THE ANNALS

AND

MAGAZINE OF NATURAL HISTORY,

INCLUDING

ZOOLOGY, BOTANY, and GEOLOGY.

(being a continuation of the 'ansilis' combined with loudon and charlesworth's 'magizine of natiral history.')
CONDEC'TEDBY

CHARLES C. BABINGTON, Esq., M.A., F.R.S., F.L.S., F.G.S., albert C. L. G. GÜNther, M.A., M.D., Ph.D., F.R.S., WILLIAM S. DALLAS, F.L.S.,
and
WILLIAM FRANCIS, Ph.D., F.L.S.

VOL. XIX.-FOURTH SERIES.

LONDON:

PRINTED AND PUBLISHED BY TAYLOR AND FRANCIS.
sold ey longmans, green, reader, and dyer; simpine, marghall,
AND CO.; KENT AND CO.; WHITTAKER AND CO.: BAILLİ̀RE, PARIS: MACLACHLAN AND STEWART, EDINBURGH:
hodges, foster, and co, deblin: and ashfr, berlin.
1877.
"Omnes res create sunt divinæ sapientix et potentix testes, divitix felicitatis humane :-ex harum usu bonitas Creatoris; ex pulchritudine sapientia Domini; ex œconomiâ in conservatione, proportione, renovatione, potentia majestatis elucet. Earum itaque indagatio ab hominibus sibi relictis semper æstimata; à verè eruditis et sapientibus semper exculta; malè doctis et barbaris semper inimica fuit."-Linneus.
"Quel que soit le principe de la vie animale, il ne faut qu'ourrir les yeux pour voir qu'elle est le chef-d'eurre de la Toute-puissance, et le but auquel se rapportent toutes ses opérations."-Bruckner, Théoric du Système Animal, Leyden, 1767.

The sylvan powers
Ober our summons; from their deepest dells
The Dryads come, and throw their garlands wild And odorous branches at our feet; the Nymphs That press with nimble step the mountain-thyme And purple heath-flower come not empty-handed, But scatter round ten thousand forms minute Of relvet moss or lichen, torn from rock Or rifted oak or cavern deep: the Naiads too Quit their lored native stream, from whose smooth face They erop the lily, and each sedge and rush That drinks the rippling tide: the frozen poles, Where peril waits the bold adventurer's tread, The burning sands of Borneo and Cayenne, All, all to us unlock their secret stores And pay their cheerful tribute.
J. Thylor, Norwich, 1818.

CONTENTS OF VOL. XIX.

[FOURTII SERIES.]

N゙MBER CIX.

1. On Stauronema, a new Geuus of Fossil Hexactinellid Sponges, with a Description of its two Species, S. Carteri and S. lobata. By W. J. Sollas, B.A., F.G.S., \&c. (Plates I.-V.)

Page
II. On some new Genera and Species of Araneidea. By the Rev.
O. P. Cambridge, M.A., C.M.Z.S., \&c. (Plates VI. \& ViI.)...... 26
III. Notes on Foraminifera. By E. Penceval Wright, M.D., F.L.S., Professor of Botany in the University of Dublin, Secretary of the Royal Irish Academy
IV. On the close Relationship of Hydractinia, Parkeria, and Stromatopora; with Descriptions of new Species of the former, both Recent and Fossil. By II. J. Carter, F.R.S. ©e. (Plate VIII.). . 44
V. Descriptions of twenty-five new Species of Hesperida. By W. C. Hewitson76
VI. Remarks on Observations by Captain Hutton, Director of the Otago Museum, on Peripatus nora-zealandia, with Notes on the Structure of the Species. By H. N. Moseley, Fellow of Exeter College, Oxford, Naturalist to the 'Challenger' Expedition
VII. On Rhopalocera from Japan and Shanghai, with Descriptions of new Species. By Ahthur G. Butler, F.L.S. \&c............... . 91
VIII. On Polyzoa from Iceland and Labrador. By the Rev. Thomas Hincks, B.A., Fi.R.S. (Plates X. © NI.)97

Christian Gottfried Ehrenberg; Corals in the Hunterian Museum figured by Ellis and Solander; Descriptions of new Species of Blattidce belonging to the Genus Panesthia, by Prof. James Wood-Mason; Un some Facts relating to the Nutrition of the Embryo in the Eqg of the Fowl, by M. C. Iareste; On the Structure and Organization of the Polyphemida, by Dr. C. Claus; On the Colydicte of New Zealand, by D. Sharp. . 113-120

NUMBER CX.

IX. On two Vitreohexactinellid Sponges. By II. J. Carter, F.RS. \&c. (Plate 1N.)
Page
X. List of the Species of Crustacea collected by the Rev. A. E.Eaton at Spitzbergen in the Summer of 1873, with their Localitiesand Notes. By Edward J. Miers, F.L.S., F.Z.S., Assistant in theZoological Department, British Museum131
XI. Descriptions of new Genera and Species of New-Zealand Coleoptera.-Part IV. By Francis P. Pascoe, F.L.S. S.e. 140
XII. Contributions to the History of the Hydroida. By the Rev. Thomas Hincks, B.A., F.R.S. (Plate XII.) 148
XIII. New and peculiar Mollusca of the Order Solenoconchiaprocured in the 'Valorous' Expedition. By J. Gwyn Jeffreys,LL.D., F.R.S.153
NIV. On the Fundamental Error of constituting Gremia the Type of Foraminiferal Structure. By G. C. Wallich, M.D., Surgeon- Major Retired List H.M. Indian Army 158
New Books:-The Primæval World of Switzerland, by Professor Heer, edited by James Heywood, F.R.S.-The Geology of Eng- land and Wales, by Horace B. Woodward, F.G.S. \&c. 174
Proceedings of the Royal Society 180
On the Reproductive Apparatus of the Ephemerida, by M. Joly ; On the Nervous Svstem and Muscles of the Echinida, by M. L. Fredericq; Physiological Experiments on the Functions of the Nervous System in the Echinida. By M. L. Fredericq; On the Motile State of Podophrya- fixa, by M. E. Maupas; On Helix villusa, Draparnaud, by J. Gwyn Jeffreys; On a new Species of Naultinus, by Dr. Buller 193-200
NUMBER CXI.
XV. Description of Bdelloidina aggregata, a new Genus and Species of Arenaceous Foraminifera, in which their so-called "Imperfora- tion" is questioned. By H. J. Carter, F.R.S. \&c. (Plate XIII. figs. 1-8.) 201
XVI. On the Locality of Carpenteria balaniformis, with Descrip- tion of a new Species and other Foraminifera found in and about Tubipora musica. By H. J. Carter, F.R.S. \&c. (Plate XIII. figs. 9-15) 209
XVII. Descriptions of two new Genera and Species of Indian Mantide. By Prof. J. Wood-Mason, Assistant Curator, Indian Museum, Calcutta 219
XVIII. Descriptions of new Species of Conida and Terebride.By Edgar A. Smith, F.Z.S., Zoological Department, British Mu-seum222
XIX. New and peculiar Mollusca of the Patellidee and other Fami- lies of Gastropoda procured in the 'Valorous' Expedition. By J. Gwyn Jeffreys, LL.D., F.R.S. 231
Page
XX. Description of Niphargus puteams, var. Forelii. By Alors Humbert 24:3
XXI. Hermaphroditism among the Parasitic Isopoda. Reply to
Mr. Moseley's Remarks on the (ienerative Organs of the ParasiticIsopoda. By J. Bullar, B.A., Trinity College, Cambridge254
XXII. Alditions to the Coleopterous Fauna of Tosmania. By Cifarles O. Waterhouse 250
Neto Books:-Ostriches and Ostrich-Faming, by Julius de Mosen- thal, Consul-General of the South-African Republics for France, \&c. ©c., and James Edmund Harting, F.L.S., F.Z.S., \&e.-On the Foraminifera of Barbadoes (Étude sur les Foraminifères de la Barbade, ©c.), by M. Ernest Vanden Broeck, \&c. 257, 260
Proceedings of the Geological Society 260
Note on the Femoral Brushes of the Mantide, by Prof. J. Wood- Mason; On the Development of the Antenure in the Pectinicorn Mantide, by Prof. J. Wood-Mason; On the Power possessed by certain Mites, with or without Mouths, of living without Food through entire Phases of their Existence or even during their whole Lives, by M. Merrnin ; Note on the Nidification of the Aye-Aye, by MM. A. Milne-Edwards and A. Grandidier; Note on the Phenomena of Digestion and on the Structure of the Digestive Apparatus in the Phalangida, by Félix Plateau; The Gourami and its Nest; Zoology of the 'Challenger' Expedi- tion ; Rate of Growth of Corals $269-276$
Number CXII.
XXIII. On the Distribution of Birds in North Russia.-I. On the Distribution of Birds on the Lower Petchora, in North-east Russia.
By J. A. Ilimvie Brown, F.Z.S. 277XXIV. Description of some Sponges obtained during a Cruise ofthe Steam-Yacht 'Argo' in the Caribbean and neighbouring Seas.By Thomas Iliggin, F.L.S. (Plate XIV.)291XXV. On the Structure of the Lower Jaw in Rhizodopsis andRhizodus. By R. I. Traquair, M.D., F.G.S., F.R.S.E., Keeper ofthe Natural-History Collections in the Museum of Science and Art,Edinburgh299
XXVI. Description of a new Form of Ophuride from New Zea-land. By Edgar A. Smitir, F.Z.S., Zoological Department, BritishMuseum. (Plate XV.)305
XXVII. The Vates Ashmoliames of Westwood, the Type of a new Genus of Mantide. By Prof. J. Wood-Mason 308
XXVIII. Hermaphroditism in the Parasitic Isopoda. Further
Remarks on Mr. Bullar's Papers on the above subject. By H. N.Moseley, Fellow of Exeter College, Oxford310
Page
XXLX. Descriptious of three Ilomopterous Insects in the Collec-
tion of the British Museum. By Artilur Gardiner Butler, r.L.E. 311
XXX. Notice of a Barbel from the Buffalo River, British Caffraria. By Dr. A. Güvtuer, F.R.S. 312
XXXI. 1)escriptions of some new Species of Reptiles from Mada-gascar. By Dr. Albert (iüxther, F.R.S., Keeper of the Zoolo-gical Department, British Museum. (Plate XVI.)313
NXXII. New and peculiar Mollusca of the Eulimide and otherFamilies of Gastropoda, as well as of the Pteropoda, procured in the'Valorous' Expedition. By J. Gwin Jeffreys', LL.D., F.R.S. . .317
XXXIII. Notes on New-Zealand Ichthyology. By James Hec- tor, F.R.S., C.M.Z.心. 389
XXXIV. Observations on the Coccosphere. By G. C. Wallich,M.D., Surgeon-Major Retired List II.M. Indian Army. (PlateXVII.)342
On Anquillula intestinulis, a new Nematoid worm, found by Dr. Normand in subjects attacked by Diarrhoea of Cochin China, by M. Bavay; On Filaria hamatica, by MM. O. Galeb and P. Pourquier ; On the Intimate Phenomena of Fecundation, by M. H. Fol ; On the Vitality of certain Land Mollusks, by Robt. E. C. Stearns . 350-355
NUMBER CXIII.
XXXV. Malacological Nutes. By Robert Garner, F.L.S. \&c. 357
XXXVI. On the Final Stage in the Development of the Organs of
Flight in the Homomorphic Insecta. By Prof. J. Wood-Mason,Deputy Superintendent of the Imperial Museum, Calcutta380
XXXVII. Note on the "Tubulations Sableuses" of the Étage Bruxellien in the Environs of Brussels. By H. J. Carter, F.R.S. \&c. (Plate XVIII.) 382
XXXVIII. Revision of the Lepidopterous Genus Cleis, with De-
scriptions of the new Species. By Arther G. Butler, F.L.S. \&c. 30 393
XXXIX. On the Elaterida of New Zealand. By D. Sifarp 396
XL. Description of three new Species of Lizards from Islands of Torres Straits. By Dr. A. Günther 413
XLI. Notes on Stony Corals in the Collection of the British Museum. By Dr. F. Brüggemann 415
XLII. Description of a new Species of Portunidce from the Bay ofBengal. By Prof. J. Wood-Mason, Deputy Superintendent of theIndian Museum, Calcutta422
XLIII. New Coleopterous Insects from Queensland. By Charles \cap. Waterhouse 423
Ner Book:-Ammal Report of the United-states Geological and Geographical Survey of the Territories, embracing Colorado and parts of adjacent Tervitores, being a Report of Progress of the Exploration for the yar 1874, by F. V. Hayden, I nited-States Geollorist 420
Zoology of the 'Challenger' Expedition, by P. Martin Duncan, F.R.S., Pres. Geol. Soc.; On the Modifications undergone by the Ovum of the Phanerocarpal Meduse before Fecundation, by M. A. Giard; Note on Vertigo Moulinsioma, Dupuy, by J. Gwyn Jeffreys, F.R.S.: Sponqes dredred up on board H.M.S. 'Porcupine' in 1869-70, hy II. J. Carter, F.R.S. ©e.; On the first Phenomena of the Development of Echimes miliaris, by M. A. Giard ; the late John Leckenby, Esq., F.G.S., F.L.S. 429-430
NLMBER CXIV.
XLIV. On the Variability of the Species in the case of certain Fishes. By Dr. V. Fatio 437
XLV. Descriptions of several African and Australian Lepidoptera in the Collection of the British Museum. By Artulr G. Butler, F.L.S., F.Z.S., \&c. 458
XLVI. On Ascodictyon, a new Provisional and Anomalous Genus of Paleozoic Fessils. By H. Alley>e Niciolson. M.D., D.Sc., F.R.S.E., and R. Etheridge, Jun., F.G.S. (Plate NLX.) 463
XLVII. On the Elateride of New Zealand. By D. Sharp 469
XLVIII. Description of a new Species of Phasmide from theMalay Peninsula. By Prof. J. Wood-Mason, Deputy Superinten-dent, Indian Museum, Calcutta487
XLIX. Diagnoses of new Species of Plerrotomida in the British Museum. By Edgar A. Smitir, Zoological Department. 488
L. On Rupertia stabilis, a new Sessile Foraminifer from the NorthAtlantic. By G. C. Wallich, M.D., Surgeon-Major Retired List,H.M. Indian Army. (Plate NX.)501
Neto Book:-The Ancient Life-IIstory of the Earth. By Prof. H. A. Nicholson, M.D., D.Sc., \&c. 505
Zoology of the 'Challenger' Expedition, by P. Martin Duncan, F.R.S., Pres. Geol. Soc.; On a Newt from the Darjiling Hills, by Prof. J. Wood-Mason; On the Value of certain Argu- ments of Transformism derived from the Erolution of the Den- tary Follicles in the Ruminants, by M. V. Pietkiewicz . . 506-510
Index 312

PLATES IN VOL. N1X.

Plate I.
II.
III. Structure of Stauronema.
IV.
(V.)
VI.
VII. New Genera and Species of Araneidea.
VIII. Structure of Hydractinia, Parkeria, aud Stromatopora.
LX. Eurete farreopsis; Myliusia Grayi.
XI. $\}$ New Polyzoa from Iceland and Labrador.
XII. New Hydroida.
XIII. Bdelloidina aggregata-New species of Carpenteria.
XIV. New Sponges.
XV. Ophiopteris antipodum.
XVI. New Reptiles from Madagascar.
XVII. Structure of the Coccosphere.
XVIII. Broeckia bruxellensis.
XIX. New Genus and Species of Palæozoic Fossils.
XX. Pupertia stabilis.

THE ANNALS

MAGAZINE OF NATURAL HISTORY.

[FOURTII SERIES.]
"... per litora spargite muscum, Naindes, et circim vitres considite fontes: Pollice virgineo teneros hie curpite flores: Floribus et pictum, dise, replete canistrum. At vos, o Nymphe Cruterides, ite sub undas Ite, recurvato variata corallia trunco Vellite muscosis e rupibus, et mihi conchas Ferte, Dea pelagi, et pingui conchylia succo." N. Parthenii Gianneflasii Ed. 1,

No. 109. JANUARY 1877.
I.-On Stauronema, a new Genus of Fossil Hexactinellid Sponges, with a Description of its two Species, S. Carteri and S. lobata. By W. J. Sollas, B.A., F.G.S., \&c.
[Plates I.-V.]
Oscar Schmidt's remark, "Die Behandlung der fossilen Schwämme durch die Geognosten und Palantologen ist eine grausliche," has the merit of being strictly true, though in fairness it ought to be added that the geologists and palaontologists are not wholly to blame for this treatment, since most of their work was done before Schmidt's books had been written, before the Hexactinellide and Lithistida (which would have thrown light on their labours) had been discovered, and at a time, one may add, when the sponges in general were the outcasts of the animal kingdom.
'To understand aright the fossil sponges, one must obtain a thorough knowledge first of the minute structure of these bodies themselves, and next of the structure and classification of existing forms. The older observers were without the means of acruiring either of these essentials; they consequently, in their attempts at a classification of fossil sponges, were compelled to fall back upon external characters alone, with the addition of what internal features might chance to be revealed by a happy fracture; and since, as we now know, different genera of sponges may assume the same form, and diverse forms may belong to the same genus or even to the Ann. \& Mag. N. IIst. Ser. 4. Vol. xix.
same species, it is easy to see how "dreadful" (grausliche) the treatment must inevitably be which proceeds upon such a basis.

It the present day, however, things are far otherwise with the palieontologists ; the microscope and the lapidary's lathe will give us most of the details we require to know concerning the structure of the fossil forms; and as regards the recent ones, we are here still better off since the researches of Carter and (). Schmidt have given us a scientific knowledge of the organization of a rast number of species, and a good working classification of these into orders, families, and genera. The key to the fossil spenges has thus been placed in the hands of the palaontologist; and if he does not henceforth make good use of it, he will fully deserve the censure which Schmidt has passed so severely upon his predecessors.

In consequence of the assistance and advice which I have received from my friend Mr. Carter, I have been encouraged for some time past to work out the alliances of some of the commoner fossil sponges; and, as a result, I am now able to state that Siphonia pyriformis and costuta possess the structure of a Lithistid sponge, and are closely related to the existing species Discodermia polydiscus (Bocage) (Dactylocalyx, Bowerbank), that Stromatopora concentrica and some other species of this genus show no affinities to the Foraminifera, but are Vitreohexactinellid sponges closely resembling Dactylocalyx pumiceus (Stutchbury), and that Manon macropora and a sponge called Chenendopora in the Cambridge Museum belong to the Holorhaphidota (Carter), or sponges whose skeleton consists of acerate spicula closely bound together into a fibrous network. These results, which have been fully confirmed by Mr. Carter \%, t hope to publish in full in the course of a few months; while in this paper I shall confine myself to an account of a new genus of the Vitreohexactinellidx occuring in the fossil state in the Gault of Folkestone.

In cxamining a collection of various fossils brought by Mr. Jukes-Browne from Folkestone, to illustrate his paper on the Cambridge Upper Greensand, I was much struck with some curious forms, which were said to be Ventriculite split into halves down the middle; the regularity of the edges, however (which in such a case should have been broken ones), seemed to preclude such an idea, and rather suggested that the forms in question were in a complete state. I wrote therefore to the Folkestone collector, Mr. John Griffiths, re-

[^0]questing him to make me a collection of these fossils; and from his successful search I am now in possession of some forty or tifty specimens, of which some five or six are in a perfect state of preservation, while all exhibit the halfeupshape form which I had noticed previonsly.

Outurad Form (Pl. I. figs. 1-S). -The sponge is vertically and simply fan-shaped, compresied, single, sessite, and adherent. In size it varies from 3 inches to $\frac{7}{7}$ of an inch in height, from 2 inches to 6 of an inch in lowadth, and from 1 inch to $\frac{3}{8}$ of an inch in thickness. The object on which the sponge grew is generally a small fragment of comolite (Pl. 1. fig. 6, b), which in good specimens still remains adherent at or near the point from which the sides of the fan diverge. This point indicates, then, the "base" of our sponge; and it follows that the diverging sides of the fan are the "lateral" edges, and the curved side which joins them, subtending the angle at the point below, is the "distal" or upper margin. The sponge is curvel from side to side, the lateral margins being slighty approximated, so as to make the fan concare from side to side like a half-cup or hollow half-cone. The concave is the "anterior" or "interior," and the convex the "outer" or "posterior" surface.

General Structure.-The sponge is composed of two obvious parts-a thin plate in front (Pl. I. fig. 1, o), and a thick protuberant mass behind (ibid. p) ; a distinct seam (s), which may be merely a line produced by the approximation of the skeletons of the two, or which may be deepened into a shallow grouve, defines these two parts from one another along the lateral edges: on the posterior surface the distinction is manifest by the free projection of the anterior plate beyond and above the pusterior protuberance (Pl. I. fig. 2, o) ; and in fractured specimens the distinction is seen to be continued within (Pl. II. firs. 1, 2), the two structures, however closely apposed, seldom if ever merging into one another.

Anterior Plate.-The surface of this is even and smooth, its thickness from back to front tolerably uniform, but slishtly increasing as it grows upwards from the base; in a specimen $2 \frac{1}{2}$ inches high by 2 inches broad and $\frac{5}{8}$ inch thick it measures $\frac{1}{1}$ of an inch at the summit, and at the base a little less than half this amount. The ratio of the thickness of the plate to the other dimensions of the fossil varies widely with different specimens.

The plate projects freely abowe the posterior protuberance, and terminates in a broken distal edge. This is the case with all my specimens. The anterior plate has been broken off, either down to the level of the posterior mass or at a short
distance above it, the maximum distance I have measured being $\frac{1}{4}$ inch.

As, then, the normal distal margin has not been seen in a single specimen, one is umble to say how much further it originally extended: it may have terminated close to its preachi level, though, from the abrupt way in which it is fractured, it more probably reached some distance above; or it may have been continued into a laree flabelliform expansion, thinning away above and many times larger in area than the portion now remaining-in which case this plate would be the really essential sponge, and our fossil merely its base orergrown with the posterior mass; and the probability of this view derives support from the fact that I have in my possession a thin plate of fossil sponge (Pl. I. fig. 9), 5 inches long by 4 broad, and from $\frac{1}{8}$ to $\frac{1}{10}$ inch thick, curved from side to side, and exhibiting, as we shall see presently, every structural peculiarity to be found in the anterior plate of our fossil. Whether this is really a continuation of the anterior plate can only be demonstrated by finding a specimen in which the latter actually passes into such a flabelliform expansion; and for such a one 1 have directed Mr. Griffiths, of Folkestone, to make a search.

The front face of the anterior plate is a plain surface as far as the level of the posterior protuberance; but beyond this, where it begins to project freely, it is marked by a number of round, or more ustually oval, oscular pits arranged quincuncially (Pl . I. fig. 1), and on the whole constant in size and distance from one another in the same specimen, but differing in both these respects in different specimens (Pl. I. figs. $1 \& 3$). The variations in size may all be comprised hetween the extremes of $\frac{1}{2}$ and $\frac{1}{30}$ inch for the length of the major axis of the ellipse.

The posterior face is of course covered below by the posterior mass ; but above, where it is exposed, it generally exhibits a number of oval spaces arranged quincuncially and closely resembling the oscular pits in front (Pl. I. figs. 2 \& 8), a little less regularity in arrangement and a thickening of the intervening structure into irregular ridges in the case of the posterior markings constituting the only difference, and that not a constant one, between the two. Sometimes the free posterior face is smooth, like the lower part of the anterior face.

When the anterior plate is broken across, one may see the oscules of its anterior face prolonged into cylindrical tubes, which pass inwards normal to the surface, and, receiving irregular lateral canals in their course, terminate in the oval spaces
which mark, as we have seen, the posterior face, and which probably served as the special pore-areas of the sponge. This arrangement accords with the general rule, that in all cup-shaped and curved fan-shaped sponges the oscules are placed on the interior surface of the cup or on the concave surface of the fan, while the pore-areas occupy the outer or convex surface in each case.

The restriction of the oscules to the free part of the anterior plate is only to be seen in tolerably perfect specimens; in those which are at all worn or much weathered the oscules are exposed all over the anterior surface, and by no means confined to its freely projecting part. The absence in this case of the smouth face below, and the appearance of oscular markings in its stead, is evidently the result of attrition, and suggests that bencath the smonth surface of unworn specimens the oscules may still exist, but concealed by a superficial coating: a slight examination will set this beyond doubt. In some instances a small patch of the outer coating has been completely worn away, while the rest of it has simply been much diminished in thickness; we thensee the oscules freely exposed over the denuded area, and dimly to be discerned through the thin coating which remains: in perfect specimens the smooth surface may be removed by dissolving the calcareous matrix of the fossil with acid, and brushing away the superficial network which remains behind; the oscules are then clearly revealed; while, finally, if a section be made across the plate, the tubes which lead directly away from the oscules will be sep traversing it at right angles to the exterior coating (Pl. I. fig. 2, e^{\prime}, and Pl. II. fig. 1, o, fig. 2, o).

The anterior plate thus possesses the same essential structure throughout ; it is a thin plate perforated completely by a number of parallel cylindrical tubes or excurrent canals, which traverse it at right angles and terminate in front in oscular pits, and behind in pore-areas. Its projection past the posterior protuberance shows that it is the first formed of the two structures; and it would appear that as it extended itself vertically and laterally the posterior mass followed after it for some distance as an aftergrowth, while at the same time a superficial covering coated it correspondingly in front, concealing the oscules beneath, perhaps converting them into poreareas, and leaving patent those only on the projecting part above.

Postrior Muss,-The posterior part forms a compact mass (Pl. I. figs. 2, 4, 6, 7, s, Pl. II. figs. 1 \& 2), which, unlike the oscular plate, rapidly increases in thickness from below upwards and from its edges to the middle of its face; so
that in a specimen $1 \frac{1}{4}$ inch high, with an oscular plate uniformly $\frac{1}{8}$ inch in thickness throughout, it has increased from a mere tritle at the base and the edges to $\frac{5}{8}$ inch at the top and through the middle of its face. In contrast also with the uniform character of the oscular plate is the irregularity of growth manifest in this portion: in one class of forms it increases in a series of bulgings, which form gently rounded swellings concentric with the distal margin, or rounded ridges so regular as to give the hinder surface a corded appearance; sometimes the gentle swellings are not continuous but sink laterally into faint dimples; while the xidges are not always semicircular, but occasionally change their course abruptly so as to be V-shaped at one side.

Above, the upper surface of the posterior mass may be gently rounded against the oscular plate, or it may form a flat table and join the plate at right angles.

Tnderlying the variations in this class of forms there is, however, a certain degree of regularity; in all the posterior mass extends laterally as far as the oscular plate, and the two are conterminous along the lateral edges, whilst above, whether it joins the oscular plate gradually or abruptly, it always follows the general curve of the latter in a simple or nearly simple line. But in another class of forms, which, I think, constitute a separate species, the irregularities are much greater than the foregoing; in them the posterior mass is seldom ridged concentrically, but soon after leaving the base it becomes lobed vertically into two or more diverging processes, differing: in size and shape, and exposing the oscular plate in the angle between them: in these forms the posterior mass reaches the lateral margins of the sponge near the base only, and soon ceasing to do so as it ascends, allows the anterior plate to extend freely beyond it in a lateral as well as in a vertical direction.

Externally the porous mass presents a plain surface, never excavated by oval pits or specialized pore-areas. In section it exhibits a number of canals, which, passing from the interior in a more or less wandering course, and without any regular arrangement, terminate at length against the attached face of the oscular plate, into the excurrent canals of which they in some cases directly open ; but whether they do so always seems to me doubtful.

Minute Structure.-To investigate this the fossil may be prepared in two ways: it may either be treated with some acid (I prefer nitric) by which the matrix of calcite is readily dissolved, while a siliceous network is, in well preserved specimens, left in relicf; or slices may be cut from it and ground down till thin enough to be transparent; this is the method
to which I have chiefly trusted, only using the former when the latter has not been available. The sections I have had made have been taken along the following planes:-(1) longitudinal and at right angles to the surface, both through the centre and nearer the sides-longitudinal sections (P I. II. fig. 2) ; (2) transverse and at right angles to the surfacetransverse sections (Pl. II. fig. 1) ; (3) parallel to the surface, one through the oscular plate and another through the posterior mass-parallel sections (Pl. II. fig. 1, l, c, fig. 3).

The appearances of these sections under the microseope I shall now deseribe, and in so doing shall contine myself first to an account of the skeletal structure which they demonstrate, referring most of the facts, which bear on the mincral characters to a subsequent paragraph.

Each of the sections we have defined shows a regular network of fibres arranged in the following manner. Selecting a single node in the net we observe four fibres, usually siliceous, radiating from it at right angles to one another in the form of a cross (figs. 1, 2, 3); each is perfectly continuous

Fig 1.
Fig. 2.
Fig. 3.

Sections taken through the oscular plate of Stauronema Carteri, from the specimen represented in transverse section on Plate II. fig. 1; all magnified 30 diameters. Fig. 1. Longitudinal section (a, Pl. II. fig. 1). Fig. 2. Transverse section (Pl. II. fig. 1). Fig. 3. Parallel section (c, Pl. II. fig. 1).
with similar fibre from an adjacent node, and has at its greatest distance from the two nodes it connects (i.e. at a point midway between the two) a diameter of $\frac{1}{1-2}$ 。to $\frac{1}{1 \times \pi}$ of an inch; but on approaching the node it thickens considerably so as to fill up the angles of the cross and round them off : in this way the meshes of the net, which, from the disposition of the nodes, would otherwise be rectangula", are always round or oval; and these rounded spaces, which are bounded by the outer margins of the fibres, are so sharply defined as to enable us to state with certainty that the fibres themselves are perfectly smooth and not in any way spined.

In the centre of the node is a small and very definite circle, - $\frac{1}{50}$ to $\frac{1}{60}$ inch in diameter (figs. 1, 2, 3, c), which is produced by the section crossing at right angles a cylindrical tube, originally hollow, but now generally tilled with carbonate of lime; and from this radiate four similar cylindrical canals, one in the axis of each arm of the cross; these, of course, are seen sideways and not end on, and ordinarily they are continuous from one node to another, like the fibre in which they are excavated. As these appearances are to be seen equally in each of three sections taken at right angles to each other (figs. 1, 2, 3), it is.clear that our quadrilateral cross of fibre is really a sexradiate one (fig. 4), with its arms arranged about three

Fig. 4.

Diagram of the network of Stauronema. Scale $60: 1$. a, sexradiate canal; b, sexradiate fibre.
axes at right angles to each other, and that corresponding with the axes interiorly is a similar sexradiate hollow canal.

Now this structure is exactly that which characterizes the rete of the Titreohexactinellidæ, and may be seen to perfection, with differences merely as to detail, in deciduous skeletons of Farrea and Aphrocallistes. In these genera, as in the Vitreohexactinellidæ generally, the skeleton is produced by a growth of siliceous matter over sexradiate spicules; and in Farrea occa each node of the resulting network is a rectangular sexradiate cross of fibre, which has formed about a sexradiate spicule, which thus comes to occupy the centre of the fibre. In many vitreous hexactinellids the fundamental spicule is preserved imbedded in the siliceous fibre, which is thus originally solid; and which, as it is composed of the same material all through, without any difference of refractive index, cannot be distin-
guished into spicule and fibre, but appears homogeneous throughout. But in deciduous specimens of Aphrocallistes and Farrea the original spicule undergoes a process of absorption and disappears, leaving in its pace a hollow sexradiate cavity readily observable in the interior of the fibre. Our sexradiate fibre has, then, in the fossil comdition a structure essentially identical with that of the recent skeleton of ferrea when in as deciduns state. The siliceons fibre of our fossil corresponds with the siliceous fibre of Pierrea; and the sexmate canals in its interior correspond with the hollow casts of the spicules in the latter: the only difference is that the canals in our fossil are contimous from one node to another, while in recent Hexactinellide they terminate blindly, as casts of spicules natually would, their blind temmations generally overlapping one another*. But even this difference vanishes with a close examination of the fossil fibre, as I shall show when we come to speak of the various modes of its fossilization.

The chanacters of the sponge already described are sufficient to detine the genus, which I now propose to call "Stantonema," from the cross-like disposition of the thick skeletal fibres about the nodes of the network, a feature readily visible under a common hand-lens. In the oscular plate the nodes of the network are usually arranged symmetrically at equal distances from each other, so as to form meshes which would be cubical but for the thickening of the fibre towards the node, which converts the cubes into spheres or ellipsoids. By reason of the symmetrical grouping of the nodes, the skeletal fibres fall into three series:-one longitudinal, ascending from the base ; a second horizontal, radiating from the imaginary axis on which the half-cone of the sponge may be supposed to be described; and a third horizontal and concentric with the curve of the fan.

The longitudinal fibres (Pl. II. fig. 4, l) deviate from a parallel course by diverging, as they rise from the base, towards the anterior and posterior faces of the plate; and to maintain the uniform size of the meshes, fresh sexradiate elements are interposed in the same way as I have described in Eubrockus and the Ventriculites \dagger. The radiating fibres, since the curve of the fan is gentle and the oscular plate thin, lie in almost parallel lines ; but both they and the concentric

[^1]fibres are not, strictly speaking, confined to horizontal planes ; for they curve upwards in gentle arcs so as to suggest that they once bounded and corresponded with the rounded edge which in all probability terminated the distal margin of the plate, in the same way as a similar edge now limits its lateral margins.

The oscules and excurrent canals are arranged so regularly in the plate that they do not disturb the regularity of the foregoing arrangement to any great extent, though in their immediate neightromhood the sexradiate nodes become grouped round the excurrent canal, so as to be subordinate to it rather than to the general structure; thus some of the nodal crosses are turned round 45° out of their normal position, so as, in joining with the others, to suround the circular canal with continuous concentric fibres; and, at the same time, the fibres actually forming the walls of the canal are both bent and thickened in order to bring about their complete adaptation to its circumference. These facts may be seen in sections, but better perhaps by etching the oscular surface with acid, when, on the solution of the matrix, the oscular network stands freely out in relief, and with its slightly expanded termination resembles in miniature the mouth of a waste-paper basket; one can then see, by looking down into it, by reflected light, the adaptation in the arrangement of the nodes and the bending and thickening of the fibre, from which results a circular network with circular fibres forming the walls. One will also discover that the oscular fibres are beset with rather short conical spines (Pl. III. fig. 1), which sometimes are simply spinous outgrowths, but frequently also the sixth arm of a nodal radiation, which, instead of passing into the network as usual, points freely into the excurrent canal, just as happens in the canals of Aphrocallistes. In direction they usually incline outwards and towards the centre of the excurrent canal, but not always; in exceptional cases they are turned inwards, and then seem to be related to the fine canals which open in the meshes of the oscular network, since they spring from the sides of the fibre about such a space, and point into the excurrent canal. With this modification the rule here, then, as in Aphrocallistes, seems to be that the spines always point in the same direction as the outflowing current which at one time passed by them. It is possible that this arrangement indicates a defensive function for these spines ; but, as an explanation of their position, one may recur to the fact that Carter has traced the development of the spicule from its mother cell \%, and

* Ann. \& Mag. Nat. Hist. 1874, vol. xiv. p. 97, pl. x.; 1875, vol. xvi. p. 11 .
shows that the sexradiate forms are in all probability produced by a radiate growth from the first of the six arms from a common centre: this being so, one can readily see that if the growth of a free radins took place in the comse of the excurrent canal, it would be suljeet to a pressure in two directions at right angles to cach other-ome due to its growth onwards, normal to the surface from which it springs, and the other parallel to the axis in the direction of the current; and its ultimate position would be the resultant of these two, and would be in just such a position as the spines, in fact, assume.

The growth of the spicule from a mother cell also explains in part many other matters which would otherwise be enigmatieal. Thus the wonderful regularity of the network we have previously deseribed may be looked upon as having resulted from a mother cell which originally gave off buds, one at the end of each of its spicular rays-i. e. in the direction of most active growth; the cells so budded off would become in turn mothers, and repeat the process, till, by reason of the limitations imposed by the limits of the organism, they would be unable to produce more than one bud each, and that verticallyexcept that when the distance between two cells became much greater laterally than twice the length of a spicular ray, a fresh cell would thus appear at the side of one of them, and the vacant place be filled up.

Detached Oscular Plute.-The thin plate of sponge-structure mentioned on p. 4 is bounded on all sides but one by a broken edge; the elge which is not broken is one of the lateral margins, neatly rounded off in the same way as are the sides of the oscular plate in Stauronema (PI. I. fig. 9, $n n n)$. Anteriorly the plate is marked by oscular pits (fig. 9, a) quincuncially arranged, and of the same shape, size, and distance from one another as in Stauronema. These pits are the mouths of cylindrical excurent canals, which perforate the plate and open posteriorly in rounded pore-areas. The structure intervening between the pore-areas is frequently raised into ridges and prominent monticules, more marked than those which occur on the posterior surface of Stauronema, but otherwise similar ; the skeletal networks of both fossils have also the same structure and arrangement; and their meshes and fibre are of the same dimensions. These facts, and the absence of the true distal margin of the oscular plate in the other specimens, leave little doubt in my own mind as to the relation which this fossil bears to the latter. I cannot but regard it as a part of a distal expansion of the oscular plate of Stauronema.

Posterior Mass.-Between the canals of the posterior mass
is distributed a skeletal network similar to that of the oscular plate. The central sexradiate canal, which is the fundamental part of the skeleton, is of the same size and regularity in both; and in one specimen the sexradiate nodes are disposed with a regularity so great as to bring about a general arrangement of the fibers into mone or less longitudinal, concentric, and radiating series. But this arrangement, owing to the want of regularity in the course of the camals, is more frequently disturbed by adaptation; the sexradiate spicules are often turned at varius angle from what would be their nomal position; and of course the fibre follows them, with the result that the arrangement of which we spoke is often nothing more than a tendency to an arrangement; while in most specimens even this amount of regularity would be hard to trace, the sexradiate character of the network almost vanishing or only to be detected in the infallible sexradiate canals.

Superficial Reticulation.-On examining the front face of the anterior plate, there may be seen, in farourable sections, a layer of finer but less regular network proceeding from the outermost meshes of the general skeleton, which lie immediately beneath; and, again, outside this secondary rete, as we may term the finer network, a very thin layer of structure may be sometimes observed, so minute and confused that in section nothing intelligible can be made of it, and for its successful examination one must have recourse to the method of etching with acid.

When the face of the attached oscular plate is examined by reflected light in its natural state, it presents a plain surface, the smoothness of which is only disturbed by a faint tubercular appearance; but on dissolving away its calcitic matrix with nitric acid, a beautiful siliceous network is exposed, which may be best examined under a power of about 100 or 150 dinmeters, and loy reflected light. One may see then, in places where the network has wholly broken down, the coarse skele-ton-fibres with their nodes forming a layer immediately beneath, and in this position very commonly furnished with short, erect, conical spines Pl. Ill. fig. 多); above this follows a layer of similar network, but much smaller in mesh, a little less regular, alsor spined but more abundantly (Pl. III. fig. 3, Pl. IV. figs. 1, 3): four arms of the sexradiate nodes of this network, which we have olserved in section as the secondary rete, lie parallel to the surface in square meshes; of the other two, one passes inwards and joins the general skeleton, and the other prrjects outwards, normal to the surface, like the "fir-cones" in Farrea occa. These free projecting arms all end at albut the same level in eylindrical rounded spinose
terminations (Pl. III. fig. 2) ; but now and then these terminations are wantine, and the quadrilateral meshes from which they spring lie lewh or nearly level with the surface. From the spinose ends, or from the quadrilateral meshes, an exeredingly fine network of delicate, glassy, pullulating fibrelets is given off, which fills up the interstices of the secomdary rete (Pl. ItI. fiz. 4, Pl. IV. figs. 4, 5, 6, 7, Pl. V. fig. 4); frequently it is wholly irregular, but in mumerous instances cxhibits the true sexradiate arramement. Its meshes and fibrelets vary in size, the areage mosurement from node to node being $7 \frac{1}{00}$ to $\frac{1}{\pi}$ inch, and the diameter of the fibres
 thicker than the spines of the secomlary rete : and this surgests that some of these spines may be, after all, nothing but the attached parts of fitreletw, which have been broken off or disssolved away; and often a series of gradational forms can be traced, proving that some are of this nature; but many, from their smooth sides, regular conical form, and aboudance in places free from fibrelets, must, as we have already considered, be true spines.

From the minuteness and proxinity of the sexradiates one would conclude that they have been coated merely with a thin film of siliceous material, or are only soldered together at their ends; and the same characters would also lead us to infer that they do not afterwarls come to form a part of the interior skeleton, but remain as a surface-coating, which must be regarded as an aftergrowth creeping over the oscules of the anterior plate, as this becomes overgrown by the posterior mass behind.

Though this network is in sencral collected noly about the ends of the radii from the secondary rete, beneath or between the meshes of this rete, it yet also happens occasionally, especially near the base, that it accumulates in patches to a much greater extent, burying up the network below, so as to completely conceal it from sight (Pl. IV. fig. 4), and forming a low but distinct mound above the general surface, and even, in one case, producing a series of rounded ridges (Pl . I. fig. 2, Pl. II. fig. 2, r) which pass straight across the anterior face of the oscular plate, horizontally from one side to the other.

The superficial notwork, where it covers up the oscules, descends some distance into the excurrent camals, as may be well seen by breaking a specimen across the oscular plate, etching the fractured surface, and then examining it by reflected light. The skeleton-filbes, with their projecting spines, are then exposed; the superficial network is seen
covering over the oscalar opening, and giving off' one or two pendent processes into the excurrent canal; and, moreover, the skeletal fibres which surround the canal are also produced into outgrowths of delicate reticulation and irregular fibres which straggle across the canal from side to side (Pl. III. fig. 2) ; and the tendency of the fibre to pass into secondary growths thus manifested is carried so far that, even in the normal smooth network not immediately surrounding the canal, an occasional spine puts in an unexpected appearance.

The superticial network dues not frequently occur over the posterior mass; and its ranity in this position appears, in some cases, to result from the wear and tear to which a convex surface like that of the posterior mass is especially exposed; in other cases it is due to a less favourable state of fossilization than obtains in the anterior plate; while in others still it would appear to be absent because the posterior surface has never been furnished with it, which last, indeed, is only what one would expect on the riew that the posterior mass is an aftergrowth which increases behind while the aftergrowth of fine network is extending itself in front. It is only when the posterior mass has, like the attached anterior plate, ceased to grow, or, at all events, when its growth has for a time been arrested, that one would expect to find a final overgrowth of fine network on its surface. Such a layer I have met with in one case only, though whether it is, in this particular instance, exceptionally produced or exceptionally preserved, is of course impossible to say. This network, under a magnifying-power of 50 or 60 diameters, appeared to be without a sexradiate arrangement, its meshes not having any very regular form, and each of its fibres seemed to be pitted or perforated with a number of minute holes ($\mathrm{Pl} . \mathrm{V}$. fig. 1); but when a power of from 100 to 140 diameters was applied, it was found that these minute holes were the intermeshes of a delicate net, and that each filme was itself a complex reticulation of exceedingly delicate fibrelets (Pl. V. fig. 2), which, where most perfectly preserved, showed a regular sexradiate disposition, with nodes distant $\frac{1}{1250}$ to $\frac{1}{2000}$ inch from each other, and fibre $\overline{15} \overline{1}$ to $\overline{\text { rin }}$ inch in diameter. Where a sexradiate arrangement could not be detected, the defect appeared to be owing to the disappearance of some of the fibrelets necessary to the arrangement, by solution or otherwise. The cylinders of network exhibit sometimes a central axis of solid fibre from which the finer rete is given off all round; and sometimes they pass into a solid fibre ornamented with projecting fibrelets-a transformation apparently due to the fusion of the compound netrork-fibre into a solid one by the further deposition of
siliceous matter. Between the open meshes of this most exquisite net (which, in the delicate and complex tracery of its transparent fibres, surpasses almost every thing I have seen amongst the Hexactinellida) one observes either an intermesh perfectly open and leading to the interior of the skeleton, or else a multitude of minute glistening fibrelets, which pass from fibre to fibre of the secondary rete below, and weave across its meshes a transparent vitreous wel) (Pl. V. fig. 3). The secondary rete passes in its turn into the skeletal network below, which, at tirst beautifully spined, soon becomes, as it leaves the surface, perfectly smooth.

The foreroing facts could be olserved by examining the surface of the etched fossil by reflected light; but by splitting off' a few fine chips with a scalpel, treating them with acid in a watchglass, washing with distilled water, and finally drying, the network could be obtained in a state fit for mounting in Canada balsam and other media, and for observation with transmitted light.

Traces of the network with complex fibres may be detected along the lateral edges of the oscular phate in the specimen where it occurs; but further on, over the anterior face, it quite vanishes, and only the ordinary superficial reticulation prevails (Pl. V. fig. 4).

Flesh-spicules.-The perfect manner in which the superficial network is preserved led me to think that some rosettes or other flesh-spicules might perhaps be seen in the sponge ; and the most likely places to louk for them appeared to be, first, in the residue set free in suspension on treating the fossil with acid, and, next, in the open meshes of the skeleton. A careful examination of the former proved altogether unsuccessful, while in the latter iron pyrites was observed under a variety of forms. In this there was hope, since I have slides shewing minute coccoliths and delicate radiolarians perfectly preserved in this material: therefore I made a long search in the expectation of finding some form of iron pyrites which should display evident traces of the rosette form; but, with a few very unsatisfactory exceptions, my search was quite in vain. The flesh-spicules of the Hexactinellida have yet to be found in the fossil state.

Other Spicules.-I have, however, met with two spicules other than sexradiates in this fossil. One is a completely erectly spined cylindrical form (Pl. V. fig. 5) with one part hidden in the network, from which the other portion projects freely, making an acute angle with the oscular surface as it points upwards from the base. This spicule bears
a close resemblance to that figured by Bowerbank * from Aphrocallistes (Iphiteon, Bk.) beatrix.

The other spicule oceurs in a parallel section of the oscular plate, as a cast, partly hollow, partly filled with iron pyrites; it is simple, not spined, terminates so obscurely that its ends cannot be made out, and is imbedded in skeletal fibre in company with the ordinary sexradiate spicules (Pl. V. fig. 5).
inodes ut Fussiliatem. - The fossilizing material is usually crystalline transparent carbonate of lime, or calcite, which fills up the meshes of the network, and occupies the sexradiate canals of the silicenus tibre; where it occurs in large quantity, as in the meshes and excurrent canals, it is traversed by numerous cleavage-planes; and it is usually impure from the presence of a little aluminous matter. The fibre thus enclosed consists of silica, and in a few cases is almost as homogeneous and purely siliceous as when it existed in the living state; but even in this, its most perfect condition it generally exhibits the marks of decay, not only by the absorption of its interior spicule, lout in the presence of numerous hemispherical pits excavated from its exterior to various depths, like those described by Carter as affecting recent spicules \dagger; from this condition it som passes through a series of changes, the final result of which is to leave it wholly converted into carbonate of lime. The first step in the process is a granulation of the fibre about the internal canal, which sonn extends itself, chiefly by cating its way from within outwards, till at length it reaches the nuter boundary of the fibre; and this, which during the process of change has retained its definite outline, often its transparency as well, yields at last, and the fibre becomes granular all through. The granulation, however, also frequently appears at the outside and the inside of the fibre at once, and proceeds from each direction till it meets in the interior. While the granulation is thus progressing, a process of absorption is set up about the interior canal, accompanied by a replacement of the fibre in carbonate of lime; this change takes place from within outwards, and continues till at length a mere shell of rounded granulations of silica separates the calcite without from that within the fibre; finally this shell itself disappears, and the exterior and the interior calcite become one. But even then, with this extreme mineralogical change, the original structure is not obliterated: the calcite which fills the internal canal and the interspaces of the meshes is transparent and usually colourless, or with a faint yellowish

[^2]tinge; while that which replaces the siliceons fibre is, by reflected light, of a milky blue colour, and by transmitted light brownish, less transparent, and gramular with dark spots. And thus while the fiudamental spicule has become absortbed, and its hollow cast filled with erystalline calcite, and the same material has replaced the siliceons fibre and the sarcode between the meshes-while, in fact, the whole of the metamorphosed net consists of one material, carbonate of lime, the structure is yet left as definitely recorded as in a sponge with its natural composition only just dead ; and from this striking fact is forced upon us the conclusion that in determining the characters and aftinities of fossil sponges, the mineral composition is an argument of but fifthrate value, and the form and structure here, as in most other anatomical questions, is the one thing important.

It frequently happens that while the sponge towards the exterior is preserved in calcite, it is fossilized with silica in the interior ; and between these two conditions one can often trace a series of transitional changes. Thus in one specimen the sharp outline of the siliceous fibre soon disappears as it proceeds inwards, and is replaced by a botryoidal surface of hemispherical bosses (p. 18. fig. 6, a; p. 19. fig. 7, a), each with a corresponding cavity on the inside; from the botryoidal exterior a fibrous crystallization of silica radiates towards the middle of each intermesh ", filling it up; the interior of the fibre, on the other hand, is occupied with clear transparent calcite exhibiting cleavage-planes, and the sexradiate canal is filled with silica, cryptn-crystalline, and exhibiting patches of colour when polarized light is passed through it. Thus the original siliceous spicule is, after a cycle of changes, restored again to the siliceous state. And here one may notice the very important fact that these pseudomorphic spicules are not contimuous with each other, but remain perfectly distinct, with their rays overlapping, precisely as they do in Farrea and Aphrocallistes (fig. 5, a). In one or two instances (fig. 5, b) four spines equally distant from each other have been noticed surrounding the proximal end of each ray, and pointing towards the centre of the spicule-thus indicating that in these cases a hollow process, now converted into a spine, once proceeded from the central canal and entered the thickening of tibre which fills up the angles at the nodes of the network. If, as might easily

- happen, these canals underwent an extension so far into the thickening as to mect one another, and become continuous, we should have a structure singularly homoplastic with that of

[^3]the Ventriculite lantern. I notice, however, in addition to the four spines just mentioned, others (fig. 5, c) which appear to radiate from the centre of the spicule, one between each angle of the rays; so that altogether the structure is a very puzzling one, and difficult to work out, locause I find no other clear example of it.

Fig. 5.

Fig. 5. Siliceous casts of sexradiate canals of Starromema: a, overlapping = rars; b, three accessory spines; a fourth is concealed on the opposite side of the ray; c, spine projecting from the centre of the cast.

As the skeletal network is traced further inwards, the calcite inside the fibre lecomes replaced by silica (fig. 7), and the silica which represents the original spieule by iron pyrites (fig. 7, 6).

Fig. 6. a, botryoidal surface of fibre replaced by calcite; b, siliceous cast of spicule; c, radiately crystalline silica of intermesh.

The original fibre then vanishes altogether ; the botryoidal surfaces no longer define it, but, growing far away from their original position and nearer to one another, diminish the intermeshes into a narrow fibre-like reticulation, and widen the
fibres into broad mesh-like spaces; and we can only distinguish the site of each by the fact that the botryoidal surface always presents its bosses towards the meshes and away from the interior of the fibre; to which distinction may be added another, which consists in the fact that the silica deposited via the fibre is never fibrous like that deposited outside, but gives merely a mottled appearance of colour with polarized light. By this we know that the sexradiate spicules of irom pyrites are truly inside the fibre, as we should expect, and not outside, as they appear to be. Here, again, we find a want of continuity between the rays of neighbouring sexadiate spicules, which come to an end abruptly and overlap without passing into one another.

Fig. 7.

Fig. 7. a, botryoidal suface of silicified fibre; b, casts of spicules in iron-pyrites ; c, radiately crystalline silica of intermesh.

Iron Pyrites.-This, as we hare seen, fills the central canals when the fibre is replaced by erystalline siliea; but it does so as well when the fibre retains its original state and when it is converted into carbonate of lime. It is always gramular-so much so, that fine spicular rays are sometimes composed of nothing but its spherical concretions set in a linear series. The pyrites is not contined to the canals, howerer, but forms bacilli, spherules, and gramules in the fibre itself, both when the latter retains its original siliceous state and when it is wholly changed into calcite. It is, moreover, found in the intermeshes, taking frequently the form of globular concretions, which are covered on the surface with crystalline facets, like
the iron-pyrites concretions of the chalk seen in miniature; in size these globules are about $\frac{1}{0}$ inch in diameter, and may perhaps have formed about the rosettes which surely once existed in the sponge.

Change in Retractive Index of the Silica of the Fibre.-When fragments of the siliceous network are freed from calcite by means of acid, washed, dried, and mounted in Canada balsam, the fibre is found to be characterized by a remarkable transparency, often so great as to render it almost invisible; and this is perhaps partly to be explained by attributing to it great porosity, by which the balsam would be able to penetrate it everywhere, and great transparency would result ; and this view is supported by the fact that the fibre in the dry state, and mounted in air, appears of a pure snowy white by reflected light. But I scarcely think this is the whole explanation, since when such prepared fibre is mounted in glycerine jelly, its transparency is much diminished, and consequently it can be seen with greater distinctness. Now glycerine jelly has a much lower refractive index than Canada balsam; and hence these different appearances can be readily explained by supposing that the silica of the fibre has a refractive index nearly equal to that of the balsam, but higher than that of the glycerine jelly. This change in transparency I have found also well exhibited in some beautifully preserved spicules from the Upper Chalk which I hope soon to describe ; these can scarcely be discerned when viewed in balsam, but are seen very clearly in the less-refractive medium. The different appearance of spicules in these different media suggested to me that a corresponding advantage might be gained by mounting recent spicules in glycerine jelly; but on following out this idea I found my recent spicules were quite, or at all events nearly, invisible in this material, from which one draws the conclusion that the recent spicules have a refractive index corresponding closely with the lower one of glycerine jelly instead of with the higher. one of Canada balsam, and hence, first, that recent spicules are not themselves seen in Canada balsam, but only their negative images or optical casts, and, next, that in process of time the refractive index of spicular silica undergoes an elevation approximately equal to that of passing from the refractive index of glycerine jelly to that of Canada balsam.

Change from the Colloid to the Crystalline State.-The alteration in the refractive index would naturally accompany a change of the original silica of the fibre from a colloid to a crystalline condition; and that such a change has certainly taken place can readily be proved by examining the network as previously prepared, or in an ordinary transparent section,
by polarized light. When this is done, a change in the plane of polarization is distinctly produced by the fibre, since it shines out with faint bluish and yellow glimmerings on the dark ground produced by crossed prisms. If now some recent spicules, or some compound Vitreohexactinellid fibre, be substituted for the fossil silica, no effect will be produced on the light: the dark ground will remain wholly dark; and if the polarizer be turned round 90°, the light admitted will undergo no change of colour in passing through the object.

One may diverge for a moment here to speak of some additions to the modes of examining recent sponges which arise out of these observations. First, the fact that the recent spicule is almost invisible in glycerine jelly, while the horny fibre of sponges is more than usually well defined in it, allows us to optically despiculize the fibres of the Chalinida and Echinonemata (Carter) by immersing them in this substance, and thus to observe the kerataceous material independently ; and, next, the fact that the calcareous spicules of the Calcispongia do produce a marked effect on polarized light, exhibiting brilliant colours, which siliceous spicules and fibre do not, provides us with a speedy method of distinguishing between these two kinds of spicules, and one which may be employed in cases where the use of acid is not available\%.

I cannot attempt to explain all the various mineral changes and replacements which we have now described; they are as obscure as most of the pseudomorphic alterations which oceur in fossilization ; but two most important facts stand out from all the rest in my mind:-first, that siliceous fibre may be completely replaced by carbonate of lime without obliterating its structure; and, next, that spicular silica may with lapse of time pass from the colloidal to the crystalline state.

Alliances.-In looking for the existing relations of Stauronema one will not find any near ones. The absence of a " lantern" about the nodes excludes the Ventriculites; Euplectella is characterized by ladder-formed fibre, and is in most respects widely divergent. With Aphrocallistes the oscular plate presents some analogy, as pointed out to me by Mr. Carter, the walls of the tube-net of Aphrocallistes being perforated completely by horizontal excurrent canals quincuncially arranged, just as we found in the plate-net of strmomema; and even, as in the latter the oscules become covered up with a layer of tine network, so a network, but not correspondingly fine, extends itself over the oscules of Aphrocallistes, as may

[^4]be clearly seen in a specimen which Mr. Carter kindly sent me to illustrate this point. The skeletons of the two, however, are in one respect widely different. In Aphrocallistes the imbedded sexradiates are subject to great variations in the disposition of their rays, five, or even all six, radii being sometimes brought into one plane, while two or more of these rays may be and often are enveloped in one and the same fibre; so that the nodes of the resulting network are as often as not sexrotulate in the same plane, and the intermeshes consequently triangular. In Stauronema, on the contrary, the spicule maintains a rigid stereometry, never departing from a rectangular triaxial type, and the rete is usually quadrangular ; and though it may vary in this respect, yet when it does so the change is never due to the departure of any radius of the original spicules from strict rectangularity, but results from a different disposition of the entire spicules with regard to one another. This difference is seen in the following diagrams:-

Fig. $\underset{\text {. }}{ }$
Fig. 9.

Fig. 8 shows quinqueradiate nodes (q) of Stan onema, due to the relative disposition of the spicules (s).
Fig. 9 shows the quinque- and sexradiate nodes of Aphrocallistes, and the sexradiate spicules (s) with rays making various angles with each other. At a two rays of a spicule are seen lying approximately parallel and imbedded in the same fibre.

In this character Stauronema agrees with Farrea occa, where also we find the same persistency in the form of the skeletonspicule; and to this example may be added the external net of Eubrochus (Sollas) and the Ventriculitidæ generally. But, as we have said, the Tentriculites are excluded by the presence of the lantern about the nodes; and Furrea is so of course by the fact that its skeleton consists of but a single layer of lattice-work; Eubrochus exhibits a more delicate and less regular internal skeleton, and is altogether a very different sponge.

The place of Strouronerna amongst its relations may perhaps be best illustrated by the following Table, which is a classifi-
cation of the Vitreohexactinellide according to the characters of their skeletal network.
I. Sexradiate skeleton-spicule always rectangular. Stachonemata.
(a) Skeletal network with simple nodes
(1) one layer in thickness Farrea.
(2) several layers thick Stauronema.
(b) Skeletal network having the nodes complicated by the presence of an octahedral lantern about each one........ . Ventriculitidere, including Myliusia Grayi.
II. Sexradiate skeloton-spicule with rays making any angle with each other. Armmocalidistid.e.
Aphrocallistes, Ductyluculy. \imath^{*}, Iphiteon*, Stromatopora (Callodictyon, Sollas, n. g.) concentrica.
III. Skeleton-spicules cemented intu ladder-like fibre. Elplectelelid.e. Euplectella, Sympayella.

Vitreohesactinellidæ.

Genus Stauronema (mihi).

Form half-conical or half-cup-like, fan-shaped, vertical, sessile, attached.

Structure a thin oscular plate, overgrown at its base by a thick posterior mass. Oscules oval or round, quincuncially aranged, patent where the oscular phate is free, concealed beneath a superficial reticulation where attached. Excursent canals cylindrical where they perforate the oscular plate.

Shotetun: spicule triaxial, axes at right angles to each other; fibre robust, nodes sexradiate, meshes quadrilateral.

Formation. Gault and Upper Greensand \dagger.
Locality. Folkestone and the Isle of Wight.
Species:-

> 1. Stauronema Carteri (mihi), type.

Form. Pusterior mass more or less rugose horizontally, extending ats firr as the lateral edges of the phate to which it is attached (see p. 6).
lemurk. This species I dedicate with great pleasure to my friend and instructor Mr. H. J. Carter, who was the first to explain aright the structure of the vitreohexactinellid skeleton.

[^5]
2. Stauronema lobata (mihi).

Form. Posterior mass not extending laterally as far as the lateral edges of the attached oscular plate, seldom or never ridged horizontally, usually lobed vertically into two or more diverging processes.

Oscules smaller than in S. Carteri.
Remerls. This species is characterized by a more variable and less regular form than S. Carteri.

explanation of the plates.

Plate I.

[. Wll the figures of this plate represent the oljects of their natural size.]

Figs. 1 to 4. Stauronema Carteri.

Fig. 1. An average-sized specimen, anterior aspect: o, oscular plate; p, posterior mass; s, seam or line of division between the two.
Fig. 2. Same specimen as fig. 1, posterior view: b, base; o, posterior face of projecting oscular plate ; e^{\prime}, excurrent canal crossing oscular plate, shown on a fractured surface $; s^{\prime} s^{\prime}$, line of termination of posterior mass against the oscular plate.
Fiy. 3. A smaller specimen, anterior view.
Fig. 4. Same specimen, posterior view: b, base.

Figs. 5 to 8. Stauronema lobate.

Fig. 5. Anterior view of a medium-sized specimen : p^{\prime}, a lobe projecting from the posterior mass.
Fig. 6. Posterior view of preceding specimen : b, a fragment of attached "coprolite."
Fig. 7. Posterior view of a specimen showing the diverging lobes of the posterior mass, with the oscular plate visible between them.
Fig. 8. A very gently curved, almost flat specimen, showing the free surface of the oscular plate with its pore-areas.
Fig. 9. Free sponge-plate: $l-n$, simple outline of its surface; $n n n$, original margin (the remaining edge is a broken one); a, detailed representation of the oscular markings which cover the whole surface of the plate.

Plate II.

Fig. 1. Transrerse section through StauronemaCarteri: o, oscular plate; p, posterior mass ; a, b, \& c, directions along which other sections were made through the same specimen-a, longitudinal, $b \& \varepsilon$, parallel sections; e\& \boldsymbol{e}^{\prime}, excurrent canals. Nat. size.
Fig. 2. Longitudinal section through the centre of another specimen of S. Carteri: o, p, e, \& e^{\prime}, as in fig. 1; d, distal edge of oscular plate; r, outline in section of ridges formed by an accumulation of the superficial network. Nat. size.
Fig. 3. Parallel section through the oscular plate along the line c in fig. 1. Nat. size.
Fig. 4. Skeletal network of oscular plate, magnified from fig. 2: a, margin of fibre, transparent as far as b, where it becomes granular;
s, cast of sexradiate spicule filled more or less completely with iron pyrites; l, diserging longitudinal, and t, curved radiating fibres. $\times 30$.

Piate: III.

Fig. 1. Fibre surrounding an osule, from an sucimen which has been etched with acid, seeu by reflected light: s, one of the projocting spines. $\times 30$.
Fiy. :2. Section aloner an excurrent canal of the oscular plate, after etching with acid, seen by reflected light: r, tine superticial network rooting over the oscule; p, tibre produced from it, depending into the canal; q, small irregular fibres growing out from the skeletal motwork. The arrow indicates the original course of the outtlowing current. $\times 30$.
Fiy. 3. Surface of oscular plate near one of the concealed oscules: s, coarse skeletal fibres, smaller than in the interior of the plate, spined, and passing under r, the secondary rete. $\times 60$.
Fiy, 4. A mesh of the outer skeleton-fibre, griving off at its margins some of the fine superficial network. $\times 140$.
Fig. 5. A part of the oscular plate represented in Pl. II. fig. 3, magnified to show:-a, an acerate spicule imbedded in the network; and b, part of an abnormally fine skeletal network, a band of which traverses the whole of this specimen of the oscular plate. $\times 30$.

Plate IV.

Fig. 1. Secondary rete, seen by reflected light: f, fibres parallel with the surface; s, free spinose ends of fibres normal to the surface. $\times 104$.
Fiij. 2. Projecting spinose fibres (s of fig. 1), resembling the fir-cones of Farrea occa. $\times 104$.
Fig. 3. Similar to fig. 1, but showing a finer meshwork. $\times 104$.
Fig. 4. Fine superficial network, seen near the base of the oscular plate by reflected light, where it conceals the spinose fibres of fig. 2. $\times 104$.
Fig. 5. Similar network, but occurring between the spines of fir. 2. The sexradiate arrangement of the fibres is well seen in this instance. $\times 104$.
Fiys. 6\& 7. Minute sexradiate reticulation proceeding from the spinose euds of fig. 2. $\times 104$.

Plate V.

Fig. 1. Superficial network from the surface of the posterior mass: m, intermesh; \hat{f}, fibres; n, secondary intermesh. $\times 60$.
Fig. 2. A part of fir. 1, more hirhly magnified, showing the compound nature of the fibre. $\times 190$.
Fig. 3. Network beneath fig. 1, consisting of f, large fibres, the meshes between which are webbed with the fine fibrelets, $9 . \times 140$.
Fig. 4. Frarment of superficial network from anterior face of same specimen, showing clearly a sexradiate arrangement. $\times 140$.
Fig. 5. Entirely spined cylindrical spicule, projecting from the face of the oscular plate. $\times 140$.

II.-On some new Genera and Species of Araneidea. By the Rev. O. P. Cambridge, M.A., C.M.Z.S., \&c.

[Plates VI. \& VII.]
Six out of the eleven spiders here deseribed are from Australia, two from South America, two from Madagascar, and one from Ceylon. Those from Madagascar are of very great interest; one (Phoroncidia auratu) is a peculiarly brilliant species of Prof. Westwood's curious genus ; the other (Augusta papilionaceu) is the type of a new genus, forming a link between the Gasteracanthides and the remarkable spiders of the genus A Loys (A\%ys, Walck.). The general appearance of this spider is very striking, and reminds one of a small butterfly.

My thanks are due to the authorities at the British Museum for kindly permitting me to describe and figure those of the above spiders belonging to the family Theraphosides, the types of which are in the national collection. The remainder are described and figured from examples in my own possession.

Order Araneidea.
Fam. Theraphosides.
Gen. nov. Atrax.
Generic characters.
Cephatothorex much longer than broad, lateral constriction at caput slight ; fore part truncate, and rather narrower than the hinder part; caput not much elevated above the thorax, though rather roundly convex.

Falces large, massive, and very prominent, but with no tecth at the fore extremity of the upperside.

Eyes small and not greatly unequal in size; their position is very nearly that of Nemesia, the four exterior ones (being: the laterals of each row) forming a transverse oblong figure whose fore side is rather shorter than the hinder one; and within this oblong is another shorter one, formed by the fore and hind central pairs of eyes, and whose fore side is considerably shorter than the hinder one.

Leys moderately long, strong; terminal claws three; no scopula at the extremities. Relative length 4, 1, 2, 3.

Wasille long, cylindrical, but prominent in an obtusely pointed form at the inner side of the fore extremity.

Labium short, of a round-oval form, rather truncated at the apex.

Atrac rolustus, sp. n. (Pl. VI. fig. 1.)

Adult female, length 13 lines, to end of falces 16 lines.
The whole of the fore part of this spider is of a deep rich red-brown colour; the cophelethorese smooth, shining, and destitute of hairs ; the colour, however, of the falces is rather darker, and the fang is long and strong.

The legs do not differ greatly in length ; and their armature consists of hairs, slender bristles, and a few spines.

The lelium, which is convex in firnt, is studded with small tonth-like spines, a large portion at the base of the maxille being also similarly furnished.

The chulumen (in the only specimen examinerl, a dried one) was much shrunken; it is hairy, and its colour is a dark reddish brown. The ipimere, four in number (\%), were broken off.

A single example of this spider, from New Holland, is in the British-Museum collection.

Gen. nov. Idiopitilalma.

Generic characters.

Cepheluthoraw oblong-oval ; fore part and hinder part about equal in width; rather flattened, but the occipital portion somewhat roundly convex.

Eyes in three transverse rows, very similar to Idiops \&c., but differing in the greater length of the front row and the contiguity of the outer cye, at each end of the hinder row, to the one next to it, forming two pairs considerably removed from each other. The hinder row is the longest, consisting thes of four eyes, and the middle row the shortest.

Falces strong and bristly, furnished with a group of strong spines on the upperside of their fore extremity.

Legs moderate in length, strong, furnished with hairs and mistles omly, the metatarsi and tarsi with a compact scopula. The legs of the fouth pair were wanting; the relative length of the rest is $1,2,3$.

Wucille long, cylindrical, and slightly curved.
Labium oblong, slightly broader at the apex (which is truncated) than at the base.

Idiophethalma suspecta, sp. 11. (Pl. VI. fig. 2.)

Adult female, length $6 \frac{1}{2}$ lines, including falees $8 \frac{1}{4}$.
The colour of the cephalothorax, legs, and palpi is dark reddish hrown, the falces boing of a deeper brown than the cephalothorax ; abdomen brown.

A single example of this spider, from Granada, South America, is in the British-Muscum collection. Although allied to Cliops, Perty, it appears to me to be generically distinct from that as well as from other allied genera, Idiosoma, Auss., Idioctis, L. Koch, and Idiommata, Auss.

Gen. nov. Aganippe.

Generic characters.

Cephalothorax longer than broad, and its fore extremity rather narrower than the hinder part; caput tolerably and roundly elevated.

Falets massive, furnished with a group of strong tooth-like spines at the fore extremity.

Legs short and strong, relatively 4, 3, 2, 1 (?) ; terminal claws three, with senpula beneath the tarsi and metatarsi of the first and second pairs, as well as under the digital joints of the palpi.

Eyes minute, but occupying a large area, and disposed in three transverse rows, $2,2,4$, and somewhat like those of Idtops, but more widely separated, and the front row very much longer in comparison to the rest.

Macillo moderately long, cylindrical, and slightly curved.
Labium oblong, its sides nearly parallel, and its apex truncate.

This genus appears to be intermediate between Idiops and others of that group and Eriodon.

Aganippe subtristis, sp. n. (Pl. VI. fig. 3.)

Adult female, length 10_{4}^{3} lines, including falces rather over $12 \frac{1}{2}$.

The colvur of the cephalothorax, falces, legs, and palpi is yellow-hrown; the eyes form a broad transverse oblong figure, whose fore side is shorter, but not very greatly so, than the hinder one; the middle row is much the shortest; and the hinder row (consisting of four eyes) is slightly curved, the convexity of the curve directed forwards; the two central eyes of this row are more than double the distance from each other that each is from the lateral eye on its side of the same row.

The legs (of which the third and fourth pairs are the strongest) are furnished with hairs and bristles, the genual, tibial, and metatarsal joints of those of the third pair being armed with numerous short and strong spines on their outer sides.

The abdomen (much shrunken, but probably of the form given in the figure) is brown and hairy.

A single example of this species is in the British-Musenm collection. Hab. Adelaide.

Aganippe latior, sp. n. (Pl. VI fig. 4.)

Adult female, length nearly 11 lines.
This spider is evidently of the same genus as the last, though readily distinguishable ly some strong differential chatracters. It is smaller, the cephalothoras is shorter and proportionally broalder, and the falces are more powerful ; the eyes also are smaller, and the figure formed by them has it. fore side shorter and its longitudinal less in proportion to its transverse diameter.

The whole of the fore part of this spider is of a dark, shining, reddish yellow-brown colour. The cophetothirare is short, broarl, and massive, the caput well and roundly elevated.

The felces are very strong, furnished in front with hairs and hristles disposed in longitudinal stripes, and armed with a group of strong spines on the upperside of their fore extremity.

The eyes are very minute but not very different in size; they form an area whose transverse diameter (at the hinder side) exceeds its longitudinal diameter taken in the middle, disposed in three transverse lines, $2,2,4$, the formost line being equal in length to that formed by the two middle eyes of the third (or hinder) row ; while in A. subtristis the foremost line exceeds in length that formed by the two hind central eyes.

The legs are short and strong, those of the third and fourth pairs being the strongest; their relative length is $1,2,3,4$, though the difference between those of the first and second pairs is very slight ; and in their armature, as well as in that of the palpi, they are similar to A. subtristis, though the spines on the third pair are perhaps not quite so mumerons.

The abdomen is hairy and of a warm reddish brown colour; but it was too shrunken to give any exact idea of its form.

A single example is contained in the British-Museum collection. Hab. West Australia.

Genus Eriodon, Latr.

Eriodon insignis, sp. n. (Pl. VI. fig. 5.)
Adult male, length 5 lines, to extremity of falces $6 \frac{1}{2}$ lines.
The cephalothorax of this spider is almost circular, the fore part being slightly truncated; the curve of that part is flattened. The colour of the caput and falces is a bright but rather
brickish orange-red, that of the thorax being brownish black and covered with slightly tuberculous granulositics.

The legs and palpi are of a dark shining brown colour, tinged very slightly with metallic purplish; the former are short and strong, but not very different in length, those of the third pair being rather the shortest; they are furnished with hairs, bristles, and some short spines on the immer side of the genua of the first pair, and on the outer side of those of the third pair, with some longer and stronger ones beneath the tibix and metatarsi of the first pair; the tarsi terminate with three toothed claws.

The palpi are long, the radial joint about double the length of the cubital, and considerably tumid beneath the hinder half; the digital joint is small ; and the palpal organs consist of a roundish basal bulb prolonged into a long, curved, tapering but not very sharp-pointed corncous process.

The fulces are of great size and very prominent ; their surface is granulose; and they have a cluster of tooth-like spines on the inner side of the fore extremity.

The abdomen, which was very much shrunken, projects well orer the base of the cephalothorax; it is hairy and of a sooty black colour.

A single example of this very striking species is in the British-ILuseum collection. Ilal. Swan River, Australia \%.

Eriodon incertus, sp. n.

Adult male, length (without the falces) $6 \frac{1}{2}$ lines.
This spider is very closely allied to the preceding (Eriodon insignis) ; after close examination, however, I am inclined to think it is of a distinct species, differing not only in its larger size (which is, perhaps, inconstant), lut in its longer palpi, in the more strongly constricted bully of the palpal organs, in the outer eyes of the front row, which are larger, and in some other respects.

The colour of the cephealothorax is pitchy black with a slight bottle-greenish hue, and is more roughly granulose than that of Eriodon insignis; the falces also are more granulose, and their colour is black on the basal half, the fore half being of a pinkish orange-red.

[^6]The legs and palpi are of a bright shining metallic purplebrown colour; the inner sides of the genna of the first and second pairs (chiefly of the first pair) are thickly furnished with spines, as also are the outer sides of the same joints of the third and fourth pairs.

The aldemen is small, hairy, and of a sonty hrown colour, projecting strongly over the hase of the eephatothomas.

This example is also from the Swan River, and in the British-Musemm collection, where there is likewise a third specimen from the same locality; this last is (an adult of) of the same species as that now described, hut differs from it in the entire falces being of a pinkish orange-red colour and the caput slightly tinged with the same hue ; its size is also smaller, being the same as that of E. insignis.

Fam. Phoroncidides.

Genus Phoroncidia, Westiv.

Phoroncidia aurata, sp. n. (Pl. VII. fig. 9).
Adult female, length $2 \frac{1}{3}$ lines, breadth of abdomen nearly 2 lines.

The cephatothora.c is round-oval and tolerably convex above, the caput elevated and produced in a somewhat bent form, the occipital pertion being rather giblous; conserquently the clypeus is high, deeply impressed in the middle, and prominent at its lower margin. The colour of the eephalothorax, as well as of the rest of the fore part, is a bright orange-redbrown; the greater part, however, of the legs of the fouth pair is strongly suffused with black.

The eyes are placed in a tolerably compact group of four pairs at the extremity of the caput; the fore and hind central pairs form nearly a square, whose longitudinal is rather greater than its transverse diameter; those of each lateral pair are placed in almost a straight line with the fore central cye on its side ; the laterals and fore centrals thus form a semicirenlar line; the latter are the largest of the eight, and the laterals the smallest.

The legs are short but rather strong, their relative length being $1,4,2,3$; and the genual joints are rather abruptly bent downwards near their hinder extremity; their armature consists of a few hairs only; and the tarsi terminate with three claws.

The palpi are short and slender, furnished with hairs only, and destitute of a terminal claw.

The fulces are short and not particularly powerful ; they are armed with two small blackish teeth close together, at the fore extremity on the inner side.

The maxiller, lubium, and sternum are normal in their form, the maxilla being also furnished with a strong tuft of long black bristles on their inner surface.

The abdomen is large, nearly round when looked at from above, and of a short pear-shape when seen laterally, the spinners forming the stem, these organs being placed at the extremity of a trumeated cone of a coriaceous nature. The whole of the abdomen is of a corneous nature; the uppers part and sides are of a bright golden hue and metallic lustre; four tolerably long, strong, divergent, and sharp-pointed, tapering, black spines occupy the upper corners, and form very nearly a square; between the two hinder ones, but a little way within their straight line, is a fifth spine of the same character though not quite so long nor so strong as the rest. Each of these spines consists of a truncated conical basal portion, prolonged by a sharp terminal spine ; and their surface is furnished with a few minute tubercles or granulosities, which may originally have had hairs springing from them; but if so, these had been accidentally rubbed off. The whole of the abdomen is more or less covered with reddish and dark red-brown spots of various sizes, some of these being ocellated and the larger ones forming the pattern shown in the figures (Pl. VII.). The surface around the bases of the spines, as well as the whole of the underside and a large patch on the hinder part of the abdomen, are strongly suffused with orange-red.

Two examples of this beautiful and brilliant species were received from Madagascar in 1875, through the kindness of Mr. R. II. Meade, of Bradford, Yorkshire. It is a very distinct species from any yet described, and the most striking, perhaps, among the few known spiders of this remarkable genus.

Fam. Gasteracanthides.

Gen. Paraplectana, Capello (1866).
Eurysoma, Koch \& Blackw. ad part. Pemiza, Thorell (1868).

Paraplectana maritata, sp. n. (Pl. VII. fig. 7.)
Adult female, length 2 lines, breadth of abdomen nearly 2 lines.

This very pretty and distinct spider has the broad, massive cephalothorax of a uniform pale luteous yellow colour, shining,
and furnished with a few fine hairs; the caput is large, much elevated above the height of the thorax, and rather roundly sloping from the occiput to the eyes; the occipital slope is abrupt and rather hollow.

The eyes are in three widely separated groups, close to the fore margin of the caput, leaving a clypeus of very small height; the central group of four cyes, seated on a black pateh, forms very nearly a square, whose hinder side is the longest, the two eyes forming this side being the largest of the cight; the eyes of the lateral pairs are the smallest, and those of cach pair are seated contiguously on a small tuberele quite at the fore corner of the caput.

The legs are short, tolerably strong, and not very greatly different in length; they are of a dark backish brown hue, the basal joints, as well as a portion of the tibise and metatarsi of the third and fourth pairs, being brownish yellow; they are furnished with hairs, bristles, and a few spines, the latter chiefly on those of the first and second pairs.

The palpi are moderately long and slender, similar in colour to the legs, and furnished with hairs and strongish bristles.

The fulces are long and powerful, their direction being nearly vertical. At their base their colour is like that of the cephalothorax, deepening, however, to a dark brown at the extremity.

The maxilla, lubium, and sternum are of normal character, and their colour is deep brown-black.

The abdomen is large, as nearly as possible round, moderately convex above, and projects over the cephalothorax to the highest part of the caput; the upper surface is of a corneous nature, though the usual boss-like markings are some of them obsolete and the rest very indistinct; its colour is a cream-white, marked with some large and generally welldefined black patches and spots; the nature of these will be best understood by reference to the figure (Pl. VII.) : there is some little variation in the extent of these black markings; but they are always easily traced, and generally very conspicuous on the clear white ground-colour. The underside is black-brown; and the sides are longitudinally wrinkled. The spinners are short, compactly grouped, and of a dark brown colour.

The male is smaller than the female, being $1 \frac{1}{2}$ line in length; the legs of the first and second pairs are longer; and all the legs are of a brownish yellow colour, the femoral and genual joints more or less suffused with dark brown.

The palpi are short, the digital joints large, and, together with the palpal organs, form a mass of, comparatively, an enor-

Ann. © Mag. N. Hist. Ser. 4. Vol. xix.
mous size. These organs consist of a congeries of bold corneous spines and processes; the radial joint is short but wide, and is divided into several prominent apophyses.

The aludomen is more of an oval form than that of the female, its length being a little greater than its breadth; the upper surface is thickly eovered with somewhat shining and apparently slightly depressed pale amber-coloured spots; the black pattern sn conspicums in the female is but just traceable in the male, being ill-defined and mostly of a dull yellowish brown colour on a cream-yellow ground, the ground-colour in this sex, however, being of small extent, and assuming the nature of large ill-defined spots. In all the males examined the dark patch at the hinder extremity of the upperside of the abdomen is of a deep blackish brown.

Adults of both sexes of this very striking little spider were received from Mr. J. H. K. 'Thwaites, by whom they were found in the Royal Botanic Gardens in Ceylon.

Paraplectana decorra, sp. n. (Pl. VII. fig. 8.)

Adult female, length $2 \frac{1}{2}$ lines (nearly); length of abdomen nearly 2 lines.

The cephalothorax and fulces are of a rich clark red-brown colour; the caput is broad, massive, well rounded above; and the height of the clypeus exceeds the length of the figure formed by the four central eyes.

The eyes are small, disposed in three widely separated groups; those of the central group form a small square, whose longitudinal is rather greater than its transverse diameter, and its fore side rather shorter than its hinder one; those of each lateral pair are seated contiguously on a small tubercle, very near the margin, at one of the fore corners of the caput, and are the smallest of the eight, the hinder ones of the central group. being the largest.

The leys are short, moderately strong, of a yellow-brownish colour, and furnishect with hairs and bristles; they differ but little in length, those of the third pair being the shortest.

The palpi are moderate in length, slender, of a pale dull yellowish colour, and clothed with hairs and bristles, a few of the latter having a spine-like character.

The falces are tolerably long, powerful, and nearly vertical in their direction.

The maxille, labium, and sternum are of the normal type; and their colour is a dark reddish brown, the sternum being nearly black.

The abdomen is nearly round, being very slightly less
rounded behind than at its fore extremity. Its upper surface is moderately convex and of a corneous nature, the usual ocellated marks or bosses being faintly marked, and this principally round the margins of the hinder half; its colour is a dark rich brownish black tinged with maroon, and marked with twelve distinctly defined yellow spots of different sizes and shapes, three forming a triangle near the centre, and the rest equally disposed round the outer margins, the one on each side of the middle of the fore extremity being the largest. The sides and underside are wrinkled and of a deep blackish brown colour.

A single example of this very pretty spider was contained in a collection made for me on the Rio (rrande (South America) by Mr. Henry liogers, of Freshwater, in the Isle of Wight.

Paraplectana Fochii, sp. n. (Pl. VII. fig. 10.)
Adult female, length $3 \frac{1}{4}$ lines (nearly) ; longitudinal diameter of the abdomen $2 \frac{3}{4}$ lines, transverse diameter $3 \frac{3}{3}$.

The whole of the fore part of this spider is of a deep redbrown colour, the tarsi (and metatarsi of the first three pairs) of the legs annulated with yellow.

The cephalothrax is of the orlinary massive form, the caphut elevated into a high, tramsverse, rounded ridge, and constricted laterally near its fore margin; its sufface is roughened and clothed with fine grey hairs.

The eyes are in three widely separated groups, near the fore margin of the caput; they are small, and do not differ much in size; the central group of four forms a square whose hinder side is longer than the rest; the posterior pair of these eyes are the largest of the eight; those of each lateral pair are seated very near torether (but not contiguously) close to the lower fore corner of the caput; the height of the clypeus (in the middle) is rather less than half that of the facial space.

The legs are short and strong, furnished with hairs only, of which some are greyish white.

The pulpi are short and rather slender; their colour is deep red-brown; and they are fumished with hairs, like the legs.

The falces are moderate in length but very powerful; their form is conical, their direction vertical, and the basal half in front is rugulose.

The maxille and latium are of normal form, red-brown with pale extremities, and the stermum rugulose, like the base of the falces.

The abdomen is large and oval, its transverse diameter considerably exceeding its longitudinal; its upperside is pretty
convex, its surface corneous, minutely punctured, and marked with a marginal row of large round and oval boss-like spots of different sizes, and impressed in the usual way in their centres; four other similar markings describe nearly a square in the middle, with a much smaller one on each side of its fore part. The six middle anterior marginal markings, as well as the fore halves of the two anterior central ones, are of a bright orange colour on a paler ground; the rest of the upper surface of the abdomen is of a dull sooty hue, the bosslike markings being of a deep blackish red-brown colour. The underside of the abdomen is of a dull yellowish brown hue, wrinkled and covered thickly with minute dark redbrown tubercles, each of which is surmounted by a short bristle.

A single example of this spider was received from Cape York, and is (so far as I know) the first recorded species of the genus yet known on the Australian continent. It is with great pleasure that I connect with it the name of Dr. Ludwig Koch, the able author of 'Die Arachniden Australiens.'

Fam. Arcydes.

Gen. nov. Augusta.
 Generic characters.

Cephalothorax broad and rather flattened, truncated before, and rounded behind; caput very distinctly divided from the thorax, which it also exceeds in breadth; it has a deep notch or incision on each side near the fore extremity ; and its lateral upper margins are sharp-edged.

Eyes eight, in three widely separated groups; a central one of four, forming nearly a square in the centre, is situated close to the fore margin of the clypeus, and two others on each fore corner, seated on the portion divided from the rest of the caput by the incision before noticed.

Legs short and tolerably strong; relative length 4, 1, 2, 3.
Maxillee short, broad at their extremity, and bent strongly downwards towards the sternum.

Latium broad and short, of a somewhat semicircular form, pointed at the apex.

Abdomen covered with a large and nearly flat scutum, of a subtriangular form, the base of the triangle being in front; its upper and under sides are completely occupied with shining patches, varying in size, but nearly all of a pentagonal form, the lividing portions or ribs being almost all of a uniform width, and furnished with very minute, corneous, shining and
bristle-bearing tubercles, the longitudinal central rib, also, marked with a few impressed spots or pock-like punctures; the entire margin is studded thickly with small shining tubereles of a similar kind, each furnished with a short bristle; and the two fore corners are armed with a strong but not very sharp-pointed spine.

Augusta papilionacea, sp. n. (Pl. VII. fig. 6.)

Adult female, length 4 lines; breadth of the widest part of the abdomen 6 lines.

The whole of this very interesting and curious-looking spider is of a yellow-brown colour, the abdomen being of a paler and duller hue than the cephaluthorax-the tarsi, metatarsi, tibix, and genua of the legs being strongly suffused with red-brown. The caput is large, of a somewhat quadrate form, very slightly convex above; the lateral edges of the upperside behind the lateral eyes, as well as the fore margin, are rather sharp and stulded with small tubercles, each of which is furnished with a short bristly hair; the upper surface of the caput is marked with small yellow-brown spots, of a deeper hue than the rest of the surface, mixed with a few very minute redbrown tubercles; and there is a large shallow roundish depression on either side towards the occiput, and a well-marked longitudinal groove from between the hind central eyes to the thorax.

The eyes are of a pale amber-colour, and not very greatly different in size; the four central ones form a square whose linder side is rather the longest; this group is placed close to the fore margin of the caput, so that the clypeus is almost obsolete; each of the lateral pairs of eyes is seated close below the outer edge of the fore corner of the caput, on a quasitubercular area formed by a deep notch or indentation in its lateral margin; the eyes of these lateral pairs respectively are not contiguous to each other, being separated by at least, if not more than, the diameter of one of them.

The leys are short and tapering in form, and do not differ greatly in length; those of the first and second pairs are much stronger than the rest, and though there seems to be a little difference between them in the actual lengths of some of the joints, the total length appears to be as nearly as possible equal; those of the fourth pair are the longest, and the third pair are the shortest; all are furnished with hairs and bristles (of which latter a few have a spine-like character) and terminate with three claws, the two superior ones curved and pectinated, and the inferior one, after its sharp bend at the base, almost straight.

The palpi are short and tolerably strong; their colour is similar to that of the legs, and they are also furnished with hairs and numerous spine-like bristles, the terminal claw being slightly curved and finely pectinated.

The fielecs are strong, rather prominent near their base in front, where they are also thickly marked with somewhat quadrate dull yellow-brown blotches; and thence to their extremities on the imner surface there are numerous strong bristles, some of which are of a spinous character.

The sternum is of a short oval form, truncate before and produced into a point behind, at the extremity of which as well as opposite the insertion of each of the first three pairs of legs is a small tubercle.

The chedomen is yuite flat and of a subtriangular form, the ance forming the hinder extremity, which is lifid or broadly nutched. Lach of the numerous pentagonal shining compartments into which its surface (both above and below) is mapped out has a large central oval depression, made more conspicuous by a brown spot; the fore margin is slightly scalloped, hollow in the middle, enlarging and rounding on either side to the fore comer, which is armed with a strong, deep, blackish red-brown, slightly curved, but not very sharppointed spine ; between this spine and the central hollow part of the fore margin there are, on each side, at the salient points of the scalloped border, four small, brown, blunt-pointed tuberculiform spines; the whole of the margins of the abdomen, buth above and below, are thickly studded with minute round, brown and shining tubereles, each of which bears a small bristle; these bristles are not prominent, but sessile, and are thus scarcely visible, except under a magnifying-glass; the ribs which divide the shining pentagonal plates or bosses are also studded with, for the most part a single row of, very minute, brown, shining, bristle-bearing tubercles.

This remarkable spider, which in its general appearance bears some resemblance to a small butterfly, shows a strong affinity both to the Gasteracanthides and to Arcys, and is evidently a transitional form; but as it appears to me to be more nearly allied to the latter than to any of the groups of Gasteracanthides, not only by its general form, but by the peculiar structu:e of the cephalothorax, I have placed it along with Areys in the family Arcydes; it differs, however, remarkably from Arcys in the general character and lengths of the legs, as also in the details of the abdominal scutum; for which and other reasons it has been necessary to constitute a new genus for its reception.

A single example was contained in a small collection of spiders from Marlagascar, purchased of a London dealer in 1876.

List of Species.

Fam. 'Theraphosides.

Atrax robustus Q , New Holland, p. 27, Pl. V'I. fig. 1.

Agunippe suberistis ㅇ, Adelaide, Australia, p. $2 \mathrm{~L}, \mathrm{Pl}$. V1. fig. 3.

- lutior ㅇ, West Australia, p. e9, I'l. VI. fig. 4.

Eriodon insignis ez, Swan River, Australia, p. 29, Pl. V1. fig. 5.

- incertus o', swan liver, p. 30.

Fam. Phonoxchines.

Phoroncidia aurata ㅇ, Madagrascar, p. 31, Pl. VII. fig. 9.

Fam. Gasteracantinines.

I'aruplectame marituta of and q, ('eylon, p. ise, Pl. VII. dip. 7.
--decora 9 , lio Girande, South America, p. 34, Pl. ViI. fig. 8.
—Kochii $\begin{gathered}\text { 马, Cape York, Australia, p. 3̄̄, Pl. VII. fig. } 10 .\end{gathered}$

Fam. Arcyones.

Auyusta papilionacea ㅇ, Madagascar, p. 37, Pl. VII. fig. 6.

EXPLANATION OF THE PLATES.

Plate VI.
Fig. 1. Atrax robustus 아: a, spider of natural size; b, cephalothorax and falces, in prolile; c; eyes, from above and behind; d, maxille, labium, and sternum.
Fig. 2. Idiophthalma suspecta 아: a, spider, enlarged; b, cephalothorax and falees, in profile ; c, eyes, from above and behind ; d, maxillie and labium ; e, natural length to the extremity of the falces.
Fig. 3. Agmippe subtristis ㅇ: a, spider, cularged: b, cephalothorax and falces, in profile; c, eyes, from above and behind ; d, maxilla, labium, and sternum; e, natural length to the extremity of the fillees.
Fig. 4. Ayanippe lutior 우: a, spider, slightly enlarged; b, cephalothorax and falces, in profile; c, eyes, from above and behind; d, natural length to the extremity of the falces.
Fig. 5. Eriodon insignis ox : $^{\text {: }} a$, spider, slightly enlarged ; b, cephalothorax and falces, in profile ; c, eyes, from above and behind ; d, maxillæ, labium, and sternum; e, right palpus, from outer side ; f, extremity of tarsus of leg of first pair ; g, natural length to the extremity of the falces.

Plate VII.

Fig. 6. Augusta papilionacea ㅇ: a, spider, enlarged ; b, caput and eyes, from in front; c, maxillx, labium, and sternum; d, spider, of natural size.
Fig. 7. Paraplectana maritata of and ㅇ: a, spider (q), enlarged; b, ditto, in profile; d, ditto, natural size; c, spider (σ^{*}), enlarged; c, natural length of ditto.
Fiy. 8. Paraplectana decora 早: a, spider, enlarged ; b, ditto, natural size; c, ditto, in protile.
Fig. 9. Phoromeidia uurata $8: a$, spider, eularged; b, ditto, in protile; c, view of abdomen, from behind; d, profile of caput; e, spider, of natural size.
lïg. 10. Paraplectana Kochii f : a, spider, eularged; b, ditto, in profile: c, ditto, natural size.
III.-Nutes on Foraminifera. By E. Perceval Wheht, M.I., F.L.N., Profesior of Botany in the University of Dublin, Secertary of the Royal Irish Academy.
Whine at the seychelles, in 1867, I made several collections of the Foraninitera met with while dredging. These were, for the most part, preswed in pirits of wine, and unfortunately were lust. One dredring, made in about eight fathoms of water, oft the entrance of the harbour of Port Victoria, between the island of St. Ame and Long Island, however, was preserved in a dry state; the bottom consisted for the most part of a coarse white sand, mixed with fragments of shells, spicules of Aleyonarians, and fragments of coral, and evidently contained numbers of Foraminifera. A little bottle of dredged stuff from Mahe harbour tumed up subsequently; and the mud and sand washed from the corals and chinoderms which were brought home helped to make up a more or less representative batch of material. The whole was forwarded to my friend Henry B. Brady, F.R.S., of Newcastle-on-Tyne, for examination; and I am indebted to him for the following list of the species found and the accompanying notes upon them.

Seychelles Foraminifera.

1. Cornuspira foliccen, Philippi, sp. (1stt, Onthis foliucous, Enum. Moll. Sicil. vol. ii. p. 147, pl. 24. fig. 26). Medium-sized specimens, rare.
2. Biloculince elonyrita, D'Orbigny (1S26, Ann. Sci. Nat. vol. vii. p. 298. no. 1). Rare.
3. Biloculina contraria, D'Orligny (1846, For. Foss. Vienne, p. 266, pl. 16. figs. 4-6). Very rare.
4. Tritloculince triyometr, Lamarek, sp. (1804, Miliolites trigonula, Ann. Mus. rol. r. p. 351. no. 3). Rare.
5. Ťrilocetinu oblonga, Montagu, sp. (18u3, Termicutum oblongum, Test. Brit. p. 522, 11. 14. fig. 9). Rare.
(6. Triloculimen Brongmiartiana, D'Orbigny (1840, Foram.Cuba, p. 156, pl. 10. figs. 6-8). Somewhat rare.
6. Quinqueloculinu seminutum, Linné, sp. (1767, Serpula seminulum, Syst. Nat. 12th ed. p. 1264. no. 791). Rather common. Also several specimens of a concave variety, with thick margin, not answering very well to any figured species.
7. Quinquelocmlina serans, Dorbigny (1826, Ann. Sci. Nat. vol. vii. p. 303. no. 43-Modèle no. 96). Rare.
!. (quinqueloculime sulb,otuada, Montagu, sp. (1803, Vermiculum subrotundum, Test. Brit. p. 521). Rare.
8. Quinqueloculina Ferussacii, D'Orligny (1826, Ann. Sci. Nat. vol. vii. p. 301. no. 18-Modèle no. 32).
9. Quinqueloculina antillarum, D'Orbigny (1840, Foram. Cuba, p. 167, pl. 12. figs. 4-7). Rare.
10. Quinqu loreline alylutimens, DOrhigny (1841), Foram. C'uba, p. 168, pl. 12. figs. 11-13). Very common.
11. Quinqueloculinu reticuleta, D'Orbigny, sp. (1826, T'riloculinu reticulutu, Ann. Sci. Nat. vol. vii. p. 299. no. 9.-Soldani, Testaccographia, vol. i. part 3, p. 2333, pl. 159. tigs. 16, ce). Rare.
12. Quinqueloculina, sp. A beautiful variety, with the crenulate edges and surface of the Q. ornettissima of Karrer, but more compactly built and without longitudinal striation; undescribed, I think. Not uncommon.
13. Spipoloculinu limbutce, D'Orbigny (1826, Ann. Sci. Nat. vol. vii. p. 299. no. 12.-Soldani, Testaceographia, vol. ii. p. 54, pl. 19. fig. m). Rare.
14. Spipoloculina canaliculeta, D'Orbigny (1846, For. Foss. Vienne, p. 269, pl. 16. figs. 10-12). Small, very rare.
15. Hunerinat compresse, D’Orbigny (1846, For. Foss. Vienne, p. 119, pl. 5. figs. 25-27). Small, very rare.
16. Nubecularia lucifuge, Defrance (1825, Dict. des Sci. Nat.rol.xxv. p. 210; Atlas Zooph. pl. 44. fig. 3.-Blainville, Actinologic, pl. 66. fig. 3 (t-d). Rare.
17. Alvoolime subulosa, Montfort, sp. (1808, Miliolites sabulosus, Conch. Syst. vol. i. p. 174). Small, rather rare.
18. P'eneroplis pirtusus, Forskīl, sp. (1755, Noutilus pertusus, Deser. Anim. p. 125. no. 65). Rare.
19. Orbitolites complenate, Lamarck (1801, Anim. sans Vert. p. 376). Very common.
20. Plucopsilina cenomana, D'Orbigny (1850, Prodr. Paléont. vol. ii. p. 185. no. 758). Very rare.
21. Leterent squemosu, Montagu, sp. (1803, Vermiculum squemosun, T'est. Brit. p. 52(, pl. 14. fig. 2). Small, very rare.
22. Layenu marginata, Walker \& Jacob (1784, Serpula [Layenct] margincta, 'Test. Min. p. 3, pl. 1. fig. 7). Small, very rare.
$\because \because$. Globigerince bulloides, DOrbigny (1826, Ann. Sci. Nat. vol. vii. p. 277 . no. 1-Modèles nos. 17 \& 76). Medium, rather rare.
23. T'extularia agglutinans, D'Orbigny (1540, Foram. Cuba, p. 136, pl. 1. figs. 17, 18, 32-34). Medium-sized specimens, common.
24. Textularia sayittula, 1)efrance (1×24, Dict. des Sci. Nat. vol. xxxii. p. 177, liii. p. 344; Atlas Conch. pl. 13. fig. 5.-Blainville, Malacologie, p. 370 , pl. 5. fig. 5). Common. Also some allied forms too obscure for determination.
2.. Bulivinut penctatu, D’orbiguỵ (1839, Voy. Amér. Mérid. p. (i:3, pl. S. figs. 10-12). Small, rare.
25. Verneuiline spinulose, Renss (1849, Denkschr. Akad. Wissensch. Wien, vol. i. p. 37 t, pl. 17. fig. 12). Medium, rare.
26. Proonina flabelliformis, D'Orbigny (1826, Ann. Sci. Nat. vol. vii. p. 260 . no. 1, pl. 10. figs. 10-12). A single specimen was found of this very interesting form, originally figured by D'Orbigny, loc. cit, with Madagascar as its only locality, and not since recorded by any observer that I know of. It has a conspicuously perforate hyaline test; so that the suggested affinity to Peneroplis (Parker \& Jones, Ann. © Mag. Nat. Hist. ser. 3 , vol. xii.
p. 440 . no. 16) is not coufirmed. It is difficult from a single specimen to give the species a position ; but that it belongs either to the family Lagenida or Globigerinida there can be little doubt. The original generic name Pavonia was changed to Pevonina in the "Vienna Basin" monograph, the former term haring been employed by botanists for a genus of plants.
27. Discorlinn !tubularts. D'Orbigne, sp. (1826, Rosalina globularis, Ann. Sci. Nat. vol. vii. p. 271. n. 1, pl. 13. figs. 1-4). Medium, rare.
28. Plunorlutina furctu, liehtel \& Moll, sp. (1803, Neutilus farctus, Test. Micr. p. 64, pl. 9. figs. $g-i$). Medium, rare.
29. Planorbutina larvata, Parker \& Jones (1865, Phil. Trans. p. 380, pl. 19. fig. 3, a, b). Rare.
30. Plenorbutince, sp. An acerruline specimen not unlike Tinoporus lucidus, Brady.
31. Putvinulina repanda, Fichtel \& Moll, sp. (1803, Noutilus repandus, Test. Micr. p. 35̃, pl. 3. figs. $a-$ (l). Rare.
32. Pulvinulina canariensis, D'Orbigny', sp. (Rotalina canariensis, d'Orb., 1839, Foram. Canaries, p. 130, pl. 1. figs. 34-36). Very rare.
33. Rotalia Bcccarii, Linné, sp. (1767, Nautilus Beccarii, Syst. Nat. 12th ed. p. 1162. no. 276). Small, rare.
34. IRotalia orbiculetris, D’Orbigny, sp. (1826, Gypoidina orbicularis, Ann. Sci. Nat. vol. rii. p. 278. no. 1 - Modèle no. 13). Small, very rare.
35. C'mbutatenora Pueyi, D'Orbigne, sp. (Rosalina Poeyi, D'Orb. 1840, Foram. Cuba, p. 100, pl. 3. figs. 18-20). Large, very common.
36. Tinoporus Tevis, Parker \& Jones (1860, Orbitolina lavis, Ann. \& Mag. Nat. Hist. 3rd ser. vol. ri. p. 33. no. 7). Large, rare.
37. Tinoporus vesicularis, Parker \& Jones (1860, Orbitolina vesicularis, Ann. \& Mag. Nat. Hist. 3rd ser. vol. vi. p. 33. no. 5). Very rare.
38. Polytrema miniacerm,Linné, sp. (1758,Syst. Naturæ, ed. Gmelin, rol. ri. p. 3784.-Lisper, 1797, Zooph. vol. i. pl. 17). Rare.
39. Patellina, sp., a minute discoidal form, resembling a septate Spirillince, not corresponding with any figured species I can refer to. Very rare.
40. Polystomella crispa, Linné, sp. (1767, Nautilus crispus, Syst. Nat. 12th ed. p. 1162). Small, rare.
41. Polystomella striutopmactuta, Fichtel \& Moll, sp. (1803, Nautilus striatopunctatus, 'Test. Jicr. p. 61, pl. 9. figs. a-c). Small, very rare.
42. Nonionina usterizuns, Fichtel \& Moll, sp. (1803, Nautilus asterizans, Test. Micr. p. 37, pl. 3. figs. e-h). Small, very rare.
43. Nonionina scapha, Fichtel \& Moll, sp. (1803, Nautilus scapha, Test. Mier. p. 105, pl. 19. figs. $d-f$). Medium, very rare.
44. Amphistegina vulgaris, D Orligny (1826, Ann. Sci. Nat. vol. vii. p. 305. no. 8-Modèle no. 40). Small, common.
45. Heterosteginu depressa, D’Orbigny (1820, Ann. Sci. Nat. vol. vii.
p．303，pl．17．figs．5－7）．Large，very common．Also a small thick rariety with angular margin，not outspread as in the typical form：this possibly may only be an immature stage of II．depressat but it is very common．
50．Operculime complemata，Defrance，sp．（1ヘロ゚），Lenticulites com－ $p^{\text {lematu，Dict．Sci．Nat．vol．xxv．p．453）．Medium size，rare．}}$

This thick Opercutina，common in the Red Sea，Indian Ocean，and Australia，is not the typical O．complenate，but rather an intermediate form，showing the close relationship to Nemmulina plamulata．
51．Opereetinu ！remulasu，Leymerie（1stti，Mém．Sioc．Géol．France， sér．é，vol．i．Mém．no．S，p．¿359，pl．13．fig．12，a－c）．Not uncommon．
52．Nummulinu planulata，Lamarck，sp．（Lenticulites planulata， Lamarek，180t；Ann．Mus．p．187．no．1）．Medium，rare．

When at Cagliari in 1871，I obtained a small quantity of the formminiferous sand found in the neighbourhood of the port from the Director of the Museum．This I also forwarded to Mr．Brady，who quite recently sent me the following list．

Cagliari Foraminifera．

Biloculine ringens，Lamarck．Rare． Triloculina trigomela，Lamarck．Rare．
－oblonga，Montagu．Somewhat rare．
－Brongmiarticna，D＇Orbigny，Rare．
Quinqueloculinu seminulum，Linné．Common．Also some of the subvarietal forms，such as T．triengularis，D＇Orb．，and the like．
—— sectuns，D＇Orbigny．Common，specimens very large．
－subrotunde，Montagu．Rare．
Spiroloculina limbata，D＇Orbigny．Somewhat rare．
－excavata，D＇Orbigny．Somewhat rare．
Nubecularia lucifuga，Defrance．Very common．
Peneroplis pertusus，Forski̊l．Common．
－＿arietinus，Batsch．Rare．
Orlitolites complumutc，Lamarck．Common，specimens small．
Vaginutina legumen，Limné．Rare．
Cristelleria crepidula，Fichtel \＆Moll．Rare．
Polymorphina gibba，D＇Orbigny．Rare．
－compressa，D＇Orbigny．Rare．
－communis，D＇Orbigny．Rare．
Textularia sagittele，Defrance．Common．
——agglutinans，D＇Orbigny．Less common．
Dscorbina glubularis，D＇Orbigny．Somewhat common，specimens fine．
＿－rosacea，D＇Orbigny．Rare．
Planorbulinu mediterrannsis，D＇Orbigny．Very common．
Truncatulina iobatula，Walker \＆Jacob．Cominon．

Truncatulina refulyens, Montfort. Rare.
-tuberosa, Fichtel \& Moll. Common-the form named by D'Orbigny Tr. verriabilis, of which Soldani gives no less than 2St tigures in the 'Testaceographia,' the better to illustrate its wonderful range of variation.
Pulvinulina concentrica, larker is Jones. Rare.

- vermiculuta, D'Orbiguy. Very common.

Rotalia Beccarii, Linné. Common, specimens large.
Tinoporus levis, Parker \& Jones. Rare.
Polytrema miniaceum, Liuné. Common, some of the specimens growing on Nubecularice.
Nonioninu usterizans, Fichtel \& Moll. Rare.

- depressula, Walker \& Jacob. Rare.

Polystomella crispa, Linné. Common.
IV.-On the close Relationship of Hydractinia, Parkeria, and Stromatopora; with Descriptions of new Species of the former, both liecent and Fossil. By H. J. Carter, F.R.S. \&e.

[Plate VIII.]

In limine, it may be observed that an intimate knowledge of the structure of the skeleton of Hydractinia is absolutely necessary to trace the chain of resemblances that exists between it and Stromatopora through Parkeria, not less a perusal of the facts as they are consecutively given in this contribution, and, if possible, the presence of the objects themselves.

Having had to study carefully the horny chitinous skeleton, which is the most imperishable part of the Hydractiniidæ, in order to write and illustrate a paper on several recent species (Ann. \& Mag. Nat. Hist. 1873, vol. xi. p. 1, pl. i.), I am not the less able to see the resemblance that exists between them and those of bygone ages whose skeletons alone are handed down to us in a lapidified state; and hence it was announced that Parkeria had been inferred to be one of these (Ann. \& Mag. Nat. Hist. 1876, vol. xviii. p. 187). I was not aware then that species of Stromatopora, even as far back as the Devonian and Silurian systems respectively, would have to fall into the same category; so what I have to state of these will appear in the sequel.

All who have studied Parkeria must be aware that it has been well described and illustrated by Dr. Carpenter (Phil. Trems. 1870, vol. 159. pt. 2, p. 721, pls. 72-76) ; next to which follows Laftusia, equally well described and illustrated by Mr. H. B. Brady (ibid. pls. 77-80).

Influenced, however, by the presence of the "primomial chamber-cone" figured by Dr. C'arpenter in pl. T2, c1-ct, and pl. 73, fig. 2, 11 , I was induced to observe, in the short "Note on Parkeria," added to my paper on the Polytiomata (Ann. \& Mag. Nat. Hist. $157(f$, wol. xvii. 1. 2()S), that it could be hardly doubted that I'arlerie was a species of Fomaminifera, but that "one of the chief" characters of the Foraminifera," viz. the "foraminated aree of which the so-called 'nummuline tubulation' is an example," ham not been demonstrated. The chief object, however, of this "Note" was to state that the fibre of which Parkeria was composed was not "arenaceous," and that the structure of Perkerie was not identical with the "labyrinthic structure" of the foraminiferal test Lituola nautiloidea, Lam., var. canariensis, D'Orb.

Up to this time I was under the impression that Perkeria had been a species of Forminifera; for I had only one specimen myself, in which I could see all that had been described by Dr. Carpenter excepting the "primordial chamber-cone." Subsequently, however, I began to doubt the Foraminiferal nature of Parkeria; and, the nucleus of my specimen in shape presenting exteriorly the pointed end of a Belemnite, which extended from one side of the sphere to the other, I began to think that it had been a sponge which had grown round the end of a Belemnite. But what sponge? was the next question. Lufficria seemed to be the only genus that in fibroreticulated horny structure, when fossilized, would come near to that of Parkeria; and so for some time I, from the presence of this great foreign nucleus, abandoned the Foraminiferal for the Spongial view, still not heartily, till June last, when, my friend Mr. W. J. Sollas having given me some more specimens of Parkeria obtained from the Upper Greensand of Cambridge, amongst which was an entirely uninfiltrated central portion about i $^{\frac{3}{2}}$ inch in diameter that, on fracturing the circumferential or hard infiltrated part when the specimen was entire, had fallen like a nut out of its shell, I abandoned both these views; as will be seen hereafter. This nuclear portion also had been so broken as to expose the centre, on one side of which is a small circular or ellipsoidal cavity that appears to have originally contained the oljeet on which the organism had commenced its growth (Pl. V'III. fig. $13, c$).

Seeing, then, that Parkerin grew upon a foreign body which was on one side of the centre, I also folt satisfied that no Foraminiferous test, either recent or fossil, with which I was acquainted, presented either the fibro-reticulated structure of Parkeria or possessed a foreign body for a point d'appui to
grow upon. This decided, I returned to the sponge theory, which again was not satisfactory, as the fibre of Laffaria, which of all other spongeous ones comes nearest in structure to that of Perkeriu, is hollow, and not solid as in the recent Hydractiniide that I had described in the 'Amnals' of 1873 (l. c.) ; and reengnizing the identity in form between the fossilized fibre of Parkeria and the recent fibre of the Hydractiniidx, especially of Chitina ericopsis, in which some of the stems are an inch in diameter, and the whole bush-like skeleton, branches, hydrotheca, and every thing else elaborated out of a mass of uniformly anastomosing, reticulated, chitinous fibre without core or cortex, I immediately inferred that Parkeria had been closely allied to, if not a species of Hydractinia.

Still to further confirm the inference, I examined the specimens of Parkeria and Loftusia at the British Museum, and those of Perkeria and Hydractinia pliocena (Allman) at the Musemm of the Royal School of Mines, through the kind aid respectively of Messrs. H. Woodward and E. T. Nerrton; after which I obtained an excellent specimen of Hydractinia pliocena from Mr. Ed. Charlesworth, of the Strand, to which I must now add specimens of a recent culcareous Hydractinia from Cape Palmas, on the Guinea coast of Africa, that were sent to me some time ago by my friend MIr. T. Higgin, of Liverpool.

Thus prepared for tracing the resemblance of the recent Hydractiniidre through the fossil species H. pliocena to Parkeria, and thence to the Stromatopora-it is desirable that I should premise a description of the development of the chiti-nous-fibred skeleton of $I T$. echinata, as well as that of the skeleton or polypidom of the calcareous species from Cape Palmas, in order that I may be the better able to illustrate the fossilized from the recent structure. But as the development of the former has already been represented in the 'Annals' (1.c.), I must refer the reader to the figures there given for this part of my communication.

Begiming with Iydractinia echinata, and taking for examination a portion of the carlicst or first-formed layer (which will be henceforth termed "lamina") of the skeleton as it exists on the inner side of a Buccinum bearing this Hydrozoon, where it is almost immeasurably thin, but may be obtained by dissolving away the shell with acid and floating the lamina on to the surface of a slide, for placing it under the microscopeit may loe observed, when viewed with an inch compound power, to consist of a branched, anastomosing, cœenosarcal stolon-tubulation, forming a network in which the interstices
are filled up with structureless sarende to complete the membranc. After this, chitinous points (the "hom-cells," see 'Amals,' l. c.) make their apmamen imespetively thomghout the membrame so constituted ; and these semtinig ont processes more or less sexradiately, which unite with each other, thus form, with additimatly sumerimposed laminare, the chitinous retienlation of which the skelleton of IIy/tractine echinata is finally composed (Amm. \& Mag. Nat. Hist. V.c. plo i. fig. (6). When the reticulation has heen thas commeneed on the first or hasal lamina Pl. VIII. fig. 1, a), the upper arms of the sexpadiate puints in" "hom-erells" respectively, which are now free, grow into showt comical servated spines (fis. 1, of, e); and thus the surface of the Ifydractimia presents an area of such spines, with minute the variable intervals between them. interrupted only here and there by much larger ones of a similar form (fig. 1,g).

The same process takes place during the evolution of a second or superimposed lamina (fig. 1, c) ; but here for the most part the descending arms of the "hom-cells" respectively unite with the conical serrated or ascending ones of the first lamina; while the opposite or free arms respectively again assume the short conical form, toremain free, or unte in like manner with the deseending arms of a third lamina (fig. $1, f^{\prime}$).

We have now three lamine (tig. 1, a, e, f), and therefore two intervals or interlaminal spaces (fig. $1, b, d$), beyond which the chitinous skeleton of Mydractinion echinutu seldom extends. In both instances the two intervals are eonverted into pillared cavities respectively be the minn of the aseending and descending arms of the horn-cells respectively; but the upper interval is much wider than the lower one, and therefore the reticular spaces thus formed much larger.

On examining the surface of each lamina separately, it may be further observed that many of the shont conical serrated spines of the first lamina are not met by corresponding descending points of the second one, and therefore remain free (fig. 1, e,e) in the lower interval. This does not appear so often in the upper interval, while, of course, on the surface of the third or last lamina, which is that of the surface of the skeleton of the Ityrtrentimior itself, they are all free (tis. 1, 7^{\prime}). Although differmin slighty in height, they average ahout 1 o inch, which is twenty times lees that that of the large spines (fig. $1, g$), to which I have above alluded; but while they consist, for the most part, of solid points respectively, the structure of the large spine's is more or less reticular, as will now be particularly explained.

In outward form the large spines, which average $\frac{1}{T^{3}}$ inch in height, resemble the small ones in being serrate, with the points of the tecth directed upwards (fig. $1, g$) ; but in a vertical section of the whole skeleton they will be found to be based upon a number of the smaller spines of the first or basal lamina, which, like the rest, become lost in the general reticulation of the skeleton before the latter rises upwards into the large conical spine mentioned. This spine consists of a series of serrulated longitudinal ridges corresponding with the horizontal radial terminations of its internal network (fig. 2), and, diminishing in momber from several ridges at the base as they slope inwards and upwards, are finally reduced to three or four at the summit, which, by the union of the remaining ridges there, thus becomes closed (fig. 2, a) ; so that the whole somewhat resembles a pimacle of open gothic architecture which is in direct commmication with the skeletm below, where, as before stated, it thus becomes based on pillars which were once the small spines of the first or basal lamina.

Hence, if a horizontal section be made near the summit, it will represent a stellate form in which the rays or ridges appear to radiate from a solid axis (fig. 2, a) ; while, a little further down, a similar section will present a hollow axis in communication with the reticulate structure of the spine, which also finally terminates in the ridges on its surface (fig. $1, g$, and fig. 2). Thus the point of the larger spine is solid and the body hollow-reticulate.

In short, if projected on a plane surface, the greater number of ridges at the circumference reduced to three or four at the summit would represent the septa of an asteroid polyp-cell in a stony coral, whose intervals, in like manner, flowing from two or three gutters at the summit, and branching out towards the circumference, would also be stelliform-a circumstance which it might be well to remember, as it seems to be repeated under another form in Stromatopora, where the summits appear sometimes to be solid and sometimes hollow, according to the position of the section, but always with an asteroid or stellate appearance.

The large spines are thickly scattered over the suiface among the small ones at short but irregular distances, and are only found fully developed or largest on those parts of the Buccinum which are not exposed to friction by the Pagurus (by which the shell is on such occasions almost invariably tenanted) dragging it over hard objects at the bottom of the sea.

Lastly, on the surface of the skeleton may frequently be observed a branched reticulation formed of cenosarcal tubular
stolons, about sios inch in diameter (fig. 3), which here and there produces corresponding grooves in the chitinous structure ; while in some parts it is almost free, and at others covered with chitmous points (fig. $3, c$), which are in contimuation with the surface structure of the skeleton. This eenosareal tubulation also here and there presents short branches which, from their annulation (lig. 3, o), appear to have been the pediecls of polypites-a ringed feature which is remarkably common on the stems and pedicels of the Hydroid zoophytes, and one to which it is dessirable here to direct attention in a sectional point of view, viz. :-

As the "amulation" consists of circular constrictions of the stem following each other in a moniliform mamer, so, when a horizontal section is made of this part through the interval between the constrictions, the latter presents the appearance of a circular diaphagm or line with a circular hole in its centre (fig. 3, 不) ; and if the section be oblique, then there is a succession of fragmentary cireular lines ending in an entire circle, completed by the addition of the cut line at the imer end of the section of the stem to the semicircle of the diaphragm, thus altogether somewhat resembling the spiral line of a " thread-cell " (fig. 23).

Further, it is desirable, for our present purpose, that all the skeleton-structure of Iydractinia echinata should be borne in mind, while we discard the sarcodic parts, as they may be assumed to be destroyed long before fossilization.

Hence we should remember that the small spines remain free on the surface of the lamine respectively, and thus retain the conical serrated form as they appear on the surface of the entire skeleton, while other spines are joined to, incorporated with, and thus support the following lamina; also, that the large spines are hollow in the body and solid or closed at the summit, while the structure is more or less radiated throughout.

Nor should the structure of the lamine be misconceived, inasmuch as, although in a vertical section they give the appearance of a continuous layer, still this chiefly arises from the union of the horizontal arms of the horn-cell, when viewed in the vertical section; while if viewed horizontally, they present the reticulation seen on the surface of the skeleton, which is that of each lamina in succession.
'To facilitate an understanding of the way in which the skeleton of Hydractinia echinatio is developed, I have taken the most regularly formed portion, which, as will be seen by my illustration in the 'Amals' (I. ©. pl. i. fig. 6), has very much the appearance of that of a hexactinellid sponge ; but

Am, de Mag. N. Mist. Ser. 4. Vol. xix.
atter this it should be remembered that this regularity is by no means persistent throughout the skeleton, but, on the contrary, sulject to oreat latitude in point of modification and irresularity. When, therefore, the regularity may be found almost persistently in the structure of some species of Stromatornern, it is no indication that they were hexactinellid sponges, but, on the contrary, that they were something else; for 1 have never seen the hexactinellid structure in sponges so persistently regular as in these species of Stromatopora.

Cadcareous Itydractinidde.

Let us now direct our attention to the structure of the skeleton in the calearenus species from Cape Palmas, which, hitherto having been undescribed, will be given under the designation of "calcarea."

IIydractimia calcarea, n. sp. (Pl. VIII. figs. 4-6.)

Skeleton laminiform, incrusting, spreading, cancellous, massive, not reticular, stony coral-like. Composition calcareous. ('olour greyish white. Surface rough, spiniferous: spines at the groving margin commencing in minute points of calcarcons matter scattered through a sarcodic lamina of almost immeasurable thimness, arranged more or less linearly so as to resemble a furrowed area, afterwards becoming thicker and rising into conical points, which, uniting more or less together, form scrulated lines that are rendered irregular in height by some points being higher than others (fig. 4, a, d); finally developing another lamina (fig. $4, c$), which is supported on some of the small spines of the first, and which, in its turn, also throws up similar spines on its surface (fig. 4, e). Upper lamina much thicker than the lower one, having an irregular interval between them (fig. 4, d) about 1-180th inch high, which in the vertical section presents a number of arched cavities formed by the small spines of the first or basal lamina uniting, in the form of pillars of support, with the undersurface of the sceond or surface lamina, leaving some of the spinula still free on the floor of the arched cavities. Skeleton (fig. 4) seldom if ever formed of more than two lamine. Surface of the upper lamina ridged reticulately; ridges compressed, serrulated irregularly with small spines, interrupted at irregular distances by large ones (fig. $5, a a a, b b b$, small spines omitted in the illustration for perspicuity) ; interstices pit-like and without spines (fig. $5, \quad d d d$). Large spines about 1-60th inch high (fig. 4, f, and fig. 5, a a a), variable in shape, round or compressed, hollow in the interior (fig. 4, f,
and fig. $6, a$), communication at the base with the interval between the two lamine, closed at the summit (fig. 4, f); massive, but radiate in structure, the ends of the radii corresponding to semvalated ridges on the surface of the spine (fig. 6), which ridges diminish in number upwards until by union they form the summit of the cone (fig. 6, 6). Simall circular apertures, about 1-60)th inch in diameter, plentifully scattered among the serrulated points of the rugged ridges and bases of the large spines (fig. 5, cec), which are the openings of short tubular cavities, that respectively end in diaphragms with a small circular hole where they open into the interval between the two laminæ (fig. $4, g g$). Diaphagms about 5 -1800ths inch in diameter, apparently contimous with the chitinous membrane lining the internal cavities, and, for the most part, visible through the apertures on the surface.

Itub. Marine, incrusting small mivalve shells.
Loc. Cape Palmas, Guinea coast, Λ frica.
Obls. There are two specimens of this species, viz. one on a small Murer about eight twelfths of an inch 1 mg , bearing two spines equally covered by the Ifydractinin, and the other on a broken shell of the same size and kind. Each shell contains a hermit crab (Pagurus). They were sent to me in a dry state; and failing to obtain, by soaking in warm water, any return of form in the soft parts beyond that of thread-cells, I am unable to describe more than the skeleton. With the exception of the skeleton being massive and not reticular and chitinous, it is otherwise so like that of Mydractimia echinata, that, on a superficial view, it would, but for the colour, be said to be the same species.

Forsil Mydractiniida.

We now come to the fossil species of Itydractiniida, viz. II. Dichelini and II. cretucer, Fischer-the former from the Upper Miocene and Older Pliocene respectively, and the latter from the Epper Greensand (Bull. de la Soc. Géol. de Fr. t. xxiv. p. 689, 1857) ; also II. pliocena, Allman, from the Older Pliocene or Coralline crag of Suffolk ; to which I can add another species from the Upper Greensand of Haldon Hill, near Exeter, lent to me by my kind friend Mr. W. Vicary, of Exeter, after whom I shall call it II. Vicaryi.

Deferring M. Fischer's species for the present, we shall commence with II.plincence; and as Dr. Allman has not entered into a sufficiently detailed description of this species for our present purpose, I shall describe it from the specimen to which I have before alluded, which has grown neer the outside of a
shell like a Buccinum, and of which I have made a longitudinal section through the columella, leaving what was the mouth of the shell, now marginally covered by the fossil, entire.

> Iydractinia pliocena, Allman (Geol. Mag. No. 98, August 1872, p. 337). (Pl. VIII, figs. 7-10.)

Skeleton laminated, thick, incrusting. Composition calcarcous. Colour white. Surface rough, uniformly granulated with small conical spines (fig. 9, a, e), interrupted by larger conical ones (fig. 8, a), generally separate, but in the depending parts aggregated into tubercular eminences, over all of which the same gramulated surface extends. Granules or small spines obtusely conical and themselves minutely granulated, about 1-20) th inch high. Large spines (fig. 8, a) also obtusely conical, numerous, thickly scattered over the surface at unequal distances, about 1-30th inch high, and the same in diameter at the base. Minute circular apertures, varying in size, but averaging 1-360th inch in diameter, thickly and generally seattered over the surface between the granules (fig. S, c) ; granulated surface traversed by deep grooves branching reticulately among the large spines (fig. $8, b b$), the broadest about 1-225th inch in diameter. Presenting in the vertical section a confused, laminated, and chambered structure traversed vertically by narrow tubes (fig. 7, bb). Lamine not distinctly continuous ; chambers compressed, irregular in size and position, arched, and often presenting on their floor free conical granules, or small spines, such as are seen on the surface (fig. $9, d d d$). Vertical tubes of various lengths (fig. 9, c), about the same diameter as the apertures on the surface, with which in the surface lamina they may be observed to be continuous (fig. $9, b$), irregularly constricted in their course, so as often to present a submoniliform appearance (fig. 10) ; constrictions, when viewed in the entire tube, presenting a diaphragmatic appearance with central circular hoie (fig. 10, a) ; tubes terminating inwardly in apertures of the roof of the chambers (fig. $9, d d d$), and outwardly on the floor of the same respectively, as on the surface (fig. 9, c). Small spine or granule solid; large spine closed at the summit, hollow in the interior, cavity presenting a stellate form in the horizontal section. Size, horizontally, that of the Buccinum (fig. 7, a a) or shell over which it has grown, viz. in this instance about 2 inches long by 1 inch broad; thickest part of incrustation (fig. 7, b) 5-12ths inch.

IIab. Marine, incrusting.
Loc. Coralline Crag, Suffolk.

Ohs. By eomparing the deseription of the skeleton of Itydractinie echinata with that of $I I$. pliocen, it will at once be seen that I must diffier from Ir. Alman where hestates (l. r.) that "it is imposible to find any character which can separate it [II. pheceme] from the living Hydractinia erhinatu." Here Dr. Allman assumes that the original composition of H. pliocena was chitinous, and that this has been "entirely replaced by carbonate of lime." But now that the living Cape-Palmas specimen shows that the skeleton of IIydractinin may be calcarcous as well as chitinous, it seems to me much more probable, as the skeleton of the calcareous species is solid and shows no signs of fibre, that II. plecena, which also shows no signs of fibre, was also calcareous.

Of the identity of the large and small spines of $I I$. pliocena with those of the living species there can be no doubt. Nor can we doubt that the apertures on the surface leading down to the chambers (which, although present in II. echinata, are not so plainly marked as in H. calcarea) are equally identical with those on the surface of $I I$. pliocence. Of the identity of the grooved reticulation on the surface of I. echinata, where the cenosareal branched stolon-tubulation which produces it is also present, with the branched grooved reticulation on the surface of II. pliocena (fig. 8,6 l) there can also be no doubt; while the ammar constriction in the descending tubes of the latter is equally identical with the ammulation of the pedicels on the comosarcal tubulation of I. echinatn, together with the diaphragmatic rings which are seen at the bottom of the tubes, more especially in H. calcarea.

The presence of some of the small spines on the floors of the chambers (fig. $9, e d$) is the same, and the hollow radial form of the internal cavity of the large spine closed at the summit the same as that of the large spine also especially seen in H. calcarea (fig. $6, a, b)$.

So that altogether, part for part, we have just the same formation in H. pliocena as in the living species, while the structure of the fossil is more like that of H. calcarea.

Lastly the large spines in M. pliocena are for the most part broken off by accident, and thus present a hollow interior ; but where perfect the summit will be found to be closed or imperforate.

Hydractinia Vicaryi, n. sp. (Pl. VIII. fig. 11.)

Skeleton thick, incrusting. Composition siliceous. Colour greyish white. Surface rough, miformly gramulated with small obtuse spines interrupted ly larger ones, over which the
granulation also extends. Small spines solid. Large spines round and conical or compressed, elongated and wedge-shaped, about 1-25th inch in diameter at the base, more or less regularly distant from each other (fig. 11, a). Minute circular apertures variable in size, but averaging 1-257th inch in diameter, thickly but not generally seattered over the surface, being chietty confined to the base of the large spines respectively (fig. 11, b), often comnected by a small groove. Vertieal sections presenting traces of vertical tubes and chambers, of which the former often contains an amulated core (fig. 12, \langle), but no distinct lamination. Size of specimen horizontally about $1 \frac{1}{2}$ inch in diameter; vertical thickness about $4-12$ ths inch.

Hab. Marine, incrusting.
Loc. Upper Greensand, Haldon Hill, near Exeter.
Ols. This differs from the foregoing, viz. H. pliocena, in the larger size and more compressed form of the large spines, which are also arranged more regularly than those of H. pliocena; also in the distribution of the apertures on the surface, which instead of being generally spread over it, are chielly confined to the bases of the large spines respectively, where, when the spine is broken off low down, they may be seen to lead into tubes somewhat radiating round the base of the spine ; also in the absence of the grooved branched reticulation so evident on the surface of H. pliocena, while the apertures may often be observed to be comnected by a small groove which seems to indicate the position of a coenosarcal tube that once comnected them, like that seen in some species of Stromatopora (fig. 21).

The situation of the apertures round the bases of the large spines respectively resembles that seen in the living calcareous species (H. calcuren), where they do not appear in the pit-like "interstices;" also the compressed, wedge-shaped form of many of the large spines; while the irregular moniliform cast or core of the vertical tubes coincides remarkably with the same kind of mould presented by the vertical tubes in H. pliocena.

On what this specimen was based it is impossible to say now, as its only form is that of a broad cone covering a shapeless piece of solid, oparpue tlint of a whitish grey colour, which was probably the form of the object on which it grew ; but that it was laminated its thickness shows, although now there is. no trace of this lamination remaining, save in the presence here and there of one of the chambers of the intervals with a few of the small spines just projecting above its floor, as seen in H. pliocena.

Since M. Fischer hats given no detaited deseription of his H. cretacea, it is impossible to say if this be the same species.

Parkeria, Carpenter. (Pl. VIII. figs. 13-17.)

We now come to Parkeria, whose skeleton was formed not of solid material, like that of Hydrectinia calcarea and the two fossil species last mentioned, hut entire!! of reticulated tissue like that of (hitime eriomsis (Amn. \& Mag. Nat. Mist. l. c.), out of which the whole structure, architecture as it may be termed, was elaborated without, as before stated, "core or cortex "-in short, somewhat like a mass of "crochet knitting" or the woody filme of a washel-out grourd (Lutfie), to make the similes more familiar (fig. 14)—of course supplied with sarcode when living, which completed the cavities indicated by the architectural arrangement. Such, then, having been the tissule, as it may be termed, and the structure of Parkeria while living, it may be now added that the fibre of which the tissue is composed was probably homogencous and solid, also like that of C'hitina rricopsis and the recent chitinous species of Hydractinia, but that churing fossilization it became transformed into homogeneous, colourless, tramparent calespar (fig. 14, a), coated with a layer of gramalar yellowish calcite (fig. 14, , 1 , so as (again using a familiar allusion) to resemble strings of sugar-candy, in which the string or thread would represent the fibre, and the sumar-candy the granular incrustation of calcite around it ; at least this is what is presented by a transverse section of the calcified fossilized fibre, but not so in the silicified state, as the mounted section of a siliceous Parleria at the Muscum of the Royal School of Mines shows, where the fibre has no coating whatever. Subsequently the tissues thus fissilized became infiltrated with homogencous translucent calcspar, as if they had been soaked in so much wax; and thus the whole structure also became entirely or partially solidifierl, so as to assume the spherical form originally pusssessed by Parkeriu, but in a lapidified state. Owing, however, to the infiltration being frequently partial, the central portion often remains uninfiltrated, so that here the structure is composed of the coated forsilized tissue-fibre onty (fig. 13, d). Such is the case with one of the specimens I posisess, in which, as before stated, this portion ($\mathrm{tig}, 13, d$) about 5 -12ths inch in diameter, is broken acress son as to expose the centre, and was originally contained in a shell or intiltated zone about 5 -2thes inch in thickness! (fix. $1: 3$, ,, l $)$, so that, when entire, the diameter of the whole specimen amomed to about

10-12ths inch (fig. 13). From this uninfiltrated portion, then, the structure of P'arkeria will be chiefly described.

It is desirable to premise that the fossilized tissue-fibre averages about 1-900th inch in diameter, one third of which belongs to the core or central portion, and the rest to the incrustation (fig. 14, a, b). In the stems of Chitina ericopsis, where the fibre is largest, it measures, when round, about 1-900th inch in diameter ; but, of course, this varies slightly in each instance with position ; also it must be premised that the structure of Parkeria, which is concentric, will be divided into lamina, intervals and vertical tubes, and that the two latter increase in size outwards, so that, while the first interval and tube are respectively $1-300$ th and $1-200$ th inch, the same, five rows from the centre, are respectively 1-200th and 1-60th inch in transverse diameter.

Commencing immediately round about the centre, whose stracture itself will be more advantageously considered hereafter, the first lamina may be observed, under the microscope, in the vertical section, to be composed of two layers of reticulated tissue presenting between them a line of openings, and to be about 1-300th inch in thickness ; after this, on progressing outwards, the thickness is increased a little, rather by the addition of more tissue-fibre than by the enlargement of the openings. These are the openings of "passages running at right angles to the plane of section," which Dr. Carpenter (to whose faithful descriptions and illustrations in the 'Philosophical Transactions,' l.c., I shall often have to refer) likens to "communications between the contiguous series of chamberlets in Alceolina" (op. et l.c. p. 730) ; but they are more amalogous to, if not homologous with, the openings observed in the horizontal lamina of Tubipora musica, as will be better understood hereafter. But to return to the thickening of the lamina: in progressing outwards, this may be observed, as before stated, to be chiefly owing to an increase in the amount of tissuc-fibre, that, rising into pillar-like forms on the outer surface of the basal lamina, may be seen, in the vertical section, to grow out in the same way, on both sides of the succeeding laminæ, so that, where meeting their vis-dे-vis, they form pillars of support to, and where not meeting remain with free ends in, the interval.

In the first three or four intervals, this outgrowth of tissuefibre from the laminæ is alnost entirely limited to cylindrical pillars scattered irregularly through the intervals, which, when hroken, may be observed to be hollow and to extend simply from one lamina to the other (figs. $13, d$ and $17, b$). These are the "radial tubes" of Dr. Carpenter. They increase in
number and slightly in size outwards; so that while they average transversely about $1-300$ th inch in diameter near the centre, their cavity is about $1-125$ th inch in transverse diameter at the circumference of a specimen of Parkeria $1 \frac{1}{2}$ inch in thickness. On progressing outwards, these cylindrical pillars, for the most part, lose their individuality from the merease in quantity of the tissue-fibre, which involves those in its course as the latter assumes a columnar disposition, increasing in size outwards. The columns so produced thus radiate from the centre to the circumference, and, arching towards each other in all directions as they arrive at each lamina, appear to divide the "interval," in the vertical section, into a mumber of chambers. 'Ihese are the "chamberlets" of Dr. Carpenter.

So long as the vertical tubes retain their individuality-that is, in the first three or four intervals, where they are not obscured by the additional growth of the tissue-fibre (fig. 17, b) they, with the lamina of Parkeria, closely resemble the lamina, intervals, and tubes respectively of Tubipora musica, especially as the whole structure of the latter is elaborated out of a similar tissue; but besides being almost incomparably larger (that is, while the lamina, intervals, and tubes in Parkeria are at the part mentioned respectively $1-900$ th, $1-200$ th, and $1-900 t \mathrm{~h}$ inch across, those of T. musica are 1-24th, $1-4 \mathrm{th}$, and 1-10th inch across, the cross diameter of the interval indicating the length of the tube in each instance), the tissue of T. musica is not reticulated but sieve-like and leminiform, all the holes being on the same plane and of all kinds of sizes, precisely like the structure of the calcareous tissues in the Echinodermata. The radiating tubes of T. musica, too, are for the most part opposite each other, so as to appear vertically continuous for a long distance, although internally their cavity is frequently interrupted by a diaphragm of the same sieve-like tissue, which is for the most part just below the lamina; and it is worth noticing that while the openings in a vertical section of the lamina of T. musica resemble those in the lamina of Parkerin, they are also present in a ring-like form inside the tube of T. musica opposite the lamina-that is, just above the diaphragm ; so that the radial tubes, as in Parkeria, were in communication with the passages in the centre of the lamina, and not so continuously hollow as at first sight they would appear to be.

Having now described Parkeria from the vertical section, let us tum our attention to the surfaces of the lamina (that is, the ruter and imner surfaces), concentrically-an examination which the same uninfiltrated specimen renders comparatively
easy, as the outer surface of this (fig. 13, c) represents the outer surface of the lamina and the imer surface of the cover or shell (from which the uninfiltrated portion came) the immer surface of the lamina-the fracture or separation having taken place through the centre of the interval concentrically.

Taking the outer surface first (fig. 15), we may observe that the floor of the interval, which is the outer surface of the lamina, meanders almost continuously (that is, without interruption) round the ends of the broken radiating columns of tissue-fibre, with which it contrasts strongly for this reason, viz, that while the floor presents a continuous even surface of unbroken reticulated tissuc-fibre, that of the broken columns enclosing the radial tubes is rongh and jagged from fracture (fig. 15, a). As for the ends of the radial tubes, they appear indiscriminately scattered all over the concentric surface, sometimes broken through, as in the broken columns especially, at others ending on the surface of the floor naturally, thus appearing to be entirely independent, in position, of the columns (fig. 15, b).

On the other hand, if we turn our attention to the roof of the interval, which is the inner surface of the lamina, we see the same thing repeated, except that the roof is more angular ; and this, with the comparative flatness of the floor, accounts for the arched appearance of the interspaces between the radiating columns observed in the vertical section.

Returning now to the proper nucleus or centre, all that I can state of this is, that when the Parkeria commences growth on a foreign body it does so just as IIydractinia-that is, beginning with a simple lamina, which, so long as the concentric layers continue to be not large enough to surround the foreign body, forms an incomplete circle, resembling a horse-shoe; but when the span or diameter of the concentric layer is sufficiently large to embrace the foreign body, then the growtly gres on in continuous lines, viz. commencing elliptically and becoming circular outwardly (figs. 13, d, and 17,6). I now allude to a foreign body such as that in fig. 13, viz. about 1-24th inch in diameter. What the natural nucleus of Parkeria may be I am not prepared to state, as it is difficult to be certain, when the foreign body is very minute, whether there is one present or not, or one through which the section may not have passed. But in cases where there has apparently not been any foreign body, there the nucleus has presented itself under the form of minute reticulated tissuefibre, more condensed in some than in other parts.

On this point, however, depends an important argument as
to the real nature of Perkeria, viz. whether the "primordial chamber-cone " of Dr. Carpenter is, or is not, a forcign body and not the natural nuclens of Parleria. It is a foreign body. Out of the sections of Perlieria that I have examined, one of which is in my own posecssion, by far the greater number present a fragment of a concamerated test like that of a minute Nautilus or Ammonite, in which more or less septa are distinctly visible. Moreover the interior of the chambers of the fragment is filled with transparent calespar, the lamina of white shell-substance surrounding it being still present and contrasting strongly with the grey tissue-fibre of the Parkerie, which only begins to make its appearance outside the concamerated test, as the 'homogeneity of the calcspar filling the interior evidently demonstrates. The instance in my own possession presents itself in a spherical specimen of Parkeria $\frac{3}{4}$ inch in diameter (fig. 17), where the foreign body consists of a fragment of a nautiluid shell whose transverse section represents a hyperbola with its apex in the centre of the Parlieria, on which the structure of the latter has evidently commenced growth (fig. $17, c$). This hyperbola is $5-4$ Sths inch high and 4-48ths inch in diameter at the base, while the concarity of the septum, of which only one is visible, is a little more than $4-48$ ths inch from the apex. The chamber thus formed between the septum and the aper of the hyperbola is filled with calcspar ; and immediately outside the septum the reticulated tissue-fibre of Perkeria (fig. 17, 1) is as distinctly visible as its absence is distinct within the septum.

After this, it may be stated that Perkeria is seldom without some foreign body either about its centre or in some part of its structure between this and the circumference, sometimes singly, at others in pluality; while sometimes it appears to have grown round the extremity of a cylindrical body $\frac{1}{5}$ inch or more in diameter, and sometimes round a cylindrical body of this kind which has traversed or transfixed it. But in most of these instances the foreign bodies are made up of miuute Foraminifera, sponge-spicules, and fine material which looks like part of a sea-bottom. How this is to be explained I am ignorant. But the tissuc-fibre itself is often filled up with such material, which appears to have become incorporated with it during growth.

Lastly, we come to the natural surface of the full-grown Parlerie, or to that of a specimen $1 \frac{1}{2}$ inch in diancter; and this may be observed to be formed by the ends of the radiating columns of tissuc-fibre, which, at the circumference, rise above the rest of the structure into little circular convex eminences, varying in diancter under $1-2 \mathrm{tth}$ inch (firer. 16,4), and pussess-
ing an irregular radiated structure, in the midst of which, as well as in the intervals between them, may be seen the openings of one, two, or three radial tubes (here 14-1800ths inch in diameter), in accordance with the size of the eminence (fig. 16, b). The difference in diameter or size of the eminences arises from the columns, as they progress outwardly, having to supply offsets or branches, here and there, to fill up the increased space caused by their radiation; while the interval between the eminences is supplied by the surface of the last-formed lamina. I regret that the illustrations are so small; but the object has been to keep them of the natural size as much as possible, for comparison, leaving the reader to magnify them into diagrams if he should feel so disposed.

Ols. To say that the tissue-fibre of Parkeria in its present condition was identical with chitine in the living state would be absurd; but to say that calcareous fibre under this form does not occur in any recent organism of this kind, and that chitinous does, as in Hydractinia and especially in Chitina ericopsis, is indisputable. Again, the uninterrupted homogencity of the tissue-fibre of Parkeria is incompatible with the more or less cored tissuc-fibre of sponges. Moreover, that a thick laminated chitinous species of IIydractinia of considerable thickness does occur, is proved by the recent species figured under the name of II. leevispina in the 'Annals' (l.c.).

Having thus identified the tissue-fibre of Parkeria, we come to its structural or architectural developments ; and here again we have undoubtedly the "tubes" foreshadowed in our description of Hydractinia, and identified in those of the fossil species (viz. II. pliocena), indicative of a cœenosarcal stolon-tubulation united throughout the interior, and finally opening on the surface. As to the "ammulation" seen in the latter, that could hardly be expected, from the irregularity of the reticulated tissue-fibre; at the same time, if every individual were exactly alike, there would be no occasion for specific distinction.

The possibility of Parkeria being a species of Foraminifera rested chiefly on the presence of a "primordial chamber-cone " and the tissue-fibre being arenaccous like the composition of Lituola, \&c., which have both been shown to be untenable; while the absence of a primary or embryonic chamber in the centre and the presence of reticulated tissue-fibre in its stead, together with the neighbouring structure that I have mentioned, the elaboration of the whole of the architectural structure of the test out of reticulated tissuc-fibre, and the presence of one or more comparatively large foreign bodies in the midst of it are all facts, so far as my experience extends, singly or all to-
gether, umparalleded in the structure of recent or fossilized Foraminifera.

Lastly, the general homogeneity of the tissue-fibre in Parkeriu is incompatible with the general or partially cored fibre of sponges, to say nothing of its uniformity in size, ass before mentioned. It may be a question, hy-and-by, when we come to Stromutopora, how far the radial tubes of Parkerin extended continumsly in a vertical direction-that is, whether they went beyond two successive lamina. If they were like those of Tubipora musica, they did not do so; for although those of T. musica appear to be contimuns through a great many successive lamine, they will, if examined interiorly, be found, as before stated, to possess a diaphragm close to eache lamina, which thus divides them into a great number of partitions. Again, in the fossil species Ilydractimia pliocena the radial tubes seem, from their length in the vertical section, (fig. 7) to pass through several successive lamine; but on reference to the illustration (fig. 9) it is evident that this may be explained by their openings respeetively in the floor and roof of the interval or chamber (fig. $9, d, d$) being freciuently opposite cach other. So in Stromatopora, the vertical continuation of the tubes is no indication of their having been continuously hollow, any more than in Tubipora musica. However, in the hydroid polyp Tubularia indivisa the tubes are not only continuously hollow for 6 to 12 inches, but separate, and equal in diameter to those of Tubipora musica, viz. 1-16th of an inch (Hinck's Brit. Hydr. Zoophytes, p. 115, pl. xx.).

Species of Parkerla.

Besides the spherical form of Parkeria, which, for distinction sake, may be named P. spherica, there is a bossed form, in which the surface projects into a number of large, circular, convex eminences, which might be designated P. nodosa. In structure, the latter appears to differ from the former in the wavy disposition of its lamine (which, of course, follow that of the surface) from the very centre, showing that this form is concurrent with the commencement of its growth. There is also another form in the Cambridge Greensand, of which my friend Mr. W. J. Sollas gave me specimens; and this is circular compressed-that is, biconvex or lenticular. It might be designated P. compressa. Possibly there are other varieties, which may hereafter be recognized.

Loftusia (fig. 18).
As regards Loftusia (L. persica, Brady), which appears to
have been so nearly allied to Parkeria that, if one can be shown to have been allied to Hydractinia, the other must follow, there can be no doubt that the general structure of Loftusio is spiral and not concentric ; but then, as Mr. Brady states, and as I have verified by my own observation in the transwerse and longitudinal sections of this fossil respectively, there is no "primordial" cell or embryonic chamber in the centre (l.c. p. 744), but, in its place, a minute "network" (p. 745). This, as I have also just stated, has not in my experience any parallel in recent or fossilized Foraminifera. The latter always begin from an embryonic cell or chamber. As recarts the "imperforate nature " of the lamina ("spiral"), which is synonymous with "primary wall," as stated in paragraph 37, p. $7 \dot{46}$, this appears to me to be contraindicated at the commencement of par. 42, p. 747, wherein we may read, that "the layer immediately within the primary wall adds greatly to its strength, not only from the additional thickness it imparts, but also from the comexion its septal [? tubular] promgations establish between the successice whorls" (the italies are mine). That the tubulation, or "radial tubes," did respectively commmicate with the outer or "parallel tubular. columens "of the accessory structures of the preceding and following whorls, especially towards the "end of the central axis" in the long sectim, is made evident by figs. 1 and 3, pl. 79 (l.c.); for Mr. Brady's descriptions and illustrations of Loftusia, like those of Dr. Carpenter of Parlieria, are equally faithful; and hence I cannot help thinking that, if Mr. Brady had had the advantage of an uninfiltrated specimen of Loftusia, wherein he might have looked down upon the surface of the spiral lamina instead of against a vertical section of it only, the two layers of which the lamina is composed, and between which are situated the "openings" as in Perkerin, would have been found to be equally perforated, although, as I have before stated, in Inydrectinia they appear respectively, in the vertical section, to be the edges of a continuous membrane or layer (see p. 49).

Indeed I have now (thanks to the kindness of Mr. Brady in sending me a specimen) been able to demonstrate this satisfactorily, by haring gromed down and polished the round extemal surface of a Loftusia in such a way as to cause the convexity to present the fine cribriform structure of the spiral lamina, while the latter is surrounded on all sides by the coarser one below or, rather, within it, just, in fact, what Mr. Brady himself has represented in his pl. 71. fig. 1, c. The existence of this cribriform structure is further confirmed by the weathered surface of the specimen of Loftusia in the Muserm of the Cerlogical Society of London (which, through the
kind help of my friend Mr. Dallas, I have been permitted to examine), whose gramulated surface, close to the eflge of the seetion, where it can be identified with the spital lamina to which it belongs, when viewed with the mierosenpe, aided by the aldition of a little water covered by a thin glase disk for a temporary varnish, presents the same reticulated structure with (what were) the circular apertures, now filled with tramsparent calespar, varying from 1- to t-1 sooths inch in diameter. 'This, in comparison with the diameter of the apertures of the radial tubes (viz. 14-1800ths inch) on the natural surface of a Parkeriu $1 \frac{1}{2}$ inch in thickness, seems very small; but then it should be remembered that towads the centre of the Perkeria this aperture is not more than 6-1800ths inch in diameter, while in IIydractinia calcarea the apertures do not exceed $3 \frac{1}{2}-1$ sol)this inch, and in II. cehimata the comosareal stoloniferous crepping tubulation is only 5 -1800this inch in diameter, Se. So that, after all, these apertures on the surface of Loftusia were not relatively small.

Comparing the radial tules in Loftusia with the single one that unites the successively enclosing chambers of the ovoid Foraminifera termed "Ellipsoidinu," as Mr. Brady has done (p. 745), would lead one to infer that they finally opened on the surface of Loftusia as in Parkeria, which is just what might be expected, although not actually stated by Mr. Brady. Undoubtedly there is a great resemblance between the spiral growth of Loftusia and that of the Foraminifera gencrally, especially Aleoolina; but here the resemblance ends; while a "spiral growth" is by no means peculiar to the Foraminifera. The general form also of Loftusite is elliptical, as in Alveolina; but instead of the sigmoid longitudinal lines dividing the surface of Alceolina into segments like those of an orange, with transverse parallel lines between them, we have in Loftusia a minutely granulated surface, irregularly bossed, and sprinkled with papilliform eminences about 1-50th inch in diameter (fig. 18, a, b). At least this is what may be observed in the large specimen of the Geological Society's Museum.

And here it should be remembered that, in studying the fossil structure, the white parts or lines represent the substance of the test, and the dark ones the intervals which were occupied by the sareole; at the same time, that a white line may be merely the cylindrical wall of a dark interior, as seen in the radial tubes of Perkeria under section.

That Laftusia was irregularly bossed during growth may also be seen in the sertion, which in this respect serves to confirm what, on the surface, might be doubted, from the quantity of matrix left about the specimens, consisting almost entirely
of minute Foraminifera and rounded objects which might be confounded with the proper surface-clevations. But while the sections show that the surface was an irregularly undulating one, it also seems to show that the bosses for the most part originated from the accidental incorporation of a larger foreign body than the animal was accustomed to enclose.

With reference to the resemblance of Alveolina meandrina to Loftusia, as stated in my paper in the 'Annals' (1876, vol. xvii. p. 192), that can only be taken now for what it is worth. The former is undoubtedly a species of Foraminifera, the latter not.

As in Parkeria, there are many foreign bodies to be observed in the test of Loftusia, probably arising from its unfixed habit in the bottom of the sea, where it would be constantly rolling about in contact with small objects which it might thus incorporate during growth, after the manner of Sponges under similar circumstances. Indeed, as many specimens of Parkeria present foreign nucleiform portions which are filled with sea-bottom only, so does Loftusia; and not only this, but in some instances, both in Parkeria and Loftusia, there are parts of the tissue-fibre structure which are almost obscured by the quantity of foreign material (sand, \&c.) incorporated with it during growth.

While, then, there can be little doubt that Loftusia was no more a species of Foraminifera than Parkeria, there may be doubt as to the nature of the substance of which the test was formed, since I see no means at present of determining whether this was calcareous or chitinous, from the metamorphosis which the original structure has undergone by crystalline infiltration.

Finally, although it has been stated that Loftusia cannot be considered a species of Foraminifera, it should be remembered that its spiral structure is so much like one that it seems to indicate a close relationship between the Rhizopoda and the Hydrozoa, ex. gr. Amaeba and Hydra.

? Bradya tergestina, Stache, MS.

We now come to a fossil (from the Lower White Chalk of Dover) which forms an important link in our series, since it not only presents the coenosarcal stolon-tubulation of Hydractinia echinata on its surface, but the tissue-fibre of Parkeria throughout, and the vein-like stellates which are so characteristic of the Stromatopora. It belongs to the British Museum ; and through Mr. H. Woodward's kind help, I am enabled to give the following description of it.

General form irregularly sulghlobular, bossed with four or more monticular eminences of unequal size and height, which meet each other at their circumferences respectively. Composition calcareous. Colour whitish grey. Surface granulated from the weathering of minute reticulation formed by the anastomosing of delicate tissuc-fibre; tissue-fibre like a mass of crochet-knitting, the thread of which is about 3-1800ths inch in diameter, and the interstices a little more, viz. about 5 -1800ths inch in diameter; opaque, whitish on the surface, transparent in the interior, but not coated with granular calcspar as in Parkeria ; presenting circular apertures about 12-1800ths inch in diameter (now filled up with calcareous material), densely scattered at variable distances from each other on the surface throughout the tissuc-fibre; also a stellate arrangement of branched grooves which, radiating from the summit of each boss or eminence, finally mingle in their ultimate divisions with those of the surrounding eminences; but with no appearance of aperture on the summit; crossed by a creeping, branched, tortuous, dendriform fibre in prominent relief, which appears to be independent of the grooves, although in intimate relation with tha tissue-fibre, which it penetrates or issues from here and there, sometimes dipping under a portion to appear again after a short distance, and sending off laterally minor branches throughout the whole of its course ; largest branches about 10-1800ths inch in diameter, cylindrical, and composed of a thin opaque layer externally, filled with transparent calcspar interiorly. Internal structure consisting throughout of the same kind of delicate, anastomosing, tortuous tissue-fibre seen on the surface, traversed by straight circular tubes from 5 - to 12-1800ths inch in diameter and at variable distances from each other of 5 - to $20-1800$ ths inch, which assume a radiating direction as they increase in number with their distance from the centre to the circumference, where the last open on the surface by the apertures above mentioned, or did so before they were fossilized and filled with calcspar. Each tube now composed of a white opaque cylinder filled with transparent calcspar; the centre of which is also opaque and clouded. Size of specimen $\frac{3}{4}$ inch in its greatest diameter; width of widest grooves, that is, at the summit of the boss, 1-24th inch in diameter.

Hab. Marine. Lower White Chalk.
Loc. Dover.
Obs. I am informed by Mr. H. Brady, who had previously sent me for examination a thin slice of a fossil similar to that above mentioned, that Dr. Stache, of Vienna, has described and named it, as above stated, "provisionally." He obtained his speciAnn. \& Mag. N. Hist. Ser. 4. Vol. xix.
mens from a limestone deposit on the eastem shore of the Adriatic, near Trieste, which deposit he has called "Liburnische Stufe," and considers intermediate between the Upper Cretaceous and Lower Eocene strata. Possessing this thin slice only, I, of course, am not able to say if it be the same species as that from the Lower Chalk of Dover, although the contow of the section, its size, colour, composition, and structure, so far as the tissuc-fibre goes, appear to be identical ; but the "thin slice" presents no trace of radiating tubes, although the tissue-fibre is more neatly defined, and there are evident, although indistinct, lines of concentricity which do not appear in the British-Musem specimen. Then Mr. Brady also states that his example camot claim to be a type specimen; and therefore, for the present, the question must thus remain undecided.

Inowever, this does not interfere with the facts which the English fossil supplies; and the first is the presence of the " branched, tortunus, dendriform fiblere in prominent relief" on the surface, which is preciscly like that which the coenosarcal stelon-tubulation on the surface of a specimen of IIydractinia echinuta, picked up on the beach here (Pl.VIII. fig. 3), would represent if fossilizel, even to the amulation, which, although ill-defined, also appears to be present in one portion of the structure ; next to this, the reticulated anatomosing tissuefibre, without incrustation, of which the fossil is composed, which, with the radiating tubes, at once establishes a close resemblance between Bradya tergestina, Parkeria, and Stromatopora; lastly, the stelliform branched systems of grooves respectively (which were probably tubular in the recent organism), on the summit of the eminences, are identical with those seen on the surface and summits of the bosses in Stromatopora.

I had hoped to find the latter on the summits of the bosses respectively in Parkeria nodosa; but Mr. E. T. Newton, who kindly undertook to examine the specimen at the Museum of the Royal School of Mines, as well as the still better one at the British Museum, states in his letter of the 2nd of October last, "I cannot sce any trace" of them ; while he gives a rough sketch from memory of a specimen in the Cambridge Museum with much larger bosses, indeed not altogether unlike in shape, but much larger than those of Bradya tergestina, stating, at the same time, that he had seen a specimen in the British Museum on which "there are certain irregular prominences; and from these vein-like markings are scen spreading out somewhat as in Stromatopora." This was the specimen alove described, which Mr. H. Woodward, having since had
it sliced and polished, has kindly submitted for my examination.

Whether the tissuc-fibre of this fossil was calcareous or not, I am unable to decide, further than that, if right in identifying the "branched, tortuous, dendriform fibre" on the surface of the fossil with the conosarcal stolon-tubulation of IIyrructinio cchinata, the former also may have undergone the same change-that is, from chitine to carbonate of lime.

I have stated that there are boss-like projections irregularly scattered over the surface of Loftusia persica, corresponding with a wary condition of the spiral lamina opposite them in the section, and that they also bear branched lines ruming over their summits respectively, which look like traces of the stellate systems seen in Bradya and Stromatinora (fig. 18, c); but I have also added that most of these appear to be accidental. ILow far the reason I have assigned for this may be accepted, remains for future obscrvation to determine.

It might be said that Bratlya tergestina is a Stromatopora; but if so, Stromatopora is handed down to us in Parkeria; for the tissuc-fibre and radiating tubes in Purveria are, in a tangential section, identical with those both of Bradya and Stromatopora.

I regret that the fossil reached me after my plate of illustrations to this paper had been filled up; but a diagram of the tissuc-fibre would only be a repetition of that which is given of Parkeria in fig. 14, minus the incrustation; and an almost facsimile of the stcllates may be seen in fig. 19, making allowance for the larger size and lesser number of bosses in Bradya tergestina; while the branched fibre in prominent relief on the surface is represented in the coenosarcal tubulation of Mydractinia echinata (fig. 3).

D'Orbigny gives a figure, viz. Stellispongia variabilis, very much in appearance like the above fossil, which is stated to extend from the Trias (Saliférien) to the Eocene (Sucssonien) strata inclusively (Cours élément. de Paléont. et d. Géologie, t. i. p. 214, fig. 338).

Stromatopora.

My friend Mr. W. J. Sollas, who has for some time past been directing his attention to the different species of Stromatopora within his reach, and who has generously presented me with some specimens, and brought to my notice others, had, from the regular hexactinellid structure of one in particular (to which I shall return hereafter), been, like myself, inclined to the idea that it was originally a Sponge. But when I learned
from Prof. King, of Galway, and Mr. Sollas, too, that some of these specimens at least presented a reticulated structure, it struck me that they might be allied to Parkeria.

Under this impression, I paid a visit to my friend Mr. Vicary, of Exeter, in whose beautiful collection (the more beautiful, too, because it has been made subservient to researches in geology and palæontology) I knew there were several specimens of Stromatopera from the Devonian Limestone, especially a large conical one, about 6 inches by 4 in its greatest diameters, in dark, almost black, limestone, with a bossed surface not unlike the bossed form of Parkeria to which I have before alluded.

Having found my friend, as usual, only too anxious to place every thing in this way at my disposal, I examined this specimen, as well as another of the same kind, which, although imperfect, had retained a portion of the bossed surface from which a polished section had been made inwards vertically, so as to show the structure of the Stromatopora in this direction,when I became impressed with the resemblance of the wavy character of the concentric lines to that of Perkeria nodosa, and, on turning to the surface itself, found this granulated also like that of Perkerio, arising from the weathering out of the interstitial matter of the same kind of tissue-fibre. Moreover, on the summit of each of the bosses just mentioned is a stelliform lineation, whose arms descending in a branched, radiating, subdendritic form, meet in their ultimate divisions those of the neighbouring stellates; while over the whole surface, bosses and all indiscriminately, are irregularly scattered small papilliform elevations about 1-96th inch in diameter, but of variable sizes and at variable distances from each other (fig. 19, $a a, b b)$. The stellate lines, together with a similar papilliform eminence in the ceritre, about 1-48th inch in diameter, and the papilliform eminences throughout, are chiefly made up of transparent calcspar, which contrasts strongly from its homogeneity with the surrounding tissuc-fibre, indicating that originally all these parts were hollow; besides this, the more superficial lines of the stellate are rendered more evident by being slightly raised above the general surface; so that they are not grooves like the stellate lines of Bralya tergestina. The stelliform systems, which are a well-known feature of Stromatopora, have already been foresharlowed in the description of Biradya tergestina, and perhaps, as has before been stated, in a rudimentary form in Loftusia prsica, if not also in the subradiating lines on the eminences of the surface of Parkeria spluerica and, through the plane projection, of the large spine of Hydractinia echinata, as before mentioned (p. 48).

But lue this as it may, it appears here, as well as in Bradya
tergestine, under a form so like the vents on several kinds of Sponges, where they are outlets of so many systems of superficial radiating, branched, excretory canals (which, albeit in their natural state they are grooves or gutters in the dermal structure of the sponge converted into canals by the dermal sareode and rising more or less into monticular eminences respectively, more or less regularly arranged, become mere gutters, as in Bradya tergestina, when all the soft or sarcodic parts are abstracted, but, if filled with mineral material, might present in relief the same form as in the Stromutopore to which I have just alluded), that, as stated respecting the near proximity of the Hydrozoa and the Rhizopoda (Amebba and IIydra), in regard to the spiral structure of Loftusia we might also add here:there is a near proximity between the Hydrozoa and the Spongida, whereby the stellates of Stromatopora might have been excretory canal-systems in each instance, although the rest of the structure pertains more to the Hydrozoa.

When we consider that all animal forms are evolved out of simple, apparently structureless sarcode, whether passing or permanent, it is not more surprising that such sarcode should possess the power of movement than that it should be able to assume a definite and beautiful form by movement, $e x . g r$. the Spongozoon, which, at one moment is a tlagellated infusorium and at another a polymorphic piece of sarcode like an Amaba, or the test of Foraminifera, which is produced by an animal apparently differing very little from a polymorphic 1 maka, and it is not strange that the IIydrozoa, which are so near the latter in the scale of organization, should evolve similar forms.

The next object to which Mr. Vicary directed my attention is part of a large specimen of a Stromatopora that is subinfiltrated on the surface, and presents in a most striking mamer the vertical tubes and transverse lamina coated with granular calespar, very like that of the tissue-fibre of Parkeria. With the advantage of thus knowing the exact position relatively of the tubes and lamine, it was not difficult to grind down a fragment of this vertically to the tubes and to the lamina respectively. Thus was oltained a direct view of the ends of the tubes on one side (fig. 20), and a longitudinal section of them on the other (fig. 21, a). In the former the tubes were observed to be intimately comected by direct intertubular communication of a smaller kind (fig. 21, b), like that uniting the apertures on the surface of I. Vicuryi, and to be seattered throughout the mass of reticulated tissuc-fibre indiscriminately-that is, in the midst of the stellates (which are also present here and there; for, of course, on every layer they are formed, although covered in by the following one, and thms in horizontal or tam-
gential sections must appear throughout the fossil), as well as between the stellates; while the lateral section of the tubes showed that they were continuous through several laminæ, and possessed of the diaphragms (fig. 21, a) seen in H. pliocence (lis. $10,(1)$, and identified here with the ammulation of the connsarcal stolon-tubulation of IIydractinia cethinata (fig. 3). Although, however, the tubes themselves appear continuous, their interior may be, and evidently is, divided by diapheragms of some kind, as lefore noticed in comparing the radial tubes of Parkeriu with those of Tubipora musica. The "intertubular communication" is a feature of Syringopora.

Here it should be remembered that there is a marked difference presented by the structure of Stromatopora in the vertical and horizontal sections; that is, while the former represents a series of vertical lines cut at right angles by horizontal ones, the latter represents nothing of the kind, but a mass of minutely reticulated tissue instead, sprinkled over with the truncated ends of the radiating tubes and more or less fragmentary remains of the stellates. It would therefore be impossible to learn the vertical structure from the horizontal one, and vice versâ, here, any more than in Parkeria and Loftusia.

In the section of another specimen (fig. 22), called by Mr. Sollas Syringopora, the apertures of the truncated radiating tubes, now filled with calespar (fig. 22, 6), are larger and confined to the area between the stellates (fig. 22, a) ; while the latter, structurally, are often closed in the centre, indicative of their central tubulation not having been continued throughout, ats we have seen in the larger species of Hydructinia echinata, \&c., together with those of II. pliocena and II. Vicaryi. Again, on account of this section having 7,een made a little obliquely to the horizontal plane, the lines of the "annulation" have been brought into view most convincingly, so much so that, from the large size of the tubes, they present the spiral appearance of amnulated gonothecar in the Hydrozoa cut slantingly (fig. 23). Why the parietes of the tube do not show a corresponding annulation I camot explain ; but in II. Vicaryi this is also the case, although the casts of these tubes within them are distinctly constricted (fig. 12, b). In M. pliocena, however, where there is no cast and nothing but a hollow cylinder, the constrictions are equally evident (fig. 10).

The largest specimen of Stromatopora seen by Mr. Vicary in the cuarries of the Devonian Limestone in Devonshire, he thinks must have had a hemispherical radius of 2 feet.

Stromatopora striatella (figs. 24 \& 25).
Subserquently Mr. Sollas brought me a specimen of Stroma-
tepora striatella obtained from the Silurian formation at Wenlock. It is composed of yellowish-grey compact limestone, cylindrical in form, oltusely conical at the free end, and truncated at the fixed one, which is fractured, about 3 inches long and $1 \frac{1}{2}$ inch in diameter; granulated on the surface and covered more or less with papilliform eminences, each of which (about 1-20th inch in diameter) appears to have had an opening in the summit, about 8-1800ths inch in diameter, now filled up, with calespar (fig. 24, 6), in the midst of which are stellates (fig. 24, a) with centres respectively about $\frac{1}{4}$ of an inch apart, and composed of radiating branched grooves in the surface, whose ultimate divisions meet those of the neighbouring stellates; each stellate also appears to have had a papilliform eminence in the centre, about $2 t-1800$ ths inch, with the appearance of an aperture in its summit about S-1800ths inch in diameter, now also filled with calespar; while the fond or granulated surface is produced, as before stated, by the weathering out of the interstices of a reticulated tissuc-fibre like that of Parkeria, \&c. Internally, on the other hand, the structure is laminated and concentric, irregularly undulating in accordance with the irregularities on the surface during the successive periods of growth. It is not difficult to see that the tubular spaces, which communicate with each other in the midst of the reticulated tissue-fibre, finally terminated on the surface; and on examining the centre of the fossil, Mr. Sollas and myself observed a foreign body bearing very much the appearance of a fragment of an Orthoceras (fig. 25, a), which is at least $\frac{1}{3}$ of an inch long and $\frac{1}{4}$ of an inch in diameter, filled with transparent calcspar, whose homogeneity contrasts strongly with the tortuous tissuc-fibre of the Stromatopora generally, and presenting three distinct septa towards the largest end, with a fourth, which probably, from its appearance, terminates this part; while the shell-substance on the sides presents under the microscope an obliquely laminated structure throughout, indicative of its having been formed of the consecutive concave layers of the septa generally.

Obs. Now here we have a very similar structure to Parlerica, with a concamerated shell for a foreign body in the centre, while the surface is somewhat like that of Lofiusiu, with the stellates more evidently developed as in Stromatoporce, all in a fossil so far back as the Upper Silurian System.

After this, Mr. Sollas showed me a fragment of a specimen of a calcareous Stromato?nice from the Devonian Limestone, of which a polished section had been made vertically to the lamination, and therefore lomgitudinally with the tubulation. Here the base or tissue, if it may be so called, is not tibrous
like that of Parkeria, \&c., but massive, white, and opaque like that of Hydractina pliocena, in the midst of which the tubes, together with traces of the stelliform systems, show themselves in dark lines filled with transparent calcspar, which, with those of the undulating lamination indicated by broken lines of circular holes and oblong spaces, are altogether so like that of H. pliocena, that the two, mutatis mutandis, are almost identical ; that is, the tubes are a little less in diameter transversely, and there are traces of the stellate systems, which do not exist in H.pliocena. There are also lines of opaque white matter across the transparent calcspar of the tubes, which indicate here and there in their parietes the presence of diaphragms and apertures, the latter indicating the union of the tubes by intertubular channels like that represented in fig. 21, to which I have before alluded as a feature of Syringopora.

I have said "traces of stellates;" but if the section had been made horizontally or tangentially to the lamination, the stellates would have been complete. This shows that to fairly describe species of Stromatopora it will be necessary to get their natural surface as well as their interior, if possible, and to cut the specimens vertically and parallel to the planes of growth respectively, thus obtaining two surfaces, which will then satisfactorily show the form, size, and relative position of the elementary parts of the structure; after which oblique sections may be made for further elucidation. All this I must leave to my friend Mr. Sollas, who has paid much more attention to the subject than I have, and whose intention now is to publish an exhaustive account of the Stromatoporce as soon as time permits; hence the brevity of my remarks.

Meanwhile, to return to the calcareous specimen from the Devonian Limestone, which Mr. Sollas presented to me as an instance of hexactinellid structure closely resembling that of the hexactinellid sponges, and which at the time I myself could conceive to be nothing else, -I now find by actual comparison that in structure it is almost too persistently regular for that of any solid hexactinellid sponge with which I am acquainted. In this specimen or species the vertical, which are the largest white lines or fibres seen in the vertical section, are almost continuous for a long distance, which is not the case in the hexactinellid sponge-structure, and only has its direct type in the structure of Tubipora musica, where the interior of the vertical tubes, as I have before stated, is interrupted by diaphragms, and therefore not continuous, as might appear from mere external examination ; while the horizontal fibres, which are smaller, are equally continuous and hollow. Again, turning: to the horizontal section (that is, parallel with the lamination),
the ends of the vertical fibres appuar to be most frequently arranged hexagonally, with one in the centre, thus presenting respectively six horizontal arms, which, together with the ascending and descending one, would make cight.

We have also to assume, in case of its having been a hexactinellid sponge, the transformation of siliceous into calcareous material,-not a usual occurrence; for there are no calcareous sponges with a hexactinellid structure ; indeed they are all fitreless, that in, they consist respectively of a mass of sarcode densely charged with calcareous spicules, like a bag of pins-only, of course, with a definite arrangement. But, as I have just stated, the structure of this species, like that of all the rest of the Stromatopore, requires to be studied in all its bearings before a correct opinion can be obtained of its original nature.

Thus, in recapitulation, we have seen the identity that exists between the recent species of IIydractinia and the fossil species of the Suffolk Crag and Upper Greensand of Haldon Hill, near Exeter, respectively; then the striking resemblance between the chitinous tissue-fibre of the chitinous Hydractiniidx, especially that of Chitina ericopsis, and the tissuc-fibre of Parkeria, together with that of the radial tubes of the latter to the radiating or vertical tubes of Hydractinia pliocena; afterwards the resemblance of Parkeria to Laftusia. Then the resemblance of the Lower White Chalk fussil (? Bradya tergestina) to Parkeria on the one, and the Stromatopore on the other side; lastly, the presence in Stromatopora striatella, of the Upper Silurian System, of a concamerated test in the centre, just as foreign to its structure as the concamerated test in Parleria, which Stromatopora otherwise so intimately resembles.

All this chain of evidence scems to lead to the conclusion that the whole of these organisms, both recent and fossil, were species of Hydrozoa, and neither Foraminifera nor Sponges.

But foregone conclusions with so-called scientific men, are too often unfortunately like fashion in their governing power, since, although facts may be demonstrated, they are frequently negatived by individuals who, if they reflected, would, from their mant of actual experience in this matter, be modest where they are violent in party denunciation. At the same time, as I have long since stated, "in proportion to the general acquaintance with the lower animals will be the correctness of the views respecting them, both recent and fossilized."

EXPLANATION OF PLATE VIII.

N.B. Figs. $1-6,10,12,21$, and 23 are on the seale of 1-48th to $1-1800$ th inch, fir. if on the scale of 1 -ifith to $1-1$ so0th, and fig. 14 on the scale of 1 -elith to $1-200 t h$ inch; all the rest are of the matural size. It should be remembered that the ground-work of figs. $8,11,15,16,18$, and 19 is granulated, but too small to be represented in a drawing of the natural size; hence the white ground must be considered as such; the granulation being produced by the weathering out of the interstitial matter of the torthous anastomosing tissue-tibre of which the organisms respectively were composed. In tigs. 20,22 , and 24 , this granulation, of course, is not present, as they are taken from frest scctions.
Fi!. 1. Itylractinia echinata. Vertical section of skeleton, magnified; composed of chitinous tissue-fibre. a, primary lamina; b, primary interval ; c, secondary lamina; d, secondary interval; $e c$, small spines, free and connected with the secondary lamina respectively ; f, surface of third lamina and that of the Hydractimia; η, large spine.
Fig. 2. The same. Horizuntal section of base of largo spine: a, closed summit of same.
Fig. 3. The same. Fragment of cenosarcal stolon-like tubulation creeping over the surface, forming corresponding grooves in the latter and connected with the interior. a, annulation; b, the same, truncated to show the diaphragmatic form of the constrictions; c, points of chitine ("horn cells") on the part simking into the interior.
Fï».4. Iydractinia calcarea, n. sp. Vertical section of skeleton, magnified; composition calcareous. a, primary lamina; b, primary interval; c, secondary or surface-lamina; d, small spines, free, and connected respectively with secondary lamina; e, spines on secondary or surface lamina; f, large spine $; g g$, chitinous diaphragms leading from the apertures on the surface (fig. 5, ccc) to the primary interval.
Fiy. 5. The same. Diagram of portion of surface to show :-a a a, large spines; $b b b$, area of small spines, not delineated for perspicuity; $c c c$, apertures leading down through short tubes respectively into primary interval; ddd, interstitial fossæ, smooth, not spined; $c c$, hole of the diaphagm as seen through the aperture.
Fïg. 6. The same. IIorizontal section of base of large spine. a, form of columnar carity ; b, closed summit of large spine.
Fig. 7. Hydractinia pliocene, Allman, (fossil), natural size; vertical section. a a, Buccimam; bb, Hydractinia, showing the " intervals" in the form of chambers, arranged in horizontal lines, cut vertically by radiating tubes.
Fig. 8. The same. P'ortion of natural surface, natural size, showing:a, large spines; $b b$, grooves formed by coenosarcal tubulation (fig. 3) ; c, circular area, to which the apertures of the surface are added, all the rest having been omitted for perspicuity.
Fi\%. 9. The same. Vertical section of fragment of surface of last-formed "lamina and intervals," magnified, showing how the vertical tubes on each side of the interval or chamber, being opposite, might appear in the general section to be continuous. a, small rpines of matumal surface; b, apertures in natural surface; c, amnulated tubes leading down from apertures to intervals; $d d d$, chambers or intervals; e, spines renaining free in intervals.

Fig. 10. The same. Longitudinal section of a tube magnified, showing the "anmulation;" a, tranverse section to show the diaphragmatic form of the constriction, with hole in the centre.
Fïg. 11. IIydractinia Vicuryi, n. sp. (fossil), nat. size. Portion of natural surface, showing:-a, large spines; b, circular area, to which the apertures of the surface are added; all the rest having been omitted for perspicuity.
Fig. 12. The same. Cast of tube, showing annulations. a, cylindrical form of the cavity in which the cast (b) is found.
Fig. 13. Parkeria spherica. Vertical section, natural size. a, infiltrated or consolidated zone or shell ; b, semi-intiltrated zone; c, unintiltrated portion, or kernel ; d, the first six lamine of c, delineated to show intervals traversed vertically by the radiating tubes; the inmermost elliptical, at one end of which the dark portion represents a cavity in which probably there was sume find of foreign body.
Fig. 14. The same. Diagram of tissue-fibre, magnified to show its reticulated, anastomosing, contorted arrangement and its composition. a, tibre, composed of colourless transparent calcspar; b, coating or incrustation, composed of granular, crystalline, yellowish calcite.
Fig. 15. The same. Diagram of portion of surface of kernel (fig. 13, c), showing: $-a$, ends of radiating pillars of tissue-fibre; b, circular area, to which the ends of the radiating tubes are added. Natural size.
Fig. 16. The same. Diagram of portion of natural surface of a specimen $1 \frac{1}{2}$ inch in diameter, showing :- a, ends of radiating pillars of tissue-fibre; b, circular area, to which the ends of the radiating tubes are added. Natural size.
Fig. 17. The same. Vertical section, natural size. a, circle indicating size of specimen; l, the first six laminæ, delineated to show intervals traversed vertically by the radiating tubes; c, foreign nucleus, consisting of a fragment of a Nautiloid test.
Fig. 18. Loftusia persica, Brady. Portion of natural surface, natural size. a, papilliform apertural eminences of radial tubes; b, boss-like eminence, presenting, c, a trace of branched lines across (? radiating) from the summit.
Fig. 19. Stromatopora with bossed surface, in black-grey Devonian limestone. In the possession of Mr. Vicary. Portion of natural surface, natural size. a aa, bosses presenting the "stellate system of canals "respecticely on the summit ; b, papillary apertures of radial tubes.
Fig. 20. Stromatopora in grey Devonian limestone, subinfiltrated. In the possession of Mr. Vicary. Diagram of horizontal section, natural size. a, stellate systems of canals ; b, ends of radiating tubes.
Fig. 21. The same. IIorizontal section of ends of radiating tubes, magnified, to show intertubular communication like that of Syringopora: a, longitudinal section of tube, to show diaphragmatic lines and appearauce of annulation; b, intertubular communications.
Fig. 22. Stromatopora (Syrinyopora), in grey Deronian limestone. In the possession of Mr. Vicary. Nearly horizontal section, natural size. a, stellate system of canals; b, ends of the radiating tubes, much larger than in the foregoing instance.
Fig. 23. The same. Section of radiating tube, magnified, to show the diaphragmatic lines of amulation cut obliquely.

Fig. 24. Stromatopora striutella, in yellowish compact limestone, from Upper Silurian system. Portion of natural surface, natural size. a, stellate systems of cauals; b, papillary apertures of radial tubes.
Fig. 25. The same. Horizontal section, natural size, showing: a, foreign nucleus, consisting of a fragment of a concamerated test like Orthoceras.

V.-Descriptions of twenty-five new Species of Hesperidæ. By W. C. Heiwitson.

Whev ten years ago I described 176 new species of Hesperider, I stated that I would apologize for doing so (knowing the worthlessness of descriptions unaccompanied by illustrations) if I did not hope to figure the whole in the 'Exotic Butterflies.' I am happy to say that nearly the whole have been figured; and, though I cannot now make the same promise, since that work has come to its hundredth and tinal part, I still hope to figure the Hesperidue which I am now describing in the 'Illustrations of Diumal Lepidoptera,' in which the Lycenide now make their appearance. I may repeat now what I stated then, that, although numbers of Hesperidae differ little on the upperside, some characteristic traits exist on the underside of the posterior wing; and upon these I have chiefly relied to enable me to discriminate one from another.

Hesperia Gonessa.

Alis utrinque fuscis: anticis punctis octo hyalinis: his infra angulo anali albo fasciaque submarginali pallida: posticis infra fasciis duabus macularum pallidarum : abdomine albo.
Upperside dark brown. Anterior wing with eight small transparent white spots-two in the cell, three in a longitudinal band below these, and three near the apex: the fringe of the posterior wing and the abdomen white.

Underside as above, except that the anal angle of the anterior wing is broadly white, and that there is a submarginal series of indistinct pale spots, and that the posterior wing has two submarginal series of similar spots.

Exp. $1 \frac{1}{2}$ inch.
Hab. Angola (Rogers).
In the collection of W. C. Hewitson.

Ifesperia Fiscella.

Alis utrinque fuscis: anticis punctis sex hyalinis: posticis fascia ochracea: his infra fascia flava.
Upperside dark brown. Anterior wing with six transparent spots-one in the cell, one just below it, one (minute) between it and the inner margin, and three (at a distance from each other) between it and the apex. Posterior wing crossed transversely by an indistinct ochreous band.

Underside as above, except that the band of the posterior wing is more distinct and pale yellow.

Exp. 1 A. $_{\text {A }}$ inch.
Hab. Para.
In the collection of W. C. Hewitson.

Hesperia Zema.

Alis utrinque rufo-fuscis: anticis punctis sex hyalinis: posticis macula ochracea: his infra fascia alba.
Upperside dark rufous-brown. Anterior wing with six transparent white spots-one in the cell, two divided by a branch of the median nervure, and three near the apex: a black linear spot (which denotes the male) from the inner margin. Posterior wing with an indistinct central ochreous spot: the fringe white.

Underside as above, except that it is rufous, that the anterior wing has the costal margin and a subapical band ochraceous, and that the posterior wing is crossed from the costal margin to the submedian nervure by a band of pale yellow.

Exp. $1 \frac{3}{10}$ inch.
Hab. Darjecling and Sarawak.
In the collection of W. C. Hewitson.

Hesperia Zimra.

Alis supra fuscis: anticis fascia longitudinali media punctisque duobus subapicalibus bifidis hyalinis: posticis fascia angulari ochracea: his infra viridi-fuscis, macula basali fasciaque lata flavo-albis.
Upperside dark rufous-brown. Anterior wing crossed longitudinally at the middle by a quadrifid band, and near the apex by two bitid spots, all transparent. Posterior wing crossed transversely near the middle by an angular ochreous band: the fringe pale yellow.

Underside as above, except that it is tinted with green, that both wings have a submarginal band of ochreous spots,
and that the posterior wing has a pale yellow spot at the base and a central broad angular band of pale yellow from the costal margin to the submedian nervure.

Exp. $1 \frac{5}{20}$ inch.
Hab. Brazil.
In the collection of W. C. Hewitson.

Hesperia Oropa.

Alis supra fuscis: anticis puncto fasciaque flaris: posticis puncto fasciaque angulari lata fulvis: alis infra riridi-fuscis, fasciis albis.
Upperside dark brown. Anterior wing crossed from the costal margin near the apex to the middle of the inner margin by a continuous orange-yellow band. Posterior wing with a spot near the base and a broad central angular band from the costal margin to beyond the middle, both orange.

Underside as above, except that the bands are nearly white, that the anterior wing has the apical half green and a spot of yellow in the cell, and that the posterior wing is green and has the band extended to nearer the anal angle.

Exp. $1 \frac{3}{20}$ inch.
Hab. Brazil.
In the collection of Dr. Staudinger.
Very near to II. Zimra, but differs from it in the continuous band on the upperside of the anterior wing, in having a small spot in the cell on the underside of the same wing, and in having the spot which in II. Zimia is at the base of the underside of the posterior wing lower down.

Hesperia Goza.

Alis utrinque rufo-fuscis: anticis fascia maculari longitudinali flava: posticis macula ochracea : his infra fascia lata recta alba.
Upperside dark rufous-brown. Anterior wing crossed longitudinally by a band of three pale yellow spots. Posterior wing with a central indistinct ochreous spot.

Underside as above, except that it is paler and that the posterior wing is crossed at the middle by a broad, straight, very equal band of pale yellow and has a triangular spot of the same colour on the inner margin: the fringe and a pale spot near it rufous. The palpi, breast, and abdomen orange.

Exp. $1 \frac{3}{20}$ inch.
Hab. Venezuela.
In the collections of W. C. Hewritson and Dr. Staudinger.

Mesperia Meza.

Alis utrinque fuscis : anticis punctis novem hyalinis: posticis puncto hyalino punctisque duobus ochraceis: his infra fasciis duabus cincraceis.
Upperside dark brown. Anterior wing with nine transparent spots-two in the cell, four in a central longitudinal band, and three (touching) near the apex. Posterior wing with a transparent spot before the middle and two ochreous spots below it.

Underside as above, except that the anterior wing has a spot of grey near the inner margin and one at the apex, and that the posterior wing has a pale yellow line bounding the abdominal fold, and is crossed at the middle and near the outer margin loy bands of grey.

Exp. 13 $\frac{3}{10}$ inch.
Hab. Angola (Rogers).
In the collection of W. C. Herritson.

Hesperia Galesa.

Alis utrinque fuscis: anticis punctis octo hyalinis: posticis punctis quatuor, quorum duo solum sunt hyalina.
Both sides dark brown. Anterior wing with eight transparent white spots-two in the cell, four in a longitudinal band, and two near the apex. Posterior wing with a transverse series of three or four spots, two of which only are distinct and transparent. Anus white.

Exp. $1 \frac{1}{2}$ inch.
Hab. West Africa.
In the collection of W. C. Hewitson.
A very robust species and much like the last, probably its male.

Hesperia Fibrena.

Alis utrinque fuscis: anticis punctis undecim hyalinis: posticis angulo anali albo : his infra albis, maculis fasciaque rufo-fuscis.
Upperside dark brown. Anterior wing with eleven transparent spots-one on the costal margin and two in the cell, one below these in the form of an 1, three between this and the apex, one above these, and three as usual near the apex. Posterior wing with a tuft of rufous hair at the base: the anal angle broadly white, divided by a band of brown.

Underside. Anterior wing as above, but paler. Posterior wing white, with the costal margin, two spots below it near
the base, a spot below these, and a transverse irregular band, and a spot at the anal angle, all rufous-brown.

Exp. $1 \frac{4}{10}$ inch.
Hab. Amazon, Tonantins (Bates).
In the collection of W. C. Hewitson.
Unlike any other species.

Hesperia Maheta.

Alis supra fuscis: anticis punctis septem hyalinis punctoque fulvo: posticis fascia fulra: his infra rufis, maculis quatuor argenteis.
Upperside dark brown. Anterior wing with seven transparent spots-one in the cell, three below forming a longitudinal band, and three at the apex; a spot of yellow on the inner margin. Posterior wing crossed transversely by a band of orange.

Underside pale rufous-grey, except the lower half of the anterior wing and the inner margin and anal angle of the posterior wing, which are dark brown. Posterior wing marked by four silvery white spots-two before the middle and two below these, one of which is minute-and by a less distinct white spot and several small brown spots.

Exp. $1 \frac{3}{10}$ inch.
Hab. Queensland.
In the collection of W. C. Hewitson.
A very distinct and beautiful species.

Hesperia Luda.

Alis utrinque fuscis: anticis basi cæruleo tincta, punctis quatuor hyalinis : posticis infra macula media fasciaque marginali lata albis.
Upperside dark brown, tinted with blue at the base. Anterior wing with four transparent spots-one in the cell sinuated on its outer border, and three below this forming a longitudinal band, the middle spot large and triangular. Posterior wing projecting at the lobe.

Underside as above, except that it is rufous-brown, that the small spot near the inner margin of the anterior wing is large and undefined, and that the posterior wing has a small central spot and a broad band of grey intersected by black nervures at the middle of the outer margin.

Exp. 2 inches.
IIab. Chiriqui (Ribbe).
In the collection of Dr. Staudinger.

Hesperin Mytheca.

Alis atrinque fuscis: anticis maculis tribus hyalinis: posticis infra fascia lata argenteo-alba.
Upherside dark brown. Anterior wing with three transparent white spots-one in the coll and two below it between the branches of the median nervures.

Underside as above, except that there is a broad central silvery white band from the costal margin to the abdominal fold of the posterior wing.

Exp. $1{ }^{9} 9$ inch.
Hah. Malacca.
In the collection of Dr. Staudinger.

Hesperia Fidlicula.

Alis utrinque fuscis: anticis punctis tribus hyalinis: posticis macula quadrata alba.
Both sides dark brown. Interior wing with three transparent spots-two between the branches of the median nervure, and one near the apes. Posterior wing with a large 'fuairate white spot near the middle of the outer margin.

Exp. $1 \frac{9}{20}$ inch.
Mab. Costa Rica.
In the collection of Dr. Staudinger.

Hesperia Fufidia.

Alis utrinque fuscis: anticis punctis sex hyalinis: posticis infra fascia alba.
Upperside dark hrown. Anterior wing with six transbarent spots-one in the cell, three below this forming a longitudinal band, the middle spot sagittate, and two very minute near the apex.

Underside as above, except that it is rufous-brown and that the posterior wing is crossed below the middle from the costal margin to the abdominal fold by a band commencing at the costal margin by a separate spot.

Exp. 1_{10}^{9} inch.
In the collection of Dr. Staudinger.

Hesperia Lota.

Alis supra fuscis: anticis punctis quatuor hyalinis: posticis infra rufescentibus punctis quinque nigris.
Upperside dark brown. Anterior wing with four transAnn. \& May. N. Hist. Ser. 4. Vol. xix. 6
parent spots-one in the cell and three below it forming a longitudinal band.

Underside pale rufous-brown, except at the base of the anterior wing, which is dark brown. Anterior wing with two minute black spots near the apex where the white spots usually are. Posterior wing with five black spots-three forming a longitudinal band near the middle, and two smaller spots, one on each side of these.

Exp. $1 \frac{11}{20}$ inch.
In the collection of Dr. Staudinger.

Hesperia Meda.

Alis supra rufo-fuscis: anticis infra apice, posticis omnino cineraceis, renis nigris.
Upperside dark rufous-brown.
Underside. Anterior wing with the basal half dark brown, the apical half and the whole of the posterior wing grey: the nervures black.

Exp. $1 \frac{13}{20}$ inch.
Hab. Brazil.
In the collection of Dr. Staudinger.

Hesperia Uza.

Alis utrinque rufo-fuscis: anticis infra margine postico, posticis dimidio postico cineraceis.
Upperside dark rufous-brown.
Underside as above, except that the outer margin of the anterior wing and more than the outer half of the posterior wing are lilac-white.

Exp. $1 \frac{13}{20}$ inch.
In the collection of Dr. Staudinger.

Hesperia Egla.

Alis utrinque fuscis: anticis punctis octo hyalinis: posticis fascia tripartita hyalina.
Both sides dark brown. Anterior wing with eight transparent white spots-two in the cell obliquely placed, three below these forming a longitudinal band, the middle spot large and triangular, and three at the apex. Posterior wing with a transverse trifid transparent band.

Exp. 11 1 inch.
Hab. Chiriqui (Ribbe).
In the collection of Dr. Staudinger.
Near to H. opigena.

Hesperia Kora.

Alis utrinque atris: anticis punctis tribus hyalinis: posticis macula bipartita hyalina: alis infra fascia submarginali lilacina, anticis macula subapicali, posticis fascia lilacinis.
Upperside black. Anterior wing with three transparent white spots-two between the branches of the median nervure, and one (minute) near the apex; a small white spot on the fringe at the anal angle. Posterior wing with a central bifid white transparent spot: the fringe white at the apex and anal angle.

Underside as above, except that both wings have the nervures and a subapical band lilac, that there is a lilac spot near the apex of the anterior wing, and a lilac band near the base of the posterior wing.

Exp. $1 \frac{6}{20}$ inch.
Hab. Brazil.
In the collection of Dr. Staudinger.
In general appearance like II. Calvina.

Hesperia Midia.

Alis utrinque rufo-fuscis: anticis punctis quinque hyalinis punctisque duobus albis: posticis infra puncto albo.
Upperside rufous-brown. Anterior wing with five transparent white spots-two large and triangular between the branches of the median nervure, and three separate near the apex, and below them a minute dull white spot; a similar spot near the inner margin. Posterior wing with one dull white spot below the middle: the fringe rufous-white.

Underside as above, except that it is paler, especially on the outer half, and that there is a second minute pale spot on the underside of the posterior wing.

Exp. $1 \frac{15}{20}$ inch.
Hab. Chiriqui (Ribbe).
In the collection of Dr. Staudinger.

Hesperia Abima.

Alis supra fuscis, anticis punctis quatuor hyalinis: anticis infra apice ochraceo: posticis omnino ochraceis, punctis quinque fuscis.
Upperside dark brown. Anterior wing with four transparent spots-one, deeply sinuated, in the cell, two between the branches of the median nervure, and one near the apex; the costal and inner margin from the base to the middle
clothed with ochreous hair. Posterior wing clothed with ochreous hair from the base to the middle.

Underside. Anterior wing as above, except that the costal margin and apical half are ochreous. Posterior wing ochreous, with five undefined brown spots-two before the middle and three after.

Exp. 11 ${ }^{\frac{1}{2}}$ inch.
Hab. Macassar (IWallace).
In the collection of W. C. Hewritson.

Hesperia Hazarma.

Alis supra rufo-fuscis: anticis infra fuscis, fascia margineque postico rufis: posticis ochraceo-rufescentibus, macula nigra media.
Upperside rufous-brown.
Underside. Anterior wing dark brown, with the costal and outer margins rufous, a curved band of paler colour commencing near the apex and ending at the middle of the wing in two separate spots. Posterior wing pale ochreous brown, marked at the middle by a distinct black spot and near it two minute brown spots; crossed near the outer margin by two bands of pale yellow.

Exp. $1 \frac{3}{10}$ inch.
In the collection of Dr. Staudinger.

Hesperia Neba.

Alis supra fuscis: anticis margine costali ochraceo, punctis octo hyalinis: posticis fascia flava quinquepartita: his infra pallide rufescentibus macula anali triangulari fusca.
Upperside dark brown, the fringe broad and white. Anterior wing with the costal margin ochreous: eight transparent white spots-two in the cell and one below them, three ${ }^{-}$ near the apex and two below them: a triangular pale yellow spot near the inner margin. Posterior wing with a transverse band a little below the middle, of five pale yellow spots divided by the nervures.

Underside. Anterior wing as above, except that the apical half is grey. Posterior wing grey, with the abdominal fold dark brown.

Exp. $1 \frac{1}{10}$ inch.
$H a b$. Natal.
In the collection of W. C. Hewitson.
A pretty and very distinct species.

Hesperia Optuta.

Alis utrinque rufo-fuscis: anticis infrat phaga atra ${ }^{\text {plagisque dualus }}$ flavis: posticis plaga flava.
Upperside rufous-brown, paler at the middle of the anterion wing, the fringe rufous-yellow, the head and thorax tinted with lilac-blue.

Underside rufous. Anterior wing with a band of dark brown from the base to beyond the midde, burdered below with pale yellow. Posterion wing with the base rufons-hrown, tinted with purple and bordered below with pale yellow.

Exp. $1 \frac{9}{20}$ inch.
Hab. Brazil.
In the collection of Dr. Staudinger.
Unlike any other species in the strange colouring of the underside.

Hesperia Onasima.

Alis utrinque rufo-fuscis: anticis punctis quatuor (duobus sub apicem minutissimis) hyalinis: posticis punctis duobes hyalinis: anticis infra plaga flava.
Upperside dark brown. Anterior wing with four transparent white sponts-two between the branches of the merdian nervure and two (very minute) near the apex. Pusterior wing with two central transparent spots.

Cnderside as above, except that it is red-brown, that the anterior wing has a small pale yellow spot in the cell, and a large yellow spot bordered with dark brown near the inner margin.

Exp. $1_{1 / 4}$ inch.
Hab. Brazil.
In the collection of Dr. Staudinger.
VI.-DRemarkis on Otsercations by C'uptuin Ihutton, Dirctor of the Otring Mnsemm, on Peripatus nova-zealandia**, with Dotes on the Structure of the sipecies. By II. N. Mospilix, Fellow of Excter Colleege, Oxford, Naturalist to the 'Challenger' Expedition.
The above-cited paper by Captain Huttom, which appeared in the November number of this Joumal, contains so many

[^7]statements concerning the structure of Perpratus which are at variance with my own observations, and, indeed, with zoological probability, that it cannot be allowed to pass without comment.

I described varions points in the structure of Peripatus capensis, in a paper in the Phil. Trans. Roy. Soc. vol. clxiv. 1874 , p. 757 , contining my remarks to those particulars which scemed to have been missed or erroncously described by former olservers; and I further described the development of the species.

The points of chief interest which I determined, and which were new to science, were :-

1. That Peripatus was a tracheate.
2. That the tracheal openings were diffused over the bodysurface, not confined to certain restricted regions only, as in all other tracheates.
3. That the animal was not hermaphrodite, but that the sexes were separate.
4. That the supposed testis of Grube was a slime-secreting gland, the mode of use of which was explained.
5. That Peripatus was viviparous, and that its horny jaws were foot-jaws, homologous with those of Arthropods and not with those of Annelids.

Captain Hutton, who unfortunately had access to the abstract of my paper only, as will be seen by reference to his paper, confirms some of my points by his investigations of P. norce-zealandie, but comes to the extraordinary results that this closely related species is not unisexual but hermaphrodite, and that the horny jaws are not foot-jaws, but homologous with those of Annelids.

When H.M.S. 'Challenger' was at Wellington, Mr. W. T. L. Travers, who has done so much for science in New Zealand, and who first drew Captain Hutton's attention to the existence of P.nore-zealandice, brought me off some specimens of the animal to the ship, and gave me such information about its whereabouts that collectors sent from the ship were able to procure me about fifty living specimens. I was unable to refer to special publications at the time; and I thought the Peripotus was certainly already named ; but I examined some of the specimens at once, and made notes, which I should have published long ago had not press of work prevented me.
P. nover-zealandioe is not hermaphrodite, but has welldeveloped males, which, however, as is the case with the Cape species, are less numerous than the females. Captain Hutton has been unlucky, as was Grube; and his twenty specimens have all been females. The males have their generative organs in
essential structure exactly similar to those of P. capensis ; but the organs differ in that the prostates are considerably larger in propertion to the testes in P^{\prime}. nueve-zolemblie. 'The testes are placed one above the other in the body-cavity in both spectes.
'The common termination of the male ducts is very muscular, and evidently acts as an intromittent organ. It is more developed in P. noror-zcelandie for this purpose than in P^{\prime}. capensis. It twists under the nerve-cord to reach the external generative aperture on the right side, as in most cases in P^{\prime}. cupensis.

This enlarged terminal duct or penis was found in P. noverzeulandir to be provided with a mass of unicellular accessory glands imbedded in its wall, in an enlargement near its outward termination. It contained in some cases a long spermatophore, forming a stiff rod distending the whole length of the enlarged duct, and composed of felted spermatozoa. The comnexion of the vasa deferentia with the penis was not properly made out, nor the junction of the left duct with the right. The arrangement is possibly different from the peculiar one existing in P. capensis.

Captain Hutton has evidently mistaken portions of spermatophores present in the upper part of the oviduct for the testes. Large masses of spermatozoa penetrate the oviduct and pass right into the ovary in a similar manner in P. capensis (see my paper, pl. lxxiv. fig. 1 a). Captain Hntton must have been entirely deceived in imagining he saw rasa deferentic. Itad he established his position, P. nove-zealandice would have been not only an hermaphrodite, but one of the most extraordinary in existence, considering its affinities. The testes are, according to him, mere appendages of the oviduct, with very short ducts opening into the oviducts close to the ovary; and he avers that the ova are fertilized in the oviduct immediately on their leaving the ovary, on their reaching these openings of the male ducts. These are his words (l.c. p. 367):-"On passing the vesicule seminales it (the ovum) becomes fecundated, and total segmentation ensues." P. norerzealendie would thus be a self-impregnating hermaphrodite according to our author, in which cross-fertilization would never occur.

With regard to the development of the jaws, Captain IItton's description runs (l. c. p. 367), "Two large oval or pyriform swellings arise from the lower surface of the cephalic lobes, just in front of the opening of the gullet ; a longitudinal depression is formed in each of these by invagination; and in these depressions the teeth are subsequently
formed." The whole of Captain Ifutton's figures are most crude and imperfect. I believe that he has missed the turn-ing-in of the first pair of limbs, of the claws of which the jaws are the homolognes, and that in (l. c. pl. xvii.) fig. 13 the pair of appendages marked a correspond with those marked f^{\prime} in fig. 15 (i.e. with the jaws), and not with those marked a in that figure (which become the oral papille).

I have no doubt at all that he has been here misled by imperfect observation, as in the case of the generative organs. I examined the embryos of P. nore-zealandie, and observed some nearly 7 millims. in length, in which the first pair of appendages was not yet turned inwards. Hence I saw the same condition to exist as that which occurs in the Cape species.

In some minor points I think Captain IIutton must be further misled. He fails to see the dorsal heart in Peripatus, and describes as the blood-vascular system the two wellknown linear lateral bodies which are of doubtful function and homology, and which have before been supposed to be possibly comnected with the vascular system (Claus, 'Zoologie,' p. 387), but which I considered to be mere fat-bodies.

He further describes salivary glands. I have not seen such structures in Peripatus capensis, and do not see how I could have missed them in the other species, since I dissected P. norce-zealandice with considerable care. In regard to Captain Hutton's general remarks, it may be noted that he does not seem to see the importance of the determination of foot-jaws as existing in Peripatus, though it is the presence of these structures which forms the real distinction between Arthropods and Annelids. The real points of interest which Captain IIutton has determined appear to me to be:-

1st. The obserration of the offensive use of the viscid fluid of Peripatus for catching prey and obtaining food. Were the ducts otherwise placed as to their opening, we might here almost find a step towards the development of the spider's web; for the ejected slime forms a web (Phil. Trans. l. c. p. $\mathbf{7 6 0}$); and I believe Peripatus to be ancestral to spiders together with other tracheates.

2nd. The probable shedding of the skin by Peripatus. What points most certainly to this is the presence of the reserve homy jaws and claws within the active ones. I observed, however, in the case of both jaws and claws in both P. capensis and P. norm-zealandice, three sets one within the other; and Captain Hutton's figure (l.c. fig. 2) seems to indicate such a condition, although he mentions only two.

3rd. That the animal breeds all the year round. I was astonished to find it breeding in mid-winter (July).

4 th. The observation of the mode of birth.
Captain Intton's reference to the geographical distribution of Periputus is extremely apposite. He might have added Australial to the list of regions in which Peripetes occurs. Its. occurrence in Australia, the West Indies, Chili, New Zealand, and the Cape is additional evidence to its structure of its great antiquity. I am not without hope that its homy jaws may some day turn up in the fossil condition in strata older than the Carboniferous; for of such age must Periquetus be if it be a representative of the Protracheata.

The fact that two pairs of jaws are formed from the morlification of one ambulatory member, being simply the slightly specialized pairs of foot-claws, would seem to point to the possibility that in Myriopoda and other tracheates the two pairs of maxille may possibly be derivable from one segment only.

My friend Prof. E. Ray Lankester has drawn my attention to a late paper by Mr. J. F. Bullar *, of 'Trinity College, Cambridge, in which the conclusion is arrived at that five species of parasitic Isopoda are hermaphrodite and probably selfimpregnating. And Mr. Lankester suggested to me that po:sibly an error in observation has here occurred similar to that fallen into by Captain Hutton in the case of Periputus, viz. that spermatophores or portions of them have been mistaken for testes. A result so remarkable and apparently improbable as the determination of the existence of hermaphroditism amongst the Arthropoda should certainly not be admitted withwut the very strongest evidence. No description whatever of the finer structure of the supposed testes in the lioporla examined by Mr. Bullar is given in the paper in question ; and the figures do not give evidence of any testicular tissue. Λ_{p} parently only spermatozoa have beenolserved in the supposed testes and what seem to be spermatophores (pl. iv. fig. (6). Of testis-cells and vesicles of evolution no mention at all is made; yet if such had been observed it is very unfortunate that in a case of such importance they should not have been described, since it is they and not spermatozoa which constitute a testis. For evidence that large masses of spermatozoa may occur in a female Arthropod in the closest relation with the ovary, I would refer to my figure of the ovary of Periputus capensis (Phil. Trans. l. ©.pl.lxxiv. fig. 1). It is possible that an external opening to the oviduct may exist in earlier stages

* "The Generative Organs of Parasitic Isopoda," Jourmal of Anat. and Physiol. vol. xi. part 1, Oct. 1876, p. 118.
than that described by Mr. Bullar as the third, but be difficult of detection. It is difficult to see why what appear to be spermatophores, or portions of such, should be formed in a selfimpregnating animal; and the immobility of the spermatozoa observed is a fact quite as much in favour of these having been introduced for some time and tired out, as freshly developed and functionally active. Surely it is quite possible that in such a case as that of Cymothoa oestroides, which Mr. Bullar cites as unable to swim, active males may exist, which have not yet been detected. The rudiments of both external and internal male organs may well exist in a female Isopod; and it is significant that the double penis is present only in the earlier stage in development of the Isopod in question. It is quite possible that Mr. Bullar has observed testis-cells and the actual development of spermatozoa in his Isopods, but has not described their occurrence. If so, it is to be hoped that he will not omit to do so in some further account of his most interesting researches, and thus set all doubt as to his conclusions at rest.

With regard to my own observations on P. novce-zealandice, I may mention some further facts. P. noce-zealandice differs from P.capensis in that it has 15 pairs of ambulatory members and no anal papillæ. There is further in the New-Zealand species a distinctly prolonged but short conical tail, with a slight knob-like enlargement at its extremity, which does not exist in P. capensis; further, the anus being terminal, the vulva is separated from it, and situate at a considerable interval further forward and between the last pair of members. The two orifices are close together in the Cape species. In P. nove-zealandice, and probably also in P. capensis, there is present, in addition to the jaws, a single mesially placed row of very small simply conical chitinous teeth on the roof of the mouth, running from before backwards. The antenne are in P. nore-zealandice provided at the tips with tactile hairs. The place of commencement of the rectum appears betterdefined in P. nocce-zealandice than in P. capensis; and the viscus is longitudinally plicated.

The ovarian ova of P. nove-zealandice, apparently ripe, were ovoid in form, 1 millim. in length, filled with oily particles, and with a germinal vesicle and spot. When pressure was made on the covering-glass the egg-membrane was seen to be tough and elastic, and only gave way after the egg had been distorted into various forms. When the contents finally escaped by rupture, the germinal vesicle made its way out, becoming clongated and altering its form in order to pass the aperture in the membrane; but it resumed its shape again when
free, giving evidence of its toughness and definite walling. It contained a single germinal spot.

The New-Zealand Peripatus is much smaller than the Cape species; and yet the embryos are much larger. In all the specimens examined by me the embryos were far fewer in number than ordinarily in 1 ? capensis; yet Captain Itutton in one instance found 26 embryos in one female. The embryos, as observed by Captain Ifutton, occur in successive stages of development in the oviduct, and are not all nearly equally mature as in P.copensis. The embryos have the contents of the developing intestine coloured red in P. copensis; in P. nore-zealendire the contents are white. The embryos appear in the New-Zealand species not to go through the preliminary worm-like stage, with the body spirally coiled (Phil. 'Trans. l.c.pl. lxav. fig. 1), which is present in P.capensis; they seem to have lost this carlier stage, and to skip at once to the further stage of P. capensis (Phil. Trans. l.c. pl. lxav. fig. 4), the first indication of form being the appearance of a hilum near one pole of the ovoid egg, which hilum marks the spot where the tail and head meet in the doubled-up condition of the embryo.
VII.-On Rhopalocera from Japan and Shanghai, with Descriptions of new Species. By Mrtulu (i. Butler, F.L.S. ©c.

Mr. Montague Fextox (of Tosengi, Takanawa, Tokei,Japan) has recently forwarded to the British Museum a small box of Diurnal Lepidoptera, comprising the following species.

Cononympha anmulifer, n. sp:

Nearly allied to C. geticus, but larger, longer in the wing, much darker; on the underside with the plumbagineous streak, which bounds the ocelli of secondaries internally, straight on its inner edge instead of undulated. Expanse of wings $\delta 1$ inch 7 lines, of 1 inch 10 lines.

About 370 miles from Tokei (Yedo).
This species is probably the same as that noted by the Rev. R. P. Murray as Cononympha odipus, Fabricius.

> Neope Fentoni, n. sp.

Lasiommata rpimenides: ¢ Ménćtriós, Rerisen und Forschuagen im AmurLande, ii. 1, Lepid. tab. iii. fig. 9 (1859).
In the heart of the mountains, about 370 miles from 'Tokei.

There can be no question that, whereas the male described and figured by Ménétriés is a Pararge allied to P. deidamia and P. dejenira, the female is a Neope not very widely separated from N. (raschkeritschii; it is far more nearly allied to the succeeding species than to the male associated with it.

Neope callipteris, n. sp.

ठ. Bronzy olive-brown; external area smoky brown; outer border paler, lunated: primaries with a diseal series of ochraceous spots, forking above the third median branch; the veins upon the central region densely clothed with dark brown scales, especially the submedian vein and the three median branches; two dusky streaks across the apical half of the cell: secondaries with sin ochraccous spots, the first, second, fourth, and fifth oval and enclosing large, ovate, black spots, the last small, transverse, enclosing two small black spots : body bronzy brown ; thorax reddish in front, greenish in the centre. Wings below altogether paler, sandy yellowish; external area dusky: primaries with two brown bars across the apical half of the cell, a lunated angulated transverse discal band of the same colour; three pale subapical spots, the uppermost trifid, the second ocelliform; a lunulated submarginal stripe: secondaries with the basal area slightly dusky, three pale-edged dusky lines from the costal nervure across the cell; a lunated and angulated, diffused, brown, discal line bounding the ocelli internally ; six ocelli, the first and fifth large, the third extremely minute, the sixth small and geminate; all black, with white pupils and ycllow irides; area immediately beyond the ocelli beautifully pinky opaline; a brown-edged series of compressed angulated spots of the same colour close to the margin; edge of margin black; fringe white-varied: body below sordid whitish; legs ochreous. Expanse of wings 2 inches 7 lines.

From the same locality as the preceding species, to which it is allied.

Neptis ludmilla, Herrich-Schäffer.

This species, which was taken at the same locality with the preceding species, is new to Japan.

Vanessa hamigera, n. sp.

Allied to V. agni and V. comma.
Wings above bright orange tawny; basal area bronzy brown ; outer border golden brown, flecked with black ; fringe varied with white; a submarginal series of semiconnected reddish chocolate-coloured spots, immediately inside which the
ground-colour becomes yellower in tint: primaries with a large bifid black spot cross the middle of the cell ; a second similar spot divided by the base of the first median branch; a broad patch (widest upon the costa) across the discocellulars; two small, quadrate, diseal black spots, placed obliquely upon the median interspaces; a broad, tapering, subapical pateli, dentated externally, its base resting upon the costal margin ; a large, subquadrate chocolate patch, confluent with the submarginal scries (so as to enclose a lunule of the ground-colour) at external angle, and two linear, subapical, angulated markings of the same colour, but feebly indicated: secondaries with a rounded subeostal spot, an elongated, oblique, discocellular spot, and a spot at the base of each median interspace black; a broad discal macular band of chocolate, only separated from the submarginal spots of the same colour by a series of five golden-orange lunate spots: body brown; crest, collar, and thorax densely clothed with bright olivegreen hairs having bright bronze reflections; palpi grey, fringed on their upper edge with white, their inferior surface white, edged externally with black. Wings below brown, varied with grey, and covered with irregular black strix ; two extremely irregular transverse black lines, indicating a central band; the disk of primaries and a broad, subapical, costal patch on the secondaries, white, clouded with grey and striated with grey and black ; a diseal series of more or less rounded spots, and a submarginal series of lunated spots, golden green: secondaries with a central, silvery white, semicircular marking; pectus purplish grey; tibie and tarsi yellow; venter grey, yellowish towards the anus. Expanse of wings 2 inches 2 lines.

About 370 miles from Tokei (Yedo).
V. hamigera is probably the species erroncously referred to C. album by Mr. Murray ; it is utterly distinct.

Argynnis nerippe, Felder.

A very fine example, differing from the typical form in having the submarginal spots of secondaries tawny, and the ocelli below as large as the black spots above.

About 370 miles from Tokei.

Argynnis rabdia, n. sp.

Argynnis daphne, Butler (nec Denis), Journ. Linn. Soc. ix. 1866 ; Murray, Ent. Mo. Mag. xiii. p. 33, 1876.
This species is certainly distinct from its European congener, being larger, paler, less heavily spottel above and much more
so below, much duller and more sickly-coloured on the underside, with the transverse lines of secondaries chocolate-brown; the lilacine streaks replaced by slaty grey. Expanse of wings 2 inches 3 lines.

About 370 miles from Tokei.
A. rabdia differs from A. daphene in structure as follows:Palpi longer; primaries more produced, their outer margin not convex (more inclined to be concave), scarcely undulated. An example from Ifakodadi, in the Museum, more nearly resembles A. daphene, but still differs too evidently from it to admit of their being associated together.

Colias palano, Linnæus.

Of this species Mr. Fenton says:-"I had great trouble in capturing two couples on the side of a barren volcanic mountain covered with scanty grass, low herbs, and wind-dwarfed pines, at an clevation of about 7000 feet above sea-level (registered by a pocket aneroid)."

Thecla japonica, Murray.

About 370 miles from Tokei.
Mr. Murray need not be in the slightest degree alarmed for his species; it is perfectly distinct fromT. smaragdina. We have the latter from Hakodadi.

Before passing on to Chinese species, I should wish to make a few remarks upon Mr. Murray's paper, "List of Japanese Butterflies," because if it be, as its author states, merely preliminary, it will be well for him to have an opportunity of weighing my opinions against his own, and, at any rate, he will have the advantage of any little facts which I am able to give him (or any other who may wish to study J apanese butterflies).

Lethe diana is not only not identical with S. marginalis, Motsch., but is probably not congeneric with it ; the latter is, in all probability, a Mycalesis. L. Whitelyi is perfectly distinct from Lasiommata Maakii, being quite different in form, colour, and marking.

Pronophila Schrenki is not a Satyrus, but a Lethe.
Argynnis ella is $=A$. anadyomene; the A. daphnis of Motschoulsky is probably A. nerippe; A. adippe is not Japanese.

It is extremely doubtful whether Araschnia burejana is A. strigosa, although I have regarded them as possibly identical.

Neptis aceris (var. eurynome). Under this name Mr. Mur-
ray has confounded two very distinct species, neither of which is identical with Westwood's species.

As regards the white and yellow butterflies I will say nothing, or I might overstep the bounds of courtesy, which (especially to a friend) I would rather avoid.

The following butterflies from Shanghai have been liberally presented to the collection by Mr. W. B. Pryer.

Neope segonax, Hewitson.
This appears to differ sufficiently from N. Muirheadii to be kept separate.

Lethe syrcis ठ̃, Hewitson.

We previously only possessed the female of this species.

Lethe lanaris, n.sp.

d. Wings smoky brown, the disk of primaries rather paler ; the basal area of all the wings densely clothed with woolly hair: primaries with a dusky submarginal line: secondaries with five indistinct ocelli, the first four dusky, with scarcely traceable irides, the fifth larger, dull black, with white pupil and diffused sordid testaccous iris; a whitish submarginal stripe, intersected by a blackish line. Primaries below with the basal two thirds uniformly smoky brown, apical third and internal area greyish; five discal ocelli in an almost straight line (the first and last slightly smaller), black, with white pupils, yellow irides, and dusky zones surrounded with lilacine; a whitish sulmarginal stripe intersected by a blackish line: secondaries smoky brown, crossed by two dusky central lines, the outer one concave to third median branch, and then angulated to back of apical ocellus ; six discal ocelli, the first and fifth four times as large as the others (which are of the size of those in the primaries), similar in character to those of primaries; outer border whitish, with a submarginal black line; margin black. Expanse of wings 2 inches 10 lines.

Near to Lasiommata Makki of Bremer and Pronophila Schrenki of Ménétriés.

Pararge deidamia, Eversmann.

This is the male of P. Ménétriesii.
Mycalesis sangaica, n. sp.
Allied to M. janardana. Wings above smoky brown; outer border narrowly whity brown, with marginal and sub-
marginal black lines; primaries with a large ocellus on first median interspace, black, with white pupil and narrow yellow iris. Wings below sandy brown, mottled with grey, crossed by a central narrow externally diffused lilacine streak; outer border narrowly whity brown, with submarginal and marginal dark brown lines: primaries with four ocelli, the second and third extremely small and sometimes obsolete, the first also small but well-defined, the fourth much larger, black with white pupils and yellow irides; secondaries with seven ocelli of similar character, but surrounded by pale zones, the second, third, and seventh very small, the fifth largest. Expanse of wings 1 inch 11 lines.

This species is also in the Museum from Mongolia.

Synchloë sordida, n. sp.

ס. Wings above white, base blackish: primaries with the basal half of costa grey ; an oblong costal patch at apex, its inner margin dentated, its externo-inferior angle confluent with the first of three subapical marginal conical spots, all greyish brown: secondaries with a costal and four decreasing squamose marginal spots lolackish. Primaries below with the basal three fifths of discoidal cell and the basal half of costa densely irrorated with dark grey; apical area sandy yellow, sparsely irrorated with grey; two discal blackish spots as in S. rapee: secondaries pale yellow, densely irrorated with dark grey, excepting the reins and internervular folds; base of costa golden orange. Expanse of wings 2 inches 4 lines.

Allied to, but very distinct from, S. rape.

Synchloë claripennis, n. sp.

of. Wings above white, with black markings nearly as in S. gliciria, but the base less suffused with grey, and the large discal black spots of primaries absent on the upper surface: primaries below with the discal spots well marked and large, the basal two fifths of the cell grey; secondaries with the lower half of the cell and the median interspaces greyish, base of costa broadly orange. Expanse of wings 2 inches 8 lines.

Mr. Pryer has several examples of this species.

Pyrgus sinicus, n. sp.

Allied to P. maculatus; primaries the same; secondaries above with the central transverse interrupted streak composed of only three well-separated white spots, the outer or discal
series of five spots, all small: secondaries below very different from P. maculutus, sordid white; a rather broad olive-brown band, shorter than the darker band of P. maculutus, and crossed by white veins, indistinctly bordered with white internally, and broadly white-bordered externally ; the internomedian, first median, and discoidal interspaces irrorated with the same brown (beyond the white border) ; external area broadly brown, its inner half blackish; no trace of the angulated submarginal white streak common to P. maculatus; fringe white, spotted with brown. Expanse of wings 1 inch 3 lines.

I have seen several examples of this species.
> VIII.-On Polyzoa from Iceland and Labrador. By the Rev. 'Thomas Hincks, B.A., F.R.S.

[Plates X. \& NI.]

The species noticed in the present paper were obtained by Dr. Wallich off the coasts of Iceland and Labrador. For the opportunity of examining them I am indebted to Mr. Busk. Some new forms occur amongst them; and they have besides their special interest as illustrating local variation and geographical distribution.

The material which I have dealt with in this paper has been for a very long time in my hands, but after partial examination was laid aside under the pressure of other engagements.

Icelandic Species.

Order INFUNDIBULATA.

Suborder Cheilostomata.

Genus Hippothoa, Lamx.

1. Hippothoa expansa, Norman.

A single specimen of this form occurs on shell. Off Reikiavik, in 100 fathoms, amongst icebergs. ${ }^{\text {p }}$ All the Icelandic species were taken in this locality.
[Arctic seas, not uncommon (Norman, 'Valorous' dredgings) ; Shetland (id.).]

Amn. \& Mag. N. Hist. Ser. 4. Vol. xix.

Genus Scrupocellaria, Van Beneden.
 2. Scrupocellaria scabra, Van Ben.

Not uncommon.
It has a place in the Greenland famna of Fabricius, and was obtained by the German Polar Expedition at Sabine Island.
[Godharn Harbour, Disco, 5-20 fathoms (Norman, 'Valorous' dredgings); Spitzbergen, 6 fathoms, and more frequentiy 80 and 150 fathoms (Swedish Expedition, teste Smitt .]

Genus Caberea, Lamx.

3. Caberea Ellisii, Fleming.

A single specimen.
[Hebrides; Shetland (Norman) ; North Sea, from North Britain to Finmark, in deep water ($50-80$ fathoms), not uncommon (Smitt); Labrador and Maine (Packard); Scotch Glacial deposits (Geikie).]

Genus Menipea, Lamx.

 4. Menipea ternata, Ellis and Solander.Not uncommon.
[Arctic Seas (Smitt) ; Britain; Labrador.]

5. Menipea arctica, Busk.

Only a fragment occurred in the small gathering which came under my obscrvation; but the species seems to be a common arctic form.
[West Greenland (Sutlierland) ; Arctic Seas, in deep water, to 200 fathoms (Smit) ; Nordshannon (German Polar Expedition) ; entrance of Baffin's Bay, 175 fathoms ('Valorous' dredgings).]

Genus Bugula, Oken.

6. Bugula Murrayana, Johnston.

The form which occurs in the Reikiavik dredging is the var. fruticosa of Packard, which seems to predominate in the Arctic seas.
[Spitzbergen; Finmark, 100 fathoms (Smitt); Labrador (Packard); Holsteinborg Harbour, both typical form and var.; entrance of Baffin's Bay, var. fruticosa (Norman, 'Valorous ' dredgings).]

Genus Membranipora, De Blainville.

7. Membranipora lineata, Linn.

A single specimen, with ovicells, characteristic, on Scrupocellaria scabra.

SWouth Labrador (Puckard); coasts of Scandinavia, in shallower water, common (Smitt) ; Finmark (Lorén) ; Spitzbergen, a single specimen (teste Smitt); Britain.]

8. Membranipora craticula, Alder.

On shell.
[Spitzhergen, not rare (Smit); Britain; Scoteh Glacial deposits (Geikic).]

9. Membranipora Sophia, Busk.

On shell. An arctic form first discovered by Dr. Sutherland in Assistance Bay; Spitzbergen, common in 30-50 fathoms (Smitt).

10. Membranipora cymbaformis, n. sp.

Membranipara spinifera, Smitt, Krit. Förteckn. öfver Skandinariens Hafs-Bryozoer, pt. iii. pl. xx. fig. 32.
Zonocia oval, short, massive, of considerable depth, irregularly disposed ; the margin with about eight to ten tall and crect iphines, two of which are placed at the top of the cell; aximutarin pedicellate, bome on a rery long stem, very slender, suringing from the side of the cell, near the oral extremity; mandible acute, pointing upwards. Ooceciom unknown.

This form has been figured by Smitt under the name of M. spinifera; but it is very distinct from Johnston's species, which it seems to replace in the Aretic seas.

The chief points in which it differs from our British form are the much smaller size, the somewhat boat-like shape, and the more massive character of the cells, and their irregular arrangement, and the small number of its spines, which are much taller and stouter and more erect than those of M. spinifera.

In the latter the cells are elongate-oval, disposed in lines with much regularity, and armed with sixteen or eighteen spines, which, for the most part, bend inward over the membranous area; they are shallow and not calcified below, the flooring of the cell being simply membranous. But the cell of M. cymbeformis is deep, inclosed by comparatively high walls, which are well seen in the marginal zooœcia, and is furnished
with a calcareous lamina beneath. There are usually no more than two or three spines on cach side, which are very tall and stout, eylindrical and suberect. There are also differences in the avicularium, though in both cases it is of the pedicellate type. That of II. cymberformis is borne on a very long pedicel, to the top of which the avicularian cell seems to be articulated ; and it is altogether more slender that that of its ally.

Several specimens occur forming small patches on weed. Smitt states that it is not uncommon in the Aretic seas, as far as the north of Spitzbergen, in $10-60$ fathoms. The M. lineata of the German Polar Expedition, obtained at Sabine Island, should probably be referred to this species.

Genus Lepralla, Johnston.

I retain for the present the genus Lepralia as Johnston defined it, though well aware that the somewhat heterogeneous assemblage of forms which it includes must be broken up and redistributed.

11. Lepratia trispinosa, Johnston, var. (Pl. XI. fig. 1.)

Escharella Jucotini, forma lamellosa, Smitt, Krit. Förteckn. öfver Skandinariens Hats-Bryozoer, pt. iv. (1867) pl. xxiv. fig. 56.
On shell, common.
[Davis Strait, 100 fathoms (Norman, 'Valorous' dredgings).]

In the variety of this well-known species, which alone occurs amongst the Icelandic dredgings, the surface of the polyzoary is very flat and uniform in appearance and of a dull whitish colour. The zooocia are smooth or very minutely granular, areolated round the margin, and bordered by prominent lines; the aperture is suborbicular, well arched above, the lower lip rising in the centre into a small denticle; the margin is not at all elevated. The large pointed avicularia are present as in the more usual form ; and there is also frequently a small oval avicularium with rounded mandible on one side of the mouth. Similar avicularia sometimes occur on other parts of the cell, as represented in the figure (Pl. XI. fig. 1). The ooœcium is of the usual form, with the characteristic group of perforations on the front.

In the preliminary report on the "Biology of the 'Valorous' Cruise," printed in the Proccedings of the Royal Society for June 15, 1876, p. 208, Mr. Norman records this form as amongst the Greenland dredgings, and regards it as a new species, which he proposes to name L. Jeffreysii.

The chief characters which he seems to rely upon as
distinctive are the ovoid avicularia and the absence of the spout-like sinus on the lower margin of the aperture. But the oval avicularia are commonly present on the normal L. trispinosu, thongh, curionsly enough, they have hitherto esscaped observation, and are not figured or referred to by any writer on the Polyzoa. They are, of course, frequently wauting, as are also the large pointed avicularia; but in some part or other of the colony they may generally be detected. In some cases they are present in great numbers, two or three on a cell, and are very irregularly placed. I have specimens, probably from deep water, which in some respects resemble the Icelandic variety, in which there is an extraordinary development of them. As to the form of the mouth, it is very variable in L. trispinosa. The spont-like projection is much more markedly developed in some cases than in others; at times it is scarcely perceptible. Near the cdge of the colony cells may commonly be met with which bear the closest resemblance to those of the arctic variety, especially in the character of the mouth, being altogether destitute of the clevated peristome.

There is therefore no valid ground, in my judgment, for erecting the present form into a species. It exhibits a very slight divergence from the normal L. trispinosa, the absence of the raised peristome marking, as stated above, an early stage of growth in this species. The presence of the oval avicularia is really one more proof of their identity.

Smitt has given a good representation of the different states which this species assumes, though he seems not te have noticed the small avicularia.

12. Lepralia tubulosa, Norman. (Pl. XI. fig. 8.)

Two or three specimens of this interesting species occur on fragments of shell. In their perfect condition the cells are armed with three or four spines. They are less thickly perforated than in the only British example which I have had the opportunity of examining. On one of the specimens the oocecia, which have not hitherto been described, are present; they are arcuate in form, shallow, depressed, and set very far back behind the tubular neck of the cell. The surface is smooth and silvery, with a few perforations.

This remarkable species will stand as the type of a new genus, for which I propose the name of Cylindioporelle.
[Shetland (Norman); Wick (Peach).]

13. Lepratia hyalina, Linneus.

On shells and on other Polyzoa, abundant.

14. Lepralia (Discopora) sincera, Smitt. (Pl. XI. fig. 2.)

One or two specimens of this well-marked form occur. Smitt reports the species as common in the Arctic Sea as far as Spitzbergen, in 19-60 fathoms.

Lovén has taken it in Fimmark. Off Hare Island, Waigat Strait, entrance of Baffin's Bay, 175 fathoms (Norman).

15. Lepralia porifera, Smitt. (Pl. X. figs. 1 \& 2.)

Not uncommon.
[Spitzbergen, not rare, in 20-80 fathoms (Swedish Expedition, teste Smitt) ; Hammerfest (Lovén); South Devon (T. II.).]

Several forms occur which seem to be related to this species or to the true L. (Eschara) Landsboroxii. I can most fully adopt Smitt's naïve declaration respecting the last-named :"This species, in all its varieties of calcification, has given me much trouble." It is, indeed, a matter of extreme difficulty to interpret satisfactorily the group of forms which bear a more or less near relatiouship to the L. Landsborovii of Johnston. In the first place I believe we may accept Smitt's L. porifera as a good species, taking as the type his pl. xxiv. fig. 30 (${ }^{6}$ Kritisk Förteckn.')。

The "forma minuscula" and "forma majuscula" ranked under it, he has himself, as a result of further examination, transferred to his Escharella Landsborovii ('Floridan Bryozoa,' part ii. p. 60).

In L. porifera the zooceia are short, ovate, or rhombic, flattish, very thickly punctured over the entire surface, and of a dull white colour; the mouth is suborbicular, slightly contracted below, where two small denticles mark the position of the hinge of the opercular valve and form a shallow sinus on the lower margin; the peristome is very slightly elevated, and there is no central denticle: the avicularium projects immediately below the inferior margin; it is larger than in L. Landsbororii, and of a more elongate form ; the ooocium is rounded, closely adnate, not hooded, somewhat depressed in front, and perforated ; spatulate avicularia none.

In the typical L. Landsborovii the zooccia are oblong, much lengthened out, somewhat flat, vitreous and glistening when fresh, covered over the whole surface with rather large pores or merely punctured round the margin ; the mouth suborbicular, with a prominent tooth on the lower lip in addition to the two lateral denticles; peristome thin, very much raised, with a deep narrow cleft in front, within which the avicularium is placed; avicularium small, round; ooœcium rounded, large,
prominent, glassy, hooded, thickly punctured, frequently with a large spatulate avicularium on one or both sides of it, placed transversely. I have not met with this form amongst the Reikiavik dredgings.

16. Lepralia propinqua, Smitt. (Pl. X. figs. 5-7.)

Eschara propinqua, smitt, l.c. pp. 22 \& 146 , pl. xxvi. fies. $126-128$.
Zonecier short, convex, rising towards the very prominent avicularium; surface warty, sometimes indistinctly areolated round the margin, which is bordered by a raised line; mouth ample, archod above, with a broad, very shallow sinus below; peristome slightly thickened, mot clevated, except in the fertile cells; no central tooth; avicularia round, standing out bollly below the inferior margin, so as to have the appearance of a prominent beak. Ooxcium large, rounded, adnate or subimmersed, sometimes adomed with radiating lines, punctured, the pores ofton forming a semicircular series round the onter edsenf the ovicell, and a small circular group in the centre ; in the fertile cells the peristome is much elevated at the sides, sometimes rising into large flap-like expansions, but falls away towards the front, where there is a wide opening in which the avicularium is placed. There are frequently spatulate avicularia on each side of the oorecium; but they differ in shape from those of L. Landsborocii (normal) and are inferior in size (Pl. X. figs. 7 \& 8) 。

This form seems entitled to specific rank. It exhibits a different type of cell from that of L. Landshororii (short, orate or thombic, and very coneex; and it also diverges from that species in the character of the oocecium and of the peristome, as well as of the large avicularia. It agrees with L. porifera in the absence of the marginal denticle, but wants its porous surface.

It must be left for further investigation to show whether these forms are so closely connected with each other and with L. Landsborocii, by intermediate varieties, as to constitute truly but one specific eroup. With our present knowledge they are properly accounted distinct.

Smitt refers L. mopinqua to his L. (Eschara) verrucosa group; but its closest affinity is clearly with E. Landshorocii.
[Spitzbergen, 60 fathoms (Mulmgren); Greenland (Torell); Finmark (Lovén).]
17. Lepralia reticulato-punctata, n. sp. (Pl. X. figs. 3 \& 4.)

Escharella porifera, forma edentata, Smitt, Förteckn. part iv. p. 9, pl. xxiv. fig. 39.
[Spitzbergen (Swedish Expedition).]
Zoowcia ovate, moderately convex, strongly reticulato-punctate; orifice suborbicular, somewhat compressed, with a broad well-marked sinus on the inferior margin ; peristome not raised; no central tooth ; avicularium large, clongateoval, sometimes half immersed, sometimes prominent, placed in the centre immediately below the mouth, occasionally at a short distance beneath it or turned transversely. Ooxcium rounded, closely adnate above, thickly punctured ; peristome in the fertile cells not raised.

This is another form belonging to the same group as the two preceding. It is figured by Smitt, and described by him as Escharella porifera, forma edentata. It is distinguished from that species by its reticulate and coarsely punctured surface, by the form of the mouth, which is much less arched above (compressed) and with a more marked sinus below, and by the large elongate-oval avicularium, which is somewhat variable in position, whereas that of L. porifera is constantly attached to the inferior margin. The two also differ much in general aspect.

The preceding three forms occur amongst Reikiavik dredgings only in an incrusting state; and there is nothing to show whether they ever assume the Escharine mode of growth.

18. Lepralia radiatula, n. sp. (Pl. X. figs. 9-14.)

? Cellepora plicata, var., Smitt, Förteckn. iv. pl. xxviii. fig. 193.

Zooccia ovate, disposed in linear series, whitish, minutely roughened, traversed by rib-like lines, which run from the margin towards the centre; mouth suborbicular, surrounded by a thin, much-raised, frill-like peristome, which is cleft in front into a deep loop-like sinus; within it on one side a small avicularium, the mandible directed upwards; a minute pointed denticle immediately within the lower margin. Ooocium semicircular, punctured, set far back. The peristome frequently rises at the sides into prominent expansions, which are curiously cut and crenated at the top, and present a very fantastic appearance.

On shell, zoophytes, \&c., common.
I have met with no description of this remarkable form ; but it scems to be represented in Smitt's figure 193 (Förteckn. part iv.). He refers it to his Cellepora plicata, with which, I confess, I cannot see that it has any close affinity whatever. It varies much in different states of growth, and especially in the degree in which the peristome is developed : at times it forms a plain border round the mouth ($\mathrm{Pl} . \mathrm{X}$. fig. 10); at
others it takes on such shapes as are represented in Plate X. figs. 11-14.
[Aretic Sica (Smitt).]

> Genus Cellepora, Fabricius. (Celleporaria, Smitt.)

19. Cellepora incrassata, Lamk.

This fine species, julging from the fragments which abounded in the dredging, must be common off the coast of Iceland, as it is, according to smitt, in the seas about Spitzbergen and Greenland. In Fimmark it seems to be less abundant Eist (ireenland, plentiful (German Polar Exped.).

20. Cellepora ovata, Smitt. (Pl. XI. fig. 5.)

T'wo fragments occur.
[Spitzbergen, in 10-60 fathoms; less common than (${ }^{\prime}$. scalra and U. plicate (Simitt); Sabine Island (German Polar Expedition).]

In this species the mouth is orbicular, instead of triangular as in the allied C.plicatr, Smitt, and the avicularium much shorter than in that species. The mucro is set completely at one side of the mouth. 'The surface of the cells, which are very convex and regularly ovate, is coarsely punctured, the spaces between the punctures rising at times into ridges. The peristome is thin and not at all elevated.

Smitt, as Kirchenpauer has already noticed, ranks this form with his Cellepora scalica in such a way that it is difficult to determine whether he regards the two as specifically distinct or not. From his description of the figures (p. 226) I should infer that he looks upon these two forms and C. plicate as merely varietics of one and the same specific type. Judging, however, from those figures, as well as the Icelandic and Labrador specimens, I have little hesitation in considering C. orata an independent species with well-marked features.

Smitt, indeed (p. 188), refers to certain intermediate forms by which, he thinks, the distinction between C. ovata and C. plicata is reduced to a very small matter-forms in which the general appearance of C'. ovate is combined with an ovicell resembling that of C. plicata, though wanting its punctured surface, and a mouth which often suggests the threecornered shape * so characteristic of the aperture in the lastnamed species; but as he dues not figure these forms it is lifficult

[^8]to estimate their precise significance. The mouth in C. ovata, as I have seen it, is orbicular, slightly compressed or flattened below; in C.plicata it is decidedly subtriangular, and the lower margin runs to a point. This is an important structural distinction, the specific value of which we are certainly not justified in rejecting without much fuller evidence respecting transitional forms than we now possess. It is of course eminently undesirable that species should be multiplied on trifling pretexts; it is equally undesirable that well-differentiated and tolerably stable forms should be confounded.

21. Cellepora plicata, Smitt. (Pl. XI. figs. 3 \& 4.)

Iceland, 100 fathoms.
[Spitzbergen, 2-60) fathoms, very common (Smitt); Greenland (German Polar Expedition) ; Godhavn Harbour, Disco, 5-20 fathoms (Norman, 'Valorous' dredgings).]

In this species the cells are ovate, somewhat depressed; surface smooth and glistening, sometimes traversed by ribs radiating from the circumference; mouth subtriangular, slightly arched above, the sides running to a point in front, so as to form an acute angle; peristome thin and slightly raised at the sides; on one side a prominent mucro, bearing a large elongate-oval avicularium, with rounded mandible, looking obliquely sideways. Oocecium semicircular, smooth, punctured in front. Allied to the preceding, but, I think, distinct. A very salient character is the great length of the oval avicularian opening.

> Genus Eschara, Ray.
22. Eschara pavonella, Alder.

A single specimen was met with.
[Spitzbergen, in 20-60 fathoms, not rare (Torell and Swedish Expedition); Fimmark, in 20 fathoms (Goës and Dalmgren). Not yet found in Southern Scandinavia (Simitt). England, north-eastern coast.]

Genus Myriozoum, Donati.
(Leieschara, Sars.)
23. Myriozoum coarctatum, Sars.

Iceland, 100 fathoms.
[Spitzbergen, in 19-80 fathoms (Swedish Expedition); Norway (Ström, Sars, \&c.).]

24. Myriozoum subgracile, D'Orbigny.

Iceland, 100 fathoms.
[Spitzbergen, 19-80 fathoms, common (Swedish Expedi-
tion) ; Greenland (laöller and Torell) ; Holsteinhorg ILarbour, $7-35$ fathoms ; entrance of Baffin's Bay, 175 fathoms ('Valorous' dredgings) ; Anticosti and Mingan Islands; South Labrador (Puckard).]

In this very distinct species, the small oval avicularia are sometimes placed on each side of the mouth at the top, or sometimes on one side only: occasionally they oceur about the middle of the aperture; they are also distributed irrecrularly over the zoarium. In many cases they are wanting altogether in comnexion with the mouth of the cell.

Genus Reterora, Imperato.

25. Retepora Wallichiana, n. sp., Busk (MS.).
(Pl. XI. figs. 9-13.)
Retepora cellulosa (Linn.), forma notopachys (Busk), var. clongata, Smitt, l. c. pt. iv. pp. 36 , 204 , pl. xxviii. figs. 226-232.
Zoarium irregular, sometimes giving off long free branches; fenestre elongate, narrow, lozenge-shaped. Zooxcia immersed, elongate, somewhat rectangular, bordered by lines, the mouth sulorbicular ; peristome thin, raised, the inferior margin projecting and with a very minute central sinus; immediately below it in many of the cells a prominent rostrum placed obliquely, bearing on its summit a large avicularium with strongly incurved beak and a long triangular mandible pointing downwards. Ooueciem small, rounded, smooth; placed very far back behind the mouth and separated from it, in the centre of the arch of the opening, a small denticle (Plate XI. fig. 12).

This form has been very accurately described by Smitt; but he regards it as a variety of the Crag species R. noto. pachys, Busk. Some years since Mr. Busk, who had met with it amongst Dr. Wallich's dredgings, gave it the MS. name which I have retained in this paper, and which fittingly commemorates one of the earliest and ablest pioneers in the work of deep-sea exploration. I agree with Mr. Busk that it is specifically distinct, though in some respects it seems to approach the fossil form. The chief points of difference between it and R. notopuchyss are to be found in the mouth, which in the latter, according to Busk's figure, is furnished with a rather decply incised sinus on the lower marrin, whereas in R. Wallichiana the sinus is very minute and shallow*-and in the ovicell, which in the last-named is small, with a very moderate orifice and a conspicuous denticle in the centre of the oral arch, while that of the Crag form is described as large and open in front.

The position of the ovicell in the present species is also

- The contour of the oral aperture is rery different in the two species.
peculiar; it is developed at some distance above the mouth, and is apparently quite separated from it at first, though at a later stage united to it by an extension of the peristome, as Smitt has remarked. Judging from Busk's figure, I should also suppose that the avicularia differed in character in the two, though this portion of the structure is badly preserved in the fossil.

In R. Wallichiuna there is none of the remarkable thickening of the branches behind, nor is there any trace of the "crescentic laminæ" which are ascribed to the other species. Its dorsal surface is flattened, traversed by raised lines, which for the most part run longitudinally, while that of R. notopachys is marked by deep, usually transverse sutures. The fenestræ also seem to be much smaller in the latter form.

In the present species the zooळcia are sometimes very indistinct, at others they are well defined by conspicuous raised lines. On the dorsal surface, at the base of each fenestra there is an immersed avicularium, placed transversely.

Iceland, 100 fathoms, apparently common.
[Spitzbergen, 20-80 fathoms, common; Finmark (Smitt) ; Godhaab, 150 fathoms (Busk).]

Suborder Cyclostomata.

Genus Crisia, Lamx.

26. Crisia denticulata, Lamk.

Iceland, 100 fathoms ; several small fragments occur.
[Norway. (Sars); Spitzbergen; Bahusia (teste Smitt); Great Britain \&c., Scotch Glacial deposits (Geikie).]

Genus Idmonea, Lamx.

27. Idmonea atlantica, E. Forbes.

Iceland, 100 fathoms; abundant.
[Scandinavia, from Bahusia to Finmark, common (Sars, Lovén, Smitt); Shetland (Burlee) ; entrance of Baffin's Bay, 175 fathoms (Norman).]

Genus Tubulipora, Lamk.

28. Tubulipora ventricosa, Busk.

Iceland; on Sertularella tricuspidata, Alder.
[West Greenland, on Fucus (Sutherland).]

29. T'ubutipora flabellaris, Johnst.

In the form which I refer to this species, the zoarium is flat, depressed, opaque, minutely specked, and somewhat rugose transversely; the tubes are placed horizontally, somewhat radiately disposed, of comparatively large bore, free only for a short distance at the extremity, the free portion not turning upwards, but taking the horizontal direction. It is more or less regularly flabellate in its mode of growth. It is well represented hy Johmston's figure and in Busk's 'Cyclostomata,' plate xxiv. fig. 2. It is distinct, in my judgment, from the true T. phalangea.

Genus Diastorora, Johnston.

> 30. Diastopora, sp.?

A small patch of a Diastopora occurs on a specimen of Cel lepora incrassata, but in so imperfect a condition that I cannot determine the species with certainty. I believe it to be referable to D. obelia, Johnston, which is not uncommon in the Arctic seas.

Genus Discoporella, Gray.
31. Discoporella verrucaria, Fabricius.

Iceland ; abundant on Sertularella, \&c.
[Bahusia (Lovén); Spitzbergen (Swed. Exped., teste Smitt); Greenland, Assistance Bay (Sutherland) ; Anticosti and Mingan Islands; Bay of Fundy (Puckard) ; Orkney and Arran (Busk).]

Mr. Busk has rightly challenged S'mitt's identification of this form with the Discoporella flosculus (mihi). The latter is the Melolesia radiata of Audouin, with whose figure I was unacquainted at the time (1862) of the publication of this species.

Suborder Ctenostomata.

Genus Buskia, Alder.

32. Buskia nitens, Alder.

Iceland; very fine, creeping over Hydroids.
[Great Britain.]
This scems to be the only Icelandic form not hitherto recorded from the Aretic seas.

Of the 32 species contained in this list, 18 are British; of the latter, Hippothoa expensa and Itmomen utlantica have only
occurred in the Shetland waters; Caberea Ellisii is common to Shetland and the Hebrides, and Lepralia tubulosa to Shetland and the north-eastern part of Scotland (Wick). The following may be regarded as forming a distinctively Aretic group:Menipea arcticn, M. Sophice, Lepralia sincera, Cellepora incrassata, and perhaps Myriozoum coarctatum. Twelve of the Icelandic species have been found on the North-American coast.

It should be mentioned that the dredging which supplied the material for the above list was contained in a single bottle of very moderate size.

Labrador Species.

The forms recorded in this list were taken in Hamilton's Inlet, at a depth of 15 fathoms, by Dr. Wallich.

INFUNDIBULATA.

Cheilostomata.

1. Menipea ternata, Ellis \& Sol.
2. Cellularia Peachii, Busk.
3. Gemellaria loricata, Linn.
4. Lepralia annulata, Fabricius.
5. Lepralia propinqua, Smitt.
6. Lepralia hyalina, Linn. The prevalent form.
7. Lepralia pertusa, Esper.
8. Lepralia radiatula, Hincks.
9. Membranipora lineata, Linn.
10. Membranipora cymbaformis, Hincks.
11. Cellepora scabra, Smitt.

This belongs to the same group as C. plicata and C. ovata of Smitt, the three being ranked as varieties of one and the same species by this writer.

In the present form the zooœcia are very short, convex, crowded, and suberect; the mouth orbicular,slightly compressed in front ; immediately below the inferior margin rises a some-
what massive mucro, as broad as the mouth and stretching back for some distance over the wall of the cell ; it bears on one side an avicularium with rounded mandible, directed upwards. The surface of the cell is smooth, but often traversed by ribs which radiate from the margin and are carried up as prominent keel-like lines to the apex of the rostrum. The ovicell is semicircular, and, in an early stage at least, without punctures. Within the inferior margin there is a small denticle.

The cells have a very crowded appearance, and are more erect than those of either C. plicata or C. ovata. The mucro is central (that is, the apex corresponds with the centre of the inferior margin, and the base spreads out equally on each side), while in the two last-named species it is placed completely on one side of the cell.

12. Cellepora bilaminata, n. sp. (Pl. XI. figs. 6, 7.)

Amongst the Labrador dredgings there is another form referable to the same group as the above, but presenting some marked and distinctive peculiarities. It occurs in two very different conditions. In one (a) the cells are rather crowded, ovate, suberect, the surface smooth ; mouth orbicular, the peristome rising on each side into a mucronate process, one of the two (and occasionally both) bearing on its side an avicularium with rounded mandible; between the two processes there is a rather wide cleft, and immediately within it a small denticle (Pl. XI. fig. 6). Occasionally there are traces of the formation of a second calcareous lamina over the primitive cell-wall. Cells occur in which the second envelope has only partially overspread the original wall, and the edge of the later growth can be distinctly traced.

In the other condition in which the species appears (b) almost every cell exhibits the double lamina, the later process of calcification being only partially effected (Pl. XI. fig. 7). In this state there are no avicularia. The processes on the inferior margin are both simple extensions of the primitive lamina, somewhat rounded at the top and separated by a broad cleft. With the growth of the second lamina they would assume their perfect mucronate condition; and the development of the avicularium (or avicularia) would probably follow. The ovicells are developed plentifully on this form; they are semicircular. almost truncate in front, partially concealed by the ascending marginal processes, smonth, with a few rather large punctures on the front. I have not noticed this doubling of the cellwall in any of the kindred species, while the character of the mouth is very distinctive. I have therefore thought it best to give this form a separate name.
13. Cellepora ovata, Smitt.

The specimens of this form from Labrador and Iceland are identical in character.

Cyclostomata.

14. Crisia eburnea, Limn.

[Mediterranean; Madeira; Australia.]

15. Tubulipora flabellaris, Johnst.

16. Discoporella vervecaria, Fabr.

Of the foregoing species eight, or half the number, are not included in Packard's list of the Polyzoa of South Labrador. Fourteen are common to the American coast and the Arctic seas. Ten are British. Two are Mediterranean forms, both of them having a very wide range.

EXPLANATION OF THE PLATES.

Plate X.
Fig. 1. Lepralia porifera, Smitt.
Fig. 2. The same, showing the ovicell.
Fig. 3. Lepralia reticulato-punctata, Hincks.
Fig. 4. The same, more highly magnified.
Fig. 5. Lepralia propinque, smitt.
Fig. 6. The same, more highly magnified.
Fig. 7. Large aricularium of Lepralia propinqua.
Fig. 8. Ditto of Eschara Landsborovii, Johnston.
Figs. 9-14. Lepralia radiatula, Hincks.

Plate XI.

Fig. 1. Lepralia trispinosa, Johnston, var.
Fig. 2. Lepralia (Discopora) sincera, Smitt.
Fig. 3. Cellepora plicata, Smitt.
Fig. 4. The same.
Fig. 5. Cellepora ovata, Smitt.
Fig. 6. Cellepora bilaminata, a, Hincks.
Fig. 7. The same, b.
Fig. 8. Lepralia tubulosa, Norman.
Fig. 9. Retepora W'allichiana, Busk, MS.
Fig. 10. The same; a portion of the dorsal surface.
Fig. 11. The same, a fragment of about the natural size, showing the shape of the fenestræ.
Fig. 12. The same, a single cell and ovicell.
Fig. 1:3. The same, aricularium in profile, showing the strongly developed beak.

MISClELIANEOUS.

Chbistian (ietrfmed Eimenama**.

Among the men whose names will ever be associated with the history of science, Ehrenberg oceupies a very prominent place. Fifty years ago he boldy penetrated into Africa as far as Absssinia in the face of difliculties of which we can now searcely form any idea, collecting zoological ind botanical materials, whilst the fanaticism of the inhahitants followed the Christian whereter he went, and more than once placed him in presil of his lite. The results of these travels led him to the department of science the investigation of which constituted the prinipal labour of his life, and especially contributed to his scientifie fane, namely the study of the lower forms of animal life, and especially the world of mieroscopic organisms, whose richness and Fariety were previously unsuspected. And it was not only to the living forms that Ehrenberg devoted his attention; he also demonstrated their wide diffusion in the rocks of former periods of the earth's history, and lecame the founder of microscopic palmontology, which has been of essential aid to the grology of the sedimentary rocks. With the greatest care the objects of numerous observations were united by him into a collection which is unique in its kind, and which will remain at once as an important aid to study and as a monument of the indefatigable industry of a German savant.

Ehrenberg was born on the 19th April, 1795 , at Delitzsch in tho province of Saxony. Lp to his fourteenth year he attended the school of his native place; in 1510 he obtained a free scholarship in the Pforta Acadeny, where he had several men of note (as, for example, Lenpold ron lanke) among his associates; and le left this institution in 1×15 to study theology at Leipzig, in accordance with his father's wish. But even in the midst of his classical studies at, the Academy, he had already devoted his hours of leisure to investigations in natural history : and this bent of his mind led him when he had been a year at the University, to exchange the study of theology for that of medicine. He completed his academic studies in Berlin, where he attained his degree of Doctor of Medicine on the 5 th Norember, $1 \times 1 s$, his inaugural dissertation bearing the titlo "Sylvæ mycologicx Berolinenses."

In the two following years we find the young doctor engaged with his friend Hemprich in sketehing plans for a great journey of investigation to some distant part of the earth; and the wishes of both of them were fulfilled in the year 1 N 20 , when General won Minutoli, who was on the print of starting on an antiquarian journey into Egypt, requested the berlin I cademy of ''eiences to recommend him two young naturalists as companions. The Academy selected Ehrenterg and Hemprich. Their journey in common extended into the Jihyan desert as far as the oasis of Jupiter Ammon (Siwah): but after their

[^9]return to Alexandria, the two naturalists quitted the General's expedition in order to carry on matural-history investigations on their own account. They traced the Nile upwards as far as Embukohl in Dongola, made an excursion into the Fayoom, returned to Cairo in 1823, and then examined the northern coasts of the Red Sea and especially the sin:itic mountains. While Hemprich conveyed the collections they had made to . Ilexandria, and remained in that city awaiting remittances, Ehrenherg remained for six months in Tor, occupying himself principally with the corals of the Red Sea.

The two naturalistsafterwards undertook a thind journey, into Syria and Coclosyria ; they penetrated as far as laalbec, and reached the snowy summits of Lebanon. Their further journey was commenced in 1825: it carricd them through Arabia to Loheia and across to Massowa on the Abyssinian coast. Here Hemprich fell a victim to fever; and his friend committed hin to the grave on the small island of Toalut. Ehrenberg then made an excursion to the hot springs of Eilet, and returned hy Kosseir and Alexandria to Europe in 1826. During the six years of his absence he lost nine of his European companions by death. In the Memoirs of the Berlin Academy for the year 1826 , Alexander von Humboldt gave a preliminary report upon these great travels and the important collections which had reached Berlin through Ehrenberg and Hemprich.

In the yar 1-2. Ehrenlerg was made an Extraordinary Professor in the University of Berlin, and on the application of Alexander von Humbeldt ohtaincd, through the minister Von Altenstein, the means of making known the scientific results of his travels. In consequence of this, two rolumes of 'Symbole physice,' with copperplates representing mammals, hirds, insects, de., appeared in the years 1828$1 \div 34$. Unfortunately circumstances were unfarourable to a continuation of the work.

A short historical sketch of the first part of his travels appeared in 1 Nes muder the title "Naturgeschichtliche Reisen durch Nordafrika und Westasien in den Jahren 1820-26, yon Hemprich und Ehrenberg." In 1827, Ehrenberg hard already published a description of the deserts in the Memoirs of the Academy. He also published some of his ohservations upon various sulbjects in different periodicals, e. \%. on the Mama of the Tamarisks, on the Scorpions and their geographical distribution, on'the Monkers of Sennaar and Kordofan, on the peculiar nnise heard on Djebel Nakuss among the mountains of Sinai, and on the Corals and Acalephr of the Red Sea.

The journey to the Ural and the Altai and to the Chinese frontier, undertaken in 1se9 by Alexander rou Humboldt at the desire of the Emperor Nicholas, principally for the purpose of bringing to light the mineral riches of the Russian empire, has been well described by (Gustar Rose, who, with Ehrenberg, accompanied Humboldt.
(On his return, Ehrenberg devoted himself exclusively to microseopical researches ; and in 1830 he pullished a memoir on the organization, classification, and geographical distrilution of the Infusoria, of which Curier speaks as follows in the 'Analyse des travaux de l'Académic Royale de Paris :'—"This diseovery entirely changes
our ideas, and especially upsets many systems; it is one of those which constitute epochs in the sciences." This memoir was followed by contributions which were continued until the year 14.35. In In 38 appeared the great work Die Infusionsthierchen als wollendete Organismen,' with 6.4 plates, for which and for his geological researches the Geological Socicty conferred upon Ehrentery the Wollaston medal as a special distinetion. As early as 1-3st, Ehrenberg had discovered that the polishing-powder known as tripoli abounded in fossil organisms, and that the polishing-slate of Bilin, near 'Teplitz, contained innumerable siliceous shells of similar creatures. The same result was obtained by the microscopic examination of the so-called "edible earths" from various localities. This oecurrence of fussil organisms was soon afterwards demonstrated by Ehrenberg in older formations, as is evidened by his memoirs - Die Bildung des europaischen, libyschen und uralisehen Kreidefelsens und Kreidemergels aus mikroskopischen Organismen' (1-3!), and Leber noch jetzt zahlreich lebenden Thicrarten der Kreidebildung und den (Organismus der Polythalamien.' In the year 1841 he demonstrated the presence of organisms in the peat-beds in various parts of lerlin (Museum, Friedrichsstrasse, and Karlsstrasse), and gave an impulse to the technical employment of these, and of the Infusorial carth of Ebstorf in the Lineburger ILaide, as, according to the reports of old writers, an earth serving for polishingpurposes conld be used for the manufacture of light building-stones, capable of floating upon the water, and the dome of the mosque of Saint Sophia, the celebrated structure of the Emperor Justinian, is composed of such stones. With the hearty cooperation of the then director of the Royal Poreclain Factory, the Mining Privy Councillor Frick, Ehrenberg had stones manufactured from the Berlin material, which proved from their porous nature to be very useful, and were employed by the architect Hoffmann in the construction of the cupola of the museum.

In 1845, at the request of the Mining Department, Ehrenberg made investigations on the diffusion of the infusorial tuffs in the Eifel; in 1547 he published his "Beobachtungen uber Passatstaub und Blutregen," in the Memoirs of the Academy of Berlin ; and this was followed by a long series of papers in the "Monatsberichte.' In 1sto he had prepared his " Microgeologie,' which appeared in 150.5, with 41 copperplates. The first part of a continuation of this work, relating specially to America, appeared in 1856.

A new field is opened by his works on the Greensand and the illustrations of its organic life (18.5), and his communications on the gradually advaneing knowledre of immense quantities of microscopic organic forms in the lowest silurian deposits near Saint Petersburg (1852-62). His attention also was vividly excited by the reeent investigations of the sea-hottom ; so that, ly the receipt of samples of soundings from the most different regions, he was enabled to investigate thoroughly the microseopic organisns of the depths of the sea. In $10-2$ he published a revision of these, illustrated with 12 plates, which was followed in 1-75 by a work on "die fossilen Erd- und

Felsproben des Meeres und Niisswassers aller Lïnder, und die Poly-cistinen-Mergels son Barbados" (with 30 plates). Thus, nearly to the close of his long life, which took place on the 2ith June in the year just closed, he showed no relaxation in his activity.

From the year 1839 Ehrenberg was an Ordinary Professor in "the Faculty of Medicine. From 18t2 he was Secretary of the Physicomathematical Class of the Academy of Sciences, of which he had been a memher since 1827 . In 1839 king Friedrich Wilhelm III. conferred upon him the great gold medal for Art and Science ; and at the same time the Crown Prince gave him a gold medal relating specially to Ehrenberg's discoveries; the Civil Class of the order "Pour le mérite" counted him as one of its members from the time of its establishment by king Friedrich Wilhelm IV.; and foreign honours were not wanting in recognition of his scientific merits.

Quite in the evening of his life he was gratified by the reccipt of the large gold medal founded by the Dutch Academy of Sciences at Amsterdam in honour of Leeuwenhoek, the discoverer of the Infusoria, and conferred for the first time unanimously upon Ehrenberg.

Corals in the Hunterian Aluseum figured by Ellis and Solander.

To the Editors of the Amals and Mayazine of Natural History.

Gentlenen.-In rearranging the corals in the Hunterian Museum I recognized the nineteen specimens mentioned in the following list as figured in Ellis and Solander's work. Doubtless more of the Hunterian specimens are figured in that work; but I have only given those which have some characteristic feature admitting of certain identification. Moreorer Ellis selected for illustration parts only of some of the bulkier specimens. The list, howerer, as it stands, will not be without interest to those who desire that the location of type specimens should be known.

Glasgow University, Nov. 1876.

> I am, Gentlemen,
> Yours obediently, JoHr Young, M.D.

List of Specimens in Henterian Muscum figured in Ellis and Solunder's ' Nutural History of Zoophytes.'

1. Pl. 29. Madrepora anthophyllites.
2. Pl. 32. fig. 1. ?
3. Pl. 35. Df. carduus.
4. Pl. 34. M. angulosa.
5. Pl. 38. M. ramea.
6. Pl. 39. M. aspera.
7. Pl. 40. M. undata.
8. P1. 41. figs. 1, 2. M. ampliata.
9. Il. 43. M. cinerascens.
10. 1'l. 45. M. pileus.
11. Pl. 46. fig. 1. Madrepora dedalea.
12, \{Pl. 47! figs. 4, 5. M. areolata.
12. Pl . 48. fig. 2. M. phrygia.
13. Pl. 50. fig. 2. M. abdita.
14. Pl. 52. M. foliosa.
15. $\{$ Pl. 53. fig. 1. M. anmulosa.
16. figs. 5, 6. M. foveolata.
17. Pl. 55. M. rotulosa.
18. Pl. 56. M. interstincta.
19. Pl. 57. M. mericata.

Descriptions of netr Species of Blattidae belomying to the Gienus
 Panesthia. By Jayes Wood-Masos.

Panesthio monstruost, n, sp.

Ingens, aptera, aterrima, mitila. Corpore crassissimo. Tegumento valde indurato. Pronoto in maribus valdissime, in feminis modice, inarquali et impresso ; bituberculato : incisura profunda, lata, medio recta et linea elevata marginata, lateribus cornigera, cornibus in mare magnis, in femina modicis, reflexis, apice plicatis. Abdominis segmentis basalibus infra supraque sparsim minute punctatis, ultimo laminaque supranali punctis crebrioribus neenon majoribus conspersis: hac postice $\overline{\mathrm{D}}$-dentata. Pedibus validis, spinis tibialibus fortibus armatis; femoribus anticis trispinosis. Long. corporis maris 58 millim. ; pronoti $14 \frac{1}{3}$, pronoti lat. $19 \frac{1}{3}$, incisura lat. $1 ;$: mesonoti long. 9, mesonoti lat. $21 \frac{2}{3}$: metanoti long. S, metanoti lat. 23 ; abdom. long. 30, abd. lat. (ad medium) 23 . Long. corp. fem. 52 .
Hab. A male and a female from Southern India (R. C. Beddome). This fine insect offers a curious resemblance to the Gromphadorhina portentosa, Schaum, from Madagascar.

Panesthia Wallucei, n. sp.

Aterrima, nitidissima. Pronoto ut in P. morione sed nitidiore et distinctius crebriusque punctato. Abdomine sparsim punctulato, punctis apicem versus sensim frequentioribus ac paullo majoribus; segmento ultimo marginibus integro angulisque posticis rix producto; lamina supraanali disco parce fulvo-pilosa, postice rotundata, tota integra, dentibus lateralibus nullis: lamina subgenitali confertim grosse punctata. Cercis tumidis, fulvo pilosis. Tegminibus alisque prene ut in P. morione, abdominis apicem longe superantibus: venarum omnium parte apicali perspicua, utrinque pallida, subhyalina; illorum rena anali recta impressa hyalina. Femoribus anticis basin rersus bidentatis. Long. corporis maris $36 \frac{1}{2}$ millim.; pronoti $9 \frac{2}{3}$, pronoti lat. 14 ; long. tegminum tu, alarum 35 ; abdom. 18, abd. lat. (ad medium) 16.
Hab. A single male from Sinkep Island, near singapore.

Panesthia flaripennis, n. sp.

Aterrima, nitidissima, pulcherrima. Pronoto antice granulato, postice medio sparsim, ad latera confertissime punctato : aliter ut in P^{\prime}. javanica. Oculis maculisyue ocelliformibus flavidis. Tegminibus latissime flaris, singulis maculis duabus nigris, una parra ad basin, alteraque magna orbiculari pone medium posita, notatis ; rena anali elecata potius quam impressa, fortiter arcuata: abdominis segmenti ultimi apicem rix attingentibus. Alis apice flaro marginatis. Antennis apicem tersus flavido annulatis. Ahdominis segmentis dorsalihus punctatissimis; ultimo laminaque supramali punctis grossissimis: har margine postico o-dentato, angulis lateralibus latis : illo angulis pesticis acutissime producto;
segmentis rentralibus lateraliter punctatis, medio vix punctatis; lamima subgenitali conspicua, lavi, politissima, convexa. Femoribus anticis muticis. Larvis totis aterrimis. Long. corporis ơ $37-45$, of 43 millim. ; pronoti of $10-13$, 오 $10 \frac{1}{3}$; pronoti lat. of $14 \frac{1}{2}-17 \frac{2}{3}$, 아 $16 \frac{1}{3}$; long. tegminum of $29-53$, 우 $29 \frac{1}{2}$.
Hacb. Xumerous adult and immature specimens of both sexes from the Nágá hills (J. Buller and Gootuin-Austen), Brahmaputra valley (A. W. Chennell), and Dikrang valley (Godwin-Austen).

Panestric Stussurii, n. sp.

f. P. mundarinea, Saussure, Mélanges Orthopt. p. 100, pl. 3. fig. 23, non p. 40, pl. 1. fig. 25.
I have recently received from Johore in the Malay peninsula a line series of specimens of P. mandarince, none of which exhibit the least approach to the remarkable structure of the abdomen seen in the insect described and figured by De Saussure as the supposed female of it. The larvæ of P. momlerinea, moreover, are jet-black throughout, while those of P. Senssurii are deep black-brown symmetrically rariegated with pale testaceous on every part of the body, including the legs, which are ringed, the antenne, which are tipped, and the head, which is triply banded, with the same colour. A further reason for refusing to accept the insect figured by De Saussure on pl. 3 (of. suprec cit.) as the female of the one represented on pl. 1 is that the latter is itself also a female, the sides of the pronotum in the true males of which are produced into huge curved horns, each seprated from the broad semioval median lobe covering the head by a deep rounded emargination.

Hab. A single specimen of the male from Sikkim (L. Mandelli). This insect having been captured just prior to the last moult, the organs of tlight are still in rudiment, and the pronotum is still non-ewarginate.-Journ. Asiatic Soc. Beny. vol. slv. part 2, 1876.

On some Facts relating to the Nutrition of the Embryo in the Egg of the Fowl. By M. C. Dareste.

My investigations in experimental teratogeny have enabled me to ascertain some facts with regard to the nutrition of the embryo in the egg.

If in the first days of incubation we remove the blastoderm with the portion of the vitclline membraue that covers it, and the layer of albumen lining this section of the ritelline membrane, and then, after separating the blastoderm from the ritelline membrane, coagulate the albumen by means of alcohol or hot water, we find that the albumen has completely disappeared above the embryo. There is here a racant space in the form of a hollow cylinder, or rather a portion of a cone with a circular base. This perforation of the allamen is the more considerable in proportion to the distance from the commencement of incubation, and consequently to the space occupied by the embryo in the blastoderm.

This fact was observed by Agassiz ; but I have been able to go further than that illustrious maturalist. In fact I haw aseertained that this disappearance of the albumen is connected solely with the development of the embryo and of the vascular lamella, which, in its origin, is not distinguished from the embryo itself. The albumen disappears only above the circle formed by the rascular area ; and its disappearance increases like this circle. If by chance, as I have observed in my experiments, the rascular area presents an elliptical form, the empty space produced by the disappearance of the albumen presents the form of an elliptical cylinder, or, more correctly, of a portion of a cone with an elliptical base. Thus during the early part of the development the formation of the vascular area is enmected with the gradual disappearance of the layer of albumen corresponding to it on the other side of the vitelline membrane. On the contrary, nothing of the kind takes place in all that portion of the blastoderm which is beyond the vascular lamella aud surrounds it.

This led me to think that the albumen necessary for the nutrition of the embryo does not assist in the nutrition of the blastoderm itself. I have verified this prevision by the examination of hastoderms which had developed without producing any embryo, and which nevertheless had covered almost the whole surface of the yelk. This fact I have several times observed in the course of my teratogenical studies. Under these circumstances the albumen forms a perfectly continuous layer above the blastoderm. We must therefore assume that the blastoderm derives its elements from the yelk, whilst at the commencement of incubation, and, at least, up to the period of the complete closure of the amnios, the embryo is developed at the expense of the albumen.

I may add that the ascertainment of the disappearance of the albumen is the process that I adopt in my investigations whenever I wish to know whether an embryo is being developed in an egg, a fact which the death and disorganization of the blastoderm do not always allow to be ascertained directly. There are, in fact, many circumstances under which the embryo perishes rery early, quite at the commencement of the development; and if the egg is not opened until after the lapse of some days, it is often rery difficult to find any appreciable traces of its existence. The disappearance or the preservation of the albumen furnishes a sure means of deciding as to the former existence of an embryo, and to decide whether the blastoderm has produced an embryo or whether it is one of those blastoderms without an embryo, the occurrence of which in my experiments I have just mentioned.-Comptes Rendus, Oct. 30, 1856, p. 836.

On the Structure and Orgmization of the Polyphemidx. By Dr. C. Clacs.

The structure of the body and limbs of the Polyphemidx (Bythotrephes, Polyphemus, Pordon, Evonlue) may be referred in detail to the
well-known structure of the Daphnide, and their peculiarities thus completely explained morphologically. The principal difference which leads physiologieally to new conditions of embryonic nourishment, and is also of importance with regard to the external form of the body, consists in the transformation of the brood-chamber, bounded by the skin of the back and the inferior lamella of the shell, into a uterus-like sac, the cellular wall of which (hypodermis) becomes a nutrient organ of the ora and embrros, either throughout its whole extent (Porlon, Eroulni), or only in the ventral lamella, which is in contact with the intestine.

The nerrous system could be traced in its whole course in all four genera. The brain is fullowed by a subœesophageal ganglion, Which is united to it hy short broad oesophageal commissures, and by the rentral ganglionic chain, the four inflations of which, united by transrerse commissures, emit nerres for the limbs. The last and smallest pair of ganglia also sends forth nerves to the abdomen and to the tactile setæ of the postabdomen.

The erystalline cones of the large movable eye consist throughout of fire segments; the nerrous rods belonging to them show lamellar structure.

The shell-gland mas traced in all the genera in its whole length to its orifice. In its course it presents characteristic peculiarities in each genus and species, but consists throughout of the ampulliform sac, the immer and outer looped canal, the terminal duct, and the short narrow efferent tube. The dilated terminal duct, extended after the fashion of a reservoir, contains large shining urinary coucretions in Podon and Evadne.

The adherent organ of Evadne and Podon is not a sucking-cup with radiating muscles, but an excretory organ composed of large glandular cells with streaky protophasm. In Evadne nine or ten cells are usually employed in its formation; their conically decreased secreting ends are applied to the well-known cuticular disk.

The ova, as in the Daphnidx, are produced in four-celled chambers of the orars, but are extraordinarily small when they pass into the brood-chamber, where an abundant supply of nourishment is furnished to the dereloping embrro by secretion from the walls. In Evartue the embryo becomes pregnant while still in the body of the mother, and is usually born with four ora in process of segmentation in the uterus.

The formation of the winter egg in Evadue takes place by ab-sorption-processes of the neighbouring egg-chamber.-Kais. Akad. deo Wiss. in Wien, Oct. 26, 1876.

On the Colydiidæ of New Zealand. By D. Serarp.

In the 'Annals,' July 1875 , p. 22, I established a new genus of Colydiidæ, with the name Epistrophus. I find this word has already been used by Kirsch for a genus of Curculionidx; and I promose therefore for the gemes of Colydiidæ above alluded to the name of Epistramus in place of Epistrophus.

THE ANNALS

MAGAZINE OF NATURAL HISTORY.

[FOURTII SERIES.]

No. 110. FEBRUARY 1877.

IX.-On two Vitreohexactinellid Sponges. By H. J. Carter, F.R.S. \&c. [Plate IX.]
The following descriptions of Eurete farreopsis, n. sp., and Myliusia Grayi, Bk., respectively have been made more especially for two purposes, viz. the former to show the mode of growth in Farrea occa, which has not yet been described from a living specimen, and the latter to illustrate the only known living species possessing the structure of the Ventriculidæ that has come to notice.

I am indebted to my friend Dr. J. Nillar for the specimen of Eurete farreopsis, which has been whitened at the expense of the soft parts-for sale, not for the purposes of natural history, -and, from being very delicate in the last-formed portions, has been much broken. Nevertheless sufficient remains for description and for the accompanying illustration of the the general form, which has been taken from a photograph; while the elementary parts more particularly have been obtained from minute shreds of dried sarcode still left about the skeleton, in which are wrapt up the rosettes and smaller spicules of the species.

The specimen of Myliusia Grayi, Bk., belongs to the British Museum ; and through the obligingness of Dr. Giunther I am enabled to give an illustration of this, also delineated from a photograph. It was taken alive, as the presence of the sarcode in many parts indicates; but, appearing very insignificant from its smallness, it has not received that treatment which its Ann. \& Mag. N. Hist. Ser. 4. Jol. xix.
importance as the only living representative of the Ventriculidæ in structure deserves; nevertheless with what remains of this also there is, as will be seen, abundance left for description and illustration. It has already been described and named by Dr. Bowerbank (Proc. Zool. Soc. May 13, 1869, p. 335, pl. xxv. fig. 1), who has given a most faithful illustration of its general structure, to which I would refer the reader; but as neither the gencral form of the specimen itself, including its elementary composition, has been illustrated, nor the resemblance of the latter to that of the Ventriculidex pointed out, it seems to me that a more detailed record of this precious little sponge is desirable; and this I have endeavoured to supply.

Eurete farreopsis, n. sp. (Pl. IX. figs. 1-7.)

Vitreohexactinellid. Skeleton. General form bush-like, fixed, sessile, composed of many tubo-branches anastomosing clathrously. Colourless, translucent, becoming white from increasing density of structure towards the base. Branches short, thick, cylindrical, hollow, formed of a delicate thin reticulated wall thickening from the growing margin towards the base or oldest part, widely separate, dichotomous, anastomosing as before stated. Orifices of branches respectively circular at first (fig. 2, a), then expanded (fig. 2, b), afterwards funnel-shaped (fig. 2, c), becoming elliptical and contracted in the centre (fig. 2, d), where, by the union of the approximated parts of the margin, two circular orifices are formed which grow into two short, round, tubular branches in opposite directions (fig. e), to divide again after the same manner, and so on-or to anastomose with other neighbouring branches, when each branch still gives off two others, so that at the point of junction there are four branches instead of two. Where union takes place, either by the approximation of the two opposite parts of the margin or by direct anastomosis, a raphe is formed. General structure of the wall reticular, the longitudinal lines of fibre, which are the largest, remaining parallel while the tube is round (fig. 2, a), but radiating upon the same plane successively where the orifice becomes expanded (fig. 2, c,d). External surface rough, from the projection of the arms of sexradiate spicules which have not become enveloped by the vitreous fibre; internal surface still rougher from the same cause; mid structure or wall composed of sexradiate spicules woven into a reticulated tissue by the vitreous fibre, of which the meshes are subquadrangular, and, as before stated, the longitudinal fibres largest ; varying in thickness from an extremely thin layer of minute sexradiate spicules in
the groming margin of the orifices at the circumference to a lamina 1-2th inch thick in the fixed or oldest portions at the base. Spicules of three kinds, viz. skeleton-, subskeleton-, and flesh-spicules. Skeletom-spicule sexardiate; arms spined throughout, pointed in the smallest, inflated at the extremities in the largest specimens, \bar{J} - to $40-6000$ oths inch long with proportionate thickness (fig. 4). Subskeleton-spicules of two forms, viz.:-1, acerate, straight, fusiform, attenuately pointed, spined throughout, spines all inclined one way and more or less closely applied to the shaft, 200- by 2-6000ths inch in its greatest diameters (fig. 5) : 2, scopuline spiculc, consisting of a shaft and head (fig. 6 and fig. 3, e) ; shaft cylindrical, abruptly pointed at the free end, quadrampularly inflated at the other, microspined throughout, most evidently towards the free end, 68- by $1-6000$ th inch in its greatest diameters (fig. 6, a) ; head consisting of four arms respectively supported by the four angular projections at the end of the shaft, at first running parallel or slightly curved towards each other and then expanded; arm much thimner than the shaft, inflated globularly at the extremity, microspined throughout, especially towards the inflation, where the spines are long and inclined backwards, leaving the convexity of the inflation smooth or bald, 11-6000ths inch long (fig. 6, b, c). Flesh-spicule a hexactincllid rosette, each arm bearing four capitate rays expanded on fleur-de-lis, 7 -6000ths inch in diameter (fig. 7 and fig. $\left.3, f^{\prime}\right)$, or without extended arms, the latter being reduced to a central point, from which the rays radiate in all directions so as to present a slobular form, $15-6000$ ths inch in diameter (fig. 3, g). Skeleton-spicules free and minute at the growing margin, atterwards becoming larger and enveloped in the vitreous fibre, or distributed throughout the whole structure, from the youngest to the oldest developed part, in a minute form, where one arm is frequently attached vertically to the smooth fibre (fig. $3, d d)$. Acerate subskeleton-spicule sparsely distributed. Scopuline spicule very numerous. Flesh-spicules also numerous. Vitreous fibre smooth between the knots (fig. 3, a $a a$), which are globular and spino-tuberculated all over, except where interrupted by their union with the fibre (fig. $3, b b b$), or by the projection of one or more arms of the sexradiate spicule in the form of large spines, thickened or elongated, pointed or inflated at the extremity, and spinulated throughout (fig. 3, cec); thickest smooth fibre 15- to $19-6000$ ths inch in diameter. Size of specimen $3 \times 4 \times 2$ inches. 3 inches high. Last-formed tubo-branch (viz. at the summit) $4-12$ the inch in diameter : first-formed branch (viz. at the base) $2-12$ ths inch in diameter.

Hab. Marine, fixed on hard objects.
Loc, Philippine Islands.
Ols. The patulous ends of the tubular branches, accompanied by the plumose or radiating structure of the lamina out of which they are formed at this part, and the dichotomous manner of the branching itself, closely ally this species to Farrea occa, whose structure and mode of growth is also thus explained. In a specimen, too, of the latter growing upon a branch of Lophohelia prolifera dredged up on board H.M.S. 'Porcupine,' the fixed end (which, unlike the single layer forming the tube above, is composed of massive reticular tissue) presents a number of minute hexactinellids, each of which has one arm attached to the fibre, as in Eurcte farreopsis. This is also the case in Farrea infundibularis (Ann. \& Mag. Nat. Hist. 1873, vol. xii. p. 448, pl. xvii. fig. 1), whose structure, in many respects, is so very like that of Eurete farreopsis that one can only be considered a variety of the other ; but I do not observe this remarkable feature in either of the Aphrocallistes or in Aulodictyon Woodwardii, Kent.

On account of the absence of the sarcode in the specimen above described, I am unable to state the position which the subskeleton- and flesh-spicules respectively and relatively presented. Nor am I able to say any thing of the dermal or growing layer of sexradiate spicules, which in these specimens is generally washed off with the rest of the sarcode to give them a more attractive appearance in the market, thus leaving nothing but the bare skeleton with a few fragments of dried sarcode here and there, in which, however, some of the minute spicules are almost sure to be retained.

Possessing a broom-like or scopuline spicule, I am able to place this species among those characterized by a "scopuline shaft" (Ann. \& Mag. Nat. Hist. 1873, vol. xii. p. 559), and with Farrea occa, as characterized by the tubular branches being patulous at their orifices (ib. p. 360).

Like as the general form of this specimen is to that given by Marshall of Semper's Eurete simplicissima (Zeitschrift f. wissensch. Zoologie, xxv. Bd. 2nd Supp. Taf. xii. c), there is no part of the detail of the structure given by Marshall in Taf. xiv., except the attachment of the sexradiate to the vitreous fibre (fig. 32, a), which can be identified with it (E. farreopsis). What value may be due to the absence of the scopuline shaft and rosette in E. simplicissima (p. 185), I am unable to say, seeing that the reappearance of the spicules in the centre of the vitreous fibre in Marshall's illustrations (Taf. xiv.) indicates that the specimen had perished long
before it was picked up for preservation, and therefore might have lost, with its sarcode, most, if not all, of these spicules. But where it is stated, a little further on, that neither Sclerothamnus nor Aphrocallistes possesses a rosette, it would have been more to the purpose if Mr. Marshall had said that he had not found any in his specimens, since a knowledge of this kind of sponges points out that the scopuline shatt has hitherto never been found present without a rosette or its representative. Indeed I have stated, from actual observation, that Aphrocallistes Bocayci has a rosette (Ann. \& Mag. Nat. Hist. 1873 , vol. xii. p. 360, pl. xiii. figs. 9 and 10); and Sclerothamnus Clausii, which I now dind to be my Farrea densa (op. et loc. cit. p. 51, pl. xvii. figs. 5 and 6), appears in my mounted specimen with its rosettes attached to it, as well as the head and part of the shaft of one of the scopuline spicules. At the time of figuring the fragment of F. densa, I could only be certain of the characteristic spine, as I was not sure that the rosettes and scopuline shafts belonged to it; but now that I have seen an entire branch, \&c., I see also that they do belong to it, and that Farrea densa (=Sclerothamnus Clausii) does possess a rosette. When the description and illustrations of the whole specimen, "nearly three feet high," have been published this identity will be more evident.

The peculiarities of Eurete furreopsis are the globular tuberculated knots of vitreous fibre (fig. $3, b b b$), which, with the centrally developed spine, looks like a bossed omphalic shield, and the globular inflations respectively at the ends of the scopuline arms very much like a "bald head " (fig. 6, c), while the form of the rosette flesh-spicule is that which generally accompanics the scopuline shatt (Ann. \& Mag. Nat. Hist. 1873, vol. xii. pl. xiii. fig. 9), occasionally varied, as in the present instance, where the arms are reduced to a mere point and the diameter of the rosette much larger (fig. 3, g). The acerate spicule (fig. 5), too, with closely applied spines all directed the same way, is still more common among the Hexactinellida. To the presence of the minute sexradiate, one arm of which is attached to the vitreous fibre (fig. 3, $d d$) by an extension from the surface of the latter, I have already alluded as a remarkable feature in this kind of spongeskeleton.

Mr. Marshall's criticisms generally of my papers on the Hexactinellida and Lithistida, and on my "Notes introductory to the Study and Classification of the Spongida," respectively (op. ct loc. cit.), I have neither time nor inclination to reply to, especially as the author's amount of knowledge of the subject
does not appear to me to be equal to my own ; so I must leave them for a future generation.

Since the ahove was written, I have received from Mr. T. Higgins a microscopic specimen of a Hexactinellid sponge purchased by the Liverpool Free Muscum from Mr. Gerard, and said to have been collected by Dr. Neyer in the Philippine Islands. It is Eurete farreopsis, and is fellow to Dr. Millar's specimen above described, as I have now ascertained by an examination of the entire specimen.

Mylusia Grayi, Bk. Proc. Zool. Soc. 1869, p. 335. (Pl. IX. figs. 8-17.)

Vitreohexactinellid. General form hemispheric; general appearance enteromorphous or cerebriform ; sessile; consisting of tortuous anastomosing tubular canals or passages separated by equally tortuous labyrinthic intervals. Tubular canals or passages now terminating on the surface in round patulous or long tortuous gutter-like openings. Colour white, translucent, slightly ycllowed by the presence of dried sarcode. Surface of tubular passages, both externally and internally, covered with a dermal layer of small sexradiate spicules, whose horizontal arms overlapping each other form a continuous quadrilateral meshwork. Margin of the openings of the passages on the surface fringed with the spined arms of long, thin, sexradiate spicules mixed with still larger (?acerates), whose shafts are uneven but not spined, unless it be microscopically in some parts. Pores and vents not discernible, from the mutilated state of the surface. Internal or body structure of the wall of the tubular passages composed of lozenge-shaped or lantern-like knots of vitreous fibre applied end to end, three or more layers deep, thus forming a laminate mass of trapezoids united to each other at their angles in successive rows (fig. 10), with cylindrical intervals between them crossing each other more or less rectangularly (fig. 10, $\hbar h$); traversed by the branches of the excretory canal-system, and when fresh probably more or less divided into cavities by soft porous expansions of the sarcode (now dried) bearing the ampullaceous sacs or groups of spongozoa. Spicules of two kinds, viz. skeleton- and flesh-spicules. Skeleton-spicules of three forms, viz. : -1 , small, sexradiate, arms not inflated at their junction, attcuuately pointed and thickly spined throughout, about $15-1800$ ths inch long by $\frac{1}{2}-1800$ th inch thick at the base (fig. 13); 2, much larger, sexradiate, the same, but with the arms slightly inflated at the extremity and 30- to $100-$ 1800 ths inch long (fig. 16) ; 3, still much larger (? acerate
fusiform, attenuately pointed), unspined, but uneven on the surface and here and there microspined; length unknown; largest framment 170- by 3 -1800th inch in its "greatest diameters (figr. 17). Flesh-spicules of two forms, viz. : -1 , rosette, globular, consisting of six short arms (the third axis, which is vertical to the other two, is omitted in the illustration for perspicuity), each of which is surmounted by five long capitate rays expanded in a vasiform manner, 4 -1 sooths inch in diameter (fig. 14 and fig. $10, f) ; 2$, bundles of minute, hair-like, undulating acerates like the tricurvate or bow spicule, about $4-1800$ this inch long (fig. 15 and fig. 10, g).

The small sexradiates become the centres respectively of the trapezoids (fig. 9, c), which are thus formed by the extension of a thread of vitreous sarcode from one end of each of the arms of the sexradiate spicule to the other (fig. 9, a), strengthened at each attachment by subsidiary threads, which form an irregular reticulation between the main thread and the arm at each end of the latter (fig. 9,6) ; finally increasing in thickness throughout till the trapezoid is fully formed and presents four sides (fig. 10, a), with eight lantern-like holes in them, one in each triangular face (fig. 10, i), through which the sexradiate form of the original spicule may be seen in the centre intact (fig. 10, c). Trapezoid about 14-1800ths inch in dianeter. Spicules nos. 2 and 3 form the fringe round the apertures which interknits with the body-structure of the lamina internally, the latter, or the supposed acerate form, extending beyond the former, both distally and proximally; while the flesh-spicules are seattered throughout the structure unequallythat is, much more numerously towards the surface. Size $\frac{1}{2}$ inch high by $\frac{7}{8}$ inch in horizontal diameter.

Hab. Marine.
Loc. Island of St. Vincent, West Indies.
Obs. In the Proc. Zool. Soc. Lond. 1859, p. 439, pl. xvi. Radiata, the late Dr. J. E. Gray described and illustrated a vitreohexactinellid sponge, to which he gave the name of "Iryliusia callocyathes," after Christopher Mylius of 1753. There are two specimens of this sponge in the British Museum, viz. the original one (figured l. c.), about $3 \frac{3}{4}$ inches in diameter, and the other about $1 \frac{1}{2}$ inch wide, numbered " 43.2 .13 .67 ." Both are stated by Dr. Gray, in his "Notes on the Arrangement of Sponges " (np. cit. 1867, p. 506), to have come from the West Indies. To which a third specimen has been added from the "Island of St. Vincent in the West Indies, collected by the Rev. L. Guilding," with the name "Scriviner " (? dealer) on the board bearing the specimen, numbered " 40.10 .23 .11 ."

In the same 'Proccedings,' but of 1869 (p. 335, pl. sxv.
fig. 1), Dr. Bowerbank figures faithfully a fragment of the latter, which he finds not to be Myliusia callocyathes, but, although very like in outward appearance to it, totally different in structure ; hence he calls it "Mylusia Grayi."

Having subsequently had to examine this sponge for the late Dr. Gray, I saw that its minute structure (fig. 10) was like that of the fossil species figured by Schmidt (Atlantisch. Spongienf. Taf. ii. fig. 16) under the general appellation of fossil spicules from "Scyphia and Ventriculites" (Ann. \& Mag. Nat. Hist. 1873, vol. xii. p. 365). Next I identified the lantern-like knot of Myluusia Grayi with Mr. W. J. Sollas's figures of the structure of the Ventriculites (Proc. Geol. Soc. Lond. 1872, p. 65, fig. 2); lastly, with the late Mr. J. Toulmin Smith's representations of the structure of the "Ventriculidæ of the Chalk" (Ann. \& Mag. Nat. Hist. 1847, vol. xx . pl. vii. figs. 8-14.

I nest observed the lantern-like knot among the "Cretaceous Microzoa of the North of Treland," figured by Mr. J. Wright (Report of Belfast Naturalists' Field-Club, 1873-74, Append. iii., published 1875, pl. iii. fig. 7). After this I found it myself among fossil sponge-spicules from the Mid Eocene of Brussels, kindly sent me by M. Ernest Vanden Broeck. And it again appears under another form in the beautiful illustrations of the structure of Coloptychium agaricoides by Prof. Karl Zittel of Munich ('Ueber Coeloptychium,' München, 1876, Taf. iii. figs. 7-12). Finally in 1876 I obtained a slice of a Ventriculite from Mr. Ed. Charlesworth, of the Strand, London, and identified it therein myself.

It was then that I saw the desirability of illustrating the only known living specimen of the kind, viz. Myliusia Grayi in the British Muscum ; and having obtained permission of Dr. Günther for this purpose, I have done my best to publish it; for the specimen is very small, and, from its insignificant appearance and dirty colour, would be very likely to be lost sight of altogether, since it does not present the attractive bright glassy aspect and sarcodeless character usually possessed by the vitreous sponges after they have passed through the the hands of the dealer.

Although Myliusia Grayi presents the convoluted cerebriform appearance of M. callocyathes, yet its minute structure is totally different, inasmuch as the knots or junctions of the fibre in the latter are solid and round, not hollow and lantern-shaped as in M. Grayi. Again, the general structure of M. Grayi, although convoluted, is massive and labyrinthic throughout, not cup-shaped or hollow in the axis as that of the Ventriculites; while Coeloptychium consists of radiating tubes more or less
branched round a hollow axis or stem, which in the horizontal section resembles Ventriculites.

In the evolution of the lantern-like joint it may be observed that this commences on a sexradiate spicule (fig. 9, c), the centre of which becomes the centre of the lantern, while the structureless sarcode, which here very much resembles that of the Rhizopodi, creeps crookedly and fungus-like from one point of the sexradiate direct to the other, thus marking out the lines of a trapezium (fig. 9,b). After this, subsidiary pseudopodal prolongations are continued from the fixed ends of the threads respectively to the arms of the sexradiate, which in a reticulated form thus further unite the two and act as additional stays to the main ones. After this the silicifying sarcode still goes on adding layer after layer to the original structure, until the whole becomes greatly thickened and the interstices of the reticulation reduced to eight spaces as before mentioned, so as almost to obscure the cross of the original sexradiate in the centre, which, although also thickened by the silicifying sarcode, still remains intact. Thus, in short, the sexradiate becomes as much imbedded in the vitreous sarcode as if it were in radiate fibre.

The fringe of spicules which is or, rather, was (for it now lies in loose pieces about the specimen) attached to the growing margins of the circular and gutter-like openings, is also composed of sexradiates, but much larger than those upon which the lanterns are formed; and while five of their arms interknit proximally with the body-structure of the wall of the tubular tortuous channel, the sixth is free and very long comparatively; while the fringe thus formed is still further lengthened by the presence of many (?acerates) much thicker and longer than any of the rays of the sexradiate, and which, by their uneven surface, seem to represent that form of accrate, so common among the IExactinellida generally, in which the spines are long and all inclined one way-that is, inwardly in situ (fig. 5). Still this is of course conjecture; for I have never been able to find more than a fragment of the shaft of these, but never connected with any cross piece so as to indicate that they belonged to a sexradiate spicule. However, the surface is so mutilated that the fragments of this fringe are, as just stated, all loose upon the specimen, and only by their pencil-like form here and there, in which the spicules are held together in their natural position by the dried sarcode, show the manner in which they were arranged when attached to the margin of the circular and gutter-like openings of the tubular channels or passages.

The rosettes are large (especially when compared with those
of the last species, as the illustrations figs. 7 and 14 respectively, which are drawn to the same scale, indicate) and numerous, particularly towards the surface; and the little bundles of minute undulating, fine, hair-like acerates (fig. 10, g), which I have so often figured in the Esperiada and other sponges of the Holorhaphidota, are also very plentiful, and very frequently present a distinet, tricurvate or bow-like form (fig. 15).

I need not allude further to the differences between this and the foregoing species, viz. Eurete farreopsis, as these may be gathered from the descriptions and illustrations respectively.

In the formation of the lanterns from the sarcodic substance one cannot help being struck with the fact that, while this part of the sponge appears to be Radiolarian, the addition of the Spongozoa makes the sponge. This "radiolarian" sarcode is the "intercellular substance, which forms the bond of union between the cells" in sponges, that I described and delineated in Spongilla in 1849 (Amn. \& Mag. Nat. Hist. vol. iv. pp. 87 and 91, pl. iv. fig. 2) as possessing the polymorphic power and contracting vesicles of an A mœba.

explanation of plate ix.

Fig. 1. Eurete farreopsis, n. sp., natural size ; from a photograph.
Fig. 2. The same. Fire diagrams, to show the mode of growth, commencing with a, simple cylinder with circular orifice; b, the same, with orifice expanded; c, the same, with orifice become funnelshaped ; d, with orifice elliptical and contracted in the centre, like the figure 8 ; e, approximated sides united so as to form a simple cylinder on each side, with circular orifice, $f f$, like that of a.
Fig. 3. The same, minute structure of the wall, magnified. a a a a, fibre ; $b b b b$, knots or points of junction of the fibre ; $c c c$, occasional spines on the same ; d d, minute hexactinellid spicules which the fibre has attached to itself; e, scopuline spicule $; f$, small rosette, common form ; g, large rosette, occasional form. Scale 1-24th to 1-1800th inch.
Fig. 4. The same, form of staple sexradiate spicule.
Fig. 5. The same, spined acerate.
Fig. 6. The same, scopuline spicule. a, shaft; b, arm ; c, head of arm, more magnified, to show the form and arrangement of the spines.
Fig. 7. The same, usual form of the rosette. (The third axis, which would be vertical to the others, has been omitted for perspicuity.) N.B. Figs. 4 to 7 inclusively are on the scale of 1-24th to 1-6000th of an inch.
Fig. 8. Myliusia Grayi, Bk., natural size ; from a photograph.
Fig. 9. The same: four knots or trapezoids, magnitied, to show their earliest appearance. a, trapezoid ; b, reticulated threads of silicifying sarcode extending from point to point of the sexradiate spicule, c. (The vertical axis of the latter omitted here also for perspicuity.)
Fig. 10. The same: four knots or trapezoids, magnified, to show their form under full development. a, trapezoid with reticulated
threads of silicifying arcode all run together into solid fibre, thus enveloping the sexradiate spicule, c, in the contre, which is otherwise hollow; d, spine or arm of sexrndiate increased in size by the silicifyiug sarcomb, but not enveloped in the fibre; e, end of vertical arm of sexradiate truncated ; f, rosette; g, bundle of minute hair-like undulating accrates, frequently tricurvate or bow-shaped; $h h$, cylindrical intervala or channels between the trapezoids ; i, lantern-like hole, reduced to eight in each trapezoid.
N.B. Athough both these figures, viz. 5 and 10, are drawn upon the same scale (viz. 1-24th to 1-1800th inch), it must not be assumed that the trapezoids are as reqularly formed throughout the mass; hence they must, to a certain extent, be riewed more or less as diagrammatic.
Fig. 13. The same: oblique view of the traperoid of fig. 9, showing all the arms of the sexradiate spicule within the reticulated threads of silicifying sarcode.
Fig. 12. The same : diagram of trapezoid to show the sexradiate cross as it exists in the trapezoid of fig. 10.
Fig. 13. The same : staple form of dermal sexradiate, scalo 1-24th to 11800th inch.
Fig. 14. The same: rosette, more magnified.
Fig. 15. The same : tricurrates, more magnified.
Fig. 16. The same: large sexradiate spicule of the fringe.
Fig. 17. The same : fragment of large uneven spicule in the fringe.
X.-List of the Species of Crustacea collected by the Rev. A. E. Eaton at Spitzbergen in the Summer of 1873 , with their Localities and Notes. By Edward J. Miers, F.L.S., F.Z.S., Assistant in the Zoological Department, British Museum.
A small collection of Crustacea, made by the Rev. A. E. Eaton during a voyage with B. Leigh Smith, Esq., to Spitzbergen, in 1873, was presented to the Trustees of the British Museum in the following year. The species are most of them well-known Aretic forms; but the specimens generally are of a large size and in an excellent state of preservation. The value of the collection is further enhanced by the exact loca-- lity of nearly every specimen being recorded.

The crustacean fauna of the Scandinavian and adjacent arctic seas appears to have been investigated more thoroughly than that of any other great region of the globe, if we may judge from the amount of literature relating to it ; for in the Introduction to his 'standinaviske og Arktiske Amphipoder' (Christiania, 4to, 1872), A. Boeck enumerates no less than 273 publications in which animals of this order alone are referred to in connexion with this area.

In $1863 \mathrm{~A} . v$. Goés published a list of the Decapoda inhabiting the region mentioned, with remarks on the geographical
distribution of each of the species (in Cefvers. Kongl. Vetensk. Akad. Förhandl. p. 161) ; in addition to all which are mentioned below, he records many others from Spitzbergen.

The long-known and widely distributed Isopod Ega psora, Pennant (Eya emarginata, Leach), has not, to my knowledge, been obtained in these seas before.

In 1865 the Spitzbergen Amphipoda were dealt with by A. v. Goës (in Eftvers. af K. Vet. Akad. Förh. 1865, pp. 517536, pls. 6). Anonyx bidenticulatus, S. Bate, is the only one in the present collection that is unnoticed by him. Mr. Spence Bate, in the Catalogue of Amphipodous Crustacea in the collection of the British Museum (1862), referred to this species as synonymous with A. mugax, Phipps; but a careful comparison of the two forms leads me to differ from him in opinion, and to consider them to be quite distinct from one another *.

The cirriped Balanus porcatus, Da Costa, is another addition to our knowledge of the Spitzbergen fauna; and so is one of the two species of Pycnogonida collected, Nymphon gracile, Leach.

DECAPODA.

Hras, Leach.

Hyas araneus.
Cancer araneus, Linn. Syst. Nat. (ed. xii.) p. 1044 (1766) ; Pennant, Brit. Zool. iv. p. 6, pl. ix. fig. 16 (1777).
Cancer bufo, Herbst, Naturg. Krabben u. Krebse, i. p. 242, pl. xvii. fig. 95 (1790).
Hyas araneus, Leach, Ed. Encycl. vii. p. 431 (1814); Mal. Pod. Brit. pl. xxi. A. figs. 1-5; Bell, Brit. Crust. p. 31 (1853); Goës, Efv. Kongl. Vet. Akad. Förh. p. 161 (1863).
Hyas aranea, M.-Edw. Hist. Nat. Crust. i. p. 312 (1834).
Hab. Green Harbour (Ice Fiord), in 30 fathoms (IValker).
A single example (an adult male) is in the collection.
Eupagurds, Brandt.
Eupagurus pubescens.
Pagurus pubescens, Kröyer, Kongl. Danske Vidensk. Selsk. 7 Deel, p. 314 (1838) ; Nat. Tidsskr. fürse R. ii. p. 251 (1838-9); Voy. en Ścand.

* Among the shells collected were some miscellanea not seen by me, which were sent to the Rev. A. M. Norman for examination. Fragments of Vertumnus serratus, Fab., and of Byblis Gaimardi, Kröyer, were detected by him. Accepting his determinations, I include them in the list and give their synonymy. Their localities were not stated in the letter.
pl. ii. fig. 1: Brandt, Middend. Sibirische Reise, Zool. pt. i. p. 111 (1851); Goees, Qefv. Koner. Vet. Akad. Förhandl. p. 160 (180i:3).

Eupayurus pubescens, Stimpson, Proc. Ac. Nat. Sci. Phil. p. $2: 37$ (18 i, 8).
IIab. Green Harbour.
A fine series of specimens, young and adult, is in the collection.
The crustacea and fish from Green Marbour and Magdalena Bay were mostly obtained with a trawl by Captain Walker of Hull, Master of Mr. Leigh Smith's yacht the 'Sampson,' acting as tender to the 'Diana.'

Sableei, Ross.
 Sabinea septemcarinata.

Crangon septemcarinatus, Sabine, Capt. Parry's lst Voy. Appen. no. x. p. 58, pl. ii. figs. 11-1:3 (1821); M.-F.dw. Hist. Nat. Crust. ii. p. 343 (1837) ; Goës, Kongl. Vet. Akad. Förh. p. 173 (1863).

Sabinea septemcarinata, Owen, Append. Ross's 2nd Voy. Zool. Crust. p. Ixxxii (1835).

Sabinea (Cranyon) septemcarinata, Kröyer, Nat. Tidsskr. iv. p. 244, pl. iv. figs. 34-40, pl. v. figs. 41-44 (1842-43).
Hab. Green Marbour.
A single specimen is in the collection. Length 3 inches.
Cherapiiles, Kinahan.
Cheraphilus boreas.
C'ancer boreas, Phipps, Voy. North Pole, p. 190, pl. xii. fig. 1 (1774).
Cancer homaroides, O. Fabr. Fauna Gruenlandica, p. 241 (1780); Mohr, Isl. Naturhist. Nr. 245, pl. v. (1786).
Crangon Lnreas, Fabr. Ent. Syst. Suppl. p. 410 (1708) ; M.-Edw. Hist. Nat. Crust. ii. p. 342 (18:37); Kröyer, Nat. Tidsskr. ir. p. 218, pl. ir. figs. 1-14 (1842-43); Goës, (Efv. Kongl. Vet. Akad. Förh. p. 173 (18i33); Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 271 (1874).

Cheraphilus boreas, Kinahan, Proc. Royal Irish Acad. viii. p. 68 (1864).
Hab. Green Harbour ; Lomme Bay, in 15 fathoms
A large series of specimens of rarious ages is in the collection. There is a median longitudinal series of four spines on the carapace, of which the second and third are placed near to one another and are sometimes united. In the adult specimens the lateral ridges are less strongly defined, and the spines upon the carapace and first and second abdominal segments are more obtuse or even obsolete. The largest specimen (a female with ova) has a length, from tip of rostrum to extremity of telson, of nearly 4 inches.

Hiprolite, Leach.
Hippolyte polaris.
Alpheus polaris, Sabine, in Parry's lst Voy. Append. no. x. p. 60, pl. ii. figs. 5-8 (1821).
Hippolyte polaris, Owen, Append. Ross's 2nd Voy. Zool. Crust. p. Ixxxy
(1835) ; M.-Edw. Hist. Nat. (1rust. ii. p. 376 (1837) ; Kröyer, Monorr. Fremst. Sleprt. Hippolyte's nord. Art. p. 116, pl. iii. figs. 78-81, pl. iv. fig. 8: (1842); Goës, QEfv. Kongl. Vet. Akad. Förh. p. 169 (1863).

Hab. Carl Island and Cape Torell, in 12-18 fathoms.

> Hippolyte Gaimardii.

Hippolyte Gaimardii, M.-Edv. Hist. Nat. Crust. ii. p. 378 (1837); Kröyer, Monogr. Fremst. Slægt. Hippolyte's nord. Art. p. 74, pl. i. figs. 21-29 (1842).
Hippolyte Gaimardi, Goës, CEfv. Kongl. Vetensk. Akad. Förh. p. 168 (1863).

Hab. Green Harbour.

Hippolyte borealis.

Hippolyte borealis, Oren, Append. Ross's 2nd Voy. Zool. Crust. p. lxxxiv, pl. B. fig. 3 (1835) ; M.-Edw. Mist. Nat. Crust. ii. p. 372 (1837); Kröver, Monogr. Fremst. Slægt. Hippolyte's nord. Art. p. 122, pl. iii. figs. 74-77 (1842) ; Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 276 (1874).
Hab. Carl Island and Cape Torell, in 12-18 fathoms.
In nearly all the specimens that I refer to this species tho three or four teeth on the inferior margin of the rostrum are very obscurely defined. In one specimen they are entirely obsolete. The upper margin of the rostrum in this species is always smooth, entire, and unarmed.

> ISOPODA.

Æga, Leach.
Aga psora.

Oniscus psora, Pennant, Brit. Zool. iv. pl. xviii. fig. 1 (1777).
Aga emarginata, Leach, Trans. Linn. Soc. xi. p. 370 (1815) ; M.-Edw. Hist. Nat. Crust. iii. p. 240 (1840); Cuvier, Règne Animal (ed. Crochard), pl. lxxvii. fig. 1.
Ega psora, Spence Bate and Westwood, Brit. Sessile-Eyed Crust. ii. p. 283 (1868).

Hab. Green Harbour.
Two specimens in the collection. Length $1 \frac{5}{6}$ inch.

AMPHIPODA.

Stegocepiealde, Kröyer.
Stegocephalus ampulla.
Cancer ampulla, Phipps, Voy. North Pole, Append. p. 191, pl. xii. fig. 3 (1774).
Lysianassa? ampulla, M.-Edw. Hist. Nat. Crust. iii. p. 22 (1840).

Stegocephalus ampulli, Spence Bate, Cat. Amphip. Crust. Brit. Mus.
 p. in!l, pl. xxxviii. fig. 9 (letit); Boeck (part), Forhandl. Vidensk. Selsk. p. 128 (1870).
Ilab. Near Carl Island and Cape Torell, in 12-18 fathoms.
In the single specimen of this species in the collection the rostrum is oltusely pointed and reaches beyond the peduncle of the short superior antenne. The coxa of the secund pair of pereiopoda have the anterior margin straight, and are produced posteriorly to a distance equalling twice the width of the coxa at its upper margin. The bases of the fifth pair of pereiopoda have the postero-lateral margins rounded. The third segment of the pleon has the posterior margin regularly concare excarate. The colour is dark olive-green, with a small faintly marked white spot on each side of every segment of the body.

Stegocephalus inflatus.

Siegocephalus influtus, Fröyer, Nat. Tidsskr. 1 R. iv. p. 150 (1842-43); 2 R. i. p. 522 (1844-45) ; Voy. en Scand. pl. xx. fig. 6.
Stegocephalus ampulla, (ioees, Qifv. Kongl. Vet. Ak. Förhandl. p. 521, pl. xxxviii. fig. © (l४6ī); Boeck (part), Forhandl. Vidensk. Selsk. p. 128 (1870).

Hab. Carl Island and Cape Torell, in 12-18 fathoms.
Sereral specimens are in the collection. They all hare the rostrum acute and shorter than the peduncle of the superior antennæ. Coxæ of the second pair of pereiopoda hatchet-shaped; the anterior margin slightly concare, the postero-lateral lobe acute and produced to a distance not exceeding the width of the coxa at its upper margin. Bases of fifth pair of pereiopoda with the postero-lateral angle acute. Third segment of the pleon with the posterior margin angularly excarate. Colour jellowish white, with transverse series of brown patches on each segment and coxæ.

> Vertumes, Bocek.
> Vertumnus serratus.

Oniscus serratus, O. Fabr. Fauna Grenl. p. 262 (1780).
Amphithoë serra, Kröyer, Danske Vidensk. Selsk. Afh. vii. p. 266, pl. ii. fig. 8 (1838); M.-Edw. Hist. Nat. Crust. iii. p. 25 (1840).
Acanthonotus serratus, Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 127 (1862).

Vertummus serratus, Goës, Efv. Kongl. Vet. Akad. Förhandl. p. 523 (1865) ; Boeck, Vidensk. Selsk. Forhandl. p. 180 (1870).

Hab. Spitzbergen.

Anontx, Kröyer.
Anonyx nugax.
Cancer nugax, Phipps, Voy. North Pole, Appendix, p. 192, pl. xii. fig. 2 (1774).
Lysianassa (Anonyx) Ingena, Kröyer, Danske Vid. Selsk. Nat. Afh. vii.
p. 237, pl. i. fig. 1, $q^{2}(1838)$; M.-Edw. Hist. Nat. Crust. iii. p. 21 (1840) ; Goës, Cffr. Vet. Alv. Förl. p. 518 (1865).

Lysianassa (Anonyx.) appendiculosa, Kröyer, l.c. p. 240, pl. 1. fig. 2, ${ }^{\circ}$ (1838).

Anony.r ampulla, Kröyer, Nat. Tidsslir. 2 R. i. p. 578 (1844); Voy. en Scand. pl. xiii. fig. 2 .
Anomy.: (Lysianassa) lagena, Boeck, Skandin. og Arktiske Amphip. p. 152 (1872).

Hab. Green Harbour ; Carl Island, Cape Torell, in 12-18 fathoms.
Phipps's figure of this common Arctic species is quite recognizable; and his name must therefore be adopted for it.

Anonys bidenticulatus.

Lysianassa bidenticulata, Spence Bate, Ann. \& Mag. Nat. Hist. sel. 3, i. p. 362 (1858).

Lysianassa mugax, Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 65, pl. x. fig. 3 (1862), nec auctorum.
Hab. Fair Haven, in 4-5 fathoms; Lomme Bay, 15 fathoms.
The specimens which I refer to this species are distinguished by the form of the third segment of the pleon, which has a second tooth on its posterior margin above that of the postero-lateral angle. Boeck, in his 'Skandinariske og Arktiske Amphipoder,' refers Mr. Spence Bate's figure of L.mugax to Socarnes Vahlii, Kröyer-wrongly, I think; for in that species the inferior angle of the third segment of the pleon is "ralde rotundatus " (see also Kröyer's figure of S. Vahlii in the 'Voy. en Scandinavie', pl. xiv. fig. 1).

Atylus, Leach.
 Atylus carinatus.

Gammarus carinatus, Fabr. Ent. Syst. ii. p. 515 (1793).
Atylus carinatus, Leach, Zool. Miscell. iii. p. 22, pl. lxix. (1815); M.-Edw. Hist. Nat. Crust. iii. p. 68 (1840); Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 134, pl. xxv. figs. 1-3 (1862) ; Boeck, Forhandl. Vidensk. Selsk. p. 190 (1870); Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 357, pl. x. (1874).
Amphithuë carinata, Kröyer, Kongl. Danske Vid. Selsk. 7 Deel p. 256, pl. ii. fig. 6 (1838); Voy. en Scand. pl. xi. fig. 1; M.-Edw. Hist. Nat. Crust, iii. p. 41 (1840).
Paramphithoë carinata, Goës, (Efv. Kongl. Vet. Akad. Förh. p. 623 (1865).

Hab. Lomme Bay, in 15 fathoms.
Acanthozone, Bueck.
Acanthozone hystrix.
Acanthosoma hystrix, Owen, Append. Ross's 2nd Voy. Zool. Crust. p. 91, pl. B. fig. 4 (1835).
Amphithoë hystrix, Kröyer, Kongl. Danske Vid. Selsk. Deel 7, pl. ii. figs. 6 \& 7 (1838) ; M.-Edwards, Hist. Nat. Crust. iii. p. 40 (1840). Paramphithoë hystrix, Bruzelius, Kongl. Vet. Akad. Handl. iii. p. 71
(1859) ; Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 147, pl. xxviii. hig. 1 (lefie) ; (ineis, (Eff. Kong. Vet. Alad. Förh. p. 5e: (1N6in).
Acomthoome hystrix, Wheck, Forhandl. Vidensk. Selsli. p. 184 (1870).
Hab. Carl Island and Cape 'Iorell, in 12-18 fathoms.
This species has been referred by boeck to the Oniscus cuspridatus of Lepechin (Leta Acad. Sei. Petrop. p. 249 , pl. viii. fig. 3, 17-1) ; but the species figured by that author differs in having vertically projecting spines upon only the first four segments of the pereion. The species figured hy Buchholz (/Wweite deutsche Nordpolarf. Zool. ('rust. p. $3\left(3,2, p^{1}\right.$. xi.) as Acenthezone hystrix differs from that figured by Owen in the more numerous and closely placed spines upon the posterior margins of the basa of the pereiopoda, and in the form of the rostrum, and is, I think, distinct.

The name Acenthozone has been substituted by Boeck for Acanthosoma, the latter name being preoceupied in entomology.

> Tritropis, Boeck.
> Tritropis aculeata.

Oniscus aculeutus, Lepechin, Acta Acad. Sci. Petropolit. p. 247, pl. viii. fig. 1 (1780).
Talitrus Edectrdsii, Sabine, Capt. Parry's 1st Voy. Append. no. x. p. 54, pl. ii. figs. 1-4 (1821).
Amphithonotus Edwardsui, Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 151 , pl. xxviii. fig. 5 (1862).

Amphithonotus aculeutus, Goës, ©fr. Vet. Akad. Fïrh. p. 526 (1865) ; Buchholz, Zweite deutsche Nordpolarf. p. 316, pl. iv. (1874).
Tritropis aculeata, Boeck, Forhandl. Vidensk. Selsk. p. 158 (1870).
Hab. Green Harbour.

Byblis, A. Boeck.

> Byblis Gaimardi.

Ampelisca Gaimardi, Kröyer, in Gaimard's Voy, en Scand. Crust. pl. xxiii. fig. 1 ; Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 91, pl. xv. fig. 1 ($1 \times \mathrm{U}^{2} 2$); Goës, (Efv. Kongl. Vet. Aliad. Förh. p. 529 (1865).

Tctromatus typicus, Spence Bate, Brit. Assoc. Rep. p. 58 (1855); Ann. \& Mag. Nat. Hist. ser. 2, vol. xix. p. 139 (1857); White, Pop. Hist. Brit. C'rust. p. 171, pl. x. fig. 4 (1857).
Byblis Gaimardi, A. Moeck, Vidensk. Selsk. Forhandl. p. 228 (1870).
Hab. Spitzbergen.
Eusirus, Kröyer.
Eusirus cuspidatus.
Eusirus cuspidatus, Ǩröyer, Nat. Tidsskr. 2 R. i. p. 501 (1844-5); Voy. en Scand. pl. xix. fig. 2 ; Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 154, pl. xxviii. figs. 6, 7 (1862) ; Goës, Efv. Vet. Akad.
Ann. \& Mag. N. Hist. Ser. 4. Vol. xix. 10

Förh. p. 629 (1865) ; Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 313, pl. iii. fig. 12 (1874).
Hab. Carl Island and Cape Torell, in 12-18 fathoms.

Ayatmila, S. Bate and Westrood.
 Amathilla Sabini.

Gammarus Sabini, Leach, Append. Ross's 1st Voy. p. 178 (1819); Sabine, Capt. Parry's 1st Voy. Append. p. 54, pl. i. figs. 8-11 (1821); Kröyer, Kongl. Danske Vid.'Selsk. Deel 7, p. 244, pl. i. fig. 3 (1838); Goës, CEfv. Vet. Ak. Förh. p. 531 (1865).
Amathia Sabimii, Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 197, pl. xxxr. fig. 9 (1862).
Amathilla Salini, Spence Bate \& Westrood, Brit. Sessile-Eyed Crust. i. p. 361 ($\mathbf{1 8 6 1}$); Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 346, pl. viii. figs. 1, 2, and pl. ix. fig. 1 (1874).
Hab. Treurenberg Bay, along the shore.

Gammards, Fabricius.

Gammarus locusta.

Cancer locusta, Linn. Syst. Nat. ed. xii. p. 1055 (1766).
Gammarus locusta, Fabr. Ent. Syst. ii. p. 516 (1793); Leach, Trans. Linn. Soc. xi. p. 359 (1815) ; M.-Edw. Hist. Nat. Crust. iii. p. 44 (1840); Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 206. pl. xxxvi. fig. 6 (1862) ; Goës (part), Efr. Kongl. Vet. Akad. Förh. p. 530 (1860) ; Boeck, Vidensk. Selsk. Förhandl. p. 204 (1870); Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 343 (1874).
Gammarus boreus, Sabine, Capt. Parry's 1st Voy. Append. p. 51 (1821).

Giammarus Duebeni, Lilljeborg, CEfv. Ǩongl. Vet. Akad. Förhandl. p. 22 (1851).

Gammarus mutatus, Lilljeborg, Kongl. Vet. Akad. Handl. p. 447 (1853).
Gammarus sitchensi, Brandt, in Middendorff"s Sibirische Reise (2nd part), i. p. 133 (1851).
Hab. Magdalena Bay.

Thesirsto, Guérin-Ménérille.

Themisto libellula.

G'ammarus libellula, Mandt, Observ. Hist. Nat. in itin. grœeland. factæ Diss. p. 22 (1822).
Themisto arctica, Kröyer, Kongl. Danske Vid. Selsk. naturv. Afh. vii. p. 291, pl. iv. fig. 16 (1838) ; Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 315, pl. 4. fig. 11 (1862).
Themisto crassicornis, Kröyer, l. c. p. 295, pl. iv. fig. 17 (1838) ; Spence Bate, l. c. p. 315, pl. 4. fig. 12 (1862).
Themisto libellula, Goës, QEfv. Vet. Akad. Förh. p. 533 (1865); Boeck, Skandin. og Arktiske Amphip. p. 88, pl. i. fig. 5 (1872).
Hab. Spitzbergen, abundant among the floes and along the shore.

Some of the specimens in the collection were found in a saddeback's stomach killed off the Western Ice in green water.

> Carbela, Lamarck.
> Caprella septentrionalis.

Squilla lobata, O. Fabr. Fauna Gronland. p. $24 \times(17 \times 0)$, nec Miiller.
Capmella septentrionalis, Kriyer, Nat. Tidsskr. 1 Li. iv, p, EOO, pl. viii. firs. 10-1!) (184:3): Voy. ch Samd. pl. xxv. fig. 2; Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. ion p, pl. Wi. fir. is (lefiz); Goës, (Efv. Kongl. Vet. Ak. Förhandl. p. Sist (lx(0.) ; Boeck, Vidensk. Selsk. Forhandl. p. 276 (1870).
Caprella cercopoülex, White, in S'utherland's Journ. Crust. p. 207 (185:) .
Hab. Fair Haven, in $4-5$ fathoms. Abundant on Alge and Polyzoa. Colour in life reddish brown.

Now and then a moring speck might be seen on the smooth surface of the water from the boat. Sometimes close inspection would enable the cause of the minute disturbance of the sea to be detected in the form of a Caprella making strenuous efforts to swim, throwing itself about like a letter S in agonies.

Caprella spinosissima.

Egina spinosissima, Stimpson, Syn. Invert. Great Manan, p. 44 (1853).
Caprella spimifera, Bell, in Belcher's 'Last of the Arctic Covares,' ii. p. 407 , pl. xxxy. fig. 2 (1-5̃5); (ivës, (Efv. Vet. Akad. Förhandl. p. 53.5 (1805) ; Buchholz, Zweite deutsche Nordpolarf. Zool. Crust. p. 338 (1874).

Agina echinatu, Boeck, Forh. Skand. Nat. p. 670 (1880) ; Vidensk. Selsk. Forhandl. p. 271 (1870).
C'aprella spimosissima, Spence Bate, Cat. Amphip. Crust. Brit. Mus. p. 361, pl. lvii. fiy. 3 (1862).

Hab. Carl Island and Cape Torell, in 12-18 fathoms; Lomme Bay, in 15 fathoms.

The spines which cover the body of this species are of rery variable length, being sometimes long and acute, sometimes quite small.

CIRRIPEDIA.

Balanus auctorum.

Batenus porcatus.
Balamus porcatus, Da Costa, Hist. Nat. Test. Brit. p. 249 (1758); Darwin, Monorr. Cirripedia, Balandse, p. 25t, pl. vi. fir. 4 (1x.j4); Buchholz, Zweite deutsche Nordpolarf. Zool. ('rust. p. Ư"15 (l8it).
Hab. Carl Island, in 18 fathoms; Cape Etker, in 15 fathoms.
Mr. Leigh Smith in a previous royage also obtained this species Ω few miles to the westward of the northern extremity of Prince Charles's Foreland.

PYCNOGONIDA.

Nrapion, Fabricius.
Nymphion gracile.

Nymphum gracile, Leach, Zool. Miscell. i. p. 45, pl. xix. fig. (1814).
Nymphon gracile, Johnston, Mag. Zool. \& Bot. i. p. 380, figs. 9, 10 (1837).

Hab. Carl Island and Cape Torell, in 12-15 fathoms.
The colour of the animal is light bromn, with very short cinereous hairs, which render it scabrous to the touch; the legs are banded with rery fine longitudinal lines of a deeper brown. The joints of the tarsi are subequal ; the second joint of the palpi is rather longer than the third. This species is evidently very nearly allied to N. grossipes, Fabr., as described by Kröyer (Nat. Tidsskr. n. R.i. p. 108, 1844) and figured (Voy. en Scand. pl. xxxri. fig. 1); but in that species the third joint of the palpi is much longer than the second, and the animal is described as glabrous.

Leach's specimens of N. gracile in the collection of the British Museum are much smaller and slenderer than the specimens from Spitzbergen; but the proportional length of the joints is the same, and it is erident that the animal becomes more robust as it increases in age.

Nymphon hirtum.

Nymphon hirtum, Fabr. Ent. Syst. iv. p. 417 (1794) ; Kröyer, Nat. Tidsskr. n. R. i. p. 113 (1844-45) ; Voy. en Scand. Crust. pl. xxxvi. fig. 3.
Hab. Carl Island and Cape Torell, in 12-15 fathoms.
XI.-Descriptions of new Genera and Species of New-Zealand Coleoptera.-Part IV. By Francis P. Pascoe, F.L.S. \&c.

Gyrinide.
Gyrinus Huttoni.
Parntide.
Potaminus angusticollis.

Curculiontde.

Trachyphlœus irritus.
Niceana, n. g.

- modesta.

Lyperobius tuberculatus.
Eiratus, n. g.
-parvulus.
Epitimetes, n. g.

- lutosus.

Erymneus, n. g.

- Sharpii.

Erirhinus glottis.

- limbatus.

Dorytomus trilobus.
Neomycta, n. g.

- pulicaris.

Eugnomus Wakefieldii.

- fucosus.

Pachyura metallica.
Acalles impexus.
-perpusillus.
Acallopais, n. g.
_-rudis.

Pedilide.

Macratria exilis.

Gyrinus Iuttoni.

G. oboratus, niger, nitidus; prothorace longitudine quam latitudine quadruplo minore ; scutello elongato-triangulari : elytris lineatim punctulatis; sutura wnea; pedibus antennisque rufo-testaceis. Long. 2 lin.
Hab. Waikato.
Rather larger than our (r. minutus, the anterior half broader than the posterior half, and the prothorax very considerably longer (the breadth is above six times the length in G. mimutus); and its scutellar lobe is very transverse. My specimen has a slight iridescent hue. This and other species from Waikato and Otago have been kindly sent to me by Captain IIutton.

Potaminus.angusticollis.

P. angusto-oratus, sat deuse griseo-hirtus; antennis capite fere duplo brevioribus; prothorace latitudine paulo longiore, apicen versus gradatim angustiore, basi hisinuata, lobo scutellari truncato; scutello triangulari ; elytris prothorace latiorihus, convexis, sat fortiter striato-punctatis ; tibiis intermediis rectis, tarsis linearibus; unguibus pallidis. Long. 1_{3}^{2} lin.

Hab. Waikato.

Considerably narrower and more convex than P. substriatus. Probably not strictly congeneric.

Trachyphlocus irritus.

T' oratus, indumento fusco tectus; rostro crasso, capite breriore ; scapo valido, setigero: funiculoclavaque nitide rufo-ferrguineis, illius articulo basali ampliato, secundo paulo breriore, ceteris transrersis; prothorace fere in medio utrinque subangulato, supra modice convexo, subtuberculato ; elytris subcordatis, prothorace paulo latioribus, basi arcuatis, subpunctatis, intersititiis rix eleratis, squamulis paucis pallidis adspersis; pedibus rufo-ferrugineis. Long. ${ }^{1 \frac{1}{3}} \mathrm{lin}$.
Hab. Tairua.
Size and shape of T. porculus (ante, xviii. p. 59), but with as remarkably stout scape, and the prothorax with the side a little before the middle obtusely angled; in T. porculus the sides are rounded.

Niceana.

Rostrum breve, crassiusculum, capiti continnatum; scrobes foveiformes, apice rostri supra site. Oculi rotundati. Antenne ralidæ; scapus ad oculum postice attingens; funiculus articulis
crassiusculis ; clere distincta. Prothorax transsersus, lobis ocularibus nullis. Elytrel obovata, humeris obsoletis. Pedes mediocres, intermedii paulo breviores ; tihio antice subflexuose ; ungues liberi.
With some hesitation I have come to the conclusion that the nearest ally of this genus is Prosayleus, from which, however, it liffers, inter alia, in its foveiform scrobes, placed on the dorsal surface near the apex of the rostrum. At first sight the species here described reminds one of our Metallites marginatus.

Nicreana modesta.

N. oblongo-ovata, dense griseo-squamosa, maculis indistinctis albis (aliquando ritta humerali) notata ; antennis pedibusque rufo-testaceis, pilis griseis adspersis ; capite supra oculos modice convexo, antice subplanato ; prothorace antice posticeque truncato, utrinque rotundato; scutello triangulari, minuto; elytris subcordatis, striato-punctatis ; tibiis intus muticis; tarsis articulo secundo dilatato. Long. $1 \frac{1}{2}$ lin.
Hab. Otago, Waitaki.

Lyperobius tuberculatus.

L. oralis, fuscus, griseo-squamulosus; capite antice convexo; rostro modice longiusculo, in medio subearinulato, basi forea impressa; prothorace subtransrerso, supra inæquali, lateribus subangulatis, apice constricto; elytris ovatis, seriatim punctatis, interstitiis tertio, quinto septimoque paucituberculatis; abdomine leviter punctulato. Long. 7-8 lin.
Hab. Christchurch.
Notwithstanding a great dissimilarity in general appearance, owing to the squamosity and tuberculation, I have no hesitation in placing it with Lyperobius. I am indebted for my specimens of this and other Curculionidæ from Christchurch to C. M. Wakefield, Esq., who informs me that it is found on a plant called the "Spaniard," which, in the spring, abounds with Curculionidæ.

Eiratus.

Rostrum arcuatum, validum, apicem versus gradatim latius; scrobes subterminales, oblique. Oculi ovales, transversi. Antenne breviusculx; clava majuscula. Prothorax utrinque rotundatus. Elytra subeylindrica, postice callosa. Prosternum antice elongatum. Coxce anticæ separatæ. Processus interfemoralis late truncatus. Tibie rectæ, apice uncinatæ; ungues simplices. Abdomen segmentis duobus basalibus valde ampliatis.
An Iylohius-form, as it appears to me, but differing in its
longer metasternum ; the character of the elytra, however, is that of most of the Hylobiina. The spaces between the coxa are gradually more and more apart. An obvious angle occurs at the point where the rostrum joins the head.

Eiratus parvulus.

E. oblongus, subdepressus, piceo-fuscus ; rostro prothorace breviore, parce piloso; funiculo articulo basali modice ampliato, cateris conjunctim quam clava vix longioribus; prothorace latitudine longitudini æequali, crebre punctato ; scutello parvo ; ely tris fortiter striato-punctatis, apice rotundatis; corpore infra sparso punctato. Long. $1 \frac{1}{4}$ lin.
Hab. Tairua.

Epithmetes.

C'aput parrum. Oculi exigui, rotundati. Rostrum breviusculum ; scrobes subapicales, oculos haud attingentes. Prothorax ampliatus, versus apicem multo angustior. Elytric elongato-cordata, basi arcuata, lateribus abrupte deflexa. Femora antica valida; tibice antice apice flexuose; zuyues approximati. Cuace antice contigux, intermedix approximate.
The anterior cotyloid cavities are apparently not separated from one another as in Dysostines, to which this genus is allied; the elytra also in that genus are not bent down at the sides. The greater part of the scrobes are clothed with seales like the rest of the head. The species described below has the outline and general appearance of the Chilian Listroderes frigictus, but scarcely any resemblance to the New-Zealand Rhyparosomine known to me.

Epitimetes lutosus.

E. oblongus, indumento griseo dense tectus, setulis nigris minutis adspersus; rostro capite plus duplo longiore antice tricarinato; antennis gracilibus, funiculo nitido, articulis duobus basalibus elongatis ; prothorace convexo, in medio longitudinaliter excayato; scatello nullo; clytris supra subplanatis, irregularibus, postice utrinque trituberculatis; met asterno abdomineque longitudinaliter excaratis; tibiis posticis intus ad basin dente acuto armatis, versus apicem intus penicillatis. Long. 4 lin.
Hab. Christchurch.

Erymneus.

C'aput parvum. Oculi exigui, rotundati, grosse granulati. Rostrum longiusculum, carinatum ; scroles foveiformes, ante medium rostri site. Anteme funiculo articulis duobus basalibus iongiusculis requalibus, primo haud ampliato, tertio ad sextum transversis, sep-
timo longiore ; clara distincta, orata. Prothorax oblongus. Elytra ovalia. Tarsi breves, articulo penultimo rotundato, integro, ultimo ceteris conjunctim longiore ; ungues divergentes.
Allied to the European genera Styphlus, Dichotrachelus, Orthochutes, \&e., but at once distinguished by its foveiform scrobes. Contrary to M. Lacordaire's statement, I find in three species of Dichotrachelus now before me the penultimate tarsal joint bilobed, not entire. I am indebted to Dr. Sharp for most of the species from Tairua described in this paper.

Erymneus Sharpii.

E. oblongus, aureo-fulrus, squamoso-setosus, supra irregularis; rostro prothorace tix breviore, curvato, versus apicem gradatim crassiore, rugoso-squamoso; mandibulis nigris, bidentatis ; prothorace latitudine longiore, basin versus majus tenuato, supra tricarinato, carina media dimidio apicali limitata: scutello nullo; elytris ovalibus, basi arcuatis, humeris elevatis, supra seriatim punctatis, interstitiis paucituberculatis, tuberculis subfasciculatis ; pedibus rostroque setulis curratis vestitis. Long. $2 \frac{1}{2}$ lin.

Hab. Tairua.

Erirhinus glottis.

E. pallide flarescens, parce pilosus, rage fusco-plagiatus; capite rostroque infuscatis, illo rotundato, convexo-punctato, hoc gracili, prothorace duplo longiore, leriter punctulato, apicem versus crassiore; anteunis in medio rostri insertis, infuscatis; funiculo longiusculo, articulo basali elongato, secundo triplo longiore; prothorace subtransrerso, utrinque valde rotundato, sat vage punctulato; scutello infuscato; elytris prothorace multo latioribus, striato-punctatis, interstitiis leviter convexis, apice rotundatis; corpore infra infuscato. Long. $1 \frac{2}{3}$ lin.
Hab. Otago.
At first sight this species resembles E. acalyptoides (ante, xvii. p. 55) ; but it has a longer and more slender rostrum, much broader at the apex, and only a faint trace of strie at the base; the prothorax is less transverse; and there is a marked difference in coloration.

Erirhinus limbatus.

E. infuscatus, subnitidus, parce pilosus, marginibus elytrorum testaceis; rostro testaceo, prothorace duplo lougiore; antennis in medio rostri insertis; funiculo articulo basali valde ampliato; prothorace transverso, fortiter punctato; scutello parvo, distincto; elytris breviter subovatis, fortiter striato-punctatis, interstitiis planatis; pedibus testaceis; corpore infra infuscato. Long. 1 lin .

Hab. Tairua.

A verydistinct species, the elytra unusually broad, especially when compared with the small transverse prothorax.

Dorytomus trilobus.

D. testaceo-fulvus, pube subtilissima parce vestitus, basi ely̧trorum macula triloba nigra signatus; rostro haud striato, longitudini prothoracis æquali, subtiliter punctulato; oculis rotundatis ; funiculo antennarum brevi; prothorace transerso, utrinque rotundato, leviter punctulato ; scutello nigro ; elytris paulo depressis, fortiter striato-punctatis, interstitiis punctulatis; femoribus infra angulato-dentatis. Long. 2 lin.
Hab. 'lairua.
In size and shape this species resembles our D. maculatus. The femora are produced into a strong angle beneath, terminating in an almost obsolete tooth.

Neomycta.

Rostrum latum, prothorace brerius; scrobes laterales, infra oculos desinentes. Oculi prominuli, rotundati. Anternee subterminales, graciles; funiculus articulo primo ampliato, reliquis breviusculis. Prothorax antice posticeque truncatus. Elytra mediocria. Femora incrassata; tibice flexuosæ; unyuiculi liberi. Mesostermum modice elongatum.
Differs from Erirhinus in its broad rostrum, with antennæ inserted near the apex.

Neomycta pulicaris.

N. testaceo-rufa, sparse pilosa; capite rostroque vage punctulatis, hoc apice mandibulisque nitide nigris; funiculo articulo primo duobus sequentibus conjunctim longitudine æquali; clara oratoacuminata; prothorace transrerso, utrinque rotundato, confertim punctulato; scutello exiguo; elytris prothorace multo latioribus, breriusculis, subdepressis, fortiter striato-punctatis, dorso plus minusve infuscatis ; corpore infra pedibusque testaceis. Long. $1 \frac{1}{4}$ lin.
Hab. Tairua.

Eugnomus Wakefieldii.

E. fusco-castancus, capite rostroque nigris, dorso elytrorum prothoraceque in medio squamulis ochraceis restitis; antennis castaneis, funiculo articulis duobus basalibus clongatis, clava longiuscula; elytris supra planatis, a medio abrupte declivibus, postice rittis duabus niveis ornatis; corpore infra niveo-piloso. Long. $2 \frac{1}{4}$ lin. Hab. Christchurch.

This pretty little species is at once distinguished by the form of its clytra.

Eugnomus fucosus.

E. fusco-castancus, supra setulis numerosis instructus, pedibus rufotestaceis; rostro sat valido, capite sesquilongiore, apice rufo; clava antenuarum ampliato-orata; funiculo articulo basali ampliato, longiusculo, sccundo multo breciore; prothorace subtransverso; scutello clongato, albo; elytris striato-punctatis, interstitiis subplanatis, supra fere obsolete albo-maculatis. Long. 1 lin.
Hab. Tairua.
A smaller species than E. fervidus (ante, vol. xviii. p. 62), with a longer head and proportionally shorter and stouter rostrum. In some specimens there is a reddish spot on each shoulder.

Pachyura metallica.

P. oblonga, aurco- (δ^{*}) rel purpureo-cuprea (ㅇ) ; antennis, tibiis tarsisque brunneo-testaceis, illis basi rostri insertis; capite prothoraceque fortiter punctatis; scutello majusculo ; elytris transversim punctatis, interstitiis (transversis) eleratis; corpore infra sparse albo-piloso ; metasterno in medio longitudinaliter canaliculato. Long. $2 \frac{1}{3}$ lin. ơ, 4 lin. 오.
Hab. Christchurch.
Except the South-American Homalocerus, the Belinæ (to which this genus belongs) are a purely Australian group; this species, however, is not to be approximated to any of its congeners, although a most orthodox Pachyura. Perhaps the difference in size and coloration of the two sexes is not always so well marked as in my specimens.

Acalles impexus.

A. oratus, fuscus, griseo-squamosus, squamulis erectis adspersus ; rostro modice clongato; antennis subferrugineis, pone medium rostri insertis; funiculo articulis duobus basalibus longitudine æqualibus; prothorace latitudine longitudini æquali, antice constricto, apice bidentato, in medio bicalloso; scutello inconspicuo; elytris cordatis, convexis, rude punctatis, interstitiis secundo bi-, tertio juxta basin unicailoso, lateribus minus callosis; pedibus rude squamosis. Long. $1 \frac{1}{2}$ lin.
Hab. Canterbury.
Size and shape of A. intutus, but elytra more cordiform, and with the prothorax very irregular.

Acalles perpusillus.

A. oratus, fusco-piceus, esquamosus, rostro antennisque pallidioribus, illo lineatim punctulato; prothorace latitudine longitudini aquali, antice constricto, supra vage punctato; clytris breviter ovatis, prothorace latioribus, humeris obsoletis, supra modice convexis, fortiter seriatim punctatis, interstitiis latis, lævigatis; corpore infra vage punctato; abdomine segmentis duobus basalibus valde ampliatis, tribus ultimis pallidis; pedibus validis. Long. 1 lin.
Hab. Tairua.
A very small pitchy-brown species.

Acallopais.

Rostrum validum, apicem versus gradatim incrassatam; scrobes laterales. Antenne pone medium rostri insertx; scapus breris; funiculus ad claram gradatim crassior. Oculi majusculi, grosse granulati. Prothorax basi latior. Scutellum nullum. Elytra breviter subcordata. Rima pectoralis ampla, apice carernosa. Femora crassa, infra canaliculata; tibie recte, apice uncinatæ; tarsi articulo penultimo bilobo; ungues divergentes.
The pectoral canal is large, terminated by the raised border of the mesosternum, forming a well-marked cavity, to which, as I have explained, I apply the term " cavernosa," whether the raised portion is erect or bent over the apex of the canal, the passage between the two being too gradual to be of any practical value. It is in that character that it differs principally from Acalles.

Acallopais rudis.

A. ellipticus, valde conrexus, fuseus, squamosus, squamis erectis numerosis adspersus; rostro nitide fusco, capite rix longiore; antennis piceis", prothorace oblongo, utrinque subrotundato ; elytris prothorace paulo latioribus, nigro-rariegatis, in medio niveosubquadrinotatis; abdomine segmentis duobus basalibus amplissimis. Long. $1 \frac{1}{4}$ lin.
Hab. Tairua.

Macratria exilis.

M. angusta, fusca, albido-setulosa; capite depresso ; collo testaceo ; oculis magnis; antennis testaceis, extus infuscatis; prothorace oblongo, apice angustissimo; scutello inriso; elytris seriatim punctatis et setulosis, apice late rotundatis: pedibus testaceis, femoribus posticis dimidio fuscescentibus. Long. $1 \frac{3}{3} \mathrm{lin}$.

Hab. Tairua.

Macratria is an almost cosmopolitan genus, but is not found in Europe, nor, so far as 1 know, in Australia. This is the smallest species that has come under my notice.

XII.-Contributions to the IListory of the Hydroida. By the Rev, Thomas Hincks, B.A., F.R.S.

[Plate XII.]

I. New Britisi Species.

Suborder THECAPHORA, Hincks.

Family Plumulariidæ.

Genus Plumularia, Lamk. (in part).

Plumularia siliquosa, n. sp. (Pl. XII. figs. 2-6.)

Shoots clustered, simple, not plumous, resembling ordinary pinnæ, but rising directly from the creeping stolon and not borne on an erect stem, regularly jointed, the joints oblique : hydrothece cup-shaped, rather deep, with an even margin, standing out from the shoot, one on each internode immediately above the joint: sarcothecce three on each internode, bithalamic ; one of them, immediately below the calycle, of larger size, curved, projecting, one above the calycle, and one at the upper extremity of the internode immediately below the joint; two in connexion with the calycle, one on each side above, pedunculate, emarginate on one side: gonothecce (female) elongate, truncate at the top, and tapering off below; (male) very small (about $\frac{1}{4}$ the size of the female), ovate, curved inwards, somewhat pointed below.

This very distinct species was obtained on the coast of Guernsey by R. S. Cooper, Esq., of Weymouth, lately resident at St. Peter's Port, who has paid much attention to the marine zoology of the island, and whose stores of information and material have always been freely placed at the service of his brother naturalists. He has kindly supplied me with the specimens on which the above description is founded.
P. siliquosa has only occurred so far in the stemless form; but it is probable that in its perfect condition it exhibits the plumous mode of growth which is characteristic of its tribe. P. Catharina is also found occasionally in this humble guise; but more commonly it assumes the true Plumularian habit.

The calycle in the present species exhibits no very distinctive feature, if we except the pair of pedunculate sarcothecæ which are associated with it. These differ from the similar structures on P. Catharina in being emarginate on one side, a peculiarity which also occurs in one at least of the species
described by Meneghini. The calyele is not appressed to the shoot, but stands out from it at an angle.

The female capsules are of very large size, either much elongated and rather slender, or of a broader and shorter type (I'l. XII. fig. 6) ; but in all cases they present a striking contrast to the males. They are developed in the usual position at the base of the calycles.

The sercothece exhibit several varieties of form. The hydrothecal pair are pedunculate; the one below the calyele is incurvate and projects from the stem like a bracket; the two above the calycle consist of an elongate, stem-like portion, tapering off to a point below, which supports a minute cup; they are directed upwards parallel to the shoot. These organs supply good diagnostic characters.

Suborder athecata, Hincks.

Family Atractylidæ.

? Genus Perigonimus, Sars.

? Perigonimus nutans, n. sp. (Pl. XII. fig. 1.)

Stems erect, simple, smooth, slightly tapering downwards, not dilated above; polypite large, clavate, terminating above in a short proboscis, and borne on a neck-like extension of the conosare, which rises considerably above the polypary, white, with a slight tinge of light yellowish colour ; tentacles 8, four erect and four depressed; body of the polypite frequently bent downwards, so as to droop on one side : gonophores unknown.

In the absence of the reproductive bodies, this very graceful species can only be referred provisionally to the genus Perigonimus. So far as the trophosome is concerned, it is a wellmarked form. The very delicate transparent polypary only extends to the base of a neck-like prolongation of the coenosare, which enlarges gradually into the club-shaped body of the polypite. This neck-like portion is very flexible; and the polypite commonly droops to one side, assuming a graceful pendent posture. It has no power of retracting itself in any degree within the polypary, which exhibits no trace of a cup-like dilatation above. The endoderm is opaque white, with a slight yellowish tinge, and the cetoderm transparent. The arms are roughened as usual, and arranged in two sets of four, one carried erect and the other everted. There is no wrinkling or annulation of the polypary, which forms a very delicate and filmy
covering. The striking features of the species are the large elevated polypite and the pendent habit.

II. Podocorine carnea, Sars, and its appendages. (Pl. XII. figs. 7 \& 8.)

I have elsewhere noticed * the occurrence on this species of spiral and filamentary appendages similar to those which are found on IIydractinia echinata, Fleming, and which were first described by the late Dr. Strethill Wright. In his work on the Tubularian Hydroids, Prof. Allman has suggested a doubt as to the real nature of these appendages. Neither kind, he tells us, was present in any of the specimens that came under his observation; and he adds, "whatever be the nature of the spiral bodies observed by Hincks, they certainly do not possess the constancy which characterizes the spiral appendages of Hy^{2} dractinia; and it is difficult not to regard both the spiral bodies and the tentacular-like filaments observed by Hincks in Podocoryne as merely abnormal alterations of the ordinary hydranths" (polypites) \dagger.

First, then, as to the spirals. There can be no doubt about their occurrence on Podocoryne carnea, as I have now in my collection a well-developed specimen on which they are present, forming a line along that portion of the basal crust which edges the mouth of the shell supporting the colony. They are usually curled up in two or three coils; they have a white central core, and are rounded off and slightly clavate at the top, which glitters with thread-cells.

Allman seems to think that they are much more frequently wanting than the similar bodies in Hydractinia, and regards the inconstancy of their occurrence as a proof of their abnormality. But, according to my experience, the spiral appendages of IHydractinia are by no means constant; on the contrary, they are only present, I believe, on very fully matured colonies ; and in numerous instances I have failed to find them. This seems to be the case also with Podocoryne.

No doubt all these appendages must be regarded as "alterations of the ordinary hydranths;" but I can see no more reason for considering them "abnormal" in Podocoryne than in Hydractinia. They present the same general appearance and occupy the same position in both; and in both they seem to be developed only on mature colonies.

Secondly, as to the filamentary or tentaculoid appendages:

[^10]these are as definite zooidal forms as the polypites themselves. They occur on the outskirts of the colony, where they are thickly distributed, and seem to be very generally present. I have lately had the opportunity, at 'Torquay, of reexamining them, and have figured them for this paper (Pl. XII. fign. 7 and 8). They consist of an extensile filamentary booly, of a somewhat clavate figure at the free extremity, in which, I believe, a number of thead-cells are immersed, and at the base surrounded, as the polypites are, by a tubular extension of the polypary. They are in proty constant motion, stretching themselves out hither and thither, and are often so much attenuated, as to appear like "long and slemere threads of gossamer." They certainly do not strike one as in any respect "abnormal."

We have, then, in Podocoryme another instance amongst the Mydroida of that curious polymorphism which recalls so forcibly the complex structure of the Siphonophora.

III. Note on Acharadria lakynd, 'T. S. Wright.

Dr. Strethill Wright has given a very brief and insufficient description of this species, though his figure of it is graceful and characteristic. Allman has studied a young polypite, obtained in Mr. Rotch's aquarium, and has embodied some notes upon it in his 'Gymmoblastic Hydroids.' He conjectures that possibly Acharadicia may be only "the immature state of some already described form of pemaridan Hydroid." No further account of it has been published.

I have obtained it pretty abundantly between tide-marks in the island of Herm, where it was first found, I believe, by Mr. Rotch. It is a well-marked and extremely beautiful species. The polypites are remarkable for the freedom and activity of their movements. They are able to assume a drooping attitude and to sway the body over to considerable distances, and so to command a wide range of the surrounding water. This power is due to the peculiar constitution of the polypary, the upper portion of which is composed of very delicate and filmy material, and offers no resistance to the motion of the polypite. A very considerable tract of the polypary in the adult is thus attenuated; and the result is a freedom and variety of movement which are unknown amongst other members of the tribe.

Allman has referred to this peculiarity, though it seems not to have been so strongly marked in the young polypite which he examined as it is in the adult. The proboscis and the capitate tentacles were also in active movement, while the
aboral tentacles were frequently and energetically clasped together and variously intertwined. The proboscis is opaque white at the top and of a pinkish colour below it.

On a single polypite there were traces of the reproductive bodies; but they were in too rudimentary a condition to allow of any conjecture as to the probable course of development. They were produced at the base of the filiform tentacles, forming a circle within the verticil, and presented much the same appearance as those of Tubularia at a similar stage.

IV. Lafoëina tenuis, Sars.

This remarkable Hydroid, which was first noticed by the elder Sars, and afterwards more fully described and figured by his son, is an interesting addition to our fauna. I have obtained it creeping over other zoophytes, which were dredged in Shetland.

I am also inclined to think that it occurs on the Northumberland coast. In a letter from the late Mr. Alder accompanying some specimens of what he believed to be Cuspidella humilis, mihi, he writes, "What are the blunt spine-like processes parasitical on the Cellularia with C. humilis? Hare they any connexion with the latter?" I have little doubt that the supposed Cuspidella was, in fact, Lafoëina (the two bearing the closest resemblance, so far as the calycles are concerned), and that the "spine-like processes" were the curious sarcothecal organs with which the latter is furnished, and which are thickly distributed along its creeping stolon.

I draw attention to the matter in the hope that some of our excellent northern naturalists may be on the look-out for the Lafoëna, and may have the opportunity of settling the question as to its geographical range.

EXPLANATION OF PLATE XII.

Fig. 1. Perigonimus? nutans, n. sp., Hincks, highly magnified.
Fiy. 2. Plumularia siliquosa, n. sp., Hincks, natural size.
Fig. 3. The same, portion of a shoot bearing two female capsules, magnified.
Fig. 4. The same, a single calycle and male capsule, magnified.
Fig. 5. The same, a single calycle, more highly magnified.
Fig. 6. The same, a female capsule, magnified.
Fig. 7. Tentaculoid appendages of Podocoryne carnea, Sars.
Fig. 8. One of the same, more highly magnified.
XIII.-New an l peculier Mollusce of the Order Solenoconchia procured in the 'Valorous' Expectition. By J. Gwrw .Jeffrers, LL.D., F.R.S.

Solenoconchia.

Genus Dentadium.

Dentalium candidum*, Jeffi.
Bony whitish, with a faint tinge of brown: mantle very thin, forming a collar, which encireles the inside of the upper part of the shell: tentuces very mumerous, with pear-shaped tips, issuing between the mantle and the shell: fiot when at rest conical, having a semicircular lobe or flap on each side, so as to give it a tricusped appearance; the lobes are fringed or puckered at the edges. The animal from which I took the above description was sluggish and probably half-dead, in consequence of its having been dredged up from a depth of 1100 fathoms.

Shell having the shape of a narrow fummel, tapering, slightly curved, rather thin, opaque, more or less glossy: sculpture, about forty fine and regular rounded longitudinal strix, which disappear towards the front margin; these strix are crossed by extremely numerous and close-set circular microscopic lines: colour glistening-white: margin at the anterior or broader end jagged, at the posterior or narrower end abruptly truncated; there is no notch, groove, slit, or channel. L. $1 \cdot 75$. B. $0 \cdot 3$.

Station 5, 410 fins. ; 6, 1100 fms. ; 8, 1750 fms. 'Porcupine' Expedition, 1869, west coast of 'reland, 66t-1476 fms.; Bay of Biscay, 2090-2435 fms.

Allied to D. grande, of Deshayes, from Japan. The present species differs from D. striolatum, Stimpson (D. abyssorum, M. Sars), in being straighter, less cylindrical, and of a thinner and more delicate texture, and in having twice the number of ribs.

Dentalum capillosum \dagger, Jeffr.

Shell tapering to a fine point, slightly curved, rather solid, opaque, and mostly lustreless: sculpture, numerous and sharp (not rounded) longitudinal strix, some of which are intermediate and smaller than the rest ; they disappear towards the posterior or narrow end, which is quite smooth and glossy

- Glistening-white.
\dagger Covered with threads or hair-like markings.
Ann.diMag. N. Hist. Ser. 4. Vol. xix. 11
for a quarter of an inch: colour whitish: margin at the posterior end having a short and narrow notch. L. 1.4. B. $0 \cdot 15$.

Station 12, 1450 fms. ; 13, 690 fms. ; 16, 1785 fms. '1'orcupine' Expedition, 1869, Bay of Biscay, 862 fms.; north of the Ilebrides, 542 fims. : 1570, off the coast of Portugal, 220-1095 fms. Off Bahia Honda, Gulf of Mexico, 415 fims. (Pourtales). 'Challenger' Expedition, off the Azores, 450 and 1000 fms.

This appears to attain a size considerably exceeding that given in the above description, as fragments measure nearly $\frac{4}{10}$ inch in breadth.

Dentalium ensiculus*, Jeffr.

Sirell tapering, considerably and regularly curved throughout, compressed or flattened, thin, nearly transparent, and glossy: scutpture, a sharp keel on both the dorsal and ventral sides (giving the appearance of a double-edged scimitar), besides occasionally a few slight and irregular longitudinal keels or raised strix and concentric lines of growth: colour clear-white: slit of moderate length and very broad, semicylindrical, placed on the upper or dorsal side ; the posterior or narrower end of the shell is nearly bisected to form the slit, the upper part being abruptly truncated; when viewed sideways the lower part appears split ; the point is rounded and entire. L. $0 \cdot 9$. B. $0 \cdot 1$.

Station 12, 1450 fms ; $16,1785 \mathrm{fms}$: fragments are not merommon. 'Porcupine' Expedition, 1869, off the west of Ireland, 1366 fms.; Bay of Biscay, 862 fms. : 1870, off the coast of Portugal, $740-1095 \mathrm{fms}$.

The ammal or occasional growth is sometimes shown by the irregular formation of the new or succeeding portion of the shell, which is narrower than the former or preceding portion.

Dentalium subterfissum \dagger, Jeffr.

Sirell slender and fincly tapering, more curved towards the point, rather thin, nearly semitransparent, and glossy: sculptriee from 12 to 16 delicate and sharp regular longitudinal strix, which are continued to both ends: colour whitish: murgin at the posterior end bulbous: slit long and narrow, placed on the lower or ventral side; its length is double that of the greatest diameter of the shell. L. $0 \cdot 6$. B. $0 \cdot 075$.

[^11]Station 12, 1450 fms. ; a fragment only, but evidently belonging to this species, which I have described from specimens taken in the 'Porcupine' and 'Challenger' Expeditions. 'Porcupine' Expeditiom, 1569, off the west coast of Ireland, 1180-1476 fins. 'Challenger' Expedition, lat. $37^{\circ} 26^{\prime}$ N., long. $45^{\circ} 14^{\prime}$ W., 1000 fins.

The slit in I. sulterfissum is on the under or ventral side of the shell, being the same position as in the D. incersum of Deshayes, and the reverse of that in his D. rubescens and in D. ensiculus. The organization of the animal is unknown ; but D. inversum may be the type of a distinct genus.

A single and dead specimen of another shell, apparently belonging to the senus Iontalium, securred in Station 16, 178.) fathoms. It is narrowly eylindrical, rather solid, glossy, smooth, and a quarter of an inch long. Its peculiarity consists in the posterior termination forming a second and narrower cylinder, which issues out of the larger and longer one, as if from a sheath. This process has an entire and circular point ; so that the shell camot be a species of Siphodentalium. I propose to name it Dentalium cagina. Perhaps two imperfeet specimens of a Dentalium from Station 12, 1450 fathoms, may belong to the same species.

Siphonodentalium, M. Sars.

In the 'Journal de Conchyliologic' for 1874, p. 25S, the Marquis di Monterosato proposed the abbreviation of this generic name to Sipholentulum ; and I asree with him that it would be convenient.

Siphodentalium vitreum, M. Surs.

Dentalium vitreum, M. Sars, Nyt Magaz. Naturvid. 1851, Bd. vi. p. 1 r8 (Siphonodentalium, 1858).
D. lobatum, G. 13. Sowerby', Jun., Thes. Conch. (1866), rol. iii. p. 100 , fig. 44.
Bons whitish, gelatinous, and nearly transparent: mautle rather thick, forming a collar round the foot: tentucles threadlike, very slender, and having oblong tips or bulbs; they are not numerous, but extensile and irregular in length, issuing from underneath the ellog of the mantle: foot cylindrical, extensile, and attaining a length equal to that of the shell; when at rest it is conical ; but the point fully stretehed out expands into a round and somewhat concave disk with serrated or notehed edges: excretal fuld or tail at the narrowest end of the shell, tubular, and having the front split open and exposed
diagonally; edges jagged ; externally covered with very fine and close-set cilia: liver dark-brown: orary lemon colour.

Station 6, 410 fims. ; 9, 1750 fms.; 12, 14.50 fms. Finmark, $40-100 \mathrm{fms}$. (M. and G. O. Sars, M'Andrew, Malmgren). Spitzbergen (Torell, Goodsir). Swedish Aretic Expedition, 1868, 730 fims. 'Lightning' Expedition, 1868, North Atlantic, 550 fms. 'Porcupine' Expedition, 1869, between the Faroes and Orkneys, 560 fms.: 1870, off the coast of Portugal, $740-1095$ fms. Gulf of St. Lawrence, 150-200 fms. (Whiteares). Fossil: Norway, older Glacial deposit, 90 feet above the sea-level (M. Sars and Kjerulf).

The very young resembles Siphodentalium affine, M. Sars, but is more conical or less cylindrical.

Siphodentalum affine, M. Sars.

Siphemodentalium affine, M. Sars, ('hrist. Vid. Selsk. Forh. 1804, p. 299, tab. vi. f. 34,35 .
Station 12, 1450 fms.; a single specimen. Finmark, 100300 fms . (G. O. Sars). 'Porcupine' Expedition, 1869, West of Ireland, 1215-1380 fms. : 1870, Channel slope, 690 fms.

Siphodentalium lofotense, M. Sars.

Siphonodentalium lofotense, M. Sars, loc. cit. p. 297, tab. vi. f. 29-33.
Station 9, 1750 fms . Norway, 30-300 fms. (J. and G. O. Sars, J. (G. J.). Hebrides and Shetland, $40-140 \mathrm{fms}$. (J. G. J.). 'Porcupine ' Expedition, 1869, West of Ireland, 90 -1630 fms : 1870 , Bay of Biscay, 227-1095 fms.; Vigo Bay, 20 fms .; Mediterranean, $51-1456 \mathrm{fms}$. Gulf of Gascony, $60-$ 80 fms . (De Folin). Mediterranean, 50-600 fms. (Acton, Spratt, Nares, Monterosato).

Specimens from the Bay of Biscay and the Mediterranean are usually much smaller than those from more northern seas.

Cadulus tumidosus*, Jeffr.

Shell forming a short spindle, slightly bulging in the middle on the lower or more concave part, and very gibbous on the back or outside, somewhat curved, contracted towards both ends, but much narrower at the base, rather solid, glossy and semitransparent: sculpture none, except microscopic and close-set lines: colour whitish : mouth roundish-oval, obliquely truncated or sloping to the back; the inner margin is furnished with a slight circular rib or thickening like that in many
species of Helix: luase notched on each side, as in C'. subfiesiformis. L. $0 \cdot 2$. B. $0 \cdot 075$.

Station 12, 1450 fims. : one specimen is abmormally arched. 'Porcupine ' Lxpedition, 1869, Chamel slope, 557 fins.: 1870, Bay of Biscay, 2922-1095 fins. 'Josephine' Expedition, 110 -550 fins. Fossil at Messina (Seguenza).

This is much larger and more gibbous than C'. sulifusiformis; and, like that species, it varies in shape and size. It has the character on which Monterosato lays stress in generically separating ('. sulufusiformis from (.'. ovulum, viz. in the mouth or anterior opening being more or less thickened inside by a circular rib.

Cadulus gracilis*, Jeffi.

Shell more curved and cylindrical than C. sulifusiformis (to which it is evidently allied), not swollen in the middle, but throughout nearly equal in breadth; the mouth slopes more, and has a slight circular rib or thickening within; base broader ; oblicque marks of growth are conspicuous. L. $0 \cdot 2$. B. 0.04 .

Station 13, 690 fms ; a single specimen.

Cadulus Olivi, Scacchi.

Dentalium Olivi, Sc., Notiz. foss. Gravina (Aun. Civ. 1835), p. 56, tab. 2. fig. $6, a, b$.
Station 12, 1450 fms ; fragments only. 'Porcupine' Expedition, 1869 , West of Ireland, 1230 fins.; south of the English Chamel, 862 fims. : 1870, Channel slope, 539 fms. Sicilian T'ertiaries (Scacchi, Tiberi, and others).

Awl-shaped and variable in size. Probably Dentatium coarctatum of Lamarck, and certainly that of Deshayes and Philippi, is Dischides bifissus.
C. gadus of Montagu resembles C. Olixi ; but it is not only very much smaller, but is proportionally shorter and less slender, and the anterior end is more contracted. The locality given by Montagu (" many parts of the British Chamel "), with the mariner's name "Hake's-tooth," is at least very doubtful as requards this species; and it is not unlikely that he may have mistaken for the "Hake's-tooth" Ditrypa arietina (a testaccous Annclid), which is frequently found adhering to the grease or "arming" of the deep-sea lead in soundings. But his description and figure evidently apply to a species of $C a$ dulus from the noted collection of old (xeorge Inmphreys, the

[^12]shell-dealer, of which I possess specimens. This species was dredged by the late Professor Barrett at Jamaica; and it is a fossil of the Sicilian Tertiaries. I received specimens of the latter from the Marquis di Monterosato as "Cadulus subfusiformis, Sars," and from Dr. Tiberi as "Siphonodentalium Olivi, var. minor, Scac."

An undescribed species of Cadulus, dredged by Admiral Sir Edward Belcher in the N.W. Pacific (for specimens of which I am indebted to his kindness), is also allied to C. Olivi; but the narrower and smaller extremity has four slight notches and corresponding slits. It is therefore possible that the genera Siphollentalium and Cadulus should be united, and that Dischides must "follow suit."

Cadulus cylindratus*, Jeffr.

Sifle forming a narrow cylinder, slightly contracted at each end, gently curved, thin, transparent, and glossy: sculptwe none, except a few microscopic and faint lines of growth: mouth somewhat obliquely truncated, but not thickened: base circular, with numerous minute notches, which are not perceptible to the naked eye. L. $0 \cdot 325$. B. $0 \cdot 075$.

Station 12, 1450 fms.; a single specimen. 'Porcupine' Expedition, 1869, off the West of Ireland, 1215-1476 fms. ; very rare.
XIV.-On the Fundamental Error of constituting Gromia the Type of Foraminiferal Structure. By G. C. Wallich, MI.D., Surgeon-Major Retired List H.MI. Indian Army.

Rather more than forty years have elapsed since the first attempt was made by Dujardin to classify the Rhizopods. During the latter half of this period, the study of these singular organisms has not only been invested with much additional scientific interest, but has received a powerful impetus from its intimate connexion with the geological and biological relations of the deep-sea bed. And yet our knowledge of the Rhizopods as a whole, and especially of the animal portion of their structure, is by no means so complete as it ought to have been, considering the amount of attention that has been lestowed upon it. This, I venture to think, is in a great

* Cylindrical.
measure attributable to the fundamental error which pervades that classification of these organisms which has hitherto boen very generally, and in other respects very deservedly, held in high estimation by naturalists.

In an article upon the Systematic Arrangement of the Rhizopoda, by IIr. W. I3. Carpenter, published in the 'Natural-Mistory Review' for October 1861, the author thas expresses his views on the sulject :- "It is, as it seems to me, in the structural and physiolongical conditions of the unimal alone that we should look for the characters on which our primary subdivisions should be constituted; and notwithstanding that the extreme simplicity and apparent vagumess of those conditions appear almost to forbid the attempt to assign to them a differential value, yet a sufticiently carcful scrutiny will make it elear that, under their guidance, lines of demarcation may be drawn as precise as in any other great natural group, between three aggregations of forms which assemble themselves round three well-known types, Amodia, Actinophrys, and Gromia,-the sarcode-bodies of these three types presenting three distinct stayes in the differentiation of the protoplasmic substance of which they are composett, and exhibiting, in virtue of that difforentiation, three very distinct modes of vital activity" (loc. cit. p. 460).

Regarding the perfect somdness of the principle laid down in the opening sentence of the above extract, it may at once be assumed that no question can arise. But this renders it only the more inexplicable that such a thoroughly illogical application of the principle should have followed as is involved in the separation from each other, and the location in three distinct ordinal divisions, of Amerbe, Actinoplerys, and Gromia-three forms in each of which are prominently combined the only true structurcel characters of the animal that clearly indicate an advance, in the highest group of Rhizopods, towards the more complex organization of the Infusoria and Gregarine.

The structural characters here referred to by me consist in the possession, in common, by Amoble, Aetinopherys, and Gromia, of a Noclels and contractile vesicle:-the former being the reproductive organ of the Rhizopod in its most fully developed condition ; the latter, a fluid-respiratory organ, to be met with, so far as my experience goes, for the first time in the third or highest order of the Rhizopods *. On these grounds I have done my utmost, for the last twelve years, to prove that the three genera referred to camot be thus parted

[^13]without doing violence to the most natural and important of all atfinities, namely those fomded on the "structural and physiological conditions of the animal alone."

But, irrespectively of this, were further proof needed of the error committed in the separation of these three genera on the basis of differences supposed to be more or less constantly observable in the characters of their respective pseudopodia, and the accompanying degrees of "differentiation" said to exist respectively in the external layer of the body, or "ectosarc," and the general protoplasmic mass within, or "endosarc," I undertake to show, on Dr. Carpenter's own evidence, that the pseudopodial characters are by no means sufficiently uniform or sufficiently constant to be depended upon as ordinal distinctions. In short, I hope to make it clear that the terms "ectosare" and "endosare" embody a scientific fiction, and that the sole purpose they serve is to mask our ignorance. The sooner, therefore, they are dispensed with, save as conrenient names for the portions of the sarcode-mass that happen for the time being to constitute the external boundary and the internal mass, the sooner may we expect to arrive at an adequate idea of the visible characters which distinguish the organism called a Rhizopod*.

Dr. Carpenter, in defining the characters of the lowest ordes in his system, namely the Reticularia, tells us that "in the cases in which the differentiation into ectosare and endosare has proceeded furthest, so that that body of the Rhizopod bears the strongest resemblance to an ordinary 'cell' \dagger (as is the case with Amaba and its allies), a nucleus may be distinctly traced ; in those, on the other hand, in which the original protoplasmic condition is most completely retained (as seems to be the case with Gromia and the Foraminifera generally), no nucleus can be distinguished. The same," he says, "appears to be true of the peculiar contractile vesicle, which may be regarded as a vacuole with a defined wall" ("Introduction to the Study of the Foraminifera,' 1862, p. 14).

Dr. Carpenter afterwards goes on to make the following

[^14]very specific statement:-"The subdivision of the Rhizopods into orders seems to be most satisfactorily accomplished by taking as a basis those structural characters which are most expressive of physiological differences. Such characters are presented in the form, proportions, and general arraugement of the pseudnpodial extensions; for, notwithstanding their apparently unrestricted polymorphism, it will be found that the Rlizopods present three very distinct types of pseudopodian conformation, to one or other of which they may all be referred, and that the groups thus formed are eminently natural. How intimately related these diversities are to those fundamental potentialities of each type which find so little structural expression in the lowest form of animal life, appears from the circumstance that even a particle of protoplasm, detached from the general mass of the boty, will put forth the pseudopodian extensions characteristic of its type,- those of the substance forced out by crushing the 'test' of an Arcella having the broad, lobated form of those of the Ameba, whilst those of the substance forced out in like manner by crushing the shell of a Polystomella have the delicate thread-like character of those of the Foraminifera gencrally" (op. cit.pp. 14 \& 15).

Here, then, we have a clear and definite admission on Dr. Carpenter's part that the presence of a nucleus and of a contractile vesicle is indicative of the highest stage of structural organization of which the Rhizopods are capable. And I take it for granted, therefore, that, conversely, it is meant to be inferred that the absence of both of these organs indicates the lowest stage, the zero, of organization. Iet, extraordinary as it must appear, it is not upon the presence or the absence of one or other or both of these important specialized organs that Dr. Carpenter has based his classification, but "on the characters presented by the form, proportions, and general arrangement of the pseudopodial extensions"-characters which, even if constant and uniform, could not possibly compare with them in point of physiological significance, but which, if shown to be both so inconstant and fluctuating as to present themselves with nearly equal frequency in the highest and in the lowest orders into which the lhizopods are divisible, and even to rary entirely in the same genera, cannot be regarded as otherwise than illusory, and therefore worthless for the purpose of ordinal subdivision.

I do not mean to assert that the evidence of advance from the lower to the higher grade of organization on which I have invariably laid the greatest stress, namely the appearance of a nucleus and a contractile reside, may not be accompanied by perceptible differences in the general aspect of the sarcode
(nor has this ever been my opinion), but only that these differences are neither commensurate in importance, nor at all sufficient in kind, or sufficiently constant, to be admissible as proofs of such advance. And this will be seen from the following short extract from my observations on the Polycystina, taken from the 'Quarterly Joumal of Microscopical Science' for July 1865 :-" Although not prepared to regard the degrees of differentiation (as described by Dr. Carpenter) as applicable to the demareation of orders, or as affording perfectly constant characters under any circumstances, there camot be a doubt as to their affording, in the majority of cases, a valuable means of completing generic diagnosis. Beyond this their value does not appear to extend."

The only point which might reasonably be deemed open to discussion (though probably not by any one who has witnessed the behaviour of the body-substance of Actinopheys sol when being torn to bits and devoured piecemeal by an Amoeba) is that alluded to when Dr. Carpenter says that "a particle of protoplasm detached from the general mass of the lody of a Rhizopod will put forth the pseudopodia characteristic of its type,"-Arcella being specified as putting forth the "lobose" pseudopodia of Amobac, and Polystomella (itself a Foraminifer!) being, curiously enough, singled out as putting forth the "delicate thread-like" pseudopodia of-the Foraminifera*.

As interpreted by me, the appearances here described, although not indicative of sutficiently important or constant "differences" in the constitution of the exterior layer and interior protoplasmic mass to be available as ordinal distinctions, prove in a very decisive manner that there cannot be any thing approaching to a definite external layer \dagger; unless we are also prepared to believe, because an oil-globule retains its form whilst suspended in pure water, or, if split up

[^15]into two portions, each of these behaves precisely as another oil-globule does by instantanconsly presenting an unbroken outline, that the said oil-globule is differently constituted at its surface and in its interior. The same argument applies, and with redoubled foree, to a mass of albumen suspended in water ; for here the tendency to assume a spherical form is by no means so pronounced as in an oil-globule; and if we break up the mass into a number of smaller masses, we have presented to us appearances which very closely resemble those observable in the pseudopodium of the Amerken Rhizopod. Indeed so close is the resemblance, that, barring the element of vitality (which the chemist is still as far off as ever from producing at call), we have before our eyes those very "fundamental potentialities" which a highly imaginative remdering of certain appearances has declared to be typical of the living sarcode of the Rhizopod.

Were it not that it befits us to speak with bated breath of the mighty dead, another instructive argument on this subject might be adduced from the history of the rise and fall of the unfortunate "Bathybius."

But the fact is, that, divide the sarcorle body of a living. Amoban, or even an Actinophryan, Rhizopod as we may, by pressure or other agency, the dicided surface will forthwith present every character presented by the undivided portion : any peculiarity of outline, if present in the undivided part, will at once reappear in the divided part ; any seeming contrast between the external layer and the contained mass within will instantly show itself; and the character of the pseudopodial processes will be the same. This identity of character in the divided and undivided surfaces is absolutely instantaneous, there being nothing like a gradual transition from one condition to another, such as we should undoubtedly be 'able to see taking place were the ruptured surfaces in any respect dissimilar to the rest of the mass. This is the view I have always advocated, its unacceptable point being, I presume, that it is quite unconformable with Dr. Carpenter's published definitions of Rhizopod structure.

As it would be foreign to the immediate purpose of the present paper to enter into all the details of the suljeect, I must confine myself to stating that the inconstancy of the pseudopodial characters in Amathe, which is of course quite incompatible with the assumed presence of an extermal layer of much more highly developed sareode than that which it encloses, is conceded (but without the inevitable inference which must be associated with it) in the 'Introduction to the Study of the Foraminifera,' 1862 (p.2:3), when Dr. (arpenter says
that "sometimes Amobo puts forth a few broad lobated expansions; sometimes these are more numerous, slender, and clongated, assuming a radial direction; and occasionally they are so greatly multiplied, rutiate with such regularity, and taper so uniformly from base to apex, as strongly to resemble the pseudopodia of Actinophrys."

This is undoubtedly true; and I therefore leave Dr. Carpenter to reconcile the fact with his classification and definitions of the orders, of which I now subjoin a summary, taken from his paper in the 'Natural-History Review' to which reference has already been made *.

Dr. Carpenter's Arrangement of the Rhizopoda.

After saying that "any small separated portion of the sarcode body of the Rhizopoda will behave itself after the characteristic fashion of its type" (that of Arcella behaving like that of Amoba, that of Polystomella, or any other of the Foraminifera, like those of Gromia), and adding that "this fact scems to him to afford an additional justification of the employment of the characters furnished by the pseudopodia as the basis of a systematic arrangement of the class," he informs us that the characters of the three orders into which he proposes to distribute its various forms may be concisely summed up as follows:-
"I. Reticularia.-The body composed of homogeneous granular protoplasm, without any distinction into ectosare and endosare; neither nucleus nor contractile vesicle; pseudopodia composed of the same substance as the body, extending and multiplying themselves by minute ramification, and inosculating completely wherever they come into contact; a con-

[^16]tinual circulation of granular particles throughout the viscid substance of the body and its cxtensions. This order consists of the Foraminifera and the Gromida.
" II. Radiolaria.-Incipient differentiation of the protoplasmic substance into endosare and ectosare, the former semitluid and granular, the latter more tenacious and pellucid; a nucleus and contractile vesicle; pseudopodia rod-like, tapering from base to point, composed of the same substance as the ectosare, exhibiting little disposition either to ramify or coalesce, although a movemont of particles adherent to their exterior is often to be distinguished. The type of this order is Actinophrys.
" III. Lobosa.-More complete differentiation of the protoplasmic substance into endosare and ectosare, the former being a slightly viscous granular liquid, and the latter approaching the tenacity of a membrane; a nucleus and contractile vesicle; pseudopodia few and large, being in reality lobose extensions of the body which neither ramify nor coalesce, having welldefined margins, and not exhibiting any movement of granules on their surface, the circulation in their interior being entirely dependent on the changes of form which the body undergoes as a whole."

As regards those "fundamental potentialities of each type"" -which, according to Dr. Carpenter, find a much more accurate physiological expression in the "form, proportions, and general arrangement of the pseudopodial extensions "than in the definite step-ly-step advance from the simplest condition of the body-substance, observable in the Foraminifera (in which there is only the faintest foreshadowing of any thing akin to reproductive organization*), to the intermediate stage, in which this foreshadowing shows itself in the shape of a centralized but still imperfectly aggregated mase, and, finally, to the highest stage, in which the reproductive gemmules assume the concrete form of a distinct specialized nucleus (the culminating point being marked, at the same time, by the association of the nucleus with a specialized respiratory organ,

[^17]namely the contractile vesicte)-I venture to say that however plausible Dr. Carpenter's hypothesis may be, it finds no response in nature. And I maintain that we are furnished with the most complete proof that could be desired of the invalidity of the characters derived from the pseudopodia for purposes of ordinal classification, in the passage from Dr. Carpenter's own writings quoted at p. 164. At all events I confess that it is quite beyond my humble powers to reconcile the admissions there made on Dr. Carpenter's part with his allecgation, already quoted, that "the sarcode bodies of his three types Amodre, Actinophrys, and Gromia present three distinct stages in the differentiation of the protoplasmic substance of which they are composed," and that "the lines of demarcation thus drawn are as precise as in any other great natural group, between the three aggregations of forms which assemble themselves round the three well-known types "above named.

But in order to prevent all misconception on this very important question, I must request attention to another extract from Dr. Carpenter's observations on the Systematic Arrangement of the Rhizopods (Nat. Hist. Rev. 1861, p. 461), where he states that "the ordinal designation Reticularia is meant to express the reticulose arrangement of the pseudopodial extensions, which is its distinguishing character." And again, at page 463, he says that "the radiating pseudopodia of Acanthometra correspond precisely in all their charcucters with those of Actinopherys, having the same rodlike tapering form, and same regular radiating arrangement, the same mutual isolation, the same slow movement of particles along their surface; some of them are, however, enclosed in tubuler sheaths*, the differentiation of Acanthometra into ectosare and endosarc having obviously proceeded further than in Actinophrys."

But although it is true that in Acanthometra the differentiation into ectosare and endosare has proceeded further than in Actinoplerys, it is equally true that it has also proceeded further than in Amceba. But even stopping short at Dr. Carpenter's point, that it has proceeded further than in Actinophrys, how can this be reconciled with the statement that "the radiating pseudopodia of Acanthometra correspond

[^18]precisely in all their characters with those of Actinophrys"? The fact is that the pseudopodia of no other Rhizopods could possibly present appearances more distinct from each other, both as regards habit and arrangement, than those of these two organisms.

From what has already been brought forward it will be seen, I think, that the question under discussion, namely the error of making Gromia the type of foraminiferal structure, is reduced within very narrow limits. In short, it resolves itself into this:-Is the practically imperecptible degree of organization, which Dr. Carpenter ascribes to the lowest or Reticularian order in his system, exemplified, as he pronounces it to be, in the type (riomin? Of course, if it be not so exemplified, and if it can be shown, on the one hand, that the so-termed typical pseudopodia of Giromia may be identical in all respects with the pseudopodia of the Foraminifera which Dr. Carpenter associates with Gromia, and, on the other hand, that Gromia, the reputed type of extreme primordial simplicity, besides having pseudopodia identical with certain Actinophryans, possesses both the nucleus and a contractile vesicle (which Dr. Carpenter allows to be distinctive of the highest degree of physiological development in the Rhizopod), there is, of course, on Dr. Carpenter's own showing, an end to his arrangement of these organisms on the basis upon which it has heretofore rested ; and, what is more, there must be an end to every other classification of the Rhizopods which is based, in like manner with his, on characters derived primarily from the pseudopodia. There is no alternative, so far as I can see. And yet, as will presently appear, knowing these facts, Ir. Carpenter is quite unable to brace himself up sufficiently to make the necessary recantation candidly and ungrudgingly.

In my remarks "On the Distinctive Characters of Amoba" ('Amnals,' Aug. 1863) it was mentioned that I had discovered a well-marked mucleus in Gromia, but had not, at that time, detected a contractile vesicle. In view, however, of the analogies existing between Gromia and the Amalue, so confident was I that the organ was there, that I expressed my conviction that I should speedily be able to trace the contractile vesicle also, adding that, if traced, the transfer of Gromia from the lowest to the highest order would of course be incvitable. Having for many months, both before and afterwards, spent many hours daily in watching the chamges taking place in specimens of varous genera of lhizopods kept in tanks, I was fortunate enough in November of the same year to see the long-looked-for eontractile vesicle in Gromia. This
was announced in my "Further Observations on the Distinctive Characters and Reproductive Phenomena of the Amoban Rhizopods," published in the 'Amals' of Dec. 1863. And at a still later period, when I had managed to establish several colonies of healthy Giromire in my tanks, I had ample opportunities of verifying my carlier observations in a sufficient number of cases to render all further doubts on the subject inadmissible. I may add that my examinations embraced both freshwater and marine forms of Gromia, and that no material distinction presented itself between the characters of the two sets of specimens, beyond differences in size and colour, or, I should rather say, in the presence or absence of dirt on the otherwise nearly hyaline tests-the dirt being generally present on the freshwater form, and as generally absent on the saltwater one. After a time there was not the slightest difficulty experienced in finding plenty of sufficiently clean and hyaline tests to admit of the easy detection of the two organs under notice.

In the latest (1875) edition of 'The Microscope and its Revelations,' Dr. Carpenter takes a first cautious step towards a change of front, without, however, pointing out (as he might with a very good grace have done) that his entire classification was sapped to its foundations by the discovery that Gromia, whose pseudopodia he had declared to be precisely similar to those of the lowest and simplest known form of Rhizopod, possesses the two specialized organs which only make their appearance " in the cases in which the differentiation into ectosarc and endosarc has proceeded furthest." This omission will perhaps explain itself on the publication, side by side, of the two subjoined short extracts :-
1862. "Nothwithstanding the apparently unrestricted polymorphism of the pseudopodial extensions, it will be found that the Ihizopods present three very distinct types of pseudopodial conformation, to one or other of which they may all be referred, and that all the groups are eminently natural." (Introd. Study Foram. p. 15.)
1875. "To the first of the orders thus marked out, the name Reticularia seems appropriate; the second has been distinguished as Ratiolaria; and the third may be designated Lobosa. It must be freely admitted, however, that these groups cannot be distinctly marked out, the typical examples which will now be described being connected by many intermediate forms. This is not to be wondered at, when the extreme indefiniteness which characterizes the lowest type of animal life is duly borne in mind." (The "Microscope and its Revelations,' 5th edit. p. 467.)

Again, at p. 470 of Mr. Carpenter's work 'The Microscoper', referring to the Reticulario, he continues:-" "There is, moreover, a negative character of much importance which is naturally assoneiated with the ahsence of differentiation, namely the detieiener of the 'nuckens' and of the 'contractile vesiche, that present themselves alike in the Roulioterionand the Lobosa. It is by nnimals belonging to this order that those very remarkablo minuto sholls are formed which are known as Foraminifera. In Gromia, however, we have an example of a Rhizopod which roy chatumeristecally exhilits the liotionlarian type in the dispmition of its premdenendia, but which Dr. Wallich was the first to point out possesses both a nucleus and contractile vesicle, thus showing a transition to the higher orders "! 'That is to say (at least if there is any meaning in words) that the presence of the very organs in Ciromin, the absence of which he had in the same page declared to be "a nequtive character" of much importance, naturally associated with the absence of differentiation " merely shows that it is a transitional form between the very lowest aml the very highest of the whole series of Rhizopods!

But Dr. Carpenter's extreme reluctance to relinquish his published opinions even when they are demonstrated to be untenalble is only on a par with the vehemence with which he is in the habit of enforcing his evidence when he has a theory to support. Referring to MI. donligny (Intr. Study Foram. p. 63), he says:-" By M. d'Orligny the family Gromida was altogether ignored, no member of it having been known when he first applied himself to the study of the Foraminifera, and no mention having been made in his subserquent writions, even of the typical genus firomine deseribed by M. Dujartin in 18.0.5, notwithstanding the clear demonstration given by that admirable olserver of its chase relationship to Miliold.". . "Between the 'test' of Ciromia and that of Arella, indeed, there is little difference; but letween the animals which frim and intulit these 'tosts' respectively, the difference is as wide as any known to exist in the whole Phizopod series"!

Lastly, as it is with the Reticularia of Dr. Carpenter, so must it he with the limplolaria. Both of these ordinal designations presupmese the existence of characters on which not the slightest reliance can be placed; whilst they serve effectually to mask, if not entirely to supersede, those truly important characters by means of which the gradational advance from the most simple to the most complex type of Rhizopod structure can at a glance be recounized. Indeed, either ordinal name may with equal aptitule be applies to the Ann. de Mag. N. Hist. Ser. 4. Vol. xix.
families which are ranked in the other orders. Thus the name Radiolarian is just as appropriately applied to the pseulopodia of some of the "perforate "Foraminifera as to those of the Polyeystina, which are placed by Dr. Carpenter in his second order, the Radiolaria, under the erroneous idea that they and the other families which he associates with them in that order possess both a nucleus and a contractile vesicle. Actinophorys, which he makes the type of this order, undoubtedly possesses both organs ; but it is the only form in the Rediolurion order (as constituted by Dr. Carpenter) which is so gifted. It is consequently quite out of place elsewhere than in the third or highest order, in which every family, without exception, possesses both these organs. The Polycystina, on the other hand, do not possess a definite nucleus, their body-substance being almost identical in its degree of "differentiation" with the body-substance, for example, of Orbulina. It is quite unnecessary for me to point out that since the nature of the animal of the Foraminifera and of the Polycystince is to all intents and purposes identical, no valid objection to their association in the lowest of the orders into which the Rhizopods are divisible can with justice be based on the mere difference in the mineral constitution of their shells.

It is well to bear in recollection that Müller based his classification of the Rhizopods on the purely artificial difference between the naked and the shell-covered forms. His designation of "Radiolarice" is certainly not retained therefore out of deference to the meaning which its propounder attached to it. But inasmuch as an attempt is being made to supersede the name of Polycystina given by Ehrenberg to these organisms by calling them Ractiolaria, and, according to every rule of priority" and scientific usage, "the name originally given by the fuunder of a groups should be permanently retained to the exclusion of all other synonyms," unless some good cause can be assigned for the change, I must say the procedure appears to be altogether unjustifiable. For if it be urged that the meaning lurking under the name Polycystina is misleading, what is to be said of the name of Foraminifera as applied to a Miliola or a Lagena?

The following is the classification of the Rhizopods which was appended to my paper on the Polycystina in 1865. I beg leave to submit it once more to naturalists without comment or modification of any kind, either in the tabular por-

[^19]RIIIZOPODA.

order so designated comprises the two families whose affinities they recognized, although on grounds
which appear to me of very minor importance as compared with those now adduced.
tion or the general definitions. Owing to an oversight when the MS. was sent to press in 1865 the words " monomorphous" and "polymorphous", were omitted under the twice repeated word "Pseudopodia" in the third order Proteina. These have, therefore, been now inserted (see p. 171).

Order I. HERPNEMATA.-The Primary and Secondary characters of this order are as follows :-No definite nucleus. No contractile vesicle. Sarcode without any appreciable differentiation into endosarc and ectosarc, consisting of homogeneous viscid protoplasm, in the substance of which vacuolar cavities occasionally occur. Pseudopodia forming anastomoses, and exhibiting, both along the surface and within their substance, the phenomena of pseudo-cyclosis\%.

Order II. PROTODERMATA.-Definite nucleus present, but no contractile vesicle. Sarcode so far advanced in differentiation that the ectosarc constitutes a nearly hyaline stratum of greater tenacity than the endosare, which still retains much of the general consistence of that of the Herpnemata. The transition, however, from endosare to ectosare is gradual. Here, as in the last-named family, vacuolar cavities occur. The pseudopodia, when present, are scattered and attenuated, rarely coalescing, for the most part rigid, but still highly contractile, and exhibiting in their interior and on the surface only such minute granules as find their way into the ectosarc. P̌seudo-cyclosis manifest. Sarcoblasts conspicuous \dagger.

Order III. PROTEINA.-A definite nucleus and, with it, a contractile vesicle; sarcode very highly differentiated into endosarc and ectosare: the former granular, more or less nearly colourless, very viscid, and exhibiting but little contractility; the latter nearly hyaline and very contractile, but never assuming a membranous consistence, except during the period of encystation. Vacuolar cavities numerous and constant, seen principally to occur in the endosare. Sarcoblasts abundant and frequent, but, owing to their pale colour, less easily detected than those of the oceanic Rhizopods \ddagger.

It only remains for me to add:-that the above classification

[^20]is by no means put forth as perfect in all its parts, but simply as embodying what I conceive to be, for reasons already assigned, as close an approximation to a natural arrangement of the Rhizopods as the present state of our knowledge allows; and that, having done my best during the course of the past twelve years to test it whenever opportunities occurred, I have not been able to detect any serious tlaw in it. It must nevertheless be accepted merely as an attempt to reduce the group of organisms in question to something like natural order.

Supplemextary Notes.

Contractile vesicle.-It has always been urged by me that there is more reason for regarding the contractile vesicle of the Rhizopod as an organ whereby the effete residue of the watery fluid absorbed by the animal is first collected, and then discharged by an orifice in the vesicle, extemporized at the moment of extreme dilatation, than for regarding it as a circulatory organ. I may therefore be allowed to point out that although the nature of this organ was discussed by me in detail in the 'Amnals' for December 1863, and it was there shown (both on the independent evidence of my friend Mr. Carter, and as the result of my own observations) that the contractile vesicle in Amobla, Actinophrys, and certain Infusoria discharges its contents at the immediate surface of the animal's body (my description of the process being accompanied by illustrative firsures), Dr. Carpenter has not scrupled to say, at p. 472 of his work 'The Dicroscope' (5th Edit. 1875), that the nature of the process was for the first time "fully established by Dr. Zenker in 1867"—ant this in the same page in which he shows that he was acquainted with my series of papers in the 'Annals' upon the Rhizopeds, in which the observations were recorded.

Woctiluce--In the Report of the 'Challenger' Expedition, published in the Proceedings of the Royal Society, 1876, vol. xxiv. pl. 21, there are three figures which are described as representing "true Diatoms," to which the generic name of Pyrocystis has been given by the discoverers. I am, indeed, grievonsly mistaken if these structures bear the slightest affinity to Diatoms, or are any thing else than true oceanic Noctiluce. It would be just as irrational to separate the testaceous from the naked lihizopods, beeanse the former have hard coverings and the latter have none, as to regard these new forms as distinct from Noctiluca, because they present a delicate siliceous wall. The figures of the elongate form, if accurate representations, as they doubtless are,
show at a glance that the structure is not that of any Diatom.

Dictyocha.-In Dr. Gwyn Jeffreys's Report on the 'Valorous' Expedition (Proc. Roy. Soc., June 1876, p. 228), there is an account of some Diatoms examined by Professor Dickie, it being mentioned incidentally that along with these "were two Polycystina, namely Dictyocha fibula, Ehr., and Dictyocha gracilis, Ehr." With all deference to Prof. Dickie, I beg leave to point out that the Dictyochidce are neither Diatoms, as they have been regarded by some writers, nor Polycystina as they would now appear to be regarded by others. They are Mhizopods, holding an intermediate place between Thailassicolla on the one hand, and the siliceous sponges on the other; and hence (as was long ago shown by me) they constitute the true comecting link between the Rhizopods and the Sponges. The basket-shaped framework of the living Dictyoche is never single, but invariably double, the concavities being placed face to face, and the two portions retained in position solely by the sarcode body, which fills and surrounds them. The distinct nucleus may always be seen, in recent specimens, suspended as it were in the middle of the sarcode, half within the boundary line of one framework, half within that of the other. The most remarkable feature, however, of Dictyocha, and the one which at once establishes its alliance with the siliceous sponges, is that every part of the siliceous framework is tubular.

BIBLIOGRAPHICAL NOTICES.

The Primeval World of Switzerland. With 560 Illustrations. By Professor Heer. Edited by Jayes Hertrood, F.R.S. \&e. 2 vols. 8vo. Longmans \& Co.: London, 1876.
The Geology of England and Wales. By Horace B. Woodward, F.G.S. \&c. With coloured Geological Map and numerous woodcuts. 8ro. Longmans \& Co. : London, 1876.

Exglayd and Wales have been said to exhibit an epitome of geology to the student of successive rock-formations and fossiliferous strata. From the oldest and lowest, or nearly lowest, known series of rockmasses, now much altered, to the latest or uppermost deposits of sea, lake, and river, some representative rock or layer is found in place, indicating period after period of the earth's history, as far as geologists can recognize its terraqueous existence.

Sritzerland also presents an epitome of the geological history of
the world-except, lst, that the oldest portion of the record is obscured to a greater extent by the change of strata into crystalline rocks, and, 2ndly, the marine formations of the latest period are wauting in this inland region.

As different books of history, having the same basis of facts, vary in their style and appearance, treating the subject-matter broadly or succinctly-forming a simple plain volume, or appearing with sensational pietures and embossed binding, so the first-mentioned of our natural epitomes of geology has its leaves and chapters plain and unbedecked, carrying on the student quietly from stage to stage, with but few outhursts and disturbances of events; whilst the latter, beginning with the results of great changes and bouleversements, has often great ovents to speak of, fuller scries of erents to describe, and better-known communities of life to introduce to notice.

The mountains, gorges, valleys, lakes, and rivers of switzerland astonish or vaguely interest the mere tourist, give studies of lights, shades, and distances to the artist, offer many problems in physies to the exact inquirer, and, while presenting difficulty after difficulty to the geologist, at the same time help him to unravel the intricate and solve the doubtful in their structure, and thus open out the succession of events, not only among these crumpled and riven mountains, but in the gradual formation and changes of strata all over the world.

After the long series of labours carried out by eminent savants, numerous geological sections have been drawn across Switzerland, and excellent maps have been constructed. The more easterly Alpine districts also have been explored and explained by these geologists. Prof. O. Heer, in the work before us*, illustrates the old geography and hydrography of Central Europe, and its old lifegroups, during successive periods, from the Carboniferous to the Quaternary, taking the known stratal conditions and collected fossils as the basis of his animated descriptions and of the pictorial illustrations with which his work is ornamented.

The oldest and much-altered rocks are known as crystalline and metamorphic, and, although norr schistose, gneissic, and granitic, are referable probably to the Devonian, Silurian, and Cambrian systems, if not to the Laurentian also. They form axial masses, longitudinal and otherrise, in many parts of the Alps, haring been not only folded but intensely crumpled strata, low-seated, crushed, chemically altered, and ultimately forced to a higher position by the great lateral pressure to which the whole complicated mountainmass or massif was subsequently subjected. They have been here and there exposed by the destruction of the overriding schists and strata; and then they stand out as peaks and ridges, or even great rounded bosses, according to their relative hardness, and according

* The Editor states that the German and French editions were both placed in the hands of W. S. Dallas, Esq., F.L.S., for translation, and that thanks are especially due to that gentleman for the care he has bestowed on natural-history details.
as their structure is massive or laminated. Of the seas in Which these oldest rocks originated, of the life-forms inhabiting the waters and lands of their times, Switzerland gives no evidence. Their bidden story is to the rest of the geolugical record of the Alps what the mythic period is to any human history. Everyday affairs in the one, and organic and inorganic processes in the other, may hare been conducted on the same principles as at present; but the details hare been obscured and are irrevocable.

The strata formed in the Carboniferous period have in many places participated in the successive foldings and squeezings of the mountain-masses; and the coal has been changed into anthracite. Much, howerer, remains sufficiently unaltered, in the Lower Valais and elsewhere, to supply evidence that the crystalline rocks of the Central Alps had been raised above the sea at the Coal-period, that the corals and sholls are those of the Monntain-limestone elsewhere, and that the jungles and forests, which were converted into seams of coal, consisted of the great trees of the Clubmoss family (Lycopodiacea), the gigantic Calamites, and the manifold Ferns, which grew so abundantly at that time in nearly every region of the world. In Chapter I. Prof. Heer discourses with knowledge on the origin of coal, and of antlogous formations of peat, paper-coal, and liguite, and on some of the plants and insects found in the shales of the Coal-measures. The succeeding Permian (or Dyas) series is represented by red sandstone, with breccia, in the ralley of the Sernft or Sernif. This rock, termed Sernifite by M. Heer, contains copper-ores, as usual with rocks of that age.

The Swiss Saliferous formation is the subject of Chapter II. Here the origin of rock-salt by the desiccation of shallow seas is briefly discussed, and the Swiss salt-works described. The fossils of the Muschelkalk and especially the fossil plants found in the Keuper (Plates II. \& III.) are treated of.

Cbapter III. elucidates the history of the Liassic strata (the Black Juice of the Germans) occurring at Schembelen in the Canton of Aargau. An analogous recent formation is described as taking place at the Gongulho, Madeira. What kind of creatures the Liassic fossils once were is shown by the study of the shells, crustaceans, fishes, seaweeds, land-plants, and insects. Among the last are Cockroaches, Grasshoppers, Earwigs, Termites, Dragonflies, 114 species of Beetles (comprising such as feed on wood, fungi, leaves, flowers, dung, and carrion, and on insects and other small creatures, showing the contemporary existence of a multitude of terrestrial organisms), also Water-beetles and some other insects. Figures of many fossils determined by M. Heer are given in Pls. IV.-VIII. Some comprarisons are offered of the Liassic fama of Switzerland with that in other countries. The extent of the marine areas of the Lias and their warm climate, the fertility of the Lias and its hydrocarbon products are also noted.

The Middle and Upper Jurassic Formations ("Brown" and "White Jura" of the Germans, "Oolites" of the English, \&c.) are treated of in C'hapter IV^{\prime}., which is full of interesting information
ns to Coral Islunds, Coralline Limestone, and minute marine organisms of these old strata, with Sca-urchins, Ammonites, and other Shells, Turtles de., and seaweed. The Land-plants, Insects, and unique old Bird of the Jurassic period also occupy attention.

Together with a general table of the Swiss "Jura" (pp. 152-4), a more detailed account of the successive stages is given; also a rough chart of the Jurassic Seat in the European area, and some notes on the economic products of the Jurassic rocks.

In sketching the features and histury of Central Europe during the Cretaceous Periol, in Chapher V., M. Heer shows, with the help of another little map *, the changes which had taken place in the shape of the lands, from the alteration of levels and coasts. With these changes, in the course of ages, the fauna and flora also were greatly modificd by variation of species or "transmutation of organic forms." The C'retaceous Cephalopods, carefully tabulated at pp .183 \& 18.5 , are used ats terms of comparison in showing the relationship of different ('retaceons areas in Europe. Other fossils aro noticed, especially seaweeds, Diatoms, Foraminiters, Lechinoderms, Mollusks, ice. The distrilution of Land Plants in the Cretaceous period is described with M. Heer's accurate knowledge of multitudinous specimens found in Europe, Greenland, North America, and Tropical Africa (Chargeh, west of 'Thebes).

The Eocene formation in Switzerland (Chapter VI.) comprises :the curious Glaris slate, yielding many fossil Fishes, some Turtles and Birds; the Flysch, with its characteristic Fucoid remains and imbedded blocks of granite; the Nummulitic Limestone, containing an extensive marine fauna; and the local pea-iron-ore (Bohnerz), with mammalian bones.

The Miocene or Molasse Period of Switzerland (Chapter VII.) flourished when the land in what is now Central Europe had greatly increased, by the gradual uprising of the Alpine and other districts. Lakes had been formed, the recipients of much vegetable matter; rolcanoes burst out here and there; and great accumulations of gravel were formed by mountain-torrents, and of shingle by the sea, during oscillations of land. The Miocene Flora, preserved in the lignites and plant-beds of the period, whether at home or in England, Greenland, Spitzuergen, or North America, has been a farourite study with M. Heer; so also has the Insect-fauna of the same period, at EEningen especially, where well-preserved remains of Mammals, Birds, Reptiles, Amphibia, Fishes, and other creatures also abound. These are rividly described in Chapters VIII.--XI., and comparisons are made with those of other countries. Deseriptions of special localities rich in these fossils, and philosophic considerations on the probable elimate of the Miocene Period, are also given. The principal results of this investigation are stated

[^21](rol. ii. p. 147) in the following numbers, expressing approximately the temperature of the Miocene districts :-
> A. In the Earlier Miocene Epoch.

${ }^{\circ}$ Cent. ${ }^{\circ}$ Fahr.

1. Upper Italy (at 250 feet above the sea) had a mean annual temperature of .. $22 \quad 71 \cdot 6$
2. Switzerland 20.569
3. The basin of the Lower Rhine $18 \quad 64 \cdot 4$
4. The vicinity of Dantzig. 17 62.6
5. Spitzbergen (78° N. lat.) $8 \quad 46.4$
B. In the Later Miocene Epoch.
6. Sinigaglia 21 69.8
7. Upper Italy 20 68
8. Sritzerland 18.5 . $65 \cdot 3$
9. Silesia (Schossnitz) 15 . 59

The Quaternary Period (newer than the Pliocene, which is not represented in Switzerland) has left the lignites of Dürnten and Utznach, formed after the Miocene strata had been tilted up with the flanks of the Alps. Their flora and fauna approximate closely to the groups now living ; but the Elephant and Rhinoceros were inhabitants of Europe. Glacial sands, gravels, and blocks lie over the lignites, and lead us direct to such natural-history and physical conditions as now rule in the highest Alps. The chapter on "Glacial History" well describes these phenomena, and connects them with the hypothetical history of the great interval between the Quaternary Period and our own day.

Chapters XIV. and XV. conclude M. Heer's work with (1) a brief view of the succession of periods and their life-groups; (2) of the possible causes of the upheaval and depression of land during perhaps incalculable time; (3) of the results of these morements, as shown by Switzerland, both in the formation of strata and in the conditions of the surface as eroded by water, ice, and weather; (4) of the possible course of nature in "the remoulding of species," with regard to which, the author remarks, we are still in the dark, and which he does not consider the Darwinian theory competent to explain*.

Thus, with great skill and in a pleasant style, has the Rev. Dr. O. Heer epitomized the geological history of Switzerland, and much of Europe at the same time, keeping before us the great features of

[^22]land and sea, faunas and floras, howerer much they shifted from age to age-as the scenes of a theatre, or the pictures of a magiclantern, change under the skilful guidance of the manager, to illustrate the rarious turns of a story or a whole series of historic erents.

Woodward's 'Geology of England and Wales' is another good book epitomizing geological history-but in this case by referring mainly to facts relating to inorganie nature, such as the various successive strata in their order, and not as to the extent and conditions of their areas of formation, and referring to fossils only as the distinctive coinage of each period, preserved in the strata, and not as directly surgestive of the animated features of the faunx and flore once occupying the long-since wasted regions.

After a lucid Introduction, treating of the meaning, objects, and methods of Geology, the author procceds to describe each formation in detail, as to its topography, lithological characters, thickness, leading fossils, and economic productions. The Malvern gneiss and some other very old rocks of doubtful age serve as the basis of the Laurentian section : and the other formations follow in order, from the Cambrian (treated in the Sedgwickian sense) to the Quaternary grasels and brick-earths. The Igneous and Metamorphic rocks and Mrineral Veius are separately noticed (Chapter XII.). Springs, Swallow-holes, Tufa, Caverns, Landslips, Blown Sands, Submarine Forests, Peat, Soils, and "Grey Wethers" are all bricfly considered. Denudation and Scenery, and the Sections exposed by the chief Railways, are also treated of in Chapter XIII., well worthy of study. Chapter XIV., on "Geology in the Field" and other matters, should be read in connexion with the Introduction (p. 1).

Mr. Woodward's work is careful and conscientious; and he shows a healthy desire to refer directly to originators of theories and discoverers of facts; though sometimes a ready reference to the writings of his colleagues in the Memoirs of the Geological Survey has hindered his doing justice to more original notices-for instance, in the case of Swallow-holes in the Chalk, at p. 346, and the "Grey Wethers" at p. 364. Conciseness has been successfully aimed at; and yet the amateur, student, and professor will each for himself find a rich mine of facts and inferences in the short chapters of this compendious and well-conditioned book. A glossary of geological terms, a synopsis of the animal kingdom, haring especial reference to fossil forms, bibliographical lists, and an excellent index satisfactorily complete the work.

In conclusion, we heartily recommend these, ${ }^{\text {, }}$ orks by Mr. Oswald Heer and Mr. Horace Woodward to geologists wishing to find the position and nature of the strata and the matural history and geography of the times of their formation. There are many points of geological detail, perhaps in every chapter of each book, that are not yet quite settled, or that at least may be further elucidated with adrantage; there are omissions too, which the author's line of thought, or the plan of his work, or want of space, did not allow of
being filled up; but the general truth of the deductions is none the less for such slight imperfections. If all is not, and cannot be, yet known about transmutation of species, the great changes of climate, the origin and metamorphism of rocks, and the antiquity of man, yet the main outline of geological history has been fairly sketched to the satisfaction of inquiring minds, and is suggestive of some of the grandest ideas of which the mind of man is capable.

PROCEEDINGS OF LEARNED SOCIETIES.

ROYAL SOCIETY.

April 6, 1876.—Dr. J. Dalton Hooker, C.B., President, in the Chair.

Supplemental Note to a Paper "On the Structure, Physiology, and Development of Antedon (Comatula, Lamk.) rosaceus." By William B. Carpeater, M.D., F.R.S.

Since my communication of the abore-cited Paper to the Royal Society on the 16th December, 1875, two important contributions to the Anatomy of Antedon have appeared-one by Dr. Ludwig, chiefly based on his study of Antelon Eschrichtii ("Zur Anatomie der Crinoiden," Zeitschritt für wissenschaftliche Zoologie, Bd. xxvi. 1876, p. 361, continued in Nachrichten ron der Königl. Gesellschaft der Wissenschaften und der G. A. Universität zu Göttingen, No. 5, Feb. 23, 1876), and the other by Prof. Greef, of Marburg (Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, January 1876), both of which seem to have been prompted by the appearance of Professor Semper's short paper on the subject. These able observers fully concur with me, as to all esseatial particulars, in the account I have given of the triple canal-system of the arms, which MI. Edmund Perrier not only could not himself find, but ventured to predict that no one else would find ; in fact, Professor Greef's figure of a transrerse section of an arm might have been copied from one of the drawings 1 have had by me for more than ten years, save for one slight additional feature. The German investigators also accept the correctness of the statements made by me in my First Memoir, that the " nerve" of Miiller is really the genital rhachis, and that Miiller's "vessel" in the arms is solid, not tubular-though neither is disposed to beliere with me that this "axial cord" is a nerve. The character of a nerve, on the other hand, is assigned by Ludwig to a fibrillar band lying beneath the epithelial floor of the rentral furrow of the arms; which band had been indepeudently
noticed by my son, Mr. P. H. Carpenter* (who is at present working in the laboratory of Professor Semper at Wirzburg), in two of Professor s'emper's Philippine species, Actinometra armata and A. niyra, as also in Antedm Escherchtie, in which it had theen previously discowered by Luduig. It is not nearly so distinet, however, in A. roscceles: but its existence in that species was also independently recognized by Professor IIuxley, who, like Ludwig. was led by his general view of the homologies of the Crimods to remard it as a nerve. My son regards both the ventral band of Ludwig and my "axial cord" as belonging to the nervous system, being led to that conclusion, as regards the former, by its homolory with the radial nerves of other Echinodurms, and, as regards the latter, by the very definite branching he has discovered in the axial cord of the arms of Actinometra armata and A. nigra-two pairs of branches rumning on each side towards the dorsal surface, and two towards the ventral, where he has distinctly traced their ramifications as far as the leaflets hounding the ventral furrow. Prof. Greef. on the other hand, describes the whole epithelial floor of the ventral furrow as a nerve, on the ground that its histological character resembles that of the nerves of other Echinoderms.

Having recently had an opportunity of examining at Würzburg the very thin sections prepared by my son, I can say with certainty that the fibrillar band is quite distinct from the layer of columnar epithelium which it underlies; but it appeared to me to send off very minute fibrils that pass up between the cells of which that layer is composed.

To myself it appears by no means improbable, looking alike to its position and to its histological characters, that this band is a nerve; but having regard to its immediate proximity to the sensory (rentral) surlace, and to its separation from the muscles by the interposition of the triple canal-srstem, I camot but think it more likely that it is functionally related rather to the former than to the latter-in other words, that it is an cifferent rather than a motor nerve.

As it seemed to me that important evidence might be obtained on this point from experiments made on the living animal, I took the opportunity afforded by my recent visit to the Zoological Station at Naples to institute such experiments; the results of which I am desirous of appending to my paper, as they seem to me to place the doctrine adrocated in it berond reasonable doubt.

Every one who has had the opportunity of observing the habits of the living Anterton well knows the peculiarly rhythmical and symmetrical swimming action which it executes when it spontaneously leaves or is detached from the anchorage afforded by the grasp of its dorsal cirri. Each of its five rays divaricates into two arms, which may be characterized (like the two legs proceeding from the human trunk) as the right and the left respectively; and the act of swimming consists in the alternate

* "Remarks on the Anatomy of the Arms of the Crinoids," in the Journal of Anatomy and Physiology for April 1876, p. 571.
consentaueous adrancement of the five right and then of the five left arms, each of which is bent forwards in a curve which resembles that of the swau's neck in its graceful arch, and is then straightened backwards. The perfect similarity of the movements of all the five arms that work together, involving the conjoint contraction of several hundred pairs of muscles, seems to me to point almost certainly to coordination through a nervous centre; and it will be seen that experiment has fully contirmed that conclusion.

It will be recollected that the centre of what I regard as the motor nerrous srstem is the quinquelocular organ contained in the centro-dorsal basin, which Miiller (who did not recognize its caritary subdivision) characterized as a heart. Müller's view of its nature is still upheld by Greef (loc. cit.), who says that it gives ofi vessels to the cirri, and regards what I have described as a circular commissure (analogous to the "circle of Willis") as a closed blood-rascular srstem in connexion with this, although he admits that the axial cords of the arms, which are derived from this ring, are solid. The careful and repented investigations I have made on this point, however, have fully satisfied me that my previous statement was correct. There is no passage whatever out of the chambers into the axial cords either of the cirri or the rays; and in the pedunculate Crimoids, as in the early Pentacrinoid stage of Antedon, there is no reatricular dilatation, the solid radial cords directly arising from the axis.

Eaperiment 1.-Taking up a large and rigorous specimen of Antelon, I turned the entire visceral mass out of the calyx, leaving behind it, therefore, as the centrum of the animal, only the calcareous segments of the calyx with their muscles and ligaments, the centro-dorsal basin with its cirri, and the five-chambered organ contained in the cavity of that basin. On replacing the animal in the water, it executed the usual swimming movement as perfectly as the entive animal had previously done.

Eaperiment 2.-I removed from a second specimen, which I took out of the water in the act of swimming, the entire centrodorsal basin, with its contents and appendages, leaving every other part as it was. On replacing the animal in the water, all the arms were riyidly strciightened out, apparently by the action of the elastic ligaments, which the muscles were powerless to antagonize.

This second experiment, then, not only confirmed my previous belief that the source of the perfect coordination of the swimming movements lies in a Nervous centre, but seemed to establish beyond doubt that the quinquelocular organ is the instrument of that coordination-the centre of a Nerrous system, whose peripheral portion consists of the axial cords of the rays, arms, and pinnules. On the other hand, the first experiment, taken in connexion with the second, clearly shows that nothing contained in the visceral mass is essential to the perfect coordination of the swimming movements. And since it is clearly in the oral ring that we should expect to find the centre of any nerrous system
lying immediately beneath the tentacular furrow, it seems to mo fair to conclude that the supposed "nerve" of Ludwig, if a nerve at all, has no immediate relation to those movements.

Experiment 3.-I divided, in another lively specimen of Antedon, the soft parts of one of the arms down to the calcareons segment, thereby cutting through the "nerve" of Ludwig. This ought, on his supposition, to paralyze the arm so treated, or at any rate to destroy the consentancousness between its movements and those of the other arms. But on replacing the specimen in water, all the arms worked as usual, without the slightest disturbance of regularity.

Experiment 4.-I then endeavoured to make a corresponding section of my nerve, the "axial cord," by cutting from the dorsal side of the arm, with the blade of a very thin knife, sufficiently deep between the segments to divide that cord without injuring the "nerve" of Ludwig. Having been repeatedly baftled in this endeavour, however, by the throwing-off of the half-divided arm, I had recourse to another method, the application of nitric acid. Carefully drying with a bit of blotting-paper the part to be thus burned arway, so as to prevent the spreading of the acid, I applied it with a finely pointed camel-hair pencil, until I had reason to feel sure that it must have reached the axial canal. On replacing the animal in the water, that arm remained rigidly stretched out, while all the other arms worked as usual.

Now if these experiments, taken in connexion with the one described in my Paper, which I have again repeated with the same result, are not admitted as valid evidence that the quinquelocular organ with its radiating cords constitute a Nervous system, I am at a loss to understand what is the superior probative force of the evidence which is universally held to justify the assignment of such functions to the Brain, Spinal Cord, and the white solid cords proceeding from these centres in a Vertebrate animal. Aud I should feel it necessary to enter a strong protest against the refusal of a similar character to what I hold to be the Nervous system of the Crinoida (if based on no other objection than that its position does not correspond with that of the accredited Nervous system of other Echinodermata), were it not that an investigation which I commenced seven years ago into the structure of the Ophiurida showed that they will probably afford the means of bridging over this difficultr; for the calcareons segments of their arms, instead of being perforated by a central canal, have a deep notch on their ventral margin, which is sometimes almost completed into a canal; so that there is here an easy passage on the one hand towards the ventral nerve-cord of the Asteroila, on the other towards the central nerve-cord of the Crinoida. Further, it is to be borne in mind that in the early stage of the development of the Pentacrinoid larva of Antedon, as described in the First Part of my Memoir (Phil. Trans. 1855), the "axial cords" lie on the ventral surfuce of the Radials and Brachials, which are then mere flat plates: br an endogenous
thickening of the calcareous network of those plates, the axial cords come to lie in furrous chammelled out in their ventral surfaces; while by a further endogenous growth of that network these ventral furrows are completed into canals; and it is by a still further endogenous thickening that these canals finally come to occupy the centre of each Radial and Brachial calcareous segment.

At the same time I would repeat that I see no reason for refusing to believe that the subepithelial band of Iudwig is a sensorr nerve, the functions of the single trunk of the Asteroida being here divided between two, an afferent and a motor, just as, in Man, the double function of an ordinary spinal nerve is divided in the head between the 5th and 7th pairs. And it seems not unlikely that while the "axial cords" (motor nerves) of the arms are derived from the peripheral part of the Crinoidal axis, the "ventral bands" (sensory nerves) are derived from the central part of that axis, which has been shown to be continued, as the "axial prolongation," to the oral ring.

June 15, 1876.-Dr. J. Dalton Hooker, C.B., President, in the Chair.
Preliminary Note on the Structure of the Stylasteridæe, a group of Stony Corals which, like the Milleporidx, are Hydroids, and not Anthozoans. By H. N. Moseley, Naturalist on board H.M.S. ' Challenger.'

On 14th February, 1876 , in lat. $37^{\circ} 17^{\prime}$ S., long. $53^{\circ} 52^{\prime}$ W., off the mouth of the Rio de la Plata, the trawl brought up from noo farhoms a number of specimens of corals of the fanily Stylasterida (Gray *). The specinens included six genera of the family, and seven species. They were all in most excellent preservation, notrrithstanding the fact that they had been slowly raised from 600 fathoms : and all had their generative organs in full development. An opportunity which had long been desired was thus afforded for making a detailed examination of the structure of the soft parts of this familr, which, in the structure of its coralla, shows so many points of variance from that of Zoantharian coralla. From observations made on a species of Stylaster obtained from 500 fathoms off the Meangis Islands, and on a Cryptohelia, a short account of which is given in the Royal Society's ' Proceedings,' vol. xxiv. p. 63, I had already been led to suspect that the Stylasteridæ might prove to be Hydroids-although I did not venture to express this opinion, because the evidence was then insufficient. The examination of the series of forms obtained off the Rio de la Plata at once showed that the Stylasteridæ are true Hydroids.

Unfortunately the trawl came up rather late in the day, and hence a very short period of daylight was available for the examination of the animals in the fresh condition; but it sufficed for

[^23]the sketching of the male gonophores of a new genus of Stylasteride (Polypora), with the stages of development of the sp rmatozoa, and of the female gonophores of Cryptoleclic.

Portions of the corals were preserved ly means of chromic acid, osmic acid, absolute alcohol, and glycerine : and they were subsequently examined in the ustal manner by means of sections. In cutting the sections, a new method, described by Mihakowies, 'Arch. fiir mikroskopische Anatomic,' ii. Bd. 3 Hft. p. 3st, was adopted, and found to rield most astonishingly successful results. The methol seems to supply a want long felt of a means of cutting fine sections of structures the parts. of which are very loosely held together, and where it is desirable to maintain the exact relations in position of parts which in the sections often become entirely discomented from one another. Mihakowies used his method for sections of vertelrate cmbryos; it is certainly the best possible method for the investigation of decalcified tissues, such as those of Corals or Echinoderms. A strong jelly, composed of equal parts of glycerine and gelatine, is used as an imbedding substance; it permeates the tissues, and takes the place of the hard calcareous supporting structures which have been removed by the acid. The sections are mounted in glycerine, and the imbedling substance, which is left in situ in the sections, becomes perfectly transparent, in fact almost invisible in this fluid. I stain the decalcified corals with carmine, then soak them in glycerine, and then transfer them directly to the warm fluid jelly, instead of treating them first with absolute alcohol after staining, as does Mihakowies. A teaspoon heated in hot water is a most convenient instrument for transferring the small masses of tissue, with the fluid jelly, to the cavities in the hardened liver used as an imbedding base. I have dwelt upon this method becanse it seems to me likely to be one which will prove of the greatest service in all kinds of difficult histological problems, such as Corti's organ, early stages of embryos, retina, \&e. It is quite possible by the method to obtain sections of a single hydroid sporosac or planula.

The Stylasteridx obtained off the Rio de la Plata comprised six genera, viz.:-Stylaster; C'ryptohelia; Allopora; Errina; a new genus, Polypora; and a further new genus allied to Errina, which I propose to term Acanthopora. There is much confusion as to the determination of even the genera of the Stylasteride, and I have found it impossible to determine species in the absence of sperimens for comparison. The stylaster appears probably to be S. erubesects of Pourtales*. The Cryptohelia is the same as that obtained all over the world by the "Challenger' in deep water, and apparently not specifically distinct from C. pudicat. Of the Alloporc I camot determine the

[^24]species. There is one coral which appears to belong to the genus Errinc, Gray*, of which a further diagnosis is given from the type specimens by saville kent \dagger, and one of the allied new genus Acenthenmere. The whole of the classification of the Stylasteride will need revision on the more certain basis of the knowledge of the structure of the soft parts. In the older regions of its stem Lepidopora appears to assume the character of a Stylaster: The coral for the reception of which I form the new genus Polypura differs markedly from other members of the family; I at tirst took it to be a Millepora with unusually large zooids.

The genus may be thus characterized, as far as the hard parts are concerned:-

Genus Polypora.

Corallum pure white, composed of a finely reticular but compact cœnenchym. It forms single, stout, vertical stems, usually compressed from before backwards, so as to be oval in transverse section. The stem gives off a limited number of irregularly dichotonous branches, which are flattened like the stem from before backwards, and tend to coalesce by their lateral margins and assume a flabellate form, which is sometimes somerhat curved. The surface of the corallum is perfectly even and smooth, and pierced by deep calicular carities, simply circular in outline, and of two kinds, large and small. The larger less numerons calicles are disposed at irregular intervals over the surface; ther are very deep, reaching nearly to the centre of the axis of the branch or stem, and contain a deep-seated, very long, and slender style with a brush-like tip. The more numerous smaller calicles vary in size; they are thickly disposed between the larger ones; they have no style. Seated beneath the surface between the calicles are numerous oroid cavities, the ampullæ, which in this genus do not project; at certain stages of development these communicate with the exterior by minute irregularly shaped pores, seated in small shallow pits on the surface of the corallum. The calicles are usually more abundant ou one face of the corallum than on the other, especially in its older basal region.

Type of the genus Polypora dichotoma.
Dimensions of the specimen:-Height of the corallum from $1 \frac{3}{4}$ to 1 inch; breadth of fan 6 inches; diameter of stem from $1 \frac{3}{4}$ to 1 inch; diameter of the mouths of the larger calicles $\frac{1}{50}$ of an inch.

1 further examination of the species of Stylaster obtained off the Meangis Islauds was made in connexion with that of the corals referred to above. This Stylaster resembles Crmptohelica in every particular, excepting that it has not the peculiar lid in front of its cullicles. It will have to be separated from the other Stylasters, and placed in the genus Cryptohelia.

[^25]In all the Stylasteride examined there is present an abundant conosare, made up, as in the Milleporide, of a network of anastomosing canals, composed of an enduderm and ectoderm, and ramifying in corresponding canals in the spongy trabecular calcareous comenchym. In Polipporte the meshes of the network are comparatively close; in all the other genera examined far more widely open. In Cryptohlia and the Stylaster from off the Meangis Islands, in which the calicles appear as swellings seated upon sleuder connecting branches, bundles of larger canals traverse the axes of these branches, and connect the zooid groups of the several calicles with one another. A continuous layer of tissue, as far as has yet been seen without celiular structure, but containiug threadcells, covers the external surface of the conosare in all the genera. In all the Stylasterida there are two kinds of zooids, as in Millepora; the larger and less numerous have mouths and a special layer of digestive cells lining their body-cavity. The more numerous smaller zooids have no mouths and no gastric cells. The alimentary zooids are short and cylindrical ; the smaller or tentacular zooids long and tapering. The almentary zooids in Styluster erulbscens have eight tentacles; in Cimptolulia, and in the Stylaster so closely resembling it, they are devoid of tentacles. In Allopora they have twelve, in Errina four, in Acanthopora six, in Polypora dichotoma four. In Polypora, in which the tentacles of the alimentary zooid were examined in the fresh condition, the tentacles were seen to be clavate, the heads of the tentacles being somewhat elongate, not spherical as in Nilleport. I am as yet uncertain whether these tentacles are clavate in the other genera. The point is difticult to determine in the extremely contracted condition of the organs in reagents. The tentacles of these alimentary zooids are very short; they are placed in a single whorl at the base of the broadly conical hypostome. In C'mptohelia and in the allied Stylaster the tentacleless alimentary zooids are flask-shaped, with a conical projecting hypostome, as seen by Sars *. The rounded bottoms of the zooids are blind and unconnected with the conosarcal canals; but a series of canals radiate upwards from the sides of the flask to branch and join the network above. The smaller zooids I have termed tentacular zooids, because, though invariably devoid of tentacles themselves, they have the form of the simple elongate tentacles, and evidently must perform a tentacular function. In Polipore, Erri$n a$, and Actithopore these tentacular zooids are dispersed irregularly amongst the alimentary zooids; in Cryptohelit, Stylaster erubescons, and Allopore they are arranged in a circlet around a centrally placed alimentary zooid in cach so-called calicle of the corallum. The bases of these zooids communicate by large vascular offsets with the general network of the conosare. The eavities of the alimentary zooids are four-rayed in transverse section, and in Polypora they divide at their base into four large vascular trunks, which

[^26]subdivide to join the cœuosarcal meshwork. The cavities of the tentacular zooids are circular in transverse section. Both kinds of zooids are provided with strong cireular and longitudinal muscles, whith form wide conspicuous bands bencath the ectoderm. The alimentary zooids are situate on the summits of the styles of the corallum, where these are present. In Polypora, in the retracted condition of the zooids, the styles traverse the axes of the zooils from below for at least two thirds of their length. In Polinmire, Errince, and Acanthopora the zooids of both kinds are retracted within long sacs, the carities of which communicate with the surrounding network of the cœnosare by a series of radially disposed canals, which canals in transverse sections of the zooids have at first sight exactly the appearance of a system of mesenteries. In Criptohetia and the Stylaster so closely resembling it the alimeutary zooids, lying as they do deep in the calicles, are probably never far protruded. The tentacular zooids are partly retracted between the pseudo-septa, partly doubled dorn within the calicles when the colony is in the retracted condition. In the other Stylasters and in Allopora the conditions are much the same. Two kinds of thread-cells are present, large and small: the large are of the slightly curved crlindrical form, and emit a thread with an elongate enlargement upon it near the sac, beset with a spiral of spines: these larger cells are mostly gathered together in nematophores, which are disposed irregularly amongst the zooids in Polyporc. regularls in the interrals between the tentacular zooids at the margins of the calicles in Cropptohetia and the Stylaster resembling it. The smaller kind of thread-cells are of an ovoid form, slightly flattened on one side; ther occur in the tentacles of the alimentary zooids, and form a closely set corering orer the entire external surfaces of the tentacular zooids. No three-spined threadcells, like those occurring in Millepora, exist in the Stylasteridæ. Reproduction takes place by means of adelocodonic gonophores, which are produced as buds from the coenosarcal network without having any other connexion with the other zooids. They occupy in the corallum the ampullæ which in Polypora are concealed beneath the eren external surface of the corallum, but in the other genera of Stylasteridæ show themselves as rounded prominences on the surface of the coralla, being specially prominent in Errina and Distichoport. The Strlasteridæ are all diœcious. Females onls of Errince and Cryptohelic* have been examined, and males onl? of the other genera. The generative elements of Acenthoporce were not observed at all. In the males of Polypore the gonophores present the usual structures occurring in Hydroids; ther are simple oroid sacs, with an axially placed spadix, and resembling in all respects those, e. g., figured by Allman from Laomeder flexuosa t.

[^27]The gonophores are sometimes single in the ampulix, sometimes in groups of two or three arising from a common base with their contents in yarious stages of development. The ripe spermatoon are precisely similar in form to those of Gictreit antens.*. In Allopora, Aconthopora, and Styluster erubescens the male gonophores have a similar structure. In the Stylaster allied to Cryptohelia the male elements are developed in a series of saces, which encircle the calicle, often in a double row. The sacs spring from the cenosareal network; they contain numerous smaller globular cersts, attached to a common basal endodermal tissue. These cysts are some of them filled with ripe spermatozon, others with spermatic cells in various stages. The female gonophores are, in Cirrinu, simple, i. e. each ampulla contains only a simple orum or embryo. In Cryptolelic large sacs are present at the sides of the calicles, which contain ora and embryos in all stages of development. Only a single sac of the kind is developed in relation with each calicle. In bothgenera the spadix in its earliest stage is cupshaped, the cup having fitted into it an orum with germinal vesicle and spot well marked. The ora early lose the germinal vesicle and spot, and develop into very large planulx, in the same manner as, e. \%., those in Latomedea flecuosat. In Eirina the planulæ are more ovoid in form than in Cryptokelice, in which they are long and worm-like, measuring. $\frac{1}{8}$ of an inch in length. They have a thick transparent ectoderm, abundantly supplied with the larger form of thread-cells. The spadix in both genera, as the development of the orum proceeds, becomes divided at its margin into a series of lobes, which lobes subdivide and encroach over the surface of the orum until more than half the proximal surface of the ormm is thus embraced by the cup of the spadix. The lobes of the margin of the spadix appear just like developing tentacles; and the spadix of Croptohelice was at first supposed to be a developing actimula. The outer, thin, perforated calcareous walls of the ampullio in Errina appear to get thinner as development of the embryo advances, until they fall away or are absorbed altogether, and give free exit to the planula. In Cryptohelic the planulæ probably escape through the mouths of the calicles. The endoderm, spadices, $\& c$. are coloured red by a colouring-matter, soluble in spirit, insoluble in glycerine, in Polypora, Cryptohelia, and Errina. In the Stylester resembling Cryptohelica the coloration is dusky green. The green colouring-matter is soluble in spirit, and yields an ab-sorption-band in the spectrum. In Polypora the living layer of cœnosare set free by decalcification is very thick, not merely a thin superficial film as in Millepora; indeed all but the most central axial regions of the branches of the corals are in active life: In the other genera the whole of the coral appears to maintain its vitality, there being no dead region represented by a cavity after decalcification.

[^28]
Conclusions.

Since the observations of Prof. Sars* on the polyps of Allopora oculina it has been to some extent suspected that the Stylasteride were not Anthozoa, but possibly allied to the Milleporidæ, although the fact was not in any way demonstrated. Milne-Edwards long ago expressed himself extremely uncertain as to the affinities of Disstichepporce, and suspected that it might be an Alcyonarian \dagger. In consideration of the facts now ascertained, there can be no doubt as to the hydroid affinities of the family. The Stylasteridæ appear to form a rery natural family. They all possess two kinds of zooids. The tentacular zooids are closely similar in form in all the genera; and in the variations in the forms of the alimentary zooids all gradations are present. The thread-cells appear to be alike in form in all the genera. In all the gonophores are developed within ampullæ. The corals all bear, as far as has ret been ascertained, fixed sporosacs, as do, according to Allman, all deep-sea Hydroids \ddagger. It is possible, however, that forms such as Styluster senguineus occurring in shallow water§ may bear planoblasts. There can be no doubt that Distichopora will prove closely allied to the other six genera of Stylasteridæ: its well-marked ampullæ and two kinds of pores are decisive in the matter. Pliobothrus is said by Pourtales || to have 'occasional round carities in the centre of its branches filled with a yolklike substance contained in a membrane." These carities seem to be ampullæ; and if so, then Pliobothrus may prove to belong to the Stylasteridx, and not to the Milleporidx. In a specimen of Pliobothrus obtained by the 'Challenger' I have been able to detect neither ampullæ nor tabulæ. It will exidently be possible easily to form natural genera for the stylasteride characterized by the number of tentacles of the alimentary zooids, grouping of the tentacular zooids around them, \&c. This I propose to attempt when I have completed my study of the subject.

The Milleporidæ differ from the Stylasteridæ in having tabulæ, and in possessing neither styles nor ampullæ, as well as in having their mouthless zooids provided with numerous tentacles. The two families have, howerer, many points of alliance, and they should, provisionally at least, be referred to a special suborder of the Hydroidea, which mar be termed the Hydrocorallinæ.

A most remarkable result of the present inquiry is the determination that the calicles of Stylaster and Cryptohelia are tenanted and formed by colonies of zooids, and not by single polyps, as was most naturally bitherto supposed to be the case. Prof. Verrill, in criticising Prof. Agassiz's relegation of the Rugosa

[^29]to the Hydroidea* dwells on the utter impossibility of Acal-phs forming corals with distinct septa; yet in C'r!pptohelin and the Stylasters septa are present in the corallum, which in many cases so closely resemble those of Zoantharian corals that these corals were placed by Milne-Edwards in the Oculinide, and the septa were never suspected to be pseudo-septa until sarst observed that in Allopora nculina the tentacles (tentacular zooids) were situate between the septa, and not upon them. I should not have detected the compound nature of the calicular groups in Stylaster had I not been led up to the fact by the examination of other genera of the family, in which the tentacular zooids are widely separated from the alimentary ones. The determination of the compound nature of the calicular groups at once explains the otherwise very anomalous arrangement of the psendo-sipta in many Strlasteridx. The condition existing has bren deseribed \ddagger as a "tendency of the septa to unite by their inner edres and enclose in the interseptal chamber thus formed the septa of a higher order." The real explanation of the matter is that the apparent interseptal chambers are the pores or calicles of the tentacular zooids. In those species in which the tentacles are removed from harm's way in the retracted condition of the coral by being bent inwards down into the wide cavity containing the alimentary zooid (calicular cavity), these pores have their walls incomplete on the side nearest to the calicle, and take the form at their mouths of elongate slits, in order to allow of this inward inclination of the contained tentacular zooid when at rest, or when feeding the deeply seated alimentary zooid. The supposed included septa of higher order are the styles of the tentacular zooids. In some forms of the family these styles are brush-like in shape, just like the central styles of the alimentary zooids; they have this form in Allopora miniacea §, and less markedly in Stylaster complenatus, Pourt. ". In some Stylasteridx, as e.g. in Stylaster amphilelioiles, S. Kent - there is no appearance at all of pseudo-septa. The pores of the tentacular zooids are simple circular-mouthed pits, arranged in a circle around the large pore of the alimentary zooid. In Allopora subviolacea, S. Kent**, the pores of the tentacular zooids are, in some zooid groups in the same specimen, mere pores; in others slits communicating with the cavity of the pore of the alimentary zooid. The irregularly seattered condition of the zooids existing in Polypora is to be regarded as the primitive one in genesis from which that existing in Stylaster amplikelioides and that in Allopora subviolaca represent transitional stages towards the high specialization of the zooid groups found in C'ryptohelia and other species at present termed Stylaster.

[^30]It has hitherto been a matter of regret that the Hydroidea were of such a structure as to be unsuitable * for preservation in the fossil state, and that thus we were almost, excepting as far as Graptolites are concerned, without direct evidence as to the forms which may have been presented hy their remote ancestry: We have now two families excellently adapted for preservation as fossils, viz. the Milleporide and the Stylasteridx. At present no members of these families appear to have been observed in rocks older than the tertiary deposits. A single species only, Distichopora antiqua, is known to occur in tertiary beds in France, at Chaumont and Talmondois \uparrow; but now that special attention will be directed to these corals, and their structure is better understood, no doubt allied fossil forms will be detected. It seems just possible that amongst Palæozoic corals such forms as C'yathoncaric may have been tenanted by a group of hydroid zooids with a large alimentary zooid situate upon the projecting style. Cystiphyllum vesiculosum has a crowd of small slit-like pits covering the inner surface of its calicle, which have all the appearance of having been tenanted by hydroid tentacular zooids. I cannot, howerer, now refer to specimens; indeed I have never seen any. Ampullæ seem to be absent in these corals; but in shallow-water forms, as in Millepora, they probably would be so. It is quite possible that the Millepores produce Medusw.

Although the Milleporidæ take a very large part in the formation of coral reefs, the Stylasteridæ have very little share in the building up of these structures, being for the most part confined to the deep sea. A few species only occur in shallow water, and apparently not in great abundance. In deeper water, however, the Stylasteridæ are most luxuriant. Immense quantities of a large flabellate red Distichopora, brought from the Marquesas group, are sold to tourists at Honolulu. The corals are said to come from deep water. The results of the 'Challenger's' dredging off the Rio de la Plata in 600 fathoms showed that at that depth very considerable deposits of calcareous matter must be formed by these various genera of hydroid corals, growing associated as they do in masses and attached to one another. Large dead masses of Polypora brought up by the dredge were especially remarkable, weighing more than 1 lb ., and forming bases of attachment for sponges and all kinds of other animals.

I am at present engaged in preparing a series of drawings illustrative of the anatomy of the Stylasteridæ, which I hope shortly to lay before the Royal Society, together with a more complete account of the structure of these corals.

> South Atlantic,
> March $24,1876$.

[^31]
MISCELLANEOUS.

> On the Reproductive Apparatus of the Ephemoridw. By M. Jow.

Male Genital Apperatus.-So far as we know, sinco Swammerdam, no one has studied the internal structure of the genital apparatus of the Ephemeride. Léon Iufour confesses his almost complete ignorance on the subject of this apparatus *. F. J. Pictet says nothing about it, or, at least, he speaks only of the external organs assisting in copulation. The Rev. A. E. Eaton, in his monograph \dagger does not say a single word about the internal genital orgaus.

We regret that we have been unable to multiply our dissections sufficiently to leave no important gap in our anatomical investigation. We hare sought in vain for the male organs in a great number of individuals of that sex belonging to Palingenire virgo, which flew about in the erening in the light of the lamps along the quays of the Garome \ddagger. It is probable that in them these organs were already shrivelled up immediately after the accomplishment of fecundation.

But in the males of Baëtis sulphurea, which we have several times dissected, we have very clearly seen the internal genital apparatus, formed of two testes, or milts as Swammerdam calls them §, placed one on each side of the digestive tube.

They present the form of two elongated, clarate sacs, recurred into a hook at their apex, pure white, and with gibbosities on their surface. The membrane forming their outer envelope is of extreme delicacs, and contains large vesicles or spermatic capsules (cellulesmeres, Godard ; eufs máles, (. Robin), which in their turn are filled with rounded spermogrous cells (cellules-filles, Godard; cellules embryomaires melles, C. Robin), in many of which we have distinctly seen the spermatozoids rolled upon themselves just like minute snakes.

The testicular tube or sac is bordered along its inner side by a duct, to which the spermatic capsules appear to bo suspended by a short pedicle, like grapes to their stalks; they thus open to the deferent duct, which in its turn is continued into an ejaculatory duct which penetrates into one of the two corresponding ponises, traverses its whole length, and terminates at the exterior orifice to pour out its contents there. I say one of the two penises, because, by an excep-

[^32]tion which is as rare amongst insects as it is common in the Crustacea, the male Ephemeridx are provided with two copulatory organs *.

These organs are attached to the penultimate inferior half-segment of the abdomen. They are of horny consistency, of a curved form, hollow within, and pierced at their free extremity with an orifice through which the seminal fluid eseapes during fecundation. They are situated'at some distance within the two corneous, curved, and quadriarticulate pieces which form the forceps, or copulatory armature br which the male holds the female during copulation, and which, from the point of riew of philosophical anatomy, is nothing but an abdominal foot converted into an organ of prehension.

The author of the 'Biblia Nature' has represented the testes of Palinyenia longicaule in the form of two elongated tubes with the surface uneren, as if mamillated. He adds that at their posterior part they are furnished with two smaller sacs, which he believes to be seminal resicles; but he dees not mention either the deferent ducts or the ejaculatory canals. Now these ducts and canals exist, as we have ascertained by dissecting several individuals of P. longicauda, obtained direct from Holland, but preserved for some time in alcohol. A maceration of two or three hours in slightly tepid water has enabled us to isolate the testes of this Ephemerid without much difficulty, and thus to make sure that their structure is identical with that of the testes of Buëtis.

We have sought in rain for the supposed seminal vesicles described by Srammerdam. Léon Dufour states that he could not find the least trace of them in Ephemera nigrimana. We are therefore led to believe that the celebrated Dutch naturalist mistook for seminal resicles simple adipose sacs like those which we have ourselves observed in Baëtis sulphurea, and which, at the first glance, have some little resemblance to seminal resicles.

Howerer this may be, our dissections, repeated several times, enable us to affirm that no seminal resicles exist in the Ephemeridæ that we have studied. As to the testes, they have struck us by their comparatively considerable size, and especially by their resemblance in form and their analogy of structure to those of the Libellulinæ, and even to those of the higher Vertebrata in this respect, that, like the latter, they are found in final analysis to consist of a tube containing spermatic capsules (ourfs mâles, \mathbf{C}. Robin) lodging smaller cells (cellules embryonnaires mâles, C. Robin), in the interior of which the spermatozoids are developed.

Female Genital Apporatus.-In several thousands of individuals

* In assuming the existence of tro penises in the Ephemeræ we shall, perhaps, seem to some entomologists to be committing a serious mistake, and to loe taking for penises the pieces (which are often absent) to which Léon Dufour has given the name of "volselles," and which, according to him, are constituent parts of the copulatory armature. But besides that these " volselles" are often deficient in insects, we have, to support the correctness of our determination, the indisputable fact of the excretory seminal duct passing through these organs which we regard as two penises.
collected still living among the carcasses of P. viryo which strewed the banks of the Garomne, we have not observed a single one the ovaries of which were not almost completely empty. On opening the abdomen after oviposition, we have only found a double sace of considerable capacity, formed by a membrane of extreme delicacy, receiving at its interior part a great number of ovigerous sheaths of three or four chambers containing an equal number of ova in course of formation. Other ora, more adsanced in their development, and already furnished with the sort of hood or cap which covers the extremity opposite to that where the head of the embryo will be, are accumulated in greater or less numbers in the great sac into which the origerous sheaths open*.

Is there a special oviduct for each of these two sacs? Léon Dufour says that the sac which constitutes the ovary terminates posteriorly by a tubular neck, which unites with its congener to form a very short oviduct. Swammerdam says nothing of any such arrangement; nor have we ever seen any thing of the kind ; so that we are more disposed to think that there are two oviducts as there are two penises, and that these two oviducts open separately, in the membrane which unites the seventh abdominal segment to the eighth.—Comptes Rendus, October 30, 1876, p. 809.

On the Nervous System and Muscles of the Echinida. By M. L. Fredericq.

1. Nervous System.-Notwithstanding the labours of Tiedemann, Kan Beneden, Kirohn, J. Müller, Valentin, Baudelot, C. K. Hoffmann, and Lovén, the nerrous system of the sea-urchins still presents many obscure points. The investigations that I made this summer at Roscoff on the nervous system of Echinus spheric and Toxopneustes lividus have furnished the following results.

Anatomy.-The pentagonal nervous ring that surrounds the œsophagus, and the five ambulacral cords] that start from it, are continued within a system of canals which has hitherto been unobserved. This anatomical peculiarity is easily verified, even without the aid of sections, on the cords which run along the ambulacral zones in the interior of the test. Here we find two greatly flattened superposed camals: the inner one is the ambulacral canal; the outer one, which is intimately united with the other, contains the ambulacral nerve in the form of a dark-coloured flattened ribbon. The nervous cord floats freely in this sheath, and is only kept in its place by the series of nerrous branches which it emits on each side towards the base of the ambulacral vesicles. The envelope of the nervous system is firmly united, but only on the middle line, with

[^33]the membrane that lines the interior of the test; of this it seems to be only an expansion, and presents the same structure (opithelium without connective tissue).

The nerrous ring has no relation with a supposed inferior vascular circle of the lantern. On its upper surface it presents a furrow which divides it incompletely into two concentric bands: the outer of these passes entirely into the ambulacral cords ; the inner one takes only an insignificant part in this formation.

The ambulacral nervous cords, after having traversed the inner surface of the ambulacral zones and become gradually thinner, penctrate, in compans with the ambulacral vessel, into the canal of the ocellar plate, and terminate there against the portion of the external integument which outwardly closes this canal. This nerrous termination presents no traces of a crystalline lens, or of any optical apparatus justifying the retention for it of the name of eye given to it by Valentin and Forbes. I have not succeeded in demonstrating in it the least sensibility to light, whether artificial or solar, and concentrated by meaus of a lens. The spot of pigment described here is a pure fiction; in this respect the so-called oculiform points do not enjoy any privilege.

A series of branches spring, as is well known, at right angles from each side of the ambulacral trunk. Each of them issues by an ambulacral pore, penetrates into the ambulacral tentacle, traverses its length, and terminates beneath the sucking-disk at a pad serving as an organ of touch.

Histology.-There is no reason for establishing a division into ganglia and nerves in the nervous ring and the great trunks which start from it ; all these parts have identically the same structure, and must be regarded as nervous centres.

Their brown coloration is due, not to seattered granules, as has hitherto been supposed, but especially to the presence of large irregular elongated cells (resembling the pigment-cells of the Batrachia) filled with brown birefringent bundles: the nucleus is very apparent; for its neighbourhood is destitute of pigment. I regard these cells as connective, secing that I find them in other organs, especially in the walls of the aquiferous system, the membrane of the lantern, \&c. The nervous elements proper have already been described by Baudelot and C. K. Hoffmann. They are fibrillæ of extreme tenuity and small bipolar cells. I have found that these fibres and cells form two very distinct layers. The inner layer presents only fibres; the outer layer (that which is turned towards the test) has a granular appearance. Examined under a high power it shows an immense number of very small cells, only measuring a few thousandths of a millimetre. These cells are so pressed against each other that at the first glance we seem to have to do with an epithelium ; but on examining them with more attention, and especially by exerting a slight pressure on the tissue while still fresh, the cells separate from each other, and each of them shows two very thin prolongations, which, at a certain distance from the cells, present absolutely the aspect of the fibrillæ of the inner layer. The
direction of these prolongations is variable. At the level of the median furrow presented by each of the ambulacral cords it is exactly transverse. Wo can then trace these prolungations even into the lranches destined for the ambulacral tentacles. I may add that these cells are formed oi a not very aboudant homogeneous. grey protoplasm surrounding a large clear nucleus. The ecllular layer adheres intimately to the fibrous layer, so that they can only be separated from each other in the state of little fragments.
2. Muscles.- 'The most contradictory statements prevail with regard to the structure of the muscles of the sea-urchins. I have been able to ascertain that they are composed of very thin cylindrical fibres, perfectly smooth and homogeneous in the direction of their length. Thus, even by employing alcohol, osmic acid, hæmatoxylin, chromic acid, \&c., I have not been able to discern the least trace of a transverse stria. These fibres present a fibrillar structure, and frequently one or more elongated nuclei applied to their surface; but they appear to be destitute of an enveloping membrane. They are birefringent and become vividly impregnated with colouring matters and osmic acid.

The fibres of the muscles of the lantern of Aristotle are implanted directly by a denticulated extremity upon the calcarcous parts of the skelcton.

The muscles of the lantern and the muscular organs (intestine, ambulacral resicles) undergo energetic contractions under the influeuce of electrical or mechanical excitation; but these contractions do not take place suddenly as in the case of striated muscles. It is very difficult to demonstrate the existence of the nerves which animate these muscles.-Comptes Renclus, Nov. 6, 1876, p. 860.

Physiological Erperiments on the Functions of the Nervous System in the Echinida. By M. L. Frederice.

By means of fine-pointed scissors fire small cuts were made in the buccal membrane of an Echinus Tividus, in such a manner as to diride the ambularral nervous trunks near their origin in the collar. The ambulacral feet were not at all paralyzed; they moved in all directions and attached themselves to surrounding bodies; but the animal could no longer execute general morements or change its position, whilst other uninjured individuals could walk along the bottom of the aquarium and crawl up its glass front.

If an uninjured Echimus be turned so that its mouth is upwards, it moves its ambulacral feet until, in a few seconds or minutes, it will assume its normal position. After section of the ambulacral nerves the animal could no longer execute this combined movement, but remained indefinitely in its abnormal position. This is the effect of an insignificant mutilation. On the other hand the most serious lesions, if they do not reach the central nerrous system, by no means prevent the urchins from using their ambulacral feet in the ordinary way; they turn themselves perfectly after many inci-
sions into the buccal membrane or the test, if these are made in the intervals between the courses of the nerves, and even after the remoral of a considerable portion of the upper hemisphere of the test, containing the anus, a portion of the intestine and genital glands, the terminal nerve-cords and ambulacral vessels. All these results lead to the conviction that the cords described as forming the nervous system are the means by which harmony of morement is produced. Lastly the galvanization of an ambulacral nerve by means of the clectrical forceps and induction-coil constantly causes the immediate retraction of all the ambulacral feet of the zone.

The following facts seem to be in farour of the existence of a nerrous plexus in the skin which covers the outside of the test. If a certain spot in this integument be wounded or pricked, the spines and pedicellarix within a certain radius immediately lower themselves towards the point irritated, eridently for the purpose of defence. This experiment succeeds equally well with fragments entirely detached from the animal. It is in the thickness of the external skin that the means of communication between the irritated point and the muscles moring the spines and pedicellariæ are situated; for by cutting the integument with a fine scalpel, the space that takes part in the abore defensive movements may be limited. The author, hotrever, has apparently been unsuccessful in his search for this assumed nerrous plexus.- Comptes Rendus, Nov. 13,1876, р. 908.

On the Motile State of Podophrya fixa. By M. E. Maupas.

Claparede and Lachmann were the first to recognize the real organization of the Acinetina, for which they created the order of Infusoria Suctoria. These authors regarded them as essentially fixed organisms; and the Acinetina thus became isolated among their relatives.

The observations of the above-named naturalists upon the ciliated embryos of these Infusoria, with those of Stein, Cienkowski, and others, showed, however, that this isolation was not so profound as had been supposed at first: during their youth the Acinetina are motile and furnished with vibratile cilia.

The author's observations, which he regards as fitted to bring together more closely the Suctoria and Ciliata, were made upon Podophrya fixa, Ehr., which can at pleasure pass from the motile to the fixed state. They were made in November 1875 and October 1876 upon Poclophrye obtained from the rivulets of Frais-Vallon near Algiers.

Whether free or fixed, the body of Podophrya fixa is always more or less globular, sometimes quite spherical. The suckers are distributed pretty regularly over the whole body, except only a small region of the periphery, always corresponding to the part of the body where the contractile racuole is situated.

After observing some of these Podophryce for from half an hour to an hour, the author saw the suckers slowly drawn into the body; and
at the same time the suckerless region becume slightly depressed, forming a broad furrow which, becoming deeper, soon gave the body a reniform appearance. On the surface of this groove there appeared some approximated strise, which, under a high power, were resolved into regular rows of little points or mamilhe, which increased rapidly, becoming elongated into short rigid points, not much thinner than the suckers. The latter continued to disappear more and more in the body. The furrowed region gradually increased on both sides until it formed a girdle round the body; and the points or mamilla of this belt, hecoming more and more clongated and slender, formed long and thin vilratile cilia which began to oscillate gently. The suckers had then almost entirely disappeared. The body then became elongated pretty rapidly, in such a fashion that the region on which the first rudiments of ribratile cilia appeared was at one of its extremities. This the author calls the anterior end. The body was at the same time depressed in a direction vertical to the plane of the ciliated belt, thus acquiring a more or less regular elongated form, slightly flattened, and ciliated only on its narrow periphery, the broad surfaces being quite destitute of cilia. The movements of the vibratile cilia at the same time became more distinct and caused some slight oscillation of the body. Lastly, the suckers retired completely within the body, the cilia vibrated more and more strongly, the elongation of the body was completed, and the Podophrya moved through the water turning upon itself, but with the anterior extremity always in front. In the case of stalked individuals the body was detached by a few fecble shocks or by turning two or three times upon itself. All these transformations occupied only half an hour.

The period of activity raries in length in different indiriduals. In becoming again immotile the Podophrya passes in inverse order through the stages above described: the suckers first appear; the body shortens and becomes broader ; the ribratile cilia are retracted gradualls; the body is gradually rounded, and in about twenty minutes resumes its globular form with its surface covered with long suckers. The same individuals were ubserved to pass several times through the whole series of metamorphoses. The author concludes that Podophrye fixa does not suit its name, as it is the most ragabond of known Acinetina; he regards it as an intermediate type uniting the Infusoria Suctoria to the true Infusoria Ciliata.-Comptes Rendus, November 13, 1876, p. 910.

Helix villosa, Draparnaud.

Mrs. David Robertson, of Glasgow, found four living specimens of this land shell, in August 15:3, on the moors near Cardiff, Glamorganshire, while searching for Ostracoda in the ditches. It is au addition to our Mollusea. I. villose inhahits Germany, the cast of France, and Switzerland ; and it often occurs at considerable heights above the level of the sea. The variety alpestris or alpicola of H. arbustorum has the same difference of habitat: this usually is an
alpine mollusk; but it also lives on the banks of the river Lea, near Broxbourne, in Hertfordshire; and the Rer. T. Wiltshire found a specimen in my grounds at Ware Priory.--J. Gifyn Jeffreys.

On a new Species of Naultimus.

At the Mecting of the Wellington Philosophical Society on Nov. 11, 1576, the President, Dr. Buller, C.M.G., read the description of a new lizard of the genus Naultimus, and exhibited water-colour drawings of the adult and young, taken from specimens brought over from Nelson, and presented to him by Mr. Arthur Atkinson. The new lizard, for which the author proposed the name of Nualtimus pulcherimus, is beautifully marked in green and brown, the latter colour predominating. The green, which is very bright, is displayed in large diamond-shaped spots, arranged symmetrically on both sides of the spine, down the whole course of the back; the undcrparts are pale silvery bromn; and on each side of the body there is a series of detached spots of white margined with green. The young of this species is of a bright pea-green colour, raried with transverse bands of paler green, and marked irregularly with minute specess of reddish brown. The author referred to the extreme variability of colour in Nuultinus elegans, but pointed out that the present species (of which several other examples have been obtained) is distinguished by an orange-coloured mouth and tongue, these parts being always blue in the other. Apart from the general superficial colouring, which is rery pronounced, he considered this a good specific character. He concluded with a general review of the genus Naultinus in Ner Zealand, in the course of which he mentioned that a large flat-headed species had been brought from The Brothers, where it formed the staple food of the tuatara. Both Dr. Hector and himself had come independently to the conclusion that this form was distinct from the well-known N. pacificus; but as Dr. Guinther, the greatest living authority on the subject, had pronounced against it, there could be no doubt that it was merely a local form of the latter.

Dr. Hector sald he quite agreed with the President that the orange-coloured tongue separated this lizard as a species from Naultinus elegans; otherwise it might have been taken as a variety of that form with the colours and markings greatly exaggerated. With regard to this large flat-headed species mentioned by Dr. Buller, he might state that he took specimens with him to England and submitted them to Dr. Guinther. The type of Gray's N. xacificus in the British Museum was produced, and this was exactly the same; from which it would appear that our common tree-lizard is the aberrant form, and the island one the true N. pacificus. Whether these differences were considered of specific importance or not, he deemed it of the highest interest that descriptions should be obtained of every known variety.

THE ANNALS

AND

MAGAZINE OF Natural history.

[FOURTII SERIES.]

No. 111. MARCE 1877.
XV.—Description of Bdelloidina aggregata, a new Genus and Species of Arenaceous Foraminifera, in which their so-called "Imperforation" is questioned. By H.J.Carter, F.R.S.\&e.
[Plate NIII. figs. 1-8.]
Bdelloidina ayyreguta, n. gen. et sp. (Pl. XIII. figs. 1-S.)
Arenaceous, sessile, flat, composed of linear c'ambers successively applied to each other longitudinally on the same plane, more or less curved simply or tortuously; following the irregularities of the surface on which the species may be growing (Pl. XIII. tig. 1). Composition calcareous. Colour grey. Surface uniformly consisting of rounded grains of calcareous sand of various sizes below 5 -1800ths inch in diameter, together with fragments of siliceous sponge-spicules set pearl-like in a minutely granular calcareous material, which thas serves as a cement to the larger portions (fig. B). Furrowed by lines or grones that indicate the form and extent of the chambers respectively (tig. 1, 1), which vary much both in size and shape; tending irregularly though grenerally to a spiral, planifurm agreregation. Presenting on the convexity or outer side of the last-formed chamber a series of circular foramina about $\bar{\sigma}$-1soothe inch in diameter and 10-1800ths inch apart, arranged more or less regularly in a line from one end to the other (fig. 1, a, and fig. 5, a). Chamber constructed on all sides of calcareous sand, ©e., similar to that of the surface (fig. (i); more or less interrupted Ann. do Mag. N. Hist. Scr. 4. Vol. xis.
in its cavity transsersely by reticulated ruga of the same material, which, in prominent relicf, hanging down from the roof, produce an extremely irregular surface, owing to the large grains of sand of which the ruge are composel, but the whole rendered smooth lyy sarcolic lining throughout; presenting a row of large apertures on each side, about the same size as, and arranged in a similar mamer to those on the convexity of the exterior of the last-formed chamber (fig. $4, b, b$), which, as the latter is successively added, become the septal holes of intercameral communication (fig. 5, a) ; also presenting a great number of smaller holes varying in diameter below $2-1800$ ths inch, situated respectively in the deep interstices of the reticulated ruga hanging from the roof (fig. 4); leading to equally irregular passages diminishing in size and sometimes branched as they extend towards the surface of the test (fig. 6, e, fig. 5, b, and fig. $7, e$), where they appear to open in points not larger than 1-20,000th inch in diameter; at least such is the measurement of the closed dry and retracted sarcodie lining viewed in the latero-vertical section close to the surface, although the crevices among the sand-grains through which these points probably opened cannot themselves be recognized on the surface itself; floor of the chamber also more or less similarly foraminated and sulcated like the roof. Cavity of chamber often containing brown fragments of agglomerated sarcode and sponge-spicules. Size of entire specimen variable, the largest which I possess being about 1-6th inch in diameter and rather longer than broad (fig. 2). Chambers very variable in length below 1-60th inch, and equally variable in transverse diameter below the same size.

Hab. Marine, in excavations on the surface of a large globular mass of Siderastrea.

Loc. ? Coral reef.
Ols. The graneral form of this Foraminifer is, in miniature, that of a group of sucking, half-filled leeches on the human skin, hence the name ($\beta \delta \dot{\delta} \lambda \lambda a)$; and the composition of the test, consisting exclusively of calcarcous material and fragments of siliccous sponge-spicules, scems to indicate that the coral on which the specimens were found grew on a "reef" where silex in no other shape could be obtained.

There is no douldt from this composition that it belongs to the Lituolida, or to that portion of the Arenaceous Foraminifera which hitherto have been considered "imperforate," simply because no pores on the surface could be detected by the microscope. The same might be said of the frustules of the Diatomacea even during active life, when they are in continued motion-with much more reason; for here neither sar-
code nor holes can be seen; but no one would be so hardy as to make this assertion ; and who has ever watched a Lituola in active life?

When, however, we observe the "labyrinthic" structure of Dr. Carpenter ("Introduction to the Study of the Foraminifera,' p. 144), homologous, in my view, with the shell-tulualation of Nummulites, traversing the walls of Lituola ceneriensis, D'Orb. (= Nomiomina Aetfreysii, Williamson, 'Recent Foraminifera of 'Great 13ritain,' 1858, p. 34 , pl. iii. figs. 72 and 73) (Plate XIII. figs. 26-29), it is evident that, although large in the greater part of their course, the tubular cavities of this structure become contracted close to the surface, and that this sudden contraction, short in itself and so short a distance from the surface, thus hrings the extemal ends of the "labyrinthic" canals immediately into view on the slightest abrasion (fig. 27, l().

Admitting, then, that the shell-tubulation of Nummulites is but a counterpart of the " labyrinthic" canals, it is impossible to conceive that the ends of the latter should be brought so near the surface, if it were not intended that they should open there for the same purpose as in Nummulites. Noreover, how could the test of any kind of Foraminifera be arded to externally if it were not for sarcodic filaments reaching the surface here the same as in Nummulites? Yet we learn from Dr. Carpenter ('Introd.' p. 14(1), that the Lituolida "can only put forth their pseudopodia from the terminal aperture," and that therefore "the affinities of the purely arenaceous types are essentially with the porcellancons series " ('Introd.' p. 140). But who ever saw the "labyrinthic" structure (necessarily "labyrinthic" from the nature of the sandy material of which the test is composed) in the form of a porcellancous Foraminifer, or, indeed, the shell-tubulation which is the indication to the pores on the surface? which pores, again, even here also might be so small as to escape notice without this indication; lastly, whoever saw a porcellancous test among the Nummulites, to which Lituola cancoriensis in form is most nearly allied?

Here it should be remembered that the "pseudopodia" and the filaments of sarende which pass through the surface of the test have totally different functions-the firmer for collecting food, and the latter chiefly for forming the shell-substance. Nowhere in Max Schultze's fisures ('Vieber den Organismus der Polythalamien,' 1854), which are by far the best that were ever made, are the "pseudopodia" represented as coming from the foramina on the surface of the shell, except in fig. 22, tab. vii., where a few filaments are seen to come from the large apertures on the surface of a "young Rotalia." Is a
rule, the "psendopodia" come from the great aperture at the end of the test in his figures-although of course, where there is a canal-ssatem, they may issue also from its openings wherever these may be, either along the course of the septa or on the marginal cord as in Operculina.

The ferruginous colour, however, which pervades the test of Lituola cunariensis is so much like that of the dried sarcode lining its cavities, while the test itself is composed of a heterogeneous assemblage of sand particles, fragments of siliccous sponge-spicules, $\mathbb{E} c$., of different sizes, varying from immeasurable minuteness to large grains which may be seen with the naked eye, that it is not extraordinary that the pores of the " labyrinthic" canals, which probably are not larger than those of the Nummulitida, viz. about 1-20,000th inch in diameter (in Operculina arabica), should, under the circumstances, not be visible among the heterogeneously composed surface of L. canariensis, -where there is no tubulation to lead to them, the minute passages into which they open must necessarily be crooked from the coarse arenaceous material, as before stated, through which they pass, and they can only be sought for amidst the minute particles of the cementing sand by reffected light,-when they are but just visible on the surface of Operculina, where the structure is homogencous and translucent, there is a tubulation to lead to them, their courses respectively are straight, and they can be sought for in the centres of the tubes respectively by transmitted light.

One of these obstacles, however, is got rid of in Bdelloidina aggregata by the materials of which the test of this species is composed being almost colourless, and therefore without the ferruginous tint that exists in Lituola; hence the ultimate extent towards the surface of the dried sarcode lining the "labyrinthic" canals can, by its dark brown colour, in the vertical section be distinctly seen and measured by the microscope, so far as a "point" can be measured. But even here direct observation of the surface does not enable us to recognize the pores of the "labyrinthic" canals, because the dark point which appears to be the sarcodic lining of the pore is retracted, and there can be nothing left but the bare crevice among the minute particles of which the cementing sand is composed to indicate the opening through which it was pro-jected-although in the vertical section, where a lateral view of the "labyrinthic" canal can be obtained, the proximity of the point is distinctly seen so near the surface that it can hardly be doubted that it once opened there (fig. 7,e).

I therefore must demur to the tests of the Lituolida being regarded as "imperforate," and place myself on the side of

Prof. Williamson and the late Prof. Max Schultze, in considering Lituola canariensis = Nonionina Seffreysii, not only as being perforate on the surface, but as being only an arenaceous form of Nonionina now with Operculina very properly included in the family Nummulitida by Dr. Carpenter). By which I mean that the Arenaceous Foraminifera should not be separated from the tests of which they are but the arenaceous forms respectively. I do not mean to state that N. Jeffreysi" is typically the same in structure as the "vitreous" Nonimina, luat that it is so as far as the heterogeneous material of "which it is composed will permit. ("Ityaline or vitreous," Introd. p. 4t, are bad terms for the carthy Nummulitic character, although good for the test, generally minute, which is as transparent as glass.)

Indeed it would appear impossible to view the transverse section of Valculina (fig. 23), whose test is partly composed of vitreous and partly of arenaceous structure (fig. 24, b, c) that is, the former secreted by and the latter brought to the animal (by what". Not its "pseulopodia," but by the sarcodic filaments of the surface) -without assuming that the tubulation of the vitreous (tig. 24, b) is continued throughout the arenaceous layer (fig. $\because 4, c$), even if it were not distinctly visible in most species of this Foraminifer. But Dr. Carpenter, to get over this difficulty, would "assign to it [Taluelina] an independent position as the connecting link between the two " ('Introd.' p. 146)--that is, between the "Imperforate" or Arenaceous and the Vitreous or Perforate Foraminifera. To me this "comnecting link" is an indication that the "two" should never have been separated in classification.

Scratch off the outer portion of a Valculina (fig. 24, c), and a Tertularion test makes its appearance (fig. $24, b$); that is, a Talculina is at first a Textularia and then a Talvalina. Scratch off even the thimest portion of the surface of Lituola crnariensis, and it directly, for reasons before mentioned, presents crevices or pores like those of Jalualina both in size and shape (fig. $27, b$) ; or break open the test itself, and the intercameral holes of the septa (fis. 28, a), together with the tubulation of the walls (fig. 2s, blb), are, mutatis mutandis, the same as in Nomiminu among the Nummulites. That is, the homogeneous composition and definite form of the cavities in the latter are exchanged for the heterogeneons composition and consequently ill-defined form of the cavities in the former (fig. $28, a, b$), where most of the sant-grains composing the test are from ten to twenty diameters larger than that of the tube itself in Operculine, to say nothing of the pore in its centre.

In short, where the straight tubulation ends in Talculina
(fig. 24, 6) the labyrinthic structure commences, by the narrow pore in the centre of the tube becoming continuous, minus the tube itself, with the wide irregular cavity of the labyrinthic structure, till the latter ends in a contracted crevice on the surface (fig. 25, a). It should be remembered that the columns of the former structure are the tubes, while their cavity only is the pore (fig. 24, d).

Why, if the tubulation in Talvulina is followed by the labyrinthic canals which open on the surface, should it not be so with Lituolu, where the labyrinthic structure exists throughout?

Is it not, then, more consistent with nature to assume that the animal parts retain their functional arrangement and constitution although the material of the structure may be different? riz. that the septal holes remain for intercameral communication and the tubulation of the surface for the building-up of the test, whether the latter be vitreous or arenaceous, just as the chambers, donrs, and fenestral openings of a house would differ if constructed of translucent homogeneous plaster, instead of enormous unhewn rocks of more or less opaque quartz. At least such is the contrast of the two under the microscope.

Still, it may be stated, " no openings on the surface can be seen in Lituola;" and this has already been granted. But are we to deny their existence simply because we cannot see them, when, as before stated, we cannot see the sarcode and the pores through which it is projected in the restless frustules of Diatomacer during active life? This in all probability is owing to the extreme tenuity of the one and the extreme minuteness of the other. And so it may be with the Lituolida.

In the family Tummulitida, among which, as before stated, Nonionina and Operculina are included, the pores are for the most part very minute - to wit, in the latter about 1-20,000th inch in diameter; while in Textularia they are comparatively large, being about $1-5400$ th inch in diameter, and in the porcellaneous tests not discernible at all.

But while they are large in Textularia, and equally so on the surface of Talculina, where they appear in the shape of crevices between the calcareous grains of sand apparently at the expense of the minute particles of cement which bind together the large siliceous grains of the Lituolida, they may, from their smallness, easily escape notice in the latter, although they are perfectly evident in Valvulina. In short they appear to be absent even in some species of Valvulina; but it is difficult to reconcile this as fact, although they may not be visible here, when they are present in the other species.

Thus the question is reduced to whether, under the circumstances mentioned, we are justified in concluding that the test of Lituola canariensis as well as that of Midelloilina aggregata is imperforate because we cannot see the pores on the surface.

I think not-and therefore maintain that it is better to adopt the more probable view that they are perforate, and not " im perforate," althourh it may be beyond our power to demonstrate the fact in all cases-morenver that the arenaceous forms are so nearly allied to the vitreous ones respectively that they should not be separated from them in classification. In support of which I camnot do better than conclude these observations with the following statement of one whese rare amount of practical experience among both the marine and freshwater Rhizopoda, together with his acute perception, constitutes him a valuable authority.

Dr. Wallich states:-"The inference which I venture to draw from these facts is, that if due allowance be made for the well-known proneness of the Protozoa, and notably of the Foraminifera, to become modified by local or accidental conditions, the Arenaceous character, taken by itself, ought not to be regarded as indicative of new (i. e. generically distinct) "Types"; but merely of a change in the material of which the shells are composed, resulting either from a deficiency in the supply of Carbonate of Lime, or an excess of power in the water of a particular locality to hold the Carbonate of Lime in solution. And I submit that his view derives support from the undemiable fact that the Arenacems habit is to be seen in various degrees of development in the following large series of widely divergent Genera, namely, Lagena, Bigenerina, Quinqueloculina, Trestulurir, Todoserim, Cëigerinu, Discorbina, and even in Cluhigerinn itself. Whilst the "rusty" colour said to be characteristic of Litunla proper, not only pervades the entire series in varying degrece, but presents itself also (as shall hereafter be shown) amongst the Freshwater Testaccous Rhizoporls." ('Deep-sea Researches: Biology of Globigorina.' By Cr. C. Wallich, M.I). \&e., p. 62. Yam Yoorst, 1876.)

I might here and that, being impressed with the idea that the testaceons freshwater Rhizopots (many of which from their rusty colour and arenaceons compmisition would, so fir, be taken for Lituolida if found in the sea) possess the power of cmitting sareodie filaments from their surface for the purpoze of forming their tests, I have ncrasionally seen twitching morements of the latter in the arenaccous forms, so like those witnessed in the Diatomacear that, being mable to discover the cause of this in any other way, I have set it down in both instances to the sumden sepuretion of the free
end of a sarcodic filament from the object to which it had, perhaps by some suctorial power, been attached.

Bdelloidina aggregata seems to approach nearest in form to Peneroplis, on account of the chambers being all on the same plane, continuous or uninterrupted by transverse partitions, linear in form and tending more or less to a spiral arrangement, with septa regularly perforated from one end to the other by holes of intereameral communication (figs. 4 and 5)—and perhaps by a disposition of the ruge (which hang in prominent relief from the roof) to assume in some parts a transverse course, viz. across the chamber; although this would make it more like Orbiculina adunca, especially as, in some instances, there is also a tendency to a double row of holes in the septum. But from what has been above stated it will be seen that its general form is not near so like Peneroplis or Orbiculina adunca as Lituola canariensis is like Tonionina; while the uneven form and size of the sand-grains and consequent irregularity of the cavities both in Lituola canariensis and Bdelloidina aggregata are much the same, although the former is rusty and composed of quartzose sand \&c., while the latter is colourless and composed of calcareous sand \&e. Then it should be remembered that, as all the vitreous species of a genus are not represented by arenaceous forms, so there may be some of the latter which as yet have found no vitreous representatives: perhaps Rhaddammina and Astrorhiza may belong to the latter.

Since the above was written I have mounted a piece of Bdelloidina aggregata in which both the outer and inner surfaces of the chamber are unimjured, and can see the openings of the "labyrinthic" canals on the surface, both through the latter and through the former, by transmitted light. They are extremely minute, and situated deeply in among the minuter surface-particles, where they camot be distinguished by reflected light any more than through the internal openings of the roof, and by testing with the direction of the light can be proved to be not owing to facet-reflection of any of the arenaceous particles. So this settles the question as far as Brlelloidina is concerned ; and B.aggregata being exactly like Lituola canariensis in sandy composition and structure, it may fairly be assumed that all the Arenaceous Foraminifera have pores on the surface, and therefore that the "suborder," so far as it depends on imperforation, is exploded; while thus to separate animals, merely because they happen to construct their tests of foreign particles instead of calcareous material secreted by their own bodies, or both together, would be absurd.

EXPLANATION OF PLATE XIII. (figs. 1-8).
Fig. 1. Bdelloidina ay!reyuta, n. rene et sp., on a portion of Siderastran, magnified four diameters. a, convex margin of the last chamber, aloner which are arranged the "pseudopodial apertures" (see fig. $\overline{5}, a) ; b$, lines marking the septal limits of the chambers respectively. Diagram.
Fiy. 2. The same: square indicating natural size.
Fig. 3. The same: portion of surface, marnified to show arenaceous composition of the test. Seale $1-48$ th inch to $1-1800$ th inch.
Fig. 4. The same: horizontal section of two chambers (upper half), to show:-a, septum between the two chambers; $b b$, holes of intercameral communication in the septa; $c e$, roof of chambers respectively, and internal pore-canal openings analogous to those in the shell of Nummulites. Same scale. Diagram.
Fig. 5. The same : rertical section of a chamber longitudinally, to show: -a, holes of intercameral communication through the septum ; b, pore-tubulation ("labyrinthic structure") of the roof or upper wall of the chamber ; c, basal wall or floor. Same scale. Diarram.
Ïg. 6. The same: transverse section of the chamber vertically, show-ing:-a, cavity; b, walls: c, pore-tubulation or "labyrinthic structure." Same scale. Diagram.
Fig. 7. The same : portion of fig. 5 more magnified, to show :-a, septum; b, hole of intercameral communication; c, basal wall or floor; d, roof of chamber; c, pore-tubulation or "labyrinthic structure" amidst the sand-grains of the upper wall or roof; f, dark line indicative of the sarcodic layer. Diagram.
Fig. 8. The same: portion of fig. 4, cc, more magnified, to show that the pore-canal openings are deeply sunk in the interstices of reticulated rugæ pendent from the roof. a, rugac ; b, pore-canal openings.
XVI.- On the Locality of Carpenteria balaniformis, with Description of a new Species and other Foraminifera found in and about Tubipora musica. By II. J. Cahter, F.R.S. \&c.
[Plate XIII. figs. 9-15.]
In my paper on the Polytremata (Amm. \& Mag. Nat. Hist. 1876 , wol. xvii. p. 199) the following statement is made respecting the habitat and locality of P'olytrema beleniforme $=$ Carpenteria balaniformis, viz:-
"Hul. Marine, on the valves of Mytilicardin calyculata and other objects, viz. Pecten, Porites, \&e.
"Loc. West Indies? Indian Occan."
"West Indies" was conjectural ; and although I have every reason for concluding that the dytilicerdie on which my specimen of P. balanifiome had grown had come off a sponge, it was equally conjectural where that sponge had come from originally.

I now find, however, that the type specimens of Polytrema butaniforme in the British Musem partly cover both valves of Mytilicardia rariegata in company with Polytrema miniaceum, labelled " Carpenteria, Philippines."

There is also another specimen on one valve only of a M. rariegata; and this, too, is in company with specimens of Polytrema miniacoum. It is labelled "Dujardinia, Mediterranean."

Going to "Case 35 " in the Shell-Room, we there find one specimen of Mytilicardia rerieguta with nothing upon it (it may have been cleaned)-and next to it a specimen from "Port Essington" (north coast of Australia), apparently bearing only the remains of P. balaniforme.

Close by may also be scen a specimen of Mytilicardia calyculata, labelled "Port Nital and Mediterrancan;" and in the drawer below, a specimen of Dytilicardia variegata covered with Polytrema miniaceum, but no P. balaniforme,-labelled "Red Sea."

Following Chenu's representations, I have stated that my specimens of Polytiema baleniforme are on Mytilicardia calyculata; but I can see no difference between Chenu's figure of 11. calyculata (' Manuel de Conchyliologie,' 1862, t. ii. p. 135, fig. 65(1) and my own specimen of this bivalve, which, again, is identical with that in the British Museum labelled Mytilicardia raviegata; yet the difference between this and M. calyculata in the British Muscum is very evident, although not very great.

In the drawer of the Case mentioned is another specimen of M. verriegata covered with Polytrema miniaceum, labelled "Port Essington ;" and a crab-claw submitted for my examination by Dr . Carpenter is also in the same state, but bearing among the specimens of P. miniaceum also one of P. balaniforme.

My inference, then, altogether is, that we should seek for specimens of Polytrema balanifirme on Mytilicardia variegata \&c. from the Polynesian Seas.

It may loe questioned whether P. bolaniforme exists in the Mediterranean Sea, although P. miniaceum is abundant there and apparently in every sea within the parallels of 35° north and south of the equator.

From what has been above stated, the presence of P. miniacenm, on account of its red colour, might prove serviceable in finding out specimens of P. balanifurme, which, being colourless and very like a Batanus, are equally likely to escape notice, since the hahitat of the latter is not confined to Mytilicardia variegata in the Polynesian Seas, but, according to the late Dr.
J. E. Gray, may be on Porites, Cardita, or Pecten (Proc. 'Zool. Soc. 1858, pt. גxvi. p. 266).

How far the specimen labelled "Dajardinia" above mentioned, on Mytilicardia cariegata "from the Mediterranean," may be entitled to the generic distinction given to it by Dr. Gray (op et loc. cit.), when it appears to me to differ only from P. balaniforme in the irregularity and onlispuity of the reticulation on its surface, is a question which is thus answered. At the same time, while it appears to me to be only a varicty of P. balaniforme, and I have stated that in all probability the latter is not to be found in the Meditemanean, even if Mytilicardia curiegata exists there, the fact of the two having come from the Mediterranean is doubly doubtful.
(When desirous of obtaining the localities of the varions specimens of sponges in the British Muscum, the late Dr. Gray said to me, "I unt camot depend for this on the statement in the 'Register;' for in many instances they have been purchased from 'dealers' or at sales." Certainly it is a great thing to know what does exist in the world ; but the next wish is to know where it comes from, which hitherto has been too much neglected.)

After the foregoing obscrvations on Polytrema bataniforme $=$ C'arpenteria baluniformis had been written, my kind friend, Mr. W. Vicary, of Exeter, lent me for examination a large globular specimen of Tulnipora musicu about as big as a man's head, said to have originally come from Australia, in and about which I found specimens of several species of Foraminifera, one of which, growing on the Tultipmera itself, was so like Polytrema balemiforme that it was impsiblle to view it otherwise than as a species of this genus. Haring resolved to describe and illustrate this species, it became necessary to name it; and in so doing the attempt to subsititute "I'olytieme" fon" "('mpenterie," made in my pajer on the Polytremata, in the Amn. \& Mar. Nat. Hist. of 1576 (vol. xvii. p. 201), for the reasons therem mentioned, proved to be attended hy so many difficulties that I determined to revert to the old name of " "erponteria" given to this Foraminiter by the late Ir. J. E. Gray (Proc. Zool. Soce. l. c.), still retaining it in the family of Polytremata, and, thus abandoning that of "Polytrema lofuniforme" for " (impenteria baleniformis," to make the new Frnaminifer a species of this genus under the name of (ingenteria monticularis, which will now be described.

Carpenteria montimluris, n. sp. (Plate XIII. fiss. 9-12.)
Monticular, with furowed sides, jagged circumference and apertural apex; sessile. Composition calcarcous, homogeneous
(fig. $9, a b$). Colourless, translucent. Surface even, uniformly covered with pores, traversed by longitudinal grooves extending from the summit to the circumference, indicating the limits of the chambers respectively (fig. 9 ($)$). Aperture at the apex large, ear-shaped or spiral (fig. 9, cc), leading to a vertical columella, around which the chambers are situated, and into which they open alternately one after another, as they are successively developed on a spirally inclined plame extending from the base to the summit of the test. Chambers sac-shaped, conical, cylindrical or branched, dendriform (fig. 9, b), varying greatly in size, form, and arrangement ; uniformly traversed throughout by large pore-tubes more or less closely approximated (fis. 12) ; chamber smooth within, often presenting outside, on old specimens, a raised network in relief, dividing the surface into an oblique reticulation whose interstices are irregular in size and shape. Size about one sixth inch in diameter; aperture about 1-60th to 1-30th inch in its longest diameter. Pore-tube about $1-1800$ th inch in diameter, varying in length with the thickness of the chamber-wall; pore itself about 1-5400th inch in diameter, or one third of that of the tube.

Hab. Marine. Growing on Tubipora musica and Siderastraca.

Loc. ? Australia \&e.
Ols. The chief distinguishing character between this and Carpenteria baluniformis is the presence of the reticular framework in the substance of the shell or chamber-wall of the latter, within whose circular interstices the pore-tubes, although general at first, are subsequently circumscribed (fig. 13, a, b); while in C. monticularis there is no such framework, and therefore the pores are dispersed generally and uniformly throughout the structure (tig. 12). The oblique reticulation " in relief" appears to be only in old specimens, as before mentioned. It differs from Polytrema utriculare chiefly in the latter having a separate aperture to each chamber. The genus termed "Dujurdinia" by Dr. Gray (op. et loc. cit.) appears to be a specimen of C'arpenteria balaniformis on Ilytilicardia variogata with this kind of oblique surface-reticulation, as above mentioned. So, perhaps, when more is known about this interesting genus, all these forms, including Polytrema utriculare, may be found to run into each other inseparably ; for the illustrations, viz. fig. 9, a, b, given of Carpenteria monticularis are by no means representative of all the specimens that I possess, which for the most part are extremely irregular in form.

The varieties in which the chambers are branched or dendriform in their outer two thirds (fig. 9, b) very much resemble
the chambers of Planorbulime retinaculutu (Park. \& Jones, Phil. Trans. 1865, pl. xix. fig. $\boldsymbol{2}$) and some limacine forms of Plenorbuline from Australia that I possess. Like Planorlulina, too, the pore-tubulation is very large and distinct in all the species of Corpenteria that have come under my notice, which, together with Polytrema miniuceum, might all perhaps in their earlier forms be reduced to a single planorbuline cell commencing in an embryonal chamber (figs. 1t-17), which is followed by a helical development subsequently lost in the acervuline heap of cells that are developed around it on pasing into its ultimate form.

Although it is not so easy to recognize the earlier forms of Carpenteria as those of Polytrema miniacoum (from the red colour of the latter, there is the difference in form to help us (compare fig. 11 with dig. 4, Amm. \& Nag. Nat. Hist. 1876 , yol. xvii. pl. xiii.); and thas it seems desirable to give a description and representation of some minute specimens (three) existing, in company with C'arpenteria monticularis and Polytrema atriculare, on the specimen of Siderastrea bearing Bidelloidina aggreguta. These, which, having escaped notice before they were detected by the microscope, had become more or less injured, are situated on a patch of Wehbina whose moniliform contort strings of chambers, composed of grains of white calcareous sand \&e., contrast strongly with the delicate, thin, transparent, homogenenus, glass-like, foraminated film of which the aggregated tests of the young ('arpenterier are composed (fig.11), the most perfect specimen of which is about 1-60th inch in diameter, and consists of a conical hollow pillar with circular aperture (fig. 11, a) rising from a great number of long foraminated chambers arranged in a radiating manner around its base, so as to produce a disk-like figure with jagged edges caused by the unequal extension of the chambers (fig. 11, b). In each of the three specimens the last-formed or upper chambers are glassy and colourless (fig. 11, 6), while the lower or previously formed ones (fig. 11, c) present a hair-brown colour, arising apparently from dried brown sarcode within them. Close to the patch of Weblina \mathbb{E}. is a specimen of Bdelloidina agyregata; and there are many pieces of Polytrema miniaceum and cimamon-coloured groups of Planorbulina scattered about the rest of the coral.

Polytrema miniaceum, var. album.

Besides Carpenteria monticuluris, the same piece of Tubipora musica bore specimens of red, cimnamon, and white varicties of Polytvema mimiuceum, all hranched, and so like each other that, but for the colour, no essential difference could be per-
ceived between them; while a young specimen of the latter variety presented a distinct helical commencement from a primary or embryonal chamber, afterwards becoming lost in the acervuline group around it (fig. 14), like one kindly sent to me for examination by Dr. Carpenter; also a cinnamon variety presents a distinct embryonal cell, followed by an irregular helical development, finally surrounded by circles of chambers with straight radiating partitions (fig. 15), such as I have before figured in Polytrema miniaceum (Ann. \& Mag. Nat. Hist. 1876, vol. xvii. pl. xiii. fig. 2), where the confused centre is also no doubt an irregular development of the helix. So that they all probably commence in this way; and where the colour does not assist, the irregular form of the chambers (fig. 14, b), together with the smaller size of the tubulation, may serve to distinguish the embryonic forms from those of Planorbulina.

In my paper on the Polytremata (Ann. \& Mag. Nat. Hist. t. c. p. 206) I have stated that I possess several specimens of Australian Ortitolites, " in which the chambers are charged with embryos; the latter are all elliptical elongate." The "elliptical" form, I must say, always staggered me; but I now find that the largest of them present a line rumning through the long axis-which, together with the presence here and there of other minute Diatomacea, seems to indicate that they are all the frustules of a Cocconeis. The parasitic habit of this species is well known; and it is not improbable that in a still more minute form (for they only average 1-1800th inch in their longest diameter, with two to six in almost every chamber) they may have got into their present position through the stoloniferous apertures on the margin of the Orbitolites.

> Planorbutina larrata (Parker and Jones, Phil. Trans. 1865, pl. xix. figs. $3, a, b)$.

The specimen of Tubipora musica also bore specimens of Planorbulina larcata, in a young one of which there is a distinct helical development from a primary embryonic chamber, afterwards followed by the usual forms (fig. 16); and in another instance a discoid regularly formed Foraminifer was found outside three distinct cells of Planorbuiina vulgaris with their peculiar apertures (fig. $17, b b b, c c$), which had been developed from the last of the helical chambers (fig. 17, a). To the former I have before alluded, as well as to the helical development, at first, of Pulytrema miniaceum; and from them we learn that, however dissimilar the ultimate form of a Foraminifer may be, they all commence in the same way, viz. from a primary chamber or embryonic cell followed for a short distance by a helical development. Thus, like all other organized bodies,
nothing is to be learnt beyond this from their commencement to predict what their ultimate forms respectively may be. 'That mystery of mysterious powers which presides over the future development, as well as the form of that development itself, is equally hidden from us in the ocum of all living beingsthe latter until it makes its appearance, and the former probably for ever.

Hence all is unity in the begiming ; and when it is considered that it would take 7.5 years 10 months and 10 days to ring the changes upon twelve bells or twelve varieties of the the unit, at the rate of 10 changes per minute, it does not seem stramge that there should be so many varieties of living beings on the face of the earth-visual and auricular impressions considered correlatively.

The interior of the specimen of Tullipora musica was also found to contain a great number of luose Foraminifera, consisting of: -

Calcarina Spengleri, C. hispida, and C. calcar.
Tinoporus buculutus, De Montfort, and T. cesicularis, Carpenter, varieties hemiphuricus and spheroidalis.

Valculina (clavuline varieties), Chiton-like, vermicular, and Textularian.

Orbitolites, Peneroplis, Orbiculina adunca, Heterostegina, and Dactylopora.

The specimens of Tinoporus resicularis are hemispherical and spheroidal respectively, depending upon their growing from a fixed or a free point: if from the former, they are sessile and hemispherical (fig. 19) ; if from the latter, free and spheroidal (fig. 18)-with a radiated structure in each instance, composed of conical columns of chambers (fig. 20), which chambers, being alternate in adjoining columns, the circumferential chamber of one of the columns is only half-developed (fig. 20, d, and 21, e), whereby the surface of the Tinoporus presents a pitted appearance, which, as the structure is very much like that of Polytrema miniaceum, might be taken for apertures of a canal-system; but a short examination will show that they only extend down to the next foraminated plate (fig. 21, e), and that Tinoporus resicularis has no psendopodial canal-system like that of Polytiema minuerun, but is dependent entirely upon the foraminated plates of its chambers (fig. 21, c) for communication between the centre and the circumference, or the interior and the exterior.

Why Dr. Carpenter should have adopted De Montfort's name of Tinoporus for this genus, when he states (Introd. p. 223) that De Montfort considered T. baculatus as a variety of "Nau-
tilus (Calcarina) Spengleri" (which I shall show it to be hereafter), is to me inexplicable, seeing that the affinities of Tinoporus cesicularis are more with Polytrema miniaccum, from which, again, it is markedly different, as just stated, by possessing nothing even analogous to the psendopodial canalsystem of the latter.

There is as much difference between Tinoporus baculatus and T. vesicularis as there is between Orbitoides and Orbitolites. As Orbitoides dispansa, Sowerby, has a central plane of nummulitiform chambers arranged spirally with a convex, vertical, radiating development on each side of other chambers, of a compressed cellular form, intermixed with columns of solid shell-substance ending respectively in prominent tubereles on the surface and extending to the very margin of the disk, so has Tinoporus baculutus all this arranged around a trochoid spire. On the other hand, as Orbitolites Mantelli, Carter, has a ceutral plane of orbitolitiform chambers (see Carpenter, Introd. pl. ix. fig. 8, $c^{\prime} c^{\prime} c^{\prime} c^{\prime}$, and compare with my figure, Amm. \& Mag. Nat. Hist. 1861, vol. viii. pl. xvi. fig. $2, b$ and g) with a convex vertical radiating development on each side of other chambers of a compressed cellular form without the said columns of solid shell-substance, so does the structure of Timoporus resicularis extend in a radiating structure from an indistinct centre to the circumference (fig. 20, b; also see Carpenter, op. cit. pl. xv. fig. 3). The only means that T. resicularis has of communicating with the exterior is, as before stated, through the foraminated plates of its chambers successively; while T. baculatus has a distinct system of interseptal canals for this purpose (Carpenter, op. cit. pl. xv. fig. 12).

All this the reader may find contrasted in two opposite columns of representations, side by side, in the Ann. \& Mag. Nat. Hist. of 1861 (vol. viii. pl. xvi.), which, so far as Orbitoides dispansa and Obitolites Mantelli are concerned, was all worked out by myself at Bombay in 1861, and published in the Am. \& Mar. Nat. Hist. before Dr. Carpenter's 'Introduction' of 1862. But Dr. Carpenter (Introd. p. 298, \&c.) has thought proper to differ from me; and therefore I must leave the student of Foraminifera to decide which is right, merely observing that it is not satisfactory to be criticized by one whose observations show that he is not so well acquainted with the subject as yourself.

Tinoporus baculatus of De Montfort is, as before stated, a varicty of C'alcarina Spengleri. Out of the specimen of Tubipora musica have been oltained three species of Calcarina, viz. C. Spengleri, C'. Mispille, and ('. calcar, together with Tinoporus
baculatus. Each has a trochoid spire of chambers, from which circumferential spines are more or less projected horizontally, but not all on the same plane, as they come from the chambers of the trochoid; and all possess columns of solid shell-substance; but whereas in Calcorimu calcur the pores or tubulation of the chambers open directly on the surface, in C. spengleri they are prolonged into trumpet-shaped tubes whose open extremities in juxtaposition form the surface; and these in C. hispida are prolonged into points. "Irispida" is the designation given by Mr. H. B. Brady to this variety of Celcarina (Q. Journ. Mier. Sci. vol. xri. p. 40.5, 1876), well represented by Dr. Carpenter (Introd. pl. xiv. figs. $6 \mathbb{-} \mathbf{7}$); while in Tinoporus baculatus the pore-tubulation of the chambers of the trocheid spire is continued to the surface through columns of cell-like chambers successively communicating with each other by pore-tubulation as in all other cases of the kind. The chambers appear to be alternate in adjoining columns, as in Tinoporus vesicularis: but here the resemblance ceases; for they are subtriangular or lunate in the vertical section, and not sub-square as in T. vesicularis; nor have I been able to see that they communicate with each other laterally in the same way as those of T. vesicularis (see fig. 21, d). All these may be minor differences ; but when we find that Tinoporus baculatus possesses in addition a distinct system of interseptal canats circumscribing the chambers of the trochoid spire and apparently opening at the ends of the circumferential ipines respectively, just as in operculina araluica the canals of this system open on the surface of the marginal cord, it seems natural to conclude that if Tinoporus baculatus has no generic affinity with ('alcurina it certainly has none with Tinoporus vesicularis.

On viewing the surfaces respectively of Calcarina calcar, C. Spengleri, and C. lesppida, one cannot help being struck with their resemblance to similar ones on Clobigerina and Planorbulina, wherein the simple pore-opening is often prolonged into a trumpet-shaped extension in the former, and a hispid or pointed form in the latter.

Dr. Carpenter evidently did not think the helix in Tïnoporus baculatus trochoid, or he would not have applied the term "equatorial plane" to it (Introd. p. 227) ; and yet in the explanation to plate xv., with reference to fig. 12, he states that it is not distinguishable from ('alcarina, using again the term "median plane " = " equatorial." Now no trochoid can have an equatorial or median plane; and ans fig. 2 is stated in the explanation to represent a "section of the central portion of T. breculatus passing through the median plane," it seems to be a mistake; for halt the chambers still possesing their tubulaAnn. \& Mag. N. Ilist. Ser. 4. Vol. xix. 15

218 On Foraminifera found in and about Tubipora musica.

tion shows either that the section had not passed through the " median plane," or that the helix is trochoit, which is really what the section does represent, judging from those that I have made myself of this Foraminifer.

EXPLANATION OF PLATE XIII. (figs. 9-29).

Fig. 9. Carpenteria monticularis, n. sp., on a portion of Tubipora musica. a, simple form; b, branched or dendritic form; $c c$, apertures respoctively; d, lines or groores marking the eeptal limits of the clambers. Magnified four diameters.
Fig. 10. The same: square indicating the natural size.
Fig. 11. The same: supposed embryonic form. a, prolonged tubular aperture ; b, last-formed or upper chambers foraminated; c, lower or previously formed ones. Scale 1-48th to 1-1800th inch.
Fig. 12. The same: portion of surface to show the uniform pore-tubulation of the shell: same scale. Diagram. a, surface-ends of three pore-tubes, more magnified, to show the pore in the centre respectively: scale $1-12$ th to $1-1800$ th inch.
Fig. 13. Carpenteria balaniformis: portion of surface of the shell, to show the interrupted pore-tubulation, in contrast to that of fig. 12. a, circular interstices ; b, reticulated framework; c, surface-ends of three pore-tubes, more magnified, to show the pore in the centre. Same scale as the foregoing respectively.
Fig. 14. Polytrema miniaceum, var. album: portion of basallayer, to show its commencement from an embryonic chamber in a helical form. a, embryonic portion; b, subsequently formed chambers. Scale 1-24th to 1-1800th inch.
Fiy. 15. The same, var. cimnamomum, showing the same. a, embryonic portion ; b, subsequently formed chambers. Scale 1-48th to 11800th inch.
Fig. 16. Planorbulina larrata, showing the same. a, embryonic portion; b, subsequently formed chambers. Same scale.
Fig. 17. Planorbulina culparis, showing the same, but with the embryonic portion a, outside the planorbuline chambers. $b b b$, planorbuline chambers; ce, their characteristic apertures. Same scale.
Fig. 18. Tinoporus baculatus, var. sphceroidalis, nat. size.
Fig. 19. The same, var. hemisphecricus, on a portion of Tubipora musica, nat. si:e.
Fig. 20. The same (spheroidal rariety), much magnified, to show:-a, natural surface; b, hemispherical section; c, radiating columns of chambers; d, incomplete chambers. Dingram.
Fig. 21. The same: portion of the hemispherical section, more magnified, showing:-a a a, chambers; bb, partitions of solid shell-substance; c, foraminated or pore-tubulated plates; d, sides of the chambers pierced by one or more holes of intercameral communication ; e, incomplete chamber. Diagram.
Fig. 22. The same, circunferential ends of three columns in juxtaposition, showing, a, the incomplete chamber, and $b b$, the foraminated or pore-tubulated complete ones; corresponding with the diagram below.
Fig. 23. Valvulina -?, textularian, nat. size; from the specimen of Tubipora musica.
Fig. 24. The same: half of a horizontal or transverse section, seen from within, to show (in the right half only, the other having been left blank for convenience) :-a, vertical riew of the ends of the
pore-tubulation on the septum ; b, lateral view of the same, extending one third of the way through the wall of the test; c, the remaining portion formed of grains of calcareous sand, in the midst of which is the continuation of the pore-tubulation in the form of "labyrinthic structure," here omitted for perspicuity: scale 1-48 th to 1-1800th inch. d, surface-end of pore-tube, more magnified, to show the pore in its centre: scale 1-12th to 1-1800th inch.
N.B. It should here be remembered that as the chambers are successively developed in Valvulina, the septum presents the same structure as the walls of the test-that is, that the upper or inner portion is pore-tubulated, and the outer or lower one arenaceous.
Fig. 25. The same : portion of surface magnified, to show, a, the angular pore-openings of the " labyrinthic structure " in the midst of the sand-grains. Diagram.
Fig. 26. Lituola canariensis, D'Orb., uatural size.
Fiy. 27. The same: magnified view, to show:-a, the large and small grains of quartz sand respectively of which the test is composed: b, the ends of the pore-tubulation or "labyrinthic structure" after slight abrasion of the surface. Diagram.
Fig. 28. The same: much more magnified, to show:-a, the holes of intercameral communication in the septum; $b b b$, the pore-tubulation or "labyrinthic structure" in the wall of the test; c, pseudopodial aperture; d, lines indicating externally the limits of the chambers respectively. Diagram.
Fig. 29. The same: portion of fig. 28, d, more maguified, to show the pore-tubulation or " labyriuthic structure" in the midst of the sand-grains composing the wall of the test. a, pore-tubulation; b, openings of the same on the inuer surface of the wall; c, dark line indicating sarcodic lining; d, surface, consisting of large and small grains of quartz sand respectively, the latter forming a kind of cement to the former.
XVII.-Descriptions of two new Genera and Species of Indian Mantidae. By Prof. J. Wuod-Mason, Assistant Curator, Indian Museum, Calcutta.

Genus Danuria, Stûl.

> Subgenus 1. Danuria.

1. Danuria Thunbergi, Stůl.

Hab. Port Natal.

2. Danuria Bolauana, Sauss.

Hab. Zanzibar.

3. Danuria superciliaris, Gerst.

Hab. Zanzibar.

Subgenus 2. Paradanuria, nov.

Eyes armed with a conical spine entirely surrounded by the faceted corneal membrane. Legs: the anterior ones long and slender, femora furnished with spines along their apical three fourths; tibie long and very slender, spined on the apical half of their length (5 spines on the outer, 11 on the inner edge); the four posterior ones very short, their femora strongly trifurcate at the apex, prismatic, their crested angles spinulose and furnished (the inner and lower ones) with triangular foliaceous lobes. Supracnal plate broader than long, triangular or short shield-shaped. Cerci foliaceous. Organs of flight? Otherwise as in Damuria (e.g. Danuria Thunbergi), all the known species of which are African.

Paradanuria orientalis, sp. nov.

I (nymph). Stone-coloured. Body greatly elongated, linear. Ifead horizontal, higher, or rather longer than broad; forehead and face in the same plane, the former with a large tubercle in the middle and with another minute one between this and the ocelli; ocular lobes of the vertex armed each with an obtuse tubercle representing the well-developed auricles of D. Thunbergi, the line of the vertex between these tubercles slightly concave; facial shield with its upper or posterior margin more produced in the middle than in the species mentioned. Eyes each with a conical spine, directed outwards and slightly backwards, at their upper and outer angles.

Organs of flight not yet developed, but probably much abbreviated in the perfect insect.

Prothorax apparently much as in D. Thunbergi, both in shape and ornamentation, but longitudinally deeply grooved on each side next to the lateral margins, and proportionally longer in the neck. Mesonotum and metanotum also longitudinally carinate. Abdomen linear, longitudinally carinate above, the keel and the sharp projecting points into which it is produced at the middle of the hinder border of each segment (including the supraanal plate) increasing in strength and size towards the apex; supraanal plate triangular or short shield-shaped, its lateral margins being arcuate. Cerci foliaceous, as long as the four terminal dorsal abdominal segments taken together, spatulate in outline as seen from the side, granulose, divided at the extremity into two rounded points by a broad but shallow notch, their upper edge thin, sharp, and exarticulate, their lower edge thick, transversely convex, and obscurely segmented.

Anterior legs long and slender; coxæ as in D. Thunbergi;
temora similarly shaped, but armed for the apical three fourths of their length; tibiee very long and slender, of uniform width and perfectly straight up to the base of the terminal claw, armed with 5 spines on the outer edge, the basal two thirds of which are unarmed, and with 11 on the imner, rather less than the basal half of which is unarmed. Four posterior legs very short ; the femora stout, slightly tapering at either end, with a transversely convex rib on each side between the upper and lower crests, prismatic, with each of the four angles slightly crested; the two upper erests minutely notched or spinulose here and there, and converging apicatly to form the strong triangular lobe that projects over the knees; the two lower ones are each also prolonged into a very sharp spine at their apex; the outer of them is simply, rarely, and minutely spinulose, but the inner is fumished with three subtriangular foliaceous lobes; tibiæ and tarsi slender and woak.

Male unknown.
'Total length 53 millims.; length of antenne 12 ; height of head 2.75 ; breadth of head $2 \cdot 25$; length of prothorax $15 \cdot 33$, of which the neek is 4 , width of prothorax at dilatation 2, at base $1 \cdot 33$; length of meso- and metathorax 9 ; of abdomen 26 , breadth of abdomen 2 ; length of cerci $3 \cdot 33$, breadth of cerci 1 ; length of fore coxa 8.5 , femur 11, tibia (straight portion) $7 \cdot 5$; of intermediate femur $3 \cdot 25$, tibia 5 ; of posterior femur $4 \cdot 75$, tibia 5.25 ; tarsi all subequal, the intermediate ones the shortest.

Mab. Bangalore, Mysore. Collected by Private Thomas Reedy, of II.M. 4oth Regiment, from whom I have received a number of interesting insects from the same district.

Genus Scifzocepifala, Serville.

Subgenus Didymocorypha, nov.

Bodys slender, sublinear. Antenne inserted and constructed precisely as in Schizocephala bicornis, but not thickened at the base. Head very narrow and enormously elevated, the lateral or ocular lobes of the vertex being vertically prolonged in the form of two slender gradually tapering cones, which are in contact with one another throughout their whole length, occupying the whole of the vertex, so that the median lobe of this part is not developed and that the grooves bounding its lateral lobes meet upen the neciput at the basal junction of the cones. Ocelli minute and hidden, just as in S. bicornis. The face substantially as in this form and in Oryophthatma chatybea. Eyes perfectly lateral, but little salient. Prothorax narrow, with its sides subparallel ; its front and hinder mar-
gins straight, their lateral angles only being rounded off; its supracosal dilatation and cervical groove hardly perceptible ; its neck graduate, slightly narrowed behind the insertion of the fore legs, then widening again slightly to its base; its disk transversely convex, with a raised median line. Organs of flight ?abbreviated. Legs apparently constructed as in Oxyophthatma gracilis. Abdomen attenuated from base to apex; supraanal plate nearly as broad as long, shield-shaped. Cerci enormonsly long and stout, ensiform, segmented much as in S. bicornis, consisting of a few close-packed ill-defined basal joints, follorred by eight distinct ones, gradually lengthening and narrowing from the first to the last.

Didymocorypha ensifera, sp. nov.

The single immature individual (o nymph) from which the above diagnosis has been drawn up measures :-

Total length 32 millims.; height of head 8 , of which the horns are 5 ; breadth of head 2 ; length of antennæ 16 ; of prothorax 6 , of which the neek is $1 \cdot 75$, width of prothorax at supracoxal dilatation $1 \cdot 75$; length of meso- and metathorax taken together 5 ; of abdomen 15 ; of cerci 9 ; of fore coxa 3 , femur $4 \cdot 5$, tibia $2 \cdot 5$, tarsus 4 .

Hab. I found the specimen in the flat country on the eastern flank of the Rajmahál hills at Teen Pahar, a station on the East-India Railway, about 6 miles south-west of the town of Rajmahál, on tall grass, probably Saccharum spontaneum, in company with S. bicornis.

XIIII.-Descriptions of new Species of Conidæ and Terebrida. By Eigar A. Suitif, F'.Z.S., Zoological Department, British Miuseum.
Is examining the collections of Conidx and Terebridæ in the British Museum several very interesting forms have been observed which I have been unable to refer to any described species. Three of the Terebridæ were briefly mentioned in this Magazine (1875 , vol. xv.), and were presented by Dr. J. Gwyn Jeffreys, F.R.S.; and seven others, collected by Colonel Pelly in the Persian Gulf, were most liberally placed in the national collection by the late Robert M'Andrew, Esq., F.R.S.

Conus brevis, sp. nov.

Testa breciter turbinata, superne acute angulata, minutissime coro-
nata, striis distantibus subpunctatis (superno vix conspicuis ad basim confertioribus) insculpta, alba, dilute olivaceo-fusco irregulariter maculata; spira brevissima, concava, apice acuta, alba, maculis $5-(\mathbb{i}$ fuscis radiantibus (supra anfractus modo ultimos 2) ornata; anfract. 11, vix exserti, minutissime et pulcherrime ad suturam coronati, striis duabus spiralibus ornati; apertura alba, angusta; labrum supra vix incisum.
Long. 19 mill., diam. max. 11.
Mab. - ?
The specimen on which this species is founded may not be quite adult ; but the characters are so distinctive as to warwant its being described. On close examination the irregular maculations are seen to be of a pale olive-brown colour, longitudinally streaked with lines of a darker tint. I do not know of any species sufficiently closely allied wherewith to offer a comparison.

Conus croceus, sp. nov.

Testa angusta, elongato-subfusiformis, crocea; spire anfractus 10 , planiusculi, liris spiralibus cincti, in anfr. inferioribus 3-4, superioribus 2 (ea ad suturam maxima, in anfr. superioribus nodulosa); spira recte conica; anfr. ultimus marginibus fere planis, costis spiralibus 28-30 fortibus, subacutis, sensim basim versus tenuioribus, munitus, et lirulis longitudinalibus numerosissimis in interstitiis concinne clathratus; apertura linearis, angustissima.
Long. 27 mill., diam. max. 9.
Hab. \qquad ?
This species is at once recognized by its slender form, its uniform deep yellow colour, and by the strong spiral acutish ribs (about thirty) encircling the body-whorl, the interstices between them being prettily sculptured by numerous minute longitudinal lirations.

It is related somewhat to C. vimineus, Rve., in which, however, the transverse ribs are much finer, rounded, and more numerous. C. longurionis, Kiener, is another species of a similar type.

Conus mopinquus, sp. nov.
Conus temisulcatus, Sowerby, Proc. Zool. Soc. 1873, p. 145, pl. 15. f. 2 (name preoccupied).

IIab. Mauritius.

Mr. Sowerby described a species of Comus under the name temuisuleatus, in the 'Proccedings of the Zoolocical Society,' 1870, p. 256, pl. 22. f. 10, and again, in 1873 , employs the same designation for a second species !

Conus inconstans, sp. nov.
Comus magellanicus, Küster (non Hwass), Conchylien, Cabinet, pl. 60. f. 2-3.

Testa turbinata, superne subacute angulata, transversim exiliter lirata, livido-fuscescenti-rosea, medio fascia alba, maculis fuscis interrupta, et lineis albis fusco notatis ad basim cincta; spira turrita, breviuscula, alba, apice rosaceo et maculis numerosis fuscis radiantibus picta; anfract. $8 \frac{1}{2}$, primi $1 \frac{1}{2}$ convexi, cæteri leviter exserti, supra levissime excarati, spiraliter exiliter striati, sutura inæquali divisi ; apertura angusta; labrum superne vix incisum.
Long. 22 mill., diam. max. $12 \frac{1}{2}$.
Var. testa roseo-coccinea, spira fasciaque mediana ut in typo præcedente.
Hab. —?
The outlines of the body-whorl are slightly curved. In form this species is very like C. speciosissimus, Reeve; but the absence of coronations and the difference of coloration at once distinguish it.

Conus fuscomaculatus, sp. nov.

Testa oblongo-turbinata, subcrlindracea, basi paululum attenuata, dilute carneo-purpurea, maculis quadratis fuscis seriatim digestis ornata, ad extremitatem basalem carneo-rubescens; spira fusca, concava; anfractus 12, spiraliter subtiliter striati, sutura albescente divisi, primi 6 exserti, basim rersus angulati, cæteri planiusculi; anfract. ultimus superne obtuse angulatus (angulo albo), triente superiore lieri, inferius sulcis transrersis validis subdistantibus insculptus, sulcis longitudinaliter tenuiter striatis; costæ inter sulcos basim versus albo nodosx ; apertura pallide purpurea. Long. 37 mill., diam. max. 16.

Hab. -?

This species has for its nearest ally C. Iynceus, Sowerby. It is of the same form ; but the transverse sulcations towards the base are deeper, and the ribs between them are roundish and nodulous, the nodules being whitish and separated by rich brown squarish spots; whereas in C. lynceus the spaces between the sulcations are flat and simple.

Terebra melanacme, sp. nov.

 Ann. \& Mag. Nat. Hist. 1875, vol. xv. p. 415.Testa polita, subulata, dilute fuscescens, infra lineam suturalem zona alba, maculis parris castancis interrupta, ornata; apex nigrescens; anfract. 14 ?, primi 2 convexi, læves, sequentes $7-8$ plani, longitudinaliter leriter plicati, cæteri plani, læves; auf. ultimi 3 linea
impressa obscura paululum infra suturam cincti; anfr. ultimus quadratus ad peripheriam zona angusta alba cinctus.
Long. 17 mill., diam. 4.
IIab. Cape Sima, Japan (Commander St. John).
The above is probably the description only of the young state of a largish species; but the characters are so distinctive that it is not, I think, very hazardous to describe it. The black apex, the smooth whorls, the white zone dotted with chestnut below the suture, and the narrow white band round the last whorl easily define the species.

Terebra tricincta, sp. nov.

Testa parra, subulata, nitida, cornea; anfract. 14, primi 4 politi, convexi, cateri medio concavi, cingulis 3 nodulosis (supremo muximo cingulum infrasuturale constituente, medio minimo supremo fere contiguo, infimo prope suturam) cincti; noduli costis longitudinalibus numerosis gracillimis (in anfr. ultimo 17-20) hasi continuis) connexi; anfr. ultimus quadratus ad peripheriam liris 3 nodulosis et basim versus altera simplici cinctus; columella inferne oblique contorta, callo tenui livido labro juncta ; canalis brevis, latus.
Long. 11 mill., diam. $2 \frac{3}{4}$.

Hab. Persian Gulf (Colonel Pelly).

The uppermost of the three nodulous belts which encircle the whorls is considerably the largest; the intermediate one is merely a fine spiral liration, nodose at those points where it is crossed by the thin longitudinal ribs.

Terebra persica, sp. nov.

Testa parra, subulata, nitida, corneo-albida, versus apicem et anfract. ultimi basi purpurascens ; anfr. 13?, primi ?? politi, contvexi, ceteri medio concavi, costis longitudinalibus numerosis (in anfr. ult. $15-20$ ad basim attenuantibus) utrinque nodulosis (nodulis superioribus majoribus cingulum infrasuturale partim constituentibus) instructi, et lirulis spiralibus super costas continuis 3-4 cincti; cingulum (in cochleis detritis supra nodulos obsolete) crebre striatum ; sutura profunda; anfr. ultimus quadratus, ad peripheriam liris 3 cinctus, inferne tenuiter striatus; columella brevis, basi oblique contorta ; canalis latiusculus, leviter recursus.
Long. 12 mill., diam. 3.

Hab. Persian Gulf (Colonel Pelly).

Possibly the above may not be the dimensions of a fullgrown specimen; but the style of the sculpture, which is constant in the twelve examples which I have examined, is quite different from that of any other species. The fine striations
of the infrasutural belt and on the rest of the whorls, the three or four spiral lirations which are continuous over the ribs, which are nodose at each end, are the chief points of peculiarity.

Terebra bathyrhaphe, sp. nov.

Ann. © Mag. Nat. Hist. 1875, vol, xp. p. 415.

Testa subulata, fuseeseens, costis nodulisque albidis variegata; anfr. 15, primi 3 convexi, leres, ceteri medio concari, costis longitudimalibus utrinque nodulosis (in anfr. ultimo 18-20, versus basim sensim attenuatis medio nodulosis) instructi, et cingulis duobus nodulosis altero majore infra suturam canaliculatam, altero supra cincti, striisque transrersis paucis ornati ; anfr. ultimus quadratiusculus ad peripheriam zona albida obscura (in apertura fusea distinctiore) ornatus, inferne concinne spiraliter liratus ; columella contorta, fusea; canalis recurrus.
Long. 25 mill., diam. 5.
Hab. Gulf of Yedo, Japan (Commander St. John).
The deeply chamnelled suture, the nodulous broadish belt below it and the narrow one above it, the nodules being connected by the upright rils, are the chief points in the construction of this species. The coloration is rather olscure ; for most of the examples I have seen have a slight chalky deposit on them.

Terebra albozonata, sp. nov.

$$
\text { Ann. \& Nag. Nat. Hist. 1875, vol. xv. p. } 415 .
$$

Testa subulata, dilute fusca, zona alba angusta ad anfractuum basim cincta, et circa peripheriam anfr. ultimi zona alba ornata; anfract. 12, primi 2 læves, convexi, cæteri fere plani, costis longitudinalibus numerosis, gracilibus, obliquis (in anfr. ult. 19-20 versus basim attenuantibus) instructi, incrementi lineis striati, et sulco unduloso spirali inequaliter divisi, anfr. ultimus rotundatus; columclla brevis; canalis brevis latus paululum recurrus.
Long. 25 mill., diam. 7.
Hab. Matoza Harbour, Japan (Commander St. John).
This species probably attains a much larger size than the above dimensions. The palish brown colour, with the narrow white zone at the base of the whorls and that around the periphery, and the numerous oblique ribs, which are divided above by a fine furrow, are the chicf peculiarities. The nearest ally appears to be T. badia, Desh.

Terebra Pellyi, sp. nov.

Testa parra, subulata, dilute fuscescens vel purpurascens ; anfract.
12, primi 2 globulares, politi, cæteri convexiusculi, costis longi-
tudinalibus leviter arcuatis (in anfr. ultimo 12-15 versus basim attenuantibus) instructi, et suleo angusto, inter costas precipuse conspicuo insqualiter divisi, ef lira angusta supra suturam sed ei contigur cincti transversimutue obscure (interdum obsolete) striati; anfr. ultimus cirea peripheriam sulcis 1-3 ornatus; apertura parva; columella canalisque breves.
Long. 13 mill., diam. 3.
IIab. Persian Gulf (Colonel Pelly).
The two or three spiral fiurows, of which the upper one is usually most conspicuous, around the periphery well define this species; and the liration which fills up the suture is also remarkable.

Terebra Crayi, sp. nov.
Terebra aracilis, Gray, Proc. Zool. Soc. $18: 4$, p. 11 (name preuccupiod
for a fossil species).
Non T'. gracilis, Reeve, fig. 131,=T. spectabilis, Hinds.
Non T. frigata, Hinds, Sowerby, i. pl. 44. f. 71.
Testa subulata, nitens, pallide cinerea, ad apicem basimque anfract. ultimi purpureo-fusco tincta; anfractus 16 , subplani (minime conrexi), costis longitudinalibus, distantibus, subacutis, leviter arcuatis, circiter 11, superno leviter nodulosis (in anfract. ultimo versus basim evanidis) instructi, et linea spirali profunda posteriore inæqualiter divisi, striisque spiralibus numerosis temuibus inter costas insculpti ; columella basi obliqua, fusco-purpurea.
Long. 24 mill., diam. $4 \frac{1}{2}$.
Mab. —?
Much ennfusion has unfortunately hitherto surrounded this species. Hinds associated with it a totally distinct species, applying thereto the name friguta. Deshayes continued this mistake; and Reeve, imagining he was correcting the error, fell into a worse one himself; for he has figured from Dr. Gray's collection a small specimen of spectulitis of IVinds under the name of gracilis. The specimen figured by Reeve (f. 131) was attached to a tablet in Dr. Gray's collection, in company with the true type; and thus, if Reeve had compared the two shells with the original deseription in the Proc. $/$ /ool. Soc., no such confusion could have arisen. The distant ribs, spiral striation, cinereons coloration, and purplish brown hase of the true T. gracilis are characters which in no way apply to Reeve's shell, which has numerous ribs (fourteen), no spiral striation, and is quite differently coloured.

Terebra (Myzurella) fiscoZasis, sp. nov.

Testa parra, breriter subulata, nitida, alba, zona dilute fusea infra suturam cincta, et anfract. ultimi basi fusca; anfr. 10 , primi 3 laves, politi, cateri convexiusculi, superne paululum constricti,
costis longitudinalibus acutis (in anfr. ultimo circa 12 versus peripheriam obsoletis) incrementique striis ornati, et sulco levi supra costas continuo superne divisi; anfr. ultimus magnus, lira acuta circa candam cinctus; columella fusca.
Long. 11 mill., diam. 3 美.
Hab. Persian Gulf (Colonel Pelly).
This species has no spiral sculpture. The longitudinal ribs are thicker at the top; and being cut across by the narrow transverse furruw a little below the suture, the appearance of a narrow infrasutural belt is thus produced.

Terebra (1Iyurella) fuscocincta, sp. nov.

Testa parra, subulata, nitens, albida vel cornea, lineis duabus fuscis cincta, altera saturatiore paululum infra suturam, altera fere ad anfractuum basim ; anfract. ultimi basis fusca; anfr. 10, convexiasculi, infra suturam leriter constricti, costis validis, acutis, arcuatis, superue subtubercularibus (in anfr. ultimo circiter 10 rix ad basim attenuantibus) instructi; columella breris; cauda lira distincta cincta ; canalis breris, latus.
Long. 8 mill., diam. 2 .
Var. anfr. planiusculis, costis rectis munitis.
Hab. Persian Gulf (Colonel Pelly).
This species is coloured somewhat like pumitio, but is at once distinguished from that form by the absence of the transverse striation and by the existence of fewer ribs. The upper brown line or band is quite at the top of the whorls in pumilio, whereas in the present species it is a little below the suture, colouring a slight depression or constriction which exists there.

The variety is allied to tenera, Hinds, which, however, is shorter, has fewer ribs, and wants the brown line near the base of the whorls and that around the periphery.

Terebra (1yyurella) MacAndrewii, sp. nov.

Testa parra, breviter subulata, parum nitida, albida, zonis duabus (supera paululum infra suturam purpureo-nigricante, infera ali(quanto suturam supra fuscescente costis albidis fere interrupta) cincta; anfract. 11, convexiusculi, superne leriter constricti ; costis longitudinalibus parvis superne impressione spirali levi divisis (in anfr. ultimo $12-13$ basi sensim attenuatis) instructi, et striis gracillimis, creberrimis, spiralibus ornati; anfr. ultimus zona tertia fuscescente infra peripheriam cinctus; columella brevis, purpurascens; labrum aliquanto expansum ; canalis perbreris, latus. Long. $13 \frac{1}{2}$ mill., diam. 4 .

Hab. Persian Gulf (Colonel Pelly).

This is one of the very numerous and beautiful species presented to the British Museum by the late and deeply lamented

Robert M'Andrew, Esq. The slight blackish purple depression, a little below the suture, dividing the longitudinal ribs, forms an obscure nodulous infrasutural belt. The three exterior coloured bands, which are interrupted by the whitish ribs, are visible within the aperture in the form of three series of squarish spots.

> T'erebra (1yyurella), cognata, sp. nov.

Testa subulata, dilute fuscescens; anfr. 12 , primi 2 leves, convexi, lilacei, ceeteri planiusculi, costis longitudinalibus rectiusculis (in anfr. ultimo circa 12 basi productis) instructi, et superne sulco parvo spirali inter costas pracipue conspicuo insculpti, lirisque transversis supra costas subobscuris cincti; anfr. ultimus quadratus, ad peripheriam zona angusta albida inconspicua ornatus; canalis breris, aliquanto recurrus.
Long. 14 mill., diam. 31 .
Hab. Persian Gulf (Colonel Pelly).
Allied to polygyrata, Desh. ; but the transverse sculpture of the latter is coarser, as is also the infrasutural sulcus or punctured line.

Terebra (Hastula) rufopunctata, sp. nov.

Testa subulata, nitens, pallide olivacea, infra suturam zona angusta alba, et infra illam zona secunda livida cincta, et supra zonam albam punctis pluribus, parvis, rufis, notata; anfractus 12 , primi duo laves, vitrei, convexi, cateri plani, costis vel plicis tenuibus numerosis, acutis, versus basim anfractuum evanidis, ornati, sutura obliqua sejuncti; anfr. ultimus circa peripheriam albo zonatus, et infra illam zona livido-fusea cinctus; apertura parva; canalis brevissimus, latus, levissime recurrus: columella medio leriter arcuata, ad basim carina unica succincta.
Long. 22 mill., diam. 5.
Hab. \qquad ?
This species must not be confounded with strigillata, L., to which it has considerable likeness as regards the coloration. It may be at once distinguished by its acute plications, which do not extend to the bottom of the whorls, whilst those in the old species are quite flat and reach from suture to suture; and the body-whorl of the former is shorter than that of the latter.

> Terebra (Hastula) confusa, sp. nov.

Terebra cinerea, Hinds (not of Born), Sowerby's Thesaurus Conchyliorum, vol. i. pl. 45. f. 1:30.
T. acicutima (part), lieeye (not of Lamarck), Conchologia Iconica, vol. xii. f. 121, d; varieties, f. 121, c\& f.
In the 'Annals and Magazine of Natural Mistory,' 1873,
vol. xi. p. 262, I made a few remarks on a species of Terebra which had been referred by Messrs. Deshayes, Hinds, and Reeve (partly) to T. aciculina, Lamarck. Since writing the paper referred to I have had occasion to reexamine this species, and find that it is not in fact the Lamarckian shell. In his diagnosis, which appears almost as if it were extracted from Born's description of T. cincrea ('Index Musei Vindobonensis,' p. 267), from the similarity of language, he gives "albidocinerea" as the colour of the species, which evidently in no way applies to the present species, which is of a more or less ashy-brown colow, banded with white bencath the suture, and also longitudinally streaked with brown, and has a white zone around the last whorl a little below the middle, which is also distinctly seen within the brown aperture.
MI. Deshayes, in the econd edition of Lamarck's ' Animaux sans Vertèbres,' vol. x. p. 250, remarks that Lamarck was wrong in changing Born's name cinerea to that of aciculina if his shell was the same as that of this author, and he considers Born's species identical with that described by Lamarck under the name of Terebra cerrulescens. This, however, is a palpable mistake ; for the latter is a smooth shell without any striation or plication beneath the suture, differently coloured, and has the sutures indistinct ("suturis obsoletis," Lamarck), which arises from the fact of the whorls being encircled by a narrow callosity just above, but contiguous to, the suture, which peculiarity induced me to found the subgenus Impages for this and a few other species possessing the same characteristic.

The synonymy of T. cocrulescens and T. cinerea is as follows:-

Terebra (Impages) carulescens, Lamarck,

Animaux sans Vert. ed. 2, vol. x. p. 245; Kiener, Coq. Viv. pl. vi. f. 12, a-c ; Sotwerby, Thesaurus Conch. i. pl. xlii. f. 29 ; Reeve, Conch. Icon. xii. f. 26, a-c.
Buccinum hecticum, Limn. (part), Syst. Nat. ed. 12, p. 1206.
Limax fusca, Martyn (part), Universal Conch. iv. pl. 121. fig. on left.
Buccinum niveum, Gmelin, probably $=$ B. bifasciatum, Dillwyn.
Var. $=$ T. nimbosa, Hinds, Thesaurus Conch. i. pl. 42. f. 21; Reeve,
l. c. f. 37 ; Kiener, l. c. pl. 6. f. 12, d, and pl. 7. f. 12, e (as cerrulescens, var.).

Hab. Tahiti, Plilippine Islands; Red Sea.

Terebra (Hastula) cinerea, Born.

Buccinum cinereum, Born, Mus. Vindobon. pl. 10. f. 11, 12.
Terebra cinerea, Reeve, Conch. Icon. xii. f. 35.
T. aciculina, Lamarck (not of Hinds or Reeve), Anim. s. Vert. ed. 2, x. p. 250 .

Var. $=$ T. castanea, Kiencr, l. c. pl. 7. f. 14.
Var: $=$ T. laurima, IIinds, Thesaurus Conch. i. pl. 42. f. 27.
Var. $=$ T'. stylata, Hinds, l. c. pl. 44. f. 79.
Var. $=$ T.jamaicensis, C. B. Adams, Contrib. Conchol, i. p. 58.
Hab. West Indies.
XIX.- Yere and peculiar Molluser of the Patellidee and other Fremilies of ('iustropude procured in the 'I'alorous' Expedition. By J. Gwyn Jemeriss, LL.D., F.R.S.

Patellidæ.

Tectura rubella, Fabricius.
Patella rubella, Finbr. Fin. Gr. p. 386.
Body greyish-white, with numerous and close-set brownish streaks in front: heud semicircular: mouth concave, opening horizontally, and puckered: mantle thick: tentacles awlshaped, contractile, with blunt tips: eyes small, black, sessile on the tentacles at their outer base: foot oval. Sluggish.

Godhavn, 5-20 fms.; Station 4, 20 fms. ; 5, 57 fms. (dead) ; Holsteinborg, 3-12 fms. Greenland (Fabricius and others). Spitzbergen ('Torell)! Tromsö, Norway (M. Sars). Labrador (Packard, fice Whiteaves) ; Newfoundland (Verkriizen) !

Young shells have a butotn-shaped (and not a spiral) apex, which turns to the broader and longer end, as in Lepeta; but in the latter genus the apex is spiral. The apex is strongly striated lengthwise, and resembles that of Ancylus.

In a Greenland specimen, which I received from Dr. Mörch, I found two fry with perfect shells enclosed in the concavity of the foot. Perhaps T. rubella may be the type of a distinct genus (say Ergimus, from one of the Argonauts). I see no reason for changing the opinion which I expressed in the third volume of 'British Conchology,' p. 246, for retaining the generic name Tectura in preference to the later and objectionable name Acmera, although Mr. Dall and the Rev. J. E. Tenison Woods prefer to use Acmua.

> Lepeta сесса, O. F. Miuller.

Patella caca, O. F. Miiller, Zool. Dan. Prodr. p. 237. no. 2866.
Boby of a pale yellowish colour, pinkish about the head: mouth round, opening vertically: mantle thick: tentacles awlshaped, and thick: eyes none: foot oval, stout.

Off Godhavn, 80 fms. ; Station 1, 175 fms . ; 3, 100 fms. ; 5,57 fims. ; Holsteinborg, 35 fins. ; St. 13, 690 fms.

Circumpolar, and ranging southwards to the west coast of Scotland, Cape Cod, and North Japan, at depths of from 4 to 100 fathoms; also widely distributed in the Pliocene and newer Tertiary strata of northern regions. The apex in the young is spiral, incurved, and deciduous, and it resembles that of Propilidium; but in the latter the spire is persistent and has two turns instead of one; and L. cacca wants the internal septum.

Propilidium ancyloïdes, Forbes.

Patella? ancyloides, Forb._in Ann. Nat. Hist. vol. v. p. 108, pl. ii. f. 10.
Station 12, 1450 fms. ; one dead specimen. 'Lightning' Expedition, 189 fims. 'Porcupine' Expedition, 1869, west. coast of Ireland, 90-1366 fms.: 1870, Bay of Biscay, 2201095 fims. British and Scandinavian. Mediterranean, off Rinaido's Chair, 60-160 fms. Bay of Naples, 60 fms. (Acton)!

It is the Rostrisepta parra of Seguenza, a Pliocene fossil of Sicily.

Fissurellidæ.

Puncturella mofundi", Jeffi.

Shell conical, with a roundish-oval outline, thin, semitransparent, of a dull hue: sculpture, numerous longitudinal and equal-sized strix, and still more numerous but minute and less raised concentric strix, the intersection of which causes a very fine and delicate cancellation and a beading of the longitudinal strix: colow brownish-white, becoming pale yellowish in dead specimens: beate smooth, incurved and twisted to the left, forming a minute spire of one whorl and a half: slit pearshaped: mouth roundish-oval: margin very finely scalloped: inside glossy and somewhat nacreons: plate or septum large, triangular, thin, placed vertically in the middle, and occupying the lower third of the inside, so as to separate the anterior from the other half; it is not a vaulted sheath as in P. mouchina, nor does it cover (although it apparently protects) the slit or opening at the top. L. $0 \cdot 25$. B. $0 \cdot 2$.

Station 12, 1450 fms .; dead specimens. 'Porcupine' Expedition, 1870, coast of Portugal, $740-1095 \mathrm{fms}$.

I have described the shell from a 'Porcupine' specimen. This differs from P. noachina in the size, shape, texture, sculpture, slit, and intemal plate. It belongs to the genus

> * Inhabiting the depths of the sea.

Fissurisppla of Seguenza (Ann. d. Accad. d. Aspir. Nat. 3a ser. vol. ii.) ; but the only character which distinguishes Fissurisepta from Puncturelin is the shape of the internal plate or septum. The spire in Fissurisopta is usually deciduous or worn away. The present species is allied to another undescribed species (gramulwini, which I dredged in the 'Porcupine ' Expedition of 1570 at a depth of 292 fathoms, and at Dröbak in Christianiafiord at 60 fathoms. In that species the longitudinal strixe are closely beaded, and there are no concentric or transverse strie. " P. prapillusa and P. rostrata of Seguenza are two other ' Porcupine' species, and were found by Professor Seguenza in the Pliocene formation at Messina. The sculpture in all the species varies in being more or less coarse or fine, and is sometimes absent.

Scissurellidæ.

Scissurella crispata, Fleming.

Scissurella crispata, Flem. in Mem. Wern. Soc. vol. ri. p. 385, pl. 6. f. 3.

Station 5, 57 fms.; one living specimen. British and Scandinavian coasts, $7-300$ fms. (ireenland (Mialler, Torell). Spitzbergen (Torell). Labrador Principal Dawson, fide Packard). Gult' of (Gascony, $\pm 11-80 \mathrm{fms}$. (De Folin'. 'Iightning ' Expedition, 170 and 159 fims. 'Porcupine' Expedition, 1869, west of Irelant, 164 and 173 fms.; one specimen is intermediate in size between the Scotch and Scandinavian forms: 1síl, Bay of Biscay, 220-109.5 fims.; Mediterranean, $51-207$ fims. Fossil in the Pliocene formation from Norway to the Eyean archipelago.
S. Impuluta of Loven is evidently the same as our species, and differs in its much greater size only. I dredged it at Dröbak in 1869. and subjoin a description of the animal.

Budy milk-white, with a yellowish-brown tinge in front: head thick, snout-shaped: tentacles conical, ciliated: eyes small, on the outer base of the tentacles: fiot bilobed and double-edged in front, abruptly pointed behind; tail or extremity pinched up, and ir rooved underneath : perdal filaments or appendases as in Trochus, but more numerons. (\circlearrowleft at least on each side) ; they are ansular and finely ciliated ; each filament has at its base a white globular everopot. The slit serves for an anal or excretony duct; fecees worm-shaped, long, and of a dark brown colriur, visible through the shell. Operculum chitinous, thin, and multispiral, with a central nucleus. The animal was shy or delicate, and died soon after being put into a glass phial of sea-water.

Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.

I regard S.aspera of Philippi as a variety of the present species. The height of the spire is an unveliable character.

> Scissurella temuis ", Jeffi.

Sileld forming a depressed cone with an expanded base, sloping to the periphery and slit, very thin, scarcely semitransparent, and rather glossy: sculpture, extremely numerous and fine curved longitudinal stria, and equally numerous and fine concentric or spiral stria, which by their intersection cause a regular but minute cancellation ; the concentric strix at the base are stronger and more distinct than the longitudinal strix; the sculpture is of course interrupted by the peripheral slit and groove: colour pearl-white: spire greatly depressed: uhorls 5, somewhat flattened below the suture; the last enormously excceds in size all the others put together: slit central, long and bread: groove also broad, marked across by regular but rather distant curved strix; edges sharp and upturned: mouth obliquely oval: outer lip thin: inner lip folded back and curved: piller nearly straight, having a twisted fold in front of the umbilicus, which is small and narrow. L. 0.25 . B. 0.2 .

Station 12, 1450 fms . two dead and imperfect specimens.
This differs from S. crisputa and its varieties in its depressed shape, thinner texture, more delicate sculpture, the larger size of the last whorl in comparison with the others, the pillar being furnished with a fold, and in its narower umbilicus.

Trochidæ.

Cyclostrema basistriatum \dagger, Jeffir.

Shelt somewhat globular, resembling in shape a small Trochus of the Margorita section, thin, semitransparent, and glossy: sculpture, more or less numerous and fine spiral strix, which cover different parts of the surface in different specimens; sometimes they occur on the base only and encircle the umbilicus, being in that case stronger; at other times the upper whorls have a siugle ridge-like stria at the top, so as to give an angulated appearance to the crown or summit ; in the young the umbilicus is surrounded by a strong keel-like stria: colour whitish: spire raised: whorls 4, swollen; the last occupies three fourths of the spire; the first or topmost whorl is rounded and blunt: suture deep: mouth circular, slightly angular above: umbilicus rather narow, but deep:

[^34]operculum smooth, having 6 or 7 whorls, which are divided by raised lines. L. $0 \cdot 125$. B. $0 \cdot 1$.

Station 13, 690 fins. ; a single young and living specimen. 'Lightning' Expedition, 189 fms . 'Poreupine ' Expedition, 1869, between the Orkney and F'aroe Isles, 290 fims. 1870 , coast of Portugal, $740-1095$ fms. Lofoten Isles, 200-300 fims. (G. O. Sars, as "C. nitens" of M. Sars); Bergen district, 50-400 fims. (Friele) ; Upper Norway (Lilljelorg, M'Andrew) ; Dröbak (Verkriizen).

The description has been taken from Norwegian specimens. I would have substituted for besistriatum another specific name; but the present name has been adopted by Weinkauff in his 'Catalog der im europaiischen Faunengebiet lebenden Mecres-Conchylien,' as well as by Fricle in his 'Oversigt over de i Bergens Omegn forekommende skaldagte Mollusker,' on my authority. Probably C. levis of Searles Wood, from the Coralline Crag at Sutton, which he refers to the Delphimula lencis of Philippi, may be the young of the present species. Philippi's species is unquestionably C. serpuloides.
C. busistriatum is not so globular as Cutleriamum, and is comparatively gigantic ; the sculpture is coarser, and the operculum is smooth.

Molleria costulata, Möller.

Margarita? costulata, Müll. Ind. Moll. Greenl. p. 8.
Bodr white, with a faint tinge of creamcolour or pale yellowish: head small and short, semicircular, and resembling that of the section Mergarita of Trochus: mouth vertical, continually opening and shutting: tentacles elegant and feathery, but not ciliated: eyes rather large and round, placed on small bulbs or tubercles at the outer base of the tentacles: foot broad, squarish and double-edged in front, angular or bluntly pointed behind: the upper part of the foot has tentacular processes or filaments (four on each side), as in Trochus, which, however, are not ciliated in Molleria costulata, but are notched at the edges, and are conical and short ; nome could be detected in front of the foot, as stated by Möller in his description. His words are " Hargaritis quidem affinis, ab illis propter peristoma continuum aperture et pedem animalis antice filamentis obsitum diversa est." The animal crawls rather quickly, but painfully.

Station 4, 20 fms. ; 5, 57 fms.; Ilolsteinborg, 10 and 35 fms. Greenland (Möller). Iceland and Spitzbergen ('Torell). Oxfjord, Finmark (M. Sars). 'Lightning' Expedition, 170
fms. Labrador (Dawson, fide Packard). St. John's Harbour, Newfoundland (Verkriizen). Fossil in Norway, Sweden, Scotland, and the east of Ireland.

The genus Molleria differs from Turbo in the same way that C'yclostrema does from Trochus, i.e. in having a complete peristome. In Molleria and Turbo the operculum is calcareous, in Cyclostrema and Trochus it is chitinous.

Trochus cinereus, Couthouy.

Turbo cinereus, Couth. in Boston Journ. Nat. Hist. vol. ii. p. 99, pl. 3. f. 9.

Body yellowish-white: heud semicircular and hood-like, notched at the outer edge ; it is furnished with a small triangular lappet or flap on each side: tentacles cylindrical and thread-shaped, finely ciliated: eyes small, black, placed on short bulbs at the outer base of the tentacles: foot thick, squarish in front and bluntly pointed behind; it has 6 cirri or filaments on each side, which are ciliated like the tentacles, and are of different sizes and lengths.

Waigat Strait, $15-25$ fms. ; Station 4, $20 \mathrm{fms} . ; 5,57 \mathrm{fms}$. West Greenland (Möller and others). East Greenland (Möbius). Spitzbergen, $5-15 \mathrm{fms}$. (Torell, Kroyer). Iceland (Steenstrup and others). Norway, 10-130 fims. (Sars and others). 'Lightning' Expedition, 170 fms . (dead). 'Porcupine' Expedition, 1869, 173 fims. (dead). Eastern coasts of North America, from Mackenzie River southwards to Cape Cod, $7-150 \mathrm{fms}$. Mexico (British Museum). Fossil in Norway and Sweden, Shetland, Scotland, Ireland, and Berwick Bay.

A Spitzbergen specimen of the variety Grontandica, Möller, measures $\frac{3}{4}$ of an inch in breadth. Specimens vary in the height of the spire as well as in the character of the sculpture. The outer layer in one of my Greenland specimens having been mostly removed by erosion, the surface of the inner layer presents a pearly appearance.

Fabricius appears to have considered this species a variety of his T. cineraitus (not Lime's species of that name), which is the T. Gronlandicus of Chemnitz. Broderip and Sowerby's specific name striata (1829) has precedence of Couthouy's (1839) by ten years; but we have already a Linnean species of the same name. It is possibly the Margarita arctica of Leach; although his description in the Appendix to Sir John Ross's voyage (1819) is too vague for determination, and may apply to T. Gircenlandicus; it is " M. purpurascente carnea-tenuiter striolata, operculo testaceo."

I notice this and a few other species which are common in the arctic seas, because I am able to give a description of the animal.

Trochus umbilicalis, Broderip and Sowerby.

Margarita umbilicalis, Brod. \& Sow. in Zool. Journ. vol. iv. 1829, p. 371.

Station 4, 20 fins. Davis Strait (Warham and ILarrison, fide Hancock). Wrallington Chamel (Belcher). Lancaster Sound (Sir J. C. Rosis). Lom Bay, Spitzhergen (Eaton)! Aretic Expedition, 1875, F. Pierce Bay, N. lat. $79^{\circ} 25^{\prime}$, 15 fims. ; Discovery Bay, N. lat. $81^{\circ} 41^{\prime}$, $5 \frac{1}{2}$ fms.! Fossil in Kane Valley, N. lat. $82^{\circ} 33^{\prime}$ (Feilden)!

Bons yellowish: had horseshoe-shaped and prominent; tentacles thread-shaped, covered with very fine and close-set cilia: eyes on small bulbs at the outer base of the tentacles: foot long and slender ; pedal filaments numerous, ciliated like the tentacles, each filament provided with an ocellus or eyespot at its outer base; there are six on each side, and several other smaller (some of them double) filaments at the end or tail of the foot. The animal differs from that of T. Greonlandicus (which is found with it) in having shorter and less slender tentacles, and in T. Gromlandicus being destitute of caudal filaments.

It is Möller's variety levior of T. Grenlandicus; but I believe they are distinct species. I have specimens of each from Spitzbergen agreeing in size and the height of the spire. T. umbilicalis has a more expanded shape and thimer texture; and the umbilicus is always more open and wide. The sculpture varies in both.

Nut T. umbilicalis of Da Costa, which is T. umbilicatus of Montagu, and T. umbilicaris of Pemnant, but not of Limé. Such a ringing of the changes is inconvenient.

Trochus olivaceus, Brown.

Turbo olitaceus, Brown, Illustr. Brit. Conch. 1827, pl. 46. f. 30, 31 (no page).
Bony milk-white: head semicircular, finely and regularly notched in front, and having on each side a small triangular lappet: tentacles thread-shaped and slender, covered with close-set and microseopie cilia: eyps placed on small bulbs at the outer base of the tentacles: foot broad, rounded and double-edged in front, bluntly pointed behind ; appendages is on each side on the upper part of the foot, shortish, finely ciliated like the tentacles. Animal active.

Station 3, 100 fms.; 4, 20 fms. ; 5, 57 fms.; Holsteinborg, 10 fms . Greenland (Möller)! United States, north of Cape

Cod! Nova Scotia, Newfoundland, and Gulf of St. Lawrence! Wellington Channel, 78 fins. (Belcher)! Aretic Expedition, $187^{\circ} 5, ~ N . ~ l a t . ~ 81^{\circ} 41^{\prime}$, $5 \frac{1}{2}$ fms. ; F. Pierce Bay, N. lat. $79^{\circ} 25^{\prime}$ (Feilden)! Spitzbergen, $25-40 \mathrm{fms}$. (Torell) ! Norway, 350-400 fms. (Verkrizen). Skye, 20-30 fms. (M'Andrew)! Fossil: Greenock (Ker, fide Brown) ; Uddevalla (Crosskey and Robertson)!

Height of spire rariable. The minute spiral sculpture was not noticed by Brown or Möller.

This is the Mergarita argentatu of Gould (1841), M. glauca, Möller (1842), and 1I. Marrisoni of Hancock (1846); latter two from the types.

Trochus Vahli, Möller.

Maryarita Vahlii, Möll. Ind. Moll. Groenl. p. 8.
Station 4, 20 fins. ; Holsteinborg, 12 fins. Greenland (Möller, Amondsen). Spitzbergen (Torell)!
"One of sea's rich gems."

Littorinidæ.

Littorina obtusata, Linné, var. littoralis or limata.
Godhavn and Holsteinborg.
Nerita littoralis, L., Littorina palliata, Say, and L. limata, Lovén, may be regarded as local and arctic varieties of the first-named species. I noticed this in the list of shells for Captain Burton's work on Iceland. Nerita littoralis, var. (β in the second edition of the 'Fauna Succica'), is probably a variety of Neritina fluviatilis. L. rudis is even more polymorphous than L. obtusata.

Rissoa arenaria, Mighels and Adams.

Cingula arenaria, Migh. \& Ad. in Boston Journ. Nat. IIist. iv. (1842) p. 49, pl. 4. f. 24.

Body yellowish-white, with a faint tinge of pink: head snout-like, rather long, and cloven vertically: tentacles clubshaped, ciliated at the tips only: eyes placed on the outer base of the tentacles: foot long, slender, rounded and double-edged in frout, bluntly pointed behind ; no caudal filament could be detected.

Godhavn, 5-20 fms.; Station 4, 20 fms.; Holsteinborg, 10-35 fms. Greenland (Eschricht; and coll. Möller)! Casco Bay, United States (Mighels and Adams). Newfoundland, and Tadsii in Finmark (Verkriuzen)! Spitzbergen (Torell) ! Bohuslän, $30-40 \mathrm{fms}$. (Lovén, as Rissoa Jeffreysi)!

Smaller and more conical than R. castanea; the colour is
pale yellowish-brown, instead of dark chestnut; and some specimens are "subplicate longitudinally," as described by Mighels and Adams.

The late Professor Stimpson changed the specitic name to Mighelsi, on the ground that this species was not the T'urto arenarius of Montann ; but no shell of that name was even mentioned by Montagu. Melix arenaria of Maton and Rackett (Turbo arenurius of 'Turton) is Odostomia decussatro.

Rissoa castanea, Möller.

Rissoa castmen, Möll. Ind. Moll. Gronl. p. 9 .
Bodr whitish, with a tinge of pale brown: head bilobed and prominent: tentucles club-shaperl, ciliated at the edges and more distinctly at the tips: eyes on small bulbs at the outer base of the tentacles: foot oblong, squarish and doubleedged in front, with angular comers, bluntly pointed behind ; no caudal filament could be detected. Rather common.

Godhavn, 5-20 fms.; Station 4, 20 fms. ; 5, 57 fms ; Holsteinborg, 10 fms . Greenland (Mioller). Davis Strait, 30-70 fms. (Sutherland, fide S. P. Woodward). Gulf of St. Lawrence, New Brunswick, and Labrador (Whiteaves). Newfoundland (Verkriizen). Iceland and Spitzbergen (Torell)!

Rissoa globutus, Möller.

Rissoa globulus, Mïll. Ind. Moll. Groenl. p. 9.
Body pale yellowish-white: heenl snout-like, bilobed or cloven vertically: mouth small ant pursed up or contracted : tentacless club-shaped, servated or notehed at the edges, and having a few cilia at the tips: oyes romd, lack, on the outer base of the tentacles: font proportionally long, rounded and double-edged in front, and bluntly pointed behind; no caudal filament olservahle. Very common. Feeds on Laminarice. Swims on its back, and spins a byssal thread.

Station 4, 20 fims. ; 5, 57 fms . Holsteinborg, 3-35 fms. Greenland (Mïller, Eschricht)! Casco Bay, United States (Mighels and Adams). Gulf of St. Lawrence (Whiteaves). Spitzbergen ('lorell)! Vadsö, Norway (G. O. Sars).

Not Ceingule Cetion of Mighels and Adams (Bost. Joum. Nat. Mist. iv. p. 48, pl. 4. fig. 22), a specimen of which I dredged on the coast of New England in 1871.

Turritellidæ.

Turritella erosa, Couthouy.
Turritella erosu, Couth. in Boston Journ. Nat. IIist. ii. (1839), p. 103, pl. 3. f. 1.
BoDy lemon-colour above, whitish underneath: head or snout
long, cylindrical and flexible, wrinkled across, cloven in front, restlessly moving about: tentacles long, slender and flattened, with rather blunt tips: eyes black and round, sessile on the tentacles at their outer base: foot thick and long, rounded and double-edged in front, with ear-shaped corners or flaps, bluntly pointed behind: opercular lobe large and thin: operculum round and multispiral, with the nucleus in the centre; the edges of the whorls overlap, as in T. terebra. Not shy, and more tenacious of life than most of the other aretic Mollusca. This survived and crawled about in fresh sea-water, after being sifted from a heap of stuff, which had been dredged six days and was in a putrid state.

Godharn, 5-80 fms. ; Station 1, 175 fms.; 3, 100 fms.; 4, 20 fms.; 5, 57 fms.; Holsteinborg, 12 fms. Greenland (Möller, Amondsen). Gulf of St. Lawrence to Cape Cod, 20-106 fms. Spitzbergen (Torell)! Fossil at Bridlington!

The composition of the shell appears to be less compact or homogeneous than in its congeners, and to be peculiarly liable to the corrosive action of some acid in the sea-water. See the remarks of Mr. Justice Grove in the Introduction to ' British Conchology', vol. i. pp. lii-liv. In full-grown shells the remaining top whorl is closed by a hemispherical plug of shelly matter, the apex never being perfect. The young is less conical and more cylindrical than T. acicula, and the sculpture is different. T. Eschichtioi of Middendorff, from Sitcha Island, is allied to the present species, but (judging from his description and figure) must be distinct.

It is the T. clathratula of Mr. S. V. Wood, 1848.

Turritella reticulata, Mighels and Adams.

Turvitella reticulata, Migh. \& Ad. in Boston Journ. Nat. Hist. iv. (1842), p. 50, pl. 4. f. 19.

Body yellowish-white, with a faint tinge of brown: head snout-shaped, thick and strong, cloven in front, and wrinkled across: tentacles awl-shaped; tips blunt; edges smooth : eyes placed on small bulbs at the outer base of tentacles: foot broad, triangular, squarish and double-edged in front, with drooping corners, rounded or bluntly pointed behind. Sluggish.

Station 1, 175 fms ; 4, 20 fms ; 5, 57 fms ; Holsteinborg, 10 fms . Greenland (Möller). Davis Strait, 30-70 fms. (Sutherland, fide S. P. Woodward). Gulf of St. Lawrence, 20-50 fathoms (Jighels and Adams, Whiteaves). Newfoundland (Willis). Nova Scotia (Stimpson)! Spitzbergen (Kröyer, Torell)!
T. lactea of Möller, 1842.

Scalariidæ.

Acirsa Eschrichti, Holböll.
Scalaria Eschrichti (Holb.), Möller, Ind. Moll. Gronl. p. 10.
Station 4, 20 fms. Greenland (Holbïll, Barrett)! Spitzbergen (Torellj! Murmy Bay, Canada (Dawson). Eastport (Verrill). Newfoundland (Verkrizen) ; a fragment! Fossil: coasts of Antrim and Aberdeenshire; Uddevalla; Canada (Bayficld, ficle Lyell)?

In my list of species which I considered Greenlandic, but not North-American nor European ('Iroceedings of the Royal Society,' vol. xxv. no. 173 , pp. 193 and 194), I included this species from an oversight. It is both North-American and European. Mürch regarded his Acirsa as a subgenus of Scaleria; but I would venture to raise it to generic rank, for the following reasons. The lips of the mouth in Acirsa are not continuous and thickened, so as to form a peristome; the aper of the spire is blunt, instead of being finely pointed; and the peculiar variciform ribs of Scalaria are wanting.

Herr Weinkauff's collection of Algerian shells contains a ribless and worn specimen of Scalaria crenata, Limé, which, at first sight, looks like Acirsa Eschrichti, and was mistaken by the Marquis de Monterosato and myself for that shell (see his 'Notizie intorno alle Conchiglic Mediterrance,' page 40, and the 'Journal de Conchyliologie' for Jamury 157 $\overline{\text { T, p. 38) ; }}$ but on closer examination I find that the lips of the mouth in the Algerian shell are thickened and continuons, the whorls are convex instead of compressed and somewhat angulated at the base, and it shows traces of the punctate sculpture and infrasutural notches which are peculiar to S^{\prime}. crenata.

Synonyms: S. Lorealis, Beck (1839), probably, but without description; S. undata, Sowerby; Turritella hilernica, Waller. S. subdecussata of Cantraine (Mesalia striata, A. Adams) belongs also to the genus Acirsa.

Acirsa malonga*, Jeffr.

Shell having the shape of a long and graceful obelisk, rather solid, opaque, when living probably glossy : sculpture, numerous fine, curved, longitudinal strix or riblets, and 5 thread-like spiral stria on each whorl; of these last the bottom or suprasutural stria is the strongest and forms a keel round the base, which is smooth and somewhat excavated; the part below the suture (about one third of each whorl) is also destitute of spiral strie; in one specimen the uppermost
of these strix is more prominent than the three below it, so as to give an angulated appearance to the whorls; the two sets of strixe cross one another, the result being a faint cancellation; top whorls smooth: colour whitish: spire slender; apex blunt: whorls 12-15, convex, gradually enlarging: suture deep: mouth roundish-oval: outer lip thin: inner lip folded back a little at the base. L. $0 \cdot 7$. B. $0 \cdot 125$.

Station 12, 1450 fims.; two imperfect specimens. 'Porcupine' Expedition, 1870 , off' the coast of Portugal, 994 fms ; a single specimen.

One of the 'Valorous' specimens, which is fragmentary, measures 0.15 inch in breadth, and shows that the shell attains greater dimensions than those given in the above description. It is a very elegant species.

Pyramidellidæ.

Odostomia albula, Fabricius.

Turbo albulus, Fabr. Fn. Gr. p. 394.
Body milk-white, with a faint tinge of yellowish-brown : head snout-like, cloven in front, with smooth or plain edges; tentacles compressed, leaf-like or triangular, and folded inwards; the edges are microscopically notched or saw-like, but not ciliated: eyes small, sessile on the inner bases of the tentacles: foot rather short and thick, closely ciliated in front, with the cilia in active and incessant motion, squarish and having slightly angular comers, bluntly pointed behind: operculum ear-shaped, thin, patucispiral, marked with flexuous strix, and similar to that of other species of Odostomia. The animal is very shy or sluggish.

Holsteinborg, 10 fms. Greenland (Fabricius, Möller). Spitzbergen Is-sound, 50 fins. (Torell)! North Japan (St. John) ; variety, anfractibus minus convexis! Some of the Japanese specimens have on the pillar a slight indication of the usual fold or tonth. Mr. A. Adams described this variety as Menestho sulcatina.

The specific name is too much like albella; but it may be more inconvenient to change it. Otherwise I would have proposed Fabricii.

I cannot distinguish this species from Odostomia by any generic character. The animal is similar; and the shell has the same heterostrophe and inverted apex. Nöller says also that it wants the lingual membrane or odontophore. He also noticed the operculum, which Fabricius could not detect"operculum nullum." It is the type of Möller's genus Menestho. Menke says, in his 'Zeitschrift für Malakozoolo-
gie' for 1844, page 12, that Menestho stands between Sealerie and I'elutina. His allocation of other genera constituted by Mïller are less happy: e. g. Amaura, between Natica and Margarita; and Almete, between Mitra and Lottia. It is certainly not the Monoptygma of Lea, which has an obliquely spiral fold on the pillar. Couthouy placed a North-American species (strictuta), allied to the present, in Brown's genus. Pyramis, the type of which is Eulimet sulututa. Pyramis striatule of Couthouy has been referred by Stimpson and Binney to the Menestho allulu of Möller; but it is very much larger and more eylindrical, and the sculpture is different.
O. allula appears to be the sole representative in the Aretic seas of the numerous family of Pyramidellide.

XX.-Description of Niphargus puteanus, var. Forelii. By Alois Humbert *.

Tue existence of Amphipod Crustaceans living in wells and more or less deprived of visual organs was indicated in 1835 at Paris and in Germany. MIM. P. Gervais and C. L. Koch, who were the first to discover them, referred them to the genus Gammarus. Some years later, Schioidte, who had discovered a species of the same group in the caverns of Carniola and Istria, perceived that these subterranean crustaceans deserve to form a distinct genus, to which he gave the name of Niphargus, which is now generally adopted.

A great number of memoirs have since been published upon these animals; and these have furnished us with much information as to their organization and geographical distribution. New species of the genus Niphargus and even new genera allied to the latter have been discovered, both in the subterranean waters of wells and caverns and in the sea. Finally, in 1869 M. F. A. Forel indicated for the first time the existence of blind Gammarida (Niphorgess) in the depths of the lake of Geneva, and in 1573 he found the same animals in the lake of Neuchâtel.

Although we may say that our knowledge of the Crustacea of this group has been greatly extended, we must unfortunately add that the subject still presents many doultful points, and

- Translated by W. S. Dallas, F.L.S., from an abstract by the author in the 'Bibliotheque L'niverselle': Archives dessiciences," loth January, 1807, ppe jx-\%. The oripinal paper appeated in the 'Bulletin de la Socinti Vauduise des sciences Naturelles,' tomexiv. (1576), pp. 278-305, pls. 6 d 7.

244 M. A. Humbert on Niphargus puteanus, var. Forelii.

that the most divergent opinions are still entertained as to the value of the different specific and generic forms.

The Niphergi observed by Caspary, Hosius, and De la Talette-St.-George were described under the name of Gammarus puteanus, invented by C. L. Koch. Schiödte distinguished two other species in his genus Niphergus, which also includes this Gammarus puteamus. One of these, obtained from the Austrian caverns, is his N. stygius; the second, found in a well in England, is his N°. aquitix. Spence Bate has introduced two new species under the names of N. fontanus and N. Kochianus. Costa has described a Gammarus longicaudatus. Joseph has indicated a new species from the caverns of Camiola under the name of G. orcinus. Czerniarski has described a Niphargus ponticus from the Black Sea. Lastly, we must also refer to an old species described by Leach under the name of Gammarus subterraneus. The genus Eriopis, established tor a marine species (E. elongatus) found off the shores of Scandinavia at a depth of from 40 to 60 fathoms, seems to be synonymons with Niphergus. Finally we have to mention a very nearly allied but easily distinguishable generic group, the genus ('rongony,x, Sp. Bate, the only known species of which (C. subterraneus) has been found in a well in England.

According to MI. de Rougemont *, to whom we are indebted for the latest work published on this subject, a great part of these specific and generic names ought to disappear, as they apply only to different forms simply representing the successive stages of development of a single species. Among the specimens collected by him in a well at Munich, M. de Rongemont has found five distinct forms, which, however, are transformed one into the other. The first, which is from 2 to 4 millims. in length, corresponds with Crangonys subterraneus, Sp. Bate, and Gammarus pulex minutus of Gervais. The secoml, varying between 3 and 6 millims., is the N. Kochiamus, Sp. Bate. The third, measuring from 5 to 8 millims., is referred to the Gommarus putconus of Caspary and Hosius. The fourth (12-14 millims.) is assimilated to the N. fortanus, Sp . Bate \dagger. The fitth (12-18 millims.) is determined as the

[^35]N. stygius of Schiödte and the N. putecturs of Koch. To these five forms observed at Munich, M. de Rougremont adds a sisth found in a well at Nenchatel, and measuring 33 millims. in length. Besidesits colossal dimensions, the specimen from Neuchatel is distinguished by a considerable number of joints (51) in the superior antenne, and by the almost complete disappearance of the accessory flagellum, which only shows itself in the form of a mere spine.

It is to be regretted that the author, who has himself dredged Niphargi in the lake of Neuchatel, does not tell us whether these Crustaceans fall under any one of the six forms which he establishes for the Gammaride of the wells.
M. de Rougemont was struck with the discovery in a single well of tive different forms, and found it difficult to believe that five species so nearly allied to each other should live together in so limited a space. He sought in vain for small specimens representing the young condition of the larger forms. Out of about a hundred individuals he found none of the dimensions of $2-4$ millims. Which approximated to the form which attains 18 millims. He then asked himself, whence came these large individuals? and he arrived at the conclusion that these five forms are not species, but only different stages of development of one and the same species, namely G^{\prime} ummarus vuteanus, Koch.

Thus, according to him, something of the same kind would take place here as in the case of the salmons, which, when they are not more than 6 inches long, already present completely developed reproductive organs and nevertheless continue to grow until they attain a length of 5 feet. In the Gammari, as in the salmons, characteristic forms would seem to make their appearance as the animal increases in age. 'This naturalist isolated certain forms, with the object of ascertaining whether they really underwent metamorphoses. His experiment was successitul. He saw individuals pass by change of skin from the first form (Crangonyx subterraneus) to the sccond (Niphargus Kochiames); and he also observed the transformation of the fourth form into the fifth. Hence the author concludes that the genera Crangonyx and Niphargus must not be separated, since they only represent different states of one and the same species. He goes even further, and proposes the suppression of the genus Niphargus, which he regards as being nothing more than the result of a modification of Gammarus pulex.

The facts upon which M. de Rougemont relies are doubtless very curious and of much significance. It camnot be denied that we have in them observations worthy of the utmost attention on the part of zoologists. I think, however, that we
cannot without rescrve accept all the combinations of species and genera proposed by this author. Side by side with very interesting observations expounded most ingeniously, M. de Rougemont's memoir contains a certain number of weak points, which prevent our being completely convinced by it. In the first place the discordancy between different parts of the text with respect to the arrangement of the old species under the different forms observed leaves room for doubt as to the ralidity of the proposed identifications. Other things also increase our distrust in this respect. Thus fig. 4 on pl. i. represents the last two joints of a foot, reputed to be those of the two anterior pairs of the fourth, fifth, and sixth forms. Now if we compare this figure with that given by Bate and Westwood of Niphargus fontanus, it will be seen to differ completely. The species of the English authors would be still more difficult to recognize in fig. 3 , which represents the second and third forms.

The figures of the two anterior pairs of feet of the first form are different from those given by Bate and Westwood for Crangonyx subterraneus; and it is the more difficult to decide whether MI. de Rougemont really had this genus under his hands, because he does not tell us whether his specimens presented the entire telson and the last pair of feet with a single unjointed ramus, which are important characters serving to distinguish Crangonyx.

Lastly, my observations on the Niphargi of the Lake of Geneva do not agree with those of M. de Rougemont. Among the animals of this genus communicated to me by M. Forel, some are very small, measuring 2 millims. from the front of the head to the extremity of the last saltatory feet. These individuals ought therefore to take their place under the first form of M. de Rougemont, including all the specimens from 2-4 millims., and consequently correspond to C'rangonyx subterraneus, Bate. But this is by no means the case. These young individuals undoubtedly present certain differences dependent on age, and consisting in a much smaller number of joints in the antennæ, a smaller quantity of setæ upon the different parts of the body, \&c. But as to the generic characters properly so called, they are already well marked; and in particular the first two pairs of feet have already the same form as in the adult, and the telson is deeply cleft.

It seems to me, therefore, that whilst we must take account of M. de Rougemont's observations as furnishing a very valuable indication of the metamorphoses which the crustaceans of the group under consideration may undergo, we cannot yet definitely accept the changes which he proposes in the classification of the forms hitherto observed. I have there-

M. A. Inumbert on Niphargus puteanus, var. Forelii.

fore provisionally retained the genus Niphargus, modifying it and completing its diagnosis.

In the state of confusion which prevails at present among the species of this genus their determination is difficult, whether we accept the amangement of Schiödte and Spence Bate, or, like De Rougemont, only regard the forms deseribed as representing the successive phases of a single type.

The Nipharyus of the Lake of Cieneva, and that which I have found in a well in the environs of Geneva, although very different in size and presenting some slight differences of organization, did not seem to me to need separation otherwise than as raricties. This point once settlect, I had to inquire whether the species was new, or whether it fell under one of those which were already deseribed. It seemed to me to be quite distinct from - . "quiler", fontemus, and stygius, and, although more nearly allicd to A. hechiames, could not be confounded with it.

As to the six forms of MI. de Rougemont, there is not one to which I could with any probability or confidence refer those which I have before me. The figure given by that author representing the last two joints of a foot of the fourth, fifth, and sisth forms, resembles these same parts in my specimens; but as I have already stated, that figure is not in accordance with some of those of the authors quoted.

It will be always difficult to arrive at a decided opinion with regard to the Cicenmarus putcemus of Koch, which is described and figured in a very unsatisfactory mamer. Nevertheless the name given by Koch has been in a manner fixed in science by the memoirs of Caspary and Hosius, who have given very good figures of the species. Thus it seems to me that, until the contrary is proved, we may regard the name of Gemmarus puteanus as applying to the species which has been described and figured by these two authors. Now it is to this that my two varicties seem to approximate most closely, notwithstanding slight differences in the proportion of the propoda of the first two pairs of feet. I have consequently adopted for the species the name of Niphergus puteanus, Koch, distinguishing each of the two local varieties, however, by a special name: the form from the Lake of Genera is Nijhargus puteamus, var. Forelii; and that found in a well at Onex, N.puteamus, var. onesiensis. I have completely described only the former, and contenter myself with indicating the differences which exist between it and the second form by placing in a tabular form those which seemed to me well marked. A detailed comparison with the type of the preceding authors is impossible, because the latter has not been described with sufficient exactitude.

248 M. A. Humbert on Niphargus puteanus, var. Forelii.

In my memoir there will be found a very detailed description of the species, founded upon the examination of a great number of specimens, which M. Forel had the kindness to fumish me with. I hope I have thus brought out characters derived from organs which are often too much neglected, at the same time avoiding the mention as specific of purely individual peeculiarities. I shall content myself here with indicating some points in the organization of these crustaceans which seem to me more particularly to deserve the attention of anatomists.

Of the authors who have treated of the species of the genus Niphargus, some say positively that the eyes are deficient; others that they are without pigment and not apparent, which is as much as to say that they have not perceived them; others, again, describe them as yellow or as imperfectly formed. M. Plateau asserts that they exist, but are destitute of pigment. It appears, however, from his memoir that he did not see them, and only convinced himself of their existence by physiological experiments, which proved to him that the Niphargi were sensible of light. MI. de Rougemont saw some irregular pigment-spots on the sides of the head; but he does not believe in the presence of an optical apparatus. For my own part, I have been unable to perceive the least trace of eyes or even of a deposit of pigment.
M. de 」a Talette-Saint-George described and figured some very small organs situated on the dorsal parts of the segments, and composed of a small capsule, from which issues a filament which bifurcates. I have examined these singular organs, to which I have given the name of sensitive capsules, in rather more detail, and ascertained that they occur not only on the segments, but also along the anterior margin of the head and on the first two joints of the peduncle of the superior antennæ. The capsule, placed beneath the chitinous envelope, is ovoidal, delicate, transparent, and open at both its poles. Through the exterior orifice issues a hyaline and homogeneous filament, which is straight for the greater part of its length, but is curved towards the end and has its extremity oblicuely truncated. A fine dark line, probably indicating a furrow, commences near its origin, and runs as far as its distal extremity. At about $\frac{4}{5}$ of the length of the filament (that is to say, at the point where it begins to bend) a much finer filament detaches itself from the former, on the convex side of the curvature, at an acute angle. This secondary filament, which is very thin at its origin, soon becomes excessively slender and sometimes difficult to follow. Its length somewhat exceeds that of the principal filament. Sometimes only the parts that I have just described exist ; but in other cases,
which seem to me to be the most frequent, the complication is a little greater. Thus two or three secondary filaments often originate upon the principal one. I have also represented a filament of peculiar appearance, destitute of longitudinal furrow, and emitting from its extremity six or seven secondary filaments, which are slender from their origin, and one of which is particularly elongated.

It is absolutely impossible for me to form any juigment as to the functions of these capsules and their filaments; but, although I have been unable to ascertain the entrance of a nerve into their interior, I think they must have some sensitive function.

The antenne have several kinds of sensitive organs. Besides the sensitice sete which are organized like those of Gammarus neglectus, so well described by Sars, we find in them olfactory cylinders, sensitive capsules, olfactory setre, and, lastly, what I have called hyaline bacilli. These last organs are usually borne by the joints in pairs, from the fourth joint of the flagellum (rar. onesiensis), or the sisth (var. Forelii), to the sixteenth. The last joint also bears a bacillus; but this is much shorter than the others and of a more clumsy form. It is situated quite at the extremity of the joint, like the setr in the midst of which it is placed.

The bacilli are of pretty uniform diameter throughout, being only a little constricted in their middle region, and slightly infated in their terminal portion. Their extremity is rounded and completely closed. Their diameter at the base is equal to one half or two thirds of that of the peduncle of the olfactory cylinders; their length is not quite half that of the Jatter organs. They are entirely pale, without any apparent structure; no enveloping membrane can be distinguished in them. Standing in the same direction as the olfactory setæ and cylinders, they are nearly straight, presenting at the utmost a slight undulation. The length of these bacilli is from 0.033 to 0.038 millim. ; that of the last joint is not more than from 0.008 to 0.018 millim. in length.

These organs perfectly resemble those figured by Sars upon the joints of the outer branch of the superior antenna of Mysis oculata. This author only mentions them as "peculiar cylindrical appendages, of a very delicate nature, which occur along the inner border of the first part of this branch."

In a memoir on the sensitive organs of the antenne in different Crustacea, Claus has figured an antenna of the second pair in a Cypris, in which the inner margin of the third joint bears an elongated spadiciform appendage which greatly resembles the hyaline bacilli of Niphargus. But in the Cypris Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.
this organ has, in the first half of its length, a chitinous wall of a certain thickness; and the author says that it is larger in the adults than in the young, and chitinized throughout its length, and then more resembles the organs of this nature that are met with in insects.

I do not know of other figures or descriptions that may be referred to these organs. It is very possible that they have been described in a memoir by Jarschinski", which I have been unable to consult, and of which I must content myself with reproducing the title from the 'Zoological Record.'

On the inferior antennæ sensitive scto, hyaline bacilli, and auditory setar are also met with.

The buccal organs and the feet present extremely varied forms of seta, the arrangement and number of which exhibit a remarkable constancy in the two varieties which have been comparatively studied.

This is not the place in which to enter into further details as to the structure of these Crustacea. I shall content myself, in conclusion, with reproducing the paragraphs in which I have treated of the habitat of the Niphergus of the Lake of Genera, and discussed the problem of the origin of those crustaceans which inhabit waters destitute of light.
"What is the origin of the blind Gammarids which we find in wells, in caverns, and in the depths of seas and lakes? Such is the problem which cannot fail to force itself upon the minds of all who investigate these crustaceans. Two different solutions of it may be given. It may be assumed that these animals were created such as they are now, because, being destined to live in places deprived of light, they had no occasion for visual organs. This explanation, or, rather, this reply, formerly the only one admitted, now-a-days satisfies only a very small number of naturalists; and many powerful arguments may be brought to bear against it. It will be sufficient to cite a single one, namely the fact that other animals living under the same conditions of obscurity are furnished with perfectly organized eyes. Thus certain Gammari of Lake Baikal, living between 50 and 500 metres, have the eyes well constructed and furnished with black pigment. The IFunide, which are dredged in the sea at depths of 1000-1200 metres and more, have the eyes exceptionally developed and apparently extremely sensitive. The Gnathophausive dredged by the naturalists of the 'Challenger' between 1830 and 4020 metres have normal pedunculated

[^36]cyes, and over and above these an accessory cye on each of the maxille of the second pair.
"The second solution, founded on the theory of transformation, assumes that these blind creatures originate from ancestors furnished with cyes, which have by degrees, under the influence of disuse, lost these organs, which have become useless. One of the best proofs in favour of this view may be drawn from the transitions observed in certain species. In some Gammarids of Lake Baïkal we can ascertain a tendency on the part of the visual organs to become less perfect in proportion as the animal inhabits greater depths. We may cite, as examples, Gammarus T'ssolievii (var. abyssorum) and G. Borouskii (var. dichrous, subvar. abyssalis). But this transformist explanation, which is now-a-days generally aceepted, and which appears to me to be the true one, does not settle the whole problem. It may be asked, among other things, with regard to this or that blind species, whether its origin dates back to a very ancient epoch or is comparatively recent, whether it originated from extinct or from still existing forms. These questions have sometimes leeen settled lyy a dash of the pen; and, amongst others, this has been the case with the Niphargi of the caves and wells. Nevertheles, the problem presents itself in a very complex fashion, and appears to me to necessitate a greater number of observations than we possess at present before it can be regarded as completely solved. I even believe that it is impossible now to arrive at any thing precise with regard to the origin of the Niphargi; we can only claim to indicate the probabilities, and to clear the gromid by getting rid of some erroncous notions.
"The Niphargus of the Lake of Geneva lives at a depth of from 30 to 300 metres. Now, according to the observations - of M. Forel *, the chemical action of the solar rays in the waters of the lake ceases to make itself felt in summer below 40 or 50 metres, and in winter below 80 or 100 metres. Conserfuently, although inhabiting an open sheet of water, this crustacean is subjected, throughout the greater part of the zone occupied by it, to the same comditions of obscurity as its congeners enclosed in wells or caverns. We seem, therefore, to be justified in concluding that it is under the influence of this obscure medium that our species has lost its visual organs. This is the explanation that has been proposed by the naturalists who have sought to account for the origin of the Niphargi of wells and caverns. Some have even gone still

[^37]further and wished to derive them directly from Gammarus pulex. I camnot share in this last opinion, which seems to me to be that of a narrow Darwinism; and I think that, both with respect to the Niphorgus of the Lake of Geneva and to those of other dark places, there are strong arguments to be brought against this theory of G. pulex becoming transtormed into Crangonyx and Niphargus. The following are the chief of these objections:-
"1. So far as we know at present, Gammarus pulex only descends to a small depth from the surface; and there is a zone destitute of Gammarids, extending between the lower level at which we cease to find G^{t}. pulex and the upper level attained by the Niphargus. This fact would be very difficult to explain if the Niphargus originated from G. pulex. In this case, on the contrary, we ought to find representatives of this latter species at all depths, and even to meet with individuals establishing a passage between one form and the other.
"2. If the Niphargi originated from Gammarus pulex, and had in their youth, as asserted by M. de Rougemont, the form of Crangony.x subterraneus, we should find ourselves face to face with facts completely opposed to the general laws of development. We know, in fact, that the characters which separate two representatives of the same group are less marked in youth than in the adult state. Forms which resemble each other during the first phases of their development may subsequently diverge in a very striking manner. This embryogenic and phylogenic law is particularly verified among the Crustacea, in which affinities which are strongly marked in the larra almost entirely disappear in the adult animal. Now what do we see in the Gammarids before us?
"In the Gammari proper the last pair of saltatory feet are biramose; Gammarus pulex even has the two branches nearly equal. The Niphargi have these branches very unequal, but both of them still exist. In Crangonyx, on the contrary, there is only a single branch. The Crangonyches, therefore, in this respect, represent a type further removed from G. pulex than the Niphargi. We could understand, therefore, a development in which the second branch inherited from the ancestor would exist during youth, and afterwards disappear, by atrophy, at a more advanced age-in other words, a Niphargus-phase afterwards attaining the state of Crangonyx. The inverse of this (that is to say, a metamorphosis of the kind observed by M. de Rougemont) appears to us to be discordant with all that we know of the metamorphoses of the Crustacea. .
"The same abnormal reversal of the laws of development would also be observed in the case of the telson, which is
double in Gammarus, of a single piece but deeply cleft in Niphargus, and completely entire in Crangonyx. By adopting the theory of M. de Rougemont it would therefore be necessary to assume here that the Viphargi differ more in their youth than in their adult state from the Gemmarus pulec from which they originated.
"3. It we consider that Eriopis ought to be united with Niphargus, it is difficult to understand how these marine Gammarids could have originated from the Cammarus pulex of the fresh waters, and get into the North Sea and the Black Sea.
" 4 . We find the Niphargi distributed over a great part of Europe in waters deprived of light, both in wells and caverns and at the bottom of lakes. On the other hand, in Lake Baïkal, so well explored by M. Dybowsky, who has found there ninety-seven species of Gammarids, including Gammarus pulex, no species of Niphargus appears to exist\%. Nevertheless this immense lake presents depths much greater than those of the Lake of Geneva and the Lake of Neuchâtel ; and the solar rays, which are more oblique in Siberia than in Switzerland, must make their action felt to a still less depth than in our waters. It may be added that the astonishing number of species which inhabit Lake Bäkal, and the variety of their forms, would tend to make us suppose that this vast sheet of water has a fauna more ancient than that of the Siwiss lakes, and that the modificatory causes have consequently had more time there to act upon the species.
"These various considerations lead me to believe that Niphargus is an ancient genus descended from a form now extinct, as is evidently the case with Proteus, Leptorlerus, Anophthalmus, \&c. As to the question whether the Niphargi of the lakes are colonies originating from animals of the same genus which inhabit subterranean waters, or whether the reverse is the case, it is difficult to solve, and its solution is even complex. Assuming that the genus Niphargus appeared before the glacial epoch, it is impossible to say any thing about its place of origin. But, not to carry the question so high, and considering only the existing fauna, I should be disposed to think that our Niphergi of the Swiss lakes have originated from those which inhabit subterranean waters. Having reached the lakes, they would have acclimatized themselves in the depths which present the darkness that they seek. In this more or less obscure zone they found themselves under conditions which allowed them to exist; whilst in the illuminated zone they could not have escaped their enemies, or maintained the struggle against their near allies fumished with visual

* A C'canyony. x is known from the subterrauean waters of Kamtechatka.
organs. Considering the larger dimensions attained by the forms living in wells, it would seem that those of the lakes, although inhabiting much larger pieces of water, are in circumstances less favourable to their development, and are, in a manner, atrophied."
XXI.-Mermaphroditism among the Parasitic Isopoda. Reply to $1 \mathrm{Lr}^{2}$. Moseley's Remarks on the Generative Organs of the Parasitic Isopoda. By J. Bullar, B.A., Trinity College, Cambridge.
In the January number of this Journal Mr. Moseley attacks some statements which I had made in a paper on the Generative Organs of the Parasitic Isopoda (Journ. of Anat. and Phys., Oct. 1876). He discredits my discovery of hermaphroditism in this group, and bases his arguments mainly on the supposition that the organs which I have described as testes are, in reality, spermatophores or parts of them.

Before answering Mr. Moseley's oljections, I may perhaps be permitted to supplement my previous account of the anatomy of the testes by some facts which, though they do not fully elucidate the development of the spermatozoa, are, I trust, amply suificient to demonstrate the untenable nature of Mr. Moseley's suggestions.

The testes in these animals consist of three pear-shaped bodies, each invested by a special membrane, which is constricted to form a narrow neck before becoming continuous with the wall of the ovary. In the case of Anilocra mediterranea, the narrow portion is elongated to form a short duct. Each of the testes receives at its free end a special bundle of blood-vessels. The testes usually contain mumerous spermatozoa, which may be seen passing down along the outer border of the ovary into the vas deferens. In some cases, however, they contain few or no spermatozoa, and are filled with a cellular blastema, from which, doubtless, the spermatozoa are developed.

The position of the testes is so invariable and their structure so uniform, that it is incredible that, had Mr. Moseley seen my preparations (which, I need hardly say, I should have been only too delighted to have shown him, and thus have saved him the trouble of writing his communication) and not merely the drawings, he could have mistaken the testes for spermatophores.

The vas deferens is a narrow duct lined by a flattened epithelium; at its lower extremity it presents an enlargement, and opens into a distinct penis situated on the ventral wall of the last thoracic segment.

The oviduct, which is always present as well as the vas deferens, is a wide tube opening externally at the side of the body, in the segment in front of that which bears the penis. There are some remarkable facts comected with the openings of the generative ducts, for which I must refer the reader to my original paper.

I have never found any spermatozo in the oviduct, as might have been anticipated if they had been introduced from without; in the vas deferens, as I have said, they are almost always present ; and it seems scarecly probable that this duct has the function (without parallel in the animal kingdom) of transporting the spermatozoa from without into the ovary.

Before passing on to Mr. Moseley's objections, it may be well to point out how elosely similar in structure are the male organs of the animals I have described to those of Asellus aquaticus, a unisexual Isopod which has been so well deseribed and figured by Prof. G. O. Sars (Crist. d'Eau donce).

In order to prove his point, Mr. Moseley is obliged to make the supposition that the vas deferens and penis which I have described are rudimentary. That this is not the case seems to me to be amply proved by the facts (1) that they are quite as large as those found among the unisexual forms, (2) that the vas deferens is usually filled with spermatozoa, and (3) that in a specimen in my possession the spermatozoa may be seen in the act of escaping from the orifice of the penis.

Another objection brought forward by Mr. Moseley is the difficulty he experiences in understanding why spermatophores should be formed in a self-impregnating animal. The explanation which at once suggests itself is that the formation of spermatophores is so common amongst the Crustacea, that it is highly probable that they occurred among the unisexual ancestors of the parasitic Isopods, and that a tendency to their formation was inherited by their hermaphrodite descendants: Now, unless we can show that a spermatophore is a disadvantage to a self-impregnating animal, there is no difficulty in imagining that their formation might be continued.

The last objection brought forward by Mr. Moseley, founded on the immobility of the spermatozoa, is somewhat startling. He says "the immobility of the spermatozon observed is a fact quite as much in favour of their having been introduced for some time and tired nut, as freshly developed and functionally active." Now it is well known that motile spermatozoa are of very rare occurrence among the Crustacea, being found, according to Gegenbaur ('Anatomic Comparée,' p. 426), only in the Cirripedes. It seems that Mr. Moseley, in his anxiety to disprove my results, has had recourse to an hypothesis, viz. that
these parasitic Isopoda differ from other Crustacea in having: motile spermatozoa, which will be generally admitted to be more improbable than the existence of hermaphroditism in a parasitic animal.

> XXII.-Additions to the Coleopterous Fauna of Tusmania. By Charles O. Waterhouse.

The following Coleopterous insects have just been added to the national collection. In the collection from which they were selected were specimens of Dorcadidla biocularis, a species, I believe, not previously recorded from this locality.

MELOLONTHIDE.

Telura vitticollis, Er.

The male of this species appears never to have been recorded. It differs from the female in having the eyes very prominent, the club of the antennæ is composed of five long leaflets instead of three, and the elytra are more narrowed towards the base.

HETEROMERA.

Mordella felix, sp. n.

Atra; capite thoraceque aureo-tomentosis, hoc vitta media et utrinque puncto nigris; elytris macula basali fasciisque duabus (una ante medium angulata, secunda transversa ante apicem) aureo-tomentosis; pectore abdomineque albido maculatis.
Long. $2 \frac{1}{4}$ lin.
Head and thorax clothed with golden pubescence, the former with a distinct longitudinal impressed line on the vertex ; thorax with a round black spot on each side, and a central longitudinal black stripe which is interrupted anteriorly; the posterior margin lobed in the middle. Scutellum golden. Elytra with a short, scarcely oblique spot joining the base near the scutellum, a well-marked fascia a little before the middle in the form of a W , and a transverse spot before the apex, all golden. Underside clothed with whitish pubescence; a triangular spot on each side of the basal abdominal segments and the two anal segments black. Palpi, two basal joints of the antennæ, anterior femora and tibix, and spurs to the posterior tibir pitchy.

Hab. Tasmania.
Brit. Mus.

LONGICORNIA. PRIONIDEE.

Tragosominæ.

Exieaphyllus, gen. nov.

Apical joint of labial palpi slightly elongate, subfusiform, truncate at the apex. Thorax transerse, with a small sharp upturned spine on each side. Sentellum parallel-sided at the base, natrowed at the apex. Elytra clongate, parallel, depressed, not spined at the sutural angle. Prosternum very narrow. Femora not dentate at the apex. Abdomen with the fifth segment emarginate at the apex in both sexes.

ס 0 . Antenne as long as the whole insect; third joint scarcely longer than the first ; the fourth to tenth joints gradually become flatter and slightly increase in length, the third to tenth opaque, each emitting from the apex below a very long that branch ; the eleventh joint long, arched, lamelliform.
f. Antenne two thirds the length of the insect, slender and simple ; the third joint as long as the two following taken together ; the apex of the third and the following joints entirely poriferous below.

This genus should be placed between Prionoplus and Tragosoma.

> Enneaphyllus œneipennis, sp. n.

Elongatu*, parallelus, piceus, nitidus; elytris senescentibus, crebre punctatis; corpore sultus femoribusque testaceis; pectore longe piloso.
Long. 12-15 lin., lat. $3^{\frac{3}{4}-t_{2}^{\frac{1}{2}}}$ lin.
Head and thorax very thickly and rugosely punctured; the latter a little broader than the head, flattened on the disk, with a single spine on each side. Elytra parallel, somewhat æneous, straight at the base, so that the shoulders, although rounded, are rectangular; the sides very finely margined, obtusely rounded at the apex, and with no sutural spine.

Hab. 'Tasmania.
Brit. Mus. British Museum, Feb. 20, 1877.

BIBLIOGRAPHICAL NOTICES.

Ostriches and Ostrich-Fieming. By Jurirs di Moscarthal, ConsulGeneral of the South-dfrican Republies for France, de. \&c., and James Edmexd Harting, F.L.s., F.Z.ふ., \&e. With Illustrations. Trübner \& Co., 1877.
This interesting work appears to have had its origin in the public demand for information consequent upon the exhibition at Vienna
by Mr. de Mosenthal, as Commissioner for the South-African Colonies, of an assortment of ostrich feathers from tame hirds, and a model of an artificial incubator. Desirous of laying the details of this new and important industry before the public, he was fortunate in obtaining the cooperation of Mr. Harting, who combines the attainments of a scientific naturalist with a flowing and popular style; and as the oceasion seemed a favourable one for giving a brief and readable monograph of the Ostrich family, the result has been that what was originally intended to be a mere pamphet has swelled to the dimensions of a volume of nearly 250 pages-a " process of evolution" of which the reader will, we think, have no reason to complain.

Of the two families, Struthionide and Apterygidx, which make up the order latite, as at present existing, only the first furnishes members which have up to this time ministered in any important manner to the wants or luxury of man; and, looked at from the parely utilitarian point of view, only two of the five genera into which these families are subdivided have been of much service; for neither the Cassowaries nor the Emus have done more than provide meals and rude clothing for fast disappearing savages, whilst the Apteryx has hardly done even that. Mr. Harting has, indeed, slightly apologized for introducing them into the present work; but we think that under the circumstances he has not exceeded the privilege soneeded to an author who is writing a popular treatise; and those who have never read the original accounts of the breeding and domestic economy of the Emu in coufinement will doubtless take a lively interest in the present condensed reprint. To have left out the Apterygidæ would have marred the completeness of the monograph; and the space occupied is rery brief; whilst it is undoubtedly an advantage to have an abstract of the latest information respecting the Casucrince in an accessible form, compiled from Mr. P. L. Sclater's papers in the 'Proceedings of the Zoological Society; and illustrated with reproductions of the heads of the different species.

By far the most valuable portions of the work are undoubtedly those which relate to the ()stricla (Struthio cum:lus), respecting which a full and carefully compiled account is given; and the collation of the reports of various travellers, and the working-out of the geographical range of the species must have iuvolved an immenso amount of research on the part of Mr. Harting. We do not feel perfectly satisfied with the evilence adduced as to the occurrence of this species, either in a fossil or in a living state, in any part of India; nor do we consider that the ideutity of the North-African and Arabian ostrich with the South-African bird is definitely settled; for not only the difference in the plumage of the limited number of specimens arailable for examination, but also the constant distinctions in the character of the eqges, seem to point the other way. The distinctness of the two species has been upheld by Mr. P. L. Sclater, Mr. A. D. Bartlett, Mr. Gurney, and by that eminent practical authority the late Mr. Andersson, the noted African traveller, who is even inclined to increase the number of species io three, whilst
on the other side are Drs. Finseh, Hartlaub, and Blasius junr. ; so the matter must be left in abeyance until a larger series of specimens can be examined. An important step has lately been taken by Mr. de Mosenthal in shipping a pair of first-class Barbary birds to South Africa with the view of improving the breed of the Cape Ostrich ; and comparison of the birds from the two extremities of the continent may tend to solve the question.

The Swedish traveller, Sparrman, more than a century ago, mentioned the fact of tame ostriches being kept by some of the farmers at the Cape; and Capt. Lyon, in 1n20, mentioned the similar fact with regard to North Africa; indeed, up to the present time, a large portion of the feathers from Kordofan are known to be the produce of tame birds, all, howerer, hatched by female ostriches, and without the aid of an artificial incubator. With the increased demand for feathers it became plain to all reflecting minds that there was a great risk of the extermination of the wild birds at no distant period; and in 185y the Acclimatization Society of Paris offered premiums for the successful domestication of the species in Senegal aud Algeria, and for breeding ostriches in Europe. Prince Démidoff' was to some extent successful at Florence; and similar experiments, with satisfactory results, were made at Marseilles, Grenoble, and Madrid. It was, however, rescrved for the colonists at the Cape to carry out the plan on a large scale; and of the rapid rise and results of this new industry some idea may be formed when wo read that, although only commenced in 1566 , the number of tame ostriches at the census of 1875 amounted to no less than 32,247 . Of these a considerable number have been hatched out by Donglas's incubator, by means of which Mr. John Yoble succeeded in rearing in a single season from six ostriches (four hens and one cock) onc hundred and thirty birds: This is a vast improvement upon the wholesale slaughter formerly necessary to provide plumes for the European market ; for although the feathers of the wild birds have a crispuess which no "tame feathers" possess, yet the demand for the second class is sufficient to make ostrich-farming a very profitable business. Contrast the state of things in the Argentine provinces, where the unfortunate Rhea, or South-American Ostrich, seems in a fair way of cxtermination, nearly half a million having been slaughtered annually for some years, without any compensation in the way of artificial production. Respecting the habits, manner of hunting, and the characteristic distinctions of the two species found in the southern portions of the American continent, a long account is given; and it is somewhat amusing (as throwing light upon many "trade" names) to learn that the best feathers of the lhea are known as I'cutour plumes, whilst the white and half-white ones are termed gerbes indiennes, or Indian sheaves. It is much to be regretted that the unenterprising half-hreeds who inhahit a large portion of the liver-Plate States should never have made any attempt to protect and foster these handsome birds; for the experiment of M. Vavaseur in France, after an experience of fifteen years in Uruguay, shows that in a civilized country, and one not in a state of chronic revolutionary
disturbance, there is no difficulty in farming Rheas as well as Ostriches.
For further details we must, however, refer our readers to the work itself, every page of which is replete with interest, as well as really novel and valuable information.

On the Foraminifera of Barbudoes. (Etude sur les Foraminiferes de la Barbule, fe.) By M. Ervest Vandey Broecit, ©te. Svo. 98 pages, with 2 plates. Brussels, 1876. (From the 'Annales de la Soc. Belge de Microscopic.')
Turs memoir on some recent Foraminifera collected by the late L. Agassiz at about 100 fathoms depth, near Barbadoes, in the West Indies, is of considerable interest on account of the careful treatment of the Microzoa under notice, the elegant and trustworthy illustrations, and the enlightened riews of Foraminiferal classification and nomenclature which the author clearly and earnestly advances.

The series of forms is not numerous, but very interesting as varieties and subvaricties of well-known types; and these serve as a groundwork for a thoughtful exposition of the principles of classitication adopted by Von Reuss in Germany and by Carpenter and others in England. The Foraminifera described and figured are:-
Lituola Soldani, P.\&J., var. inter- Frondiculeria alata, D'Orb., var. media, nov.
Dentalina obliqua, L., var. sulcata, Nils.
D. nodosa, D^{\prime} Orb.
D. communis, D^{\prime} Orb.
D. communis, D^{\prime} Orb., var. obliqua, D'Orb.
D. communis, D'Orb., var. annulata, Rss.
D. pauperata, D^{\prime} Orb.

Marrinulina glabra, D^{\prime} Orb.
Cristellaria rotulata, Lm. (passing into C. vortex, F. f. M.).
C. cultrata (M.).

Frondicularia alata, D'Orb., var. sagittu'a, now. lanceolata, nov. .
F. complanata, Defr., var. coucinna, not.
Globigerina bulloides, D^{\prime} Orb., var. cretacea, $D^{\prime} a_{r} b$.
G. bulloides, D'Orb., var. rubra, D'orb.
Textularia trochus, D' Orb.
Verneuilina communis ($D^{\prime} O \cdot r b$.).
Pulvinulina Menardii (D^{\prime} Orb.), var. cultrata ($D^{\prime} O r b$.).
Polymorphina lactea (W. \& J.) and
Truncatulina lobatula (W. \& J.) are also described and commented upon.

PROCEEDINGS OF LEARNED SOCIETIES.

GEOLOGICAL SOCIETY.

June 7th, 1876.-Prof. P. Martin Duncan, M.B., F.R.S., President, in the Chair.
"On the British Fossil Cretaceous Birds." By Harry Gorier Seeley, Esy., F.L.S., F.G.S., Professor of Physical Ceography in Bedford College, London.

In this paper the author gave an account of the remains of birds which have been collected from the Cambridge Upper Greensand.

Of the head, the only portion yet recognized is the part of the braincase behind the parieto-frontal suture. It indicates a skull as large as that of the red-throated Diser, which it resembles in details of structure. The vertebral column is represented by lower cerrical vertebra, which have the centrum small and compressed from side to side. The dorsal vertebre are also small, are rounded on the underside as in the Gannet, and often have the articular ends biconcare, or hare a concarity in the centre of the saddle. There were transwerse processes as in modern birds : and the ribs had a similar double articulation. The sacrum was unusually large, and included many rertelre. Its anterior end resembles that of a Gull's sacrum, in being flattened or concave. The rertebre are rounded anteriorly, and distinguishable from each other; but posteriorly they are hended, and resemble the postarticular part of the sacrum of the Diver. Some small vertebre were thought to be caudal, and considered to be probably elements of the ploughshare.

No trace of any bone of the anterior limb has been detected; while of the hinder limb, the femur, tibia, fibula, and tarso-metatarsus are all known. The femur and tarso-metatarsus are the bones most like those of the Diver. The fibula is unusually large. The tibia has a moderate patelloid process, and shows resemblances to sereral water birds. The bones are so fragmentary that the size of the animal can only be given roughly as similar to that of the Diver, but with a shorter neck. The affinities of the animal are strongest with Colymius. It also closely resembles Prof. Marsh's Cretaceous qenus Merperormis, and, like that genus, may be supposed to have had teeth. The species were described as Enaliornis Barretti and E. Sedguiclio. Some bones were also described thought to indicate birds in which the extremities of the bones remained unossified throughout life.
"On two Chimeroid Jaws from the Lower Greensand of New Zealand." By E. T. Newton, Esq., F.G.S., of H. M. Geological. Survey.

The two jaws which were the sulject of this communication form part of the collection of fossils from the Lower Greensand of New Zealand deposited in the British Museum by Dr. Hector. One of the specimens, a right mandible, was referred by the author to Isclyyodus brevirostris, Ag., a species from the Gault of Folkestone, hitherto known only by name, no description or figure of it having been as yet published. Through the kindness of the Earl of Enniskillen, the original type specimen of this species was exhibited to the Societs. The author then described a perfect mandible from the Cambridge phosphatic deposits, and stated that the examination of a large series of specimens showed a considerable variation in the form of the teeth in different individuals. The New-Zealand mandible was then compared with these britinh specimens, and was said to differ less from some of them than they did among themselves.

The second specimen, a small right maxilla, possessing but one
tooth, and this of a peculiar form, was compared with the corresponding bone in Ischyodus, Edaphodon, Elasmodus, Ganodus, Chimera, and Callorkynchus. The form of the tooth appeared to agree better with that of the last-named genus than with any of the others; and the author therefore proposed to call it, in allusion to the form of the tooth, Callorhynachus Hectori.
"On a Bonc-bed in the Lower Coal-measures, with an enumeration of the Fish-remains of which it is principally composed." By J. W. Daris, Esq., F.L.S., F.G.S.

In this paper the author described a thin bed composed chielly of remains of tishes, which rests immediately upon the "Better-bed Coal" of the Lower Coal-measures in Yorkshire. The bed varies from a quarter to five eighths of an inch in thickness, and is overlain by a thick bed of blue argillaceons shale, containing remains of plauts. The author described the order of the deposits both above and below the "Bone-bed," and gave a list of the organisms of which remains are found in the latter, including species of Gyracanthus, Ctenacanthus, Lepracanthus, Acanthodes, Pleuracanthus, Oithacanthus, Diplodus, Pleurodus, Helodus, Cludodus, Poecilodus, Petalorus, Harpacorlus, Ctenoptychius, Megatichthys, Holoptychius, Strepsodus, Acrolepis, Platysomus, Acanthodopsis, Amphicentrum, Rhizodopsis, Cycloptychins, Guprolepis, Palceoniscus, Coelacanthus, and Ctenoduz. The author also described spines which he regarded as indicating two new genera of Elasmobranchs-one probably allied to Pleurucentlus, and the other (Hoplonchus) allied to Onchus and Homecenthus. Bones belonging to the Labyrinthodont genus Loxomema are met with rarely in the deposit.
"Note on a Species of Foraminifera from the Carboniferous formation of Sumatra." By M. Jules Huguenin.

The author described some globular Foraminifera, belonging or allied to Fusutina, from a Carboniferous deposit containing Producti and Phillipsic, which occurs N.E. of Padang and S. of the Lake of Singkarak in Sumatra. The author described the structure of these fossils, which he compared with Fusulina cylindrica and F. depressa, and arrived at the conclusion that they belong to a new genus, to which perhaps the North-American Fusulina robusta also belongs.

Juue 21, 1876.—Prof. P. Martin Duncan, M.B., F.R.S., President, in the Chair.
"On the Discorery of Plants in the Lower Old Red Sandstone of the Neighbourhood of Callander." By R. L. Jack, Esq., F.G.S., and R. Etheridge, Jun., Esq., F.G.S.

The authors give an abstract of the rarious prerious references to the existence of remains of land-plants in deposits of Old-Red-

Sandstone age, and mention the following localities in Scotland in which such remains have recently been discovered by them:1. Buchanan-Castle (Quarry, near Drymen ; 2. Old Quarry, at small reservoir at Kilmahew; 3. Green Burn, Keltie Water; 4. Keltie Water, above Chapelrock; 5. Keltie Water, below Brackland Lims; 6. Quarry at Kames Farm, near C'allander: 7. (Quarry at Easterhill, near Gartmore : S. Quarry in Cameron plantation, near Alexandria ; 9. Turnpike road at Overballoch, Loch Lomond ; and the localities from which the specimens noticed in this paper were obtained, namely a quarry $2 \frac{1}{2}$ miles from Braendam House, and the southwest corner of Muir plantation, near Callander. The plant-remains are described as being of a very fragmentary nature, and as occurring in the two last-named localities in a deposit consisting of greenish-grey flags and thin-hedded sandstones about 500 feet in thickness, the best specimens being in the sandstone. They present the appearance of elongated flattened stems, about 1 inch wide on the average, sometimes represented only by easts, sometimes by black carbonaceous films. They are ornamented with a series of puckerlike depressions when seen from the interior, or with a number of wart-like eminences when viewed externally. The latter are the scars of the points of issue of the vascular bundles passing to the leaves. Along the margins are seen spines or thorn-like projections, which may be the leaves or their bases; these are apparently arranged in spiral rows. Some stems appear to show dichotomous branching. The authors discuss the relationships of these remains with other described Devonian forms, and regard them as most nearly allied to Psilophyton prineeps, Dawson. They describe the plant with doubt as a species of P'silophyton.
"On an adherent Form of Productus and a small Spiriferina from the Lower Carboniferous Limestone Group of the East of Scotland." By R. Etheridge, Jun., Esq., F.G.S.

The author commenced by summarizing the different viens that have been expressed by writers as to the mode of life of the Proclueti, and the function to be ascribed to the spines with which their shells are furnished, in order to show the uncertainty that precails upon these points. He then described specimens of a small Productus found attached to encrinite stems and fragments of Polyzoa, in the shale over the No. 2 Limestone of the Lower Carbonifcrous Limestone group, chicfly in the neighbourhood of Dunbar. The shells are attached by having some of the spines of the ventral valve wound tightly round the bodies to which they adhere, sometimes singly, sometimes in clusters, the number of spines implicated in the adhesion rarying from two to seren or more. The attachment took place during the life of the Crinoid, as evinced by the subsequent growth of the latter, leading in many cases to the more or less complete imbedding of the Prodictus. From the consideration of the characters presented by the more mature valres, the author stated that the nearest affinity of this species of Productus appears to be with P. Wrightii, Dav., but that it shows peculiaritics
allying it to P. Iongispinus, Sorr., P. scabriculus, Mart., and P. undatus, Defr. He was not prepared to describe it as a distinct species, hut suggested for it the name of Proluctus complectens, in allusion to its embracing habit, in case of its proring to be distinct.

The spiriferinu described by the author was compared by him with S. cristata, Schl., var. ortoplicata, Sow., and with S. insculpta, Phill., from both of which it differs in certain characters; but as only one specimen has been met with, he refrained from founding a new species upon it. The specimen is from Fullarton Quarry, near Temple, Edinburghshire.
"Notice of the Occurrence of Remains of a British fossil Zeuglodon (Z. Wam. Tymi, Neeley) in the Barton Clay of the Hampshire coast." By Harry Govier Secley, Esq., F.L.S., F.G.S.

In this paper the author described the remains of a species of Zenglodon obtained by the late Dr. A. Wanklyn from the Barton Cliff, consisting of a great part of the skull. about the same size as that of Zeuplorlon bruchyspondylus, Mïller. The bones preserved are the maxillary, frontal, and parietal bones. The left maxillary shows the remains of five teeth in a length of rather less than seven inches, the first two of which had simple conical crowns and a single fang; the sockets of these are elliptical. The third tooth is considerably compressed, with a sharp margin, which has four small denticles on each side of the large median denticle. The following teeth exhibit somewhat similar characters, and each possesses two fangs. A single tonth, resembling the canine of a Carnivore, was found with the specimen, and was probably one of those missing from the first sockets. The characters of the bones of the head were described in more or less detail: the frontal region is flattened, with a sharp crest continued along the parietal region, as in Z.brachyspondylus; but the crest is not flattened posteriorly into a narrow table, as in that species, nor is the parietal united with the frontal by a folded suture. The species, named Z. Wenklyni in memory of its discorerer, differs from all known species of the genus in the shortness of the interspaces between the teeth.
"On the Remains of Emys hordwellensis, from the Lower Hordwell beds in the Hordwell Cliff." By Harry Gorier Seeley, Esq., F.I.S., F.G.S.

The remains described by the author consist of some fragments eronstituting the greater part of the plastron and carapace of a species of Emys nhtained from a bed in Hordwell Cliff about 20 feet below that which has rielded the chief remains of Chocorlitus Hastingsio, and about 10 feet above the brackish-water Upper Bagshot beds. The preserved portion of the carapace is 9 inches long; when perfect it was probably about 12 inches long and 10 inches broad. Its distinctive characters were said to be:- the broad, short gular scute, with sinuous sutures; the subtrimgular nuchal scute; the subpentagonal first vertebral scute, broader than the succeeding quadrate
rertebral scutes: and the concentric ornamentation left on the carapace and plastron by all the scutes. The author proposed for the species the name of Emys hordwellensis.
> "On an associated Series of cervical and dorsal Vertebre of Polyptychodon from the C'ambridge Cepper Greensand." By Harry Govier Seeley, Esq., F.L.S., F.G.S.

The author remarked upon the rarity of vertebre of Polyptychoton in the Cambridge Greensand in comparison with the abundance of teeth, and stated that those collected do not appear to be the remains of more than two individuals, probably representing two species. One series from Haslingfield was deseribed and figured by Prof. Owen in 1stio; the other, somewhat smaller series, described in the present paper, is from the Huntingdon Road. The author described in detail the structure of the atlas and axis and of the five succeeding (cerrical) vertebre; nine dorsal vertebre were also described.
"On C'rocorlitus icenicus (Seeley), a sccond and larger species of Crocodile from the Cambridge Cpper Greensand." By Harry Govier Sceley, Esq., F.L.S., F.G.S.

In this paper the author described a cervical and a dorsal vertebra of a new species of Crocodile. The former is probably the last cervical. It is $2 \frac{1}{4}$ inches long, and differs from that of existing Crocodiles in the large size of the parapophyses, the distinct anterior notch in the neural arch for the vertebral nerve, and the perfect convexity of the articular ball. The dorsal vertebra is the sixth or serenth; it measures $2 \frac{1}{2}$ inches in length, and shows a depression and perfect convexity of the articular ball, which distinguish it from existing species. The animal was probably about 16 ft . long.
"On Macrurosaurus semmus (Seeley), a long-tailed animal with procœlous vertebræ, from the Cambridge Upper Greensand." By Harry Govier Secley, Esq., F.L.S., F.G.S.

The author described a series of about 40 associated and nearly successive caudal vertebre obtained from one of the deeper phosphatite workings on Coldham Common. The tail, when complete, probably included 50 vertebre, and measured 15 feet in length. The articulations of the carlier vertebre are procolous; then they becomo nearly flat, then biconcave, and towards the end of the tail irregular. There are no cherron bones. The neural arch in the earlier part of the tail was supported on pedieles rising from the centrum, depressed and deroid of neural spine. The neural arches were of great antero-posterior extent and compressed. The author remarked that although the tail as a whole is more in accordance with the Lacertian type than sith any other order of true reptiles, the combination of the procelous character with the absence of cherron bones is

Ann. de May. N. Hist. Ser. 4. Vol. xix.
unknown to him elsewhere. He added that the metapodium deseribed and figured by him in 1871 , under the name of Accathopholis plutypus, may perhaps belong to the foot of Macrurosaurus, in which case the latter would probably indicate a modification of the Crocodilian type, and the individual to which the tail belonged would have been about 30 feet long.

> December 20th, 1876.-Prof. P. Martin Duncan, M.B., F.R.S., President, in the Chair.

"On Pharictrospongia Stratheni, a fossil Holorhaphidote Sponge from the Cambridge Coprolite Bed." By W. J. Sollas, Esq., B.A., F.G.S.

The sponge described by the author, which had been long labelled as a Chenentopora in the Woodwardian Museum at Cambridge, is a fossilized siliceous sponge, characterized by an irregularly reticulate fibrous skeleton, the fibres of which in the living state were composed of a number of siliceons acerate spicules, lying parallel to each other and to the sides of the fibre. These spicules are still sufficiently well preserved to be figured and meacured individually, though they have undergone a pscudomorphic change, be which their original compesition has been exchanged for a calcareons one. A similar replacement has occurred in the case of rarious species of Manon and Pormsponyia; and this fact is of great interest, as showing that the extinct and anomalons order of Calcispongix, which these fossils were supposed to indicate, has no necessary existence, since their calcareous nature is a superimposed one, and their original structure agrees completely with that of existing siliceous forms, Pharetrospongia Stictheni itsclf exhibits close affinities to an undescribed sponge now living in the Australian seas.
"On the Remains of a large Crustacean, probably indicative of a new species of Eurypterus or allied genus (Eurypterus? Stevensoni), from the Lower Carboniferous series (Cement-stone group) of Berwickshire." By Robert Etheridge, jun., Esq., F.G.S.

The fragmentary Crustacean-remains described in this paper are referred by the author to a large species of Eumpterus. They are from a rather lower horizon in the Lower Carboniferous than that from which Eurypterus s'couleri, Hibbert, was obtained. The animal was probably twice the size of E. Scouleri. The remains consist of large scale-like markings and marginal spines which once covered the surface and bordered the head and the hinder edges of the body-segments of a gigantic Crustacean, agreeing in general characters with the same parts in E. Scouleri, but differing in points of detail. For the species, supposing it to be distinct, the author proposes the name of E. Stevensoni.

January 10th, 1577 .-Prof. P. Martin Duncan, M.B., F.R.S., President, in the Chair.

"On gigantic Land-Tortoises and a small Freshwater Species from the ossiferous caverns of Malta, together with a list of the fossil Fauma, and a note on Chelonian-remains from the Rock-cavities of Gibraltar." By A. Leith Adams, Esq., M.B., F.R.S., F.G.S.

The author described three extinct species of Tortoises from the Maltese rock-carities, one of which was of gigantic proportions, and equalled in size any of the living or extinct land Chelonians from the Indian or Pacific islemls. The characteristic peculiarity in the two larger species is a greater robustness of the long bones as compared with the denizens of the Mascarene and (ialapagos islands with which he had been enabled to contrant them. The largest, on that account, he had named T.' robuste; it rivalled the gigantic Testulo ephippinm (iiunther) in size, showing ofthinities to it in a few minor characters. A smaller species, T'. S'prattii, and a small Lutrimys, not distinguishahle, as far as the few remains extend, from the recent L. curopicra, besides many fragments of shields of tortoises of various dimensions, had been obtained. These Chelonians were found in conjunction with the remains of the dwarf Elephants and other members of the remarkable fauna collected by Admiral Spratt and the author in the ossiferous rock-cavities of Zelbug, Mnaidra, Benghisa, de. The paper enntained a list of the animal-remains hitherto recorded from the Maltese fissure carerns, including three species of dwari Elephants, tiro species of Hippopotemus, two gigantic species of Myoc"s, a gigantic Swan, and other animal-remains, and, further, a Note on some Chelonian-remains from the rock-fissures of Gibraltar.

"()n British Cretaceous Patelloid Gasteropoda." By John Starkie Gardner, Esq., E.G.s.

In this paper the author commenced by a general statement as to the classification of the froms to be described in it. which he referred to the families Patellide, Fissurellida, Calyptraide, and Capulide. He noticed 30 species, which are mostly of rare oceurrence; and 19 of these were described as new. Four genera were indicated as new to the Cretaceous series, and one as new to the Cretaceous in England. The new species were Acmaa formose and plana, Helcion Meyeri, Anisomyon vectis, Scurria calyptreiformis and depressa, Emarginule puncturella, divisiensis, ancistra, Meyeri, and unicostata, Puncterella antiqua, C'ulyptraa concentrica, C'rpidula chamaformis, Cirucibulum sigunterm, Pileopsis neocmmiensis, dubius. and Secleyi, and Hippomy.. Divent. Most of the Patellidx were from the Nenemian, and the majorits of the Fissurellide from the Upper Greensand ; the species of the other two families were scat-
tered through the series. The author referred to the indications of depth of deposit and other conditions furnished by these Mollusea, and also to the resemblance presented by many of them to certain biralves common in the same rocks, which he regarded as a sort of mimicry.
"Observations on Remains of the Mammoth and other Mammals from Northern Spain." By A. Leith Adams, Esq., M.B., F.R.S., F.G.S.

The remains noticed in this paper were obtained by MIM. O'Reilly and Sullivan in a cavern discorered at about 12 metres from the surface, in the valley of Cdias, near Santander, by a horing made through limestone in search of calamine. They were found elose to a mound of soil which had fallen down a funnel at one end of the carity, and more or less buried in a bed of calamine which covered the floor. The cavern was eridently an enlarged joint or rockfissure, into which the entire carcasses, or else the living animals, had been precipitated from time to time. The author had identified among these remains numerous portions, including teeth, of Elephas primigenius, which is important as furnishing the first instance of the occurrence of that animal in Spain. He also recorded Bos primigenius and Cervus claphus?, and stated that MMr. O'Reilly and Sullivan mention a long curved tooth which he thought might be a canine of Hippopotamus.

February ${ }^{\text {th }}$ th, 187% President, in Martin Duncan, M.B., F.R.S.S.,
"On new Species of Belemnites and Salenia from the Middle Tertiaries of South Australia." By Ralph Tate, Esq., F.G.S.

The author noticed the occurrence in deposits of supposed Miocene age in South Australia of a species of Belemnite (Belemnites senescens) and a Salenia (S. tertiaria). These fossils were obtained from Aldenga, twenty-six miles south of Adelaide, on the east coast of St. Vincent's Gulf, where the long series of sea-cliffs contains an assomblage of fossils identical with that of the MurrayRiver beds. The Sulenia is especially interesting on account of the discovery of a living species of the genus by the naturalists of the ' Challenger.'
"On Manisaurus Gardneri (Seeley), an Elasmosaurian from the base of the Gault at Folkestone." By Harry Govier Seeley, Esq., F.L.S., F.G.S.

The author described the skeleton of a great long-necked Saurian obtained by Mr. J. S. Gardner from the Gault of the cliff at Folkestone. The remains obtained included a tooth, a long series of vertebræ, some ribs, bones of the pectoral arch, the femur, and some phalanges, indicating a rery large species, which the author
referred, with some doubt, to the genus Mauisaurus of Dr. Hector, founded upon a Saurian from the Cretaccons formation of New Zealand. He gave it the name of Mmuisaurus Gardneri in honour of its discoverer. A small heap of pebbles was found in the neighbourhood of the ribs; and it was supposed that these had been contained in the stomach of the animal.

miscellaneous.

Note on the Femoral Brushes of the Mantidx. By Prof. J. Wood-Mason.

Sivce the abstract* of my paper on these structures and their use was published, I have been enabled to consult M. Stîl's memoir \dagger entitled "Orthoptera quedam Africana;" and I find that I have been anticipated as to the discovery--the brushes, or rather the setulose eminences which I call brushes, being thus described in a footnote to p. 382 of the work cited:-"In latere interiore femorum anticorum Mantorleorum adest apicem versus prope marginem inferiorem spatium parrum leriter convexum, oblongum, dense brevissimeque setulosum." M. Stål makes no suggestion as to the possible use of the brushes to the insects; but I hare ascertained \ddagger that they are exclusively used for keeping the eves and ocelli in a functional condition, and that they are present in the joung when these quit the egg.

A full account of my observations and experiments on numerous living specimeus belonging to several genera (Sehizocephala, Pseudomantis, Hierodulu, \&心.) will be given in iny paper.

Calcutta, Dec. 22, 1876.

On the Development of the Antennce in the Pectinicom Mantidx. By Prof. J. Wood-Mason.

The anthor shows that, down to the last change of skin but one, no difference is to be detected between the two sexes of Gongylus gongylodes, either in the form or in the proportional length of the antennax, which in both male and female are identically the same simple and setaceous structures, consisting of two distinct basilar segments followed by a multitude of very short and ill-defined flagellar ones, but that shortly atter this event these appendages in the male berin to thicken throughout that portion of their length which in the perfect insect is bipectinated, so as eventually to acquire a compressed spiudle-shaped form : that this thickening is the outward manifestation of the growth going on beneath the

[^38]outermost layer of chitinous membraue (last skin), which, at an early date, pari passu with the formation of the new antenno, tends to separate off from the rest, and thereafter serves as a capsule or sheath wherein the two series of pectinations are dereloped by a process of budding from the antennal segments between the basal 5 and the apical $12-15$; that as the pectinations grow they press upon so as to distend the walls of the sheath, completely obliterating all traces of its previous segmentation : and that if the sheath be carefully dissected away when distention oil its walls has proceeded almost to the bursting-point (last moult), the completely bipectinated antenna of the adult male is disclosed, but with the teeth of each comb all glued and compressed together and with the two striated plates thus formed apposed to one another at their free ends, so as to enclose a compressed spindle-shaped carity.-Proceedings of the Asiatic Society of Benyal, December 1876.

On the Power possessed by certain Mites, with or without Mouths, of liviny without Food through entire Phases of their Existence or even during their whole Lives. By M. Mégatis.

The specimens of Ixodes found adhering to animals, to whatever species they may belong, are always fecundated females-a fact which the author has ascertained by the examination of hundreds of individuals obtained from dogs, cattle, sheep, horses, different species of rodents, birds, reptiles, \&c. He has frequently found adhering to the lower surface of these sucking females, another vers different small Ixodes, which is entirely coriaceous, and is the male, the lip of which, forming an obtuse triangle with salient lateral angles, is introduced into the subthoracic culva of the female, and serves as a guide to the penis (which emerges from its base), and at the same time as a means of firm sexual union instead of the copulatory suckers met with in many other mites.

The Ivordes are oriparous, and deposit a considerable number of eggs, not by the mouth as Latreille believed, on the testimony of Chabrier, but by a subthoracic rulva which opens close to the base of the rostrum, as demonstrated by M. Lucas (Ann. Soc. Ent. Franc. 1836, p. 630); but the mode of life and organization of the larre are quite unknown. The author found on an African ox an enormous female Ixodes ready to lay, and was thus enabled to study her numerous progeny. Between May 22 and June 23 this female laid 12,000 eggs filled with a brownish yellow vitelline matter, composed of granular polyhedric or rounded cells of very variable diameters. The average diameter of the orospherical eggs was $\frac{1}{2}$ millim.

The eggs hatched between July 25 and August 9, producing very active hexapod larrx, with the rostrum apparently complete, an oral-triangular ce\}halothoracie plastron, furnished with a pair of eyes as in the mother, but quite destitute of stigmata and of the tracheary respiratory apparatus so visible in the adults. Five or six lays befone hatching, when the egg appeared still three fourths
filled with the vitellus, the :uthor saw the ahdominal integuments of the larve formed, completely enveloping the vitelline mass; and he then saw the hard parts of the skeleton thicken and become darker in colour, the abdomen, which was at first spheroidal, become flattened and regularly festooned behind, and the stomach and its symmetrical caca formed, circumscribing the vitelline matter, which was gradually retracted, furnishing the material for new organs. That the business of nutrition went on actively in the bodies of these larver was shown by their depositing upon the glass much white matter, which proved to consist of alkaline urates. The mother had also produced a large quantity of similar excrement. The author states that these larve lived and digested for three months without his being able to induce them to take any nourishment; they lived on the provision derived from their mother, which was contained in the stomach.

These larvae undergo their metamorphoses and become adult, when the males seek the females, fecundate them, and die without taking any food, which, indecd, the conversion of their rostrum into an accessory organ of copulation would prevent their doing; the females, either during or after fecundation, attach themselves to animals, from which they absorb the quantity of blood which enables them to acquire sometimes, ten times their original size, and provides the materials for their numerous progeny, even throughout life in the case of the males.

The mouthless Acarina, which have been formed into the genera Hypopus, IFomopus, Trichodectylus, Astome, \&e., but which the author has shown to be nymphs, also live without food in an analogous manner. Their bodies are filled with a granular amorphous matter, a sort of highly vitalized sarcode, produced by the liquefaction of the internal organs, and especially the muscles of the larve; life is sustained without loss, since there are no evacuations, in consequence of the complete absence of anal, respiratory, or other apertures, during the whole of this phase of their existence. The adult form which succeeds this phase is remarkable (especially in the case of the adult female) for great voracity ; but many of the males, like those of Ixodes, eat very little or not at all, and the author believes that the males of Serroptes belong to the latter category.
M. Mégnin remarks that this fact is by no means without a parallel, and mentions the Ephemerex and the Estride as furnishing cases in point. He also refers to the same category the astomatous and fertile form of the Phyllowera of the oak observed by M. Lichtenstein (Bull. Soc. Ent. Fr. 1576, p. 164).-Comptes Rendus, Nor. 20, 1876, p. 993.

Note on the Nidification of the Aye-Aye. By MM. A. Milne-Edwards and A. Grandidier.
Any facts that may contribute towards a more complete knowledge of the aye-aye (Chiromys madagascariensis) deserve the
attention of zoologists. This mammal, the affinities of which have been long disputed, is still very rare. Travellers have scareely ever studied it in the living state; and the observations they hare been able to make upon its habits and manners are almost insignificant; we therefore think it useful to indicate some new particulars as to its mode of life.

The aye-aye constructs in trees true nests resembling enormous ball-shaped birds' nests; and it is in the interior of these constructions that the female brings forth her joung and nourishes it. We have just receired one of these nests found by M. Soumagne, honorary consul of France in Madagascar, in the belt of forest situated halfway up the eastern slope of the great granitic mountain mass a short distance from Tamative. It is made with much care and art at the fork of several large branches of a dicotyledonous tree; its outer surface is formed of large rolled-up leaves of the Ravinala (or traveller's tree), which constitute a sort of impermeable covering and protect the interior, in which there is an accumulation of small twigs and dry leaves. The aperture is narrow and placed to one side. M. Soumagne surprised a female with her young one in this nest.

The most highly organized species of the Lemurine group (the Indrisinæ and true lemurs) always carry their young attached to the back or the breast, where it can casily reach the pectoral mammæ of the mother. The lower representatives of the order, however, are furnished with several pairs of mammæ, and they do not carry their young in this manner; they deposit them either in holes of trees (Lepilemures and Chirogalei) or in true nests (Nicrocethi). Each litter consists of seceral young, which remain for a considerable time confined to their retreat, without being able to accompany their parents. One of us has examined the nest of Microcebus myoxinus. It resembles on a small scale that of a crow, and is composed of small twigs interlaced, in the midst of which there is a depression with a bed of hairs, in which the young repose.

In its mode of nidification, therefore, the aye-aye closely approaches the more degraded representatives of the order Lemurina, and departs from the Indrisinæ and true Lemurs.-Comptes Rendus, Jan. 22, 1877, p. 196.

Note on the Phenomena of Digestion and on the Structure of the Digestive Apparatus in the Phalangida*. By Félix Plateat. (Abstract by the author.)

The 'Annals and Magazine of Natural History' have already giren abstracts of several of my memoirs relating to the phenomena of digestion in the Articulata \dagger. The present memoir is, properly speaking, only a detached chapter of a long scries of researches on

- Bulletin de l'Académie Royale de Belgique, 45^{e} année, 2^{e} sér. tome xlii. p. 719, 1876.
+ Annals and Magazine of Natural History, 4th series, vol. xvi. p. 152, (1875), vol. xviii. p. 355 (1876), rol. xviii. p. 437 (1876).
the digestion of the Arachnidans. The very special organization of the Phalangida permitted this separation.

It is not my intention to summarize here the anatomical part of my note; but I must say a few words on the arrangement of the digestive tube of the Araneida and of the Phalangida in order to show the bearing of the physiological results.

The Arancida, or spiders properly so called, are sucking animals. Their digestive tube comprises :-first, a buccal intestine entirely situated in the cephalothorax, and consisting of an cesophagus with chitinous walls, terminating with an apparatus of suction, accompanied by a series of five pairs of lateral cece; then, in the abdomen, a middle intestine, followed by a terminal intestine. The middle intestine is here characterized by the fact that it receives on the right and left the excretory canals from the roluminous abdominal gland, hitherto called the liver in the Araneida. The terminal intestine, dilated into a reservoir, receives at its origin, as in all the Articulata, the crustaceans excepted, the Malpighian or urinary tubes.

We know by the works of Ramdohr, Treviranus, Tulk, Blanchard, \&c., that the digestive apparatus of the Phalangida is quite different. Here the animal docs not suck its pres, but devours it entirely. The digestive tube consists, in the first place, of a buccal intestine reduced to a short œesophagus; then of an immense median sac, into which open dorsally about thirty voluminous cæca filling nearly all the cavity of the body; lastly of a short terminal intestine, characterized, as I show for the first time, by the insertion of the Malpighian tubes. It is to be remarked that here the body is no longer distinctly divided into a cephalothorax and an abdomen, and also that, as in the Arancida, a certain number of cæca penetrate into the cosopodites of the feet.

All authors taking for their basis a simple resemblance of form, regard the ceca of the Phalangida as the analogues of the cephalothoracic cæca of the Araneida. This is for want of histological obserrations and above all of physiological experiments.

Experimental researches already far adranced havo conrinced me that the voluminous gland called the liver in the Decapod crustaceans, and which empties its products into the middle intestine of those animals, is nothing but the organ of secretion of the digestive liquid intended for the emulsion of the fats and for the solution of the albuminoids*. Recently M. Jousset de Bellesme has informed me that he has arrived at perfectly similar results; finally a number of experiments on the so-called liver of the Araneida + , the ducts of which also open into the middle intestine, have proved to me that

[^39]this also mas only a liser in appearance, that the liquid secreted was also the principal digestive liquid emulsionizing the fatty bodies, transforming the albuminoids into peptones and producing glucose at the expense of amylaceous matters.

The epithelium, consisting of voluminous cells, of the cæca of the Phalangida has the most analogy with the cellular elements of the supposed liver of the Araneida; but, what is more positive, the liquid secreted in abundance also transforms the feculents into glucose slowiy, dissolves the albuminoids activels, and energetically emulsionizes the fats.
The crea of the Phalangida are therefore not the analogues of the cephalothoracic suctorial sacs of the Arancida, but the evident aualogues of their abdominal digestive gland. It results from this, (and direct obserration also proves it), that the large median sac is the principal place for digestion, and consequently the middle intestine.

The Gourami and its Nest. By M. Carbonmier.

I have of late years had the honour of making known to the Academy the curious and interesting habits of certain fishes of the group Labyrinthici. In these species, at the time of reproduction, the males become adorned with the most vivid colours, construct a nest to shelter the products of the spawning, and during the embryonic development, as also after hatching, give a careful and efficacious protection to their progeny-facts which indicate a highly developed instinct in these creatures, and reveal the existence of faculties of which they have heretofore been regarded as destitute. Among these are the Macropodi of China and the Colisce of India. The study of another fish of the same family, the Gourami (Osphromenus olfax) has furnished me with subjects of no less astonishment and admiration.

The Gourami, an inhabitant of the fresh waters of China and India, is remarkable for the large size to which it may grow and for the goodness of its flesh, which renders it a valuable article of food.

My trials in former years not haring given any result, I determined last spring to keep my fishes in a medium maintained artificially at a constant temperature of $25^{\circ} \mathrm{C} .\left(=77^{\circ} \mathrm{F}.\right)$, which it appeared to me must be suitable for their reproduction. With this riew, my fishes were placed in an aquarium containing about 48 gallons of water. In a few days I saw the bodies of the males become adorned with vivid colours ; they pursued each other, and seemed to struggle furiously for the possession of the females. I then selected the finest male, whose lips were tumeficd in an abnormal fashion, and left him alone in the aquarium with a female which he seemed to pursue persereringly. He soon commenced in one of the angles of the aquarium the formation of a nest of froth, which in a few hours attained a considerable size- 6 to $7 \frac{1}{4}$ inches in diameter, and 4 to $4 \frac{3}{4}$ inches in height.

In the Chinese Macropodus the male draws directly from the outer
air the bubbles which he emits beneath his frothy roof after having englobed them (in order to prevent their being absorbed) with the mucosity furnished by his buceal membrane. The mucous secretion does not seem to be formed in such abundance in the Gourami : hence my male found himself under the necessity of preparing his materials beforehand, then collecting those which appeared to him to fulfil the desired conditions, and carrying them to his nest. For this purpose he kept at the surface of the water, turning his back to the nest, and, drawing in the outer air, expelled it by degrees in front of him in the form of gaseous bubbles. The badly prepared bubbles burst, and there only remained those the envelope of which possessed the suitable consistency; these he then collected and carried into his nest.

At times the buccal secretion seemed to slacken, and the male could no longer elaborate his globules. He then descended to the bottom of the water to seek for some Conferva, which he sucked and chewed for a few moments as if to excite and rearaken the activity of the mucous membrane.

The nest being completed, the male watched it with patient care, and whenever the female apppoached it he displayed his brilliant colours. At a given moment his body, by several simulated approaches, having acquired sufficient flexibility, he caught the female, and caused her to perform a first sparning; others speedily followed, and were renewed nearly forty times in three hours.

A Macropotus or a Colisa would not have been embarrassed about collecting the eggs and arranging them in the nest. My Gourami did not appear to understand taking them in his mouth; and in order to raise them to the surface he made use of a most curious stratagem. He rose to take in an abundant provision of air ; then, descending, he placed himself well below the eggs, and suddenly, by a violent contraction of the muscles of the interior of the mouth and pharynx, he compelled the air collected there to escape by the gill-apertures. This air, infinitely dirided by the branchial lamellæ and fringes, was, so tospeak, pulverized; and the riolence of the expulsion was such that it escaped in the form of two jets of a regular gaseous powder, which enveloped the eggs and conveyed them to the surface.

Nothing could be more curious to witness than this manœurre of the male Gourami. He disappeared completely in the midst of a regular fog of air ; and when the latter broke up he reappeared, bearing attached to the rugosities of his scales and fin-rays bubbles of air resembling thousands of little pearls.
The number of eggs produced during this spawning may be estimated at two or three thousand, out of which I only obtained six hundred hatchings, most of the eggs not having undergone the action of the fecundating principles.

The first period of incubation lasts three days; and then commences a series of modifications analogous to those which I have already noticed in other species. The tadpole swims with its belly in the air, and has the form of a ball terminated by a little tail: but after another period of three days (that is to say, six days after
hatching) the embryonic development is completed, and already a certain number of the young fry venture to escape from under the paternal cye. The male pursues the fugitives; and a few jets of pulverized air shot in their direction soon bring them to reason and convey them again to the surface of the water. It is not until about ten days after their birth that the father begius to abandon them and leare them to wander at their own pleasure.

Five hundred and twenty young Gouramis hatched in my establishment in the month of July last, and, measuring at present from 3 to 6 centimetres in length, assure to us the definitive possession of this interesting and curious species of fish, which, among other advantages, possesses the faculty of spawning several times a year.Comptes Rendus, Dec. 4, 1876, p. 1114.

Zoology of the 'Challenger' Expedition.

Mr. Alexander Agassiz, in a letter to the editors of 'Silliman's Journal' (dated Edinburgh, Dec. 18), states that he has found the material a wonderful collection, and was deeply impressed by the great amount of it, coming as it mainly does from the depths with which we formerly associated the idea of a lifeless desert region. He also gires the following information respecting the publication of the results. "The Admiralty is to publish the results; and the collections are to be worked up by sundry specialists:-Allman the Hydrozoa; Busk the Polyzoa ; Dr. If‘Intosh the Annelids; Thomson himself the Crinoids and some of the Sponges, the balance of the latter by O. Schmidt: Häckel the Radiolaria; Moseley, of the 'Challenger,' the Polyps; Murray, who was on the 'Challenger,' will work up the deep-sea bottoms and surface animals (Foraminifera, \&e.); (iuinther the Fishes. Some of the groups are not yet determined upon; but the same persons who worked up the 'Porcupine' species will probably have charge of the 'Challenger' collection. Young Carpenter will work up the Comatulæ; Lyman will have the Ophiurans; and I shall bring over with me the Echini, and perhaps some other group of Echinoderms; so that the United States will have their fair share of the work."

Rate of Growth of Corals.

A remarkable piece of coral, taken off the submarine cable near Port Darwin, is spoken of by the 'Cocktown Herald.' It is of the ordinary species, about five inches in height, six inches in diameter at the top, and about two inches at the base. It is perfectly formed; and the base bears the distinct impression of the cable, and a few fibres of the coir rope used as a sheath for the telegraphic wire still adhering to it. As the cable has been laid only four years, it is evident that this specimen must have grown to its present height in that time, which seems to prove that the growth of coral is much more rapid than has been supposed.-Silliman's American Journal, February 1877.

THE ANNALS

Magazine of natural history.

[FOUR'TH SERIES.]
No. 112. APRIL 1877.
XXIII.-On the Distribution of Birds in North Russia.-
I. On the Distribution of Birds on the Lower Petchora, in North-east Russia. By J. A. Harvie Brown, F.Z.S.
"Till every well-marked district, every archipelago, and every important island has all its known species of the more important groups of animals catalogued on on uniform plan and with an uniform nomenclature, a thoroughly satisfactory account of the Geographical Distribution of Animals will not be possible."
The following paper is intended as a companion paper to the fuller account published in 'The Ibis' for 1876 \%, and is intended to show in tabular form the distribution of the species met with.

In the 'Table further on I have indicated the points at which and the line along which we observed the different species, by perpendicular strokes in the columns devoted to the thirteen localities mentioned. As the preparation of this paper has necessitated a thorough reexamination of my journals, these strokes, marking the records of actual oceurrence of the species at these points, may be held as trustworthy, no stroke having been drawn in the spaces unless there is a corresponding record in $m y$ journal. When these strokes are drawn tourards the sides of the columns and not in the centres, they will be understond to indicate that the species were observed befween the latitudes given, or may be regarded as generally distributed over the distance represented. I have also indicated the probable presence of these species at other localities by dotted lines (...). Where I have left a

[^40]blank space, I have considered, either that the evidence I have is too unsatisfactory to enable me to arrive at any conclusion as to their presence or absence, or that the species are indeed absent from these localities *.

In Table II. I have used more elaborate signs to show the abundance or scarcity of the species in each of three districts: thus:-rare, $\boldsymbol{\psi}$; once seen, $\boldsymbol{\checkmark}$; twice seen, $\boldsymbol{\sigma}$; thrice seen, \bar{E}; common, \|; very common, $\dagger \dagger$; very abundant, $\ddagger \ddagger$. This, I believe, will make the tables of more practical use for comparison with other tables of species further cast or west than if they only represented the particulars shown in Table I.

If we look at this paper as having reference entirely to the distribution of species in their relation to the parallels of latitude, and entirely apart from meridians of longitude, and apart from the more devious lines of migration, we may of course conclude that though certain species do not pass, or are not found to be present at certain localities, nevertheless, in order to reach the higher latitudes at which we are able to record them, they must have passed through or been present at other localities upon these same parallels of latitude, to the east or west of our points of observation.

I have purposely avoided the question of longitudinal distribution at present, as our data for determining that, or even approaching to a determination, are too scanty. There remains an immense tract of ornithologically unexplored country in Northern Russia:-first, the Kola peninsula and west of the White Sea up to the Finnish frontier in the west, a land composed of vast tundra and forest and river; secondly, between Mezen \dagger and Archangel in the west, and

[^41]the Petchora (say, between the meridians of 40° and $52^{\circ} \mathrm{E}$. long) ; and thirelly, between the Petchora and the Ural Mountains, or to $70^{\circ} \mathrm{E}$. long., in which latter is included the Bolshaya Zemlia of the Russians, or Arkya Ya of the Samoyedes. Until this vast area is partially or wholly explored by maturalists, we camot hope to arrive at very satisfactory results, or even to form a satisfactory basis to work upon; there remains too large a country unexplored, and there are in consequence too few points at which observations have been made. That it is an interesting country I believe there can be little doubt; and this is indicated by the absence of certain species at Archangel which are present at Ust Zylma and vice verst. The fauna of the Lower Petchora valley does not appear to retain such a purely western Palæarctic or European character as that of the Archangel district does. Thus Budytes citreolus, which literally swarms upon the banks of the Petchora and its islands north of the Arctic circle, is mknown at Archangel; and many other cases in point readily suggest themselves on perusal and comparison of the various papers on North-Russian ornithology. The question of interest is, Are the boundaries of the western and eastern Palæarctic subregions, as at present laid down, all-sufficient for zoological purposes? Is it possible to fix these boundaries with any thing like precision if so vast an area as that between the White Sea and the present presumed boundary remains (with the exception of one narrow strip) unexplored? I think the answer must be, "No" ".

Without, then, at this time, discussing further the question of eastern and western distribution, I return to the object of this paper, viz. the distribution of birds between Ust Zylma on the first great bend of the river Petchora, above its confluence with the sea, and the Golaierskai Islands, which form a fringing belt of sandbanks across the entrance of the Petchora Gulf, or Suchaye More (Shallow Sea) of the Russians, and which are about 300 miles to the northward of the former locality.

Before presenting a table of the species met with, I will

[^42]first shortly describe the different kinds of country at the thirteen localities through which our line takes us, and indicate the time spent by us at each.

1. Lst Zylma ($65^{\circ} 26^{\prime} \mathrm{N}$. lat.), our starting-point, is sitnated on the cast bank, on the elbow of land formed by the noble semicircular sweep of the river as it changes its course from westerly to almost due north. Behind the town, rising ground, cultivated hill-slopes, backed with pine-forest. On the west bank miles of meadows and willow-thickets, intersceted by kurias or creeks and backwaters, through which the river Zylma flows from the westward. Beyond this pine-forests again appear, and, further off still, the dim low range of the Timan Mountains. We stayed here until the ice broke up and floated away (15th April to 10th June), and then proceeded down the river, stopping here and there to collect and cook our food.
2. Habariki ($65^{\circ} 47^{\prime}$ N. lat.).--About 26 miles lower down the river, and also situated on the east or right bank *.

Round the village are a few acres of cultivated land, not large enough, however, to tempt the large flocks of Lapland buntings to alight. Round this, old forest of pine and larch with undergrowth, and large marshes and woodland lakes caused by the overflow of the river in spring, when the ice breaks up (Ibis, 1876, p. 448).

We visited this locality for two days in winter, and again for three days in June, and also stayed for twenty-four hours when on our way down the river-April 29th to 30th; June $3 r d, 4 t h, 5$ th, and 10th to 11th.
3. Yorsa River ($66^{\circ} 13^{\prime}$ N. lat.).-33 miles or so lower down the river, on the west or left bank. Here there was a continuation of the low swampy meadows, marshy hollows, and Jurias, with willow, alder, and birch. On the east bank the pine-forest, we were told, comes north as far as a place called Bougáefskaya, between Habariki and the Arctic circle. The islands below Habariki are for the most part willow-, alder-, and birch-covered, like many parts of the banks.

We stayed here June 13tli from 5 P.m. till June 14th at 2 p.m., long enough to give us some idea of the local fauna.
4. Churinski ($66^{\circ} 33^{\prime} \mathrm{N}$. lat.).-About 12 versts further down the river, situated on an island close to the east bank and almost upon the arctic circle. Here there were a few houses and a patch of cultivation, surrounded by birch-woods and willow-swamps.

We stayed here a few hours on June 14th.

[^43]5. Abramoff ($66^{\circ} 42^{\prime} \mathrm{N}$. lat.). - About 20 miles further down the river. Situated on the west bank. Here willowswamps and birch-woods lately under the overflow of the river; a little to the southward the land rises at one place, and a few stunted pines are to be seen. The village is small and unimportant.

Stayed here a few hours on June 15th.
6. Viski ($67^{\circ} 15^{\prime}$ N. lat.). -37 miles lower down the river, and situated on the west bank close to the head of the deltaa considerable village, with some extent of pasturage for cattle. Surrounded by willow-thickets and birch of small growth. Some of the peasants are very wealthy; and the houses are good. Here also there is a good shop, where many necessaries can be purchased and some few luxuries.

We stayed here and in the neighbourhood from June 16th to 17 th.
7. Gorodok, or Pustozersk ($67^{\circ} 31^{\prime}$ N. lat.).-About 27 miles lower down the river. "The town" (Gorodok) is situated on a circular bay, which is surrounded by a sandy waste and tundra covered with stunted birch and juniper, having in the hollows marshy-edged pools and willow-thickets. We did not go to the town, but encamped near the entrance of the circular bay and collected all night upon the sand-dunes and tundra.

Stayed here from evening of June 17th to June 18th at 4 A.m.
8. Kaya $\left(67^{\circ} 45^{\prime} \mathrm{N}\right.$. lat.). -25 miles further down the river, on the east bank. Here there was sandy tundra, with dense growth of dwarfed willow, and a gont deal of open pasturage for cows and a few shecp, and pools of water in the sandy ground. An island opposite was covered with willowswamp, intersected by kurias and here and there open patches of long rank herbage.

Stayed here June 18th to S A.m. on the 19th.
9. Alexievku Island (N. lat. ?).-About 16 miles from Kuya. Situated about $1 \frac{1}{2}$ verst (1 mile) or less from the east bank. Willow-swamp and a few birches. About 40 versts of this kind of grow th extend westward from Alexievka, covering the whole delta. On the east bank lies the true tundra, balmy with the seent of the aromatic dwarf rhododendron (Ledum palustre), brilliant with the flowers of the delicious "maroshka" (lubus chamemorus), luxwiant in its covering of minute arctic plants, mosses, sphagnums, and lichens, and glancing with innumerable lakes and pools of pure cold water.

Alexievka was our headquaters from June 20th to the end of our stay, August 2nd.
10. Iooskina River (N. lat. ?).-Ahout halfway between

Alexievka and Stanovaya-Lachta (no. 11), or rather nearer the latter. Situated on the east bank. Here there is undulating prairie-like tundra with lakes and luxuriant growth in the hollows, of arctic brambles, willow-scrub, dwarf birch, grasses, carices, sorrel, Veratrum album, and wild geranium (vide Ibis, 1876, p. 447).

We stayed here a few hours on June 25th.
11. Stanoraya-Lachta (N. lat. ?).- 26 miles lower down the river than Alexievka, not far from the promontory of Boluanskai Noss. This was the old lading-station of the Petchora Timber-trading Company. On the east bank. A few deserted huts, which we made habitable during our short visit. Around, level or undulating tundra, lakes, high banks to the river, and hills of some elevation on either side of the bay and further inland (vide Ibis, 1876, p. 447).

Stayed here from June 26th to evening of June 28th, and visited it also on July 6th and 30th.
12. Droinik ($68^{\circ} 28^{\prime}$ N. lat. and about $55^{\circ} 55^{\prime}$? E. long.).30 miles from Stanovaya-Lachta along the north-east coast of the fast land. On the coast of the Petchora Gulf north-east of the Boluanskai Bucht. Here, great extent of level tundra, salt-marshes and brackish inlets; drift-timber; wrecks of ships; sand-dunes and sand-hills, covered with Esparto grass; and rivers. In the distance, 25 versts off, the Pytkoff (five peaks) Mountains (v. Ibis, 1876, p. 297).

Stayed here from July 22nd to 30th in the hold of a wrecked sloop, which we made very habitable.
13. Golaievskai Banks ($68^{\circ} 58^{\prime}$ N. lat.).-About 54 miles north of Dvoinik, at the entrance of the Petchora Gulf. Here bare, almost level sandbanks, a foot or two above highwatermark, and of considerable extent. Some said to be grasscovered and of slightly higher elevation (v. Ibis, 1876, p. 295).

We stayed here, on the islands nos. 3, 4 (so marked in Admiralty chart), for a few hours on July 13th-14th.

These thirteen localities are the places at which we did most of our collecting, and where all the species mentioned in the following table were procured.

I offer this paper not only as a slight contribution towards our knowledge of zoological geography, but also with the idea that if field-naturalists would keep somewhat similar records in other localities, workers at home might be materially assisted in their labours and studies of larger areas.

I have taken the hint from Mr. Wallace's grand work 'The Geographical Distribution of Animals.' In descending from the treatment of orders and families and genera in regions, to species in limited areas or districts, I have found it necessary to employ a few additional symbols, which I trust will be found easily intelligible and sufficiently to the point.
and the Golaievskai Banks ($68^{\circ} 58^{\prime}$ N. lat.).
Tables showing Distribution of Birds in North-east Russia between Ust Zylma ($65^{\circ} 26^{\prime}$ N.)
Explanation of the Symbols used in the folloning Tables.-Absent, a blank space. Probable presence, ... Present, I. Rare, I.
Common, If. Very common, to. Exceedingly abundant, If. Once, twice, or thrice occurred, recorded, without doubt identified,
or shot,
 Buntings left list Zylma. How fir north they go camot be shown from our observations.

			笭家	
$\underset{\text { B }}{\underset{\sim}{A}}$		(contimued).		
				$\cdots \quad>\quad$－\quad－
				$\rightarrow \ \===\mathbf{M} \div==== \pm \ M$
		908	［17\％I	
		79		๕
	（ $08-8 \mathrm{~s}$（mp）	08		$\stackrel{\sim}{\square}$
	（ $86-9 \%$ aun $\mathrm{\rho}$ ）	92 91		$=\quad-$
	（＇¢\％әun¢）			$\bigcirc \quad \vdots$
				の－－－
		$¢_{¢}$		$\infty \quad \vdots \quad \vdots$－
	 	23		$\square \quad \vdots \quad \vdots$－
	－2I－91 ${ }^{\text {aun }}$	28		$\bigcirc \quad \vdots \quad-\quad \vdots$
	＇st ounf	02		$\bigcirc \quad \vdots \quad<\quad-\quad-$
	＂ti aunf	\％I	趐，\％	$\square \quad \vdots \quad \vdots-\quad \vdots$－
		$\varepsilon \varepsilon$		$\cdots-\quad \vdots \vdots 50$
		$\begin{aligned} & 9 z \\ & \hat{i} \end{aligned}$		$\cdots \quad \begin{array}{ccc} - & \vdots & - \\ \vdots & \vdots & \end{array}$
				\square
－				

[^44]
Pica rustica (L.)

 23. Perisoreus infaustus ($L_{\text {. }}$) 24. Passer domesticus (L.). 25. - - montanus (L.) Pyrrhula major, Brahm Carpodacus erythrinus (I^{\prime} all.). Corythus enucleator ($I_{\text {. }}$) . Frincrilla montifringilla ($L_{\text {s }}$). Linota linaria (L.)> —— exilipes, Cours ${ }^{1}$ Emberiza citrinella, $L_{\text {. }}$ - pusilha, Pall.

———shneliclus, L.

Plectrophanes lapponicus (L.)

- nivalis (1.)

Alauda arvensis, L.

Otocoris alpestris (L.)

Anthus Ciustavi (Sucinhoe) ${ }^{2}$
—— trivialis (L.)
43. Budytes viridis (Gimel.)

$\ddagger \quad==\div \ddagger \quad \pm \quad$－$\ddagger$
$==\quad==\ddagger \backslash-\Psi \quad \div \ddagger$
一士 $\div \div \===~+ゝ==\ddagger \ddagger \div \ddagger \ddagger$
We again met with the species a little further to the north，near Abrámoff．

 \(\pm \pm \mathbf{+} \ddagger=+\div+=\Psi=\mp\)
 A \(==-\quad==+\ddagger \quad--\)
 $-\quad===\mp \quad \geq=$

-	-		
-	\vdots	-	-

'We have every reasou to believe that this species also passed Ust Zylma, though we had no opportunity of positively identifying it until
we obtained the bird at Meekitza (vide' 'Ibis,' Oct. 1876, p. 440).
Upon an examination of the above 'Tables it will be seen that the fauna of North-east Russia, as observed by Mr. Seebohm and myself, is represented at each of the thirteen localities as nearly as possible as shown below (p. 290).
In adding up under each class I have, when the horizontal strokes are drawn towards the sides of the columns, ranked the species under " Probably present" in these columns: example-(column 1, species 61,) Cotyle riparia, though not seen at Ust Zylma, was seen not very far down the river below it. This distinction may seem umnecessarily precise; but I have thought it better to be exact in these minute points as far as possible, in a paper such as the present, because, in many cases, reason may be adduced for absence or a very local distribution. In this case of Cotyle riparia, for instance, the absence of sandbanks and suitable haunts may account for it.

XXIV.-Description of some Sponges obtained during a Cruise of the Steam-Yacht 'Argo' in the Cariblean and neighbouring Seas. By Thomas Higein, F.L.S.

[Plate XIV.]

Last winter Mr. Reginald Cholmondeley, of Condover IIall, Shropshire, chartered the 'Argo,' a new steam-yacht of over 700 tons burthen, for a voyage to the West Indies, with the primary object of increasing his already fine collection of birds; but desiring to extend the advantages of the trip to the Liverpool Museum, he courteonsly invited the Committee to name a gentleman to accompany him as his guest on behalf of that institution; and the Rev. H. II. Higgins of Rainhill, so well known as an enthusiastic and devoted worker for and supporter of the Muscum from its foundation, was selected for this complimentary and important work. The yacht left the Mersey carly in January 1876, and retumed in May following, having visited most of the West-India Islands, the coast of Central America, the southern shore of the Gulf of Mexico, Florida, and the Bahamas.

The sponges now described and figured form part of the valuable collection brought home by Mr. Higgins; and it is a matter of great satisfaction that in one of them, perhaps the most beautiful in form, an opportunity is afforded of naming. it after him generically and thus comecting his name permanently with the expedition and its results, while it may express in a slight degree our sense of the obligations under which he has placed us by so many years of patient work at the Museum, and in the interests of natural history and science generally during his long residence in the neighbourhood of Liverpool. I shall commence, then, with the species Higginsia corcelloides, which may be considered as typical of the genus Higginsia.

Higginsia coralloides, n. g. et sp. (Pl. XIV. figs. 1-5.)
General form flabellate, consisting of lobate compressed branches of irregular and luxuriant growth, mited clathrously or continuously, rising from a short dense stem; surface deeply furrowed in a vertical direction, the ridges between the furrows being narrow and in the young growths serrated with tooth-like projections, passing in the older portions into romeded or tubereled prominences, thus giving the sponge (which now in its dried state is white) its peculiarly coral-like appearance.

The structure is a spiculiferous network of lozenge-shaped
reticulation, in which the spicules are held firmly in position by tough hardened sarcode, not generally enclosed in this horny material, but cemented together by it where they touch or cross each other, the fibre being echinated by smooth spicules which project from its interior into the interstices at various angles, and the surface hirsute. Spicules of two kinds-namely, smooth acerates forming the skeleton-structure, and spined acerates, chiefly confined to the sarcode and the surface of the sponge. The skeleton-spicule is a smooth, stout, curved acerate, whose ends are slightly bent outwards, measuring 0.025 inch in length by 0.001 inch in the middle, its strongest part (fig. 2), associated with which are fine slender straight acerates in small quantity, sometimes longer than the others, measuring only $0 \cdot 0002$ inch in diameter (fig. 3). The spicules of the sarcode are likewise acerate and only slightly bent, variable in size, but averaging in their largest forms 0.008 inch in length by 0.00025 inch in diameter in the middle, found generally throughout the sponge, but especially in the furrows of the surface, where they are congregated together in masses and lie in a horizontal position.

Size of specimen 7 inches in height, with a similar breadth; length of stem from basal attachment to first lateral projection $1 \frac{1}{2}$ inch, diameter of stem 1 inch by $\frac{5}{8}$ to $\frac{3}{4}$, diameter of flabellate portion $\frac{1}{2}$ to $\frac{5}{8}$ inch.

Colour, in its present dried state, cream-white.
Loc. Carinage Harbow, Grenada, West Indies.
This beautiful sponge, which is the only example of the species in the ' Argo ' collection, was obtained by the Rev. H. H. Higgins from Mr. Thomas G. Rowley of St. George's, Grenada, and is said to have been got by diving. As regards its skeleton, it is in excellent preservation and very perfect; but it has been carefully cleaned and consequently has lost much of its sarcode, together, probably, with many of the spined acerates, which in the living state existed in large quantities in the form of a matted surface-covering, since, as before stated, masses of them still remain in the furrows.

Although this sponge is the only example of the species in the 'Argo' collection, the genus is represented by other specimens in the Liverpool Museum, and also by several sponges from South Africa in the British Museum. In all cases the skeleton-structure is made up of smooth spicules, either of the acerate form only, or of acerates and acuates in varying quantities, more or less bent rather than curved in the centre; and the fibre is always more or less echinated, the spicule of the sarcode being in every instance a spined acerate.

All the specimens so far known are, with one exception,
flabelliform ; and most are characterized by the presence of the tough horny material usual in sponges of this family. The individuals of the genus brought together from different localitics resemble each other so much that the differences between them appear only sufficient to make them varieties of one and the same species. Those in the Liverpool Musem from the west const of Africa, theretore, have had given to them a distinctive name having reference only to the locality whence they were obtained, whilst the one from the southwest of Ireland, though differing in form, has been regarded as the British representative of the genus.

Higginsia coralloides, var. liberiensis.

'Two sponges possessing spicules similar to those of H. coralloides, but differing from it in size, colour, and texture, brought by Captain Davis from Cape Palmas, where they had been obtained by dredging, were presented to the Liverpool Museum some months ago by Mr. R. J. Kecn, one of our most indefatigable collectors and contributors. They are fan-shaped, of the same growth and form as the Grenada sponge, but are of a dirty yellowish-brown colour, and the largest does not. exceed 3 inches in height. The hardened sarcode, which holds together the spicules composing the skeleton-network of these sponges, is not of the same tough nature as that gencrally found in sponges of this order; and though the stem has the usual dense appearance, there is a comparative absence of the tenacity which is ordinarily a characteristic feature in the Echinonemata. The skeleton-spicule is a smooth bent acerate, measuring (0) (120 inch in length by $10 \cdot 0) 13$; and the subskele-ton-spicule is a straight, smooth, hair-like spicule of the same form, but of greater length; while the sarcode spicule is a spined acerate, sometimes gradually curved but oftener bent elbowlike in the middle, measuring 0.00:3 inch in length by 0.00025 at its thickest part.

Higginsia coralloides, var. arcuata.

This sponge, regarded as the British representative of the West-Indian species, was obtained by the Rev. H. II. Higgins whilst on a visit to the south of Ireland about three years ago, and brought home in spirits before any others of the same genus had come into the possession of the Liverpool Muscum. It is not of erect growth, like the others, but was found growing on the rock in masses of about 2 inches in diameter by 1 to $1 \frac{1}{2}$ inch in thickness, of a fleshy nature and deep brown-red colour. The main lines of the skeleton-structure Ann. \& May. N. Hist. Ser. 4. Vol. xix.
consist of smooth, bent, acerate spicules extending vertically from the base, and connected by secondary lines at various angles, both being echinated with spicules; while the surfacecovering consists of a thick layer of dark-coloured sarcode (shrunk much by drying), which is thickly strewn with small spined acerates lying in it confusedly in a horizontal position. The smooth acerates are 0.012 inch by 0.00025 , and the spined acerates 0.0003 by 0.000143 inch respectively. Thus they are less than half the size of those of H. coralloides.

Loc. Bantry Bay, Ireland.
Colour dark brown-red.
Respecting the other known species of the genus, Mr. Carter states that " there are several specimens in the British Museum of a sponge which came from Port Elizabeth, in South Africa, that can only be considered a variety of Higginsia coralloides. They are flabelliform, compressed, clathrous, stipitate, composed of branches radiating from a hard stem, which, subdividing, anastomosing, and covered with short erect laminæ interuniting interruptedly between themselves, give to the whole a dendriform clathrous aspect. Colour reddish brown-yellow, almost white when washed out. Texture compact, hard. Spicules of two kinds, viz. echinating or flesh-spicule and skeleton or axial. The former small, acerate, and spined throughout ; spines erect. The latter, or larger, of which there are two forms, viz. smooth curved or bent in the centre, acerate and acuate respectively, mixed with long sub-skeleton-spicules of the same form but straighter."

Higginsia would form a genus of Mr. Carter's group Pluriformia, in the first family of Echinonemata, namely Ectyonida.

Donatia parasitica, n. sp. (Pl. XIV. figs. 6-8.)

When examining H. coralloides for its spicule complement, the presence of globostellate spicules with conical pointed rays, and of smaller stellates with capitate spined rays, was always observed; and so constantly were these spicules found in greater or less quantity in every part of the sponge examined, that they might have been erroneously grouped with the spicules proper to it, had not Mr. Carter strongly expressed the opinion that they were probably only accidental and would prove to belong to a sponge similar to that noticed by him in connexion with Polytrema on a crab's claw (Ann. \& Mag. Nat. Hist. 1870, vol. v. p. 392). A diligent search was thererore made, and the crevices of the nullipore were carefully examined; and at length a small laminiform sponge was found, which proved to be the species which had supplied the
stellate spicules to the erect sponge. Only one patch of this sponge, however, could be discovered, though it must have been abundant in the neighbourhood, and may have existed in quantity on the nullipore, but had been removed by cleaning; the one example of the species remaining, however, is so far uninjured and undisturbed that its original form and mode of growth can be easily observed.

It consists, in its dried state, of a thin layer of sarcode very densely charged with stellate spicules, whose rays are smooth, pointed or spino-capitate respectively (figs. 6 and 7), while the surface of the sponge bristles with the pointed shafts of erect, long, spinulate spicules arranged separately but near each other, with their large ends imbedded in the sarcode amongst the stellates. The spino-capitate rayed spicules are half the size of the smooth pointed or conically rayed ones, which measure rather more than 0.001 inch, rays included; and the spinulate spicules, which are subterminally inflated, are in their largest forms 0.02 or $5^{1} 6$ inch in length by $\frac{15}{350}$ inch in diameter.

The spiculation of this sponge denotes its relationship to the Suberitida, in which family there is less hesitation in placing it since Mr. Carter has expressed the opinion (Amn.\& Mag. Nat. Hist. 1876, vol. xviii. p. 229) that the spiculous suborder of Carnosa, viz. Gumminida, will eventually be found to pass into the suborder Suberitida. Its forms of spicules respectively indicate a close alliance to those of Tethya lyncurium (Johnston), which is also sometimes found laminiform in growth; and therefore it must be regarded as a species of the genus Donatia ($=T$. lyncurium) constituted by the late Dr. J. E. Gray (Proc. Zool. Sós. 1867, p. 541).

As regards spicules a similarity also exists between this sponge and Columnitis squamata, Schmidt (Grundzüge ciner Spongienfauna des Atlantischen Gebietes, p. 25, Taf. v. figs. 3,4), which possesses a subterminally inflated spinulate spicule basally imbedded in sarcode, charged with globostellates with conically pointed rays, and with other stellates whose rays are abruptly terminated; but it is difficult from Dr. Schmidt's description and figures to recognize any essential difference between C. squamata and the British examples of T. lyncurium, which it resembles so closely in its spiculation and in the section of the cortical layer so well seen in Dr. Schmidt's fig. 3. This sponge, therefore, seems clearly to find its proper place in the genus Donatia.

Its spicules closely resemble those of Mr. Carter's sponge on the crab's claw, the stellates beiner exactly the same both in form and size; but the pin-like spicules of Mr. Carter's sponge
have ovate not subterminally inflated heads, and they are not much more than half the size of those in the specimen found in connexion with Higginsia coralloides, as I learn from a mounted fragment of the former kindly sent to me by Mr. Carter for comparison.

When looking for this sponge, small portions of another interesting species were found on the nullipore, to which some allnsion has ahready been made by Mr. Carter in his observations on Itymeraphia microcionides (Amn. \& Mag. Nat. Hist. 1876, vol. xviii. p. 391). It has been seen only in very small quantity; but its remarkable spiculation renders a passing. notice of it desirable. It is laminiform in growth, the thin sarcolous layer being full of spined quadriradiate spicules (fig. (3) closely packed together, amongst which are based long acuates erect, making the surface hirsute; no flesh-spicules. With it was seen a fragment of a variety of Dercitus niger, which Mr. Carter has also observed as often found in company with a boring Cliona (Ann. \& Mag. Nat. Hist. 1876, vol. xriii. p. 410). His valuable guidance, too, in distinguishing epecies of obscure forms (communicated in his observations on the sponges dredged up on board II.M.S. ' Porcupine') having rendered the reading of the spiculation of genera so much more easy and plain than formerly, and also having so much facilitated the separation of different species found growing together, I have no doubt that Mr. Carter is right in regarding this sponge as a species of Hymeraphia with some characteristics of Microciona.

Halichondria birotulata, n. sp. (Pl. XIV. figs. 11-15.)

In the October issue of the 'Annals' (1876, ser. 4, vol. xviii. 13.315) Mr. Carter records some additional observations on the flesh-spicules of Italichondria alyssi, and refers to a sponge from the West Indies, of which several good examples now exist in the Liverpool Museum, about to be described under the specific name birotulata. The specimens thus alluded to form part of the 'Argo' collection.

Soon after the publication of Mr. Carter's description of H. abyssi (Amn. \& Mag. Tat. Hist. 1874, vol. xiv. p. 245) some fragmentary portions of a branched littoral sponge of a dark brown-purple colour were brought from Jamaica by Capt. J. A. Perry, apparently very nearly allied to Mr. Carter's deepsea species; and being new, efforts were made (unattended, however, with any success) to obtain whole specimens from that locality, the only example known being a very fine one in the possession of Dr. Allen of that island, from which the fragments of branches mentioned had been obtained. In the
mean time the Rev. H. H. Higgins had secured by means of a diver several examples of the species at Puerto Cabello, on the coast of Caracas, some of which he preserved in spinit, while the rest were brought home in a dried state. 'The acpuisifion of these specimens shows us the sponge growing under different outward forms, and affords the opportmity of careful examination of the species.

Its peculiar feature, as its specilic name denotes, is the birotulate tlesh-spicule hitherto only observed in Spongilla and some of the hexactinellid sponges, viz. Ilyaloneme. Although extremely minute, the form of this spieule is precisely that of the large one faniliar to us in Myalonomn, from which it only differs in size and in the number of rays forming the ambrella-like heads. In his remarks (loc. cit.) Mr. Carter observes that the minute Hesh-spicule in II. ollyssisi (considered by him to be the "embryonic form" of the large one with bent shaft) is a complete birotulate, "each dome-shaped or umbrella-like head of which is composed of twelve spines webbed together," exactly like that which is found in the West-Indian littoral sponges, in which, however, it only appears in the minute form, and in them, therefore, must be considered to be a maturely developed spicule.

In form H. birotulata is massive, lobate, with uniformly even but roughly reticulated surface, extending laterally into irregula lobes, or into long, procumbent, straggling, compressed branches, which unite where they touch and cross cach other, or into numerous pyramidic erect prominences growing close together and united at the base, crumb-of-bread-like and of dark brown-purple colour. The skeleton-structure is an areolar multispicular network, the main lines of which extend from the base towards the surtace, or in the direction of the long axis of the branch, gradually tending outwards and ending abruptly in lengths free for some distance from subsidiary fibre, and thus producing aculeate surface-pmomences. The dermal sarcode, which is strengthened with a quantity of fine acuate spicules lying is it comfuselly, hats at dull glaze when dry; it is not piereed with numerous small pores, but the openings in it are all rather large, making it difficult to distinguish the incurent from the exemrent orilices where the latter are not larger than the others. In the growing portions the demal sarembe is supperted on the projectine ends of the skeleton-fibre; but in the older parts the subdermal cavities have host their surface-onering of saremb, and the sponge thus becomes pitted or honeycomberl in appearance. 'Thin sareote densely charged with the perediar thesh-spicule tympanizes the interstices of the network, dividing the mass
into the usual cavities, which cavities communicate with each other by means of the ordinary sphinctral openings in these sarcodic expausions. The skeleton-spicules are of two forms, namely a subeylindrical one, which is curved at the distance of one third of its length, sometimes found pointed at the long end so as to form a curved acuate, and a long fine straight acuate spicule not only associated with this, but found also in considerable numbers in the dermal sareode. The subcylindrical spicule (fig. 12) measures 0.0068 inch in length by $\cdot 0003$ at its thickest part ; and the long fine acuate (fig. 13) is 0.01 inch long by 0.0002 inch in diameter. The fleshspicule is of one form only, viz. a minute birotulate, each umbrella-like extremity of which is divided into twelve rays or ribs connected with each other and with the shaft by the usual falciform expansions (figs. 14 and 15), measuring 0.00053 inch in length, the diameter of the heads being $0.0001 \dot{6}$ inch and the diameter of the shaft one tenth of that of the heads. This minute flesh-spicule is liable to be passed over and its beauty and form unobserved; for the composition of the um-brella-like head is not distinctly seen with a lower power than a $\frac{1}{2}$ th objective. Mr. Laurence Hardman of Rock Ferry, who kindly undertook to verify the counting of the number of rays or flukes, was fortunate enough to discover on the slide submitted to him a few rotulate extremities broken off from their shafts and lying flat on the cover, the form of which was beautifully seen under a $\frac{1}{2}$ th. The finding of these heads in this convenient position rendered the counting of the rays easy, and enabled a correct drawing of an end view of one of them to be made (fig. 15).

Size. The specimens from the Spanish main are of the massive and pyramidic form. In the latter the erect growth is not more than 3 inches in height, with a base of from 2 to 3 inches in diameter; while among the massive forms, which cover pieces of coral, the largest specimen has a basal attachment of 6 to 7 inches, and extends laterally in an irregular lobe 5 to 6 inches. The branched form, known to us only by the specimen in the possession of Dr. Allen of Jamaica, is stated by him to extend to the distance of 2 feet from its root or base, the diameter of the branches not exceeding 1 inch by $\frac{1}{2}$ to $\frac{3}{4}$ inch.

Loc. Puerto Cabello, Caracas, and Bay of Kingston, Jamaica.

In the 'Argo' collection there are some specimens of a branched sponge from Nassau resembling the Jamaica example in outward form, colour, skeleton, and structure, possessing a skeleton-spicule of slender cylindrical form, but lacking
altogether the flesh-spicule. In them the horny element is rather more developed than in Dr. Allen's sponge, and it yet remains to be considered how far they are related to I. birotulata; they will therefore be more particularly referred to when the rest of the collection comes to be described.

EXPLANATION OF PLATE XIV.

Fig. 1. Higginsia coralloides, half actual size, after a photograph by Mr. John Chard, Liverpool Museum.
Fig. 2. Smooth bent acerate skeleton-spicule of same, scale 0.001 to 0.0625 inch.

Fig. 3. Smooth straight acerate subskeleton-spicule of same, scale 0.001 to 0.0625 inch.
Fig. 4. Spined bent acerate surface-spicule of same, scale 0.001 to 0.0625 inch.
Fig. 5. Same spicule, scale 0.001 to $0 \cdot 125$ inch.
Fig. 6. Smooth conically spined stellate spicule of Donatia parasiticu, scale 0.0002 to 0.083 inch.
Fiy. 7. Spino-capitately rayed spicule of same, scale 0.0002 to 0.08 .3 inch.
Fig. 8. Subterminally inflated spinulate spicule of same, scale 0.0004 to 0.0416 inch.

Fig. 9. Entirely spined quadriradiate spicule of Hymeraphia unnamed, scale 0.0002 to 0.0416 inch.
Fig. 10. Bent acuate spicule of same sponge, scale 0.0004 to $0.041 \dot{6}^{\mathrm{in}} \mathrm{inch}$.
Fig. 11. Halichondria birotulata, short branch, actual size, from a drawing by my daughter, Eva Higgin.
Fig. 12. Subcylindrical skeleton-spicule of same, scale 0.0004 to 0.0625 inch.
Fig. 13. Acuate subskeleton-spicule of same, scale 0.0004 to 0.0625 inch.
Fig. 14. 12-rayed birotulate flesh-spicule of same, five rays only at each end shown, to avoid confusion of lines; scale 0.0005 to 1 inch.
Fig. 15. End view of one of the umbrella-shaped extremities of same spicule, scale one 1900 th to 1 inch.
XXV.-On the Structure of the Lower Jaw in Rhizodopsis and Rhizodus*. By R. H. Traquair, M.D., F.G.S., F.R.S.E., Keeper of the Natural-History Collections in the Museum of Science and Art, Edinburgh.
Among the detached and broken-up remains of the Coalmeasure fish known as Rhizodopsis sauroides, one of the most frequently observed is a bone of a somewhat narrow and elongated form, truncated and somewhat expanded at one extremity, which may be assumed to be the anterior, and pointed at the other or posterior. One margin, nearly straight,

[^45]save just in front, where it shows a slight convexity, is set with a single row of small pointed teeth of nearly uniform size; but the anterior extremity bears in addition a single more or less incurved laniary tooth, much larger than the others, and also more internal in its position ; the opposite margin, thin and sharp, displays a gently flexuous contour. Seen from the imner aspect, the anterior extremity of the bone presents a conspicuons thickening, in which the large laniary is socketed, and which at the dental margin passes into a delicate ledge, which runs back for some distance along the roots of the smaller teeth.

This bone, whose external form has been well described by Messrs. Hancock and Atthey*, was considered by them to be the premaxilla of Rhizodopsis, being obviously distinct from another well-known dentigerous bone, which is indisputably the maxilla, and closely resembles in form the maxilla of IIegelichthys. To all appearance it would also seem to be distinct from the mandible, the margins of which " are nearly parallel," and which displays, besides a large lamiary tooth in front, "three or four others placed along the ramus, in a line within the small teeth."

With the bones described by Messrs. Hancock and Atthey as the premaxilla, maxilla, and mandible of Rhizodopsis, every student of carboniferous ichthyology must be familiar. The interpretation of the first of these as "premaxilla" has been accepted by the Messrs. Barkast, and, so far as I am aware, has remained hitherto unquestioned. Nevertheless the accuracy of its determination as such was to me a matter of doubt from the first. It is true the bone in question does in some measure remind us of the elongated premaxilla of Tclenstei of the most specialized type, in which that element, lonsely articulated with the front of the skull, extends backwards so as to shut out the now edentulous maxilla from the edge of the mouth (Perer, Gadus, \&c.). But as Rhizodopsis is a Crossmpterygian ganoid of the type possessing two dorsal fins and subacutcly lobate pectorals, one would naturally expect that its premaxillary bones would resemble in form and relations those of its natural allies, whether rhombiferous or cycliferous, in all of which, whose cranial osteology is sufficiently known, each premaxilla is comparatively small and short, firmly fixed to the front of the cranial shield, and, in fact, very unlike the lone of Rhizodopsis which has been

[^46]so interpreted. How to fit this bone into the promaxillary region was to me somewhat puzzling ; and, accordingly, to find it in situ in the head of the fish was an object to be attained, before giving-in adherence to the views usually maintained regarding it.

A short time ago my friend Mr. Ward of Longton, to whose liberality in lending specimens from his magnificent collection I am on this, as on other occasions, so largely indebted, sent me a number of unusually good examples of the head of Rhizodopsis preserved in nodules of hard ironstone from the Coal-measures of Fenton in Staffordshire. One of these displays the entire extent of the gape on both sides of the head. Each maxilla measures here $1 \frac{1}{10}$ inch in length; the upper margin is injured; but the lower, bearing one row of small teeth, is quite intact; the anterior extremity shows the little articular process projecting upwards and forwards as in the similarly shaped maxilla of Megulichethys. Now, placed between and articulating with the anterior extremities of the right and left maxillæ, while they are joined with each other in the middle line, are two small dentigerous bones forming the front edge of the mouth below the snout. Each of these two bones is nearly as high as long, these measurements being respectively $\frac{4}{10}$ and $\frac{s}{10}$ inch; they are firmly fixed to each other and apparently also to the front of the cranial shield: the reeth, which in this specimen are seen attached to them, resemble those of the maxilla; but in another example there are traces of others somewhat larger. That we have here the true premaxille is beyond all doubt; some other signification must therefore be found for the bones hitherto considered such. 'Turning now to the mandible, both rami of which are displayed in the specimen under description, we find that over a considerable area the bony matter of the outer aspect has flaked off, leaving behind it a pretty sharp cast with sutural lines. On close examination a suture is now scen commencing near the posterior extremity of the upper margin of the jaw, and, passing gradually downwards and forwards, marks off as dentery an element precisely the counterpart in shape of the reputed pramaxilla. The pointed extremity is placed backwards, the enlarged one forwards, the toothed margin upwards. The rest of the outer surface of the mandible is composed of at least three additional bony plates, separated from each other by sutures which pass obliquely forwards and upwards. The posterior and largest of these, covering over the articular rerion of the jaw, may be perhaps equivalent to the angulur element, though it also occupies very much the place of a supratugutar; the other two, in
front of the latter and below the dentary, may be called infradentary; and there is also some evidence of a fourth, small plate on the lower margin of the jaw, separating here the angular from the first infradentary for a little distance\%.

In another specimen, compressed vertically and showing the top of the head, both maxillæ are seen, forming the upper margin of the mouth, while, forming its lower margin, both dentaries are seen on the edge of the nodule, here retaining their bony substance and external sculpture. Their contour proves beyond a doubt that the dentary element of the mandible of Rhizodopsis is undistinguishable from the bone hitherto reckoned as præmaxilla, but which I have already shown cannot possibly be so. The very same thing is most clearly shown in a shale specimen belonging to Mr. Plant of Salford, in which a vertically compressed head is seen from below; so that I have no hesitation in affirming the identity of the bones in question.

Here, however, an objection to this view may be raised. The mandible of Rhizodopsis when perfect, as in most of the specimens from Fenton now before me, shows not merely one large tonth in front, but two or three additional ones behind it and internal to the series of small teeth, though, as stated by Messrs. Hancock and Atthey, these additional larger teeth "are seldom present." What has become of these in the detached dentary, if such be the real nature of the reputed præmaxilla?

A ready explanation of this is found in the structure of the lower jaw of certain Old Red Sandstone "Dendrodonts," in which the laniary teeth are not attached to the dentary bone proper, but to a series of accessory " internal dentary" pieces articulated to its inner side \dagger. Should this be also the case with the posterior laniaries of the mandible of Rhizodopsis, then, in cases where its elements are broken up and separated, these additional pieces will also get detached, and the absence of all but the anterior laniary in the isolated dentary bone will thus be amply accounted for.

The material at hand not furnishing me with absolute proofs of this condition in Rhizodopsis, I now turned to its

[^47]gigantic ally, the Rhizodus of the Scottish Lower Carboniferons strata. I had previously observed the not uncommon occurrence of detached dentigerous bones belonging to R. Hiblerti, which had exactly the same shape as the so-called premaxille of Rhizodopsis, and, like them, frequently bear only one laniary, the large one in front. On now carefully examining the exterior of several more or less perfect mandibles, it became at once evident that the bone in question was nothing more or less than the dentary element, the rest of the outer surface of the jaw being formed by several additional bony plates quite analogous to those occurring also in Rhizodopsis. In lhizodus there are four such additional plates: of these the posterior one, covering up the articular region, is probably equivalent to the angular element, though, indeed, occupying also the position of a supraangular ; while in front of it, below the dentary, and forming the lower margin of the jaw, are three others, diminishing in size from behind forwards, and separated from each other by sutures passing obliquely forwards and upwards, and to which, as in Rhizodopsis, the name of infradentary may be applied.

Several detached specimens of the dentary bone of Rhizodus in the Edinburgh Museum exhibit its inner surface, which is also conformed just as in the corresponding element, the socalled premaxilla, of Rhizodopsis. The upper margin, comparatively thin, is set with one row of small teeth; but at the symphysial extremity the bone shows a great thickening, the anterior part of which is marked by a very rough area for articulation with the bone of the opposite side. In this thickening is implanted the anterior great laniary, behind and close to which is another socket, usually empty, sometimes occupied by a"twin" tooth ". There are also in the Museum several jaws seen from the internal aspect and in which the posterior laniaries are present; but being imbedded in hard ironstone, the surface of the bone is so injured as to render recognition of sutures a matter of difficulty: they show, however, very clearly that these posterior laniaries are implanted in a thickened ledge, somewhat nodulously enlarged round the base of each, and continuing backwards the symphysial thickening of the dentary proper-this ledge with its teeth being totally absent in the detached dentaries above alluded to. I now selected for special preparation two jaws, seen from the outer surface, and fortunately imbedded in a rather soft laminated clay. The first of

[^48]these was a portion of a comparatively small jaw, $3 \frac{1}{4}$ inches in length, and broken across $\frac{3}{4}$ inch behind the stump of the second laniary; and by softening the matrix with water, I succeeded in completely detaching it and cleaning its inner surface. The surface of the bone being here quite intact, I obtained a clear proof of the fact which 1 had anticipated, viz. that the second laniary tooth is attached to a separate piece of bone articulated by a distinct suture to the anterior thickening of the dentary, and having its outer surface in apposition with the flat inner surface of the dentary behind that thickening. The next jaw was a larger one, measuring 14 inches in length, showing three entire laniaries and the stump of a fourth, the articular extremity being, however, unfortunately broken off. Having covered up the outer surface of the specimen with a sufficient mass of Portland cement, I turned it over and worked down upon it from the other side, the preparation thus obtained entirely corroborating the conclusions previously arrived at. The large teeth are seen to be borne upon a thickened ledge, diminishing in strength from before backwards, the anterior part of which is the previously described symphysial thickening of the dentary proper, and carries the first great laniary; the suture between that and the anterior of the accessory internal dentary pieces bearing the second laniary is distinctly seen; but posteriorly the separation of the others is obscured by the obstinate adherence to the bone of a thin layer of the matrix, which cannot be thoroughly cleared off without injuring the surface. My attention was next directed to a block of the same laminated clay containing several bones of Rhizorlus. From this I succeeded first in extracting the anterior half of an isolated dentary bone, that of the right side, showing the stump of the symphysial laniary with the adjoining empty socket. Then, lying about 2 inches from it in the same block, I observed a piece of bone bearing a large tooth, which, on being in like manner extracted entire, proved to be nothing more or less than the detached accessory piece carrying the second laniary of the same jaw, and would have fitted perfectly on to the dentary found beside it, had not the latter been a little distorted by crushing. Finally, several vertical sections through another mandible led to the very same result-namely, that the laniary teeth behind the great anterior one are attached to bone which is quite distinct from that of the dentary proper; and as the piece to which the second laniary is attached has occurred quite isolated, we may very safely assume that the third and fourth had also each a piece for themselves.

Summary.

The general results of the researehes briefly detailed above may be summed up as follows.

The mandible has, as far as ascertained, essentially the same structure in lihizodopsis as in lihizodus. In both, the dentary element is narrow and pointed posteriorly, its upper margin bears one row of small teeth, while at the symphysis it is peculiarly thickened where it bears the first or anterior laniary. This bone, turned upside down, has, in lihizodopsis, been previonsly considered to be the pramaxillary; the lastnamed element of the skull of that fish has now, however, been ascertained to be a different bone, which is quite similar in form and relations to the premaxilla in other Crossopterygii.

The laniary teeth behind the anterior one are borne upon separate internal dentary ossicles, which, when the constituent elements of the lower jaw are broken up and separated, will also become disarticulated and dispersed. This is absolutely proved in Phizorlus, and may be considered morally certain in Rhizodopsis, though a clear view of the inner aspect of the complete mandible of the latter, with the posterior laniary teeth in situ, has not yet been obtained.

Below the dentary the inferior margin of the jaw is formed by a series of infiadentary plates, while posteriorly the articular region is covered by a plate corresponding in position apparently both with the angular and supraangular elements. I may add that, in one specimen of Rhizodopsis, I have seen very distinet evidence of a splenial.
'The great complexity of the structure of the mandible in these forms and in the allied "Dendrodonis" of the Old Red Sandstone need not astonish us when we take into account the remarkably segmented splenial of the recent A mia, or the similarly segmented maxilla of Lepidosteus.
XXVI.-Description of a new Form of Ophiuride from New Zealand. By Edgar A. Smith, F.Z.L.S., Zoological Department, British Museum.
[Plate XV.]
Thene are three specimens of this very remarkable form of Ophiuridx in the British Museum-one presented by Major

Greenwood in 1850, and the two others by Captain Stokes, R.N., in 1855.

In general aspect it reminds one at once of the genus Ophiocoma, possessing a granular disk similar to that which obtains in that genus; and the characters of the arm-plates and of the true arm-spines are also congeneric; but the difference of the oral slits (rimæ) and the presence of two or more short flattened spines or scales which overlap one upon another and upon the uppermost true arm-spine, thus keeping them almost in a horizontal position, are characters which may be considered of sufficient importance to separate generically this curious species. The mouth-organs, namely the teeth proper, tooth-papillæ, and the jaws or framework which supports them, are exactly similar to those of the genus Ophiothrix; also the oral fissures are precisely like those of that genus-that is, are more in the form of wide holes than narrow slits as in Ophiocoma; and the first ambulacral tentacles are just within the rimæ and without scales. The side mouth-shields are likewise of the same character as in Ophiothrix, and are situated along the lower margins of the oral shields, as is almost invariably the case in that genus. However, the granular disk not showing radial shields, and the presence of mouth-papillæ, are differences which easily dissociate the present genus from it.

Ophiopteris *, gen. nov.

Disk covered with a granulous skin as in Ophiocoma; teeth, tooth-papillæ, oral and adoral shields, and the mouthfissures as in Ophiothrix; oral papillæ present; brachial shields and true spines similar to Ophiocoma; the arms provided with 2-3 compressed imbricating scales or compressed spines above the uppermost spines; two genital slits; ambulacral scales present.

Ophiopteris antipodum, sp. nov.

Disk roundly subpentagonal, somewhat lobed between the rays, closely and coarsely granulated on the dorsal surface, and beneath on the interbrachial spaces covered with crowded short spines; rays $4 \frac{1}{2}-5$ times as long as the diameter of the disk; oral shields small, somewhat heart-shaped, with a slight point both on the inner and aboral sides; madreporic shield distinct, larger than the others, and lobed a little on each side; side

[^49]mouth-shields irregular, narrow, lying along the lower margins of the orals, and not quite meeting within; mouthpapilla about six to each mouth-angle, three on each side, small, not at all conspicuous; tooth-papille very numerous, arranged in six vertical rows above, gradually diminishing until there are but two series where they meet the teeth; they extend far within the mouth, so that the teeth are not visible ; the papille of the outer rows are a trifle longer than the intermediate ones, and increase in size as they approach the teeth, and those at the upper end of the tooth-column are very small and irregularly clustering. Teeth 5, subequal, roundly truncated at the ends and thicker in the middle than at their lateral edges.

Lower arm-plates at the border of the disk about twice as broad as long, gradually becoming proportionally longer as the end of the arm is approached; their form is irregularly heptagonal, the two sides towards the mouth sloping to a slight point; on the aboral side they are faintly excavated in the middle, and arcuately sloping on each side of this slight sinus towards the lateral margins, which are also concave; upper arm-plates remarkably flat, twice as broad as long, and gradually, like the lower ones, becoming proportionally longer torards the end of the ray; in form they are transversely oblong, sharply pointed on each side, the points fitting in between the very narrow lateral plates; the latter just meet below between the lower arm-plates, but not quite above; arm-spines in four series (near the disk sometimes five), the lowest the shortest, the uppermost but one the longest, and the other two about equal in length, but the uppermost one the stoutest; all the spines are rather flattened, not acutely pointed, and much compressed at the tips and truncated. Above the base of each spine of the uppermost series are two (here and there three) short, broad, compressed spines or scales one upon another, the one nearest the lateral spine the largest and about a fourth its length ; one tentacle-scale, small, roundish ; genital slits two in each interbrachial space, extending from the margin of the disks to the oral shields.

The colour above is uniformly dull brown, and beneath the rays and ray-spines rather paler. The interbrachial spaces below are dark like the dorsal surface.

Diameter of the disk about 26 millims. ; width of upper arm-plates 3 , of lower ones $2 \frac{1}{2}$; length of longest spine $5 \frac{1}{2}$.

Remarks. The form of the mouth-shields is subject to considerable variation. In the largest specimen they are almost as long as broad, whilst in a smaller one they are much broader than long.

The chewing-apparatus might be said to consist of a great number of teeth of various sizes. The lowest ones, five in number, one above another, are very much larger than the rest; above these are tro, side by side, about half the size of the preceding, which are the commencement of the two series which bound the cluster of minute teeth (tooth-papillæ) on either side; !and they gradually diminish in size upward. The teeth or papille between these serics are very small and arranged above in four vertical rows, then lower down in three and two series, and gradually diminish downwards within the mouth to a single papilla. The mouth-papilla are very small indeed, short, cylindrical, and vary from three to five on each side of each of the five mouth-angles or toothcolumns. They are hardly distinguishable from the toothpapillæ, as they are situated close together near the apex of the column.

Explanation of plate xv.

Fiy. 1. Upper surface, of natural size.
Fig. 2. Lower surface.
Fig. 3. Part of underside of an arm, enlarged.
Fig. 4. Part of upperside.
Fig. 5. A Madreporic shield: b, c, two forms of oral shields.
XXVII.-The Vates Ashmolianus of Westwood, the Type of a new Genus of Mantidæ. By Prof. J. Wood-Mason.

Ethalochroa, gen. nov.
§ . . . Sexes alike. Body greatly elongated, linear. Head small, rather higher than broad; vertex of considerable an-tero-posterior extent, its lateral lobes produced into a conoidal boss behind each eye, the central division of its median lobe with a low transversely convex elevation (answering to the well-developed process seen in Blepharis and Phyllocrania) ending abruptly over the ocelli; eyes much as in Blepharis mendica, but not quite so forwardly projecting; ocelli slightly oval, conspicuous, prominent, mounted on short pillars, in the male distinctly differentiated into pupil and iris; facial shield broader than high, pentagonal, inclining to be trefoil-shaped, its upper margin slightly produced to a projecting point in the middle, with a faint ridge on each side near and parallel to the lateral margins; "chaperon" strongly transversely carinate. Antennæ short and setaceous. Prothorax greatly elon-
gated, strongly carinate or roof-shaped above, the two sides of the disk heing almost phane and very sterp, cosered athowe and below and on the edges with minute sharp gramules, slighty and gradually widening from the supracosal dilatation, not only to its base but also to its apex, which is broadly rounded off"; supracoxal dilatation large, romeded-angulate. Organs of flight well and equally developed in both sexes, but when closed hardly extending beyond the apex of the fourth segment of the abdomen; their marginal arete subcoriaccous, opaque; their posterior arese membranous and hyaline; tegmina with the basal third of the marginal area rather suddenly dilated and covered with dense, sharply defined, and prominent polygonal reticulation; the discoidal nervure of the wings simple. Legs short and stout: the anterior ones a little weaker than the rest; the coxa triquetrous, with the posterior angle rounded off, and the anterior developed into a slight foliaceons lobe at the apex, as in Demuria; femur curved, its upper margin being concave, convex both on the inner and on the outer face, but especially on the latter, its lower margin spined along the apical three fourths (five spines set wide apart on the outer edge and on the imner), and angulated at about the junction of the basal and middle third of its length, the joint gradually increasing in depth, both from the apex and from the base, up to this point; tibia slender, slightly curved, faintly crested towards the apex along its upper margin, armed with eight or nine spines on the inner edge, the basal half of which is unarmed, and with five on the outer, the apical fifth only of which is armed; terminal claw acuminate, rather abruptly hooked: four posterior legs strongly cristate and fumished with foliaceous lobes; femora prismatic, the angles of the the prisms crested, three of the crests (the two lower ones and one of the upper ones) developed into a foliaceous lobe close to the apex, the lateral knee-lobes short and stout, but sharply pointed; tibix triquetrous, the angles strongly crested, especially the upper one, which is developed into a foliaceous lobe along its basal half; femora equal in length to the tibie in all four posterior legs. Abdomen linear; the ventral segments all with a short sharp carina, ending in a sharp point at the middle of their hinder margins, and with their surface symmetrically wrinkled, the terminal one extending by about a third of its length beyond the supraanal plate ; dorsal segments with a raised median line, which is produced to a point at the hinder end of each, and increases in strength to the extremity of the abdomen; supraanal plate short, twice as broad as long, rounded at the extremity. Cerci broadly foliaceous, truncate at the apex.

Amm. \& Mag. N. Hist. Scr. 4. Vol. xix.

Ethalochroa Ashmoliana, Westwood.
Jutes Ashmoliamus, Westwood, Amn.\& Mag. Nat. Hist. vol. viii. p. 272 ; Arcana Entomol. 1843, vol. ii. p. 52 (note \dagger).
"Fuscus, capitis vertice rotundato, antennis gracillimis, prothorace longissimo (long. une. $1 \frac{2}{3}$) angusto, lateribus serrulatis; tegminibus et alis abdomen haud tegentibus, illis pallidis griseo et fusco parum rariis nubecula fusea basin versus, venisque nigro strigatis; alis hyalinis, costa maculisque nubeculaque basin versus brunneis ; cercis analibus latis foliaceis : pedibus 4 posticis brevibus, femoribus fere ad apicem 3 -foliatis tibiisque ante medium supra parum foliatis. Long. corporis unc. $4 \frac{1}{3}$. Habitat in India orientali."
The following are the measurements of a dried specimen of the male and of a female preserved in alcohol :-

Total length, of 100 , of 115 millims. ; length of prothorax $\delta^{7} 33$, , 40 -of which the neck is respectively, $\delta 7 \cdot 6$ and \circ 9.5 ; width of prothorax at supracoxal dilatation, $\mathrm{o}^{2} 4.5$, ㅇ $5 \cdot 6$ —at hinder extremity, $0^{\pi} 3 \cdot 6$, $+4 \cdot 5$; length of abdomen, $\delta 46$, \& 52 ; width of abdomen at middle, $\delta 355$, if 5 ; length of tegmina, of 45, of 55 ; width of tegmina across middle, ${ }^{\circ} 9$, ㅇ 11 ; length of wings, of 42 , 오 52 ; of fore coxa, $\delta 15$, ㅇ 16.5 ; of femur, o $16.5, \& 19.75$; of tibia (from base to insertion of tarsus), oै 12 , it 15 ; of immediate femur, ठ 12.5 , 우 15.5 ; of tibia, ठ 12.5 , i 15.5 ; of posterior femur, ठ 15 , ㅇ 19 ; of tibia, ơ 15 , ㅇ 19 ; of antennæ, đ 23 , ㅇ 18 ; of cerci, $\delta^{2} 7 \cdot 5$, if $8 \cdot 5$; width of cerci, of 2 , if $2 \cdot 6$.
$H a b$. I am indebted for the female of this fine and remarkable insect to my friend Dr. T. R. Lewis, who captured it in the garden attached to the General Ilospital in Calcutta; for the male to Mr. C. V. Marshall, by whom it was taken at Berhampur, near Murshidabád, in Lower Bengal.
XXVIII.-Hermaphroditism in the Parasitic Isopoda. Further Remarks on Mir. Bullar's Papers on the above subject. By II. N. Moseley, Fellow of Exeter College, Oxford.
Mr. Bullar does not appear to strengthen his position materially in his reply to my remarks on his paper on the "Generative Organs of the Parasitic Isopoda" (Journ. of Anat. and Physiol., Oct. 1876, p. 118), in the March number of this Journal.

There seems to be no proof that the small masses of tissue figured by Mr. Bullar as testes are in reality organs of such
nature ; and it is on this point that the whole question of hermaphroditism or unisexuality must be decided. The testes of Asellus aquaticus, on the external resemblance of which to the supposed testes of his parasitic forms Mr. Bullar relies, have an unusually marked and characteristic histological structure. They contain very large mother cells, in which the long tilaments of the developing spermatozo are coiled in bundles. Although Mr. Bullar has examined his Isopods in all stages, and in the fresh as well as prepared conditions, he gives no evidence as to any such structure in the supposed testes of these animals: he merely says that the organs "are filled with a cellular blastema, from which doubtless the spermatozoa are developed."

It seems to me that the absence of positive evidence that the spermatozoa are thus developed constitutes a serious flaw in the chain of evidence by which Mr. Bullar seeks to establish his conclusion. Testis-tissue is not by any means a difficult object for histological observation ; and since it is evident, from the detailed description which Mr. Bullar gives of the minute structure of the ovaries in his Isoporls, that he has carefully studied the histology of their generative organs, he could hardly have overlooked definite testis-structure had such existed in the objects which he terms testes.

I cannot but consider that it will be more prudent to await further evidence before accepting as demonstrated the fact that the members of the subfamily of the Cymothoine alone amongst Isopods are hermaphrodite-although, were this conclusion confirmed, it would be of great interest, and might be considered as paralleled by such instances as the hermaphroditism of the Serranidæ amongst fishes.

XXIX.-Descriptions of three Momopterous Insects in the Collection of the British Museum. By Artiur Gardiner Butler, F.L.S.

Platypleura, Amyot \& Serville.
Platypleura nicobarica, n. sp.
Allied to P. fulcigera from the Philippines, but larger, with the tegmina longer, the whole of the spots crossing the coriaceous area testaccous, those crossing its apex smaller ; the blackish transverse spots considerably smaller ; wings longer, the subapical transverse fulvous fasciole replaced by three or

312 Dr. A. Giinther on a Barbel from British Cafiraria.
finur decreasing longitudinal fulvons streaks; pronotum considerably broader, its lateral angles more oblique, and therefine more prominent. Length of body 10 lines, expanse of tegmina 3 inches 1 line.

Nicobars (3 examples). Type, B.M.
We have three examples of P.fulvigera; so that İ am satisfied of the constancy of the characters by which the two species are separated.

Cosmoscarta, Stāl.
Cosmoscarta Buxtoni, n. sp.
Gencral form of C. xanthortina; above purplish black; head somewhat prominent, centrally grooved in front; ocelli small, placed in deep excavations on either side of a central carina, which runs to the back of the thorax, the latter granulose, barely wider than the closed tegmina, with a distinct marginal ridge, a feeble oblique depressed line on each side, near the posterior border; tegmina with the basal two fifths almost covered by a broad oblique ochreous band, which crosses the corium; a narrow, nearly perpendicular, transverse vermilion band just beyond the end of the corium ; body below blackish piceous; legs chocolate-brown. Length 9 lines, expanse of tegmina 18 lines.

Sumatra.
Type, B.M.
This and the succeeding species were obtained by Mr. E. C. Buxton in his recent trip to Sumatra.

Cosmoscarta sumatrensis, n. sp.

Allied to C. octopunctata, but at once distinguished by the much greater width of the thorax and scutellum, more prominent head, duller coloration, the black ventral surface of the abdomen, as of the whole body below; above testaceous; thorax shining, very convex in the centre, subdiaphanous and depressed at the sides; tegmina crossed by black spots, as in strongly marked examples of C.octrpunctata; legs testaceous. Length 10 lines, expanse of tegmina 20 lines.

Sumatra.
Type, B.M.

> XXX.-Notice of a Barbel from the Buffalo River, British Caffruria. By Dr. A. Günther, F.R.S.

Mr. II. Thevelyax has recently sent to the British Museum several pecimens of a small species of barbel from the Buf-
falo River which appears to be undeseribed. Although the length of the largest specimen does not exceed 4 inches, dissection shows that individuals of that size are fully alult.

Barbus Trevelyani.

D. 10. A. 8. L. lat. 34. L. transv. 6/31 $\frac{1}{2}$.

Barbels two only, of small size. The osseous dorsal ray is very slender, stiff, with very minute, almost imperceptible posterior serrature. Three longitudinal series of scales between the lateral line and ventral fin. Body oblong, its depth being two sevenths or one fourth of the total length (without caudal), the length of the head one fourth. The depth of the head is less than its length without snout. The diameter of the cye is one fourth of the length of the head, and rather less than that of the snout, or than the width of the interorbital space (which is somewhat convex). Sinout rather obtuse ; mouth inferior, small. Dorsal fin of less height than the body, commencing a little behind the origin of the ventral, its first ray being equidistant between the end of the snout and the root of the caudal, Anal small; caudal rather deeply forked. The pectoral does not extend to the ventral. A narrow dark band runs along the middle of the side, and terminates in a round blackish spot at the root of the caudal.
XXXI.-Descriptions of some new species of Reptiles from Madagascar. By Dr. Albert Gëxtuer, F.R.s., Keeper of the Zoological Department, British Museum.
[Plate AYI.]
The novelties described in this paper were contained in some small collections recently received by the British Musemm from Madagascar. As regards the localitics, M. Grandidier has lindly informed me that Anzahanaru is the name of a small village, most probably close to Mahanoro, and that it is a name very common throughout Madagascar, meaning a locality where there are many comatry-houses. Mahanoro is a short distance south of 'Tamatave.

> Acontias holomelas. (Pl. XVI. fig. A.)

Middle of the body surrounded by 31 scries of scales; 140 scales in the series ruming from the chin to the vent. Length
of the rostral shield half that of the snout, the part below the nasal slit being shorter than that above it. The first three upper labials nearly as high as long, the third being below the cye. Tertical longer than broad. Four preanal scutes, the two middle ones being the largest. Entirely black.

The length of the body of our largest specimen, without the tail, which is more or less injured, is nearly 6 inches.

From Anzalamaru.

Gongylus melanurus.

Rostral shield with an upper undulated margin; supranasals in contact with each other; frontal broad, single, with a straight posterior margin; vertical large, bell-shaped, narrower in front than behind, with an excision in the middle of its hind margin, the small central occipital fitting into the excision; one pair of occipitals.

Nostrils situated entirely within the rostral shield; postnasal smaller than loreal. Six upper labials, the fourth being the largest and situated below the eye.

Front lower labial narrow, followed by a single mental, which is broader than long. . Six lower labials.

Eyelid scaly. Ear-opening small, round.
Body surrounded by 26 longitudinal series of scales. There are 82 transverse series of scales between the mental and the vent, which high number sufficiently indicates the slenderness of the body.

Four preanal scales, the two central ones being the largest.
Fore limbs extremely small, with a longitudinal groove on the side of the body, into which they can be received when the animal is lurrowing undergrond. When laid forwards they scarcely reach the ear-opening. Toes very short, third and fourth equal in length. The hind limb and toes very short, the second and fitth toes equal in length, the fourth one fourth longer than the third.

Upper parts brown, sometimes black, sometimes brown mottled with darker. Abdomen whitish. Tail generally entirely blackish.

Distance of the snout from the cye $3 \frac{1}{2}$
ear-opening 8
fore limb 17
vent 60
Length of tail (restored) . 70

", hind limb 12
", fourth hind toe $3 \frac{1}{2}$

Three specimens from Anzahamaru; one specimen from Mahanoro.

Gongylus melanopleura.

Rostral shield low, narrow, with an upper straight margin ; supranasals in contact with each other; frontal nearly as long as broad, subtriangular, with an undulated posterior margin ; vertical large, bell-shaped, much narrower in front than behind, with an excision in the middle of its hind margin, the central occipital fitting into the excision. One pair of occipitals.

Nostrils situated entirely within the rostral shield; postnasal smaller than loreal. Six upper labials, the fourth being the longest and situated below the eye.

Front lower labial small and narrow, followed by a single mental of a pentagonal shape. Six lower labials.

Eyelid with a transparent disk. Ear-opening small, round.
Body surrounded by 25 longitudinal series of scales; there are 54 transverse series of scales between the mental and the vent. Four preanal scales, the two central ones being the largest.

Fore limbs extremely small, with a postaxillary groove not well developed. When laid forward they do not reach the ear-opening. Toes very short, third and fourth equal in length. The hind limb short with very short toes, the second and fifth being equal in length, and the fourth one fourth longer than the third.

Upper parts brown, sprinkled with black. Sides towards the back black, this colour forming a band ill-defined below and margined with white above.

Lower part of sides dotted with black. Abdomen whitish.
millim.

Distance of the snout from the eye 3

One specimen from Anzahamaru.

Chamelcon gallus. (Pl. XVI. fig. B.)

Allied to Chameleon nasutus. Snout with a long, pointed, flexible appendage (in the male), which is covered with large
soft tubercles. Head compressed, without median crest. No spines whaterer along the median line of the back; no crest along the belly. Body uniformly gramular, without larger scales. Itead and oeciput covered with smooth, small, polygonal shields. Toes very short, with very small claws.

Coloration without particular markings.
Of this small species we possess only one example, 93 millims. long, the nasal appendage being 7 , and the tail 45 millims.

Mahanoro.

Rana inguinalis.

Head rather longer than broad, with the snout pointed, and with the loreal region high and subvertical. Canthus rostralis angular; nostril immediately below it, nearer to the end of the snout than to the eye. Tympanum two thirds the size of the cye. Yomerine teeth inconspicuons, between the choanæ, which are rather small, round. Skin nearly smooth, without folds. Limbs and toes slender. ' First and fourth toes longer than the second; third longest. Toes broadly webbed, the web reaching the penultimate phalanx of the fourth toe; the third and fifth toes equal in length. Metatarsus with one smal tubercle. Upper parts brownish grey, with small subsymmetrical brown spots; a subtriangular brown spot between the eyes. A blackish band below the canthus rostralis and the supratympanic fold. A decp-black spot in the inguinal region. Limbs with brownish cross bars. Lower parts whitish. millim.
Length of body 34
,, fore limb............................ . . 23
", first finger $5 \frac{1}{2}$
" second finger $4^{\frac{1}{3}}$
", third finger . 7
", fourth finger 5
", hind limb 64
" motarus
" metatarsus 91 $_{\frac{1}{3}}$
", fourth toe 17
", fifth toe 13
One specimen from Anzahamart.

> Callula notosticta. (Pl. XVI. fig. C.)

Snout short, rather pointed, with distinct canthus rostralis. Limbs of moderate length. Disks well developed, especially on the three outer fingers and fourth toe. Inner finger shortest; third toe longer than fifth. Metatarsus without
tubercle; toes not webbed. A fold of the skin runs from the superciliary margin along the middle of the side towards the inguinal region, separating the pink coloration of the back from the dull yellowish of the lower parts. Upper parts subsymmetrically marbled with light brown ; two or three pairs: of whitish dots edged with black on the back, the most constant being that corresponding to the extremities of the sacral apophyses. The front pair are minute, between the eyes; others, very minute, are scattered in the coceygeal region. Sides of the head blackish. Young specimens nearly uniform pink above.

> millim.
Length of body 35
" fore limb 22
", first finger $2 \frac{1}{2}$
", second finger 3
:, third finger 5
", fourth finger $3 \frac{1}{3}$
", hind limb 48
,, metatarsus
" third toe, measured from metatarsus 10
,, fourth toe, ditto $1+$
", fitth toe, ditto 9
'Two specimens from Anzahamaru; one from Mahanoro.
M. Grandidier has most kindly allowed me to examine the specimens of (allula (and other reptiles) recently named by him ; he himself has expressed his doubts as to the propriety of referring these frogs to the Indian genus Callula, in which I fully agree with him. They are undoubtedly adult specimens of his highly interesting genus Iyscophus (a Discoglossoid). Singularly enough the discovery of Callula notusticta reestablishes the fact that Callula, or at least a form most closely allied to it, really occurs in Madagascar.

XXXII--New and peculiar Mollusea of the Eulimider and other Families of Giestropoda, as well as of the Pteropoda, procured in the 'Valorous' Expedition. By J. Gwrs Jeffreys, LL.D., F.R.S.

Eulimidæ.

Eulima stenostoma, Jeffr.
Eulima stenostoma, Jeffr. in Amn. \& Mag. Nat. Hist. 3rd ser. ii. p. 128, pl. v. f. 7.
Station 6, 410 fims. Whetand, 75-90 fims. (J. G. J.). Nor-
way, 50-400 fims. (Lovén and others). 'Porcupine' Expedition, 1869, 64-11t fims.: 1870, English Channel, 358690 fms. ; Mediterrancan, 1456 fms. Egean, 310 fims. (Spratt)! Palermo, 210 metres = nearly 114 fms. (Monterosato). Gulf of St. Lawrence, 166 fms. (Whiteaves) !

Naticiàæ.

Natica affinis, Gmelin.
Nerita affinis, Gm. Linn. Syst. Nat. ed. 13, p. 3675.
Body yellowish-white, with fine streaks of purple at the upper sides of the foot: mantle thick, folded over the umbilicus or basal cavity of the shell: tentacles conical and pointed, turned back on the front edges of the shell at its mouth: eyes, none observable : foot large, roundish-oval.

Variety occlusa.
Natica occlusa, S. V. Wood, Mon. Crag Moll. "(1848) p. 146, tab. xii. f. $4 a, b$; Suppl. (1872) p. 76 , t. iv. f. 11.

Body pale yellowish, with a puplish tinge or slight streaks of the latter colour on the back of the foot: head large, hoodshaped, indented in the middle: mantle thick, spread over the back of the shell: tentecles conical and finely pointed, wide apart, and separated by a rather thin veil: eyes, none perceptible: foot enormous and very voluminous, broad and cloven in front, expanding greatly on each side, and rounded behind.

Variety vittata.

Body milk-white: head forming a broad and bilobed snout: tentreles conical, pressed by the head-flaps against the front of the shell, and for the most part concealed ; tips pointed: eyes not to be detected: foot large, thick and broad, folded inwards at the sides, rounded in front, and bluntly pointed behind. Sluggish. Floats with its foot uppermost.

Godhavn, $\overline{5}-20 \mathrm{fms}$; Station 4, 20 fms . (var. vittata: globosa, spira extensa, vittis duabus purpureis distantibus ultimum, una cum penultimo, anfractum cingentibus) ; 5, 57 fms . (var. occlusa) ; Holsteinborg, 12 fms. (var. vittata) and 35 fms ; Station 7, 1100 fms . (fragment) ; 13, 690 fms . (operculum). Arctic seas, in both hemispheres, and Norway, 20-450 fms. 'Porcupine' Expedition, 1869, 74-345 fms. (var. lactea: minor, ovata, alba, spira extensa): 1870, coast of Portugal, $994 \mathrm{fms}$. ; Mediterranean, Adventure Bank, 92 fms. (young). One of the most common and characteristic fossils of the newer Tertiary and Quaternary formations in the north of

Europe and America, and indicative of glacial conditions; it has a vertical range of 1840 feet.

This species varies considerably in the comparative height of the spire and in the angularity or compression of the whorls below the suture. The varicty occluse attains a large size, one of my specimens measuring $1 \frac{3}{10}$ inch in length, and $1_{T 0} \frac{1}{0}$ in breadth ; another specimen, from Spitzbergen, is nearly as large. N. russa of Gould is apparently a variety also of N. affinis. The synonyms are :-N. clausa, Broderip and Sowerby; N. consolichata, Couthouy ; N. septentrionalis (Beck), Möller ; and N.janthostoma, Deshayes. I have taken the descriptions of the animals from my note-book; they somewhat differ.

A very young shell of another species of Natica occurred in Station 9,1750 fins. It resembles the fry of N. graenlandica, but has one whorl less, the last is more expanded, and the apex is flattened. Should an adult specimen be found, it might be named spharoides.

Solariidæ.

Seguenzia formosa", Jeffr.
Seguenzia furmosa, Proc. Roy. Soc. vol. xxv. no. 173, pp. 200, 201 (woodeuts).
Shell globosely conical, rather thin, semitransparent, nacreous and glossy : sculpture, sharp kcel-like spiral ribs or ridges, of which there are two on the middle of the body-whorl (besides ten thread-like riblets on the base) and one on the middle of each of the other whorls; there is also a slighter rib immediately below the suture; between the ribs the surface is covered with numerous and delicate curved strix, which turn alternately in different directions, so as to give a flexuous character to this part of the sculpture; the strix between the infrasutural and peripheral rib turn to the left, while those between the peripheral and the next rib (or in the upper whorls between the rib in the middle and the base) turn to the right ; the same alternate order is to a great extent observable as to the direction of the stria on the base of the last whorl; these striæ are crossed by fine close-set spiral lines, producing a reticulated appearance; all the whorls are similarly sculptured except the top whorl or apex, which is smooth: colour pearly-white: suture marked by the uppermost rib: spire turreted: whorls 7, somewhat convex, gradually enlarging; the last takes up three fifths of the shell ; apex globular:

[^50]mouth large, indented by the spiral ribs: outer lip thin, prominent, and deeply sealloped: inner lip thick, folded back on the piliar, which is short and incurved; at the bottom of the pillar is a small but sharp tooth-like projection, below which is a short and abrupt notch, like that of Cerithium: the groove or slit on the upper part of the last whorl, and opening from the mouth (which characterizes the genus), is wide and deep, terminating in a curved indentation: base somewhat concave, but imperforate or without any umbilicus: operculum none. L. $0 \cdot 2$. B. $0 \cdot 15$.

Station 12, 1450 fims. ; 16, 1785 fims. (fragment). 'Porcupine' Expedition, 1870, off the coasts of Portugal, 718795 fms. 'Challenger' Expedition, Station 56, S.W. of Bermudas, 1075 fms.! Gulf of Mexico, 325 fms. (Pourtales)! Fossil in the Plincene formation at Trapani in Sicily as S. monocingulata (Seguenza, MS.).

The peculiar and exquisite sculpture is not unlike that of Adeorbis subcarinatus. My only specimen which contained the animal was in vain sacrificed at the altar of science in the hope of detecting an operculum.

Seguenzia carinata", Jeffr.

Seguenzia carinata, Proc. Roy. Soc. vol. sxv. no. 173, p. 201.
Shell forming a depressed cone, thin, transparent, glossy, but not nacreous: sculpture, a sharp keel round the periphery, a thread-like spiral rib below the suture of each whorl (varying in position), numerons but slight flexuous stria below the rib, and in some specimens minute close-set curved longitudinal strix on the upper whorls; the base is smooth, or marked only with microscopic lines of growth: colour glassy: suture rather deep: spire short: whorls 7, compressed, slightly shouldered by the infrasutural rib; the last whorl is disproportionally large, and the first is globular: mouth narrow, rhomboidal, angulated in the middle by the keel, and below by the base of the pillar: outer lip thin: inner lip filmy, spread on the base: pillar very short and incurved; it is furnished near the bottom with a small tooth-like process, below which is a short notch: groove broad, apparently not deep; it occupies the middle of the borly-whorl between the suture and the peripheral keel: umbiticus narrow but deep, cxposing all the whorls, encircled and defined by a slight rib. L. $0 \cdot 125$. B. 0.175 .

Station 13, 690 fins. 'Porcupine' Expedition, 1870, Bay

[^51]of Biscat, 718-109.5 fims. 'Challenger' Experlition, west of F'ayal, Azores, 1000 fims.

Velutinidæ.

Pilitium rudiatum, Sars.

Capulus radiatus, Sars, Beretning om en i Sommeren 1849 forctagen zoolorisk Reise i Lofoten or kimmarken, p. (64 (18.50).
Body milk-white: mantle very thick, covering one third of the mouth of the shell : tentacles club-shaped, slender, compressed or Hattened, contractile, closely striated across at the tips, and thickly covered with short cilia: eyes placed on small hulbs near the outer base of the tentackes: fime oblong, propntionally small, rounded and double-edged in front, and bluntly pinted behim. Verysluggish, and exules a large quantity of stringy slime. Adhering to a dead shell.
 (a youngshell). Spitzbergen ('Torell)! Fimmark (M. Sars)! Sea of Okhotsk (Middeudorff)! Japan (A. Adams). Aleutian or Fox Islands, N. Pacific (Dall)! Fossil: Uddevalla and Kurïd, Sweden (Hisinger, J. (x. J.) ; Moray Firth (Robert Dawson)! Montreal (Principal Dawson).

Synonyms: Pilidium commotum, Middendorff, 1851 ; Piliscus commodus and Piliscus mobus, Lovén, 1859 ; Capulus dilatatus and C. depressus, A. Adams, 1860 and 1864.

Through the kindness of Professor (\%. O. Sars and of Dr. L. von schrenck I have dately been able to compare with my specimens from Davis Strait the typical specimens of Capulus radiutus and Pilidium commodum from the Christiania and St. Petersburg Muscums. All of them exactly agree with each other, as well as with my fossil specimens of Piliscus molus (Lovén) from Uddevalla. Sars's Norwegian shell and mine from 57 fathoms in Davis Strait are marked with coloured streaks, which radiate from the apex or crown, while the others are not streaked or coloured.

The generic name Pilidium was published by Middendorff in his 'Malacozoologia Rossica,' 1849. Professor Forbes gave the same name for Tectura fulva in the Report of the British Association for 1849, pulbished in 1850; and Pilidum was described in 185:3 ly forbes and llanley as their generic name for the last-mentioned shell. The late' Professor' 'ars sulstituted, in 1s5s, the enderic name ('opullemene fion his Capulus radiutus. Professor Lavén, in 185!, propused Piliscus. Possibly Corpules fiellax of Mr. S. V. Winul (a Crag fossil) may be another species of Pilidium.

Cancellariidæ.

Cancellaria viridula, Fabricius.

Tritonum viridulum, Fabr. Fu. Gr. p. 402.
BoDr milk-white: head furnished with a long and prominent veil: tentacles contractile, thread-shaped, rather long and slender, smooth, with blunt tips, diverging at an angle of 45° : eyes placed on the top of short stalks, at the outer base of the tentacles, with which the eye-stalks are united: foot large, triangular, and long, squarish and double-edged in front, and bluntly pointed behind; edges uneven: pallial fold (lining the basal groove of the shell) very short and thick. No operculum. Active; crawls out of the water. It emits a greenish liquid on being touched with a camel's-hair brush-a habit that reminds one of Planorbis comeus, which gives out a purple liquid when irritated.

Holsteinborg, 30 fms.; Station 13, 690 fms. (fragment). Spitzbergen, 5-15 fms. (Kröyer, Torell, Eaton). White Sea (Middendorft'). Iceland, 80 fims. (Mörch). Norway, 20300 fms. (Sars and others) ! 'Lightning' Expedition, 500$550 \mathrm{fms}$. 'Porcupine' Expedition, 1869, north of the Hebrides, $114-345$ fims. : 1870, Channel slope, $305-567 \mathrm{fms}$. Labrador, $40-50 \mathrm{fms}$. (Packard). Gulf of St. Lawrence, 3040 fms. (Whiteaves)! N.E. coasts of the United States, 20-150 fms. Behring Strait (Wosnessenski). N. Japan, 48 fms . (St. Johm)! Fossil: Red and Coralline Crag, and Bridlington ; Christiania (Crosskey and Robertson) !; Labrador (Packard).

I cannot perceive any difference between Cancellaria and Döller's genus Admete, except in the former having stronger folds or plaits on the pillar; these were not noticed by Fabricius in his description of the present species. The apex in C. cancellata, however, is peculiarly sculptured, and somewhat resembles that of Columbella halixeeti.

Synonyms : Murex costellifer, J. Sowerby ; Admete crispa, Möller; Cancellaria buccinoides, Couthouy; C. Couthouyi, Jay, Gould.

Cerithiidæ.

Cerithium procerum", Jeffr.
Shell pyramidal, solid, opaque, and glossy ; base slightly concave: sculpture, curved longitudinal ribs, of which there are about 30 on the last and 20 on the next whorl ; the three

[^52]uppermost whorls are nearly smooth; the base is irregularly marked with flexuons strite, these being an extension of the ribs; the periphery of the last whorl is encireled by a spiral ridere, which is continued on all the other whorls, and defines the suture; under a mieroscope may be detected also trates of numerous slight spiral lines between the ribs: colner pate yellowish-white: spire tapering; apex twisted obliguely, and extended: whorls 13-14, somewhat convex; the last ocenpies about a third of the shell: suture distinct, but not deep: mouth narrow and rhombic, with a wide groove at the bottom, where it forms an imperfect camal, which bends abmutly to the left: outer lip incurved and thin: inner lip tilmy : pillar short and flexuns, with a shamp edge. L. $0 \cdot t$. B. $0 \cdot 1$.

Station 12, 1450 fims.; a dead specimen. 'Lishtning' Expedition, between the north of Scotland and the Faroes; a fresh and living specimen, but the operculun is not visible.

Buccinidæ.

Buccinum gronlandicum, Chemnitz.

Buccimum grenlandicum, Chemn. Conch. Cab. x. (1788) pp. 177, 182, tab. 152. f. 1448.
Body lemon-colour, more or less closely speckled and mottled with purplish-brown: head short ; intertentacular veil indented in the middle: tentucles sharply pointed : eyes black, seated on offsets or short tubereles, one at the outer base of each tentacle: foot extensile, squarish in front, and bluntly angular behind: siphonal tube long, cylindrical, and narrow : opercular lobe round, with projecting edges. Active.

Godhavn, 5-20 fims. ; Station 4, 20 fins. ; 5, 57 fms. ; Holsteinborg, 12 fms . Davis Strait (Fabricius and others). Melville Bay, 140 fms.; and Port Kennedy, 15 fms. (Walker). Port Foulke, in Smith Channel or Sound (Hayes, fide Stimpson). Gulf of St. Lawrence, $5-250 \mathrm{fms}$. (Principal Dawson, Whiteaves)! Coasts of N.E. America (Gould and others)! Newfoundland (P. P. Carpenter)! N. Pacific (Middendorff' and others). Spitzbergen ('Torell)! Iceland (Mörch). Norway (G. O. Sars and other:)! Russian Lapland (Middendorff). Fossil in our Red Crag and newer Tertiarics $=B$. tenerum, J. Sowerby.

Extremely variable in shape, size, texture, sculpture, and colour. I regard the following as smonyms, or as representing some of the varicties:- B. undutum of Fabricius (not of Linné), B. undulatum of Möller, B. ryuncum of Beek, B. Donovani of Gould (not of (xray, which is P. gleciale of Linné), B. tenelrosum and B. sericutum of A. Haucock; apparently
17. finsiforme of Kiener, from a specimen in the Massena Collection. Another variety of the present species in Möller's collection at Copenhagen is named "Tritmimm Homphereysianum." It is also probably the B. boreale of Gray (in the 'Konlogy of Capt. Beechey's Voyage'), which he refers to a species said to be so named by Leach in the Appendix to Sir John Rus's first voyage; but I can find mo such name in that Appendix. B. greenlendicem of Hancock is a variety of B. glaciale.

The spawn-capsules are smaller than those of B. undatum, and are sometimes attached to the stalks of seaweeds and to the shells of Balani.
B. undutum is apparently rare in the aretic seas, although it is occasionally found with B. groenlandicum.

Buccinum ciliatum, Fabricius.

Tritonium ciliatum, Fabr. Fn. Gr. p. 401.
Godhavn, 5 -20 fins.; Holsteinborg, $10-35$ fms. Greenland (Fabricius and others). Murray Bay, Gulf of St. Lawrence, 112 fms. (Principal Dawson, Whiteaves)! Spitzbergen ('Torell)! White Sea and the coasts of Russian Lapland (Ton Bacr, Middendorff); it is the latter's variety boreale of B. tenebrosum of Hancock.

It is the B. Mölleri of Reeve, whose B. ciliatum is B. groenlandicum. The B. ciliatum of Gould is apparently a variety of the last-named species.

Buccinum tenue, Gray.

Buccinum tenue, Gray in Zoology of Beechey's Voyage, p. 128, t. 36. f. 19.

Bony white with a yellowish tinge, and irregularly speckled with purplish-brown : head broad; intertentacular veil straight or having an even edge: tentacles conical, bluntly pointed: eyes round, black, placed on small oblong bulbs at the outer base of the tentacles : foot large and thick, rounded and doubleedged in front, acute-angled behind: siphon or pallial tube cylindrical, rather strong and stout, slit along its whole length : penis folded and compressed, speckled above like the rest of the body. Rather sluggish, but not shy.

Godhavm, $5-80 \mathrm{fms} . ;$ Waigat Strait, $15-25 \mathrm{fms}$. ; Station 1, 175 fms. ; 3, 100 fms.; 5, 57 fms. ; Holsteinborg, $10-35 \mathrm{fms}$. Greenland (Mibller and others). Gulf of St. Lawrence, 5060 fms . (Whiteaves). Newfoundland (Totten, fide Stimpson)! Spitzbergen (Torell, Eaton)!
B.scalariforme (Beck), Mïller; B. tortuosum, Reeve ; perhaps
also 13. boreale of Broderip and Sowerby, from Kamtschatka. My largest specimen is more than 2! inches long.

Muricidæ.

Trophon clathratus, Linné.
Murex clathratus, Linn. Syst. Nat. ed. 12, p. 1223.
Body pale yellowish-white: tentacles slender, but rathes short : eyes small, placed at the top of stalks which are nearly as long as the tentacles and are united with them: foot large, squarish and double-edged in front, with angular corners, rounded or bluntly pointed behind: siphon consisting of a short and tubular fold. Shy.

Godhavn, 5-20 fms. ; Waigat Strait, 15-25 fms. ; Station 4, 20 fms ; $5,57 \mathrm{fms} . ;$ Holsteinbors, $12-35$ fms. 'Porcupine' Expedition, 1869, off the IIebrides, 165-580 fms. North Polar seas, Spitzbergen, Iceland, Norway, White Sea, N.E. and N.IV. coasts of America, at depths of from 20 to 120 fims. North Japan, 3-48 fms. (v. Schrenck, St. John).

Var. treencata. Godhavn, shore; St. 4, 20 fms. ; 5, 57 fins.; Holsteinborg, 12-35 fms. 'Lightning' Expedition, 189 and 530 fms. 'Porcupine' Expedition, 1869, 85 fms. British and Scandinavian coasts, and Iceland. Buccinum (truncatum), Ström.

The typical species and variety are common fossils in our newer Crag and in all the post-Tertiary beds of northern Europe: the former is especially characteristic of glacial conditions; and the latter has been noticed by Seguenza as occurring in the older Pliocene at Messina. T. clethratus was first noticed and figured by Linné in his 'Wiistgota-Reise' (1747), from Uddevalla.

I an now convinced that Lovén was right in uniting T. clathratus and T. truncatus, although the latter is a very distinct variety. The difference consists in the comparative number of ribs, thickness, convexity of the whorls, and the size. My largest specimen of the typical form measures an inch and a quarter in length.

The synonyms are inconveniently numerous, viz. Murex bamffius, Donovan; M. peruvianus, J. Sowerby ; M. multicostatus, Escholt\%; Fusus lamellosus, Gray; I. scularifurmis, Gould; Tritomiom G'meneri (at varicty), Loven; and Murer lamellatus, Philipin. Mörch cites also Tritomium Rossii, Leach; but I cannot verify the reference.

Trophon Fabricii, Beck.

Trophon Fabricii (Beck), Müller, Ind. Moll. Groenl. p. 14.
Godhavn, 80 fms.; Station 1, 175 fims. ; 5, 57 fins. ; 12, Ann. \& Mag. N. Hist. Ser. 4. Vol. xix. 23

1450 fms. (a fragment) ; Holsteinborg, 35 fms. Greenland (Fabricius and others). Wellington Channel (Belcher)! Gulf of St. Lawrence (Whiteaves). Spitzbergen (Torell)! Iceland (Mörch). Norway (Koren, Friele). Fossil: Wexford (Sir Henry James) ; Lancashire "drift" (Darbishire) ; possibly also from the "Middle Glacial" formation, as T. mediglacialis of S. V. Wood.

It is the Tritonium craticulatum of Fabricius, but not Marex craticulatus of Linné, which is another species of Trophom. Our T' barvicensis is allied to the present species, as well as to T. muricatus.

Fusus attenuatus*, Jeffr.

Fusus attenuatus, Proc. Roy. Soc. vol. xviii. no. 121 (1870), p. 434.
Shell spindle-shaped, solid, opaque, rather glossy; the periphery is bluntly angulated in a half-grown specimen : sculpture consisting of numerous spiral impressed lines, and of minute close-set and slight lines of growth : colour ivory-white : epidermis thin and smooth, pale yellowish-white: spire long and slender, tapering to a very blunt and regularly spiral point, which is not mamillar or twisted: whorls 8-9, compressed, especially below the suture ; the last occupies about two thirds of the shell, when viewed with the mouth upwards; the topmost whorls are nearly equal in breadth : suture distinct, but not channelled nor deep; it is defined by a thickened edge : mouth oblong, acute-angled above; its length, including that of the canal, is about two fifths of the shell: canal open, rather long and straight: outer lip thin, smooth inside: inner lip filmy: pillar flexuous: operculum ear-shaped, yellowishbrown, curved on the outer side, and incurved towards the base on the inner side; it is marked with a few slight impressed lines, which radiate upwards from the terminal nucleus. L. 225 . B. 0.85 .

Station 13, 690 fms. (a dead specimen). 'Porcupine' Expedition, 1869, off the west of Treland, 1180-1215 fms. (young specimens and a fragment) ; Bay of Biscay, 1207 fms . (one living and one dead specimen).

My description is chiefly taken from the living 'Porcupine ' specimen.

Differs from F. propinquus and its variety turrita in being. much larger, having a slighter sculpture, a smoother and thinner epidermis, a more tapering spire, compressed whorls, a straighter and more open canal, and a more cylindrical and blunt apex.

[^53]
Fusus berniciensis, King.

Fhase berniciensis, King in Ann. \& Mag. Nat. Hist. xviii. p. 246 (1846).

Var. elegans, Station 13, 690 fms. This varicty was dredged in the 'Porcupine' Expedition, 1869, off the north of Scotland, in $155-632$ fms., and previously by me in Shetland, in 78-100 fims. Another extreme variety (which has a shorter spire and swollen whorls, and is a thin and delicate shell) was dredged in the same expedition, in $20: 3-290 \mathrm{fms}$; and it was procured in the late Norwegian Expedition. The latter variety may be called influta. The typical form was dredged in the 'Porcupine' Expertition of 1869 and 1870, Bay of Biscay, at depths of from 90 to 690 fms. 'Lightning' Expedition, 159 and 500 fms . Yorkshire, Northumberland, Aberdeenshire, Shetland, Norway, and Areachon, 50-140 fms.

It is the Tritomium islandicum of Loven, not Fusus islandicus of Chemnitz.

Fusus Sabini, Gray.

Buccinum Sabinï, Gray in Suppl. to App. of Parrys first Voyage p. cxl (1824).

BoDY milk-white: tentacles awl-shaped and slender: eyes placed on bulbs at the outer base of the tentacles: foot broad and thick, semicircular and double-edged in front, with short angular corners, rounded behind. Active, and crawls out of the water.

Station 6, 410 fms ; a young living specimen (this was erroneously named F. fenestratus in my Report to the Royal Society, Proc. vol. xxv. no 173 , pp. 183 and 189) : also St. 1, 175 fims. (fragments) ; 12, 1450 fms. (fragments). Davis Strait (Hancock and others). Melville Bay, 100 fms. (Walker). Gulf of St. Lawrence (Whiteaves) ! Baffin Bay and Behring Strait (Gray)! North Pacific (Wosnessenski). Spitzbergen (Torell)! Iceland (Mörch, as F. tortuosus). White Sea and coasts of Russian Lapland (Baer, Middendorff). Vadsï, Finmark (G. O. Sars, Verkriizen). Fossil: Bridlington (Leckenby)!

Synonyms: F. tortunsus and F. spitzhergensis, Recve; F. ebur, F. togatus, and F. Pfutfic, Morch. The epidermis is usually smooth; but in one of my Spitzbergen specimens it is fincly and closely ciliated. The same differener is observable in the epidermis of $F \cdot$ propinquus, $F \cdot p y y_{m o u s, ~ a n d ~ B u c c i m m ~}^{\text {and }}$ greenlandicum. The comparative length and curvature of the canal are variable characters.

Pleurotomidæ.

Pleurotoma pyramidalis, Ström.

Buccinum pyramidale, Ström, in Nov. Act. Dan. iii. p. 296, f. 22.
Bony pale yellowish-white, with a faint tinge of purple in front: tentacles rather short but slender, contractile: eyes small, placed on angular projections on the tips of stalks, which are thicker than the tentacles and are united with them for about three fourths of their length: foot long, double-edged and squarish in front, with angular corners; bluntly pointed, and occasionally cloven, behind: siphon short. Active.

Godhavn, 5-20 fms. ; Waigat Strait, 15-25 fms.; Station 4, 20 fms.; 5, 57 fms.; Holsteinborg, 10-12 fms.; St. 7, 1100 fins. (fragment). 'Lightning' Expedition, north of the Hebrides, 189 fms . West Greenland (Möller). East Greenland, 4-30 fms. (Möbius). Spitzbergen, Iceland, Faroe Isles, Novaya Zemlya, and Norway. Labrador to Cape Cod, 4-107 fms. Fossil: Norwich Crag (S. P. Woodward), and all our post-Tertiary deposits, as well as those of Scandinavia and Canada.

The longitudinal ribs on the shell are sometimes more or less wanting; and the colour varies from chocolate to milkwhite. Spawn-capsules hemispherical and membranous.

Fusus rufus of Gould, not Murex rufus (Pleurotoma) of Montagu; F. pleurotomarius of Couthouy; and Defrancia Vahlii of Beck, according to Möller.

Pleurotoma bicarinata, Couthouy.

Pleurotoma bicarinata, Couth. in Boston Journ. Nat. Hist. vol. ii. p. 104, pl. i. f. 11 (18:39).
Body white, with a faint tinge of yellow: head small: mouth bulbous, cloven lengthwise : tentacles rather short but slender, club-shaped at their tips or points : eyes small, black, placed on thick stalks, which are united with the tentacles for three fourths of their length at their outer base: foot thick and broad, double-edged and gently curved in front, with slight angular corners; bluntly pointed, squarish, or else more or less indented behind : siphon cylindrical, of moderate length, slit throughout, with a wide and folded-back opening. Active and not shy.

Godharn, 5-25 fms. ; Waigat Strait, 15-25 fms. ; Station 4, 20 fins.; 5,57 fms. (var. pallida) ; Holsteinborg, 10-12 fms. Greenland (Möller and others)! Wellington Chamel (Belcher) ! Gulf of St. Lawrence (Whiteaves). North-Atlantic
coasts of United States, from low-water mark to 50 fms. (Mighels and others)! Spitzbergen ('Forell)! Iceland (Mörch, Verkrizen)! Norway, $\bar{j}-250$ fims. (($\mathbf{i} .0$. Sars and others)! 'Lightning' Expedition, 170 fms. 'Porcupine' Expedition, 1869, off the west of Ireland, 420 fms. ; north of the Hebrides, 203-345 fims.

There are at least four varieties, viz. ciolacea of Mighels and Adams (not of LIinds), and cylindracea, Beckii, and livida of Möller (ex typ.), all published in 1842. P. Beckii of Reeve, in Cuming's collection, is a very different and tropical species. Specimens from 57 fathoms are of a pale colour, and those from deeper water are white. Allied to the varicty livida is P. gigas of Beek, which is Bela lereigate of Dall, and probably P. schantaricum of Middendorff. Reeve renamed the present species P. greenlandica and P. rugulatus: he supposed that it was the Defrancia suturalis and D. rugulata of Möller; but the latter gave no such names to any of his species. Apparently not P. bicarinata of $\mathrm{S} . \mathrm{V}$. Wood.

Pleurotoma rubescens, Jeffr.

Holsteinborg, 10 fms . (a single but living specimen).
Described in Proc. Roy. Soc. vol. xxv. p. 183.
Pleurotoma decussata, Couthouy.
Pleurotoma decussata, Couth. in Boston Journ. Nat. Hist. ii. p. 183, pl. iv. f. 8 (1839).
Godhavn, 5 -20 fims. ; Waigat Strait, 15-25 fims. ; Station 3, 100 fins. ; 5, 57 fms. Greenland (Möller, Mürch)! N.E. America, from the Gulf of St. Lawrence to Cape Cod, 1064 fins. 'Porcupine' Expedition, between the north of Scotland and the Faroes, 560 fims.

I have now been able to ascertain that this species is the same as Defrancia viritule of Möller (1842); and I was therefore wrong in supposing that the latter was not American (see Proc. Roy. Soc. vol. xxv. p. 189). It is the P. scalaris and P. leucostoma of Reeve, who imagined that Vahl had described them under the names of Defrancie scalaris and D. reticulater ; hut Vahl did nothing of the kind. I would not have noticed Reeve's numerons mistakes if Mörch had not recognized his so-called species.

Pleurotoma tenuicostata, M. Sars.

Pleurotoma tenuicostatu, sars in Vid. Selsk. Forhandinger for 1868, p. 259.

Station 12, 1450 fims. 'Lightning' Expedition, 500 and

550 fims. 'Porcupine' Expedition, 1869, of the west of Ireland, 420 and $66 \pm$ fms. ; south of the Faroes, 125 fms.: 18.0, Bay of Biscay, 305-717 fms. Upper Norway, 40300 fms. (G. O. Sars, Friele)!

This pretty little species will soon be described and figured (tab. 17. f. 1) by Professor G. O. Sars. Both he and his late father most obligingly sent me specimens for comparison with mine. A variety occurs in which the longitudinal ribs are replaced by spiral ridges, as in the type of P. bicarinata.

Not Raphitoma tenuicosta of Seguenza.

Pleurotoma Pingelii, Beck.

Defrancia Pingelii, Beck, Möll. Ind. Moll. Greenl. p. 13 (1842).
Bodr pale yellowish-white, with the front of a purplish hue: tentacles thread-shaped, rather short: eyes on the bulbous tips of thick stalks, which are united with the tentacles on the outside: foot long, squarish and double-edged in front, with angular comers; deeply and evenly cloven or forked behind: siphon lining the canal, short and broad.

Godhavn, $5-20 \mathrm{fms}$; Waigat Strait, 15-25 fms. ; Station 5, $57 \mathrm{fms}$. ; Holsteinborg, $10-30 \mathrm{fms}$. Greenland (Möller and others)! N.E. America, from the Gulf of St. Lawrence (Whiteaves) to Cape Cod (Mighels and others), 4-430 fms. Spitzbergen (Torell)! Iceland (Mörch)! Upper Norway (M'Andrew, Sars)!

Fusus cancellatus of Mighels and Adams, 1842.

Pleurotoma cinerea, Möller.

Defrancia cinerea, Möll. Ind. Moll. Groenl. p. 13.
Station 5, 57 fms. Greenland (Möller)! Spitzbergen (Torell)! Iceland (Mörch). 'Porcupine' Expedition, 1869, between the north of Scotland and the Faroe Isles, 290 fms .

My largest specimen is $\frac{?}{10}$ of an inch long.

Pleurotoma declivis, Lovén.

Tritomium declive, Lovén, Ind. Moll. Scand. p. 13.
Station 5, 57 fms . Norway, 30-60 fins. (Lovén and others)! 'Lightning' Expedition, 189 fms. 'Porcupine' Expedition, 1869, between Norway and the Faroes, 64$560 \mathrm{fms}$. : 1870 , Channel slope, 567 fms . (fragment).

My largest specimen is $\frac{6}{10}$ of an inch long.
Var. angustior. Narrower and smaller. 'Porcupine' Experdition, 1869, 345) fms. West Finmark (G. O. Sars)!

Pleurotoma elegans, Möller.

Defrancia cleyans, Müll. Ind. Moll. Granl. p. 13.
Bovy milk-white. Animal sluggish or shy.
Godhavn, 5-20 fins. ; Station 万, 57 fins.; Holsteinborg, 10 fims. (ireenland (Moller and others)! Gulf of St. Lawrence (Whiteaves)! Iceland (Torell)! Fossil at Bridlington (Leckenby), as P. elegantior of S. V. Wood!

My largest specimen is 镱 of an inch long.
Through the kinduess of Dr. Mörch and Professor Lovén I have had the advantage of examining and comparing the types of P. cinerea, P. declivis, and P. clegons; and I regret that I camot adopt the view which Professor G. O. Sars is inclined to favour, that all these may be one species. I have not yet seen any comecting link between them; and they all occurred to me in the same haul of the dredge at Station No. 5, in the 'Valorous' Expedition, off Holstemborg. Of course, opinions of naturalists must differ as to the lines of demarcation which separate one species from another in any genus, and likewise as regards allied genera. Pleurotome has been divided by some modern conchologists and palwontologists into a great many genera, although, in my opinion, on insufficient grounds There ought to be at least one distinctive and fixed character, and no transitional or intermediate forms. P cinerea attains the greatest size ; the whorls are more convex, the last is larger in proportion to the rest, and they are not angulated below the suture, as in the other two species; the lonsitudinal ribs are more numerous than in P. declicis; there are at least twice as many spiral stria, and the sculpture is never cancellated, as in P. dectivis. The smallest species is P^{\prime}. elegons; the whorls are abruptly angulated at the tip; the ribs are more numerous, oblique, and prominent than in P cinerea, and the strie are fine and close-set.

Pleurotoma turvicula, Montagu.

Murex turricula, Mont. Test. Brit. (1), p. 26:', t. 9. f. 1 (1803).
Gorlhavn, 5 -20 fins. ; Waigat Strait, 15-2.5 fims. ; Station 1, 175 fms. ; 3, 100 fims. ; 5,57 fims. ; llolstemborg, $10-30$ fims. Melville Bay to Cape Cod, and Spitzhergen to Arcachon. North Japan (St. Jolin)! Depths 10-1.0) fims. Fessil in our Red and Norwich Crag, and in all the post-T'ertiary beds of Great Britain, Scandinavia, and Canada.

The seulpture is extremely variable. Having before me a great umber of specimens: from varions parts of the North Atlantic, and after a careful wamination and comparison of
the types of several so-called species, both recent and fossil, I am convinced that the following must be considered synonyms of the present species-Defrancia nobilis, scalaris, and Woodiona of Möller, Tritonium roserm of M. Sars, Bela americana of Packard, and P. Doussonii and robusta of S. V. Wood. P. harpularia of Couthony may be distinct; but it is questionable. Donovan published his specific name angulatus in the same year as Montagu; and that name might be adopted if Brocchi's name turricula, given in 1814 to a fossil and subApennine species of Pleurotoma, be not changed. But it seems a pity to disturb the name by which the present species is so well known. Bela constitutes only a section or division of Pleurotoma; and consequently that will not help us.

Pleurotoma exarata, Möller.
Defrancia exarata, Möller, Ind. Moll. Groenl. p. 12.
Godhavn, 5-20 fms. ; Waigat Strait, 15-25 fms. ; Station 1, 175 fims. ; 5, 57 fms.; Holsteinborg, $10-30 \mathrm{fms}$. 'Porcupine ' Expedition, 1869, off the west of Ireland, 164-1230 fms. Greenland (Müller and others)! Iceland (Mörch). Norway (Loven and others)! Eastern coasts of North America (Couthouy, Whiteares, and others)! Fossil : Red Crag (A. Bell). Labrador (Packard).

Closely allied to some of the varieties of P. turricula; but the canal is shorter and the base broader.

Reeve called this species P. Mölleri; and he stated that it was the Defrancia lactea of Möller, a name which is not to be found in the work of the last-named author.

Pleurotoma Trevelyana, Turton.

Pleurotoma Trevellianum, Turton in Mar. Nat. Hist. nii. p. 351 (1834). See 'British Conchology,' iv. p. 398, as to the emendation of the specific name.
Var. Sinithii. Shell smaller; ribs more prominent, but not extending below the upper half of the body-whorl, and sometimes altogether wanting; infrasutural keel stronger; spiral strix slighter, and consisting of impressed lines; there is no reticulation.

Station 4, 20 fms ; 5, 57 fms. ; Holsteinborg, $10-12 \mathrm{fms}$. Massachusetts Bay (Stimpson)! Gulf of St. Lawrence (Whiteaves)! Newfoundland (Verkrüzen)!

The typical form inhabits the North Atlantic, from Spitzbergen to Yorkshire, and from Port Kennedy to the Gulf of St. Lawrence, at depths of 6-189 fathoms. Dr. Philip Carpenter has recorded it from the west coast of North America. It is rine of the usual glacial fossils of Great Britain, Scandinavia,
and Canada. Captain Feilden found it in the recent Aretic Expedition, in a raised sea-bed in Kane Valley, in $52^{\circ}: 33^{\prime}$ north latitude. I'. Trevelyana has a narrower base, and is therefore more fusiform than $P^{?}$. exarata; and the spire is shorter than that of P. turricula, which gives the present species a more oval shape. It is the P. reticulata of Brown (1827), and P '. decussatum of Macgillivary: Brown's name has priority of all the others, but may be regarded as obsolete.

Bullidæ.

Cylichna alba, Brown.

Volvaria alba, Brown, 1ll. Conch. G. B. \& I. pl. xxxviii. f. 43, 44 (1827).

Station 1, 175 fms. ; 4, 20 fms.; 6, 410 fms. (living) ; Holsteinborg, 12 fms. 'Lightning' Expedition, 189 and 530 fms . Swedish Aretic Expedition, 1868, 1400 fms.! 'Porcupine ' Expedition, 1869, west coast of Ireland, 420-1366 fms. (living at the last-mentioned depth): 1870, Bay of Biscay, $795-994 \mathrm{fms}$. 'Challenger' Expedition, off the Azores, 450 and 1000 fms. Norwegian Arctic Expedition, 1876, 1180 fins. ! From Cape York to Cape Cod, and from Spitzbergen and Novaya Zemlya to Shetland, at depths of from 7 to 300 fathoms. West coast of North America (P. Carpenter). North Japan, 35-48 fms. (St. John)! Fossil in the Norwich Crag, the older Pliocene of Sicily, and the newer Tertiaries of Great Britain, Scandinavia, and N.E. America; Aretic Expedition, 1875-6, Kane Valley, $82^{\circ} 33^{\prime}$ north latitude (Feilden) !

I mention this common arctic species to show the range of hydrographical distribution and depth. In some specimens the crown is more or less truncated; and in others the minute and close-set spiral strix are absent.

It is the Bulla triticea of Couthouy, B. corticata of Möller, and C. nucleola of Reeve.

Utriculus obtusus, Montagu.

Bulla obtusa, Mont. Test. Brit. (1), p. 223, t. 7. f. 3 (1803).
Var. turrita. Bulla turrita, Möll. Ind. Moll. Grænl. p. 6.
Bowy milk-white, semitransparent, covered with microscopic tubercles: head snout-shaped, prominent, • being of the same breadth as the foot in front, so as to appear united with it: tentacles triangular and broad, separated by the head-flap: eyes, none perceptible: foot large, wedge-shaped in front and cloven behind.

Godhavn, $\overline{-2}-20$ fms. ; Station 5, 57 fms. ; Holsteinborg, 10 fms .

The distribution of this species and its varieties is very extensive, from Spitzbergen to the Adriatic, and all along the eastern coasts of North America from Wellington Chamel to Cape Cod. Its habitat ranges from low-water mark to 114 fathoms, and it especially frequents brackish water. Fossil in the Norwich Crag, and in the newer Tertiaries of Scandinavia, Great Britain, and Germany.

The shell varies remarkably in length and constriction, as well as in the extension or prominence of the spire ; but specimens from various localities are found to pass onc into another. The arctic, North-American, and Norwegian form (Bulla pertenuis of Mighels) is smaller, shorter, broader, and more cylindrical than our estuarine and typical form. The Bulla turvita of Möller closely resembles and corresponds with the variety of the present species which I described and figured as Lajonkaireana. Writers on British shells formerly gave several other names, which may now be considered obsolete. Brusina described a small varicty, having a depressed spire, from Dalmatia, as Cylichna leptoneilema.

A small fragment of another species occurred at Station 12, 1450 fathoms. It consists of the anterior portion of a short cylindrical shell, which is of a milk-white colour, glossy, and marked with slight and rather distant spiral strix or rather impressed lines; the sculpture does not extend to the crown ; the apex is semiglobose, and sunk within a sharp obliquely encircling ridge. The species may be called lacteus. I also dredged a young specimen of this species in the 'Porcupine' Expedition of 1869, off the west coast of Ireland, at a depth of 1443 fathoms.

Utriculus substriatus *, Jeffr.

Shell represented by a single specimen, which was unfortunately broken in sifting the dredged material. It resembles Bulla hyemalis, Couthouy, $=$ Amphisphyra globosa, Lovén,$=$ Utriculopsis vitrea, M. Sars, except in being smaller, shorter, and equally broad throughout, instead of barrel-shaped; the crown is consequently longer in proportion, and not so much raised at the point; but the especial difference consists in this being beautifully sculptured, and not smooth like the other species; besides a few coarse spiral ridges the whole surface is closely and microscopically striated in the same direction.
L. 0.1 . B. 0.075 .

Station 9, 1750 fms .

* Somewhat striated.

Utriculus hyalinus, 'Turton.
Bulla hyalina, Turton, in Mag. Nat. Hist. vii. p. 353 (1834).
Station 5, 57 fims. 'Porcupine' Expedition, 1569, west of Ireland, 183 fins. From Spitzbergen (Torell) to the Egyptian coast of the Mediterranean (Schneider) ; Madeira and the Canaries (M^{6} Andrew) ; Davis Strait to Cape Cod. Depths $10-150$ fms. One of the glacial fossils of Scotland and Scandinavia.
U. mimutus and V_{0} candidus of Brown, and possibly also his U. pellucilus (1827) ; but although these names are prior to that given by Turton, not one of them has been adopted by subsequent authors. In the second edition of Brown's work, published in 1844, he describes " U. hyalina" of Turton as a different species. It is the Bulla debilis of Gould (1840), and B. subangulata of Möller (1842).

Acteon exilis, Jeffr.

Actaon exilis, Jeffr. in Aun. \& Mag. Nat. Hist. ser. 4, vol. vi. p. 85 (1870).

Station 12, 1450 fms. (fragments). 'Porcupine' Expedition, 1869, west of Ireland, 1215 fms.; 1870, Channel slope and Bay of Biscay, 227-994 fms.; Mediterrancan, 92-1456 fms. Egean, 210 fms. (Spratt)! Off Malta, 300 fms. (Nares)! Palermo, about 100 fins. (Monterosato). Fossil in the older Pliocene of Sicily (Seguenza).

One of the 'Valorous' fragmentary specimens indicates a much larger size than usual. The operculum in 'Porcupine' specimens agrees with my description of that of A. tornatilis in the 4th volume of 'British Conchology,' pp. 432-3.

Scaphander puncto-striatus, Mighels and Adams.
Bulla puncto-striata, M. \& A. in Proc. Bost. Soc. Nat. Hist. i. p. 49 (Nov. 1841).
Body yellowish, with an edging of reddish-brown round the hood in front and about the mouth. In all other respects like S. lignarius.

Station 12, 1450 fms. (fragments) ; 13, 690 fims. (living). 'Lightning' Expedition, 189 fms. 'Porcupine' Expedition, 1869, west of Ireland, $42(1-1380$ fms. : 1870, Channel Slope, 539-690 fms.; Bay of Biscay, $740-1095$ fms. 'Challenger' Expedition, off the Azores, 1000 fins. Iceland (Torell). Norway (Loven and others)! Shetland (J. (i. J.). Northcastern coasts of United States (Mirhels and others). Pa-
lermo (Monterosato). Depths 20-300 fims. Fossil in the older Pliocene of Sicily (Seguenza).

Specimens vary somewhat in shape, some being more oval than others; the punctures differ in size, and the rows in comparative distance. The North-American and 'Challenger' specimens represent a smaller, stouter, and shorter form ; and off the coast of Portugal both forms with intermediate gradations were obtained in the 'Porcupine' dredgings.

This species is the S. librarius of Lovén, 1846.

NUDIBRANCHIATA.

I obtained very few of this order; and those are widely distributed in northern seas. I subjoin short descriptions of the following three species from my note-book.

Eolididæ.

Eolis salmonacea, Couthouy.
Eolis salmonacea, Couth. in Bost. Journ. Nat. Hist. ii. p. 68, pl. i. f. 2 (1839).

Body oblong, yellowish-white: head prominent and broad, rounded in front, with small side-lappets or processes: mouth vertical, continually opening and shutting: tentacles 4 ; upper pair longer than the lower ones, serrated or notched at their edges, and retractile; lower pair contractile, widely separated from the upper pair: eyes very small, sunken and subcutaneous, placed in front of the upper pair of tentacles: mantle protecting the whole body, and covered with numerous and close-set club-shaped papille or tubercles, which are arranged down the sides; these are irregular in size, but become shorter and smaller at the edges of the mantle and at the end of the body; each papilla has a brown stripe (as a nucleus) down its centre; they are retractile, like the upper pair of tentacles; the extremities or tips appear to be open: foot long, rounded and double-edged in front, contracted and pinched up behind at the vent or tail. Active and hardy; floats in a reversed position or on its back.

Station 4, 20 fms . (a young individual). It is of course North-American; but its range is doubtful.

The synonymy is very confused. It appears to be the Doris papillosa of Fabricius, but not of Linné, Eolis papilliyera of Beck, and Eolidia bodocensis of Möller, not Doris bodoënsis of Gunnerus.

Dorididæ.

Doris repande, Alder and Irancock.
Doris repanda, A. \& H. in Amn. \& Mag. Nat. Hist. ser. 1, ix. p. 32 (1842).

Bony oblong, lemon-coloured: :mantle thickly covered with small round tubereles of different sizes: dorsal tentacles retractile, short, elegantly ennvoluted or fluted in an obliquely spiral direction, one on each side near the front; they are of a light brown colour: cyes not discoverable: foot oblones: vent or anal opening small, fringed. Floats on its back. Spawn deposited on the stalks and fronds of Fucus nodosus.

Godhavn, ©) fms. From Spitzhergen (Kroiyer, fide Mörch) to Calvados in the North of France (Fischer).

According to Loven this is the D. obvelata of O. F. Miiller.

Doris bilamellata, ${ }^{\circ}$ Linné.

Doris bilamellata, Linn. Syst. Nat. ed. 12, p. 1083 (1767).
Body yellowish-white: mantle thick, streaked or blotched with brown, and covered with numerous tubercles of different sizes: head of the same breadth as the foot, and semicircular: tentacles retractile, pale orange, laminated in two unequal divisions: eyes, none observable: foot large, rounded in front, and bluntly pointed or angulated behind: vent encircled by numerous tentacular processes which vary in size and length and are retractile. Floats in a supine position. Spawn semiconvoluted.

Station 4, 20) fms. ; Waigat Strait, at low water. Greenland and Iceland to the north-west of France, and on the eastern coasts of the United States.

For the synonymy see the late Mr. Alder's remarks in ' British Conchology;' vol. v. p. 90 ; to which may be added, on Mörch's authority, D. muricata of M. Sars, not of Miiller.

PTEROPODA.

Shells of these occanic "butterflies" were found everywhere during the experlition in deep water; and a few species were taken alive in the fow-net. Among the former I may mention Limacine reticuluta, I'Orhigny (S'pirialis clathrata, Souleyet $=$ Prouclo physoides, Fonbes $=$ s. remervionstra, A. Costa), L. balea, Möller, L. vetroversa, Fleming, and L. Zutimodes, souleyet, besides well-known species of Coro-
 which I consider new toscinnce will bo now described; and
although all the specimens consisted of fragments only, the species is very distinct and peculiar.

Limacina helicoides*, Jeffr.

Sifell like a reversed Helix nemoralis, extremely thin, opaque, brittle, and glossy: sculpture, a few delicate spiral stria, and close-set microscopic lines of growth: colour brownish-yellow: spive depressed, not flat: whorls 4, rather convex: suture slight but distinct: mouth irregularly and narrowly oval, rounded on the outside, acute-angled above, and pointed below: pillar twisted, furnished at its base a little way inside with a sharp and curved ridge, which corresponds with a keel on the outside: umbilicus none. L. 0.5 . B. $0 \cdot 4$.

Station 12, 14500 fms . 'Porcupine' Expedition, 1869, west of Ireland, 1215 fms : 1870 , Bay of Biscay, 740-1095 fms.

Clionidæ.

Clione borealis, Pallas.
Clione borealis, Pallas, Spic. Zool. x. p. 28, t. i. f. 18, 19 (1774).
Bodr long and slender, pinkish or reddish-brown about the front and tail ; liver brown; the middle portion and the rest of the body are gelatinous and veined lengthwise; the whole surface is irregularly covered with microscopic tubercles: head transversely oval, separated from the middle of the body by a short and thick neck; it is furnished with 6 bulbous processes (3 on each side), which are of a bright pink colour; these are plain and not armed with suckers or cups, and they do not project beyond the head: mouth semiglobular, the lips being placed lengthwise: tentacles 2, projecting like horns on each side of the head at the top; they are conical and finely pointed, retractile within sheaths, as in Doris, not armed with any suckers: eyes none: fins or foot-lobes 2, broad, leafshaiped, membranous, and delicately reticulated; below the fins are two appendages, which may serve as a second or lower pair of tentacles; these appendages are triangular, and folded close to the body, where they assume the shape of a human heart: tail pinched up, and ending in a fine point; it is speckled with minute black dots. Very active and hardy, unceasingly flapping its fins and wriggling its tail, by means of which it swims rapidly. My account does not agree with any of the descriptions and figures of this remarkable mollusk as given

[^54]by modern writers; I except Fabricius's description, which is admirable.

Diseo harbour and Waigat Strait. Only two or three specimens could be found.
('lione borealis has a wide range as regards longitude, from Novaya /smlya to the eastern coasts of North America. It is said to abound in aretic seas during the summer and autumn, and to be the prineipal food of the right whale.

It is the C'lione papilionacea of Pallas, (!lio limacina of Phipps, ('lio retusa of Miuller and Fabricius (not of Limé), and Clio Miquelonensis of Rang. The date of publication by Patlas and Phipps is the same. Clione borealis was first noticed and figured by Martens in his voyage to Spitzbergen and Greenland, under the name of the "Siea May Fly."

Since the publication in the 'Annals' of my former papers on this subject I have had some additional information, and become aware of a few slight omissions, which enable me to add a short supplement.

Montacuta Davsoni. Newfoundland (Verkrïzen).
Kellia symmetros. Λ single valve, much larger than the specimen which I have described, was procured by Mr. Friele in the recent Norwegian Expedition at a depth of 488 fathoms.

Cadulus tumilosus. A small varicty was dredged in West Norway by Professor G. O. Sars, who considers it a distinct species, and proposes to name it propinques.

Trochus umbilicalis. Cape York, 10 fms , and Port Kennedy (Walker).

Rissoa castanea. White Sea (Middendorff).
Turritella erosa. Syn. T. polaris (Beck), Möller.
Turritelle irticuluta. Melville Bay, $80-\mathbf{1 0 0}$ fms. (Walker).
Odostomia clloula. Gulf of St. Lawrence, 20 fms . (Whiteaves).

I have now fulfilled my pledge to the Royal Society with respect to the Mollusca of the 'Valorous' Expedition.

XXXIII.-Notes on New-Zealemd Ichethyology.

 By James Hector, F.R.S., C.M.Z.S.Brama squamosa.
C.M.

Toxotes squamosus, Iutton, Trams, New-Zealand Inst. viii, p. 210.

> D. 3-35. V. 2-29.

The type of the above was presented to the Colonial Museum
by W. T. Travers, F.Z.S. ; but the second fresh specimen now figured shows that it must be referred to the genus Brama, on account of its general oval form, its subulate acute teeth, with a stronger second row in the lower jaw, long dorsal fin extending forwards to over vertical of the pectorals and ventrals, with three short spines confluent with the soft dorsal, which, as also the anal, is enveloped in dense scuta, its moderate, very oblique, almost vertical gape and dilated maxillary, doubly excised; caudal fin with elongate acuminate lobes.

Brama squamosa.
The genus Brama has been transferred in Dr. Günther's work from the order Squamipinnes to the Scomberoids; and it was probably the scaly vertical fins of this fish which induced Capt. Hutton to seek for its allies among the former order. As a species it differs very little from Ray's Brama (Brama Raĩ, Cuv.).
a. Dried specimen. Cook's Strait (Tylor), 1875.
b. Fresh specimen, stuffed. Wellington Harbour, 1875. Total length 19 inches.

> Upeneichthys Vlamingii (Cuv. and Val.). C.M. (Red Mullet.)

$$
\text { D. } 1 \mid 7-9 . \quad \text { A. } 1 \mid 6 . \quad \text { L. 1. } 29 . \quad \text { L. t. } \frac{2}{6^{\circ}}
$$

Length thrice and two thirds the height, which equals the length of head. Scales twice the vertical diameter of the eye, which is one third the length of snout ; first dorsal less in length of base than the second by the diameter of the eye; base of second dorsal, length of pectoral, and ventral each equal to length of head. First dorsal spine less than the diameter of eye; second equal to length of head. Barbels reach nearly to the vertical from the extremity of the operculum.

Lpper part of body dusky violet, variegated with yellow
and azure blue, blending into pale crimson with golden and azure-blue streaks on lower part of borly. Head with blue streaks descending on the snout. Fins brownish purple, with varied markings of pink, yellow, and azure blue, the latter being distinct, and the two former blending into the ground-colour; each scale with a violet patch in the centre. Iris golden yellow. Two silvery streaks; and a granulated patch below the eye. No black bands on the side of the body

Teeth of jaws minute, in a double row, with some slightly stronger teeth in front of upper jaw. No palatine teeth. Young with three teeth on each side in distinct patches.

In the coloration, general form, and divided vomerine teeth, this fish is very similar to Upenoides Vlamingii, but the absence of teeth on the palatine bones places it in Bleeker's genus Upeneichthys. Distinguished from U. porosus of the Australian seas by the absence of any black lateral streak.

Specimen (in spirit) from outside Wellington Harbour. Total length 16 inches.

$$
\text { Beryx affinis, Günth. Cat. i. } 13 . \quad \text { C.M. }
$$

D. $7 \mid$ 12. A. $3 \mid 12 . \quad$ V. $1 \mid 7$. L. l. 44. L.t. $6 \mid 12$.

Height equal to length of head and one third total length. Operculum with two spines. Pectoral is one fifth the total length. Eye situated high, its diameter being one fifth the length of the head, and exceeding that of the snout; two nasal apertures close in front, the posterior being the larger. Intermaxillaries carry fine teeth on the sides and a group of large teeth on each side of a mesial notch, into which a projecting group of large teeth on the lower jaw fit.

Colour crimson pink, paler beneath.
A dried specimen collected by Mr. Robson at Cape Campbell ; total length 18 inches. This fish agrees well with Dr. Günther's species, of which he gives a very minute description in the work above quoted. It inhabits also the coast of Australia.

Dinematichthys consobrinus, Hutton.

Capt. Hutton's type is in the Colonial Muscum. He does not mention the presence of two minute spines in front of the dorsal. If these are present in the other specimens, the genus will have to be placed in the curious intermediate family of

Gadopsidæ. In the Cat. Col. Mus. 1870, I recorded the occurrence of Gadopsis marmoratus in New Zealand ; but it has dropped out of subsequent lists, being only represented in the collection by a drawing made of a specimen got on the east coast.
XXXIV.-Observations on the Coccosphere. By G. C. Wallich, M.D., Surgeon-Major Retired List H.MI. Indian Army.

[Plate XVII.]

The history of what may be termed the Coccosphere question is a remarkable one. Seventeen years ago I pointed out, as the result of actual observation, that the "coccoliths," which had been discovered three years previously by Professor Huxley in soundings from the Atlantic, are not independent structures, but merely cast-off appendages of the Coccospherecell. Yet, from that period to the present, the physiological relation existing between these two integral portions of one and the same organism has remained shrouded in mystery. Since 1868 a number of elaborate observations have been published, both here and abroad, on the characters and supposed affinities of the various forms of "coccolith." But, unfortunately, the value of these observations has been materially diminished, owing to their being based on one or other of the following essentially fallacious assumptions:-namely, that the " coccolith" itself is a "cell; " that it is an independently developed and independently living structure; and that, as a "coccolith," it is capable of taking part in any subsequent vital combination.

These assumptions have possibly had their origin in twostatements made by Prof. Huxley:-the first, in 1858*, that "coccoliths somewhat resemble single cells of the plant Protococcus;" the second, ten years later, namely in $1868 \dagger$, that the varieties of " coccoliths" named by him " Discoliths and Cyatholiths stand in the same relation to the protoplasm of Bathybius as the spicula of sponges or of Radiolaria do to the soft parts of these animals." It is true that in the same paper Prof. Huxley noticed three alternative "possibilities" in relation to the cocco-

[^55]spheres. But any one who carefully studics his remarks must, I think, conclude that, on the whole, he was disposed to give "Bathybius" the benefit of the doubt, and to regard the coccospheres as subsidiary productions due to "the coalescence" of the "coccoliths"-a view, which then, as now, I venture most respectfully to contest. For although the supreme interest that centred in the "coccoliths" has waned since they ceased to constitute the bones of Bathyluius, we must not forget the important part already played by them in the construction of certain rocks, and which they still continue to play in the construction of certain oceanic deposits. I may be pardoned therefore for seeking to redeem the coccospherequestion from the chaos into which it has drifted, aud for suggesting that had the fact indicated by me in a paper "On the Polycystina" (read at the Royal Microscopical Society in 1865), namely that I "had met with coccospheres as free floating organisms in tropical seas" in 1857, been recognized as I think it ought, Sir Wyville Thomson would have abstained, in 1872 \%, from casting unmerited doubts on my view regarding the true relation of the "coccoliths" to the coccospheres, and, in 1874, from adopting and publishing that view as a new and original observation made on board the 'Challenger ' \dagger.

From first to last in my published writings on the subject, I have never made the statement so persistently attributed to me (and which involves a contradiction of the opinion really entertained and expressed by me), namely that "sometimes the enccoliths are found aggregated into spheroids" (see "Lay Sermons,' "On a Picce of Chalk," by Prof. Huxley, 5th edit. 1874, p. 186) \ddagger, but have invariably adhered to the opinions

[^56]of which a correct résumé is given in my paper "On Deep-sea Protozoa " ('Monthly Mier. Journ.' Jan. 1869)—namely, that after a careful and long-continued study of these organisms, whether occurring as free floating inhabitants of the surfacewaters of the Indian (Ocean and mid-Atlantic, as components of the present deep-sea deposits, in a fossil condition in the post-tertiary earths, or as living organisms in the British Channel, I have never deviated from the opinion that the free coccoliths are derived from their parent coccospheres. In some deep-sca deposits, as stated by Prof. Huxley, free coccoliths undoubtedly occur in overwhelming number as compared with the coccospheres; but it is equally true that coccospheres are, at times, present in great abundance, whereas free coccoliths are comparatively scarce. Coupling these facts with the very important one, that perfect coccospheres are to be met with of every intermediate size between the $\frac{1}{5000}$ and $\$ \frac{1}{30}$ of an inch in diameter, I am induced to believe that the free coccoliths are, in every instance, formed on, or pari passu with, the spheroidal cells on which they rest, their state of attachment to these cells being their normal as well as pristine condition. That they revert at any future stage of their history, after once becoming free, to their original composite state, there is no recorded evidence forthcoming to prove. (In an appended footnote it was stated that "some of the freefloating coccospheres are oblong.") Lastly, I stated (loc. cit.) (with reference to the " granular zone" which Prof. Huxley described as possibly forming a normal portion of the coccolith), that "amongst the immense numbers of coccospheres which had been examined both in the recent state and in the preserved though still recent material of the soundings, I had never met with any proof that this zone exists as an integral portion of the structure; nor had any evidence presented itself" that the "granular zone" is any thing more than an accidental accretion, or that its presence is due to any inherent condition without which the organism would be incomplete. ("On Deep-sea Protozoa," ' Monthly Micr. Journ.' Jan. 1869, pp. 35 and 36).

Having thus far shown that there is no reason to suppose that the Coccosphere is a secondary formation, resulting in any way from an "aggregation" of independently developed "coccoliths," but that the balance of evidence is altogether in favour of the view that the " coccoliths" are normally developed upon, and simultaneously with, their parent coccosphere, I have now to state the grounds on which I base the opinion that the "coccolith" presents none of the characters of a true "cell."

Although Prof. Huxley, in his first brief notice of the cosecoliths (already referred to as having appeared in 1855) described the " coccolith" as being somewhat like a single cell of the plant Protococens," he has nowhere asserted that it is a cell. In his paper describing Bathybius (${ }^{6}$ Quart. Journ. Mier. Science,' Oct. 1868, p. 207) he alludes to "a central corpuscule," and says, " there is in its centre a clear and transparent space," adding that "sometimes, as Dr. Wallich has already observed, the clear space is divided into two. This appears to occur only in the largest of these bodies; but I have never observed any further subdivision of the clear centre, nor any tendency to divide on the part of the body itself." In the same paper Prof. Husley pointed out, for the first time, the double or shirt-stud-like figure of the "coccoliths," a feature which I had altogether overlooked, owing, doubtless, to my attention having been chiefly directed towards the Coccosphere as a whole.

Now every thing depends on a correct interpretation of what Prof. Huxley describes as the central corpuscule and the clear space at its centre. He says, "Suppose a couple of watchglasses, one rather smaller than the other; turn the convex side of the former to the concave side of the latter; interpose between the centre of the two a hollow spheroid of wax, and press them together : these will represent the upper and lower plates and the central corpuscule " (loc. cit. p. 207). This description is most closely borne out by Prof. Huxley's figures. To facilitate my explanation, I have reproduced three of his figures in the Plate which accompanies this paper-namely, figs. $13 \mathrm{H}, 14 \mathrm{H}$, and 15 H . It will be seen from these, that if we apply his experimental illustration of the two watch-glasses and the hollow spheroid of wax, where there is one clear space in the centre of the central corpuscule, we should have to employ either two hollow spheroids of wax, or one spheroid with two cavities in it, to represent the coccolith in which two central clear spaces occur; and so on, whatever the number of central clear spaces may be. To my mind this does not by any means give a correct idea of the appearances; which, on the contrary, indicate that the central clear space or spaces are either single or double perforations in the external disk-its " markings," as it were-and nothing more. They have, therefore, no physiological significance, and certainly do not represent any thing that can be called a cell. See Plate XVII. fig. 10, which gives a diagrammatic sectional view of a coccolith. There is no evidence fortheoming, that I am aware of, to show whether the stem of the stud (i.e. the intermediate piece between the two disks), is or is not continuous with the disks. As the appearance of concentric rings is constant,
being obscrvable even in the fossil coccoliths, I presume the stem must be continuous with the disks.

Instead of the watch-glasses and hollow spheroid of wax, imagine a shirt-stud made of colourless glass, with a minute shallow hole drilled at the centre of the larger of its two disks, which (as in the case of the coccolith) would constitute the outer disk. Imagine this glass stud to be enveloped in transparent varnish or any glairy fluid. On looking down upon it we should see (fig. $5, b$) a minute central ring formed by the edge of the minute central hollow; external to, and at a little distance from this, a second ring (c), formed by the outline of the stem of the stud; again, a little external to this, a third ring (d), formed by the outline of the smaller of the two disks of the stud (e); and lastly, the marginal outline. Of course the multiple "central clear-spaces" might be imitated by drilling a corresponding number of holes in the outer disk (see Plate XTII. fig. 7). Now here we should have precisely the same appearance of concentric rings and central spaces as we find in the "coccolith;" and what is more, they would have a similar origin. Of course the only difference observable in looking down on the coccolith or the glass stud from the direction of the inner or smaller disk, would be that the "central clear space" would be somewhat less distinct, whereas the outline of the smaller disk would be more distinct.

I have now to refer to Mr. Carter's views as embodied in his paper on "Melobesia unicellutaris" (Annals and Mag. Nat. Hist., Mar. 1871). Let me, however, at once confess that whilst I dissent, in toto (for reasons already assigned), from the view that the "coccolith" is, in any sense, "a cell," I am quite prepared to adopt Mr. Carter's opinion, if he will permit me, as applicable to the parent and entire structure, namely the coccosphere with its "coccoliths." The only difficulty I see in the way of regarding the Coccosphere as a protophyte, resides in the remarkable evidence of its relationship to certain Foraminifera, furnished by the discovery (at first in one or two specimens only, but afterwards in many) of shells so regularly studded with coccoliths, as to suggest the idea that the chambers originated as coccospheres\%. One thing would seem certain, that this regularity is incompatible with the supposition that the coccoliths got into their position accidentally. How then, did they attain it? I once asked Mr. Carter if he could explain the matter; and he obligingly sent

[^57]the best explanation I have as yet come across, though even this has a weak point in it. It was, that the animals of the Foraminifera probably employed the coccoliths, which abound in the mud, instead of sand or other particles for the strengthening of their shells, as we know to be the habit of a large number of the Foraminifera that live at the bottom of the decp sea. But, although the sparse kind of tessellation with large mineral particles here and there on the shell is undoubtedly characteristic of some species (as for example Proteonina and Buliminiu; and, as I have elsewhere shown to be the case in certain deep-sea Foraminifera as well as freshwater testaceous Rhizopods, "the selective and adaptive power" exhibited in the material and workmanship of the shells is simply marvellous), in the shells now under notice the arrangement of the coccoliths appears almost too like that observable on the coccospheres to render it easily intelligible how the animal of the Foraminifer could have so exactly "mimicked" it. On the other hand, there is a piece of evidence which would seem to support Mr. Carter's view of unicellular algal affinity (supposing it to be extended to the coccosphere), namely, an appearance of "dehiscence" which presents itself not unfrequently in the large oblong coccospheres met with in tropical seas, and so invariably occurs, at one end only, as to negative the idea of its being accidental (See Plate XVII. fig. 4).

Mr. Carter suggests that the "loose type" of coccosphere described and figured by Prof. Huxley may " be a still more developed form of the sporangium or coccosphere, perhaps undergoing dehiscence " (loc. cit. p. 189). He will, however, I know, pardon me saying that it is going too far ahead of the evidence to assume that the coccosphere is a sporangium at all; for if it be, out of the multitudes I have seen, none has ever departed from the sporangial phase, either in those met with at the top or at the bottom of the ocean. But a glance at the curious object I have depicted (Plate XVII. fig. 18), which I have repeatedly met with in some parts of Bengal, will at once show that Unicellular Alge do undoubtedly assume a sporangial condition in accordance with that which Mr. Carter must have had in his mind's cye when he suggested that the coccosphere might be a sporangium. My specimen is, I believe, the sporangial condition of a branching stipitate form of $A n-$ kistrodesmus, each of the kidney-shaped bodies being a frond.

Figures 1 to 4 (see PlateXVII.) represent theonly two species of Coccosphere I have hitherto met with:-the spherical one being the ubiquitous oceanic form, which I propose to call Coccosphara pelagica; the oblong species, which is not so common by any means, being, so far as my experience goes, confined
to tropical or subtropical seas. I propose to name it after Mr. Carter, Coccosphcera Carterii.

The following are the characters of the two species:-

Genus Coccospiera (Wall.).

1. Coccosphara pelagica (Wall.).

Cell spherical, hyaline, with a distinct membranous wall. Cell-contents, a perfectly colourless glairy protoplasm. Coccoliths generally more or less elliptical, numbering from 16 to 36 , arranged side by side, and, in the normal state, not overlapping. Central aperture of Coccolith single, margin of external disk finely and radially striate. Internal disk plain.

Diameter of Coccosphere ranging from $\frac{1}{5000}$ to $\frac{1}{830}$, of an inch. Length of Coccoliths from $\frac{1}{9000}$ to $\frac{1}{1000}$ of an inch.

Habitat. Free-floating, Indian Ocean and North Atlantic; and (dead) in North Atlantic muds. Always most abundant where the Globigerince are in greatest profusion, and the deposit of the purest kind.

2. Coccosphara Carterii (Wall.).

Cell oblong. Long diameter about twice that of short diameter. Cell as in C. pelagica. Coccoliths varying in number from 16 to 38, more or less oblong, with two central apertures arranged lengthwise, margin finely and radially striate. Internal disk plain. Length of Coccosphere from $\frac{1}{1000}$ to $\frac{1}{80} 0$ of an inch. Length of coccolith from $\frac{1}{5000}$ to $\frac{1}{1000}$ of an inch.

Habitat. Free-floating, Indian Ocean, and Mid-Atlantic. (N.B. I have not observed any intermediate form between the spherical and oblong.)

It only remains for me to add, that I have not referred in the course of the preceeding observations to the highly important researches of Sorby, Oscar Schmidt, Haeckel, Gümbel, and others, simply because my own inquiries have been directed principally towards an aspect of the subject upon which they have hardly touched at all-my object having been to sustain the accuracy of my own observations, not to question that of others.

Note on Gromia. I hasten to correct an oversight on my part, which I have at all events the satisfaction of knowing has been shared by Dr. Carpenter and other writers.

Since the publication of my paper "On Gromia as the type of Foraminiferal Structure " ('Annals' Feb. 1877), I have
seen it incidentally stated that "nuclei" had been observed in Gromia by Max Schultze. On turning to Dr. Carpenter's 'Introd. Study Foram.' pl. iv. fig. 13, I found, as I expected, the figure of a highly magnified view of a mass of sarcode, containing two spherical gramular masses, the explanatory description being as follows:-"Nuclear bodies? [sic] imbedded in the sarcode of Gromia. After Schultze." Not having Schultze's work to refer to, it is out of my power to say whether these bodies represent true mulei or merely sarcoblasts. But be this as it may, if the credit of the discovery of a mucleus in Gromia be due to Schultze, most cheerfully do I cede it to that distinguished observer.

EXPLANATION OF PLATE XVII.

Fï. 1. Coccosphera pelagica (Wall.), with its complement of coccoliths.
Fig. 2. Cell-wall of same, showing distinct membranous outline; most of the coccoliths having been thrown off.
Fig. 3. Coccosphera Carterii (Wall.).
Fig. 4. The same in the dehiscent (?) condition.
Fig. 5. Coccolith of C': pelayica seen from external aspect; showing the radiate striation on margin of outer disk, and the central depression which constitutes the " central clear space" of Huxley.
Fig. 6. Coccolith of C. Curterii; side view, showing the teco central depressions and radiate marginal strix, tugether with the inner disk and intermediate piece.
Fig. 7. The same, as seen from its external aspect, this being, in short, a front riew of the outer disk. Here also the two button-hole-like depressions are shown.
Fig. 8. Circular coccolith of C. pelayica occasionally met with.
Fig. 8 a. A specimen of a form of coccolith occasionally but rarely occurring, in which there is no central depression, but apparently an aperture close to the margin of the outer disk.
Fig. 9 D. Diagrammatic, enlarged, side view of coccolith of C. pelagica.
Fig. 10 D. Diagrammatic rertical section of same, showing the central depression (a), in external disk : s, the stem; ed, the inner disk.
Fig. 11 D. Diagrammatic front riew of the outer disk of same: a, the central depression, the "central clear space" of Huxley, and "nucleus" of other writers; b, the innermost ring, indicating the margin of this depression; c, the ring indicating the outline of the intermediate piece, or stem uniting the two disks; d, the ring indicating the margin of the inner disk; c, the outline of the outer disk itself. Possibly these are the rings referred to in Prof. IIuxley's Report of 1868, when describing the coccoliths as "curious rounded bodies, to all appearance consisting of several concentric layers surrounding a minute clear centre."
Fig. 12 S. This figure is copied from fig. 20, plate 16 , appended to Prof, Oscar Schmidt's paper "On Coccoliths and Rhabdoliths" Annals \& Mac. Nat. Hist. Nov. 187: translated by W. S. Dallas, F.L.S. It is described in the text (p.367) as "a decided coccolith with a dorsal shield, as may be ascertained by placing it on its edge, the dark non-granular part, b, representing the granular zone, and the clear spaces in it ; a, divided medullar spaca vithout contral granules."

Figs. $13 \mathrm{H}, 14 \mathrm{H}$, and 15 H . Three figures copied from the plate accompanying Professor IIuxley's paper; described as "Cyatholiths from the Atlantic Mud." The central corpuscle with its clear space, a, in the centre is shown in figs. 13 and 14 . The "granular zone," $g z$, is shown in fig. 15.
Fig. 16 represents a two-celled or chambered coccosphere-being apparently the first stage in the formation of the coccolith-covered Textularice and Rotalice which have been described by me in former papers, and of which mounted specimens are extant.
Fig. 17. A coccolith of C'. Carterii as seen in preserved specimens, an aggregation of granules being observable around the stem between the outer and inner disks, the so-called "granular zone" of authors.
Fig. 18. Sporangium of a protophyte from Bengal, probably allied to Ankistrodesmus: a. the globular colourless and transparent sporangial cell;bbb, the kidney-shaped fronds of same. These never hare a flagellum or cilia, and are not zoospores.
N.B. In figs. 5, 7, and 11 D the letters indicate the same portions of the structure.

MISCELLANEOUS.

On Anguillula intestinalis, a new Nematoid Worm, found by Dr. Normend in subjects attacked by Diarrhoea of Cochin China. By M. Bayay.

Is the post mortem examination of a man who died of diarrhœa of Cochin China, Dr. Normand found a very small worm, which he sent to me as distinct from my Anguillule stercoralis*, which, however, was associated with it in the intestine. Having subsequently met with it in four other cases, I have ascertained that it is really distinct; and I think it useful to give a description of it.

I have been unable in this Nematoid to distinguish the arrangement of the muscular bands; and although I have examined more than two hundred individuals, I have nerer seen any spicula; beuce it is impossible at present to fix its position in the modern classifications, such as that of Schncider. I shall therefore give it provisionally the gencric name of Anguillula (sensu latiori), and distinguish it by the specific name intestinalis.

> Length of the adult
> Average breadth 0.000 millim.
> $0.034 ~$,

Thus Anguillula intestinalis, with a less average breadth than that
*See Ann. \& Mag. Nat. Hist. ser. 4, vol. xriii. p. 507.
of the adult Anguilleta stercoralis, is almost three times as long; its length is $6 \overline{0}$ times its breadth.

The body, a little attenuated in front, terminates rather suddenly behind in a conical tail, the point of which is very distinctly rounded and even a little widened at the extremity. With a sufficient magnifying power, the surface appears very finely but very distinetly and regularly striated transversely throughout its whole length.

The mouth presents no corneous armature, but only three very small lips. It gives access to a nearly cylindrical œesophagus which occupies about one fourth of the length of the animal, and presents neither inflations nor strix; this is followed by an intestine, with which it would be very easily confounded but for a sudden change of tint. This intestine extends nearly to the extremity of the body; but it almost ceases to be risible in the middle part, which is occupied by a very elongated ovary.

The rulva is situated at the posterior third of the animal; and in its vicinity the uterus contains five or six elongated ova, isolated from each other, and becoming a little confused in proportion as they are more distant from the rulva.

The anus, a transverse cleft, is situated towards the base of the tail. The ova and riscera are of a greenish yellow colour, rather opaque, and rery finely granular in appearance.

All the individuals hitherto observed were ovigerous females, or they presented no sexual organs, either male or female, even though they were of considerable size. All were dead, or at least motionless; they were abuodant in the duodenum, but less frequent in the jejunum, and did not reach the ileon. On one occasion they were numerous, as well as Anguillula stercoralis, in the fluids proceeding from the stomach.

In the materials in which the worm is found, fragments of it containing eqgs often occur: sometimes these eggs are found isolated and recognizable by their clongated form ; in some the embryo is in course of formation, and then presents a very remarkable row of dorsal cells; in others the embryo is more advanced and even makes two complete turns.

In the evacuations of three diarrhœic patients which we kept in order to trace the development of Anguillula stercoralis, we found in a few days certain larve differing from those of that species. They were more elongated, with a cylindrical œesophagus descending nearly to the middle of the body, and a tail which, instead of terminating in a fine point, was, as it were, truncated at the extremity. Although the rearing of these larva could not be carried far enough to prove incontestably their identity with Anguillula intestinalis, we have scarcely any doubt upon this point. In fact, two of the patients who presented this form in their evacuations have since died, and their post mortem examination furnished the adult form ; the third patient is still living. We have sought it in vaiu in a man who came from Cochin China three years ago, and in whose intestine Anguillula stercoralis was very abundant.

In all, we have met with this worm six times; and five of the patients who presented it are dead. It would perhaps be premature to deduce grave consequences from this; and the species is infinitely less abundant than Anguillula stercoralis.-Comptes Rendus, Feb. 5, 1877, p. 266.

On Filaria hæmatica. By MM. O. Galeb and P. Pourquier.

The authors have dissected more than two hundred dogs in search of this parasite. They cite one of their observations in disproof of the rerminous diathesis assumed by some writers. In a pregnant bitch the heart was stuffed with adult Filarice; and its blood showed thousands of embryos, which also occurred in the blood of the foctus. The mother, therefore, furnishes the starting point for the migrations of the parasites, the embryos which float in the blood of the mother terminating in a slender point which enables these microscopic worms to pierce the tissues and penetrate into the placenta, from which they pass into the circulation of the foetus.

The identity of the embryos swimming in the blood with Filaria hoematica is proved by the disscetion and microscopic examination of the adult female Filaria, which shows in the oviduct free embryos exactly like those of the blood. Hence the authors conclude that Filaria hematica is riviparous.

The adult parasites always reside in the right cavities of the heart or in the pulmonary artery ; but their presence in this situation may always be ascertained by the examination of a small portion of the blood of the dog.

The female parasite attains a length of 30-32 centimetres (12 to $12 \frac{4}{5}$ inches); the male is smaller and more slender, about half the length of the female. More than a hundred of these parasites may exist in the same animal. Sometimes they produce no symptoms, but in other cases cause serious disorders, such as dropsies, which kill the animals. The authors promise a detailed memoir upon this parasite.-Comptes Rendus, Feb. 5, 1877, p. 271.

On the Intimate Phenomena of Fecundation. By M. H. Fol.

The radiate structure of the vitellus has been long since described by various authors. I may cite in chronological order Derbès, who observed it very well in Echinus, Gegenbaur in Sayitta, Krohn, Leuckart, Kowalewsky, Kupffer in the Ascidia, and, finally, Balhiani in the Araneida. The relations of this structure with cell-division, however, remained unknown, as the authors last cited continued to accept the division pure and simple of the cytoblast. M. Hubert Ludwig has just shown that in this respect the Arancida behave like the Geryonidx.

A second step of the greatest importance has just been made in
the knowledge of these primordial phenomena. M. O. Hertwig has shown, in his fine memoir on the first development of the Echini, that the spermatozoid penetrates into the ovum, and enters into the composition of the nucleus of the fecundated ovum. I have repeated M. Hertwigs observations and can warrant their correctness, excepting some details which will appear from my own description. The body of the spermatozoid, when it has entered the vitellus, appears to amalgamate with the vitelline protoplasm to form a clear spot, which becomes the centre of a system of radiating striæ. For this spot I adopt the term promuleus, proposed by M. E. van Beneden ; and I shall call it the male promucleus. This male pronucleus traverses the vitellus to mingle intimately with a female promucleus, which is situated at the roment of fecundation in the part of the vitellus opposite to that through which the spermatozoid penetrates. Derbe's and M. O. Hertwig regard this female pronucleus as identical with the Purkinjean spot of the ovale before its maturity. I reserve my opinion upon this point, which I have been unable to elucidate. From the fusion of these two pronuclei results the nucleus of the fecundated orum, which is afterwards segmented in the manner described by me in a previous note.

In tracing the development of the Echinus, one is struck by the complete absence of any polar corpuscle. This evidently constitutes a very exceptional case in the animal kingdom. In the immense majority of cases the ripe orule possesses a large germinal vesicle, which only disappears at the moment of fecundation (Sayitta), or a little later (Iterotrachert, Asterias, \&c.). This germinal vesicle is immediately replaced by a system of filaments arranged in a double star, absolutely as in a cell which prepares to divide, only this system is situated quite close to the surface of the orum. The more peripheral star then issues from the vitellus to constitute a polar corpuscle, which may divide after its escape: most frequently it remains entire, and the star remaining in the interior of the vitellus divides into two stars, one of which issues to constitute the second polar corpuscle. The substance expelled in this manner represents the greater part of the germinal resicle enveloped by a little vitelline protoplasm. The opinion of Ellacher as to the origin of these corpuscles in the Trout finds a brilliant confirmation in these facts. The last star that remains in the vitellus collects to form a pronucleus.

At this moment I have observed in Sagitta and various Gasteropoda a clear spot which forms at the opposite pole of the vitellus. 'This spot is surrounded, in Sagitta, by a star of protoplasmic filaments. It moves in the direction of the spot where the other pronucleus is placed. During this morement of translation we see very clearly, in Sagitte, that the centre of the star occurs in front of the clear spot, and that the latter is passively drawn along. On its arrival close to the other pronucleus, hitherto motionless, this star moves more rapidly, the pronucleus is drawn towards the clear spot, and these two elements fuse together to form the nucleus of
the fecundated orum. These phenomena singularly resemble those observed by M. O. Hertwig and myself in the Echinus. If I were to judge of them by analogy, I should say that the clear spot with its star is the male pronucleus; but I have no direct proof of this. MM. Auerbach and Bütschli have already observed this movement of the two vesicles starting from the two opposite poles of the vitellus to become fused together; but M. Auerbach did not perceive that these phenomena only take place after the issue of the polar corpuscles, and M. Bütschli confounds the fusion of the two pronuclei with the amalgamation of the rarious vacuoles which constitute the female pronucleus.

In Asterics, according to the observations of MM. R. Greef, E. ran Beneden, and myself, and in the Gasteropoda, the Purkinjean spot dissolves in the germinal vesicle, which in its turn disappears to give place to a double star, which has already been observed by M. Bütschli.

Here we have two distinct cases; and I add a third. In Dentalium, according to M. Lacaze-Duthiers, the polar corpuseles effect their escape even before the orum is fecundated ; and in Asterias, according to M. R. Greef, the germinal spot and vesicle disappear in the deposited but not fecundated orum, and the parthenogenetic development of the Starfish only differs by its slowness from the development of the fecundated orum. M. R. Greef did not observe the formation of two pronuclei; but I have seen them in the fecundated ora of Asterias.

Seeking a clue to the interpretation of all these data, we are led to distinguish, in the first place, two well marked cases. In the first case, which is that of Echinus, the ovule, at the moment of its deposition, is already destitute of its germinal vesicle, and only possesses a female pronucleus; this becomes, fused, in consequence of fecundation, with a male pronucleus containing the substance of the spermatozoid; and development takes place without previous expulsion of polar corpuscles. In the second case, which is that of the great majority of animals, the ovule, when deposited, still possesses a germinal vesicle and often a germinal spot. These two elements disappear, and the greater part of their substance is expelled from the vitellus in the form of corpuscles, the remainder entering into the composition of a female pronucleus. In the ova which are dereloped by parthenogenesis, it would appear that this female pronucleus plays the part of a nucleus, and segmentation commences. In the fecundated ora there is formed, at the pole opposite to that at which the female pronucleus is situated, a second pronucleus, which I believe may be regarded as containing the substance of the spermatozoid. These two pronuclei fuse together and the segmentation commences. The principal difference between these two cases would therefore consist in the earlier or later period of the disappearance of the germinal vesicle.

Mil. E. van Beneden and Bütschli have already attempted to reduce all these phenomena to a common scheme, but without taking
into consideration the observations of M. O. Hertwig, which they regard as erroneous. My supposition seems to me to refer all the phenomena at present ascertained to a single fundamental process, and not to be contradicted by any known fact.-Comptes Rendus, Feb. 5, 1877, p. 268

On the Titality of certain Land Mollusks. By Robt. E. C. Stenrss.
I submit for the inspection of the Academy a living specimen of Bulimus pallidior, Sby., one of nine given to me by Prof. George Davidson, who collected them at San José del Cabo, Lower California, in March 1873.

These snails were kept in a box undisturbed until June 23, 1875, when I took them out, and, after examination, placed them in a glass jar with some chickweed and other tender vegetable food, and a small quantity of tepid water, so as to make a warm humid atmosphere. This hospitable treatment induced them to wake up and move about after their long fast and sleep of two years, two months, and sixteen days. Subsequently all died but this, which seems to be in pretty good health, though not very active.

It may be remembered that I mentioned before the Academy, at a meeting in March 1867, an instance of ritality, in a snail (Helix Veatchii) from Cerros Island, even more remarkable, the latter having lived without food from 1859, the year when it was collected, to March 1865, a period of six years.

The famous specimen in the British Museum, which is cited in the books, Helix desertorum, had lived within a few days of four years, fastened to a tablet in one of the cases, when discovered to be alive.

Helix desertorum, as the specific name implies, is found in arid and sterile areas in the continents of Africa and Asia, and has, as will be perceived, a wide distribution. From the former continent, I have specimens from Egypt ; and it also ranges through Arabia in the latter.

The Bulimus from the mainland of the peninsula of Lower California, and Helix Veatchii from Cerros or Cedros Island, off the coast on the ocean side of the same, come from within the same physical environment, being comparatively a limited distance apart.

The Helix belongs to an interesting and peculiar group, probably varieties of one species, which includes, at present, the following names-(1) Helix areolata, Sby., (2) H. Veatchii, Newc., (3) H. pandore, Fbs., and (t) H. levis, Pfr. Other forms geographically approximate may hereafter, on further investigation, be referred to the same lineage.

Of the above, (1) I. areolitata was the first described; or I should say that this appears by the date to be the first name bestowed upon any member of the group. This species has been quoted from Oregon, and (4) II. levis, from the Columbia river, in both cases erroneously. The figures in 'Land and Freshwater Shells of North

America ${ }^{\circ}$, p. 177, are too elerated and globose for the typical areolata; but the larger figures faithfully represent H. Veatchii. Elevation and rotundity are insular characteristics in this group; and arcoluta is comparatively depressed. It is found in considerable numbers on the uplands around Magdalena Bay, which is on the outer or ocean shore of the peninsula, in latitude about 24° $40^{\prime} \mathrm{N}$.

Bulimus pallidior, which is pretty generally distributed through Lower California, from Cape St. Lucas northerly, has also erroneously been credited to San Diego in California proper. It is arboreal in its habits, at least during the winter season, and frequents the Copaiva trees. It has been said to inhabit South America, which is probably incorrect ; and the locality "San Juan," mentioned in 'Land and Freshwater Shells,' on p. 195, where a good figure of this species may be seen, should be San Juanico, which is on the east side of the peninsula, in latitude about $27^{\circ} \mathrm{N}$.

The great importance of particularity in habitat will be at once perceived when I state that there are no less than three other localities on the west coast of America, north of the place cited, all of which are referred to in various scientific works which have come under my observation as "San Juan;" and there are perhaps as many more San Juans south of that especially quoted herein, on the westerly coast of America, in the Central and South-American States.

Attention is directed to the fact that the three species herein mentioned as exhibiting extraordinary vitality, belong to geographical areas which receive only minimum rainfall, or which are, in simple language, nearly rainless regions.

Within such areas vegetation is exceedingly limited, even in favourable seasons; and the presence and growth of the annual plants is, of course, dependent upon the rainfall: this last occurring infrequently, makes the food supply of land-mollusks and other phytophagous or regetable-eating animals exceedingly precarious.

It is highly probable that a careful investigation in this direction will lead us to the conclusion that the land mollusks which inhabit arid areas have, through selection, adaptation, and evolution, become especially fitted for the contingencies of their habitat, and possess a greater degree of vitality or ability to live without food than related furms in what may be considered more farourable regions, and, through and by reason of their long sleep or hibernation (more properly, cstivation), with its inactivity and consequent immunity from any waste or exhaustion of vital strength, are enabled to maintain their hold upon life when animals more highly organized would inevitably perish; and we are furnished with an illustration, in the instances cited, how nature works compensatively, when we institute a comparison with the opposite condition of activity and the food required to sustain it.-Proceedings of the California Academy of Sciences, October 18, 1875.

[^58]
THE ANNALS

MAGAZINE OF NATURAL HISTORY.

[FOURTH SERIES.]

No. 113. MAY 1877.

> XXXV.-Malacological Notes. By Robert Garner, F.L.S. \&c.

It seems to be a task neither easy nor free from doubt, to assign a proper place in the Animal Kingdom to the Mollusca, or, when their proper place is found, to fix their boundaries as a subkingdom. It is evident that animals, both as they exist now and as they have succeeded each other in past grological time, are marked by different degrecs of elaboration; and this leaves room for the doctrine of derivation from simpler primordial forms of the higher. This increasing differentiation in the animal kingdom is also tacitly kept in view in taxonomy; hence Mammalia are placed highest in the whole animal series, and Mollusca in the non-vertebrate division of it.

But the above greater or less elaboration, though a primary consideration in general classification, is not by any means the sole one. Were it so, and were we assured that one of the higher forms is descended by an undeviating development from one of the simpler, we ought to have, tracing the former through the course of its formation, a summary of all organology, which we have not. Strong are the influences which the conditions of life (ethological as they are termed) exert on the course of development; or, in other words, great are the variations necessary to modify an organism for change of habitat, food, or climate, or for its protection. Along with the general plan and its greater or less claboration upon which animals are formed, there are therefore revealed secondary types of formation, which, whether realities or abstractions, Ann. © Mag. N. Hist. Ser. 4. Vol. xix.
must be imported into classification. Thus, in animals nearest the boundaries of the regetable kingdom, the special character of life-force of the latter seems not extinet, causing a rayed or ramose disposition and a tendency to budding in their mode of increase; or we may say that animal life presupposes the regetable, being itself but the manifestation of the same endowment in a higher form-just as, according to some, psychological phenomena are superadded to, or developed from, the physiological". Again, amongst the disturbing influences which affect whole series of animals, the nature of their locomotion must be reckoned; for to an adaptation for this and for aerial or aquatic life can probably be referred many aberrations, such as metamorphosis or alternation of generations; ànd hence it is that a more regular ascent from the simple to the complicated animal ought to be seen when we confine ourselves to one form of life, say the aquatic.

The same aberrations render it difficult to trace the phylogeny of an animal-that is, to show from what antecedent form, extinct or existent, it originated, and through what phases its species passed. We see enough in nature to recognize, as already alluded to, one general plan of formation; and at the origin of all animals, or in the embryo stage, there is, as the rule, much sameness-and first either a division or a budding of a pullulating plasm, or an origin from the union of a simple cell and microzooid; but remarkable differentiations and variations occur early, almost withdrawn from our observation, and their rationale not always understood. It is true that a more or less intimate segmentation of the yelk of the ovum in all Invertebrata produces the morula form, preceding all development; but there is no complete uniformity further, and the variations remain unsystematized. The morula or granulated sphere may become hollow, and then be invaginated, so as to form a sacciform gastrula, so called; and Haeckel considered this to be the animal stock-form; but even in the cases where it prevails the moruia may be first changed into a flat planula, and the sacciform disposition be attained, somewhat differently, by its flexure \dagger. The cavity may also form in the interior, without any flexure or invagination, or with the latter imperfect; and in the normal gastrula it does not follow that the primary opening becomes the mouth, or the primary cavity or blastocele the permanent stomach ; and before any cavity

[^59]forms at all, or contemporancously, or closely following it, the molluscous shell, foot, and ciliated velum may appear, cither in the above forms of development or in another, where upon the segmented morala a germ-lamella makes its appearance, in which the formative eleavage process is very active, so that the lamella grows quickly and surrounds the other residuary part of the yelk, which in some cases, as in Sepia, but not in the Argonaut, constitutes a large fund of sustenance for the young embryo*. As we have above observed, many of these and other modifications camot, with our present knowledge, be reduced to a consistent system, nor can the suceceding stares always be so. Thus, for ourselves, an ascidian is manifestly allied to a bivalue mollusk, as much as the latter is to a gastropod, and we hold that morphology suffices to prove this; yet, on the other hand, very different are the early forms of the two, though in this case appropriate enough-one qualified for preliminary locomotion, the other, it may be, to immediately fix itself; indeed the former larva is so tadpole-like that it has been considered by Schmidt and others, as is well known, to foreshadow the vertebrate animal, though it is probably traly included in the molluscous community, its appendage comparable, it may be, to the tail of the Carinerica, to the flagellum of some bivalves, or even to the foot of the developed animalt. The veligerous stage, pretty general in, though not peculiar to, gastropods, seems a form well adapted for their dispersion, and indeed, in certain species, may perhaps be said to continue through life. Here the embryo is furnished with a ciliated disk or celum, and an external spiral shell is formed with an operculum attached to the foot, a shell even existing in the larva of the ultimately naked species; but in such naked species as have an internal shell (the Pulmonata having also other peculiar modifications in their development \ddagger) it is intradermal. With respect to the Cephalopoda, Owen says, "were growth superinduced at any arrested stage of cephalopodic development, no known inferior order of mollusk would result." With oneness of the animal plan in general, purpose is only accomplished by much variation and adaptation, as well as suppression or development of the homologous organs, even

[^60]at the early stages of life ; and with so many embryological irregularities, or what at present seem such, what can we do as recards classification but avail ourselves of plain morphological data? With others of the advanced school M. Giard is somewhat severe on the homologists, yet he dwells on the very strong action of the exterior, as, for instance, in "the convergence of types by pelagic life "*.

In the following paper the Bryozoa or ciliated polypes are, with some reserve, included with the mollusks, nor is much said respecting the lowest class of true mollusks, the Ascidiæ; it is the less needful, therefore, to dwell, as a prelude, on the manifestation of the composite, branched and rayed vegetative tendency in these two classes, trenching upon the confines of the molluscous subkingdom. In the latter (in Salpa, for instance), though, for us, mollusks, we have remnants of all these tendencies, as well as of alternation of generations-tendencies all predominant in still lower animals, as, for instance, in the plant-like infusorial Forticella, or in the more minute but proliferous and branched Dinobryon-almost equally common in our pools, but less casy to detect or examine, as it swims freely about, mimicking the oceanic creature last named, the Salpa; in fact, it may be observed, en passant, that the Infusoria, so called, in a broad sense, stand alone within the animal cosmos. Their minute size, depending perhaps on a unicellular origin, and answering to that of the Desmids in the vegetable kingdom, constitutes almost a primary characteristic; and they present faint resemblances to other animals of several orders: they have the vibratile organs, or cilia, so common in mollusks, capable of effecting locomotion through the water in their own minute bodies, but bringing the water to the animal for respiration and for the conveyance of nutrient particles in the mature mollusk; some also (the Foraminifera) form shelly coverings, which simulate those of the same animals.

Animals have been arranged \dagger into those which are centrally and those axially developer-that is, either in a radiate or a longitudinal fashion: with the former the Mollusea, as already intimated, cannot be well made to agree; with the latter they correspond no better. They have little of the axial arrangement of an annelid, and not always, though generally, bilateral symmetry, confining ourselves to the animal in contradistinction to the vital;organs. Upon the whole, flexure super se, rather than any other plan, predominates, and prevails upwards in a great degree from the bryozoon to the cuttlefish,

[^61]due perhaps to the necessary arrangement of the inlets and outlets of the body in such animals as are encased and protected by a shell or in other ways. Mr. Spencer attributes the jointed form in the great subkingdom Articulata to repetition or budding, yet of a less mechamical origin than the jointed but adaptive disposition of the Vertebrata. Notwithstanding this low vegetative characteristic of the Articulata, if it hold good, they and Mollusea are commonly considered to form two parallel zoological divisions, rather than one concatenated series. Upon the whole, the Mollusca approach nearer to the Vertebrata, as will become evident hèreatter ; but the Articulata are highly developed for locomotion, which ensures perfect mechanical structure and symmetry; they are less generally aquatic, and often arlapted for arrial movement, to which last the Mollusea camot fairly be said to attain; they also evince wonderful powers of what looks like observation and purpose. At the same time the Mollusea present varied means of locomotion and of domiciling themselves; and their intelligence may be greater than our means of observation enable us to ascertain; the locomotion, however, with the exception of that of the pelagic swimmers, is generally of a simple kind, mere gliding or creeping rather than walking, the organs being formed with greater reference to hydraulics than mechanics. They are anchorites accommodated to their cells, sensitive rather than locomotive unities, seldom having any repetition of parts of an analogous kind, but commonly possessing, as already olserved, more or less of that lateral duplicity present in all animals above the Radiata-though, indeed, in the Gastropoda this is liable to be interfered with by an atrophy of one side. Altogether a mollusk is a typical reality, showing either an origin from some primary molluscan root, or a uniformity of special plan throughout their own subkingdom. As a rule there may be said to be seen in them, as we have them at present, an ascent from their lowest to their highest forms, without any great hiatus-in this, more than in their geological sequence, agreeing with the theory of the derivation of one kind from another.

If we are to trace up the Mollusca to their origin, their biological pedigree, we shall, it is commonly held, arrive at the Bryozoa, or rather, to our mind, at the lowest Ascidie. It seems far-fetched to form an alliance, as Cuvier did, between the T'eredo and the articulate Lepas, though there is an obvious analogy between the valves and adductor muscles of the last and those of a bivalve mollusk-one of those curious resemblances often occurring in nature between animals far removed from each other, evincing, on the one hand, relation-
ship to the environment, and on the other unity of plan throughout. What is a little remarkable in this last example, instancing a kind of duplex structure, is that in the development of the cirripede the articulated disposition is primary and internal, the molluscan (if such it may be termed) the reverse. Darwin considers that the cirripedes present no real affinity with any other non-crustaceous animals; but some have seen in their pedunculated and sessile genera an affinity, on the one side, to the Brachiopoda and the Rudista respectively, and in these last to certain ordinary mollusks on the other. The first conclusion we scarcely admit ; the last we do.

The ciliated tentacular crown or lophophore of the Bryozoa much more resembles that of some tubicolous annelids than the branchial cavity of the Ascidia, though the young bryozoon (Plumatellet) is somewhat like the bivalve in the early stage, the egg-covering separating into two oval plates or valves. There are other external resemblances of Mollusca to lower or higher animals, analogous rather than homologous or homogenctic, but brought about purely to meet peculiarities of the circumstances of life (that is, special excess of those externals which nevertheless are set down as determining, in a gradual way, all animal development whatever), either by an adaptation to, or a modification by the same. Such are the resemblances of some aberrant mollusks to tubicolous annelids, or of a Chiton to an Oniscus-resemblances totally disregarded, but whether philosophically so some might doubt.

The mollusk, notwithstanding its frequent tendency to a flexure super se, is at other times, when unfurnished with a shell, of the more normal animal form, oval or elongate, with an undivided foot or muscular disk below abdominally, a protective mantle above dorsally, and the viscera enclosed between. The form, however, is generally much modified to accord with the shelly valves of the conchifer or bivalve, or the spiral shell of the univalve. It is only as we ascend that a head is developed (Cephalophores).

The Ascidix, then, we are disposed to consider as the lowest of the Mollusca and the progenitor of them, though not of the Brachiopoda; these are Acephala closely allied to the others, the bivalves. The tentacles, at the orifice of the respiratory sac, are, when they exist, but secondary to the sac, which has the true branchial structure of the higher Acephala, frequently with branchial or labial folds, like the pallial sac of the bivalve. This differs from the views of several living biologists, but has the support of Mr. A. Hancock\%. The

[^62]tentacles just mentioned are analogous to those surrounding the orifices of the respiratory tubes in bivalves; and that enigmatical part, the endostyle, may represent the crystalline style applied to its use (mechanical support), or at least so much of it as is retained after the loss of the larval appendage. The larval Ascidian, or the Appendicularia, constitutes a very indifferent vertebrate-the tail in the latter bent forwards at an acute angle to the body or towards the mouth, and its nervous cords (if such they be) seeming scarcely continuous with the cephalic ganglion, and having alternate instead of opposite ganglia, more unlike the vertebrate or articulate type in this respect than are the nerves in the arms of the Sepia or Argonaut *.

Bivalyes would difter little from the Ascidia, provided the test and mantle of the latter were slit; but in the former the branchixe are more differentiated and the circulatory organ more perfect, shelly valves and muscles to close them are superadded-also a foot in most species, developed according to the amount and kind of locomotion required. There is in bivalves no true head ; but the mouth is furnished with lips and two laminated and ciliated palps on each side, distinct from the branchia but of similar structure, the lips proper sometimes specialized (as in Pecten).

Amongst bivalves the above remarks only partially apply to the Brachiopoda, which, if we endeavour to trace their genetic aftinities, present us with some difficulties. They have been considered to have the same relationship to, or descent from, the Bryozoa as the Lamellibranchiate bivalves; but if' so, it must be in a different line, and without the intervention of the Ascidix. It may be questioned what relation the upper and lower valves of Brachiopods bear to the right and left valves of the ordinary Lamellibranchiates. The crossing of the principal adductor muscles in the Lingula, and their median union in some Terelratule, the compression of the body and arms or tentacles in Brachiopoda generally, in the opposite direction to the arrangement of the body and corresponding parts in the Lamellibranchiata, the perfect lateral symmetry in the former, and a tendency to division, seen in forcamina, notches, or septa, in several species (as in T.diphya), whilst there is often a difference, in some respect or other,

[^63]between the anterior and posterior portions of the valves in Lamellibranchiata, are facts which seem to favour the idea that the dorsal valve, for example, of a brachiopod is not analogous to the right or left valve of an ordinary bivalve, but rather to the anterior portions of the two valves united together, and so vice versta.

The fusil Hippurites and Rudista, with such forms as Dienchora and Polopsis, appear to have had most affinity in form and structure, amongst bivalves, with the Chamadæbranches of the same stock, one passed away, the other still Hourishing, therefore the affinity rather collateral than derivative. One or both valves may have put on the spiral form, the former case in the Spherulite, and the latter in Diceras; or one of them may have become elongated and multilocular, as in the Hippurite and, indeed, in some oysters. Such a spiral form, or such an elongation, must be attended with a division of the comnecting ligament or cartilage, just as we see in Isocardia or, in a different form, in Gryphica. Further, if the shellforming mantle becomes expanded at the circumference all round, as in Chama, there will be a tendency for both hingeteeth and cartilage to become central, a circumstance which has apparently taken place in many of these curious fossils. They have other peculiarities of the valves difficult to account for.

But however explained, whether from descent, relationship, or modification for or by externals, the Anomia appears to be a transitional form between the attached brachiopod (Crania, Orbicula) and the ordinary bivalve; the oblique position of the mouth, the non-marginal situation of the shell-nucleus, the very short intestine, the lengthened, narrow, and loose palps or labial appendages (which are confluent with the branchiæ), the complex muscular system, the ovigerous mantle, and the notched valve would seem to show as much, as well as the structure of the shell in some allied species. The plug may be the homologue of the byssus or pedal plate of Arca on the one side, and of the brachiopodous pedicle and deltidium on the other. A very small foot exists; but there is a very long crystalline body, having apparently a mechanical use to support the unusually detached mantle-lobe. We see in these transitional bivalves a tendency to diverge from the symmetry which preponderates in the class throughout; for when certain other species show the same tendency, it is generally with some relation to the nature of the hinge. Though the brachiopod is very distinct in many ways from the bivalve, we are not convinced that the arms of the former do not perform the office of branchiæ.

The boring or burrowing Lamellibranchiates are often very
 being reflected at the umbones, and there being often a row of underlying cells here, with fimbrier of the mantle lodged in them; muscular fibres (the anterior adductor) cross from valve to valve at this part ; and we should suppose that the valves are opened somewhat, as well as closed, by the voluntary efforts of the animal. P. ductylus has several shelly plates covering the reflected part of the mantle, P. candidus only one, but in addition a weak ligament. The valves have a tendency to become otherwise disintegrated in these boring hivalves ; a calcarcous enveloping tube is often formed, and the true valves are much diminished in proportion in Sylopheiga or Teredo, or even become incorporated with the tube. The body is often strangely elongated, as in the last species. The Teredo or ship-worm is a remarkable example of how much ordinary type may be modified to meet external conditions. Notwithstanding its extreme elongation it is in every respect a true lamellibranchiate; thus the alimentary canal is reflected over the posterior adductor muscle as usual, though to be so it has to ascend within a few lines of the anterior extremity. It has, however, two new parts, spatulce or palettes, guarding the posterior siphons, curiously imbricated and possibly a dismemberment of the valves, analogous to what we shall see in Chiton. In the mature Teredo the shelly enveloping tube has, in the neighbourhood of the palettes, imperfect partitions, and it becomes closed at the other extremity. The internal processes or spoons seen in the small valves support and protect the foot and viscera, help to keep together the valves, and give attachment to muscles; the heart is not perforated by the rectum, and, with its auricles, is of the shape of the inverted letter I . Xylophaga has commonly no palettes ; but the foot has a central papilla with an orifice, more developed, however, in Pholas crispata; and here the curved crystalline style is inserted, having itself a hard calcareous nucleus; this must support the foot; and it is possible that there may be a vent here, in the wood-borers, for some softening fluid from the stomach. Though the writer broached the idea that ciliary action, or rather the consequent currents of water, constitute especial agents in the burrowing powers of mollusks de., and that the fleshy and ciliated foot, aided, it may be, by hard particles, has furthermore much to do with it, yet he was not blind to the existence of other adaptations to aid, at least, in the perforation of timber.

The anterior extremity of Aspergillum (watering-pot shell) is still more modified, the valves being curiously fused with
the tubular shell, which has also a perforated disk or rose in front, in which is a small central slit for the attenuated foot, and also having a ray of shelly tubules around the margin. These animals, compared with ordinary bivalves, and with tubicolous amnelids, are another instance showing the difference between homology and analogy, the latter occurring, as observed already, in very different animals where the circumstances of life are similar. Like Teredo, Aspergillum is in every respect a bivalve conchifer, with the mantle, however, closed in front, but having there a thickened muscular disk with tentacular processes for the perforations above mentioned, and also giving exit to the foot, as does the corresponding shelly plate. We should suppose that the animal lives buried in fine sand or mud, in which its rayed fringe must secure it, as the expanded foot of some other bivalves does.

With the exception of Aspergillum and one or two allied genera with fused valves, adductor or janitor muscles are general in bivalves, and also peculiar to them-unless we hold Oken's theory that the operculum of Gastropods is in reality one of the altered valves of the bivalve, in which case the retractor muscles of the former may also include the adductors". The muscles of attachment of Patella, Fissurella, Hipponyx, Taricella, Sigaretus, and Haliotis show the transition from the retractor pedal muscles of the bivalve to the more or less united and contorted muscle of the spiral gastropod. There is sufficient resemblance between an acephalous and a cephalous mollusk to proclaim them of the same division of the animal kingdom ; but the latter, with its more or less marked head, has generally its nerrous system more concentrated into a brain or cephalic ganglion, with defined auditory sacs, more developed eyes, and, in some, organs of smell. In Acephala, when mature, no eyes, except the ocelli at the margin of the mantle, exist. The lips and labial palps of bivalves are transmuted in Gastropods to subulate or flattened tentacles, or sometimes into supra- or infraoral disks or processes. Horny jaws of varied form, median or lateral, but the representatives of the beak of the cuttlefish, and a spiniferous tongue or odontophore (Huxley) may exist, the latter almost universally, though it does not appear to have been found in the Pyramidellce. The hooks or teeth from this tongue do not lose their form when boiled in nitric acid or when calcined, but vitrify with potash, which is perhaps conclusive as to their siliceous nature. The branchix are so varied in position that they were chosen

[^64]by Cuvier to distinguish the separate families. They are generally protected by a shell, and are of course en liaison with the heart, as the latter is, more or less, with the alimentary canal; indeed we should have before observed that in the Lamellibranchiates the ventricle is commonly traversed by the rectum, this arrangement being either an advance upon the disposition seen in still lower animal forms, where the intestine is enveloped by the general reservoir of the blood, or, as has been thought, due to the young bivalve being the result of the union of twin embryos. It is probable, as may be traced in their vascular arrangement, that the branchix in mollusks are normally four in number, as we see them in bivalves and again in Neutilus; the two of one side, however, are combined into a single one in most Gastropoda, and in some Area, Anatina, Solemya, and other bivalves; or one only, altogether (homologically duplex however), may exist, as in other Gastropods, its fellow of the opposite side being more or less undeveloped. Are the pair of branchiæ found in the dibranchiate Cephalopoda the representatives of the four branchir of the tetrabranchiate Nautilus? or have we the rudiments of the wanting pair, or simply of the corresponding cardiac parts, in the anomalous appendages of the lateral hearts, which, however, are wanting or little developed in Octopus? The monobranchiate Aplysia has an aortal appendage. Some of the Gastropoda have pulmonary sacs instead of branchix, and others (Ampullaria and perhaps some littoral species) have both*.

The position of the branchire in Patella and Chiton (Cyclobranchiata) is analogous to that in the bivalves, to which mollusks these Gastropods form the natural transition ; but the ventricle of the heart has not the intimate comexion with the rectum, though both heart and rectum are situated at the posterior extremity of the body in the latter genus. Not so in those allied genera where the branchix have ascended wholly or partially above the neck (Scutibranchiata) - Fissurella, Emargimula, and Ilaliotis; for here the ventricle and rectum are in union, as in the bivalve. In Haliotis and Sigaretus one branchial plume is commonly less than its fellow; and in Haliotis the inequilateral composition of the shell is indicated by the row of foramina. In Calyptrea and its congeners the smaller of the branchia has disappeared ; and in this last case, probably, the shell is correspondingly the expanded representa-

[^65]tive of but one valve of the bivalve, and not of two, as we think is the case with Putclla and Fissurella. In Dolabella one valve is developed, the other all but gone.

Perhaps the normal position of the vent in Gastropods, where there is no flexure super se, is, as in most other animals, towards the opposite extremity to the mouth ; Onchitium, Doris, and Chiton (representatives of the pulmonate, naked-gilled, and cover-gilled Gastropods) are examples of this: but, as said before, the branchiæ and their accompanying heart are in especial relation with the shell; and as this develops, the tendency is for the concomitant removal of branchiæ and vent forwards and to the right (Pleurobranchiata), or especially forwards (Prosobranchiata). This transference may be seen to take place progressively, in the Pulmonata, in On^{2} chidium, Testacella, Limax, and Helix, in the Nudibranchiata, in Doris, Eolis, and Plewrobranchus, in the Cyclobranchiata and Scutibranchiata, in Chiton, Microschisma, Fissurella, Emarginula, Gadinia, and Tatica-a remarkable transposition of parts!

The shell, then, of the Patella corresponds to the two conjoined valves of a lamellibranchiate bivalve; they are less conjoined in Fissurella, Emarginula, and Haliotis, in which last is perhaps seen, as already observed, the division into right and left valves in the row of foramina and the long fissure of the mantle. The spiral form becomes progressively more pronounced in Crepidula, Calyptrea, and Sigaretus; and this is accompanied by a want of development on one side affecting heart, branchiæ, and other organs. Indeed, with respect to the spiral univalves the preceding paragraph requires some qualification; for in them the torsion of the body and the great development of one side (the right) causes the frequently single branchial tuft to be carried to the left, accompanied by the heart.

We have always felt disposed to receive the theory held by Adanson, Oken, Dr. Gray, and Macdonald, with respect to the normal spiral Gastropod. The latter writer shows the correspondence and resemblance between the operculum and the univalve shell. He looks upon the muscles connecting the operculum with the spiral shell as the adductors of the dimyary bivalve, and perhaps also combining the representatives of those fibres which serve to retract the font. He supposes the body of the bivalve, now occupying the left valve, 10 revolve from left to right on its longitudinal and transverse axis, in both cases moving through a quarter of a circle. There is no violence done to fact here; the greatest requisition remanded appears to he the flexure or displacement forwards
of the termini of the intestine and excretory organs, which circumstance we see to have evidently taken place in Fissurella, Matiotis, Gadinie, \&ic. But no account is taken of the effect of the transposition on the size $\mathcal{\&} \mathrm{c}$. of the organs in the above theory; and, judging from the character of the torsion which has taken place, we are disposed to think that it is the right valve which preponderates, and not the left, although the tendency to the spiral form which we see in some bivalves, as Isocardium, tallies. best with the dextral direction of the spire in ordinary Gastropods. Mr. Owen expresses himself as adverse to this view, principally from the existence of the operculum from the first in the embryo. In a few cases the operculum, or clausium, may be a dismemberment of the columella or, tantamount, of the posterior portion of a patelliform shell. The operculum of Navicella, for instance, is formed by the posterior reflection of the afterpart of the shell-mantle; and it answers to the shell of C'repidula, or the columellar portion of the univalve Calyptraa; in C. Dilluynii there is the same part, but curved, and free at its margins, though attached to the apex of the shell; in C'. mudis this has become a complete cup, whence the name cup-and-saucer limpet; whilst in the pretty little C. sinensis, or Chinese bonnet, the lamina goes to form the inner part and columella of a spiral shell. In C. rudis it is puzzling to understand how the inner cup is formed; it perhaps answers to an open columella; the formation of the other species is more intelligible. In ordinary cases the operculum is formed on a distinct pallial lamina at the back of the foot, occasionally connected above with the shell-pallium, as in some Turbinidæ. If we reject Oken's view altogether, we are driven to suppose that the curionsly modified operculum is the homologue of the byssus of bivalves. In Phasianella there is an equal development of both branchiæ, separated by a septum, as in many Cephalopoda; and yet here, with little internal derangement, we have an operculum-this being somewhat adverse to the above theories, though it might be accounted for in the modern mechanical way, the further from the centre of rotation the greater the tendency to divide.

Two patelliform shells, then, very similar in form, may belong to animals of quite different families: one may cover a diocious and carnivorous mollusk with only a single branchial process, and a heart with simple auricle and ventricle, with the intestine opening on the right side (Calyptraca, C'repidula, and Hipponyx) ; another a monocious and phytophagous animal, with two symmetrical branchial organs, and heart with double auricles and perforated ventricle (Fissurella). In the first case one of the branchial laminx and the corresponding
side of the body appear to have become atrophied; and here we are to suppose that the shell, as seen from above, is homologically univalve, with a strong tendency to become spiral, in fact so strongly centrifugal in Calyptrea as to have carried the heart into an unusual position, and almost to have disintegrated the shell; whilst in the second case the whole conformation of heart, branchix, foot, muscles, and organs of generation agrees so certainly with that of bivalves, that we must have in one of these molluscous shells the two shells of the bivalve in union. In Patella the branchiæ continue situated at the sides of the foot, though the heart is to the left, whilst the rectum opens on the right side of the neck ; in Emarginula the pedal fringe is but rudimentary, and the true branchiæ are seen above the neck-a disposition (in the last respect) normal in most univalves; but in this case the ventricle is perforated by the rectum. Calyptrcea and, more markedly, Hipponyx, being often fixed on very irregular surfaces, have the power of levelling for themselves a foundation by the secretion of a shelly pedestal. It is puzzling to say how this is formed, or with what part in other mollusks it is homologous. It must either be the representative of the byssus, or, more probably, what appears to be the foot-disk is in reality an opercular surface secreting the support, which is consequently marked with muscular impressions. There are lappets in front of the disk in these genera; correspondingly the anterior dorsal disk in Sigaretus is not homologous with the similar anterior dorsal surface of Bullcea; the situation of the mouth shows this.

The form of the univalve shell, due primarily to original plan, or, in other words, to an adaptation of ways to ends, depends, secondarily and immediately, on the form of the mantle-opening, on its inclination from the action of the foot, and on the relative activity of its circumference with respect to the secretion of the shelly matter. An increasing tube would be prolonged in a straight line or nearly so, if the mantle at the circumference were equally active and not unequally inclined, as, for example, in Dentalium, which is in all respects near to the Gastropods lately dwelt upon, Fissurella, \&c. ; but, on the contrary, it would be more curved if one side were more active or more extensile. Vermetus, Siliquaria, and Magilus have an unequal deposit at first, and are then spiral ; afterwards the shells become disjoined and approach the straight line. In Patella the whole circumference of the mantle secretes and grows almost equally and rapidly, hence the depressed conical form; whilst Capulus is at first less rapidly expanded, with the axis of increase changing somewhat, whence it attains its peculiar form and is named " Hungarian
bonnet." A similar formation, but less gradual and more anterior, produces such shells as Nazicella, already dwelt upon; whilst, if the mantle expands laterally instead of totally in front, we have the corresponding form of the river and lake Ancylus, or of the internal shells of Aplysia, Limax, and Bullea. If the lower or inner part of the mantle does not secrete at all, the spiral shell can have no labium or inner lip, and no inward pillar or columella, the axis of rotation. In Scalaria, but for the opposite reason, the shell has no material axis, there being an approach to the disjoined Vermetus. The shape of a transverse section of the spiral tube of a shell (that of the angular-edged Trochus for instance, or of the rounded Turbo) is due to the shape of the bend in the edge of the mantle. The oblique direction of the mouth of a shell, and consequently the produced spire, are owing, as alluded to before, to the extra development of the component right valve. A rotation on the same plane (as seen in the Nautilus and sometimes in Planorbis) and the slow or rapid increase in the diameter of the whorls occasion the preceding ones to be apparent (Ammonites) or covered-in (Bellerophon). In Conus the mantle-opening is disposed in the opposite direction to what is most usual, and still more so in Ovula or Cyprea, being in the same line as the foot, and not transverse or diagonal to it; and the consequence is, that the last whorl more or less covers up the spire of the shell, which, however, in some cases, appears to become absorbed. In Chiton the valves, except the last, answer to the anterior part of the shell of a Patella or Hipponyx, in some species of which there is a tendency for the successive laminæ to separate. The shellumbo appears to be the middle of the last valve in Chiton. There is also in Chiton as in Nerita some tendency of the pedal nerves to put on the disposition seen in Articulata; and the auricles communicate with the elongated ventricle by two or three openings on each side (Chitonellus). The intestine has been described to go in a straight line from head to vent, but is in reality, in some species, more convoluted than in any other mollusk*.

The shell of the Nautilus and also of the Argonaut appear to correspond in external form, and excepting the multilocular character of the former, to those of the spiral Gastropods, though, from the symmetrical disposition of the animals, and the restoration of the branchix to their original bilateral and

[^66]abdominal situation, these shells may be considered abdominal rather than dorsal, and revolute or reversed as to the direction of the spire. The siphon here is not situated dorsally but ventrally; and the back of the head is directed towards the spire-the reverse of what it is in Gastropods, Planorbis for instance. But the shell or bone (so called) of the Sepia rather answers to the dorsal plate of the pteropodous shell, as also the fossil Beloteuthis; and what is the expanded portion of the Nautilus-shell is scarcely developed at all in the Sepia, though more so in Belosepia. No doubt the light spongy laminated part of the os sepice represents the hydrostatic cells of a Nautilus and Ammonite and the phragmacone of the Belemnite or of Spirulirostra; the wavy lines seen by the lens on the septa of the os sepice answer somewhat to the wavy sutures of Ammonites, showing at least similarity of construction histogenetically. In Spirulirostra we have a form connecting: Sepia with Spirula and Nautilus, as Conoteuthis appears to do the Belemnite with Loligo. Turvilites must have had an unequal lateral development, like Gastropods".

In certain tectibranchiate mollusks, as Gastropteron, Aplysia, Bullcea, Aceras, and Ianthina, we have a transition from the Gastropods to the Pteropods, either the foot or mantle being developed more or less into swimming-organs, whence they might be arranged as natatory gastropods. The Pteropoda proper, though perhaps at present not at their zenith of development, at least as regards size, appear in type to constitute a characteristic class, and upon the whole a transition between the two whose morphology has been dwelt upon, though their likeness to the young veliferous Gastropod may induce others to think differently. With Sepia, for instance, Hyalrea may be compared in respect of shell, also as regards the abdominal situation of the branchiæ. Limacina scarcely differs from Hyalcoa except in having a spiral shell and the pedal lamina a little more specialized. The tentacles of Clio and Pneumodermon are apparently transitional in structure to the arms or feelers of Cephalopods. Pteropoda correspond with Gastropods as to the dextral position of the rectum ; but the heart is also dextral or rather abdominal, and they vary somewhat as to the openings of their androgynous generative organs \dagger. Four of the six cephalic ganglia lie in

[^67]Clio above the oesophagus, but the reverse in Hyaloa, Cleodora, and Pneumodermon. Fins are especially developed, but only the rudiment of a foot; they swim rather than creep. The high position here accorded them systematically rather depends, it will be seen, upon type or external morphology than upon structure. Eyes are to be seen in Hyalea; and Eschricht showed them to exist in Clio; there are also dark points on the cerebral ganglion of Cleodora, which must be corresponding argans. Carinaria, though not considered to be a pteropodous animal, can scarcely be better placed as a Gastropod. In it the greatly developed vital or vegetative organs of the mollusks generally are dwindled in bulk. The pretty shell covering the viscera is curiously carried above the elongated cylindrical body of the animal, which has caudal and abdominal fins developed, the latter being the transmuted foot, with a little sucker and pore at its posterior part. It has very developed eyes; and we may observe little reddish earsaes with their nerves floating internally behind and below these eyes.

As far as we have yet described, form rather than structure has, in a few instances, faintly assimilated the Mollusca to the Vertebrata; but apparently we see a true structural approach to them in the Sepia. If there is any thing in the lower mollusks which is a shadow of vertebrate structure or of a notochord, we might fix upon the crystalline style, acting as a fulcrum of locomotion, though its connexion with the stomach and its gastric lamina remind us, on the other hand, of the lingual plate and ribbon of the higher mollusks. Strange modifications of an organ these, if they are such! but organs are curiously modified in many cases to perform different functions.

There are in some carnivorous Gastropods, as well as in Chiton \&c., cartilaginous pieces supporting the lingual apparatus; and the cephalic ganglia of other species are enveloped in an almost cartilaginous tissue. In Cephalopoda, besides the shell, there are internal cartilages answerable to the internal skeleton of the Vertebrata; the Sepia, for instance, has a cartilaginous expansion, holding and supporting the brain, eyes, and organs of hearing, besides giving passage to many nerves and vessels, and having in front a trochlea for the mediate tendon of a binocular muscle, the orbits still further completed by supplementary lamina. There is another cartilaginous lamina in front at the root of the arms, others in the neck, and cartilaginous acetabula at the base of the siphon, into which prominences of the mantle fit-a curious arrangement to give the parts fixity during the respiratory movements. 'Ihere are also two lengthened sword-like cartilages at the Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.
side, where the semicartilaginous rays of the long fins begin, reminding us much of the similar parts in a skate. Octopus has not the cups at the base of the siphon; but it has two cartilaginous styles in the sides of the mantle; these last are absent in the argonaut. The siphon in the Octopodidæ has not the valve which is present in the Sepiadæ. This siphon may be seen in the Gastropoda to arise from the body rather than the mantle, and so in the Cephalopoda.

Besides the internal skeleton the Cephalopods are furnished with other new or more developed organs-their curious beak, for instance, reminding us of birds or of some reptiles or fishes, but, in fact, a further development of parts of other mollusks similarly situated, as already alluded to. In these, too, the molluscous foot is broken up or differentiated and resolved into arms or tentacles, which are furnished with peculiar suckers or hooks. We see this disintegration in some Gastropods and Pteropods, and at the same time its transference to the head, forming a mentum or propodium (Ampullaria, Sigaretus, Natica), or fin-like side lobes or epipodia (Bullcea). Bullcea also presents us with a tentacular lobe or supercephalic disk. With the above transposition the arms and tentacles in Cephalopods are very specially developed, whether as the cupuliferous arms and tentacles of ordinary species, or as the less formidable sheathed tentacles of the Nautilus.

The circulation in mollusks undergoes a progressive complication, much as it does in the Vertebrata. They have been described as being destitute of true veins; but this is far from the case, though these veins may communicate with sinuses to which even the external element may have access, and such carities may be the media of absorption or nutrition rather than the veins primarily. The circulation is already well provided for in the Lamellibranchiates, as much so in Gastropods; and it is very remarkable for its perfection in the highest mollusks. These circulatory, like the other vital organs, are probably originally double or bilateral, and become single by development, somewhat the reverse of what is the case in Vertebrata; thus in bivalves the auricles, and less frequently the ventricle, continue more or less parted, or the ventricle envelops a length of the rectum, as already observed. Some Arcce and Pectunculi have two hearts; A. auriculifera but one, of the shape of an inverted M. The blood is returned from the system in part directly to the heart, in part through the medium of the branchiæ, the latter portion also appearing to have previously circulated through the renal organ ; but the dibranchiate Cephalopoda are peculiar in having two auxiliary branchial hearts between the system and the branchiæ.

Near the branchiæ, most commonly, are located the organs
of excretion. The lamellar mucous gland, seen in Buesinum in the branchial chamber, is probably homologous with those of the female Sepia; there are also glandular parts for the secretion of the parple or other colouring-matter, sometimes simply a diffused gland in the mantle, whilst sometimes the colouring liquid is reccived into a vesica as in Sepia, Doris, or some Purpurep; also renal organs, the latter opening, in the branchiated Gastropods, at the far recess of the branchial cavity, but by a long duct in the pulmonate animal. They are near the mouth in Bullen, and open between the branchial processes in Chiton, near the double ovaries, but variously in bivalves"-sometimes in them into an arquiferous chamber or double pleural sac, which also, according to Prof. Rolleston, often communicates with the pericardium. These renal organs commonly secrete little round concretions. The organs themselves are less concentrated in Cephalopods; but the tufts on the veins and bile-ducts are, we think, their homologues, excreting and not absorbing (at least entirely and solely), the excretion being sometimes seen in the form of yellowish glittering particles in the sac in which the tufts float, and which sac communicates with the circumambient fluid by two orifices, and also, in the opposite direction, with other membranous cavities containing the viscera, or which are in apposition to the spongy lamine of the shell in the Sepia. Water no doubt has access to these cavities, and perhaps to others situated about the head in Cephalopoda (Tremoctopus or male Argonaut) \dagger, though the subocular pores in Sepia seem to be excretory, and to lead down to glands situated beneath the eye. Water has access likewise to the dorsal sinuses mentioned as existing in bivalves, and into their foot by means of the median pedal pore in some species, or the lateral pseudooviducts in others; or into the lamine of the mantle, as seen in opening a common Anodon.

From the lowest mollusk to the highest there is the same plan of nervous system, very different from that of the vertebrate or articulate animal. The first nervous centre that appears is the respiratory or branchialt, presiding over the respiratory inlet and outlet in the Ascidia, and situated between the two orifices. Then the labial ganglia appear, in the oyster for instance, and give off cords, which communicate with the last, and, with their own uniting one, form a ring round the mouth. In such bivalves as possess a foot another ganglion or ganglionic pair supplies it, also communicating with the labial ganglia, so that the ring becomes two-corded

[^68]below. The organs of sight and smell, when they exist, are supplied by the labial or oral ganglia, which unite above in the higher forms into what may be called, in this case, the cerebrum or cerebral ganglion, whilst the acoustic sacs are comected with the lower ganglia. As we ascend, other ganglia, or centres of nervous action, are formed; thus a sympathetic system appears, of which the principal centre is a large ganglion (Sepia), or several smaller ones (Doris), on or near the stomach (gastric), connected through nerves running aloner the alimentary canal with two or more (six in Doris) small pharyngeal ganglia, situated on the buccal mass, and through them with the cerebral ganglia, and also having branches connected with internal respiratory nerves, these last forming one or more branchial ganglia at the root of the branchix, and descending from the respiratory or lower and hindmost part of the cerebral ring. Probably the small pharyngeal or buccal ganglia exist in all Gastropods and Cephalopods. Pallial or external respiratory nerves also originate a little outside the internal ones, superadded to them, and especially belonging to the mantle, the inhalant and expelling sac, and forming the remarkable star-like ganglia so plainly seen on each side within the mantle in all dibranchiate Cephalopods. This pallial nerve in the Sepia thus reminds one somewhat of a spinal nerve, as it has ganglionic branches for the sac and non-ganglionic ones for the fin. There are special nerves from the same part of the cerebral centre for the siphon. In the Cephalopoda these nerves, which supply the branchire and respiratory sac or mantle, internal and external respiratory, descend symmetrically from the cephalic ganglion on either side the vent in front, and at an equal distance from the middle line. Bivalves, as well as Chiton and Doris, agree in this symmetrical arrangement; but in the ordinary spiral Gastropods (Natica or Neritina for instance), owing to the torsion of the mantle, the vent has risen to the right side above the neck, the left pallial or external respiratory nerve has followed in the same direction under the œesophagus, and the pallial ganglion, which it forms, is on the right side, whilst the right nerve crosses over the digestive canal to the left side preceding the right branchial appendage, the left (often atrophied) remaining in position, as in Nerita, or dwindled away. The pallial opening and also the siphon are correspondingly displaced. Two branchial nerves and ganglia (internal respiratory) exist, as already mentioned, in the dibranchiate argonaut and cuttlefish, with two ganglia in the course of each nerve in the first; but there is but a single nerve for the single gill in many Gastro-
pods. Aplysia has sometimes only one ganglion, in other species two, to supply its duplicate but conjoined branchial process and the protective mantle ; and the nerve crosses, as just described. In Bullea aperta there is but one ganglion in the posterior or respiratory section of the body; in Akera bullata there are three. Thus as the animal ascends there are specific cerebral ganglia immediately connected with the above functional nerves and ganglia. The posterior respiratory part of the lower portion of the cerebral ring is always divided from the anterior part, presiding over locomotion, by the transit of the aorta; or, rather, it is divided from the more anterior part of the posterior centre, which supplies the siphonic nerves in the Sepia, by the entry inwards of the vessel through the cerebral ring, whilst that anterior respiratory part is separated from the still more anterior locomotive centre by its exit. The pharyngeal ganglia are seen in the higher mollusks to be connected both with the sub- and supraœsophageal centres; in Patella they send forward little nerves, going to the lips and mouth, where they form two other little ganglia (olfactory) ; or the latter may occur as a large ganglion (Sepia) intermediately between these pharyngeal ganglia and the brain. Taste and smell appear to be connected with the last two pairs of ganglia, hearing with the lower part of the cerebral ganglion, sight with its upper part. The smell in the snail (Arion) may be located in the whitish surface under the mouth, though some think it resides in the tentacles. In some Cephalopoda, as in Sepia, the membranes (olfactory?) surrounding the beak are much developed. The organs of sight often appear as mere specks on the brain itself, when the skin is pervious to light (S'cyllaa, Doris).

To facilitate a boundless production appears to be the first olject followed out in the structure of the reproductive organs of Mollusca. A second is evoked by the necessity which there is for at least an occasional union between different individuals of the same species, even when each contains in itself the essential organs of both sexes (monocious).

A third object is but a part of the first, an arrangement for the dispersion or safety of the young individuals till they attain a suitable halitat. The simple form of multiplication, budding, or, more simple still, self-division, is, as said before, a mode of increase only seen in the lowest mollusks, or rather molluscoids; and in them only can we find any trace of what has been called alternate generation, and which perhaps depends upon the provision made to attain the third object above mentioned. In some bivalves (in the fixed oyster, the scallop, and in some freshwater mussels) the essential male and
female glands appear without doubt to be combined in the same individual (hermaphrodite); yet we suppose that, from the antipathy of Nature to self-impregnation and from the difference of the period when the two glands mature and discharge their secretions, the ova are commonly fertilized from a foreign source, and that it takes place after they are discharged, commonly in the pallial cavity. Such species are perhaps at one time functionally male, at another female. The embryo has sometimes means of transport, as the cercariform larva of Tunicata or the ciliated young of Gastropoda, by which it seeks a suitable habitat; whilst the sedentary species, on the contrary, are often fixed for safety by a byssus, formed by an especial gland, the trace of which may be found, even in the adult Anodon, between the surface of the foot and the pedal ganglion, in the form of a brown, waxy, concentric, globular body. In all the above and in Patella or Chiton the essential glands of reproduction are very simple; but in other species, though still hermaphrodite or monoccious, as Helix or Lymnceus, they have many and very curious accessories; yet here the sexual union of two individuals is necessary, or at least most common.

The more locomotive bivalves, as Cardium edule, or the sea-mussel, have sexes distinct (diœcious), also a great number of Gastropods and Cephalopods; and union of these takes place either immediately or, in some Cephalopods, as is now well known, by means of a hectocotylus. There has been question respecting the little gland situated at the ending, or rather beginning, of the double set of organs of the monøcions Pulmonifera (Helix and Lymncous), whether it is an ovary or testis, or the two combined, and whether the corresponding extremity of the shorter set of the duplicate organs is an ovary or simply an albuminiparous organ*. The first gland, imbedded in the liver at the end of the spire, was considered to be the ovary by Cuvier ; but, according to Meckel, it includes both ovary and testis, with distinct though combined oviduct and vas deferens; and of this opinion we have now no doubt. The fact may be easily verified by pressing the gland and duct between two glasses, and submitting the object to the lens; and, from the movement of the spermatozoa, it is a truly wonderful object. In Onchidium this gland visibly consists of two others, quite disjoined; and in all mollusks it is connected with the external male organ, but never, we think, without first communicating with the semitransparent organ, now sup-

[^69]posed to combine the matrix and albuminiparous gland, called testis by Cuvier. This double communication, with the imperfect separation of the vas deferens from the matrix (Ifeli.r), may effect the transference of both ova and spermatozo to the matrix in default of impregnation from without. Perhaps, in the sluggish nature of the animals, and in their liability to be isolated, we may see a reason for this arrangement ; and we think that there is no longer much special mystery in their generative economy. 'Ihe vesicle is a reservoir or spermatheca, as is the long companion tube present in some Helices, and in which post coitum the ligula is found also. This just mentioned ligula or chitinous strap, being a spermatophore or carrier of the spermatozoa, is formed in the long appendix or flagellum attached to the male organ, whilst the clert (or two darts, H. virgata), so curious in itself, and still more so from the way in which it is used*, is formed by the fimbriated glands at the base of the muscular sac, in which it is contained when not in use. Other branchiate univalves (Onchidium) have the same organ, but less developed. Equally curious with the above, or more so, is the arrangement in respect of this function in the Cephalopoda, though in some of them the fertilizing material seems to be transmitted directly, through the medium, however, of spermatophores (corpora Needhami), tantamount perhaps to the curious spermatophores of Paludina amongst Gastropods. It may be mentioned, as an instance how much allied species may differ with respect to this function, that the genus Bythinia, so near to Paludina, has only the ordinary spermatozoa. Endosmosis has a remarkable effect on these last bodiest. In some of the Cephalopoda one of the arms is, as now well made out, transformed into the spermatophore or hectocotylus, becoming detached and left within the mantle or sac of the female, and maintaining its position by means of its suckers, the filiform extremity insinuating itself into the orifice of the oviduct. In a small Loligo we think we traced a duct leading from the male gland to the modified arm or hectocotylus \ddagger; and we have several times found the

[^70]filiform processes amongst the discharged ova of Argonaut, at first, indeed, mistaking them for parasites; and in troo specimens of A. hians, and in another species, we have taken the hectocotylus from the mantle-sac, in which they lay crossways, overhung by the imperfect septum of that cavity. Sepiola, Sepia, and Loligo, discharging their ova enveloped in albuminous matter, moulded into different forms, have large albuminiparous glands, answering to those of Gastropods, though more externally situated. The Argonaut has two genital outlets in the female and also in a supposed male specimen, whilst Octopus in the male, and the Decapoda in both sexes, have only one.

In the separation of the male gland from its corresponding external organ in some Gastropods to distant parts or extremities of the body (the latter being frequently connected with the right tentacle), in the connexion between the two by means of an internal vas deferens or by an external groove, so often seen, and in the formation of the spermatophore (Helix), we are led to conclude that the curious hectocotylus is not quite so isolated and unique a phenomenon as at first appears, but that a synthetical comparison might be made, with more or less success, in this particular, as in others in the Mollusca generally-a comparison which te have endeavoured to make, and such as may be traced, taking other rital organs and functions for comparison (the digestive system for instance, already well described by Cuvier), through the whole of the Invertebrata, and indeed through all animals-enough to show us that no animal has been produced having no relations to the others, or, in other words, upon a different plan to that of its fellows.

XXXTI.-On the Final Stage in the Development of the Organs of Flight in the Homomorphic Insecta. By Prof. J. Woon-Masor, Deputy Superintendent of the Imperial Museum, Calcutta.

When an insect quits the egg it has no wings, nor the slightest rudiments of such, these making their first appear-
ance at one of the earlier changes of skin as slight prolongations of the posterior angles of the dorsal ares of the two hindermost divisions of the thorax, the mesothorax and the metathorax. These prolongations are so many duplicatures or flattened evolutions of the integument-the chitinous membrane that covers them above and below and on the edges being in direct continuity with that which covers the insect's body, being, in fact, part of it, and the intermediate cellular layer which produces this chitinous membrane being similarly continuous with that which underlies the skin of the rest of the insect's body. They increase in size slightly at each successive moult, soon acquiring a definite triangular form and the principal nervure dividing the wing into its two principal arex; but, relatively to the future wings, they are small and insignificant even at the last moult, at which the organs of flight are suddenly developed to their fullest extent. If a wing-rudiment be examined just prior to a change of skin, it is found that its external chitinous covering has separated off so as to be casily detachable from a new wing-rudiment that has formed beneath it, and that this new wingrudiment lies quite flat within its sheath (as the portion of the chitinous external layer which covers it may be called after its detachment). The new wing-rudiments are found to lie similarly flat within their sheaths at every change of skin down to and including the last but one, into the interval between which and the last it is that the growth of the wings from small and insignificant rudiments to their full extent is compressed. The penultimate change of skin accomplished, new wing-rudiments are produced in due course from the cellular layer; and at the time when their sheaths first become detachable from them they, like all their predecessors, lie extended quite flat within these sheaths; but the detachment of these is no sooner completed than they* commence to grow with great rapidity. The first outward and visible signs of the growth that now ensues are the thickening of the prolongations (which up to this time were thin plates with thin and sharp edges closely embracing the insect's body, but which now gradually become biconvex masses with thick and blunt edges standing out from it) and the gradual obliteration of the principal nervure. The walls of the sheaths eventually become distended to such a high degree of tenuity and consequent transparency under the enormous pressure thrown upon them by the rapidly growing wings, that it is possible to see, even without dissection, the manner in which these are foreed

* I. c. the ming-rudiments.
to arrange themselves in so limited a space: it can be clearly seen that the wings have thrown themselves into a multiplicity of closely packed transverse folds, representing increments of growth in length, and that these, again, have disposed themselves, in groups, in wavy (longitudinal) folds representing growth in breadth; so that the wings, plaited and folded up in this complex manner, present a superficial resemblance to the surface of a much-convoluted brain or to a portion of a transverse section of a Labyrinthodont tooth.

This mode of development of the wings obtains in all Orthopterous insects, upon larvæ of which these observations are mainly based-at least in some Neuroptera (Termes), and probably universally in the groups which Westwood, years ago, collectively termed the Homomorphic Insecta.
XXXVII.-Note on the "Tubulations Sableuses" of the Etage Bruxellien in the Environs of Brussels. By H. J. Carter, F.R.S. \&c.

[Plate XVIII.]

In the 'Annales de la Société Malacologique de Belgique,' t. ix. pl. iii. 1874, M. A. Rutot published an excellent paper on the "Grès Fistuleux et Tubulations Sableuses de l'étage Bruxellien" in the environs of Brussels, chiefly dwelling on the fossil sponge-spicules found about them; and thus attention has been directed to these interesting objects, which otherwise might have remained in abeyance for an indefinite period.

Knowing the interest which I have taken in the Spongida both recent and fossil, my kind friend M. Ernest Vanden Broeck, of Brussels, obtained from M. Rutot a copy of his paper, and, together with some of the sand containing the sponge-spicules, forwarded the same to me in April 1876, following it (as I had expressed an opinion somewhat different from the conclusions to which M. Rutot had arrived) by a box containing several specimens of the "tubulations sableuses " themselves, for my examination.

These specimens, which were preceded by a letter and sketches from M. Vanden Broeck explanatory of the contents of the box \&c., reached me in August 1876; and having had many engagements to fulfil since them, my examination of them has necessarily been postponed to the present time (Feb. 1877).

There are eighteen specimens of the "tubulations," with
specimens also of the sand from the deposit ("Gress lustres ") in which they are vertically imbedded. (According to M. Rutot, op. cit., the " Bruxellien étage" consists, from below upwards, of : -1 , conglomérat siliceux ; 2, grès lustrés; 3, grès calcarifères; 4, couche roukée à Nummulites luvigata.) And although the specimens are all, with the exception of one (which is without the "concretionary crust," to be hereafter mentioned), more or less fragmentary, still there is quite enough for me to give the following description of them, which seems to indicate the kind of organism of which they are now alone the fossil representatives.

As a preliminary measure, it is desirable to premise a description of the exterior (since I do not like to destroy the fossil by breaking it open) of that exceptional specimen which appears to me to be almost perfect (Pl. XVIII. fig. 1). It is cylindrical in form, a little more than 18 centims. long by 3 centims. broad in its greatest diameter, which is the midulle of the lower half (I shall assume henceforth that the pointed extremity is the lower or posterior portion), slightly sigmoid, and unequally pisiform-tuberculous on the surface throughout except at the extremities (fig. 1, a a a). The upper half or 9 centims. has much the same diameter throughout, viz. 3 centims., ending in a truncated extremity above, which shows that the tuberculous surface is the outer part of a layer formed upon a solid central cylinder $1 \frac{1}{2}$ centim. in diameter (fig. $1, b$); while the lower half becomes gradually inflated towards its centre, which, as above stated, is 3 centims. in diameter, after which it diminishes rather rapidly to a point that is not in the line of the vertical axis, but turned to one side of it, and characterized on one half by a smooth, untuberculated, somewhat spiral depression, which ends in the point (fig. 1, c). Thus constituted, the whole presents a slightly sigmoid cylinder truncated at the upper, and pointed at the lower end, of equal size throughout the upper half, and inflated towards the centre in the lower one, with a generally unequal, pisiformtuberculous surface. In composition it consists of sandgrains (quartzite) held together by a white calcareous chalky cement; so that this specimen might have originally come from the upper part of the strata alluded to in M. Rutot's paper (p. 4 of the separate copy).

We will divide the "tubulation sableuse" as M. Rutot has done, into three portions, which I would term, respectively, the central cylinder, the tuberculous layer, and the concretionary crust-the two former being proper to the fossil, and the latter derived from the deposit in which it is imbedded.

Central cylinder.-This, which is structureless and composed of quartz-sand more or less agglutinated together by semicrystallization into the form of quartzite, may be circular (fig. $7, a$) or oval (fig. 8, a) in the transverse section, thus indicating its general shape in this respect. The largest fragment of the former that I possess, when extricated from the tuberculous crust, is 10 centims. long and 8 millims. in diameter throughout, so that there is no diminution in size from one end to the other (fig. 5) ; and each end having been truncated by fracture in this as well as in all the other fragments sent to me (which so far are alike), shows that none of them possess the natural extremities of this form, which, from what has been premised, in the typical specimen, as well as that which will be presently mentioned, shows at least that, in its natural state, one end is reduced to a point. The surface of the circular form presents a trapezoidal or quadrangular subcircular reticulation of grooves, which surrounds the cylinder and in the most perfectly formed portions has a scaly appearance, in which the interstices are equal, having two angles opposite and longitudinal, and the other two opposite and transverse, with a distance of 7 millims. between each of the "two angles" and a convex area respectively (fig. $5, a$). With the exception of this form varying in diameter with age, I can state no more of it. Not so, however, with the oval or compressed form, which is lobed or segmented longitudinally, 18 centims. long and δ by 15 millims. in transverse diameter (at least such are the dimensions of my best specimen, fig. 2, $c c$) ; for although truncated by fracture above like the rest (fig. 2, d), it terminates below or behind in a naturally pointed extremity (fig. 2,e), and presents throughout its whole length a linear central groove (fig. 2, g), from the anterior portion of which (in fig. $3, f f$) the remains of several smaller grooves in succession, at equal distances of about a centimetre each, may be seen extending outwards, backwards, and downwards, resembling altogether, in position and direction, the dorsal vessel and its lateral branches in an Annelid, unless the latter be likened to the grooves between the segments.

Branched form. - In another specimen of the same length but of the "circular" form, truncated by fracture at each end, and irregularly sigmoid in its general course (fig. 4, cc), four similar cylinders branch off from the main one in different directions and apparently from different and opposite parts of the main cylinder, each of which terminates, after curving outwards for a distance of 3 centims., in an abrupt end also truncated by fracture, but rather of a compressed or oval
form, 6-8 millims. in its longest diameter (fig. $4, d d d$). After this, viz. 7 centims. further on, two other cylinders of a similar kind branch off in different directions (fig. 4, d), in all six ; but as, in each instance, one passes out behind, it camot be represented in the drawing; while the main cylinder in its course also presents several nodular exerescences which look like the gemmiparous commencements of more branches (fig. 4, e). 'l'his specimen has very much the appearance of both the circular and compressed cylindrical forms conjoined-that is, the former embracing the latter; but the whole was encased within one and the same tuberculous layer, sending off processes to cover the branches respectively.

Here it should be observed that althongh the branching has not been observed in any Annelid of the present day, still the process of gemmiparous reproduction is not altogether absent in the Annelidans (ex. gr. Nais cirrhatula), in which, it is true, the anterior segments here and there pass into heads successively, while those in the intervals become the bodies of the new animals. Is it possible that a lateral instead of longitudinal multiplication could have taken place in the older Amnelidans, although hitherto not found in recent ones?

Again, although our knowledge of what is going on at the present day is the best interpreter of what has taken place during past ages, still the amount of this interpretation must be in proportion to the amount of that knowledge; and although many forms have existed in past ages which do not exist at the present day, and vice cersta, there are modifications on both sides which can easily be admitted without doing violence to the principle first enunciated. May it not have been so here, viz. that a branched gemmiparous Annelid may have previously existed?

Tuberculous layer.-While, however, there is a great difference in the form of the "central cylinder" and its varieties, viz. circular, oval, and branched, all are without exception surrounded by the same kind of tuberculous layer (fig. 1, aaa, fig. $2, b b b$, $\&$ c., also figs. 6,7 , and $8, b)$; and this, although corresponding internally to the surface of the cylinder, is deeply pisiform externally, where it is in contact with the "coneretionary crust" of sand derived from the deposit in which the "tubulation" is imbedded (fig. 2, a a a , and figs. 7 and 8,66$)$. Its composition, where solid and still united or in direct contact with the cylinder (figs. 6, 7, and 8), is the same as that of the latter, viz. almost purely arenaceous, indicative of its having been part of the animal itself; but in most instances this material has become so friable that the whole
of the disintegrated grains mixed up with isolated fossil sponge-spicules in a beautiful state of preservation, which cover it, as will be seen hereafter, can be shaken out of the "tubulation," leaving its mould only between the cylinder - and the concretionary crust of sand outside (fig. $2, b b b$). It is therefore to this mould or impression of the pisiform surface left in the inner side of the concretionary crust that we must chiefly look for the exact form of the pisiform surface of the tuberculous layer; and here we shall find a cancellated appearance that, in the form and dimensions of its scale-like divisions, where most symmetrical or perfect, indicates a surface exactly like that on the central cylinder already described (fig. 4, f, and fig. 5, a), only that the grooves between the pisiform tubercles are much deeper, and therefore the convexities of these eminences (that is, of the interspaces) much more prominent, so as, indeed, to present the general tubercular pisiform character mentioned (figs. 6, 7, and 8). Thus the average distance, perhaps, between the summit of the pisiform eminences and surface of the cylinder is about a centimetre (fig. $2, f$); and this gives the thickness of the tuberculous layer, which varies very much according to locality and circumstances, being least in thickness pesteriorly or round the pointed end (?tail) of the cylinder; while the grooves between these eminences in many cases reach down nearly to the central cylinder, with which, as before stated, they are in direct contact (figs. 7 and 8); and in one specimen that I have, some of the lateral eminences are conical, one centimetre long, and project outwards on both sides at right angles to the compressed cylinder (fig. $2, f$), still further giving it the appearance of an Annelid; while another specimen of the "compressed" cylinder presents a lobate or segmented appearance (fig. 3).

Concretionary crust.-Nothing more need be stated of this than that it is derived from the deposit in which the "tubulations" are imbedded, and, although causing the latter to assume different forms outside, in no way indicates the condition of the interior (fig. 2, $a \alpha, \& c$. .) ; hence the necessity of breaking open this crust or case cautiously before the form presented by the fossil itself can be seen and described. M. Vanden Broeck states that he has found specimens of the "tubulations sableuses" one metre in length, and that some are pyriform, of which I have fragments of the outer case only; but as the tuberculous layer and the concretionary crust are by no means certain indications of the form of the central cylinder, which may be either circular or oval, it would be advisable to ascertain if the latter is in size and shape like one of these-that is, not pyriform. As to length,

Lamarek states of A spergillum (that is, upon the fragments of A. vaginiferum brought home from the Red Sea by Savigny), that "Il doit avoir plusieurs pieds de longucur" ("Anim. sans Vertèbres,' ed. 1818, vol. v. p. 430).
tossil sponge-spicules.-The fossil sponge-spicules so well selected and represented in the plate accompanying M. Rutot's excellent paper (op. et loc. cit.) are, for the most part, in a detached and fragmentary state, consisting of an indefinite number of kinds and forms from as many different sponges, mixed up with the tests of minute Foraminifera, fragments of minute Echinodermata, the disks of Diatomacea, and grains of quartz-sand, all of which occupies the intervals between the pisiform eminences of the tuberculous layer and between their summits respectively and the concretionary crust-that is, coats the former generally (fig. 8, c), -the tuberculous layer itself, as before stated, having been observed, where still adherent to the central cylinder (fig. 6 b), to be composed of the same quartzite material as the latter. Hence the mixture of spicules \&c., which is nearly the same in each "tubulation" (as I have ascertained by examination, having carefully kept that belonging to each separate), must have been gathered up by the surface of the tuberculous layer, and that, too, with a partiality for such material, as it does not exist so plentifully in the deposit in which the tubulation is imbedded, as testified by the composition of the concretionary crust. At the same time, as the accumulation of spicules \&c. must have been going on more or less pari passu with the growth of the tuberculous layer, the latter might also have been more or less composed of such material.
'To describe the sponge-spicules in detail (which, being detached in the friable material, are easily picked out with the point of a hair-pencil) would occupy more time than I now have at my disposal ; and therefore I shall premise the few observations I may have to make on them generally with the statement that, after repeated efforts, I have not been able to find any thing more important in this respect than is contained in the plate accompanying M. Rutot's paper; hence constant allusion will be made to his figures.

Hexactinellida. Among the fragments of the siliceous skeletons of the Vitreohexactinellida there are, at least, two forms (Rutot, pl. iii. figs. 31-34), one of which is much more abundant than the rest; and this presents the lantern-like or octahedral form of the knot of Myliusia Grayi ('Annals,' 1877, vol. xix. pl. ix. fig. 10, \&c.), but so far different that the fibre between the knots is microspined, and the spines, instead of being scattered irregularly over the fibre as in M.

Grayi, are gathered into short, broken, circular lines. (This form is equally common to the Ventriculites and Coeloptychium, but with long spines).

Lithistina. Among the remains of the siliceous skeletons of the Lithistina, which are by far the most abundant and most perfect in species and different forms of spicules respectively (Rutot, figs. 9-11, 22-26, 43, 45, and 46), is one (fig. 9) which is very like the surface or dermal large spicule of Corallistes (Dactylocalyx) Bowerbankii; while the more complicated stellate forms (figs. 43, 45, and 46), each of which has a short pointed vertical shaft, indicative of its surfaceorigin (generally broken off), are equally numerous, varied, and beautiful in their forms.

Geodina. Small siliceous balls (Rutot, figs. 36 and 37), "zone-spicules" (figs. 12, 13, and 20, 21), "forked" and " anchor-heads" respectively (figs. 16-18), and " body-spicules " (figs. 1-4), indicate the presence of Geodia, as well as that of Stellettina, of which, respectively, there are, in all probability, the remains of several species. That form of "zone-spicule" (figs. 20 and 21) which has a curved shaft in addition to produced furcate arms expanded florally and frequently very unequal in length, abounds also in the Upper Greensand of Haldon Hill, near Exeter, to which, together with the other spicular elements of Geodia, I have given the name of Geodia haldonensis ('Annals,' 1871, vol. vii. pl. x. figs. 67 and 68). It is equally common also in the cavities of English chalk-flints; but I have never seen any sponge of the present day bearing the zone- or large furcate spicules like it; so this species may have ceased to exist.

Donatina. The globo-stellates of two kinds of Donatia appear to be present, as indicated by their forms respectivelyof which fig. 35 is one; and the other is like the globo-stellate of the present day in D. lyncurium, which is also common in the cavities of the chalk-flints in England.

Ophiorhaphidites is also common here (Rutot, figs. 5 and 29), as well as in the Upper Greensand of Haldon Hill, and existing at the present day ('Annals,' 1876, vol. xviii. p. 458.)

Diatomacee. The disks of a cycloid diatom are very abundant (figs. 38, 39, and $39 a, b$), presenting two forms, viz. one simple like a flat drum, and the other the same, but with depressions on it, in the form of a "Maltese cross," extending from the centre to the circumference on both sides, in such a way that the prominent or raised parts on one side correspond to the depressions on the other, thus giving the edge, when viewed laterally, an undulated appearance like Cyclotella

Kützingiena, which, according to Smith (Synop. Brit. Diatom. vol. i. p. 27, pl. v. fig. 47), is sometimes simple like a flat drum and at other times undulated, as above stated of the fossil diatom. This undulation is not meommon in the frustules of the Diatomacea, ex. gr. Actinocyclus undulatus and Cymatopleura. Besides the presence of this diatom in great numbers, there are fragments of beaded strings very like those of Melosira, often, when the moniliform divisions have become separated, simulating the siliccous balls of a Geodia, which they exceed greatly in number.

I have not seen any spicules of the genus of fossil sponges to which I have given the name of "Monilites," so common in the Upper Greensand of IIaldon Hill ('Annals,' 1871, vol. vii. pl. ix. figs. 41-47), and common also under the "acuate and short-shafted three-armed headed forms," respectively, in the cavities of the chalk-flints in the south of England ('Annals,' 1874, vol. xiv. p. 253), also present in the remains of the chalk in the north of Ireland (Wright, 'Belfast Nat.-Hist. Club Report,' 1875, pl. ii. figs. 4 and 5), unless M. Rutot's fig. 21 be one. Nor have I ever seen any recent sponge bearing spicules of this kind.

Having thus described the "tubulations sableuses," we arrive at the consideration of what they originally were; and here we must, to a great extent, depend on inference and conjecture.

In the first place the vertical position of these fossils (sometimes, according to M. Vanden Brocek, " 1 mètre" in length), with their small end or tail downwards, in an arenaceous deposit, together with the tubular form, is more characteristic of an Annelid than of any other animal; while the forms of the internal structures respectively are still more characteristic of this kind of animal. To assume that any invertebrate, such as a sponge, continued living during the time that a "metre" of this arenaceous material was being deposited, seems impossible, while an Annelid, or Aspergithem, indeed, might bore down this distance in a very short period.

Again, the central cylinder and its markings are almost identical in form, size, and composition with those of Trachyderma servetra, Salter (Quart. Journ. Geol. Soc. Lond. vol. xx. part 3, no. 79, Aug. 1, 1864, p. 288, pl. xv. fig. 9, a, b), common in the Silurian quartzite pebbles of this beach (Bud-leigh-Salterton, Devon). But then the tubes or cylinders here are aggregated, while the "tubulations sableuses" appear to be solitary.

In the oval or compressed cylinder, too, we have the lobular form indicative of original segmentation, and the linear depres-

Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.
sion in the median line extending throughout the body, resembling that of the dorsal vessel of an Annelid, together with a similar appearance of the lateral branches in one part, if they are not due to the grooves of segmentation, and, lastly, a conical tail; while the typical specimen, first described, presents a cylindrical form of the same size in the upper half and inflated in the lower one, with the anterior extremity truncated and the posterior reduced to a point-the core or axis consisting of a distinct cylinder and the surface tuberculated.

But, although the axial cylinder when extricated from the tuberculous layer, is almost exactly like that of Trachyderma serrata, what are we to deduce from the all-enveloping tuberculous layer itself and the circular cylinder with branches? To me they are without analogy, although the rest of the facies, together with their having, in some instances, gone down into the arenaceous deposit a whole metre in length, is characteristic of an Annelidan type and habit.

Phillips instituted the genus Trachyderma (Mem. Geol. Survey, vol. ii. pt. i. p. 331, pl. iv. figs. 1-4) for two species, viz. T. coriacea and T. squamosa. Of the former it is stated that the rings on the cylinder are "protuberant or tubercled" (fig. 1), and of the latter that they "rise at regular distances into short small cariniform projections; " while Salter (l. c. fig. 9, a) shows that the Budleigh-Salterton (Silurian) fossil possesses the remains of a series of inclined conical lateral processes arranged serrately. So that in the latter there was something beyond or outside the central cylinder, which central cylinder, as in the common earthworms (Terricola), probably represents the alimentary canal only, i.e. without the ammuated integrment, while the tuberculous layer might have been analogrons to the branchial tufts in Arenicola piscatorum among the Dorsibranchiata.

Be this as it may, under the circumstances it seems best to consider this fossil, provisionally, as a new type of Annelids, for which I would propose the name of Broeckia, after M. Ernest Vanden Broeck of Brussels, who has taken such trouble in sending me the specimens. The genus would then stand thus:-

Genus Broeckia.

Broeckia bruxellensis. (Pl. XVIII. figs. 1-8.)
Fossil cylindrical, truncated in front, abruptly pointed or conical behind, tuberculated on the surface; upper half equal in transverse diameter throughout; lower half gradually inflated towards the middle (Pl. XVIII. fig. 1). Composed of a
central cylinder surrounded by a tuberculous layer; cylinder circular or compressed (oval) in transverse section; the former presenting on its surface a corrugated reticular lineation, whose interstices, elongated transversely, are, where most regular, trapezoidal; the latter, or compressed form, lobed or segmented longitudinally, and presenting a median linear depression, extending from one end to the other, with similar depressions at equal distances laterally extending outwards, backwards, and downwards. Often branched. The whole surrounded by a tuberculous structure whose surface is unequally pisiform, and whose crevices or intervals between the pisiform projections reach down nearly to the central cylinder. Pisiform tubercles, where most regular, presenting the same kind of trapezoidal arrangement as that seen on the surface of the eylinder, only much exaggerated, with a tendency to subdivision by inflection of the sides, through which the trapezoidal form becomes more or less obliterated; pisiform tubercle sometimes conical and extending outwards at right angles to the cylinder laterally (fig. 2, f) ; the whole incrusted with a layer of fossil sponge-spicules of different forms and belonging to many different species, chicfly fragmentary and mixed up with minute Foraminifera, the remains of minute Echinodermata, cycloid Diatomacee, and quartz sand. Size variable, about 20 centims. in length ; central cylinder variable below, 2 centims. in diameter; tuberculous crust about a centimetre thick towards the centre and upper part, less towards the tail. Branched form equally invested by the tubercular structure, which is prolonged upon the branches respectively. Composition varying with the situation, i.e. either entirely of quartz sand, or calciferous quartz sand or argillaceous quartz sand.

Formation. Etage Bruxellien or Mid-Eocene.
Locality. Environs of Brussels.
Obs. The presence of the sponge-spicules and other minute organisms is, of course, contingent upon their presence in the sea-bottom when the animal was growing. Thus in some specimens, stated by M. Vanden Broeck to have come from a fine sandy argillaceons deposit in the Lower Eocene ("Sable Yprésien (niveau du London Clay) à Luttre ") -which, from their form, appear to me to be identical with the " tubulations sableuses" of the étage Bruxellien or Mid-Encene about Brussels-there are no remains of spicules or any other organism that I can see; while the composition of the fossil, being exactly that of the deposit in which it was imbedded, as well here as in the quartz sand, seems to indicate that the latter must have been composed of some soft and perishable
organic substance; for if it had been hard and calcareous like that of coral, it could not have been replaced by the quartz sand of the deposit. Of course, also, the variety of specimens from which the above characters have been taken is limited, and therefore open to alteration by those who may have the opportunity of obscrving an unlimited number on the spot.

Lastly, as regards the presence of sponge-spicules being indieative of that of distinct species of the Spongida. Had this been the case, in the first instance, viz. where the spicules had been formed by the sponge itself, they would have been all of one kind, more or less entire and regularly arranged. On the contrary, they are of fifty or more different kinds and forms belonging to as many different species of sponges, nearly all more or less fragmentary and thrown together most confusedly. Still this heterogeneous assemblage, including all sorts of other minute organisms, might be exactly the case with the arenaceous sponges (ex. gr. Dysidea), which do not form their own spicules, but, for the sake of obtaining solid material for their skeletons, take in every thing of the kind that impinges upon their surface. But this is done by the Dysidere in a massive, amorphous, lobed form, while the tuberculous layer of the "tubulation sableuse," as lefore stated, has, where most regular, a defined pattern on its surface, is chiefly composed of pure quartz sand like that of the cylinder and surrounding deposit, and is only coated by a layer of the spiculiferous heterogeneous material mentioned. Like, therefore, as the cylinder and its tuberculous crust in Broechia bruxellensis is to a fossil sponge of this form, the detail is totally opposed to such an inference.

Considered apart, however, the great number of these spicules thus brought together, their variety, state of preservation, and the easy way in which they are extricated from the friable material with which they are combined, render them a striking and valuable records of the orders and species of the Spongida which existed at that epoch and in this locality.

EXPLANATION OF PLATE XVIII.

N.B. All these representations are of the natural size, and in their outline almost facsimiles of the objects themselves.

Fig. 1. Brocckia bruxellensis, nov. gen. et spec., divested of the concretionary crust. $a a$, tuberculous layer ; b, central cylinder; c, posterior or pointed extremity.
Fig. 2. The same: partly covered by the concretionary crust, which has been split open to show the interior. $a a$, concretionary crust; $b b b b$, mould of the tuberculous layer left in the concretionary
crust ; c c, central cylinder (compressed or oval form) ; d, fractured anterior extremity of the same; e, posterior extremity or tail more or less covered by the tuberculous layer; f, eminences of the tuberculous laver of a conical form attached to the central cylinder, ? annelid-like; g, central longitudinal depression simulating dorsal vessel; h, commencement of a gemmiparous branch.
Fig. 3. The same: frarment of a central cylinder, broken (compressed form) to show its ? segmented appearance, \&c. a a, remains of concretionary crust; $6 b$, mould of tuberculous layer therein; $c c$, portions of tuberculous layer adherent to the cylinder; $d d$, central cylinder, showing the segmented appearance; e, central longitudiual depression simulating position of dorsal vessel; $f f$, lateral linear depressions simulating positions respectively of lateral vessels or segmental grooves; g, line of fracture; h, portion whose other side is represented in fig. 6 .
Fig. 4. The same: branched form. a a a a , concretionary crust; $b b b b$, casts and moulds respectively of tuberculous layer; cc, "parent circular cylinder; dddd, branches truncated respectively; e, ? gemmiparous projection or commencement of new branch on circular cylinder; f, form of the cells of that portion of the concretionary crust taken off g, where these cells ($=$ mould of the tuberculvus layer) are most regularly formed; $h h$, compressed cylinder.

This specimen looks as if the circular branched crlinder (cc) were in contact with the compressed form ($h h$), all of which was enclosed within one and the same tuberculous layer, which was prolonged sheath-like upon the branches respectively.
Fig. 5. The same: central cylinder (circular form) divested of the tuberculous layer to shoir the transverse reticular lineation. a, form of depressed reticular lineation with slightly mised or convex interstices (scale-like) where most regular.
Fig. 6. The same: the other side of that portion of fig. 3 marked " h," to show the form of the tuberculous layer when divested of the concretionary crust and still adherent to the central cyiinder. a, central cylinder (compressed form) ; bb, tuberculous layer; $c c$, situation of sponge-spicules.
Fiy. 7. The same: transverse section of a central cylinder (circular form), and its tuberculous layer divested of the concretionary crust, showing the relative position of the two former. a, central cylinder; b, tuberculous crust. Diagram.
Fig. 8. The same: transverse section of a central cylinder (compressed form), to show the same. a, central cylinder; $b b$, tuberculous layer; c c, incrustation of sponge-spicules $\mathbb{\&} c$.
XXXVIII.-Revision of the Lepidopteron: Genus Cleis, with Descriptions of the new Species. By Amthle G. Blther, F.L.S. \&e.

The genus C'leis is nearly allied to C'allidula, Tyuluris, and Cleosiris. These four gencra appear to me to be an aberrant group of the family Hypsida, and should be placed between the true Hypside and the Melameride.

The following is a list of the species hitherto described or represented by specimens in the collection of the British Musenm.

1. Cleis dichroa.

Damias dichrou, Boisdural, Voy. de l'Astrolabe, i. Lep. p. 260. n. 3 (1832-35).
Mysol (Wallace). Coll. B.M.
Originally described as coming from "Offack and Bourou." The chief peculiarities of this species consist in the orange band of primaries commencing at the base of the costa as a slender border, and the uniformly brown secondaries.

2. Cleis arctata, n. sp.

Allied to the preceding; purplish brown : primaries with a fulvous band, beginning very narrow at the middle of the costal margin and terminating on the outer margin, the lower half of which it occupies; its inner edge irregularly excised, its outer edge regular and oblicpue: secondaries with a narrow fulvous marginal band, which farles away before reaching the apex ; fringe brown: underside clearer and brighter in colour ; the band of primaries commencing at the base of costa, which it borders to the centre; its inner edge also regularly serrated; the band of secondaries also tapering off gradually, not obscured as on the upper surface: body below bright ochreous. Expanse of wings 1 inch 4 lines.

Ké Island (IVallace).
Type, B.M.
This is a very well-marked species.

3. Cleis evander.

Papilio crander, Cramer, Pap. Exot. iv. pl. ccexxxi. figs. F, G (1782).
Amboina and Ceram (Wallace).
Quite distinct from C. melaxanthe, with which Walker placed it.

4. Cleis propinqua, n. sp.

Allied to C. evander, but with the bands wider and deeper in colour, that of secondaries nearly twice as wide. Expanse of trings 1 inch 5 lines.

б, Ternate ; ㅇ, Celebes (Wallace). . Type, B.M. A local representative of the preceding species.

5. Cleis plagalis.

Cleis plagalis, Felder, Reise der Nov. Lep. iv. pl. cvii. fig. 22 (1874).
Aru.

6. Cleis erycinoides.

Cleis crycinoides, Felder, Reise der Nov. Lep. iv. pl. crii. fig. 23 (1874).

Ternate (Wallace). B.M.

7. Cleis fasciata, n. sp.

f. Above deep purplish brown ; primaries crossed beyond the cell by a rather narrow oblique orange band, from the subcostal nervure to just below the second median branch, both margins of this band irregularly serrated; secondaries crossed by a slightly broader discal band, its imner edge sinuated between the nervures to the radial rein, above which the band is slighty broaler to the second subeostal branch, whence it tapers to near the costa; palpi orange, spotted with black: wings below with the band of primaries wider towards the costa than on the upper surface; a continuous sulmarginal lilac line; pectus and legs orange, venter with a central longitudinal pale ochreous stripe. Expanse of wings 1 inch 6 lines.

Ternate (Wallace). Type, B.M.
Readily distinguished from the preceding by the position and width of the orange bands, that of the primaries crossing the wing just beyond the discoidal cell, that of the secondaries having the brown border beyond it of double the width.

8. Cleis aruana, n. sp.

Abore chocolate-brown; primaries crossed immediately beyond the cell by a rather broad ochrous band from the subenstal to the first median branch; secondaries crossed from the immer margin to the first subcostal branch by a broad irregular terminally tapering ochreous patch, its central area almost circular: wings below with the ochreous areas paler and clearer ; the basal halt of costa in primaries orange; a dot in each of the discoidal cells and a squamose subapical spot in primaries lilac ; body below ochreous. Expanse of wings 1 inch 6 lines.

Aru (Wallace). Type, B.M.
In coloration above this is most like C. versicolor ; in the position of the band of primaries it agrees best with C. fasciata.

> 9. Cleis versicolor.

Cleis versicolor, Felder, Reise der Nov. Lep. iv. pl. crii. tig. 24 (1874).
Dorey (Wallace). B.M.

In the coloration of the under surface this species some-
what rescmbles Callidula; in structure, however, it agrees with Cleis. I believe the Agonis lycuenoides of Felder to be a slightly aberrant form of Cleosiris, to which genus the following species are referable-C. erycinoides (of Walker), C. anchora, C. Felderi, and C. catamita.

10. Cleis posticalis.

Cleis posticalis, Guérin, Voy. Duperrey, Atlas, Ins. pl. 18. f. 5.
Damias melaxanthe, Boisduval, Voy. de l'Astrolabe, p.260. n. 2 (1832-5).
Duke-of-York Island (Rev. G. Brown). B.M.
Our example was recently presented to the collection by F . Du Cane Godman, Esq. The allied genus Callidula contains four species, C. petarius, C. abisara, C. sakumi, and C. jucunda; the genus Tyndaris, T. erycinata (the male of which is figured by Felder as that sex of his T. latifica) and T. letifica.

The Damias elegans of Boisduval is probably congeneric with the Nyctemera subaspersa of Walker, for which, therefore, I shall provisionally retain the name. N. subaspersa, although coloured somewhat like Secusio anmulata, has long, slender, filiform antennæ, and is more nearly allied to Cleis.
XXXIX.—On the Elateridæ of New Zealand. By D. Sharp.

In this paper I have put together descriptions of all the beetles belonging to the family Elateridæ I have been able to procure from New Zealand, and have indicated their structural characters in a manner which, although very imperfect, will, I belicere, allow the names and affinities of most of the species to be determined without much difficulty.

I have included under the Elateridæ four or five species of Eucnemidx ; for though several able entomologists consider the Eucnemidæ to be a distinct family, I am unable myself to consider them such so long as the present extension is granted to the Elateridæ. The Eucnemidæ, in fact, possess no point of real distinction from the Elateridæ: the form of the head (which is usually relied on to separate the two families) is not a sufficient character; for it undergoes various modifications in both the Eucnemidæ and Elateridæ, and in some species of Eucnemidæ its structure is more different from that of the typical members of the family than it is from that of the Elateridæ. Taking the term Elateridæ, then, in this wide sense, I have been able to distinguish about sixty-two
species (one of these species, however, is from the Chatham Islands). This must be considered a large number; for in Great Britain we have only sixty-six species; moreover the number of New-Zealand species will probably be greatly increased. Indeed there exist already two species which I have not been able to procure, viz. Dicusterius nigellus, White (which is a Encnemid), and Elater lateristrigatus of the same author. I have satisfied myself as to the names of the previously deseribed species by an examination of the type specimens in the collections of the British Muscum and E. W. Janson, Esq.

These sixty-two species may, it appears to me, be arranged in twenty-one groups or genera; and though I have wished very much to avoid making new generic names, I have unfortunately been obliged to propose such in the case of eleven of the groups; these names are Thoramus, Amphiplatys, P'anspeus, Aglophus, Lomemus, Mecastrus, Parimus, Geranus, Protelater, Neocharis, Talerax.

I must give an explanation of the terms I have used in describing the structure of the head. By the term forchead I mean all the upper surface of the head except the anterior part, and this latter I call the clypens. It is this anterior part that undergoes so much variation in the family: sometimes it is abruptly deflexed so as to be placed quite at right angles to the forehead, and is sometimes even more or less bent inwards under the forehead, while in other cases this clypens appears to be merely an extension forwards of the forehead in quite the same plane as it; and in such cases it is often not easy to trace the line of demareation between the two. By antemal spaces I allude to the depressions in which the cavities or points of insertion of the antennæ are placed. These antemal spaces are situated in the outer portion of the elypens; and when they extend inwards they oceupy more or less of its space and so alter its form. Lacordaire called these spaces in the Buprestidæ " antennary cavities;" but that term ought, I consider, to be used for the actual depression or carity in which the basal joint of the antemna is inserted. He considered these " antemary cavities" to be of great importance for the classification of the Buprestida, but to be unimportant in the Elateridæ. In this latter point I think he was mistaken; the antennal spaces appear to me to be of much importance in the Elateride as well as in the Buprestidæ.

As points of general interest, it may be remarked that these sixty-two species of New-Zealand Elateride show great variety of structure, and yet that they indicate a very isolated fauna. All the species are peculiar to these islands, except one
or two that have probably been introduced from Australia by means of the commercial communications between the two countries ; but, as a whole, I am inclined at present to the opinion that the relationship of the fauna (I speak here only of the Elateridæ) is nearer to that of Chili than to that of any other country, and that after Chili Australia must be ranked as offering the next greatest affinity.

The forms I have described under the generic name of Proteluter are of great interest from the peculiar structure of their head, which is of so unspecialized a character, that with but little modification it might be transformed into the head of a Throscid or Eucnemid; while at the same time it is satisfactorily connected with the other Elateridæ, I consider, by another series of New-Zealand species here described under the generic name of Geramus.

Norr, as the modifications in the formation of the head offer the most important basis for a classification of these insects (Elateridæ, Eucnemidæ, Throscidæ), we might seem entitled to come to the conclusion that Protelater is a primitive form or synthetic type. If we do so, however, we are met with this striking fact, that this Protelater does not show any near approach in the structure of its head to the ordinary Coleoptera, but, on the contrary, is more different from them in that respect than are many other members of the family (e. g. Corymbites, Lacon, and their allies). If, then, we were to allow ourselves to suppose that Corymbites and Lacon were descended from such a form as Protelcter, we should be obliged to admit that the process of evolution of their head has been one of convergence to the average Coleopterous type, rather than one of divergence from it. Interesting as this result would be, I do not think we are justified in attaching much importance to it ; for the homologies of the parts of the head in different groups of Coleoptera is a question that has scarcely been touched ; and if, as it is supposed, the head of an insect consists of three or more coalesced segments, each of which segments is itself composed of numerous parts, it is clear that the interpretation of the structure of the head in any one selected coleopterous form must be a very difficult one; and with so many parts to begin with, it would be very hazardous to conclude that two heads which should appear to be similar have been arrived at by a similar series of modifications.

My thanks are due to Captain Broun, of Tairua, and C. M. Wakefield, Esq., now of Uxbridge, for the most important contributions to the material from which I have drawn up this paper.

1. Thoramus Wakefieldi, n. sp.

T. niger, sat nitidus, breviter et requaliter fusco pubescens; prothorace crebre punctato, angulis posterioribus haud divergentibus; elytris subtiliter striatis, interstitiis arqualibus, subtiliter punctatis, apice subrotundatis; antennis articulis secundo et tertio brevibus, sed hoe quam illo paulo longiore; sutura intercoxali profunda. Long. $21 \frac{1}{2}-29 \mathrm{~m} . \mathrm{m}$.
This species is characterized by its comparatively large size, uniform and even pulsesence and punctuation, by the short but yet not extremely abbreviated and joint of the antema, and by the front anterion angle of "ach of juints $\mathbf{t}-10$ of the antenna being acute but not prolonged.

Oxforl, Fel, 1sisis; Dry hush; Christchurch; Hokitika; Rampiora; Mkarna, Dec. 19, 1st. The precies varies considerably in size; one small ipecemen is marked in Mr. Wakefield's collection as found on a hill-top at Akaroa by Mr. Fereday. The species also nceurs in the Northem Island, as some portions of a specimen have been received by Mr. Lawson from his brother at Auckland.

Mr. Wakefield has brought back, in spirit, specimens of the larve and pupe of this species; these I describe below :-

Larva $38 \mathrm{~m} . \mathrm{m}$. long., $8 \mathrm{~m} . \mathrm{m}$. lat. (on 9th and 10th segments), of thirteen segments, inclurling the hearl; of these the head is fuscous or pitchy, and the tro following segments are more or less infuscate, the other segments whitish; the 2nd segment as large as the Brd and 4th together, the Sth to 1) th segments are the broadest. Front of hewd deeply emarginate in the midtle, the emargination furnished in front with a band of cilia, ant in the middle with a horny pominence, terminating in three short teeth, one of which is placed ahove the other two. Antenne threc-jointed ${ }^{*}$, and with a membranous probahly retractile support, the apical joint very slender. Mandibles rather long, acuminate, simple; upper surface of head with coarse but not very mumerous punctures. Maxilla elongate, and furnished at the apex with a fourjointed palpus; labial palpi two-jointed. Dorsal segments, especially ±-8, more or less punctured, the punctures bearing short hairs. The 13 th dorsal segment small, furnished towarts the apex with rourh, coarse, hard, brown tubercles, cach of which bears several hairs; the apex is prominent on each side, the prominence being sumounted by a robust double tubercle; thirteenth ventral segment swollen at its

- The antenne of the Elaterid larve are described by Perris and Lacordaire as 4 -jointed; but it seems to me that the supposed basal joint is merely a membransus projection on suppret, and slows no trace of an articulation at its base.
base into a very large fleshy tubercle or false foot: the position of this foot and the form of the rentral segment cause the apical segment to be directed upwards in the two specimens of this larva before me.

This larva in its general characters agrees with those of the Elaterida described by Perris in the "Insectes du Pin maritime" (Amn. Soc. Ent. France, 1854) ; but the dorsal plate of the last ventral segment appears to be less divergent in its structure from the other plates than is usual.

Pupa about $26 \mathrm{~m} . \mathrm{m}$. long, showing twelve dorsal segments besides the head, the first of which is quite of the form of the prothorax of the perfect insect, but bears on each side of the front a long slender tentacle ; the scutellum of mesothorax rery distinctly developed, the metanotum also largely developed. The dorsal plates of the hind body are distinctly differentiated, the hind angles of the 3rd, 4th, 5th, and 6th segments being very prominent and hard; the membrane between the dorsal and ventral plates of the 6th segment is elevated at its hind margin so as to form a kind of ear-like cavity, which forms the anterior wall or protection of a very deep depression at the outer side and base of the 7th segment, this depression being limited behind by a strong elevation of the dorsal plate of the 7th segment ; the terminal (9th abdominal) dorsal plate bears at its apex on each side two slender spines, the upper one of which is short and simple, while the lower one is very elongate, and bears one or two short spines. On the under surface the trophi, antennæ, legs, elytra, and wings are very prominent. The hind body shows ten ventral plates; of these the seven basal ones correspond with the dorsal plates, the 7th differing, however, considerably in form from the others, it being much less transverse and greatly rounded behind; the 8th plate is not so largely developed as the corresponding dorsal plate, while the 9 th and 10th plates are small and protected by the projecting sides and apex of the 9th dorsal plate.

The peculiarities of this pupa seem to be the peculiar structural fossa on each side of the base of the 7th abdominal segment, and the presence of an exposed supernumerary ventral plate. In the perfect insect only five ventral segments are to be seen: a comparison of the pupa with the perfect insect renders it evident that the 7 th ventral plate of the pupa is the 5 th or apical segment of the perfect insect; thus the diminution in the number of ventral segments has occurred at both extremities of the hind body-the first and second plates having disappeared at the base, while the 8 th, 9 th, and 10 th at the extremity have become internal.

Mr. Wakefield informs me that these larve and pupæ "were taken from a fallen log of matai or black pine, near Christchurch. The larve were abundant in the log. I cut several perfect insects out of the same tree. The larva is very fieree; and one which I took home in the same box with a larva of Prionoplus reticularis made short work of the latter."

2. Ochosternus Parryi, Cand.

O. niger, sat nitidus, breviter et requaliter, fere sparsim fusco pubescens: prothorace crebre fortiter punctato, angulis posteriorihus cix divergentibus; elytris subtiliter striatis, interstitiis æqualibus, subtiliter punctatis, apice subrotundatis; antennis articulis secundo et tertio breribus, sed hoe quam illo paulo longiore ; interstitio meso-coxali angusto, sutura minus distincta. Long. $17-21 \mathrm{~m} . \mathrm{m}$.
This species, though closely allied to Thoramus Wakefieldi, is smaller and much narrower in proportion; this difference in form is accompanied by a greater approximation of the intermediate coxa, and a more complete suture between the middle processes of the meso- and metasternum. The structure of the antenne is similar in the two species.

Christchurch, found by Mr. Wakefield, but only three specimens; a fourth very small individual has been discovered by Mr. Fereday in the same neighbourhood.

Obs. Several specimens of this species are in Mr. Janson's collection, named by M. Candèze "Ochnsternus Parryi o ;" but I have seen no specimen which would enable me to form an opinion as to what form M. Candèze considered to be the male of O. Parryi.

3. Thoramus obscurus, n. sp.

T. niger, sat nitidus, breviter et æqualiter fusco pubescens ; prothorace crebre punctato; elytris subtiliter striatis, interstitiis æqualibus, crebrius punctatis, apice subrotundatis; antennis articulis secundo et tertio brevissimis, hoc quam illo paulo breviore, articulis $\mathbf{4}-10$. angulo apicali interno leviter producto; interstitio meso-coxali lato. Long. $19-21 \mathrm{~m} . \mathrm{m}$.
This species is rather closely allied to Thoramus Wakefieldi, but is smaller and less clongate in form ; this, in conjunction with the rather broad intercoxal space, the very abbreviated third joint of the antennæ, and the evenly distributed pubescence, will readily distinguish it from the other allied forms; the false joint at the apex of the autenne is rather elongate, and very distinctly marked off.

Found by Mr. Wakefield near Christchurch (three specimens), and at Akara, Dec. 19, 1874 (one specimen).

It is possible that this species may prove to be the male of Thoramus Wakefieldi.

4. Thoramus Feredayi, n. sp.

T'. angustulus, niger, minus nitidus, fuseo pubeseens; prothorace crebre fortiter punctato; elytris subtiliter striatis, interstitiis æqualibus et fere æequaliter pubescentibus, parcius punctatis, apice subrotundatis; antennis articulis secundo et tertio brevissimis, articulis $t-10$. angulo apicali interno longius producto; interstitio meso-coxali sat lato, sutura profunda. Long. $18 \mathrm{~m} . \mathrm{m}$.
This species will be pretty certainly distinguished by the above characters. The pubescence of the upper surface is rather longer and more scanty on the thorax than it is on the elytra ; and when the 2nd, 4th, and 6th interstices on the latter are carefully examined, it is seen that near the apex their pubescence and punctuation are slightly more scanty than on the adjoining ones.

Also found at Christchurch by Mr. Wakefield, but only two individuals.

At Mr. Wakefield's request I have named this species in honour of R. W. Fereday, Esq., of Christchurch, N. Z., by whom several of the Elaterida communicated to me by Mr. Wakefield were captured.

5. Elater levithorax, White.

E. niger, nitidus, parce pubescens; prothorace parce fortiter punctato ; elytris subtiliter striatis, striis ad apicem obsoletis, interstitiis parce punctatis, inæqualiter pubescentibus; interstitio mesocoxali prominulo, sutura obliterata. Long. $15-19 \mathrm{~m} . \mathrm{m}$.
Mas antemnis elongatis, articulis secundo et tertio brevissimis, 4-10. apicibus internis longe productis.
Fem. antennis sat brevibus, articulis secundo et tertio brevibus, 4-10. apicibus internis acutis sed vix productis.
The prominent intercoxal space and the complete amalgamation of the middle meso- and metasternal processes, readily distinguish this species from its allies; the structure of the apex of the elytra, which are not acuminate, will at a glance prevent its being mistaken for Elater acutipennis and its allies.

Found at Wellington by Messrs. Fereday and Wakefield, in Fel. 1868 and Felo. 1875, and sent by Mr. Edwards under the number 1338, but without special locality.

Obs. Elater punctithorax, White, is to be sunk as a synonym of this species, according to my notes made when examining the types in the British Museum.

Group 1.-The following are the structural characters ly which species Nos. $1,2,3,4$, and 5 may be identified :-

Forehead quite straight in front, slightly overhanging the perpendicular elypens, so that a very distinct step exists. between the forchead and the labrum; antemal spaces very small, broadly separated ; antenne with joints 2 and 3 but little developed, 4-10 always at least serrate intenally, sometimes with anterior internal angle much prolonged, 11th joint with a more or less distinct terminal appendage or false joint. Mesosternal cavity and its suture with the metastemum variable. Tarsi simple and linear, the the joint rather long, though a good deal shorter than any of the others; coxal plate of hind coxe well-developed throughout, its trochanteral portion quite twice as long as its femoral. Elytra not acuminate. Species of large size.

The nearest ally I can point out for these species is the Chilian Diacanthe nigra, Solier. Candeze locates this Chilian insect in his subtribe Elatérites. Only one of the five NewZealand species I am alluding to was known to this writer, viz. the Ochosternus Parryi; and in his work it is placed in the subtribe Ludiites, being associated with the Elater zealundicus to form the genus Ochostermus. This, however, is certainly erroncous; for the form of the front of the head of Ochostermus Parryi will not allow it to be either correctly associated in one genus with Elater zealandicus or located in the Ludiites. On the contrary the species appears to me to be, as I have said, allied to Diacentha nigra, from which it differs by the more largely developed antenne, by the more clongate clypeus, and by the more raised borders of the mesosternal cavity. The five New-Zealand species agree in most respects; but Elater lecithorax departs considerably from the other four species by its much-raised mesostemal carity, and by the nearly obliterated intercosal suture.

6. Metablax Brouni, n. sp.

M. colore rariabilis, elongatus, nitidus, inæqualiter albido pubescens; prothorace angulis posterioribus divergentibus, intra latera depresso, dense punctato, et eridenter sparsin pubescente, medio nitido fere impunctato : clytris apice acutis, obsolete striatis, interstitiis alternis magis pubescentibus, tertio ad basin leviter prominulo; sutura intercoxali omnino carens; tarsis articulis 2-4. subtus apicibus membranaceis sed vix prolongatis. Long. $23-25 \mathrm{~m} . \mathrm{m}$.
The acuminate elytra and the entire absence of any suture between the middle coxe at the junction of the meso- and
metasternal processes, taken together, readily distinguish this species from all the others yet known from New Zealand. The pubescence is very easily removed, and specimens are sometimes nearly completely denuded. The colour varies greatly, from nearly black to nearly red.

This species is apparently confined to the North Island ; and the only exact locality I can mention is Tairua, whence two specimens have been sent me by Captain Broun.

Obs. The specimens I have seen in the collections of the British Museum and Mr. Janson show that both White and Candèze mixed this species with the following one under the names of Elater acutipennis and Blax acutipennis respectively; but, forming my opinion from White's description and figure, I have applied his name to the following species.

7. Elater acutipennis, White.

E. colore variabilis, elongatus, sat nitidus, evidenter et inæqualiter albido pubescens ; prothorace angulis posterioribus divergentibus, intra latera depresso, dense punctato et evidenter pubescente, medio sublæri, crebre subtiliter punctato; elytris apice acutis, leriter sulcatis, sulcis pubescentibus, interstitio tertio ad basin prominulo ; sutura intercoxali distincta; tarsis articulis secundo et tertio subtus apicibus breciter membranaceo-lobatis. Long. $18-23 \mathrm{~m} . \mathrm{m}$.
This species greatly resembles Metablax Brouni, but is very readily distinguished by the junction between the meso- and metasternum being still represented by a distinct suture; the alternate interstices are in this species very distinctly depressed and densely pubescent; and in fresh specimens these pubescent furrows offer a striking contrast to the shining and impunctate interstices between. The pubescence, however, is very readily removed. The colour in this species is also very variable. The sexual distinctions are apparently slight.

The species is widely distributed in New Zealand, but apparently rare. Tairua (Broun) ; Riccarton; Akaroa, Jan. 1873 (Wakefield); Rockwood (Powell).

8. Elater approximans, White.

E. niger vel nigro-piceus, angustulus, sat nitidus, sparsim brevissime alhido pubescens; prothorace angulis posterioribus divergentibus, ad latera crebre subtiliter punctato et magis evidenter pubescente ; elytris apice acutis, evidenter striatis, striis (presertim externis) latis, crebre irregulariter punctatis; sutura intercoxali bene distincta. Long. $13-15^{\circ} \mathrm{m} . \mathrm{m}$.
Mas thorace paulo angustiore, mesosterni foveæ lateribus minus eleratis, angustis.

Fem. mesosterni fovea lateribus crassis, fortiter elevatis, fero horizontalibus.
This species is a very distinct one, not likely to be confounded with any other. The sexnal disparity in the structure of the mesothoracic cavity is highly interesting, and is such as in other cases is considered chatacteristic of distinct genera; in the female the tarsi also are stouter than in the male and their lobes more distinct, the antenne also are less elongate.

A pair of this species has been sent me from Tairua by Captain Broun as No. 190.

9. Elater cinctiger, White.

E. ferrugineus, prothorace elytrisque versus latera ritta lata testacea; parce brevissimeque pubeseens: elytris ad apicem acutis, evidenter æ位literque striatis, striis fortiter punctatis, interstitiis sparsim punctatis; subtus crebre punctatus, mesosterni fores lateribus haud eleratis, obliquis, nullo modo horizontalibus. Mas angustulus, thorace elytris angustiore, angulis posterioribus divergentibus, medio nitido. Long. $10-13 \mathrm{~m} . \mathrm{m}$., lat. fere $2 \frac{1}{2} \mathrm{~m} . \mathrm{m}$. Fem. latior, thorace elytris latiore, angulis posterioribus vix divergentibus, medio fortiter punctato. Long. $13-14_{\frac{1}{2}} \mathrm{~m} . \mathrm{m}$., lat. fere $3 \mathrm{~m} . \mathrm{m}$.
The sexual discrepancies are here again very remarkable; the greatly developed thorax of the female gives it the aspect of a minute Chalcolepidius.

Sent from Auckland and Tairua by Messrs. Lawson and Broun, but rare ; the female especially rare. The species is probably confined to the Northern Island.

Group 2.-The species nos. 6, 7, 8, and 9 exhibit the following structural characters:-

Forehead curved in front, very distinctly separated from the clypeus, which is slightly unfolded, but still subperpendicular; antennal spaces more or less extended inwards, but their bomdaries ill defined, the labrum only attached at the sides to the elypeus, so that in the middle there appears to be a kind of space or gap over the labrum : the limits between the forehead and clypens in the middle ill-defined. Joints 2 and 3 of antenne not much developed ; joints $4-10$ not serrate ; appendicular extremity of 11 th joint short and but little marked. Prosternal sutures duplicate. Mesesternal cavity and its suture with the metasternum varialle. Coxal plate of hind cosa short, and gradually and slightly longer towards the trochanter, so that there is no limit between the trochanteral Ann. de Mag. N. Hist. Ser. 4. Vol. xix.
and femoral portions. Tarsi with the tth joint short but quite distinct, the apices of the 1st to th joints beneath more or less membranous and prolonged. Elytra acuminate. Species of large or moderate size.

This group in New Zealand is abruptly marked off from group 1 (Thoramus) by the form of the head, tarsi, and coxa, and by the acuminate elytra; its affinities are undoubtedly with the South-American Semiotus ; and one of the species, Metublux Brouni, must be considered specially allied to that -genus. It is a remarkable fact, however, that the elevation and horizontality of the mesosternal cavity, which forms one of the most pronounced features of Semiotus, is in the NewZealand species Elater approximans the subject of sexual disparity; while the disappearance of the suture behind this cavity is subject to difference in closely allied species; and yet Candeze considered this latter character of such importance that he used it as the essential character of his subtribe Chalcolépidiides.

> 10. Amphiplatys Lawsoni, Janson, in litt.
A. brevis, latiusculus, brunnescens vel fuscescens, prothorace sæpe nigricante, tenuiter pubescens, indistincte punctatus, sat nitidus ; antennis pedibusque testaceis; prothorace parcius punctato, angulis posteriorihus elongatis sed rix divergentibus; elytris brevibus, fere estriatis, obsolete punctatis. Long. $3 \mathrm{~m} . \mathrm{m}$., lat. $1 \frac{1}{4}-$ $1 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species may readily be distinguished from the other known small New-Zealand Elateridæ by its short broad form and the peculiar structure of its antenna; these are rather short and stout, and a good deal thicker towards the apex, and are bilaterally symmetrical ; that is to say, a line drawn along the middle of the antennæ would pass through the articulations from joints 4-11.

I first received this species from Mr. Lawson, who appears to have found a few specimens near Auckland ; lately Captain Broun has sent me a specimen with the No. 20 attached, and the information "Only found amongst decaying vegetable refuse and rubbish in the domain at Auckland; inactive."

Group 3.-This species, No. 10, besides the peculiar antennæ, shows the following structural characters :-

Forehead broadly rounded in front, and limited by a very well-markerl, though not much raised carina, which is quite even throughout, not being at all more raised at the sides or
depressed in the middle; elypeus inflexel-perpendicular, much overhung by the edge of the forehead; antemae widely sepatrated, without antemal spaces; last joint of maxillary palpi securiform. Prosternal sutures deeply duplicate; chin-piece well developed, prosternal process nearly straight; mesosternal cavity oblique-perpendicular, its sides not raised; side wings of metasternum very short. Tarsi rather short, but bassal joint of the posterior ones as long as the three following together; 3rd and 4th joints very short, but furnished beneath with rather long membranes; claws very small. Coxal plate consisting of a rather large trochanteral portion, but with the femoral portion entirely wanting ; so that the trochanteral portion covers the trochanter, but the femur is entirely exposed.

The genus is allied to Ciyptohypmus.

11. Betarmon gracilipes, n. sp.

B. niger, angustulus, pedibus tenuibus fusco-testaceis; oculis fortiter prominulis; prothorace elongato, elytris angustiore, subtiliter sat crebre punctato, subtiliter pubescente ; elytris fere opacis, leviter striatis, sed striis perspicue punctatis, brevissime pubescentibus; antennis articulo tertio quam secundus fere minore. Long. $4-\frac{1}{2} \mathrm{~m} . \mathrm{m}$.
The black colour, slender legs, and jeculiar form of the thorax are quite sufficient characters to distinguish this little species.

This insect was sent from Auckland by Mr. Lawson; and I have recently received an individual taken at 'Tairua, and with No. 40 attached, from Captain Broun.

12. Betarmon frontalis, n. sp.

B. colore variabilis, rufescens, plus minusre infuscatus, elytris indistincte fusco-vittatis, abdomine nigricante, antennis fuscis, basi testacea; angustulus, minus nitidus, evidenter pubescens: thorace, crebre minus subtiliter punctato, angulis posterioribus elongatis, acutis, bene divergentibus ; elytris sat profunde striatis ; antennis articulis secundo et tertio vix abbreriatis. Long. $4 \frac{1}{4} \mathrm{~m} . \mathrm{m}$.
This little species has much the appearance of a small Betarmon picipes, the sculpture, pubescence, general form, and colour being all somewhat similar.

Found at Tairua by Captain Broun.

13. Betarmon letus, n. sp.

B. læte rufo-testaceus, clytris testaceis, plus minusve fusco-rittatis, antennis extrorsum fuscis; sat angustus, subnitidus, eridenter
pubescens ; thorace crebre punctato ; elytris sat profunde striatis ; antenuis articulis secundo et tertio haud abbreciatis; corpore subtus rufo-testacco, concolori. Long. $5 \mathrm{~m} . \mathrm{m}$.
This is very similar to Betarmon frontalis, and may perhaps be only an extreme form of it, for that species is evidently very variable; but the bright colour of the two individuals before me seems to distinguish it pretty distinctly.

Tairua (Captain Broun).

14. Betarmon obscurus, n. sp.

B. fusco-testaceus, antennis fuscis, basi testacea, pedibus pallidis, abdomine nigricante; opacus, eridenter pubescens; prothorace dense subtiliter punctato denseque-pubescente; elytris profunde striatis; antennis articulis secundo et tertio vix abbreviatis. Long. $4 \frac{1}{2}-5 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species varies somewhat in colour ; the thorax is generally darker than the elytra, the breast is reddish, and the ventral segments nearly black except at the base and extremity: though very similar to Betarmon frontalis, it may always be distinguished by its finely, densely, and evenly punctured thorax.
"On various shrubs at Tairua; active; not uncommon."Captain Broun.

Group 4.-Species 11, 12, 13, and 14 show the following characters:-

Antennæ slender, subfiliform, 2nd and 3rd joints moderately or well developed. Forehead rounded in front, and limited by a raised carina, which is distinct throughout its whole width; clypeus inflexed-perpendicular, short and overhung by the forehead, antennal spaces not marked. Prosternal sutures simple; prostemal process horizontal. Mesostemal cavity oblique-perpendicular, its sides not in the least raised. Metasternum elongate. Tarsi slender, with their joints simple ; 4th joint small, but not minute. In Betarmon gracilipes the coxal plates are short throughont their whole breadth, the trochanteral portion being not twice as long as the very short femoral portion; in the other three species the trochanteral portion is broader, and the femoral nearly completely absent.

I think there is no doubt about the affinity of these species, their nearest recorded ally being apparently the European Betarmon, from which they differ only in some details of structure.

15. Panspaus guttatus, n. sp.

P. minutus, angustulus, nigricans, prothoracis angulis posterioribus maculisque quatuor in elytris, antennis pedibusque testaceis, antemnis extrorsum fuscis; prothorace minus elongato, obsolete punctato, nitido sed evidenter pubescente; elytris striatis, striis internis sat profundis, externis obsoletis; macula testacea humerali elongata, altera anteapicali magna. Long. $2 \mathrm{~m} . \mathrm{m}$.
This very minute insect is one of the smallest of the Elaterida, it being rather longer and narrower than the European Cryptolypnus minutissimus.

Sent from Tairua by Captain Broun, who says that it is evidently very rare, and that he has only found three individuals.

Group 5.-The two specimens of this minute insect are in bad condition, and I camot ascertain thoroughly all their characters; but they show one peculiarity which in itself is sufficient to mark them off as a distinct genus, viz. that along the underside of the thorax, close to and parallel with its border, is a longitudinal furrow, such as is seen in many Eucnemides; besides this I can say that the forehead is rounded in front and limited by a raised line, the clypeus is extremely reduced and concealed, the femoral portion of the coxal plate pretty well developed, the trochanteral portion short and only a little longer than the femoral portion. The tarsi are small, simple, and slender. The relationship appears to be with Betarmon.

16. Aglophus modestus, n. sp.

A. angustulus, sat nitidus, eridenter pubescens, fulvo-castaneus, pedibus testaceis; antennis elongatis, tenuibus, articulis secundo et tertio conjunctim quarto fere equali; prothorace brevi, parcius punctato, angulis posterioribus haud divergentibus, subuncatis; elytris regulariter striatis, striis evidenter punctatis, interstitiis obsolete punctatis. Long. $6-7 \mathrm{~m} . \mathrm{m}$.
The male is more slender than the female. The species has much the appearance of our European Adrasti and Dolopii.

I have seen but few specimens of this species; they have been sent me ly Captain Broun from 'Tairua, with No. 13 attached, and the information that it is an autumal species and inactive.

Group, 6. This species presents a combination of structu-
ral characters such as to require its isolation from the other New-Zealand allics. The forehead is much curved in front, so as to be somewhat produced in the middle, it is sharply defined by a scarcely elevated line, which overhangs the clypeus, so that there is an abrupt step between the front and the labrum ; the antemal spaces are very obscure; the antennæ are slender, with 2 nd and 3rd joints only moderately developect. The prosternal sutures are not distinctly duplicate, and are not open in front, but show there a peculiar sinuation. The prosternal process is short, and is abruptly and greatly bent upwards immediately behind the coxa. The middle coxar are only narrowly separated; the mesosternal cavity shows no distinct lateral edge, and is quite depressed ; its opening behind is narrow and ill-defined, and does not reach the intercosal suture; the posterior portion, however, is prolonged backwards as a broad shallow depression on the hind part of the mesosternal process. The femoral portion of the coxal plate is excessively short, in fact linear ; the trochanteral portion is moderately large. The tarsi are moderately short, and all the joints are simple; the 4th is small but not minute.

I think the genus should be placed near Betarmon, from which it differs strikingly by the prosternal process and mesosternal cavity.

17. Lomemus pilicornis, n. sp.

L. angustulus, minus nitidus, evidenter pubescens, niger, prothoracis angulis posterioribus pedibusque testaceis, tibiis versus apicem fuscis; antennis elongatis, tenuibus, sed intus serratis, longius pilosellis, articulis secundo et tertio brevissimis, quam quartus conjunctim multo brevioribus; prothorace antrorsum angustato, crebre fortiter punctato, sat elongato, angulis posterioribus subuncatis; elytris striatis, striis punctatis, apice summo obsoletis, interstitiis punctatis. Long. $5 \mathrm{~m} . \mathrm{m}$.
The pilose antennæ, the black colour, with yellow legs and hind angles of the thorax very readily distinguish this species.

Three specimens have been cut out of a tree-stump at Tairua by Captain Broun ; one of them he sent me with the No. 13 attached.

18. Lomemus pictus, n. sp.

I. angustulus, eridenter pubeseens, sat nitidus; antennis tenuibus, fuscis, basi testacea, articulis secundo et tertio sat brevibus, comjunctim quarto æqualibus; capite nigro, fortiter profundeque punctato; thorace sat elongato, antrorsum leviter angustato,
fortiter panctato, rufo, macula magna discoidali nigricante; elytris testaceis, sutura margineque externo nigris, striatis, striis punctatis; corpore subtus fusco-rufescente, prothoracis lateribus testaceis; pedibus pallide testaceis. Long. $5 \mathrm{~m} . \mathrm{m}$.
Allied pretty closely to Lomemus pilicornis, but readily distinguished by the less pilose antenne and the colour, and presenting some slight structural differences: the antenne are differently formed ; but I have not sufficient specimens to enable me to decide whether this is more than a sexual character.

I have received two very damaged specimens from Captain Broun ats No. 32, but without any information as to habits.

19. Lomemus suffiusus, n. sp.

L. angustulus, fere parallelus, sat nitidus, evidenter sed breriter pubescens, niger, antennis fuscis, pedibus fusco-testaceis; elytris sordide testaceis, sutura margineque externo vage nigricantibus; antennis intus subserratis, articulis secundo et tertio conjunctim quarto vix æqualibus; capite fortiter punctato; prothorace elongato, minus fortiter et crebre punctato, nitido, angulis posterioribus nullo modo divergentibus, angustius testaceis ; elytris evidenter striatis, striis punctatis. Long. $5 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species, though closely allied to L. pilicornis and L. pictus, can be readily distinguished by the considerably less developed punctuation of the thorax; this part is also longer in proportion.

Captain Broun has sent a single specimen from Tairua as No. 31.

20. Lomemus flavipes, n. sp.

L. angustulus, subparallelus, sat nitidus, niger, eridenter fuscopubescens, pedibus testaceis; antennis tenuibus, fere filiformibus, articulis secundo et tertio minus abbreriatis, conjunctim quarto æqualibus; prothorace elongato, crebre subtiliter punctato; elytris subtiliter striatis, striis evidenter punctatis, interstitiis crebrius rugulosis. Long. $7 \mathrm{~m} . \mathrm{m}$.
This species may be readily distinguished from L. obscuripes by its considerably more elongate form and its more finely punctured thorax and paler pubescence; it has extremely the appearance of our small European Limonii, parvulus and mimutus.

I have seen but a single individual, which was sent from Auckland by Mr. Lawson.

21. Lomemus similis, n. sp.

L. angustulus, sat nitidus, eridenter pubescens, ni rer, pedibus fusenrufis ; antennis elongatis, crassiusculis, intus serratis, articulis
secundo et tertio perbreribus quam quartus conjunctim duplo brerioribus; prothorace elongato, crebre sat fortiter punctato; elytris evidenter striatis, striis ad apicem distinctis, interstitio crebre rugulosis. Long. $4 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species may be readily distinguished from the following as well as from the preceding species by the fact that the forehead is slightly more prolonged in the middle, so that its front margin, instead of forming an even curve, is slightly sinuate on each side : in colour and appearance it is extremely similar to L. obscuripes, but is only half the size.

I have received a single individual of this species from Tairua, whence it was sent me in sawdust by Captain Broun.

22. Lomemus obscuripes, n. sp.

L. angustulus, sat nitidus, evidenter pubescens, niger, pedibus fuscis; anteunis elongatis, crassiusculis, intus serratis, articulis secundo et tertio perbrevibus quarto conjunctim fere duplo brevioribus; thorace crebre fortiter punctato, antrorsum leviter angustato; elytris minus elongatis, evidenter striatis, striis ad apicem distinctis, intestitiis crebrius rugulosis. Long. fere $6 \mathrm{~m} . \mathrm{m}$.
Sent from Auckland by Mr. Lawson.

23. Lomemus elegans, n. sp.

L. angustulus, sat elongatus, evidenter pubescens, sat nitidus, læte fulvo-testaceus; antennis, capite, scutello, prosterno medio pectoreque nigris ; antennis (basi fuscis) elongatis, intus serratis, articulis secundo et tertio perbrevibus, quarto conjunctim duplo brevioribus; prothorace autrorsum angustato, crebre fortiter, minus profunde punctato; elytris evidenter striatis, striis ad apicem indistinctis. Long. $7 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
Of this pretty species a single individual was sent me some time ago in spirit from Tairua by Captain Broun.

24. Lomemus collaris, n. sp.

L. angustulus, sat elongatus, eridenter pubescens, sat nitidus, niger, prothoracis angulis posterioribus elytrisque fulvo-testaceis, pedibus testaceis; antennis elongatis, intus serratis, articulis secundo et tertio perbrevibus, quarto conjunctim duplo brerioribus; thorace antrorsum angustato, crebre sat fortiter punctato; elytris striatis, apice extrorsum fuscescentibus. Long. $6 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
Two individuals of this species have been found by Mr. Wakefield at Christchurch.

Group 7.-These species (Nos. 17 to 24) show characters to a considerable extent similar to those of Aglophous mo-
destus; the head is almost similarly formed; the antennæ, however, are always more or less serrate; the thorax is more elongate, the prosternal sutures are narrowly open in their anterior part and are not sinuate in front; the prosternal process is short, and is bent up in Lomemus pilicornis, but is longer and nearly straight in L. obsecmipes; the intercoxal space is narrow, and the mesosternal cavity is narrow, illlimited behind, its posterior extremity very far from the intercosal suture; the space separating these two parts is longitudinally grooved. The femoral portion of the coxal plate is short, the trochanteral portion molerately long; the 4th joint of the tarsus is minute, the 3rd simple or obscurely emarginate at the extremity. Species of small size.

I have had so few examples of these small species at my disposal that I camot deal in a full and satisfactory manner with their structural details; and it is probable that a thorough examination would show that I have left together in one group species which may ultimately form several distinct groups: they may, however, be distinguished from the species of Aglophus by the different prosternal sutures, by the less diminished femoral portion of the hind coxal plate, and the less developed 3rd and 4th joints of the tarsi.
[To be continued].
XL.-Description of three new Species of Lizards from Islands of Torres Straits. By Dr. A. Güxtier.
A collection of reptiles made by the Rev. S. MacFarlane for the British Museum, at Somerset and in the islands of Torres Straits, contained the lizards enumerated in the following list. Unfortunately no record was made, or has reached us, as regards the particular islands where the specimens were collected.

1. Odatria prasina, Müll.
2. Lialis punctulata, Gray, together with L. leptorlaynche, Ptrs., the specific distinctness of which is very doubtful.
3. Cryptoblepharus pecilopleurus, Wiegm.
4. Himulia striatula, Steind.

5. Carlia Macfarlani, sp.n

Scales round the middle of the body in 25 longitudinal series; 45 in a series between the chin and vent. The anterior frontal forms a long suture with the rostral and a short one with the vertical, which is small, smaller than the ante-

414 Dr. A. Giunther on three new Species of Lizards.

rior occipital ; a small central occipital fitting into a notch of the anterior. Six upper labials, the fourth being below the eyc. War-opening minute. The fore leg does not reach beyond the eye if laid forwards; the third finger longest. Brown above, white below. Sides with a black, white-edged band, beginning from the eye and lost on the tail. This band is much more distinct in young than in old specimens. millim.

Distance of the snout from the eye			3
"	,	ear..	7
"	"	shoulder	12
	"	rent	
Length of tail			
" fore leg			$8 \cdot 5$
hind leg			12

This species should be compared with Lygosoma noverguinece, which has been very shortly noticed by Meyer in Berlin. M.B. 1874, p. 132.
6. Mabouia macrura, Gthr.
7. Cyclodus carinatus, Gthr.
8. Tropidolepisma striolatum, Ptrs.
9. Heteropus fuscus, D. \& B.

10. Thecadactylus australis, sp. n.

Closely allied to T. rapicauda. Upper parts covered with very small, granular, smooth scales, which become more prominent and rougher on the forehead and snout. Eleven upper and ten lower labials. Scales of the lower parts as small as those of the upper; those on the throat minute. The scales in the preanal region somewhat larger, each perforated by a pore. Root of the tail, behind the vent, swollen (in the male?), the swollen portion covered with large hexagonal scutes. Thail (reproduced) cylindrical, with narrow verticilli. Upper parts brownish violet, marbled with reddish. Lower parts whitish.
millim.
Distance from the snout to the eve 12

	"	ear	28
,	"	shoulder	45
Length of tail			
"			30
			40

The occurrence in Australia of a genus hitherto believed to be peculiar to tropical America is the more significant as this
genus is sharply defined from other members of the family of Geekoids, and the resemblance between the single American and Australian species is very great indeed.

11. Peripia torresiana, sp. n.

Back uniform granular, without any tubercles. Scales in the middle of the belly in about 40 longitudinal series. Tail strongly depressed, but with rounded sides, finely granular, and with large subeaudals bencath. Number of the upper and lower labials varying from seven to nine. Front lower labial short, much broader than long, with a pair of elongate chin-shields behind. Light grey above, with some indistinct round white spots. Tail with brownish rings.

12. Gymnodactylus Arnouxii, Dum.
13. Chlamydosaurus Kingii, Gray.

XLI.-Notes on Stony Corals in the Collection of the British Museum. By Dr. F. Brüggemann.

In these notes I intend to publish a series of preliminary notices of some of the more remarkable novelties which I determined during my examination of the large collection of corals in the British Museum, as well as other remarks, especially on synonymy and geographical distribution of forms previonsly known. They will be of a miscellaneons character, and are not intended to be given in a strictly systematic order.

My thanks are due to Dr. Günther, keeper of the Zoological Department, for kind assistance, by which my studies have been greatly facilitated.
I. Description of two new Species of Turbinaridde.

1. Turlinaria bifrons.

Corallum consisting of thin, vertical, varinusly plicate plates, which are covered equally on both sides with calicles. Coral-
lites arranged rather quincuncially (the oblique series being most pronounced), distant by about the length of their diameter, small, excessively short cylindrical (so as to appear nearly immersed), slightly oblique, the opening directed towards the edge of the leaf, the proximal part of the wall a little more projecting. Cells open, very shallow. Septa crowded, equal, generally 18-20 in number, narrow, with straight imner edge, the lateral surfaces delicately spinulous. Columella oviform, rather compact. Coenenchyma moderately dense, longitudinally striate and delicately echinulate on the surface. Thickness of corallum, on the average, 3-4 millims. ; diam. of calicles 2 millins., their height $\frac{1}{2}$ millim.

Hab. Unrecorded.
B.M.

This species is distinguished at the first glance by being everywhere bifacial. In the other species there may be found occasionally one or two calicles budding on the outer surface of the corallum, or stout branches rising from the centre; in some of them, especially T. frondens and T. peltata, there occurs also a peculiar mode of plication, giving to the folded parts the aspect of bifaciality. But in the latter instance there is always a distinct suture on the ridges, separating two well-marked rows of calicles, while nothing of this kind is indicated in the present species. The corallites are in their general aspect much like those of T'. crater, but less crowded, smaller and more oblique.

The single specimen seems to be only one half of the whole corallum, which apparently formed a hemispherical cluster of upright plates terminating at equal heights and obtusely rounded at their summits. The plates scarcely coalesce where they meet; below they are united to a somewhat spreading basal expansion. The height of the corallum is five inches; the greatest diameter, nearly eight inches.

2. Astraopora expansa.

Corallum attached by a short pedicel, expanded, flat crateriform; under surface covered to the very edge with a well-developed concentrically striate epitheca. Calicles irregularly scattered, generally placed at great distances from cach other, small, rather deep, immersed, or with the margin only slightly projecting. Septa unequal, 12 in number, quite rudimentary in the upper half of the cell. Conenchyma abundant, deposited in nearly continuous thin horizontal layers, which are united by straight perpendicular trabeculæ, so that a vertical section shows a regular network, the square interspaces of which are $\frac{1}{2}$ millim. in diameter. Surface spongious and echinulate, rather scantily covered with very
thin, short, upright spines. Diameter of cells 1 to $1 \frac{1}{2}$ millim., their depth about 6 to 10 millims.

Hab. Unrecorded. B. M.

In the only specimen the outline figure of the upper surface is kidncy-shaped, the corallum being deeply emarginate where it had been fixed to the ground. The greatest diameter is nearly 8 inches, the height 4 to 5 inches, the greatest thickness 1 inch.

This species differs from all its congeners in its mode of growth, in the ample development of the epitheca, and in the structure of the coenenchyma. The echinulation of the surface is more delicate, and the cells are smaller and more distant, than in either of the other species (perhaps with the exception of A. palifera, which I have not seen).

The genus Astraopore now comprises five species, three of which were already known to Lamarek; the fourth was described and figured by Dana as A. pulcinaria (U.S. Expl. Exped., Zooph. p. 415, pl. 29. fig. 3), and afterwards enmerated as A. profunda by Verrill (in Dana, 'Corals and Cor. Isl.,' Appendix).

Astrea stellulata of Lamarck (Hist. Anim. s. Vert. ii. p. 261) and Gemmipora fungiformis of Michelin (Mag. Zool. 1840, Zooph. pl. 2) do not belong to this genus. The first is not determinable; and even if it should prove to be a distinct species, it ought to be renamed, because Lamarek meant to describe the totally different Madrepora stellulata of Ellis and Solander. Gemmipora fing!formis is one of the earliest stages of Turlinaria peltata; the only difference which might be pointed out from the description and figure is the extreme porosity of the ccenenchyma. But this condition is evidently due to the mode of preparation, and is frequently found in a similar degree in specimens of this and the other species of Turbinaria.

II. Remarks on the Species of Serlatopora.

> 1. Seriatopora lineata. B.M.

Millepora lineata, Linnæus, 1758 and 1767.
Madrepora seriata, Pallas, 1766 ; Ellis \& Solander, pl. 31. firs. 1, 2. Seriatopora subuluta, Lamarcl, 1816; M. Edwards.
The Millepora lineate of Limmeus is evidently the same as the Seriatopora sulmlata of Milne-Filwards (hut neither of Ehrenberg nor of Dana). Limmes's deseription answers exceedingly well to this species, and is even much more to the point than Lamarck's unsatisfuctory diagnosis. Pallas may have included several species under his ikariepora seriata;
but nearly all his statements apply best to the above, a recognizable figure of which was given by Ellis and Solander.

To the description in M.-Edwards's monograph might be added that the species is easily distinguished by its straight, rather thick branches. The septa are comparatively well developed, and generally six in number, those of the second cycle being rudimentary or wanting. Columella represented by a very slight longitudinal elevation.

Hab. Indian Ocean (Lamarch).
I do not know where to place the Seriatopora lineata of Milne-Edwards, which is decidedly not the Millepora lineata of Linnæus. Esper's Millepora lineata, again (and perhaps also Dana's Seriutopora lineata), is different; his figure seems to represent a rather abnormal branch of S. spinosa, taken from the circumference of the corallum. Dana, and after him Milne-Edwards, quote as a synonym of their S. lineata a "Seriatopora subulata, var." of Lamarck (Hist. Anim. s. Vert. ii. p. 282); but there is no variety whatever mentioned in Lamarek's work.
2. Seriatopora cervina.
B.M.

Porites cervina, Lamarck; M.-Edwards, Cor. iii. p. 314.
Seriutopora cervina, M.-Edwards, t. c. p. 312.
There is a specimen of Seriatopora in the Museum which may belong to this little-known species. In its mode of growth it is very similar to the preceding; the branches, however, are thimer, the terminal branchlets slenderer and slightly curved, and the calicles placed in less regular rows. Septa nearly obliterate. Columella moderately developed, cristiform.

This is in some respects an intermediate form between S. lineata and S. hystrix.

Hab. Indian Ocean (Lamarck); Australia (J. B. Jukes in B.M.).

$$
\text { 3. Seriatopora hystrix. } \quad \text { B.M. }
$$

Seriutopora hystrix, Dana; M.-Edwards.
Differs from the preceding in having the corallum evenly convex and rather fasciculate, the branches more crowded but less coalescing, evenly furcate, the terminal branchlets upright, stout, and strongly curved, the septa of first cycle better developed.

Hab. Feejee Islands (Dena) ; Samoa Islands (Rev. S. J. Whitmee in B. M.).

> 4. Seriatopora pacifica. B.M.

Corallum forming rather lax, not fasciculate clumps, very
ramose. Branches subangular, of moderate thickness, much divaricate, but scarcely coalescing, ramified at nearly right angles; branchlets more or less horizontal, straight, slender, needle-pointed. Calicles small, in rather irregular rows, those of the same row distant by nearly the length of their diameter; the interspaces on the average double as broad as the rows. Cells slightly vaulted and labiate; their edges strongly prominent, fimbriate. Septa of first eycle moderately well developed. Columella low, thick, somewhat pointed. Surface of conenchyma rather smooth, gramukte. Diameter of principal branches about 5 millims., of branchlets at their base 2 millims., of calicles two thirds of a millim.

Hab. Feejee Islands (F. M. Rayner in B.M.).
This species is remarkable by being much more arborescent than its allies, a character arising from the fact that the ramification is not evenly dichotomous, but generally only one of the branchlets attains a larger size and continues to divide. From S. hystrix it differs in its mode of growth and in the thinner and more angular branches. In the broad and flat interspaces between the rows of calicles, and in its mode of ramification, it shows some resemblance to S. spinosa.

5. Seriatopora caliendrum.
 B.M.

Seriatopora caliendrum, Elirenberg ; Dana ; M.-Edwards.
This species forms large clumps of subparallel and more or less perpendicular branches, these being thin and slender, but rather obtuse at their summits.

Hab. Red Sea (Ehrenberg), Tur near Sinai (IHäckel); Madagasear (B.M.). A variety is recorded by Dana from the Sooloo Sea, under the denomination S. caliendrum, var. gracilis; and there is a specimen in the Museum collection marked "Navigators' Islands," which I am not able to separate as a distinct species.

There appear to exist intermediate forms between this and the preceding, and again between the latter and S. hystrix, which in its turn comes very near to S. cervina. However, the material in the Museum is not extensive enough to ascertain the nature of these transitions, especially with regard to the question how far they coincide with the geographical distribution, or whether they represent merely individual peculiarities.

> 6. Seriatopora octoptera.
B.M.

Seriatopora octoptera, Ehrenberg; Dana; M.-Edwards.
A very distinct species, whose characters have been well
pointed out by Milue-Elwards. It is distinguished frum all its allies by the very obtuse tops of the branches.

Hab. Red Sea (Ehrenherg), Tur near Sinai (Häckel); Singapore (Dana) ; Sooloo Sea (Dana).

7. Seriatopora valida.

Seriatnpora valida, Ehrenberg, M.-Edwards.
To judge from the descriptions, this seems to be very near to s. cotliendrum. From the following species it differs in having the branches crowded and often coalescing, the calicles small, and the surface of the cœenenchyma granulate.

8. Seriatopora Güntheri.
 B.M.

Corallum fasciculate, but rather lax on account of the scarce ramification of the principal branches, nearly spherical in general outline. Branches slender, gradually tapering, rarely coalescing at the base; angles of ramification very acute, on the average $30^{\circ}-40^{\circ}$. Terminal branchlets long, slender, subulate, six-winged at the summit. Calicles extremely crowded, disposed in regular series, those of the same row touching each other; the interspaces between the rows narrow, distance generally much less than one half of the diameter of the calicles. Cells large, circular, placed somewhat obliquely, but only slightly vaulted; their edges not very prominent, fimbriate. Septa entirely obsolete. Columella well developed, thin, lamelliform. Surface of coenenchyma strongly echinulate. Diameter of principal branches, on the average, 4 millims., of calicles 1 millim.

Hab. New Guinea.
This clegant species, to which I have the pleasure of attaching Dr. Günther's name, has a peculiar aspect on account of its mode of growth, as well as of its crowded, large, and open cells, the latter being rather ocelliform in their general appearance. This combination of characters serves to distinguish it readily from all the allied species.

9. Seriatopora elegans.
 B.M.

Servintopora " subulata," M.-Edwards, Atl. Règn. Anim. Cuv., Zooph. pl. 81. fig. 2.
" Pocillopora acuta," M.-Edwards, Hist. Nat. Cor. Atlas, p. 11, pl. F4. fig. 2.
Seriatopora elegans, M.-Edwards, op. cit. vol. iii. p. 312.
This is one of the best-marked species. Its principal characters are in the thick, slender, pointed, and not much ramified branches, the large and vaulted calicles, which are distinctly seriate only towards the apical parts of the branches, the very
prominent upper edges of the cells, and the nearly total obliteration of the septa.

Hab. Singapore (M.-Edwards) ; China (B.M.).

10. Seriatopora stricta.
 B. II.

Corallum fascieulate, in general outline hemispherical. Branches subterete, straight, subulate, moderately crowded, divaricate, coalescing at their bases; angle of ramification, on the average, 60°. Calicles large, on the greater part of the corallum almost entirely irregularly dispersed, circular, immersed, their edges on the same level, equally and slightly prominent; those of the terminal branches in distinct but illdefined rows, moderately crowdel, average distance about three fourths of the ir diameter, rather oblong, vaulted, their edge coarscly timbriate, and in its upper part strongly labiate. Septa entirely obsolete. Columella moderately developed, linear, compressed. Surface of coenenchyma densely and delicately spinulous, becoming more coarsely echinulate and at last granulate towards the base. Dianeter of calicles 1 millim.

Hab. Cape of Good Hope.
Differs from most of its congeners in the irregular disposition of the calicles, in which respect it agrees most with S. elegans. From this, however, as well as from the other species, it is distinguished by numerous characters.

11. Seriatopora spinosa.
 B.M.

Millepora "lineata," Forskâl : Esper.
Seriatopora "subulata," Ehrenberg ; Dana.
Seriatopora spinose, M.-Edwards.
This, again, is an easily recognizable and well-defined species, distinguished at the first glance by its angular and verrucose branches : this aspect is produced by the broad and flat interspaces between the rows of calicles, the latter being much crowded in each row and strongly projecting.

I am not aware that this species has been found anywhere else than in the Red Sea, where it was first discovered by Forskial, who gave a good description of it.

12. Seriatopora ocellata.

Seriatopora veellata, Ehrenberg; M.-Edwards.
Were it not for the larger calicles, I should without hesitation declare this species (which was established on a worn fragment from an unknown locality) to be identical with \mathscr{S}. spinosa.

Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.
XLII.-Description of a new Species of Portunida from the Bay of Bengal. By Prof. J. Wood-Mason, Deputy Superintendent of the Indian Museum, Calcutta.

Goniosoma hoplites, n. sp.

The whole animal is covered with a short and dense pubescence, whick is developed into cilia on the edges of the legs and between the epibranchial teeth. The carapace resembles that of Teptumus gladiator in the distribution of its granulated lines and elerations. The antero-lateral margins are armed with six teeth; the first two small, similar, close together, and rather obtuse; the third and fourth larger, sharper, curved a little forwards, and broad-triangular; the fitth rather smaller than these, but similarly shaped; the last very sharp and long, about thrice the length of any of the rest. Front divided into eight teeth arranged in pairs; or into four bilobed ones, each lateral tooth being subdivided into two nearly equal and similar lobes, the outer one of which forms the intraorbital angle, each median tooth into two unequal and dissimilar ones, the external and smaller of which is directed slightly outwards and has its extremity rounded off, but the internal and larger has its external angle obliquely cut away and its internal angle rounded off; the two median teeth are separated from one another by a fissure shallower and narrower than those which divide them from the lateral ones. Posterior angles each produced straight outwards to a strong and blunt process, the posterior edge of which is in the same straight line with the hinder margin of the carapace; and the emarginations for the reception of the bases of the swimminglegs are in consequence much decper than usual. Chelipedes and legs agree with those of Goniosoma callianassa, Herbst, except that the meropodites of the former have a sharp spine at the very extremity of their posterior crest and only two spines in front, that the spine on the internal margin of the carpopodites is very long and acuminate, and that the immovable finger has at the base but four transversely convex ridges instead of five, the central rib to be seen on the under surface of this part in $G_{\text {. callianassa }}$ being absent-that the thighs of the walking-legs are a little thicker at base and all have the lower and posterior crest produced at the apex to a sharp spinc, and that the penultimate joint of the swimmingpair is obviously denticulated below.

Length of the carapace $15 \cdot 5$ millims., breadth 28.5 ; breadth of the hinder margin 12.5 ; length of the last epibranchial spine $3 \cdot$ ō.

Hal. Madras.

XLIII.-New Coleopterous Insects from (Oueensùand. By Charles O. Waterhouse.

Longicornia.

Prionidæ.

Avalophus, gen. nov.

Mandibles short, convex, curved, furnished on the inner side with a single strong tooth. Head large, convex. Antenne about half the length of the body; the first joint short, pear-shaped, the third two thirds the length of the first, but slender, the fifth to cleventh gradually increasing in length. Thorax scarcely broader than the head, transverse, with no lateral margin, only marked by a fine line. Prosternum broad and flat. Legs not spinose ; tarsi short and narrow, the thi:d joint bilobed.

Closely allied to Mallodon, from which I have separated it on account of the thorax not being expanded into a lateral ridge.

> Analophus parallelus, sp. n.
A. elongatus, parallelus, convexus, piceus; capite magno, conrexo, medio canaliculato, discrete fortiter punctato, collo sulbtiliter creberrime punctato, pone oculos fortiter granoso ; thorace longitudine $\frac{1}{3}$ latiore, antice haud profunde emarginato, lateribus parallelis, angulis posticis rotundatis, disco nitido parce punctato, medio longitudinaliter impresso, lateribus opacis creberrime subtiliter punctulatis, guttis duabus nitidis notatis; scutello leri ; elytris thorace parum latioribus subparallelis, nitidis, basi discreto punctatis, lateribus apiceque rugulosis; pedibus rufo-piceis, nitidis, haud spinosis.
Long. 16 lin., lat. $5^{\frac{1}{2}}$ lin.
The head and thorax are pitchy black. The thorax has the lateral margin indicated by a fine interrupted line, which terminates at the posterior angles in a slight crenulated ridge. The base has a slight emargination on each side of the scutellum. The whole underside is opaque and finely and densely punctured as the sides are above. The abdomen is shining. Hab. Queensland.

Brit. Mus.

Brachytria varia, sp.n.

B. nigrescens ; capite crebre punctato, rufo-flaso ; thorace rufoflaro, postice angustato, punctis nonnullis adsperso, disco utrinque puncto nigro; elytris ad apicem fumosis, maculis tribus (sxpe conjunctis) flavis.
Long. 7 lin.

This species is at once separated from B. yulosa, Newm., by the thorax being almost devoid of punctures, and with no sharp angle at the side; besides the two discoidal spots, the posterior angles below, and sometimes the hind margin, are black. The elytra are rather dull, coarsely punctured, tricostate, with a large yellow spot below the scutellum, and one on each lateral margin about the middle, as in B. gutosa. The sternum and the base of the abdomen are sometimes yellowish.

Hab. Sydney.
Brit. Mus.

Brachytria picta, sp.n.

B. nigra, nitida: capite thoraceque margine antico ochraceis, hoc fere læri, medio haud ampliato, postice angustato; elytris postice angustatis, tricostatis, crebre punctatis, medio pallide flavo-notatis, humeris sanguineis, apice fumoso; femoribus apice ochraceoannulatis; abdomine basi piceo.
Long. $6 \frac{1}{2}$ lin.
The colours of this species would probably vary ; but the following characters will serve to distinguish it from B. varia: Eyes scarcely prominent. Thorax regularly arched, with no impressions towards the anterior and posterior angles, scarcely broader across the middle than in front, narrowed behind, but not angular at the sides. The punctuation of the elytra is much the same; but the punctures are not so confluent at the apex. The metasternum is very closely and somewhat coarsely punctured in the middle, less closely but distinctly punctured at the sides; whereas in B. varia the metasternum is finely punctured, and not much more closely in the middle than at the sides.

Hab. Queensland.
Brit. Mus.

Obrida comata, Pascoe.

Specimens of this species have just been received from Queensland, some with entirely black legs and antennæ, others with them entirely red.

Phytophaga.

Cassididæ.

Hoplionota dorsalis, sp. n.

H. breriter oblonga, subnitida, flara; thorace dorso piceo, utrinque plagis duabus punctatis, lateribus flavis profunde haud crebre punctatis; scutello nigro; elytris disco piceo, crebre fortiter punctato, elerationibus nitidis instructo, marginibus piceis macu-
lis quatuor flavis notatis, profunde haud crebre punctatis; corpore subtus flavo-testaceo.
Long. $3-3 \frac{1}{3}$ lin., lat. $2 \frac{1}{2}-2 \frac{3}{6}$ lin.
Head pitchy brown, opaque, but with no distinct punctuation ; epistoma truncate in front, narrowed towards the eyes, with the front margin obscure yellow. Thorax pitchy in the middle, dirty yellow at the sides; disk with four strongly punctured shallow impressions, the sides decply but not thickly punctured. Neutellum black, or nearly so. Elytra as long as broad, very slightly rounded at the sides, bluntly rounded at the apex, pitchy brown, the discoidal part rather darker, especially the raised parts; the margins have four large yellow spots, one on each side about the middle, and another on each side of the apex: each elytron has a small tuberele on the shoulder, and between this and the scutellum a carina turned outwards posteriorly; in the middle there is a rather strong trigonal tubercle, from the angles of which two very short carine are directed forwards, one towards the lateral margin, and one long ridge directed backwards nearly to the apex; this ridge is raised in the middle; between this ridge and the lateral margin there are two small tubereles.

Hab. Queensland, Mackenzie River.
Brit. Mus.

bibliographical notice.

Ammal IRport of the United-states Geoloyical and Geograitical Survey of the Territories, embracing Colorado and parts of adjacent Territories, being a Report of Proyness of the Exploration for the year 1874. By F. V. Harmex, United-States Geologist. 8ro. 508 pages, with numerous Plates and Maps. Washington, 1876.
The work of the officers of the United-States Geological and Geographical Surver presents frequently features of considerable difficulty. In the sparsely populated areas of the West the parties intrusted with the duty have to be specially organized both for subsistence and scientific work, inasmuch as their labours are often conducted in territories where no assistance can be obtained from the locality surveyed. Thus the Colorado survey, conducted by Dr. Hayden, was separated into seren divisions, to each of which was assigned special duties-as the toporraphical and geographical section, those for the primary triangulation and photography, as well as a quartermaster's department, on which devolved the transport and supply. Each of these divisions consisted further of a complete staff of scientific observers, comprising botanists and metrorologists, as well as those more directly concerned in the actual work of surveying.

This complete and careful organization has produced the excellent results toll in the raluable volume before us; and the carefulness of this work, as well as the number and excellence of the illustrations, reflects considerable credit on the department to whose energy we aro indebted for this valuable addition to scientific knowledge.
starting from Denver on the South Platte river, where the headquarters were established, the various divisions examined and mapped that portion of the territory extending, roughly speaking, from North Park to rather further south than the valleys of the Gunnison and Arkansas rivers, or between the 38° and $40^{\circ} 30^{\prime}$ parallels of north latitude, and between the 105° and 108° meridians of west longitude-thus comprising the mountainous district of the North and South Park, Elk, Sawatch, and Colorado frontier ranges.
"This new area presented all the different forms of surfaceerosion peculiar to a granite, sedimentary, and lava country, making it an exceedingly interesting study, both for its topography and geology. The great lava mesa at the head of the White River is cut by deep cañons that penctrate far into the plateau, dividing the mesa into what appear isolated masses, but which are all connected. One isthmus, from 3 to 12 feet in width and 125° in length, connected a plateau of several miles extent with the main mesa. The highest portion of this mass is on the east side ; and from the base of the almost continuous cliffs which border it the country descends in long, timbered slopes to the broad open area of Egeria Park, lying between them and the Park range."

It was examined, Dr. Hayden states, "in the usual manner of the survey"-a carefully coloured geological map, showing the distribution and extent of the rocks, together with numerous sections and memoranda relative to the abundance and occurrence of the cconomical deposits, being prepared; and then this is adapted to a careful trigonometrical surrey of 4 miles to the inch, with 200 -feet coutours. This latter is reduced one half for publication.

Speaking generally, "the older metamorphic rocks, such as the granites, schists, \&c., of probably Archæan age, in which alone the precious metals and minerals of Colorado have been found, and which form the foundations on which all the bedded rocks, sandstones, limestones, \&c. of the country rest, are brought to the surface and exposed only along the folded ridges of the Park range, and in the bottoms of a few cañons in some of the southern tributaries of the White River and of the neighbouring tributaries of the Grand." Along the northeru portions of the district, and in the extreme west, the surface of the country is mainly composed of Cretaceous rocks, either horizontal or only slightly undulating. The coal, a fairly good lignite, lies in the upper, middle, and lower portions of this group, in definite horizons; but it improves in quantity and quality to the westward. It is in the south-eastern portion, however, near the Grand and Eagle rivers, that the sedimentary rocks, among which occur quantities of limestone and exter:sive deposits of gyp-
sum, are most folded and contorted; and this is especially well illustrated by the elever drawings that illustrate the report.

As a rule these are merely outline sketches, with but little shading; so that, though they are still most picturesque, nothing is sacrificed to mere artistic effort, but every undulation is so carefully indicated, and the lithological character even of the rocks so well shown, that the nature of the country, both topographically and geologically, cau be most easily aud satisfactorily studied. It must not be imagined from this that regular geological charts are neglected. On the clearly printed surveys, in which the most intricate contouring of the mountain-ranges never becomes indistinct or obscure, the boundaries of the various deposits are indicated in colours.

But even here there is an improvement on the ordinary method of manipulation. The colour is never dense; generally only one tint is used ; but the ditferent deposits are represented very legibly by cross-hatching, continuous lining, chain-dotting, and other methods; so that the clearness of the plan is never interfered with.

A remarkable and most complicated fold occurs in the Elk range, and is illustrated by a group of sections at page 70, and an excellent explanatory figure of the causes of the apparently confused arrangement of the strata affected. The uphearal of the area, in parts sudden and abrupt, has led to the cracking of the axis of the fold, and the falling-in and overlapping even of the upper strata; while at the extremities there appears to have been a more prominent and extensive displacement, producing such fissuring of the material as to lead to an extensive weathering and consequent exposure of the lower beds; but this has not been continuous throughout the mountain-range produced. The complicated faults so formed can be at once grasped by an examination of the effective sketch illustrative of the phenomenon. In fact the services of skilful draughtsmen are everywhere apparent. The isolated weatherworn pinnacles of the great valleys, the sombre scenery of the profound cañons, the grand picturesqueness of the mountain of the Holy Cross, on whose sides the snow-filled crevices are arranged in the form of the sacred symbol, the effects of the protection afforded by the hard bands of rock in softer materials, as in the "Monument Park," are all portrayed with effective artistic skill, and still without any apparent sacrifice of truthfulness of appearance; and the ralue of such sketches as a compound of section-drawing and almost a bird's-eye riew is fully exemplified.

In Palæontology, with the exception of seven diagrammatic plates of plants from the ('retaceous beds, the book has no illustrations; but perhaps it is scarcely fair to expect a lengthened account of the fossils characterizing the different groups in a general geological history such at this is. The two monographs (by Leo Lesquereus) on fossils in this report deal (1) with the phants by which the age of the Tortiary lignitic formations may be determined, and (2) with the Cretaceous thora of the Dakota group, those specimens only being figured which are illustrative of the "new materiuls
obtained from this remarkable formation," aud which comprises some rare Aralie, Sequoix, and Menispermites.

Not the least interesting chapter in the book is one by Mr. W. H. Jackson, on the curions traces of ancient human occupation that are found along the eliff-sides and escarpments in the extreme south-western portion of the Territory. Grouped or singly along these slopes, some near the highest flood-level of the stream, others at considerable elevations above it, are ruins of stone buildings of various sizes and in various stages of decay. They are constructed of stones about 4 inches square by 7 and 12 inches wide, cemented with clay, and divided into rooms 8 or 10 feet square. Some were of two stories, castle-like in form, and provided with squared windows ; but, except abundant fragments of coarse pottery, no other relics of these bygone races could be discovered among the ruins. Their chief peculiarity is their situation. Generally high up on the cliff-side, at the base of the more vertical portions, these buildings, often enclosing the entrunces to cares and fissures, though at other times quite separated from the rock, are alrays difficult of access. The inhabitants had evidently much to fear from hostile tribes; and the position of the buildings, coupled with the fact that they can be at times with difficulty distinguished from the natural stone, indicates that the ancient tribes had selected this inhospitable site for the sake of security. But history tells us that even this effort was rain. Mr. Ingersoll, writing about the aboriginal races of Colorado, asserts that originally they inhabited all the country as far west as the head-waters of the San Juan, and lived peacefully, cultivating with rude implements of stone and wood the fertile ralleys of the streams, where they pastured their flocks and herds. But about 1000 jears ago their neighbours, the Utes, broke up these peaceful encampments. Driven by slaughter and forays, they retired to the more inaccessible fastnesses of South-west Colorado, and there dug reservoirs and built the watch-towers, of which the relics only remain. And here they stood at bay; but "their foes came, and for one long month fought and were beaten back, and returned day after day to the attack as merciless and ineritable as the tide. Meanwhile the families of the defenders were evacuating and moring south; and bravely did their protectors shield them till they were all safely a hundred miles away. The besiegers were beaten back and went away; but the narrative tells us that the bollows of the rocks were filled to the brim with the mingled blood of conquerors and conquered, and red veins of it ran down into the cañon." The Moquis of Arizona are their descendants. Eren these desolate wilds tell a tale of human suffering and aggression that can unfortunately find its parallel in every nation's history.

A special Report on the Mollusca of the region, and Reports on the Topography and Gcography, and a good index are also given. The completeness of the volume, and the painstaking care with which a work presenting no ordinary difficulties has been so successfully performed, reflect the lighest credit both on the Gorernment that directed its execution, and the able body of scientists to whom its carrying out was intrusted.

MISCELLANEOUS.

Zoology of the 'Challenger' En'pectition.

To the Editors of the Annals and Magazine of Natural History.

Gentlemex,-A notice of the "Zoology of the Challenger Expedition" appeared in your No. for March 1 isit, and has excited much surprise. It was in the form of an extract from a letter which Mr. Alexander Agassiz addressed to the Editors of 'Silliman's Journal,' dated Edimburgh, Dec.1s, 1-76. In this letter the scientific world is informed that the 'Challenger' collections are to be distributed for description in a very extraordinary manner, and "so that the U"nited states will have their fair share of the work." In fact the Echini, Ophiuruns, Ruclioleria, and Spongida (almost the most important groups to the zoologist and paleontologist, and dredged up in the grand British expedition at great cost) are to be handed over to distinguished naturalists abroad.

I address you on this subject at the instance of a very considerable number of Fellows of learned societies, and, by permission, in the name of those gentlemen whose work in relation to those groups is well known. I state unhesitatingly that not one English writer on the Echini, Spongida, or Radtiolaria has been communicated with by Sir Wyrille Thomson, in whose hands the Goverument have placed the direction of the results of the Expedition ; they one and all have been passed over with contemptuous neglect. For a great nation to send out expensive expeditions and then to distribute the results for deternination and description to foreign naturalists, however distinguished, without considering and employing its own naturulists, is rather characteristic of this age of depreciating criticism; but it is a proceeding which cau only be tolerated upon a preposterous application of the idea of catholicity in science and the fact of the incompetence of national investigators.

An assumed deficiency of competent naturalists in Great Britain is, in fact, the only excuse for distributing the collections after the fashion adopted by the "Director "" for the stretching of the idea of brotherhood in science, under the circumstances of the Expedition, is silly. I would direct the attention of the Director (whose apparent ignorance of the work of his fellow comentrymen would seem to disfualify him for his position) to the pages of the Palrontographical societys works, and to those of the Zoological, Geological, and Limncau Societies during the last decade. He will find that a Royal Medallist obtained this honour for researches amongst the Protwoa; he will find that an English palieontologist, who has paid great attention to the Echini, has given a classification of their main groups which is acecpted everswhere; and he will find younger olservers who have given plenty of evidence of their only wanting the opportunity to become rery distinguished. There is no deficiency of competent workers amongst us.

As a perfectly independent naturalist, I protest most decidedly
against Sir Trrville Thomson's course of action, and denounce it as unjust and unpatriotic; and in this protest 1 am joined, as will be proved shortly, by nearly every scientific man with whom I have communicated. I doubt whether sir Wyrille Thomson is justified by the instructions of the (rovernment reyarding the disposal of the C'ollections; but this question will be settled when the correspondence is moved for in the "House." In conclusion, I wish, in my own name and on behalf of those naturalists who act with me, to express our admiration of the labours of the distinguished men who are mentioned by Mr. A. Agassiz, and our thorough appreciation of his own genius and liberality. We can only regret that these gentlemen have been placed, by no fault of their own, in a position so invidious that they can hardly occupy it conscientiously.

> Yours, ice.,

P. Martix Dexcay, F.R.S., Pres. Geol. Soc.

On the Morlifications undergone by the Ovrm of the Phanerocarpal Medusæ before Fecundution. By M. A. Giard.

We shall take as a type the orum of Rhizostoma Chvieri. This fine Medusa is thrown up in great abundance, during the whole autumn, on the beach at Wimereux, together with Chrysaora hyoscella and some other Acalephs.

The smallest ora taken from the ovary are formed of a transparent vitcllus containing a germinal vesicle and a nucleolus. We do not yet recognize in them any enveloping membraue. As the orum iucreases in size its transparency diminishes; the vitellus becomes charged with deutoplasm, and the germinal vesicle less easy to appreciate; at the same time a very delicate vitelline membrane, closely applied to the vitellus, may be distinguished at the periphery. In a later stage tho ovum presents at its periphery a series of spherules equally distributed over its whole surface, filled with a perfectly hyaline substance, and separated from the external menbrane by a thin layer of granular protoplasm, identical with that which occupies the centre and covers the germinal vesicle. An optical section of the ovum may then be roughly compared to that of a young stem of a plant at the moment of the appearance of the first circle of vascular bundles which divide the parenchyma into three parts-one central, another peripheral, and the third radial (uniting the two former). The hyaline spherules increase rapidly, become tangential to one another, at the same time that they reach the vitelline membrane. Under a low power it appears as if the vitellus were surrounded by a layer of cells which project rectangularly at its periphery. Under a higher power it is seen that the central granular protoplasmic mass is united to the vitelline membrane by a multitude of little columns, widened at their tiro extremities, like the columns formed in a cavern by the union of the stalactites and stalagmites. These liftle columns are formed by a less granular protoplasm than that of the centre of the orum.

Lastly, at the moment when the orum arrives at maturity, the little columns are ruptured, learing no traces except slight thickenings of the vitelline membrane at the points where they were attached. We have then, therefore, a central granular mass in which the germinal vesicle is no longer directly observable, and round this mass a transparent zone which separates it from the vitelline membrane.

Prof. Harting has seen, in the ova of Cyanea Lamarckii and C. capillata, the stage in which the little columns exist *; but not having completely followed the preceding phases, he has given an erroneous interpretation of the appearances observed. He regards the ora of the Cyanece as furnished with a ritcline membrane of considerable thickness and pierced with a great number of pores leading from the outside to the interior, such, he says, as are met with in the orum of some Mammalia, perhaps in all, and also in the orum of many Teleostean fishes, in which, however, these pores acquire much more considerable dimensions. It is evident that these supposed pores are nothing more than the columns of clearer protoplasm above mentioned. In this way the suppositions of Harting with regard to the physiological function of these pores also fall to the ground. He belicred them to serve for the respiration of the orum, and perhaps also for the passage of the spermatozoids.

The preceding observations were made at Wimereux during the month of September 1875. They are a part of a set of researches, still unfinished, on the derelopment of the Medusie; and I have only decided to publish them now because they appear to me to acquire a nuch greater generality and importance than I at first supposed, in consequence of the magnificent researches of Weismann to the orum of the Daphnoidete.

Weismann has observed a process precisely similar to that just described, in the formation of what he calls the shell (Schale) of the winter egg of the genera Polyphemus, Sida, and Daphenella. It is remarkable that, in this case, as in that of the Medusæ, the orum undergoes a tolerably long incubation in a special medium furnished by the maternal organism.

The excretion of the hyaline vesicles, which takes place all over the periphery of the vitellus of the ovum of Rhizostoma, may in other animals be coufined to one point of the surface; the phenomenon would then take on the appearance of the issue of excreted globules. Considering this process, we may inquire whether the phenomenon so often noticed of the rejection of a certain part of the vitellus at the moment of the maturation of the orun must be regarded as equivalent in all animals in which it has been observed. Buitschli has shown most clearly that the polar corpuiscles of the ovum of Limmous, Succinea, Mephelis rulyuris, and Cucullanus eleygans originate by the process of cell-division. I may add

[^71]that this is the case also in Sulmacina Dysteri and the Spirorbes. In these different animals the exercted corpuscles hare the value of rudimentary cells haring an ataric signification, and cannot properly be called polar corpuscles. This name, on the contrary, applies to the non-cellular materials, which, being rejected by the vitellus, serre for the formation of the accessory organs of the orum; for example, the shell or the ritelline membrane. Such are the hyaline resicles of the orum of Rhizostoma Cuvieri.-Comptes Rendus, March 19, 187\%, p. 564.

Vertigo Moulinsiana, Dupuy.

This interesting and local little land-shell has been lately discorered by Mr. Henry Groves, while botanizing, in a small marsh between Winchester and Southampton. See 'British Mollusca,' i. p. 256, and r. (Suppl.) p. 160. Mr. Grores's specimens are rather more swollen or barrel-shaped than mine from the west of Ireland; and they agree exactly with some Danish specimens, for which I am indebted to the kindness of Dr. Mörch, as well as with the descriptions and figures of Dupuy and Moquin-Tandon. Kuister and Kreglinger called it V. Cherpentieri, after a MS. name given by Shuttleworth. Heyneman described it as V. ventrosa, and Westerlund as Pupa Lilljeborgi. Dupuy's name (Moulinsiana) dates from 1849, and has priority.-J. Gifra Jeffreys.

> Sponges Dredyed up on bourd H.M.S. 'Porcupine' in 1869-70, Returned. By H. J. Carter, F.R.S. \&c.

By reference to my communication on Sponges dredged up on board H.M.S. 'Porcupine' in 1869-70 ('Annals,' 1876, vol. xviii. p. 226), it will be observed that they were then in my possession; and being the property of the Nation, I have now to add what I have done with them, which will be told by the following letter:-

> (Copy').
> "' The Cottage,' Budleigh-Salterton, Deron. 24th March, 187%.
"My Dear Thoysox,-I hare this day forwarded to the address you gave me in your letter of the 14th inst., viz. '1 Park Place, Edinburgh' (carriage unpaid, as they came to me), three boxes containing all the Sponge-specimens (both wet and dry), dredged up on board H.M..S. ' Porcupine' in 1869-70, which you sent in 1872, excepting about as much as would fill a hen's egg, which has been chiefly used in their examination.
"I took the boxes (also addressed "To Scotland via Midland Railmay") to the office of the Bristol and Exeter line in Queen Street, Exeter, myself, and saw the clerk write 'Yan Rail' on each of them, stating that they would reach their destination on Monday next, which I trust may be the case - and safely, too, as, to insure this, all reasonable care has been taken in packing and addressing them both outside and in.
"'The covers have been screwed on, so that there will be no occasion to use force in opening them; and each box has been corded both for further security and for furnishing them with a handle respectively, whereby they may be removed from place to place easily and without any excuse for turning them upside down.
"The boxes respectively contain all the Jars you sent me, vi\%. 104, and the same Jass too, with their contents respectively, exactly as I received them, minus the quantity above mentioned; but with the addition of a few small boitles into which respectively some of the smaller Type specimens hase been put to avoid contusion. And, although all have had their stoppers tied down where necessary, yet as these do not in all instances fit tightly, and a feer of the smaller Jars have been laid on their sides for convenience, while their contents respectively are only just covered by spirit with the usual bit of muslin, it seems to me desirable that they should he unpacked directly after their arrival, and sufficient spirit added to prevent the occurrence of mildew, whereby, for accuracy of detail, the minute examination of a sponge is destroyed.
"Each Jar has my 'running number' on it outside, besides the same number in pencil on vellum loose inside. The Type specinens respectively, in each Jar too, are labelled on the latter outside, and ticketed inside with the letters 'T.' S.' in pencil, also on vellum.
" Moreorer, I herewith enclose a MSS. Catalogue of all the Jars and the dry specimens respectively, in which also the 'running number' of the Catalogue will be found to correspond with that on the Jars \&c., respectively, as follows:-The first column contains the 'running number;' the second the figures on the original label of the Jar when it reached me, which were then fortumutely copied, as they are now, in many instances, obliterated; the third column bears a list of the Sponge-specimens contained in each Jar, with the Type specimens written in red ink: for distinction, and the rest in common dark ink-the former ticketed as abore mentioned, and the latter unticketed, as it is assumed that these, which have been long since described and illustrated, will be easily recognized. Lastly, the fourth column, headed 'Remarks,' is intended for further elucidation of the specimens, as well as to indicate the volumes \&c. of the 'Annals and Magazine of Natural History', respectively, in which the Type specimens have been described and illustrated.
"It also seems to me advisable that all the Type specimens should at once be taken out from their Jars respectively and put into Jars of their own by themselves : for some of them are in great plurality, dispersed throughout the collection, and others single or at present migue; whereby they would be ready for distribution, as you state that "ther will be sent to the British Juseum with the "Challenger" collections.'
"Finally, the dry specimens will be found in the same two little boxes in which they came to me, inclosed in one of those mentioned, also numbered in accordance with the list at p, 3: of the Catalogue.
"A 'Postal Card' addressed to myself, with the words 'All has arrived safely" written on it, is also herewith enclosed to save you trouble in scading this acknowledgment to me by return of
post if conrenient, after the receipt of the Boxes, with these words alone, or instead of them any other observation you consider necessary.
"As stated to you before, I can rouch for the accuracy of what I hare published respecting the Type or New Specimens among these sponges; and that is all that Science requires or can demand, either from my head or my pocket, gratuitously.
"I am, my dear Thomson, Yours very truly,
"To (Signed) Henry J. Carter."
Professor Sir Wyville Thomson,
20 Palmerston Place, Ertinburgh."
Of the Boxes haring reached their destination I had notice by the receipt of the "Postal Card" on the 28th March, signed "C. Wy. T.," and stating that they had "arrived all right," but had "not" been "opened." So far İ am no longer accountable for these specimens.

Budleigh-Salterton, A pril 25, 1877.
On the first Phenomena of the Development of Echinus miliaris. By M. A. Giard.
The important controversies to which the investigation of the first development of the egg of the Echinodermata have given rise have led me this winter to undertake a series of researches upon the common urchin of the shores of the Boulonnais, Psammectinus miliaris. As a term of comparison in some difficult points I had the eggs of the common starfish (Asteracanthion rubens). The spawning ceases in both species towards the end of March.

The methods employed by me are those of direct observation and of coloured preparations. The latter were especially useful for the observation of the curyolytic figures (Auerbach) or amphiasters $(\mathrm{H}$. Fol). I obtained excellent results by employing acetic acid, ammoniacal carmine, and picric acid, applying these reagents successively and in rery small quantities. The preparations thus obtained are very beautiful; but, unfortunately, they cannot be preserved more than a few dass.

Besides the mucous eavelope the egg of Echinus miliaris possesses a very delicate ritelline membrane, and this even before fecundation, as has beeu asserted with regard to allied species by O. Hertmig and Perez. A little while before maturity the germinal vesicle presents the reticulum characteristic of old nuclei. The nucleolus contains an irregular nucleolinus. When the egg is mature, the germinal vesicle quits the central point and enters upon re rogression. Its elements, mingled with those of the nucleolus, form an amoboid mass with more or less torn outlines, which soon attains the periphery of the vitellus, when it divides into two parts, producing a caryolytic figure. One of the stars is directed towards the centre of the egg, and rery rapidly acquires the form of a rounded nuclens. It is this nucleus that 0 . Hertrig regards as the germinal spot, which has escaped the transformation affecting the germinal
resicle. We shall, like II. Fol, eall it the female promuclens. This nucleus always appeared to me smaller than the nucleolus of the egg-an observation which appears to me diflicult to reconcile with the opivion of O. Hertwig. Moreover 1 have frequently met with ora in which the Wagnerian spot was no longer visible, and in which the female pronucleus did not yet clearly present the muclear appearance. On the other hand, it is incorrect to say that the female promucleus has no genetic connexion with the nucleolus of the orule, seeing that the substance of that nucleolus, mixed with that of the germinal vesicle, serves for the formation of the first ampliaster, which gives birth to the female pronucleus.

By examining, without reagents, a great number of eggs recently deposited and not yet fecundated, we obscrve rery interesting facts. The egg presents two little cumuli of a protoplasm clearer than the rest of the vitelline mass. These two cumuli may be variously placed with respect to each other; but very generally they are placed at the extremities of one diameter. One of them originates at the expense of the brother star of the female pronucleus; this star forms an unequal caryolytic figure, the small star of which becomes the cumulus in question ; this cumulus, lastly, produces the first polar globule; the second originates subsequently from the first. The polar globules are rery small in the urehin, and, moreover, they disappear very rapidly; lastly, they do not remove far from the surface of the vitellus, and it is therefore possible that in Toxopneustes lividus they may have escaped the notice even of so practised an observer as O . Hertwig.

I have said that in order to make these observations it is necessary to take recently deposited eggs: the deposition may be induced at will in several ways. The same phenomena may also be observed, however, in ora taken directly from the genital gland; but in operating thus we are exposed to a source of error. In fact, with the liquid of the perivisceral cavity a certain number of the amœboid clements which float in that liquid are rery frequently remored; and these elements, by attaching themselves to the surface of the ritelline membrane, which is intimately applied to the vitellus, may simulate vitelline cumuli or even polar globules. All confusion is avoided by taking deposited eggs, and following them step by step for some time up to the moment of fecundation.

As soon as the egg is brought into contact with the spermatozoids, the latter apply theniselves by their heads over the whole periphery of the membrane, and impress upon the vitelline sphere a very rapid gyratory movement. The vitelline membrane, hitherto very close to the surface of the vitellus, separates from it by degrees; and, in consequence, the sccond cmmulus, the apex of which adheres to the membrane, is drawn out into a cone, uniting the ritellus to the surface. As no spermatozoid is seen to penetrate between the vitelline membrane and the vitellus, round which there exists a large clear space, I incline to think that the second cumulus serves for the passage of the spermatozoid, either by the apex of the cone terminating at a pore in the membrane, or (which appears to me more probable) by the fecundating act consisting essentially in a diffusion
of the male protoplasm through the membrane at the point where this is directly in contact with the female protoplasm-that is to say, at the aper of the cumulus.

The protoplasmic cone uniting the membrane with the vitellus soon detaches itself from the membrane and reenters into the rite line mass. By employing colouring substances the egg then presents three nuclei, tro situated near one pole of the egg, the other at the opposite pole. Of the former two, the superficial one is the nucleus which, by dividing, forms the polar globules; the other, more deeply seated, is the female pronuclens; the nucleus formed at the opposite pole, which is at first superficial, is the male pronucleus, which, starting from the point where the cumulus of fecundation was situated, directs itself towards the centre of the egg to meet with the female pronucleus, with which it enters into conjugation to form the first nucleus of segmentation. I do not think that the nucleolus of the male pronucleus can be regarded as the unmodified head of a spermatozoid.

It seems to me that the numerous spermatozoids fixed upon the membrane of the egg, and which appear to have no function, are not quite rithout influence on the act of fecundation. The ggratory morement which they give to the egg, a movement so easily detected in the Echinodermata, the Ascidia, and a great many other animals, perhaps assists in favouring the progress of the tro pronuclei towards the centre of the egg. I have frequently remarked that the eggs which had not turned for a certain time were developed irregularly, and sometimes eren did not enter into embryonic evolution.

Is the existence of a cumulus of fecundation peculiar to the Echinodermata? Prof. de Lacaze-Duthiers, in his splendid monograph of Dentalium, figures in the egg of that mollusk a mamilla situated at the pole opposite to the polar globules, and which may perhaps hare the same signification as the cumulus of the urchin. Howerer the eminent zoologist declares that he could not say whether this mamilla is visible before the arrival of the spermatozoids.

In the common starfish the cumulus of fecundation is more difficult to see than in the urchin; but, on the other hand, the polar globules are much more apparent, and their production presents more clearly the picture of a cell-division with unequal products.Comptes Rendus, April 9, 1877, p. 720.

Obituary.

John Lechexby, Esq., F.G.S., F.L.S., died at Scarborough on the 7th of April, 1877 , in the 63rd year of his age. He was an excellent and zealous naturalist, and deservedly possessed the esteem of all his numerms friends and correspondents. Yorkshire has lost in him one of her best men of science. Mr. Leckenby became a contributor to the 'Annals' in 1858; and his last communication was made, in conjunction with Mr. Marshall, in December 1875. He also published papers on local geology in the 'Quarterly Journal of the Geological Society' and the 'Geologist' in 1859.

THE ANNALS

AND

MAGAZINE OF NATURAL HISTORY.

[FOURTH SERIES.]

No. 114. JUNE 1877.

XLTV.-On the Variability of the Species in the case of certain Fishes. By Dr. V. Fatio*.
Several authors have of late years demonstrated the influence of the surrounding merlium upon organisms, and indicated in various particulars the variability of the species.

The struggle for existence and natural selection especially are no longer subjects of doubt with many zoologists.

A change in such or such a condition of existence almost always superinduces a parallel modification in such or such an organ, the mode of action of which is more or less affected; and this first translation of the external influences necessarily draws after it corresponding disturbances in several other parts characteristic of the species.

Darwin, in his work on the Origin of Species, gives the name of correlative variation to this kind of reaction of a modified part upon other corresponding parts, and demonstrates sufficiently by numerous examples that the changes which have taken place in an individual may be reproduced and multiplied by heredity. Häckel distinguishes direct or immediate influences, acting upon the individual, and indirect or mediate influences, which only become perceptible by heredity. This latter author even devotes a whole chapter of his 'Natural History of Creation' to this subject, under the title of "Laws of Adlaptation."

[^72]Several naturalists have already more or less studied and described the series of transformations which, under the influence of the variability of the conditions of existence, have gradually modified, sometimes the actions, and sometimes the forms of certain animals and plants, often sufficiently to render unrecognizable the traits of relationship which ought to unite individuals which, at the first glance, are completely different.

The particular point to which I desire here to call attention will not, therefore, find its interpretation in an entirely new order of ideas. Howrever, as each new stone added to the edifice of an opinion cannot fail to be of use, I think I ought to take advantage of some of my most recent observations to expound succinctly some reflections which have by little and little grouped themselves in my mind since I have investigated the Swiss Vertebrata and their variability under different conditions.

A conscientious zoologist can no longer establish new species so easily as heretofore. Many apparently distinctive charaters fall to the ground or lose more or less of their importance before a thorough study of possible modifications. Each character calls for serious discussion ; it is necessary to seek, if not the limits of variability, at least the points which, under such or such an ensemble of appreciable conditions, seem to be the most solid.

It is, in fact, to the narrowness of the limit ascribed to the species in the old definitions, and to the often inconsiderate multiplication of specific types apparently different, that we owe in a great degree the confusion which now reigns either in certain parts of classification, or in the minds of many people who seek, in different directions, the foundation of truth.

The species is very difficult to define or to limit ; for a group of individuals similar to each other, exactly like a certain individual, attributed to such or such a species, seems to be nothing more in reality than the actual expression, under certain given conditions, of a form taken upon such or such a step of the animal scale, or upon such or such a branch of a genealogical tree*.

[^73]Whether it belongs to a single primitice tree or to one of the descendants of the latter in the forest of beings, the bud, species or variety, which terminates a branch must always possess the power of yielding more or less to the exigencies of a variable mediun, and of being able to produce thus new modifications of greater (or less importance, themselves endowed, in their turn, with greater or less variability and vitality.

Nost authors who desire to give an absolute definition of the species, generally invoke, as evidence of stability, the difficulty of intercrossings between distinct species, and the comparative sterility of the hybrids thereby produced, as also the facility with which, on the other hand, the races derived under our eyes from a single stock multiply together. These difficulties, however, which are often exaggerated, frequently seem to result from the desire to unite, for certain advantages, organisms endowed with useful qualities of too opposite a nature. In the two cases we are at a very different distance from the parent form ; it is necessary, as Besnard has already indicated, to be able to make one's choice, or to return further back in the ramifications of the genealogical tree. It is probably for an analogous reason that it is usually the lower types that present most possible modifications or combinations. A longer duration of the influences, by more profoundly altering the organisms, evidently diminishes the sentimental attraction, if we may so call it, that a similarity of appearance must necessarily favour, and at the same time renders a perfect combination of the organism of the two individuals selected less easy to be effected in a manner sufficiently complete to become productive.

It is impossible not to see here the existence of two general laws opposed to one another and constantly struggling one against the other, and which, according as they are called by circumstances to predominate over one another, maintain the species within relatively immutable limits, or, on the contrary,

[^74]urge it towards constant variability. There seems to exist a law of hereditary resemblance which tends always to kieep to the specific type, and a law of varialility by adaptation, destined, on the contrary, to modify every organism with the object of fitting it to new conditions of existence.

Differences and variations of medium being incontestable, it is irrational to try to prove the stability of the species by closing our eyes to one whole side of the question, citing only those cases in which the first of the above laws has gained the victory, either directly or by return or atavism. In the study of the rariation of the species, in order to be impartial, we must, I think, commence by fully recognizing the importance of the first of the two opposing laws, and freely accepting it, firm the first, as a sort of bralke preimposed upon future modifications.

While attributing great variability to the species, we must not, however, I think, refuse proper names to all the more or less different forms of creatures in various classes. Natural history and classification have need of these distinctive designations, which become, as it were, so many heads of chapters and cadies for observations. Now-a-days, indeed, there are many distinguished naturalists who see no inconrenience in complicating the binary nomenclature by the creation of a special name for each variety. The accumulation of names is not, in fact, dangerous, if we always take care to indicate the relations or affinities which bind together two forms nominally separated.

It has been said that it is the richest genera which furnish the greatest amount of examples of variation by adaptation; this observation would, I think, be better represented by the very simple remark that it is the largest genera which include the most false species founded upon local varieties.

I have often been struck with finding in several large genera a species at once much more widely distributed, and much more subject to vary, than the others, even in a very restricted space. The red frog, in the genus Rana, and the common toad in the genus Bufo, among the Batrachia, as well as the trout in the genus Salmo, and the roach in the genus Leuciscus, among fishes, may, among others, furnish us with striking examples of cases of this kind.

Such species, a sort of predominant branches, must be regarded as the parents or stocks of several other so-called species, more or less deviated, in different directions and in different countries; they are the type and, as it were, the centre of a natural group of forms, cll of which resemble them in different degrees.

Although called upon to vary, more or less, and with time, in certain countries, when in spreading it has met with new exigencies, the species may nevertheless remain relatively fixed, or vary comparatively little in the same locality or in analogous media, so long as the conditions are not sufficiently modified. This is what led the illustrions Cuvier to say, and up to a certain point with justice, "Experience seems to show, on the contrary, that, in the actual state of the globe, varietics are confined within very narrow limits; and so far as we can go back into antiquity, we see that these limit, were the same as at the present day."

I have already several times recognized and indicated, in certain widely distributed species belonging to various classes of our Vertebrata, naseent divergences in some part or other of the amimal. These variations, more and more strongly marked until they reach adaptation through the persistence of the influences and heredity, constitute what I call tendencies, or the origin of new bifurcations upon a genealogical branch. Often perceptible in certain individuals in a very limited field of observation, they increase more and more in other countries with the augmentation of the first small dissimilarities of condition, and thus advance towards temporary marimu, which in various places have received different specitic names.

The origin of these divergences may be, according to circumstances, attributed to a persistence of the characters of youth, or to the predominance of the distinctive features of one or the other sex, or to the reproduction by heredity of a quasi-accidental anomaly, or, again, in consequence of the struggle for existence, to new exigencies of the conditions of life. I have particularly indicated, in the number of the 'Archives de la Bibliothèque Universelle' for S'eptember 1876, the coexistence, in the waters of the Lake of Geneva, of three very distinct tendencies in the forms of the roach (Leuciscus rutilus). Each of these three varicties (deep, elongated, or thick) already indicates, with a primary modification of the general form, more or less strongly marked correlative deviations in several of its characters.

Without going beyond the restricted bounds of our own ichthyological fauna, I might cite several other cases of varieties of one and the same species living thus almost side by side, although kept distinct by exigencies of medium, which are often badly interpreted. It may suffice for me, in this connexion, to refer to the example of our freshwater trout, which, according as it is more or less confined to small streams or to the deeper waters of nur lakes, presents a facies so diffe-
rent as to have passed hitherto for two perfectly distinct species in the cyes of most ichthyologists. It is well known that the size of the basin and the relative abundance of alimentation have much influence on the dimensions of the animal. The little brook-trout, which most zoologists still distinguish under the name of Sular Ausonii (on the ground of its small size, its thickset form, the shortness of its nose, the comparatively larger dimensions of its cye, and some peculiarities in its dentition), is, in fact, in my opinion, nothing more than a form of the great trout of our lakes, which is called, according to circumstances, Trutta lecustris, T. Schiffermuilleri, Fario Marsiglii, or Salmo lemanzs. Most of the characters proposed for its distinction are those of the early age of the fish. In a small stream the trout, which cannot grow for want of room, arrives at an advanced age retaining more or less the characters of infancy. It would be still more surprising to meet with trout of 30 lb . in a few inches of water. Moreover I have already remarked several times that the fishes-such as the perch (Perca fluviutilis) and the chub (Squalius cephalus), for example-which inhabit the cold and poor waters of some of our small elevated lakes in the Alps, also usually retain several of the characteristic features of youth, their size also being small.

Many naturalists, misunderstanding the natural affinities which bring together allied species, although at present perhaps separated by very important geographical boundaries, have gone so far as completely to deny the production of races in organisms in a free state. Faivre, among others, following Godron, unhesitatingly maintains that variations and races are very rare among plants and animals in a wild state. This author appears to me, in particular, to place himself in flagrant contradiction to direct observation when he says, for example, "The races found under these conditions are exceptional, to such an extent that many naturalists do not hesitate to call in question their existence."

Wallace, holding an exactly opposite opinion, published in 1858 a very interesting memoir on the tendency of varieties to depart indefinitely from the original type. Trautschold also, in 1861, drew a somewhat different conclusion from analogous observations: according to the latter, "The varieties which unite two species have also the power of modifying themselves in more than two directions; but the result obtained by the changes effected in a third direction must not be regarded as a simple variety, it must take rank as a new species." The first author perhaps exaggerates, while the second may seem to wish to specify a little too much; how-
ever, it none the less appears, from what they say, that to them, as to me and many others, variability is becoming more and more evident.
A variety duly ascertained may be regarded, according to the point of view that we take up, either as a bond between two so-called recognized species, or as a tendency towards the creation of a new form.

The question as to the existence of a limit to the variability of the species appears difficult to settle; nevertheless it may be remarked that, for the perpetuation and constant augmentation of a deviation at one point, the gradual establishment of a certain necessary equilibrium in the correlative variations is required. A rapid modification of an organ which, in consequence of intemal incompatibilities or external contrarieties, is not followed quickly enough ly corresponding changes in other parts of the organism, will almost always superinduce either an arrest of the transformation in this direction, or the extinction of the new divergent form, whether we regard the latter as a species, as a variety, or simply as an abortive shoot on a genealogical branch.

A great number of observations tend to prove more and more that, in the struggle for existence, natural selection always gives the victory to the best organized, and that the case of the strongest is always the best. Influenced in various directions a species will give origin to several more or less different offishots; and only those will long persist which may be sufficiently strong to hend, without excess and in an equilibrated manner, to the various exigencies of different conditions.

There is therefore a limit, in a certain sense; but this limit, being due to a rupture of equilibrium, and often accidental, is wider or narrower for the different varieties; and each of the latter, by departing more and more from the type, always runs the risk of meeting reverses in some part or other of its organization when in a false direction.

A natural barrier, even when very narrow, sometimes suffices to establish differences, striking enough at the first glance, between two allied forms. If, in the examination of a great number of individuals taken under the two conditions, we cam still perceive the transitional steps which explain the scrics of transtomations, we must, I think, for the time, regard these two still divergent or parallel forms only as local races of the same species; but, on the contrary, if one or several important steps are wanting in the scale of comparisons, we may regard these two opposed forms as different species, until evidence to the contrary is produced.

These first two cases have often occurred to me in the comparative investigation of the fishes in the Swiss lakes of the north and south of the Alps. But there is a third case, with regard to which I must here say a few words-namely, the rare case in which we find suddenly, and as it were by chance, among a great number of individuals of two derivations, and sufficiently constantly different to appear to belong two species, an individual which, in one of the geographically separated forms, resembles the other form in all its characters, so as actually to be mistaken for it, and thus betrays the heredity or identity of origin.

I may cite, as a curious example of this last case, the discovery that I made in the lake of Lugano of a bleak (Alburnus) which, south of the Alps, perfectly recalls the form proper to our representative of the genus north of that chain. It is well known, in fact, that hitherto all ichthyologists have recognized the bleak of the Ticino and of Italy as completely and specifically distinct from that which inhabits the waters which have their source north of the Alps. Now the specimen in question, found among hundreds of similar individuals of Alburnus alborella, presents, both in size and coloration, and in its various forms and proportions, nearly all the characters regarded as distinctive of our Alburnus lucidus. Never before has such a bleak been noticed as inhabiting the Italian waters; and it would be very difficult for me to explain under what influence this reversion can have been produced. However, in presence of this revocation of consanguinity, I can now do no otherwise than regard Alburnus lucidus and A. alborella, which at first sight are very distinct, as two races, the one northern, the other southern, of one and the same species. Although it would appear that we must go back very far to find the epoch at which these two supposed species lived under the same form, under identical conditions, it none the less seems that we have to do here with a complete case of atavism, though of very distant date.

The partisans of the variability of species have laid much stress on the study of the variations of domestic animals. Deformations produced accidentally or by artificial selection are, in fact, comparatively easy of demonstration in subjects necessarily submitted to our observation ; but the appearance in free creatures of modifications superinduced by natural selection, or at any rate by influences independent of the will of man, being always more difficult to seize, it seems that the study, under natural conditions, of a divergence of any kind in any organ must also possess its interest and value.

Let us confine ourselves now to the study of the modifica-
tions introduced by circumstances into the organs of prehension, and endeavour to trace as far as possible some of the correlative compensations necessarily superinduced in other parts of the organism. We may even reduce our field of observation to the investigation of these organs in certain fishes, as indicated in the title of this note.

To attain the same end, nature must sometimes employ, according to circumstances, very different means; moreover, even with identical means, it often happens that, under different circumstances, the correlatice modifications are not effected alike, sometimes in different intividuals of the same species, sometimes in the different parts of the same individual.

The organs of prehension, so varied in the animal kingdom, being, in the fishes, represented by the mouth alone, one can easily understand the influence that may be gradually exerted upon the arrangement and proportions of this buccal cleft in the first place, and then upon the whole organization of the individual, by the modifications introduced into the actions and "gymnastic" of the animal by the necessarily different mode of prehension to which it must adapt itself in order to procure its nourishment in one condition or position or another -above or below it, at the surface or the bottom of the water, for example.

A mere glance at a few marine fishes will amply suffice to show us many different aspects of the buccal pieces appropriated to one mode of prehension or another ; we have only to consider, for example, the comparative forms of the body, or of the limbs and jaws, in the genera Xiphias, Histiophorus, Centriscus, and Belone. But under conditions more like those of our own country, the freshwater species may also show us various forms of the mouth adapted to different uses. As I shall have to revert to these, I shall confine myself here to referring en passant to the case of Toxotes jaculator, which takes its prey at the surface, and often even provokes the fall of the insects on which it feeds by projecting a drop of water at those which are placed above the liquid. For this purpose this fish has the lower jaw considerably prominent and turned up, and at the same time the fins placed far enough back to allow the entire head of the animal to be easily kept raised into the air. If I cared to go beyond the class which particularly occupies our attention I might also recall the fact that those birds which are condemned, without swimming, to seek their nourishment at the bottom of the water, have the legs, the neek, and the beak all greatly elongated; whilst in those which, like the snipe, for example, are called upon to rummage beneath them, not at the bottom of the water, but only in
the firm ground, the legs, naturally, do not follow the beak in the necessity of elongation. It would be easy also to cite other examples already indicated among the Mammalia, especially in certain races of cattle; but we will not go beyond our self-imposed limits.

My business is only to demonstrate that the general laws of adaptation which presided over the formation of types, continue always to exercise their influence upon all individuals in different conditions*.

Moreover I think that, in such investigations, we must not seek too far for our points of comparison; for, with its purpose and its organization, each type also appears to have its own tendencies to variability, may be as a predominant direction for the possible modifications in a certain medium. In other words, each species, or each group of allied forms, appears to me, in our country and under certain conditions, to vary preferently towards such or such a given point. The parts more easily influencible constitute for the species at once the weak point from the side of classification, and the strong poirt as regards facility of adaptation, force of resistance, and power of extension.

It is evident that, according to the nature of the persistent exigencies of the medium, it will be sometimes one and sometimes another of the organs of relation that will be first called upon to become modified; but it is no less true that in each species we shall always find, in a given medium, a particular character which is more subject to vary or more prompt to become modified. The exact determination of the character which, being the first modified, has reacted upon all the others, has always appeared to Darwin excessively difficult ; and yet it is upon the study of the variable preponderance of the

[^75]different characters that the more or less rational establishment of genera and species in great part depends.

The great functions of life, nutrition and reproduction, naturally govern this selection of the more or less influencible parts. Aecording as the preservation of the individual or the perpetuation of the species is brought into question by the changes of medium, it is evidently also among the external organs which serve one or the other that the modifiable character the best fitted to effect the adaptation will be selected. The degree of complaisance, or, on the contraty, the exigencies of these two essential functions, allow more or less latitude to such or such an organ which brings them directly into relation with the outer world.

Although only considering the question from one of its sides, and devoting ourselves more particularly to the investigation of certain parts specially useful for the preservation of the individual, we nevertheless cannot here help recognizing, as it were, a brake imposed upon the too rapid modifications of one organ by the exigencies of another-may be, as a new struggle in view of a more or less stalle equilibrium, until perfect adaptation.

As I have said, the whole organism of an individual must be able to bend itself to the more or less sudden changes necessitated in the modification of gestures or habits by the apparition of a new exigency, and follow in an equilibrated manner the transformations effected in the organ of relation which was first called upon to vary.

If we were to select as examples of struggle between external and internal organs in certain fishes, on the one hand, the eye or the mouth as displaying the appetites, and, on the other, the air-bladder as above all subjected to the conditions of temperature or pressure of the medium, we should soon find several curious cases of ruptures of equilibrium, both accidental and normal, and injurious, sometimes to the individual, sometimes to the species.

Among others, we know that in the perch (Perca fluviatilis), suddenly drawn up by the line from the depths of our lakes, the air-bladder, being too rapidly trausported from a considerable pressure to a much smaller one, is suddenly distended in an extraordinary manner, projecting itself into the mouth, and sometimes even driving out a part of the digestive organs. We also know that the pike (Esox lucius), when carried, by its voracity, too rapidly from the deeper towards the superficial strata of the water in pursuit of prey, is forcibly retained at the surface by an exaggerated development of the swimmingbladder, and often perishes in consequence of this injury, which in this case is quite voluntary.

In these two instances a too rapid change of conditions leads to a rupture in the equilibrium of the organism, and often involves the death of the individual. The elastic fibres of the air-bladder, too rapidly distended, can no more resume their empire and exert a sufficient compression; and this would not have happened in consequence of slower and more gradual transitions.

But the principal purpose of the air-bladder is not, apparently, to condemn the species to an invariable habitat; the function of this organ is rather, by pressing against the backbone, to keep the individual in the normal position proper for its preservation. Other examples will enable us to understand the importance of this function from the point of view of the preservation of the deviated race, and the comparative action either of certain organs of relation upon the bladder, which is at once a moderative agent and one of equilibrium, or of the latter upon the position of the individual, and thereby upon some of its external forms.

Every one is acquainted with the goldfish or gold carp (Caressius auratus), which normally exhibits oblong forms like those of the carp, but to which the Chinese have found the way to give the most curious shapes. By cleverly taking advantage of the smallest accidental deformations, and instigating and exaggerating monstrous tendencies by subjecting the fish to abnormal conditions, the adroit inhabitants of the celestial empire have actually succeeded in manufacturing goldfish with double and triple fins, with a quasi-spherical body, and with the eyes excessively prominent, or often borne upon a longer or shorter pedicle \%.
M. Carbonnier, of Paris, has already remarked that the equilibrium is very unstable in the quasi-globular varieties of the goldfish, and that, after arriving at a certain age, many of the young fishes of this form must perish, from being forcibly kept in a position which scarcely allows them to feed, some of them with the head turned upwards, many with the head turned down. Two years ago I had the opportunity of seeing in the aquaria of this learned observer several adult globular goldfish with more or less prominent eyes, in which the very different arrangement of the mouth particularly attracted my attention. Two of these appeared to me to be especially interesting.

One of them, with a spherical form and a comparatively short backbone, presented a very turned-up snout and a very

[^76]oblique mouth ; it could hardly take any food, except above it or at the surface of the water. The other, which was also globular and had a very oblique mouth, but with a still shorter backbone, remained completely turned over on its back, with its large belly upwards. The latter, it seems, had commenced by being like the other; then, at a certain moment, the air-bladder being more and more displaced by the pressure of the vertebral column, and the centre of gravity shifted, the animal was completely turned over.

It appeared that the reversed goldfish, when food was offered to it after a long fast, could still take nourishment by great exertions, and that, under the influence of this temporary counterpoise in the digestive tube, it could maintain itself for a certain period, and ly considerable efforts, in a quasinormal position, but only to allow itself soon afterwards to be turned upside down again by the air-bladder.

In consequence of a compulsorily abnormal position, the head and then the buckbone had gradually been deformed, until the arrival of a moment when, the equilibrium being broken and the fins being unable any longer to struggle sufficiently, the air-bladder intervened to put a forced term to the primary external modifications.

I have for some time observed, in one of the aquaria of M. E. Covelle at Geneva, a very curious pathological case, to a certain extent parallel to that of the goldfish, in an adult rudd (Scardinius erythrophthalmus). For about three months this fish has remained at the bottom of the aquarium, always lying upon its right side. The air-bladder, which can no longer press against the backbone, now forms a very apparent swelling upon the left side. In consequence of a paralysis produced, after a fall, in the anterior dorsal muscles of the right side, there took place, by degrees, first an increasing atrophy of the above-mentioned right lateral muscles, and afterwards a gradual deviation of the vertebral column. At present the paralysis has reached the level of the ventrals, and the caudal portion of the body is recurving by little and little towards the back. Nevertheless this fish can still, by great exertions, like the reversed goldtish, take and digest the food that is put from time to time within its reach. Nlthough meagre, it appears to be in very good health, except for its paralysis ; its respiratory movements, although rather rapid, are comparatively normal ; and the free pectoral fin, during this compulsory repose, nevertheless moves continually, as if to ventilate the branchix or agitate the water in the vicinity of those organs. The coloration of the body and fins is perfectly good, and does not seem at present to indicate any impoverishment.

While the air-bladder, which presses against the left flank, keeps the animal lying down, and it is by this means more and more twisted, the eyes are subjected to very different conditions and to very unequal use: the right eye, applied to the bottom, remains in its normal vertical position with regard to the axis of the head; but the left eye, thus condemned to look always upward, turns more and more in order to see round it as much as possible in a horizontal direction. The fish has not been three months in its present position; and yet the globe of the eye, more and more elevated on the frontal side, has already made more than one eighth of a turn, or an angle of 45° to its normal position. Without desiring to make too forced a comparison, one cannot help thinking of the Pleuronectid fishes, which ordinarily repose upon one side, and in which, as is well known, the two eyes, which are at first symmetrically arranged, gradually come together, during development, upon the same side of the animal.

Lastly, from the study of the pathological case of this fish, we may further draw a fresh proof of the fact, which has already been several times demonstrated, that the will is never. free, or that a deformation, even when accidental and ever so small, seems always to be multiplied, in the direction of variability, by an unpremeditated will. In fact, if, after having struggled in all directions to take its food, the rudd by chance falls upon the left flank, the disagreeable pressure exerted by the bottom upon the displaced air-bladder, and the instability given to it by the convexity of this side of its body, invariably urge the fish to quit this position (which nevertheless would tend to reestablish equilibrium in its organism), and to make effort after effort until it succeeds in replacing itself on its right flank, in a position which tends constantly more and more towards deformation.

Led by such data, either as to the effect of deformations of the mouth, the head, and the body upon the air-bladder, or inversely as to the influence of the latter upon external form, or as to the probable action of differences of pressure and temperature upon the gas contained within the body of the fish, I have lately, with the cooperation of M. Covelle, and in one of his aquaria, twice made an experiment, which on both occasions gave nearly identical results.

We gradually warmed the whole mass of water in the vessel, to see the effect of temperature upon the relative position of various fishes, some destitute of an air-bladder, others provided with such an organ either closed or possessing a communication with the exterior. The experiment was made upon bullheads (Cottus gobio), perch (Perca fluriatilis), tench
(Tinca vulgaris), gudgeons (Gobio fluviatilis), spirlins (Allurmus bipunctatus), and minnows (Phoxinus levis). The first time we gradually raised the temperature of the water in two hours from 10° to $28^{\circ} \mathrm{C}$. (from 50° to $82^{\circ} .4 \mathrm{~F}$.) ; the second time, in an hour and a half, from $9 \frac{1}{2}^{\circ}$ to $27^{\circ} \mathrm{C}$. (from $49^{\circ} 1$ to $80^{\circ} 6 \mathrm{~F}$.).

The bullheads, which are without an air-bladder, never ceased to repose upon the gravel at the botton; but after the temperature had been raised $6^{\circ}-8^{\circ} \mathrm{C} .\left(10^{\circ} \cdot 8-14^{\circ} .4 \mathrm{~F}.\right)$, the perch, with their closed air-bladder, began to depart a little from the bottom, where they had at first remained nearly motionless. At the first moment the warming of the water gave rise to great agitation ; but, the first surprise passed, quiet was restored, and we could then see all the tishes, except the bullhead, struggle with their fins to prevent their being carried towards the surface. As soon as the organs of motion were in repose, the animal rose more or less rapidly, like a balloon, without, however, appearing externally to be in the least inflated or deformed. The Cyprinidæ, furnished with an airbladder having an external communication, ascended and descended alternately; and it seemed to me that the young struggled with more difficulty than the adults*. Some adult tench and a gudgeon in particular appeared much less influenced than some little tench, which were constantly being forced up towards the surface. At $22^{\circ} \mathrm{C} .\left(=71^{\circ} \cdot 6 \mathrm{~F}\right.$. $)$ one perch (from 7 to 10 centims., or from 3 to 4 inches long) kept about midwater in the aquarium ; at 25° or $26^{\circ} \mathrm{C}$. $\left(77^{\circ}\right.$ or $78^{\circ} .8 \mathrm{~F}$.) thery went willingly very near the surface; finally the head, being less elevated, was often turned more or less downwards. At 27° or $28^{\circ} \mathrm{C} .\left(=80^{\circ} 6\right.$ or $82^{\circ} 4 \mathrm{~F}$.) the agitation again became general ; several fishes appeared ready to perish; and we stopped the experiment, being unable to follow the action of the temperature upon creatures which were, so to speak, stupefied.

In the first experiment the introduction into the midst of the liquid of a vase of aquatic plants very rapidly restored quietude to the fishes which were agitated by an increasing suffocation. The second time we had fewer made ill, owing to our leaving a plant in the water during the whole experiment.

Although the fish, and especially those in which the air-

[^77]bladder is not closed, can evidently react more or less against slowly increasing differences of temperature or pressure, it is none the less probable that important diversities in pressure, and rapid or considerable changes of temperature, must have much influence upon the gestures of the individual under different conditions and in different seasons, and thereby more or less upon its external form and appearance*.

I may state, in passing, that in these two experiments we had the opportunity of ascertaining, in a very striking manner, that all the fishes heated (towards the end of January, when they were pale in colour) rapidly acquired, as the temperature increased, a much more brilliant coloration, somewhat analogous to the nuptial livery. The bullheads, which were at first whitish underneath, became almost black on the throat and belly; the perch and tench acquired very brilliant metallic reflections ; the spirlins displayed a fine violet band at the upper part of the flanks; and the minnows already presented here and there on their lower surfaces the red coloration specially characteristic of the season of amours. When placed, after the experiment, in water at 9° or $10^{\circ} \mathrm{C} .\left(48^{\circ} \cdot 2\right.$ or 50° Fahr.), these very rapidly lost all their temporary brilliancy.

Returning, now, to the consideration of fishes under normal conditions or in freedom, I may remark, first of all, that the species of the families with a mixed diet or omnivorous, and with an air-bladder in communication with the exterior, have always appeared to me more subject to vary, as to the form of the buccal organs or organs of prehension, than the fishes of exclusively animal or vegetable diet confined with them under the same conditions. Elsewhere, in another medium, it might be the latter that would vary most in this particular, or, perhaps, some other part would be called upon to vary first of all. A rule established upon such principles for one family will necessarily always be subject to apparent exceptions in another group.

Among other things we shall very speedily remark that the plan of the modifications of the buccal cleft varies, in fishes, in diverse orders, even under similar conditions, according to the kind of gymnastic which may be permitted by other organs, such as the fins or the air-bladder. The smelt, which takes

[^78]its food especially above it or at the surface of the water, will have the snout turned up and the mouth very oblique; while the sharks, which also most frequently hunt at the surface, will, on the contrary, in general have the mouth completely inferior. But in these two cases it is in the preponderant intervention of other organs that we must seek the explanation of the differences of modifications. The former of these fishes, with the organization of its fins, can with difficulty struggle against the influence of the air-bladder, which tends to retain it in the horizontal position ; the latter, destitute of air-bladder, can, on the contrary, not only easily keep a portion of the head out of water, and the mouth open at the surface, but can also turn or twist in various directions, thanks to the arrangement of the organs of locomotion and the unequal development of the lobes of the caudal fin. I might select, nearer home, what may be called parallel examples, among the fishes which, in contrast to the above, live and hunt preferently at the bottom of the water. According as these are required to take their food most frequently from above, in front of, or beneath them, and according as the different developments of the air-bladder or the fins permit one position or another in the act of prehension, we shall usually see in them, with a slightly different situation of the eye, a more or less oblique arrangement of the buccal cleft, which is then superior, horizontal, or inferior. Compare, among others, in these respects, our goby, the bullhead, and our barbels.

It would not be difficult to multiply these examples, even in different classes; but I prefer still to limit myself in order now to compare fishes more similar to one another in form, and to establish here a parallel between various Cyprinidæ, leading different modes of life, and the various forms of one and the same species, according as the latter is subjected to one or another condition of existence. For this purpose I select a family all the members of which are equally provided with an air-bladder in communication with the exterior, and which consequently must be able to pass with more facility from one pressure to another.

If I compare, among others, our various representatives of the genera Alburnus, Scardinius, Leuciscus, Abramis, Chondrostoma, Tinca, Carpio, and Barlus, I see at once that to an habitual station more or less near the surface or the bottom of the water, there usually corresponds a more or less oblique arrangement of the buccal cleft, sometimes almost superior, sometimes completely inferior. I then remark that with a slightly different diet, most frequently necessitating the preAnn. \& Mag. N. Hist. Ser. 4.Vol. xix.
hension of food above, in front of, or beneath the individual, the form of the mouth also varies more or less in the fishes which generally live between these two extremes or in midwater. Lastly, as corollaries of these first modifications dependent on habitat, I may recall the gradual apparition at the sides of the mouth, in our bottom-feeding Cyprinidæ, of tactile organs, more or less developed barbels. It must not be forgotten that, notwithstanding its constant communication with the exterior, the air-bladder, which is a little variable in position and proportions, may here exert an influence, up to a certain point, upon the general form of the fish and its mode of gymnastic, by pressing more or less against one part or another of the individual. Under the influence of the agents which superinduce the transformations of the mouth, we also see appear other correlative modifications in various parts of the animal-among others, in the greater or less declivity of the head, in the more or less convex or depressed form of the back and belly, in the variable compression of the sides, in the situation and proportions of the eye with regard to the forehead, and finally in the relative position and the development of certain fins.

These various tendencies to adaptation may be, I repeat, very different in other families, in which the equilibrium of the organism rests upon other foundations; or they may be accompanied by new modifications affecting other parts, such as the nature of the integuments for example.

Our barbel, which chiefly seeks its nourishment beneath it, on the bottom or in the mud, has the mouth opening below and furnished with barbels, the eye comparatively small, and the base of the anal fin rather short; the bleak, which, on the contrary, most frequently snatches its prey at the surface or above it, has the mouth oblique, opening more or less upwards, and destitute of barbels, with a large eye and the base of the anal fin comparatively elongated. The rudd and the roach, which most commonly seek their food at midwater, although the mouth is oblique in the former and quasi-horizontal in the latter, and without barbels in both, have nevertheless the anal and dorsal fins of nearly equal importance, and a body usually rather deeper than the species above indicated as inhabiting extreme situations. A certain resemblance of general form (which, however, is variable for each of these species in different media) may be due to a similitude of habitat in an average medium ; but the examination of the grinding-plate and of the pharyngeal teeth betrays a marked preference for aliments of different natures, and consequently modes of prehension which are probably also somewhat diffe-
rent. The carp and the bream are recognizable at once by the great comparative basal extension of the dorsal in the former, and the anal in the latter. The carp, which keeps close to the bottom more constantly than the brean, possesses barbels, while these are wanting in the latter, which, on the other hand, has the two lobes of the caudal pretty constantly unequal.

The Chondrostoma ("nase") and the tench, which, in various points of view, constitute exceptions among our Cy prinidæ, show us here, again, new modifications in the organs relating to the mode of alimentation. Required generally to take its food from beneath it, the nase, like our barbel, has the mouth plainly inferior and the anal comparatively short ; but, being destined to an almost exclusively vegetable diet, and accustomed rather to graze upon, than to rout up the bottom, it has no occasion for barbels; and its lips are instead furnished with a horny and trenchant sheath. Although willingly keeping at the bottom, the tench, which is more omnivorous than the carp and the barbel, and consequently requires to take its nourishment in more varied positions, shows at the same time a rather oblique mouth and a small lateral barbel ; but in it the inferior fins are a little more powerful, and the eye, in order to look in different directions, possesses a mobility and a facility of projection which does not occur in any other of our Cyprinidæ.

It would require a very great number of comparative observations to determine to what degree of dependence each of these organs is subject, and which of them, under different circumstances, is first called upon to vary.

We might, I believe, push much further this comparative investigation, which I now only indicate in passing. The careful examination of the various dentitions, for example, has often shown me an intimate and very natural relation between the different forms of the teeth or of the pharyngeal plate, which betray the predominant nature of the diet, and a certain modification of the internal or external framework, in view of a peculiar gymnastic in the act of prehension.

Our bleak (Alburnus lucidus), being especially insectivorous, the habitual station of that fish, and the means of which it must make use in order to obtain such or such a prey of predilection, must vary, it would seem, with different conditions and circumstances, and thereby excrt more or less influence upon the form of the mouth, the sole organ of prehension. In connexion with this I have observed that the majority of the bleak which inhabit certain of our rivers present a deeper or more compressed form of body, a less turned-up snout, and consequently a less oblique mouth than
most of those which live more habitually in some of our lakes. Now in our transparent lakes (the lake of Geneva for example), we may very often see these graceful little Cyprinidæ hunting in numerous bands, and snapping up right and left at the surface of the water the little insects of various sorts that the winds or other accidents beat down upon it daily; whilst we less frequently observe these fishes at the very surface in the moving, less transparent, shallower, and colder waters of several of our streams, such as the Rhine for example. It is difficult to avoid comparing these graceful little fishes with the active swallows, which, like the bleak, so often go in search of small insects close to the surface of the ground or over the mirror of our lakes. We may fairly ask whether meteorological influences, to a certain extent analogous with those which impel the swallows alternately towards the ground or the surface of the water, and to great altitudes in the air, may not also, in different media, present the bleak with their favourite food, according to circumstances, at the surface or at a lower level in the water.

According as the mouth, in order to adapt itself to the most habitual circumstances in a given medium, becomes more or less oblique, the back or the belly are, on the contrary, depressed or elevated, at the same time that the body becomes elongated or shortened.

Heckel's theoretical line, which passes through the extremity of the mouth and the middle of the caudal, displays these opposite deviations at the first glance, according as it passes at a greater or less height with respect to the centre of the eye and the summit of the back. The employment of this line may be equally valuable in showing the degree of certain deformations in fishes, as that of the two lines determining the facial angle in other animals; but it is a great pity that Heckel and, in imitation of him, several ichthyologists have too often attributed a specific value to the data obtained by this mode of mensuration.

It is easily understood that a modificatory influence like that of which I have just spoken, however minute it may be, but acting upon the individual from early youth, might in time, and by multiplying itself by reproduction, affect a species very profoundly under uncertain conditions.

The action of the deformatory agents already mentioned appears to me to be constant and regular enough ; however, like every other rule, this also, I repeat, may present apparent exceptions, which a conscientious study of the circumstances and conditions of medium peculiar to each locality can alone satisfactorily explain.

It is always difficult to determine what is the preponderant intluence, and consequently in what direction the first moditications will take place. I can easily understand the error of Blanchard, who has distinguished specifically, under the name of Alburnus mirandella, our clongated bleak of the lake of Geneva from the deeper ones of the French rivers. Nevertheless I cannot yet so easily explain the causes of the comparatively deeper form of the bleak which Heckel originally and erroneously distinguished under the name of Alburnus lacustris from the Neusiedler and Platten lakes, as I do not sufficiently know the nature and relative importance of the conditions of medium proper to those two lakes.

In fact the modificative and conservative agents opposed to each other may be of very diverse natures. Tinder influences of medium or local conditions we must include, in the case of our fishes, the depth of the medium, the degree of pressure, the transparency or the possible light, the surrounding temperature, the nature and origin of the water, the composition of the bottom, the faunas and floras of the region, the climate or the usual meteorological conditions of the locality, and, lastly, many other circumstances which are often difficult to appreciate.

I may here refer to the case of the Leuciscus rutilus of the Bruniger lake, of which I spoke in the number of the 'Bibliothèque' for September 1876, and which, in consequence of the retreat of the water of this little basin upon an almost entirely rocky bottom, was compelled to go to the surface in search of the vegetable and animal debris which were carried there by the winds. I stated that the body of this fish had by degrees become more elongated, with a very pale coloration, and that the mouth had acquired a more oblique position.

If I have dwelt so much upon this side of the variability of our fishes, and in particular of our bleak, it is because analogous cases, sometimes wrongly interpreted, also occur frequently in other genera, and have very often served for the establishment of numerous false species.

From all that has been stated, it would seem that we may derive, on the one hand, fresh proofs in support of the constant variability of the species under a concourse of favourable circumstances, and, on the other, the indication of certain limits imposed upon the modifications possible in a given direction under the influence of a peculiar, too predominant condition. In other words, it appears that in default of sufficient time, or of a relative equilibrium in the different influences of the medium, the series of correlative modifications cannot be effected in a durable manner, and that
from time to time we witness, as it were, a rupture or a recall to order which is sometimes fatal.

If an organ is too rapidly modified by a particular preponderant influence for the rest of the organism to follow it continuously in an equilibrate manner, it frequently happens, either that the progress of the variability is arrested in this first direction, or that the variety in course of formation is extinguished under these new conditions.

Nature, fortunately, is not so hasty as man in her requirements; she has had and still has ample time in which to work.
XLV.—Descriptions of several African and Australian Lepidoptera in the Collection of the British Museum. By Arthur G. Butler, F.L.S., F.Z.S., \&c.

Four of the new species here described have recently been selected from a small collection, of great interest, made at Lake Nyassa by F. A. A. Simons. This collection was especially rich in two species of Papilio (P. porthaon of Hewitson, a butterfly new to the Museum series, and P. nyassce, here described); there were also several forms of the difficult genus Teracolus (but chiefly identical with those from Natal), several species of Acraa (one of which will probably prove to be new to science), a few obscure little species of Lyccena and Pamphila, a little black-and-white Liptena?, and several very striking moths.

The Rockhampton collection contained (besides the beautiful Sphinges here described) several obscure forms of Noctuites and Crambites, an example of Catopsilia hinda, and other named species which were previously desiderata to the Mruseum.

Rhopalocera.

1. Mycalesis Simonsii, n. sp.

δ \&. Wings above sandy yellow, with a straight, transverse, pale-bordered, light brown postmedian line across both wings; costal and apical areas of primaries red-brown, particularly in the female, the base and outer border more or less tinted with the same colour; the margin and a submargiual line darker brown ; two white-pupilled black ocelli, one small towards the apex, the other large between the first and second median branches: secondaries with six more or less strongly indicated discal black dots; outer margin red-brown; female with a slender submarginal red-brown line. Under surface
pale rusty reddish, mottled with ferruginous; the basal area bounded externally by a pale-bordered postmedian ferruginous line, deeper in colour than the basal area; a marginal line, and indications of a submarginal line, ferruginous: primaries with the ocelli less distinct than above, an additional smaller indistinct ocellus above and below the subapical one : secondaries with an irregular ferruginous line crossing the cell; discal dots more distinct than above, more or less pupillated with white. Expanse of wings 1 inch 10 to 11 lines.

Lake Nyassa.
Type, B.M.
Allied to M. eliasis.

2. Teracolus mutans, n. sp.

Allied to T. vesta; the markings above the same, but the coloration quite different, linking it to T. protomedia, T'. coliagenes, ©c.

Wings above sulphur-yellow, the base shaded (but not broadly') with lilacine gray ; primaries tinted towards the base with pale salmon-colour ; otherwise as in T. vesta. Expanse of wings 2 inches.

Lake Nyassa.
Type, B.M.
My prediction respecting the unbroken chain of nearly allied species in this genus is being rapidly fulfilled ; since the publication of my paper on Teracolus we have received no less than five of the missing links appertaining to this section of the genus alone.

3. Teracolus argillaceus, n. sp.

Allied to T. vesta, but smaller, whiter at the base, much less dusted with blackish; markings the same: below with the apical area of primaries and the whole of the secondaries, excepting a slightly yellowish central band (enclosed by the two central angular bars), reddish clay-colour ; darker markings below much less distinct. Expause of wings 1 inch 7 lines.

Natal (Buxton).
Type, B.M.
This species is intermediate between T. vesta and T. chrysonome, although most nearly allied to the former of the two. We have two examples; and Mr. Buxton tells me that he has others amongst his duplicates. From the upper surface alone it might be mistaken for a pale form of T. veste ; but the coloration of the under surface is very distinct.

> 4. Papilio myassce, n. sp.

Intermediate between P. policenes and P. anthens: green aud black. Markings of the primaries as in P. policenes, excepting that the bands which cross the cell are zigzag, as in
P antheus; markings of the secondaries above as in P. antheus, excepting that the band which crosses the cell from costa to anal spot is broad, as in P. policenes, and the submarginal grey patches are broader. Wings below pale silky greyish brown ; the green markings paler than above, and for the most part bordered internally with black: secondaries crossed near the base by two equally broad brown bands parallel to the abdominal margin; no black spot in the cell; a redbordered subcostal black spot as in P. antheus; no pale green$i s / h$ spot below the carmine subanal bars, as in P. policenes; the grey patches broader and with narrower black borders. Expanse of wings 3 inches 9 lines.

Lake Nyassa.
Type, B.M.
This and P. porthaon seem to be the commonest butterflies of the district.

Heterocera.

5. Chorocampa indistincta, n. sp.

Primaries above whity brown, with a slightly deeper cloud over the lower half of the discal area; the whole wing irrorated with blackish scales, which become dense and linear towards outer border; a black dot at the end of the cell; three parallel oblique pale brown discal lines from inner margin to second subcostal branch, whence they appear to form an abrupt angle inwards to costa, but become very indistinct ; a short apical dusky dash, secondaries smoky brown; costal area silky whitish; anal angle whitish; external border narrowly greyish white, irrorated with brown: head and thorax olivaceous, bordered with white ; abdomen pale pinky brownish or sordid flesh-colour, whitish at the sides. Primaries below sordid flesh-colour, the basal area, excepting the costa, dusky; the remainder of the wing irrorated with blackish; a broad pale outer border ; a black subcostal spot towards apex: secondaries flesh-colour, whitish towards abdominal margin, irrorated with greyish atoms; traces of two central parallel transverse lines, the outer one indicated by black dots upon the nervures: body below pinky whitish. Expanse of wings 4 inches 2 lines.

Rockhampton, Queensland. Type, B.M.
The primaries above, when looked at from the side, have a silky greyish appearance, but from the front they have a sandy tint; the outer border is broadly but very indistinctly paler.

This species is most nearly allied to C. gonograpta; it is also allied to C. deserta and C. punctivenata: in the absence of the lateral black spot at base of abdomen it agrees best with C. deserta.

6. Daphnis magnifica, n. sp.

Allied to D. pallescens, but considerably larger, altogether deeper in colour, with the abdomen distinctly banded; the secondaries with a broad waved central pale band, and without a pale external border.

Primaries above almost as in D. hypothous, but more sharply defined, the transverse pale pinky band across the basal third of twice the width and clearer in tint ; the pale postmedian area broader, more arched, clearer and paler ; the irregular area near external angle brown, varied with slaty grey: secondaries cream-colour, slightly obscured (with the exception of the basal and costal areas and a slender waved transverse discal line) with pale greenish grey ; a broad irregular central band, not reaching the costa or the anal angle, black-brown, surrounded and interrupted by dark greenish grey; a broad external border deep purplish brown, shading off internally and at apex into greenish grey, and infersected near anal angle by a slender pale submarginal line: head and collar dull lilac, intersected by lines of testaceous; antenne yellow ; thorax dull lilac, varied behind with olive-green, and with lateral tufts of testaceous hair ; metathorax olive-green, broadly bordered behind with white; tegulæ olive-green, with a broad creamy white external border and a slender internal testaceous margin; abdomen dorsally pinky greyish, the basal segment olive-green, the remaining segments, excepting the last, with lateral oblique converging olive-green bars; the terminal segment grey, crossed by an olive-brown horseshoelike band; the four basal segments bordered with creamy whitish in front ; abdomen laterally much more pinky in tint than the dorsal surface: below with the general aspect of D. hypothous, the markings much the same, but altogether darker and of a purple tint, none of the bright red so prevalent on that species being present. Expanse of wings 4 inches 9 lines.

Rockhampton, Queensland. Type, B.M.
The most magnificent of all the species of Daphnis.

7. Phaegorista formosa, n. sp.

Allied to P. agaristoides from West Africa, but readily distinguished by the markings of the primaries; the internal border black to the base, the large triangular ochraceous patch on the basal area darker and tinted with rose-colour; the oblique white or pale yellow band of primaries replaced by a very broad, almost semicircular, bright ochreous patch; the hastate spot near the external angle replaced by a triangular
bright ochreous spot: the band across the base of the abdomen reddish. Expanse of wings 2 inches 5 lines.

Lake Nyassa.
Type, B.M.
A very beautiful and distinct species, reminding one of Eusemia superba.

8. Anaphe ambrizia, n. sp.

ठ. Allied to A. reticulata, but considerably smaller, the primaries narrower, silky white, the bands comparatively broader and darker, the two streaks from the outer margin much more convergent, leaving a very small spot of the ground-colour between them at their internal extremities; secondaries paler, silky stramineous ; thorax (like the bands of primaries) chocolate-brown; head tawny with blackish vertex; tegulæ pale yellow; abdomen pale ochreous, with the hind margins of the segments dark brown. Expanse of wings 1 inch 5 lines.

Ambriz (MIonteiro).
Type, B.M.
Readily distinguished from A. reticulata and A. panda (which is probably only a variety of the same) by its smaller size, darker markings, and differently coloured body. A. reticulata is well figured by Herrich-Schäffer under the name of Arctiomorpha euprepiceformis.

The genus Anaphe seems to be best placed between Marana (to which several species described under the generic name of Teara are referable) and Numenes.

9. Saturnia flavida, n. sp.

Allied to S. apollonia, with the same general character of markings, but the ground-colour of the wings sulphur-yellow, the two lines indicating the limits of the central band wide apart throughout their entire length, the ocelli of the primaries smaller and therefore agreeing better in size with those of the secondaries, the outer border of a more rosy tint, with the pink and white submarginal band of oval spots better defined, the inner transverse line of secondaries well defined, the body (especially of the female) darker and of a more decidedly testaceous colour. Expanse of wings of 3 inches, 아 3 inches 1 line.

> Zambesi. . Type, B.M.

This is decidedly the most attractive species yet described; it is smailer and altogether more brilliantly coloured than S. apollonia: the male example has a curious modification of the left primary, the outer line of the central band being deeply excavated near the costa, so as to make room for a semicircular, red-bordered, pink spot.
XLVI.-On Ascodictyon, a new Provisional and Anomalous: Genus of Paleozoic Fossils. By H. Alleyne Nicholson, M.D., D.Sc., F.R.S.E., and R.Etheridge, Jun., F.G.S.

[Plate XIX.]

The curious little fossils for which we propose the generic title of Ascodictyon are parasitic in their habits, and are found adhering to the shells of Brachiopods, the exterior of corals, or the stems of Crinoids. We are acquainted with at least three distinet forms, one of which occurs in the Carboniferous rocks of Scotland, whilst the other two have been detected in the Devonian deposits of North America. In all the members of this group the organism, though visible to the naked eye, can only be properly examined by means of the microscope, and consists of minute calcareous vesicles, the walls of which are more or less extensively perforated by microscopic foramina. The vesicles or "cells," whatever their shape or arrangement may be, are always hollow; but they exhibit no definite aperture, save the very minute pores just spoken of. In some cases they open into one another by short contracted necks or stolons, thus forming a loosely reticulate network; whilst more typically they are arranged in regular, usually stellate clusters, which in turn are united with one another by delicate thread-like hollow tubes, which often ramify and anastomose.

The above being the general characters of Ascodictyon, a provisional generic diagnosis may be framed as follows :-

Gen. char. Organism composite, parasitic, adherent on foreign bodies, composed of numerous calcareous cells or vesicles, the walls of which are perforated by a greater or less number of microscopic foramina, but which possess no single large aperture. The cells may be united almost directly by the intervention of short tubular necks; or they may be disposed in clusters connected with one another by hollow filamentous tubes, which usually anastomose, and which in some cases, at any rate, are likewise perforated by microscopic pores.

As before remarked, the genus, so far as our present knowledge goes, is confined to the Devonian and Carboniferous periods; and the following are the characters of the three species with which we are as yet acquainted.

Ascodictyon fusiforme, Nich. and Eth., Jun.

(Pl. XIX. figs. 7, 8.)
Spec. char. Colony composed of fusiform, sumetimes pyri-
form calcareous vesicles, which vary in length from a third of a line to more than half a line, and which have their walls perforated by numerous circular microscopic foramina, covering the whole surface, and placed about their own diameter, or rather more, apart. The cells are produced by budding from one another directly, and are connected by short, contracted, tubular stolons in such a manner as to form an open network.

Obs. A. fusiforme is readily distinguished from A. stellatum by the fact that the vesicles are directly connected with one another, that they are not arranged in clusters, and that the pores are, on the whole, of larger size, and show no traces of a linear arrangement, whilst the vesicles themselves are also of larger size. The absence of a clustered arrangement and of a network of connecting filaments equally separate this species from A. radians, with the additional distinction that the pores are distributed over the whole surface instead of being confined to a single median row on each vesicle. When the vesicles of A. fusiforme are fractured, they are seen to contain a large central cavity; but there are no traces of any other opening in each except the numerous minute pores. These pores sometimes exhibit the appearance of being elevated above the general surface ; but it is difficult to say how far this appearance may not be deceptive. Owing also to the adherent habit of this and the other members of the genus, and the small size of the vesicles, we have been unable to examine specimens by the method of transparent sections, and can therefore offer no observations on the minute structure of the chamber-wall.

Form. and Loc. Hamilton formation (Middle Devonian), Widder, township of Bosanquet, Ontario. Rare, and adherent on Spirifera mucronata, Conrad.

Collected by, and in the cabinet of, Prof. Nicholson.

> Ascodictyon stellatum, Nich. and Eth., Jun. (Pl. XIX. figs. 1-6.)

Spec. char. Colony composed of ovoid or pyriform calcareous vesicles, varying in length from one fifth to one third of a line, and usually disposed in stellate clusters, each containing from three to six cells, or sometimes more. The walls of the vesicles are perforated by microscopic foramina, usually showing a distinctly linear arrangement. The clusters are connected together by creeping filamentous tubes, the free surfaces of which are perforated by a single row of minute foramina, and which generally anastomose so as to form a network.

Obs. In its youngest stage (Pl. XIX. fig. 6), A. stellatume presents itself simply in the form of seattered oviform or pyriform calcareons vesicles attached to the exterior of foreign bodies. When mature, it consists of similar vesicles combined into clusters, generally of three to six in cach, these being connected by ramifying and anastomosing tubular stolons (Pl. XIX. fig. 1). The new vesicles are produced from the sides of the stolons, or are budded forth in rosettes, from the nodal points where the stolons intersect one another. The rosettes may be comparatively remote; in other instances they become so aggregated together as almost to constitute a continuous crust. The walls of the vesicles are perforated by minute apertures (Pl. XIX. fig. 2), which are generally arranged in lines, and are not so namerous as in A. fusiforme, whilst they can only with difficulty be detected in specimens infiltrated with carbonate of lime. The vesicles are seen, on fracture (fig. 5), to be hollow ; and they may coalesce in the centre of each rosette, or there may be a central chamber, the nature of which we have been unable to determine. The connecting tubes or stolons are also undoubtedly hollow ; and they carry a single row of pores (fig. 3) on their free surfaces, though these openings can only be detected in well-preserved specimens. The stolons may arise from one another, from the central points of the rosettes, or occasionally by direct prolongation from the distal extremity of a vesicle (Pl. XIX. fig. 4).

In the fact that the vesicles are, typically, disposed in rosettes, and are connected together by a creeping network of tubes, A. stellatum resembles A. radians. It is, however, readily distinguished from the latter species by the ovoid or pyriform shape of the vesicles, and the fact that there is always more than a single row of pores to each vesicle.

Form. and Loc. Not very rare in the Hamilton formation (Middle Devonian) of Widder, township of Bosanquet, Ontario. Parasitic on Spirifera mucronata, Conrad, and Cyrtina hamiltonensis, Hall.

Collected by, and in the cabinet of, Prof. Nicholson. Ascodictyon radians, Nich. and Eth., Jun. (Pl. XIX. figs. 9-11.)
Spec. char. Colony composed of elongated vesicles, broad at their bases, thickened out in the middle of their length, and gradually attemated towards their extremities, disposed in stellate clusters or rosettes. The bases of the tongue-like or somewhat fusiform vesicles are placed round a central circular depression ; and their length varies from a sixth to more
than a fourth of a line. Each rosette consists of from ten (sometimes fewer) to fifteen or twenty vesicles; and the free surface of each carries a single median row of excessively minute, somewhat slit-like, closely approximated pores. The rosettes are comnected together by delicate creeping filaments, which may spring from the bases of the rosettes or from the attenuated extremities of the vesicles, and which generally anastomose, so as to form a network or mycelium.

Obs. In its general structure and arrangement this species is related to A. stellatum, though sharply distinguished by the very elongated form of the vesicles and the presence of but a single row of pores on each. All the rosettes, when well preserved, show a circular central cavity or depression, with a distinct bounding wall; but we have been unable to make out the true nature of this or its relation to the vesicles. When the resicles are very numerous, they are smaller in size than when the rosette consists of fewer; but in all cases each shows a dark median line, which, when highly magnified, resolves itself into a line of minute close-set pores (fig. 11). The stolons may ramify and form a network; or a single stolon, proceeding directly from the end of a vesicle in one rosette, may be prolonged at once into the attenuated termination of a vesicle belonging to another rosette (fig. 10, a). Weathered specimens show clearly that the vesicles are traversed by a long tubular cavity, corresponding in form with the shape of these structures themselves; and they sometimes show what appear to be apertures at their bases. The stolons also are, doubtless, tubular, and they probably carry a median row of pores on their free faces, though we have not been able to determine either of these points to our satisfaction.

There appear to be two well-marked varieties amongst the forms which we have placed under A. radians:-

Var. a. Vesicles few, lobate, and larger than in b.
Var. b. Vesicles very numerous, smaller and finer than in a, and the individuals always more crowded together.

Form. and Loc. Boghead Quarry, near East Kilbride, Lanarkshire, in shale of the Calderwood series, L. Carboniferous Limestone group.

Collected by, and in the cabinet of, Mr. James Bennie, Edinburgh.

Systematic Position and Affinities.

After a very careful examination of a considerable number of specimens of the singular organisms which we have grouped together under the name of Ascodictyon, and after taking the opinion of several of our fellow workers, we are still unable to
express a positive opinion as to their precise zoological position and relationships. The Scotch specimens were shown to the late Dr. Strethill Wright, who was unable to throw any light upon their nature. The same specimens have also been exa*mined by Prof. Huxley, F.R.S., who, after considerable hesitation, suggested that they might be Protozoans. Our own opinion was at first in favour of their Foraminiferal affinities, as indicated by their calcarcous walls and the presence of microscopic foramina, combined with the absence of any aperture to each cell. Our friend Mr. II. B. Brady, F.G.S., however, after a protracted examination of both the Scotch and the American forms, has arrived at the conclusion that they cannot be referred to this group. As regards the Scotch specimens (1. radians), this distinguished authority, in a letter addressed some time ago to one of the present writers, says, "I suspect they are rudimentary portions of rooted Crinoids, but am not at all sure. There has been, in some of them, a central pillar growing perpendicularly to the stellate roots." At this time, however, Mr. Brady had not the advantage of having the American specimens for comparison; and the unquestionable generic identity of A. radians and A. stellatum renders this hypothesis as to the affinities of the former clearly untenable, to say nothing of the fact that we should still have to find an explanation for the foramina.

Leaving the Foraminifera out of sight, the only other group that suggests itself prominently as one to which these problematical organisms might be referred is that of the Polyzoa. In their perforated walls they present a close resemblance to many of the Cheilostomatous Polyzoa, especially to some of the Lepralies; and their general habit and mode of growth would also favour this view. On the other hand, it seems difficult to reconcile this view as to their affinities with the unquestionable fact that the cells or vesicles have no other means by which the internal cavity is placed in communication with the exterior, except the microscopic pores in the walls.

Some of our American specimens (A. fusiforme and A. stellatum) were kindly submitted by Mr. H. B. Brady to the Rev. Mr. Hincks, who suggested that they were possibly allied to the recent Anguinarice. Our A. fusiforme certainly presents a close superficial resemblance to the creeping base of Anguinaria (Etea) spatulata; but in the absence of any evidence in the fossils of the existence of erect cells with distinct apertures for the polypides, it would be hazardous to regard this suggestion as being more than a conjecture. The
only other recent forms to which we can find any likeness with Ascodictyon are some of the Sertularians (e. g. S. pumila), there being a decided resemblance between the thread-like fibres which creep along the foreign bodies to which these organisms are attached, and which connect the polypiferous shoots, and the netted stolons of A. radians and A. stellatum. In other respects, however, the structure of Ascodictyon is by no means Hydrozoal. Upon the whole, therefore, we can only leave the question as to the systematic position of Ascodictyon in the meanwhile undecided, in the hope that future researches may enable us to find a definite niche in the system for these interesting fossils.

We are much indebted to our friend Mr. James Bennie for the loan of his beautiful specimen of A. radians.

EXPLANATION OF PLATE XIX.

Fig. 1. Portion of a colony of Ascodictyon stellatum, Nich. \& Eth., Jun., growing upon the hinge-area of Cyrtina hamiltonensis, Hall, magnified 10 diameters.
Fig. 2. A single group or rosette of the same, enlarged 20 diameters. The connexion of the vesicles with one another and with the basal stolons is here hidden by adherent matrix.
Fig. 3. Portion of the creeping stolon of a colony of the same, highly magnified, showing the single row of pores along the free face.
Fig. 4. Two rosettes of the same species, enlarged 25 diameters. The lower rosette is complete; but one of the vesicles is partially fractured, showing its internal cavity, and another has its extremity directly prolonged into a stolon.
Fig. 5. A single rosette of the same, enlarged 30 diameters. In the centre of the rosette is a central chamber (?) ; and several of the vesicles have their internal cavities exposed by fracture.
Fig. 6. Four detached young (?) vesicles of the same, growing on the hinge-area of Cyrtina hamiltonensis, Hall, greatly enlarged.
Fig. 7. Portion of a colony of Ascodictyon fusiforme, Nich. \& Eth., Jun., growing upon the mesial fold of Spirifera mucronata, Conrad, enlarged 15 diameters.
Fig. 8. A single cellule of the same, enlarged 30 diameters.
Fi!. 9. Fragment of the stem of a Crinoid, to which is attached a colony of Ascodictyon radians, Nich. \& Eth., Jun., of the natural size.
Fig. 10. A single rosette of the same, magnified 30 diameters. At a a stolon given out by the extremity of one of the vesicles is seen to connect itself directly with the corresponding extremity of a vesicle belonging to another rosette.
Fig. 11. A single vesicle of A. radians, magnified to show the central line of pores.

XLVII.-On the Elaterida of New Zealand. By D. Sifarl.

[Continued from p. 413.]

25. Mecastrus convexus, n. sp.

M. niger, nitidus, evidenter pubescens, convexus; prothorace parcius minus fortiter punctato, angulis posterioribus leviter divergentibus; elytris stria suturali integra, in dimidio basali seriebus punctorum, interstitiis subtiliter punctatis. Long. $9-9 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
Mas antennis nigris, crassiusculis, intus fortiter serratis, articulis secundo et tertio brerissimis; abdominis apice vix rufescente.
Fem. antennis fusco-rufis, tenuioribus, intus leviter serratis, articulis secundo et tertio minus abbreviatis, conjunctim quarto paulo brerioribus; abdominis apice rufescente.
This species may be readily distinguished from the preceding ones by its more convex form, and by the apical half of the elytra being quite free from striæ.

Discovered at Auckland by Mr. Lawson. Recently an individual has been sent me from Tairua by Captain Broun as No. 28, and the information that the species occurs on Leptospermum and is extremely active and difficult to capture.

26. Mecastrus vicinus, n. sp.

M. niger, nitidus, evidenter pubescens, convexus ; prothorace parce subtiliter punctato, angulis posterioribus vix divergentibus; elytris stria suturali integra, in dimidio basali seriebus punctorum, interstitiis subtiliter punctatis. Long. $6 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
The only individual I have seen is a male; it is excessively similar to No. 25, but is a good deal smaller and has the middle coxa separated by a considerably narrower interval.

Westland.

> 27. Mecastrus discedens, n. sp.
M. niger, sat nitidus, eridenter pubescens, subdepressus ; prothorace crebre fortiter punctato, angulis posterioribus leviter dirergentibus; elytris leviter striatis, striis ad apicem vix distinctis, interstitiis crebre subtiliter punctatis. Long. $7-9 \mathrm{~m} . \mathrm{m}$.
Var. elytris versus humeros plaga testacea.
Mus antennis crassiusculis, articulis secundo et tertio brevissimis, articulis $4-10$. intus fortiter serratis.
Fem. autennis tenuioribus, articulis secundo et tertio brevibus, $4-10$. intus subserratis.
I think I am right in considering the above forms the Ann. d Mag. N. Mist. Ser. 4. Vol. xix. 32
seres of one and the same species; but I am not quite sure about it.

Akaroa, 19th Dec. 1874; Westland ; west coast (Wakefield).

Group 8.-These three species (Nus. 25, 26, and 27), again, show a considerable relationship with the species to which I have given the generic name Lomemus, but are larger in size, and appear to connect the Betarmon allies with the "Elatérites" of Candèze : the prosternal sutures are obscurely or not duplicate and are scarcely open in front; the mesosternal cavity is broader than in Lomemus (Nos. 17-24); and though the posterior part of the cavity is acuminate and ill-defined, and does not reach nearly to the suture, yet its plane of direction is less horizontal. The femoral portion of the hind coxal plate is more developed, so that there is a quite gradual passage from it to the longer trochanteral portion.

28. Monocrepidius exsul, n. sp.

11. fuscus, tomentosus, opacus; antennis pedibusque flaris, his sat elongatis, filiformibus, articulo tertio quam secundus paulo longiore, his conjunctim quarto æqualibus; prothorace dense punctato, angulis posterioribus elongatis, acutis, sat divergentibus; elytris fortiter striatis, densius pubescentibus. Long. $11-13 \mathrm{~m} . \mathrm{m}$.
This species is allied to the Australian Monorrepidius rectangulus, but is smaller and more delicately sculptured. As it has only been found at the port of Wellington, it is possible it may have been introduced into New Zealand; I do not think, however, that it is a described species.

Wellington, Feb. 1875 (Mr. Wakefield).
Group 9.-The following structural characters will enable the New-Zealand entomologists to readily identify this form :Antennæ slender, filiform. Forehead wide in front and only slightly curved, without raised margin, but overhanging the very short clypeus; antennal spaces wanting; the cavities widely distant. Prosternal process long, slender, and straight. Mesosternal cavity elongate and narrow, quite parallel-sided, extending back to quite the intercoxal suture, its side margins very thin and scarcely raised. Femoral portion of hind coxal plate well developed, but much shorter than the rather long trochanteral portion. Tarsi with 3rd joint well developed; 4th joint underneath larse, membranous, above grooved almost to its base for the insertion of the 5th joint.

29. Cryptohypnus Powclli, n. sp.

C. subdepressus, tenuissime pubescens, niger, antennis fusco-testaceis, pedibus testaceis; antemnis tenuibus, sat elongatis, articulo tertio elongato, secundo longiore quarto fere sequali ; prothorace lateribus rotundatis, basin versus angustato, angulis posterioribus minutis acutis, crebre subtiliter punctato, medio canaliculato; elytris distincte striatis, interstitiis nullo modo elevatis, obsoleto rugulosis. Long. $7-9 \mathrm{~m} . \mathrm{m}$.
The female is rather larger than the male, and has the hind angles of the thorax, though acute, not at all prolonged.

Craigie-burn : found by Mr. Powell.

30. Cryptohypnus humilis, n. sp.

C. subdepressus, tenuissime putescens, wiger, antennis pedibusque testaceis; prothorace lateribus rotundatis, ante basin constricto, angulis posterioribus gracilibus peracutis, sat elongatis, fortiter divergentibus, crebre subtiliter punctato, medio canaliculato; elytris sat profunde striatis. Long. $7-9 \mathrm{~m} . \mathrm{m}$.
Though extremely similar to the preceding species, this may be readily distinguished by the more prolonged hind angles of the thorax. The differences between the sexes seem to be very slight: the female is rather larger, and has the thorax a little more dilated at the sides.

Wellington, Feb. 1875 (Wakefield).

31. Cryptohyp"us frontalis, n. sp.

C. subdepressus, tenuiter pubescens, niger, nitidus, antennis fuscis, pedibus testaceis, femoribus obscurioribus; fronte antice in medio abrupte depressa ; thorace elongato, ante basin leviter constricto, angulis posterioribus sat elongatis, crassioribus, vix divergentibus, subtiliter sat crebre punctato medio indiscrete canaliculato; elytris snbtiliter striatis, striis punctatis, interstitiis parce subtiliter puuctatis. Long. $\frac{1}{2} \mathrm{~m} . \mathrm{m}$.
I have seen but a single specimen, from Lake Guyon, kindly given me by Mr. Pascoe.

32. Cryptohypnus longicornis, n.sp.

C. elongatus, angustulus, fuscus, evidenter pubescens, antennis fusco-testaceis, basi cum pedibus testaceis; prothorace elongato, ante basin leviter constricto, angulis posterioribus elongatis, crassioribus, vix divergentibus, dense subtiliter punctato, medio ante basin canaliculato; elṣtris subtiliter striatis, interstitiis crebre subtiliter punctatis. Long. $8 \mathrm{~m} . \mathrm{m}$.
I have seen but a single mutilated individual, which was sent me by Hemry Edwards, Esq., under no. 1330.
33. Cryptohypnus thoracicus, n. sp.
C. latior, minus depressus, niger, tenuiter pubescens, tibiis tarsisque testaceis; thorace latiusculo, latitudine haud minore quam longitudo lateribus ante basin sat constrictis, angulis posterioribus tenuibus, sat dirergentibus, crebre eridenter punctato, sat distincte canaliculato; elytris sat profunde striatis, interstitiis crebre punctatis. Long. $8 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
A single individual has been sent me by Mr. Wakefield; it was found at Kelly's Creek by Mrs. Foster.

Group 10.-These five species (Nos. 29, 30, 31, 32, and 33) appear to be rery closely allied structurally to the northern C'ryptolypmus depressus and hyperboreus. The following. structural characters will enable them to be readily identified:Forchead curved in front, the clypeus in the middle nearly or entirely wanting, so that, though the forehead presents a sharply defined edge in front, the labrum is placed immediately beneath it ; antennal spaces distinct, but much concealed by the horizontal edge of the forehead, and widely distant from one another in the middle; antennæ filiform. Prosternal process rather long and straight. Mesosternal cavity rather broad, formed loy broad but not in the least raised edges, reaching back to the intercoxal suture. Trochanteral portion of coxal plate well developed, but the femoral portion nearly completely absent. Tarsi moderately long, with all the five joints well developed and simple.

34. Chrosis polita, n. sp.

('. elongata, angusta, nitida, nigra, parcissime pubescens, pedibus piceis; thorace pernitido, elongato, quam latiore multo longiore, parce punctato; elytris profunde striatis, striis fortiter punctatis, interstitiis fere lecris, apicibus haud prolongatis, subrotundatis ; prosterni lateribus dense punctatis ; lamina coxali angusta, margine interne nullo modo sinuato; tarsis elongatis, gracilibus, subtus haud dense pubescentibus. Long. $12 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
The very narrow, parallel form, the very highly polished prothorax, excessively scanty pubescence, and the almost impunctate interstices of the elytra very readily distinguish this species from its allies, even without any examination of structural characters.

Tairua, but very rare; one individual found by Captain Broun under a \log near Pipi Creek, and three others under bark in the same locality.

Ots. The two specimens sent me by Captain Broun are, I
am pretty sure, the two sexes, though they are extremely similar to one another ; they both show the peculiarity of a well-marked noteh or emargination at the apex of the last ventral segment.

35. Chrosis reversa, n. sp.

C. sat elongata, minus parallela, nigra rel picea; thorace quam latiore paulo longiore, disco obsolete punctato; elytris latius striatis, striis externis ovidenter punctatis, interstitiis subconvexis, crebre punctatis, ajicem versus ceidenter attenuatis, apicibus ipsis angustis, haud rel vix prolongatis, angulis internis haud rel vix spinosis; prosterni lateribus nitidis impunctatis; abdomine parce punctato ; lamina coxali interne evidenter latiore, sed margine posteriore supra trochanterem tantum obsoletissime emarginato. Long. $16-17 \mathrm{~m} . \mathrm{m}$.
The polished impunctate sides of the prosternum readily distinguish this species.

Described from a single specimen sent by H. Edwards, Esq., under no. 1337; one of two individuals sent by the same gentlemen under no. 1340 I believe to be the female of the species, though it is very much broader and has the thorax considerably larger and broader. A second individual, which I believe to be a varicty of this same sex, is in Mr. Wakefield's collection from the Otira pass.

36. Chrosis barbata, Candèze.

C. nigricans, colore rariabilis, sæpe rufescens, minus parallela, breviter fusco-pubescens; thorace latitudine longitudinem æquante, crebre punctato ; elytris leviter striatis, striis evidenter punctatis, interstitiis crebre punctatis, apicem versus evidenter attenuatis, apicibus haud prolongatis, rel simplicibus rel obsolete spinosis; prosterni lateribus crebre punctatis ; lamina cosali interne eridenter latiore, margine posteriore supra trochanterem tantum obsolete emarginato ; antennis pedibusque minus elongatis. Long. 13-19 m. m.
This is an exceedingly variable species. It is closely allied in structure to our European Elater impressus; and the small specimens are somewhat similar to it in appearance, but have the elytra much more attenuate posteriorly.

Very widely distributed; I have seen specimens from Otago and Auckland and various intermediate localitics.

Ols. M. Candeze described this species as being found in New IHolland; but Mr. Janson believes all the specimens are from New Zealand; so that it is very doubtful whether the species exists in Australia.
37. Chrosis elongata, n. sp.
C. fusca, elongata, minus parallela, eridenter laxe fusco-pubescens; thorace paulo longiore quam latiore, crebre punctato; elytris leviter striatis striis punctatis, interstitiis crebre subtiliter punctatis, elongatis, apicibus attenuatis et prolongatis, angulo externo magis prominulo, minute spinoso; prosterni lateribus crebre punctatis; lamina coxali interue evidenter latiore, margine posteriore supra trochanterem sat evidenter emarginato; antennis tarsisque gracilibus, elongatis. Long. $16 \mathrm{~m} . \mathrm{m}$.
This species comes very close to extreme forms of Chrosis barbata, but is more elongate in form, and has the tarsi especially more elongate.

Sent from Auckland by Mr. Lawson; and also received from Mr. Edwards, but without number.

Group 11.-Species 34, 35, 36, and 37 exhibit the following characters:-

Clypeus short, quite unfolded and extended, so that the forehead is not limited at all from the clypeus in the middle, and the large labrum is almost on the same level as the forehead; antennal spaces very indistinct and very widely separated from one another. Antennæ with 2nd and 3rd joints elongate. Prosternal process broad and stout, not curved upwards behind the coxæ. Mesosternal cavity with strongly elevated borders; these attain the intercoxal suture, and their hinder portions are quite horizontal. Coxal plate with trochanteral portion a good deal longer than the femoral portion, the long portion occupying about half the whole width, and thence gradually narrowed till it meets the episternum. Tarsi with all the joints simple and well developed, the fourth, however, a good deal shorter than the third.

It is doubtful whether the genus Chrosis be distinct from Corymbites as defined and limited by Candèze. Indeed our European Elater impressus (Corymbites impressus, Candèze), appears more nearly allied to the New-Zealand Chrosis barbata than it is to the Elater aulicus and other European Corymbites.

38. Elater zealandicus, White.

E. rouustus, ulger, fusco-pubescens, sat nitidus; antennis minus elongatis, intus leriter serratis, articulo secundo brevissimo, tertio sat elongato haud serrato ; prothorace crassiusculo, antrorsum convexiusculo, postice latiore, angulis posterioribus subuncatis, fortiter plicatim elevatis, margine laterali anterius a supra occulto, crelre wqualiter punctato; elytris striatis, striis fortiter
punctatis, interstitio crebre subtiliter punctatis, apicibus conjunctim rotundatis. Long. $16-20 \mathrm{~m} . \mathrm{m}$.
I have examined a considerable number of examples, and find only slight sexual differences in the structure. The statement of MI. Candere that the male has the antenne pectinated and is the Elater punctithorar, White, is erroneous. The Elater punctithorax of White is the same species as his Elater lovithorax (vide no. 5 of this paper); the male of it has the antennæ pectinated, but the species is very different in structure from Elater zealandicus.

Auckland, Tairua, Wellington. According to Captain Broun's observations the species is of crepuscular or nocturnal habits.

Group 12.-The following are the chief structural characters of Elater zealandicus:-

Forehead curved in front, but without the least raised carina, in the middle of the front depressed, so that the clypeus is very small; and though it is almost vertical, yet it forms only a very slight step between the forehead and the labrum; antennal spaces large, but yet rather broadly separated. Antenne serrate, with short 2nd joint. Prosternal process thick, slightly curved upwards. Mesosternal cavity with very thick strongly elevated borders, the posterior portions of which are horizontal and quite on a level with the metasternum; the sides of the cavity are not parallel, but quite narrow near the intercosal suture. Trochanteral portion of coxal plate a little broader than the fumoral portion. Tarsi with all the joints well developed and simple, the 4th shorter than the 3rd.

This form is readily distinguished from the species I have called Thoramus by the curved front edge of the forehead and the large antennal spaces. Canderze has associated the Elater zealandicus with Ochosternus Parryi in one genus, which he calls Ochosternus; but he has fallen into so much error about these two species, that his definitions of the genus had better be withdrawn.

39. Corymbites antipodum, Candèze.

C. elongatus, angustus, fuscus, antennis pedibusque testaceis, densius breviter griseo-pubescens ; antennis filiformibus, elongatis, articulo secundo sat elongato, sed quam tertius fere duplo breviore; prothoraco elongato, lateribus parallelis, fere dense punctato; elytris angustis, apicibus attenuatis, plus minusve emarginatis et spinosis, subtiliter striatis, interstitiis subtiliter fere dense punctatis ; pedibus elongatis, tarsis longissimis. Long. 11-15 m.m.

Christchurch; several specimens communicated by Mr. Wakefield.

40. Corymbites dubius, n. sp.

C. clongatus, sat angustus, nigricans, antennis fusco-testaceis, pedibus testaceis, breviter minus dense griseo-pubescens; antennis tenuibus, filiformibus, sat elongatis; prothorace elongato, crassiusculo, lateribus subparallcis, crebre punctato; elytris leviter striatis, apicibus sat attenuatis, fere integris; pedibus gracilibus, tarsis sat elongatis. Long. $16-17 \mathrm{~m} . \mathrm{m}$.
Christchurch; found by Mr. Wakefield.
Obs. In Mr. Janson's collection there is an insect allied to this species, and labelled as being the type of Corymbites antipoctum of; but I do not myself think it likely that the C. chubius is the female of C. antipoctum; and I am almost sure that Candèze's of type represents another distinct species.

41. Elater strangulatus, White.

E. elongatus, angustulus, fuscescens, densius pubescens, rix nitidus; antennis elongatis, tenuibus, filiformibus, thorace multo longioribus, articulo secundo sat elongato, tertio quam iste duplo longiore; oculis subglobosis ; prothorace longiore quam latiore, dense fortiter punctato, angulis posterioribus elongatis, divergentibus, carinatis; elytris subtiliter striatis, striis eridenter punctatis, interstitiis crebre punctatis, apice attenuatis et muticis ; pedibus elongatis, tarsis gracilibus. Long. $17 \mathrm{~m} . \mathrm{m}$.
Tairua, a single individual sent by Captain Broun as no. 175 ; also a mutilated individual from Auckland. They are probably both males.

Obs. I think I am right in considering the type of White's Elater strangulatus to be a specimen of the above described species.

42. Elater myops, White.

E. elongatus, angustulus, rufescens, densius pubescens, rix nitidus ; antennis elongatis, tenuibus, filiformibus, thorace multo longioribus, articulo secundo sat elongato, tertio quam iste duplo longiore ; prothorace longiore quam latiore, fere dense punctato, angulis posterioribus elongatis, rix divergentibus, carinatis; elytris subtiliter striatis, striis externis evidenter punctatis, interstitiis crebre punctatis, apice attenuatis; pedibus elongatis, tarsis gracilibus. Long. $13 \mathrm{~m} . \mathrm{m}$.
This and the preceding species are similar in appearance to our elongate European species of Athous, but have the elytra more elongate and attenuate behind. The present species is smaller and narrower than Elater strangulatus, and paler in
colour, and presents a slight difference in the structure of the mesosternal cavity; in Elater mynps the hinder border of the cavity is distinctly more elevated than the middle portion, whereas this is scarcely at all the case in Elater strangulutus.

Tairua; sent by Captain Broun as no. 18.

- Group 13.-The form of the head is in these species that described in Group 11; but the present species differ from those of that group by the form of the prosternal process and mesosternal cavity. The former is but little (Corymbites antipodum and (C. dubius) or not at all (Eluter strangulutus and myops) bent upwards; and the saltatorial mucro is much prolonged. The borders of the mesosternal cavity are not elerated; the cavity does not extend to the intercoxal suture; its hind portion is rounded; and the portion of the mesosternum between the opening and the intercoxal suture is somewhat, but only slightly, depressed. Most of the other characters rescmble those of Group 11.

43. Elater olivascens, White.

E. subænescens, longius grisco-pubescens, pedibus flaris; antemnis rufescentibus, tenuibus, minus elongatis, haud serratis, articulis secundo et tertio subrequalibus a sequentibus vix discedentibus; prothorace minus gracili, postice latiore, subtiliter punctato; clytris profundius striatis, striis externis punctatis, interstitiis parce subtilissime punctatis, apicibus minute spinosis. Long. $9-11 \mathrm{~m} . \mathrm{m}$.
This species is abundant at Auckland and Tairua, and is found on Leptospermum.

Obs. This species has also been called Chrosis ancola by Candèze.

44. Corymbites agriotoides, n. sp.

C. rufo-fusculus, longius griseo-pubescens, antennis pedibusque testaceis; illis tenuibus, simplicibus, articulis secundo et tertio elongatis, sequentilus similibus ; prothorace convexiusculo, margine laterali indistincto, parcius minus subtiliter punctato; elytris striatis, sed sculptura pubescentia obtecta, apicibus fere muticis. Long. $6 \frac{1}{2}-9 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This is a very variable species, and closely allied to Elater olivascens, but may be readily distinguished by the different colour, narrower form, more convex prothorax, \&c.

Abundant at Auckland and Tairua; found on shrubs.

Group 14.-The form of the head is here again as in Groups 11 and 13 ; but these two insects cannot be very well arranged with the first of these groups, because the hinder parts of the sides of the mesosternal cavity are less elevated and horizontal ; while from Group 13 they differ by the cavity being less depressed in its posterior part and approaching closely to the suture: from both groups these two species mureover differ in the fact that the hind coxal lamina is of nearly one length throughout, the trochanteral portion being not at all elongate.

45. Amychus Candezei, Pascoe.

A. latus, obscurus, omnino opacus, nigro-fuscus, submarmoratus, parcius breriterque setosulus; antennis brevibus, rufescentibus, articulis secundo et tertio quam sequentes longioribus, $4-10$. subæqualibus haud longioribus quam latioribus; prothorace magno, elytris latiore, angulis posterioribus elongatis, crassis, nullo modo divergentibus, ecarinatis; elytris latiusculis sed apicibus attenuatis, et ibidem parce subseriatim punctatis. Long. $15 \mathrm{~m} . \mathrm{m}$., lat. $5 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
Chatham Islands. I have seen but a single individual, which was kindly given me by Mr. Wakefield.

Group 15.-The structure of the head in Amychus Candezei is that of the Corymbites forms, as described in Groups 11,13, and 14. The prosternal sutures are not open, but the flanks as it were overlap the central piece. The prosternal process is broad, and is abruptly bent upwards (?) immediately behind the coxæ, so that it appears at first to be absent. The mesosternal cavity is very broad, quite rounded, and very deep posteriorly; and its borders are nearly horizontal and approach closely to the very deep intercoxal suture. The coxal lamina is very short; but its femoral portion is distinct throughout, and there is also a distinctly differentiated trochanteral lobe, though it is both short and narrow. The tarsi are stout and rather short, all the five joints well developed and simple, the 4th being only a little smaller than the 3rd. I think the species should be placed very near Corymbites; but as I fancy the prosternal process may have been deformed in the only individual I have examined, I do not feel very clear as to its characters.

46. Parinus villosus, n. sp.

P. sat latus, minus elongatus, posterius angustatus, nitidus, sed
longius irregulariterque albido pubescens, rufescens, elytrorum sutura lateribusque indistincte nigro-vittatis, subtus potius nigricans; antemnis sat gracilibus, intus vix serratis, articulo secundo guam tertius paulo longiore ; capite parvo, oculis prominulis; prothorace haud elongato, lateribus curvatis, angulis posterioribus crassis, intus curvatis; parcius et sat fortiter punctato ; elytris nullo modo striatis, sed evidenter sat crebre puactatis, humeris longitudinaliter carinatis. Long. $7-9 \mathrm{~m} . \mathrm{m}$.
The long conspicuous pubescence, the thick incurved hind angles of the thorax, and the entirely unstriated elytra readily point out this species from the others.

Auckland; sent by Mr. Lawson and Captain Broun, but apparently rare.

Group 16. -The following are the structural characters of Parinus villosus:-

Head small, forehead much rounded in front, with short, illlimited, almost perpendicular clypeus, but without any carina either in the middle or at the sides; antennal spaces small, but yet extending inwards, and separated from one another by only a narrow space. Antennæ slender, with 2nd and 3rd joints well developed. Prosternal sutures bearing a broad and deep depression extending backward for nearly half their length. Prosternal process short and stout. Hind part of mesosternal cavity with elevated quite horizontal sides, and approaching closely to the intercoxal suture. Coxal lamina short throughont, and without trochanteral lobe. Tarsi with the 3rd and 4 th joints with membranous lobes underneath; the lobe of the 3rd joint very obscure, but that of the 4th joint quite distinct, the joint itself being very short on the upperside.

The nearest ally of this insect is the Australian Hapatesus hirtus, Cand.; the most important character for distinguishing the two from one another is the difference in the tarsal conformation.

47. Lacon variabilis, Cand.

L. depressus, latiusculus, omnino opacus, fuscus, setis crassis brerissimis parce restitus; antennis brevibus, articulis $t-10$. intus serratis; prothorace subquadrato, angulis posterioribus haud productis, subrectis'; elytris fortiter seriatim punctatis, interstitiis 1.3.5.7. paulo elevatis. Long. $10-14 \mathrm{~m} . \mathrm{m}$.
This species varics much in size and colour, but cannot very well be mistaken.

Abundant under stones and logs near Auckland. The
specimens quite agree with South-Australian individuals of the species; and I suspect it has been introduced by means of maritime traffic into New Zealand.

Group 17.-The characters of the genus Lacon are well known. L. variabilis may be readily distinguished from all the other known New-Zcaland Elateridx by the prosternal sutures being quite open for half the length of the thorax, so as to receive and conceal the antennæ; this character is approached only by Parinus villosus; but Lacon variabilis may be distinguished at a glance from it by the tarsi having: the fourth joint well developed and not at all lobed beneath, and by the form of the front part of the head, which is almost that of the Corymbites group.

48. Limonius collaris, Pascoe.

L. thorace pedibusque testaceis, antennis abdomineque rufis, elytris pectoreque nigricantibus vel fuscis; antennis elongatis, serratis, articulis secundo et tertio conjunctim quarto æqualibus ; prothorace minus elongato, antrorsum angustato, haud longiore quam latiore, angulis posterioribus rix divergentibus, sat crebre punctato; elytris apicem rersus fortiter attenuatis, apicibus minute spinosis, fortiter striatis, striis evidenter punctatis. Long. $6 \frac{1}{2}-9 \mathrm{~m} . \mathrm{m}$.
The species is rather variable. The female is generally larger than the male and more convex, has the anteunæ rather less serrate, and the elytra very often of an obscure red colour; and it has generally the under surface nearly of a uniform red colour.

This species has been sent from Auckland by Mr. Lawson, and from Tairua by Captain Broun, who informs me that he meets with it occasionally on Dodoncea viscosa.

49. Geranus crassus, n. sp.

G. testaceus, elytris fulvis, antennis nigricantibus, prothorace medio, prosterno plagis duabus, metasterno lateribus, coxisque posterioribus fuscis; antennis minus elongatis, articulis secundo et tertio conjunctim quarto fere æqualibus; prothorace convexo, sat crebre fortiter punctato, angulis posterioribus sat divergentibus ; elytris striatis, striis fortiter punctatis, interstitiis parcius punctatis et pubescentibus. Long. $14-15 \mathrm{~m} . \mathrm{m}$.
This is the broadest and most robust species of the group.
I think the two individuals before me are male and female, though they exhibit but slight differences.

Drybush, Nov. 21, 1873 (C. M. Wakeficld, Esq.).

50. Geranus fulvus, n. sp.

G. testaccus, elytris fulvis, antennis nigricantibus, prothorace medio late, prosterno plagis duabus, metasterno lateribus, coxisque posterioribus fuscis ; antennis sat clongatis, articulis secundo et tertio conjunctim quarto fere equalibus; prothorace sat elongato, antrorsum evidenter angustiore, crebrius fortiter punctato, angulis posterioribus divergentibus; elytris striatis, striis fortiter punctatis, interstitiis parce punctatis et pubescentibus. Long. $14 \mathrm{~m} . \mathrm{m}$.
This species, though extremely similar to Geranus crassus, is narrower and has the thorax rather differently shaped and the antennæ less widely separate.

The only individual I have seen was sent me by II. Edwards, Esq., as No. 1149.

51. Geranus similis, n. sp.

G' testaceus, elytris fulvis, anteunis nigricantibus, prothorace medio, prosterno plagis duabus, metasterno lateribus, coxisque posterioribus fuscis ; antennis sat elongatis, articulis secundo et tertio conjunctim quarto haud æqualibus; prothorace crebre fortiter punctato, angulis posterioribus sat divergentibus; elytris striatis, striis fortiter punctatis, interstitiis parcius punctatis et pubescentibus. Long. $11 \frac{3}{4} \mathrm{~m} . \mathrm{m}$.
This species is extremely similar to Ceranus crassus, but is only half the size, and has the front of the head between the antenne considerably more reduced.

Taken at Foster's Creek by Mrs. Kelly. I have seen but a single individual.

52. Elater lineicollis, White.

E. fulrus, thorace medio fusco profundius longitudinaliter impresso, elytris lateribus, antennis, prosterno vittis duabus, metasternoque lateribus nigris, tarsis geniculisque plus minusve infuscatis; antennis elongatis, intus evidenter serratis, angulis internis anterioribus productis, articulis secundo et tertio brevibus, conjunctim quarto multo brevioribus; prothorace sat elongato, antrorsum eridenter angustato, fortiter fere dense punctato, minus nitido; clytris ad humeros latiusculis, apicem versus fortiter angustatis, evidenter striatis, striis fortiter punctatis. Long. $9 \frac{1}{2}-10 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species is readily distinguished from its allies by the very, short 2nd and 3rd joints of the antenna. From the specimens before me I judge that the sexual differences are very slight.

Tairua and Christchurch, and probably widely distributed. Captain Broun informs me that it is "not uncommon at Tairua."

Obs. Acroniopus grandis (Redtenbacher, 'Novara Reise,' Coleopt. p. 96) will prove, I think, to be this species or a closely allied one.

Group 18. -Species 48-52 show these characters :-
Forehead produced between the antennæ, and terminating with a small abruptly inflexed portion over the labrum, this portion representing, as I consider, the clypeus; labrum very small and scarcely to be seen; antennal spaces rather large and very deep, almost circular, widely separated from one another by the produced forehead; antennæ either nearly filiform or strongly serrate. Prosternum moderately long, with excessively abbreviated chin-piece; lateral sutures open for one third or one half their length ; prosternal process short and stout. Middle coxæ moderately distant; mesosternal cavity with thick but not raised borders; hind coxal lamina as long at its external portion as at its internal one, so that there is no trace of a trochanteral lobe. Tarsi slender, basal joint as long as the three following together; the 3rd and th joints with a produced membrane on their underside. In these insects the structure of the head is intermediate between that of the Protelater group and that of the ordinary forms of the Elateridæ.

53. Protelater elongatus, n. sp.

P. elongatus, angustus, densius pubescens, colore variabilis, rufescens, plus minusre infuscatus, et in elytris rage plagiatus; antennis sat elongatis, vix serratis, articulis secundo et tertio sat elongatis conjunctim quarto fere longioribus; capite dense subtiliter punctato et pubescente ; prothorace valde elongato, subeylindrico, angulis posterioribus divergentibus, elongatis, testaceis, fere dense punctato, fusco, fere subæneo, dense flaro-pubescente; elytris elongatis, minus discrete striatis, sed interstitiis alternis versus apicem magis elevatis; coxis intermediis bene separatis. Long. $7-10 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species appears to be extremely variable in size and a good deal in colour and markings.

Christchurch, Akaroa, 19th Dec. 1874; Tairua. Captain Broun informs me that this species is rather common on the outskirts of the forest at Tairua.

54. Protelater Huttoni, n. sp.

P. elongatus, angustus, pubescens, rufescens, supra presertim in thorace, magis obscurus; prothorace elongato, subeylindrico, an-
gulis posterioribus elongatis, valdo divergentibus ; coxis intermediis fere contiguis. Long. $8 \mathrm{~m} . \mathrm{m}$.
This species is extremely similar to the preceding one, but it has the middle coare nearly contiguous.

The only individual I have seen was found in Otago by Captain Hutton.

55. Protelater guttatus, n. sp.

$P_{\text {. }}$ sat elongatus, angustus, subeylindricus, fortiter punctatus, tenuiter pubescens, haud nitidus, nigricans vel infuseato-rufus, antennarum basi, pedibus, prothorarisque angulis posterioribus testaceis, elytris plus minusve distincte testacco signatis ; antennis sat elongatis, subserratis; prothorace dense, fortiter profundeque punctato, angulis posterioribus sat divergentibus; elytris fortiter seriatim punctatis, sed rix striatis. Long. $5 \frac{1}{2}-6 \mathrm{~m} . \mathrm{m}$.
The female is rather broader than the male, but otherwise scarcely differs.

Sent from Auckland by Mr. Lawson. I have also lately received a specimen from Captain Broun as No. 42, and with the information that it was found on trees at Cabbage-Tree Swamp, Auckland.

56. Protelater picticornis, n. sp.

P. sat elongatus, angustus, fortiter punctatus, tenuiter pubescens, vix nitidus, rufescens, antennarum basi, articulis tribus ultimis pedibusque testaceis, antemnis medio, prosterno, thoracisque vittis duabus nigricantibus, elytris oblique fusco-plagiatis, maculis magnis ante apicem testaceis; thorace crebre, fortiter profundeque punctato, sat nitido, angulis posterioribus divergentibus; elytris fortiter seriatim punctatis. Long. $5 \frac{1}{2} \mathrm{~m} . \mathrm{m}$.
This species approaches closely to the reddish varieties of Proteluter guttatus, but has the apical joints of the antenne yellow, and shows also some slight structural differences; the middle coxæ are a little closer, the metasternum is less advanced between them, and the mesostemal cavity is not quite so parallel-sided and is rather broader in its hind part.

A single specimen was sent me by Captain Broun some time ago as No. 199 ; but I do not know whether it was found near Auckland or 'Tairua.

57. Protelater opacus, n. sp.

P. sat elongatus, angustus, fortiter dense punctatus, opacus, evidenter pubeseens, rufescens, prosterno medio diluto, lateribus infuscatis, antennis nigris, basi, pedibus, prothoracis angulis posterioribus, elytrisque macula ante apicem testaceis; prothorace deuse fortiter punctato, opaco, elongato, angulis posteriori-
bus divergentibus; elytris fortiter profundeque seriato-punctatis, rix striatis, opacis. Long. $5 \frac{1}{2}-6 \mathrm{~m} . \mathrm{m}$.
This species, though closely allied to P. guttatus and P. picticornis, may be distinguished by a glance at the underside of the thorax, which is pale along the middle, with the flanks infuscate; it is considerably duller above, the elytra are palish red at the base, with the apical half darker reddish and a pale yellow spot placed in this darker part; these markings on the elytra vary considerably in their definiteness.

Two individuals have been sent me from Tairua by Captain Broun; and I have seen others in Messrs. Pascoe's and Wakefield's collections from the same source.

Group 19.-These species have the following characters:Forehead greatly produced between the antennæ, the produced portion with a slightly thickened lateral edge, these edges towards their anterior part divergent, so as to form a portion of an under margin to the large and deep antennal spaces; the labrum is small, but quite visible between the divergent processes at the termination of the forehead. The antennæ are slender and but little serrate ; chin-piece of thorax very short, truncate in front, separated by a short wide notch from the front angles of the prosternum. Thorax elongate and subeylindric, its process thick and straight; mesosternal cavity rather broadest at its hind part, with thin, sharp edges, which are directed downwards. Middle coxa moderately or only slightly separated. Coxal lamina slightly longer outside than inwardly. Tarsi with 3 rd and 4 th joints with membranous lobes.

Though the structural characters of these species are on the whole very similar to those of Group 18 (Geranus), yet the laterally dilated front of the forehead points out the present group as an interesting connecting link between them and the Eucnemides. The peculiar narrow form and elongate cylindric thorax of the species give them a facies by which they may be readily recognized.

These interesting insects have an undescribed ally in Chili, which, Mr. Janson informed me, was considered by Candeze not to be a member of the Elateridæ. But I think there is no doubt that these New-Zealand species may be placed in the Elateride; they offer, however, an important obstacle to the separation of the Throscidæ and Eucnemidæ from the Elateridæ as distinct families. The structure of their head is, in fact, such that by a little modification it might be transformed into the head of a Eucnemid or a Throscid.

58. Neocharis varia, n. sp.

N. supra rufescens, dense variegrato-tomentosa ; antemmis basi apiceque rufescontibus, medio fuscis; subtus fusea, pronoti lateribus abdomineque rufescentibus; pedibus testaceis; prothorace dense punctato, conspicue variegato-pubescente, anterius medio leviter impresso, disco utrinque rage infuscato, et densius subtiliusque punctato; elytris densius punctatis, punctis basin rersus parcioribus, stria suturali dimidiata apice profunda et hamata, perconspicue variegato-pubescentibus. Long. $5 \mathrm{~m} . \mathrm{m}$.
The prosternal sutures in this species are not (or scarcely perceptibly) impressed in front. I think I have the sexes before me; and if so, the differences are slight.

A single individual has been sent me from Tairua by Captain Broun; and there are others from the same source in the possession of Messrs. Wakefield and Pascoe.

59. Neocharis mubescens, n. sp.

N. rufo-fusca, variegato-tomentosa, pedibus testaceis, antennis basi apiceque minus lete rufescentibus; prothorace crebre, fortiter, æqualiterque punctato, pubescentia minus variegata; elytris crebre punctatis, conspicue rariegato-pubescentibus, stria suturali dimidiata, apice profunda et hamata, et ad basin striarum obsoletarum rudimentis. Long. $5 \mathrm{~m} . \mathrm{m}$.
Though very similar to the preceding species, this has the thorax darker and rather more coarsely and deeply punctured, and the prosternal sutures have in front a large and deep impression.

I have seen but a single specimen, which was sent me from Tairua by Captain Broun.

60. Neocharis simplex, n. sp.

N. angustula, nigra; thorace antrorsum angustato, parce punctato et pubescente, nitido, pubescentia grisea; elytris crebre subtiliterque punctatis, densius pubescentibus, pubescentia fere concolori, stria suturali tantum postice impressa, apice hamata perprofunda. Long. $4 \mathrm{~m} . \mathrm{m}$.
The only individual I have seen is no doubt a male; it has the antennæ very long (3 millims.), but little serrate internally, with the 2nd and 3rd joints subequal, together shorter than the 4 th.

Received from Captain Broun ; but I have no information as to exact locality.

61. Neocharis concolor, n. sp.

N. nigra; thorace antrorsum sat angustato, parce punctato, et pubescente, nitido, pubescentia grisea; elytris minus elongatis, subparallelis, posterius minus angustatis. apice rotundatis, sat nn. \&e Mag. N. Hist. Ser. 4. Vol. xix.
dense fusco-nigro pubescentibus, nullo modo striatis, sed seriebus punctorum sat distinctis, interstitiis crebre subtiliter punctatis, serie suturali ad apicem impressa. Long. $3 \frac{3}{4} \mathrm{~m} . \mathrm{m}$.
The male has the antenne very elongate (3 millims.), stout and strongly serrate ; 2nd and 3rd joints about equal and very short, together shorter than the 4 the joint. In the female the antenne are shortur (2 millims.), rather stout, but not serrate ; the 3rd joint is a little longer than the 2nd, so that the two together are rather longer than the 4th joint.

The species, though extremely similar to Neocharis simplex, may be distinguished at a glance by the rows of distant punctures on the elytra.

This species has been sent from Tairua by Captain Broun.
Group 20.-Species Nos. 58 to 61 have the following characters:-

Anteme very approximate at their insertion; front of the hoad much dilated laterally below the antennæ, so as to leave an oblique depression near the eye, in which the basal joint of the antennæ is received when retracted. Labrum not visible, the front of head being terminated by a slarp edge, behind which the labrum is concealed. Thorax short, without chinpiece, without grooves for antennæ, with a short process, which is curved upwards behind the coxæ. Mesosternal cavity short and broad. Lamina of hind cosæ without trochanteral lobe. Tarsi simple, with all the joints simple, or with the 4th very obscurely emarginate, basal joint as long as the three following together; 5th joint either very or moderately short.

The position of these insects is cvidently in the Eucnemides, near the European and North-American Xylobius and Hylochares.

62. Talerax distans, n. sp.

T. angustulus, subparallelus, rufo-castaneus, pubescens, sat nitidus; oculis magnis; prothorace subrjuadrato, angulis posterioribus elongatis, antrorsum subangustato, sat crebre et fortiter punctato, nitido: elytris subtiliter sat crebre punctatis, punctis vix seriatis, sine stria suturali, sed ad apicem foveis profundis. Long. $4 \frac{1}{4} \mathrm{~m} . \mathrm{m}$.
In the male the antennæ are very long ($3 \frac{3}{4}$ millims.), while in the female their length is only 2 millims.

Taken by Captain Broun at Tairua on Leptospermum, and sent to me as Nos. 35 and 36.

Group 21.-This species has the head formed much as in Veochuris, but the month-piece depressed in front, so that the
minute transverse labrum is visible. Antemne with very short 2nd joint and very elongate Brd joint. Thorax beneath with a very broad deep lateral groove, which starts in front, right ateross the prostemal suture, and then crosses to the outside of it, so that the sutural line is rendered very indistinct by this grome ; the groove is hordered externally by a raised line, which at first sight might be mistaken for the line of the prosternal suture. Hind coxal lamina much produced over the trochanters. Carsi slender, with th joint minutely lobed.

This species should be placed in the Eucnemides; but I cannot point out any near ally for it at present.
XLVIII.—Description of a ner Speries of Phasmida from the Jalay, Peninsulu. By Prof. J. Wood-MLason, Deputy Superintendent, Indian Museum, Calcutta.

Lonchodes valgus, sp. nov.

q. Body about the same length and thickness as that of I. artemis, Westw., cylindrical, olisoletely granulated above and below, with a fine raised median dorsal line extending from the apex of the mesothoma to the end of the penultimate abdominal segment. Antemice (tips broken off) moderately long and fine-setaceous; basal joint large, dilated, oval, longitudinally carinate above. Head short, thick, and very convex, its disk sloping to the insertion of the antemer and to the occiput, from which it widens to the eyes; armed with a pair of errat sumon-shaperd wal homs, the firmen margins of which are straight and the himler arcuate, and the apices of which are slightly hilobeel. Byes small. Mesothorax slightly tapering in front, the motathorax widening slightly to the insertion of the pasterior legs. Penultimate dorsal segment of the abdomen with a rugse boss at its himder extremity; the last carimate, gronsed to the base, and divided at the apex by an emargimation into two rounded lobes. Supatanal plate conceated. Cerci minute, conical. (Operculum shaperl much as in L. cuniculus, Westw., but not quite reaching the extremity of the abrumen. Fore femora serated along the upper crest; intermediate and posterior ones curvel, the former very strongly so ; all subtriguetrous and armed below near the apex with a strong triangular tooth, and above with one or two spimules on each crest ; the intermediate femora have also a well-developed foliacenus. lobe at the base of the lower and imererest. Tibias all triguetrons, slightly curved, and pro-
vided with a sharp foliaceous carina along the middle of the under surface. Tarsi also all triquetrous; the first joint in fore legs expanded above into a sharp foliaceous crest and longer than the rest taken together; in the intermediate legs the first tarsal joint is equal to the last three, in the posterior to all the rest. Colour dark brown, with two pale longitudinal dorsal stripes: the legs and the horns variegated with luteous.

Male unknown.
Total length 5 inches 3 lines; head 2.5 lines; prothorax 2; mesoth. 11; metath. 10 ; abdom. $27+6=33$; fore femur 15.5 , tibia 18 , tarsus 4.75 ; intermediate femur 9.75 , tibia $9 \cdot 75$, tarsus $3 \cdot 75$; posterior femur $12 \cdot 5$, tibia $12 \cdot 5$, tarsus 4 . Hab. Perak, Malay peninsula. Communicated by Dr. G. E. Dobson.

This species belongs to the same group as Lonchodes amaurops and uniformis, Westw., crawangensis, De H., verrucifer, W.-MI., and brevipes and spinicollis, G. R. Gray, \&c., the last of which only it resembles in the peculiarly curved condition of the thighs.
April 13th, 1877.
XLIX.-Diagnoses of new Species of Pleurotomidæ in the British Museum. By Edgar A. Smith, Zoological Department.
The various genera or groups of Pleurotomidæ require thorough revision; for at present they are badly described and their limits unrecognizable. The following species are placed provisionally in those sections of the family which are usually accepted, as I have not yet completed the investigation of the whole of the collection.

Pleurotoma amicta.

Testa solida, fusiformis, alba, epidermide tenui flavescente amicta, spiraliter lirata vel carinata, incrementique lineis oblique striata; anfract. $14-15$, superiores tricarinati, prope suturam canaliculati (carina mediana duplici, supra et infra sculptura peculiari quasi corrugata ornata), inferiores 2-3 carinis 5-6 cincti, anfr. ultimus pluricarinatus ; spira elongata, crassa, acuminata; apertura breviuscula, superne elongato-ovata in canali breviusculo leviterque obliquo et recurvo producta, longitudinis testæ $\frac{2}{5}$ æquans, intus tenuiter lirata; labrum tenue, margine crenulatum, superne ad carinam duplicem anguste fissum; columella suboblique tortuosa, lævigata.
Long. 50 mill., diam. 15.
Hab. Sandwich Islands.

This species is remarkable for the numerous subequal keels or lirations, none of them being very large. A double one a little above the middle of the whorls has above and below it a very peculiar style of sculpturing, consisting of a kind of puckering of very short and oblique thread-like lines.

Pleurotoma Nellice.

Testa fusiformis, turrita, alba; anfr. 12, supra valde excavati, inferne angulati, infra suturam carinis duabus parris contiguis cineti, et rersus basim tuberculis longitudinaliter oblongis rectis (in anfr. ultimo ad 16) seriatim coronati, et striis spiralibus in excavatione sed precipue inter tubercula ornati; anfr. ultimus infra tuberculorum seriem liris ralidis (superioribus 』. yuam c:etera majoribus) suceinctus; apertura cum canali longitudinis testex $\frac{1}{2}$ eqquans; labrum tenue, superne ad excarationem incisum ; canalis elongatus leriter obliquus, paululum retrorsus.
Long. 31 mill., diam. 10.
Hab. Mauritius.
A species of charming form and purity, with whorls strongly excavated above, and a row of upright oblong tubercles encircling their bases, and two small contiguous keels around them just below the suture.

Pleurotoma ceylonica.

Testa fusformis, griseo-albida, infra suturan maculis rufis varicgata et circa anfract. ultimi medium flammulis elongatis inferne productis ornata ; anfract. $10 \frac{1}{2}$, primi $1_{\frac{1}{2}}^{\frac{1}{2}}$ vitrei, politi, convexi, cæteri paululum infra suturam concari, cingulis spiralibus 6 granosis succincti (tertio a summo quam cietera minore), sutura distincta, fere canaliculata, discreti ; anfr. ultimus cingulis ad 20 succinctus; columella levissime tortuosa; apertura intus fascia unica rufescente ornata, longitudinis testa $\frac{1}{2}$ haud æquans; labrum tenue, medio prominens, superne ad cingulum parrum anguste sed haud profunde incisum ; canalis mediocriter clongatus, leviter recurrus.
Long. 19 mill., diam. $6 \frac{1}{2}$.

Hab. Ceylon.

The entire surface of this species consists of spiral contiguous series of granules; the third row from the top of the whorls being smaller than the others produces a depression in that region.

Pleurotoma acutigemmata.

Testa cylindraceo-fusiformis, fusco-flara; spira elongata, acuta; anfr. 12-13, medio carina maxima, acuta angulati, ad suturas carinati (carina superiore undulata), supra carinam maximam serie spirali granulorum acutorum cincti : anfr. ultimus paululum
infra medium contractus, carinis 19-13 et inter has striis spirallibus exilibus ornatus; apertura parva, basi angustata, longitudinis testæ $\frac{1}{3}$ fere æquans, intus liris intrantibus 4-5 munita; labrum tenue, medio prominens, supra carinam maximam fissura latiuscula sed haud profunde incisum ; columella leviter sinuata, callo tenuissimo induta : canalis mediociter brevis, vix recurrus. Long. 22 mill., diam. fere 7.

Hab. ——?
It is with considerable hesitation that I apply a name to this form, on account of its close relationship with jubata, Hinds. The chief differences are the narrower form, larger tubercles, and shorter canal, in the latter character bearing the same relation to jubata as cingulifera (Lamarck) does to his albina.

Pleurotoma retusispirata.

Testa elongato-subfusiformis, dilute purpurascens, ad• apicem obtusum saturatior; anfract. 8, primi 2 (nucleus) vitrei, politi, globosi, sequentes 5 bicarinati (carina superiore duplici) liraque intercurrente nodosa cincti, inter carinas liris longitudinalibus confertis, tenuihus ornati, sutura canaliculata discreti; anfir. ultimus ad peripheriam rotundatus, deinde contractus caudam brevem formans, carinis ad 12 subrqualibus succinctus; apertura parva, longitudinis testre $\frac{1}{3}$ paulo superans, intus sulcata, sulcis costis externis respondentibus; labrum margine lerissime incrassatum et crenulatum, paululum supra medium fissura parva incisum ; columella medio plicis duabus minutis (superiore fere obsoleta) munita, ad busim dextrorsum curvata ac infra labrum descendens; canalis brevis, recurrus.
Long. $7 \frac{3}{7}$ mill., diam. $2 \frac{1}{2}$.
Hab. -?

The present species has for its nearest relative P. violacea, Ilinds, from which it differs in form somewhat; the apex is blunter ; and there is but a single nodose liration around the middle of each whorl, whereas Hinds's species possesses two.

Pleurotoma cognata.

Testa elongato-subfusiformis, luteo-allida, versus apicem dilute purpurea, carinis allis cincta, et inter carinas striis tenuibus longitudinaliter inseulpta; spira perelongata, acuta, lateribus rectis; anfract. 12?, sutura carinata sejuncti; primi 4? (abrupti), sequentes 7 medio concari, carinis duabus validis, remotis, et inter carinas liris 2 exilibus, cincti ; unfr. ultimus basi contractus, caudam brevem formans, carinis ad 12 (quarum superiores 3 maximæ) cinctus; apertura alba, angusta, basi paululum contracta, longitudinis testæ $\frac{1}{3}$ æquans; fissura minime profunda, inter carinas primam secundamque sita; labrum tenue, margine crenulatum: columella medio obsolete uniplicata; canalis brevis, obliquus, leviter reflexus.
Long. 24 mill., diam. 7.

Hab. Australia.

'This species has a close relationship to I '. renterea, Hinds, from which it differs, however, in colnar, the number of carinations, and the more produced spire. It is still more nearly allied to P. vallata, Gould, from which it differs only in size and the presence of only one plication on the columella, whereas l '. callata possesses two. It may be merely the adult of the latter species.

Plewrotoma antipodem.

Testa breviter fusiformis, dilute carmeo-fusea, transversim albocarinata ac inter carinas longitudinaliter tenuissime lirata : anfract. $7 \frac{1}{2}$. primi 21 politi, leves, sequentes t superne ad suturam carina duplici et paululum infra medium altera longe maxima (suprat et infrat quam sunt lire intercurrentes graciles 1-2) cincti; anfr. ultimus magnus versus basim contractus, carinis precipuis ad ${ }^{9}$ (quarum ea paululum supra mediun longe maxima) alisisque (circiter (j) minoribus circa caudam succinctus; apertura oblonga inferne contractia, intus lawis, longitudinis testre $\frac{1}{2}$ fere xquans; labrum tenue, margine haud crenulatum supra carinam maximam late sed minime profunde incisum; columella tortuosa, callosa, nitens; canalis brevis, recurrus.
Long. 10 mill., diam. 4 .
Hab. New Zealand.
This species, which consists of but few whorls, is chiefly remarkable for its, short fusiform shape and the prominent keel around the whorls a little below the centre.

Pleurotoma multiseriata.

Testa acuminato-ovata, lutea (interdum purpuren-fisea): anfract. 10 , primi 2 laves, politi, cocteri planiusculi, infra suturam tuberculorum parsorum serie duplici, infra eam lris spiralibus 1-2 gracilibus, infra quas circa medium tubereulorum majorum serio duplici secunda, et infra hanc liris 1-2 ex nodulis parvis factis succiucti ; anfr. ultimus liris nodosis circiter 15 ornatus ; apertura liris tenuibus 5 -6 intrantibus, haud ad labri marginem extendentibus, numita, longitud. totius $\frac{1}{3}$ adaquans; columella fere recta; labrum tenue, paululum infra suturam distincte incisum ; canalis perbrevis, recurtus.
Long. 15 mill., diam. 5.

ILab. Ceylon, Persian Gulf, and China Seas.

Sometimes the rows of granules on the body-whorl are alternately larger and smaller.

Pleurotoma allofiesciata.

Testa ollonga, subeylindracea, rubro-castanea, zona unica alba infra carinam undulatam ornata; anfract. 12, convexiusculi,
medio angulati, carinis tribus cincti, suprema justa suturam duplica, mediana maxima nodulis acutis 9 instructa, infima prope suturam sita, inter carinas spiraliter striati; anfr. ultimus infra carinam maximam 12 -carinatus, carinis inferioribus 5 parris circa caudam sitis; apertura parra, intus liris tenuibus $5-6$ ornata, longitudinis totius $\frac{1}{3}$ haud æquans; collumella callo tenui induta, superne juxta suturam tuberculata; labrum tenue, ad carinam mediocriter incisum; canalis brevis, recurvus.
Long. 22 mill., diam. 8.

IIab. Sandwich Islands.

The central keel is formed of sharp, compressed, transverse tubercles. The space between it and the lower keel is white.

Pleurotoma zealandica.

Testa ralida, ovato-turrita, carneo-albida; spira acuminata, gradata, apice fuscescente ; anfract. 10 , primi $2 \frac{1}{2}$ politi, ritrei, conrexi, cæteri conrexiusculi, superne carinati et decliviter complanati (gradibus radiatim fortiter striatis), sulcis 2-3 (supremo maximo, oblique fortiter striato) insculpti; anfr. ultimus magnus, aliquanto inflatus, basim rersus contractus, sulcis circiter 12 fortibus, longitudinaliter striatis, ornatus; apertura fusca, ampla ; columella fuscescens, medio arcuata, inferne obliqua, cum labro canalem brevem leviter recurrum constituens; cauda carina parsa, fusca circumdata; incisura latiuscula, haud profunda, paululum supra Jabri medium sita.
Long. 23 mill., diam. supra labrum 9.

Hab. New Zealand.

This species is remarkable for the tabulated whorls, the tabulations being very strongly radiately striated, and sometimes furnished with a spiral liration, and the conspicuous sulcations encircling the body-whorl. The slit in the labrum is situated just below the broad furrow which grooves the upper part of the whorls.

Pleurotoma (Dvillia) chocolatum.

Testa fusiformis, nitens, saturate purpureo-fusca, zonis angustis tribus modo supra costas parentibus ornata; anfract. 12, primi 2-3 conrexi, læres, cæteri superne concavi, deinde convexiusculi, infra excarationem costis rotundatis paucis (in anfr. ultime 9 ad peripheriam obsoletis) instructi, striis exilibus paucis spiralibus, sed haud in concaritate, insculpti ; anfr. ultimus infra peripheriam ralde angustatus, ubique transrersim striatus vel liratus; apertura intus purpureo-fusca, longitudinis testæ ad $\left.\frac{2}{5} æ\right)^{2}$ uans ; labrum tenue, medio extans; sinus mediocriter profundus ; canalis obliquus, recurvus.
Long. 21 mill., diam. 7.

Hab. Goza Harbour, Japan.

The dark chocolate-colour, with the three yellowish spots
which are slightly nodulous on each rib, and the smooth concavity at the upper part of the whorls are very distinctive characters.

Pleurotoma (Drillia) subochracea.

Testa elongata, fusiformis, turrita, rubido-ochracea ; anfract. 13, supra valde excarati, deinde convexi, infra excavationem costi; plicosis (in anfr. ultimo it fere ad basim continuis) instructi, liris tenuibas supra costas subnodosis et albis (in anfr. penult. j, in ultimo circiter 22) et striis gracillimis numerosis incrementique lincis ornati; sutura marginata; apertura carneo-alba, superne ovata, inferne in canalem mediocriter elongatum producta, longitudinis totius $\frac{y}{5}$ adequans; labrum extra costa validissima incrassatum, in excavatione sinuatum ; columella tortuosa, callosa, superne tuberculo parvo munita ; canalis recurvus.
Long. 39 mill., diam. 11.

Hab. China seas (probably).

This handsome shell is very characteristically coloured. The reddish-ochre colour is uniform, except where the transverse lirations cross the ribs or plications, where they are white and slightly nodulous. The excavation is well defined by the sudden termination of the ribs.

Pleurotoma (Drillia) mindanensis.

Testa elongate orato-fusiformis, turrita, sordide albida, inter costas supra ac infra fusco maculata; anfractus 12 , primi 3 convexi, lares, politi, cæteri superne leviter excarati, medio angulati, deinde concaviusculi, propeque suturam aliquanto constricti, costis perobliquis flexuosis suturas attingentibus (in anfr. ultimo circiter 13 rersus basim obsoletis) instructi, et liris $4-5$ gracilibus supra costas prominentioribus subnodulosisque succincti; anfract. ultimus ad peripheriam obtuse angulatus, albidoque zonatus, inferne fuscescens, liris numerosis ornatus; apertura longitudinis totius $\frac{3}{T}$ æquans; labrum tenue, margine crenulatum, medio prominens, prope suturam valde incisum ; columella paululum contorta, superne tuberculata ; canalis leviter recurrus.
Long. 29 mill., diam. 9.

Hab. Island of Mindanao, Philippine Islands.

The ribs in this species are flexuous and very oblique and continuous up the spire; but whether this latter be a constant character I cannot say, as but a single example is at hand. The obtuse angulation of the body-whorl at the periphery gives it a squarish aspect.

Pleurotoma (Drillia) rotundicostata.

Testa acuminato-fusiformis, apice acuto, dilute fuscescens, epidermide tenui flaro-olivacea amicta; anfr. 12, convexiusculi, su-
perne paululum constrieti, costis rotundatis validis, superne versus suturam attenuatis (in anfr. ultimo 7 ad peripheriam cranidis) instructi, sutura simplici undulata sejuncti, liris spiralibus $3-4$ supra costas aliquanto incrassatis striisque aliis cincti ; anfract. ultimus infra peripheriam valde constrictus, in caudam elongatam productus, ubique spiraliter liratus; apertura angusta, longit. totius $\frac{3}{\bar{T}}$ adæquans, intus fuscescens; sinus minime profundus; canalis elongatus, recurvus.
Long. 21 mill., diam. 6.
Hab. - ?
The few roundish ribs are broadest at the lower ends and gradually diminish upwards. The operculum is unguicular, with a groove running lengthwise from the apex to the superior margin.

Pleurotoma (Drillia) latisinuata.

Testa fusiformis, turita, dilute luteo-fuscescens (interdum omnino nivea); anfract. 12, superne excavati, medio carinati et-angulati, infra angulum oblique plicati, plicis haud ad suturas extendentibus (in anfr. ultimo circiter 14 fere obsoletis), liris spiralibus eleratis albis (in anfr. superioribus $3-4$, in ultimo ad 12) suprema quam cæteræ majore in medio anfractuum, et striis gracilibus inter liras ornati ; apertura lata, sordide allida, longitudinis testæ fere $\frac{1}{2}$ æquans; labrum superne valde et latissime sinuatum, paululum post marginem costa tuberosa incrassatum ; columella callo tenui induta, prope suturam tuberculata; canalis mediocriter elongatus, leviter recurrus.
Long. 50 mill., diam. 35.

Hab. China.

This species is allied to P. favidula, Lamk. The upper half of each whorl is nearly smooth, as the plications extend scarcely beyond the central large spiral liration which marks the angulation of the whorls. Sometimes, this lira being double, the whorls are less acutely angular.

Pleurotoma (Drillia) nodilirata.

Testa fusiformis, turrita, allido-cornea; aufract. 11, superne concare excarati (excaratione arcuate striata), medio obtuse angulati, infra suturas carina tenui marginati, infra excarationem costis obliquis modice ralidis (in anfr. ultimo circiter 12 basi fere continuis) instructi, liris spiralibus precipue super costas eleratis (in anfr. superioribus 5-6, in ultimo circiter 20 subnodulosis) cincti ; anfr. ultimus basi attenuatus; apertura angusta, longitudinis totius fere $\frac{1}{2}$ æquans; columella recta, crasse callosa; labrum extra valde incrassatum ; sinus modicus; canalis angustus, reflexus.
Long. 25 mill., diam. 8.
Hab. Philippine Islands.

The spiral lirations in this species are particularly prominent, especially umom the ribs, where in the body-whorl they are developed into little nodules.

Pleurotoma (Drillia) rariabilis.

Testa clavate fusiformis, sulrimata, fusco-lutea, rubro-fusco notata precipue infra suturam ; anfract. 10, supra concari, medio angulati, infra excarationem costis subtubercularibus inferne versus suturas fere obsoletis (in anfr. ult. 10 haud ad basim attingentibus) instructi, liris spiralibus $3-4$ (in anfr. ultimo circiter 15 subgranosis) lineisque aliis tenuibus cincti; anfract. ultimus subquadratus, basi modo paululum constrictus ; apertura intus levis pallide rosacea, longitudinis totius $\frac{\bar{亏}}{}$ adxquans, callo superne tuberculoso induta; canalis brevissimus, recurvus; sinus latus profundiusculus ; labrum extra incrassatum.
Long. 34 mill., diam. 10.
Var. Testa alba, fusco sparse punctata.
Hab. ——?
This species is remarkable for the squarish body-whorl and the very short canal and aperture. The lirations, where they traverse the plications, are whitish.

Pleurotoma (Drillia) Atkinsonii.

Testa ovato-fusiformis, flavescens, ad apicem fusca, inter costas roseo-fusco maculata; anfract. 11, convexi, superne paululum excarati, superne ad suturam oblique crenulati, costis rotundatis, supra fere obsoletis (in anfr. ultimo $8-9$ basi desinentibus) instructi, liris ralidis supra costas leviter incrassatis (in anfr. superioribus (6-7, in ultimo circiter 16) succincti, undique incrementi lincis obliquis ornati ; apertura intus saturate fusca, longitudinis tutius is. æquans; labrum extra costa ultima maxima incrassatum, intus roseo-album; columella livido-fusca, callo tenui amicta, supra tuberculo parro munita; sinus mediocris; canalis brevis, recurvus, aurantiaco-fusco tinctus.
Long. 26 mill., diam. S.
Hab. -?
The lines of growth in this species are particularly apparent. The ribs on the body-whorl are slightly noduse at their lower part, where the spiral lirations cross them.

Plourotoma (Drillia) angusta.

Testa angusta, clongata, fusiformis, dilute luter-fusea, apice caudaque altra (interdum omnino alba) ; anfract. :", apicales magni, rotundati, ceteri consexi, infra suturam leviter concavi, costis confertis tuberculon is ohlinuis superne suturas vix attingentibus (in anfr. ultimo 1.5, paululum infra peripheriam desinentibus) instructi, sulcis spiralibus (in anfr. superioribus $\overline{5}-6$, in ultimo circiter 16) insculpti; apertura parra, longitudinis testic $\frac{1}{3}$ ad-
æquans; labrum tenue, prope suturam leviter sinuatum; canalis breriusculus.
Long. 20 mill., diam. $5 \frac{1}{2}$.

Hab. China Sea.

In this species the nuclear whorls are unusually large, the rest are convex and only slightly excavated at the upper part. The ribs are deplly cut across by the spiral sulcations, and thus become nodulous, four or five nodules existing on a rib.

Pleurotoma (Drillia) incerta.

Testa fusiformis, alba; anfract. 12, primi 2 vitrei, convexi, cæteri superne decliviter concaviusculi, deinde convexi, costis leviter obliquis superne versus suturas obsoletis, in anfr. superioribus iuferne incrassatis (in anfr. ultimo 10 paululum peripheriam infra desinentibus, una aliquanto post labrum maxima inflata) instructi, liris striisque spiralibus et incrementi lineis obliquis undique ornati; apertura longit. totius ad $\frac{3}{7}$ æquans; labrum tenue, margine crenulatum; columella subrecta, callo superne aliquanto incrassato induta; canalis modice elongatus, recurrus. Long. 25 mill., diam. 7.

Hab. New Guinea.

The spiral lirations in this species are about six in number in the upper whorls, and twenty in the last; they do not exist in the depression at the upper part of the whorls, which is only finely striated.

Pleurotoma (Drillia) multilirata.

Testa orato-fusiformis, lacteo-alba, rersus apicem dilute lilaceo tincta ; anfract. 10 , primi 2 vitrei, convexi, cæteri medio angulati, supra concave excarati, sutura simplici discreti, costis obliquis plicæformibus medio incrassatis supra ac infra attenuatis, supra vix suturam attingentibus (in anfr. ultimo 10 ad peripheriam obsoletis) instructi, ubique transversim striati et tenuiter crebreque lirati, liris $3-t$ quam cateræ majoribus, supra plicas aliquanto incrassatis, incrementi lineis striati ; apertura longitudinis totius $\frac{5}{11}$ æquans; labrum tenue, superne sinu parvo incisum ; canalis latus, brevis.
Long. 23 mill., diam. $7 \frac{1}{2}$.

Hab. Port Jackson?

The transverse lirations are very numerous and regular.

Pleurotoma (Drillia) consociata.

Testa oblonga, subturrita, flavicans; anfract. 10? (apice fracto), superne ad suturam carina duplici cincti, infra hanc concare excarati, deinde costis crassis 6 (in anfr. ultimo paululum infra medium eranidis) instructi, liris spiralibus 4 supra costas prominentibus in iuterstitiis subobsoletis (in anfr. ultimo circa 16)
cincti ; apertura long. totius ${ }^{\text {Kize }}$ æquans; columella rectiuscula, callo tenui induta; canalis brevis, recurvus; sinus mediocriter profundus.
Long. 24 mill., diam. 8.
Hab. ——?
This species differs from P. crenularis, Lamk., in the shorter last whorl and the uniform colour; and the spiral lirations are scarcely continuous between the ribs as in P. crenularis.

Pleurotoma (Drillia) intertincta.

Testa elongata, fusiformis, albida, inter costas fuser maculata; anfract. 13, modice convexi, infra sed juxta suturam carina valida subacuta valde undulata (interdum fusco-punctata) sejuncti, costis rotundis, hic illic una varicosa quam cætere majore (in anfr. ultimo 8 prope peripheriam obsoletis) instructi, liris spiralibus valde elevatis supra costas continuis et prominentibus (in anfr. superioribus 2 , in antepenult. et penult. 3 , in ultimo circiter 14) clathrati, undique striis paucis incrementique lineis ornati; anfr. ultimus infra peripheriam zona fusca ornatus, cauda aliquanto elongata, alba terminatus; apertura intus alba, longitudinis testæ ad $\frac{3}{7}$ æquans; columella leviter torta; labrum margine crenulatum, superne infra cariuam valde sinuatum; canalis paululum recurvus.
Long. 28 mill., diam. 8.
Hab. China Seas and Philippine Islands.
The prominent spiral lirations are acute and prominent where they cross the rils,s, which are rather large and stand out white in contrast with the brown maculations in the interstices.

Plewrotoma (Drillia) maorum.

Testa fusiformis, turrita, dilutissime rosea, inter costas precipue circa medium fusco strigata; anfract. $8 \frac{1}{2}$, primi $1 \frac{1}{2}$ convexi, læves, sequens convexiusculus, spiraliter liratus, cæteri superne concave excavati, prope suturam marginati, deinde convexiusculi, costis confertis leviter obliquis superne ad excavationem obsoletis instructi (in anfr. ultimo 16, prope medium evanidis), liris spiralibus 7 , circa medium tribus quam cetere minoribus cincti; anfract. ultimus liris circiter 15, his ad medium subdistantibus, ornatus, inferne in caudam subelongatam productus: apertura clongata, longitud. totius 萦 paulo superans; canalis subelongatus, angustus ; sinus mediocris, in excavatione situs.
Long. 21 mill, diam. $6 \frac{1}{2}$.

Hab. New Zealand.

'This species must not be confounded with I.nover-zealandice, Rev. The form of the whorls, the elongate canal, and different position of the sinus are characters which easily define this form.

Pleurotoma (Dirillia) Piattii.

Testa fusiformis, turrita, dilute fulva; anfract. 10 , superne excarati, medio rotundate angulati, costis obliquis rotundis (in anfr. ult. 9 ad peripheriam sensim desinentibus) instructi, ubique spiraliter exiliter striati, sutura leviter marginata; anfr. ultimus magnus, post labrum valde tuberose incrassatus, striis spiralibus magis profundis incrementique lineis ornatus; apertura angustiuscula, carnea, longitudinis totius fere $\frac{1}{2}$ æquans; sinus magnus, latus, prope suturam situs; canalis leviter obliquus et recurvus; colunclla tuberculo calloso parro superue munita.
Long. 27 mill., diam. 8 .
Hab. - ?
The few rounded oblique ribs, which do not extend to the suture above, and the uniform bright reddish brown or fulvous colour are the characters, which chiefly distinguish this species.

Pleurotoma (Drillia) excavata.

Testa fusiformis, turrita, lutescens; anfr. 9, primi 2 læves, cæteri superne valde oblique excarati, medio obtuse angulati, longitudinaliter costati, costis ad excavationem finitis (in anfr. ultimo 14 infra medium desinentibus), liris spiralibus (iis in excaratione exilioribus quam inferiores) supra costas incrassatis cincti ; apertura longit. totius ad $\frac{9}{20}$ æquans; sinus mediocriter profundus, proxime ad suturam situs; canalis paululum elongatus, recurrus; columella rectiuscula, callo tenui amicta.
Long. 20 mill., diam. $6 \frac{1}{3}$.

Hab. -?

The ribs do not extend into the excavation or concave depression at the upper part of the whorl; and the five or six lirations encircling it are finer than those below it.

Pleurotoma (Drillia) concolor.

Testa elongata, fusiformis, turrita, rubido-fusca (interdum pur-pureo-fusca); anfract. 13, primi 2 convexi, læves, cæteri superne concavi, medio angulati, costis longitudinalibus supra versus suturas obsoletis (in anfr. ultimo circiter 11 basi obsoletis) instructi, et in anfractuum dimidium inferius liris eleratis spiralibus 3 (in anfract. ult. ad 6) supra costas nodulosis clathrati, ubique striis spiralibus gracillimis incrementique lineis flexuosis ornati; sutura undulata, aliquanto incrassata ; apertura angusta, longitudinis testæ ad $\frac{1}{3}$ æquans; labrum tenue, margine crenulatum, intus lære, superne paululum infra suturam late profundeque incisum; columella subrecta, callo tenui induta, tuberculo parvo juxta suturam munita; canalis latiusculus, leviter recurvus. Long. 43 mill., diam. 11.

Ifab. Moluccas and China.

This species is of uniform reddish or purplish brown; the upper half of the whorls is concave and devoid of spiral lirations, which exist only on the lower portion.

Pleurotoma (Drillia) digna.

Testa orato-fusiformis, sub epidermide tenui flavo-olivacea cæruleocinerea; anfractus 9 , leviter convexi, costis obliquis superne nodosis 13-14 (in anfr. ultimo versus labrum subobsoletis et prope peripheriam evanidis) instructi; anfr. ultimus sulcis angustis pluribus circa basim insculptus; apertura fusea, albohifasciata, longitudinis totius quam? paulo minor; labrum tenue, ad marginem album, superne minime profunde sinuatum ; columella versus basim callo albo induta ; canalis breriusculus, latus. Long. 26 mill., diam. 9.

Hab. California.

The colour beneath the epidermis of a specimen in good condition is a bluish ash; but in worn examples the upper part of the whorls and the middle of the body-whorl are broadly bounded with brown; and these bands are seen in the aperture of all specimens. A slight furrow or depression extends around the whorls a little below the suture, and, traversing the ribs, causes their upper ends to be nodulous. The sinus in the labrum is situated at the termination of this depression.

This species belongs to a group of Pleurotomidæ which includes several Californian forms, viz. :-P. inermis, Hinds; incisa, Carpenter; penicillata, Cpr.; moesta, Cpr. ; aurantia, Cpr. ; erosa, Schrenk; and lirata, A. Adams.

Pleurotoma (Clionella) Bornui.

Testa clongata, subturrita, albida, strigis rufis inter costas ornata, epidermide cornea olivacea induta ; anfract. 8? (apice abrupto), planiusculi, paululum infra suturam linea inppessa bipartiti, leviterque constricti, longitudinaliter costati, costis interstitia æquantibus, numerosis (in anfr. ultimo ad 18), striis spiralibus exilibus obsolete striati; apertura ovata, longitudinis totius $\frac{1}{3}$ erquans, superne acuminata, basi canali brevissimo leviter recurvo terminata; columella medio leviter arcuata, vix tortnosa; cauda brevis, carina circumdata; labrum tenue, superne paululum infra suturam haud profunde sinuatum.
Long. 40 mili., diam. 12.
Hab. Cape of Good Hope.
This species is closely allied to the well-known P. simuata, Born. It differs, however, in being covered with a paler epidermis, in having below the suture a raised girdle formed by a depression or constriction around the whorls, and also in the style of coloration.

Pleurotoma (Clionella) Krausii.

Testa turrita, albida, maculis punctulisque purpureo-fuscis precipue super anfractuum dimidium superius variegata, epidermide tenuissima riridi-olivacea induta ; anfract. 9-10, medio excavati, deinde angulati, superne leves, inferne costis subnodosis (in anfr. ultimo ad 12) instructi, striis spiralibus exilibus ubique ornati, sutura undulata marginata discreti ; apertura albida, fusco maculata, longitudinis testæ $\frac{2}{\bar{万}}$ æquans; labrum tenue, paululum infra suturam leriter sinuatum; canalis brevis, obliquus; columella areuata.
Long. 29 mill., diam. 10.
Hab. Cape of Good Hope.
This species is easily recognized by the short subnodulous rils, which occupy scarcely the lower half of the whorls, the depression round the middle and the raised band above, and the manner of coloration, the puphlish-brown maculations being somewhat flexuous in the depression. Its nearest relation is P. semicostata, Kiener.

Pleurotoma (Clionella) bipartita.

Testa elongate ovato-fusiformis, sub epidermide tenui griseo-oliracea dilute rubescens rel albida, lineis gracillimis confertis dilute fuscis longitudinaliter picta, et strigis obliquis subremotis fuscis infra suturam ornata; anfract. 10, plani. medio sulco spirali bene definito minime profundo sed latiusculo exsculpti, infra sulcum plicis nodosis obliquis (in anfr. ultimo fere obsoletis, in superioribus ad 12) instructi; anfract. ultimus magnus, longitudinis totius $\frac{4}{i}$ æquans, infra peripheriam striis spiralibus paucis circiter 7-8 cinctus; apertura intus dilute purpureo-carnea, longitudine testæ $\frac{2}{\bar{j}}$ æquans, basi late canaliculata: columella arcuata, superne callo nodulosa, parro, munita; labrum tenue, ad sulcum aliquanto profunde scissum.
Long. 34 mill., diam. 12.
Var. Testa anfr. ultimi costis obliquis haud obsoletis sed ad peripheriam desinentibus.

Hab. South Africa, Port Elizabeth.

This very distinct form is peculiar for the manner in which the whorls are divided into three parts. Below the suture exists a raised band, whitish, streaked obliquely with brown; below this runs a shallow furrow nearly as broad as the fillet; and again below the sulcus are oblique subnodulous ribs which occupy nearly half the whorl, these ribs disappearing almost entirely in the body-whorl.

Pleurotoma (Clionella) subventricosa.

Testa orato-fusiformis, carneo-allida, zona lata irregulari circa anfractuum partem inferiorem ornata ; anfract. 8, convexiusculi,
superne patulum infrat suturam suleo angusto lwiter constricti, infrat sulcum costis subrotumdatis (in anfr. ultimo flexusis inferne desinentibus circiter 14) instructi, striis spiralibus remotis paucis (in anfr. ult. ad 12) insculpti ; anfic. ultimus subventricosus, testre $\frac{5}{8}$ requans; aportura intus fuscescens, basi oblique lateque canaliculata, longitudinis totins $\frac{4}{9}$ xequans; labrum temue, superne ad sulcum leviter sinuatum; columella medio arcuata, basi obliqua. Long. 26 mill., diam. 10.

Hab. South Africa.
This shell, although without a locality attached, in all probability inhabits the Cape of Good Hope, having with some species from there such a general resemblance as to warrant the supposition ; the brown band occupies about half the whorls, not quite reaching the upper ends of the ribs.

Pleurotoma (Clionella) platystoma.

Testa elongata, turrita, flarescens (interdum pallide rosco-fusea), superne juxta suturam et mediane inter nodulos dilute fuseo notata; anfract. 7, primi ᄅ convexi, papillares, laves, ceteri superne ad suturam margine incrassato leviter nodoso, deinde concavi, medio angulati, infra angulum plani, circa medium nodulorum parvorum obliquorum (ad 1:3) seric unica ornati, spiraliter striati, striis subdistantibus $10-12$, in anfi. ultimo circiter 24 , incrementi lineis obliquis striati ; aportura lata, subquadrata, longitudinis testre totius fere $\frac{5}{5}$ wepans ; sinus latus, mediocriter profundus; columella callo tenui induta; canalis apertus, brerissimus.
Long. 13 mill., diam. 5.

Hab. Cape of Good Hope.

The two apical whorls are remarkably large. The faint nodules at the top of the whorls and the more distinct ones around the middle have faint dots of brown between them ; and the spiral strix are interrupted by them.
L.-On Rupertia stabilis, a new Sessile Foraminifer from the North Atlantic. By G. C. Whalici, M.D., SurgeonMajor Retired List, H.M. Indian Army.
[Plate XX .]
IT will, I think, be conceded that a special degree of interest attaches to the Foraminifer about to be described, when I state that it not only represents a well-markenl new genus, but is one of the very few forms as yet discovered whose peculiarities of structure point to their being sessile inhabitants of the bed of the ocean.

Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.

The specimens were obtained by me in 1860, in three soundings taken on board II.MI.s. 'Bulldog', on opposite sides of the southern extremity of Greenland--the depth in the three localities varying from 108 fathoms on the east coast, to 1205 fathoms on the west. In each locality the number of specimens was considerable, and the condition of the shells such as to indicate their perfect freshness at the time they were brought up from the bottom. Partly owing, however, to the impossibility of carrying on microscopic work during such tempestuous weather as prevailed whilst the 'Bulldog' cruised in those latitudes, and partly to my having been deceived by the resemblance observable in the outline of the neck and margin of the disk of the new form to a monstronsly developed species of Uvigerina, it did not receive the attention it deserved, but remained stored away in my collection until 1874, when, on re-cxamining my North-Atlantic materials, I at once perceived that it was both specifically and generically new.

Tevertheless, fully recognizing in the daily increasing distaste for the undue multiplication of types one of the most salutary results of modern biological teaching, and feeling. disinclined to rely too far on my own opinion, I made up my mind to defer sending forth any observations on the subject until that opinion should be confirmed and strengthened by some thoronghly experienced and trustworthy authority on the Foraminifera. Under these circumstances I submitted my specimens, figures, and brief memoranda, to my able and obliging friends Professors Rupert Jones and Parker. Their report, which reached me a few days ago together with my embodied memoranda, I now, with their permission, publish.

I have named the new form after Prof. Rupert Jones, Rupertia stabilis, in recognition of the obligation he has laid me under, not only on this but on former occasions when I have sought his counsel on questions relating to the Foraminifera.

Rupertia stabilis, Wall. (See Pl. XX.)

"A chambered hyaline Foraminifer of the Rotaline group, subpyriform, with an irregular lumpy outline, like some of the asymmetrical Puffballs, and somewhat resembling an inverted Ascidia mamillata. The shell is fixed by a relatively large basal disk, and raised on a thick cylindrical neck or pedestal, usually straight, but sometimes slightly curved, from which several spacious chambers swell upwards and outwards, with an imperfect spiral arrangement, resulting in the often topheavy, lopsided, and asymmetrical outline of the full-grown shell. Young individuals are simply subglobular and pedunculated." (The disk, from the carliest stage of the shell,
attains its full dimensions, the neek being of nearly the same diameter as the disk, whilst the upper part is merely rounded off, as shown in figs. 5 and 6 of the accompanying Plate.G. C. IV.)
"The shell-wall is essentially vitreous and rather coarsely tubular ; but the tubules become obsolete over and near the sutures, leaving tubuliferous tracts with glassy interspaces. In places the shell grows oparque and sometimes becomes covered with particles of mineral matter or minute Foraminifera and broken sponge-spicules."
(Here, then, as in a very large number of the deep-sea Foraminifera, we have the arenaceous structure supplementing, and in some cases entirely superserling, the normally calcareous shell of the species.

The older chamber-walls generally appear to be formed of two or even three layers secreted one over the other. Sometimes the inner layer is opaque and closely resembles opal glass, the tubules distinctly opening out into the interior. The vitreous layer occurs externally to this. In the last-formed and largest chamber the vitreous is the only layer, the tubules then looking like minute white stars with a central pore in each. The disk is quite imperforate.-G. C. W.)
"Each chamber has a large, transierse, lunular slit in front, this simple aperture being arcuate and forked at one end, as shown in tig. 11. The chambers are superposed, with little or no overlapping for the most part. A secondary coating of shell-wall is here and there seen creeping down the neck towards the glassy base. The basal disk has usually some obscure, minute, oparque lobules about its centre; but the greater portion of its area is glassy and apparently structureless, the substance presenting the sugar-candy-like aspect so often observable on the bases of the fixed Foraminifera. Even when only one large chamber is present the disk seems to have been already formed; and it does not subsequently increase in area.
"In its relation to other Foraminifera, this fungus-shaped form stands between Plenorbuline and Globigerine, and, as to its shell-structure, like Cerpenteriu. In its semi-opaque condition it imitates the habit of Pulvimulina, which sometimes becomes imperforate over broad tracts, and coated with a ' glassy layer perforated by large pores here and there.
"Instead, however, of spreading out sessile chambers in a eompound tent-like arrangement, like Carpenteria, this subcylindrical lobulated Foraminiter raises its chambers high up, with somewhat of a Bulimine twist, on a broad-based peduncle."

The associated Foraminifera (as determined by Professors Rupert Jones and Parker) are :-

Biloculina ringens (thick).	Pulvinulina auricula (1a
uola scorpiurus (nodosari	
extularia sagittula. - agglutinans.	Nonionina scapha (large).
ristellaria rotulat	ystomella crispa (large)
- ariminensis (large).	G. C. W.)

Professor Rupert Jones also informs me that he "cannot help thinking the obscure lobulate spots in the centre of some of the disks may be a very small primordial spire of the very earliest-formed chambers, this being possible, probable, and quite in accordance with Planorbuline characteristics." I have completely failed to detect any thing like such an approach to a spiral or minute chamber-like arrangement in two carefully dissected specimens which appeared most likely to exhibit it, had it really been present. It is, however, quite possible, as Prof. Jones says, that this structure may be disclosed when a sufficiently large number of disks is examined.

Height of the mature shell from $\frac{1}{24}$ to $\frac{1}{18}$ of an inch. Diameter of disk about $\frac{1}{50}$ of an inch.

explanation of plate xx.

Fig. 1. Erect riew of a mature shell of Rupertia stabilis, showing the disk in profile and the slit-like aperture of the last-formed chamber.
Fig. 2. Oblique view of a specimen of the same, in which the neck is bent and the face of the disk presents itself.
Fig. 3. The most erect form in which this Foraminifer occurs, the aperture being on the opposite side to that depicted.
Fig. 4. Another specimen, showing the irregular growth sometimes met with.
Figs. 5 \& 6. Young specimens, showing the contour of the primordial chamber.
Fig. 7. View from upper surface of the young specimen depicted in fig. 5, showing the position of the aperture.
Fiy. 8. Disk of the same.
Figs. $9 \& 10$. Two views of a specimen in which two masses of mineral are firmly imbedded in the shell-substance.
Fig. 11. View from above of the last-formed chamber of an adult specimen, in which the arcuate and forked aperture was observed.
Fig. 12. A specimen in which the entire surface was thickly covered with extremely minute Globigerine and other foraminiferal shells and fragments of sponge-spicules.
Fig. 13. A perfectly "arenaceous" but broken specimen. No other specimen of this kind was discoverable in the material.

bIbLIOGRAPHICAL NOTICE.

The Ancient Life-History of the Earth. By Prof. H. A. Nicholson, M.D., D.Sc., \&e. 8ro. Pp. 408, with 270 woodcuts. Blackwood: Edinburgh, 1877.

Trie author well defines this work as "a comprehensive outline of the principles and leading facts of palæontological science." It differs from many of the books already written on palæontology ; for it is not unfairly weighted with the orer-treatment of any one favoured subject-it is not devoted to the mere enumeration or to a very special illustration of all the fossils of each formation-it is not a mere popular sketch of the organic beings of the past-it is not shackled with hesitations about old philosophies-but is written oridently with a full personal knowledge of the subject-matters, a good acquaintance with what our continental and American fellowworkers have said and done, and in an open-minded but far from rash scientific spirit, seeking truth for truth's sake, enlightened sometimes by the doctrine of evolution, and sometimes feeling for that "deeper and higher law" which has ruled nature with still greater power.

In his concise introductory sketch of "the laws of geological action," our excellent teacher opportunely and with justice warns us that the Huttonian reaction against pure Catastrophism carried geologists too far, and that "Catastrophes" must be allowed for, though the gencral truth of the doctrine of Continuity is to be fully admitted.

The President of the Geological Society of London also, in his late Address, has done good service to science in urging geologists to think more of the evidences and theoretical aspects of "Catastrophes," and to be less strongly influenced by the Uniformitarian reaction than they have been of late years.

The definition of Palæontology, its "scope and materials," and a sketch of what is meant by "fossiliferous rocks," with concise descriptions and useful illustrations, will prove useful to students and general readers. The "chronological succession of the fossiliferous rocks" is treated of in a short but sound and philosophical chapter ; and "the breaks in the geological record," and "the biological relations of fossils," are equally good.

The main body of the work is, of course, "historical paleontology;" and this is carried out with great judgment, full information carefully condensed, conscientious treatment of obscure fossils, and a sound knowledge of both palæontology and physical geology. Each system, from the Laurentian to the Post-pliocene, has its fossils and life-history treated of in succession.

Of the numerous woodents, some are new; and, though the others have been used in earlier books, they are curefully chosen and wellapplied; and the majority are inscribed with their original source.

A very useful bibliographic list of the more important books and papers having reference to cach system of formations is appended to the successive chapters on the great periods; and a generalized section is giveu for each of the great series in Eugland or elsewhere.

The concluding chapter, on "the Succession of Life upon the Globe," is well worthy of attention. The general appearance of succession and progression among living things of all recognizable time-the apparent exceptions to these phenomena-the gradual introduction and extinction of faume and floræ in most instancesthe apparently almost sudden incoming and disappearance of such groups as the Graptolites and Trilobites-and the apparently sudden appearance of Ifippuritidæ, of the Dicotyledonous flora, and, indeed, of the Cambrian fauna, are treated of in a clear-sighted philosophic spirit, glad to gather all that is known, and waiting and working for further light.

A tabular view of the chief divisions of the animal kingdom is giren in the Appendix. A careful Glossary and full Index complete this well-arranged and well-printed book, which we cordially recommend to geologists and other naturalists.

MISCELLANEOUS.

Zoology of the 'Challenger' Expedition.

To the Editors of the Amals and Magazine of Natural History.

Geatlemer,-Since I wrote you on the subject of the distribution of the 'Challenger' collections for description and stud5, a distinguished naturalist has moved in the House of Commons for the instructions given by the Treasury to Sir C. Wyrille Thomson. The Treasury (courting, as I know they may well and safely do, the fullest inquiry) have ordered the whole correspondence to be printed ; and it will be in hand shortly.
An important letter has already been communicated to a public department; and as I hare seen it, I can now write on a matter in which my hands were formerly tied. The arrangements of the 'Challenger' expedition were superintended by a Circumnavigation Committee, which reported at last to the Council of the Royal Society; so that when the Treasury asked for the advice of that body, one of the secretaries was instructed to write, embodying the suggestions of the Committee. I need hardly say that this was carefully and faithfully done; and now the letter adrising the Government can be seen, and I trust that I am not transgressing in stating that extraordinary care was taken in it to do what was best for science and
just to Nir C. Wyville Thomson. After carefully reading this letter, now public property, I have no hesitation in stating that, unless a meaning be placed upon the wording of one part of it which is utterly irreconcilable with another, the sole responsibility for his course of action rests with Sir Wyrille 'Thomson.

In this letter the specimens collected by the 'Challenger' are divided into two groups-the occasional, which do not bear specially on the objects of the expedition, and those which are "the pieces justificutives of a larqe part of the results of the investigations of the 'Challenger.'" With regard to the disposal of the first set, it is stated, "They [the Council of the Royal Society] are, however, convinced that, both in the interests of science and in view of cconomy, no arrangement could be better than that moposed by sir C. W. Thomson; according to which the work will be done by the highest authorities in their respective subjects in the country, while the naming of the specimens will involve no expense to the Govermment."

The second and more important collection is recommended to be dealt with as follows:-"They [the Council of the Royal Society] hope that heir Lordships will see fit to leave the collection mentioned under 12 e in his (Sir W. C. T.'s) charge, to be worked out under his direction."

On turning to paragraph " $12 e$ " I find the following:-"Thut the whole of the remainder of the collection, including marine invertebrate animals, sumples of the bottom, samples of water for physical and chemical examination, remain under my charge as heretofore; my chief assistant, Mr. Murray, leeping a check-list of the whereubouts of all the specimens placed temporarily for any purpose out of my custody, so that, in case of my lapsing, he may be familiar with the whole arrangement. That a complete type-series of all species be selected by me as soon as they are determined and described and sent to the British Muserm; the duplicates remaining in my hands to be afterwards distributed according to the instructions of their Lordships."

The letter, of which these quotations form a small part, was dated December 8, 1876. The Treasury then instructed Sir Wyrillo Thomson. They will insert a sum not exceeding $\mathfrak{E 4 0 0 0}$ in the estimates (1876-75) to provide for working out the collections included in paragraph $12 e$ (sce ante).

It is not probable that the Treasury sanctioned Sir Wyrille Thomson's course of conduct ; and it is quite erident that no Government would subsidize foreign naturalists to do the work of competent British investigators. The conduct of the Government has been most liberal ; and therefore, in supporting their patriotic wish to advance science, it is ahsolutely neeessary to thoroughly open up the question of Sir Wyrille 'Thomson's administration in its widest sense. I wish, therefore, to inform you regarding the disposal of the collections and the money.

The Nea Mammals have been, or are to be, offered to Prof. Turner; the Birds to Dr. Sclater : the Fish to D1. (riinther : the Cephalopoda
to Prof. Huxley; the Gasteropoda and Lamellibranchs to the Rev. 1. B. Watson ; the Brachiopoda to Mr. Davidson; the Ostracoda Copepoda to Mr. G. S. Brady ; the Phizopoda to Mr. H. B. Brady; the Isopoda to Mr. H. Woodward ; the Cirripedia to Mr. C. Darwin (?); the Annclida to Dr. M•Intosh; the Gephyrea to Prof. Ray Lankester ; the Bryozoa to Mr. Busk; the Hydromedusæ to Dr. Allman ; the Corals to Mr. Moseley ; the Crinoidea to Sir Wyrille Thomson; the Echinoidea (probably, but I do not write certainly, the Asteroidea) to Mr. A. Agassiz; the Ophiuroidea to Mr. Lyman ; the Spongida to Prof. (). cchmidt ; the Radiolaria to Prof. E. Haeckel; the higher Crustacea to Prof. Claus; and the Alcyonaria to Prof. Kölliker, to whom they have long since been sent. Mr. Murray is a permanent assistant; Mr. Wild's excellent artistic services are retained ; and Mr. Pearcey is also employed. Sir Wyrille Thomson, I again assert, has sent or proposes to send, the most important of the collections abroad for description. The general and geological value of the groups sent to the tro American and four German naturalists is infinitely greater than that of all the others.

In the above list one misses some familiar names, such as Carpenter, Gwyn Jeffreys, Norman, T. Wright, Carter, Rupert Jones, Spence Bate, Archer. 'Of course no one from the British Museum, except Mr. Woodward and Dr. Giunther, is included; nor is there mention of any of the very rising young naturalists and palæontologists who are doing such admirable work at Cambridge. One would have thought that there was somebody at Glasgow or at St. Audrers's who was worthy of consideration.

The Director, as he yives up much paying work, will receive £500 for the year and $£ 1$ a day travelling expenses. Mr. Murray and Mr. Wild will receive $£ 400$ a jear each. The discretion of the "Director is to be used in paying" those specialists who are working up the different departments. But, doubtless, as those of us who "worked up" the results of the deep-sea dredgings of the 'Porcupine' expedition did it gratuitously, no call for money will be made by any one now at work except for simple expenses. When the (ioverument bring forward the motion of supply they will be informed that their liberality has been far in excess of the requirements of the case.

I forward you the vouchers for my statements.
Yours, \&c.,
May 25, 1877.
P. Martin Duncan.

We append a remarkable paragraph which appeared in 'Nature' of the 17 th ult. It is as follows:-
"We regret to see what we must characterize as an unwarranted attack made upon sir Tryille Thomson in the current number of the 'Annals and Magazine of Natural History,' as to the disposal of the specimens obtained by the 'Challenger' expedition. Dr. Martin Duncan appears to hare taken for granted that an extract of
a private letter, which some indiscreet friend of Mr. Alexander Agassiz published in 'Silliman's Journal,' and which then found its way into the English journals, is 'official.' Ho would have done well to have ascertained whether this was really the case before allowing himself to comment on Sir Wyville Thomson's proceedings in such severe terms. So fir as wo are aware, out of the many naturalists actually engaged to work out the results of the 'Challenger' expedition, only three are not Englishmen, two being Americans, and one German. These three gentlemen are of the very highest repute in their respective branches; and Nir Wyrille Thomson has, in our opinion, done well for science to secure their services."

Tho Editor of 'Nature' seems to hare a curious notion of the application of words. In what manner, except by an expression of his own opinion, does he attempt to show that the letter from brof. Duncau, which appeared in our last number, contained au "unwarranted" attack? In what sense he uses the word "official" we are at a loss to understand. It is not usual in such cases to talk of " "fficial" statements and communications. The only question seems to be whether the statements published in the 'American Journal' for February last were or were not "true;" and we were informed by Prof. Duncan that he had fully satisfied himself upon this point, by direct communication with Sir Wyville Thomson, before he wrote his letter. From the wording of the letter from Mr. Alexander Agassiz, as printed in the 'American Journal,' it is perfectly clear that the letter in question was addressed by Mr. Agassiz to the Editors of that Journal, or to one of them; and hence that gentleman himself must be held guilty of the indiscretion pointed out by the Editor of 'Nature.' But in what does the indiscreetness consist? Mr. Agassiz's statement was undoubtedly indiscreet if there was any thing in the transaction that required concealment. Are we to infer that such was the case? Indiscretions appear not to be peculiarly the produce of the western shore of the Atlantic.

On a Newt from the Darjiling Hills. By Prof. J. Wood-Mason.
At the February Meeting of the Asiatic Society of Bengal, Prof. Wood-Mason exhibited a specimen of a newt which he had detected in a small collection of insects and other objects recently made by Colonel G. B. Mainwaring in the Darjiling hills and said:"The specimen is in the highest degree interesting, not only as being the first example of a tailed amphibian that has ever been found in India, but also as being an individual of the remarkable species described by Dr. J. Anderson (1. Z. S. 1871, p. 423) from specimens obtained by him around the little Chinese town of Nantin and in various other parts of the same region. Tylototriton verrucosus, as the animal has been called by Dr. Anderson, lives, in Western China, in flooded rice-ficlds, but in Sikkim, according to Colonel Main-
waring, in damp situations amongst decaying leaves and sticks. There is, howerer, notbing remarkable in this difference of habit; for the common eft of Europe is not unfrequently to be found on dry land at some distance from water under logs of wood, there being no necessity for the Urodelous Amphibia, after they have passed through that stage of their existence during which they are provided with external gills for aquatic respiration, to keep to the water. The entire order of tailed Amphibia is confined to the temperate parts of the northern hemisphere; but two species have already been described from countries the fauna of which is largely learened by Indo-Malayan forms,-Cynops chinensis having been recorded from near Ningpo, and Plethodon persimilis from Siam. This occurrence of a newt within the limits of the Oriental region is far from being without a parallel in other groups of animals alsoNectogale (vide W. T. Blanford, P. A. S. B. 1876), Anurosorex, probably also Crossopus, and a host of animals, vertebrate and invertebrate, extending still further southwards, being only to be looked upon as stragglers from the Palæarctic region or as outposts of it, to use tho happy phrase of Dr. Guinther. The only other form of newt at all resembling T. verrucosus, in which horny matter, accumulated at the points where the ends of the ribs press against the external integument, forms on cach side of the middle line of the body along the upperside of the flanks a conspicuous row of great rough horny tubercles, is Pleurodeles, in which these bosses are sometimes so highly developed as to have given rise to the incorrect notion that the euds of the ribs projected freely through the skin.Proceedings of the Asiatic Society of Bengal, February 1877.

On the Value of certain Arguments of Transformism derived from the Ecolution of the Dentary Follicles in the Ruminants. By M. V. Piethiewicz.

In a communication made to the British Association in 1839, Goodsir announced that he had discovered in the jaw of the calf and lamb the germs of incisors and canines, and even of a molar, intermediate between the abortive canine and the molars which normally exist in those animals. Geoffroy Saint-Hilaire had previously described abortive dentary germs in the lower jaw of Balena mysticetus. The naturalists, and the partisans of the theory of transformism, Darwin especially, grasped at this idea, which, in conjunction with data furnished by comparative anatomy and palxontology, enabled groups of animals preriously separated to be brought into relation.

Thus the dental formula of the ordinary Ruminants is I. $\frac{0}{3}$, C. $\frac{0}{1}$, M. $\frac{8}{6}$, and that of the omnivorous Pachyderms (such as the wild boar and the hippopotamus) I. $\frac{3}{3}$, C. $\frac{1}{1}$, M. $\frac{7}{7}$. But two or three genera of Ruminants possess upper canines; and their formula is I. $\frac{0}{3}, \mathrm{C} . \frac{1}{1}, \mathrm{M} . \frac{h}{\hbar}$: and the camels and llamas have, in addition, a pair
of pery distinct upper incisors, giving them the formula I. ! , C. 1 , M. $\frac{0}{6}$. Aceording to M. Paul Gervais these last when young have two pairs of upper incisors, one of which has disappeared in the adult; the young animals would hare the formula $\mathrm{I} . \frac{2}{3}, \mathrm{C}, \frac{1}{1}, \mathrm{M}$. 合. M. (iervais does not doubt that at a still earlier age a third pair of upper incisors might be fuund in these amimals, the dental formula of which would then be the same as that of the Pachyderms, less one molar, riz. I. $\frac{3}{3}$, C. $\frac{1}{1}, ~ M . ~ \frac{6}{5}$.

The Dinotherice and Amphutreypli, the latter regarded as Ruminants allied to the cherrotains, have seven molars-that is to say, the same number as the Pachyderms. Thus among the Reminants fossil species were already known having the same dental formula as the Pachyderms, and living species of which the formula was almost identical ; and Goodsir's discovery, giving the ordinary Ruminants at a certain age the same formula as the Pachyderms, enabled the tro groups to be approximated. Here was one of the results of the hypothesis of the unity of plan in nature, or a confirmation of the transformist theory, the abortion of the organs being explained by their disuse and the gradual establishment of this anomaly by adaptation and heredity.

The author says that, wishing to verify an opinion which enjoyed so much credit in science, he was surprised to find nothing to justify it. In a long series of preparations from embryos of cattle and sheep, from the carliest period of embryonic life up to the time when the foetus is 30 centims. long in the sheep, he was never able to ascertain the presence of follicles, nor even of any trace of the epithelial lemina, the commencement of all follicular development.

Goodsir's error arose from the false idea he entertained of the development of the follicles; and, in fact, at the commencement of his researches, the author fell into the same crror himself. In sections made quite at the anterior part of the upper jaw in the ox and sheep, there is on each side of the median line an epithelial sac which separates from the mucous membrane of the mouth to bury itself in the jaw. The mucous layer of Malpighi, uninterrupted, forms its outer covering; whilst in its interior there is a polyhedral ejithelium inevery respect like that of the middle layers of the buceal epithelium. Thus formed, this little sac would seem to constitute the commencement of the follicle; but by making sections of the same jaw further and further from the front, the little sae is seen to lose its relations with the buceal mucous membrane, and acyuires the form of a circular canal, approximating to the mucous membrance of the nasai fosse. Noon a cartilaginous tube appears round this canal; and then a ridge containing ressels is formed at its upper part. It is Jacobson's organ as described by Gratiolet.-Comptes Rendus, March 12, 15.7, p. 508.

INDEX то VOL. XIX.

Acalles, new species of, 146.
Acallopais, characters of the new genus, 147.
Acarina, on the power possessed by certain, of living without food, 270.

Acharadria larynx, observations on, 151.

Acirsa, new species of, 241.
Acontias, new species of, 313.
Adams, A. L., on gigantic LandTortoises from the ossiferous caverus of Malta, 267; on remains of the Mammoth from Northern Spain, 268.
Ethalochroa, description of the new genus, 308.
Aganippe, characters of the new genus, 28.
Aglophus, new species of, 409.
Amphiplatys, new species of, 406.
Amychus, new species of, 478 .
Analophus, characters of the new genus, 423.
Anaphe, new species of, 462.
Anguillula intestinalis, observations on, 350.
Annelida, on a new type of, 390.
Antedon rosaceus, on the structure, physiology, and development of, 180.

Araneidea, new genera and species of, 26.
Argynnis, new species of, 93.
Ascodictyon, description of the new genus, 463.
Astræopora, new species of, 416.
Atrax, characters of the new genus, 26.

Augusta, characters of the new genus, 36.

Barbus, new species of, 312.
Bavay, M., on Anguillula intestinalis, 350.

Bdelloidina aggregata, description of, 201.

Betarmon, new species of, 407.

Birds, on the British fossil Cretaceous, 260 ; on the distribution of, in North Russia, 277.
Blattidæ, new, 117.
Books, new:-Heywood's Primæval World of Switzerland, 174; Woodward's Geology of England and Wales, 179 ; Mosenthal and Harting's Ostriches and Ostrich-farming, 257 ; Vanden Broeck's Foraminifera of Barbadoes, 260 ; Hayden's Geological and Geographical Survey of Colorado, 425 ; Nicholson's Ancient Life-History of the Earth, 505.
Brachytria, new species of, 423.
Bradya tergestina, notes on, 64 .
Broeckia, description of the new genus, 390.
Brown, J. A. H., on the distribution of Birds in North Russia, 277.
Brüggemann, Dr. F., on the stony corals in the collection of the British Museum, 415.
Bulimus, on the vitality of some species of, 305.
Bullar, J., on hermophroditismamong the parasitic Isopoda, 254.
Buller, 1r., on a new species of Naultinus, 200.
Butler, A. G., on new Rhopalocera from Japan and Shanghai, 91; on new Homopterous Insects, 311; on new species of Cleis, 393 ; on new African and Australian Lepidoptera, 458.
Cadulus, new species of, 156.
Callula, new species of, 316 .
Cambridge, Rer. O. P., on new genera and species of Araneidea, 26.

Carbonnier, M., on the Gourami and its nest, 274.
Carlia, new species of, 413.
Carpenter, Dr. W. B., on the structure, physiology, and development of Antedon rosaceus, 180.

Carpenteria, new species of, 211.
Carpenteria balaniformis, on the locality of, 209.
Carter, H. J., on the close relationship of Hydractinia, Parkeria, and Stromatopora, 44 ; on two vitreohexactinellid Sponges, 121; on Bdelloidina aggregata, 201 ; on a new species of Carpenteria and on the locality of C. balaniformis, 209; on the "Tubulations Sableuses" of the Étage Bruxellien, 382 ; on the Sponges dredged up by II.M.S. ' Porcupine,' 432.
Cellepora, new species of, 111.
Cerithium, new species of, 322 .
'Challenger' Expedition, zoology of the, $276,429,506$.
Chamæleon, new species of, 315 .
Chiromys madagascariensis, on the nidification of, 271 .
Chœrocampa, new species of, 460.
Chrosis, new species of, 472 .
Claus, Dr. C., on the structure and organization of the Polyphemidæ, 119.

Cleis, new species of, 393.
Coccosphere, observations on the, 342 ; new species of, 348.
Cœnonympha, new species of, 91 .
Coleoptera, new, $140,256,396,423$.
Colydiidre of New Zealand, on the. 120.

Conus, new species of, 222.
Corals in the Hunterian Museum, on the, 116 ; on the rate of growth of, 276 ; notes on stony, 415.
Corymbites, new species of, $475,477$.
Cosmocarta, new species of, 312.
Crocodilus icenicus, note on, 265.
Crustacea, notes on, collected at Spitzbergen, 131.
Cryptuhypnus, new species of, 471.
Cyclostrema, new species of, 234.
Daphnis, new species of, 461.
Dareste, C., on the nutrition of the embryo in the egg of the Fowl,118.
Dentalium, new species of, 153 .
Dictyochra, observations on, 174.
Didymocorypha, description of the new genus, 221.
Digestion, on the phenomena of, 272.
Donatia, new species of, 294.
Dorytomus, new species of, 145.
Duncan, Dr. P. M., on the Zoology of the 'Challenger' expedition, 429, 506.

Echinida, on the nervous system and muscles of the, 195,197 .
Echinus miliaris, on the development of, 434.
Ehrenberg, Prof. C. G., notice of the late, 113.
Eiratus, characters of the new genus, 142.

Elater, new species of, 402, 474, 476, 481.

Clateridæ of New Zealand, on the, 396, 469.
Emys hordwellensis, on the remains of, 264.
Enneaphyllus, description of the new genus, $25 \overline{7}$.
Ephemeridæ, on the reproductive apparatus of the, 193.
Epitimetes, characters of the new genus, 143.
Eriodon, new species of, 29.
Erirhinus, new species of, 144.
Erymneus, characters of the new genus, 143.
Etheridge, R., jun., on the discovery of plants in the Lower Old Red Sandstone of Callander, 262; on an adherent form of Productus and a Spiriferina from the Lower Carboniferous Limestone, 263; on the remains of a large Crustacean, 266; on Ascodictyon, 463.
Eugnomus, new species of, 145 .
Eurete farreopsis, description of, 121.
Eurypterus, new species of, 266.
Fatio, Dr. V., on the variability of the species in certain Fishes, 437.
Fecundation, on the intimate phenomena of, 352.
Filaria hæmatica, observations on, 352.

Fishes, on the variability of the species in, 437.
Fol, H., on the intimate phenomena of fecundation, 352.
Foraminifera, notes on, 40; new, 262; on a new genus of arenaceous, 201; on a new genus of sessile, 501.

Foraminiferal structure, on the type of, 158.
Fowl, on the nutrition of the embryo in the egg of the, 118.
Fredericq, L., on the nervous system and muscles of the Echinida, 195, 197.

Fusus, new species of, 326.
(raleb, O ., on Filaria hæmatica, 352.
Gardner, J. S., ou British Cretaceous Patelloid Gasteropoda, 267.
Garner, R., malacological notes by, 357.

Gasteropoda, on British Cretaceous Patelloid, 267.
Geological Society, proceedings of the, 260 .
Geranus, new species of, 480.
Giard, A., on the modifications undergone by the orum of the phanerocarpal Meduse, 430; on the development of Echinus miliaris, 434.

Gongylus, new species of, 314.
Gouiosoma, new species of, 422 .
Grandidier, A., on the nidification of the Aye-Aye, 271.
Gromia, on the fundamental error of constituting, the type of foraminiferal structure, 158.
Giiinther, Dr. A., on a new species of Barbel, 312; on some new reptiles from Madagascar, 313; on three new species of Lizards, 413.
Gyrinus, new species of, 141.
Halichondria, new species of, 296.
Hector, Dr. J., on New-Zealand Ichthyology, 339 .
Helix, on the ritality of some species of, 355.
Helix villosa, on the occurrence of, in Great Britain, 199.
Hesperidæ, new species of, 76.
Hewritson, W. C., on new species of Hesperidæ, 76.
Higgin, T., on sponges from the Caribbean and neighbouring seas, 291.

Higginsia, description of the new genus, 291.
Hincks, Rev. T., on Polyzoa from Iceland and Labrador, 97 ; contributions to the history of the Hy droida, 148.
Homoptera, new species of, 311.
Hoplionota, new species of, 424.
Humbert, A., onNiphargus puteanus, 243.

Hydractinia, on the relationship of, with descriptions of new species, recent and fossil, 44.
Hydroida, contributions to the history of the, 148.
Tchthyology, notes on New-Zealand, 339.

Idiophthalma, characters of the new genus, 27.
Insecta, on the final stage in the development of the organs of flight in the homomorphic, 380.
Isopoda, on hermaphroditism in the parasitic, 89, 251, 310
Jack, R. L., on the discovery of plants in the Lower Old Red Sandstone of Callander, 262.
Jeffrers, Dr. J. G., on new and peculiar Mollusca procured in the 'Valorous' expedition, 153, 231, 317.

Joly, M., on the reproductive apparatus of the Ephemeridæ, 193.
Lacon, new species of, 479.
Lafoëina tenuis, obserrations on, 152 .
Leckenby, J., notice of the late, 436.
Lepidoptera, new, 76, 91, 458.
Lepralia, new species of, 103.
Lethe, new species of, 95 .
Limacina, new species of, 338.
Limonius, new species of, 480
Lizards, new species of, 413.
Loftusia persica, notes on, 61 .
Lomemus; new species of, 410 .
Lonchodes, new species of, 487.
Lyperobius, new species of, 142.
Macratria, new species of, 147.
Macrurosaurus semnus, description of, 265.
Malacological notes, 357.
Mammoth, on remains of the, from Northern Spain, 268.
Mantidæ, new genera of, 219, 308; on the femoral brushes of the, 269; on the development of the antennæ in the pectinicorn, 269.
Mauisaurus Gardneri, description of, 268.

Maupas, E., on the motile state of Podophrya fixa, 198.
Mecastrus, new species of, 469.
Meduse, on the modificationsundergone by the ovum of the phanerocarpal, 430.
Mégnin, M., on the power possessed by certain mites of living without food, 270.
Membranipora, new species of, 99 .
Metablax, new species of, 403.
Miers, E. J., on Crustacea collected at Spitzbergen, 131.
Milne-Edwards, A., on the nidificatiou of the Aye-Aye, 271.
Mollusca, on new and peculiar, pro-
cured in the 'Valorous' expedition, $155,231,317$; on the vitality of certain land, 355 ; on the biological pedigree of the, 361 .
Monocrepidius, new species of, 470 .
Mordella, new species of, 256.
Moseley, II. N., on the structure of Peripatus novæ-zealandiæ, 85 ; on hermaphroditism in the parasitic Isopoda, 810 ; on the structure of the Stylasteridæ, 184.
Mycalesis, new species of, 95, 458.
Myliusia Grayi, description of, 126.
Natica affinis, on some varieties of, 318.

Naulinus, on a new species of, 200.

Neocharis, new species of, 485.
Neomycta, characters of the new genus, 145.
Neope, new species of, 91.
Newton, E. J., on two Chimæroid jaws from the Lower Greensand of New Zealand, 261.
Nicrana, characters of the new genus, 141.

Nicholson, Dr. H. A., on A scodictyon, 463.

Niphargus puteanus, var. Forelii, description of, 243.
Ochosternus, new species of, 401.
Ophiopteris, description of the new genus, 305.
Ophiuridæ, on a new form of, 305.
Osphromenus olfax, on the habits and nest of, 274.
Pachyura, new species of, 146 .
Panesthia, new species of, 117.
Panspæus, new species of, 409.
Paradanuria, description of the new genus, 220.
Paraplectana, new species of, 32.
Parinus, new species of, 478 .
Parkeria, on the close relationship of, with Hydractinia and Stromatopora, 44.
Papilio, new species of, 459 .
Pascoe, F. P., on new genera and species of New-Zealand Coleoptera, 140.
Perigonimus, new species of, 149.
Peripatus nove-zealandie, on the structure of, 85 .
Peripia, new species of, 415.
Phægorista, new species of, 461.
Phalangida, on the structure of the digestive apparatus in the, 272.

Pharetrospongia Strahani, description of, 266.
Phasmidre, a new species of, 487.
Phoroncidia, new species of, : $: 1$.
Pietkiewicz, V., on the evolution of the dentary follicles in the Ruminants, 510 .
Plants, on the discovery of, in the lower old Red Sandstone of Callander, 262.
Plateau, F., on the phenomena of digestion and the structure of the digestive apparatus in the Phalangida, 272.
Platypleura, new species of, 311.
Pleirotoma, new species of, 488.
Plumularia, new species of, 148.
Podocoryne carnea, observations on, 150.

Podophrya fixa, on the motile state of, 198.
Polyphemidx, on the structure and organization of the, 119.
Polypora, characters of the new genus, 180.
Polyzoa from Iceland and Labrador, on, 97 .
Portunidx, new species of, 422.
Potaminus, new species of, 141.
Pourquier, P., on Filaria hrematica, 352.

Productus, on an adherent form of, 26:3.
Protelater, new species of, 482.
Puncturella, new species of, 232.
Prrgus, new species of, 96.
Rana, new species of, 316.
Reptiles, new, 313, 413.
Retepora, new species of, 107.
Rhizodopsis, on the structure of the lower jaw in, 299.
Rhizodus, on the structure of the lower jaw in, 299.
Rhizopoda, classification of the, 171 .
Rhopalocera, new, from Japan and Shanghai, 91.
Royal Society, proceedings of the, 1と0.
liuminants, on the evolution of the dentary follicles in the, 510 .
Rupertia stabilis, description of, 501.
Saturnia, new species of, 462 .
Scissurella, new species of, 234.
Seeley, II. G., on the British fossil Cretaceous birds, 260 ; on Zeuglodon Wanklyni, 264; on Emys hordmellensis, 264 ; on some fossil
remains from the Cambridge Upper Greensand, 265 ; on Mauisaurus Gardneri, 268.
Seguenzia, new species of, 319.
Seriatopor, on the species of, 417.
Sharp, D., on the Colydiide of New Zealand, 120: on the Elateridic of New 'Lealand, 396, 469.
Shells, new, 222, 231, 488.
Siphodentalium, on some species f , 155.

Smith, E. A., on new species of Conidæ and Terebridæ, 222; on a new form of Ophiuridæ, 305 ; on new species of Pleurotomidæ, 488.
Sollas, W. J., on Stauronema, 1 ; on Pharetrospongia Strahani, 266.
Spiders, new, 26.
Spiriferina, on a small, 263.
Sponges, new, 1, 121, 291; of the 'Porcupine' expedition, 432.
Stauronema, description of the new genus, 1.
Stearns, R. E. C., on the vitality of certain land Mollusks, 3 3ั5.
Stromatopora, on the close relationship of, with Hydractinia and Parkeria, 44.
Stylasteridx, on the structure of the, 184.

Synchloë, new species of, 96 .
Talerax, new species of, 486.
Teracolus, new species of, 459.
Terebra, new species of, 224.
Thecadactylus, new species of, 414 .
Thoramus, new species of, 309.
Tortoises, on gigantic, from the ossiferous caverns of Malta, 26%.
Trachyphleus, new species of, 141.
Traquair, Dr. R. H., on the structure
of the lower jaw in Rhizodopsis and Rhizodus, 299.
Tubulations sableuses of the étage Bruxellien, on the, 382.
Turbinaria, new species of, 415.
Tylototriton verrucosus, on the occurrence of, in India, 509.
Utriculus, new species of, 334.
Vanessa, new species of, 92.
Vates Ashmolianus, observations on, 308.

Vertigo Moulinsiana, new British habitat for, 432.
Wallich, Dr. G. C., on the fundamental error of constituting Gromia the type of Foraminiferal structure, 158; on the Coccosphere, 342 ; on Rupertia stabilis, 501.

Waterhouse, C. O., on Tasmanian Coleoptera, 256 ; on new Coleoptera from Queensland, 423.
Wood-Mason, J., on new species of Blattidæ, 117; on new genera and species of Mantidæ, 219, 308; on the femoral brushes of the Mantidæ, 269 ; on the development of the antennæ in the pectinicorn Mantidæ, 269; on a new species of Portunidæ, 422; on a new species of Phasmidæ, 487; on a Newt from the Darjiling Hills, 509.
Wright, Prof. E. P., on Seychelles Foraminifera, 40.
Young, Dr. J., on the corals in the Hunterian Museum figured by Ellis and Solander, 116.
Zeuglodon Wanklyni, description of, 264.

END OF THE NINETEENTH VOLUME.

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { i- } \\
i c \\
i c \\
i \\
i \\
i \\
i \\
c \\
i \\
i \\
i
\end{array}\right. \\
& \text { (- }
\end{aligned}
$$

$$
\{
$$

$$
\begin{aligned}
& \left\{i i_{i c}\right. \\
& r_{c}^{c} c_{c},\left\{\begin{array}{lll}
c & c \\
i & i
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(}{\check{r}} \\
& \text { " }
\end{aligned}
$$

16

Anmok May. Nat Hist S't Vol 19 I'l X

1.
\because

8.
7.

ii
1.
"बीक

Amad Mag. Nat.Mist. S. 1. Vol. 19. Pl.XVI.

R.Miritern del et lith

[^79]
1.

,
"
"

$$
\div
$$

BINDING SECT. HN 129972

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

昰

[^0]: - Except with regard to S. concentrica; Mr. Carter has shown that some Stromatopora are allied to Hydractinia.

[^1]: - [As the absorption poes on, the form of the spicules becomes lost, and that which remains is a simple cylindrical casity, which led Bowerbank to say that the fibre of Farrea was channelled like that of the Ceratina, ex. gr. Luffaria.-Note by Mr. Carter.]
 \dagger Quart. Journ. Geol. Soc., Feb. 1873, p. 66, fig. 4: Geol. Mag., Sept. 1876.

[^2]: - Proc. Zool. Soc. 1869, pl. xxii. fig. 9.
 + Ann. \& Mag. Nat. Hist. ser. 4, vol. xii. p. 457.

[^3]: - "Intermesh," the space included between a mesh. Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.

[^4]: - Mr. Carter points out to me that this latter observation has been previously made by O . Schmidt.

[^5]: - The imbedded spicules of these two genera have not yet been observed; but the character of the network arrees with that of Aphrocallistes.
 + I possess a specimen from the Upper Greensand of the Isle of Wight, which evidently belones: to this genus; but it is not well enourh preserved for specific determination.

[^6]: * Since the abore was in press Prof. Ausserer"s "Zweiter Beitrag zur Kenntniss der Territelaria," Verh.z.-b.Ges. Wien, 1875, vol. xxr., has come to hand: in this work an Eriodom (E. rubrocapitatus), very nearly allied to, if not the same species as, E. insignis, is described and figured (p. 140, pl. v. figs. 1, 3, 4). As, however, the identity of the two does not at present appear to me quite certain, I hare not recorded the BritishMuseum example as synonymous with Prof. Ausserer's spider.

[^7]: - Aun. \& Mag. Nat. Hist., Nor. 1876.

[^8]: * I am afraid this is a very free translation of the Swedish, "och dervid ser djurhusmynningame afven har fif antydan till trekantform;" but I hope it does not misrepresent its real force.

[^9]: - [For the original of this notice we are indebted to the lindness of Prof. C. Rammelsberg.-Eiss.]

 Ann. d. Mag. N. Mist. Ser. 4. Vul. xix.

[^10]: * 'History of British Hydroid Zoophytes,' i. p. 32.
 + 'Gymnoblastic Hydroids,' part ii. p. 350.

[^11]: - A little sword.
 + Slit underneath.

[^12]: * Slender.

[^13]: * See Supplemeutary Note at the end of these observations.

[^14]: * For a detailed account of my observations on the Rhizopods generally, I would refer the reader to a series of six papers on the Amoban, Actinophryan, and Influigan Rhizopods, contributed by me to the 'Annals' between April 186:3 and March 1864; and a paper" On the Polyrystince," embodying a Classification of the Ihizopods as a whole, and this family in particular, which was published in the "Quart. Journ. Micr. Soc.' for July 1865.
 + Biolory and physiology are undoubtedly under heary obligations to the "cell" doctrine. But it is not saying too much to assert that biologrists and physiologists have had a great deal of nasty work cut out for them by the perpetual misapplication and misconception of that doctrine.

[^15]: * Those who bave studied the living Foraminifera, and know to their cost how much time and patience is necessary in getting these intensely sensitive beings to project their pseudopodia at all, will, I think, agree with me that there is more conveyed in Dr. Carpenter's statement on this point than could possibly have been intended by him. For two whole years the naturalists on board the 'Challenger' watched constantly and anxiously before their eyes were rewarded with a sight of the projected pseudopodia of the ubiquitous Foraminifera of the open ocean. He must have been an exceptionally fortunate observer, therefore, who saw the crushed "particle" of the complex-shelled Polystomella put forth the pseudopodia of its tribe.
 \dagger Of course I except what is observable when the final stage of the lifp-cycle of Amorbe has arived, namely its encystment, as having wo real bearing on the present question.

[^16]: * It may be well to bear in mind that the article in the 'Review' appeared in 1861 as an avant-courier to the 'Introduction to the Study of the Foraminifera, which appeared just a year afterwards. The tabular classification of the Rhizopods is taken from page 17 of the latter work.

[^17]: * It mas shown by me that the "yellove cellules" of MM. Claparede and Lachnann, or more or less colourless homologues of these "cellules," occur in the sarcode of all the Rhizopids without exception, that in the lowest order they are formed, as it were, from minute granules uniformly distributed in the sarcode, that in the second and third orders they are formed by the splitting-up of the nucleus (which is in these a specialized reproductive organ), but that in all three orders they constitute the sarcoblast, or, in other words, the earliest visible embodiment of the young organism. See Ann. \& Mag. Nat. Hist., June $186 ; 3$ (where these bodies are figured), Dec. 186\%, March 1864 ; and Quart. Journ. Micr. Science, July 1865.

[^18]: * It was pointed out by me years ago that the appearance of tubularity in Acanthometra is altogether an illusion. There is no such thing as a tubular prortion in the structure of these organisms. See a paper "On the Process of Mineral Deposit in the Rhizopods and Sponges," Ann. \& Mag. Nat. Hist., Jan. 1804.

[^19]: "Sere "Inles for Zoological Nomenclature," authorized by Section D of the British Association, 1842. Reprinted by requisition of Section D at Newcastle, 1863, p. 9.

[^20]: * A term applied by me to indicate that there is no such thing in the Rhizopods as a circulatory movement of any kind, apart from the inherent contractile morement of the sarcode. If that ceases for a moment, the movements of the granules cease. See "Further observations on Amoeban Rhizopods," Ann. \& Mag. Nat. Hist. Nov. 1863.
 \dagger See page 165, antè, note. Sarcoblast was the name given by me to the "yellow cellules" of MM. Claparède and Lachmann, indicating their roproductive function, which these observers had failed to recognize.
 \ddagger For the complete details of this classification I must refer the reader to the 'Quarterly Journal of Microscopical Science' for July 1865, in which they were first published.

[^21]: - Like the Jurassic map above mentioned, and others that follow, this is an improred portion of oue of the late M . Elie de Beaumont's palængeographical European sketch maps.

[^22]: * The editor has appended, pp. 295-302, Prof. Rütimeyer's description (with woodcut) of a group of pointed sticks and wattle or basketwork, found in an Interglacial lipnite at Wetzikon, and regarded as the handiwork of primæral man. He has also given, p. 303, a comparison of English and Continental measures, weights, and thermometric scales, for the use of the student.

[^23]: * Ann. and Mag. Nat. Hist. vol. xix. (1847).

[^24]: * Illustrated Catalogue of the Museum of Comparative Zoolnge at Marrard College. No. IV. Deep-Sea Corals. By L. F. de P'ourtales. Cambridge, Mass. 1871, p. 34.
 \dagger Mist. Nat. des Corallinires, par MM. Milne-Edwards et J. Haime, t. ii. p. 127.

 Amu. de Mag. N. Hist. Ser. 4. Vol. xix.

[^25]: * Proc. Zool. Soc. 1835, p. 35.
 † Proc. Zool. Soc. 1871, p. 282.

[^26]: * Forb. Selsk. Christ. 1872, p. 115.

[^27]: * Off Japan last year a small fragment of what, at the time, I determined to be a male Cryptahelia was obtained by the dredge. I unfortunately cannot now refer to the specimen.
 + ' A Monograph of the Gymnoblastic or Tubularian Hydroids.' by G. J. Allman, M.D. \&c., Ray Soce part 1, p. 65.

[^28]: * 'A Monograph of the Gymnoblastic or Tubularian Hydroids,' by G. J. Allman, M.D. \&e, Ray Soc. part 1, pl. xii. Gig. 9.
 + Allman, l. c. p. 86.

[^29]: * Sars, Forh. Selsk. Christ. 1872, p. 115.
 + MM. Milne-Edwards and Haime, l. c. t. iii., Appendice, p. 451.
 \ddagger Allman, 1. c. vol. ii. p. 155; also ' Nature,' Oct. 28th, 1875, p. 556.
 \$ Pourtales, l. c. p. 83.
 \# Pourtales, l. c. p. 57.

[^30]: * Prof. A. E. Verrill, 'Ann. \& Mag. Nat. Hist.' 1872, 4th ser. rol. ix. p. 358.
 + Forh. Selsk. Christ. 1872, p. 115.
 \ddagger Pourtales, l. c. p. 33.
 § Pourtales, l. c. pl. iii. fig. 15.
 || Pourtales, l. c. pl. ii. fig. 17.
 - Saville Kent, l. c. pl. xxir. fig. $1 c$.
 ** Ibid pl. nxv. fig. 2 a.

[^31]: * Allman, l. c. vol. ii. p. 231.
 + MM. Milne-Edwards \& Haime, l. c. t. iii., Appendice, p. 451.

[^32]: * "Recherches anatomiques et physiologiques sur les Orthoptères, les Hyménoptères, et les Nérroptères," Mém. des Savnats étrangers, tome vii. (1841) p. 581.
 + "A Monograph of Ephemeridæ," in Trans. Ent. Soc. Lond. 1^71, pp. 41-44 and 49-53.
 \ddagger In this species the males have always appeared to us to be much fewer than the females.
 § Swammerdam believed that the orn of the Ephemere are fecundated after the manner of those of tishes-that is to say, without previous copulation.

[^33]: * Swammerdam remarked the extreme smallness of the eggs of the Ephemerx: he says, "Ovula ceterum stupendx sunt parvitatis, et vix animadverti queunt." It is, in fact, by this minuteness, that he explains the necessity of the long sojourn (trienni spatio) that the larree issuing from the eggs have to make in the water before changing into perfect insects (see 'Biblia Nature,' tom. ii. p. 255).

[^34]: * Tlin.
 \dagger Striated at the base.

[^35]: * Philippe de Rougemont, 'Naturgeschichte ron Gammarus puteanus, Koch,' Inauguraldiss., 8vo, pp. 40, Munich, 1875. More recently M. de Rongemont has published in French, under the title of 'Etude sur la Faune des eaux privées de lumière' (4to, with 5 plates, Paris, 1876), a memoir, which contains a translation of that above cited, together with a description of Asellus Sieboldii and observations on a Hydrobia found in a well at Munich.
 \dagger We reproduce this synonymy with great reserve, because there are contradictions between M. de Rougemont's text (p. 23) and his table of species (p. 29) with regard to the third and fourth forms.

[^36]: * F. Jarschinski, "On the Lerdigian organs of the antennæ of the Crustacea Amphipoda," Premier congrès des naturalistes Russes à St. Pétersbourg, 1808, pp. 311-318 (in Russian).

[^37]: * F. A. Forel, "Rechorches photographiques sur la transparence de l'eau," Bull. Soc. Vaud. des Sci. Nat. $2^{\text {e }}$ sér. tome xiv. (18i4) p. 24.

[^38]: - P. A. S. B., June 1876, p. 123; and this Journal, vol. xviii. p. 438.
 \dagger (Efvers, af Kiongl. suenskir Votenskaps-. Hiademiens Förhandl. Stockholm, 1871, no. 3, sid. 375-101.
 $\$$ P. A. S. B., August 1876, p. 170.

[^39]: * I have already alluded to it in my 'Recherches sur les phénomén's de la digestion, ete. . . des Myriapodes,' p. 42, note 4.
 \Varangle I take this opportunity of calling the attention of the reader to the importance of the results of my experiments on the Araneida. The memoir in which they, together with numerous other facts, are to bo found, and which I hope to complete shortly, will, I hope, be read with interest.

 Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.

[^40]: - "Notes on the Birds of the Lower Petchora. By Henry Seebohm, F.Z.S., and J. A. Harvic Brown." Ibis, 1876, January, April, July, and October.

 Ann. \& Mag. N. Hist. Ser. 4. Vol. xix.

[^41]: * Negative eridence in matters of this kind is seldom very satisfactory ; and I prefer to leave the question of their actual absence to be proved by future observations, to hazarding guesses as to their probable absence. Those who peruse the paper may draw deductions for themselves in this matter. I have even included such species as Squatarola helvetica in this class; but see a paper by me on migration (Proc. Glasg. Nat.-Hist. Soc. rol. iii. pt. 1, p. 44, 1875-76), and also Seebohm on the same subject in Rowley's Orn. Misc. (rol. i. pt.iv. p. 239).
 \dagger The neighbourhood of Mezén has been tolerably well explored. As early as 1841 Herr Bystrov collected at Mezén (see Brandt, "List of Skins of Mammals and Birds (62 species) sent by Herr Bystrov of Mezén to Zool. Mus. of the Academy," Bull. Sc. de l'Académie de St.Pétersbourq, vol. x. 1842, p. 350); and of late years Mons. Ignati N. Piottuch has from time to time forwarded considerable numbers of specimens from that locality and from Archangel. Graf IIoffmannserg and his assistant Herr Hencke also collected for some years in these districts; but little remains on record of their discoveries either there or on the Petchora, which they also visited about twenty years aco. There is a short notice by Heucke (Allgemeine deutsche naturh. Zeitung, 1856, p. 236, Dresden), and another immediately folloming lyy Hoffmannserg. which, as far as I

[^42]: can learn, are all the records left by them, except a manuscript list of birds by the latter gentleman, mentioned by Mr. Wolley ('Ibis' 1859, p. 75), but which, as yet, I have failed to trace. Seebohm and I were told also by those who remembered them or travelled with them to the Petchora, that they kept no notis, but simply collected skins and eqga (see also 'Ibis,' $1 \times \bar{\sigma}(3, p, 105)$. References up to date of other papers on North-Russian ornithology will be given in later parts of this paper.

 - For the latest and fullest account of the Palwarctic reqrion and its subreqions see Wallace's '(ieorraphical Distribution of Animals'' vol. i. chap. x. p. 1s0; and for the presently accepted boundaries of tho 'Siborian' and 'European' subregions, see p. 101.

[^43]: * Habariki is really an island, but, being only separated from the fast land by a narrow branch of the river, for all practical purposes it may be reckoned as standing on the east shore of the river.

[^44]: the syonymy and semaratine the species. Mr. Dreseer writes to me on this matter that the bird we obfained in North liasia, very white in winter, with almost unspotted rump, usually larger in size than L. linario, but varying a orod doal, is finota cxilipes of ('oues, and is a small
 and appars to range further north than L. linaria. Mr. Seebohm and I can therefore lay clam to having added it to the European fama.
 1 Vide 'Ibis,' 1877, p. 128 . and appars to rane further north than L. linarin. Mr. Seebohm and I can therefore lay clam to having added it to the European fama.
 ' Vide 'Ibis,'1877, p. 128.

[^45]: *Read before the Loyal Physical Snciety of Edinburgh, Feb. 21, 1877.

[^46]: * Ann. \& Mag. Nag. Itist. 1868, ser. 4, vol. i. pp. 350, 351.
 †'Manual of Coal-measure Palæontology,' by T. P. Barkas (London, 1870), p. 24, pl. ii. fig. 61 ; W. J. Barkas in' Monthly Review of Dental surgery.

[^47]: * That these sutures on the outer surface of the mandible in Rhizodopsis have not been previously observed is fully accounted for by the difficulty of tracing the line of demarcation between constituent and closely united osseous elements, in cases where we have to deal with a granulated or otherwise ornamented external bony surface. Such lines of demarcation are more easily determined where the bones are seen from the inner surface, or where a sharp cast in hard ironstone of that inner surface has been preserved.
 \dagger See Pander's 'Saurodipterinen, Dendrodonten, \&c. des devonischen Systems,' pp. 41-43, tab. x. figs. 2, 3, 4, 14, 22.

[^48]: - The more posteriorly situated laniaries of Rhizodus occur alsn occasionally double.

[^49]: * ő申เs a snake and $\pi \tau \epsilon ́ \rho เ s$ a fern. The rays call to mind the appearance of certain kinds of ferns.

[^50]: * Jeautiful.

[^51]: * Provided with a keel.

[^52]: * Long.

[^53]: - Diminishing, as regards the spire.

[^54]: * Resembling a Ifelix.

[^55]: * 'Deep-sea Soundings in the North Atlantic,' made in H.M.S. 'Cyclops,' Commander Dayman, in 1875. Appendix, Report on Soundings, by Prof. Huxley, p. 64.
 \dagger "On some Organisms living at Great Depths in the North Atlantic Ocean," by Prof. Huxley, F.R.S., 'Quart. Journ. Dicrosc. Science,' Oct. 1868, p. 210.

[^56]: - "Sometimes the 'Coccoliths' are found aggregated on the surface of small transparent balls, and these, which seemed at first to have something to do with the production of the 'coccoliths,' Dr. Wallich has called 'coconspheres." (Sir Wyville Thomsun, 'The Depths of the Sea,' 1872 , p. 413.)
 \dagger "I need only say that I believe our observations have placed it beyond a doubt that the 'coccoliths' are the separated elements of a peculiar calcarenus armature which covers certain spherical bodies (the "coccospheres " of Dr. Wallich)." (Sir W. Thomson, "Procendings lioy. Soc.' vol. xxiv. No. 154, Nov. 1874, p. 38.)
 \ddagger See also 'The Microscope.' Sth edit. 1875, p. 4th, where Dr. Carpenter speaks of "the larger spherical aygregations firet obserwed by Dr. Wallich, and designated by him as coccospheres; " and at p. 466 , "The coccospheres are made up by the aggregation of bodies resmbling cyatholiths." As (in the 'Introduction to the study of the Foraminifers," 1862, pp. 46-7) Dr. Carpenter quoted almost in extenso both the description and figures of "coccoliths" and coccospheres given by me in "The Annals" of July 1861 , it is difficult to see how he could si completely have misunderstood what I both described and figured.

[^57]: * See my observations on this subject, and accompanying figures in 'The Annals,' for July 1861, p. 55 ; and in the 'Monthly Microscopical Journal,' for Jan. 1869, pp. 37, 38,

[^58]: - Smithsonian Misc. Coll. No. 194.

[^59]: * Mr. Spencer teaches that the processes of morpbological differentiation conform to the same general laws in the one kingdom as in the other (' Biology,' vol. ii.).
 + Salensky, "On Haeckel's Gastra Theory," Ann. \& Mag. Nat. Hist., Jan. 1875.

[^60]: - "Developmental History of Mollusca," by Prof. E. Ray Lankester, Phil. Trans. vol. clxv. There is a clear and succinct account of the embryology of the Gastropod by M. A. Giard, Ann. \& Mag. Nat. Hist., April 1876.
 \dagger Mr. Huxley compares the posterior prolongation of Carinaria to that of Strombus, considering it to represent the metapodium.
 \ddagger These peculiarities are observable in the egges of IIelix aspersa, easily procurable, or better in the West-Indian Bulimi. See also Woodward's 'Manual,' p. 287.

[^61]: * 'Revue des Sciences Naturelles,' March 1875.
 † 'Principles of Biology,' Spencer, vol. ii.

[^62]: * Journ. of Linn. Soc. vol. ix. (1868) p. 343.

[^63]: * "On the Genus Appendicularia," by E. I.. Moss, Limn. Trans. vol. xxvii. part 2. See also (sow's Zool.-Embryol. Investigations (by l)allas), Ann. \& Mag. Nat. Mist., Feb, and May lent. The last writer is deridedly against the molluscous nature of the Ascidia; and so are others; but the validity of this opinion depends upon the accuracy of minute and difficult researches upon the nervous ganglion and other parts, and the opposite conclusions of Mr. Hancock are perhaps as reliable.

[^64]: * This theory is strongly advocated by Macdonald, Journ. Linn. Soc. vol. r. no. 18. He considers the operculum to be homologous with the right valve (see further on).

[^65]: * The circumpedal fringe of Patrla has doubtless a branchial function; but we do not deny that the animal, when exposed by the receding tide, may take air into the supradoral cavite, though this rather appears to be the renal organ.

[^66]: * Perhaps the truest approach in a molluscan to the Articulata is in several tectibranchiate species, as Alera bullata, where the pusterior somite of the body is so distinct as to have its separate pair of ganglia, irrespective of those for the supply of the vital organs.

[^67]: * The Ammonite appears to have been furnished with an operculum. The Argonaut-shell has been compared to the ovigerous float of Ianthina: perhaps it has not been conclusively shown by Madame Power what part mainly secretes it, the veliferous arms or the mantle; if the former, we might consider it to answer to a developed operculum.
 \dagger The above we believe to be correct; but there is some confusion in descriptions.

[^68]: - Linn. Trans. 1836.
 \dagger The species examined was perhaps Tremoctopus.
 \ddagger A disputed point, however.

[^69]: * The substance of which it is composed, however, is not coagulable by heat, but swells up and is very viscid in water. Bichloride of mercury and alcohol coagulate it.

[^70]: * It is commonly found in the recipient animal near the insertion of the narrower or upper conjoined oviduct and vas deferens-that is, near the termination of the companion tube of the resicula. The author principally follows his own observations here as elsewhere, but may refer to two excellent papers:-Saunders, Quart. Journ. Micr. Science, Oct. 1860^{\prime}; and Newton, ib. Jan. 1868.
 \dagger Report of Brit. Assoc. Aberdeen.
 \ddagger In some species the duct is scen to run up on the outside of the arm in a superticial cutaneous fold; in most species it is one of the right arms, in a few one of the left, which is hectocotylized (Woodward).

[^71]: - Niederländisches Archiv, Bd. ii. Heft iii,
 \dagger Zeitsch. für wiss. Zool. Ed. xxviii. Heft $1 \mathbb{S}$ -

[^72]: * Translated by W. S. Dallas, F.L.S., from the 'Billiothique Unirerselle: Archives des Sciences,' tome lviii. p. $1^{* 5}$.

 Ann. de Mag. N. Hist. Ser. 4. I'ol. xix.

[^73]: * The subject of which alone I wish to treat here is too restricted to lead me to launch out now upon the hypotheses as to the deriration of the original types. Science in general and palæontology in particular cannot yet offer us any definitive solution of this question. I have nothing to do, therefore, at present with the question whether there have been several animal scales, or whether a single scale has been at first composed

[^74]: of a single step. In other words, I cannot decide whether the genealogrical tree of living creatures was planted with all its smallest branches, as Aras:iz thought, or whether a primordial cell, in place of a seed, originally gave birth to a renealogical tree which, at first an aquatic plant, gradually extended its branches upon the solid ground, and, growing larger and larger, put forth all the branches which now-a-dayeconstitute the totality of the known and unknown organisms on the face of the flobe, according to the views of some dieciples of larwin, Rolle, Hackel, and others. It matters little to me, in fact, in the ascertainment of the variability of an existing species, whether I assume the existence of one or several seeds, whether I see a single tree constantly increasing in size, or perhaps still beliew in the existeme ot a whole forest of geneatorical trees, sprung from the seeds of a single plant, hut from groms which have fallen successively under different conditions.

[^75]: * The history of our globe, painfully elaborated by geology and palxontology, seems to be more and more in accord with zoology and physiology upon this point. After leading us, in the furms of organisms, through a whole series of successive modifications corresponding to the different geological epochs and the different exigencies of the media of the latter, palæontology has shown us, in fact, how, in sequence of a change of stratum and of conditions of existence, many forms have often disappeared, whilst some only continued to exist. In consequence, perhaps, of a too rapid transformation of the conditions of life, those only have been able to subsist which were sufficiently prepâred or modified to be able to sustain a rupture of equilibrium fatal to many others. Although we cannot always so easily understand the sudden appearance in a new stratum of an entirely different fauna, I do not doubt, in common with some authors, that by gradually piercing the obscurity which necessarily envelops the variability of creatures long since lost, we shall succeed in explaining these apparently sudden and complete changes without having recourse to the necessity of a new creative intervention.

[^76]: * It is believed that this last variety, which has received the name of the telescope-fish, may be produced by causing the light to reach the fish only from a single point.

[^77]: - This would seem to indicate that the capacity and importance of the air-bladder are greater in early youth than in the adult state; for we know that, in some fishes, the duct of communication with the exterior is rather obliterated with increasing age ; and I have always remarked that the fins are comparatively larerer in the young than in the old.

[^78]: * It would be interesting to investigate, by a thorough study of all the gestures of the fish in different circumstances and at different seasons, why sometimes a certain species has a more or less developed air-bladder, whilst another, belonging to the same genus, is, on the contrary, destitute of that organ.

[^79]: A. ACONTIAS HOLOMELAS. S CHAMFIEON GALIUS

 C CALLULA MOTOSTICTA.

