2. Outline of Phonemes
2.1 Chart of phonemes
2.1.1 Work chart of contoids ${ }^{1}$

$\left[B^{*}\right]$	$\stackrel{s}{s} \mathbf{z}]$
m	n
	$\left[\begin{array}{ll} 1 & 1 \\ 1 \end{array}\right]$
-	- \mathbf{y}

2.1.2 Work chart of vocolds

$\left[\begin{array}{l}1 \\ l^{\prime}\end{array}\right]$		$\left[u_{u}^{u}\right]$
e		0
ε	A	0
	0	

[^0]う．Interpretãion if hnjovaisur：Stgrents and Sequences
3．i Status of vocoic segments
3．：．：Word－final vocoids－－Iost or non－existent？
The question of whether some words were losing their final voweis or whether there were in fact closed syllables was a major concern throughout the early analysis．After much reading，especially Hooper（：976）anc Lehiste（1970），a pattern emerged from the data．Native speakers also recorded comparative data which was analysed with the aid of an osciijoscope and ：Es pisited record．A pattern became clear showing Hewa at present stili has word firal vowels，although phoneticaily some words zeguiariy end in a consonant，even iri isolation．

Basicaliy，the data showed that $/$ ； ，and f ，were being dropped word－finally following im n l si．Since if／and ic／are two of the shortest vocoids in intrinsic duration（Swadesh 1947：139；Lehiste and Peterson －961：275；Leniste 1970：18；de Chere 2979：2i），any process that shortens or absorios any of their duration would tend to cause their complete disappearance．Lax ailophones $i l$ uj already cannot occur word－finally in Hewa．The vowe：ini is already a lax vocoid and is easily dropped word－finally．Section 3．1．2 attests to this loss of features as a general pattern word－finaily in Jewa．（Hooper（1976：235－40）discusses vowel deletion as a historical process of losing features until finally becoming unrecessary a：こogether．）

Two additionai items serve as supporting evidence．One is that Hewa as a stress language would tend toward such a pattern of deletion（fooper 1976：227，236；．Reguiar word stress on the first syilable aids such a word－final deietion tendency．Being far from one stress，but needing to appear weak in reiation to the stress on the next vowel spoken，the word－final vowel devoices，or becomes aspiration on the preceding consonant，or deletes altogether．The other item is that some of the most common vocabuiary appeared to be most consistently affected－－words such as ［＇mean］＇boy＇，：＇emanj＇ginl＇，［＇uam］＇wild animal＇，［＇tuliom］cassowary＇． ［＇wip］＇pig＇，［＇cl！he＇．［＇tnicl］＇sickness＇，［＇mis］＇long，tall＇，［＇yis］ ＇smoke＇．Hooper（：576：104）states，＂Phonological change works its way through the iexicon．moving from item to item．．．．the frequency of use of a lexical item piays a part，i．e．，more frequent items undergo change before less frequent ftems．＂She indicates that an e－deletion word－finaliy has occurred in Spanish in this way．

Part of the eariy confusion was caused by／i／and ic／very rarely being lost at the end of the past tense verbal suffixes／－me／［－me］＇far past，realis＇and＇－yc／i－yej＇recent past，realis＇．It wasn＇t until the pattern of vocoid sequences began to be clarified in the verbs，and limitations seen on sequence length there（section 3．2．4），that I realized each vowel or vowei sequence in the verb carried meaning，even the final vowel．Therefore，Et could not be dropped，as occurred in other parts of speech being composed of single morphemes as words．

The consorants mentioned above（im n ：si）also pattern to facilitate this deletion word－finally．As contillialts they more readily are capable of absorbing a very short vowel＇s voicing or duration into tieir own．This
is seen to be a universal tendency by Hooper (1976:206-29) as she details her Universal Strength Hierarchy for consonants.

This loss of word-final vowels occurs with all vowels in the normal flow of speech, especially when the preceding consonant is one of those mentioned above, or when the next word begins with a vowel--especially one which is phonetically close to it in its formation in the mouth, or when the last consonant of one word is phonetically similar to the consonant beginning the next word.

1. /'ana 'pau/ ['an 'pau] 'I have none.'
2. /'عle ^'pu/ ['ع! $\wedge^{\prime} \quad$ bu] 'Where is he?'
he where
3. /'napa 'atapa 'masi/ ['nap' 'atapa 'mas] 'Let's all go!'
we.pl all hort.go
4. /'napa 'no 'slo 'motoyai 'nele/
we.pl place there stay.cont.past that
['nopa 'nolo 'motoiyai 'ncle] 'That is where we were staying.'

man that name what 'What is that man's name?'
As vowel loss is predictable, all words shall be interpreted as having
a final vowel.

3.1.2 Voiceless vocoids and aspirated stops

Voiceless vocoids occur in the word-final position particularly when the preceding consonant is a stop. This is due to the normal stress pattern, as mentioned above. In addition, as pitch drops lower and lower following the highest pitch on the stressed syllable, it compounds the problem of speaking or hearing final vowels. All the vowels have been recorded as voiceless word-finally. They will be represented as the voiced vowels with which they vary, but never contrast.

/'masi/	['masl] - ['mos]	'must go'
/wipe/	['wipe] - ['wipe] - [wip]	'domestic pig'
/'mase/	['mosE] - ['mase]	'Let's do it!'
/'tiuma/	['tium^] ~ ['tium]	'place name'
/'mapa/	['mapd] - ['mapa]	'forehead'
/'mama/	['maumb] - ['maumb]	'intend to eat'
/'topo/	['topo] - ['topo]	'Put it (there) !'
/'tapu/	['tapUl - ['tapu]	'clouds'

Aspiration of voiceless stops [Ch] in the word-final position occurs infrequently, but varies with silent vocoids or voiced vocoids. The aspiration will be represented by the voiced vowel with which it varies.

```
/'molapl/
/'lati/ ['loth] ~ ['latI] ~ ['lati] 'arm'
['wolapn] - ['wolapI] ~ ~ ['wolapi]
'all right'
```

／＇tlte／	［＇tith］～［＇tite］～［＇titc］	his＇
／＇凶isete／	［＇wiscth］－［＇iscte］	＇cold＇
／＇noke／	［＇nokh］～［＇noks］	bird＇

All voiceless vocoids and aspirated word－final stops will be represented phonetically hereafter as voiceless vocoids，but phonemically as voiced vowels．

3．2 Status of vocoid sequences

Although eight vowels are being proposed in this analysis，only seven co－occur regularly in sequences．The vowel／n／has not been found to occur in sequences other than［in］and［un］．

Seven vocoids can theoretically combine into forty－two pairs（not including geminates）．Thirty－four of those pairs have been recorded in Hewa speech and are listed in figure 1 in descending order of the number of actual sequences occurring．

Following Vocoid

		－1	－u	－0	－a	－e	－$ع$	－3
P	1－	－－	iu	jo	10	le	1ε	10
r	\mathbf{u}^{-}	Ui	－－	Lo	uo	ue	บع	
e	0－	01	O4	－－	00	oe	OE	
	a－	01	au	00	－－			
V	e^{-}	ei	ev	eo	ea	－－	ec	e）
\bigcirc	ع－	cl	عu	$\varepsilon 0$	ε		－－	Eコ
c	コー	Јi	3u	30	دa			－－

Figure 1．Vocoid Pairs Heard in Hewa

3．2．1 Sequences of mid and low vocoids

No more than two vocoids articulated with mid and low tongue height are ever found together at any one time within a word．Thirteen of the twenty possible combinations from Figure i have been recorded．Each pair takes the timing of two syllables．Primary or secondary stress may apply to either member of a pair．

［00］	／＇10loopo／	$\left[1010^{2} \mathrm{ap} 0\right]$	＇male name＇
［oe］	／0＇e／	［o＇e］	＇affirmative response＇
［oe］	／＇koe／	［＇koe］	＇vomit＇（noun）
［00］	／＇yool	［＇yao］	＇the Raggiana Bird－of－Paradise＇
［eo］	／＇maseo／	［＇maseo］	＇must regularly do＇
［ea］	／＇keleame／	［ $\left.{ }^{1} \mathrm{kc} / \mathrm{e}^{2} \mathrm{am} \mathrm{m}\right]$	＇therefore＇
［é］	／＇leema／	［＇lecma］	＇female name＇
［es］	／＇peo／	［＇peo］	＇have not done＇
［EO］	／＇tameleo／	［＇touwelco］	＇Wake（him）！＇
［ca］	／se＇o／	［se＇o］	＇Come！＇
［cコ］	／me＇ancjlopi／	［me＇anc ${ }^{2}$ ¢10pl］	＇already assembled＇
［30］	／＇mコo／	［＇mวo］	＇knows how to carve＇
［50］	／＇BJapa／	［＇psapd］	＇from the centre，in the middle＇

These pairs are interpreted to be two syllables phonemically.

3.2.2 Sequences beginning with high vocoids

Other vocoids which combine regularly in pairs are those where the first is articulated with high tongue height and the second may be any vocoid. Eleven of the twelve possibilities from Figure 1 have been recorded. The only two sequences with $[\Lambda]$ found to date are of this type.

[1u]	/'tluma/	['tiuma]	'place name'
[10]	/'meklo/	['mekio]	'customarily sl
[1a]	/ti'anene/	[ti'amene;	'siowly'
[le]	/'lleapa/	['1ie ${ }^{2} \mathrm{apa}$]	'male name'
[ic]	/'sie/	['sic]	'(I) don't know'
[10]	/'tla/	['tio]	'ours (dual)'
[$\mathrm{il}^{\text {] }}$	/'suimo/	['suima]	'female name'
[u0]	/manaluo/	[manaluos	'customarily speaks'
[ua]	/'lua/	['lua]	'wife'
[ue]	/'opuename/	[${ }^{1} \mathrm{Opm} \mathrm{e}^{2} \mathrm{nonE}$]	'dragonfly'
[uع]	/'maluenia/	[${ }^{2} \mathrm{mal} u^{2} \mathrm{cnia}$]	'six (adj.)'
[1A]	/'opitiapa/	['opitinpa]	'male name'
[un]	/'nukuape/	['nuknnpe]	'morning'

Stress occasionally falls on the second vocoid of such pairs, showing the independence of each of the vocoids, as for example,

/kapl'una/	[kapi'uma]	le name ${ }^{\text {a }}$
/tllicel/	[tull'cpl]	'afternoon'
/u'asi/	[u'osi]	'owner'

In addition, most words of four syllables or longer have a secondary stress which falls on the third syllable when counting the primary stress as the first syllable. Often this secondary stress splits pairs of vocoids, as marked above. On this basis, these vocoid pairs are also interpreted as two vowels being peaks of two syllables.

3.2.3 Sequences ending with high vocoids

All ten pairs of a mid or low vocoid followed by a high vocoid have been recorded (Figure 1). Those written phonetically as [Vv] generally take the timing of only one syllable, but those written [iv] generally taike the timing of two syllables. (The key difference between ['mul) 'descend' and [ma'u] 'swim', or ['you] 'dog' vs. [yo'u] 'sun', is not contrasting timing, but contrasting stress.)

[01]	/'oxal/	['ogo ${ }^{1}$]	'sweet potato'
[0u]	/'mopou/	['mopou]	'will wrap/bind'
[a^{\prime}]	/'paikoa/	['paikoa]	'taploca'
[a]]	/'tonumaune/	[${ }^{\text {t }}$ tonu ${ }^{\text {moune] }}$	'Pu11!'
[e^{1}]	/'lei/	['lei]	'Jungle vines'
[eu]	/'moneu/	['moneu]	'will get'
[${ }^{1}$]	/'melm/	['melmo]	'Intend to see'
[eu]	/'ncu/	['meu]	'will have'
[0.1]	/'toime/	['tolme]	'strong'
[จ]	/'suna/	['suna]	'dip food in sau

As these are basically the reverse patterns of the pairs discussed immediately above (3.1.2), and since no two-vocoid pairs having the same stress pattern contrast their timing as one syllable vs. the timing as two syllables (e.g. [aij vs. (a.i]), these pairs ending in high vocoids shall be regarded as the phonetic manifestations of the two voweis in sequence.

3.2.4 Sequences of three or more members

There seems to be a limitation on the duration of vowel sequences, causing them to be pronounced as closely as possible to the timing of two mic or iow vowels in sequence as two syllables, e.g. [e.a]. (See 4.3.3.)

When three or more vocoids are heard together, at least one is a high vowe:. Its duration is always brief and is always tied to the preceding segment. When it follows a consonant it causes the consonant to sound labialized or paiataijzed, e.g. i'kueala/ [${ }^{1} \mathrm{k}^{*} \mathrm{e}^{2}$ ala] 'male name' (3.2.3). When the high vowel follows another vowel, it is pronounced as the off-gisde, e.g. /'tiliou/ ['tili²ou] 'bat' and /'mouonu/ ['mouªnul 'deep, well-anchored (roots)'. Secondary stress also breaks the sequence as a consistent seature.

When a sequence of three or more vocoids is potentially formed by morphemes joining within words, a semivowel is inserted to break up the string or to replace a high vocoid. Since all Hewa verb roots end in a vowel or vowel sequence, and since six vocoids are each a verbal suffix morpheme, this insertion occurs regularly.

```
/'mia/ 'is going' ['mial < {mi-a}
                                    go continuous
/'miu/ 'wizl go' ['miu]< <mi-u}
/'miyou; 'wil2 be going' i'misoul< {mi-a -u}
                                    go cont fut
/'miyc! 'recently went' !'mife} < {mi-i . -c}
                            go nr.pst realis
```


go cont fut irrealis

Examples where geminatiss are created across morpheme boundaries are given i= Section o.:.

Since the meariry is carriec hearity in the yowels of the adicining morphemes, Hewa speairers separate potertial squeezes and possibie loss of a vowel. mhe insertion of \therefore : f its a iniversal pattern in handing such cases (Hooper, 242).
3.3 Status of contoid clusters

No unambivaient contoid ciusters are to be found within the onset or coda slots of Hewa syllabies. Therefore, all phonetic clusters heard in such positions are to be reinterpreted. (Clusters across morpheme boundaries are discussed below in sec. 6.2).

3.3.1 Word-initial =lusters

Contoid clusters are found only when the first syllable is unstressed, and consist of a stop or fricative plus lateral. Such contoids will be separated by re-inserting [1], which appears to have weakened in the unstressed syllable to the point of being lost. (Hooper (1976:235,39) states, "Stress languages which usually have vowel reduction processes, insert or delete the minimal vowe.")

```
/'pile/ ['pule] ~ ['pile] ~ ['pele] 'mouth'
    (The Sepik Hill Stock root for mouth,teeth is [pi-bi].)
'pile'ka; [ple'ka] 'teeth' (mouth's appendages)
/pili'paiopa/ [pli'paiap'] 'male name'
/ti'lif ['tri] 'the Blue Wren Warbler'
```

3.3.2 Labialized stops, fricatives and nasal

All stops and fricatives (except $/ x /$) and the nasal /a/ can be found in /Cu/ syllables when not followed immediately by another vowel. Since pairs of vowels occur in all enviromments, these [CWV] will become /CuV/.

/'opuename/	['opmename]	'dragonfiy'
/'nukuape/	['nukwape]	'morning'
/'tutuapa/	['tutwapa]	'from that far (place)'
/'kui/	[' $\mathrm{k}^{\text {W }} \mathrm{l}$] ${ }^{\text {d }}$	'the Huli people'
/'bue/	[' $\mathrm{B}^{\mathrm{m}} \varepsilon$]	'outer wrapping'
/'mueme/		'wove'

4. Description of Phonemes

4.1.1 Description of consonantal phonemes

/p $t \mathrm{k} \boldsymbol{\mathrm { s }} \mathrm{x} / \mathrm{Apart}$ from /t/ the obstruents vary freely with their voiced allophones in initial and intervocalic positions. ${ }^{2}$ The stops also vary freely with their aspirated allophones in both of those positions.

2 Some secondary evidence for [b] not being a full phoneme was noted when words from Tok Pisin which begin with /b; were generally pronounced by Hewa speakers with /m/ or /k/ or /p/.

/'puka/	['pukJ] - ['buks]	'male name'
/'napa/	['napa] ~ ['naba]	'we (plural)'
/'pulu/	['pulu] ~ ['phulu]	'hunting bow'
/'tapu'	['tapu]	'clouds'
/'otete/	['otcte]	'work' (n.)
/'tito/	['thito] ~ ['thitho]	titol 'here'
/'kamu/	['khamu] ~ ['kamu]	'frog'
/'nikai/	['nikal] ~ ['nigol]	'eye'
/'kokopa/	['kskopl] ~ ['kogop']	'nose'
/'pene/	['pene]	'you (dual)'
/'mobi/	['mosi] - ['mobi]	'married male'
/a'pu/		'where?'
/'masio/	['masio] ~ ['mazio]	'must go'
/'sune/	['sune]	'Snap it!'
/'sisale'	['sisale]	'ferns'
/'xoipa/	[${ }^{\text {coipa] }}$	'gourd'
/'axa/	['axa]	'mountain range'
/'saxa/	['soxs]	'bone spoon'

The velar consonants are backed further when preceded or followed by a low or back vowel.

''noke:	nok ${ }^{\text {h }}$] - ['noge]	'bird'
/'kวna'	['kona] - ['konaj	'banana'
/'pakama/	['baknma] - ['baknma]	'heel of foot'
/'axal/	['axai] - ['apoi]	'sweet potato'
/'oxolone/	['oxolone] - ['oxolone]	'new'

The stops may be unreleased word finally when the final vowel is dropped.

/'molopi/	['wolapl] - ['wolop']	'It's all right'
/'uipe/	['wipe] - ['wip']	'domesticated pig'
/'inite/	['imitc] ~ ['imit']	'down lower on mountain'
/'tiota/	['tiota] - ['tiot']	'immediate vicinity'

/'papakuku/ [²papa²kukl] ~ [1papa²kuk'] 'area name'
It is difficult to find many pairs of words where /x/ and /k/ phonemes contrast clearly, yet there are a number of other reasons, including the pattern pressure and my own "feel" of the language, for positing /x/ as a full phoneme with limited distribution. Some of my reasons are:
 single phoneme $/ \mathrm{k} /$.
2. To group [k k, $g k g$ as $/ k /$ and $[x$ g $x]$ as $/ x /$ follows the clear pattern of the allophones of /p/ vs. /p/ and /t/vs. /s/.
3. Cochran (1968) proposed multiple phonemes $/ k \times \operatorname{l} /$ for the western dialect of Hewa.
4. Hepburn (1980) proposed multiple phonemes $/ k \geqslant h$ for Sanio, the only other language within the Sanio Eamily to have been analysed.
5. Dye and Dye (1965) proposed /kg g h/for Bahinemo (Gahom), the next language eastward from Sanio in the Sepik Hill Stock to have been analysed.
6. Bruce (1979:36) proposed $/ \mathrm{kg} \mathrm{g} /$ for the far eastern end of the Sepik Hill Stock. He also proposes a proto-Sepik Hill sound system including /*k *g *h *2/ (1979:494).

On the basis of all these factors supporting an analysis of there being more than one back consonant phoneme, I am positing /x/ as a full phoneme.
/m n/ The voiced nasals occur in all positions in a word.

/'meane/	['mean $]^{\text {] }}$	'unmarried male'
/'pisama/	['pısama]	'sugar cane'
/'anc/	['onE]	'me'
/'noke/	['nokE]	'bird'

/1/ [f] (infrequently) and [Y] vary freely with [1] in intervocalic position.

'ale/	['ale] ~ [are]	'shoulder'
/a'lapeni/	[a'YapenI] ~[a'rapen]	'upper arm'
/tilil	[tı'li] - ['tiói]	'Blue Wren Warbler'
/tanalu/	[ta'nalu] ~ [ta'nalu]	'Speak!'
/'nilima/	['nulimal ~ [ntlima]	'two days away from today'
/'Iua/	['Iua]	'wife'

/w y/ The voiced semi-vowels occur word initial and medial in non-peak slots of syllables. [w] tends to follow a back vowel (69\% of word medial examples in the data): [y] tends to follow a front vowel (80\% of word medial examples in the data); this is characteristic of Sepik River basin languages (Pike 1964:130; Hepburn 1930:7).

/'molapi/	['molapl]
/'mima/	['mima]
/'towal/	$[$ tomal]
/'yiltwa/	$[$ 'ytlima]
/ame'ya/	[ame'ya]

'all right, O.K.'
'bark rope'
'Hang (it) up:'
'male name'
'fruit bat'

4.1.2 Free variation between full phonemes

Some words have been heard where there appears to be free variation between pairs of full phonemes in certain words, not as a general pattern
across all woros. These variations are generally intervocalic, but occasionainy word initial. The predominant form is listed first in each example.
/p/~p/

$$
\begin{aligned}
& \text { 'pokole: pokole: } \\
& \text { /'yoiapa: -yaiapa/ }
\end{aligned}
$$

'grass'
'male name'
/t/ - /s/
$\begin{array}{ll}\text { i'takupa - 'sokupa' } & \text { 'white haired possim' } \\ \text { /'sakasonci - 'yakatone/ } & \text { 'area name' }\end{array}$
(This place is at the edge of the language area, towards the Duna language. Some people there are bilingual with Duna. The government from Kopiago uses the /s/ form of the name. Duna has no /t/vs. /s. distinction. (Cochrane 1966):

Part of the reason for the $/ \mathrm{ti} / \mathrm{s}$; variation may be the influence from Duna, where the three major areas of that language correspond to a split partially along a/t/, /s/, /ts/ variation. The Lake Kopiago dialect, which borders Hewa, uses /s/. Many loanwords from Tok Pisin with /t/ in them are pronounced by Hewa speakers with /s/ or varying /t/ -/s/ because those words entered via Duna speakers.
/1/ - /y/
The choice of $/ 1 /$ or $/ y /$ seems to be a matter of personal preference.

$$
\begin{array}{ll}
\text { 'yati/ /'lati/ } & \text { 'male rope belt' } \\
\text { /'nopili/ - 'nopiyi/ } & \text { 'dark-furred possum (phalanger)' }
\end{array}
$$

/k/ ~ /xi

```
/'kaipa/ ~ /'xaipo/ 'breadfruit'
/'paxo/ - ''pakoi 'sugar cane pith'
```

4. 2 Description of vowel phonemes

Al: voweis are found worci initiai, medià, and finai.
[ᄂ] is an allophone of [ij and occurs when followed by a nasal or when the vowel of the following $C V$ syijabie is a high vowe:.
[u] is an allophone of iuj and occurs word mecially in the environment of ip/.

'iucti	['iveli]	'sleeping mat'
''niapai'	'niapaj	'age mate of the same sex'
''ilipai	['l]ipa]	'bone'
/'sinui	['sınl]	'en n ! Ento the house)!'
''incbe,'	['tncpe]	'weapon'

／＇enapa／	［＇enapaj	＇heart＇
／＇meno＇	［＇mew）	＇intend to do＇
／＇maneu／	！＇maneu］	＇will get，hold＇
＇＇epime／	［＇عblme	＇already announced＇
／pe＇tene／	［pc＇ten ${ }^{\text {c }}$ ］	＇young＇
／me＇ancolopl／	［me ${ }^{1} a n c^{2}$ วlobi］	＇already assembled＇
／＇Ana／	［＇Ana］	＇do like that，is like that＇
／＇t＾melo／	i＇tameloj	＇roof＇
／＇䦭へ×Ali／	［＇maxali］	$'$＇to hollow out，bore a hole＇
／＇alualu／	$\left[{ }^{1} a\left\|u^{2} a\right\| u\right]$	＇fruit dove＇
／＇atapa／	［＇atapa］	＇all＇
／＇yao／	［＇yao］	＇Raggiana Bird－of－Paradise＇
／＇ule／	［＇ule］	＇head covering＇
／＇kusiau／	［＇kusiau］	＇Ecclectus Parrot＇
／＇pupete／	［＇pupete］－［＇pupete］＇pain＇	
／＇wupe／	［＇wupe］	＇yesterday，tomorrow＇
／＇opa／	［＇opa］	＇hole／den in a tree＇
／mato＇to／	［mato＇to］	＇must gather＇
／＇oxolone／	［コxכlone］	＇new＇
／＇yokole／	［＇yoksle］	＇testicle＇
／＇Iכp／	［＇1 دpo］	＇theirs（plural）＇

4．3 Suprasegmental Items

4．3．1 Pitch

Pitch is the most important factor of the suprasegmental features in recognising the stressed syllable，although intensity and length are interrelated．Only one syllable per word carries the highest pitch and normally it is the first syllable．The final syllable has a low，fading pitch．All other syllables have an intermediate pitch regardless of whether they follow the high pitch or occasionally precede it．Absolute pitch is not important．What is significant is the relationship of syllable pitch within one word．

$/ \overline{\mathrm{ya}} \mathrm{O} /$
／＇a．1e；
－SSS

$/ \cdot \overrightarrow{i \cdot j i \cdot p a /}$
$\cdot \operatorname{sins}$
／＇ku．ku－te．te／
／＇pi．pa．la．｜e／
＇pig＇
＇Raggiana Bird－of－Paradise＇
＇shoulder＇
＇married woman＇
＇bone＇
＇spider＇
＇e haw＇species＇

'elbow, inee'
S'SSS

'black'
$\underset{S S \cdot S S}{\text { ST }}$
ya.pa.'si.na,
'lizards'
SS'SSSS / $\overline{n u \cdot p i \cdot ' s a \cdot u \cdot n a \cdot m a / ~ ' t h e ~ H o n e y e a t e r ~ t i r d ' ~}$
$\overline{s s s \cdot s}$, $\overline{\text { ma.to.po. }}$
'must dispose of (something)'
Contrastive pitch patterns occur only when location of the stressed syllable contrasts within a single string of phonetic segments. These patterns are overlaid on the next examples below (Sec. 4.3.2) to avoid repetition of data and to show the close relationship between the suprasegmental features.

4.3.2 Intensity

Within a word there is one syilable which carries slightly greater intensity than the rest. In the data under analysis more than 88\% of the words have that syilable first. The other syllables within the word are heard with an intermediate intensity, generally decreasing as the word progresses. The final syllable has the least intensity, often being decreased to the poirt that distinctive features of the final vowel are lost. (See Sec. 3.1 above.) This is particularly true of final syllables of the shape

$$
\left\lvert\, \begin{aligned}
& |m-|-i \\
& \mid n-i-\varepsilon \\
& |1-1-n| \\
& |s-|-a|
\end{aligned}\right.
$$

where the vowel has disappeared almost completely in the speech of a large percentage of the Hewa speakers.

Even with the high predictability of the first syllable having greater intensity, some words contrast only on the basis of which syllable carries both the greater intensity and highest pitch. This combination of greater intensity and highest pitch creates the stressed syllable and will be symbolised by /'/ phonemically.

/'matano/	$\left[\begin{array}{l} {[\text { ma.tano }]} \\ {[\text { matano }]} \end{array}\right.$	'bean' 'must listen'
/'tcle/	[$\overline{t \varepsilon \cdot 1 \varepsilon}$]	'that distant (thing)'
/te'le	[te.']ej	'Scrape it!'
/'apole!	[${ }^{2}$ a.po.1E]	'grave '
/a'pole/	$[\underset{a \cdot 180.1 \varepsilon}{ }]$	'Where?'

/'yau /	['大au]	'dog'
/yo'u/	[$\overline{y a \cdot \cdot u}$]	'sun'
/'sic/	['si.ع $]$	'(I) don't
/si'c/	[$\overline{\mathbf{s} \mathbf{I} \cdot \varepsilon}$]	'Shoot!'

Of those words where stress is not on the first syllable, it is more often on the second than on another syllable. Examples of this as well as stress on the third or fourth syllables are given in section 4.3.1.

A secondary intensity (${ }^{2}$) may be heard in words of four or more syllables, and falls two syllables behind the one with primary intensity (1). Being predictable, this secondary intensity will not be written phonemically.

/'pipalale/	[${ }^{1} \mathrm{plpa} \mathrm{c}^{2} \mathrm{lale}$]	(${ }^{\text {h hawk species' }}$
/ke'aluapa/	[$\mathrm{ke}^{1} \mathrm{al} \mathrm{u}^{2} \wedge \mathrm{pa}$]	'a male name'
/'plpleme/	[${ }^{1} \mathrm{pLD} \mathrm{l}^{2} \varepsilon m \varepsilon$]	sharp, pointed, tapered'

4.3.3 Length

Length has been recorded with vowels but not with consonants. Lengthened vowels occur only in the first syllable and only when that syllable is stressed. Such lengthened vowels vary with reguiar length vowels in the same word and will not be represented phonemically. Only two words have ever been heard consistently with length and not the variation mentioned. They are both personal names and will be written without length for the present.

/'tipa/	$[' t i \cdot p a]$	'a male name'
/'kapi/	$[' k a \cdot p i]$	'a male name'

5. Non-contrastive Features

5.1 Onomotopoea

The words heard to date are related to animals and the natural elements. These include the following:

```
/'popolo/ 'bubbles, boiling action, gurgiling stream'
/'nopupu/ 'a strong wind (associated with rain)'
/'u/ 'high-pitched howl of a dog'
                                    (Hewa dogs don't bark.)
/'eyכ/ 'a bush fowl which makes this cry'
/'mela/ 'cicadas, the time when they screech (approx. 6:30 pm)'
/'molawola/ 'a bird which makes this cry (Black-headed Pitta)'
```


5.2 Reduplication

Examples include single morphemes which have no meaning associated with only the portion which is repeated. Others that do have meaning will be broiken down for clarity.

```
/'alualu:' 'a sruit dove'
/'malcmole/ 'pleasant'
''lopelope, 'a draft or gentle air movement'
/'momai 'dance leader' (ima/ 'beat drum')
!'כpiopi/ 'smaii portions or pieces' (/opi/ 'part')
islisli/ 'on top' (/oli/ 'on')
/'kukueme/ 'ciatted' (/kuc/ 'words')
/'itutuapa, 'from very far down the mountain' (/tua/ 'far')
```


5.3. Nasalisation

Nasalisation has been heard consistently only on the words which are the last three exampies in section 5.1 above, all animal sounds. It is interpreted as non-phonemic.
6. Unsolved Issues
6.1 Consonant clusters in Duna names

Less than thirty words with consonant clusters of apparent Duna origin have been recorded. These clusters occur word medially, and consist of a nasal plus a stop of the same point of articulation. In Duna, they are prenasalised stops, but are pronounced by Hewa speakers as consonant clusters with a syilable boundary between the two members.

Of these, twenty-one are personal names. These individuals are of all age groups and were born or raised on the edges of the Hewa language area bordering the Duna language area. They have at least one Duna grandparent and/or a parent bilingual with Duna.

[mb]	$\begin{aligned} & {[\text { 'kemba }]} \\ & {[\text { ambilai }]} \end{aligned}$	'male name' 'female name
[nd]	['tındiaka] ['andukuj	'maie name' 'female name'
[0g]	$\left[\begin{array}{l} \text { 'pauiango] } \\ {[\text { 'lapangi] }} \end{array}\right.$	'male name' 'female name

Of the remaining worcis, one is a food which comes oniy from altitudes higner than the Eewa language area, i.e.. the Duna and Ipili language areas, ['anga] 'pandanus nuts'.

Another plant name is [kampej 'reed'.
One word of unknown origin is a beetle name, ['kombatio] 'rhinocerous beetle'.

The last words are related to seeing:

$$
\begin{array}{ll}
{\left[' \operatorname{lng} a^{i}\right]} \\
{[\text { n'kikal] }} & \text { 'eyika'] } \\
\text { 'vision, eyesight' }
\end{array}
$$

Hewa speakers appear to have no problem pronouncing these names for two reasons. One is the adaptation of making voiced stops voiceless or accepting the voiced form as the variant allophone normally found between voiced segments (see 4.1.1). The other reason is that nasals word-finally (perhaps it is morpheme-finally) regularly lose the following vowel, especially in the flow of speech (see 3.1.2 and 4.3.2). That process regularly brings consonants together across word boundaries or morpheme Junctions (6.2).

$\begin{array}{ll}\text { /'wame } & \text { till'ome/ } \\ \text { wild.animal cassowary }\end{array}$	['mamtuliam]	'the wild cassowary'
/'mane wild.animal bundicoot	['wom 'sua]	'the wild bandicoot'
/'enane pe'tene/ girl young	['emon pr'ten]	'young girl'
/'ane to'no/ me give!	['ants'ns]	'Give it to me!'

As it appears that Hewa speakers sense a break coming between such adjoining consonants, it will be assumed that the borrowed names from Duna have been Hewa-cised and can honestly be represented with Hewa phonemes.
/mp/ from [mb]
/'kempa/ [kemba] 'male name'
/'ampilai/ ['abbilai] 'female name'
/'kompatio/ [kombatio] 'rhinocerous beetle'
/'kampe/ ['kambe] 'reed'
/nt/ from [nd]
/'tintiawa/
['tundiawa] 'male name' /'ontuku/ ['anduku] 'female name'
/nk/ from [Dg]
/'powi anko/
['powiongo] 'male name'
/'lapanki/ /'anka/
['lapangi]
['anga] 'pandanus nuts' /in'kikai/ [in'kikal] 'vision, eyesight'
6.2 Consonant clusters across morpheme boundaries

Hewa has very few words which are composed of two or more morphemes. These appear to be limited to the pronouns, where a final vowel changes; the verbs, where all roots end in a vowel; and the locatives. Only in the locatives do consonants appear to cluster across morpheme boundaries, as some 'location'-morphemes end in a nasal and all 'direction'-morphemes begin with consonants, as shown below.

Loc Morpheme	Dir Morpheme
Om-	-su
upstream	towarcis
$1 \mathrm{~m}^{-}$ downstream	-tut ${ }^{\text {K }} \mathrm{g} \mathrm{p} \mathrm{D}$ far-from
Wว ${ }^{-}$	-niole
across	there nearby
こ-	-pu lop0
higner	from
1-	-uıtI
lower	at

Any 'location'-morpheme of the first column must join with any one of the 'direction'-morphemes in the second column to form a locative word. All combinations are possible. Of all the morphemes indicated the first three 'direction'-morphemes have been found to stand free. There is no known association or borrowing from Duna here.

```
/(?) ' ['amsu] (?)
```

The patterns of pitch and intensity function as if each locative is one word. The time given to pronounce the word ['amsu] is the same as other two-syllable words. To leave the analysis with this as the conclusion wouic appear to require positing two additional syllable types, viz. VC and CVC, both being found only as first syllables of locatives or in borrowed Duna names. This does not seem justified. The cluster appears to be sufficient clue to the Hewa speaker and hearer to mentally divide the word between the two members of the ciuster on the basis of morphemes.

If the word-final vowel loss is regarded as morpheme-final instead, then the earlier solution would apply here.

An alternative would be to insert the minimal vowel $/ \varepsilon /$ behind the nasal in the 'location'-morpheme creating */'amesu/. However, when later written, this may be pronounced *['a.me.su] after the manner of /ame'yo/ [a.me.'ya] 'fruitbat', as a three-syllable word. This would have to be watched when a practical orthography is taught.

Some examples are set out here:

/'amesu/	['amsu]	'in the direction of upstream'
/'imepiolci	[tmpiolc	'nearby on the downstream side'
/'uonepulopai'	['uวnpulopl]	'from across on the mou
''stutuapa'	['วtutuopos	'from far up the mountain
\therefore 'iwiti/	!'iultl!	' Jow on the mountainside'

The better solution, I feel, is to regard the 'direction'-morphemes as unstressed elitics which are not bound, but purely are u:lstressed words
causing a locative phrase to phonetically sound like on: word. The word-final vowel loss pattern would thus still be app: cable. The examples immediately above would be represented iike this phonemically and phonetically:

```
/'ame su/ ['amsu]
/ime biole/ ['lmpiole]
/'mone pulapa/ ['monpulapa]
/'s tutuapa/ ['stutwapa]
/'] witi/ ['iwlt|]
```

7. Distribution of Syllables and Phonemes

7.1 Syllable patterns

Hewa syllable structure may be summarized by the formuia:

$$
s=(C) v
$$

Two types of syllables may be generated from this formula and both are found in use. These are CV and V. Initial, medial and final positions within a word are open to either syllable type. Words may be from one to eight syllables in length. Some examples are given below.

One-Syllable Words - 2 of the 2 possible patterns occur.
v .
CV. /'wa/ 'handheld drum'
/'د/
'skin, leaf'

Two-Syllable Words - 4 of the 4 possible patterns occur.

V.V	$/$ 'so/	'string bag'
V.CV	$/$ 'aki/	'chin'
CV.V	$/$ nis/	'eye area'
CV.CV	$/$ 'tole/	'tongue, flame'

Three Syllable Words - 7 of the 8 possible patterns occur (there are no V.V.V patterns).

v.v.cv	/'aita/	'father'
v.cv.v	/'oxoi/	'sweet potato'
v.cv.cv	/'alclo/	'hunger (n.)'
cv.v.v	/'koai/	'the Friar Bird'
cv.v.cv	/'niepa/	'hair, fur, feathers'
cv.cv.v	/'ijpis/	'theirs (dl.)'

CV.CV.cV /'komeni/ 'mosquito'

Four-Syllable words - 15 of the 16 possible patterns occur (CV.V.V.V does not occur). The incidence of this word type is much higher when there are 2 or more CV syllables in the patterr.

v.v.v.v.	/'aiai/	'fight, argument'
v.v.cv.cv	/'aipese/	'trunk of tree'
v.cv.v.cv	/'inicle/	'sickness'
V.cv.cv.cv	/o'lopene/	'upper arm'
cV.v.v.cV	/'lieapa/	'male name'
cV.V.cV.cv	/'micsime/	'dead'
CV.CV.V.V	/'toneau/	'Hand it (to me)!'
cv.cv.cv.cv	/yopa'sina/	'1izards'

Five Syllable Words - 16 of the 32 possible patterns occur. Those patterns which do occur must have a minimum of two CV syllables. If only two such syllables are present, they cannot be adjacent to each other. Examples are nearly all personal names or verb forms.

Six-or-More-Syllable Words - Very few of the vast number of possible patterns occur. As in the five-syllable words above, there must be 2 CV syllables in a six-syllable word, and more in seven and eight-syllable words, but they cannot all be adjacent to each other. Many verb forms are six syllables, but the few longer verb roots create seven- and eight-syllable words. The longest word recorded is /me'ancolobiame/ '(people) already were gathered'.

7.2 Co-occurrence of consonants with vowels in syllables

All the consonants may fill the onset slot and all the vowels may fill the peak slot of either syllable type. Of the eight possible V syllables and the 88 possibie $C V$ patterns, only eight $C V$ syllables do not occur. These involve combinations with /x/, and $/ e /$ and in/. Front vowels and high vowels are not found following ix/ (*/xi/, */xe/, */xe/, */xu/, */xa/). The other syllables not found are */sa/, */y^/ and */ye/.

7.3 Vowel Clusters

When three vowels come together they consist of arrangements of seven of the vowels, but not ini. At least one vowel in a string of three must be a high vowel, and it may be in any of the three positions. Two vowels of the three may be high ones. The combinations heard are as foljows:

When four vowels come together they consist of arrangements of only three of the vowels (/i u a/). At least two of the vowels must be high vowels, but are never adjacent to each other. The combinations heard are as follows:

$$
\begin{array}{llll}
a & i & a & 1 \\
a & u & a & u \\
1 & 0 & i & a
\end{array}
$$

As discussed above in Section 3.2.4 the high vowels always are pronounced with the preceding phoneme, generally as the off-gilde of the preceding vowel with total timing of the entire vowel sequence approaching the timing of two unambiguous vowels.

7.4 Distribution of phonemes in words

All the consonants occur in initial, medial and final syllables of words. All the vowels occur in initial, medial and final syllables of words in both V and $C V$ configurations. There is no restriction on the location of any phoneme within a word.
8. Morphophonemics

8.1 Review of areas already discussed

One area of morphophonemics has been discussed above in Section 6.2 regarding phonetic consonant clusters across morpheme boundaries. This problem is the chief ongoing concern left in morphophonemic analysis.

Another area already mentioned (Section 3.1.1) discussed word-final vowel loss when the following word began with a vowel which was exactly the same or very similar phonetically to the final vowel of the preceding word. This also occurred when the consonant beginning the next word was exactly the same or very similar phonetically to the last consonant of the preceding word.

In Section 3.2.4 sequences of three or more vocoids were discussed. Some verb roots, however, end in the same vocoid as the attaching suffix and should create geminates or y-insertion. It appears that geminates of the high vocoids collapse into one, but other geminates are separated with a semivowel. The collapsed geminates create two definitions for one phonetic utterance.

```
/'mi/ 'go/recently went' ['mi] < {mi-i}
    go nr.past
/'mopu/ 'stand/will stand' ['mopu] < (mopu -u)
                                stand fut
```

/mopo'laya/ 'is disposing of' [moso'laiya] < \{mopo'la -a) dispose.of cont
/mulu'anoyo/ 'repeatedly asks' [aulu'anoyo] < \{mulu'ano-o\} ask habitual

8.2 Clitics

There is one more category of phonological change which occurs. The pitch pattern changes when clitics are attached to either end of a word. The normal pitch pattern (Section 4.3.1) was described as having highest pitch on the first syllable and following syllables being at a lower pitch, the word terminating with a fading, falling pitch before silence.
8.2.1 Contraction of the first person singular pronoun

Often the first person singular pronoun /'ano/ 'I' is contracted to /a/, loses its stress, and becomes phonologically bound to the beginning of the next word. Though the combination of contraction and word sounds like one new word, the word to which the contraction attaches still retains its normal stress pattern. For example,
/'ano 'mau/ ['ana 'mau] 'I will eat' (Full form pattern)

I eat.future
/a'mou/ [a'mau] (Frequent contraction pattern)
It sounds as if the stress has shifted to the second syllable, but in reality, the word 'eat' has not changed. Representing the combined words phonemically as one word will allow the word 'eat' (or other verb) to retain its normal pronunciation, but it will still be distinguishable from /'amau/ ['anau] 'food' by the stressed syllable.

8.2.2 Vocative

The same type of thing occurs in the pitch pattern when the vocative marker /o/ is added as a suffix to a word or message being spoken across the room or called across a greater distance, and is intended to draw the hearer's attention. Some examples follow.

```
/'yene/ 'son' /'yeneo/ 'Son,...'
/'inai/ 'daughter' /'inaio/ 'Daughter,...'
/'opia/ 'male name' /'apiao/ 'Oh, Apia....'
```

The pitch on the added final syllable does not fall and fade, but carries on at the unstressed syllable pitch level.

In the following examples the contrast is the pitch level only. In the first sentence the /o/ is integral to the word meaning; in the second it is at the utterance (sentence) level of meaning.

```
f'ana 'Elo/ 'I often go'
    I go.habitual
    /'ono 'iol 'I'm letting you know that I'm going now.'
    I go-voc.marker
```

I propose using the space to indicate the leveling of the pitch by regarding the vocative marker as an unstressed word, the same as was proposed in Section 6.2.

```
e.g. "Ana mio." vs. "Ana mi o."
    I go.habitual I go voc.marker
```


8.2.3 Conjunctions

When items are together in a series, a suffix is added to each item and affects the pitch pattern of the word to which it is attached, the same as mentioned in Section 8.2 .2 immediately above. Nouns or clauses may be joined. The space will again be used to indicate the phonologicai rhange in pitch pattern. An example follows.
/'napa kl'amapa mepe so'salapo wepe 'aliau wepe we.pl Kiawnpa and Sosaiapa and Aliau and
'napo 'ote 'uwe se 'yelme/ we.pl river bank at go.upstream.direction.past
'We (Kiawapa, Sosaiapa, Allau and I) went upstream along the river's bank.'

8.3 Verbs

All Hewa verb roots end in a vowel. When tense and aspect markers beginning with a high vowel (or semi-vowel) are added as suffixes to verb roots ending in /a/. they cause the /a/ to glide. The examples shown below are represented phonetically to illustrate this point.

Root	Present	Far Past Realis	Near Past Realis	Future Irrealis	Past Completed
	/-8/	/-m-ع/	/-i-E/	/-u-3/	/-po-m-e/
$\begin{array}{r} -1 \mathrm{a}- \\ \text { eat } \end{array}$	'ma	'mane	'maly	' $\mathrm{ma}^{\text {um }}$	'mapome
$\begin{aligned} & \text {-le'a- } \\ & \text { return } \end{aligned}$	$m \mathrm{mle}{ }^{\prime}$	mele'ame	mele'alye	mele'aumb	mele'apome
$\begin{aligned} & \text {-'na- } \\ & \text { nit, beat } \end{aligned}$	ma'na	ma'name	ma'nolye		EA'nopone
$\begin{aligned} & - \text { onlna- } \\ & \text { lift } \end{aligned}$	'manina	maniname	'moninalye	'maninguwo	'moninapome

All other vowels at the end of a verb root do not change because the meaning is tied to the vowels.

$\begin{aligned} & - \text { una }^{i-} \\ & \text { fill } \end{aligned}$	'mumal	'mumaime	'muwaiye	'mumaim	'mumai pome
$\begin{aligned} & \text {-'oneou- } \\ & \text { hand over } \end{aligned}$	'moneau	'moneaume	'maneauyc	'moneaum	'moneaupome
$\begin{aligned} & \text {-'s- } \\ & \text { chop, carv } \end{aligned}$		'mome	'moye	'mow	- mpom
-' כu- descend	'mou	'	'mouyc		'mupon

-lu'ano- 'mulu'ono mulu'anome mulu'anoye mulu'anouj mulu'anopome
Because no other vowels glide when morphemes are suffixed to the verb roots, but the roots retain their shape, these morphophonemic glides on $/ a /$ will not be written, but the basic root form will be kept. This is subject to later testing when there are Hewa literates. (Cochran 1977: 91-92).

Three verbs have been found to follow another pattern when only the future tense vowel suffix /u/ is added to the root. The last vowel is dropped and replaced by the /u/. These verbs return to the pattern when additional suffixes are added. The expected form is given last in the following examples.


```
\prime'm&kiwo/ 'intend to sleep' < {mck} -u -כ}
                                    sleep fut irrealis
/'metu/ 'will build' < {meti -u} (*/'metiu/;
    build fut
/'metima/ 'intend to build' < {meti -u -o)
    build fut irrealis
/mo'pu/ 'will put
< {mo'so-u} fut (*imo'mou/)
/mo'bow:/ 'intend to put' < {mo'po-u -o}
    put fut irrealis
```

The phonemic shapes do not have the same form as any other known verb root, so there does not seem to be any confusion with other verbs. Also, later transfer of the phonemic shapes to an orthography wil' probably cause fewer errors for new readers than might spellings of the morphemic shapes on the right. Therefore, I prefer to use the phonemic shapes as the exceptions to the rule, rather than the morphemic shapes. This, too, is subject to later testing.

Workpapers in Papua New Guinea Languages

Volume
 31

Five phonological studies

Summer Institute of Linguistics Ukarumpa, Papua New Guinea

[^0]: 1 Notice that there 1s no /h/ phoneme, even though the people and their language are called ['hewa]. This is a Duna word meaning 'sun'. (The Hewas all live at lower altitudes than the Dunas.) All significant government contact has come through the Lake Kopiago post in the Duna language area.

