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ABSTRACT

The pricing of stock index futures is examined by combining a

multiperiod asset pricing model with a familiar futures pricing rela-

tionship in the literature. By adding a stationary stochastic process

for changes in stock prices and a marginal utility of wealth variable,

we derive several empirically testable results in addition to showing

that the changes in the corresponding futures prices are nearly white

noise. Specifically, we find that the futures price changes should

have means and variances that depend on the time to maturity. Using

price changes on three popular stock index futures, we find evidence cf

risk premia and variances that change as the contracts approach

maturi ty

.





RISK PREMIA AND THE VARIATION OF STOCK INDEX FUTURES

In this paper, we examine the risk, pretnia and the variability of

prices on the three major stock index futures which began trading in

1982. There are several models in the literature which have been used

to study futures prices. The most familiar model is the martingale

model described in Sainuelson (1965). In this model, the futures price

is the market's expectation of the spot price at maturity and the

futures price itself is a martingale. Recent papers by Cornell and

French (1983) and Modest and Sundaresan (1983) have examined stock

index futures by assuming that futures contracts are identical to for-

ward contracts and then applying an arbitrage relationship in which the

arbitrage occurs by an investor simultaneously buying (or selling

short) the portfolio of stocks in an index and selling (buying) a

futures contract on the corresponding index. This approach is essen-

tially the cost of carry model. In this paper, we use a recent

arbitrage-based model in which the arbitrage occurs by an investor

simultaneously taking positions in the futures contract and borrowing

or lending at risk free interest rates. This model explicitly accounts

for the daily settlement feature of futures contracts and permits a

difference between futures prices and corresponding forward prices.

In addition this model does not require that investors have access to

an asset whose value follows the spot price. The cost of carry model

has this requirement and it can be applied to futures on the Standard

& Poors Index of 500 Common Stocks and the New York Stock Exchange
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Composite, but it cannot be applied directly to the Value Line index

futures because of the difficulties and expenses of creating a port-

folio that follows an index which is a geometric average. The model

used in this paper is not based on arbitrage that involves buying or

selling the spot index or a portfolio of stocks, and it can be applied

to all three indices.

Much of the recent literature on pricing futures and forward

contracts has been based on models which incorporate stochastic

interest rates; these models naturally incorporate some notion of risk

aversion and a stochastic investment opportunity set. In these models

of futures prices, we no longer have a martingale result, even though

the martingale model seems to be a good empirical approximation for

some markets. Here, we examine how stock index futures might deviate

from the martingale model and what kind of risk premia might be

imbedded in the prices. We also examine the issue of hew the price

variation might change as the contracts approach maturity. In the

theoretical section of the paper, we get a result which is close to the

martingale model, but contains some subtle differences. We then apply

the model to stock index futures and empirically examine the deviations

from the martingale model. We find evidence of time-varying risk pre-

mia and variances in our samples of weekly changes in the logarithm of

prices on stock index futures. The empirical results are presented in

Section II. Some additional results on the risk premia imbedded in the

S&P 500 are presented in Section III.
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I. A Model of Futures Prices

In this section, the behavior of prices on stock index futures is

examined within the context of a model with risk, aversion and stochastic

interest rates. A discrete-time intertemporal asset pricing model is

combined with Proposition 2 in Cox, Engersol , and Ross (1981), here-

after CIR, to develop an equilibrium relationship for futures prices

which is then applied to stock index futures. This futures pricing

equation is similar to several that have been derived in the litera-

ture, and we extend the model to derive some empirically testable

implications for stock index futures. Essentially, we use the asset

pricing model to value the cashflow in the arbitrage relation of

Proposition 2. Using an arbitrage argument, CIR show that a futures

price, at time t for a contract that matures at t+s , is equal to the

value of the following cashflow at maturity:

W*n U +R )j, (i)

j=o
J

where P is the price at maturity of the good or asset on which the

contract is written and R is the interest rate from t to t+1 . The one-

period interest rate enters because the arbitrage argument uses borrow-

ing and lending at the one-period (one-day) rate to handle the cashflows

that arise because of daily settlement.

The next step is to value this cashflow. CIR, in their Section 4,

examine futures prices and forward prices in a continuous-time,

continuous-state model, and they suggest in their equation (47) the

approach that is followed here. In a model in which agents solve a
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multiperiod optimization problem, Lucas (1978) has derived the

following relatioship for asset prices:

8 J '( w
t+1

)

Pit
= V J'(wJ

(pi,t+l
+x

i,t+l^> < 2 >

where J'(') is the marginal utility of real wealth, p is the real

price of asset i at the end of period t, and x. is the real cashflow

or dividend received for holding asset i during t. E is the con-

ditional expectation operator and the conditioning set is information

available at period t.~ Equation (2) can be solved recursively to pro-

duce the following relationship:

°o j j'( w .)

p it
j S1

,l
t

I-#W' (3)

One can easily verify that (3) is a solution to the difference equa-

tion in (2). This valuation model simply states that the value of an

asset is equal to the expected value of its future cashflows weighted

by the corresponding marginal utility of wealth. This relationship

can be applied to any asset and can be applied to value a single

cashflow as in (1).

In this model, all the relevant variables are denominated in con-

sumption units because individuals are optimizing the utility of real

consumption; hence all variables are real quantities as opposed to

nominal or dollar quantities. To convert to a valuation model in

nominal terms, we first define the nominal cashflows and prices as

follows

:
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x
it

'= D
t

X
it

Pit
E D

t 'it'

where X. and P

.

t
are Che nominal dividends and asset prices, respec-

tively, and D is the consumption price deflator (or the reciprocal of

the consumption price index). We then define a new variable,

a = D J'(w ), which is the product of the marginal utility of real

wealth and the consumption price deflator, and substitute these

expressions into equation (3) to get an asset pricing model in nominal

terms

:

The model in (4) can now be used to value nominal cashflows, and we

use it to value the single cashflow in (1) to get

s

where H (s) is the futures price at time t for a contract that matures

at (t+s). Equation (5) is not new; CIR, Richard and Sundaresan

(1981), and French (1983) have derived similar pricing relationships.

If P represents the value for a portfolio of stocks or a stock index

without dividends, then H (s) is the price for the corresponding stock

index futures. We can also use the asset pricing model in nominal

terms to derive an equilibrium relationship for nominal risk-free

interest rates including the one-period rates R . Let B (t+k) be the

price of a default-free discount bond that matures at time (t+k) paying

SI, then
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3 x

B
t
(t+k) = E

t
( x

t+k
) .

For oae-period nominal interest rates, we have

t t

and this relationship is used in the analysis of (5).

This equilibrium pricing relationship for stoctc index futures is

not very useful in its present form. From equation (5) , one can

explore the conditions for the futures price to be above or below the

expected value of the future level of the index, but empirically testable

implications are difficult to derive. To derive some testable implica-

tions, we add the assumption that log stock price changes, A£nP , and

changes in the marginal utility of wealth variable, A£nA , are part of

a stationary multiple time series representation with normally distri-

4
buted innovations:

AJlnP^ = P + S b! r .

A£nA = \ + E a! e„ ..
c

j-o
"
J -^

The innovations have mean zero and a covariance matrix ft = E(e g ').

From equation (5), we evaluate the following moment generating function

H (s) s-1—— = E
t
[exp{UnP

t+s
- £nP

t
) + Z 4n(l+R )

(6)

+ sin3 + UnA
c+s

- £nA
t
)}J.
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Noting that the one-period interest rates are related to the conditional

expectations of changes in the marginal utility of wealth variable, we

make the following substitutions:

s—

1

s—

1

fiX

E £n(l+R ) = - E *n{E [—ftlti]}
j=0 J j=0 J A

t+j

s-1
= - E £n{E [expUnft + AfcnX.. . , , } ]

}

t+j t+j+i J

« -[s£n3 + sx +f a^ + 1 E a^ ]

,

1=1 ic=l
J

and

inX^. - 2nX._ = Z AAnX,... = sX + E E a/e... . .

t+s t . . t+j , , „—k—t+j-k
j=l J j=l k=0 J

Combining these two expressions, we get

s-1 s

silng + UnX
t+s

- £nX
t

) + Z Jln(H-R
t+ . ) = ~ -| a^a^ + Z a^+j

j=0 j=l

This expression is substituted into (6) and we get

H (s)

£n(—p—) = E
t
(inF

t+s
- InPj + y Var

t
UnP

c+s
- InVj

(7)

s

+ C°V (2nP
t +s - ZnP

t
), laj^ ],

J=l J

where Var and Gov are the conditional variances and covariances, re-

spectively. The covariance terra in (7) can be written as a function

of the parameters of the multiple time series for A£nP and A£nX^:

s s-1
Cov

t
[UnP

t+s
- £nP

t
), E l^t+j 3

= ( E (s-j )b_. ) 'Oa^.

In words, this term is the conditional covariance between the change

in the log price and the sum of the one-step ahead forecast errors
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for Che marginal utility of wealth variable. This covariance term

determines the risk premium in the futures price. If the covariance is

negative, then we define the risk, premium to be positive, and the

futures price is less than the market's expectation of the spot price

at maturity (backwardation). If the covariance is positive, the risk

premium is negative and the futures price is greater than the expected

spot price (contango). If a-. = 0_, this conditional covariance is zero

and we get the martingale result for futures prices.

To study the variation of futures prices, we examine the change in

the log of the futures price:

A£nH
t
(s) = JUiH

t
(s) - JUH^Cs+l) = E

t
UnP

t+s ) - E
{
._

1
UnP

t+g )

+ i Var
t
UnP t+s

- InP,) - \ Var
t
(£nP

t+s
- fcnP^)

+ Cov[(£nP
t+s

- £nP
t
), ^t+j J

s+1
- Cov[(ilnP

t+s
- InP^), ^a^

t .1+ .J.

The expression for E (£nP ) - E .(JlnP ) is evaluated by applying

the rules for revising forecasts for a fixed future period found in

Nerlove, Grether, and Carvalho (1979, p. 88). The conditional variances

and covariances are separately evaluated and we arrive at the following

equation

:

s s s s

A£nH (s) = ( I b.) V -h E b.)
f

G< Lb.) - ( E b.)'^. (8)
j=0 J C l

j=0 J j=0 J j=0 J ~°

The first term in equation (8) is a linear combination of the inno-

vations for the current period, hence this term is a random variable



-9-

which is independent of the past. The last two terms are not random as

they are functions of the parameters of the multiple time series, but

these terms can change as we approach maturity (as s decreases). The

series A£nH (s) will resemble a serially uncorrelated process if the

changes in the last two terms are small relative to the variation in

the first terra. This is precisely the case one would anticipate for

stock, index futures. Because stock, prices experience much variation

and resemble random walks, it is reasonable to conjecture that the

coefficients _bj , o_i » ••• are srnaU- i- n absolute value relative to the

coefficients in _b~. But s in the summations decreases as we approach

maturity and over time we can have variations in the last two terms of

(8) and changes in the variance of the random term. The possible

changes in the last two terms, however, would be relatively small, and

the variation in A£nH would be dominated by the random variation of

the first term; hence, the price changes should be close to white

noise. LeRoy (1982) has noted that in models with risk aversion the

martingale property does not generally hold for futures prices, but in

this model with risk aversion and stochastic interest rates, the prices

on stock index futures are near martingales. This observation suggests

that an empirical researcher may not be able to detect any serial

correlation in the price changes, even though the futures prices do not

exactly satisfy the martingale property. The last term in equation (8)

represents the change in the risk premium and we refer to it as the

mean parameter in the futures price change. If a~ = 0_, the futures

price is a martingale and the mean parameter is zero for all matur-

ities. If there are risk premia in the futures price, then the mean

parameter will be nonzero and may even change as we approach maturity.
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Samuelson (1965) has argued that the variation of futures prices

will change as the contract approaches maturity; in fact, he argued

that the volatility should increase as the contract approaches maturity,

which at first seems counterintuitive. Rutledge (1976), however, has

shown that the variance of futures prices will remain constant if the

spot price follows a random walk; Samuelson's result applies when the

process on the spot price is stationary. In our model, the stock price

is a non-stationary process and the variance of the futures price and

the mean parameter are constant if stock prices follow a random walk.

If stock prices are not a random walk, then the variance will change as

we approach maturity, but we cannot predict the direction of the

change without further information.

from the model in equation (8), we have several hypotheses that can

be examined empirically by using actual log price changes on stock index

futures: (1) there may be risk premia and nonzero mean parameters

which may vary, (2) the volatility or variance of price changes may

vary as we approach maturity, and (3) a time series, AJlnH , con-

structed from prices on near contracts may have some periodicity due

to the dependence of the mean parameter and the variance on time to

maturity. In the next section, we present empirical evidence on these

hypotheses by studying the behavior of prices on the Standard & Poor's

500 futures, the New York Stock Exchange Composite futures, and the

Kansas City Value Line futures, hereafter, the S&P 500, the NYSC, and

the KCVL, respectively. These three index futures are studied because

they are the most actively traded stock index futures, and they have a

history of prices dating back to 1982.
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II. Empirical Analysis

Now we turn to the empirical implications of the model for stock

index futures. Specifically, we explore whether there are nonzero

mean parameters and whether the mean parameters and the variances

change as we approach maturity. The standard model for analyzing

futures prices is one in which price changes are independent of past

price changes and the variance is constant. In many studies, the pos-

sibility of a changing variance is ignored, but this issue has been

examined by Rutledge and others for commodity futures. First, we

simplify the model for A£nH (s) because we examine data on stock index

futures only and we do not attempt the difficult task of formulating

a multiple time series model. Equation (8) in Section I implies a

model of the following form for univariate time series analysis:

1 2
AJUH

t
(s) - cr(s) e

t
- j o ,. +y(s),

where e is a standard normal random variable and is serially indepen-

2
dent. y(s) and a, . are the mean and variance parameters which depend

on time to maturity. We examine four hypotheses: (1) changing means

and changing variances, (2) a zero mean and changing variances, (3) a

constant mean and a constant variance, and (4) a zero mean and a

constant variance. One implication of the model is that the mean

parameter must be constant if the variance is constant.

The model is applied to weekly changes in the log of prices for the

S&P 500, the NYSC, and the KCVL futures. Thursday settlement prices

are used to measure prices. Weekly price changes, instead of daily
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price changes, are studied so that we can avoid the weekend and day-of-

the-week effects which have been found in stock returns. Because most

of the activity (open interest and trading volume) has been in tne near

contracts, we focus the analysis on the near contracts only. For each

of the three futures, we have constructed a time series of log price

changes on the near contract. We start with the log price change on

the nearest contract and follow it to one week before maturity, then

for the subsequent week we pick up the log price change on the next con-

tract which has thirteen weeks to maturity during the sample period.

The series run from the beginning of trading in 1982 up to the first

week of March 1985. The series for the S&P 500 and the NYSC have 147

and 148 observations, respectively, and the series for the KCVL has 158

observations. The series contain 13 different times to maturity so

that hypothesis (1) has 13 means and 13 variances, or 26 parameters to

estimate. The three remaining hypotheses impose restrictions on the

means and variances and are therefore testable.

The parameters are estimated by the method of maximum likelihood

and the likelihood ratio statistic, -2£n9 , is used to test the various

restrictions. Using the assumption that the innovations are normally

distributed, we can write the log-likelihood function for the most

general model (hypothesis 1) as follows:

13 T ,
T
s i2?

ZnL = - I {-1 mo,\ + —±— Z (y . - u (s) + — a, J Z
},L

2 (s) _ 2 ,
st 2 (s) J

s_1 lQ f v t-1
(s)

T
where we have omitted the proportionality constant - -j £n(2ir). T

g

represents the number of observations for a given time to maturity,

represents the observations on A£nH (s), and T is the summation of
u
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T , s=l,...,l3. The estimates under hypothesis 1 are presented in
3

Table I. Only a few of the mean parameters are statistically signif-

icant, and it is difficult to detect any patterns in the mean or

variance estimates. If we exclude the mean parameters for one week to

maturity on the NYSC and the KCVL contracts, it appears that the means

are smaller in absolute value for the last six weeks before maturity.

For all three contracts, the variance estimates suggest that there is

first an increase in the variance and then a drop as we approach

maturity. If we divide the times to maturity into three groups (1-4

weeks, 5-9 weeks, 10-13 weeks) and estimate variances for each group,

we find that the variance estimates are highest for the middle group of 5

to 9 weeks to maturity and F tests of the variance ratios are signifi-

cant for the NYSE and KCVL futures at the 5% level.

The more interesting results, however, involve the tests of the

restrictions, and these results are shown in Tables II, III, and IV.

For each series, we conduct five tests using the likelihood ratio sta-

tistic. For the S&P 500 and KCVL futures, we reject the hypothesis of

a zero mean parameter and a constant variance at standard significance

Q

levels. For every test of a restrictive hypothesis (2, 3, or 4)

against hypothesis 1, we reject the restrictive hypothesis at standard

significance levels for the S&P 500 and the KCVL. These results indi-

cate evidence of risk premia and variances that change with time to

maturity. The results for the NYSE are not as strong. At the 10 per-

cent significance level, there is evidence that the variances change with

time to maturity, but the tests do not indicate evidence of non-zero

mean parameters. The results in Table III for the NYSE favor the
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martingale model, but there is some weak evidence that the variance

changes with time to maturity. It is interesting to note that if we

test for a nonzero mean parameter in a model with a constant variance,

we do not reject the null hypothesis of a zero mean. Hence a myopic

researcher would find support for the martingale model. If we test

the hypothesis of a constant variance in a model with no risk premium,

we find only marginal evidence against the constant variance model.

Both of these restrictions, however, are rejected for the S&P 500 and

the KCVL when they are tested against the model of Section I. Finally,

we have computed several test statistics to check for serial correla-

tion in the time series, but the detailed report is omitted here. None

of these tests indicate evidence of serial correlation, either before

or after a correction for the periodic components.

III. Additional Evidence on the Risk Premia

In this section, we present some casual empirical evidence on the

risk premium in stock index futures. If the martingale model is a good

approximation for stock index futures, then we have a measure for the

market's expected level of the index to prevail at maturity of the

contract. Given an estimate of the expected dividends on the stocks in

the index, we can then compute the expected return for the index.

Expected returns on major stock market indices are frequently used as

proxies for expected returns on the market portfolio. The issue is

whether futures prices for the major stock indices produce realistic

for the expected returns on common stock portfolios.

The cost of carry model mentioned in the introduction produces a

futures price which is less than the expected spot price if expected
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returns on the stock indexes exceed risk free interest rates. Given

the universal agreement on this latter point, the cost of carry model

implies a downward bias in the futures price relative to the expected

spot price (or a positive risk premium). By invoking the assumption of

risk aversion, we can use the model in equation (7) to argue that the

risk premium in stock index futures should be positive. In equation

(7), this argument relies on the properties of risk aversion to deter-

mine the predicted sign of the conditional covariance between stock

price changes and the marginal utility of wealth variable. A more

intuitive interpretation proceeds as follows. The portfolio which

matches a major stock index represents a significant portion of wealth

or at least one of the most volatile components of total wealth. With

risk aversion, marginal utility of wealth is a decreasing function of

wealth and the covariance between the portfolio return and marginal

utility of wealth should be negative. If we are holding this portfolio

and we take a short position in an equivalent number of contracts in

the stock index futures, we reduce substantially the risk of our port-

folio and the magnitude of the negative covariance of our portfolio

9
return with our marginal utility of wealth. For this opportunity, we

are willing to pay a premium in the form of accepting a lower expected

return on the hedged portfolio. The lower expected return requires

the futures price to be less than the expected index level.

We examine this issue by using prices and dividends for the S&P 500

over quarterly intervals which coincide with the maturity of the S&P

500 futures. Standard & Poor's publishes a quarterly dividend series

for its index of 500 common stocks, adjusted to the level of the index.
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The dividend series for 1980:1 to 1984:111 is reproduced in Table V.

Note the stability of the series. Clearly, dividends over a one-

quarter time horizon are quite predictable. Although, the market may

not be able to predict perfectly dividends over the next quarter, the

forecasts of market participants must be quite accurate, and the range

for expected dividends must certainly fall within a narrow band around

the actual levels. We have divided the period June 17, 1982, to

September 20, 1984, into nine separate thirteen-week periods, each ter-

minating with the expiration of a futures contract on the S&P 500. We

use the futures price at the beginning of each period as our measure of

the expected level of the index for the end of the period. We then

calculate two estimates for the expected return: one using the actual

dividends during the quarter as a measure of expected dividends, and a

second estimate using the actual dividend plus ten percent. During

this period 1980-84, the largest quarterly increase in dividends was

only 6.8 percent. The numbers are then compared to the risk-free

return measured by the rate of return on holding a thirteen-week

Treasury bill over the same period. The numbers are summarized in

Table VI.

During the first four periods, estimates for expected returns are

less than the corresponding risk-free returns. There were times when

the futures prices were less than the current spot prices. During the

last five periods, the estimated expected returns were higher than the

risk-free rates, but nowhere near the levels that we would consider

appropriate for expected returns on the S&P 500. Most estimates of

the "market risk premium" in the literature indicate that the expected
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return on a large portfolio of stocks, on an annual basis, is 8 to 9

percentage points higher than the return on risk-free securities. On

a quarterly basis, this difference would be around 2 percentage points.

More recent estimates indicate a market risk premium in the range of

5 1/2 to 6 percent annually. Using the 5 1/2 percent number and quar-

terly compounding, we have computed implied expected returns for the

S&P 500 which are shown in column four. All of the estimates using

futures prices in columns two and three are substantially less than

the estimates in column four. We interpret this casual empirical evi-

dence as implying that tnere is a positive risk premium in stock index

futures and that futures prices must be significantly less than the

corresponding expected spot prices for the S&P 500. Otherwise, one

must argue that the frequently cited estimates for the market risk

premium are much too high.

IV. Summary and Conclusions

We have examined the behavior of price changes on stock index futures

within a model with risk aversion and stochastic interest rates, and we

find that the log price changes should closely resemble a white noise

process, but with subtle deviations resulting from time-varying risk

premia and variances. We then test these results by using weekly price

changes on stock index futures. The empirical results indicate strong

support for the implications of the model and reject the restrictions

implied by the martingale model and by models with constant variances.

In addition, we present some casual empirical evidence which indicates

that there are substantial risk premia in the prices for the S&P 500

futures.



TABLE I

Maximum Likelihood Estimates

S&P 500:

s_

13

12
11

10

9

8

7

6

5

4

3

2

l

Log-Likelitiood =

-.003504
.013453*

-.012982*
.013130
.015183*
.004347

-.004755

.004037
-.005395
-.002884
.001154
.007979

-.006397
494.0411

q
2
(s)

.000b493

.0002867

.0001714

.0008258

.0003242

.0003102

.0008848

.0010075

.0004744

.0006705

.0007713

.0002264

.0002078
T = 147

NYSC:

s_

13

12
11

10

9

8

7

6

5

4

3

2

1

KCVL:

s_

13

12

11

10

9

8

7

6

5

4

3

2

1

Log-Likelihood

Log-Likelihood =

y(s)
-.008775

.015274

.006679

.002480
-.005410
.000363

.006138
-.001611
.002456
.005151

-.004464
-.003565
.010946*

493.5052

u(s)
-.005337

.009837

.012220

.006391

-.013015
.009617

.005706
-.001546
-.003309
.004505

-.004847
-.003961
.015056*

524.1906

q
2
(s)

.0001970

.0008868

.0004539

.0002963

.0008054

.0009666

.0008159

.0006504

.0009072

.0001930

.0002119

.0004817

.0002636

T = 148

a
2
(s)

.0002012

.0010459

.00038b3

.0003934

.0004642

.0009541

.0010283

.0006288

.0010296

.0002821

.0002370

.0005317

.0002580

T = 158

*Significant at the 5% level



TABLE II

Hypothesis Tests, S&P 500

H

H
I* Different means, different variances

Zero means premium, different variances
tt

3
: One mean, one variance

Zero means, one variance

Number of
Estimated

Parameters

26
13

2

1

Log-
Likelihood

494.0411
478.0932
471.4512
470.9099

Test of H
2

vs. H

~2£n0 = x
2
(13) = 31.90'

Test of H
3

vs. H

-2Zn9 = X
2
(24) = 45.18*

Test of H, vs. H^ 1

-2£n9 = x
2
(25) = 46.26*

Test of H
4

vs. H
2

-2£n9 = X
2
(I2) = 14.37

Test of H
4

vs. H
3

-2£n9 = x
2
(l) = 1.08

NOTES: ^Significant at 1% level
^^Significant at 2.5% level

***Significant at 5% level



TABLE III

Hypothesis Tests, NYSC

"4
Different means, different variances
Zero means, different variances
One mean, one variance
Zero means, one variance

Number of

Estimated
Parameters

Log-
Likelihood

26

13

2

1

493.5052
485.8286
475.9087
475.3334

Test of H
2

vs. H,

-2ind = x
2
(13) = 15.35

Test of H
3

vs. H,

-2inQ = x
2

( 24 > = 35 - 19

Test of H, vs. H,
4 1

-2£n9 = X
2
(25) = 36.34

Test of H, vs. H
4 2

-2£n9 = x
2
(i2) = 20.99

Test of H. vs. H
4 3

-2£ne = X
2
(i) = 1-15



TABLE IV

Hypothesis Tests, KCVL

H-. : Different means, different variances
H„

:

Zero means, different variances
H~ : One mean, one variance
H,

:

Zero means, one variance
4

Number of
Estimated Log-

Parameters Likelihood

26 524.1906
13 512.4029
2 502.9200
1 502.2197

Test of H vs. H

-2£n6 = x"(13) = 23.58***

Test of H., vs. H,

-2£n9 = x
2
(24) = 42.54**

Test of H, vs. H,
4 1

-2£n9 = x
2

< 25 ) = 43.94**

Test of H, vs. H„
4 2

-2£n9 = x
2

( 12 ) = 20-37

Test of H, vs. H~

-2£n6 = x
2
(-D = 1.40



TABLE V

Quarterly Dividends, S&P 500

Quarter Dividends

1980:1 1.46

II 1.5b

III 1.56

IV 1.58

1981:1 1.58

II 1.67

III 1.69

IV 1.69

1982:1 1.67

II 1.76

III 1.73

IV 1.71

1983:1 1.71

II 1.79

III 1.79

IV 1.80

1984:1 1.80

II 1.92

III 1.86

SOURCE: Standard & Poor's, Statistical Service, Current Statistics,
November 1984.



TABLE VI

-J2£P^£tejLAeJjiFJb_S&_p._5°A Expected Return
With 5 1/2%

A High Estimate Market Risk
Period Return on Dividends for Expected Dividends

Risk-Free Perfect Foresig?
Return on Dividends

3.271% -0.669%

2.064 1.204

2.011 1.752

2.101 1.036

2.230 2.247

2.349 2.415

2.370 2.895

2.425 3.310

2.543 2.557

Premium

6/17/82 - 9/16/82

9/16/82 - 12/16/82

12/16/82 - 3/17/83

3/17/83 - 6/16/83

6/16/83 - 9/15/83

9/15/83 - 12/15/83

12/15/83 - 3/15/84

3/15/84 - 6/21/84

6/21/84 - 9/20/84

Notes: The index levels and the bid-ask rates for Treasury Bills are taken from the
Wall Street Journal . The returns on 13-week T-bills are computed from the average
of the bid and ask; the discount basis rates have been converted to holding period
returns. The expected returns with the 5 1/2% market risk premium are computed
as follows: (1 + ER) = (1 + RF) x (1.055)* 25

.

- .508%

1 .342

1 .878

1 .156

9 .353

2..525

3.,006

3. 432

2. 677

4 .663%

3

*

.439

3,.486

3,.477

3,.608

3..728

3.,750

3. 805

3. 925



FOOTNOTES

For a discussion of these issues and others, see Kamara (1982) and

LeRoy (1982). The models of futures prices and forward prices are
contained in Cox, Ingersoll, and Ross (1981), Richard and Sundaresan
(1981), and French (1983).

2
If the intertemporal utility function is time-additive, then the

marginal utility of real wealth equals the marginal utility of consump-
tion in real terms and the model collapses to a consumption-based CAPM.
This asset pricing relation has been used in studies by Grossman and

Shiller (1981), Hansen and Singleton (1982), Ferson (1983), and Dunn
and Singleton (1983).

3
A

t
is similar to A (t ) in equation (8) of French (1983). For the

case where utility of consumption is time-additive and U(c
t

) = £nc
t ,

the A t
variable is the reciprocal of consumption in nominal terms.

4
Here we are focusing on stock prices without dividends. By spe-

cifying a multiple time series representation, we can derive our
results in a relatively general setting. This specification for stock,

price changes includes the random walk, model as a special case, and it

includes a factor model similar to the factor model for returns in the
Arbitrage Pricing Theory of Ross (1976, 1977). It differs from the

usual factor model in the APT by specifically allowing for random
variation in expected price changes. The normality assumption is

required so that we can evaluate the expectation in (5), which becomes
a moment generating function. We are implicitly assuming that there is

some dividend process so that the asset pricing model produces stock
prices which are, at least to some approximation, lognormally distributed

Here we define the risk premium to be Et (P t+s ) - Ht (s).

See the survey by Kamara, particularly p. 280.

The futures prices for all three indices are taken from two sources:
the Wall Street Journal and a data tape from MJK Associates, Computerized
Commodity Data Sources. The S&P 500 matures on the third Thursday of

the contract month. The last trading day on the NYSC is the next to

last trading day of the contract month, and the last trading day on the

KCVL is the last trading day of the contract month. In most cases, the

last trading days for the NYSC and KCVL fell on Wednesdays, Thursdays,
or Fridays.

o

Note that rejection of a zero mean parameter indicates evidence of

a risk premium.

9
We would be willing to pay more for an asset that has a positive

covariance with marginal utility of wealth than an otherwise equiva-
lent asset that has a negative covariance. The asset with a negative
covariance has the following characteristics: when its price is

higher than expected, marginal utility of wealth tends to be lower



than expected, and when its price is lower, marginal utility of wealth
tends to be higher. Positive surprises tend to cone when they will be

worth less. The asset with a positive covariance with marginal util-
ity of wealth has the opposite set of characteristics. Positive
surprises tend to come when they will be worth more.

The numbers are reported as four-quarter moving totals, but one

can use the numbers in the technical appendix to Leroy and Porter
(1981) to recover the quarterly dividend series.

See the studies by Ibbotson and Sinquefield (1977) and Merton (1980).
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