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ROBUST MEASUREMENT OF BETA RISK

Abstract

Many empirical studies find that the distribution of stock returns departs
from normality. In such cases, it is desirable to employ a statistical esti-
mation procedure which may be more efficient than ordinary least squares.

This paper describes various robust methods which have attracted increasing
attention in the statistical literature, in the context of estimating beta
risk. The empirical analysis documents trie potential efficiency gains from

using robust methods as an alternative to ordinary least squares, based on
both simulated and actual returns data.





Much interest in financial economics centers on efficient estimation of

the parameters of the return generating process. The estimated beta from a

market model, for example, is widely used to generate a security's expected

rate of return for discounting cash flows, and to compute risk-adjusted

returns for performance evaluation. In practice, however, there are various

problems in estimating betas. It is well known that the ordinary least

squares (OLS) estimator of beta is particularly sensitive to the presence of

outliers and, more generally, to departures from normality (see, e.g., Chow

(1983, p. 88), Judge et al. (1988, p. 890), and Ruppert and Carroll (1980)).

Early evidence (Mandelbrot (1963) and Fama (1965)) suggested that the distri-

bution of stock returns might be "fat-tailed" relative to a normal distribu-

tion, resulting in outliers. More recent evidence (Kon (1984) and Roll

(1988)) considers a mixture of normal distributions, possibly reflecting

"good" observations, interspersed with unusual news-related observations.

Accordingly, alternative methods of estimating beta may be desirable in the

presence of extreme return observations.

In this paper, we describe an alternative to OLS for estimating beta or

the parameters of other financial models, that is robust to departures from

normality and which has attracted increasing attention in the statistical

literature. Koenker (1982) defines robustness as,

In ordinary parlance "robust" means sturdy—capable of

withstanding the "slings and arrows of outrageous fortune."
In statistics and more loosely in economics it has come

to signify a certain resilience of conclusions to devia-
tions from assumptions of hypothetical models. In effect
robustness is a continuity requirement. An inference 9

is robust to hypothesis H if a small wiggle in H induces
a small wiggle in 9.

Our interest in a robust alternative to OLS stems from recent research

questions that suggest that the problem of fat-tailed stock return distribu-

tions may be substantively more severe than earlier realized. Specifically,
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earlier studies on the properties of return distributions focused on a random

sample from the largest firms such as the Dow Jones 30. However, empirical

research has come to focus increasingly on firms whose returns are expected to

exhibit fatter tails relative to randomly selected large firms. For example, 4

papers studying recommendations by financial analysts found that in many cases

analysts focus on, analyze and subsequently recommend companies whose returns

previously exhibited extreme movements (see Copeland and Mayers (1982) and

Bjering, Lakonishok and Vermaelen (1983)). Fat tailed distributions are also

expected in returns of companies that filed under Chapter 11, companies that

cut dividends and smaller companies in general. In studies in the area of

corporate control there are good reasons to expect returns to have fat tailed

distributions. According to Lakonishok and Vermaelen (1990), small companies

involved in stock repurchase tender offers had substantial negative abnormal

returns prior to the announcement of the offer. This is consistent with the

common belief that these stocks are underpriced. The free cash flow argument

advanced by Jensen (1986) also suggests that companies involved in takeovers

exhibit extreme performance prior to announcements related to corporate con-

trol changes. Roll (1988) finds that the biggest improvement in explanatory

power of the "market model" and multi-factor model when news dates are

excluded is associated with firms involved in takeover situations. For firms

involved in takeovers, returns around many of the news dates are probably

outlier observations.

The estimation of beta risk is of major concern in recent studies of the

"overreact ion" hypothesis. The methodology in general involves identifying .

"losers" and "winners" on the basis of returns realized over some past period;

their price performance in subsequent periods is then examined. However,

firms ranked as extreme losers and winners have experienced dramatic firm-
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specific news, so chat realized returns contain many outlier observations. In

such cases, OLS estimates of beta are inefficient, and appropriate methods of

measuring beta risk are required (see DeBondt and Thaler (1987), Chan (1988),

and Ball and Kothari (1989)).

Similar issues arise with risk estimation using returns on a cross-

sectional sample of firms. Ibbotson (1975), in his study of the performance

of new issues, proposed a cross-sectional beta estimate for securities

separated in time. Clarkson and Thompson (1990) utilize this approach to

examine the effects of differential information on risk assessment, based on

the arguments of Klein and Bawa (1976, 1977), and Barry and Brown (1984,

1985). Specifically, the differential information hypothesis implies that the

beta of an initial public offering (IPO) should decline as time passes and

information on the issuer increases. Clarkson and Thompson (1990), as well as

Barry, Muscarella, Peavy and Vetsuypens (1988) find extremely high values for

beta on the first trading day, with an abrupt decline thereafter. However,

numerous extreme observations on returns are observed during the first few

trading days for IPOs. For example, Barry et al. (1988) find that returns

range from -62 percent to 117 percent for the first day of trading. As a

result, OLS cross-sectional beta estimates will not be very reliable. The

issue of risk is also essential in understanding the well-known underpricing

of IPOs, as well as their subsequent price behavior (Ritter (1991)).

It should be pointed out that the issue does not concern biases in the OLS

estimator. It is commonly believed, for example, that contemporaneously esti-

mated betas for winners (losers) are biased upwards (downwards) (considera-

tions of leverage aside). On the other hand, Appendix 1 isolates the conse-

quences of using OLS to estimate the betas of winners or losers and

demonstrates the lack of bias. Nonetheless, an alternative, unbiased, robust



/

-4-

estimation method may still offer efficiency gains (relative to OLS) over a

wide class of thick-tailed distributions.

This paper documents the magnitude of these efficiency gains in situations

which are likely to arise in many applications of interest. In such situa-

tions, interest centers on a model for returns absent some treatment (e.g., in

event studies), where it would be useful to employ a procedure which is robust

to data errors or non-normality in the returns distribution. Specifically,

the empirical analysis confronts OLS and various robust methods for estimating

beta risk. The results are based on simulated data (providing a known bench-

mark), and also on two applications to actual data. The first application

concerns beta estimation for a sample of losers, winners and randomly selected

firms; the second application considers beta estimation for IPOs, based on

cross-sectional regressions. The results confirm that substantial efficiency

gains can indeed be achieved by the use of robust methods instead of OLS.

While our empirical results deal with the estimation of beta risk, the methods

are applicable in other contexts, such as the prediction of returns using

financial variables (Chan, Hamao and Lakonishok (1990)).

The remainder of the paper is organized as follows: the first section

provides the motivation for our study and literature review, the second

section includes a review of the various robust methods of estimating linear

models; Section III presents our empirical results; Section IV contains a

summary and conclusions.

I. Motivation and Literature Review ^

In estimating the parameters of a linear model, such as beta risk, the w
assumption about the distribution of the error is crucial. If the error term

has a Gaussian distribution, the OLS estimator of the parameters has minimum

variance of the entire class of unbiased estimators (see Rao (1973)). Moreover,
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usitig Jensen's inequality the optimality of the OLS procedure under Gaussian

conditions can be established for any convex loss function (see Rao (1973),

section 5a). When normality of the error term cannot be assumed, OLS will

provide the best unbiased estimator of the parameters of the linear model only

if attention is restricted to those estimators which are linear functions of

the dependent variable. In many situations, however, this set may be unneces-

sarily restrictive. Moreover, outliers can have a potent effect, completely

altering least squares estimates (Ruppert and Carroll (1980), Koenker (1982)).

Statistically, a fat-tailed distribution may be modelled as arising from a

mixture of normal distributions. For example, the underlying data may come

from a standard normal distribution, but are contaminated by aberrant observa-

tions from another normal distribution with higher variance. Such a distribu-

tion will have heavier tails than a normal distribution.

In the finance literature, earlier research suggests that the distribution

of daily stock returns exhibits "fatter tails" than a normal distribution. For

example, Fama (1965) fits a stable Paretian distribution to daily returns and

finds a characteristic exponent less than two; Praetz (1972) and Blattberg and

Gonedes (1974) provide evidence in favor of the student (t) distribution; Kon

(1984) finds that returns on the 30 Dow Jones stocks can be described as a

mixture of between 2 to 4 normal distributions. In addition, Blurae (1968)

shows that the residuals from estimating betas using OLS have approximately

the same distribution as the underlying stock returns. Taken together, the

empirical evidence suggests that the distribution of residuals departs from

normality and is likely to be characterized by fat tails.

Roll, in his presidential address (1988), suggests an economic model which

is consistent with stock returns being generated by a mixture of distributions.

He basically assumes that stock returns are interspersed with extreme values,
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which are related Co news events, thereby substantially increasing the

kurtosis of the return distribution. Damodaran (1985, 1987) also argues that

the kurtosis of a firm's return process reflects the frequency of information

released about the firm.

Robust statistical methods provide an alternative to least squares, and

have recently attracted growing attention although not in finance. Such esti-

mators give less weight to "outlier" observations, for example by minimizing

the sum of absolute deviations (the method of minimum absolute deviations,

MAD) instead of the sum of squared deviations. Sharpe (1971) and Cornell and

Dietrich (1978) applied the MAD method to estimate betas. Their samples

included the largest firms and a sample of mutual funds. The results revealed

that the difference between the two methods is small, so that the MAD method

(for reasons that will be explained in the next section) did not prove itself

a clearly superior method.

II. Robust Methods of Estimating Linear Models

This section of the paper provides an informal motivation for the statis-

tical methods used in this paper. Although the discussion focuses on esti-

mating the parameters of the "market model" applied to excess security

returns, the methods can be generalized straightforwardly. More detailed

accounts may be found in Koenker and Bassett (1978), Bassett and Koenker

(1982) and Koenker and Portnoy (1988). Just as the ordinary least squares

estimator can be obtained from minimizing the sum of squared residuals, the

estimators we consider are based on minimizing the criterion function,

T
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Since the rainiraand is Che sum of the absolute values of the residuals,

deviant observations are given less importance than under a squared error

criterion. For example, the case of 9 1/2 corresponds Co the minimum

absolute deviations (MAD) estimator of the regression parameters. More gen-

erally, large (small) values of Che "weighc" 9 accach a heavy penalcy Co

observacions wich large posicive (negacive) residuals. Each fiCCed regression

line (corresponding Co a differenC value of 9) passes Chrough aC lease Cwo

daCa poincs, wich aC raosC T9 sample observacions lying below Che ficced line,

and aC lease (T-2) 9 observacions lying above Che line. For example, when

9 = 1/2, Che median fiCCed residual is zero: half of Che daca poinCs lie

above Che line, while half lie below. Varying 9 beCween and 1 yields a sec

of "regression quancile" escimaCes 0(9), analogous Co Che quanciles of any

sample of daca, ChaC is, Che sec of order sCaciscics.

The characcerizacion above suggesCs, aC lease on an inCuicive level, the

following feaCures of chese regression quanciles. Specifically, Che effecC of

large posicive or negacive ouClying observacions will cend Co be concencraced

in Che regression quanciles corresponding Co excreme (high or low) values of

9. NoCe, however, chac no observacions are discarded in che course of

compucing chese sCaciscics. Moreover, Che behavior of reCurns in che sample

decerraines che variacion in Che regression quanciles as 9 changes. From Chis

perspecCive, choosing an escimaCe of S corresponding Co one value of 9, such

as Che MAD escimaCe, ignores poCenCially useful informacion in Che sample.

Accordingly, Che performance of che MAD escimaCor may be improved upon by an

esCimaCor which incorporaces several regression quanciles.

In Che sCacisCical liceracure, considerable aCCencion has been devoCed Co

Che problem of obcaining robusc escimaCes of Che populacion mean via linear

corabinacions of sample quanciles (e.g., crimmed means). In Che same spiric,
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regression quantiles serve as Che basis for the robust estimators of regres-

sion parameters that we consider. The general form of such trimmed regression

quantiie (TRQ) estimators is

l-o m

S - TtVt / S(9)d9
a (l-2a) ;

a

where < a < 1/2. This estimator is a weighted average of the regression

2
quantiie statistics and hence belongs to the class of L-estimators . Each

regression quantiie is weighted by its (data dependent) "relative frequency" of

occurrence, given by its corresponding interval of 9-values. The form of the

estimator suggests that it is analogous to a trimmed mean, with trimming

proportion a: the "extreme" quantiles, where the influence of outlying

observations should be most heavily concentrated, are deleted. As the sample

A
size goes to infinity, another intuitively natural interpretation of 3 is

possible: consider fitting the a-th, and (l-a)-th, regression quantiie lines

through the data. Then exclude all observations lying on or below the a-th

regression quantiie line (corresponding to large negative outliers), as well

as all observations lying on or above the (l-a)-th quantiie line (correspond-

ing to large positive outliers). The remaining observations are then used to

calculate the ordinary least squares estimator; in large samples, the result-

A

ing "trimmed least squares" estimator is equivalent to B .

Although the discussion has concentrated on estimation, statistical infer-

A
ence concerning the trimmed regression quantiie estimator S is also possible.

A

In large samples, B is consistent and normally distributed with variance-

2, , N -litrix o. (X'X)covariance matrix o (X'X) , where X is the matrix of regressors (see Koenker

2
and Portnoy (1988)). A consistent estimator of a is

a

SSESSE—j (-^ify
+ a[x»(B(a)-B )]

2
* (l-o) Ex' (B(l-a)-$

a ) ]

2
}

•
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SSE is Che sum of squared residuals from Che Crimmed lease squares escimaCor.
a

based on a sample of T observacions . x is a column veccor conCaining che

sample means of Che regressors, while 6(9) is Che veccor of paramecer esci-

maCes for Che 6~Ch regression quancile. SimulaCion evidence in Koenker and

Porcnoy (1988) suggescs ChaC Che asympCoCic approximacion is noc unreasonable,

even in samples of 25 Co 50 observacions.

In addicion, we also consider escimacors Chac are finice linear combina-

C ions of regression quanciles:

N

8 = z ui-Sce.)
u .,11

1=1

N

and E ui .•

= 1

.

i=l

Two specific cases of such weighced averages are Tukey's Crimean, a

wich weighCs < u- < 1, i L,...,N,

weighced average of Che regression quarciles:

BTRM
= 0.256(1/4) + 0.56(1/2) + 0.258(3/4);

and Che GasCwirCh escimaCor, given by

8 GAS
= 0.36(1/3) + 0.46(1/2) + 0.38(2/3).

A

These escimacors are corapuCacionally simpler Chan Che escimaCor S , while... 3
sCill exploiCing Che behavior of several regression quancile scaCisCics.

The propercies of Che TRQ escimaCor 8 may usefully be compared Co ocher

4
robusc esCimaCion mechods. An alCernacive class of escimacors, M-esCimaCors

,

are obcained as solucions Co Che problem of minimizing a funccion of scaled

regression residuals (Huber (1981)). The compuCacion of such M-esCimaCors

,

however, requires a (robusc) esCimaCe of Che scale parameCer of Che disCribuCion

of errors; such informacion is noc required for Che TRQ meChod. Along similar

lines, RupperC and Carroll (1980) invesCigaCe Che propercies of Che lease

squares escimaCor, afcer crimming some proporcion of Che residuals obcained

from a preliminary fie. However, Che propercies of Chis escimaCor are very
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sensicive to Che preliminary estimate. More recently, an improved, one-step

trimmed least squares procedure has been developed by Welsh (1987). Simula-

tion evidence in Koenker (1987) suggests that the TRQ estimator and Welsh's

estimator have roughly similar performance. Iteratively re-weighted least

squares estimators have also been proposed by Krasker and Welsch (1982) in the

form of "bounded influence" estimation. This method mitigates the effects not

only of heavy-tailed error terras, but also of aberrant observations on explan-

atory variables. Specifically, in calculating the ordinary least squares

estimator, each observation receives a (data-determined) weight, which limits

the influence of outlying residuals or of outlying observations in the

explanatory variables. Although we do not apply all these alternative

methods, this is not to preclude their potential usefulness in the present

context, or in other contexts. A final, not unimportant, consideration is

that software for implementing the TRQ method is readily available (see

Koenker and D'Orey (1987), White (1987)).

III. Empirical Results

The empirical results are based on the following return generating pro-

cess :

r
it " r

ft
= a

i
+ S

i
(r
mt-

r
ft

) + £
it>

l =

J"-'-'!'
U)

t = 1,. .. ,T,

where r. , r and r
f

are the rates of return on security i, on the market

index and on the risk-free asset, respectively, for period t. Our analysis

rests on both simulated returns data and actual returns data. The main

advantages of a simulation are that the true values of the underlying param-

eters are known, and that the extent of departures from normality can be

controlled. Beginning with a baseline simulation using data generated from a

normal distribution, we simulate the effects of various forms of departures
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from normality. Additional experiments use actual market returns data, and

the empirical distribution of market model residuals.

In each simulation, the following procedure is replicated 25,000 times.

Thirty-six paired observations on the excess market return and the residual

are drawn from the hypothesized distributions. A simulated series for the

stock rate of return is generated from the model (1), with the true parameters

a and 6 set Co zero and one, respectively. The generated rate of return

series is then regressed on the market premium using seven methods: OLS,

minimum absolute deviations (MAD), the trimmed regression quantile estimator

(with trimming proportion a set to 0.10, 0.20 or 0.25), and the trimean and

Gastwirth estimators. The methods are compared, using summary statistics on

the cross-sectional distribution (across the 25,000 replications) of the

estimated market model parameters. The statistics are: the mean estimated

A A

intercept, a, and mean estimated slope, 8, together with their cross-sectional

standard deviations; the mean absolute deviation (ABSD) of the estimated betas

away from one; the cross-sectional variance of beta estimated with OLS, rela-

tive to the cross-sectional variance from a given robust procedure (V.-./Vj,).

In comparing the different methods we focus on the relative variance sta-

tistics, which is the most common measure of relative efficiency in the

. . . . 6
statistics literature.

The first set of results, reported in Table 1 (columns (2) to (5)),

focuses on the "ideal" case: the excess market rate of return and the market

model residual are drawn from a bivariate normal distribution. The excess

market return is specified to have a population mean of 6.10 percent and a

standard deviation of 5.79 percent (taken from the historical summary sta-

tistics in French, Schwert and Stambaugh (1987), Table 3). The residual has a

2
mean of zero, and a standard deviation of 11.66 percent, yielding a typical R
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of 20 percent for Che OLS market model regression (see Roll (1988)). By

construction, the market excess return and the residual are mutually uncor-

rected. In this setting, the OLS procedure performs best, as expected; the

loss in efficiency for the trimmed regression quantile methods (with moderate

values for a) is only about 10 percent.

Further results are obtained from simulations where the distribution of

the error terra diverges from normality. The distribution of the market excess

return is as specified before. We first consider a case where the error terms

are drawn from a Student t-distribution with 3 degrees of freedom. These re-

sults are presented in the last four columns of Table 1. The results for the

robust methods reveal a substantial improvement over OLS. In terms of the

relative variance, the improvement is lowest for MAD (at 47 percent) and is as

high as 77 percent for TRQ with large trimming proportion. As in the "ideal"

case, all procedures provide unbiased estimates of the slope and intercept,

and do not differ substantially in the precision of estimating the intercept

(except for MAD, which again has the worst performance).

The next set of simulations is based on a closer approximation to the

actual distribution of market model residuals, and of excess market returns.

We randomly selected 50 firms from the NYSE with monthly data over the period

1983-1985. For each of these securities we estimate the market model (1)

using OLS and the return on the equally-weighted NYSE index. Hence, we obtain

1800 (36 x 50) realizations for the residual terra. The bootstrapping tech-

nique is used to obtain artificial series of realizations for the residuals

and for the equity premiums. For the residuals, 36 observations are drawn

randomly from the 1800 observations. Similarly, 36 observations are randomly

drawn from the 720 monthly observations on the Ibbotson-Sinquef ield equity

risk premium series from 1926 to 1985. A simulated series for the stock rate

i
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of return is generated from the model (1), with the true parameters a and 8

again set to zero and one, respectively. The market model is then fit to

these artificial data, using the seven methods outlined earlier. As in the

previous tables, this experiment is repeated 25,000 times.

Many applications in finance utilize daily data on returns. The per-

formance of the different robust methods, relative to OLS, as a function of

the sampling interval, is an open empirical issue. On the one hand, Koenker's

(1982) results indicate that the efficiency of the robust estimators could be

low for highly skewed distributions of the residual. To the extent that daily

returns are more skewed than monthly returns (Brown and Warner (1985)) we would

not expect the robust methods to perform well. On the other hand, the distri-

butions of the daily and monthly data may also differ with respect to higher

moments. For example, if the distribution of daily returns exhibits thicker

tails than monthly returns, the robust methods may yield better performance.

The methodology for the daily data is similar in spirit to the earlier

procedure using monthly data. In particular, we analyze daily returns for the

same sample of 50 random firms, over the same three-year period. Studies

utilizing daily returns data for estimating betas typically employ a one-year

sample period and use raw returns. Accordingly, we regress the raw return on

the level of the market return for each of the three years, thus obtaining 758

Q

residuals for each firm in our sample. From these, we randomly draw 250 ob-

servations and pair them with observations on the equally-weighted index from

the CRSP database. The artificially generated return series are then subjected

to the same procedures employed earlier with the monthly data. For the monthly

returns data, the coefficients of sample skewness and kurtosis are 0.17 and

3.60, respectively. In comparison, the daily returns data exhibit higher skew-

ness (0.36) and substantially higher kurtosis (7.56).
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The results for the random group of firms are reported in Table 2.

Columns (2) through (5) present the results when the sampling interval is

monthly. All the robust methods except MAD outperform OLS , with an improve-

ment of around 20 percent for the better cases. In columns (6) through (9)

the results are based on a daily sampling interval. Here all the robust

methods, including MAD, substantially outperform OLS, with the improvement in

excess of 50 percent for many of the estimators. In accordance with the sample

statistics for kurtosis reported above, the fatter tails of the distribution

of returns accounts for the superior performance of the robust methods when

applied to daily data, compared to monthly data.

Table 2 documents the advantages afforded by robust methods when the data

are sampled at daily, instead of monthly, intervals. Table 3 further eval-

uates the performance of the different methods, based on monthly data, when

they are applied to a sample of "winners" and "losers." Specifically, we

selected from all NYSE firms the 50 firms with the highest ("winners"), and

the 50 firms with the lowest ("losers") compound return over 1983-1985. The

same bootstrapping procedure employed earlier is replicated with the sample of

winners and also with the sample of losers.

In Table 3, results are presented using the bootstrap method for losers

(columns (2)-(5)) and winners (columns (6)-(9)). The improvement in the

better robust methods over OLS is about 20 percent for "losers" and 40 percent

for "winners." A possible explanation for the mild improvement is that our

experiment utilizes the residuals fitted from a prior OLS regression. The

least squares method is sensitive to extreme observations and thus tends to ,

accommodate these observations. Therefore, the distribution of the fitted

residuals departs less from normality than the true residuals. Accordingly,

9
our results tend to understate the potential improvement.
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Next , we present some evidence based on the actual returns to our sample

of losers, winners and randomly selected firms. For the sake of brevity, we

only compare in Table 4 the OLS method with the TRQ method, with a = 0.10.

The table reports the average (across firms in the sample) of the absolute

difference between beta estimated with the robust method and beta estimated

with OLS, as well as the ratio of the cross-sectional variances of estimated

betas from the two methods. Unlike the simulation experiments, however, the

true beta for each security is unknown and, as a result, the evidence in Table

4 should be interpreted with some caution. Nonetheless, it is reassuring to

note that, for the random sample, the average absolute difference in estimated

betas is small—roughly 0.1. For winners and losers, however, the differences

are more substantial, and they are as high as . 2 for losers. For all three

groups of firms, there is a major reduction in the cross-sectional dispersion

of betas estimated with TRQ, relative to betas fitted with OLS. The effi-

ciency gains are 29 and 36 percent for losers and winners, respectively, while

the gain is smaller for the random sample, as expected.

Finally, results are presented in Table 5 using Ibbotson's (1975) cross-

sectional regression methodology. The data are returns on a sample of 661

initial public offerings (IPOs) over the period 1978-1985. A cross-sectional

regression, relating the return on each IPO to the contemporaneous return on

the NASDAQ index, is estimated for each of the 10 days following the listing.

The OLS method produces a very high beta, 4.26, for the first trading day, and

1.62 on the following day, a one-day drop of 2.64. It is hard to imagine that

increases in information over 24 hours can explain such a huge drop in beta.

Thus it is reassuring to find that the TRQ method produces a less extreme beta

on the first day (3.20), and a smaller drop on the second trading day (to

0.92, for a decline of 2.28). As another basis of comparison, the OLS method
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produces larger day-Co-day changes in betas Chan Che TRQ raeChod. The average

daily absoluCe change in becas (from day 1 Co day 10) is 0.58 and 0.48 for Che

OLS and TRQ procedures, respeccively.

Infrequenc Crading mighc inCroduce subscancial biases in Che cross- {

seccional becas for boch mechods. To reduce Che bias, Cwo day reCurns were

ucilized in Che regression. The firsc cross-seccional regression now produces

much lower beCas; 3.39 for Che OLS mechod and 2.52 for Che TRQ raeChod. The

drop in beca (from Che firsc Co Che second regression) is once more less

12
abrupC for Che TRQ raeChod, 1.44, versus 2.12 for Che OLS raeChod. In summary,

Che. OLS and robusc raeChods produce subsCanCially differenC beCas especially

for Che firsc few Crading days (when exCreme observacions are more common)

and, Che robusc becas seem Co be more in line wich our priors.

IV. Summary and Conclusions

This paper describes and applies several robusc raeChods for Che escimacion

of parameCers in a linear regression model when Che discribucion of Che

residuals displays chicker Cails Chan a Gaussian discribucion. These raeChods

are applicable when observacions on Che dependenC variable Cake on exCreme

oudying values, noc accounced for by movements in Che explanaCory variables.

An economic model for such behavior resCs in Cerras of "good" observacions,

mixed wich news-driven Mbad" observacions (see, e.g., Roll (1988)). As such,

robusc escimacion mechods hold promise for sCudies of firms involved in

Cakeover accivicy, bankrupCcy proceedings, sCock repurchase offers, dividend

and earnings announceraenCs and inicial public offerings, for example.

Our resulcs wich simulaCed and acCual daca supporC Che poCencial effi-

ciency gains from robusc mechods, relacive Co lease squares. In Che case

where Che discribucion of Che residuals is Gaussian, chere is only a minor

efficiency loss of abouC 10 Co 20 percenC. When Che residuals follow a
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Student-t distribution with 3 degrees of freedom, efficiency gains of about 80

percent are possible. Substantial improvements from using the robust methods

are also observed when the simulations are based on the actual distribution of

residuals and excess market returns using both monthly and daily data.

With respect to actual data, in the context of winner and loser stocks as

well as randomly selected stocks, the robust methods outperform substantially

the OLS method. In estimating cross-sectional betas for a sample of initial

public offerings, the results indicate that the robust methods should be

considered as a serious alternative to OLS.

In comparing the different methods, the performance of the minimum abso-

lute deviations estimator is disappointing, confirming previous results.

However, we go further by providing improved alternatives, particularly in the

form of the trimmed regression quantile estimator. These alternative methods

are straightforward to implement.

We find the overall results from our analysis to be encouraging. Further

research might focus on a more extensive analysis of the extent of leptokur-

tosis observed in returns data, as well as how such kurtosis is correlated

with firm-specific news events, economic characteristics such as size, and the

time-interval over which returns are measured. Further, the present methods

may be useful in other empirical applications.
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Footnotes

1
For a continuous random variable Z with distribution function F, its 9-th

quantile, £ A , is such that F(;
fl

) = 9.
9

j ...
L-estimators are obtained as linear combinations of order statistics.

Examples include the median and trimmed means. A trimmed mean is simply the

sample mean, after some proportion a of the observations at each extreme of

the sample are deleted.

3
Koenker and Bassett (1978) develop the asymptotic distribution theory for

the triraean and Gastwirth estimators.

4 ......
In our context, an M-estimator is obtained by minimizing

T r -a-0r
E p (_E Ell)

t = l

for some function p, where a is a scale parameter. An example for p is

1/2 u' if < ka

p*r>-
- 1/2 W if u

I
>^ ko

Setting k = » yields the OLS estimator, while a finite, positive value for k

places less weight on extreme residuals.

Carroll and Welsh (1988) study the effects of an asymmetric distribution
for the error terra on robust regression procedures. They stress that esti-
mates of slope parameters under most robust methods (including the regression
quantile method) are unaffected by asymmetric errors. However, the Krasker
and Welsch (1982) bounded influence estimator is inconsistent when the errors
are asymmetrically distributed. This result helps to justify restricting
attention to the regression quantile approach.

The ratio of variances also has an appealing intuitive interpretation.
If, for example, the variance ratio is 1.5, then the researcher using OLS will

need a sample that is 50 percent larger in order to achieve the same effi-
ciency as the alternative procedure.

According to Blattberg and Gonedes (1974) and Kon (1984), the degrees of

freedom parameter for the Student model should be between 2 and 10, in order
to explain the observed leptokurtosis in daily returns data. In the case of

smaller companies during turbulent periods, a Student-t distribution with 3

degrees of freedom might be a fair representation even with weekly or monthly
data.
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8
The results are essentially unaltered if betas are fitted using all three

years of data, or if only the most recent year's worth of data are used.

9
Consistent with the proof in the appendix, the betas for the winner and

loser stocks are essentially one. The intercept estimated with OLS is zero

by design. On the other hand, the intercepts estimated under the robust
methods are about -0.1, -0.2 and -0.7 percent for the loser, random and winner
stocks and are statistically significant. The reason for these departures is

that the distribution of the bootstrapped residuals is not symmetric, but
skewed to the right, and more so for winners than for losers. Since the

robust methods attach less weight to extreme observations, the estimated
intercept is below zero and smallest for the group of winner stocks.

The cross-sectional variability in estimated betas reflects both the

variability in the underlying true betas as well as sampling error. For a

given sample, however, the variation across firms in true betas is the same

across methods. Accordingly, the variance ratio statistics in Table 4 under-
state the reduction in measurement error for betas afforded by the robust
methods

.

Additional confirmatory evidence on the adverse influence of extreme
observations is provided by repeating the OLS regression, but deleting the 10

most extreme return observations on each day. With this crude adjustment, the

first and second day betas are 3.58 and 1.27, respectively (a one-day decline
of 2.31, almost identical to the decline with the TRQ method); the average
daily absolute change in betas is 0.53. Note that deleting observations,
however, is an ad hoc modification, and unnecessarily discards sample infor-
mation.

12
Following the first regression the betas from the TRQ regression are

close to one. They are higher than the one day return betas because the

impact of infrequent trading is reduced.
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Appendix

This appendix considers Che nature of any biases arising from using

ordinary least squares (OLS) to estimate the market model from a sample of

"winners" or "losers." The model to be estimated is

r
it

= a
i

+
*i

r
mt

+ e
it>

c = 1 >-->1> (L)

1 = i,. .
.
,N.

r. is the excess return (over the risk-free rate) on security i. r is the
it mt

excess return on the market index, a-, 8- are unknown parameters. z- is a

2
serially uncorrelated residual, with E(e. ) = 0, var(e- ) - a • . The notion

of a "winner" or "loser" security in a given sample corresponds most closely

to a security whose non-market, residual component, e-
t ,

has a positive, or

negative, sample average. That is, z- > for "winners," while e- < for

"losers," where the overbar denotes the sample arithmetic mean. This charac-

terization appears to match what DeBondt and Thaler (1987), Beaver and

Landsman (1981) have in mind.

A

The ordinary least squares estimator of 8-, 8-, is given by

I
(r
mt-

7
m
)r

it
8. Z

I Cr -r )

t=l
mt m

Substituting for r. from (1) yields

8. 6- + E t- • t2;
L 1 — 2

t=l Z(r -r )

l

rat ra

Since the residuals have an expected value of zero, E(S-) = 8-. That is, on

average (in repeated samples), the ordinary least squares method yields a

correct estimate of the true underlying risk coefficient 8- In any given

A
sample, of course, the estimated 8- may differ from the true 8^. From (2),

A
however, the sign of the difference (8.-8-) in a given sample depends only on
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Che sample covariance between the excess market returns and the residuals

(which covariance should equal zero in the population if the market model is

correctly specified). In particular, the sign of (8.-0.) does not depend on

the sign of the sample mean e-, and hence on whether the security is a

"winner" or "loser."

On the other hand, the sign of the sample mean residual does affect the

least squares estimate of a-, the intercept term, in a given sample:

«i
- a. - 7

£
- ijm - 7

t
ijm + 1

L

Under the null hypothesis a- = 0, the estimated intercept (correctly) measures

the sample average excess return not attributable to market movements, up to

measurement error in 6.

A A

Estimates of the standard errors of a and also require an estimate of

the standard deviation of the regression residuals (adjusted for degrees of

freedom)

:

a 2 \ * * 2

°ei 'T^lT
t
l

x

(r
it-

ar B
i
r
mt )

T

2 Co.-i.+(8.-B.)r +e.J
2

(T-2) 2 X
i *i vw

i
P
i' rat "it

Substituting from (2) and (3),

* 2
,S . ,» r

(^-7mc )2
1

( 'it-'i>
2

°ei-«i-»0
t ; t

(T-2) *
t

l

ml (T-2) •

-2
ThLS expression for o . also does not depend on the sign of the realized mean

£1

residual, e-. Accordingly, limiting the sample to "losers" or "winners"

creates no bias in the OLS estimator. This is, of course, not to exclude the

possibility that improved (more efficient) estimators may exist.



Table 1

Summary statistics for the sampling distribution of estimated intercept (a)

and slope (0) from market model regression

r
t

- r
ft

= a * 3<r
-t

-r
ft

) * e,

Sampling distribution based on 25,000 replications of simulated data with 36

observations per replication. Simulated data based on: a 0; 8*1;
(rmt -rf t

) normally distributed with mean C.1%, standard deviation 5.79%. In

columns (2)-(5), e^ *- s normally distributed with mean and standard deviation

11.66%; in columns (6)-(9), e c
follows a student 't' distribution with 3

degrees of freedom. Columns (2) and (6) present the sample mean of a (standard

deviation in parentheses); columns (3) and (7) present the sample mean of 3

(standard deviation in parentheses). Columns (4) and (8) report the average
absolute deviation of estimated beta away from one. Columns (5) and (9)

report the cross-sectional variance of beta estimated with OLS, divided by the

cross-sectional variance of beta estimated with each robust method.

Method

(1)

3

(2) (3)

^S^OLS^M
(4) (5)

3

(6) (7)

M§D Vqls^Ym

(8) (9)

OLS 0.0002
(0.0199)

0.9994
(0.3499)

0.28 1.00 0.0003
(0.0199)

0.9956
(0.3464)

0.26 1.00

MAD 0.0004
(0.0245)

0.9967
(0.4373)

0.44 0.64 0.0002
(0.0158)

0.9981
(0.2860)

0.22 1.,47

TRQ (a=0.10) 0.0002
(0.0204)

0.9992
(0.3631)

0.29 0.93 0.0002
(0.0150)

0.9989
(0.2680)

0.21 1,.67

TRQ (a=0.20) 0.0003
(0.0211)

0.9988
(0.3748)

0.30 0.87 0.0002
(0.0145)

0.9987
(0.2603)

0.20 1..77

TRQ (a=0.25) 0.0003
(0.0215)

0.9982
(0.3818)

0.30 0.84 0.0002
(0.0144)

0.9984
(0.2601)

0.20 1,,77

Triraean 0.0003
(0.0215)

0.9994
(0.3853)

0.31 0.82 0.0002
(0.0148)

0.9988
(0.2680)

0.21 1 .67

Gastwirth 0.0003
(0.0220)

0.9994
(0.3922)

0.31 0.80 0.0002
(0.0147)

0.9984
(0.2653)

0.21 1 .70

Estimation methods are Ordinary Least Squares (OLS); Minimum Absolute
Deviations (MAD); Trimmed Regression Quantile (TRQ) with trimming proportion
a: 0.10, 0.20 or 0.25; Tukey's trimean; Gastwirth estimator.



Table 2

Summary statistics for the sampling distribution of estimated intercept (a)
A

and slope (8) from market model regression. For monthly data (columns (2)-(5

the model is

(r
t
-r

ft
) = a + Kr^-r^) * «

t

Sampling distribution based on 25,000 replications of simulated data with 36

observations per replication. Simulated data based on: a = 0; 8=1;
(r raC -rf t

) drawn from empirical distribution of Ibbotson-Sinquef ield risk

premium C 1926— 1985 ) ; e drawn from empirical distribution of market model
residuals fitted from 50 randomly selectsd NYSE stocks (1983-1985). For dail;

data (columns (6)-(9)) the model is

))

r
t

= a
mt t

The sampling distribution is based on 25,000 replications of simulated data
with 250 observations per replication. Simulated data are based on: a = 0;

8=1; rmC drawn from the empirical distribution of the CRSP equally-weighted
index (1962-1985); e c

drawn from the empirical distribution of daily residuals
fitted from 50 randomly selected NYSE stocks (1983-1985). Columns (2) and (6)

A

present the sample mean of a (standard deviation in parentheses); columns (3)
A

and (7) present the sample mean of 8 (standard deviation in parentheses).
Columns (4) and (8) report the average absolute deviation of estimated beta
away from one. Columns (5) and (9) report the cross-sectional variance of

beta estimated with OLS, divided by the cross-sectional variance of beta
estimated with each method.

J

Method

(1)

8

(2) (3)

ABSD

(4)

V /V

(5) (6)

3

(7)

ABSD

(8)

V /V
-^OLS^-M

(9)

OLS 0.0000
(0.0200)

1.0024
(0.3977)

0.30 1.00 0.0001
(0.0013)

0.9912
(0.2127)

0.16 1.00

MAD -0.0026 1.0059 0.32
(0.0205) (0.4119)

0.93 -0.0004 0.9887 0.14
(0.0012) (0.1806)

1.39

TRQ (a=0.10) -0.0019 1.0016 0.28
(0.0183) (0.3658)

.18 -0.0004 0.9913 0.13
(0.0012) (0.1764)

1.45

TRQ (a=0.20) -0.0021 1.0027 0.28

(0.0183) (0.3663)
.18 -0.0005 0.9910 0.13

(0.0012) (0.1715)

1.54

TRQ (a=0.25) -0.0021 1.0030 0.28
(0.0185) (0.3695)

.16 -0.0005 0.9904 0.13
(0.0012) (0.1712)

1.54

Trimean -0.0022 1.0032
(0.0186) (0.3758)

0.29 .12 -0.0004 0.9911 0.13
(0.0012) (0.1730)

1.51

4Gastwirth -0.0021 1.0032
(0.0189) (0.3765)

0.29 1.12 -0.0005 0.9894 0.13
(0.0012) (0.1754)

1.47

Estimation methods are: Ordinary Least Squares (OLS); Minimum Absolute
Deviations (MAD); Trimmed Regression Quantiles (TRQ) with trimming proportion
a = 0.10, 0.20 or 0.25; Tukey's trimean; Gastwirth estimator.



Table 3

Summary statistics for the sampling distribution of estimated intercept (a) and

slope (0) from market model regression

(r
t
-r

ft
) = a B(r -rj,) e

c

Sampling distribution based on 25,000 replications of simulated data with 36

observations per replication. Simulated data based on: a = 0; 8 = 1;

(r_ c-rf t
) drawn from empirical distribution of Ibbotson-Sinquef ield risk

premium (1926-1985). In columns (2)-(5), z t
is drawn from empirical distri-

bution of market model residuals fitted fvom 50 NYSE stocks with lowest com-

pound return (1983-1985); in columns (6)-(9), e c
is drawn from empirical distri-

bution of market model residuals fitted from 50 NYSE stocks with highest com-

pound return (1983-1985).

Method

(1) (2) (3)

ABSD V0LS^M
(4) (5)

8

(6) (7)

ABSD V
0LS

/V
M

(8) (9)

OLS 0.0001 0.9977 0.30 1.00 0.0001 1.0007 0.28 1.00

(0.0198) (0.4019) (0.2008) (0.3887)

MAD -0.0012 0.9965 0.31 1.00 -0.0083 1.0025 0.28 1.14

(0.0193) (0.4010) (0.0176) (0.3645)

TRQ (a-0.10) -0.0008 0.9962 0.28 1.22 -0.0056 1.0006 0.25 1.41

(0.0177) (0.3644) (0.0161) (0.3278)

TRQ (a=0.20) -0.0013 0.9960 0.28 1.23 -0.0071 1.0017 0.25 1.42

(0.0176) (0.3628) (0.0159) (0.3264)

TRQ (a-0.25) -0.0013 0.9963 0.28 1.21 -0.0075 1.0022 0.25

(0.0177) (0.3648) (0.0160) (0.3288)

1.40

Triraean -0.0012 0.9956
(0.0180) (0.3714)

0.29 1.17 -0.0069 1.0001
(0.0163) (0.3346)

0.26 1.35

Gastwirth -0.0014 0.9969
(0.0181) (0.3718)

0.29 1.17 -0.0076 1.0018

(0.0163) (0.3353)

0.26 1.34

Estimation methods are: Ordinary Least Squares (OLS); Minimum Absolute
Deviations (MAD); Trimmed Regression Quantiles (TRQ) with trimming proportion
a = 0.10, 0.20 or 0.25; Tukey's triraean; Gastwirth estimator.



Table 4

Comparison between betas estimated with Ordinary Least Squares (OLS) and

Trimmed Regression Quantile (TRQ) with trimming proportion a 0.10. Data are
monthly returns (Jan. 1983 - Dec. 1985) on 50 randomly selected NYSE firms
(Random); on 50 NYSE firms with lowest compound return over the period (Losers)

on 50 NYSE firms with highest compound return over the period (Winners). The
first row reports the average absolute difference between beta estimated with
TRQ and beta estimated with OLS; the second row reports the cross-sectional
variance of beta estimated with OLS, divided by cross-sectional variance of
beta estimated with TRQ.

Random Losers Winners

Mean |0TRQ
- 30LS |

0.0819 0.2259 0.1429

V
0LS

/VM 1.1322 1.2913 1.3601



Table 5

Cross-sectional beta estimates from Ordinary Least Squares (OLS) and Trimmed
Regression Quantiles (TRQ) with trimming proportion a = 0.10, for 661 initial
public offerings by trading day relative to the day of listing.

Two Day Returns
Trading Day OLS TRQ OLS TRQ

1 4.26 3.20 3.39 2.52

2

3

4

5

6

7

8

9

10

One Day Re L urns

OLS TRQ

4.26 3.20

1.62 0.92

1.24 0.71
1.74 1.25

1.42 0.90
1.19 0.72
1.36 0.85

1.02 0.63
1.46 0.87
1.27 0.74

1.27 1.08

1.33 1.19

1.15 0.97

1.27 1.08








