

*

A. H"̈lent pirn.r.

A Nachontis on

PHILOSOPHICAL MAGAZINE:

COMPREHENDING
THE VARIOUS BRANCHES OF SCIENCE,

THE LIBERAL AND FINE ARTS, AGRICULTURE, MANUFACTURES,

AND
COMMERCE.

BY ALEXANDER TILLOCH,

 goyorary member of the royal irish academy, \&c. \&c. \&ct[^0]
VOL. XVIII.

> LONDON:
> Pointed for Alexander Tilloch, By \mathcal{F}. Taylor, Black-Hcrse-Court, Fleet-strect:

And sold by Messrs. Raceardson, Cornhill; Cadell and Davies, Strand; Longman and Rees, Pater-noster Row; Debrett, Piccadilly;

Murray, Fleet-street; Symonds, Pater-noster Row;
Bell, Oxford-street; Vernor and Hood,
Poultry; Harding, St. James*s-street;
Bell and Bradfute, Edinburgh;
Brash and Reid, Glasgow; and Gilbert and Hodges,

Dublin.

$$
\begin{aligned}
& x \\
& \text { Pit } \\
& 1.8 \\
& 14^{8} 9^{2} \\
& 11119^{1} \\
& 6 .
\end{aligned}
$$

CONOENTS

OE THE

EIGIIMEENTI YOLCNE.

1. F_ACTS illustrative of the Shrinkage and Expansion of Cast Iron, eotc. ©oic. By David Mushet, Ciq. of the Calder Iron-Works
II. Of the Herring Fishery. Translated from the Frenchof M. Duhamel and others12
III. Sketch of a Gcolegical Delincation of Sunth America.By F. A. Vox Humbotidt96
IV. Natural History and Anatomical Description of a new Genus of Fish named Polyptera, found in the Nile. By
G. Geoffroy 36
V. Account of the Process followed by M. Pierre Jaques Papillox for dyeing Turkry Red.................. . 43
VI. The Life of John Doleond, F. R.S., Inventor ofthe Achromatic Telescope . 47
VII. Memoir by Lord Napier, of Merchiston, the celelvatedInventor of the Logarithms, on his different Contrivances"for the Defence of this Island ;" with Remarks . . . 53
VIII. Olservations on Dr. Wollastox's Statements re-specting an Improvement in the Form of Spectacle-Glasses. By W^{\top} illiam Jones, Eiq. F.Am.P.S. Op-tician, Hollorn . 65
IX. Thirtecnth Communication from Dr. Thornton, re- Lative to Pneumatic _Medicine 71
X. On the Influcnce of the component Parts of the Soil onVegetation. By M. Отто........................... . . 7 5
XI. On the Lise of Sieatites in the Art of engraving on
Stones 83
XII. Notices respecting New Books S5
XIII. Intelligence and Miscellaneous Articles 90
XIV. Experiments made for the Purpose of ascertainingwhether there be a real Acill of Colalt; or, in other IVords,whether Colalt actually mites with Oxygen to the Degreenecessary for Acidification. By C. F. Bucholz.... 97
XV. Memorial of Mr. E. G. J. Crookefas respectingthe Distillation of Spirits, $\mathfrak{o f c}$. in Holland 107
XVI. On the Cure of the Gout. By A. Stenhouse, M.D.Edinburgh114
Vol. XVIII. No. 78.

Xiil. On the lise of Steumed Pofatoes as a Sulstitute for Hoy to (inttle . 116
A111. A demonstable, arcurate, and at all Times praclimble Muthed of adinsting Hancey's sextumt so as to rader the Bacis Owernationt equally correct with the Fore Olservation; and to masure an Amale of 150, 100, or 1才) Degrees, as acourately as ome of 30,40 or 50 DeUlies. Cominanicated to the -Atronomor Royal by Letter datet Sept. as, 1803. By the Rev. Michame 'Wtird, 1) Tamumth, Staffordhire 123

N1X. On the Ctility of the Oxygenated Murmatio fict in the Cure of Sarlet Fever ; Mith an casy Mode of preparing it for Medical P'urposes. By Mir. John Arrey Brathwime, Member of the Royal College of Surgemis in London, and Surgeon to the Lancaster Dispensary .. 127
XX. Keport of Guldanic Experiments made on Men amb Animats. Ruad to the Class of the Exact Sciences of the sicademy of Thin ly C. Rossi 131

- XII. A Report of the State of His Majesty's Flock of Fineworlled Spanish Sheep during the Years 1500 and 1501 ; "ith some Accoant of the Progress that has leen made ionards the Introduction of that valual le Breed into those l'arts of the Linited Kingdom where fine Clothing Wools are grown with Adrantare 340
XXII. Medion-chemical Fesearches on the Virtues and Principles of Cantharides: extracted from a Memoir of C. Beavpoil by C. Deteux 145

XXIIL. Olservations on the Prussic Acid, and the Production of a Pyrophorus ly the Prussiate of Iron. By i). H. Grindel . 151
XXIV. Enperiments on the Oil produced from the Leares of the Lanrel Cherry. By C. Roloff of Magdelurg 153
IXV. On the Ether suggested ly Sir Isaac Newton, conntarcd with the supposed newly discovered Principle of Galuanism. By Guernor Pownall............. 155
XXVI. On the Preperation, Culture, and Use of the Orchis Rowt. By J. Percival, M. D.

158
XXVIF. On the Plants emplajed by the antient Pcople of Europe for poisoning their Arrou's. By C. Coquebert 163
XXVIII. Experiment shouing the Allantage of Periscopic Spectactes. By W. I. Wollaston, M.D. F.R.S. 165
XXIX. Process for extracting the Salt, with a Base of Lime, contained in Yellow Cinchona. Communicated to M. Fourcror ly C. Deschamps, of Lyons 167
XXX. On

CONTENTS.

XXX. On Galvanism. By a Correspondent 170
XXXI. Sketch of a Geolggical Delineation of South America. By F. A. Von Iumboldt 1 ig
XXXII. Olservations on the Condition of the Inhabitants of the Cape of Good Hope 179
XXXIII. Intelligence and Miscellaneous Aiticles 187
XXXIV. Experiments to ascertain u hether there exists any Affinity letwixt Carlon and Clay, Lime and Silex, separately or as Compounds mited with the Oxide of Iron forming Iron Ores and Iron Stones. By David Mushet, Esq. of the Calder Iron-IForks 193
XXXV. Researches in regard to the Manner in which Natural Bolies exhilit Colours, and Experiments on a new Theory of that Pheenomenon. By S. F. Hermbstadt 201
XXXVI. Fourtcenth Communication from Dr. Thonnton relative to Pueumatic Medicine 207
XXXVII. History of Astronomy for the Year 1s03. Read ut the College de France by Jerome de Lalande.. 209
XXXVIII. A Letter to Governor Pownall from Dr. Thornton. 221
XXXIX. Aemoir on the Wool and Sheep of Cuchemire and Boutan. Read in the Agricultural Society of Paris in the Sitting of Frimaire 7, Year 9, l'y Alexander le Goux de Flaix, formerly an Officer of Engineers, Member of the Asiatic Society at Calcutta, 'goc. 23.4
XL. Curious Extracts from old English Books, with Remarks which prove, that the Telescope, छof. were known in England much earlier than in any other Country

245
XLI. Letler of Spalianzani to C. Senebier in vegard to Respiration . 256
XLII. A full Description of the Method of preparing Mr. George Dlackman's Superfine Oil-Colour Cakes; as communicated to the Society for the Encouragement of Arts, Manufactures, and Commerce, and practised by him in Presence of a Committee appointed by the Society to ascertain the Merit of the Invention
XI.III. Description of an improved Crane for Wharfs. By Mr. Robert Hall junior, of Basford, near Noftingham
XLIV. Description of an improvel Bucket for drawing Water out of deep IVells. By Mr. Gforge Russel 271
XLV. An Examinaiion of Dr. Wollaston's Experiment on his Periscopic Spectacles. By Mr. William Jones, F.Am. P.S.

CONTENTS.

XlX11. Onservation on the Possitility of collecting a cerhain (bantity of succinic - Acid during the Process of mukine -tmber lurnints, without lesening the Property of the firmish. By N. Plivene, Vember of the Pharmaarntir Socicty of Paris 275
 -50
VLİ. Procedings of Larnad Societies 251
 283
L!. Lexperiments to aseotain whother there exists anyAfinity beture: Carton ant Clay, Lime ant Silex, se-forutily or as Cmopoumls united with the Oxide of homforming Iron Ores aind Srom Stones. By Divid Mesiet,
I.1!. Brperiments an preparing Potatops in Digesters for feetiner lon amd fattrming other Sluck. By the Rev. Wilime PienRepost, of Burton Park, Susser. . . 298
L.II. Devription of an improved Eight-Day Clock, tostrik without a Fly; inmated ly Mr. Edwand Masser,of IIanley, is. Stuffordshire303
1.1. Acomnt of lmprovements for diminishing Frictionin Clock. By Mr. Edward Massfe, of Menley, inStationeshire305
L`. (liscrrations on the Comdition of the Inhalitants of theCape of Citoul Hope307
LXI. Vemorial of 11 . Li. G. J. Cnookness respectingthe Distillation of syinit:, doc. in Hoiland315
LXII. Figure of the Orlit, of the neie Planets. By Je- hove me Lalande 32.5
Will. Lefter to Mr. Anthun Aikin from Dr. Thonn- Tos 326
thi. Life of Jomn Henry Lambert 3.3
L.X. Aldition to a Memoir on the Method of giving to(ooton and Linen Threal the Adrianople Red, and otherfined coleners. By J. M. Haussman.............. 340
Lil. On Spontamemis Inflammations. By C. Bartholdi,Projeswor of Tatura! Phitosaphy and Chemistry . . . 3.46Lill. Remark: on . Men of gisantic Stature, and particu-lierly on the Migh Giant, 'O'Brien. By Mr. Blair,
TXIll. ('aply of a Leiter from Mr. Cummberrson to Dr.Dunnos, commmicuting an iuportant and curious di-atimenishing Property leturen the Galvanic and Electricrhinds359
 355

1. ¿1: Dintelligente an! Miscellaneous dilicles 367

THE

PHILOSOPHICAL MAGAZINE。

I. Facts illustrative of the Shrinkage and Expansion of Cast Iron, Eoic. Eo̊c. By David Mushet, Esq. of the Calder Iron IVorks*.

The high temperature requisite to melt cast iron has prevented the chenical and philosophical world in general from becoming acquainted with many of its habitudes and peculiarities in the different stages of manufacture. Those engaged in foundrics are frequently prevented, from the hurry and bustle which attends manufactories, from making observations, and acquire no habit of detailing then. Others again, from their earliest infancy, have been accustomed to observe, that certain appearances, time out of mind to them, had always followed certain actions performed. They acquire a laconic habit of reasoning; and if asked how such appearances are to be accounted for, their answer is, "They must exist so and so-it is in the very nature of the thing."

It is difficult to conceive a more 2 mple field for observation than an extensive foundry. Combination, change, decomposition, combustion, and deflagration, are constantly performing their respective parts, and continually presentirg matter under new and interesting appearances.

Elementary substances, subject to no real change, are modified in a variety of ways by the alternation of heat and cold. The laws which govern these are constantly exertcd to produce effects equivalent to the exciting cause; and, while we often remain heedless spectators, these unerring opcrations are productive of phenomena which frequently elude our sagacity or puzzle our judgment.

The subject of contraction and expansion appears simple, and the presence or absence of caloric alone in the body

* Communicated by the author.

[^1]operated upon frequently cxphains, in a most satisfactory rasmer, the whele mimutix.

But this regede only the heating of certain substances in temperatures shont of fosmg them. When the object of experment is exposed to a licat sufficient to firse it, it then becomes subject to new laws as a thuid, and exhibits phonomena entirely different. By not taking the change of state fiom that of a solid to a flud into the accome some writers have given an ankward and matisfactory acenum of the laws which regulate iroil in these two different states. Before I proced to detal some experiments made upon this subject, I shall trace out the different states of shrinkage and expansion, as observed in cast iron.

In doing this I shall divide shrinkage into two distinct operatoons: 1st, Shrinkage, properly so called, when a mass of iron diminishes or sminks within itself, and would actually displace a smaller quantity of water, and when no degree of heat short of fusion would nake it occupy its former bulk or volume. ©d, Contraction, or that diminution of superficial measurement which any body undergoes by evolving its caloric. The surface in this case is never injured; the casting will he found less than the patteru from which it was formed, and simple heating will restore it to its greatest originai volume.

The former of these propertics cannot exist without the latter, but this last may take effect in full force in many minor operations without any appearance of shrinkage. I only say appearance; for I belicre, abstractly speaking, the one never takes place without the other, though in such various minate degrees that it is often difficult to form any estimate of the quantity.

In casting pieces of ordnance we are enabled to judge of the conjoint effects of shrimkage, contraction, and expansion. We shall suppose that a gun mould of any given length is filled with fluid cast iron not subject to these laws; then the size and shape of the gun, when cold, would exactly correspond to the dimensions of the monld. But finding that the piece of casting was considerably altered, that it had shrunk interiorly, was dimmished in point of length, and had lessencd its diameter, we must seck for a solution of these facts in the explanation of the canses respectively.

First assuming, what shall be hereafter prosed by direct experiment, that cast iron occupies less wolume when fluid than when solid; that in the act of the armemement of the moleculæ towards consolidation, it occupics a larequ bulk
than at any other period; and that, when cold, and in proportion to the absence of heat, so will the volume of the metal be diminished.

1st, then, Shrinkage appears to be dependent upon two causes; the gravitation of the fluid metal, and the expansion of the mould. The latter, I conceive, acts a very powerful part : the immense quantity of caloric combined with the iron is in part easily and almest instantaneously communicated through the sand to the iron box: this creates a disposition to expand, in which it is greatly assisted by the great pressure of fluid iron. That portion of the metal in contact with the interior of the mould is the first to lose its fluidity, and is acted upon and forced to give way in the same ratio of expansion before the subtle and denser fluid. The diameter of the shell of the gun is at this period increased in every part ; the fluid iron in the interior descends to occupy the enlarged space, and the head of the gun presents an increasing chasm like the concave of a sand glass. In proportion as the cast iron resolves itself into a solid, a diminution of pressure should take place upon the mould: this would inevitably follow, were not its furee replaced by the increased rolume of the metal passing into a solid state, which is equivalent to that law which I have termed

2d, Erpansion. Of the extent of this operation we may judge from the following facis :-All patterns of castinge are made somewhat larger than the piece of goods is wished io be: in common cases $1-5$ th of an inch to the foot is allowed, but in many cases the allowance will be nearly 3-16ths of an inch. In the case of the gun, therefore, the inould would be plus the aliowance upon the pattern what space was gaince by beating the pattern to loose it from the said, and all the extra space acquired by the increased volume of the consolidating irn. These, taken collectively, may amount to $1-4$ th or $5-10$ the of an inch ; and so much les will the diameter of the gun be found when cold, to what it would have measured at the climax of 1 ts expansicre.

3d, Contraction immediately takes place of the metal ceasing to expand: to its effects are chargeable the redicetion of the increased diameter of the gem, and which seems merely in conscuaence of the escape of the celoric.

The action or eflect of these serarate hus wil intimately depend upon the quality and fluidity of the netal : with the same quality of iron diferent effects will be produced according to the division of the fluid, and with the same degree of division in the fluid the extent of the operation of these laws will be different with the differnt qualities of
crude iron. Soft cast iron very hot will shrink and contract less than iron equally hot but of a harder quality, or, which is the same thing, than iron containing less carbon.

In casting cylinders, pipes, and other hollow machinery, the effects of expansion and contraction are manifested without any great degree of shrinkage appearing.

The diameter of the mould in all these castings is generally made from $1-$-Sth to $3-16$ ths per foot in diameter larger than the casting is wished to be ; while the space or vacuity left betwist the exterior and interior of the mould, called the thickness, is made less than the strength in metal is wishad to be.

When the eylinder is cold, however, the diameter, if properly allowed, will be found correct by the operation of contraction in cooling; while the thickness in metal will be found increased, though still correct, by an expansion or separation of the exterior and interior parts of the mould. This last is by the moulder called straining ; and if great care is not taken to compress the sand firmly round about the mould, the thickness is sometimes increased so much as to render the manufacture unsaleable. Should this neecesary precaution be slightly performe', and the thickness considerably increased, the usual expansion which takes place when the metal passes into the solid state becomes so extensive as to effect a permanent increase of the diameter of the casting, and destroy its use *. The united cffects of these two causes force the sand to assume an elerated posture ali round the mould, and occasion violent rents and inssure, which become immediately filled with palc blue fome, accompanied by a crackling noise like the snapping of electric matter.

Shrimage in these castings, particularly if large, would affect the solidity of the ressel by taking place to a considerable extent upon the upper surface, immediately where the ramer discharges the metal into the mould. This is in a great measure counteracted by feeding these gates or runners, after the mould is tilled, with several ladles full of 月luid iron, and keeping the communication open to the edge of the
r The addiciond thicknes ahwars takes place to the exterior of the trould. The presute enn more easily act with effect against the concave than the convex side of the mond. The mondder is fully aware of this in the at of cooling, proticulariy if the metal has been very lat and of a tharp ywality. Atre he cenceive, the iron fuirly consolidated throughGut, he cuts wo oferines di izast in the core or interior part of the mould, and penctrares to the rad-hce sutace. This gives scope to the contraction if the vess', and precres the oroting frequenty from being destr.e.
casting by movirg small iron rods up and down in the gate. The metal is thus ailowed to percolate into the chasm, if any is formed, and prevents any bad consequences likely to ensu from the general shrinkage of the mas.

It is impossible to convey an exact idea of the extent or quantity of shrinkage that takes place in castings, or proportion it to the weight or dimensions of the original mass. The subject of contraction is more within the reach of measurement, and in many cases may be ascertained with great precision.

The following bomb-shell ganges were cast from very clean wood patterns; the breadth of metal in the hoop was exactly 1.250 inches, and the thickness $\cdot 450$ inch.

> Liamete of Peterns. Diastite: when cast. Contraction.

| 1st Pattern | $7 \cdot 500$ inches. | $7 \cdot 350$ inches. |
| :--- | :--- | :--- |$\quad \cdot 150$ inch. will be as follows:

Contraction of No. I. $\cdot 15$, equal to $1-50$ th of the diameter.

$$
\begin{aligned}
& \text { II. } \cdot 10, 1-59 \frac{1}{2} \\
& \text { III. } \cdot 07,-75 \frac{51}{106} \\
& \text { IV. } \cdot 06,= \\
& \text { V. } \cdot 04,=75 \frac{8}{100} \\
& 1-1002
\end{aligned}
$$

It will be seen from this table, that the quantity of contraction is in a due relation to the diameter of the casting. No. IV. seems an exception, however, and appears to have shrunk more in proportion to its diameter than the other four. This may with safety be laid to the score of error in the moulding. In casting flat surfaces, the degree of contraction is in a just proportion to the length of the article. Incnes.
A front pattern of polished tin measured exactly $24 \cdot 5$
When cast of soft gray iron, and cold, measured $24 \cdot 250$ Contraction -25
Equal to $1-35$ th part the length of the pattern; the height of which, or rather breadth, was 20 inches; its thickness a quarter of an inch.
The contraction of two akh-grate patterns was ascertained as follows:

First pattern measured in length - $18 \cdot 250$ inches When cast in soft iron $\quad-\quad-\quad \frac{15 \cdot 035}{-215}$
Equal to $1-84_{100}^{88}$ th part the length of the pattern.

Sccond pattern measured in length - $11^{\circ} 100$ inchez When cast in soft iron : 10.975

Contraction $\cdot 125$
Equal to $1-88 \frac{8}{8}$, th part the length of the pattern.
The breadth of No. I. was 11 inches, that of No. II. 8需 inches: the thickness in both was 475 m inch.

1 shall now finish this paper with some experiments made. upon the casting of cannon shot. This operation is performed by pouring the liquid iron into a mould which is divided into two semi-spheres. The mould is possessed of a joint, which preserses the sphericity of the shot. It is formed by careful turning to gauges made with great care and exactness. This operation exhibits very distinctly the laws of shrinkage, contraction, and expansion ; and from it I mean to prove the truth of what I only before assumed: 1st, That east iron, when fluid, is then more dense than in any other state: od, That immodiately upors its passing from the fluid to the solid state it acquires it: greatest volume: and 3cl, That when coll, and always in proportion to the absence of heat, so will be the diminished diameter of the shot.

To prove that cast iron is denser in the fluid state, severak piesea of iron may be put into a ladle, and hot fluid iron pourel upon them; they will immediately rise to the surface, and expese a considerable portion of their bulk abore the surface of the liquid iron. This buoyancy diminishes; and as the pieces of inctal approach more and more to the state of fusion that exists in the ladle, they gradually sink, till they disappear entirely under the surface; they then rapidly dissolve, and form a part of the fluid iron.

Melted cast iron supports also lead and tin in the same maner ; but these suon beconve dissipated in the great heat of the fluid.

If a 6 -pounder shot is placed in the bottom of a $10-$ pounder mond, or of any size larger, and hot melted metal poured in till the mould is filled, apparently a perfect shot is formed; but a few blows upon the upper part of the sphere, around the gate or runner, detect the gurface of the small shot. The thickness of the iron here will not exceed 1-10th of an ineh, while the bottom thickness will be nearly a full inch; and if the mould exceeds in diameter that of a 12 -pounder, the inequality of thickness is greater. It is evident from this, that six pounds of fluid iron float six pounds of solid iron in thee state of a sphere. That this property is permanent, may be further understood from a continuation
continuation of the same experiment. If a short allowance of time is made after the mould is filled under the abore cireumstances, and this dexterously inverted, a fair inelosure will be found, possessing regular and equal thiekness of new metal on all sides of the minor ball.

This is easily accounted for upon the same principle, When the mould was full, the ball, as usual, occupied its place near the rumer. The iron first run into the mould, meeting with the greatest degree of cold, would immediately consolidate upon the battom: when the mould was inverted, the ball would naturally tend to elevate itself to what was formerly the bottom of the mould; but its progress would be arrested by that portion of the iron now become a solid, and would remain stationary, more or less central in proportion to the fimess of the moment taken to perform the operation.

That east iron occupies a greater bulk or volume immediately after it passes into the state of a solid, may be learned from observation as well as direct experiment. If a shotmould is carefully separated at a certain period after filling, a metallic crust is formed, more or less thick, which is the natural progress of consolidation, but which is at present an envelupe to a considerable portion of fluid contents. In this state the expansion, if any has taken place in the shot and mould, is nearly the same ; the former is easily extracted from the under and upper parts of the latter. In about two minutes after, however, the cxpansion of the shot is more rapid than that of the mould; and at this period is difficult to disengage. As the heat is communicated to the mould, its dimensions cnlarge, and the extraction of the shot is attended with less riolent efforts. The mould is always filled by the shot till cooling has sn far taken place as to reduce the shot-mould to its femer diameter. Beyond this, however, the shot still continues to lessen its bulk, so that when cold it will be found to have left its mould by nearly $1-66$ th part of its diameter. In all cases where shot-moulds are re-filled before they have contracted, by cooling, to their original diameter, their product in shot will be various as to dimensions. The effeets of this, particularly in summer, are inconceivable, and, though seldom adverted to, will account often for shot being rejected as unserviceable for not passing the gauge. This subject I at one time paid particular aticntion to, and, to ascertain the fact rigorously made the following experiments :

I selected seven pairs of shot-moulds, well seasoned, of the following sizes, $3,4,6,9,12,34$, and 39 -pounders,

These were cast or filled with the same quality of iron three times successively. The first interval of pouring was ten minutes, and the second fifteen minutes.

3-pounder shot, 1	Measured. Inches.	Weighed. Lbs. Grs.	
	2.72.4	2	6015
	$2 \cdot 730$	2	6031
3 d	2.736	9	6070
1-pounder shot, lst	3.036	3	6125
¢d	3.05.1	3	6934
3d	3.087	3	6289
6 -pounder shot, 1st	$3 \cdot 240$	5	4513
-d	$3 \cdot 210$	5	5031
3d	$3 \cdot 290$	5	5250
9 -pounder shot, 1st	$4 \cdot 032$	8	5906
2 d	$4 \cdot 050$	8	6016
3d	$4 \cdot 090$	8	6236
12-pounder shot, list	$4 \cdot 440$	11	5250
2d	$4 \cdot 444$	11	5480
3d	4.512	11	5751
et-pounder shot, lit	5.556	23	3830
2d	$5 \cdot 574$	23	4485
3 l	$5 \cdot 660$	23	5690
32-pounder shot, 1st	6.114	31	5360
Qd	6.156	31	6343
3d	6	32	1530

Upon this table I have only to remark, that the ratio of effect, both in the expansion and increase of weight, is exactiy analogous to the weight or diameter of the ball, or, in other words, to the mass of fluid iron poured into the mould. When the last round of pouring was finished, the moulds possessed a temperature respectively to their sizes. The 32 -pounder mould was thoroughly red-hot, though nearly two inches in thickness and weighing 140 pounds. In this and in the 2t-pounder mould a curious species of adhesion had taken place in the bottom, betwist the shot and the mould, by the moulders called burning. When the bullet is broken off, the mould exhibits an elevated spongy mass which resists the hardest-tempered steel.

About two years after the above experiments were made, I paid particular attention to the effects likely to be produced in a large way in the usual train of manufacture. My obsurations were condacted in a shop appropriated for shotcasting. The length of the house was 30 feet, breadth 16, side walls o feet, with a parilion roof of the common range.

He whel periormed here was the filling of about 150
pairs of moulds, of all sizes, three times each day. These occupied the floor of brick in different ranges, and presented a very large aggregate of heated surface when poured. The quantity of metal thus formed into shot at each cast was nearly a ton. In May 1796 the average temperature of this workshop for several days during casting was 110° Fahr. One day a spirit-of-wine thermometer burst in my hand with a report like a pistol. Its greatest range of scale was 120° : the passages betwixt the moulds, for the movements of the pourers, were 130°. In all these extra temperatures I uniformly observed that a considerable portion of the shot, particularly in the third cast, passed the gauge with difficulty, and many of these found unserviceable for carronades, where the windage allowed upon the calibre of the picee is less. In the middle of August in the same year, during a period of very hot close weather, I made repeated trials, and found the effects always proportioned to the temperature of the workshop. I shall finish this paper with the particulars of one day's observations.

\[

\]

Greatest heat in 35 minutes, being three minutes after the pouring had ceased, 156
From 128 to 156° I felt a sensation of cold similar to that when approaching a fire in winter, accompanied by a considerable degree of shivering. About 150° this sensation wore off, and I felt comparatively comfortable. Perspiration had now become so violent as to ooze through all parts of my waistcoat, breeches, and stockings. The workmen who carried the metal perspired in such a manner as to wet their large sacking trowsers as if they had been soaked in water. The moisture ran in such torrents from their faces and arms, as to be distinctly heard hissing upon the heated moulds. Their step and arms were more agitated than I had ever before observed, and the sinews all over their bodies were uncommonly large, and felt inflated to a great degree. Two men performed the whole labour of pouring; so that each of them in 32 minutes carried half a ton of metal in quantities, in hand-ladles, from forty to fifty pounds each time. The space gone through each time, the return with the empty ladle included, was nearly 120 feet, or fully equal,
equal, upon the whole travel, to half an English mile; the half of which space was traversed with a ladle, metal included, weighing so pounds. One of the men, immediately after this operation, emptied a pitcher of spring water at one draught which I estimated at five English pints.

The phenomena of the ed east were not so marked. So much is the human body the child of habit, that I neither felt the same extent of sensation, nor remarked it upon the workmen, although the themoneter maintained itself for some minutes at 158°. In the afternoon the air beg:m to circulate, and the temperature of the shop became much more moderatc. The third cast, however, soon destroyed this plea*ant change, and, before half done, the thermometer rose to 164°. Still the workinen seemed to suffer less than in the morning, exeept on the legs. Most of the ranges of large monids were throwing off the caloric in rucille undulations, and exhibiting symptoms of approaching redness. The smalluces of the shop admitted only of $2 \frac{1}{2}$ feet of passage betwixt range and range; which made the temperature of this spot intolerable.

When the east was finished I had the doors and windows shut. This made the real state of the moulds visible. The 1s, 24, and 32-pounders were all of a dark glowing red heai, and presented an arid and inhospitable glare with which it was impossible long to exist.

II. Of the Herring Fishery. Translated from the French of M. Duhamel and others.

 [Concluded from our last volume, p. 225.] A general Idea of the Curing of Herrings.The French, Dutch, and English, cure herrings, some white and some red, and some like anchovies. But the French and Dutch cure but a small quantity of red herrings in comparison of the white ones : the English, on the contrary, redden the greatest part of the herrings taken in the Yarmouth fishery.

We have said already, that when the fishermen are near enough the coast so as to deliver in the day the herrings that they catch ai night, the; sell them fresh; but when this delivery camot be made quikly, they com them in the vessels; sometimes they throw then into casks together with sult in a confisci mamer, and sometimes pack them
them up in barrels. As these operations, which necessity sometimes requires to be done at sea, are executed better on land, we have reserved a morc particular account of them for this place.
Of Half-salted or Comed Herrings.

When the fishermen cannet bring their herrings to land within twent"-four hers atwe they ane cangt, they give them a half suting: it is an imporint peint thet this should be done ainost immediately atur the kermgs are taken out of the w. tar .

This half salting is waed likewise on land, when the herrings are to bented either in the white or red way: when it is done at sua, it is as it were provisional, and serves to keep the fish for two or three days without spoiling. It is done in different manners. At sea, as it must je done expeditioush; they do not dress the herrings, that is, they do not take out the gills and entrails; which is very wrong, as undressed herrings are fit only to be reddened, or half reddenct. As to the half salting itself, it is sometimes done in this manner: they put a small quantity of herrings in a tub, and pour some salt upon them with their hands : upon this layer of salt they place one of herrings, and then another of salt ; after which they turn both herrings and salt up and down together. Another method of doing it is, to put a small quantity of herrings with some salt in a sort of copper pan, and then to mix and turn them about. These half salted herrings are sometimes thesw pell-mell into a cask, which is stopped up after a little salt has been put between the herrings: such herrings wi!! keep for a long time, provided they have been dressed, and that there be salt enough put into the casks.

Sometimes the half salted herrings are made up in bulk, by laving them on some patt of the vessel, after ther have got the half salting, and adding a little more salt according as they are laid, and then covering the bulk with a sail io prevent the salt from falling off. This method is not near so good as the former, and herrings made up in this way are only fit to be half reddened. But casks are not to be had always at sea, and it often happens that the men have not time to dress the herrings or to half salt them in a proper manner.

On land, the half salting does not take place until the herrings have been first washed, dressed, \&̌c.; and there are diff rent methods of half salting.

In several forts they pour a certain measure of herrings illto
into a large tub, and immediately strew upon them a thin layer of salt, which is repeated every time, according as other measures of herrings are put in, until the tub is full. They do not stir them, but let them take a proper proportion of salt before they pass to any other preparation.

In other ports, the women, after having dressed the herrings, put them in a trough, which is raised two feet above the ground, and is open at one end : this end is a little lower than the other, for the purpose of letting the fish slide out of the trough after they have been half salted. According as the herrings are put into the trough, the women strew some salt upon them, and turn them, until every part of them is equally eovered with salt. They use about 150 lbs . of salt for every last, that is, from ten to twelve thousand herrings. When this operation is over, the herrings are drawn down into a basket, which is placed in a tub that receives the salt which falls from the herrings. They are afterwards casked, as shall be described in the sequel.

Of the Operation of Dressing preparatory to the making of White Herrings.

The herrings that are delivered fresh to the salters, as likewise those that have been half salted at sea, are treated in the same manner, unless the herrings of the second sort have been dressed already at sea: which would be of great sdvantage; for the herrings that are salted before they are dressed are much inferior to those that are first dressed and then salted; and in fact they never turn out well. There is an order of the parliament of Rouen prohibiting the mixing of them with the other sort: the lishermen, however, find means to sell them to those who make red herrings. According as the fresh herrings are brought to the salting-place, they are poured into large lavers full of water, some of which may contain several lasts of herrings. The women then set about dressing them: and frrst of all they take them, one by one, near the head in the left hand, and then press them between the fingers of the right, which they draw downwards from the head to the tail, so as to cleanse them and take off part of the sealcs; after which, raising up the cover of the gills, they take them out with the first fingers, and along with them the stomach and intestine. so that nothing remains in the body but the pey or milt. Ther usually make a light incision in the neck with a small knife; but care must be taken not to cut off the head, for herrings thus mutilated would be thrown mone the refuse. According as herrings are prepared in
this manner, they are put into baskets, the milt herrings scparately from the pey ones, to be carried over to the man that is to salt them. All the offals are thrown into the sea.

Of the Salter's Business.

To fresh herrings prepared as we have now described, the salters give a half salting, such as has been explained already. They then throw them, without order, into casks or large barrels, which they fill up without pressing the herrings, and let them sink by themselves for some hours; after which the coopers put on the heads of the casks. This is called casking, or salting in urak. The herrings are left in these casks for a fortnight or three weeks. This preparation is much the same as that which is used at sea. During that period the herrings sink and discharge their water, and there is formed a brine that covers them. Care must be taken not to let it flow off, for if the herrings were left dry they would be spoiled.

Of the Manner of Barrelling Herrings.

When it is supposed that the herrings have got salt enough, they are taken out of the casks, at sea or on land no matter, and barrelled. They are first poured out of the casks into a laver, in which the women wash them in their own brine. In the ports, where there is plenty of salt, some wash them in new brine; which method appears best, because the old brine, being mixed with the blood and lymph of the herrings, is more apt to be spoiled than the new brine. But if new brine be used, it should not be too strong. Be the brine what it will, the herrings must be well cleansed from whatever dirt they may have contracted. They are then taken out of the brine with perforated pallets or boards, and left to drip in wide baskets : when they have dripped sufficiently, the same women take them, one by one, and place them in the barrels, pressing them as close together as they can, and always placing the bellies uppermost. To press them the better (as it is of great consequence that they should be well pressed) the coopers use false bottoms, upon which they jump, and sometimes pressing machines. This precaution is particularly necessary in the barrelling of shotten herrings. It is also to be remarked, that such herrings as are parched, split in the belly, \&ic., are thrown among the refuse.

Salt is not generally used in the barrelling of herrings: hower, if the barrels are made up to be sent by sea to hot climates, a smail quantity of large salt is scattered between the beds of herrings.

In some ports they leave the barrels, after they have been headed, near one another, with the bung-holes uppermost, through which they pour in, at different times, some of the brine in which the herrings had been washed, after it has stood twenty-four hours in large caslis to clarify by precipitation. The bungs are then closed, and the herrings are fit to be sold.

It is to be noticed that old brine clarified is preferred to new brine, and that some salters disapprove of the custom of pouring in brine be the bung-hole, tor they say it makes the fish lose part of the brine which it had imbibed. But it does not appear how adding of new brine should make the herrings lose their own brine: it is probable that new brine is preferable to the old, which is mixed with the lymph and blood of the herrings. But as salt is very dear in several ports, it is the interest of the salters to be sparing of it.

Of Curing Herrings in Brittany.

After having dressed and half salted them, they make them un in barrels, with a layer of salt in the bottom, upon which they phace a row of horrings, then another layer of salt, and so on alkernately until the barrel is full, ending with a layer of salt. This quantity of salt forms a good deal of brine; and as in some time the herrings sink, they pour in new brine to fill up the barrels.

Salt is cheap in Brittany; and in fact, according to their method, much more salt is used than would be rcquisite. But perhaps their herrings would not keep otherwise; for their method is in reality the sanc as that in urak, viz. mere casking, which we have described already. It would be much better if experienced salters were employed, who would regularly go through the operations, of which an account has been given in the preceding paragraphs.

Of the Barrelling of Herrings in Holland.

As herrings are sometimes scarce near the coasts of Holland, the Dutch fish for them towards Shetland, to the north of Scotland, or at Yarmouth; and as such herrings cannot be brought fresh to Holland, the fishers salt them in casks, and bring them hone in that state.

But whether the herrings be brought fresh or salted, the busses go up the canals, and the fish is delivered to the merchants.

Every merchant gets his herrings prepared before his house, the lower part of which is usially a store-room. If weather permits, the herrings are made up on the bank
of the canal ; if not, this is done in the store-room, but always as soon as the fish has been delivered, whether fresh or salted. The herrings are poured into vats; the fresh ones are dressed, the bad ones are thrown aside: in short, the whole process is the sane as that which is used in France, with this only difference, that in France women are employed in it, and in Holland men, who, being stronger, pack up the herrings more close togeiher and more equally.

Their herrings should be salter than the French ones, because they throw a little white salt between every bed of herrings; but they usc white salt, which, as we have said elsewhere, is thonght to be weaker than that of Brouage: it is for this reason, and because the herrings of the Nort's Sea are fat and oily, that some intelligent salters mix some Brouage salt with the white, which makes the flesh of those herrings firm. Some people find fault with the Dutch herrings for not being as free from liquor as the Erench ones: but let them say what they will, the Dutch herrings are of an excelient quality when half salted and casked immediately after they are taken; and there are none among them of two or three nights standung. The white S panish and Portuguese salt they ase makes their herrings appear to adrantage: it is true, that -uch salt gives a certain sharpness to them, but they know how t correct it by adding some Brouage salt. In barrelling, ther oftea make use of a pressing machine, and it is suposed that the brine which they add after the hemings are barelled makes them look well, because they use new brine clarified by precipitation, and passed through a sieve.

Of some Defecto particular to White Herrings.

Such herrings as have been too much cut in the neck, sides. or belly, in dressing, are consatered defective.

Bursi or rust, herring, are those that are too much dried up by the salt, wheh lieppens either when new salt or too much salt has been used, or when the herrings are sated soon after sparming. On the contrary, they are soft and flab'y when salt nas been used too spariagly. This imperfection, if it las not gone mo fir, is remedied by puting some strong br ne, or a small quantity of large salt, into the barrels, wif there are but few of them, by making them up togethe! with herrings that have beon properly cured.

There are sonc hoals of herriugs of a bad quality, either because they are nedr theit spawning time, or because they Yol, XVIII. No. 69. B have
have been on bad betoms. When salted they corrupt, and are called insrine of bad water.

Some herings tose their water after being barelled, and become sollow, fetid, and rusty.

The lishers and satior are of opinion that hermes do not keep w! I maks the mit and pey herring are put in the sam: barel:; but pieked herring, al! mita, have been cuad that kept wanderfally well.
of the Raculations fir preventing Aluser in the Salting of ilering.
At Dunim there is a police established both for the fishmer ford caring of herring;, at every owner of a boat, before he gros oni, presents himself io a magituate and D.las an wath that he will obe we the requations. Among stame condaions, he promises mot to salt any herrings but vach as are carght in the twenty-four heurs: and, to guard against frads an the shlting, here ar: inspector appointed, Whe de to be present when the honings are satiod in the town, and itx a matik won the harel!. Such horrings as enold met be sated with the twenty- four hours are made moto red berringe.

One ot be arcatest abous is that of puting into the barrels some refincherringes and it is a dill greater one to make white hermerg of thone of more than two nights taking. The hemog of one mablang nach better that those of ton, it is prope: to bara! !hem -apatately.

On this acenont the arvete of the parlianent of Rouen,
 an thesh, any umer iswage but those ulone, two, or threc nuthe.

It onders, in art. g , the maters of wesels geng on on the bidury, and the satais on land, ind to dress, salt, or barl, any herman but that of ow or two nithts. The
 When we say hering of one night, we mon the homing that we eadeb mecedne the day of dumery.

The Nomb swand Yamunth hervines, which ate salted at sea, have wathy the alyantage of bemer salted in due tine, botore those that are bronght froh invo port: and the packing ont of large mit haringe dimmstics the valuc of those dat ate made un for comaceal purposes.
'ithe conecil of atwe has issued sercral orders against the abuses. Whas macret,

1. That the homagy wheh are taken in the German Sea
cund
and in what is called the Yarmonth fishery, and which are casked at sea, be bameilet! spartely, in barrels manked with three fower de-luins Desus the merchant's rask.
s. That the Chamel herring of one night ad aded, be marked wh two flower-deluces, ant in of iwo nights with one alone.
2. That out of eighteen barrels in cajk there siculs formed only wetve made-up barreis, each of ach must weigh at lcast geqlos.
3. That the salting merchants do put their own maks upon the barrels; which is a reryimportant point.

> Of Red Herring :

The Engliah red herrings ought to is maturally the best of all, becatie they are made u! Yamonit herrings, and thacefore of the best kind: berides that, they are of one night, because they are delivered on the coast imnnediately after being taken, and none of them ...re salted in the ressels. On the contrary, the red herrings that are curce in France are not Yamouth hervings (of which the French make white oncs), but are caught hear the coasts of France, and they are of different mights. let, notwithstanding these and some other circumstances, the red herrings of the Chancl sell more and look better than the English ones, which is atributed to their being smoke with very dry beech ; but they camor bear narigation, or heat, as well as the English herrings. The brown colour of these herringo, and their keeping better, may proceed trom their being smoked and dried more than the french herriags ; or it may be owing to their being fatter. This mater may receive some elucidation from the sequel.

As to the Dutch, when the herings do not come to their coasts, as it happens in some years, they make white ones of all they take, both in the North and at Yamouth; for they do not make red herrings but of such as are caught near their own consts, and which have not been sold fresh.

Of the Ltensils that are used in making Red Herrings.

There are large tubs like those which are used in the dressing of white herrings. There are also several sorts of baskets, some of which serve for the herrings to drip in, and some for other purposes, besides a quantity of switches sharp at one end, barrcls, Exc.

$$
\text { Of the Stores, or } I
$$

There are stoves of different unactains Some of them are in the lower part of the houses, uffers in the upper
part. Some of them are small separate houses covered with tiles, which are placed so as to let out the smoke. I shall describe one of the largest of them.-It is divided into three parts by two rows of a sort of ladders raised about sis fect above the ground, and which reach up to the roof. As the herrings are about ten inches long, the laths, which form, as it were, the steps of the ladders, are placed at the distance of eleven inches from cach other, so as to leave an inch between the tails of one row and the heads of another. On those laths, or steps, are placed the switches, or little wooden spits, from which the herrings are suspended. in each of those spaces or funnels in which the herrings are placed, there are two windows or vent-holes, which the director of the process opens, whenever he thinks proper, to pievent the herrings growing black. To this circumstance is probably owing the good colour of the French herrings. Underneath is a large hearth for the firc. The whole is ciosed up like a stove, but so as to admit a passage into it when necessary.

Of the Curing of Red Herings in France.

The species and quality of the herrings, whether red or white, are the same. The only difference is, that greater care is taken not to cure in the white manner but those of one or two nights, whereas red herrings are sometimes made of those of three nights, although they are not near as good for this purpose as the herrings of one night.

They are not dressed, that is, the gills are not taken out, nor are they guted, but they are half-salted; for which purpose, when they are brought from the boat, the are put in a storehonse on a large table, or on the floor, which must be very even. Two men turn about a hundred of them at a time with woolen pallets, whilst another man throws salt bipon them. In short, they are half salted in the same mammer as the herrings that are to be cured in the white way; and this may be done in large tubs, or otherwise. The ordinance of 1050 allows for tevery last of herrings (between ten and twelic thousand) three minots (about three boniels) of salt. If they are intended for the provinces somesthat distant, they lie in the salt tubs for twenty-four on thinty hours; if for the Mediterranean, forty-cight hours; and for smeriea, a little longer. After this they are washed with ereat care in fresh water. It is prohibited to wash them in the brine of white heringes, or in that which flows off after the half-saltine: it such brines were used the herrings would turn infalibly in three or four days time. Some per-
:ons think that weak brine made with new salt is preferable to water quite fresh, and they say that it makes the herrings look well.

They are washed in baskets, which are plunged several times into tubs of water. This is repeated until the salt is dissolved. According as they are wasned and have dripped they are spitted, that is, strung by the head on the switches. Care must be taken not to let them touch one another, so that they may receive the warm air and the smoke in every part. According as the switches or spits are thus made up, they are handed to men who place them in the stoves, begiming from the top. The lowest row of switches is about six or seven feet above the hearth. When the rows are all made up they are left so for tiventy-four hours, that the herrings may drip before the fire is kindled.

When the chipping is over they light the first fire, which is kept up day and night without intermission for fourteen or fitieen days, and inspected every two hours for the purpose of adding fuel to it, or of stirring it ; for an equal degree of heat must be kept up. The fire is also now and then pushed from one part of the hearth to another. The managemeut of the fire requires an experienced man, who can keep, the fire always at the same degree of heat, and proportionable to the quality of the herrings. The fatter they are the longer the fire must continue : but still it must be a gentle fire; and it must cease when the herrings are fit for the next part of the process.

After the fire has been kept for a formight, or sometimes for twenty days, more or less, it is discontinued for three days to let the herrings discharge their oil, which is called the pissing of the herrings. When this is over, the fire is lighted again, and kept going with the same precautions as before for five, six, and sometimes seren or eight days. When the herrings are found to be perfectly dry, they are taken down and put on a table to be inspected, picked, \&c.

We may observe that fifteen days in the drying place is suficient for the herrings that are to be consumed in France; but those that are to be sent to the MIediterranean require twenty or five-and-twenty days, and sometimes more.

In the picking of them, such as are shotten, too much dried, \&c. are set apart, and sold as refuse to the hucksters, \&c. The rest are merchantable, and are barrelled.

The fire must be made of wood which produces great heat and smoke, and but little flame. In some ports they use oak, in some beech, and in others alder. They take care to keep the door of the drying-place constantly shut, B3 and
and to warn the piace erradually; for which reason theo begin with lighing a fire in the midaie of it: twenty-tour hours afier they lizit two oher fires; and then two more, if the drying-place is harge.

Care musi be taken mot to let the hemines get too warm: however, abont the end of the process a cmart tive is made to give them a periect drving, and the entrance of the stom: is closed with a large cloth.
Of the Pripurative of Red EThrings in Englond.

The methoch of curiug red herrings at Camouth is very nealy the wame as that we have wascribert. But as the English make red herringon amost all those they take, their establishments for the marpose are renerally larger than ours. Some of their derv-places ate sifty or sixty feet high, and may contain sis or seven handred thomsand herrings; which causes a great ceconomy of wood and of hands.

When the berrings have dripped, the fises are lighted mueh in the same manner as mance, and are contmued for thincen daye, afier which the bermes are left for three dave in the piss. Then the fires are lighted avain and k opt for cight days, at the expiration ot which they are left agan in the piss for four days, and then they get the lasi fire, which lasts three days.

Thus their hurringe remain in the deying-places for near five week, whereas in Erance this process lasts only about swenty-one or twenty-three days. It is true, that as the Yarmouth herings are fatter than those of the Chamel, they take more time to dry, and that if they were not dry enough they would entupt, partieularly if they were to be sent to remote and bet comeries.

Some peope find fault with the English herringe on account of their being of a darker colour than the arench herrings; but this is not a real inperfection, as their colour is owing to their bing ratter, on which account they must be kept lonerer in the stoves: some are of opinion, that when the English webrech in their stoves their herrings are leas brown than whe they bum mak; and we are not to imagiae that they inat deir stoves with pit coal. It is certain that the Earmot herrings are of a superior quality, and that they are curch very soon atter boing taken; which is a considerable adrantage. But as liere in no police th regulate the package of them, as there is in Hohond and in several ports of france, bad herrings are ofien fomd in the Yanouth barres intermixed with the good ones.

of some Imperfoctions peculitar to lad Hurrainge

Such herring: as have stack together when dering, lose their skin in we separating of them, an ? are therefore unmerchatabie. Those that have gut to mach fire, or, what is worse, are burat, ace likemise sut apart with the refles.

Ahhough it is allosed to cure hermgs of thece nights taking, Iet it would be proper to put ihose of one, ino, and three miphts in separate bamis, as the hering of one night are infandy bethe than the onters, and those of three nights are of a rery mferior quaticy. As to the herrings of four nghts, it is not allowed to sell them at ail. There should be also a prohibition against salting with ohd brime, of any sort whatsocter, those herverg that ian to be ceated in this manner.
 Craqueluts, or Appetits.
These herrings do not keep long, and are wanlly made of shotien herrmes, and of those of scacral mights; which are not fit to be cured in the white nor cien in tia red manner. As they are ready sooner than the red herrags, the fond parehasers, and nowid be rery denicate if they bere made of good herrings, and attention paid to the curing of them. They are cailed louffis (swelled), because the smart fire they are put to swells them.

It is not allowed to salt the herrings, that are to be cural as rod herrings, in the brine of the shite ones; bui, on the contrary, it is usual to meke use of this brime for sanimy the herrings we are now treatiog of. For the say that new salt would make them crack; which, meded, is not probabie. Be this as it may, this method of cering herrings is entirely left to the women.

According as the women recere the hering ther pat them into large tebs, contaning a quantity of brine, whont pressing them against one another. Many of them are salter enough in the course of twenty-four hours: but the shotten herrings, as they discharge more bloud than the full ones, are left in the brime for suctal dars, and there is no danger of their taking too mach sath. When they are taken out of the thbs they are fild upon switches or rods, and then hung up in emall stoves hat may contain fire or six thousand hormes. It is not usual to let them drip; but as soon as the last rows are placed the fire is lighted. Howerer, at first they put up only one-half of them, and seep the fire going for six hours; atier which they put up B 4 the

Hic other half, and a clear tire is continued for nine hours more. The stoves are heated with adider alone, dry pieces of which are used for the first fifteen hours; after which the herrings swell, as they had not discaarged then water. After filtecn or sixteen hours the ine made of diy wond is stopped; and, for the purpose of giving the herritis a get colour, the fire is then made of pieces of green wood, which are kept burning so as to emit a great deat of smoke and no flame. This fire is made merely to give the herrmes a colour, for they have been dried! Incady by the action or the smatt fire. When the second fire has coase! the herrings are left to cool in the stove for abovt an hour, and are then taken down.

If there happens to be a great demand for herrings cured in this manner, they sometimes put fresh iserings that have got no salt at all in the stores. Ther are "ery nice to the laste immediately after they are taken down, but do not keep; and accordingly this practice shouk not be allowed.

Herrings of one night, when prepard and properis cured in the manner already described, are very delicare; but, as they must swim in brine, a great quantity of it is requisite for a last of herrings.

Of Smoked Herrings, aciording to the Meclenlurgh Method.

It is said that as soon as the herings are taken they are put in brine for a short time, and then filed upon rods, and hung up in a sort of tower, made of brich or wond. which is open at the top. A fire is made below of wood covered with moss, and, when a great quantity of sme"e is producecl, the top of the tower is covered with mats. The herrings are left there until they an supposed to be sufficiently dry, and then taken down and sold inmediaely. They say these herrings are cesellent, but they do not keep long.

> Of the Mamer of Cilling Herrings that are to be used as Brits.

About the end of the season, when the herrings are bad, the frshermen cure some of them for the purpose of hation their hooks. Some fishermen salt them first in casks, that is, they give them a half-saling; but others cut off the heads and open them, from ohe end to the other, on the side of the belly, and take ont the intestine, as likerise the milt and pey, if there be ans. They also scrape the inside of the herrings with a knife; :and when they have taken out the biood as much as possible, they hrow them into a
inb full of fresh water, in which they wash them, rubbing then with their figens, particularly near the long bone. From that tub they ranove them into another containing clean water, in which thes wash them again. When they are well washed, the are put into baskets and left to drip intil the next day. About a hundred of them are then put into a basket, in which, while two women shake them, ancther scatters some salt upon them, until every part of them is salted: after which they are poured into a tub, in the botton whereo is a layer of salt. When the tub is filled up te xithin about four inches of the brim, it is corered. The herrings will keep in this manner for baits, but are not fit to be eaten.

From the Transactions of the Highland Society of Scotlank, Tolume I.

In the curing of herrings it is a matter of the utmost consequence to ationd to this condition durins and after the first salting. If they be ailowed to lie in the inrst pickle loug, especially in barrele. ex, osed to the sun in hot weather, they are very i.pt to epvil, at least that portion of them which is neav st to the warm side of the barrels. Now a spoiled herring is not only iteelf incapable of being cured, but it spreads corruption to the others packed around it; and thus the eril sprends. If the weather be ramy, and the fish-barels be leti uncosered; or if the weatlier he warm ; or if the herrings before salting hare been long in a situation unfarourable for theis heening sound ; or it they hare acquired from any cause, as from the gatbuge not being weil iemoved, \&cc. \&ic., a tendency to spoil: Ther' ought to be exammed carefuliy and repeatedis, should be soon charged, and, on being re-sat a ard packed, should have every unsound or suspected one thruibn ont. The time, therefore, which they may be allowed to hie in the firet pickle, must depend entirely on circumstances. Perhaps the first pickling may be done in troughs, or large tubs, with more easc, expedition, cheapness, and safety, than in barrels in the common way. The Ditch, it is said, frequently use trughs for this purpose, fhing them well up with fish, which toach and get the full effect of the pressure of the licis or corers. These are even made to press the fish move firmb: by mans of weights, screws, wedges, levers, or other menhanical powers.

III. Sketch of a Genlogical Delinealim of South America. By F. A. Von llumbolde.

[Continued from our last volume, p. 357.]

The cordillera of Parima nover reaches to the same height as the Siera Nevada in the prosince of Caraceats, which is Q350 toisce. Their highest summit seems to be the Cerro dela Esmeralda, or the montain Duida, which, be trigonometrical measurment, Ifound to be 1823 toises above the suriace of the sca, which is the height also of the Car nigou. This montain is situated in a deleghthal plan covered with ananas and pahm: the monstrons mass which it exhbit, towards the Mission and the rivers Canu-camuna and Tamatam, and the flames it vomits up towards the end of the ramy season, give it a momantic and majcstic apparance. No ladian is able to chamber up to the top of this monntain and the rocks of its summit withou a week's Gabour, becatac the huxumace of vegetation in this climate impedes the progres of tran illang. Next to we Daida, the Maraguaca, more towaris the cato of the river Simmimomi, and the high cordillern of Cumami and Calitamini, which at Mas pure and St. Barbara is known under the false name of Sypapo, are the highere summits of the chain; they are from 1600 to 1100 telses in height. The common height of the eordina, however, does not exceed 600 toises, and sometmes it is less, as the part situated between the left bank of the Cassiguare, an arm of the Orinoco which conncets togeher the Rio Negro and the river Amazon, and the sources of the cataracts and Diramena between (arichan and inforocote, is destroved, and still exibits insutaten rocks rising from the ground. The canse of this destruction seems in have bees an eraption of water from the baton of the Amazon river towards the baion of Cababozo and Baxo-crinoco, which difer in height about 100 toises.

The erenogical chat of this districe which 1 have construche rppeseats an manense rabley which mitcs the Thanos of the Reo Negro, Casiguiare, and Amazon, with those of the province of Comecer. Burcelma, and Cumana; a valley which sinks down thwards the noth, and is intersected by a large setien of single rocks which show the diretion of the ohd eorditera on the banks of the Guaviate and Nuta in the prosince of Cassemom. The castern exaremity of this raliey is the lowest part of it, and therefore the remains of the water of the Orinoco cut out for itself a bed
bed in this place. This cordillcra has two remarkable propertics. In the first place, as has been remarked in other ridges, the southern declivity is much steeper than the northern: the high summits of Caravani, Joo, of the voleano of Duda, Miaraouaca, Eve., all he towards the south, and are there cut into perpendicular precipices. In the second place, this cordillera does not seem to contain a simgle rock of alluvial momtains, and consequently has borrowed nothing from the organized kingedom. On our passage over this ndge we olserved nothing but granite, gnicis, micaceous schist, and homblend schist; nowbere a covering of sand-stone or allurial chalk, which on the cordillera of Venezuela on the coast rises to the height of 976 toises thove the level of the sea. Had the proxinity of the equator and the rotation of the earth any influence on this phenomenon:

The third chain of original mountains, the cordillera of Chiquitos, is known only from the accounts of some persons who have resided at Buenos-Ayre and travelled through the Parras. It unites the Anues of Peru and Chili with the ridges of Brasil and Paraguay as it stretches from La Paz, Potosi, and Tucuman, through the provinces of Maxos, Chiquitos, and Chaco, towards the gorernment of the Mines and of St. Paul in Brasil. Their highest sammits seem to be situated between the latitude of 15° and 90° south, as the stream: between the rivers Amazon and La Plata divide themselves at that height.

Between the three cordilleras, the direction of which we have hitherto followed, lie three broad and deep rallers. 1 st , The valley between the south side of the cordillera of Venezuela, on the coast, and the cordillera of the Cataracts, or the railey of Orinoco and Apuré, between latitude s° and 10°. 0 , The valley of the rivers Nemro and Amazon, bordered by the Parima ridge and the condillera of Chiquitos, between latitude 3° north and 10° south. 3d, The ralley of Pan pas of Buenos-Ayres, which extends from Saint Cruz I Siera to Cape Virgin, between $19^{\prime \prime}$ and 52° sourh latitude. The first and second valley are in some measure united by the destaction of a pat of the Parima cordillera. I do not know whether this be the case aloo what the Pampas and raller of the Amazon; it, howewer appar that it is not, thoneh the llanos of Bonso form a surt ot canal which descends from noth-west to south-cast. Al these immense valleys or phans are entirely open towards the east, as they rum out ino a low sonty comet: towards the west they an shut by the chain of the high Andes. There are some crecks
(emser) which proceed from cast 10 west in the direction of the tropical current, and on that account extend further into the land the broader the continent is. The valleys of Apure and Orinoco are closed by the ridge which extends from Pampelona to Merida in longitude 73°, and the valle x of Pampas in longitude $60^{\prime \prime}$: they both fall together a litie towards the east, and secm to be covered by one and the same formation of allurial strata.

Tralles says, that in Swisserland there is more reason to wonder at the depth of the lakes than at the height of the mountains: I will venture to make a similar observation in regard to the Llanos or plains of South America. How astonishing it is to see a continent which in its interior parts sercral hundred miles from the coast, and in the neighbourhood of mountains 3000 toises in height, is elerated scarcely fifty toises above the surface of the sca! If the flux in these places should rise to as great a height as at St. Malo and Bristol, and if more motion should be commmicated to the ocean by earthquakes, the greater part of these ralleys would be laid under water. The highest Llano which I have measured is that between the rivers Ímirida, Temi, Pimichia, Cassiguiaré, and Guiainia (Rio Negro) ; it is 180 toises in height; but it sinks down iowards Atures in the north, as towards the river Amazon in the south. The valler of Orinoco and Apure is still much lower than that of Cassiguiare and Calabozo in the middle of the Llano where I made observations, in latitude $8^{\circ} 56^{\prime} 50^{\prime \prime}$ and longitude $70^{\circ} 9^{\prime}$ west from Paris. At Anerotura, the capital of Guyana, latitude $s^{\circ} 5^{\prime} \Omega 4^{\prime \prime}$, longitude 66°, it is only 33 toises, and eighty miles from the coast scarcely eight toises above the level of the sea. The plains of \bar{i}.ombardy, in Europe, have the greatest resemblance to the Llanos on accomt of their small elevation. Pavia is only 34 , and Cremona 24 toises in height; the other plans of Europe have a much greater elevation. In Saxony and Lower Silesia the plains are only from 57 to 120 toises in height; those of Bavaria and Swainia are from 230 to 250. The declivity of the Ilanos of America is so gentle, their inequalities are so imperceptible, that no large river fows to either side. The Orinoco appears in the lougitude of about 70°. as if about to discharge itself in the sea towards Portobello; but at Cabouta it turns to the cast without the ieacr whatacle being discovered cither there or at St. Fernando de Atabapo, in latitude $7^{\circ} 55^{\prime} 8^{\prime \prime}$, to oppose its course. In the large valley of Rio Negro, and of the Amazon river, is a trast of land, in 2° or $3^{\prime \prime}$ north latitude, of not less than

1600 square miles, which is bordered by the large rivers Atabasso, Cassiguiaré, Guiainia, and Orinoco, and represents a parallelogram, in which the water flows on the four opposite sides in opposite directions. In regard to the Ori noco, I found a fall of 151 toises in the distance of 70 miles from the mouth of Guaviare to the Apure ; but from the capital to the sea not more than eight toises. La Condamine observed the same thing in regard to the river Amazon, from the narrow pass of Paucis to Para, where it runs through a district of 240 miles, but falls not more than 14 toises. It is not improbable that there might have been on the north side of the cordillera of the coast of Venezucha a plain as mich lower than the plain of Orinoco as the plain of Pio Negro is higher than that of Orinoco, and on this account the former plain was covered by the water of the oay.

The two Llanos or plains which lie at the opposite exremities of America exhibit a striking difference from that which lies between them, namely, the vale of the river Amazon. The latter is covered by so impenctrable forests that rivers alone can force a passage through them, and that scarcely any other animals but such as frequent trees can live in that district ; so much is vegetation favoured by the continual rains under the equator. The case is quite different with the plains of Orinoco and Pampas; they are level vallevs covered with herbs, and savannahs which contain only a few scattered palm-trees. The same heat, the same want of water, and the same phænomena of refraction, that is to say, the inverted image of objects seen floating in the atmosphere, are observed here as in the deserts of Africa and Arabia. But plains so perfect are nowhere else to be found; for the Nesa de Pavone and the Mesa de Guanipa in 800 square miles contain no eminence of eight or ten inches in height. The plains of Lower Hungary, on the west of Presburgh, have the greatest resemblance to them ; for the flat land of La Mancha, Champagne, Westphalia, Brandenburgh, and Poland, is hilly when compared with the Llanos of South America. Nothing but a long stagnation of water could have produced so horizontal a bottom. Traces of old cities are found here, but seldom are any seen which rise like castles (La Piedra Guanan, longitude $69^{\circ} 3^{\prime}$, latitude $1^{\circ} 59^{\prime} 48^{\prime \prime}$) in the Llano of Cassiguiare and of Rio Negro. But from St. Borja to the mouth of the Black river Condamine observed no eminence; and the Llano of Ori* noco is also without islands. As the Morros of San Juan belong to the southern declirity of the cordillera of Venezuola,
zuola, an impetuons current of water must have swept every thing abone with it; and he present sea presents large spaces without infonds: instead of ishands there are in the Llanos Whole: uninterrupted prortions of from $2(x)$ to 300 square niles of surface which rise from two to dive feet above the plain, and which are called mesus or lancos; which is as much as to say, that they were shoals or sand-banks in the antient sea. I must here obscrve, that the middle of the plain of Orinoco is the most beautiful and levellest part of it. The hottom of this immense bason rises up and becomes unequal at the edge; the plains therefore which one traverses between Guyana and Barcelona are less perfect and level than those of Calabozo and Uritucu.

This remarkable difference which we found between the cordillera of Venczula and that of the Cataracts, which is that the latter consist of allusial mountains entircly bare, is observed between the northern Llano of the Orinoco and that of the Rio Negro and river Amazon. In the former, the originat mountains are every where envered with compact limestone, gripma, and sandstone: in the later the granite cvery where appears. The more one approaches the equator the thinner is the stratum of sand which covers the crust of earth on the original mountains: in a land where vegetation is so luxuriant, there is seen in the middle of forests spaces of 40,000 square toises scarcely covered with a few henens, and which do not rise two inches above the rest of the surface. Will the same be discorered in Africa? for it is only in America and Africa that there is land under the equator.

Having taken a view of the direction of the mountains and valleys, or the fom of the imequalities of the earth, let uis now turn our attention to objects of more importance which have been les exammed, namely, the rismg and falling of the strata of the origimal momans which form this part of the earth I have traversed. I have been conrinced since 1790 that the rising of the original mountains follows a gencral iaw, and that, making allowance for those incqualities which may have been produced by triffing local canses, and particularly veins and strata in mines, or by very old vallevs, the stratificd coarse-grained granite, the foliated granite, and particularly the micaccous schist and argillaceous schist, rise in the league $3:$ by the miner's compass, as they form with the meridian of the place an angle of $5 \frac{y^{\circ}}{2}$. The falling of the strata is towards the northwest; that is to say, they fall parallel with a body that might be thrown in the same direction, or the aperture of
the angle of inclination (less than 00°) which it makes with the earth's axis stands towards the north-eant. The rising is more constant than the falling, especially in the simplemountains (argiliaccous schist, homblend schist), or in the compound mountains with fewer crystalized grains, such as the micaceous schist. In granite (it is, howerer, found rery regulanly stratified rising in the lague 3-4, and falling toVards the north on the Schneckopfe, the Ochsenkopfe, the Siebengebirge, and the Pyrenees,) and in the grieis the attraction of the crystallized mixed parts to each other seems to have prevented the regular stratilication; therefore more coincidence is found among the micaceous and argiliaceous sehist, and these first led me to the idea of the law of rising during my tour to the Fichtelberg and the Thuringian forest. Since that time 1 have examined with great care the angle of the strata of other original mountains in other parts of Germany, in Swisserland, Italy, the southern parts of France, and the Pyrenecs, and lately in Gallicia. Mr. Freiestuben, whose labours have been of so much service to geology, assisted me in this examination; and we were astonished at the uniformity in the rising and falling of the mountains which we found at cach step on one of the highest cordilleras of the earth, the Alps of Saroy, the Valais, and the Nillancse.

An cxamination of this phenomenon, and of the identity of the strata, was one of the principal objicts when I undertock a voyage to America. A measurement of the angles which I have hitherto made on the corfillera of tenezuola and Parima gave again the result of my observations in Europe in the chan of the micaceous achist momains of Cavarallcua as far as Rio Miamon; ca the Silla de Caracas at the height of 1000 toises; of the Rineon del Diablo, on mount Guigue ; in the ingars in the beartiful lake of V 'alencia, which has almost the same cleration as the lake of Ceneva, at the bounciaries of the isthmus of honiguare and Chupariparu; on the homblend schist which appears ancovered in the streets of the capital of Guyana, sind also in the Cataracts, and on the stratifed reante at the foot of the Duida. Every where the strata form an arege of 50° with the meridian (in the hagne 3-4 by the saxen compass) as they rise from the north-east to sonth-west, and fall abont from 60 to 50 towards the north-west.

This great ccincidence in the old and now world must excite serious considerations. It exhibits a very important geological fact. After so many observations which 1 have made in places so fur distant from each other, it can no
longer be believed that the rising of the strata follows the direction of the cordillera, and that the falling follows the deelivity of the momntains. The profite of many of the momatains, particularly a section of the momntans, such as that of Genoa through the Bochetta, and of St. Gothard ats far as Franconia in Germany, which I intend to publioh at a proper time, proves exactly the contrary. The rising and declivity of the cordillera, the form of the small inequalities of the earth, seem to be newer phenomena. A stream might scoop out a valley in this or in that direction; might tear asunder a part of the cordillera, and give it apparenty ene direction or another. The strata of the original momntains appear, amidst all these angles of rising and falling observed at present, to have existed before these changes at the surface of the earth. They are the same at the summit of the Alps, and in the mincs into which we descend. When one travels for 15 miles over strata of argillaceous sehist, which are inclined parallel to each other, at an ancrle of 70° towards the north-west, one can no longer beHeve that they are deranged strata, which once stood horizontai. We must suppose mountains that were once 15 miles in hcight, and thit the whole mass had an uniform fall, and then reflect on the space which such a mass would oecupy : and one must rememper the strata on the heights of Genoa, or on the heights of Bochetta, or on St. Maurice, which are exactly parallei ; and on the strata of the Fichtelberg of Gallicia, the Silla de Caracas of Robolo on the isthmus of Araya of Cassiguiare, in the neighbourhood of the equator. One must allow that this coincidence gives evidnnee of a cause which has acted at a very tarly period, and in a general manner; a cause which must have arisen frem the first attraction by which matter was forced together to form a spherical planet.

This grand eause does not exclude local causes, by which individual smaller parts of mater were determined to arrange themselves in this or in that manner, according to the laws of erystallization. Delametherie has made an ingenions remark on this sabject: he shows the influence of a lare mountain (as a sinall necleus) on the neighbouring omadl momains. One must not forget that, besides the seneral attracton towasd; the contre, all matters exercise a intual attraction on each ofher.

The crust of the earth, for I will venture to speak only of this part, unst be the result of an immense action of poness of astraction of affinities, which determincd, put in cyuilibrium, and modified each other. M. Klugel thought
thought he found, by calculation, that the great flattening of the earth must be on the west side of the north pole. Has the axis of rotation been changed? What will be the inclination of the strata in the sonthern hemisphere? We are not acquainted with the cause; let us rather continue to examine the phrenomena.

This falling of the strata of the origimal mountains in the cordillera of Venezuola has a great and melancholy influence on the fertility of the provinces of Caracas, Cumana, and Barcelona; the water which filtres through at the summit of the mountain flows down according to the direction of the strata, and for this reason there is great want of water in the whole large district which lies on the south side of the cordillera, and therefore so many springs and small strcams burst forth on the northern declivity, which, be this great quantity of moisture, and the superabundance of wood, which shcliers it almost the whole day from the sun's rays, is rendered as unlrealthful as it is fruitful.

The alluvial mountains which I hare hitherto observed are almost under the same circumstances as in Europe. The cldest seem to have experienced the action of the same causes which determined the strata of the original mountains, as they rise in the league 3-4, or as the seamen express it, N. 50 E . They often fall towards the south-east, as in the Alps of Bem, the Talais, Tyrol, and Steyermaik; bat the greater part of them, and particularly the newest, which where I have been are the most numerous, follow no certain law ; their strata often lie horizontally, or rise towards the edge of the large dricd-up basons, which in America are called Llanos, and in Africa Deserts.

La Condamine says that in Peru and Quito he observed no petrifactions. The cordillera of Quito, however, is not like that of Parima, naked granite, for at Cuence, and on the south side, there is gypsum and alluvial chalk. Buffon dwells much, in his Epociues de Ia Nuiture, on the question whether South America contans petrifactions? i have found an immense quantity of them in calcareous allurial sandstone which covers the northern and southern declivity of the coast of Venezuola, from the summit of St. Bernandin, and the Altos de Conoma, to the Cerro de Mcapire, or the headland of Puria and Trimidad. The same statum is found also in Tobago, Guadaloupe, and St. Domingo. An immense quantity of sea and land shells, which in Europe are seldom found mixed togerher, cellularix, madrepores, corallines, and astroites, are found in-

Vol. STIH. No. 69.

- erspersed in this sandstone. The shefls themselves are hate broken: whole rocks eonsist merely of such remains res duced to powder. My fellow-traveller, Bonpland, discovered in them shotls of the geme Pma, Venus, and Ostrea, of Which living specimens are still met with on that coast ; an obecration of great importance to gertuer. Every thing shows that this stratum, which I have secti only at the distance of nine or ten miles from the prant comst, is of very modern origin, and that the finid in which it was produeed had been in a state of violent motion. The petrified shells in a much older stratum of compact limestone are scarcer and much differentiy stratified: they are anomia, tercbratulites, \&e. placed together in familics, and in such a manner that it is seen that they have lived (as those of Moment Salive, the Hemberg near (rötingen, of Jena, and Geneva) on the spot where they are now found petrified. They are ras interspersed throughout the whole mass of the limezone; they are only peculiar to certain strata. Many rocks may be examined whont linding any of these petrifactions; but where found they are in great quantity, and present themelses chieffy on great hoights; peculiarties which they have in common with the shells found in the limestone of the high Alps of Swisserland and Salzburg, which B ifentie with the hardened marl of Thuringia, a limestone which lies above the rery old sandstone.

I must observe also, that, besides the new sandstone stratum with a calcareous base, of which I have already spoken, the petrifactions do not often occur ; and I was particularly astonished to find no single belemnites or ammonites which are so common in all the mountains of Europe. The Llano of Ormoco, and that even of Rio Negro, are covered with a coarse grained breccia (nagelfluthe) which contains no petritied shells, and perhaps covers the other alluvial strata with petrifactions. But this breccia contains on the other hand petrified trunks of trees, which are sometimes found of the length of a toise, and of the diameter of two feet. They secm to belong to a kind of Malphigia.

The sandstone which contains all kinds of marine animals (the quarry of Punta del Barrigon near Araya is of this sort) never execeds the height of from 30 to 40 toises. In sereral places it forms the botom of the Gulph of Mexico (Cabo Blanco, Punta Araya). In the compact limestone I never saw petrified shel!s above the height of 800 toises; but other very new testimonies prove the residence of the water at mucli greater heights. Slate found on the Silla de

Caraeas, at the height of 1130 toises, proves that the water once, as on the Bonhomme in Savoy, formed this aperture between the two peaks or pyramids of the Avila, an aperture which is much older than the five counted in the cordillera of the coast, namely, those of Rio Neveri, Unare, Tuy, Mamon, and Guyaca. Among the mountains of the province of Cumana, there are very singular valleys of a perfect circular form, which seem to be dried up lakes. Of this kind are the vallevs of Cumanacoa and St . Augustine, 507 toises in depth, which are cclebrated for the refreshing coolness which travellers experience in them.

When the modern action of water is considered, two opposite effects are observed: one recollects a very distant epoch, when the irruption of the sea formed the Gulph of Cariaco and the Golfo Triste; separated Trinidad and Margaretha from the main land, and convulsed the coast of Mochima and Santa Fé, where the islands of la Boracha, Picua, and Caracas, form a heap of ruins. The sea then attacked the land ; but the contest did not long continue: the ocean again begins to draw back. The islands Coche and Cuagua are shoals which emerged from the water; the large plain of Salado, lying in Cumana, belongs to the Bay of Cariaco, and is only $5 \frac{1}{2}$ toises above the level of the sea. The hill on which the castle of St. Antonio is situated was an island in this gulph, as an arm of the sea passed to the north of Tatoraqual through the Charas towards Punta Delegada, as is proved by a multitude of unaltered shells. It is observed here and at Barcelona that the sea is daily retiring: in the harbour of Barcelona it has lost in 20, years above 900 toises. Is this decrease of the sea in the Gulph of Mexico general, or is it the ca-c here, as in the Mediterranean Sca, that it gains in one point and loses in another? This retreat of the sea nust not be confounded with another real phænomenon easy to be explained, namely, the decrease of fresh water, of rain, and of the rivers in this continent. The Orinoco, as we see it at present, is no longer the shadow of what it was 1000 years ago, according to the evidence of the traces which the water has left on both banks at the height of 70 or 80 toises. These races have long attracted the notice of learned Europeans who have seen the Barraguan, the Cucra de Atarnipe (the burying place of the Atures Indians, who formed a kind of mummies), the Cerro Cuma, the Daminari, the Kcri, Oco, and Ouivitari, the bottom of which at present is scarcely covered by the foam of the Cataracts of Marpure. These traces remind the Indian of a great innadation, during Co which
which many persons saved themselves on rafts of Agave, and afterwards cut out inseriptions and hieroglyphics, with which the granite of Urnana, of Incaramada, and the banks of Cassiquiaré, are seen covered, but of which no one at present has the key. This tradition, common among the Indians of Erovato and of Parma, shows great analogy with the mythology of the antients. People think they read the history of Deucalion, and Pauw would find the remembrance of this flood not uninteresting.
[To be concluded in our next.]
IV. Natural History and Anatomical Description of a neur Genus of Fish named Polyptera, found in the Nile. By G. Geofrior*.

II_{T} is in general among fish with fixed branchize and a cartilaginous skeleton that the most varied and most curious forms are found : it is there that the important modifications of some of the organs which constitute life necessarily determine the major differences in the rest of the organization. But among the abdominal fishes, where these beings have so great relation to each other, there is one species almost entirely different from those analagous to it, and, as we may say, foreign in the midst of its family. This no doubt is a new object of consideration for natural history, and worthy the attention of physiologists.

This species, known in Egypt under the name of lichir, is indeed so anomalous in regard to abdominal fishes, that it may be said to have no other relation to them than in the respective position of the pectoral and ventral fins; and that in other respects it is entiecly different.

1. Physiognomy of the Bichir. The appearance of this fist might cause it to be considered as a scrpent, and on this account, indece, it has been distinguished among the Egyptians by the name of lichir or aboulchir: its head is defended by broad osseous pieces, and its body is clothed with large scales. It is in some measure cased in armour. It is particularly remarkable by the extent of its abdomen, the length of which is equal to four-sixths of its whole body.
II. Organs of Motion.-The bichir seems to be deprived of that organ which acts the principal part in natation ; for its tail is exceedingly short, being equal at most to no more

[^2]than a twelfth part of its whole length : but there is nothing real in this inconveniency. The tins of this fish, which correspond to the extremities of the mammalia, are formed in such a manner that it can employ them at pleasure, like the phoce, either for natation, or walking, or for reptation. We are already acquainted with a similar organization, that of the Lophia, the pectoral and ventral fins of which are placed at the end of earneous prolongations; but this genus belongs to the order of jugular fishes, where the extremities are found in an inverted order, and cannot serve for attaching these animals to any body but under certain circumstances.

The bichir then in this respect exhibits a more complete analogy to quadrupeds. To appreciate its just value we shall here give a description of the pectoral and rentral fins.

The anterior extremity, which is 2 inches 7 lines, is longer than the posterior, and the arm is very little shorter than the fin, being 1 inch 10 lines: it is very flat, naked internally, and covered with scales only on the exterior side : it contains all the bones which compose the anterior extremity of quadrupeds.

The omoplata is a large square piece at the top of which is an apophysis, broad at the base, which articulates with the back part of the plates of the head: the sternum is of an elongated form, disposed transversely, and remarkable for a large groove situated before : below is the clavicular bone which projects outwards in such a manner as to accompany the humerus, and to serve like it for the articulation of the fore arm. In regard to the humerus, it is a very short small bone, of less breadth than the clavicle, with which it is accompanied: all these small bones are separated only' in young individuals: in adults they are united in such a manner as to form one bone, where the traces of their former separation are always indicated by sutures.

The fore arm is composed of two long, slender, and unequal bones, the cubitus and the radius, which separāte at an angle of 50°. A very thin round osseous plate, which I consider as a real carpus, occupies the centre of this separation, and on the semicireular base of this triangle the apophyses which defend the ra lii rest: this kind of metacarpus is terminated by fins.

Among the muscles with which the fore arm is provided, we distinguish an adductor, and particularly large flexors and extensors, which line the interior and exterior part of the metacarpus.

C 3
The

The posterior extremity is far from presenting so many points of resemblance with that of the mamnalia. The limb (4 lines) is exceedingly short in regard to the fin (1 inch 5 lines) ; besides, it is composed of only five bones. The first, which, with its fellow, performs the office of a pelvis, is long and flat, and terminates in a broad base, at the extremity of which are articulated four small elongated and parallel bones. The protecting apophyses of the radii, though extremely short, envelop, however, on each side, the extremity of these small bones; which is possible, because each radius composed of two laminee is terminated by a double apophysis.

This organization is seen on a more extensive scale and more distinctly in the anal fin; where each radius, composed of two triangular laminx, united only by their anterior edge, is disposed in such a mamner that the first radius receives the second, the second the third, the third the fourth, and so on.

The dorsal exhibits a fact of organization no less curious than what has been described. It is composed of sixteen, seventeen, or eighteen osseous radii, eleven lines in length, separated from each other, compressed transversely, of equal breadth, that is to say three lines, and terminating in two sharp points. These osscous laminæ, by rising up along the whole back, present in case of need a formidable armour. That these lamina, however, may have a base proportional to their solidity, they are articulated directly with the upright apophyses of the vertebre, and not, as in the other fishes, with the protecting apophyses of the radii: for this purpose the upright apophyses of the vertebree are stronger, and terminated by a head destined for the articu-lations of the radii. The protecting apophyses, by this singular arrangement, become useless; they however exist, hut are smaller, and inserted under the skin in the cellulartissue: they are merely the rudiments having a little more: development.

The dorsal radii are not only transformed into a doublepointed dart; but each of them also is a particular fin; for there arises from the poiterior surface of the lamine a transparent membrane, which far exceeds the radius itself (or 1 inch 6 lines), which is supported towards the upper part by four small round cartilaginous radii, having each a particular origin. This series of small fins is prolonged without interruption as far as the caudal fin, so that they are distinguished only by the difference of their radii.

The tail is very short, compresed on the sides, and ter-
minates in a point: the fin which borders it below and above is however rounded at its extremity: the radii are subdivided in proportion as they recede from their origin; those of the pectoral and rentral fins have a resemblance to them, except in the difference of their height. They are all so close to each other that they do not seem to be susceptible of motion.

1II. Of the Head.-The branchial aperture is of considerable size, which is never the ease in other fishes, unless the number of the branchio-stege radii inerease in proportion. But in the lichir there are none: they would indeed be almost useless, since the branchio-stege membrane, instead of being so thin as to fold up or expand at pleasure, consists of a thick skin. As it is of sufficient extent to exceed a good deal the opposite edge of the branchial aperture, it is supported towards the middle by a long osseous plate.

It may readily be imagined that a branchio-stege membrane, like the present, cannot perform the functions which it is known to perform in other fishes, if the arrangencnt of the plates which cover the head did not compensate for this deficiency by a supplementary organization, which brings all these parts into perfect agreement.

The middle of the head is protected by a large plate, composed of six pieces all articulated together. This kind of helmet is separated from the operculum by a band composed of small square pieces, which coming from the eve proceed obliquely on the nape of the neek. About the middle it is observed that two of these pieces adhere by a membrane only to the first piece of the operculum, while their opposite edge is free. As this fissure communicates with the casity of the mouth, the water convered into the branchix is strongly compressed buth by the pieces of the operculum, and by the lung plate which supplies the place of the branchio-stege radii : this liquid raises up the two small moveable pieces, and opens a passage through which it escapes as through a valve.
'The operculum exhibits nothing remarkable: it is composed of threc picees; the anterior and posterior are nearly of the same size; the third, which is situated between the two, is much smaller, and has the form of an equilateral triangle : above this third piece the two others are contigus ous. The leaves of the branchix are single.

The form of the head approaches near to that of the enoces: it is long and flat from the top downwards, and the inferior jaw project a little forwards.

The mouth is large, and furnished with a double row of equal, fine, and sharp tecth, placed very near to each other. The eavity of it is filled by a ongue exceedingly thick, free, and not covered with tecth, as in the estres. On the'sides of the mouth there are two prolonged lips, the upper one of which only is supported by a cartilage. This cartilage is nothing else than a thick tedidon: a little above, towards the place where the moveable lip begins, there is found a small barbillon two lincs in length, and between the two barbillons two small holes whic! are the apertures of the nostrils.

The ere is situated behind and on the sides of the head; it is flatiened, and deeply lodged in the cavity.
IV. Of the general 'regunents.-The bichir is cased in armour nearly in the sante manner as the esox-cayman: its scalcs are large, thick, rhomboidal, strongly fixed in the skin, and distributed obliquely in bands: each of these bands begins at the middle line of the back and einds at the middle line of the belly, in such a manner as to form with the band of the opposite side an angle of nearly 45 degrees.

The general colour of the lichier is a sea-green; the belly inclines a little to a dirty white: this colour is set off by some black irregular spots, more numerous towards the tail than the head. The lateral line is straight, and not very risible. The general size of the lichir is one foot six inches in length.
V. Organs of Digestion.-The lichir in this respect approaches more to the rays than the esoces, with which one might at first be tempted to class it. At the extremity of a very spacious osophagus, one inch two lines in length, is found the stomach, four inches five lines in length and noe inch two lines in bradth: it is cylindric in a part of it length, and conical at the extremity. The intestine, which originates at the upper part of the stomach, first rises; and then folding itself back proceeds straight to the anus: a little below the arch which it forms there is found a very short cœem five lines in length, wanting in most of the esoces, which proceeds towards the head. In the inside of the intestinal canal there is observed, as in the squali and rays, a membrane fixed to the intestine by one of its edges and rolled up in such a manner as to form by its different foids so many cells, which stop the course of the aliments and make them remain in the intestine the time necessary for digestion. Though this wonderful mechanism, which makes up for the shortness of the intestines, is already known,
known, it is still astonishing to meet with it in a fish of the order of the abdominals.
VI. Of the other Abdominal Viscera; and 1st, of the Air Bladders.-The. genus of the esox, like most abdominal fishes, has only one air bladder adhering to the sides, and occupying the whole extent and length of the abdominal region. In the lichir there are two of these air bladders: they are two unequal crlinders which adhere only to the stomach and the liver. The smaller, eleven lines in extent, accompanies the stomach and terminates in a point: the larger, which is seven inches four lines, occupies the whole length of the abdomen. Towards the upper and lower part of the cesophagus is a fissure which opens into these bladders. This large aperture is shat, when necessary, by one constrictor muscle.-2d, The Liver. In the esox it is one large and cutire mass; in the bichir it is formed nearly like the air bladders, being composed of two slender and uncqual lobes: the small portion proceeds on the right side of the stomach; the longer, which is also slenderer, on the left of the intestinal canal. The gall bladder arises from the long portion : it has the form of a long-necked bottle; it is one inch four lines in length, and four lines in diameter. 3d, The Spleen is a ribbon-like body, of the consistence of the liver, and adheres to the large air bladder.-4th, The Kidneys have nearly the same form: they are two in number, and lodged on each side of the projection of the vertebral column; in this they are very different from one kidney of a pulpy consistence, such as that observed in the esox.-5th, The Ovaria, which are eleven inches in length, present nothing remarkable: they are attached to the neighbouring organs only by a cellular tissue so loose that they form themselves into a ball, or become elongated, according to the manner in which the fish is carried. The cegs are not larger than a grain of millet. They are of a meadow-green colour, while the whole of the ovarium appears of a blackish brown.
VII. Habits of the Bichir.-Notwithstanding all the care I employed to obtain information respecting the manmers of this fish, I was not able to succeed. It is so rarely found in the Nile, that several fishermen informed me they had never seen any other individuals than those which 1 showed them. The high price which I gave for each lichir is a sure proof that all those which appeared in the general market at Cairo were brought to me; and yet I purchased no more than three or four in the course of a year. It was caught at the time when the waters of the Nile were lowest, and 1 never was able to obtain any young indivi-
duals. Having found that all the fish of the Nile are diviled by trewellers into two elasses: that some during the deerease of the river ascend fiom its momh, and that whers deseend from Nubia at the time of the immelation, I was desirons of knowing to which of these divisions the bichir belonged: but I never met with any person who conld inform me. All that I was able to gather from the bioformaton 1 obtained was, that the lichir frequents only the deepest parts of the river ; it lives constantly in the mud ; and that, abandoning its retreats only in the spawning season, it is then sometimes canght in the fishermen'snets. \$ have not learned on what it feeds. I opened and dissected threc individuals, but their stomachs were entirely empty. By the extent of its mouth, however, the numerous teeth with which it is armed, and the conformation of the intestinal canal, there is reason to believe that it is camivorous. Its flesh is white, and much more savoury than that of the other inhabitants of the Nile. As it is proof against the attacks of a knife, it must be boiled: the skin is then more easily detached, and may be removed in one piece.
VIII. Nutural Relations.-iThe genus to'which the bichir aporoaches most is that of the esoces: it has even some rescmblance to the cayman and sealy eel; a resemblance for which it is indebted to its integuments, and the distribution and size of its scales. But it may be readily conccived that this is not a consideration of sufficient intportance to induce us to class it among the esoces, since it differs from them, as well as from the other known abdominal fishes, by organs much more essential. It is the only one of this order which has its fins placed at the extremity of the arm, the only one in which the place of the branchio-stege radii is supplied by an osseous plate; the only one which has a kind of airholes furnished with valres to shut these apertures outwardly : all characters by which it approaches the cetacea: it is also the only one in which the dorsal line is furnished throughout its whole length with small fins; in which the first radius of these fins is transformed into a dart with two points ; in which the apophyses of the vertebre support immediately the osseous radii of the dorsal fins; which has a tail so short that it is almost useless for natation; and which, in regard to the organs of digestion, seems to estabrish a shade between the abdominal and cartilaginous fishes. Lrom these considerations I think myself authorized to determine, that as the bichir camot be admitted into any of the known divisions, it onght to be considered as an insulesed being, and in that state of anomaly which naturalists usually
wäully denote by the name of a new genus. I shall therefore establish the genus as follows:

Polyptera.
Charac. One branchio-stege radius ; two spiracles; a great number of dorsal fins.

> Polyptera Bichir.

Inhabits the Nile.

Explanation of the Plate.

Fig. 1. (Plate I.) Polyptera.
Fig. 2. the head seen from abore, $A B$, aperture of the spiracles.

Fig. 3. insulated dorsal fin seen on one side, in which may be observed the two points that terminate the osscous radius.
V. Aucount of the Process follouced. ly MT. Pienre Jiques Paplelon for Dyeing Turkey Red.
It is now some vears since M. Papitlon established a dyehouse at Glasgow for giving to cotton-yarn that beautiful red colour known by the nume of Turkey or Adrimople red. In the year 1790 the commissioners and trustees for manufactures in Scotland paid a promium to M, Papillon for communieating to the late Dr:"Black, then professor of chemistry, Edimburgh, a description of his process, on condition that it should not be divulged for a certain term of years, during which M. Papillon was to have the sole use of his own secret. The term being now expired, the procers, as communicated to Dr. Black, has been published. and is as follows:

> Receipt for Dyeing Cotton-Yarn a duralle Red. Step I.

For one hundred pound of cotton, you must have 100 lb . of alicante barilla. go ll . of pearl-ashes. 100 lb . of quicklime.
The barilla is mised with soft water in a deep tub which has a small hole near the bottom of it, stopped at first with a peg. This hole was covered in the inside with a cloth, supported by two brichs, that the ashes may be prevented from rumning out at it, or stopping it up while the ley filters through it.

Under this tub is another to receive the ley, and pure water is repeatedly passed through the first tub to form levs of different strength, which are kept separate at first until their strength is examined. The strongest required for use must swim or float an egg, and is called the ley of six degrees of the French hydrometer, or perseliqueur. The weaker are afterwards brought to this strength by passing them through fresh barilla; but a certain quantity of the weak, which is of two degrees of the above hydrometer, is reserved for dissolving the oil, the gum, and the salt, which are used in subsequent parts of the proceps. This ley of two degrees is called the weak barilla liquor; the other is ealled the strong.

Dissolve the pearl-ashos in ten pails, of four gallons cach, of soft water, and the lime in fourteen pails.

Let all the liquors stand till they become quite clear, and then mix ten pails of each.

Boil the cotton in the mixture five hours, then wash it in running water and dry it.
Step II.-Bainlie, or Gray Steep.

Take a sufficient quantity (ten pails) of the strong barilla water in a tub, and dissolve or dilute in it two pailsfull of sheep's dung; then pour into it two quart-bottles of oil of vitriol, and one pound of gum arabic, and one pound of salammoniac, both previously dissolved in a sufficient quantity of weak barilla water; and, lastly, twenty-five pounds of olive oil which has been previously dissolved or well mixed with two pails of the weak barilla water.

The materials of this steep being well mixed, tramp or tread down the cotton into it until it is well soaked: let it steep twenty-four hours, then ring it hard and dry it.

Steep it again twenty-four hours, and again wring and dry it.

Steep it a third time twenty-four hours, after which wring and dry it ; and, lastly, wash it well and dry it.
Step III.-The White Stec力.

This part of the process is preciscly the same with the last in every particular, except that the sheep's dung is omitted in the composition of the steep.

> Step IV.-Gall Stect.

Boil twenty-five pounds of galls, bruised in ten pails of river water, until four or five are boiled away; strain the liquor into a tub, and pour cold water on the galls in the strainer to wash out of them all their tincture.

As soon as the liquor is become milk-warm, dip your cotton hank by hank, handling it carefully all the time, and and let it steep twenty-four hours.

Then ring it carefully and equally, and dry it well without washing.

> Step V.-First Alum Steep.

Dissolve twenty-five pounds of Roman alum in fourieen pails of warm water, without making it boil; skim the liyuor well, and add two pails of strong barilla water, and then let it cool until it be luke-warm.

Dip your cotton, and handle it hank by hank, and let it steep twenty-four hours; wring it equally, and dry it well without washing.

Step VI.—Second Alum Steep.

Is performed in every particular like the last; but after the cotton is dry steep it six hours in the river, and then wash and dry it.

Step VII.-Dyeing Stcep.

The cotton is dred by about ten pounds at once, for which take about two gallons and a half of ox blood, and mix it in the copper with twenty-eight pails of milk-warm water, and stir it wetl; then add tiventy-five pounds of madder, and stir all well together. Then, having beforehand put the ten pounds of cotton on sticks, dip it into the liquor, and move and turn it constantiy one hour, during which gradually increase the heat until the liquor begins to boil at the end of the hour. Then sink the cotton and boil it gently one hour longer, and lastly wash it and dry it.

Take out so much of the boiling liquor that what remains may produce a milk-warm heat with the fresh water with which the copper is again filled up, and then proceed to make up a dyeing liquor, as above, for the next ten pounds of cottun.

Step VIII.-The Fixing Steep.

Mix equal parts of the gray-steep liquor and of the whitesteep liquor, taking five or six pails of each.-Tread down the cotton into this mixture, and let it steep six hours; then wring it moderately and equally, and dry it without washing.

> Step IX.—Brighton Stecp.

10 lb . of white soap must be dissolved most carefully and completely in sixteen or eighteen pails of warm water: if any little bits of the soap remain undissolved they will make
spots in the cotton. Add four pails of strong barilla water, and stir it well. Sink the cotton in this liquor, heeping it down with cross sticks, and cover it up; boil it gently two hours, then wash it and dry it, and it is finished.

> Lessels.

The number of ressels necessary for this business is sreater in proportion to the extent of the manufactory; but in the smallest work it is necessary to have four coppers, of a round form.
lst, The largest, for boiling and for finishing, is twentyeight inches deep, by thirty-eight or thirty-nine wide in the mouth and eighteen inches wider in the widest part.
od, The second for dyeing is twenty-eight deep, by thirtytwo or thirty-four in the month.

Bd, The third, for the almm steep, is like the second.
thi, The fourth, for boiling the galls, is twenty deep by twenty-cight wide.

A number of tubs, or larger wooden vessels, are necessars, which must all be of fir, and hooped with wood or with copper.

Iron must not be employed in their construction, not even a nail; but where nails are necessary, they must be of copper.
-. By the pail is always understood a wooden ressel which holds four English gallons, and is hooped with copper.

In some parts of the above process, the strength of the barilla liquor or liquors is determined by telling to what degree a perseliqueur or hydrometer sinks in them.

The perseliqueur was of French construction. It is similar to the glass hydrometer used by the spirit dealers in this comntry; and any artist who makes these instruments will find no difficulty in constracting one with a scale similar to that emploved by M. Fapillon, when he is infurned of the following circumstances:
lst, The instrument, when plunged in good soft water, such as Edinburgh pipe water, at temperature 60° siuks to the o, or beginning of the scale, which stands near the top of the stem.
ed, When it is immersed in a saterated solution of common salt, at the same temperature of 60°, it sinks to the 26° of the scale only; and this falls at some distance from the top of the ball.

This saturated solution is made by boiling, in pure water, refined sea or common salt, till no mere is dissulved, and by filtering the liquor when cold though blotting paper.

It should also be observed, that whenever directions are given to dry yarn to prepare it for a succeeding operation, that this drying should be performed with particular care. and more perfectly than our driest weather is in general able to effect. It is done therefore in a room heated by a stove to a great degree.

Vi, The Life of Joun Dolloxn, F.R.S., Incutor of ihe Achromatio Telescope*. Is modern times the atention of men has been employed rather in improising what they know than in attempting to make new discoveries. When a man, therefore, has been fortunate enongh, by extraordinary research, or by a strong effort of genius, to supprize the world with a new invention. a lively interest is immediately excited in every mind to trace the steps, investigate the means, and collect every incident which led to the result: and to the honour of hminn nature be it said, while curiosity exerts itself in this manner on the invention, the inventor is not less the object of regard and consideration; we wish to learn the history, the life, the character of the man, and, as far as it is possible, to be acquainted with him. The subject of the following memoir is entitled to this introduction, and the public will receive with satisfaction the following account of the inventor of the achromatic telescope:

John Dollond, fellow of the Royal Society, was born in Spitalfields, on the tenth day of June in the tear 1706: his parents were French protestants, and at the time of the rerocation of the ediet of Nantz, which happened in the yar 168j, rcsided in Normandy; but in what particular part of it is not, at present, precisely known : M. de Lalande does not believe the name to be of French origin : but howerer this may be, the family were compelled soon after this period to seek refuge in England in order to avoid persecution and to preserve their religion.

The fate of this family was not a solitary case; fifty thousand persons pursued the same measures, and we may date from this period the rise of sceeral arts and manufactures which have become highly bencficial to this country. An establishment was giren to these refugecs, by the wise policy

[^3]of our government, in Spitalfields, and particular encouragement granted to the silk manufactory.

The first years of Mr. Dollond's life were employed at the loom; but, being of a very studious and philosophic turn of mind, his leisure hours were engaged in mathematical pursuits; and though by the death of his father, which happened in his infaney, his education gave way to the necessitics of his family, yet at the age of fifteen, before he had an opportunity of secing works of science or elementary treatises, he amused himself by constructing sun-dials, drawing geometrical schemes, ${ }^{\circ}$ and solving problems.

An carly marriage and an increasing family afforded him little opportunity of pursuing his favourite studies: but such are the powers of the human mind when called into action, that difficulties, which appear to the casual observer insurmountable, yield and retire before perseverance and genius: even under the pressure of a close application to busincss for the support of his family, he found time, by abridging the hours of his rest, to extend his mathematical knowledge, and made a considerable proficiency in optics and astronomy, to which he now principally devoted his attention, having in the earlier stages of his life prepared himself for the higher parts of those subjects by a perfect knowledge of algebra and geometry:

Soon after this, without abating from the ardour of his other literary pursuits, or relaxing from the labours of his profession, he began to study anatomy, and likewise to read divinity; and finding the knowledge of Latin and Greek indispensably necessary towards attaining those ends, he applied himself diligently, and was soon able to translate the Greck Testament into Latin ; and as he admired the power and the wisdom of the Creator in the mechanism of the human frame, so he adored his goodness displayed in his revealed word.

It might from hence- be concluded that his sabbath was devoted to retired reading and philosophical objects; but he was not content with private devotion, as he was always an advocate for social worship, and with his family regularly attended the public service of the French protestant church, and occasionally heard Benson and Lardner, whom he respected as men and admired as preachers. In his appearance he was grave, and the strong lines of his face were marked with deep thought and reflection; but in his intercourse with his family and friends, he was checrful and affectionate; and his languge and sentiments are distinctly recollected
recollected as always making a strong impression on the minds of those with whom he conversed. His memory was extraordinarily retentive, and, amidst the variety of his reading, he could recollect and quote the most important passages of every book which he had at any time perused.

He designed his eldest son, Peter Dollond, fur the same business with himself; and for several yoars they carried on their manufacture together in Spitalfields; but the employment neither suited the expectations nor dispositions of the son, who, haring received much information upon mathematical and philosophical subjects from the instruction of his father, and observing the great value which was set upon his father's knowledge in the theory of optics by professional men, determined to apply that knowledge to the bencfit of himself and his family; and accordingly, under the directions of his father, commenced eptician. Success, thongh under the most unfavourable circumstances, attended evcry effort ; and in the year 1759. John Dollond, embracing the opportunity of pursuing a profession congenial with his mind, and without neglecting the rules of prudence towards his family, joined his sin, and in consequence of his theoretical knowledge, soon became a proficient in the practical parts of optics.

His first attention was directed to improve the combination of the eve-glasses of refracting telcscopes; and having succeeded in his system of four eye-glasses, he proceeded onc step further, and produced telescopes furnished with five cre-glasses, which considerably surpassed the former; and of which he gave a particular account in a paper presented to the Royal Society, and which was read on the 1 st of March 1753 , and printed in the Phil. Trans. vol. xlviii. pare 103.

Sonn after this he made a very useful improvement in Mr. Savery's micrometer : for instead of employing two entire object-glasses, as Mr. Savery and M. Bouguer had done, he used only one glass cut into two equal parts, one of them sliding or moving laterally by the other. This was considered to be a creat improvement, as the micrometer could now be applied to the refecting telescope with much advantage, and which Mr. Janes Short immediately did. An account of the same was given to the Roval Society, in a paper which was afterwards printed in the Phil. Trans. vol. xhini. page $17 \mathrm{~S}^{*}$.
*This kind of micremeter was afterwards applied by Mr. P. Dollond to the achromatic selescope.

Vol. XVIII. No. $69 . \quad$ D A.

Mr. Dolhond's celebrity in opries became now unicersal ; and the fricndhip and protection of the most eminent men of science flatered and encouraged his pursuits. To cnumerate the persons, bohl at home and abroad, who distimquished him by their correspondence or cultivated his acquaintance, however honowrable to his memory, would nuly be an empty praise. We camot, honewer, forbar mentioning the names of a few persons, who hed the highest place in his csteem as men of worth and learning : Mr. Thomas Simpson, master of the Royal Academy at Woolwich; Mr. Harris, assay-master at the Tower, who was at that time engaged in writing and publishing his Treatise on Optics ; the Rev. Dr. Bradley, then astronomer royal; the Rev. William Ludlow, of St. John's college, Cambridge; Mr. John Canton, a most ingenions man, and celebrated not less for his knowledge in natural philosophy, than for his neat and accurate manner of making philosophical experiments. To this cataloguc of the philosophical names of those days, we must add that of the present astronomer royal, the Rev. Dr. Maskelyne, whose labours have so eminently benefited the science of astronomy.

Surrounded by these enlightened men, in a state of mind prepared for the severest investigation of philcsophic truths, and in circumstances farourable to liberal inquiry, Mr. Doilond engaged in the discussion of a subject, which at that thene not only interested this comery, but all Europe. Sir Isaac Newton had declared, in hiss Trearise on Optice, page 112, "That all refracting substances diverged the prismatic colours in a constant proportion to their ncan refraction;" and drew this conclusion, " that refraction conild not be prodeced without colour ;" and, consequently, "that no improsoment conld be expected in the refracting telescope." No one duabted the accuracy with which Sir Isace Newton had made the experiment; yet some men, particularly M. Euler and others, wore of opinion that the conclusion which Newton bad drawn from it went too far, and maintained that in very small angles refraction night be obtained without colour. Mr. Dollond was not of that opinion, but defended Newton's doctrine with much learning and ingenuity, as may be seen by a reference to the letters which passed betwien Euler and Dollond upon that occasion, and which were published in the Phil. Trans. ol. xtwii. page es7. and coniended that, "If the result of the experiment had been as deseribed by Sir Isaae Newton, there could not be refraction without colour."

A mind constituted like Mr. Dollond's could not remain
main satisfied with arguing in this manner from an experiment made by another, but determined to try it himself: and, accordingly, in the year 1757 , began the examination; and, to use his own words, with " a resolute perseverance," continued during that year, and a great part of the next, to bestow his whole mind on the subject, tintil in the month of June 1755 he found, after a complete course of experiments, the result to be very different from that which he expected, and from that which Sir Isaac Newtom had related. He discovered " the difference in the dispersion of the colours of light, when the mean rays are equally refracted Iy different mediums." The discovery was complete, and he immediately drew from it this practical conclusion, " That the object-glasses of refracting telescopes were capable of being made without being affected by the different refrangibility of the rays of light." His account of this experiment, and of others connected with it, was given to the Royal Society, and printed in their Transactions, vol. l. page 713 . and he was presented in the same year, by that learned body, with Sir Godfrey Copley's medal, as a reward of his inerit, and a memorial of the discovery, though not at that time a member of the society.

This discovery no way affected the points in dispute between Euler and Dollond, respecting the doctrine adranced by Sir Isaac Newton. A new principle was in a manner found out, which had no part in their former reasonings, and it was reserved for the accuracy of Dollond to have the honour of making a discovery which had eluded the observation of the immortal Newton *.

This new principle being now established, he was soon able to construct object-glasses, in which the different refrangibility of the rays of light was corrected, and the name of achromatic given to them by the late Dr. Beris, on account of their being free from the prismatic eolours. Dr. Hutton, in his Mathematical Dictionary, has said that this name was given to them by M. de Lalande; but that is a mistake.

As usually happens on such occasions, no sooner was the achromatic telescope made public, than the rivalship of

[^4]foreigners, and the jealousy of philosophers at home, fed them to doubt of its reality; and Euler himself, in his paper read before the Acadenyy of Scienecs at Berlin, in the year 176 k , says-"I am not ashamed frankly to avow, that the first accounts, which were pubitshed of it, appeared so suspicious, and ceren so contrary to the bess established principles, that I could not prevail upon meself to give credit to them ;" and he ardds, "I should never have submitted to the proofs which Mr. Dollond produced to support this strange phenomenon, if M. Clairaut, who must at first have been cqually surprised at it, had not most positively assured me, that Dollond's experinsents were but too well founded." And when the fact could no longer be disputed, they endeavoured to find a prior inventor, to whom it might be ascribed, and several conjecturers were honoured with the title of disenverers.

Mr. Dollond's improvement in refracting telescopes was of the greatest adrantage in astronomy, as they have been applied io fixt instruments; by which the motions of the hearenly bodies are determined to a much greater exactness than by the means of the old telescopes. Navigation has also been much benefited by applying achromatic tele-scopes to the "Hadley's sextant :" and from the improved. state of the lunar tables, and of that instrument, the longitude at sea may now be detcrmined by good observers to a great degree of accuracy ; and their universal adoption by the navy and arny, as well as by the public in general, is the best proof of the great atility of the discovery.

In the beginning of the year 1761, Mr. Dollond was elected fellow of the Royal Society, and appointed optician to his majesty, but did not live to enjoy those honours long; for on the 30th of Norember, in the same year, as he was reading a new publication by M. Clairaut, on the theory of the moon, and on which he had been intently engaged for several hours, he was seized with apoplexy, which rendered him immediately speechless, and occasioned his death in a few hours afterwards. Besides Mr. Peter Dollond, whom we have had occasion to mention in the course of this memoir, his family, at his death, consisted of three daughters and a son, who, possessing the name of his father, and we may add, a portion of the family abilities, carrics on the optical business in partuership with his elder brother.

Vill. Memoir ly LordNapies, of Merchistom, the celer rated Inventor of the Logarithms, on his different contrivances "for the Defence of this Island ;" with Remarks.

SIR,

To Mr. Tilloch,

${ }^{7} \Gamma_{\text {he following memoir has been already published in Dro }}$ Andereon's excellent miscellany, the ree, vol. iii. p. 133. but your readers will perhaps agrce with me in thinking it deserves republication, and may not be displeased to find it accompanied with some observations, which I believe have not before been orought together. The original of this very curious paper is preserved anong the manuscripts of Anthony Bacon, Esq. in the Lambeth Library, marked 65s, anno 1596.

$$
\text { Yours, Sic. } \quad * D_{0}
$$

"Secret inventions, profitable and necessary in these days for the defence of this island, and withstanding of strangers, enemies to God's truth and religion.
"First, The invention, proof, and perfect demonstration, geometrical and algebraical, of a burning mirror, which receiving of dispersed beams of the sun, doth reflex the same beams altogether united, and concurring precisely in one mathematical point, in the which point, most necessarily it engendereth fire; with an evident demonstration of their error who affrm this to be made a parabolic section. The use of this invention serveth for the burning of the enemy's ships at whatsoever appointed distance.
"Secondly, The invention and sure demonstration of another miror, which receiving the dispersed beams of any material fire, or flame, yicldeth also the former effect, and serveth for the like use.
"Thirdly, The invention and visible demonstration of a piece of artillery, which shot, passeth not lineally through the army, destroving only those that stand in the random thereof, but superficially ranging abroad, within the whole appointed place, and not departing forth of the place, till it hath executed his whole strength, by destroying all those that be within the bounds of the said place. The use hereof not only serreth greatly against the army of the enemy on land, but also by sea, serving to destroy and cut down, at one explosion, the whole masts and takking of so many ships as be within the appointed bounds, as well abreid as in large, so long as any strength at all remaineth.

$$
\text { D } 3 \text { " Fourthly, }
$$

"Fonrthly, The invention of a round chariot in metal, made of the proof of double musquet, whose motion shall be such, that those that be within the same shall be more easy, more light, more specdy, and more safe in batle, than any hitherto contrived, The ube hereof in moving, is to break the array of the enemy's battle, and to make passage, as also in staying and abiding within the enemy's battle. It serveth to destroy the environed enemy, by continal charges and shot of the arquebuss, through small holes; the enemy in the mean time, being amazed, and altogether uncertain what defence or pursuit to use against a moving month of metal.
"These inventions, besides devices of sailing under the water, with divers other deviecs and stratagems for harming of the enemies, by the grace of God, and work of expert craftomen, I hope to perform.

John Napier, of Merchiston, Anno Domini 1596, Junc.-

Remarks an the alore.

I. The accension of combustible bodics by the solar rave concentrated in the focus of a concavemirror, was well knowin to the antients, it being the 31 st, and concluding proposition, of the Treatise on Catoptricks, gencrally ascribed to Euclid *; and it was by such mirrors, according to Plutarch, in the life of Numa, that the vestal fires were rekindled. There can be no doubt that the Magi, who were equally scrupulous about their sacred fire, renorated it by the same means. The antients also knew, that if a number of plane mirrors were so disposed as that each of them should reflect the image of the sun to the same spot, a combustible substance placed there would be set on fire. It was precisely in this way, according to the Grecian poet Tzetzes, that Archimedes, at the distance of a bow-shot, projected the rays of the sun on the fleet of Marcellus, before Syracuse, and re-

[^5]duced it to ashes. Proclus is recorded by Zonaras to have destroyed the ships of Titalian, besieging Byzantium (now Constantinople), by a similar apparatus. The same facts are mentioned by other antient historians; but their hints respecting the apparatus itself are too imperfect to afford any explicit knowledge of its structure. But, as appears from other passages of his life *, a very obecure hint was sufficient to sct in action the genius of Napier; and the foregoing memoir gives us every reason to beliere that, putting a happy construction on the words of Tzetzes, this second Archimedes was the first among the moderns who recovered this admirable imention of his illastrious precursor. So completely had it been buried in the wreck of antient science, that Descartes, who certainly understood at least the theory of optics better than any man of his age, when he publisbed his Dioptrics, above forty years after the date of Napier's memoir, mentions the burning of bodies, at any considerable distance, by means of mirrors, as an almost hopeless project, and scarcely. refrains from treating the famous exploit of Archimedes as a fablet. Descartes was a great man, and therefore his scepticiom was, as usual, adopted by the common herd, the serrum pecus, of philosophers, and even by some men of real learning and ability. Of this last description was M. Ozaman, who save plainly that the catoptrical achievement of Archimedes is incredilte; and indeed not without reason, if the distance rcally was (as he states it, upon what authority does not appear, 375 geometrical paces, equal to 1 sís Prench feet, or 200 English \ddagger. This, it must be confessed, seems to be giving tuo puprical an in-terprctation to the bow-shot of the poct Tzetzes. The jistly celcbrated Christian Wolfe seems also disposed to give little credit to this curions piece of history; though he quotes fathor Kircher as having concluded, from an actual survey of the site of the town and harbour of antient Syracuse, that the distance to which Archimedes had to project the solar ravs could not exceed thirty paces §. This distance is probabiy nearer the truth: at least it is more agreeable to our modern ideas and experi-

[^6]ments, as well as to the accounts which have been transmitted to us of the prodigions havoc which the engines of Archimedes, some of which could not possibly act at any great distance, made among the ships of the enemy *. Be this as it may, the incredulity of so many modern philosophers, some of them deservedly esteemed on other accounts, naturally tended to discourage any attempts to verify the perfommanes ascribed to Archimedes and Proclus. The surprizing effects of the concave reflectors of Tschirnhausen, Vilette, Sir Isaac Newton and others, fall not under our present consideration, as having been produced only at small distances. At length, in 1726, M. du Fay found that, "at 200,300 , and even as far as 600 French fect" (about 640 English), " the rayo of the sum received on a plane mirror, one lont square, and thence reflected to a concave one 17 inches" (above 15 English inches) "in diameter, consumed combustible bodics in the focus of the latterf." This interesting and literally billiant experiment no doubt had its influence in stimulating the active

[^7]mind of Buffon to attempt the prodaction of fire by one reflection only. But, as he himself intimates, he was chiefly prompted to make this trial by a passage in the third part of the Magia Catoptrica of Kircher*, who says, Ego certe hujus rei, \&c. "I certainly made trial of this matter with five p!ane specula. The hent, at the first reflection, was different from that of direct light. The light when doubled gave a very perceptible increase of heat ; when tripled, it had the heat of a tire; when quadrupled, the heat coni still be endured; but a five-fold light made the heat almost intolerable." Hence he concludes that a numerous combination of plane mirrors, which should reflect the sun's light to the same point, would produce much greater effects than any parabolic, hyperboiic, or elliptic burning mirror. This, he says, he is warranted to affirm, from experiments he made with his five plane specula, at the distance of 100 feet and upwards. And he earnesty catreats mathematicians to pursue this object with their utmost diligence. Kireher was born in $1601 \uparrow$, five years afier the date of Napier's memoir. It is generally said that his experiments were suggested by the lints of Tzetzes; and, no doubt, would be. encouraged by his finding, on "diligent examination" of the spot in 1630, that " the comburtion said to have been kindled by Archimedes was possible, and that the caustic line was but about 30 paces," or about 160 English feet. Thus the count de Buffon had only to put in evecution the dircetions of Kircher + , which he did, in March and April 1:-7\%, with great persererance, ingenuity, and expense. After rarious trials, with combinations of different numbers of plane mirrors, the greatest consisting of 400 , placed in a square frame and brought to bear upon the object by means of screws, he succeeded in melting lead and tin at the distance of about 50 English yards; and in burning lighter substances, at the distance of 75 yards. With summer heat, and a better apparatus, he expresses a certainty of producing combustion even on far as 400 French feet, equal to 142 of our yards, and perhaps further \S. This, if Kircher's admeasurement was right, may be reckoned at least double the distance at which Archimedes produced his conflagration ; and thus he and Buffon togcther have at last

[^8]convinced most learned men that the renowned antiont really performed the great exploit recorded of him. "The discovere," says the excellent Manperitus, "of the mirror of Archimedes, which has been made by M. de Buffon, shows us that we might construct buming towers or amphitheates covered with mirrors, which would produce a fire whose volence would have no other limits, so to speak, than those of the sum itself*." Fortume, leisure, and grenius, are necessary to the success of all such experiments. Lord Napier possessed these indispensable requisites as well as the count de linffon; and when we consider what has been actually done by the French philosopher, and insented in far more arduous departments of science by the Scottish one, we have no right to doubt that he could actually have verified the first proposal of his memoir. His expression * at any appointed distance," can only mean such a distance as might be reasonably prescribed in a case of this kind.
II. Our illustrious author's scond proposal has the appearance of far greater difficulty than the first, and, as far as I know, can derive little or no support from the collateral evidenee of other experiments antient or modern. Paulian, in the article alrcady cited, speaks, in general terms, of kindling agaric, and gmpowder, by the rays of burning charcoal, collected by one concave and reflected from another; adding, that the experiment suceecds best in the dark. Wolfius is more explicit. On the authority of a philowopher of the name of Zahn, he tells us that this experiment was performed at Vicma, "ope duormm speculorum, \&c., by means of two concares of brass. The largest was six feet, and the least three," (whether in diameter or focal distance does not appear,) " and thery were set 90 and 2.1 feet asunder. In the focms of the largest were placed pieces of burning charcoal, and in that of the least a candle, whose wick was wrapt round with a thread dipt in sulphur. The result was, that the reflected rays from the coals lighted the candlet." (The ingenious members of the Askesian Society have very lately fired gunpowdor by a similar apparatus.) And Regnanlt, in the place before fuoted, affims, that " the moderns have splecical concaves which kindle gunpowder with the rays of chareoal, in the foci of each other, at the distance of " 50 French feet,"

[^9]above 53 English.) But what is all this to the purpose? These results werc procured by two reflections; and Napier, in buming an enemy's flect, could only use one reflection, if indeed, in this instance, he did not also bave recourse to refraction. Of such an effect not a trace is to be found int any of the books to which I have access. But I will not be so rash as to affirm the thing to be imposible in itself, or even beyond the ability of Napicr. We have seen how much the greatest philosophers were mistaken about the practicability of his first proposal, afterwards so happily verificd by Kircher and Bufion.
III. On our illustrious author's third proposal we eannot offer so good a commentary as the following curious extract from the 15 th page of his well-written life, by the earl of Buchan and Dr. Minto, printed at Perth in 1787.

Sir Thomas Crquhart, of Cromarty, (the biographer of the admirable Crichton) in his Jewel, "after havins referred his readers to his trigonometrical work intitled Trissotetrus, for the praises of Napier, thus mentions" "an almost incompreheasible device, which being in the mouth: of the most of Scotland, and yet unknown io any that ever was in the world but himself, deserveth very well to be taken notice of in this place ; and it is this :-He had the skill, as is commonly reported, to frame an engine (for invention not much unlike that of Archytas's (love) which by virtue of some secret springs, inward ressorts, with other iniplements, and materials fit for the purpose, inclosed within the bowels thereof, had the power, if proportionable in bulk to the action required of it, (for he could have made it of all sizes) to clear a field of four miles circumference of all the living creatures exceeding a foot in height that should be found thereop, how near socier they might be found to one another; by which means he nade it appear that he wos able, with the help of this machine alone, to kill thirty thousand Turks, withnut the hazard of one Christian. Of this it is said that (on a wager) he gave proot upon a large plain in Scotland, to the destruction of a great mang head of cattle and flocks of shoep, whereof some were distant from other half a mile on all sides, and some a whole mile. To continue the thread of my story, as l have it, I must not forget, that when he was nost earnestly desired, by an old acquaintance and professed friend of his, even about the time of his contracting the distase whereof he died, that he would be pleased tor the honour of his family, and his own evcrlasting memory to posterity, to reveal unts Whin the manncr of the contrivance of so ingenious a mys-
rery; s:bjoining thereto, for the better persuadtrg ${ }^{\text {him, }}$ that it were a thonsand pities that so excellent an invention should be buried with him in the grave, and that after his deccase nothing should be known thereof; his answer was, " That for the ruin and overthon of man there were too many deriecs already fimued, which, if he eould make to be fewer, he would with all his might endeavour to do; and that therefore, secing the malice and rancour rooted in the heart of mankind will not suffer them of diminth the number of them, by any new conceit of his, they should never be increased." Divinely spoken truly!"-Urqehart's Tracts, Edinlurgh 1774. svo. p. 57.
IV. To justify lord Napier's fourth proposal, not to cerlify it, but merely to abate from its apparent incredibility, to ordinary minds, the reader may refer to the 58 th and nine following articles of the ever nemorable marquis of Worcester's Century of Inventions. They are all in soine measure kindred devices to those of Nipier; and one of them (the 6Hty) the noble inventor says, was tried and approved beiore king Charles I., accompanicd by one hundred lords and commons.
V. The concluting paragraph of the memoir before us contains nothing specific, except " devices of sailing under the water." And some years alter the date of this memoir, perhaps during the life of its noble author, this mode of sailing appears to have been succesffully exemplified; but whether in the way or ways known to Napier, no historical documents anthorizes us to say *. All that we-know with any certainty is, that the famous Duteh philosopher Cornelius Drebell, the reputed insentor of the mieroscope and the thermometert, constructed for king James I. a subaqueous vessel, which he tried on the Thames, and which carried twelve rowers, besides some passengers, for whom the efete air was again rendered respirable by a liquor the composition of which Drebell never would communicate to more than one person, and that person told Mr. Boyle what it was \ddagger.

The next subaqueous navigator seems to have been the marquis

[^10]marguis of Worcester. The articles of his Century of Inventions, in which he makes mention of his contrivance for this purpose, are the following :-Art. IX. "An engine, portable in one's pocket, which may be carried and fastened on the inside of my ship, tanquam aliud agens," (as if one was doung something clse) "and at any appointed minute, though a week after, either of day or night, it shall irrecoverably sink that ship." Art. X., "A way from a mile off, to dive and faston a like engine to (any ship), so as it may punctually work the same effect either for time or execution."

In Saserien's Dictonary, article Faissen Crinatoire, we read that Dr. Papin enduaroured to recorer the lost invention of Drebel, and that he has described a submarine boat in his Eraciculas Dissertationum; but whether or not this boat was ever tried, we are not told.

Claudero (as he called himself, for his real name xasWilson) a minor poct, who, about 30 years ago, fourisked in' Edimburgh, by writing satires, or rather lampoons, dedicates one of his picces, which I read with much pleasure when a boy, to his scheming countryman Peter Williamson *. Among other reasons for his chusing that great man for his patron, the poet mentions, or in truth ridicules, his proposal for opening a sulforthian communication between Leith and Kinghom, without the tcdious formality of waiting for wind and tide. Hence it is probable, that Williamson had proposed or attempted this species of na-
fiquor was nothing more than spirit of nitre rectified in an extraordinary manner." But modern chemists will be apt to consider De Coetlogon's remark as equal!y ridic. tious with these which he laughs ar.

* Wriliamsen certainly was a man of genius or mental resource. As his life has never appeared, at least in any respectable form, the reader will probably pardon the insertion of the following pariculars, which I belisve are pretty concct:-Peter Williamison was stolen when a boy foom Aberdecn-scld in America, for his passage-married, or ran a way with his master's daughter-settled in the hack country-had his house burnt, and his wife and family murdered by a party of Indians; who seeing him a stout man spared his life, and, loading him with the most portable of his own effects, marched him to their village-liired there for several years in the Indian styls-tired of this mode of lifeeloped and returned to Scotland, where he found means to bring such of his kilnappers as were alive, to punishment-went about the country with models of Indim canocs, dresses, tomaliauks, Ee., cxhibising himself in the Indian costume, and explaining their mode of warfare, \&c., Sc.-His war-whoop and death-holla (or bolloze as he callied it) were, horribie:- Peter had many schemes, but 1 have not heard that any of them succeeded, except the Penny Post-Office at Edinburgh, of which useful insticution he was the founder. Government afterwards took-it into their own liands, and allowed him an annujty.
vigation. I have maderstood ton, that the respectabie and patriotic Mr. Maller of Dalswinton, who, some years aco, made several expensive experiments at Leith, for the in:provement of simpping ; also contrised a submarine vessel, with what sucess I have not heard. But etther or both of these facts might be casily ascertained, were it worth while.

About 30 years agu, a Mr. Day, after a submarine adwenture, which wat in some degrec succesfinl, made a second attompt, I think at Plymouth, but never appeared arain upon the surface. The particulars are detailed in the Ammal licelister, or some simidar compilation.

The fourth volume of the American Philosophical Transactions contans a more interesting detail of the kind. The 37th article is intitled " General Principles and Construction of a Submarine Vessel, commanicated by D. Bushnell of Comecticut, the inventor, in a letter of October $1 \% 5 \pi$, to Thomas Jefferon, then minister plenipotentiary of the United States at Paris." Mr. Bushncil athrms, that one of his opeators actunlly brought his boat under a British fifty gun-ship, lying near New York; but the serew (for attaching to the ship's bottom the magazine containing 150lb- of powder, to be fired by clock-work, which would go 12 hours, if necessary) happened to strike upon iron, and the man, in moving the apparatus, lost the ship. Mr. Bushncll furtherstates, that in 1707 he made an attempt on the Corberus frisate, lying at anchor near New London. The frigate escaped: but hi, machine, which was condacted by a line, without any peran on board, apploded and totally demolished a schomer, which was conccaled from his view by the frigate, and received the shock intended for the later. In the same year one of his machines, which was calculated to go of by a slight tomeh, was directed against some British shipping in the Delanare, but was intercepted by a boats, which it de:troved. Mr. Bushnell says that his apparatus was contrived in 1771, but not finished till $175 /$, when, happily, as it world appear, for many British vessels, circumstances prevented him from bringing his ship-destroving seheme to that perfection of which he plainly saw it was capable.

Such schenes, howerer, are far from being aboudoned. M. St. Aubin, menber of the Tribunate at Paris, published, about 18 months ago an account of a diving-boat, inmented by a Mr. Fulton, amother American. This bnat, if we ma: implicitly believe the description, which other accounts of the kind certainly reder credible, will be truly formidable to the ships aganst which it may be emploved.

We are told that Mr. Fulton was then constructing a boat sufficient to contain eight men, with provisions for 20 days and air for 8 hours, and strong enough to bear submersion to the depth of 100 feet, if necessary. At Havre (in a boat, as would seem, of an inferior size) Mr. Fulton remained an hour under water, made half a league of way in that time with his boat horizontally situated, and at rarious depths, where he found that the compass traversed exactly as on the surface. To his boat he attached a machine be means of which he blew up a lighter in Brest harbour. When above water, Mr. Fulton's boat is riged with two sails, and has exactly the appearance of a common boat*.

Though my comments have already been pretty copious, I camot quit the subject without adding some remarks which obriously arise out of it. In the first place, from our quotation from sir T. Urquhart, it appears that Napier, hefore his death, which happened in 1617 , far from viewing his inventions as cither "profitable or necessary," thought them only worthy of that everlasting oblivion to which he endearonted to comign them. It is curious to observe that sir lame dewton, his great succesor in mathematical preeminence, expresed to Dr. David Gregory, the astronomer, the same strong disupprobation of all such destructive contrivances ; as we learn fron the additions which his nephew. the late Dr. Reid, of Glasgow, made to the life of Dr. John Gregory, prefixed to his works printed at Edinburgh in 17s5t.

Ccriantes, who puts much excellent morality and philosophy into the mouth of Don Quixote, a wise man in every respect but one, makes him say that " he verily believes the inventor of artillery is now in hell." \ddagger Milton, in the " Paradise Lost," ascribes the invention of cannon to the leaders of the infernal legions; and Dean Swift, in his travels of Gulliver, reprobates, with his usual severity, our perversion of geometry, mechanics, and chemistry, to the discorery of the means of mutual destruction.

But, notwithstanding the opinions of these great men, which do infinite honour to their humanity, it is now gencrally agreed, that the modern battles with fire-arms, discharged at a distance, in the midst of smoke and without passion, are far less sanguinary than the close, we may say personal and angry, combats of the antients; except whens

[^11]decided by the sword, pike, or bayonet, which, no doubt, produce as great animosity and carnage now as weapons of the same kind did formerly. At any rate, it is probable that there is not a philosopher or a christian now in this kingdon, who would object to any improvenent in the art of dispatching all invading foe. Certain it is that our enemies, even in the highest paroxysm of their rage for philanhropy and fraternization, did not scruple to adopt the improveinent of great guns, by the late ingenious and learncal professor Anderson, of Glasgow, to which they owed many of their victurics.

Whether Mr. Gillespie's new-invented batteries, by mans of which he engeges to protect the whole British eoast with no more than twenty thousand men, may prove as valuable a defensive expedient as Mr. Anderson's has been a terrible offensive one, I pretend not to say. I have, nowever, just scen a letter from Licutenant General Hugh Debbicg, colonel of the Royal Invald Engineers, containing his opinion of it: "Though I camot," says that professional gentleman, "altorether subscribe to the very extensive application which Mr. Gillespie sems to think his machine may be put to, yet a an most fromly of opinion it may be found of superior ntility on many pirticular spots, and cin agreat variety of occasions, and, as such, that it ought to be adopted by His Majesty's servants. I have no mamer of hesitation in declaring my most ardent wishes that, for the good of the King's service, sach measurcs may be taken as may prove efictual in preventing him, with his model, from going out of this country, to seek the well-earned recompense for an invention of such transcendant merit."

If Lord Napier, it may be asked, made such discoreries, how came they to be nedected and forgotten? The answer has been anticipated: Napier himself noglected them, and wished them to be forgotten. But it may le asked in return, How came the inventions of the marquis of Worcester, one hmudred of which were publicly offered to the Parliament, and some of them tried and approved by many of its members, sufered, after all, to be lost to the nation and to mankind? Severa! of those inventions were, no doubt, more curious than useful; but their valuc in the aggregate, may, in some masure, be estimated by considering how may metallic veins, otherwise inaceessib!e, thesteam engine (the 6 sth of the marquis's century) has converted into sources of emHoymont and wealth; and how mach has been saved in the labour and mantenance of horses, since the ingenious Mr. Whate of Clasem, applice that engine as a moving power to
machinery．The steam－engine was re－discorered by Thomas Savery，Esq．treasurer to the Sick and Hurt Office；and the telegraph（the subject of the marqus＇s sixth and seventh ar－ ticlés）by Dr．Hook，as has been already proved＊．Rut most of that great collccion，it is to be feared，will long remain undiscovered，－monuments alike of the mamquis＇s superior genius，and of the barbarous stupidity of his cotemporaries in neglecting such a treasure．
＊＊Should the reader observe that I have taken no notice of bishop Wilkins in what I have said of sub－marine navi－ gation，I can only say，that though the Mathematical Magic was lying before me，I unaccountably orerlooked it，till the printer had advanced too far to admit its being quoted in the proper place．But this omission is of the less consequence， as the fifth chapter of the bishop＇s second book，which is employed on that subject，is chiefly speculative and hypo－ thetical，some part of it indeed extravagantly so．I must except this sentence－r＇That such a contrivance is feasible， and may be effected，is beyond all question，because it hath been already experimented，here in England，by Cornclius Drebell．＂This positive assertion of bishop Wilkins is of the more importance，as Drebell＇s experiment was probably made in his own life－time；for he was born in 1014，above twelve years before Mr．Boylct，and within the limits of king James the first＇s reign（1603 and 1625），when that ex－ periment was made．

When the above was almost printed off，I lighted on a quotation from an old author，which threatens to deprive Napier of the priority of his proposal for exciting combus－ tion by the solar rass；and two passages，which will tend to give us new views of the invention of the telescope．But probably your readers，as well as myself，have enough of such subjects for the present．\＃D．

VIII．Oliservations on Dr．Wollaston＇s Statements re－ specting an Improvement in the Form of Spectacle－ Glasits．By William Joxes，Eiq．F．Am．P．S．Op－ tician，ifutiorn．

ORserving，in your Namazine for last month，that Dr． If．Wollastom，ley a paper inserted thercin，is attempting to introduce into the construction of spectucles，the well－known
＊Pail．Mag．rol．i．
＋See Vir．Hutron＇s Dedirmary，sricles Bon：e and Wiative．「̌ob．ズHII．No． 60.
and obsolete form of lens, called a menisems, instead of the common glases, I beg leave, sir, to offer throngh the same chamed a fen obscrations on his argments ; and my opinion why I do not consider the contrivance entithed to any clam, cither to nowlty or improsement.

When a printed book, or other object, is viewed through a convex siectacle-glass, or other lens, of a short foealdistance, ath as seven inches down to four inchas, or less, the indistinctucs observed of the surrounding parts, when the ce trad appears chear, arises from the spherical figure of the lens, and ns, by opticians, cailed the longitudinal aberration of the kens. There is another kind of aberration comected with this bens, called the lateral aberration, which is oceasinned by the prismatic form of the lens, producing a difforut retrangibility of the rays of light, and blending the prismatic colonss with their appearance of the object. It is the longitudinal aberration only that I have now occasion to constier. This aberation in lenses of the same foci increases with their dhueter and thicknces, and of the same diamet r , is, in the inverse proportion to the foci.

The rajs iseting tr, m distant objects, are more parallel to each other, when? hicident upon the lons, than proximate onc: therefore the aheration will be le:s.

Ii nee it mot be interred, that when spectacie-glasses are motherger in dameter than the angular evtent of objects to be seci throagh them require (a person in that case, whotout nach inchang the axis of his cyes, or feeling it inconventat, moring hishead a litth), they have very properly been redeced somuswat in diameter, the aberration being dinamined, and conequottly the objection, in a great deerer, remored, exeept in glases that are of very short foci.
lo eoncaic glasses the aborration, or indistinctness, is of a manitar nature; the defect of these being from the imperfot disergence of the says, instad of the imperfect converseneby anvex glases.

Spectach-glasse are now generally made of the donble concare and double convex kinds, or nearly so ; for a little ahcration of figure does not atrect the general appearance of oljget: view d throngh them. It is in science as in other cases, that ia gemeral atility does not alwas depend upon trifling alterations. Sf ectacles are recorded to have been invented ahont the yar 1300, and fron? reading, and many years experience an this sma! but invaluable article, I really do not bonw ther during the consed thee, an optical instriment of any bad when hes mone more imoration and attompts at mpormons. Of may to my knowledge I
shall only select the following as entitled to any degree of commendation-Ayscough's crown-glass spectacles, the bisected glasses of Dr. Franklin, the visual glasses of that learned optician Mr. Martin, the square convex form by Storer, the patent combined glasses of Messro. Watkins and Smith, injudiciously called Achromatic, consisting of a convex lens combined with a meniscus or concavo-convex lens. In the mountings of the frames a still greater variety could be enumerated.

Notwithstanding these contrivances, universal experience has cansed the original and simple form of glasses to supersede them ; and it affords an indubitable proof that it is the best and most convenient that can be contrived, when elear glass, accurate tools, and good workmanship, are used. The theorem given by Huygens, and demonstrated by many other subsequent writers on optics, proving that a consex lens, having its radii of curvatures in the proportion of one to six, contains less averration than any other form of lens, when the greatest convexity is towards the object ; a and the same for the concave lens must hold true for any use whatsoever for which such a formed lens may be required.

It does net appear to have occurred to Dr. W. that the eve-glasses used to magnify the images formed by the objectglasses in telescopes are of the best form, when with the curses of the proportion abore mentioned. In the eyepieces of the best achromatic telescopes they are always ipplied, and, in high powers, the image frequently subtends an angle from the centre of the cye-glass of sixty degrees or more. I have never seen any correct dioptrical theorem that tended to prove that a meniscus, singly or combined, will answer so perfectly the same purpose. The ordinary parposes of sision are very well answered by the common glasses under an angle as large as eighty or ninety degrees; and the best artists or draughtemen allow, that 60° is as much as a fixed position of the eve ought in perspective to embrace, to convey a just representation on the optic nerse.

To persons the humours of whose eyes are so decayed as to be deficient in the original refractive power, glasses of short foci will to them render the extreme parts of objects somewhat confused, but in a much less degree than to persons with perfect cyes or undecayed humours.

In telescopes and microscopes the aberration is usually cout off by the insertion of circular apertures or stops, but in spectacles this is not essentially necessary, nor does the want of them, nor the figure of the glasses, prove that they are constitutionally bad and prejudicial.

The obscriation of Dr. W., that only a portion of the glass a little larger than the pupil of the eye is emploved at once, is only jut in as much as it relates to the mind laing intent on a point of an object, hut not so irr remane to a genetal view: for the refractive power of the lens does most admimaly collect all the infinite number of pencils of ravs or concs into one assemblage at the propis of tha cye, where they eross on interect cath other: yet suct is the exquisite walithy of light, that no confinsion or irritation takes place. Nim is then Flessed by assisked vision, as he is in vitality by the respimation of air. Dr. W.'s inferring the form of a meniscus from the shape of a globe is manifeatly cromeons, and in respect to spectacles imapproprate: a glass globe or sphere, withou any sensible thickness, to an eye exactly placed in its centre admits all the incident rays to pars through it unrefracted. If the cye deviates from the centre, a refraction will take place, and that in proportion to the thickness of the sphere. Rays of incidence pass perfectly murefracted throngh a true ground plane or parallel glass to an eve before it ; and let the axis of the eve be crer so much inclined, anless the glass be very thick, the object will still appear perfect, and no refraction of the inceident rays be observed. It is obvious, therefore, the nearer a lens approaches to the figure of a plane, the more perfect it must be.

The figure of a meniscres, which Dr. W. wishes to adopt, is as different from a spere as a plane. Its figure is composed of two positions of spheres, of different radii. When with a positive focus, it is mathematically demonstrable that it has entirely the properties of a convex lens, and, with a nerative focus, the properties of a concave one. When the galus of the exterior curve is less than that of the interior, it is a convex sort of lens, and magnities; but when the radius of the interior curve is less than that of the other, a concave lens, and diminishes. It bas also been demonstrated, that the nearer the form of the meniscus approaches to that of a plans-convex or concare, the more perfect it will be, and contain less aberration.
thall dispense here with proofs by algebarical and anaIerien fommor, as any qualified reader will find them in the optoal work of Hyggens, Molineux, Euler, D'Alembert, Smith, Emervon, liation, and many others.

The rays of light issuing from a near ohject to a spectacleelass betrie the cye are in diverging pencils or cones, and the menisens form of glass, of any certain positive focus, will refract them towards a state of parallelisin into the eye
recessary to produce distinct vision in decayed sight precisely in the same mamer as a double convex, or plano-conrex. A meniscus, with a negative focus, acts noways differently from the double or plano-concare glasses, the rays of light being diverged somewhet to counteract the effects of too great a convexity in the humours of the ere of a shortsighted person. lerhaps it is hardly necessary to observe, that ineperfect vision in the optical sense consists, in the long-sighted eve, in the rays of lisht not being sufficiently converged by its humours to meet on the retima of the eye, but fall bevond it ; and in a short-sighted eye be the ray converging too much, so as to meet before they reach the retina.

Varying the geometrical figure of a lens does not constifnte any new optical principle; for any of the common species of lenses may be cut into the form of a square, a triangle, an oval, \&c., all figuratively various, but censisting only of one optical principle.

The use of the meniscus has been abandoned by epticians, by its coutaining, in comparison with other lenses, the greatest spherical surface, and consequenty producing the greatest abcrration. Reducing the euratures of the meniscus elongates the focus, and the same mamer as in other lenses, aud therefore reduces the aborration. Hence, in spectacle-glasecs that are not of short foci no perceptible difficence will be found to persons unacquainted with optical experiments. There are sarious practical methods that will point oat to persons the aberration of lenses here spoken of, and that the meniseus canses the greatest of any of the other form of lenses; but the followiug I recommend as the most easy and illustrative:

Take a meaiscui lens about the size of a spectacle-glass, and with feur inches positive focus, and take also a planoconvex, or a double consex of the same diameter and focus, in a room with one lighted candle; at a diztance, by night, hold the convex glass near to the white wall or wainscot side of the romm; between it and the candle move the lens backward and forward, till a clear image of the candle be formed, which will be a distant inverted image of it. Do the same with the meniscus, and there will be this difference observed in the meniscus, that, encircling the vivid mage of the flame, there will be a faint white light, which is the circle of the aberration. These evidently show that the meniscus is the worst form of the two for a spectacle-glass or any other purpose.

If a person places a meniscus spectacle-glass before his eye of a long focus, and views, towards its cxtremity, one or more lighted candles, he will observe the flanes tinged with prismatic colours, but not so with the usual convex glats. In this position both the effects of longitudinal and lateral aberration are produced.

Two double convex glasses placed together in one cell contain lessaberration thatn one glass of the same diameter and foens; and two plano-convex elasses, with their convex sides placed together in one cell, give still less aberration. It is hoss of Tight only that can be objected to. They are too weighty to be adopted in spectacles, but in the eyepieces of large telesonpes for viewing celostial objects they have been used to great adrantage. To the engravers, mi-niature-painters, and other artists, they are mont useful, as, by short foci, and large apertares, they give them the most distinct view of a large surface placed betore them.

For the satisfaction of any intelligent person who may be disposed to have an ocular proof of the properties of glasses, as herein advanced, I bave constructed a frame containing a double convex, a plano-convex, a mencuiscus, and two planoennvexes with their convex sides to cach other, all of the same diameter; and by which may be seen that the greatest peripheretical indistinetness is whth the meniscus glass.-This apparatus will be shown by application at our manufactory in Holborn.

The meniseus, as a figure for a spectacle-glass, I consider very objectionable. To afford a large field of view its dianeter must be considerable, which, for a short focus, will increase thickness, protuberance outward, and weight, and, in concave glasses, occasion the frames to be made thicker. The glasses will be more liable to be seratched and broken than those of the common form, and, when the frames are metallie, more liable to inercase than diminish that indelii)le mark made on the nose by the weight of the frame, so frequently complained of by persons who wear spectacles constantly. A great deat of superfluous light also passing through the ghasses must be evidently prejudicial ; and it appeare to me that the concare figure of the inner side of the moniscts will act as a powerful reflector to condense the rays of light and heat upen the cyes, and ultimately prove thereby of serious injury.

I have in my possession a meniscus spectacle-glass, taken from a spectacic frame, which I can prove to have been made a creat many years ago: and tinally, as it is neither
new in principle or in practice, I am at a loss to know upon what sort of discovery his najesty's letters patent have been solicited.

I am, Sir, your's, S.c.
To A. Tilloch, Esq. Wriliam Iores.
IX. Thirteenth Communication from Dr. Thonatos, eelative to Pneumatic Medicine.

Feb. 25 , 1 bot
To Mr. Tilloch. No. 1. Minde-strect, SIN, Manclester-square.

Ino instance has the triumph of phematic medicine been more conspicuous than in putrid fever ; a disease which dastroys at all periods of life, and beconies a national calamity when its direful ravages spread from town to town, filling all parts wih desolation and dismay, and even sometimes extending from empire to empire.

> A Case of Tythons, or Putrid Ferror.

Miss Corp, at sixteen*, the amiable niece of aldeman Price (late lord mayor), daughter of Mr. Corp, an eminent practitioner, of Barnet, who had seen typhes fevers in both the East and West Indies, and was upwards of thirty years cstablished in extensive practice in that part of the country where he now resides, after every means that human sagacity could derise, found symptoms at length of approaching disolution arrive to his daughter. In the same fever a neighbour, a few doors off, was now a corse, leaving behind hm a wife and six children. This daughter was a belored child, and so that when the father was requested to see to his patients ond business, Mr. Corp refused all abstraction from his attentions, and with the most poignant sorrew, at anadranced stage of the disease, was publicly obliged to declare to the numerons inguiries which were made, " that every hope was now ranished." The iady was convulsed throtghout ; the tendons were in constant action ; the comtenance was sunk; and the eyes fixed and ghastly. Mrs. Corp, and the persons in the house, requested the father to leave the room,

- The reader will recollect this case was brichy fuplinheil before in our Magazinc, rol, is, with a letter trom Mr. Corp, if Barnct. confrnaing the contents; the young lady, smes that period, being in the enioyment of gind health : but the valuable observations herein addet, with the are perormed :n :793 are fresh articles, and ogen agronions fich for philusofluic considerations.-EDit.

is Thirtenth Commanication from Dr. Thornton,

and suffer the young lady to expire in quict: and the reluctant parent having retired, on a sudden he roused from his despair, and said, " he would set off for Dr. Thornton directly in a chaise, to try what the vital air could accomplish." The chance of her dying before he could arrive was urged; but Mr. Corp was bent upon it, and he came in violent haste to me. I was out: but he soon followed himself where I was gone, and found me. I made no delay to prepare the apparatus: a balloon of silk with a pipe for the insertion and cmission of the air, a belows to inflate it, and some tin vessels filled with the oxygen gas. The horses were good, the roads fine, and the buy made willing; and soon I reached elic house of sickness and despair. She was yet alive, and that was all. The mother requested "I would attempt nothing that would add a pang to her last moments." The nurse, who pretended to be very knowing, said "that my being brougint down was a heinotis sin ; and if Miss Corp was her child I should not he allowed even to see her." Such cbatruetion we are prepared to meet; and ordering all out who were in the room, execpt her friend Mrs. Saith, who was weeping by her bed-side, Iflled my ballonn with nearly equa' parts of rital and atmospheric air, and by closing the meuth and one nostrit, and inserting the tube into the other, and pressing up the superoxyenated air, watching the times of inspiration, suffering the expiration to be free, this most weviong of all cordials remimated an almost sunk frame; the subsultus ceased; the eves became more themselves; the pulse diminished in velocity, and increased in vigou: ; and when I spoke to her, as did Mrs. Smith, after the inhalation, she appeared to understand, took down a glass of wine, was revived; more air was inhaled, and I quitted the room to tell Mr. Corp of the effects, and tor him to give ber her former medicines, which she rationaly received and swallowed. Having exhausted my air, and written my directions for the night, I remaincd at Mr. Corp's, and in the morning left his house to come to town to obtain a fresh supply of air, and see my other patients. Upon my return back, towards evening, the same good from the oxygenated air resulted as before, and I pronounced " that my patient would now in all human probability recover." These visits being daily renewed, I had the felicity to restore to her most tender parents, to her friends, and the community, to which, by uncommon virtacs and accomplishments, she had rendered herself eminently dear, a young lady whom I do not besitate to pronounce
pronounce as one out of the many patients rescued from the jaws of death by the powers of pneumatic medicine*.

Another Case of Typhas Fever.

December 1793.-Dr. Beddoes published the following communication I had the honour to address to him.
" I was lately called to a child 13 years old: she had typhus fever, which had attacked two others in the same house. Mr. Murdock, the father of the child, apologized for sending to me when his daughter was at the point of death. Having entered the room, I found her convulsed, speechless, and the eyes sunk, and her breathing extremely laborious. The at endants had even ceased to give her food, nor was medicine so much as thought of. Haring placed near her mouth the superoxygenated air, and afterwards filled the room with fine sprays of vinegar, and well ventilated the chamber, she revived to the wonder of all present, took food, afterwards medicine, and finally recovered to the astonishment of every one.

Remarks by Dr. Thornton on these Cases.

1. Putrid fevers are often engendered by bad air alone.

Captain Ellis, late governor of Georgia, in his voyage to Hudson's Bay, gives us the following account from on board the Halifax. The people were all healthy for a considerable time; viz. till the ventilators were so spoiled by rats eating not only the leathern but the wooden parts of them, that they became of no manmer of use: then putrid fevers appeared, and most of the crew died.

Sir John Pringle, in his work on the diseases of soldiers, gives us likewise numerous examples of the same kind.

The late Dr. Darwin one day at Nottingham assembled a large crowd of people around him, and standing upon a tub, thus addressed himself to the populace.
"Ye men of Nottingham, listen to me. You are ingenious and industrious mechanies. By your industry life's comforts are procured for yourselves and families. If you lose your health, the power of being industrious will forsake you. That you know; but you may not know, that to breathe fresh and changed air constantly is not less necessary to preserve health than sobriety itself. Air becomes unwholesome in a few hours if the windows are shut. Open those of your sleeping-rooms whenever you quit them to go

[^12] open whenever the weather is not insupprobily cold. I have no interest in giving you this advice. Remember what I, your countryman, and a physician, tell you. If you would not bring infection and disease upon gourselves, and to your wives and little ones, change the air you breathe, change, it many times in a day, by opening your windows."
๑. Pure air is the antidote against infection.

This is shown from the performance of quarantine.
3. The admission of the purest air is of infinite service in fevers.

I have often heard Mr . Abernethy, a gentleman of the strongest natural sense and most refined intellect, speak with rapture on the benefits he perceived in putrid fever from his patients, being placed in different currents of air. "I have always," sav's the great Dr. Lind, " observed the benefits resulting to the sick in fevers, when removed from the cabin of ships to the better air of Haslar hospital. I have even been informed by a credible practitioner, long resident in Janaica, that he had frequently seen the poor seamen in the merchants' service to recover from the worst putrid fevers, even the vellow fever, solely by having the benefit of a frec and constant admission of the pure yea air into a sinip anchored at a distance from the shore, where they lay utterly destitute of every assistance in sickness, and even of common necessarjes, having nothing but cold water in drink, and not so much as abed to lie on ; while gentlemen, on the contrary, shut up in small, close, and unventilated chambers, at Kingston, or Portroyal, expired with their whole mass of blood dissolved, flowing from every pore ; the bad vitiated air of their room having produced a state of universal putrefaction in the body even before death."

Upon my lamenting, when a student of Guy's hospital, to my learned iustructor, Dr. Saunders, that it seemed a cruelty to remove patients in putrid fever, apparently dying, he replicd, "I have ever seen that the coming over Loindon bridge has done them infinite service."
4. It appears, that vital air, or some of its combinations, diffused in ferer wards, might banish the infection and also cure this disease.

A Fum: gation Ponder. -Nitre four pounds; sulphur two pounds; southernwood, juniper berries, of each thee pounds; tar and myreh a pound and a half. This was tried at Moseow in 1770 and ten malegactors under sentence ct dath were funigated well with this in the Lazareto,
and were confined for three weeks in this abode, saturated with infection, made to sleep with persons infected winh the plague, and even dead of it ; and not one were infecte i, or made ill of the disease. The vapour arising from the decomposition ot nitre by the vitriolic acid is pertectly hamless to be breat, a, and may be employed in crery situation. This was used by Mr. NoGreon, atter the plan of Dr. Carmichael Smith, who relates, in ten weeks at Jersey he lost in putvid ferer 50 men thom the sth regiment; but, begimning the frmigation, not on'y the fever was banished the hospital, hut that it changed the nature of the existing fever; all the malignant synpoms disappeared, and of 64 soldiers ill of the ferer not one died.

The subject of air will berenewed in future onmmunications for your excellent magazine, and it is hoped it aill rouse the philosophic spirite of more pracitioners to the investiartion of so interesting an inquiry, which promises the most happy results. In recalling back your readers to the ewisject of pheumatic medicire, I here solemnly declare that I have no other motive than the good of society, and the extension of science, especially that which so intimately relates to the happiness of mankind. I have the honowr to remain, Sir,

> Your obedient faithful scrrant, Ronert John Thorntor.
X. On the Influence of the Component Part; of the Soil on Vegetation. By M. Otтo *.
$\mathbf{W}_{\text {hen }}$ the old chemists endearoured to discover the means by which land could be brought to the greatest possible state of fertility, they imagined that this object could be best discovered by the decomposition of vegetables; and that, from the kinds of earth obtained as a residum, they should be cnabled to deduce what kind of plants would thrive best in a certain hind of soil when enriched with that which is chiefly found in them. That a plant, for example, which contans a ereat deal of calcareons carth must thrive in particular in calcareous soil, and tinat another which contains siliccous earth ought to thrive in a sandy smil.

Attempts were made to prove this opinion by experiments,

[^13]some of which, howe:er, rendered it doubtful. The practical agriculturist has made no uee of this doctrine, as he observed in many caves the impossibility of subjectimg his fied to so wpensive a revolution, and suew, fom long experionce, that gronnd whom manare preanes very litte; and therefore lee has neglected those works which recommended $1 t$.

But the case has been difierent with the modern chemis. try, wheh perhaps will make us betier acequanted with the nourishment and growth of vegetables. by the help of the pueumatic apparatus other principles have beon exhibited to us in the vegetable !ingdom than those supposed to exist in them by our forefatiners. Modern chemistry gives as the component parts of vegetables, carbon, hydrogen, azote, and oxygen, and shows that the existence of earths and metals in the residum is mercly accidental; or at least considers them as doubtfil component parts of vegetables. Whether alkalies exist in a substantial form in plants during their regetation canol with certainty be determined, as it is highty probable that they may be fonsed from hydrogen and azote chung the decomposition of organic bodies by the help of fire. The native saltpetre found in the Glecoma hederacer, Heliantious annums, Tusilago farfara, and some species of gound, and which is obtained from extracts of the above plonts, shows at any rate the existence of the prineiples of these salts, which can only mite when the vital power ceases to act. It is proved, by the experiments and discoveries of modem chemisiry, that the separation and amon of many principles take place in the course of vegetation. For it is shown by experience, that when plants are irriated in the light or by the light, the water is decomposed oxyren set free, and that they take into them, as a component part, the hydrogen; alsos that a similar decomposition with the carbonic acid must take place whon the plants are irritated by light; for it is only in the dark that carbonic acid is exhated.

The presence of the fourth principle, azotic ges, in vegetables, is proved by the component parts of the gluten in maize, which by distillation in the dry way gives ammonia; and this, as is well known, can he again decomposed into azote and hydrogen. These principles the plants receive from the atmosphere; for in the atmospheric air with which the plants are continually surrounded azote exists as a component pati; and Pricstley has proved, by a series of experiments,
ments, that plants can live and grow in pure azote after the first expansion of the germ, which is effected by the accession of oxygen, has taken place.

Pesides this proof chemists refer to a well-known and instructive experiment, that plants thrive exceedingly well in willow earth ${ }^{*}$; and they azsert that this earth consists of nothing else than hadrogen, carbon, and oxygen, by which they endeavour to show that the ressels used in the operation, and local and aceidental causes, may give oceasion to the existence of different kinds of cath in the resitua, though they acknowledge that there are plants which contain among their composent paits a great deal of pure tarth.

From this may be deduced the following consequence; that the recaisites for promoting the growth of plants, besides light, heat, and atmosplicric air, of which I do not here mean to treat, are good mould, which is indispensahly necessay, and which is similar to the aboye-mentioned willow earth, consisting of matters in part dissolved by putrefaction; and it is certain that land will be productive if covered with such mould to the depth of a furrow. But this pure mould possessts chemical and mechanical properties, in consequence of which, supposing them to exist in the mass, it cannot in many places be either of long duration or useful. It is of a very tender texture, and therefore mimbes a great deal of water; it however as readioy suffers it to cescape açain, and with a moderate degree of drought Falls into dust, which is liable to be dispersed by the wind; the water can extract from it the nourishag parts, and where there is the least declivity sweep it away: its volume in regare to the organic bodies from which it is formed is very small, and a considerable quantity of organic bodies are necessary to constitute a muderate sized mass of such earth.

But as the surface of our earth is finh of incqualitics from which it cannot be freed, and as the putratying crganic matter which can be found is not sufficient to supply the place of that washed away by one shower of rain \dagger, or by an intandation, it will be attended with advantage to mix cther kinds of eart! with the mould; and experieace shows that it is only when organic bodies are in a state of putre-

[^14]faction.
faction, or about to be so, that they are proper for beeng mixed with it, and the gases desengaged be the putrefaction rendered usetul as noursion at tor plamis; as expericnce shows that few plants thrive when sitnated on an accumnlation 0^{6} gume borlies in a stak of full putefaction.

Besidea we anceased wolume, and the advantages connected with it, monk mixed with th 'Sotom carth opposes a greater resistance to wind and water, and therely secures to the famer the fruat of the exertion and industry he must employ to sedice organic bodice to a state of putrefaction.

The botom carth, with which in agriculture organic matters are mixed, does not consist of ome kind, but is always mixed with decomposed rocks, as in common it is nothing elsic, most of which contains silex, argil, lime, and margnesia.

Each of these kinds of carth posecses chomical and mechanical propertics which often excreise a contrary action on each other, which does not produce the most beneficial effect on the growth of plants, and therefore it may be of use to the agricalumist to know with what pure carths his bottom earth is mixed.

It would be extending the present essay to too great a length to give a circumsiantial deseription of the proces emploved by weral eminent chemists to decompose vegetable carth; I shall the store comfine myself io an account of the component parts of bottom earth, together with its properties and action, in steh a manner that we may thence be cabled to explain from it the views of the famer in the differat operations he emplors.

Among the number of the component parts of bottom earth, are:

1st, Silictous Eurih.-It appears in general partly in a compact form, as in sand and large fragments of quartz, partly in a fine light form, in which it is more intimately mixad with the other kinds of earils not visible to the ere, and can be separated only by the litp of chemistry. It dees not ceery where oceur in the same proportion : in many districts it forms, like sand, nealy the whole of the bottom carth, anei in uthers it is scarcely perceptible. Acids, the fluor acid cocepted, have no action on it: with alkalies, in different pupertions, it forms glase, or the so-called oil of tionts, in which umon it is soluble in water; and in this state, when it existe, con be taken up very well by plants; in which, however, it forms only an accidenal component part.

The mechaniral action of this kind of carth, by which it
moderates the binding action of clay and loam, is of more importance to agriculture.
ed, Argillaceous Earth.-It is equally abundant as siliceous earth, and covers almost alonc many districts in the form of loam. It always exercises a binding property, in consequence of which it turns hard in heat, and forms a solid body, the volume of which becomes smaller, from which circumstance the cracking or rending of clayey fields during dry weather may be explained. Water penctrates into it only slowly; and the slower, the drier it was before: but on the other hand, the water evaporates from it again as slowly.

It is scarcely ever found without sulphuric acid, which can be entirely separated from it only by chemical processes, though the water which stands over it can lixiviate a part of it. When in mion with sulphuric acid, large fragments of it fall to pieces or efloresce under the action of the atmospheric air.

The binding quality of this kind of earth exercises a prejudicial action in agriculture, as it prevents the roots from penetrating into it; and increases and renders more difficult the operation of tillage.

The solution of black mould, when covered by it in such a mamer that the atmospheric air can have no action on it, proceeds very slowly, because atmospheric air, as is well known, promotes and accelerates putrefaction.

3rd, Calcareous Earth.-This earth possesses the peculiar property of having a nearer affinity for acids than argillaceous earth or magnesia, and the sulphuric acid prefers it to alkalies: we may therefore with propricty assign to calcarcous earth the property of neutralizing acids. Sulphuric acid and calcareous earth produce gypsum, one part of which is soluble in 470 parts of water. Nitric acid and calcarcous earth form an carthy neutral salt, which assumes with difficulty the erystalline form, but which in the solar heat can be decomposed into its component parts. It appears that calcareous carth, in certain situations* and proportions, acquires the property of uniting the principle of atmospheric air with nitric acid.

Diluted

[^15]| Oxygen - | 22 | |
| :--- | :--- | :--- |
| Azte | | |
| Cartonic acia | | 75 |

Diluted nitric acid, as it is highly probable that it is decompesed in the organs of plants as in animal bodies, is not only not pernicions, but adrantageons *.

The mion of muriatic acid and of lime seems to be of the sane nature. Carbonic acid with pure calcarcous earth forms common lime, which appears in nature as limestone or as chalk. It is highly probable, and may be explained from the laws of the affinity of the nitrous and carbonic acid for calcaroous earth, that they mite altemately with the latter-the carbonic acid in the night, and the nitrons acid in the day.

This holds good only in the warm dars of summer: in the autumn and spring the nitrous acid which is formed drives off the carbonic acid, as experience shows in salpetre manufactorics. The phosphoric acid forms with it phosphorized calcareous earth.

Burnt lime exercises on animal substances a corrosive quality almost in the same manner as caustic alkali, from which the effect of lime to hasten the begun putrefaction of organized matters in a certain state of moisture may be explained. Hence it is evident that lime always contributes chemically to the nourishment of plants when it is not an essential component part of them. And on the other hand, that too long manuring with lime not mixed with other kinds of manure, as attentive farmers have long known from observation, destroys the good black mould, and so far exhausts the soil: and hence the the proverb" that it makes the children poor."

Lime can be employed indefinitely only in clayey soil, combined with sulphuric acid, sand, and phosphoric acid, and also where there is a superalumdance of black mould.

Turf or peat land, therefore, may be boought to a state of fertility by draming from it the water, and mixing with the turf the requiste quantity of lime.

I may mention, as a mechanical property of lime, that it contritutes to render clayey land tender, especially when strewed over it, likemarl, in combination with sand.

4th, Magnesiu.-This earth is very often a component
And salpetre:

$$
\begin{array}{lll}
\text { Azote } & - & 0.6+ \\
\text { Oxygen } & - & 0.36
\end{array}
$$

Gough, in his Experments on the Vegetation of Steds, mentioned, before Mr. Humbold, that wet mud poisesses in a very bigh degree the property of attacting onyen.

* Four ounces of ealtpette disschiced in . 48 pounds of water and poured on the ronts of camations, seceres them against the tot, and has a beneficial inflence on the culour of the Aovers.
part of the bottom earth, especially in districts where the latter arises from gncuss or micaccous schistus. Having a greater affinity for the sulphuric acid, it can effect a neutralization of this acid, as it unites with it to produce sulphate of magnesia. In this form, when dissolved in water, it can be conveyed into vegetables, from which we can explain the existence of magnesia in the residum of the decomposition of plants, without admitting it as an essential component part of vegetables.

5th, Iron is found also in some kinds of soil, but never in a metallic form: it is always in the oxidated state in which it is dispersed almost over the whole surface of the earth; with the free sulphuric acid it forms vitriol of iron, which exercises a corrosive action on the roots of plants, and makes them smutty. When dissolved in water in the state of carbonic acid, it perhaps may be capable of passing into vegutables, which explains :s being found in them.

6 th, Free sulthuric acid lixiviated by water from clay occurs here and there : its property of charring the roots of plants is the most probable cause of the production of strata of turf; for the basis of these is always clay and stagnam water, by which the sulphuric acid is lixiviated. The growth of turf may therefore be promoted by not suffering the water to drain off from a dug stratum of it.

Ingenhous recommended manuring with sulphuric acid: and it is evident that it may be of use in calcareous soil, and in the neighbourhood of great cities where the fild are rich in black mould, as the carbonic acid is driven off by it, rendered free, and nourishment thus conveyed to the vegetables: but this method is too expensive to be generally employed.

7th, Phosphoric acid. The existence of this acid in animal matters was known : but it is now known that it occurs also in the mineral kingdom, as we are acquainted with a combination of it with iron, to which the cold shont property of the latter is ascribed. It is doubtful whether it has any useful influence on vegetation. From what matters it is formed in marshy meadows is not known ; but it is believed that it is the calse of the soumess of foduer in places were there is no argillaceous earth.

From the future progress of chemical research there is reason to expect that more effectual means will be discovered of bringing matters back to their original component parts. Phosphorus, sulphur, \&e. were for a time considered as substances or principles, mercly because it was impossible to decompose them, though there are phonomena which Vol. XVIII. No.fig. \quad g give

82 Influence of the component Parts of the Soil on Vegetation. gire reason to suspect that they must be considered as compounds.
sth, Water is the most gencral component part of soil, and indeed, as a medimm of solution, it kes; the nourishment of plants in a fluid state, and prometes 1 ts craculation ; it is decomposed in theminto its principles hydroern and oxygen, and must thenfore serve also as nourmbment ; for the oxygen is expined, and the hydrogen mites itsalt with the solid parts. But howere necessary wator may be to vegetation, a superabundance of it has a prejudicial influence on plants, as it softens their fibres, so that the oxyeen can easily produce a deatructuve putrefaction; because they have no longer sufficiont elasticity to expire it. Hence the destruction of the erop by water in level fields, where marsh-plants grow up in the room of the corn.

Water lixiviates black moud in some cases, carries off the extractible parts, and renders the ground poor. The inflaence of water on the sulphuric acid of clayey soil has been already mentioned; and it needs here be only remarked, that it mites nore intimately the particles of the clay to the prejudice of the plants, and contributes to form a solid mass, into which neither the roots nor the air can penetrate.

These are the most usual component parts of soil, and though there are other kinds of eanth, they hwe no infinence un regetation, and therefore they may be omitted. It is also needless to mention here that the mixture of the above-mentioned component parts of black mould are not general : on the contrary, that they are mixed atcording to infinite variatoms and gradations, and that the sum of the component parts is otten not the same in two fields lying close to each other. I'or these variations and gradations are already so well known that, in the language of the agriculturists, they give occasion to difierent, often relative, and therefore insufficient appellations. When they speak of sandy, loamy, sharp, hot, heary, cold, wet, and the like kinds of soil, one may readily conceive from the words what different mixtures are to be understood under the terms sandy, loamy, or wet and heary soil; when, at the same time, the cxpressions sharp, liot, cold, denote the same mixtures of soil in different districts. And even if we suppose that a certain fixed idea could be applied to each of these terms, it would be of little service to the practical agriculturist who looks to the improvement of his land. For an appellation, to be proper, onght to express the sum of the component parts, diat it may be seen whether
the soil requires improvement, and in what it consists. For it is only when the mixture of the soil is woll known that the farmer can divide his labour into that which relates to the improvement, and that which relates to the preparation of the soil.
XI. On the Use of Sieatiles in the Art of Engrazing on

THe engraver on stones is in regard to the sculptor what the enameller is to the painter. He labours on a smail scale and with difficulty ; but his work, when well fimi-hed, is delicate and durable. In censequence of the particular value attached to engraved stones, it has often been wished that some matter easy to be workcd, and at the same time uniting beauty to solidity, might be discorered. Glass, paste, and that of Wedgewood, are exceedingly valuable; but the impressions formed on them have not the aecuracy of the original, and some part of the genius of the artist is lost.

A trial has lately been made for this purpose of steatites, which has perfeetly succeeeded, and at present M. Vilcot, an artist of Louvaine, has executed several cameos on this substance. The works of this engraver are well conceived, delicately designed, and beautifully finished. These camcos, which are two or three inches in diameter, are hardened in the fire, coloured and polished. They have then the hardness of flint, the brilliancy of agate, and in colour several of them resemble onyx.

In consequence of its softness this matter can be cut and turned with great facility, and being composed of exceedingly fine parts, the greatest accuracy may be observed in the operation.

This stone is worked in its natural state. It is then put into a crucible covered with a tile, and the tile being luted with elay, the whole, surrounded with charcoal, is put into a fumace. It is exposed to a slow fire, and kept at a white heat for two or three hours: it is then taken from the fire and suffered to cool gradually. The stone by these means becomes very hard; it strikes fire with steel and wears the best filcs.

The white pieces of steatites in consequence of the hea become of a milky white colour: other pieces assume a gray or ochry colour.

> * Tourna! des Batimens Civits.

Steatites, when exposed to heat, may be coloured by soJutions in oils, in alcohol, in acids, and in alkalies.

Colours which dissolve in amber varnish, such at verdigris, ochre, \&e., communicate their tints to baked steafites: for this purpose it must be heated on a charcoal fire. Colours dissolved in turpentine give a brighter tint.

Solutions in spirit of wine, of carthamus, ganboge, logwood, dragon's blood, \&e., commmicate their tints to steatites when left immersed in them for some hours.

A solution of gold in nitro-muriatic acid gives to heated steatites a light or a dark purple colour, according to the strength of the solution. Muriate of silver by the help of sulphuric acid gives a black colour. Indigo dissolved in the same acid gives to this stone a blueish gray colour. If steatites, coloured by a solution of gold, or by muriate of silver, be exposed to a strong heat, it acquires a kind of metallic splendor like that of gold or of silter.

When the stone is heated, coloured acid solutions may be applied, so as to produce great brightness and neatness: on this account a particular colour may be given to the ground of the cameo. Sulphuric acid is more effieacious than the muriatic or mitric acids. The oxalic acid may be employed; also coloured alkaline solutions, and particufurly that of indigo, may likewise be used: most of the colours sink the cighth of a line into the stone.

When steatites has been baked it is polished with emery and common polishing stones, and also with tin and tripoli: it assumes then a brilliant splendour, and resembles agate, jasper, chalcedony, \&c.

This stonc, on account of its softness, is exceedingly proper for the purposes of the engraver: by using it he can perform as much work in a day as he could in a week by employing harder stones: he may then by means of heat give his work a great degree of hardness, and render it durable.

Experience shows that the hardness of gems, brilliancy, and the agrecable colours of agate, may be given to the soft and opake statites, known under the name of lard stone or Spanish chalk.

The artist, who by engraving on gems, immortalizes the image of a great man, or the remembrance of a remarkable event, derotes his talents and his genius to a noble brancls of the fine arts. Cameos and intaglios, therefore, are intereting monuments of the Egyptian, Carthaginian, Grecian and Roman historics. They were objects of study and
smusement to a Winkelman, a Barthelemy, an Ekel and a Neuman, and are so to the friends and patrons of the fine arts. It is thus that the reputation of Pyrogoteles, Cesari, Coldore, Natter, Pikler, Doell, and other celebrated artists, has been made known and maintained.

The industry and genius of the artist give to cut stones their highest value ; but something depends also on the matter and on its preparation.

XII. Notices resperting New Books.

The Progress of Maritime Discovery, from the earliest Period to the close of the Eighteenth Century, forming an extensive System of Hydrography. By James Stanier Clariee, F.R.S. domestic Chaplain to The Prince, and Vicar of Preston. 4to. Volume the First. (Pages about 1000.). Cadele and Davies.

WE must acknowledge that we opened this volume with considerable prejudice against it, from having previously read an article which appeared in the last number of the Edmburgh Review. Having, however, found our prejudices gradually removed, as we advanced in our perusal of the work, we feel ourselves called upon to declare that we entertain a different opinion from the conduetors of that Review, and consider it as a valuable body of information on a useful and entertaining subject.

The laborious and extensive digest of maritime discoverics which Mr. Clarke has formed, will prove of essential advantage to the historian, the merchant, and the circumnavigator. The first will find the errors of preceding writers eandidly and respectfully stated. The author shows that Lafitau's Decouvertes des Portugais, which hitherto has been the principal work to which general readers have resorted for information, is a very flimsy and incorrect account ; and that Dr. Robertson, in following its authority, was led into a considerable error, by betraying an ignorance of the first navigator who doubled the Cape or Good Hope. (chap. 2. p. 343.) Herrera also seems to have erred considerably in this respect. The historian will also feel indebted to Mr. Clarke for an excellent Catalogue Raisomée of his authorities, in which are many anecdotes of Ramusio and other writers not generally known ; and also for a very valuable list of the principal Portuguese historians, in the
drawing up of which he disploys much industry, and a very extensive how ledge of biblingraphy. The hitherto celebrated Itistoire Gomprale des Foynges, is now found to have been a literal translation, as far as the seventh whme, and part of the eighth, from a genelal collection of voyages and travels, in four thick quartos, printed in London, for a bookseller of the name of Astley, and compiled by Mr. John Green. The merchant will peruse this volume with interest from the information it accerarly affords relative to maritime commerce. Instcal of the trite and confused account of the Phornictans, whom precedng writers have considered as the first promoters of commerce, Mir. Clarke refers his readers to maritime traders of much higher antiquity; and after favouring the with an abstract of Mr. Bryant's scntiments respecting the Soachidæ, the Amonians (a neme wheh comprehended all natoons known as inhabitants of Expt, of Phœnicia, or (anam) the Cuthites, the Anakim, the Titans, the Sorthe, and the Atmontians; he clarly traces the progeres of maritime nations from the Indian Ocean to the shore of the Red sea, where the Elomites, the ancestors of the Phoenicians, formed their first seitlement at Mount Seir. (Sect. a. p. 67.) Mr. Clarke tien eniters on the maritime history of the Hebrews, in which the country of Ophir in considered, and the term Tarhish: whe former he is inclined to think, with Boclart, was Ceylon, and that by Tarshish was meant the Sea, in its most extensive signification. (Sect. 2. p. 54.) He then concludes his account of the sacred periods of maritme history with a refutation of the Pheenician Periplus of Africa. The maritime discoveries of the Greeks are detailed with considerable interest from a variety of learned writers, whose rare and expensive volumes can only be procured at a considerable expense and difficulty. Costard's excellent, but long neglected History of Astronomy, is justly appreciated by Mr. Clarke; and the Athenian commerce on the Euxine, is given from his grandfather's learned work, the connexion of the Roman, Saxon, and English coins. At the same time, however, that our author thus collects and combines the opinions of dificrent writers, which we must acknow ledge is done in a fair and candid manner, he occasionally farours and relieves the reader with such original remarks as the nature of the digest he had in riew would admit. The naval character of the Greeks is thus deseribed:-" The professional character of Grecian seamen was influenced by the manners of the different states to which they belonged; and it therefore fluctuated on an
extensive scale, from the cold or forbidding policy of the Laredrmonians to the capricious yet captivating disposition of the Athenians. The first was too hanghty and austere to gain the hearts of those who scrved; the other of too unequal a temper to secure or reward the enterprising spirit of those who commanded. Even among the Athenians, the naral character had not sufficiently emerged from the warehouse of their merchants; and at Lacediemon, where the highest object of ambition was a command in the cavalry, that valuable nursery for scamen which the honourable avocations of commerce furnish was purposely neglected. The iron coinage of Sparta shackled the speculation of its inhabitants; and when Lycurgus prohibited navigation and commerce throughout an extent of coast that furnished so many cxcellent harbours, he proved how impossible it was for a rigid moralist to entertain a due con= viction of those liberal principles which are essential to the character of a legislator." (Sect. iii. p. 123.) The fourth section brings into one point of view all that has survised respecting Carthaginian and Roman maritime discoveries; the voyages of Hamo, of Himilco, of Polybius, of Scrtorius, of Juba, of the frecdman of Amius Plocanns, and the Periplus of the eastern coast of Africa, are introduced with considerable judgment, and well connected with each other. The whole of this introductory part is closed by a dissertation on the commerce of the Romans by the author's learned grandfather, which hitherto has not been generally known.

Mr. Clarke then enters on the principal subject of the volume; and in his first chapter gives a general view of the maritime history of Europe and of Portugal, to the beginning of the firteenth century, when the Portuguese discoveries first began. The second chapter continues the history from the accession of John, the first king of Portngal, to the discovery and doubling of the Cape of Good Hope by Bartholomev Diaz; and the third chapter closes with the arrival of Da (iama on the coast of Calicut, on the 20th of May 1498. The valuable appendix that follows, contains some scarce treatises comnected with the subject of the work, among which a hestory of navigation, by the celebrated Locke, particulaly attracted our attention.

We shall nuw only procced to notice some of the many philosophical facts which are dispersed throughout the volume, which is enriched with numerous engravings of the coast that comes under consideration; and with an excellent set of charts by Arrowsmith.

One essential merit in this work is, the liberal and extensive manner in which the opinions of preceding writers are detailed; and the impartiality which Mr. Clarke observes in leaving the reader to form his own opinion from the facts that are adduced. We percene no attachment to system, or preconceived opinions; no invidious aspersion even when considerable errors are detected; no wish to steal the thoughts of other writers and di-guise them under a new form of expression. The mariner's compass, from the evidence which Mr. Clarke adduces, was certainly first known and used in the Indian ocean, whence it was introduced into Europe as a new discovery. It is assigned by professor Assemani, of Padua, to the Arabians, (Introduction, p. 9, note;) and Mr. Clavic has brought strong proof to show that the flower which marks the North, and which has erronenusly heen called the fleur de lis, was in reality the Indian lotus. Dr. Hede, in his treatise De Religione Veterum Persarum, affirms that the Chadeans and Arabians had immemorially made use of the compass to gride them over the vast deserts that orerspread their respective countries; and according to the Chinese records, as cuted by Mr. Manrice, the emperor Chingrang, above a thousand years before Christ, presented the amhassadors of the king of Co-chim-China with a specics of magnetic index which they called cluman; a name by which they at his day denominate the marinu"s compas. (Progres of Maritime Discovory, sect.i. p. i.) The carlicst allasion to the directive power of the mannet occurs in the Life of Pythogaras by Jamhlichus, who assets that "Pythagoras took from Abaris, the Hyperborcan, his gulden dart, without which it was imposible for him to find his road." (1bid. p. 51.) Nir. Clarke thinks that the loadstone, though not used in navigation, was brought by Solomon's navigators from India to Europe; and in support of this citcs, on the authority of Bir. Henley, a passage from the loth chapter of the first book of Kings. (ch. iii. p. 397.) The magnet was menfioned by the most antient classical writers under the name of Lapis Heraclius, in alusion to Hercules, who was said to have sailed in a golden cup, given him by Apollo, to the (r)asts of Spain, where he set up the pillars that bear his name; or perhaps rather from Heraclea, a city of Lydia, where it was discorered. Our anthors leamed relation, Dr. Woton, was of opinion that the maynet was known and admied by the aptionts, hut was never cmployed for the purposes if mavigation. (thid. pagers 15% and 178.) These are certamy very curious facts, which have hitherto been
too much neglected; and Mr. Clarke deserves our thanks. for having presented them to the attention of scientific men. 1 Ie reserves for a future volume a more particular discussion of this important discovery, which, we doubt not, will, after these remarks of his, be assigned to the Arab narigators on the Indian ocean. In the excellent narrative which he has given of Da Gama's voyage, Mr. Clarke subjoins another proof of the justice of his ideas from a passage in Osorius, the whole of which had inadvertently been omitted in Mr. Gibbs's translation. This early Arab or Moorish compass was found by Gama on his arrival to have been long used by the Indian seamen; and Osorius thus introduces his description of it:-Utebantur in navigando Normis navicularis, quas nautce acus appellant. Quarum formam, propter eos qui a maritimis regionilus remoti sunt, haud alienum arditror explicare . . . T The same historian also mentions their carly use of the quadrant long befure it was known in Europe:-Quadrantibus etiam, solis rarius conversioncs, et quantum queque regio ab aquinoctiali circulo distaret, olservalat. (Progress of Maritime Discorery, ch. iii. note i. p. 451.)

Previous to Da Gama's royage, Mr. Clarke, very property, in order to impress the mind of his readers with a just idea of the perils which Gama had to surmount, gives some concise bydrographical remarks on that navigation; and as his work is intcuded to form (the first time that any one has made the attempt) an extensive system of hydrography, he offers the following simple divisions of the ocein to the attention of natical men:-1. The North Atlantic, extending from the equator to Cape Farewell on the coast of Grenlind in 60° north latitude. 2. South Atlanic, from the equator to an imaginary line drawn from the Cape of Good Hope to Cape Hom. 3. Indian ocean, bounded to the south by a line carried from the Cape of Good Hope to the south-west point of New Holland. 4. The North Pacific, flowing from the equator to an imaginary line stretched from the south-eastern point of Van Dieman's Land to the southern Cape of New Zealand, and continued thence to Cape Horn. The romaining portions of the ocean flowing round the northern and southern poles, to be called the North and South Polar Seas. (ibid. ch. ii. p. 354.) Among these hydrographical remarks we observe a great many latitudes and longitudes on the westem coast of Africa, now first pubfished, when were asectained from hemar observations by an officer ot mats in the king's service. The nature and li-
mits of our journal will unt allow us to mark the variety of curions philosophical information wheh anounds in this usefu' purscatmo, and shall content oursclye with citing the followng curious tat from the an is \because 's erosesp and ence. (Appendix, p. 日60.) Gema' squarm con an d during a whole monsoon at aneloor on the coast of bit labar; yet when the Englicy obtained poss suicn: on that coast, a ressel fitted ont in India, with the be e forend tackling, and every precaution suken that wasite. vas sent to the same nlace on the pproach of the inonemos; but, notwitistanding the superior sikith of our semmen, the attempt was found impracticable, and the ressel was driven ashore.
Elements of Science and Ait: leing a familiar Introduction to Natural Philosopiny and Chemistry; together with their Application to a Variety ot elegant umd useful Aits. By John Lmison. A new Elition, a I'als. suo.
The present work, though, modesly enough, called a new edition of Imison, is intitled to hold a much higher rank. It is in a great moasure a ne: performaner, and contains much usefial and entertaining matter on a great variety of subjects:-viz. mechanics, pnemmatics, hydrostatics, hydraulics, optics, electricity, galvanism, mignetism, astronomy, chemistry, duawing, bleaching, dyeing, metallurgy, varnishing, japanning, lacquering, gilding, silvering, timing, soldering, moulding, and catong; cements, ink-making, staining of wood, \&e., \&ec., \&c.'To those who hare not time or opportunity to en'er deeply into subjects of the kind embraced by this work, and who yet may wish to obtain information on such matters, it will prove a valuable acquisition; as it contains a great deal in a moderate compass, and detailed at the same time with considerable perspicuity and precision. The plates, thirtytwo in mumber, are ly Lowry, and executed in a masterly mamer.

NII. Intelligence and Viscellancous Articles.

GALYANISM.

' FIE forl wing is a correct and more particular account than ane that has yet appeared of the galvanc experiments made hio lle. Come on the hody of Nichacl Camey: from noes tane: lyan minent physician who was pesent.

The subject of thece experiments was thity-scren years
of age ; and the body, after hanging the usual time, was conveyed to the experiment-room an hour later than Forster: it arrived at ten minutes past nine.

1st, Oxygen gas was introduced through the trachea at a quarter part nine.
Qd, A conductor from a galvanic apparatus, consisting of about a hundred square plates of zinc and copper, about four inches diameter, disposed in three troughs, and which produced visible sparks, being applied to a piece of tinfoil, introduced so as to come into contact with the great intercostal, the par vagum, and phrenic nerves, the other end of the apparatus being connected with the rectum, for ten minutes, a little motion was produced in the lips and the sternal muscles.

3í, Common air being foreed from scereral bladders into the trachea, so as to inflate the thorax, friction being, at the same time, applicd, together with the galvanism as betore, the face became very black. The apparatus operated in a very powerful manner. At twenty-five minutes after nine, the blackness of the face disappeared : the air contained in six bladders was forced into the lungs, by which the body was considerably inflated.
4th, At twenty minutes before ten, cloths heated by hot avater were applied to the thorax; the galranism and intlation with common air were continued, and again produced blackness in the face.
5 th, Five minutes before ten, inflating with a pair of bellows, galranising, and the application of hot cloths, were continued.
6th, At ten o'clock, a vein was opened in the arm, from which black blood flowed on pressure, as in the state of life ; no blood in the temporal artery.

7th, Conductors were applied to the schmeiderian artery; increased contractions of the lips and muscles of the face took place. During these operations it was observed that the reins of the arms were distended.
Ten minutes after ten, conductors being applicd to the pericardium and the diaphragm, the action of the pectoral muscles was excited.

Sth, When applied to the denuded pectoral muscles, strong action was excited.
gth, The lungs were proved to be in a sound state by inflating them with a pair of bellows. The neek had been much minured by pulling and twisung the body round white hanging.

10th, At twenty minutes past ten, the beft auricle, and more so the right, were excited to action, but not the heart: they continued to act for some time on withdrawing the stimulus; but the action was much inereased by applying it from time to time.

11th, One conductor being applied to the sinclavian membrane, and the other to the anus, the action of the auricles was much increased, and motion was, at the same time, produced in the face.

At forty minutes past ten, action was excited in both auricles, but particularly the right.

12th, A large quantity of black blood in the carotid artery.
13th, The body' was colder than in the case of Forster ; but some deception may perhaps have arisen from the air being much warmer.

The temperature of the external air was about 55°, and that of the room 62°.

EXPERIMENT ON A TOAD.

On the 5 th of November 1802, Mr. John Walker, of Bassenthwate Chapel, in the county of Cumberland, put a toad into a bason, which he covered with a slate, and then deposited it about a foot beneath the surface of the earth. On the sth of January 1804, the bason was carcfully dug up, when its inhabitant was found alive, but reduced in size by its confinement. After the curiosity of the spectators was gratified, the toad was again committed to the earth for a further experiment.-Cumberland Packet.

degree of the meridian measured in india.

It is with pleasure we have to inform our readers of the rapid progress geography is making in the East Indies. Brigade major Lambton, who is employed by the presidency of Madras to survey the Mysore comntry, has already measured an arch on the meridian, $1^{\circ} 34^{\prime} 56^{\prime \prime} 43$, which gives the degree in lat. $12^{\circ} 32^{\prime}$, equal 60, 494 fathoms; and we have every reason to bolieve the above measurement correct, knowing that major Lambton hasbeen fumished with a six fect zenith, sector, and measuring chains, by the late Mr. Ramsden, and also a three-feet theodolite, by Mr. Cary, similar to that now used by major Mudge in the trigonometrical survey of England.

A letter from Petersburgh, dated October 2ith 1503, states that Mr. Benjamin Bergman, after a residence of three years among the Calmuc Tartars, has returned to Riga, where he means to arrange and prepare for the press the observations he collected during his intercsting travels. They will soon be published, and will form five volumes. A curious extract from them, on the Calmuc bards, has already appeared in the Northern Archives; and we learn by another letter, that the draftsman Carrafie, well known by his beautiful views in Egypt and Syria, and his large collection of dranings which relate to the maners and customs of these comorries, has lately arrived at l'etcraburgh frome Paris, in company with two young Frenchmen, for the purpose of making a tour through the Russian empire, where he witl, no doubt, find abundance of valuable materials to form a coyare pittoresque.

We are likewise informed that his imperial majesty the emperor of Russia has caused ten thousand copies of a popular treatise on the cow poek, written in the Russian language by the medico-philanthropic socicty, to be printed at his expense, and to be sent to all the erovernments for the purpose of being distributed gratis among the people, and particularly in the country.

MINERALOGY.

A very remarkable piece of amber was found lately in a field in the Lithuanian circle of East Prussia, about twelve miles from the shore of the Baltic. It is 13 inches in length, and $5 \frac{1}{8}$ inches in breadth. It contains 31 s cubic rhinlandic inches, and weighs above eighteon pounds. No person ever remembers to have heard of so large a piece of this substance being either found on the coart, or dug up in the country. The largest piece known, which is in the cabinet at Madrid, weighs only eight pounds. A dealer in amber offered three thousand dolTars for it. The king, however, has ordered it to be deposited in the cabinet of minerals at Berlin, belonging to the department of mines, and one thousand doliare to be 1 aid to the proprietor of the estate where it was found ; part of which is to be given to the person who found it. Amber is the property of the crown, and is generaliy sold by auction to the highest bidder.

SINGUIAR PETEIFACTION.
A quarrier, in a village near paris, having detached by means
means of gumpowder a large block of unne, split it by the usual processes, and found in the middle of it the petrified skeleton of a ram. 'The two sections of the block each contain one half of the animal in perfect preservation, with all the parts excecdngly distinct. The block was detached from the solid rock, at the depth of thirty fect from the summit of the quarry. This curious putrifaction is to be deposited in the museum of natural history.

METEOR.

A very uncommon meten was observed at lefort on the ged of September 1503, by L. Ordinare, correspendent of government for agriculture and metenology, the account of which we shall hare give in his own words: - " At seven o'clock in the erening of that day,", says he, "I was returning from the country. The air was slightly agitated by a gentle wind at east-north-east, and it was very dark. At half a lugue from befort I saw the hearens suddenly become so bright that the country seemed as if illuminated by a thousand Tamps. I immediately perecired a globe of fre which isaned from a cloud: it passed over on heals and rushed into anotber cloud. The globe wa, of a reddish yollow colour, and exceedingly briliant. It secmed to be abont six or eight feet in diameter. It left behind it some faint traces of hight, like those produced in general by common sk-rockets.
"We saw this globe for one minute at least. The hores were so temitied by it that they set out on a full gallop. The cuachman himself was frightened, and two ladies were taken ill. When the globe rustied into the oiner clond it secmed to revolve, describing a semicircle. I lost sight of it near a wood, at a little distance, where l suppose it exploded, for we hard a hollow noise hke that of a camon discharged at a great distance. This cxplosion was attended with mo bad consequences, for we heard of no damage don by it cither next iay or the days following.

This moteor was seen at Befort and at the mighbouring villages. The explosion was felt in that town. It first it was supposed to be an earthquake. The glass in the windows was shaken, and the houses experienecd a kind of shock which excited great alarm. The glube proceeded in a direction from north-cast to south-west. On my return to Befort I csumined my barometer, which stood at of inches 4 lines, and my themometer was at $10 \frac{1}{1}$ degrees above freczing.

Some of our philosophical friends having expressed a desire to sce in our work a regular monthiy register of the stat: oi the baromster and therns meter, we are happy to h.w it in our power te gratify them. Mr. Carey, of the Strand, well fiown as a mathematical instrument maker and optician of emmence in his profession, has kind'y mdentake: io furrise us with it every month. Our readers may therefore depend on its accuracy.

Days of he Monch.				? eight of the Barmo. Inches.	Weather.
		安	$\left\lvert\, \begin{aligned} & \text { y } \\ & \vdots \\ & \vdots \\ & \vdots \\ & =\end{aligned}\right.$		
1503. Dec. 27	50°	51°	45°	29.50	Rain
28	4 S	46	46	-5.90	Stomy
29	46	48°	52	$29 \cdot 40$	Stormy
30	50	54	48	-30	Ram
31	45	47	44	- 50	Rain
1804. Jan. 1	38	43	35	- 80	Cloudy
2	33	41	32	- 90	Fair
3	31	35	32	$30 \cdot 06$	Pair
4	30	33	30	-13	Cloudy
5	30	35	30	-9.70	Snow
6	$\bigcirc 9$	33	-9	$\cdot 77$	Farr
7	98	33	29	$\cdot 70$	Cloudy
8	29	35	35	-69	Cloudy
9	35	40	38	$\cdot 71$	Rain
10	56	43	37	-95	Fair
11	33	40	45	- 55	Fougr
12	45	47	47	$20 \cdot 56$	Cloudy
13	43	59	51	- 25	Rain
14	51	53	52	- 40	Cloudy
15	53	55	50	- 55	Fain
16	50	56	50	- 50	Showery
17	50	54	50	-38	Cloudy
18	51	55	49	-69	Rain
19	48	50	50	- 51	Cloudy
20	48	50	44	-29	Fair
21	4 S	52	51	$\cdot 45$	Fair
22	50	51	48	-48	Гair
23	46	50	49	$\cdot 76$	Fair
24	49	. 51	49	-36	Pair
25	48	52	45	-40	Clouds
96	48	51	46	-25	Pair

meteorological table For Felruary 1804.

XIV. Experiments made for the Purpose of ascertaining whether there le a real Acid of Coball; or, in other Words, whether Cobalt actually unites with Oxygen to the Degree necessary for Acidification. By C. F. Bucholz *.

NNo newly discovered substance has been admitted more readily, and with less examination into chemical works, than the supposed cobaltic acid of Brugnatelli, though the experiments from which its existence is concluded were very imperfect and unsatisfactory. As there are several metallic acids, it was natural to conclude, by analogy, from these experiments, that the existence of the cobaltic acid was real or possible: but the defective nature of the experiments, and the importance of the object, ought to have induced chemists to subject them to a strict proof; for the truth of any circumstance can be proved only by the coincidence of repeated experiments made to ascertain it.

Consinced of the truth of this observation, and of the incempleteness and inaccuracy of Brugnatelli's experiments, and of the consequences deduced from them in regard to the cobaltic acid, I undertook some new ones for the purpose of examining them, and thereby ascertaining whether there really be such a substance as cobaltic acid. In consequence of the well known impurity of zaffer or gray oxide of cobalt, which, besides the so called oxide of cobalt, contains arsenical cobalt (perhaps arseniate of cobalt), iron, nickel, lime, siliccous earth, and other foreign matters, I did not thiak it proper to repeat with it Brugnatelli's experiments, as I had been taught by other experiments, which will be mentioned hereafter, that the phæmomena observed by Brugnatelli in the experiments he made with zafier to produce cobaltic acid, ought in all probability to be ascribed to the arsenical acid of the zaffer. I therefore resolved to begin my experiments by a direct union of pure cobalt with the oxygen of oxygenous bodies; and I had the stronger hopes of a farourable result, if the cobalt was susceptible of this transformation, as I knew from the analogy of other metals susceptible of acquiring the acid state, such as chrome, scheel, molybdena, and arsenic, that the conversion of such metal into acids is exceedingly easy. One experiment however, by M. Fiedler of Cassel, on the forma-

[^16][^17]tion of the cobaltic acid from cobalt and the oxygen of nitrous acid, is favourable to the assertion of Brugnatelli ; but it is impossible to consider such experiments, results, and deductions, so satisfactory and convincing as to render this subject unworthy of further rescarch. For my part, I am of opinion that they are not convincing or satisfactory; especially as it is not proved in general that arsenic can be completely separated from cobalt, according to the method of Lampadins, by a current of air, or by Fiedler's application of this process.

Experiment 1.

Four ounces of nitric acid of the specific gravity of $1 \cdot \Omega 80$ were poured over two drams of carbonated oxide of cobalt as pure as possible, equal to one dram of pure oxide of cobalt, and distilled to dryness in a retort. No traces of nitrous gas or nitrons acid appeared, from which it could be concluded that an oxidation of the cobalt or a deoxidation of the nitric acid had taken place. The nitric acid which passed over without any change, was again poured into the retort oiver the cobalt, and distilled to dryness in a gentle heat, but with the same result. And the same was the case whon the process had been repeated four times. The nitric acid remained undecomposed, and the residuum was nitrate of cobalt, from which the oxide of cobalt could be separated as a blue precipitate, both by potash and by ammonia.

Enperiment II.

But as it was possible that the precipitate, which had a perfect resemblance to one obtaned from a solution of cobalt in muratic acid, might contain the cobaltic acid, I digested it with pure ammonia: a little cobalt was dissolved, but no traces of acid were found in the solution evaporated to dryuess.

Experiment III.

I now craporated to dreness the fluid from which I had separated the oxide of cobalt by means of ammonia, and which, besides nitrate of ammonia, still contained some redissolved oxide of cobalt. The saline mass thus obtained was of a reddish appearance, and had the taste of an ammoniacal salt with a little metallic astringency. The half of this saline mass being then decomposed by heat in a porcelain dish, the result was a black oxide of cobalt. The other half, being dissolved in water, exhibited no other phenomena with the usual reggents than those which gave reason to suspect some traces of arsenical acid. Though the result
of these experiments evidently showed that the oxide of eobalt itself could not be converted into an acid by a very large quantity of nitrous acid, and repeating the process several times, I did not consider this experiment as sufficiently decisive. In consequence of this idea I resolved to repeat it, changing the process a little with a greater quantity of materials.

Experiment IV.

Eight ounces of pure nitric acid, of the specific gravity of $1 \cdot 980$, was poured over half an ounce of oxide of cobalt, purified as much as possible from arsenic and iron, and distilled from a tubulated retort to dryness; which was the case in four hours. During the operation there was no appearance of nitrous acid rapours : the liquor which passed over was nitric acid, perfectly pure. The latter was again poured into a retort, and redistilled under the same circumstances. The phenomena during this distillation were exactly the same as before. Having repeated the process with the like result, the saline mass remaining in the retort, which when heated had a garnet red colour, was dissolved in distilled water and evaporated to dryness in a porcelain dish. It then weighed six drams. When dissolved in four ounces of distilled water, the solution was divided into two portions, and subjected to the following experiments:

Experiment V.

One-half was evaporated to dryness, and the saline mass thus obtained was heated in a porcelain dish till the greater part of the nitric acid was decomposed; so that, if any cobaltie acid had been formed, it must have remained with the oxide of cobalt. The residumm had a black and dry appearance, and in the pure state weighed 50 grains. It was digested some hours with pure ammonia, and boiled for a quarter of an hour, by which means 30 grains of black oxide were dissolved, and formed a beautiful ruby red solution. This solution was then evaporated to dryness, and during this operation the dissolved oxide of cobalt was separated in a grayish state. Being again dissolved in distilled water, filtered and evaporated, the faint ruby red colour of the liquor was ehanged to pale red inclining to yellow, and a grain of oxide of cobalt was in part separated in yellowish brown flakes. The dry saline mass was again dissolved in distilled water, and separated by the filter from the separated oxide of cobalt; after which the solution was once more evaporated to dryness, and for a short time exposed

$$
\text { G } 2
$$

to an almost red heat. A small quantity of saline matter, amounting to about three or four grains, remained, wheh according to the different proofs made with it was nitrate of ammonia, and which when dissolved exhibited the same phenomena as those to be mentioned hereafter in the seventh experiment. This no doubt arose from a still remaining trace of the arsenic acid, but by no means from cobaltic acid.

Experiment VI.

The other half of the solution, obtained by the fourth experiment, was decomposed by pure carbonate of ammonia, by which means a pale red precipitute inclining to violet was proluced. The precipitate being then eduleorated with a sufficient quantity of water, it was digented with twice as much carbonate of ammonia and half an ounce of pure ammonia, by which means a beatifiel riolet blue solution inclining a little to red was produces, and there remained 30 grains of oxide of colbalt undisoolved in the state of a carbonate. The filtered solution wos evaporated in a moderate heat to dryncss, by which the ammonia was dissipated, and the oxide of cobalt was ecparated of a dirty yellowish green colour. When edulcorated and dried, it amounted to 24 grains, and contained less carbonate than the almost imperecptible residum of the digestion with ammonia. The liquor obiamed from the edulcoration of the greenish yellow oxide of cobalt produced by the evaporation of the ammoniaca! solution, was evaporated in a porcelain dish, and exposed to a strong heat, but without bringing it to a red heat. By these means a residumm of saline matter weighing seareely two grains, and some black oxide of cobalt, were obtained. The solution prepared from this substance exhibited the same phænomena as nitrate of ammonia, and even with reagents, as will be further mentioned in the seventh experiment ; only it appeared to form with nitrate of silver a somewhat stronger precipitate, which could not be again immediately dissolved, and which probably arose from the muriatic acid of the ammonia employed, as there was reason to suspect from its white colour. From these phænomena it is proved that some traces of arsenic acid were found in the precipitate of cobalt effected by ammonia, but none of cobaltic acid.

It still remained to examine the liquor in which the oxide of cobalt had been separated from its union with nitrous
acid by means of ammonia, and to ascertain whether it contained, besides nitrate of ammonia, cobaltic acid. For this purpose the following experiment was made:

Experiment VII.

The above fluid, which contained the nitrate of ammonia, formed in the preceding experiment by decomposing the nitrate of cobalt by ammonia, being evaporated to dryness, the result was a brownish black residum, which exhibited exactly the same phenonema as nitrate of ammonia. When dissolved in distilled water the solution gradually acquired a reddish colour, and the blackish residum of oxide of cobalt which remained on the filter did not weigh completely two grains. The liquor exhibited the following phænomena:

It gave searecly any red colour to litmus paper ; it did not produce the least turbid appearance in a solution of sulphate of copper: the case was nearly the same with an ammoniacal solution of copper: nitrate of silver became a little turbid, and in a littic time the cloudiness assumed a brownish colour: acetite of lead was rendered a little turbid, but scarcely perceptible, and without depositing a precipitate after long rest : in muriate of barytes no turbid appearance was observed: a drop of nitric acid added to a dran of the turbid fluid occasioned no complete solution.

The plrenomena of this experiment prove in the clearest manner, that a trace of arsenical acid, but no real cobaltic acid, was present. This result, and no other, can be deduced from the above experiments; and it seems to be placed bcyond all doubt, that cobalt cannot be converted into an acid, at least by treating it with nitric acid.

After these ineffectual attempts to produce cobaltic acid, by treating cubalt with nitric acid, I determined to try Schcele's process for forming arsenical acid; and though I entertained sone doubts of obtaining cobaltic acid by this process, in consequence of having considered the circumstances more maturely, and of knowing that the muriatic acid has more affinity for oxygen than cobalt, as the muriatic acid, when it comes into perfect contact with oxide of cubalt, takes from it a part of its oxygen, and is converted into oxygenated muriatic acid, I was desirous of not leaving it untrich, and thercfore procceded in the foilowing manner:

Experiment VIII.

A hundred grains of carbonated oxide of cobalt, obtained and collected in the preceding experiments, and which consequently were free from arsenic acid, were heated with three
drams of muriatic acid of the specific gravity of 1120 , and two, ounces of pure nitric acid of 1210 , and by continued simimering were evaporated to dryness. From the beginning to the end of the operation, vapours of oxygenated muriatic acid and of nitrous gas were disengaged: the former exactly in the same manner as when muriatic acid is poured over oxide of cobalt not carbonated nor heated to redness. Three drams of muriatic acid and two ounces of nitric acid were repeatedly poured over the oxide of cobalt, and distilled to dryness. The same phænomena took place. The acid solution of cobalt evaporated to dryness was dissolved in four ounces of water, filtered, and decomposed by pure carbonate of ammonia. Afier the decomposition as much ammonia as was necessary for this purpose was then added, and the whole was shaken for half an hour in a gentle heat. The solution had a blne appearance. It was then freed from the undissolved residuun by the filter and edulcoration, and, being evaporated to dryness, three grains of oxide of cobalt of a greenish colour were separated. The precipitate, when dried in a gentle heat, weighed, without reckoning the small quantity scparated during the evaporation, about as much as the oxide of cobalt employed, and had a violet colour. The saline mass, when again dissolved and filtered, was of a pale green colour, had a sharp metallic taste, and exhibited the following phenomena :

1 st , It gave a red colour to litmus paper. 2d, It contained ammonia, nitrous acid, and a little cobalt; for when a little of it was decomposed in a red heat and evaporated to dryness, which was accompanied with crackling and inflammation, nothing remained but two or threc grains of black oxide of cobalt, without a trace of acid. 3d, It produced no turbid appearance in acetite of lead: 4 th, Nor in nitrate of silver. 5 th, It rendered ammoniate of copper exceedingly turbid; but by the addition of more solution it was redissolved and became perfectly clear; which proves that the precipitate had been effected by the free acid of the combination. 6th, It conmumicated scarcely any turbid appearance to sulphate of copper: 7 th, Nor did it disturb in any manner mitrate of mercury prepared without heat. Sth, It produced no change in a concentrated solution of muriate of barytes.

From this experiment, and the phenomena it exhibited, it appears proved beyond a doubt, ist, That by the processes described all the muriatic acid had been driven off: od, That no more arsenical acid was present : and, 3d, That no cobatic acid can be formed by this proces.

Now, as the result of these experiments is, that coloalt cannot be converted into acid by the most powerful and most active means employed for changing into acids those metals susceptible of acidification, and as it is not improbable that nature may produce some circumstances favourable to the formation of cobaltic acid, though there is not the least reason to suspect that this can be the ease in the preparation of the gray oxide of cobalt, nothing remains but to admit that the cobaltic acid of Brugnatelli was an union of arsenical acid with other substances; and this conjecture is the less hazarded, as it is well known that all oxide of cobalt contains more or less arsenic, and in all probability in the state of acid. It now remains to show, if possible, that this union of arsenical acid is capable of producing the phænomena which Brugnatelli obsersed in regard to his supposed acid of cobalt. This, in my opinion, will be best accomplished by the phænomena which occurred in the following experiments.

Experiment IX.

Four hundred parts of pure liquid ammonia were poured over fifty grains of arseniate of cobalt obtained by precipitation, and digested two hours, during which the mixture sometimes was made to boil. After the liquor, which was of a red colour inclining to blue, was separated by filtration, the same quantity of pure liquid ammonia was poured over the undissolved residuum, and the process repeated. The colour of the liquor thus obtained was not so blue. The residuum had lost about two-thirds in weight, and had become blucish red; whereas the arseniate of cobalt has a pale rose colour. The two fluids oltained were craporated to a dram, during which operation the greater part of the dissolved oxide of cobalt was separated of a grayish blue colour. The filtered liquor was of a cochineal red, and exhibited the following pliænomena:

1st, A little of it being evaporated to dryness in a porcelain dish, suffered ammonia to escape, and also deposited a little grayish green oxide of cobalt. The residuum, diluted with distilled water and filtered, had scarcely a reddish colour, as Brugnatelli observed in a specimen of his cobaltic acid, and had a sharp acid taste, a property which he aseribes in general to his cobaltic acid. It still contained a little ammonia, and some traces of cohalt.
od, ilt gave a perceptible red colour to litmus paper, but no acid taste was perceired in it.

3d, It precipitated lime water, without being redissolved,
by the addition of more fluid; whereas the precipitate obtaincd (1) by further heating the obtained fluid, was immediately redissolved by the addition of more fluid.

4 hi, Muriate of barytes in a concentrated state was also precipitated by it, as well as by arseniate of ammonia.

5th, Nitrate of silver was precipitated by it of a brownish colour: by shaking it with a litte muriate or petash, muriate of sorla, or muriate of ammonia, the precipitate immediately became white.

6th, Acetite of leal was precipitated by it white, and immediately redissolved by a very small quantity of nitrous acid.
ith, Sulphate of copper was precipitated of a bright green colour.

Sth, Ammoniate of copper was precipitated in the same manner, but in greater abubdance.

9 h, Nitrate of mercury was precipitated by this fluid of a bright straw vollow colour ; by more acid fluid (1) the case was the same, and the precipitate produced arseniate of ammonia.

As all these properties of cobaltic arseniate of ammonia correspond with those of the cobaltic acid of Brugnatelli, those of (5) excepted, no other conclusion can be made than that Brugnatelli's acid was the same combination, more or less altered by the ticatment; for according to his assertion he obtained, by moderate heat in the san, the cobaltic acid solution of a red colour, whereas when evaporated slowly by heat it was almost colourless. The production of this minon, by Brognatelli's treatment of zafier with ammonis, can casily be explainde : zatter contains arsenic, and in all probability arsemate of cobalt. By digestion with ammonia this is in part decomposed; and as most of the colole is separated, there arises a triple combination of arsenical acid, ammonia, and more or less cobalt, which in a stronger heat suffers a part of the ammonia and cobalt to be disengaged, and then contains more or less íree acid. The difference in the propesty (5) of my combination and the cobaltic acid of Brugnatelli can be easily explainet, if it be adnitted that Brugnatelli's ammonia contained a great deal of mariatic acid ; which is very possible; for in the case the brown arseniate of silver produced by the arsenical acid of the combination in question must have been immediately rodecomposed, as the muriatic acid, in consequence of its greater alfinity for the silver, united itself to produce muriate of silver in a white form, and then gave rise to the precipitate of Brugnatelli.

Brugnatelli

Brugnatelli himself suspected that his cobaltic acid was arsenical acid; but he was so deceived by certain considerations that he paid no further attention to this suspicion, and neglected to verify it by experiments : on the contrary, he was convinced of the reality of his cobaltic acid on the following grounds:

1st, The arsenical acid does not precipitate silver from its solution, but the cobaltic acid does.
-d, The arsenical acid decomposes lime water, and the precipitate is redissolved by the addition of new arscnical acid or lime water; the cobaltic acid decomposes lime water, and the precipitate produced dissolves neither in a new quantity of cobaltic acid nor in a new addition of lime water.

3d, Neitber acctite of lead nor muriate of barytes is decomposed by the arsenical acid; on the other hand, both these salts are immediately decomposed by the cobaltic acid.

4th, The arsenical acid dissolves very well in alcohol: on the other hand, liquid cobaltic acid, when united with pure alcohol, is immediately precipitated in a solid form.

What weight these four arguments have in regard to the existence of the cobaltic acid, I shall now examine.

In regard to the first, the assertion of Brugnatelli is directly contrary to experience. The arsenical acid certainly precipitates silver from a solution of arsenical acid, and of a brown colour; but with a small quantity of this acid and a large quantity of muriatic acid, white. This appears from what has been already said, and has been proved by my own experience. Against the justness of the assertion which Brugnatelli gives as the second ground for the existence of the cobaltic acid, nothing, so far as the question relates to pure arsenieal acid, can be objected ; but that the union of arsenical acid, ammonia, and cobait, produces with lime water the same phenomena as Brugnatelli obsersed in regard to his coljatic acid, - that is to say, of precipitating Iime water withont dissolving the precipitate produced by the addition of more of the precipitating matter, -has been alrcady seen in the ninth experiment (3). Hence it follows that the second ground is uqually unsatisfactory and inconcitrive.

The ground which Brugnatelli assumes as the third proof of his cobaltic acid, is in part incorrect, and. contrary to all experience : every chemist knows that acetate of lead is very casity decomposed ; by which means a rery abundant precipitate of arseniate of lead is produced, which is exceedingly difficult of solution on a new addition of arsenical acid. It
is however true，that muriate of barytes is not rendered turbid by arsenical acid：but arseniate of ammonia forms with a concentrated solution of muriate of barytes as abun－ dant a white precipitate as this triple combination，which， when the solution of the mixed salts is very much diluted， takes place sparingly，and in shining laves：but the preci－ pitate，by the addition of free arsenical acid，again disap－ pears．What opinion ought therefore to be formed of this third ground of argument may readily be scen．

In regard to the fourth，I shall leave it entirely to the judgment of the reader．I shall however observe，that we may conclude，without much danger of erring，that the four circumstances here adduced by Brugnatelli as proofs of the existence of his cobaltic acid，are not conclusive． They are not contrary to the principle here established by experience，that the supposed cobaltic acid is a triple com－ bination of arsenical acid，ammonia，and cobalt，in which the first acts the most distinguished part．In consequence of the falsity of the experments from which they are de－ duced，they throw an unfavourable light on the accuracy of Brugnatelli＇s process，and give us some clue to guide us，in regard to the opinion which ought to be formed of the other assertions of Brugnatelli，and the phænomena he observed in regard to the cobaltic acid．

From the experiments，considerations，and deductions， here mentioned，we have the following results：

J．Cobalt cannot be converted into an acid when treated with ever so much nitric acid，and often repeating the process．

II．Nor can this be effected by means of muriatic acid and nitrous acid，according to the process of Scheele．

III．The supposed cobaltic acid of Brugnatelli is in all probability nothing else than unmasked arsenical acid，an union of this with ammonia，and a little oxide of cobalt． At any rate，this union produces the phæuomena which Brugnatelli considered as characteristic of his cobaltic acid．

IV．Cobalt free from arsenic，or the oxide of it，will not， by treatment with nitric acid and ammonia，produce the phenomena exhibited by the cobaltic acid of Bruguatelli， and which can also be exhihited by our union of arsenical acid with cobalt．

V．These experiments，and the circumstances attending then，prove how necessary it is to examine crery new dis－ covery before it is admittel as truth；unless pcople wish to be deceived，and to be under the necesity of retracting what they have before aserted．
XV. Memorial of Mr. E. G. J. Crookenss respectugg the Distillation of Spirits, ©ot. in Holland. (Translated from the French.)*

IIN order to answer the questions relative to the purity and goodness of the spirit distilled from grain, I shall chiefly confine myself to that which is distilled in Holland, and so much esteemed in this country on account of its flavour as well as of its purity and salubrity; because the nature of this spirit, or geneva, and the method of distilling it, from the first begiming to the last stage of rectification, is better understond by me than the pirit distilled in this country, and the manner of distilling it. If you consider the humidity of the air in Holland, and the influence which this mhealthy air must naturally posscss upon the health of the inhabitants, and that not only all the plysicians, but also the people at large, are convinced that the spirit drawn from grain, or genera, as it is there distilled, if drunk with moderation, is an universal preservative against the infirmities and epidemical diseases which this damp air must naturally produce, it cannot be a matter of surprise that the use of geneva is so universal throughout Holland, and that the Dutch nation has carried the art of distilling it to a degree of perfection which it has not yet been possible to attain in any other country. To form a judgment on the beneficial nature of this spirit, I shall only quote this one fact, averred by daily example, and which has certainly not escaped the notice of English travellers who have traversed Holland, or resided there some time with a spirit of observation, viz. that numbers of persons are found much adranced in years who since their youth have made considerable debauches in this spirit, while all those who commit similar excesses in foreign spirits succumb and perish in the bloom of life; and this observation leads me naturally to this question, Wherein does that beneficial virtue of the Dutch genera consist, which it enjoys in prcference to all other spirits? The answer to this question must be found in the sort of grain, in the good quality of each sort, in the manner of procecding and drawing from it a spirit which is pure, and unmixed with any heterogencous matter which might impair its natural goodness. An explanation of these points will contain, I think, the answer to the principal

[^18]
108 On the Distillation of Spirits, B. c. in Holland.

question respecting the manner of improving and meliorating the distilleries in this country.

I am perfectly aware that, treating on these particulars, I shall not be able to exphan myself in a language which is not my native specech, with that purity and precision which the importance of the subject requires; but I shall endeavour to supply this deficiency by that veracity and frankness which may naturally be expected from a man who is not in the least connected with the distillers in this country, nor anywise personally interested in concealing or altering facts, and who in this business looks out for no other reward but the pleasure and satisfaction of being able to contribute his mite to the public welfare, and to the preservation of the health of so many millions of people, who may suffer either from the ignorance or avarice of the distillers,-reserving to muself only some peculiar manipulations, which have no influence on the public welfare, and which can merely scre the private purpose of distillers, who use and put them in practice.

On entering upon this subject I shall have no occasion to enlarge on the quality of the grain, it being universally known, that in order to produce a spirit which is pure, and of a pleasant flavour, grain must be used which is pure, anct not spoiled by wet cither in the field or the granaries. I shall therefore confine my observations on the species of grain, and observe in this respect, that the Duteh distillers are perfectly acquainted with the manner of drawing spirits from the malt of barley, as well as from ummalted barley with a portion of malt added to it, in the proportion of a third or fourth part ; and there are several petty distillers in that country who still make use of that grain on account of its low price; and in general the spirit crawn from barley is of a very pure and vinous nature, proviced always that the operation be enoducted in that slow maner which shalk be developed in the sequel: nor is it less true, that all great distillers in Holland are convineed that malt vields not only a phere spirit, but also a greater quantity than raw barley mixed with malt, in the betore-mentioned proportion, conthary the gencral opinion of the distillers in this country; and mes own experience las confrmed me in the abore npimon, if the malt be perfectly woll made, for a very evident reasoil. The artifictai regetation which the grain undergoes disengages the sacchatine mater, and reiders it more proper to he extracted by the wase nay, it augments the saccharine matter contancel in the grain. To be convinced
of the truth of this remark, we have only to examine the malt from time to time during the operation, and we shall find that this matter develops itself more and more as the grain grows longer; yet this vegetation should be stopped as coon as this matter is disengaged from the length of the grain, otherrise the saccharine part will be lost; and if it be stopped too soon, when this matter has only disengaged itself from half the length of the grain, as is done by several brewers in Holland, all the saccharine matter contained in the grain not being disengaged, it cannot be so easily dissolved in the water. I am convinced by several experiments, which I have made myself on several sorts of malt, and in different degrees of perfection, that about a fourth part more spirits is obtained from malt, which is perfectly well made, than from that in which the regetation has been checked too soon, or carried to excess. The manner of drying it is also an article of equal importance; and in general, malt dried too quick, and by an unequal heat, yields not as much spirit, nor a spirit of as plaasant a taste, as malt dried in an equal and slow manner. If it be considered that the saccharine matter of the grain produces alone and exclusively the spirit, it will be easily conceived that malt of barley must yield more spirit, and of a more pleasant taste, in proportion as the saccharine matter is more developed in the malt, and rendered more proper to be extracted and dissolved by water than in ummalted or raw grain, where this matter is united and combined with the other particles of the grain; and if some distillers in this country are of opinion that raw barley mixed with a certain quantit of malt produces somewhat more spirit, they must necessarily have made their cxperiments with malt which had not attained the last degree of perfection, and they must not understand as well the art of making malt as the brewers in this country, who have carried it to the highest degree of perfection. I rather incline to think that the distillers in this comery prefer raw grain for the same reason it is preferred in Holland, namely, because it neither costs so much trouble nor expense, and that the result depends not on as many little circumstances and precautions.

In Holland but very seldom use is made of barley, notwithstanding the purity of the spirit which it yiclds, as it has been found out that bariey yields but little spirit compared with other grain: for this reason other species of gram have been substituted in its place, which yield a more considarabie protit, while at the same time the spirit they

110 On the Distillation of Spirits, Esc. in Holland.

give is by no means inferior, from the precautions attended to in the operation.

Wheat mixed with a portion of barley malt, in the abovementioned proportion, yields more spirit than barley, and of a vinosity and fineness of taste which exceed all belief; and the distillers in Holland, who wish to produce a very fine gencra, make use of wheat, and sell this spirit to private persons, who desire to have it, at double the price of common geneva; and if the fermentation and distillation be conducted with prudence, a spirit may be drawn from it which equals the spirit of wine in vinosity and flavour. I have known a distiller in Rotterdam who sold his spirit drawn from wheat for true French spirit of wine ; and in order to give it this flavour he made the grain ferment with the dried lees of wine, which he procured from France, instead of barm; the lees of wine having this adrantage, that they procure a slow fermentation, and, as they contain a considerable quantity of essential oil of wine, they communicate to the spirit the flavour of the wine from which they are taken. In Westphalia, and throughout the whole circle of Lower Saxony, no spirit of wine is to be found anyways passable, although the distillers follow the process observed in Holland in regard to the composition, without acting upon the principles of the Dutch distillers with respect to the fermentation and distillation, excepting the bishopric of Hildersheim and its environs, where the distillers make use only of raw wheat mixed with a small portion of malt ; and this proves the superiority of wheat above all other species of grain.

Notwithstanding all these advantages, wheat is not made use of in Holland for common or general use, as experience has proved that rye, which in ordinary times is much cheaper than wheat, gives nearly a third more spirit than wheat, and that by the way of proceeding they have attained the art of drawing from it a vinous and pleasant spirit, and in point of salubrity by no means inferior to that drawn from barley or wheat, nay, perhaps superior in this respect to the two others. Previously to my entering upon a minute accomnt of the distillation made use of and practised in Holland, I ought to observe, that it must not be supposed that all the distillers scattered through that country are able to make good spirits. You find, on the contrary, in many places very bad genera; it is only the great distillers in Schicdan, Welsep, Rotterdam, and in general the distillers in the province of Gueldres, who are capable
of delivering the spirit, which is so much sought after and valued in foreign countries, while petty distillers, though they follow the same method, but not to the same perfection, from want of a knowledge of the first principles, and of a good theory of the art of distillation, fail in their object; and it is for this reason that the scrrants and workmen who were procured in this country from the distilleries in Holland, have never been able to succeed in producing a spirit of the same good quality as their antient masters made in Holland; and this is exactly as if a machine employed in manufactories were given to a man to make a stuff the properties of which he does not know. The art of distillation is a branch of chemistry, and subject to the principles and unvariable laws of that science, and a person destitute of a knowledge of the first principles of that science will never attain to the desired degree of perfection in the distillation of spirits from corn or grain. In Holland are also found unprincipled distillers, who, making use of spoiled grain, have recourse to the pernicious additions to cover the bad taste and flavour of their spirit; but fortunately the palate of the people is so accustomed to a pure spirit, that this pernicious geneva cannot be sold in the interior, but is for the most part exported to the two Indies, Africa, and other countries.

Commonly three sorts of spirit are made: one which requires to be rectified over juniper berries for the use of the interior, which is in some degree weaker than that exported for England, because in Holland it is not usual to mix it with water, but to drink it pure ; another for being exported to England, also rectified over a small quantity of juniper berries, but some degree stronger; and a third sort, rectified to the same degree of strength, but without the addition of juniper berries, for exportation to America, because the North Americans do not like that flavour, but prefer the spirit quite pure, without any addition which may gire a peculiar taste.

There are two principal processes:-The major part of the distillers take a quantity of flour of ryc, ground rather grossly, mixed with a third or fourth part of barley malt, proportionate to the size of the tub in which the vincus fermentation is to be effected. They begin by mixing it with cold water; this mixture is much stirred with the hand to prevent the flour from gathering into lumps, and that it may be evenly divided. When this point is attained, water is added to the mass, which watcr must have been heated to the degree of the warmth of human blood: the whole

112 On the Distillation of Spirits, \&of. in Holland.

must be well stirred, in order to divide the grain in an even manner; after which the ferment is mixed with this wash, after it has been previously well diluted with a litile of the liquid. Great attention should be paid to the tub being kept in a moderate degrec of warmth, fit for the intended fermentation, by giving the air some access to the liquid, and by preventing the rays of the sun from falling on the tub in summer, and by procuring a current of fresh air for the laboratory: the fermentation generally begins in this rase six hours after; should it be sooner, it is judged that the fermentation will be too strong, and means are employed to check it : if it does not commence soon enough, proper means are made use of to accelerate it: if the fermentation be well conducted, it generally terminates the third day, and the liquor grows very transparent, and assumes an acrid taste, hot, and biting on the tongue. When it has attained this point, the wort is well stirred, and the mash with all the corn is put into the caldron; and hereupon they procced to the first distillation, which is conducted very slowly. Great attention should be paid, that the mash be taken exactly at that time before the aectous fermentation, which destroys the spirit, can begin. The slowness of the first distillation is a point of the utmost importance; becanse, if you proceed rapidly, the essential oil goes over with the spirit, and mixes with it so intimately, giving it at the same time an unpleasant taste of corn, that it is impossible to separate it from the spirit, or to destroy this taste, but by pernicious additions hurtful to health: thus, then, the success in obtaining a good spirit chiefly depends on the first distillation. Hercupon the liquor is rectified over juniper berries once or twice, according to the sort of spirit which it is inteaded to produce. For common use one rectification is sufficient ; becanse, if the above precaation be attended to, the spirit is sufficiently nild to be drunk by the people, though not so fine, pleasant, and delicate, as that which has undergone several rectifications; and the product of these meltiplied rectifications is called double geneva, and paid for accordingly. Some distillers mix their juniper berries immediately with their wort, and cause the whole to ferment together: but in this case they can only draw from it a spirit for the use of the interior, or for exportation to Enclend; for this reason they are generally only made use of at the rectification. In the beforementioned case, and matiod of operating, I would however recommend the addition thercof previous to the fermenta-
tion, because the juniper berrics by their aromatic virtues aingment the spirit a little if the fermentation be conduct at in a proper manner, as will be seen in the sequel.

The second method observel by the best distilicrs is as follows:-You take the malt and rye in the given pooportion, and further some warm water, heated to a certain degree of warmth; you mis the com, grosely ground, with this water, stirring and working it well, until the whole be well mixed and evenly divided; then let the wash rest some time, until the meal has setrled at the botom; hereupon let the liquid matter flow into the fermenting ttib, and recommence the same operation with another quantity of water poured upon the same corin, and repeat these operations until you are convinced that the water thus drawn from the corn at difierent times has dissolved the whole saceharine matter contained in the meal ; put this water into the fi:menting tub, and as soon as the warmth is diminished somewhat under the temperature of the blood, add the ferment. The fermentation does not berin so soon as in the first method, but is more regular and slow. Other distillers, who observe the same method, pour all the water which they intend to make use of in order to have a well diluted wort, and of an equal degree of heat, at once in a tub, and put their meal gently and slowly into this whole mass of water, while one or two persons are quickly stirring the mixture with sticks made expressly for that purpose, in order evenly to divide the meal, and to prevent it from gathering into lumps. When the whole is well mixed they proceed, as mentioned in the preceding article, by drawing ofl the liquid from the grosser matter, \&c. Sec.

This method is not entirely to be rejected, because the water has thus a more free access to every part of the corn, and for this reason can more easily extract the saccharine matter. After the fermentation is finished, and the liquid has become very transparent, and assumed the hot and biting taste, you proceed to the aforementioned slow distillation.

In all these cases the water for making the wort must be more heated in winter than in sumner; and when the weather is uncommonly hot, you should cool the liquid with cold water, and at the same time add to it a little fresh flour; and by this means you obtain a slow and almost imperceptible vinous fermentation, which is a very important point in regard to the quality as well as the quantity of spirit.
[To be continucd.]

XII. On the Cure of the Gomi. By A. Stennouse, M.D. Edinhurgh*.

Ih.sve heretofore given some communications on the "ffects of ginger in the gont; and, althongh I have received much relief in the painful stage of that disorder, by the daily use of it for these three years past, yet the debility that followed was not less tedious: so that I continued my pursuit of something more efficacions, which I am hopeful 1 have at last found, and which I consider it to be a duty to prommate. Much have I thought for these cighteen years, and many an unintelligible page have I read upon this subfect : but to come to the preent question, since I am not wating a book:-In the month of April list, a publication was put into my hand, which hat escaped my notice, by a jedicious acquantance, to whon I am much obliged, entithed 'Facts and Observations respecting the Air-pump Vapourbath \dagger in Gout, Rheumatism, False, and other Disorders; by Ralph Bleghorough, M.D., Member of the Foyal College of Surgeons, London;' which apparatus, if it has all the effects ascribed to it, should be in every hospital and neighbourhood. I was so much pleased with the successful operation of this apparatus, because it confirmed an opinion I have long entertained of the immediate cause of a paroxsm of the grout (for of the gout I am only speaking that I was dummed to ry the experiment on myself the first opportmity, thongit on a more simple scale: my opinion will be checidated by the following remarks and capriments:

The immoliate canse of all acute pain I take to be chatermaton or obstration: the later is surely the immodiate canse of a gonty proxym. To trace canses to their elunont is but an uncertain pursuit, and camot be attempted here. That this nostruction takes place in the minute banches of the arturies, I hold to be true; nor do

[^19]I see

I see any phenomenon in a fit of the gout, but what may be accounted for by this hyputhesis. It will be easy to see that for the present I deny the existence of gouty matter; nor do I consider the earthy concretions formed in the joints after repeated severe attacks io be a proof of this, since the same phrnomenon may be produced from the blood out of the body by a similar process. It is remarkable that, though much has been written on this subject, so little has been attempted, either to prevent the generating this disease, or mitigating the violence of its paroxysms. The reason of this I take to hare been a supposition that there was something deletcrions in the obstructed matter, and that it was unsafe either to prevent the fit, or tamper with the paits affected: of this prejudice I have had my share until within these three years. There is a prevalent opiniou I know, with those unacquainted with the laws of the circulation of the blocd, that there are applications, very improperiy called repellonts, which may drive back the gouty matter; but I tell my gouty readers, there is no operation can take place in the mimal system in this sense: in fine, there can be no repellents nor discutients where there are no absorbents: but my readers must be cautions how they counteract the intentions of nature, or, if they minst use the word, they must heware that by improper applications they do not repel the disposition of the system to produce a paroxysm, and thereby send it to some more vital part ; which happened to myself, the first symptom I had of this disease.

I come now to describe my practice upon myself; I have already said I took the hint from the air-pump vapourbath eight or nine months ago. The end of September last I was attacked in my right hand, but being in the country I could not put my intentions in practice until I came home; by this time the fit had acquired its last stage both in pain and swelling. I then got a common tureen half full of boiling water; I laid my hand across, and covered all over with some folds of flamisl ; but presently the stean was so hot, that I was obliged to reduce the heat of the water so as to be able to bear the steam. In a few minutes the pain abated, and in about 25 minutes I was perfectly free from pain; and as the steam became so cold as to be no longer useful, I dried my hand and wrapped it up in flannel; and, had it not been for the sweliing, I could have used it as well as if nothing had happened. About this time my right foot began to give me some svmptoms of an attack; I allowed it to proceed for abonit $2 \dot{4}$ hours, or until

I was comineed it was to be a real fit. I then got a pait with two hambles, and from the handles I susponded a towel to rert uy heel upon; I then filled the pail with boiling water, so fill as not to touch my heel, and covered it orer with several folds of flamel for about half an hour, as in the first experiment; I dried my foot, and wrapped it up in flannel: I was perfectly frec from pain, and walked about the room as usual. I repeated this immersion five or six times this day and the following, since when I have had no complaint in my foot; but, as I had only immersed my hand once in steam, in two days the pain returned, as if the obstraction had not been perfectiy removed. I had recourse to the steam again, which I repeated two or three times. I have waited thas loug to give a fair trial to its cilects. I am still alive, and have been in good health ever sines, though at the border of seventy.
bay I not fairly say that here are two cxperiments, and, what is more, at different stages of the paroxyms, which have been succestul in removing the immediate cause, which I con-ider to be obstruction only, by the relaxing quality of the steam, or, what is the same thing, diminishing the prestre of the common atmosphere? Finall \therefore I shall continue the ginger daily, and repeat the vapou -bath when necessary; and if either stomach or bowels, or wher-viscera, shall be ataded, I shall immerse my whole bory in a hogacad of sterm. To prevent tie frequent return of the paroxsm: ! live ab-temionsty, being cotan that, in my case, the habit of body between repletion and imanion will combuce thereto; and sach a state will be the mos likely to present or mitigate diseases of ame kind. If what hasem and and done simall be thought cremens, I thall lis the rod of conviction.
A. Smanotse, N.D.

SVII. On the Lse of Steamed Pontoes as a Sulstitute for Hay in Cuttle ${ }^{*}$.
The silvei nodal of the Society for the Encouragement of Arts, Manufactures, and Commerce, was this session voted to John Christian Curwen, esq. M. P., of Workington Hall, in Cumberland, for his extensive experments on fecding cattle with steamed potatecs; from whom the fol-

[^20]fowing accounts and certificates were receired, and to which engraving and deseriptions are amexed:
sir,
In a letter, which I had the pleasure of addressing to you some time ago, I took the liberty of hinting at an experiment I was making, in giving steamed potatoes as a substitute in a great measure for hay.

I was then wholly maequainted with its having been tried. It was from my friend the bishop of Landaff I first learnt that the Board of Agriculture had made a report upon it. As 1 do not find that was carried to any great extent, nor given in the way I have done, I shall, with much deference to the Socicty of Arts, \&ic. offer what has occured to me, together with the plan I have adopted for steaming and washing. Hawing nothing of the kind to assist me in my begiming, I found great difficuty and much time consmmed, which I trust this will remedy to those who may be inclined to make the experiment.

My respectable friend and neighbour the bishop of Landafl took the trouble of examining the process, and inquiring into every thing relating to it, and has certified the complete success of the plan, and his approbation of the apparatus. It was in consequence of the alarming failure in the hay crop of the year 1801 that I found myself called upon to take some steps to prevent the serious consequences which were likely to result from it. The importations of hay from Ireland in August were from 9d, to 11 d . per stone of 14 pounds. In this situation it fortunately occurred to me, that I had for many years given a proportion of steamed potatoes, mixed with the other food, to my hounds, and found it to answer extremely well. If hounds could stand their work with this feed, I could scarcely admit a doubt of its being a hard as well as nutritious food. Under this impression I began my steaming in October 1801, and continued it till late in May. The prejuctices I had to encounter were such as would have defeated the plan, had I not followed it up for some months with constant and unremitting attention ; and whoever attempts it, will have difficulties to contend with that require particular attention to orercome. In no one instance did it fait, and my horses were never in such spirit and condition. ha October last I recommenecd my operations, and am able to steam from 160 to 900 stone, of fourteen pounds cach, per day: I have fed upwards of cighty horses constanty both seasons; and theis year I have extended the feed to my
milct cows, taking away all hay and onty giving a little straw. Each horse has a stone and half of potatocs, or twenty-one pounds, citimated at 3 d . per stone, $4 \frac{1}{2} \mathrm{~d}$. ; steaming, a halfenny; ten pounds of bruised corn, 6 d .; five pounds of hay, od.; two pound of cut straw to mix with the corn, a hallienny; natar on the whole $13 \frac{1}{2} \mathrm{~d}$. per day. Each tub of potatoes, containing eleven stone, has one of cat straw mixed up with it ; it is given warm, and a horse will eat a stone in less than half an bour, whilst between six and seven would be required to cat a stone of hay. The time gained for rest contrihutes greatly, I have no doubt, to promote the health and condition of the horses.

The facility with which potatocs can be transported from place to place, is much in their favour: and being without damage, to which hay is liable, is a further object. The indivedual gain will be found great where ground is highly rated and not easily procured, as will be commonly the case where horses are most wanted. In a national point of view it may be important, shouk the population of the country adrance as rapidly as it has for some years past. The potatne crop is protheed from ground which would otherwise be under fatlow; and when proper care is taken, the wheat after potators is equal, if not superior, to that from fallowed grond. The year previous to my adopting my present method, I sunk the reat of mo fam, ralued at a thonsaid pouncis (abont zoo acres). and seven hundred pounds beside:. In the ia y yar I leared, receiving the same prices for my work, $\mathfrak{g}_{1} \leqslant_{3} 1$. The only difference 1 can point out is in the price of acs; this might deduct 3001 . I had forty acres last year under potatoes: the wetness of the ground, and the very mafarmable sason, made my crop a bad one. I shall have this year sixte. I have found no dificulty in importing from Seotand and Ire'and, at 3 d . and 31 d . pei stone. The quantity being more than I requird, i hase sold to the poor at reduced prices at ad. Whilst the markets were from 5 cl . to 6 d . I had 300 acers muder has, and never sufficent: I expect that 150 now will be more than sufficint for all my wats. The value of hay was heretofore in proportion to my necessity : haring no longer occasion for any, the price will full to the neighbouhood. Indecd it has, as I might purchere at od. per some what was seldom or ever meder gad, and more frequaty a shilling. I have every pond of hay weghed, sa as to prewan all waste; and, though the is sone trouble and expense, I have reason to beheve it is andy a a aid by the veconomy it enforces.

I beg pardon for the unreasonable leneth of this letter. Without a considerable degree of enthusiasm, I should never have got through with my undertaing ; and the society will, l hope, excuse me if I have attached more inportance to the matter than it deserves. If any further information should be waned, I shall be happy to give it.

With great respect,

> I have the how wo be, sir,
> Iour obedient servant,
J. C. Curiyer.
P.S. I make no difference in the feed of a cart-horse, or me of my carriage horses; the allowaice is the same. The coals for steaming 160 stone of potatoes, I have found to be two Winchester bushels and a quarter, or 137 lb . ot coal. One labourer also is sufficient to steam, wash, f.s. id. Sc. 160 stone - - - $\quad \underset{0}{ }$ i 8 Two Wimchester bushels and a guarter of coals, at 3 d . each bushel

0	0	\vdots
0	9	3

To Mr. Charles Taylor.

SIR,

In addition to what J have had the pleacure of communicating to you on the subject of potatoce, I wish to add a fere obsersations, to guard such as may be melinel io make the experiment of feeding with them, aganst the prnicious effects of the liquor which distils from the potatoe. The first atempt I made to give potatos to homede. wan
ifteen years aron: they were boiled with their other food; but I was soon obliged to desist from it, the hounds le ing very viokently purged and affected by it: from this trial I was satisfied that the potatoe liquor contaned a very poisonous quality, which must he highly pernicions. Indeed, I have no doubt, if any amimal was suffered to drink the water which comes from the potatoe, it would be destroyed by it. It is upon this account I adopted the leaden cistern upon which the tuh rest., and into which the steam is introduced. Though I an satisfied there is a great loss of steam by it, and an increased expenditure of fucl, yet to keep clear of the potatoe liquor mixing with the potatoes, is of the first importance. As a remedy against the loss of steam, I should advise to lengthen the steam-pipe in the cistern, so as to throw the stean to the centre of the tub, and to have a hole cut, and covered with a leaden cap, with boles for the steam to pass through ; by which means the condensation will fall by the sides of the tub, and much steam be sacel. The potatoes are made much drier by sulfering them to stand a few minutes in the tub after the stem is taken from them.

I had so litule assistance from any thing previonsly done in steaming, that the first season it required five men to do the work which one man cam now accomplish with ease. It iwok two persons to wash them, which they did in a very inconplete mamer; two to steam and bruse, and me man and a horse to fiemish water. The wa-her will be found to anver the puppos admirably well ; and when the saving of water is an object, its value will be increased. Sereal priate families diave adopted them upon a small scale, and thand great consenicnce from it. Ibelieve the methon! I have alopted of mixing a portion of cut straw (from a tenth to an cleventh part) is highly adrantageous: first, as it prevents the food passing too quickly; and, secomdly, as it heeps the mouths of the horse from being chogeded with the potatocs. Should doultes still remain as to the performance and health of the horses thes fed, I am reaty to afford uapuestionable proof from the persons who have the care of them. I chall ahays be ready to answer any quetions, or to aford aby further information in my power.

From what I have previonsly stated, the adrantages I have aticaderaped fom this meihod will be apparent ; and I canmon but sincercly wh, hoth for the adrantage of the prabic and individuals, that thongh the medime of your nlos.
most useful and respectable society it may come recommended to them; which cannot fail of having considerable effect.

> I have the honour to be, sir,

Your vbedient servant, J. C. Curwen.

London,

 March 12, 1803 .To Mr. Charles Taylor.
P. S. When the potatoes are sufficiently done, being of a heat equal to the steam, the distillation ceases, and the stean comes through the cock. The condensed water from the steam formed during the operation is allowed to run off, affording a constant stream.

The above statements were confirmed by certificates from the bishop of Landaff, and Arthur Young, ceq.

Reforence to the Engroving of Mr. J. C. Curuen's Nethod of Steaning Potatoses for the Lse of Cattle. Explanaion of Fig. I, or the Ground Plan. (Plate II.)
A, the well from whence the water is furnished to wash the potatoes.

B, the spout which conducts the said water to the reserwir, where the potatoes are washed.

C, the frame of the potatoe washer, and rescrvoir of water.
D, a hollow wooden cylinder or barrel, hooped with iron, and perforated with oblong holes: it has a door at D, to allow the potatoes to be put in or taken out; it is of such a size, that eleven stone of potatoes will fill about twothirds of it, which quantity it will wash in two minutes; it may be used six times, or wash sixty-six stone of potatoes, before the water in the reservoir be changed. When the potatoes are taken out of the water, either pump upon them, or throw a pail of water over them, and let it drain through them.

E, the winch or handle, which works the washer by means of a small pinion F, working in a larger toothed wheel G, occasioning one revolution of the washer from two of the handle, as shown more fully in the subsequant plate.

H , the conduit, through which the dirty water is conveyed away from the reservoir.

I, the circle in which the crane K mores from its cente at K , and in tracing which cirche the washiag erfonder, when lifted from the water, is convered to the potatoe back or place of deposit L, which is raised from the floor the height of one of the tubs, ow will neet one of them at the
other circle M, so as that the other crane N may convey the tub from thence to oue of the lad vesels O , on which the potatocs are steamed.

P, the brick-work of the water boiler in which the steam is formed.

O, the grate on which the fire is made.
K, the leaden steam pipe, one and a half inch diameter, a branch from which enters each of the versels OOOO, made of sheet lead, and on which vesiels the tubs containing the potatoce stand whilst steaming.

SSSS, the cocis: which let nut the water condensed from the steam, and impregnated $w i$ ith the juice of the potatoe.
T, the conduit which convers away the water.
V, the frame-work or stillage, on whichi the leaden vessels stand, about ten inches higher than the floor.

U U, the stone troughs, in which the potatoes are bruised after being steaned, and beione they are given to the cattle.

> Explanation of ligg. II.

C, the back or reservoir of water, for cleansing the polatoes.

D, the wooden celinder or barrel, which, by turning the iron axis extending through it, washes the potatocs contained in the cylinder; it is here shown in the state ready to be raiscd, by the crane and jack K , from the dirty water; it can be disenguged from the toothed wheel G, by a jointed noteh between the head stocks at W.
E, the winch handle.
F, the smaller pinion.
G, the larger pinion on a line with the axis of the cylinder.

X, a water-back or cistern above the boiler, supplied from the pump Y, by the spout Z.

N, a crane and jack, by means of which the potatoes, when washed, are convered to the steam ressels.

No. 111, thee of the wooden steam tubs, with perforated bottoms, placed on the leaden steam vessels or cisterns OOO.
$\mathfrak{o g}$, the boiler for the water formed of two iron pans, screwed together by two flanges; each pan is in capacity forte gallons.
r, the laden pipe, which conducts the steam from the boiler to the stean ressels.

OOOO, the four leaden steam vessels, each twelve inches diancter, and nine inches deep; one of them is shown separate fron is wooden tub.

3, a coek which conveys the watcr by a pipe from the reservir to nearly the bottom of the boider.

4, it cock which stops the steam when the potatoe tubs are taken off.

5, a safety ralse fixed upon the top of the boiler, loaded with a weight of about four pounds to a square inch.

6 , a cock fised in the side of the boller to ascertain when it contains a proper quantity of water.

7, one of the potatoe tubs detached from its lead vessel : it is two feet high, twenty inches wide at the top and serenteon inches at the bottom; it will hold deven stone of potators. The boiler will stem sufficuty the four tubs of potatoss in fifteen or twenty minates time; and if the whole are not in use, the lead pipes of those not wanted may be plugged up. Each tub and cover is hed down by four levers, and an iron ball at the cnd of each lever.

When the potatoes are sufficiently boiled by the stean, the crane N raises and removes the tubs from their places to the stone troughs UL, asection of one of which is givera: the potatocs are there bruised for use.
XVIII. A demonstralle, accurate, and at all Thes practicalle Method of atjusting Hadlet's Sextout so as to render the Back Olscruation equally correct with the Fore Olservation; and to measure an Angle of 150,160 , or 170 Degrees, as accuratcly as one of 30, 40, on 50 Degrees. Communicated to the Astronomer Royal ly Letter Cuted Sept. 9s, 1503. By the Rev. Michial Wird, of Tamzorth, Staffordshire.
Having several years used a Hadley's octant by Dollond, of the common construction, to compute the time from the sun's double altitude, in ordor occasionally to examine the rate of going of a gridiron pendulum clock, I have ofen lost a number of observations from want of certain dependence on angles above 90° : the same inconsenience attended all attempts at revising a table of parallaxes of stars above 45° meridional altitude; and also all lunar distances abore 90° required a more extensire instrument. The one thave, however, being, from its tried accuracr: a great farmite, it became more an object with me to inven some node of bringing this instrument to measure larger angles than 90^{0} than to purchase a more extensite one Hatemg myself that the subjoinel experments and obserations
will give, if not exactuess, at least a demom-trable deviation within 15 soconds, I shall fect myste happe if what I communicate prove of service to others in its present state, or may give rase to any new idens of improsement in the instriment itseli.

It is a known principle in optics, that the angle of reacction is equal to the angle of incidence: hence the angle formed by B and C in fig. 1. (Plate III.) being greater than a right angle B recciving a my and transmitting it to C, the consequence from the above principles is, AI becomes greater than AE ; $\mathrm{A} E$ being equal to the distance of the reffecting points in B and C in the second figure, B and C forming a right angle, E and D coincide in the third figure ; B and \bar{C} forming an angle less than a right angle, $A \bar{D}$ becomes less than AE.

Let us now suppose the eve placed behind G in fig. 4, so as to obscre or bring the point G upon A, and behind H in the line BII let the flame of a candle be placed; it is crident that the ray $H B$ from the flame will fall upon B, be reffected to A, and be again reflected by A in the direction $A G$, so as to be distinctiy seen by the eye behind G.

Unserew the lever of the back obscration glass, and, tuming it round, adjust it like the fore observation glass: in this attempt it will be found necessary to remove the sight-rane to a new situation, which may be done by glueing a small bed of wood on the side at Z to hold it **.

Having

* It may be useful here to remark, that in upwards of 1000 altitudes of the sun, thicn wih my insirument with the back obscrvation glass, turnct as here deseribed, and the gight-vane in a bit of wood fastened to the side, and ali the opening of the back obscration glass covered by fastin: p per over its surface, cxept a strip exactly arod as the opening, and at riche angles to it, I bave found, upon taking any ero number of double alaindes of the sun, with their comespondent times. that when the avernow was found it atons accorded in time and altitude with the midde face; wheras, when I have tried the fore observation glass in the same maner, it wor fretuently subject to deviation, and very seldom woud be amportoniag, when tioh ecupied the midele of the columa. ICt an cacmpie, staten bovenint, testify to what I asert.

Having adjusted the lack observation glass as for a fore observation, draw a pencil line from its centre to the centre of the hole in Z, and from the centre of the index glass let fall a perpendicular LM: this line in my instrument is 6.33333 inches.

Now Gll being previously made equal to LM, and the index set to zero on the limb, turn the back glass to its proper situation, and adjust it as nearly as you can.

The line GH is now to be changed for the following ap-paratus:-In a scale of wood (fig. 5.) about five inches broad, a foot long, and an inch thick, let there be a slit made * two or three inches long, and not excecdine 1 -3oth of an inch in breadth: at $6 \cdot 3333$ inches from this slit let a scale of inches divided into tenths begin both ways; lut a telescope, A, magnifying any number of times, from three or four to thirty, be 80 contrived as to move nearer or further from the slit by means of a screw, and also perpendicular to the plane of the scale; let the telescope also carry an index corresponding to the centre of the cross hairs within it ; opposite to the slit let there be a socket to hold a small bit of candle. The whole will be casily comprehended by inspecting fig. 5.

Fix both instrument and apparatus on a plank, or in a box open at both ends, so that GM may, for a reason to be given below, ive $176 \cdot 88734$ inches.

If $G K$ exceeds $G H$, the angle $A C B$ is then more than a right angle, and the angle KBH is donble the angle SCB . for SCA is drawn to represent a right angle.

But if GK equals GF, the angle ACB is a right angle: and K and H coinciding, the angle KBH ranishes of emase: SCB ranishes also, and coincides with the right angle SCA.

But if GK is less than GII, so as that h fall on P, then the angle A GB will fall within, or be includat in the right angle ACS, and the index line GB will take an angular situation similar to that of the line CW , and the angle $\mathrm{P}_{\mathrm{B}} \mathrm{B}[\mathrm{f}$ will be double of the then angle SCW.

The reason why ABH is double the angle S CB :s: Suppose a ray comes from G upon A, is thence reficeted to R, the index glass B being set at more than a right angle to

[^21]$\mathrm{A} C$, whtever excess in inciadence A receives, the same excess in reftection also it transulits to GK; of course, therefore, KBH is double SCB .

The apparatus being thus explaned, and the prineiples established, Ict us now apply them practically to measure the angle K Bll.

Let us first find the length of BII or GMI.
From the property of the circle it is evident, that if the radius be $5 \cdot-245 i 8$ mehes, the sine of one derree will be one inch, and the sine and tangent of angles less than ten rainutes have no discernible difference: therefore the sine may be nsed for the tangent: therctore 343.7546 inches radius will give six inches for one degrec.

Now, six inches being divisible bito sixty tenths, onetenth of an imeh will correspond to nomemute: but, as has been atready observed, the angle KBII whil measure double the angie SBC; therefore fulf the radius with the same sis inches sine, wiil mosume out the mantes of the argte $S B C$ at one-tenth of anch for ex 1 minute.

Then 1 re-s57. 1 inches mast be the length of BH or Cli.

If ihis length be doublect, then each tenth will measure hinty somonds.

If tripled, the divisions will be twenty seconds each, Euc. Sic.

Having phod the instrument, and diaceted the telescope along the hme (A to A , light the candle and look for its reflection thangh the slit, and you will find three, five, or seven line of light, but the midale on the brighest; bring that into the centre of the telescope by serewing the telescope nater to or further from the stit, as occasion may requite : then mote at what division the indes on the telescope Sands: suppose it at qut of disisions to the right, the mstrument will meazure all angles by back observation 4' $15^{\prime \prime}$ ton much, yet subject to the laws of the back obserration in the common way then an angle of $49^{\circ} 59^{\prime} 30^{\prime \prime}$ so raker, must be dimmithed to 42° a $45^{\prime} 15^{\prime \prime}$, and this taken from is 50° leteves $137^{\circ} 11^{\prime} 45^{\prime \prime}$, the true angle : and so in other anses.

If this mode be not approced of: another, perhaps as accurate, may be tricd. Sict the halde of the telescope to o on the scale of the appatans, and the inder of the instrument at on the lints; then more the index of the instrument along the labls the middle bright light oceupies the centece of the telescone as before; and the angle of devia-
tion, if to the left, must be sultracterl, if to the right, added: thus $4^{\prime} 15^{\prime \prime}$ in the example just given being to the right, must be added.

Many more, and perhaps useful observations, might be given, and a mode of setting both glasses perpendicular to the plane of the instrument by the use of the above apparatus; but I fear I have aiready exceeded the limiss allowed to communications in a monthly publication, and shall therefore add no more-except to say, it will give me much pleasure to find the present communication considered as useful.

February, 14. 1804.

NIX. On the Thility of the Oxygenated Muriatic Acid in the Cure of Scartet Ferer; with an casy Niode of preparing it for Metical Purposes. By Mir. John Ayrey Brathwaite, Memier of the Royal College of Surseons in London, and Surseon to ihe Lancaster Dispensary *.

H aving frequently experienced the inefficacy of the common mode of medical practice in the Scarlatina anginosa, I have been indnced to make some inquiries into the nature, canse, and treatment of that disease, which has been prevalent in this town and neighbourhood for three vears last past. The result of my observations has been the diseovery of a remedy in this divease, which is as much entitied to infulibility, as mereury in the lues, or bak in the ague: it is casily prepared, by any apothecary, of materials with which his shop is, or ought to be, always supplied; and requires no complex pharmaceutical apparatus with which those unaccustomed to practical chemistry are often liable, even from proper materials, to prepare chemical preparations totally difierent in their properties from those intended.

As I have no doubt but the contagin of the scarlet forer produces an extraordinary degree of disoxygenation of the system, with great debility, and exhanstion of the sensorial power; I was led to suppose that oxesen, exhibited in some easy and pleasant manner, might not only destroy the contagious matter adhering to the tonsils, uwala, sce, but, by penetrating the fine moist membrane of the lungs, and by chemical aitraction miting with the blood, excite the action

[^22]of the arterial system, warming the extremitics, increasing insensible perspiration, exhilasating the spirits, and, invigorating the rital principle without exhanting it, would prove an efficacious remedy in this but too tatal discase. This I have experienced in the ox:genated muriatic acid, whose known property of destroving putrid misms, and preventing infection, ii a gaseous state, has total!y abolished the abourd farragos of antient practice.

Variolons and vaceme virns, expoed but for a moment to the sapour of oxyenated muriatic acid, lose their contagious propurties; and the latter, rubbed with one-eighth of a grain of oxide of iron (rulign ferri), will rarely communtate the disease : what then may we not expect from this active and clegant preparation! clegant I may justly antile it, as, when properly prepared and sufficiently diluted, it ma: be ahministered to patients of all ages, being a safe and eifiacious remedy, posecosed of a slight degree of gratelul acidit.

When called to a patient, in whaterer stage of the scarlet ferer, my practice for two years last past has uniformly been as follows:-One dam of oxvenated muriatic acid is mixel with eight ounces of distilled water in a vial, and shaken together : this quantity should be taken every twelve funs by a patient from fourten to twonty years of age; hont it is preicrable to administer it in draughts divided from
 butles, as the patient's age and situation reguine, ordering them to be taken at such periods as for an adult to consume the quantity in the tire mentioned, and to younger patients smallier doses, as half a dram or two scruples of the aed to cight ounces of water. By this method the oxyen gas is motsparatud and lust cach time the vial is opened, as mase caty be perceived by its smell in the apartment. It is akis absolntely necessary the modicine be placed in a dark sitnation, wapped in priper, 10 prevent the disoxygenating influme of light.

Shace the use of this modicine I have never had recourse to emeties, purgive, blisters, or diaphoretics ; a regular persevenace in the oxyenant remedy has miversally succould, my pationts mpate recovering, and being seldom afilicted wih thoe comphants succeding the scarlet ferer, stels as pain of the joins, parcity of urine, and universal anazomonsallings. Exen should these follow, I recommond a continatace of the modicine wat these somptoms entirly w-appar, Shich will be fousd much carlier than b_{y} the ustal hode of tratment. Indech, if the oxygenated
preparation is duly persevered in, I am of opinion those painful and distressing affections will rarely occur. It is also possessed of this desirable property, that it may be easily taken by children, who generally are the most numerous patients in this disease, and to whom all medicines are administered with difficulty; [have frequently heard then cry for that stuff which mended their throat, as they expressed it: indeed in that respect its effects are truly admirable, far surpassing the disagreeable practice of gargling and syringing, which in numerous instances, even if possible to do it, is productive of mischief. How far superior then must be a remedy which, by passing over the infected and frequently ulcerated part immediately, not only gives instantaneous relief, but entirely removes that futid smell originating in severe cases from these parts! Patients often wish to be frequentiy sipping a little of the oxygenant liquid: which is not improper; but it must always be done out of a wine glass, as admeasurement with a spoon is dangerous, the oxygen rapidly oxidating the metal of which it is composed, and by that means conreying into the stomach a poisonous fluid, from which death might ensue.

The muriatic acid has long been used as a medicine, and sir William Fordyce strongly recommended it in the ulcerated sore throat and putrid fever; but the oxygenated muriatic acid has, I believe, been rarely employed: Dr. Crawford * once took twenty drops of it, diluted with water ; but soon afterwards found an obtuse pain, with a sensation of constriction in the stomach and bowels: this uneasiness, notwithstanding the use of emetics and purgatives, lasted for several days, and was at last removed by drinking water innpregnated with sulphureous hepatic air: this effect he attributes to the manganese, which had been used in the distillation of the acid, containing a portion of lead. I should rather suppose it proceeded from the dose of twenty drops being taken. Oxygenated muriatic acid readily gives to living animal bodies its superoxgen, and the remains is common muriatic acid; a dose of which similar to the above nould undoubtedly, in delicate constitutions, produce similar effects. In no case whatever have I found it necessary to exceed the quantity before mentioned, but it has sometimes been done by my patients through an anxious desire to get well: the same uncasiness has, however, been produced which Dr. Crawford experienced, though the preparation

[^23]was made so as not possibly to contain either lead or any other metallic substance.

To prepare the oxygenated muriatic acid in a perfect state of purity, put two ounces, by measure, of distilled water into a narrow tubulated bottle with a ground glass stopple; into this gradually pour, by measure also, as much muriatic acil, the specific gravity of which is as 1170 to 1000 of distilled water, frequently shaking the vial ; add then to it two drams of oxymuriate of potash *, which in a little time will fall to the bottom, the acid seizing the small portion of alkali, and liberating beautiful globules of vital air, which slowly rise towards the surface, diminishing as they ascend, superoxygenating the acid: a little agitation now and then facilitates the process, but it will be three or four days before the acid becomes hyperoxygenated : the stopple should be put loosely into the vial and tied over with a piece of bladder, but not too tight, allowing it to move when the gas is rapidly extricated. This process should be performed in a dark situation, and the oxygenant medicine be after preserved, by putting orer the bottle a circular piece of pasteboard, to prevent it from being injured by the deoxygenating power of light.

It is not in scarlet fever only that this preparation promises to be of adrantage ; I hive found it useful in angina maligna and other diseases procceding from or producing a deoxygenation of the blood: in many lingering cases of the late inhluenza it was exhibited with evident advantage, in the doses above mentioned.

From the trials made by Guytun Morvean and others, it appears that the oxygenated muriatic acid in a gaseous form possessee the power of nentralizing and destroying contagions miamata, even in rooms where the sick are present, without the slightest inconvenience. Possessed of amazing expansibility, this gascons oxyenant diffuses itself over the most extensive apartments, leaving nothing untouched, and towehing nothing it does not appropriate; rapidly oxidating metallic bodies, particularly iron and steel, (which should be removed,) and radically destroying the most oflensive odours, thereby rendering imocuous perhaps deadly contagious poisons.

To completely purify any aparment, where a patient suffers in the scarlet fever or any other contagious disease, so

[^24]as to render it perfectly safe not only to the attendants but to the rest of the family, take a china teacup and saucer; put into the cup two ounces of common salt and half an ounce of the black oxide of manganese, previously powdered, with one ounce of water; then take an ounce and half of sulphuric acid, and pour a little of it now and then into the teacup among the other ingredients: immediately an amazing quantity of oxygenated muriatic acid gas will be disengaged, and diffused through the apartment: this should be sufferd to remain only a fiw minutes, removing it out of the room into the staircase; by which means the whole house will become impregnated with this gaseous oxygenant : it will be proper to take it into the room frequently during the dary, adding to it a little fresh sulphuric acid, and then replacing it in its former situation.

It was $m y$ intention to have transmitted a more minute account of the scarlet fever, and its mode of treatment by this oxygenant remedy, illustrated with cases; but suffering at present under an arthritic complaint, I found myself inadequate to the undertaking: perhaps at some future period I may again take up the pen to corroborate what I have asserted : should this, however, be the means of rescuing one individual from a premature grave, the intention of the writer will in some degree be accomplished.

Lancastet, March 1, iSO4.

YX. Report of Galvanic Experiments made on Men and Animals. Read to the Class of the Exuct Sciences of the Academy of Turin $i y$ C. Rossi .

I. Experiments on Rallits suffocated in Water.

Thermometer $7^{\circ}+$; barometer 27 inches; pile 25 disks.

Having cut off the hair from the nape of the neck and the stomach of a rabbit, I sufficated it in a pail of water, and, as it gave no apparent signs of life, I galvanized it for twenty minutes : but in vain, as it was really dead. I did the same thing to another, which I drew sooner from the Water, that is to say, while it still exhibited signs of life: but I was not able to save it by means of galyanism.

[^25]A third, being taken sooner from the water, was saved; though it had aiready experienced a convulsive congh, and in all probability would bave dicd without the assistance of the pile. This convulsive cough gave me reason to suspect that a small quantity of water had penetrated through the laryns and the trachea into the bronchice and pulmonary vesicles, which presented inspiration and expiration, like an organie defect, or as an obstacle to these functions, while it causes the glotis also to remain shut in asphyxiæ of this kind ${ }^{*}$. It is for this reason that the application of galvanism is in general ineffectual in such cases, if an artihieial aperture be not previously made in the trachea $t 0$ admit air, which, as a stimulant proper to the lungs, by exciting a cough, may cause the small quantity of water lodged in these cavities to be thrown up. If the animal be then galvanized as above, it may be recalled to life with greater certainty, provided the excitability of the heart and lungs be not absolutely destroyed, as I have mentioned in the article of Bronchotomy, in iny Treatise of Chirurgical Operations.

To satisfy myself on this point, 1 suffocated a fourth rabbit in the same medium, and, having examined the state of the aërian passages, I discovered that the glottis was shut by a spasmodic falling down of the epiglottis; the trachea and the bronchis were empty; but in the pulmonary vesicles I found a small quantity of water, sufficient in this case to oppose the return of the pulmonary functions, unless an artificial passage be opened as already remarked : this quantity of water was indeed so small that it would not have been capable to produce any derangement in the above vesicles, had the atmospheric air been at liberty to exercise an action on the exterior surface of the breast.

To assure mrsclf of these principles I suffocated a fifth rabbit, prepared like the rest, immersing in the water the head ant shoulders only. After struggling some time, it suddenly ceased to more; on which I galvanized it for ten minutes; when it recorered.

It is my duty to state, that in the first the water had penetrated the palmonary vesicles; and when this is the case it is necdless to turn down the animal's head, as some have proposed: in the last, the small quantity of water which entered by incomplete inspiration had not gone beyond the commencement of the bronchiæ.

[^26]II. Expe-

II. Experiments on Rablits suffocated in Sulphurated Hydrogen and Carlomic Acid Gas.

Thermometer $8^{\circ}{ }^{\text {* }}$; barometer 27 inches; pile 25 disks.
It is much easier to recall animal life in these cases of asphyxia, because there is no mechanical obstacle to the functions of the respiratory organs, and as the glotis generally remains open. Having prepared a rabbit, and suffocated it in sulphurated hydrogen gas, (a mode which occasions no agitation in the animal as water does, because it first renders the nervous system torpid, and then extinguishes the property of transmitting the animal fluid capable of exciting the animal and of preserving it in lifc,) in three minutes after apparent death I galvanized it, forming the circle as before mentioned during three minutes, and observed movements either in the feet or at the stomach. These morements increasing by the continued action of the fluid of the pile for eight minutes more, effected a return of respiration and of life at the same time ; but the animal remamed apoplectic. To bring the animal from this state, I applied galvanism, with grat precaution, to the external part of the nostrils, and at the same time made it drink vinegar. By these means the functions of the external senses returned twenty-three minutes after sufiocation, but it remained stupid for four hours.

I must here observe, that I had before suffocated two others on which galvanism produced no effect, probably because it was too late.

Another rabbit, prepared and suffocated in carbonic acid gas as the preceding, was subjected to galvanism for eighteen minutes, but without success. Finding that there were no hopes of recalling it to life, I formed the resolution of opening the cavity of the breast and the pericardium. I then galvanized the diaphragm, forming the circle between it and the spinal marrow; and though the contractions of that muscle were sufficient to excite some morement in the heart, they were not able to maintain it for any length of time. I then applied the galvanic circle to the nerves of the heart, and to the heart itself: it was now twenty-six minutes after suffocation, contractions were manifested in the above organ, and in consequence of the galvanism were repeated at intervals, and continued to forty-six minutes. If then directed the action of the galvanism to the muscles

* 80 Reaum. $=46.4$ Fahr.
of the extremitics, which gave contractions till lify-eight mimutes; when all motion ceased.

I repeated the same experiment on a similar animal, taking care not to begin till eightecu minutes afier: it was preserved from death, but remained apoplectic for nine hours. At this period it was completely restored by swallowing a little vinegar. I then suffocated a third in the same gas; and after galvanizing it for sixtecn minutes without hopes of reviving it, I electrified it positively, and also applied galvanism. I immediately observed, with surprise, distinct pulsations of the heart, and at the same time some respiration, for about eleven minutes; but these movements ceased at the end of eighteen minutes, after which ir was really dead. From this fact it would appear that some doubts might be entertained in regard to the different nature of these two fluids; that is to say, vitreous electricity, and that of the pile. I do not, however, see that their nature is essentially different. I rather observe a difference of condition between them, and particularly in their mamer of acting on animals; for an animal electrified positiocly when it still retains a certain power to anmalize the electricity, is put into a state capable of supporting a stronger excitant, such as the fluid of the pile, which is also electric but differently modified, which being applied to animals the organs of which are already deprived in a great measure of the property of fecling the stimulant, on which they cannot, as we may say, re-act, must be considered as capable of speedily amihilating the little vitality still existing in the same organs, unless applied with grat circumspection. It may therefore be laid down as a general principle, that when excitability is accumulated it may always be cmployed with adsantage; that when real indirect debility exists, recourse must be had to it with caution, and it must be applied on!y by degrees; and, lastly, that if the patient is asthenic, the use of it may become fatal.

To throw more light on this difficult point in regard to the application of galvanism, I shall resume other experiments, which will form the subject of another memoir, containing a detail of several cures obtained by means of the above Huid, and among others of partial palsies, and of a case of hydrophobia, which C. Vassalli-tandi has ahready amounced in his letter to C. Rossi. You will observe that the above-mentioned experiments, as far as concerns the duration of ritality in regard to galvanism, do not exactly correspond in all animaly; whech proves that the vitality of aninials,
animals, whether warm or cold blooded, is not equal in all, though in general the products are equal.
III. Experiments made on a Man decapitated on the 18th of January.
Thermometer $6 \frac{1}{2}^{\circ}$; barometer 27 inches; pile 50 disks: solution, muriate of soda.

A robust man, aged thirty, was decapitated at forty-six minutes after elecen, on the 18 th of January. The body was immediately conveved to the hospital of St. John, where it arrived at fifty-nine minutes after eleven. The thermometer was at 7°, and the barometer at 27 inches : the pile was composed of fifty pairs of disks, and the pasteboard was moistened with a solution of muriate of soda. The scries of experiments were immediately begun.

The first was to excite the diaphragm without applying an armature to the spimal marrow, as is generally done. Having applied the conductor of the positive part to the spinal marrow, and that of the negative to the pit of the stomach, previously moistened with the solution of muriate of soda, the movements excited in the diaphragm were very strong, and those of the heart were no less so. The lung's performed several expirations, charged with vapours which at each expiration covered with aqueous drops the surface of a glass plate even when the conductors were no longer applied. The movements of the heart, which had been excited by those of the diaphragm, continued for three minutes, and were distinctly felt on applying the hand to that region.

Eighteen minutes after decapitation the cavity of the thorax was opened, and the diaphragm was then irritated with the point of a scalpel: the movements were sufficiently strong to excite also the heart; but the movements of the latter could not be preserved by that stimulus as they were by the pile, even when the conductors were no longer in contact with the before-mentioned parts. I then applied, as before, the conductors to the spinal marrow and the diaphragm, and the contractions excited were so strong that the heart was put in motion for five minutes.

Having remored the left lung to uncover the thoracic aorta, I applied the conductor of the positive part to the heart, and that of the negative to the aorta. The movements of the former were very brisk, and were exceedingly

$$
{ }^{*} 6.5 \text { of Reaum. }=43^{\circ} 7 \text { Fahr. }
$$

striking in the aorta. At twenty-three minutes after decapitation 1 cut the thoracic aorta near its passage into the diaphragm, and it was taken from the thorax, with the heart, and insulated on a plate of glass. I insealated also a portion of the anterior straight muscle of the left leg, and at thirty minutes after decapitation I began to irritate the heart with the sealpel; but the contractions were very feeble: those of the straight muscle, excited with the same stimulant, were much stronger ; but it was not possible to produce the least enfect on the aorta.

Thirty-four minutes after decapitation I made use of the pile : it exciled preity strong contractions in the heart, still stronger in the straight muscle, and a few faint contractions in the aorta, which soon ceased entirely. I continued the experimont, sometimes irvitating the heart and the muscle with the scappl, and sometimes with the fluid of the pile, till fifty minutes, when the movements of the heart disappeased altogether, while those of the muscle were still visible by means of the scalpel, and very strong by means of the pile.

I opened the cavities of the heart, that is to say, the ventricles and anicles: the sealpel produced no ffect, the pile alone was capable of exciting some faint morements in the ventricle and right auricle. At this period, that is, at fiftysix minutes after decapitation, the scapel still produced some effects in the insulated straight mascle; but the pile excited in it very strong contractions, which continued till an hour and eightecn nimutes; after which they entirely. ceased.

I then turned my observations to the maseles of the extromities left in their place: in these the salpel occasioned sensible contractions, which increased very much in strength by means of the pile: they still continad one hour and fifty-threc minutes, at which time I left off my experiments.

These results are perfectly analogous to those which I communicated to the class in regard to dogs which had been decapitated; it is therefore needless to repeat the consequences which ought to be deduced from them. Besides, they will be found in the memoirs, which, by a decree of the academy, will be inserted in the volume now in the press. I shall only observe, that if the theory of Crawford and Lavoisier on animal heat is the most correct of any yet formed on that subject, and if the assertion of Humboldt on the property which he ascribes to oxyen, of nourishing vitality, be true; these experiments will whice us to conclude
clude that the blood of the venre care deposited in the right aurick, though surcharged with carbon, has not power to destroy vitality, like the blood in the pulmonary yein, Which, according to the received doctrme of animal heat, is charged with the recent product of respiration, and which is afterwards deposited in the left aniricle. In this case, Haller, and all those who bclieve that carbon is the destroyer of vitality, would be wrong, or the said theory must be defective. For the left autcle, which dering the life of animals that respire, and which have the heart dirided into four cavities, is in contact with the blood, charged with the products resulting from respiration, is of all the cavities of the heart that which loses vitality soonest,-though, according to Humboldt, oxygen is the nourishment of vitality; while the right auricle, which is the !ast to lose it, is, during the life of these anmals, forced to receive the blood surcharged with carbon.

1V. Galvanic Experiments made on a Minn decapitated January the 2ed.

Thermometer $6 \frac{1}{2}^{\circ}$; barometer 27 inches; pile 50 disks: solution, muriate of scda.
A young man, thirty years of age, siont and robust, was decapitated on the exd of January at noon. The body wa transported to the anatonical theatre of the hospital of S_{t}. John, where it arrived at six minutes atter noon. The persons present were, Vassalli-Eandi and myself, professor Anselmi, Geri, Gioredli, and Massi, members of the colloge of surgery, the chicf of the gendarmerie of the 27 th division, and several others. As soon as it arrived, the experiments were begun.

The object of the first experiment was to cxcite the diaphragm. The conductor of the positive part was applied to the spinal marrow, where it was cut, and that of the negative to the pit of the stomach: very strong expirations were immediately produced, and the glase plate was corered with rapour. The hoart was put in motion, and was still in that siate when the carsty of the thoma was opened to excite it by the mechanical simmlus of the scalpel; and by these means also it experienced contractions. Tho-c excitid at the commencement of the experment, and which had already decreased, were renewed. The pile was then cmplored as before, and the diaphagen exhibited contracfions so strone, that they made those of the heart four times
as strong as they had been when excited by the stimulus of the pile : they continued till fourteen minutes, though those of the diaphragm had ceased.

I then removed the left lung to uncover the thoracic aorta, and at seventeen minutes we applied the conductors to the heart and the aorta near the diaphragm : the contraction of the former were very strong, while those of the aorta were such that they approached the heart, where the conductor of the negative part was applied. Vassalli-Eandi, who measured them with his decimetre, found that the shortening of the aorta was a millimetre. Immodiately after, I ent the aorta transversely near its insertion in the diaphragm; and, having repeated the expcriment as above, the shortening at twenty-one minutes after decapitation was about two millimetres. At twenty-four minntes the heart was insulated with a part of the aorta on a glass plate. A portion of the aorta a decimetre in length was also insulated on the same plate with a part of the same length of the sartorius muscle, while an assistant uncovered the muscular tunie in a determinate place of the small intestincs. Fvery thing was ready at the twenty-sixth minute, and the experiments were begun by irritating all these parts with the point of the scalpel.

The results were as follow :-1st, The heart, with the small part of the aorta still attached to it, gave moderate contractions, while the separated portion made only some faint movements; but those in the sartorius muscle were very strong. 2d, The conductor of the positive part being applied to the small portion of the aorta still attached to the heart, and that of the negative to the apex of the heart, produced movements of systole and diastole much stronger in all the four cavities, and even in the continued part of the aorta, which shortened about a millimetre. The scparated portion of this aorta, the two conductors being applied to the two ends, gave contractions, or rather became shortened about a millimetre. The portion of the sartorius muscle exhibited a shortening of fifteen millimetres.

I then applied the conductor of the positive part to the spinal marrow of the neek, and that of the negative to the place of the muscular tunic, which had been freed from its peritoneal covering, on which the movement of the intestines was peristaltic; and when the conductor of the negative part was introduced into the anus, the contrary motion tonk place. Thirty-four minutes after decapitation the parts were leít at rest till the thirty-sixth minute, and in that interval I uncovered the anterior straight muscle of the left leg;
efter which we repeated, with the stimulus of the sealpel, the cxperiment before described. The results were: 1st, Some risible morements in the ventricles of the heart and the left auricle, more visible in the right, but none in the separated portion of the aorta. In the portion of the sartorins muscie we observed rery strong cont:actions, as well as in the intestines, and very strong contractions in the straight muscle of the leg. 9 , With the pile we excited morements of systole and diastole rery sensible in the four cavitios of the heart, but still more zensilhe in the right auricle, and without any appearance in the portion of the aorta. We remarked a shortening of twelve millimetres in the portion of the sartorius muscle : the morements of the intestines were pretty stiong, and those of the straight muscle of the leg very Etrong. At forty minutes the experiment was suspeided till the forty-fith. After this term, having resumed it as betore, the results we obtained were as follow: -The scalpel exercised scarecly any action on the left rentricle, and loone in the left auricle. There were petty apparent morements in the right ventricle, and still more apparent in the right auricle : we found that those of the portion of the saitorins muscle were two millimetres: none were rexcied in the intesmes, but there were very strong movements in the straight muele. od, On the other hand, we obtained by the pile very faint movements in the left ventricle and auricle, more apparent in the right ventricle, and still stronger in the right auricle. Those observed in the portion of the sarorius muscle were tem millimetres, and very risibje ones were perccived in the intestines; very strong in the betue-mentioned anterior straight mascle. At lifty minutes atter decapitation all the parts were left at rest till filty-three minutes. During this intcrel I uncovered and cut transversely the sartorits muscle. and we then repeated the experiment as before. The results we had with the scalpel were as fothow:

1st, The left ventricle and arricle gave no marks of sensibility ; those cainibited by the right ventricle were sarcely perceptible, while the right auricte gave very strong movements: those of the portion of the savtorits macle were thre millimetres. The intestimes wore not imstand, bu the straight muscle and the two parts of the left satoniog gave rery strong contractions. od, by maning wise of the pile, the left rentricle cribited only very slight movement; and none were produced in the auricle of the same side. The morements in the right ventricle oure more appazent, and still greater in the anicle of the same side. In the portion
of the sartorius they were six millinnetres. The contractions of the straight muscle were very strong, and they were nine millimetres in the two portions of the straight sartorius, which was attached to the respective points. Fifty-nine minutes had clapsed after decapitation, and the experiments were continucd on the same parts; and it was not till an hour and twenty-three minutes that they were abandoned. I shall not give any detail respecting them, because they were made in the same manner as the preceding. The results, however, were as follow:-The aorta first ceased to exhibit contractions which were excited by means of the two stimuli before mentioned; the other parts ceased their movements in this order: the intestines, then the left cavities of the heart ; the right ventricle and the right auricle the last : after the right auricle, the insulated portion of the sartorius muscle, while the muscles in their places still exhibited very strong contractions. It was then thought useless to continue the experiments, since it was proved that the voluntary museles were the last to lose their movement.
XXI. A Report of the State of His Mujesty's Flock of Finewoolled Spanish Sheep during the Years 1800 and 1801; with some Account of the Progress that has been made iourards the Introduction of that valuable Breed into those Parts of the United Kingdom where fine Clothing Wools are grown with Advantage.
On the $9^{\text {th }}$ of June 1800, when his majesty's Spanish thock was shorn, it consisted of 100 cwes and wethers, which produced as follows:

Wool washed on the shecps' back - 398 lb .
Loss in scouring - - - 104
Amount of scoured wool - - $\mathbf{9 4}$
Which produced, when sorted,

Eight rams and nine cwes were this year disposed of, which were all that could be spared from the flock. Two of the rans went into Dorstshire, where the breed is much approved by some skiltul judges of sheep, and seems likely to produce considerable advantage by crossing with the common shece of the country.

Mr. Bridge, of Winford Eagle, communicated this vear the result of an experiment he had made on three kinds of sheep; viz. Dorset, half Spanish and half Dorset, and hall Spanish and half Mendip.

He kept these sheep from the year 1798, when they were lambed, till February 1800, when they were butchered as fat sheep; and having valued them in June 179s, he found the carcases of each sort, with two ycars wool which had been shorn from them, to yield at that time the following increase in value :

| Real Dorset | - | 41 | 5 s. | 6 d. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Half Spanish half Dorset | - | 4 | 3 | 8 |
| Half Spanish half Mendip | - | 3 | 19 | $\mathbf{9}$ |

In these experiments Mr. Bridge's woolstapler values the Dorset wool at 1s. $2 \frac{1}{2} \mathrm{~d}$. a pound, and the half Spanish wool at 1s. $4 \frac{1}{2}$ d. only; but as the Spanish cross in both cases increased the quantity of wool, and as half Spanish wool has never, when its value was properly known, been sold for less than 1 s .9 d . and generally more than 2 s . a pound, there can be no doubt that the improvement in value, arising from the cross, is in both cases considerable.

Mr. J. Ridgeway, of Upperton, in the parish of Yazor, in Herefordshire, communicated an experiment, in which two sheep, the one a Ryeland and the other half Spanish and half Ryeland, of equal weights, were fed by him together : the half Spanish sheep produced in a year olb .12 oz . more wool and 5 lb . more mutton than the Ryelander. This gentleman, whom his majesty graciously permitted to have rams from the Spanish flock some years ago, has also shown by his accounts that the wool of his flock, of about 16 score sheep, has been so much increased both in quantity and in value by the Spanish cross, as to have produced nearly twice as much money for each clip after the Spanishs blood was established in it, as it usually did before.

In June 1801, the Spanish flock consisted of 108 ewe: and wethers,
Which produced in wool, washed on the sheeps' back, 397 lb .
Loss in scouring - - 119
Amount of scoured wool - - 285

Which produced, when sorted,

	237 lb . at 5 s .6
Choice	31, at 3s.6d.
Fribbs	17, at 1 s .9 d .

The wool of the rams and fatting wethers, which had
been kept separate, was prepared for sale at the same time, and produced in

Wool on the sheeps' back	-	$2 \varrho 0 \mathrm{lb}$.
Soss in scouring	-	-
Amount of seoured wool	-	138

Which produced, when sorted,

This fear, eight rams and twenty-two ewes were sold. If the foot rot had not unfortumately damaged the rams very materially, more of them would have been disposed of. It is however observable, that although the rams that are Lept at Windsor in rich land are occasionally attacked by this harassing discase, the ewes and wethers that feed on the dry and hilly pastures of Oatlands have never been subject to lameness of any kind.

Eleven wethers that had been sent to the marshes in order to try the effect of rich pasture in fattening sheep of this breed, were slaughtered this year by Mr. King, of Newgate Market, previous to the Smithfield meeting, which usually takes place the week before Christmas. Two of the carcases were given to persons who had been useful in aseertaining the value of the Spanish breed; the remaining nime were sold to Mr . Giblet, butcher, in Bondstreet, whose judgment in selecting, and liberality in purchasing, the best carcass is well known, both to those of whom he buys and to those who buy of him. The sale bill is as follows:
E. s. d.

Respocing the goodncs: of the mmton, inquiry must be made of Jir. (iblo, at whose shop the carcases were shown
for several days, and of his customers who purchased the joints. Experience has, however, demonstrated already, both at Windsor and at Weybridge, that Spanish mutton is of the best quality for a gentleman's table.

The pelt wool of these eleven sheep was taken off, in order that its value might be ascertained.

It weighed in the yoke	-
Loss in scouring	36 lb
Amount of scoured wool	-
8	

It was sold as skin wool for $4 \mathrm{s.6} .6$ d. a pound, and of course produced 5l. 19s. or 10 s . a sheep, all expenses deducted. The amotint of this profit was quite unexpected, and holds forth a source of advantage in this breed, that has not probably hitherto been calculated upon.

Of all who have laboured to render his majesty's patriotic views in importing Spanish sheep permanently useful to his subjects, Dr. Parry, of Bath, deserves the highest commendation. Amidst the labours of a profession always toilsome when successful, and particularly so at Bath, where persons, whose diseases cannot be ascertained by the faculty elsewhere, continually resort, the doctor found leisure to employ himself in the improvement of the British fleece, by crossing various breeds with Spanish rams presented by his majesty to the marquis of Bath and to the Bath Agricultural Society.

The prizes the doctor has continually obtained from the judicious and respectable body from whom he borrowed rams, for cloths made of his own wool, in the midst of a manufacturing country and amongst abundance of able competitors, prove to a demonstration that he has brought the fleeces of the mixed breed very nearly to the value of the original Spanish; nor is this to be wondered at, when we recollect that the effect of a mixture of breeds operates in the following proportions:

The first cross of a new breed gives to the
lamb half of the ram's blood, or
The second gives -
-
The third
The
Tourth

At which period it is said, that if the ewes have been judiciously selected, the difference of wool between the original stock and the mixed breed is scarcely to be discerned by the most able practitioners.

More need not be said of the doctor's merit : his book, which
which every man who wishes to improve wool ought to sead, will grive a more jast idea of the acuteness of his diserimination, the diligence with which he pursued his purprose, and the success that linally attended his judicious management, than can be stated in the brief form of a report like this.

Much, however, as Dr. Parry deserves the gratitude of all who honour the fleece, lord Somerville's merit stands at least as eminently conspicuous. Emulating the example of his sovereign, his lordship, whose just discrimination of the value of different breeds of stock is admitted by the most experienced agriculturists, made a voyage to Portugal for the sole purpose of selecting, by his own judgment, from the best flocks in Spain, such sheep as joined in the greatest degree the merit of a good carcase to the superiority in wool which the Merino flocks are allowed to possess.

His lordship succeeded, and brought home, more than two years ago, a fluck of the first guality, which will probably repay with adrantage the costs of the undertaking, as some of his lordship's rams are said to have been already sold for 100 guineas each.

As ten crops of wool have now been shom from his majesty's Spanish foek, and not a single sheep from Spain has been introduced into it during the whole of the ten years that have produced them ; and as the tenth crop afforded nearly five-sixths of prime wool and only one-fourteenth of fribbs; it is to be hoped that the deep-rooted prejudice which has for ages deceived the people of England into an opimion that Spanish wool degenerates in this climate, will now be finally lodged in that catalogue of vulgar crrors which the increase of human knowledge daily enlarges. It is to be hoped also that a bold assertion hazarded here, that the mutton of Spanish line-woolled sheep is coarse, tough, and little better than carion, will be contradicted by the evidence of Mr. Giblet and his customers, to the satisfaction of those who have manaliy given credit to it.

His majosty hang beon pleased to permit the sale of such aheep as can be spared from the Spanish flock to be continucd, the ranas will be delivered at Windsor, and the ewes at Oatlands, in the later end of August. As, however, it has been suggested to his majesty that the carcases of the sheep are evidently improved, and that the wool has rather gamed than lost in value, six guineas will in future be the price of a ram, and two that of an ewe. And as his majesty has been gracionsly pleased to continue to intrust the ma-
nagement of the flock to Sir Joseph Banks, all letters on the subject of it, addressed to him in Soho-square, will be answered, and the utmost endeavours used to consult the convenience of those who wish to beconte purchasers.
July 1802.
Joseph Banks.
XXII. Medico-chemical Researches on the Virtues and Principles of Cantharides: extracted from a Nemoir of C. Beauporl ly C. Deteux*.

Though the animal kingdom affords only a small number of substances which can be employed in medicine, it must still be allowed that among those to which it has recourse, there are some the effect of which is so certain, so constant, and so striking, that if they were wanting it would be impossible to find others to supply their places.

Cantharides in particular are of this number. Every body knows the manner in which they act, and the resources they afford in a varicty of diseases. It needs therefore excite no surprise, that an examination of these insects should at all times have engaged the attention of the most celebrated physicians, and that chemists have often tried to subject them to analysis.

The principal object of all those who have laboured on cantharides has been to discover whether the vesicant property, which they possess in the highest degree, belongs in general to all the parts of the animal, or whether it does not rather reside in a particular matter, which, independently of those that accompany it, can act alone, and give rise to the effects produced by the whole cantharides.

It would no doubt be superfuous to relate here every thing which has been done or said on this subject; but it is of importance to remark, that no one before Thourenel pursued the route which would lad to a solution of the proposed problem: it has been therefore since the period when that physician published the different experiments he made on cantharides, that any hopes hare existed of obtaining more accurate knowledge respecting the properties of the immediate materials of these insects.

However, in rendering justice to the efforts made ly Thourenel, it must be allowed also that he has not carried to a sufficient length the labour which he commenced so

$$
\text { * From the Anrites de Ching, No } 1+2 .
$$

Vol. XVIII. No.
K
well,
well, since the neglected some of the most important questions necesary to be treated, and particularly those which relate to the vesicant, diurctic, and aphrodisiac, propertics of cantharides.

To supply in some measure the silence he has observed on these three points, Beaupoil has thought proper to examine canthardes again. The dissertation in which he has published his experiments having appeared to me worthy of being known, I shall give an extract from it.

The author divides this dissertation into four parts.
In the first he gives a cursory view of the specific characters of cantharides; the processes employed to collect them; and the preparations to which they are subjected before they are introduced into commere for medicinal purposes.

In the scoond be gives a short account of the use made of these insects since the days of IIppocrates to the present period.

The third contains a correct account of the attempts made by chemists to analyse cantharides, as well as a view of his own experiments, and of the results he obtained.

The forth contains every thing that relates to the physological essays made with these animals; to the effects produced by the external application and internal administration of then ; and observations on the phenomena observed on opening: several dogs, which the author caused to swallow cither whole cantharides or their different immediate principics, which he was cmabled to separate by means of particular processes.

As the first and second part contain nothing which may not be found in various authors, I shall procced to the third part, which is merely chemical.

It has already becil observed that Thouvenel was the first who examined cantharides in a manner likely to prove useful. Water and alcoholic fluids were, in particular, the two agents which he thought proper to employ in preference for separating from these insects the soluble parts which he expected to obtain. The results by means of these two fluids were:

1st, A reddish yollow extractive matter of a pungent bitterness, similar, he says, to that of ants, except its being less acid.
ed, A yellow matter less dark than the former, and al most insipid.

3d, A fat matter of a green colour, of an acrid savour, and having the smell peculiar to whole cantharides.

4th, A parenchymatous matter.
Similar products were obtained by C. Beaupoil : but, instead of being satisfied with ascertaining their existence, he examined them separately; and in this consists the chief difference between his labour and that of Thouvenel.

He first remarked, that the aqueous solution of the kind of extraetive matter furnished by cantharides soon experienced a sort of alteration when exposed to the air ; that the liquor became turbid, formed a yellow precipitate which acquired a peculiar odour, became covered with a riscid pellicle which emitted a foetid ammoniacal odour: and that when it arrived at this term the same liquor exhibited no longer any sensible change. He then remarked that the solution in question, before it experienced all the changes occasioned in it by cxposure to the air, gare a strong red colour to tincture of turnsole; that when mixed with reetified alcohol, or with cther, it divided itself into two parts. nearly equal, one under the form of a black glutinous precipitate insoluble in alcohol, and the other ander that of a yellowish brown matter exceedingly soluble in alcohol.

He ascertained also that the black precipitate dried readily in the air, became brittle and friabie, and reddened tincture of turnsole; that it combined very well with potash, suffering to be disengaged ammonia ; that when distilled over an open fire it swelled up and gave an acid liquor, a thick oil and carbonate of ammonia, and that it left in the retort a dry, brittle, and friable charcoal.

Proceeding then to examine the yellow matter which remained in solution in the alcohol, C. Beaupoil asserts, that when it is concentrated by the evaporation of its solvent, it retains the same odour and the same sarour as the extract ; that it dissolves completely in water, and reddens tincture of turnsole; that it combines wholly with potash without any disengagement of ammonia; and that this combination results from a homogeneous and glatinous body soluble in water, and capable of being precipitated by a weak acid; and, in the last place, that when distilled orer an open fire it swells up very little, gives an acid liquor, a black fætid oil, and carbonate of ammonia; but that all these products are in general less abundant than those obtained from the black precipitate.

Of these different results the author thought it his duty to attend more particularly to the acid, which, as seen, is so easily observed in the infusion of cantharides, or in the extract which they furnish.

He at first supposed that this acid was analogous to that K 2
of rinegar: he even thought that the existence of it might be ascribed to the practice adopted by those who collect cantharides, of exposing them to the vapour of that acid; but having subjected to experiment some of these insects, collected without the aid of vincgar, he saw that they exhibited the same phrenomena as those of the shops. He was therefore obliged to renounce his first idea, and to attempt to ascertain by experiments the nature of the acid presented to him. It, hovever, appears that all his efforts in this respect were entirely fruitess; for he at length coneludes that he is not yet enabled to give a decisive opinion ; and that, though the acid in question has some analogy with the phosphoric, he thinks that it does not posess all its properties, and therefore that it ought to be placed in a particular class, until that which it ought to occupy shall be fixed by new experiments.

The third product of cantharides, called by Thouvenel and Beanpoil the green matter, does not secm to experience any alteration in the air, at least in its physical properties. It is insoluble in eold water; it liquefies in hot water, on which it floats in the manner of oil : alcohol and ether both dissolve it, and in these two menstrua it is decomposed by water. Oxygenated muriatic acid brought into contact with this mater, and renewed from time to time, does not at first appear to hare any action on it ; but small whitish and shiming scales, which fall to the bottom of the vessel, are gradualy seen to detach themselses from it: in less than eight days it loses its edour and colour, becomes thiek and glutinous, and, notwithstanding several lotions, it always retains the odour of the oxyenated muriatic acid.

Dihuted nitric acid assisted by heat gives it a russet colour, a rancid and pungent odvur, and even a pretty strong consistence.

Caustic soda unites with it without the aid of heat, and without the disengagement of ammonia. The product of this union is decomposed by acids.

When exposed to the highest degree of heat it fuses and forms a liquid, as it were, oily and slightly transparent, which by cooling soon resumes the solid state. In a stronger heat it is decomposed, its colour changes, and there passes over into the recipients a yellowish oil, very analogous to that furnished by ycllow wax when distilled, an acid phlegm, bit nut an atom of carbonate of ammonia.

In regard to the parenchyme, which forms the residuum of the different macerations, infusions, and decoctions, in water, alcohol, and in ether, the author, after ascertaining
that these fluids could extract no more, subjected it to the action of canstic potash, which caused immediately to be disengaged a very sensible odour of ammonia. When this odour was once dissipated the liquor was filtered, and immediately mixed with muriatic acid. The mixture became turbid, and gradually produced a precipitate, which, when dried and put upon burning coals, exhaled an odour similar to that of animal matters in a state of combustion.

Distilled in a retort this parenchyme gave a phlegm, thick empyreumatic oil, and a very large quantity of carbonate of ammonia. The residuum of the distillation presented a kind of charcoal, from which was obtained, by incineration in the open air, a kind of white ashes, in which were found carbonate of line, phosphate of lime, sulphate and muriate of lime, and oxide of iron.

Taking into account the quantity of each of the products obtained by means of the above experiments, the author asserts that an ounce of cantharides well dried contains

> Gros. Grains.

Black matter	-	-	-	1	2
Yellow matter	-	-	-	1	2
Green matter	-	-	-	1	8
Parenchyme	-	-	-	4	30

Acid - an indefinite quantity.			
Phosphate of lime -			
Carbonate of lime -	-	0	12
Sulphate and muriate of lime	-	0	2
Oxide of iron	-	0	4
-	-	0	Ω

To complete the labour which C. Beanpoil had undertaken, it still remained to determine the physiological propertics of cantharides, as well as those of their most essential immediate properties. This he appears to have performed with considerable success in the fourth part of his dissertation. Besides other results, he found the following from the experiments he made on this subject:

1st, That eantharides which have been subjected to no preparation almost always produce disagrecable effects when taken internally; but these effects are relative, according to their intensity, the age, strength, and constitution of the animals, and the dose administered to them: that the œsophagus, stomach, and small intestines, are the parts particularly affected; that such animals as do not fall a zacrifice to their effects experience a desire to puke, very severe pains, and various accidents, which seem to annonnce that the parts touched by the eantharides have a tendency to become disorganized.
ed, That aqueous extract of cantharides in less doses than cantharides themselves, gradually produce, the same effects; but that its action on the urimary passages is more striking.
ad, That the black matter is much more aetive than the extract ; that animals to which it is given are subject to patu and somiting, but rarely any of them perish.

4th, That the green matior given internally does not secm to have deleterious qualities, since all animals to which it is administered, even in pretty strong doses, have not seemed to experience any bad effects.

5 th, That the ycllow matter docs not appear to be more active than the green matter.
oth, That the extract, the yellow matter and the black matter, applied all three separately to the surface of the body, produce the resicant effect nearly in the same time.

7th, That the green matter applicd externally seems not to act when alone; but that its action soon appears when mixed with wax, and when reduced by these means to the consistence of cerate.

I must not forget to observe that C. Beaupoil was not satisfied with trials made on ammals, but had the courage to repeat them on himself. After acquiring all the information necessary, he think: he is authorised to assert that the resicant property resides essentially in the extractive and green part of the cantharides, but that the extractive part alone acts on the urinary and genital system.

From these detals it is seen that the author has carried his exammation of cantharides further than Thousenel. But though his labour is very extensive it is still far from being complete, since many things remain to be done, particularly in what relates io the green matter ; for it is difficuit to conceive how, when administered internally, it has no action on the animal oconomy; while applied externally it produces the resicant effect. This objection which I made to the author, and of which he filt the importance, will no doubt induce him to make new experiments, in order to ascertain what ought to be expected from the use of the different parts of this substance, from which medicine derives so great benefit.
XXIII. Olservations on the Prussic Acid, and the Production of a Pyrophorus by the Prussiate of Iron. By D. H. Grindel*.

I T is well known that Scheele, when distilling prussiate of iron per se, found that a part of the colouring matter passed over undecomposed, and was contained, in combination with ammonia, in the water that first passed over, and also in union with carbonic acid gas in the void of the receivert. I had long intended to prosecute this experiment further, and to examine whether it was not possible in this manner, without further medium, to disengage the prussic acid in the gaseous form from prussiate of iron, to combine it with pure potash, and produce prussiate of potash free from iron. Late observations on the prussic acid in bitter almonds, \&ec. induced me to par attention again to this circumstance, and I made the following experiments:
I. I put a small quantity of Prussian blue of the shops, finely pulverized, into a sniall glass fitted with a pnemmatic tube, and heated the whole orer a spirit lamp, after the tube and the glass had been closely united. As soon as a strong smell of bitter almonds wan disengaged, I immersed the tube in mercury, and received the gas in a solution of pure potash. The gas was continually absorbed by the potash; but it at length displaced the fluid, and I ceased to expose the Prussian blue to heat.
II. The potash impregnated with gas smelt a little of bitter almonds. I then placed it in a sand bath, and suffered it to evaporate slowly to one half. On cooling I perceived at the bottom of the glass irregular crystals, some of which were foliated, others tabular, and some seemed to be cubic. These crystals I separated from the fluid. They exercised a complete rsaction, like prussiate of potash on sulphate and nitrate of iron,-only that the precipitate was greenish blue, and became of a beautiful blue only by the addition of acid after a part of it had been dissolved.
III. The liquid separated from the salt was decomposed with a little alcohol, and there was produced a white tender precipitate, which I again separated be the filter. The quantity, however, was so small that scarcely any trace of it remained on the paper.

[^27]IV. The liquor which passed through had in the course of a few hours, and this perhaps would have been the case sooner had 1 left it at rest, deposited at the bottom an oil which appeared yellowish, and which could not be mixed by shaking it with the supernatant liquor. I suffered it to stand till the next day, in order that I might make more accuate observations in the day-time; but saw with astonishment that the oil had disappeared, and had left in its place a crystalline precipitate, which, though snall, exhibited all the phenomena of prussiate of potash. I here suspended all further research, as I was not able to repeat the experiment with suficient accuracy, and therefore reserved it for further examination. It was, however, established by the first and second experiments, that by this process prussiate of potash, free from iron, can be produced. But if carbonic acid was combined with the prussic acid, an idea I was lod to take up by the difference of the crystals which were produced, and by the greenish blue precipitate, it is natural to suppose that the latter expelled the former in part, and mised also with a part of the potash; and, therefore, the prussiate of potash must have been scparated from the prissic acid.

Berthollet's experiment, in which he treated prussic acid with oxygenated muriatic acid, was here of importance*. The prussic acid was decomposed, and an oil was produced: the oil in water sank to the bottom: it no longer reacted like the prussic acid on combinations of iron: it was not inflammable: it evaporated in heat, and in course of time was converted into small crystals. If I entertained any doubts in regard to my own experiments, this coincidence in some manner removed them. The same phænomenon was confimed by an experiment of a quite different kiud, where an oil was produced by the action of alcohol on the prussic acid and carbonate of potash. The confirmation of Berthollet's experiment affords cause for more accurate rescarch in regard to the fundamental mixture of prussic acid, ail, and aleohol.

It still remains to be examined, whet the the oil produced in this manner, according to my experiment, was prussio acid. It was posable that the erystals prodnced might have ben again aken up ! $\%$ the fluid, and cren by the air, which in my (xpemmenis was quite filled with it. Whether the oity thud produced was really an oil, I was not furdier able to determme ; but by slaking it with the watery fluid

* Crell's Amaten; rigo, vol. i. p. 186 .

I divided it like oil into small globules, whid again soon united.

I must here mention another phrenomenon, which I cannot pass over with indifference. Every time I heated, for a considerable time, the Prussian blue of the shops over a spirit lamp, in order to prepare the gas, so that the Prussian blue was pretty wefl decompoed, and had become brownish black, I obscrved, when the glass was broken, still hot, that the Prussian blue here and there inflamed in the same manner as pyrophorus prepared from alun and charcoal, or like sulphate of potash and charcoal, but without a blue flane. The Prussian blue was always heated over a spirit launp, so that it was impossible an inflammation could arise. Three or four experiments, repeated for this purpose, contirmed this obserration, but I was obliged to break the glass while hot. The same thing did not take place with prussiate of iron, but I made the experiment oaly once.
The production of prophorus by this process may be explained in the following manner:-The Prussian bhe of the shops contains, as is well known, argillaceous earth (potash) and a little sulphuric acid: now, as the prussic acid and carbonic acid are discngaged, a decomposition of the sulphuric acid may take place; the sulphur which is proluced may unite with the free argillaccous carth; and in this mamer we may be conducted to the well known theory of prrophorus. If this explanation be not agreable to nature, we have perhaps still obtained more. In my experiments a partial decomposition only took place cach time, as only sonve particles, and those of the largest size, infaned. This observation might conduct us to the nature of the substance which in this case is the agent, ind these experiments may perhaps furnish abler chemizts with mater for future rescarch.
XXIV. Experiments on the Oil producell from the Leares of the Lawrel Cherry. By C. Rolofr of Maglethers.

Ihave made some experiments with the distilice oil of the leaves of the laurel cherry, the result of which I here communicate, because they are difierent from that of the experiments of M. Bucholz with distilled oil of bitter alnionds.

As M. Bucholz employed potash with success for the

[^28]separation
separation of the radical of the prussic acid from the before mentioned oil, I made choice of lime in order to examine whether carths cond be employed for the same purpose, as I believed, and I made the following experiments:
I. I shook for some time half an vence of fresh prepared lime water, withs three drops of the oil of the laurel cherry, by which means a complete mixture of both was effected, and no oil floated at the surface. To this mixture I added half a dram of clear liquid muriate of iron, by which a greenish precipitate, inclining to blue, was produced. When mised with a sufficient quantity of the muriate, the greater part of the precipitate was redissolved, and the liquid assumed a green colour. After a short time a small quantity of a blue precipitate was deposited, which when tiltered, washed, and dried, amozanted to nearly half a grain, and exhibited all the appearances of prussiate of iron.
II. I repeated the above experiment, only with this difference, that I cmploved six drops of oil. Tie same pliænomena were produced, and the blue presipitate at length obtained corresponded perfectly in weight whth that of the first experiment, for it amounted to nearly a grain.

By this experiment it is also proved that the distilled oil of the leares of the laurel cherry forms, by means of lime, prusic acid. I must here remark that, for the greater certainty, I repeated both experiments, as I did in regard to all the rest, whont shaking the oil of the laurel cherry, with lime water, by which means I obtained a clear fluid. This I mixed with a drop of the solution of prussiate of potash, by which I produced the same shade of colour in the fuld as in the preceding experiments, and after a little rest a blue precipitate deposited itelf at the bottom.

As M. Bucholz did not succeed completely in producing prossiate of iron, by treating the distilled oil of bitter almonds with ammonia, I resolved to repeat the same experiment with the oil of the leaves of the lause chorry.
III. With this view I shook six drops of this oil with a dram of pure fluid ammonia, and mixed with them half a dram of clear deliquescent muriate of iron, which was still diluted whth two drams of distilled water. The result was a green precipitate, mixed with a great deal of blue, which, by the addition of pure muriatic acid, left a blue precipiate, which when washed and dried amounted to a erain, and exhibited all the phenomena of prusiate of iron.

Br this also it is proved that ammona is in no manner projudicial to the fomation of the prussate of iron, as M. Bucholz concludes from his experments. The reaton
why this accurate chemist oltained so few traces of prussiate of iron, no doubt was, that the oil of bitter almonds contains less of the radical of the prussic acid than that of the leaves of the laurel cherry*.

I am also of opinion that the prussic acid does not exist as such in a free state, and with alkalies and earths can form no prussic acid salts without a portion of the oxide of iron. To confirm this opinion 1 made the following experiments:
IV. Six drops of the oil of the laurel cherry being shaken with half an ounce of lime water, ten grains of acetite of copper dissolved in a dram of distilled water were mixed with it, which produced a green precipitate. This precipitate was again perfectly dissolved by the addition of the acetous acid.
V. I repeated the same experiment, with this variation, that instead of lime water I employed ammonia, by which 1 obtained the same result.

These experiments, in my opinion, confirm in a complete manner that the prussic acid cannot exist as such without a portion of the oxide of iron ; otherwise a reddish brown precipitate, according to analogy, must in these experiments have been produced. Want of oil prevented me from carrying $m y$ expcriments further.
XXV. On the Ether snggested by Sir Isaac Newton, compared with the supposed newly discovered Principle of Galvanism. By Governor Pownall \dagger.
A lthough at an advanced period of life the mind docs not possess strength sufficient for the pursuit of amy new research, or for the study of any new branch of science, of which I am conscious as I ought to be; yet feeling mysclf capable to follow the researches of others, and to judge of their theories when formed, I have in all humble diffidence followed the experiments, and attended to the theories, which modern philosophers have made and formed respecting the phænomena of a supposed newly discovered prin-

[^29]ciple, which, from the name of the first stulying obseiver, has been called galranism.

Whilst thus following the phonomena as extribited in the experments of these philowphers, by which this supposed newly-discovered agent acts and operates impulsively and chemically in, on, and by various substances, metals, semimetals, minerals, mineralic and other solutions; on water, glass, resins, animal motion and senses, fungic and vegctable substances; I was rather disappointed to find, (under the present advanced state of science) that these experimentalists were at first so diaposed to imagine, or so willing to have it imagined, that they had severally made discoveries of some hitherto secret principles in nature, or that they referred to unknown causes operating thereby: On further more scientific investigation, however, by such accurate philosophers as Volta, Dumas, and especially Dr. Wollaston, they simplified the results of their experiments, and have in gencral agreed to refer atl the phenomena of this supposed newly discovered principle, to an agent long lnown be the name of ciectricity. Yet I cannot but wish that philosophy had not stopped here; for I own that I cannot conceive this electric agent to be a prime principle sui generis, but only a species of operation, classing with all the rest under a more simple and general principle, becoming, by its various modes of cooperation, under various cireumstances, a formal or perhaps an eflicient cause common to all. Instcad, therefore, of being led to a plurality of principles and causes, as superficial theologists have been, by the various operations of divine agency, to a pharality of gods, where they ought to have found the true one, I kecp an eye fxed on a one general principle, which I have been used to acknowledge, as investigated and announced by Sir Isaac Newton, so far as to substantiate its existence. The principle I mean, as known to exist really, but whech requires further investigation to ascertain, by its nature and operation, how far it may be a general efficient canse, is that elastic active medium which Newton named cther-" iste xther (id enim ci nomen quid ni imponam, quid sit non definio) quoddam medium longe longeque rarius et subtilius quam aër vel lumen, longeque etiam magis clasticum et actuosum" - "' quod corpora omnia facillime permeat, perque coelos universos yi sua clasticâ difliusum cst." 'ihe existence of this principle may be taken as a datum, as a known fact; and so far as concems the phrenomena of its operations, Sir Esaac Newton states, that
that hy its compressed elasticity, and its vibrations, it appears to attend and cooperate in all the known operations of nature ; in gravity ; in attraction of aggregation, and in all the chemical interchanges therein; in repulsion; in the various movements of light, as its direction gocs in right lincs; in its infections, its refractions, and rettections; in its fits of easy transmission and reflexion ; in heat and light; in magnetism*: in electricity, and in that species of electric attraction \dagger, " que tam angustis fmbus contineatur ut usque ad hac omnem observationem figgerit: et fortasse attractio electrica ad istius modi exigua interalla extendi potest, etiamsi non excitetur frictione." This appears specifically to distinguish that electric operation which has course given to it, by the simple contact of metallic and other substances, without being excited by friction, as ritrous and resinous electricity is. This ether, by its compressed elasticity, or by its ribrations, appears to attend or cooperate in the sense of sight and hearing, and in animal motion ${ }^{+}$.

It evidently appears that Sir Isaac Newton bad investigated the nature of this eiher, so far as to substantiate long ago its existence, and its operations as a cooperating formal cause, so as to recommend it to investigation how far it may be found to be an efficient cause, general to all the phanomena therein referred to by hini. Although he stated this his information, merely as matters of inguiry, to be pursued by others, yet these phanomena, and the operations whence they arise, have been but lately submitted to experiment; and that with a view and in a line referring to supposed newly discosered principles in nature, and to unknown causes therein.

Here I would wish to recommend the opinion and the words of Professon Cotes to such of the late philosophers who have these vicws §-" ad veran philosophiam pertinet

* There is a peculiar phanomenon, different from all others, by which this pinciple acts or is acted upon. It appers tu be connected wint some agent extemal to it, y which it requires and mainaims a direction to the north pole of our glube; but yet. whatcver be this cooperating agent, whose curren: gives this specific tendency to the magnet or magnetic needle, this tendency. so far as relates the magletic body irself. can be reversed in the budy itself, as the curcot of the power which actuates the voltaic pile can, $b y$ an alteration in the position of its pants. he reversed. It is known that the maynetic reedle, on being stricken with!!ghtning, has been resersed; and the artiticial magnet can have its poles reversed by the same means by which jit was tirst made a magnet.
+ Newtoni Opt. quare 3r. at the time in which Newton speaks.
\neq Quere 23 et 24 .
\#\# Pratato ad Newton: Pincipia.
rerum maturas ex vere existentibus causis derivare-in horologiis automatis idem indicis horarii motas vel ab appenso pondere vel ab intuis concluso elatere oriri potest. Quod si oblatum horologium reverà sit instructum pondere ; videbitur qui fingit claterem, et ex hypothesi sic proproperè conlictâ, motum indieis explicare suscipict."

In what I have stated above, I have, perhaps presmmptuously towards better philosophers and wiser men than myself, perhaps from incxperience in the present advanced state of science, ventured to express a wish that a course of experiments were instituted to investigate the nature and operations of this cther, a principle known to exist; how far and in what maner it acts; how, if at all, it operates, by its compresed elasticity, in becoming a cooperating or an efficient cause to grarity and attraction ; how far and in what mamer it may, by its active movement and its vibrations, cooperate with or be a cause to the phenomena of heat, light, electricity, and all the attractions of natural or chemical affinity, and of the various interchanges therein; and how far, and in what manner, in animal sensations and motion; how far, and in company with what power, it may give to magnetism a polar course. I have ventured, perhaps hazarding my prudence, to recall the study of philosophy to these pursuits in the very line which Sir Isaac Newton so long ago marked out-but which yet, from some suspended doubts about this ether and its existence, have been, as scems to me, neglected and passed by.
XXVI. On the Preparation, Culture, and Lise of the Orchis Ruot. By J. Percival, M. D.*
Salem is a preparation of the root of Orchis, or Dogstones, of which many species are enumerated by botanical writers. The Orchis mascula Linn. Sp.pl. is the most valued, although the routs of some of the palmated sorts, particularly of the Orchis lalifolia, are found to answer almost equally well. This planit flourishes in various parts of Europe and Asia, and grows in our country spontancously, and in great abundance. It is assiduously cultivated in the East ; and the root of it forms a considerable part of the diet of the inhabitants of Turkey, Persia, and Syria. A diy and not very fertile soil is best adapted to its growth. An ingenious friend of mine, in order to collect the seed,

[^30]transplanted a number of the orchises into a meadow, where he had prepared a bed well manured for their reception. The next spring few of them appeared, and not one came to maturity, their roots being black and half rotten. The same gentleman informed me that he had never been able to raise any plants from the secd of the wild orchis; but he ascribcs his want of success to the wetness of the situation in which he resides. I have now before me a seed pod of the orchis, the contents of which, to the naked eye, seem to be seed corrupted and turned to dust; but, when viewed through a microscope, appear cvidently to be organized, and would, I doubt not, with proper culture, germinate, and produce a thriving crop of plants. The properest time for gathering the rocts is when the seed is formed, and the stalk is ready to fall, because the new bult, of which the salep is made, is then arrived to its full maturity, and may be distinguished from the old one by a white bud rising from the top of it, which is the germ of the orchis of the succeeding year.

Several methods of preparing salep have been proposed and practised. Geoffroy has delivered a very judicious process, for this purpose, in the Histoire de l'Acudemie Royale des Sciences, 1740; and Retzius, in the Swedish Transactions, I764, has improved Geoffroy's method. But Mr. Moult, of Rochdale, has lately faroured the public with a new manner of curing the orchis root: and as I have seen many specimens of his salep, at least equal, if not superior, to any brought from the Levant, I can recommend the following, which is his process, from my owa knowledge of its success: The new root is to be washed in water, and the fine brown skin which covers it is to be separated by means of a small brush, or by dipping the root in hot water, and rubbing it win a coarse linen cloth. When a sufficient number of roots have beca thus cleaned, they are to be spread on a tin plate, and placed in an oven heated to the usual degree, where they are to remain six or ten minutes, in which time they will have lost their milky whiteness, and acquired a transpareacy like horn, without any diminution of bulk. Being arrived at this state, they are to be removed, in order to dry and harden in the air, which will require several davs to effect; or, by using a very gentle heat, they may be finished in a fuw hours*.

Salep, thus prepared, may be afforded, in this part of

[^31]England, where labour bears a high value, at about 8 d. or 10d. per 1 lb . And it might be sold still cheaper, if the orehis were to be cured without separating from it the brown skin which covers it; a troublesome part of the process, and which does not contribite to render the root either more palatable or salutary. Whereas the forcign salep is now sold at 53 . or 6:. per Bb .

The culture of the orchis, therefore, is an object highly deserving of encouragement from all the lovers of agriculture. And as the root, if introduced into common use, would furnish a cheap, wholesome, and most nutritious article of dict, the growth of it would be suthiciently profitable to the famer.

Salep is said to contain the greatest quantity of vegctable nourisimeat in the smallest buth. Hence a very judicious writer, to prevent the dreadful calamity of famme at sea, has lately proposed that the powder of it should constitute patt of the provisions of crery ship's company. This powder and portable sony, dissolved in boiling water, form a rich thick jelly, capable of supporting life for a considerable length of time. An ounce of each of these articles, with two quarts of boiling water, will be sufficient subsistence for a man a day*; and, as being a mixture of animal and :egetable food, must prove more mourishing than double the quantity of rice eake, made by boiling rice in water. This last, however, sailors are often obliged solely to sabsist upon for sereral monthe, especially in royages to Gumen, whon the hrest and four are exhansted, and the beef and pork, having been salted in hot countries, are become mht for u-ct.

But, as a wholoome nomishanent, rice is much inferior to salep. I digested sereral alimentary mixtures prepared of mutton and water, beat up with bread, sea-biscuit, salep, rice flour, sage: powder, potatoe, old cheesc, \&c. in a heat equal to that of the buman body. In forty-eight hours they had all acquired a vinous smell, and were in brisk fermevtation, except the mixure with rice, which did not emit many air bubbles, and was but little changed. The thind day several of the mixtures were sweet, and continued to ferment; others had lost their intestine motion, and were sour; but the one which contained the rice was become:

[^32]putrid. From this experiment it appears that rice, as an aliment, is slow of fermentation, and a very weak corrector of putrefaction. It is therefore an improper diet for hospital patients; but more particularly for sailors in long voyages, because it is incapable of preventing, and will not contribute much to check the progress of that fatal discase, the sea-scurvy *. Under certain circumstances rice seems disposed of itself, without mixture, to become putrid; for by long keeping it sometimes acquires an offensive foetor; nor can it be considered as a very mutritive kind of food, on account of its difficult solubility in the stomach. Experience confirms the truth of this conclusion: for it is observed by the planters in the West Indies, That the negroes grow thin, and are less able to work whilst they subsist upon rice.

Salep has the singular property of concealing the taste of salt water \dagger; a circumstance of the highest importance at sea, when there is a scarcity of fresh water. I dissolved a drachm and half of common salt in a pint of the mucilage of salep, so liquid as to be potable, and the same quantity in a pint of spring water. The salep was by no means disagreeable to the taste, but the water was rendered extremely unpalatable.

This experiment suggested to me the trial of the orchis root as a corrector of acidity; a property which would render it a very useful diet for children. But the solution of it, when mixed with vinegar, seemed only to dilute, like an equal proportion of water, and not to cover its sharpness.

Salep, however, appears by my experiments, to retard the acetous fermentation of milk, and consequently would be a good lithing for milk pottage, especially in large towns, where the cattle, being fed upon sour draff, must yield acescent milk.

Salep in a certain proportion, which I have not yet been able to ascertain, would be a very useful and profitable addition to bread. I directed one ounce of the powder to be dissolved in a quart of water, and the mucilage to be mixed

[^33]
with a sufficient quantity of flour, salt, and yeast. The fonar amounted to two pounds, the reast to two ounces, and the salt to eighty grains. The loat, when baked, was remarkably well fomented, and weighed three pounds two ounces. Another loal, made with the same quantity of flour, Se. weighed two pounds and welve onnces: from which it appears that the salep, though ued in so small a proportion, inereased the gravity of the loaf six ounces, by absorbing and retaining more water than the flou alone was eapable of. Half a pound of flour and an ounce of salep were mixed towether, and the water alded acending to the usual method of preparing bread. The loaf, when baked, weighed thiteen omeces and a half; and would probably have been heavier if the salep had been previously dissolved in about a pint of water. But it should be remarked, that the quantity of flour used in this trial was not sufficient to conceal the pecaliar taste of the salep.

The restorative, mucilaginous, and demuleent qualities of the orchis root render it of considerable use in various diseases. In the sca-scurvy it powerfully obtunds the acrimony of the fluids, and at the same time is casily assimulated into a mild and matricious chyle. In diartheas and thedrsentery it is highly serviccable, by sheathing the internal coat of the intestincs, by abating irritation, and gently correcting putrefaction. In the sympomatic fever, which arises from the absomption of pus, from ulcers in the lungs, from wounds, or from amputation, salep, used plentifully, is an admirable demulcent, and well adapted to resist that dissolution of the rasis of the blood which is so evident. in these cases. And, by the same mucilaginous quality, it is equally dificacious in the strangury and dysury ; especially in the latter, when arining from a vencreal cause; because the discharge of ume is then ationded with the most exquisite pain, from the ulcerations about the neck of the bladder, and through the course of the urethra. I have found it aiso an uectul aliment for patients who labour under the stone or grand :

From

[^34]Plants used by the Antients for Poiscning their Arrous. 163
From these obserrations, short and imperfeet as they are, I hope it will sufficiently appear that the cuiture of the orehis root is an object of considurable iniportance to the public, and highly worthy of encouragement from all the patrons of agriculture. That taste for experiment which claracterizes the present age, and which has so amazingly enlarged the boundaries of science, now animates the rational farmer, who fears not to deviate from the benten tract whenever improvements are suggested, or useful projecta pointed out to him. Mueh has been already done for the advancement of agriculture; but the earth still teems with treasures which remain to be explored. The bounties of nature are inexhaustible, and will for ever employ the art and reward the industry of man.

XXVIf. On the Plants employed ly the antient People of Eurepe for Poisoning their Atrous. By C. Coquebert**. All those nations who live by hunting have sought, in the vegetable kingdom, for active poisons in which they might dip their arrows, in order to kill with the greater certainty the animals they employed as food.
Most historians have neglected to make known to us the plants used for this purpose by our ancestors, the half savage inhabitants of Europe, in the most remote periods. Chance, however, put into my hands two Spanish works, in which I found some pazsages which throw light on this interesting subject.
The title of the first of these works is S_{y} nots sis Stirpium indigenarum Arragonice, publishod in 17\%9, the author of which, a native of Saragrosa, denotes himself by the initials C.A. R. This author quotes a manuscript of Cienfuegos, his comntryman, who wrote about 1515 on the botany of Arragon, who relates that in his time the Spanish hunters were still accuistomed to poison their arrows, and that the poison in which they dipped them was so powerful, that if an animal was in the least wounded the hunter was sure of his prey. The vegetalic from which they pre-
ollam de aurichalco habente in cooperculo $=0$ foranina minuta sicut athomi, et pone intus eo pradicta messa lactis vaccini culdi sicut mu'getur de vacca lb. \mathfrak{j}. et mellis lioram z. vini arometici lb. 2. et repone per dies $=0$. ad solem et conserva et utere.
"Istins i:sq; desis ad pondus 3.4. et hora diei decim? exhibita m.uiieri post ipsius menstrua eadem nucte concipier si vircan ea aga.."

* From Bibblictbeque Piysico-econconictc, an vi.
pared it was the Veratrum allum, white hellebore, a plant very common in the pasture lands of the alpine mountains. To prepare the poism, however, for this purpose required some dexterity. Cienfuegos adds, that in his time the king of Spain had a huntsman who understood it thoroughly.

The second work from which I have derived information on this subject is the History of the War of Grenada under Philip II., by Mendoza. This author, so highly esteemed by the Spaniards for the purity of his style, his impartiality, and the extent of his learning, says, that the poison which the hunters of his comntry employed at the time he wrote, that is at the beginning of the seventeenth century, was prepared in the momitains of Bejar and Guadarrama, and was called in that part of Spain El zumo de vedegambre. It was formed into an extract of a reddish brown colour. Another indigenous poisonous plant, which the inhabitants called Yerva, that is to say " the herb," by way of excellence, was employed for the same purpose in the high mountains of Grenada: it is the Aconitum lycoctomum, or wolf's-bane, which, like the Veratrum, grows on the high mountains. The effects produced on the animals wounded by poisoned arrows are, according to Mendoza, the same, whether hellebore or wolf's-bane be employed. They both consist in sudden and great debility, coldness, numbness, and cecity : they foam at the mouth, and are thrown into a state of convulsion. Mendoza says, that two plants, which he indicates only by the Spanish names of Membrillo and Retama, with the meaning of which I am not acquainted, were employed as antidotes.

After I had seen these passages, I was desirous of examining what Haller says of the plants mentioned in his Historia Stirpium indigenarum Helvetice, or rather in the French translation which Vicat has given of the part which relates to the properties of plants.
" If it happens," says be, " that the poison of the V_{e} ratrum penctrates to the blond, without having lost any of its force, death immediately ensues, even though introduced by a slight wound: this has been obșerved when the antient Portuguese were aceustomed to poison their arrows with the juice of that plant." This observation was confirmed by the experiments of Matthioli. When death takes place in this manner, putrefaction makes so rapid a progress that the flesh of the animal becomes tender as soon as it ceases to breathe. Guilandinus speaks also of the poison which the Spaniards prepared from this plant.

Two

Two drachms of a decoction of the root of the Veratrum injected into the veins of an animal, throw it immediately into convulsions, and produce vomiting followed by death, and almost at the same monent a state of flaccidity.

A spirituous infusion, according to Haller, has more strength than an aqueous, and the latter more than a decoction or an extract. There is reason to believe that the activity of this plant resides in the volatile parts which the boiling disengages.

Under the article black hellebore, Hellelorus viridis of Limneus, Haller says also that this plant serves to poison arrows ; and he quotes Monardus, who relates that a chicken died in consequence of a fibre of black hellebore being made to pass through its crest. So deleterious an action, however, can hardly be allowed to this hellebore, since in the time of Columella the root of it was employed to make setons for cattle, which were made to pass through the skin, and particularly of the neck, and thereby excited suppuration.

In regard to wolf's-bane, the following observation, on that species called by Linnæus Aconitum cummarum, occurs in the work of Haller:-The juice of this plant having been accidentally introduced into a wound, in a very small quantity, it produced cardialgia, syncope, swelling, and at length gangrene of the arm.

It appears from these facts, that the three plants above mentioned, but chiefly the Veratrum, were those employed by the antient innabitants of Europe for poisoning their arrows; and that the introduction of fire-arms made them gradually abandon the use of this poison, which was still employed by the Spaniards in the seventeenth century.
XXVIII. Experiment showing the Advantage of Periscopic Spectacles. By W. H. Wollaston, M.D. F.R.S.

To Mr. Tilloch.
sin,
T he opinion given by Mr. Jones, in your last Magazine, respecting the improved form of spectacle-glasses, on which I had delivered my sentiments in the preceding number (p .327), induces me to trouble you once more upon that subject.

It is wholly unnecessary to make any reply to the vari-
ous observations of vis. Jones, or to remark upon the experment by which he has deceived himself, because all doukt of the advantage of the periscopic glasses may be remow lhy the following direct comparative a rial, which any person who chooses can repeat without dificults.

I have before me two glasses, each of 4 inches " positive focus," as proposed by Mr. Jonce, the one double convex, which ii his judgment is pronounced to be "indubitally the lest and most comenient that can lee devised," the other a concavo-convex, or menisus, which he thims "enidentiy the urorst of the tre for a spectacle-glass."

When II fix the former at the distance for most distinct vision opposite to a printed octavo page, and approach my eye to the glase, I camot without pain read guite 24 lines; but upn substimting the periscopic glass, fixed in the same position, I can discern every word in the page, which contains 40 lines.

The eilargement of the field of view observable in this trial, is suffeient to crince the superior utility of the periscopic glases; but were there occasion to compare more nearly the circular surfaces that may be secn with equal distin nesa by caci, they would be found to differ by a ratio as great as that of three to one.

The cheresece is of course more evident in glasses of so high puwer, than in those used by most long-sighted persons for common purposes; but it camot be doubted that in the later also a corresponding, though smaller, inequality subsists, wherever there is the sane dissimilarity of censtaction, eren when the focal distance is longest.

The adrantage in question is, thercfore, indisputably pored iy direct expriment; to the norelty also Alr. Jones himself has umintentionaliy contriontad very satisfactory cridence; Lat as in its importance, those only who have the misfortune to labour under any defect of tision must ultimatcly decide.

> I remain, Sir,

Four obliged humble ecrant,
March 30, 1804.
W. H. Wollaston,

NXIX. Process for extracting the Salt, with a Base of Lime, contained in Tetlow Cinchona. Communtated to M. Fourcroy ly C. Deschamps, of Lygers*.

TAKE twelve pounds of yellow cinchona, of a good quality, pounded, and sifted througi a hair sieve \dagger. Put it into a large pitcher with a beak, and pour over it fifty French pints of pere cold water. Sufier it to macerate for twentyfour hours, taking care to stir it scveral times in the course of the day. Decant it next moming, pouring the liquor, which has been left to torm a deposit during the night, through a close sieve made of goats' hair. Then pour this and the following infusions into vessels, which mast be preserved in a cool place:

Pour over the remaining matter, after the moisture has been suffered to drain off, thirty French pints of cold water. Leave it to infuse for twenty-four hours, stirring it as before; then decant the liquor, and pour over the matter, when well drained, twenty pints of cold water, which makes the whole of the water to be 100 pints.

At the end of twelve hours' maceration, squeeze the matter in a press; then filter all these infusions united, and put them to evaporate in a large broad bason of silver, or of timued copper. Maintain the eraporation by a gentle heat, that the liquor may not approach the degree of bullition; and when reduced nearly to a half, pour it into a vessel and leave it till it is perfectly cold : then filter it. and wash seseral times by pouring water almost cold through the filter the deposit which has been left upon it.

Unite these lotions to the filtercd lignor, and continue the evaporation in a smatler vessel until it be reduced six or seren pints. Then leave it to cool, filter it again and wash the resino-mucous matter as before, until the last portions furnish very little precipitate by the addition of carbonate of potash.

* From the Annaler de Chimie, No. ifs.
+ The cinchona whim ine witherto endeyed in preference for extracting this satt was the relow kind. It furnished it in ricre abundance, and presented loss diffeulty in purification than the red a.d the gray, which I treated aiso. The quantiry wheh it produced ma: be cormated at an ounce and three gros por prond of the yellow ciochona employed. This result never varied in the specimens I used. The "e!chit of the cinchona I mploved was ar least:weive pounds. The iers by this (1manty was iess then if llad onerated with a omaller quantity ; the crysials, cesides, were lafyer and nore distinct.

Continue this evaporation, filtration, and washing, until the liquor, by means of a gentle heat, has been brought to half the consistence of syrup. Then pour the liquid into a vessel of earthen ware *, which must be deposited in a cool place and left at rest for a fortnight.

At the end of that time pour off, by inclining the ressel, the condensed liquor, which will float ower the crystals that have been formed. Wash them with a sufficient quantity of water, rubbing them gently with a small soft brush, or the barb of a quill, in order to free them from the thick extract which adheres to them.

After this washing, detach the crystals, removing as little as possible the resino-extractice matter to which they are often fixed in this first erystallization \dagger. Pound the salt and dissolve it, triturating it several times in a sufficient quantity of cold water. Filter these solutions, including the liquor which arises from the washing of the crystals, and evaporate the whole to the consistence proper for crystallization \ddagger.

By this first purification you will obtain crystals very little coloured, and much less mixed with substances foreign to the salt. If you wish to obtain them of a greater degree of purity, you must proceed to a second purification in the following inanner :

After baving washed and detached the crystals, dissolve them cold as before; filter the liquid, wash the deposit, and reduce the whole by slow evaporation to the proper degrec.

The salt obtained will be exceedingly beautiful and perfectly pure. Its crystals are formed of laminæ truncated

[^35]at their extremity and applied obliquely to each other: I propose to call it cinchonate of lime.

I have several times obtained in the erystallized mass a different disposition; which struck me the more, as it is not often found, namely, in groups, perfectly round and regular in the divergency of the lamine of which they are composed. They are in a manuer insulated, and each of them exhibits a summit which hangs over the plane surface of the other crystals. This variation in the assemblage took place only in the first crystallizations: I never observed it in those which produced the purified salt.

The process here indicated is not sufficient, as may readily be conceived, to extract from cinchona the whote of the salt it is capable of furnishing. The thick liquor which floated over the first crystallization, and which has been laid aside, still contains a great deal of it. 'To obtain it, the extractive matter must be freed as much as possible from the other two immediate materials of cinchona which oppose most the separation of the saline substance, the resin and the mucous matter, which are extracted separately or combined.

For this purpose, when I wished to ascertain in the most precise mamer the quantity of this salt which ycllow cinchona might contain, confining myself always to water as an agent, I treated, cold, this compound extract, as indicated for the purification of the first product, and repeating the dilution, filtration, and evaporation, I found means to insulate, in a manner, the extract of cinchona, which when thus treated retains scarcely any thing but the mucous part.

When the saline liquor, thus purified, refused to furnish crystals, I united it to that which floated over the salt carried to the highest degree of purity, mentioned in the first article of this process. This mixture still furnished me with abundance, and in the last result the liquor I abandoned had still such a saline appearance as to give me reason to expect smmething more to add to my recapitulation of its contents. On examination I found nothing but products similar to those which I obtained from the decomposition of the crystallized salt. The matter which I precipitated is absolutely of the same nature; it is only more coloured in proportion to the resino-extractive matter it contains.

The means which I have here described are attended with considerable embarrassment, and require a good deal of time and expense, which no doubt might be avoided by treating the bark differently. I have several times thought, that by employing
employing fewer lotions, infusions, Sic., I should obtain a less quantity of salt, but that, as this would change nothing in the natare of the product, I should find it more advantagrous.
lhaving in the first place proceeded to an analysis, and wishing that as litile of the salt as possible should escape me, I eonducted the process in a rigorous manner; and since that time ! have practied the same maipulation.

There is reason, howerer, to think that the operation might be much shomened by tie help of aicohol: as this fluid has no acion on the calcareous sall of cumbona, it might be emploved tuo ways to remove the resin, which forms the greateat obstacle to the extraction of this saline substance, cither by subjecting the cinchoma in its natural stite to the alcohol hefore procceding to aquenus infusion. or by exposing to its action the cxarative mater which results from the concentration of the firel inferions.

NXX, On Galuanism. By a Currespondent. SIT,

To Mr. Tilloch.

NDor having seen or heard any satisfactory hypothesis concerning the incerased effect prodicel by the Gakranic battery upen animals by increasing the number of plates, and upon metals be cularging their surface, I beg, throngh your ratuabie misedlany, to call the atention of Mr. Davy and other philosophers to the subject; and shall he happy to receive, through the same channcl, an explanation of these apparently inconsistent phenomena.

It is well known that the effect on ammal bodies is proportionate to the series or number of plates of which the battery is composed, and that on metals it increases with the area or surface of the plates employed. The fact is attempted to be accounted for upon the supposition that the skin, from being an imperfect conducior, is capable of transmitting only a certain portion of Galvimic fluid, and that metals, beine perfect conductors, can transmit any indefinitely larger quantity. But this theorv, ahhough it may be supported by experiment when equal numbers of small and laree plates are employed, does not appear to me to account for the phænomena when different mombers of plates of equal sizes are used.

I conceive

I conceive the following propositions will be admitted as axioms in this scicane:

1st, The quantity of fluid cvolved is proportionate to the quantiey of metal oxdated, whether the oxidation of the metal be the mediate or immediate catse of is crulation.
ad, The quantity of metal oxidatud is in proportion to the extent of surfacc expored is the action of a proportonate quantity of acid. Thus four part: of acid will produce four times as much oxide from an eight-inch plate, as one part would from a plate of four inches.

3d, The fluid evolved is, from the equal attraction of equal portions of the conducting body for equal portions of the fluid, diffused equally over every equal portion of the condueting substances of which the batcry is composed, in proportion to the conducting powers of each respectively.

4th, The quantity of fuid transmitted through metallic atcs is measured by the degree of ignition produced.

5 h , The intensity of the shock receired is the measure of the quantity of fuid transmitted through animals.

Hence it will follow, that from a battery of 25 cight-inch plates, or of 100 of four inches, four times as mich find will be erolved as from one of 95 four-inch plates, suppooing the distance between the plates equal, and the same poportion of acid employed in both cases; or. in other words, the fluid evolved will be as the area of all the plases taken together, and it will be equally diftused ower the wholf. surface of each battery in proportion to the conductince power of its several parts.

Now suppose the skin, from its imperfect conducting power, iacapable of transmitting nore fluid than is evolved from a battery of 95 four-inch plates, and that this supposition will account for the intensity of the shock not being increased when 25 eight-inch plates are usel, so far the fact and theory wond agree. But under other circumatances this theory involves contradiction and absurdity. For example, as no difference in the interity of the lhack is perceived, whether 95 four-inch or 95 eight-inch phates be used, the skin camot transmit more flaid than is giren ont by 85 four-inch phates.

But the shin will transmit from 100 four-inch plates a greater quantity of iluid than from 25 plates of the same size ;

Therefore the greater and lesser quantitics are equal : for the shin cannot at the same time hate, and not hare, the
power of transmitting any excess of fluid above a given quantity, suppose that produced by 25 four-inch plates.

Some other theory must therefore, it appears to me, be necessarily resorted to. I am, sir, Yuur obedient servant,
March 12, 1804.
B. E.
XXXI. Sketch of a Genlogical Delineation of South America. By F. A. Von Humboldt.
[Concluded from p. 36.]
H arisg already given a cursory view of the general appearance which the mountains of South America exhibit to the eve of the geologist, I shall now enumerate the different kinds of mountains which I have hitherto discovered in that conntry, begiming with the oldest.

I. Primitive Nountains.

Granite.-The whole cordillera of Parima, and particnbarly the neighbourhood of the volcanoes of Duida and Marcielago, consist of granite, which does not form a transition into gneis. In the cordillera of the coast it is almost every where covered and mixed with gneiss and micaccons schist. I saw it disposed in strata of from two to three fect in thicktness, exceedingly regular, declining from three to four per leaghe, towards the north-west between Valencia and Portocabcllo. I found it on the Rincon del Diablo south-east from Portocabello, with large and beautiful crystals of feldspar an inch and a half in diameter, like the large grained granite on the high summits of the Schncegebirg and the Fichtelbere, those of Scotland and Chamouni. It is here split into regular prisms; and I saw it on Calavera du Cerro de Mariana beyond Cura, and on the Silla de Caracas, in this prismatic form, which the learned mineralogist M. Karsten observed on the Schneekoppe in Silesia. The northern part of Germany, and the lands on the Baltic in Eurepe, but not the plain to the south of the Fichtelberg in Swabia and Bavaria, are full of monstrous blocks of granite which have rolled down from the heights. In neither of the llanos of South America, that of Orinoco, and that of the Amazon river, did we find any such masses, and no fragments of primitice mountains. The granite mountains of Los Mariches near Caracas, and those of Torrito be-
tween Yalencia and St. Carlos, and that of Sierra Neveda de Merida, contain, like that of St. Gothard, fissures which are covered with very beautiful and large rock crystals.

The granite is covered with gneiss and micaceous schist, particularly on the cordillera of the coast of Venezuela. Gneiss is abundant in particular from Cape Chichibocoa to Cape Codera in the Tequez, Cocuiza, and the mountain Guigne, as well as in the islands of the Lake of Valencia, where I found (on Cape Blanc, opposite to Guacara, blackish quartz in the gneiss which passes into Lidian stone, or rather into the schistous state of Werner. The Macanas on Margaret's island, and the whole cordillera on the isth:mus of Cariaco, is nothing else than micaceous schist finll of red garnets; and at Naniquarez it is combined with a little cyanite. Green garnets are intermixed with the gneiss of the mountain Arila. In the gneiss of the rock Calamicari in Cassiquiare, and in the granite of Las Trincheras near Valencia, I saw round masses, from three to four inches in diameter, interspersed, which consisted of finer grained granite, yellow feldspar, a great deal of quartz, and scarcely any mica. Is this old granite contained in some of later formation, or are these masses, which have the appearance of accumulations, merely the effect of attraction, which here and there made the particles to approach nearer to each other, but at the same time that the whole mountain was formed! This phenomenon of one kind of granite interspersed in the other is observed also in Silesia, at Wunsiedel, on the Fichtelberg, in Ctamouni, on St. Bernard, on the Escurial, and in Galicia. Nature is uniform in her natural productions, even to the small variations in proportions.

The micaceous schist passes into tale schist in the cordillera of the coast, on the momatain Capaya, and on the Quebrada Secca, in the valley del Tiy. In the cordillera of Parima talc is found in very large shining masses, and this has contributed so much to the celebrity of the Dorado, or Cerro Ucucuamo, between the river Esquivo and Mao, in the island Pumacena. The bright fiery appearance exhibited sometimes by the truncated pyramids of the large Cerro Calitamini, near Cunavami, at sun-setting, seems also to procced from a stratum of talcy schist cut perpendicularly towards the west.

Small idcls of nephrite, which I saw brought from Erovato, show that to the south of Raudal de Mura there are nephrite rocks in gneiss like those I found at the bottom of St. Gothard, near Ursern. This formation was repeated by

1it Geolugical Dilincation of South America.
nature in the land of the Tupinamoaros Indians. La Condamane disconced this varizican or the bard nephrite, which is Known under the name of the Amazon stone.

The yranite, greiss, and meacenus schist, contain bere, as in Eu:ope, suata of chlorite schist arranged under each other in the sea at Cape Blanc west from Guayra. Very fure and benutiful hormblend schist is found in the streets of Guyana ; and, stll more south, in the cordillera of Parima, feldspar critoreaces into porcelain earth in the Silla de Caracas; strata of quattz, with magnetic iron-stonc, is found at the soures of the Cutuche, near Caracas; grained foliaceros, primitive limestone, without tremolite, but with a great deal of sulphucous prritus and spary iron-stone, on the Quabrada de Topo on the road from Caracas to Guayra. This limestone is entrely wanting in the cordillera of Par.ma, where it has been sought for many years. Zeichen scuist, a hind of carbonaceous irnn, and pretty pure graphice, are fonad in the Qucbada de Tocune near Chacao, mo the Suebrada secea near Tuy, and north from the Laguma Chica; on the diffenlt road which leads across the Bthmus af Cariaco to Chiparipara, there are found veins of quartz, which contan aunterous sulphureors pyrites and antinony, native gold, gray silver ore, mountain blue, malachite, de.

The copper ore of Aroa is the only kind here taken from the enth : Eixty or seventy slascs olitain yearly 1500 quintals at moze of refince copper. The quintal is sold for twelse piastres. The valley m which thas ore is dug up is less unticalhal than the valies nar the sea where the Indians weh gold; nemely, Lrama. Naron, and Alpagoton, where the air appears to be poisonons, as is the case in the ferthe valley of Cararinas between Nirgua and Rio Jaracuy. The golel is dispersed thronghout the whole prorinec, paticuhat in the strata of quartz at Baruta, Catia, Gugnc. ! Subrada de\} Oro near The, and on the Corro de Chacao, and lical de Santa Jarbara near St. John, where I fom barytie spar, the only instance I ever met with in this commry. All the rivers of the province of Characas, na-h down geld. Ji bonever dess not thence follow that this province is rich, and contains reins of gold not yet discovered: the ged mar be meterpersed in whole masses of grante ; and I am acgmanted whih no high grante cordillera, either here or in Earope, the rivers of which do not Wash down god. The Cerro Duida of Emeralda in Donado, the (?verada chatre near Encamaada, and the Geros de Anroro, the Real de S. Larbaro near St. Joln?,
the Qucbrada de Catia, the alum ore of Chuparuparu, some traces of iron ore in the llano of St. Sebarian, and particularly the Aroa abundant in copper, seen to call for the industry of the miners.

Argillaceous schist is very scarce: it covers the micaceous schist on the southern declivity of Venezuela, in the neighbourhood of the Llanos, in the Quebratas de Malparo, and Piedra Azul: there is blue argllaceous schist, with veins of quartz, on the isthmus of Cariaco, near Chuparuparu, in the Distillador Arroyo du Robola, and also on Macanao. In the four last-mentioned places there are found in the argillaceous schist alum and vitriolic schist, in strata of two or three feet in thickness, which efforesce sulphate of alumine, or natural alum, with which the Indians of Guayqueries carry on a little trade.

Serpentine is found on the cordillera of Venezucla above micaceous schist, on the surface of Villa de Cura, at the height of 245 toises; between the Cerro de Piedras Negras and the Rio Tucutunemo, bere and there green olivin mixed with glimmer, without garnets, schillerspath, or homblend, but with reins of bluish lardstone.

Grunstein (grech rock), original trapp, an intimate union of hornblend and feldspar, sometimes intermised with sulphureous pyrites and quartz, ofien confounded with basaltes, and very little knowa in Europe, is found in strata of two fathons in thickness, or balls of from three to four feet in diameter, composed of concentric strata united with micaceous schist or original argillaceous schist, in several places of the northern and southem declivity of the cordillera of the mountain Avila, in the sca near Cape Blanc, in a real vein which traverses the strata of greiss, but intermixed with newer granite, which fills up the vein between, Antimano and Carapa near Caracas. The gray stone contains here red garnets which I have never seen in Europe. I have sent specimens of them to Madrid in the first bux which I trazsmitted to the captain-general of Canacas.

II. Kind of Mountains which form the Transition from Primitive to Alluvial Mountuins. Formation of the Travisition of Werner.

This formation is found in particular to the north of the Parima cordillera, opposite to Caccara, and in large masses on the southem declivity of the Venezuela cordillera. Beween the llanos and Morros of S. Jnan, between the Villa de Gura and Parapara, between longitude $9^{\circ} 33^{\prime}$ and $9^{\circ} 55^{\prime}$, one seems to enter a land of basates, on descending from
the height of 300 to 63 thises above the level of the sea. Every thing reminds one here of the momatans of Biling in Bohemia, or of Vienza in Italy. The primitive serpentin on the hanss of the Tucutunemo, which like that of Silesia contains copper veins, becomes gradually mixed with feldspar and hornblend, and makes the transition into trapp or grunstein. This trapp is found in stratified masices declining 70° towards the north, or in balls with concentric strata, which, interspersed in calearcous clay, form pyramidal hills; sometimes the tratsition argillaceous schist of Werner is interspersed in green and rery heavy argillaceous schist, which consists of homblend and argillacenus schist intimately mixed together. The same argillaceous schist makes a transition near the Quebrata de Piedras Azules into the primitive argillaceous schist above which it lics. The trapp or grunstein contains also foliaceous olivin, crystallized in pyramids of four faces, a fossil which M. Friesteben discovered on our tour into Bohemia, and described in the Mincralogical Journal of Preberg, angite with a shothy fracture, lcucite in dodecaedra, the sides of the holes and caritics of which are covered with green earth like that of Verona, and a substance which has the splendour of mother-of-pearl, and which I consider as zeolite. All these interspersed fossils increase uwards Parapara, and the trapp there forms real amygdalite. Above this amyedalite, near the hill Florez, at the entrance into the large valley of Orinoco, lics that remarkable stone which is scarce in Europe, and which Werner describes under the name of porphyry schist. The hornschist of Charpentier, a kind of rock which accompanies basaltes, forms groups of irrectha: columns, and by the impression of the ferns which it contains in the middle of the mountains, as discoreral by M. Reuss, proves that it is not of volcanic origin. The porphyry schist of larapara is a green mass of sonorous stone, which is vory hard, acute angled, and has transparent fragments on the edges: it strikes fire with stecl, and contains ritreous feldepir. I did not expect to find this stonc again in South America; it however docs not form here such groups of grotesque appearance as in Bohemia, and on mount Eugoneide in the lenetian territorics, where [have seen it.

III. Allurial Mountains.

These secondary formations, which are of later origin than the organic bodies of the earth, follow each other in the order of their relative age, as in the plains of Europe,
and as has been mentioned by that excellent geologist M. Von Buch, in his Mineralogical Description of the County of Glatz in Silesia, a small work, which contains taluable ideas and interesting observations.

I found here two formations of compact limestone. The one makes a transition into the small grained and imperceptibly foliaceous limestone, and is identic with the limestone of the high Alps; the other is compact, exceedingly homogeneous, with several petrifactions of shells, and analogous to the limestone of Jura, Pappenheim, Gibraltar, Verona, Dalmatia, and Suez ; a formation of foliaceous gypsum, and another mixed with clay, containing common salt and rock oil. The saline clay which I always found accompanied with roek salt in the Tyrol, Steyermark, and Salzbourg in Swisserland ; marl schist stratified in limestone of the Alps, and two formations of sandstone, one of which is older and almost without petrifactions, sometimes small and large-grained sandstone of the llanos, and the other full of the remains of marine animals, which forms the transition into the compact limestone.

The blue limestone of the Alps, with white reins of calcareous spar, is found on the micaceons schist lying upon the Quebrada Secca near Tuy to the east from ine Punta Delgada, on the road from Cumana, on the Impossible towards Bordones, on the island of Trimidad, and on the mountain Paria. This limestone contains here, as in Swisserland, three formations arranged under each other:1st, Repeated strata of black marl schist; marl schist, or cupreous schist of Thuringia, mixed with pyrites, and earth pitch on the Cuchivana near Cumanacoa. This clay contains carbon, and absorbs the oxyen of the atmospheric. air. od, Saline clay mixed with roek salt and cryatalized gypsum, in which the salt pits of Araga, Pozuelas, and Margaret's Island are placed. 3d, Small-grained sandstone, with a calcareons base, almost without petrifactions of shells, always penetrated by water, and sometimes with brown strata of ferruginous earth on the Cocollard, Tamirquiri. I ann not certain whether the last-mentioned stone lies on the limestone, or is not sometimes corered by it.

This limestone serves as the base for a newer one. It is exceedingly white and compact, full of holes (Cuera del Guacharo, in which thousands of birds reside, and among which is a new genus of Caprimulgus, from which a kind of fat much used in the country is obtained, Cueva de! \&. Juan, Cueva del Cuchivano); sometimes porous like the Franconian, and forms grotesque rocks (Morros de Vol. SYII. スo. \%o. NE S. Juin.
S. Juan, de S. Scbastian). It contains strata of black hornstone, which passes into siliccous schist or Lydian stone (Morro de Barcelona) and Egyptian jasper to the south of Curataquiche. Over this compact limestone is placed, as on Jura, very beautiliil alabaster in large masses at Soro, in Golfo Triste. All this gypume contains sulphur as well as the gypsum of Bex and Kretzetzow, and in the Carpathians. This formation of limestone, with black hornstone and gypsum, seems also to occur in the valley of the Amazon and Rio Negro, where they were found by la Condamine near Cuença, between Racam and Guyausi, on the cast side of the Andes.

This limestone and gypsum (the latter in the llano of Barcelona near Cachipe) are often covered in the valleys of Orinoco, and the Amazon river, by a congtomeration or sandstone, with large strata, in which the remains of limestone, quartz, Ledian stonc, all of greater antiquity than the sandstone itsilf, occur. This conglomeration, breccia, which has a similarity to that of Aranjuez, Salzburg, \&c., is extended over more than 18000 square miles in the llanos. It contains strata with small grains and traces of brown and red iron ore. I have never seen petrifactions in it.

The sandstone full of shells and coral, without any traces of crocodiles in a country, which unfortunately contains so many, and which passes into limestone, but on closer examination is intermixed with grains of quartz, is of newer formation, and always nearer the coasts: P. Araya, Cabo Blanco, Castillo, S. Antonio de Cumana.

It may perhaps be expected that I should close this description with an enumeration of the volcanie productions of this country, which has been convulsed by the most terrible earthquakes, the high summits of which (Duida), and lately some of its caverns (Cueva du Cuchivano), vomit forth flames, where boiling springs are thrown up from Golfo Triste to the Sieraa Nevada de Merida (the springs of Triachevar I found to be $72^{c \cdot 3}$ of Reammer), where, on the coast of Paria, near Cumacator, there is an air volcano, the noise of which is heard at a great distance, and sulphureons pits in several places as at Guadaloupe-a commtry where, in the extent of several square miles, the whole surface is undemined and hollow (Tierra Hucea de Cariacol), where, in the year 1:06, the carth, after being agitated eleven months by violent shocks, opened on all sides, and poured forth salphurcous water and bitumen; and whare, in the nidst of the driest piains in the Mera de

Guanipa and du Cary, flames burst from the carth. But nature discharges me from this task. The effects of the volcanoes in this part of the world are very different from those seen in Europe. Great and melancholy in their consequences, they change the rocks which are exposed to their action. The immense revolution of Pelileo and Tonguragua de Zuito has not only covered the earth with lava, but with clayey mud, deposited by the sulphureous water which spouted from the earth. The sulphureous gypsum, the mixture of sulpbureous pyrites in all the rocks, even in granite, the bituminous saline clay, the rock oil, or asphaltum, which every where floats on the water or lies on the ground, the immeasurable quantity of rainwater, and the lakes which penetrate into the earth heated by the sun, the aqueous vapours and immense quantities of hydrogen gas every where disengaged, seem to be the principal causes which contribute to produce these volcanic effects.

The sulphureous pits of Guadaloupe, of Montmisene, St. Christopher de l'Oualiban, St. Lucia, and Montserrat, are in all probability connected with those on the coast of Paria. These volcanoes, however, belong rather to the province of natural philosophy than of mineralogy ; and I must visit other countries before I can venture to form any opinion on so difficult a subject. May Heaven avert from the eastern side of New Andalusia such a catastrophe as that which has convulsed the plains of Pelileo!

XXXII. Olservations on the Condition of the Inhalitants of the Cape of Good Hope *.

$I_{1}$$I_{F}$ the condition of mankind was to be estimated entirely by the means it possessed of supplying an abundance or preventing a scarcity of the necessary articles of life, and it must be confessed they constitute a very essential part of its comforts, the European colonists of the Cape of Good Hope might be pronounced amongst the happiest of men. But as all the pleasures of this world are attended with evils, like roses placed on stems that are surrounded with thorns, so these people, in the midst of plenty unknown in other countries, can, scarcely be considered as objects of envy. Debarred from every mental pleasure arising from the perusal of books or the frequent conversation of friends, each suc-
ceeding day is a repetition of the past, whose irksome sameness is varied only by the aceidental call of a traveller, the less welcome visits of the Bosjesmans, er the terror of being put to death by their own slaves, or the Hottentots in their employ. The only commerpoise to this wearisome and miserable state of existence, is a superflaity of the necessaries of lite, as far as regarls the support of the animal functions, which all, of evely deseription among the colonists, have the means of acquiring with little exertion either of body or mind.

A short sketch of the circumstances and resources of the several elasses of the colonists with be cumeient to convey a general idea of their respective conditions. The twentytwo thousand Christian mhabitunts that compose the popar lation of this eolony may be reduced into four classes:

1. People of the town.
a. Vine-growers.
2. Grain-tarmers.
3. Graziers.
4. The people of the town we have already ouserved to be a. idle, dissolute race of men, subsisting chetly by the labour of then slaves. In order to derme a fixed income, and to aroid any trouble, they require cach stave to bring them a certain sum at the end of every week; all that he can can above this sum is for himself, and many are industrinus enough to rase as much money a few years as is s:fficient to purchase their freedom. and sometimes that of thir chatren. The price of provision, and the price of lab ent, bear no sort of proportion: Betaners' meat is only ab sit wopence a poond, and good browis bread, such as all the slares eat, cae peany a pound. A common labourin rave gets from two shilines to daffererown ay, and a mechance or attiter five and six shithog a day: The pe de of Caje 'Town are slamest all of then petty dealers, and they have a remarbable propensity for public vendues. Not at day passes withoni several of these being held both be ore and after dimer. And it is no uncommon thing to sew he same dientical articles exposed at two different sales the rame day. In hact, a vonduc is a kind of lottery. A 11 nt buys a set of goocis in the monng which he again ex bocs to sale in the eroning, sometmes gaining, and sometmes lozing. let all moreable property on sale by public atiction is hable to a duy of hive per cent, $3 \frac{1}{2}$ of which the anctioncer is accountable for to govemment ; the remainder is for himself. I camot give a stronger instance of the rage for vendues than by observing that, in four suc-
cessive months of the year 1501, the amount of property sold by public auction was $1,500,000$ rix dollars, a stim cqual to the whole quantity of paper money in cireulation, which, indeed, may be considered as the only moner, of late years, that has circulated in the country. In what manner, therefore, these articles were to be paid for is a sort of mystery, which, howerer, the dechining state of the coleny may before this have explained.

The better sort of people are those who are employed in the diewent departments of government, but their salarics were so small that most of them were petty merclants. Others have estates in the country, and derive a revone from their produce. Others again are a sort of agents for the country boors, and keep houses to lodge them when they nase their anual visit th the tom. These are a kind of Jex brokers, who live entirely by defrading the simple boors, in disposing of their produce and purchasing for them necessarics in return. A boor in the Cape can do nothing for himself. Unaccusooned to any society but those of his family and his Hottentots, he is, the most aukward and helpless being on earth when he gets ints Cape Tosn, and mether buys nor sells but through his agent. The emancipacel slaves and peopic of colou: are generally artificers; many of them support their families by lithing. During the whole year there is great plenty and varicty of fish caught in Table Bay, and cheap cinough for the very pooresi to make a daily use of.

House-rent, fuel, and clothing are all dear ; yet, I will be bold to say, there is no town nor city in all Europe, where the mas of the people are better lodged or better clothed; and fire is less necessary here than in most parts of Europe. The keep of a horse in Cape Town was never less, under the English government, than ajl. sterling a year, yet every witcher, baker, petty shopkceper, and aruficer, had his tean of four, six, or eight horses, and his chaise. It is true, his horses were lent out for hire one day, and drew himself and his family another ; but still it seemed inexplicable how they contrived to keep up an establishment so much beyond their apparent means. Their creditors, I imagine, long before this, will best be able to give a satisfactory explanation, since British money has ceased to circulate among them.

It is true they are neither burthened with taxes nor assessments. Except on priblic vendues and transfer of immovable property, government has been renarkably tender in imposing on them burthens, which, however, they might M3 very
very well afford to bear. Their parochial assessments are equally moderate. At the first establishment of the colony, a kind of capitation tax was levied under the name of lion and tyger money. The fund so raised was applied to the encouragement of destroying beasts of prey, of which these two were considered as the most formidable. But as lions and tygers have long been as scarce in the neighbourhood of the cape, as wolves are in England, the name of the assessment has been changed, though the assessment itself remains, and is applied to the repairs of the roads, streets, water-courses, and other public works. The sum to be raised is fixed by the police, and the quota assigned to each is proportioned to the circumstances of the individual ; the limits of the assessment being from half-a-crown to forty shillings. The persons liable must be burghers, or such as are above sixteen years of age, and encolled among the burgher inhabitants. The ordinary amount is fixed at about five thousand rix dollars a year.

Another assessment, to which heads of families are liable, is called chimney and hearth money. This i=, properly speaking, a house tax, fixed at the rate of eighteen pence a month, or $4 \frac{1}{4}$ rix dollars a year, for every house or fire-place. This should scem to be an unfair assessment, as the richest and the poorest inhabitant, the man with a large house and he who posicses only a cottage, are liable to the same contribution; as it is presumed that every house has its kitchen fire-place and no other. The amount of this assessment is about fire thonsand wo hundred rix dollars, which, at the above rate, corresponds very nearly with the number of houses in the town.

They are subject to no tythes nor church-rates whatsocver towards the maintenance of the clergy; these being paid in the most liberal manner out of the treasury of government. Nor is any demand made upon them for the support of the poor. The very few that, through age or infirmities, are unable to maintain themselves, are supported out of the superfluities of the church. Where the mere articles of eating and drinking are so reasonably procured as in the Cape, it is no great degree of charity for the rich to support their poor relations, and, accordingly, it is the common practice of the country. Those who come under the denomination of poor are, for the most part, emancipated slaves, who may not have the benefit of such relations. Nor does the church provide for such on uncertain grounds. Every person manumitting a slave must pay to the church fifty rix-doliars, or ten pounds, and at the same
time give security that such slave shall not become burthensome to the church for a certain number of years.

The police of the town is committed to the management of a board consisting of six burghers, called the burgher senate. The functions of this board are various and important ; but they are performed in that careless and slovenly manner which is ever the case where men are compelled to accept an office to which there is annexed neither pay nor emolument. The only exception that I know of is in the situation of an English justice of peace. In every public emplorment of a permanent nature, like that of the burgher senate, if the emoluments are not such as to make it worth a man's while to keep his place, the odds are great that the duties of it will be neglected. This was the rock upon which the Dutch, in all their East India settlements, split. The appointments of their serrants were so small, that those who held then could not live without cheating their employers; and this was carried on to such an extent, as to become a common observation, that in proportion as the Company's finances were imporerished, their servants were enriched.

The business of the burgher senate consists in seeing that the streets be kept clean and in proper repair; that no nuisance be thrown into the public arenues leading to the town; that no encroachments be made on public property; that no disorderly houses be suffered to remain; no impositions practised on the public ; no false weights normeasures used. They are authorized to regulate the prices of bread ; to enquire from time to time into the state of the harrest; and to take precautions against a scarcity of corn. They are to devise measures and suggest plans to government that may seem proper and effective for keeping up a constant succession of coppice wood for fuel in the Cape district. They are directed to take particular care that the tradesmen of the town, and more especially the smiths and cartwrights, impose not on the country boors in the prices of utensila necessary for carrying on the business of agriculture. They are to report such crimes, trespasses, and misdemeanors, as come within their knowledge, to the Fiseal, who is the chief magistrate of the police, and attorney-general of the colony.

It would be in vain to expect that such various and important duties should be faithfully fulfilled for a number of years without any consideration of profit or hope of reward; or that every adrantage would not be taken which the situation might offer. Some of the members of the burgher se-
nate sent their old and infirm slawes to work at the public roads, and received for them the same wages as were paid to able-bodied men; others had teams of horses and waggons that never wanted employ. These things are trifling in themselves, but the public business suffered by it. When the Euglish took the place, the streets were in so ruinous a condition as scareely to be passable with safety. A small additional assessment was laid upon the imhabitants, and in the course of the yoars they had nearly completed a thorough repair of the strects, to the great improvement of the town. If they should be induced to light the streets with lamps, it would not only add greatly to the embellishment of the town, but prevent a number of accidents that happen in the night time among the slaves. It would also tend to the eneniragement of the whale fishery there. But the greatest of all improvements, and one easily to be acconiplished, would be to conduct the water into the houses. The heal of the spring, where it flows into the pipes which conduct it to the present fountains, is higher than the roof of the lighest house in the town; yet, by a strange piece of ignoranceor perierseness, they have carried it down to the lowest point on the plain leading to the castle, so that those who live at the upper end of the town have half a mile to tetch wate:, which is done by two slaves, who consume many hours in the day in this employ, and are a great ans!oyance to the public fountain, where they are puarrelling and fighting from moming till night.

The pleasures of the mhanitants are chiefly of the sensual kind, and those of cating, drinking, and smoking predominate; principally the two latter, which, without much intermission, necupy the stole day. They have no relish for public anusments. They have no exciece but that of dancing. A new theatre was erected, but plays were considered to be the most stupid of a! entertamments, whether the performance was English, Freneh, or German. To listen three hours to a conversation was of all punishments the most dreadful. I remember, on one occasion only, to have observed the audience highly entertained; this was at an old German soldier smoking his pipe; and the encouragement he met with in this part of his character was so great, and his exertions proportionce to it, that the whole house was presently in a cloud of tobacco smoke.

There is neither a bookseller's shop in the whole town, nor a book society. A club called the Concordia has lately aspired to a collection of books, but the pursuits of the prinoipal part of the members are drinking, smoking, and
gtaming. Under the direction of the chureh is a library, which was left by an individual for the use of the public, but the public seldom trouble it. In this collection are some excellent books, particulaly rare and valuable editions of the classics, books of traycls and general history, acts of lcarned societies, dictionaries, and church history. Books are rarely found in Cape Town to constitute any part of the furniture of a house. So little value do they set on education, that neither govermment nor the church, nor their combined efforts, by persuasion or extortion, could raise a sum sufficient to establish a proper public school in the colony; and few of the natives are in circumstances to enable them to send their children for education to Europe. But those few who have had this advantage generally, on their return, relapse into the common habits of the colonists. I repeat, that if the measure of general prosperity was to be estimated according to the ease of procuring abundance of food, the people of the Cape may be considered as the most prosperous on carth ; for there is not a beggar in the whole colony, and no example of any person suffering for vant of the common necessarics of life.
2. The wine-growers, or as they are usually called at the Cape the wine-boors, are a class of people who, to the blessings of plenty, add a sort of comfort which is unknown to the rest of the peasantry. They have not only the best houses and the most valuable estates, but, in general, their domestic economy is managed in a more comfortable manner than is usually found anong the country farmers. Most of them are descendants of the French families who first introcluced the vine. Their estates are mostly frechold, in extent about one hundred and twenty English acres, and the greater part is employed in tineyards and gadengrounds. Their corn they usudlly purchase for money or in exchange for wine. Their sicepalso, for family use, they must purchase, though many of them hold loan farms on the other side of the monitains. The produce of their farms, however, is sufficient for keeping as many milch cows as are necessary for the fanily, and they have abundance of poultry. The season for bringing their wine to market is from September to the new vintage in March, but generally in the four concluding montins of the year; after Which their draught oxen are sent away either to their own farms or others in the country till they are again wanted. The deep sandy roads over the Cape isthimes require fourten. or sixicen oxen to draw two legegrs of wine, whose weight is not $2 \frac{1}{2}$ tons.

186 Condition of the Inhalitants of the Cape of Good IIope.
The tax upon their produce is confined to that part of it which is brought to the Cape market, and is at the rate of three rix dollars for every legger of wine, and the same sum for every legger of brandy that passcs the barrice. All that is consumed at home, or sold in the country, is free of duty. Neither are they subject to any parochial taxes or assesiments, except a small capitation tax towards the repair of the streets and avenues leading to the town, and the lion and tyger money for the exigencies of the district. They are equally exempt, with the people of the town, from clurch and poor rates; the former being liberally provided for by govermment, and the other description of people not being known in the combtry districts. The wine-famers take their pleasure to Cape Town, or make frequent excursions into the country, in their tent waggons drawn by a team of six or eight horses; an equipage from which the boor derives a rast consequence over his heighbous, who may only posess a wageon drama be oxen.

The following rough skelch, which was eiven to me by one of the most respectable wino-boors, of his ougoing and returns, will scree to show the condition of this ctass of colonists:
Outgaings.

The first cost of his estate was		R. D	15,000
15 Slaves a 300 Rd. each		-	4,500
Qowine leggers a 12		-	900
Implements for pressing, distilling,		-	500
3 team of oxen		-	500
S waggons		-	800
Ilorse-watgon and team		-	900
Fumiture, utensils, \&ic.		-	2,000
	Amonnt 25,160		

$$
\text { Intere } 60 \text { per cent. R. D. } 15095
$$

\therefore Shecp per week for family uec, 150 per year,

```
    a \(2 \frac{1}{2}\) - R.D. 390 o
```

 Clotinge 15 slaves a 15 Rd . each per year - \(\quad 2050\)
 Corn forbrad 36 muids a 3 Rd. - - 1080
 Tca, coffee, and sugar - . - 3.500
 Cloting for the family and contingencies - \(\quad 3500\)
 Daty at the barrice on 120 leggers of wincand brandy 3600
 Whear and tear 100 Rd . purochial assessments \(90 \quad 1900\)
 Amount of outgings carricd over 32125
 Amount of outgoings brought over R.D. 39125 $+$

Returns.
100 leggers of wine brought to market a 303000
20 ditto of brandy ditto $a 50 \quad$ - 1000
The wine and brandy sold to the country boors, with the fruit and poultry brought to the Cape market, are more than sutficient to balance every other contingent and extraordinary expense.

which sum may be considered as a net annual profit, after every charge on the farm and on housckeeping has been defrayed.

The payment of an estate purchased is made easy to the purchaser. The customary conditions are to pay by three instalments, one-third ready money, one-third int one year, and the remaining third at the end of the second year ; and the latter two-thirds bear no interest. And even the first instalment he can borrow of government, through the loan bank, by giving the estate as a mortgage and two sufficient securities. So that very large estates may be purchased at the Cape with very little money, which is the chief reason of the multiplicity of vendues.
[To be continued.]

XXXIII. Intelligence and Miscellaneous Articles.

GEOLOGY.

The block of gypsum found at Pantin two or three months ago, containing a considerable portion of the skeleton of a quadruped, has been purchased by the prefect of La Seine, and given by him, in the name of the commune of Paris, to the Museum of Natural History. The administrators have entrusted the examination of it to M. Cuvier, one of their members.

This quadruped is not a ram, as supposed, and as mentioned
tioned in the last number of the Philosophical Magazine. but one of those unkiown species the bones of which are found dispersed throug: it the plaster quarries in France, and which constitute an mediate genus bereen the rhinoceros and the tapir: ondoceashed parts of this animal have hitherto been toun, suci as fragments of the heal, feet, \&e.; and it wa by wimmang bes satitered portions that Cuvicr was abie to fomm a complete skelcton.

The block of Pantin has the adrantage of containing more parts than ever were betore seen together, and consequently of confirming the resuits obtaince, by uniting the fragments previously found.

It contains a lower jaw, an upper and a lower molar tnoth, the vertchre of the neek, those of the back and loins, the ribs, the omoplata, the humerus, the bones of the fore-arm, a portion of the pelvis, one of the femur and one of the bones of the leg; but the head and feet are wanting.

As the head and feet, however, had been before found in other blocke, the parts lately obtained complete the knowledge of the species; and are the more valuable as it will be difficuit to find them united in an order so near to that of life.

This quadruped is one on 4 eleven species already determined by M. Cuvier, trea brees found in the plaster pits of France, and of which no living specimen has yet been found on the sumace of the globe by any traveller or naturalist. Its height is suncrior to that of the fox, and less than that of the shcep. The block of Pantin shous that it had at least sixteen ribs. All the species of the genus to which it belongs, and which Curier distinguishes by the name of palcootherium, had, like the one in question, molar tceth very like that of the rhinoceros, with canine teeth and incisors like those of the tapir, and the form of the bones of the head render it probable that, like the latter, they had 2 trunk *。

As the remains of these ammals now lost are of great importance to the history of the globe, the administrators of the French Museum of Natural History wish very much to obtain a complete collection of those found in the neighbourhood of Paris. They have therefore requested all the proprictors of plaster pits, or persons residing in the neighbourhond of them, to collect and transmit to then such

[^36] Saturcil.
blocks as contain bones in a state of good preservation, with a promise of returning them, if desired, after they have been examined. The names of the persons who choose to present articles of this kind will be inseribed on them when publicly exhibited, and rewards have been offered to those labourers who succeed in preserving bones entire.

A work by Mr. Parkinson, of Hoston, on the organic remains of the fommer world, is in considerable forwardness. The first part, on the fossils of the vegetable kingdom, illustrated with coloured plates, in quarto, will, we understand, be published on the 1st of June next.

HUMBOLDT'S TRAVELS.

M. Humboldt, the Prussian minister at Rome, received, in the beginning of February, letters from his brother, dated Valladolid, in Nechoacan, September 24, 1803. This celebrated traveller had descended into the crater of the voleano of Torcello, which still burns, to the depth of seventy toises, being only about fifteen toises from the bottom. He states that the examination of this volcano, which has existed only since the $99 t h$ of September 1759, will enable him to throw considerable light on the nature of these terrible phenomena. His letters do not give so positive hope of his speedy return as that of the 11 th of August. He says he waits, before he cmbarts, for a good ressel, and the total cessation of that malady known by the name of the comito negro, which at that time oceasioned great ravage at La Vera-Cruz. These two circumstances, he adds, may retard his departure till the spring. He and his fcllow-travellers were in perfect health.

CURING OF MEAT.

The following curious receipt for curing fresh provisions to carry abroad, has been tried by a gentieman who has twice marle the experiment on a voyage to Archangel, and once to the West Indies:-Let the meat, whether beef or mutton, be fresh killed, and when hung to be perfectly cold, let it be cut up in quarters : lay each on a block, and sprinkle it over with ingredients prepared in the following manner: Lignum vitæ fine chips one pound, common salt four ounces, coarse sugar four ounces, salt promelia half an ounce: when it has been well sprinkled in, close the whole in sheet lead; which done, lay it in a chest; and, as each lot is laid in, cover it with fresh sawdust: ram it well doun and cover the whole elose. Meat, particularly fine tat beef,
has been eaten fresh, so prepared, six weeks or two months, after sailing from Eingland; the beef must be in fine order, and when taken out for dressing (it roasts best) it should be wiped and scraped clean, and put down to the fire as quick as possible.

MEDICINE.

Dr. Keutsch, an able physician, who practises in the Danish West Indian islands St. Croix and St. Thomas, has established a new method, which las hitherto proved successful, in the treatment of the fevers peculiar to these islands, and which are fatal to the Europeans. He employs friction with oil. The first idea of this process was suggested to him by the theory of Scheele, of Copenhagen, in regard to the use of oil in the plague; a theory which has been published in Baldwin's Recollections respecting Eeypt. Of cight soldiers under the care of Dr. Kentsch, six were cured of the ferer in the course of twenty-four hours by means of sach friction. It produced stroig perspiration, and checked the romiting. The doctor in some cases rendered the effect of the friction more efficacious by adding camphor to the oil. This discovery is no doubt valuable: the fever cured by this process is the same as that which occasioned so mach ravage at St . Domingo.

CHEMISTRY.

It appears by the following letter from C. F. Bucholz to the colitors of the Veues Allgemeines Journal der Chimie, dated Erfurt, October 11, 1503, that there is no such simple earth as that ealled agust earth:-" The agust earth discovered some years ago by protessor Tromsdorfo, and afterwards confimmed by the experiments of lichter to be a peculiar kind of carth, no longer exists. About a fortnight ago ! procured some of this earth for the purpose of subjecting it to examination, and had proceeded so far that it was ready for being washed and dried; when, in cons squence of a large quantity of lime which in presence of my friend Haberte 1 precipitated by pure carbonate of potash from the nouriatie flatd from which this earth, several times treated with ammonia, had been preeipitated, I began to doubt of the sinpheity of the agust earth. My friend Tromsdorff, to whom I commmicatad my experiments, now informs me that he has found that the agust carth is not simple; he considers it as a combination of lime and an acid, probubly the phosphoric. As he had too small a quantity of

[^37]agust earth to confirm this suspicion by experments, he requested me to pay attention during my researches to the acid. I made experimonts for the purpose, and was so fortumate as to produce phosphorus and phosphoric acid, and to find that the so called agust earth is actually phosphate of lime. N. Haberle and urself made some expermerts on the phosphorescence of pulverized crsats of agustite, which when thrown on a hot plate of iron give a very liwely bright green light: a crystal of agustite rubbed on a piece of woollen cloth exhibited a very strong attraction for smoll bodies. All these circumstances assign to the fossil hitherto called agustite a place near to apatite. The phosphate of lime, therefore, has been three times given out as a simple earth; as ivory earth, bone earth, and agust earth. It is therefore probable that chemists in future will not be so easily led into this kind of error.

IMPROVEMENT IN GEOGRAPHY.

Mr. Churchman, anthor of the magnetical charts, has proposed an improvement in the construction of maps, by which the altitude, declivity, and perpendicular height of the hills and mountains throughout any country or any psrticular district can be indicated. This plan consists in tracing certain lines over the surfaces of the parts intended to be so marked, and is applicable to maps already published ; that is, to such as have been constructed by a proper surves, as the map of Kent, which has been performed at the public expense, and published under the direction of the Board of Didnance, and other maps now executing in a similar mamer. The lines are rendered efficient for the purpose proposed, by employing with them an universal proportion to ascertain their respective indications. Such maps would probably be useful for military purposes as well as for mazters respecting canal navigation.

NETEOROLOGICAL TABLE * For March 180.4.

Davs of the Nonth.		$\frac{\text { rmome }}{}$		Hcight of the Barom. Inclies.	Weather.
150-1. Fel).	3.30	36°	30°	29.51	Fair
	(1) 28	39	39	$30 \cdot 01$	Fair
	- 10	47	38	29.92	Cloudy
	5 36	36	29	- 85	$\begin{aligned} & \text { Rain and hail } \\ & \text { showers } \end{aligned}$
	9 29	36	29	- 90	Fair
	$1{ }^{1} 28$	34	98	- 86	Fair
	$\underbrace{7}$	$3 \cdot 4$	99	- 8.4	Fair
	3.30	35	34	- 60	Cloudy
	5. 31	3.1	36	- 40	Snow
	537	46	38	$\cdot 35$	Cloudy
	6.39	47	39	-39	Showery
	735	19	35	-66	Fair
	837	51	45	$\cdot 73$	Fair
	94.5	52	± 6	-51	Rain
	O 43	53	46	-69	Fuggy
	147	5.5	45	-\%	Fair
	940	57	46	79	Fair
	346	53	49	- 52	Fair
	446	59	43	- 56	Pair
	548	59	49	$\because 9$	Fair
	$6+14$	55	48	$\cdot 75$	bogey
	I 43	56	4.4	-78	Ea!r
	8.42	39	35	- 59	Rain
	9,34	35	32	- 51	Snow
	0 39	33	32	-62	Cloudy
	132	35	31	-86	Fair
	231	38	30	$\cdot 70$	Fair
	330	11	35	-60	Cloudy
	732	47	37	$\cdot 79$	Pair
	540	47	43	$\cdot 50$	Cloudy
	6,43	48	33	- 25	Showery

* B. Mr. Carcy, of the Strand.

FRRATUM.
Page 1: j , 1. 35 , for "Table of Paralawas" rad "Table of Refractions."
XXXIV. Faxperments to ascertain whether there exists any Alpuity letwint Carton and Clay, Lime and Silox, stparately or as Compoznds wnital with the Oxide of How forming Irom Ores and Iron Sioncs. By David Musnex, Esq. of the Calder Iron-Horks*.

TIne subject of the present inquiry, which has long cingaged my attention, is of considerable importance in the economy of the manufacture of iron, and is a necessary Key to the development of many facts comected with that truly philosophical process. To the chemist and the philosopher it will most probabiy be more acceptable than to the manufacturer. A long continued train of success and experience frequenty exalts the later in his own opinion beyond the contines of elementary science. Conscious of his attainments by practice both in the quality and quantiey of his results, he seldom acknowledges the existance of chemical and philosophical principles; or, if he does, it is merely to shade them with that ridicule whish is often the bane of useful inquiry.

If we were certain that we had reached the ultimate progress of discovery in the propertics and alfinites of the most uscful metal hitherto discovered, then the injury done to science and the arts, by avoiding all inguiries to explan upon simple principles the agency employed in the manufacturing of iron, would be of less importance. But if the matter is impartially investigated, there will be found sufincient reason to apprehend that our knowledge and general progress in the iron trade are more applicable to quantity than quality. The successful exertions of individuals have increased the manufacture of cast and malleable iron beyond all precedent in this comatry; nor have we been without some enlightened individuals, who have laudabiy endeavoured to form a superior quality along with the extension of their manufactures. Sucecss has so far crowned their praise-wortliy exertions, aided ty the operation of knowledge in removing the prejulices of the arisan, that bar iron of our own manufacturng has beal substituted to a great exteat, in place of that formerly used of the Swedish and Russian marks. But hitherto all attempla bave fated to make bars of a proper quality to form steel in any degree

> * Commuricated by the Author.

[^38]comparable to that we daily manufacture in great quantities from fortigia iron.
liere we remain at an immense distance behind; and while our manufacture of iron goods exceeds the collective exertions of all Europe, we humbly feel our dependence upon two foreign markets for the supply of that steel iron, without which the beanty, the utility, and extent of our hardware mamfactures would be cesentially injured and abridged.

The poliey of the foreign holders of this article communicates many undue advantages to the favourite few to whom the stecl iron is consigned in this country. The rapid progressive rize in value of this iron for ten years past, has already nearly doubled the price of steel to the workman, and given the trade in general a melancholy foretaste of the evils of dependence and monopoly*. This is not all ; the importers of steel iron avail themselves of their advantageous comnection, and generally annex, as a condition of purchasing, that the stecl manufacturer shall buy a proportion of inferior or common marks. This he is frequently obliged to do, and take his chance of the market in disposing either of all or of part of this obligatory purchase. The consequences are obrious; only large capitalists can in general enter the trade, and these most naturally will cover their probable risk of lose upon the sale of a superfluous stock of bar iron by an additional tomare upon the price of blistered and manufatured steel.

There are few but are conminced that there exists some material difference betwixt us, the Swedes, and Russians, in the form or minutiae of our procesics for making bar iron respectively, in the nature of our fuel, or in the construction of our ores. If the most faithful imitation of the foreign processes for the making of bar iron has completely: failed in forming quality, then the difference must lay betwixt the nature of pit coal fuel and that of wood; or the fossil construction and combination of an endless rariety of aceondary ores, contrasted with the richer, the magnctic, and more nietallic ores of the Swedish and Siberian mines.

If the analysis of pit coal furnish us with data sufficient

[^39]to assert, that after proper distillation, or coaking, the residuum coke is equally purely compounded, at least in many instances, as the charcoal obtained from the combustion of wood, then the chief weight will hinge upon the different qualities of the ores introduced into the smelting furnace here and abroad *.

If this supposition is well founded, the constituent parts of our ores, and the effects of their mixtures respectively, surely become an object of the highest consideration.

There are now nearly 150 blast-furnaces at work in $\mathrm{Bri}-$ tain. the produce of many of which, as to quantity, may be alike, but each of which will most likely possess some distinguishing characteristic mark as to quality. It is also very generally understood, that the native impression or peculiarity of quality adheres to the metal in erery subsequent stage of operation. Weak or fusible pig iron requires not only a greater quantity to waste to form a ton of bars, but is afterwards found possessing an inferior degree of malleability and tenacity. On the contrary, strong or refractory pig iron forms malleable iron with greater facility, of course with a less loss of metallic matter, and constitutes what is well understood by the term a strong body of iron.

The means employed to render each of them malleable being alike in both cases, though an investigation of this subject might not be immediately productive of any advantage to the mere manufacturer of pig iron; yet, as it might tend to unfold the causes of several admitted effects in the operations of the blast-furnace, and tend to develop some affinities not hitherto suspected of being brought into play, it would ultimately throw light upon the fabrication of bar iron and steel : a desideratum of much importance to the community.

Arrangement and classification seem in all systems and theories the grand primary steps towards knowledge and perfection. Impressed with this truth, I rentured several

[^40]yass age, through the medium of this publication, to arrame our iron-stoncs, generally denominated "escondary argillaceous ores of iron," into four clasecs, viz. calcareons, argillaceous, siliccous, and class of equal mixtures. I have since added to these, three new classes, not hitherto, I bebieve, acknowledged as iron-stones, vi\%. carbonaceous, bituminous, and gramlated: the two former classes, if ever examined or suspected as belonging to the varietics of secondary ores, were either considered as coal or rejected as whin stone Analysis, however, by the separation of a large portion of metal from each, taight me to value them accordingly, and to rank them as real secondary ores of iron poseessed of new and interesting features.

Of the first four classes, the varieties chiefly used at ironworks are those of the class I have styled "cqual mixtures." But as the combination of lime, chay, silex, rom, and oxygen, is susecptible of an almost cudless variety of modification before any one earth exclusively predominate, even the same class of ores may in their resulte aford a similar varicty in the peculiar or native properties of the metal which it contains. Under this class we find numerous modifications of calcareous earth crystallized, in the state of spar, on marine remains, diseminated, or in chally lines parallel or intersecting each other throughout the fracture of the ore.

The next supply in point of quantity is derived from the argillaceous ore; but there are but fur ianctics of this class that approach to any great decre of jamty.

Calcareous iron-stone in th pures state is extremely scasce, and is as yct no where fomad in cuantity excepting upon the Whitby and Scarborough coast. Its apparance being very difierent in point of colour from common ironytones renders it an object of suspicion to the irom-master in gencral; and there are but few varicices hitherto that have been permitied to cuter the precincts of the furnaceyard. The union of lime, however, in the common qualities of inn-stone forms a striking and interesting character, which is freynently bencheially felt by admitiong a reducsion of that quantity of lime-stone in the fumace which ore highly argiliaceob, would require.

The siliccous class of irm-stones seldom or ever furm any part of the supply of the manufacturer, and I believe their existance in a state comparatively pure is equally unknown to him and the mineralegist. In general it may be remarked, that at all iron-wotks irom-stones containing a larger proportion of sand than common are carcfully rejected,
jected, for containing " had iron." This prejudice, without stopping to inquire into the correetness of the deduction, has tended to lock up from general examination numerous strata of iron-stones which unformately were impresed with the usual external characteristics of the siliceous genus of stones. Many of these equally rich in iron, with some of those used in the blast-turnace, are buried in the rubbish of quarries, or contunchously branded as a mischievous variety of sand-stone.

The general theory founded on practice, and which is commonly admitted at iron-works, is, that that iron-stone is best which fluxes iteelf, or that, in other words, contains a considerable proportion of lime in the state of crystal, spar, or otherwise. The assertion is, and 1 believe it to be just, that such iron-stones tend more to make "sulphury inon," i.e. iron richly carbonated, than any other varicty" hence those are aloay's in great request. Agam, those raricties of iron-stones that present smooth fractures of a dull blackish or gravish black, or gray or gravish white colour, and uniform thrughout, are held nest in estmation at iron-works. These, with the same justness of remark, make "good iron;" but their tendencer to form " sulphury iron" is inferior. The fracture of pig iron made from such iron-stones is generalls less brilliant than from the former, seldom presents a carburated sufface, but by many is preferred for excellent meiting iron. These varieties generally arrange themselves under the argillaceous class of ores. In these the manufacturer adds another, which is merely a modification of the sume clars, but united to an evidently large proportion of sand. The theory which is here applied is, that such iron-stones make a coarser quality of iron than the former, and that, when the quantity on the furnace is increased bevond a certain proportion, the quality of the metal becomes hard or less carbonated.

These facts, which seem to result from general practice, may be thus shortly arranged, every circumstance being alike to all:

1st, Calcareous iron-stone has a direct tendeney to manifest a larger proportion of carburct than any other class in the blast-furnace, and of course enhances at the same time the absolute value of the metal.
od, Argillaceous iron-stonss form iron of an equal quality in the estimation of some, but in manufacturing cxhihit always a less apparent existence of carbon and an inferior tendency to carburate.

3d, Siliceois iron-stones have uniformly a tendency to N_{3} destros
destroy or secrete the cxisting carbon in the furnace ; reduce its absolute quantity in the pig, and lower its value to the manufacturer. From this arrangement it will be easy to explain the full meaning of the manufacturer when he designates the product of any ore "bad iron." The phrase is murely relaive, and only implies a want of saturation of the coaly principle, and does not extend to the after results of the metal, supposing it underwent the manipulations of the forge. The contrary is the fact; for the "bad iron" of the pig iron maker is the mest suitabie to the purposes of the forge, whether its intrinsic value in the market is considered, or its facility in forming bar iron with much less loss than when carbonated metal is operated upon.

With this fact before us, are we justifiable in condemning to perpetual oblivion, without trial and without examination, every ore of iron that is not as profitable as another in the blast-ifurnace for the manufacturing of gray or melting pig iron? May not the converse of the abore propositions hold good? and may it not ultimately be discovered, that argilaceous and siliceous iron-stones, which vield inferior qualities of meling pig iron, form a quality best calculated for the purposes of the bar iron forge?

The universal run in favour of casily carbonated iron, and the general result of the quality of bar iron at most of the forges in the kingdom, give a shade of probability to this supposition.

To prosecute an inquiry into the fact itself would open an extensive field of rich investigation. The subject divides itself into three principal branches. The first, to which this paper is meant as introductory, is an inquiry into the afinitics exerted by the different earths, which commonly enter into the composition of iron-stones, upon the carbon of the furnace, and to ascertain how far and to what extent these retard or promote the carbonation of the metal.

The second and most laborious branch would be, by direct experiment to form portions of cast iron, malleable iron, and sted, from one particular oxide of iron, (or from any iron ore whose properties were nicely ascertained, to serve as a suncral standard,) mixed and fused with different earths, and in varions proportions. Thus a rigorous scale of companson would be easily formed from the results thus obtained, as to every possible shade of quality which most probably results from certain affinities existing betwixt the metal and carths. Chemical analyses would finally close this division of useful labour, by enabling us to compare with foreign
foreign irons the residua afforded by our various qualities in the different stages of manufacture.

The third and not the least interesting province of national inquiry, and which would form an essential epoch in the history of iron making, would be a practical analysis of the numerous qualities of pit coal ; not murely to ascertain the quantities of bitumen, carbon, and asise which they contain, but by forming real motallic proctucts les means of cach quality, and subjecting theee to po-itive and comparative trials, enable us to pronounce which are best calculated to promote the general interest of the manufacture.

In the pursuit of knowledge in this laborious, sable, but very intcresting field, science might ere long, and without any visionary effects of a fanciful magination, cstablish her empire over the regions of the foundry, and by her enlightened steps exhibit to a , even in the most remote and inglorious manipulation of this art, the unerring operation of principle and the general harmony of established causes. Then, perhaps, our labours might be productive of a classification descriptive of the natural product of our ores and fuel. The Germans have long had their steel ore and the Swedes their steel iren; and may not analysis point out, according to the rarious combinations of our ores, however inferior in many respects, what particular mixture would form the best bar iron, and which the hest steel? Already the manufacture of melting cast iron, so far as it relates to a judicious choice of ores, seems thoronghly understood.

The first of these divisions now pointed out being the task I have assigned to myself, I shail proceed to state the train of reasoning which was the foundation of the extensive series of experiments meant to be detailed.

Every day, convinced of the correctness of the practical deductions formenly stated, relative to ores combined with different earths, I was anxious to form an explanation of the causes which would in every particular prove satisfactory of the facts. At one time I attributed the efficts of the calcareous iron-stone to the decompcsition of carbonic acid in burning the iron-stonc, and part of the carbon either uniting to the particles of metal, or, which in efiect would nearly be the same thing, carrying off a portion of its oxygen. I again supposed that this effect might be produced by a stronger affinity existing betwist the iron-stone and the raw limestone added as a flux, the carbonic acid of which might be decomposed, and the carbon attracted by the iron. Haring satisfied myself, by direct experiment, that carbonic acid (even admitting it as decomposed) never
affords any carbon to iron in fusion, I was forced to seek a new theory.

I had often remarked that, in forming crucibles, a mixture of plumbago, charcoal, or coke-dust, white it conferred a degree of toughness to the clay in the act of heating, and presented what is by workmen called clicking, uniformly created a degree of fusibility beyond the natural tendency of the cloy when umined. It occurred to me that this fusibilite misht proceed from a chemical aftinty being excited be the clay upon the carbonaceons matier of the addation in sery high temperatures, and that something similar taking place betwint the earthe and the carbon in the blast-furnace, might tend to explain, ia a satisfactory manner, the phænomen of the diferent imon-stones.

I immdately constered lime, day, and silex, in some respects in the same state is the metalic oxides, and particularly similar to the one with which the were mited in their earthy state: eech of them separating from the common mass, according to theirambitics, pustions of the carbonaccons matere of the fuct, and either with it becoming a binary compond, or by discharging it in the state of an elastic vapour.

From this theory it seemed consonant with the practical remaths fomerly made to detuce, that the fact of calcareous mater in the blast-fumace, and particularty in union with iron-stones, foming iron more carbonated than argilJacenns or silicena ores, might arise from a less dogrec of atiaity sabsisting betwixt calareons earih and carbom, than between the others and that substance: or that, in other worts, lime not aboobing at ali, ow in rey small quatities, the carbon of the fuel, a lareer portion was left to be mited with the iron; and hence followed an eavy explanation of its tendency to form carburated or "sulphury irom."

As the product- of carbonation dmmish by the increase of clay, I inmediat ly infered that clay absorbed a larger portion of carbon than lime, and this robbed the irou of a portion of its coaly princi;le. The same reasming I applied to siliccous iron-stones, but in an extent proportioned to the exccsive decarbonation of the metal when these iron-simes are used in cquantity.

As a!! theory, howerer, stemed objectionable that was not founded upon direct experiment, particularly when the elomentary principles could be suhjected with ease to their supposed respective afinitics, I determined to engage in an undertakine, which, thourh it at first sight appeared labosons, promisel a rich and an aboudant harvest.

The experiments arrange themselses under the following heads:

1st, On the affinties which exist betwint lime, clay, and silex, and carbon, in temperatures fiom 150° to 170° of Wodgerood.
od, On the affinities which exist betwixt carbon and ores varosely compounded, jadging comparatively from thair metallic resulto in fusion.

3d, On the affinitie, which exist betwixt carbon and primary and secondary ores of iron, arranged according to their former classification, judging also comparatively from their metalic results.
[To be enstinued.]

NXIV. Researches in resard to the Hamer in which Nathral Bodies exhilit Colurrs, and Ixperiments on a new Theory of that Phemonenoin. By S. F. Hensibstadt*.

First Part-uhich contains an Eximination of the Question, Whether Light le a simple sulstance?
T the result of the senation impressed on the organ of sight by the effect of the ubject, and can no further be explained. If the result of this effect is to be defined from physical causes, it is then necessary to follow its producheg canses to discover them if possible, and to doduce from them a rational explanation consistent with nateral principles.

If we sut out from any other minciple, the effective causes are considered as accessory things; and no other result can be obtained from our researches than hypothesis susectible of any modifcation, and for that reason insufficion.

It was from this principle that the antient philosophers procecded when they wished to give a proper idea of the production of colcurs; and therefore it was natural that the hepothesis they formed should be subject to any modification, and readyly gise phace to other hypotheses.

Newton himeelf, who whont dubt is the greatest among the modem philosophers, did not render his hypothesis in regard to light and colcurs perfectly free fron this objection. The experiments which he first made in the year 1666 on the refraction of light, gave him reason to observe

[^41]its close connection with the colours of bodies, and to fom from it a system which, as a monument of human ingenuity, is worthy of admiration.

Some of the supports of this system of colours, which at present is made the gromed of the explanation given of the phanomena of colours, have been shaken by Euler's hypothesis; but it can by no mean: be entirely overturned.

Nevton's experments on the refraction of the rass of light, have undoubtedly proved that light must be considered as the first and only cause of all colours, and be made the principle on which they are explained.

But when we found on it the hypothesis, that white light is a mixiture of the seven simple coloured rays, which can no longer be deeomposed, and when this hypothesis is made the foundation of another, to show how the natural bodies exhibit their colours according as they reflect this or that ray of light and absorb the rest, -this to me appears to be merely an auxiliary hypothesis, capable of explaining the consequence in part, but by no means entirely.

Had Newton, the celebrated anthor of this system, been as good a chemist as he was a gecmetrician and philosopher; and had the knowledge of chemistry been as widely extended in his time as it is at present; that great man, as modest as he wd- free from prejudice, would in the prosecution of his diseoverics have proceeded to the first causes; and these researches would have exhibited to so philosophical and accurate an expermenter the object of his inguiries in a differeat point of view.

This, however, was not the casc. Newton, and most of his followers who emploved themselves with researches on this subject, examined rather the refrangibility and reflexibility of light than its intimate nature ; and therefore it was mavoidable that phanomena shoukl either escape or be concaled from them, which are every moment produced by the action of light, and which in its effects act a distinguished pait as the means of producing colours.

Some new experiments which I made on light, and a repetition of those of others, have exhibited to me phenomena which secm to merit attention, as they may serve to enable us to form some opinion in regard to the object in ruestion.

That I may pursue these experiments in systematic order, I shall here mention the ideas which gave birth to them: ther were as follows:

1st, Is the white colourless light a simple and not a compound substance?

2d, Is it the product of a mixture of two heterogeneous substances? and in this case, what are the compounding parts?

3 d , Does light consist or not in a mixture of seren differently coloured ravs ? and, if the latter be the case, how and under what circumstances does light act as a modium for the production of colours?

4th, What influence have the matters which in contact with light produce colours on the change of its nixture?

In regad to daswering the first question, it will be necessary to determine in seneral, if possible, whether any thing can exist actually perceptible to the senses in the simple state.
\dot{A} far as our experience in the knowledge of nature permits us to judge, we must admit among material objects in general, and among the more subtle natters in particular, an incessant and mutual action, which is so powerful, that, in the moment when we endearour to disengage simple substances from their mixture e, they again enter into new combinations, and exercise on each cther a productive power which never ccases.

It hence follows, that the impression by which these matters affect our senses must be considered either as the result of new mixtures; or it must be admitted that these matters, by their mixing and productive power, are capable of exciting ideas of their specific and individual existence.

If this mode of considering the subiect be applied to licht, it follows, that it must be considered as the result of the mixture of two different component parts. But here a question naturally arises, What are the principles which produce light, considered as the product of their mixture?

As the answer to this question camot be found don any question a priori, it must be explaned br experiment; for it is the result of a research repecting light that can pare the way to a solution of it. With this vitw the following experiments were made:

Experiment I.

On a bright summer day, when the horizon was obscured by no cloud, a buncle of rave was introduced into a darkened rom in such a manner as to cover the bulbs of two thermoneters suspended in a perpendicular direction: one of these thermoneters, which I shall call A, was at the distance of 12 inches, and the other, B , at the distance of 94 , rechoning from the point where the light flowed in.

Glisercation. - In the course of ten mintites the merenry
in the thermometer A stood at 15° of Reammar, and that in B at $14^{\prime \prime}$. The former, therefore, was the temperature of the light itedf.

Experiment II.

I let the above apparatua remain without any change, but suspendes near the thomometer B another, C, the butb of which was covered with a misture of chalk and clear gum water, and completely dried.

Observation.-At the end of ten minutes the temperature of the themometers Λ and s was the same: in C the morcury stood only at 12 degrees.

Experiment III.

I arain left the apparatus in the same state, but in place of the thermometer C substituted a new one, D, the bulb of which was coverd wih a mixiture of gum water and vermilion completelv dried.

Observation.-At the end of ten minutes the mercurv in A and B was in the same state as before; but in the thermoneter D, the bulb of which had been covered with vermilion, it stood at 17 degrees.

Exteriment IV.

In the like manner I susponded near the thermometer B areother, \vec{F}., the bulb of which was painted black, with a mixate of hap-black and gam water.

Gherration. - It the cad of ten minutes the temperature of the themoneter; A and B was as before; but the one E , panted with lamp-bluck, oxnbited the temperature of 90°.

The resulis of these cxperiments were striking, but I was uncortain on what princinte I could explain them. Two explanations oniy were posibic. 1st, Either the colours which I emplosed act as conduetors of heat: or, ed, They have diferent degrecs of power to extricate heat from light. To ascerain these pints I mad the followng experiments:

Experiment V .

I took theee ctimuric ghasses of equal thickness, and flled one wit! dry poundel walk, another with dry pounded cimenar, and the third whth ham lanp-black. In each of these ghaies I placed the buth of a themometer, in such at maner that it was crery where corered be the pulverizel -abstance. The thece glases were then deposited in a small wooden box, and hot sand being poared over them, they bere left at ret for ton minute.
'A, ratath-The tenprathe of the sand was now 50 degrees
degrees of Reaumur, the thermoneter in the chalk indicated the temperature of 35 degrees, that in the cimnabar 40 , and that in the lamp-black 35 .

It hence follows, therefore, that the conducting power of these substances for heat is as little proportioned as their capacities for it to that heat which the light excites in them: otherwise the lamp-black must have acquired the greatest temperature ; whereas it exhibited the lowest, and consequently showed the least power for conducting heat *.

These results, therefore, are a sufficient proof that the light, when it acts on substances of different colours, is capable of producing different degrees of heat, if in their former state they were free from heat.

But it is worthy of remark, that the thermometer painted with chalk exhibited a lower temperature than that of the light which fell upon it ; and this shows that white light possesses rather the property of extracting heat from colourless bodies than producing in them heat: which agrees with some other experiments.

If the results of these experiments, therefore, be cmployed to determine whether light be a simple substance, or a product of the mixture of two different component parts, we are naturally led to adopt the latter idea, namely, that light is not a simple but a compound substance.

We are thus conducted to the answering of the second question, What are the component parts of light? We are taught by the above experments, that chalk, when it comes into contact with a colourless ray of light, not only produces no heat, but even lessens the absolute heat of the light; and on the other hand, that lamp-black in contact with light is capable of producing the greatest degree of heat.

The latter is the case also when other black objects are subjected to the action of the light, and is confirmed in a striking manner by the well-known experiment, that snow under a pitce of black cloth melts much sooner than under white.

It hence follows also, and this is agrecable to Newton's

* The auhor's infurence is in some respecis incorrect. The experiment was instituted to determine whether the shores he empleyed acted a, conductors of heat, or had difierete degrees of power to carricate hout from light. The resule only procts a certain truth respecting the conducting power of the subsiares ompher. The pown of a! bodish to transmit heat :s. in some degree a least, as their deestiles. Thares co-
 hend no accurate inforence c.nbudannampoing the point in gaestun. -Edit.
principles, that black objects must be considered as those which absorb the light, and capable of depriving it of its luminous property : on the other hand, those must be considered as white or colourless objects which refleet the light that falls upon them, and for this, reasm appear white.

But here arises another question-if dark objects destroy the action of the light which falls upon them, while white objects do not, what is the efficient cause of this difference? This question may ese casily answered on the principles of Newton by this observation, that black objects absorb the light, and white reflect it.

This explanation, however, is merely an anxiliary hypothesis to attempt to explain something, but it by no means explains the result. Should it be explained on satisfactory grounds, a second question will arise, namely, Why is light absorbed by black objects, and not by white? Is this effect accompanied by particular phænomena, or not? And if this be the case, What are the phænomena which are exhibited for our observation?

If the above experiments be made the ground for an explanation of this point, it thence follows, that in the moment when light is deranged in its luminnus action by a black object, an exaltation of its temperature takes place.

But the exaltation of the temperature of a body supposes the existence of free heat. If bodies, however, in a state of rest, exposed to the action oí light, can on no good grounds be considered as capable of themselves to extricate heat; and if heat is produced by their contact with the rays of light which are not hot of themselves, light must be considered as that object which contains the principles sufficient for the disengagement of heat.

But if the heat combined with light cannot exercise an action lill the light is brought into contact with another object, it must be combincd with it in a different form. This union or mixture of two heterogeneous bodies in a new product supposes an affinity between them; and this is a sufficient proof that light nust be considered as the product of the mixture of caloric and another substance, which unite by the power of atinity.

We hence see by what means light, in consequence of its action on some bodics, can produce heat, and why this is not the case with others. If an object, therefore, is capable of exciting heat by its contact with light, its attractive power for the matter that produces light must be greater than the attractive power of this matter for caloric. Hence it follows, that the productive matter of light is miscible with other
other matters, and consequently subject to the general law; of chemical or mixing amity, which places its materiality beyond all doubt. It follows likewise that colourless boaics for this reason when they come into contact with light can produce no heat, because their attraction for the producing matter of light is less than the attraction of this matter for caloric.

Since we are thus naturally induced to consider light as a product or mixture of the producing matter of light and caloric, it will be necessary also to introduce this matter under a characteristic name into the nomenclature of natural elements. But the producing matter of light is not of itself luminous; it assumes this quality in the product of its mixture with caloric, and consequently it must be distinguished by the name of photogen from the Greek words pwros and y sivou.x, which signity to produce light.

Light, and the matter that produces light, must also be as different from each other as cause and effect. The producing matter of light may be a component part of many objects in the world, and be distinguished by different qualities. It may also exist in the concrete form, mixed with other bodies; but it can never exist pure without mixture with other elements, because, as already observed, all clements in nature are in a continual state of mutual reaction, and exercise on each other an incessant power of attraction.

If the producing matter of light and caloric enter into mixture, the result is light ; consequently caloric is that element which converts the producing matter of light into moveable or radiant light.
[To be continued.]

XXXVI. Fourteenth Communication from Dr. Thoratos relative to Pneumatic Medicine.

$$
\text { To Mr. Tilloch. } \quad \begin{gathered}
\text { No. I, Hinde-stret. } \\
\text { Manchester-square. }
\end{gathered}
$$ sir,

Ifeel happy when I can relate to the philosophic world cures long ago accomplished, which show also the permanency of the benefits received; and the present early case is, I think, a very striking example of the efficacy of the aërial remedy.

Case of Spasms.
Mrs. Gillespie, æt. 35, a married lady, for near a twelvemonth
month was affected with a stomach complant, as indigestion, hatulence, heartburn, a dowhing of animal food, disturbed sleep, grat cmaciation, a dry cough, and frequent excruciating spasms, with frepluent hysteric affections in the throat: her debility was great, and her breathing extremely short upon using the least exertion. llaving taken a great deal of medicine to no manmer of permanent good, she resolved to try the vital air; and this was as lar back as the year 1793 , and with the approbation of her apothecary Mr. Bateson, of (ion Dock, a very old practitioncr, whose name accordingly doocres to be remembered here. The same phan of medicine was pursud as betore: a gallon of vital air, mixed with three gallons of atmospheric, inhaled, and in sis weeks this hady was restoreci to the blessing of hoalth. Being called, a feiw daysago, into consultation by Dr. Ifamilion, respecting this lady's nicee, No. 3, Brixton, I was pleased to find Mrs. Gillespie looking extremely well, and she filt more anxious than I might be to hare her case generally known to the wond.

Olservations on this Case liy Dr. Thomton.

1. The commection of the oxygenated biood on the stomach is found from the greater degree of appetite experieaced by those in the country than when in a contincd place, and from the effect of inhaling the superoxygenated air as increasing the appetite in this and other patients.
II. That the spasms should cease is not to be wondered at, as undigested food in the stomach not only makes unconcocted or ill-formed blood, but acts as a local stimulus, ferments, and occations the extrication of fixed and inflammable airs, and, distending lively parts excossively, throws them into inordinate action; -but once get the stomach right, the main spring of the anmated machine, and all then goes on well.
III. This lady at first was so wak, that with difficulty she could get out of the coach up stairs, and the artificial mode of drawing into the lungs the superoxygenated air was accomplished with extreme dificults.
IV. Warmoth, spinits, appetite, gradually increased; debility, so producite of spasm in the laginge of the old school, som disappeared: and this case, with others, tends to prove, "that the combined pouers nf" medicine and air may produce a good, when either, perhaps, would fail singly."

Mr. Roberts, oilman!, No. 5, Blandford-strect, whom I saw to duy, makes the following report relative to the rital
air. His dyspepsia had existed two years:-". From the first day inhaling the vital air, found erery thing stay on ny stomath: before I vomited every thing lip; before, animal food took such an effect upon me, that I was obliged to lears the room where any joint was: now I eat erery thing with an appetite, and, after returning from inhaling the vital air, am disposed to devour eren the rictuals in the street."-This patient has left off the vital air, as considering himself cured.

> I have the honour to remain, yours, \&ec.
> Robert Johin Thornton.

XXIVII. History of Astronomy for the Jear 1503. Real at the College de France by Jerome de Lalande..

This year will not appear so remarkable as the two preceding ones, in which new planets and comets were discovered; but it presents a series of important labours undertaken for the improvement of the science, either terminated or begun.
M. Piazzi has published at Palermo a very valuable work; a catalogue of nearly 7000 stars, each observed several times with excellent instruments calculated and reduced to the year 1500 . It was at the College de France that the author, fifteen years ago, made preparations for this immense labour. We have received the catalogue of 300 stars by M. Cagnoli, with their right ascensions and declinations, which are very correct : on this work he has been employed twenty years.

Lalande my nepher, with his new aids and an immense number of his own obscrations, has cntirely reconstructed the catalogue of 600 new stars, which for many vears he has inserted in the Comoisance des Temps, and which serves as a foundation for the calculations of the greater part of our astronomers.

As the stars are the foundation of all our astronomical determinations, Dr. Maskelyne has carefully revised the thirty-four stars which he announced as haring the utmost degree of precision, and which we have all employed, as being entitled to full conflence: he found in them an error of $4^{\prime \prime}$.

The interruption of our correspondence with England during the war has induced me to undertake a rery considerable labour.
*Fron the Vagazin Exgcluptitique, no. :5, Nirose, an 12. Yol. SVILI. No. i. O I have

I have calculated some hundreds of the sun's altitudes observed in England and France, for several years back, before and after the equinos, and have deduced from them the sun's right ascousion, and comseruently that of the stars which had been compared with him. I have found that it is necessary to add $5^{\prime \prime}$ to the positions of the stare which Dr. Maskelyne gave us as being certain to a second, and which all astronomers employed with the greatest securits: but perceiving that observations made at the distance of so ${ }^{\circ}$ from the zenith and at 60° gave right aseensions which differed sometimes $15^{\prime \prime}$, I concluded that there were errors of division of $5^{\prime \prime}$ in the interval of 20 degrees: it will therefore be necessary to recur to the whole circle, to verify the mural quadrants employed at Paris and at Greenwich.

I was at first surprisel to find errors of $10^{\prime \prime}$ and then of $20^{\prime \prime}$ in the right ascensions; but 1 thought them of less consequence when I saw that from 42 to 4.5 degrecs they were $10^{\prime \prime}$, and that from 54 to 56 they amomeded to $20^{\prime \prime}$. The medium, thercfore, between results very different is found to be the same, because the altitudes correspond at the two seasons, and the sum of the small errors compensates for that of the great.

To remedy this ineonvenicnce in the divisions of the mural quadrant, M. Delambere this year observed the sun for two months, partly before and partly after the autumnal equinox, with a multiplying circle, and by 300 orservations he had places of the sun independent of the siar. But a second in the refraction, or in the height of the pole, may occasion all the uncertainty : it will, however, be remored at the next equinox.

Picard and La Hire in the sevententh century made the first correct observations for accomplishing this end, and the French in the present century will have made the last to attain it completely.

Herschel asserts that the stars called Castor γ of the Lion, and several other double stars very near to cach other, tum round in periods of some centuries. M. Triesneeker is not of opinion with M. Flauguergues, that in the double star $\left\{\begin{array}{l}\text { of the Great Bear the two parts have changed: }\end{array}\right.$ there are $14^{\prime \prime}$ distance between the two stars of which it is composed.
Mi. Vidal has observed at Mirepois zones of the circumipolar stars which were wanting.
N. Delambre at the summer solstice made an observation of the obliquity of the ecliptic with a multiplying circle. The mean of four years observations, and of two years made
br my nephew Lalande, gave as the mean for $150023^{\circ} \bumpeq 9^{\prime}$: this is the result of more than 1500 obserrations; but it supposes the height of the pole to be $45^{\circ} 50^{\prime} 13^{\prime \prime}$ instead of $14^{\prime \prime \prime}$, and the latter supposes the refraction of Bradley increased by $1^{\prime \prime}$. By these means he makes the winter to agree with the summer solstice, between which there was a difference of 7 or $s^{\prime \prime}$. The bad weather did not permit him to observe the winter solstice with the circle which I cansed to be constructed by Lenoir for the observatory of Palermo. The astronomers B́radley, Lacaille, and Mayer, found for $175093^{\circ} 28^{\prime} 18 \cdot 5^{\prime \prime}$; the secular decrease, therefore, would be $4 \mathscr{I}^{\prime \prime}$ per century ; and I prefer this result to that of the equation of the suin produced by Venus, which would give $50^{\prime \prime}$.

Dr. Maskelyne found with a mural quadrant at Greenwich $23^{\circ} 27^{\prime} \overline{5} 7^{\prime \prime}$; but the English have not yet adopted our repeating circles, with which one may be certain to a second, and with which no errors in the divisions are to be apprehended.

Piazzi, at Palermo, found $93^{\circ} 27^{\prime} 56 \cdot 6^{\prime \prime}$ with an excellent circle by Ramsden, but not a repeating circle.

The Academy of Berlin has still proposcd, for 1506, the determination of the ubliquity of the ecliptic, both by theory and observation. The details are contained in the NIoniteur of November the first. But little remains to be done in that respect.

The refraction still contains a doubtful element ; it is the corrcction required by the density of the atmosphere.
M. Gay has presented to the Institute an interesting me moir on this subject, and there is one in the Transactions of the Society of Manchester: an extract of it has been inserted in the Billiotheque Brilamique published at Geneva.

The measure of a degree of the earth in Lapland, which M. Melanderhielm has procured for us, and the calculations it required, were transmitted to us in the month of April by Messrs. Svanberg, Overbom, Holmquist, and Palander : they have found the degree to be 57197 toises. That found by Maupertuis. Clairaut. Camus, Lemonnier, Outhier, and Celsius, in 1736, was 57405 , which is greater by 208 toises. This cnormous difference was suspected. The degree of Lapiand was at variance with all theory and with every Other measurement : it gave to the earth too great a flattening; whereas the new degree gives $\frac{1}{315}$, which is not much different from the $\frac{1}{3} \pm$ given by the new meridian of France,
compared
sompared with the derree measurd in Pera. It is, however, so difficult to admit an error of sheh magnitude, that we have repuested information finm Siweden on this subject.
M. Mechain set out on the ofth of April 1803 for Spain, to contime the meridian of Prance to the 39 th degree of latitude, that is to sa, as far at the Baluarian islands. He was acempanied by Nechain jumor, D anuche junior, and they were joined by M. Chaix, an able Spmish astronomer.

I gave him an excellent circle of 19 inches radius, made by Lenoir; a telescope of a large aperture was added to it : there are twelve large reverberator, and he will be able to continue his trianges to Najorea and lria, thongh at the dhetance of 93000 toises from the coast of Catalonia, in the months of Jannary, February, and Jarch, which are those most favourable for such observitons. In the mean time he has formed six subsidiary triange between Barcelond and Tortos, as detililed in the Monitiour of November 15. But in the midst of storms and tempeste, surounded by thunder, and sleeping wader a ient upon straw, he has been obliged, for the purpose of completing his operations, to cause wooden huts to be constructed on summits the climate of which is dreadful. On the a 7 th of October he was on the highest peaks of Montserrat for his lazt triangle. On the $23 d$ of Norember the whole were finished; but the brig destined to carry him to the Calcarian istands, having lost twenty men by the yellow ferer which broke out at Malaga, was obliged to perform quaramtine, abd Nechain could not proceed thither, thong the comrt of Spam had given the necessary orders. Ailength on the sth of onnary he set out for livica, where he whll commence his operations. It seems to be determined that the war holl not prevent this uselul labour. By these means we shall lave an exact measurement of 12 degrees, the man of which will be the 45 th degree, the one we are most interested to hinow, to verity still better our miversal measure and the magnitude of the earth.
C. Chaptal, our learnedminister, to whom all the arts and sciences are under daily obligations, and by whom the College de France has been revived, wished also to dispense to astronomy the favours of an enlightened govemment if which he is the organ.

The observatory has receired some new acquisitions. On the 17 th of August a meridian telescope cight feet long and of four inches aperture, and an axis of 46 inches, made at London by the celcbrated Ramsden, was crected, and on
the 6th of September 11. Bouvard observed the noon: he observed the equinor; and these operations will not be interrup'ed.

The minister has purchased a dividing machine for 12,000 francs, made by Samael Rche: it is 43 inches, and was bought by M. Andreossi after the death of that artist. It has the same form as that of Ramsden, the deseription of which I translated: it will probably be of nse to our artists.

The large telescope of Caroche, which is ge feet, and equal to that of Herschel of the same length, has hitherto been useless, because it wantel a st:md to support it, and a terrace to be placed on. M. Tremel, an able mechanist tho made the stand, died on the 13th of February, before he could finish it. Caroche had a terrible fall in attempting to use it ; so that, notwithstanding the great expense we have been at, our enjorment is still retarde!.
M. de Narey has mide prisms of rock crystal placed over each other in such a manner, that the diancters of the sum and moon can be mestured by the donble refraction of Rochon: father Boscorich made use of it to measure small angles.
N. Jenoir has made a circle of en inches for M1. Piazzi of Palermo, who propuses to measure a degree: he has added to it a powertul iclescope.

Government, by a decrec of Vendemiaire 1st, determined that the standards of the metre and of the kilogramme, and of all the rales whieh have served for the different measures of the earth by the Fench astronomers. shall be deposited at the national oberratory, under the inspection of the Board of Longitade.

The minisier Chaptal has given a gratuity to M. Flanguergues, whose zeal for astronomy is still mantained at Viviers in an excmplary mamer.

The minister, at my solicitation, caused also to be purchased, and deposited at the observatory, in the month of August, the observations of M. Lemonnier, which I have not had an opportunity of sceing. They consist of fourteen large volumes: the observations, which terminate at the 30th of October 1791, have been printed up to the 6th of June 1745 : but it is only since the sth of April 1755 that they were made with the mural of $7 \frac{1}{2}$ feet. As those of Bradley are printed only for $1750-175 \frac{5}{5}$, and as those of Dr. Maskelyne do not begin till the month of May 1765, there is a gap of nearly ten years; to supply which we have recourse to the observations of M. Lemominer, though not
so correct as those of Greennich. But Lemomier observed more stars. I propose to mite to this deposit the observations of Picard, Louville, Lacaille, Bougurr, Bailly, and d'Agelet, which are in my hands.
M. Bouvard has made at the Luxembourg, or palace of the senate, an exccilent meridian of mean time, which it is much to be wished the public would use, as is done in England and even at Genera, and as those do who have good time-kecpers by Berthoud and Breguct. Our small annuary gives the difference for each day, which mounts at most to a quarter of an hour. On the with of September I renewed, at the Institute, the proposal of setting the example by adopting mean time, which alone is regular, and can form a rea! measure.

It has been apprehended that this might be a restraint on the public, who make use of sun-dials; and the Institute has thought that govemment in this measure ought to take the iead ly cansing tiee clocks in the national buildings to be regulate 1 by mean time. I do wot despair of sceing adopted -is new kind of exac: "ess, which is recessary on account of the present improved state of the arts and the science:. M. Henty Lepate, on the $96 t h$ of December, erceted in the Institute a beats al clock, which will serve as a regulator; it indicates both mean and true time.

The astronomy of the planets has this year made some progress. M. Delambre has reconstrucind tables of the sun, by introducing fourteen new equations furnished him by the theory of Laplace, and calculating 500 observations of Bradley and Maskelyne. He has increased the mass of Venus, which he employed in 1792, in the ratio of 92 to 104, and diminished that of Mars in the ratio of 100 to \%e.

The tables of the moon of M. Burg have been corrected by introducing new positions of the stars, and the equation of 180 years, found by Laplace. M. Burg has found the longitude of the moon: for 1801 to be $3^{\prime \prime} 15^{\circ} 1^{\prime} 17 \cdot 3^{\prime \prime}+$ $10 \cdot 2^{\prime \prime}+0 \cdot 8^{\prime \prime}$, and the secular motion $100^{\circ} 52^{\prime} 43 \cdot 5^{\prime \prime}$.

On the ist of November M. Jurckhardt presented the result of his calculations, in which he found $4 \cdot 6^{\prime \prime}$ less than the !ongitude given by M. Burg, whose tables come down only to the 17 th of November.

L. and anom. $1501-3^{\text {s }} 15^{\circ} 1^{\prime} 19.7^{\prime \prime} \left\lvert\, \begin{array}{ll} \\ \text { s } & 18^{\circ} 50^{\prime} 55 \cdot 6^{\prime \prime}\end{array}\right.$ Secular mot. - -	10	7	59	$45 \cdot 5$	6	18	49	$17 \cdot 8$

The difierence arises from the new equation of M. Laplace, which M. Burg, perhaps, made too small.

The celipse of the sun which took place on the 16 th of

August was observed almost every where; it furnished us with the rerification of several longitudes, and gave us a rigorous agreement in the tables.
M. Burg, who refised to come to France with an adrantagcous appointment, has becn indemmified by a pension from the emperor.
M. Leapold, who was employed with me in observations and calculations, made preparations for observing the eclipse at Bourdeaux with M.Lescan, professor of hedrography; M. Ducom, professor of navigation; and M. Thibaut, at captain in the navy: but the weather was not farourable.

I have made neiv tables of Nercury and Venns, by employing the perturbations or inequalities produced by the attaction of the other plancts. N. de Laplace had given the equations estimated by M. Bourard.
M. Burckhardt calculated the tables. I corrected the elements according to the latest observations, and I have had the satisfaction to see that the new ones are so exact that no errors of any consequence can be found in the most correct observations of Mercury and Venus.
M. Flaugucrgues has calculated the equation of Mercury in tenths and seconds, and the logarithms to eight places.

The following is the last inferor conjunction of Vous, observed at Paris by Burchhardt and Lalande my nephew:

Mean time of the true conjunction December 31st, 3^{h} $15^{\prime} 3^{\prime \prime}$; and the true longitude, connted from the mean equinox, $9^{\circ} 9^{\circ} 19^{\prime} 5^{\prime \prime}$.

It gives for the correction of the present tables, $-13^{\prime \prime}$ in longitude, and - $1^{\prime \prime}$ in latitude; but by means of the correction which I made in the epochs and mean motions there remains only $1^{\prime \prime}$ of error for the longitude. I find in $1795,1^{\prime \prime}$; in $1796, \varrho^{\prime \prime}$; in 1798, $1^{\prime \prime}$; in $1799,1^{\prime \prime}$; in 1501 , zero: which proves that there is no change to be made in the new elements.

In the digression of March 13, 1503, M. Flauguergues found $+21^{\prime \prime}$ and $+4^{\prime \prime}$.

In the month of May ! so4 Venus will astonish the public bey her great splendurar: and we shall be obliged to announce in our journals, that she is not a new star, nor an extraordinary comet.

Thie opposition of Mars at the end of $1809-6^{\prime \prime}$ in longitude, $+\mathscr{\Omega}^{\prime \prime}$ in latitude, for the tables which Lalande my nephew published in the Connoissance des Temps for the year 12, isot.
Mi. Bourard has reconstructed the tables of Jupiter according to observations made for ten years, emplowing
equations of conditions which give the means of verifying all the clements. He has brought them to such perfection that the errors amount only to $10^{\prime \prime}$; bit the mass of Saturn, reduced to $\frac{1}{35} \frac{1}{5}$, is more exact than that deduced from the satellites.

The opposition of Jupiter gives - $\Omega^{\prime \prime}$ in longitude.
The opposition of Saturn in the moniln of March gave for the correction of the tables in longitude - 17 $7^{\prime \prime}$, and in latitude zero. But M. Bouvard will undertake the same labour in regard to Saturn as that which he has announced on Jupiter.

The disappearance of Saturn's ring, according to the calculations of Duscjour, will not take phace till the end of June.

For the end of December he found only an almost disappearance, or an instantanenus disappearance *; a tendency to disappeart. But the diappearance was complete from the 20th of December to the Juth of Jumary, according to M. Mechain and M. Flauguergues, at Viviers. I have thence deduced the place of the node of Saturn's ring in the ecliptic $5^{*} 17^{\circ} 14^{\prime}$; the obscrations of 1774 gave $5^{5} 17^{\circ}$ 20': the difficrence is small, and makes only $1 s^{\prime}$ in twentynime years for the motion of the node of the ring. I found still less for the anterior disappearances ${ }^{\text {t. }}$.

The reappearance took place on the 14 th of June, according to M. Flanguergncs.

On the 16th, according to M. Vidal; and the result was nearly the same.

Among the rare observations which M. Vidal has sent us, there is one very extraordinary. On the 11th of Octobir he ubserved Jupter and Venus at the same time as the limb of the stan: they differed only 10^{\prime} in declination: he saw then together in the field of the telescope. He obsersed Satum in the moridian so' before tise sum.

Ohbers's phanct, discovered on the asth of March 1802, has this ycar afforded occupation to ali the astronomers. It had been lest since the 10 th of October 1502 ; we were all mpatient to see it again: M. IIarding, of Lilienthal, first enjored this satisfaction; on the loth of February he saw it like a star of the tudfth mamitude.
M. Nessier foilowed it till the month of September, notwithstanding the extreme difficulty of seeing it with the best telescopes.

Dessis. Burckhardt and Lalande my nephew observed

* Vol. ii. p. 124. $\quad+$ Poge 155 . \ddagger Astron. are. 3355 .
it at the Military School, or Maison du Champ de Mars, as long as it conld be seen on the meridian. They found the opposition on the esth of June 1803 at $93^{12} 57^{\prime} 10^{\prime \prime}$ mean time in $9^{\circ} 7^{\circ} 39^{\prime}$, with $45^{\circ} 96^{\prime} 36^{\prime \prime}$ of latitude.

On the 11th of July A. Burckhardt gave us the new elements, by which we can find it again in the month of March next.

The sidereal revolution, 1681 day's $\frac{98}{100}$; tropical revolution $1680 \cdot 97$, or 4 years 7 months 11 days.

Thich gives lor the mean longitude the lst of Janunry 1501, $9^{5} 29^{\circ} 5 z^{\prime} 55^{\prime \prime}$; ececntricity the same as in the preceding clements, 0.2163 ; diumal motion, $12^{\prime} 50.983^{\prime \prime}$; annual motion, $78^{\circ} 10^{\prime} 9^{\prime \prime}$.
M. Burcharde has been employed in calculating the perturbations experienced by the planets of Piazzi and Olbers. In consequence of the attraction of Jupiter these calculations are exceedingly complex, because the higher powers of the eccentricity and inclination produce a great number of tems.

He has given formule of the perturbations to the 5 th power; and he even believes that the eleventh power might furmsh sensible terms for that of Olbers. He is engaged in these researches.

On the 1 sth of Thamidor of the year 11, according to the senatus consultum of the asth of Vendemiare precedine, covermment admitted M. Buredhard to the privileges of a mench citizen. Want of this admision prevented him from beng a momber of the hastute at the last clection. Govermment wished to indenmify him by a flatering distinction dae to exalted merit. This is a new encouragement to the labours with which lie daily emriches astronomy.

On the 4th of April the Im-titute decreed, for the first time, the prize of astronomy which I founded the precedinge yar. It was adjudged to Dr. Olbers for his discovery of a tenth planet.

I sce with regret, that the Germans have no more respect for Dr. Cibers than they have for Dr. Herschel. The name of Paflas has no foundation: jealousy, perhaps, is the cause we the imjustice.

I haw had the satisfaction to find that astronomy is cxtending
tending even in America. Don Antonio de Iobordo has sent me from the Havanah minute calculations of the tellpse of the sun, on the 10th of February : sut, made hy the analytical methods of M. Duscjour, fin wery conntry of the earth, with all the dimensions of the curses of illumination. These calculations, more exterse and more exact than those in the Comoissance des icups for the year 12, arrived too late to be inserted in that work; which I much regretted.

The French eovernment has reaolved to re-establish the mission to Chima, which is equally useful to the seiences and to political relations. One of our ablest astronomers has formed the project of gring thether; and however great his utility may be here, I did not oppose this phan of groing to a distance from us, in order that he may stili be of more service to us.

The duke of Brunswick has resolved to cause an observatory to be constructed. Baron von Zach has been at Brunswick for that purpose; and I have thanked, in the name of all astronomers, the prince who increases the number of heroes, protectors of astronomy, whom I have mentioned in the preface to my work on that subject.

The Italian republic has requested an astronomer to cooperate with M. Ciccolini in the observations made in the Institute of Bologna.
M. Vassalli-Eandi has requested that the observatory of Turin may be put into a state of actirity.

The margrave of Baden, having taken possession of Manhem on the 23d of November 1502, preserved the instrumeits of the obervatory ; and N1. Baty has amounced to me a new series of observations.

Ny Bidiographie Aitronomidue apperal on the 5th of Sone in a quato rolume of go, pages. it contans as large a catalogne. as I was able to make, in the course of thirty yars, of all the astronomers and all the woks on astronomy which have appeard for two thousand years.

Railly's large History of Astromony terminated at 1/81: I have continued it to the cud of 1802.
M. Goudin has given a new edition of his Astronomical Memoirs.

On the 3^{7} th of Warch the Board of Longitude published the Comnissunce des Temps for the ycar 13, which contains sery thing relating to astronomy that has been done in the countres where it is cultivated: the history and observanons of the new planets and of the bat comets; a new cataingur, which makes the number of the stars known to be

13,000; memoirs and obserrations by baron won Zach and M. Ciccolini, Dulambre, Mechain, Vidal, Flauguergues, Coudin, Sorlin, Lalaide uncle and nephew, Burckbardt, Nonct, Chabrol de Murol, and Thulis; with the History of hatronomy for the years δ and 9 , to serve as a continuation of that given for the preceding yeara since 1759 .

The lonn issance des Tem? , for the year 14 is on the point of aperaing : it contains all the calculations of the moon mate from our new thbles for the use of the naty, with a 5 n numbe of ebscrations, tables, and memoirs, by Laplace, Delambre, Vidal, Herechel, Mcssier, Burckhardt, Ladande uncle and nephow, Olbers, Thulis, Flanguergucs, and Dec-la-Chapelie; the history of astronomy for 1802 ; supplewents to my Didicgraphie; tables of aberration for 14^{4} sans, a twellth catalogue of new stars, a table of the changes in longitude and latitude for 600 principal stars, the measurin of the degree in Lapland, and a table of all the articues contained in the forty-five last volumes of the Comoissance temps since 1\%60, when I began to keep a register of tie annual progtcss of astronomy.
M. Ifendre has giren to the Institute a neri formula for the reduction of the apparent distances, with ables for simplifying the use of them : there are already a great number: we shall have an opportunity of choosing that which appears the easiest and shortest.
Mi. de Laplace has given in the Bulletin a theory of the deviation of falling bodics, in consequence of the experiments of M. Gughichmini and Henzenherg. The result is, that the deviation ought to be null towards the somith, though M. duglichnini found it to be three lines. But these experiments are so dificult to be made, and the resistance of the air solittle known, that this does not impeach the results of M. Guglielmini.

The Ephemerides of Mitan for 1802 contain observations of Nercury; of the occultation of the Spica Virginis on the 30th of March 1801 ; tables of the annual parailax of Mare, of the precession of the stars, and of the motion peculiar to a great number of them.
'Those of 1803 contain the perturbations of Piazzi's planet by M. Oriani, and observations of that planct and of that of Olbers.
M. Laurent Regnier, professor of astronomy at Upsal, has published a dissertation De Massis Cometarum.

The Ephemerides of Vienna for 1804 contan observations of different places hy M. Triennecker and M. Purg.

The latter fies a serice of obsersations of the mon, which may sure to welicy his tables.

On the 2dth of September 1sos we recenced the tenth volume of the Bransactions of the Fiatan buctuty, wheh contains a whable catalogtie of the atho by M. Cagnoli; the opposition of Herschel in 179: hes flop and opperitions of Nars by Chmmedi, at Padus, in 1790,1792, and 1994.

The Socicty of the betences at 11 aroas has publiohed a rolme of manore, in which there are obscrvations by M. Smaded.j.

On the ewh of Octuber 1503 we received the Memoirs of the Academy of Sciences de izerlin for 1799 and 1800 , in which there are ancdote for the Inotory of the Mathemetics by Bernoulh; the penduhm which swings seconds at lierlis, by M. Buria, af. 2 in. ond lines; a memoir on the probleri of the pricecsion of the equinoxes, by the formulae of Lagrange, by M. John Trembley ; and astronomical observations $1769-1500$ by M. Bode.

My small stereotvpe tables of logarithms, the most exact, most eomvenient, and cheapest ever publishod, have been again collated by M. Bubna : no fante were found in them; and 1 amonenced that I would give a handred francs for each fault which might be diseoresed.

Besides the interesteng jumal of haron Von Zach, entitled Houaliche Compspondua der Irale ant II mmelkunde, abere is one at Dimar cutided Algemeine Gengrathische Ephemerilen, be Gapari and Burtuch: we number for February 1003 mams an cnuraving of the celobrated astronomer loseph - atrons de lisle, irom a painting at Paris in the pussession of ri....r.

Wre have roceived the Nomoirs of the Academy of Petersburgh for 1785 and 1806 , in which the re are observatioms of Henry: memoirs by Schubut on the thenry of the monon and on the transits of Nercury : one by M. Remonski on the figure of the carth; two by Ni. Firaft on nautical astronom:'; and one by M. Inoubdzof on the heights of sereral phaces observed by the barometer.
it. Norozitzoff, presitent of the acalomy, has caused to be placed in the obseratury a beastind tana it instrument, which he purchased from Ramsdon duming his residence at Loudon. On the esth of Juby befmimat an increase of the funch of the academu.
M. Winniewski, of TVarsax, has ixan invied to Petersbergh on the recommendation of proticor Bode, whom he

his labours in the observatory with great zeal. The president expects to draw to Petersburgh an astronomer of reputation.

Hitherto we have seen no native of Russia distinguish himelf in that country by astronomy. But I experienced an agreable surprise, and entertain consoling hopes, when 1 see young Alexander Oulibisheff, at the age of ten, converse with me on astronomy in a manner I never before witnessed, even in France, from persons of twenty years of age. He was born at Moscow on the 27 th of November 1793.

The emperor of Russia, in the new statutes of the imperia? miversity of Vilna, istued on the sth of May, ordered that there shall be an observer and professor of astronomy. M. Poczobut, who has long resided there, is a pledge that our science will not be neglected.
M. Suiadecki, a Folish astronomer, formerly of Cracow, not having been able to obtain from the Austrian government the necessary assistance for that observatory, has preferred the obscrvatory of Vilna, where he will assist M. Puczobut.
M. Honoré Ponz, an ingenious clockmaker, whose excellent clocks I have amounced, has this year made an important improvement by adding frce escapements, which ate ingenious, and which by means of remontoirs leave no room for the inequalities of rougge to affect the motion of the pendulum. He presented a description of it to the Institute on the 1 2th of Decenber.
[To be continued.]
XXXVIII. A Letter to Governor Powsall from Dr.
Thonston.

$$
\begin{aligned}
& \text { April } 661804, \\
& \text { No. } 1 \text { Hotestrect, } \\
& \text { Manches:er-square. }
\end{aligned}
$$

sir,

Iwas pleased to find a gentleman of your sound judgment, matured by the enjomment of long life, chiefly consecrated to science, ubserving the changes of men and things, recalling the philosophic world to the sentiments entertained by our forcfathers. When Dr. Priestley made his discoreries in chemistry, like John Hunter he disclaimed all the advantages of reading; , and the French chemists, catching at the seemingly new lights he threw out, formed a brilliant system which wat bocknowledge no authori ties
ties but their own. Yon, sir, eren in the new science of galsanim, have advanced the sentiments of Sir Isane Newton; and in this letter I shall extract from a very scarce work, entitled A 'Treatise on the Animal Ece nomy, by Dr. Bryan Rohinson, (published in 173.4, in Dublin, the seeond edition,) some passages which show the adrances then made in chemistry and the animal geconomy. In the preface this learned writer says: "Harvey, from experiments and observations, traced out the cirentar motion of the blood. After him Lower made some further discoveries concerning that motion, and the carses by which it may be disturbed. After these great men, the knowk dge of the animal oceonomy received no very considerable improvement till Sir baac Newton discorcred the causes of muscular motion and secretion; and likewise furnithed materials for explaining digestion, nutrition, and respiration. To him I an chefly indebted for what I have delivered on thuse heads."

He then goes on, in a most ingenious and natisfactory train of deep reasoning, to establish very curions and interesting propositions respecting the motion of the blood, in twentythree propositions, and then proceeds to

Proposition xxir.-"The life of animals is preserved ly ucid parts of the air mixed with the tlood in the lungs; which parts dissolve or attenuate the blood, and preserve its heat; and by botin these keep up the motion of the heart.
"I shall prove the truth of this proposition from a series of experiments and observations.
"First, then, animals die when they are deprived of air by stopping the wind-pipe, or putting them in an air-pump and druwing out the air. And they likewise die soon in a smail quantity of air so closely contined as to have no contmunication with the rest of the atmosphere: small birds camot live above three or four hours in a quart of such air; and a gallon of air included in a bladder, and by a pipe alternately inspired and expired by the lunge of a man, will become unft to preserve life in little more than one minute of time.
"Hence it appears that air is necessary to preserve the life of animals; and likewise, that a constant supply of fresh air is necessary to that end.
"Secondly, A candle goes ont, glowing eoals and reclhot iron cease to shine, and animals die, in the air-pump on drawing out the air. A candle goes out, glowing coals and red-hot iron cease to shine, and animals die, in a smatl quantity of air so closely confined as to have no communication with the rest of the atmosphere. Animals die in air
rendered effere by burning coals or candles in it till they are extinguished, and glowing coals or candles are extinguished in air rendered effete by animals breathing in it till they die. Hook found, that if air rendered effete be blown on live coals, it produces no other effect than to blow off the ashes and put out the fire; and that the more you blow, the more dead is the light, and the sooner is the fire quite extinct; insomuch that in a very little time the coals become perfectly black, without emitting the lcast glimpse of light or shining : at which time if one blast of fresh air be blown upon those scemingly dead, extinct, and black coals, they all begin to glow, burn, and shine afresh, as if they had not been at all extinct; and the more fiesh air is blown upon them, the more they shine, and the sooner are they burnt out and consumed: and animals put into such cflete air soon die, though for some time they breathe and move their lungs as before. The medium found in damps is present death to those who breathe it, and in an instant extinguishes the brightest flame, the shining of glowing coals, or redhot iron, when put into it. Common air, by passing throngla red-hot brass, red-hot iron, red-hot charcoai, or the fiame of spirit of wine, becomes unfit to preserve life, and the shining of fire and flame.
" Hence it appears that fresh air preserves life in animals by the very same power, or by the operation of the very same parts, whereby it preserves fire and lame in sulphureous and unctuous substances when once they are hindled.
"Thirdly, If two parts of compound spinit of nitre be poured on one part of oil of clores or caraway secds, or of any pondernus oil of vegetable or animal substances, or oil of curpentine thickened with a little balsam of sulphur, the liquors grow so very bot in mixing, as presently to send up a buning flame: if a drachm of the same compund spirit be poured upon haff a dachm of oil of caraway seeds, even in vacus, the mixture inmediately makes a fash like gunpowder: and well rectufied spirit of wine pouted on the same compound spirit flashes. Common sulphar and nitre powdered, mixed together, and kindled, will continue to burn under water, or in vacuo, as well as in the open air.
"Now, since air is necessary to preserve common fire and flame in sulphureous and metuous substances when once they are kindled, (and it appears by these experments that fire and flame may both be produced and preserved in sulphureous and unctuous substances by acid particles eren
wothout air,) it follows that air preserecs fire and flame by means of acid particles; and since it preserves the life of animals by the operation of the sery same particles whereby it preserves fire and flame, it likewise follows that it preserves the life of ammals by ita acid particles.
"Fourthly, The renal blood is of a deep purple colour, and the arterial blood of a bright red, in all parts of the body except the lungs; and in them the blood is of a dark purple colour in the pulmonary artery, and of a bright red in the pulmonary rein. Hence it follows that the blood changes its deep purple colour into a bright red in the eommunicant branches of the pulmonare areery and vem which are spread on the vesicles, and that it changes its bright red into a decp purple colour in the communicant branches of the arteries and reins of other parts. If blood be drawn out of a vein, its sufface, which is contiguous to the air, will acquire the same bright red colour which the blood acquires in the lunsz; and is this red sarface be cut off with a sharp knife, the MJekish surface of the romaining blood, being now touched and acted upon by the air in the same manner as the first, will acquire the same colour as that did; and the same chance of colour will be made in the bottom of the cake, if it bee tumed unwards in the cup, and exposed to the air; and if blood just drawn be stirred and agitated till the air be intimately mixed with it throughout, its whole substance will soon acquire the hright red colour of arterial blood. If the windpipe be stopped with a cork, and some time alter the operation (whon the air which is shut up in the lungs is made effete, that i., deprived of its acid parts) blood be drawn from the cervical artery, it will have the same dark purple colour as venal blood.
"Now, since from these experiments the air must touch venal blond drawn out of the body to change its decp. purple colour into a bright red, and the acid parts of the air canse the sume change of colour in the blood in the langs, it will follow that there must be a like contact of these acid parts with the blood in the luncs: and since I have shown that air procerves the life of animals be its acid parts, it will likewise follow that the life of animals is preserved by acid parts of the air mixing with the blood in the lungs.
"F:jthly, The bright red colour acquired by the blood in the lungs, from its purity and intenseness, is the rad of the scoond order of colours in the table of Sir Isaac Newton's Optics, p. eo6: but the blackish or deep purple cobour of senal blood turns into this bright red without passing through the colours of blue, green, yellow, and orange,
and therefore must arise from the indigo and purple of the third order, and not from the indigo and violet of the second; and consequently by that table the tingeing corpuscles of the blood are lessened in the lungs.
"Hence it appears that the acid parts of the air dissolve or attenuate the blood in the lungs.
"Oil of vitriol and water poured successively into the same vessel grow very hot in the mising: aquafortis, or spirit of ritriol, poured upon filinge of iron, dissolses the filings with a great heat and ebullition: and the acid of the air constantly applied to sulphureous and unctuous substances, when once they are kindled, continues to dissolve them with the heat of fire and Aame.
"From these experiments we learn, that it is the nature of acids to dissolve bodies with heat ; and therefore, since I have shown that the acid of the air dissolves the blood, it must be allowed that it warms the blood at the same time it dissolves it.
"When animals are deprived of the acid of the air, the pulse in less than one minute of time becomes small and quick; as may be observed in a dog, when his lungs are made flaccid and without motion by laying open his thorax. Upon emptying my lungs of ar as much as I could, and then stopping my breath, my pulse has grown small and quick, with a kind of trembling convulsive motion, in less than half a mintate of time. And Thurston observed the pulse to grow smaller on an intermission of respiration, and greater again on repeating it.
"IHence it appears that the motion of the heart lessens immediately on anmals being deprived of the acid of the air ; and consequently that this acid, by dissolving or attenating the blood and preserving its heat, keeps up the motion of the heart.
"Therefore the proposition is true.

"Scholium.

" 1 . The motion of the lungs in breathing is no otherwise necessary to the life of anmals, than as by this motion the lungs receive a constant supply of fresh air.
"For Hook, after he had laid open the thorax of a dog, cut away his ribs and diaphragm, and taken off the pericardium, kept him alive, before the Royal Socety of London, above an hour, by blowing fresh air into his lungs with a pair of bellows. It was observed, that as often as he left off blowing, and suffered the lungs to subside and lic still, the dog presently fell into dying convulsive motions, and soon recovered again on remaing the blast. After he had done this sereral times with like success, he pricked all

$$
\text { Vol. Xivill, No, } 71 \text {, }
$$

the outer coat of the lungs widh the slender point of a sharp penknife, and by a conctint blast made with a double pair of hellows he kept the lungs always distended and without motion; and it was observed, that while the lungs were thus kept distended with a constant suppiv of fresh air, the dog lay still, his eves were outick, and his hart beat regularly; but that upen leaving of blowing, and suffering the lungs to subsde and lie still, the dog presently fell into dying convisive motions, and as soon recovered arain on renewing tic blast, and supplying the lungs with fresh air.
"z. The motion of the langs in breathing does not change the colour of the blood in that part.
"For Lower, on opening the pulmonary vein of a dog near the left amicle of the hoart, when his lungs were kept distended and without motion by a constant supply of fresh air, nbserved the blood drawn to have the same florid colour as the arterial blood of other parts.
" Further, if the motion of the lungs changes the colour of the blood from a dark purple to a bright red, I see no reason why the motion of the muscles, when continued for some time, should not keep up that red colour in the veins; and consequently, whe, under strong exercise, venal blood, contrary to experience, should not be of a bright red colowr. For a strone and vigorous motion of the muscles must undoubtedly contribute as much to preserve the bright red colour of arterial blood, as the motion of the lungs contributes to prothace it.
" 3 . The death of anmals and extinction of flame in a confined air are not caused by a diminution of its elasticity.
"For there is sometimes as great a diminution of clasticity in the air in riolent storms of wind, and hurricanes, as there is in a smali quantity of confined air at the time when ammals dic, and candles go out in it, and yet no such eflects follow. Purther, if amimats die and candles go out in a conlined air from a diminution of its chasticity, then these effects would not be produced in differcut quantities of confined air until its elasticity was equally diminished in then; but it has been found by experments, that at the time when anmals die and candles go out in two different quantities of confined air, there is a greater diminution of chasticity in the smaller quantity than in the greater: and therefore life and flame are not destroyed by a diminution of the elasticity of the air. This is further confirmed from an experiment mantioned above; for if effete air, bowever forebly blown on live coals, extinguishes them in like manuer as it does when in a state of rest, then the same effete dir, which in a quiesent state cannot preserve life, will not
be able to do it when it is pressed into the lungs with any force, even a greater than is sufficient to swell the airvessels to their usual magnitudes: and therefore animals do not die in a confined air, from the vesicula not being sufficiently dilated on account of a diminution of the elasticity of the air. A diminution of the clasticity of the air is no otherwise hurtful than as it hinders the vesicles from being sufficiently dilated, and therely hinders the blood from receiving its usual quantity of acid in a given time; on which account the blood wiil not be sufficiently dissolved and warmed in the lungs; which will make respiration quick and uneasy, but cannot cause sudden death."

His xxviith Proposition is,-_" The nourishment of animals changes its texture in their bodies till it becomes like their solid and durable parts.
"For the solid and durable parts of animal bodies grow out of their nourishment ; but their growth is from an addition and adhesion of like parts, and therefore the nourishment of animals changes its texture in their bodies till it becomes like their solid and durable parts.
"Cor.1. Hence it appears that animals will not be rightly nourished when their nourishment does not change its texture in their bodies till it becomes like their solid and durable parts.
"Cor. 2. Hence it appears that the nourishment, by changing its texture in the bodies of animals, becomes more dry and earthy than it was before, otherwise it would not be like their solid and durable parts.
"Proposition xxviii.-The texture of the nourishment is changed in the bodies of unimals by a sentle heat and motion.
"The first remarkable change in the texture of the noum rishment is made in the stomach : in this bowel the solid parts of the food are dissolved and intimately mixed with the fluids. This mixture is usually called chyle.
"Some, from observing that fluids have a power of dissolving bodies, have thought that a fluid in the stomach dissolves the food and turns it into chyle; but as it does not appear from experiments and observations that there is a fluid in the stomach endued with such a power, this opinion is without frundation.
" Others, from observing the great strength of the gizzards of fowls, and that there is commonly gravel found in them, have imagined that the food is dissolved in the stomachs of fowls, and consequently in the stomachs of all animals, by attrition or grinding. But if this opinion be examined, it will likewise appear to be without foundation: for the food of fowls is mostly grain, all sorts of which are
lard and covered with tough skins; and therefore before this food can be dissolved and mened into chole, it must be soticned and its skins eround off; the first of which is done by wamth and moisture in the craw, and the second by attrition in the gizzard. By these contrisances the food of fowls is prepared and fitted for digestion, as homme food is ley cookery and other ways of preparing it, and by the grinding of the teeth. But if we should grant that the food of tovis is discolved and turned into chyle by attrition, it will by no means follow that food is so dissolved and turned into chyle in a human stomach, which has no gravel in it, and has but very little muscular strength in comparison of the gizzards of fowls. There may be many different contrivances in different specics of aimals, to soften, grossly divide, and prepare their food for cigestion; but it will not from thence follow that their food is digested or turned into chyle by different causes.
"The food is dissolved and turned into chyle by a gentle heat and motion. Heat makes manr bodies fluid which are not fluid in cold. Lead is melfed by a heat cight times as great as the extemal heat of a human body; tin, by a heat six times as great ; wax, by a heat twice as great ; and benes, with the addition of a little water, are dissolved in a digester by heat in a little time. If the heat of the stomach be neariy equal to that of the blood, it may be sufficient, when the orifiecs of the stomach are pretty exactly closed, to disselve the food in a few hours, and tarn it into chyle; especially when it is assisted by the motion of the stomach, which by agitating and mixing the food will contribute to this end. For, sinec locat can dissolve solid boties, and nothing is foand in a human stomach, besdes a gentle hoat and motion, which can dissolve the food and turn it into chyle, it will follow that the food is digested or dissolsed, and turnei into chole, by a gentle heat and motion.
"The chole in noving through the intestines is further discolved by heat and motion; and the fmest part of this Hind being convered into the blood, is still further changed by the sane causes, namely, a gentle heat and motion, till it puts on the form of blood, and, at last. becomes fit to nourids the body by being made like ite solid and durable parts. The growh of the chicken in the shell ont of the whice d the egge is a storng proof of the trath of this: for here is manicraty nothing, besides a gentle heat and moiton, to change the white of the ege so as to convert it into inood, and renior it the nourishment for all the parts of an anmal bods.
\therefore Co. . fenec anmals will mot be righth nourished when
the texture of their frod is not righty changed in their bodies by heat and motion; which may be owing either to an unfitness in the food for such a change, or to degrees of jeat and motion unfit to effece it.
"Proposition xxix.-The ronstituent solid peris of animats, acrording to their selerul natures, we endued with peculiar attractive powers of certain magnitudes on strangths, sy which they druw out of the fluits moving through theme fike parts in certain quantities, and therely preserve their forms and just magnitudes.
"For, without attractive powers agreeable to their natures, the constituent solid parts of animals comot draw like particles out of the fluids moning through them, and consequently camot preserve their forms; ani unless these powers be of certain stiengths, they camot traw those part. in such quantitios as are proper to preserve their magnirudes: and therefore the proposition is true.
"Cor. 1. Hence bodies will not be righty nomished by proper food, changed by just degrees of he at and motion, when the attractive powers of their solid parts ate changed either in their natures or in their magnitudes.
"Cor. s. Hence animals of the same specics will grow faster or slower out of the same nourishment righty chaiaged by heat and motion, as the attractive powers of their solid parts are stronger or weaker: and nniversally their growth in a given time will be greater or $\mathrm{k} \cdot \mathrm{ss}$, as the atiactive powers of corresponding patts are greater or less; or as the fluids moving through tiose parts abound more or less with similar particles, that is, with particles rightly fitted to be attracied by those powers.

"General Scholinm.

"I have shown tizat the nourishment of animals becomes more dry and earthy in their bodies, and that this change is effected by a gentle heat and motion. How a gentle heat and motion cause this change in the nourishment, may be understood from what Sir Isaae Newton has delivered concerning the nature of salt. This great man, finding from experiments and observations that salts are dry earth and watry acid united by attraction, and that the earth will not become a salt without so much acid as makes it dissolvable in water, has given the following account of the formation of particles of salt :
" ' As gravity makes the sea flow round the denser and weightier parts of the globe of the earth, so the attraction may make the watry acid flow round the denser and compacter particles of earth for composing the particles of salt :
for otherwise the acid would not do the office of a medium between the earth and common water, for making salts dissolvable in water; nor would salt of tartar readily draw off the acid from dissolved inctals, nor metals the acid from mercury. Now, as in the great globe of the earth and sea the densest bodies by their gravity sink down in water, and always endeavour to go towards the centre of the globe, so in particles of salt the densest matter may always endearour to approach the centre of the particle: so that a particle of salt may be compared to a chaos, being dense, hard, dry, and earthy in the centre ; and rare, soft, moist, and watry, in the circumference. And henee it seems to be that salts are of a lasting nature, being scarce destroyed, unless by drawing away their watry parts by violence, or by letting them soak into the pores of the central earth hy a gentle heat in putrefaction, until the earth be dissolved by the water and separated into smaller particles, which by reason of their smallness make the rotten compound appear of a black colour. Hence also it may be that the parts of animals and regetables preserve their several forms, and assimilate their nourishment ; the soft and moist nourishment easily changing its texture by a gentit heat and motion, till it becomes like the dense, hard, dry, and durable earth in the centre of each particle. But when the nourishment grows unfit to be assimilated, or the central earth grows two feeble to assimilate it, the motion ends in confusion, putrefaction, and death.' "-Nent. Opt. p. 361, 362.
"Hence it appears that to 1euder the saline part of the aliment fit to noursh the solid parts of anmals and vegetables, part of the superficial watry acid must by heat and motion be drawn off from the particles of salt, by which they will become more dense, hard, dry, and earthy, like the solid and durable parts of the bodies: and, according to the different degrees of heat and motion in the difierent species of animals and vegctables, the watry moisture will be drawn off in diferent proportions, so as in each species to render the particles like the solid parts of the bodies of that species.
" And further, if we consider that water is a very fluid tasteless salt, and that animals and vegctables. with their several parts, grow ont of water and watry tinctures and salts, we may, from what has been said, understand the manner in which the nourishment of anmals and vegetables is changed by a gentle heat and motion till it become like the solid and durable paits of their respective bodies.
"Proposition xxx.-The glands in the lodies of animals, according
according to their several natures and dispositions, are endued with peculiar attractive powers ly which they suck in z'urions juices from the blood.
" That the glands of amimals have such attractive powers, I shall prove from experiments and observations:
's If tiwo plane polished plates of glass (suppose two picces of a polished looking-glass) be laid together, so that their sides be parallel and at a very small distance from one another, and then their lower edges be dipped into water, the water will rise up between them. And the less the distance of the glasses is, the greater will be the height to which the water will rise. If the distance be about the hundredth part of an inch, the water will rise to the height of about an inch; and if the distance be greater or less in any proportion, the height will be reciprocally proportional to the distance very nearly. The weight of the water drawn up being the same, whether the distance between the glasses be gicater or less, the force which raises the water and suspends it must be likewise the same, and suffer no change by changing the distance of the glasses. And in like manner, water aseends between two marbles, polished plane, when their polished sides are parallel and at a very little distance from one another. And if slender pipes of glass be dipped at one end into stagnating water, the water will rise up within the pipe, and the height to which it rises will be reciprocally proportional to the diameter of the cavity of the pipe, and will equal the height to which it rises between two planes of glass, if the semi-dianmeter of the cavity of the pipe be equal to the distance between the planes, or thereabouts. And these experiments succeed after the same manner in vacuo as in the open air, (as hath been tried before the Royal Society,) and therefore are not influenced by the weight or pressure of the atmosphere.'"See Newt. Opt. p. 360, 367 .
"Now, since the rise and suspension of water between two glass planes, and in small glass pipes, are not owing to the pressure of the atmosphere, they must be caused by an attractive power in the glass proportional to the weight of water sustained by it. Let H, h denote the heights of the colum of water sustained between the two glass planes and of the cylinder sustained in a small glass pipe; B, p the breadth of the column and periphery of the cylinder; and D, d the thickness of the column and diameter of the cylinder: and then the attractive power which sustains the column will be as HBD, or as B, because H is as $\frac{1}{D}$; and
the attractive power which sustains the cylinder will be as $\xrightarrow{h p d}$, or as $\frac{p}{4}$, or as p, because h is as $\frac{1}{d}$.
"Hence it appears that the attractive power which sustains the water arises only from those paris of the glass which are contiguous to the surface of the clevated water; or, more truly, from the parts of a narrow surface of the glass, whose lower edge touches the surface of the water, and whose height is the smalt given distance to which the attractive power, with which glass attracts water, reaches; and therefore the attractive powers of the glass planes and sinali glass pipe will be as $\propto B$ and p. But the powers are as the weights sustained by them, that is, $\& B \cdot p:: H B D \cdot \frac{1 \text { lpd }}{4}:$ whence HD will be equal to $\frac{h d}{2}$; and, when D is equal to $\frac{\mathrm{d}}{2}$, II will be equal to h.
"This power varies in one and the same pipe, or becomes different when exercised on different fluids. For one and the sume small glass pipe will sustain different weights of different fiuids, as appears irom this table.

Fluids.		$\left\lvert\, \begin{gathered} \text { Height } \\ \text { in } \end{gathered}\right.$	Densitics.	Weights.
Oil of Vitriol	-	$1 \cdot 1$	17945	18969
Water p. 6. Sal Corm p. ${ }_{\text {a }}^{\text {a }}$	-	$1 \div 9$	1021	1889.3
Water p.e. Sal Gemp. $\frac{1}{2}$	-	$1 \because 2$	10148	1 196)
Water p. ¢. Common Sali p.	-	1.67	10.17	17146
Water p. 6 . Sat-petie p. ${ }^{\frac{1}{2}}$ -	-	171	10457	15851
Spirit of Vitriol - -	-	$1 \cdot 6.3$	1180)	1:1231
Cierman ¢pa Water	-	$1 \cdot 75$	10111	1569.4
Comnion 1 Hater cold -		$1: 5$	1mik)	1750)
Common Water boiling hot	-	1.64	9781	16040
Good Blogd - -		161	10:00)	17056
Scrum of good Blood	-	1 -65	1030\%	16995
Serum in a Dropsy	-	165	10171	16782
Urime - -		$1 \cdot 60$	102\%0	16452
Salica -		$1 \cdot 54$	10100	15555:
Nitk of a COw		$1 \cdot 42$	10279	1450,
Gall of an Ox		$1 \because$	10335	2240
Small Beur		$1 \cdot 4$	10111	145.59
Crater	-	$1 \because 3$	1011	131.44
Viegar -	-	$1 \cdot 3$	${ }^{10} 8$	12643
Common Ne	-	1%	103:10	12360
Red Wine	-	$1 \cdot 15$	693	11419
Punch	-	$1 \cdot 12$	10055	11201
Onl Olive -	-	1-1.4	9130	10405
Cit of lurpentine	-	0.81	9244	7487
Sal V latile Oleosum	-	0.84	8784	7370
Brandy -	-	0.75	920	6990
Sririt of Whe rectised	-	0.3	$8: 39.1$	6076
Pivit of Hartshern -	-	144	9802	14114

ss In the first column are the names of the fluids ; in the second, the heights to which they rose in one and the same glass pipe; in the third, the densities of the fluids; and in the fourth, the weights sustained by the same pipe. I obtained the weights by multiplying the heights into the densities: for the weights of cylinders are as their magnitudes and densities taken together, or as their heights and densities twien together if their bases be equal ; but the bases of all the cylinders of different fluids sustained by one and the same pipe are equal, and therefore the weights of such cylinders are as their heights and densities taken together.
" Hence it appears that one and the same glass pipe attracts different fluids with different degrees of force. It attracts spirit of vitriol more strongly than oil of vitriol, oil of vitriol more strongly than water impregnated with salt, water impregnated with sal gem and nitre more strongly than connnon water cold; common water cold, more strongly than the amimal fluids and common water made boiling hot; the animal fluids more strongly than fermented liquors; fermented liquors more strongly than oils; and oils more strongly than ardent spirits.
"So then, if equal quantities of all the fluids of this table were mixed together, the same glass pipe "ould suck in different parts of this heterogeneous flud in diferent proportions. It would suck in more parts of water impregnated with salt than of oil or ardent spirits. The parts leest attracted would be driven off, to make way for those which are most attracted to enter into the pipe; as in a fluid where the force of gravity alone takes place, the lighter bodies are forced to ascend, to make way for the descent of bodies which are hearier.
"Sir Isaae Newton has proved from experiments, that the particles of light attract ardent spirits and oil more strongly than water; and by consequence, if we suppose a small pipe to be fommed ont of particles whose attracting powers are the same with those of the particles of light, and one end of it to be dipped into a heterogencous fluid composed of equal quantities of all the fluids of this table intimately mixed together, such a pipe would attract the parts of oil and ardent spirits more strongly than those of water, and suck in more parts of the two former than of the latter. The fluid, therefore, drawn ont of the heterogeneous fluid by this pipe, would be differnt from the flud drawn ont of it by a small glass pipe; for two finds will be diferent, when they cither consist of different parts, or of the same pante mixed in different proportion.
"Now, since pipe of difierent natures draw off different flaid, from one and the same heterogeneous fluid, it follows, that the scecming pipes of the glands, according to their different natures and dispositions, suck in various juices from the blood, which is a heterogencous fluid consisting of a great varicty of parts: and, consequently, the proposition is true."

This work, which contains 335 pages, shows how much the knowldge of the mimal ecomomy was advanced in those days, and how great a genius Sir lsac Newton was, and the provalency of his opinions, now almost passed by in oblivion. And in a scond letter, for this, I fear, has aferdy become too longe, which I shall have the honour to adres to you, I shall cudeaven to show that the new chemikn decirines, as they are commonly called, were the docmines of Hook, who was contemporary with Sir Isac Sonton, and puoliwhed prior to Mayon by him: and if in t.llowing up your plan I shall cat ont any aduitional lights on on interesting a sloject as you proposed, 1 shall feel highly gratificd; and have the honour to remain, dear sir, With all due respoct and esteem, Your faithful obedient scrvant, Robert Joh: Thonnton.

XNXIX. Itmoir on the Wonl and Sheep of Cachemire and Eontan. Remb in the Agricultural Society of Paris in the Silting of Frimaire i, Year 0, i'y Alexander 1 : (Goxa ne Flux, formory an Officer of Engineors,

. Oil primein! has so often been proved, and is so crident, that it is sutheient merely to mention it. It is an axiom of political exenome.

Amoner the different branches of rural oeconomy, that of breeding sheep is, I will venture to say, one of the most advantageous: it requires constant attention on the part of the proprictors; it calls for the meditation of agriculturists and the solicitade of government. This branch, so interestige to commerce, the arts, and manufactures, began to be: mproved in France since lomove, in the year 17.50 , immodaced Barbary sheep, and still more since the intro-

[^42]duction of the Spanish breed. This branch, so useful to the progress of all our cloth and woollen manufactures, is carried to such a degree of perfection in Cachemire, that the wool of that country, known there under the name of touss, is the finest and most silky in the universe. This tact I can prove by the shawls, the use of which began in France, and has thence been extended all over Europe siace our cexpedition to Egypt. These superb articles, which ruin all our manufactures, since they camot imitate them even with the wool of the Merinos, is fabricated in Cachemire with the touss of that cementry wool, which is so exceedingly beautiful that it might be taken for siik.
fo publish processes, and the inethods employed by the people anong whom this art is cultivated with success, and to propose to goverment the patting them in practice, is placing confidence in its beneficent views. Sensible of this truth, I have endeavoured to make known in this memoir some processes used in Cachemire in regard to the mamer of washing and taking care of the sheep, and the methods employed to prepare the wool. These methods, which have improved the sheep and ameliorated the wool, might be adopted and followed in France with advantage : they would be attended with beneficial results; at least, I have reason to think so, since the climate of these countries is nearly the same as that of France, as I shall prove hereafter.

No country in the world is diversified in a more agreeable manner than Cachemire; it unites the advantages of all climates. The plants which grow between the tropics thrive in the plains and on the sides of the hills of that small district, and those of the mosi northern regions become naturalized on its mountains, the summits of which are covered with snow throughont almost the whole year. In these points of view, Cachemire is one of the most agreeable comitries of Indostan, since it is so much favoured by nature.

A pure and constantly serene sky, brilliant nights, contimual dews, and innmmerable springs which water the hills and the plains, the town of Sirinagar situated in the middle of fertile fields, the terraces of the honses of which form so many gardens suspended in the air like those of Semiramis, the celebrated queen of Babylon, as we learn from history, -all these give but an imperfect image of the country.

The mountains which surround this rich and fertile district produce abundance of aromatic plants, which afford excellent pasture for sheep: they are covered almost the whole year with wild thyme and swect marjoram. It is to all these advantages united that Cachemire is in part indebted
debted for the superiority of its wool, and the beanty of its flocks. Carc, and a few processes which we do not follow, and which i shall explain in this memoir, contibute to carry both to the atmost degree of perfection. France, happy by its situation, by the industry and the means of its inhabitants, and by the influence of its climate, might obtain all these advantages when it chooses: such a country must be extremely proper for breeding and improsing all the species of sheep, and those brought from every part of the capth ought to thrive in it.

The Cachemirian sheep is one of the most beantiful of its species: its mean length is fiom thirty-six to forty inches; its height from twenty to twenty-1wo, and its weight from fifty-five to sixy pounds. The most distinguishing characters of this species are a smatl head and lively eycs; thicir front is not rough, and they have a long and wrinkled dewlap. The lambs are brough forth with crispy wool on the flanks, but they have only a few flocks on the back and along the spine. Each shocp produces, one with another, abont three sers of thirty ounces each of clean wool ; for it is never sold till it has once been washed on the animal before it is shorn, and then by processes which i shall here describe.

The body of these animals being well proporioned in all its parts, renders their gait light, casy, and seanc. The care taken in breeding them, and the methods pursued, give them great vigour, a lively and evon bold look, somid health, and a beautiful white covering of very long fine silky and undulating wool. They resemble those beatiful flocks which Virgil and his successful imitator Delille describe in their immortal poems; those flocks so celebrated in antiquity, the shepherds of which were kings. Onie of the valuable and essential qualitics of the Cachemirian shcep is, that they stand heat as well as colld. Cachemire, being situated between the thirty-second and thirty-third degree of north latitude, and inclosed by a double chain of lolty mountains, experionces the heat of the torrid zone, and the cold of France: but the air of this comatry is constantly dry ; and the successive transition, sometimes very sudden, from extreme heat to cold, is by no means projudicial to the sheep. This effect, in my opinion, arises from the hardness of the cramium of these animals, their conformation, and the practice of not shutting them up. The same effect I have remarked in gencral in India, not only in the natives, who always go bare-headed, and who make continual use of ablution with cold water, but also in all the amimals. The sheep
shecp of Cachemire are not subject to giddiness and glanders, fatal diseases, which oecasion so mach havoc and destruction among sheep. I have made the same observation in regard to the sheep of the Arcadian pastures, and those in the pasturage of Etna and Parnassus; which being kept with great care, admit of being compared with those of Cachemire.

Whether owing to barbarism, or a mechanical attachment to the old habits of pasturage, which is the only occupation of the Tartars, since war cannot be one, the brceding of sheep is the branch of rural œconony most attended to in Turkey. The method of peming, and that of migration, have preserved there the fineness of the wool, and prevented deterioration of the animals. This is a certain trath, and which will be admitted by every traveller of observation.

In Cachemire, as in Grecce and in Spain, the sheep are moved from place to place, that they may be kept all the year through in an equal temperature. They pass the ivinter in pens in the plains, and the summer on the monntains. They even enjoy this advantage in Cachemire, that the migrations are shorter and less laborious, because this small province is surrounded by high mountains.

But the Cachemirian shepherds, to secure their sheep from the effects of the great heat of the summer season, make them traverse a lake or a river several times a dat. They never erowd them together in cots or confined piaces, as if nature had not given them a fleecy clothing capable of securing their bodies from the intemperance of the seasons. It is a fact well known that damp air is prejudicial to them; but it is proved also, that the acrid and almost mephitic air which prevails in close buildings, occasions among these anmals patrid and inflamatory diseases, from which those of Cachemire are free. The humidity. say the natives of that country, which always preyails in obscure shecp-cots, however large they may be, is far more hurfful to these animals than the humidity of the atmosplere. Every one is able to appreciate the justness of this reasoning: the mephitism of cots would oceasion to the strongest of these amimals not only severe diseases, but would injure their wool.

Long experience has proved for centuries to the Cachemiriun shepherds, what reason had demonstrated to the illustrious Daubenton, that the immediate aetion of the open air, daily bathing, and several times a day during the great heats, occarional showers, and the dews, as well as continual mi-
gration, instead of being lurtful, contrihute to the health of the flocks, as well as to whiten and sotien the wool. By these means also the wool acquires a silky texture, and at the same tinc it is whitened by the ravs of the smm. Our shepherds, slaves to their prejudices, and deaf to the counsels of the wise Datibenton, are abwas apprehensive of extreme cold: what ought to render them casy in this respect is, that the flocks in Cachemire are inclosed in pens during the whole winter, and on momnis Athos and Olympus amber frost and snow. I camothelp mentioning the later instanc: ; it is sumbient to convince cven the mosl incredulous.

What I have said proves that the Cachemirians follow at all seasons that salutary method of penninger which allows the climate to have its full infonence, so beneficial to the heath of the flocks, and neeessary to improve the fleeces, and maintain the beauty of the race.

Sot one particular care of the shepherds of this province, as woll as of Thibet and Boutan, who possess the same bread of sheep, but which we do not obsure, is to prefer a Imbo of the second birth for a breeding ram. It has been proved to thembs constant experience, that the rans of this bimh are ahost ahays stronger and more beantiful than those of the first, and even of any other. By following this practice they have been able to maintain and improve theis breed. It is to this eare, and that of mot crossing the breed. apractice followed by the Arabs, who never mix the breeds of their beatiful loose. wheh they call the noble breeds, that they are indebted for the extmordinary fine white silky wool, which generaly, from the nape of the neck to the fanks, is from iwonty o twenty-two inches in leagh : but it may readily be conceived that the wools on the fanks and lower pars of the body cannot be equally long. Every where the won, tow erer, of these ammats is at least five or six inches, and equal in kength. This wool, in fineness and whitentes, exceods that ot the Merinos, and that even of the sheep of the Abecrine states, and of singouri, a town in 'Tinkey in ista, winch we call Ancola. This assction is proved by what i have already observed in regard to shamle.
salt, the use of which has for some time past been introduced among us, mised with a root called commonly in Europe Indian salfon, and which in botany is denoted by the name of carcuma, tera merita, given at diferent periods, more or less distant, aceording to the season, the quality of the pastures, and that of the berbs they probiace, -less fre-
quently in winter and during very cold weather, but oftener in the time of the great heate, and when the air is damp,-is the only remedy employed by the Cachemirian shepherds to prevent diseases among their Hocks. A milky phat, called in Indostan ardepal, of an exceedingly bitter taite, is used by them also with great success: they mate the sineep eat of it when they observe any of them in a languishing state.

This plant, so useful, would succeed, in my opinion, in our climates: it thrives without care on the mountains as well as in the plains; in dry soils as well as in moist. Its utility renders it exceedingly valuable: we ought to endeavour to naturalise it, because it is salutary not only to sheep but to all other animals. It is given in particular to sheep and to goats, as a specific against the itch; the clarelée, swellings and contaginus diseases which sheop contract during very damp weather, when the herbs shoot up, and the fresh pastures contain small insects, which occasion among these anmals the rot; in the latter case they are made to eat it; for the itch ther are rubbed with the juice.

The stem of the ardepal rises to the height of from fifteen to eighteen inches; it is woody, and of the size of the little finger: its bark is very smooth, reddish, and relvety: the leares stand opposite to each other, are sisteen or eighteen lines in length, shaped like a heart, velvety, nervous, tender and thick. Ther always abound with a milky juice, which is exceedingly bitter; they are faintly indented, about as large as a piece of thirty sous, and of a dark green colour. The roots are ramose, yellowish, tender, and contain a juice similar to that of the leaves, but thinner. The flower is divided into five petals, of the length of two or three lines, and a line in breadith; they are rounded at the extremity, of a jonquil colour, inclosed in a monophyllous calys, which remains and envelops the pod or oblong fruit, which suecceds the flower: the flower has three stamina, and an acute orarium unprovided with a style. The fruit is divided into three cells, separated by a strong membrane, each containing three or five spherical seeds: each of these seeds is inclosed in a hard capsule, of a reddish brown colour, the kernel of which is very bitter, yellowish, and rather soft.

In general Cachemire is very proper for the breeding of sheep; but I must observe, that the shepherds never give them green herbs, but thyme and marjoram. In pens they get nothing to eat but dry straw mixed with a small quantity of barley or millet, named jouari: and during their migrations, or in the fields, they are allowed to feed only on dry herbs, or the leaves of the bushes.

What I have here said is contrary to our idcas and methods in regard to the breeding of shecp. Meadows are no where found in Indostan. The Hindoo is convinced that an ear of rice or wheat, or of any other gramineous plant, is preferable to ten and even to a hundred truses of hay.

The flecees of the Cachemirian sherp are in general in good condition, becanse the flocks are never conducted anong brush-wood, which would tear the wool on the back of the animal. It is well known that the only wool suseeptible of aequiring delicate and brilliont colours be the process of dyeing, is white wool: for this reason the Cachemirians separate all those lambs which are black or brinded. It is known also that the longest is the fittest for being spun, and for making stiong cloth.

The general practice in Cachemire is to shear the sheep oaly one in the sear. By this method the wool obtained is longer and of a better quality. But the shopherds of this countery lnow, that if the fleece were left on the animal for a long time, and particularly on ewes, they could neither suckie their young nor be rendered productive. I shall not cnter into any explanation of these motives, as the utility of both practices has been proved by experience: I shall the efore only observe, that the shearing takes place fifteen or twenty dars after the retum of the great heats, in order that the sheep may perspire; which renders the wool more pliant.

An essential and peculiar quality of the Cachemirian wool is, that it has no hard coarse part. This is a valuable quality, since hard woul is fuend eren among that of the Spath sheep.

At the time of shearing, the Cachemirian shepherda, who have long studicd every thing that can contribute to preserve the beanty of their breeds, to improve the wool, and prevent diseases among their flocks, bathe the sheep twice a day, and even oftener when the heat increases and renders it necesary. The periods for performing this operation are tro hours after sun-rise, and the afternom, when the rat of the slam begin to be weakened in consequence of their obliquity. They have ubserved that bathing when the sin is verical crisps the wool, renders it harder, checks perspiration, and exposes the sheep to the danger of what is called strokes of the sun: this is a severe accident, and occastons fevers which are called giddiness.

Cleanliness is the first cause of health: this principle is true in every respect; it not only preserves from diseases, but mantains the bcauty of form. Every European travel-

Ser, who has been in the habit of observing, knows that the Hindus are indebted for the beauty of their hair, which is exceedingly long, to the frequent use of bathing and ablutions; and they are also less subject to colds than the Europeans, who never bathe their heads.

The Cachemirian wool is divided into two kinds: that of the young sheep, which is called urouel; and that of the old, distinguished by the name of duazme. The fleecs of the lambs, till the age of two years, or cighteen months, are sold separately; they are employed only for making a kind of fur to winter caps.

The first of these kinds is a little shorter than the other; it is produced by sheep from the age of three years, when the shearing of the touss begins, to that of seven or eight.

The duame is longer, a little less greasy, weaker, and less silky ; it is employed for making the Cachemirian cloths, which have been imitated by the English. We also have attempted to make them in our manufactories; and they are known in Europe by the improper name of Casimir, whereas the real name ought to be Cachernir.

I have already remarked, that the wool, before it is shorn, is washed on the animals. These two kinds of wool are each sub-divided into tivo sorts, that of the back and that of the belly: but before they are employed in commerce, or spun, they are subjected to certain operations, by which they are improved. Thesc operations, so useful and beneficial, are not practised in Europe. They are first exposed to the vapour of a slight ley, composed of nearly fifty pints of water, about ten or twelve pounds of the ashes of the leaves of the banana tree, or of a clayey barren and white earth, which is easily reduced to powder, and which by the Indians is called ole . They are then washed with the farma of a small eylindrie bean, called moungue, known in botany by the name of mango. The shawls in India are washed with the same farina.

The first of these processes consists in exposing the wool for seven or eight hours to the vapour of the ley, that it may be penetrated by it. The wool is heaped up, without being pressed down, upon an earthen ware dish; it is washed in running water, and dried in the open air.

When this operation is terminated, the wool is subjected to another : it is left to soak in an earthen vessel, and each flock is rubbed several times in the same manner as linen is by our washerwomen. It is then repeatedly rinsed in pure water, or in a river, to free it from the farina with which it has been washed. These processes render the wool more

Yol. XVIII. No. 71.
2
pliable,
pliable and silky, and bleach it wihhout breaking or tearing it: and the farina of the moungne has the property also, by its mncilage, of softening it, and giving it a peculias whiteness without crisping it; which any other substance would do.

It has been asserted, on the authority of some travellers, that shawls are made from the hair of a kind of goat: in my opinion it might be said, with equal propriety, that they are made of the hair of the stag. I am astonished that writers should amuse themselves at the expense of the public by spreading such falsehoods.

Another idea, no less distant from truth, is, that these shawls are made from the wool of lambs torn from the bellies of their mother. This account, which cannot be read without sentiments of pain, is not only absurd but atrocious; it is contrary to cvery thing we know of the mild and humane mamers of the Hindus. Besides, this assertion cannot be truc, as it is well known that the wool of those lambs is very short; and such a practice would be destructive to the sheep, in consequence of the danger attending the operation.

The superfine shawls are not made of sheep's wool, but of the wool of the camcl. This wool, with which we are not acquainted, and which camnot be cultivated in France withont considerable expense and great difficulty, is exceedingly valuable; it is more beautiful than Vigonia wool, and as dear as it is scarce: it is found only on the forehead and around the ears of that large animal.

The fincst shawls, those made of camels' wool, besides being exceedingly dear*, are very searce, and it is difficult to procure them; it is even often necessary to order them at Sirinagar, the capital of Cachemire, the only place where they are manufactured.

The common fine shawls manufactured in Cachemire are the white, and cost two or three pounds sterling : they have flowered corners, and a border of greater or less breadth according to the price. They are three ells and a half in length, and half an ell in breadth. The conmon ones only are dyed, unlees ordered to be so. The latter cost from twenty-five to thirty shillings.

Shawls, the weft of which is camels' wool, are distinguished by the name of cacacheti; the white, with the weft of sheep's wool, are called seaumi; and the rest are known by the appellation of passari. I have thought it necessary

[^43]to distinguish them here by the names given to them in the country. This nomenclature, if a matter of indifference to the consumer, will not be so to commerce.

As this wool is not sold till it has been scoured, washed, and subjected to the process of washing with the farina of the moungue, it gives no more loss: some of the shepherds have assured me that the loss ought not to be estimated at more than a fourth of the weight; a new advantage resulting from this kind of sheep.

The wool of the belly is never employed for shawls; it is used for a particular kind of stuff manufactured in the environs of Sirinagar. This stuff is consumed in the country and neighbouring provinces. The wool is sold at from fifteen to twenty-five shillings per ser, which weighs twenty ounces French weight. The whole is sold in the country, to be manufactured into shawls, sashes, or borders for turbans; the two latter are only half an ell in breadth.

The Cachemirian pieces of cloth are more than sixty French ells in length, and a little more than half an ell in breadth. The price at the manufactories amounts only to the moderate sum of fifteen pence. These cloths, far superior either to those of England or France, are worth only a fourth of what they are sold at in the latter countries. Besides great disproportion in the price, there is also a great difference in the quality of the casimins: those of Cachemire last much longer. This superiority can be ascribed only to the superiority of the wool.

To propose to the French government to send for this breed, either to rear them in France, or to improve the best of our breeds by crossing them with rams and sheep of the Cachemirian breed, is to propose a project worthy of it. We already experience the advantages resulting from the breeds obtained in Spain : the wool produced by crossing the Me rinos by our indigenous breeds has been much improved, and great advantage might certainly be expected from crossing with the finest sheep in the world. This new attempt would bring our wool to a state of perfection. I have even reason to think, from the observations and experiments of Daubenton, to be found in his work entitled Instruction pour les Bergers, that the wool of France might be improved to such a degree that it would become superior to that of $\mathrm{Ca}-$ chemire. "Experience has proved to me," says he, "that it would be easy to preserve and improve in France the breeds of fine-woolled sheep, and that the rearing of these sheep would be of great advantage to our farmers, and a great resource to our manufactories." There can be no
doubt that, by crossing the Cachemirian breed of sheep with our own shecp or the Merinus, it would be possible to obtain in France superline wool as beatifal as that employed in manufatwring the magnificent shawls, the fineness, silky texture, and whitences of which we so much admire. I maperen assert without pryudging too much, that this wool would become superior to that of Cachemire; it would carry our cloths, known to be the most beautiful in the world, to the highest degree of perfection.

It perhaps will be objected, that admitting the possibility of introdecing and naturalising in France this breed of fincwoolled sheep, the monst beautiful on the earth, there would be some disadrantage in regaed to the weight of the fleece; since it is well known that Merinos, brought from Spaia and bred in France, commoniy produce twetve pounds of wool, while the Cachemirian breed produce only seven of eight. But the difference in the fineness might perhaps make up for this deficiency ; because the same quantity of stuff can the made with a fouth or a third less of Vigonis wool, than with the finest Spanish wool, in consequence of the superior fmeness of the former. It would be a matter af indiference, therefore, to have a few pounds less of proHece, provided the same quartity of cloth were obtained. Besides, the Cachemirian wool buing moth finer, and absolutely free from any coarse part, a great benefit would arise from rearing this breed, which require less nourishment, and are fed with straw; which is never the case with the French sheep or the Merinos.

The loss which the merchants anstain by purchasing unscoured wool, would not exist were the Cachemirian sheep Brturalised in Erance. As Daubenton was probably misiaken, when be said, in tis Instraction aur Bergers, that governuent sent for Cachemirian shecp at the same time that it procurcd sheep from Roussillon, Spain, aud England, I and the more inclined to believe that my conjecture respecting this error is well founded; becanse, having had on opportunity, during my residence in India from 1769 , to 1788 when I yeturned to Europe, of. seeing the correspondence of the old East India company, whose privilege ceased in 1770, and, since that period, the correspondence of the royal administration, I found nothing which had any relation to this circumstance.

To bring sheep from Cachemire is certainly not impossible; but though such an attempt docs not present the same ink as the expechition of Jason, it wouh, however, be very dificult, esuecially to one unacruainted with the Indian lan-;
gages, and not familiarised with the manners of the Indians. I must therefore repeat, that Daubenton, and those who, without further examination, have repeaied his assertion, that in the year 3576 Cachemirian sheep were sent for to be introduced into Frazce, were evidently mistaken,

> To Mr. Tilloch.--(Letter II.)
XL. Curious Extracts from old English Boaks, with Remarks withich prove, that the Telescope, \&fc. were known in England much earlier than in any ather Countriy.
i. Ar the conclusion of my last letter*, I intimated that I had found a passage in an old book, which threatens to deprive lord Napter of the honour of being the first anong the moderns who re-invented the mathod by which Archimedes made the solar beams destructive to the Roman fleet; and which also justifies a belief, that the revival of the telescope, generally acknowledged to have been known to, if not invented by, Roger Bacon, took place earlie: than is commonly supposed.
2. The passage I allude to is to be found in the Pantometria of Leonard Digges, esq, first printed at London in 1571 \dagger, and again by his son Thomas Digges, esq. in 1591. In the preface to this second edition, written by the latter, we read what follows:
" 3 . Archimedes also (as some suppose) with a glasse framed by reuolution of a section parabolicall, fired the Roman nauie in the sea, comming to the siege of Syracusa. But to leave these celestiall causes, and things doone of an= tiquitie long agoe, my father, by his continuall painfull prace tises, assisted with demonstrations mathematicall, was able, and sundrie times hath, by proportionall glasses, duely situatc in conuenient angles, not onely discouered things farre off, read letters, numbered peeces of money with the rerye coyne and superscription thereof, cast by some of his freends of purpose, upon downes in open fields, but also seuen

[^44]myles off declared what hath beene doone at that instant in primate places. Hce hath also sundrie times, by the sunne beames, fired powder and dischargde ordinance halfe a mile and more distante; which things Iam the boulder to report, for that there are yet liuing diuerse, of these his dooings oculati testes*, and many other matters farre more strange and rare, which I omit as impertinent to this place."
4. On looking farther into this interesting old treatise, I find, in the 21st chapter of "the fyrst booke," the following curious paragraph:
'f Thus much I thought good to oren concerning the effects of a plaine glasset, very pleasant to practise, yea most exactly seruing för the description of a plaine champion country, But marueillous are the conclusions that ma: be performed by glasses concaue and conuex ot circulaire and parabolicall formes, using for multiplication of beames sometime the aide of glasses transparent, which by fraction should unite or dissipate the images or figures presented by the reflection of other. By these kinde of glasses or rather frames of them, placed in duc angles, yee may not onely set out the proportion of an whole region, yea represent before your eye the liuely image of cuery towne, uillage, \&c. and that in as little or great space or place as ye will prescribe, but alio augment and dilate any parcell thereof, so that whereas at the first appearance, an whole towne shall present itselfe so small and compact together that yee shall not discerne anye difference of streates, yee may by application of glasses in due proportion, cause any peculiare house or roume thereof dilate and shew itself in as ample forme as the whole towne first appeared, so that yee shall discerne any trifle, or reade any letter lying there open, especially if the sunne beames may come unto it, as plainely as if you were corporaily present, although it be distante from you as farre as cye can discrie: But of these conclusions I minde not here more to intreate, hauing at large in a uolume by itself opened the miraculous effects of perspective-glasses \ddagger. And that not onely in matters of discoueric, but also by the sumne

[^45]beames to fire powder, or any other combusible mater, which Arehimedes is recorded to have doone at Syracusa in Sicilie, when the Roman nauie approached that towne. Some haue fondly surmised he did it with a portion of a section parabolicall artificiallye made to reflect and unite the sumne beames a great distance off, and for the construction of this glasse, take great peines with high curiositie to write large and many intricate demonstrations, but it is a meere fantasie and utterly impossible, with any one glasse whatsoeuer it be to fire any thing, onely one thousand pace off, no though it were a 100 foote oner, marry true it is, the parabola for his small distance, most perfectly doth unite beames, and most uehemently burneth of all other reflecting glasses. But how by application of mo glasses to extend this unitie or concourse of beames in his full force, yea to augment and multiplie the same, that the farder it is caried the more violently it shall pearse and burne. Hoc opus hic lator est, wherein God sparing life and the time with opportunitie seruing, I minde to imparte with my countriemen some such secrets, as hath I suppose in this our age beene reuealed to very few, no lesse seruing for the securitie and defence of our naturall countrey than surely to be maruailed at of strangers."
5. No writer on optics whom I have had an opportunity of consulting, gives us any thing satisfactory on these curious passages. In one of our latest and best scientific dictionaries, a part of our first quotation (§ 3.) is given without any comment, and the able writer of the article Telescope in another late excellent Gencral Dictionary, contents himself with mentioning the name of Digges in respeetful terms. Dr. S. does not mention the Diggeses at all ; and Mr. R. in his remarks on that learned gentleman's system of opties, does little more than cite a small part of our second quotation (§ 4). I have not looked into any foreign authors on this occasion; thinking it very unlikely that I should find in them any satisfactory account of two old English books, which have been so sparingly noticed by our own writers. Modesty as well as prudence, recommends caution in a case where men of deserved celebrity have been so very circumspect. Yet I shall offer a few remarks with that freedom which becomes the cause of truth, trusting to your intelligent readers for a candid construction of what I shall adrance.
6. And first I would ask, with all possible respect, whether (to say nothing of theory) the able men I have alluded to, might not be partly discouraged from hazarding any remarks
on the passages before $u s$, by contemplating the very great distance at which Digges asserts that his father fired gunpowder by means of the solar rays? a distance which exceeds that which, in our former letter, we rentured, perhaps hastily, to think rather poetical, in agreater ratio than that of 2640 (the feet in half a mile) to 2002 , or than that of 13 to 10 . The genilenien could not be ignorant that Archimedes was said to have produced his famous conflagration at a great distance; and this, after all, may have been the true state of the fact. But it is probable that neither of them had seen Napier's proposal to excite flame " at any appointed distance." Surely an expression which, as observed in my last, needs qualification, cannot be adduced in support of another which alnost exceeds belief. But, to avoid all controversy in a case which admits of same latitude of opinion, I would respectfully ask better judges of the subject, Whether the light * of the sun, reflected from terrestrial objects, be not always accompanicd with a real, though often insensible heat, which ceeteris porilus, is ever proportional to the density of such light? Whether windows partially refecting the rays of the sun when near the horizon, may not be seen at a great distance; and whether the spectator does not receive from them a real, though generally an immeasurably small, portion of heat? Whether the sun-beams, partially reflected from the smooth surface of the sea, do not sensibly inerease the heat on shore; and whether this effect be not unversally experi-

[^46]enced, or at least regarded as real, by the inhabitants of hot countries, even at considerable distances from the water? Whether if such heat, instead of being indefinitely diffused, could be united in one spot, a rery great effect might not be. expected at a very great distance? Whether Buffon has ascertained the limit, the ne plus ultra, at which combustion can be produced by the reflected solar rays; and whether, on the contrary, he does not confidently affirm, that, with a better apparatus, he could have produced the same effect at a proportionably greater distance, as from the nature of the case itself he evidently could? Whether, if Maupertuis's idea of an amphitheatre lined with mirrors were realized; or if, as you once suggested, a body of 2000 or 3000 mien, each furnished with a speculum, were trained to direct the sun's image to a particular spot, bodies might not be inflamed at distances of which at piesent we have no conception? As the Diggeses, both father and son, appear to have enjoved, at one part at least of their lives, the invalnable privilege of making any costly experiments they thought proper at the public expense*, whether they may not have possessed an apparatus as much larger than Buffon's, as the effect was greater?
7. Whatever answers your intelligent readers may think due to these queries, not a man of them will doubt that Digges, the father, actually fired gun-powder, at some great distance, by means of the reffected rays of the sun; and if so, lord Napier's first proposal must have been anticipated by many years.
8. I thought the two foregoing passages from the Pantometria, especially the second, sufficiently wonderful ; but, when I had written thus far, a learned and worthy friend of yours and mine put into my hand the Stratioticos of Thomas Diggest, printed in London in 1590; at the 359th page of which I find the following astonishing, but, as I hope to prove, not maccountable passage:
9. My father, " joyning continual experience" (in the use of artillery) " for many yeares with geometricall demonstrations, sought, and at last found, and did frame an instrument, with certaine scales of randons, to perfourme all that Tartalea by his tables promised: as also by reflection of glasses to fire poucler and discharge ordinance manyo

[^47]miles distant. And such was his felicitie and happie sucdesse, not only in these conclusions, but also in y^{c} Optikes and Catoptikes, that he was able by perspective glasses duely scituate upon comuenient angles, in such sort to discouer enery particularitie of the country round about, wheresotuer the summe beames might pearse: as sithence Archimedes (Bakon of Oxford onely excepted) I have not read of any in action* cuer able by means matural to performe the like. Which partly grew by the aid he had by one old written book of the same Bakon's experinents, that by strange adventure, or rather destinie, came to his hands, though chiefly hy conionning continuall laborious prastise with his matheniaticall studies. The which upon this occasion I thought not amiss to rehcarse, as wel for the knowne veritic of the matter (diuers being yet aliue that can of their owne sight and knowledge beare faithful witnesse, these conclusions being for pleasure commonly by him with his friends practised) as also to annmate such mathematicians as enjoy that quict and rest my froward constellations haue hitherto denyed me, to imploy their studies and tranels for inuention of these rare seruiceable secrets. But such is my hard destinie, that as God's pleasure was to take my father from me, in my young and tender yeares, and even at that verie time when I began to grow capable of those secretes, and himselfe (haung bene long debarred his owne inheritance and native soilc being restored) ment then immediately to returne to his wonted places of eserise, there to have delinered me experimentally those the fruits of his long tratels and practises, so sithence his death, having fostercd hy study and conference those theorical sparks mathematicall, from infancic by him impressed, after I erew to some maturitic of yeares and judgement, fit to enter into trial and practise of these conclusions, by contimuall law-brables (being torments as repugnant to my nawure as the infernall Furies to celestiall Muses) I have for many yeares bene so vexed and rurmoiled, and from those delectable sudies violently haled, that of all those rare conclusions and secrets I have scarsely hitherto had any time of repose or quiet to wade effectually in any one, sane onely that of great artilcric," \&ec.-But "so soone as by God's aid I shall untwine my selfe out of this miserable labyrinth, wherein so long I hate bene snared, my first cndenours shal be entirely to fimish the treatise of that new science of maneging this new furious engine and rare inuention of

* T coriginal being in the old English black letter, the word action, like the othir emphatic words, is in the Roman character. Does tho auther mean actually, or in buttle?
great artillerie, in such perfection as hitherto hath not bene in any language inparted with any nation of Europe.-Virescit unluere virtus*."

10. I have transcribed the greater part of this curious passage, because the " miserable labyrinth" of "law-brables" in which the poor author was "snared," may very rationally account for the amazing assertion, that his father, "by reflection of glasses, fired pouder and discharged ordinance many miles distant." It is evident that when Digges wrote the above passage his mind was ill at ease. It is probable his work was carelessly printed, without being revised by himself, and that for miles we should read poles, or some other denomination inferior to miles; for it is not to be credited that Digges, supposing him in his senses, would have inserted in his Stratioticos in 1590, that his father, "䜣 reflection of glasses, fired pouder and discharged ordinance many miles distant;" and in the Pantometria in 1591, that his father produced the same effect only "halfe a mile and more distant ;" appealing in both instances to eye-witnesses, and to all appearance meaning precisely the same fact. It may further be observed, that in our second quotation he has not asserted that either he or his father had so " augmented and multiplied the unitie of beames, that the farder it is carried the more violently it shall pearse and burne." No: he only mentions the extreme difficulty of such an attempt, and rather obscurely talks of imparting something on that head on a future occasion.
11. This letter would exceed all reasonable bounds, and would consume more time than I can bestow upon it, were I to trouble you with every observation which these passages would fairly bear. Many such will so readily occur to your intelligent readers, that it would be superfluous, if not offcious, in me to suggest them. I must therefore content myself with settling the dates of other pretensions to discoverics which scem to have been preriously known to the Diggeses, and thus hastening, not however without all the circumspection my time will allow, to the general conclusion which I have in view. And here I should be sorry to have it supposed that the proofs I shall adduce in support of those who appear to have just claims of priority, imply any censure on other claimants. Far from every liberal inquirer be the baseness of vilifying departed men of talents, whom genius, or even what is called good fortune, may have conducted, clear of all plagiarism, to discoveries previously made by others!

* Firtue Hourishes in adversity.

12. To proceed then: Our second quotation (§ 4.) seems clea:ly to imply the knowledge and use of what we call the Cancra aliscura, which has been always believed to have been first described by John Baptista Porta *. Whether this our second quotation was written by Digges the father or son, we have no absolutely certain means of determining; for the Pantometria, from whence it is taken, was begun by the father, as we have seen, and " augmented and finished" by the son, who, it is possitble, might have interpolated this passage into that part of the work, which most piobably was writen by the father, as it stands in the 28il page of the book, which, exclusive of preface, \&xc., contains 195 small folio pages. But is it reasonable to suppose that a man who, as our first quotation shows, was acquainted with the more difficult combinations of glasses, and ' assisted with demonstrations mathematicall," was ignorant of the comparatively simple structure of the Camera obscura? If then Digges the father, who published the Paniometria in 1571, and died about the year $1574 \dagger$, really knew, as in all probability he did, the structure and use of that instrument, he must have preceded Porta in that knowledge by more than twenty years. But if Disges the father did not possess that knowledge, it seems underiable that his son did; and 1591, the date of the Pantonetria, will still carry an Englishman's pretension about three years beyond that of the respectable Italian, whose work did not appear till about 1594.
13. I shall next briefly discuss a more important claim, that of the invention or revival (shall I call it ${ }^{\text {; }}$) of the Te lescope. Deseartes, whose authority in this case, as in many others, is justly regarded, tells us, that " about thirty years ago \ddagger lived one James Metins, a native of Alcmacr in Holland, a man wholly ignorant of the liberal arts, though his father and brother || cultivated the mathematics. This

[^48]man's favourite amusement was to make burning glasses and specula; and in winter he formed some even of ice, a material which is known by experience to be not unfit for this purpose. As on account of this pursuit he had at hand many glases of various forms, by a lucky hit he applied two of them to his eye, one of which was somewhat thicker at the middle than at the edges; the other, on the contrary, being much more prominent at the edges than in the middle; and thus having happily fitted them to the extremities of a tube, the telescope of which we speak thence derived its existence." Saverien, not attending, as he ought, to these words of his illustrious countryman, who passed much of bis time in Holland, tells us that "Kepler is the inventor of the telescope," and that "it certainly was not brought into use till the year 1609^{*}." But Kepler himself advances no pretensions to the discovery. In the dedication to his Dioptrice, which is dated January 1611, he saves that "s some were then contending about the honour of the first invention of the instrument, and others boasting of having brought it to perfection; but that Galileo had secured a more splendid triumph, in having first shown its use in detecting the arcanu of astronomy,-a triumph, by the way, to which, with all due respect to the celebrated "Tuscan artist," our great countryman Harriot has equally strong pretensions \dagger. Kepler then modestly prefers his claim to the first discovery of the rationale of " "the dioptrical reed" (arundo dioptrica), as he calls the telescope, but by no means to the discovery of the instrument itself. Borelli \ddagger and wther writers favour the pretensions of Jansen of Middleburgh, and Sirturus those of Lippersheim, another Dutchman.
14. But the earliest claim, next to that of the Diggeses, and the still prior one I shall presently notice, is that of John Baptista Porta, whose pretensions to the first discovery of the Camera obscura we have just considered. This modern Italian Mæcenas, in his Magia Naiuralis, published, as we have seen, about 1594, has these words, "Si utrumque recte, \&ic. If you know how rightly to combine both these" (a concave glass and a convex one) "you will clearly

[^49]see both remote and near objects enlarged. In this respect I have given no smail assistance to many of my friends," \&c. From this passage, Wolfius concludes that "Primus dulio procul, \&e. Beyond all doubt Porta was the first who constructed a telescope." But Wolfius adds that " he did not understand his own invention, for which he acknowledges he was indebted to chance," Ec.* It is however highly probable that the candid Wolfius, for such, from many instances, he appears to be, and the honest, ingenious, Scottish gardener, Stone, who here translates his words, would not hare spohen so very positively in favour of Porta's pretensions, hatd they been apprised that Digges, the father, not only constructed, but understood the telescope in the year 157°, when the Pantometria was first printed.
15. But the knowledge of the telescope in this country, at least of its theory, may be distinctly traced to a still earlier date. In proot of this assertion, which to some will appear a boll one, 1 beg leave to refer you and your readers to Recorde's " Patli-way to Knowledge," a book on the elements of genmetry, primed in the year 1551, and dedicated to king Edward VI. of England. Though this book is, I believe, not remarkably scarce, I may venture to say that its contents are but little known. For, after all the disputes about the discovery of the Telescope, can it be supposed that the following paragraph would have been so long withheld from public view, if the book itself had not lain neglected, in the repositories of the curious, ever since the days of Jansen, Kepler, and Galileo? In the repositories of the curions! Shall I speak out a melancholy fact ?-For little more than the price of waste paper I delivered my venerable Hecorde, once the companion and instructor of an amiable princet, from the merciless hands of a suufi-man, who, regardless of his genowes, likeammes, nooks, and cantells \ddagger, had stripped ofi his outer garments, and, proh pudor! condenned hin to the meanest purposes of a vulgar trade, thus forcing snuff into the indignant embrace of geometry!
10. Recorde, in his preface, has this remarkable passage : "But to retourne againe to Archimedes, he did also by art perspectiue (whiche is a part of geometric) deuise suche glasics within the towne of Syracusa that did burne their enemies shippes a greate waie from the towne, whiche was a meruailous, politike thynge. And if I should repeate the

[^50]varictie of such straunge inuentions, as Archimedes and others hane wrought by geometrie, I should not onely excede the order of a preface, but I should also speake of suche things as can not well bee understoode in talke without some knowledge in the principles of geometrie. But this will I promise, that if I maie perceine my paines to be thankfully taken, I will not onely write of suche pleasaunte inuentions, declaryng what they were, but also will teach how a great nomber of them were wroughte, that they maie be practised in this tyme also. Whereby shall be plainly perceiued that many thynges secme impossible to bee done, which by arte maie verie well bee wrought. And when they bee wrought, and the reason thereof not understoode, then saie the vulgare people, that those thynges are doun by negromancie. And hereof came it that frier Bacon was accompted so greate a negromancier, whiche neuer used that art (by any coniecture that I can finde), but was in geometrie and other mathematicall sciences so experte that he could doe by them suche thynges as appear wonderfull in the sight of moste people. Great talke there is of a glasse that he made in Oxforde, in whiche men might see thinges that weare doen in other places, and that was iudged to bee doen by:power of euill spirites. But I knowe the reason of it to lee good and naturall, and to be wrought ly geometrie (sith perspective is a parte of it), and to stande as well with reason, as to see your face in a common glasse. But this conclusion, and other diuers of like sort, are more meete for princes, for sundry causes, then for other men, and ought not to be taught commonly."
17. On this passage I shall only observe, at present, that we have no right to doubt that Recorde actually "knew the reason" of the reputed magic of Roger Bacon's glasses, of which there was "great talke" in his time. For, besides his reputation as a physician, he had a mathematical character at stake ; having for some time publicly lectured on geometry at Oxford *. Nor can it be said that Recorde might affect a knowledge of optical glasies which he did not possess, and cloak his ignorance under the strange opinion (as it appears to us) that such knowledge was only "s meete for princes." For he dedicates his book to Edward VI. in a long address, dated 28th January 1551; and is said to have been physician to that excellent young prince, as well as to his miserably bigoted and tyrannical successor Mary \dagger, either of whom might have required him to com-

[^51]municate
municate the knowledge he pretended to have of Bacon's inventions. A man ignorant of what he professed would never have unnecessarily exposed himself to the danger of being hod up by the rival court physicians as an empitic in "perspoctive" (optics), and consequently, as they would not have fated to infer, in medicine. Thus ve have great reason to beliere that Dr. Recorde poserssed eonsiderable knowledge, at least of the theory, of that combination of ontical glasses now called a refracting or dioptrical telescope.
[To be continued.]

XLl. Leter of Spallanzani to C. Senebier in regard to Respiration*.

You know that for a long time the respiration of man and of amimals has been the principal object of my physical researches. I made you acquainted with the motives which indueed me in treat on this subject, and the plan which I formed of subjecting to examination the difierent classes of animals, beginning with those where asimality ends, and ascending by degrees to that which comprehends the mammalia. Before my labour, whieh is pretty far advanced, be completed, I am desirous of communicating to you some parts of it; but this is not so much to gratify your wishes as to know your opimion of it. I shall, therefore, take the opportunity of this letter to communicate to you in particular a phenomenon, the enunciation of which will, perhaps, excite in you some surprise.
is I intend to treat on respiration, it is evident that I ought to introduce living animals which breathe. I shatl, hoverce, pursue a contrary course, and shall first give my observations on dead amimals, or animals which have becin deprived of respiration.

Amimals which breathe have, indeed, been the first object of my researches; but in proportion as I observed the chemical changes produced by them in air duting their life, I endenomed also to discover those produced after their death.

No mans certainty can be more efficacious for advancing the prouress of the phesical sciences than to open a new route, or to continue that which has been trod by other philowophers, setting cut from the point where they stopped.

[^52]The

The practice which I flatter myself I have acquired in experimental matters has proved to me that, instead of pursuing a direct course, as the greater number do, it is often of advantage to follow a cross road where no one has before passed, or even which no one has ever thought of entering. This is what I have chosen to do in my researches.

In recounting the results of my cxperiments, I shall not give you the specific names of the objects of them; I confine myself here to generalities alone. I shall only observe, that I employed the eudiometer of that celebrated chemist Giobert to ascertain the chemical altcrations of the air: I found it the most convenient, and at the same time the best fitted to my chemico-physiological researches.

I inclosed in a given measure of common air different kinds of worms. It was by this class of animals that I began my researches. I thus learned that those which had organs for respiration, as well as those destitute of them, absorbed all the oxygen of the air, or at least as much as was absorbed by the phosphorus of Kunckel. I observed that in the latter animals the organ of the skin supplied the place of lungs. This novelty induced me to search for another. I was desirous to know whether this organ ceases to absorb oxygen when the worms cease to live; or whether it then still retains this property. To resolve this problem I confined some of these animals, when dead, in close vesscls, placing them in the same circumstances under which they were during life: the oxygen was in the same manner entirely absorbed.

Though these animals began to give manifest signs of putrefaction, or putrid fermentation, as appeared by the disgusting odour they emitted, by their change of colour, and the softening of their parts, I put them again into confined air. The fermentation always went on increasing, and the absorbing force was not checked. Having shut up these substances several times in close vessels, I ascertained, by analysing the inclosed air, that the destruction of the oxygen gas was completely and constantly effected by these putrefied matters, from the commencement of their putrefaction until they had attained to the utmost term of it; that is to say, until it was finished, or until they were reduced to a state of almost complete decomposition.

It is well known how much power heat and water acting together have to macerate flesh: this may be easily perceived by ebullition. I tried the latter method also to discover whether this process would take from them or lessen their faculty of absorbing oxygen; but it was preseryed in its full

Vol, XVIII. No. \%1. R yigour,
vigour, though the worms were reduced by long ebullition to stich a state that their parts scarcely adhered. I subjected to experiment by both these processes different kinds of these amimals, whicin compose the order of terrestrial and aquatic westacea, and the rcintt was always the same. The Ait ralarity of this phanomenon made me seriously think that then might be something equivocal in this absorption of uxes-1, ait I Imost conceived the possibility of it.

In each of tion. of the caygen gas to the azotic gas was changed, but there was alnay a certain quantity of carbonic acid gas. I then thought that this gas might be the result of oxygen nefi with the carbon of the animal. But in this case evident that the animals would not appropriate to a cmeslves the base of the oxygen gas which they dimiwished. My reasoning aequired strength by an observation which taught me that when, instead of shutting up the animals in common air, I inclosed them in pure oxygen gas, the quantity of that gas destroyed was more considerable; and the case was the same with that of the carbonic acid gas produced.

This observation, however, did not appear to me decisive; because it might have happened that the great quantity of carbonic acid gas arose from a greater aflluence of carbonic acid extracted from the animals by a greater quantity of oxygen, which might excite in the animal fibre a strong motion, since it is proved that this substance has a very stimulating force.

The increase of the carbonic acid gas produced by animals placed in pure oxygen gas is not, indeed, constant, since they several times consumed $\frac{50}{10}$ of this gas, while no more than $\frac{5}{500}$ or this atmosphere. In like manner, by making the experiment with common air, one may see that when its oxygen is entirely destroyed, it is not micommon to discover in this residuun only two or three hundredths of carbonic acid gas.

To clear up these apparent contradictions, I had recourse to an expedient which ought to be decisive: I placed dead asimals in a medium entirely deprived of oxygen gas, because either no carbonic acid gas would be produced in that gas, which would have furnished me with an unanswerable proof that the production of this gas depended on the oxygen of the atmosphere; or, what is the same thing, that it was the effect of the combination of this principle with the
carbon exhaled from the animal, or I should have obtained this carbonic acid gas nearly in the same manner as when the animals are shut up in common air; and then it would be proved that it did not depend on the oxygen of the air, and consequently that it was exhaled immediately from the bodies of these animals in an aëntorm state, or in that of carbonic acid combined with caloric and become gaseous.

I therefore shut up different kinds of worms just killed, in pure azotic gas extracted from the fibrous part, well washed from the fresh blood by means of nitric acid, according to the process of the celebrated chemist Berthollet; but in these experiments carbonic acid gas was manifested. I confirmed this experiment by another, in which I inclosed the animals in pure hydrogen gas ; and more than once I had a quantity of carbonic acid gas produced in these mephitic gases, greater than when these animals were confined in common air. I was therefore forced to conclude, that the carbonic acid gas produced in these two cases was no way dependent on the oxygen of the atmosphere; and, consequently, that the oxygen gas destroyed by the presence of these dead animals had its base absorbed by them.

I remarked that several animals of this class could live some hours in these mephitic gases. In consequence of this observation I inclosed some of them, provided with organs proper for respiration, in hydrogen and azotic gas ; during the same time I shut up other individuals of the same species in common air. The result was, that in these two cases I obtained nearly the same quantity of carbonic acid gas. In these animals, therefore, there was an absorption of oxygen, and the appearance of carbonic acid gas was either a production of carbonic acid gas, or of the carbonic acid, the base of which escaped out of these animals.

But it may, perhaps, be asked, Are worms the only animals which continue after death, or in their state of decomposition, to absorb the oxygen of the atmosphere? This question appeared to me of so much importance that I endeavoured to solve it by experiments on other classes of animals superior to that of worms. I employed insects which always retain the same form, as well as those which pass through the three states of larva, chrysalis, and winged beings. I made my experiments under all these circumstances. But after I had put to death these insects, and followed their decomposition to the end, I always obtained a complete absorption of oxygen when I left for some time the putrefied matters shut up in common air: the absorption occasioned by the dead insects was, howeyer, much
slower than that produced by the living insects, which was effected with singular rapidity.

You will be astonished when I tell you that a larva, weighing only a few grains, appropriates to itself as much oxygen in the same time as an amphibious anmal a thousand times as voluminous; and that this considerable absorption is certainly repeated in an enormous manner in the prodigious number of aerian passages disseminated throughout the bodies of these living beings.

I extended these experiments to dead fresh-water and marine fish inclosed in common air. Their size permitted me to make these experiments also on their interior parts atter they were separated, such as the intestines, stomach, liver, heart, and ovaria; but all these parts absorbed the oxygen of the air completely, like insects and worms.

One capital point of my reasearches was to discover the proportion of atmospheric oxygen absorbed by dead and by living animals. Water is the natural habitation of fishes; but that which stagnates in a vessel is soon spoiled, and becomes fatal to these anmals, though covered with common air ; consequently, fish imprisoned in this manner suffer in such a situation, which is disagreeable to them: they come to breathe at the surface, and perish in a very short time. I have seen several die sooner in water of this kind than when exposed in the open air without any water.

From these observations useful hints may be deduced in regard to the chemical changes of the air by which water is covered. I should, however, have been altogether incorrect had I adhered to this method only: I therefore added to it a better, by placing the vessels in which I kept these fishes in a stream of running water, by which means the water in the ressels could be continually renewed. By this method I was able to obtain with more precision the proportions indicated.

I observed in amphibious animals after death the same phenomena as those exhibited by worms, insects, and fishes; but living amphibia gave me other results. I had observed that several of them survived for some days the destruction of their lings; which furnished me with an opportunity of submitting them in that state to my experiments, and to remark the precise absorption of the oxygen made by the lungs and by the organ of the skin. I was thus enabled to form a comparison between the oxygen absorbed by these mutilated animals and by those which had not been treated in the same manner.

Tous will see in my book how small is the absorption of 0x!gea
oxygen by the lungs in comparison of that absorbed by the skin, though it has been generally believed that in this class of animals, as in others which are higher, the destruction of the oxygen gas of the atmosphere ought to be referred entirely to this organ. Some kinds of amphibia also which I deprived of their lungs lived much longer in the open air than those which had lungs when I inclosed them in mephitic air, where they were entirely deprived of oxygen gas. I discovered also that some of them die much sooner when their skin is slightly covered with a spirit of wine varnish. The cause of this difference is evident : by means of this varnish these animals then not only cease to absorb oxygen, but they can no longer free themselves from the carbonic acid which ought to be exhaled, and its expulsion is necessary to their existence; while in the mephitic gases in which I placed these animals I always found carbonic acid in its gaseous state.

I was, however, able to ascertain the exact absorption of oxygen by the cutaneous organ, without depriving amphibia of their lungs: 1 confined their bodies in receivers in such a manner that they had no communication with exterior air, while at the same time they had their heads out in the air, in which they could frcely breathe. I thus clearly ascertained, that the absorption made by these animals when dcad is only a continuation of that which they made during life.

Hitherto I have spoken only of the four classes of coldblooded ąnimals; it therefore remains that I should say something of birds and the mammalia: as the latter bave a greater relation to man, they ought to be more interesting to our curiosity. Birds also absorbed oxygen in the experiments to which I subjected them, both when living and dead; and even their parts, such as the brain, muscles, interior parts, and also the skin. I shut them up alive, like the amphibia, in ressels in such a manner that they breathed in the open air without these vessels; which furnished me with the means of ascertaining the quantity of the absorption by the cutaneous organ.

The mainmalia, who are in the order of quadrupeds, gave me results similar to those exhibited by birds; but I obtained others of great importance from that singular species of quadrupeds which are rendered lethargic by the air, or which, as is commonly said, sleep during the winter.

I observed that the phænomena of respiration change in these animals according to the different degrees of the temperature of the atmosphere, and that similar phænomena are
remarked in the circulation, in consequence of the great affinity between these two functions. Being desirous to examine them thoroughly, I kept in my house for five years the five species of these animals found in Italy. By making researches in regard to their respiration I had still another object in view, which was to study the habits of this class of animals, and every thing that might be interesting to their history, because too little known, or not sufficiently explained. Having, therefore, near me this great number of animals, and having observed them during different seasons of the year, and seen them in their natural retreats, I was able to accomplish my plans as I wished.

As the event must be curious, you will remember my marmot, which was so lethargic during the severe winter of 1795; I then kept it for four hours in carbonic acid gas, the thermometer marking -12°. It continued to live in this gas, which is the most destructive of all: a rat, at least, and a bird which I placed in it perished in an instant. It appears, then, that its respiration was suspended during that time. $\frac{1}{2}$ submitted to the same experiment bats which were in the same lethargic state, and the result was the same. I then continued my experiments. I preferred these flying animals to the marmot, apprehending that this animal might fall a sacrifice to these trials and perish, because I had only two, on which I had other experiments to make, whereas I had in my possession a great number of bats.

I was therefore desirous to know, whether when respiration was suspended in these animals a production of carbonic acid would be effected by the organ of the skin. I then substituted azotic for carbonic acid gas, in order that the result might not be doubtful. I placed in this gas two bats, the thermometer being at -9^{2}. At the end of two hours I took them out, and having gradually introduced them into a warmer medium, they gave evident signs of life: but I found no carbonic acid gas in the azotic gas; which made me conclude that this temperature was too low for the exhalation of it. I continued these experiments at a temperature successively higher to -3 , by which means $\frac{5^{5} \overline{0}}{}$ of carbonic acid gas were produced, though the lethargy of these animals was still streng.

In this state of things I repeated the experiment under the same circumstances, only I removed the bats into another veseel full of common air; but I then found not only the production of $5 \frac{t}{2}$ hundredths of carbonic acid gas, but also the destruction of 5 hundredths of oxygen gas. Though these two smail quadrupeds were in respirable air, their pro-
found lethargy prevented them from profiting by it. They did not absolutely respire; that rising and falling occasioned in their flanks during respiration was not remarked; the case was the same in the open air. It is therefore evident, that this partial consumption of oxygen gas was the consequence of the absorption of this substance by the cutaneous organ.

It thence results, that this chemical power of absorbing the oxygen of the atmosphere belongs to these cold-blooded animals when dead, and that when living they exhibit the same power, which is continued even when their bodies are in a state of decomposition.

In a word, this total suspension of respiration experienced by these animals when exposed to a violent cold, becomes unsupportable to them and occasions their death, as I have seen in my experiments; so that this state of lethargy into which they fall when in their burrows, which happens to some small animals, and in general to amphibia, is always accompanied with a weak principle of respiration, as I shall show in its place in my work.

Several worms, and among them the greater part of the testacea; many insects, among which systematic writers place the crustacea; besides the immense family of fishes, have their residence always in the water, and sometimes cease to live in it. Will the faculty they have of appropriating to themselves oxygen when they remain exposed to the air, be mamtained in that fluid, because it is mixed therewith a quantity of oxygen gas? I was inclined to think so; but to assure m yself of it, I made direct experiments.

With this view I placed different kinds of these animals when dead in tubes filled with water, above which I caused a given measure of air to ascend. The oxygen gas of the water communicated with that of the air. It appeared then clear to me, that if the former were absorbed, the second, or at least a part of the air, without the water in the tube, ought to replace that kind of vacuum which might be produced in it, and re-establish the lost equilibrium. This took place; and I must observe, that every time I made the experiment on several individuals of these three classes, though the experiments were very numerous, the air which covered the water was deprived of its oxygen gas.

I must mention also another observation which I made. When, instead of these aquatic animals, I placed at a given depth under the water terrestrial animals, or their parts, I obtained the same destruction of the oxygen gas of the air placed above it. This proves that the property which these
animals have of absorbing oxygen in the air, is retained by them in the water, though not destined to live in it, and though it be fatal to them.

Hitherto I have spoken of the organ of the skin, and shown in the six classes of animals, that it has the power of appropriating to itself the oxygen of the air, not only when these animals are alive, but even after they are dead. I wish to call your attention for a moment to this power communicated by nature to other parts, which, though essential to their ceconomy, present themselves to the air as if they were only accessary. I here allude to the shells of the terrestrial and aquatic testacea: they belong, as you know, to the family of worms.

When I observed that these dead animals decomposed common air by absorbing its oxygen, I imagined that the shells might contribute to this operation; because 1 considered that they were organized according to the demonstration of Herissant, and that they formed a whole with the animal which inhabited them. It was easy to verify this idea by inclosing the shellsalone in common air, and the effect showed that $m y$ conjecture was well founded. This absorbing faculty is manifested also in the testacea which inhabit the earth, and in those which sojourn in the waters. I was able to estimate the quantities of oxygen absorbed by the animals alone and by their shells; only I remarked, that the absorption produced by the shells was slower than that by the animals.

While engaged with these experiments, analogy suggested to me the idea of a body which was indeed of a different kind, but which seemed worthy of attention. The shells of the testacea are formed by two substances, one terreo-calcareous, the other animal. The shells of the eggs of birds are formed of these two substances: Is it not possible, or rather probable, thought J , that this absorbing principle may reside only in these coverings? I actually found it in the shells of all the eggs which I subjected to experiment; and as I have a proof that a part of the oxygen absorbed by the shells of testacea passes into the animals which inhabit them, it is probable that it concurs to the preservation of their life. I think I have proofs of this sufficiently strong to show the passage of the oxygen gas into the interior part of the egg in order to vivify it, and to concur to the development of the germ it contains.

I cannot leave these considerations on the shells of testacea and of eggs, without throwing some light on a point inseparable from their nature. Their constituent principles, as
we have seen, are an organic tissue, and an earth entirely calcareous. Is the absorption of the oxygen of the atmosphere, however, produced by these two substances, or by one exclusively of the other ! I at first thought, that, to obtain a solution of this problem, it would be necessary to subject both to experiment ; and I began with the calcareous matter, because it could be easier emploved for that purpose. As it had all the essential relations with carbonate of lime, 1 was enabled to ascertain, with great convenience, whether it possessed this absorbing power: in that case there was reason to conclude, that the carbonate of lime of the shells had the same; but if carbonate of lime did not possess this faculty, it was clear that the absorption of the air by the shells did not arise from the calcareous but the animal part, and this is what I concluded; because the purest carbonate of lime, crystallized and transparent, calcareous spar, kept a long time immersed in common air, does notoccasion in it the least alteration.

I had a striking confirmation of this by some shells of the helix pomatia and the helix nemoralis, which I found by chance in the garden, and which appeared to me to have been a long time deprived of their inhabitants, as I judged from their being worn, and from the alterations they had experienced : they had become lighter, and easily broke, or were reduced to powder, between the fingers. The calcareous matter refound by means of acids and fire, left me no doubt in regard to their nature. I however found that they had lost a great deal of their power of absorbing oxygen, and that this loss was greatest in the shells which had been most disorganized. It must therefore be admitted, that the organization of the shells of testacea is the cause of this absorption, independently of the calcareous matter, or at least that without this organization the shells could not produce that effect. In like manner, if these shells are preserved in such a manner that they are not sensibly decomposed, even though kept several years, they still retain their active property of speedily absorbing oxygen.

Such, my learned friend, are the principles of which I was desirous to communicate to you some idea. Though the pulmonary respiration of this numerous species of animals has been the principal object of my experiments for several years, I wished only in this letter to give you a hasty sketch of them, in order to show how living animals continually consume oxygen gas in a manner independent of the lungs, and how they destroy it even after their death: you have seen it in cold-blooded animals, as well as in
worms, insects, fishes, amphibia; and in warm-blooded animals, I mean birds and mammalia, this destruction in a given proportion of common air is complete, at least as far as can be shown by Kunckel's phosphorus.

In speaking of mammalia, I made, on purpose, several experiments on certain parts of their bodies, such as the muscles, tendons, bones, brain, fat, blood, and bile. Each of these parts destroys the oxygen gas in different proportions, except the bile, which appears to be incapable of that opcration; but the blood is not the only one of the animal parts most proper for the destruction of oxygen gas; though If first helieved that, in this respect, it was superior to them all, judging from what has been written on the blood in regard to the decomposition of the air. The blood of cold and warm-blooded animals, the venous as well as the arterial, have been subjected to experiment, and I had no variation in the results.

In the beginning of this letter I expressed my doubts on the consumption of oxygen gas, occasioned by worms shut up in common air: Is it produced by the absorption of its base, or rather by its combination with the carbon which is cxhaled from these animals? I found the carbonic acid in the vessels contained in these animals, and this carbonic acid must have some source, since the vessels are full of it ; but this doubt was removed by showing the appearance of this gas, though the worms were confined in azotic and hydrogen gas. I observed the same thing in the five other classes of animals; so that I think myself authorized to assert, from the fact in the experiment with oxygen gas, that this gas abandons its base to the cutaneous organ of the animals, which absorb it as well as the different parts of their bodies.

But you will perhaps ask, Whether the azotic gas of the atmosphere suffers any chemical alterations in so great a multiplicity of experiments?-I shall observe in answer, that I never made any without considering this gas, and without finding that, according to the varieties of the animals, it sometimes remained untouched, and at others cxperienced some diminution; but that it was always very small in comparison with that of the oxygen gas, though the latter is scarcely equal to a fourth of the former in common air.

I then saw that the chief direction of this animal absorbing force is to take away and appropriate to itself oxygen: it has a direct relation with the temperature of the atmosphere, so that it may almost be established as a general rule,
that the absorption of oxygen is directly as the heat of the ambient air in which animals reside; and this accords very well with the observations made on phosphorus.

In these results, which I have made known to you in so brief a manner, because I reserve the accompanying proots for my work, you see the immense consumption made of oxygen gas by animals at the expense of the air ; that by the lungs, or other analogous organs, is no doubt great, but it is still immensely increased by the absorption occasioned by the exterior surface of the body; and it is the same in animals furnished with organs proper for respiration and in those which are deprived of them: nay more, when animals which respire cease to live, the destruction of oxygen gas, which no longer takes place by respiration, continues by the organ of the skin, and even increases in regard to some animals when putrefaction is far advanced. If we take into consideration the incalculable number of animals which peoples every part of the globe, whether they inhabit the land or the water, it would appear that the oxygen gas, which forms the most valuable part of the air, must have decreased, and produced the destruction of the organized kingdom. We are, however, taught by eudiometric observations, that the mass of the oxygen gas of the atmosphere remains unalterably the same. We must therefore necessarily conclude, that nature has means of compensating exactly for this infinite destruction of oxygen gas, in the same manner as it does for maintaining an exact balance between the death of regetables and animals and their re-production.

But in what manner does nature effect this compensation? You and Ingenhousz have shown it by the publication of two works which display the originality of their authors, and which form a luminous epoch in natural philosophy. It may be readily seen that I here allude to what you both have done to show in what manner vegetables exposed to the solar light pour out into the atmosphere a prodigious abundance of oxygen gas. It certainly appears proper for repairing that loss of oxygen which may be occasioned by the pulmonary organs; but as this loss is still greater, since we must add to it that produced at the surface of living animals, and by these animals themselves after death, I cannot say whether these losses can be compensated in whole by plants, especially as the number of animals is much greater than that of plants. As this great consumption of oxygen is made by animals during their whole lives, and for some time after their death, and as plants do not dif-
finse that beneficent influence into the atmosphere but at certain determinate seasons, or only when they are green: these reflections induced me alinost to think that it would be necessary to seek for some other constant source of thi sital gas: I am consequently of opinion, that as nothing in nature is lost, animals themselves may have the means of restoring to the atmosphere that oxygen of which they deprived it.

But this is not the time for entering the field of conjecture in regard to this important subject; I shall discuss it in my work on the respiration of men and of animals. For the present I shall tell you that I have finished the composition of four memoirs, which will form the first part of my researches, and which will soon be published.
XIII. A fill Description of the Method of preparing Mr. Gmorge Blackman's Superfine Oil-Colour Cakes; as communicated to the Society for the Encouragement of Arts, Manufactures, and Commerce, and practised ly him in Prevence of a Committee appointed by the Society ts, ascertain the Merit of the Imvention*.
T four ounces; of epirit of iurpentine, one pint; mix ther together in a bottle, stirring them frequently till the mastic is dissolved: if it is wanted in haste, some heat may be applied; but the solution is best when made cold. Let the colours to be made use of be the best that can be procured, taking carc that, by washing, \&c., they are brought to the greatest degree of fineness possible. When the colours are dry, grind them on a hard close stone (porphyry is the best) in spirit of turpentine, adding a small quantity of the mastic varnish: let the colours"so ground become again dry; then prepare the composition for forming them into cakes in the following manaer :-Procure some of the purest and whitest spermaceti you can obtain; melt it over a gentle fire, in a clean earthen ressel; when fluid, add to it one-third of its weight of pure poppy oil, and stir the whole well together: these things being in readiness, place the stone on which your colours were ground on a frame or support, and, by means of a charcoal fire under it, make the stone warm;

[^53]next grind your colour fine with a muller; then, adding a sufficient quantity of the mixture of poppy oil and spermaceti, work the whole together with the muller to a proper consistence; take, then, a piece of a fit size for the cake you intend to make, roll it into a ball, put it into a mould, press it, and it will be complete.

When these cakes are to be used, they must be rubbed down in poppy or other oil, or in a misture of spirit of turpentine and oil, as may best suit the convenience or intention of the artist.

The aborementioned oil-colour cakes were tried after they had been in the possession of Mr. Cosway and of the Society for twelve months, and were found to possess the same valuable properties they had at first.

Mr. Cosway says that he made several experiments with these colours, and is of opinion that the manner in which they are composed is a new and useful discovery; and the great advantage they possess of drying without a skin on the surface, is a very essential improvement on the usual mode of oil-painting, particularly for small works.

Mr. Stothard sars, one adrantage these colours possess above others is, they must be very convenient to travellers, as they are always fit for immediate use, they not drying hard nor skinning over.

Mr. Abbot says he has frequently used colours prepared by Mr. Blackman, particularly his red lead, which, as far as he can judge, is better preserved from changing by this method of preparing, than by any other he has met with; and as the tint given by red lead is peculiarly adapted to the highest lights of flesh, more especially on the forehead in portrait-painting, he thinks Mr. Blackman`s discovery, if it fully answers that purpose, a very advantageous one to artists; that he has so good an opinion of Mr. Blackman's ingenuity and merit on this head, that he has ordered a set of colours prepared in his manner, in bladders, for his own use.
N. B. It may here be proper to observe, that Mr. Blackman's colours in bladders are prepared with a mixture of spermaceti, and differ from his cakes only in baving a larget proportion of oil.
XLIII. Description of an improved Crane for Wharfs. By Air. Robert Hall junior, of Busford, near Noltingham.
Fortr guineas were voted to Mr. Hall, by the Society for th. Lin nurarement of Arts, \&c., for his ingenious inventian a me thod to expand a set of bars parallel to the axis of " a) by which means the velocity of the rope in raising wughts may be increased or diminished in proportion to the loud to be raised.
A description and engraving of this crane are given in the twelfh volume of the Society's Transactions, from which we have drawn up the following account of it:
The cnits of the reel (tig. 1 and 5. Plate IV.) consist each of two flat plates or circular pieces, shown separately in fig. 2 and 3. These circular plates form the two ends of the reel, and are hedd fast on the spindle or axis by pins passed through its ends, of which one may be seen at a, fig. 2, and another in the end shown in fig. 5. The outer circular plate (fig. 3.) of each end of the reel has a spiral groove cut in it, as shown at l, and the inner circles have each eight mortices cut quite through them, as shown at c, fig. 2. (seen partly also in fig. 1 and 5.) The onter plates have also an iron tube, d, made fast to them by means of a thange or coliar, and the screws, $e e$, fig. 9.
When the parts are all joined, (as shown in fig. 1.) the axis f passes through the tube d, and thus the ends are comnected. In fixing the cross bars, two of which are shown detached in fig. 4, the parts g,g slide in the mortices c of the inner circular plates, and the small ends or tenons h, h go fairly through the inncer and enter the spiral grooves of the outer plates.

The inner and outer circular plates are locked together by a catch (i, fig. 1, $\mathfrak{\Omega}$, and 6.) the stationary part of which is made fast to the inner plate (see fig. 9), while the catch itself, by means of a spming, is kept in a notch on the edge of the outer plate. When the diameter of the reed is to be enlarged or diminished, it is effected by bringing the reel rumd to the position shown in fig. 6 , when a hook, k, is put into a hole, l, which keeps the inner circular plate in that position till the adjustiment is made by lifting the eatch from the notch of the enter end-plate far cnough to be kept disengaged by the hook k, before mentioned, being thrust quite through the hole l : the handle m being then turned, the outcr plate only is carried round, aad the tenons or small ends of the cross bars (being prevented from being

Improved Bucket for drawing Water out of deep Wells. 271
carried round with it, by the mortices of the inner plates through which they pass being stationary) are obliged to change their distance from the axis by the spiral groove sliding over them, while they are able to move nearer or further from the axis by sliding in the radial mortices of the inner end-plate.

The handle m being turned till the reel is of the size required, the hook k is withdrawn or pushed out, and the crane is then ready for work.

It is necessary to observe that the tenons h, h must be cut, so that the outside of all the bars next the rope shall be at an equal distance from the centre. If the tenon of the first bar that is placed in the reel be cut like the tenons h, h, fig. 4, the last of them must be cut the same as the tenons n, n, fig. 4 ; and all the other tenons, at the extremities of the several bars, must be at proper distances between these extremes, as is shown by the dots P in the mortices fig. a.

The other parts of the crane mav be so easily understood from an inspection of the engraving, that any further description is unnecessary.
XLIV. Description of an improved Bucket for drauing Water out of deep I'Tells. By Mr. George Russel*.
$\mathrm{T}_{\text {HE silver medal of the Society for the Encouragement of }}$ Arts, \&c., was yoted to Mr. Butler for this invention, of which a model is reserved in the society's repository for the use of the public. The following is Mr. Butler's account of the improvement :
" My well at Downe, in Kent, is about 360 feet deep, and is worked by two buckets and a horsc-wheel, each bucket holding little less than a barrel; and are the same sort of buckets, with the same mode of emptying, as at Dorking, Dover, Hasted, and all the deep wells I have met with.
" The great weight of iron on those buckets, to make them sink immediately on descending to the water, being observed, together with the heavy flat iron chain by which they are hung to the rope; and which, passing over a flatgrooved wheel above, brings the face of the buckets properly to the cistern-catch, suggested the following idea:
"A valve of five inches diameter was put into the lower

[^54]
a72 Improved Bucket for drawing Water out of decp Wells.

head of a common light beer-barrel ; a cross was placed in the contre of the top of the barrel; it was then let down into the well by a rope; it filled through the value in the bottom, and came up very steady and full, with scarce any drip: what little drip there was, fell immediately down the well from the valve in the centre of the bottom without wetting the descending rope, such wetting heing very prejudicial to the rope, as in use with the old buckets; for by the nature of their bails they ascend swinging, sometimes strike in passing, and by splashing over the sides are never full.
"Two buckets on the new construction were immediately made with iron hoops as light as possible ; they have worked four years without being out of condition; the hoops, chains, \&cc., of these buckets weigh less than the old ones by two hundred wright. The well-rope is little more than half the size and cost ; a much greater quantity of water is ratised in an equal time, and the labour of the horse much relieved."

Description of the improred Machine.

AA, (Plate V.) two posts fixed in the curb of the well, opposite cach other, and grooved within to receive the end of the collar.

B, two parallel bars which bear down the small iron arms or cross, K , as the buctect ascends, and open the valve to discharge the water.

CC , the collar resting on pegs in the groore ; and, being lifted by the bucket in ascending, communicates, by a rod or line down the groove, with the short end of the moveable bars at 1 : the short end of these bars, which work on a pin or fulcram at E, being so moved, draws forward the trough, F, with an increased velocity, by means of the lines passing from it over the pulleys GG , and fastened to the long end of the bar at If ; by this action the trough runs under the bucket, and is ready to deliver the water into the cistern I, when the valve Q (which is about five inches diameter) is opened by the cross L , striking the bars at B .

F, the trough, moving on four brass rollers, which, on the water being delivered, runs back, as the bucket descends, with the same relocity as it was drawn forward: this is done by means of the weight K , hid within the lining of the model, and conuected by a line, passing over a pulley in the frame above, to the centre of the hinder part of the trough.

L, two thin pieces of iron fixed aeross the top of the bucket:
bucket: in the centre of these pieces is placed the small iron standard M , on which is a collar with four arms N , made to move up and down: above the collar is a small brass pulley in the mortice O, in the upper part of the standard, and a loop to which the well-rope P is made fast : to one of the arms of the collar is tied a cord, which passes over the brass pulley above, and then down to the lip of the valve; so that the cross L, being pressed against the bars B, is forced downwards, the cord drawn up, and the valve opened.
XLV. An Examinaiion of Dr. Wollaston's Experiment on his Periscopic Spectucles. By Mr. William Jones, F.Am. P.S.

To Mr. Tilloch.

SIR,
T_{he} inferences that Dr . Wollaston has thought it best to publish in your last month's magazine, instead of a direct reply to my refutation of his new principle of spectacle glasses, are of themselves sufficient to convince any impartial person of the validity of the objections advanced by me in your preceding number; and, notwithstanding an extraordinary experiment he has therein related, as made only by himself, I should not have thought it requisite to trouble your readers again, but for the unfounded imputation he has declared against me, that of having, by an experiment, deceived myself. I trust, sir, I may be allowed, in contradiction to this, to observe, that after more than twenty years experience in the practice of my profession, such as daily administering to decayed vision, and employment in the construction of all kinds of optical instruments, I should not be acquainted with the various properties of lenses, singly or combined, and especially of so simple and well known a form of lens as adopted by him, is an idea that I am confident he cannot impress upon the mind of the public. I suggested no new experiment, nor was any one wanting ; the definitive laws I adduced were contained in the works of the best writers on optics, and were sufficient to evince the want of originality and improvement of his meniscus-shaped lens. In respect to the experiment by which he attempts to enforce a proof of an advantage in his spectacles, its value will be known by the following account of a repetition of it. I am possessed of a pair of his periVol, XVIII. No, 71, S scopic
copic glasers mounted in a single steel frame, which cost 10s. 6 d . The glases, I must observe, are very different to his proposed form, having of each, the maner side, or that next to the eve, so little incurvated, that by any person bat an optician they would be called plano-convexes. The focus is 4 inches, the same as uscd by Dr. Wollaston in his experiment. In a similar mometing, with double convex glasses of the same dimeter and focus, I provided a pair of nur own manuficture, and as sold by us at 3s. 6d. These two pairs of spectacles were attentively compared together by myself and sereal judicions and impartial persons, in the manace as stated by Dr. Wollaston of his; the result was as follows:-The convex glassus being applied as close as possible to the eyes, the print of a large quarto page was viewed through them at a distance for distinct vision at their centres: the lefters, at the distance of about 25 lines, appeared quite distinct, or well defined. Giving the axes of the eyes a little obliquity, to discriminate more lines, an indistimetness or confusion of letters commenced, increasing towards the extremity of sight; and from the lateral aberration of the lenses the letters were tinged with the prismatic colours. Keeping the head fixed in the same position, the periscopic glasises were substituted. The extent of distinct leiters without distorion was nearly as great, but the coloured letters were evidently neazer to the centre, and more numerous than by the other glasses. By inclining the axes of the eyes still more than in the former case, or looking extremely asquint through the glasses, a greater extent of lines was observed, but blended with colour and confusion. The optic nerves felt a sensible irritation, evidently from the squinting pesition of the eyes, a refraction of many superfluous rays, and the consequent inercased and unusual magnitude of the images on the retina. The pain in the eyes mentioned by Dr. Wiollaston must have arisen only from this circumstance, and not from the one he represented it to be. By a trial of the old meniscus I before mentioned, which is four inches focus, and corresporem with what lee has a patent for, in comparison with the abose plano-convexcs, the view of the letters was still more extended, but illegibe and with much colour, and like the other, towards the cxtremity, of no sort of use for the purposes of usion.

Now all this is conformable to the laws of optics, and manifiste a property different to that advanced by Dr. Wollasion.

These several glasses are also at the public service for inspection in our shop in Holborn.

By making the glasses of the above periscopic spectacles nearly planos, Dr. Wollaston's principle is destroyed, and my opinion evidently verified : that the nearer a meniscus approaches to a plano, the more perfect it will be, as the spherical surface for the same focus is diminished, and consequently the aberration. Besides, admitting that there were any advantage derivable from a great obliquity of the axes of the eyes to those of the meniscus-shaped spectacle glasses, I would ask, For what reason has man his head moreable? Was it not that he should place his eyes directly before the object to be viewed, and not subject himself to fallacious ideas of them by an awkward and revolutionary squinting?

Froin what I have advanced I doubt not of the public decision (from a fair comparison of the two kinds of spectacles) in favour of the established double convex spectacleglasses: for

> " Magna est veritas, et prævalebit."

> I am, sir,

Your respectful humble servant, William Jones.
XLVI. Memoir on the Culture of the Anatto Tree, and the Preparation of Anatto. By C. Lebone*.

T$\Gamma_{\text {hat colouring matter known under the name of anatto }}$ is the produce of a tree brought originally from America, and called by botanists Bixa orellana. It approaches near to the family of the tilice: it rises in good soil to the height of from fifteen to twenty feet, and its branches form a circumference of from nine to twelve feet radius. It flowers at the age of eighteen months; and its flowers, which are attached to a common pedicle, are succeeded by capsules covered with soft points. The seeds are surrounded by an orange-coloured pulp, employed in dyeing. The anatto tree is cultirated in French Guyana; it is multiplied by slips or plants: the former last longer; the latter produce sooner, and live for seven or eight years. They are planted in parallel lines, at a distance which varies from twelve to twenty-four feet, according to the diameter which it is supposed the tree will acquire in the ground destined for it. The anatto trees
require continued care: when young, their delicate roots must be covered with carth; when green herbs are heaped up about the bottom of the trees they often cause them to perish, in consequence of their fermentation. It is customary to beat down the first flowers, that the tree may not be exhausted by premature fecundity. The earth is dug up around the tree with a hoe, but eare is taken not to touch the roots. When the rains have been abundant, the planters are satisfied with cutting the grass in the neighbourhood of the tree with an instrument like a scythe, which spares the roots, and accelerates the labour. A sickle might also be used.

The anatto tree is injured neither by heat nor by rain; it prefers low humid places, and is not attacked by caterpillars, but is very subject to the guy (a name given in Guyana to a sort of loranthus): it ought to be carefully freed from that parasitic plant, which prevents it from bearing the usual quantity of fruit.

The anatto is fit for being gathered, if the capsules, when pressed between the fingers, open with an explosion: the product is collected with the hand, and the negroes who gatherit deposit the eapsules in barrels, which when full contain about thirty-five pounds. The product of the trees varies according to the age, the season, and the soil. From 1500 to 2500 pounds are collected in eighteen months from 1800 square yards, when the land is good: at the end of three years the product is still more considerable; at five years it begins to decrease, and at ten years the quantity collected will searcely defray the expense. To separate the grains, the capsule is opened with the thumb and fore finger; the person then lays hold of the membrane to which the seeds are attached. This labour is in general entrusted to the more delicate hands of women and children: the negroes of Africa employ for this purpose a kind of spatula.

After the produce is collected, the next operation is to separate the colouring matter. Under a kind of shed supported by forked sticks fixed in the ground, covered with leaves and open on all sides, are placed a kind of troughs cut out in the trunks of trees, in which the grains of the anatto are heaped up. The first trough is called the pounding trough, the second the immersing trough, the third the discharging trough, and the fourth the straining trough. These names indicate the different uses to which they are applied. Each pounding continues half an hour : a negro pounds about sixty or seventy pounds per day. This opeEation is performed so badly that many of the grains are
still in a state of seeds when thrown away as useless. An attempt has been made to introduce machinery for this purpose, but it has been abandoned without sufficient reason.

When the grains are pounded in the first trough they are carried to the immersing tub, where they are diluted in a quantity of water sufficient to cover them, and in which they are left some months until they are pressed. The matter is pressed in sieves, which are placed above the immersing trough, that the water which holds the colour in solution may fall into it. The grains are then carricd to the discharging trough, and covered with leaves: they are left in that situation till they ferment; they are then put in succession into the pounding trough, the immersing trough, \&c. till they contain no more colour. When no more seeds remain in the immersing trough the colour is diluted with water, and women make it pass through sieves placed over the straining trough, in order to separate the remains of the seeds. This operation is performed badly, and in a slow manner. The matter which has passed through remains in the trough till it has deposited the colour; which is generally the case at the end of fifteen days, or sooner when the weather is cold or damp. The water from which the colour has been precipitated is carried back to the immersing tub to dilute other seeds, because it has been observed that it accelerates the fermentation better than pure water.

When the anatto has been precipitated, which is known by the liquor being uncoloured, it is boiled in kettles, stirring it continually until it is reduced to the state of paste. When cold it is spread out in boxes to the thickness of from eight to ten inches, and is dried in a place sheltered from the sun, which would blacken it. When it is so dry that a mass of about fifteen pounds can be taken up by thrusting the hand into it, it is put into baskets lined with leaves, and carried to market. Each basket weighs about seventy pounds.

When about to be put into casks, cakes of the diameter of the cask are formed upon leaves of the balalou, and they are pressed into the cask till it is full. The cask ought to weigh from 300 to 350 pounds, and to contain no more than $\frac{6}{10}$ of leaves. But on such occasions a great number of frauds are committed: on this account government formerly appointed commissioners to verify the quality of the anatto. They took a determinate quantity, which they washed several times; and if the residuum exceeded a twelfth part the anatto was rejected. The goodness of it is tried also by rubbing a little of it on the nail : if after being
washed and soaped there do not remain a red spot, which is called mordant, the anatto is considered as of no value.

Such is the process employed for the fabrication of anatto. The author of the memoir remarks that this tedions, laborious, and unhealthful operation gives an uncertain produet of a bad quality. IIc proposes merely to wash the seeds till they are entirely freed from the colour, which is placed at the surface; to make the water pass through fine sieves, to separate the remains of the bark, to precipitate the colour by means of vinegar or lemon juce, and to bake it in the ueval manner, or to make it drain in bags, as is practised for indigo*. This process is found don tibis circumstance, that, as the colour is entirely at the sumace of the sceds, it is needless to bruise the latter, and to reduce them to a state of puitrefaction. This method would be wav vantageous to the planter who may wish to save harids; to the merchant, who would gain in regard to the tieight; and to the dyer, who, being sure of the qualif of his colowing matter, would be cinabled to determine with exactness the quantity necessary for his purpose. If the pianters of Guyana refuse to change their process, it might be advan tageous to send to Europe the seeds without preparation. The saving in the manipulation would be equal to, and even surpass, the expense of carriage. The anmual consumption of anatto amounts to 240 tons. When the crop exceeds 280, the price of this article, the use of which is limited, falls so much that the cultivation of it ceases to be adrantageous.
XLVII. Olservations on the Possibility of collecting a certain Quantity of Succinic Acid during the Process of making Amber Varnish, without lessening the Property of the Varnish. By MI. Planche, Member of the Pharmaceutic Society of Parist.
H Aving had occasion to assist some time ago in the preparation of amber varnish on a large scale, I observed that

* Jussietr, Desfontaines, Cels, and Vauquelin, commissioners of the National Institute, have verified the excellence of this new process. The anatto which thence results is less mixed with impurities, and consequently of a finer tint; so that one part of the anatto extracted by simple washing produces the same effect as four of common anatto. This fact is confirmed by a certificate from C. Ducuret jun. and Genet, dyers, at Paris. They add also that this anato is móre casily emploged; that it requires less solvent, and gives a purer coloar.
\div From the Amuates ate Cbimif, No. I4z.
during the operation, and until the heated substance had acquired the proper degree of fluidity, a great deal of succinic acid was disengaged.

Every artist has had an opportunity of making the same remark; but whether they mastook the real nature of this salt and its properties, or considered it only as essentaty inherent in the quality of the varmsh, no one has hitherto attempted, as far as I know, to derive any advantage from it. Those, however, would be in an error who should infer from what ban been said, that good ramish ought to be free from succinic acid: on the contrary, it is very probable, that on the addition of drying oil and essence, when ought to increase the fluidity of the amber, this matter can still furnish some of it, and even in abundance.

I should deviate from the real object I have proposed in this notice, were I to relate the different pocessemployed in the preparation of this varnish: I shall enly observe, that as this operation is percomed for the most part with the contact of the air, and over an open fire, and in rarnished earthen vessels, the aperture of which is from four to five inches in diameter,-when the matter is suficiently penetrated by caloric, a part of the succinic acid, bocomefree, is exhaled as mere lossinto the atmosphere, while a very large quantity is fixed to the sides of the matrass, under the form of rery fine delicate needles, sufficient white to have no need of purification*. Each matrass, contaming twentyfour ounces of amber, (a common dose, can furnish from eighty to ninety grams of acid, without in ans: manner lessenty thequalty of the varnish \dagger. It is proper to observe also, that cue ought to serze the moment when the succinic acid is disengeged, to separate it ; and this disengagement tabes place a. litt' time before the addition of the oxygenated or diving mil. If the operation be defered, the greater part of tho protuct will be lost. The morion indeed necessary to be given to :he spatula, to eifect the mixture of the oil with the amber, detaches a great deal of volatile salt. All hope, therefore, of collceting ic must be lost when essence of turpentine is added; as this oil, vaporized by the

[^55]heat of the mixture, which sometimes swells so as to run over the vessels, causes the succinic acid to disappear entirely.

Howerer minute the means I employed to extract the succinic acid may appear, I thought it necessary to describe them. I first conceived the idea of separating it with a card: this process succceded pretty well ; but in this case one is exposed to the danger of being burnt. I employed with more adrantage a spoon of tinned iron, which is different from the usual form only in being semicircular, not so concave, and proportioned to the size of the vessel. It terminates behind in a thin plate of iron, which, exceeding the cdge by some lines, represents a sort of band, from which arises, at right angles, a handle of the same substance, fiftecn inches in length. This form appeared to me most convenient; first, because, by applying it exactly againat the sides of the vessel, it prevents the salt, which is detached by instantaneously removing it, from being mixed with the fused amber; secondly, because it offers to the artist the means of operating, without being so muchincommoded by the vapours disengaged from the matter.

It results from what has been said, that artists who prepare amber varnish may in future, without making any change in the apparatus or in their process, obtain a considerable quantity of succinic acid, which, though hitherto confined to medicinal purposes, may soon be rendered useful in the arts. Some trials already give reason to hope that an alcoholic solution of it may be employed for imitating the colour of certain valuable kinds of wood.

XLVIII. Notices respecting New Books.

The Painter and Varnisher's Guide; or, A Treatise, Voth in Theory and Practice, on the Art of making and applying Varnishos; on the different Kinds of Painting; and on the Method of preparing Colours, both simple and compound, déc. By P. F. Tingry, Professor of Chemistry, coc. in the Academy of Geneva. 8vo. 540 Pages. Kearsley, Flect-strect.

WE have perused this work with great satisfaction; it contains much new, useful, and interesting information on the different subjects which it embraces, and cannot fail to be highly scrriceable to artists. We think the publisher has rendered
rendered a real service to the arts in this country, by giving an English translation of it. The translation is a good one.

In our future numbers we shall give some extracts from this work, which has been highly recommended by M. Senebier, who was appointed to examine it by the Society at Genera for the Encouragement of Arts.

XLIX. Proceedings of Learned Societies.

ACADEMI OF SCIENCES AT BERLIN.

THE following papers were read in this academy from the month of July to December, 1803 :

July 7 th. Observations on some points of the Grecian music, by M. Tremblay.

14th. An account of experiments on the alkaline matters contained in certain vegetables: a continuation, by the director Bernoulli.

21 st. Observations on the logical regressus, according to the idea of the old commentators on Aristotle; and at the same time a short account of the life of M. Miloczewski, who made over to the academy a capital for the foundation of philosophical prize questions : by M. Nicolai.

August 4th. In the public sitting of this day, an oration by M. Merian, director. An eulogy on the minister of state, Baron Von Heynitz, by M. Gerhard. Anecdotes of the life of the princess Barbe, daughter of John the Alchymist, by M. Erman. An eulogy on M. Engel, by M. Nicolai. On Pestalozzi's method of teaching, by professor Fischer.

September 15 th. A fifth dissertation on the painting of the antients, from its origin to the 94th Olympiad, or Apolludorus of Athens.

2ad. An essay on a new theory of the existence and quaJities of the phrsical elements, deduced from general experience, by Dr. Hermbstadt.

29th. New observations made at the observatory in the year 3 802, together with the results; and several astronomical observations and remarks from his correspondents, by professor Bode.

October 6th. An eulogy on M. Anieres, by the director Merian.

15th. A fragment in regard to an essay on the history of the Alps, comprehending reflections on the language of the people who inhabit in particular the Pais de Vaud, by the Abbé Denina.

232 Academy of Sciences at Copenhagen, Shackholm, 登 C .
25th. Researches on the inflammable matter of particular fossils; on a green earth from New East Prussia; and a supplencent to the history of meteoric stones, by Dr. R. Klaproth.

27th. A second memoir on the relation between music and declamation, by professor Burja.

Nov. 3d. On a new kind of togical algorithm, hy profesior Castillon.

10th. On Seneca's consolation to Polybius, by professor Spalding:

17th. On the plants of the species chara; and on the prescration of potatoes, be protessor Willdenow.

2tth. On the gauging of casks, by M. Euteiwein.
Dec. 1st. Cominuation and conclusion of ph:losophical and meral thoughes, by M. Ancillon. Memoir of Paron de Chambrier on the expedition into Grecce in 1368, and on the political system of Europe at that period, by M. Emman.

15th. Aërostatic experiments made at Mamburgh on July 18 th by M. Robertson, by professor Tremblay.

22d. A third memoir on the methods of approximation, by the same.

ACADEMY OF SCIPNCES AT COPENHAGEN.

In the sitting of the 3d of Fobruary, professor Bugge read a dissertation on the eclipse of the moon which took place on the 26 th of January.

TIE ACADEMY OF SCIENCES AT STOCHHOLM.

This academy, to preserve the remembance of one of its oldest and most meritorious members, the iate Von Ferrner, counsellor of the chancery, and as a mark of its gratitude for a considerable legace bequeathed by him to it, has resolved to strike a medal representing on one side wis bast, and on the other a laurel garland, baving within it the words Meriti tanti non imnenor unguam: below, the words Sociomunif. def. $180 y$. R. Ac. S. Stockh.

IMFYRIAL ACADEME AT PETERSBURGE.

By an imperial ukase the members of this socicty have obtained permission from the emperor, after inspecting and approving drawinge sumitiod th him, permisuon to wear the following unitorm: a dark blue coat, with standing collar of red cloth; facongs ef the same, and bhe lining; the collar and facings embroidered with goth. The other articles are of white cloth with yellow butions. The use of
this uniform is extended to the president, the academicians and adjuncts, and also to the pupils; but with this difference, that, besides on the collar and facings, they have embroidery on the pockets, which is not the case with the adjuncts. The pupils have the uniform without embroidery.
M. Gorachow, a merchant of Jakusk, has transmitted to his imperial majesty a horn of extraordinary size, which was found in the river Krom. This rarityhas been sent to the academy of seiences, to be preserved in its museum. It is worthy of remark, that the inhabitants of the district where this horn was found believe it to be the claw of a bird called Kogroskari.

L. Intelligence and Miscellaneouts Articles.

ANTIQUITIES.

Raron D'Aretin, librarian to the elector of Bavaria at Munch, has made a rery curious discovery in the centrallibrary of that city: it is an old manuscript of the thirteenth centur, containing a treatise on the Greek fire; which not only gives an accumt of the method of preparing it, supposed by the learned to be lost, but also a process for making gun-powder similar to that followed at present.

NEW VEGETABLE ACID.

M. Klaproth, in Scherer's Journal of Chemistry, has given a paper on the nature of a saline substance observed and collected in the botanical garden of Palermo, by Mr. Thomison, on the bark of the white mulberry tree (Norus allen).
'This matter was of a brownish colour; it covered and even penetrated the bark. Its taste was nearly similar to that of the succinic acid. On coals it swelled up slightly and burned, leaving an earthy residuum. A thousand parts of water dissolved thirty-five parts of this salt warm, and fffeen cold. By evaporation it gave erystals in needles united in a radated form, and of a pale woad colour.

Buytes formed no precipitate in the solution of this salt.
Alkathe carbonates occasioned in it a brown deposit, which by calcination passed to white, and then dissolved with effervescence in nitric acid. The sulphuric and oxalic acids occasioned in a nitric solution of it precipitates, which indicated the presence of lime.

Acetite of lead formed in it an insoluble precipitate, reducible on burning coals.

Nitrate of silver, brown, brilliant, and light scales.
These experiments induced M. Klaproth to conclude that the salt collected on the bark of the mulberry tree was compused of lime and a particular vegetable acid.

On decomposing this salt by carbonate of ammonia, M. Klaproth obtained a deposit of carbonate of lime. The supernatant liquor gave, after proper evaporation, long narrow prisms; the water even of these crystals precipitated nitric solutions of copper, green; of cobalt, pale red; of uranium, yellow; of iron, brown; of mercury, silver, and lead, the same. It rendered slightly turbid a solution of acetite of barytes in water, muriates of tin and of gold, and nitrate of nickel : but these precipitations, according to the author, might be the effect rather of the extractive matter which adhered to the acid, than of a chemical combination with the metallic solutions.
To obtain the pure acid, M. Klaproth employed the precipitate obtained by a mixture of the solution of the calcareous salt and the acetite of lead. This precipitate was then decomposed by sulphuric acid diluted with water. The proportions employed were 24 grains of acid, diluted with one gros of water. The sulphate of lead was separated by the filter. The liquor, when evaporated, gave by crystalJization 34 grains of acid in fine needles of a pale woad colour.

The natural calcareous salt was also decomposed directly by sulphuric acid. The result was the same. Thirty grains of salt, and twelve of sulphuric acid, were emploved.

The properties of this new acid are: a very striking acid succinic taste; it remains in the air without experiencing any change; it dissolves easily in water and alcohol, and does not precipitate metallic solutions. When distilled, it appears only in part decomposed; a portion is destroyed, and the other is sublimated. This method may be employed to separate it from the extractive part, to which it adheres too strongly to be freed from it in the moist way.
M. Klaproth proposes to call this acid the moronilic, and its saline cumbinations moronitates.

TRADE AND COMMERCE.

A new periodical work has appeared at Petersburg under the title of the Petersburg Imperial Journal of Trade: it is published both in the Russian and German languages. The first number contains a view of the history of Petersburgh,
in which the author gives the following account of the present state of that capital and of its trade:-The city contains 7124 houses, many of them of considerable size; and 09,000 inhabitants. The increase of its trade is remarkable. The amount of the exports was:

$$
\text { In the year } \begin{aligned}
1742 & -2,479,656 \text { roubles. } \\
1752 & -4,353,694 \\
1762 & -5,217,006 \\
1772 & -6,451,494 \\
1782 & -11,467,347 \\
1792 & -22,224,331 \\
1802 & -30,495,663
\end{aligned}
$$

GALVANISM.

SIR,

To Mr. Tilloch.
Upon turning over the Transactions of the Academy of Sciences at Paris for the year 1700 , I found the following article, which, as it throws some light upon the discovery of Galvanism, I hope you will think worthy of a place in your work. I am, \&c.
G. H. Browne.

W'estminster Fire-Office,
April 25, 1804 .
"Of the Trembling of the Nerves of a Frog after Death.
" M. Du Verney showed a frog just dead, which, in taking the nerves of the belly of this animal which go to the thighs and legs, and irritating them a little with a scalpel, trembled, and suffered a sort of convulsion. Afterwards he cut these nerves in the belly, and holding them a little stretched with his hand, he made them do so again by the same motion of the scalpel. If the frog had been longer dead, this would not have happened: in all probability there yet remained some liquor in these nerves, the undulation of which caused the trembling of the parts where they corresponded; and consequently the nerves are only pipes, the effect whereof depends upon the liquor which they. contain."

The above is the most remote instance we have seen adduced of effects to which we now apply the term Galvanic. Gardiner, in his Observations on the Animal Economys, maintains that there is in animals a vital principle, distributed in the brain, cerebellum, and medullary substance, of which principle the nerves are the conductors. Lughi:
and Klagel conjectured that the electric fluid is determined by the nervous fluid secreted in the glands of the brain to the nerves themselves. Gardini reines an experiment made on lizards: he observes that, if one of these animals be de-' capitated and laid on glass, by bringing an electric substance into contact with the neck, and laying the finger on the tail, convulsions are produced. These authors were all anterior to the discovery of animal electricity.

HORNEMAN, THE TRAVELLER.

The Danish consul at Tripoli, M. Nissen, saw in September last, at the house of the pacha's minister, Ali Muhaned Dghies, a merchant of Fezzan, who had arrived with the caravan, and who had been at Buran. From this merchant he learned that Horneman, the celebrated traveller, who was known in that place under the name of Jussuf, had set out for Gondash in order to proceed to the coast for the purpose of returning to Europe.

New metal extracted from platina.

In a late siting of the National Institute, Collet Descostils, engineer of mines, read a memoir, in which he announced the discovery of a new metal found in great abundance in the black dust left by platina when dissolved in the nitro-muriatic acid. The principal properties of this metal are: It gives a red colour to the triple salts of platina; with the triple ammoniacal salt of platina it is precipitated: it is easily reduced: it dissolves readily in acids, even the nitromuriatic, when in the metallic state; the oxides are green or blue, or at least communicate these colours to the acids in which they are dissolved: these oxides seem to be volatile, Sce. C. Descostils found also that the sand which accompanies platina contains titanium when susceptible of attraction by the magnet, and that when not so it contains chrome.

In the same sitting Foureroy and Vauquelin presented a memoir also on this new metal. They stated, that having known that C. Descostils had made the discovery, they were unwilling to dispute with him that honour, and that they had waited till he should announce it before they published. a large work they have composed on that subject.

ON EXTINGUISIIN゙G FIRES.

M. Driuzzi has invented a kind of liquor which in cersin cases prevents combustion. A commission, appointed
by the goremment of the Italian republic, has confirmed its efficacy, and it has been published by order of the minister of the interior. It consists merely of a solution of two parts, in weight, of pulverized common soda in seven parts of water, which is reduced to two-thirds by ebullition, and strained through a piece of cloth.

It is stated that this liquor produces no more effect on wood in a state of combustion than common water; that it would be dangerous in the inflammation of alcohol; but that it is exceedingly useful for extinguishing fires produced by oily, fat, and bituminous substances.

new process for preparing milk of sulphur*.

Heat to reduess in a crucihle eight parts sulphate of potash with one part of pounded charcoal. After gentle fusion, dissolve the mass in four times its weight of water, and, having boiled it, add sulpher until the liquor refuses to dissolve any more. Then dilute it with twenty parts of water, and leave it at rest: decant the liquor, and precipitate it by sulphuric acid diluted with water. The quantity of the product is cqual to half the sulphate of potash employed. The sulphar might even be precipitated by distilled vinegar, to obtain the acetate of potash; but in this case it would be necessary to concentrate the rinegar by freezing, to avoid too great volume in the liquor.

AUGUSTINE EARTH.

In addition to the article on this substance, given in our last (p. 190), we subjoin the following extract from the Journal de Plysique:
"The name of leryl was given to small hexaedral crystals found in a kind of Saxon porphyry. Tromsdorff analysed this supposed bery, and asserted that he obtained from it a new earth to which he gave the name of augustine; that is to say, without taste. Vanquelin has repeated the analysis of this substance, and found that it is phosphated lime, or a kind of apatite."

EXTIRPATION OF THE PLAGUE.

Professor Valli and Dr. Pezroni set out some time ago from Constantinople for Natolia, in order to make further experiments there, and in other parts of Asia, on the ineans of extirpating the playue.

* Published in Tromedori's Jcurnal of Pharmacy, vol. ix. no x.

METEOROLOGICAL TABLE*
For April 1604.

LI. Exporiments to ascertain whether there exists any Affitity letwixit Carlon and Clay, Lime mad Siler. separately or as Compounds miled with the Oxide of Iron forming Iron Ores and Iron Šones. By David Niushet, Esq. of thie Calder Irm-WHork.
[Continued from p. 20:.]]

IN order to ascertain whether there existed any affinity betwist carbon and calcarcous earth in high temperatures, amouting to a fusion of the latter, the following experiments were made with the four followise substances, viz. calcarcons spar, chalk, kikenny marble, and pure calcareous earth.

Beare I begin this detail I think it proper on oberve, that when no particular nature of cruchic is mentioned, one of surbodge clay is ahwas implied. The cathon used was fomed from the buming of lamp-thate when was found to contain less ash than any other charcoal I had tried, and therefore les likely to injore the realts by any premature degree of fusblity arising from ench a mixture of ach. Its purity was surther infered from a superior ainnity to iron, not only more instantaneous, but more exiensive in ite effects than either charcoal of wood or that nade from animal substances. Oak forms frequenty a very pure charenal, comaining not more than 1-150th part of its weight in ash. Lamp-black conains not more than 1 -osoth part ; and its tendency to revice a given quantity of oxide of iron was found, upon the average of hise experiments, to be to the fommer as 65 to 58 .

The tops of the crucibles were accurately ground, and the covers made to fit nearly air-tight. The mater to be operated upon was introduced into the crucible while the latter was at a red or bright red heat, and the cover, in a similar state, simply put on, and both introduced into the furnace. This mode of operating is infentely more accurate than luting, and using a green crucible: incleed, these experments could never have been made within a loodth part of the truth in that way. A quantity of the water, which is necessary to give softness and plasticity to clay, renains after drying, and ultimately evaporates as the heat to which the clay is exposed increases. If charcoal is presented to it in this state it disappears in grat quantities, and renders any experiment as to quantity extremely doubtful.

[^56]
Experiment 1.

I took a very transparent erystal of double refracting spar and exposed it to a heat of 166° of Wedgewood. It was found fused into a very perfect glass of a rich green amber colour, considerably thaparent.

Weperiment II.

A framment of the same crystal, weigting 20 grains, was introduced along with one grain of lamp carbon, and a periect fusion whe obtained. The charcoal had cutirely disappeared, and the colour of the glass was changed to a deep nery amber colour, less transparent than the resut in Exp.

Laperiment III.

The same spar, weighing 20 grains, was mixed with $1_{\text {E }}$ grain of lamp earbon, and introduced into the furnace. The fusion was completed in fifteen minutes. I found a perfect glass of a clondy mility lead colour. A minute portion of the chatcoal remained, and there appeared twentythree globules of iron upon the surface of the ghass, many of which were so small as not to be visible by the naked eve; eximated at haif a grain, or $2 \frac{1}{2}$ per cent.

Experiment IV.

I took another crystal of the same double refracting spar, and distilled it in a gradually increasing heat for five hours. I fomd it had lost its traspareney, but had preserved its figure and form in a mest perfect manner. The original lamine were entire, and alternated in various shades of colour. suteral of which semed derived from iron.

$$
\begin{aligned}
& \text { The erystal at lirst weighed - - } 69 \text { grs. } \\
& \text { After distilluion - - } 39 \\
& \text { Lost of water and carbonic acid, equal to - } \\
& 43.18 \text { perecnt. - } \quad-\quad 30
\end{aligned}
$$

Twenty grains of calcareous mater thus obtained were fred perse, and a very fine portion of glass was the result. the colow was a watery blucish glasi faintly marked with ercen, net vory tansparcht.

Experiment \backslash.

Double refracting spar deacificd 20 grains, pounded and mixud with one grain of lamp earbon, was fused into a glass similar to No. III, but more inclined to a lead colour, and possusing les transmency. About $1-6$ th of a grain of fubuon rimained upon the surfuce of the glas:, and the
number

> different Earihs for Cardon.
number of globules of iron revived amounted to seventeen, and which 1 estimated to be equal to half a grain.

Experiment VI—with Chalk.

Fifty grains of white very well dried chalk was introduced per se, and fused in a heat of 165° of Wedgewood. A beautiful amber green coloured glass was obtained, possessed of great depth of transparency. When cold, the bottom of the crucible and the smallest speck were risible through the thickness of glass, which was more than a quarter of an inch in the middle. Compared with No. I, it possessed a darker tinge of green.

Experiment VII.

$$
\begin{aligned}
& \text { Raw chalk finely pounded } \quad-\quad 50 \mathrm{grs} \\
& \text { Lamp carbon 1-50th, or }
\end{aligned}
$$

There resulted from the fusion of this mixture a dark green primrose coloured glass, possessing some tints of the topaz. Its transpareney was not in the least impaired by the union of the carbon, the whole of which had disappeared.

Experiment VIII.

Raw chalk pounded \quad - $\quad 50$ grs.
Lamp carbon 1-20th, or

I obtained from the fusion of this mixture, at a heat not exceeding 159° of Wedgewood, a very perfect glass of a dark fiery amber colour, possessed of a greater degree of lustre and effect than any of the former products. The charcoal had disappeared, and the surface of the glass remained free from any appearance of metal. Compared with No. II, the results seemed altogether similar. The present seemed, although the greatest mass, to have the advantage in point of transparency.

> Experiment IX.
Raw chalk pounded $\quad-\quad-\quad 50 \mathrm{grs}$.
Lamp carbon $1-15$ th, or

A perfect fusion was here obtained, as in the former experiments. The glass possessed a dark blueish lead colour, transparent in their fragments, but dull and opaque in the mass. It exactly resembled the earthy parts of an iron ore when separated from their metallic contents by fusion in a black lead crucible, when the richest carburated iron is produced. There remained untaken up half a grain of charcoal, mixed with some particles of the calcareous earth of a pure white celour. The surface of the glass was nearly covered
all orer with silvery shining globules of iron, which 1 estiwated to weigh nearly $1 \frac{1}{2}$ grain, or 3 per cent.

Experiment X.

I took a piece of the same chalk, well dricd, and roasted it in a moderate heat for five hours.

When raw it weighed - - 30.5 grs.
After ma-ting it weighed 930
Lost of watci and cartonic acid, equal to $40 \cdot 2$ per cent. 159
Sixty grans of this roasted chalk was fused in a heat of 166° o Thedgewood, and a rere perfect dense glass obtancd. It posessed all the tran-parency of No. V1, which was the satic substance fincel foer se in a raw state, but in phace of an amber green it approached more to the colour and lustre of the emerald. It difiered from No. IV, wherein deacined spar wa fused, very materially, most probably owing to a greater quantity of iron in mixture in the state aí oxide.

$$
\text { Enteriment } \mathrm{XI} \text {. }
$$

$$
\begin{aligned}
& \text { Roasted chalk }-\quad \text { - } \quad \text { - } \quad 50 \text { grs. } \\
& \text { Tamp earbon l-joth. or }
\end{aligned}
$$

A rery pericet glass was obtained of a lead blue greenish colour, innst cridently of the same species of glass with No. IIt, V, in if Ki, thengh lighter and more transparent. The charenal had disppeared : mo metalic giobules were vithe, abough the sate and colour of the glass indicated immentiate prectritation.

$$
\begin{aligned}
& \text { Uxferiment XII. } \\
& \text { Fonsted chalk - } \\
& \text { iamp cabon } 1-\text { - otin or }
\end{aligned}
$$

A rery denseglas was obtaned, with in point of colorm Was the same as No. II, 1, and 1X. A lage grain of chare al rmaned untaken up upon the surface of the glass. An momber ghonles of imil wee revived, which I estimatul at ? on thame seren of the hargest of which were covered will carburet of iron.

Experiment XIIT.

$$
\begin{aligned}
& \text { Ronsted chalk }-\overline{l_{1}} \quad-\quad 50 \text { grs. } \\
& \text { Tamp carbon :-3.d, or }
\end{aligned}
$$

This mixture was productive of a very beantiful glass. The eolour light lead blene, fantly maned with green, of the same class with No. III, V, IX, Xt, and XII. There demancel umtaken up nearly 1 -sth of a grain of charcoal.

A yery handsome spherule of iron, slighty marked with carburet, was obtainect, which weighed $1 \frac{1}{2}$ grain, egual to a per cent. from roated chalk, or a per cont. from the chalk in a raw state. This experiment, compared with No. XI, shows that 5 -fths of a grain of additional carbon was requisite to precipitate the iron in a metallie state from its dose of oxyeen and lime; but compared with No. XII proves, that although part of the carbon remained untaken up, yet there stull remained in the glass a portion of iron in the state of oxide; to diengage which a great ageregate of afinity was necessary.

Experiment XIS—Kilkenny Marle.

Fifty grains of the carbonate was fused into a glass of a mixed grecnish bhe cloady colour. The upper surface porous, or rather cellular, of a lighter grecnish colour and more transparent than the mass. The want of uniformity in the colon of this grass induced ne to repeat the experiment four tines; thee of which yieded simiar glasses.

Experiment KY

Kilkenny marble, raw		
Lamp carbou i-juth	-	50 grs.

The fusion of this mixare afforded a perfect glas, wherein the charcoal had totally disappeared. The coteme of the glass was a dakish green anber, which in some particular lights exhibited some fiery tints of a ruby colour. It resemblad No. VIIl considerably, but did not possess the same depth of lustre and transparency. The surface exhbited no appearance of metal in a revived state, although it was presumable that a portion of iron existed in the glass, and which liad been affected, in point of coluurs, by the comBination of the present dose of carbon.

Experiment XVI.

$$
\begin{aligned}
& \text { Kilkenny marble, rav }-\quad-\quad 30 \text { grs. } \\
& \text { Lamp caibon 1-woth, or }
\end{aligned}
$$

A glass restited from the fision of this mixture exactly similar to Experments No. II, V $, ~ I \mathrm{~A}, \mathrm{NI}, \mathrm{NII}$, and NIII. There were tound upon its surface four globules of iron, which weighed a minute fraction more than a grain, or 2 per cent. Half a grain of charcoal remaned antaken up, so that only two grains, or 4 per cent., were here absorbed; whereas raw chatk, Experiment No. DX, took up $3 \frac{1}{2}$ grains, or 33^{3} per cent. more than the kilkenny carbonate, probably trom its contaning a larger quanitity of oxide of iron.

I trok a piece of Kilkenny martic which weighed 8 :.5 grs. Ater proper distiliation Ifourd it to weigh - 528 Lost of carbonic acid, and probably a little water, equal to $30 \cdot 65$ per cent. 3.17

The colour of the lime thus obtained was very superior in whiteness and apparent purity to that obtained from chalk. 50 grains of it fused per se vielded a beantiful transparent amber-coloured clas, free from any metalic appearance. When compared with No. X, which was the fusion of burnt chalk, it differed very materially. The emerald colour, so marked there, was replaced by a yellowish fiery tint approaching to the blaze of the Brasilian topaz: neither did it in the least resemble the glasses obtained with the refracting spar, No. I, II, and IV'.

Experiment XVIII.
Kilkenny marble, roasted - 50 grs.
Lamp carbon 1-50th - - 1
A perfect glass was obtained by the fusion of this mixture of a lead colour, and similar to Experinents No. II, V, IX, XI, XII, XII, and X:I. Of revied iron there was obtained 1^{3} grain. A few flakes of carion remained upon the surface of the glass, het so small in quantity that they could not soon be estimated. It would ajpear, therefore, that $1-50 t h$ only of carbon disappears with deacified Kilkenny carbonate; whereas with chalk, in the same state, 1-33d part of carbon was absorbed. Less iron is revived in the experiments made with the former than with the latter; which most probably will account for the difference of the quantity of carbon.

Experiment XIX-uith pure Lime.

I dissolved chalk in distilled vinegar, from which it was precipitated by carbonate of ammonia. The precipitate was dried, and possessed a very fine blueish whitish colour. It was afterwards heated to redness to drive off the acid, by which its colour was a little tarnished.

Twenty grains of it was ceposed in a beat of 170° of Wedgewood in a Cornwall clay crucible. When cold, and examined, I found it resolved into a very delicate tramsparent glass of a deep watery colour, slightly teinted with seat grecn. This experiment was again repeated with a heat of 155°, and a purer and more delicate glass obtained, though when heid to the light a tinge of green was percuptible. I then arprehended that the acid had dissolucd a porion of the iron containcd
contaned in the chalk, which had also been thrown down by the alkali. These glasses, compared with Nu. I, li, VI, X, XIV, and XVII, wherem the substances formerty operated upon were fused per se, cxhibited a decided superiority of purity and transparency.

$$
\begin{aligned}
& \text { Expcriment XX—Cormuall Clay Crucible. } \\
& \text { Pure lime - - } \quad-\quad 20 \text { grs. } \\
& \text { Lamp carbon 1-soth, or }
\end{aligned}
$$

There resulted from the fusion of this mixture an elegant primrose-coloured glass, of a difierent class as to depth of water, if I am allowed the expression, delicacy of colour, and real transparency, from any of the former.

Experiment XXI-Cornuall Clay Crucille. Pure lime - - - 20 grs.
 Lamp carbon 1-40th, equal to $\frac{3}{2}$

This mixture was fused into a fine yellow amber colour, still retaining a decided stiperiority as to transparency and lustre. It only differed from No. XX in the richness or extra depth of the shade, which was intimateiy blended with bright vellow and amber.

> Experiment XXII-Cormuall Clay Crucible. Pure lime $-\quad-\quad-\quad 90$ grs. Lamp carbon

A perfect glass was here also obtained, but all the fine shades and tints of the two former experiments were lost. The glass was of the same colour and class with Experiments No. III, V, IX, XI, XII, XIH, and XVI, only possessed of a greater degree of transparency. One-fourth of a grain of charcoal remained untaken up, and two very mimute globules of iron of a silvery colour were visible. These I estimated to weigh about the fifteenth part of a grain, and infer that the precipitated lime now made use of contained about 1 -3nodth part its weight of iron. These experiments were twice carefully repeated, with similar results. Excepting once, in the experiment last noticed, the charcoal had entirely disappeared. This I attributed to the crucible remaining ton long unopened after being taken from the furnace, or to some unseen pore or crack.

It would appear to result from the foregoing experimente; that the combination of carbon with calcareous carth is extremely small, if not altogether doubtful. In all the substances submitted to experiment a portion of iron was con-
maned, whin of itscif mar near's account for the dicap-
 poopotions which cowh comain will acoment, ? a great
 indicata. The bion of the refactions sar, Sore noat
 chall fer se was whent; bat the fosion of the marble
 and more akin to the thien ofo of the pure time, Wencriment IIX. 'the two latter yalded less iron that the fomer: from which it was posumable that their high colours reanted from the extra quantity of iron unted to the carbonates.

Whea the cartonates are fued with 1 -octh part their weight of carbon, the resaht are bas recapituate 1. Bouble refracting - par yichls a deep hery amber-colonecdelass. Chatk a glass smitar, but a shatur ino kss brilliant, both withont any simen of revived ina; bat sith the sane paportion of cartom the hilmany cuth mate yiched a chonded leadcoloured glase, presemed a porion of its carbon still unconsmed, and cave ont four globules of iron. Experiments No. II, YIII, and AII, the direct inferace l would day from this circunstance would be, that as the Kilkenny carbonate entaincel los ima than cither of the other two substances, a smaller prom of earbon was sufficient to discharge the iron; wat sumy that a varity of amber colous mixel witit ereest enaind no longer than the iron remaned in a zate of onde. I world also infer that these colous depended upon the state of uxgenation of the fron aldered by the difecos doses of carbon, and nont on any pecrlar conthaton of canna whith the mater of lime. This is forther dutacibic: from the dati of the glases abwars attaming the thanc colow. and neary w the same transpatery, as aom as the whole of the iron is revivet: beyond this ine additun of carbon oven prevents the fueion of the lime, as ni Expmont Ao. LX, and by no mean- mites to it by cementaion, which shatl be prowed heseafer. The proporion - of iron revede in all the cabonates are in the ration the cqumtry of comon recessam! adlen to dischate the seme. [pon at hur mean of all the cxperiments made whith carboates respectincly, it appeared to nee that the cbalk cortamol nearly 31 per cent., the refacting spar from 2 :0 3 , and the kilkenay marble axent lor 2 per ceen offon. Itence we find, that in the Lomer inued danpared $3 \frac{1}{2}$ grans of carbon, or i per cent. ;
in the second an equal quantity, less a portion that ins found untaken up; and in the last two grans, or equal to a per cent. of cartom.

The eneneral results with the deacified carbonates may be thus briefly summed up:-Calined weracting spar pitr se gives a glass of a light blucish watery cast, somenhat allied to pare hime, Experiment IV ; calcined chalk. a Jark cmeraid ereen, Experiment X; and calcined monble affords a rich dah brown amber, Experinent IVI. The rasted chatk becomes complety saturated with 1-33d part the weight of the earth of carbon, minus about 1 - 6 th of a grain; so that about ouds per cent. of carbon disappears. The refracting spar yideds a result similar; but the disappoarance of carbon what ine Kilkeme roasted marble is onty equal to $1-5$ oth, or aper cent. When the hime was this used in a caustic state, a grater proporton of iron was at the sone time revived by all that would lave been contaned in a weight of hise cqual to the meare of the carbonic aciel dispelled. It would appear thom hhe fact, that the extra doses of cavion beveramy to prodee the ind change of colow and the dermagment of the aron, ad in the experments with the carbantes, werenent despated
 ing that in the experments with the deacifed compuras net abose half the carton was requifite to revine frons as io 40 per cent, of more iron. This may be acoomed an in two ways; either by supposing a quantiy of mertua in the carbonates, which by evaporating at a high heat dissolves a pertion of the carbon, and cseapes with it; no by supporing that a peculiar afforty is cxerted upon the carbin Wy the carbonic acid, and a portion of the tomer by that means fixed in the calcareous matter by fason. One hing howere is cemain, that the iusion per se of cansic and cartonate lime of the same nature foms glases of very opposite colours. (See Experinecnts Mon. I and IV, No. VI and X, and No. XIV and S:11.) As the only difference betwixt these states of lime arises from the preseace or abseme of the fised ait and what water they contan, it can onk he attributed to them, unless we cain suppose that a amal portion of oxnde of iron contained in the lime, not excening 3 per cento, can, by undergomg an atemeatd proces of roating along vith the calcimm hme, occatun a change of colour by superosigenation.

Findly, upon this head of cxperiment, it sems olvicus that the colomne principle in these gtases, from wheter they are obtance, is inon. Their colour in erneral is exem
and ansor misel. Carbon darkens these shades, and convers a 'ance some very line tints of colour, approaching to the tire of the ruby on the mellowness of the topaz. An ratra dose of carbon destroys the transparency, and throws azondiness over the fracture of a blue wave cant, always atuanded by the clevation of minute glowules of iron upon the swatace of the clase.

There is now only one thing that occurs to me that ean ie whed aganst the foregning conclusions. It appears, that in propertion as the carbonates are fice from iron, their thion for se atords glass proporionabiy transparent; and In the case of the pure lime the reselt was nearly in transprowe as water. If therdore the deduction formerly drawn, that ihe disappearing carbon unites not with the lime, but with the iron, be correct, the glasees, after the whole of the metal is discharged, ought to approach the transpareney and purty of the fusions per se. The reverse is however the fatt for the stave of these pexperments do the respec-
 the thon is decharach. I censen decidedly account for this; bet I an inclion io think that this permanent lead blue colour arises som a pechiar combination of iron with calcaran earth, caperienced in a great many experiments uatiron and stul.
[To be cominued.]

Ell. Tepperiments on preparing Potatnes in Digesters for forting loas and fafteming other Stock. By the Rot. Whbiam Phernepont, of Buton Park, Susser.

Thut thank of the Society for the Encouramement of Λ rts, Shan-aturcs, and Commerce, from the 2let volame of whose Tmanactions we copy the subjoined particulars, were roted in Mr. Mierrepont last session for the following comnambation:
" sili,
"The object of tise Society for the Foncouacement of Arts. \&oc. beily the general bonefit of the community, I end you the following method of preparing putatoes, for the purpose of both feeding lean and tattening other stock; conceiving and hoping, from the experiments I have alrady made, that it will contribute somethine to the end which the oociety has in view. Not altowether satisfied with the sytcm of curme or preariar potatoco by steam from heated
watre, which I had practised, and conceiving that some better method might be found out, I made several experiments in the year 1s01, and bestowed great attention and pains before lbought the following plan to bear.
"I Thare half a dozen common six-gallon iron digesters, which are filled with patatoes, cither hesh washed foom the water, or dey ; for I cannot find that their being in a wet or dry state makes any diference. Ther are then put into an oven, the botton of which is a cast iron plate, three feet ten inches long, by two feet ten inches wide; under which is the free divided into theee parts. Ot this the midule part, or division, is cighteen inches: the two other divisions are ton inches cach : the remaining eight inches rest upon the brick-work. The heat is conducted, half one way and half the otber, round the sides of the oren to the mouth, which is nearly cightcen inches square, and then over the top, uniting in the chimney, in which is placed a damper. There is also an iron rod, with a segment of a circle at one end, for the purpose of pushing the digesters into the oven from the month, and a hook at the other end to draw them back to the mouth when done. The first round, that is, the sis digesters first put into the oven take about two hours in baking, supposing the fire not kindled betore they are put in ; and every round after the first may be done in little more than an hour. This process requies very little fuel, and by no means the attention or the force necessary for steaming ; as the potatoes will be done quicker or slower in proportion to the heat applied, whont any of it being lost for want of greater force; eren one round left in the oren orer night, with a mere trifle of fuel, will be done the next moming: but I do not allow that to be done, because it turns the potatoes black, and hurts the digesters. Observe, the digesters mist occasionally be rubbed on the inside with a little lard or dripping. Potatoes cured this way are not by any means so apt to tum sour, or scour the catile, and are more dry; so that the animal fed with them drinks much more, and they become harder when cold, so as to be flung to the stock with more convenience than when steamed.
"In the year 1502 I fattencd fifteen brace of bucks chiefly with them; I say chiefly, for after the potaios were gone they had a few beans. Ther were very fine, and peenlany well flavoured. Biggs, at Temple Dar, had thiticen brace of them. I also fattened, the same vear, with them, two oxen, three cows, and two pigs, which were equally well favoured,
flavoured, particularly the fat: the piss had, towards the latter ent, a for whole peas atter wien mat; the bucks had six pound per day cash, at an averes; the lean deer in the park do very well with lithe more than a poend per day, instad of hay. This year, ther is within the last seven or eigit monthe, l have fatened two yery large oxen and twenty w ich wethers: the wothers, whth which there were two Somb-Down lams, and one ene, had eighty pound of the poratoes per duy, whith a litte cut hay. The ewe was put with them to leach the othor shep to eat them: she has since had um lambs; and the batifi acknowled es ba a the bambs do better than the whers at turnips, the he, with some other personz, disnadd me fron trying more ewes, under the idea hat the potatoes wond dry b, theirmik. Four dary cows newer did so we! yth very god hay, as the dad lest winter wh about four pounds of the potatose and about reve pounds of rubbishy hay and stray cut. But chongh on this head.
"The ced of lemomont bal two if the Vath wethers, and a sirlom of bett from one of the oxus. The oner, for sale, on the end of Narel, weighel 343 stome: be has had about forty ponds thrice a day. I twe the liberty of refering to lord Egremont for the flawour of the meat. He has seen the process; and I shall request the homour of his lordship's tranmitury this to you, in case he thinks it deserving the soculy's attention. I an, sir,
Burton Park, near Pitiorth, Son ohediont seram,
S. Dermepont." Apall 28. I-0;
Charles Taylur, Esq.
"I know nothing of the expense of preparing potatoes in this manaer, but I an inclined to think that they are nore nutritious than in any other mode of dressing. I did not think it powsible to bring such large oxen to such a state of fatness upon potators.
" Egrenont."
66 SIIT,
"With all du* acknowledgment to the Society of Arts, \&se. for the honen they have done ne, as commmicated to me in your leter of the oth instant, and which cane to hand yesterday, i could wish the sumoned additions to be made to the arcount yon alrody have. My reaon for wishing it is, ther any person witling to the the mod in qestion may pont by the genema result of the many and
various experiments I mate, without being at the expense and very great pains I was at, betore I could bring it to bear in its present form. I had not the most distant idea of using digesters at the onset of the business; nether had I, nor have $\{$, any interested motive in view, cither for myelf or any other person, or indeed any motive than the benefit the public might derive from it. I have deemed it necessary and proper, buth ont of respect to the carl of Egremont and myself, to make the above declaration and remark on this occasion. The following experiment was made, for the cand of Egremont, to ascertain the quantity of fuel, \&c. as per dite.
"At Burton Park, 21 st of May 1803, three buthels of potatoes vere weighed separately (each bushel weighing sixty pounds) before they were pat into the sis digesters. The potatoes from the two first digestors, taken ont of the oven when baked, and weighed together, were fifty-five pounds; those from the two next were fifty-rour pounds; and those from the third two were fifty-four pounds. The carpenter measured the wood with which they were baked; and he tells me, that a cord, or stack of good firewood well piled (that is, wood cut into three-fect lengehs, and piled twenty-four feet in length and one foot ten inclies in beight, and which is sold in this ncighbourhood for 19s.) will bake ninety sets, or nincty times sis digesters full of potatoes, at the rate of wood it took to bake the above six, whieh was the second set that day. A cast iron phate, five feet in lengih, instad of three fect ten inches by two feet ten inches, will hold eight digesters, and by adding a small fire, thus,
inchice
3

on each side of the great fire-place, will, in my opinion, accelerate the baking from fifteen to trenty mintites in every zet, as well as be some saring in fucl: because the side digesters generally take that time longer than the centre one. The merit of this process does not consist in slow simmering; for, the quicker the potatoes are donc, provided proper attention is paid to them, the better. With the four following observations adhered to, any person may cxercise his own judgment, and indulge his own information and fancy in erecting lis oven, whether it be for a greater or smaller number of digesters, nad according to the quantity of potatos he may wish to bake.
" 1 st, The digesters, or other vessels containing the potatoes, must not be in contact with the fire. od, The said vessels, even placed on cast iron, must have legs, so that the bottoms of them do not touch the cast iron. 3d, The lides must be steam-tight, in order to prevent its escaping before the potatoes are nacarly done, "ith walres, if not the same, something similar to those of the digester. And, 4th, The external air is to be excluded from thom ; and the more effectually that is done, the better ; both for saving fuel and time, as well as to prevent their burning. I have never had occation for more than six baking in a day; which six bakings, that is, six sacks or cighteen bushels, at sixty pounds the bushel, were done within twelve hours. The father and his son had 19 s. per week for getting from the heap, washing and baking the potatoes, cleaving the wool for ditto, and fecding stock: 1050 lbs . of potatocs are baked for little more than six parts out of ninety of the cord, or stack of wood, above described. My opinion is, that two ovens of sin or eight digesters each (according to the giantity of potatoes wanted) would answer the best purpose; paricularly where coals would be used, or the wood is ready cut; for thea the same person could attend both, and one would be baking whitst the other was emptying and filling, and this whether for a great or small quantity. Perhaps two ovens erected tegether, with a single brick laid fat to divide them, with two fies- at the end, so that each flue would go the whole length of the phate, monting at the other end, and so orer the top inte the chimney, and the two doors of them at the two fronte, would answer very we! in point of aconomy, Se. Perhaps also an orifice just alouve the month of the oren, or in the door, with a moveable value fixed to it, would prove useful, so that tiac stean which istues from the values of the digesters about ten or iffeen minutca before the potatoes are done, and which smells like that from roasted potatows, migtit escape by it, instead of by the month of the owen. The above stem is ationted by a hissing noisc, and a kind of briling eommotion in the digester, wher the person attending them will very planty hear on opening the door a little. When he percives that noise, \&ic. begins to mermit, the digesters must be taken ont, or the potatoes will bern at the bestom, and that in propertion to the degree of heat under them. A very little observation will soon make a person acquanted with the proper time of drawing them. The Socievy the Encomagemut of Ants is at full libery

Description of ai improxal Eisht-Day Cluj. 303
1o publish what they think mar: be useful from what I have written; for public advantage is my grand object, as well as it is theirs. I remain, sir,

> Your most obedient servant, W. PimReposic."

Burton Park, June 30,1803 .
Charles Taylor, Esi.
LIII. Description of an improred Eight-Day Clock, to strike without a Fly; imvented ly Mr. Edward Masoey, of Hunley, in Staffordshere.

TIIs: Society for the Encouragement of Arts, \&ic. roted, last session, a bounty of twenty guineas to Mr. Massey for this invention; a model of which is reserved in the society.s repository. The subjoined account oí it is by Mr. Massey*.
"Having for a number of years considered a method of striking a clock at certain regular intervals, which I conceive may be of great service in making observations on the heavens, and ascertaining the relocity of sound, \&e., I beg leave to lav before the Society for the Encouragement of Arts, Ecc. a striking part of an eight-day clock, which I have no doubt will answer the purpose intended; and if, upon examination, the Socictyshould be of opinion that it may be useful, I rust they will reward it according to its merit. They will find that the work of this model is less than that of the common striking-morements, and may be made by a common workman, with less expense and trouble; the weight required is also considerably less. The principle I act upora is the pendulum, by which I resulate the stroke, instead of the tyy; the adrantage of which must be obrious to every one. The machine consists of a toothed wheel A, one pinion B , a pin wheel C , pallets DD , peadulum E , and locking detent G. The hammet-work is as usual, and strikes on the bell at H. The weight hangs to the eord I . (See Plate VI. fig. 1 and 2 , where a front and side view of the machinery are given, and where similar letters denote the same parts in each riew.
" I consider it is only necessary for me to give the description of the wheels, so as to beadirection to a me-

[^57]chanic who whes to manufacture clocks on this principle. Themain wheel Λ, with seventy-eticht teeth, is io act in a pinma of eight leares I?. The pin-whed (show be large, So that the mon whin the palew D and the locking (i) act, may be fung as far from the cente as powible ; whels fins may be eight or s.zteen in mamber. If eight, the penGolum E' ot wid be abo at me methe iong, and it will vilirate wice be visu cond bow of the hammer but if sixteen pins are put in the wheel, the pendulum must be about tence inches lone, and wall make for vibrations betwixt each blow. Tlie pina for drantide the hammer monst be eish: in number, and be fixed in acirc!e of ab, ut hali the dianeter of the atomand pias. The focking plate is on the man whed. The stop is against the pins on ahich the pathes and and be dischared by a flirt-pices.
" J i I have described the model, I bey leave to point out the mothoo of strking a clock be the common pendulum, anc seconds, without any additional penduhm or pallets for the strikimp part.
"Fix a cantric wheel with sixty teeth on the same arbor with a swing wheel of thirty tecth. Sow, suppose a strik-ins-pat to be made in the common way or making an eightday clock, so far as the pallot pinion, leaving out the warnmit and typizions. A crank-piece must be fixed on the patet pinton, which mast come into contact with the cantrite whed, which is fised on the swing-wheel arbor. Then suppote the lock to be cet a-goine, and the rach discharged, the pallet manon will make a gevolution on exery vibratuon of the padduan, by which means a chock will strike secomb as tree as a penduhm ributes, which I hope will be considered as uectu! for the purposs l have deceribet. I
 both the above machincs from them wot being liande on foul, as the sume te sion by the certain and rerular vibation, hisurad of the uncertain motion of the fli. Its adrantage likewise depen.'s on the cioamess of the work; and church chods will be mub bendied from the decrease n weight."

LIN. Account of Improvements for diminishing Friction in Clocks. Biy Mr. Edwand Massey, of Henley, in Staffordshive ${ }^{*}$.
H Aving for a considerable time considered a method of diminishing the friction in escapements of pendulum clocks, which I conceive may be of great service in making better time-keepers, by reliering the pendulum from obstructions occasioned by friction in the train of wheels, and on the acting part of the pallets, I beg leave to lay hefore the Society for the Encouragement of Arts, Exc. two escapements, which I have no doubt will answer the purpose intended. The difficulties which I propose to diminish in clock escapements, by this invention, are as follow:-First, it is allowed, that when the pressure against the recoiling escapement is diminished, as it is liable to be, from increase of friction in the wheel-work, the vibrations of the pendulum will not be performed in so short an interval. This circumstance has the contrary effect on a dead beat; for, when the pressure against the locking is the greatest, the vibrations will occupy a longer interval of time; so that the vibrations of the pendulam are liable to be affected from two canses-from an increase of friction on the acting part of the pallets, and from an increase or variation of friction in the train of wheels. These are the objects which I have bestowed great pains and expense to remore.

I beg leare therefore to give a description of two models of my improved escapement, that accompany this letter. First, a swing wheel is made, in the usual way of making it for a dead beat, except that it is not necessary to make the teeth with fine points. The pallets, instead of being fixed on the verge in the usual way, are fixed on two light detents, one on each side of the swing wheel. The lockings are on the inclined planes of the pallets, which are pressed against the teeth of the swing wheel by remontoining springs, which should be under the command of the weight or main spring, so that if an increase of friction should take place in the wheel-work, the vibrations of the pendulum will not loe much affected so long as there remains a power to raise the inclined planes. A momentum is communi-

[^58]cated to the pendulum through these inclined planes by two arms fixed on the verge, which come into contact with them, and anlcek one on each vibration of the pendulum. Thus, suppose a monentum to have been given by the inclined plane on the right ; at the same time that this takes place, the whed moves forward and raises the inclined plane on the left, and the puduluni, having pelformed its oscilat tion to the left, receives a momentum from the inclined phate to compensate for the loss of power which would take place during the ensuing vibration to the right, and so on alternately. The advantage in this model consists, I conceive, in diminishing the friction in the acting part of the pallets, in giving a regular certain momentum, independent of any variation which may occur in the wheel-work, or on the aeting part of the pallets, exeept during the short time of unlocking.

The second description, being a free pendulum without a verge, is as follows:-The swing whecl must be on the outside of the back plate. The pallets are formed like a pair of tongs, and are a fixture to the clock. There is a spring fixed in the upper part of the tongs, which keeps them extended against the points of the adjusting screws. The points of the tongs are pallets with inclined planes, and have lockings as the one above described. The tongs are made to spring from the point by which the pendulan is suspended, and, by altering the adjusting serews, a proper tension may be given to the spring part of the pallets; but they must be sufficiently under the influence of the main power. I think the main power should be about one-third more than is necessary to raise the inclined plane, so as to allow for an increase of friction which may take place in the wheel-work. There must be a eross-piece fixed to the pendulum, which must come into contact with two pins. that are fixed in the inclined planes of the pallets, so as to unlock one on each vibration of the pendulum. Suppose the pendulum to be put in motion, and to have molocked the inclined plane on the right; the wheel moves forward, and raises the inclined plane on the left, at whieh time the pendulum receives a momentum from the spring pallet on the right, and, after performing its excursion to the lefi, receives a momentum as on the right, and so on alternatedy. The advantage of this escapement over that above described is, that it avoids the friction of the verge and detent pivote, and during a part of the vibration the pendulum is thisengaged, so that it is a free pendulum. I have no doubt that

Condition of the Inhalitants of the Cape of Good Hope. 307
the society will judge of this invention with their usual liberality and candour.

First Method. (See Plate VII. Fig. 1.)

A, the swing wheel.
BC, the two pallets.
DD , the detents on which the two pallets B and C are fixed.
E, one of the remontoire springs on the left side; another, similar to this, is on the right side of the frame, but is not shown in the plate.

F , the verge.
G, the arms fixed on the verge, which act on the pins HI of the pallets.
K, The pendulum, fixed in the usual way on the verge.

Second Method. (See Fig. я.)

a, the free pendulum, without a verge.
b, the swing wheel on the outside of the back plate.
c, d, the pallets, formed like a pair of tongs.
e, a spring which keeps them extended against the points of the adjusting screws.
f, g, the points of the pallets.
h, i, the adjusting screws of the pallets.
k, The cross-piece fixed to the pendulum, which piece, as the pendulum moves backwards and forwards, comes in contact with the two pins on the points of the pallets $f \underline{g}$, and relieves the wheel.

The pendulum is supposed to be in motion, and the dotted lines show those parts of the machine which are hid by others.
LV. Olservations on the Condition of the Inhabitants of the
Cape of Good Hope.
[Coniluded from p. 287.]
3. The corn boors live chiefly in the Cape district, and those parts of Stellenbosch and Drakenstein that are not distant more than two or three days' journey from the Cape. Their farms are, some freehold property, some gratuity land, but most of them loan farms. Many of these people are in good circumstances, and are considered in rank next to the wine boor. The quantity of corn they bring to
marte is from a hundred to a thousand muids each, according to the gatity of their farm, but more commonly to their skill and industry. They supply also the wine boor and the grazier. The grain sold to these in the comntry is subjee to no tax nof (ythe ; but a daty, amomeng not putie to one-tenth of the value, is paid at the barrier for all grain passing towards Cape Town. Their parochial assessments are the same as thoee of the wine beor.

The colonists of the Cape are miserahle agriculturists, and may be said to owe theip crops more to the matise groderes of the soil and farmable chmate, than to any certions of skill or industry. Their plonglt is an unvieldy machine dawn by fourtecn or sixteen oxen, just skims the surface, and, if the soil happens to be a litule stifl, is as frequently out of the ground as in it ; hence in most of their corn fields may be obecred large patches of ten, fifteen, or twenty square yards withont a stem of grain upon them. Such grounds, when sow and harrowed, are infinitely more rough than the roughest lea ploughing in England. Ther have not the least idea of rolling the sandy soils, which are sometimes so light as to be sown without plonghing. Sometimes, towards the end of the rany season, they turn the ground and let it lic fallow till the next seed-time; bat they rarely give themedves the trouble of manuring, except for barley.

For retams of com in general they reckon upon fifteen fold; in choice places from twenty to thirty, and even much grater where they have the command of water. The grain is not thrashed, but trodden ont in circular floors by cattle. The chafe and short stras of barley is presersed as fodder for their horses, and for sale; the rest of the straw is seatered about by the wind. They do not exen give themseles the trouble of throwing it into the folds where their cattie are peni up by might, which wosk be the means of procuring them a very considerable supply of manure, and at the same time be of service to their catle in cold winter mights.

The following rough statement will sure to show the circumstances of an ortinary com boor of the Cape:

> Outgoings.

The price of the opstal or buildings on

of the Cuth of Gond Fin;

Duty on corn brought 10 market 1.50 : parish
tanex 90
Contingencies, wear and tear, Ee. - - 1500
Com sold to the wime bons and grazier more than suficient to defray all other expenses

$$
\text { Amount of outgoings } 1423
$$

Returns.

con!	(1)
100 Ditto or barley a 3 Rd.	0
6 Loads of chatit 39 Rd.	19?
1000 lb . butter a 10115 sk .	- 250
Horses sold atmualica ${ }^{\circ}$ +0	- 200

4. The graziers. propery so catwd. a"e thooe of Guat Reynet and other diernatyarts of the colmery. There dee a class of men of all the erat the lea-i adsanced in civiluation. Many of them : mads the borders of the extkment are perfect nomades, wand atoont from place io phace without any fixed habitation, and live in strat hato simider to those of the Hotentos. Those who are fixd to one or two places are little better with regard to the hovels in which they lise. These have seldom mome than tho amaments, and frequently only one, in whicio the parent, with six or eight ehilden and the honse fiotthtore, al seep: Them bedding consesto generally of shine. Their fontls are warowsly construeted, sometimo the walls beng and or aisy
baked in the sun, sometimes sods and poles, and frequently a sort of wattling plastered over with a mixture of earth and cow-dung, both within and withont; and they are rudely covered with a thatch of reeds that is rarely waterproof.

Their clothing is very slight; the men wear generally a broad brimmed hat, a blue shirt, and leather pantaloons, no stockings, but a pair of dried skin shoes. The women have a thick quilted cap that ties with two broad flaps under the chin, and falls behind across the shoulders; and this is constantly worn in the hottest weather ; a short jacket and a petticoat, no stockings, and frequently without shoes. The bed for the master and mistress of the family is an oblong frame of wood, supported on four feet, and reticulated with thongs of a bullock's hide, so as to support a kind of matiress made of skins sewed together, and sometimes stuffed with wool. In winter they use woollen blankets. If they have a table it is generally of the boor's own making, but very often the large chest that is fitted across the end of their ox waggon serves for this purpose. The bottoms of their chairs or stools are net-work of leather thongs. A large iron pot serves both to boil and to broil their meat. They use no linen for the table; no knives, forks, nor spoons. The boor carries in the pocket of his leather breeches a large knife, with which he carves for the rest of the family, and which stands him in as many and various services as the little dagger of Hudibras.

Their huts and their persons are equally dirty, and their whole appearance betrays an indolence of body and a low grovelling mind. Their most urgent wants are satisfied in the casiest possible manner ; and for this end they employ means nearly as gross as the original natives, whom they affect so much to despise. If necessity did not sometimes set the invention to work, the Cape boor would feel no spur to assist himself in any thing; if the surface of the country was not covered with sharp pebbles, he would not even make for himself his skin shoes. The women, as invariably happens in societies that are little advanced in civilization, are much greater drudges than the men, yet are far from being industrious; they make soap and candles, the former to send to Cape Town in exchange for tea and sugar, and the latter for home consumption. But all the little trifling things that a state of refinement so sensibly feels the want of, are readily dispensed with by the Cape boor. Thongs cut from skins serve, on all oceasions, as a succedaneum for rope; and the tendons of wild animals, divided
into fibres, are a substitute for thread. When I wanted ink, equal quantitics of brown sugar and soot, mosistened with a little water, were brought to me; and soot was substituted for a wafer.

To add to the uncleanliness of their huts, the folds or kracals in which their eattle remain at nights are immediately fronting the door, and, except in the Snewwherg, where the total want of wood cbliges them to burn dung cut out like peat, these kraals are never on any occasion cleaned out; so that in old established places they form mounds from ten to twenty feet high. The lambing season commences before the rains finish; and it sometimes happens that half a dozen or more of these little creatures, that have been lambed over night, are found smothered in the wet dung. The same thing happens to the young ealves; yet so indolent and helpless is the boor, that rather than yoke his team to his waggon and go to a listle distance for wood to build a shat, he sees his stock destroyed from day to day and from year to year, withont applying the remedy which common sense so clear!y points out, and which requires neither much expense nor great excrions to accomplish.

If the Areadian shepherds, who were certainly not so rich, were as uncomfortable in their cottages as the Cape boors, their pocts must have been woefully led astray by the muse. But Pegasus was always fond of playing his gambols in the flowery regions of fancy. Without a fiction, the people of the Cape eonsider Graaf Keynet as the Arcallia of the colony.

Few of the distant boors have more than one slave, and many none; but the number of Hottentots amonints, on an averige, in Graaf Reynet, to thirteen to each family. The inhumanity with which they treat this nation I have already had occasion to notice *. The boor has fow good traits in

[^59]character, but this is the worst. Not satisficd with defrauding them of the little carnings of their industry, and inflict. ing the most cruel and brutal punishments for every trifing fault, they have a constimt practice of retaining the wife and chldren and turning adrift the husband ; thus dissolving the tender tics of social intercourse, and cutting off ceen
tunity to revenge themselves on these unhappy creaurs. Led on by a veld cornct of the nome of lireres, they seized the whote company, who suspected no ill, and, notwithstanding all the pomes in their favour, it was agreed that they were eriminain. ad that hev must be treated accordingly. The boariv court of jueice r solved, therefore, to bind them to a tree, and to drav from them be mome a coniesson of coince of whin a thonghr had nuer cnteredimo their heads, to reterated biows
 confors all that was required of them: ard hy the e means they forced from then the varoswnate declaranom that they came with an intention to piunder the neighbourbod. Ihe ontr concern of the court was, in write down a confeston, which the application of the torture, and the hope of being set at libert, had wrong from these imovent ittims. The boers put their atames to thi dularation as an attestain of the touth, an! made an end of the busine by voting for ticir death. The sentence was instanty put in excection, and the port Hotrenots were of oh. - A whole haif year has passed away sme this event, and justice hitherto has mot intertered, I should met dare to s." whetefice."

I stalextact amoter in tance of the avage irutality of an Afrizan

 Algn Bi"), a boor namod Fercire, of a Pomeguse famik, made hum-
 troops, whih fuvernment sert thater under the cenmana of major wh
 I ase had pen an on! to all dianames kewen them, seato the new
 and friendbip. The kafor seat in the eccemon put hirself under the guide of a Hotentot; and Fartara, be way of retumang the kind inten-
 tentut io a tree. cht a pice offesto out of his thigh, wade him cat it raw, ard rian rucased him!"

If any wac stoold be dis:oon? to trink that I have exaceserated the cruelice combited bo tho ebhoman brutes, 1 ons regtest of then to
 Jansens.

Nouing on be nowe doplorable than the state of the cohong as deseribed in this pamplet, shim was wroten just betore they had heard of the war; and rothing can excced the disapmintment of the Duta in that expectatons with recard to the Cape. The Hothater corps was disbanded: most of them fed into the biterior to jum then oppressed cuatrymon; the Kafiet were in arms ageinst the hoors; the garison in a sate of complete insuburd nation; the people datesting the goverrment, and the cowernment afraid of the tronss; its credte destroved, moner disappeared, commerse rumed, baskruptcies without cond: and ther wanted only a "ar to complete their misery. Under such circumstances, how chean'y misht Eng:and regan unssciston of this imperent settemers!
the natural resources of wretchedness and sorrow. It is in wain for the Hottentot to complain. To whom, indeed, should he complain? The landrost is a mere cypher, and must either enter into all the views of the boons, or lead a most uneomfortable life. The last, who was a very honest man, and anxious to fultil the dutes of his office, was turned out of his district, and afterwards threatened to be put to death by these unprincipled people, because he would not give them his permission to make war upou the Kafiers; and because he heard the complaints of the injured Hottentots. The boor, indeed, is abore all law. At the distance of five or six hundred miles from the seat of government he knotis he is not to be competled to do what is right, nor prohibited from putting in practice what is wrong. To be debarred from risiting the Cape is no pumishment to him. His wants, as we have sech, are vory fin, nor is he bice in his choice of substitutes for those which he cammot conveniently obtain. P'crhaps the only indispensable articles are gunpowder and lead. Without these a boor wonld not lise one moment alone ; and with these he knows himolf more than a match for the native Liontentots and for beasts of prey.

The produce of the grazier is subject to no colonial tax whatsocer. The butcher sends his sersants round the comatry to collect sheep and cattle, and gives the boors notes upon his master, which are paid on their comme to the Cape. They are subject only to a smail parochial assesment, proportioned to their stock. Fur every hundred shoep he pays a florin, or sixten-ponec. and for every ox ow cow one pemy. With the utmost dificuity gaveminent las been able to collect about two-thirds ammaly of the rent of their loan fams, which is only of nis dollars a vear. inder the idea that they had been dreadman oppresed by the Duich govemment, and that their portry was the sole cause of the m maning in arrears with their rent, the British govermment foreave the ditrict of Graf keynet the sum of soo,000 ris dolars, the amount to which their arears had accumulated. Bey descending a little closer to particulars we shall be able to form a better judgment of the condition of these people, and how far their porcerty entitled them to the abore-mentioned indulgence.

The district of Graaf Revnet, as we have alrady observed, contains about ioo families. Among these are distributed, atecording to the opgauff (and they would not give in more than they had, being liable to an assesment according to the number), 115,300 head of cattle, and 680 gi4 shep, which.

314 Condition of the Inhalitants of the Cape of Good Hoper. which, to each family, will be about 170 heads of cattle and 1115 sheep.

Out of this stock each boor can yearly dispose of from 15 to 20 head of cattle, and from 200 to 250 shece, and, at the same time, keep up an increasing stock. The butcher purchases them on the spot at the rate of 10 to 20 rix dollars a-head for the cattle, and from 9 to $2 \frac{1}{2}$ for the sheep.

Suppose then each farmer to sell amually 15 Head of cattle a 12 Rd. - R.D. 180 220 Shecp a 2 Rd. - - 440 A waggon load of butter and soap 1200
pounds a l s. \quad - $\quad-\quad 300$
Amount of his income R.D 920 o

Outgoings.

Amount of outgoings	R. D. 431
Yearly savings	R.D. 4690
	f.93 16

In what part of the world can even a respectable peasant do this? much less the commonest of all mankind, for such are the generality of the Cape boors. After quitting the ranks, or running away from his ship, he gets into a boor's family and marries. He begins the world with nothing, the usual practice being that of the wife's friends giving him a certain number of cattle and sheep to manage, half the yearly produce of which he is to restore to the owner as interest for the capital placed in his hands. He has most of the neccssaries of life, except clothing, within himself; his work is done by Hottentots, which cost him nothing but meat, tobacco, and skins for their clothing. His house and his furniture, such as they are, he makes himself; and he has no oecasion for implements of husbandry. The first luxury he purchases is a waggon, which, indeed, the wandering life he usually leads at setting out in the world,
makes as necessary as a hut, and frequently serves all the purposes of one. A musket, and a small quantity of powder and lead, will procure him as much game as his whole family can consume. The spring loks are so plentiful on the borders of the colony, and so easily got at, that a farmer sends out his Hottentot to kill a couple of these deer with as much certainty as if he sent him among his flock of sheep. In a word, an African peasant of the lowest condition nerar knows want; and if he does not rise into affluence, the fault must be entirely his own.
LVI. Memorial of Mr. E. G. T. Crooneens respectins
the Distillation of Spirits, ogrc. in Hoiland. [Concluded from p. Ir3.]

THE water which is made use of is also deserving the utmost attention. Hard water, and which is loaded with many particles, produces less spirit, and of a harsh and hard quality. In Holland they make use of the water of the Meuse, and keep vessels expressly for that purpose, which load the water in that river, and convey it to the laboratory of the distillers. In other places, they take the water of small brooks, where the water flows over a sandy ground, and they take care to make a provision of it when the weather is still and calm, and not immediately after a hearr fall of rain, by which the water might hare been muddy. They who have adopted the first method are of opinion, that by this operation, and by distilling the whole mass at once, they obtain a greater quantity of spirit, and that tiey have less trouble in making the composition. In this they are, howerer, grossly mistaken. The great many experiments I have made in Holland with either method, and which two years ago I repeated in the electorate of Hanover, at a distiller's of my acquaintance, have confirmed me in the opinion, that by this method no greater quantury is obtained, and that the spirit, ceteris paribus, is less pleasant and of a harsher taste, for this evident reason, that with the greatest precaution it is hardly possible to prevent the thick mass, exposed to the inmediate action of the fire, from communicating to the liquor an emprreumatic taste; and it is by no means improbable, that previously to the fementation, all the essential oil not having been set at liberty, a part of it has remained united and incorporated with the flour, or at least with the husks of the grain, and only disengages itsulf by the aid of the heat during
during the fermentation and distillation; so that, following this method, you are in danger of cousing a large quantity of essensial oil to go over with the spinit. This method has also the inconvenience attending it, that you are obliged to leave the caldron open till the liquid begins to boil, and that in the mean time a man must contmally stir this mass with a stick to prevent it from sticking to the bottom of the caldron, and heing burnt, until the liquor begins to boil up: at this time the greatest danger is over, and the lid is put on. Thus mothing is gained in point of tronble, because, in following the other method, you procuad immediately to the distillation. Among the adrantages which the dimtion of the mash, together with the slow Eementation and distillation, commonicates to the spirit distilled in Holland, both in pont of havour and salubrity, must also be comated, that the best distllers know how to extract from this mash all the ferment, by which means the sibit is readered more pure: because the ferment, of whaterer nature it may be, contains most of the esectial sil of the matter whence it is taken, and that by this method the greatest part of this oil is taken from the ligurn betore the distillation, while at the same time they derive from it this pront, that the never have occasion to buy their fermen from the brewere, but on the contrary sell, ihemselves, a comsiderable quantity of it, after having dried the same in the shape of toaces, in which state they preserve it for years, if it be kept in dry places; and in this state it is noeh sought after by bakers as well as by private fanilies, because his dry ferment, which is dilated with a little water, never comminicates to the bread or pastry the bitter tasie which harm does, londed as it is with the bitter partieles of the hope. The distillers, who are acerainted with this method, enjoy the addional advantage, that they can continue to distil durne the summer, and at such times when barm or yeast is extremely scarce. The profit which they obtain from this ferment is one of the reasons of the loif price of the Dutch geneva, compared with the price of spirits distilled in other comtries; but as ther who are perfectly initiated in this art keep it a seeret, I shall not explain at present the manner in which they proceed, from the molives which I have assigned at the begiming.

And as the Dutch distillers are under no sort of constraint in the operations, nor have the least reaon to tenry them, they take the greatest care to clean after each operation their caldron, and abore all their tuhs, in which the finous formentation is eficted: and they never fill them
again, but after having thoroughly cleared them from the firment, which sticks to the sides of the tubs from the last fernentation, because they know from experience, that the Least remains of this matter gives the following liquor a bad taste ; for this purpose they clean them with lime water, and never with soap, because the caustic alkali contained in the soap would not fail to give the liquor an urinous taste.

By all these precautions they obtain a pure spirit, without bcing obliged to emplor any noxious articles in order to destroy the bad and offensive taste, and at the same time a wholesome spirit. One circumstance, which contributes much to its salubrity, is this, that it is rectified over juniper borries, which possess a balsamic and aromatic sirtue. It is at least averred by the most celebrated physicians both of Holland and other counaries, that the jumper berrics possess great medicinal virtue, for which reason aqueous decoctions of juniper berries are so frequently prescribed by physicians of acknowledged celebrity in inveterate rheumatims, which, after haviag baffed all other remedies, are commonly cured by a continued use of these decoction: ; and if the juniper berrics actually posees this rirtue, who can then call in question the great benefts which the spirit, rectified over juniper berries, must afford the inhabitants of a cold and humid comntry, where the temperature of the air is so unsettled, that in the course of one day you experience several changes of heat and cold, and where, for this reason, rheumatic complaints camon but be very common? I have experienced rery generally that turpentine is substituted for jumiper berries in the malt spints distilled in this country in imitation of Duch genera. It remains with physicians to decide, whether turpentme in this state, and taken in such quantities, must not prove highly detrimental to health. I, for my part, an at a loss to conceive that an article as resinous as turpentine (the residue of which, after the distillation, is colophonium) should not be highly prejudicial to bealth; and I am apt to think, that for this reason it would be certainly worth while for parliament to prolibit the use of turpsntine, and enact that jumiper berries be substituted in its place*; the more so, as the substitution of turpentine for the purpose of imitating the Havour of juniper berries, merely arises from the ararice of the distillers, and as Hol-

[^60]land affords a striking proof and example, that if the use of juniper berries be not absolutely beneficial, it camot at least be hurtful.

As the Dutch distillers are thoroughly convinced that the success of their operations depends on a slow distillation, they take particular eare to have there fire-places constructed in such a manner, that the distiller may have it entirely in his power to abate or accelcrate the action of the fire at every monent when he shall think it necessary. It is impossible to fix upon a peculiar form to serve in all cases, as it must naturally vary according to the form of the vessel ; but they never lose sight of the following general rules: viz. 1st, That the place which contains the fire must be contrived in such a manner, that the action of the fire operates cqually on the whole surface of the bottom of the caldron without being concentrated to one point, where the caldron would be burnt, and unavoidably and immediately communicate to the liquor an empyreumatie taste: by this equal action of the fire, the liquor is heated in a more equal manner, and by a moderate fire; and also quicker than if the fire acted only upon one point. 2dly, That the openings of the fireplaces be iron doors, in which are made several small holes, which can be opened and shut, as occasion may be, to accelerate or check the current of air. 3dly, That the chimney be furnished with an iron plate, or damper, placed horizontally, by which the diameter of the chimney can be diminished as often and as much as the distiller chooses, who by this means moderates at pleasure the action of the fire, and can even stifle it at once, by shutting the openings in the fireplace, and the passage of the smoke into the chinney.

As the vinons fermentation is a point no less important, and one of the principal requisites on which depends the success of the operation, and as this fermentation can only be conducted slowly in a moderate temperature, they take great care that the laboratories, in which the vinons fermentation is effected, be constructed on such principles that the rays of the sun can be prevented from acting upon the tubs containing the liquor subjected to fermentation, by means of windows with shutters made every where opposite to each other, that in extraordinary hot weather a current of fresh air may be obtained to cool the laboratory. The flour is paved with stones, on which from time to time Gresh water can be poured, which cools considerably the temperature of the atmosphere in the laboratory; and in sinter it can be warmed by means of one or morc iron
stoves, or, which is perhaps still better, a delft stove, which is made use of in several places in Germany, which are of a more equal, more moderate, and less stifling heat.

It must riot be supposed that the distillers in Holland make use of a smail quantity of malt, from a persuasion that no geneva can be obtained from the flour of rye, or any other grain, without that addition ; the contrary is the truth: I have made several experiments with rye, without the least addition of malt; and I have always obtained the same quantity of spirit, but it was never of so pleasant a taste. This addition is only necessary inasmuch as it assists the fermentation; and that if it be used there is no occasion for so much ferment, and of consequence not so much essential oil is introduced into the liquor, which is the reason that the spirit is of a more pleasant flavour, and not so harsh as that which is made of ryc, or any other flour. I must add in this place, that the Dutch distillers are extremely careful to make use only of such rye as is grown on a calcareous or sandy soil, and never eniploy, if they can possibly avoid it, any corn produced by a fat, clayey ground; and this is the reason why they make use of rye imported from Prussia, grown on a poor soil, and which, according to common report, is dried in kilns before it is exported, and on this account is known in Holland by the name of dried rye; the grain is small, and very hard and dry ; because this rye produces more spirit and of a superior quality to that which is drawn from rye grown on a clayey soil, and because it contains less oily particles.

On comparing the process of the Dutch distillers with that followed in this country, it will be obvious, at first view, why the spirit, which is distilled, does not poseess the perfection of Dutch geneva, either in regard to the flavour or salubrity; and all the questions to be proposed on this subject may be easily answered, from a mature consideration of the difference of these processes ; and the prejudice entettaned by many persons in this country as wel! as in Germany, that no spirit of the same quality can be produced in any other country, deserves only to be laughed at. These persons do not consider that geneva is a product of art, which neither depends on the soil nor on the climate of a country, as wine does, and that if you employ the same materials, and observe the same process, the result must necessarily be the same; nor is it less evident, that as long as the distillation shall be effected on the principles hitherto observed in England, the perfection of Dutch genera can here never be obtained. In order to obtain it, govermment
must necessurily cooperate, by giving the distialers full lifbery to act and proced according to their knowledge and exterince; and Imiy bazard, whout the least danger. the a-sertion, that as long an the duty is laid either on the grantity of the wath, or on the capacity of the still, the above can never be attaine!, and the distillers to avoid their ruin will be obliged to have recourse to permicious ingredients. In the former case, their interest prompts them to overload the ir liquids with too great a quantity of grain, which not only causes them to sustain a considerable loss of spivit, because the water, which acts as a solvent to saccharine matier, can omly disolve and keep in a state of soIution a cortani quantit of that matter; butafter it is saturatch, the rest of that matter is lost. It further results from thence, that the femmatation, on which the suecess of the operation chiefly depends, procectis not as regalarly as in regard to a weil diluted wash; and on distilling this thick and as it were over-saturated wash, the distiller introduces into his caldron a great quantity of oleaginons particles, and of consequence into his spirit more essential oil, especially if the distillation be pushed on with vivacity ; berides that this thiok wash, from the rapillity of the distillation, is likely to communcate to the spirit an empyreumatic taste, which would obstruct its sale if the rectifier did not correct thi, fault by noxious additions.

In the latter case, the interest of the distiller demands that he must combuct the distillation rapidly, and with a violent fire ; the result of which is, that all the essential oil rises with the spirit, and that it also must contract an empermmatic taste. It further results from this rapid mode of wonke, that the distiller does not allow himself sufficient time conircly to cmpiy his caldron, or to clean it carefilly, as well as the other utensils; which in my judgment must have a streng influence on the salubrity of the spirit on accomnt of the verdigris, which, from want of cleanness, forms itself in the caldron and worm, if they are made of copper; and as the distillations succeed each other in sa repid a mamer, the distiller cannot allow the liquor sufficient time to fiment slowly; be must therefore make use of more ferment, which camot but produce a bad effect, boh in regard to flarour and salubrity. They who assert that a rapid distiliation has no influence upon the taste and Gatom of the spirit, either try to deceive, or are ignorant of the fist principies of the art of distillation; and in order to confound them, we have only to ank this question, Why are are obliged to uistil fine and delicate liquors in lalmeo
zarrice (a bath of water) to give them that fine flavour which causes them to be so much esteemed: The answer is, Recause, in this case, the action of the fire is not immediately directed against the ressel which contains the liquor, and becanse the heat is cqual and uniform, and camot be increased by the rivacity of the fire, because water which is in a state of cbullition cannot assume a higher deguce of hait, and thus the liquors camot contract any empyreumatic taste. If the fire had not any influence upon the spirit, these precantions would certainly be fruitless.

Persons who are of opinion that a rapid distillation has no influence upon the salubrity of the spirit, are equally mistaken. No one endowed with common sense, and possessed of the least knowledge of the art of distillation, can call it in question, that by a violent fire all the essential oil must be made to rise with the spisit, and the fiery and indigestible qualities of this oil, so copiously mixed with this spirit, are too well known to admit of the least doubt. They not only posess the property of intoxicating quickly, and causing head-ache, but also affect so very strongly the nervous system, as to cause a trembling when taken in any excessive degree; and in general it may be fairly asserted, that adulterated spirits possess the quality, in common with bad wine, of causing head-ache and trembling when drunk in an extravagant manner; which is not the case atter an excess committed in drinking good and pure wine: and I rather incline to think, that by this rapid distillation some particles of copper are disengaged, and rise and mix with the spirit, because the wash contains some small quantity of acids, which with the aid of an excessive heat acts upon the metal, as all other acid solvents do upon metals in proportion as they are assisted by heat: and this is perhaps the reason of the blucish colours diseemible in spirit d.stilled with a violent fire.

But supposing that a rapid distillation cannot produce any effects hurtful to health, per se, it is at least sclfi-evident it is exccssively pernicions in its consequences, because the rectifier is absolutely obliged to employ poisonous ingredients for the purpose of destroying the empyreumatic and unpleasant taste which the essential oil has communicated to the liquor; and which simple rectifications, however multiplied, camot by any means effect.

Before I explain these means it will be necessary to observe, that unprincipled distillers, in employing these means, have two different objects in view: namely, to destroy the

Ne. 72. May 1804.
bad taste of the spirit; and, secondly to increase the quan- ", tity of spirituous matter, and thu- to procure by those additions a greater quantity of spirit from a given quantity of wash than they could obtain by a matural process.

To obtain the former object the disullers make use of pure alkali, caustic alkaii, and Glauber's salt, which possess a peculiar quality to absorb the essential oil ; but, on the other hand, they communicate to the spirit their most volatile particles, which their great volatility renders extremely pernicious, and also inpart to the liquor an extremely urinous taste, not less umpleasant; in order to destroy which taste they are obliged to make at the same time use of acids, such as the sulphuric, muriatic, and nitric acids: others employ the crrstals of verdigris, or radical vinegar (acetous acid) distilled from crystals of verdigris; or the acid from iron or copper vitriol. These ingredients destroy, in sume measure, the bad taste, without increasing the quantity of spirit: for the purpose of attaining the latter end, they have recourse to oleaginous aromatics in general and vegetable oils, which possess an uncommon power to augment the quantity of spirit ; but to produce this effect they must be mixed with the liquor before the fermentation: for this purpose they are triturated with a little sugar in a mortar, and by this means they would considerably retard the fermentation; but the use thereof, in order toderive from them all possible profit, requires a peculiar mode of conducting the vinous fermentation. Whan the distillers wish to give their spirits a vinous taste, they digest strong nitric acid with alcuhol for some time, and distil it: afterwards, which produces a dulcified nitrous acid, and mix a little of this acid with their spirit, which gives it a flavour resembling that of Erench spirit of wine.

These are the principal means which the distillers genemily make use of : they are very seldom employed in Holland, and by no means necessary for the interest of the distiller. Their mode of proceeding yields spivit of a pleasant and agreeable flavour, and in great quantity ; and no artifice. can ever equal the taste and flarour which a slow operation, in every stage and part of the process, natually imparts to the sprit. I must suppose that these practices are more common, if not generally resorted to, in this country ; but an chemistry furnishes a great many simple means to discover the alkali and acids in the liquor, the officer whom government employs for the purpose cannot but find it a Very easy task to detect the frand; for cxample, solutions of bodics precipitated by alkalis, such as vituol of iron, but chictly.
chiefly alum 'mixed in small quantities with a little of this spirit, will immediately show the presence of alkalis by a precipitate, and the change which acids produce in blue vegetable colours will prove their presence. A bit of paper tinged with litmus put into the spirit, tincture or syrup of violets, into which are poured a few drops of the snirit, manifest immediately the presence of these acids. Severe punishments inflicted on these fraudulent distillers, who sacrifice to their avarice the health of their fellow-citizens, will go a great way in preventing these frauds; and they would doubtless cease entirely if the duty were laid on the product of the labour of the distillers, that is, on the spirit, or to be paid immediately from the malt or corn, as is done in Bremen, where the distiller pays the duty at the mill, to which he carries his corn to be ground for the use of his distillery, and thus is exempt from all consiraint during the whole course of the operation.

The only point which I have yet to consider is, whether there does not exist a method to accelerate considerably the distillation without running any danger of experiencing these bad effects. To this I cannot but answer in the affirmative: you have only to substitute shallow caldrons in the room of deep ones; their diameter must be larger, and they must have a concave bottom. I have made several experiments with a caldron constructed in this manner, and the result was always a purer spirit, and in a greater quantity, with a saving of ten-twelfths of fuel. The reason is this, that a large surface of liquor being exposed to heat, the liquor is heated in a more speedy and even manner in all its parts by a less brisk and strong fire, and evaporates with uncommon rapidity, and can neither contract an empyreumatic taste, nor can much essential oil rise and mix with the spirit, as the power of the fire must be greatly inferior to that which is employed under a common still, where the lower parts of the liquor experience a violent fire before the higher parts are sufficiently heated, and wherein the liquor continues a longer time exposed to the action of the fire, in proportion as the evaporation proceeds more slowly; and this diminution of heat is perhaps the reason why more spirit is obtained, because some part of the finest spirit cannot fail to eraporate when the distillation must be pushed on by a brisker fire ; but in this case it is unavoidably necessary that the fire-place be constructed on the principles above described. For the same reasons it is obvious, that it is very profitable to effect the distillation in small caldrons, especially if they are of the common cylindric form,
both in recard to the quantity and quality of the spirit, and also with respect to the fict: you will not, for instance, draw so good a spinit, and the same quantity, in a caldron of eighty gallons, as in two of forty cach; the latter will be emptied twice, and ofiener, in the same time which is necessary to empty the large cahtron once, and with less fuel, and thus the produce of these two small caldrons will be double of that of a large one in a given time. Before I conclude 1 must make this observation, that it is extremely easy to make the spirit appear less strong at the proof with the hydrometer. All bodies which are easily dissolved in spiris, and augment their specifice gravity, produce that effect; and the sulphurous acid posesses this property in a peculiar degrec. Bcfore you subject the spirit to the proof with the hydrometer, you should endearour to discover the presence of this acid by the proofs above mentioned; and every distiller of fine liquors knows perfectly well, that as soon as he mises a little sugar with his liquor to sweeten it, the hydrometer loses its effect ; but it is extremely difficult to make it appear stronger than it aetually is at the proof with the hydrometer. Tilhis end camot be attained but by mixing it with bodies of less specifie gravity, such as ether, which, on account of its high price, will not be made use of. I say, at the proof with the hydrometer; for this is widely different from the phial proof, because, on mixing a little oil with epirit so much diluted by water that no more bubbles appear, they may be immedately made to reappear. The petty innkepers in Holland are extremely expert in this trick; they commonly empley al of olives, poppies, nuts, or almonds, and in general all sorts of oils, which do not give the spirit a bad taste. These frands are diseovered by diluting these epirits with a great quantity of water, when the of immediatcly apears on the surface of the liquid. Before I conclade, I thall here touel upon the guterion, Whather the residue of the distillation can serve to nourith ame fatuon canle? On amalysing corn, we find that it consisto of an carthy or muchaginens and a saccharine mater, and of oin andalt. If we further consider, what I have already frequently mentoned, that it is the saccharine matter which exclusively yieds the brandy, and that the mucilagmous and carthy mater, together with the salt, remain mitonehal in the residue, it will not be doubted that this mucilage with the salt camot but be very nourishing. Experience hav proved in Holland that this residue, ahich is there ealled turfol-llouk, possesses rery mutritions ristues; the number of pies which the distillers yearly draw

Figure of the Orlits of the now Planets.
350
draw from Westphalia exceeding all belief. They are fattened in a very short time for the use of the navy and merchants, who employ them on board ships for the subsistence of the seamen, who are not supplied there with beef as they are in this kingdou, while other distillers fatten with this residue bullocks and cows; and it is a circumstance worthy of notice, that cows fed with this residue give a considerable quantity of milk. It is thus that the Dutch distiller draws some profit from every thing; nothing is lost with him, and this economy is in general the cause of the low price of geneva.
> LVII. Figure of the Orbits of the new Planets. By Jerome de Lalande*.

The mean distance from the sun, of both, is 2.77 , that of the sun being 1 , which gives 95 millions of miles. (Sce Plate VIII.)

Piazzi or Ceres, discovered Jamary 1, 1501.

Olvers or Pallas, discovered Marib 2 S, 1802.
Revolution 4 years 7 months 11 days.

Mean longitude	de Jan		-		2	
Annual motion	-	-	-		15	11
Aphelion	- -	-	-	10	1	
Node	-	-	-		22	
Equation of the	he orbit	-		0		95
Eccentricity	-	-			$0 \cdot 2$	
Inclination	-	-	-			

[^61]
LVIII. Letter to Mr. Arthur Aikin from Dr. Thornton.

May 20, 1804.

TSIR, No i, Hind-street. Manchester-square. here is no man on earth fonder of the liberty of the press than I am: but when frols or blockheads presume to criticise, what was before a blessing becomes a nuisance, misleading for a certain time the public judgment, and wounding the honest feelings of authors. Like Limmeus, I would have silently borne the scoffs and derisions of the mimics, as he calls them, of mankind: but when a man of your character in life stands publicly forward as the editor of a review, in which you accuse me of an ignorance the most gross, and endeavour to explain the mamer, by a prophetic vision, how I came to have invented an unheard of planet, openly declaring " that no astronomical book ever mentioned a satellite to Venus," I have esteemed it my duty to retort the accusation, and appeal to the candid decision of the public. I shall quote your own words :--" In imitation of the divines of the sixteenth and sevententh centuries, who frequently treated their subjects first negatively and then positively, he gives the systems of those philosophers who have formed what he deems erroneous opinions on the subject. These are Dr. Darwin, Buffon, and Will. Whiston. Dr. Darwin's hypothesis of the original formation of suns, gives him an opportunity of laying before his readers a concise view of astronomy, from which we learnt, to our inexpressible surprise, " that Venus as well as our earth has its satellite, and that this satellite of Venus was discovered in the last century." Had Dr. Thornton clamed this discovery himself, the authority of so great a man would have been indisputable ; and we must have admitted it as a fact, eren though the new secondary planet should still continue to elude the sight of Dr. Herschel, of the astronomer royal, and of every other astronomer in the world. But as we are told that the discovery was made in the last century, it must have been known to others as well as to himself; and as no trace of it is to be found in any professed treatise of astronomy, we may be allowed to doubt on the subject, and to suspect that Dr. Thornton has asserted what is not true. Long did we puzzle ourselves with attempting to investigate the source of the error ; and so continually did it agitate our minds, that for some time we were deprived of our nightly rest ; and we know not what might have been the effect upon our health and spirits, or whether we should ever have becn equal to the severe tusk of writing this revieu',
tif we had not happily been freed from our anxiety by a kind of vision between sleeping and waking, which, on account of the solemn mysterious stillness by which it was accompanied, is in our estimation entitled to more credit than the frantic ravings of an intosicated Delphic prophetess. We therefore do not hesitate to pronozence with oracular confidence, that once upon a time Dr. Thornton, happening to be left alone in the parlour of a friend, took up a book on astronomy, which lay by chance in the window, or on a table, and opened it at the chapter where an account is given of the discorery made soon after the invention of the telescope, that Venus, in different parts of her orbit, has difterent phases, like those of the noon; and that, unwilling to lose the knowledge which he had thas incidentally obtained, as soon as he got home he carefully entered it in his immense common-place look*; bat through the natural infirmity

* Having long had the pleasure of Dr. Thormon's acquaintance, we think it justice to that gentleman to state, that he is remarked by those who know him for the srrong retentive powers of his memory, having written the whole of his Philosophy of Medicine and of Politiss without the least memoranduan paper; and that, tonsting entircly to his memory, he never had a common-place book in his life; no: cwell when lecturng wive wo.e does he refer many notes whatever. We do nor state this from any objection we have to common-place-books, for we think the use of them might sometimes keep people from committing themselves. Fuch abuse as this deserves any name but that of criticism. We are confedent not only that Mr. Askin did not write this review, but that it must, by some accicont, have escaped his correcting eye; for we have also the pleasure of his acquaintance, and we know that he cannot calumniate, or commit willingly an act of injustice. Can the following be considered as ingenuous fair crincism :-" But we are rerinded that we have unaccountably overlooke? the capital beauty of the publication; and that its merits, and its acceptabeness with the pusife, rest chiefy on the eacellence, the splendour, and magnificerce, of the engravings. We have all along been sensible of it, and in this respect are pot at all disposed to be sparing of our praise. Gurfraise, however, is not neded. The smaller uncoloured botanical plates in general. but especially the larece coloured ones, do the hightst lonour to the artists. and will be lasting monuments of the fine zasre and masteriy excention which characturne the British nation in the present age. But when Dr. Thornton claims a share of the fame, we are reminded of a farce, which, in our play-going days, aforde ! us much ancisement: it is called, if we mistake not, A Peep behind the Curtain." Dr. Darwin, speaking of these plates, in his Phytoi,gid, "avs: "I beg leave oo recommend to the public the superds picturesnue botanical plates of Dr. Thomton. which I suppose to kare no equal." Now are the public under no obligation to Dr. Thorntom, "!o lisks his fortune in orcter th arord them gratifation: When were picturesque botanical plates published bufore: Is not this the improvement of Dr. Thornton? And who are the altists who bave executed there? Mr. Reinag!e, associute of the Royal Academy, and Mr. Henderson.
infirmity of his memery, and the halitual comfusion of his ideas, he mistook the appearance for the reality, and has ever since believed that Venus has a moon, instead of being in some respects like one."

Without dwelling on the observations which you make on my work in general, I shall confine myself to the prescnt point, as you accuse me of having published a direct falseheod.

Had my work been professedly on astronomy, I should have given my authorities; but as the fact denied in your Review was only added as a note, and incidentally mentioned, I thought myself excused till called upon to vindicare my ow veracity from such anmadrersions. My astronomical observations were extracted from Bonner's Contemplation de la Natare, vol. ir. part 1. This author says (page 7), "Vcnus and the earth have each a satellite," and adds in a note the following proof in support of what he adrances *:
"A great many doubts have been started in regard to the existence of the satedlite of Vonus, and it has been suspected that the accounts given of it by difierent obscrvers arose chicfiy frem some optical ilhesion. But those who take the trouble to consult the aricle Vemus in the Supplement to the French Encyctordie, rol. xrii, will entertain no doubt of the existence of this planct. They will find there an ob-

Are there sentiomen botanical primers: No. They must then have been fone under his cye and dirction, and Dr. Thirnton in this way particimacs in the in me.-Ediz.
\% On á Évé aion ás doutes sur loxistence du sattllite de Vënus; on a sougç né que à qui en avoit éée rapionté par differens obstrvateure.

 Pais, tom. wa, on be douteraçueres de fexistence du atalite dent al sagit Coy veralot cervatun du grand Cassiri de ros6. celles de Arr.

 cro'ssmt qua lo sedlle sit it montryan: trois premiers observatcurs que je whas de viter. Mir. Slont avolt ité si touche de sa propre dicoaverte. quil lawor fat traver sar son cachut avec cete devise, Tandem apparui. Le él, bre Lambert, quia a compare enrrolles :nures les observations de ce

 cul, du cet rs:mome, havolution do ce satellite autur de Venus se-

 alors tris fres de cet astie; miais on ne l'y a pas decouvert. M. de Maidar. qui ne paioissoir pas doutor de lexistence de ce petit astre, avoit indiqué les causcs de la farete de ses apparitions Ment. de l'Aiad. de Paris, 1762.
servation of the great Cassini in 1656; those of Mr. Short in 1740 ; of M. de Montaigne in 1761 ; of father La Grange the same year; and of M. de Montbaron in 1765. The planet appeared to the first three of these observers under the form of a small crescent. Mr. Short was so overjoyed at the discovery he had made, that he eaused it to be engraved on his seal, with the motto Tandem apparuit. The celebrated Lambert, who compared all the observations of this planct, has shown how ear they agree: Dissai d'une Theorie du Satellite de Venns, in the New Memoirs of the Academy of Berlin 1773. Accorling to the calculations of this astronomer, the revolution of this satellite aromad V enus is nearly eleven days. Le thought he should perceive it on the sun's disk Junc 1st, 1777 , because Venas would then pass very near that body; but it was not ohserved. M. de Mairan, who scems not to have doubted the existence of this small star, pointed ont the causes why it so rarely ap-peared."-Mem. de l'Acad. de Paris 1762.

Bonnet, in his Philosophical and Critical Enquiries relative to Christianity, calls Messrs. Mairan and Cassini the first astronomers of our times. To eav much of Cassini would be an insult to the philosophical world. The life of the illustrious Lambert is in every person's hands:*, and the other names are well known to astronomers.

In the Encyclopedia Britumica, the reviewer, if unarquainted with the French, would have found a sufficiently long account:-6 Cassim, besides the discovery of the spots on the disk of Venus, by which he was enabled to ascertain her revolution on an asis, had also a view of her satellite or moon, of which he gives the folluwing account:"A. D. 1686, Aug. 2sth, at 15 minntes atter four in the morning, looking at Venns with a telescope of 34 feet, I saw, at the distance of one-third of her diameter eastward, a luminous appearance, of a shape not weil defined, that seemed to have the same phase with Venus, which was then gibbous on the western side. The diameter of this phænomenon was nearly cqual to a fourth part of the dianteter of Venus. I observed it attentively for a quarter of an hour, and having left of looking at it for four or five minutes, I saw it no more; but day-light was then advanced. I had seen a like phænomenon which resembled the phase of Venus, Jan. 95 th, A. D. i672, from 52 minutes after six in the morning to two minutes afier seven, when the

[^62]brightness of the twilight made it disappear. Veńus was then horned, and this phienomenon, the diameter whereof was ncarly a fourth part of the drancter of V'ents, was of the same shape. It was distant from the southern horn of Fenus, a diameter of the planet, ou the western side. In these two observations I was in doubt whether it was not a satellite of Venus of such a consistence as rot to be very well fitted to reflect the light of the sun, and which, in magnitude, bore nearly the same proportion to Venus as the moon does to the carth, being at the same distance from the sun and the earth as Venus was, the phases whereof it resembled. Notwithstanding all the pains I took in looking for it after these two obeervations, and at divers other times, in order to complete so considerable a discovery, I was never able to see it. I therefore suspend my judgment of this phenomenon. If it should return often, there will be these two epochas, which, compared with other obsersations, may be of use to find out the periodical time of its return, if it can be reduced to any rule."
(A similar observation was made by Mr. Short on the -3d of October 1740, about sunrise. He used at this time a reflecting telescope of about 16.5 inches, which magnified between 50 and 60 times, with which he pereeived a small star at about 10^{\prime} distance from Venus, as measured by the micrometer; and, putting on a magnifying power of 240 times, he found the star put on the same appearance with the planet herself. Its diameter was somewhat less than a third of that of the primary; but its light was less vivid, though exceedingly sharp and well detined. The same appearance continued with a magnifying power of 140 times. A line, passing through the centre of Venus and it, made an angle ot 18° or 20° with the equator: he saw it several times that morning for about the space of an hour, after which he lost sight of it, and could never find it again.

- From this time the satellite of Venus, though very frequently looked for by astronomers, could never be perceived; which made it generally believed that Cassini and Mr. Short had been mistaken : but as the transits of the planct over the sun in 1761 and 1769 seemed to promise a greater certainty of finding it, the satellite was very carefully looked for by almost every one who had an opportunity of seeing the transit, but generally without success. Mr. Baudouin, at Paris, had provided a telescope of 25 feet, in order to observe the pasadge of the planet over the sun, and to look for its satellite: but be did not succeed either at that time, or in the months of April and May folluwing. Mr. Mon-
taigne, however, one of the members of the society of Limoges, had letter success. On the 3d of May 1701, he perceived, about half an hour after nine at night, at the distance of 20^{\prime} from Venus, a small crescent, with the horns pointing the same way as those of the planet; the diameter of the former bcing about one-fourth of that of the latter; and a line drawn frem Vents to the sole lite making an angle with the vertical of about $\subseteq 0^{\circ}$ towards the south. But though he repeated this observation several times, some doubt remaned whether it was not a small star. Next day he saw the same star at the same hour, distant from Cinus about half a minute, or a minute more than bcfore, and making with the vertical an angle of 10° below on the north side; so that the satilite seemed to have described an are of about 30°, whereof Venns was the centre, and the radilus 0^{\prime}. The two following nights were hazy, so that Tenus could only be seen; but on the 7 th of May, at the same hour as before, he saw the satellite again above Venus, and on the nortin side, at the distance of 95 or 96^{\prime} upon a line which made an angle of about 45°, with the vertical towards the right hand. The light of the satellite was always very weak, but it had the same phasis with its primary, whether riewed together with it in the field of his telescope or by itself. The telescope was nine feet long, and magnified an object between forty and fifty times, but had no micrometer; so that the distances abore montioned are only from estimation.
' In four days it went through 155°. Then, as 155° is to four dass or 96 hours, so is 360 to a fourth number, which gives 9 dave 7 hours for the whole length of the synodical revolution. Hence Mr. Bandouin concluded that the distance of this satellite was about sixty of the semidiameters of Venus from its surface; that its orbit cur the ecliptic nearly at right angles; had its ascending node in $\underline{2}^{\circ}$ of Virgo; and was in its greatest northern digression on the ith, at nine at night; and he supposed that at the transit of the primary the satellite would be seen accompanying it. By a subsequent observation, however, on the 11th of May, he corrected his calculation of the periodical time of the satellite, which he now enlarged to twelre days; in consequence of which he found that it would not pass orer the disk of the sun along with iis primary, but go at the distance of above 2^{\prime} ' from his southern limb; though, if the time of its revolution should be fifteen hours longer than twelve dars, it might then pass orer the sun after Venus was sone off. He inagined the reason why this satellite was so difficult to

332 Letter to Mr. Arthur Aikin from Dr. Thornton.

be observed might be, that one part of its globe was crusted over with spots, or otherwise milit to reflect the light of the sun. By comparing the periodical time of this satellite with that of our maon, he computed the guantity of matter in Venus to be nearly equal to that in our carth; in which case it must have considerable influcnce in changing the obliquity of the ecliptic, the latitudes and longitudes of stars, \& C.'

You, sir, whom I understand to be engaged in the New Cyclopredia of Dr. Rees, may perhaps favour the world with a refutation of what has becn bere advanced; but whatever may be the disputes of the learned in astronomy, I shall hope in future for less ccusure in adopting what my feeble intellect may at the present period coneeive to be the strongest side.

I trust I have stated athority enough from other astronomers for quoting that of Boimet; and with extreme eagerness I retire from controverting what another is pleased to think and say of me, willingly wishing the same forgetfulness of the insults offered me as the author is willing to ascribe to me on other occasions.

Sir, in concluding, I cannot for a moment allow myself to think that you were actually the writer of the review in question; but as editor I cannot help addressing you, as permitting so severe and, I trust, unfair a criticism, as your work contains, begiming with,
"To turn the prony, once a wit
Upon a curious tancy hit;
Hung out a board, on which he boasted,

- Dinner for tirretpence, boiled and roasted!'

The hunerv read, and in they trip,
With eager eye and simacking lip:

- Here, bring this boiled and roasted, pray.'

Enter potatoes, dressed cach way:
All stared and ruse, the house fursonk. The dinner cursed, and kicked the conk. My landiord found, pror Parick Kally, There is no jestiug whe the velly."

I have the honour to be, sir,
With great rcopect,
Your obedient humble servant,
Robert John Thorntos.

LIX. Life of John Henry Lambert**.

IIf amongst the literati, whose merits in the sciences have eternalized their name, those that have acquired their crudition without the assistance of others, merely by dint of their own exertions and industry, be in a superior degree entitled to the notice of the learned; then the man of whose life, character, and writings, we are now going to give an account, deserves undoubtedly, in preference to all others, to be introduced to the acquaintance of our scientific readers ; especially as he overcame the most arduous difficulties merely through the unassisted application of his uncommon genius.

Lambert was born August 29, 1795, at Mühlhausen, a small confederate town in Sundgau. His father, Lucas Lambert, whose ancestors had emgrated from Prance when the edict of Nantes was recalled, was by trade a tailor, and had great difficulty to maintain himself and his family by means of his industry. His limited circumstances determined him to bring up his son for his own profession, and to give him an education conformable to his future situation in life, without, however, totaliy neglecting the improvement of his mind. He frequented the public school, at the expense of the corporation, till he was twelve years old, and distinguished himself so eminently from the rest of his school-fellows, that his fuher was at last, by the repeated intercessions of his instructors, and his invincible aversion from the trade for which he was intended, prevailed upon to permit him to study theology. But being soon arrested in the prosecution of his scientific carecr by a total want of the requisite mems, he was at length necessitated to assist his father in his profession.

Whilst he was occupied in this manner, he read with uncommon eagemess ah Latin books of which he could obtain posession ; and happening in the course of his readings to meet with an old work un mathematics, his decided predilection for this science manifested itself soon in a most striking manner by the ardour with which he studied it, and the complete knowledge he acquired by means of it of the computation of amanace, notwithstanding the numerous errors he discovered in it, without being able to correct them. The occupations incumbent upon him in the day, obliged him to devote great part of the night to the prosecu-
tion of his studies: and the money necessary for the purchase of candles, with which he conld not expect to be supplied by his parents, he procured by the sale of small drawings, which he delineated whilst he, with his foot, rocked his intant sister. Some workmen being employed, one day, in repairing his father's house, this afforded him an opportunity of putting several questions respecting the practical application of some principles he had found in his book to the builder, who was induced thereby to gratify him by the loan of a mathematical work which he possessed. Words are inadequate to express the joy which he felt on discovering that this work was completely calculated to enable him to correct the errors which he had found in his own book. He now learned from these two books, without any additional assistance, the rudiments of arithactic and geometry.

His enthusiastic zeal for the sciences prompted at length several men of learning to instruct him gratis, and they had the satisfaction of seeing him improve with a rapidity that exceeded their most sanguine expectations. Thus generonsly supported, he acquired in a short time a knowledge of philosophy and the oriental languages, and learned to write a very elegant hand, which procured him the place of a copvist in the chancery of his native town, whence he removed in bis lifteenth year to the iron-works of a Mr. de la Lampe, situated in the vicinity of his mative place, where he was appointed book-keeper, and obtained an opportunity of learning the French language, in which his father could not have himinstructed on accomnt of his poverty.

Two years after, Mr. Iselin, of Basle, who then conducted the publication of a newspaper, engaged him in the capacity of amanuensis, and in a short time conceived for him the most tender friendship, of which be gave him numerous proofs as long as he lived. This situation afforded Lambert an opportunity of making further progress in the belles lettres as well as in philosophy and mathematies; and his passionate love of the latter scicnce frequently made him neglect his regular occupations. In the year 1748 he was recommended by his patron to baron Salis, president of the Swiss confederacy, as tutor to his children. The excellent libary which he found in the house of his new patron, and the leisure hours with which he was indulged, together with the instructive intercourse which he had with all the members of that iilustrions family, and with a great number of scientific strangers whe visited the baron, proved to him excellemt mean of satising his thret for knowladge, and enabled him to become more familarly acquainted with astro-
nomy and all other branches of the science of mathematics, as well as with physic, physiology, theology; yea, even with jurisprudence, eloquence, poetry, and the Greek, Latin, French, Italian and German languages. His uncommon talent for mathematics now displayed itself in a most conspicuous and decided manner. Pascal's example stimulated him to invent an accounting machine, whilst the numerous occasions he had for an accurate chromometer, actuated hims to invent a time-piece of mercury which went twenty-seven minutes without causing the slightest error. Here he also invented his logarithmic accounting-scales, and was likeWise, by the error which one of his pupils had committed in the solution of an algebraic proposition, occasioned to turn his mind to the invention of a machine for designing perspective drawings. He surveyed and made a drawing of the country around Coire, and performed numerous physical observations in the mountains of that country. In 1752 he began to keep a regular jounal of his daily occupations, which he uninterruptedly continued to the end of his life, and which is highly estecmed by the learned. A literary society being at that time instituted by the most eminent men of learning at Coire, he was chosen one of its first members. In 1753 he was elected member of the Helvetic socicty, the Transactions of which contain a great many mathematical and phesical treatises, commmicated by him. After having resided eight years at Coire, he repaired with his pupils in 1756 to the university of Göttingen, where he staid till aatumn in 1757 ; when he, after having bees previously nominated a corresponding member of the society of sciences at that place, removed to Utrecht, where he stayed a twelvemon di with his pupils. He made, during his stay at Uirecht, sevoral excursions to Lovden, Hague and Amsterdam, on one of which he became acquainted with the celcbrated Muschenbröck, who at first treated him as a tyro in the science of phrsics, whichoccasioned a very laughable conversation, whilst he on another published his first work: De la route de la lumière par lea airs. In autumn 1758 he went with his pupils to Paris, where he gained the esteen and friendship of S. Alembert and Nessier, and from thence to Narseilles, where he firot lighted upon the idea of his pcrspective, which in the vear fillowing was published at Zürch. He retumed to Cuire by way of Turin, and in the following year to Muhlhasen, whence he made an excursion to Augsbure, where he becanie acquainted with the celebrated philusophical instru-ment-maker, Brander, who afterwards was of great service
to him in exceuting his ideas, and where he also published his Photometry; enriching thereby mixed mathematics with a new branch. In the same year he was ako elected member of the electoral Bavarian socicty of scicnces, on condition that he should give them his assistance, and transmit tracts for their Transactions. He faithfully performed his engagement with that society ; but nevertheless experieneed a great deal of ill treatment by them, and even was deprived of his salary, which prompted him to return his diploma. Ife now risited Ellangen, where he published his letters upon the construction of the universe, as well as his treatise upon the principal qualities of the orbits of the comets. In 1763 he went to Leipzig, where he in the year following published his new Organon. On an excursion he made in the same year to Berlin, he was introduced to Frederic II., who upon the first interview was convinced that he fully deserved the admiration of all men of science, and ordered him to be elected a regular momber of the academy of Perlin ; which appointment afforded him full leisure to devote himself cutirely to his favourite sciences, and to communicate to the world the fruits of his lucubrations.

A great number of Lambert's treatises are to be found in the Transactions of the literary societies of Leipzig and Berlin; and as many have been printed separately, all these treatises bear the stamp of an cminent genius, who had derived his knowledge more from his own reflections than from books, and always found means of placing the subject of which he treated in a point of view in which it had not been considered before.

His principal metaphysical work is his Architectonic. He composed this elaborate work with a view of showing the application of logic in metaphysics, and of evincing the pussibility of carrying it to algebraic evidence.

Most of his mathematical treatises were published by hi:nself, in three rolumes, under the title of Beyträge aum Gelouch der Mathematic und deren Anwendung, in which ahmost every branch of mathematics has been enriched with additions aid important improsements.

Prederic 11. largely added to his pension a short time before he died; and after his death erinced in the strongest manner his sincere concem at the loss which the sciences sulered by it.

Lambert was as universally estecmed for his amiable character, as he was respected for his scientific merits. The manner in which he had been educated had, indeed, left indolible traces of his originally low situation in life, which manifested
manifested themselves by his timid and awkward conduct, by the tasteless disharmony in his dress, the furniture of his apartments, by loud laughter, low jests and antic gestures, by his predilection for glaring colours, coarse viands, and sweet wines, as well as by the pleasure he took in frequently mixing with low companies, in joining in their political disputes, and laughing aloud at their coarse witticisms. But these defects were amply over-balanced by a most excellent heart and uncommon mental perfections. A real virgin modesty and bashfulness, and the most complete chastity and sobriety, an honest and frank manner of thinking, and a decided aversion from all kinds of double dealing and falsehood; a manifest antipathy against all injustice; a prompt and spontaneons reparation of every injury he thought to have committed; the most anxious desire to avoid every cause of dissension and dispute ; an inexhaustible patience and forbearance; a total freedom from moroseness and illhumour; a sincere promptitude to instruct those who sought his society from good motives ; the most active compassion, whenever he beheld wretchedness-all these qualities composed in him a harmonious whole. A glowing devotion, which frequently rose to a kind of pious rapture, a lively sense of his dependence on God, and of the imperfection of our knowledge of the Supreme Being, and unaffected humility and veneration towards it, animated him from his early youth to his grave, notwithstanding the change which, in the latter part of his life, took place in some of his religious notions, and afforded him an uninterrupted serenity of mind, frequently suffusing his countenance with a glow of heavenly beauty. He felt the most profound contempt for works that were levelled against the sacred cause of religion, whilst works that ably defended it were read by him with rapture. He was a real cosmopolite, and animated with universal love; but he showed as little individual attachment to any one as predilection for any spot; not even his native country excepted; nor did he betray any mark of the Swiss national character. He took, however, a lively interest in the fate of those whom he esteemed. When professor Sulzer was dangerously ill, Lambert wept the only tear which he ever was seen to shed. He delighted in assisting young men of talents, and in contributing to their improvement.

Unbiassed by vanity and flattery, he judged with impartiality both of himself and others. But the habitude of speaking as decidedly and freely of his own merits and defects as of those of others, made him frequently appear a No. 72, May 1804. Y boaster
boaster to thoce who dich not sufficiontly know him. The wà wedded, as it were, to his opinions, and relinguished themr With great reluctance, when temable no longer. He generally juded correctly in his own sphere: whilst ont of it, whut me: and business were the ohjects of conversation, his judement was frequently glangly eromems, and ofientimas cene dextitute of common aches: cither, becanse he negleted to obsere mon in their actions, and the course of busimes, in their real situation, or becanse his being accustomed to analye, meapacitated him from disceming by intuition.

His conduct exactly correnponded with his manner of thinking. Ife proposed to himself ecrain rules, of the propricty and ju-thess of which he was convinced, and observed them as strictly as the mule of arithmetic in calcuhang. Hence, nothing could affeet the calmaess of his mind, or divert him in the slightest degree from the pursuit of his stadies. Fiis diligence and assiduity were, perhaps, never exelled, or even copalled by any man; thougl he never manifested the least sign of that measinces which is so common with people of in aciive mind, and involved in a multiplicity of oceupations. His mind was constantly umreffed.

He gencrally was at his writing-desk from tive o'elock in the morming till noon, and from two o'dock in the afternoon till midnight, without indugging himself in any kind of recreation, a solitary walk on a fine day exeepted. The most indifierent oceurence led him to mathematical or philosophical analysa; to which he eave himself up so completely, that no object whateves could make the least impremion upon him. When he happened to be overtaken b: a hower of ram, on a walk, he calculated, whilst running. which was the shortest and dricst way. Several of his ereatises owe their existence to incidents of this nature. Suen in the management of his ceonomical concerns every thing was conducted with mathematucal exactness. Whenever beharpened to speak in company of metaphysical or mathemat:cal subjects, he took not the slightest notice of the surrounding permas; and his discourses were real dissertations. in which mot the least leap or chasm could be discorered, as he always represented his ideas in that order in whin they arose in his mind,-and when he was interrupted, resmed his discourse at the exact point where he had stopped.

Considering his ardent and indefatigable diligence, it is pery natural that he should have acquired a profound knowledge
ledge of several sciences. He was thoroughly acquaintcad with the theological system of his age, and even well rersed in the oriental languages. He hadi also acquired a considerable knowledge of jurisprudence; but logic, metaphysics, and mathenatics, were the leading subjects of liis hecubrations. He was uicommonly strong in lugic, and was guided by its rules not only in his scientifie parsuts, but even in common life. He was extremely profound and acute in the metaphysical analysis. He meditated upon the plan of a method of treating all simple notions with the same acutenesa and precision, as the notion of quantity is treated in mathematics. His manner of treating crery subject was the same which he describes in his Organua. He committed to paper cvery accidental idea that related thereto; arranged the materials, he collected in this manner, after the usual logical ruks; he then endeasoured to fill up all chasms; examined other books, especially rocabularies, in order to collect the whole extension of the notion, and finally revised the subject after a logical table, which he published in the Leipzig Transactions. Mathenatics were, however, the principal subject of his meditations and researches. The astanishing greatness of his genius manifested itself particnlariy in the facility with which he reduced to an easy construction the results of extensive and intricate computations. It clearly appears be his cosmological letters, and his computations relative to the supposed satellite of Venus, how casy it was for him to alsitract a theory from a few cases or dates, and to carry it to a high degree of probability and completencss.
But, having derived all his knowledge almost entirely. from limeself, it was extremely dificult for him to compre-hend any thing suggested by others, if he dat not light upon it of his own accord. Hence, it was caser for him to invent, than to judge rightly of the ideas of others.
His memory was uncommonly faithful in matters that related to his tavourite sciences ; but very indifierent in others. If was intimately acquainted with the history of these sciences, their epuchas, and the great men who hiad formed them ; though he was little acquainted with history in general.

He was decidedly arerse from composing a system, because he did not think that our knowledge is capabic of being formed into a complete whole. He firmly believed that almost every indwidual had more principles of his own, which depented on his situation; and that in cases of col.
lision the final determination rarely was the effect of reason, but generally of other decisive powers.

He died Sept. 25, 1777, of a decline, after havins rendered to the sciences services that will be recollected with gratitude by the latest posterity.
P. W.
LX. Adtition to a Memoir on the Method of giving to Cotton and Linen Thread the Adrianople Red, and other fixed Colours. Dy J. M. Hacssman*.

To give to cotton and linen thread all kinds of durable colours, nothing is necessary but to fix on these threads, in any manner whatever, more or less alumine, after having applied to them a slight stratum of oil. The complete success of the result, however, depends on certain modifications to be observed in the processes.

The numerous trials which I made in dyeing had so much familiarised me with experiments on a smali scale, that I at last never failed. It was only after I published my memoir on maddering inserted in the Annales de Chimie \dagger, that I experienced any difficulties in the application of oil when operating on a larger scale. Linseed oil, which had always given me a milky misture in limited proportions with alkaline solution, then speedily separated when I wished to make a larger provision, and inder these circomstances the impregnation of the skains becane impossible. The case was the same with all the fat oils: fish oil, howeser, will remain in misture for a considerable time; but its odour is too disagreeable.
To remedy the inconvenience of the separation of oil in the alkaline solution of alumine, I had recourse to drying oils; that is to sat, oil boiled with metallic oxides. Linseed oil builel with minimm, cernse, or litharge, by means of water to prevent combustion, dissolvesa considerable portion of the oxide of lead, and will keep mixed with the alkaline solution of alumine, under the milky form, the whole time nccessary for the impregnation of the skains. By employing this mixture in proper proportions, and in the manner i have indicated in my memoir, following strictly in other respents the process such as I have described it, one camot fail to obtain beautiful and lasting colours. Howeter, notwithstanding the simplicity of this process, I cannot re-

[^63]commend the use of it, because it exposed me to the danger of a conflagration in the following manner:

With a view to discover whether red cotton, which had not the requisite fixity, could acquire it by impregnating it with an alkaline solution of alumine, with excess of boiled limseed oil, and drymg it, and then boilng it a very long time in bran water, I mixed the alkaline solution of alumine in the proportions of an eighth, a twelth, and a sixteenth part of boiled linseed oil. I then immersed in this mixture some dozens of skains of dyed cotton, wheh, atter being dried in the open air for a whole day the preceding summer, were placed under the window of my cabmet, on a strawbottomed chair. Being that day indisposed, I went to bed at seven in the evening, without any unamess in regard to my cotton. My children, about an how after, went into my cabinet to look for some shects of paper, and observed in the cotton neither heat nor any smell of combustion. All the workmen of the manufactory were in a state of profound sleep, when one of the watchmen of the bleachfield, seeng my cabinet all illuminated, called out "Fire!" and awaked us between twelve and one oclock in the morning. My sons, knowing that I was not able to get out of bed, and unwilling to lose time in searching for the key, burst open the door of the cabinet, which is an uninhabited and detached building. They entered, notwithstanding the thick smoke and insupportable odour of the oily combustion, and found the cotton and chair so much on fire, that the flame, which rose to the ceiling, had already broken the glass and burnt the frame of the window. They immediately concluded, that this fire could arise only from the spontancous inflammation of the cotton impregnated and covered with boiled oil, since no person had entered the cabinet either with a lighted pipe, or with any other matters in a state of combustion. Observing that several persons in the manufactory refised to assent to this explanation, I agrain impregnated some dozens of skains of old cotton, which had been badty dyed, in the same manner as the burnt cotton. I then dried them in the open air: and seeing that the weather threatened rain, I exposed them on a rope, extended above the court, desiring one of the night watchmen to look at the cotion every quarter of an hour, and to throw it into a bucket of water as soon as he should see it begin to become heated. But as the man could not conceive the possibility of the spontaneous inflammation of cotton, as he himself acknowledged, he went his rounds without so much as looking towards the court. At length,
however, he came back to rest himself, and, by the great light be percived, was comvined of what I had foretold wonid be the comsequence of neglect. Finding that the cotton and rope were both burnt, he took the bucket of water to extinguith the suppoters, which were already both on fire.

Shout fificen rears ayn, with a view of preventing similar dangers, I made experiments at Colmar on spontaneons intlammations. I montioned the probability of tirca being occasionad be warm bodes, or bodies tending to be heatel, when deposited inconsiderately in places to which fire may be commenicated. The bodies of this kind, which I mentioned to those present, who were not sufficiently acquainted with the phrenomona of spontancous inflammation, are roasted coffee, cacao, fementing piants, ointmonts made with metallic oxides, inclosed quite hot in woodurbarces, bales of raw coton, as well as tinen or flax heaped on cach other at a warm tempcature, and even linen which has been ironed and put warm into drawers; in a word, all bodies covered with oil, such as silk and skains of coston. I showed them besides, that in all eases where the oxyen of the atmosphere is rapidly atracted and absorbed hy any cause whatcrer, the caloric, which served as a bace to the oxyeen and gave it the qualities of gas, or elatie propertics. is disengaged in such ahmodance, that if the absorbing bodics are susceptible of taking fire, or if combustible bodicsare in the neighbourhood, a spontancous infiammation will take place.

To prove to the porsons present, to whom chemical experiments were not familiar, the theory of these inflammations, I made the following experiments:-1st, The incandescence of a mixture of iron filings and sulphur kneaded in water.-od. The inflammation of boiled linseed oil by means of highly-concentrated nitric acid.-3d, The inflammation of phosphorus in atmosphericair, as well as in pure oxygen gas; placed for that purpose in a porcelain capsule orer boiling water, in order to separate the molecula by fusion withont having recourse to friction. - 4 th, The infimmation of rionphorated herdrogen gas by the contact of the atmosphere-an imitation of will-with-the-wis.-5th, The combuston of mophous thrown into the amosphere, and in pure oxygen gas.- - ith, The reduction into a charry iprons mase, prodeced ly the action of the amospheric ar of toredid bran put quic hot into a bag, the texture of which was not too close.

I was weil aware, that essential or rolatile oils become re.
sinons, and that drying oils boiled with metallie oxides become thick and hard in consequence of their combination with oxyeen. It was also for this reason that my skains, covered with a mixture of boiled linseed oil, were exposed during the whole day to the air, extended and insulated on poles ; but I then supposed them to be saturated with oxygen, and consequenty incapable of producing the leart accident. I was so secure in this point that I caused a great deal of impreynated cotton to be dried at screral times in warm apariments; they were not deranged but at the moment when they were washed in order to be dyed. It may however be possible that the proportion of a thirty-sisth part of boiled linseed cil, mixed with an alkaline solution of alumine, may be insuficient to eacite spontancous inflammation in skams of cotton heaped up after they have been dried. Those, therefore, who are induced, on account of the simplicity of the process, to employ a mixture of boiled linsed oil with an alkaline solution of alumine, must take the precuation to leare the skains extended and insulated on poles, until they are to be washed, previous to the operation of dyeing, which, together with the brightening, completely removes the excess of oil, and leaves only the portion saturated with oxygen ; so that no fears need aftewards be entertained.

Since the publication of m: memoir, I hare conrinced myself that the simplest brightening of Adrianople red, by which the liveliest and mo:t durate shades are obtaind, consists merely in rery long cbullition in bran water in a boiler furnished with a cover, having in the midale a pipe to suffer the rapours to escape, and prevent the bursting of the vessel; care only must be taken to renew the water as often as it becomes red; that is to say, two or there times at the commencensent of the ebullition. Without this precaution the skains would contimally resume the fawn-coloured parts which the bran water removes, and would never acquire a bright colour.

One may aroid all danger without lessening much the simplicity of my procese, whether the skains be heaped up or not: nothing is necessary but to apply at wo different times a stratum of olive oil, very much divided, after they have been well lixiniated, washed, and dried. For this purpose, a ley is formed of carbonate of potash or soda, which indicates one degree, or a degree and a half, of the areometer for saltpetre. Some drops of olive oil are then dropped into it, to try whether the resut will be a milky mixture, or whesher the oil will ascend in its nataral state to foat orer the
ley; for, as the alkaline carbonate may contain mere or less heterogeneous parts, in that case the ley must be weakened or strengthened by a new portion of alkali, until it absolutely assume a milky appearance by the mixture of oil. When the ley is properly proportioned, thirty-two parts of it must be mixed at first gradually and then more rapidly, continually stirring it, with one part of olive oil. This milky mixture will keep a long time; and if it be observed that the oil attempts to float under the form of cream, the mixture must be again stirred. The impregnation of the skains sl: ould be intrusted to workmen most experienced in this operation, because an exact distribution of the oily parts has a great influsnce in regard to the equality of the shades. Each workman ought to put as much of the milky mixture into any vesocl as will admit of a certain number of skains to be squeczed and twisted in it with facility. This labour must be continued, always taking the same number of skains and the same quantity of milky mixture. The part which has been expressed, each time, must be poured into a vessel apart; and the quantity of oil which the skains appear to have absorbed must be restored, if the little value of this rcsiduum, in consequence of its containing but a small quantity of oil, does not make it be rejected. The impregnation may be effected in the whole mass of the milky mixture; but in this case it will be necessary to continue to replace the quantity of oil which the skains may have absorbed, as soon as a diminution is observed in the intensity of the milky appearance. Expertness in this process may be easily acquired by practice. After the whole skains have been dried together, they must be impregnated a second time as before without being previously washed; and when they have been dried they may be impregnated, as I have mentioned in my memoir, either once, two or three times, in the alkaline solution of alumine, pure and without any mixture: by immersing the skains, shades more or less dark will then be obtained according to the number of impregnations.

To obtain, however, bright and at the same time uniform shades, it will be beiter to employ three impregnations, properly weakening the aikarne solution. One may then impregnate three times s. essively in this concentrated or weakened solution withe t previous washing: by these means the manipulations, which are often tedious and troublesome, may be shortened; but in this case it will be necessary to exanine the solution from time to time, to see whether what the impregnated and dried skains discharge in it do not render it too strong.

In re-dyeing shades of red, it will be necessary to ascertain first whether they have been brightened by means of boiling bran water, or by soap and alkalies. In the first case they will become darker, by still attracting colouring particles of the madder; in the second they are weakened, and lose the excess of alumine, without which repeated dyeing ean produce no effect. The removal of this excess of alumine may be prevented by substituting for soap and alkalies, to produce crimson shades, a portion of the alkaline solution of alumine, which must be added to the bran water towards the end of the brightening. Real Adrianople reds become much darker by re-dyeing them, and turn brown by the test of ebullition in water alkalized by ashes: these reds change only very little before they are re-dyed. In general, reds become brown more or less disadvantageously according to the time they have been boiled in brightening them. As the real Adrianople reds have a strong smell, it is probable that the Turks employ fish oil, which they add directly to the alkaline solution of alumine, or mix with a very weak ley of alkaline carbonate.

The processes for dyeing Adrianople red can be infinitely varied; for in whatever manner and by whatever solvents, whether acids or alkalies, the alumine may have been fixed on the skains, when a light stratum of oil has been applied reds more or less bright will be obtained, according to the precaution entployed in maddering and brightening.

It appears to me more difficult to explain the reason why oils combine so casily with canstic alkalies to form soaps, and do not admit of being mixed with concentrated leys of alkaline carbonates, while they form a kind of artificial mik with these leys when very much diluted, because one might suspect a tendency to combination in such milky mixtures. A mere suspension of the integrant oily molecula, which would take place rather in the diluted ley than in the same ley more concentrated, is equally difficult to be explained.

It remains that I should rectify an injury done to the process for dyeing real Adrianople red in other manufactortes. What was shown to me was only of the most inferior quality. I have seen some since equal to the finest and most durable that can be produced. So that I am inelined to think that the merchandize of the Turks, like that of all other nations, is suited to the price which the purehaser wishes to give.

I must observe also, that among my burnt cotton there was some both times which had been impregnated with a
weak ler of earbonate of soda and boiled linsed oit m the proportion of an eighth, a twelfth, and a sixteenth. It therefore remains to ascertain whe ther this cotton will sooner catch fire than that impregnated with a mixture of the alkaline solution of ahmme and boiked linseed oil in the same proportions. As the latter mixture is suscepuble of atractmeg a little of the moisture of the ar, I am melined to think that cotton treated whth the first will infamesooncr. The trials which I continue to make in regarel to the ase of gall nuts in dyeing Adrianople red, indnee imo to believe that it is by the formaton of a gathate of ahmine that alumine is fixed upon cotton, that the gallic avid may be afterwards separated by an alkaline carbonate betore the process of dyeing is begun. When I have acquired certain information on this subject, I shall not fril to pablish the result.

IXI. On Spontaneons Infammations. By C. Bintholdi, Piofessor of Vatural r'milosophy and Clemistry*.

Tnes name of spontancous inflammation is given to that manibeted in a mmbastble body, without its being in immediate contact with a body in a siate of inflammation.

Combustion of thic kial may be occasioned by different canos, the principal of whin are:

1st, Violcat friction.
Ed, Action ot the sum.
3d, The disengagement of the caioric produced in bodies though not combustible, bet brought near to combustible bodies, to which they may communicate such a degree of beat that they intlame by the contact of the air.

4th, The fermentation of animal and vegetable substances heaped up in a large mass, which are neither too dey nor too moist, as hay, dung, dic.

Wh, The accumulation of wool, cotton, aad other amimal and veretable substances, covered with an oily matter, and particulaty a drying oil.

6th, The boiling of lumed oil for primers ink, of varnish, and in ceneral of cuery fat matect.

Tth, The torrefaction of diferent vegctable substances.
8th, Sulpharised and phosphorized hydrogen gas disengaged in several operations of nature, the last of which in parlicular inflame merely by the contact of the atmospheric

[^64]air even at a low temperature, and which often presents it self at the surface of the earth like a small flame, linown under the name of will-with-the-wisp, in places where anmal substances in a state of putrefaction have been buried: if there are other combustibles at that time on the spot where the disengagement takes place, they may readily be kindled.

9th, Phosphuret of lime and of potash which may be formed in the preparation of charcoal, especially in that of turt and some sorts of wood which grow in marshy places. This charcoal, when wet, or by merely attracting the moisture of the atmosphere, forms phosphorated hydrogen, which by the contact of the atmospheric air inflames, and may set fire to the whole mass of charcoal.

10th, The phosphorus which is sometimes formed, though rarele, in the carbonization of diferent kinds of wood, without being combined eithor with lime or putash in the state of phosphuret. This charcoal dous not inflame spontaneously at the common temperature of the air; but it may produce a detonation when struck with nitrate of potash, or some other nitrates or metallic oxides to which oxyen weakiy adheres, and which are found in a state of thermoxide retaining a great deal of latent caloric.

1. Friction.

It is generally known that two bodics when rubbed against each other become heated. The intensity of the heat produced depends on sereral circumstances, and raries chiefly in the ratio of the duration of the friction, and of the nature and surface of the rubbed bodies. If tbe friction takes place between combustible bodies, such as wood, the heat it excites may often be sufficient to inflame it ; if the bodies are not combustible, such as stones, or little combustible, as metals, they do not inflame themselves; but they may communicate to other combustible bodies around them such a degree of heat that the latter will inflame by contact with the atmospheric air.
D. Palcani repeated the experiments long known for obtaining fire by the friction of two pieces of wood, giving to one of the rubbing pieces the form of a tablet, and to the other that of a spindle or cylinder: the result of some of these experiments will be sufficient to show, that, in the construction of machines and instruments, more attention ought to be paid to the choice of the wood destined to be exposed to mutual friction.

Cylinters.		Tablet.	Durution.	Effer.
Bras mood	-	- Box -	5 min .	Sensible heat.
Dito		- Poplar	Ditto	Ditto
Ditto	-	- Oak -	Ditto	Ditto
Ditto	-	- Mulberry	3	Considerable heat and smoke
Ditto	-	- Laure!	Ditio	Ditto
Caure]	-	- Poplar	2	Ditto
Ditto	-	- Ivy	Ditto	Ditto
Ivy -	-	Box -	3	Ditto
Ditto	-	- Walnut	Ditto	Ditto
Olive	-	Olive	Ditio	Ditto
Nuberry	-	- Laurel	2	Consid. heat, smoke, and blackness
Ash	-	- Oak	5	Sensible heat
Ditto	-	- Fir	Ditio	Ditto
Pear-tree	-	Oak	Ditto	Ditto
Cherry	-	- Elm	Ditio	Ditto
Plum	-	- Apple-tree	Ditto	Ditto
Oak - -	-	Fir	Ditto	Ditto

Changing the experiment, and robbing a cylinder of one of the kinds of wood between two tablets of the other, a crinder of poplar for example betwcen two tablets of mulberry wood, the increase of the rubbed surfaces which are in contact with the air proluced a heat much more considerable, and almost the whole of the kinds of wood above enmmerated took fire.

The effect of friction still varies according as the woods employed, especiaily if they are of the same kind, are rubbed in the direction of the fibres, or when the fibres cross each other. In the first case, the friction and heat are much more considerable than in the second.

In large machines where there is much friction, heating may be prevented by continually directing a current of cold water on the rubbing sufaces: in common machines, carriages, \&e. it is diminished by covering the surjaces with an wily matter. There are many instances, during the great neats in summer, of carriages and other machines exposed to riolent motion inflaming, because care has not been taken to grease them. Grease, by hardening on the rubbing surfaces, instead of lessening the friction increases it ; and as this covering is highly combustible, it renders spontaneous inflammation more easy. In many cases, therefore, it is better to rub the machines with soap, talc, plumbago, or
other substances, which without being oily are very unctuous to the touch.

2. Action of the Sun.

The strongest heat is produced, all sorts of combustibles are kindled, and the most refractory substances are fused by exposure to the sun's rays concentrated by means of lenses or concave mirrors. It may happen that other bodies are in such a condition as to produce without our will the effects of lenses and of burning mirrors: though these effecto are rather physical than chemical, it is of importance to make them kown, in order to guard againat the danger of them. We have instances of fires produced by glass decanters filled with water and exposed to the sun in an apartment. When the form of the vessel is nearly similar to that of a lenticular or spherical glass, the rays are refracted, and produce, by uniting in the focus, a heat capable of setting fire to combustible bodies placed in it.

3. Heat excited in non-comluastille Bodies.

It is well known that quicklime immersed in water, or merely moistened, produces a considerable degree of heat. It has even been employed with success for heating at a small expense apartncuts, hot-houses, hot-beds, \&c. This property which quicklime has of disengaging a great deal of caloric by contact with the air, and that no less dangerous of dissolving and corroding animal substances immersed in it, require the greatcst precautions where considerable depols of quicklime are formed. To presere it, care must be taken to guard it from the contact of the air, and from moisture of every kind ; and particularly to remore from its neighbourhood all combutible bodies, such as wood, hav: straw, \&e., which might inflame spontaneously should the lime contract the least humidity. The Jouralal de la HaiteSaone save an account last year of the burning of a barn, one of the partitions of which being wood had caught fire, because a heap of quicklime, intended for repairing the farm-houses, liad been carclessly thrown against it.

A great number of similar phenomena take place in nature, where bodies, by changing their composition, or contracting new combinations, become so heated, or disengase so much caloric, that other combustible substances around them may be inflamed.
4. Fermentation of Animal and Vegetalle Sulistances. Most animal and regetable substances, if heaped upon each
cach oibci white they still retain their moisture, enter into fermentatinn ; a bunge iscfected in their composition, and they often become so much heated as to inflame. In this manner, haystacks, turf, fax, hemp, stras, and heaps of rugs in paper manuiactories, take fire.

The principal precutions onght to be employed in regard to hoy : if cut in a rainy seanon, it is generally stacked betore It is completely dry, and in this state it is the more disposed to forment and become hot. As soon as a stack of hav is observed to be in a state of fermentation, care must be taken nut to thros it down too specdily. The exterior stratit ought to be stonly detached one atter the other. When an opening is mak in the middle of a heated mase of hay, it almost always happens that the fire suddenly bursts forth.

Hinhing, however, is easier than to prevent such fatal accianta. When it is apprehended that hay about to be stacked is not completuly dry, it will be sutficient to strew wer each stratum a few handtals of muriate of soda (commonsali). The exponsi in this case ought to be a considewtion of no importance; for the satt, by absorbing the nonstu:e of the bay, mot only prevents its fermentation, and the inflammation whei thence resules, but it adds also to the hat a savour which excites the appetite of the catte, as $j=t$ their digestion, and preserves them from a great many distases.

During the great heats of summer it often happens that heaps of dung influme spontanemsir. (ireat care therefore nata be daton wo water dunghtis fom thme to time, and to kean them at a cerata distmoce from houses, both to prevent liee atal for the salic of salabricy.
3. The Alcumatation of Aminob and Figrtatite Substances covered with Oil.
If amimal and vegciable substances heaped un in a large mass an be inflamed in consequence of the beat produced by their decomposition, this aecidcot is more to be apprebeaded whon they are comed with oily matters, and espewally a drymo ot.

Besides the acedent which hapnened at the manufactory of i agedbat, amd of which my colleague Haussman has given an account, and the fre which took place in one of the incet manfactores at saibte Marie-aux-Mines, we have other instances of wool, stuff, and pieces of cluth which were not scourel taking fire in magazines when folded up, and even during the thme of their convesance tion one phae to another, when herped upon each other.

This is principally to be appertended when linseed oil is employed in the manufacturing of cloth, or any other oil drying of itself, or rendered liying by oxide of lead.

In cloth manufactories, thercfore, no oil but olive or rape oil ought o be cmployed for greasing wool.

It sometimes happens that in boiling Howers and herbs in oil, which is the case in several phamaceutic operations, these herts, after being taken out and dried, inflame spontaneously: care, therefore, must be taken, when they are thrown aside, not to heap thein up near other combustibic bodics.

We have several instances of ships having been burnt in port either by the spontaneons combustion of cordage heaped up and strongly corered with pitch, or of a mixture of boiled linseed oil and lamp, black inclosed in a bag.

6. The Boiling of Oily Matters.

In the preparation of some kinds of varnish, such as printers' ink, where in ecneral linseed oil boiled to a certain consistence is employed, it often happens that the sil inflames, if the necessary precautions are not taken. The same effect is produced in melting butter, tallow, or any other greasy substance, if in be too much heated; so that in these operations every other combustible body shonld be kept at a distance, and a covering should be in readincss to place over the ressel as soon as the matter has caught fire: care also ought to be taken not to pour in water, which, instead of extinguishing the fire, would give more expansion to its activity.

7. Torrefaction.

There are many regetable substances which by torrefaction acquire an increase of their property to inflame spontaneously if inclosed in bags of cloth, which leare them in contact with the surrounding amosphere. Of this kind are sawdust, burnt coffee, the farina of gramineous and the frits of leguminous plants, such as beans, lentils, pease, \&e.

There are several instances of fircs breaking ont in stables by a bag of torrefied bran applied to the neck of a diseased animal, and which inflamed spontancously. The people in the country persist in employing this renedy, for which others more efficacious and less dangerous might be substituted. At any rate. ther ought to take care not to inclose the bran in cloth either too hot os: too mach torrefied.

Brewers, after causing the bartey and other grain which
they use for beer to germinate, dry it in a kiln or stove, except that destined for pale beer; and they generally dry it in a greater or less degree, to give to the beer a colour more or lesi dark. If the grain when taken from the kiln is put warm into sacks, it sometimes happens that they imflame, and occasion fires in brew-houses.

8. Sulpluurized and Phosphorized Hydrogen Gas.

Subterranean fres and volcanoes are generally ascribed to the decomposition of pyrites and metallic sulphurets buried in the bosom of the earth. These pyritous masses are decomposed by the contact and concurrence of water and air, and the decomposition is always accompanied with a great expansion of caloric, and a disengagement of a highly inflammable gas called sulphurized hydrogen gas. This gas inflames at an elevated tempera ure, and may communicate i: flammation to the sulphur of pyrites, to coals, and other Lituminous matters with which they are in general accompanicd.

Similar inflammations are observed sometimes in the neighbourhood of coal mincs. In working coal mines, vems and insulated pieces of pyrites are ofiten found: as pyrites always commt nicates a bad quality to coal, the miners generally lay it aside and take it out of the pit. If these leaps of pyrites, intermixed with coal, are then expred to the alternate action of the sun and rain, they become heatcl, and inflame. Great care must therefore be taken thak such heaps of pyrites be removed from all combustible k odics to which they would necessarily communicate infle mmation. There are many operations in nature in which sulphurized hytdrogen gas is produced; but it often forms other combinations, according as it is dissolved in wate;, or is disengaged at a temperature too low to be able to inflame.

When phosphorus is boiled in a solution of potash or of lime, there is disengaged phosphorized hydrogen gas, which keing much more combustible than sulpharized hydrogen gas, inflames at a low temperature as soon as it conimes into contact with atmospheric air. This gas, which in chemical experiments cxhibits the beautiful spectacle of a fountain of fire over water, is produced naturally by the putrefaction of animal substances which have been buried. The flames often seen to issuc from the earth, and which are known under the name of will-with-the-wisp, arise only from phosphorized hydrogen gas: as these fires generally appear in the open fields in places where they are not in contact with
dry combustible matters, they rarely produce disagrecable accidents; but it is disengaged also in forests, and it may happen in very warno summers, when the grass and bushes are contirely dry, that the gas in combustion will meet with these combustrble matters, set fire to them, and in this mamer burn the whole forest. We ought not therefore, on too slight grounds, or without sufficient reason, to ascribe to malevolence or to meendiarics those fatal erents which sometimes are the result of causes purely natural.
9. Sulphuret and Phosphuret of Lime and Potasin forme? during the Combstion of several Iegetalle:.
When gupsum (sulphate of lime) or anv other sulphate. cither earthy or alkathe, is strongly heated with charcoal of wood, or in general with any combustible matter which by heat is reduced to charcoal, sulphur is formed. These salts produce sulphureous waters, if anmal or vegetable substances are suffered to remain in water in which they are dissolved, so that rery often nothing is necessary but a little sulphate of linte to communicate to stagnant water the odour and taste of sulphur.

Pyoptorus is obtained by caleining common alum or sulphate of potash with sugar, farma, or any matter which becomes reduced to charcoul.

The inflammation of pyrophorns, which takes fire mere! y by the contact of damp an, arises only from the sulphure: of potash, which by atracting the humidity of the air becomes heated to such a degree as to set fire to the carbonaceous matter around it, and which being in a state of great tenuity is the more disposed to burn.

But as many of our common combustible matters contain sulphuric salts, it may happen that in their combustion there is sometimes accidentally formed some pyrophoric matter, which remains in the residuum of the combustion; especially if the combustible mater is not entirely consumed, and if a part of it coly is reduced to charcoal; whish sometimes happens in fir-places where the conbustibles are not burnt in grates, and where the ashes are not separated from the charcoal. There have been instances of houses being set on fire b ahes intornised with charcoal taken too soon from the heurti and deposited in places where they were surrounded b: combustitles, which they set fire to by spontancous infammation. Happily these causes of fires rarely occur; for prophores does not long retain its property if infomine and it often decomposed soon after it has been fomed, yithout being able to prounce

[^65]that disagrecable event. Care, however, ought ahways to be taken not to put akhes newly burnt, and which are still mined with chareoal, in places where they may have a communication with combustibles.

The formation of a perophonic matter is remarked chiefly in the preparation of common soda, which is obtained by the incincration of several marme plants containing a great dal of sulphate of suda, and whioh in burning furnsth al. ways a greater or les quanty of sulphur aceording to the manner in which the operation is dircoted.

The formation of the phosplaret of lime has great analoge with that of the suphuret of lime. Though the phosphoric acit is not foum so often in regetables as the sulphuric acd, it howerer exists in them in much larger quantity than has hitherto been supposed: it is fond chiety in the greater part of plants which grow in marshy places, in turf, and in several kinds of white wood. By reducing these kinds of wood to charcoal there is sometines formed a small quantity of phosphorns, which may remain combined with the same bases which retaized the phosphoric acid before the combuation: phosphorus, by contracting other combinations, may be no longer susceptible of producing any accident ; but it may happen also, by the concurrence of various circumstances, that charcoal impregnated with any phosphuret, when exposed to the action of wam and moist air, will discngage phosphorated hydrogen gas, which by the contact of the atmospheric air may kindle, and commonicate inflammation to the mass of charcoal.

Two instances of this kind of spontancous combustion took place in the powder monufactory of Fssone in the vears S and 10 . The first time the fire broke out in the box for sifting the charcoal, and the second time the charcoal repository took fire, whout room being left for suspecting that it conld arise from any thing but spontaneons inflammation. The different reports on these two events were inserted in the public journals, but the explanations given were not sufficiently satisfactory. It appears very probable that they were occasioned by some phosphorus contained in the charcoal ; and this explanation is the more founded in reason, as the alder wood nsed at Essone as well as in most of the powder mantactories, and which on many accounts deserves the preference over other kinds of wood for the making of gumpowder, contains phosphoric acid; at least that which grows in our neighbourhood does.

Charred turf begins to be used in some manufactories, and for different operations; but as it is mach disposed to
spontaneous inflammation, the use of it ought to be abandoned, or great care should be employed in preserving it. Magazines of this substance, both at Paris and other places, which were uncovered, have been inflamed by the combined action of the heat and rain.

10. The Phosphorus contained sometines in Charcoal.

It may happen also that the small quantity of phosphorus, which is sometimes formed in the carbonization of different kinds of wood, without uniting to lime or to potash, remains combined with the charcoal, which in this case does not disengage phosphorated hydrogen gas, and does not easily inflame by the mere action of water or moist air, but which may produce a violent detonation when struck with saltpetre (nitrate of potash). It is very probable that the three successive explosions which took place in the powdermill of Vonges were in part owing to a similar cause.

Charcoal in general has a great influence on the different products of nature and the arts. It is often observed in forges and founderies, especially those of iron, that the products vary according to the nature of the charcoal employed. The bad quality found sometimes in iron of being cold short is generally ascribed to phosphoric acid contained in the ore; but as the ore by the same processes furnishes in the same foundery one kind of iron better than another, the difficence appears often to arise in part from the charcoal.
LXII. Remarks on Men of gigantic Stature, and particulerly on the lish Giunt, O'Brien. By Mrr. Blair, Surgeon of the Lock Hospital, evc. © c. *

THe existence of whole nations of gigantic persons may well be questioned ; but there can be no reasonable doubt of the reality of certain individuals, whose stature has greatly exceeded that of men in general. The exact height of Og , king of Bashan, has been variously computed; some supposing him to have been more than twelve English feet, while others think his stature did not exceed eleven feet. In like manner, the giant Goliah is generally computed to have been about nine feet nine inches; but bishop Cumberland supposes he might have been full eleven feet high. The emperor Maximinus is said to have been nine feet; and

[^66]several other Romans of equal stature are reported to have lived in the reign of Augustus, \&e. Accounts are contaned in the Philosophical Transactions, of human skeletons dug up in England, measuring cight and nine foet in length, which probably were Roman. Eredible relaturn anong the moderns are liken iee to be found, of men and women fully equal in size to am of the antients whose existence can be verified; although I think now credit can be attached to the fabutous and eontratictory storics of the Patagonian people, who have been represented as a mation of gimats. A commissary on board Le Maire's flect affrmed that he had measured the boncs of men, in sepuldines of South imericin, between eleven and twelve feet high; and Tumer, the maturalist, declareas that he had seen on the Brazileoast a race of very gigantic savages, one of whom meanured twelve feet. The decharation of Tumer is, moneover, rendered credible by monsien Thevet, who, in his deseription of America, published at Paric 1575 , tells us he satw and measured the skeleton of a Gonth American, then not many years dad, which was cleven feet five inches in length; his skull was three feet one inch in circuanference, and the legboncs full thres fect four inches long. To these remarkable instances may be aded a well-proportioned living man, whom Diemorbroeck saw at Juccht, measuring cight feet sis inches, and who is likewise mentioned by Mr. Ray. Also a routh, scen be Dr. Becamus, who was nearly nine fect high; a man ahmosi ton feet, and a woman quite ten feet. Among our own countrymen may be named Walter Parsone, porter to king danes the finst, about seven feet seven mehes in stature; and Edward Malnene for Mctloon), whom Dr. Notrmen and Dr. Musgrave have described, of the sane height, A.1). 105日-5. In the forte-first and fore-second volumes of the Philosophival Trasactions are wo engravings tation from en ostrontis and anos bregmatis, the fromer of which is reckoned to have belonged to a perso: between clesen and twedre feet high, the other to a giant of thirteen feet four mehes; but no history is given of the wher bonce of these skelctons. The Chince pretend to have had men among themeven so prodigions as fifteen feet high! Perhaps these retations are no leiter founded than their chronological fables. Howerer, I bow shall subjoin a short account of Mr. O'Bricn, the Imishman who has lately been exhibited in London, and who pretends, in his printed advertisements, to be nearly mine feet high.

I visited this Inishman on the lifth of Mar, 150f, at No. 13, liamarket: he was of a wery extmordmary tature, but
not well formed. As he would not suffer a minute examimation to be made of his person, it is impossible to give any other than a very slight description of him. He dechined the proposal of walking across the room, and I believe was afraid of discovering his extreme imbecility. He had the general aspect of a weak and umreflecting person, with an uncommonly lew forchead; for, as near as I could ascertain, the space above his ere-brows, in a perpendienlar line to the top of his head, did not exeed two inches. He told me his agre was thirty-eight years, and that most of his ancestors, by his mother's side, were very large persons. The disproportionate size of his hands struck ne with surprise, and in this ne seemed to make his principal boast. He refused to allow a cast to be made of his hand, and said it had been done many years ago: but as I have seen that cast at Mr. Bacon's, I am convinced the size is much too small to represent his present state of growth. All his joints were large, and perhaps rickety; hisks appeared swollen, misshapen, and, I thought, dropsical : hovever, he did not like my touching them. The feet were clumsy, and concealed as much as possible by high shocs. His limbs were not very stont, especiaily his arms, and I judged that he had scarcely get the use of them; for, in order to lift up his hand, he seemed obliged to swing the whole arm, as if he had no power of raising it by the aetion of the deltoid muscle. He certainly had a greater redundance of bone than of muscle, and gave me the impression of a hure, overgrown, sickly boy; his woice being rather feeble as well as his bodily energies, and his age appearing under that which ke affirmed. Indeed I find he gave a different account of himself to different risitors. The state of his pulse agreed with the general appearance of his person, viz. feeble, languid, and slow iri its motions. With regard to his actual height, I felt anxious to detect the fallacy he held out of its being almost nine foct! Upon extending my arm to the utmost, I reached his eye-brow with my little finger; allowing his height to have been two inches and a quarter above this, it could not be more in the whole than seven feet ten inches; so that I am persuaded the common opinion, founded on the giant's own tale, is greatly exargerated.
LXIII. Copy of a Letter from Mr. Cuthbertson to Dr. Pearson, communicating an important and curious distinguishing Property betueen the Galvanic and Electrie Fluids*.

I

 DEAR SIR,ITHink it right to inform you, that yesterday evening I resumed the experiments with the Galvanic batteries. The result was:

1. Charcoal was deflagrated and ignited for above an inch in length.
2. Fron wire, 1-40th inch diameter, was melted into a ball 1-16th meh diameter.
3. Platina wire, $\mathrm{I}-100 \mathrm{th}$ inch diametcr, was melted into a ball $1-10$ th inch diameter.
4. Brass wire, 1-20th inch diameter, $3-4$ th inch in length, was ignited.
5. Brass wire, 1-16th inch diameter, was red hot at the end.
6. Iron wire, 1-150th inch diameter, was red hot for sixteen inches in length.
7. Iron wire, twelse inches, deflagrated, and melted into a ball.
8. Iron wire, six inches in length, was deflagrated.
9. Iron wire, eight inches in length, was ignited.

Two troughs, each trough containing thirty pairs of plates six inches square, were used for the firt seren experimente, and one of these troughs only for the two last experiments.

The four lest experiments prove, I think, that doulle quantities of Galvanic fluid only lum doulle lengths of wire, and not the square, as electrical discharges do.

I am with the greatest respect, sir,
Your very humble servant,
Poland-street. Soho, John Cuthbertson.
${ }_{27 \text { th }}$ March, 1804.
LXIV. Proceedings of Learned Societies.

royal society of gottingen.

$T_{\text {He physical class has proposed the following prize ques- }}$ tion for the month of November, 1805:

Quum physiologi de vasculoso vegetabilium contextu diversa prorsus statuant, aliis, iisque antiquioribus, illum ad-

[^67]serentibus, recentioribus contra in alia omnia euntibus; novis experimentis, opemicroscopii compositi curate instituendis, elici probarique cupit Societas: utrum omnino a Malpighii, Grewii, du Hamelii, Mustelii, Hedwigique observationibus ac placitis standun sit, an vegetabilium natura ai anmali fabica prorsus differat, omminoque vel fibrarums fibriliarumque, qux Medici est sententia, vel cellularum ac tubulorm (tissid tululaire) contextu ace structura contincatur.
"As physiohorists have been of different and opposite opinions respecting the rascular structure of regetables, the more antient mamaining, whilst some modern have denied, its existence: the society are desirous that new microscopical experiments should be institited, in order to decide by them, whether the observations of Malpigh, Grew, Duhamel, Mustel, and Hedwig, be well fonded, or whether the structure of vegetables be difterent in its mature from that of animals, and composed of a peculiar and more simple organization; consistigg, according to the opinion of Casimir Medicas, of fibres and fibrils; or, aceording to that of Mirbel, of collular and tubular texture (bissm tubulaire)."

At the same time regard is io be had to the following subordinate querics:-1. How many sorts of vessels can be with certanty assumed from the first priod of dovelopement of the plant? and, in case they really exist,-2. Are those ressels which are called spiral (rusa spiralia) themselves hollow? or do they serve to form proper canals by their spiral tums? and, 3. How do both the fluids and gases move in them! 4. Do, according to Sprengel, the spurious trachea (treppen-gänge) originate from the coalition of these spiral fibres? or, on the contrary, according to Mirbel, do the latter taice their origin from the former? 3. Do the alburnum (l'aubier') and ligneous fibres originate from the spurious trachere; or rather from original and peculiar vessels, or from a vascular toxture?

The premium is fifty dacats, and the latest period for receiving the obsersations is before the end of September 1805.

ORIGINAL VACCINE POCR INSTITUTIGN.

On Monday April 30th ult. there was a most iespectable and agrecable annual meeting of the govemors of this Institution, established Janaary 1800. Before dimer the earl of Cholmondeley, the president, being in the chair, the continuation of the report was read, of the investigation of
< 4
the
the laws of agency of the vaccine pock matter, and of the practice and proceedings of the institution, as written by the physicians Drs. Pearson, Nikell and Nelson. The necessity of such inquiries will be anderstood be all who are aware how little was known on the firt promilgation of the cow pock inoculation in 1795 ; and of course how many errors must have been commetted in the subsequent practice. The rude state in the first three or four years is clearly cxposed by the report published in a former year, and is again exposed by the numerous additional fact related in the one read the other day. Among other resolutions, ware-

1. That the thanks of the meeting be given to Drs. I'arson, Nikell, and Nelson, for their able report.
2. That this report be printed under their direction.
3. That the thanks of this mecting be given to the whole of the Medical Establishment for their gratuitous * services.

Till the report be printed, it may be interesting to our readers to lay before them an extract relating to the effect of the new inoculation, in diminishing the mortality of the small pox, concerning which such contrary statements have been published by persons either unacquainted with the facts, or from motives of selt-interest.

One of the objects of this institution has been to furnish instructions for the vaccine practice; and this has been done by showing patients to visitors and stadents, as well as by public lectures; and also by written and printed papers. It has accordingly disseminated the new inoculation through many partio of the world. By this time its instructions and matter have introduced the raccine inoenlation into New South Wales, as it did before at Paris, Vienna, \&ic. Sc. It may be cxpected from the cextensive practice of vaccination, (this institution alone having vaccinated, and been the immediate means of vaccinating, 00,000 persons,) that the fatality of the small pox must have been dimmished. That diminution, however, does not yet appear; for the bill of mortality for London reports 1202 to have died in the year 1803 , whereas 1111 died in 1799, 592 only in 1797, and 1040 in 1795: and although the mumber has been greater in the intermediate years, yet still the hast year 1002 is not much less than the mean number for each vear during any five years for half a century past.-How it has happened that no diminution of

[^68]mortality is yet perceived, may eacily be understood, when it is considered that the persons inoculated for the cow pook are chiefly those who wonld have been inoculated for the small pox; and therefore the same proportion remaincd for the natural small pox. Hence, hitherto, vaccine inoculation, like the small pox inoculation, is only a benefit to individuals; but that benefit is very much greater than the variolous inoculation, although the variolous inoculation, by preventing the natural small pox, was, till the vaccine inoculation, the greatest benefit in phrsic. Prejudice, indolence, ignorance, want of opportunities, still occasion inoculation of either kind to be but partially adopted by society at large. How far lawa might be eatablished, or means be found out, for every person within a certain period after birth being inoculated, cannot be discussed on this oceasion, however important the question may be for the legislature.

After dinner, the president being obliged to attend the house of peers, the following statement was delivered by the right honourable lord Petre, one of the vice-presidents:-
"The grand object of this institution, on its establishmont a little more than four years ago, was, to extinguish the small pox, by substituting for it the inoculation of the cow pock: but however great the obligations of the public were to Dr. Jenner, the promulgator of the leading practical fact in 1708 , to Dr. iparson, also in 1798, and to Dr. Woodville, in 1799 , for their investigation to justify the new inoculation, still a professed institution was wanting in order to,
" I. Extend by gratuitona inoculation the history of the vaccine pock, of which, comparatively, but little was still known.
" II. To diffuse the knowlede of the new practice.
${ }^{*}$ III. To preserve a succesion of patients for matter for the use of the public.
" To what cxtent the first of these designs has been executed may be judged from the report published in a former year, and from the papers distributed containing directions for inoculation; and will be judged of further by the report this day read, and ordered to be printed.
"With regard to the second part of the plan, the diffusing the knowildge of the new inoculation; the practice has been publicly carried on twice a week since January 1800, at which a great number of practitioners and many siudents. have been present for instruction.
"Institutions confessedly upon a similar plan have been established
established in other places, and instructions for the practice have been disseminated in every quarter of the world.
"With regard to the third part of the plan, the succession and the supply of matter; as might be supposed, the numbers inoculated in the years 1800 and 1501 were not considerable. However, a register has been kept, and more or fewer eases have been registered twice a week from January 1800 up to the present time; thereby affording a body of cridence of very neally two thousand patients, which have been subjects of observation during this space of time. Such a long and uninterrupted course of observation we apprehend has no where else been pursued. The advantages for observation of even half a dozen pationts a week, from 200 to 220 weeks successively, orer any greater than the total number here inoculated but in a few months or a few weeks, can be well conccived by those who have ever been employed in obscriation, and need not be explained.
\therefore It appears that not less than 12,000 parcels of matter have been furnished by this institution ; and thereby it is estimated fairly, that not fewer than 6o,0oopersons lave been vaccinated with matter dircetly from this institution; besides incalculable numbers from those so vaccinated.
"The whole pecumiary expense for these benefits amounts to little more than three hundred pounds per annem: and although the stibscriptions are roluntary, and mostly of small annual sums; and although the institution has sustamed great expenses, and pecuniary losees, chiefly from unfortunately parting with money on a loan, and from being obliged to change their honse for the practice; yet there is a surplus of 5501 . stock in the funds, and a respectable balance in the hands of the banker: and what is surprising, is, that many persons have received rewards to submit to the test of small pox inoculation, and others have been relieved who were in distressed circumstances.
"We apprehend there is not to be found in the conduct of any other institution, an example of even nearly so much benefit to individuals in particular, and society at large, at so small an expense. Howcer, although it be very true, that provided the present subseribers be permament, the income will be adequate to the present expenditure, it is not to be dissembled that the practice and inquiry might be conducted upon a larger seale, and more agrecably to the different offeces, if their income would allow it. Accordingly, althongh it is not the plan of this mecting to canvass for subscriptions, it is hoped that its friends will thereby be augmented in such a manner as is thought pro-
per; the public having already had an earnest, that their benefactions will be ceconomically yet efficaciously employed by the present managers."

MOYAE JENNERIAN SOCIETY.

On Thursday the 1 th of Mar, the anniversary of the institution of this society was celebrated at the Crown and Anchor Tavern, in the Strand. His grace the cluke of Bedford was in the chair.

After dinner was over, the health of the king, \&ic. drank, Mr. Denjamin Travers rose and stated the progress of the vaccine inoculation. He mentioned, that for ten years previous to the year 1502, the annual average of deaths by the small poo, within the bills of mortality of London, were at the rate of 1850 , and that within the last year the deaths had not amounted to 1000 . The expenses of this society, in the establishment of a central and other houses for the purposes of the institution, amounted to a considerable sun in the first instance, and would arnually require the expenditure of 10001 . ; to provide for which, the trustees at present had only a fund of 4001 . a year in the stocks and in subscriptions. After describing the salutary influerice of the discovery of Dr. Jenner in other countries, and particularly in the East Indies, Mr. Travers read over the names of the different subscribers, and delivered an interesting and forcible appeal to the feelings of the company, to excite them to use their umost endearours to augment the resoures and propagate the views of the society. He concluded by paying a very handsome compliment to Dr. Jenner, whose name he observed would flourish when nations yet unborn would be forgotten. Exegit monumentum ære perennius.
Several persons bore testimony to the efficacy of the vaccine inoculation, in preventing the propagation of the small pox ; among whom were Dr. Ring and Mr. Rowland Hill. The latter stated that he himself, according to the directions of Dr. Jenner, had inoculated above 1600 persons within the last year, and that the effects desired had been produced upon the whole. Nothing, he caid, could be more simple than the operation, which he was convinced did not even require the interposition of any medical gentleman in the first instance: but should such interposition be afterwards required, which he did not think likely, he was sure none of the homourable profession would hesitate to afford such assistance to the poor gratis.

In the corre of the cuening, Dr. Tetsom apologizad for the alsence of Dr. Jenace, who whs prevented from attending by indieposition.

MOYAL ACADEAY.

The exhihition of this year is, upon the whole, highly creditable to the artists of Great Britain. It is true, that in the higher watk of painting the specimens are not numerous: that deficiency is not, however, to be attributed to want of talent in the painters of our country : at different times they have evinced, that if proper encouragement were given, we have more than one artist capable of rising to excellence as an historical painter. This is not the place to point out the causes of this want of encouragement, which damps the ardour of British genive, and compels it to "skim the midway air," while it feels all the energy which the boldest flight demands. That ardour the artist is foreed to restrain ; for it requires no great discemment, nor length of time, to discorer that a man may exist without fame, though he cannot without lread, and he is aware that he has a chance to paint a thousand portraits before he can find one employer for one historical composition. What follows? He must eat, and therefore must paint portrais.

We have observed for many years past, that attempts have been made by several individuals of the Pritish sehool, at what may be temed, in this political age, a coalition between history- and portrait-painting. Of this attempt, when kept within proper bounds, we highly approve. Sir J. hevnolds was often successful in this way. He possessed an elegance of mind, a delicacy of taste, and soundness of judrment, which rendered this attempt successful in his hands. He did not, if we remember well, carry this coalition beyond one or two figures. Others followicd him in this line with more or less suecess; bit, if we are not mistaken, those productions which have exhihited a mol of portrais on the historical canrass, though they have generally succeeded as to profit, have not obtained the upprotation of the true connoisseur. Fettered by the unpicturesque lines of modern dress, and pestered by every person be was to represent, to make him a prominent figure in the picture, the artist was obliged to sacrifice every rule of composition, and succeeded accordingly. From this general censure we must except The Death of Wolfe, by Mr. W'cst.

We now pass to a few observations on the pictures of this year.

The President, No. 30. Destruction of the Beast and falst
fulse Prophet.-This extensire composition is a work of great merit. The union of effcet, in spite of the heterogenenus parts of which it is formed, deserves high prase. The principal figure is howerer defective both in dignity and beaty.

Mr. Westall, No. @3. Henry III. replying to the Bishops. -This subject, which is not an easy one, is well treated. The artist has given that sariety of character to his coclesiastics, which preserves the pieture from monotony. Thery all feel abashed and disappointed, but each feels according to his peculiar character. Had there been more of sareasm thrown into the facce of the king, it would have improved the picture. This, thongh not suited to his general character, certainly suited the occasion. The comperition is simpie and chaste, and there is a richess and sobricty in the colouring, with much depth of tone.

Among the drawings by Mr. Westall, are four portraits, which, coming from an artise hitherto employed in the higher walks of the art, may perhapo be justly estecmed the greatest novelty of the present exhibition. The subjects are all highly fasourable, and the artist has diversified the scenery so as to give cach of the drawings a character peculiarly its own.-No. 363, Portrait of Miss Bennet, is distinguished by the beanty and clegance of the figure, and the Iuxuriance of the landicape--No.355, Portrait of Miss Esten, as Lina, strikes by the patient gentleness of the figrere, opposed to the ficree watchfulness of the lion, snd the rugged grandeur of the forest scene.-No. 374, Porrait of Mirs. Esten. This drawing is characterized by the gracefulness of the figure, and the rich sobriety of the landscape. -No. 377, Portreit of Miss Eanillon. There is an infantine simplicity mixed with great archness in the fgure; and the landscape, which is of the park kind, unites the charms of simple and cultivated nature. The colouring of each of the drawings is as distinct as the design, and is admirably suited to the different subjects.

As our artists are condemned to make portrait their chief object, it gives us pleasure to see that Mr. Westall has joined the coalition we before mentioned in our critique, as we hope for a continued gratification in this kind from his pencil. His portraits, independent of correct and graceful resomblance, are viewed with satisfaction as pictures by the eve of taste.

Mr. Opie, No. 71. Gil Blas taking the Fey from Dame Lemorct.--Deautiful in effect, but truth is sacrificed to produce it. The intended source of light is the torch held
by the young woman, but no part of the picture is illuminated by this torch. The head of the old woman is very tine, that of the young one is beatiful, and her figure extremely graceful. The composition of the whole is in the best manner of this master.

Mr. Farrington, No. s1. Vieu of Edinlurgh.-This is certainly the best picture of this artist in the present exhibition. The seene is well selected, and painted with great truth and delicacy. The hues are of that mild and unassuming kind which charm so much in nature, and are so seldom seen in art.

Mr. Lawrence, No. 95. The face of the lady (Mrs. Williams) is a beautiful representation of a beautiful subject, but the arm and some other parts of the picture appear unfmished. The portrait of Mr. Kemble, No. 110, is a very tine portrait, and a striking likeness. Mrs. Sidelons, No. 193, is, we think, intended to be in the historic style. There is much grandeur in it ; and though it do not possess all the feminine grace we could wish, it may perhaps be considered as the best female portrait in the room.

Sir William Beechey, No. 111. AChild gathering Shells. - As grandeur of effect was the object of Mr. Lawrence in his portrait of Mrs. Siddons, here the painter was to endearour to excite pleasing sensations. In this he has succeeded. The picture is painted with much delicacy, and the accompaniments contribute to impress the pleasing sensations which the painter intended should be excited. The placid delight of the child in her oceupations, as expressed by the artist, must give us a high opimion of his conceptions and execution.

Mr. Thomson, No. 151. Shipurecked Mariner.-A well-coloured picture. The figure not original, but judiciously applied. According to the quotation, he ought to be turned to the setting sun; but he is turned from it. The sun is setting in the back-ground of the picture, and the figure is illuminated by some other, and some greater light.

Mr. Owen, No. 198. Beggars.-An admirably coloured picture, and designed with great simplicity: but the point of sight is not chosen with judgment, it being placed so low, that the eye of the person of whom they are supposed to be asking charity, must be on a line with the kinee of the child; which could not be the case, unless the top of a wali had been selected as the best place to beg from.

Mrr. Turner, No. 183. Boats carrying out Anchors, doc.-

A picture of very great merit, mixed with some defects. The principal beaty of the work is the boatful of figures, odmirably coloured, and the water immediately around it, which is painted with a freedom and transparency of the most perfect kind.-Of the Narcissus and Echo by the same artist, we cannot speak in terms of such bigh praise. The parts are small; and the whole, though well coloured, is without that rigour which has been the general character of his works.-The best of his productions this year is the drawing, No. 373, Edinburgh, from the Caltoun Hill. Perliaps in richness, variety, and truth of colour, it may justly be preferred to any thing he ever exhibited.

On a future day, if we can find time and room, we shall resume our critique.

LXV. Intelligence and Miscellaneous Articles.

TYPOGRAPIAC ART IN TURKEY.

A letrer from Constantinople, dated the 27 th of February, states that typography begins to make some progres in that city. An edition of the Mussuhman catechism, forming an octavo volume of cighty-six pages, has just come from the press: it was printed under the inspection of Abdorahman-Effendi, director of the roval printing-office. It appears in general that the situation of copyist, the members of which are very munerous, will soon be as bad at Constantinople as it must have been at Rome or at Paris in the fiftenth century: one of their most luerative occupations was a kind of almanac of the Ramazan, which appears annually, with calculations, by the astronomers of the court, indicating for each day the hours of fasting and prayer. The scrupulous exactness of gooi Mahometans, in observing their Lent, procured to the copyists the sale of many thousands of these almanacs, which were rendered more or less valuable according to their calligraphic ment, and the number of ormanents with which they were cmbellished. This branch of industry, however, has been almost entirely destroyed since the last year. An almanac of the Ramazan has been printed at Scutari on Italian paper which resembles parchment: it contains for each day the hour and minute at which fasting ought to be begua; the length of each night during which it is allowed to Mussulmans to give thensches up to the pleasures of sense; and,
by way of supplement, as in the almanae of tiege, the days for blewling, taking physic, applying cupping-yhases, sec.

This imoration may appar to the Furopeans of very litle importance; but it dioplays boldices in the Turkish, govermment, whel wishes by these means to sound the sentments of the people, who dislike erey novelte. It has completely succeeded : the coprists only are allowed to mu:mur; but the indigent derotee is very ghad to procure his almanac cheaper. Govermment have tatien adrantage of this good disposition, and calendars for the whole year are now printed. If any philosopher should smile at the honourable mention which I here make of the first fruits of the Turkiontypography, let him only consult the list of the first works printed in (iemmany by Gutemberg and his associates, an:! at Paris by Clric Gerine, who was invited thither by the Sorbone. Other productions, which do more honour to the choice of Abdorahman-Effendi, might be mentioned; suci as the Amals of the Reign of AbdulHanct, which are in the press, and Faden's Adas, which he caused to been graved and printed last summer. The impression and engravig indeed are inferior to those of the maps of Itrahim-Effendi, published in the last century; but geographical knowleage is not wanting at Constantinople; and major Remel has obtamed from it very valuable information for the two large maps of Asia, on which he has been employed these two jears.

Antiouities.

In digging the canal of Aigucmotes at Deaucaire, tombs, earthen vases, and copper ring of great antiquity have been discorerch. These tombs, which are at the distance of abont fifteen hamdred toises from the present conse of the Rhone, consist of large chanders of macut stones phaced vertically, joined to cach other without cement or mortar, and covered with atones of the same form. Some of them contain human bones, ia such good preseration that the structure of them, with their different lamina, can be easily distinguished. In some others were found earthen resels glazed and unglazed, with four hambes, in the form of cinerary ums. There were fom also some anphore, which were employed by the antionts for buling wine ard for other purposic. These amphore contained copper rings, or brackets, which the antiens, and particulariy the Gauls, wore un their arms.
declination of the magnetic needle.
The declination of the needle, which was found at Thoulouse in 1770 to be $18^{\circ} 59^{\prime}$, and in 1780, $20^{\circ} 15^{\prime}$, and in $1790,21^{\circ} 5^{\prime}$, was observed on the 1st of Germinal, year 12 , to be $21^{\circ} 43^{\prime}$.

TRADE AND COMMERCE.

The Russian minister of commerce at St. Petersburgh, count Rumanzoff, has just caused to be published a collection of twenty-one important tables; which give a correct and comprehensive view of the present state of the Russian commerce with foreign nations. The count, in the introduction, which is written by himself, says: "The results of our trade have hitherto been kept secret; but where the sovereign is the father of his people, what has he to conceal from them? The emperor, therefore, has given orders that the whole commercial system of the kingdom should be communicated to the public." The 11th and 19th tables, which give an account of the gain which Russia makes by the transit trade between Europe and Asia, are particularly worthy of notice. The tables are divided into tive parts, which comprehend the trade on the Baltic, the White Sea, the Black Sea, the Caspian Sea, and the inland trade.

The provisions imported in the Baltic in the
year 1802 amounted to - 11330595
Exported - - $\quad 7041008$
Excess of the imports - - 4259587
The principal articles imported were

Sugar	-	-	4831311
Wine	-	-	2001577
Salt	-	-	1318641
Coffee	-	-	992138

Those exported

Rye	-	-	4041227
Wheat	-	-	1318745
Barley	-	978107	
metals imported amounted to	-	486074	

The articles were
Gold and silver in coin and in bars - 4000000
The metals exported amounted to - 3758040
Among which were
Iron - - 3i41928

The rest was copper.

HYDROGRAPHY.

An officer many years in the army in the East Indics, being struck with Mr. Churchman's ideas of reducing to a
system all the changes of the land gaining on the sea, and the contrary, which are gradually carried on throughout the world, requests us to make known a few facts which correspond with the Asiatic researches. He was acquainted with a lady, who died at Madras in the year 1797 at the adranced age of 96 years, who used to say that the sea had eneroached there about three English miles within her remembrance; that some years ago a row of cocoa-nut trees stood at the place where the ships now ride at anchor. From the time he left India in 1794 until his return there in 1799 , the sea had encroached so much as to cause the beach-house belonging to the customs, which stood at the south end of the fort, to be removed three miles to the north of it, and that the sea at that place continued to encroach gradually upon the land every ycar.

ANOTHER STONE FROM TIIE CLOUDS.

We have been at some pains to obtain correct information respecting this phrenomenon, which happened on the sth of April; and we have been assured by Robert Crauturd, esq. the proprietor of the ground where the stone fell, that the following particulars may be depended on; he himself, with the following gentlemen belonging to the university of Glasgow, riz. Dr. Freer, Dr. Jeffy, Professor Davidson, and Professor M6Turk, having taken considerable pains to have them ascertained.

On the day above mentioned, three men at work in a field at Possil, about threc miles morth from Cilasgow, were alarmed with a singular noise, which they think continued for about two minutes, seeming to proceed from the southeast to the north-west. At first, it appeared to resemble four reports from the firing of cannon, afterwards the sound of a bell, or rather of a gong, with a violently whizzing noise; and lastly they heard a sound as if some hard body struck with very great force the surface of the earth.

On the same day, in the formoon, sixteen men were at work in the Possil quarry, thirty feet below the surface of the ground, and there too an uncommon noise was heard, which, it is said, seemed at first to proceed from the firing of some camon; but afterwards the sound of hard substances hurling downwards over stones; and continuing in the whole for about the space of a minute.

By others who were at the quarry, riz. the overseer of the quarry, and a man who was upon a tree, to whom he was giving directions, the noise is deseribed as continuing about two minutes, appearing as if it began in the west, and
passed round by the south, towards the east; at first as if three or four cannon had been fired off, about the great bridge which conducts the Forth and Clyde canal over the river Kelvin, at the distance of a mile and a half westward from the quarry; and afterwards as a violent rushing, whizzing noise. Along with these last people, there were two boys, one of ten, and the other of four years old, and a dog: the dog, on hearing the noise, ran home seemingly in a great fright. The oversecr, during the continuance of the noise, on looking up to the atmosphere, observed in it a misty commotion, which occasioned in him a considerable alarm; when he called out to the man on the tree, "Come down, I think there is some judgment coming upon us;" and says, that the inan on the tree had scarcely got upon the ground, when something struck with great force, in a drain made for turnine of water, in the time of, or after rain, about ninety yards distance, splashing mud and water for about twenty feet round. The elder boy, led by the noise to look up to the atmosphere, says, that he observed the appearance of smoke in it, with something of a reddish colour moving rapidly through the air, from the west, till it fell on the ground. The younger boy, at the instant before the stroke against the earth was heard, called out, "Oh such a reek!" and says, that he then saw an appearance of smoke near the place where the body fell on the ground. The overseer immediately ran up to the place where the splashing was observed, when he saw a hole made at the bottom of the drain. In that place a small stream of water, perhaps about a quarter of an inch deep, was rumning over a gentle declivity, and no spring is near it. The hote was filling with water, and about six inches of it remained still empty. The overscer, having made bare his arm, thrust his hand and arm into the hole, which he judges to have been almost perpendicular, the bottom being perhaps rather a very little inclined to the east, and the upper part of it to the west: at the bottom of the whole he felt something hard, which he could not move with his hand. The hole was then cleared out, with a shovel and mattock, from an expectation that a cannon ball might be found; but nothing was observed except the natural stratum of soil, and a soft sandy rock upon which it lay, and two pieces of stune, that had penctrated a few inches through the rock. The pieces of stone he took to be whinstone, and thinks that they were eighteen inches below the bottom of the drain, and that the hole was about fifteen inches in diameter. He was not sensible of any particular heat in the water, or in
the pieces of stone, nor of any uncommon smell in the latter, although he applied them to his nostrils. He says, that the one piece of stone was about two inches long; that the other piece was about six inches long, four inches broad, and four inches thick, blunted at the edges andend; that the fractures of these pieces exactly coincided ; that he does not know whether the fracture was caused by the violence of the fall, or by the mattock; and that he never saw any such stone about the quarry.

Some days after, when the particulars which have been narrated, became known, a careful search was made for these pieces of stone, which had been disregarded, and the first-mentioned piece was soon found; but the largest piece having been used as a block in the quarry, and having fallen among rubbish, could not be discovered. Some days after, a fragment of it was detected. The two fragments recovered make the two extremes of the stone: on the surface they are pretty smooth, and of a black colour; but internally they have a grayish appearance. The intermediate part, larger than beth, seems as yet to be lost.
At the village of High Possil, which is within a quarter of a mile of the place where the stone fell, the noise gave much alarm to those who were in the open air; and there, it seems, they thought that the sounds proceeded from south-cast to north-west, agreeably to the report of the three men first mentioned.

Two men at work within a hundred yards of the house. of Possil were alarmed by the noise; ihey thought it over their heads, and that it resembled the report of a cannon, fix times repeated, at equal intervals, with a confused uncommon sound of ten minutes daration : the noise seemed to begin in the north, and to turn round by the west, south and east to the north.

The day was cold and cloudy; a little more cloudy in the north-east than in the other quarters.

It may be proper to remark, though the overseer did not observe the pieces of the stone to have any peculiar smell when he took them out, that when Mr. Craufurd obtained the first piece, it had a fishy and foetid smell, and that he noticed the second also to have the same flavour, but in a less degree. Another circumstance also deserves particular notice, because, coming from children, they could not possibly adapt their tale to the circumstances required by the nature of the phænomenon, and it therefore demands the more implicit credit. The eldest boy says he saw the smoke moving very
quick to the place where the stone fell, and something red in the smoke, and that the foremost part of the red sulstance was reddest ; which is exactly what might be expected to be the appearance, if the body was in a state of incandescence. The only thing singular in this case, if the boy was not deceived in what he believed himself to have seen, is, that the stone should have cooled so rapidly, even in water, as not to be sensibly hot to the touch when the overseer of the quarry thrust his arm into the hole which had been made by it.

About the time when theabovephemominon took place, a noise was heard in the air, at places at a considerable distance from where the stone fell. A person walking in his garden at Barnhill, Blantyre, nine miles southtast from Glasgow, heard five or six distinct reports as if from artillery, after which there were several thongh not loud peals of thunder, accompanied with some flashes of lightning. A somewhat similarnoise was heard at the same time near Airdrie, eleven miles east from Glasgow ; at Falkirk, which is twice the distance, in nearly the same direction; at Hamilton, cleven miles to the south, and at many other places.

VElocity of the galvanic fluid.

Vassali-Eandi has lately made some experiments on this subject, as Beccaria did in regard to the velocity of the electric fluid. The fluid of a pile of twenty-five pairs of plates traversed in a second thiricen metres (forty-two feet and a half) of gold cord. In another experiment with a pile of fifty pairs, the fluid passed along a copper wire plated with silver, three hundred and fifty-four metres (1151 feet) in length, in a time incommensurable: the shock in this case was three times as strong as that experienced by immediately touching the two extremities of the pile.

ACID FUMIGATIONS FOR INPECTED CATTLE.

T. Rasori has lately commonicated to M. Geyton Morveau the result of some experiments made $"$ ith acid fumigations to destroy contaginus diseases among cattle. Six oxen, which had for several days been attacked by an epizootic fever, died, though acid fumigations were employed. A cow was confined in a cow-house, where their straw and even the body of one of them had been left, and continued there forty days, during which fumigations with oxymuriatic acid gas were regularly made. The cow remained in good healits,
health, and showed no symptoms of disease. Sixty-two oxen, all evidently diseased, and of which eight were almost dying, were shut up in two cow-houses where similar fumigations were made: fifty-two of them were perfectly cured, though housed with the infected cattle. The author asks, whether they might not have been cured without the use of the fumigations?

PETRIFACTION.

A very curious petrifaction was found lately at Vaucelles, in the department du Nord. A workman, in attempting to square a stone obtained by demolishing the abbey of Yaucelles, split it into two parts; one of which exhibited the impression of a fish, and the other the fish in relief. The fish was examined by the professors of the college of Cambray, who repaired on purpose to the spot. It results from their observations, that it is one of the most beantiful and best preserved ichthyolites ever found. It is from twentyeight to thirty-one inches in longth, and seven inches in breadth. Were thing gives reason to think that it belongs to the class of the abdominals, and that it is a salmon. The scales are of a riolet colour mixed with yellow: a lateral line of a pale white, and nearer the back than the belly, traverses the whole body, and describes on it a curve. The colours of the impression are the same as those on the relief.

It has been ascertained that this stone was originally dug up from a quarry in the neighbourhood, but long since neglected. The proprietor of this natural curiosity has made a present of it to the museum of Cambray, but on condition of its not being given to any other musemm.

AKTS AND SCIENCES IN SPAIN.

The amateurs of foreign literature will learn with pleasure, that a new journal has been published at Madrid, muder the title of Miscellanies in the Sciences, Literature, and the Arts. The subjects which fom the object of this journal are divided into five parts :-1st, The physical and mathematical sciences, and the application of them to useful purposes: 2 d , Natural history: 3d, Agriculture, medicine, and the arts of industry: 4 th, The different branches of literature: 5th, The fine arts. Besides original pieces and translations from foreign works, which will form the principal part of the journal. Each number is to contain
an analysis of, and extracts from, Spanish and other works, but chiefly the former. A number appears on the 1 st and 15 th of each month, consisting of two sheets octavo, price eighteen rials per quarter. The first number was published January 1st, 1804.

LECTURES.

On Monday, June 4th, a course of lectures on physic and chemistry will recommence at the Laboratory, Whit-comb-street, Leicester-square, at the usual morning hours, viz. the Therapeutics at a quarter before eight, the Practice of Physic at half after eight, and the Chemistry at a quarter after nine ; by George Pearson, M.D. F.R.S., Senior Physician to St. George's Hospital, of the College of Physicians, \&ic. \&c.

A register is kept of Dr. Pearson's patients in St. George's Hospital; and an account of them is given at a clinical lecture every Saturday morning at nine o'clock.

The practice of vaccination will be shown, and lectures given as usual, during the summer, at the Institution, No. 44, Broad-street.

At the Theatre of Anatomy, Blenheim-street, Great Marloorough-street, Mr. Brookes will commence his course of lectures on Ariatomy, Physiology, and Surgery, on Saturday, the 9 th of June, at tio o'clock, when the introductorv lecture will be delivered.

The course will be continued on Monday the 11th, and every subsequent morning, at seven.

A suite of commodious. dissecting-rooms, thoroughly ventilated, will be opened at fise, attended by Mr. Brookes. All the subjects will be preserved by an antiseptic process.

Figure of the Orbits of the two new Plamets

METEOROLOGICAL TABLE*

For May 1804.

Davs of the Month.	Thermometer.			Height of the Barom, Inches.	Weather.
	$\begin{aligned} & n \\ & \frac{3}{0} . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \dot{\dot{b}} \\ \underset{Z}{z} \end{gathered}$			
1804. April 27	51°	59°	50°	29.54	Fair
28	52	59	50	-62	Small rain
29	54	69	54	$\cdot 91$	Fair
30	55	68	58	- 86	Fair
May 1	59	70	56	- 80	Fair
$\boldsymbol{\sim}$	55	67	54	-90	Fair
3	54	70	58	- 89	Fair
4	56	66	60	. 85	Showery
5	60	79	61	30.08	Fair
6	62	68	59	- 0	Cloudy
7	63	70	57	-29	Fair
8	59	63	48	-29	Fair
9	51	60	49	$\cdot 12$	Fair
10	54	64	51	29.91	Fair
11	53	57	44	$\cdot 92$	Showery
19	46	55	49	$30 \cdot 00$	Cloudy
13	50	57	50	-08	Fair
14	51	64	54	- 08	Fair
15	53	67	55	$30 \cdot 00$	Fair
16	56	69	50	29.88	Showery
17	49	65	54	$\cdot 78$	Fair
18	50	64	55	$30 \cdot 00$	Cloudy
19	58	68	57	29.75	Fair
20	61	68	53	$\cdot 78$	Fair
21	60	68	55	- 80	Fair
29	61	65	52	- 80	Small rain
23	55	66	53	$30 \cdot 05$	Fair
24	56	63	54	$29 \cdot 60$	Rain
25	52	60	54	$\cdot 75$	Cloudy
26	55	66	51	$\cdot 72$	Fair

- By Mr. Carey, of the Strand.

INDEX то VOL. XVIII.

-_, suritinic. To collect, when making amber varnish, 278
—.. A new vegetable, 283
——, niltous. Dulcified, employed to give vinons flavour to spirits from corn, $\quad 322$ $A ; i d j$. Use of, in vegetation, 80 , 81; in medicine, $\quad 127$ Adriancple red. Process for dyeing,
Affintics. Experiments respecting, $\quad 19 j, 289$ Agriculiture. Culture of orchis root, 159 ; of anatto tree, 273 Aikin. Thornton's letter to, 326 Air•食un:p vap,ur-bath recommended,

114
Abler warnish. Succinic acid produced when making, 279
Anerica, South. Geolocy of, 26, 172
Ambbibious animals. Curious experiments on,
Analysis of cancharides, $\quad 145$
Anatomy of polyptera, $\quad 36$
Anatlo. Un culture and preparation of, 275
Animal substantics, boild, absorb
oxygen,
257
Anliquities, $\quad 283,368$
Argillaceous earth, use of, in soils, 79
Arrows. On poisoning, s_{3} Arictical acid in zaffer, 97 Artillery. Napier's curious discoveries respecting, 53 ; Anderson's, 64 ; Gillespie's, 64 ; Digges's,
248
Astronsmy. History of, for 1803, 209. Orbits of the new pianets, 325
Attraction. Curinus experiments on,
231
Augustine earth exploded, 190, 287

Bacon (Friar) led to the discovery of the telescope, $\quad 2 ; 0$ Batk' (Sir J) account of his majest!'s Spanish sheep, i+1
Barley. On distilling, 109, 315
Barm. Hint for preserving, 316
Barrow'stravels. Extract from, 179, 307
Barib ldi on spontaneous combustion, 34^{6}
Becupoil on cantharides, ${ }^{145}$
Bertholiet's experiment on prussic acid, 152
Bichir, a species of fish, 3^{6}
Birds absorb oxygen, 261
hadkman's oil-colour cakes, to
prepare, $\quad 268$
Phair on giants, $\quad 355$
Blood. Effect of the air on,
222
Boiled animal substances absorb
oxygen, 257
Books. Aitronomical, 218
—. $\quad \mathrm{N} \in \mathrm{w}, \mathrm{2} 90$

Bolany: Thornton on Aikin's review of his, $\quad 326$
Boutan. On wool and sheep of,
234
Rcuvard's tables of Jupiter, 215
Brandy. To imitate the flavour of, $\quad 322$
Brathwait's remedy for scarlet fever, 127
Bread. Experiment to improve, 161
Brittany. Of curing herrings in, 16
Brozu cn galvanism, $\quad 285$
Bucholz's experiments on cobalt, 97
Bucket for deep wells,
Buffin's burning mirrors, 57
Burckbardi's lunar calculations,
214
Burg's astron. observations, 214
Bushorell on submarine vessels, 62
Cacbemire. On wool and sheep of, 234
Calcureous carth. Use of, in soils,
Cameos. A new material for cingraving,

83
Camero obsura. Discovery of,
252
Cantluar:des. On the principles of, 145
Cape of Good Hope. Condition of inhabitants of, 179, 307
Carbon. On affinity of, 193,289
Cast iron. On shrinkage and expansion of,
Cattic. On removing contagious diseases from, $\quad 374$
Ceres. Orbit of, 325
Cheese should not be used in hospitals,
$16 \pm$
Cbrysalides absorb oxrgen, 259
Ciluchonate of lime. To prepare, 167
Clay. Affinity of, 193, 289
Clocks. Improvements in, 303, 305
Clouds. Stone from, $\quad 37 \mathrm{I}$

Cobaltic acid does not exist, 97
Colowrs, to communicate, to burnt steatites, 84 : on the nature of, 201 : cakes in oil, to prepare, 268
Combustion effected by reflected light, 57 ; by reflected heat, 58
Combustion, spontaneous. On, 376
Commerce. Early history of, 85 ; Russian, 284, 369
Conltration of cast iron,
7
Coquebert on prisoning arrows,
163
Cornel berrings. On, I3
Cotton. To dve, red, 340°
Cotton yarn. To dye, of a durable red,

43
Crane. Hall's expanding, 270
Crookiens on distillation of spirits, 107,315
Curing of meat, $\quad 189$
Curwerl on steaming potatoes for catile, $\quad 116$
Cutbbertson on Galvanism, $3 ; 8$
Cylinders. Attraction of, for fluids,

232
Darzuin's address to the populace at Nottiugham, 73
Day's submaine experiment, 62
Delambre's solar observations, 210; obliquity of ecliptic, 211 ; tables of the sun, 214 Desibamps' cinchonate of lime, 167
Deycux on cantharides, $1+5$
Digestcrs, to prepare food for cattle, 298
Digger's optical discoveries, 245
Distiliation of spirits. Dutch
method of, 107,3!5
Dollond. Life of, 47
Dreiell's submarine experiment, 60
Dubamel on herring fishery, 12
Earths. Use of, in vegetation, 79,80. Augustine excluded from the simple, 190,287

East Indies. Degree of meridian in.
9^{2}
Ecliplic. Obliquity of, 210
Egrs. Curious exper. on, 264 Elements of Science and A•t; Imison's ; a new edition, 90
Engraving on stones. Steatites used,

83
E:ber. On Sir Isaac Newton's,
155
Expansion of cast iron,
Firmentati,n. Instructions for, 111,316,313
Fever. Typhus, to cure, 71 : yellow, to cure, . . 190
Fires. On extinguishing, 286
Fish A new genue, 36: dead, absorb sxygen,

260
Flies absorb oxygen, 259
Fosiits. Singular, $93,187,375$
Friction. O11, 347 ; to diminish, in clucks, $30 ;$
Fulion's submarine experiments, 62
Fumigation fowdiy for hospitals, Sc., 74; for cow-houses,

374
Firnaces. Instructions respecting,

318
Galvanim. Experiments on a hanged criminal, 90 ; on rabbits suffocated in waier, 131; in sulphurated hydrogen and carbonic acid gas, 133; on a mall decapitated, 125 ; on another, 137; compared with Newton's ether, 155 ; inquiries respecting, 170 ; noticed in the year 1,co, 285 ; difference between it and ciectricity, 358 ; velacity of the fluid,

374
Gardiner on the animal cecozizmy. Note from, 285
Gardini. On Galvanism, 256
Gases, influence of, on regeration, 76 ; experiments un ani-
mal substances in different, 2;8; sulphurized and phosphorized, 352
Giofroy un a new genus of hish, 36
G.ograply. Inprovement in, 191
Geology of South America, 26,
172; of Europe, 33 ; singular fossil, $\quad 93,187,375$
Cinnts. Blair on, 355
Glass. Various kinds produced, 290
Gout. To cure, $\quad 114$
Grick firc. Manuscript on, found, $\quad 283$
Grinsel on prussiate of iron and prussic acid,

151
Hadley's sextant. Improved, 123
Hall's expanding crane, $\quad 270$
Hausman on dyeing, $\quad 340$
Hellelore employed to poison arrows, 11_{3}
Hermbsiadt on light and colours, 201
Hirring fishery, $\quad 12$
Higbland Society of S.otland on curing heriings, $\quad 25$ Hilland. Of barrelling herrings in, 16
Horn of extraordinary size, 283
Hotncman the traviller. News of, 286
Humholdt on South American geology, 26, 172 ; accounts from, 189 Hydr graply. Clarke's system of, 85 ; observations on, $3: \circ$

Icbtbyology, $\quad 3^{5}$
Intison's Sichool of Arts; a new edition, 90
Imperial Academy, Petersburyt,
282
Infixmmations, spontancous. O_{n}, 346
Iron, use of, in s,ils, $\quad 8 \mathrm{l}$
Fones on spectacles, $\quad 65,2 \div 3$
Funiper
juniper berries. Salubrity of,
317
215
Jupiki. Tables of,
Kelly's life of Dollond, 47
Keutsic's treatment of fevers,
190
Kircher's burning mirrors, 57
Kla;el. On Galvanism, from,
286
Klaproth on a new vegetable acid,

283
Lalande's history of astronomy for 1803, 209: on orbits of the new planets, $32 ;$
Lalande (Jun.), catalogue of stars, 209 ; obliquity of cliptic,

218
Lambert. Life of, $\quad 33 \mathrm{~S}$
Lambton's measure of a degree of meridian, 92
Lattice absorb oxygen, $2 ; 9$
Laurel cherry. On oil from leaves of,
Learned Societies, 281,358
Lebone on anatto, $\quad 275$
Lectures,
3;6
Lemonuier's astronomical obsercations,

213
Lenses. Jones on the form of, 6, 273
Light. Whether a simple substance?

201
Lime. Use of, in soils, 80: to prepare cinchonate of, $1 \epsilon_{7}$: athuity of, 193,289
Linen yarn, to dye red, 3 to Lughi. On Galvanism, from, 28;

Magnesia. Use of, in soils, 80 Mast. On the history of, $\S \S$ Magnetic needle. Declination of,

Mammal :a absorb oxygen, $=61$
Mariner's compass. Origin of, 88
Maritime discovery. Clarke's work on,

85
Maskelyne's 34 stars, 209 ; oilquit of ecliptic,

Massey's improved clock, 303 ,
305
Meat. Tu preserve, 18y Mechla:M's astronomical labour,

211

Mediünc. Pneumatic, 71, 207; gout, to cure, ${ }^{11+}$; scarlet fever, 127; on cantharides, 145: on orchis root, 162; oily frictions, 190; sheumaism, to cure, $\quad 317$
Mifercury. On the tables oi, $21 ;$
Meridian. Degree of, in India, 92; degree of, in Lapland, 211; the French, 212
Metal. A new one, $=206$
Mevecroozy. Fireball seen at Befort, 94; at Possil, 3:1; register fur January 1804, 95 ; for February, 96 ; for March, 192; for April, 288; for May, 377
Milk. To improve, 161
Milk of sulphur. New way to prepare, 28 ,
Mi:'icr's submarine experiment,

62

Mineralogy. Amber, 93 ; sir. gulas petrifaction, 93,187 ,
$3 ;$
Mirrors, burning. Lord Napier en, 53: remarks on, 54, ? is
Moor. Longitude and motion of, $\quad 214$
Moronilic acid. Discovery of,
$28 ;$
Mountains. Heights of, 26; on primitive, 172 ; transition to alluvial, 175 ; alluvial, 176
. Wiusbet on shrinkage and exmansion of cast iron, \mathbf{I}; on affinities of carbon and clay, lime and silex, fur iron, 19?,

289
Napier, of Merchiston, (lord)
plan for defence of this island,
Nam:gation. History of, ${ }^{53}$

Nicuton (Sir I.). On the other of, 155 ; certain doctrines of,
 222
 O'Brien the giant,
 355
 Oil of laurel cherry. Experiments on,
 153

Oily matters. Spontaneous combastion of,

35
Olbers' star. Observations on, 217; orbit of,
$3: 5$
Optics long known, 245
Orchis root. Preparation, culture, and use of,

153
O.ygen, its affects on the blood known in 1734, 222 ; experimints on animals in, $\quad 257$
O.:ymuriatic acid a cure for scarlet fever, 127 ; for infected cattle,

374
Painter's Guide. Tingry's, 280
Pallas. Orbit of, 325
Papillon's process for dyeing Turkey red, 43
Percival on orchid root, 158 Periscopic spectacles. Jones on, 65,273; Wollaston on, 165
Petrifactions. Singular, 93, 187,
Perron's medical expedition,
287
Piazzi's catalogue of stars, 209; obliquity of ecliptic, 2 II
Piazza's planet. Orbit of, 325
Pierrefont on use of potatoes for cattle,

2,8
Pboiplovizs in charcoal, $\quad 3.5$
Pbo:phuret of lime. Production of,

354
Plains. Height of, above the sea, 28 ; great extent of some,

P'lanche on succinic acid and on amber varnish,

278
Phumatic medicine, $\quad 71$
Poisoning of arrows, $\quad 163$
Polvptecta, a new genus of fish,
Potato cs. On steaming, for catthe, I16, 299

Porvdir mills. Cause of explosons in,

354
Pownall on Sir Isaac Newton's other, and on Galvanism, 155
Printing in Turkey, 367
Proclus's burning mirror, 54
l'russian blue. Experiments on,

151
Prussiate of potash. To obtain, free from iron, $\quad 151$ Prussic acid. Experiments on, 151; singular production of, 154
Publications. (New), 85, 280, 375; astronomical, 218 Putrid fiver cured by oxygen gas, 71
$P_{\text {putrid substances absorb oxygen, }}$ 257
Pyrophorus from prussiate of iron, 151; production of, 353

Quadrant. When first used, 89
Records's knowledge in optics,
Rectification of spins, $\quad 321$
Red herrings, 19
Red, Turk y. To dye, 43
Refraction, double, applied to improve astronomical instrumints,

213
Respiration. Spallanzani on,
256
Rheumatism. A cure for, 317
Rice inferior in nutriment to salep, $\quad 160$
Robin: om (Dr. Bryan), curious extract from his works, 222
Rcloff on oil of laurel cherry leaves, 153
Rossi's Galvanic experiments,
131
Royal Society of Göttingen, 358
Royal Academy, $\quad 3 \sigma_{4}$
Russel's improved well-bucket,
271
Russia. On the trade of, 285

Rye preferable to barley or wheat for distillation, 110, 319

Salep, to prepare,
$1 ; 9$
Saliting of herrings,
Sattlite of Venus,
13
Saturn's ring. Disappearance of, 216
Sarlet fever. A cure for, 127
Sea. Action of, on the land, 35 ,
$3 \circ$
Senebier. Spallanzani's letter to, on respiration,

2; 6
Sexitant. lmprovement of Hadley's,

123
Shazels. India, how made, 24^{2}
Sheep of Cachemire and Boutan,
$23+$
Sbrinkage of cast iron, 1
Sile.:. Affinity of, 193, 289 ; use of, in soils,

78
Skin absorbs oxygen, $\quad 261$
Socitics. Learnel, 291,3;8
Soil. On composition of, 75
Spain. Literature in, 375
Spanish sheep. The king's flocls of fine-woolled,

140
Spasms cured by vital air, 207
sfecitacles, peris:optic. Jones on, 6;,273; Woollaston on, $16 ;$
Spirits. Dutch method of distilling, 107,315 ; to free from essential oil, 322 ; to detect adulterations of, 324
Steam, a cure for gout, IIt
Ste.atites. Use of, for engraving, S_{3}
Sterbouse on the gout,
114
Stone from the clouds, 371
Stones, on engraving, $\quad \$ 3$
Submarine navigation known to
Napier, 54; practised by Cornelius Drebell, 60; by the marquis of Worcestel, 61; tried by Papin, 6 ; Williamson, 61 ; Miller, Day, Bushmell, and Fulton, 62
Sulpbur, milk of. New way to prepare,

Sulpbur. Singular production of,

353

Sulphureous waters. Production
of,
353

Sun. Action of, $\quad 349$
Telescopes, when first known, 247
Testaccous animals absorb oxygen, $\quad 258$
Tbornton on pneumatic medicine, 71, 207
Thornton's letter to Pownall, 221; to A:kin, 326
Time, meurr. Adopting in France, 214
Toad. Experiment on, 92 Torpid animals. Experiments on, 252
Torrefaction. On, 35 I
Tralle. On Russian, 284,369 Travels. Bergman's, 93 Turkey red. Papillon's process for dyeing, $\quad 43.340$
Tytous cured by oxygen gas,
${ }^{11}$
Typography in Turkey, $\quad 367$
Vaccine Pock Institutions, 350, 363
Valli's medical expedition, 297 Vapsur-bath, air-pump, recom. mended,

114
Varnib, amber. Remarks on,
$=79$
Varnishcr's Guide. Tingry's, 280
Vegetables. Principles of, i^{6}
F Ggetation. linfuence of soil on, 75, 319
V inus. On the tables of, 215 ; conjunction of, 215 ; satellite of,

326
I'idal's astron. observations, 2 10 Tilcot's method of engraving cameos,

83

War chariot. Lord Napier's, 54 Wrd's

Ward's improvement of Hadley's
I 23 $\begin{array}{r}\text { Wolfstbane } \\ \text { arrows, }\end{array}$ used for poisoning
Water. Action of, on land, 35, Wollaston on spectacles, 165
370 ; on soils, 82 Wool . Improvement of, 141 ;
Wells. Improved bucket for, of Cachemire sheep, 234
271 Worcester (marquis of), on his
Wheat. On making spirits from, inventions, 6I
110, 316 Worms absorb oxygen, 257
White herrings, 14, 17
Williamson's submarine proposal, reast. Hint for preserving, 316
61 rellow fever. To cure, 190

The Philosophical magazine 1
P4
v. 18

Physical \&
Applied Scio
Serials

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: et Nec aranearum sane textus ideo melior quia ex se fila gignunt, nec nostes vilior quia cy alienis libamus ut apes." Just. Lips. Monit. Polito lib. i. cap. I.

[^1]: Fol. XVIII. No. 69.
 A 9
 operated
 Felruary 1804.

[^2]: * From Annales dis Mascunz National d Llistoric Natwelle, No. s.

[^3]: : Communicated by J. Kelly, D. D., rector of Copford and vicar of Ardieigh, Essex.

[^4]: * The cause of this difierence of the results of the 8th experiment of the and part of the first book of Newton's Oprics, as related oy hi nuelf, and as it was found when tried by Dollond in the years 1757 arday 178 , is fully and ingeniously accounted for by Mr. Petir Dollond in a paper read at the koyal Socicty on the 2 Ist of May, 1789 , and atierward; published for J. Johnson in St. Paul's Church Yadd; also in Hutton's Dictomary-Arucls, Chromatic.

[^5]: * Dr. Rutherford, in his Syst. of Nat. Philos, vol. i. p. 448. says, that the author of this piece on Catoptrics, who, we may be certain, was not Euclid the geometrician, has erroneously supposed the burning puint, or focus of the sun's rays, in a concaye nirror, to be in the centre of the s. here, whereof it is a portion. And W'olfius, in his Elem. Mathes. Univer, t. iii. p. 157. charges not Euclid only, but all the antients with this error. But how then, it may be aked, could they be acquainted, as they certainly were, with the actual use of such mirrors? Herigon, in the Catoptrics, which he gives as Euclid's, without mentioning the crror of his author, places the focus where it orght ta be, namely very nearly, or, as to sense, exictly, in the midde of the axis, between the sentre and the concave rincting suriace.

[^6]: * Sec the story of Dr. Craig in lord Buchan's elegant life of Napier, and in Dr. Hutton's exccllent Mathem, and Philos. Diction. art. Nozier.
 + Cartesii Dioptrite (irst printed in 1637), cap, vi.i. sect. 22.
 \ddagger Ste M. Ozanams licteations Mab. $\because:$ Phys, tom. i. p. 144, ed. 3. Pertaps Dr. Hutton's tite much improved eranilation of this sur.ous wort mity afford the reater more satisfaction on this point.
 © Eseminu. Wattceos Univer:

[^7]: * See the antient authors quoted by bishop Wilkins in his Mathematical Nagic, book i. chap. 17; and by Dr. Hutton, in his Dictionary, art. Airbimedes.
 +V. Mem. de l'Acad. Roy. des Sc. An. i726. Father Regnault appears to have stiangely misundersteot this experiment of M. du Fay. "Encore quelque pas.", Exc. "A few paces more," (so that he, as well as Ozanam, seems still to have thought the distance at which Archimedes burned the shis? to have been greater than Kircher had given grounds to believe it really was,) "A few paces more," says Regnault, "ind the secret of Archimedes is discoveres or verificd:" Pbys.tom. iii. Entretien 10. The same author, in his Origine ant. de la Pbys. nouv. (primted 1735), tom. ii. p. 283 , has these words, "On ra onte que les mirroirs, \&c. It is said that the inirrors of Proclus and Archimedes burned the fleets of their enemies. With a plane glass and a concave mirror we now know how to excite flame at 600 feet distance." Here would not the yeader be apt io conclude that the fame was excited, not in the foc:s of the concave, between the two mirrors, which were 600 fect asunder, hut at that distance from the concare itself? Ccitainly the secret of Archimedes was for from Semp discovered by M. du Fay, who produced his 'eflect by a dorible reffection; whereas circumstarces must have confined Archimedes to a siryle reflection; unless we can believe that Marcellus wond allow him to tix his concave to the ship he intended to burn, and so bing some of the rejes. Eic. into its focus. Saverien, in his Diction.
 appars to have inadvericntly foltowed has loose description, and even to have made it still mone anownous. M. da Fay's own account of his cexperment, inseited in the text, is quite plain and explicit Perhaps Ieguault's works are not much read ; but Saverein's Dictionary (printed jn 1753) is pretry gencrally reforred n. it is a work of merit and utiloty, and therctore its crors being the more likuly to mislead careless

[^8]: * Quoted by Paulian in his valuable Diction de Forsizue, article Cutoit tivke.
 + See Hutton's Dictionars, article Kir ber.
 \ddagger Pathian's Dicnonay, article Castl.
 de Pathun, art. Catophiguc ; und. Hutton's Distonaty, art. Burning Glass.

[^9]: * Sce Lett. sur de Prowes des Scienes, in Les Qiars. de Mumperiuis, p. $3+9$.
 \dagger Elens, Mahes. Uaje' tom. iii. p. 1yr.

[^10]:

 + See Siverien - Diction, articles Microscope and Tbermone're: also Russat. Mat. G.as. de Mattem. per. iii. ch.0., an interestag work, whind he laty been tamstated by Mr. Bonnemste.
 \rightarrow Sec 1, ices Exp. Ploys. Mceli. of the Pring of the Air: also Hutton's Dice, ara. Divirg. De Coetiogon, in his Unis. Hint. of Arts and Scierses, art. Dizing, ridicutes the accounis given of this hiquor by Bosic at éariorrs, and says he "would be yt to imariue that Drcbell"s

[^11]: * See the E:ropean Magazine for April 1802, p. 2 \%\%
 t Sce also D r. Huttnn's Dictionary, articlc G Ggory.
 \pm Ste Smallet's Quxote, yol, ii, p, is:

[^12]: * This young lady was cured in 1798 , and has continued since that period in jerfect health.

[^13]: Soctut. 1-•9.

[^14]: * The cak and beech produce the same hind of regetable earth when their interior parts have been dissolved by putrefacien.
 - A great deal of wet weather in spring and harvest, say the farmers, ditows the fields, that is moy, washes awa: and carsies of the light
 soluble carberia mater of the sol.

[^15]: * Some months after this was written it was mentioned in the Chemical Journal, No. 6. p. 700-702 ": that Mr. Mumbolde had disccuered that carsifous tarth attracts oxpenen:" the secret in what manner sat:pere ioformed was then discovtiuci. A:nospheric air then coistains:

[^16]: * From Scherer's Allgemeines Foarnal der Chemie, Nio. I .

[^17]: Vol. XVIII. Ne. $\%$ o.
 G
 tion
 March 1504.

[^18]: *From the Parliamentary Report respectias the Distillaries in Scotland.

[^19]:

 + For a deccrition of this apparus sec a primated letter of Dr. Blegborcugh, dated feoruary 10 , 1802 , also the Philcsophical Magzzinc.
 this invention. A Frewch paper, Le Chig da Criert, of June 5, 1803 ,
 Whani! madial machinco, tas, heved different pumps for curing Fow, rlewmatism, pa'sy. \&c. by administering bath of air and vapour. The aticio corclodes wheraing that Mr. Nah. Gicen, the English Com Nice, hat ofre the mish inventor 30,000 gumeas to carry ned.c.ay to 1.wrim:"'

[^20]:

[^21]: The inference is, that by increasing the distarce of the two refecters and the eye, and conbeng the obsavatinn to a square abuut one degree, of double the sua's dameter, in breadth, the accuracy is consderably increasted.
 *The slit folls behind the flame in the engraingo

[^22]: * Communicated by tie Author.

[^23]: * Phiiosophtical Transactions, vol. 1xxx.

[^24]: * The best osymuriate of potash I ever had, was made by Mr. Horle, incrmous chemist in Manchester; 100 grains yidling nearly $7+$ cubic inches of oxtgen gas.

[^25]: * From the Gownal d' Pryziqte, Vend. an. 12.
 \div W'e suppose Reaumur's is meant $=44^{\circ} 5$ Fahr, -Edit.

[^26]: * I am not ignorant of what has been done by Troja and other physimians.

[^27]: * From Neues Allgemeines Joumal der Cbemie cien Hermbstait, E゙に. ro'. i. no. 6.
 + Scherle's Echriften, vel. ii p. 342 . K 4
 IV. The

[^28]: * From the same woll: as the precening article.

[^29]: * In two experiments with ammonia and the oil of the leares of the laurel cherry, made by a process different from that of M. Bucholz, i was not able to obtain prussiate of iron; I however have ro doubt that this might be effected.
 + Communicated by the author.

[^30]: * From IIduter's Georgical Essays.

[^31]: * Vida a Letter from Miv. Jom Muult to the author, cone:ining a new mothod of preparing salep, in Pial. Transace. vol. hx.

[^32]: * Portinic sorp is sold :- 2. . 6t. per lb. ; salep, if cultirated in our own comery, might le abimud at od, per ibo: the day's subsistence would thefore amount on'y th twope ce-h:lipenty.
 + Vide L: Lod's Appendia to his Eesly ea the Diseases of Hot Cmantes.

[^33]: * Cheese is now become a considerable article of ship provisions. When mellowed by age, it ferments readily with flesh and water, but separates a rancid oil, which seems incapable of any further change, and must, as a sepuic, be pernicious in the scurvy; for rancidity appears to be a species of putrefaction. The same objection may be urged, with still greater propriety, against the use of cheese in hospitals; because convalescents ate so liable to relapses, that the slightest error of diet may occasion them. Vide Percival's Letter to Mr. Aikin. -Thoughts on Hospitals. p. 95.
 + Vide Dr. Lind's Appendix.
 Vol. XVIIL. No. ${ }^{7} 0$.

[^34]: * The ancicat chemists seem to have entertained a very high opinion of the virtucs of the urchis ront, of which the following quotation, from the SECRETA SECRETORUM of Raymund Lully, affords a diiurting provi. The work is dated ists.

 SEXTA IERLA. Sithion.
 " Satirion her! acet phuribus nota, hujus radicis collccta ad pondus lib4. dic 20 momsis Janariit, contunde fortiter et massam contusam pone in
 ollam

[^35]: * For these crystallizations I prefer flat dishes to those which are conical.
 + If eare has been taken to filter the liquor several times, according as it is concentrated, and always after it has been suffired to cool, it will be so much freed from the resino-gummy part, wat after the first crystallization, though the saline mass will still be of a russet colour, the base of the crystals will be free from that matter which it was my chicf object to remove.

 The smail portion of salt which I had the pleasure of sending to you arose from the first crystallization alone. When the infusion was reduced to six or seven pints, I took care in the coursc of the subsequent evaporation to filter it cold at three different times. liy pursuing this course, very little matter adheres to the saline crust, and the supematant extractive matter can be separated with the grente: facility.
 \ddagger The nore I advanced in the purifation of my salt, the less I thickened the liguer: the degree oi concintration must be proportioned to the guatity of extractive or resinc-mucous matter it may have contained. It is not easy to hit this point.

[^36]: * See a history of thess anima's i: the Annáee du Mhesum d'Histoire

[^37]: * I'cicosnhasal Jadezinc, vó. vi. p. 287.

[^38]: VoL. XVII. No.71.
 N
 comparable - Apri 1907.

[^39]: * It was reported some vears ago, that the mine of Danamora in Sive. den, from the ore of which + to 5000 tons of steel ren of the best marks are yearly made, had been inundated by the overlowing or bursting of a neighbouring lake. The holders of iion in this counry immed ately speculatel upon an urheaddof rie it the price of this article, which was fortunately scon after counteracted by a certainty of the mischief not bing nearly so cxtemsive as was dist apprehended.

[^40]: * I mean that this assertion shculd be confned to some pit coals only, and to the quantities of carbon and ahes which eater into their composition. In many instances I have found the coke of pit coal more free from ashes, aud containing of course a larger proportion of carbon than the general run of woods. What difference may result in the manufacturing of iron with such ccals, arising from the residuam or ash being chiefly an earthy mixture, and wood, the residuum of which is chiefy alkaline, I never have determined by direct experiment. This important and extersive field of investigation still lies open and unexplored to the manufacturer and the chemist, or both. I have alluded to it in one of the subsequent paragraphs of this paper, as forming a part of an important and rational branch of inquiry.

[^41]: * From Nenes Allremints Combal dor Carif, by Immbstade, Katp-

[^42]: * From the Driate Pjobopoizque, no. 16 and 57 , year ± 2.

[^43]: *They cost ten guineas at the manufactory,

[^44]: * It will not be amiss if, before the reader enter on this sccond letter, he peruse the first, on the "Memoir by lord Napier," \&c. inserted in no. Ixix of this Magazine.
 \dagger See Robins's Mathenntical Tracts, vol. ii. p. 252, compared with the arr. Titesiofe in Dr. Hutton's Dictionary, and with the titie page of the Paotsmotia.

[^45]: * Eyc-witnesses.
 + By glasses the author here means any plane refecting surfaces; for $h=$ begins this 2 Ist chapter of his first book with these words-" "The best kinde of glasse for this purpose is of steele tincly polished, neither conuex nor concume but f̣at, \&c."
 \ddagger Most probably this work is lost among the " several mathematical treatises ready for the press, which, by reason of law-saits and other avocstions. he was hindered from pubhohing." See Di. Hutton's Dictionary, article Digses.

[^46]: * So much convinced was the celebrated Gravesande of the intimate ponnection between fere and light, that he defines a lucid body in these words-" Corpus vocatur lucidum, quad lumen emittit, idest, ignem per lineas rectas agittat. A body is called lucid which emits \lg b b, that is, gives five a motion in right lines." Pbys. Elemn. matbem. Exprc. confirm. printed ${ }^{7} 21$, vol. ii. p. Jr. See also the able Dr. Hutton's Dictionary, article L^{\prime} ghb. For the bencfir of those who are always hunting after new bocks, which are very often old books improved for the suorst, it may not te amiss tn add that, about seventeen years ago, I heard professor Jul:n Rotison, of Elliuburgh, cestainly one of the best judges in Europe, recomment this work of Gravesande (the third edition, if I righty remember) as, upon the whole, the bee book of the kind that had then heen rublished; and I do not krow that any work of equal merit and extent has since appeared. Whether the professor said any thing in praise of the English translation 1 do nor recolect, but 1 ratier think Dont. The truth in, that the excellent prel:minary discourse, the only part of the English edition I have redal, is but indifferently transhted. A work on natural fhilosogh has long been expected from Mr Kubison Himelf; but sceice ins not hitherto received this beneft, owing. I bedieese, to lis p or state of health. We may judge of the manner in which it would have beeil exccuted by the articles he has given to the Ençeloperdid Bitannica.

[^47]: - See Pantometria, p. 175.
 + In a list of Thomas Digges's worke, at the beginning of the Ste tipticos, we find that he was the sule author of that piece, and that the P ann. temetria (second edition) was begun ty his father, ant augmented and tinished by himself.

[^48]: * In his Magia Naturaís, lib. xvii. cap. 6. according to Dr. Hutton's Dict. art. Camera O^{\prime} scteris; and in lib. iv. cap. 2. according to Wolfe, and Ston, "ho copies much from him. They agree that that work of Baptiot Vorta was first pinted abour the year 1594. Sce Elcm. Math. Uniz. Optic. § io, and D.opt. $\oint \mathfrak{\Im} 7$; and Mathen. Dict. artic!es Camowe Usoura and Tele:cpe.
 + Huton's Dict. art. Digges.
 \ddagger That is, bnut the yoar 1607 , or thirty years before 1637 , when he frst puhbshed his Dioptrace. See Hutton's Dict. art. Cartes. The above extract, which on scucral accomes is worthy of transcribing, is taken from Elzevirs edition of that work, sGi4. cap.i. § 1. p. 7 t .
 || Descartes here means Adrian Metus, professor of the mathematics at Franchemaer, who supperted his brother's claim to the discovery.

[^49]: * Saverien, Diction. Unso de Math, et de Pbysique, artic!cs Latrente and Telescope.
 + See the account which Dr. Zach, astronomer to the duke of SaxeGotha, published in the Astron. Ephem. of the Royal Acad. of Scicnces at Berlin for 1783 , of Harriot's papers found by him in $1^{3} 4$ at Petworth in Sussex, the seat of Icrd Egremont. See also Dr. Hutoon's Dict., of Ahe Encral. Britan. art. Hartior.

[^50]: Mathemat. Dict. art. Tciescope.

 + Dedward V1.
 \pm Prallels, paralleingrams, sectors, a:d segments,

[^51]: * See Dr. Hutton's Dict. art. Recorde. \quad Id. Ibid.

[^52]: - From the Fownit de nhasexe, Fructidor, an. 18.

[^53]: - From the twelfth volume of the Transactions of the Sccicty, who voted the greater silver falette and twenty guineas to Mr. Biackman for discurering his process for the use of the public.

[^54]: * From the Transactions of the Society for the Encomagemest of Arts, Bdan:factures, and Cimmerce, vol. xii,

[^55]: * The acid obrained br the fret operation is indeed very pure when the vessel is new, but in the suasequent oncrations it becomes more coloured. Rucourse may be had er we pencessts of parification indicated by Pott. Altists will tind it of aduatage to enploy marrases of copper: as these vosse!s are easi'y cleaned, they will aiway: fumish the same product.
 t I sscertained this fact hy sever, expuentas pormed both in :ny own laboratory and in that of in comalier, coicli-primer, who is exseedingly woll sersed in the branth of the arts.

[^56]: Yol. XVIII. No. 7 .
 T
 Expe. May 1804.

[^57]: *From the Transa-tions of the So icty fir tie Euctrazerent of Ar:s, Manufa:zwes, ara Comionerie, vol. xx!.

[^58]: :From the Transactions of the Society for the Encourgeracat of Arts, Manufutures, and Commerit, vol. xxi.-The socicty roted a couny of fifty pounds to the inventor. Mode!s are preserved in the society's repository.

 No. 72. Mry 1504.

[^59]: * In the second chapter of this work I have given an account of fifteen innocent Hottentors that were inhumanly butchered by the boors. A pamphict has just been put into my hatids which was published the the Cape by baron de P., private secretary to the governor, and in which the same fact is noticed in the following words:-"A Hottentot captin, of the name of Kourwinnoub, bearing the distinguishing mark of his rank (a stick, on the brass head of which were engraven he arms of lis inajesty), and fumished morcover with a farspoit signed by one of tie members of government, went, accompanied by fiften Hottentois, to procure a few leares of tobacco in the plains of simuwberg. The boors, recollecting. peihaps, that three years ago these faithful soldiers had served the government by keeping them in order, thought it a favourable oppor-

[^60]: * The author, perhaps fenmerroncose information, supposes that distillers make use of what is conmonly bnown by the name if turpentine; but it is the cosential oil that is made use of, whin contans no resin.Edit.

[^61]: *From the Goturral de Pbyrigue, Brumare, an. is.

[^62]: - Our readers will find in the pages ther immediately follow the preeent article, a life of this celcbrated fhiloopher.-EDIT

[^63]: 4. From the Annales de CLimie, No. 144 .

 + See Philocophical Magazine, vol, xii.

[^64]: * From the Ahsu ties de Cbimit, No. Ift.

[^65]: Ao. : 2 . May 150 .
 the:

[^66]: * Communicated by the Author.

[^67]: * Communicated by Dr. Pearson.

[^68]: * Not one of the medical cffieers reccives any pecuniary reward: on the coatrary, they are all among the mos: hberd subscibere, from themselves and from their imatiate fricnds, as appears by their printed list.

