k=N[-m'm(i,j)

x ai+kP'i [hx (Xi+k,Xi)8i+k,n + K(Xi+k,Xi)t>i,n]

dx

The lower (<5 ti„) term sifts through the i sum in a straightforward manner. The upper (Si+k,n ) term

can sift through either i or k. Since the i sum will be sifted in the lower equation, and will typically

have more terms than the k sum (making sifting through i computationally beneficial), the i sum
will be sifted through the upper term as well.

The sifting for the 8i+ k,n term is still not straightforward, since the limits on A; are a function

of i. The bookkeeping is as follows:

1. The limits on k are N[ - min(z,_7") < k < N'u - max(z, j), and at i = j this range is at its

maximum: N[ - j < k < N^ — j. For any i, the limits of k fall within this range.

2. For 6i+k,n, the possible values of k run over n — Nu < k < n — N[ .

3. The net permissible range of k is that range for which both of the above conditions hold, i.e.,

the intersection of the above ranges.

[k : {Ni -j<k<K-j}f]{n-Nu <k<n- TV,}} =

{k : max(n - Nu , N't - j) < k < min(n - TV,, N^ - j)}
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With these new limits on k, the substitution i = n — k completes the sifting process of ^+fc,n . If

compact support of h is also included {w\ < k < W2), then the permissible values of k are

{k : max(w\,n - Nu ,Nj - j) < k < m\n(w 2 ,n - Ni,N^ - j)} .

The gradient elements then become

(7)
dE _
dx„

/V„ ( min(w 2 ,n-N,,N'u -j)

2 XI ) H [<x'n0'n-k h {
xn,Xn-k)-

a'
]+k l3']

h(xJ+k ,Xj)\ (*',J'n _ k hT (x n ,
X n _ k )

j = Ni (k =max(w,,n-N,,N(-j)

N'v — maxfufj.n.j) *|

+ H [
a'n+k0n h (

xn+k,x n )-a'J+k l3'
J
h{x

J + k ,xJ
)]a'n + k

!3'
n h u (xn+k ,x n )\ . (8)

k=N! — mm(wi,n,j) I

2.3. Minimization

The minimization used is a version of the steepest descent technique for finding zeros of functions.

Each sample position is incremented by Ai™ (x'
m

= x\
m

' + Ai™ ), where

Ai.
m+l

> = -£ dE/dx\
m)

and m is the iteration counter. This expression describes the shortest Euclidean line between the

current point, x, and the E = plane, along the hyperplane which is tangent to x. This technique

was used because of its simplicity — errors in the software were easily tracked because each

step could be followed. This method is designed to find zeros, not minima, so it was adapted by

decreasing the size (but maintaining the direction) of sample position jumps which would create

an E larger than that of the previous iteration. When minima were reached, the magnitude of the

sample position jumps got cut drastically (A^.
m)

used
~ 2

-40
A!

r ca |CU |a ted)-
If this was suspected to

be a local minima then a large increment was permitted, effectively searching a new solution space

(similar to simulated annealing).

Another constraint added to this procedure was that sample points were not to cross over one

another (Let {x\ },_% be an increasing sequence, {zj },_
u
/v

then must be an increasing sequence

Mm > 0). If any pair of sample locations approached each other too fast in any given iteration step

(e.g., if [x j™, - x

)

m
'] < 0.5[x\™l - zj ]) then Ai™+I or Ai, , as appropriate, was decreased

so that (x^,+ ,) - x|
m+l)

) = 0.5(x^ - x<
m)

).

3. Results

The results of a simple trial for sample shifting section are now reported. The one-dimensional

image range was normalized (i.e., the image existed for x £ [0,1]). A sample space-variant "impulse

response" used as a test on the system was

1

h(x,u)= e *•>*
. (9)

/2x(.l)2

h(x,u) is not a true impulse response, since it is not normalized. But h(x, u) provides a smooth
function which possesses a clearly defined transformation, b(x) = x 2

. Then h(b(x),b(u)) =
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\ o'oVl £§ l^m h(x,0
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Shift-Varying Impulse Responses and Sample Positions
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Figure 1 . Impulse responses and sample positions for an example space-variant system.

hi(b(x),b(uj), allowing the minimization to concern itself with finding only the sample positions,

and not the multipliers a and (3. The image plane was uniformly sampled at 11 points, 10 points

inside the image and one point outside the right boundary of the image (Ni = 0, Nu = 9, N^ = 0,

and N'u = 10). E was then minimized for two cases: when w\ = -1 and wj - 1 (greatly

restricting the range of the PSF used for calculating E), and again for w\ = -10 and u?2 = 10

(which maximizes the range of the PSF). For the greatly restricted trial (w2 = 1), the algorithm

came upon a number of local minima but was eventually was able to find a global minimum. For the

unrestricted trial (u>2 = 1 0), the global minimum was found directly. Both trials were run for 1 00

iterations. Fig. 1 shows examples of the impulse responses of Eq. 9 for different object positions, the

uniformly spaced sample positions used as an initial estimate of the sample positions, and the sample

positions which resulted from both the greatly and lightly restricted applications of the algorithm.

Table 1 lists the sample positions and a;?+1
- x}, which should be constant for ideal sampling in

this case. In the unrestricted trial, the ideal sample locations were found after 1 00 iterations with

negligible error, as expected. But, even for the greatly restricted trial, the sample locations were

were found to a good approximation. The advantage of the restriction was a substantially decreased

computing time per iteration. The difficulty with the restricted trial was the abundance of local

minima which needed to be negotiated.

4. Conclusion

The concepts of shift-variance and approximate shift-invariance have been presented in this paper.

A metric which measures the degree of shift-variance was found and used to develop an algorithm

which moved the position of image samples so that the resultant image was equivalently filtered by

an approximately space-invariant system. A simple example was shown, where a transformation

that made the system exactly shift-invariant was found.

The work done here is just a first step — a great deal more needs to be done, a and /? need

to be included in the minimization procedure. The minimization of E needs to be improved with a

quicker algorithm (e.g., conjugate gradient). This would also likely include a better way to assure

the continued order of the sample positions (likely by an additional constraint term to the error

metric). There is a question about the types of systems on which this technique will work well. One
example of trouble is an impulse response which changes topologically with object position. For
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Abstract. The success ofHST image restoration depends critically on the ability to obtain,

either through direct observation or through detailed optical modeling, a good estimate of

the point spread function. PSF models are, in principle, superior to observed PSFs owing
to the lack of noise and the ability to compute the PSF on a higher density pixel grid.

We describe an approach to PSF modeling for the HST which utilizes two complementary

programs: (1) a sophisticated prescription retrieval code, and (2) a hybrid PSF modeling

code that combines both ray-tracing and diffraction propagators. The PSF modeling code

will be made available to the HST user community through the ST Scl.

1. Introduction

Image restoration is the process of removing artifacts caused by telescope imperfections from

images. A good understanding of these imperfections is essential to the process. As part of the

ST Scl Image Restoration Project, and continuing under new NASA funding, we are exploring

improved ways for determining telescope imperfections, and for using that information to compute

accurate point spread functions (PSFs) for restoration. We will be making the products of our work

available to the community.

The core of our approach is a sophisticated optical modeling code that generates accurate PSFs

directly from telescope optical prescription data. The prescription specifies the physical state of

the telescope, namely the location, orientation and figure of the lenses, mirrors, obscurations, and

detectors that comprise its optics. Our code utilizes a hybrid geometric and physical optics approach

to generate PSFs from this information. It captures the essential physics of the image formation

process, including the effects of induced aberrations and diffraction from multiple obscuring sur-

faces. It provides a rigorous basis for accurately predicting PSFs over widely varying field angles

and focus settings without the need for data matching at each point of interest.

The accuracy of this approach is limited by the accuracy of the prescription information.

A good starting-point prescription is usually available from the telescope design specifications

and from post-fabrication optical test. Changes to the telescope due to environmental effects (or

manufacturing errors) can occur, however. In this event, an improved estimate of the prescription

data can be obtained using a technique termed "prescription retrieval."

Prescription retrieval "inverts" image data to determine the prescription of the telescope that

made the images. It is a nonlinear parameter estimation technique, which works by varying

prescription parameters so as to match diagnostic images with simulated images. It is capable of

identifying optical element parameters that affect image location and quality, subject to limitations

that we discuss below. Prescription retrieval works best with deliberately defocused, off-axis

diagnostic images. We successfully developed prescription retrieval as a tool for determining the

conic constant of the HST primary mirror (Redding, Dumont, and Yu 1993).

For image restoration purposes, prescription retrieval to determine a large number of telescope

parameters will be required once following a major configuration change of a telescope. For HST,
this means post-launch, post refit, and possibly following resetting of the secondary mirror decenter.
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Parameters to be identified include camera/telescope alignments and camera and OTA mirror figure

parameters.

During normal operations of the telescope, minor prescription retrieval, probably to identify

a single time-varying parameter such as telescope focus, may be desirable. For HST, this would

provide a means of handling the effects of OTA "breathing." This could be performed using the

science images — diagnostic images are not required. Once prescriptions are determined for the

telescope at a particular time, they can be archived and should be useful for restoring images taken

at about that time.

Tracking the telescope prescription over a period of time should also help identify the root

causes of changes, such as thermal cycling. It may then be possible to implement corrections to

the prescriptions to be used in restoration based on the telemetry stream. For instance, temperature

measurements could be used to adjust assumed secondary mirror position, yielding improved PSFs

without retrieval.

The immediate product of our work will be a computer program for generating PSFs for each

of the HST cameras, both pre and post-refit. This program will use the best current prescription

data, and will incorporate retrieved prescriptions as they become available. It will be available from

ST Scl early in 1994.

Our ultimate objective, which we will pursue over the next three years jointly with the ST Scl,

is to provide a high-performance integrated prescription-based image restoration application. This

application will provide functions and features such as PSF generation, prescription retrieval,

prescription archiving, and restoration using spatially-variant PSFs. The application will be portable

to different platforms and different architectures, including desk-top workstations and massively

parallel supercomputers. When completed the application will support distributed processing across

heterogeneous computing environments, allowing efficient utilization of networked workstations

and supercomputers. We hope it will provide a flexible tool for rapid, high-accuracy restoration of

images from HST and other instruments.

2. Image Formation

Ideal image formation can be modeled as the convolution of the true brightness distribution of

the object with the telescope point spread function. The PSF is the spatial frequency impulse

response of the telescope, which is to say, the image of an ideal point source such as a star. An
approximate model of the PSF can be computed as the Fourier transform of the field in the exit pupil

of the telescope. For unaberrated, unobscured telescopes, this pupil function consists of a spherical

wavefront centered on the detector, with uniform intensity within the geometrically-defined circular

aperture. The resulting PSF has the well-known form of the Airy pattern.

Real telescopes have PSFs that differ from the Airy pattern ideal. Optical aberrations due to

misalignments, thermal gradients, outgassing, manufacturing errors and other effects change the

configuration of the optics, causing the phase of the wavefront propagated through the telescope

to deviate from a perfect sphere. This results in decreased amplitude and increased width of the

PSF, causing blurring of the image and decreasing the sensitivity of the instrument. Vignetting or

shadowing incurred at stops, spatial filters, and obscurations such as mirror support pads, spiders

and secondary mirrors, further decreases the PSF amplitude and can alter the halo of the PSF, adding

diffraction rings and tendrils. These effects are very apparent in images taken with the first set of

HST instruments. They are also present, albeit at much lower levels, in images taken with the

refurbished HST cameras.

For most telescopes, wavefront phase and vignetting effects vary as a function of field angle

(or focus setting). These induced aberrations cause the PSF to vary both in structure and amplitude

from point to point over the detector. Again, HST images show the effects of strong spatial variance

of the PSF. Detector characteristics are also significant. These include pixel size as well as non-ideal

behaviors such as spatially-variable quantum efficiency or pixel cross-talk. Other effects, such as

high-frequency telescope jitter or atmospheric turbulence, can cause smearing of the PSF.
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Image restoration can compensate for telescope aberrations, induced aberrations and detector

effects by deconvolving a "known" PSF from the image data. Known jitter and turbulence effects

can be compensated similarly. The variation of the PSF over the field can be handled by using

multiple PSFs, each valid within a sub-region of the detector. The result of restoration using accurate

PSFs is a recovered image whose accuracy is limited only by the noise content of the original image.

These noise effects can be reduced by taking several images of the same source and averaging.

The success of image restoration depends critically on the accuracy of the known PSF. Our
objective is to provide good predicted PSFs for restoration of HST images. To do this the PSF
generation code should account for the effects of:

• Aberrated optics. Figure errors, such as the OTA primary conic constant error, and zonal

aberrations from optical test data.

• Misaligned optics.

• Induced aberrations, both phase and vignetting effects.

• Detector errors, such as pixel cross-talk and variable quantum efficiency.

Detector errors will be more significant for the refurbished cameras than for the original HST
instruments (e.g., Burrows 1994).

3. Prescription-Based Optical Modeling

An ideal model of the image formation process would integrate Maxwell's equations directly to

solve for the fields in the telescope. This is quite a formidable task. Finite-element solutions of

Maxwell's equations work for simple instrument geometries, but require very large amounts of

computation, and do not provide a practical aproach for Hubble. Fortunately, simpler theories are

available that are quite good.

Optical designers have long relied on geometric optics, or ray-tracing, to predict performance

of optical instruments. Geometric optics makes the assumption that the wavelength of the light

is infinitesimally small compared to the diameter of the beam. This turns out to be a very good

assumption while the beam is away from a focus. Geometric optics provides an accurate means of

determining both the wavefront phase and vignetting patterns in the expanded beam of a telescope,

even in highly aberrated systems. It does not require simplification ofthe geometry ofthe instrument,

and works directly from the optical prescription. It enables accurate computation of the effects of

figure errors, induced aberrations and misalignments. Ray tracing alone is not capable of reproducing

images in the far field with any accuracy, however.

For modeling images and highly diffracted beams (such as laser cavity modes) physical optics

theories offer an alternative. Fresnel physical optics makes a different set of assumptions, such as

time-invariance and slowly-varying phase, to provide a simplified set of propagation integrals that

can be solved rapidly using Fourier transform techniques. As commonly implemented, physical

optics codes unfold an optical system into a simplified linear sequence of "thin lenses," which

collapse the phase effects of optical elements into a plane. Single-plane PO models then lump all

of the phase effects onto a single plane at the exit pupil of the telescope; images are created by

propagating the exit pupil irradiance to the far field, at the detector. Multiple-plane physical optics

models propagate from planar element to planar element in the near field, and then to the far field

at the detector. Neither approach allows for accurate prediction of induced aberrations without

phase retrieval. Multiple-plane models do allow for multiple planes of obscuration, which can be

important in capturing details of the point spread function.

We have implemented a hybrid approach, which exploits the advantages of both geometric and

physical optics. We use ray-tracing to track the phase and determine vignetting in the expanded
beam (Fig. 1). This information is used to drive Fresnel near- and far-field diffraction propagators,

which compute the beam complex amplitude and, ultimately, the image or PSF. This approach
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Table 1 . COMP capabilities.

Analysis Capabilities
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Figure 2. Prescription retrieval is an iterative optimization process.

Example simulated and actual Hubble/PC6 images are shown in Fig. 3. The simulated image

was computed tracing 65,000 rays to update a 512x512 diffraction grid. Two images, taken at

different focus and field settings, were used in the retrieval process (the second is not shown).

A total of about 40 parameters were estimated, including various element alignments and figure

parameters. Convergence required many days running on a SPARC 1+ workstation.

The images show good agreement with respect to major features such as the spherical aberration

rings and the location and structure of the diffracted obscuration patterns. The match is not perfect

and can be improved by the addition of the primary mirror zonal aberrations and other effects.

We also applied prescription retrieval to diagnostic star images that were returned by the Mars
Observer Narrow-Angle Camera during its approach to Mars. This camera was equipped with

heaters on its primary mirror that, when activated, cause a nearly pure focus change to be imparted

to the system. A typical example image showing simulated and actual data is given in Fig. 4.

Retrieval here was complicated by limited dynamic range and noise contributed by a lossy data

compression algorithm used in the approach phase of the flight.

Results of prescription retrieval using 7 images taken on both sides of focus and across the

camera field indicated that the primary mirror had deformed slightly, with the main error being

45-degree astigmatism. Other possible errors, such as decenter of the secondary mirror, did not

accurately reproduce the observed images. Performance at the best focus setting was good, however,

with a 1-3 pixel PSF.

There are several potential problems to be considered when applying prescription retrieval.

These are:

Noise Detection noise, background noise, self-noise, stray light and similar effects obscure structure

that can be important in the retrieval process.

Local minima Nonlinear least squares and similar optimization algorithms can be trapped by local

minima. The likelihood of this is reduced with a sufficiently diverse data set and a good initial

guess.

Inseparable parameters If two parameters have a proportionally similar effect on the images,

the contribution of one cannot be distinguished from that of the other. Separability can be
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Figure 3. Actual and simulated HST PC6 diagnostic image.
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improved by looking at different field angles and focus positions. Some parameters that

cannot be separated, need not be separated - their effect on the image is accounted for without

knowing precisely the contribution of each parameter individually.

Inadequate model It is important that major factors in the imaging process be captured by the

model. This means getting the physics right, both in the optics and in the detectors. It also

includes correctly identifying which factors are common to particular images, and which
change between images, so they can be correctly solved for. Unmodeled changes between

images, such as incomplete pyramid mirror rotations or thermal deformations of the telescope

structure, add confusion and reduce the quality of the solutions.

Meaningless parameters Solving directly for noise or jitter was found to improve the optimization

cost function without improving the accuracy of individual parameter estimates.

Besides its role in image restoration, prescription retrieval also has significant advantages for

optical test and calibration, and for active optical control. These advantages include:

• It provides the ability to optically test aspheric elements or systems without null correctors or

interferometers, removing a major potential source of testing error.

• It provides end-to-end instrument testing, including the science detector.

• It is a non-invasive testing procedure that does not require instrument disassembly.

• It is applicable over the full operational range of the instrument, rather than at 1 or 2 field

points.

• As we have demonstrated, it can be performed remotely on instruments in the field, as well

as in a laboratory environment.

• For instruments equipped with low-bandwidth controllable optics, such as deformable or

movable mirrors, prescription retrieval can determine corrections based on image data.

Prescription retrieval does require a large amount of computational power. The best results

require simultaneous processing of numerous images while exercising an appropriate number of

prescription parameters. This requires a large amount of memory as well as high-speed computation.

For most instruments, prescription retrieval will be performed intensively once, to provide the

best possible understanding of the basic instrument configuration. This initial retrieval will utilize

diagnostic star images taken at multiple focus and field points. This computationally intensive

process need not be repeated unless the instrument radically changes.

Subsequent limited prescription retrieval might be optionally performed on a reduced parameter

set, without the need for special diagnostic images. Here the objective would be to account for

small, localized shifts that are known to occur relatively frequently, such as the HST thermally

induced "breathing" effects. This process will be much less computationally intensive. Retrieved

prescription data will be archived by the application and referenced by date, so that appropriate

prescriptions will be available for recovery.

5. What We Will Provide the Community

Our work is continuing under two separate programs. We have a small amount of funding from

ST Scl to provide a HST-specific point spread function generation code. This code will not perform

prescription retrieval. It will be released (early in 1994) with the current best prescription data

describing each of the WF/PC-1, FOC, WF/PC-2 and COSTAR/FOC cameras. It will be available

as a stand-alone application, generating PSFs in an interactive session. These can be exported as

FITS or binary format files for use in restoration. The code will be available in executable form for
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UNIX workstations. The code will also be available as a FORTRAN subroutine that can be called

directly by a user code. For further information, contact Bob Hanisch at ST Scl (hanisch@stsci.edu).

We are also beginning a new task in collaboration with ST Scl, under the NASA Advanced
Information Systems Research Program, to develop an integrated prescription-based image restora-

tion application. The program will be written to make efficient use of a variety of new computer

architectures, ranging from scalar workstations to one or more of the new massively parallel super-

computers. It will provide functions and features such as:

• PSF generation. PSFs will be generated and exported in several formats.

• Prescription retrieval.

• Prescription archiving.

• Other optical design and analysis functions.

• Image restoration using spatially-variant PSFs. Two or three ofthe best-performing algorithms

from the ST Scl Image Restoration Project will be modified to work with space-variant PSFs

and included in the application.

• Easily programmed scripting language.

• Easily extensible by users to implement alternative algorithms, optical models, or prescription

or phase retrieval techniques.

• Usable without modification for most optical instruments.

The application will exploit recent developments at JPL in parallel processing and distributed

computing to provide a major increase in processing power, while retaining source-code portability,

a user-friendly interface and the convenience of access through UNIX desk-top workstations. The
user interface will provide a near-plain English command language and macro capability. Extensive

graphical user interface features will be included.

The application will exploit an architecture-independent parallel programming environment

that allows source code level portability for applications on various distributed memory architectures

(Lee et al. 1990). This is achieved through an object-oriented data distribution function library,

offering multiple distribution types. An application programmer can choose a proper distribution

type according to the data access pattern of an application without considering the architectural

constraints of a parallel system. We will exploit a message passing interface protocol (Dongarra

et al. 1993) to achieve source-code level portability to various user environments so that a flexible

mapping between the task and all available resources at the user site can be performed with

one application program. Only a limited amount of machine-specific coding will be required to

implement the application on a new architecture.

The code will be developed and released in phases, with a first (scalar) version available in about

a year. When completed (in three years) the application will support distributed processing across

heterogeneous computing environments, allowing efficient utilization of networked workstations

and supercomputers.

In parallel with the code development, we will be performing extensive validation and verifi-

cation of the various functions of the code. The performance limits of prescription retrieval with

respect to noise, data diversity and other factors will be explored. Performance of prescription-

based restoration will be compared to other methods. Working with images from the refurbished

HST images, we will be pursuing ambitious objectives, such as recovery of the "fuzz" (underlying

galaxies) of quasars, detecting faint companions of nearby stars, and extending the magnitude range

over which stellar photometry can be done. Our ultimate objective is to make the very best quality

restoration a matter of routine for all images from instruments such as HST.
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Abstract. The accuracy of HST image restorations is often limited by the quality of point-

spread functions that are available. Phase retrieval methods are being applied to HST PSFs
in an effort to improve the agreement between observed PSFs and PSFs computed using

optical modeling programs. The use of blind deconvolution to make better use of observed

PSFs is also discussed.

1. Introduction

The most difficult practical problem to be solved when restoring HST images is usually not the

choice of a restoration algorithm, but rather finding a good point-spread function (PSF). Even the

most sophisticated algorithm cannot produce a decent restored image using a bad PSF, and even the

least-sophisticated algorithm will do a pretty good job given a good PSF.

The problem is that the PSF changes as a function of wavelength, position in the camera field

of view (for the WF/PC, WFPC2, and FOC with COSTAR), and time. There are enough variables

that it is not practical to maintain a library of high-quality, observed PSFs covering all possibilities.

Computed PSFs using programs such as Tiny Tim (Krist 1 993) present a more attractive alternative

because they can be computed at any wavelength and camera position, they are noise-free, and

they can be computed on sub-sampled pixel grids. Unfortunately the PSFs computed with existing

optical modeling programs are usually in relatively poor agreement with the observations, so that

they are useful only for deconvolving observations with fairly low signal-to-noise ratios. We are

pursuing a number of possible improvements for calculated PSFs, including more sophisticated

optical models (Redding et al. 1994) and restoration methods that can adjust the PSF to get better

restored images (see the discussion of blind deconvolution in §6.)

Another promising approach is to use phase retrieval to develop better optical models for HST.
In this paper I briefly introduce the topic of phase retrieval and show some results that have been

obtained for HST images.

2. What Is Phase Retrieval?

The PSF for an optical system is determined by the amplitude and phase of the (approximately)

spherical wavefront as it converges on the point of focus. The amplitude A(u,v) measures the

intensity of the wavefront at each point (u, v) on the sphere and is usually approximately uniform

across the entire pupil, except where it is obscured by objects in the light path such as the secondary

mirror and its supports. The phase $(u, v) measures the deviation of the wavefront from the sphere

(a perfectly focussed wavefront has zero phase error). Usually the phase error is measured in units

of the wavelength of light being observed.

The PSF P for the given amplitude and phase is

P(x,y) = \fJdudvA(u,v)ei2*lux + vy + *( u >
v

)]\

2

\ >»J |J J v )
|

,j.

= \fjdudv W(u, v)el2n (
ux + y

y)\ .
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Stated simply, the PSF is the square of the amplitude of the Fourier transform of the complex pupil

function, W(u, v) = A(u, v)exp[i2n$(u, v)]. Note that this equation assumes that the wavefront

is not too strongly curved over the pupil; if the curvature of the wavefront is large one must use a

Fresnel transform rather than a Fourier transform.

Phase retrieval is the process of trying to recover the wavefront error $(u, v) (and possibly the

amplitude A as well) given a measurement of the PSF. Phase-retrieval methods have been used since

the discovery of the aberration in the HST primary mirror (Burrows et al. 1991, Fienup et al. 1993)

to characterize the HST optical system. Previous phase-retrieval efforts have been aimed mainly

at an accurate measurement of the spherical aberration. We are now using similar techniques (and

some newly developed methods) to try to improve our understanding of the HST and WFPC/FOC
optical systems. Our goal is to be able to compute better PSFs for use in image restorations.

Phase retrieval has much in common with deconvolution, and many of the techniques used for

image restoration have counterparts for phase retrieval. However, the equation relating the phase

and the observed PSF is non-linear in the phase-retrieval problem, which makes phase retrieval

considerably more difficult than image restoration. A particular problem in phase retrieval is that

maximum likelihood approaches to finding the phase tend to get stuck at local maxima of the

likelihood rather than finding the globally best solution. Fienup and Wackerman ( 1 986) discuss this

and other phase-retrieval problems.

3. A New Phase Retrieval Iteration

I have been using a new phase retrieval iteration that is derived from the maximum likelihood

equation for Poisson statistics in the data. The joint likelihood £ of getting the observed counts

D( i ) in each pixel given the expected counts I(i) is

ln£ = -L Y, D{i) In I(i)-I(i)- In D(i)\

.

(2)

i

Here the continuous variables (u,v) and {x,y) have been replaced by discrete variables, and the

equations are written as one-dimensional for simplicity of notation. The image / is equal to the

PSF times a constant. If we allow the amplitude of the complex pupil function W to vary, then

the maximum likelihood solution occurs where all partial derivatives of £ with respect to W(j) are

zero:
d\n£
dW(j)

The iteration is simply

2
N= 1E

k

D(k]

P(k)

2Trjk/Ny Wie
i2irlk/N ^

-i

i

Wnew (j) = W(j)+^~. (4)

This is a "gradient step" for updating the complex pupil amplitude W .
If one wants only the phase

$ to to vary during the iteration, holding the pupil illumination function A fixed, it is possible to

renormalize W to a constant amplitude after each iteration.

4. Examples

An example of how phase retrieval can improve computed PSFs is shown in Fig. 1. At this

wavelength in the middle of the optical band, the Tiny Tim PSF is in reasonably good qualitative

agreement with the observations. However, there are some discrepancies between the observed PSF

and the Tiny Tim PSF; note especially that the shape of the PSF core is not well modeled and the

position and brightness of the bright ring are not exactly correct. The most likely explanation is that
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Figure 1. Results of phase retrieval for PC F588N PSF. Top left: observed PSF. Top

right: Tiny Tim PSF computed using 3 wavelengths across filter bandpass. Lower left:

phase retrieval result using low order Zemike polynomials to model wavefront errors.

Lower right: phase retrieval result using 20 iterations of the Poisson maximum likelihood

method. Initial guess was taken from the Zemike phase retrieval model.
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the mirror map and aberration model used by Tiny Tim is not accurate enough. Any discrepancies

in the optical model become more obvious at shorter wavelengths.

The simplest phase retrieval method is to model the wavefront error <I>(u, v) using a low order

polynomial in (u, v). For HST the appropriate polynomials are the Zernike polynomials given in

the HST Optical Telescope Assembly Instrument Handbook (Burrows 1990). The various Zernike

polynomial coefficients correspond to wavefront tilt (which shifts the position of the object), focus,

spherical aberration, astigmatism, and so on.

The lower left panel of Fig. 1 shows the result of adjusting these coefficients to fit the observed

PSF A conjugate gradient optimization method was used to search for the set of Zernike coefficients

that maximizes the Poisson log likelihood. The agreement with the observations is improved, though

there are still differences. For example, note the bright knot in the observed PSF where the tendril

trailing off towards 8 o'clock crosses the bright ring. Also note that the outer dark ring, seen easily

in the Zernike PSF, is hardly visible at all in the observed PSF. Other differences are readily visible

when the PSFs are blinked on an image display.

The agreement with the data can be improved further by solving for a map of wavefront errors

across the pupil using the method described above. The results of 20 iterations of such a method

are shown in the lower right panel of Fig. 1 . Note the improvement in features such as the strength

and position of the "tendrils" that extend downward from the center of the PSF.

Fig. 2 shows the wavefront error maps derived by the two phase retrieval methods.

5. Using PSFs for Image Restoration

Fig. 3 shows the result ofdeconvolving the observed PSF using the three computed PSFs. Differences

in the structure left in the PSF halo are apparent. There are also substantial differences in flux

conservation and in the sharpness of the stellar images among the different restorations, as shown

in Table 1 below.

Table 1 . Properties of Restored Images

PSF Total Counts Peak Brightness

Tiny Tim 84,000 45,400

Zernike 80,900 52,400

PR Iteration 78,900 62,900

The observed PSF has a total of 74,400 counts, so flux is conserved better with the phase-

retrieval PSFs. (The lack of exact flux conservation is due to the CCD readout-noise in the WF/PC
data. In the absence of readout noise, the Richardson-Lucy iteration conserves flux exactly.)

6. Blind Deconvolution

Holmes (1992) has derived an iterative algorithm for finding the maximum likelihood solution for

both the unblurred image and the PSF in the presence of Poisson statistics. This problem is usually

referred to as blind deconvolution. A maximum likelihood approach to blind deconvolution is

certain to fail unless one can place very strong constraints on the properties of the PSF. For example,

if one applies the Holmes iteration to HST images with no constraints on the PSF, the solution

found is that the unblurred image looks exactly like the data and the PSF is a delta-function. (A

perfect fit to the data, but ludicrously far from the truth!) If one applies a band-limit constraint on

the PSF based on the size of the HST aperture, the result is little better: the PSF solution looks like

a diffraction-limited PSF rather than the true spherically aberrated PSF.
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Zernike PR

20 PR iterations

Figure 2. Maps of phase error found by Zernike phase retrieval and maximum like-

lihood method. The white areas are obscured by the HST secondary and supports, the

WF/PC secondary and supports, and the pads on the HST primary mirror. The spherical

aberration and focus terms have been removed to make these smaller aberrations easily

visible. Typical wavefront variations are about 0.1 waves.



Phase Retrieval and Blind Deconvolution 203

Figure 3 . Deconvolution of observed PSF using computed PSFs with Richardson-Lucy
iteration.
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If one has either a star within the image or a separate PSF observation, one can do much better

by forcing the selected PSF objects to be point sources in the restored image. One simple approach

is to start with an initial guess for the image that has a delta-function at the position of the star and

is zero in the other nearby pixels. Then it is really possible to get estimates of both the unblurred

image and the PSF from the Holmes iteration.

This may look to be of only academic interest, but in fact it may be the solution to an important

problem for HST images. Most HST deconvolutions are carried out using observed PSFs, because

theoretically computed PSFs (using the Tiny TIM software, for example) are usually not a very

good match to the observations. The noise in observed PSFs presents a problem, however: when
using a noisy PSF, the restoration algorithm ought to account for the fact that both the image and

the PSF are noisy. The Richardson-Lucy method (and other commonly used image restoration

methods) incorrectly assume that the PSF is perfectly known. The blind deconvolution approach

allows one to construct an algorithm that takes as input a noisy image and a noisy PSF observation

and to construct as output estimates of both the PSF and the unblurred image.

Early experiments indicate that this method may be especially useful in crowded stellar fields

where it is difficult to find isolated PSF stars. In that case one can start with a very noisy PSF star

(either on the edge of the crowded region or from a separate observation) and then can improve the

PSF estimate using the overlapping PSFs of stars in the crowded region (Fig. 4). The final PSF is

considerably more accurate than the original noisy PSF, which in turn leads to better restorations of

the unblurred image.

7. Summary

Our hope is that from these phase retrieval calculations it will be possible to derive better mirror

maps for the HST/WFPC and HST/FOC optical systems. These improved maps then could be used

in Tiny Tim or other optical modeling programs to compute PSFs that would be useful for a wider

range of HST image restoration problems.

Blind deconvolution may allow observed PSFs to be used for deconvolution in a way that allows

the uncertainty of the noisy PSF to be properly incorporated into the image restoration iteration.

The ideal blind deconvolution algorithm would doubtless incorporate a phase-retrieval iteration as

part of the PSF estimation (see paper by Schulz in these proceedings for such an approach.)
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Abstract. Most methods proposed for restoring images acquired by the Hubble Space

Telescope rely on prior knowledge of the telescope's point-spread function; however, for

many images, this function is not known precisely and must be inferred from the noisy

measured data. In this paper, we address this problem and discuss a maximum-likelihood

estimation technique for simultaneously determining the nature of the aberrations and for

recovering the underlying object from a noisy, degraded image.

1. Introduction

Various methods have been proposed to restore images acquired by the Hubble Space Telescope

(HST). Many of these techniques rely on prior knowledge of the telescope's point-spread function

(PSF). However, as noted by R. White (White 1993),

Most HST deconvolutions are carried out using observed PSFs, because theoretically

computed PSFs (using Tiny TIM software, for example) are usually not a very good

match to the observations. The noise in observed PSFs presents a problem, however:

when using a noisy PSF, the restoration algorithm ought to account for the fact that

both the image and the PSF are noisy.

This problem— the simultaneous estimation of both the object and the PSF— has been referred to

as blind deconvolution. Unfortunately, the naive application of a blind deconvolution procedure to

HST data will surely lead to difficulties since the trivial solution in which the PSF is estimated as

a point or impulse and the object is estimated as the data will produce a perfect match to the data.

Therefore, some type of constraints must be used to avoid both this solution and the equally trivial

one in which the object is estimated as a point source and the PSF is estimated as the data.

For a related problem in ground-based astronomy, Schulz (1993) has recently proposed a

technique for processing a sequence of images degraded by turbulence-induced phase errors. With

this technique, the trivial solutions mentioned in the previous paragraph are avoided by using the

prior knowledge that the point-spread functions are determined by phase errors distributed across

the telescope's aperture. In this paper, this approach is used to derive an image restoration technique

applicable to data acquired by the HST.

2. Data Model

We describe the CCD image data collected by the HST by using the model discussed in detail by

Snyder, Hammoud, and White (1993) in which the data collected at pixel y of the CCD detector,

d(y), is described as

d(y) = nobi (y) + n (y)+g(y), yey , (1)

where n \,j(y) is the number of object-dependent photo-electrons, no(y) is the number ofbackground-

dependent photo-electrons, g(y) is CCD read-out noise, y is a two-dimensional index, and y is the

support region for the detector array. We assume that the random variables n ty(y), no(y), and g(y)

206
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are statistically independent of each other and of n bj (y'), no(y'),and g(y'), for?/ / y', and that the

object-dependent photoelectrons {rc bj(y), y € y} are Poisson distributed with the mean function

i(y) = {3(y)J2 h (y' x > a )°( x )' yty> (2)

where {o(x), x G <V} is the object's intensity function, {(3(y), y £ y} is the flat-field response

function, {h(y,x;a), y,x € y x A'} is the PSF, and a is a collection of parameters that are

determined by the optical path-length error (Goodman 1 968) due to the spherical aberration, focusing

error, or other aberrations. Additionally, we assume that the background-dependent photoelectrons

are Poisson distributed with a known mean function {io(y), y € y}, and that the CCD readout

noise {g(y), y € y} are identically-distributed Gaussian random- variables with known mean m
and variance a 2

.

Because of the parameterization by a, the PSF cannot take an arbitrary functional form, and the

trivial solutions previously discussed are avoided. In the monochromatic, space invariant situation,

the parameterized PSF is obtained by spatially sampling the continuous function

kc(v, z; a) =
I / A(u)eJ^ W{u

'a)
el2-r

u - (v~ z
1du (3)

where A(u) is the telescope's pupil function, A is the wavelength of the observed light, W(u;a)
is the optical path-length error due to the optical aberrations, and u is a two-dimensional spatial

variable that indexes over the effective telescope pupil. The path-length error is commonly specified

through either a point-by-point description

W(u; a) = a(u)
, (4)

or a polynomial expansion
N

W(u;a) = J2^n~n(u), (5)

n=\

where the polynomials {-„(«)} are typically chosen as the Zernike polynomials, orthogonal over

an annular region (Burrows 1990). For a system such as the HST, the discrete PSF can be created

by averaging the continuous PSF over detector regions. Mathematically, this procedure is described

as

h(x,y;a)= / w(x,y,v,z)h c(v,z;a)dvdz, (6)

where w(x, y, v, z) is a jointly discrete-continuous function that describes the averaging and sam-

pling performed by the CCD detector array.

3. Problem Statement

Following Snyder, Hammoud, and White (1993), we simplify the noise model by defining the

modified data

d(y) = d(y) + a 2 - m
, (7)

and by considering the situation in which the CCD read-out noise variance is large. In this case, the

modified data are approximately equal in distribution to a Poisson process whose mean function is

~i(y) = i(y) + io(y) + <t
2

(8)

Therefore, the pseudo-log-likelihood takes the form

£(a,o) = -£;i(y)+£i(if)tai(y), (9)

yey yey
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where terms that do not depend on the unknown object o or parameters a have been omitted.

The maximum likelihood estimator of these parameters will maximize C for a particular data set

{d(y), y € y}, subject to the physical constraint that the object estimate be a nonnegative function.

An explicit, closed form solution to this problem is not known. Therefore, in the next section we
propose a technique for producing estimates numerically by using the expectation-maximization

(EM) algorithm (Dempster et al. 1977).

4. Solution

When a is known, the PSF is known and the numerical procedure is the modification of the

Richardson-Lucy iterations (Richardson 1972, Lucy 1974) described by Snyder (1990) and Snyder,

Hammoud, and White (1993):

where

and

^^>s*-W-
0(aO = 5XiO%,*;«)>

yey

(10)

i
M

(y) = P(V) E %, *: a)o
M

(x) + i (y) + a2
.

When q is unknown, the problem is more difficult. For our initial investigation, we consider

the simplified situation for which the flat-field response function is a constant fi(y) = (3, the PSF

is spatially invariant, and the light is monochromatic. For this case, the EM algorithm for updating

both the object and the aberration parameters becomes,

™
{x) = A- oH

{x) J2h(y-x;a°%

and

where

Ho

argmax

yey

d(y)

~i
M

(y)
'

y^ s(x)\nh(x;a)

ixex

H = ^%;a)
,

(11)

(12)

(13)

and where

s(x) = h{x;aM)J2 o
old

(y - x).
d(y)

>
M

(y)

(14)

Notice that H is independent of the aberration parameters a. The optimization problem defined in

Eq. 12 can be performed by using standard optimization techniques; however, the maximum need

not be found. Instead, if anew is chosen such that

J2 s(x) In /i(z;a
new

) > £ s{x) ln/i(z;a
old

) , (15)

xex xex

then the iterations will be a generalized EM algorithm (Dempster et al. 1977) and still have the

desirable property

£(anew ,onew ) >£(aold
,o

old
). (16)

Eq. 1 5 can be satisfied, for instance, by performing a few iterations of any numerical optimization

procedure.
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Figure 1 . Simulated data used in the example, (a) 256 x 256 array of data, (b) 64 x 64
subarray of data taken from crowded region in the upper left of (a). The data in (b) are

spatially magnified by a factor of 4.

5. Example

To demonstrate the use of this technique, we performed a restoration for the simulated star cluster

provided by the Space Telescope Science Institute. The simulated image is shown in Fig. 1. The
crowded region of the true object and of the restored object are shown in Fig. 2. The original

point spread function (PSF), a noisy estimate of the PSF taken from the lower right region of the

data, and the PSF estimate are shown in Fig. 3. The PSF estimate was obtained by estimating

the point-by-point phase errors due to the telescope's aberrations and using these errors to create a

predicted PSF.

6. Conclusions

In this paper we have discussed a technique for the simultaneous estimation of the unknown object

and system aberration-parameters from data acquired by the Hubble Space Telescope. We have

presented an image-restoration algorithm very similar to the modified Richardson-Lucy technique,

but generalized to allow for the estimation of the unknown system parameters, and, as such,

applicable to the blind-deconvolution problem. In contrast with other approaches in which the

spatial values of the point-spread function are estimated, with our approach the aberration parameters

are estimated. This makes the technique directly applicable to situations in which the aberration-

induced point-spread function is spatially varying. Although the computational burden will surely

increase, the extension of the model to handle this situation is straightforward. The use of this

technique on simulated data has produced promising results; however, the technique should be

tested on real data, and its use with spatially varying, non-monochromatic point-spread functions

should be investigated.
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Figure 2. (a) Original object, (b) Object estimate after 2000 iterations.
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Figure 3. (a) True PSF. (b) Noisy PSF taken from the measured data, (c) PSF obtained

from the estimated optical path-length error.
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Abstract. We apply an iterative deconvolution algorithm, which has the capability to

recover both the object and point spread function from a single image or multiple images,

to simulated HST star cluster data. The algorithm uses error metric minimization to enforce

known physical constraints on both the reconstructed object and point spread function. The
reconstructed object is shown to preserve the photometry inherent in the observed image.

The use of multiple observations improves the signal-to-noise ratio of the reconstructed

object.

1. Introduction

An iterative deconvolution algorithm based on the method of error metric minimization has been

developed (Jefferies & Christou, 1993). This is a blind deconvolution algorithm in that it restores

both the object and point spread function (PSF) from an observed image. A detailed discussion

of the algorithm, which is based on the work of Lane (1992), has been previously presented by

Jefferies & Christou (1993). Here we only highlight the main points.

In order determine both the object and PSF from a noisy measurement of their convolution, it

is necessary to enforce known physical constraints. The basic constraints are that the restored object

and PSF at each iteration should: (1) convolve to the observed image, (2) have real, non-negative

values, and (3) exist over finite regions of space. In addition, other constraints can also be applied.

These include: (1) a band-limit constraint which prevents the trivial solution of the observed image

and a delta function, (2) the use of multiple observations, (3) the use of only the high signal-to-

noise region of the Fourier domain, and (4) the use of object Fourier spectrum information, e.g., as

extracted from speckle imaging. We note that the multiple observations constraint can be handled

in two ways, either sequentially or in parallel. The former uses the reconstructed object from one

observation as the input for the next observation. The latter, which we utilize, constrains the object

to all observations simultaneously.

The algorithm is deterministic unlike maximum likelihood techniques which explicitly model

the noise in the observations. However non-systematic noise is handled by the use of multiple
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observations. Here the noise and the PSF are different for each image and it is only the object that

is common to all the images.

Constraining the reconstruction to initial estimates of the object's Fourier components, i.e.,

the amplitude and phase, also prove to be very powerful especially for application to speckle

interferometric data. The Fourier components, obtained from an ensemble average power spectrum

for the amplitude and cross-spectra or bispectra for the phases, have significantly improved SNR
over individual specklegrams, by a factor of the square root of the number of specklegrams and

is typically of the order of 30. When using the Fourier amplitude as a constraint the algorithm

now approximates one of "phase retrieval." When using both amplitude and phase estimates it

approximates an iterative deconvolution algorithm. We note that use of either of these constraints is

not limited to the speckle imaging application but can also be applied to single images if an estimate

of the PSF is known. Of course, in this case, the Fourier component SNR will be as noisy as the data

and appropriate weighting has to be applied. Typically, we apply the Fourier domain constraints for

the first few iterations and then relax them so as to avoid systematic errors in the Fourier quotients

due to differences in the object and reference PSFs.

2. Application to Simulated Data

The algorithm has been successfully applied to both real and simulated astronomical data (Jefferies

& Christou, 1993; Jefferies 1993) and its ability to accurately preserve photometry in the observed

image has been demonstrated. In this section we quantify this photometric linearity by application

to the simulated wide field camera star cluster data made available through ST Scl (Hanisch, 1 993).

2.1. Noiseless Case

In order to investigate the algorithm's performance without the influence of detector and photon

noise we took the "truth" data set and convolved it with the given PSF to generate a noiseless image.

We then reduced this using the Fourier modulus constraint and extracted the true object distribution

and PSF. The restored object showed no residuals. This demonstrated the ability of the algorithm

to extract both object and PSF and also the linearity of the restored object.

2.2. Single Object Input

The algorithm was applied to the "siml" data. In the blind-deconvolution mode the algorithm does

not recover the true PSF with any fidelity. However, extra information is contained within the

Fourier modulus which is obtained from the simple quotient of the Fourier components of the object

and the given PSF. Thus we used the algorithm in its phase retrieval mode. The initial object and

PSF estimates were the observed objects and PSF respectively. Fig. 1 shows the convolution image,

"siml", and Fig. 2 shows the reconstructed object and PSF using the Fourier modulus constraint.

Note the reduction of the extended "halos" in the object sources which are now "point-sources."

2.3. Two Object Input

For the next experiment we applied the algorithm in its blind deconvolution mode to the images

"siml " and "sim2" simultaneously. These two images have different noise realizations and a slightly

different PSF. We used one of the convolution images as the initial object estimate and the brightest

well isolated star, to the image top right, as the PSF estimates. The restored object and the two
restored PSF's are shown in Fig. 3. Note that the PSFs show strong Airy rings as well as the

filaments but have not converged to the measured PSF result. However, the object shows single

pixel sources.

2.4. Four Object Input

For this experiment we increased the number of multiple images from two to four using the previous

two images along with two images of the simulated star cluster obtained with WFPC 2, i.e. "simlc"
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Figure 1 . The simulated star cluster image "siml".

Figure 2. Restored object (left) and restored PSF (right). Note that the PSF is displayed

with a factor of 2 magnification.
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Figure 3. Restored object (left) and restored PSF's (right) for "siml" and "sim2"

respectively.

and "sim2c". We thus had four independent observations of the same field, each with a different

PSF and noise realizations. As for the previous case, the algorithm was run as a blind deconvolution

using one of the WFPC 2 images as the initial object estimate and the brightest star in each image
as the corresponding PSF estimates. Due to the sizes of images, each of them 256 x 256, there

were in excess of 300,000 variables to minimize. The nature of the problem forced us to reduce

these data on the San Diego Supercomputer Center Cray YMP/2. The restored object and PSFs are

shown in Fig. 4. Note the noise in the restored PSFs. The algorithm has found a solution which
places the noise into the four different PSFs as it is not systematic and is therefore not common to

the object. These PSFs are noisier than those restored for the two previous cases.

3. Linearity

An important question about any deconvolution algorithm is its linearity. In order to quantify this

we followed the approach used by Busko (1993). This involves investigation of the photometric

residuals as a function of the source brightness. Because of the crowded field of these simulations

we only used the value of the restored object at the pixel locations given by the truth list. We
defined the brightest source in the field, i.e., the bright star in the upper right quadrant, as having

zero magnitude and normalized the photometry of the reconstructions to this source.

Fig. 5 shows the peak photometry for the "raw" data sets. Note the difference before and after

the correction for the spherical aberration. There is still some power distributed into the PSF "halos"

as is evidenced by the mean offset from zero. The scatter of the residuals is due to the crowded
field where there are overlapping PSF's which contribute to increasing the intensities. Fig. 6 shows
similar plots but for the three restored images shown in the previous section. Note that the three

have means close to zero and that the dispersion of the residuals is substantially less than that for

the "raw" images. The dispersion of the residuals increases with fainter magnitude. This behavior

is to be expected as the SNR of the individual sources decreases with increasing magnitude. It can
also be seen that as more input information is used, i.e., an increased number of observations, then

the residual dispersion decreases showing a trend, based on the limited data presented here, which
is proportional to the square root of the number of input images.
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Figure 4. Restored object (top) and restored PSF's (bottom) for (left to right) "siml'

"sim2", "simlc", and "sim2c".
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Abstract. This discussion begins by noting that stellar photometry is often done quite

effectively on unrestored images. Even when restoration is necessary, one must be wary
of sophisticated methods, many of which distort photometric values. Fourier methods are

photometrically reliable, and Wiener filtering leads to reasonably good restorations. The
statistics of pixels in a restoration presents new problems, which have been only partly

solved. A completely unsolved problem is presented: estimating the arithmetic difference

between two images that have different PSFs and different S/N. The discussion concludes

with a plea for methods that are available and transparent to the ordinary user of HST.

This is likely to be the least technical and most naive of all the papers presented at this meeting. I

come before you not as an expert but as a user, and not as a contributor but as a consumer. I could

suggest that I am on the invited program only because I can't convince Bob Hanisch that I don't

know anything about image restoration, but that would not be totally fair. I think that Bob really

did want you to hear from some people who represent the user community of image restoration. I

do have a certain amount of experience with it, and I have some scars to show for it.

1. To Restore or Not to Restore?

The first question I want to ask is, "Why restore images at all?" The reason for asking such an

apparently ridiculous question is to emphasize that there are times when image restoration is not

the magic potion that is needed. Most of the work that has gone on in my own group involves

stellar photometry, and we have found that this is better done on the unrestored image than on any

restoration. Specifically, we use PSF fitting by DAOPHOT. The trick is to have a good enough (and

big enough) PSF— but discussion of that belongs to a different paper, at a different meeting.

2. Problems of Photometry on Restored Images

Photometry of restored images has two problems. First, many restorations are photometrically

unfaithful, and you get the wrong answer. Second, in a restoration the pixels are no longer statistically

independent, and this makes a mess of processes like least-squares fitting. It is important to note

this characteristic. You don't want to use DAOPHOT on a restored image, because DAOPHOT
chooses the weights of the pixels on the assumption that they are statistically independent. (Note

also that the variances are no longer Poisson, which is what DAOPHOT assumes.)

What is needed instead is a least-squares method that works on correlated data points. I have

actually worked out how to do least squares correctly on a restoration, but I haven't carried it all the

way through to a programmable algorithm, because I felt I didn't have any real use for the result.

Briefly, the normal equations look, in a formal way, exactly the same as the normal equations for

least squares on independent data points, except for one horrible complication: instead of weights

of individual pixels you have the covariance matrix of the pixels. One certainly doesn't want, for

a 512 x 512 image, to generate a covariance matrix whose size is 5124
, or 68 billion elements.

Undoubtedly there is a way of dealing with small parts of the image — say, the surroundings of a

single star; but as I say, I haven't wanted to pursue this further.
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I have taken a dim view of photometry on restored images, but I do hope that by the end of

this meeting I will have heard about restoration methods that don't distort the photometry, and even

methods that do better photometry on the restored image than you can do on the original. In that

case I think that it will be valuable to resuscitate the study that I have just mentioned and to bring it

to a practical fruition.

And of course there are situations where it is absolutely necessary to restore the image. There

is no way of doing correct photometry on an extended object without restoration. But again, we
have to be very sure that the restoration process doesn't distort the photometric values. And that

often happens. My former postdoc, Adam Stanford, made up a test image that is closely similar to

the center of M31, with its double peak. He then convolved it with a PSF, and added noise. We
ran the lucy task that is in STSDAS, for the usual 80 iterations, and it gave the wrong answer; the

ratio of the heights of the two peaks was wrong by about 10 or 20%. We sent the test to one of the

practitioners of maximum entropy, and he failed it. On the other hand, Tod Lauer has told me that

he has tested "lucy" and found it to reproduce a known answer correctly. Maybe Tod's test wasn't

severe enough; maybe we did something wrong in our test. I would certainly like to know what the

answer is.

Also, we have run "lucy" on a star field and then done photometry. The faint stars were

systematically wrong. I have been told by at least one expert that what you need to do is to run

"lucy" to complete convergence, but we haven't been able to do that— at least with the lucy task

in STSDAS; the field begins to fill up with false stars that come from noise peaks. But note the

distinction: I am not talking about the Richardson-Lucy algorithm in general; I am only telling what

happened when I used the version in STSDAS. Maybe others can do it better. As I said, I'm not an

expert.

Nor do I wish to detract from all the excellent restoration methods that are available, but just

to say, "buyer beware." If you just turn a crank, there is a real danger that all you'll get is sausage.

3. Problems of Fourier Restorations

As a result of not knowing how to do any better, I have stuck to Fourier restorations, which can

be counted on to be linear. Even so, there are precautions to be taken. My associates and I have

learned, the hard way, that you have to avoid discontinuities at the edges, match opposite sides and

preferably taper with a cosine bell, that you have to subtract out stars that overlap the edge, and so

on.

Even a method as simple-minded as Fourier has one difficulty: filtering. Here the best that I

have found is the STSDAS task wiener, which creates a so-called "optimum filter." The task has

a number of options, though; my experience has been that on HST images it gives the best results

when run with the default options. (But since the time of the Workshop I have heard that others

have achieved better results by using a signal model that is rather sharp.) Even so, I've gotten some
results that had obvious noise artifacts and needed a further low-pass filtering. And it's annoying

that the restoration of a piece cut out of an image gives a result different from the way that piece

looks when you restore the entire image. (This is because of the way "wiener" goes out to the edge

of the transform of whatever image it has, to estimate the noise.)

4. An Example of a Perplexing Problem

I would like to spend the rest of my time showing an example of the kind of dilemma one can get

into when doing restorations. In this particular case we were dealing with an FOC ultraviolet image

of the center of M31, and a PC V-band image of the same region, scaled, rotated, and aligned. We
wanted to take the quotient of the two images, to look for color effects. But first, of course, we had

to get the light back where it belongs, by doing restorations.
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Notice that for this problem one cannot use the sophisticated methods that have been shown to

produce such handsome restorations. The degree to which they restore depends on S/N, and the

two images would get sharpened by different amounts, producing an erroneous quotient.

In doing the restorations we tried to treat the two images identically (except of course for using

its own PSF for each image). What we did was to run "wiener" on the noisy FOC image, and extract

the filter that was generated in the process. Then we did Fourier deconvolutions of each image by

hand, using that same filter on each. (This left the PC image less than optimally filtered, but it

should assure that each image has the identical amount of blurring.) The result showed a small,

well-marked central peak that certainly represents a real ultraviolet excess at the center of M31.

Surrounding this peak is a large, round, shallow depression. M31 is elongated, but this depressed

"bowl" is round. The only component in the problem that is round is the PSF. Does the bowl

represent a real UV feature of M3 1 , or is it possible that the bowl is just an artifact that comes from

the restoration process? We have tried using somewhat changed PSFs, but we haven't been able to

make the bowl go away. We are going to keep trying such experiments, but I certainly hope that

some one who is more expert than I am can make the suggestion that I have been lacking so far.

I have described a specific problem here, but instead I can pose an abstract problem that, as far

as I know, has never been addressed. It goes as follows: "Images A and B show the same extended

object with identical placement, but were taken under different circumstances. Each is accompanied

by its own PSF. Image A has low S/N, while B has high S/N. Wanted: a good estimator of the

true arithmetic difference, pixel by pixel, between A and B, properly corrected for the different

blurring in the two images." This is not at all a rare situation, and I think the problem is worthy of

consideration.

5. A Plea to the Learned

The foregoing is an example of the difficulties that come up when an innocent ventures into image

restoration. (And incidentally, the astronomical answer in this case is awfully important.) But let

me conclude by emphasizing this position of innocence and ignorance. The average user of HST
images knows even less than I do. One can of course argue that a good scientist learns whatever he

or she needs to know in order to get meaningful answers. But there is a limit to how many things a

person can become expert in, and the more time that you spend learning abstruse methods of image

reconstruction— and especially the practical details that you need to know to make them work—
the less time there is to reduce and measure those voluminous images. So my real message is that

you experts need not only to devise elegant and powerful methods of image restoration; you need

also to make them accessible, and even transparent, to the ordinary HST observer — without the

danger that he or she will unwittingly produce wrong answers without knowing it. May I remind

you of the phrase "user-friendly"?

6. Conclusion

I know I haven't said much to enlighten you, but I look forward to learning a lot from the other

papers that will be presented, and I particularly hope that they will be written up in a way that makes

their content clear to the ordinary astronomer— and if we may hope for such a thing, that they will

soon be embodied in tasks that can be made available in STSDAS.
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Abstract. We summarize instrumental properties and problems in the WFPC and WFPC 2

cameras which are likely to complicate image restoration.

1. Introduction

The spherical aberration in the HST primary mirror has generated considerable interest in restoration

and deconvolution of WFPC images. The new WFPC 2 camera, which will be installed in HST in

December 1993, should completely correct the aberration. Nonetheless, deconvolution may remain

useful in removing optical artifacts such as Airy rings, diffraction spikes, and scattered light from

WFPC 2 images. Herein we discuss the characteristics of both instruments, with emphasis on

effects and problems which seem likely to impact restoration and deconvolution of these images.

We begin with a brief summary of the layout and parameters of both instruments. We then examine

problems which corrupt the PSF, effects which contribute noise to the images, and finally artifacts

in the images which will complicate deconvolution.

2. Instrumental Parameters

The Wide-Field / Planetary Camera (WFPC), and its replacement camera, WFPC 2, have nearly

identical optical layouts (Fig. 1). In both cases light from the Optical Telescope Assembly (OTA) is

reflected off a "pickoff mirror", passes through the shutter and filter assemblies, and is then divided

into four separate channels by a "pyramid" mirror which also serves as a field flattener. Light from

each channel is then reflected off a flat "fold" mirror, through a Cassegrain relay system, through a

MgF2 field flattener, and finally onto an 800x800 pixel CCD detector.

An important difference between the old and new cameras is that WFPC has four Wide-Field

Camera (WFC) and four Planetary Camera (PC) imaging channels. Either the WFC or PC mode can

be chosen by simply rotating the pyramid mirror. Instead, WFPC 2 has only three WFC channels

and a single PC channel with a fixed pyramid mirror. But perhaps the most important difference

is that WFPC 2 has a corrective figure applied to the Cassegrain relay secondary mirrors, which

nullifies the spherical aberration of the OTA primary mirror.

Properties of the CCD detectors for each camera are summarized in Table 1 . WFPC uses

thinned back-side illuminated CCDs, whereas the WFPC 2 detectors are front-illuminated. The
front-illuminated devices have much better flat-field characteristics, but a price is paid in the form

of lower quantum efficiency (QE) at red wavelengths. An important advantage of WFPC 2 is its

lower read-out noise. The read-out noise is a factor ~ 2.6 lower than the old camera, and more than

compensates for the reduced QE.

3. PSF Effects

The well-known spherical aberration in the OTA primary mirror causes most of the light for stellar

targets to fall in a large halo (Figs. 2 and 3). The PSF core has nearly the correct diameter,

but contains only about 15% of the light. The remaining 85% forms a complex halo about 4" in
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Filter

CCO Detector

Shutter

Figure 1
.

WFPC 2 optical configuration; the original WFPC is nearly identical. From
Burrows, Clampin, and Krist (1993).

Table 1
.

Comparison of WFPC and WFPC 2 CCD detector characteristics.

Parameter WFPC WFPC 2
Device
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till!

Figure 2. Typical PSF forWFPC Planetary Camera taken through a487nm narrow band

filter at the "standard" HST focus position. Gray scale is logarithmic. From Holtzman

(1992).
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Figure 3. Encircled energy and a function of aperture radius for the Wide-Field Camera
mode. The top three curves are for WFPC 2, while the bottom curve ("WFPC1 WF2")
is for WFPC. Curves for Planetary Camera modes are nearly identical except at smallest

radii. From Krist (1993).
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diameter. The newer WFPC 2 has a corrective figure applied to the relay secondary mirrors which
should completely eliminate this aberration. The correction will also reduce the PSF core diameter

slightly, since light from the mirror edges falls into the PSF halo for the old camera.

Both cameras seriously undersample the PSF at most wavelengths. The PSF core radius is

approximately 0708 at 8000 A, but only 0702 at 2000 A. The WFC pixel size is about 0710, and

0704 for the PC, so that the PSF is severely undersampled, except perhaps for PC observations in

the far red.

In both the old and newer cameras, the PSF varies with both field position and time. The
variations with field position are a large effect for WFPC images (Fig. 4). Due to vignetting within

the relay optics, the CCD edges don't see all of the OTA primary mirror. This causes details of

both the PSF core and halo to vary with field position. A notable effect is that the PSF core shape

becomes elliptical near the CCD edges away from the pyramid apex. "Tendrils" and other features

in the PSF halo also change shape.

The PSF also varies with time due to both OTA "breathing" and pointing "jitter." Solar heating

of the OTA causes small focus variations during the orbit with typical amplitudes of about 5 /zm.

Occasionally variations as large as 10 to 15 /xm are seen. This "breathing" of the OTA has a

noticeable effect on the PSF wings for WFPC data; the wings expand and contract on a timescale

comparable to the orbit period. For WFPC 2 data, the breathing only has a small effect on the PSF
size.

Typical pointing jitter errors have a 3 to 5 milliarcsecond (mas) RMS amplitude in Fine Lock

tracking mode. Much larger transients, exceeding 20 mas, sometimes occur at terminator crossings

due to solar array oscillations. Large transients are occasionally seen at other times, as well, but

their cause is not well understood. The new solar arrays installed during the HST Service Mission

should reduce transients for WFPC 2 observations.

Besides these short time-scale effects, the PSF also undergoes slow variations due to long-term

desorption (shrinkage) of the OTA, and then sudden changes during related focus readjustments.

Both cameras tend to distort the PSF for very short exposures (< 1 second). This distortion

occurs because the shutters act as a narrow traveling slit for short exposures. Any given detector

pixel sees the full OTA primary mirror pupil for only a small part of the total exposure, so that the

PSF is corrupted. In a related effect, light is diffracted off the edges of the traveling shutter blades,

further complicating the PSF. These effects are important to remember when using observed PSF
images; exposures much shorter than 1/2 second should generally be avoided.

Because WFPC 2 uses front-side illuminated CCDs, it is susceptible to various sub-pixel

effects. (These effects are thought to be smaller in WFPC, and have generally gone unnoticed due

to the spherical aberration.) The WFPC 2 CCDs appear to scatter light, so that only about 60%
of the photons striking any given pixel are actually detected by that pixel. The remaining 40%
are scattered and detected by the surrounding pixels. This has the effect of smearing out the PSF
slightly, especially for the WFC detectors where the PSF is quite small compared to the pixel size.

A second effect in WFPC 2 are sub-pixel quantum efficiency (QE) variations. The QE appears to

vary by about 10% across the pixel faces. The exact pattern is poorly understood, but the QE is

currently thought to be highest in the pixel centers. This will impact efforts at sub-pixel image

restorations, as well as photometry when the PSF is severely undersampled.

4. Image Noise

The most important noise source for both the WFPC and WFPC 2 is the readout noise. This is

a random noise with an approximately Gaussian distribution which occurs while reading out the

CCD and measuring the charge deposited in each pixel. For WFPC the noise is about 13 electrons

RMS per pixel, which is well-sampled by the 7.5 electron per DN digital conversion. For WFPC 2

the readout noise is only about 5 electrons per pixel, and is undersampled by both the 7.5 and 15

electrons per DN digital conversions. This undersampling of the noise may impact deconvolution

and statistical analyses of WFPC 2 data.
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Figure 4. Sample PSFs for WFPC detector WF2 at various field locations. Location on
the page is indicative of the position on the detector, with the pyramid apex (OTA optical

axis) at the lower left; each PSF is magnified by a factor of three. From Holtzman ( 1 992).
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WFPC suffers from an electronic problem in its "sample and hold" circuitry which corrupts

the analog-to-digital conversion of the data. Basically, as various bits in the A-to-D conversion are

tested, the bits sometimes fail to set properly so that the resulting digital values are too low. This

adds a small noise which is typically about 1/2 DN, but can be as large as 2 DN, depending on the

pixel value. This again may impact statistical analyses on the data. WFPC 2 has a similar problem,

but at about twenty times lower level.

For most targets, WFPC images must be "preflashed" with faint lamps to eliminate charge

transfer errors during the readout. Images are typically preflashed to about 30 electrons, which

introduces about 1 DN of noise per pixel. At present it is believed that WFPC 2 images will not

require any preflash.

Table 2 summarizes the effective total noise and other factors related to faint target detection for

bothWFPC and WFPC 2 cameras. Fig. 5 compares observed WFPC, Richardson-Lucy deconvolved

WFPC, and simulated WFPC 2 images of a field containing faint targets. While the PSF wings are

reduced in the deconvolved image, noise prevents detection of faint objects easily seen by WFPC 2.

Table 2. Comparison of WFPC and WFPC 2 factors affecting faint target performance.

Parameter WFPC WFPC 2

Effective total noise
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Figure 5. Comparison of observed WFPC (upper left), Richardson-Lucy deconvolved

WFPC (lower left), and simulated WFPC 2 image (upper right) of a WFC field containing

faint stars.
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Figure 6. Example of "measles" in detector PC8 through filter F517N. The display

range is ~ ±7% about the mean. From MacKenty et al. (1992).
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in the raw images, which are not completely removed during calculation of the calibration flats. On
larger scales (>100 pixels) there are sometimes errors up to about 15%; these are caused by the use

of neutral density filters when observing the broad-band flats. We plan to deliver new calibration

flats early in 1994, in which these errors should be greatly reduced. These problems should be

unimportant for WFPC 2, due to its special internal calibration channel.

The CCDs in both the new and old cameras have manufacturing defects in the form of pixel

rows or columns which are too narrow or wide. In WFPC 2 every 34th row is about 3% too narrow.

The standard flat field calibration is based on the assumption that all pixels have the same size, so

these anomalous rows will not be properly calibrated. In particular, stellar targets falling on these

rows with standard calibration will have 3% too many counts. These rows also cause a geometric

distortion for PSFs falling on them. The old WFPC camera has a similar effect, with every 33rd

row and column being slightly too wide.

Figs. 7 and 8 show 400x400 pixel areas from the centers of the WF2 calibration flats forWFPC
and WFPC 2, respectively, and illustrate some of the features discussed above.

Cosmic rays cause artifacts in images for both cameras. These pass through the CCD detectors

depositing large amounts of charge (typically >100 electrons per pixel). In WFPC most cosmic

ray hits involve only 1 or 2 pixels, and it is easy to distinguish weak cosmic rays from aberrated

stars. In WFPC 2, however, the cosmic rays are expected to involve more pixels per hit since the

CCD is thicker. Because the cosmic ray hits will be larger, and the PSFs smaller, it is expected to

be more difficult to distinguish cosmic rays from stars in WFPC 2. For both cameras, cosmic rays

can be eliminated by combining several exposures of the same field with rejection of anomalously

high pixels. The elimination of cosmic rays from images which are poorly aligned (i.e. having

displacements less than 1 pixel) is an important topic requiring further study.

Hot pixels affect images in both WFPC and WFPC 2. These are single pixels whose dark

current is anomalously high (>0.01 DN sec
-1

). They cause a pattern of single pixel bright spots

in long-exposure images; the pattern is more-or-less constant on time-scales of hours, but varies on

time-scales of months. Each CCD has several hundred of these hot pixels, and careful calibration

can significantly reduce their numbers and intensity, but cannot eliminate them completely. One
solution is to take several exposures with the target on slightly different regions of the detector, so

that "real" objects can be easily distinguished from these detector artifacts.

Acknowledgments. I am grateful to J. Krist and C. Burrows for helpful discussions regarding

WFPC 2 characteristics and anomalies.
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Figure 7. Example ofWFPC calibration flat. This is a 400x400 pixel section from the

center of detector WF2 for filter F555W. The gray scale ranges from 0.95 (black) to 1 .05

(white). Some notable features are: (a) dust particles on windows, (b) large circular arc

defects due to use of neutral density filter, (c) 33 column / row manufacturing errors, and

(d) dust particles on the CCD itself. There is also a broad intensity gradient wherein the

brightness decreases from the bottom to the top of the image; this is a defect related to

the neutral density filter.
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Figure 8. Example ofWFPC 2 flat. This is a 400x400 pixel section from the center of

detector WF2 for filter F555W. The gray scale ranges from 0.95 (black) to 1 .05 (white).

Data are from ground-based camera tests. Some notable features are: (a) dust particles

on windows, (b) 34 row manufacturing error, and (c) dust particles on the CCD itself.
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Abstract. We review and discuss some of the considerations, relating to FOC imaging,

which will affect or at least influence the quality of image restorations. Some of these effects

derive from the nature of the instrument and the calibration procedures, however, others

are the responsibility of the individuals designing the observations. We also discuss the

expected status of these effects after the deployment of COSTAR.

1. Introduction

Since the discovery of spherical aberration associated with the primary mirror, the application of

image restoration techniques to HST imaging data has become an almost routine procedure. It is

not my intention here to argue for or against the use of these procedures generally, but simply to

highlight certain features relating to the Faint Object Camera and the data it produces and how these

features should influence an observer when designing observing proposals. If nothing else, this

discussion may help those less experienced image restorers to understand some of the limitations of

the techniques. The main sources of information for FOC Users should be the Faint Object Camera

Instrument Handbook, Version 3.0 (Pre-COSTAR) (Paresce 1992), and Version 4.0 (Post-COSTAR)

(Nota et al. 1993). Additionally, our accumulated experiences over the last three years are published

in "In-Flight Performance of the Faint Object Camera of the HST: II" by Greenfield et al. (1993).

Clearly, for each individual user, the relative importance of these different effects will depend

very much on the quality of their data, the type of target being observed, and the science they are

trying to do, and therefore the following topics are addressed in no particular order. Readers should

not attempt to infer any significance regarding their relative importance from the order in which

they are presented. It should be noted that most of these effects are not independent in that their

existence often influences, or is influenced by, other considerations. Note also that unless stated

otherwise, all of our discussion is slanted towards the F/96 relay since this is the most used. We
present a typical example in §2. In the course of each discussion we will comment on how each of

the problems will be affected by the deployment of COSTAR.

2. Frame Size and Pixel Type

For many applications, a serious restriction on FOC imaging is the amount of sky coverage available.

The platescale associated with the F/96 relay (~O70225 per pixel), in principle gives us a maximum
imaging area (for a 1 024 x 1024 image) of ~23", but in reality this area is somewhat smaller because

of geometric distortion. A further consideration relates to the aberrated PSF which has about 85%
of its power in a halo which extends out to a radius of 100 pixels from its center. This means

that a square perimeter with at least this width will be influenced, to a greater or lesser degree, by

edge effects, further reducing the scientifically useful area of the image, at least as far as image

restoration is concerned. The bottom line is that many attractive science targets, such as most Solar

System planets, just won't fit. Even if you have determined that your target will fit, you should also

remember that, because the scientifically useful area of any given format can be much smaller, it is

almost an imperative that an interactive acquisition be included in your proposal (see later in this

section).

236
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As previously implied, successful use of the FOC usually requiresd careful planning of the

exposures and filter combinations; this is especially true for those desiring to perform image

restoration. These are not however the only considerations and so, as an example, let us review

the factors which an observer will have to consider when deciding on an imaging format. In the

first instance let us assume that the observer feels constrained, because of the target size or maybe
just for maximum sky coverage, to use the largest format available, the F/96 512x 1024 (zoomed)

format, in which case

• Because of the large area to be scanned by the read beam, the large format has the poorest

linearity characteristics, i.e., significant non-linearity is to be expected in almost all data

obtained with this format since the maximum reasonable count rate allowable (for non-

linearity < 10%) is about 0.05 counts/pixel/sec.

• FOC pattern noise (see below), appears to be proportional in some way to the level of non-

linearity present. Choosing a format with poor linearity characteristics magnifies the problem

of pattern noise.

• This format only has 8-bit pixels, i.e., the maximum number ofphotons which can be registered

by a single pixel, regardless of exposure time, is 255, at which point the pixel "wraps over"

and continues counting from zero. An individual pixel can be wrapped over several times, and

therefore this problem cannot be safely corrected without a priori knowledge of the intrinsic

structure within the affected area.

• For point sources, the maximum reasonable count rate (i.e., peak) is somewhat higher, (about

0.3 counts/pixel/sec), however, if the proposed target is a crowded star field, high levels

of non-linearity will almost certainly be present in the cores of the brightest stars, even if

wrap-over is avoided.

• The 8-bit count limit, combined with the count rate considerations, implies that for all but the

most diffuse, extended objects, high signal-to-noise is difficult to achieve without prohibitively

long exposure times.

What are the solutions to these problems? Well, if the large format is the only one which will

suffice for your purposes then there are no practical solutions except the obvious one, i.e., that

you take extreme care to calculate your filter combinations and exposure times to avoid wrap-over,

maybe by splitting the total exposure and obtaining multiple images, and to limit the non-linearity

to acceptable levels. If the initial filter calculation included one or more Neutral Density (ND)
filters, then the observer could opt to take two exposures: one with sufficient NDs to make the

bright sources reasonably linear, and one with less NDs to show up the faint structure.

A second option which users should consider is the use of a smaller format. The 8-bit count

limit only applies to two formats, the 51 2x 1024 (zoomed) and the 512x512 (normal) formats, so

one solution would be to use a smaller format and take multiple images with positional offsets,

i.e., 2x512x512 (zoomed) images (with 16-bit pixels) instead of one 512x 1024 (zoomed) image.

There are other advantages to this solution in that, although your image has only half the area and all

of the other problems still remain, half the area implies approximately twice the scan frequency. If

the image is being scanned twice as often, the linearity characteristics are improved by about a factor

of two, i.e., images are only half as non-linear. You can also expect an accompanying reduction in

the pattern noise since this seems to scale with non-linearity. If you opt for the 512x512 (zoomed)

format you can either

a. Obtain the same S/N with no wrap-over and twice the linearity, in the same exposure time,

b. Obtain the same S/N with no wrap-over but with the same non-linearity in half the exposure

time, or
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c. Obtain better S/N (~ y/2) with no wrap-over but with the same non-linearity in the same exposure

time.

There are two main disadvantages involved in moving from a large format to a smaller one,

particularly if image restoration is intended. First there is the reduction of the effective image

area, i.e. the area free of edge effects. With the present (pre-COSTAR) PSF this is a very serious

consideration since edge effects are present within a 100 pixel perimeter of every image format. The

second disadvantage is that the smaller format may necessitate an acquisition image to ensure that

the science target is positioned at the center of the image. Remember that the accuracy with which

the telescope can be pointed depends almost totally on the accuracy of the Target and Guide Star

coordinates (which can accumulate to several arcseconds of error), so when the imaging aperture is

only 11" square, an observer take a great risk by not including an interactive acquisition.

Following the installation and calibration ofCOSTAR we have a good news/bad news situation.

The bad news is that the focal ratio of the FOC cameras will be changed from F/96 to F/151 (F/48

—» F/75), resulting in a reduction of the format sizes (in arcseconds) by a factor of 2/3 (F/96 plate

scale is reduced to C/014/pixel). With these smaller format sizes, the need for an acquisition image

should be even more apparent. The good news is that, if you still feel a need to restore images after

COSTAR, the PSF halo should be fairly negligible (only about 20% of the total light), and therefore

edge effects should only be present in a relatively narrow perimeter, leaving a larger effective science

imaging area (relative to pre-COSTAR). In fact, the absolute size of the effective imaging area (in

arcseconds) is not going to be very much smaller than the pre-COSTAR situation. It should also

be noted that the smaller size of the pixels give a slightly better sampling of the PSF. The 8-bit

counting limit will, of course, be unaffected, and so wrap-over will still occur, which in turn will

force shorter exposure times because of the 4-5 fold increase in the peak intensity of the PSF.

The effects of COSTAR on non-linearity and distortion, etc., are discussed in the relevent

sections.

3. Detector Blemishes

In Fig. 1 we show an example of large format (5 12 x 1024 zoomed) internal flatfield obtained with

the F/96 relay of the FOC. The image has had an unsharp masking technique applied in order to

make the various defects and blemishes more obvious. As a first step in this discussion, I will try to

identify some of the more important features beginning with those which are there for a purpose.

• The first deliberate feature is the grid of reseau marks. This grid comprises 17 rows and 17

columns with a nominal spacing (prior to detector distortion) of 60 pixels. The reseau marks

are etched onto the first of the bialkali photocathodes in the intensifier tube from where they

cast shadows onto the TV target. This grid is used to determine the geometric distortion of

the detector. Two things should be noted, firstly the grid is rotated by about 7° with respect

to the frame axes, and secondly the grid is off center by about 70 pixels in the — y direction,

resulting in the loss of one complete row of the grid, and an absence of reseaux across the top

of the image. The significance of this is discussed in the section on geometric distortion.

• The second deliberate feature visible in F/96 external images (but not internal flat fields) are

the occulting fingers. The occulting fingers, which cast very clear shadows on the full format

science data, project into the images from the top right and bottom left edges of the frame.

Several obvious artifacts and blemishes are also visible, most notably:

• Vignetting by a square baffle located just upstream of the detectors causes the large wedge-

shaped shadow at the top left and the smaller vertical wedge at the bottom left.

• The central 512x512 format causes the square "burn in" feature seen at the center of the

image.
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4. Scan Distortion

Scan distortion manifests itself as a series of regular, vertical stripes down the right side of every

image (see Fig. 1) in every format. It is believed that this effect is caused by the non-uniform

motion of the scanning beam as it begins reading each line. If this is indeed the case, then the scan

distortion will introduce variations in the geometric distortion and both the detector sensitivity and

non-linear response. The scan distortion is present at the right hand edge of all formats and has a

peak-to-peak scalelength of 60-70 pixels, about the same as the reseau separation. For this reason

it is not removed, or even significantly modified by the geometric correction.

The intensity variation which results from the scan distortion behaves something like a damped

sine wave and extends for at least 3 full oscillations (about 200 pixels), with its amplitude decreasing

from about 15%, to 6%, to 2%, as it progresses inward from the right hand edge. Because of the

smoothing which has been applied to the pipeline calibration flat fields (UNI files), and because the

flatfield correction is applied after geometric correction, the flat fielding process does little to correct

the sensitivity variation induced by the scan. It should also be noted that smaller FOC formats,

which use only a subset of the 512x 1024 (zoomed) format, do not include the scan distortion at all.

Since it is an inherent characteristic of the FOC cameras, there is no reason to expect that

scan distortion will be changed in any way by the installation of COSTAR. Having said that, a

new method of geometrically correcting the smaller formats (see the next section) may result in a

reduction of the effect for these formats.

5. Geometric Distortion

Geometric distortion can be separated into three components: optical distortion, detector distortion,

and format-dependent distortion. The optical component of the distortion can be described as any

distortion due to the HST+FOC optical configuration, i.e., everything which originates upstream

from the intensifier tube. It is determined by ray-tracing models of the optical system. The

format-dependent distortions include those aspects which differ from format to format, such as

the scan distortion discussed above. Most of these distortions result from events which take place

downstream from the intensifier tube. Finally, the detector distortions are those which occur within

the tube itself.

The accuracy of the geometric distortion correction of FOC data is currently limited by the

coarseness and size of the reseau grid (60 pixel spacing). Nominally, the accuracy of the geometric

correction is very good — about 0.2%. That is, the true relative separation between points after

geometric correction is good to about 0.5 pixels over a separation of about 250 pixels. However,

there are several conditions on this which must be fulfilled.

The geometric distortion is only explicitly defined at the positions of the reseau marks present

in the format. The actual geometric correction is the result of a 2-D polynomial fit between the

observed reseau marks and a reference grid, hence the pixel-by-pixel distortion is the result of

interpolation between these known points on the assumption that the variation of the distortion has

a relatively long scalelength and is both smooth and well-behaved. (Note: As discussed in the last

section, the scan component of the distortion is not modelled by the fitting procedure because it

varies on scale lengths approximately equal to the reseau spacing and so, after geometric correction,

this component remains.) The accuracy of the fit to the distortion at any given pixel depends only on

the order of the fitted function and how well it is constrained. The order of the 2-D fitting function

is determined by the dimensions of the reseau grid that is present in the format being addressed, so

that if there are n columns and m rows then it is normal to use a polynomial which is [Int(rc/2) + 1]*

order in x, and [Int(m/2) + l]
th order in y (for both m and n > 2).

If we think about the situation (see Fig. 2), it is clear that the observed reseau grid marks the

limit of the constrained fit and that any areas of the image which are outside the observed grid can

have no reliable geometric correction based on the reseau grid (light shading in Fig. 2.). Immediately

within the reseau grid boundaries we have a region which is only constrained by a single point on the
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outside (dark shading in Fig. 2.) and in this region the geometric correction can only be considered

fair, i.e., position residuals may be as much as 1—1.5 pixels. After taking these considerations into

account we see that the geometrically reliable region, where the position residuals will be 0.5 pixels

or less, is only the unshaded area in the center, representing about 40% of the 512x512 (normal)

format. (Figures similar to Fig. 2 can be derived for other formats simply by applying the same

rules.) These considerations also highlight the significance of the missing top row of reseau marks

in the full 512x1024 (zoomed) format since there can be no reliable geometric correction in the

region above the reseau grid which, on its own, accounts for a full 15% of the image.

The significance of this discussion is that

1

.

The measured distance between two points will have a larger than nominal error if one or

both of the points lies in the shaded areas in Fig. 2, and

2. Structures (such as PSF haloes) which overlap the shaded areas may not be reliably corrected

and may retain a residual distortion.

The advent of COSTAR itself, will make no difference to these limitations on the quality of

the geometric correction. However, we are investigating a method which should produce a general

improvement for most formats, with the exception of the largest (the 512x 1024 zoomed). Basically,

observations will be taken of a crowded star field (in 47 Tucana?), using all of the necessary formats

and, after geometrically correcting the large format, all smaller formats will be corrected using a

transformation which aligns the stars with the larger format. In other words, the star positions in

the geometrically corrected 512x 1024 (zoomed) image will be used as the reference for all smaller

formats. The standard geometric correction procedure using the reseau grid will only be used for for

the large format. Since most of the smaller formats lie within the geometrically reliable area of the

large format, and since the stars provide a much finer grid (a random distribution with an average

separation of 10-15 pixels), it should be possible to correct these formats almost right to their

edges with no significant increase in the geometric residuals. This will mean that the geometrically

reliable imaging area of the smaller formats will, in effect, be virtually the whole image.

One bonus of this method is that the camera platescales will, by default, be identical in each

format. A somewhat less important advantage will be that images in different formats will be

automatically co-aligned.

6. Non-Linearity

Nonlinearity is probably one of the most insidious problems associated with the FOC, primarily

because, until the detector becomes saturated, it is not immediately obvious to the researcher. I do

not intend to discuss this in detail here, but instead refer interested parties to available documentation

(Nota et al. 1993, Jedrzejewski 1993, Greenfield 1993, Baxter 1993). The FOC detectors, apart

from the 8-bit wrap-over mentioned earlier, are essentially count rate limited— nonlinearity and

saturation are not governed by the number of photons that can be accumulated, but by the rate at

which they arrive and their small scale distribution, within the time taken for a single complete

scan of the image. The response of the detectors differs considerably depending on whether the

small scale distribution is extended or point-like. [There is also evidence that there may be a small

dependence of the point source response on pixel type (zoomed or normal), however this is not

certain and, for the moment will be ignored.]

As an example, if we consider the largest format (512x1024 zoomed), and specify that

nonlinearity less than 10% is acceptable in our data (90% of the photons arriving at the target are

registered by the detection logic), then we find that for extended sources (which include the PSF
halo), the maximum acceptable count rate is 0.04 counts/pixel/sec, or 40 counts in 1000 seconds

(and this with ~10% nonlinearity). For point-like distributions the response is somewhat better:

for <10% nonlinearity within a 5 pixel diameter aperture centered on the star, a peak count rate

(brightest pixel) of about 0.5 counts/pixel/sec is acceptable (we must also be aware of the halo,

however, which is approaching significant levels of nonlinearity for this peak count rate).
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Figure 3. Diagonal pattern noise. This effect appears to be enhanced by nonlinearity.

As a general rule-of-thumb these numbers scale inversely with the format area. If we change

from a large format (with normal pixels) to a smaller one (with only 25% of the area) we get an

improvement in the acceptable count rates of about a factor of 4. If the larger format is a zoomed
format, and the smaller is normal, we do even better since the change from zoomed pixels to normal

pixels gives a further factor of 1.75. For a change from 512x 1024 (zoom) to 512x512 (normal)

we get a total improvement in the linearity characteristics of a factor of 7.

As mentioned above, even high levels of nonlinearity (>50%), are not necessarily immediately

apparent when examining data visually. The only true indication is to actually check this by

examining the countrates (allowing for the structure present). Saturation is sometimes even more
ambiguous since, although it begins to occur when nonlinearity reaches 60%, it may not be detectable

visibly (particularly for the inexperienced, examining extended sources) until the nonlinearity

reaches 75-80%. When point sources saturate they begin to develop a hole slightly downstream
from the peak in the scan direction (to the right of the peak), increasing in size and depth (maximum
depth of zero counts) as saturation gets worse. For moderate levels of nonlinearity, (40%), a

correction is possible (see references earlier in this section), however for higher levels, and for data

which is saturated, it is not.

I will not elaborate on the effects of nonlinearity with respect to image restoration except to

note that nonlinearity changes the shape of the PSF, particularly in the core, and therefore ignoring

its presence can only have a detrimental effect on any restoration. Also, since nonlinearity is a

detector characteristic, it will not be significantly affected by the installation of COSTAR except

that, with the core of the PSF containing 4-5 times the power as is current, even more care will have

to be taken when calculating filter combinations.
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Figure 4. OTA "Breathing". Variations in SMM despace over a period of 2/3 of an

orbit, measured using parallel observations with FOC and the PC.

7. Pattern Noise

Although not always seen in low S/N data, there are two patterns (unfortunately not fixed) which

are always present. The first, and least obvious, of these arises because of interference between the

read beam and an FOC digital timing waveform which has a 4 pixel period. It appears in the data

as a vertical striped pattern. Although very coherent with regard to orientation and frequency, this

pattern is inconsistent from image to image.

Second, and more often seen, is an approximately sinusoidal pattern which produces a striping

orientated at about 45°to the frame axes (see Fig. 3). This pattern has a period of ~3.35 pixels

(F/96) and is believed to originate from a Moire effect between a TV tube grid and the diode array

on the target. The peak deviations of this sinusoid can be as much as 10% or more and it seems

to intensify when countrates are in the nonlinear regime. In fact, it can be used as a quick way
of recognizing the presence of significant nonlinearity in an image since it does not appear to be

present in very low count rate images (<0.01 counts/pixel/sec).

One final pattern effect which should be mentioned, although it is not a true pattern, is the effect

which we call the "thumbprint". This feature is often seen by observers in the low S/N background

of their geometrically corrected data. In appearance, it looks like a fingerprint and has a relatively

low spatial frequency, typically with a period of 20-30 pixels. This is not a true pattern since

it does not represent background variations. Instead, what is seen are areas of higher and lower

variance in the Poissonian noise characteristics of the background. This comes about as a result

of the resampling algorithm used in the geometric correction. Essentially, if an output pixel maps
directly to the center of a pixel in the input image then little or no smoothing is involved. However,

when they map to points between pixels in the input the output value is a weighted average of the

set of four input pixels involved (in order to ensure flux conservation). The result then is a mild

smoothing, and thus a small reduction in the variance. The pattern is identical in all images which

use the same geometric correction file.
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Figure 5. Comparison of the FOC pointspread function before (left) and after (right)

the installation of COSTAR.

8. FOC Point Spread Functions

The appearance of the HST aberrated PSF is, by now, so familiar to everyone that I see no point

in depressing people with more pictures of it. Many of the problems created by the current PSF
have already been addressed. This section is simply a very quick summary and emphasis of these

effects, after which we will take a more forward-looking approach. A more detailed discussion of

these topics is available in Baxter et al. (1993).

The FOC PSF produced by the aberrated HST comprises a very sharp and narrow core (FWHM
~4 pixels (F/96)), containing approximately 15-20% of the total light. This is surrounded by large,

highly structured halo, extending out to radii in excess of 120 pixels (although relatively faint at

this radius). (Note: It is estimated that 2-5% (depending on wavelength) of the total light is

scattered very thinly to radii greater than this, but we shall ignore this.) With this in mind, the

first point to emphasize is that any science data (i.e., the science target itself) which lies within

this distance of the edge of the format will have had some of its light scattered out of the format,

from where it cannot be recovered. This is what we refer to as "edge effect" and obviously, the

closer the target is to the edge, the larger the effect. The second effect related to edge proximity,

and already mentioned, is geometric correction. The halos of PSFs close to the frame edges may
retain residual distortions, tending to put halo structures out of alignment with equivalent structures

in the restoring PSF. Finally, nonlinearity and saturation may significantly effect your science data

and/or the restoring PSF. All three of these effects, if present (and they almost certainly are, to some
degree), will lead to residuals being left in your restored images.

The second major topic which users should be aware of is that of OTA "breathing" which

manifests itself as a pseudo-sinusoidal variation of the OTA focus. A plot of secondary mirror

despace (de-focus) against time shows that the effect has a period equal to the HST orbital period,

and an amplitude which varies between about 2-6 microns (see Fig. 4). Investigation of this

phenomena has indicated that the cause of breathing is primarily thermal (Bely 1993), resulting

from the presence of a temperature gradient between the interiors and surfaces of certain HST
structural members. As well as the very clear orbital dependency, it appears that there is a significant
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dependence on attitude of the spacecraft with respect both the Sun and the bright Earth. The effect

of this variation in the secondary mirror despace on the HST point spread function is that it produces

a radial movement in the structures in the halo. Also, diffraction rings close to the core of the PSF

tend to increase and decrease in radius.

From the point of view of image restoration, this could represent a serious constraint since it has

been shown (Baxter et al. 1993) that restoration of perfect data (noise-free, undistorted, linear, and

high S/N) with a PSF differing by only 4 microns in focus (otherwise identical) leaves significant

residuals in the restored image, and that these are only enhanced and amplified by continued

iteration. OTA breathing will continue to be a problem, even after the HST repair mission.

It would be expected that the successful deployment of COSTAR should remove the need for

extensive applications of image restoration techniques to FOC data, however there will, no doubt,

still be occasions when they will be used. COSTAR will greatly alter the appearance of the PSF,

most notably in that the halo should contract in both power and radius. Some 70-80% of the total

power of the PSF should reside within a radius of 10 pixels with the peak count increasing by a

factor of 4-5 relative to the pre-COSTAR PSF (see Fig. 5). The halo of the post-COSTAR PSF

should, for all practical purposes, disappear at a radius of about 30 pixels (074 for F/151), which

will also define the new perimeter width for edge effects. In fact, the 400-500% increase in the

point source peak count rates, combined with the non-linearity constraints outlined in §6, should

act to suppress the PSF halo even further, making it significantly visible only when relatively long

exposure times are employed.

Unfortunately, these improvements in the PSF do not come without cost. In particular,

COSTAR introduces a position dependence into the FOC point spread function which we have

not had to deal with previously (see Fig. 6). The FOC was designed to image the HST focal plane at

a distance of 6'56 from the optical axis (VI). At this distance the focal plane is tilted at an angle of

10° with respect to VI , and it is this plane which the FOC images. Unfortunately the focal surface

produced by COSTAR is itself tilted with respect to this plane and introduces field-dependent focus

variation and astigmatism (Jedrzejewski et al. 1993). Both of these effects increase linearly with

distance from the fully corrected field point. In Fig. 6 we show a simulation which compares the

post-COSTAR PSF as it should appear at the center of the photocathode (the fully corrected field

point), and at the bottom right corner of the 51 2x 1024 (zoomed) format (the worst case). It can be

seen that the effect of this field dependence is small, but is still likely to create problems for stellar

photometry and image restoration.

9. Signal-to-Noise Ratio

Considering the count rate limited nature of the FOC, it should be clear that achieving high, or even

good, signal-to-noise, while at the same time maintaining acceptable levels of linearity, is rather

difficult. Only the smaller formats will accept relatively high count rates and give good linearity

response. Unfortunately the data is then ruined by edge effects.

The most important reason why S/N should be taken into account when considering image

restoration is that it is the S/N in your data which determines the relative importance of having

an accurate and applicable PSF to do the restoration with. If your data consists of faint, diffuse,

extended source emission, with low S/N (peak counts of less than, say, 50 counts/pixel, there is no

particular need for high S/N PSFs. The results obtained from the data using, for example, a narrow

width Gaussian approximation for the PSF, would probably be as valid as if a perfect empirical FOC
PSF had been used— it is the data itself which provides the limitation on image restoration. In any

case, since the intrinsic image structure is usually not known a priori, in general it is the "nicest"

reconstruction which is subsequently used.
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Figure 6. Simulation of the post-COSTAR, field dependent focus variation and astig-

matism. On the left is the predicted PSF for the fully corrected field position (intended

to be the center of the photocathode), and on the right, the appearance of the PSF when

placed in the bottom right corner of the 512x1024 (zoomed) format, the worst case

situation.

10. Discussion

In this review I have tried to highlight some of the major factors which must be considered before

image restoration work is carried out on FOC data. Although it may seem rather pessimistic, it

is not intended to be so since the FOC does what it does very well. It would be fair to say that

apart from the limitations imposed by the spherical aberration, the F/96 camera has performed very

close to expectations. With the exception of pattern noise and some of the details about detector

blemishes, most of the topics presented here were fully expected as being characteristic of this type

of detector.

When it was discovered that the HST primary was suffering from spherical aberration, it became

clear that image restoration was going play an important part in HST science. Unfortunately, the

Faint Object Camera is not the most suitable instrument if image processing is intended or required.

This is not to say that image restoration cannot be done on FOC data, only that, as I hope I have

shown, great care is required in designing of proposals, preparation of data, and interpretation of

results. All too frequently, restorations of FOC data are presented in the literature without any

substantial discussions of uncertainties or error analysis. Much more emphasis is required in this

particular area.

The significance of most of the topics presented here will be obvious to those members of

the community who are familiar with the uses and limitations of the various image restoration

algorithms currently available. Many more less experienced users however, are enticed into using

these techniques because they are easily available (in ERAF for example); it is only later that the

questions begin. To these people I would say: "A little knowledge is dangerous!" Before using

any image restoration package, take the time to learn 1) What does it do?, 2) How does it do

it?, 3) What are its limitations and user parameters?, and of course, the old favorite, 4) When should

I stop? Inexperienced users should be skeptical. For example, expressions like "flux conserving"

in general mean that the sum of all the counts in an image before and after restoration will be the

same. It does not necessarily mean that photons have been put back to their point of origin, only

that they are still in there (somewhere).
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Although much work is presently being done on error analysis of restored data and errors

associated with stellar photometry on restored data, it should be remembered that, in general, image

restoration procedures are cosmetic. If they are used only to enhance the visual impact of data then

that is fine. However, if you then begin to make measurements, BEWARE.
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Abstract. HST has now observed SN 1987A six times over the past 3 years with the FOC
as part of the Supernova Intensive Study program. To help visualize the evolution of the

debris and circumstellar matter, a movie was created from these observations. The movie
provides a unique perspective on the history of SN 1987A covering the epoch 1278 - 2424
days since explosion.

The movie consists of 5 sequences each showing a particular aspect of SN 1987A. For each

sequence, 1 00 images (or one every 1 1 days) were created by interpolating between the observations,

using a cubic spline. The images were then shown in succession at a rate of 66 days/second using

the animation software in IDL.

The first sequence shows the raw FOC F/96 F501N [OIII] observations centered on the debris

and with a field of view of 2'/2. The fading of the circumstellar ring and debris is quite dramatic. The
entire ring fades surprisingly uniformly. The Richardson-Lucy algorithm was used to deconvolve

the F501N images to create the next sequence. A nearby bright star in each image was used as the

PSF Since we have low S/N nebular data we stopped the iterations at a relatively low number of 30.

The deconvolved images show convincingly that the structure of the ring is clumpy, that the clumps
are all about the same size, and that the debris is extended. The third sequence shows the step

by step iteration of the deconvolution. This is followed by a comparision between a raw and final

deconvolved image. This comparision provides confidence that the deconvolved images restore the

raw images without creating false structure.

The fourth and fifth sequences show the raw and deconvolved images of only the central debris

from the FOC F/96 F275W observations with a field of view of 0'.'56. The expansion of the debris

is striking. Both sequences show some asymmetry and possible extension in the N-S direction.

It will be interesting to compare the recent deconvolved images of SN 1987A with the COSTAR
improved images. This method of interpolating and animating provides a visual tool to aid in the

understanding of time sequenced data.
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Abstract. Supernova 1 987A in the Large Magellanic Cloud presents unprecedented oppor-

tunity to observe the evolution of a supernova at all wavelengths. While optical observations

with the HST Faint Object Camera have obtained resolutions of Of! I, we are limited in the

radio to the resolution obtainable with the Australia Telescope Compact Array (ATCA). At

the highest frequency of 8.8 GHz, this corresponds to a synthesized beam width of (X'9. At

this resolution the radio supernova is distinct from a point source, but few physical conclu-

sions can be drawn. We present here superresolved images from the ATCA with an effective

resolution of Of!5. These reveal a spherical shell-like structure with a radius of Of!6, and an

additional component of emission aligned with the circumstellar ring imaged with the FOC.
Care is required due to the delicate nature of the imaging problem, and we present evidence

that the overall image structure is plausible.

1. Introduction

The Australia Telescope is the premier imaging radio interferometer in the Southern hemisphere, and

the only such modern instrument positioned able to observe SN 1987A. The compact array consists

of six 22m antennas with a maximum baseline length of six kilometers. Additional Australian

antennas can be combined with the Australia Telescope Compact Array (ATCA) for Very Long

Baseline observations, but to date there are no detections of the supernova on baselines longer than

six km. The data used for these images were taken on 21 October 1992 and 4-5 January 1993.

The source was followed for a full 1 2 hour track each day, with a small amount of data rejected in

periods of poor atmospheric phase stability.

Deconvolution in radio interferometry is more usually used to remove the far out side lobes

caused by the incomplete sampling of the Fourier plane than for superresolution. While it has been

known for many years that modest degrees of superresolution can be successful on simple sources, it

is often the case that desired higher resolution can be obtained directly by using data from a different

instrument, different array configuration, or different observing frequency. SN 1 987A is unusual

in that it is a crucially important object where higher resolution radio imaging data is simply not

available. While the supernova will expand with time and thus provide a better look at the remnant

to come, the existing data are all that will ever be obtained of the supernova at the current epoch

of evolution. There is great incentive to extract as much spatial information as possible from the

existing data. Even a map of very low dynamic range will be extremely valuable astrophysically,

so long as the features interpreted are reliable.

2. Deconvolution

The dirty maps were made with uniform weighting. The slight increase in resolution from superuni-

form weighting was not deemed important enough to offset the increase in noise and vulnerability to

striping. The cell size Of.'l was selected as adequate to oversample the minimum effective resolution,

and most maps were of size 5122 . Iterative algorithms were started with a flat default, as more

250
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MEM Model (OCT) MEM Model (JAN)

Figure 2. Cross validation: Maximum entropy models for two independent epochs of

observation. While the noise level for each model appears appreciably higher than in the

models derived from the composite data set below, the essential features are common to

both of these model. The isolated pixels are artifacts of the hard support window used.

Richardson-Lucy This algorithm was comparable to Maximum Emptiness in that it produced a

physically reasonable model but at a lower resolution than MEM.

Non-Negative Least Squares Direct fit of pixel values to the data is subject to the singular nature

of the dirty beam. Constraining the pixel values to be non-negative did regularize the problem, but

still produced a very non-physical model.

Direct Algebraic Inversion Direct inversion of the deconvolution equation can also be regularized

with a Singular Value decomposition of the beam matrix. With heuristic selection of an appropriate

cutoff in singular value a model was obtained that resembled the MEM model, but the model still

contained negative flux at an unacceptably high level.

There are a number of consistency checks that can be performed on the observational data

itself:

• The result must not depend grossly on minor perturbations of incidental imaging parameters.

In particular, check the image as a function of cell size over reasonable ranges of oversampling.

The result must not depend too sharply (or oscillate!) in iteration, though many algorithms

have a long slow convergent tail. If the algorithm converges, the result must not depend too

strongly on the details of the support constraints.

• Cross validate different subsets of the data. In this case, different epochs were imaged

separately and compared. Also, random partitions of the composite data set were compared,

which smoothed the calibration differences between epochs.

• Sum the deconvolutions from different subsets of the data. If the sum is similar to the global

deconvolution of the combined data, algorithm non-linearity isn't the driving force of the

deconvolution and the solution is presumably more robust than otherwise.

• Understand the noise insofar as is possible. In this case, there is a problem with confusion as

diagnosed by rejecting short spacing visibilities and measuring the change in off source RMS
noise. Similarly, median filtering of the data did not degrade the RMS noise by the factor

expected if the noise was completely thermal. Fortunately, this confusion noise appeared to

be benign for our purposes.
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• Compare the results carefully with other images at other wavelengths. Here we present our

image superimposed on the [O III] image of Jakobsen et al. 1991

.

3. Modelling

Modelling is the only feasible way of assessing the reliability of the reconstructions. (Modelling

here refers to the model used to generate a simulated data set, not the implicit modelling performed

by the deconvolution algorithms.)

1

.

Select plausible model from from initial images.

2. Model-fit for parameters to the original data if possible.

3. Check that simulated observations can recover the significant features of the model reliably.

In this case we were concerned that the natural asymmetry in the PSF was driving the position

angle of the hot spots.

4. Run plausible models less the features in question though the imaging cycle— can the features

be produced spuriously?

5. Vary the parameters of the observation to significantly alter the PSF. Pathological instabilities

in the beam can drive all varieties of deconvolution to a similar error.

6. Use simulated observations to determine the effective resolution of the deconvolution sky

model. MEM has a bias towards smoothness, and will only make a peak as sharp as needed to

agree with the data within the noise. Consequently it has a (space variant) internal resolution in

the sky model. The original model was smoothed to maximize agreement with the MEM sky

model. In this case, internal resolutions about about (X'3 to C/4 were typical. Consequently

when the sky model is smoothed with a restoring beam of (X'4 the final image will have a

resolution of (y/5 to (y/55.

4. Results

Image Features

• We believe the central depression and the reality of the hotspots containing a significant

portion, possibly 50% of the total flux.

• The position angle of the hotspots agrees well with the FOC image, which is encouraging,

but it not particularly well constrained by the radio image.

• The suggestion of emission along the polar axis is not yet judged to be significant, as there is

suspicious correlation between the MEM sky model and the residual image.

• Our astrophysical interpretation of these images can be found in Staveley-Smith et al. (1993).

Algorithmic Results

• MEM is the best algorithm found for superresolution in this study. GSP, Richardson-Lucy,

and Maximum Emptiness are well behaved but suffer in robustness or resolution. CLEAN,
NNLS, and SVD algebraic inversion are not recommended for superresolution.

• When using MEM for superresolution, many more iterations are required than in normal

suppression of sidelobes. Conventional wisdom holds that 40 iterations is usually sufficient.

In this study, the image was still sharpening at 2000 iterations.
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Unx(JVPDCEL) - 0000303
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Hm(JY/PIXEL) » 0000301

Ujn(JY/PDCEL) - 0.0

Uax(JY/PIXEL) - 00000349
Uin(JY/PDCEL) =

Figure 5. Modelling of spurious features: Maximum entropy models demonstrating

that spurious peaks can be produced by the deconvolution process. The simulated data

is derived from an optically thin sphere of emission. All peaks along on the ridge are

spurious. The leftmost image is noise free, and the other two images differ only in the

particular realization of the simulated noise added. The measured flux in such spurious

peaks was less than 5% of the total - much less than the ~50% found in the actual

observations.

VM.T45R0 200 VM.T90 R0 200

U«x(JY/PIXEL) - 0000469

Mln(JY/PIXEL) -

M«x(JY/PKEL) - 00000524

Mln(JY/PIXEL) =

Hax(JY/PKEL) - 0000564

Mln(JY/PIXEL) =

Figure 6. Modelling of feature extraction: Verification of position angle reliability by

rotating the PSF while holding the model position angle fixed. The model used here,

an optically thin shell plus two point sources has only 16% of the flux in the point

sources — probably a conservative lower limit. Thermal noise has been added, so the

real reconstruction is probably at least as reliable as this. The dashed line connects the

two model point sources. The PSF is that of the original observation and rotated 45° and

90°. While not constrained closer than perhaps ±10°, the position angle of the spots is

clearly not driven by the PSF alone.
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• Effective resolution ofMEM is a strong function of the close-in sidelobes of the PSF. Current

work in progress has produced a PSF with sharper peak and better thermal noise than the

conventional uniformly weighted PSF, at the expense of close-in sidelobes. The effective

resolution in the MEM model gets worse, not better!
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Abstract. We describe two sets of Planetary Camera data for the same object. One was

observed in such a way that it is adequately sampled (according to the Nyquist theorem)

while the other was not adequately sampled. We discuss a variant of the "roll deconvolution"

technique and demonstrate the advantages of this observing strategy for minimizing detector

flaws. We show the results of attempting to restore each set of data using both the STSDAS
"Lucy" and Weir's "MEM" routines. Our conclusion: The sampling theorem applies to

WF/PC data, Surprise !?

1. Introduction

Pictor A is the seventh brightest radio galaxy in the sky at 408 MHz. It has a redshift, z=AA/Ao
~ 0.036, and a nuclear, optical spectrum which has broad, permitted emission lines (Hydrogen,

Helium), and relatively narrow optical forbidden emission lines (fOI], [SII], [OIII], [Nil], etc.)

superimposed on a featureless continuum. A ground-based image of the galaxy in the light of Ha
is shown in Fig. 1 for comparison with the HST images.

The goal of our observations was to study the physics of the energy generation in this object's

nucleus by measuring the size of the narrow-emission-line region (NLR), and searching for morpho-

logical features (such as a compact, double nucleus, or an optical jet related to the radio emission)

which would provide clues as to the energy's source. At the redshift of Pictor A, 1"~ 500/i
_1

pc

(where h is the scale of the Hubble constant). Current physical models predicted that the nucleus

of this object should be a point source and contain roughly 90% of the total flux observed from the

ground within 1" while the NLR should be ~0'.'l in size (roughly 2.5 PC pixels at 43 mas pixel
-1

,

the scale of the Planetary Camera).

2. The Choice of Camera and the Undersampling Problem

At wavelengths below 820nm, the Planetary Camera, with pixel size of 43 mas, undersamples the

theoretical resolution of the 2.4m HST aperture. In spite of this, we chose to observe Pictor A with

the PC because the ability of the CCD detector to accept high photon count rates would minimize

observing time and maximize signal to noise in the fainter, defuse regions adjacent to the nucleus.

The predicted detectable flux from the point source nucleus was ~100 photons pixel
-1

s
_1

while

the saturation limit on the FOC, which is not undersampled, is ~0.5 photons pixel
-1

s
-

'
, requiring

a factor of 200 attenuation to avoid saturation and thus a factor of 200 more observing time to obtain

the same S/N in the faint, diffuse regions, as the PC.

With the aberrated images, it was necessary to increase the observing time by a factor of 7

over the unaberrated exposures to compensate for the increased photon noise from the scattered

light in the diffuse regions surrounding the nucleus. This is roughly the same factor by which the

nuclear photon count rate is attenuated by the aberration and thus does not render the FOC any

more attractive for this project.
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Figure 1 . Ha image of Pictor A from the ground (073 resolution).

3. The Data

During Cycle 1, Pictor A was observed through the F517N and F547M filters on Sept. 12, 14, 15,

and Oct. 8, 1991. The F517N filter covers the emission lines from [OIII] AA 4958 and 5007 while

the F547M filter includes these emission lines at its blue end but also transmits roughly five times

more continuum emission than the F517N filter. Our objective was to separate out the NLR from

the continuum emission by subtracting the different filter images.

During Cycle 2, Pictor A was observed through the F648M and F718M filters on Sept. 20,

1992. The F718M filter covers the emission lines from Ha, A 6563, [Nil] AA 6527, 6548, 6583 and

[SII] AA 6717, 6731, while the F648M filter only includes the [01] emission lines at AA 6300, 6363

which appear in the ground-based nuclear spectrum at a factor of ~ 20 less intensity than the Ha
emission line. Again our objective was to separate out the Ha + [Nil] emission line regions from

the continuum emission.

These observations had the obvious drawback that the true, observed PSF for this object would

have an "effective filter" which was a function of the relative emission-line strengths at each point

and their redshifted wavelength. However, this is a secondary effect compared with the aberration

problem.

4. "Dithering" and "Rolling"

4.1. Dithering

To construct a properly sampled image for our Cycle 1 data (The HST primary mirror has a

diffraction-limited resolution of 57.7 mas at 550 nm and 37.8 mas at 720nm) we chose to "dither",

i.e., observe the object at four slightly shifted positions (offset in Ax and Ay by different pointing

combinations of 0.022 mas as shown in Fig. 2.

4.2. Rolling

In fact, because of scheduling constraints, the observations were pointed in the way shown in Fig. 2b

with (x,y) offsets of several pixels from the initial pointing position and differences in the spacecraft

roll angle ranging between 1?1 and 24?2 (Fig. 2b).

A rotated image is the same as a non-rotated image convolved with a PSF of opposite rotation.

That is, if I{ is an image at roll angle i and e, is its exposure time, then:

(Ji * P)90 + (h * P)w + (h * P)90 + (h * P)w = ho * (J2 P-i e '> (1)

where I90 and P are the image and PSF at 90°, the subscript 90 outside the parentheses means the

image has been rotated back to 90°, and P_ t is the PSF at 90° rotated through the negative roll
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Figure 2. (a) Schematic composite of 4 "dithered" images, (b) Actual shift and orien-

tation of the 4 Cycle 1 images of Pictor A.

angle, — i. Thus,

PT = (£P.i-ei) (2)

becomes a new, composite PSF for the composite image which is the sum of the individual images

shifted to a common center and rotated back to a common angle.

Note that since the rotation operation can be expressed in terms of two orthogonal functions

(sine and cosine), as long as two conditions hold: a) the undersampling is less than a factor of 2,

and b) for each frame, if Ap is the pixel size, and both the offsets from the common center, Ax and

Ay, include a pixel fraction, /p , such that

0.25Ap < fp < 0.5Ap
, (3)

then all of the pixels in the registered images will have sufficient offset spacings to sample a different

part of the image. Both these conditions hold for the Cycle 1 data discussed here.

4.3. Advantages of Rolling

The technique described above was applied to our Cycle 1 data which was resampled on a double

grid, shifted to a common center, rotated using a sine interpolation, and then co-added. The

composite PSF was generated in the same way using a set of observed PC6 PSFs (at 502nm). These

were slightly shifted from the PC6 position of the galaxy nucleus but, again, this (along with the

slight mis-match in effective wavelength of the PSFs) is a secondary effect.

One immediate advantage of this serendipitously employed technique is shown in Fig. 3 where

the patterns of "hot pixels" in the co-added frames have been emphasized. Not only is it easy

to spot these artifacts and thus remove them, it is also clear that over a period of 3 to 4 weeks

(mid-September to October 8, 1991) some of them have decayed in intensity. This suggests that at

least some of the "hot pixels" are transient, possibly induced by energetic cosmic ray events.

Another advantage of the technique (which is more intuitive) is that the composite PSF, Pt,

is much more radially symmetric, with the "tendrils" deemphasized (and thus, their propensity to

induce artificial, radially extensive features minimized).

5. Cycle 1 Results

The results of restorations using both the STSDAS VI .3 "Lucy" algorithm and the "MEM" interface

by N. Weir (1991a, b) is shown in Fig. 4. Both routines give approximately the same normalized

peak flux for the nucleus (1 1,800 for "Lucy" and 13,500 for "MEM"). Both show what appears

to be real structure outside the nucleus. The MEM reconstruction gives fluxes for the features

labeled 1, 2, and 3 as compared to the nuclear flux, /„, of (0.60 ± 0.05)/„, (0.50 ± 0.08)/„, and

(0.35 ± 0.04)/n , respectively. In particular, the feature labeled 2 appears to be identified with a

very long, narrow, radio emission feature which was identified after the Cycle 1 data were reduced.
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Figure 3. One quadrant of the four Cycle 1 F517N images after rotation, shifting, and

co-adding. Note the decay of some of the brighter "hot pixels" over a one month period

(marked by the arrows).

6. Cycle 2 Results

The Cycle 2 exposures, scheduled and taken before the Cycle 1 data were fully reduced, were

designed to obtain maximum signal-to-noise, without "dithering" in the allotted spacecraft time.

The images were all recorded on the same place on the PC 6 chip (to within 0.05Ap) and with

the same roll angle. These were also double binned and co-added, the restoration results for the

F718M filter (which should show a similar extended structure as the F517N images above), using

an observed, composite PSF at the correct wavelength (F718M), are shown in Fig. 5. Fig. 5a is

from the STSDAS VI.3 "Lucy" algorithm (converged to a x
2 of 1.0) and Fig. 5b from the "MEM"

interface by Weir (1991a, b).

It is clear that the "Lucy" reconstruction (which converged very rapidly), shows no extended

structure beyond that expected from the distortion of the aberrated PSF itself. The MEM restoration

does show a hint of the type ofextended structure seen in Figs. 4a and b (particularly a small feature

corresponding to that marked "2" in 4b), but on the whole it also is disappointing. The most logical

cause for this "failure" is simply the fact that the data for Cycle 2 are undersampled.

7. Conclusions

The technique for "roll deconvolution" outlined here is very promising for future work with the

HST even after the images have been "fixed" by the first servicing mission. It appears to provide

good resolution down to the theoretical limit of the telescope aperture.

Its better to dither than hang tight. But your best bet is to roll with the punches.
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Figure 4. (a) The Cycle 1, composite F517N image restored using the STSDAS "Lucy"

algorithm and a composite, observed PSF. (b) The same image restored using N. Weir's

"MEM" routine.
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Abstract. WFPC images offer a wide field of view but significantly undersample the PSF.

A strategy to recover some of the resolution lost by undersampling is to split the exposure

time into several images, which are shifted by a fraction of the pixel size. These images can

subsequently be combined with a modified Richard-Lucy algorithm. One of the challenges

of this approach is the treatment of cosmic ray hits. A procedure to simultaneously co-

add images with different PSFs in the presence of CR hits is presented here. An IRAF
implementation (Freudling, 1993) was tested on both simulations and real WFPC data.

These tests show the viability of the proposed strategy.

1. Richardson-Lucy Co-Addition

Hook and Lucy (1992) have described a method for co-adding images with different PSFs, which

is a straight forward generalization of the Richardson-Lucy image restoration method (Richardson

1972, Lucy 1974). In their scheme, a multiplicative correction factor t(x, y) to the current estimate

for the image ok (x, y) is computed in iteration k as

«''*)= WTY (1)

t(x ,y) = J2 Wntn (
x >y}*Psfn(x 'y) (

2
)

n

where n labels the input images in (x,y), in{x,y) is the current estimate of the image Ok(x,y)

convolved with the PSF for image in (x, y), and wn is the weight of the input image.

2. Treatment of CR Hits

Once the estimate Ok(x, y) is a good representation of the observed images, CR hits can easily be

identified on the correction factor tn before the convolution and Eq. (1) can be modified to

(0 ifCRhit,

tn{x,y)= I .

(xy) (3)
.?)

'y
( otherwise.

v. ln(x,y)

The effect will be that there are "holes" in the final correction factor image, which are of the shape

of negative PSFs for single pixel events. Those holes can overlap due to close CR hits either on the

same image or on different images. The holes in the correction factor from each image hn (x, y)

can easily be modeled by creating masks at the CR removal stage which are unity everywhere but

at the position of the CR hit, where they are zero. From those masks, the holes are computed

hn (x,y) = wn msiskn opsfn (x,y) . (4)
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Those holes can be filled by locally increasing the weight of the images not affected by the CR
hit. If the PSF is well sampled, not all information about the affected pixels is lost because the

information contents in neighboring pixels is not independent. This information can also contribute

to fill the flux holes. In general, Eq. (2) can be changed to

*(*, V) = ^2 «>n(i, y) [tn (x, y) * psfn (z, y)] (5)
n

where the weights wn (x, y) now depend on the position in the image and are computed from

h ( j* ii )

wn(x,y) = wn + "
' z^2{wm -hm (x,y)). (6)

2^,m "m^j y) m

In the special case that there are no CR events on any input image, hm (x, y) equals wm everywhere

and the method reduces to the original co-addition scheme.

The only problem left is to find an initial model of the image good enough to allow easy

identification of the CR hits. If more than two input images are available, the original co-addition

without CR removal but using the scaled medium rather then the sum of the individual correction

factors can be used. If only two images are available, the minimum of the two correction factors

should suffice. In either of those cases, the full CR treatment as described above only when the

model is a good presentation of the observed images.

3. Summary of CR Treatment

The correction factor computed from each image is set to zero at the positions of CR hits. The

contribution to the correction factor which is then missing due to those zeros, J2m (
wm -hm (x,y)),

is filled with contributions from all images, where each image contributes proportional to its local

weight. If for example the PSF is undersampled, a hole h\(x, y) in image 1 will closely resemble

an otherwise flat image that is zero at the affected pixels. In that case, the missing contribution,

w\ - h\(x, y), will be filled only by the other images which are not affected. On the other hand, for

a well sampled PSF, only little information is locally lost, but many pixels are affected. Therefore,

the weight of the not affected images is only slightly increased relative to the affected images, but

over a large number of pixels. In other words, CR hits do not only destroy information about the

flux at the position of the hit, but also some information for neighboring pixels within the PSFs.

This is accurately taken care of by this procedure.

4. Tests: Simulations and WFPC Data

The above procedure has been built into IRAF code originally written by R. Hook and was tested

both on simulated images (Caulet & Freudling 1993) and on actual WFPC images (Koo 1993). This

is shown in Figs. 1 and 2. Additional WFPC observations with sub-pixel shifts between exposures

are planned by R. Fosbury and will be used to further test this procedure.

5. Conclusions

Sub-pixel shifting of WFPC image is a promising strategy to recover resolution lost by undersam-

pling. The costs are negligible since multiple exposures of the same field are used in most cases

anyway to allow removal of CR hits.

The software discussed in this paper is available from the author.

Acknowledgments. I thank Bob Fosbury for suggesting this project, David Koo for providing

the WFPC images to test the algorithm, Richard Hook for his co-adding code and advice, and Leon

Lucy for valuable discussions.
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Figure 1. Simulations: SimulatedWFPC observations of a cluster of galaxies. Panels a

and b show the original observations shifted by 0.5 pixels. Panel c shows the co-addition

with CR removal. Panel d shows the difference between panel c and a co-addition of the

same images without CR hits.
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Figure 2. WFPC data: WFPC observations of a galaxy at high redshift. The two
observations are shifted by about 0.5 pixels. Panels a and b show the original calibrated
images. Panel c and d show co-additions of the two images without and with CR removal.
Note the effect of the CR hits on the background if no CR treatment is used.
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Abstract. The small aperture of the GHRS projects to just one detector diode. In order to

achieve adequate sampling, the data are sub-stepped in half or quarter diode steps. Using
the Richardson-Lucy algorithm, optimal combination of these sub-stepped spectra can be
achieved in order to regain resolution. The technique, which can be generally applied to

spectra which are undersampled by the detector, is described and some examples are shown.

1. Background

The diodes of both GHRS detectors are spaced on 50 /zm centers. The limiting resolution of the

instrument with the small science aperture (0725 x0725, 0722 x 0722 post-COSTAR) is 55.5±6.5 p,m

(FWHM), and slightly larger for the echelle gratings (GHRS SV Report, §7.1). The spectrum

projected on the 500 diodes is therefore not well sampled, with only one diode per resolution

element. In order to ensure adequate sampling, the array can be electronically shifted by one half

or one quarter of a diode width. The resulting spectra are called half-stepped or quarter-stepped

respectively, and can be reconstituted to give two or four samples per resolution element, thus

ensuring proper sampling. In imaging such a strategy is called dithering. This procedure, which
can also be accomplished together with sampling of the adjacent background, is fast and efficient

in terms of observing time.

Depending on the sub-stepping pattern chosen, the PODPS pipeline calibration procedure

calhrs delivers calibrated spectra where the substep bins have been "merged". This is a simple

reconstitution of the data; thus for quarter sub-stepped spectra the merged spectrum consists of

|
Dlsl

|
Dls2

|
Dls3

|
Dls4

|
D2sl

|
D2s2

|
D2s3

|
D2s4

|
D3sl

|
D3s2

|
...

,

where Dn refers to diode n and sn to substep n. Thus D2s3 is the second diode from the

third sub-stepped spectrum. Experiments show that this method of combination is preferable to

those which involve some assumptions about the behavior of the data within the "sub-channels" of

a diode, such as linear or spline interpolation onto a finer grid. In addition this merging procedure

is fully reversible, allowing the individual spectra at each substep to be reconstituted. However the

resulting spectrum still suffers from undersampling.

2. Optimal Combination

The Richardson-Lucy restoration technique can be used to optimally combine sub-stepped GHRS
data to produce a spectrum with two or four times finer pixels, with consequent increase in spectral

resolution. The technique is a modification of the restoration with increased sampling (Lucy &
Baade 1989). The equation of image formation for a pixelated spectrum can be written

<Hx) =
J

tl>(£)n(x\y)dy
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where

H(x\0 = JQ(x\y)P(y\Ody

relates the object tp(£) to the pixelated image <t>{x). II(a:|£) acts as a modified Line Spread Function

(LSF) which gives the pixelated image of a point source. Q(x\y) is the pixel function, viz., 1/Ax
for y within a pixel of width Ax containing x, and zero elsewhere. The estimate of the desired

solution tp is produced on a fine grid with the integration performed for each sub-stepped spectrum

(which can be weighted other than equally if the sub-stepped spectra have different exposure times).

The LSF II(a:|£) needs to be evaluated on the fine grid. This might require fitting of the LSF by

analytical means in order to form the LSF on the sub-diode grid.

In restoration with non-linear algorithms such as the Richardson-Lucy method, overfitting of

the data occurs as the maximum likelihood solution is approached. The result shows a fit to noise

features and is clearly undesirable. By incorporating a regularization procedure into the iterative

restoration, the approach to the maximum likelihood solution can be controlled by penalizing

departures from smoothness. A wide choice of regularization functions is possible but two are:

S = ~ X) W°9e4>

which is entropy, or

S = -'Etlog.Wx)

where x is some default image, x may De derived from ip such as by convolution with a Gaussian or

other line spread function. The latter regularization term gives more flexibility in the extent of the

smoothing and can be matched to the extent of spectral lines. Moreover this regularization greatly

diminishes the bias resulting from regularization with the classical form of entropy. A multiplicative

factor, a, controls the level of regularization and since this is not known a priori some experiment

is required to determine the best value.

A Kolmogorov-Smirnov test can be applied after each complete restoration with a given

regularization constant (e.g., Skilling, Strong, and Bennett 1979). The Kolmogorov-Smirnov test

determines the greatest distance between two cumulative distributions; the distance is called the

Kolmogorov-Smirnov statistic. This statistic can be expressed in terms of the significance level

of an observed value of the statistic, giving the probability for the null hypothesis that both data

sets are drawn from the same distribution (see Press et al. 1987, p. 472ff for details). Values of

the Kolmogorov-Smirnov probability for the null hypothesis of ~0.5 provide a basis on which to

choose the value of a such that the fit is neither bad nor too close to the input data.

3. Numerical Experiments

Fig. 1 shows the results of a simulation of sub-stepping and optimal combination of the sub-stepped

spectra. A model spectrum with fine channels consisting of an absorption line was generated, then

each set of four channels was averaged and random noise added. This set of four sub-stepped

spectra were then subjected to optimal combination and the fine channel result was compared to

the input model. Fig. 1 shows the four sub-stepped spectra, the "merged" result (as produced by

calhrs), and the optimally combined spectrum without regularization (i.e., q=0). Over-fitting to the

noise is apparent in this combined spectrum.

Fig. 2 shows the comparison of optimally combined quarter sub-stepped GHRS data (dotted

line) against the observed data, i.e., as presented by the merged spectrum from calhrs (histogram).

The data is of the chemically peculiar star x Lupi and was taken with the G160M grating and the

small aperture; only a part of the 2000 channel spectrum is illustrated. The LSF on the fine grid was

taken to be a Gaussian whose width was that of the GHRS instrumental resolution (assumed to be

1.0 diodes FWHM). Here 100 iterations were performed without regularization. The code with the

— J2 V,'°6fe(V'/x) regularization was applied to the same data and Fig. 3 shows the result. Here the
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Figure 1 . A simulation of sub-stepped spectra and their optimal combination with

the Richardson-Lucy method. Seven spectra are shown: the noiseless model profile

(labelled "Model") from which were generated four quarter-stepped spectra with added

random noise (labelled "Substep"); the spectrum labelled "Merge" is produced by simply

reconstituting the four substepped spectra as described in the text; finally the optimally

combined spectrum is labelled "Comb".
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Figure 2. The spectrum formed by merging the GHRS small aperture, quarter sub-

stepped, spectra of the chemically peculiar star \ Lupi is shown as a bold line. The

data set was z0g7010gx. This is the output which calhrs delivers. The Richardson-Lucy

combination of the data (100 iterations) is shown by a dotted line. No regularization has

been applied to the spectra.
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Figure 3. As in Fig. 2 except that a regularization has been applied to the Richardson-

Lucy combination of the data with regularization constant a = 0.3.
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1

regularization constant, a, was set at 0.3 after a series of runs varying the value of a. The effect of the
regularization in controlling the fit to the noise in the combined spectrum is evident. GHRS fluxed
data must be converted to equivalent counts in order to perform the necessary statistical tests. After
combination the data can be renormalized to flux. This operation is faciliated by multiplication by a
numerical constant, which could be determined from the statistical errors delivered by the PODPS
pipeline.

4. Developments

This method of combination can be generalized to spectra with non-constant steps if the separation

between the steps is known, or can be computed from cross-correlation. Thus, for ground-based
spectra, strategies for obtaining data with small shifts in wavelength and position on the detector

are common in assisting with reduction of pixel-to-pixel noise. To this data the Richardson-Lucy
method could be applied to combine the seperate spectra and improve the spectral resolution.

The resolution can thus be improved beyond that imposed by the diode width, provided that the

achievable instrumental resolution is less than one diode, which is usually the case in modern
spectrographs with current CCD's when the slit is narrowed. Thus the pixel size of the CCD need

not be seen as a limiting factor in design of spectrographs. The absolute size of the CCD limits

the simultaneous wavelength coverage, whilst pixel size can be effectively reduced by sub-stepping

strategies and optimal combination of the data.
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Abstract. We discuss the application of the Pixon Based Image Restoration Method on
spectroscopic HST data and compare the results with those obtained from the Richardson-

Lucy and Jansson algorithms. In order to better evaluate the performance of the various

algorithms we have also used artificial data.

1. Introduction

The HST spherical aberration is responsible for the large point spread function (PSF) already demon-

strated in various papers in this volume. Because of the extended PSF, the two HST spectrographs

(GHRS and FOS) suffered a significant throughput loss. As a result, the use of the larger apertures

was often necessary, with obviously degraded spectral resolution. Our particular emphasis in this

work is the restoration of absorption lines blurred by the large line spread function (LSF). An added

complication to the problem is the fact that the LSF is very poorly known. The LSFs that are

available to us are derived from the PSFs, which in turn are either deduced from observations (e.g.,

from FOC), or from models (e.g., TinyTIM). The real LSF of course changes with time and focus

position, so the LSFs used for our analysis are only approximate.

2. The Methods

We have applied the Pixon Based Image Restoration Method (Puetter, this volume; Pifia & Puetter

1993, 1992; Puetter & Pifia 1993) to real and simulated HST Spectra. Both the Richardson-Lucy

(Richardson 1 972, Lucy 1 974) and Jansson ( 1 984) algorithms have already been used extensively for

spectroscopic applications (Gilliland 1990, Morris et al. 1991). All three methods are nonlinear. An
undesirable characteristic of most restoration techniques is the noise amplification, over-resolution

and ringing. In spectra, these problems are manifested as narrow features. Ringing is especially bad

in the vicinity of emission lines, where the slope of the continuum changes significantly. Since our

emphasis is on the restoration of absorption lines, we have worked only with normalized spectra.

This approach can be useful when the continuum does not change rapidly over the length of the LSF.

The advantage of this technique is that we can impose upper and lower bounds, namely positivity

and continuum. We can therefore restrict the algorithm from unnecessarily amplifying the noise in

the spectrum. Our selection of the proper continuum will be a factor of error in our analysis and

caution has to be used to minimize its effects. In all cases, the inclusion of the two bounds improves

the restored spectrum quality significantly, compared to the unconstrained implementation.

3. Results

We demonstrate the method for a variety of simulated cases similar to those encountered in existing

spectra. Cases of interest include weak absorption lines located in the vicinity of stronger lines,
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continuum used for the normalization, the top right the normalized spectrum, and the rest of the
panels each method respectively. The residuals are plotted above the restored spectra.

A high velocity Mg II component associated with the Magellanic Stream was identified in the
original spectrum, towards PKS 2251+11, by Bahcall et al. (1993) and Savage et al. (1993). The
feature is clearly seen in the restored spectra. The 3C273 results from Fig. 4 can be compared with
the higher resolution GHRS observations of 3C273 (Brandt et al. 1993, Savage et al. 1993), obtained
with the G270M grating, through the Large Science Aperture (LSA). The Milky Way interstellar

lines of Mn II, Fe II, Mg II and Mg I are clearly identified.

Fig. 5 shows the restored spectrum of 3C286 (Cohen et al. 1993). The object was observed
with the low resolution grating G160L of the FOS and with the large 4'/3 aperture. The Pixon based
restoration has eliminated most of the spurious features will it has restored quite well the real lines.

The two most prominent lines at the left of the damped Lyman a at z = 0.692 are the Lyman /? and

Lyman 7 lines at the same z.

4. Summary

The Pixon Based Image Restoration Method provides us with a new tool for spectral restoration.

This work, still in progress, indicates that the Pixon algorithm can recreate the original spectral

features with higher accuracy compared with the Richardson-Lucy and Jansson methods. At the

same time, it seems to be more effective in suppressing spurious features.
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Abstract. This work reports results on intercomparison of image restoration algorithms,
when used in the specific context of stellar fields imaged by the HST WFPC. Properties as

fidelity to the original image and photometric linearity, as well as computation performance,
were evaluated.

1. Introduction

In the Image Restoration Project carried out at STScI, the restoration quality and scientific usefulness

of several restoration algorithms were evaluated in a comparative way by numerical experiments in

which a "perfect" (or "truth") image was artificially degraded, next restored by a given technique,

and finally the output was compared with the original. Previous work on this line in the astronomical

literature (e.g. Cohen 1991, Thomson et al. 1992) mostly restricted their efforts to the MEMSYS
implementation of the Maximum Entropy method. With the availability of other image restoration

techniques in public domain format (as in the Space Telescope Science Data Analysis System,

STSDAS), as well as a suite of simulated data sets available on the STScI Electronic Information

Service (STEIS), more systematic and complete studies were possible.

2. Methodology

This study focussed on pure stellar images, since they are probably the kind of object most often

imaged by HST. Also, they present the most difficult challenge to any restoration algorithm, since

the intensity gradient and dynamic range in such an image are very large when compared to usual

"terrestrial" scenes, to which restoration algorithms are usually designed.

The main data set used in this study is a simulated WFPC I observation of a "star cluster",

similar to the ones available in STEIS. The simulated image was built on a 8 x 8 oversampled data

grid, later block-averaged to the actual instrument resolution. The PSF was computed by TinyTIM
(Krist 1991) at A = 5500 A, at center of CCD #1. Finally, the appropriate noise model for WF
CCDs, including Poisson and readout (Gaussian) components, was added to the image.

Algorithms studied include current STSDAS implementations of the Richardson-Lucy iteration

(Richardson 1972, Lucy 1974), Maximum Entropy (Wu 1993), the Wiener filter (Andrews & Hunt

1977), ct-CLEAN (Keel 1991) and a standard Iterative Least Squares algorithm (e.g. Katsaggelos

1991). Also, an independent implementation of the Iterative/Recursive least squares algorithm

(Coggins et al. 1993, Fullton et al. 1993) was tested.

Criteria to evaluate restoration quality include both generic and astronomical-specific ones.

An often used goodness-of-fit criterion in image restoration work is a measure of the "distance"

between the restored image f(i,j) and the "truth" image f(i,j) (the one without any degradation)

im EijW,j')-/(«,j'))
2

772 = 10 log ^—z
E,-,i(/(i,i)-/(i,i))

2
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where g(i,j) is the observation at pixel i,j. The measure is expressed in dB, and increases as long
as the restored image becomes "closer" to the truth image. We also used an absolute-value distance

Eyl/(*,i) -/(«', i)l

which correlates better than rj2 with visual quality evaluation. Both 771 and 772 are independent of
image content.

Astronomical criteria include photometric linearity, precision, and sky background statistics.

Photometric evaluation was performed on star images using standard aperture techniques.

Algorithm sensitivity to PSF errors was evaluated by restoring the test image using both the

original PSF, as well as another TinyTIM PSF, computed for a bluer star and situated ~ 200 pixels

away from the the CCD center.

3. Results

Table 1 summarizes some distance measure results. These measures were computed both for the

full image and for a 50 pixel sq. region centered on the star cluster, dominated by crowded star

images. Thus, they are sensitive to different image properties. The full image measures asses the

global goodness-of-fit, but in the particular image under study they are strongly sensitive to the sky

background fit. The crowded region measures, on the other hand, are more sensitive to how well

star images were fitted. The highest peak value is a measure on how close the brightest star's peak

approached the truth value, and so it is also a goodness-of-fit measure for star images.

Algorithms are arranged in Table 1 in increasing order of execution speed. All algorithms

were iterated up to the point where at least one of 771 or 772 just started to decrease. Most often

this happened for the full image's 771 , which is sensitive to spurious noise peaks introduced in the

sky background. The exception is the Iterative/Recursive algorithm, which was run arbitrarily for 5

levels of recursion and 3 iterations at each level, a-CLEAN was iterated to the 2.6a level.

Visual inspection alone showed that the three algorithms: R-L, MEMO, and JLS+V are capable

of very similar results. This is confirmed by the similar r}\ values for them. The solution obtained

by the rLS+"P algorithm, being a least-squares one, had the highest 772, as expected. R-L produced

a somewhat better solution than MEMO, but at a considerable speed penalty. <7-CLEAN produced

not so good 7/i results as the methods above, mostly because of the large PSF residuals left on the

CLEAN+residual map. The RILS results show that inclusion of a spatially-adaptive smoothness

constraint in the least-squares iteration actually decreased restoration quality.

Results also suggest that the ILS+P iteration is the most robust against PSF mismatches,

followed by R-L and MEMO, which showed very similar degradations. a-CLEAN was the most

sensitive to PSF errors.

Figure 1 depict typical results from photometry with a small aperture. Results were also

obtained for a subset of isolated (non-crowded) star images, using larger apertures up to
<f>
= 8

pixel. This large-aperture data show that systematic zero-point shifts are a common feature of

restored stellar images. Only the R-L iteration showed negligible zero-point shifts; all other

algorithms showed ~ 0.05 mag shifts to either side of the zero-residual locus.

Restoration with PSF error led to an increased scatter and more confusion. Besides, large-

aperture measurements showed measurable (~ -0.02) slopes in R-L and MEMO residuals. ILS+T3

snowed only a slight increase in zero-point shift.

Comparison of results in Figure 1 with the ones in Figure 2 points to the existence of a trade-off

between a particular algorithm's linearity, and its ability to control high-frequency noise buildup.

Extreme cases are the Iterative Inverse and IR algorithms, which are very linear but do not control

sky background noise, and RILS+P, which produces very smooth backgrounds but at the cost of

losing ~ 0.5 mag of light at the faint levels in this particular test image. R-L, MEMO and TLS+V
seem all to offer a reasonable compromise among these extremes.
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Table 1. Goodness-of-fit measures. Meaning of symbols is as follows: R-L:
Richardson-Lucy; MEMO: Maximum Entropy; ILS: Iterative Least Squares (no reg-

ularization); RTLS: ILS with Miller regularization and spatial adaptivity; IR: Itera-

tive/Recursive; V: projection (positivity).

PSF
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Abstract. We have evaluated various image restoration techniques (both linear and non-

linear) applied to a simulated crowded star field observed with the HST Planetary Camera
(PC). Evaluation criteria included star detection, astrometry, and photometry. Numerous

restoration artifacts made star detection difficult for the linear restorations. The non-linear

methods give much better star detection and slightly better astrometry results. Aperture

photometry measurements in images restored with the non-linear restoration methods show

significant non-linearities. The flux of fainter stars are systematically underestimated. This

problem is not seen in the images restored with the linear methods. However, we see

significantly increased RMS scatter in the photometry results for images restored with a

linear method. We found that a hybrid approach which combines the result of a non-linear

method with a linear method will give linear photometry results with lower RMS scatter.

1. Simulated Test Data

Fig. 1 is an 800x800 simulated PC image used to test the restoration algorithms. It contains 2500

stars with a magnitude distribution shown in Fig. 2. The image was constructed using a Tiny TIM
PSF at a wavelength of 4000 A and a pixel size of 1/5 the size of the PC pixels. This sub-sampled

PSF allows us to simulate stars with positions that are not required to be at the center of a pixel. We
added both Poisson and read-out noise to the image to simulate the noise statistics expected when
two PC images with 25 sec exposures (filter F439W) are co-added.

2. Restoration Methods Evaluated

The following restoration methods were evaluated. The central 200x200 region of the restored

images are shown in Fig. 3 for selected results.

286



Star Detection, Astrometry, and Photometry 287

Figure 1 . Simulated PC observation of a cluster containing 2500 stars.
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Figure 3. Selected Restorations of the central 200x200 region of Fig. 1. (A) Raw
image. (B) Minimum norm, 7 = 0.01. (C) Minimum norm, 7 = 0.001. (D) Five iteration

minimized difference from the previous iteration, 7 = 0.001. (E) 1000 iteration R-L.

(F) 1000 iteration R-L/Snyder. (G) 400 iteration MEM. (H) Hybrid method, 7 = 0.01.

(I) Hybrid method, 7 = 0.001.
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1

.

Minimum norm. This technique is a linear constrained least squares method which minimizes
the norm of the solution. It is solved using the method of Lagrange multipliers (Andrews and
Hunt 1977). A reciprocal Lagrangian multiplier, 7, can be adjusted to control the smoothness
of the solution or to satisfy chi-squared test for the solution. Results are evaluated with

7 =0.1, 0.01, and 0.001.

2. Five iteration minimized difference from the previous iteration. This is a constrained least-

squares method which minimizes the norm of the difference of the solution from a trial

solution (Twomey 1963). A reciprocal Lagrangian multiplier, 7, controls the amount of

constraint. In our solution we have used the raw blurred image as the initial trial solution

and performed 5 iterations. After each iteration, a new trial solution was set to the results of

the previous iteration with a positivity constraint applied. Results are evaluated with 7 = 0.1

,

0.01, and 0.001.

3. Richardson-Lucy method. This technique is the Richardson-Lucy (R-L) maximum likelihood

solution for Poisson statistics (Richardson 1972, Lucy 1974). Results were evaluated after

100, 300 and 1000 iterations.

4. Richardson-Lucy/Snyder. This method is the R-L method with the Snyder modification for

non-Poisson read-out noise (Snyder 1990; Snyder, Hammoud, & White 1993). Results were

evaluated after 100, 300 and 1000 iterations.

5. Maximum entropy method. This is the Image Reduction and Analysis Facility (IRAF) maxi-

mum entropy method (MEM) developed by Wu (1994). The results were evaluated after 100,

200 and 400 iterations.

6. Hybrid method. This approach minimizes the norm of difference of the restored image from a

trial solution (Twomey 1963). The trial solution was selected as the results of 1000 iterations

of the R-L/Snyder method. Results are evaluated with the reciprocal Lagrangian multiplier

7=0.1,0.01 and 0.001.

3. Star Detection

The first criterion used to evaluate the restoration techniques is the ability to detect stars in the

restored image without "detecting" noise and restoration artifacts. We used a simple detection

algorithm which finds the local maximum in the restored image above a user-supplied threshold.

Fig. 4 shows how the number of stars detected (solid line) increases as the threshold decreases.

At the same time, the number of false detections (dashed line) also increases. As the threshold is

decreased below 100, more than half of the additional detections are spurious.

Table 1 gives the results for various percentages of false detections. The first two methods

(both linear) show very poor results. Numerous artifacts around bright stars make star detection

very difficult in the linear restorations. The next three methods (all non-linear) give significantly

better results. The R-L/Snyder method gives slightly better results than the R-L and MEM methods.

Some improvement in star detection is seen in the hybrid method when 7 is large (0.1). However,

as 7 decreases, artifacts begin to show up in the solution.

4. Astrometry

The second criterion used to evaluate the restoration methods is the accuracy in measuring stellar

positions in the restored image. Accurate positions of the stars are important for aperture photometry

in crowded star fields where small apertures must be used. The RMS errors (in pixels) in position

measurements are given in Table 2 for the various restoration methods. Results are shown for

different combinations of stellar magnitude ranges and separation of the stars from their nearest
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100 200 300 400 500
Detection Threshold

Figure 4. Number of stars detected in the 1 000 iteration R-L/Snyder restoration versus

detection threshold. Solid line shows the actual stars detected; dashed line shows false

detections.

Table 1 . Number of stars detected for various rates of false detections.

False Detections (%): 1.0 2.0 5.0 10.0

Minimum Norm
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neighbor. Positions were measured using a 3 x 3 centroid centered on the brightest pixel in the star.

Centroids using areas larger than 3x3 pixels gave slightly better results for well separated stars but
gave significantly worse results in crowded regions.

Table 2. Astrometry errors in 3 x 3 centroid, RMS errors (pixels).

Magnitude:
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Figure 5 . Astrometry errors for well separated bright stars in the R-L/Snyder restoration

plotted versus the distance of the star from the center of a pixel. Diamonds give true star

positions. Vectors are drawn to the measured positions.

Table 3 shows the linearity of the results for each of the restoration methods for various ranges

of magnitude and distance of the stars to their nearest neighbor. All methods overestimate the flux

of stars having neighbors within 3 pixels. The measured flux values are significantly contaminated

by the neighboring stars. For stars with separations greater than 3 pixels, all of the non-linear

restoration methods show a non-linear behavior and give smaller median ratios for the fainter stars.

Table 4 shows the RMS scatter about the median ratios in Table 3. None of the methods

give very good results for fainter stars with neighbors closer than 3 pixels. The MEM solution has

slightly smaller RMS values than the other non-linear methods, particularly for the brighter stars

with a neighbor 3 to 6 pixels away. The hybrid method with 7 = 0.001 has a lower RMS error than

the linear methods while maintaining the linearity of the measured flux values.

6. Conclusions and Recommendations

Star detection is much more successful in images restored with the non-linear methods. Numerous

artifacts in the linear restorations make detection of fainter stars difficult. The non-linear methods

also give better astrometry results than the linear methods. The linear methods give more linear

photometry results while the non-linear methods give photometry results with less RMS scatter.

The hybrid approach is a good compromise giving linear flux measurements with a RMS scatter

less then the linear methods.

The following approach is recommended for performing aperture photometry in restored PC
images:

1

.

Restore the image with a non-linear restoration method. Use the result for star detection and

position measurement.

2. Use the hybrid method restoration for photometry using the star list and positions from Step 1

.

3. Use photometry results from a linear technique (e.g., minimum norm) to check the linearity

of the results from Step 2.
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Table 3. Photometry linearity, median ratio measured counts/actual counts.

Magnitude:
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Figure 6. Photometry errors for the 1000 iteration R-L/Snyder restoration. The ratios

of observed counts divided by actual counts are plotted versus the stars' magnitudes.
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Abstract. Image restoration results are presented using a new iterative/recursive method

for removing a linear, spatially-invariant blur from an image. We have implemented this

algorithm and used it to restore Hubble Space Telescope (HST) Planetary Camera images

of the globular cluster NGC 6352. The resulting color-magnitude diagram illustrates the

photometric accuracy which can be obtained from images deconvolved using our technique

with the PSFs currently available from the Space Telescope Science Institute. If better PSFs

become available, we believe the color-magnitude diagram could improve significantly. For

comparison, we have analyzed the unrestored images with PSF-fitting photometry.

1. Algorithm

Iterative/recursive deconvolution is a new image restoration technique developed at the University

of North Carolina. The iterative/recursive algorithm is linear, converges rapidly, conserves flux,

produces no artifacts and is relatively insensitive to image noise or error in the PSF. It is described

in Coggins, Fullton, & Carney (1994a) and in Coggins, Fullton and Carney (1994b, hereafter CFC).

In simulations, images deconvolved with this algorithm produced linear photometric results. The

intensity of point sources in the restored images was conserved to within 1-2% over a luminosity

range of 6 dex (CFC; see also Busko 1994).

2. Observations

We deconvolved two pairs of HST Planetary Camera F555W and F785LP filter images of the

globular cluster NGC 6352. The image scale is approximately 0.04 arcsec/pixel. We preprocessed

the images applying the A/D correction, bias and preflash subtraction, dark current and flat field

corrections. For both chips #7 and #8, three 300-second F555W exposures and four 1000-second

F785LP images were averaged using the IRAF imcombine task with cosmic ray rejection to produce

separate F555W and F785LP master frames for each chip. These master frames were deconvolved

with the iterative/recursive algorithm invoked with 3 recursion levels and 2 iterations at each level.
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fields. This scatter is obviously not due to the effects of the deconvolution algorithm but rather

depends on the density of stars in the original image. Since the measurement aperture used was 5

pixels in radius, a nearest neighbor limit of 10 pixels would be necessary to completely remove the

effects of crowding on the aperture photometry. In our experiments, we found that using a nearest

neighbor criterion this strict removed an unacceptably large number of stars from our sample and
did not produce a sequence noticably different from that shown in Fig. 2 otherwise.

With the profile fitting software, we were able to measure 727 stars fainter than 18th magnitude.

Because of the higher signal-to-noise ratio in the deconvolved images and because the brightest stars

and their environs were not measurable with SPS in the blurry data due to the large wings of the

PSF, more stars were measured in both filters of the deconvolved data than in the original images,

especially at the faint end. Thus, even after omitting stars with close neighbors from the histograms

(about 1 5 percent of the total sample), there are a total of 834 stars represented in the histograms of

the deconvolved data. Fig. 2 indicates that the scatter about the mean faint star sequence is much
smaller for the aperture photometry of the deconvolved images than for the PSF fits to the original

images. This effect is small at the brightest and faintest magnitudes but is particularly evident in

the magnitude range 20 < F555W < 21.

Since NGC 6352 lies toward the Galactic center (/ = 341 °, b = -7°), even perfect photometry of

the cluster images will produce CMDs with residual scatter due to the large field star contamination

from the Galactic Bulge. Thus while some of the scatter in Figs. 1 and 2 is obviously attributable

to photometric error, many of the larger deviations from the cluster sequence are likely due to this

field contamination. Quantification of the extent of contamination in the CMD awaits analysis of

our off-cluster field images. While a more extensive comparison between the photometric precision

possible from the restored vs. unrestored cluster images in the absense of field star contamination

would have been possible with simulated data, we believe the comparison between the results for

actual data is more relevant to evaluation of the usefulness of the restoration procedure.

4. Conclusions

Comparison of the scatter in the CMDs of the unrestored and restored images as illustrated in

Figs. 1 and 2 indicates that iterative/recursive deconvolution followed by aperture photometry

produces photometrically superior results to those of the SPS PSF-fitting software for data from

HST in its current configuration. From comparison of the scatter in the diagrams for the brightest

stars, it appears that there is little to be gained by deconvolution where the signal-to-noise ratio in

the unrestored data is high. However, this conclusion is based on the comparison between aperture

and PSF-fitting photometry. The application of least-squares type PSF-fitting algorithms to the

restored images should further improve the photometric scatter (analagous to the improvement in

ground-based data between aperture and PSF-fitting techniques). We believe that further work is

necessary to develop least-squares fitting techniques which are appropriate for the image and noise

properties of deconvolved HST images.
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Abstract. An assessment of the performance of various inversion algorithms is presented

and compared with the Richardson-Lucy method, the currently favored approach used for

the restoration of Hubble Space Telescope images. Numerical validations are made in the

case of two simulated images.

1. Introduction

As is well known the Hubble Space Telescope (HST) suffers from, amongst other defects, severe

spherical aberration which takes light away from the central core of the Point Spread Function

(PSF). A partial correction of the aberration effects can be attempted since the PSF of the instrument

is known. One knows the linear integral relationship between the object and the image and therefore

one can try to restore the object by solving this equation. This is a Fredholm equation of the first

kind, which is a classical example of an ill-posed problem, namely a problem whose solution is

affected by numerical instability and therefore is strongly noise dependent. Approximate and stable

solutions can be obtained using suitable techniques (regularized inversion methods). The accuracy

of these solutions depends essentially on the signal-to-noise ratio. For the HST, this is not very

high.

The isoplanatic (deconvolution) problem, assuming the scalar diffraction theory which applies

well to these low-aperture systems, reduces to one of inverting the first-kind Fredholm convolution

integral equation

5(x) = (A/)(y) =
J

/(y)ff(x-y)dy
, (1)

where g is the image from some distribution / via the integral operator A. H represents the PSF of

the telescope. The problem is to estimate / for a given g, assuming H is known.

Current efforts at reconstructing aberration-degraded images are, in the main, based upon

conventional Fourier methods such as iterative deconvolution (here we use the term deconvolution

in this more restricted sense rather than the more general term "reconstruction" which it sometimes

erroneously replaces) as well as other techniques such as Maximum Entropy (ME) (Gull and

Skilling, 1984) and so on. The favored data inversion method currently employed by the astronomy

community is that of the Richardson-Lucy iterative deconvolution where the /fc+i'th iteration

approximating the solution is given by (Richardson 1972, Lucy 1974)

Atl =A(^.^), (2)
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1

where the symbol * denotes convolution. It may be seen that this method retains the positivity

expected of incoherent-image data since g > and also H > 0. This is not necessarily true of
other matrix and projection methods which can give negative values also in the case of a noiseless

image. In the case of iterative methods, positivity may be imposed at each iteration stage or simply
at the end of the reconstruction, depending on the method used and, in our work, was not found to

limit the efficiency of such routines. Deconvolution techniques become suspect when the transfer

function (TF) (i.e., the Fourier transform of the PSF) H(u) becomes small, as noise on the image
in this region would result in anomalous reconstruction, exaggerated by the vanishing modulus of

the TF. Thus, for conventional techniques that do not have an adequate stopping criterion, small

amounts of error on the data manifests itself as a much greater error on the solution. This is the

source of the well known ill-conditioning associated with the inversion of such integral equations.

In §2 we briefly describe the inversion methods we have used and in §3 we give the numerical results

we have obtained.

2. Description of the Reconstruction Methods

A quite natural way of discretizing Eq. (1) is as follows:

9(xij) = ^H(x
XJ
- x',m )f{x'lm )Alm , (3)

lm

where g(x t] )
(i,j = 0, ..., N - 1) and f(x'lm )

(l,m = 0, ...,N - 1) are the N x N image and

object, respectively; the A/m are quadrature weights. Eq. (3) can also be written in the form g = Af
where now AisaN 2 x N 2

matrix. It can be diagonalized by the Discrete Fourier Transform (DFT)

and becomes

g(uij) = H(u>ii )f(u>ii ) (4)

where g, H, and / are the DFT's of g, H , and /, respectively. The matrix A is, in general,

ill-conditioned and therefore the solution of (3) / = A~ l

g, as well as the solution of (4),

are affected by numerical instability. Then one has to use regularized inversion methods in order to

obtain approximate and sensible solutions. The methods we have considered are the following:

(a) Tikhonov regularization (TIKH),

(6) Landweber iteration (LW),

(c) Landweber iteration with imposed positivity (LWPOS),

(d) Conjugate gradients (CG),

(e) Conjugate gradients with imposed positivity (CGPOS), and

(/) Richardson-Lucy method (R-L).

All these methods contain a free parameter which is the so-called regularization parameter; in the

case of method (a) this is a smoothing of the higher spatial frequencies; for the methods (6) - (/),

it is the number of iterations. In the case of a simulated experiment, the typical behavior of the

approximate solutions as a function of the free parameter is the following: if we compute the

distance between the approximate solution and the known true solution (for instance the Euclidean

norm of their difference) and we consider its behavior as a function of the free parameter, then this

distance will exhibit a minimum. The value of the parameter corresponding to this minimum can

be considered as the optimum one since it provides the best approximation to the solution of the

problem. Obviously, in the case of real data, the solution of the problem is not known and therefore
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this method can not be used for the estimation of the free parameter. For this reason several criteria

have been investigated for its choice (Bertero 1988). However, in general they are not very practical

and very often the choice they provide is not satisfactory, so that one has to use some empirical
criterion which depends on the problem one is investigating. In the case of simulated data, we
will choose the value of the parameter corresponding to the minimum of the distance between the

approximate and the true solution.

For the convenience of the reader we recall that the approximate solution given by method (a)

is

fli
= (A*A + t

iI)- 1 A*g (5)

where /z is the regularization parameter. More explicitly in the case of Eq. (4) we have

&K-)=
, frf^ 3K0- (6)
\S{Uij)\2 + n

In the case of method (b) the iteration scheme is given by

/o = 0; /„+i = /„ - Trn (7)

where < r < 2
||
A||

-2
is the stationary relaxation parameter and

rn = A*A fn - A*g . (8)

We point out that this iterative method is equivalent to a filtering since the final result ofN iterations

can be explicitly written and in Fourier space it is given by

fn (utJ
)={l-(l-T\H(ulJ )?)

n

}j^ (9)

This expression cannot be used in method (c) because the negative part of the reconstruction of /„

obtained from (7) must be zeroed at the end of each iteration stage. Since rn must be computed in

Fourier space at each iteration, two FFTs are required: the first for computing rn ; the second one

for coming back to the physical space in order to impose positivity. On the practical side, for both

methods (6) and (c) the relaxation parameter r can be set as follows:

1

„i- , 00)
II
A

II

2
l-ffl

2
11 li

I \max

where \H\ max = maxjj \H(uij)\.

Finally, the conjugate gradients iteration scheme is

/o = 0; fn+\=fn-Tn pn (11)

where

Pn = rn + crn_!p„_i . (12)

with p = ro = - ^4*<7> Cn-i =
Il
rn||

2
/||

rn-i||
2 and the non-stationary relaxation parameter

Tn = (7n)Pn)/||;4pn||
2

- This iteration scheme can also be easily written in Fourier space.

3. Simulated Results with the HST

In our numerical experiments we have mainly considered two test objects provided by R. Hanisch

and characterized by different types of brightness distribution; one of the objects / simulates an

elliptical galaxy and the other one a star cluster with size 5 1 2 x 5 1 2 and 256 x 256 pixels, respectively.
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number of iterations

0.10 0.15 0.20

gularization parameter

Figure 1. Accuracies (e from Eq. 13) for the elliptical galaxy achieved with iterative

methods (left) and with the Tikhonov method (right).

Simulated blurred images are obtained from the object / convolved with a computed PSF, with

the addition of Poissonian noise and readout noise (Hanisch 1993). The discrepancy between the

reconstructed solution /
rec and the known solution / may be measured by the RMS norm e of their

difference divided by the norm of / (here /,, = f(xij))

l^ij \Jij Jij\
(13)

Another possible way to evaluate algorithm performance is the so called Mean Square Error Im-

provement Factor (MSEIF) which reads (Busko 1993)

T)= 101og,
E.-j \su - ft]

Etj \Jij ~ /»:

14)

in the sequel we use both. By varying the regularization parameter, it is hoped to determine a

minimum of e (Eq. 13) or a maximum of n (Eq. 14). An example is given in Fig. 1 , where this has

been done for the case of the elliptical galaxy. We now give our results in the comparison of the

various methods and we consider first the case of the star cluster.

It is worthwhile to introduce here the condition number of the matrix A, which gives an useful

estimate of the error propagation:

if
< cond(A)-

6g
:i5)

where Sg is the error on the blurred image (Poisson + read-out) and Sf is the consequent error on

the restored image (this simple two-norm condition number doesn't take into account the error on
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the PSF). The condition number (Eq. 15) can be simply evaluated as follows:

\H(u

\H{u
cond(A) = ~

v
, (16)

where

\H(u)\max = max{|#(u;)|} and \H(io)\ min = min{|^(a;)|} .

For the PSF of the star cluster we have

cond(A) = 23.2764 (17)

that sounds exceedingly low for people working in the field of inverse and ill-posed problems;

consequently one expects the discrepancy (13) to be rather small at the minimum. The best

performances in the restoration of the star cluster image are provided by the R-L algorithm and the

LWPOS one; they give accuracies of 6% and 5%, respectively (see Table 1). This is clearly an

excellent mathematical result but not exceedingly satisfactory on the practical side as many false

stars appear when the cluster's core is examined in details; this is shown in Fig. 2. This is partially

due to the fact that the solution itself is represented by discrete points, whereas the image and

reconstructed solution are blurred representations thereof. In fact the choice of such solutions are

particularly demanding for the restoration routines, since they are delta-function-like objects with

sharp cut-offs.

Table 1 . Algorithm comparison. Analysis performed on star cluster (256x256).

Algorithm
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rather than to a worse conditioning of the problem. Indeed we found, in the two cases, that

S/N star cluster = 14 -2857 ™d S/N
elliptical galaxy = 3.9841 .

Furthermore it is not clear how important the main features of these images (brightness, shape, etc.)

are in restoring our noisy data. It seems evident that for this test object the R-L algorithm provides

the best restoration. Fig. 3 shows the comparison between R-L and LWPOS results.

4. Conclusions and Perspectives

The mathematical problem arising from HST image restoration provides an example of an inverse

problem which can be fruitfully treated by regularization techniques. Among these methods,

LWPOS seems to provide the best compromise between accuracy and computational effort. On
the other hand it is not evident, from the numerical experiments performed in this work, which is

the best choice between LWPOS and the well-known R-L method: a larger set of test problems,

covering a wide range of astronomical objects, has to be taken into account.

The forthcoming correction of the imaging disorders with the installation of COSTAR and

WFPC II should restore near perfect imaging to the HST. However, the possibility of reconstructing

even diffraction limited images is attractive since some super-resolution will be possible (Bertero

et al. 1989). For this reason, restoration techniques able to provide good results coupled with a

tolerable computational cost will be greatly appreciated even after the first servicing mission of

December 1993. Non-isoplanatic corrections will be highly desirable.

In this context we cannot forget that the R-L method, the most popular algorithm used for the

restoration up to now, is efficient at the further expenses of a computational overload since there are

four FFT operations per iteration, that makes it easily the most expensive in computer time of all

the methods apart from the Maximum Entropy method.
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Figure 3. Restoration results for the elliptical galaxy. The simulated data (top left)

is compared with the true image (top right) and with the two restored images: the

R-L solution (bottom left) and the LWPOS solution (bottom right). The grey scale is

logarithmic in intensity.



The Restoration ofHST Images and Spectra II

Space Telescope Science Institute, 1994
R. J. Hanisch and R. L. White, eds.

DAOPHOT Reductions of the Simulated Cluster Field

Peter B. Stetson

Dominion Astrophysical Observatory, Herzberg Institute ofAstrophysics, National

Research Council of Canada, 5071 West Saanich Road, Victoria, British Columbia
V8X4M6

Abstract.

I present the results of DAOPHOT reductions of the simulated star cluster images

provided by ST Scl's Image Restoration Project.

1. Introduction

Bob Hanisch called me on the phone and asked me to drop whatever I was doing and reduce his

simulated cluster field. My reward would be an opportunity to speak at a workshop held at the

Space Telescope Science Institute. Second prize was two workshops.

2. Conditions of the Test

Since I had only one image to analyze, reductions were performed with the DAOPHOT II generation

of ALLSTAR (see Stetson & Harris 1988; Stetson, Davis, & Crabtree 1990; Stetson 1994a). I tried

reducing the field with five different model point-spread functions (PSFs): (1) a spatially invariant

PSF derived from ten bright stars in the test image itself; (2) a quadratically varying PSF derived from

the NGC 1850 frames discussed by Stetson (1994b); and (3) spatially invariant, (4) quadratically

varying, and (5) cubically varying PSFs derived from grids of model profiles generated with Tiny

TIM by Shaun M. Hughes. These Tiny TIM simulations were for a different focus setting and jitter

history than assumed in the simulation. For each of (2)-(5), I added the 256x256 simulation back

into the middle of an 800x800 blank image, so that the variations in the PSF would be correctly

mapped into the frame.

Actually, there were two tests: one where the stars were exactly centered in their respective

central pixels, and one where stars could effectively fall anywhere with respect to the centers of

pixels. I analyzed these separately. I used the "truth" files to provide initial estimates of the stars'

positions, but not of their magnitudes. This is fair because in most cases of interest the astronomer

would have multiple images of a given star field, and would be able to generate a more complete

list of detections than could be derived from any one frame alone.

3. Figure of Merit

Hanisch provided me with the "right" answers for the stars in the simulated cluster, so it's easy to

determine the error of each magnitude determination: find the star in the truth file that falls nearest

to the position of each star in my photometric output, and compute the difference between their

magnitudes. The question of how to encapsulate these magnitude differences in an overall figure of

merit for the reduction procedure deserves some thought.

The root-mean-square residual is the theoretician's dream for parameterizing the width of a

probability distribution. It can be shown from first principles that, subject to a few assumptions

(such as that the total errors consist of an infinite number of infinitesimal contributions), the error
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distribution is driven in the limit to the Gaussian distribution characterized by two parameters: the

mean (which I set identically to zero by forcing my magnitude zero-point to agree with that in the

simulations), and the standard deviation. The root-mean-square deviation can be shown from first

principles to be the most "efficient" estimator of the standard deviation.

That doesn't necessarily mean that the root-mean-square residual is the best figure of merit for

our present purposes. In real life, photometric errors are not always made up of an infinite number of

infinitesimal contributions: detector blemishes, cosmic rays, satellite trails, and any number of other

problems can represent single, discrete, macroscopic error sources. Every observational astronomer

knows that three-sigma residuals occur far more often than the Gaussian formula predicts. Even in

the simulated images, two stars in adjacent pixels will probably be perceived by the software as a

single, brighter star lying between the pixels. Then, when the output photometry is compared with

the "truth," the measured magnitude will be compared with one of the two input magnitudes, and

a large photometric error will be inferred. Is this a fault of the photometric algorithm? Or of the

subsequent cross-identification procedure? Or is it simply a fact of life that sometimes astronomers

have to be satisfied with composite photometry for unresolved doubles? Since these occasional

major mistakes are squared before they go into the root-mean-square estimator of the standard

deviation, they overwhelm the majority of smaller residuals. In a case like the present one, all the

root-mean-square residual will tell you is whether in this particular data set your largest screw-up

is a six-sigma blunder or a seven-sigma howler— it won't tell you anything about the bulk of the

data.

Examining the formula for the Gaussian distribution, one can come up with several other ways

of estimating the standard deviation:

• The mean absolute deviation can be calculated:

1 [+°°
f 2 2
/ |x|exp(-x /2a )dx
J— oo'2lt(T

whence a = 1.2533 x (mean absolute residual).

• In the cumulative Gaussian function, N(-a) = 0.1587 and N(+a) = 0.8413, whence a ss

half the difference between the 84,h and 16th
percentiles.

• In the cumulative Gaussian function, 7V(-0.6745cr) = 0.25 and jV(+0.6745ct) = 0.75,

whence a = 0.7418 times the interquartile range.

• In the cumulative Gaussian function, N(-a/2) = 0.3085 and N(+a/2) = 0.6915, whence

a k, the difference between the 69th and 31
st

percentiles.

Obviously, there exists an infinity of such statistics, each one capable of providing an estimate

of exactly the same Gaussian a that the root-mean-square deviation is intended to measure. These

alternatives are less efficient than the root-mean-square when operating on the theoretician's ideal-

ized continuous distribution, but they may be preferable when it comes to dealing with real data.

Often when an astronomer is trying to determine the location of the principal sequences of some
star cluster in the color-magnitude diagram, the goal is to obtain the sharpest possible sequence for

the bulk of the stars, regardless of the few oddballs that may be scattered by photometric blunders

to remote regions of the CMD. The five alternative a estimators that I have listed above, beginning

with the r.m.s., proceed in order from those that are most influenced by the far tail of the error

distribution, to those that measure primarily the width of the core of that distribution. Lest I later be

accused of fraud, let me say right now that for the remainder of this paper I use the last estimator:

a « the difference between the 69,h and 31
st weighted percentiles.

What do I mean by a weighted percentile 1. Imagine that for each observation I take a stick

of wood and cut it to a length proportional to the weight of that observation (weight = the inverse
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square of the standard error as estimated from the readout noise, the photon noise, and the goodness

of the profile fit). On each stick I write the value of that observation. Then I sort the sticks in

increasing order of the values written on them and arrange them into a continuous bar. Then I

point at positions 3 1% and 69% of the way along the total length of the bar and read off the two
observational values that I'm pointing at. The difference between them is my estimate of a.

This figure of merit is obviously dominated by the highest-weight observations, i.e., the

brightest stars. I think that is legitimate. The purpose of this exercise is to test the quality of the

photometric software. The errors of the faintest stars are dominated by their Poisson and read noise,

not by any failures of the algorithm. If I were to generate an unweighted estimate of a from the

sample as a whole, I could practically make my results come out as good as I want: all I'd have to

do is manage to find fewer and fewer of the faint stars, and the a generated from the stars that I did

find would get better and better.

The figure of merit used here is reasonable, in that it tests the quality of the photometric

algorithm by seeing what it can do with the best data rather than measuring the amount of synthetic

noise added to the many faint stars; and it is impartial, in that it is difficult for me to produce a

better or poorer figure of merit by changing which stars I want to consider "recovered" as opposed

to "lost." In short, it measures how well the algorithm does with a typical, well-exposed star.

4. Results

As mentioned above, two simulated images (stars centered on pixels, stars not necessarily centered

on pixels) were reduced with five point-spread functions each (a PSF was obtained from each of the

simulated "science frames," one was obtained from actual WFC images, and three were obtained

from Tiny TIM simulations). In each case I found that the PSFs obtained from the simulations

themselves yielded the most accurate photometry. Tables 1 and 2 present actual values of <T69-3i

derived using the PSFs from the synthetic frames themselves, for four subsets: (a) all stars; (b) all

stars except the faintest two magnitudes (true < 2.00); (c) all stars more than 28 pixels from the

center of the cluster; and (d) all stars brighter than true = 2.00 inside 28 pixels from the center of

the cluster.

Sample
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that exception may be more an artifact of the simulation than of the reduction. In the process of

generating the first test image, whenever two artificial stars had their centers in the same pixel, one
was thrown away and only one was kept. In the latter simulation, any number of stars falling in the

same pixel were all retained. Subsequently, the reduction software was unable to distinguish the

numerous stars lying in a single pixel, and reduced the blend as one object. The cross-identification

software then associated this object with only one of the artificial stars in the "truth" list, thereby

implying a lower recovery rate and a higher typical photometric error.
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Abstract. We intend to use the restored HST to study age structure and chemical evolution

of the stellar population at the center of the LMC. To obtain the necessary observational

parameters, Stromgren photometry is planned using the Planetary Camera. To study the

reduction techniques needed, a set of simulated PC images have been made. The stellar

density in the images is based on an extrapolated luminosity function and show a high degree

of crowding. Two of the generally available photometric software packages, ROMAFOT
and DAOPHOT, have been used to analyse the images. Results show that the photometric

accuracy reached with these packages is not enough for high precision photometry in this

configuration. We show that the two major contributors to the errors are undersampling and
the unusual shape of the point spread function. Adaptation of locally developed software is

currently in progress to deal with these problems.

1. Introduction

Large scale processes driving and controlling star formation and nucleosynthesis are fundamental

but, in many cases, particularly for ordinary stars, poorly known and understood. Due to its relative

proximity, the Large Magellanic Cloud (LMC) offers unique possibilities of detailed observations

providing that sufficient image resolution is available. A group of Scandinavian astronomers intends

to use the Hubble Space Telescope (HST) to make a detailed study of stellar populations down to

magnitude V = 22 (F—dwarfs), at the LMC center. Age structure and chemical composition will be

determined by performing Stromgren photometry using the Planetary Camera (PC).

To assist in the selection of suitable target areas, ESO Schmidt plates have been scanned. Fig. 1

shows an 11x11 arcmin region at the center of the LMC. The square in the figure marks a 35 x 35

arcsecond area that has been chosen as one HST target.

2. A PC Simulation

To thoroughly study the reduction problems involved, simulated PC images have been made. The
point spread functions (PSFs) expected after optical correction were derived for each filter using

version 2.4 of the Tiny Tim software (Krist, 1993). The images were initially created with four times

oversampling, then scaled down to 800x800 pixels, and finally background and noise were added.

These were estimated, following the recommendations in the WFPC II Handbook, to correspond

to a signal to noise ratio of about 100 at magnitude V = 21.0. The star density was derived using

an extrapolated luminosity function determined from earlier observations (Ardeberg et al. 1985),

where a field in the LMC bar was studied in detail. An example of a simulated image is given in

Fig. 2, which represents the field seen through the Stromgren y filter (F547M). This image contains

about 40,000 stars down to magnitude V = 29. Fig. 3 shows an expanded part from Fig. 2, and in

Fig. 4 the Tiny Tim PSF is seen, both with and without oversampling. The FWHM of this y filter

PSF is 0.9 pixels. The irregular shape of the poorly sampled stellar images is evident as well as

"fixed pattern noise," resulting from the uneven, patchy, wings of the PSF.
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Figure 1
.

A 1024 x 1024 pixel scan from an ESO Schmidt plate, showing an area of
11x11 arcmin at the center of the LMC. The square marks the region selected for the
HST study.

Figure 2. A simulation of the selected area as seen with the PC through the Stromgren
y filter. About 40,000 stars down to V = 29 are included.
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Figure 3. Expanded view of a region from Fig. 2.

Figure 4. The Tiny Tim PSF (y filter, F547M) used for generating the image in Fig. 2.

To the left (a) the PSF is shown with four times oversampling, to the right (b) with normal

sampling. The intensity scale is logarithmic, in order to also show the outer parts of the

PSF.
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In addition to the original images, several modified versions were made to test the response of
the photometric programs:

• To test for PSF shape dependence, images were generated identically to the original images,
except that a Moffat function with FWHM = 1 .4 pixels was used instead of the Tiny Tim PSF

• To test for the effect of the undersampling, a rebinned and expanded image was made with
twice the pixel resolution of the original image (using pixel replication) and convolved with
a Moffat function with a FWHM of 2 pixels. This increased the FWHM of the PSF from 0.9

pixels to 4.3 pixels.

3. Photometric Analysis

A photometric analysis was made ofthe simulated images using two of the widely available reduction

programs, ROMAFOT (Buonanno et al. 1983) and DAOPHOT (Stetson 1987). It should be noted

that both packages have several tunable parameters which need careful attention in order to produce

optimal results. Default values were initially used, followed by a range of parameter changes, in an

attempt to optimize the functioning of the programs.

The output data from the photometric programs were compared to the original positions and

magnitudes used to create the simulated images. A measured star was considered successfully

detected if its position differed less than one pixel from its nearest neighbor with known position.

If no neighbors were found within the one pixel radius the star was discarded.

It should be noted that the results from the programs were not edited, except that magnitude

errors larger than two standard deviations were considered false identifications.

3.1. ROMAFOT

The version of ROMAFOT available under MIDAS 92NOV was used in our tests. The PSF

was extracted from the image and the reduction followed the standard procedure for ROMAFOT.
Analysis of the image generated using the Tiny Tim PSF gave substantial errors (a =0.1 mag)

even for bright stars which also showed some instability. Fig. 5a shows the results with magnitude

error as function of magnitude. The error bars represent ±la spread in each magnitude interval.

Measurements on the rebinned, expanded image showed only marginal improvements (Fig. 5b),

the bright stars were not detected at all. In contrast, the (non-realistic) image generated with the

Moffat PSF showed a marked improvement in accuracy (Fig. 6a). Here, the error for bright stars

remained within a = 0.02 mag. This clearly implies a strong dependence on PSF shape, which

is not unexpected since ROMAFOT uses analytical Moffat functions to fit the stellar images. A
remarkable feature is the systematic underestimation of the intensities for the faint stars. The

investigation also gave information regarding detectability of sources. This is seen in Fig. 6, which

shows the fraction of found stars as function of magnitude. The total number of detected stars was

about 17,000. Thus, the majority of very faint stars remained undetected.

3.2. DAOPHOT

The DAOPHOT version used was DAOPHOT II, which included enhancements up to October 1993.

As for ROMAFOT, the PSF was derived from the image. Again, measurements made on the Tiny

Tim PSF generated image gave unsatisfactory results. Bright stars showed errors of about a =

0.05 mag and a zero point offset was seen for fainter stars (Fig. 7a). The rebinned and expanded

image gave better results (Fig. 7b), with the smallest errors in the order of a = 0.04. However, the

brightest stars showed some anomaly. Similarly to ROMAFOT, the image with the Moffat PSF

gave significantly better results than the image generated with the Tiny Tim PSF; the errors in the

magnitudes of the brighter stars were around a = 0.02. These results are slightly better than those

obtained with the rebinned image. For the fainter stars however, the results are significantly better,

with nearly twice as many detected stars, and about half the spread in the magnitudes of those stars.
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The number of detected stars increased from 15,000 to 17,000 when measuring the rebinned

and expanded image (Fig. 8a).

Positions were determined equally well in either the original or the rebinned image; slightly

better in the image with the Moffat PSF. Fig. 8b shows the spread (with a = 0. 1 8 pixels) of position

determinations on the original image.

IntrinsicDAOPHOT Errors A simple test was done to see if DAOPHOT could produce consistent

results with the complex given input data to determine if it was at all possible to reach the limiting

S/N ratio. The results of DAOPHOT's allstar were fed as input to a new run of allstar. Ideally

this should provide identical results. This was, however, not the case for the original image with

the Tiny Tim PSF. Only 15% of the stars had identical positions and magnitudes after this second

run. For the remaining stars the differences in position and magnitude were determined (Fig. 9a).

A positional accuracy of better than 0.02 pixels is required to reach a photometric reproducibility of

5%. The fraction of stars that has positions that can not be determined sufficiently accurate includes

a relatively large fraction of the brightest stars. The fact that the two runs gave different results

probably depends on the size and shape of the PSF. In the tested case the centers of the stars could

not be determined with sufficient accuracy, but it should be emphasized that the FWHM of the PSF
is only 0.9 pixels and the fitting radius is only 3 pixels in this case, so the number of pixels with

astrometric and photometric information is small.

3.3. Achieved vs. Possible Accuracy

In Fig. 9b is shown the theoretical signal to noise ratio limit for the simulation. This limit, valid

for a 45 min exposure with filter F547M (Stromgren y), was determined using Poisson noise, sky

background, dark noise, and read out noise, and assumed that the PSF deposited about 30% of the

total stellar intensity in one pixel. The entire observation was assumed to be on a single exposure.

Also shown are the measurements from ROMAFOT (dotted line) and DAOPHOT (dashed line)

from the rebinned image, interpreted as signal to noise ratio.

4. Deconvolution

Some preliminary tests with deconvolution using the Richardson-Lucy algorithm were performed

on the simulated images. However, so far no improved results have been seen, either in terms of

photometric accuracy or in number of detected stars. In contrast with results from deconvolution

of ground-based images (Linde et al. 1993), this is not surprising considering the poor sampling of

the images.

5. Summary

• Neither ROMAFOT nor DAOPHOT managed to reach the limiting S/N ratio.

• The shape of the PSF has a large impact on the performance of the photometric packages in

the case of undersampled PSFs.

• Rebinning the image to double the original pixel resolution showed no large difference in

accuracy for ROMAFOT but increased both limiting magnitude and accuracy for DAOPHOT.

• Deconvolving the test images did not increase accuracy, either for ROMAFOT or for

DAOPHOT.

• In view of the above shortcomings, local software (Linde 1989) is currently being adapted to

HST PC images in order to better approach the theoretical photometric limit.
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Abstract. Stellar photometry of simulated HST uncorrected and corrected images of a

crowded star cluster has been carried out before and after deconvolution (with RMG, R-L,

MEM, etc.) to optimize the reduction procedures and compare the degree of completeness

and photometric accuracy actually achievable in the various cases. Experiments are also

presented on the description of the surface brightness profiles of simulated clusters with

different deconvolution techniques and sizes of the adopted PSF and data matrices.

1. Introduction

The experiments reported here have been made in connection with a general program, aiming at

the accurate and detailed photometric study of the Milky Way and M31 Globular Clusters, that our

group is currently carrying on by obtaining precise color-magnitude diagrams and complete and

unbiased luminosity functions.

Six HST proposals have been approved over the length of the 4 cycles of HST operations,

and the specific aim of these experiments is to improve the capabilities of our data analysis and,

in particular, of the stellar photometry, which is mostly performed with the ROMAFOT and IRAF
packages.

Here we report on the analysis of HST simulated images, with special emphasis on the

photometry of individual stars in crowded fields (before and after image restoration) and on the

description of the surface brightness profiles of simulated clusters with different deconvolution

techniques and sizes of the adopted PSF and data matrices.

2. Stellar Photometry

In order to obtain a quantitative estimate of the accuracy and reliability of our data reduction

procedures and results, we have performed a data reduction pipeline based on the following steps:

i) define a set of simulated HST-like images with synthetic globular cluster stellar distributions, which

provide the "true" data for comparison; ii) convolve these images with appropriate assumptions of

PSF and noise in order to construct simulated "observed" data; iii) deconvolve the "observed" images

using some of the most widely adopted techniques and assumptions; iv) reduce the "deconvolved"

frames in a totally independent way, and compare with the initial "true" data. Specifically, for steps

i) and ii) we used the set of HST-simulated images prepared by Hanisch (1993) (namely the files in

the directory star-cluster), in order to be able to compare our results also with the work of other
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researchers in the field, while steps iii) and iv) were performed by two different teams of our group
who ignored the assumptions made by the other team in order to assure the complete independence
of each step. Since this work was started in September 1993, we adopted the version of Hanisch
files then available, which is different from the revised version released on October 6, 1993. The
characteristics of our files are then: (i) intensity-normalized PSF peak; (ii) stars centered on the
pixels; and (iii) zero-point = 9.0 mag.

In summary, using a special version of the package ROMAFOT (Buonanno et al. 1983,

Buonanno & Iannicola 1988), we have then reduced the following set of files:

a) "Truth": input star cluster with a globular cluster-like luminosity function (LF) and spatial

distribution (Hanisch 1993). It contains 470 stars.

b) "Observed": HST-simulated "star.cluster" (Hanisch 1 993) with 470 stars, oldWFC (sim2.fit),

new WF2 (sim2c.fit), size = 256x256, space invariant PSFs (psfl2.fit, psfcl2.fit), filter

F555W, center of image, where "sim2" stands for the HST images uncorrected for spherical

aberration, and "sim2c" are the HST-corrected frames, and hereafter label the two separate

families of adopted simulations.

c) "R-L deconvolved": deconvolved with the Richardson and Lucy method (R-L) (Richardson

1972, Lucy 1974, 1992), using a variable number of accelerated iterations (50, 150, 250).

d) "MEM deconvolved": deconvolved with the Maximum Entropy Method (MEM), adopting

two different versions, i.e., MEM-IDL (with 50, 150, 250 iterations; this routine was written

by F. Varosi based on Hollis et al. 1992) and MEM/MemSys5 (with ICF = 0, 1; Weir 1991).

e) "Wiener": deconvolved with a Wiener-based routine (IRAF, package restore; Busko 1993).

In the reduction of all frames the star detection threshold has been set always at 5a, the value

calculated on the background empirically determined in the "observed" frames (i.e., 8 counts).

Note that, due to the combination of the systematic centering of the stars in the pixel centers and the

crowding effects, only 373 stars are actually detectable as independent objects on the "observed"

frame listed in Table 1 . The second column, labelled "Detected", contains the total number of

identified peaks, including those which could not be fitted by the ROMAFOT stellar profile fitting

routine and are interpreted as noise. Finally, note also that the two original "observed" images

(Hanisch 1993) were PSF peak-intensity normalized, therefore the data obtained from the two

families (Table 1 and Table 2) are not directly comparable as the corresponding stars have actually

different S/N values.

Tables 1 and 2 and Figs. 1 and 2 report the summary of the results for the uncorrected and

corrected images "sim2"and "sim2c", respectively.

The main conclusions one can draw from the tables and figures are:

1

.

With "sim2" (uncorrected HST), the number of detected "true" stars in the "observed" frame

is about 20% smaller than the number of stars that could in principle be detected (302

vs. 373), and the number of "fitted" stars includes about 10% of spurious identifications.

Overall, the completeness factor (i.e., "true'7470) is about 65%, and it would presumably

be somewhat larger if the stars were not assumed to be centered in the pixels (further tests

are in progress using a revised version of the simulation where the stars are not centered in

the pixel matrix). These numbers increase in the deconvolved images and with increasing

the number of iterations, however, the number of "spurious" objects also increases steeply,

correspondingly. The behavior of these quantities as a function of magnitude can be seen in

Fig. 1.

2. With "sim2c" (corrected HST), the number of stars detected in the "observed" frame (before

deconvolution) is almost coincident with the maximum attainable (369 vs. 373). The search

on the deconvolved images (at a fixed threshold of 8 counts, as derived from the "observed"
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Table 1 . Reductions of "sim2" cluster simulation.

File: "Observed" = sim2.fit (470 stars, 373 stars actually detectable)

• WFC, F555W, zero-point = 9.0 mag
• psfl2.fit, peak intensity-normalized

• detection threshold = 5<r

mag = 0.5
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frame) yields a smaller number of detected objects. The stars lost are faint objects with peak
intensities just over the threshold in the "observed" frame, which fall just below the threshold
after deconvolution. This is due to the fact that all deconvolution methods tend to enhance the
contrast, namely to increase slightly the peak intensity of the brightest stars at the expense of
the weakest peaks which are damped as noise. Finally, it is remarkable to note the difference
in number of detected objects obtained adopting ICF = 1 or with MEMSYS.

3. The impact of these effects on the LFs consists in a "deformation" of the differential LF, with a

shift of some objects to the adjacent brighter bin and a lack of stars close to the detection limit.

The detection limit is of course defined by the adopted threshold, which was selected in order

to optimize the number of detected "true" stars with respect to the spurious identifications.

4. Concerning the linearity, the internal photometric accuracy, and the zero-point checks, ad-

ditional tests are in progress. In general, the photometry of safely uncrowded stars yields

magnitudes accurate to better than 0.1 mag, including any systematic zero-point shift. In

particular, the use of a Gaussian fit to the PSF plus a look-up table to map the systematic

residuals already yields satisfactory results.

3. Surface Brightness Profiles

From the data taken during Cycle 1 , surface brightness profiles have been obtained for 1 3 globular

clusters in M3 1 (Fusi Pecci et al. 1 993), leading also to the detection of a central cusp in a candidate

post-core-collapse cluster (Bendinelli et al. 1993). Detailed tests and simulations have been carried

out to verify the reliability of the quoted results obtained by applying various deconvolution methods

to the observed data.

To further explore the influence on the various procedures of any variation in the size of the

adopted PSF compared to the data matrix and in the adopted background, we have carried out here

a new set of simulations based on the following assumptions:

a) Adopted cluster model: King model, r c = 0.2 arcsec, c = 1 .75 at the M31 distance (700 kpc),

matrix size: 512x512. The simulated cluster has then been convolved with the FOC/96 +

F430W observed PSF (star GD248, observed on 12/1/92), with no further noise added (i.e.,

background = 0).

b) Deconvolutionswith: i) Regularized Multi-Gaussians (RMG) (Bendinelli 1 991), ii) Richardson-

Lucy (R-L) (Richardson 1972, Lucy 1974, 1992), iii) MEM-IDL (Hollis et al. 1992), iv)

MEM/MemSys5 (Weir 1991). The deconvolutions have been performed on data matrices of

various size, down to 64x64, as specified below.

c) Surface brightness profiles obtained with VISTA.

As shown in Figs. 3 and 4, the following results have been obtained:

1. Both cluster data and PSF matrices have size 5 12x512 and sky = (Fig. 3a): the derived pro-

files are substantially coincident with the input model independent of the used deconvolution

method.

2. PSF 5 1 2 x 5 1 2, data matrix smaller and smaller (256 x 256, 1 28 x 1 28, 64 x 64), sky = 0, RMG
(Fig. 3b): the derived profiles remain unaffected a part from the reduction in radial extension.

3. PSF and data matrices smaller and smaller (256x256, 128x128, 64x64), RMG (Fig. 3c):

there is an increasing shift, parallel to the model, which could be easily calibrated as a function

of the matrix size reduction factor if sky = 0, while an increasing divergence with respect to

the model occurs if the "local" sky in the data matrix is adopted (Fig. 3d). For "local" sky

we intend the average background estimated over the 4 comers of each frame.
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4. PSF and data matrices smaller and smaller (256x256, 128x128, 64x64), R-L and MEM
(Fig. 4a-c): the results are qualitatively similar to those obtained with the RMG (note that the

RMG deconvolution operates in the profile domain) but a much stronger edge effect appears.

In Fig. 4d we show the profiles of Fig. 4a differentially with respect to the results of the R-L
over 512x512. The models indicate that the use of smaller data matrices produces a shift in the

overall brightness profile, which is found also when this test is performed on real data (e.g., the

cluster Bo373 = G305).

In summary, it is evident that much care must be taken in order to ensure that all the necessary

information is amply contained in the frames to be analyzed. The combination of an overestimated

background (such as our "local" sky) coupled with an insufficiently extended PSF may lead to large

discrepancies in the derived profiles, which could be partially reduced by the the use of the RMG
deconvolution method, as all the profiles are implicitly extrapolated outside the actual matrix size,

albeit with a Gaussian falloff.
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Abstract. The spherical aberration affecting the HST primary mirror (Burrows et al.

1992) can seriously alter the core brightness profile of elliptical galaxies. Excellent results

in recovering the original HST performances have been obtained by means of deconvolution

techniques, improved and updated during the past two years in order to suit HST data

(Hanisch 1993). In this paper we test the performance of deconvolution in recovering

the original surface brightness profile in the case of elliptical galaxies observed with the

HST Planetary Camera (PC). We analyze whether the results of deconvolution depend
on the intrinsic morphological properties of the galaxy (e.g., the brightness profile or the

ellipticity), or on small variations of the PSF due to jitter, position on the chip, or spectral

shape of the point source.

1. Introduction

During 1992 we have obtained HST Planetary Camera (PC) images of a magnitude limited sample of

1 2 elliptical galaxies in the Virgo cluster (Jaffe et al. 1 994, van den Bosch et al. 1 994, Ferrarese et al.

1 994). The aim of our project is to study the morphological properties of the inner region, derive the

core brightness profiles, and look for evidence of nuclear mass concentrations and photometrically

decoupled cores. In order to accomplish these goals the full capabilities of HST are needed. In fact,

ground based observations are severely impaired by atmospheric seeing; it has been established

(Peletieret al. 1990) that seeing effects can extend to radii 5 to 1 times the seeing FWHM, which is

unacceptable considering that typical core radii are of the order of only a few arcsec at the distance

of the Virgo cluster.

Unfortunately, the spherical aberration affecting the HST primary mirror can seriously alter

the morphological and photometric properties of the cores. In the past three years, deconvolution

techniques have been extensively improved in order to suit HST data, nevertheless, it is a legitimate

doubt to assume that there are cases in which deconvolution may not give satisfactory answers or,

even worse, may introduce spurious effects. We have therefore built an extensive set of model

elliptical galaxies to test whether deconvolution techniques are able to restore the original surface

brightness parameters of the cores, i.e., ellipticity, position angle of the major axis, deviations of

the isophotes from pure ellipses, and brightness profile. In this paper, we will discuss the results

obtained for the brightness profile, and refer to a separate paper for the results on the other surface

brightness parameters (van den Bosch et al. 1994).

2. Models

We have built a set of model elliptical galaxies spanning a wide range of brightness profiles,

ellipticity, position angle of the major axis, and isophotal shape. In order to study the effects of

the aberrated HST PSF, each model has been convolved with a PSF appropriate for chip 6 of the

PC and filter F555W (all of our galaxies have been observed with this instrumental configuration).

Poisson noise and read out noise have been added to the convolved, or aberrated, image. The

models have been built in order to give a signal-to-noise ratio between 20 and 30 at the galaxy
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center after convolution with the HST PSF. Finally, the aberrated image has been deconvolved
using the Richardson-Lucy (RL) algorithm. The RL iterations converge to the maximum likelihood

solution for Poisson statistics, and are therefore well suited for deconvolving HST PC data. In

addition, the RL deconvolved data is forced to be positive and the deconvolved image has good
photometric linearity (White 1993). The PSFs used for convolution and deconvolution have been
created using the Tiny TIM software (Krist 1992), which is able to model variation in the PSF due
to the instrumental configuration (for example, camera and filters), position on the PC chip, spectral

shape of the point source, and jitter due to the HST pointing.

In the following sections we will discuss the effects on the results of deconvolution due to:

1

.

Intrinsic shape of the brightness profile. A brightness profile which flattens up towards the

galaxy center is expected to be less affected by convolution than a very steep brightness

profile, and, as a consequence, deconvolution is expected to give better results for a flatter

profile rather than for a steeper one;

2. The ellipticity of the galaxy. The ellipticity of an elongated galaxy will decrease towards the

center as a consequence of the convolution with the aberrated HST PSF. Since the brightness

profile is found by integrating along isophotes, larger deviations are expected in the brightness

profile of deconvolved galaxies when the ellipticity is higher;

3. Small changes in the PSF, as due to the position of the PSF on the PC chip, jitter, and spectral

shape of the point source.

2.1. Dependence on the Brightness Profile Shape

We have considered four different forms for the brightness profile, three with one component only,

and one with two separate components, covering a wide range in shape and steepness in the crucial

(as far as convolution and deconvolution are concerned) inner 5 arcsec: a de Vaucouleurs law

ECr^EolO-3 -33^' 74- 1
]

(1)

where r is along the major axis of the galaxy, Eo = 5 DN and ro = 13 arcsec; a Hubble law

with Eo = 2000 DN and ro = 4.3 arcsec; an exponential profile

E(r) = E e-
r / r°

(3)

with Eo = 1500 DN and ro = 13 arcsec; an exponential profile plus a central Gaussian component

E(r) = E ie-
r /'-° + Eo2e-

r2/ 2CT2
(4)

with Eoi = 1500 DN, r = 13 arcsec, E02 = 500.D7V, a = 1.6 arcsec.

The brightness profiles described by Eqs. 1 to 4 are sketched as solid lines in the upper panels of

Fig. 1 for an elliptical galaxy with constant position angle and mild ellipticity (e = 0.2), and located

in the Virgo cluster. In the same figure, the dashed lines represent the same, but now aberrated,

brightness profiles, derived by convolving the model images with an HST PSF and adding noise.

As can be seen, substantial differences are present in the inner 2 arcsec, the aberrated profile

being lower and flatter than the unaberrated one. As in the case of images blurred by atmospheric

seeing, light is removed from the innermost part of a galaxy and pushed to intermediate radii,

while the surface brightness at large radii remains undisturbed. In contrast with the seeing PSF,

however, the HST PSF is very stable and very accurately known, and this allows the successful use

of deconvolution techniques which are inapplicable in the case of seeing convolved images. The
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Figure 2. Residuals between the deconvolved and expected brightness profiles. The

original brightness profile is given by (A) a de Vaucouleurs law, (B) Hubble law, (C)

exponential, (D) exponential plus a central Gaussian component.
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Figure 3. Residuals between the deconvolved and expected brightness profiles for a

galaxy with e = 0.0, e = 0.2, e = 0.4, e = 0.6.
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Figure 4. Residuals between the deconvolved brightness profiles for an E2 galaxy

obtained with PC PSFs differing in (A) the amount of jitter, (B) the spectral shape of the

stellar component), and (C) the position of the PSF on the chip.

In the same way, we found that the results of deconvolution are not affected by variations of

the major axis position angle (models were built with position angle varying up to 90 degrees in a

4 arcsec range) or by deviations of the isophotes from pure ellipses (models were built with fourth

cosine Fourier coefficient as high as 0.05 in absolute value).

2.3. Dependence on the PSF Shape

Finally, we have studied the effects of small variation in the PSF on the results of deconvolution.

The detailed PSF shape depends on the position on the chip, on the spectral shape of the point

source, and on jitter due to the HST pointing. The following PSFs have been considered:

1. K star, observed on 1 Jan 1993 at chip position (200,200) with mas jitter

2. K star, observed on Jan 1, 1993 at chip position (200,200) with 30 mas jitter

3. O star, observed on Jan 1, 1993 at chip position (200,200) with mas jitter

4. K star, observed on Jan 1, 1993 at chip position (600,600) with mas jitter

Fig. 4 shows the difference between the deconvolved brightness profiles of a model galaxy (de

Vaucouleurs profile, e = 0.2) deconvolved using different PSFs, in particular: Fig. 4A shows the

difference between the brightness profiles obtained by deconvolving with PSF 1 and PSF 2, differing

in the amount of jitter, mas in one case and 30 mas in the second case (30 mas is likely to be

the highest jitter that can occur, at least in fine lock mode); Fig. 4B shows the difference between
the brightness profiles obtained by deconvolving with PSF 1 and PSF 3, differing in the spectral

shape of the point source (K and O stars, respectively); Fig. 4C shows the difference between the

brightness profiles obtained by deconvolving with PSF 1 and PSF 4, differing in the position of the

PSF on the chip.
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The largest errors are due to variations of the PSF with position in the chip (Fig. 4C), which
can cause deviations up to 0.1 magnitudes in the inner 1.5-2 arcsec. The case presented in the
figure is quite extreme, since the two PSFs used have been modeled for positions far apart one from
the other and close to the edge of the chip, where asymmetries in the PSF shape are larger. Our
models shows that if the PSF used for deconvolution is modeled for the position corresponding to

the center of the galaxy, the deconvolved brightness profile deviates from the original by less than
0.05 magnitudes arcsec

-2
, and these deviations are limited in the inner 0.2 arcsec.

3. Conclusions

Our conclusions can be summarized in the following points:

1

.

The aberrated HST PSF modifies the brightness profile of an elliptical galaxy up to 2 arcsec

from the center, in a way which is not sensitive to the exact shape of the brightness profile,

ellipticity, major axis position angle, and small PSF variations.

2. The brightness profile derived from a Richardson-Lucy deconvolved image reproduce the

original brightness profile with accuracy higher than 0.15 magnitudes arcsec
-2

at radii smaller

than 0.2 arcsec, and higher than 0.05 magnitudes arcsec
-2

at larger radii. The performance

of deconvolution is not noticeably affected by the intrinsic shape of the brightness profile nor

by other parameters such as ellipticity, isophotal twist, or deviations of the isophotes from

pure ellipses. In addition, if the PSF used for deconvolution is chosen wisely, i.e., close to

the center of the galaxy, deconvolution is robust against small PSF variations due to jitter,

spectral shape of the point source and position of the PSF on the chip.

3. Studies by van den Bosch et al. (1994) show that more care is needed when deriving the

ellipticity, the major axis position angle, and the deviations of the isophotes from pure

ellipses, especially in the case in which these parameters vary with distance from the center.

In general, it is safe to assume that ellipticity, position angle, and Fourier coefficients are

recovered correctly by Richardson-Lucy deconvolution up to 0.5 arcsec from the galaxy

center.
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Abstract. A modeling approach based on the maximum likelihood method has been

developed to extract quantitative morphological and structural parameter estimates for faint

galaxy images obtained with the Hubble Space Telescope (HST) Wide Field Planetary

Camera (WFPC). We model both the galaxy image and the instrumental characteristics of

the WFPC, including the complex Point Spread Function (PSF), the error in the Analog-to-

Digital Converter (ADC), and the positive noise bias due to faint cosmic rays and undetected

warm pixels. Because convolved galaxy images are compared directly with the observations,

we avoid the need for deconvolution, which is difficult and potentially unstable for faint

images.

1. Introduction

The HST Medium Deep Survey (MDS) Key Project (Griffiths et al. 1992, 1994) includes obser-

vations of a large number of random WFC fields. They are taken in parallel mode, when another

detector is being used on a primary target at a single pointing extending over two or more orbits.

Most of the objects detected are faint galaxy images. For statistical analysis of the large scale struc-

ture of the universe, the survey is generating a catalog of galaxy magnitudes, colors, half light radii,

axis ratios and morphology. In order for this catalog to be well-defined despite the relatively long

span over which the observations have been obtained, and to ensure uniformity in the processing,

we need reliable error estimates for all evaluated parameters to combine information from different

fields, with different integrated exposure times.

In the traditional approach to image analysis, CCD observations are first calibrated to subtract

the bias and dark current and eliminate variations in the detector sensitivity. Bright cosmic rays

are then removed, by stacking multiple observations if available, otherwise by using one of several

algorithms that identify cosmic ray events in the image. Defective pixels may be removed by

interpolation. For HST, the brighter images are then deconvolved to restore the images to the high

resolution of the core of the PSF.

This approach can be very successful when dealing with bright (high signal-to-noise) images.

The result is a cosmetically clean image on which morphological classification and other measure-

ments can be carried out in a non-parametric, model-independent way. However, this procedure

does have some drawbacks when applied to a large sample of galaxies. Some quantities, such

as magnitudes, are very difficult to measure accurately and without bias on deconvolved images;

even for those quantities that can be measured, the error distribution is distorted and probably non-

Gaussian. Intercomparison of galaxy properties does require, implicitly or explicitly, the adoption

of a model. The primary disadvantage is that deconvolution of faint images is likely to be unstable

(Schade and Elson 1993).

In the alternative approach described below we assume a simple parametrized model for the

galaxy image and transform it to the observed domain. Parameters used in the model definition

are then estimated by maximizing the likelihood function, which is the probability of obtaining

each observed image for any set of galaxy parameters. Tests of the procedure on simulated galaxy
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images show that derived model parameters and their error estimates are unbiased. The likelihood

ratio between fits to different types of models can be used for a coarse morphological classification.

2. Model Fitting

The properties of an ensemble of faint galaxies can be defined by the distribution of the parameters

of the models that best fit each individual object. This is only practical for faint images if the

number of adjustable parameters to be fitted is kept to a minimum; a possible initial set would
include total magnitude, half-light radius, ellipticity, orientation and centroid position. For brighter

images, where more signal is available, we can fit additional shape parameters, such as bulge-to-

disk ratio. The model also includes instrumental parameters, such as the sky background (estimated

locally) and amplitude of the noise. The PSF and the distribution of faint cosmic rays are measured

separately. It should be pointed out that the modelling approach for extended objects is relatively

insensitive to small-scale errors in the description of the PSF.

For any set of model parameters, a smooth galaxy image is generated and convolved with the

expected PSF. The expected sky brightness is added and the image is multiplied by the detector

sensitivity (flat field). The probability of the observed value is then computed for each pixel using

the adopted error distribution. Since the parameters are estimated as the maximum likelihood

model that fit the observations, we can ignore defective pixels without any need to interpolate

them. The likelihood function is defined as the sum of the natural logarithm of the probability

for individual pixels, including both galaxy pixels and neighboring sky pixels (in fact, pixels do

not have to be separated into 'galaxy' and 'sky'). For a Gaussian error distribution, the likelihood

function is proportional to the \
2 of the distribution; however, the method allows for a different error

distribution can be used, to take into account both the uneven probability distribution of different

data numbers due to the ADC error, and the wide positive tail due to faint cosmic rays and warm

pixels.

The choice ofmodels is based on standard galaxy models and include an exponential disk and an

r
l /4 law. Because the method involves a non-linear optimization, the choice of initial guesses for the

parameters is quite important; we generally use initial values estimated from moments of the image,

as well as the results of the deconvolution if available. Optimization uses the Numerical Algorithm

for Maximum Likelihood Estimation (NAMaLiE) developed by Ratnatunga and Casertano (1991).

The information on errors of the estimated parameters and their correlation can be obtained from

the covariance matrix, which is the inverse of the Hessian (matrix of second order derivatives) at the

peak of the likelihood function. Extensive numerical simulations have shown that both parameter

estimates and their errors are unbiased.

This approach also requires an error map for the calibrated image, which is not generated by

the current HST WFPC pipeline calibration. We use a simple noise model to estimate the rms noise

in each pixel. Special consideration must be given to noise in the calibration images (bias, dark and

flat field), which, unlike image noise, does not decrease as multiple exposures are stacked together,

unless the exposures are shifted with respect to one another. In some cases involving multiple

exposures, the noise could be estimated from the internal scatter between individual exposures, plus

the contribution of the calibration files.

The contribution of faint cosmic rays to the noise is found to be described adequately by a

Weibull distribution with power law index of 0.25; convolved with a Gaussian distribution for shot

and read noise, this is a good representation for the total 'noise' distribution over the full range

in data numbers. The two additional parameters required to describe the distribution of cosmic

rays are derived from a single fit for the whole CCD, and therefore do not increase the number of

parameters to be fitted for each image. Empirically, the scatter between different exposures is found

to be small.
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3. Simulations

The galaxy models that have been extensively tested include an exponential law, meant to represent

a disk galaxy, and an r
1 /4 law, representing ellipticals. Both are fully described by six adjustable

parameters: total magnitude, half-light radius, axis ratio, position angle, and the coordinates of the

center. When both fits are performed on a simulated image of either kind, the value of the likelihood

function is very effective in choosing the "right" model down to typical magnitudes of V = 23 or

I = 22 with a single-orbit WFPC exposure, and about one magnitude fainter with the expected

parameters for WFPC 2 observations (see Table 1). (Six orbits are required to reach one magnitude

fainter with either camera.)

Fits can be successfully performed for fainter galaxies, but at one magnitude fainter than the

value in Table 1, the ability to discriminate between models is substantially impaired, and therefore

the fitted half-light radius may be biased by the model adopted. Not surprisingly, the bias is smaller

than the error in the estimated parameters.

Table 1 . Magnitude limits for classification of faint galaxies (single HST orbit).

Detector Filter Exp. Time Sky Mag. Lim. Mag.

WFC
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We should also point out that a key ingredient in achieving our limited success on actual data

has been the improved calibration of WFC images, optimized for the quantitative analysis of faint

images. The details are reported in Ratnatunga et al. (1994).
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Abstract. Power spectral analysis (PSA) has proven to be an important tool for high

spatial resolution measurements from ground based interferometry. It is particularly useful

for parameter estimation of stellar diameters, binary separations, and stellar asymmetries.

While many images from HST are far too complicated for PSA, there are a class of scientific

problems for which it is a very effective technique for handling the problems created by the

HST point spread function. We have been applying PSA to images of gravitationally lensed

QSOs, and other objects with some surprising results.

1. Introduction

Power spectral analysis (PSA) has long been used for parameter estimation from interferometric

data. It is particularly useful when only a few parameters are to be obtained from an image, such

as the estimate of stellar diameters, or the measurement of binary separations, intensity ratios and

position angles. For example, PSA was used to measure the diameter of the debris from the explosion

of SN1987a (Karovska et al. 1991) and estimate the asymmetry in the envelope (Papaliolios et al.

1989) from speckle data recorded over a three year period. Despite the very limited SNR in the

data, accurate measurements were obtained from the time when the envelope was only a few milli-

arcseconds in diameter, until it was over 40 mas. PSA has also been extremely useful for rapid

screening of images to detect duplicity or asymmetries, where the images are complicated by a

complex point spread function (as is the case for the atmospheric PSF or the HST PSF). We have

applied PSA to a number of different parameter estimation problems from HST WF/PC and FOC
image data. In this paper, we will describe our approach to applying PSA and a show an example

of its use with WF/PC images of gravitationally lensed QSOs.

2. Power Spectral Analysis

The first step in PSA is to Fourier transform the image I(x, y) and calculate the square modulus of

the FT to generate the power spectrum, p(u, v). So,

p(u,v)=\FT[I(x,y)]\ 2
. (1)

Here FT denotes the Fourier transform. The power spectrum generally has a very wide dynamic

range so we rescale it for display with the following operations. First, to reduce the level of the DC
component we reset it to equal the value of an adjacent frequency:

p(l,l) = p(l,2). (2)

Next, we rearrange the power spectrum quadrant by quadrant so that the zero frequency is in the

center of the array, the 1st quadrant is in the upper right, the second in the upper left, etc. Then we
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rescale the array to have values from 1.0 to 10.0 and take the base 10 logarithm, so the final array

used for display, Pd(u, v) has the form

( n p(u,v) — min(p(u,v)) \

w(ti,p) = iog(9 F
) ;

;
..—

/ \ \\ + l
)

3
V max(p(u, V)) - mm(p(u, v)) J

where min and max are the minimum and maximum of the arrays, respectively.

Display of this rescaled array with a false color display program such as SAOIMAGE or IDL
allows observation of a range of sometimes subtle effects which relate to high resolution detail

in the image. Working in frequency space has the advantage that the smallest scale features in

the image are the largest scale in the power spectrum, so close binaries or image elongation may

be immediately obvious in the display. Conversely, the large scale features in the image, the

nonuniform background and the extensive wings in the point spread function affect mostly the low

frequency region of the power spectrum, so they can be ignored in the inspection process.

An important application of PSA is to detect and characterize binary images. The power

spectrum for a binary is just a cosine function whose frequency is proportional to the binary

separation, whose modulation is related to the relative intensity of the two components, and whose

fringes are perpendicular to the position angle of the binary. Since close binaries give widely

spaced fringes, it is easy to fit the fringes to obtain these three parameters. After determining the

position angle, one can average the power spectrum in a direction perpendicular to the direction of

the fringes, increasing the SNR for the fit and reducing the fit to a one-dimensional operation. This

allows accurate measurement even for low SNR data.

For resolved objects, one can fit other simple models to extract diameters. For example, the

power spectrum of a disk just has the form
|
J2 \(r)/r

2
|
and this may be modified to account for

a limb-darkening function. If just the diameter of the object is of interest, one can azimuthally

average the power spectrum into an array of increasing radius annuli, increasing the SNR for the fit.

For asymmetric objects, one can fit an elliptical function to the power spectrum, giving two more

extracted parameters (the ratio of minor to major axes of the ellipse, and its position angle).

In all cases, one can restrict the range of frequencies to which the fit is applied. Specifically,

one excludes the very lowest frequencies where the large scale nonuniformities in the image have

the greatest effect, and one limits the fit to a frequency range where the SNR is sufficiently high.

In all cases, calibration of the fits are required by fitting to power spectra of unresolved stars with

roughly the same SNR and from a relatively close field position. One can also use PSFs from a

program such as Tiny TIM for this calibration, though using both is probably the safest option.

Again, because one is doing a global fit, the detailed two-dimensional structure in the PSF, which

is still poorly known, is not nearly as important as it is for image deconvolution.

Another operation that proves to be useful for many objects is to apply a spatial filter to the

image before generating the power spectrum. One can perform a range of operations including

simple extraction of regions of interest, subtraction of background, removal of cosmic rays, etc.

These operations need to be performed very carefully to minimize their effect on measurements

made in the power spectra.

Another interesting feature of PSA is that one can use it to detect resolved structure on scales

small compared to the telescope diffraction limit and the camera sampling limit. The telescope

diffraction limit is the frequency at which the telescope aperture transfer function drops to zero.

However, objects which are somewhat smaller than the diffraction limit, or binaries with separations

less than the diffraction limit, show significant drops in power in the high frequency region of their

power spectra as compared to truly unresolved objects. Therefore, while the HST diffraction limit

in the visible is only 40 mas (and the PC sampling limit is only 86 mas) stellar diameters and binary

separations to a few mas could be estimated from high enough SNR data.
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3. Results

We have been applying PSA to a number of scientific problems with some substantial success.

We have been using it to analyze PC images of known gravitational lenses and QSOs which are

candidates for lensing (Falco 1993). One inspects the power spectra for unusual features such as

unexpected asymmetries or unusually rapid falloff at high frequencies. It is very easy to quickly
assess whether any of the candidate QSOs have close companions by looking for fringes in the

power spectra. Our greatest success to date has been in analyzing PC images taken on a known
gravitationally lensed system, Q0142-100, which has a bright image to the west and a fainter image
to the east. The lensing galaxy has been detected from ground based images (Surdej et al. 1988)

and models for the system were generated by the same group. Examination of the power spectra

from the PC images reveals that, in fact, the brighter image is actually double, more or less in a

radial direction from the weaker image.

Fig. 1 plots the higher contours of the PC image of 0142 in the upper left, and its power

spectrum in the upper right. For comparison, the image of a star is shown in the lower left and

its power spectrum is in the lower right. The power spectrum of 0142 shows fine fringes which

are about 15° from horizontal, due to the widely separated pair of lensed images. It also has a

highly elongated envelope to the fringes which is characteristic of a close binary. In comparison,

the stellar power spectrum is much more symmetric, particularly at high frequencies. If we fit the

envelope of the power spectrum with a binary model, we find that best fit gives a separation of the

two components of 1 .3 PC pixels or about 58 mas. Since this separation is too close to actually

resolve the two components in the image, one would not know whether this was an elongation of

the object or a truly separated binary image. However, gravitational lens optics require it to produce

two separated images rather than an elongated image. Surdej et al. (1988) have generated different

models of the system which depend on the exact superposition of the lensing galaxy and the QSO.

One model generates only two images, another breaks the bright image into separate tangential

images, while a third gives radial components for the bright image. Our detection should precisely

proscribe the system geometry. The fit also gives a relative intensity of the two components as 5 to

4. Due to the centro-symmetry of power spectra, it is not possible to tell which component is the

brighter. However, this can be ascertained from the image, as described below.

Fig. 2 shows cuts through the 0142 and field star power spectra. The upper two curves are x-y

cuts through the star power spectra, showing no obvious asymmetry between two directions. The

lower two curves are cuts through the 0142 power spectrum. The lowest curve is across the fringe

and the higher curve is along the fringe. The strong asymmetry is obvious.

We have also gone back to the image and subtracted the PC PSF generated by Tiny TIM for

that position, with alignment between the brightest pixel of 0142 and the PSF. There is a strong

residual, somewhat fainter peak to the west of the brighter peak, presumably corresponding to the

second component. A surface plot of the residual peak after subtraction is shown in Fig. 3. A
similar subtraction from the field star results in much smaller residuals.

Better PSF modeling is needed to get really accurate fitting in the image. However, earlier

attempts at detection of close companions using standard point source fitting routines (before it was

found from the power spectrum) did not find this peak. Knowing exactly where to look from the

power spectra makes the point source fitting much easier. This extremely close pair of images would

have only a few days time delay between the optical paths, so if the QSO varies in brightness and

regular observations were made, it could be an ideal candidate for making time delay measurements

in order to calibrate the extra-galactic distance scale. One would expect that the relative brightness

of the two components of the bright source would vary with time and cross-correlating the separate

brightness variations would allow extraction of the time delay.

We are currently analyzing the data for a number of other lens systems and lens candidates.

We hope to be able to use PSA for measuring the shape and position of lensing galaxies, for the

detection of additional components, and for possible detection of structure associated with the QSO.
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Figure 2. Cuts through Q0142-100 (lower curves) and field star (upper curves.

Figure 3. Residual image after subtraction of PSF from Q0142-100 image
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4. Summary

Power Spectral Analysis could be an important tool for detecting and measuring a range of high

spatial resolution features in HST images. It is particularly useful for the detection of close binaries,

stellar asymmetries, and object diameters. Precise fitting to power spectra allows extraction of

information and scales small compared to the sampling limit or even the telescope diffraction limit.

Extraction of sub-regions of images would allow its use even for complicated objects like globular

clusters. We have applied the technique to the analysis of gravitationally lensed QSOs and shown

that some important scientific results can be obtained with it. A number of other scientific projects

for which it would be useful include tracking the expanding nebula in SN1987a, detection of close

binaries in globular clusters, and search for asymmetries in giant and supergiant stars.

Acknowledgments. This work was carried out with partial support from NASA grant NAGW-
3577.

References

Falco, E. E. 1993, in Gravitational Lenses in the Universe, 31st Liege International Astrophysics

Colloquium, J. Surdej, D. Fraipont-Caro, E. Gosset, S. Refsdal, & M. Remy, eds., Universite

de Liege, Liege, 127

Karovska, M., Koechlin, L., Nisenson, P. Papaliolios, C. & Standley, C. 1989 ApJ, 340, 435

Papaliolios, C., Karovska, M., Koechlin, L., Nisenson, P., Standley, C., & Heathcote, S. 1989,

Nature, 338, 565



The Restoration ofHST Images and Spectra II

Space Telescope Science Institute. 1994
R. J. Hanisch and R. L. White, eds.

Cramer-Rao Bound— Accuracy of HST Image Restoration

R. A. Gonsalves, T. S. Zaccheo, and S. M. Ebstein

Department ofElectrical Engineering, Tufts University, Medford, MA 02155

P. Nisenson

Centerfor Astrophysics, Cambridge, MA 02128

Abstract. The Cramer-Rao bound is an analytical expression that describes the minimum
obtainable mean square error associated with a given estimate of a parameter. This paper
presents a compact and simple form of the bound for restoration techniques such as an

inverse or a Wiener filter estimate. We present both 1-D and 2-D examples.

1. Introduction

The Cramer-Rao (CR) bound is an analytical expression that can be used to assign a lower limit to

the minimum obtainable mean square error (MSE) associated with an estimate, 3, of an unknown
object, a. In our formulation a is a vector of parameters and usually represents the unknown
intensities of a 2-D object. The bound can be used for any restoration technique such as a Wiener

filter estimate or an iterative algorithm like the conjugate gradient or Richardson-Lucy, provided

certain statistics are known.

To calculate the bound one must know the probability density function (PDF) of the observed

data, d, given a, namely, p(d|a), and the bias of the estimate. Typically, p(d|a) is Gaussian,

Poisson, or some combination of both. In this paper we present results only for the Poisson case.

The "given a" assumption and the calculation of the bias are the source of two problems which we
address in this paper.

Regarding the bias, we can usually calculate it for an estimate which is linear in the data, i.e.,

for estimates such as the inverse or Wiener filter. If the estimate is nonlinear in the data, the bias

may be difficult to calculate.

Regarding the assumption that a is known, we assert that, of course, a is not known. Otherwise

we would not want to estimate it. We provide calculations for the two obvious extremes: we
calculate the bound as though a were indeed known, just to check the analyses; then we calculate

the bound using the estimate a, as though it were the true value of a. The latter approach provides a

recipe for calculation of the bound in real estimation problems: one makes the estimate, then puts

that estimate into an algorithm which calculates the bound.

2. The Cramer-Rao Bound

Analytic expressions for the Cramer-Rao bound are well known. The developments appear in texts

such as Van Trees (1968), Whalen (1971), Kendall and Stuart (1973) and Snyder (1975). For the

one-parameter problem where a is to be estimated by an unbiased estimate, a, the simplest possible

case, the CR bound is

£{(a-a) 2}> \/E{(dL/da) 2
}, (1)

where

L = /n(p(d|a)) (2)
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and E{ } denotes a statistical average over what is random in d. The left side of (1) is the mean
square error for the estimate and the right side is the bound. No estimate for a can have a mean
square error smaller than the bound.

From (1) we observe the following regarding changes in a: if the PDF change is large the error

will be small; if, however, the PDF change is small the error is large. The CR bound estimates the

sensitivity of the data to changes in a.

The multi-parameter, biased estimate requires calculation of the Fisher information matrix, F,

a bias vector, b, and a correlation matrix C. They are defined by the elements

Fij = E<
q q

} , bi = E{a,i} - a { and Ctj

dEfa}
(3)

daj

Then the CR bound on dj is the j
th diagonal of the matrix R:

R = CF- 1 Cr + bbT . (4)

The right hand matrix CF_1CT is commonly referred to as the "variance-covariance matrix"

(Bury 1976).

3. CR Bound for Poisson Statistics

We model the data, d, as a set of independent, Poisson random variables with rate vector g given by

g = Pa, (5)

where P is a distortion matrix. The PDF of d, given a, is

rf-w-n-af- (6)

and the F matrix has elements
N
V-* PkiPkj ,-,\

h 9k

If we define a diagonal matrix Y with diagonal elements l/gk, F is

F = PTYP, (8)

with inverse

F- 1 = QTY-'Q, (9)

where Y _1
is a diagonal matrix with elements gk and Q is the inverse of P.

To evaluate Q, and F_1
, we assume that P is a block circulant matrix, as would be the case if

P represents a convolution of the object with a point response function and if we neglect the end

effects. In this case Q is also a block circulant matrix and can be evaluated with Fourier techniques.

We are working towards the evaluation of Eq. (4). In the case where a is an unbiased estimate,

b is zero and the matrix C is an identity. Then R = F 1 and the CR bound on a is a vector with

elements

e? = Y,(Q*i)
2
9k- (10)

k

This is also a convolution-like operation, but with the sum over index k, it is actually a correlation

operation.
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This equation provides a simple prescription for obtaining the bound associated with an

unbiased estimator such as the inverse filter. Construct the inverse filter, square its elements in the

spatial domain, and convolve the transpose of the resulting function with g. The only problem with

this approach is that g is unknown. However, reasonable approximations can be obtained by using

an estimate based on a.

If the estimate a is biased and is given by

a = Wd, (11)

where W is any block circulant matrix, then we can show that

k

The recipe for ej is modified by the addition of the squared bias term and by the substitution of the

filter Wk x
for the inverse filter Q ki-

ln our examples we use a Wiener filter described in the spatial frequency domain by

w{")=
ipmP-m '

(,3)

where P(u>) is the Fourier transform of the point spread function, normalized to unit area, and z a

noise control parameter.

4. 1-D Example

Fig. 1 (a) shows an input object, a, containing two pulses, each shaped by (350,700,350) counts

in a background of 20 counts. This is convolved with the point spread function (PSF) p shown in

(b). The observable data, d, is Poisson, driven by the rate vector g, the convolution of a with p. A
typical realization is shown in (c).

Fig. 1 (d), (e) and (f) are estimates of a for an inverse filter, a Wiener filter, and the Richardson-

Lucy (RL) algorithm. The noise control parameter in the Wiener filter was chosen to yield approx-

imately the same bias (in the peaks) as the RL algorithm.

Fig. 2 shows the sample mean and RMSE (square root of the MSE) for 100 trials of the

three estimation procedures. It also shows the CR bound calculations for the inverse and Wiener

estimates. On the left are the sample means. We see that the inverse estimate is unbiased and that

both the Wiener and RL estimates underestimate the peaks by about 20%. The latter two are biased

estimates.

On the right are the sample RMSE's and two of the bounds. The bounds are smooth. We see

that the bounds for the inverse and for the Wiener estimates closely match the sample RMSE's.

This provides verification that the CR bounds are useful.

We present no bound for the RL algorithm because we do not know an analytic form for the

bias. We note the general superiority of the RL estimate, which is known to be optimal for Poisson

statistics. The RMSE is considerably smaller and the bias is about the same as the Wiener filter

estimate.

Finally we address the (inappropriate) use of a in calculating the bound. Of course, a is

unknown. We are compelled to use the estimate, a, of a in the calculation and this leads to errors. In

Fig. 3 we show the effect. On the left is the bound for a known; on the right is the bound calculated

for a single estimate, a. The latter has the general shape and amplitude of the former. We have not

yet analyzed the differences. However, the bound on the right, which is actually calculable, seems

to be useful.
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5. 2-D Example

Fig. 4 (a) is a ground-truth object, a, and (b) is a data image, d. It is a, convolved with a ST Scl-

supplied PSF, p, and corrupted with Poisson noise. The max and min of d are 14,847 and 23.

Fig. 4(c) shows a Wiener filter estimate, a, with z = 0.005. Fig. 4(d) shows the CR bound on the

estimate. It was calculated based on the estimate, a, not on the ground-truth image, a.

Fig. 5 shows two 1-D cuts through the images and bounds. On the left are the sample RMSE's
for 50 trials of the estimate. On the right is the CR bound for the first trial, based on the first

estimate. We see that the bound does indeed provide a reasonable estimate for the MSE associated

with the estimate.

6. Summary

We have presented a recipe for approximating the MSE associated with an estimate of an object

based on blurred, Poisson data. We give an explicit formula , Eq. (12), for the bound when the bias

in the estimate is known, as is the case with a Wiener filter estimate.

When the bias for an estimate, b, is unknown we can only suggest an approach. The suggestion

is to find a Wiener filter estimate which yields the same residual noise power in data space as b,

averaged over a local region. The composite Wiener-based bound may be a reasonable approxi-

mation to the exact calculation which requires knowledge of the bias. We intend to pursue this

suggestion in future work; and to pursue a direct calculation of the analytic form of the bias for the

RL algorithm, based on the residual error in data space.
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Figure 4. Two dimensional example. (A) Image of M51 obtained from ST Scl. (B)

Blurred image corrupted by Poisson noise. (C) Typical Wiener estimate. (D) Cramer-Rao

bound estimated from a single restoration.
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Figure 5. Sample RMSE for 50 trials and CR bound for a Wiener filter estimate; for

two slices through the estimate. (A and C) Sample RMSE. (B and D) Corresponding

bounds estimated from one trial.
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Abstract. Simulations of a distant cluster of galaxies at z>2 are presented for the HST
cameras COSTAR-corrected FOC, WFPC II, the Advanced Camera, and for an adaptive

optics system that may equip a future 8-meter class telescope. Except for the FOC and PC
II, the faint objects are detected in 200 minutes, with identifiable morphological types. The
Advanced Camera offers the biggest advantages due to its large field, great sensitivity, and
high angular resolution.

1. New Generation Instruments

The first generation of imaging cameras FOC, WFPC I, and spectrographs FOS and GHRS suffer

presently from OTA spherical aberration at the primary mirror. After the Servicing Repair Mission

of December 1993 and the installation of the corrector system COSTAR, HST should become

diffraction limited at wavelengths throughout the visible spectrum.

The second generation wide-field CCD camera WFPC II has essentially the same field of view

(FOV) and pixel size as WFPC I with an overall improved efficiency due to the lower read noise,

improved charge transfer efficiency, and intrinsically uniform and stable flat field. The other second

generation instruments, to be installed in the mid-90's, are the infrared imaging camera NICMOS
and the imaging spectrograph STIS.

Finally, a third generation imaging instrument, the Advanced Camera (AC), is being proposed

for operation around 1999 to replace the existing cameras, and to offer the benefits of new technolo-

gies— megasize CCD arrays of high sensitivity from UV to near IR wavelengths. Towards the end

of this decade, very large aperture (8 to 10 meter) ground-based telescopes will become available,

working with active and/or adaptive optics systems that correct some of the image blur caused by

atmospheric distortion. In this paper, we examine how these advanced instruments compare for the

imaging of large extended faint objects.

2. Simulation of a Distant Cluster of Normal Galaxies

We have simulated the observations of a very distant cluster of galaxies at high redshift. Distant

clusters of galaxies probe the evolution of galaxies and the large scale structure of the Universe at

early epochs. The studies of clusters of galaxies at large redshifts will be important with the new
generation instruments since detailed studies of the morphological composition of clusters and the

evolution with look-back time of low surface brightness distant objects will be feasible.

The simulations are made for the HST instruments FOC, WFPC II, and the Advanced Camera,

and for an 8-m telescope on the ground equipped with adaptive optics. The characteristics of

the cameras and detectors are summarized in Table 1 . A comparison of the fields of view of

post-COSTAR HST imaging instruments with the Advanced Camera (AC) and the ground-based

adaptive optics camera (AO) is shown in Fig. 1 superimposed on the noise-free cluster simulation.
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Table 1 . Instrumental parameters used in the simulations.

Camera



354 Caulet & Freudling

DQE, angular resolution, and telescope aperture. Finally these simulated observations represent 5

coadded exposures of 40 minutes each.

PSF For the HST instruments, the PSFs were modelled using TINYTTM. The PSF for the center

of the CCD was used in all cases. The PSF of the AC was assumed to be identical to the WFPC II

PSF scaled by the pixel size ratio of the cameras (AC/WFPC II). For the adaptive optics camera, we
have assumed an 8-m diffraction-limited core containing 20% of the flux, and a seeing-limited halo

containing the rest. This AO PSF is modelled by the sum of two Gaussians: one narrow, high peak

for the core, and one wide, low peak for the halo. A (very) good seeing of 073 was assumed. This

PSF is probably overly optimistic in the wavelength region considered here. The realization of such

a diffraction-limited PSF with adaptive optics is currently anticipated only for the infrared domain.

Convolution with the original images was done using DCON, a FFT based fast image convo-

lution task under IRAF provided by Richard Hook (1993).

Noise Poisson noise was added to the images using the task MKNOISE. The same task also added

read noise appropriate for 5 co-added exposures (Table 1).

2.2. Comparison of the Simulations

The simulated observations are presented in the figures. Fig. 1 shows the whole field before PSF
convolution. Fig. 2 (panels a-d) are the simulations obtained for WFPC II and for the AC, while

Fig. 2 (panels e-f) show the simulations for the AO field. Simulations for FOC (not shown) show

only noise for this distant cluster. For the large spiral seen in the field, the signal-to-noise ratio,

averaged over 071 x 071 around the peak is < S/N >= 4 for the AC image (2x2 pixels), 0.6 for

the AO image (20x20 pixels), 2.2 for the WFC II image (1 pixel) and 1.2 for the PC II (2x2 pixels).

However, because of the high resolving power of the AO camera in the PSF core, S/N is effectively

much higher near the object center, and an extended low surface brigthness spiral can be recognized

in the adaptive optics image, whereas it looks like noise in the PC frame. This work shows the

advantage of the AC camera over the other instruments. WFC I would also have detected this high

redshift cluster with a lower S/N, but the aberrated PSF makes the morphological identification

questionable (Freudling and Caulet 1993).

3. Conclusions

The comparisons of the simulatedWFPC II and AC observations with the 8-m telescope observations

show that, even with the assumption of very good conditions and an advanced state of adaptive

optics technology on an 8-m class telescope, HST is still very competive for the observations of

faint, extended objects. We did not use any image restoration for the simulated adaptive optics

observations because the simulated cluster is too faint to benefit from such attempts. Because of

the intrinsic FOV limitations of adaptive optics from the ground which are difficult to overcome by

technological advances, the AC will have a unique capability of large FOV, high resolution deep

imaging. Observations of high-redshift clusters are just one example of science programs which will

be possible only with the HST, independent on the rate of progress in adaptive optics technology.
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Figure 1. Simulation of a distant cluster of galaxies. The fields of view of the HST
cameras are represented before PSF convolution.
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Figure 2. Simulations obtained for WFC II, PC II, the Advanced Camera, and the

ground-based adaptive optics system. Only 1000 x 1000 pixels are shown here for the

AC (e.g., the field within the dashed outline of Fig. 1). The PC II insert in frame a) has

its intensity scaled by the square of the WFC/PC pixel size ratio (4.7). The enlargments

of the image sections (boxes, left-hand column) in the right column have an image scale

inversely proportional to the actual pixel size in milliarcsec, with the PC insert being

magnified by a factor of ~ 2. The spiral mentioned in the text is seen towards the bottom

right of frames b), d) and e).
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Abstract. I review various regimes in which deconvolution is and is not the technique of
choice for analysis of HST images. The difficulty of getting adequately deconvolved images
depends largely on required angular field, attainable signal-to-noise, and the dynamic range

of the target; this last factor limits many interesting investigations in the presence of spherical

aberration, exacerbating noise amplification and uncertain knowledge of the point-spread

function. Photometric validation issues are also important; real data are used to show how
well completely different approaches agree on the intensity profiles of faint galaxies.

Some examples of scientific results in the realm of galaxy structure and evolution

are given, which have required deconvolved data. Some highlight are disk structures near

galactic nuclei, fine structure in synchrotron jets, morphological evolution of medium- and

high-redshift galaxies, and significant galaxy merging at moderate redshifts. An additional

set of results has been greatly aided by deconvolution, including study of concentrated cores

in galaxies and structural parameters of faint galaxies.

1. Introduction

Many of the presentations at this workshop have, quite properly, centered on problems in image

restoration — mathematical underpinnings of algorithms, proper image bases for reconstruction,

biases in measurement from deconvolved images. These might leave a depressing view of the

prospects for getting scientific results from deconvolution, but the opposite is more nearly the case.

I will review here some experience as to when image restoration is the right tool for the job, and

describe some of the significant science that has come from analysis of deconvolved HST imagery.

Deconvolution is clearly a powerful analysis tool. The astronomical community's experience

with HST and IRAS data has started to spread expertise in use of deconvolution techniques beyond

its traditional base in aperture synthesis, and is leading to a more sophisticated view of data and

measurement than was needed to interpret images blurred by the nearly Gaussian PSF of long-

exposure images from the ground. In retrospect, we made it so long without them because eye,

brain, and mathematics can deal with this Gaussian-like PSF very naturally; in many cases, we
didn't even realize what visual processing was going on! Deconvolution algorithms are especially

potent for astronomers as part of a software toolkit including image modelling, convolution, noise

tracking, and measurement routines.

2. Practical Validation of Results

A major question in the minds of most astronomical users was discussed by Ivan King at this

workshop — the issue of validation of the output from deconvolution. Astronomers are deeply

concerned not only about morphology but with photometric integrity. It is of limited use to

accurately distinguish thousands of stars in a restored cluster image if the positions and intensities

are subject to unknown biases produced by the reconstruction procedures. Several presentation

here have dealt with photometric issues for stellar images. For regimes useful in analyzing galaxy

structure, existing techniques already yield sufficient accuracy to learn interesting and otherwise
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inaccessible parameters. Fig. 1 shows an example of cross-validation, using data taken from Keel
& Windhorst (1993). The image is of the faint radio galaxy 53W044 at redshift z = 0.311. The
surface-brightness profile along the local major axis has been evaluated in three quite different

ways. Direct measurements were made on deconvolved images, one made using the STSDAS
implementation of the Lucy-Richardson algorithm run to x

2 = 1. and the other using a hybrid
CLEAN with noise model. The CLEAN result was constrained to have a resolution equal to the

Nyquist limit for sampling in the WFC, and the Lucy-Richardson result is demonstrably very close

to the same effective resolution. For galaxies with smooth, symmetric structure, modelling allows

an independent comparison. In this case, a family of models with various bulge:disk intensity ratio,

and scale lengths for bulge and disk components, was generated and convolved with the empirical

PSF (from a foreground star projected 5 arcseconds away). The model from this family that fit

best in a x
2 sense was numerically realized and measured in the same way as the deconvolved

images. All three surface-brightness profiles track to within a few per cent at all radii over a

dynamic range exceeding 100:1 (5 magnitudes). The three techniques could scarcely have more
different basic principles and sensitivity to details of application, so this treatment is an empirical

demonstration that HST, in its aberrated state, can deliver reliable surface-brightness profiles for

galaxies at substantial redshifts; this means that we can do reliable quantitative studies of galaxy

morphology.

The two-dimensional galaxy modelling used in this validation exercise introduces a crucial

issue. When is deconvolution the analysis tool of choice, and just as important, when is it the wrong

tool? Frequently, the science we seek is not directly in the image, however crisp. In imaging a star

cluster, the desired result may be a Hertzsprung-Russell diagram; in observing the inner regions

of an elliptical galaxy, the goal may be a high-resolution azimuthally averaged intensity profile.

Problems of this kind, where the astrophysical background gives us strong a priori knowledge of the

size or shape of the target objects, lend themselves to modelling and direct comparison with data in

the observed domain, thus avoiding any possible biases from deconvolution. Specific tools for these

applications exist, both for stars (Stetson 1994) and galaxies (Keel & Windhorst 1993, Windhorst

et al. 1993b, Ratnatunga 1994). However, there are many problems for which the universe is not so

cooperative: the targets may have unknown or complex structure. In these cases, deconvolution is

the only way to retrieve a faithful representation of the object's properties. It may be the only way

to match measurements made with various instruments. As a concrete example, if we observe some

galaxy with a small aperture and the FOS, the only way to find what fraction of the galaxy's total light

was included if an HST image is available involved deconvolving the image and reconvolving with

a PSF appropriate to the wavelength range observed spectroscopically. Finally, producing faithful

images for public release is not a trivial need, for use in education and in letting the taxpayers know
they're still getting something for their money.

In seeing how different investigators use or avoid deconvolution algorithms, and in the choice

for various problems, one can see some philosophical differences in how the results are approached,

and what deconvolution is supposed to do. Some users see it as an operation on the data, approxi-

mating what would have been seen with a more favorable PSF, including noise and artifacts so that

the quality of the processed data is immediately apparent. Other users want to go straight to "truth",

and want to see a best-estimate model for the object with noise suppressed as irrelevant. Algorithms

are certainly available to do both, and cases in between as well.

Before discussing specific science results, it is useful consider various regimes of deconvolu-

tion, where its practice may be affected by angular extent (in choice of instrument, mode, sampling,

and extent of PSF changes) and signal-to-noise ratio (controlling the available dynamic range). For

example, a planetary image with a good PSF needs only Fourier reconstruction (Cunningham &
Anthony 1993; note that their reconstruction tests used only a space-invariant PSF and are thus

applicable only to small objects), while this is completely unacceptable in noise properties for faint

galaxies. As size increases and S/N drops, the degree of difficulty (measured in computational

expense, investigator's time, trouble with subtle instrumental effects, and perhaps number of false

starts) grows. Contrast issues are also important in determining which classes of problems are

amenable to deconvolution. Fig. 2 shows where some well-known observations fall in these terms.
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The faint-galaxy results I will stress fall across the bottom in this diagram, which makes them
relatively forgiving subjects for restoration; the dynamic range is limited by signal-to-noise ratio

rather than PSF errors or sampling.

3. HST Science: Structure and Evolution of Galaxies

This could easily be a shopping list of HST's greatest hits. I will exercise the reviewer's arbitrary

prerogative to limit the discussion to a field of particular interest where deconvolved images have
had a profound impact, the structure and evolution of galaxies. This has been effective ground for

deconvolution, because many targets have less contrast than, say, QSO host galaxies, and we are

limited by S/N before PSF uncertainties or algorithmic problems. Many of these results require

restoration only to the Nyquist limit ofWFC sampling, sidestepping issues of undersampling.

There are many results that have required deconvolution, things we simply wouldn't know
without this capability. The discussion moves roughly in order of typical distance.

3.1. Galactic Nuclei

These regions have proven fertile ground for imaging and deconvolution, being strongly condensed

and bright. Numerous surprises have appeared in such images, especially of active nuclei.

It has long been suspected that active galactic nuclei are driven by central massive objects

(massive black holes) surrounded by accretion disks, sometimes with jets arising along the rotation

axis of the accretion disk. In the radio galaxies NGC 4261 and 3C 449 (Jaffe & Ford 1993), HST
images have revealed dark disklike structures around the nuclei, oriented perpendicular to twin jets

seen at centimeter wavelengths. These structures have characteristic dimensions of parsecs, much
too large to be the accretion disks responsible for the emission properties of these nuclei and mass

loss into the putative black holes, but may represent material which has already settled into orbits

aligned with the yet-unseen inner disk.

Most active galactic nuclei fall into two types, classified on the basis of their emission-line

spectra. Broad-line objects have emission from gas at a wide range of velocities, covering in the

most extreme cases a range 0.1c, while narrow-line objects show similar ionization and energy-input

requirements but show only emission from lower-density gas with characteristic velocity of a few

hundred km s
_1

(which is also often present in broad-line objects). An important breakthrough was

the recognition, driven by polarimetry, that some narrow-line active nuclei possess a dense inner

broad-line region that is blocked from our line of sight, but seen by (polarized) scattered light (as

reviewed by Antonucci 1993). This can fit nicely with an accretion-disk picture if the scattering

region is a thick disk aligned with (perhaps outside) the accretion disk proper. Early PC observations

of the nearby Seyfert galaxy NGC 1068 (Lynds et al. 1991) in fact resolved the continuum emission

of the nucleus into a region of typical size 10 parsecs, perhaps a direct detection of this scattering

region.

Some active nuclei exhibit jets that are detectable in the optical and ultraviolet. Most are

dominated by synchrotron radiation, so that observations in this range are sensitive to highly

relativistic electrons with relativistic Lorentz factors 7 ~ 1
6
as well as to the details of the magnetic

field structure in which they radiate. The FOC has proven very effective for these objects, since

they have high surface brightness, small angular size, and greatest contrast against the background

starlight in the blue wavelengths where the FOC is most sensitive. The well-known jet in M87 was

a prime HST target, reported by Boksenberg et al. (1992) with the FOC and also observed with

the PC in the deep red (e.g. Lauer et al. 1992a). Restoration shows many of the same features

observed at 2 cm by the VLA (Biretta et al. 1983, not without its own level of deconvolution). Subtle

differences between the radio and UV structures are particularly intriguing, offering the possibility

of tracing the fine structures in which electrons are accelerated and respond to the magnetic field

geometry. The subtlety of any such differences helps focus attention on the detailed behavior of

different deconvolution algorithms, taxing fidelity of both intensity and geometry at low count

rates. Observations of additional jets have revealed contrasts between rather smooth structure (PKS
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ANGULAR SIZE

Figure 2. Schematic display of factors affecting the difficulty of image restoration of

HST data. Angular size enters primarily through changes in the form of the PSF. Some

well-known images are included at the appropriate locations to graphically illustrate the

various regimes relevant to different scientific aims.
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0521-36, Macchetto et al. 1991a) and hints of the kinds of filamentary features seen in parts of the
M87 jet (3C 66B, Macchetto et al. 1991b). A further synchrotron jet was discovered serendipitously

in NGC 3862 (Crane et al. 1993).

3.2. Galaxy Mergers and Star Formation

Ground-based data obtained at a variety of wavelengths have shown that bursts of star formation can
be induced by strong tidal interactions and mergers. The high resolution allowed by deconvolved
HST images has added a new richness to this picture, by showing very luminous blue star clusters.

These have been seen now in the cases of NGC 1275 (Holtzmann et al. 1992), Arp 220 (Dowling
& Shaya 1992), NGC 7252 (Whitmore et al. 1993), and a "quiet" merger in the compact group

NGC 6027 (Seyfert's Sextet; Sulentic et al. 1994). The properties of these clusters open new
windows on the history of mergers, with timescales and cluster ages deduced from their colors and

in some cases spectra. These may be the precursors of globular clusters, an important issue in

understanding the merger history of galaxies.

3.3. Morphology of Distant Galaxies

High angular resolution opens the possibility of seeing transformations in the forms of galaxies

over cosmic time. For any but elliptical and SO galaxies, morphological classification requires

deconvolution rather than modelling with a manageable number of components. The galaxy content

of rich clusters is a particularly rich field for inquiry; the color distributions of cluster members have

long been known to show excess blue galaxies at redshifts z > 0.3 (the Butcher-Oemler effect; see

Lavery, Pierce, & McClure 1992 and references therein). One mechanism for the color change is

shown in a spectacular way by WFC imaging of the cluster 0939+4713 at z = 0.4 (lookback time

5.2 x 109 years for H = 50 km s
_1 Mpc-1

and q = 1/2) presented by Dressier et al. (1994).

While nearby rich clusters are uniformly dominated by E and SO galaxies, all Hubble types are

present in 0939+4713; many of the blue galaxies are structurally late-type spirals, along with a few

apparent mergers. WFPC2 should allow similar observations to redshifts z ~ 0.8. The surprisingly

rapid evolution of the galaxy population in clusters with cosmic time may be due to a combination

of gas stripping from the hot intracluster medium and merging with subsequent starburst-driven

galactic winds.

The ability to discriminate arbitrary structures of small angular scale has allowed detection

of gravitationally lensed galaxies, as in the cluster AC 1 14 (Couch et al. 1992). This presents the

possibility of measuring structure in extremely distant galaxies, using the "gravitational telescope"

of deep cluster potentials. Distinguishing between even and odd-parity structure in such a lensed

image will in principle allow distinction between features in the background galaxy and foreground

lens, and may eventually allow us to probe structures on angular scales beyond the direct resolution

of even corrected HST optics.

The observation of merging galaxies locally has led to the suggestion that mergers might be an

important part of galaxy evolution, perhaps driving important bursts of star formation and nuclear

activity, changing disk galaxies into ellipticals, and certainly changing the comoving space density

of galaxies. The ability of deconvolved HST images to resolve fine structure at large redshifts

allows a new test for this. Since mergers seen today are dominantly between galaxies that are

gravitationally bound to one another, rather than from random encounters of unrelated galaxies, one

signature of a strong role for mergers will be increasing numbers of galaxy pairs and tight groups

wih increasing redshift and lookback time. Such an effect has indeed been reported, by Burkey et

al. (1994) for pairs in a set of parallel WFC images, and by Casertano et al. (1994) for pairs and

groups from the Medium-Deep Survey. Statistically well-defined criteria for such associations give

membership rates of about 7% for nearby galaxies and 34-40% for faint galaxies (/ magnitudes

21-24, redshifts z = 0.3-0.7), suggesting that the merger rate changes with redshift approximately

as (1 + z)
3

. This change is important in interpreting counts of faint galaxies, and is interestingly

close to the rate at which QSOs and radio galaxies evolve with cosmic time.
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Working to yet higher redshift has been more difficult, but feasible, with spherical aberration.

Galaxies have been found with "normal" morphology and size out to z = 2.4, as in the case of the

radio galaxy 53W002 (Windhorst et al. 1992). This galaxy has an elliptical-like intensity profile

and scale length comparable to those of nearby ellipticals with radio sources. Seen at a lookback

time only 1-2 x 10
9
years later than the peculiar galaxies at the highest redshift, such objects provide

clues to the timescales of galaxy formation. So far, galaxies with strong central condensation have

been reported out to z = 2.4. Further imaging studies will be crucial in understanding whether

this epoch is when most galaxies approach their present dynamically relaxed structures. We may
already be seeing galaxy formation, if we but had a clue what the process looks like.

The highest-redshift galaxies known are the very powerful radio sources found from the 3C
and 4C surveys. At redshifts as high as z = 3.8, they show spectacular, if poorly-understood,

morphologies. Their optical (that is, emitted UV) images are frequently elongated and clumpy. The

elongation is correlated with the direction of the radio structure in the so-called alignment effect,

which is in evidence only for z > 0.5. HST images show striking correlations in detail between

emitted ultraviolet and radio structures, in the cases of 4C 41.17 (z = 3.8, Miley et al. 1992) and

4C 28.58 (z = 2.9, Miley 1993). Connecting these early views of galaxy evolution with what

we see at lower redshifts may be the outstanding problem here. Are these systems rare examples

of galaxian pathology, irrelevant to the evolution of galaxies in general, or are they symptomatic

of many galaxies during a turbulent initial epoch? Once again, only the ability to image larger

samples to fainter levels will clarify these matters. It is intriguing that we see symmetric, centrally

condensed galaxies at redshifts less than 2.5, and that the peculiar elongated and clumpy systems

occur mostly at yet higher redshifts; one might be tempted to call this an evolutionary pathway,

invoking astronomers' well-known ability to generalize from a sample of two or more.

4. Science Aided by Deconvolution

There is another category of scientific results where deconvolution plays a significant role, even

when the final measurements use another technique. This operates on the principle that if you don't

know it's there, you can't measure it. In many cases, deconvolved images are important in knowing

what analysis technique to use for the problem at hand, and whether in fact another technique

might be more appropriate. Several examples come to mind from the realm of galaxy structure and

evolution.

4.1. Central Peaks in Galaxy Profiles

The presence of strong central concentrations in the starlight of galaxies is important in understand-

ing their dynamics, and in searching for the massive compact objects thought to exist in (at least)

active galactic nuclei. They have been probed using combinations of modelling and deconvolution

in several galaxies. From an early science verification image, Lauer et al. 1991 found a strong cen-

tral peak in the previously undistinguished galaxy NGC 7457. Further PC observations confirmed

ground-based measurements of a central "spike" in M87 (Lauer et al. 1992a), and showed that the

central concentration is more pronounced that could have been demonstrated from ground-based

data alone. A similar concentration also appears in the Local Group elliptical M32 (Lauer et al.

1992b). Pending spectroscopic observations post-COSTAR, galaxies with these features are the

best candidates for hosting massive central black holes. It is noteworthy that this signature is not

uniquely linked to nuclear activity, suggesting that the prerequisites for such activity are more

common than its actual occurrence.

The core of the Andromeda galaxy, M31, has also been suspected to harbor a massive central

object from ground-based spectroscopic data (Dressier & Richstone, 1988, Kormendy 1988). The

HST images analyzed by Lauer et al. (1993) show an unexpectedly complex situation— two cores

of different scale size and brightness, separated by 0.49 arcseconds. This discovery accounts for

a long-standing puzzle, the offset of the brightness peak of M31 from the isophotal center (Nieto

et al. 1986). This nucleus was observed using the Stratoscope II balloon-borne telescope (Light
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et al. 1974), which showed this central asymmetry; had their image been somewhat deeper the

character of the nucleus might have become apparent. The double core of M31 poses outstanding

theoretical questions. The most likely explanation is that the more compact object is the remnant
core of a galaxy that has merged with M3 1 ; to have such a configuration last long enough to have a
reasonable chance of our observing it probably requires that both nuclei harbor massive black holes.

These conclusions could have been reached from modeling and fitting alone, but deconvolution was
a strong aid in knowing what to fit.

4.2. Modelling Galaxy Images

For more distant galaxies, structural parameters are often better estimated by model-fitting (Schade&
Elson 1993)— once deconvolution has given assurance that there is not too much nonaxisymmetric

structure. Even in fitting multicomponent models to the aberrated data in a x
2
sense, a deconvolved

image can give initial values for the parameters that vastly speeds convergence to the best-fit set

(Windhorst et al. 1993a, 1993b). Results from such procedures include an angular-size - redshift

relation for field galaxies (Griffiths et al. 1994) and identification of weak disks in early-type galaxies

(Keel & Windhorst 1993).

5. Current Challenges

Many of the successes listed above are relatively forgiving targets for image reconstruction. In

faint-galaxy work, we are limited more often by signal-to-noise ratio than by knowledge of the

PSF or residual effects from the restoration. For galactic nuclei, the data quality is usually high

enough that some noise amplification can be tolerated. Some of the most challenging restoration

tasks are in the regime of high dynamic range, exemplified by QSO host galaxies, gravitational

lenses, stellar ejecta, and even comets. In all these cases, reconstruction is vulnerable to small

errors in the PSF, and the inevitable photon noise in low-signal regions is dominated by the Poisson

noise from aberrated photons properly belonging to bright parts of the image. This problem is

particularly severe for the kinds of problems just listed — where the primary interest is in faint

extended structure close to very bright (usually unresolved) sources. Here, noise amplification can

destroy the interesting signal, since the noise is set by statistics unrelated to the true local brightness.

Nisenson ( 1 994) has described in these proceedings some indirect analysis methods for gravitational

lenses; early image-restoration work on the multiply imaged QSO PG 1 1 15+080 (Groth et al. 1991

;

see also Kristian et al. 1993) amply illustrated how sensitive such results can be to both noise and

PSF accuracy.

The issue of PSF accuracy has been addressed in several contributions. Analysis of existing

imagery has already run into the limits of present calculations (with TinyTIM) and empirical libraries

in several instances. Crowded-field photometry has reached a precision limited by the our ability

to track changes in the PSF across the WF/PC field. Empirical libraries, though guaranteed to have

the right optical mapping, are usually too sparsely sampled near the edges of the WF/PC chips, and

break down for objects with extreme spectral shapes (including strong emission lines). This makes

both wide field and high dynamic range restorations some of the most stringent tests for image

restoration techniques, and just as important of our ability to properly compute the appropriate PSF.

6. Where Are We Going Now?

What will optical astronomers be doing with deconvolution in the coming years, especially with

HST? Algorithms and PSF characterization will only improve with experience, so that we will be

able to do a better job on data already in the archive. The amount of data already taken insures a

rich harvest for the taking as our understanding of the instruments and optics improves. Further,

as we have heard here, the post-COSTAR images will still display residual aberrations that can

be corrected by the techniques that were utterly necessary for handling the aberrations in the first
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place. Crudely put, there will be little excuse for seeing even diffraction rings in fully processed

post-COSTAR images!

What have optical astronomers learned from handling HST imagery? Any experience that

forces more of the community to understand the data-taking and data analysis processes more

completely is to that extent a positive step, albeit in this case not one that any of us would have

chosen. Many optical astronomers have now followed their colleagues in radio interferometry into

regular and informed use of deconvolution algorithms. The HST optics have driven a significant

amount of work in algorithm development and in understanding their theoretical underpinnings;

comparison of the presentations here with the first image-restoration workshop shows how much

these applications have matured. More astronomical results than ever before are benefiting from

restoration, and we can look forward to seeing more complete analyses of hard-won data as a result.

Finally, prospects for adaptive optics on the ground open new avenues for science through image

restoration. Systems in the optical are likely to produce PSFs with a sharp core and significant diffuse

halo; if the PSF can be determined locally, this reduces to something that is, in the mathematicians'

terms, "a problem previously solved."
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Abstract. Three years ago, STScI hosted the predecessor of this meeting. I attempt to

contrast our understanding of HST deconvolution now with then. The papers presented

here can be split into two categories: deconvolution algorithms in general, and tricky HST-
dependent details. I discuss how we have progressed in these two areas and where we might
expect to be at a putative next meeting in the series, three years from now.

1. Introduction

It is a pleasure to be here at the Institute for the second meeting on Image Restoration of HST Images

and Spectra. The last time I was in this building was at the first such meeting about three years

ago, some months after the discovery of the problems with the HST optics. In the months between

those two events, I participated in a panel to advise NASA on the potential of image processing

for correcting images for the effects of the spherical aberration. My first reaction on hearing of the

problems was that, yes, deconvolution as we do it in radio astronomy could be a substantial help,

given enough photons and knowledge of the point spread function. Well, it turned out that the HST
deconvolution problem was very tricky in a number of different ways. At the first workshop, I

think there was a tendency to minimize the difficulties and to concentrate upon debates as to which

was the best algorithm to use. At this workshop, I see less interest in disputes over the merits of

Richardson-Lucy versus MEM and more interest in tackling the difficult aspects of the data. In

this summary, I want to discuss our deepening appreciation of deconvolution algorithms, then how
we did with the tricky stuff, and then conclude by addressing the questions in the title of this talk.

Before any of this, I want to record some noteworthy (and telling) comments from attendees.

2. Some Comments from Attendees

I heard the following statements about Image Restoration. Some of these were made by one person

more or less in the words I put down here, and some were recurrent themes in the meeting. My
commentary follows:

• It's often not necessary. (King)

- This is true ifone has a well-posed scientific question that can be posed directly to the

data (i.e., to the aberrated image). If not, then one often has to look at an image for

qualitative information (e.g., what does the object look like?)

• It's too mysterious. (King)

- I sympathize with this view. Manyforms ofdeconvolution algorithm are too mysterious.

For example, just what does the Richardson-Lucy algorithm assume about the sky?

More on this below.

• It's impossible. (Anon.)
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- What's impossible? Evidently, to find a solution to the convolution equation g = Hf
when the PSF H is singular. Well, I think we all know that by now. The real point is

what extra information do we need to get a unique solution, and what are the properties

ofthat solution.

• It's too expensive, {many people)

- Most processing described at this meeting can be done on a Sparc IPX. To run HST
costs about I Sparc IPX per minute.

• It's too hard, (many people)

- The technical obstacles are formidable: a spatially variant and poorly known PSF,

strange noise, cosmic rays, undersampling, field rotation, etc. A better statement would
be that it 's very hard but not too hard.

3. Deconvolution

As the risk of offending by over-simplifying, the deconvolution algorithms presented here can be

classified in the following way:

Classic inverse filter. The inverse filter doesn't work, of course, but one can sneak up on it by

using various iterative schemes that eventually converge (or, more appropriately, diverge) to

the inverse filter. Sneaking up is not quite the right phrase; perhaps knowing when to slam on

the brakes expresses the danger of this approach more accurately. One subtle point is that if

the cue to hit the brakes comes from the data, then the method is no longer linear and hence

loses most of its attraction (Coggins).

Richardson-Lucy algorithm. RL is known to be a Maximum Likelihood estimator for photon

noise. What else do we know about it? Well, it also needs the brakes slammed on at the right

moment (White). Also, we don't actually understand the nature of the extra information used

by RL to generate a unique solution. This is very similar to the situation with the CLEAN
algorithm used in radio interferometry. CLEAN is quite mysterious. It seems to work well,

but no one can describe the properties of the solution generated by CLEAN. The same is true

of RL. Both RL and CLEAN solve Maximum-Likelihood equations via an iterative scheme

that must impose some bias towards a particular type of solution. The problem is that we
cannot quantify that bias or what the preferred type of solution is.

Regularized deconvolution. It's been my experience that regularization is loved by mathematicians

and Bayesian methods are loved by physicists. This split is somewhat meaningless since the

equations to be solved are often much the same and therefore the results are often similar.

Bayesian methods. There were two interesting developments in Bayesian methods presented at

this meeting. First, we saw the marriage of Bayesian priors with photon noise to yield an

improved RL algorithm (thus addressing my objection to RL above) (Molina). Second, we
heard about the Pixon (Puetter). The idea behind the Pixon is quite simple and beautiful: it

says that since there is nothing magical about the basis function used for expressing an image
— one should allow it to be dictated by the data. This has the self-evident quality of many
smart ideas. However, I think we need to know more about how exactly a Pixon basis is to

be chosen. This seems to be another place where heuristics can creep in, which is ironic if

one considers a goal of Bayesian methods to be the elimination of ad hoc tricks.

Blind deconvolution. I think that, for me, one of the most interesting and satisfying topics at this

conference was blind deconvolution: recovery of the PSF function as well as an image of the

sky (Christou, Schulz). This is personally satisfying because I have worked on more or less the
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same problem in radio interferometry. There we know some constraints on the PSF (mainly
the known spatial frequency content and also that the closure relations have to be obeyed) and
we can add sufficient prior information about the sky (e.g., positivity and emptiness) to allow
recovery of both PSF and sky brightness. In the application to the HST, blind deconvolution
allows recovery of the PSF in cases where the calculated PSF is insufficiently accurate. There
remain many issues to be settled, though:

• The starting point for the algorithms presented seems to be too important.

• What is the role of prior information in constraining the solution? More information
should resolve the starting point problem.

• One always gains by adding more information in the form of known imaging physics.
For example, one can ask whether the closure relations are enforced? Alternatively, is

the PSF forced to be the Fourier transform of a cross-correlation of a pupil plane with
phase errors? If not, then it should be.

4. Tricky stuff

Turning now to the tricky instrumental stuff, what has been solved since the last meeting? First, I'll

discuss instrument-related problems, then I'll turn to algorithms.

PSF poorly known: Solved. Either find PSF by blind deconvolution or by using one of the new
PSF prediction codes (Redding).

Under-sampling of focal-plane: Not much said here.

Signal-to-noise ratio: Solved. Strangely, this was a big worry three years ago. I think that this

represents a set of then-unresolved concerns over the effect of the PSF halo on imaging weak
sources. We now know that for weak, point-like sources the answer is to simply increase the

observing time proportionately to the loss in Strehl ratio. For complex sources, we know that

the answer is much more complicated.

Cosmic rays: Solved. The signature ofcosmic rays is that no PSF halo is seen. Working algorithms

to exploit this fact exist (Adorf). Ironically, it seems that this signature will disappear after

the servicing mission (Birettd).

Readout noise: Solved. Several algorithms now account for readout noise in the formal description

of the measurement equation (Nunez and Llacer; Snyder).

Field rotation: Solved. Joint deconvolution of several epochs does the trick. The coupling with

undersampling must still be a problem, though it was not discussed as such.

Object color variations: Not solved. Since the PSF changes with wavelength, objects of different

colors observed with a wide-band filter will have different PSFs. This seems to have vanished

from consideration.

In the area of algorithms, we have made considerable progress:

Photometry bias: Solved. Some of the deconvolution algorithms can be forced to have less bias

(Lucy) or one can use a photometry package (e.g., DAOPHOT) directly (Stetson).

Spatially variant PSF: Not solved. Some progress in understanding but no well-used working

algorithms. (Hunt and McNown; Adorf). From my experience tackling an SVPSF in ra-

dio interferometry, I would advise investigators to look at a number of different approachs

carefully before implementing any one method. The computational issues tend to dominate

and one has to think carefully about how to best solve the relevant equations. In radio
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interferometry, although the equations become more tractable by embedding the imaging
in a three-dimensional space, the optimum computational solution comes from using local

approximations to the PSF.

Null-space stuff, e.g., mottling in RL: Solved. The RL algorithm produces mottled images if al-

lowed to iterate too long. There seem to be a number of ad hoc ways around this problem
(White). CLEAN also produces strange stuff in the null-space (i.e., unsampled regions of

Fourier space) but the main effect seems to be easily-recognizable stripes in the image plane.

Performance limits: Solved. The Cramer-Rao bound work is very interesting (Gonsalves). Also,

the incorporation ofthe error analysis into deconvolution looks promising {Bouyoucef, Roques,

and Fraix-Burnei).

Multi-channeling: Solved. Both MEM and RL can handle multiple constraint images.

5. Where Have We Been? Where Are We Now? Where Are We Going?

A conference summary necessarily glosses over or outright ignores a lot of interesting work. For

that I apologize. However, I'm going to compound any such error by attempting to summarize our

past, present and future even more briefly:

3 years ago

• Only one algorithm was required and it was either RL or MEM, depending on who was

talking.

• Everyone thought that the PSF was knowable a priori.

• As a community we had little experience with the deconvolution of HST data.

Now

• We now know that from zero to many algorithms might be applicable.

• We have seen that it pays to view the PSF an unknown to be determined.

• As a community, we now have lots of experience of HST deconvolution.

3 years from now?

• Our model of the telescope will be more complete: including SVPSF and a better noise

model.

• As our understanding of blind deconvolution improves, we will realize that it pays to

view the aberrations (rather than the PSF) as unknowns to be determined.

• We will have produced lots of documentation on deconvolution.

• Post-servicing, the HST will have a better PSF. However, as a community, we'll still

have a lot to do. The PSF for WFPCII is not perfect and varies across the field.

Finally, I should say that ST Scl has done a great job in pushing the cause of image restoration

in the community via software, algorithms, user support, newsletters and via these meetings.

Personally, I have enjoyed both these meetings tremendously, and learned a lot. I look forward to

the next meeting in the series.
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