

THE LIBRARY
OF
THE UNIVERSITY
OF CALIFORNIA
DAVIS

Santa Margarita River Watershed and Vicinity

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES

GOODWIN J. KNIGHT, Governor FRANK B. DURKEE, Director of Public Works HARVEY O. BANKS, State Engineer

Bulletin No. 57

SANTA MARGARITA RIVER INVESTIGATION

Volume I TEXT AND PLATES

June, 1956

			·	
			e**	
			e · •	
•		,		

TABLE OF CONTENTS

	Page
LETTER OF TRAMSMITTAL	xiii
ACKNOWLEDGMENT	xv
ORGANIZATION, STATE DEPARTMENT OF PUBLIC WORKS, DIVISION OF WATER RESOURCES	xvi
CHAPTER I. INTRODUCTION	
Authorization for Investigation	1
Related Investigations and Reports	2
Scope of Investigation and Report	7
Area under Investigation	9
Topography	10
Climate	11
Geology	13
Soils	14
Historical and Present Development	15
Hydrographic Units	22
Numbering System	23
CHAPTER II. WATER SUPPLY	
Precipitation	26
Precipitation Stations and Records	26
Mean Seasonal Precipitation	35
Regimen of Precipitation	40
Runoff	111
Stream Gaging Stations and Records	45
Runoff Characteristics	48

	Page
Runoff (cont'd)	
Flood Flows and Frequencies	50
Quantity of Runoff	52
Imports and Exports	56
Imports	56
Exports	59
Underground Hydrology	62
Geologic Investigation	66
Well Drilling Methods	68
Ground Water Basins	68
Anza Basin	73
Murrieta Basin	74
Pauba Basin	75
Santa Margarita Coastal Basin	78
Quality of Water	82
Water Quality Criteria	83
Quality of Surface Waters	87
Quality of Ground Waters	91
Quality of Spring Waters	95
Water Quality Problems	101
Salt Water Intrusion - Santa Margarita Coastal Basin	102
Murrieta Chrome Waste Discharge	104
High Nitrate Concentrations	105
Sodium Type Waters	105

CHAPTER III. WATER UTILIZATION AND REQUIREMENTS Present Water Supply Development
Water Service Agencies. 108 Ground Water Extractions 109 Surface Diversions and Storage 115 Land Use. 137 Past and Present Patterns of Land Use 137 Probable Ultimate Pattern of Land Use 141 Land Classification 141 Land Use 148 Unit Use of Water 152 Unit Values of Consumptive Use 152 Factors of Water Demand 162 Monthly Distribution of Demand for Water 163 Irrigation Efficiency 164 Irrecoverable Losses 165 Permissible Deficiencies in Application of Water 165 Water Requirements 166
Ground Water Extractions
Surface Diversions and Storage
Past and Present Patterns of Land Use
Past and Present Patterns of Land Use
Probable Ultimate Pattern of Land Use
Land Classification
Land Use
Unit Use of Water
Unit Values of Consumptive Use
Factors of Water Demand
Monthly Distribution of Demand for Water
Irrigation Efficiency
Irrecoverable Losses
Irrecoverable Losses
Water Requirements
Present Water Requirement
Probable Ultimate Water Requirement
Requirements of a Nonconsumptive Nature
Recreational Use
Flood Control
Salinity Control
Supplemental Water Requirement
Present Net Draft
Present Supplemental Water Requirement

	Page
CHAPTER IV. LEGAL CONSIDERATIONS	
itigation	181
ater Rights	184
CHAPTER V. PLANS FOR WATER DEVELOPMENT	
lans for Local Conservation Development	194
Direct Diversion of Surface Streams	195
Further Development of Ground Water Storage	196
Hydrographic Unit l	198
Hydrographic Units 2 and 3	199
Hydrographic Unit 4	199
Hydrographic Unit 5	200
Hydrographic Unit 6	200
Other Means of Increasing Ground Water Supplies	202
Surface Storage Projects	205
Fallbrook Lippincott Dam and Reservoir	209
Fallbrook Border Dam and Reservoir	218
De Luz Dam and Reservoir	226
Upper De Luz Dam and Reservoir	235
Other Dam and Reservoir Sites	241
Comparison of Reservoir Projects	243
mportation of Water	252
Plans for Importation from Colorado River	252
The California Water Plan	256

		Page
	CHAPTER VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
Summary		261
Conclusions		269
Recommendat	ions	272
	TABLES	
Table No.		
1	Census Data	21
2	Areas of Hydrographic Units	22
3	Mean, Maximum, and Minimum Seasonal Precipitation at Stations Within and Adjacent to the Santa Margarita River Watershed	27
4	Seasonal Precipitation and Indices of Wetness at Key Stations	36
5	Estimated Mean Seasonal Depth and Total Quantity of Precipitation in Santa Margarita River Watershed	39
6	Recorded Seasonal Precipitation and Indices of Wetness at Pauba Ranch - Station C	41
7	Mean Monthly Distribution of Precipitation at Pauba Ranch - Station C	43
8	Stream Gaging Stations in Santa Margarita River Watershed	47
9	Average Monthly Distribution of Recorded Runoff of Santa Margarita River near Fallbrook	49
10	Maximum Recorded Discharges for Streams in the Santa Margarita River Watershed	51
11	Maximum, Minimum, and Mean Seasonal Natural Runoff by Hydrographic Units Within the Santa Margarita River Watershed	54
12	Mean Seasonal Precipitation and Runoff in Santa Margarita River Watershed	55
13	Estimated Imports and Exports, Santa Margarita River	58

TABLES (cont'd)

Table	No.	Page
14	Sewage Treatment Plant Discharges and Their Disposition	61
15	Ground Water Basin Data	70
16	Santa Margarita Coastal Basin Water Well Yields	81
17	Typical Mineral Analyses of Surface Waters	89
18	Typical Mineral Analyses of Ground Waters	92
19	Typical Mineral Analyses of Spring Waters	96
20	Summary of Mineral Analyses of Surface Waters	97
21	Summary of Mineral Analyses of Ground Waters	99
22	Ground Water Extractions by Vail Company	111
23	Ground Water Extractions by United States Navy, Camp Pendleton	113
24	Descriptions of Surface Diversions	116
25	Estimated Annual Surface Diversions	128
26	Consumptive Use by Former Swamp Land at Vail Reservoir	133
27	Areas and Capacities of Vail Reservoir	134
28	Seasonal Surface Diversions by Water Service Organizations	135
29	Developed Water Supply of Santa Margarita River Watershed in 1953	137
30	1952 and 1953 Land Use in Hydrographic Units of Santa Margarita River Watershed	139
31	Past and Present Areas of Irrigated Land in Hydrographic Units of Santa Margarita River Watershed	140
32	Irrigable Land Classification Standards	143
33	Classification of Lands by Hydrographic Units and Counties of Santa Margarita River Watershed	147
34	Probable Ultimate Pattern of Land Use in Hydrographic Units and Counties of Santa Margarita River Watershed	150
	vacuolonou , , , , , , , , , , , , , , , , , , ,	エンロ

TABLES (cont'd)

Table No.		Page
35	Estimated Unit Values of Mean Seasonal Consumptive Use of Water on Irrigated Lands in Santa Margartia River Watershed	158
36	Estimated Unit Values of Consumptive Use of Water on Irrigated Lands during Drought Period, 1944-45 through 1950-51, in Santa Margarita River Watershed	159
37	Estimated Average Monthly Distribution of Seasonal Military and Agricultural Demand for Water	163
38	Present Mean Seasonal Water Requirement of Santa Margarita River Watershed	168
39	Probable Ultimate Mean Seasonal Water Requirement of Santa Margarita River Watershed	170
40	Present Net Draft on the Water Supply in Santa Margarita River Watershed	176
41	Probable Ultimate Supplemental Water Requirement of Santa Margarita River Watershed	180
42	Areas and Capacities of Fallbrook Lippincott Reservoir	212
43	Estimated Net Safe Seasonal Yield of Fallbrook Lippincott Reservoir	213
1+1+	General Features of Two Sizes of Dam and Reservoir at the Fallbrook Lippincott Site on Santa Margarita River	217
45	Areas and Capacities of Fallbrook Border Reservoir	220
46	Estimated Net Safe Seasonal Yield of Fallbrook Border Reservoir	221
47	General Features of Three Sizes of Dam and Reservoir at the Fallbrook Border Site on Santa Margarita River	225
4 8	Areas and Capacities of De Luz Reservoir	228
49	Estimated Net Safe Seasonal Yield of De Luz Reservoir	230
50	General Features of Four Sizes of Dam and Reservoir at the De Luz Dam Site on Santa Margarita River.	234

TABLES (cont'd)

Table	No.	Page
51	Areas and Capacities of Upper De Luz Reservoir	236
52	General Features of Dam and Reservoir at the Upper De Luz Site on De Luz Creek	240
53	Summary of Dam and Reservoir Data	244
54	Summary of Combination Dam and Reservoir Studies	250
55	Summary of Annual Costs of Water Delivered to Fallbrook and Camp Pendleton	251
	ILLUS TRATIONS	
Santa	Margarita River Watershed and Vicinity Fro	ontis Lece
Fallbr	cook and Naval Ammunition Depot	16
	Margarita Rancho Home of Pio Pico, Now Residence of anding General of Camp Pendleton	1 6
	Margarita River at Ysidora Gaging Station	48
Floo	d of February, 1927	48
Santa	Margarita River at Highway 101, Flood of February, 1927	50
Temecu	ula Creek at Highway 395, February 18, 1927	50
Vail D	Dam	108
Santa	Margarita River at De Luz Road Ford	108
Vail C	Company Diversion T8S/R1W-10D	134
Fallbr	cok Public Utility District Diversion T9S/R3W-7D1	134
Avocad	los in Fallbrook Area	138
Fallbr	rook Area	138
Northe	east of Murrieta	142

142

Northern Watershed Boundary at Highway 395

ILLUSTRATIONS (cont'd)

	Page
Palomar Observatory	168
Oceanside	168
Coahuila Valley	198
Los Alamos Valley	198

PLATES

(Plates 1 through 30 at end of Volume I)

Plate No.				
1	Location of Santa Margarita River Watershed			
2A	Physiography, Coastal Area			
2B	Physiography, Inland Area			
3	Lines of Equal Mean Seasonal Precipitation			
71	Composite Accumulated Departure from Mean Seasonal Precipitation at Key Stations			
5	Recorded and Estimated Seasonal Precipitation at Selected Stations			
6	Hydrographic Map			
7	Accumulated Departure from Mean Seasonal Natural Runoff of Santa Margarita River at Ysidora			
8	Estimated Seasonal Natural Runoff of Santa Margarita River at Ysidora			
9 A	Location of Wells, Coastal Area			
9B	Location of Wells, Inland Area			
10A	Lines of Equal Elevation of Ground Water, Coastal Area, Spring 1927			
10B	Lines of Equal Elevation of Ground Water, Inland Area, Spring 1927			
llA	Lines of Equal Elevation of Ground Water, Coastal Area, Fall 1953			

PLATES (contid)

Plate No.	
11B	Lines of Equal Elevation of Ground Water, Inland Area, Fall 1953
12	Fluctuation of Water Levels at Selected Wells
13A	Areal Geology, Coastal Area
13B	Areal Geology, Inland Area
14	Geologic Sections; A-A', B-B', C-C'
15	Geologic Sections; D-D', E-E', F-F'
16	Geologic Sections; G-G', H-H', J-J'
17	Geologic Sections; K-K', L-L'
18	Relationship between Ground Water Storage Capacity and Depth to Ground Water in Santa Margarita Coastal Basin
19	Relationship between Discharge of Santa Margarita River and Percolation in Santa Margarita Coastal Basin
20	Profiles of Historical Ground Water Levels, Santa Margarita Coastal Basin
21A	Location of Diversions, and Irrigated and Irrigable Lands, Coastal Area
21B	Location of Diversions, and Irrigated and Irrigable Lands, Inland Area
22	Soil Moisture Depletion and Accretion
23	Occurrence and Disposition of Mean Seasonal Runoff in Santa Margarita River under Present Conditions of Development, 1953
24	Storage Development Curve for Santa Margarita River at Ysidora
25	Existing and Potential Water Supply Developments
26	Fallbrook, Lippincott Dam on Santa Margarita River
27	De Luz Dam on Santa Margarita River
28	Relationship between Reservoir Storage Capacity and Capital Cost
29	Relationship between Reservoir Storage Capacity and Net Safe Seasonal Yield

PLATES (contid)

Plate No.

Relationship between Net Safe Seasonal Yield of Reservoirs and Annual Unit Cost

VOLUME II. TABLE OF CONTENTS

APPENDIXES

		Page
Α.	Legislative Act Authorizing Investigation	A - 1
В.	Geology	B - 1
C•	"Consumptive Use of Water in the Santa Margarita River Basin, California", by Agricultural Research Service, United States Department of Agriculture, December, 1954	C - 1
D.	Precipitation Records	D - 1
E	Records of Stream and Spring Discharge Not Previously Published	E - 1
F_{ullet}	Water Well Data	F - 1
G.	Records of Depths to Ground Water at Wells In and Adjacent to Santa Margarita River Watershed	G - 1
Н.	Records of Mineral Analyses	H - 1
I.	Reservoir Yield Studies	I - 1
J.	Estimates of Cost	J - 1
К.	Applications to Appropriate Water	K - 1

	3	

VEY O. BANKS, STATE ENGINEER

STATE OF CALIFORNIA Department of Public Works

SACRAMENTO

ADDRESS REPLY TO
ISION OF WATER RESOURCES
P. O. BOX 1078
SACRAMENTO 5
PUBLIC WORKS BUILDING
1120 N STREET

June 29, 1956

Mr. Frank B. Durkee Director of Public Works Public Works Building Sacramento, California

Dear Mr. Durkee:

There is transmitted herewith Bulletin No. 57 of the Division of Water Resources, Department of Public Works, entitled "Santa Margarita River Investigation".

Item 262.5 of Chapter 3, Statutes of 1952 (Budget Act of 1952), appropriated to the Division of Water Resources, Department of Public Works, the sum of \$150,000

"For surveys and investigations of the water resources of the Santa Margarita Watershed including but not limited to hydrography, hydroeconomics, the use and distribution of water for agricultural and other beneficial purposes, including consideration of both surface and underground water conditions, and the availability of natural situations for reservoirs or reservoir systems for gathering and distributing flood or other waters ..."

Item 2055 of Chapter 777, Statutes of 1955, appropriated an additional \$25,000 for this investigation.

Bulletin No. 57 consists of Volume I, which presents results of a comprehensive analysis of water supply, water utilization and requirements, legal considerations, and preliminary plans for water supply development within Santa Margarita River watershed, and Volume II, which contains basic hydrologic data.

Very truly yours,

Harvey O. Banks State Engineer

ACKNOWLEDGMENT

Valuable assistance and data used in this investigation and report were contributed by agencies of the federal, state, and county governments, and by private companies and individuals. This cooperation is gratefully acknowledged.

Special mention is made of the helpful cooperation of the Agricultural Research Service of the United States Department of Agriculture,

California Electric Power Company, Fallbrook Public Utility District, San

Diego Gas and Electric Company, United States Army Corps of Engineers, United States Navy, and the Vail Company.

ORGANIZATION STATE DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES

Frank B. Durkee Director of Public Works			
Harvey O. Banks			
William L. Berry Assistant State Engineer			
This investigation was conducted and report prepared under the direction of			
Max Bookman			
and			
R. M. Edmonston			
by			
L. R. Illingworth Senior Hydraulic Engineer			
and			
-114			
P. C. Erb Assistant Hydraulic Engineer			
J. L. Jackson Assistant Hydraulic Engineer K. G. Tranbarger			
J. L. Leitzinger Junior Civil Engineer			
assisted by			
assisted by			
R, F. Clawson			
Bradshaw Harrison Associate Hydraulic Engineer			
P. E. Hood Associate Hydraulic Engineer			
L. A. Mullnix Associate Hydraulic Engineer			
Geologic studies were performed			
under the direction of			
L. B. James			
ру			
R. C. Fox Assistant Engineering Geologist			
K. E. Jones			
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			

ORGANIZATION STATE DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES (continued)

Work relative to land classification and ultimate crop pattern was performed by		
J. W. Shannon Land and Water Use Specialist R. N. Haley		
Chapter IV, Legal Considerations, was prepared under the direction of		
Henry Holsinger		
by		
G. M. Craig		
Maps and plates for the report were prepared under the direction of		
H. P. Zablodil Senior Delineator		
ъу		
E. Angus		
		
This report was reviewed and edited by		
G. B. Gleason Supervising Hydraulic Engineer		

T. R. Merryweather, Administrative Officer Isabel C. Nessler, Coordinator of Reports

ORGANIZATIONAL CHANGES

At the time this investigation commenced, A. D. Edmonston was State Engineer. On November 1, 1955, Mr. Edmonston retired from state service and was succeeded by Harvey O. Banks.

The function under which this investigation was conducted was directed successively by Gordon Zander, Harrison Smitherum, Harvey O. Banks, and L. C. Jopson until January 3, 1956, when technical supervision of all investigations under specific legislature requests was assigned to W. L. Berry.

CHAPTER I. INTRODUCTION

The Santa Margarita River watershed, located in the South Coastal Area of California and including portions of San Diego and Riverside Counties, has a semiarid climate and potential water requirements which far exceed the natural supply. The need for water has resulted in much litigation over water rights in the area in spite of the relatively small water use. The general shortage of readily available water has so limited agricultural endeavor that only about six per cent of the total irrigable land in the watershed is presently irrigated. Only three-tenths of one per cent of the watershed is urbanized.

Additional water can be developed locally, but ultimate needs for water can only be satisfied by importation of large supplemental supplies.

Authorization for Investigation

Because of the limited amount of hydrologic and geologic information available concerning the Santa Margarita River watershed, and the need for more complete data for planning purposes and for use in active water rights litigation, the California State Legislature in the Budget Act of 1952, made an appropriation of \$150,000 to the Division of Water Resources for a complete investigation of water resources, requirements, and use in Santa Margarita River watershed. A supplemental appropriation of \$25,000 was made in 1955.

In accordance with the original legislation, the full text of which is reproduced in Appendix A, the Santa Margarita River investigation was started in July, 1952. Objectives of the investigation were: the determination of present cultural development, water requirements, and water use; determination of ultimate cultural development and water requirements;

exploration of further use of local resources; and the development of plans to obtain supplemental supplies.

Related Investigations and Reports

Prior investigations and reports reviewed in connection with this investigation include the following:

- American Geophysical Union. "Symposium on Phreatophytes". Transactions, America Geophysical Union. Volume 33, Number 1, pp. 57-80. February, 1952.
- Blaney, Harry F. and Muckel, Dean C. "Utilization of the Waters of Lower San Luis Rey Valley, San Diego County, California". United States Department of Agriculture, Soil Conservation Service, Division of Irrigation. April, 1945.
- California State Department of Public Works, Referee. "Report of Referee", Temecula Creek Reference. July, 1956.
- California State Department of Public Works, Division of Engineering and Irrigation, "Flow in Galifornia Streams". Bulletin No. 5. 1923.
- California State Department of Public Works, Division of Water Resources. "Evaporation from Water Surfaces in California". Bulletin No. 54, 1947, and Bulletin No. 54A, 1948.
- California State Department of Public Works, Division of Water Resources.

 "Program for Financing and Constructing the Feather River Project as the Initial Unit of the California Water Plan". February, 1955.
- California State Department of Public Works, Division of Water Resources.
 "San Diego County Investigation". Bulletin No. 48. 1935.
- California State Engineer. "Irrigation in California, Southern California".

 Part II of Irrigation Report of the State Engineer of California. 1888.
- California State Water Resources Board. "Water Resources of California". Bulletin No. 1. 1951.
- California State Water Resources Board. "Water Utilization and Requirements of California". Bulletin No. 2. 1955.
- California State Water Resources Board. "Santa Ana River Investigation, Appendix B, Geology of San Jacinto and Elsinore Basins". June, 1955.
- California State Water Resources Board. "Report on Feasibility of Feather River Project and Sacramento-San Joaquin Delta Diversion Projects Proposed as Features of The California Water Plan", May, 1951.

- Carpenter, E. J. and Storie, R. Earl. "Soil Survey of the Capistrano Area, California". United States Department of Agriculture, Bureau of Chemistry and Soils, in cooperation with the University of California, College of Agriculture, Agricultural Experiment Station. Series 1929.
- Dunn, J. E., Holmes, L. C., and Strahorn, A. T., Guernsey, J. E. "Reconnaissance Soil Survey of the Central Southern Area, California".

 United States Department of Agriculture, Bureau of Soils in Cooperation with the University of California, College of Agriculture, Agricultural Experiment Station. 1921.
- Fischer, G. E., Commander, United States Navy. "The Proposed Reservoir Development on Temecula Creek Santa Margarita River". September, 1947.
- Jones, Willis S. "Report on the Water Resources of the Temecula and Santa Margarita Rivers". October, 1922.
- Lee, Charles and Ellis, Arthur. "Geology and Ground Waters, West Part of San Diego County". United States Department of the Interior, Geological Survey, Water Supply Paper 446. 1919.
- Lippincott, J. B. "Available Supply of Santa Margarita River for Fallbrook Irrigation District, San Diego, California". February, 1926.
- Mead, Roy G. "Suggested Distribution of Water to Irrigable Areas Within Santa Margarita Watershed". December, 1927.
- Rancho Santa Margarita vs. Vail. Miscellaneous exhibits and information made available by H. M. Hall.
- Sonderegger, A. L. "Report on Santa Margarita Ranch, The Ground Water Basins and Evaporation and Transpiration Losses and Storage Capacity". 1926.
- Storie, R. Earl and Weir, Walter W. "A Rating of California Soils". University of California, College of Agriculture, Agricultural Experiment Station. Bulletin 599. January, 1936.
- Storie, R. Earl. "An Index for Rating the Agricultural Value of Soils".

 University of California, College of Agriculture, Agricultural Experiment
 Station. Bulletin 556. September, 1933.
- Storie, R. Earl. "The Classification and Evaluation of the Soils of Western San Diego County". University of California, College of Agriculture, Agricultural Experiment Station. Bulletin 552. June, 1933.
- Troxell, Harold C. "Hydrology of Western Riverside County, California". Riverside County Flood Control and Water Conservation District in Cooperation with United States Department of the Interior, Geological Survey. October, 1948.
- United States Department of Commerce, Weather Bureau. Climatological Data, published monthly.

- United States Department of the Interior, Geological Survey. "Southern California Floods of January, 1916". Water Supply Paper 426. 1918.
- United States Department of the Interior, Geological Survey. "Floods of March, 1938, in Southern California". Water Supply Paper 844, 1942.
- United States Department of the Interior, Geological Survey, Surface Water Branch. "Surface Water Supply of the United States, Part II, Pacific Slope Basins in California". Water Supply Papers published annually.
- Waring, Gerald A. "Ground Water in the San Jacinto and Temecula Basins, California". United States Department of the Interior, Geological Survey. Water Supply Paper 429. 1919.

The Division of Water Resources, under direction of the State Water Resources Board, has for the past several years conducted surveys in connection with the State-wide Water Resources Investigation authorized by Chapter 1541, Statutes of 1947. This investigation has resulted in the formulation of The California Water Plan, a comprehensive plan for full conservation, control, and utilization of the State's water resources to meet present and future water needs for all beneficial uses and purposes in all parts of the State, insofar as practicable. Published in 1951 as the first step in the formulation of the plan is State Water Resources Board Bulletin No. 1, "Water Resources of California". Bulletin No. 2, "Water Utilization and Requirements of California", was published in June, 1955, and Bulletin No. 3, a presentation of The California Water Plan, was released in preliminary form for comment by interested local agencies in May, 1956. This bulletin will be published in final form in fiscal year 1956-57.

In May, 1951, the State Water Resources Board published "Report on Feasibility of Feather River Project and Sacramento-San Joaquin Delta Diversion Projects Proposed as Features of The California Water Plan". Construction of the Feather River Project was authorized by the Legislature in Chapter 1441, Statutes of 1951. The act authorized and directed the Department of

Public Works to conduct necessary investigations and prepare plans for construction. A total of \$2,227,056 was subsequently appropriated for this work. As a result of studies conducted after 1951, the Division of Water Resources published, in February, 1955, the report entitled "Program for Financing and Constructing the Feather River Project as the Initial Unit of The California Water Plan". The aqueduct which is proposed in these reports, would follow a high-line route which crosses the eastern portion of the Santa Margarita River watershed at an elevation of about 3,000 feet, and would deliver supplemental water to the watershed.

The Legislature in the Budget Act of 1956, Chapter 1, Statutes of 1956, appropriated an amount of \$9,350,000 for surveys, explorations, investigations, preparation of construction plans and specifications; and surveys of, negotiations for, and acquisition of rights of way, easements, and property, including other expenses in connection therewith, for the Feather River Project. Authorized specifically was an item of \$200,000 for studies of alternative aqueduct routes to San Diego County.

Studies of The California Water Plan, presented in the aforementioned Bulletin No. 3, included analyses of preliminary locations of three aqueducts to San Diego County, namely, the San Diego High Line, Barona, and Second San Diego aqueducts, all of which traverse the Santa Margarita River watershed on the approximate alignments shown on Plate 25, "Existing and Potential Water Supply Developments". It was found that these aqueducts would provide for ultimate needs of the area to be served. The studies contemplated for fiscal year 1956-57, under the specific authorization mentioned above, consist essentially of analyses of alternative locations for the Second San Diego aqueduct, which is presently needed.

A survey of the water resources of the Santa Ana River was conducted

by the Division of Water Resources for the State Water Resources Board, and in April, 1956, Bulletin No. 15, "Santa Ana River Investigation", was released in preliminary form for comment by interested local agencies. The Bulletin will soon be published in final form. Basic data relative to the Elsinore area, collected for that survey, were useful in the present investigation. Much data from the Southern California Area Investigation, a continuing investigation of the water resources of southern California by the Division of Water Resources, are used in this report. These data consist primarily of records of precipitation and of depths to ground water. Water analyses obtained in the periodic stream sampling and ground water monitoring programs of the Division of Water Resources are also utilized. The Department of Public Works, Division of Water Resources, is the referee in the Temecula Creek Court Reference, and as referee has made investigations in the Temecula Creek portion of the Santa Margarita River watershed. The "Report of Referee" is to be published in July, 1956. Basic data developed for that investigation are used herein.

Hydrologic and geologic data concerning the Santa Margarita River system, generally for the period 1920 through 1927, were obtained and presented in evidence in Rancho Santa Margarita vs. Vail, et al. Much of the information presented therein, pertinent to the present investigation, was made available by the Vail Company and is included in this report either in the analyses presented or in the basic data. Pertinent portions of the data presented in evidence in United States vs. Fallbrook Public Utility District, et al., have also been utilized in this report either in the text or appendixes. These data were largely collected and compiled by the Camp Pendleton Office of Ground Water Resources and concern water facilities and use on Camp Pendleton. Similar data for the period after the close of the trial were supplied to the Division of Water Resources through 1953, after which further information was withheld.

The United States Army Corps of Engineers completed a comprehensive flood control investigation of the Santa Margarita River in 1949. Data from that investigation have been utilized in this report principally in the sections on water conservation and flood control.

Scope of Investigation and Report

The Santa Margarita River field investigation was conducted during the period from July, 1952, through May, 1954, primarily from a field office at Murrieta. The need for hydrologic data suitable for use in water right litigation required the collection and study of data in more detail than is ordinarily required for water resources investigations. A large amount of basic data is tabulated in the appendixes of this report, and much historical and current information gathered by local groups and agencies has been included.

Available precipitation and stream runoff records were collected and the following stations and equipment were installed to obtain supplemental data: seven continuously operated stream gaging stations and other temporary stations; three Class A evaporation stations; and three recording rain gages. Many stream flow measurements were made, particularly during the summer months when the surface water supply is critical. Areas of rising water were located, and diversions from the streams were measured or estimated.

In 1952 and 1953, lands in the watershed were classified both as to present use and ultimate use capability, and a survey was made of irrigation practices. To determine the rate of consumptive use of water for various irrigated crops and for native vegetation on the watershed, a study which included measurements of soil moisture depletion at representative test plots throughout the watershed, was made in cooperation with the United States Department of Agriculture.

Available water quality data were collected and additional mineral analyses of surface and ground waters were made to determine the native quality and to study the nature, cause, and extent of possible degradation thereof.

Geologic features of the watershed were investigated to ascertain the water-bearing characteristics of various rock types found therein; to determine the hydrologic significance of the permanent structural features of the area; to determine the mode of occurrence, movement, and ultimate destination of ground water; and to locate and evaluate the characteristics of water-bearing deposits forming the several ground water basins identified in the watershed for purpose of preparing estimates of the storage capacity thereof.

Water-bearing rocks and pertinent structural details were mapped, water wells were located, and their logs obtained. Depths to ground water were measured periodically and 40 key wells were measured monthly.

Detailed hydrologic studies were made for each of the principal drainage areas of the Santa Margarita River watershed. These studies included estimates of the presently developed surface and ground water supplies, and present and probable future supplemental water requirements. Also estimated was the present waste to the ocean, and the portion of this waste susceptible to conservation through operation of both surface and underground reservoirs.

The development of possible plans for additional conservation of local water and regulation of imported water supplies included field examination of feasible dam sites, together with a geologic investigation thereof. Preliminary designs and cost estimates were prepared for dams of several heights at a number of sites and for conveyance and distribution systems and pertinent works. Preliminary plans were also prepared for possible works to

furnish supplemental water from the aqueducts proposed as part of The California Water Plan, and from the Colorado River supply of The Metropolitan Water District of Southern California.

Results of the Santa Margarita River Investigation are presented in this report in the four ensuing chapters. Chapter II, "Water Supply", contains data on and analyses of precipitation, runoff, and imports and exports of water. It also includes results of investigation and study of the study ground water basins, and contains data regarding the mineral quality of surface and ground waters. Chapter III2 "Water Utilization and Requirements", includes data and estimates of the nature and areal extent of present and probable ultimate patterns of land use and of water requirements therefor, and contains estimates of present and probable ultimate supplemental water requirements. It also includes data on demands for water with respect to rates, times, and places of delivery. Chapter IV, "Legal Considerations", is a summary of litigation and review of California water law pertinent to the Santa Margarita River watershed. Chapter V, "Plans for Water Development", describes preliminary plans for conservation and utilization of local water supply, including estimates of yield and of cost for the construction of works. Possible plans for the development of imported water supplies are also considered. Chapter VI, "Summary, Conclusions, and Recommendations", includes a brief summary of the preceding chapters and conclusions and recommendations resulting from the investigation and study.

Area Under Investigation

The area under investigation comprises all lands within the drainage of the Santa Margarita River, located in the South Coastal Area of California in northern San Diego and western Riverside Counties. The general location of

the investigational area is shown on Plate 1, "Location of Santa Margarita River Watershed." The watershed lies east of Lake Elsinore between the San Jacinto Mountains and mountains of the Palomar block and extends to the Pacific Ocean near the City of Oceanside. Nearly four-fifths of the area is inland from the coastal divide which meanders in a generally east—west direction across Santa Rosa plateau. This region is termed herein the "Inland Area", and the portion of the watershed seaward from the coastal divide is called the "Coastal Area".

The Coastal Area is triangular, about 20 miles in length with a maximum width of about 10 miles; the Inland area is roughly rectangular, about 18 miles wide and 40 miles long. These areas are delineated on Plates 2A and 2B, depicting physiography of the Coastal and Inland areas, respectively.

The watershed has an area of 742 square miles, the largest for any stream in the South Coastal Area south of Santa Ana River. It is bounded on the south by the drainage area of the San Luis Rey River, on the north by that of the San Jacinto River, and on the east by the area draining to the Colorado River Basin. On the west the watershed adjoins the drainage areas of San Mateo, San Onofre, and Las Pulgas Creeks which flow directly to the ocean.

Topography

The two main tributaries of the Santa Margarita River are Temecula and Murrieta Creeks, the drainage areas of which together constitute the Inland Area. The two creeks join to form the Santa Margarita River at the head of Temecula Canyon, a narrow, precipitous, five-mile long gorge.

Temecula Creek drains the relatively high lands north of Palomar Mountain, which comprise 85 per cent mountains and foothills and 15 per cent

valley and mesa lands lying largely more than 1,500 feet above sea level. In the Murrieta Greek drainage area a large proportion of the total comprises valley and mesa lands, which for the most part lie at elevations between 1,000 and 1,500 feet above sea level.

Highest terrain is in the eastern portion of the investigational area, where Thomas Mountain and Palomar Mountain rise to elevations above see level of 6,812 feet and 6,138 feet, respectively. Four relatively flat divides along the northwestern boundary lie at elevations ranging from 1,300 to 1,600 feet, and stream bed elevation at the head of Temecula Canyon is 960 feet. About one-fourth of the total watershed of the Santa Margarita River lies above 3,000 feet elevation.

Topography of the portion of the Coastal Area which lies north of Fallbrook, at elevations ranging for the most part up to about 2,500 feet above sea level, is generally rough. Valley and gently rolling hill lands occupy most of the Coastal Area between Fallbrook and the ocean.

Climate

The climate of the Santa Margarita River watershed is typically Mediterranean, being characterized by warm dry summers and cool rainy winters. About 75 per cent of the precipitation occurs during the four-month period from December through March. Precipitation occurs generally in the form of rainfall, but snow is common on the mountain ridges and as much as three feet of snow has reportedly fallen in a single season at Anza. Mean seasonal depth of precipitation ranges from less than 10 inches near Vail Reservoir to over 40 inches west of Palomar Observatory, varying with elevation and topographic influences.

The coastal mountains block a considerable portion of the prevailing

moist sea breeze and there results a marked difference in climate between the Coastal and Inland areas. Landward from the coastal mountains, the moderating influence of the ocean is less and temperatures are more extreme. A definite rain shadow effect of the mountains is also evident, as stations inland from Palomar Mountain have about 10 inches less precipitation than those at similar elevations on the coastal slopes.

No long-record weather stations are located in the watershed, but temperature data at the Escondido, Elsinore, and Warner Springs stations, adjacent thereto, are considered representative as regards the frost-free periods and mean annual temperatures in the Coastal, lower Inland, and upper Inland areas of the Santa Margarita River watershed, respectively. Records at the respective stations are shown in the following tabulation:

Area	Long-record Station Considered Representative of Area	Average Frost Free Period, in days	Mean Annual Temperature, in degrees F.
Coastal	Escondido	257	61.0
Lower Inland	Elsinore	249	63.4
Upper Inland	Warner Springs	181	58.5

Temperature extremes at Elsinore vary from a record low of 17° to a high of 118° . During the investigational period, the lowest and highest temperatures recorded at any of the currently operated weather stations were 12° and 110° , both recorded at the Murrieta station. Extremes for the same period at 0'Neill Lake, which may be considered representative of coastal conditions, were 21° and 106° , and at Anza, representative of the upper Inland area, temperatures ranged from 13° to 99° .

Geology

The most obvious geologic feature of the Santa Margarita River watershed is the predominant northwest-southeast trending fault pattern which is manifested by the orientation of Murrieta Valley, Palomar and Agua Tibia Mountains, upper Temecula Creek, and the mountain ridge between Thomas and Lookout Mountains. These features are illustrated in the Frontispiece photograph of a relief map of the watershed.

Geologically it is considered that the Inland area was originally a part of the Santa Ana River drainage system with the ancestral Temecula-Murrieta Creek flowing westward through Lake Elsinore, and that later the Santa Margarita River eroded the coastal mountain ridge headward sufficiently to "capture" the ancestral stream and eventually reverse the direction of flow in Murrieta Creek.

Geologic formations of the Santa Margarita River watershed include Cretaceous and Pre-Cretaceous metamorphic and igneous rocks and overlying sedimentary deposits ranging in age from early Tertiary to Recent. Small remnants of volcanic Tertiary and Quaternary rocks are also evident. The sediments are largely of continental origin, but scattered outcrops of rocks deposited under marine conditions are exposed near the coast.

Only the sedimentary formations can be considered to be water bearing to any appreciable degree. These have been deposited within bedrock depressions, forming basins capable of storing water. Recent sediments contain thick strata of sands and gravels of high permeability, and deposits of this type yield large supplies of ground water. Some deposits of older alluvial fill yield moderate supplies. The igneous and metamorphic basement rocks are nonwater-bearing, with the exception of joints, fractures, or deeply

weathered zones from which the yield is generally small. In some localities, however, they are important in that they provide the only presently available water supply.

Soils

Soils of the Santa Margarita watershed have been mapped by the United States Department of Agriculture, Bureau of Soils, as reported in the San Diego Reconnaissance, 1915; Central Southern Area Reconnaissance, 1921; Riverside Area, 1917; Capistrano Area, 1929; and Oceanside Area, 1929. An index rating of the soils, covered in the above reports, was made in 1936 by R. Earl Storie of the Agricultural Experiment Station of the University of California. At the present time, parts of this watershed are being surveyed in detail by the Soil Conservation Service of the United States Department of Agriculture. In 1951 and 1952 the United States Marine Corps conducted a soil and land classification survey of the Camp Pendleton Reservation and some adjacent areas, utilizing Soil Conservation Service methods and procedures. In the present investigation a land classification survey was made to determine the suitability of lands for irrigation development, utilizing the data from the previous surveys when possible. In the classification survey soil depth and texture were considered, but no attempt was made to classify the soils in detail except with regard to their irrigability.

The soils within the watershed vary in their physical and chemical properties according to differences in parent material, mode of formation, and age and degree of development if alluviated. Broadly, the agricultural soils can be grouped into three classifications: (1) Recent alluvial soils; (2) old valley terrace soils and coastal plain soils; and (3) residual soils.

The Recent alluvial soils are those lying adjacent to the streamways

and have undergone little or no change in physical or chemical composition since their deposition. These soils are in general deep, fertile, easily irrigated, and suited for production of a wide variety of crops.

Old terrace soils and coastal plain soils are those that have developed on old valley fillings or old alluvial fans and terraces. These soils have moderate to strongly developed claypans, but normally exhibit good drainage characteristics. They are generally highly productive and have a wide crop adaptability and are fairly extensive within the area.

Residual soils are those that have developed in place by the action of soil forming processes upon the underlying parent material. Their physical and chemical characteristics are closely related to the nature of the parent material. In general, these soils are productive and are suited to a wide variety of crops, particularly citrus and avocados.

Historical and Present Development

The decision of the Spanish government in 1768 to colonize "Upper" California and the arrival of a colonization expedition the following year, marks the beginning of development in Santa Margarita River watershed. The expedition established Franciscan missions all along the coast, and for nearly sixty years the Franciscans maintained almost complete control of Upper California. Thousands of Indians were baptized and worked in mission fields and orchards and tended vast herds of mission cattle. At this time the Santa Margarita Valley was a part of the lands of San Luis Rey Mission. In the early 1800's the gradual secularization of mission lands, brought about the transfer of land control to private owners largely by grant from the Mexican Government. After numerous transfers and consolidations of lands and the conquest of California by the United States in 1848, the new government issued

patents for the various ranchos. Throughout this entire period the missions and ranchos represented practically the only settlements except for scattered groups of Indians, and lands were almost exclusively used for cattle raising. A small group of Temecula Indians, whose tribe once occupied the low lands of Murrieta Valley now form a scattered settlement in the Pechanga Indian Reservation in upper Pechanga Valley. A group of Coahuila Indians is presently located at the Coahuila Indian Reservation near Anza.

Modern development in the area may be said to date from the construction, in 1883, of the California Southern Railroad from San Bernardino, across Perris Valley and through Murrieta Valley, Temecula Canyon, and Santa Margarita Valley to San Diego. This opened Murrieta Valley to more extensive development and towns were established at Wildomar, Murrieta, and Temecula. The section of the railroad line through Temecula Canyon was washed out in 1884 and again in 1891, after which it was abandoned. Since that time the line from Perris into Murrieta Valley has also been abandoned, with the closest shipping points now being Elsinore and Winchester, both on branch lines of the Atcheson, Topeka and Santa Fe Railway Company and lying just beyond the watershed boundary. Between Fallbrook and Fallbrook Junction, near Oceanside, portions of the original line are still in use. Two modern State highways, U. S. Routes 101 and 395, between the Los Angeles metropolitan area and San Diego, together with an adequate system of secondary paved highways, serve the area.

Between Wildomar and Murrieta the arable slopes have for many years been used for grain raising by dry farming methods. Attempts have been made to raise fruit, but fruit production has not become a major enterprise and only a few groves of deciduous trees and olives now exist. Between Murrieta and Temecula considerable areas of natural pasture have long been used for

Fallbrook and Naval Ammunition Depot

Courtesy Pacific Air Industries

Santa Morgarita Rancho Home of Pio Pico, Now Residence of Commanding General of Camp Pendleton

Courtesy Title Insurance and Trust Compony, Los Angeles

			\star			
			25			
				1.0		
					1	

cattle raising, but acreage devoted to alfalfa, irrigated by deep well pumps, has increased rather rapidly in the past few years. Alfalfa has been grown on lands bordering Santa Gertrudis Creek since prior to 1915. Valley and rolling lands in the vicinity of Diamond, Domenigoni, French, Los Alamos and Long Valleys north of Temecula and Murrieta have been dry farmed for many years, but of late some of these valley lands have been planted to alfalfa and truck crops, irrigated from local wells.

The Vail Ranch, one of the largest agricultural operations in the United States, comprises some 90,000 acres in the Pauba and Santa Rosa Ranchos and portions of Temecula and Little Temecula Ranchos, which were patented about 1870. Of these lands, about 41,000 acres are within the watershed of the Santa Margarita River. The Vail Company has developed the lands into a modern stock ranch. The higher lands are used for grazing and growing of dry farmed grain, and part of the valley lands have, since about 1890, been used for growing alfalfa. Irrigation water was first obtained by direct diversion from Temecula Creek, this being later supplemented by flow from artesian and other wells drilled in the valley. For a time following 1930 the entire supply was derived from the wells, but since 1953 considerable additional acreage has been planted to miscellaneous farm crops supplied by water released from Vail Reservoir.

The higher lands in several small valleys in the eastern part of the watershed have, since the 1880's been occupied by ranches producing principally hay and grain, irrigation water being obtained for the most part by diversions from Temecula Creek. Agricultural practice has changed little in recent years, except in limited areas where ground water has been developed for irrigation. Homesteads were taken up in Anza Valley starting about 1913. Most of the land there is devoted to grain raising, but in 1949 irrigation

wells were drilled and some alfalfa is now grown.

Earliest agricultural development in the Fallbrook area dates back to the construction of wells around 1890. Variable yields were obtained, but production from some wells is said to have been adequate to irrigate 25 acres of land. Development of irrigated land continued on the basis of supply from underground sources until 1925 when the Fallbrook Irrigation District, predecessor of the present Fallbrook Public Utility District, was organized. Water was supplied by local wells and diversion from the Santa Margarita River. Diversions increased gradually to about 100 acre-feet in 1939. In that year diversions were augmented by pumping from the Bonsall ground water basin on San Luis Rey River, and, starting in 1948, by importation of Colorado River water. Lands of the District lie in the Santa Margarita River and San Luis Rey River drainage basins. In 1926, two-thirds of the irrigated land in the entire District was devoted to citrus culture. Irrigated agriculture increased greatly from about 1947, and at the present time avocados are grown on about 90 per cent of the irrigated lands in the Santa Margarita River portion of the District.

Development on Camp Joseph H. Pendleton, a large permanent Marine Corps training base, consisting principally of the former Rancho Santa Margarita y Las Flores, relates back to the beginnings of the Rancho. Adjacent to Camp Pendleton and often referred to as part of it is the Fallbrook Naval Ammunition Depot. Also located at Camp Pendleton is the United States Naval Hospital, Oceanside, California. The military reservation as a whole has an area of about 135,000 acres, of which about 38,000 are within the watershed of the Santa Margarita River.

The ranch originally was granted to Andres and Pio Pico in 1841 and was called Rancho San Onofre y Santa Margarita. It was one of six belonging to San Luis Rey Mission. Other lands were added to the original grant and a

patent to all the lands was issued in 1879. Among other noteworthy activities, Pio Pico was the last territorial governor of California under Mexico, and Andres Pico was State senator in 1860-61. The rancho prospered under the Picos, and at the time of the change in government Santa Margarita had 10,000 cattle, 2,000 horses, and 15,000 sheep.

Title to the Rancho passed to Richard O'Neill and James Flood in 1882, and Richard O'Neill maintained his residence at, and conducted the affairs of the stock ranch until his death. He was succeeded by his son, Jerome O'Neill. The following quotation from the report by Wm. Ham. Hall, the first California State Engineer, entitled "Irrigation in Southern California" and dated 1888, describes early development of O'Neill Lake and O'Neill Ditch on the Rancho, and provides a picture of other water development in San Diego County, which at that time included all of the Santa Margarita River watershed.

"Santa Margarita River Farm Ditches

"Near the mouth of the canon, and about eight miles from the coast, a ditch is taken out of the river for irrigation on the Santa Margarita ranch, and about three hundred acres of alfalfa and twelve acres of orchard and vineyard are thus irrigated. The main ditch is three quarters of a mile in length, and terminates in a reservoir, covering one hundred and sixty acres, built in 1883 by throwing up an embankment of earth across a flat side valley. This dam is about twelve feet high, one thousand three hundred and forty feet long, and is provided with an outlet near the south end, consisting of a wooden opening four feet four inches wide, reaching from top to bottom, with loose plank four inches thick set one above the other (not inclined) to retain the water and enable it to be drawn off from the top by removing one plank after the other. A part of the diverting ditch is in flume, five feet six inches wide in the clear, and twenty-two inches deep. If the extent of the appropriation is to be judged by the capacity of the flumes, its volume must exceed one thousand inches. August 27, 1886, the flume was carrying nearly all the water of the stream, and its flow measures one hundred and forty miner's inches.

"From the reservoir to the rancho house, one and one half miles, the ditch is about six feet wide on the bottom, two feet deep, with a grade of four feet to the mile. It is carried one and one half miles farther, and has a number of laterals from which water is

distributed in checks in the alfalfa field. This is probably the only old irrigation ditch in the county irrigating any considerable area, which has any pretense of a systematic utilization of water, and in this case its use is rather more required for exterminating gophers than as an absolute necessity for plant growth, because the bottom lands on which it is used are naturally moist and sub-irrigated. Besides this ditch there are several exceedingly small works, irrigating in all from seventy-five to one hundred acres in small patches in the water-shed of this river."

From 1883 to 1942, when nearly 132,000 acres of the rancho were sold to the United States for Camp Pendleton, water was diverted from the Santa Margarita River into O'Neill Lake and later used for irrigation. Additional limited quantities of water were pumped from wells primarily for stock watering purposes. In 1938 an irrigation system was built to serve Stuart Mesa, adjacent to the coast and largely outside the Santa Margarita River watershed. Since 1942 the Stuart Mesa lands have been leased to agriculturists, but use of O'Neill Lake was discontinued for irrigation use at that time. Many new wells were drilled on the reservation starting in 1942, and use for military purposes has since exceeded agricultural use. Mesa lands are still used, however, for growing citrus, truck crops, and flowers, and much of the other land in Camp Pendleton is utilized for grazing, subject to its primary use for military training.

Native vegetation on the Santa Margarita River watershed varies from grass and weeds on the low valley and hill lands to forests of evergreens on the ridges of Agua Tibia, Palomar, Thomas, and other high mountains. Numerous groves of oak trees are also found scattered throughout the watershed.

Large areas of land within the watershed are in single ownership or control. Indian Reservations constitute 32 square miles, the Naval Reservations of Camp Pendleton and the Fallbrook Naval Ammunition Depot occupy 59 square miles, the Vail Company cwns 122 square miles, and 85 square miles are within the San Bernardino and Cleveland National Forests.

Industrial activity consists of limited developments in fruit packing and light manufacturing, and operation of the repair shops and storage depots of the United States Navy, which constitute a major industrial establishment.

Present centers of population in the watershed are Murrieta,
Temecula, Fallbrook, Camp Pendleton Marine Barracks, and a few small community
centers. The population of the entire Santa Margarita River watershed was
about 1,800 in 1910 and about 4,000 in 1950. The largest town, Fallbrook,
which lies mostly within Santa Margarita River watershed had a population of
1,735 in 1950. The average annual military population of Camp Pendleton
varied from a war time peak of about 50,000 in 1944 to 11,000 in 1946, increasing again to about 50,000 in 1952. In Table I are presented United
States Census figures for Murrieta Township, which constitutes about one-third
of the Inland Area and is representative thereof, and for Fallbrook.

TABLE I
CENSUS DATA

:	Area		
:	Murrieta Township	:	Fallbrook
	764		
	765		
	886		
	969		
	1,041		
	1,265		1,735
	•	* Murrieta Township 764 765 886 969 1,041	* Murrieta Township : 764 765 886 969 1,041

Hydrographic Units

To aid in evaluation of water resources and requirements of the Santa Margarita River watershed and to facilitate analysis of water supply problems, the watershed was divided into six hydrographic units, the boundaries of which are shown on Plate 3, and others where appropriate. The boundaries of the units are definite topographic divides which were selected after giving consideration to factors affecting water supply and utilization, topography, geology, climate, and availability of data, in order to include within each unit lands having similar problems. In Table 2, the units are listed and the area of each is shown.

TABLE 2

AREAS OF HYDROGRAPHIC UNITS

Hydro- graphic		: Area :Square	of Unit
Unit		-	: Acres
1	Murrieta Creek drainage area above gage at Temecula	221	141,546
2	Temecula Creek drainage area above Vail Reservoir	157	100,766
3	Lancaster-Coahuila Creek drainage area above Vail Reservoir	163	103,981
4	Remainder of Temecula Creek below Vail Reservoir	45	29,045
5	Santa Margarita River from gage at Temecula Canyon to De Luz dam site	11/4	73,098
6	Santa Margarita River from De Luz dam site to coast	42	26,679
	TOTAL	742	475,115

Numbering System

Well reference numbers used herein indicate approximate well locations. The wells are numbered by the system now utilized by the Division of Water Resources, according to the township, range, and section subdivision of the Federal land survey. Under this system, each section is subdivided into 40-acre plots, which are lettered according to the "Key to Numbering System" shown on Plate 3 and others where appropriate. Wells are numbered within each of these 40-acre plots according to the order in which they are located. For example, referring to Plate 9A, "Location of Wells", well 9S/3W-6Al is the first well located in the NE 1/4 of the NE 1/4 of Section 6 in Township 9 South, Range 3 West, San Bernardino Base and Meridian. On the map, which depicts township, range, and section boundaries, the location of this well is designated by the letter and number Al only. A similar numbering system was used for identifying springs, diversion points, and precipitation stations.

CHAPTER II. WATER SUPPLY

The principal source of water supply of Santa Margarita River watershed is direct precipitation and stream flow originating within the watershed, both of which vary cyclically over a wide range. Ground water is utilized extensively and lesser amounts are diverted from the surface flow. Relatively small quantities are imported from the Colorado River and from wells outside the watershed. The water supply of the watershed is discussed in this chapter under the headings "Precipitation", "Runoff", "Imports and Exports", "Underground Hydrology", and "Quality of Water".

The terms used in connection with the discussion of water supply in this report are defined as follows:

- Annual This refers to the 12-month period from January 1 of a given year through December 31 of the same year.
- Seasonal This refers to a 12-month period other than the calendar year.
- Precipitation Season This refers to the 12-month period from July 1 of a given year through June 30 of the following year.
- Runoff Season This refers to the 12-month period from October 1 of a given year through September 30 of the following year. This period is also referred to as the "water year".
- Average This is used in reference to arithmetical averages relating to periods other than mean periods.
- Mean This is used in reference to arithmetical averages relating to mean periods.
- Mean Period This is used in reference to periods chosen to represent conditions of water supply and climate over a long period of years. The 50-year period 1897-98 through 1946-47, as used in State Water Resources Board Bulletin No. 1, was selected as the period for estimating mean seasonal

precipitation. The 48-year period from 1895-96 through 1942-43 was selected for estimating mean seasonal runoff.

Precipitation

The Santa Margarita River watershed lies in the path of marine air masses which move generally easterly over the coastal mountains into the inland portion of the watershed. A marked rain shadow effect of the mountains results from this movement. Precipitation on the watershed, most of which falls in the form of rainfall, is the primary source of all local water available for use in the area.

Precipitation Stations and Records

Existing records at 93 precipitation stations in or near the Santa Margarita River watershed were collected from published reports, public and private agencies, and individuals. Temporary stations were established by the Division of Water Resources at Murrieta, Los Alamos Valley, Wilson Valley, and Anza Fire Station. Locations of the precipitation stations are shown on the isohyetal map, Plate 3, "Lines of Equal Mean Seasonal Precipitation". The stations, with their map reference numbers, elevations, source and period of record, estimated mean seasonal depth of precipitation, and maximum and minimum recorded seasonal depths of precipitation are listed alphabetically by Hydrographic Units in Table 3, "Mean, Maximum, and Minimum Seasonal Precipitation at Stations Within and Adjacent to the Santa Margarita River Watershed". Tabulated in Appendix D are monthly precipitation records at stations established by the Division of Water Resources and at other stations in the watershed whose records are 10 years or greater in length and previously unpublished. Annual values are presented for other stations at which records are available.

TABLE 3

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

	Man	Flavetton			: Estimated mean	Recorded	ded
Station	ref	- 1	Period of record	Source of record	: precipitation, : in inches*	maximum and minimum seasonal precipitation Season : Inches	maximum and minimum asonal precipitation Season : Inches
			Hydrographio Unit	C)			
Greenwood (Los Alamos Valley)	7S/2W-15G	1,400	1912-1914, 1917-1926	Private	12.88	1921-22 1912-13	24.28 6.54
Los Alamos Valley	7S/2W-12A	1,500	1953-54	D.W.R.	15.19	1953-5 th 1953-5 th	12.76 12.76
Murrieta	75/3W-16N	1,090	1952-1954	D.W.R.	15.58	1953-5 ^{tt} 1952-53	13.70 10.61
Murrieta Hot Springs	75/3W-13N	1,100	1946-1950	R.C.F.C.W.C.D.	10.89	1948-49 1946-47	9.91 6.12
Pauba Ranch (Station A)	7S/2W-26A	1,450	1919-1921	Vall Co.	14.62	1919-20 1920-21	13.94 11.06
Sage	7S/1W-12A	2,283	1938-1953	U. S. Corps of Engrs.	15.88	1940-41	28.13 7.27
Santa Rosa Ranoh (Clenega)	75/4W-28P	2,000	1924-1941	Vail Co.	22.94	1940-41 1924-25	40.57 9.20
Santa Rosa Ranch (Gate)	7S/3W-19C	1,200	1923-1941	Vail Co.	17.16	1940-41 1923-24	30.54 8.50
Santa Rosa Ranch (E)	75/3W-32P	1,450	1942-1946, 1947-1951, 1952-1953	U.C.L.A.	19.49	1942-43 1950-51	28.92
Temecula	8S/3W-12M	1,019	1901-1920	Private	15.62	1915-16 1903-04	25.5 ⁴ 5.87
Wildomsr	C4/5-W4/S9	1,242	1914-1952	Private	13.78	1921-22 1950-51	28.79 4.44
Wildomar (Near)	6s/4w-35c	1,290	1929-1954	U. S. Corps of Engrs.	13.99	1940-41 1950-51	27.52 4.44

NEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED (continued)

Station	. Map : reference : number	: Elevation,	: Period of record	Source of record	: Estimated mean : seasonal : precipitation, : in inches*	8	Recorded maximum and minimum asonal precipitation Sacon
			Hydrographic Unit	2			
Aguanga (Upper)(See also Aguanga No. 1, in Hyd. Unit 3)	8s/2E- 7D	3,100	1928-1948	U.S.W.B.	12.94	1940-41 1933-34	24,20 4,62
Anza	7S/3E-21B	.в 3,900	1949-1951 1953-54	U.S.W.B. D.W.R. (1953-54)	14.33	1952-53 1950-51	11.73
Anza (Cartier)	7S/3E- 4K	ж 4,650	1949-1954	Private	22.04	1951-52 1949-50	33.77 10.50
Coahuila	7S/3E-31M	м 3,800	1911-1918	U.S.W.B.	16.14	1914-15 1912-13	27.95 4.43
Rancho Ramona	8S/1E- 7P	P 1,600	1950-51	Private	8.02	1950-51 1950-51	4.25 4.25
Wilson Creek	7S/1E-24G	9,000	Feb. 1953-Jan. 1954	D.W.R.	14.24	; ;	
			Hydrographic Unit	~			
Aguanga No. 1 (Lower) (See also Aguanga in Hyd. Unit 2)	8s/1E-34G	.g 1,986	1908-1928	U,S,W,B,	13.73	1921-22 1924-25	24.17 7.18
Oakgrove	9S/2E-17R	R 2,751	1910-1921, 1938-1942, 1947-1949, 1953-54	U. S. Forest Service D.W.R. (1953-194)	17.63	1940-41 1947-48	29.61 9.99
Pauba Ranch (Station E)	85/ 1W-1 ⁴ D	.D 1,450	1920-1954	Vail Co.	12.09	1940-41 1933-34	24.58 3.73
Pauba Ranch (Station K)	8S/1W-10R	В 1,410	1923-1927	Vail Co.	13.21	-1925-26 1924-25	17.48 6.64
Radeo	8s/1E-19a	1,700	1951-1954	Private	14.66	1951-52 1952-53	19.40

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED (continued)

Station	: Map : reference : number	: Elevation, : in feet :	: Period of record :	Source of record	: Estimated mean : seasonal : precipitation, : in inches*	Recorded maximum and minimum seasonal precipitation Season : Inches	Recorded maximum and minimum assonal precipitation Season : Inches
		Hydr	Hydrographic Unit 3 (continued)	tinued)			
Vall Lake	8s/1W-10M	1,400	1952-1954	U.S.M.C.	13.45	1953-54 1952-53	11.55 9.43
			Hydrographic Unit 4	# 1			
Pauba Ranch (Station C)	8s/2W-16M	1,080	1920-1954	Vail Co.	15.36	1936-37 1950-51	30.37 7.10
			Hydrographic Unit	ιζ			
De Luz	8s/4w-29H	1450	1902-1940, 1945-1947, 1953-54	Private	19.58	1921-22 1903-04	40.57 8.37
Rainbow (Honor Camp No. 2)	9s/2W- 5D	1,550	1949-1954	State Division of Forestry	21.91	1951-52 1949-50	31.05
Rainbow (Steinberg)	98/3W- 1Q	1,150	1951-1954	Private	22.45	1951-52 1952-53	32.52 14.13
Santa Rosa Ranch (Ranch House)	75/4W-35Q	1,720	1922-1941, 1948-1954	Vail Co.	24.27	1936-37 1950-51	43.10 8.25
Santa Rose Ranoh (B)	85/34- 7M	1,250	1942-1944, 1946-1948, 1949-1952	U.C.L.A.	19.89	1951-52 1950-51	29.52
Santa Rosa Ranoh (B1)	8s/3W- 7M2	1,250	1943-1953	U.C.L.A.	18.64	1951-52 1950-51	29.78 7.85
Santa Rosa Ranch (C)	8s/4w-12P1	900	1942-1945, 1948-1951, 1952-53	U.C.L.A.	19.65	1942-43 1950-51	27.87
Sarta Rosa Ranch (D)	8S/4W-12P2	950	1943-1945, 1947-48, 1950-51, 1952-53	U.C.L.A.	18.13	1943-44 1950-51	19.58 7.98

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED (continued)

Station	Map : reference : number	: Elevation, : in feet	; ; Period of record ;	: : Source of record :	: Estimated mean : seasonal : precipitation, : in inches*	: Recorded : maximum and minimum : seasonal precipitation : Season : Inches	ded d minimum cipitation : Inches
			Hydrographic Unit 5 ((continued)			
Senta Rosa Ranch (DR)	8s/44-12L	1,200	1943-44, 1947-48, 1949-50, 1951-52	U.C.L.A.	18,95	1951-52 1947-48	31.22 9.01
Santa Rosa Rench (Saxman)	8s/3W- 7A	1,600	1945-1951	U.C.L.A.	20.98	1945-46 1950-51	18.81 9.74
Sky Ranoh	8s/5W-23R	2,314	1949-1954	Private	27.27	1951-52 1950-51	43.72 11.43
			Hydrographic Unit	4 6			
Fallbrook (No. 3)	95/4W-24K	969	1936-1943	Private	17.56	1936-37 194 1- 42	32.24 16.11
Fallbrook (No. 6)	9s/4W -2 4B	700	1911-1926	Private	17.24	1921-22 1912-13	28.63 9.31
O'Neill Lake	10s/4W- 5a	110	1953-54	U.S.M.C.	12.74	1953-54 1953-54	10.70
Santa Margarita Ranch	10S/4W-18F	90	1913-1942	Private, U. S. Corps of Engrs.	14.13	1940-41 1924-25	27.88 7.84
			Adjacent to Watershed	shed			
Agua Tibia (No. 1)	9s/1W-30a	1,025	1931-1943	Private	17.26	1936-37 1933-34	33.63 9.40
Agua Tibia (No. 2)	98/1м-30н	1,225	1940-1943	Private	24.61	1940-41 1941-42	42.32 23.98
Bonsall Basin	105/3W-10J	215	1939-1943	Private	15.57	1940-41 1942-43	27.10 15.90
Chihushua Mountair	9S/3E-35A	η, 200	1911-1915	San Diego County Water Co.	20.00	1914-15 1912-13	26.84 13.53

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED (continued)

Station	: Map : reference : number	: Elevation, : in feet	: : Period of record :	: : Source of record :	: Estimated mean : seasonal : precipitation, : in inches*		Recorded maximum and minimum seasonal precipitation Season : Inches
		# I	Adjacent to Watershed	(continued)			
Chihuahua Valley	9S/3E-23E	05 1, 4	1952-1954	Private	18.94	1953-54 1952-53	15.23 14.31
Cuyamaca (Key Station)	(Not on map)	4,677	1887-1954	U.S.W.B.	38.96	1926-27 1893-94	66.55
Deadmen's Hole	10S/2E- 1F	3,200	1911-1924	San Diego County Water Co.	21.75	1921-22 1912-13	38.93 12.19
Elsinore (Sta. 13802)	5S/5W-34R	1,340	1914–1943, 1944–45, 1946–47, 1948–1952	Private	16.%	1940-41 1950-51	36.02 8.18
Elsinore (Key Station)	6s/5w- 8K	1,272	1887-88, 1897-1912, 1915-1947, 1948-1954	U.S.W.P.	13.29	1936-37 1950-51	26.35 4.46
Elsinore (Railroad Canyon Dam)	65/4W- 2M	1,390	1927-1952	Temescal Water Co.	11.15	1940-41 1927-28	23.84 3.39
Escondido No. 1 (Key Station)	(Not on map)	750	1894-95, 1897-1954	U.S.W.B.	17.01	1936-37 1903-04	32.84 8.15
Fallbrook (H. E. White)	9S/3W-20H	750	1909-1948	Private	18.89	1921-22 1947-48	34°66 7.86
Fallbrook (No. 1)	9S/3W-21E	750	1876-1903, 1948-1951	U.S.W.B.	17.14	1883-84 1878-79	40.77
Fallbrook (No. 4)	9S/3W-20E	850	1932-1943	Private	17.70	1936-37 1933-34	32.35
Fallbrook (No. 5)	9S/4W-25R	670	1938-1943	Private	17.60	1940-41 1938-39	30.65 16.82
Fallbrook (Steele)	9S/3W-31M	045	1950-1954	Private	16.40	1951-52 1950-51	24.36 7.80

MEAN, MAXIMUM, AND MINIM-M SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARCARITA RIVER WATERSHED (continued)

Station	: Map : reference : number	Elevation, : In feet :	Period of record	Source of record :	Estimated mean seasonal precipitation, in inches *	Recorded maximum and minimum seasonal preoipitation Season Inches	ded id minimum solpitation Inches
		Adja	Adjacent to Watershed (continued)	(oontinued)			
Hemet Lake	6s/3E- 7K1	η, 350	1896-1940	Lake Hemet Water Co. U. S. Corps of Engrs.	19.90	1921 - 22 1933 - 34	34.21 6.12
Hemet Reservoir	6S/3E- 7K2	004,4	1940-1951	U.S.W.B.	18.88	1940-41 1947-48	30.82 10.50
Meagher	10S/1W- 3M	1,217	1937-1943	Pri vate	17.54	1940-41 1938-39	31.25
Mendenhall Valley	10S/1E- 2R	η, 500	1911-11916	San Diego County Water Co.	34.42	1914-15 1912-13	53.72 24.69
Mount Palomar (See also Palomar Min. Obs.)	9S/1E-270	5,550	1938-1946	Palomar Observatory	25.97	1940-41 1941-42	42.01 20.59
Nellie	10S/1E- 9H	5,350	1901-02, 1904-1907, 1909-1923	U.S.W.B.	tt.51	1905-06 1918-19	77.40 28.83
Oceanside, C. A. A.	118/5W-130	20	1945-1951	U.S.W.B.	11.56	1945-46 1950-51	10.40 5.82
Oceanside (No. 1)	11S/5W-26E	30	1892-1909	Private	11.31	1904-05 1903-04	16.29 4.52
Oceanside (No. 2)	118/54-260	49	1909-1926	Pri vate	12.06	1914-15 1923-24	22.12 6.06
Oceanside (No. 3)	11S/5W-26D	09	1926-1943	San Diego Gas and Electric Co.	12.90	1940-41 1928-29	24.95 7.54
Oceanside (No. 4)	11S/4W-19E	280	1926-1943	City of Oceanside	13°44	1940-41 1928-29	26.80 8.62
Oceanside (No. 4A)	11S/5W-24C	22h	1924-1929	City of Oceanside	11.%	1926-27 1924-25	16.05

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS
WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED
(continued)

	••			••	: Estimated mean	Recorded:	ded.
Station	: Map : : reference : : number :	Elevation, in feet	Period of record	: Source of record	<pre>: geasonal : precipitation, : in inches</pre>	. seasonal precipitation Season : Inches	d minimum cipitation : Inches
		Ad	Adjacent to Watershed	(continued)			
Ooeanside (Crouch)	11S/4W-19P	75	1873-1916	Private	9.82	1883-84 1876-77	25.66 3.41
Pala	9S/2W-27L	1450	1939-1943	Private	16.82	1940-41 1939-40	30.28 16.30
Paloma Valley	6S/3W-22G	1,520	1939-1952	Private	13.41	1940-41 1950-51	26.09 4.28
Palomar Mountain Observatory (See also Mt. Palomar)	9S/1E-34B	5,598	1942-1954	U.S.W.B.	29.72	1951-52 1949-50	50.63 15.89
Puerta La Cruz	10S/3E-17K	2,772	1911-1917	San Diego County Water Co.	18.18	1915-16 1912-13	30.51 11.53
Red Mountain Ranch	9S/3W-16R	046	1925-1943	Private	17.75	1936-37 1932-33	34.52 11.75
Rincon of Warner Ranch	10S/2E-16K	2,975	1913-1916	San Diego County Water Co.	28.35	1915-16 1913-14	45.18 27.20
San Jacinto (Key Station)	(Not on map)	1,550	1887-87, 1892-1954	U.S.W.B.	13.54	1921-22 1933-34	25.23 6.38
San Luis Rey	115/4W- 5K	09	1901-1921	Private	13.53	1905-06 1903-04	23.26 6.51
Tripp Flats	7S/2E- 3F	3,900	1948-1952	R.C.F.C.W.C.D., D.W.R.	18.37	1951-52 1948-49	26.23

MEAN, MAXIMUM, AND MINIMUM SEASONAL PRECIPITATION AT STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED (oontinued)

Station	Map: reference: number	: Elevation, : in fect	: Period of record	: Source of record : precipitation, : in inches*	seasonal : precipitation, : in inches*	seasonal pr	ecipitation Inches
		41	Adjacent to Watershed (continued)	(continued)			
Wight	9S/2W-31P	300	1929-1943	Private	14.68	1936-37 1933-34	27.50 7.35
Winchester (U.S.W.B.)	5S/2W-27E	1,470	1940-1951	U.S.W.B.	11,42	1940-41 1950-51	20.17 4.44

* Mean period 1897-98 through 1946-47.

D.W.R.: U.C.L.A.: Abbreviations:

U.S.W.B.:

Division of Water Resources.
University of California at Los Angeles, Dr. Fillsbury.
United States Weather Bureau.
Riverside County Flood Control and Water Conservation District.
United States Marine Corps.

R.C.F.C.W.C.D.: U.S.M.C.:

Mean Seasonal Precipitation

Mean seasonal precipitation over the entire watershed was estimated. Composite indices of wetness, used in estimating the mean seasonal precipitation at shorter record stations, were calculated by combining the indices of wetness for four long record United States Weather Bureau Stations. These key stations, Cuyamaca, Elsinore, San Jacinto, and Escondido are outside the watershed, but their indices were found to be representative of the Santa Margarita River watershed. Table 4, "Seasonal Precipitation and Indices of Wetness at Key Stations", is a tabulation of the precipitation, indices of wetness, and the resulting composite indices for the four base stations. From the composite indices, departures from the mean were accumulated and a residual mass diagram was plotted as shown on Plate 4, "Composite Accumulated Departure from Mean Seasonal Precipitation at Key Stations".

TABLE 4
SEASONAL PRECIPITATION AND INDICES OF WETNESS AT KEY STATIONS

(Mean Period 1897-98 through 1946-47)

	Station :									
Season	Cuyamaca :			Elsinore :		Escondido No. 1 :				
:	Inches:	Index	: Inches :	Index	: Inches :	Index :	Inches:	Index	index	
1886-87							11.68ª	86	8 6	
88	21.51 ^a	55	19.17	144			1100	00	100	
89	52.83	136	1/11/						136	
0))= •0)	1)0							1)0	
1889-90	61.51	158							158	
91	63.84	164							1 64	
92	39.61	102					_		102	
93	39.21	101					13.73 ^a	101	101	
94	15.05	39					8.93	66	52	
1894-95	54.78	141			16.55ª	97	16.67	123	120	
96	23.38	60			10.00	7/	9.20	68	64	
97	38.96	100					15.51ª	115	108	
98	27.69	71	6.62	50	8.68	51	9.46a	70	61	
99	23.35	60	6.47	49	9.47	56	8.40ª	62	57	
//	-7-77	0.0	001,	•,	74.7			· ·	,,	
1899-1900	27.70	71	5.98	45	13.89	82	9•58ª	71	67	
01	42.81	110	14.29	108	14.46	85	13.40	99	100	
02	36.00	92	9.65	73	11.66	69	8.24	61	7 ⁴	
03	37.60	96	16.08	121	17.69	104	15.75	116	109	
0/4	23.37	60	6.65ª	50	8.15	48	7.90ª	58	54	
1904-05	57.89	149	21.47	162	23.49ª	138	18.59	137	147	
06	56.24	144	25.96	195	25.43	150	14.79	109	150	
07	44.91	115	18.02	136	17.89	105	18.02	133	122	
08	30.35	78	11.90	90	13.52	79	12.67	94	85	
09	45.65	117	15.03	113	18.21	107	13.76	102	110	
1909-10	33.44	86	14.14	106	18.83	111	12.52	92	99	
11	32.15	82	11.63	88	15.44	91	15.44	114	94	
12	31.90	82	10.47	79.	14.70	86	12.64	93	85	
13	31.02	80		68b	10.31	61	8.62	64	68	
1 4	34.82	89		113 ^b	19.11	112	18.87	139	113	
				- 1 b			-0			
1914-15	55.79	143		142 ^b	25.37	149	18.09	134	142	
16	56.87	146	22.71	171	27.94	164	16.60	123	151	
17	39.82	102	11.49	86	17.04	100	11.45	85	93	
18	29.53	76	11.97	90	13.87	82	12.27	91	85	
19	29.93	7 7	7.44	56	12.28	7 2	10.25	76	70	
1919-20	40.15	103	12.66	95	15.17	89	14.61	108	99	
21	27 - 18	70	9.64	73	11.40	67	10.82	80	72	
22	59.58ª	153	26.22	197	29.89	17 6	25.23	186	178	
23	38.11	98	7•38	56 58	11.56	68	10.68	79	75 67	
214	29.89	7 7	7.66	58	10.61	62	9.74	72	67	
1924-25	36.10	93	6.73	51	11.32	67	7.28	54	66	
26	36.82	94 95	14.10	106	21.44	126	16.69	123	112	
27	66.55	171	16.45	124	24.68	145	19.37	143	146	
28	21.43	55	8.02	60	14.46	85	9.44	70	68	
29	35.55	9 1	7.22	54	12.87	76	9.19	68	72	
-										
1929-30	41.62 26.78	107 69	17.07 11.34	128 85	17.00 14.49	100 85	15.10 8.87	111 65	112 76	
31 32					24.58	145	0.0/ 19.54	144	1փկ	
	53.58 40.14	138 103	19.67 9.33	148 70	17.05	100	9.94		86	
33 34	18.28	47	8.01	60	9.08	53	6 .3 6	73 47	52	
דכ	10.40	7/	0.01	00	7.00	72	0 • 70	7/	74	

SEASONAL PRECIPITATION AND INDICES OF WETNESS AT KEY STATIONS (continued)

(Mean Period 1897-98 through 1946-47)

	:	: Station									:
Season	:_	Cuyamaca		: Elsinore		nore	: Escondido No. 1		San Jacinto		Average
	<u>:</u>	Inches :	Index	:	Inches	: Index	Inches:	Index :	Inches	: Index :	index
1934-35		38.07ª	98		17.28	130	21.08	124	15.91	117	117
36		39.71	102		9.33	70	12.76	75	10.07	74	80
37 38		66.42	170		26.35	198	32.84	193	24.62	182	186
38		49.04	126		18.91	142	19.39	114	14.84	110	123
39		35.71	92		12.63	95	15.14	89	12.88	95	93
1939-40		38.47	99		13.35	101	19.57	115	16.23	120	109
41		64.06	164		25.96	1 95	31.36	184	24.63	182	181
42		32.88	84		11.20	84	18.99	112	12.26	91	9 3
43		38.18	9 8		14.71	111	16.17	95	15.46	114	104
रोग्		40.39	104		16.56	125	17.46	103	13.49	100	108
1944-45		36.99	95		10.09	76	14.42	85	12.49	92	87
46		35.77	92		7.73	58	14.94	88	12.39	91	82
47		31.73	81		7.89	59	13.11	77	11.62ª	86	76
48		27.46	70			5 9 6	8.69	51	7.55	56	59
49		38.26	98		7.87°	59	14.20ª	83	9.45	70	78
1949-50		30.53	78		6.17	46	10.74ª	63	7.13	53	60
5 1		27.14	70		4.46	34	9.26ª	54	7.27	54	53
52		55.02	141		17.85	134	24.57a	1 /1 /1	18.22	135	138
53		27.90	72		8.25	62	11.93	70	11.59	86	72
53 54		35.40	91		10.38	78	14.71	86	10.84	80	84
Mean seasonal precipi- tation.											
1897-1947		38.96			13.29		17.01		13.54		

a. Partially estimated from surrounding stations.b. Indices are average indices for Cuyamaca, Escondido, and San Jacinto.

Using the mean precipitation values presented in Table 3, the isohyetal map, Plate 3, was constructed in accordance with the procedure used by H. C. Troxell in the report "Hydrology of Western Riverside County, California", published by the Riverside County Flood Control and Water Conservation District in cooperation with the United States Department of the Interior, Geological Survey. This map shows graphically the increase in precipitation with increase in elevation to the summit of the Coastal range, the marked decrease throughout the lower portions of the Inland Area due to the shading effect of the Coastal range, and finally another increase as distance from the shading range increases and higher ground is encountered in the northeasterly portion of the area. The map serves primarily, however, to provide a basis for the evaluation of the volume of mean seasonal precipitation on the various portions of the watershed as set forth in Table 5.

TABLE 5

ESTIMATED MEAN SEASONAL

DEPTH AND TOTAL QUANTITY OF PRECIPITATION
IN SANTA MARGARITA RIVER WATERSHED

Hydrographic Unit	Mean seasonaldepthin inches	: Precipitation : quantity in : acre-feet
ı	15.5	182,800
2	16.1	135,200
3 .	20.3	175,900
4	17.7	42,800
5	21.2	129,100
6	14.7	32,700
Average	17.6	
TOTAL		698,500

Regimen of Precipitation

Precipitation varies widely from year to year and from one period of several years to another as demonstrated by the graph on Plate 4 showing the composite accumulated departure from mean seasonal precipitation at Cuyamaca, Elsinore, San Jacinto, and Escondido. The variations at three stations within the watershed, namely Aguanga, Pauba Ranch-Station C, and De Luz, and at Elsinore and Oceanside which are closely adjacent to the boundary, are shown by the bar graphs on Plate 5, "Recorded and Estimated Seasonal Precipitation at Selected Stations". On this plate the graph for Aguanga represents a composite of records at two stations, and that for Oceanside combines records at four stations.

The records at Pauba Ranch-Station C are current and nearly continuous since 1920-21; and, since this station is centrally located within the watershed the seasonal and monthly variations in precipitation are fairly representative of the entire watershed. Records at this station, therefore, are presented in Table 6, "Recorded Seasonal Precipitation and Indices of Wetness at Pauba Ranch-Station C". The indices show that precipitation at the station has ranged, during the period of record, from 46 to 197 per cent of the mean. During the same period the range at Elsinore was from 34 to 198 per cent, and that at Oceanside from 50 to 194 per cent.

TABLE 6 RECORDED SEASONAL PRECIPITATION AND INDICES OF WETNESS AT PAUBA RANCH-STATION C

Season	: se	ecorded easonal pitation nches)	Indices of wetness, per cent		: :pr	Recorded seasonal ecipitatio (inches)	en:	Indices of wetness, per cent
1920-21 22 23 24	2 1	1.99 25.71 0.75 1.51	78 167 70 75	1939-40 41 42 43 44		16.96 28.18 15.43 17.90 14.88		110 183 100 116 97
1924-25 26 27 28 29	1 2	8.60 .9.65 .3.70 9.54 1.33	56 128 154 62 74	1944-45 46 47 48 49		12.62 ^a 11.92 ^b 10.12 ^a 7.31 11.82		82 78 66 48 77
1929-30 31 32 33 34	1 2 1	8.46 3.16 2.58 2.30 7.17	120 86 147 80 47	1949-50 51 52 53 54		8.05 7.10 21.82 9.58 12.12		52 46 142 62 79
1934-35 36 37 38 39	1 3 2	7.93 2.05 0.37 1.59 4.19	78 197 140 92	Average for period of record Mean seasoprecipitat	onal	14.96 15.36		

a. Partially estimated.b. Wholly estimated.

The extremes during periods of record at other stations are set forth in Table 3. In the watershed, the maximum recorded seasonal precipitation of 43.7 inches occurred in 1951-52 at Sky Ranch Station. At Palomar Mountain Observatory, located less than one-quarter mile outside the watershed boundary, 50.63 inches was recorded in 1951-52. The recorded minimum seasonal depth of precipitation within the watershed, 3.73 inches, occurred in 1933-34 at Pauba Ranch-Station E. The foregoing values are 160, 186, and 31 per cent of mean seasonal precipitation at the respective stations.

Maximum recorded precipitation in individual storms occurred at Santa Rosa Ranch House during the storm of February 10-17, 1927, and amounted to 22.57 inches with a daily high of 11.30 inches on February 16, 1927. The maximum recorded daily precipitation was 12.38 inches, which occurred on January 23, 1943, at Santa Rosa Ranch Gate station. This maximum occurred during the storm of January 21-25, 1943, during which precipitation totaled 13.11 inches.

As has been stated, the regimen of precipitation at Pauba Ranch Station C is considered to be representative of that throughout the watershed. The average distribution of precipitation by months at that station during the period of record is presented in Table 7. The values indicate that, on the average, 74.4 per cent of the seasonal total fell during the four-month period, December through March, and that the occasional summer storms during June, July and August produced only one and four-tenths per cent of the seasonal total.

TABLE 7

MEAN MONTHLY DISTRIBUTION OF PRECIPITATION AT PAUBA RANCH-STATION C

:	Pre	ecipitation
Month :	In inches	: In per cent of : seasonal total
July	0.02	0.1
August	0.14	0.9
September	0.21	1.4
October	0.74	4.9
November	1.07	7.2
December	3.02	20.2
January	2.50	16.7
February	3.15	21.1
March	2.45	16.L
April	1.27	8.5
May	0.33	2.2
June	0.06	0.4

TOTALS	14.96	100.0

Runoff

The Santa Margarita River extends from the confluence of Temecula and Murrieta Creeks just upstream from Temecula Canyon to the Pacific Ocean, a distance of about 30 miles. Temecula Creek, also some 30 miles long, drains about 586 square miles of valley, hill and mountain lands lying easterly from the junction. Murrieta Creek, about 13 miles long, drains 221 square miles lying to the west and north. Pechanga, Arroyo Seco, Smith, Lancaster, and Chihuahua Creeks, together with numerous smaller streams, are tributary to Temecula Creek; and Warm Springs and Santa Gertrudis Creeks are the principal contributors to the flow in Murrieta Creek. Sandia and De Luz Creeks flow directly into Santa Margarita River. The drainage area of the entire system is 742 square miles.

Streams in this watershed are of three types: intermittent, ephemeral, and perennial interrupted. Intermittent streams are those which flow during protracted periods, but not continuously, and in this watershed are typified by Cole Canyon Creek which flows generally from the advent of the first winter rains until late spring. An ephemeral stream is defined as one which flows only in direct response to precipitation, and a perennial stream is one which flows continuously. Perennial interrupted streams are those which have perennial reaches with intervening intermittent or ephemeral reaches.

The main streams of the Santa Margarita River system, of which Temecula Creek may be cited as an example, are of the perennial interrupted type. This stream contains reaches in which the flow is continuous. These reaches are typically in canyons through nonwater-bearing formations and are interrupted by ground water basins, at the upstream ends of which ordinary stream flow disappears by seepage into the sands and gravels, and at the downstream ends of which cienegas are formed. Cienegas, or points of rising water,

along Temecula Creek are located at Dodge, Oakgrove, lower Culp, Aguanga, Radec, Nigger, and Pauba Valleys. The "Hydrographic Map", Plate 6, depicts stream types within the watershed, and by width of line indicates the relative magnitudes of their typical summer flows.

Regulation of stream flow, other than the relatively minor natural regulation in the several ground water basins traversed by the streams, is effected by Vail Dam and Reservoir on Temecula Creek at Nigger Canyon, which reservoir impounds runoff from the 320 square miles of drainage area comprising Hydrographic Units 2 and 3.

Stream Gaging Stations and Records

The earliest runoff records available in the Santa Margarita River watershed were obtained in April, 1894, on Temecula Creek and Santa Margarita River. A few miscellaneous measurements were made through the following years until 1918, and an increasing number were made in the period 1918 through 1922 by the Vail Company. Excerpts from these records are reproduced in Appendix E. In January and February, 1923, three permanent gaging stations were established, another was added in 1924, and a fifth in 1930. Also established in 1930 was a water-stage recorder on O'Neill Ditch, in Rancho Santa Margarita. The five permanent stream gaging stations constitute the long record stations in the Santa Margarita River watershed. Their establishment was accelerated by need for runoff data in the water rights litigation, Rancho Santa Margarita vs. Vail, et al. All of the above stations are presently operated jointly by the Vail Company, the United States Navy, and the United States Geological Survey. Other stations, including eight stations installed during the investigational period by the Division of Water Resources, have been operated for short periods.

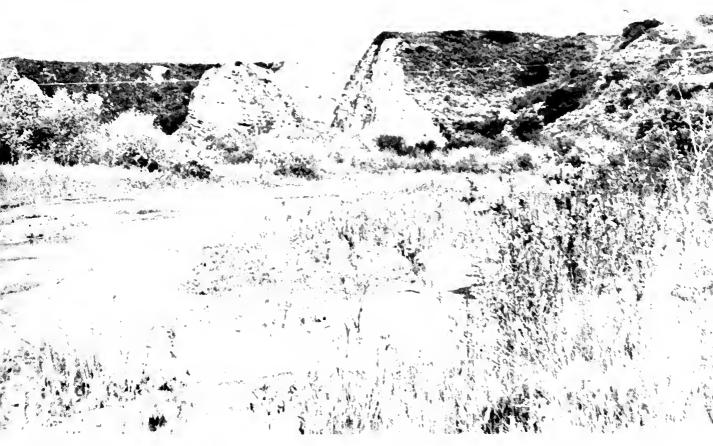
Stream gaging stations in the watershed are listed in Table 8
"Stream Gaging Stations in Santa Margarita River Watershed", together with
their map reference number, location, period of record, and source of data.
The map reference number is the stream mile designation for the particular
gaging station, which indicates the stream, or tributary, and location of the
station. The first number indicates the major stream system and the last
represents the number of miles upstream on an individual tributary. Intermediate numbers are mileages to successive stream confluences. For example,
number 93-30.1-0.4 refers to a station on a tributary of Santa Margarita River
which has its confluence located 30.1 miles upstream from the ocean, i.e.
Murrieta Creek. The station is 0.4 mile up Murrieta Creek from its confluence
with Santa Margarita River.

TABLE 8 STREAM GAGING STATIONS IN SANTA MARGARITA RIVER WATERSHED

Stream mile : reference number :		: : Location :	:Drainage: :area, in: : square : : miles :	Period of record	: : Source : of : record
93-2.6	Santa Margarita River	At Ysidora	740	1923-1955	USGS
93-11.6	Santa Margarita River	Near De Luz Station	704	June, 1925-a March, 1926	USGS
93-12.2-0.7	De Luz Creek	Near Fallbrook	45	1951-1955	USCS
93-20.5	Santa Margarita River	Near Fallbrook	645	1924-1955	USGS
93-30.0	Santa Margarita Riverb	Near Temecula	586	1923-1955	USGS
93-30.1-0.4	Murrieta Creek	At Temecula	221	1930-1955	USGS
93-30.1-3.9-0.6	Santa Gertrudis Creek	Near Temecula	88	1952 - 1954 ^a	DWR
93-30.1-4.8-0.5	Warm Springs Creek	Near Murrieta	58	1952-1954 ^a	DWR
93-30.1-9.0-0.1	Cole Canyon Creek	Near Murrieta	8.8	1952-1954 ^a	DWR
93-41.0	Temecula Creek (Santa Margarita≈ Temecula)	At Nigger Canyon	320	1923-1955	USGS
93-41.6-5.5	Lancaster Creek	Near Radec	115	1950-1951 ^a	DWR
93-41.6-11.3	Conhuila Creek (Lancaster-Conhuila)	Near Anza	80	1950-1954 ^a	D₩R
93-45-3	Temecula Creek (Santa Margarita-Temecula)	Near Radec	133	1950-1954 ^a	DWR
93-48.1	Temecula Creek (Santa Margarita-Temecula)	Below Aguanga Valley	-	1954 ^{a, c}	DWR
93-51.1	Temecula Creek (Santa Margarita-Temocula)	Above Aguanga Valley	-	1953 ^{a,c}	DWR
93-52.4	Temeoula Croek (Santa Margarita-Temeoula)	Near Aguanga	71	1950-1954 ^{a,d}	DWR
93 -5 4°C	Temeoula Creek (Santa Margarita-Temooula)	Noar Oakgrove Valley	61	1950-1954 ^{a,d}	DWR

a. Use of station discontinued.

<sup>b. Prior to October 1, 1952, United States Geological Survey referred to this station as Temecula Creek at Railroad Canyon.
c. Less than one year of record. Station location not shown on Plate 6.
d. Station not rated for storm flows.</sup>


Locations of gaging stations are shown on Plate 6, "Hydrographic Map". Records of flow at the United States Geological Survey stations are published annually by the Geological Survey in its water supply papers entitled "Surface Water Supply of the United States, Part II, Pacific Slope Basins in California". Records of flow at the Division of Water Resources stations and miscellaneous unpublished stream flow measurements are included in Appendix E to this report.

Runoff Characteristics

Runoff in streams in the watershed is derived primarily from rainfall, and as a result, stream flows exhibit monthly and seasonal variations similar to those shown by the precipitation records. Absence of snow pack in the tributary watershed results in a rapid decrease in flow of streams at the conclusion of the winter precipitation season. Following severe storms, discharge in the larger streams often increases in a few hours time from practically no flow to a rate of thousands of cubic feet per second. Stream flows vary greatly from month to month and from season to season. The erratic nature of flow in the Santa Margarita River has long been recognized, as the following quotation from an 1888 report by the California State Engineer will indicate:

"This river is no exception to the rule of light summer flow and winter torrents which is applicable to all southern California streams. In July or August, one unfamiliar with these watercourses could not suspect it of the extreme violence displayed in such winters as 1884-85, when it destroyed the California Southern Railroad for nearly twenty miles. Several thousand cubic feet per second (possibly five thousand) must have been the volume of its flow at that time, sustained for several weeks."

Seasonal natural runoff in the principal streams of the watershed has varied from a maximum of about 700 per cent of the mean to a minimum of

Santa Margarita River at Ysidra Gaging Station

April, 1954

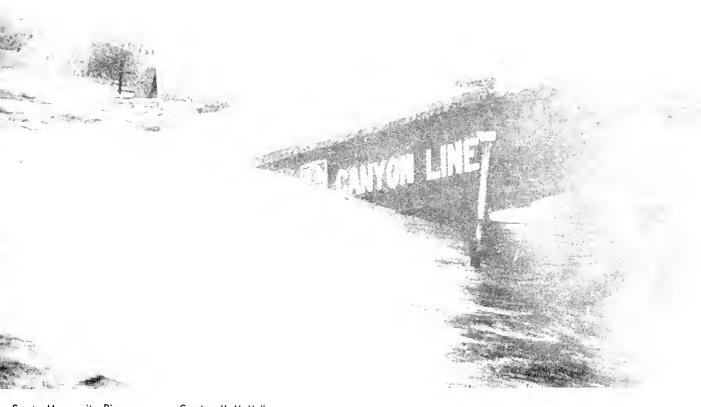
Flood of February, 1927

Courtesy H. M. Hall

		÷		
			Ţ	
À				

about 15 per cent of the mean. Seasonal variations in runoff of the area are represented by the bar graph of seasonal natural runoff of the Santa Margarita River at Ysidora presented on Plate 8. The cyclic nature of the occurrence of runoff at this station is shown on Plate 7 by the graph of accumulated departure from mean seasonal natural runoff. On this graph a downward trending line indicates a drought period with less than mean runoff, and a rising line indicates a wet period with greater than mean runoff. The maximum recorded seasonal flow at Ysidora, which occurred in the year 1937-38, was 122,000 acre-feet, but it is estimated that in 1915-16 about 280,000 acre-feet passed this point. No water passed the station in either 1949-50 or 1950-51. The monthly variation in recorded seasonal runoff for the Fallbrook station, at which summer flow is less affected by ground water pumping is shown in Table 9.

TABLE 9


AVERAGE MONTHLY DISTRIBUTION OF RECORDED
RUNOFF OF SANTA MARGARITA RIVER NEAR FALLBROOK*

37 13-	:	Runoff in	:	Per cent of
Month	:	acre-feet	<u>:</u>	seasonal total
October		410		1.7
November		640		2.7
December		1,460		6.1
January		2,950		12.2
February		7,120		29.5
March		7,390		30.7
April		2,160		9.0
May		750		3.1
June		410		1.7
July		270		1.1
August		230		1.0
September		290		1.2
TOTALS		24,080		100.0

^{*} For period 1925-26 through 1952-53.

Flood Flows and Frequencies

Major floods have caused destruction and havoc in the watershed of the Santa Margarita River since the days of earliest development. Probably the greatest known flood in the area occurred in January, 1862. Following this the next great flood, which severely damaged the railroad in Temecula Canyon, occurred in February, 1884. In February, 1891, another great flood occurred which again destroyed the railroad and caused its abandonment. Other floods occurred in this region in the years 1906, 1909, 1910, 1916, 1927, 1938, and 1943. Of these the largest was that of January, 1916, which destroyed nearly all the Atchison-Topeka and Santa Fe branch railroad line from Oceanside to Fallbrook along the Santa Margarita River. The peak flow of this stream at Ysidora was estimated by the United States Corps of Engineers to be 66,500 cubic feet per second. The greatest flood during the period of record at the stream gaging stations occurred in February, 1927, when every highway and railroad bridge along the course of the river was destroyed or made unsafe. Peak flow at Ysidora for this storm occurred on February 16, 1927, and was estimated to be 33,600 cubic feet per second. Maximum discharges of various streams in the watershed during the periods of record are summarized in Table 10.

Santa Margarita River at Highway 101, Fload af February, 1927

Courtesy H. M. Hall

Temecula Creek at Highway 395 February 18, 1927

Courtesy H. M. Hall

TABLE 10

MAXIMUM RECORDED DISCHARGES FOR STREAMS
IN THE SANTA MARGARITA RIVER WATERSHED

Stream	: Maximum discharge,: in second-feet	: Date
Temecula Creek at Nigger Canyon	17,100 ^a	Feb. 16, 1927
Murrieta Creek at Temecula	17,500	Jan. 23, 1943 ^b
Santa Margarita River near Temecula	25,000 ^a	Feb. 16, 1927
Santa Margarita River near Fallbrook	33,100 ^a	Feb. 16, 1927
Santa Margarita River at Ysidora	33,600 ^a	Feb. 16, 1927

a. By slope-area method.

In State Water Resources Board Bulletin No. 1, the probable frequencies with which floods of different magnitude will occur or be exceeded in periods of up to 250 years were estimated by the "California method" for the stream gaging stations on Temecula Creek at Nigger Canyon, Santa Margarita River near Temecula (formerly called Temecula Creek at Railroad Canyon), Santa Margarita River near Fallbrook, and Santa Margarita River at Ysidora. Graphs setting forth these estimates are presented on Plates 32 and 33 of Bulletin No. 1. The values on the graphs are presented in terms of mean daily flow in second-feet per square mile, and separate curves are drawn for one-, two-, three-, and five-day floods. Expression of flood quantities in terms of units of discharge per square mile permits direct comparison of adjacent drainage basins.

b. Record began October 1, 1930.

In the present investigation, hydrographs were developed for one in one thousand year floods for purposes of spillway design at the Fallbrook, Lippincott and De Luz dam sites. The instantaneous peak flows determined from the hydrographs are 142,000 and 164,000 cubic feet per second at the respective sites.

Quantity of Runoff

Stream flow records at the Geological Survey stations -- seasonal values for which are set forth in Appendix I, Table I-2, "Seasonal Runoff from Streams Within the Santa Margarita River Watershed, and Semiseasonal Inflow to Existing and Proposed Reservoirs" -- used in conjunction with longer records of flow in streams outside the watershed, provide the basis for estimating the natural runoff by seasons since 1894-95 at six gaging stations, and the semiseasonal inflow under present conditions to three reservoir sites. The adopted values of natural runoff in Temecula Creek at Nigger Canyon, Murrieta Creek at Temecula, Santa Margarita River near Temecula, and Santa Margarita River near Fallbrock, during the period 1894-95 through 1946-47, are those presented in State Water Resources Board Bulletin No. 1. The method of estimating natural flow at the four stations in later years, natural flow at De Luz dam site and at Ysidora since 1894-95, and semiseasonal inflow since 1894-95 to Vail, Fallbrook, and De Luz reservoirs under present conditions of development, is discussed in detail in Appendix I, following Table I-2.

Runoff in Murrieta Creek at Temecula is a direct measure of runoff from Hydrographic Unit 1. Runoff in Temecula Creek at Nigger Canyon measures the combined outflow from Hydrographic Units 2 and 3, consideration of

elevation, precipitation, and natural water losses providing the basis for allocation of the flow between the two units. Runoff from Hydrographic Unit 1 is the difference between the runoff in Santa Margarita River near Temecula and the runoff from Hydrographic Units 1, 2, and 3. Runoff from Hydrographic Unit 5 was determined by adding to the flow at the gaging station on Santa Margarita River near Fallbrook the estimated runoff from the remaining area in the unit below that station. In this area, by far the greater portion of runoff occurs in the watershed of De Luz Creek, and the estimate involved a detailed study of monthly records at the Fallbrook and Ysidora gaging stations, taking into account losses to native vegetation, depletion by diversion of surface flow and extraction of ground water, and recharge of underground basins by reservoir releases and spreading of sewage treatment plant effluent. Runoff from Hydrographic Unit 6 is the difference between the flow at the Ysidora gaging station and the previously calculated outflow from Unit 5.

Estimated values of mean seasonal natural runoff from each hydrographic unit for the period 1895-96 through 1942-43, together with the maximum and minimum seasonal runoffs, are presented in Table 11. The total mean seasonal runoff from the Santa Margarita River watershed under natural conditions was thus estimated to be 36,300 acre-feet. Utilizing methods similar to those described in Appendix I, the total mean seasonal runoff from the watershed under present (1953) conditions of development, i.e., assuming all present depletions to have been operative throughout the mean period, was estimated to be 25,200 acre-feet. This represents the total present waste to the ocean, and is the quantity of Santa Margarita River water which is presently available for salvage.

TABLE 11

MAXIMUM, MINIMUM, AND MEAN SEASONAL NATURAL RUNOFF BY HYDROGRAPHIC UNITS WITHIN THE SANTA MARGARITA RIVER WATERSHED

	:		Seaso	n	al natural	ru	noff		
Hydrographic	:	Maximu	m	:	Mini	mu		.:	Mean,
unit	:	Acre-feet:	Season	:	Acre-feet	:	Season	:in	acre-feet
1		60,300	1915-16		440		1950-51		8,600
2		23,600	1915-16		430		1950-51		3,400
3		57,000	1915-16		1,040		1950-51		8,200
4		20,100	1915-16		.0		1931-32		2,600
5		117,000	1915-16		320		1950-51	-	U, 200
6		60 -00	ca co				60 cm	-	<u>- 700</u> *
TOTAL									36,300

^{*} Net depletion.

The hydrographic units of the watershed vary considerably in slope, shape, exposure, surface mantle, and type of cover. The cumulative effects of these variable characteristics on runoff are indicated in Table 12, "Mean Seasonal Precipitation and Runoff in Santa Margarita River Watershed", in which the average depth and quantity of precipitation in each hydrographic unit and the corresponding depth and quantity of runoff are compared. Estimated mean seasonal natural runoff from the coastal slopes of Hydrographic Unit 5 represents 11.0 per cent of the mean seasonal precipitation, whereas, in the inland country of Hydrographic Unit 2 the corresponding value is only 2.5 per cent. The smallest relative runoff occurs, however, in Unit 6, adjacent to the coast, where runoff at Ysidora averages less than the estimated flow leaving Hydrographic Unit 5. Thus in Unit 6, there is a net

depletion averaging 700 acre-feet per year. This depletion is believed to result from the small total precipitation and large loss to phreatophytes on the valley floor.

TABLE 12

MEAN SEASONAL PRECIPITATION AND RUNOFF
IN SANTA MARGARITA RIVER WATERSHED

Hydrographic Unit No.	:	= -	an : onal : tation : Acre-feet	natura Depth,	seasonal : al runoff : Acre-feet	Runoff in per cent of precipitation
	<u>:</u>					1. 7
1		15.5	182,800	0.73	8,600	4.7
2		16.1	135,200	0.40	3,400	2.5
3		20.3	175,900	0.95	8,200	4.7
4		17.7	42,800	1.08	2,600	6.1
5		21.2	129,100	2.33	14,200	11.0
6		14.7	32,700		- 700**	-2.1

^{*} Net depletion.

Because of the nature of terrain, with ground water basins and areas of present and potential use widely distributed over the watershed, and the lack of recorded data suitable for the purpose, no estimate of total local water supply available for use in the watershed has been attempted. Instead, water supply values essential to the purposes of this report are developed and discussed in the later sections in which they are utilized.

Imports and Exports

Imports

The Fallbrook Public Utility District lies partly within Santa Margarita River watershed and partly within the watershed of San Luis Rey River. The District has obtained supplies of water by pumping from Bonsall Basin on San Luis Rey River, by direct diversion from Santa Margarita River, and by importation from Colorado River. Pumping from Bonsall Basin was discontinued in March, 1954, by court injunction.

Officials of the District indicate that in the past few years all of Santa Margarita River water has been used in Santa Margarita River watershed and all water from Bonsall Basin has been used in San Luis Rey River watershed. It is, therefore, assumed that on the average, as regards Fallbrook Public Utility District, there has been no net export or import between the two watersheds during the period for which data are presented herein.

Colorado River water has been imported by the District since 1947 and distributed in both watersheds. Water is conveyed to the District from San Diego County Water Authority aqueduct at Rainbow, about seven miles northeast of Fallbrook, by two roughly parallel pipe lines of 16-inch and 24-inch diameter along the route shown on Plate 25, the 16-inch line extending to Oceanside. Import from the Colorado River was estimated by deducting the supply obtained from the Santa Margarita River from the total water deliveries to the part of the District within Santa Margarita River watershed. Water deliveries to this area were estimated to be 23.8 per cent of total water deliveries to the District on the basis of a study by the District of

water sales within and outside the watershed in 1952. Import under present conditions is considered to be the average of estimated import for the period 1951-52 through 1953-54.

Other imports to the watershed are generally of small amount and for the most part were assumed to be offset by similar minor exports; however, in Diamond Valley in the northern portion of Hydrographic Unit 1, a shallow divide separates the Santa Margarita River watershed from the San Jacinto watershed, and a portion of the water used on lands within the Santa Margarita River watershed, estimated to have totaled 100 acre-feet in the 1953 irrigation season, is obtained from wells outside.

Estimated historical imports during the period 1942-43 through 1952-53, together with values which represent estimated average imports under present (1953) conditions of development in the watershed, are presented in Table 13.

TABLE 13

ESTIMATED IMPORTS AND EXPORTS
SANTA MARGARITA RIVER WATERSHED

IN ACRESTEET

	0	IMPORTS		0		٤١	PORTS		
	A CONTRACTOR OF THE PARTY OF TH	4			MOLOTARY U	SE	e e	8	-
	:COLORADO :	: :		: 01	ITSIDE WATE	RSHED	0	* °	
	: RIVER	GROUND &		3	: SEWAGE	c o	: AGR! -	SEWAGE :	
	: WATER	WATER :		•	: RETURN	ç	CULTURAL	S EXFORT :	
	: TO :	e to :			8 TO	£ c	s use	: FROM :	
SEASON	FALLBROOK:	EDE AMO HDE	TOTAL	2 GROSS	SANTA	: NET	SOUTSIDE	S WITHIN S	TOTAL
	: PUBLEC	BASEN .:		0 6	SMARGARITA	D e	:WATERSHE	DE THE S	
	: UTILITY :	¢ ¢		0	E COASTAL	0	*	SWATERSHEDS	
	2 DISTRICT			*	E BASIN	ê	:	8 .	
1942-43	0		0	530	0	530	1,030	0	1,560
=44	0		0	1;990	0	1,990	1,180	210	3,380
194445	0		0	2,170	0	2,170	1,140	330	3.640
≖46	0		0	1,930	0	1,930	1,750	370	4,050
=47	0		0	1,790	0	1,790	1,520	370	3,680
-48	580		580	2,120	0	2,120		420	4,290
≈ 49	980		980	2,350	0	2, 350	1,370	430	4,150
1949=50	880		880	2,210	140	2,070	1 . 370	410	3,850
≈5 1	980		980	2,140	680	1,460	940	280	2,680
≈ 52	230		230	2,460	810	i 650	1,080	290	3,020
=53	540	100	640	2,830	1,250	580	1,320	350	3,250
-54	760	⇒	=	=	**	**	SE.	±·	
"PRESENT	r* 500	100	600	2,200	1,000	1,200	1,300	300	2,800

[.] ESTEMATED FOR 1952-53 ONLY.

Exports

Export of water from Santa Margarita River watershed is limited to Camp Pendleton, where water has been exported since 1938. For the period 1938 until 1942, when the United States Navy acquired Rancho Santa Margarita y Las Flores, exports were for agricultural use along the coast on portions of Stuart and South Mesas, the locations of which are indicated on Plate 2-A, "Physiography". After 1942, exports for agricultural use along the coast were continued, and in addition, water was also exported for military use in various areas of the reservation. The quantities estimated to have been exported are presented in Table 13.

Portions of the water exported from the Santa Margarita River watershed for military purposes are returned to the watershed as effluent from sewage treatment plants, which is allowed to percolate in Santa Margarita Coastal Basin. On the other hand, some sewage effluent originating within the watershed is discharged directly to the ocean and some has, in the past, been exported to the San Luis Rey River watershed. Estimated historical exports of water and sewage during the period 1942-43 through 1952-53, together with values considered to be representative of present conditions are presented in Table 13.

Of the seven plants on the naval reservations, the Naval Ammunition Depot plant-serving the Depot and portions of Fallbrook-and plants 3 and 5 serve areas within the watershed; service areas of plants 2, 4, and 6 are outside; and plant 1 serves an area which was estimated to be about 25 per cent inside and 75 per cent outside the watershed.

Effluent from the Ammunition Depot plant and plant 3 has always been discharged within the watershed. Effluent from plants 1 and 2 was formerly

discharged to Pilgrim Creek in the San Luis Rey River watershed, but effluent from plant 1 has been returned to the Santa Margarita River watershed since August, 1950 and that from plant 2 since July, 1952. Plants 4, 5, and 6 discharge to the ocean through a common outfall. Since completion of the treatment plant of the Fallbrook Sanitary District late in 1954, sewage from the Fallbrook area has not been treated at the Naval Ammunition Depot plant, but the effluent is still discharged into Fallbrook Creek, a tributary of O'Neill Lake. In Table 14 are shown the amounts of effluent discharge from each of the plants since their establishment and the disposition of discharges from service areas within and outside the watershed.

TABLE 14

SEWACE TREATMENT PLANT DISCHARGES AND THEIR DISPOSITION

In Acre-Feet

ed ed To ocean	6 125 242 273 302 292 292 336 422 2,424
from service areas Outside watershed turned: Spread : to :in San : T basin : Luis Rey: oc	815 720 732 690 876 876 951 480 1480
es from service of Outside water Seturned: Spread to :in San basin : Luis R	11, 247 2,875
scharg	55 180 180 223 267 267 277 277 282 2,382
Disposition of di Within watershed pread : To : in :San Luis : asin : Rey :	1158 1112 1186 1186 1197 1197 11976
Disposi Withir Spread in basin	456 338 338 338 578 575 575 575 575 615 615 615 615 615
Total discharge	1,490 1,463 1,561 1,744 2,149 2,261 2,723 2,915 2,983
Naval : ammu- : nition : depot : plant :	7 000 p p p p p p p p p p p p p p p p p
9	234 234 234 2354 2354 261 261 261 323 323 323 323 323
	255 2200 1800 1800 223 267 267 277 289 2,382
n Plant	£ 25,50,50,50,50,50
endleton Plants	456 3628 3388 345 475 475 475 630 630 630 630
Camp P	343 383 1805 259 414 436 495 571 572 672 672 672 672 672 672 672 672 672 6
	630 44,9a 738a 738a 575 617 687 784 901 959a 959a 7,270
Season : (Oot, 1 : through : Sept, 30):	1943-44 -45 -45 -47 -49 -50 -51 -52 -53

a. Partially estimated. b. Wholly estimated. o. Not estimated.

Underground Hydrology

Valley and mesa lands, as previously indicated, comprise less than one-fourth of the area of the Santa Margarita River watershed. However, numerous bodies of ground water exist in such areas and water supplies of the Santa Margarita River watershed are regulated in some degree by storage in these ground water reservoirs.

Usable ground water supplies are found principally in the Recent alluvium of valley areas, but water is also extracted from older sedimentary formations on hill and mesa lands and to a lesser extent from fractured rock. The sources of replemishment of these ground water reservoirs are deep percolation originating in stream flow, precipitation, irrigation water, and sewage; and subsurface transfer of water from one ground water body to another. Removal of water from the reservoirs is effected by pumped extractions, by consumptive use by vegetation in areas of high ground water, by effluent discharge as rising water, and by subsurface outflow.

Terms used in the discussion of underground hydrology in this report are defined as follows:

Ground Water Basin - A pervious formation with sides and bottom of relatively impervious material in which ground water is stored. In this report, valleys filled with Recent alluvium are generally considered to constitute the basins although it is recognized that such bodies of Recent alluvium when surrounded by less pervious but still water-bearing older formations, could be termed sub-basins of a larger basin comprising both materials. The bodies of older, less permeable formations are not generally treated as ground water basins herein, because of the relatively small development of water from such material and the consequent lack of physical and hydrologic

- data. Many small bodies of Recent alluvium in the watershed, although they are basins under the above definition, have not been separately considered because of their present relative unimportance.
- Free Ground Water This generally refers to a body of ground water not overlain and confined by impervious materials, and moving under the influence of the water table slope. In areas of free ground water, the ground water basin provides storage to regulate varying amounts of replenishment with changes in ground water levels indicating changes in ground water storage.
- Confined Ground Water A body of ground water immediately overlain by materials sufficiently impervious to sever free hydrologic connection with overlying water, and moving under pressure caused by the difference in head between intake and discharge areas of the confined water body. Changes in the elevation of water in wells indicate changes in pressure rather than change in ground water storage.
- Rising Water Surface flow originating in ground water. The water surface of such an effluent stream stands at a lower level than the water table or piezometric surface of the ground water body in which it originates.
- Percolation The movement or trickling of water downward or laterally through the interstices or pores of a porous medium. Deep percolation refers to moisture which penetrates below the depths from which it can be used by plants.
- Specific Yield This term, when used in connection with ground water, refers to the ratio of the volume of water a saturated material will yield by gravity to its own volume, and is commonly expressed as a percentage. Ground water storage capacity is estimated as the product of the specific yield and the volume of material in the depth interval considered.
- Specific Capacity The number of gallons per minute produced by a pumping well, per foot of drawdown.

Drawdown - The difference between static and pumping water levels in a well, measured in feet.

Drillers' logs, water level measurements, and pumping tests at water wells and test wells throughout the area constitute a major source of basic data for the study of underground hydrology. The locations of wells and test holes or exploratory wells, where data were obtained for purposes of the investigation herein reported upon, are shown on Plates 9A and 9B, "Location of Wells". On the same plates the following materials underlying the surface of the watershed are classified on the basis of their water-bearing characteristics: materials of high permeability, composed of Recent alluvium which constitutes the principal source of ground water; materials of low permeability, composed of older alluvium, which yields limited quantities of ground water generally restricted to domestic or stock use; and generally impermeable materials composed of igneous, metamorphic, and cemented sediments which are practically nonwater-bearing, but which yield limited and very occasionally large quantities of water from joints, fractures, and highly weathered zones.

The majority of wells in the Santa Margarita River watershed are used for domestic and stockwatering purposes only, because in many areas wells of sufficient capacity for commercial irrigation cannot be developed. Elsewhere in the watershed, however, the ground water basins are the source of water supply for many individual irrigation enterprises, and in some cases support very substantial irrigation developments and extensive military operations. The 23 ground water basins which are designated as such in this report, are delineated on Plates 10 and 11, "Lines of Equal Elevation of Ground Water".

Starting in the fall of 1950, when the Division of Water Resources was appointed Referee in the case of Barbey, et al. vs. Oviatt, et al., water levels were measured in the Temecula Creek watershed which comprises

Hydrographic Units 2, 3, and 4. Measurements at most of the wells were made during the fall seasons of 1950 and 1951, and a number of wells were measured monthly. When the Santa Margarita River Investigation commenced in the summer of 1952, the well measuring program was expanded throughout the watershed. Fall and spring measurements were obtained at about 400 wells from the fall of 1952 through the spring of 1954, and the monthly program was expanded to include 40 representative wells.

Few long record water level measurements are available, but one well in Pauba Basin has been measured continuously since 1918. Also available, are measurements obtained at five wells in the Anza Basin in August, 1916, and considerable data relative to water levels in Pauba, Murrieta, and Santa Margarita Coastal basins during the period 1920 through 1927. More recent water level data relative to wells in the Santa Margarita Coastal Basin were obtained from the United States Geological Survey, and the Office of Ground Water Resources at Camp Pendleton. Recent data were also obtained from the Vail Company, and from the files of the Division of Water Resources.

Maps showing lines of equal elevation of ground water in the Spring of 1927, and in the Fall of 1953, at which times data were relatively complete, are presented herein as Plates 10A and 10B, and Plates 11A and 11B. It is believed that levels in the Spring of 1927 represent, as nearly as possible, all time high water level conditions, and that those in the Fall of 1953 were near the historic low. While levels were probably somewhat lower in the fall of 1951, records providing good coverage over the watershed at that time are not available, and hydrographs of representative wells shown on Plate 12, "Fluctuation of Water Levels at Selected Wells", indicate that the differences in water levels between Fall 1951 and Fall 1953 were not great.

Available records of depths to ground water are tabulated in Appendix G.

Geologic Investigation

The geologic investigation of the watershed included collection and analysis of previous geologic reports and maps; field mapping of the watershed with particular reference to those characteristics which affect the occurrence, storage, and movement of ground water; and collection and analysis of 405 water well or test hole drillers logs and 2 oil well drillers logs. These data were utilized in preparing Plates 13A and 13B, "Areal Geology", and Plates 14, 15, 16, and 17, "Geologic Sections", and provide the basis for Plates 2A and 2B, "Physiography".

Rocks exposed in the Santa Margarita River watershed range in age from Pre-Cretaceous metamorphic and igneous rocks, to Recent alluvium which is being deposited at the present time. The rocks are divided into two general categories: (1) a basement complex comprising Cretaceous igneous rocks of the southern California batholith, and associated Pre-Cretaceous, igneous and metamorphic rocks; and (2) the superjacent rocks, a sedimentary blanket largely composed of continental deposits transported from the neighboring highlands and deposited in the basins lying within the watershed.

They are largely of continental origin, with some Marine deposits of Quaternary and Tertiary age located in the Coastal area near the mouth of the Santa
Margarita River. No known wells penetrate the Marine sediments within the
watershed and they, as well as Tertiary rocks of continental origin, are considered to be largely nonwater-bearing.

The principal water-bearing deposits are Quaternary sediments which range in age from Pleistocene to Recent, the Recent alluvial deposits including the principal water-bearing aquifers in the region.

Recent alluvium, defined as those materials undergoing deposition, falls into three general categories: (1) Alluvial fans, (2) basin deposits, and (3) stream channel deposits. Most of the alluvial fan deposits are poorly sorted and ground water yields therefrom are comparatively low. Basin deposits consist largely of fine grained sediments of low permeability which have been laid down by overflow waters from the streams in the watershed, and these deposits, too, generally do not produce large amounts of water. Stream channel deposits contain well sorted sands and gravels and wells penetrating these coarse deposits are highly productive.

The Pleistocene sediments are composed of terraces, fanglomerates, and other alluvial deposits which have been subjected to weathering. They are of less permeable nature than the Recent alluvial deposits but there may be local phases of unweathered sands and gravels of high permeability from which locally important supplies of water can be obtained.

Table B-l of Appendix B, in which the geology is discussed in greater detail, presents the stratigraphy of the Santa Margarita River watershed, and shows the general character of the rocks and their water-bearing characteristics.

Structure of the region is complex and consists chiefly of high angle normal faults. Faulting has been continuous from at least Pleistocene time to the present. The most prominent faults are the San Jacinto fault zone, the scarp of which makes up a portion of the northeastern watershed boundary, the Aguanga and Aqua Caliente faults, whose scarps form the northeasterly boundary of the upthrust Palomar block, and the Murrieta graben, a downdrop block lying between the Willard fault zone and the Wildomar fault. The Wildomar fault effectively stops the movement of water and produces a ground water cascade. A line of springs, shown on Plate 6 along the northeast edge of Murrieta

Valley, is the result of this barrier. The fault is also believed responsible for the formation of zones of confined ground water in Pauba Valley, Santa Gertrudis Valley, and Warm Springs Valley upstream from the fault. The approximate boundaries of these areas are shown on Plates 10B and 11B. Ground water contours on the plates depict the hydraulic discontinuity at the fault.

Well Drilling Methods

The majority of water wells in the Santa Margarita River watershed are drilled by the standard portable cable tool or hydraulic rotary methods, the cable tool method being somewhat more common. Many of the older wells, however, are hand-dug wells of large diameter and shallow depth, the yield being usually adequate for domestic purposes only.

Most of the drilled wells are cased with steel casing, which is perforated opposite the coarser materials. Many wells have been gravel packed to provide a large percolating surface in fine water-bearing materials and to prevent such materials from entering the perforations and clogging the wells.

In areas where ground water is extracted from residuum, which is usually of shallow depth and does not readily yield water, wells of large diameter are often used. These are usually drilled with a power auger, or "cesspool rig", are about three feet in diameter, and are encased with sections of concrete pipe for the top few feet only. Lateral auger holes are often drilled radially outward near the bottom of such wells. These laterals conduct water into the well and materially increase the yield. Wells of this type within the watershed are largely located in the vicinity of Fallbrook.

Ground Water Basins

As mentioned previously, 23 ground water basins have been delineated

on the ground water contour maps, Plates 10 and 11. To a degree depending upon the extent of present development and consequent availability of information, the following items were obtained for each basin: location and description; geologic characteristics; storage capacity; water level records; source of replenishment and direction of movement of ground water; and characteristics of water wells. Methods and procedures utilized in preparing estimates of specific yield of water-bearing formations and storage capacity of ground water basins are described in Appendix B. Ground water basin information and data are summarized in Table 15, "Ground Water Basin Data". Anza, Murrieta, Pauba, and Santa Margarita Coastal basins are more fully discussed in the following paragraphs.

TABLE 15

GROUND WATER BASIN DATA

			3 APPROXIMATE			:ESTIMATED:			
	AREA, :		ACTIVE WELLS		WELL	STORAGE		WATER-BEARING	
SAS: N	ACRES	ELEVATION, IN FEET	S News	60	SHEPORTED,	CAPACITY,	TRIBUTARY STREAMS	FORMATIONS	014 EM BALA
			OVER		2		S A STILL OF THE STATE OF THE S		
DI AMO NO	2,600	1,530-1,820	01 0	9	1,130	26,800	WARM SPAINGS CREEK	RECENT ALLUVIUM	
DOME NI GONI	3,000	1,440-1,530	2	თ	006	16,700	WARM SPRINGS CREEK	RECENT ALLUVIUM	GEOLOGIC SECTION 8-8"
FRENCH	3, 000	1,320-1,460	4	œ	061	6,860	TRIBUTARY OF WARM Springs Greek	RECENT ALLUYIUM AND SLIGHTLY DISSECTED OLDER ALLUYIUM	
LOS ALAMOS	1,700	1,320-1,480	2	so.	240	7,520	TUCALOTA GREEK	RECENT ALLUVIUM AND SLIGHTLY DISSECTED OLDER ALLUVIUM	HYDROGRAFN OF WELL 7S/ZW-8A1 JUST OUTSIDE BASIN
MURRIETA	4,400	980-1,160	23	85	700	136,000	COLE CANYON, WARM SPRINGS, SANTA GERTRUDIS, AND MURRIETA CREEKS	RECENT ALLUVIUM UNDERLAIN BY OLDER ALLUVIUM	GEOLOGIC SECTIONS A-A" AND K-K" HYBROGRAPH OF WELL 7S/3W-16N5
SANTA GERTRUDIS	580	1,040-1,100	4	ιΩ	1,310	6,460	SANTA GERTRUBIS CREEK	RECENT ALLUVIUM UNDERLAIN BY OLDER ALLUVIUM	GEOLOGIC SECTION J-J'
TUCALOTA	260	2,220-2,440	9	S	260	585	TUCALOTA CREEK	RECENT ALLUVIUM	
Wi LBOMAR	290	1,160-1,260	9	21	360	13,500	MURRIETA CREEK	RECENT ALLUXIUM UNBERLAIN BY OLDER ALLUVIUM	
						HYDR	HYDROGRAPHIC UNIT 2		
ANZA	5,700	3,800-4,400	9	31	550	34,100	COARUILA AND HAMILTON CREEKS	RECENT ALLUVIUM	GEOLOGIC SECTION C-C' HYBROGRAPH OF WELL 75/3E-21J1
LOWER COARUILA 1,300	1,300	3,350-3,550	0	S.	25	2,600	COAHUILA GREEK	RECENT ALLUVIUM	

GROUND WATER BASIN DATA (CONTINUED)

80 01			SAPPROXIMATE	MATE	: : NIA XE MIIM	ESTIMATED:			
	AREA.		ACTIVE WELL	WELLS	. WELL	STORAGE :	MAR N	. WAYER-BEARING	• 01
8 S S S S S S S S S S S S S S S S S S S	ACRES	ELEVATION,	5 H.P.	OTHERSORE	PORTER.	CAPACITYS:	H R 8 8 8 8		S OTHER DATA
						HYDRO	HYDROGRAPHIC UNIT 2 (CONTINUED)	NUED }	
LOWER LANCASTER	480	1,480-1,600	က		370	5,840	LANCASTER GREEK	RECENT ALLUVIUM UNDEFFERENTIATED UPPER PLEISTOCENE SEDRMENTS	HYDROGRAPH OF WELL 8S/1E-7N;
UPPER COAHULLA	012	3,550-3,800	0	4	:	190	COAHUILA CREEK	RECENT ALLUVIUM	
UPPER LANCASTER	460	1,640-1,880	-	က	96	3,060 e	LANCASTER CREEK	RECENT ALLUVIUM UNDER-	GEOLOGIC SECTION F-F" HYDROGRAPH OF WELL 8S/IW-13QF
						HYDRÖ	HYDRÖGRAPHIC UNIT 3		
AGUANGA	1,200	1,800-2,200	7	κ	8 4	35,200	COTTONWOOD AND TEMECULA CREEKS	RECENT ALLUVIUM UNDER— "GEOLOGIC SECTION E-E" LAIN BY UNDIFFERENTIATED UPPER PLEISTOCENE SEDIMENTS	GEOLOGIC SECTION E-E"
00 D G E	4,000	2,880-3,300	2	2	7.0	3,220	KOHLER CANYON AND TEMECULA CREEKS	RECENT ALLUVIUM	
LOWER CULP	019	2,320-2,800	0	က	25-30 (estimated)	630	TEMECULA GREEK	RECENT ALLUVIUM	
NI GGER	310	1,480-1,560	5	0	•	8,100	TEMECULA CREEK	RECENT ALLUVIUM UNDER- LAIN BY UNDIFFERENTIATED UPPER PLEISTOCENE SEDIMENTS	GEOLOGI C SECTION F-F'
OAKGROVE	2,000	2,720-3,200	-	<u>-</u> 3	06	11,200	CHIHUAHUA AND Temegula Creeks	RECENT ALLUVIUM	GEOLOGIC SECTION 0-0' HYBROGRAPH OF WELL 9S/2E-+6F1

GROUND WATER BASIN DATA (CONTINUED)

	••		: APPROXIMATE : NUMBER OF	ì	: MAXEMUM	:EST?MATED:		** **	
BASIN	AREA, :	ELEVATION, IN FEET	: ACTIVE WELLS :5 H P.: : OR :OTHER : OVER :	WELLS:	WELL : YIELD : REPORTED;	: STORAGE : CAPACITY; IN : ACRE-FEET:	MAIN TRIBUTARY STREAMS	MATER-BEARING FORMATIONS	OTHER DATA
						HYDRD	HYDROGRAPHIC UNIT 3 (CONTINUED)	1050)	
RADEC	130	1,600-1,720	u-ma	ო	S S	555	TEMECULA GREEK	RECENT ALLUVIUM UNDER- LAIN BY UNDIFFERENTIATED UPPER PLEISTOCENE SEDIMENTS	
						HYDRO	HYDROGRAPHIC UNIT 4		
Pauba	3,000	1,020-1,300	0	4	1,750	28,600 (UNCON- FINED ZONE)	TEMECULA GREEK	RECENT AL LUVIUM UNDER- LAIN BY OLDER ALLUVIUM	GEOLOGIC SECTIONS G-G" AND H-H" HYDROGRAPH OF WELL 8S/2W-12HI
PECHANGA	2,200	960-1,320	-	ო	340	28,200	PECHANGA AND TEMECULA CREEKS	RECENT ALLUVIUM UNDER- LAIN BY OLDER ALLUVIUM	HYDROGRAPH OF WELL 8S/2W-28CI
						НУВВО	HYDROGRAPHIC UNIT 5		
RAI NBOW	450	1,020-1,160	_	56	75	335	RAI NBOW CREEK	RECENT ALLUVIUM	HYDROGRAPH OF WELL 9S/3W-1Q1
						HYBRO	HYDROGRAPHIC UNIT 6		
SANTA MARGARITA COASTAL: SUB-BASINS:	COASTAL:								
UPPER	860	80-140	က	0	1,580	9,200			HYDROGRAPH OF WELL 10S/4W-7JI
CHAPPO	2,240	40-80	ιΩ	0	1,800	13,600			HYDROGRAPHS OF WELLS 108/5W-1331
YSIBORA	001	10-40	ιω	01	00671	1,200			HYDROGRAPH OF WELL [] S/5W-2E;
	4,200	10-i 40	<u>-</u>	0	1,980	24,000	SANTA MARGARITA RIVER	RECENT ALLUVIUM	GEOLOGIC SECTION L-L'

Anza Basin. Ground water conditions in this basin were reported by Gerald Waring in United States Geological Survey Water Supply Paper 429 entitled "Ground Water in the San Jacinto and Temecula Basins, California", published in 1919. At that time the area was known as Babtiste Valley. The hydrograph for one of the wells reported in the water supply paper, 75/3E-21J1, is presented on Plate 12. The reported measurement of August, 1916, plotted on the hydrograph, indicates that ground water levels have changed but slightly since that time, recent August measurements of depths to water in the same well being only three to seven feet greater than in August, 1916. Comparison of records from other wells in the basin indicates that, on the average, water level elevations in 1953 were slightly, but not appreciably, lower than in 1916.

Ground water contours indicate that movement of water is generally toward Coahuila Creek; however, the slope of the water table in the narrow southeast extension of the basin is very flat, thus indicating little, if any, movement in that area. Water levels in the northwest portion of the basin exhibit a discontinuity of as much as 140 feet. This effect, which is depicted on Plate 11B showing ground water contours for fall 1953, is apparently the result of a northeast trending fault through the Basin.

Alluvial materials filling Anza Basin are relatively fine, and water well yield is generally small. Of the 37 active wells in the Basin, a number have been tested at rates up to 100 gallons per minute, but many have yields of less than 25 gallons per minute. The four best wells, located in the central portion of the basin, are used for irrigation and have yields of 100 to 500 gallons per minute. The best of these has a specific capacity of 13.7. Other wells tested have specific capacities ranging between 0.2 and 6.7. At least one well in the basin has exhibited pressure characteristics.

Murrieta Basin. This basin is located in the central portion of Murrieta graben which also includes Wildomar and Pechanga Basins. The basin area is limited by the extent of Recent alluvium, which is bounded on the northeast and southwest by older alluvium and is generally 100 to 125 feet in depth. This formation is underlain by older alluvium, in which there are numerous permeable lenses as indicated by geologic section K-K' through Murrieta Valley shown on Plate 17. The variable character of valley fill is further indicated by the fact that some wells in the central portion of the valley have exhibited pressure characteristics. These effects are believed to be the result of local confining lenses of limited extent. In the portions of Murrieta Basin which lie northeast of Wildomar fault, and in Santa Gertrudis Basin, which is separated from Murrieta Basin by the fault, the barrier effect of the fault results in well defined pressure characteristics in more extensive confined aquifers.

Logs of wells drilled in Murrieta Basin bear no notation that bedrock was encountered. However, the log of the Vernard No. 1 oil test well 7S/3W-21H1, outside the basin, indicates that bedrock was reached at a depth of 2,450 feet. Because this well is not located in the Murrieta graben, but in a higher block northeast of Wildomar fault, the depth of older alluvium in the graben southwest of the oil test well is believed to be in excess of 2,500 feet. The difference in elevation of bedrock across Wildomar fault is depicted on geologic section A-A; on Plate 14.

Well measurements in Murrieta Basin are available for the period 1925 through 1927 and for the period of this investigation. Ground water contour maps for spring 1927 and fall 1953 show little change in water surface elevation. The hydrograph of well 7S/3W-16N5 on Plate 12 depicts the fluctuation during the period of investigation.

Streams supplying Murrieta Basin include those draining the north slope of Santa Rosa Plateau, and Warm Springs, Santa Gertrudis, and Murrieta Creeks. Ground water moving down the valley causes rising water of about one-half cubic foot per second in Murrieta Creek at Temecula.

Of the 105 active wells located in Murrieta Basin, 23 are equipped with pumps of five horsepower or greater. Of the better wells tested 13 yielded 100 to 300 gallons per minute. Drawdowns averaged about 60 feet and specific capacities ranged from two to ten and averaged about five gallons per minute per foot of drawdown.

Pauba Basin. Pauba Basin is located in Pauba Valley which was eroded into a large body of older alluvium by Temecula Creek. The Basin, as considered herein, is limited in areal extent to the valley floor and is separated from Pechanga Basin by the Wildomar fault.

Basin fill is composed of Recent alluvium underlain by older alluvium. Depth to basement rock is known at only one location in the Basin, namely, at well 8S/2W-12Hl which is known locally as the "windmill" well. At this well bedrock was reached at a depth of 510 feet. However, well 8S/2W-17Ml, closely adjacent to the Basin near its downstream boundary, was drilled to a depth of 2,47l feet without reaching basement complex. Probable depth to bedrock in the basin at its downstream boundary is, therefore, in excess of 2,500 feet.

The Recent alluvium constitutes a free ground water zone tapped by relatively shallow wells ranging in depth up to 250 feet. In the downstream three-fourths of the Basin, ground water in the deeper older alluvium is confined by a bed composed largely of clay and sandy clay, with small lenses of sand and gravel. As discussed later in the section on water quality,

characteristics of water from the zones above and below the confining bed are distinctly different. Separate sets of ground water contours for the free ground water zone and for the confined zone are shown on Plates 10B and 11B. Because measurements at pressure wells during spring 1927 and fall 1953 were insufficient for the purpose, the lines of equal elevation of pressure levels shown are those for March, 1926, and January, 1954, at which times conditions were not far different from those of spring 1927 and fall 1953.

Storage capacity of the free ground water zone is estimated to be 52,000 acre-feet, and of this, 28,600 acre-feet is considered to be usable. The older alluvium which underlies the Recent alluvium in the basin as herein delimited, is apparently contiguous with similar formations on both sides of the valley. Since a major part of the underlying formation appears to be under pressure, and available data are insufficient to determine the extent and capacity of the entire body, an evaluation of these factors for the portion underlying the Recent alluvium would be meaningless. The limited available data indicate, however, that the older alluvium is deep and contains interfingering lenses of sediments, some of which are moderately permeable. In effect these lenses constitute conduits through which ground water either may escape from or enter the Basin, as herein delimited, depending upon the ground water gradient at any particular time. Because of the irregular shape of the lenses, their heterogeneous composition, and unknown areal extent, the evaluation of leakage through them becomes a complex problem and no evaluation was attempted in this investigation.

Water levels at the windmill well have been recorded during the period 1918 through 1955. The well has flowed at times following periods of heavy runoff in Temecula Creek, but its level fluctuates directly with that at a shallow well nearby, 8S/2W-12H2. Fluctuations at well 8S/2W-11J1, about one mile downstream, are similar to those at the windmill well, although the

decline from 1945 to 1952 was only 18 feet as compared with 46 feet at the windmill well. At well 8S/2W-2OE1, which represents conditions in lower Pauba Basin as well as in Pechanga Basin, water levels changed but seven feet in the same period. The hydrograph of the windmill well (8S/2W-12H1) shown on Plate 12, "Fluctuation of Water Levels at Selected Wells", represents generally the regimen of water table fluctuation in Pauba Basin, even though it exhibits pressure characteristics at times. The magnitude of the fluctuations, as indicated above, decreases generally with distance downstream. The lack of response to the floods of early 1952, and the sharp rise in 1953--about five feet at the windmill well-- are believed to be due to the holding back of flood water in Vail Reservoir and its later release for irrigation.

Well yields of up to 1,750 gallons per minute with specific capacities up to 70 have been obtained from shallow wells in the Basin. At present there are four flowing wells in the Basin, 8S/2W-15Cl, 16Al, 16Gl, and 17Gl. Well 8S/2W-17Ml, the deep exploratory well previously mentioned as being just outside the Basin, is also artesian. Natural flow in 17Ml was measured at 400 gallons per minute before it was test pumped, and with a test pump installed it produced 2,326 gallons per minute with a specific capacity of 20.3. All of the artesian wells except 17Ml were drilled in 1903-04 and were reported to have flowed at a rate of about 200 gallons per minute in 1915. Well 15Cl was flowing at a rate of 210 gallons per minute in January, 1951.

Santa Margarita Coastal Basin. Santa Margarita Coastal Basin is located in the valley of the lower Santa Margarita River on Camp Pendleton. The valley is an irregularly shaped flood plain bounded by hills of largely nonwater-bearing rocks, the same material extending under the Recent alluvium of the valley to form the sides and bottom of the ground water basin. The downstream boundary of the Basin is defined by the location of the Ysidora stream gaging station in Ysidora Narrows. Two other constrictions divide the Basin into three sub-basins, herein called, in downstream order: Upper, Chappo, and Ysidora Sub-basins.

The three Sub-basins are filled with alluvium varying in maximum depth from about 170 feet in Upper Sub-basin to about 200 feet in Chappo and Ysidora Sub-basins. Ground water in Upper and Chappo Sub-basins is essentially unconfined, although some wells in each have exhibited pressure characteristics. This is believed to be the result of lenses of relatively impermeable sediments interspersed among the permeable materials. The pressure characteristics are more pronounced, however, in Ysidora Sub-basin, and ground water therein may be described as semi-confined. Well logs shown graphically

on Plate 17 indicate the manner in which the proportion of fine sediments increase in the downstream direction. In Ysidora Sub-basin the "upper member" delineated on the geologic section, contains a large proportion of the tighter materials, and consequently the "lower member" is the main source of water in that area.

Total storage capacity of Santa Margarita Coastal Basin is estimated to be 61,600 acre-feet of which 24,000 acre-feet is usable. The latter amount is predicated on the assumption that the upper 10 feet of storage throughout the basin cannot be considered as available under full development, and that storage below 100 feet depth or below sea level is unusable. The estimated usable capacities of Upper, Chappo, and Ysidora Sub-basins are 9,200, 13,600, and 1,200 acre-feet, respectively.

Utilizing values derived by the procedure described in Appendix B, graphs relating storage capacity to depth, as shown on Plate 18, were prepared. From these graphs, the amount of ground water storage capacity which could be developed by drawing the ground water levels down to any particular depth, can be estimated. Thus, if the ground water level in Upper Sub-basin were drawn to an average depth of 100 feet below ground surface, about 12,000 acre-feet of storage capacity would be developed below ground surface. If the capacity in the top 10 feet, or about 2,800 acre-feet were ignored, a net storage capacity of 9.200 acre-feet would result.

Recharge of Santa Margarita Coastal Basin is primarily by deep percolation of precipitation falling directly on the Basin surface and by deep percolation of runoff in the Santa Margarita River. Most of the time in the past there has been relatively little space available in the ground water Basin to receive percolation. Because of the low water table conditions in December, 1951, opportunity for percolation was probably greater than it has

been at any other time. Daily stream flow records indicate that 7,800 acrefeet of stream runoff in the Santa Margarita River percolated into and recharged the Basin during the period December 30, 1951, through January 18, 1952. From January 19 through January 30, 1952, the outflow from the Basin at Ysidora gaging station exceeded the inflow, and the accumulated excess outflow during this latter period amounted to 1,500 acre-feet. Replenishment to the Basin from the stream flow between December 30, 1951, and January 30, 1952, was thus approximately 6.300 acre-feet. The daily discharge records for this period were used to construct the percolation diagram of Plate 19, "Relation-ship Between Discharge of Santa Margarita River and Percolation in Santa Margarita Coastal Basin".

The percolation diagram of Plate 19 is based on the assumption that flow in the stream is in accordance with the Manning formula, and that the rate of percolation is directly proportional to the wetted area. With the slope of the line thus established as three on eight on log-log paper, the daily discharge records obtained during the above period were utilized to estimate the position of the line which is believed to best represent the average percolation rate which would probably result from a given rate of flow.

Depths to water in wells in the Santa Margarita Coastal Basin were measured extensively during the period 1920 through 1927 and since 1950. A few other measurements are available for the period 1943 through 1949. Ground water conditions in the basin are depicted on the ground water contour maps, Plates 10A and 11A, and by hydrographs of five wells on Plate 12, "Fluctuation of Water Levels at Selected Wells". Profiles of historical ground water levels along a section roughly paralleling the river are shown on Plate 20.

It is believed that water levels in August, 1951, (Plate 12) were

at the all time low. In Upper and Chappo Sub-basins the lowest static water level elevations during that month were 18 feet below ground surface, and in Ysidora Sub-basin the minimum elevation was 29 feet below ground surface. These minima in Upper and Chappo Sub-basins are approximately 10 feet lower than those of December, 1925, and the corresponding difference in Ysidora Sub-basin is about 23 feet. At the all time high in the spring of 1927, ground water levels throughout the Basin were within a few feet of ground surface. These comparisons indicate the relatively small magnitude of fluctuation of the water table and the correspondingly small use that has been made of available storage capacity in Chappo and Upper Sub-basins.

Results of available pumping tests made in Santa Margarita Coastal Basin are summarized in Table 16.

TABLE 16

SANTA MARGARITA COASTAL BASIN WATER WELL YIELDS

Sub-basin	: Number : wells : tested	\$ Average yield of wells, in gpm	:	Specific capacity
Upper	2	200-350		3.8-7
Upper	1	1,980		220
Chappo	14	600-900		19-50
Chappo	2	1,600		97-121
Chappo	1	1,800		31
Ysidora	7	1,800		100

Quality of Water

The principal objectives of the water quality investigation of the Santa Margarita River watershed were determination of quality of the surface and ground waters with respect to their suitability for the various beneficial uses and determination of the presence and source of degradation thereof if any.

Data utilized in the determination of quality of water included 150 complete and 33 partial mineral analyses of surface waters, 280 complete and 759 partial mineral analyses of ground waters, and 47 complete mineral analyses of spring waters. Most of the complete mineral analyses were of samples collected during the course of this investigation. Most of the partial analyses were made by the United States Navy to monitor sea-water intrusion in Santa Margarita Coastal Basin.

Complete mineral analyses include determinations of concentration of four cations, namely, calcium, magnesium, sodium, and potassium; five anions, namely, carbonate, bicarbonate, chloride, sulfate, and nitrate; total dissolved solids; boron; and computations of per cent sodium and total hardness. The more recent analyses generally also include the determination of fluoride ion concentration. For the most part the partial analyses include determinations of chloride ion concentration and total dissolved solids only.

All available mineral analyses are reported in four tables in Appendix H. In Tables H-1 and H-2, respectively, analyses of spring waters and surface waters are presented, both by hydrographic units. In Tables H-3 and H-4, respectively, complete and partial analyses of ground waters are shown by hydrographic units and basins.

The locations of springs are shown on Plate 6, and well locations appear on Plates 9A and 9B. Locations of stream sampling points may be

determined by interpolation between stream mile readings shown on Plate 6.

The terms used in connection with the discussion of quality of water in this report are defined as follows:

- Quality of Water--Those mineral characteristics of water affecting its suitability for beneficial uses.
- Degradation -- Any impairment of the quality of water due to causes other than disposal of sewage and industrial wastes.
- Pollution---Impairment of the quality of water by sewage and industrial waste to a degree which does not create a hazard to public health but which adversely and unreasonably affects such water for beneficial uses.
- Contamination -- Impairment of the quality of water by sewage or industrial wastes to a degree which creates a hazard to public health through poisoning or spread of disease.
- Hardness--A characteristic of water which causes coagulation of soap, increased consumption of soap, deposition of scale on boilers, injurious effects in some industrial processes, and sometimes objectionable taste; and which is due in large part to the presence of salts of calcium, magnesium, and iron.
- Character of Water—The predominant cation and anion identify the character of water. For example, a water with a sodium-bicarbonate (Na-HCO₃) character contains sodium and bicarbonate ions in excess of 50 per cent of the total cations and anions, respectively.

Water Quality Criteria

Investigation and study of the quality of surface and ground waters of the Santa Margarita River watershed, as reported herein, is limited to the consideration of the mineral constituents of the waters, with particular reference to their suitability for irrigation use. It is noted, however, that,

within the limits of the mineral analyses herein reported, a water which is suitable for irrigation may also be considered as either being generally suitable for municipal and domestic uses, or susceptible to such treatment as will render it suitable for those purposes.

The factors which were used as a guide in determining suitability of water for irrigation use comprise the following: (1) chloride concentration; (2) total dissolved solids, as measured by electrical conductance; (3) boron concentration; and (4) per cent sodium.

The significance of these factors is as follows:

- 1. The chloride ion is usually the most troublesome element in irrigation water. It is not considered essential to plant growth, and excessive concentrations will inhibit growth.
- 2. The amount of total dissolved solids, as indicated by electrical conductance (EC \times 10⁶ at 25°C), furnishes an approximate indication of the over-all mineral quality of the water. The presence of excessive amounts of total dissolved salts in irrigation water will reduce crop yields. Total dissolved solids in parts per million approximate seven-tenths of the electrical conductance.
- 3. Crops are sensitive to boron concentration, but require a small amount (less than 0.1 part per million) for growth. Most plants will not tolerate more than 0.5 to 2 parts per million of this constituent.
- 4. Per cent sodium reported in the analyses is the ratio of the sodium cation to the sum of all cations and is obtained by dividing sodium by the sum of calcium, magnesium, potassium, and sodium, all expressed in equivalents per million, and multiplying by 100. Water containing high per cent sodium has an adverse effect upon the physical structure of the soil by dispersing the soil colloids and making the soil "tight", thus retarding movement

of water through the soil, retarding the leaching of salts, and making the soil difficult to work.

Various criteria have been developed to classify waters with respect to their suitability for irrigation. The following excerpts from a paper by Dr. L. D. Doneen of the University of California at Davis include a classification utilized herein for irrigation waters.

"Because of diverse climatoligical conditions, crops, and soils in California, it has not been possible to establish rigid limits for all conditions involved. Instead, irrigation waters are divided into three broad classes based upon work done at the University of California, and at the Rubidoux, and Regional Salinity laboratories of the U. S. Department of Agriculture.

"Class 1. Excellent to Good--Regarded as safe and suitable for most plants under any condition of soil or climate.

"Class 2. Good to Injurious--Regarded as possibly harmful for certain crops under certain conditions of soil or climate, particularly in the higher ranges of this class.

"Class 3. Injurious to Unsatisfactory--Regarded as probably harmful to most crops and unsatisfactory for all but the most tolerant.

"Tentative standards for irrigation waters have taken into account four factors or constituents, as listed below:

Factor	Class 1 Excellent to good	Class 2 Good to injurious	Class 3 Injurious to unsatisfactory
Conductance (E.C.xlo ⁶ at 25°C)	Less than 0.5 Less than 60	60 - 75 5 - 10	More than 3000 More than 2.0 More than 75 More than 10

As a result of recent research by Dr. Doneen, he has suggested the use of a factor which he terms effective salinity, in lieu of total dissolved solids as measured by "conductance" in the foregoing standards. The suggested procedure takes cognizance of the fact that as the soil solution becomes concentrated due to the removal by plants of only a small percentage of the total

salts occurring in the irrigation water, certain of the salts will precipitate out, leaving only the more soluble salts in the soil solution. These soluble salts constitute the effective salinity.

Insofar as this factor is concerned, he tentatively classifies irrigation water as follows, the effective salinity being expressed in parts per million:

	Effective	Salinity	for Class
Soil Conditions	I	II	III
Little or no leaching can be expected Some leaching, but restricted Open soils with easy deep percolation	165 275 385	165-275 275-550 385-825	275 550 825

The effective salinity of each of the waters for which analyses are presented in this report has not been determined, but review of the records indicates that generally the classification of irrigation waters as determined by the original Doneen standards would not materially change if the same waters were subjected to classification utilizing effective salinity.

Probably the most widely used criteria for determining the suitability of water for domestic and municipal use are the "United States Public Health Service Drinking Water Standards, 1946", which have been adopted by the California State Department of Public Health. These Standards establish mandatory limits for certain mineral constituents, and non-mandatory but recommended limits for others. The mandatory limits, in parts per million, are as follows:

Lead	0.1
Fluoride	1.5
Arsenic	0.05
Selenium	0.05
Hexavalent chromium	0.05

Non-mandatory, but recommended limits are as follows:

Copper	3.0
Iron and manganese	
together	0.3
Magnesium	125
Zinc	15
Chloride	250
Sulfate	250
Phenolic compounds in	
terms of phenol	0.001
Total solids, desirable	500
permitted	1000

Total hardness is a significant factor in the determination of the suitability of a water for domestic and municipal use. Waters containing 100 ppm or less of hardness (as CaCO₃) are considered as "soft"; those containing 101 to 200 ppm are considered as "moderately hard"; and those with more than 200 ppm are considered "very hard".

The relationship of infant methemoglobinemia to nitrates in water supply has led to recommendations that limitations be set for nitrates in drinking water. The California State Department of Public Health has recommended a tentative limit of 10 parts per million nitrate nitrogen as N (44 parts per million nitrate as NO₃) for domestic waters. Any water containing higher nitrate concentrations may be considered to be of questionable quality for domestic and municipal use.

It should be noted that no bacterial analyses have been made, and discussion herein of suitability of waters for domestic and municipal purposes is limited to considerations of mineral quality.

Quality of Surface Waters

Surface waters in the Santa Margarita River watershed are generally of good mineral quality and suitable for prevailing beneficial uses. The 150 complete and 33 partial mineral analyses of surface waters are presented in

Appendix H, Table H-2. Typical mineral analyses, selected from Table H-2, are presented in Table 17. Variations in quality occur both areally and with rate of stream flow. Ranges in the mineral constituents, variations in character, and the irrigation classification of samples are presented in Table 20 "Summary of Mineral Analyses of Surface Waters".

			Dis-	ECx106	# # # # # # # # # # # # # # # # # # #		Mineral	consti	constituents	in equi	parts per equivalents	parts per million ivalents per million	lon	•• •• ••	64 00 €0 E4	 щ	Total: dis- :h solved:		Per cent
o tream	aru maanc	Tineb	second-:	25°C		င် အ	Mg	Na.	×	603	нсоз ;	sort :	0.1	NO3	 E	s: add	solids,:	CaCO3,	so-
						型	Hydrographic Unit	hie Uni	1										
Cole Canyon Creek	93-30.1-9.0-0.1	1-25-54	23	149	2.6	10	05.0	10	0.06	;	43	15	1t 0°t	0.12	0.3	0.01	132	50	30
Murrieta Creek	93-30.1-0.4	6- 4-54	ئ سا	1,266	9°4	44	15	196 8.53	15	•	256 4°2	76	223	φ°00	9°0	ተ •0	743	171	69
Santa Gertrudis Creek	93-30.1-3.9-0.6	1-25-54	35	9.	7.0	8 0.4	3.25	5.23	0.06	9 0	31 0.5	10	200	60°0	0.0	0.01	103	32	5∤7
Warm Springs Creek	93-30.1-4.8-0.5	2-27-53	0.12	1°0η0″ι	7.9	38	11 0.89	169	1	6	140	80	216	2 0.03	ţ,	1.05	586 ^d	140	73
		3~22~54	110	417	2.6	28 1.4	8 0.67	1.73	4 0°09	0	29	50 1.05	50 1.4	50.00	0.1	0.03	306	104	54
						H	Hydrographic Unit 2	hic Uni	1 5										
Coahuila Creek	93-41.6-11.3	12- 9-53	0.17	9	8°°	140	13	3.19	0,11	8	165	83	6.7	40.07	ħ°0	0.1	419	155	50
Lancaster Creek	93-41,6-5,5	11-21-50	0.28	3,410	8.6	3.0	33	250	9 0	9	244	247 5° 14	220	th 0°00	0	0°0	936ª	285	49
Wilson Creek	93-41.6-7.2-1.8	5-34-54	0.19	1,321	8.3	126	3,25	125 5.43	0.17	9	386	257 5.35	3.35	3 0°04	9.0	0.1	756	478	36,
						H	Hydrographic Unit	ohis Uni	1t 3										
Arroyo Seco Creek	93-41.1-1.7	4-8-54	5e	357	8.1	35	00,90	34,0	3 0.07	tı I	149 2,45	41	32	90°0	ቲ•0	0.1	282	132	35
Chihuahua Creek	93-55.1-4.0	1-10-51 1730	0°05	2,130	8.1	234	92 7.50	230	3	9	330	802	195	3 0.05	1	0,1	1,751 ^d	096	34
Temecula Creek	93~45°0	3-22-54	350	135	7.3	16	0,2	0.39	3.08	010	6 1	0.31	2 000	10.02	100	0.01	116	50	27
	93-45.2	11-30-51	0.50	1,920	8.3	250 12.5	0,2	$\frac{210}{9.12}$	1	1	486 7.8	470 9.80	160	0.03	ý g	0,2]	1,337 ^d	635	142

TYPICAL MINERAL ANALYSES OF SURFACE WATERS $^{\mathbf{a}}$ (continued)

Stream	: Stream mile	Date charge, at Time second-: 25°C	Dis- charge, second- feet	Dis- ECxlo6; larges; at scond-: 25°C;	Hd	g 0	Mineral Mg	consti	Mineral constituents in eq.	nbe ut	in parts per mi	parts per million equivalents per million	10n 11110n Cl :	NO ₃	E mdd		: Total : Total : dis- : dis- : pardnes: B :solved : as ppm : solids; CaCO ₃ , : ppm : ppm	m (Per so-
						Hydro	Hydrographic Unit 3 (continued)	Unit 3	(oontin	(pen									
Temeoula Creek	93~55°5	11-19-51	0.5	710	710 8.5	3.55	$\frac{21}{1.70}$	3.01	ì	1	269 4.4	$\frac{115}{2.39}$	43	70.00	?	0.1	4573	262	37
						ч 1	Hydrographic Unit 4	phie Ur	17 4 4										
Temecula Greek	93-30.9	1200	120	1,058 7.9	7.9	87 4.34	$\frac{21}{1.73}$	120 5.22	3.07	010	307 5.04	3.0	3.05	010	3	0.1	620	304	94
	93-35.6	4-19-54	0,12	870	870 7.9	3.5	20	106 4.60	2 0.04	à t	244	131 2.72	2.8 2.8	2 0.04	9.0	F. 0	965	256	47
						141	Hydrographic Unit 5	phic Ur	124 5										
De Luz Greek	93-12,2-6.5	12-22-53	ሳ፤ *0	06म	490 7.8	38	18	48 2.09	0.03	1	208 3°4	16 0.34	60	4 0.07	0.2	0°0	333	168	38
Santa Margarita River	93-20.0	5-12-52 ^e 1100	9	1,010 7.9	7.9	67 3.34	25 2.06	106 4.61	43	10	264 4.33	110	3.33	1 0.01	ካ °0	0.3	607 ^d	270	941
							Hydrographic Unit 6	phie Ur	iit 6										
Fallbrook Creek	93-8-8-7-9	1130	:	1,710 8.3	8,3	5.35	50 4.15	173	0.02	ů t	275 4.5	264 5.51	238	27 0.44	0.7	0.3 1	1,138	5Lt	***

All Analyses by Division of Water Resources unless otherwise noted. Pacific Standard Time indicated by 24-hour time system. Estimated.

ရိ*ု* ပိမ္းစိ

Total dissolved solids determined by summation. Analyzed by United States Geological Survey, Water Quality Branch, unpublished records subject to revision.

Quality of Ground Waters

Ground water quality varies both in composition and concentration throughout the Santa Margarita River watershed. Most of the ground water basins contain waters which are generally of good mineral quality and suitable for prevailing beneficial uses.

The 280 complete and 759 partial mineral analyses of ground waters, including 106 complete and 13 partial analyses from wells outside the ground water basins are presented in Tables H-3 and H-4 of Appendix H. Typical mineral analyses of ground waters, selected from Appendix H, are presented in Table 18. Table 21 presents a summary of the 174 complete and 746 partial mineral analyses of ground water basin waters, including ranges in mineral constituents, variations in character, and irrigation classifications. As previously mentioned, the majority of the partials are from wells in the Santa Margarita Coastal Basin.

TABLE 18

TYPICAL MINERAL ANALYSES OF GROUND WATERS $^{\mathbf{a}}$

Well munher	d d d	ECx106	Ha		Mine al	consti	Mine al constituents in aquivalents per million	n inbe	arts pe	parts per million	on 111 on	" " "	Es.		Total:	: Total : hard-	1 : Per
	70	. 25°c		සුව	3 _M	Na	Ж	603	HC03 :	SO ₁₄	CI	NO3	udd:	8	:	uaa Opep	e d
						Hydro	Hydrographic Unit	Unit 1									
Diamond Basin 68/2W-141	11- 5-52	810	8°2	3.85	22 1.81	3.26	1	1	3.4	132	22	0.18	}	0.2	512 ^b	283	37
French Basin 65/2W-2802	5-15-53	1,090	2.6	4.65	27 2,20	103	1	ŀ	<u>165</u> 2.7	222	3.8	0.11	1	0.1	q699	342	39
Los Alamos Basin 75/24-4Kl	4- 7-53	1,090	7.5	4.75	25 2.10	96 4.15	1	;	4.5	2.31	149 4.2	10	;	0.1	673 ^b	342	38
Murrieta Basin 75/3W-7R2	11- 3-52	650	7.8	28 1.4	9	109	;	;	3.0	0.83	2.7	0.0	:	0.2	3494	103	70
Wildomar Basin 6S/4W-35M2	10-29-52	646	8,3	2.2	25.08	58 2.52	ţ	1	3.9	34	53	0.29	1	0.1	351 ^b	214	38
						Hydrog	Hydrographic	Unit 2									
Anza Basin 75/3E-20J2	9- 2-54	248	7.1	80	1,20	48 2,12	6 0.15	;	159	131 2.74	67	15	0.1	0.2	₹ 2 <u>5</u>	260	28
Lower Lancaster Basin 85/15-704	3-12-52	1,270	7.9	3.85	29 2.41	256 11.14	}	;	354 5.8	235 4.89	452	0.01	1	0•3	1,008	313	₹9

TYPICAL MINERAL ANALYSES OF GROUND WATERS $^{\mathbf{a}}$ (continued)

	: : Data	ECX106	 		Minera	Mineral constituents in equivalents per million	tuents	tn equ	parts ilvalent	parts per million valents per milli	111on nillion		GE.	ρο	: Total : Total : : dis- : hard- : Per	: Total : hard- : Per	Per
Jack Hamper	sampled	"		ຊ ນ	Mg	Na Na	×	600	: HCO3 :	so _t t	1 5	NO3	udd	s: wdd	ppm :solids, CaCO3 : ppm : ppm	CaCO3 :	N Pa
						Hydrog	Hydrographic Unit 3	Unit 3									
Aguanga Basin 85/15-3361	7-18-52 1,020	1,020	7.5	113	2.00	66 2.85	ŀ	ŀ	3.6	25 ⁴ 5.49	1.25	70.00	ł	0.1	618 ^b	382	27
Radec Basin 88/1E-1901	11-19-51 1,440	1,440	8,3	133	2.79	175	1	ł	16.9 6.6	269 5.60	160	0.04	1	0.3	975 ^b	1 ₈ 0	45
					•	Hydrographic Unit 4	aphic U	hit h									
Psuba Basin 8S/2W-11L1	5-26-54	1,053	7.9	92 4.6	120	115	0.14	;	272 4.45	3.38	3.3	0.09	ሳ.0	0.3	702	280	47
1661	5-26-5 1	652	8.3	15	0.1	112 4.88	0.06	1	13 ⁴	31	$\frac{103}{2.9}$	16	9.0	0.2	378	ф3	#8
						Hydrogr	Hydrographic Unit	intt 5									
Rainbow Basin 9S/3W-1F3	11-10-53	952	7.7	2.9	25,	80 3.48	0.10	ì	1,10	35.00.73	199	35.0	9.0	0.0	4 79	290	38

TYPICAL MIFERAL ANALYSES OF GROUND WATERS^{a.} (continued)

Per	, Na			52	09	58	1	1
Total: hard- :Per	CaCO 3			ł	;	:	ł	682
: Total : Total : dis- : hard- :Per :solved :ness as:cent	:solids,: CaCO3			1 69	908	967L	550	1,299 ^b
m	=			0.95	ħ*0	0.2	1	0,2
Gz.	udd			ή°0	0.5	0.5	1	;
	NO3			0.05	0.07	0.02	:	0.02
million per million	5			3.1	3.5	176	超!	168
	SO _t			1.9	130	$\frac{112}{2.3}$	23:	510
parts per equivalents	: HCO3			263 4.3	286 4.7	323 5°3	į	45h
1 12	603	Juit 6		010	olo	010	ŧ	•
cuents	×	Hydrographic Unit 6		ł	1	8	;	0.09
consti	Na	Hydrogi		120 5.2	7.0	7.72	:	163 7.09
Mineral constituents in	Mg			22 1.8	1.6	25 2.04	100	50 4.11
:0 00	Ca			3.1	3.1	3.64	123	191 9-53
됞				7.8	7-8	7.5	8.2	7.7
ECx106	25°C			066	1,150	1,300	8	1,940
Date	: beldwes :		istal Basin	<u>in</u> 1-25-52°	1-25-52°	1-11-52°	11-29-516	11-18-52°
Well number			Santa Margarita Coastal Basin	Upper Sub-basin 105-4W-5D1	Chappo Sub-basin 105/44-18#2	Ysidora Sub-basin 105/54-35Ki	115/5W-2E1	2E1

All analyses by Division of Water Resources unless otherwise noted. Total dissolved solids determined by summation. Analysis obtained from United States Navy.

. . . .

Quality of Spring Waters

Discharge from springs in the Santa Margarita River watershed is small and limited generally to domestic use, therefore the following discussion of spring water quality is restricted to the criteria established by the United States Public Health Service and adopted by the California State Department of Public Health.

Complete analyses of 47 samples collected from 45 springs located in Hydrographic Units 1 through 5 are presented in Table H-1 of Appendix H. It is believed that few if any springs exist in Hydrographic Unit 6. Typical analyses are presented in Table 19.

TABLE 19

TYPICAL MINERAL ANALYSES OF SPRINGS^A

Spring	: Spring	Date	ECx10 ⁶	强	*)	Mineral constituents in	consti	tuents	-	parts per equivalents	parts per million ivalents per mill	per million	l e	E-,	m	: Total : dis- :solved	: Total : Total : : dis- : hard- : Per :solved :ness as:cent	Per cent
number	name	sampled	25°C		Ca	Μg	, a	Ж	C03	Козн	SOL	[C]	N03	mqq.	wdd :	solids,	solids,: CaCO3,: : ppm : ppm :	Na B
						Hydro	Hydrographic Unit	Unit 1										
7S/3W-35K2		8-19-53 1,280	1,280	7.8	1.2	16	228 9.92	;	ł	250	37 0.77	<u>266</u> 7.5	0.05	6.0	1.0	747	124	80
						Hydro	Hydrographic Unit	Unit 2										
7S/1E-24G		9-23-52	1480	†. 8	$\frac{31}{1.55}$	5	55 2.41	1	0	171 2.8	19 0.40	1:3	0.02	:	0.2	243 թ	92	55
75/2E-26C	Coahuila Spring	8-18-53	330	8.8	0,1	0 0	$\frac{67}{2.89}$	i	1	101	24 0.51	28 0.8	0.02	1.2	٥.4	242	2	46
						Hydro	Hydrographic Unit	Unit 3										
8S/2E-22G1	Twin Oaks Spring	11- 2-53	627	8.0	3.6	15	2.21	0.18	1	122	3.63	11:2	0.0 10.0	0.3	0.1	510	242	31
8s/14-21c	Dripping Spring	2- 9-51	041	7.8	48 2.4	15	$\frac{36}{1.57}$	1	1	3.7	23 0.49	1:0	10.00	ì	0°0	273 ^b	180	30
						Hydro	graphic	Hydrographic Unit 4					4					
8S/24-36F	Collier Spring	2-11-52	350	7.8	$\frac{17}{0.85}$	4 0.31	66 2.87	;	1	$\frac{134}{2.2}$	29 0.61	1:3	0.01	;	0.1	229 ^b	58	17
						Hydro	Hydrographic Unit	Unit 5										
95/44- 5P		8-25-54	373	7.5	48	6.47	41	0.08	t	$\frac{171}{2.8}$	0.35	1.45	0.10	0.2	0.1	288	144	37

a. All analyses by Division of Water Resources. b. Total dissolved solids determined by summation.

TABLE 20
SUMMARY OF MINERAL ANALYSES OF SURFACE WATERS

CA	: Number		Number of		:Irrigation	· mpc		ange	AMa
Stream	: analys :Completes:P		sampling : points :		:classifi- : cation	: ppm :		-	:Na,pe
			Hydr	ographio Unit 1					
Cole Canyon	4		1	Ca-Mg, HCO3-C1a	1	132-	14-	0-	30
Creek	7	-	•	Ca-Na, HCO3b	•	195	28	0.03	36
Murrieta Creek	5	-	3	Na, Cl	2	463- 1,215	121- 372	0.2- 0.4	63 - 69
Santa Gertrudis Creek	2	-	1	Ca-Mg, HCO3 ^a Na-Ca,SO4-HCO3 ^b	1	103- 267	7- 11	0.01- 0.05	24- 42
Warm Springs Creek	7	-	.1	Na-Ca, C1-HCO3	1,2	306- 1,074	25 - علبا	0.03- 1.05	45- 73
			Hydr	ographic Unit 2					
Coahuila Creek:									
Upstream	2	-	1	Na-Ca, HCO3-C1	1	331- 419	57- 67	0- 0.1	50
Downstream	2	-	1	No predominant character	2	962- 1,096	188- 206	0.2- 0.4	58 - 60
Lancaster Creek	10	-	4	Na, variable	2	278- 430	160 - 305	0- 0.4	51 - 67
Wilson Creek	11	-	5	No predominant character	1,2	434- 1,146	46- 1 60	0- 0.2	34- 42
			Hydr	ographic Unit 3					
Arroyo Seco Creek	14	-	2	Ca-Na, HCO3	1	191~ 562	25 - 69	0- 0.1	35 - 44
Chihuahua Creek	3	-	2	Ca-Na, SO4	2,3	867- 2,454	82 - 298	0- 0.2	34
Kohler Canyon	4	-	1	Ca-Na, HCO3	1	249- 274	25 - 32	0- 0.1	26- 33
Rattlesnake Creek	1	-	1	Ca-Na, HCO3-SO4	1	585	39	0.1	26
Temecula Creek	34	-	21	Ca-Na, HCO3-SO4	1,2	116- 1,337	2- 160	0- 0-2	23- 44
			Hydro	graphic Unit 4					
Pechanga Creek	2	-	1	Na-HCO3, C1	2,3	254- 360	46- 96	0- 0.03	66- 91
Temecula Creek	31	-	10	Na-Ca, HCO3-C1 to Na-Ca, HCO3-SO4	1,2	519- 1,307	57 - 223	0.1- 0.45	40 - 59
			Hydro	graphic Unit 5					
Coleman Creek (Tributary to De Luz Creek)	2	-	1	Ca-Na, HCO3	1	233 - 253	28- 35	0.01	35 - 36

SUMMARY OF MINERAL ANALYSES OF SURFACE WATERS (continued)

	: Numbe	r of	Number of:		:Irrigation		Ran	ge	
Stream			sampling:		: classifi-				:Na, pe
	:Completes	:Partials:	points:	character	: cation	: ppm :	ppm:	ppm	: cent
			Hydrograph	ic Unit 5(contir	ued)				
De Luz Creek: Upstream	1	-	1	Na-Ca, HCO3	1	333	60	0	38
Downstream	1	-		Na, HCO3ª	2		34	0	70
Fern Creek	1	-	1	Na-Ca, HCO3	1	185	27	0.05	48
Rainbow Creek	2	ų.	2	No predominant character	1	227- 521	53 - 124	0.02- 0.05	31 - 54
Sandia Creek	1	-	ı	Na-Ca, HCO3-Cl	1	354	64	0.1	36
Santa Margarita River	11	33	ц	Na-Ca, HCO ₃ -C1	1,2°	606- 754	65 - 298	0.1- 0.3	46- 54
			Hydro	graphic Unit 6					
Fallbrook Creek	1	•	1	Na-Ca, C1-S04	2	1,138	238	0.34	र्गरा
Dreill Lake	2	-	2	Na, C1-HCO3	1,2	592	140- 230	0.12	57 - 60
Santa Margarita River at lagoon at Hwy. 101: 6 second-feet flo	1	730	1	Na, C1-HCO3	1	5 ⁴ 6	146	0.1	5 7
No flow	2	-	1	Na, Cl		17,5 58- 23,621 1		2.06- 3.00	78

<sup>a. Predominant character for high flows.
b. Predominant character for low flows.
c. Partial analyses of samples taken during high flows indicate classification 1 for irrigation</sup> use,

TABLE 22
SUMMARY OF MENERAL ANALYSES OF GROUND WATERS

	: NUMBER	OF S	NUMBER OF	eciga majannigar kannantaro majanisan majani narmara memakan d	SIRRIGATIO	N S	R	ANGE	enekaryany
BASIN	: ANALYS		SAMPLING		CCLASSIFI ==				
	:COMPLETES:P	ARTIALSS	POINTS	S CHARACTER	: CATION	8 PPM 8	PPM S	PPH 8	CENT
			HYO	ROGRAPHIC UNIT (
D P AMO NO	5	-	4	NO PREDOMENANT CHARACTER	1, 2	349 - 709	46= 46	0.1- 0.2	34- 42
DOME NI GO NI	3	9	3	CA-NA, SO4-Cf	1, 3	470- 2,014		0.3	36- 83
FRENCH	9	છ	8	NO PREDOMINANT CHARACTER	1, 2	269- 804	53- 163	0- 0-13	30- 52
LOS ALAMOS	4	ca .	4	NC PRECOMMENANT	1, 2	362≖ 962	71- 227	C.l	32- 42
MURRIETA	33	3	32	Cap Na=HCO3	f, 2, 3	220= 984	.] 0 = 369		28- 76
SANTA GERTRUDIS	ı	1	2	NA, CI	3	250 - 369	7≬- 128	0.2	77- 87
WI LDOMAR	12	-	12	NA, CA-HCO3	1, 2	221- 977	25- 263	0.00= 0.0	25 54
			HYD	ROGRAPHIC UNIT 2					
ANZA	r 6	-	ę o	NO PRECOMBRANT CHARACTER	1, 2	304- 969	39 <u>-</u> 135	0∽ 0∘2	12 53
LOWER COAHUILA	3	•	3	NA, CI∞HCO ₃	1, 2	227 - 783	53- 160	0.3- 0.5	49 75
LOWER LANCASTER	4	æ	4	Na, Cl≖HCO ₃	2	996 8,205	234 - 277	0.2~ 0.3	59 64
UPPER COAHUILA	1	-	0.	CA-NA, HCO3	ĝ.	≬ 35	77	0	35
UPPER LANCASTER	3	-	3	NO PREDOMINANT CHARACTER	2, 3	447= 1,899	92 - 613	0.2~ 0.6	62 71
			HYO	ROGRAPHIC UNIT 3					
AGUANGA	5	æ	3	NO PREDOMS NANT CHARACTER	1, 2	↑64 <u>-</u> 6≬8	21- 75	0°00=	27 64
Dodge	2	œ	t	Ca⇔Na, HCO3	r	232∞ 295	18	0.1	30 39
LOWER CULP	2	œ	2	Na≃Ca, HCO3	9	722= 755	64- 85	0.1= 0.2	44 48
NIGGER	t		0	NA, CI≂HCO3	3	436	121	2.9	93
RADEC	4	0	3	NO PRECOMINANT CHARACTER	2, 3	953⇒ 1,439		0.1= 0.3	30 49

SUMMARY OF MINERAL ANALYSES OF GROUND WATERS (CONTENUED)

	8 Nun	IBER OF	NUMBER OF:		: RRIGATIONS			ANGE	
BASIN	8 A1	VALYSES S	SAMPLING 8	PREDOMENANT	CLASSIFI= 8	TDS, :	Cls 8	Bs :1	AFPER
	COMPLET	ESEPARTIALS:	POINTS :	CHARACYER	e CATION &	PPM 8	PPM 8	PPM 8	CENT
			HYDROG	RAPHIC UHIT 4					
PAUBA:	[5		4 h	M 1100 - 20	2, 3	287∞	67	0.01-	61-
CONFINED	(a	œ	-v N	A-HCO3 TO A, C1-HCO3	2, 3	424	106	0.07	97
UNCONFERED	10	æ	7 N	A-CA, HCC3-804	1, 2, 3	35 4- 763	50= 117	0.8	36 - 98
PECHANGA	3	c a	3 N	O FREDOMINANT CHARACTER	1	352 - 369	17∞ · 50	asca	38 - 52
			HYDROG	RAPHIC UNIT 5					
Rainbow	3		й Е	O PREDOMINANT CHARACTER	1, 2	332- 897	7 !- 330	0~1	38 - 51
			HYDROG	RAPHIC UNIT 6					
SANTA MARGARITA COASTAL									
SUB-BASINS:									
UPPER	5	10	8 8	1A, HCO3-C1	1, 2	450 - 776	106= 186	0,05= 0,2	49 <u>-</u>
CHAPPO	10	36	25 N	IA, HC03=C1	1, 2, 3	390- 1 , 334	110- 745	0.1 = 0.4	51 - 90
43008A	20	695		IA, HCO3-CI TO	1, 2, 3	337 ₃ 9,030 4	60±	0= 0:4	48- 69

The analyses show that in the samples collected from a majority of the springs in Hydrographic Unit 1, the chloride concentration exceeded the recommended limit of 250 ppm, and that total dissolved solids exceeded the desirable limit of 500 ppm but were less than the permitted limit of 1,000 ppm. In the six samples collected in the Unit, hardness ranged from soft to moderately hard. One analysis of Murrieta Hot Springs water indicates a fluoride content of 4.4 ppm, materially exceeding the limit of 1.5 ppm.

The analyses of sixteen samples collected in Hydrographic Unit 2 indicate hardness ranging from soft to very hard, with the majority classed as soft. The limit for fluorides was exceeded in one sample and the desirable limit for total dissolved solids was slightly exceeded in two.

In six of sixteen samples from springs in Hydrographic Unit 3, total dissolved solids exceeded the desirable limit, but in only three was 1,000 ppm exceeded. Indicated hardness ranged from soft to very hard with 10 of the 16 samples classed as very hard.

Waters from sampled springs in Hydrographic Units 4 and 5 were found to be suitable for domestic use in all respects. Those in Unit 4 are classed as soft and in Unit 5 the range is from soft to moderately hard.

Water Quality Problems

There are few known problems of pollution or contamination within Santa Margarita River watershed. There is, however, a threat of salt-water intrusion in Santa Margarita Coastal Basin, a contamination by an industrial waste discharge exists in the Murrieta area, and high concentrations of nitrates are found in a few limited areas. Irrigation application of waters of high per cent sodium found in certain localities in the watershed also presents a problem.

Salt-Water Intrusion - Santa Margarita Coastal Basin. Ground water in Santa Margarita Coastal Basin is of fair quality, being generally Class 2 irrigation water. However, samples from a few wells have been of poor quality.

U.S.G.S. test well 6, 10S/5W-23Ql, yielded samples with chloride concentrations of 440 and 600 ppm in 1951 and 1952, respectively. This well is at the edge of the Recent alluvium and it is probable that the poor quality water is connate in the La Jolla formation, Telj, which is adjacent to and underlies the Recent alluvium at this location. On January 10, 1952, samples from well 11S/5W-2K1 reached a maximum of about 525 ppm chloride ion concentration after test pumping for 20 minutes, and remained stable thereafter throughout two and one-half hours of pumping. A composite thief sample obtained at a depth of 185 feet during pumping contained 875 ppm chlorides, which indicates that poor quality water is obtained from the lower levels in this well. A series of water analyses, mostly partials, taken from this well throughout the period November, 1947, through November, 1952, indicates that water quality deteriorated from 243 ppm chlorides to 450 ppm between November, 1947, and December, 1948. The concentration remained fairly constant for a time thereafter but reached a maximum of 610 ppm in November, 1950. On the date of the last sample reported, November, 1952, there were 532 ppm chlorides in the water. The use of the well is said to have been discontinued in 1950 because of the high chloride content. This well is located near the boundary of the San Onofre Breccia, Tmso, and La Jolla formation and the latter formation probably underlies Recent alluvium at the well. The poor quality water very likely is derived from the La Jolla formation. In support of this belief, it is noted that samples from windmill wells in the San Luis Rey River watershed to the southeast which were drilled in this formation show chloride concentration of 800 to 1,000 ppm.

On January 3 and 4, 1952, when water levels were near the all time low, a series of samples was obtained from test wells in and downstream from Ysidora Narrows. These wells are 11S/5W-2N4 midway in the Narrows, 10Bl at the lower end of the Narrows, and 9Jl on the tidal flat at Highway 101. A representative pumped sample at test well 2N4 contained 650 ppm of chlorides, but a composite of thief samples taken at the 195 foot depth during pumping contained 4,910 ppm chlorides. Analysis of similar samples taken at the other two wells showed that chlorides at test well 10Bl were 650 ppm in the pumped sample and 1,290 ppm in the composite sample at a depth of 194 feet; at test well 9J1 chlorides were 2,190 ppm in the pumped sample and 20,300 ppm in the composite at a depth of 292 feet. Pumped samples obtained in June and July, 1951, at the three wells had the following chloride content; well 2N4, 460 ppm; well 10Bl, 390 ppm; and well 9Jl, 1,900 ppm. Thus the pumped samples at these wells indicate increases in chloride content of 190, 260, and 290 ppm, respectively, during the latter half of 1951. On January 9, 1952, water samples were also obtained from the Pacific Ocean and from the lagoon on Santa Margarita River at Highway 101. Comparison of the relationship between all constituents of these waters with the samples obtained at depth in the three test wells mentioned above indicates marked similarity between them.

Prior to and at the time the above samples were taken, a landward gradient in the ground water profile existed from the vicinity of Highway 101 near the ocean to Ysidora Sub-basin in the vicinity of well 11S/5W-2E1, as shown by water level profile of August, 1951, presented on Plate 20. Considering this adverse gradient and the results of the analyses discussed in the previous paragraphs, it appears likely that the degradation noted in Ysidora Narrows was the result of intrusion of sea water through the avenue of approach afforded by Recent alluvial deposits which extend from Ysidora Sub-basin to the ocean.

The extent of degradation from this source is believed to have been adequately monitored by the collection of a large number of samples from irrigation well 115/5W-2El over the period November, 1947, through November, 1952. Partial analyses only were made on most of these samples, but there were a few more complete analyses. Chloride content in the samples increased gradually from 168 ppm in November, 1947 to 308 ppm in April, 1951, at which time pumping of the well was discontinued. By November, 1951, chlorides had reduced to 184 ppm which value is comparable to chlorides in other wells throughout the Sub-basin. In June, 1952, and November, 1952, the chlorides were reported to be 148 and 168 ppm, respectively. Thus, it is likely that the degradation extended to well 2El, but because that well was pumped through April, 1951, and ground water contours indicate it was at or near the center of the ground water depression in the summer of 1951, it is believed highly improbable that sea water could have penetrated inland from the well.

From a study of ground water levels in Ysidora Sub-basin in conjunction with the water analyses considered herein, it is apparent that degradation in the Sub-basin, whether from connate waters or from sea water, is the result of lowered ground water levels. Marked improvement in the quality of water in Ysidora Sub-basin occurred after the flood runoff from the storms of December 30, 1951, through January, 1952, reached the area. No discharge occurred at the Ysidora gaging station until January 13, 1952, because of percolation which took place upstream in Santa Margarita Coastal Basin and because of the effect of sand dams which detained runoff in Ysidora Sub-basin until they were washed out.

Murrieta Chrome Waste Discharge. One incident of contamination by a waste discharge was discovered and brought to the attention of the Division of

Water Resources in March, 1956, when it became known that chromium plating company in Murrieta had been discharging hexavalent chromium wastes to the ground surface and to a cesspool. Four wells in the immediate vicinity of the waste disposal site were polluted with hexavalent chromium in concentrations up to three ppm. Eighteen other wells in Murrieta and vicinity contained traces of hexavalent chromium.

After the ground discharge had been halted, additional samples of ground water were obtained, but at the time of publication of this report the results were inconclusive.

High Nitrate Concentrations. As reported previously in the quoted domestic water quality standards, waters containing nitrate concentrations in excess of 44 ppm may be considered to be of questionable quality for use by infants, and therefore are generally unsuitable for domestic or municipal use.

Water samples from only 11 wells throughout the watershed, most of them in Murrieta Valley or in the Fallbrook area, were found to contain nitrates in excess of the stated limit. In all but one of these samples the concentration was less than 67 ppm. No evidence was found which indicated that the excessive nitrates resulted from conditions other than those peculiar to the individual wells concerned. It is believed, therefore, that the quality of water near each of the wells in question has been degraded in some degree.

Sodium Type Waters. As previously pointed out in the discussion of water quality standards, waters containing high percentages of sodium are not well suited for agricultural use in most instances, although such waters may be used on some highly permeable sandy soils without detrimental effect. There are several areas within the Santa Margarita River watershed where ground waters contain high percentages of sodium ion. One such area extends along

the northeast side of Wildomar fault, and includes Santa Gertrudis Basin, the deep artesian aquifers of Pauba Basin, and portions of Murrieta Basin northeast of the fault. Ground waters in this area and springs along the fault contain sodium in percentages ranging from 65 to 98 per cent. A number of the wells are used for irrigation. Ground waters in portions of the Radec and Lancaster Valley areas are also high in per cent sodium. The quality of these waters appears to be associated with the undifferentiated Upper Pleistocene sediments, Qps, which are adjacent to and underlie portions of Radec and Lancaster Valleys.

The artesian wells of Pauba Basin provide about 10 per cent of the ground water used for irrigation in Pauba Valley by the Vail Company. The artesian waters are applied therein with caution, and are mixed with other waters to reduce the per cent sodium.

CHAPTER III. WATER UTILIZATION AND REQUIREMENTS

The nature and magnitude of water utilization and requirements in the Santa Margarita River watershed, both at the present time and under probable ultimate conditions of development, are considered and evaluated in this chapter under the general headings: "Present Water Supply Development", "Land Use", "Unit Use of Water", "Factors of Water Demand", "Water Requirements", and "Supplemental Water Requirement". In connection with the discussion, the following terms are used as defined:

- <u>Water Utilization</u> This term is used in a broad sense to include all employments of water by nature or man, whether consumptive or nonconsumptive, as well as irrecoverable losses of water incidental to such employment, and is synonymous with the term "water use".
- Consumptive Use of Water This refers to water consumed by vegetative growth in transpiration and building of plant tissue, and to water evaporated from adjacent soils, from water surfaces, and from foliage. It also refers to water similarly consumed and evaporated by urban and nonvegetative types of land use.
- <u>Water Requirement</u> The amount of water needed to provide for all beneficial uses and for irrecoverable losses incidental to such uses. As used in this report, the term refers only to consumptive uses of applied water and attendant irrecoverable losses.
- Applied Water The water delivered to a farmer's headgate in the case of irrigation use, or to an individual's meter in the case of urban use, or its equivalent. It does not include direct precipitation.
- <u>Irrigation Efficiency</u> This refers to the ratio of consumptive use of applied water to the total amount of applied water, and is commonly expressed as a percentage.

Witimate - This refers to conditions after an unspecified but long period of years in the future when land use and water supply development will be at a maximum and essentially stabilized. It is recognized that any present forecasts of the nature and the extent of such ultimate development, and resultant water utilization, are inherently subject to possible large errors in detail and appreciable error in the aggregate. However, such forecasts, when based upon best available data and present judgment, are believed to be of value in establishing long-range objectives for development of water resources. They are so used herein, with the full knowledge that their reevaluation after the experience of a period of years may result in considerable revision.

Present Water Supply Development

The major portion of the water presently used in the Santa Margarita River watershed is pumped from the underground, with a lesser but significant quantity being diverted directly from surface streams and springs. Regulation in Vail Reservoir on Temecula Creek, which was completed in 1949 and is the only major surface storage development in the watershed, serves to augment both surface and underground supplies.

Water Service Agencies

Major active water service entities in the watershed are: Fallbrook Public Utility District, which serves domestic and agricultural water to an area which lies partly within and partly outside the Santa Margarita River watershed; Rainbow Municipal Water District, formed recently to supply Colorado River water to an area lying partly within and partly outside the watershed; United States Naval Reservation, comprising the three military

Vail Dam

Courtesy State Division of Highwoys

Santa Margarita River at De Luz Road Ford

commands -- United States Naval Ammunition Depot at Fallbrook, United States Naval Hospital, and the Marine Corps Camp Joseph H. Pendleton--which derive water for military and agricultural uses from Santa Margarita Coastal Basin and from Santa Margarita River by direct diversion; Vail Company, which derives water for its agricultural uses from Pauba Basin and from Temecula Creek, which as stated is controlled by Vail Reservoir; and South Elsinore Mutual Water Company, the service area of which extends into the Santa Margarita River watershed, but which at present serves domestic and irrigation water to areas outside the watershed only. Rainbow Municipal Water District was annexed to the San Diego County Water Authority and to the Metropolitan Water District of Southern California on April 10, 1954. Water deliveries to the District started in 1954, but it is believed that no water has yet been served within the Santa Margarita River watershed. Service areas of the foregoing entities are delineated on Plate 6, "Hydrographic Map". It will be noted that all lands of the Vail Company and of the Naval Reservation are included in the service areas of those entities, although legal restrictions relating to riparian lands and to appropriative water rights as discussed in Chapter IV, "Legal Considerations", may operate to limit the use of water from Santa Margarita River to supply a portion of such lands.

Ground Water Extractions

In the Santa Margarita River watershed there are about 145 wells of relatively heavy draft, equipped with pumps having motors of 5 horsepower or greater. Of these, 135 wells supply water to meet irrigation requirements and 10 are used for military purposes. In addition there are about 250 other active wells in the watershed. Ground water extractions by the Vail Company and the Navy have been measured for a period of years, and for these entities

the monthly totals of extractions are listed in Tables 22 and 23. It will be noted that for the Vail Company the values shown for the period October, 1922, through April, 1930, include surface diversions. Measurements were made by water meter and in some cases by measured pumping rates and recorded time of operation. Pumpage by other water users in the watershed was calculated for the year 1953 by utilizing kilowatt hours of electric power consumption and values for pumping plant efficiency, as determined by pump tests, or by applying appropriate values of applied water to areas of irrigated land. Total ground water extractions for 1953 are summarized by hydrographic units in Table 29.

TABLE 22

GROUND WATER EXTRACTIONS BY VAIL COMPANY

In Acre-Feet

; Total	Inc.	Inc. 1.007	が が が が が	6,71,8 5,105 3,916	5,012	2,091	1,114	1,557	827 1,239	797 1,403	2,196	2,387	3,148	3,096
. Sept.	190 214	280 1.87	692	685 683 819	517 576	103 55	91	79	73	102 169	509	329	357	370
. Aug.	224 291	256 188	747	726	657 853	95	201 201	26	63 63	67 97	370	375	158	390
July	215	219 660	737	731	630 681	112	160	78	76 65	157 225	437	557 127	1887	561 558
aune:	129	223 1.1.4	730	754 579	596 502 502	150 80	116	79	88 74	219 189	355	103	382	540 509
. May	137	205 205	709	895 135	639	96	139 65 65	8 元	145 92	63 194	329	223	, M , W , W	434 284
: Apr.	101	288	209	504 170	561 374	245	177	216	84	67	201	190	106	85 120
: Mar.	50	0.00	278	686 1486	327 164	62	31	251	330	00	12	97	145	220
: Feb.	May 19			1,58					01					
s Jan.	rior to 27	1 2	89	278	206 74	92	20 20 20 20 20	25	8	0 0	0	60	177	95
3 Dec.	record p	70	126	257	38 73	284	0 00 00 0 00 00 0 00 00	117	89	360	73	76	25 8	241 23
» Nov.	Nor		237	287	120	382	년 2년 2	290	146	14 14 16	in	21	32.5	182 126
3 Octo	89	95	636	71,6	225 225 225 225	109	139	93	100	86	207	146	252 223	265 203
Season	1919-20	21-22	23-23	1924-25	20-27 27-28 28-29	1929-30	30-31	33-34	1934-35	36-37	38-39	1939-40	10-11 11-12	12-13

GROUND WATER EXTRACTIONS BY VAIL COMPANY^a (continued) In Acre-Feet

Season 3	0000	s Nov.	Nov. : Dec.	; Jan.	. Feb.	Mar	* Apro	s May	eune :	tnp:	: Aug.	& Sept.	: Total
745	385		0	99	1	70	213	142	431	783	144	356	2,694
917-	282	183	185	33	111	362	98	52	161		330	797	3,335
27	453	8	22	22	98	69	767	360	370	1,85	138	513	3,095
847=	365	596	118	257	78	120	112	250	21/2	245	325	318	2,713
48-49	241	370	€	07	0	89	234	506	142	195	18%	200	1,874
-50	182	134	917	C.	98	191	23.4	183	220	225	256	344	2,152
15	338	136	202	133	152	223	327	182	244	278	287	272	2,839
-52	185	118	FC?	0	20	ထ	7,146	252	317	760	1,83	550	2,569
-53	531	175	3.6	56	280	267	303	533	589	603	315	299	3,937
53-54	154	273	533	191	3.8	300	314	518	780	782	168	407	4,528
19511-55	566	147	119	رم ا	219	157	559	518	718	106	950	736	5,596

a. Prior to May 1930, tabulation includes surface diversions

TABLE 23

GROUND WATER EXTRACTIONS BY UNITED STATES NAVY, CAMP PENDLETON

In Acre-Feet

	ı							
: Total		2,359 1,878	1,559 2,357 2,144 2,807 2,244	2,269 1,620 1,126 1,751 1,890	1,946		3,000	3,803 3,389 3,138 3,722 4,118
: Sept.		277 162	260 215 215 175 253	257 126 193 235 286	261		250 314	407 201, 331, 353 111,
: Aug.		243 176	183 215 209 294 232	218 152 173 219 307	251		250 352	358 234 371 386 136
: July	(sd	309 190	240 304 270 319 255	298 178 229 273 261	282	Pumps)	250 300	347 244 389 397 156
: June	esa Pumps	287 193	185 258 259 317 248	253 124 154 178 178	208	Mesa	250 335	279 264 303 356 138
: May	South M	278 136	184 247 219 255 193	154 100 139 136 161	138	and South	250 339	310 257 274 338 382
: Apr.	rt and	153 166	86 86 160 150	120 123 66 129 78	163	Stuart a	250 297	276 250 230 273 366
: Mar.	e (Stuart	66 121	19 116 132 133	126 109 50 119 58	127	(Excluding S	250 304	297 298 214 266 312
: Feb.	ural Use	86	63 111 110 193 105	67 62 95 129 66	92	1	250	245 255 188 230 243
: Jan.	Agricul tural	126 81	76 168 161 271 133	136 118 26 55 36	58	itary Use	250 215	281 274 223 281 281
: Dec.	ΨI	128 44	51 137 80 176 101	164 138 65 41 135	85	Mili	250 248	333 331 212 261 247
: Nov.		163 253	37 207 105 257 285	225 150 92 61 100	96		250 258	361 372 210 290 300
: Oct.		243 293	175 267 224 267 157	251 240 144 166 207	201		250 281	309 106 190 291 285
Season		1942-43 43-44	1944-15 15-46 16-47 17-48 18-19	1949-50 50-51 51-52 52-53 53-54	1954-55		1942-43 43-44	1914-45 45-46 46-47 47-48

GROUND WATER EXTRACTIONS BY UNITED STATES NAVY, CAMP PENDLETON (continued) In Acre-Feet

: Total		3,879	4,311 1,965 1,118	4,627		5,359	2,2,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	6,11,8 55,374 6,717 6,038	6,573
: Sept.		336	454 1413 398	525		527 476	667 1115 5249 667	570 1,62 64,7 67,8 681,	786
: Aug.	(pənu	380	143 1489 1426	535		1,93 528	7,17 1,17 5,80 6,80 6,68 6,68	527 527 708 733	786
July	(continued)	361	47.7 716 380	501		559 1190	587 548 659 716 716	659 595 686 789 641	783
aunf:	Pumps)	989 989 127 127 127 127 127 127 127 127 127 127	359 359	7175		537 528	461 522 562 673 686	636 552 552 552 552 552 552 553	650
: May	outh Mesa	366	444 438 325	707	Su	528 475	191 504 193 593 575	780 780 747 747 7480	542
: Apr.	and Sou	304	250 403 276	397	Extractions	103 163	362 336 330 532 532	124 139 386 354 354	260
. Mar.	Stuart	306	293 287 273	321	Total Ex	316 425	316 111 316 399 128	432 406 343 506 331	1,1,8
. Feb.	(Excluding	249	352 352 263	569	₽I	336 313	308 366 298 1423 348	316 294 380 481 329	345
: Jan.	Use (Exc	271	353	278		376 296	357 1442 384 372 372	407 351 319 418 351	336
: Dec.	Military U	288 243 243	329 358 358	301		378 292	384 468 292 437 348	152 379 334 370 193	386
: Nov.	Mil	338	363 350	305		5113	398 379 315 5117 585	563 112 376 125 150	398
3 Oct.		345 294	703 118 125	352		493 574	1,81, 673 1,11, 558 1,12	537 5134 5134 535 635	553
Season		1949-50 50-51	52-53 52-53 53-54	1954-55		1942-43 43-44	1944-45 45-46 46-47 47-48 18-49	1949-50 50-51 51-52 52-53 52-53	1954-55

Surface Diversions and Storage

Early agricultural development in the watershed, as previously indicated, was based on direct diversion of surface stream flow. The number of diversions has been increasing as demands for water increase, although some of the diversions have been replaced by pumping from the underground. During the course of the investigation a total of 64 diversion systems were located in the Santa Margarita River watershed, of which 51 were active in 1953. The locations of these diversions are shown on Plates 21A and B, "Location of Diversions and Irrigated and Irrigable Lands". A summary of pertinent information and history of the diversions is presented in Table 24.

Included in Table 24, are six diversions from springs for which applications for appropriation of water have been filed with the Division of Water Resources in accordance with provisions of Division 2, Part 2, of the Water Code. Many other spring diversions have been developed and are in active use, usually for domestic and stock purposes. Among these are the Murrieta Hot Springs (7S/3W-14J1,2) at which a modern resort has been developed, and Collier Spring (8S/2W-36F) on Pechanga Creek, from which a domestic distribution system has been installed to deliver water a distance of about three miles downstream to users on the Pechanga Indian Reservation. The locations of all springs known to the Division of Water Resources are shown on Plate 6. Presented in Table 25 "Estimated Annual Surface Diversions", are the surface diversions for the years 1951, 1952, and 1953.

TABLE 24

DESCRIPTIONS OF SURFACE DIVERSIONS

		: : Appropriations:	Water	* 3 * 5 * 1	ag as *^	: Irri- :gated : area		e3 C0		
Omer	Diversion number		source	Year	:Use in 1953	iserved: in: 1953,: acres:	Description of diversion system	Measuring device	Measuring Awailable: device records	Remarks
Irsne Banton	8S/1E-299	None	Temeoula Creek	Unknown	Irrigation, domestic and stock	8	Earth dam 30 feet long, 5 hp centrifugal pump.	Power consump- tion and pump test	None	Ernest Fisk, Tenant.
Annie E. Bergman	85/1E-35M	None	Temecula Creek	1887	Irrigation, and domestic	31	Small carth dam, steel and masonry pipe lines, and 2 terminal reservoirs.	Weir	March, 1951 through June, 1954	Diversion formerly known as Seeley- Thompson, also formerly owned by Madeleine E. and Packard Thurber.
Paul Bradshaw	85/34~31 L	Application No. 14561	Brians Creek (tributary of Sandia Creek)	3.948 y	Irrigation	37	Earth dam 270 feet long. Diversion from reservoir by 15 hp Peerless turbine and 3/4	None	None	Pipe line is connected with conduit from diversion 95/3N-7D2,
L. W. Butler	8s/4w-31K	None	Greek Greek	About 1860	Irrigation, domestic, stock, and recreation	15	Masonry dam 25 feet long, steel and concrete pipe lines, 2 small reservoirs, and a domestic storage tank. Water may also be diverted to a large lake used for recreation.	None	None	Formerly owned by Mr. Brode.

			••		: Irri-			••	
Owner	: : Diversion : number	Appropriations: on file with State	Water supply source	Year started :	: gated :	<pre>1 : a : bescription of diversion system 3, : es:</pre>	: Measuring device	Measuring : Available: device : records :	Remarks
Elmer B. Denio	98/1E-12L	License No. 3268	Unnamed spring tributary to Temeoula Creak	1938	Domestio None use occasion-ally on week ends. Formerly used for domestic and stock watering.	Concrete dam 4 feet long, ½ mile of pipe terminating at a 2200 gallon tank.	None	None	
Elmer B. Denio	9S/1E-12R	None	Unnamed spring tributary to Temeoula Creek	Prior to 1951	Domestic None use occasionally on week ends.	Water diverted through pipe to smaller storage tank.	None	None	
Duncan Industries	7S/1W-12H	None	Tucalota Greek	Prior to 1944	Irrigation, flood control and recreation.	3 Earth dem 150 feet long, 150 feet of pipe line.	None	None	Property leased from E. Thorelson in December, 1951.
Cyril M. Ewing	85/54-230	License No. 2596	Unnamed Spring tributary to DeLuz Creek	1938	Inactive None since summer of 1951.	Masonry dam 35 feet long (washed out), steel pipe line, and a 2,000 gallon reservoir near house.	None	None	
Fallbrook Fublio Utility District	9s/3w-7d1	Permit No. 7033	Senta Margarita River	1925		200 hp motors and Peerless turbines, pipe line to s) service area connection.	Flow	1925 through May, 1955	1,800 acres is the total area of F.P.U.D. within Santa Margarita River watershed.

DESCRIPTIONS OF SURFACE DIVERSIONS (continued)

Gwner	Diversion number	Appropriations: on file vith State	Hater supply source	Year started	irri- :	gated: garea: served: 1953,	Description of diversion system	. Measuring : device	Neasuring : Available: device : records :	Remarks
R. L. Freeman	94-AE/S6	None	Santa Margarita River	Unknown	Irrigation, and domestic	7	5 hp pump and pipe line.	None	None	
Felix R. and Theodora L. Garnsey	8s/44~30B	Permit No. 5505	Cotton- wood Creek	1926	Inactive	None	Small rock dam, and gravity pipe line.	None	None	
Feilx R. and Theodora L. Garns ey	85/44-30н	Permit No. 8166	Cotton-wood	1931	Irrigation	82	Earth dam 160 feet long, diversion from reservoir by 3 hp pump to small concrete sump from which a concrete pipe carries water by gravity to a small earth reservoir.	• uo N.	N on e	Present diversion system installed in 1949-50.
Katharine G. Gibbon and William C. Cottle	8 s/1E- 29L	None	Temecula Creek	1885	Irrigation	*	Earth and rook dam, steel pipe line, and earth ditch terminating at the Cottle Reservoir	0 1.1 To 1.1.	January, 1951 through September, 1954	Diversion used alternately for three and one-balf days per , week on the Gibbon and Cottle ranohes to irrigate 55 and 31 acres respectively in 1953.

Owner	: : Diversion : number	: :Appropriations: : on file : with State :	: Water supply source	: : Year : started	: :Use in 1953 :	Earted: area: aerved: in: 1953; acres:	Description of diversion system	: : : : : : : : : : : : : : : : : : :	Available:	Remarks
Martin Granmer	9S/2E-34L	Perm1t No. 6279	Unnamed Spring tributary to Temecula Creek	1243	Irrigation, domestic and stock	1/3	Intake structure at spring, and pipe line terminating at a 3,000 gallon masonry reservoir at the Grammer house and a 4,000 gallon irrigation reservoir.	Non.e	None	
Sydney Grossman	8 <u>5</u> S/3E-31R Permit	Permit No. 5179	Cooper Canyón Creek	1938	Inactive	None	Concrete arch dam 50 feet long, and pipe line to Pawnee Mine.	None	None	
Sydney Grossman and Oscar L. Paris	88/3E-31G	None	Unnamed Springs tributary to Chibuahua Creek	Unkn own	Domestic (except drinking) stock and inter- mittent mine operation	None	Pipe lines terminating at four large storage tanks at the Pawnee Mine.	None	None	Formerly owned by E. L. and Billie Carr. System replaced 31 K in Oct. 1953. System also serves Oviativs cattle troughs.
Sydney Grossman and Oscar L. Paris	8s/3E_31K	None	Tributary of Chibuahua Creek	Unknown	Inactive	None	Pipe lines from oreek to two large storage tanks at the mine.	None	None	System replaced by parallel system 31G in October, 1953, but is intact for standby use.
W. F. Hanes	95/34-8B	None	Santa Margarita River	Unknown	Irrigation, and domestic	27	30 hp pump, and pipe lines to a reservoir. Domestic pipe line branches off conduit to reservoir.	Power oon- sumption	None	

DESCRIPTIONS OF SURFACE DIVERSIONS (continued)

Owner	Diversion number	: Appropriations: on file with State	Water supply source	Year started	Use in 1953	gated: gated: served: in	Description of diversion system	Measuring : device	Available records	Remarks
Estate of Alexander F., Hanson	8s/4:11-36D	Permit No. 4603	Sandia Creek	1938	Inactive	None	Concrete dam about 100 feet long, and diversior pump.	Mone	None	Diversion formerly used for domestic purposes and irrigation of a ottrus nursery.
Edward G. Heim and Pankonian	9S/3W_5R	None	Santa Margarita Rivor	Unknown	Irrigation	10	15 hp deep well turbine, and pipe lines.	Power consump- tion and pump test	None	
M. M. Henderson	85/3%-330	None	Senta Margerita River	1941	Irrigation	12	10 hp centrifugal pump, and pipe line,	None	None	
Jennings	44-4E/S6	None	Santa Margarita River	Unknown	Irrigation	8	15 hp centrifugal pump, and pipe line.	None	None	
B. M. Jurkovich	8S/1W-25B	License No. 2400	Unnamed Spring tributary to Temecula Creek	1935	Domestic	None	Pipe lines, and two storage tanks,	None	None	
Ceorgia E. Kerr	7s/1E~35E	License No. 404	Wilson Creek	1920	Inactive	None	Earth dam, and pipe line. (Dam washed out early in 1953)	None	None	

Owner	: : Diversion : number	: Appropriations: on file with State	Water supply source	: : Year : started :	: Irri-: gated: : area : :Use in 1953:served: : in : : 1953;	Irri-: gated: area: served: in: 1953,:	Description of diversion system	Measuring device	Measuring : Available:	Remarks
Gerner L. and Walter G. Knox	85/1E-19M1	None	Temecula Creek	Prior to 1943	Irrigation	70	Small earth and rock dam, earth ditch, and pipe line, terminating at two earth reservoirs.	Weir	January, 1951 through September, 1954, except June through September, 1951, no	Diversion formerly known as Tripp-Jones. Irrigation supplemented by ground water.
George A. Lange	ent-ne/se	None	Santa Margarita River	1939	Irrigation, and domestic	Few fruit trees	A one cylinder belt driven piston pump and two hp motor, pipe line to a 1,000 gallon reservoir,	Power consump- tion and pump	None	
Frederick W. Linke	75/1E-26F	None	Wilson Creek	About 1929	Domestic, and recreation	None	Centrifugal pump at small pond, and pipe line to small reservoir.	None	None	
Milton M. and Evelyn M. Lloyd	9S/2E-20C	Licensa No. 2843	Two unnamed springs tributary to Temecula	1923 La	Domestic, and stock	None	Pipe line and two small storage tanks near the Lloyd house,	None	None	System is connected with Diversion 9S/2E-20E.
Milton M. and Evelyn M. Lloyd	9S/2E-20E	License No. 2844	Unnamed Spring tributary to Temeoula	1933 .a	Domestic, and stock	None	Pipe line connected to diversion 200 system.	None	None	

Owner	: : Diversion : number	Appropriations: on file eath State	Water source	Year startoù	Use in 1953	gated area served: in 1953, acres:	Description of diversion system :	Measuring device	Measuring : Avatlable; devics : records :	Remarks
Edgar S. Lohman	8s/1W-23R	License No. 2741	Cienega tributery to Temecula Creek	1943	Domastic	None	Pipe line, and a 25,000 gallon concrete reserveir,	None	None	
L. T. Lundgate	9S/3W-8A	None	Santa Margarita River	Unknown	Domestic	None	hp pump, pressure tank, and pipe line.	None	None	
Dr. Mangan and Mary Reyac	ML6-W4/28	None	Fern Creek	About 1942	Irrigation and domestic	8	Dam 20 fest long, and pipe line,	None	Nons	
R. F. Matthews	85/4W-21E	None	Tributary of BeLuz Creek	About 1950	Irrigation	9	Earth dam, 5 hp pump, and pipe line to a hill-top reservoir.	None	None	
A. R. Meriokle	9S/3W-7F	None	Santa Margarita River	Unknewn	Domestio	None	Gasoline engine and centrifugal pump, and pipe line to reservoir.	None	None	
Paul Mortz	нт-м€/sе	None	Santa Margarita River	Unknown	Domestic	None	One hp pump and pipe line.	None	None	
Adelbert S. Nelson	8s/5w-23J	Permit No. 5201	Coleman Creek	1938	Domestio	None	Masonry dam 50 feet long, and pipe line,	None	None	

Owner	Diversion : number :	: Appropriations: on file : with State :	. Water : supply : eource	Year started	: Irri~! : gated: : area : :Use in 1953 :served: : 1953,:	Irriate gated: area: served: In: acres:	Description of diversion system	Measuring : Available: device : records :	Available: records	Remarks
James Oviatt	85 /1 5=7R	None	Lancaster Creek	1881	Irrigation	8	Masonry intake structure 4 feet high and 60 feet long set parallel to the stream channel, concrete block open channel, a subsurface collection gallery, concrete pipes, and two reservoirs, one of which was inactive in 1952.	Weir	February, 1951: through May, 1954	
James Oviatt	9S/2E-23R	None	Kohler Canyon, a tributary of Temecula Creek	Unknown	Irrigation	ľ	Small earth dam	Weir	February, 1951 through May, 1954	
James Oviatt and Harold K. Brinkerhoff	9S/2E-17F	None	Temecula Creek	Unknown	Irrigation, and domestic	10	Earth dam 20 feet long, and earth ditch terminating at an earthen reservoir.	Weir	July, 1951 through September,	Nine of the ten irrigated acres in 1953 belong to James Oviatt. During 1951 and

During 1951 and 1952, water was diverted for approximately 3½ days per week. During the remainder of week, Temecula Creek was allowed to flow downstream to Diversion 95/1E-12H. During 1953, water was diverted a greater portion of the time since no diversions were made at 95/1E-12H.

Owner	Diversion mumber	Appropriations: on file with State	Water supply source	Yoar started	.Use in 1953	irri-: gated: sarea: served: in: 1953,:	Description of diversion system	Measuring device	Measuring : Available: device : records :	Remarks
James Oviatt, Meta L. Cummings, and Edith S. Harmer	9S/2E-21L	None	Temecula Creek	Unknown	Domestic	None	Stone and conorete diversion box in creek, and pipe line to cabins.	None	None	Formerly known as Mapes diversion。
J. E. Patten	8s/1e-19n	None	Temocula, Creek	1939	Irrigation, and domestic	– ł ∾	1/3 hp pump, and pipe line to small storage tank.	None	None	Paul Poore, Tenant.
G. G. Fepple	9S/3W-9E	None	Rainbow Creek	About 1924	Irrigation, and domestio	۲	5 hp pump, and 3 pipe lines.	None	None	
Ray Peters	9S/3W-4F1	None	Santa Margarita River	1892	Irrigation	∞	5 hp centrifugal pump, and pipe line.	None	None	
John H. and Marie L. Richie	8S/1E=19M2	Non e	Temecula Creek	Unknown	Inactive since August, 1952. Formerly domestio.	None	Earth and rook dam, a one oylinder gasoline engine powered pump, pipe line, and a 1,400 gallon masonry reservoir.	None	None	Dam also serves diversion 85/1E-19ML.
Russell	9S/3W-4F2	None	Santa Margarita River	Prior to 1947	Domest1c	Non e	One hp pump, and pipe line to pressure tank.	None	None	
Charles Sawday	9S/3W-7D2	None	Santa Margarita Ri ver	Unknown	Irrigation	39	50 hp pump, and pipe line.	None	None	Pipe line is connected with conduit from diversion 85/3W-31L.
Mike Seery	88/54-139	Application No. 15031	Cotton- wood Creek	1952	Domestic	None	Masonry intake structure in stream bed, and 450 feet of hose to storage tank,	None	Non•	

diversion system : device : records : : : : : : : : : : : : : : : : : : :
None
Series of pipe None lines from stream bed.
Concrete dam 20 feet None long, and pipe lines.
Earth dam, centrifu- None gal pump, and pipe line.
land None None pipe line to 500 gallon tank.
Concrete dam 20 Weir feet long, and pipe line to earth reservoir

Owner	Diversion	: Appropriations: on file : with State :	Water supply source	: Year : started	: :Use in 1953 :	rrri-: gated: area: served: in: 1953,:	Description of diversion system:	Measuring :Available: device : records :	Available:	Remarks
United States Naval Ammunition Depot	NHI-Mt/S6	None	Santa Margarita River	About 1942	Domestic	None	5 hp pump, and plpe line.	Flow meter	January, 1945 through November,	
United States Navy, O'Neill Ditoh	10S/HW-5D	None	Santa Margarita River and Fallbrok Creek	1883	Recreation	None	Earth ditch from Santa Margarita River to O'Neill Ditch, which is located on Fallbrook Craek.	Water stage re- corder	Since October, 1930 (U.S.G.S. Water Supply Papers)	See text of Chapter for early history of this diversion.
Vail Company	8s/1w~10 ^D	Format No. 7032	Temesula Creak	1948 (see re- marks)	Irrigation, and recreation	1,588	Conorete, variable radius arch dam 130 feet high, with a 49,500 acre-foot capacity reservoir, and 6.7 miles of 24 inch concrete pipe 11ne.	Flow meter ine.	Vail Reservoir releases since August _s 1949	See text of Chapter for history of early surface diversions.
Israel Wannatick and Jaime Fortney	9s/3w-4n2	None	Santa Margarita River	Unknown	Inactiva	None	Equipment removed.	None	None	
Alvis A, Ward	9S/1E-12H	None	Temecula Creek	1836	Irrigation (Inactive November, 1952 through March, 1954)	None	Sand dam, concrete pipe line, and an earth ditch to a reservoir.	Power consump- tion and pump test	Jenuary, 1951 through October, 1952	Formerly owned by Ernest L. and Essie B. Barbey.

Очпет	Diversion number	Appropriations: on file with State:	Water supply source	. Year : started	: :Use in 1953 :	gated: area: served: 1953;	Description of diversion system	Measuring device	Measuring : Available: device : records :	Remarks
R. L. Warren	98/3M-4L	None	Santa Margarita River	Unkn own	Irrigation	70	7½ hp pump, and pipe line.	None	None	
Gustav Weber end Eugene Lawler, Jr.	9s/1E-29c	Permit No. 3883	Cutca Creek, a tributary of Smith Creek	Unknown	Irrigation, domestic, and stock.	W	Masonry dam 15 feet long, a gasoline powered pump, pipe line, and two storage tanks totaling 4,000 gallons capacity	None	None	
Dr. Samuel M. Wilson	8s/4w-32E	None	DeLuz Creek	About 1937	Irrigation	12	Concrete dam, gasoline engine powered centrifugal pump, and pipe line.	None	None	
Doris I. Worcester	75/2E-12N	Permit No. 9038	Unnamed spring tributary to Coahuila Creek	Prior to 1946	Stock	None	Undeveloped spring,	None	None.	
Doris I. Worcester	7S/2E-13C	N on e	Tributary of Coahuila Creek	Unknown	Domestic (Washing only)	None	Earth dam four feet long, a one cylinder gasoline engine and centrifugal pump, and pipe line,	None	None	

TABLE 25
ESTIMATED ANNUAL SURFACE DIVERSIONS

In Acre-Feet

Diversion	•		Diversion	
number	: Owner	: 1951 :	1952	1953
,				
7S/1E-24C	Shipley	a	a	a
-26F	Linke	ļ	1	1
-35E	Kerr	4	a	Ъ
7S/2E-12N	Worcester	a	a	a
-13C	Worcester	С	С	С
7S/1W-12H	Duncan Industries	. a	a	a
8 s/le- 7R	Oviatt	140	160	165
- 9Q	Tyler	115	a	250
-19Ml	Knox	a	185	260
- 19M2	Richie	С	С	Ъ
-19N	Patten	2	2	2
~29L	Gibbon-Cottle	730	455	665
-29Q	Barton	a	13	21
-29R	Trunnell	8	Ъ	Ъ
-35M	Bergman	370	390	400
8S/2E-22H	Toner	a	Ъ	ъ
8 s/3E -31G	Grossman and Paris	a	a	a
-31K	Grossman and Paris	a	a	Ъ
8 1 S/3E=31R	Grossman	Ъ	Ъ	Ъ.,
8s/lw-lcd	Vail Company	235 *	1,585*	6,880 *
-25B	Jurkovich	С	c	С
-29R	Lohman	c	1	С
8 s/ 3W-31L	Bradshaw	a	a	a
-33Q	Henderson	a	a	22
8 s/ 4W-21E	Matthews	a	a	12
-30B	Garnsey	Ъ	b	Ъ
~30H	Garnsey	a	a	155
-31 K	Butler	a	a	13
-31M	Dr. Mangan	a	а	13 5 24
-32E	Dr. Wilson	a	а	24
-36D	Hansen Estate	þ	ъ	ъ
8 s/ 5W-13Q	Seery	c	С	С
-23J	Nelson	c	С	С
-23Q	Ewing	Ъ	ъ	ъ
9S/1E-12H	Ward	50	80	Ъ
~12L	Denio	c	С	c
-12R	Denio	С	С	С
-29C	Weber and Lawler	3	2	2
9S/2E-17F	Oviatt-Brinkerhoff	80	115	235
, ,		(July-Dec.)	-	
-20C,E	Lloyd	ì	1	1
-21L	Oviatt, Cummings, and			
	Harmer	1	1	1

ESTIMATED ANNUAL SURFACE DIVERSIONS (continued) In Acre-Feet

Diversion	:	·		
number	: Owner	1951	1952	: 1953
9 S/2E- 28C	Studer Estate	ъ	ъ	t
-28R	Oviatt	115	120	80
-34L	Grammer	í	1]
9S/3W-4Fl	Peters	a	a	15
-4F2	Russell	С	С	c
–4G	Freeman	a	а	2
-4 H	Mortz	С	С	C
-4L	Warren	a	a	8
-4NI	Lange	a	1	2
-4N2	Wannatick and Portney	b	ъ	b
-4n3	Smith	b	ъ	b
-4P	Jennings	a	a	4
- 5R	Helm and Pankonian	3	2	L
-7Dl	Fallbrook Public Utility		- 4	
	District	860	860	1,750
- 7D2	Sawday	а	a	70
-7F	Merickle	С	С	C
-8A	Ludgate	С	С	C
- 8B	Hanes	a	a	120
-9E	Pepple	a	a	15
9S/4W-12H	Turnbull	С	С	C
- ∃¼N	U. S. Naval Ammunition			
	Depot	70	100	100
LOS/4W- 5D	U. S. Navy, O'Neill	- 1 -	1.1	
	Ditch	00لار1	44	6

^{*} Releases from Vail Reservoir.

a. No estimate made.

b. No apparent use.

c. Less than one acre-foot.

There are two sumface reservoirs of significance in the watershed, Vail Reservoir, previously mentioned, and O'Neill Lake in the lower reaches of the watershed. Other reservoirs exist but they are small and provide little if any carry-over storage from one year to the next. Releases from such reservoirs are included with the direct surface diversions.

O'Neill Lake on Camp Pendleton has a storage capacity of about 1,300 acre-feet. It is supplied by runoff in Fallbrook Creek and other tributary streams, by sewage treatment plant effluent, by direct precipitation, and by diversion from Santa Margarita River through O'Neill Ditch. the present time the reservoir is used primarily for recreational and esthetic purposes at its location adjacent to the United States Naval Hospital, within the reservation of Camp Pendleton. Under the present mode of operation the lake level is maintained at or near full capacity, allowing sewage effluent from plant 1 and the Naval Ammunition Depot plant and tributary runoff to enter the reservoir and, except during periods of high runoff, allowing Santa Margarita River water to enter the lake through O'Neill Ditch. This ditch, through an arrangement of gates and by-pass channels, "floats" on the lake, and as a result water diverted from Santa Margarita River enters the lake only when the other inflow quantities are insufficient to satisfy consumptive use due to evaporation from the water surface, and incidental use by phreatophytes at lake's edge. The quantity of this consumptive use is estimated to total 390 acre-feet per year, based on the actual fluctuations in surface area which occurred in the period April, 1945, through September, 1951. Any inflow in excess of the above consumptive use overflows to Santa Margarita Coastal Pasin belowIn past years, since purchase of the former Rancho Santa Margarita Y Las Flores by the United States of America, occasional releases have been made from the lake to the ground water basin. Such releases serve to recharge the basin by percolation to the ground water body just as the basin is recharged by (1) Santa Margarita River water not diverted in O'Neill Ditch, (2) flow in O'Neill Ditch which by-passes the lake, and (3) overflow from the lake. Thus Santa Margarita River water, which percolates and is subsequently extracted from the ground by pumping for beneficial purposes, is beneficially used whether it passes through O'Neill Lake or not. Releases from the lake, therefore, neither add to nor detract from the beneficial use of the water so extracted.

Prior to sale of Rancho Santa Margarita, O'Neill Lake was used to store Santa Margarita River water generally at all times except during periods of excessive runoff, and releases were made by gravity to irrigate lands overlying Santa Margarita Coastal Basin. Under the present method of operation of the lake and the ground water basin, extractions from which supply all water used on Camp Pendleton in the vicinity of Santa Margarita River, the yield of O'Neill Lake is considered to be zero.

Vail Reservoir on Temecula Creek was built by the Vail Company and completed in June, 1949. The dam forming this reservoir is a variable radius arch concrete structure, 130 feet in height from stream bed to crest. The reservoir capacity is about 49,500 acre-feet. The spillway of the dam was designed to pass a flood of 72,000 cubic feet per second. Application for the right to store water at the site was first made on August 2, 1919, under appropriation Application No. 1423, but the project was actually constructed under Application No. 11518, dated August 16, 1946. Gates at the dam were

first closed in November, 1948, and to date the reservoir has not filled. Relatively small releases to Temecula Creek (i.e. to ground water in Pauba Basin) were made in each of the years 1949 through 1952, and in 1953 a distribution system was completed and water was released for irrigation of lands overlying Pauba Basin, downstream from the dam.

The calculated safe yield of Vail Reservoir for the critical period 1895-96 through 1903-04 is 6,800 acre-feet per season, based on the semiseasonal inflows to the reservoir presented in Appendix I, Table 1-2. Allowance was made for reduction in effective reservoir storage capacity due to sedimentation in the amount of 4.640 acre-feet. This amount represents the loss after 50 years of operation, estimated to be 0.8 per cent by volume of the reservoir inflow for that period. Semiseasonal distribution of demand was made in accordance with historical use by the Vail Company as presented in Table 37, the October-March demand being 32 per cent and the April-September demand 68 per cent of the total. Estimated mean seasonal precipitation of 1.00 foot at the site was distributed in accordance with the average indices of watness at key stations as presented in Table 4, and further divided semiseasonally according to percentages of actual precipitation which occurred at the key stations. Semiseasonal gross depth of evaporation from the reservoir water surface was estimated to be 1 42 and 3 27 feet for the periods October-March and April-September, respectively. These values were adopted from long time records of evaporation at Lake Elsinore. In calculating net evaporation, allowance was made for the quantities of water that would have been salvaged from the former swamp in the reservoir area. Considered as salvage was the portion of

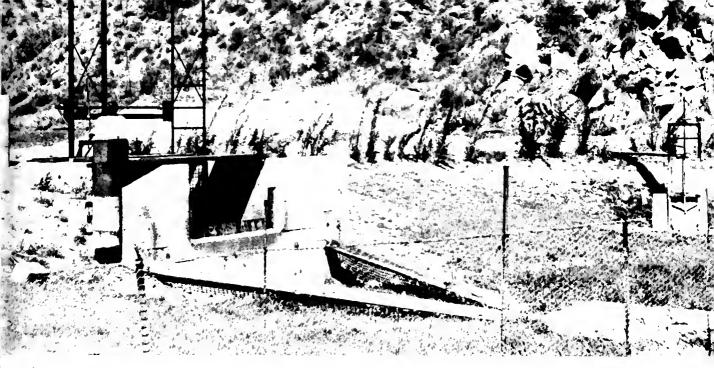
consumptive use of the swamp which was derived from runoff. This allowance was based on data, presented in the following table, which were taken from the report "Vail Reservoir Report on Salvage of Evapo-Transpiration Losses", by A. L. Sonderegger, dated July, 1948.

TABLE 26

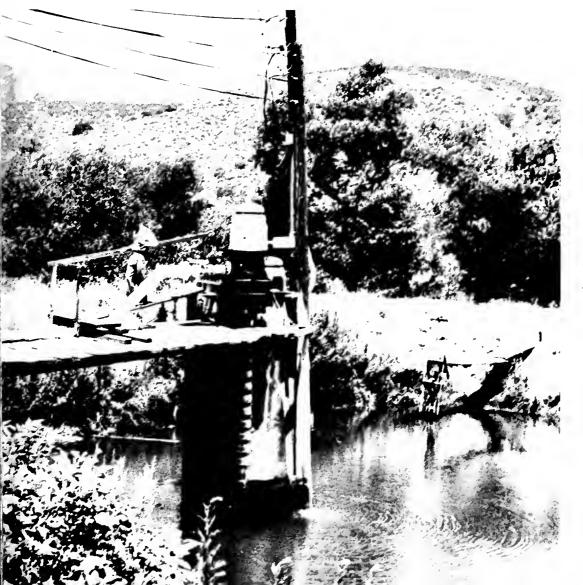
CONSUMPTIVE USE BY FORMER SWAMP LANDS
AT VAIL RESERVOIR

Net seas	onal	:	Monthly d	ist:	ribution
consumptiv	ve use		of consu	mpt:	ive use
Contour :	Use in	*			Per cent
interval:	acre-feet	8	Month	:	of annual
1350-1360	38		January		2.6
1350-1370	137		February		3.2
1350-1380	187		March		5.5
1350-1390	351		April		8.6
1350-1400	502		May		11.7
1350-1410	666		June		13.1
1350-1420	836		July		15.7
1350-1430			August		14.2
1350-1440	1,272		September		11.6
1350-1450	1,371		October		7.0
1350-1460	1,438		November		4.2
1350-1470	1,487		December		2.6
	_, ,				

Areas and capacities of Vail Reservoir for various depths of water at dam, as prepared by the Water Resources Division of the United States Geological Survey, are presented in Table 27.


TABLE 27

AREAS AND CAPACITIES OF VAIL RESERVOIR


Depth of	0		¢	
water at	0	Water surface	0	Storage capacity,
dam,	:	area,	•	in
in feet	3	in acres	ò	acre-feet
0		0		O
70		5 և 5		39
20		54		327
30		101		1,093
40		162		2 ,395
50		269		4,526
60		340		7,565
70		l ₁ 28		11,396
80		575		16,392
90		705		22,780
100		826		30,420
110		945		39,280
120		1,078		49,370
120.1		1,080		49,520

Applications to appropriate water have been made for many of the diversions tabulated herein in accordance with provisions of Division 2, Part 2, of the Water Code of the State of California. Applications and pertinent data relating to them are tabulated in Appendix K.

Seasonal quantities of water directly diverted, or released from surface storage units, by the Vail Company, Camp Pendleton, Fallbrook Naval Ammunition Depot, and Fallbrook Public Utility District are shown in Table 28. Summaried by hydrographic units in Table 29, "Developed Water Supply of Santa Margarita River Watershed in 1953", are the amounts of water extracted from ground water and diverted from surface streams and springs in the watershed in 1953.

Voil Company Diversion T8S/R1W-10D

Fallbrook Public Utility District Diversion T9S/R3W-7D1

9				

TABLE 28

SEASONAL SURFACE DIVERSIONS BY WATER SERVICE ORGANIZATIONS

In Acre-Feet

Season (Oct. 1 - Sept. 30)	: Fallbrook : Public Utility : District from : Santa Margarita : River : (Diversion : 9S/3W-7D1)	: Camp Pendleton : : 0 Neill Ditch : : Diversion : : from Santa : : Margarita Rivera : : (Diversion : : 10S/4W-5D) :	U. S. Naval: Ammunition: Depot from: Santa Margarita: River: (Diversion: 95/4W-14N):	Vail Co. from Temecula Creek ^C (Diversion 8S/1W-10D)
1924-25 25-26 26-27 27-28 28-29	3 13 15 17 25			
1929-30 30-31 31-32 32-33 33-34	24 25 28 52 81	2,540 3,050 2,200 2,490		
1934-35 35-36 36-37 37-38 38-39	68 97 81 91 104	1,270 2,340 2,470 3,340 2,100		
1939-40 40-41 41-42 42-43 43-44	131 130 170 203 155	1,080 1,800 1,640 1,160 ^b 4,940 ^b		
1944-45 45-46 46-47 47-48 48-49	152 86 86 40 113	2,280 ^b 3,020 ^b 2,100 ^b 4,940 ^b 4,340 ^b	68 42 81 90	136

SEASONAL SURFACE DIVERSIONS BY WATER SERVICE ORGANIZATIONS

(continued)
In Acre-Feet

Season	:	Fallbrook Public Utility District from	:	Camp Pendleton O'Neill Ditch Diversion	:	Ammunition Depot from	:	Vail Co. from
(Oct. 1 - Sept. 30)		Santa Margarita River (Diversion 9S/3W-7D1)		from Santa Margarita River ^a (Diversion 10S/4W-5D)	:5	anta Margarit River (Diversion 9S/LW-14N)	:	Temecula Creek ^C (Diversion 8S/1W-10D)
1949-50 50-51 51-52 52-53 53-54		382 595 1,150 1,215 1,233		1,910 ^b 1,470 ^b 196 ^b 0		62 68		274 235 1,585 6,076 4,408
1954-55								

a. Diversion in O'Neill Ditch started in 1883; measurements of flow available from 1930-31.

b. Diversions have, since October, 1942, largely by-passed O'Neill Lake in O'Neill Ditch and returned to river.

c. Surface diversions by Vail Co. prior to November, 1931, are included in table of "Ground Water Extractions by Vail Company".

Data recorded are releases from Vail Reservoir.

TABLE 29

DEVELOPED WATER SUPPLY OF
SANTA MARGARITA RIVER WATERSHED IN 1953

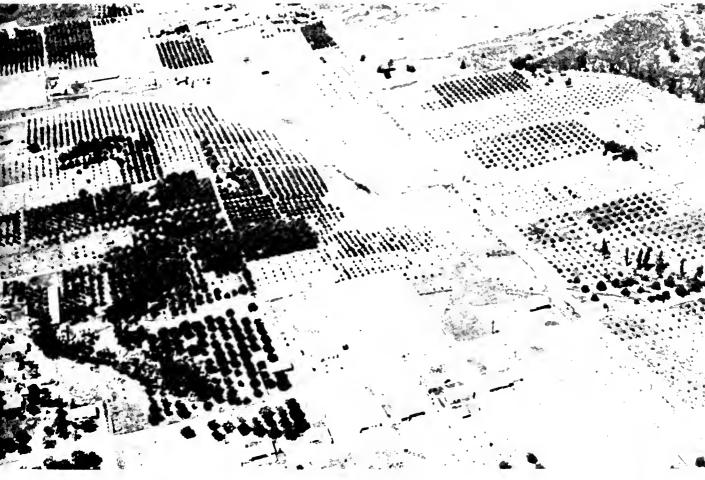
In Acre-Feet

Hydrographi Unit	.c:	Ground water	:	Springs	:	Surface Water	*	Sub- total	:	Import	00	Total
1		8,650		200		0		8,850		100		8,950
2		1,590		70		420		2,080		0		2,080
3		530		50		1,670		2,250		0		2,250
4		3,660		30		6,880		10,570		0		10,570
5		520		60		2,320		2,900		0		2,900
6		7,070		0		0		7,070		250		7,320
		22,020		410		11,290		33,720		350		34,070

Land Use

As a first step in estimating the water requirement of the Santa Margarita River watershed, survey determinations were made of the nature and extent of present land use as related to water utilization. Similarly, the probable nature and extent of ultimate land use were forecast on the basis of land classification survey data, which segregated lands of the watershed in accordance with their suitability for irrigated agriculture.

Past and Present Patterns of Land Use


The first land use survey in the watershed was made in 1904, when a survey of irrigated lands was made in the area comprising Hydrographic Units 1 through 4. The results of that survey and another covering the same

area made in 1915, are shown on a map included in United States Geological Survey Water Supply Paper No. 429. A survey, which was conducted in portions of Hydrographic Units 5 and 6 in San Diego County in 1934, was reported in California Division of Water Resources Bulletin No. 48, "San Diego County Investigation".

A detailed land use survey was conducted throughout the Santa Margarita River watershed during the season 1951-52, and during the summer of 1953 the irrigated lands were re-surveyed. Acreages of each land use type were determined by measuring the respective areas, exclusive of highways and county reads. Farmsteads and urban areas were separately determined, and for irrigated lands, an additional one per cent of the area was deducted for access roads to obtain the net irrigated area. The resultant patterns of land use in 1952 and 1953 are shown in Table 30. The classification "Roads", in the table, includes highways, county roads, and estimated areas of farm roads. Areas classified as "Urban" were restricted to Fallbrook, Temecula, Murrieta, Wildomar, and Camp Pendleton on which paved airport, warehouse areas, housing, hospital, and barracks areas were classified to be urban. Total irrigated land in the watershed increased 750 acres or 13 per cent, between 1952 and 1953, nearly 600 acres of new land being placed under irrigation on Pauba Ranch upon completion of a system for distribution of Vail Reservoir water. For comparative purposes the results of these and the earlier surveys are summarized in Table 31.

Avocados in Fallbrook Area

Fallbrook Area

Courtesy Fallbroak Public Utility District

				3
				4
7				
				9
				, i
				1
				4
				2
				3
				No.
				-
			140	
				3
	,			
				7
				3
				- 1
			•	
				- 1
		,		

TABLE 30

1952 AND 1953 LAND USE IN HYDROGRAPHIC UNITS OF SANTA MARGARITA RIVER WATERSHED

In Acres

6 : Totals 953 : 1952 : 1953	2,055 1,880 0 540 600 0 960 1,210 25 155 935 0 180 200 160 400 290 390 800 800 0 590 450		390 63,890 63,385 20 2,350 2,350 300 2,350 2,350 1,310 1,450 1,450 280 760 760 20 3,430 3,355 1,970 4,610 4,610 450 2,450 2,450 21,340 389,080 388,860 26,100 469,370 468,670
Unit No. 6 1952: 1953	0 0 0 190 390 0	600	390 20 300 1,310 1,970 1,970 1,970 21,340 26,080 26
1953	60 60 110 110 100	670	670 30 250 20 10 20 70 1,180 70,000 70,000
Unit No. 5 1952 : 1953	100 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	750	670 30 250 20 10 10 70 70,000 70,000 72,350
Unit No. 4 1952: 1953	720 2860 575 15 00 00	1,590	2,470 200 200 50 370 860 23,370 7
Unit 1		£	2,990 200 200 50 10 370 860 23,590 400
No. 3 1953	23 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370	2,785 0 250 30 220 135 630 99,320
1952:	70 105 0 0 0 0 0 0	230	2,850 0 250 30 220 210 630 99,320
No. 2 1953	160 370 70 40 20 20 230 00	890	7,850 350 70 2,140 110 88,980 99,880
. Unit	510 320 60 60 20 20 220 00	1,130	7,610 350 70 2,140 110 180 88,980 0
1953	230 230 630 210 130 20 170 20	2,340	49,220 260 1,000 440 130 620 640 640 85,850
: Unit No. 1 : 1952 : 195	880 220 220 100 110 20 25 25	2,090	49,470 260 1,000 440 130 30 620 640 640 85,850
of land use	IRRIGATED LANDS Alfalfa seed Alfalfa seed Permanent pasture Truck Deciduous Citrus Avocados Grain Corn	Subtotals	NONIRRIGATED LANDS Dry farmed and fallow Olives Roads Farmsteade Urban Water surface Subirrigated pasture Phreatophytes Dry river bottom Native vegetation Miscellaneous Subtotals

TABLE 31 PAST AND PRESENT AREAS OF IRRIGATED LAND IN HYDROGRAPHIC UNITS OF SANTA MARGARITA RIVER WATERSHED

In Acres

Hydrographic Unit No.	: 190	04 :	1915	Year : 1934	: 1952	: 1953
1 2 3 4 5 6	((9()))	100 0 0 290	210 ^a 210 ^a 110 1,030 ^b	2,090 1,130	2,340 890 380 1,570 680 580
TOTALS	90)	390	1,350	5,690	6,440

a. San Diego County only.b. Includes 368 acres in Fallbrook Irrigation District, a small but undetermined portion of which is in Hydrographic Unit 5.

Land Classification. During 1953 and 1954, a reconnaissance land classification survey was made of the entire watershed area to delimit the lands suitable for ultimate irrigation development. This land classification survey determined the amount and location of the irrigable lands, and subdivided them into various crop adaptability classes. The purpose of such a classification was to provide a direct approach for forecasting a probable crop pattern that would result from the full development of the irrigable lands, in order to provide a basis for estimating probable ultimate water requirements in the watershed.

The classification survey of irrigable lands gave consideration to such physical characteristics of the land as topography, soil depth, soil texture, saline or alkaline conditions, high water table conditions, and presence of rock. The present agricultural practices, climatic conditions, and ease of irrigation were also considered insofar as they influenced the crop adaptability of the various land classes. No consideration was given to those economic factors relating to production and marketing, which are variable among given areas and subject to considerable fluctation over a period of years. Neither the position of the land, as related to a possible water supply, nor availability of a water supply were influencing factors in the land classification.

Previously obtained soil and land classification data were available for lands in the Santa Margarita River watershed, but no single comprehensive survey of the entire area had been made. As mentioned in Chapter I, four separate soil surveys of the area have been made. Together these surveys covered the entire area of the Santa Margarita River watershed,

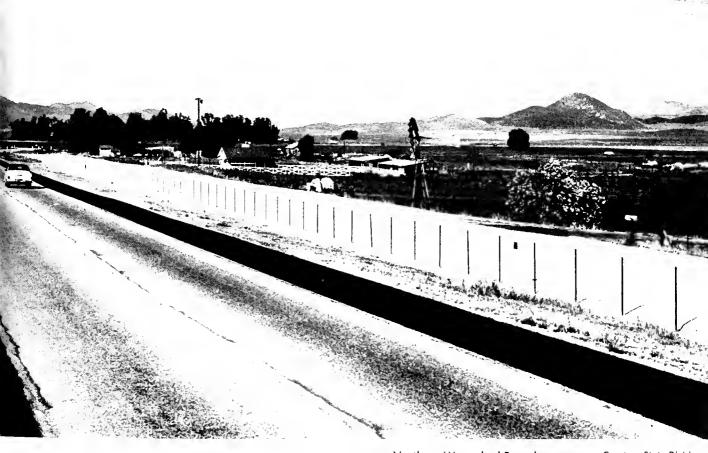

but they were conducted at different times, by different personnel, and to various standards. The resulting data for much of the area were not generally suitable for purposes of establishing water requirements. The United States Department of Agriculture's Soil Conservation Service is presently making detailed surveys in portions of the watershed. Data obtained in these surveys are ordinarily suitable for land classification purposes, but such surveys are usually made upon the request of individual owners and the total amount of land thus surveyed is relatively small and scattered throughout the watershed. The Marine Corps, however, utilizing Soil Conservation Service methods and procedures, conducted a soil and land classification survey of all lands within Camp Pendleton in 1951 and 1952. Results of the survey were made available and were very useful in this investigation. Although methods differed somewhat from those used in the survey for this investigation, it was possible to adapt the data to the system used throughout the remainder of the area, and a consistent land classification survey of the entire watershed was thus obtained.

Table 32 comprises a description of each crop adaptability class and the standards utilized in the survey.

Northeast of Murrieta

Courtesy State Division of Highways

Northern Watershed Boundary at Highway 395

Courtesy State Division of Highways

	,	
	ž.	
		1.

TABLE 32

IRRIGABLE LAND CLASSIFICATION STANDARDS

	:	
Class	:	Characteristics
	:	

- Smooth lying valley lands with slopes up to 6 per cent in general gradient in reasonably large sized bodies sloping in the same plane; or slightly undulating lands which are less than 4 per cent in general gradient. The soils have medium to deep effective root zones, are permeable throughout, and free of salinity, alkalinity, rock, or other conditions which would limit the crop adaptability of the land. These lands would be suitable for all climatically adapted crops.
- V1 Similar in all respects to Class V except for having fairly coarse textures and low moisture holding capacities, which in general make these lands unsuited for the production of shallow-rooted crops because of the frequency of irrigations to supply the water needs of such crops.
- Vw Similar in all respects to Class V, except for the present existing condition of a high water table which in effect limits the crop adaptability of those lands to pasture crops. Project drainage and a change in irrigation practices would be required to affect the crop adaptability of these lands. For the purpose of this investigation, it is assumed that there will be no change in the use of these lands.
- Vs Similar in all respects to Class V, except for the presence of saline and alkali salts which limit the present adaptability of these lands to crops tolerant to those conditions. The presence of salts within the soil indicates poor drainage and a medium to high water table. The reclamation of these lands will require drainage and the application of additional water over and above crop requirements in order to leach out the harmful salts.
- Vm This class covers marsh lands which under present conditions are nonirrigable, being under water a large part of the year. The present vegetation is mostly tules and water-loving types of plants. These lands would require extensive drainage before they could be utilized for agricultural crops. It is assumed that there will be no change and that their water use will continue to be the same as the present. If this type of land were developed, the probable result would be a decrease in its water requirement.

IRRIGABLE LAND CLASSIFICATION STANDARDS (continued)

	:	
Class	:	Characteristics
	:	

- Va Land at present considered nonirrigable due to the presence of saline and alkali salts in excess of agricultural crop tolerance. The feasibility of reclamation of this type of land is presently unknown. It is therefore assumed for this report that the ultimate land use of these lands will remain unchanged.
- H Undulating and rolling lands up to 20 per cent maximum slope for large-sized bodies sloping in the same plane, grading down to less than 12 per cent for undulating lands. The soils are permeable, with medium to deep effective root zones, and are suitable for the production of all climatically adapted crops. The only limitation is that imposed by topographic conditions which affect the ease of irrigation and the amount of land that might ultimately be developed.
- Hp Similar in all respects to Class H, except for the depth of the effective root zone which limits the use of this land to shallowrooted crops.
- Hr Similar in all respects to Class H, except for the presence of rock on the surface or within the plow zone in sufficient quantity to restrict the use of the land to non-cultivated crops.
- Ht Similar in all respects to Class H, except for topographic limitations. Smooth slopes up to 30 per cent in general gradient for large-sized bodies sloping in the same plane, and up to 12 per cent slopes for rougher and more undulating topography. This class of land will not be as highly developed as other "H" classes of land.
- Htp Similar in all respects to Class Ht, except for the depth of the effective root zone which limits the use of this land to shallow-rooted crops.
- Htr Similar in all respects to Class Ht, except for the presence of rock on the surface or within the plow zone in sufficient quantity to restrict the use of the land to non-cultivated crops.
- N = Includes all lands which fail to meet the minimum requirements of the above classes.

Results of the survey indicate that 109,850 acres of land in the watershed, out of a total of 475,100 acres, are susceptible of intensive agricultural development by irrigation.

Approximately 33,000 acres or nearly 1/3 of the gross irrigable acreage are valley floor lands, of which the vast majority are Class V. The topography is smooth and level or gently sloping, and is suitable for most types of irrigation practice. Soil textures vary from fine to coarse, but are predominantly of medium texture and in general have good waterholding capacities, and the soil structure permits easy penetration of roots, air, and water. These lands generally are suited for continuous production of all climatically adapted irrigated crops.

Irrigable mill lands meet the requirements of irrigable valley lands in all respects, except for topography, which limits their suitability to certain climatically adapted crops under special irrigation practices. Since these lands vary in topographic relief from gently sloping or rolling to steeply sloping or rolling, care must be exercised in the type of irrigation practice; and terracing, and/or permanent cover crops may be required. Some of these lands are to be found on recent alluvial soils, but for the most part they comprise residual soils or old valley terrace soils. The best of the hill lands, which have adequate soil depth and are suitable for most climatically adapted crops, comprise about 61,000 acres or around 60 per cent of the total of the gross irrigable lands. These lands are highly valued in Hydrographic Units 5 and 6 for the production of avocados and citrus. In the higher mountainous areas, these lands have limited crop adaptabilities, but are potentially irrigable. The remainder of the hill lands, totaling some 15,000 acres or about 7 per cent of the total gross

irrigable acreage, are limited somewhat in their crop adaptabilities by soil depth or presence of rock. These lands, however, are suitable for certain climatically adapted crops.

Results of the classification of irrigable lands in the Santa Margarita River watershed by hydrographic units and counties are presented in Table 33.

TABLE 33

CLASSIFICATION OF LANDS BY HYDROGRAPHIC UNITS AND COUNTIES OF SANTA MARGARITA RIVER WATERSHED

In Acres

11 1, 29 165 13 2,307 15,395 2,982 0 5,802 8,604 0 47,107 0 175 94,256 94,491 1 2,529 1,865 0 0 5,097 12 12 1 2 2,207 12 12 1 12 1 12 1 13 1 13 12,29									Land	class							
1 11,299 165 13 2,307 15,935 2,982 0 5,802 8,604 0 47,107 0 175 94,256 94,491 1 1 1,299 165 13 2,307 15,935 2,982 0 5,802 8,604 0 47,107 0 175 94,256 94,491 1 1,297 1,282 0 0 13,035 543 0 5,802 1,2116 0 22,088 0 636 78,042 78,678 1 1,297 1,297 1,297 1,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,282 0 0 1,2926 11,292 1,	Hydrographic unit					I	rrigable	lands						Nontry		inds	- 40 P
11,239 165 13 2,307 15,335 2,982 0 5,802 8,604 0 47,107 0 175 94,256 94,491 5,801 1,425 53 0 13,035 543 0 558 1116 0 22,088 0 636 78,042 78,678 1,232	and county	Δ	П	Н	1 1	H	Hp:	1 1	1 1	Htp	Htr	: Total		. Va	1	Total	n T Da O 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hydrographio Unit l Riverside	11,299	165		2,307	15,935	2,982	0	5,802	8,604	0	47,107	0	175	94,256		141,540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrographio Unit 2 Riverside		1,425	53	0	13,035	543	0	55	1,116	0	22,088	0	989	78,042		100,770
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrographio Unit 3 Riverside San Diego	ની	1,022	ଂ ବା	° 이	3,101	0	28	79	237	0	4,701 5,233	ଂଧ	0 0	43,083 50,964		47,780 56,200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	totals	2,259	1,865	0	0	2,097	121	78	163	238	113	9,934	0	0	94,047	4,947	103,980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hydrographio Unit 4 Riverside San Diego	3,187	769	° °	ᇵ이	4,106	돲이	୦୦	849	361	° °	9,339	००।	40	18,517	18,518	27,860
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	totals	3,187	694	0	ま	4,106	13	0	648	370	0	9,348	0	٦	19,694		29,040
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hydrographic Unit 5 Riverside San Diego	3	98	००।	ଂଧ	1,004	0 S	154	538 2,756	205	००	1,724	00	° °	29, 540 36, 984	29,540 36,984	31,260 41,840
t 6 2,155 896 0 14 4,920 0 5,452 1,365 0 14,802 14 17 11,846 11,847 11,847 20,791 3,381 66 2,361 37,181 3,538 0 7,323 10,318 0 84,959 0 812 263,438 264,250 4,652 1,825 0 14 7,292 146 232 8,292 1,580 113 24,894 14 17 100,971 101,002 25,484 5,206 66 2,375 45,180 3,684 232 15,615 11,898 113 109,853 14 829 364,409 364,409 365,252	totals	723	98	0	0	2,087	25	154	3,294	205	0	6,574	0	0	66,524	66,524	73,100
$\frac{20,791}{4,622}$ $\frac{3,381}{1,825}$ $\frac{66}{0}$ $\frac{2,361}{14}$ $\frac{37,181}{7,929}$ $\frac{3,538}{146}$ $\frac{0}{232}$ $\frac{6,292}{8,292}$ $\frac{1,580}{1,580}$ $\frac{113}{113}$ $\frac{24,894}{19,894}$ $\frac{14}{14}$ $\frac{12}{12}$ $\frac{263,438}{100,972}$ $\frac{264,250}{101,002}$ $\frac{25,484}{11,898}$ 5,206 $\frac{66}{113}$ 6,375 $\frac{45,180}{11,808}$ 3,684 232 15,615 11,898 113 109,853 14 829 364,409 365,252	Hydrographio Unit 6 San Diego	2,155	8%	0	1 1.	4,920	0	0	5,452	1,365	0	14,802	14	17	11,846	11,877	26,680
25,484 5,206 66 2,375 45,180 3,684 232 15,615 11,898 113 109,853 14 829 364,409 365,252	Riverside County San Diego County	20,791 4,693	3,381	99		37,181	3,538	232	7,323	10,318	0113	84, 959 24, 894	우취	812	263,438 100,971	264,250 101,002	349,210 125,900
		25,484	5,206	99		45,180	3,684	232	15,615	11,898	113	109,853	†Į	829	364,409	365,252	475,110

Land Use. Utilizing the results of the land classification, and giving consideration to present and probable future trend of development, a pattern for probable ultimate land use was forecast for the Santa Margarita River watershed for the purpose of estimating water requirements. It has been estimated in State Water Resources Bulletin No. 2, that future extensive urban development in this portion of the South Coastal Area will be confined to a narrow coastal strip, a few miles in width. The area of the coastal strip within Santa Margarita River watershed is small, and much of the land therein is either river bottom or tidal marsh. Since it is believed that communities elsewhere within the watershed will remain essentially farm community centers, and that they too will occupy a relatively small percentage of the total area, all lands within the watershed are, for purposes of predicting the probable ultimate water requirement, considered according to their suitability for agricultural, rather than urban use. Consumptive use of applied water for urban areas is generally somewhat less than similar use by the average irrigated crops forecast for the watershed, and therefore it is believed that the foregoing assumption is conservative in that the estimated total water requirement is somewhat larger than would otherwise result.

As regards the lands within the Camp Pendleton Military reservation, it is recognized that the selection of an agricultural pattern of land use may result in an estimated ultimate water requirement greater than that which will probably occur so long as the reservation remains a part of the Marine Corps establishment. Considering the uncertainty as to what the situation may be after the unspecified long period of years which will elapse before attainment of the "ultimate", it is believed that this higher estimate is desirable.

Results of the land classification were in terms of gross irrigable acreages; therefore, appropriate percentage factors were applied to reduce these areas to average net acreages that might ultimately be irrigated in any one season. The factors account for the effect of size and shape of the parcels of irrigable lands, inclusions of small areas of non-irrigable lands among the irrigable classes, production capacity of the lands and probable crop rotation, ease of irrigation development, and inclusion of roads, highways, and other non-agricultural land uses. The factors were largely based upon experience and judgment of the classifiers, and knowledge of the characteristics of the lands under consideration.

The ultimate crop pattern was projected to the adjusted net acreage of irrigable lands that would be irrigated in any one year. The projection was based on consideration of present crop patterns, knowledge of climatic conditions, and discussions with local authorities, particularly the Farm Advisor of Riverside County and the Farm Advisor and Agricultural Commissioner of San Diego County.

Table 34 presents the probable ultimate pattern of land use for each hydrographic unit in the Santa Margarita River watershed. In those hydrographic units which are partly in Riverside County and partly in San Diego County, the projected land use has been segregated by counties. In Hydrographic Units 2 and 3 a further segregation has been made for lands lying above and below elevation 3,000 feet.

TABLE 34

PROBABLE ULTIMATE PATTERN OF LAND USE IN HYDROGRAFHIC UNITS AND COUNTIES OF SANTA MARGARITA RIVER WATENSHED

In Acres

] 				Inland area					
		: Hydro	Hydrographic Unit No.	No. 2		Hydrog	Hydrographic Unit No.	t No. 3		
Class and type of land use	:Hydrographic: Riverside County: Unit No. 1 : Below : Acove	Riversid	e County:		Riversic Below	Riverside County : Below : Above :	: San Diego County : Below : Above	so County :		
	de	:elevation	:elevation:elevation:	Tota.l	:0]cvation:	elevation:	: elevetion: 3000 feet	:010vation:elevation:elevation:elevation:	Totel	Subtotal
		•								
irigated lands		00)	600	0	t	oile	040	C. E	061	0
Alralia	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	020	Lycau	2,500	<u> </u>	047	0/2) (C	02161	04/30
rasture	0.00	1,250	00/2	25,50	2 0	100	٥ ٢ ٢	207	ָר מאַ	000 %
Truck	10,000	620	4,300	5, UCD	200	0/4	011	7	1,000	000,00
Decidoous	3,000	270	730	1,000	240	09	1,190	1,160	2,550	6,650
Citrus	1,570	0	0	ن	С	0	c	0	0	1,570
Avonados	0	0	0	0	0	0	0	0	0	0
Field	3,000	330	1,170	1,500	250	C,	110	04	150	η* 950
Hay and grain	3,000	290	1,210	1,500	300	001	0	0	100	4,300
Vines	1,000	0	0	0	0	0	350	250	009	1,600
Flowers	0	٥	0	0	C	ျ	0	0		0
Net irrigated area	32,560	3,370	12,120	15,490	-2,450	780	2,180	1,740	7,150	55,200
Streets and roads and nonproductive area	14,550	1,750	4,850	6,600	1,090	380	750	260	2,780	23,930
Gross irrigated area	47,110	5,120	16,970	22,090	3, 5/40	1,150	2,930	2,300	9,930	79,130
Nonirrigable lands not susceptible to extensive water service	94,430	26,550	52,130	78,680	21,120	21,960	7,890	42,080	050.446	267,160
TOTALS	141,540	31,670	69,100	100,770	24,660	23,120	10,820	45,380	103,980	246,290

PROBABLE ULTIMATE PATTERN OF LAND USE IN HYDROGRAPHIC UTTS AND COUNTIES OF SANTA MARGARITA RIVER WATERSHED (continued)

In Aores

	Inle	nland area (co	(cont.)		+000	Constal amos				
	Hydroge		η	Hudnoge	Substantiate	TO THE	. Usada sa		••	
Class and type of land use		le:San Diego:		Riverside	Riverside: San Diego:	70.0	Invariagnment Subtotals Unit No. 6 Bisservide San Discontinuous	Riverside Sen	tals :	Total
	: County :	: County :	Total	: County : County	County :	Total	San Diego	County:	County : h	County : hydrographic
	•						: County :	. "		units
Irrigated lands										
Alfalfa	1,000	0	1,000	0	0	0	lt30	טנת ס	044	000
Pasture	9	0	,600	230	0	230	<u> </u>	11,280	330	טטד, רו
Truck	3,000	0	3,000	200	1,010	1.210	2,240	19,050	E 22	22 hro
Deciduous	009	0	009	200	180	380	200	5,100	2,730	7,830
C1 trus	200	0	200	200	1,000	1,200	2,840	1,970	3,840	סנמ א
Avoedos	200	0	200	200	1,000	1,200	2,840	001	3,850	1,240
Field	200	0	200	100	0	100	0	5,400	150	5 5 5
Hay and grain	500	0	200	100	0	100	C	200	2	000
Vines	250	0	220	0	0	0	0	1,250	909	1,850
rlowers		0	°	°	200	200	2,450	°	2,650	2,650
Net irrigated area	6,850	0	6,850	1,230	3,390	4,620	11,000	59,360	18,310	77,670
Streets and roads and nonproductive area	2,500	0	2,500	061	1,460	1,950	3,800	25,610	6,570	32,180
Gross irrigated area	9,350	0	9,350	1,720	4,850	6,570	14,800	84,970	24,880	109,850
Nonirrigable lands not susceptible to extensive water service	18,510	1,180	19,690	29,540	36.990	66.530	11 880	०५८ मु४८	000	076 176
	•	•			- / / / /		2006-1	01,01	0206101	702,400
TOTALS	27,860	1,180	29,040	31,260	41,840	73,100	26,680	349,210	125,900	475,110

Unit Use of Water

The second step in the evalutaion of present and probable ultimate water requirements of the Santa Margarita River watershed involved determination of appropriate units of water use for each of the types of land use requiring water service, for native vegetation, and for other lands not requiring water service.

Unit Values of Consumptive Use

Unit values of seasonal and irrigation period consumptive use of water for irrigated crops were determined from data obtained from the field soil moisture depletion investigation conducted in the Santa Margarita River watershed during the growing period of 1953. This study was made in cooperation with the United States Department of Agriculture, Agricultural Research Service (formerly Division of Irrigation Engineering and Water Conservation of the Soil Conservation Service) in accordance with an agreement between that agency and the Division of Water Resources. Under the agreement, the Department of Agriculture suggested general field procedures, provided equipment, interpreted field data, and prepared a report on the investigation. This report appears herein as Appendix C. Field data at test plots were, for the most part, obtained by Division of Water Resources personnel, who also aided in preparation of the data for analysis and checked final results.

To obtain additional climatological information, three new Class A evaporation stations were established within the watershed early in 1953, and were operated through May 1954. Station equipment consisted of a United States Weather Bureau type four foot diameter evaporation pan,

United States Weather Bureau standard eight-inch rain gage, totalizing anemometer, thermograph, and maximum and minumum thermometers. Stations were established at Murrieta, Oakgrove, and Anza, and all were equipped as indicated, except that the Oakgrove Station had no anemometer. Similar stations were established at Vail Reservoir and O'Neill Lake in 1952 by the United States Marine Corps under direction of the Department of Agriculture, both of these stations being presently active. In June, 1954, equipment at the Murrieta Station was moved about one mile northwest to a new site, where it is presently operated by the Soil Conservation Service. Locations of the stations are shown on Plates 21 A and B, entitled "Locations of Diversions and Irrigated and Irrigable Lands".

Thirteen test plots, the locations of which are also shown on the plates, were carefully selected for their representative characteristics of farm practice, type of crop, and depth of root zone, the object of the study being to obtain unit consumptive use values for irrigated crops having an adequate water supply. Field data collected included measurements of soil moisture content of samples taken throughout the root zone at each plot before and after each irrigation, moisture content being determined for each one foot increment of soil depth. Thus the soil moisture accretion from irrigation and soil moisture depletion between irrigations by evapotranspiration processes (consumptive use), were determined for each plot. From these data, and estimates of additional evaporation immediately following irrigation and prior to post-irrigation sampling, the irrigation period consumptive use of the crop at each location was evaluated.

To illustrate the method used, there are plotted on Plate 22, "Soil Moisture Depletion and Accretion, Plot No. 2, Irrigated Pasture,

Murrieta Valley", the results of the soil moisture depletion determinations, expressed in inches of depth of water, for all samples taken from plot No. 2. For each one foot increment the values of soil moisture at times of sampling are connected on the graph by solid lines and are extended by dashed lines to complete the graph for each interval between irrigations or times when precipitation occurred. The slopes of the lines indicate rates of consumptive use of water; therefore, the sum of the incremental differences in the ordinates of sloping lines represents the amount of total consumptive use of water for any period. Tabulations of measured and estimated rates of consumptive use at the test plots appear in Appendix C, Tables C-11 through C-20. Plots 4 and 7 were discontinued early in the season because the owners were unable to continue irrigating the fields. At all other sites, the sampling program was carried through to completion in November, 1953, but conditions at plot 10 were later found to be not representative of the average.

The consumptive use values so obtained are those for particular crops, during a particular year, and at particular locations. To obtain values which are applicable to these and other crops, during other periods of time, and at other locations, the Blaney-Criddle formula U=KF has been utilized. This formula employs the following relationship:

U = Consumptive use during the growing period.

K = Growing period consumptive use coefficient.

t = Mean monthly temperature in degrees Fahrenheits

p = Monthly per cent of annual daytime hours.

 $f = \frac{\exp}{100} = Monthly consumptive use factor.$

F = Sum of monthly consumptive use factors during the growing period. In general it has been found that the coefficient K is relatively constant for a particular crop and that consumptive use varies almost directly with the consumptive use factor (F). Thus, during any period and at any location where F can be evaluated, the equation U=KF can be utilized to obtain the value of the constant K if U has been determined experimentally as was done in this instance, or to obtain the value of U if K is known.

Values of (K) so determined from the test plot data are as follows:

Plot No.	Crop	Location	Coefficient (K)
1	Avocados	Fallbrook	0.56
2	Irrigated Pasture	Murrieta	0.85
5	Lettuce	Murrieta	0.58
6	Melons	Murrieta	0.68
8	Carrots	Temecula	0.68
9	Alfalfa	Temecula	0.83
11	Alfalfa	Aguanga	0.85
12	Irrigated Pasture	Anza	0.94
13	Alfalfa seed	Anza	0.86

In Tables C-6, C-7, and C-8, of Appendix C, estimates are presented of long term unit values of consumptive use of water by irrigated crops in the Coastal Area (Hydrographic Units 5 and 6), the Murrieta-Temecula Area (Hydrographic Units 1 and 4, and portions of Units 2 and 3 below elevation 3,000 feet), and the Anza Area (portions of Hydrographic Units 2 and 3 above elevation 3,000 feet).

The values of K utilized therein are based in part upon the values derived from the data obtained at the test plots and in part upon experience obtained elsewhere. An example of the modification based on experience is the reduction of the value for alfalfa from 0.85 determined experimentally in the Murrieta-Temecula Area, to 0.75 in the Coastal Area (Table C-6) and to 0.80 in the Anza Area (Table C-8). Values for crops not included in the

Santa Margarita tests are those which have been determined experimentally under similar conditions elsewhere.

For purposes of evaluating the consumptive use factor (F) and consumptive use of precipitation, it was assumed that temperature and precipitation at Escondido Church Ranch, at Elsinore, and at Warner Springs stations, are representative of the Coastal, the Murrieta-Temecula, and the Anza areas respectively.

In estimating the winter (nongrowing) period consumptive use, it was assumed that evaporation equals the precipitation up to 1.50 inches per month on the basis of 0.50 inch per storm and three storms per month. It was further assumed that 0.50 inch additional is transpired during November by alfalfa, pasture, and deciduous in the Anza Area; and that elsewhere in the watershed 0.50 inch additional is transpired during March by alfalfa and pasture, and 0.50 additional during November by alfalfa, pasture, citrus, avocados, and deciduous.

For purposes of this study it was assumed that precipitation during the growing period is all consumed. Precipitation during the non-growing period is disposed of by the evaporation and transpiration noted in the preceding paragraph, by runoff, by replenishment of the deficiency in soil moisture in the root zone at the end of the irrigation period, and finally—at times when there is precipitation in excess of all the foregoing—by percolation beyond the reach of vegetation.

Runoff was assumed to be negligible during months in which precipitation totals less than two inches. Ten per cent was assumed to run off when monthly precipitation ranges between two and four inches, and twenty per cent when it exceeds four inches.

The soil moisture deficiencies at the end of the respective growing periods for the various crops are assumed to be as follows:

Alfalfa, pasture, truck	and	grain	•	• •	۰	•	• •	•	4 inches
Alfalfa seed	0 0	• • •	•	• •	•		•	•	12 inches
Citrus and avocados	• 0	o • •		• •	o	• •	•	•	3 inches
Deciduous	υ •	• • •	o	• •	•		•	•	8 inches
Beans								0	6 inches

Estimated unit values of mean seasonal consumptive use of water by the irrigated crops on the three areas comprising the Santa Margarita River watershed are presented in Table 35. The values for a few crops not included in the studies described in Appendix C (Tables C-6, C-7, and C-8) are set forth in the Table. The values for flowers were assumed to be the same as for truck crops, and the values for vines the same as for citrus orchards. Unit consumptive use of applied water for field crops was assumed to be 10 per cent greater than for truck crops.

Summarized in Table 36 are the estimated unit values of seasonal consumptive use of applied water and precipitation by irrigated crops for the drought period 1944-45 through 1950-51. The values differ from those in Table 35 by (1) the decrease in consumptive use of precipitation occasioned by deficiences in growing and nongrowing period precipitation, and (2) the increase in consumptive use of applied water required to offset the decrease in quantity of carryover soil moisture at the start of the normal growing period and to offset the growing period precipitation.

TABLE 35

ESTIMATED UNIT VALUES OF MEAN SEASONAL CONSUMPTIVE USE OF WATER ON IRRIGATED LANDS IN SANTA MARGARITA RIVER WATERSHED

(In feet of depth)

	00	11		Inland Area		11	S	Coastal Area	a.
$\Gamma_{\!Y\!P}$ e	: Hydrog : 3,000	Hydrographic Uni and below ele 3,000 ft. in Uni	Units 1 and 4 elevation Units 2 and 3	: Hydro	Hydrographic Units 2 above elevation 3,000 ft.	ts 2 and 3 : tion	Hydrogr	Hydrographic Units 5 and	s 5 and 6
े हैं हैं हैं	•		: Total		••	Total	••	•	Total
use	: : water	:Applied:Precipi-: water : tation :c	: seasonal :A :consumptive: : use :	Applied:Fees water:	recipi- tation	seasonal A consumptive:	Applied:F water	recipi- tation	: seasonal :consumptive : use
Alfalfa Alfalfa seed Pasture	2 L Z 8 8 8 8	0.9 0.1 0.9	w. w. w. v. w. v.	44.4 44.4	1.2	w w w w w w	2.1	111	3.2
Deciduous Citrus Vines	444	0.8	22.9	1.2	1.1 1.1 1.1	2 ! L	٠ ٠ ٠	1.0 1.0	2.8 2.1 2.1
Avocados Truck Flowers	प्पंप 7.प्पं	000	11.0	8.8	111	1.9	444 400	000	.00 .00
Beans Field Grain	1.0	0.0	1.9	0.0	1.1	102	0.8	1.0 1.0 1.0	1.9

* Approximate.

TABLE 36

ESTIMATED UNIT VALUES OF CONSUMPTIVE USE OF WATER ON IRRIGATED LANDS DURING DROUGHT PERIOD, 1944-45 THROUGH 1950-51, IT SANTA MARGARITA RIVER WATERSHED

(In feet of depth)

5 and 6 Total drought period nsumptive use	3 1 2	8 2 1 1	2.09.3	1.9 2.0 1.4
Coastal Area Hydrographic Units 5 and Total drough pplied: Precipi -: perior water : tation :consumpt use	0 0 0	0.00	6.00	0.00
4	2 1 2	8 2 2 2 A	7.00	0.0
s 2 and 3 : ion Total drought period onsumptive: use	w a w w o w	1.9.5	1.9	2.0
d Area Hydrographic Units 2 above elevation 3,000 ft. i fr i dr i Applied: Precipi-: p water: tation: cons	۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲	2,1	111	1.0
Hydrogi Hydrogi Applied	2.2 1.4 2.2	u 100	000	0.0
Inland Units l and 4: elevation Units 2 and 3:	40 4 000	8,2,2,5 L.2,1	2.1. 2.0.1.	1.20 1.30
D by de d	9.000	9.00	999	9.00
Hydrographic and below 3,000 ft. in Applied; rations water: tations	000	0 44 9 2 2 2	444	1.2
Type of land use	Alfalfa Alfalfa seed Pasture	Deciduous Citrus Vines	Avocados Truck Flowers	Beans Field Grain

* Approximate

Two sample computations which illustrate the procedure for estimating seasonal consumptive use of water follow. The first of these shows the derivation of the value for percolation to the root zone of alfalfa in the Murrieta-Temecula area during the nongrowing period, November, 1939, through March, 1940. The second computation shows the derivation of the long time mean values of consumptive use of precipitation and applied water by the same crop in the same area.

Sample Computation of Disposition of Nongrowing Period Precipitation

In Inches

Month	Total precipi- tation	Use by evapora- tion	Use by transpira- tion	Runoff	Percolation to root zone for use in subsequent growing period
November, 1939	0.85	0,85	0,50*	0	-0.50
December	0.43	0.43	0	0	0
January, 1940	3.28	1.50	0	0.13	1.65
February	3.77	1.50	0	0.18	2.09
March	0,29	0.29	0.50	0	50
	8 - 62	4.57	1,00	0.31	2.74

^{*} Assumed to be supplied temporarily by root zone soil moisture, which is replenished by rainfall in January.

SAMPLE COMPUTATION OF UNIT VALUES OF CONSUMPTIVE USE OF WATER FOR LAND CROPPED TO ALFALFA IN THE MURRIETA-TEMECULA AREA

Growing Period

Growing period assumed from April through Cotober. Mean temperature and per cent of daytime hours assumed same as for Elsinore at latitude 33°45. Mean growing period precipitation = 2.26 inches.

K = 0.85 F = 44.96 (April through October) U = 38.22 inches

Consumptive use of water during growing period = $U = KF = 0.85 \times 44.96 = 38.22$ inches of depth.

Nongrowing Period

Nongrowing period assumed from November through March. Nongrowing period transpiration by alfalfa assumed to be 0.50 inch in November and 0.50 inch in March. Moisture for transpiration in either month may be satisfied temporarily by soil moisture if monthly precipitation is insufficient, but is assumed ultimately to be supplied by nongrowing period precipitation.

Evaporation assumed equal to precipitation up to a total of 1.50 inches of depth for each month on the basis of evaporation of 0.50 inch of moisture per storm and three storms per month. Calculated monthly evaporation for the period 1936-37 through 1949-50 averages 4.81 inches for the period November through March. Total nongrowing season consumptive use is the sum of evaporation plus transpiration or 5.81 inches.

Total Seasonal Consumptive Use

Growing period consumptive use Nongrowing period consumptive use 5.8 inches of depth TOTAL 44.0 inches of depth

Moisture Retained in Root Zone

Assuming soil moisture deficiency of 4.0 inches at the start of each nongrowing period, precipitation as occurred at Elsinore, evaporation and transpiration for the nongrowing period as previously set forth, and runoff equal to 10 per cent of total precipitation between 2 and 4 inches and 20 per cent of precipitation greater than 4 inches; the nongrowing period precipitation retained in the root zone was calculated for each month for the period 1936-37 through 1949-50. The calculated average nongrowing period precipitation thus retained is 2.27 inches.

Seasonal Consumptive Use of Applied Water

	:	Inches of depth	: Feet : of depth
Total seasonal consumptive use of water		ħ1°0	3.67
Deductions			
Precipitation occurring and consumptively used during growing period	2.3 5.8 2.3		
Seasonal consumptive use of precipitation		10.4	0.87
Seasonal consumptive use of applied water		33.6	2.80

Also included in the study of consumptive use of water in Santa Margarita River watershed was a determination of consumptive use by riparian vegetation along Temecula Creek in the vicinity of Aguanga. Discharge measurements were made above and below a reach of stream throughout the spring, summer, and fall of 1953, and the consumptive use along the reach was determined. Based on these and similar measurements elsewhere, estimated unit values of mean seasonal consumptive use of riparian vegetation were determined. These values are shown in Appendix C, Table C-10. The basic discharge measurements are tabulated in Appendix E, Tables E-1 and E-2.

As part of the cooperative study reported upon in detail in Appendix C, values of consumptive use by dry farmed crops and grass and brush are estimated to equal 95 per cent of rainfall up to a maximum quantity for the particular type of vegetation. Maximum values are 14 inches for grainhay, 15 inches for beans, and 16 inches for grass and brush.

Factors of Water Demand

In the planning of water conservation projects and accompanying distribution systems, certain factors in addition to consumptive use of water must be given consideration in determining demands for water. Among these factors are necessary rates, times, and places of delivery of water. In considering such demands, irrigation efficiencies, irrecoverable losses, and permissible deficiencies must be considered.

Monthly Distribution of Demand for Water

Presented in Table 37, in terms of per cent of annual totals, are the recorded quantities of water supplied monthly for military use on Camp Pendleton, and for agricultural use in Fallbrook Public Utility District and on Vail Ranch. Although Fallbrook Public Utility District serves some domestic water, by far the largest use is for irrigation, and it is believed that the distribution shown is representative of irrigation use in the District.

TABLE 37

ESTIMATED AVERAGE MONTHLY DISTRIBUTION
OF SEASONAL MILITARY AND AGRICULTURAL DEMAND FOR WATER

	:	Type of demand								
	:	Military :		Agricul tural						
Month	:	Camp Pendleton ^a	:	Camp Pendleton ^b	:	Fallbrook Public Utility District	00 00 00	Vail Company ^a	: :a	Average monthly gricultural demand
October		8		9		9		10		10
November		8		6		8		6		6
December		8		3		7		4		4
January		7		2		3		3		3
February		6		2		2		3		3
March		8		5		4		6		5
April		8		9		8		7		8
May		9		12		8		11		10
June		9		12		11		12		12

In Per Cent

14

14

12

10

10

9

July

August

September

12

14

14

14

12

12

14

13

12

a. Based on historic records of use.

b. Based on estimated use, U.S.A. vs. Fallbrook Public Utility District et al., Exhibit 36.

Also tabulated is the theoretical distribution of irrigation water for Camp Pendleton, which was estimated by personnel of the Marine Corps for purposes of the litigation, United States of America vs. Fallbrook Public Utility District et al., the values being based on a projected crop pattern covering all irrigable lands on the portion of Camp Pendleton within the Santa Margarita River watershed, and on assigned monthly demand values for each crop. The derived values agree closely with the recorded values for Fallbrook Public Utility District and the Vail Ranch, and are utilized with them to obtain the average values, shown in the last column of the table, which are considered herein to represent the distribution of agricultural demand throughout Santa Margarita River watershed.

Irrigation Efficiency

Satisfaction of the water requirements of irrigated crops requires the application of water on individual farms in excess of that consumptively used. The ratio of consumptive use of applied water to the total amount of applied water, expressed as a percentage, is termed "irrigation efficiency", and is useful as an indicator of prevailing irrigation practice. Irrigation efficiency varies widely between crops and among plots devoted to the same crop, the variations being accounted for by differences in depth of root zone, soil type, topography, method of irrigation, drainage characteristics, and the practices of the individual irrigators.

During the course of this investigation, a study was made to determine irrigation efficiencies under conditions prevailing in the watershed. Total applied water, determined by direct measurement or calculated from power consumption records and field pump tests, was compared with

calculated consumptive use of applied water on 19 irrigated farms. The most important factor influencing the efficiencies appears to be the method of irrigation employed. Sprinkler irrigation was practiced at an average efficiency of about 70 per cent, while furrow and border check irrigation resulted in an indicated efficiency of about 40 per cent.

Irrecoverable Losses

Attendant with the beneficial use of water, including the irrigation of crop land and the delivery of urban supplies, there may occur certain losses which cannot be recovered for further beneficial use. As used in this report, the term "irrecoverable losses of water" refers to that portion of the transmission and delivery losses and return flow from irrigation which cannot be recovered, and to sewage effluent from urbanized areas which is discharged to the ocean or otherwise lost for re-use. These losses comprise an additional demand on the supplies of the watershed over and above consumptive use. They have not been evaluated directly but are considered in the evaluation of "overall application efficiency" which is utilized and discussed later in this chapter.

Permissible Deficiencies in Application of Water

Studies to determine deficiencies in the supply of irrigation water that might be endured without permanent injury to perennial crops were not made in connection with this investigation. Such studies made for other areas in California indicate that a maximum deficiency of 35 per cent of the full seasonal requirement can be endured if the deficiency occurs only at relatively long intervals. It has also been determined that small deficiencies occurring at relatively frequent intervals can be endured. In

connection with studies for this report, water requirements were estimated on a mean seasonal basis and under the assumption that adequate water supplies will be provided to produce optimum crop yields. Thus, on the average, needs for such optimum crop yields will be supplied, and, provided sufficient carry-over storage is available, such needs will be satisfied each and every year.

Water Requirements

Estimates of present and probable ultimate water requirements in the Santa Margarita River watershed were made by applying appropriate unit values of water use to the present and probable ultimate areas requiring water service, and by utilizing records or estimates of historic water production. In portions of the watershed where water applied to lands in excess of consumptive use will either return to ground water storage and be available for re-use or will drain from the area under consideration and be available for re-use downstream, the measurement of water requirement was taken as the amount of consumptive use of applied water divided by an overall application efficiency factor which takes attendant irrecoverable losses into account. Where water is exported or where water which is applied in excess of consumptive use is otherwise prevented from returning to ground water storage for subsequent re-use, the measure of water requirement is assumed to be the amount of applied water. In areas where excess irrigation water returns to tidal marsh lands or sewage is discharged directly to the ocean, water requirements are similarly measured in terms of applied water.

Present Water Requirement

Land use in 1953 is considered herein to represent "present" land use development in Santa Margarita River watershed. With the exception of Hydrographic Units 4 and 6, the present water requirement of the watershed was determined by applying mean seasonal values of consumptive use of applied water to the present pattern of land use, adding a minor amount for domestic use, and making allowance as described above for attendant irrecoverable losses. In Hydrographic Unit 4 the water requirement is measured by the calculated depletion of discharge in Temecula Creek caused by the combined operation of Vail Reservoir, pumping in Pauba Valley, and irrigation of Pauba Valley lands. In Hydrographic Unit 6 the water requirement was considered to be equal to the application of water within the watershed less the portion of that water which is returned as sewage effluent to Santa Margarita Coastal Basin, plus the evaporation from O'Neill Lake.

The estimated total present water requirement for the Santa Margarita River watershed is 16,200 acre-feet as shown in Table 38 "Present Mean Seasonal Water Requirement of Santa Margarita River Watershed".

Comparison of the values presented therein with those for water applied in 1953 as presented in Table 29, indicate roughly the relationship between water consumed and unavoidably wasted, and water applied.

TABLE 38

PRESENT MEAN SEASONAL WATER REQUIREMENT OF SANTA MARGARITA RIVER WATERSHED

In Acre-Feet

Hydrographic Unit	:	Present water requirement	
1 2 3 4 5 6		5,800 1,300 1,000 3,800* 900 3,400	
TOTAL		16,200	

^{*} Does not include Vail Reservoir evaporation.

Determination of the present mean seasonal water requirement is based on the following assumptions:

- 1. That the nature and extent of land use in the watershed in 1953 is representative of present conditions of development.
- 2. That the unit values of consumptive use of applied water presented in Table 35 are applicable to the three subdivisions of the watershed set forth therein.
- 3. That all presently irrigated lands are provided a water supply sufficient to meet the consumptive requirements of the various crops.
- 4. That lands devoted to truck crops are cropped an average of one and one-half times per year with a water requirement of one and one-half times that of a single crop.
- 5. That in Hydrographic Units 1, 2, 3, and 5, the water requirement of irrigated lands equals the consumptive use of applied water divided by an overall application efficiency factor of 95 per cent, and the domestic

Palamar Observatory

Caurtesy Maunt Wilson and Palamar Observatories

Oceanside

Caurtesy Oceanside Chamber of Commerce

requirement equals one-half of the assumed application of 0.7 acre-foot per household.

- 6. That in Hydrographic Unit 4 the water requirement is the net depletion of outflow (5,550 acre-feet) from the unit, due to the combined operation of Vail Reservoir and Pauba Basin, less the net reservoir evaporation of 1,800 acre-feet. The data on which these values are based are presented in Appendix I.
- 7. That in Hydrographic Unit 6 the water requirement is the portion of the present extraction from Santa Margarita Coastal Basin applied on Camp Pendleton within the watershed (2,320 acre-feet), less the portion of the applied water presently returned to the Basin as sewage treatment plant effluent (680 acre-feet), plus the water presently applied within Fallbrook Naval Ammunition Depot and Fallbrook Public Utility District in the Unit (1,450 acre-feet), less the portion of this water returned to Santa Margarita Coastal Basin via the Naval Ammunition Depot sewage treatment plant and Fallbrook Creek (100 acre-feet), plus evaporation from O'Neill Lake (390 acre-feet) or a net total of 3,380 acre-feet.

Probable Ultimate Water Requirement

The probable ultimate mean seasonal water requirement of the Santa Margarita River watershed is estimated to be 155,200 acre-feet as shown in Table 39. Probable ultimate water requirements were estimated by multiplying the predicted acreages of each type of land use as shown in Table 34, by appropriate unit values of irrigation season consumptive use of applied water as shown in Table 35, and allowing for attendant irrecoverable losses. The calculation of the ultimate water requirements of the various hydrographic units was based on the following assumptions:

TABLE 39

PROBABLE UNTIMATE MEAN SEASONAL WATER REQUIREMENT OF SANTA MARGARITA RIVER WATERSHED

In Acre-Feet

Hydrographic		Probable ultimate
unit	:	water requirement *
1 2 3 4 5 6		71,300 29,100 14,500 14,200 7,300 18,800
TOTAL		155,200

- * Includes requirement for lands presently receiving water service.
- 1. That in Hydrographic Units 1 through 5, and in the upstream portion of Hydrographic Unit 6, the over-all efficiency of application will be 85 per cent.
- 2. That in the portions of Hydrographic Unit 6, which are located near the ocean and drain to the Santa Margarita River downstream from Ysidora Narrows, where re-use of return flow cannot be effected, the over-all application efficiency will be 50 per cent.
- 3. That lands devoted to truck crops and flowers will be cropped an average of one and one-half times per year at a consumptive use rate of one and one-half times that for a single crop.

A corresponding estimate of the probable ultimate water requirement in a drought period was calculated by utilizing the unit values of consumptive use appearing in Table 36, with other assumptions as enumerated above. The resulting drought period seasonal water requirement under ultimate conditions is 172,900 acre-feet, or about 11 per cent in excess of

the estimated ultimate mean seasonal requirement.

The over-all application efficiency factor referred to in the immediately preceding paragraphs is not to be confused with the irrigation efficiency discussed earlier in the chapter. The latter is the ratio of the water consumed on a field to the water which must be delivered to the field; the former is the ratio of water consumed on a large unit of area to the water supply required to serve that large area. The over-all application efficiency factor takes into account the re-use of a portion of the applied water; irrigation efficiency does not. Irrigation efficiency is useful in determining the required delivery capacity in various portions of the distribution system, but has little, if any, bearing on the total quantity of water required in an area where a portion of the return flow and distribution system leakage can be re-used. Reference to Plates 6 and 10A and 10B shows that in the lower portions of or downstream from all hydrographic units, except the coastal portion of Unit 6, there are ground water basins or surface reservoirs which can be so operated as to capture a major portion of the unconsumed applied water, making it available for re-use. It is believed that the assumed values of over-all application efficiency factor are conservative in that they probably indicate unavoidable waste somewhat greater than will be experienced.

Requirements of a Nonconsumptive Nature

In addition to the previously discussed consumptive water requirements there are water requirements of a basically nonconsumptive nature.

Recreational Use. Fresh-water fishing and duck hunting are presently available to sportsmen at the privately operated Vail Reservoir,

and farm pends provide warm water fishing. Reservoirs constructed in the future for storage of local or imported water will provide additional opportunity for recreation, but since the use for the most part is purely incidental to the uses previously described, and is nonconsumptive, such use is not considered herein in evaluating present and ultimate water requirements in the watershed. However, evaporation from O'Neill Lake, where recreation is the only major use, is included as a part of the present water requirement.

Flood Control. Existing flood control improvements in Santa Margarita River watershed are not considered adequate for the control of large floods. These improvements consist of short sections of wire-and-brush fences and enlargement of a section of the channel of Pechanga Creek in upper Pechanga Creek Valley; excavation of a flood channel and construction of levees along sections of Murrieta Creek in the vicinity of Temecula and Murrieta; levee and bank protection along Temecula Creek in Pauba Valley; and construction of earthwork levees, diversion groins, and large tetrahedrons made of old railroad rails along Santa Margarita River in the lower Santa Margarita River Valley on Camp Pendleton. The improvements are adequate for control of small floods only, but would be damaged and probably destroyed by a large flood.

Direct damage resulting from floods along the Santa Margarita River during the period January, 1916, through January, 1919, has been estimated by the Corps of Engineers to have totaled \$2,093,000. More than half of this sum represents damage to railroads and highways. Because partial relocation of the branch railroad line to Fallbrook, and construction of the branch railroad line to Fallbrook, and construction of more

substantial railroad and highway bridges, future flood damage to highways and railroads will probably not be as great as in the past. However, improvements installed on the Camp Pendleton Reservation since 1942 substantially increase the potential flood damage in that area. Operation of Vail Dam which was completed in 1949 will probably decrease flood damage to agricultural lands, particularly in Pauba Valley, in some years but, because of the probability that the reservoir would be full when the largest storms occur, the amount of protection to be effected downstream during such floods may be relatively small. Vail Reservoir is a water conservation reservoir and no special provisions are known to have been made for its operation for flood control purposes.

In 1949, the United States Corps of Engineers studied a dam and reservoir on Santa Margarita River at De Luz which would have a water conservation storage capacity of 188,000 acre-feet and a flood control storage reservation of 23,000 acre-feet. The annual flood control benefit from such storage was calculated to be \$69,000 at that time. In the study the Corps of Engineers did not recommend construction of any channel improvements along the upper reaches of streams in the Santa Margarita stream system Lecause of the adverse benefit-cost ratio of the plans considered. In the present investigation no study has been made of flood problems or facilities required for flood control.

Salinity Control. Subsurface outflow from the Santa Margarita Coastal Basin occurs under favorable ground water gradient. Under the maximum gradient attainable such outflow could be appreciable, but with planned operation of the Basin it is believed that it would be of relatively small magnitude on the average. Utilization of ground water basins for

storage and re-use of return water from upstream application, requires that the mineral quality of ground water contained in the basins must be protected from excessive deterioration. This will require sufficient drainage from the basins to remove a quantity of dissolved salts equivalent to the amount of salt input to the basins. Quantitative estimates of the amount of water required for this purpose are dependent upon formulation of specific plans for each area and upon the quality of imported water. No estimates were made of such requirements in this investigation, but they should not be great enough to materially alter the estimate of over-all water requirement.

Supplemental Water Requirement

In general, supplemental water requirement may be defined as the amount by which the total requirement exceeds the presently available supply. As has been stated, none of the ground water basins in Santa Margarita River watershed, with the possible exception of Diamond Basin, have been utilized to their full capacity. Were these basins readily susceptible to further development at an early date, any additional water which might be so provided would be considered to be a part of the presently available supply. However, permitted extractions from the basins upstream from Temecula Canyon are limited to a considerable degree by the terms of the decree in Rancho Santa Margarita vs. Vail, and the cost of delivering water pumped there or from basins downstream, to areas where a significant increase in demand at an early date is probable, would be materially greater than that which is usually involved in pumping for use on overlying or nearby lands. Because of this, water which may be made available in the future through increased pumping from the ground water is, for purposes of this report, not considered to be a part of the presently available supply. Because of the limitations

of the decree, the same is true of additional water which might be made available through changed operation of Vail reservoir. A material increase in the amount of water presently imported for use in the watershed, would involve construction of additional works, so this too is considered to constitute a source of supplemental water rather than a part of the presently available supply.

If present net extractions from the ground water were sufficient to produce an overdraft, the available supply would be less than present net extractions by the amount of the overdraft. Study of historical water table fluctuations, however, indicates that none of the basins in the watershed are overdrawn with the possible exception of Diamond Basin. Disregarding the small overdraft which may exist there, the supply which is considered to be presently available to the watershed is measured by the present net draft on various sources of supply -- surface flow, ground water and importation from Colorado River. The supplemental water requirement, as herein determined, is the difference between the total consumptive water requirement and the present net draft.

Present Net Draft

Estimated values of present net draft are presented in Table 40. It will be noted that the over-all total shown therein (18,700 acre-feet) is greater than the total present water requirement shown in Table 38 (16,200 acre-feet) by 2,500 acre-feet, which latter value represents the estimated present export from the watershed. The totals for Hydrographic Units 1 to 4, inclusive, are identical in the two tables. The total net draft on the water supply in Hydrographic Unit 5 shown in Table 40 is 1,000 acre-feet greater than the estimated present requirement in that unit because approximately

that amount (950 acre-feet) is developed in Unit 5 but used in Unit 6. Subtracting this amount from the present water requirement in Unit 6 (3,400 acre-feet) and adding the 2,500 acre-feet presently exported from Unit 6, results in the 4,900 acre-feet shown in Table 40 as the total present net draft on the water supply in the unit.

TABLE LO

PRESENT NET DRAFT ON THE
WATER SUPPLY IN SANTA MARGARITA RIVER WATERSHED

· Parker	
1 22	Acre-Feet
	ハしょ ピラン ひじゅ

Hydrographic Unit Number		: : Ground : Water	: Import from : Colorado : River	: Total
1	100	5,700		5,800
2	300	1,000		1,300
3	300	700		1,000
Ţi	2,700	1,100		3,800
5	1,600 ^{e,}	300		1,900 ^a
6	400	4,000b	<u>500°</u>	4,900b
TOTALS	5,400	12,800	500	18,700

a. Includes an estimated 950 acre-feet delivered to Hydrographic Unit 6.

In Hydrographic Units 1, 2, and 3, the net draft on the surface and ground water, respectively, is assumed to be proportional to the acreages served from each source in 1953.

b. Includes 2,500 acre-feet exported for agricultural and military use on Camp Pendleton outside Santa Margarita River watershed.

c. Part of this total import may be delivered to and used in Hydrographic Unit 5.

In Hydrographic Unit 1, practically the entire present water supply development is that by the Vail Company. Vail Reservoir is operated in conjunction with Pauba Basin downstream in that releases from the reservoir are used to irrigate lands overlying the basin, and replenishment of ground water also used to irrigate these lands is primarily derived from such irrigation.

Certain assumptions regarding future operation by the Vail Company, made in connection with the calculations, are enumerated in the explanation of deviation of data accompanying Appendix Table I-2, "Seasonal Runoff from Streams Within the Santa Margarita River Watershed, and Semiseasonal Inflow to Existing and Proposed Reservoirs". Under the assumed conditions, the depletion of stream flow in the Santa Margarita River attributable to the combined operation of Pauba Basin and Vail Reservoir totals 5,550 acre-feet per year. Of this amount 1,800 acre-feet is the net evaporation at Vail Reservoir and the remaining 3,750 acre-feet (called 3,800 in Table 40), is considered to be the consumptive use of applied water under present conditions plus unavoidable losses. Assuming that the 6,800 acre-feet of safe yield of Vail Reservoir is applied on lands overlying Pauba Basin with an irrigation efficiency of 40 per cent, 2,700 acre-feet is the net draft on the surface water. The remaining 1,100 acre-feet is obtained from the ground water of the Basin.

The estimated present net draft on the surface water in Hydrographic Unit 5, totaling 1,600 acre-feet, includes 300 acre-feet consumptive use of direct diversion applied on lands outside Fallbrook Public Utility District; 100 acre-feet diverted by Fallbrook Naval Ammunition Depot, none of which returns within Unit 5; and 1,200 acre-feet which is the average annual diversion from the River by Fallbrook Public Utility District during the period October,1951, through September, 1954. It is considered that any

part of the 1,200 acre-feet which returns within Unit 5 is re-used by pumping from wells in the residuum. In addition to these extractions, which are not separately accounted for, an estimated 300 acre-feet of pumped ground water is consumed annually within the Unit.

In Hydrographic Unit 6, the present net draft on the ground water is estimated to equal the present ground water extraction less present sewage return to Santa Margarita Coastal Basin. Present extractions are assumed equal to the average for the period 1942 through 1953, or 5,800 acre-feet per year. The estimated 1,800 acre-feet of effluent from sewage treatment plants 1,2, and 3, and the Naval Ammunition Depot treatment plant which was discharged to the basin either directly or through O'Neill Lake in 1953, is considered herein to represent the present seasonal return. The only surface water which is consumptively used for a beneficial purpose is the 400 acre-feet of evaporation from O'Neill Lake.

Present Supplemental Water Requirement

Study of historical water table fluctuations indicates that none of the basins in the watershed are overdrawn with the possible exception of Diamond Basin. As stated, disregarding the small overdraft which may exist there, the present mean seasonal water requirement of 16,200 acre-feet plus export of 2,500 acre-feet, is satisfied by the presently developed supply, and no supplemental water is presently required in the watershed.

Probable Ultimate Supplemental Water Requirement

In Table 40 it is shown that the present net draft on local water supplies plus 500 acre-feet from Colorado River, totals 18,700 acre-feet.

This net draft, which is herein considered to represent the presently available supply, satisfies the present requirements of lands now served in the Santa Margarita River watershed and provides for the exportation of 2,500 acre-feet per season for use on Camp Pendleton outside the watershed. In Table 40, estimated ultimate mean seasonal water requirements for lands within the watershed are shown to total 155,200 acre-feet. Assuming that the water presently exported on Camp Pendleton is to be available for use within the watershed, the difference between ultimate requirement and presently developed yield, or 136,500 acre-feet, represents the ultimate supplemental water requirement. This is in addition to the 500 acre-feet of presently imported Colorado River water. Values for each of the Hydrographic Units, derived under the foregoing assumptions, are presented in Table 41. If it is assumed that the 2,500 acre-feet of export is to continue as a part of the demand on the water supply of the Santa Margarita River watershed, the ultimate supplemental water requirement of Hydrographic Unit 6 will be increased to 16,400 acre-feet, and the total for the watershed to 139,000 acre-feet.

TABLE 41

PROBABLE ULTIMATE SUPPLEMENTAL WATER REQUIREMENT
OF SANTA MARGARITA RIVER WATERSHED

In Acre-Feet

Hydrographic unit	Ultimate water requirement	: Presently: developed: water: Supply	<pre>Probable ultimate supplemental water requirement</pre>
l	71,300	5,800	65 , 500
2	29,100	1,300	27,800
3	14,500	1,000	13,500
4	14,200	3,800	10,400
5	7,300	1,900	5,400
6	18,800	4,900	13,900
TOTALS	155,200	18,700	136,500

The ultimate supplemental requirement can be satisfied partially by increased development of local supplies but a substantial increase in the quantity of water imported from sources outside the watershed will also be required. Possible means by which the supplemental supplies can be developed is the subject of Chapter V, "Plans for Water Development".

Litigation

The riparian water rights of certain landowners in the Santa Margarita River watershed were adjudicated in an action entitled, Rancho Santa Margarita v. Vail, San Diego County Superior Court No. 42850. An appeal was taken from the judgment of the Superior Court, rendered after a lengthy trail which consumed 444 court days over a period of three years. The Supreme Court reversed the judgment and ordered a new trail upon certain issues of fact. The Supreme Court's opinion is published in California Reports, Volume 11, Second Series, at page 501 (81 P. 2d 533). A stipulated judgment was subsequently entered by the Superior Court in 1940 and became final. It apportioned 66-2/3 per cent of the natural flow of the Santa Margarita River and its tributaries to the Rancho Santa Margarita, a corporation, subject to the right of Philip Playtor to use one miner's inch upon his riparian land and the right of the Estate of Murray Schloss to use all of the summer flow of Stone Creek and five miner's inches of the winter flow of said creek upon a tract of land riparian thereto of approximately 20 acres. The remaining 33-1/3 per cent of the surface flow of the stream was apportioned to the Vail Company and members of the Vail family for use upon their lands described in the judgment, and, in addition, they were given the right to divert specified quantities of subsurface waters upon certain conditions. The judgment further provides that from May 1 to October 31 of each year the Vails shall, with certain exceptions, maintain a constant flow of water of not less than three cubic feet per second at the upper end of Temecula Gorge (Temecula Canyon).

Between 1941 and 1943 the United States acquired by condemnation approximately 135,000 acres of land, including the former Rancho Santa

Margarita. The land is the site of Camp Joseph H. Pendleton, the United States Naval Ammunition Depot, Fallbrook, and a United States Naval Hospital. In 1943 and 1944 the State of California ceded to the United States exclusive jurisdiction, with certain exeptions provided by law, over the lands used for military purposes.

On January 25, 1951, the United States of America filed an action in the United States District Court for the Southern District of California entitled, United States v. Fallbrook Public Utility District, et al., No. 1247-SD, to quiet its title to the waters of the Santa Margarita River and to enjoin interference with its asserted paramount right to the use of such waters. Defendants are all of the other landowners, water users and water right claimants in the watershed. The State of California intervened as a defendant in order to protect its own rights and those of its citizens and to establish that the United States acquired no greater water rights than would have a private successor to the Rancho and that state law should govern a determination of its rights. Thereafter it was stipulated between the United States and the State, among other things, that the rights of the United States are to be measured in accordance with the laws of the State.

A separate trial of the issues between the United States, Santa
Margarita Mutual Water Company and the State of California was held. A judgment resulted which determined, in effect, that the United States owns
prescriptive and riparian rights to the entire flow of the Santa Margarita
River remaining after diversions by upstream riparian owners and by the Vail
Company pursuant to the stipulated judgment in the former action, and that
there is no surplus water available for appropriation by others. An appeal
was taken by the State and the mutual water company to the United States Court
of Appeals for the Ninth Circuit, which court reversed the judgment and

ordered a new trial. It was held that the trial court was in error in entering a judgment purporting to finally determine water rights of the United States when the action had been tried against only the water company and the State. It was also held that declarations of the trial court that there is no surplus water subject to appropriation are clearly erroneous in light of facts disclosed by the record, and that there is no basis in the record for decreed rights of the United States to the use of water by prescription or use. The Court of Appeals declared that the State should not be denied the power of granting permits to appropriate surplus water, valid against private landowners.

In August, 1949, an action was filed in the Superior Court of San Diego County entitled Barbey v. Oviatt, No. 154140, for a determination of the rights of the parties to the water of Temecula Creek. By a cross complaint filed in May, 1950, the Vail Company joined as parties to the action other landowners within the watershed of Temecula Creek easterly of the Vail lands. The Department of Public Works, acting through the State Engineer, was appointed referee to investigate all physical facts involved and to report thereon. In 1951, after United States v. Fallbrook Public Utility District had been filed, the court in Barbey v. Oviatt directed the referee to restrict its investigation to the continuance of specified stream and well measurements until further order of the court, because of the pending federal action and the investigation of the Santa Margarita River Watershed that had been proposed. On April 11, 1955, the court ordered the referee to suspend all work on the investigation and to submit a report containing pertinent data and information collected to date. The "Report of Referee", which will contain data obtained during the restricted investigation and a portion of the information obtained during the Santa Margarita River investigation, is to be published in July, 1956.

Water Rights

All rights to water are usufructuary, that is, they consist only in rights to the beneficial use of water, for the water itself is incapable of private ownership so long as it remains in its natural state and before it is reduced to actual possession. A right to the use of water of a stream includes the right to the continued flow thereof to the owner's point of diversion or to riparian lands, without unlawful interference by others junior in right.

Both riparian and appropriative water rights are recognized in California. The former are paramount until lost or impaired by grant, condemnation, or prescription.

All water rights, both surface and underground, are subject to the doctrine of reasonable use expressed in Section 3 of Article 14 of the California Constitution which limits the right to the quantity of water reasonably required for beneficial use and which prohibits waste, unreasonable use, or unreasonable methods of use or diversion.

Riparian rights are part and parcel of riparian lands, i.e., lands abutting upon a natural watercourse within the watershed. They do not authorize use of water on nonriparian land nor do they permit seasonal storage of water. They are not created by use or lost by disuse. They extend to future reasonable requirements for beneficial use upon riparian land, although they do not prevent temporary appropriation by others of water not presently required upon such lands. Each riparian right is correlative with each and every other such right and in the event of insufficient water for all, the available supply must be prorated, except that an upper riparian owner may take the whole supply if necessary for strictly domestic use.

The riparian right attaching to a particular parcel of land is subject to appropriative rights established by diversions upon vacant public domain before the first valid steps were taken to acquire said parcel of land from the United States, whether diversion was made on said parcel or at points upstream or downstream.

The riparian right may be severed and lost in whole or in part by grant or condemnation and cannot thereafter be restored. A parcel of land loses its riparian right when separated from contact with the stream by conveyance unless the right is reserved by the grantor. It cannot be transferred for use upon another parcel of land.

Prior to enactment of the Water Commission Act, a right to appropriate water could be acquired by simply diverting water to beneficial use without complying with any formality. Consequently, many such rights exist which, like riparian rights, are not of record. The Water Commission Act established an exclusive procedure for initiating and perfecting appropriations of water and since its effective date (December 19, 1914), no right to appropriate water can be acquired without filing an application and receiving a permit from the State. Whether acquired by beneficial use prior to 1914 or under the Water Commission Act, an appropriative right is always subject to previously vested rights, riparian and appropriative, unless it has ripened into a prescriptive right as against such previous rights by continuous use adverse to them for a period of five years or more under certain requisite circumstances.

A valid appropriation initiated prior to 1914 has priority as of either the date of its initiation or the time of actual beneficial use of water, depending upon whether provisions of the Civil Code then in effect were followed. Under the Water Commission Act (now Divisions 1 and 2 of the Water

Code) an application to appropriate water, properly made, has priority as of the date it is filed, and a defective application which is made in a bona fide attempt to conform to legal requirements also has such priority until applicant is notified of the defects and is given a prescribed time within which to remedy them.

Once initiated, an appropriation of water must be diligently prosecuted to completion in order to maintain its priority. Water may not be appropriated for a future use, although a reasonable time is allowed for completing use of the full amount of water within the original intent of the appropriator. A right to appropriate water is lost by abandonment or by continuous nonuse for a prescribed period—five years in the case of appropriations initiated prior to 1914 and three years under appropriations pursuant to the Water Commission Act or Water Code.

It is provided in the Water Code that domestic use of water is the highest use and that the next highest use is for irrigation.

The permit and license procedure established by the Water Commission Act (now Division 2, Part 2, of the Water Code) applies only to streams and other bodies of surface water and to subterranean streams flowing through known and definite channels. Percolating ground water is therefore excluded and rights to its use are governed by judicial decisions rather than by statute. Ground waters are presumed to be percolating in the absence of evidence to the contrary.

The owner of land overlying a ground water basin or stratum has, like the riparian owner, a paramount right to the reasonable beneficial use of the natural supply upon his overlying land, which right he holds in common with all other landwoners similarly situated. Only surplus water in excess of reasonable requirements for beneficial use upon overlying lands is subject to

appropriation for beneficial use upon other lands. However, a prescriptive right to appropriate ground water may be acquired under the same circumstances as prescriptive rights to appropriate water of surface streams may be acquired.

Where ground water and surface water are interconnected, one acting as a tributary to the other, both are treated as part of a common supply and users of water from either source are entitled to protection from substantial injury as a result of use by others of water from the other source. Thus, an owner of land riparian to a stream may have his right to the use of water protected against impairment by an appropriator of percolating ground water tributary to the stream and required for the maintenance and support of its flow. Likewise, where water from a stream percolates to a ground water basin or stratum, the owner of land overlying such ground water may be protected from an appropriation of water of the stream that causes a substantial impairment of the ground water supply. As between riparian use of surface water and overlying use of ground water tributary to the stream, an equitable apportionment of the water should be made.

There has not been a comprehensive adjudication of water rights within the Santa Margarita River watershed by the courts. As discussed under the heading "Litigation" in this chapter, rights between certain landowners have been adjudicated and other rights are now before the courts. Water of the Santa Margarita River system has been put to beneficial use under claim of riparian, overlying, and appropriative right.

Riparian lands have not been determined in this investigation, but it is apparent that the water requirements therefor greatly exceed the available water supply. Because of the erratic regimen of stream flow, as described in Chapter II and indicated by the data tabulated in Appendix I, riparian use is limited and at the present time appears to have reached a maximum level of

development. Further development on riparian lands with use of the waters of the Santa Margarita River will require regulation of the flood flows by surface or ground water storage. The right to store water can only be acquired through the filing of an application with the Division of Water Resources as set forth in the Water Code.

Overlying rights to the use of ground water have been exercised throughout the Santa Margarita River watershed, as shown by location of wells presented on Plates 9A and 9B. Because of limitations imposed by difficulties in obtaining wells of sufficient yield for irrigation purposes, further large-scale ground water development appears to be improbable in the "Inland Area". With a proper pattern of pumping, additional ground water development is possible in the "Coastal Area". The possible extent of further development of ground water is discussed in Chapter V. Appropriation of ground water for use on nonoverlying lands is exercised by Camp Pendleton.

Any prescriptive rights that may have been obtained against other downstream vested riparian and appropriative rights have not been adjudicated in the Santa Margarita River watershed.

Appropriations for diversion and storage of surface water on the Santa Margarita River, initiated since 1914, on record with the Division of Water Resources are listed in a table in Appendix K. Information on similar appropriations initiated prior to 1914 or appropriations of water made from public lands are not of record with this Division. No attempt has been made in this investigation to define the water use reported in Chapter III by type of water right, whether riparian, overlying, appropriative or otherwise.

Action by the Division of Water Resources on pending applications in the Santa Margarita River watershed has been withheld awaiting further clarification of the issues involved in United States v. Fallbrook Public Utility

District, et al. Efforts to settle the controversy between the United States and local interests by legislation resulted in conditional authorization by Congress of construction of a storage reservoir on the Santa Margarita River at the De Luz site (Public Law 547, 83d Congress, Second Session, 1954). The stored water would be apportioned 60 per cent to the Navy for use at Camp Pendleton and 40 per cent to the Fallbrook Public Utility District. However, the statute provides that none of the water to which the United States is entitled under its existing rights is to be subject to such apportionment, and the authorization is made dependent upon, among other things, issuance of permits by the State to the District and the United States to appropriate water for the project. The United States Department of Justice has indicated that in its opinion it would be inimical to the existing rights of the United States as determined by the trial court to proceed with its application for such permit. Therefore, construction of the reservoir is uncertain and may depend upon final outcome of the litigation.

CHAPTER V. PLANS FOR WATER DEVELOPMENT

A need for additional water to supply potential demands exists throughout the Santa Margarita River watershed. While there is, with a minor exception, no overdraft of the present supplies, there are few locations within the area where additional water could not be utilized if economically available. Two of the largest water service agencies operating in the area are presently actively engaged in studying methods of developing more water for use in their respective service areas. The United States Navy has variously estimated its seasonal applied water requirements under conditions of full development of Camp Pendleton at from 12,500 to 23,500 acre-feet. Fallbrook Public Utility District has estimated its ultimate seasonal water needs at 11,000 to 13,000 acre-feet of applied water. These values may be compared with present utilization of 5,800 and 7,300 acre-feet, respectively, in the two service areas, which in both instances are partly within and partly outside the Santa Margarita River watershed.

The water requirement under ultimate conditions of development in the watershed as set forth in Chapter III, totals about 155,000 acre-feet. It will undoubtedly be economically infeasible to supply this total amount for many years to come, especially to the irrigable lands at higher elevations. However, it is believed that certain portions of the watershed would exhibit a rapid and substantial increase in irrigation development were supplemental water made available.

Supplemental water may be obtained locally by conserving a portion of the runoff which presently wastes to the ocean through Santa Margarita River. Under present conditions of land use and water supply development, waste to the ocean is estimated to average 25,200 acre-feet per

sesson. The derivation of this value is illustrated on Plate 23, "Occurrence and Disposition of Mean Seasonal Ruroff, in Santa Margarita River, Under Present Conditions of Development, 1953", which represents symbolically the origin of and uses made of discharge of Santa Margarita River water at the present time. Utilization of the presently wasted water will require the development of equalizing storage capacity either in ground water basins or in surface reservoirs, and construction of facilities to equitably distribute the water so conserved to areas of need. The approximate magnitude of such required storage and the degree of possible conservation by surface storage alone are illustrated on Plate 24, "Storage Development Curve for Santa Margarita River at Ysidora". The plate depicts the approximate relationship between storage capacity and yield of a reservoir on the lower Santa Margarita River, and the data presented thereon indicate that additional storage capacity of about 800 per cent of the mean seasonal natural runoff in Santa Margarita River at Ysidora or about 290,000 acre-feet would be required to completely conserve present waste to the ocean by such a reservoir. Under such conditions and taking into account reservoir evaporation losses, the increased net safe seasonal yield would be about 20,000 acre-feet.

Studies described in this chapter indicate that the local water which could be conserved by construction of a maximum of additional storage capacity would be insufficient to satisfy the ultimate supplemental water requirement, and that final solution of the water resources problems of the Santa Margarita River watershed lies in importation of water from outside sources.

As was stated in Chapter I, the Division of Water Resources has for the past several years conducted surveys and studies for the State Water Resources Board. The investigation has resulted in the formulation of The

California Water Plan for full conservation, control, and utilization of the State's water resources to meet present and future water needs for all beneficial purposes and uses in all parts of the State, insofar as practicable. Bulletin No. 3 of the State Water Resources Board entitled "Report on The California Water Plan", was issued in preliminary form in May, 1956, for comment by interested local agencies. In addition to plans for development of the water resources of the Santa Margarita River, which plans are based on studies conducted during this investigation, plans are also presented therein to satisfy the ultimate water requirements of the watershed in excess of the water made available by maximum practicable development of local supplies. Projects for importing water to the watershed under The California Water Plan are described in general terms in this chapter under the section entitled "The California Water Plan".

In general, the major features of The California Water Plan are large multipurpose projects requiring relatively large capital expenditures. Plans presented in this report for the further development of local supplies would be such that the works could be integrated into the major features of The California Water Plan.

Descriptions of various plans considered for local conservation of water supplies in the Santa Margarita River watershed, and for importing water from available sources outside the watershed, are presented in this chapter. Included therein are estimates of the amounts of supplemental water that would be made available by their adoption and construction, and an evaluation and comparison of the plans.

Design features of plans presented herein are necessarily of a preliminary nature and primarily for cost estimating purposes. More detailed investigation, which would be required in order to prepare construction plans

and specifications, might result in designs differing in detail from those presented in this report. However, it is believed that such changes would not result in significant modifications in estimated costs. The capital costs of dams, reservoirs, diversion works, conduits, pumping plants, and appurtenances included in the considered conservation, conveyance, and distribution systems, were estimated from preliminary designs based largely on data from surveys made during the current investigation and the related State-Wide Water Resources Investigation. Approximate construction quantities were estimated from these preliminary designs. Unit prices of construction items were determined from recent bid data on projects similar to those under consideration or from manufacturers' cost lists, and are considered representative of prices prevailing in the spring of 1955. Estimates of capital costs include costs of dewatering and care of stream, acquisition of lands and rights of way, and construction, plus 10 per cent of the above costs for administration and engineering and 15 per cent for contingencies. Also included is interest during one-half of the estimated construction period at four per cent per annum. Estimates of annual costs include interest on the capital investment at 3 per cent per annum, amortization over a ho-year period on a 32 per cent sinking fund basis, operation and maintenance costs, and costs of electrical energy required for pumping, if applicable.

Plans for Local Conservation Development

As stated, a source of supplemental water exists in the waste to the ocean from the watershed which it is estimated would amount to about 25,000 acre-feet per season on the average over a mean period of water supply and climate with the present pattern of land use and water supply development.

Of this amount it is indicated that about 80 per cent or 20,000 acre-feet per season is probably the physical maximum that could be conserved. Further, it is indicated that something less than this amount could be salvaged for beneficial use.

Investigated methods by which a portion of the wasted water might be captured include direct diversion of surface runoff, increased development of ground water supplies, and storage of runoff in surface reservoirs. In the following paragraphs, the nature and extent of development by each of these methods are discussed.

Direct Diversion of Surface Streams

It is anticipated that major future water use in Santa Margarita
River watershed will be for agriculture, as previously stated. Farming
operations require large quantities of water in summer months, and little
during the rainy season, the average peak demand of 14 per cent of the seasonal
total occurring in July as set forth in Table 37. When such operations are
dependent upon direct diversion from surface streams, the water supply available in the summer months is the limiting factor in determination of the amount
of land which can be irrigated. From the stream discharge data depicted on
the "Hydrographic Map", Plate 6, it is evident that there are few locations
in the watershed where there was summer surface flow of 0.01 second-foot or
more in 1953. With few exceptions these flows are already fully utilized.

The largest flow which could possibly be diverted is in Temecula Creek in Pauba Valley. Water rises in the Valley and increases in quantity to a discharge of slightly greater than four second-feet just above Temecula Canyon. Formerly this rising water was diverted by the Vail Company for irrigation, but the diversion was completely abandoned in 1930 in favor of

pumping from ground water. The rising water has been adequate, except for one short period, to supply the flow of three second-feet necessary to satisfy provisions of the judgment in "Rancho Santa Margarita vs. Vail, et al.", referred to in Chapter IV. It is assumed that the Vail Company will continue to pump ground water and that it will allow the rising water to supply the required minimum flow under terms of the afore-mentioned judgment. Furthermore, water flowing through Temecula Canyon in the dry portion of the year is fully utilized, and any increased diversion in Pauba Valley at that time would not increase the water supply by drecreasing waste to the ocean but would merely shift the point of use.

A stream discharge of less than 0.5 second-foot occurs in the lower reaches of Murrieta Valley. This water could possibly be diverted, but it occurs on lands of the Vail Company and it is presumed, as above, that the Company will continue to allow this discharge to flow downstream. Of the remaining streams in the watershed, the largest has a critical summer discharge sufficient to irrigate only about 25 acres of alfalfa. In the light of these considerations, it is concluded that there is no surface stream in Santa Margarita River watershed susceptible of further development by direct diversion.

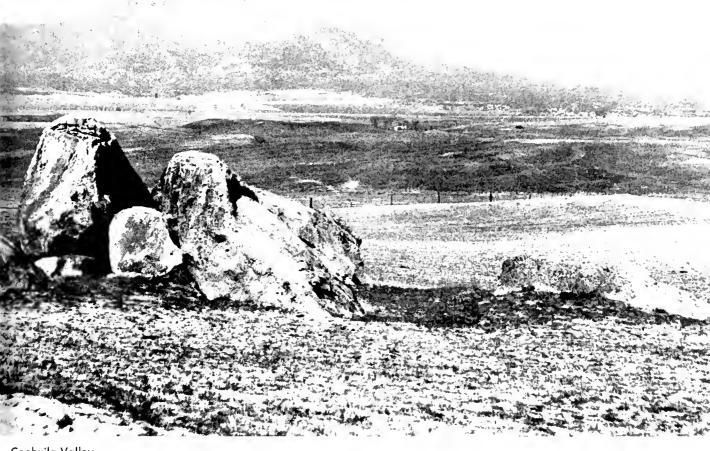
Further Development of Ground Water Storage

Certain of the ground water basins in the watershed are not now being exploited to their maximum potential, and with increased utilization thereof a portion of the present waste to the ocean could be salvaged.

As is indicated by the estimated usable ground water storage capacities of basins itemized in Table 15, some of the basins have large capacities and others are extremely small. Increased salvage of now wasted

water by ground water storage can be effected only by increased extraction and use of ground water and consequent lowering of the water table during dry periods with increased replenishment during ensuing wet periods. Under conditions of operation of ground water basins for maximum yield, the storage of ground water changes from a maximum at the start of a critical dry period to a minimum at the end. Ground water yield equals the average seasonal change in storage plus average seasonal percolation to the basin during the critical period.

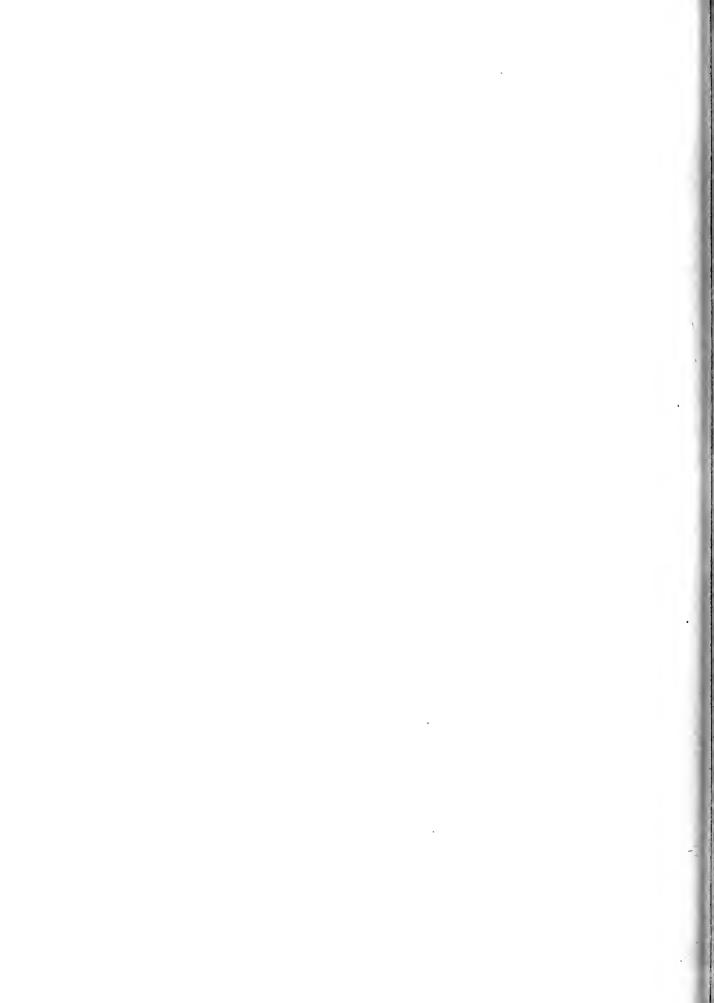
Generally speaking the small basins are limited in yield of ground water by their capacities and serve at best to regulate stream flow to the extent that winter runoff can be stored for use in the subsequent summer months. Since winter runoff is often extremely meager during dry periods, the safe seasonal yield of such ground water basins is likewise very small. On the other hand, the larger basins are generally limited in yield, not by their capacities, but by the amount of water which reaches the ground water by percolation from precipitation on the surface of the basin or from runoff from surrounding areas. In such large basins, the safe yields approach the long time mean percolation to the ground water.


As regards the small basins, possible increased yield over the present is herein considered negligible. It is recognized that in some cases operation of such basins in lieu of direct diversion from surface streams might improve local operating conditions, and through lowering of the water table might result in decreased losses to native vegetation. In considering an entire hydrographic unit, however, it is not believed that such changes would materially affect over-all consumptive use within or outflow from the unit.

Possible increased use of the larger basins has been studied in the light of the above considerations and results are discussed by hydrographic units in the following paragraphs.

Hydrographic Unit 1. This unit consists of the drainage area of Murrieta Creek and contains the following ground water basins: Diamond, Domenigoni, French, Los Alamos, Murrieta, Santa Gertrudis, and Wildomar. There are stringers of Recent alluvium, Qal, along stream valleys in addition to the pervious materials comprising the ground water basins, as herein defined, but otherwise the drainage area consists of about three-fourths igneous and metamorphic rocks, and one-fourth older alluvium, Qtca.

The estimated mean sessonal runoff in Murrieta Creek at the United States Geological Survey gaging station at Temecula is 8,630 acre-feet. This value is the average of measured flow at the station indicated, and correlations therewith, and it therefore takes into account the average effect of ground water development upstream from the gaging station during the period of record which started in 1930.


A number of the basins in this hydrographic unit are of small capacity and the ground water yield in them is probably limited by storage capacity. Other basins, however, have considerable size, the Recent alluvium of Murrieta Basin alone being estimated to have a usable capacity of 136,000 acre-feet. Considering the entire unit, it is believed that possible ground water yield is limited by percolation capacity rather than by storage capacity. It is estimated that maximum utilization of ground water in the entire unit would result in a mean seasonal increase of about 3,600 acre-feet in the amount percolating. Present outflow would thus be decreased and the yield from the unit increased by approximately that amount.

Coohuila Valley

Las Alamos Valley

Hydrographic Units 2 and 3. Some of the basins in these units are of sufficient capacity to store water in usable quantities throughout dry periods. However, the extremely complicated interrelationships between extractions from ground water in the numerous basins, direct diversions from surface streams, storage in Vail Reservoir, and the water rights problems attendant therewith, preclude the direct determination of possible increased yield from ground water sources. Considering, however, that the yield from Vail Reservoir is developed from runoff in Hydrographic Units 2 and 3, and that the average spill from that reservoir is estimated to be 3,100 acre-feet per year if the reservoir is operated on a safe yield basis, it is believed unlikely that more than 2,000 acre-feet of water in addition to the safe yield of the reservoir, could be developed within these units. There being no feasible surface storage sites available in these units, it is considered that such development would be by further exploitation of ground water supplies. Of the total, 500 acre-feet per season may be attributed to Hydrographic Unit 2 and 1,500 acre-feet to Hydrographic Unit 3.

Hydrographic Unit 4. Lands of the Vail Company encompass the major portion of Unit 4. The quantity of water which the Company is permitted to divert from surface flow or pump from the ground water in the Unit is limited by the stipulated judgment in "Rancho Santa Margarita vs Vail". After allotting minor quantities to a few intervenors in the suit the judgment provides that the Company may use on certain specified lands, either by surface diversion or by pumping from the ground water, one-third of the natural flow in Santa Margarita River at Ysidora Narrows, or at Temecula Canyon just below the confluence of Murrieta Creek and Temecula Creek, whichever is the greater. It is believed that the present operations of the Company are in close accord with the terms of the judgment, and although

some increase in use by the Company might be permitted under the controlling provision that such use may at all times be at least one-half that diverted and used by Rancho Santa Margarita as determined by measurement, data presently available do not justify an assumption that present yield of local water can be materially increased in Unit 4.

Hydrographic Unit 5. Since ground water bodies in this unit are extremely small, no further increase in yield from ground water supplies is considered feasible.

Hydrographic Unit 6. Santa Margarita Coastal Basin is the only ground water basin in this hydrographic unit. As has been stated, the estimated usable storage capacity of the Basin, 24,000 acre-feet, is only partially utilized at present. Complete development of the basin by use of this entire capacity would result in an increase in ground water yield for the unit. To calculate the possible yield from the Basin it was assumed that percolation from Santa Margarita River in accordance with the percolation diagram, Plate 19, and direct percolation of rainfall and runoff from adjacent hills comprise the total supply available to the Basin. The critical dry period utilized in this study extends from April, 1947 through September, 1951. Estimated safe yield of the Basin under present conditions of supply, with extractions in accordance with the military demand schedule shown in Table 37, would have been 10,100 acre-feet per season. With extractions on an irrigation demand schedule, the corresponding safe yield is 9,700 acrefeet per year for the same period. These values may be compared with a present net extraction from the Basin of 4,000 acre-feet per season. Thus with maximum utilization of usable basin storage capacity, new water in the amounts of 6,100 and 5,700 acre-feet per season, respectively, would be developed by the foregoing operations. With increases or decreases in upstream use of water the foregoing values would be modified accordingly.

Further, continuance of the current drought period would also lower these values. In the foregoing calculations, no allowance was made for increased yield due to salvage of water presently used by phreatophytes. Some salvage of natural water losses by virtue of the lowered ground water levels under conditions of full operation of the Basin would undoubtedly occur but its amount has not been estimated. Any such salvage would increase the safe yield of the Basin by the amount of the salvage.

A seasonal total of 5,700 acre-feet of water could be pumped from the Basin to a regulatory reservoir on Camp Pendleton at elevation of 440 feet at a cost of about \$11 per acre-foot. The cost estimate for the required facilities, comprising 8 wells, a booster pumping plant, conduit, and reservoir is presented in Appendix J, page J-32. Location of the facilities is shown on Plate 25.

Increased use of ground water in Hydrographic Units 1, 2, and 3 will result in less inflow to downstream Units. However, any decrease in flow in Temecula Canyon will be offset in part by a decrease in the use in Unit 4 permitted under the terms of the judgment previously referred to. Thus, even though the safe yield of the upstream units were fully developed, the decrease in flow to downstream units would be less than the 5,600 acrefeet set forth in the preceding paragraphs. Furthermore it is highly improbable that the estimated safe yields will be fully developed prior to the importation of water to the upstream units, if ever. The decrease in flow which is likely to occur within a reasonable period of time is relatively so small and so uncertain as to quantity that it is not herein considered in estimating the supplemental supply which must be developed by other means, although it does provide a safety factor. For the same reason the possible decrease in inflow is neglected in estimating the yield of downstream reservoirs and basins.

Other Means of Increasing Ground Water Supplies

Means of increasing ground water yields, other than the more intensive use of basins by lowering of water levels discussed above, have been considered. These include salvage of natural water losses along stream channels and in high water areas, use of reclaimed waters, and construction of a subsurface barrier to prevent intrusion of sea water to Santa Margarita Coastal Basin.

Large quantities of water are potentially salvageable from losses to water-loving vegetation, or phreatophytes. However, no effective economically feasible plan has as yet been evolved to control such waste except for that portion which may be conserved by lowering of ground water levels under planned basin operation. In this report no evaluation of this source of water has been made.

Reclamation of sewage which would waste to the ocean or otherwise be lost to the watershed is a potential source of supplemental water supply. Sewage treatment plant effluent of usable quality which is returned to a ground water basin adds directly to the supply available for extraction from the basin. Unlimited sewage reclamation may, however, introduce a salt balance problem.

In the Santa Margarita River watershed, the only sewered areas are located within the community of Fallbrook, the Naval Ammunition Depot, and Camp Pendleton. Sewage from Fallbrook and the Naval Ammunition Depot returns to Fallbrook Creek after treatment and reaches Santa Margarita Coastal Basin via O'Neill Lake. Some of the Camp Pendleton treatment plant effluent returns to the Basin and the remainder flows directly to the ocean. Details of the sewerage systems are discussed in the Chapter II section on exports,

and the disposition of sewage is shown symbolically on Plate 23. It is assumed that the limited upstream urban development projected for future conditions, as discussed in the Chapter III section on land use, would either be unsewered or sewage treatment plant effluent would be returned to natural water courses and not to the ocean or otherwise transported outside the watershed. Under present and probable future conditions, therefore, Camp Pendleton is believed to be the only large source for reclamation of water from sewage which might otherwise waste directly to the ocean.

It should be noted, however, that not all of the effluent which might percolate into a basin could be considered as salvage on a safe yield basis. Safe yield of a basin could be augmented by such percolate to the extent of the average amount of percolation during the critical dry period, but any water spread in the basin during a wet period is entirely lost if the supply from other sources alone would fill the basin. Such loss would occur either through transpiration by phyreatophytes, under high water level conditions which would prevail at such times, or by earlier filling of the basin and consequent increased waste to the ocean in a succeeding wet season or seasons. Under the present mode of operation of Santa Margarita Coastal Basin, it is unlikely that increased spreading of reclaimed water would result in increased ground water yield, but if the available storage capacity of the Basin were more fully developed, or if dams and reservoirs described later in this chapter were constructed upstream and the supply to the Basin thus decreased, salvage of sewage would result in an increase in the available water supply.

Treated sewage may also be salvaged by direct use. Conservation by this means has been practiced since July, 1952, on Camp Pendleton by irrigation of a golf course which is located in the San Luis Rey River watershed.

Ground water basins close to the coast are generally limited in yield by the severe restriction that ground water levels cannot be allowed to decline below sea level, except for very limited periods of time, without subjecting the basins to damage by intrusion of sea water. Immediately adjacent to the coast below Ysidora Narrows on Santa Margarita River, sea water moves inland during dry years and retracts in following wet years. As discussed in the water quality section of Chapter II, such intrusion probably extended as far inland as well 118/5W-2El in 1951.

In the watershed, only Santa Margarita Coastal Basin is near the coast, and in this Basin the storage capacity is restricted largely by the sea level limitation. A barrier to sea water in this Basin would increase the usable capacity by about 13,500 acre-feet, if it is assumed that only the basin fill from 10 feet to 100 feet below ground surface is usable. This additional capacity would increase the safe seasonal yield of the Basin under present conditions of upstream development and with military demand, from a total of 10,100 acre-feet to 12,400 acre-feet, or a net increase of 2,300 acre-feet. Construction of a sea-water barrier at Ysidora Narrows would, therefore, be a desirable project if feasible from economic and engineering standpoints.

Underground barriers of the puddled clay cutoff wall type have been constructed to a depth of 60 feet by the United States Army Corps of Engineers at Pasco-Kennewick, Washington, as part of the McNary Dam project on the Columbia River. At Wilmington, California, over 18,000 lineal feet of 3-foot wide clay cutoff walls ranging from 15 to 45 feet in depth below land surface were installed on Union Pacific Railroad property in 1950. In the same area, shorter walls were constructed on properties of Southern California Edison Company and General Petroleum Corporation.

The narrow canyon at Ysidora Narrows appears to be an ideal location for construction of such a barrier. Depth of permeable materials on the order of 180 to 200 feet at the Narrows would require development of construction techniques of mixing and placing of backfill, but preliminary estimates based on experience gained from the projects mentioned above indicate that an impervious cutoff wall could be constructed at this location for a total maximum cost of about \$275,000.

Assuming that the barrier would have perpetual life with no maintenance required and that the real cost of money to the Government is five per cent, the estimated cost of increasing the yield by 2,300 acre-feet would be \$6 per acre-foot. This is considerably less than the cost required to develop the same additional yield by means of a surface reservoir. It is emphasized that construction of such a barrier would be of an experimental nature, but the relatively low cost, should it prove engineeringly feasible, would indicate that it merits further consideration.

Surface Storage Projects

Construction of dams in Santa Margarita River watershed for water conservation purposes has been under consideration for many years. The four principal sites studied in the past are located on Temecula Creek at Nigger Canyon and on Santa Margarita River at Temecula Canyon, Fallbrook, and De Luz. Of these sites, construction has been undertaken only at Nigger Canyon, where Vail Dam and Reservoir were completed in 1949. The location of this reservoir and other existing and proposed water supply facilities discussed in this section are presented on Plate 25, "Potential Water Supply Development".

In 1947, Commander G. E. Fischer, United States Navy, reported on "The Proposed Reservoir Developments on Temecula-Santa Margarita River", wherein he discussed the effects of such projects on relationships between Vail Company and the Navy with respect to water rights on the River and the stipulated judgment in the litigation "Rancho Santa Margarita vs. Vail, et al." Preliminary studies of reservoir sites in the vicinity of Fallbrook were made by the Division of Water Resources in 1948, the work being discontinued in 1949 when the United States Army Corps of Engineers undertook a comprehensive flood control investigation of the Santa Margarita River, including studies of the four afore-mentioned sites.

In the course of the investigation herein reported upon, studies were made of dams and reservoirs at all major dam sites considered feasible of construction, and preliminary studies were made of several smaller sites. Seasonal yields were estimated for present conditions of development on the River upstream for each site and cost estimates were made for the various dams and reservoirs considered. Present water rights or water right applications were not considered as limitations on maximum size of reservoirs in these estimates, because the objective of the studies was to determine the most feasible method of development of water resources regardless of possible legal restrictions or differences which could better be resolved at a later date in the light of physical facts developed herein.

In calculations of net safe seasonal yield of surface reservoir developments presented herein, present development upstream from the considered reservoirs was accounted for in the derivation of inflow to the reservoirs (Table I-2), which reservoirs were all located on the "lower river", defined as the section of Santa Margarita River including and extending downstream from Diversion 95/3W-7Dl of Fallbrook Public Utility District.

Present development on the lower river was accounted for in determining net safe seasonal yield or "new water" for each considered development. For each reservoir capacity considered the net safe seasonal yield was taken as the difference between the calculated gross seasonal yield of the reservoir, operated without regard to present supplies of existing water supply developments and the reduction in the safe supplies of such developments resulting from operation of the considered reservoir.

Presently developed firm water supplies in the lower river amount to 5,700 acre-feet per season, comprising the yield of 4,000 acre-feet from Santa Margarita Coastal Basin, 1,200 acre-feet diversion by Fallbrook Public Utility District, and 100 acre-feet diversion by the Naval Ammunition Depot. In addition there is a consumptive use of 400 acre-feet representing annual evaporation from O'Neill Lake. A further criteria in the determination of net safe yield or new water developed by a given reservoir was that the ground water levels in Santa Margarita Coastal Basin would fluctuate over the same range as under present conditions, and that a reservoir would not be credited for new water developed by greater utilization of the storage capacity of the basin.

In succeeding paragraphs, results of yield studies and dam and reservoir cost estimates are presented for two sites on the Santa Margarita River in the vicinity of Fallbrook, for the De Luz site on Santa Margarita River, and for Upper De Luz site on De Luz Creek. A number of minor sites are also considered. Yield studies were made for capacities with and without silt allowance, and the average of the two determinations is the yield presented herein for each reservoir considered. The allowance made for reduction in effective reservoir storage capacity due to sedimentation represents the loss after 50 years of operation estimated to be 0.8 per cent

by volume of the reservoir inflow for that period. Demand for the Fallbrook Lippincott and Fallbrook Border reservoirs was distributed in accordance with historical data for Fallbrook Public Utility District presented in Table 37. the October-March and April-September demands being 33 and 67 per cent of the seasonal total, respectively. Demand at the Upper De Luz Reservoir was distributed in accordance with historical data for Camp Pendleton military use presented in Table 37, the October-March and April-September demands being 45 and 55 per cent of the seasonal total, respectively. Demand at the De Luz reservoirs was approximately that which would result from delivery of 60 per cent of the yield on a military basis and 40 per cent on an agricultural basis, the October-March and April-September demands being 40 and 60 per cent of the seasonal total, respectively. Estimated mean seasonal precipitation at each site was distributed semi-seasonally in accordance with precipitation at the key stations for which indices of wetness are presented in Table 4. An estimated average gross seasonal depth of evaporation from the reservoir water surface of four feet was distributed as follows:

Period	Net evaporation in feet depth
October - March	1.12
April - September	2.88
TOTAL	4.00

A factor which must be recognized in considering construction of the dams and reservoirs discussed herein is the probable occurrence of droughts more severe than those within the period of recorded hydrologic data. There is ample evidence that the southern portion of California has experienced much longer sequences of consecutive dry years than the droughts

of the 20th century. The prospective recurrence of such periods lends some uncertainty to the yield estimates of any proposed water conservation project in this part of the State. The larger the reservoir, with the attendant longer carry-over period, the greater is the inherent uncertainty as to the probable yield therefrom. Of significance in this regard is the current and continuing drought now being experienced in southern California. Continuation of the drought period would tend to lower any estimates of yield presented hereinafter.

Another factor which should be taken into consideration in planning for reservoir construction in the southern part of the State, is the lapse of time after such construction prior to the time any benefit would be realized therefrom. This results from the apparent cyclic occurrence of the runoff in California streams previously described. If a reservoir were to be constructed at the beginning of a long drought period little value would be received until an ensuing wet period or possibly 18 years or longer. Thus it is apparent under such conditions that planning for local water resource development must be intiated many years in advance of actual need.

Fallbrook Lippincott Dam and Reservoir. The Fallbrook Lippincott dam site is located on Santa Margarita River about 600 feet below its confluence with Sandia Creek in the NE 1/4 of Section 12, T. 9 S., R. 4 W., and the NW 1/4 of Section 7, T. 9 S., R. 3 W., S.B.B.&M., and about two miles north of Fallbrook. Stream bed elevation at the site is about 314 feet, United States Geological Survey datum. The drainage area of Santa Margarita River above the dam site comprises about 645 square miles, which produced an estimated average natural seasonal runoff of 27,300 acre-feet during the 48-year mean period, 1895-96 through 1942-43. Corresponding estimated mean seasonal runoff is 21,600 acre-feet under present upstream conditions

including the average diversion by Fallbrook Public Utility District and Naval Ammunition Depot of 1,300 acre-feet per season. Precipitation at the site is estimated to average 1.46 feet in depth seasonally.

Two sizes of dam and reservoir were considered at this site, a dam of 168 feet in height, which would store 35,000 acre-feet of water, and a dam 211 feet high with a storage capacity of 65,000 acre-feet.

This dam site was mapped in April 1955, by the Division of Water Resources up to an elevation of 560 feet on the right abutment and 600 feet on the left abutment at a scale of 1" = 100' with a 10-foot contour interval (See Plate 26).

The geology of the site was studied by F. L. Ransome in 1928, and by J. F. Mann, Jr., in 1951. During the course of the present investigation, geologists of the Division of Water Resources examined the site and reviewed the prior geologic reports. Based on such preliminary geological reconnaissance, this dam site is considered suitable for a properly constructed earthfill or concrete dam up to a maximum height of about 220 feet, which appears to be about the upper limit for the site from a topographic standpoint.

A fairly hard fresh coarse-grained granitic rock is well exposed over both abutments. This area has been intruded by basic dikes and some are found just downstream from the axis, while at a distance of a few hundred feet downstream considerable areas of dioritic material are exposed. About 300 feet downstream from the axis is an old shear zone cutting across the channel. It appears to be a shear along the contact between schist and granite and has been healed at various times by dioritic and granitic dikes. Grout would be required to seal this zone.

The right abutment is moderately steep with numerous granite outcrops. Rock appears to be uniform, though strongly jointed, thereby

necessitating the removal, for a concrete gravity dam, of about two feet of loose soil and rock and 15 feet of blocky weathered granite. For an earthfill dam the removal of the loose soil and about five feet of the granite would be required. Approximately 10 feet of unconsolidated material would have to be removed from the channel. The left abutment is very steep and uniform in slope. Stripping required there for a concrete gravity dam is estimated to be two feet of loose rock and soil and an average of 15 feet of broken rock. For an earthfill dam about two feet of loose soil and rock and an average of five feet of broken rock would have to be removed.

The small saddle, or notch, located beyond the right abutment is formed by a stringer of soft schist which appears to be sheared and cut by thin dikes. This material is soft and weathered, and extends to considerable depth. Location of the spillway there would require heavy protection.

Reservoir areas and capacities at various stages of water surface elevation, estimated from United States Geological Survey maps at a scale of 1:24,000 with a 20-foot contour interval, are presented in Table 42.

TABLE 42

AREAS AND CAPACITIES OF FALLBROOK LIPPINCOTT RESERVOIR

Depth of water at dam, in feet	: Water surface: elevation,: U.S.G.S. datum,: in feet	: Water surface area, in acres	Storage capacity, in acre-feet
0 6 26 46 66 86 106 126 143 146 166 183 186 206 226 246	314 320 340 360 380 400 420 440 457 460 480 497 500 520 540 560	0 6 74 130 190 260 370 480 590 610 770 960 980 1,200 1,420 1,650	0 18 820 2,860 6,060 10,600 16,900 25,400 35,000 36,300 50,100 65,000 67,600 89,400 116,000

Based on measurements and estimates of runoff during the period 1894-95 through 1952-53, yield studies were made for reservoir storage capacities at the Fallbrook Lippincott site of 35,000 acre-feet and 65,000 acre-feet. Estimated inflows to the reservoirs were based on values of measured runoff at the United States Geological Survey stream gaging station on Santa Margarita River near Fallbrook plus historic diversions by Fallbrook Public Utility District. The semiseasonal values so estimated are presented in Appendix I, Table I-2. In the reservoir yield studies, an allowance was made for reduction in effective reservoir storage capacity due to sedimentation in the amount of 8,700 acre-feet.

Results of studies covering the conjunctive operation of Fallbrook Lippincott Reservoir and Santa Margarita Coastal Basin during the most

critical dry period, April, 1895, through September, 1904, are presented in Table 43. For purpose of illustration, the semiannual yield study for the 65,000 acre-foot reservoir is presented in Appendix I, Table I-1.

TABLE 43
ESTIMATED NET SAFE SEASONAL YIELD
OF FALLBROOK LIPPINCOTT RESERVOIR

т	A 17	
$T\Pi$	Acre-Feet	,

Reservoir size	:	Critical dry period	 Gross seasonal yield	:	Reduction in yield of present water supply development	•	Net safe seasonal yield
35,000		April, 1895 through September, 1904	9,100		4,000		5,100
65,000		April, 1895 through September, 1904	11,600		4,000		7,600

The net safe seasonal yields of the 35,000 and 65,000 acre-foot reservoirs, calculated in accordance with the discussion preceding this section, would be 5,100 and 7,600 acre-feet, respectively. New water developed by construction of the reservoir could be utilized by either diversion at the reservoir or by pumping from Santa Margarita Coastal Basin after release from the reservoir.

Estimates of cost were prepared for dams at this site with heights of 168 feet and 211 feet from stream bed to crest, which, as stated, would create reservoirs with capacities of 35,000 and 65,000 acre-feet, respectively. For both heights of dam, a rolled fill structure was contemplated, comprising an impervious core of select earth material and upstream and downstream sections of pervious material. Preliminary calculations indicate that costs of concrete gravity dams would be approximately twice those of

comparable earthfill structures. Both upstream and downstream slopes of the dam would be 2.5:1 for the dam of 168-foot height and 3:1 for the dam of 211-foot height. The impervious section would have an upstream and downstream slope of 0.8:1. Crest widths would be 30 feet, comprising a 10-foot width for the impervious core and 10-foot width each for the upstream and downstream pervious sections. The upstream face of the dam would be protected against wave action by rock riprap placed to a depth of three feet normal to the slope. For the dam with a capacity of 65,000 acre-feet an auxiliary dam similar to the main dam in all respects save height, would be located in the previously mentioned saddle westerly of the main dam.

For purposes of the cost estimates, it was assumed that under the impervious core a depth of 10 feet of sand and gravel would be stripped in the channel, and that seven feet of soil and broken rock would be removed from the abutments. For the pervious section of the dam, it was assumed that stripping of loose surface material and vegetation to a depth of three feet only would be necessary.

Earth materials adequate in quantity and quality for the impervious section of the dam occur in terraces within two miles upstream from the site. However, more detailed study of the materials from this area would be required to select specific borrow areas and to determine the character of the materials, in detail, prior to the preparation of final plans and specifications. Stream bed sands and gravel and materials salvaged from foundation and spillway excavation would be suitable for the outer pervious zones. It was assumed that the granite of the immediate area would be quarried for riprap although it might be possible to salvage sufficient rock from spillway excavation. It was further assumed that compaction of fill material in both the impervious and pervious sections of the dam would be effected by either

sheepsfoot or pneumatic rollers, and that moderate grouting would be necessary to prevent minor leakage in the foundation and abutments.

The estimated peak inflow of a once in one thousand year flood at this site is 142,000 second-feet. The routed peak reservoir outflows were 136,000 and 130,000 second-feet for dams with reservoir capacities of 35,000 acre-feet and 65,000 acre-feet, respectively. Spillways were designed as concrete-lined overpour chutes with ogee weir control sections. The maximum depth of water above the spillway lip would be about 20 feet for the smaller dam and about 23 feet for the larger dam and an additional five feet residual freeboard was planned for both. The spillway weir for the smaller dam would be located partly in the saddle and partly in the nose of the right abutment between the saddle and main dam. The spillway chute would be excavated across the right abutment and would discharge into Santa Margarita River downstream from the toe of the dam. For the larger dam the previously described earthfill dike would be built in the saddle, the spillway would be located on the nose of the right abutment between the dike and the main dam, and the spillway chute would be excavated across the abutment.

It was estimated that the dam of 168-foot height could be constructed in two years and the higher dam would require three years. It was assumed that during construction, diversion of the summer flows in Santa Margarita River would be effected through the outlet works, and that winter flows would pass through an uncompleted portion of the dams in the channel section.

The outlet works intake structure located at the upstream toe near the left abutment would be a short submerged concrete tower, with steel trash rack at the entrance. A concrete pressure conduit beneath either dam would extend from the intake structure to the valve chamber located upstream from

the axis of the dam. A high pressure slide gate would be installed within the valve chamber, and a reinforced concrete culvert, varying in diameter depending upon the capacity of the reservoir, would extend from the valve chamber to a control valve house at the downstream toe of the dam. A steel pipe supported on cradles would extend through the culvert from the valve chamber to the control valve house, where a bifurcation structure would be located, permitting the discharge of water to either Santa Margarita River or to a possible pumping plant and conduit for the Fallbrook area. Downstream releases would be controlled by a Howell-Bunger valve, and a needle valve would control releases to the conduit.

Lands within the Fallbrook Lippincott Reservoir area are held in private ownership. The cost of acquisition of these lands was estimated on a preliminary basis by the Division of Water Resources during the investigation. It was estimated that about 580 acres and 960 acres of clearing would be required for the reservoirs with capacities of 35,000 ad 65,000 acre-feet, respectively. The existing diversion works of the Fallbrook Public Utility District, located about 1,500 feet upstream from the site, would be submerged together with portions of minor county roads which lie within the reservoir areas.

Presented in Table 44 are pertinent data with respect to general features, and capital and annual costs of the dams and reservoirs. Detailed estimates of safe yield and cost of dams and reservoirs are included in Appendixes I and J, respectively. For illustrative purposes, a plan, profile, and section of the dam creating a reservoir with storage capacity of 65,000 acre-feet are shown on Plate 26, entitled "Fallbrook Lippincott Dam on Santa Margarita River".

TABLE LL

GENERAL FEATURES OF TWO SIZES OF DAM AND RESERVOIR AT THE FALLBROOK LIPPINCOTT SITE ON SANTA MARGARITA RIVER

Characteristics of Site
Drainage area--645 square miles
Estimated mean seasonal runoff--21,800 acre-feet
Estimated mean gross seasonal depth of evaporation--4.00 feet
Estimated mean seasonal depth of precipitation--1.46 feet
Estimated sedimentation--8,700 acre-feet
Elevation of stream bed, U.S.G.S. datum--314 feet

	: Gross reservoir	storage capacity,
	: 35,000	: 65,000
7. 11.0122.7		
Earthfill Dam Crest elevation, in feet, U.S.G.S. datum Crest length, in feet Crest width, in feet Height, spillway lip above stream bed,	482 695 30	525 870 30
in feet Side slopes, upstream and downstream Freeboard, above spillway lip, in feet Volume of fill, in cubic yards	143 2.5:1 25 1,166,000	183 3:1 28 2,518,000
Reservoir Surface area at spillway lip, in acres Net storage capacity at spillway lip,	580	960
in acre-feet Type of spillway Spillway discharge capacity, in second-feet Type of outlet	136,000	56,300 ncrete lined chute 130,400 54-inch diameter steel pipe be- neath dam
Estimated net safe seasonal yield, in acre-feet	5,100	7,600
Capital Costs Dam and reservoir Per acre-foot of storage Per acre-foot of net safe yield	\$3,043,000 87 597	\$4,823,000 74 635
Annual Costs Dam and reservoir Per acre-foot of net safe yield Per acre-foot of incremental net safe yield	\$ 148,500 29.10 	\$ 235,400 31.00 34.80

Fallbrook Border Dam and Reservoir. The Fallbrook Border dam site is located on Santa Margarita River about one and one-quarter miles north of Fallbrook and about 250 feet west of the eastern boundary of Camp Pendleton Naval Reservation, on the boundary between Sections 12 and 13, Township 9 South, Range 4 West, S.B.B.&M. The drainage area of Santa Margarita River above the site comprises about 647 square miles. Runoff at the site was assumed equal to that measured at the Fallbrook gaging station a short distance upstream, which produced an estimated average natural seasonal runoff of 27,300 acre-feet during the 48-year mean period 1895-96 through 1942-43. Corresponding estimated mean seasonal runoff is 21,600 acre-feet under present conditions, assuming that present diversions by Fallbrook Public Utility District were not made. Precipitation at the site is estimated to average 1.46 feet depth seasonally. Three sizes of dam and reservoir were considered at this site, dams of 223, 273, and 288 feet in height with reservoir storage capacities of 65,000, 125,000, and 150,000 acre-feet, respectively.

The Fallbrook Border dam site was mapped up to an elevation of 650 feet on both abutments in June, 1947, by the United States Department of the Interior, Bureau of Reclamation, at a scale of 1" = 50' with a 10-foot contour interval.

The geology of the site was studied by F. L. Ransome in 1928, and by the United States Army Corps of Engineers in 1949. During the course of the present investigation, geologists from the Division of Water Resources examined the site and reviewed the prior geologic reports. Based on such preliminary geologic reconnaissance, the Fallbrook Boarder dam site is considered suitable for a properly constructed earthfill, rockfill, or concrete dam.

The site is located in a rather extended narrows in the canyon of the Santa Margarita River. The canyon sides here are moderately uniform in contour but are cut by several ravines. The rock on both abutments is a granitic type, probably principally a granodicrite. In addition, some zones of dark, fine-grained material of probable dicritic composition are present. The rock is moderately jointed but no shears of any appreciable magnitude were noted.

The left abutment slopes about 40° to approximately 100 feet above stream bed. Prominent joints on this abutment include systems having the following attitudes: strike north 65° west, dip 70° northeast; strike north 45° east, dip 80° northwest. A thin cover of soil supports a heavy growth of brush on this north facing abutment. The right abutment slopes generally about $h0^0$ to an abandoned road at an elevation of about 120 feet above stream bed, although locally the slope is as steep as 550. Above the road, the slope averages about 350. Stripping required for a concrete dam is estimated to be one to two feet of soil plus about 30 feet of fractured and weathered rock on both abutments. Required stripping under the impervious section of an earthfill or rockfill dam is estimated to be one to two feet of soil and about 10 feet of fractured and weathered bedrock. In the approximately 200foot wide channel, it is estimated that about 12 feet of sand and gravel plus about five feet of rock for a concrete structure, and somewhat less rock for an earthfill or rockfill dam, would have to be removed. Grouting required at the site is believed to be moderate.

Reservoir areas and capacities for various heights of dam were derived from United States Geological Survey topographic quadrangle sheets at a scale of 1:24,000 and with 20-foot contour interval. The values so determined are presented in Table 45.

TABLE 45

AREAS AND CAPACITIES OF
FALLBROOK BORDER RESERVOIR

Depth of water at dam, in feet	0	Water surface elevation, U.S.G.S. datum, in feet	:	Water surface area, in acres	:	Storage capacity, in acre-feet
0 23 43 63 83 103 123 143 163 183 195 203 223 243 246 261 263		277 300 320 340 360 380 400 420 440 460 472 480 500 520 523 538 540		0 23 73 160 230 300 390 520 650 790 980 1,210 1,460 1,490 1,660		0 260 1,220 3,550 7,450 12,700 19,600 28,700 40,400 54,800 65,000 72,500 94,400 121,000 125,000 150,000

Based on measurements and estimates of runoff during the period 1894-95 through 1952-53, yield studies were made for reservoir storage capacities at the Fallbrook Border site of 65,000, 125,000, and 150,000 acre-feet. Estimated inflows to the reservoirs were based on values of measured runoff at the United States Geological Survey stream gaging station on Santa Margarita River near Fallbrook, plus historic diversions by Fallbrook Public Utility District. The semiseasonal values so estimated are presented in Appendix I, Table I-2.

In the reservoir yield studies, an allowance was made for reduction in effective reservoir storage capacity due to sedimentation in the amount of 8,700 acre-feet. Results of yield studies for the considered capacities of Fallbrook Border Reservoir for the critical dry periods April, 1895,

through September, 1904, and April, 1895 through September, 1914, depending upon size of reservoir, are presented in Table 46. Assumptions as to operation of the reservoir and method of determination of net safe yield are identical with those set forth in the discussion of Fallbrook Lippincott Reservoir, and comments relative to the operation of that reservoir are equally applicable here.

TABLE 46
ESTIMATED NET SAFE SEASONAL YIELD
OF FALLBROOK BORDER RESERVOIR

In Acre-Feet

Reservoir size	:	Critical dry period	:	Gross seasonal yield	:	Reduction in yield of present water supply	:	Net safe seasonal yield
	<u>:</u>		:		:	development	:	
65,000		April, 1895 through September, 1904		11,600		4,000		7,600
125,000		April, 1895 through September, 1914		14,700		2,000		12,700
150,000		April, 1895		15,700		1,200		14,500

through September, 1914

There is an apparent anomaly indicated in Table 46, wherein it appears that a lesser effect on the yield of present water supply development is obtained with increasing capacity of reservoir. This results from the difference in length of critical periods for the 125,000 and 150,000 acrefoot surface developments and the 6,000 acre-foot capacity underground reservoir in Santa Margarita Coastal Basin. The conjunctive operation of the surface and inderground facilities in this instance enhances somewhat the utility of both.

Estimates of cost were prepared for dams at this site with heights of 223 feet, 273 feet, and 288 feet from stream bed to crest. For all dams, a rolled fill structure was contemplated, comprising an impervious core of select earth material and upstream and downstream sections of pervious material. Preliminary cost estimates of concrete gravity dams of comparable size indicated that earthfill dams would be considerably less expensive. Upstream and downstream slopes would be 3:1 for the smallest dam, 3-1/4:1 for the dam of intermediate size, and 3-1/2:1 for the largest dam. The impervious section of all dams would have upstream and downstream slopes of 0.8:1. Crest width would be 30 feet, comprising a 10-foot width for the impervious core and 10-foot width each for the upstream and downstream pervious sections. The upstream face of the dam would be protected against wave action by rock riprap placed to a depth of three feet normal to the slope.

For purposes of the cost estimates, it was assumed that under the impervious section an average depth of 12 feet of sand and gravel plus 5 feet of rock would be stripped in the channel, and depths of 2 feet of soil and 10 feet of fractured and weathered bedrock would be removed from the abutments. For the pervious sections, a nominal depth of stripping of 2 feet was assumed throughout the contact area.

Earth materials considered suitable for the impervious section of the dam occur in terraces upstream from the dam. However, more detailed study of these materials would be required prior to the preparation of final plans and specifications. Pervious materials are available in the channel and in nearby terraces. It was assumed that 85 per cent of the impervious core stripping and spillway excavation could be salvaged for use in the pervious section of the dam, and that riprap for the dam could be salvaged

from the spillway excavation or quarried nearby. It was also assumed that compaction of the impervious section of the dam would be effected by either sheepsfoot or pneumatic rollers, and that pneumatic rollers would be used to compact the pervious sections. Moderate grouting would be necessary to prevent minor leakage in the foundation and abutments.

The estimated peak inflow of a once in 1,000 year flood is 142,000 second-feet, the same as that estimated for the Fallbrook Lippincott site about one mile upstream. The routed peak reservoir outflows were 129,000 second-feet for the reservoir with capacity of 65,000 acre-feet and 128,000 second-feet for reservoirs with capacities of 125,000 acre-feet, and 150,000 acre-feet. Concrete-lined spillways would be of the side channel type, located on the right abutment of the dam and would discharge through concrete-lined chutes into the Santa Margarita River about 150 feet below the dam. The maximum depth of water over the spillway would be 22 feet for the 65,000 acre-foot reservoir, and 21 feet for the 125,000 acre-foot and 150,000 acre-foot reservoirs, and an additional six feet of residual free-board would be provided.

It was estimated that the smaller dam at the Border site could be constructed in three years and the larger dans in four years each. During construction, summer flow would be diverted through the outlet conduit while diversion of winter flows would be effected through an uncompleted portion of the dam in the channel section.

The outlet works intake structure located at the upstream toe near the left abutment would be a short submerged concrete tower with steel trash rack at the entrance. A concrete pressure conduit beneath each dam considered would extend from the intake structure to the valve chamber, located somewhat upstream from the axis of the dam. A high pressure slide gate would

be installed within the valve chamber, and a reinforced concrete culvert, varying in diameter depending upon the capacity of the reservoir, would extend from the valve chamber to a control valve house at the downstream toe of the dam. A steel pipe supported on cradles would extend through the culvert from the valve chamber to the control valve house where a bifurcation structure would be located permitting discharge of water to either Santa Margarita River or to a possible pumping plant and conduit for the Fallbrook area. Downstream releases would be controlled by a Howell-Bunger valve, and a needle valve would control releases to the conduit.

Most of this dam site is on the Naval Reservation, but nearly all the reservoir area is held in private ewnership; estimates for acquiring these lands were made during this investigation. It was estimated that clearing of about 900, 1,250, and 1,660 acres of land would be required for the three sizes of dam considered. Gosts of construction of about one mile of access road to the crest of dam and necessary relocation of county roads within the reservoir area, depending on the height of dam considered, were included in the estimates.

Presented in Table 47 are pertinent data with respect to general features and capital and annual costs of the dams and reservoirs considered at this site. Detailed estimates of cost are included in Appendix J_{\circ}

TABLE 47

GENERAL FEATURES OF THREE SIZES OF DAM AND RESERVOIR AT THE FALLBROOK BORDER SITE ON SANTA MARGARITA RIVER

Characteristics of Site
Drainage area--647 square miles
Estimated mean seasonal runoff--21,800 acre-feet
Estimated mean gross seasonal depth of evaporation--4.00 feet
Estimated mean seasonal precipitation--1.46 feet
Estimated sedimentation--8,700 acre-feet
Elevation of stream bed, U.S.G.S. datum--277 feet

	: Gross rese	rvoir storage	e capacity,
		in acre-feet	
	: 65,000	: 125,000 :	: 150,000
Earthfill Dam			
Crest elevation, in feet, U.S.G.S. datum	500	550	565
Crest length, in feet	720	870	920
Crest width, in feet	30	30	30
Height, spillway lip above stream bed,	Λ.		
in feet	195	246	261
Side slopes, upstream and downstream	3:1	3.25:1	3.5:1
Freeboard, above spillway lip, in feet	28	27	27
Volume of fill, in cubic yards	2,041,000	3,522,000	5,300,000
Reservoir			
Surface area at spillway lip, in acres	900	1,250	1,660
Net storage capacity at spillway lip,			
in acre-feet	56 , 300	116,300	141,300
Type of spillway	Side	Side	Side
	channel	channel	channel
Spillway discharge capacity, in			7.00
second-feet	129,000	128,000	128,000
Type of outlet	54-inch	72-inch	72-inch diameter
	diameter	diameter steel pipe	
	steel pipe beneath	beneath	beneath
	dam	dam	dam
Estimated net safe seasonal yield,	aan		
in acre-feet	7,600	12,700	500و 14
	-	•	-
Capital Costs	WP	#	H
Dam and reservoir	\$5,964,000		
Per acre-foot of storage	92	73	74
Per acre-foot of net safe yield	785	718	769
Annual Costs			
Dam and reservoir	\$ 288,300	\$ 441,100	
Per acre-foot of net safe yield	37.90	34.70	37.10
Per acre-foot of incremental net safe yield		30.00	53.60

De Luz Dam and Reservoir. The De Luz dam site is located on Santa Margarita River within Camp Pendleton Naval Reservation about one-quarter mile south of its confluence with De Luz Creek, a principal tributary, in Section 32, Township 9 South, Range 4 West, S.B.B.&M. Santa Margarita Road, paralleling Santa Margarita River, passes along the left abutment of the dam site and traverses a portion of the reservoir area.

From its 1949 flood control investigation on Santa Margarita River, the United States Army Corps of Engineers concluded that no project for flood control only could be justified, but that a multiple-purpose project for both water conservation and flood control at the De Luz site would be economically feasible. Congress in 1954 passed a bill for construction of a dam at this site to be constructed by the United States Department of the Interior, Bureau of Reclamation, the yield of which would be divided into a 60-40 proportion between the United States Navy and Fallbrook Public Utility District. The bill also authorized the Secretary of the Army, through the Chief of the Corps of Engineers, to utilize for purposes of flood control such portion of the capacity of the reservoir "as may be available therefor", No funds have been appropriated by Congress for construction of the dam, and construction is contingent upon certain determinations by the Secretary of the Interior. This legislation was briefly reviewed in Chapter IV of this report, and because of the above restrictions in the bill it was concluded that construction of the reservoir is uncertain and may depend upon final outcome of the legislation, United States vs. Fallbrook Public Utility District, et al.

The drainage area of Santa Margarita River above the De Luz dam site comprises about 700 square miles and produced an estimated average seasonal natural runoff during the 48-year mean period, 1895-96 through

1942-43, of about 37,000 acre-feet. Corresponding runoff is 31,500 acre-feet under present conditions without deducting present diversions by Fallbrook Public Utility District and the Fallbrook Naval Ammunition Depot. Precipitation at the site is estimated to average 1.30 feet depth seasonally.

In this investigation four sizes of dams and reservoirs were considered at the De Luz site. All reservoir capacity was assumed to be used for water conservation purposes only, but as previously indicated in discussion of flood control possibilities, it is recognized that flood control storage could be provided in addition to water conservation storage. The dams considered would be 145, 170, 209, and 230 feet in height from stream bed to crest, with reservoir capacities of 50,000, 75,000, 143,000, and 188,000 acre-feet, respectively.

The De Luz dam site was mapped up to an elevation of 610 feet on the right abutment and to an elevation of 470 feet on the left abutment in October, 1951, by the Corps of Engineers, U. S. Army, at a scale of 1" = 200' with 10-foot contour interval.

The geology of the site was studied by Rancho Santa Margarita,
Incorporated, in 1934, and by the Corps of Engineers in 1946, the work done
including trenching, subsurface foundation exploration, and sampling and
testing of potential borrow areas for select earth materials. Reports on
the studies were reviewed by geologists from the Division of Water Resources,
and based on such preliminary geological reconnaissance, the De Luz dam site
is considered suitable for an earth fill dam up to heights considered.

Rock underlying the right and left abutments is closely jointed granite with a small amount of gneiss and schist. Required stripping on the abutments will average from 3 to 10 feet. The channel section is filled with alluvium to a maximum depth of 140 feet. The underlying bedrock is

granite. The spillway would occupy about 290 feet along the axis of the dam just beyond the east end of the main embankment. A fault was found 7,000 feet north of the site, in the west bank of De Luz Creek; another fault is located about 7,000 feet south-southwest of the site within an old rock quarry west of Santa Margarita River. The region is seismically active.

Reservoir areas and capacities for various heights of dam were derived from United States Geological Survey quadrangles at a scale of 1:24,000 with a 20-foot contour interval. The values so determined are presented in Table 48.

TABLE 48

AREAS AND CAPACITIES OF DE LUZ RESERVOIR

Depth of water at dam, in feet	: Water surface: elevation,: U.S.G.S. datum,: in feet	Water surface area, in acres	Storage capacity, in acre-feet
0 5 15 25 35 45 55 65 75 85 105 125 135 145 165 175 185 195 205 215	125 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350	0 20 60 140 240 300 370 450 540 640 730 840 940 1,060 1,200 1,330 1,490 1,640 1,810 1,980 2,140 2,370 2,570 2,780	0 65 1,470 3,370 6,070 9,420 13,500 18,500 24,400 31,300 39,100 48,000 58,000 69,000 82,000 96,000 111,000 129,000 148,000 169,000 191,000 217,000 243,000

Based on estimates of runoff during the period 1894-95 through 1952-53, yield studies were made for reservoir storage capacities at the De Luz site of 50,000, 75,000, 143,000, and 188,000 acre-feet, respectively. Estimated inflows to the reservoir were based on values of measured runoff at the United States Geological Survey stream gaging station on Santa Margarita River near Fallbrook plus historic diversions by Fallbrook Public Utility District, and estimates of runoff from additional tributary area below the station. The semiseasonal values so estimated are presented in Appendix I, Table I-2. In all of the reservoir yield studies, an allowance was made for the reduction in effective reservoir storage capacity due to sedimentation in the amount of 14,000 acre-feet.

Results of studies covering the conjunctive operation of De Luz Reservoir and Santa Margarita Coastal Basin, during the most critical dry periods, April, 1895, through September, 1904, extending through September, 1914, for the larger capacities studied, are presented in Table 49.

Assumptions as to operation of the reservoir and Basin are identical with those set forth in the discussion of Fallbrook Lippincott and Fallbrook Border Reservoirs, and comments relative to the operation of those reservoirs are equally applicable here.

TABLE 49

ESTIMATED NET SAFE SEASONAL YIELD OF DE LUZ RESERVOIR

In Acre-Feet

Reservoir size	critical dry period	: Oross : : seasonal : : yield :	yield of present	<pre>Net safe seasonal yield </pre>
50,000	April, 1895 through September, 1904	12,400	6,200	6,300
75,000	April, 1895 through September, 1904	14,600	6,200	8,400
143,000	April, 1895 through September, 1914	20,100	6,100	14,000
188,000	April, 1895 through September, 1914	27.,800	6,100	15,700

^{*} Values in excess of present yield result from necessity to release water to maintain present range of water level fluctuations in Santa Margarita Coastal Basin.

Estimates of cost were prepared for dams at this site with heights of 145, 170, 209, and 230 feet from stream bed to crest of dam. For all heights of dam, a relied fill structure was contemplated, comprising an impervious core of select earth material, and upstream and downstream sections of pervious material. Upstweam and downstream slopes of the dam would be 2.5:2 for the dams of 145 and 170 feet in height and 3:1 for the dams 209 and 230 feet in height. The impervious sections would have upstream and downstream slopes of 1:1. Crest widths would be 30 feet, comprising a 10-foot width for the impervious core and 10-foot widths each for the upstream and downstream pervious sections. The upstream face of the

dam would be protected against wave action by rock riprap placed to a depth of three feet normal to the slope.

For the two larger dams, an auxiliary dam similar to the main dam in allrespects save height, would be located in a saddle east of the spillway.

For purposes of the cost estimates, it was assumed that under the impervious section an average depth of 40 feet of sand, gravel, boulders, and small lenses of sandy silt, all unconsolidated, would be stripped in the channel, and 10 feet of mantle would be removed from the abutments.

Stripping required under the pervious sections of the dam was assumed to be a two-foot depth of loose surface material and vegetation.

Earth materials considered suitable for the impervious section of the dam occur in terraces downstream from the dam within a radius of 2-1/2 miles. An estimated 85 per cent of the core and spillway excavation could be salvaged for use in the pervious section of the dam. Other pervious materials are available upstream in the channel section within two miles of the dam site. The granite within the reservoir area could be quarried for riprap. It was assumed that compaction of the impervious section of the dam would be effected by either sheepsfoot or pneumatic rollers, and that pneumatic rollers would be used to compact the pervious sections. Moderate grouting would be necessary to prevent minor leakage in the foundation and abutments.

The estimated peak inflow of a once in 1,000 year flood is 164,000 second-feet. The routed peak reservoir outflows were 151,000 second-feet for reservoirs of capacities of 50,000 and 75,000 acre-feet, and 141,000 second-feet and 137,000 second-feet for reservoirs of capacities of 143,000 and 188,000 acre-feet, respectively. The spillways were designed as concrete-lined overpour chutes, with ogee-weir control sections. The maximum depth

of water above the spillway lip would be 23 feet for the two smaller dams and 22 feet for the others, and an additional five feet of residual freeboard would be provided. The spillways would be located in the saddle on the left abutment and would discharge into Santa Margarita River downstream from the toe of the dam. The spillway chutes would be concrete-lined for a portion of their lengths.

It was estimated that the construction period would be 1-1/2 years, 2 years, 2-1/2 years, and 3 years for the respective sizes of dam considered. During construction, summer flow would be diverted through the outlet conduit, while diversion of winter flows would be effected through an uncompleted portion of the dams in the channel section.

The outlet works intake structure located at the upstream toe near the left abutment would be a short concrete tower, with steel trash rack at the entrance. A concrete pressure conduit beneath all dams would extend from the intake structure to the valve chamber located upstream from the axis of the dam. A high pressure slide gate would be installed within the gate valve chamber and a reinforced concrete culvert, varying in diameter depending upon the capacity of the reservoir, would extend from the valve chamber to a control valve house at the downstream toe of the dam. A steel pipe supported on cradles would extend through the culvert from the valve chamber to the control valve house where a bifurcation structure would be located permitting the discharge of water to either Santa Margarita River or a possible conduit. Downstream releases would be controlled by a Howell-Bunger valve, and a needle valve would control releases to the conduit.

The dam site and a major portion of the lands in the De Luz reservoir area are located within Camp Pendleton Naval Reservation, while the remainder of the reservoir area is held in private ownership. It was

estimated that about 980, 1,260, 1,940, and 2,340 acres of minor clearing would be required for the respective sizes of reservoirs considered. Minor county roads within the reservoir area would be relocated where necessary.

Presented in Table 50 are pertinent data with respect to general features and capital and annual costs of dams and reservoirs considered at the De Luz site. Detailed cost estimates of safe yield and cost of dams and reservoirs are included in Appendixes I and J, respectively. For illustrative purposes, a plan, profile, and section of the dam creating a reservoir with storage capacity of 188,000 acre-feet are shown on Plate 27, entitled "De Luz Dam on Santa Margarita River".

TABLE 50

GENERAL FEATURES OF FOUR SIZES OF DAM AND RESERVOIR AT THE DE LUZ DAM SITE ON SANTA MARGARITA RIVER

Characteristics of Site
Drainage area--700 square miles
Estimated mean seasonal runoff--31,500 acre-feet
Estimated mean gross seasonal depth of evaporation--1.00 feet
Estimated mean seasonal precipitation--1.30 feet
Estimated sedimentation--12,000 acre-feet
Elevation of stream bed, U.S.G.S. datum--125 feet

ga spraga ang gan vegana ang competica consiste. On the 122 cases and 2 developments cases among a desire of a paragramma analisis and influences and a special cases.	:	Gro			storage cap	acity,
	:_	50 ,00 0			: 143,000	: 188,000
Barthfill Dam Grest elevation, in feet, U.S.G.S. datu Grest length, in feet Grest width, in feet Height, spillway lip above stream bed,	m	270 1,860 30	29 2,17	-	334 3,195 30	355 3,400 30
in feet Side slopes, upstream and downstream Freehoard, above spillway lip, in feet Volume of fill, in cubic yards		117 2-1/2:1 28 550,000		28	182 3:1 27 5,829,000	203 3:1 27 8,252,000
Reservoir Surface area at spillway lip, in acres Net storage capacity at spillway lip,		980	1,26	50	1,940	2,340
in acre-feet Type of spillway Spillway discharge capacity,		36,000	61,00 Ogee		129,000 r and chute	174,000
in second-feet Type of outlet	d st	151,000 42-inch iameter eel pipe beneath dam		h er .pe .h	111,000 66-inch diameter steel pipe beneath dam	-
Estimated met safe seasonal yield, in acre-feet		6,300			14,000	
Capital Costs Dam and reservoir Per acre-foot of storage Per acre-foot of net safe yield	\$3,	153,000 63 500		O	\$9,609,000 67 686	\$13,205,000 70 841
Annual Costs Dam and reservoir Per acre-foot of net safe yield Per acre-foot of incremental net	\$	155,100 24,60	\$ 220,00 26.2	0	\$ 465,000 33.20	40.50
safe yield		GP 176	30.9	0	43.80	100.70

Upper De Luz Dam and Reservoir. The Upper De Luz dam site is located on De Luz Creek about two miles north of its confluence with Santa Margarita River, and is located in Section 20, Township 9 South, Range 4 West, S.B.B.&M. Camp De Luz Road, paralleling De Luz Creek, passes along the right abutment of the dam site and traverses the reservoir area. Stream bed elevation at the dam site is about 185 feet, U.S.G.S. datum. Consideration was given to the construction of a small dam and reservoir at the Upper De Luz site for storage of flood waters in De Luz Creek and utilization of the water so conserved by Camp Pendleton. This was a reconnaissance type study based on limited information. The purpose was to determine the feasibility of this site as an alternate to a similar small dam and reservoir at the De Luz dam site.

The drainage area of De Luz Creek above the Upper De Luz site comprises about 144 square miles, and on the assumption that runoff at the site is 86 per cent of the runoff between the United States Geological Survey gaging station near Fallbrook and the De Luz dam site, produced an estimated average seasonal natural runoff during the 48-year mean period, 1895-96 through 1942-43, of about 8,350 acre-feet. Runoff under present conditions is assumed to be equal to the natural runoff. Precipitation at the site is estimated to average 1.30 feet in depth seasonally.

No geologic survey was made during this investigation at the Upper
De Luz site, all data used being obtained from previous reports. The abutments
and foundation at the dam site are in an area of intrusive rock related to the
Santiago Peak volcanics. They are characterized here by fine-grained granodiorites and related rocks which occur as small outcrops, and comprise a series
of agglomerates, tuffs, shallow intrusives, and flows with associated shales
and quartzites which are mildly metamorphosed. According to previous geologic
studies, De Luz Creek may be controlled by an active fault and the region
should be considered seismically active.

Reservoir areas and capacities for various heights of dam were derived from United States Geological Survey quadrangles at a scale of 1:24,000 with a 20-foot contour interval. The values so determined are presented in Table 51.

TABLE 51

AREAS AND CAPACITIES OF UPPER DE LUZ RESERVOIR

Depth of water at dam; in feet		: Water surface : area, in acres :	Storage capacity, in acre-feet
0 15 35 55 75 95 115 135 155 175 215 235	185 200 220 240 260 280 300 320 340 360 380 400	0 26 78 130 170 230 310 390 500 620 700 900 1,150	0 200 1,240 3,320 6,320 10,300 15,700 22,700 31,600 42,800 56,000 72,000 92,500

Based on estimates of runoff during the critical dry period from April, 1895, through September, 1914, a yield study was made for a reservoir storage capacity of 50,000 acre-feet. In the study, an allowance was made for reduction in effective storage capacity due to sedimentation in the amount of 3,300 acre-feet. The resulting estimated gross and net safe seasonal yield was 6,000 acre-feet for both, there being no change in the amount of water available by direct diversion to Fallbrook Public Utility District and the Naval Ammunition Depot or in the yield of Santa Margarita Coastal Basin.

Based on the limited data available, an estimate of cost was prepared

for a dam at the Upper De Luz site with a height of 207 feet from stream bed to crest of dam. A rolled fill structure was contemplated, comprising an impervious core of select earth material, and upstream and downstream sections of pervious free draining material. Upstream and downstream slopes of the dam would be 3:1. The impervious section would have upstream and downstream slopes of 0.8:1. Crest width would be 30 feet, comprising a 10-foot width for the impervious core and 10-foot widths each for the upstream and downstream pervious sections. The upstream face of the dam would be protected against wave action by rock riprap placed to a depth of three feet normal to the slope. Earth fill quantities were estimated from enlarged copies of United States Geological Survey Quadrangles, edition of 1949, at a scale of 1:24,000 with a 20-foot contour interval.

For purposes of the cost estimates, it was assumed that under the impervious section an average depth of 25 feet of sand and gravel would be stripped in the channel, a depth of 15 feet of broken rock and mantle would be removed on the left abutment, and 10 feet of broken rock and mantle would be removed on the right abutment. For the pervious sections, a depth of stripping of 3 feet was assumed throughout the contact area. It was assumed that foundation treatment would include moderate grouting.

Earth material considered suitable for the impervious section of the dam occurs in terraces both upstream and downstream from the site within an assumed average haul distance of two miles. Pervious material is available in the channel and in nearby terraces. It is estimated that 80 per cent of the material removed under the impervious section and the spillway could be used in the pervious section and that riprap could be quarried from rock within the reservoir area. It was assumed that compaction of the impervious section of the dam would be effected by either sheepsfoot or pneumatic rollers, and that pneumatic rollers would be used to compact the pervious sections.

The spillway considered would have a discharge capacity of 41,000 second-feet, which is the estimated peak discharge of a once in one thousand year flood. The spillway was designed as a concrete-lined overpour chute, with an ogee weir control section. The spillway weir and channel would be excavated through the saddle on the right abutment and would discharge into De Luz Creek downstream from the dam. Depth of water above the spillway lip at design discharge capacity would be 15 feet and an additional 5 feet of residual freeboard would be provided.

It was estimated that the Upper De Luz Dam would require about two years for construction. During construction, summer flow would be diverted through the outlet conduit, while diversion of winter flows would be effected through an uncompleted portion of the dams in the channel section.

The outlet works would have a submerged concrete inlet structure at the upstream toe near the left abutment. A concrete pressure conduit beneath the dam would extend from the intake tower to the valve chamber, located somewhat upstream from the axis of the dam. A high pressure slide gate would be installed within the valve chamber, and a reinforced concrete culvert would extend from the valve chamber to a cortrol valve house at the downstream toe of the dam. A steel pipe supported on cradles would extend through the culvert from the valve chamber to the control valve house where a bifurcation structure would be located permitting discharge of water to either Santa Margarita River or to a conduit. Downstream releases would be controlled by a 30-inch diameter Howell-Bunger valve, and a 30-inch diameter needle valve would control releases to the conduit.

The dam site and a major portion of the land in the Upper De Luz reservoir area are in Camp Pendleton Naval Reservation, while the remainder is held in private ownership. It was estimated that about 675 acres of land

would have to be cleared, and a short length of the county road to De Luz would be relocated.

Presented in Table 52 are pertinent data with respect to general features and capital and annual costs of the dam and reservoir considered at this site. A detailed cost estimate is included in Appendix J.

TABLE 52

GENERAL FEATURES OF DAM AND RESERVOIR AT THE UPPER DE LUZ SITE ON DE LUZ CREEK

Characteristics of Site
Drainage area-44 square miles
Estimated mean seasonal runoff--8,350 acre-feet
Estimated mean gross seasonal depth of evaporation--4.00 feet
Estimated mean seasonal precipitation--1.30 feet
Estimated sedimentation--3,300 acre-feet
Elevation of stream bed, U.S.G.S. datum--185 feet

Earthfill Dam Crest elevation, in feet, U.S.G.S. datum Crest length, in feet Crest width, in feet Height, spillway lip above stream bed, in feet Side slopes, upstream and downstream Freeboard, above spillway lip, in feet	392 1,120 30 187 3:1 20
Volume of fill, in cubic yards Reservoir Surface area at spillway lip, in acres Gross reservoir storage capacity, in acre-feet Net storage capacity at spillway lip,	3,540,000 675 50,000
in acre-feet Type of spillway Spillway discharge capacity, in second-feet Type of outlet	46,700 Ogee weir with concrete-lined chute 41,000 42-inch
Estimated net safe seasonal yield, in acre-feet	diameter steel pipe beneath dam 6,000
Capital Costs Dam and reservoir Per acre-foot of storage Per acre-foot of net safe yield	\$4,938,000 99 823
Annual Costs Dam and reservoir Per acre-foot of net safe yield	\$ 238,700 39.80

Other Dam and Reservoir Sites. In addition to the four dams and reservoir sites considered in the previous paragraphs, a number of other sites were studied in much less detail, and on the basis of such reconnaissance were dismissed from further consideration. These sites are discussed briefly in the following paragraphs.

There is a good dam site at the head of Temecula Canyon. However, the reservoir would cover a large area in relation to the quantity of water stored, and because of the consequent high evaporation loss a 50,000 acre-foot reservoir at this site would probably yield less than 2,400 acre-feet annually. A large area of irrigable land would be flooded, and relocation of about four miles of modern two-lane limited access highway together with the construction of a bridge across the spillway, with expensive bridge approaches, would be required. Because much more attractive sites are available, no further consideration was given to this site.

A dam and reservoir site on Tucalota Creek, about one mile east of Murrieta Hot Springs, was considered for conservation of local runoff. The most feasible size of reservoir at the site appears to be 2,500 acre-feet. Such a reservoir would have a gross seasonal yield of about 675 acre-feet, and, assuming no releases would be required to satisfy present downstream uses, recommaissance cost estimates indicate that water at the reservoir would cost about \$62.00 per acre-foot. Since such a small quantity of water could be conserved, and since imported water will probably become available at less cost, this site was not further considered.

A dam and reservoir site on Warm Springs Creek about one mile north-west of Murrieta Hot Springs was also considered for conservation of local runoff. The most feasible size at this site for such a purpose is believed to be about 5,000 acre-feet, for which the gross yield would be about 560 acre-feet per year. Again assuming no releases would be required to satisfy

present downstream uses, reconnaissance cost estimates indicate the cost of conserved water to be about \$62.00 per acre. This site was given no further consideration for conservation of local runoff because of the low yield and high unit cost of water, but it is believed to be feasible for use in regulation of imported supplies of water and such a use is discussed later in this chapter.

A site in Cole Canyon about two miles west of Murrieta was considered for construction of a dam and reservoir to conserve local runoff. The size believed to be most feasible at this site is 1,000 acre-feet, and the gross seasonal yield of such a reservoir was calculated to be 160 acre-feet. The small yield, at an estimated cost of over \$70.00 per acre-foot at the reservoir, eliminated this site from further consideration.

The area upstream from Vail Reservoir was also considered as a possible location for a reservoir or reservoirs to conserve local waters. However, since the Vail Company has a permit to appropriate and has, since 1948, appropriated waters from Temecula Creek by storage in Vail Reservoir, any further appropriation of water by surface storage upstream from Vail Dam would be subject to the prior appropriation. Under these circumstances, it is assumed that the only water which could be stored is that which would otherwise spill over the dam. Spills would have been infrequent with the regimen of runoff which occurred in the past, and, for the critical 20-year period from 1895-96 through 1914-15, no water would have gone over the spillway had the dam been in existence and had it been operated on a safe yield basis. No single dam could be built to conserve Vail spills since three tributaries, Temecula Creek, Lancaster Creek, and Arroyo Seco Creek, flow into the reservoir. Furthermore, if it were possible to store the spills in a single reservoir, 20,000 acre-feet of storage would yield only about 600 acre-feet of

water a year. On the basis of this analysis it is apparent that surface reservoirs upstream from Vail Dam are infeasible and no sites in that area were inspected.

Comparison of Reservoir Projects

In preceding paragraphs, estimated safe yields of reservoirs of various capacities at four sites, together with estimates of cost therefor have been presented and discussed. Derived values for items which are useful in comparing the accomplishments of these reservoirs are summarized in Table 53, and a discussion of these accomplishments is presented in this section. Also presented in this section is an evaluation of the accomplishments of the combined operation of various sizes of reservoirs at the Fallbrook Lippincott and De Luz sites.

Prepared for purposes of graphic analysis were Plates 28, 29 and 30, which respectively, depict the relationships between reservoir storage capacity and capital cost, storage capacity and net safe seasonal yield, and net safe seasonal yield and annual unit cost of water at the reservoirs.

On the basis of reconnaissance estimates it was found that costs for conveyance of water from the reservoirs on the lower river, found herein feasible of construction, to irrigable lands in Hydrographic Units 1 through 4 would be prohibitive. The water supply developed at the considered reservoirs was therefore assumed to be delivered to the large areas of demand in Hydrographic Units 5 and 6, namely the Fallbrook area and lands presently within Camp Pendleton Naval Reservation.

TABLE 53

SUMMARY OF DAM AND RESERVOIR DATA

Reservoir	:Storage capaci	Storage capacity, in acre-feet:	. Net safe : Type of dam: seasonal	Net safe :	Capital :	Annuel.	: :Cost per : :acre-foot :	:Cost per : Cost per :acre-foot : acre-foot of
	Gross	. Net	•	yleld, in acre-fest	cost	oost	: of net :	: of net : incremental
De Luz	50,000	36,000	Earthf111	6,300	\$ 3,152,700	\$155,100	\$24.60	î Î
	75,000	61,000	Earthf111	8,400	4,461,900	220,000		\$ 30,90
	143,000	129,000	Earthfill	14,000	9,609,200	465,000		43.80
	188,000	174,000	Earthfill	15,700	13,205,200	636,200	1,00,50	100.70
Fallbrock Lippincott	35,000	26,300	Earthfill	5,100	3,043,000	148,500		!
	65,000	66,300	Earthfill	2,600	4,823,300	235,400	31.00	34.80
Fallbrook Border	65,000	56,300	Earthfill	2,600	5,363,300	288,300	37.90	!
	125,000	116,300	Earthf111	12,700	9,121,400	441,100	34.70	30.00
	150,000	141,300	Earth[1]	14,500	11,149,900	537,600	37.10	53.60
Upper De Luz	50,000	46,700	Earthf111	9,000	4.938.300	238,700	39.80	į

The curves on Plate 29 indicate that all reservoirs studied have comparable ratios of storage capacity to net safe seasonal yield for all sizes of reservoir when each reservoir is considered alone. The curves on Plates 28 and 30 indicate that, from considerations of yields and costs alone, without regard to cost of transportation of water to the place of use, reservoirs at the De Luz site when compared with single reservoirs at any of the other sites considered offer the largest gross storage capacity for any given capital cost and less unit cost for any given net safe seasonal yield.

The 50,000 acre-foot reservoir at the Upper De Luz site on De Luz Creek was considered as a possible substitute for a reservoir of similar size at the De Luz dam site, but, despite lower spillway costs at Upper De Luz resulting from the fact that smaller flood flows would pass the site, greater costs for other features more than offset this advantage, and both capital cost and cost per acre-foot of water conserved are much greater than at De Luz dam site. The Upper De Luz site, therefore, was eliminated from further consideration.

Reservoirs at the Fallbrook Lippincott and Fallbrook Border sites were considered as alternatives to reservoirs at the De Luz site. These sites are at higher elevations than De Luz and are closer to portions of the potential service area. The Lippincott site has a practical height of dam limitation which would preclude construction of a reservoir larger than about 65,000 acre-foot capacity. For sizes up to this maximum the site is superior to the Border site in capital cost and unit cost of water. The Border site, however, is suitable for higher dams and greater reservoir capacities than the Lippincott site and cost estimates were made for reservoir sizes from 65,000 to 150,000 acre-foot capacity.

Reservoirs at the Fallbrook Border site of the largest sizes, particularly the 150,000 acre-foot size, yield nearly the same quantities of water for about the same unit cost as reservoirs of similar size at the De Luz site. For purpose of comparison of cost of delivered water it was assumed that 40 per cent of the new vater would be supplied to a terminal reservoir in the Fallbrook area at an elevation of 840 feet, and 60 per cent to Camp Pendleton, one-half at an elevation of 275 feet and one-half at an elevation of 440 feet, in approximate accordance with present practice at the Camp. It was further assumed that water would be lifted from the elevation of the water surface in the reservoir at average capacity. Examples of detailed cost estimates of conveyance works are presented in Appendix J. It should be noted that, for purpose of this comparison only, a De Luz reservoir of 152,000 acre-foot capacity, yielding 14,500 acre-feet of new water per season was employed although a detailed estimate of cost and an operation study were not made for this capacity. Values used in the comparison were obtained from the curves on Plates 28, 29 and 30. Results of the calculations of cost of water delivered from each of the sites are set forth in the following tabulation:

		Avera	ge annual c	ost of wate	r per acre-f	
	Net safe		Fallbrook	Area	Camp Pen	dleton
	seasonal yield	At reservoir	Conveyance cost	Total oost	Conveyance cost	Total cost
Fallbrook Border, 150,000 acre-foot capacity	14,500	\$37:10	\$ 9,00	\$46.00	\$9,00	\$46.00
De Luz, 152,000 acre-foot capacity	14,500	35.00	14,00	49.00	4.00	39.00

Although the unit cost of water delivered to the Fallbrook area from Fallbrook Border reservoir is slightly less than that for water from De Luz reservoir, the converse is true for water delivered to Camp Pendleton. Under the assumed allocation of water in the comparison, the average cost of delivered water obtained from De Luz reservoir is about \$3 less per acre-foot than water from Border reservoir. Although it is recognized that other assumptions regarding the allocation of water to the potential service areas could be made which would tend to alter the indicated advantage of De Luz over the Border site it is not believed that under any reasonable assumption would there be indicated a decided advantage in constructing a reservoir of relatively large capacity at this site in lieu of such construction at De Luz. Further, the superiority of the De Luz site would be greater for reservoirs of smaller sizes.

As indicated on Plate 30 and in Table 53, reservoirs of 35,000 and 65,000 acre-foot capacity at the Fallbrook Lippincott site produce water at the reservoir at greater costs than those at the De Luz reservoirs of similar yield, but at less cost than at Fallbrook Border reservoir. Water conserved at the Lippincott site would probably be utilized primarily in the Fallbrook area. Cost of water at the reservoir would be about \$29 per acre-foot for the smaller reservoir and \$31 per acre-foot for the larger, and delivery of water to Fallbrook from these reservoirs, in accordance with the cost estimates for conduits and pumping costs presented in Appendix J, pages J-28 and J-29, would cost an additional \$9 per acre-foot of water delivered. Total unit cost of water at Fallbrook would, therefore, be about \$38 and \$40, respectively, from the two reservoirs.

It is anticipated that reservoirs of the smaller sizes considered at the De Luz site would be used primarily to supply water to Camp

Pendleton, but that the larger sizes would be used to supply both the Camp Pendleton and Fallbrook areas. As shown in Table 53, unit costs of water at the reservoir vary from \$24.60 for the 50,000 acre-foot capacity reservoir to \$40.50 for the 188,000 acre-foot reservoir.

Analysis of Table 53 and Plate 30 indicates that a reservoir at the De Luz site in the 143,000 acre-foot capacity range is at the breakoff point in regard to the cost-yield relationship. The cost of incremental yield developed by larger reservoirs increases quite rapidly. This is exemplified by the reservoir of 188,000 acre-foot capacity, the total yield from which has an average unit cost of about \$40 but with a cost of about \$100 per acre-foot for incremental yield developed by increasing the capacity from 143,000 acre-feet.

Calculated costs of water per acre-foot delivered from De Luz reservoirs of 75,000, 143,000, and 188,000 acre-foot capacities to Camp Pendleton and to Fallbrook, are set forth in the following tabulation, the distribution of water being 60 per cent to Camp Pendleton and 40 per cent to Fallbrook, and delivery cost being derived as in the detailed examples of cost estimates of conveyance works in Appendix J:

			Annual cost	of water	er acre-foot	
	Net safe		Deliver Fallbroo		Delive Camp Pe	
Reservoir	seasonal yield	At reservoir	Delivery cost	Total cost	Delivery cost	Total cost
De Luz 75,000 acre-foot capacity	8,400	\$26,2 0	పంశాధ	#: ⊕ 	\$4.00	\$30,00
De Luz 143,000 acre-foot capacity	14,000	\$33.2 0	\$14,00	\$47.00	4.00	37.00
De Luz 188,000 acre-foot capacity	15,700	40.50	13.00	54,00	4.00	45.00

Because of a possible advantage in having part of the supply from a reservoir developed as high as possible on the Santa Margarita River and because of the possibility of construction of a small reservoir at the Fallbrook Lippincott site for local use, combinations of dams at the Lippincott site with reservoirs at De Luz were considered. The 35,000 and 65,000 acre-foot reservoirs were each considered as being in combination with De Luz reservoirs of 50,000, 75,000, and 143,000 acre-foot capacities. In the operation studies it was assumed that all stream flow, except spill, would be stopped at Fallbrook Lippincott reservoir, all remaining stream flow, except spill, tributary to De Luz would likewise be stopped at that reservoir, and Santa Margarita Coastal Basin would be operated to maintain existing conditions, i.e. to utilize only the storage capacity presently utilized and thus maintain ground water levels as at present. For purposes of illustration, details of the study of De Luz reservoir of 75,000 acrefoot capacity operated simultaneously with Fallbrook Lippincott reservoir of 65,000 acre-foot capacity are presented in Appendix I, page I-6. Results of all combination studies, including the costs of delivery of water to Camp Pendleton and the Fallbrook area, are presented in Table 54. In the studies no consideration was given to priority of reservoir construction, and in each instance the sum of the costs of the reservoirs is divided by the yield of the combination development to obtain an average unit cost of water at the reservoirs. It was then assumed that 40 per cent of the supply would be delivered to the Fallbrook area and 60 per cent to Camp Pendleton area, and costs of conveyance were added.

TABLE 54
SUMMARY OF COMBINATION DAM AND RESERVOIR STUDIES

	Reservoir combination							
		Lippincott	Reservair	: Fallbrook Lippincott Reservoir				
		,000 acre-fe De Luz Rese			,000 acre-f			
Item			143,000		75,000	143,000		
	: 50,000	75,000		: 50,000 : acre-feet	acre-feet	acre-feet		
	: acre-feet	acre-reet	acre-reet	: acre-reet	acresi ee c	2016-1000		
Gross storage capacity, acre-feet	85,000	110,000	178,000	115,000	140,000	208,000		
Net safe seasonal yield, acre-feet	8,900	10,900	14,300	11,400	13,100	15,500		
Cost of dams and reservoirs:								
Capital	\$6,195,700	\$7,504,900\$	12,652,200	\$7,976,000	\$9,285,200	\$14,432,500		
Annual	303,600	368,500	613,500	390,500	455,400	700,400		
Average cost of water per acre-foot:								
At reservoir:	\$34.10	\$33.80	\$42.90	\$34.30	\$34.80	\$45.20		
Delivered to Fallbrook area from Fallbrook Lippincott Reservoir:								
Conveyance cost	9.00	9.00	9.00	9.00	9.00	9.00		
Total cost	43.00	43.00	52.00	43.00	44.00	54.00		
Delivered to Camp Pendleton from De Luz Reservoir:								
Conveyance cost	4,00	4,00	4.00	4.00	4.00	4.00		
Total cost	38.00	38.00	47.00	38.00	39.00	49.00		

Costs of water delivered to Fallbrook and Camp Pendleton from the most desirable reservoirs are summarized in Table 55.

TABLE 55

SUMMARY OF ANNUAL COSTS OF WATER DELIVERED
TO FALLBROOK AND CAMP PENDLETON

	: : :Net safe:	Supply Fallbro		: Camp Pe	
Source	:seasonal: : yield :	Acre-feet	Cost per acre-foot		:Cost per :acre-foot
De Luz Reservoir, 50,000 acre-foot capacity	6,300	en en an	60 en 06	6,300	\$29.00 ^a
De Luz Reservoir, 75,000 acre-foot capacity	8,400			8,400	30.00 ^a
De Luz Reservoir, 143,000 acre-foot capacity	14,000	5,600	\$47.00 ^b	8,400	37.00 ^a
De Luz Reservoir, 188,000 acre-foot capacity	15,700	6,300	54.00 ^b	9,400	45.00 ^a
Fallbrook Lippincott, 35,000 acre-foot capacity	5,100	5,100	38.00°	es = 10	ec es es
Fallbrook Lippincott, 65,000 acre-foot capacity	7,600	7,600	40.00°		
Fallbrook Lippincott, 35,000 acre-foot plus De Luz 143,000 acre-foot capacity	14,300	5,700	52.00	8,600	47.00 ^a
Fallbrock Lippincott, 65,000 acre-foot plus De Luz 75,000 acre-foot capacity	13,100	5,200	1,14,00	7,900	39.00 ^a

a. One-half of supply delivered at elevation of about 275 feet and one-half at elevation 440 feet.

b. Supply delivered at elevation 840 feet.

c. Supply delivered at elevation 830 feet.

Importation of Water

As has been stated, satisfaction of the largest portion of the estimated ultimate supplemental water requirement in the Santa Margarita River watershed of about 136,000 acre-feet per season, must lie in importation of water from outside sources. As shown on Plate 24, full development of local waters now wasting to the ocean would provide in the order of 20,000 acre-feet per season. However, from an engineering and economic standpoint, it appears that something less than this amount of local water is feasible of development and that under conditions of ultimate development, imported water in the amount of about 120,000 acre-feet per season will be required in the watershed.

The only imported water available to the Santa Margarita River watershed in the relatively near future is Colorado River water distributed through facilities of The Metropolitan Water District of Southern California and the San Diego County Water Authority, a member agency thereof. At such time as the Colorado River supply is completely utilized and additional waters are needed in the southern California area, preliminary plans by the State of California provide for the transportation of northern California waters to this area. By these plans, northern California waters could be served to the Santa Margarita River watershed and adjacent areas through facilities of The California Aqueduct System, hereinafter described.

Plans for Importation from Colorado River

The San Diego County Water Authority operates the existing San Diego Aqueduct which crosses Santa Margarita River watershed from

north to south a few miles east of Temecula. The aqueduct extends from the main Colorado River Aqueduct at San Jacinto tunnel to San Vicente Reservoir on the route shown on Plate 25. Ownership of the line from San Jacinto tunnel to San Luis Rey River is vested in The Metropolitan Water District of Southern California and the remainder is owned by San Diego County Water Authority. The aqueduct consists of two parallel conduits with a combined capacity of about 190 second-feet, or about 138,000 acre-feet per year. It is presently operated at peak capacity to satisfy present water requirements within the service area of San Diego County Water Authority, including Fallbrook Public Utility District and Rainbow Municipal Water District. All member agencies of the Authority are not now using their estimated preferential right based on assessed valuations to purchase Colorado River water, some agencies using less and others using more than their right. In some cases one member agency sells water from the unused portion of its right to other member agencies.

Preliminary plans and estimates of cost of providing Colorado River water to various portions of the Santa Margarita River watershed are presented herein primarily to provide a basis of comparison of the cost of Colorado River water with the cost of developing local water. It is recognized that the existing San Diego Aqueduct is being utilized to capacity and that additional Colorado River water would not be available to the watershed until additional aqueduct capacity to serve the San Diego County water Authority is constructed. Plans for such a second aqueduct are now under consideration by the Authority, The Metropolitan Water District, and the State of California.

The San Diego County Water Authority now charges \$12 per acrefoot for water at the aqueduct. The Metroplitan Water District similarly

sells untreated water to its member agencies at a cost of \$10 per acrefoot. In addition to these charges, member agencies must pay annual District and Authority taxes, and in the case of a recently annexed agency must repay with interest the taxes to the District that the agency would have paid had it been a member of the District since its inception in 1929. Officials of the Fallbrook Public Utility District report that current taxes paid to the Authority average about \$10 per acre-foot of water purchased directly from the Authority.

The price of Colorado River water served to a federal entity such as Camp Pendleton could not be definitely determined. However, in the case of March Air Force Base in Riverside County a price of \$30 per acre-foot at Lake Matthews was charged by the Metropolitan Water District.

To determine approximate costs of conveyance of Colorado River water to points of use, preliminary study was made of a system to distribute water from San Diego Aqueduct to Fallbrook and to Camp Pendleton.

These facilities would consist of Vallecitos regulatory reservoir south of Rainbow and gravity pipe lines to small terminal reservoirs at Fallbrook and Camp Pendleton. Cost estimate for Vallecitos Reservoir of 3,000 acrefoot capacity is presented in Appendix J, page J-24. Estimates of costs of distribution systems are presented in Appendix J, pages J-30 and J-31. Locations of the reservoir and conduits are shown on Plate 25.

The 3,000 acre-foot capacity reservoir would regulate a supply of 12,000 to 15,000 acre-foet per year of water released from San Diego Aqueduct on a uniform flow basis. The cost for such storage would average about two dollars per acre-foot of water regulated. Annual cost of operation of a conduit to deliver 6,000 acre-feet of water from the regulatory reservoir to a terminal reservoir at elevation 775 feet in Fallbrook would be \$46,000, or about \$8.00 per acre-foot. The unit cost of water

regulated and delivered to a terminal reservoir in Fallbrook therefore would be about \$22.00 per acre-foot exclusive of taxes. Similarly, if it were assumed that water were purchased at the aqueduct for \$30.00 per acre-foot, delivery of 9,000 acre-feet of Colorado River water to a small terminal reservoir at elevation 440 feet at Camp Pendleton would cost about \$40.00 per acre-foot.

On the basis of the foregoing and assuming no increase in District and Authority taxes as a result of construction necessary to make additional Colorado River water available to the Santa Margarita River watershed and adjacent areas, it would appear that where such water is available it could be delivered to the cited service areas at a unit cost comparable to or somewhat less than that of water from considered local surface storage developments.

Plans have not been developed in this investigation to provide delivery of Colorado River water to all areas within the watershed which will ultimately need water service, but preliminary studies of two such projects were made to show their physical and engineering feasibility.

Preliminary layout of a gravity system to serve supplemental water to a portion of Murrieta Valley and surrounding areas is delineated on Plate 25. The system consists of a 9,000 acre-foot capacity storage reservoir on Warm Springs Creek to regulate a uniform supply from San Diego Aqueduct (or Second San Diego Aqueduct), and a pipe line gravity distribution system from the reservoir to irrigable lands below. An annual supply of 36,200 acre-feet released from the aqueduct at a uniform rate of 50 second-feet would supply about 10,000 acres of land having an average applied water requirement of 3.5 acre-feet per acre.

Preliminary layout of another gravity distribution system to serve water to the Sedco, Wildomar, and Murrieta Valley areas is also

shown on Plate 25. This system would serve a portion of the area served by the project described above. It would comprise a turnout from San Diego Aqueduct to a stream channel tributary to Railroad Canyon Reservoir on San Jacinto River near Elsinore, utilization of Railroad Canyon Reservoir for regulation of the supply, and a pipe line through Sedco to Murrieta Valley. Both of the systems described above could utilize a water supply either from Colorado River or from northern California through one of the aqueducts of The California Water Plan. Other irrigable lands in the watershed could be served by distribution systems from San Diego Aqueduct, but much of the land could best be served by aqueducts at higher elevation which are discussed below.

The California Water Plan

California is noted for the sporadic occurrence of its water supply. At times there are devastating floods causing loss of life and tremendous damage to property. At other times, contrasting water shortages exist which threaten the security of our State's economy. Further, the wet and dry phases of this apparent cyclic occurrence of water supply extend over protracted periods. Finally, there exists a geographical maldistribution of water resources. In this connection, the conservable water supplies in the area north of Sacramento greatly exceed all possible future water requirements; whe reas, the portion of the State to the south of Sacramento has a potential need for water far in excess of available local supplies. The solution of these problems lies in the development of large reservoir storage capacity in the northern portion of the State to control flood waters and provide the seasonal and cyclic regulation necessary for their later use, and in the construction of works to convey the regulated supplies southerly

to areas of deficiency. This is the basic principle of "The California Water Plan".

The State Water Resources Board in May, 1956, issued in preliminary form Bulletin No. 3, "Report on The California Water Plan", which sets forth this plan. Under the plan as presented therein, a regulated supply of water would be discharged into the Sacramen to-San Joaquin Delta from stored surplus flood waters in surface and ground water reservoirs in the Sacramento Valley. These flows would be further augmented by similar stored waters from the Klamath-Trinity and Eel River developments in the North Coastal Area, all of which would be conveyed southerly in The California Aqueduct System to areas of deficiency as far south as the Mexican border. The plan envisions some 260 major reservoirs in our State and about 88 major hydroelectric plants. reservoirs would add about 60,000,000 acre-feet of surface storage, as compared to a total of 20,000,000 acre-feet today. The use of large amounts of ground water storage capacity in the San Joaquin Valley is also planned. Added hydroelectric power installations of some 11,800,000 kilowatts are planned as compared to present installations of about 2,900,000 kilowatts.

The first step in the realization of "The California Water Plan" is the Feather River Project, which was authorized by the Legislature in 1951. This multipurpose project is truly state-wide in its accomplishments. It will provide greatly needed flood protection to the Sacramento Valley in the Marysville-Yuba City area, as well as other highly developed areas along the Feather River. It will provide an additional water supply of nearly 1,000,000 acre-feet per season to lands along the Feather River. It will develop 1,600,000,000 kilowatt-hours of electrical energy at Oroville Dam. And, finally, it will make

available for exportation to water-deficient areas to the south a firm supply in excess of 4,000,000 acre-feet per season.

Further studies of Feather River Project Aqueduct routes will be made commencing in fiscal year 1956-57. These studies will include methods of delivering Feather River Project water to San Diego County and adjacent areas, including the Santa Margarita River watershed.

As described in the preliminary draft of Bulletin No. 3, ultimately it is believed three aqueducts in addition to the existing San Diego Aqueduct will be required to convey supplemental water to San Diego County and southwestern Riverside County. These aqueducts, shown on Plate 25, are designated in Bulletin No. 3 as: Second San Diego Aqueduct, terminating at Lower Otay Reservoir; Barona Aqueduct, terminating at Barona Reservoir; and the San Diego High Line Aqueduct, terminating at Santa Ysabel Reservoir. The alignment of this latter aqueduct is that of the Feather River Project Aqueduct as it is presently authorized, as shown on Plate 25. Regulation for the Barona Aqueduct would be provided at Keys Canyon Reservoir.

The hydraulic grade line of the Second San Diego Aqueduct would be about the same as the present aqueduct, and that of the Barona Aqueduct about 200 feet higher. Capacities of and seasonal deliveries of water in these aqueducts and of the existing San Diego Aqueduct are set forth in the following tabulation:

Aqueduct	Capacity, in second-feet	Seasonal delivery, in acre-feet
Existing San Diego Aqueduct	190	138,000
Second San Diego Aqueduct	500	362,000
Barona Aqueduct	505	366,000
San Diego High Line Aqueduct	540	390,000
TO TALS	1,735	1,256,000

The foregoing aqueduct system would be so constructed that it would be physically possible to deliver either Colorado River water or northern California water in all aqueducts except the San Diego High Line. By this system water service could be provided to nearly all portions of the Santa Margarita River watershed.

		- 1
		- 1

Summary

Santa Margarita River watershed comprises an area of 742 square miles in northern San Diego and western Riverside Counties, draining into the Pacific Ocean a short distance north of Oceanside, California. A total of about 172 square miles is irrigable, and of this 6,440 acres, or about six per cent, is irrigated. The population occupying the watershed in 1950, was about 4,000, that of the largest town, Fallbrook, being 1,735 persons. Industrial development is limited to fruit packing and light manufacturing. A major development in the area is the Camp Pendleton Marine Corps training base.

The climate, topography and soils of the watershed are similar to those in other portions of San Diego County where extensive development to high value crop production has been rapid. One factor limiting such development in Santa Margarita River watershed may have been the large areas concentrated in single ownerships, 122 square miles being held by the Vail Company and about 170 square miles by the United States. A more potent factor has been the lack of water supply which could be developed conveniently and economically. Prior to the construction of Vail Dam in 1949, the water supply was limited to that pumped from the ground water, or diverted from the unregulated stream flow, augmented by a relatively small importation of Colorado River water.

There are a few water quality problems in the watershed. Ground water containing a higher percentage of sodium ion than is desirable in irrigation water occurs naturally at several points in the watershed, and some spring waters are higher in total dissolved solids, chlorides, flourides, and hardness than is desirable for domestic use. High nitrate

concentration at a few wells, most of them in Murrieta Valley or in the Fallbrook area, indicate localized degradation in the immediate vicinity of each well. Some degradation also is evidenced in Santa Margarita Coastal Basin where, as a result of the lowered water table, saline waters which are probably connate have been drawn into a few wells, and sea water has periodically invaded the alluvial deposits downstream from Ysidora Narrows and in 1951 reached a point one-half mile inside the Basin. It was recently discovered that ground water in the vicinity of Murrieta was being contaminated as a result of the discharge of hexavalent chromium plating wastes to the ground surface and a cesspool. Evidence as to the persistence of the contamination since abatement of the waste is not yet conclusive. Although these problems exist, those that are not readily susceptible of correction are not widespread, and for the most part the surface and ground waters in the watershed are of suitable quality for irrigation and domestic use.

It is estimated that 155,000 acre-feet of water exclusive of rainfall or about 136,500 acre-feet more than is presently usefully consumed, will be required to satisfy the ultimate needs of lands within the watershed. In addition to this, more water is needed immediately by agencies serving areas both inside and adjacent to the watershed. A portion of this requirement might be met by salvage of local water presently wasting to the ocean. The remainder must be imported from sources outside the watershed.

The local water supply all originates in precipitation on the watershed and the availability of ground water or unregulated stream flow at times when it is needed is determined in large measure by the quantity and regimen of the precipitation and resulting runoff. Estimated mean

Lancaster Valley to a little more than 40 inches in the vicinity of Palomar Mountain on the southern boundary of the watershed, and in quantity has averaged 698,500 acre-feet seasonally. Over the years since 1886-87, the precipitation has ranged from an estimated 47 per cent of the mean in 1933-34 to 197 per cent in 1936-37. Runoff from the watershed is still more erratic, estimated seasonal natural flow in the principal streams having ranged between 15 and 700 per cent of the mean.

Of the local and presently imported water supply, it is estimated that 18,700 acre-feet per season exclusive of precipitation is usefully consumed on or exported from the watershed, and that on the average, 25,200 acre-feet of runoff wastes to the ocean seasonally. As regards the portion of this waste which might be salvaged, cyclical variation in its amount is of even greater moment than the seasonal variation noted above. Analysis indicates that complete regulation of the flow would require reservoir capacity in the order of 300,000 acre-feet and that the net safe seasonal yield of a surface reservoir of that capacity at Ysidora would be about 20,000 acre-feet. During the course of the investigation, increased diversion of unregulated stream flow, increased use of ground water, and regulation of stream flow through construction and operation of surface reservoirs were all considered as possible means of salvaging as much as possible of the waste.

Estimated present net draft on the surface waters of the water-shed is 5,400 acre-feet per season. The extent to which water can be utilized by direct diversion from an unregulated stream is dependent upon the flow in the stream at the time when the water is needed. In Santa Margarita River watershed, as elsewhere, agricultural demands for water are greatest during the summer months when flow in the streams is least.

There are few locations on any of the streams in the watershed at which summer flow exceeded 0.01 second-foot in 1953 and these are already fully utilized. Increased diversion of the unregulated flow at any point would not add to the useful supply but would merely change the place of use.

Present net draft on the ground water is estimated to be 12,800 acre-feet per season. One small area, namely Diamond Basin may have been slightly overdrawn, but over the watershed as a whole the regulatory storage capacity of the basins has not been fully developed and it would be physically possible to materially reduce the waste through increased pumping from the ground water.

The usable storage capacity of Santa Margarita Coastal Basin, which lies adjacent to the coast, is limited by the restriction that the water table must not fall below sea level for any protracted period of time. Heavy pumping in Ysidora Sub-basin, the farthest downstream of three sub-basins has, as previously stated, resulted in intrusion of sea water some one-half mile into the basin, while at the same time the water table in Chappo and Upper Sub-basins has remained well above sea level at all times. It is estimated that by increasing extractions there and reducing those from Ysidora Sub-basin, 24,000 acre-feet of storage capacity could be safely utilized, thereby increasing the yield of the basin to 9,700 acre-feet, 5,700 acre-feet more than the present net extraction. The estimated cost of the new water so developed and delivered for use on Camp Pendleton is \$11 per acre-foot.

It is believed that it would be possible to further increase the safe yield of Santa Margarita Coastal Basin, by an estimated 2,300 acre-feet per season, through construction of a barrier to sea water

intrusion at Ysidora Narrows. Cost of a puddled clay cutoff at that site is estimated to be in the order of \$275,000, or \$6 per acre-foot of new water which might be developed thereby. While no such cutoff wall has been constructed to the depth which would be required here, it is believed that the plan merits further consideration.

As regards the basins upstream from Temecula Canyon, where a reduction in outflow of some 5,600 acre-feet per season is estimated to be physically possible, the poorly defined effects of legal restrictions imposed by the terms of the stipulated judgement in "Rancho Santa Margarita vs. Vail, et al" as well as difficulties which have been experienced in obtaining good wells in the past, make it inadvisable to consider any part of the physically possible reduction there, otherwise than as a safety factor in estimating the required ultimate import.

To date, Vail Dam and Reservoir on Temecula Creek at Nigger Canyon, with a capacity of 49,500 acre-feet and an estimated safe yield of 6,800 acre-feet per season is the only project of significant size which has been constructed in the watershed to regulate surface flow. Operation of this project was considered in estimating present waste to the ocean. Of surface storage projects considered for salvage of the present waste, the De Luz and Fallbrook Lippincott sites are thought to be best.

It is estimated that the greatest salvage, namely 15,700 acre-feet per season, would be accomplished by a reservoir at the De Luz site having a storage capacity of 188,000 acre-feet. Under this plan 6,300 acre-feet of water per season could be delivered to the Fallbrook area at an estimated cost of \$54 per acre-foot, and 9,400 acre-feet to Camp Pendleton at \$45 per acre-foot. With a 143,000 acre-foot reservoir at this site, 5,600 acre-feet seasonally could be delivered to the Fallbrook

area at a cost of \$46 per acre-foot, and 8,400 acre-feet to Camp

Pendleton at \$37 per acre-foot. Combined operation of a 65,000 acrefoot reservoir at the Fallbrock Lippincott site with one of 75,000 acrefoot capacity at De Luz would salvage an estimated 13,100 acre-feet of
water, with 5,200 acre-feet going to Fallbrook at an estimated cost of
\$44 per acre-foot and 7,900 acre-feet to Camp Pendleton at \$39 per acrefoot. A smaller quantity of water could be salvaged, at still less cost
per acre-foot, by means of a reservoir at the Fallbrook Lippincott site
serving the Fallbrook area alone, or one at De Luz serving Camp Pendleton
alone. Operation of a 65,000 acre-foot reservoir at the Fallbrook
Lippincott site would provide an estimated 7,600 acre-feet of water to the
Fallbrook area at a cost of \$40 per acre-foot, and a 75,000 acre-foot
reservoir at De Luz would provide 8,400 acre-feet for Camp Pendleton at
\$30 per acre-foot.

Estimated capital costs of the above reservoirs are as follows:

Reservoir	Capital Cost
188,000 acre-feet at De Luz	\$13,205 , 200
143,000 acre-feet at De Luz	9,609,200
75,000 acre-feet at De Luz	4,461,900
65,000 acre-feet at Fallbrook Lippincott	4,823,300

Legal considerations have an important bearing on the implementation of plans for the salvage of presently wasting local water. The stipulated judgment in "Rancho Santa Margarita vs. Vail" places a limitation on diversion of stream flow and extractions from the ground water upstream from Temecula Canyon. The action entitled "United States vs. Fallbrook Public Utility District, et al.", in which the judgment rendered in favor

of the United States in the Unites States District Court for the Southern District for California was recently reversed and a new trial ordered by the United States Court of Appeals for the Ninth Circuit, precludes any construction of surface reservoirs for conservation purposes, prior to final settlement of the suit.

Estimates of the yields of new water which might be developed through salvage of presently wasting local water were based on stream flow records prior to and including September, 1953. The current drought period which may continue for an indeterminate number of years demonstrates the probability that drought periods more severe than those considered herein as critical, will occur occasionally in the future. Costs, too, change from year to year. Because of the inherent uncertainty as to yields and costs, and the relatively high capital costs of reservoirs and unit cost of delivered water, it is unsafe to assume that use of local water will ever increase by more than 16,500 acre-feet per season, and therefore, that the need for imported water to supply lands within Santa Margarita River watershed only, will ultimately be in the order of 120,000 acre-feet or greater.

Two potential sources of imported water are considered herein, The Colorado River, and northern California streams. The Metropolitan Water District of Southern California is presently delivering Colorado River water, for use in San Diego County, to the San Diego County Water Authority, a member agency. The San Diego Aqueduct, through which this water is delivered, is presently operated to its full capacity of 190 second feet or 138,000 acre-feet per year. Plans are under consideration, however, for additional aqueducts, and the Colorado River is the logical source of water to satisfy demands in the early future.

Under direction of the State Water Resources Board, as authorized by Chapter 1541, Statutes of 1947, the Division of Water Resources has conducted studies which resulted in formulation, in preliminary form, of The California Water Plan. Under the plan, of which the Feather River Project is authorized as the first unit, it is preposed to supply San Diego County as well as lands elsewhere in California with northern California water as needed. To supply San Diego County and portions of Riverside County lands, three additional aqueducts have been studied: Second San Diego Aqueduct, terminating at Lower Otay Reservoir; Parona Aqueduct, terminating at Barona Reservoir; and San Diego High Line Aqueduct terminating at Santa Ysabel Reservoir. Both Colorado River water and water from northern California streams can be delivered through all but the High Line Aqueduct. The capacities of the existing aqueducts and of those studied are as follows:

	Second-feet	Acre-feet per season
Existing San Diego Aqueduct	190	138,000
Second San Diego Aqueduct	500	362,000
Barona Aqueduct	505	366,000
High Line Aqueduct	540	390,000
	1,735	1,256,000

In the course of this investigation, additional conduit and regulatory reservoir systems to supply Colorado River on northern California water to Murrieta Valley, and to Camp Pendleton and the Fallbrook area, were

studied on a preliminary basis. An important consideration in such systems is the necessity for storage reservoirs, either as part of the distribution facilities or on the main aqueduct, to regulate the supply which would be available essentially on a uniform flow basis. The aqueducts, reservoirs, and conduits, existing and considered herein as potential water supply development, are depicted on Plate 25.

Conclusions

As a result of this investigation it is concluded that:

- l. Economic development of lands within the watershed has been largely limited in extent to those activities which could be served with water conveniently and economically obtained. With a possible minor exception, this has caused no overdraft on local water sources. Therefore, the presently developed supply, including both local and imported water, is generally sufficient to meet present demands within the watershed provided present import is continued.
- 2. There are few areas in the watershed or in areas adjacent thereto where more water would not be put to beneficial use in expansion of water using activities if it were available at a price which the user considered attractive. In the case of Fallbrook Public Utility District, which serves water both inside and outside but adjacent to the watershed, difficulty has been experienced since the close of the period on which analyses in this investigation were based (September, 1953), in adequately supplying lands presently developed to irrigated agriculture and domestic occupancy within the District's service area. The basic cause of the difficulty is presumably the curtailment by court action of the supply from San Luis Rey River in 1954, the decrease in availability of of surplus Colorado River water in San Diego Aqueduct, and the lack of

storage capacity to store for future use Colorado River water which has been available in off peak periods.

- 3. A portion of the ultimate supplemental water requirement of the watershed can be met by conservation of waters now wasting to the ocean, either by construction of additional surface storage capacity or by increased utilization of available underground storage capacity.

 Present waste to the ocean averages only about 25,000 acre-feet per season, therefore, final satisfaction of the ultimate supplemental water requirement of about 136,000 acre-feet must lie in importation of large quantities of water from outside sources.
- 4. The greatest opportunity for increased utilization of underground storage capacity exists in Santa Margarita Coastal Basin, where supplemental water can be developed at a cost considerably less than from possible surface storage developments or from potential sources of imported water.
- 5. Suitable reservoir sites on the Santa Margarita River exist only in the lower reaches of the stream, and water service therefrom within the watershed could feasibly be provided only to the Fallbrook and Camp Pendleton areas.
- 6. Considering a single reservoir development, construction of a dam and reservoir at the De Luz site to a water conservation capacity of about 143,000 acre-feet appears to be the most economical as regards magnitude of yield and unit cost. The cost of incremental yield developed by larger capacities at this site increases rapidly. Based on available past records of runoff, net safe yield of this reservoir would be about 14,000 acre-feet per year, which could be developed at an annual cost at the reservoir of about \$33.00 per acre-foot.
- 7. Considering a jointly operated two reservoir development, construction of reservoirs at the Fallbrook Lippincott and De Luz sites

with capacities of 65,000 acre-feet and 75,000 acre-feet, respectively, appears to be the most economical as regards magnitude of yield and unit cost. The cost of incremental yield developed by increasing the capacity of De Luz Reservoir, in such a two reservoir development, increases rapidly. Based on available past records of runoff, net safe yield of the development would be about 13,100 acre-feet per year, which could be developed at an average annual cost at the reservoirs of about \$35.00 per acre-foot.

- 8. Water could be delivered to the Fallbrook service area at a lesser cost with the two reservoir development cited in (7) than with the single reservoir development cited in (6) because part of the supply would be available closer to the service area, although such costs under both plans would be of comparable magnitude.
- 9. Water could be delivered to the Camp Pendleton service area at a lesser cost under the single reservoir development (6) than under the two reservoir development (7) although such costs under both plans would be of comparable magnitude.
- 10. No consideration was given in this investigation to construction of flood control facilities. However, storage capacity for flood control purposes could be provided in addition to the water conservation capacities considered herein for reservoirs at the De Luz site.
- ll. Additional imported water is not now available in the watershed but, with construction of the additional aqueduct capacity contemplated
 for the near future, Colorado River water will be available through facilities
 of Metropolitan Water District and San Diego County Water Authority.
- 12. Ultimately the Santa Margarita River watershed will be provided water service by facilities of The California Aqueduct system.

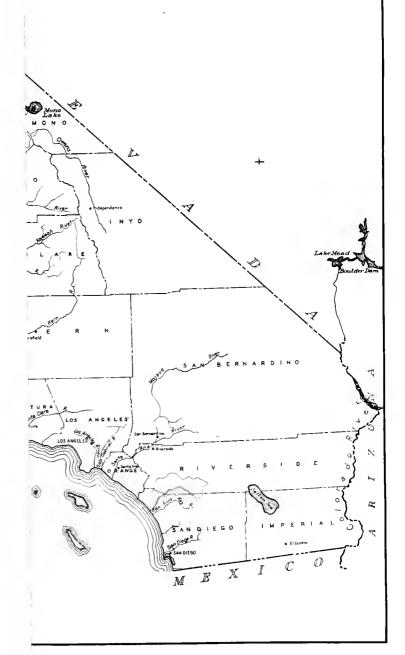
- 13. Further conservation of local waters in surface reservoir developments will require relatively large capital expenditure to obtain a water supply of a magnitude inherently uncertain because of the erratic nature of runoff and relatively short length of records.
- 14. Imported water potentially available to the watershed is a more assured supply, is of greater magnitude, and can be obtained at a unit cost comparable to that of local water developed by reservoir construction.
- 15. Selection of a plan of local water resource development is a matter for local decision, and will depend on, among other factors, the financial capacity of the constructing agency, the amount of water required at the time construction is contemplated, and the availability of a firm supply of imported water at that time.
- 16. Fending water rights litigation in the watershed has hindered local water resource development and until such litigation is settled a program of construction of local water resource development projects cannot be successfully prosecuted.

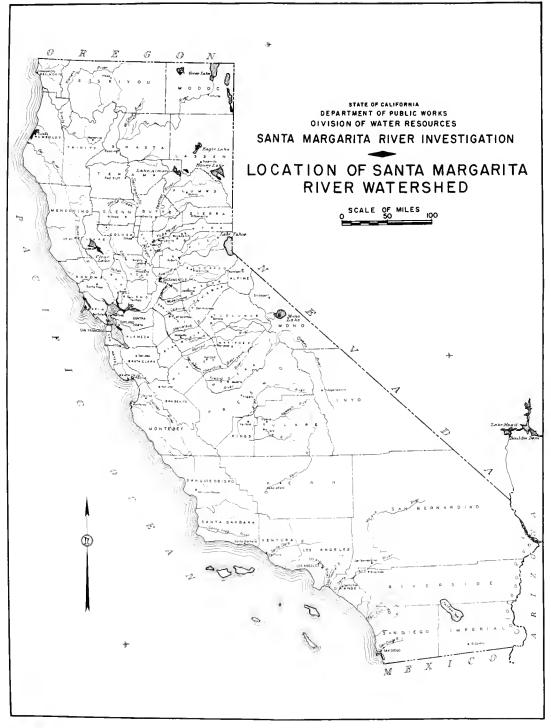
Recommendations

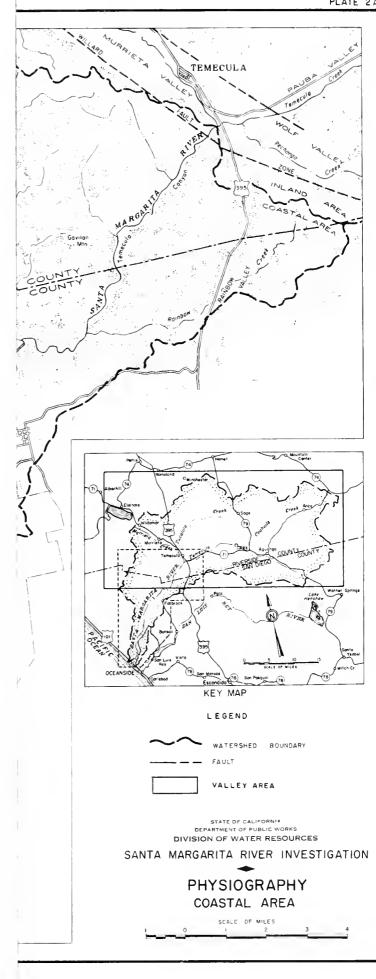
It is recommended that:

- 1. Steps be taken to settle pending water rights litigation in the Santa Margarita River watershed.
- 2. Water using entities and individuals in the watershed give continuing support to the Feather River Project and The California Water Plan, of which it is the initial unit, and also to those agencies responsible for the construction of additional facilities to bring Colorado River water to the watershed and adjacent areas, so that such construction can be initiated as expeditiously as possible.

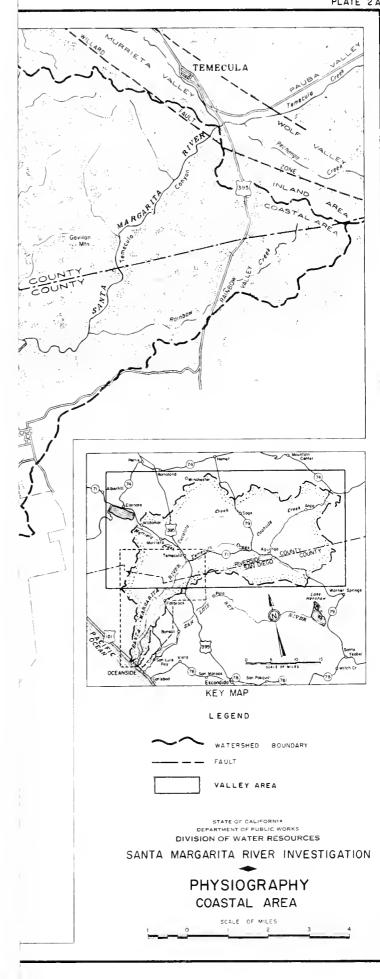
- 3. Agencies considering construction of local water resource developments in the watershed give consideration to the plans presented herein, and that these plans be reevaluated in the future under economic condition extant at that time.
- 4. A continuing systematic program of basic hydrologic data collection throughout the watershed be instituted and coordinated by responsible local agencies.

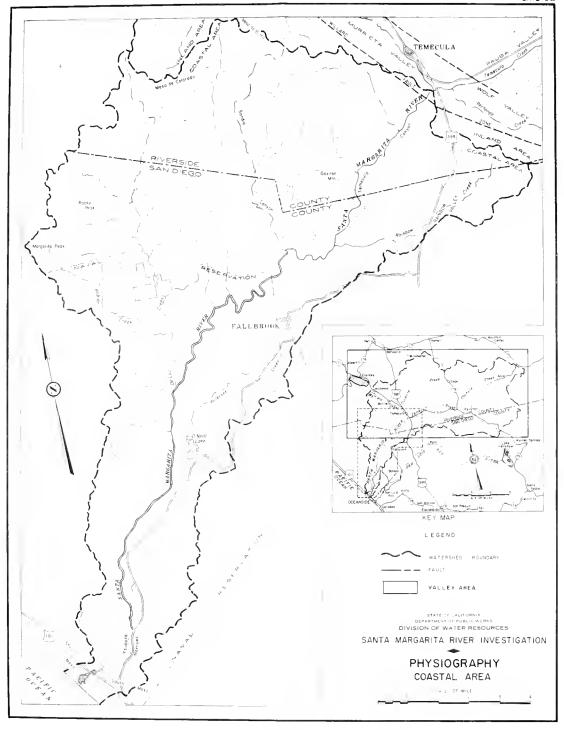

		(-
		,

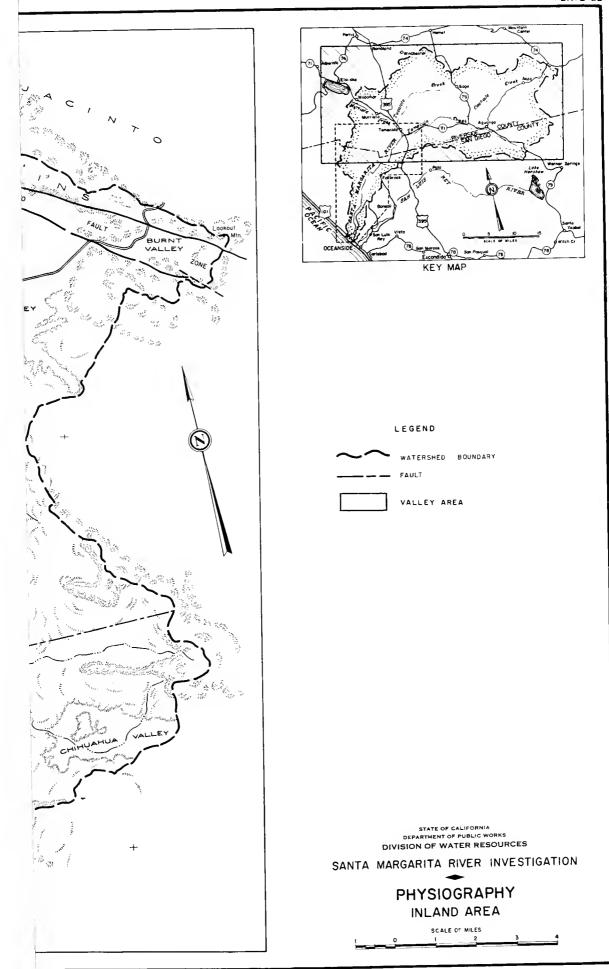

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

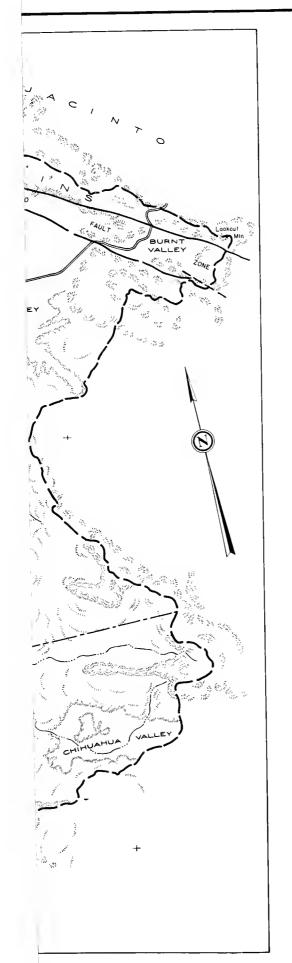

NTA MARGARITA RIVER INVESTIGATION

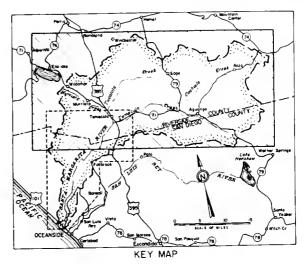
CATION OF SANTA MARGARITA RIVER WATERSHED


SCALE OF MILES

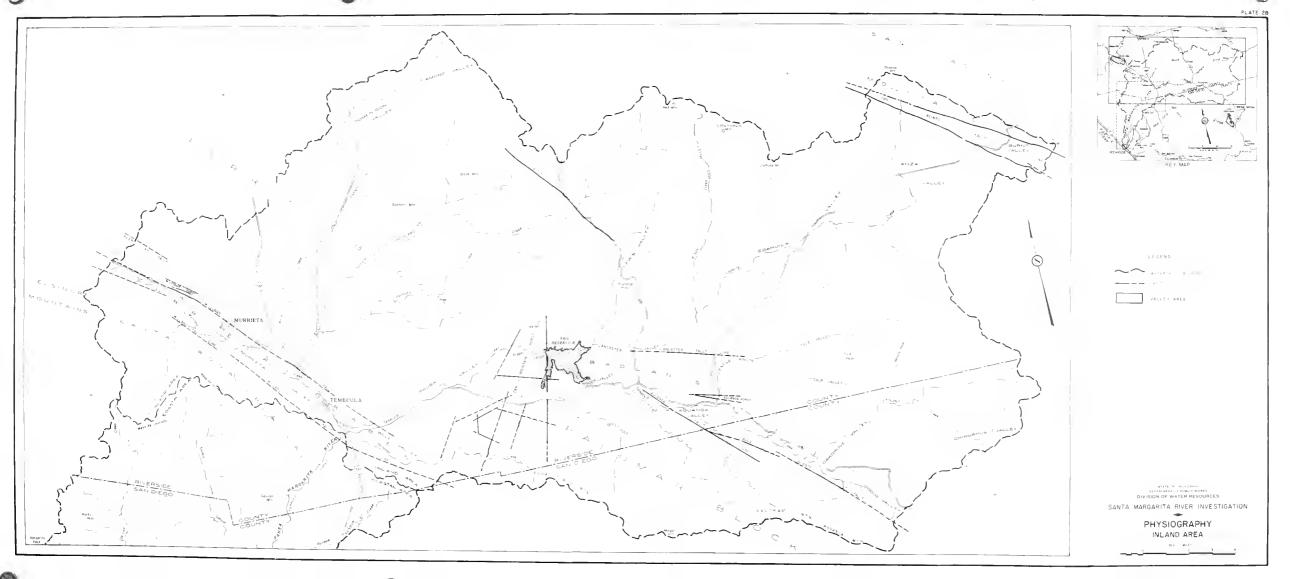


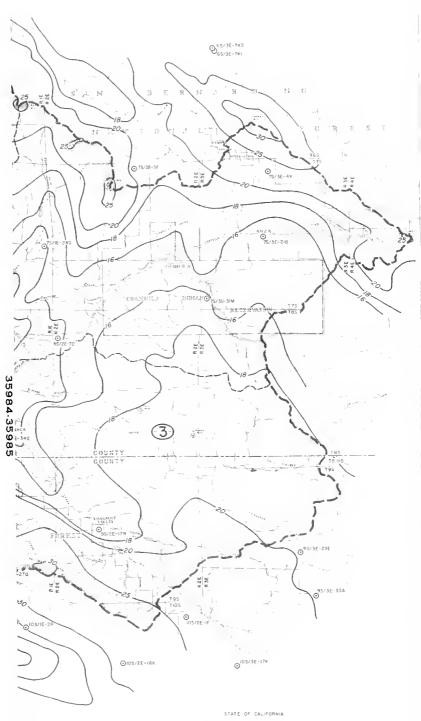



				9
		95,		
				F
			1	



			- 1
			. 3
			2
			- 3
			- 3
			- 3
			- 1
			- 3
			1
			1
			1
		7	
			4
			_
			- 1
			7
			1

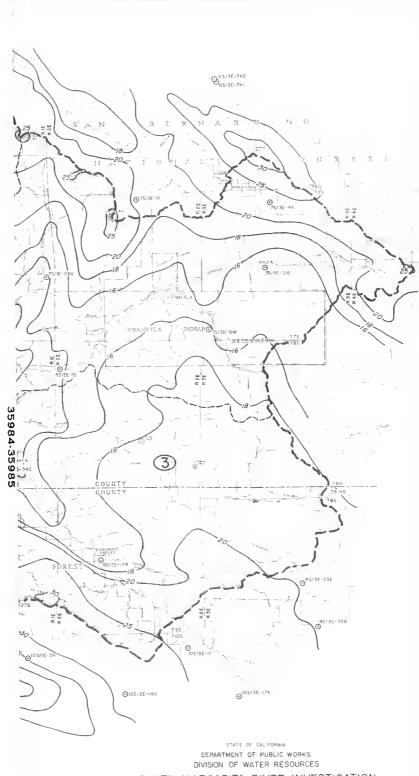

WATERSHED BOUNDARY


VALLEY AREA

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

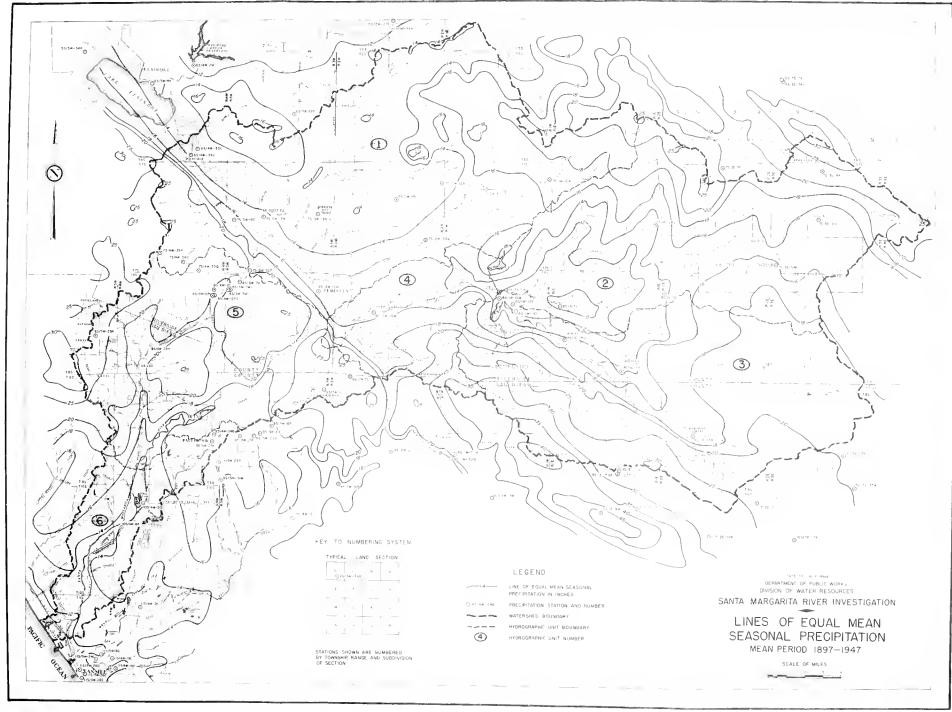
SANTA MARGARITA RIVER INVESTIGATION

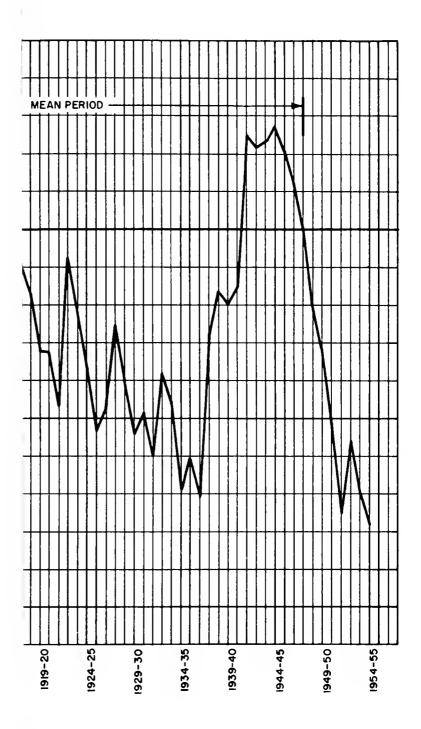
PHYSIOGRAPHY INLAND AREA



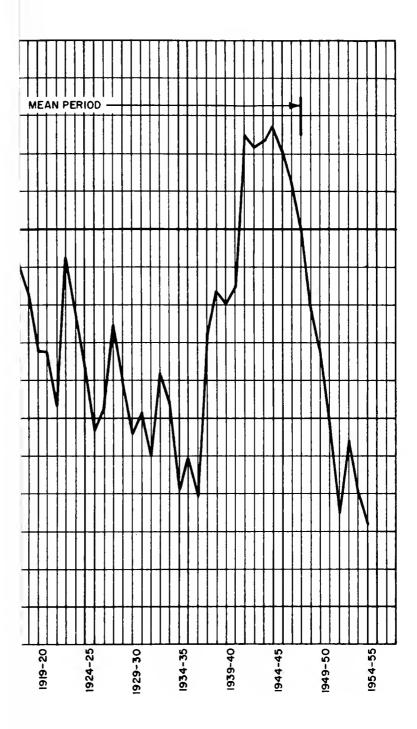
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

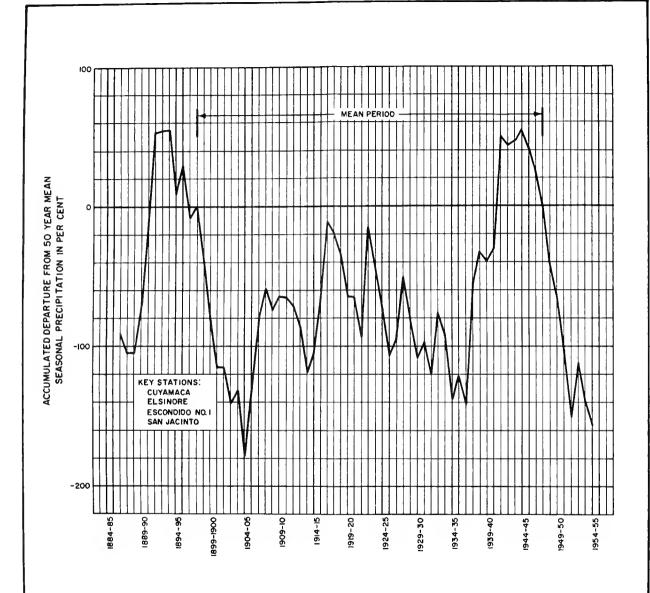
SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL MEAN SEASONAL PRECIPITATION MEAN PERIOD 1897-1947

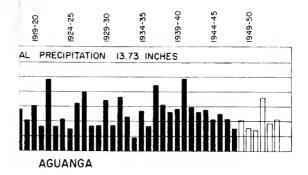


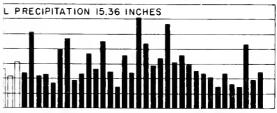
SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL MEAN SEASONAL PRECIPITATION MEAN PERIOD 1897-1947



DEPARTURE FROM MEAN ION AT KEY STATIONS

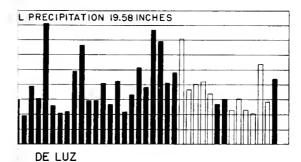

		179
		- 1
		3
		49
		3
		- 1
		- 1
		- 4
		- 1
		3
		4
		1
	e G	
	e G	
	e G	

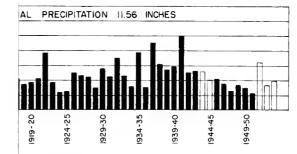


DEPARTURE FROM MEAN ION AT KEY STATIONS



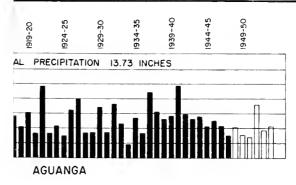
COMPOSITE ACCUMULATED DEPARTURE FROM MEAN SEASONAL PRECIPITATION AT KEY STATIONS

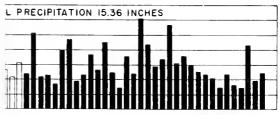




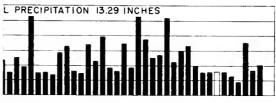
RANCH - STATION C

ELSINORE

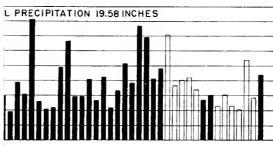


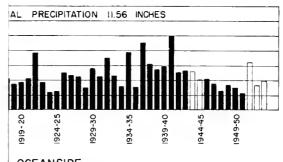

OCEANSIDE

SELECTED MEAN PERIOD 1897-98-1946-47

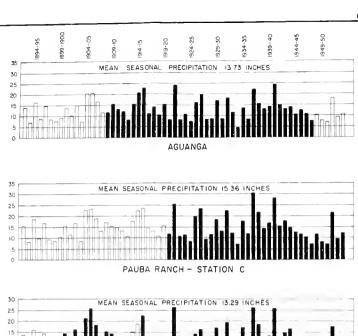

D SEASONAL PRECIPITATION D STATIONS

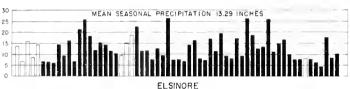
		,
		_

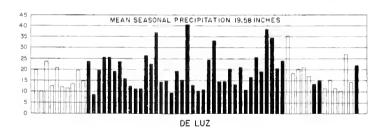


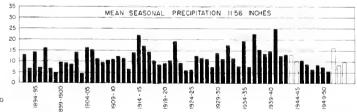

RANCH - STATION C

ELSINORE


DE LUZ




OCEANSIDE


SELECTED MEAN PERIOD 1897-98-1946-47

D SEASONAL PRECIPITATION D STATIONS

OCEANSIDE

NOTE OPEN BARS INDICATE ESTIMATED

H

N N

z

z

CIPITATIO

R

۵

١ ⋖

ASON

S

OTAL

PRECIPITATION SEASON JULY 1- JUNE 30

SELECTED MEAN PERIOD 1897-98-1946-47

RECORDED AND ESTIMATED SEASONAL PRECIPITATION AT SELECTED STATIONS

WATERSHED BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY

HYDROGRAPHIC UNIT NUMBER

WATER SERVICE ORGANIZATIONS

SPRING

STREAM GAGING STATION

STREAM MILES

INTERMITTENT STREAM

PERENNIAL STREAMS

O.OI-O.5 cfs. SUMMER FLOW, 1953

O.S-4 cfs. SUMMER FLOW, 1953

KEY TO NUMBERING SYSTEM

— 4 ~ 6 c.f.s. SUMMER FLOW, 19\$3

TYPICAL LAND SECTION

SPRINGS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, e.g. T.B.S./R.2.E.-36E

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

HYDROGRAPHIC MAP
1953

HYDROGRAPHIC UNIT NUMBER

HYDROGRAPHIC UNIT NUMBER

WATER SERVICE ORGANIZATIONS

WATERSHED BOUNDARY

SPRING

A STREAM GAGING STATION

STREAM MILES

INTERMITTENT STREAM

PERENNIAL STREAMS

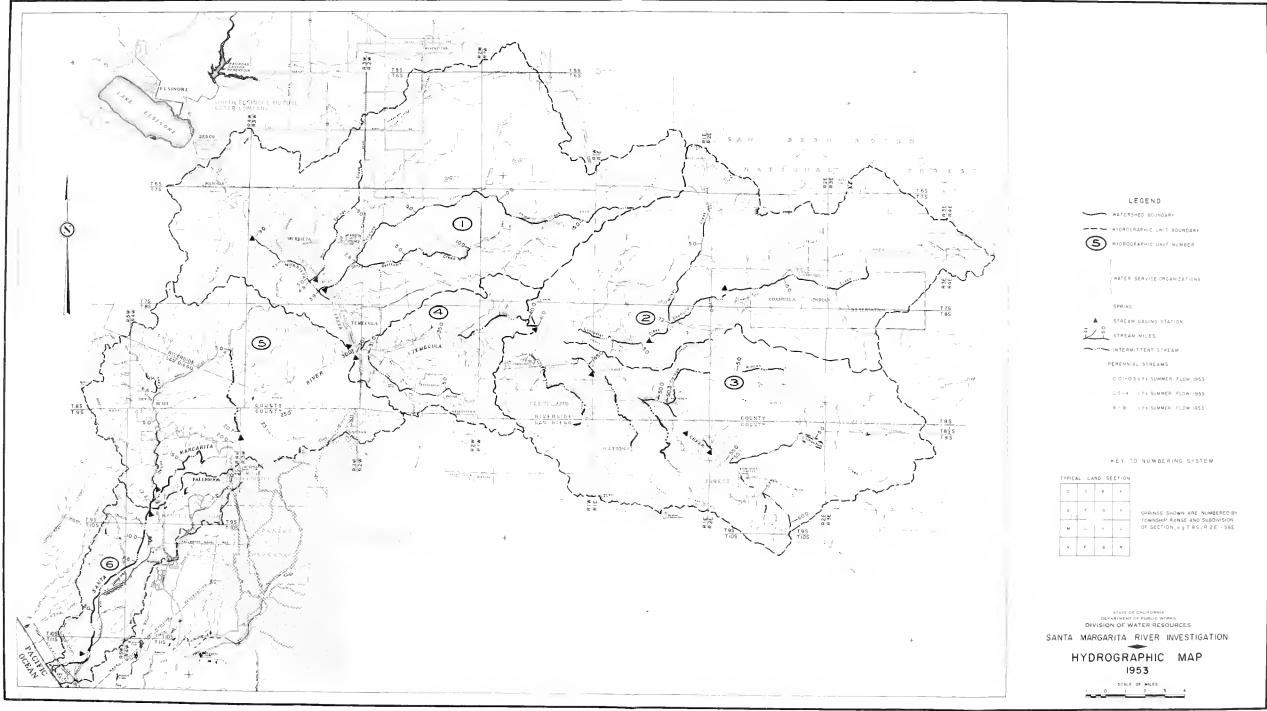
0.01-0.5 cfs. SUMMER FLOW, 1953

0.5-4 c f.s. SUMMER FLOW, 1953

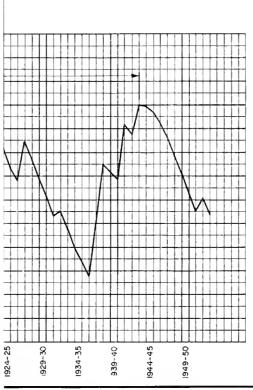
4 - 6 c.f.s. SUMMER FLOW, 1953

KEY TO NUMBERING SYSTEM

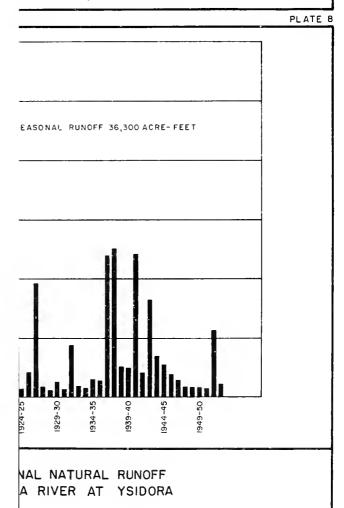
TYPICAL LAND SECTION

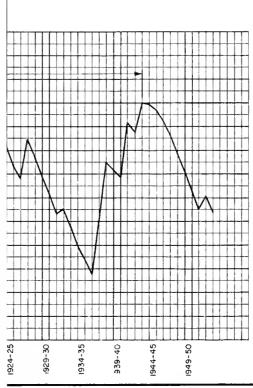

D	С	9	A
€ -^ 361	F	్ —	н
м	L L	о	J
N	Р	q	R

SPRINGS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, e.g. T. B.S./R. 2.E.-36E

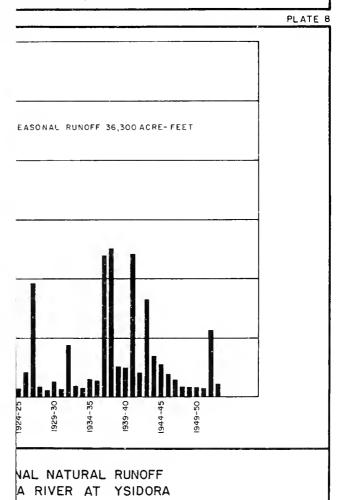

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

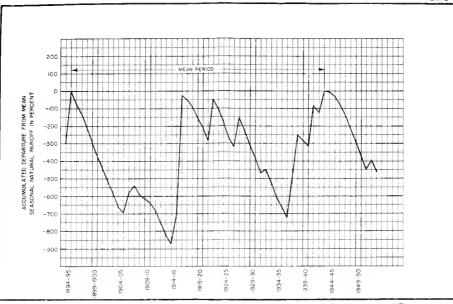
SANTA MARGARITA RIVER INVESTIGATION

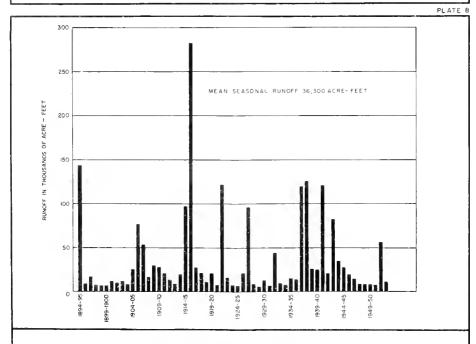

HYDROGRAPHIC MAP



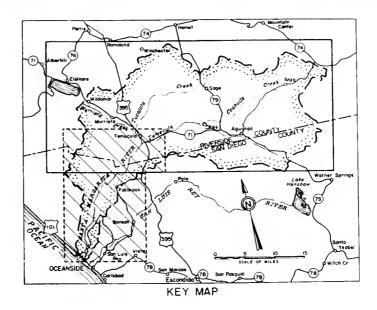
MEAN SEASONAL NATURAL RUNOFF A RIVER AT YSIDORA

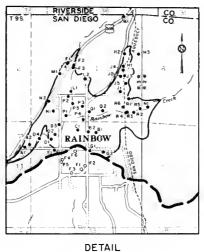






MEAN SEASONAL NATURAL RUNOFF A RIVER AT YSIDORA




ACCUMULATED DEPARTURE FROM MEAN SEASONAL NATURAL RUNOFF OF SANTA MARGARITA RIVER AT YSIDORA

ESTIMATED SEASONAL NATURAL RUNOFF OF SANTA MARGARITA RIVER AT YSIDORA

SCALE OF FEET

LEGEND

LOCATION OF WELL

K2

LOCATION OF WELL OUTSIDE WATERSHED WATERSHED BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY

HYDROGRAPHIC UNIT NUMBER

US LAND SURVEY SECTION LINE - FROM U S.G.S. QUADRANGLE

U.S. LAND SURVEY SECTION LINE- APPROX LOCATION BY O. W.R.

U.S. LAND SURVEY SECTION LINE -- PROJECTED

WATER-BEARING CHARACTERISTICS OF UNDERGROUND FORMATIONS

MODERATE TO HIGH PERMEABILITY

RECENT ALLUVIUM, PRINCIPAL SOURCE OF GROUND WATER LOW PERMEABILITY

DLOER ALLUVIUM AND DEEP RESIDUUM IN FALLBROOK AREA;

MINOR GROUND WATER YIELD GENERALLY IMPERMEABLE

IGNEDUS, METAMORPHIC, AND CEMENTED SEDIMENTS;
PRACTICALLY NONWATER-BEARING, BUT LIMITED
QUANTITIES OF WATER OBTAINED FROM JOINTS.

FRACTURES, AND HIGHLY WEATHERED ZONES

KEY TO NUMBERING SYSTEM

TYPICAL LAND SECTION

D C B A

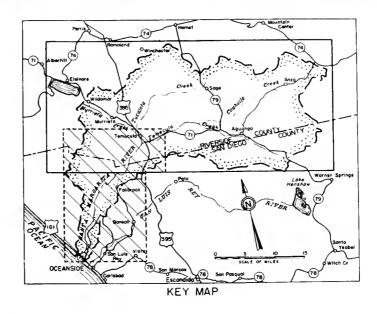
BB A

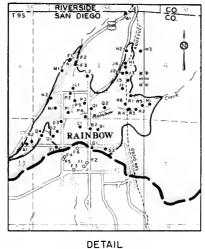
E F G H

M L K J

N P G R

WELLS SHOWN ARE NUMBERED BY TOWNSHIR RANGE AND SUBDIVISION OF SECTION, e.g., T9S/R3W-36BI


STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION

LOCATION OF WELLS
COASTAL AREA
1953

SCALE OF FEET

LEGEND

LOCATION OF WELL

K2

LOCATION OF WELL OUTSIDE WATERSHED WATERSHED BOUNGARY

HYDROGRAPHIC UNIT BOUNDARY

HYDROGRAPHIC UNIT NUMBER

US LAND SURVEY SECTION LINE - FROM U.S.G.S OUADRANGLE

U.S LAND SURVEY SECTION LINE - APPROX LOCATION BY D. W.R.

U.S. LAND SURVEY SECTION LINE- PROJECTED

WATER-BEARING CHARACTERISTICS OF UNDERGROUND FORMATIONS

MODERATE TO HIGH PERMEABILITY

RECENT ALLUVIUM, PRINCIPAL SOURCE OF GROUND WATER LOW PERMEABILITY

OLDER ALLUVIUM AND DEEP RESIDUUM IN FALLBROOK AREA;

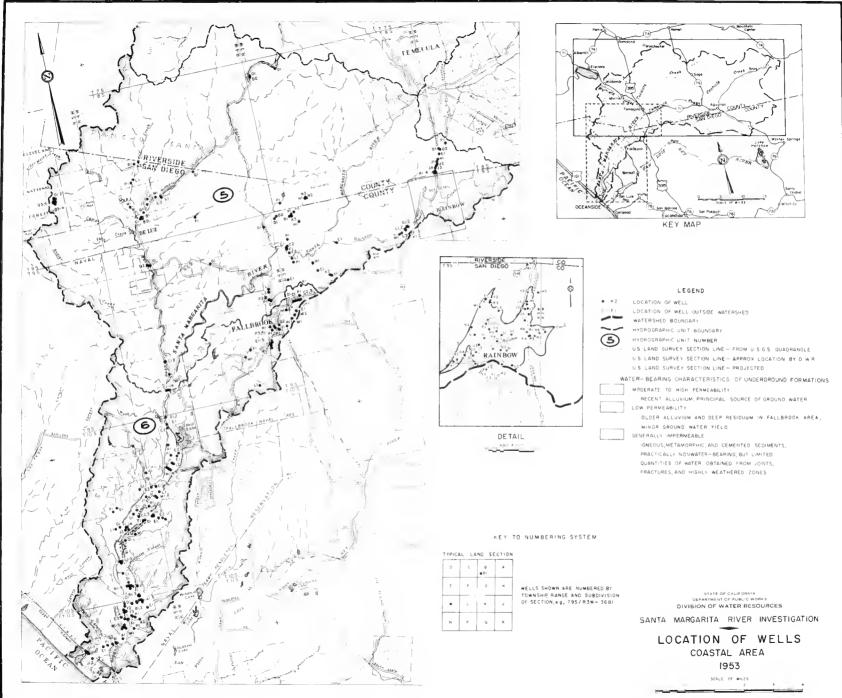
MINOR GROUND WATER YIELO

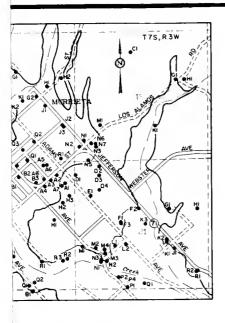
GENERALLY IMPERMEABLE

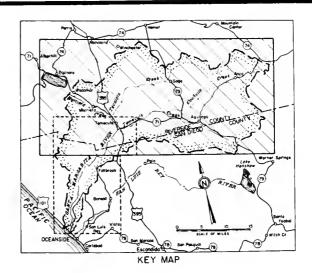
IGNEOUS, METAMORPHIC, AND CEMENTED SECIMENTS; PRACTICALLY NONWATER-BEARING, BUT LIMITED QUANTITIES OF WATER OBTAINED FROM JOINTS. FRACTURES, AND HIGHLY WEATHERED ZONES

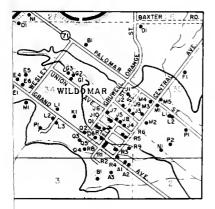
KEY TO NUMBERING SYSTEM

TYPICAL LAND SECTION L


WELLS SHOWN ARE NUMBERED BY TOWNSHIR RANGE AND SUBDIVISION OF SECTION, . . . T95/R3W- 36BI


STATE OF CALIFORNIA


OEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION

LOCATION OF WELLS COASTAL AREA 1953

LOCATION OF WELL

LOCATION OF WELL OUTSIDE WATERSHED

WATERSHED BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY HYDROGRAPHIC UNIT NUMBER

U.S LANO SURVEY SECTION LINE - FROM U.S.G.S. QUADRANGLE U.S. LAND SURVEY SECTION LINE - APPROX, LOCATION BY D.W.R.

U.S LANO SURVEY SECTION LINE - PROJECTED

WATER-BEARING CHARACTERISTICS OF UNDERGROUND FORMATIONS

MODERATE TO HIGH PERMEABILITY

RECENT ALLUVIUM; PRINCIPAL SOURCE OF GROUNO WATER

LOW PERMEABILITY

OLOER ALLUVIUM AND UPPER PLEISTOCENE SEDIMENTS;

MINOR GROUND WATER YIELD.

GENERALLY IMPERMEABLE

IGNEOUS, METAMORPHIC, AND CEMENTED SEDIMENTS; PRACTICALLY NONWATER-BEARING, BUT LIMITED QUANTITIES OF WATER OBTAINED FROM JOINTS,

FRACTURES, AND HIGHLY WEATHERED ZONES.

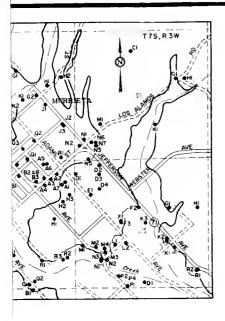
DETAILS

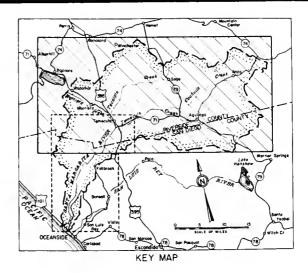
KEY TO NUMBERING SYSTEM

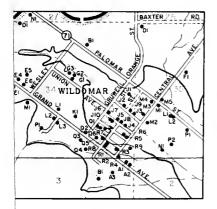
TYPICAL LAND SECTION

1 11	ICA	L LA	*D 3C	
	ь	O	9 ●Bi	А
Г	ε	ب	6	н
Г	H	(3	к	J
	N	Р	۰	R

WELLS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, e.g., T9S/R3W-36BI


STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION


LOCATION OF WELLS INLAND AREA

1953

●B3 LOCATION OF WELL

OHI LOCATION OF WELL OUTSIDE WATERSHED

WATERSHED BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY
HYDROGRAPHIC UNIT NUMBER

U.S. LAND SURVEY SECTION LINE - FROM U.S.G.S. QUADRANGLE U.S. LAND SURVEY SECTION LINE - APPROX. LOCATION BY D.W.R.

U.S. LAND SURVEY SECTION LINE - PROJECTED

WATER-BEARING CHARACTERISTICS OF UNDERGROUND FORMATIONS

MODERATE TO HIGH PERMEABILITY

RECENT ALLUVIUM; PRINCIPAL SOURCE OF GROUND WATER

LOW PERMEABILITY

OLDER ALLUVIUM AND UPPER PLEISTOCENE SEGIMENTS;

MINOR GROUND WATER YIELO.

GENERALLY IMPERMEABLE

IGNEOUS, METAMORPHIC, AND CEMENTED SEDIMENTS; PRACTICALLY NONWATER-BEARING, BUT LIMITED QUANTITIES OF WATER OBTAINED FROM JOINTS,

FRACTURES, AND HIGHLY WEATHERED ZONES.

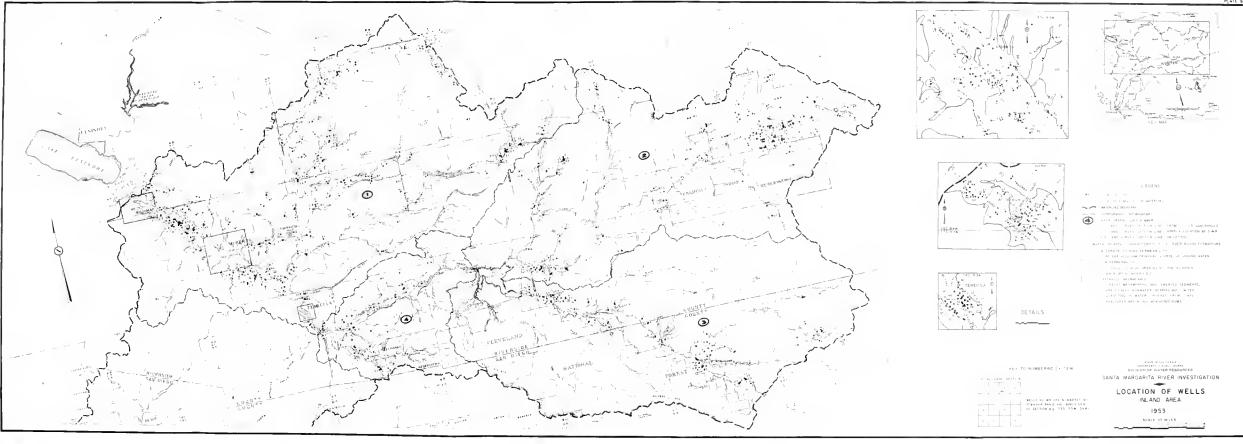
ULA © P3 12 P9 01 02 P3 13

DETAILS

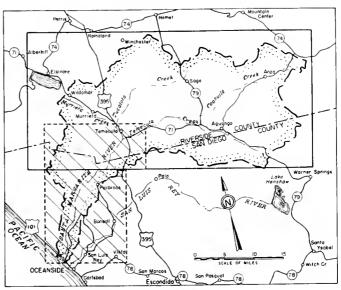
KEY TO NUMBERING SYSTEM

TYPICAL LAND SECTION

THINGS CAME CECTION					
0	c	B	А		
£	3	6—	н		
м		, K	7		
N	Р	q	R		


WELLS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, e.g., T9S/R3W-36BI


STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION

LOCATION OF WELLS
INLAND AREA

1953

KEY MAP

LEGEND

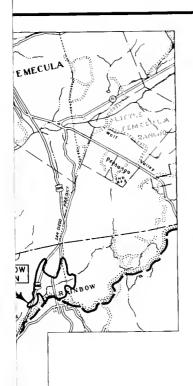
WATERSHED BOUNDARY

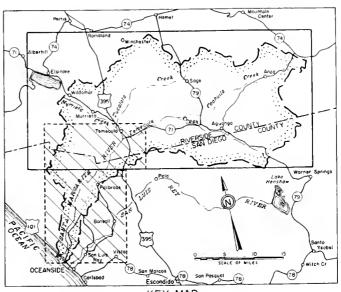
GROUND WATER BASIN BOUNDARY

---40---

LINES OF EQUAL ELEVATION OF GROUND WATER

STATE OF CALIFORNIA
OEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL ELEVATION

0 F

GROUND WATER
COASTAL AREA
SPRING 1927

	•
	-

KEY MAP

LEGEND

WATERSHED BOUNDARY

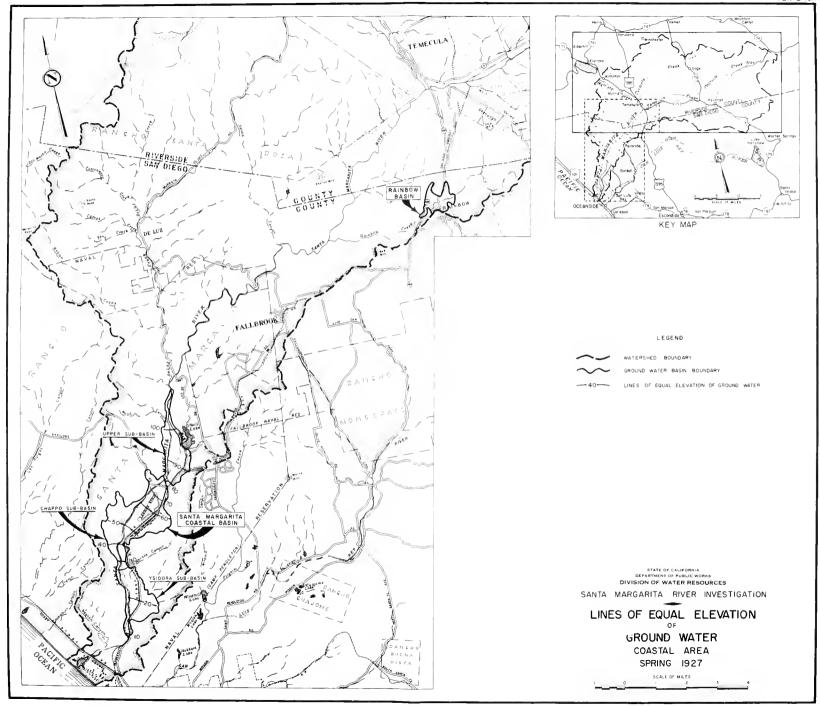
GROUND WATER BASIN BOUNDARY

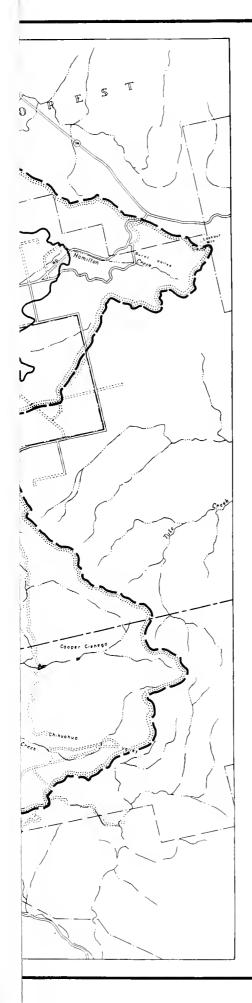
--- 40----

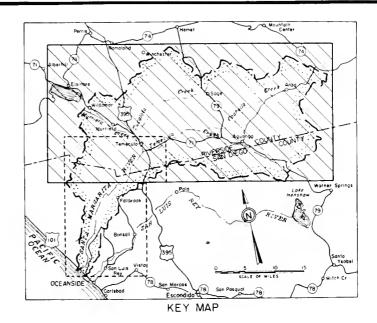
LINES OF EQUAL ELEVATION OF GROUND WATER

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL ELEVATION


OF


GROUND WATER
COASTAL AREA
SPRING 1927

SCALE OF MILES

7 | 1

GROUND WATER BASIN BOUNDARY

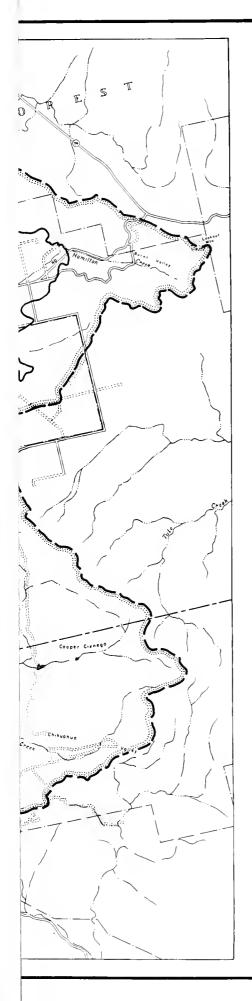
FAULT

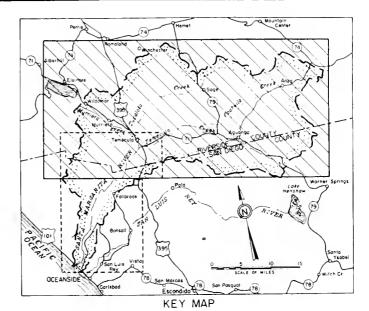
SPOND LINES OF EQUAL ELEVATION OF GROUND WATER

LINES OF EQUAL ELEVATION OF PRESSURE SURFACE IN CONFINED ADUIFER OF PAUBA VALLEY, MARCH 1926

APPARENT AREAS OF CONFINED WATER

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL ELEVATION

GROUND WATER
INLAND AREA

SPRING 1927

	V VIII
	- 17
	1.0
	- 28
	- 108
	198
	138
	108
	108
	- 33
	7.0
	- 30
	198
	- 100
	- 1
	- 3
	- 18
	- 3
	- 3
	100
	0.5
	- 3
	- 1
	- 3
	- 3
	-18
	- 3
1972	
	- 3
	4
	- 1
	- 1
	1
	- 0
	-1
	4
	3

WATERSHED BOUNDARY

GROUND WATER BASIN BOUNDARY

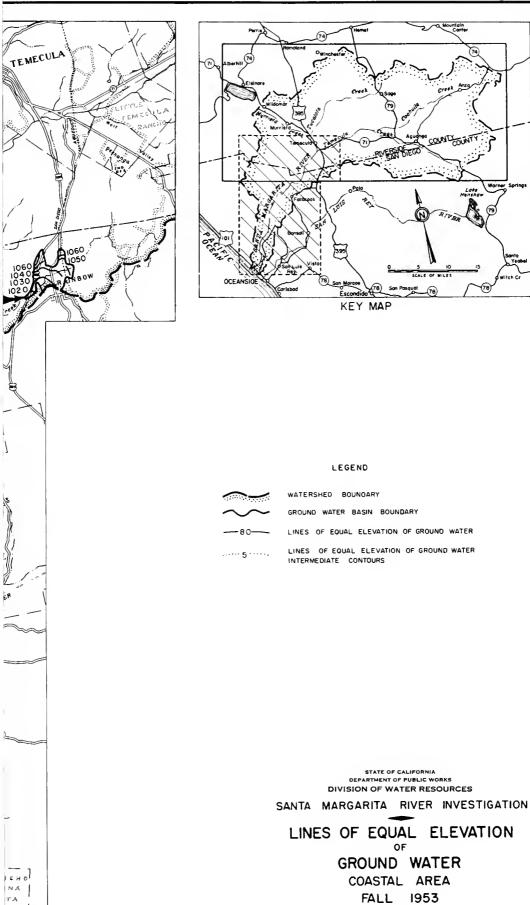
FAULT

990 LINES OF EQUAL ELEVATION OF GROUND WATER

LINES OF EQUAL ELEVATION OF PRESSURE SURFACE IN CONFINED AQUIFER OF PAUBA VALLEY, MARCH 1926

APPARENT AREAS OF CONFINED WATER

STATE OF CALIFORNIA
OEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

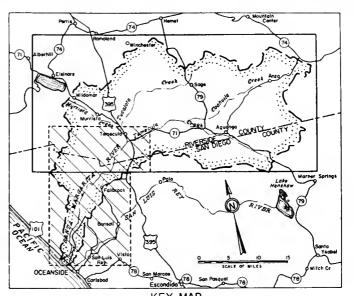

SANTA MARGARITA RIVER INVESTIGATION

LINES OF EQUAL ELEVATION

GROUND WATER

INLAND AREA

SPRING 1927


STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

GROUND WATER

COASTAL AREA

		- 4
	*	

KEY MAP

LEGEND

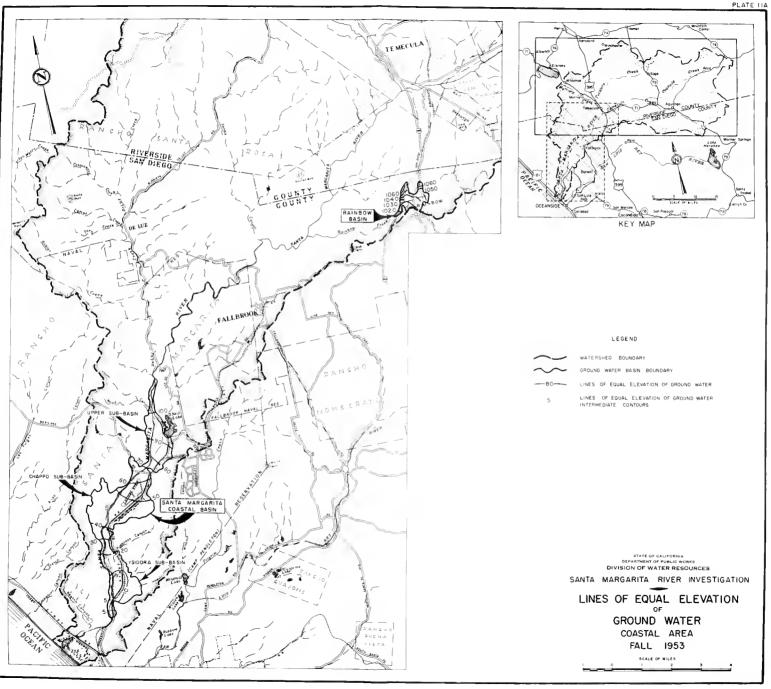
WATERSHED BOUNDARY

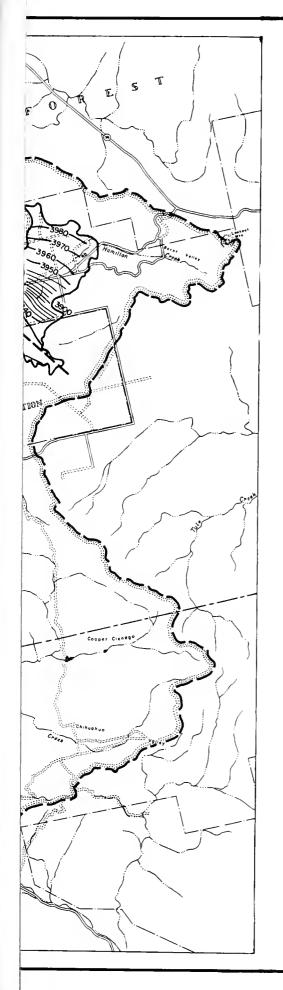
GROUNG WATER BASIN BOUNDARY

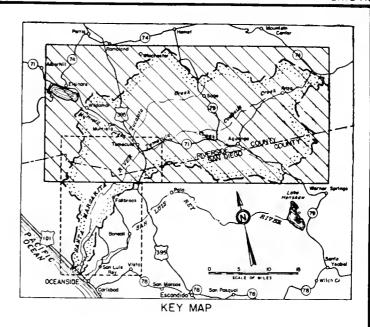
LINES OF EQUAL ELEVATION OF GROUND WATER

LINES OF EQUAL ELEVATION OF GROUND WATER INTERMEDIATE CONTOURS

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES


SANTA MARGARITA RIVER INVESTIGATION


LINES OF EQUAL ELEVATION


GROUND WATER COASTAL AREA FALL 1953

SCALE OF MILES
0 1 2 3

CHO NA

WATERSHEO BOUNDARY

GROUND WATER BASIN BOUNDARY

FAULT

1990

LINES OF EQUAL ELEVATION OF GROUND WATER

LINES OF EQUAL ELEVATION OF PRESSURE SURFACE IN CONFINED ACUIFER OF PAUBA VALLEY, JANUARY 1954

APPARENT AREAS OF CONFINED WATER

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

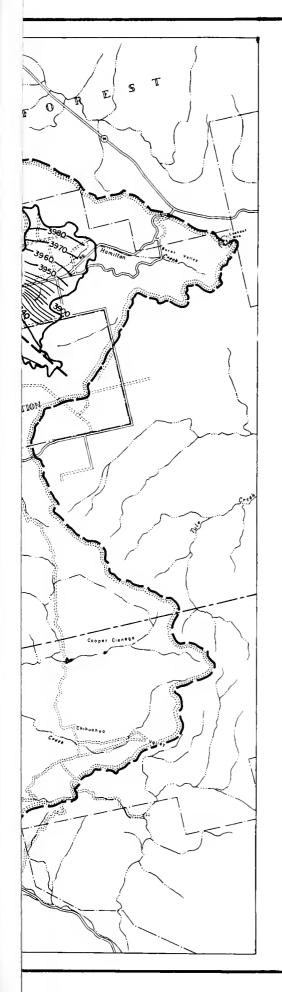
SANTA MARGARITA RIVER INVESTIGATION

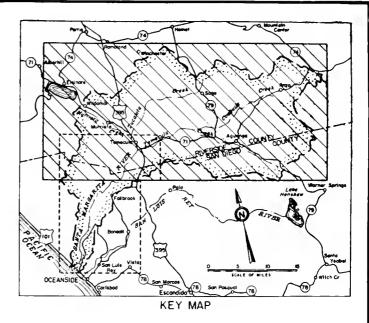
LINES OF EQUAL ELEVATION

OF

GROUND WATER

INLAND AREA


SCALE OF MILES


FALL

0 1 2 3

1953

· ·
4
38
18
9
4
The state of the s
3

WATERSHED BOUNDARY

GROUND WATER BASIN BOUNDARY

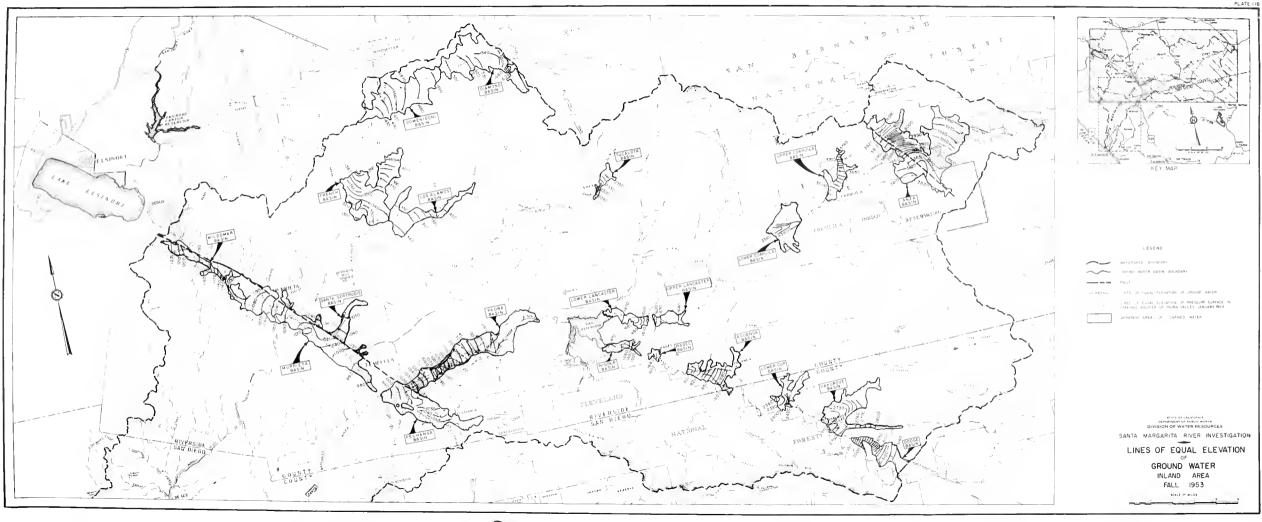
FAULT

LINES OF EQUAL ELEVATION OF GROUND WATER

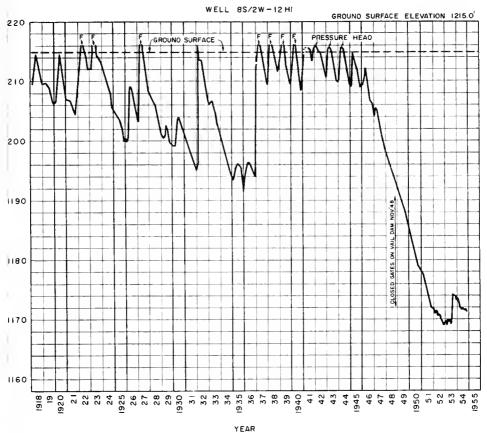
LINES OF EQUAL ELEVATION OF PRESSURE SURFACE IN CONFINED ADUIFER OF PAUBA VALLEY, JANUARY 1934

APPARENT AREAS OF CONFINED WATER

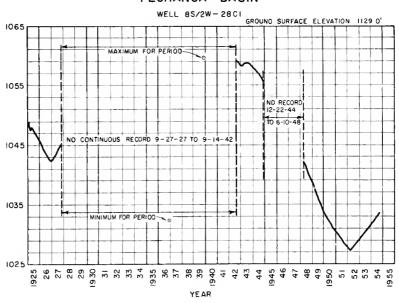
STATE OF CALIFORNIA
DEPARTMENT OF PUSLIC WORKS
DIVISION OF WATER RESOURCES

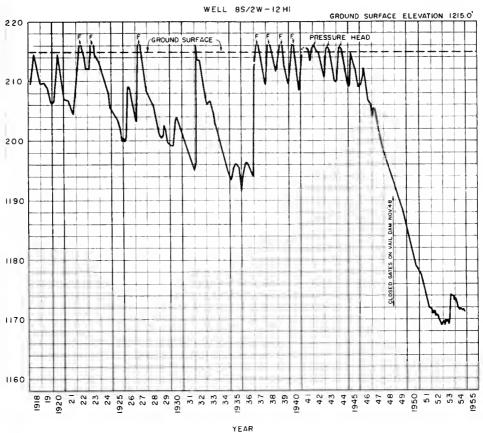

SANTA MARGARITA RIVER INVESTIGATION

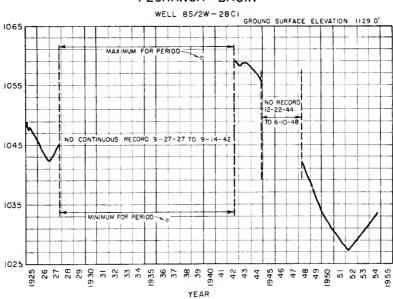
LINES OF EQUAL ELEVATION


GROUND WATER

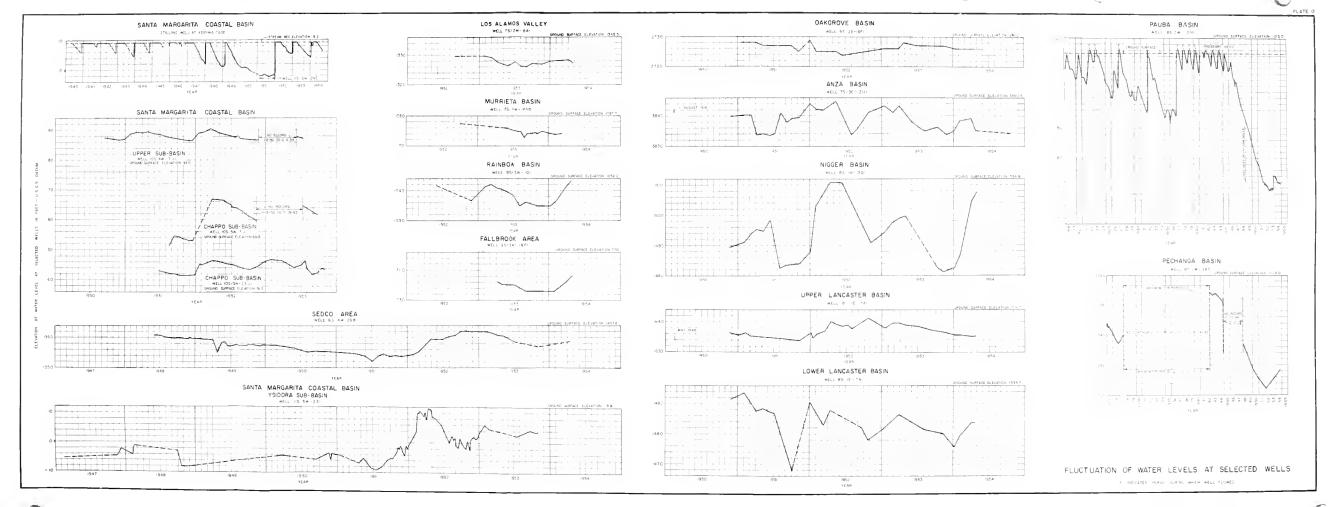
INLAND AREA FALL 1953

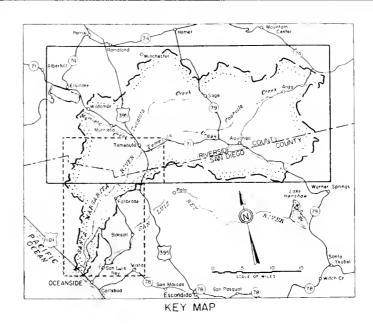

SCALE OF MILES
O I 2 3


PECHANGA BASIN


FLUCTUATION OF WATER LEVELS AT SELECTED WELLS

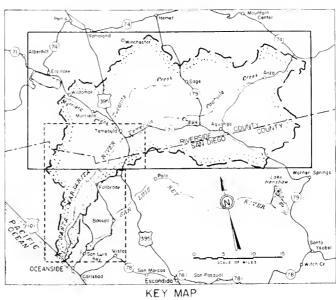
- 1
- 4
E in





PECHANGA BASIN

FLUCTUATION OF WATER LEVELS AT SELECTED WELLS

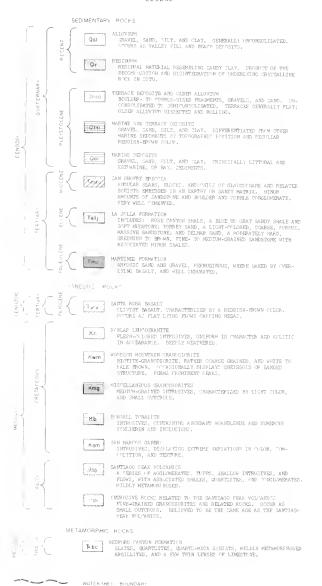


STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

AREAL GEOLOGY COASTAL AREA 1954

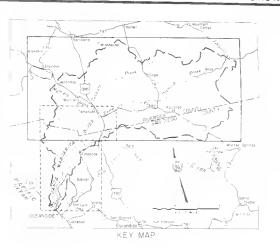
	•		-



STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

AREAL GEOLOGY COASTAL AREA 1954



FORMATION CONTACT

-1 LINE OF GEOLOGIC SECTION

- FAULT (DASH LINE INDICATE'S CONCEALMENT OR APPROXIMATE LOCATION)

DEPARTMENT OF PUBLIC WORKS

DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

AREAL GEOLOGY COASTAL AREA 1954

MD, SILT, AMD CLAY. GENERALLY UNCORSOLIDATED. VALLEY FILL AND BEACH DEPOSITS.

ATTRIAL BESEMBLING SANDY CLAY. PRODUCT OF THE KON AND DISINTEGRATION OF UNDERLYING CRYSTALLINE

SITS AND OLDER ALLUYIUM
D CORREL-SIZED PRACMENTS, GRAVELS, AND SAND. UN-ED TO SENICONSOLIDATED. TERRACIES GENERALLY PLAT; TIUM DISSECTED AND ROLLING.

NTED UPPER PLEISTOCERE SEDIMENTS
D, SILT, CLAY, CONGLOMERATE, AND MINOR AMOUNTS
LLICEE, AND TUPF. WHITE TO RED, POORLY CONSTREAM AND LACUSTRINE DEPOSITS. INCLUDES PAUBA
DRIPPING SPRINGS PANGLOMERATE, AND TEMECULA ARKOSE.

LATION ID AND GRAVEL, FERRUGINOUS, WHERE BAKED BY OVER-LT, AND WELL INDURATED.

VOLCARICS IPPS, ACCIONERATES, DIKES, AND PLOWS.

SALT ALT, CHARACTERIZED BY A REDDISH-EROWN COLOR. TLAT LYING FLOWS CAPPING MESAS.

RANITE
ED INTRUSIVES, UNIFORM IN CHARACTER AND APLITIC
CE. DEEPLY WEATHERED.

AIE GRANDICRITE RODICRITE, RATHER COARSE GRAINED, AND WHITE TO OCCASIOMALLY DISPLAYS GREISSOID OR BANDED FORMS PROMINENT PEARS.

LLEY GRANDDICRITE
RANGES FROM TOMALITE TO GRANDDIORITE AND COMANT CRIENTED DARK INCLUSIONS. OUTCROPS AS LIGHTLDERS OF DISINTEGRATION.

GRANCHICRITES
RED INTRUSIVES, CHARACTERIZED BY LIGHT COLOR,
UTCROPS.

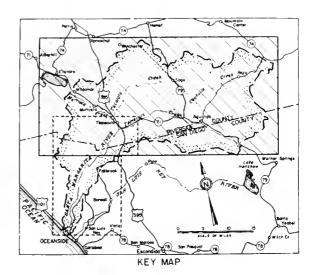
ITE CONTAINING ABUNDANT HORNELENDE AND MUNEROUS NO INCLUSIONS.

ITE ITE, RICH IN HORSELENDE AND BIOTITE.

BERO
DISPLAYING EXTREME VARIATIONS IN COLOR, COMND TEXTURE.

VOLCANICS
ACCIONERATES, TUFFS, SHALLOW INTRUSIVES, AND
ASSOCIATED SHALES, QUARTZITES, AND CONGLOMERATES.
WORPROSED.

CS RELATED TO THE SANTIAGO PEAK VOLCANICS D GRANDDIGRITHS AND RELATED ROCKS. OCCUR AS DPS. BELLEVED TO BE THE SAME AGE AS THE SANTIAGO ICS.


TED IGNEOUS ROCKS NOT MAPPED SEPARATELY.

FORMATION
TZITTES, QUARTZ-NICA SCHISTS, MILDLY METAMORPHOSED
AND A PEW THIN LERSES OF LIDESTONE.

ITZITE AND SCHIST D QUARTZ, MICA, AND AMPHIBOLE SCHISTS.

TED METAMORPHIC ROCKS INFELS, SCHISTS, GNEISSES, SLATES, AND QUARTZITES ILY OIFFERENTIATED.

S CONCEALMENT OR APPROXIMATE LOCATION)

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

AREAL GEOLOGY INLAND AREA 1954

	•	
		- 1
		1
		-

ND, SILT, AND CLAY. GENERALLY UNCONSOLIDATED. VALLEY FILL AND BEACE DEPOSITS.

ATTERIAL RESEMBLING SANDY CLAY. PRODUCT OF THE IOW AND DISINTEGRATION OF UNDERLYING CRYSTALLING IU.

SITS AND OLDER ALLUYIUM
D CORREL-SIZED FRACKETS, GRAVELS, AND SAND. UNED TO SEMICONSOLIDATED. TERRACES GENERALLY FLAT;
JIUM DISSECTED AND ROLLING.

ATED UPPER PLEISTOCKIE SEDIMENTS

ID, SILT, CLAY, CONGLOMERATE, AND NIBOR AMOUNTS
LLICER, AND TUFF. WHITE TO RED, POORLY CONFREAM AND LACUSTRIES DEPOSITS. INCLUDES PAUBA
DRIPPING SPRINGS PANGLOMERATE, AND TEMECULA ARKOSE.

MATION
D AND GRAVEL, FERRUCINOUS, WHERE BAKED BY OVERLT, AND WELL INDURATED.

VOLCANICS
IFFS, ACCIONERATES, DIKES, AND FLOWS.

SALT ALT, CHARACTERIZED BY A REDDISH-BROWN COLOR. TLAT LYING FLOWS CAPPING MESAS.

RANITE
ED INTRUSIVES, UNIFORM IN CHARACTER AND APLITIC
CE. DEEPLY WEATHERED.

AIW GRANCOLORITE
RODICRITE, RATEER COARSE GRAINED, AND WHITE TO
OCCASIONALLY DISPLATS CREISSOID OR BANDED
FORMS PROMINENT PEARS.

LLEY GRANDDICRITE
RANGES FROM TOMALITE TO GRANDDIORITE AND COBANT CRIENTED DARK INCLUSIONS. OUTCROPS AS LIGHTLDERS OF DISTRIBERATION.

GRANCHICRITES
NED INTRUSIVES, CHARACTERIZED BY LIGHT COLOR,
UTCROPS.

ITE | CONTAINING ABUNDANT ECRNELENDE AND NUMEROUS NO INCLUSIONS.

ITE ITE, RICH IN HORNELENDE AND BIOTITE.

BERO
DISPLAYING EXTREME VARIATIONS IN COLOR, COMND TEXTURE.

VOLCANICS
ACCIONERATES, TUFFS, SHALLOW INTRUSIVES, AND
ASSOCIATED SHALES, QUARTZITES, AND CONCLOMERATES.
OFFRICIED.

CS RELATED TO THE SANTIAGO PEAK VOLCANICS D GRANDDICRITES AND RELATED ROCKS. OCCUR AS DPS. BELLEVED TO BE THE SAME AGE AS THE SANTIAGO ICS.

TED IGNEOUS ROCKS NOT MAPPED SEPARATELY.

FORMATION
TZITES, QUARTZ-NICA SCHISTS, MILDLY METAMORPHOSED
AND A FEW THIN LENSES OP LIMESTORE.

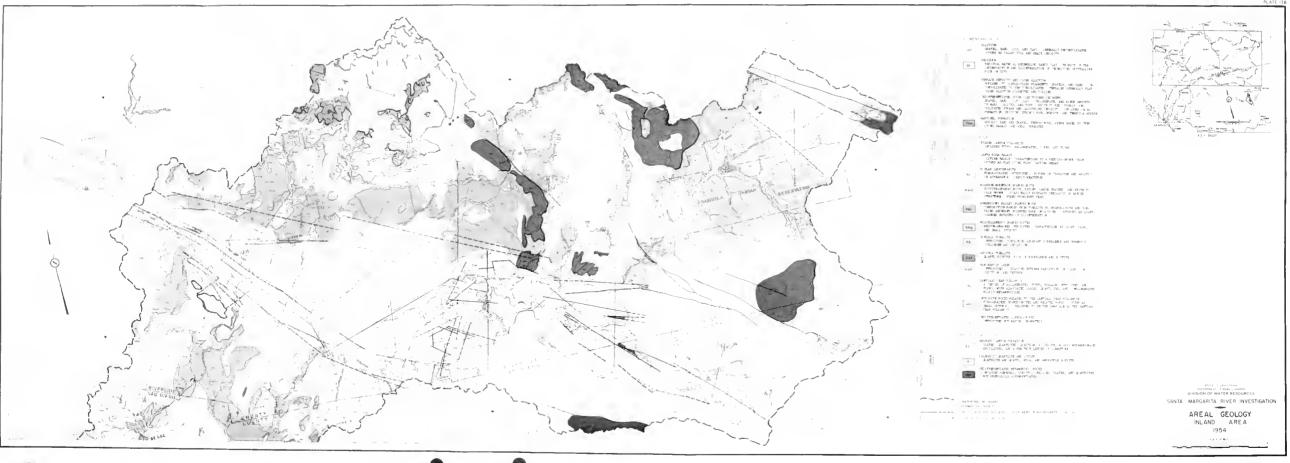
TZITE AND SCHIST D QUARTZ, MICA, AND AMPHIBOLE SCHISTS.

TED METAMORPHIC ROCKS INFELS, SCHISTS, GNEISSES, SLATES, AND QUARTZITES SLY DIFFERENTIATED. CEANSIDE Carload Expendicts (2) Sor Products (2) Carload Expendicts (2) Carload (2) Car

KEY MAP

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION


AREAL GEOLOGY
INLAND AREA

1954

SCALE OF MILES

0 | 2 3

S CONCEALMENT OR APPROXIMATE LOCATION)

Qal	RECENT ALLUVIUM
Qtoa	TERRACES AND OLDER ALLUVIUM
Tsrv	SANTA ROSA BASALT
Tmz	MARTINEZ FORMATION
終終 Kdv	DOMENIGONI VALLEY GRANODIORITE
Kb Kb	BONSALL TONALITE
+ + + Ksm	SAN MARCOS GABBRO
17 lg	UNDIFFERENTIATED IGNEOUS ROCKS
Rbc	BEOFORD CANYON FORMATION
()	PALEOZOIC SCHISTS AND QUARTZITES
	FAULT (DASHED WHERE APPROXIMATED

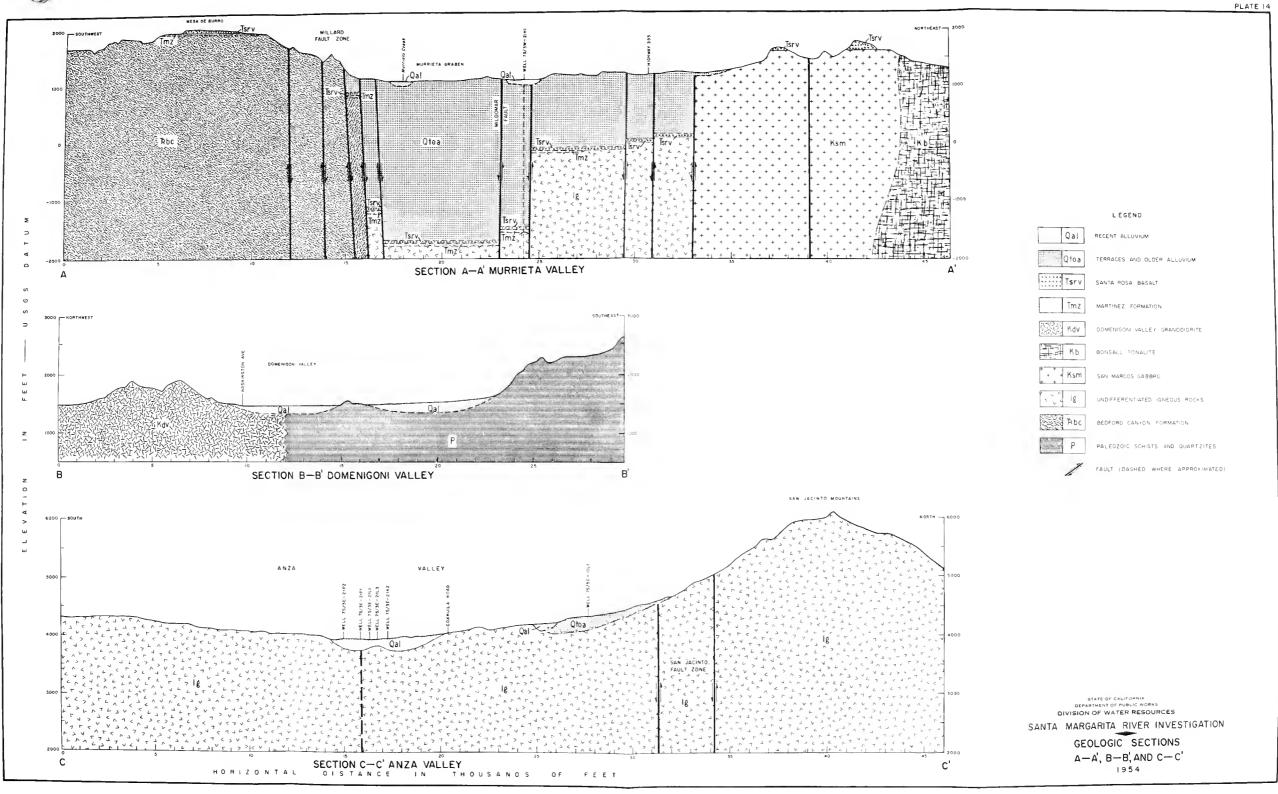
STATE OF CALIFORNIA

DEPARTMENT OF PUBLIC WORKS

DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

GEOLOGIC SECTIONS A-A', B-B', AND C-C'



Qal	RECENT ALLUVIUM
Qtoa	TERRACES AND OLDER ALLUVIUM
ANAXAN TSrV	SANTA ROSA BASALT
Tmz	MARTINEZ FORMATION
悠悠 Kdv	COMENIGONI VALLEY GRANCOIORITE
Kb Kb	BONSALL TONALITE
+ + + Ksm	SAN MARCOS GABBRO
17.4 18	UNDIFFERENTIATED IGNEOUS ROCKS
Rbc	BEDFORD CANYON FORMATION
P	PALEOZOIC SCHISTS AND QUARTZITES
	FAULT (OASHED WHERE APPROXIMATED)

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

GEOLOGIC SECTIONS A-A', B-B', AND C-C'

Qal RECENT ALLUVIUM

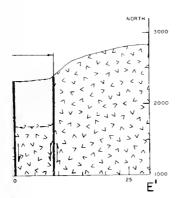
Qps

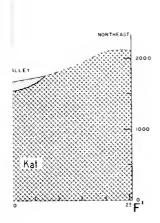
UNDIFFERENTIATED UPPER PLEISTOCENE SECIMENTS

SSS Kat

AGUANGA TONALITE

^ 1 lg


UNDIFFERENTIATED IGNEOUS ROCKS


Rbc

BEDFORD CANYON FORMATION

1

FAULT (DASHED WHERE APPROXIMATED)

OF FEET

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

GEOLOGIC SECTIONS D-D', E-E', AND F-F'

Qal

RECENT ALLUVIUM

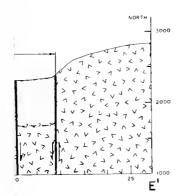
Qps

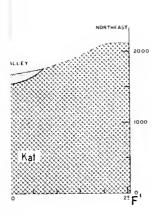
UNDIFFERENTIATED UPPER PLEISTOCENE SECIMENTS

Kat

AGUANGA TONALITE

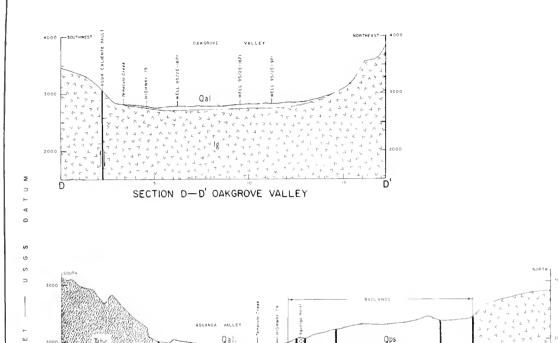
1 18


UNDIFFERENTIATED IGNEOUS ROCKS

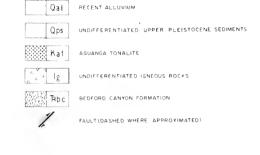

Rbc

BEDFORD CANYON FORMATION

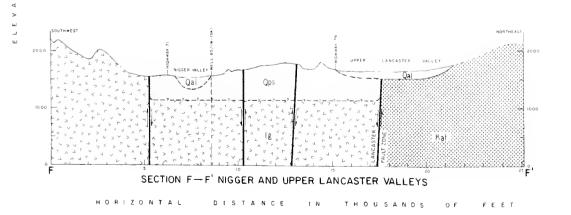
FAULT (DASHED WHERE APPROXIMATED)



OF FEET

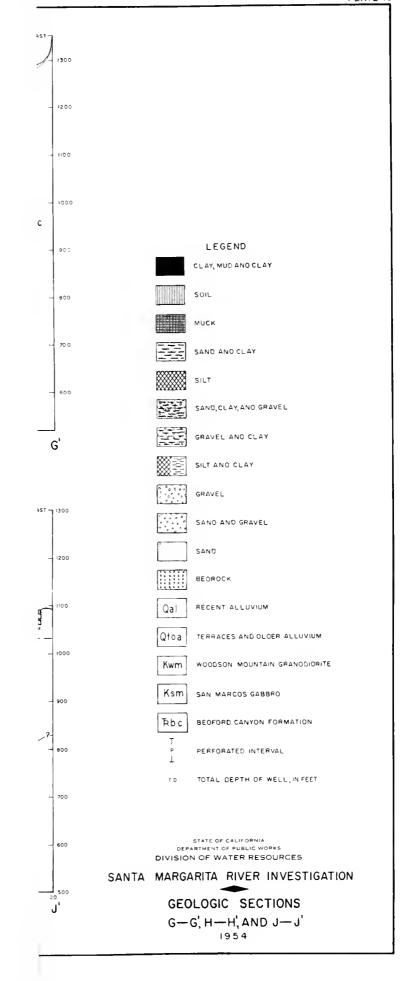

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

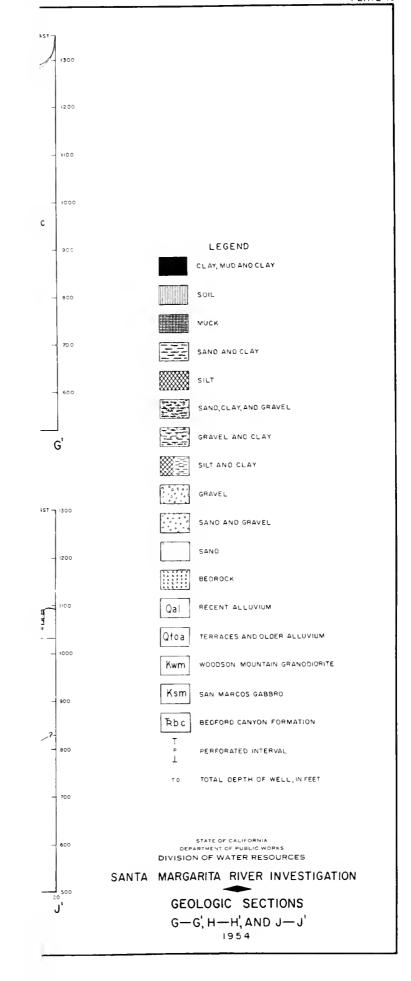
SANTA MARGARITA RIVER INVESTIGATION

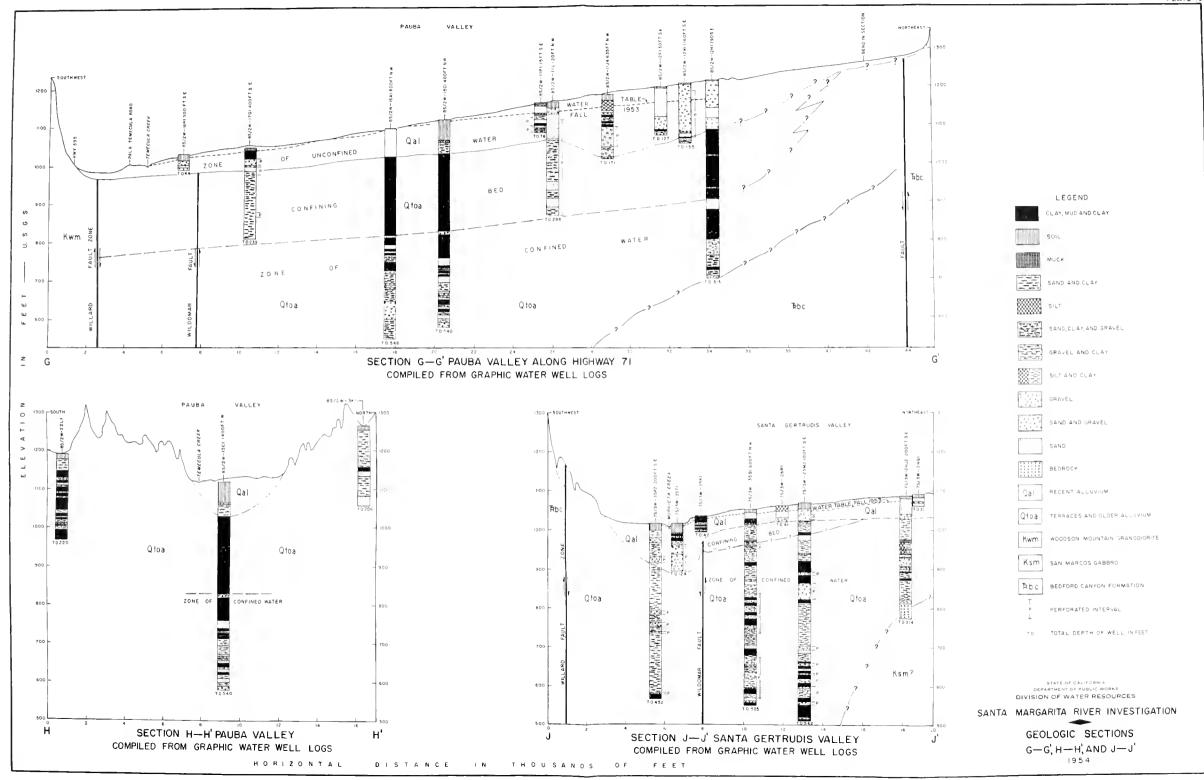

GEOLOGIC SECTIONS D-D', E-E', AND F-F'

Qps

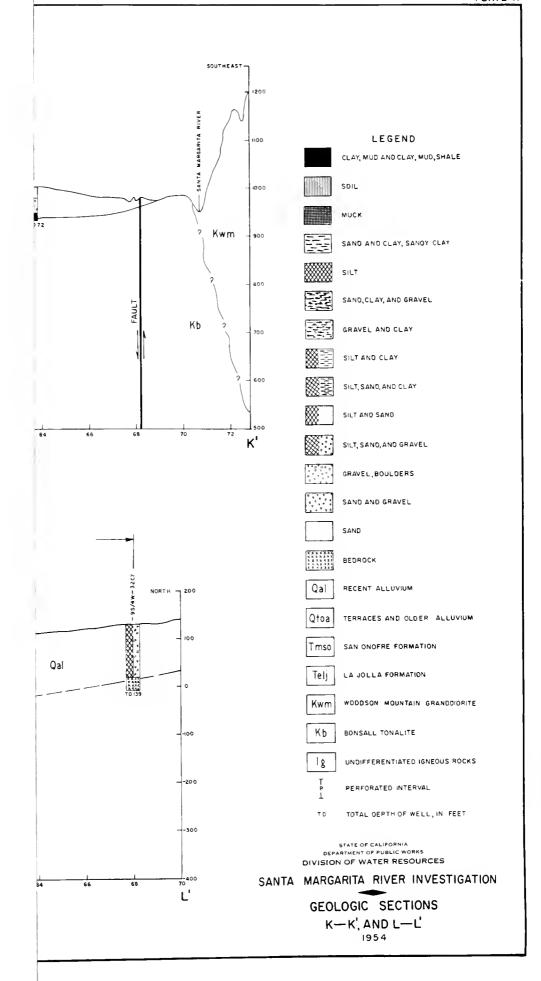
LEGEND

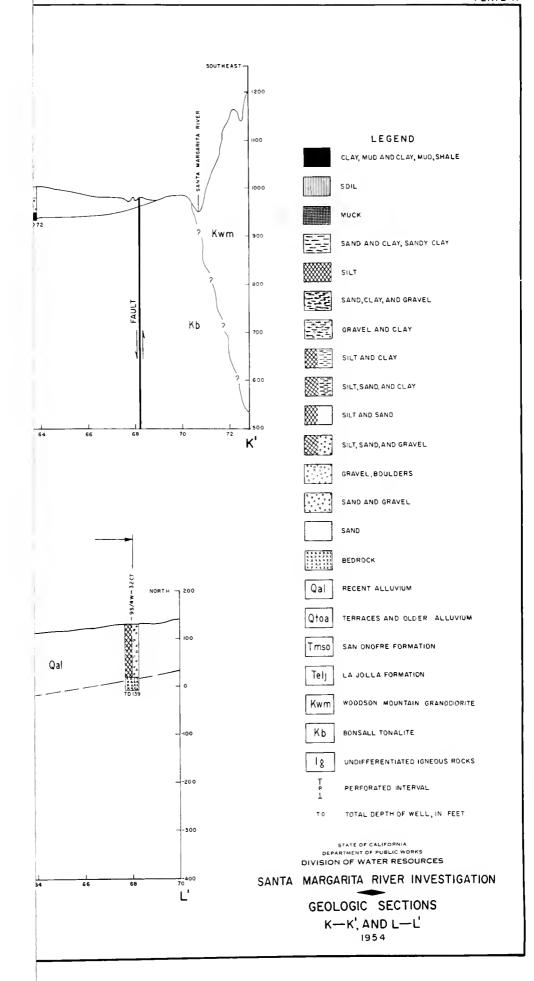


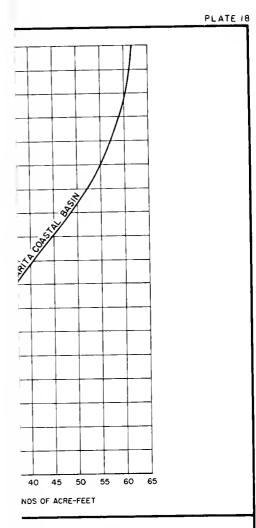

SECTION E-E' AGUANGA VALLEY

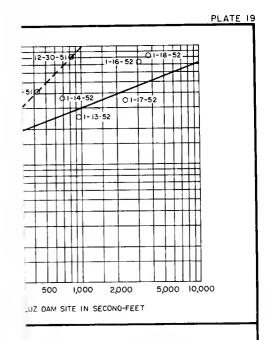

STATE OF CALIFORNIA
OEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

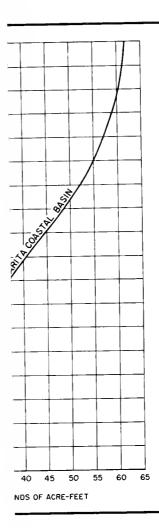
SANTA MARGARITA RIVER INVESTIGATION

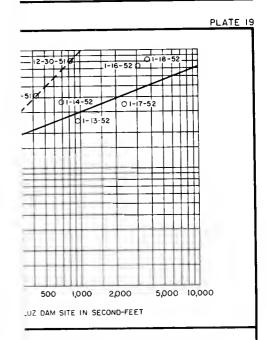

GEOLOGIC SECTIONS D-D', E-E', AND F-F'



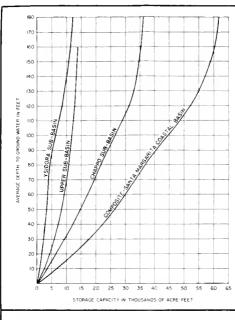



ii e		

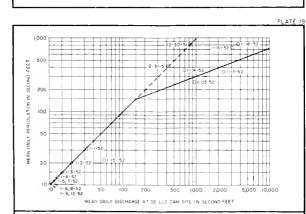

WATER STORAGE CAPACITY AND ITA MARGARITA COASTAL BASIN


RGE OF SANTA MARGARITA RIVER
MARGARITA COASTAL BASIN

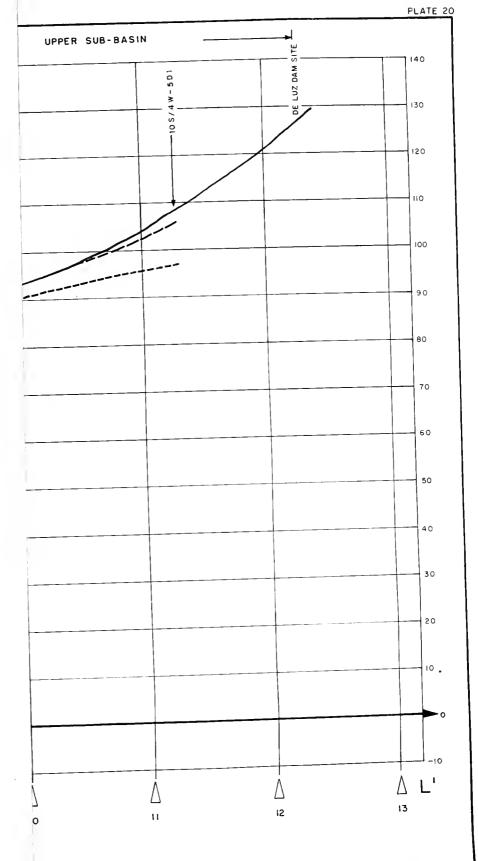
		1
		3,
		- 3
a		
		- 1
		- 1
		j
	145	1
		- 1
		4
		1
		-
	11.48	
		1



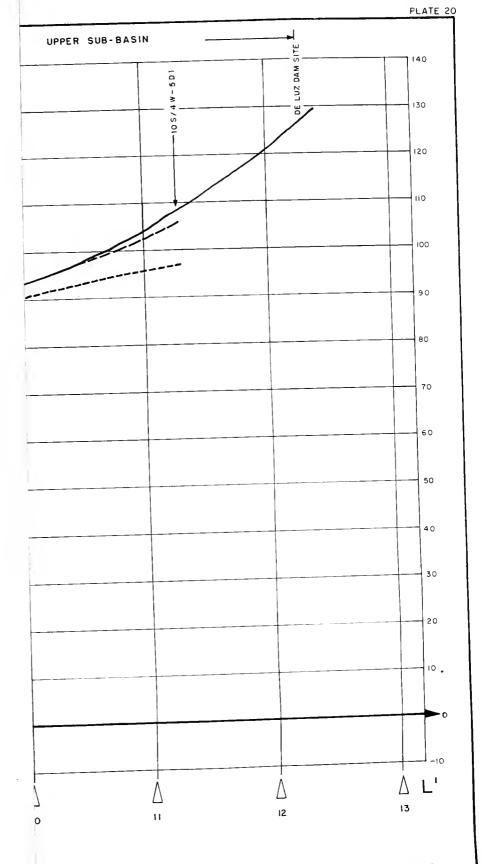
WATER STORAGE CAPACITY AND ITA MARGARITA COASTAL BASIN



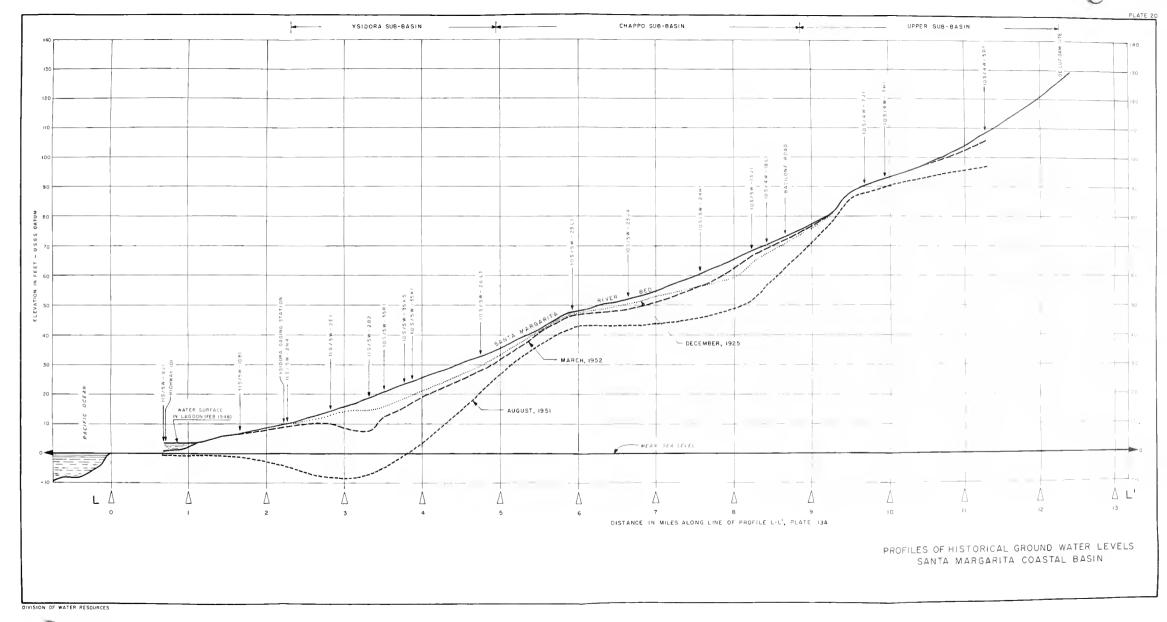
REGE OF SANTA MARGARITA RIVER MARGARITA COASTAL BASIN

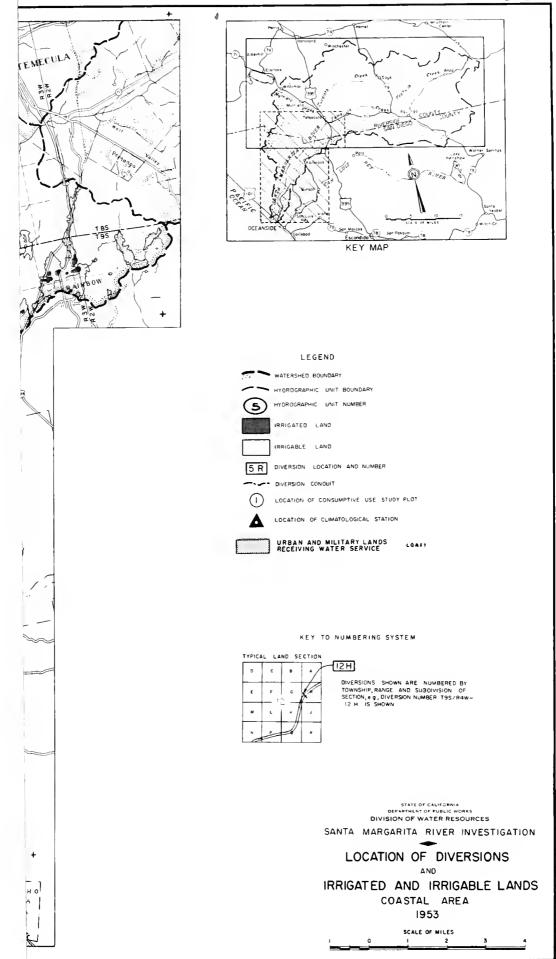


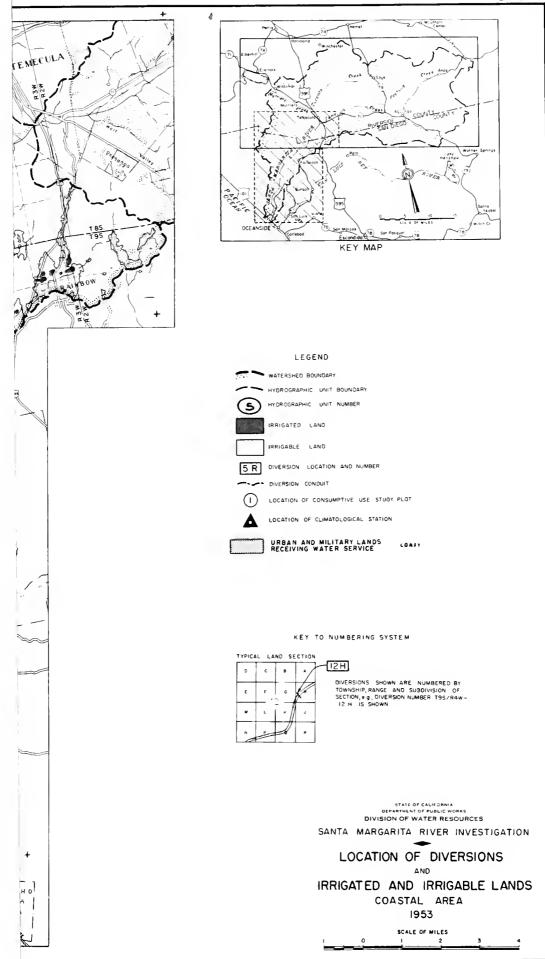
RELATIONSHIP BETWEEN GROUND WATER STORAGE CAPACITY AND
DEPTH TO GROUND WATER IN SANTA MARGARITA COASTAL BASIN

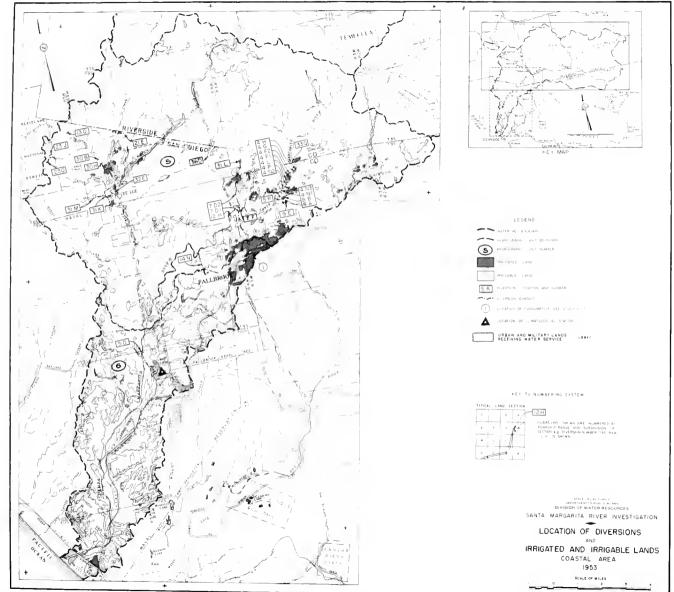


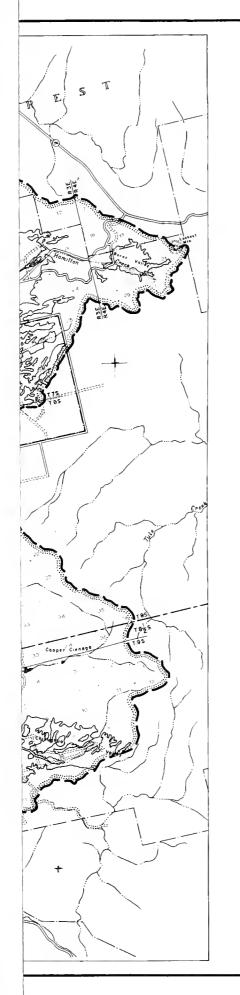
RELATIONSHIP BETWEEN DISCHARGE OF SANTA MARGARITA RIVER
AND PERCOLATION IN SANTA MARGARITA COASTAL BASIN

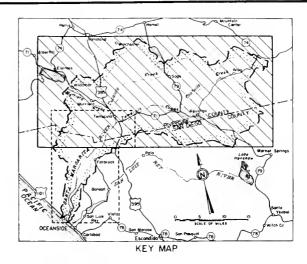



ROFILES OF HISTORICAL GROUND WATER LEVELS SANTA MARGARITA COASTAL BASIN




ROFILES OF HISTORICAL GROUND WATER LEVELS SANTA MARGARITA COASTAL BASIN





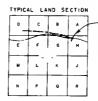
LEGEND

- HYDROGRAPHIC UNIT BOUNDARY HYDROGRAPHIC UNIT NUMBER

IRRIGATED LAND

IRRIGABLE LAND

31K DIVERSION LOCATION AND NUMBER


DIVERSION CONDUIT

5 LOCATION OF CONSUMPTIVE USE STUDY PLOT

LOCATION OF CLIMATOLOGICAL STATION

URBAN LANDS RECEIVING

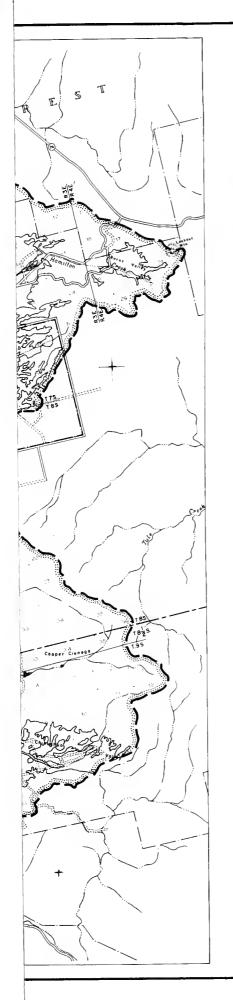
KEY TO NUMBERING SYSTEM

DIVERSIONS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, e.g., DIVERSION NUMBER TBS / R2E-22H IS SHOWN

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION

LOCATION OF DIVERSIONS


AND

IRRIGATED AND IRRIGABLE LANDS INLAND AREA

1953

SCALE OF MILES

LEGEND

WATERSHED BOUNDARY

HYDROGRAPHIC UNIT BOUNDARY

HYDROGRAPHIC UNIT NUMBER

IRRIGATED LAND

IRRIGABLE LAND

31K DIVERSION LOCATION AND NUMBER

DIVERSION CONDUIT

5 LOCATION OF CONSUMPTIVE USE STUDY PLOT

LOCATION OF CLIMATOLOGICAL STATION

URBAN LANDS RECEIVING WATER SERVICE

KEY TO NUMBERING SYSTEM

TYPICAL LAND SECTION

D C B A

E F G M

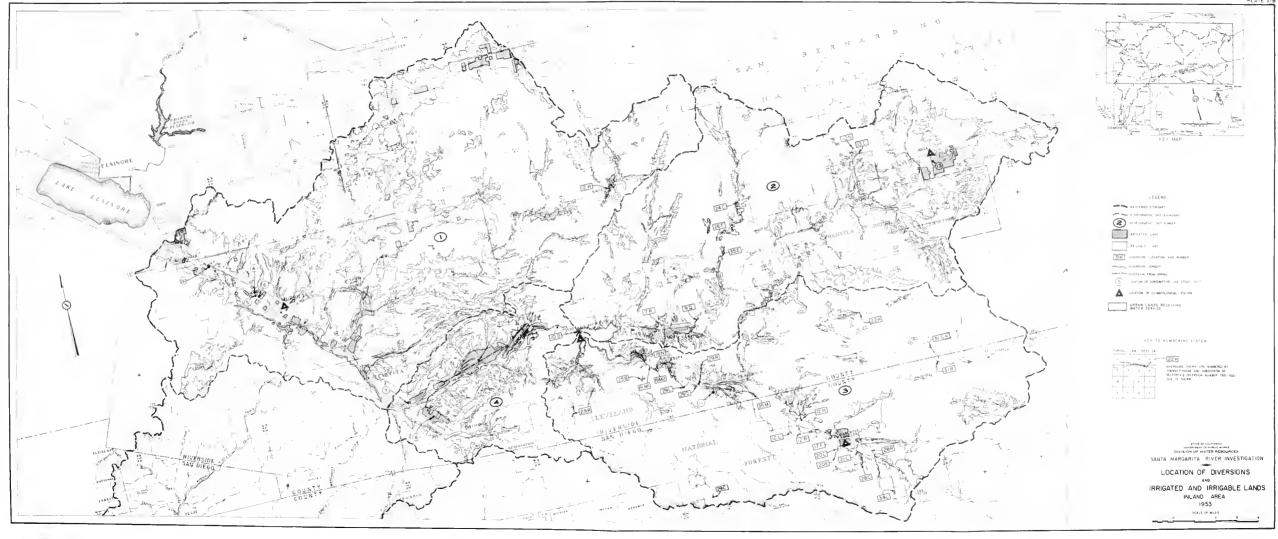
M L K J

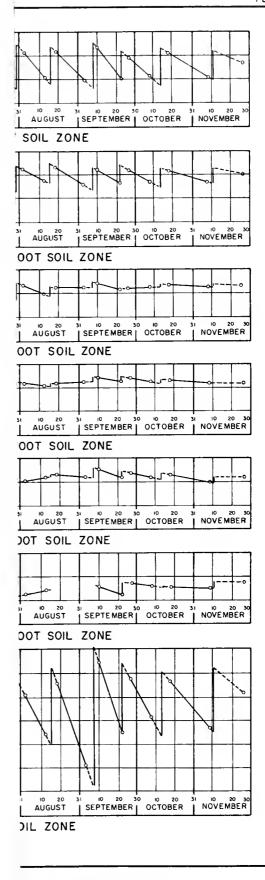
N P Q R

DIVERSIONS SHOWN ARE NUMBERED BY TOWNSHIP, RANGE AND SUBDIVISION OF SECTION, 8 9, DIVERSION NUMBER TBS / R2E-22H IS SHOWN

STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

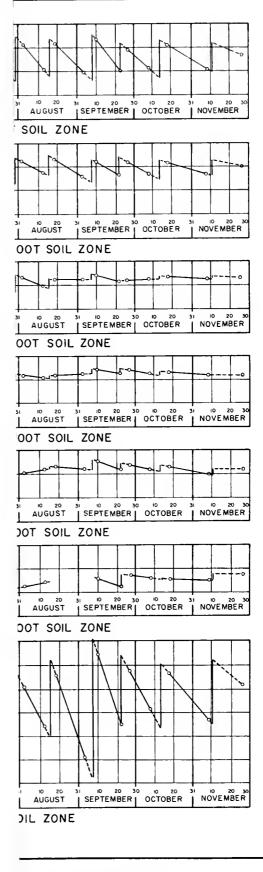
SANTA MARGARITA RIVER INVESTIGATION

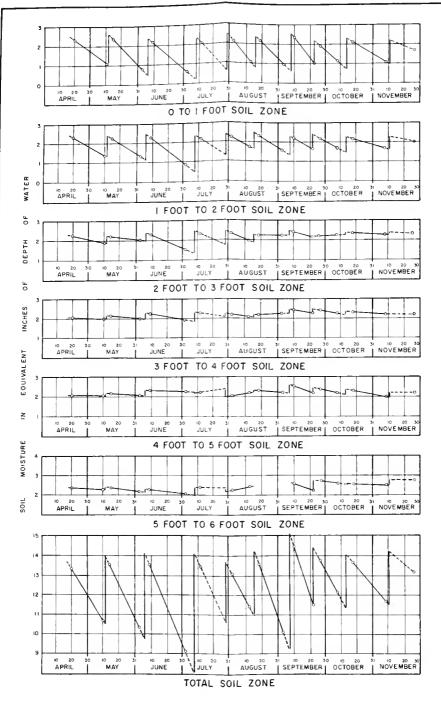

LOCATION OF DIVERSIONS


AND

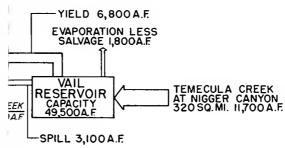
IRRIGATED AND IRRIGABLE LANDS
INLAND AREA

1953

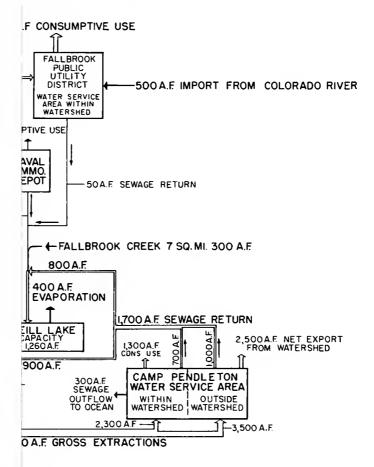

SCALE OF MILES



ETION AND ACCRETION TURE, MURRIETA VALLEY 3

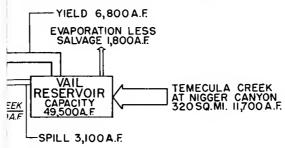


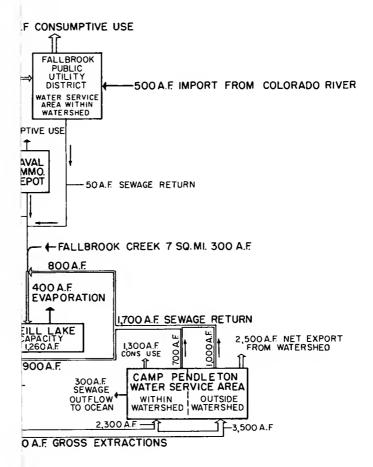
ETION AND ACCRETION TURE, MURRIETA VALLEY

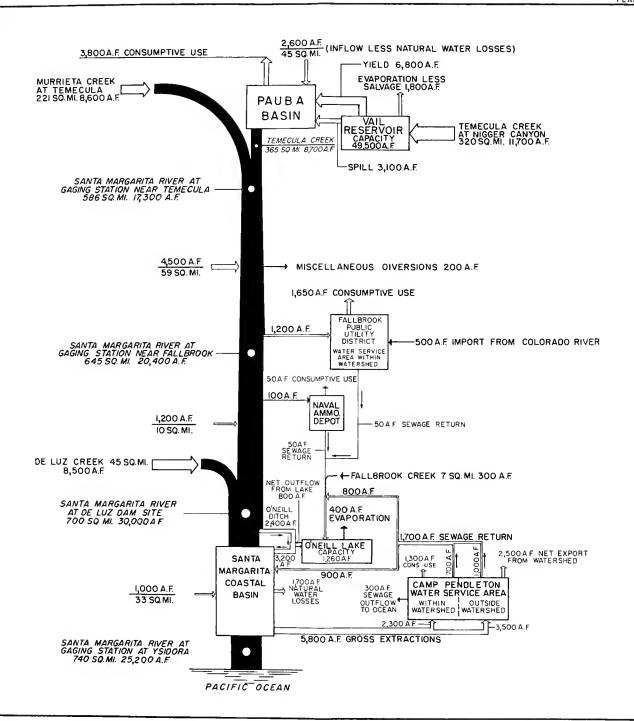


SOIL MOISTURE DEPLETION AND ACCRETION PLOT NO.2, IRRIGATED PASTURE, MURRIETA VALLEY 1953

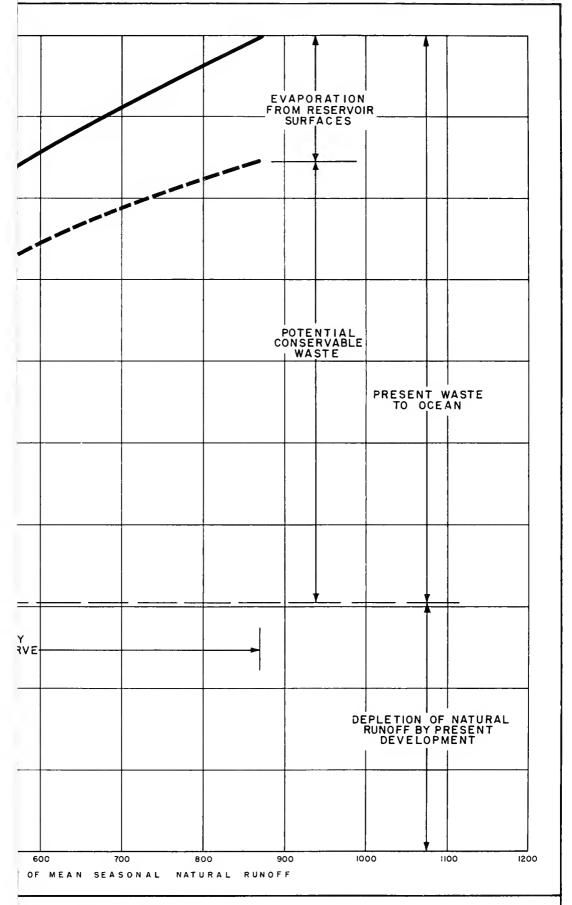
-(INFLOW LESS NATURAL WATER LOSSES)


ELLANEOUS DIVERSIONS 200 A.F.


OF MEAN SEASONAL RUNOFF UNDER PRESENT CONDITIONS PMENT, 1953

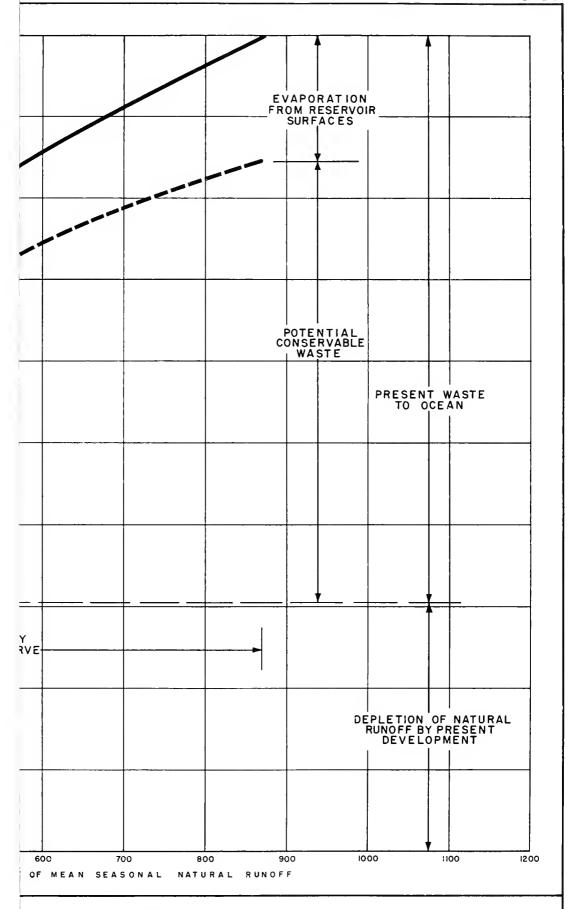

(INFLOW LESS NATURAL WATER LOSSES)

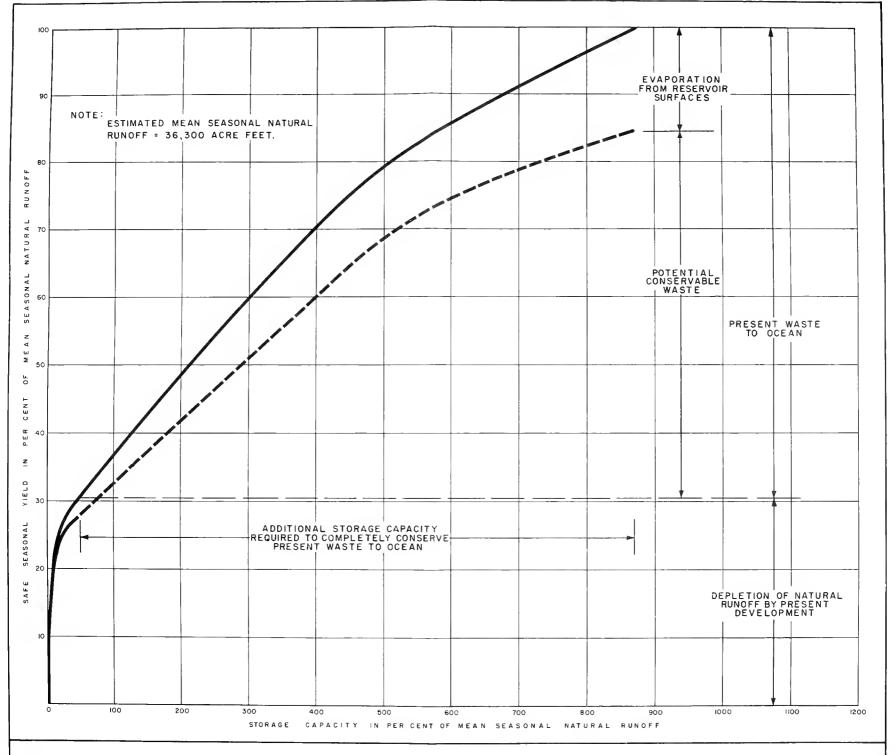
ELLANEOUS DIVERSIONS 200 A.F.

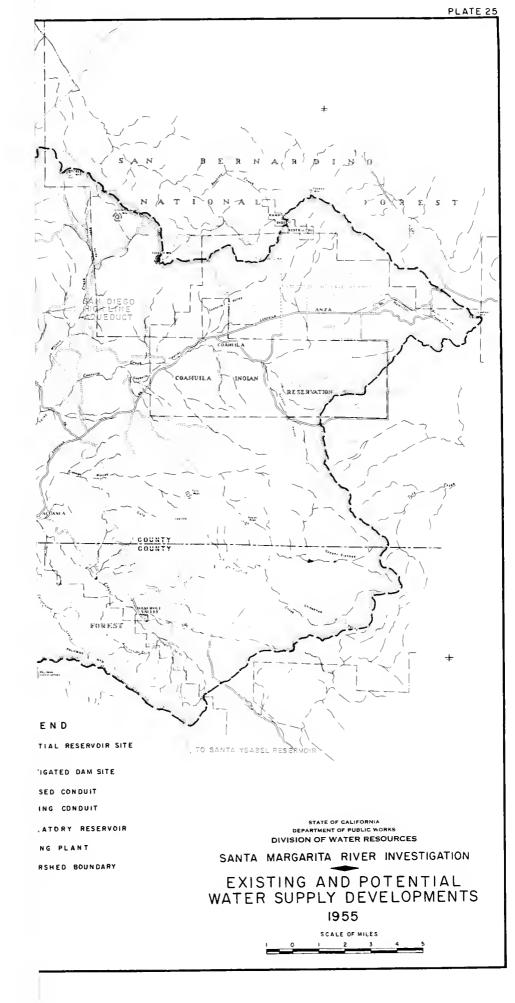


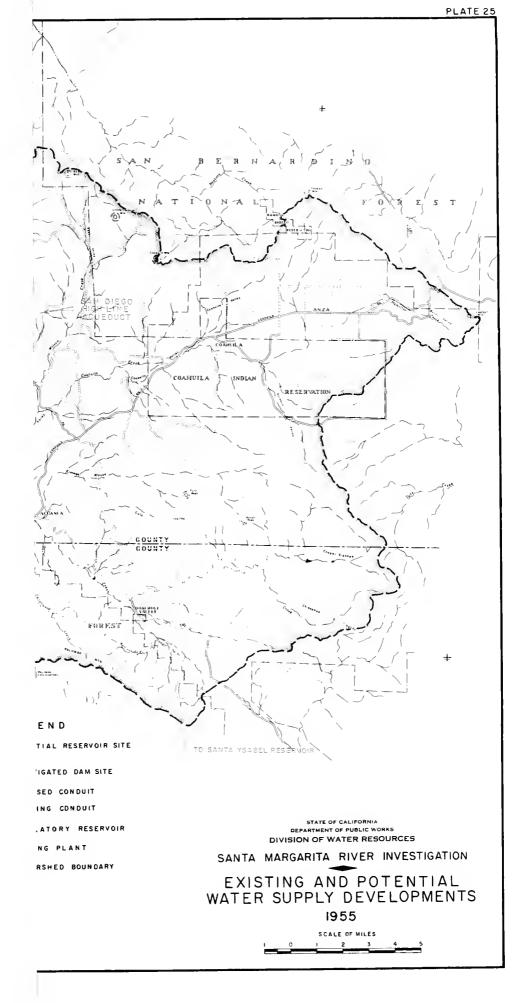
OF MEAN SEASONAL RUNOFF UNDER PRESENT CONDITIONS PMENT, 1953

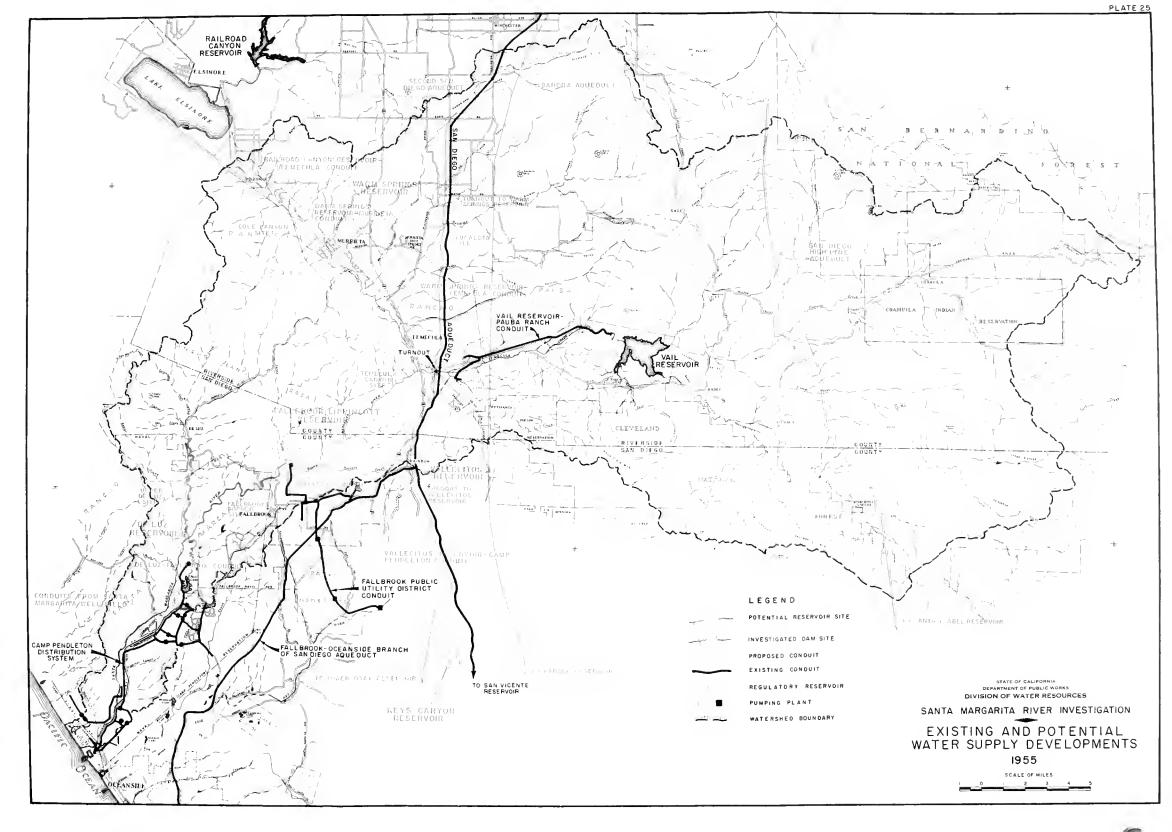
OCCURRENCE AND DISPOSITION OF MEAN SEASONAL RUNOFF IN SANTA MARGARITA RIVER UNDER PRESENT CONDITIONS OF DEVELOPMENT, 1953

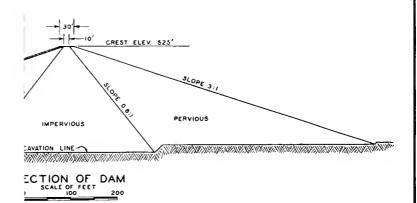



R SANTA MARGARITA RIVER AT YSIDORA

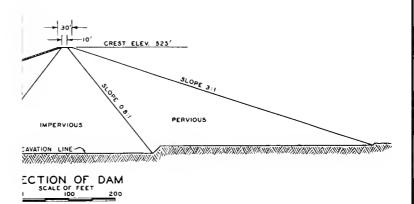



R SANTA MARGARITA RIVER AT YSIDORA




STORAGE DEVELOPMENT CURVE FOR SANTA MARGARITA RIVER AT YSIDORA

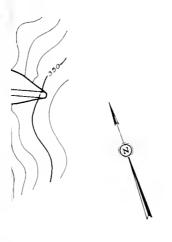
STATE OF CALIFORNIA
DEPARTMENT OF PUBLIC WORKS
DIVISION OF WATER RESOURCES

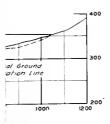

SANTA MARGARITA RIVER INVESTIGATION

FALLBROOK, LIPPINCOTT DAM

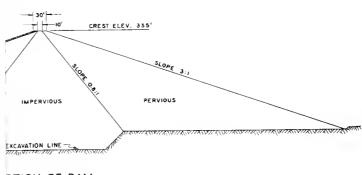
SANTA MARGARITA RIVER

RESERVOIR STORAGE CAPACITY OF 65,000 ACRE-FEET 1955


STATE OF CALIFORNIA OPPARTMENT OF PUBLIC WORKS


DIVISION OF WATER RESOURCES
SANTA MARGARITA RIVER INVESTIGATION

FALLBROOK, LIPPINCOTT DAM


SANTA MARGARITA RIVER

RESERVOIR STORAGE CAPACITY OF 65,000 ACRE-FEET 1955

MAC

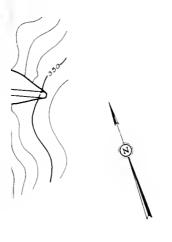
CTION OF DAM

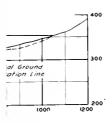
STATE OF CALIFORNIA

OEPARTMENT OF PUBLIC WORKS

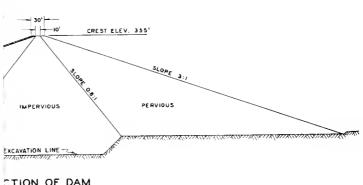
DIVISION OF WATER RESOURCES

SANTA MARGARITA RIVER INVESTIGATION


DE LUZ DAM


ΟN

SANTA MARGARITA RIVER RESERVOIR STORAGE CAPACITY OF 188,000 ACRE-FEET


1955

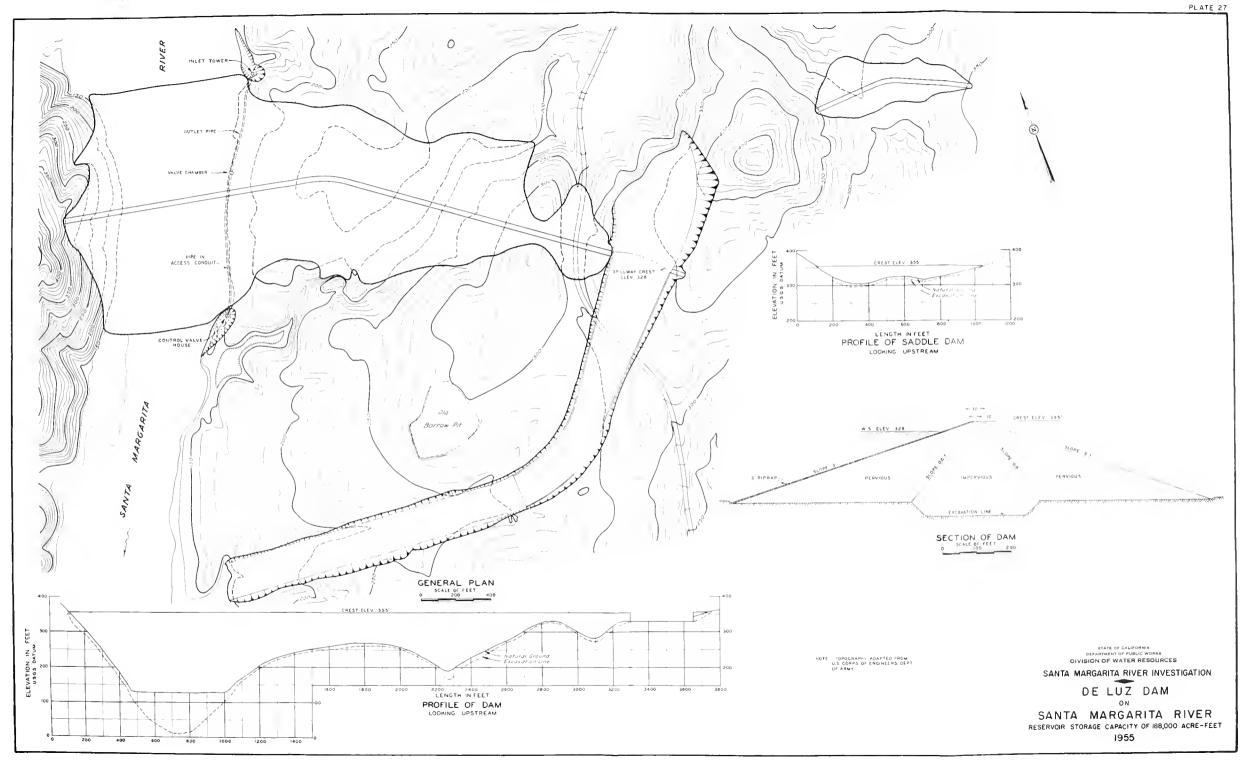
AM

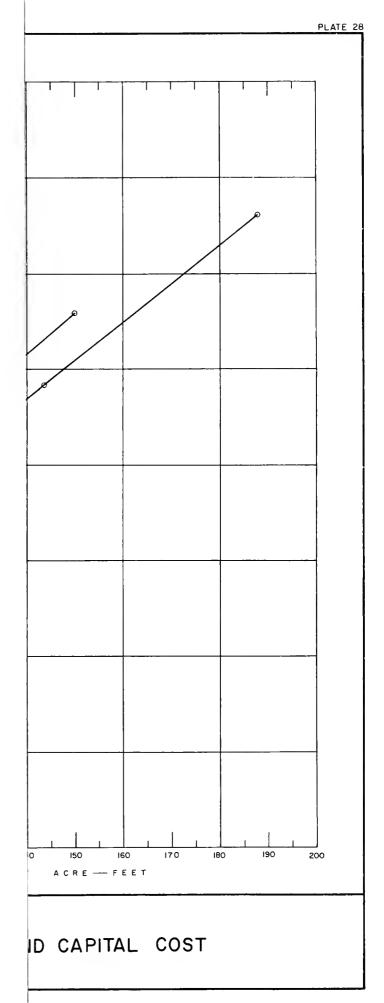
SCALE OF PEET 200

STATE OF CALIFORNIA

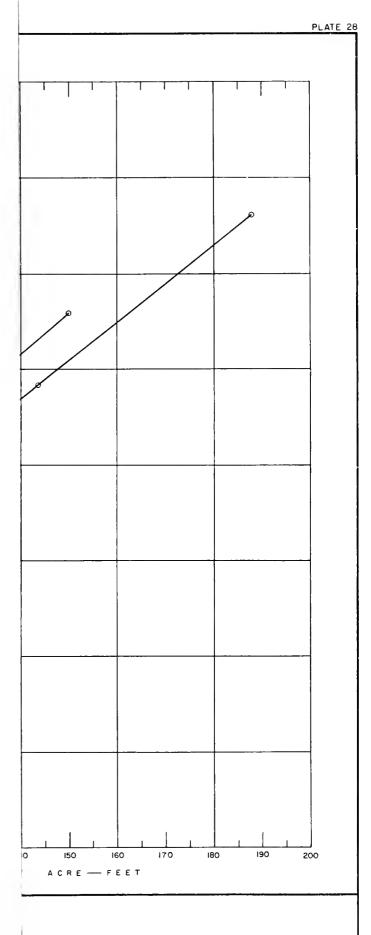
OEPARTMENT OF PUBLIC WORKS

DIVISION OF WATER RESOURCES

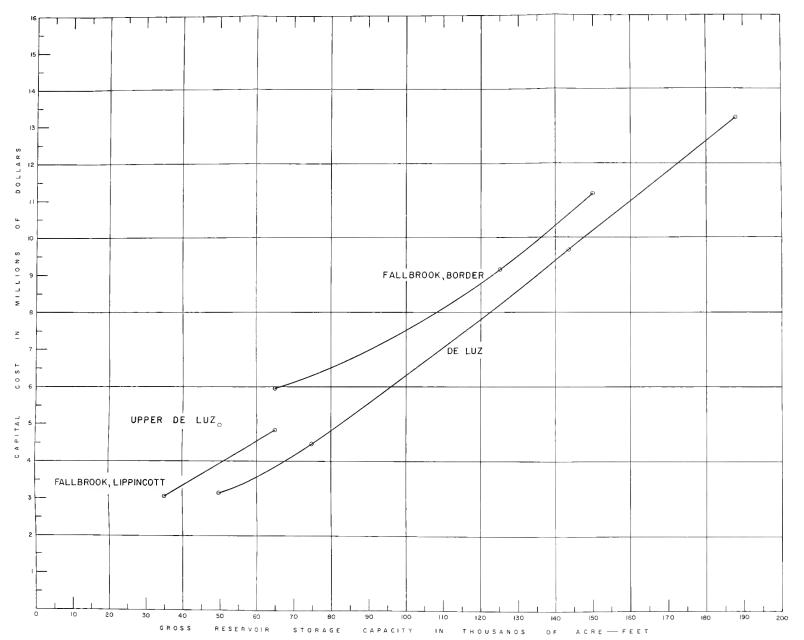

SANTA MARGARITA RIVER INVESTIGATION


DE LUZ DAM

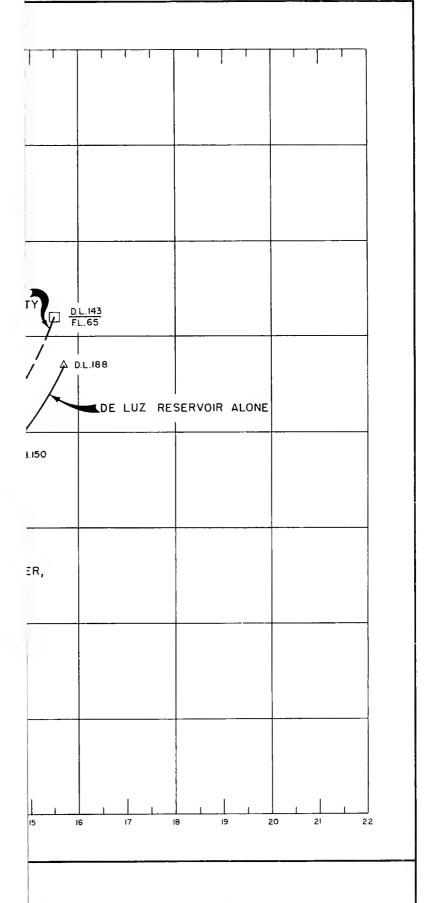
0 N


SANTA MARGARITA RIVER RESERVOIR STORAGE CAPACITY OF 188,000 ACRE-FEET

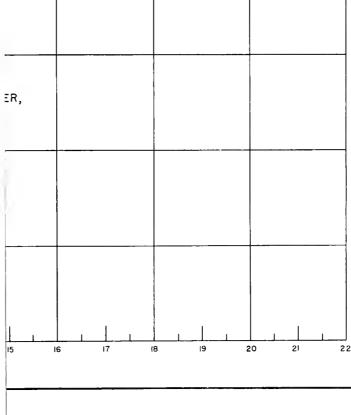
1955



		1
		3
		3

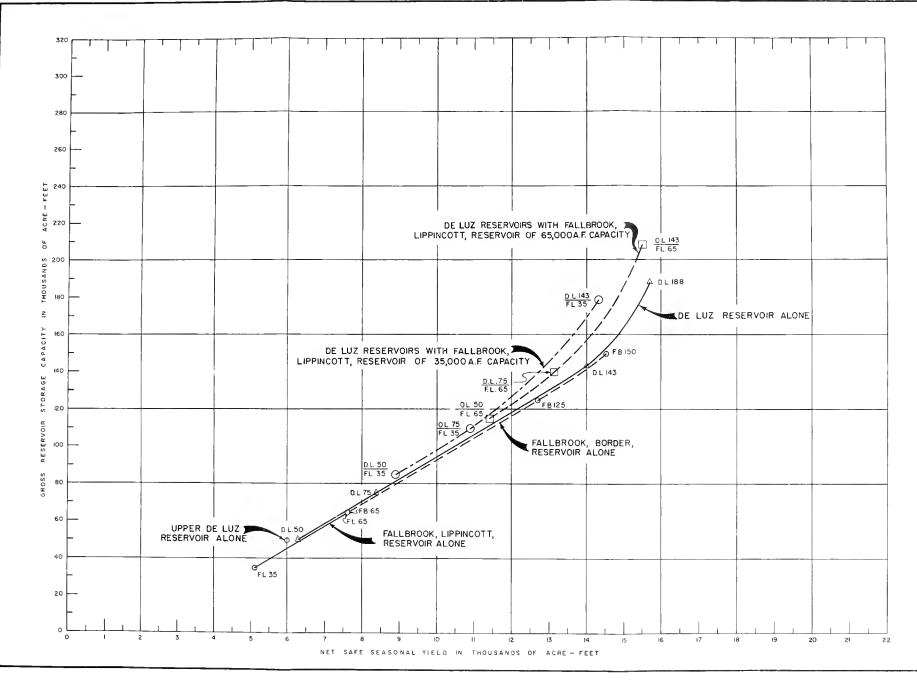


ID CAPITAL COST


RELATIONSHIP BETWEEN RESERVOIR STORAGE CAPACITY AND CAPITAL COST

DIVISION OF WATER RESOURCES

SAFE SEASONAL YIELD

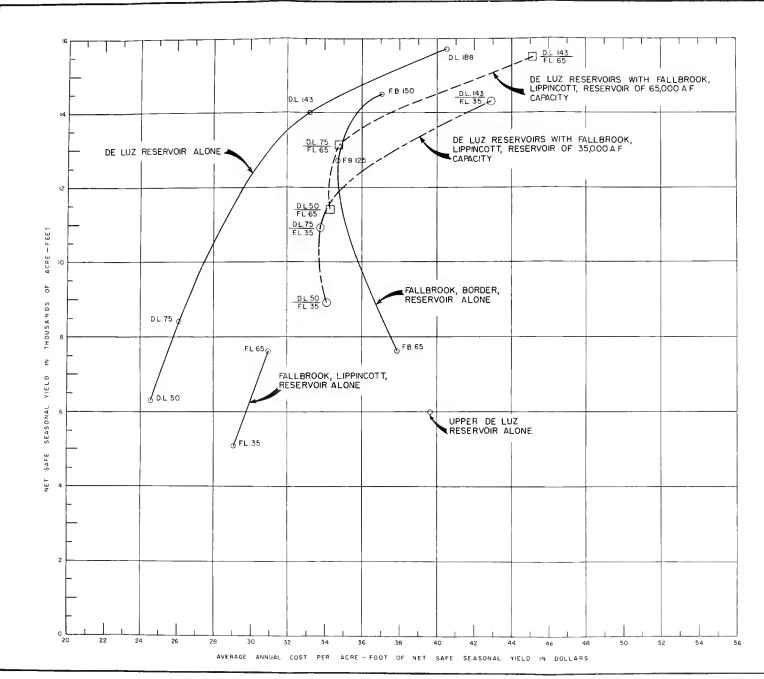

SAFE SEASONAL YIELD

LDE LUZ RESERVOIR ALONE

D.L.143 FL.65

A D.L.188

3.150



RELATIONSHIP BETWEEN RESERVOIR STORAGE CAPACITY AND NET SAFE SEASONAL YIELD

OF

UZ RESER	.servuir	UF 6	,,000 p	. F.		-
WITH FAL R OF 35,0	LBROOK, DOOA.F	•				
			_		-	
						-
	ı			ı		
5 48	50		52	54		56

RELATIONSHIP BETWEEN NET SAFE SEASONAL YIELD OF RESERVOIRS AND ANNUAL UNIT COST

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES

GOODWIN J. KNIGHT, Governor FRANK B. DURKEE, Director of Public Works HARVEY O. BANKS, State Engineer

Bulletin No. 57

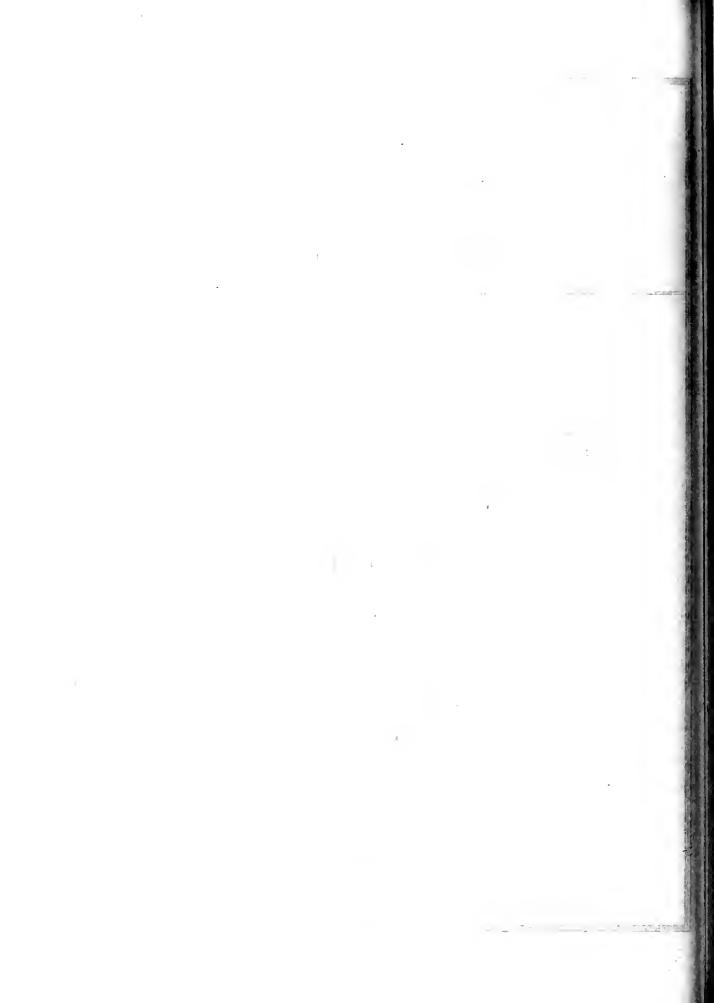
SANTA MARGARITA RIVER INVESTIGATION

Volume II
APPENDIXES

June, 1956

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES

GOODWIN J. KNIGHT, Governor FRANK B. DURKEE, Director of Public Works HARVEY O. BANKS, State Engineer


Bulletin No. 57

SANTA MARGARITA RIVER INVESTIGATION

Volume II
APPENDIXES

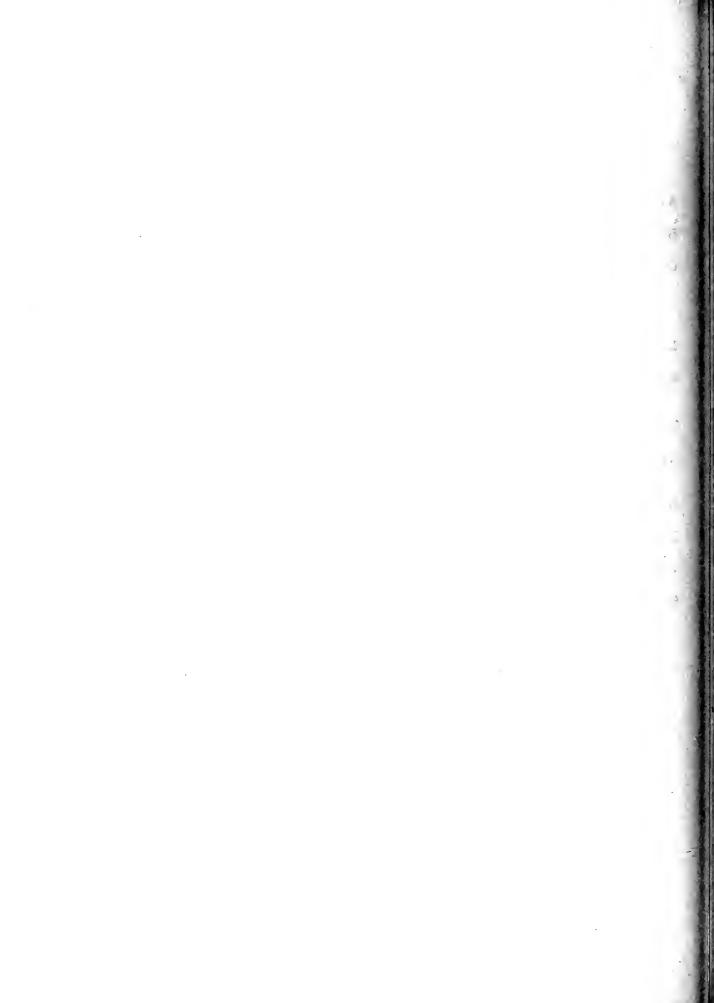
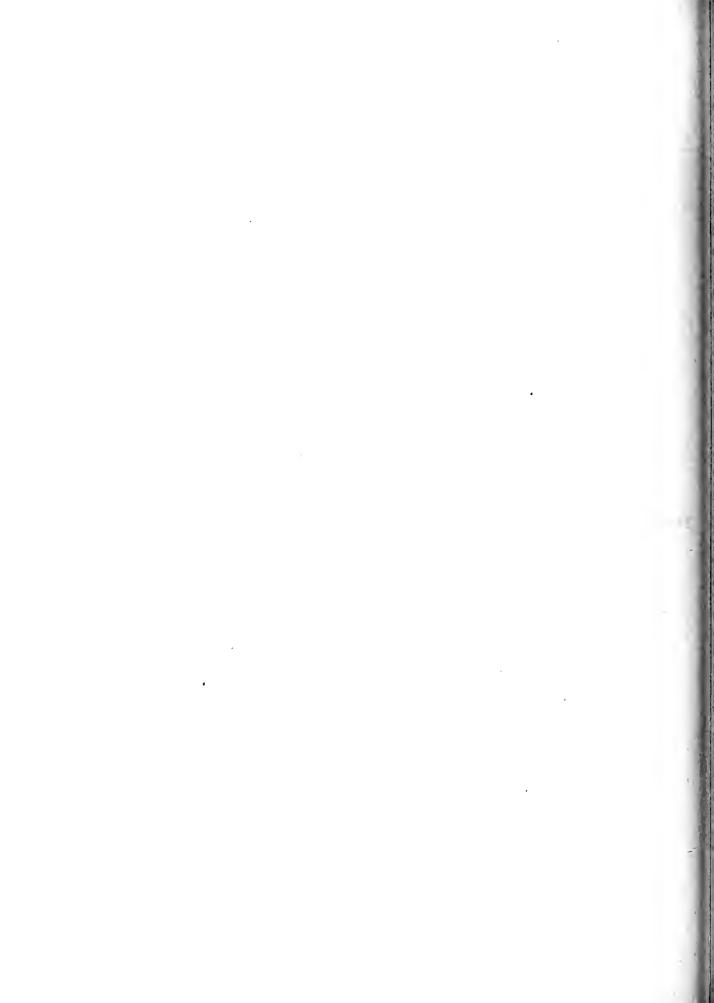

June, 1956

TABLE OF CONTENTS

APPENDIXES

		Page
Α.	Legislative Act Authorizing Investigation	A=L
В.	Geology	B-1
С.	"Consumptive Use of Water in the Santa Margarita River Basin, California", by Agricultural Research Service, United States Department of Agriculture, December, 1954	C-1
D.	Precipitation Records	D==1
Ε.	Records of Stream and Spring Discharge Not Previously Published	E-1
F.	Water Well Data	H-]
G.	Records of Depths to Ground Water at Wells In and Adjacent to Santa Margarita River Watershed	G-l
н.	Records of Mineral Analyses	H=l
I.	Reservoir Yield Studies	I-1
J.	Estimates of Cost	J-1
к.	Applications to Appropriate Water	K-1

APPENDIX A LEGISLATIVE ACT AUTHORIZING INVESTIGATION



APPENDIX A

LEGISLATIVE ACT AUTHORIZING INVESTIGATION

California State Legislature Chapter 3, Statutes of 1952 "Budget Act of 1952"

Item 262.5---For surveys and investigations of the water resources of the Santa Margarita Watershed including but not limited to hydrography, hydroeconomics, the use and distribution of water for agricultural and other beneficial purposes, including consideration of both surface and underground water conditions, and the availability of natural situations for reservoirs or reservoir systems for gathering and distributing flood or other waters, Division of Water Resources, Department of Public Works. \$150,000

APPENDIX B

GEOLOGY

APPENDIX B

TABLE OF CONTENTS

GEOLOGIC AND GROUND WATER FEATURES OF THE SANTA MARGARITA RIVER WATERSHED

		Page
l.	Introduction	B - 5
	Acknowledgments	B - 5
	Related Investigations and Reports	в- 6
	Scope of Geologic Investigation	B- 8
2.	Physiography	B-10
	Perris Block	B-12
	Palomar Block	B -1 3
	Elsinore Trough	B-14
	San Jacinto Mountains	B - 15
	Mesa de Burro	B-16
	Badlands	B - 16
	Streams . , ,	3-16
3.	Geologic Units ,	B-17
	Sedimentary Rocks	B-23
	Quaternary System	B-23
	Recent Alluvium	B - 23
	Residuum	B-25
	Terraces and Older Alluvium	B-26
	Undifferentiated Upper Pleistocene	
	Sediments	B-27
	Marine Deposits	B-28
	Marine and Terrace Deposits	8-23
	Tertiary System	B -2 9
	San Onofre Breccia	B -2 9

		Page
	La Jolla Formation	B - 29
	Martinez Formation	B - 30
	Igneous Rocks	B - 31
	Nigger Canyon Volcanics	B-31
	Santa Rosa Basalt	B - 32
	Roblar Leucogranite	B-32
	Woodson Mountain Granodiorite	B - 33
	Domenigoni Valley Granodiorite	B - 33
	Miscellaneous Granodiorites	B - 33
	Bonsall Tonalite	B-34
	Aguanga Tonalite	B-34
	San Marcos Gabbro	B-34
	Santiago Peak Volcanics	B -3 5
	Intrusives Related to the Santiago Peak Volcanics	B - 35
	Undifferentiated Igneous Rocks	B - 36
	Metamorphic Rocks	B-36
	Bedford Canyon Formation	B-37
	Paleozoic Schists and Quartzites	B-37
	Undifferentiated Metamorphics	B-37
4.	Structure	B - 38
5.	Geologic History	B-41
	Pre-Tertiary Time	в-41
	Tertiary-Quaternary Time	в-41
6.	Occurrence of Water	в-42
7.	Ground Water Basins	в-44
	Aguanga Basin	B - 51

		Page
	Anza Basin	B-54
	Domenigoni Basin	B - 55
	Murrieta Basin	в - 56
	Pauba Basin	B - 59
	Santa Margarita Coastal Basin	B - 63
8. Pro	cedure for Estimating Ground Water Storage Capacity	B - 65
	TABLES	
Table N	<u>o</u> •	
B - 1	Generalized Stratigraphy of Santa Margarita River Watershed	B - 19
B-2	Major Faults and Associated Features in Santa Margarita River Watershed and Adjacent Areas	в-40
B-3	Ground Water Basin Characteristics	B-46
B-4	Assigned Specific Yield Values	B-67
	PLATES	
Marga	Plates referred to in this appendix are bound in Sanrita River Investigation, Volume I, Text and Plates.	ta
Plate	No.	
2	Physiography	
6	Hydrographic Map	
9	Location of Wells	
10	Lines of Equal Elevation of Ground Water, Spring,	1927
11	Lines of Equal Elevation of Ground Water, Fall, 1	953
13	Areal Geology	
14	Geologic Sections A-A', B-B', and C-C'	
15	Geologic Sections D-D', E-E', and F-F'	
16	Geologic Sections G-G', H-H', and J-J'	
17	Geologic Sections K-K1 and L-II	

1. INTRODUCTION

This appendix presents the results of the geologic investigation of the Santa Margarita River watershed, conducted as a part of the Santa Margarita River Investigation, authorized by the California State Legislature in its Budget Act of 1952. Discussed herein are the geologic features of the watershed, with particular emphasis on the occurrence and movement of ground water, and methods and techniques employed in the geologic investigation.

Acknowledgments

The cooperation extended by the following in providing basic data relating to the geology of the Santa Margarita River watershed is gratefully acknowledged:

United States Geological Survey, Ground Water Branch

United States Navy, Office of Ground Water Resources, United States Marine Corps Barracks, Camp Pendleton

University of California at Los Angeles, Department of Geology

University of Southern California, Department of Geology Vail Company

Information on subsurface geology and ground water storage capacity was obtained from about 400 logs of wells supplied by a great many well drillers and property owners. The cooperation and assistance of these parties is also acknowledged with thanks.

Related Investigations and Reports

In preparation of this appendix, prior investigations and reports dealing with the Santa Margarita River watershed and areas adjacent thereto were studied. Those reports so employed are listed following, and are referenced in this appendix by numerical designations as shown:

- 1. Arnold, Ralph. "Topography and Fault System of the Region of the San Jacinto Earthquake". Seismological Society of America Bulletin, Vol. 8, pp. 68-73. 1918.
- 2. Blackwelder, Eliot. "The Recognition of Fault Scarps". Journal of Geology, Vol. 36, No. 4, pp. 289-312. 1928.
- 3. California State Department of Public Works, Division of Water Resources, South Coastal Basin Investigation. "Geology and Ground Water Storage Capacity of Valley Fill". Bulletin No 45. 1934.
- 4. California State Department of Natural Resources, Division of Mines. "Geologic Formations and Economic Development of the Oil and Gas Fields of California".

 Bulletin No. 118. 1943.
- 5. California State Water Resources Board. "Santa Ana River Investigation". Bulletin No. 15. 1956
- 6. Davis, W. M. "The Rifts of Southern California". American Journal of Science, Vol. 213, pp. 57-72. 1927.
- 7. Dudley, P. H. "Physiographic History of a Portion of the Perris Block, Southern California", Journal of Geology, Vol. 44, pp. 358-378. 1935.
- 8. Ellis, A. J. and Lee, C. H. "Geology and Ground Waters of the Western Part of San Diego County, California". United States Department of the Interior, Geological Survey, Water Supply Paper No. 446. 1919.
- 9. Engel, Rene. "Geological Map of the Lake Elsinore Quadrangle, California". California State Department of Natural Resources, Division of Mines. Bulletin No. 146, Plate 1. 1949.
- 10. Fraser, Donald M. "Geology of San Jacinto Quadrangle South of San Gorgonio Pass, California". California State Department of Natural Resources, Division of Mines. State Mineralogist Report, Vol. 27, pp. 494-540. 1931.

- 11. Hanna, M. A. "Geology of the La Jolla Quadrangle, California". University of California Publication, Department of Geological Sciences Bulletin, Vol. 16, No. 7, pp. 187-246. 1926.
- 12. Hanna, M. A. "Geology and Oil Possibilities of Southwestern San Diego County". California State Department of Natural Resources, Division of Mines. State Mineralogist Report, Vol. 35. 1939.
- 13. Hill, R. T. "The Rifts of Southern California". Seismological Society of America Bulletin. Vol. 10, No. 3, pp. 146-149. 1920.
- 14. Hurlbut, C. S., Jr. "Dark Inclusions in a Tonalite of Southern California". American Mineralogist, Vol. 20, pp. 609-630. 1935.
- 15. Jenkins, O. P. "Geologic Map of California". California State Department of Natural Resources, Division of Mines. 1938.
- 16. Larsen, E. S. "Batholith and Associated Rocks of Corona, Elsinore, and San Luis Rey Quadrangles, Southern California". Geological Society of America. Memoir 29. 1948.
- 17. Larsen, E. S. "Crystalline Rocks of the Corona, Elsinore, and San Luis Rey Quadrangles, Southern California".

 California State Department of Natural Resources,
 Division of Mines. Bulletin 159. 1951.
- 18. Larsen, E. S. and Keevil, N. B. "Radioactivity of the Rocks of the Batholith of Southern California".

 Geological Society of America Bulletin. Vol. 58, pp. 483-493. 1947.
- 19. Mann, J. F. "Late Cenozoic Geology of a Portion of the Elsinore Fault Zone, Southern California". University of Southern California Thesis. 1951.
- 20. Merriam, R. H. "Ground Water in the Bedrock in Western San Diego County". California State Department of Natural Resources, Division of Mines. Bulletin 159, pp. 117-128. 1951.
- 21. Miller, F. S. "Petrology of the San Marcos Gabbro, Southern California". Geological Society of America Bulletin. Vol. 48, pp. 1397-1426. 1937.
- 22. Miller, W. J. "Some Features of Faulting in Southern California". Journal of Geology, Vol. 48, pp. 385-420. 1940.

- 23. Reed, R. D. "Geology of California". America Association of Petroleum Geologists. 1943.
- 24. Sampson, R. J. "Mineral Resources of a Portion of the Perris Block, Riverside County, California". California Journal of Mines and Geology, State Mineralogist Report No. 31, pp. 507-521. 1935.
- 25. Sutherland, J. C. "Geological Investigation of the Clays of Riverside and Orange Counties, Southern California". California State Department of Natural Resources, Division of Mines. State Mineralogist Report, Vol. 31, No. 1, pp. 51-87. 1955.
- 26. Waring, G. A. "Ground Water in the San Jacinto and Temecula Basins, California". United States Department of the Interior, Geological Survey, Water Supply Paper No. 429. 1919.
- 27. Woodford, A. O. "The San Onofre Breccia, Its Nature and Origin". University of California Publication, Department of Geological Science Bulletin. Vol. 15, No. 7, pp. 159-280. 1925.

Scope of Geologic Investigation

The objectives of the geologic investigation were to ascertain the water-bearing characteristics of the various rock types found within the Santa Margarita River watershed; to determine the hydrologic significance of the prominent structural features of the area; to determine the mode of occurrence, movement, and ultimate destination of ground water; and to locate and evaluate the characteristics of water-bearing deposits forming the several ground water basins identified in the water-shed for the purpose of preparing estimates of the storage capacity thereof.

In order to accomplish the foregoing objectives, the areal geology was mapped, water wells in the area were located, measurements of depth to ground water and mineral analyses of surface and ground water were made and evaluated, all available

well logs were collected and analyzed, and pump tests were conducted to determine characteristics of the water-bearing materials. Geologic sections were drawn to show the nature and configuration of the subsurface deposits. In this regard, a peg model was also constructed to assist in the determination of the subsurface geology in a portion of the area. In field mapping, particular care was given to the location of boundaries of water-bearing rocks. The area investigated was confined to the watershed of the Santa Margarita River except in those instances where adjacent areas required investigation in order to properly interpret the geology of the watershed.

The geology of the Santa Margarita River watershed is depicted on areal geology maps, Plates 13A and B.

vestigation was primarily a study of geology as related to water resources and more particularly to the ground water supply, geologic structure of the nonwater-bearing rocks was not intensively investigated. Work in this regard generally extended to field checking of the results of previous investigations; however, those faults and fault zones which appeared to have a direct bearing on the occurrence and movement of ground water were given more thorough study. The discussion of historical geology and of the older nonwater-bearing rocks is of a general nature and is presented in brief in this appendix. However, rocks of Quaternary age, which are the important sources of ground water in the watershed, are described in detail herein.

The results of the geologic investigation of the Santa Margarita River watershed are presented and discussed in the following sections of this appendix:

- 2. Physiography
- 3. Geologic Units
- 4. Structure
- 5. Geologic History
- 6. Occurrence of Ground Water
- 7. Ground Water Basins
- 8. Procedure for Estimating Underground Storage Capacity

PHYSIOGRAPHY

River watershed are shown on physiography maps, Plates 2A and B. Plate 2A depicts the coastal portion of the watershed, and Plate 2B similarly depicts features of the inland area or that portion of the watershed landward from the coastal mountains. The area of investigation lies within the Peninsular Ranges geomorphic province as defined by Jenkins4. To the north are the Transverse Ranges, including the San Bernardino and Little San Bernardino Mountains, and to the east is the Colorado Desert. The San Jacinto Mountains lie northeast of the area. Between the San Jacinto and Santa Ana Mountains, which border the area to the west, is the relatively stable, eroded Perris block. The Elsinore Mountains, which lie southwest of Lake Elsinore, the Santa Rosa plateau, and the Palomar block, including Agua Tibia Mountain and Aguanga Mountain, are included in the

areas of greater relief and higher elevation, and form the ridge separating the afore-mentioned coastal and inland areas. Large areas of the coastal slopes southwest of the ridge consist of rolling hill lands, with prominent elevated coastal terraces bordering these lands along the coast. Within the Santa Margarita River watershed, these terrace lands are known as Stuart and South Mesas.

are primarily the result of faulting however; these features have been somewhat modified by erosion. The two important structural features of the Santa Margarita River watershed are the Elsinore and San Jacinto fault zones. All the important faults in the area are associated with these zones and trend in a northwesterly direction. Fault zones have had a marked effect upon drainage and also form boundaries of several ground water basins.

A major physiographic feature of the province is the deep northwesterly trending Elsipore trough, or graben, formed by faults of the Elsipore fault zone. Lake Elsipore occupies the central portion of this trough. The portion of the trough within the Santa Margarita River watershed is referred to herein as the Murrieta graben. The Wildomar fault, Glen Ivy fault, and Willard fault zone are within the larger Elsipore fault zone.

The general physiographic features of the Santa Margarita River watershed and adjacent areas are discussed in this section under the following headings: Perris Block,

Palomer Block, Streams, Elsinore Trough, San Jacinto Mountains, Mesa de Burro, and Badlands.

Perris Block

The Perris block, which lies between the San Jacinto fault zone and the Elsinore trough, is a relatively stable eroded surface of crystalline rock cut by interconnected valleys. The most obvious feature of the block which has behaved as a single structural unit, is the remarkably constant elevation of the valley, which has resulted from slow, rather uniform erosion of highland masses and consequent building up of the valley fill. The western and southern rims of the comparatively high-lying Perris block are being slowly eroded eastward by streams which drain into the Elsinore trough. Within the Santa Margarita River watershed, this process is effected by tributeries of Murrieta Creek. The trenching of alluvial deposits has resulted in the formation of terraces near the highland areas.

Many physiographic evidences of faulting are present in the Perris block, the most prominent of which is the scarp of the San Jacinto fault along the northeast boundary (outside the area of this investigation). Other evidences of faulting include fault blocks, truncated spurs, sag ponds, small scarps, and alignment of springs.

The following presents a plausible interpretation of the more recent physiographic history of the Perris block. In the late Pleistocene time active streams cut V-shaped canyons on a surface developed by earlier erosion. Drainage then was probably to the northeast. Movement on the San Jacinto fault zone initiated a rise of the land mass northeast of the fault.

Streams leaving the area to the northeast were able to maintain their positions for a time, aggrading in the canyons to the southwest and downcutting across the rising fault block. This aggradation was the beginning of the process of alluviation of the Perris block which has continued to the present time. Ultimately, the antecedent streams were no longer able to maintain their courses across the fault and the Perris block became a closed basin with interior drainage. This basin continued to fill with detrital material from the surrounding highlands, especially the San Jacinto Mountain block, which was rising with the same movement that blocked the northeast-trending drainage. As the valleys were filled toward their present level, gradients continually became gentler and streams slower moving. At some time in the late stages of the period of filling, water began to spill over the divide to the southwest into the Elsinore trough, and the cutting of Railroad Canyon on the San Jacinto River began.

Palomar Block

The Palomar block is a large mass, or horst, of plutonic igneous and metamorphic rocks which has been elevated between two faults within and parallel to the Elsinore fault zone. The summit of this horst is a surface of high elevation but low relief. Similar erosion surfaces stand at a lower elevation on both flanks of the block, which suggests an uplift in two stages. Although these uplifted areas are now undergoing vigorous downcutting, much of the area of low relief is still apparent.

Elsinore Trough

The Elsinore trough is a complex northwesterly-trending graben bounded on the northeast by the Perris block and on the southwest by the Elsinore Mountains and Santa Rosa plateau. The trough includes the entire valley extending from Corona southeast to beyond Temecula. Lake Elsinore, which occupies the central portion of this trough, is surrounded by fault scarps on all but its southeast side. The scarp of the Glen Ivy fault, a discontinuous line of low hills, bounds the lake on the northeast. On the southwest, the lake is bounded by the Willard fault zone at the base of the Elsinore Mountains, which attain elevations of over 3,500 feet above sea level. There may be no fault immediately northwest of the lake, but between one and two miles farther northwest, a northerly-trending cross fault lies at the base of the mountains. Alluvial debris has accumulated to considerable depth between the Glen Ivy and Wildomar faults, the major inner faults of the Elsinore graben.

The portion of the Elsinore trough previously referred to as the Murrieta graben extends from near the southeastern end of Lake Elsinore southeast into Wolf Valley. It is a narrow depression about 18 miles long, averaging about one mile in width, and is included between the Wildomar fault on the northeast and the Willard fault zone on the southwest. The basement surface in the graben dips southeast, and the thickness of sedimentary fill increases in that direction.

A brief physiographic history of the area follows:

During the period in which the Elsinore trough has
been sinking, it has become deeply alluviated by streams

draining the surrounding highlands. During this time the region may have been occupied by streams similar to Murrieta Creek. At other times the drainage may have been ponded into lakes similar to the present Lake Elsinore.

Lake Elsinore is only a temporary feature and its destruction may come by lowering of either the northwest or southeast divide by faulting, warping, or headward erosion of Temescal Wash northwest of the Lake, or of Murrieta Creek, or by filling of the Lake with sediment.

San Jacinto Mountains

The San Jacinto Mountains are a recently elevated mass of crystalline rock, the highest point of which is San Jacinto Peak, which rises to a height of 10,831 feet above sea level about 14 miles north of the Santa Margarita River watershed boundary. Elevations generally decrease gradually to the west, moderately to the southwest and south, and abruptly to the north and east. Some old erosion surfaces are preserved at high elevations southeast of San Jacinto Peak. The streams draining the southwest slope of the block generally occupy deep, steep-walled canyons. Gradients of many of these increase with decreasing elevation, indicating very recent strong uplift along the northwesterly trending mountain front faults, including San Jacinto fault, which crosses the extreme northeast portion of the watershed.

Mesa de Burro

Mess de Burro, the most prominent of several similar features within the Santa Rosa plateau, is located about four miles southwest of Murrieta, and is capped by a series of thin flat-lying flows of basalt. The total thickness of basalt does not exceed 100 feet. The basalt consists of thin regular flows and ends abruptly in steep peripheral cliffs. The thinness and regularity of the flows are indicative of a very fluid magma which enabled it to spread over a large surface area. These flows were once quite extensive, but now only isolated remnants remain.

Badlands

Badland topography is displayed on the prominent northwest-trending ridge near Vail Reservoir, which separates Nigger and Aguanga Valleys on the southwest from Lancaster Valley on the northeast. It is marked by barren, dissected, poorly consolidated sediments. The material comprising the badlands is medium-grained arkosic sediment, rather than silt and clay which are more commonly found in such areas.

Streams

A great deal of the physiographic history of the region can be determined by a study of the present streams. Changing stream gradients are a good indication of tilting and this source of evidence has been used in determining the sequence of events within the investigational area. Stream

piracy or capture is a frequent occurrence in fault block regions such as this. The capture of Murrieta and Temecula Creeks by the Santa Margarita River, is an example of this phenomenon. A more detailed account of this capture is described in Section 5, entitled "Geologic History".

Obsequent streams flowing down the northeasterly faces of the Elsinore Mountains and the Santa Rosa plateau have a great slope advantage over the consequent streams and are, thus, eroding more rapidly headward. The divides are moving to the west and as a result the consequent streams will be beheaded. Most of the bedrock canyons are now occupied by subsequent streams which are superposed along fault lines and the formation of almost all these canyons are directly or indirectly the result of superposition. The streams of particular interest in this report are the following: Santa Margarita River, an antecedent stream in the lower reaches and a consquent stream near its headward portion in Temecula Canyon; Temecula Creek which is almost entirely subsequent; and Murrieta Creek, a subsequent stream.

3, GEOLOGIC UNITS

Ground water occurs in several distinct rock types within the investigational area. Almost all of the readily extractable ground water is stored in the larger alluvium filled valleys, which are themselves distinctive in size, shape, depth, and permeability. The material comprising the valley fill is generally unconsolidated to poorly consolidated water-bearing alluvium of variable thickness. The alluvium

is composed primarily of continental flood plain and fan deposits, with some interbedded lagunal sediments in the basins which border the coast. Limited quantities of ground water are found in the semiconsolidated Pleistocene sediments, which flank several of the alluviated valleys and form permeable collecting areas for the sediments underlying the valleys. Minor quantities of water are also stored in the fractured and jointed volcanic and crystalline rocks, within fault zones, and in the areas of decomposed granitics.

Forming the relatively impermeable sides and bases of many of the valleys are materials classed herein as non-water-bearing. This group ranges from pre-Cretaceous to Tertiary in age and comprises crystalline, igneous, metamorphic, and volcanic rocks plus impervious or slightly permeable sedimentary formations. Deep strata saturated with saline or connate waters are also included in this category.

Described in this section are the various geologic units found in the Santa Margarita River watershed. Discussion presented hereinafter for each unit is set forth under each broad rock type; sedimentary, igneous and metamorphic. Pertinent data are given for each unit including location, mode of occurrence, description, origin, and water-bearing characteristics. These data are also summarized in Table B-1, "Generalized Stratigraphy of Santa Margarita River Watershed". The locations of geologic units are shown on Plates 13A and B.

TABLE B-1

GENERALIZED STRATICRAPHY OF SANTA MARGARITA RIVER WATERSHED

Geolog System	Geologio age em : Series	Geologic unit	Symbol	: General obaracter	. Water-bearing characteristics
		Recent alluvium	Qa1	Sedimentary Rocks Walley and basin fill consisting of boulder beds, gravel, sand, silt, and olay. Includes the present	Principal aquifers in the region. Fine grained deposits usually low in permeability but may con-
	Recent			streem channel and beach deposits. Woouples the valley of the older streams and veneers the floors of the valleys of the younger streams. Also occurs in the highland basins.	tain unconfined water. Coarser grained deposits highly permeable, saturated below water table, and readily permit percolation to water table or underlying deposits. Tapped by many wells. Recharged by percolation of runoff, rainfall, and return irrigation waters.
		Residunc	ð	The friable, porous, argillaceous material resulting from the disintegration of igneous granitic phases of erystalline complex. Residual or may have been transported a short distance. Localized valley and basin fill.	A locally important source of ground water in the highland areas. Permeable and water-bearing. Permeability largely a function of degree of weathering. Recharge principally by percolation of rainfall and runoff.
Quaternary	Pleistocene to Recent	Terraces and Older allufum	Otos	Terraces often called older alluvium, name being derived from its topographic position and age. Gtoa regions are presently being eroded and dissected by perennial, and ephemeral streems forming rolling topography; sediments characterized by reddish-brown soils which are similar but more indurated than Gal.	Below the zone of weathering this unit is similar to Gal and may contain strate of unveathered sand and gravel of moderate permesbility. Generally Gtom has a low permeability and wells tapping the formation are limited mostly to domestic use.
	Upper Pleistocene	Undifferentiated Upper Plaistocene sediments	sd o	Includes Temecula arkose, Dripping Springs fanglomerate, and Pauba formation, which are continental deposits of subaerial and lacustrine origin. Consists of unconsolidated to semiconsolidated clays, silts, sands, gravels, conglomerates, and minor marl, caliche, limestone, and tuff beds. Color variable to white, buff, brown, or red. Unconformable relationships with overlying formations and with each other.	Relatively few wells obtain water from the un differentiated upper Pleistocene sediments probably because of low yield and nonirrigable terrain.
	Pleistosene	Marine deposits	8	Marine deposits exposed along coast near mouth of Santa Margarita River. Principally shallow water deposits of gravels, sands, silts, and clays. Chiefly littoral, and estuarine or bay deposits but may include considerable quantities of brackish water sediments.	These deposits are situated above the water table and although no known wells tap them as a source
		Marine and terrace deposits	O tm	Marine and terrace deposits differentiated from Qm by topographic position and peculiar reddish-brown color. Qtm contains a high percentage of clay due to breakdown of original materials.	of supply they readily transmit water to under- lying materials.

Geologic System	icage Serias	: Geologic	Symbol	General character	Water-bearing characteristics
				Sedimentary Rosks (continued)	
	Middle	San Onofre bresoia	Traso	Comprises beds of well-comented fragments of pobbles, cobbles, and boulders up to mine feet in diemster. Contains strata of comented sand, sandy shale, and shele, the finer factor being more prominent near the base. At shallow depths, the unweithered outerope resemble soncrete.	Considered to be impermesble and nonvater. bearing due to its tight cementation.
Tertlary	Bocone	La Jolle	F. £0 \$£	Includes three manbers: Delmar send, fortoy send, and Rose Canyon shale. Delmar, lowest member, comprises greenish-gray or reddish sandstane, or sandy shale. Often lenticular and exhibits oroser bedding. Torrey sand comprises white to light gray or brown, massive, clean sand. Rose Canyon shale consists of gray or brown shale, allty mudstones, and minor amounts of conglomerate.	Torrey sand is highly permeable and permits porsolation of rainfall and runoff. Generally situated above the water table but readily yields water when acturated. Sandatone phase of the Delmar sand is permeable and watermaching. Shale members generally lot in permeability, but may yield limited amounts of water. Muchicones, conglomerates, and limestone of the Rose Ganyon member are relatively impermemblo and nonwater-bearing.
	Paleocene	Martinsz	2 E E	Martinez beds found underlying the Santa Rose beself-Tsrv, which cape Mesa de Burro. The Tmz charecterized by arkosic sands and gravels which are well induseted, hard, and forruginaus where baked by overlying basalt.	The stratigraphic position of the Martines, below the basalt, and its low permeability account for the lack of ground water in this formation. Although the basalt is fractured it appears unlikely that sediments of the Martines can be recharged by water seeping through the basalt.
				Igneous Rooks	
Quaternary	Pleistogene or Recent	Nigger Canyon volcanics	Que	Includes tuffs, agglomerates, dikes, and flows, which outerop near the mouth of Nigger Canyon. These volcenies were extruded from a series of northeast trending fractures. Bombs of seprineous baselt, up to several feet across, are contained in the agglomerate.	The formation is impesmeable and ponwater-bearing except along losalized fractures and joints.
Tertlary	Plicene	Santa Rosa basalt	Tsrv	Found capping Mesa de Burro. The volcanios are almost horizontal and rest upon a nearly flat eurface of Tertiary sediments (Tmz) or basement rooks. Primarily an olivine basalt, oharacterized by a reddish-brown color.	The basalt is impervious and nonwater-bearing.

			GENERAL	GENERALIZED STRATIGRAPHY OF SANTA MARGARITA RIVER WATERSHED (continued)	
Geologio age System : Sel	Series	: Geologic : unit	Symbol	General character	. Water-bearing characteristics
				Igneous Rocks (continued)	
		Roblar leuco- granite	Ϋ́	Shows poor outcrop and the exposures are of a frieble, sandy nature. Where it is better exposed, it is obaracterized by small, angular blocks. Boulders of disintegration are rare. Dikes of the Roblar are found outting the Woodson Mountain granodiorite. The leucogranite is flesh colored, uniform in character and applite in appearance.	Several wells of limited capacity tap the leucegranite as a source of supply. In general, however, this formation is impermeable and nonwater-bearing.
		Woodson Mountain granodiorite	Куш	Granodiorite outorops most prominently in the high- lands southwest of Murrieta Valley and intrudes the Bonsall tonalites. It is characterized by light- colored outorops and gneissoid structure. It ex- hibits coarse texture and contains phenocrysts of quartz.	Although this formation is generally impermeable and nonwater-bearing, it supplies a few small wells which tap fractures of fissures in the rock.
		Domenigoni Valley granodiorite	Kdv	A number of small bodies of granodiorite have been mapped in the Domenigoni Valley area. They range from tonalite to granodiorite and resemble Bonsell tonalite, but are lighter colored and finer grained. The rooks crop out as boulders of disintegration and contain abundant oriented dark inclusions.	The grancdiorite is generally impormeable and nenwater-bearing, except along joints and fissures, a few small wells tap this rock for their supplies.
o revacecus		Miscellaneous granodicrites	Ктд	Small outerops, poorly developed bouldars of dis- integration, a light gray color, and medium grain size are obstracteristics of this unit.	No water is contained in this unit except limited quantities which may be stored in the joints and fissures.
		Bonsall tonalite	Ş	Characterized by the abundance of oriented inclusions and schlieren. Younger than the San Marcos gabbro, as it contains inclusions of the gabbro. Intruded by the Woodsen Mountain granchiorite. It is a medium grained rock ranging from light to dark gray depending on the proportion of dark minerals present, hornblende being the most promient.	This formation is generally nonvater bearing. Locally, however, small wells tap the tonalite as a source of supply. In these cases water is stored along joints and fissures.
		Aguanga tonalite	Kat	A biotite rich quartz diorite having books of mica up to 5 mm. in thickness. The biotite did not exidize readily and imperted a definite blackish color to soils made up of the disintegrated rock. It is best exposed in the horst north of Aguanga.	Nonwater-bearing
		San Maroos gabbro	о Кsв	The largest body of gabbro lies southeast of Lake Elsinore and underlies an area of about 25 square miles. It intrudes the Bedford Canpon formation and rocks of the underlying Santiego Peak volcanics. The rock is quite variable in composition.	Nonwater-bearing

GENERALIZED STRATIGRAFHY OF SANTA MARGARITA RIVER WATERSHED (continued)

		F - 2 C - 2 C			
System : Ser	Series	. veologic unit	Symbol	General character	Water-bearing characteristics
				Igneous Rooks (continued)	
		Santlago Pesk voloanies	ਨੂੰ <u>ਕ</u>	Outerops extend from an area south of the Le Jolla quadrangle northward almost to the Santa Ana River. The volcanies are a series of mildly metamorphosed agglouerates, quartities, shaller, tuffs, shallor intrusives, and flows. The shareteristic color is whitish gray to green and the rock is generally hard and resistant.	The volcanics and related intrustves appear locally water-bearing, but at present supply no wells. The permeability and storage capacity are erratic and dependent upon the characteristics of the particular phase rather than on
Jurassio		Intrustra rocks related to the Santiago Peak volcanics	(ap)	Small bodies of fine-grained granodiorite and related rocks.	any property as a while. Maker is obtained from joints, fractures, planes of lamination, or the weathered zone.
		Undifferentiated igneous rooks	p0	Several igneous rock types have been included under the general term, ig. This unit includes formations which have previously been mapped only in areas outside the Santa Margarita region but which outerop.in the gree under investigation. Their individual boundaries were not determined in the present study.	Permeability in unveathered phases governed by Joints and fractures. The joints provide channels along which water may move. Faulting increases the permeability by fracturing. The joints and fractures are a source of limited quantities of water to wells in the highland ereas, and also provide water to springs. Weathering facilitated by movement of solutions along joints and fractures.
				Metamorphie Rosks	
Triassic		Bedford Canyon	Trbe	A group of quartz-mics schists, slates, quartzites, mildly metamorphosed argillites, and a few thin lenses of limestone. They underlie much of the mountainous area of the watershed	Permeability generally low but weathering, aided by sohietose and slatey nature of the rosk, orestes some storage area. Some windmills and small domestic wells obtain water from weathered phases and from the joints and fisurese.
pre-Gretaceous (Palecroic)		Paleozoie schists and quartzites	a.	Rocks of Paleozoic time outcrop in the vicinity of Domenigoni Valley end are probably of carboniferous age. Quartz, mica, and amphibole schiets are character-istics of this unit	Permeability and storage capacity erratic and dependent on the particular phase. Slatey cleavage and schistosity aids weathering and
pre-Cretaceous		Undifferentiated metamorphics	Æ	Includes hornfels, schists, gnelsses, slates, and quart- zites which have not been previously differentiated,	some small wells obtain supplies from this weathered portion. Springs fed by water stored in numerous joints, faults, and fissures.

Sedimentary Rocks

The sedimentary rocks considered in this investigation have been subdivided into two age groups; namely, the Quaternary and the Tertiary systems. Of the entire stratigraphic column, only those sediments of Upper Pleistocene and Recent age within the Quaternary system contain readily exploitable ground water. Sediments of greater age, with exception of some strata-bearing limited quantities of potable water, contain waters of dubious quality or consist of fine-grained clastics of very low specific yield.

Quaternary System

Six sedimentary units of Quaternary age have been mapped during the course of this investigation. These units, which are described hereinafter are designated:

(1) Recent alluvium, Qal; (2) Residuum, Qr (Recent); (3) Terraces and Older alluvium, Qtoa (Pleistocene); (4) Undifferentiated Upper Pleistocene sediments, Qps; (5) Marine deposits, Qm (Pleistocene); and (6) Marine and Terrace deposits, Qtm (Pleistocene).

Recent Alluvium, Qal. Recent alluvium covers almost all of the valley floors in the Santa Margarita region, as shown on the geologic maps. The formation fills the basins to great depths and contains most of the readily extractable ground water. The alluvium comprises a complex of clay, silt, sand, and gravels of all conceivable combinations and gradations.

Some of the sands and gravels are fresh and clean, and these

are the most prolific water-producing sediments. Others were poorly sorted when laid down and some contain a high percentage of fines. Still others were subjected to long continued weathering before being buried and now contain a high percentage of residual clay. The finer sediments include both silts and clays.

Generally alluvial strata of the same type are not continuous over extensive areas. Instead, the more permeable strata generally occur in stringers and lenses that are largely surrounded by less permeable or impervious materials. Such stringers and lenses were laid down in the channels of the streams which have slowly filled the basins with alluvial material. While the stream channels in existence at any given time were being filled with sands and gravels, the surrounding areas received only fine grained deposits in times of flood, and at other times were subjected to weathering which resulted in an increased percentage of residual clay in the present deposits.

The occurrence of sand and gravel aquifers as stringers and lenses is evidenced by the fact that water-bearing as well as nonwater-bearing horizons, as indicated by logs, cannot commonly be correlated between wells spaced as close together as a few hundred feet. The condition of rapid vertical and lateral gradation is apparent in longitudinal geologic sections K-K' and L-L', Plate 17, through Murrieta and Santa Margarita Valleys.

Principal aquifers in the watershed are found within the alluvial deposits. Sediments in these aquifers are usually neither compact nor cemented and are generally highly permeable,

readily permitting percolation of surface water. The finegrained phases are usually lower in permeability. Generally,
however, Recent alluvium may be classed as having moderate
to high permeability.

Residuum, Qr. At many places throughout the watershed, the surfaces of the crystalline rocks have been disintegrated or decomposed through weathering. The depth to which such weathering has progressed varies considerably, extending from only a few inches below the surface in many areas to more than 100 feet at points near Fallbrook. Areas of weathered materials are indicated on the areal geology maps, where they are shown as a distinct formational unit designated Residuum, Qr. Only those areas in which depth of weathering appeared to exceed 15 feet are shown on this plate. Where weathering appeared shallower the parent rock formation is indicated. The 15-foot depth criterion was selected for the following reasons: First, it was considered that where weathering extended to a depth of less than 15 feet, the ground water storage capacity of the weathered materials was negligible; second, it was felt that a thickness of at least 15 feet would be required before an appreciable quantity of water could be produced from wells; and third, it was held that the detailed work necessary to map the numerous existing shallow deposits was not warranted. Estimations of depths of weathering was based on information obtained from wells and observations of stream and road cuts.

Residuum is a minor source of ground water throughout the watershed supplying domestic wells in addition to a few small irrigation wells. In the Fallbrook area, however, many

wells tap the residuum and it constitutes an important source of domestic and irrigation water. In this case weathering has progressed to a depth which results in a greater storage space.

Terraces and Older Alluvium, Qtoa. Terrace deposits are also called older alluvium, the names having been derived from the topographic position and age of the formation. Much of the area mapped as "Terrace deposits and Older alluvium" in this report also include areas which have previously been mapped by Mann19 as the Pauba formation and Temecula arkose. Qtoa has been differentiated from Qps, described hereafter, by its topographic expression. The Qtoa has been eroded to a low, rolling topography while the Qps has been largely dissected to such an extent that it forms badlands. These sediments are characterized by reddishbrown soil due to oxidation, and are somewhat more indurated than Recent alluvium. Qtoa also contains a high percentage of residual clay resulting from weathering of the original minerals.

Terraces in the strictest sense are remnants of what was once the valley floor and which have been isolated either by relative uplift of the valley sides, or erosion in the central portions. Continuing erosion has resulted in the removal of all but a few scattered remnants of the original alluvium. During the course of this investigation the terraces were found to be widespread and dissected, and the boundary between older alluvium and terrace deposits was so difficult to distinguish that the general designation Qtoa was used. Wells tapping materials of this unit have low yields and are limited to domestic use.

Three formations previously mapped by Mann¹⁹ have been grouped together and are included under the general rock unit Un-

Undifferentiated Upper Pleistocene Sediments, Qps.

together and are included under the general rock unit Undifferentiated Upper Pleistocene Sediments, Qps. Temecula arkose, Pauba formation, and the Dripping Springs fanglomerate are distinct lithologic units, but for the purpose of simplicity and because their water-bearing characteristics are similar, they have not been differentiated on the geologic maps.

The best exposures of Temecula arkose are found along Highway 71 in the vicinity of Dripping Springs. The arkose was deposited on a surface of fairly low relief, mostly on basement rocks, but to some extent on Tertiary sediments and on the Santa Rosa basalts. The upper contact of the formation is a disconformity since every outcrop indicates the formation has been tilted and eroded. The Temecula arkose consists of pale buff to white arkose beds, buff to brown silts, gray algal limestones, and a few thin beds of rhyolitic tuff.

The name, Pauba formation, has been given to a series of coarse fanglomerates and interbedded sands and silts which are best exposed in the Dripping Springs alcove. Similar beds were mapped by Engel⁹ as Fanglomerate and Terrace Deposits, Qf. The Pauba formation was deposited on an irregular topography eroded in the Temecula arkose and is overlain by the Dripping Springs fanglomerate. The Pauba formation comprises beds of arkose, hardpan, and members characterized by boulders and cobbles and its maximum thickness is about 350 feet. It is distinctively pale in color and includes beds of lime-cemented arkose and silicified algal marls.

The Dripping Springs formation comprises beds of fanglomerates which are best exposed in the Dripping Springs alcove,
especially in roadcuts along Highway 71. Small outcrops appear
in the vicinity of Pechanga Creek and in Nigger Valley. It is
similar in most respects to the Pauba formation and nowhere
exceeds a thickness of ten feet. A lowering of base-level in
the Temecula area caused dissection of the Pauba fans and renewed
deposition at lower levels.

A few domestic wells obtain their supply of water from these Pleistocene sediments. The wells of greatest yield, however, are in Recent alluvium, where the effects of faulting have been at a minimum and specific yields are higher.

Marine Deposits, Qm. Marine deposits are exposed along the Pacific coast in the vicinity of the mouth of Santa Margarita River. These sediments are principally shallow water deposits of gravels, sands, silts, and clays. They are probably chiefly littoral and estuarine or bay deposits, but locally include considerable quantities of brackish water sediments.

These deposits are situated above the water table, and although no known wells tap them as a source of supply, they readily transmit water to underlying materials.

Marine and Terrace Deposits, Qtm. The classification Qtm includes terrace deposits and marine sediments which are similar in so many respects that they have been combined into the one general unit. These deposits have been differentiated from the marine sediments, Qm, by their topographic position, peculiar reddish-brown color, resulting from oxidation, and their

relatively high residual clay content which has resulted from the breakdown of the original materials.

In the investigated area the terraces are named Stuart and South Mesas. They stand at elevations ranging from 75 to 100 feet above sea level and slope gradually southwesterly toward the ocean. The composition and water-bearing characteristics are similar to the marine sediments.

Tertiary System

The following three sedimentary formations of Tertiary age have been delimited on the geologic maps, and are described hereinafter: (1) San Onofre breccia, Tmso (Middle Miocene); (2) La Jolla, Telj (Eocene); and (3) Martinez, Tmz (Paleocene).

San Onofre Breccia, Tmso (Middle Miocene). This formation described by Woodford²⁷ comprises beds of well cemented angular fragments of pebbles, cobbles, and boulders up to nine feet in diameter. It contains strata of cemented sand, sandy shale, and shale, of which the finer facies are more prominent near the base. The breccia is well cemented and is considered to be impermeable, the outcrops resemble concrete in appearance.

La Jolla Formation, Telj (Eocene). Marcus Hannall has divided the La Jolla formation into three members: Delmar sand, Torrey sand, and Rose Canyon shale. These members were not mapped separately in this investigation. The lowest member, the Delmar sand, comprises greenish-gray or reddish sandstone

or sandy shale. It is often lenticular, may exhibit crossbedding, and contains poorly preserved marine fossils.

The Torrey sand member of the La Jolla formation rests on the Delmar sand with gradational contact, and it comprises white to light-gray or brown, and rather clean sand. The sands are coarse-grained, and sometimes exhibit a slightly reddish color. Cross-bedding is found locally and the lack of marine fossils suggests a continental origin.

The Rose Canyon shale rests conformably on the Torrey sand. It consists mostly of gray or brown shale, silty mudstones with minor amounts of conglomerate, and a few thin limestone beds.

The Torrey sand is highly permeable and readily permits percolation of rainfall and runoff. It is generally situated above the water table, but yields water where saturated. The / sandy phases of the Del Mar sand are permeable and water-bearing. The shale members are relatively low in permeability but may yield limited amounts of water. The mudstones, shales, conglomerates, and limestones of the Rose Canyon member are relatively impermeable and nonwater-bearing. The sandstones are moderately permeable and may be water-bearing.

Martinez Formation, Tmz (Paleocene). Beds of Martinez age were found underlying the Santa Rosa basalt (Tsrv), which caps Mesa de Burro. Metamorphics of the Bedford Canyon formation are exposed below the Martinez. The latter formation is characterized by arkosic sands and gravels which are well indurated, hard, and reddish colored where baked by the overlying basalt. The Bedford Canyon formation and Santa Rosa basalt are described hereinafter.

Igneous Rocks

and plutonic types exposed within the Santa Margarita region. They are usually found as bordering highlands and in many cases form the relatively impermeable sides and bottoms of the ground water basins. Almost all of the plutonic rocks are a part of the southern California batholith, a huge complex of igneous rocks which was intruded during the Cretaceous period. It extends southeast from Riverside, California for at least 350 miles and possibly to the tip of Baja California 65 miles further south. Twelve units which are described briefly herein, have been differentiated as follows:

(1) Nigger Canyon volcanics, Qncv (Pleistocene);

(2) Santa Rosa basalt, Tsrv (Pliocene); (3) Roblar leucogranite,

Kr (Cretaceous); (4) Woodson Mountain granodiorite, Kwm

(Cretaceous); (5) Domenigoni Valley granodiorite, Kdv (Cretaceous);

(6) Miscellaneous granodiorites, Kmg (Cretaceous);

(7) Bonsall tonalite, Kb (Cretaceous); (8) Aguanga tonalite,

Kat (Cretaceous); (9) San Marcos gabbro, Ksm (Cretaceous);

(10) Santiago Peak volcanics, Jsp (Jurassic); (11) Intrusives

related to the Santiago Peak volcanics, Jspi (Jurasic); and

(12) Undifferentiated Igneous Rocks, Ig (pre-Cretaceous).

Nigger Canyon Volcanies, Quev

The Nigger Canyon volcanics include tuffs, agglomerates, dikes, and flows. They outcrop near the mouth of Nigger Canyon. These volcanics were extruded from a series of northeast trending fractures. Bombs of scoriaceous basalt.

up to several feet across are contained in the agglomerates.

The age of the Nigger Canyon formation is Upper Pleistocene.

The formation is impermeable and nonwater-bearing except along fractures and joints.

Santa Rosa Basalt, Tsrv

Remnants of a once widespread basalt plateau were found capping Mesa de Burro, and small areas are exposed near Vail Dam and northeast of Murrieta. The volcanics are almost horizontal and rest upon a nearly flat surface of Tertiary sediments or basement rocks. The rock is of Pliocene age and is primarily olivine basalt characterized by a reddish-brown color. It is several tens of feet in thickness, and is impervious and nonwater-bearing.

Roblar Leucogranite, Kr

Roblar leucogranite of Cretaceous age is exposed in the vicinity of De Luz. This formation shows poor outcrops, and the exposures are of a friable sandy nature. It is characterized by small angular blocks but boulders of disintegration are rare. Roblar leucogranite is flesh-colored, uniform in character, and aplitic in appearance. It is sometimes found as dikes cutting the Woodson Mountain granodicrite. Several wells of limited capacity tap fractures in the Roblar leucogranite. In general, however, this formation is impervious and nonwater-bearing.

Woodson Mountain Granodiorite, Kwm

The Woodson Mountain granodiorite of Cretaceous age is exposed most prominently in the highland area southwest of Murrieta Valley. The formation in many cases has intruded the Bonsall tonalite. It is characterized by light-colored outcrops and gneissoid structure. The Woodson Mountain granodiorite is rather coarse-grained, nearly white to buff, and contains phenocrysts of quartz. Although this formation is generally impermeable and nonwater-bearing, limited quantities of water are stored in the fractures and joints.

Domenigoni Valley Granodiorite, Kdv

A number of small bodies of granodiorite of Cretaceous age have previously been mapped in the Domenigoni Valley area. They range from tonalite to granodiorite, and resemble the Bonsall tonalite, but are lighter colored and finer grained. The rocks crop out as boulders of disintegration and contain abundant dark inclusions. The Domenigoni Valley granodiorite is generally impermeable and nonwater-bearing except along joints and fissures. A few small wells tap this rock.

Miscellaneous Granodiorites, Kmg

Small outcrops, boulders of disintegration, light gray color, and medium-grain size are characteristic of this unit which is of Cretaceous age. Its water-bearing properties are identical with the other granodicrites.

Bonsall Tonalite, Ko

Large bodies of Bonsall tonalite are exposed west and south of Mesa de Burro. Prominent characteristics of the tonalite are abundant, oriented inclusions and streaking. It is of Cretaceous age but is younger than the San Marcos gabbro, as it carries abundant inclusions of the gabbro. The Bonsall tonalite is a medium-grained rock ranging from light to dark gray depending on the proportion of dark minerals present, of which hornblende is the most prominent. This formation is generally nonwater-bearing; locally, however, small wells tap it as a source of supply. In these cases water is obtained from joints and fissures.

Aguanga Tonalite, Kat

The best exposures of the Aguanga tonalite are found on the north and south sides of Aguanga Valley and north of Lancaster Valley. The name was given by Mann¹⁹ to a biotite rich quartz diorite of Cretaceous age. The biotite was found in books up to five millimeters in thickness. Although no wells tap this formation limited quantities of water may be found along joints and fractures of the rock.

San Marcos Gabbro, Ksm

Large bodies of San Marcos gabbro are exposed throughout the watershed. It intrudes the Bedford Canyon metamorphics and Santiago Peak volcanics. One of the most noticeable features of the rock is the variation in its physical characteristics. These variations in most cases represent actual differences in mineral content, grain size, and texture. The San Marcos gabbro appears to be the oldest rock of the Cretaceous batholith. No wells were found tapping this formation.

Santiago Peak Volcanics, Jsp

Outcrops of the Santiago Peak volcanics are widespread in southern California and extend from an area south of the La Jolla quadrangle northward almost to the Santa Ana River. In the Santa Margarita River watershed, however, this formation is limited to areas southwest of Murrieta and west of Fallbrook. This unit, which is of Jurassic age, comprises mildly metamorphosed agglomerates, conglomerates, quartzites, shales, tuffs, shallow intrusives, and flows. The characteristic color of the formation is whitish gray to green and it is generally hard and resistant. The Santiago Peak volcanics have been intruded by the southern California batholith. These volcanics are generally locally water-bearing but no wells in the watershed were found to tap them. Their permeability and storage capacity are erratic and are dependent upon the characteristics of the particular phase rather than any general property of the group as a whole.

Intrusives Related to Santiago Peak Volcanics, Jspi

Small bodies of fine-grained granodiorite and selected rocks believed to be the same age as the Santiago Peak volcanics are shown on the geologic maps. These intrusives form the core of the Santa Margarita Mountains which lie generally west of

Margarita Peak. In the watershed, this unit is exposed west of Fallbrook and in the vicinity of De Luz. The material is quite resistant to erosion and where it is exposed, stands as high ridges with steep slopes. Its water-bearing characteristics are similar to the Santiago Peak volcanics.

Undifferentiated Igneous Rocks, Ig

Several igneous rock types have been included under the general term Ig. This unit includes igneous rocks of types mentioned above and possibly others. The segregation of the various rock types comprising this group was not considered warranted since water-bearing characteristics of the rocks are similar. As previously mentioned, no detailed mapping was performed in this investigation for areas of nonwater-bearing rocks, so the individual types are herein delineated only in areas where previous detailed mapping was available. Rocks in this unit comprise intrusions varying from granites to gabbros, and no age has been assigned to them, although they were probably intruded concurrently with the rocks of the southern California batholith. Although the group, in general, is impermeable and nonwater-bearing, limited quantities of water may be obtained from the fractures and joints in the rock.

Metamorphic Rocks

Three metamorphic units which have been delimited on the geologic maps and described herein are:

- (1) Bedford Canyon formation, Trbc (Triassic);
- (2) Palezoic schists and quartzites, P (Carboniferous);

(3) Undifferentiated metamorphics, Mm (pre-Cretaceous). They are of sedimentary origin and have suffered metamorphism in varying degree.

Bedford Canyon Formation, Trbc

This formation is composed of a group of mildly metamorphosed slates and argillites with some quartzites and very few thin lenses of limestone. It underlies much of the mountainous areas and large bodies are exposed throughout the watershed. The Bedford Canyon formation is of Triassic age and is generally impermeable and nonwater-bearing. Where it is fractured and jointed, the formation supplies small wells of limited capacity.

Paleozoic Schists and Quartzites, P

Rocks of probable Carboniferous age outcrop in the vicinity of Domenigoni Valley. Quartz, mica; and amphibolite schists are characteristic of this unit. A thick series of quartzites outcrops in the vicinity of Diamond and Domenigoni Valleys. Rocks of this unit are impermeable and nonwater-bearing except along joints and fissures.

Undifferentiated Metamorphics, Mm

This unit comprises hornfels, schists, gneisses, slates, and quartzites which have not been previously mapped and which are not segregated in this investigation. Undifferentiated metamorphics are impervious and contain no water except in joints and fissures.

4. STRUCTURE

Subsurface structures which affect the movement of ground waters in the Santa Margarita River watershed are not generally apparent, due mainly to the thick cover of alluvial materials in the basins. The chief structural and physical features in the area trend in a northwesterly direction. The direction of trend has remained approximately the same from pre-Cretaceous time to the present.

Faults are numerous in the area but the magnitude of several of them is unknown, as the majority are masked by the broad alluvial plains. Only those that have a topographic expression or other surficial evidence are noted on the areal geology plates. Fault scarps are the most noticeable surficial evidence of faulting. Almost all the scarps in the area are fault line scarps as opposed to true fault scarps, Although the faces of the scarps have been eroded, the bases in most cases have not been appreciably eroded back from the fault plane. However, along the Willard fault zone adjacent to Murrieta Valley the trace of the fault lies in front of the base of the present scarp.

Evidences of faulting, other than fault line scarps, are sharp V-shaped canyons with streams flowing on rock channels to the fault line, and increasing stream gradients as the fault line is approached from upstream. The location of springs in straight-line series along many of the faults is another means by which the position of the faults has been determined. Spring locations are shown on the Hydrographic Map, Plate 6. Sag ponds, linearities of vegetation, unconformable drainage lines, alignment of saddles, and landslides are still other forms of

evidence which were utilized in determining the trace of faults. In areas of crystalline rock, faults were often difficult to locate, since, in many cases, their strikes are parallel to the trend of other structural features.

The most noteworthy faults are described in Table B-2, entitled "Major Faults and Associated Features in Santa Margarita River Watershed and Adjacent Areas". This table gives the location, trend, movement, barrier effect to ground water movement, age, and evidence of faulting. Locations of these faults are shown on the areal geology maps.

MAJOR FAULTS AND ASSOCIATED FEATURES IN SANTA MARGARITA RIVER WATERSHED AND ADJACENT AREAS

Name	Location :	Trend	Movement	Barries effect to ground water movement	: Age : of : faulting	: Evidsnee : of : faulting
Willard Fault Zone	Northeastern boundary of the Eleinore Mis. and Santa Rosa plateau from Lake Eleinore southeast	м с54 и	Normal; dir 70° +	None apparent	Middle Plels. tosent	Feult line scarpe,
Wildomar Fault	Bounde Murifeta graben on the northeast and extends Foutheast into the Wolf Vallay area beyond Temecula Creek	м 51°-55° и	Normal, possibly some rotation, dip almost vertical	In Murrieta Basin ground water movement impeded, and a ground water cascade pro- duced. Line of springs at northeast edge of Murrieta Valley is the result	Faulting cortinues at present	Spring alignment, sag pondw. gougs zones, fauit iint searps
Wildomer Horst	Northeast of State Highway 71, between Wildomar and Kurrieta	N 510-55° W	Upthrust block - possibly some rotation	None apparent	Movement has continued to the present	Toporraphic discontinuity
Murriets Greben	Extends from a point near Rome Hill (Leke Elsinore Quad) southeast to the Pechanga Indian Reservation	N 512 W	Narrow downdropped block about 18 miles long and one mile in width; portion of Elsinors trough	None apparent	Middle Pleisatocene	Faults on errnsr side of trough
Agva Calien⁺e	Bounds the Palomar horst on the northeast	M oft N	Normal, high angle	None apparent	Middle Pists. tocene	Topographic features
Agua rg a Ferit	Prominent feult soarp south and west of Aguanga	Trend couth of Aguanga is N 620 W; to the west, trend is N it o the West,	Normal, high angle with dipe greater than 80°	None apparen∜	Middle Pleisertocene	Prominent scarp
Lancester Fault Zane	Lancaster Valley has been ercded along this fault	M othe M	Normal, may be some rotational	None apparent	Middle Pierr- towens	Fault line soarp
Osk Ramfein Horst	Several faults bound the Oak Mountain horst on the west and east	Trend is transverse to the regional trend of faulting	Hundreds of feet of throw have been measured on these faults	None apparent	Middle Pieis- točena	A horst which sute across the regional structural features
San Jacinto Fault 20	Forms the Southwest border of the Son Jacinto Mountains	Approximately. N 50° W	Approximately. Movements of various types have N 50° W been noted along the course of the fault zone. It is predominantly rotational with the upthrown block on the northeast. The throw decreases to the northwest.	None apparent	Pleistogene	Alignment of springs, fault line scarpe, fault contacts, topographic evidence

5. GEOLOGIC HISTORY

A generalized geologic history of the watershed region is given herein. Geologic events are presented in chronological order, with the older occurrences presented first.

Pre-Tertiary Time

Before Tertiary time the major geologic event was the emplacement of the southern California batholith¹⁷. The batholith is related to that of the Sierra Nevada, which is of late Jurassic age, and includes all the plutonic and hypabyssal igneous rocks which were described earlier. The sequence of intrusion was as follows: gabbros, tonalites, granodiorites, and finally the granites.

Tertiary-Quaternary Time

Pre-Pliocene events in the Tertiary period, although important, are not as diagnostic as those which occurred in the Pliocene, Pleistocene, and Recent epochs. A brief summary of the geologic history of the latter periods, as interpreted from physiographic and geologic evidences in the Santa Margarita region, is presented herein:

In Pliocene time the area was principally a broad alluviated surface of comparatively low relief. Although the Perris block was low, the San Jacinto Mountains, a fault block, were beginning to be uplifted. Drainage in the area was to the north or northeast. During the "Plio-Pleistocene" the Santa Rosa basalts were extruded upon this surface of low

relief and the Santa Ans Mountains were being uplifted along the Elsinore fault zone. The San Jacinto and Palomar Mountains were also rising at this time,

In early Pleistocene time, drainage was southwesterly across the Perris block and Santa Margarita region. During middle Pleistocene the Pasadenan orogeny occurred, accompanied by uplift and erosion. The San Jacinto, Santa Ana, and Palomar Mountains were uplifted and the Elsinore trough was downfaulted. The Santa Ana River, located northwest of the watershed, developed a subsequent tributary down the Elsinore trough and captured Temecula Creek.

The Upper Pleistocene epoch was characterized by the deposition of the Pauba formation, faulting, and by headward erosion by the Santa Margarita River resulting in the eventual capture of Murrieta and Temecula Creeks and the change of drainage direction to the present southwesterly course through Temecula Canyon, Larsen¹⁷ suggests that the San Luis Rey River similarly may capture in the early geologic future the drainage of Temecula Creek, During Upper Pleistocens time downfaulting of the Elsinore trough continued and Murrieta graben in its present configuration was formed. The Dripping Springs fanglomerates were also deposited during this time. In the late Pleistocene the Nigger Canyon volcanics were emplaced. Deposition of alluvial sediments and movement along older faults has continued to the present.

6. OCCURRENCE OF GROUND WATER

Ground water is exploited to some extent from all the formations occurring within the watershed. The water yielding

ability of the formations ranges from high for alluvium to almost negligible for the massive crystalline rocks. On Plates 9A and 9B rocks within the watershed have been mapped according to their abilities to yield water. Three units are delimited on this map; these include materials varying from moderate to high permeability, materials of low permeability, and materials generally impermeable. Areas designated as moderately to highly permeable consist of Recent alluvium, Qal, and constitute the principal sources of ground water in the watershed. Wells tapping these deposits generally have specific capacities, in gallons per minute per foot of drawdown, ranging from 6 to 220. Areas of low permeability comprise terraces and older alluvium, Qtoa; deep residuum, Qr, exposed in the vicinity of Fallbrook; and upper Pleistocene sediments, Qps. Wells in these units supply minor quantities of ground water and generally have specific capacities of less than six. The third group of generally impermeable materials includes igneous rocks, metamorphic rocks, and cemented sediments and rocks. They are practically nonwater-bearing, but yield limited supplies from joints, fractures, and highly weathered zones. Water is occasionally obtained from permeable members within the cemented sediments.

At several places within the watershed, crystalline rock formations have been deeply weathered forming a layer of decomposed material of varying physical characteristics. Such weathered rock has been herein designated residuum. In general, the permeability of residuum is low; however, in some locations it constitutes an important source of water. In the vicinity

of Fallbrook an extensive area is underlain by residuum, a part of which presently yields water to wells. The limits of presently productive residuum in the Fallbrook area are delineated on Plate 9A.

Artesian wells are scattered in many localities throughout the watershed. Those of significance, however, are found
in Pauba Valley, Santa Gertrudis Valley, and at other locations
along the northeast side of the Wildomar fault. The apparent
areas of confined waters are delineated on Plates 10B and 11B

Springs exist or have been reported to exist in the past throughout the watershed. The occurrence of springs may be attributed to the discharge of water accumulated in joints or fractures of impervious rocks through openings in the rocks or through the exposed seepage faces of permeable fill material similarly supplied. Flows of ground water which are caused to appear on the surface by the intersection of the planes of the water table and the ground surface or by impervious obstructions are sometimes called springs, although in California such flow is often called rising water. In this report such flows are considered to be rising water except that in cases where the source has been locally considered to be a spring, such designation has been preserved. Locations of most springs which are of local significance, including those used for domestic or stock use and those for which appropriation water rights applications have been filed, are plotted on Plate 6, "Hydrographic Map".

7. GROUND WATER BASINS

Twenty-three ground water basins of signficant size of

present development were identified in Santa Margarita River watershed, and are herein described. The boundaries of these basins are delineated on Plates 10 and 11, "Lines of Equal Elevation of Ground Water". Many other ground water bodies exist in the watershed, but they are very small, virtually undeveloped, and insufficient information was available to warrant their designation as separate basins.

Boundaries of basins are generally continuous ridges of basement complex either exposed at the surface or underlying several feet of residual cover. Several boundaries are formed by faults which act as barriers to the movement of subsurface waters. In other cases, alluvial "highs" have formed surface drainage boundaries between basins, and in such situations the surface divides have been utilized in delimiting the basin boundaries.

Materials filling the basins near the coast are chiefly littoral, estuarine, or bay deposits of gravels, sands, silts, and clays. Materials filling the intermontane basins were derived from the surrounding mountains and consist of deposits of unconsolidated clays, sands, and gravels. This detritus varies in thickness from a thin veneer at the outer limits to deposits of considerable, but unknown, thickness in some basin centers.

Directions of ground water movement are indicated by lines of equal elevation of ground water shown on Plates LOA and 10B for spring, 1927, and Plates LIA and LIB for fall, 1953.

In Table B-3, entitled "Ground Water Basin Characteristics", are tabulated the characteristics of all designated basins, including the following pertinent data: general

Ground water	General desoription	Surface area, in aores	Maximum : depth of: storage : unit, : in feet :	Relative :	Storage capacity basin Gross: Usable storage: storage capacity, capacity, in in in	acity basin Usable storage capacity, in
	Hydrographic Unit No. 1					
Diamond	The basin lies partly within and partly outside of Santa Margarita River watershed. Only the portion within the watershed is considered herein. Mountains of Paleczoic schists and quartzites bound the valley on the north and south. This same formation underlies the valley. Basin fill is composed of 'Recent alluvium. Spurs of bedrock separate Diamond Valley from Domenigoni Valley to the west. A low alluvial divide separates the part of the valley which lies within the watershed from the part which is outside of the watershed. Wells are supplied by ground water in the alluvium.	2,600	i	High	37,400	26,800 ⁸
Domenigoni	Bounded on the north and south by hills of Paleozoic schist and quartzite, except for the western section where the bounding hills on the north and south are largely composed of Domenigoni Valley granodiorite. The basin is separated from Menifee Valley to the west by spurs of granodiorite and a low alluvial divide, and from Diamond Valley to the east by spurs of schist and quartzite. Valley fill composed of Recent alluvium, underlain by granodiorite and schist and quartzite, Well information is scanty, but it is probable that most wells are supplied from the alluvium. See detailed description in text.	3,000	2 .	High	20,900	16,700 ^a
French	Bounded on the north and northeast by Paleczolo sohist and quartzite and residuals developed upon Hoodson Mountain grandeveloped upon them, on the south by residuals developed upon Woodson Mountain grandiorite, on the northwest by residuals developed on the San Marcos gabbro, and on the west by thin older alluvial deposits. Basin separated by a low alluvial divide on the east from Los Alamos Valley. Basin fill composed of Recent alluvium and slightly dissected older alluvium underlain by igneous and metamorphic complex. Wells supplied by both Recent and older alluvium, with Recent alluvium yielding largest supplies. Drained by Warm Springs Greek flowing southwesterly into Murrieta Valley.	3,000	199	Moderate	8,280	6,860ª
Los Alamos	Bounded on the south by residual soils developed upon metamorphic rocks, on the north by San Marcos gabbro, on the east by terraces and older alluvium, on the southwest by residuals developed upon Woodson Mountain granodiorite, on the northwest by the Bedford Canyon formation and by residual soils developed upon it. A low alluvial divide separates this basin from French Valley to the west. The basin fill comprises Recent and slightly dissected older alluvium. Wells obtain supplies from both, but Recent alluvium yields larger amounts. Drained by Tucalota Greek flowing southwest into Santa Gertrudis Valley.	1,700	123	Moderate	10,800	7,520 ^a

Ground water	: : : : : : : : : : : : : : : : : : :	Surface area, in acres	Maximum : depth of: storage : unit, : in feet :	Relative permeability	Storage capacity basin Cross : Usable storage : storage capacity, capacity, in in acre-feet: acre-feet	ucity basin Usable storage capecity, in
	Hydrographio Unit No. 1 (continued)					
Murri eta	The basin is a graben lying between the Willard fault zone on the southwest and the Wildomar fault on the nertheast. Upthrevn side of Willard fault zone forms Santa Resa Mountains southeast of Murrieta Valley, which are composed of igneous, velcanic, and metamorphic rocks. Beain fill comprises Recent alluvium underlain by elder alluvium. Wells supplied by both Recent and older alluvium. Drained by Murrieta Greek, which flows southeasterly through the valley to join Temecula Greek and form Santa Margarita River at Temecula Caryon. See text for detailed description.	00 1 ° 11	520	Moderate	146,000	136,000 ^a
Santa Gertrudis	The basin is surrounded by hills of elder alluvium except on the southwest where Santa Gertrudis Valley merges with Murrieta Valley. The Wildemar fault crosses the nouth of the Valley, and, although it is not visible, it is a barrier to ground water movement forming a zone of artesian pressure upstream from the fault. The basin fill is Recent alluvium underlain by older alluvium. Wells are supplied both by Recent and older alluvium. The basin is drained by Santa Gertrudis Greek, which flows southwesterly to Murrieta Greek. In the portion of the basin which everlies the pressure zone, ground water storage was calculated for the upper 50 feet away, storage in the remainder of the basin was calculated to the maximum depth as indicated by well logs.	580	314	u gra	6,960	6,460 ^b
Tucalota	The basin is bounded on the north and south by igneous recks, and on the east and west by residual soils formed upon igneous recks. A prominent northwesterly trending fault crosses the lower end of the basin. Basin fill is composed of Recent alluvium underlain by igneous basement rook. Wells are supplied by ground water in the alluvium. The basin is drained by Tuoalota Creek, which flews westerly into Los Alames Valley.	260	22	Moderate	1,390	585 5
W11domar	The basin is surrounded by low hills of older alluvium. It is situated at the northwest end of the Murrieta graben with the Wildonar fault to the northeast and the Willard fault zone to the southwest. The basin is composed of Recent alluvium underlain by older alluvium. Wells are supplied by Recent and older alluvium. Drainage from the basin is southeasterly into Murrieta Basin.	590	221	Moderate	15,000	13,500°
Anza	Bounded on the northeast and east by ignoeus rocks, on west and southwest by low hills of residual material developed by decomposition of underlying igneous rock, and on the north and southeast by areas of elder alluvium. Basin fill compaced of Recent alluvium underlain by igneous rocks. San Jacinto fault zone forms prominent searp which bounds Anga Valley on the northeast. Basin arained by Coahuila Creek, which flows southwesterly. Most wells drilled in Recent alluvium. See detailed description in text.	5,700	230	No.	000 (5)	34,103&

Ground water	General description	Surface: area, : tn acres	leximum depth of: storege unit,	Relative permeebility	Gross storage capacity;	Usable storage capacity, in
	Hydrographic Unit No. 2 (continued)					
Lower Coahuila	Bounded on the east by areas of residual soils developed upon igneous rocks which stand at slightly higher elevations than valley floor on the north by Coahuila Mountain, comprised of metamorphic and igneous rocks, on the west by hills of igneous rock, on the south by rolling hills of older alluvium. Basin fill is composed of Recent alluvium and is underlain by igneous rocks. High water table conditions prevail in the basin. Two wells have a slight artesian flow Easin drained by Coahuila Greek which flows southwest to Temecula Greek.	3,300	On	L'OW	8,660	2,650 ^{8.}
Lower Lancaster	Basin is bounded on the north by Woodson Mountain granodiorite and metamorphic rocks, on the south by undifferentiated upper Pleistocene sediments which have been eroded to a badland topography, on the east by upper Pleistocene sediments and a small horst of granodiorite. Basin fill composed of Recent alluvium, underlain by undifferentiated upper Pleistocene sediments and basement of igneous and metamorphic rocks. Wells supplied by Recent alluvium. Drained by Lancaster Creck flowing westerly into Vail Reservoir.	084	362	Moderate	7,120	5,8 ^{40ª}
Upper Coahulla	The basin is surrounded by areas of residual soils developed upon igneous rocks. Residual areas slope gently toward the valley floor and probably represent an old erosion surface. Basin fill composed of Recent alluvium underlain by igneous rock. High water table conditions are found in the basin. A large hot spring is located near the edge of the basin. Wells derive water from Recent alluvium. Basin drained by Coahuila Creek, which flows scuthwesterly into lower Coahuila Valley	710	ŀ	1	οη8 [«] η	192 ^a
Upper Lancaster	The basin has been eroded along Lancaster fault zone. Basin bounded on the north by upper Pleistocene sediments and Aguanga tonalite. Surrounded on other sides by hills of upper Pleistocene sediments, with a small horst of Woodson Mountain grandiorite on the west. Basin fill of Rocent alluvium, underlain by older alluvium with basement of igneous rock. Wells supplied by Recent alluvium. Basin drained by Lancaster Creek flowing westerly into lower Lancaster Valley.	094	384	Low	5,030	3,060ª
Aguanga	The basin occupies a graben, Bounded on southwest by high ridges of metamorphic rook which form the scarp of Aguarga fault zone, on the north and southeast by hills of upper Pleistocene sediments, and on the east by hills of igneous rock. Drainage is by Temecula Creek. Baein fill is Recent alluvium underlain by undifferentiated upper Pleistocene sediments. All existing wells supplied by ground water in Recent alluvium. See detailed description in text.	1,200	260	Low	40,100	35,2008

Ground water	General description	Surface: area, : 1	Haximum: lepth of: storage: unit, :	Relative permeability	Storage capacity basin Gross : Usable storage : storage capacity,: capacity, in in in acre-feet: acre-feet	usable storage capacity, in acre-feet
	Hydrographic Unit No. 3 (continued)					
Dodge	The basin is located at southeastern edge of the watershed, surrounded on all sides by igneous rocks. The fault-line soarp of the Agua Caliente fault bounde basin on the south-west. Basin fill composed of Recent alluvium which is underlain by igneous rock. Most wells supplied by ground water in alluvium, a few supplied by fractures in bedrock. Drainage is by Temecula Greek, which flows northwesterly into Oakgrove Valley.	1,000	100	ŀ	η, 560	3,220 ⁸
Lower Culp	The basin is bounded on the east, northeast, and west by igneous rook, and on the northwest by hills of upper Pleistocene sediments. Southern boundary formed by the Agua Caliente fault and metamorphic and igneous rocks of the Palomar block. Basin fill composed of Recent alluvium underlain by igneous rock. Most wells obtain water from alluvium, but small supplies are obtained from the bedrock. Basin drained by Temeoula Greek which flows northwesterly to Aguanga Valley.	019	80	1	5,550	630 ^a
Niggeo	The basin is bounded on the north and southwest by upper Pleistocene sediments, and on the south by igneous rock in fault contact with the upper Pleistocene sediments. Basin fill composed of Recent alluvium underlain by undifferentiated upper Pleistocene sediments. Walls supplied by ground water in Recent alluvium. Basin drained by Temecula Creek which flows northwesterly to Vail Reservoir.	310	183	B 1	8,690	8,100 ^A
Овкдточе	The basin is surrounded by igneous rock and bounded on the southwest by scarp of the Agua Caliente fault. Basin fill is composed of Recent alluvium which is underlain by igneous rock. Most of the water is supplied by wells in Recent alluvium, small amounts are obtained from the underlying bedrock. The basin is drained by Temeoula Creek.	2,000	170	i	25,200	11,200 ^a
Radeo	This small basin is bounded on the north, northwest, and northeast by hills of upper Pleistocene sediments, and on the southwest by igneous rock. The basin is filled with Recent alluvium underlain by undifferentiated upper Pleistocene sediments. Wells are supplied by ground water in the Recent alluvium. The basin is drained by Temeoula Creek, which flows northwesterly into Nigger Valley.	130	87	•	756	555ª
Pauba	The basin occupies a narrow stream valley bordered on the northwest and southeast by low hills of older alluvium, bounded at the upstream end by Bedford Canyon formation, and separated from Pechanga Basin at the downstream end by the Wildomar fault. Basin fill is composed of Recent alluvium and underlain by older alluvium. Pressure aquifers in older alluvium cause flowing artesian wells in a large portion of the basin. Storage capacity is calculated herein for the free ground water zone only. See detailed description in text.	3,000	170	H1gh	52,000	28,600 ^b
						E

GROUND WATER BASIN CHARACTERISTICS (continued)

Ground water	: : : : : :	Surface : area, : in aores :	Maximum : depth of: storage : unit, :	: Storage c Gross Relative : storage permeability: capacity, in acre-feet	Storage capacity basin Gross: Usable storage: storage capacity, appacity, in: acre-feet: acre-feet	city basin Usable storage capacity, in
	Hydrographic Unit No. 4 (continued)					
Pechanga	The basin occupies a downdropped block between the Wildomar fault on the northeast and the Willard fault zone on the southwest. The basin is bounded on the southwest by Woodson Mountain granodiorite, and elsewhere by hills of older alluvium. Basin fill is composed of Recent alluvium underlain by older alluvium. Ground water in the Recent alluvium and in the underlying older alluvial deposits supplies wells. The basin is drained by Pechanga Greek and Temecula Greek.	2,200	500	Low	000 °0η	28,200 ⁸
	Hydrographic Unit No. 5					
Rainbow	This basin is located in a shallow valley surrounded by hills of Woodson Mountain granodiorite. Basin fill is Recent alluvium underlain by granodiorite. Both the alluvium and fractured bedrock yield water to wells. Minor amounts of water are supplied by hillside springs in jointed granodiorite. The valley is drained by Rainbow Creek, except for a small segment which lies within San Luis Rey River drainage.	η 50	22	Moderate	2,000	335 ^a .
	Hydrographic Unit No. 6					
Santa Margarita Coastal	The basin is bounded on the north by igneous rocks which have residual soils developed upon them, on the east and west by sediments of the La Jolla formation, and on the south by San Onofre breccia. Boundary rocks are largely nonwaterbearing. Basin fill is Recent alluvium. The basin is constricted at two points, forming three interconnected sub-basins named, in downstream order: Upper, Chappo, and Ysidora sub-basins. See detailed description in text.					
Upper Sub-basin		960	145	High	13,600	9,2000
Chappo Sub-basin	r .	2,240	185	H1gh	36,000	13,600
Ysidora Sub-basin TOTALS	In	1,100	197	High	12,000	1,200°

g .. .

Usable storage capacity calculated between historic high water table and a surface 25 feet above base of Recent alluvium.
Storage capacity calculated in free ground water zone only.
Storage capacity calculated in the interval of 10 feet below ground surface and mean sea level but not more than 100 feet below ground surface.

description, surface area, relative permeability and storage capacity data. Basins are listed in the table alphabetically within each of the six hydrographic units delineated on the hydrographic map, Plate 6. Aguanga, Anza, Domenigoni, Murrieta, Pauba, and Santa Margarita Coastal Basins are described in additional detail in the following paragraphs:

Aguanga Basin

Aguanga Basin is a rectangularly shaped, northwesterly trending, structural feature, approximately 3.8 miles in length, with an average width of about one mile. The basin surface covers an area of about 1,200 acres, which is drained by Temecula Creek. In general, the basin floor slopes from southeast to northwest, surface elevation being about 2,200 feet at the eastern extremity of the basin, and decreasing to about 1,800 feet near the westerly end.

Aguanga Valley is one of several alluviated valleys along upper Temecula Creek bounded in part by fault line scarps and separated by bedrock canyons. Aguanga Valley and Radec and Nigger Valleys downstream show as en echelon arrangement typical of valleys occupying a series of tilted blocks between parallel faults.

The most impressive fault zone in this locality, the Aguanga zone, forms the southwest boundary of Aguanga Valley. In less spectacular form it continues to the southeast as the Agua Caliente fault and forms the northeast boundary of the Palomar block. Southeast of Aguanga the main fault trends

about N 62° W, but further west it joins a persistent fault trending approximately N 44° W. Exposures of some of the fault surfaces of this zone, directly south of Aguanga, show northeast dips of more than 80 degrees.

The northern boundary of the basin is formed by a ridge of undifferentiated Pleistocene deposits (Qps) which has been eroded to a badland type of topography. The ridge is asymmetric, especially in its eastern part. This feature is shown on geologic section E-E', through Aguanga Valley, which is presented on Plate 15. Further west the ridge becomes a cuesta. A small horst of Aguanga tonalite forms a ridge of crystalline rock within the badlands near the north side of Aguanga Valley.

Surface flow is intermittent in the heavily alluviated central portion of the valley. Perennial flow in Temecula Creek occurs, however, at both the upstream and downstream extremities of the valley where the alluvium is thin and bedrock is near the surface.

All the wells draw water from the alluvium which is recharged by percolation of precipitation on the valley floor, runoff from the adjoining slopes, and inflow from Temecula and other tributary creeks.

Six active water wells were located in Aguanga Basin, including two irrigation wells. A pump test on one of the irrigation wells showed a yield of 180 gallons per minute with a drawdown of 30 feet.

Anza Basin

Anza Basin is located in the irregularly-shaped erosional Anza Valley situated in the northeasterly portion of the watershed. In general, the valley floor slopes toward the southwest, and elevations range from about 4,400 feet above sea level at the northern extremity of the valley to about 3,800 feet at the outlet. The valley is drained by Coahuila Creek, which flows in a general southwesterly direction.

Mountains composed chiefly of igneous rock, border the basin on the northeast and east. The basin is bounded on the southwest and west by long gentle slopes of residuum which were formed by the decomposition of the underlying igneous rocks. The northern extremity of the basin is bounded by low hills of older alluvium. On the southeast, Anza Valley is separated from Terwilliger Valley by a narrow saddle filled to shallow depth with alluvial materials. Terwilliger Valley drains to the Colorado Desert and is outside of the Santa Margarita River watershed. Geologic features of the valley are depicted on geologic section C-C' Plate 14.

Ground water in Anza Basin occurs in Recent alluvial deposits consisting of gravels and sands outwashed from the slopes of the mountains along the north side of the basin.

The ground water basin is recharged by percolation of precipitation on the valley floor and runoff from the surrounding slopes. Recharge from the latter source is limited by the small drainage area tributary to the basin.

Direction of ground water movement is shown by the ground water contours on Plate 11B. In general, flow is toward the south

converging on Coahuila Creek at the southwestern corner of the Basin. An unnamed fault trending northwest to southeast through the westerly portion of the basin apparently forms a partial barrier to ground water movement as indicated on the Plate.

within the basin. Most of these are concentrated within the central and southwestern portions of the basin, and most are equipped with windmills. Many are small producers with discharge rates of but a few gallons per minute, but others have been tested at rates varying from a few gallons per minute to 550 gallons per minute. One large irrigation well drilled adjacent to the basin in 1954, produces about 600 gallons per minute. This well produced about 1,000 gallons per minute under test at the time of drilling. This well is unusual in that it was drilled in crystalline rocks which are generally nonwater-bearing. The well is believed to penetrate fractures or a fault from which its source of water is derived.

Domenigoni Basin

Domenigoni Basin is an irregularly shaped southwesterly trending valley, which is approximately four miles in length
and averages about one mile in width. It is an erosional feature,
covering an area of approximately 3,000 acres situated about two
and one-half miles south of the town of Winchester. In general,
the valley floor slopes toward the southwest, with surface elevations varying from 1,530 feet at the northeast extremity of the
valley, to about 1,440 feet at the southwest edge.

The basin is composed of Recent alluvium. It is flanked

on the north and south by hills of Paleozoic schist and quartzite, except for the western section where the bordering hills on the north and south are largely composed of Cretaceous Domenigoni Valley granodiorites. The basement complex forming the floor of the valley comprises granodiorite, schist, and quartzite. Spurs of granodiorite and a low alluvial divide separate Domenigoni Valley from Menefee Valley to the west. A constriction in the bordering highlands separates Domenigoni Basin from Diamond Basin to the east. Geologic Section B-B; on Plate 14 depicts geologic characteristics of Domenigoni Valley.

Wells in the basin obtain their supplies of ground water from the alluvial fill. Some wells penetrate the underlying basement rocks for short distances, but it is not likely that any significant yields are obtained from the bedrock. Wells are recharged by precipitation upon the valley floor and percolation of runoff from the surrounding slopes.

Information on the characteristics of water wells in Domenigoni Valley is very scanty, but records available show that the maximum depth of wells is about 150 feet. Yields in the range of 500 to 1,000 gallons per minute have been obtained with specific capacities of about 30 to 50.

The direction of ground water movement is depicted by contours on Plate 11B. In general the flow is westerly conforming with the slope of the valley floor.

Murrieta Basin

This basin lies within Murrieta graben, and, as herein designated, includes a section of the graben approximately eight

miles in length extending from a point 3.7 miles northwest of Murrieta to a point one mile southeast of Temecula. The basin surface, which trends in a northwesterly direction, covers an area of about 4,400 acres and reaches its greatest width of about 1.3 miles in the vicinity of Murrieta. It is drained by Murrieta Creek, which flows to the southeast joining Temecula Creek to form the Santa Margarita River near Temecula. Principal tributaries of Murrieta Creek are Warm Springs and Santa Gertrudis Creeks which enter the valley from the northeast, and Cole Canyon Creek, which flows into the valley from the southwest.

The basin, which is filled chiefly with Recent alluvium, is adjointed by areas of older alluvium on the northeast and southwest. Older alluvium is also found underlying the Recent sediments. Murrieta Basin is separated from Wildomar Basin to the northwest by a constriction in the bordering hills of older alluvium. It is separated from Santa Gertrudis Basin by the Wildomar fault.

Murrieta graben is bounded on the northeast by the Wildomar Tault and on the southwest by the Willard fault zone, both of which are apparently high angle normal faults. Present features of Murrieta graben were formed at about the end of Pleistocene time. However, the major vertical movements took place in middle Pleistocene time probably during the Pasadenan orogeny. Faulting, especially along the Wildomar fault, has continued to the present.

The Willard fault zone, named by Engel⁹, marks the northeast boundary of the Elsinore Mountains and Santa Rosa plateau. Although shown as a single fault, its extension into the Murrieta region appears as a zone of faulting. The Willard

fault zone trends about N 45° W and is one of the most persistent zones of the Elsinore fault system.

The Wildomar fault was also named by Engel⁹. It extends southeast beyond Murrieta Basin into Wolf Valley. Gouge zones on this fault are nearly vertical.

In the Vernard oil test well (7S/3W-21H1), basalt, which was extruded in late Pliocene time, was encountered at a depth of about 2,450 feet or 1,350 feet below sea level. This basalt has been correlated by Mann¹⁹ with the Santa Rosa basalt which caps Mesa de Burro southeast of Murrieta at an elevation of 1,950 feet. The relative vertical displacement of the basalt between the two points described is therefore 3,300 feet. Geologic features of Murrieta Valley are depicted on geologic sections A-A', J-J', and K-K'on Plates 14, 16, and 17, respectively.

As previously indicated in the discussion of geologic history, stream piracy has been a significant process in this area. After the Murrieta graben was formed, the Santa Ana River developed a subsequent tributary down the Elsinore trough and captured the San Jacinto River and Temecula Creek. Later, the ancestral Santa Margarita eroding headward at Temecula Canyon, captured Temecula Creek and reversed the direction of drainage down Murrieta graben, forming a prominent elbow of capture near Temecula Canyon.

Ground water occurs within both the Recent and older alluvial deposits. Wells 120 feet deep or less draw from the Recent deposits. Those of greater depth may be supplied from both Recent and older alluvium.

About 110 active wells were located during the field

canvass of the basin. These wells vary in depth from about 25 to about 450 feet. Twenty-three of these are irrigation wells with capacities ranging from about 100 to 450 gallons per minute; whereas the remainder are wells of small yield utilized chiefly for domestic or stockwatering purposes. Specific capacities range from one to about forty, the average value being approximately nine.

Direction of ground water movement is depicted by contours on Plate 11B. In general, the direction of subsurface flow conforms roughly with that of surface runoff, converging toward Murrieta Creek from the north and south and thence moving eastward toward Temecula Canyon. Ground water in the older alluvium to the northeast of the basin moves in a southwesterly direction toward the basin. This flow is impeded by the Wildomar fault which acts as a ground water barrier near the easterly end of the basin. At Santa Gertrudis Creek, ground water impounded behind this fault rises to the surface and flows from several springs. The alignment of these springs clearly marks the surface trace of the Wildomar fault, which is made even more conspicuous by the presence of clumps of native phreatophytes which thrive along the northerly edge of the fault where depth to ground water is shallow.

Pauba Basin

West of Vail Reservoir, Temecula Creek emerges from the rock walls of Nigger Canyon into a region underlain by poorly consolidated older alluvium. Commencing at this transition the stream has cut a broad flood plain into the older alluvium which extends southwesterly to the Murrieta graben. This flood plain, approximately three quarters of a mile in width, six and one-half miles in length, and having an area of about 3,000 acres, constitutes Parba ground water basin. The basis is bounded on the east by impervious igneous and metamorphic rocks, on the northwest and southeast by older alluvium, and on the southwest by the Wildomar fault.

The floor of the basin comprises alluvial gravel, sand, and clay deposited in Recent geologic time. The depth of this material, as estimated from the logs of wells, averages about 170 feet. Elevations range from 1,020 feet at Wildomar fault to 1,300 feet at the mouth of Nigger Canyon.

The Recent alluvium is underlain by older alluvium consisting of gravels, sands, and clays generally more consolidated than the Recent materials and consequently less permeable. The thickness of older alluvium increases in a southwesterly direction being 510 feet at well 8S/2W-12Hl near the head of the basin and in excess of 2,471 feet at well 8S/2W-17Ml near the west end of Pauba Valley at which point it was not encountered during drilling of the well. These features are shown on geologic sections G-G' and H-H', Plate 16.

Crystalline igneous and metamorphic rocks lie subjacent to the sedimentary formations in and adjacent to Pauba Basin.

These rocks are massive where exposed in neighboring highland areas and are therefore presumed to constitute an impermeable basement where they underlie the basin.

Ground water occurs in both the Recent and older alluvium.

In the Recent deposits, it occurs as free ground water; whereas in

the older alluvium it is confined. The area of confined water is limited to the westerly two-thirds of the basin as indicated on Plates 10B and 11B. In this area the older alluvium consists of an upper confining bed comprising clay and sandy clay with small lenses of sand and gravel, which is underlain by a more permeable zone from which the confined water is obtained. At the present time there are five flowing wells in this area. These wells are 8S/2W-15Cl, 16Al, 16Gl, 17Gl, and 17Ml. Well 8\$/2W-12Hl evidentally obtains water from the confined zone since it flows intermittently. Although there is a paucity of well logs in the easterly third of the basin, the data available suggest that the area serves as a forebay recharged by percolation from Temecula Creek and through which the pressure aquifers are supplied.

The Wildomar fault, which forms the southwestern boundary of the basin, is a high angle normal fault. Deep wells drilled on the northeast side of this fault yield flowing water; whereas on the southwest side no successful wells are in existence. This observation suggests that the fault forms a ground water barrier which prevents appreciable recharge of the deep sediments situated on its downstream side. On the other hand the fault appears to have no appreciable effect on underflow through the shallower Recent alluvium. Flow in Temecula Creek progressively increases with distance downstream. This increase in flow has been observed to continue for considerable distance downstream from the fault indicating that underflow must be crossing the fault in the Recent alluvium and rising in the stream bed on the downstream side.

Ground water moves in a southwesterly direction through

Pauba Basin. Directions of flow in the shallow, free ground water zone and in the deeper zone of confined ground water are depicted by separate sets of ground water contours on Plates 10B and 11B.

The older alluvium which flanks Pauba Basin on the northwest and southeast consists of interfingering lenses of sediments. Some of these lenses are known to be moderately permeable since they supply deep windmill wells located in the hills on either side of the basin. In effect these lenses constitute conduits through which ground water may either escape from or enter the basin depending upon the direction of the ground water slope existing at any particular time. Because of the irregular shape of these lenses, their heterogeneous composition, and unknown areal extent, the evaluation of the leakage through them becomes a complex problem. No evaluation was made of such flow in this investigation.

Fifteen active wells have been located within the basin. Nine of these are large irrigation wells, of which two are artesian. Pump tests showed that well 8S/2W-11J4 yielded 1,025 gallons per minute and well 8S/2W-20C1 yielded 1,750 gallons per minute with a specific capacity of 70.

The Pauba Valley artesian wells were reported by Waring²⁶ to have flowed at a rate of about 200 gallons per minute in 1915.

One of the wells, 8S/2W-15Cl, flowed at the rate of 210 gallons per minute in January, 1951. Artesian well 8S/2W-17Ml, adjacent to the Pauba Basin boundary, produced a maximum stabilized discharge of 2.326 gallons per minute during pump tests of August 3

through 6, 1951. Prior to the pump test, the artesian flow stabilized at about 400 gallons per minute. Four days after the pump tests, the well flow stabilized at about 250 gallons per minute.

Senta Margarita Coastal Basin

The San Margarita Coastal Basin underlies the irregular-ly-shaped flood plain of the Santa Margarita River in the coastal portion of the watershed. The basin surface covers an area of about 4,200 acres, and in general slopes southwesterly, surface elevation ranging from about 140 feet at the upper end to about 10 feet at the lower.

The basin is bounded on the north by hills of igneous rocks, which have residual soils developed upon them, on the east and west by sediments of the La Jolla formation, and on the south by San Onofre breccia. The boundary rocks are largely non-water-bearing.

The basin is constricted at two places, as shown by the delineation of the basin boundary on Plate 10A. For convenience in estimating storage capacity, the basin was considered as divided into three interconnected sub-basins, named Upper, Chappo, and Ysidora, respectively. A third constriction, known as Ysidora Narrows, is located at the downstream extremity of Ysidora Sub-basin and defines the downstream basin boundary. The stream bed again widens downstream from the narrows to form a broad alluvial flat, but this is not considered as part of the ground water basin since the saline character of the ground water contained therein prevents its use for domestic or irrigation purposes.

The three sub-basins are filled with alluvium varying in maximum depth from about 140 feet in Upper Sub-basin to about 200 feet in Ysidora Sub-basin. Materials underlying Upper and Chappo sub-basins consist of stringers and lenses of unconsolidated clay, silt, sand, gravel, and cobbles. Ysidora Sub-basin includes two lithologic units: a lower permeable member, and an overlying less permeable member. These features are illustrated on geologic cross section L-L', Plate 17. The permeability of the sediments which flank the basin on either side is variable, although generally much less than that of the alluvium. Surface outcrops of these formations consist chiefly of fine sediments, largely marine sands, shale, and clay. Logs of water wells show that the formations subjecent to the basin consist of similar materials. These formations do not appear to be completely impermeable, however, movement of ground water through them is undoubtedly quite slow.

The following are results of available pump tests made on wells in the basin:

Santa	Margar	ita	Coastal	Basin
	Water	Well	Yields	

Sub-basin	Number of wells tested	Average yield of wells in gpm	Specific capacity
Upper	2	200 - 350 1,980	3.8 - 7 220
Chappo	14 2 1	600-900 1,600 1,300	19 - 50 97 - 121 31
Ysidora	7	1,800	100

Direction of movement of ground water is indicated by ground water contours on Plates 10 A and 11 A.

8. PROCEDURE FOR ESTIMATING GROUND WATER STORAGE CAPACITY

Estimates of storage capacity were derived for each of the designated ground water basins within the watershed. Results are set forth in Table B-3. The method of compiling these estimates is discussed briefly in the following paragraphs.

In general, the procedure adopted followed that prescribed by the Division of Water Resources in its South Coastal Basin Investigation³. Briefly, this method entailed estimating the volumes of various sedimentary types such as sand, gravel, clay, etc., occurring within appropriate depth intervals in each basin, multiplying each of these volumes by an appropriate weighted specific yield factor to obtain the volume of extractable water contained in each interval and finally summing the capacities of each interval to obtain the total storage capacity of the basin. Specific yield is defined herein as the volume of extractable ground water obtained from a unit volume of material expressed as a percentage of the volume of the material.

The logs of water wells provided the information upon which the storage capacity estimates were based. Clay, sand, and gravel and numerous gradations between these types were recognized on most logs. Some logs reported as many as 20 different types of material. In order to estimate the storage capacities of individual sedimentary types, it was first necessary to assign a specific yield value to each type appearing on the logs. The values assigned are those set forth in Table B-4 and were derived largely from laboratory determinations made at the time of the South Coastal Basin Investigation³.

Estimates of the storage capacities of ground water basins are necessarily approximate because of inherent difficulties in extending data from relatively few wells to apply to entire basins. The results, however, are believed to be useful and to reasonably represent the physical situation under the stated assumptions.

TABLE B-4
ASSIGNED SPECIFIC YIELD VALUES

Туре	: Description of	material	: Specific yield : value assigned
Clay	Carbonaceous-silt Decomposed granite Hill formation	Hard pan Adobe	1
Soil	Loam Lake bed		4
Clay-sand	Sand and clay Muck Sea mud and packed sand Silty clay Clay with lime rocks	Cement Sandy clay Cemented sediment	5
Silt	Sandy soil		10
Sand	Fine sand	Coarse sand Quicksand	28
Tight Sand	Sandy-soil Silty-sand Unsorted angular sand Sand with trace of clay Sand and mud	Cemented sand Dirty sand	16
Gravel	Gravel and sand Boulders Cobbles and sand Fill		22
Tight Gravel	Cemented gravel Gravel with clay layers Dirty gravel	Sandy clay with gravel Packed sand with rocks	15
Gravel Clay	Conglomerate (partially of Clay and boulders	cemented)	7

- 4		V		14:1
				. 8
				D
				r 3
				.5
1 11				
				1
				774
			E.	40.4
-1				4

APPENDIX C

UNITED STATES DEPARTMENT OF AGRICULTURE
Agricultural Research Service
Soil and Water Conservation Research Branch
Western Soil and Water Management Section

CONSUMPTIVE USE OF WATER IN THE SANTA MARGARITA RIVER BASIN, CALIFORNIA

(A report based on data collected under a cooperative agreement between the United States Department of Agriculture and the State Engineer of California, Division of Water Resources, Department of Public Works)

> Los Angeles, California December, 1954

to be to get simple profits

AUMINOMPEDANTAL	
ORGANIZATION	C-7
INTRODUCTION	C-9
DESCRIPTION OF THE AREA	C-11
Soils	C-12
Land Use	C-13
Climate	C-14
Temperature and Precipitation	C-14
EVAPORATION STUDIES	C-17
New Evaporation Stations	C-17
FIELD CONSUMPTIVE USE STUDIES	C-18
Irrigated Crops	C-22
Results	C-24
Riparian Vegetation	C-25
Results	C-28
CALCULATED CONSUMPTIVE USE	C-28
Irrigated Crops	C-29
Dry-Farmed Crops	C-31
Beans	C-31
Grain-hay	C-36
Native Vegetation	C-36
Grass and brush	C-37
Brush and trees	C-38
Riparian Vegetation	C-40
LITERATURE CITED	C-42
	C-45

FOREWORD

Engineer of California and has been conducted under a cooperative agreement between the Soil Conservation Service, United States Department of Agriculture, and the Division of Water Resources, Department of Public Works, State of California.

On August 1, 1952, a joint working plan was completed by members of the staffs of the Division of Irrigation Engineering and Water Conservation of the Soil Conservation Service and of the State Engineer of California. The objectives set forth in the plan were as follows: (1) To determine the consumptive use of water by agricultural crops, native vegetation and other water-consuming areas and (2) To obtain information on farm irrigation use.

The results of the cooperative studies made under this agreement during the years 1952 and 1953 were presented in a provisional report entitled "Irrigation and Consumptive Use of Water Investigations in the Santa Margarita River Basin, Riverside and San Diego Counties, California" by William W. Donnan and G. Marvin Litz.

After reviewing this report, the State Engineer requested that it be condensed. The following report entitled "Consumptive Use of Water in the Santa Margarita River Basin, California" by Harry F. Blaney and Gilbert L. Corey, is a revision of the previous provisional report.

Harry F. Blaney State Research Supervisor

LIST OF TABLES

able No.		Page
C-1	Long-term mean monthly temperature and precipita- tion records at Escondido Church Ranch, Elsinore, and Warner Springs Weather Bureau Stations	C-16
C=2	Mean monthly temperatures at Evaporation Stations in Santa Margarita River Basin, California	C-19
C=3	Monthly precipitation at Evaporation Stations in Santa Margarita River Basin, California	C-20
C = 4	Monthly evaporation from Weather Bureau pans in Santa Margarita River Basin, California	C-21
C-5	Summary of consumptive use rates and coefficients (K) as measured on the field plots	C-26
C-6	Long-term mean unit values of consumptive use of water by irrigated crops in the Coastal areas of the Santa Margarita watershed, California	C-32
C=7	Long-term mean unit values of consumptive use of water by irrigated crops in the Murrieta and Temecula areas of the Santa Margarita watershed, California	C-33
C=8	Long-term mean unit values of consumptive use of water by irrigated crops in the Anza area of the Santa Margarita watershed, California	C-34
C-9	Long-term mean annual rainfall and rates of consumptive use by brush and trees, Santa Margarita River Basin, California	C-39
C-10	Measured and estimated monthly rates of consumptive use of water by riparian vegetation in Southern California	C-41
	APPENDIX	
Appendix		
C-11	Measured and estimated rates of consumptive use of water by avocados in the Fallbrook area, California, for the period April 1 to October 31, 1953.	C-47
C=12	Measured and estimated rates of consumptive use of water by alfalfa in Murrieta area, California, for the period April 1 to October 31, 1953	C-48

APPENDIX (continued)

Appendix table No		Page
C-13	Measured and estimated rates of consumptive use of water by irrigated pasture in the Murrieta area, California, for the period April 1 to October 31, 1953	C=49
C-14	Estimated rates of consumptive use of water by lettuce in Murrieta area, California, for the period March 30 to May 26, 1953	C-50
C-15	Estimated rates of consumptive use of water by melons in Murrieta area, California, for the period May 26 to September 22, 1953	C-51
C-16	Measured rates of consumptive use of water by carrots in Temecula area, California, for the period April 1 to September 30, 1953	C- 52
C-17	Measured and estimated rates of consumptive use of water by alfalfa in Temecula area, California, for the period April 1 to September 30, 1953	C-53
C-18	Measured and estimated rates of consumptive use of water by alfalfa in Aguanga area, California, for the period April 1 to October 31, 1953	C=54
C-19	Measured and estimated rates of consumptive use of water by irrigated pasture in the Anza area, California, for the period April 1 to October 31, 1953	C= 55
C-20	Measured and estimated rates of consumptive use of water by alfalfa grown for seed in Anza area, California, for the period April 1 to June 30, 1953	C~55

ACKNOWLEDGMENTS

Much of the field work connected with this investigation was carried on by the Santa Margarita staff of the California State Division of Water Resources, consisting of Leland Illingworth, Keith Tranbarger, James Jackson, Paul Erb, and Joseph Leitzinger.

Acknowledgment is made of the valuable assistance rendered by V. S. Aronovici, Soil Scientist of the Agricultural Research Service, United States Department of Agriculture, on the soils and laboratory phases of the investigation.

Aerial photographs and other data furnished by Earl Shade,
Work Unit Conservationist of the Soil Conservation Service, is hereby
acknowledged.

Evaporation and other climatological data furnished by the Ground Water Resources office of the Camp Pendleton Marine Base and the Metropolitan Water District of Southern California are hereby acknowledged.

ORGANIZATION

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF WATER RESOURCES

A. D. Edmonston .	•	•	•		0	State Engineer - Sacramento
						Assistant State Engineer - Sacramento
Max Bookman	o	•			e	Principal Hydraulic Engineer - Los Angeles
Leland Illingworth	1		•		0	Senior Hydraulic Engineer - Los Angeles
Keith Tranbarger	۰		0	D		Assistant Civil Engineer - Murrieta
						(Resigned February, 1955)
James Jackson	•		٠	•	•	Assistant Hydraulic Engineer - Los Angeles
Paul C. Erb		۰	•	•	e	Assistant Civil Engineer - Los Angeles
Joseph Leitzinger	•	•				Junior Civil Engineer - Murrieta
						(Resigned February, 1955)
John Roth	•				e	Assistant Engineering Geologist - Murrieta

UNITED STATES DEPARTMENT OF AGRICULTURE
Agricultural Research Service
Soil and Water Conservation Research Branch
Western Soil and Water Management Section

				Chief, Soil and Water Conservation Research Branch
Omer J. Kelley	•	•	•	Head, Western Soil and Water Management Section
Chester E. Evans	۰	e	۰	Acting Head, Western Soil and Water Management Section

Irrigation and Drainage Staff

William W. Donnan		٠	۰	Technical Staff Specialist
Howard R. Haise .				Technical Staff Specialist
Harry F. Blaney .			٥	State Research Supervisor - Los Angeles
Gilbert L. Corey		e	c	Associate Irrigation Engineer - Los Angeles
G. Marvin Litz .	٠			Associate Irrigation Engineer - Los Angeles
				(Resigned April, 1954)

Ho...9 984 91.

CONSUMPTIVE USE OF WATER IN THE SANTA MARGARITA RIVER BASIN, CALIFORNIAL

INTRODUCTION

This report is a contribution to an investigation initiated by the State Engineer of the Division of Water Resources, Department of Public Works, involving an inventory of the water supply of the Santa Margarita River watershed in Riverside and San Diego Counties, California.

Because of experience accumulated by the Division of Irrigation Engineering and Water Conservation of the Soil Conservation Service, United States Department of Agriculture, along similar lines in other regions (1, 2)3/, its entry into the investigation was brought about under provisions of a formal agreement of long standing between the two agencies. Under this agreement, the Division of Irrigation Engineering and Water Conservation undertook to determine rates of consumptive use of water by agricultural crops and native vegetation and other factors needed to determine ultimate water requirements and safe yield of the basin.

A revision of provisional report entitled, "Irrigation and Consumptive Use of Water Investigations in the Santa Margarita River Basin, Riverside and San Diego Counties, California", (April, 1954) by William N. Donnan, Drainage Engineer, and G. Marvin Litz, Associate Irrigation Engineer; prepared by Harry F. Blaney and Gilbert L. Corey, Irrigation Engineers; Western Soil and Water Management Section, Soil and Water Conservation Research Branch, Agricultural Research Service, U.S. Department of Agriculture, Los Angeles, California, December, 1954.

^{2/}On January 1, 1954, the activities of this division were transferred to Western Soil and Water Management Section, Soil and Water Conservation Research Branch, Agricultural Research Service, U. S. Department of Agriculture.

^{3/}Numbers underscored in parentheses refer to LITERATURE CITED at end of report.

Prior to the present investigation, informal cooperation on the installation and operation of evaporation stations had been started at the request of the Marine Corps of the United States Navy, Camp Fendleton Marine Base. Equipment was loaned and assistance rendered in establishing two evaporation stations in the basin. These stations were located at O'Neill Lake on the Camp Pendleton Marine Base, and Vail Reservoir on the Pauba Ranch.

In the fall of 1952, a reconnaissance field trip was made of the Upper Santa Margarita River watershed for the purpose of locating sites for three additional evaporation stations in cooperation with the Los Angeles office of the State Engineer. Sites were selected and stations were established at Anza, Murrieta, and Oakgrove Valley.

Observations at these three stations on evaporation, precipitation, temperature, and wind movement were begun in February, 1953. These data, together with data collected from stations at Vail Reservoir and O'Neill Lake, have been used in this report in connection with determining evapo-transpiration rates and coefficients for the consumptive-use formula.

In March, 1953, a program of soil moisture sampling was started on a series of representative plots in the irrigated area of the basin. A soil moisture field laboratory was established in Murrieta and equipment to carry on the field work was assembled. The purpose of this program was to make field measurements of consumptive use of water by various irrigated crops in the basin. At the same time, a 1.3-mile section of Temecula Creek was chosen as the site for a study of consumptive use of water by riparian native vegetation during the summer months.

Most of the field observation connected with these studies were made by engineers of the staff of the State Division of Water Resources at Murrieta. Some of the laboratory analyses of soils, such as volume weights, were made in the Division of Irrigation Engineering and Water Conservation laboratory at Pomona, California.

At various times throughout the summer irrigation season, checks and analyses were made of irrigation practices, duty of water, and efficiency of irrigation on various plots. In November, 1953, the soil moisture sampling of the irrigated plots was completed. This report presents an analysis of the above data, together with estimates of the unit values of evaporation and consumptive use of water in the various sub-basins.

DESCRIPTION OF THE AREA

The Santa Margarita River Basin is located in Riverside and San Diego Counties. Figure $1\frac{1}{2}$ is a map of the watershed. This

Subdivisions of Santa Margarita River Watershed

Appendix C Area	<u>Desigr</u> Area	Hydrographic unit
Upper Sub-basin (Anza)	Inland	Portions of Nos. 2 and 3 above elevation 3,000 feet
Intermediate Sub-basin (Murrieta-Temecula)	Inland	Nos. 1 and 4 and portions of Nos. 2 and 3 below elevation 3,000 feet.
Lower Sub-basin	Coastal	Nos. 5 and 6.

Note: Areas in Hydrographic Units Nos. 2 and 3 having elevations above 3,000 feet are roughly those in Range 2 East and easterly and all those within San Diego County, except portions of Oakgrove Valley and areas downstream therefrom, along Temecula Creek.

Figure 1 not reproduced; see Plates 21A and B, Diversion Systems and Irrigated and Irrigable Lands, bound in Santa Margarita River Investigation, Volume I, for location of climatological stations, and consumptive use study plots. Sub-basins are located on plates in accordance with the following tabulation:

watershed covers an area of about 740 square miles and is divided into upper, intermediate, and lower sub-basins by topographic and climatic features. The upper sub-basin is considered to be that portion of the watershed inland from the coastal mountains which is 3,000 feet above sea level or higher. Temecula Creek, Coahuila Creek, and Wilson Creek have their origin in the Palomar, Warner, and Coahuila Mountains, and drain the upper sub-basin, a region of high mountain valleys separated by rocky granitic ridges and low The intermediate sub-basin comprises the remainder of the inland area. It is drained by lower Temecula Creek and Murrieta Creek and its tributaries, Warm Springs and Santa Gertrudis Creeks, which drain the Murrieta Valley and adjacent extensive area of low hills. The intermediate sub-basin ranges in elevation from about 1,000 to 3,000 feet above sea level. The Santa Margarita River proper is formed at the junction of Temecula and Murrieta Creeks. The river enters Temecula Canyon and flows down a precipitous gorge to the long narrow valley of the lower sub-basin. Much of the lower sub-basin, or coastal area, is in the Camp Pendleton Marine Base. The Santa Margarita River flows into the Pacific Ocean about five miles north of the City of Oceanside, California. The basin contains portions of the Elsinore Murrieta-Anza, Upper San Luis Rey, and San Jacinto Soil Conservation Districts,

Soils

The soils of this watershed are predominantly derived from acid igneous granodiorites. Variations in physiography and relief have produced a wide range in soil profile characteristics. Soils of this watershed have been mapped by the United States.

Department of Agriculture, Bureau of Soils $(\underline{8},\underline{11})$. At the present time, parts of this watershed are being surveyed in detail by the Soil Conservation Service.

From a soils standpoint, the area may also be divided roughly into three regions:

First, the coastal region consisting of coastal terrace soils of relatively poor quality, having moderately to strongly developed clay subsoil. Where the river and tributary streams have cut down into the terraces, recent alluvial soils of the Hanford series are found. Some sandy soils formed on old shore lines are found directly east from the coast line.

Second, the residual soils found on the rolling-to-mountainous lands. Here the productive Vista and Fallbrook series are formed directly on deeply weathered granodiorites. These soils are intensively cultivated on the gentler slopes, and where water is available.

Third, the interior valleys and plains. This zone is quite variable. In the vicinity of Temecula, very old terrace soils having moderately to strongly developed clay subsoils and hardpan, including the Ramona, Placentia, and Monserate series. There are minor areas of so-called badlands in the Vail Lake region. In the vicinity of Anza, a soil classified as Calvista is now being mapped. This soil is similar to the Vista series, but reflects the lower rainfall of the interior valleys.

Land Use

The present land use of the Santa Margarita River

Basin is typical of the coastel and inland valleys of the Southern California region. A major portion of the lower sub-basin is occupied by the Camp Pendleton Marine Base. Some of these lands are leased to private operators for truck and citrus production. The area around Fallbrook contains extensive acreages devoted to avocado and subtropical fruits. In the intermediate subbasin a large portion of Temecula Creek Valley is occupied by the Pauba Ranch of the Vail Estate and most of the irrigated area is devoted to alfalfa and forage crops. Murrieta Creek watershed contains the largest area of small irrigated ranches devoted primarily to alfalfa, irrigated pasture, truck and deciduous fruits. The balance of the basin, aggregating nearly two-fifths of the watershed area, consists of brush and woodland range, dry-farmed grain, and in the valley bottom lands small fertile areas of irrigated crops, mostly alfalfa, irrigated pasture, and some seed crops.

The State Division of Water Resources is completing a land use survey of the Santa Margarita River watershed for inclusion in its overall report of the basin.

Climate

The climate of the Santa Margarita Watershed is characterized by warm, dry summers and cool, rainy winters. The area immediately adjacent to the ocean is visited by heavy summer fogs which contribute to the humidity and aid in the production of some crops.

Temperature and Precipitation

The upper basin averages two to five degrees warmer than the lower basin during the summer months and five to ten degrees

cooler during the winter months. The prevailing wind is from the west. However, occasionally, hot. dry winds sweep in from the eastern desert areas and affect the temperatures of the upper and intermediate areas.

Most of the rainfall comes during December, January, February, and March. The total precipitation gradually increases with increased elevation to the east. Along the coast, the average annual precipitation is about 12 inches; at Fallbrook, elevation 750 feet, the average is about 17 inches; while in the upper sub-basin mountain area the annual average aggregates 25 to 30 inches. In most of the interior valleys the rainfall averages from 14 to 16 inches on the valley floor.

Long-term temperature and precipitation records are available from the published data of the United States Weather Bureau for the following observation stations:

Escondido Church Ranch: Elevation 715 feet, frostfree period March 9 to November 25, with a 36-year record representing the approximate long-term mean temperature of the lower sub-basin and coastal areas.

Elsinore: Elevation 1,300 feet, frost-free period

March 12 to November 20, with a 54-year record representing
the approximate long-term mean temperature of the Murrieta

Valley, Temecula Valley, and Pauba Valley areas of the intermediate sub-basin.

Warner Springs Ranch: Elevation 3,180 feet, frostfree period April 29 to October 29, with a 47-year record representing the approximate long-term mean temperature of the higher elevation and mountain areas of the upper sub-basin.

A summary of these records appears in Table C.1.

Table C-l Long-term mean monthly temperature and precipitation records at Escondido Church Ranch, Elsinore, and Warner Springs Weather Bureau Stations.

	0	Escono Church I	dido :	Elsino	re2/	Warner S	nrings ³ /
Month	00 00 00	Mean : tem- : perature:	Mean : precipi-:	Mean : tem-	Mean : precipi-:	Mean tem- perature	: Mean : precipi- : tation
		\circ_{F}	Inches	\circ_{F}	Inches	\circ_{F}	Inches
January		51.0	3.43	50.2	2.71	46.5	3.20
February		52,6	3.54	52.5	2.88	47.8	3.43
March		55.2	2.77	55.6	2.42	50.4	2,62
April		58.3	. 80	60.0	。80	53.9	1.30
May		62.6	。60	65.3	.31	58.6	.52
June		67.2	.09	71.8	。03	65.9	.07
July		71.9	.03	78.5	.06	73.9	.52
August		72.2	.13	78.2	.15	73,4	.95
September		69.0	.16	73.6	. 27	68.6	. 43
October		63.1	.79	65.7	.64	60.9	.86
November		57.3	1.15	57.7	. 83	53.8	1.08
December		52.2	2.83	51.8	2.45	48.1	3.26
Annual		61.0	16.32	63.4	13.55	58.5	18.24

^{1/} Means based on a 36-year record.

^{2/} Means based on a 55-year record.

^{3/} Means based on a 46-year record.

EVAPORATION STUDIES

The only reliable long-term evaporation records for adjacent areas, continuous up to the present date, are those for San Jacinto and Chula Vista. Additional fragmentary records covering shorter periods are available for Lake Elsinore and Lake Henshaw.

New Evaporation Stations

In order to provide additional meteorological data for the Santa Margarita River Basin, a number of additional observation stations have been established in the area.

In 1952, equipment was loaned and assistance rendered to the Marine Corps, U. S. Navy, to establish evaporation stations at O'Neill Lake at Camp Pendleton and the Vail Reservoir on the Pauba Ranch. A standard Weather Bureau Class A evaporation station was established at each site. Observations were made by personnel at the Marine Base.

In the winter of 1952-53, sites were chosen for three more evaporation stations in the intermediate and upper sub-basins. The location of these three stations were as follows:

- 1. Anza Station, located in the crossroads settlement of Anza to represent evaporation and climatic conditions in the high mountain valley areas of the watershed.
- 2. Oakgrove Station, located at the Oakgrove Forest Fire Guard Station, to represent the evaporation and climatic conditions in the mountain watershed areas.
- 3. Murrieta Station, located on the southeast edge of Murrieta to represent the evaporation and climatic conditions in

the major irrigated region of the watershed area.

The meteorological observations at all these stations are summarized in Tables C-2, C-3, and C-4.

FIELD CONSUMPTIVE USE STUDIES

Various methods have been used to determine the amount of water consumed by agricultural crops and native vegetation in a specific basin or watershed. Actual measurements can be made using field plots in the area being investigated, or measurements made in other areas can be transferred to a given area by a method developed by Blaney and Criddle (3). For this investigation, it was felt advisable to make plot studies on some of the most predominant irrigated crop types and to augment these actual measurements by translocation of measured data from adjacent areas.

Mean monthly temperatures at Evaporation Stations in Santa Margarita River Basin, California. Table C-2

Month :					Location	n of	station	1 1		1 1	1 1
1	Anza	œ C	Uakgrov Mean	o v	Murrieta	eta .	Vail	Lake		Lake 0'	O'Neill
•••	temperature	- 1	tem		temperature		temperature	tem		temperature:	ture
•••	1953	1954	1955 :	1954	1953 ;	• •	1952	: 1953 :	1	1953 ;	1954
January	!	44	1	20	53.01/	50	:	ţ 1	52	ů ř	51
February	44.5	52	42.5	56	53.01/	57	!	9	28	0	59
March	47.0	45	50.0	50	54.01/	53	9	57.0	52	57.0	53
April	48.5	56	52.0	90	54.5	09	56.0	57.0	9	61,0	57
May	50.5	09	56.0	63	58.5	64	0°99	61.0	64	61.0	09
June	62.0	9	0°99	i	65.5	/289	63.0	73,0	29	68.0	63
July	77.0.	i	0°62	0	75.5	198/	74.0	0°64	46	74.0	72
August	71.5	û t	74.0	î I	73.0	722/	76.0	77.0	72	72.0	69
September	69.5	L	72.0	i i	70.5	718/	74.0	75.0	74	71.0	29
October	58,5	9	62,5	8	65.0	642/	0	0°29	65	0°69	19
November	53.0	0	57,5	q	58°2	269	8	0°09	58	64.0	09
December	46.5	1	52.0	1	51.0	512/	0	56.0	53	54.0	55

1/ Estimated from Elsinore Station.

^{2/} From U.S.D.A., Soil Conservation Service, Murrieta, California.

Monthly precipitation at Evaporation Stations in Santa Margarita River Basin, California Table C-3

Menth	Anza		Oakgrov	°CVe ;	Location	O E	station	il Lake	gc gc	Lake 0	Neill.
	Inches	16.5	Inche	02	Inches		Inches	Inches	- m	Inches	- 1
	1953	1954	1953	1954	1953	154	2967	1953	1954	1955	1954
January	0	4.08	0	5,59	0.82	5,77	1	0.55	3,70	0	4.25
February	0,62	1.72	0.82	2,78	0.52	2,80	0	0,45	1.66	0	1.84
March	1.18	4.03	1,53	5,36	1,12	4.05	1	1,17	5.04	0,21	3,47
April	1,40	60°0	1,03	00°0	0.74	0.08	2,16	0.24	H	0,59	0.14
May	0.17	0.111/	0.02	00°0	0.01	00.00	00°0	0.04	0.01	0.21	00°0
June	00.00	0.001/	00.00	0.02	00.00	7 <u>2</u> /	00°00	00°0	00°0	00°0	90°0
July	00°00	0 0	1,37	0	Ħ	0.002/	60°0	E	0.16	00°0	0.37
August	00°0	0 6	00°0	0	00°0	\Z\0	EH	00°0	00.00	00°0	E
September	00°0	0	00.00	0 8	00°0	\ <u>\$</u> 0	1.30	00.00	60°0	00°00	00°0
October	0.40	0	0.52	a	0.21	\ <u>\$</u> 0	00°0	0.67	Н	0.16	E
November	0.45	ę	0.56	0	0.69	2,452/	3.08	0.44	1.33	0.64	1,25
December	0.39	0	0.03	0	0.10	0.932	2,51	0.03	0.71	0.14	0.78
											1

1/ Partly estimated.

^{2/} From U.S.D.A., Soil Conservation Service, Murrieta, California,

Monthly evaporation from Weather Bureau pans in Santa Margarita River Basin, California Table C-4

Month	Anza	: 82	Oakgrove	ove :	Location	of a	station:	Vail Lake		Lake 0	O'Neill
	Inches 1953	nes 1954	Inches 1953	98 1954	Inches 1953	1954	Inches 1952	Inches 1953	1954	Inches 1953 I	1954 1954
January	i	3.351/	1	1	2.341/	2:741/	! 1	3.751/	2 .52	i	2,21
February	3.80	5,74	3.431/	4.391/	3,10	3,61	1	6 6	4.82	ê 1	
March	5,23	4° 64	4.49	4.381/	4.64	. 3.30	í	6.37	$3.43\frac{1}{2}$	4 , 65	3.931/
April	5,15	60.7	4.11	5 57	5.36	5,39	5 67	5,45	6.48	4.91	4.75
May	7.71	8,251/	7.571	7.951/	8,42	7.181/	9,17	8,48	7.98	7,60	60°9
June	9°.46	l I	9.12	0	9,82	7,532/	8.94	10,10	9.34	6°29	7 , 86
July	11,68	9	11,27	Q g	11,64	9°16 ² /	11,41	12,95	11.05	8,66	8,24
August	12,13	0	10,81	i I	10,41	6.672/	11,92	11.56	9.56	8,49	8,07
September	9,93	6	8°.88	§ 8	8, 52	7,712/	8.54	9,52	7,98	5,41	6.60
October	7.81	8	6.271/	û Î	6,61	4.918/	7 ° 00	. 6 . 63	6.67	6.08	5,16
November	4.78	8	4.051/	8 C	4 ° 04	3.018/	4,22]	4.35	4 . 03	3,58	3.80
December	5,45	1	4.24		4.33	2,242/	2,65	4.34	3,50	4.27	26.8

1/ Partly estimated.

2/ From U.S.D.A., Soil Conservation Service, Murrieta, California.

Irrigated Crops

In the spring of 1953, a soil moisture field laboratory was established at Murrieta. Sites were selected for making plot studies of consumptive use of various crops. Figure 1 shows the location of the various plots. The following tabulation gives a general description of the plots selected:

ion <u>2</u> /	Owner	Nearest :	Crop	: Method : irrigat	
300	3	De l'Ibme els	Arrandad	Sanialel	0.72
W- le F	reeman	Wildomar			
W- 1M F:	reeman	Wildomar	Alfalfa	Sprinkl	.er
W- 7R M	orrow	Murrieta	Romaine	Furrow	
W-18A M	orrow	Murrieta	Lettuce	Furrow	
W-17D M	orrow	Murrieta	Melons	Furrow	
W-18Q P	auba Ranch	Temecula	Peaches	Furrow	
W-20K P	auba Ranch	Temecula	Carrots	Furrow	
W-llM P	auba Ranch	Temecula	Alfalfa -	Border	check
E = 7D T	ucalota				
	Ranch	Sage	Irrig. pasture	Sprinkl	.er
E-33F T	runnell	Aguanga	Alfalfa	Sprinkl	er
		Anza	Irrig. pasture	Border	check
	estphalen	Anza	Seed alfalfa	Sprinkl	er
	W-19C A: W-1E F W-1M F: W-7R M W-18A M W-17D M EW-18Q P EW-20K P EW-20K P EW-20K P EW-20K P	W-19C Anderson W- 1E Freeman W- 1M Freeman W- 7R Morrow W-18A Morrow W-17D Morrow W-18Q Pauba Ranch Pauba Ranch Pauba Ranch Tucalota Ranch E-33F Trunnell E-20J Pursche	W-19C Anderson Fallbrook W-1E Freeman Wildomar W-1M Freeman Wildomar W-7R Morrow Murrieta W-18A Morrow Murrieta W-18Q Pauba Ranch Temecula W-20K Pauba Ranch Temecula W-11M Pauba Ranch Temecula Ranch Sage E-33F Trunnell Aguanga E-20J Pursche Anza	ion 2/ Owner Lown Crop W-19C Anderson Fallbrook Avocados W- 1E Freeman Wildomar Irrig. pasture W- 1M Freeman Wildomar Alfalfa W- 7R Morrow Murrieta Romaine W-18A Morrow Murrieta Lettuce W-17D Morrow Murrieta Melons W-18Q Pauba Ranch Temecula Peaches W-20K Pauba Ranch Temecula Carrots W-11M Pauba Ranch Temecula Alfalfa E- 7D Tucalota Ranch Sage Irrig. pasture E-33F Trunnell Aguanga Alfalfa E-20J Pursche Anza Irrig. pasture	ion 2/ town : Crop : irrigat W-19C Anderson Fallbrook Avocados Sprinkl W- 1E Freeman Wildomar Irrig. pasture Sprinkl W- 1M Freeman Wildomar Alfalfa Sprinkl W- 7R Morrow Murrieta Romaine Furrow W-18A Morrow Murrieta Lettuce Furrow W-17D Morrow Murrieta Melons Furrow W-18Q Pauba Ranch Temecula Peaches Furrow W-20K Pauba Ranch Temecula Carrots Furrow W-20K Pauba Ranch Temecula Carrots Furrow W-11M Pauba Ranch Temecula Alfalfa Border E- 7D Tucalota Ranch Sage Irrig. pasture Sprinkl E-33F Trunnell Aguanga Alfalfa Sprinkl E-20J Pursche Anza Irrig. pasture Border

^{2/}Refers to township, range, section, and nearest 40 acres within the section.

Auger borings were made on each plot to determine depth of soil and at the same time in-place soil samples were extracted. These samples were analyzed in the Pomona laboratory by V. S. Aronovici for volume weight, field capacity, wilting point, and other characteristics of the soils. The in-place soil samples were obtained by using a Pomona-type coring device. The results of the volume weight measurements on the various plots are summarized in the following tabulation:

^{1/}Figure 1 not reproduced; see Plates 21A and B, "Location of Diversions and Irrigated and Irrigable Lands" for location of consumptive use study plots.

Soil	r flygg yf flyggan franky i tymller amanaeth B	acembuponetiren teoerretationerren rosen	er beligger og filmlingsmagge, steden en vesser ogbre		F	10t <u>I</u> /	-	t-plaint#1-styget (reprinterings of indignition)	ar agage aga an ag Berapan Panasi (An		Paris our gas on Philips - Paris
depth	: 1	: 2	: 3	: 5	: 6	: 8	: 9	: 10	: 11	: 12	: 13
Feet											
0-1	1,60	1.40	1 7)	1 50	1.55	1 65	1.55	1 35	1.50	1 65	1.55
1-8	1.55	1.4)	1.45	1 40	1.65	1.35	1 50	1 60	1 2)	1 75	1.45
2-3	1.55	1,40	1.48	1 55	1 05	1 35	1.50	1 43	1 20	1 7%	1 50
3-4	1.55	1:40	1 45	1 55	1.65	1 35	1 45	1 2)	1 20	1 75	1 55
4-5	1.55	1 4)			1 65		1.40	1 20	1 20	1 75	1 35
5-6	1,55	1.40	645 odo	em es	1 65	ec e-	1.43	1 20	1 2)	1.75	1 35

1/ Plots 4 and 7 were abandoned.

The periodic soil sampling for moisture depletion on the plots was accomplished by means of a modified Veihmeyer soil tube. Each plot was sampled to a depth of six feet in replicate. The replication was determined by the crop type and method of irrigation. On some plots, only four sampling holes were used while on other plots as many as nine holes were employed to obtain a representative sample of soil. On several plots, decomposed granite was encountered at four-foot depth and the sampling program was carried on only to that depth.

The soils were extracted in one-foot increments, placed in airtight soil cans, and brought to the laboratory for weighing. After weighing, the soils were placed in an oven and the moisture was driven off. Then the soils were reweighed and the percentage of moisture present was computed.

The percentage of soil moisture in the sample, on a dry-weight basis, was converted to inches of water by the formula:

 $I = \underbrace{Pw \times Vw \times D}_{\pm 00}$

Where I = Inches of water per unit depth of soil
I = Per cent soil moisture on a dry-weight basis

Vw = Volume weight of the soil

D = Depth in inches

Soil samples were obtained immediately prior to irrigation and as soon as practicable after irrigation. The differential between the post-irrigation soil moisture content and the next succeeding pre-irrigation soil moisture content represented the quantity of water depleted from the soil by the growing vegetation.

The field work on these plot studies was carried on by the State Division of Water Resources staff in Murrieta. Observations on plots 4 and 7 were discontinued early in the season because the owners stopped irrigating these plots. At the other 11 sites, the sampling program was carried through to completion in November, 1955, but late analysis indicated that conditions at plot 10 were not representative.

Results

The procedure for summarizing the data on these plots followed the general pattern used by the Division of Irrigation Engineering and Water Conservation in prior consumptive use investigations (2,5). On an individual plot, a composite was made of the soil moisture in one-foot increments and the loss of moisture (consumptive use) over the period between samplings was determined by taking into account root zone depth of the crop.

In some instances, it was apparent from the analysis of data that antecedent gravitational movement of soil moisture occurred in the fifth or sixth foot of the soil profile between samplings. Where this occurred, the gain or loss was deleted from

both the pre-irrigation and post-irrigation sampling composites in order to reflect a more normal increment of consumptive use for the period. The controlling factor in making this adjustment was the mean daily rate of consumptive use which was obtained by dividing the total for the period by the number of days between sampling periods.

For the short periods before, during, and after irrigation when no measurements of moisture depletion were available, estimates were also dictated by the daily measured amounts preceding and following the water application period. Table C-5 is a summary of the consumptive use rates and coefficients (K), of the Blaney-Criddle formula, as measured on the plots. Appendix tables C-11 through C-20 give the individual data from each plot.

Riparian Vegetation

Due to the existence of an extremely favorable site on which to make observations, a field investigation was carried on to measure use of water by riparian vegetation in the upper sub-basin. Temecula Creek, above the Vail Reservoir, appears as rising water at the lower ends of a succession of small interior valleys separated by narrow confined rocky canyons. At a point near the end of lower Culp Valley, water rises to the surface and enters a narrow rock-walled canyon. Continuous flow at this point ranges from one cubic foot per second in the spring to 0.5 cubic foot per second in the late summer and early fall. The stream flows through this narrow section for approximately 1.3 miles before it is diverted for irrigation at

 $[\]frac{1}{D}$ Diversion T8S/R1E-35M on Plate 21B.

Table C-5 Summary of consumptive use rates and coefficients (K) as measured on the field plots.

Crop	Location	Months inclusive	: Consumptive : Use (U)	: Coefficient
Avocados	Fallbrook	Apr Oct.	Inches 24.09	: (K) <u>-</u> / 0,56
Alfalfa	Murrieta	AprOct.	27.442/	
Irrig. pasture	Murrieta	AprOct.	35.89	0,85
Lettuce	Murrieta	MarJune	12.22	0.58
Melons	Murrieta	June-Sept.	18.10	0 . 68
Carrots	Temecula	May -Aug.	15.36	0.68
Alfalfa	Temecula	AprSept.	34,90	0.83
Alfalfa	Aguanga	AprOct.	35.80	0.85
Irrig, pasture	Anza	Apr,-Oct,	37,43	0.94
Alfalfa (seed)	Anza	AprJune	12.97	0.86 <u>3</u> /

 $[\]frac{1}{K} = \frac{U}{F} = \frac{Consumptive use}{Consumptive use factor}$ in the Blaney-Criddle formula U = KF

^{2/}Alfalfa had only a four-foot root zone due to barrier; therefore, the use was less than would be expected under normal conditions.

^{3/}Coefficient would be smaller if entire season for seed crop is considered.

the upper end of Aguanga Valley. In January, 1951, the State Division of Water Resources established a gaging station at the head of this reach upstream from Aguanga Valley. This station, located on Temecula Creek near Thurber Ranch, consists of a two-foot rectangular, sharp-crested weir placed on bedrock and equipped with a continuous flow, water stage recorder.

In the spring of 1953, a six-inch galvanized iron

Parshall flume was installed on a bedrock site near the lower end

of this canyon, immediately above the diversion, the purpose being

to measure both inflow and outflow through the 1.3-mile section of

the canyon and thus determine the stream depletion in the canyon.

A float-operated water stage recorder was installed to gage flow

through the flume and measurements were started in May, 1953.

Figure 1 shows the location of this study.

The canyon floor of this reach of stream averaged from 35 to 100 feet in width. The watercourse consisted of a succession of rapids, falls, and pools, separated by long reaches of meander flow. There was a drop of about 240 feet in the 1.3-mile reach. Soils in the canyon consisted for the most part of sands, gravels, and boulder outcrops. There were no small side canyons and no evidence of inflow from the rock-walled sides throughout the reach of the measurements. Vegetation on the canyon floor consisted of native grass, weeds, and brush, together with willows, cottonwoods, and oak trees. The pools below the various falls

^{1/} Figure 1 not reproduced; see Plate 6, Hydrographic Map, for location of gaging station on Temecula Creek near Thurber Ranch (Temecula Creek near Aguanga) at stream mile 52.4 immediately above study site, which extends from stream mile 51.1 to stream mile 52.4.

were bordered by tules and sedges and the entire watercourse supports a dense growth of watercress. The canyon floor on which riparian vegetation was growing was estimated to aggregate 8.57 acres. The vegetation, while classed as dense, where it occurred was interspersed with sandbars and rocky outcrops. Thus, for the purpose of comparison it was classed as medium dense vegetation for this investigation.

Results

The daily measurement of use of water by the vegetation along the creek was determined by comparing the flow at the two measuring points. The daily rate of consumptive use varied from an average low of about 0.10 inch per day in May, to a high of over 0.50 inch per day during August. The following tabulation is a summary of the consumptive use by riparian vegetation on Temecula Creek:

Month	Inches
May (18-31) June July August September October (1-17; 28-31)	2.40 4.59 10.16 13.37 5.33 2.12
Total for period	37.97

CALCULATED CONSUMPTIVE USE

Consumptive use of water includes all transpiration and evaporation losses from lands on which there is growth of vegetation of any kind, whether agricultural crops or native vegetation, plus evaporation from bare land and water surfaces (3).

The processes of evaporation from a free-water surface and

plant transpiration are similar in that each is influenced by climatic conditions. The quantity of water transpired by plants depends on the amount of water at their disposal as well as on temperature and dryness of the air, sunlight, wind movement, and length of growing season (3).

Irrigated Crops

In order to secure optimum, long-term, mean values of consumptive use on the various land use classification, empirical techniques were utilized. These techniques have been used in similar cooperative investigations $(\underline{7},\underline{9})$. On those crop types where plot studies were carried out, a comparison was made between the measured consumptive use for the 1953 season and consumptive use in other areas and the data modified to reflect long-range climatic conditions. On those crop types not studied by means of plots, consumptive use data were derived from investigations in other areas and translocated to the Santa Margarita Basin. This transfer was accomplished by comparing climatological data in the area under study. This widely used technique was first developed by Blaney and Morin($\underline{4}$) and later perfected by Blaney and Criddle($\underline{3}$). The Blaney-Criddle method employed the following relationships:

Where U = Consumptive use for period in inches

- K = Empirical coefficient (growing period or irrigation season)
- t = Mean monthly temperature in degrees Fahrenheit
- p = Monthly per cent of daytime hours of the year
- $f = t \times p = Monthly consumptive use factor$
- F = Sum of monthly consumptive use factors for the period

Thus when computing coefficient (K) for a crop at the location of measured consumptive use, the formula is as follows: $K = \overline{F}$; and to establish consumptive use values for a new area, the formula is: U = KF = Consumptive use, inches.

In order to reflect differences in temperature, rainfall, and frost-free period or growing season for the three hydrographic units of the Santa Margarita Basin, the three representative long-term records were used as follows: Escondido Church Ranch observations to reflect long-term climatic conditions in the lower sub-basin; Elsinore observations to reflect the long-term climatic conditions of the intermediate sub-basin (Murrieta-Temecula area); and Warner Springs observations to reflect the long-term climatic conditions of the upper sub-basin (Anza area).

The (K) values chosen for calculating the consumptive use were taken from values found in the field study (Table C-5) where possible. For crops not studied in the field trials (K) values were taken from values found in other areas (3).

Since the values found in the field plots apply only to the particular year and location of study, it was necessary to modify the values somewhat in order to apply to large areas and long-term means. As an example, the coefficient (K) for alfalfa as found at Temecula and Aguanga was approximately 0.85. However, observations on consumptive use of alfalfa in coastal regions where summer fogs prevail indicate that this value should be lowered. Therefore, a coefficient (K) of 0.75 was used for the lower sub-basin. In the upper sub-basin while the actual growing season is approximately seven months, April through October, the frost-free period ranges from April 29 to October 29 (29-year record at Warner Springs). Thus the coefficient (K) of 0.85 was

modified to the value 0.80 for the upper sub-basin (Anza area). In the intermediate sub-basin (Murrieta-Temecula area), the observed (K) of 0.85 was used.

Tables C-6, C-7, and C-8 summarize the calculations of consumptive use on irrigated crops in the Santa Margarita watershed.

Dry-Farmed Crops

Consumptive use of water by dry-farmed crops is controlled by the climatic conditions and the water storage capacity in the root zone of the soil. A wet, rainy winter and spring season will provide ample moisture conditions and reflect a high consumptive use by vegetation. On the other hand, a dry winter and spring will reflect a low consumptive use.

Since seasonal rainfall has such a marked influence on the consumptive use, it is difficult to carry on soil moisture plot studies for only one season which would represent long-range conditions. Therefore, the average unit values of consumptive use for the nonirrigated land use classes have been derived by translocation of reliable measurements made elsewhere. The dry-farmed crops of the Santa Margarita Basin are beans and grain-hay.

Beans

The production of dry-farmed beans in the Santa Margarita watershed is dependent upon moisture stored in the root zone for growth and maturity. Since beans are susceptible to frost and require warm temperatures to attain optimum growth, they are

Table C=6 Long-term mean unit values of consumptive use of water by irrigated crops in the Coastal areal of the Santa Margarita watershed, California

	:	:	Consumpti	ve use		
		:Coeffi-		:	_	*
Crop			: Factor			Basis for making estimates
	8	: (K)	: (P)	<u> (U</u>		
				Inches	Feet	
Alfalfa	Apr. =Oot. Nov. =Mar.		42.20	31.65 8.50		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				40.15	3.34	
Irrigated pasture	AprOct. NovMar.		42.20	31.65 8.50		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				40.15	3.34	evaporation revale model resistant plan visitebra avive
Citrus	AprOct. NovMar.	-	42.20	18.99 8.00		Coefficient (K) from 1940 San Fernando plots. Winter period estimate based on evaporation from mean rainfall
				26.99	2.25	Trom moon rothroll
Truck	May -Augo		26 . 33	15.80 8.75		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall
				24,55	2:04	Iron meen raintall
Avocados	AprOct.		42.20	21.10 8.00		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall
				29.10	2,42	from mean rainiail
Beans	May -Augo Septo-Apro		26.33	15-80 8-75		Coefficient (K) from 1930 Davis plots. Winter period estimate based on evaporation from mean rainfall
				24.55	2.04	II om meeti telinell
Grain	Mar. = May June = Feb.	∘70	15.79	11.05 6.70		Coefficient (K) from SCS-TP-96 modified by observational studies. Winter period estimate based on evaporation from mean rainfall
				17.75	1,48	ocean on eacharatton than mann terment

U = KF

^{1/} Hydrographic unit Nos. 5 and 6.

Table C-7 Long-term mean unit values of consumptive use of water by irrigated crops in the Murrieta and Temecula areasl of the Santa Margarita watershed, California

	:	:	Consumpti	ve use		
Crop	: Period	:Coeffi :cient : (K)	: Factor : (F)		value (U)	: Basis for making estimates
				Inches	Feet	
Alfalfa	AprOct. NovMar.		44.,96	38.22 8.50		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				46.72	3.89	
Irrigated pasture	AprOct. NovMar.		44.%	38.22 8.50		Coefficient (K) from Santa Margarite plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				46.72	3.89	aron modification plus tremspiration
Citrus	AprOct. NovMar.	.45	44.96	20.23 8.00		Coefficient (K) from 1940 San Fernando plots. Winter period estimate based on evaporation from mean rainfall
				28.23	2.35	arom medi reintett
Avocados	AprOct. NovMar.	_	44. %	22.48 8.00		Coefficient (K) from Santa Margarita plots. Winter period estimate based on symporation from mean rainfall
				30.48	2 - 54	from mean rainiail
[ruok	May -Aug. SeptApr.	.60	28,35	17.01 8.54		Coefficient (K) from Santa Margarita plote. Winter period estimate based on evaporation from mean rainfall
				25,55	2.13	Trom medicalitati
Beans	May -Aug. SeptApr.	.60	28.35	17.01 8.54		Coefficient (K) from 1930 Devis plots. Winter period estimate based on evaporation from mean rainfall
				25.55	2.13	ILOM Merti Letificit
Deciduous	AprOct. NovMar.	.65	44.96	29.22 6.83		Coefficient (K) from SCS-TP % Modified by Hemet and Beaumont studies.
				36∘05	3.00	Winter period estimate based on evaporation from mean rainfall
Grain	MarMay June -Feb.	-7 0	16.26	11.38 6.48		Coefficient (K) from SCS-TP % Winter period estimate based on evaporation
				17.86	1.49	from mean rainfall

U = KF

^{1/} Hydrographic Unit Nos. 1 and 4, and area below elevation 3,000 feet in Hydrographic Unit Nos. 2 and 3.

Table C-8 Long-term mean unit values of consumptive use of water by irrigated orops in the Anza areal of the Sante Margarita watershed, California

an opp at This can their Self-Halls	?	7	Consumpt	ive use		
Crop	Perlod	:Coeff1= :cient : (K)		÷	value (U)	: Basis for making estimatee
				Inches	Feet	
Alfalfa	Apr = 0ct. NovMar.	0.80	41.43	33.14 8.00		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				41.14	3.43	from mean rannall plus transpiration
Irrigated pasture	AprOct. NovMar.	ه 80	41.43	33.14 8.00		Coefficient (K) from Santa Margarita plots. Winter period estimate based on evaporation from mean rainfall plus transpiration
				41.14	3.43	Trois about totalized pade of dispated 201
Truck	May -Aug. SeptApr.	.60	26,16	15.70 9.29		Coefficient (K) from 1930 Davis plots. Winter period estimate based on evaporation from mean rainfall
				24.99	2.08	
Grain	Apr. June July -Mar.	•70	16. 7 7	11.74 9.76		Coefficient (K) from SCS-TP-96. Winter period estimate based on evaporation from mean rainfall
				21.50	1.79	model rodingor
Alfalfa seed	AprOct. NovMar.	.60	41,43	24 ° 86 7 • 00		Coefficient (K) from Santa Margarita plots and Tehashapi observations. Winter period estimate based on evaporation from mean
				31:86	2:66	rainfall
Deciduous	Mey -Oot. NowApr:	.65	36.70	23.85 8.00		Coefficient (K) from SCS-TP-96 and Hemot and Beaumont studies. Winter period estimate based on evaporation from mean rainfall
				31 85	2 65	cased on evaporation trop mean raintail

U = KF

Areas above elevation 3,000 feet in Hydrographic Unit Nos. 2 and 3.

usually planted late in April and are harvested in August. The rainfall during this period provides only a small amount of soil moisture. Most of the moisture used by the plants has been stored in the root zone from winter precipitation. Summer fogs are a great aid to the production of beans since they inhibit transpiration and are thought to provide some plant moisture. Beans are usually planted on the heavier soils having a high moisture storage capacity.

Since the moisture use by dry-farmed beans is controlled primarily by the water-holding capacity of the soils, the estimates of consumptive use have been based on that factor. It has been estimated that on those soils where dry-farmed beans can be grown profitably, the available moisture in the root zone would be about six inches. This estimate has been substantiated by fall moisture deficiency observations on dry-farmed bean fields $(\underline{5})$. Added to this would be a growing season average annual precipitation (May through August) of one inch, for a total growing season consumptive use of seven inches. In addition, there would be a nongrowing season evaporation and/or growth of winter period weed or cover crops of about eight inches (depending on the rainfall) making a total annual consumptive use of 15 inches.

In the immediate vicinity of the Pacific Ocean, the average annual rainfall does not aggregate 15 inches, yet dry-farmed beans thrive because of heavy summer fogs. Also over a period of years, there would be many years when the annual rainfall would be less than the estimated unit annual consumptive use of 15 inches. Therefore, it was felt advisable to adjust the consumptive use estimate to the following amount: 15 inches

or 95 per cent of the rainfall, whichever is less. This would take care of the low rainfall coastal areas and would also provide an estimate to use on any given low rainfall year.

Grain-hay

The grain-hay produced on nonirrigated rolling hill areas of the watershed is usually planted late in the fall. This crop germinates when sufficient rain has fallen but does not attain full growth until the frost-free period begins. Plot studies on annual grass and weed areas in the Santa Ana River Basin (2) and other studies made by the Division of Irrigation Engineering and Water Conservation indicate that the coefficient (K) of consumptive use for grain-hay is 0.50 for the growing season, January through May. this coefficient is applied to the long period climatic conditions for the various sub-basins of the Santa Margarita watershed, it is found that the consumptive use by grain-hay will vary between 10.2 and 11.2 inches for the growing period. Added to this would be evaporation from rainfall during the summer and early fall months, or an aggregate total of 14,00 inches of annual consumptive use. A study of the long-term mean isohyetal of rainfall on the Santa Margarita watershed reveals that the precipitation ranges from about 13 to 16 inches in most of the grain-hay producing areas. Consumptive use on dry-farmed grain-hay would vary for each individual year depending on the rainfall. It is assumed, therefore, that the unit value of consumptive use would be 14 inches or 95 per cent of the rainfall, whichever is less.

Native Vegetation

Consumptive use by native vegetation is controlled by

climatic conditions and the water-storage capacity of the root zone in the soil. In addition to these factors, there are certain areas where excessive amounts of soil moisture are available at all times - along creek channels, around ponds and marshes, and in seep areas. At these locations, riparian or water-loving plants thrive and the evapo-transpiration of water is relatively high. The three types of native vegetation are: grass and brush, brush and trees, and riparian vegetation.

Grass and Brush

This type of vegetation consists mostly of annual grasses, weeds, and brush. While the growing period and dormant period compare favorably with that of dry-farmed grainhay, the presence of deep-rooted, perennial brush and weeds indicates that a slightly higher consumptive use may be apparent. This factor was revealed in plot studies described in the Santa Ana River investigations (2), and in observations on fall deficiency of grain-hay and grass-brush plots (6). The coefficient (K) for brush and weeds was found to be about 0.58 which when applied to the long-term mean growing season consumptive use factor for the watershed indicates a consumptive use of 11 to 12 inches. By adding evaporation from rainfall during the nongrowing season, it is found that the mean annual consumptive use of native pasture (grass and brush) aggregates about 16 inches. Here again, the long-term mean rainfall for some areas in the watershed, or rainfall for any one year, may exceed or be less than 16 inches. Thus, it is recommended that the mean annual consumptive use of native pasture

(grass and brush) be taken as 16 inches or 95 per cent of the rainfall, whichever is less.

Brush and Trees

The areas in the Santa Margarita watershed where brush and trees occur are confined primarily to the north and northeast exposures of the higher elevation mountain areas. These areas receive an average annual rainfall of at least 18 inches, and on the higher elevations up to 25 and 30 inches (Mount Palomar). It has been found by Troxell (12) that mean seasonal water losses (consumptive use) for various watersheds in western Riverside County varies with altitude and with the absorptive and retentive characteristics of the watersheds being investigated. Using data developed by Troxell, a calculation has been made of the estimated average annual consumptive use of water by brush and trees in the various higher elevation areas of the Santa Margarita Basin. Table C-9 is a summary of these calculations.

The rates of consumptive use shown in Table C-9 for the higher elevations, especially Palomar Mountain slopes and the Western Coastal Ridge slopes of the lower basin, are somewhat higher than estimates made for other areas in the south coastal region. It should be noted, however, that these areas are highly absorptive and retentive, creating an excellent reservoir for soil moisture storage. Also, these areas receive measurable amounts of summer precipitation. The 10-year record at Palomar Observatory (1943-1953) reveals an April-to-October rainfall of 3,87 inches,

Estimated long-term mean annual rainfall and rates of consumptive use by brush and trees, Santa Margarita River Basin, Californial/ Table C-9

	Erush and tree	asin ree area	Hill and mesa area north of Temecula Greek	sa area :	Palomar Mountain slopes	ountai n es
Altitude	Rainfall2/	sumptive use	: Rainfall $2/$; C	Consumptive :	Rainfall ² /;	Consumptive use
	Inches	Inches	Inches	Inches	Inches	Inches
1,000	18.0	17.0				
2,000	24.0	21.5	14.0	13,5	16.0	15,5
3,000	28.0	24.0	16.0	15,3	20.0	18,5
4,000			80.0	18.0	27.0	23.0
5,000			25.0	20°0	. 29.0	23.5
6,000					30°0	24.0
١ / ١						

C. Troxell, Based on "Hydrology of Western Riverside County" by H. $\vec{\Box}$

2/ Estimated rainfall based on isohyetal maps.

which would augment the consumptive use of moisture stored in the root zone.

Riparian Vegetation

The data found in the field study on Temecula Creek were compared with temperatures, per cent of daytime hours, and evaporation as recorded at the Oakgrove Observation Station, five miles upstream from the canyon test plot. The comparatively low measured consumptive use for June can be traced to cold nighttime temperatures and frost on May 28 which set back the growth of native vegetation during the early summer.

Due to the fact that there was such a wide variation in types of vegetation depleting the stream flow on this study, it was difficult to establish consumptive use coefficients from the measured data. However, these data together with data from other investigations in the adjacent San Luis Rey Bonsal Basin (10) and in Coldwater Canyon (6) were used to estimate long-period unit values. Table 10 is a summary of the above data together with the estimated long-term rates of consumptive use of riparian vegetation for the Santa Margarita watershed.

Table C-10 Heasured and estimated monthly rates of consumptive use of water by riparian vegetation in southern California

	:		consumptive use			c canyon section
	: Coldwate	r Canyon :	Bonsal Basin tank	s <u>2/</u>	11000000	: Estimated
Month		n No. 44:	Dense trees	:	e onsumptive	
		: Lower :	and grass,	: Tules :	use,	consumptive
	: section	: section :	four-foot water table	;	1953	: 4962
	Inohes	Inohes	Inches	Inches	Inches	Inohes
January			1.53	1.82		1.5
Pebruary			1.89	1.90		1.5
March			3.21	3.09		1.5
April			5.49	4.56		3.0
Hay			7.59	7.07	<u>3</u> /2.40	5.0
June			8.09	7.46	4.59	7.0
July	10.23	13.02	10.27	8.70	10.16	10.0
August	10.85	13.64	9.65	7.76	13.37	12.0
September	9.00	11.10	7-91	6.41	4/5.33	7.0
October	8.99	8.06	3.65	5.07	5/2.12	4.0
November			2.00	3.18		2.0
December Annual			1.24 62.51	1.92 5હે.94		1.5 56.0

^{1/} Dense trees and grass.

^{2/} Taken from "Utilization of the Waters of the San Luis Rey Valley, San Diego County, California" by D. C. Muckel and Harry F. Blaney (10).

^{3/} May 18-31 only.

^{4/} Part of measurement lost.

^{5/} October 1-17 and 28-31 only.

^{6/} Estimated long-term mean values of monthly consumptive use to be applied to riparian vegetation areas in the Santa Margarita Basin.

LITERATURE CITED

- (1) Aronovici, V. S., Donnan, W. W. and Litz, G. Marvin.

 1951. Report on Cooperative Investigations on Consumptive
 Use of Water in the West Coast Basin, Los Angeles
 County, California, U. S. Soil Conserv. Serv., Div.
 of Irrig. (Typewritten report, later published as
 Appendix to "Draft of Report of Referee" on West
 Coast Basin Investigation, Calif. Div. Water Resources).
- (2) Blaney, Harry F., Taylor, C. A. and Young, A. A.
 1930. Rainfall Penetration and Consumptive Use of Water in Santa Ana River Valley and Coastal Plain. Calif.
 Dept. Pub. Works, Div. Water Resources Bull. 33,
 162 pp., illus.
- (3) Blaney, Harry F. and Criddle, Wayne D.
 1950. Determining Water Requirements in Irrigated Areas from
 Climatological and Irrigation Data. U. S. Soil Conserv.
 Serv. TP-96, 48 pp., illus.
- (4) Blaney, Harry F. and Morin, Karl V.
 1942. Evaporation and Consumptive Use of Water by Empirical
 'Formulas. Amer. Geophy. Union Trans. of 1942. Part
 I-B. Part I, pp. 76-83, illus.
- (5) Blaney, Harry F.
 1933. Rainfall Penetration. Calif. Dept. Pub. Works, Div.
 Water Resources. Reprint of Chapter VI, Bull. 46,
 Ventura County Investigation, 11 pp., illus.
- (6) Blaney, Harry F., Taylor, C. A., Nickle, H. S. and Young, A. A. 1933. Water Losses Under Natural Conditions from Areas in Southern California. Calif. Dept. Pub. Works, Div. Water Resources Bull 44, 176 pp., illus.
- (7) Donnan, W. W. and Litz, G- Marvin
 1953. Irrigation and Water Supply Investigations in
 Tehachapi Soil Conserv. Serv. Res., Div. of Irrig.,
 52 pp., illus. (Mimeographed.)
- (8) Holmes, L. C.
 1918. Reconnaissance Soil Survey of San Diego Region,
 California. U. S. Bur. Soils, 77 pp., illus.
- (9) Muckel, D. C., Donnan, W. W., Aronovici, V. S. and Litz, G. 1953. Marvin. Ground Water Replenishment by Penetration of Rainfall, Irrigation and Water Spreading in Zone 3. Ventura County Flood Control District. U. S. Soil Conserv. Serv. Res., Div. of Irrig., 63 pp., illus. (Mimeographed.)
- (10) Muckel, D. C. and Blaney Harry F.
 1945. Utilization of the Waters of the San Luis Rey Valley,
 San Diego County, California U. S. Soil Conserv
 Serv Res. Div of Treig 144 pp. illus. (Mimeographe

LITERATURE CITED (Continued)

- (11) Storie, R. E. and Carpenter, E. J.
 1921. Soil Survey of the Oceanside Area, California.
 U. S. Bur. Chem. and Soils in cooperation with
 Calif. Agr. Exp. Sta., 41 pp., illus.
- (12) Troxell, H. C.
 1948. Hydrology of Western Riverside County, California.
 Riverside County Flood Control and Water Conserv.
 Dist. and U. S. Geol. Survey, 111 pp., illus.
 (Mimeographed.)

APPENDIX

TABLE OF CONTENTS

- Table C-11 Measured and estimated rates of consumptive use of water by avocados in the Fallbrook area, California, for the period April 1 to October 31, 1953.
- Table C-12 Measured and estimated rates of consumptive use of water by alfalfa in Murrieta area, California, for period April 1 to October 31, 1953.
- Table C-13 Measured and estimated rates of consumptive use of water by irrigated pasture in the Murrieta area, California, for period April 1 to October 31, 1953.
- Table C-14 Estimated rates of consumptive use of water by lettuce in Murrieta area, California, for the period March 30 to May 26, 1953.
- Table C-15 Estimated rates of consumptive use of water by melons in Murrieta area, California, for the period May 26 to September 22, 1953.
- Table C-16 Measured rates of consumptive use of water by carrots in Temecula area, California, for period April 1 to September 30, 1953.
- Table C-17 Measured and estimated rates of consumptive use of water by alfalfa in Temecula area, California, for the period April 1 to September 30, 1953.
- Table C-18 Measured and estimated rates of consumptive use of water by alfalfa in Aguanga area, California, for the period April 1 to October 31, 1953.
- Table C-19 Measured and estimated rates of consumptive use of water by irrigated pasture in the Anza area, California, for the period April 1 to October 31, 1953.
- Table C-20 Measured and estimated rates of consumptive use of water by alfalfa grown for seed in Anza area, California, for period April 1 to June 30, 1953.

		· p
	G.	AT.

Table C-11 Measured and estimated rates of consumptive use of water by avocados in the Fallbrook area, California, for the period April 1 to October 31, 1953

	Period		; Dave	Measured	: Rate :		mated rate er irrigat		: : Total	: Consum	
	reriod		: Days			lst day	2nd day	: 3rd day			months
				Inches	Inches	Inches	Inches	Inches	Inches		Inches
Irrig.		3/27	2			0,20	0,15	•==	0.35		
	3/27 to	4/13	17	1.32	0.078				1.32		
	4/13 to	4/15	2		.078				. 16	April	2.46
Irrig.	4/15 to	4/17	2			. 20	. 15		٠35		
		5/14	27	1.94	,072		-		1.94		
		5/16	2		. 072				. 14	May	3.06
Irrig.		5/18	2		• •	. 20	.15		٠35	•	
		6/9	22	2.57	o 117		2		2.57		
Irrig.		6/11	2	77	,	. 20	∘15	w **	•35	June	3.79
		6/29	18	2.16	. 120		,		2.16		2-17
Irrig.		7/1	2			. 20	. 15	* P	•35		
		7/17	16	2.89	. 181	*	/		2.98		
		7/19	2	2.07	. 181				.36	July	5.81
Irrig.		7/21	2			, 25	.20	æ w	.45)· · ·
		8/10	20	3.69	a 184	•/			3.69		
Irrig.		8/13	3	,,	. 20.	. 25	و20	0。20	.65	Aug.	4.10
		8/27	14	1.03	. 074	,		00-0	1.03		
Irrig.		8/31	4	1:0)	.0/1	,25	, 20	ءَ 1 5	-75 -75		
*****	0/2/ 00	0/)1	-			7-9	. 20	,15	۰/۶		
	8/31 to	0/15	15	1.47	. 098			129	1.47		
Irrig.		9/17	2	1.4/	. 070	, 20	.15		.35	Sept.	2 25
HITE.	9/17 to 1		19	2.08	100	, 20	.15		2,08	Septi	3.35
				2.00	.109						
Irrig.			1		. 1 09	. 20	15		.11	0-4	3 50
irrig.			2	3.0	000	. 20	.15	~ ~	. 35	Oct.	1.52
		.0/30	21	.19	.009	•	• •		. 19		
	10/30 to 1	1/1	2			، 20	. 1 5		∘ 35		
TOTAL					* 7:	- ~	**		24.85		24.09

Table C-12 Measured and estimated rates of consumptive use of water by alfalfa in Murrieta area, California, for the period April 1 to October 31, 1953

Period	: Day	e : Measured	: Rate : : per :	aft	mated rate er irrigati	on	: : Total	: by n	ptive use
		: C.U.	: day :	let day	: 2nd day :	3rd day	; amount	: Month	: C.U.
		Inches	Inohes	Inohes	Inches	Inohes	Inches		Inches
4/1 to 5/	'5 <u>3</u> 4	1/2.91	0.083		•		2.91	April	2.49
Irrig. 5/5 to 5/	8 3			0.25	0.20	0.15	. ∙60		
5/8 to 6/	'22 4 <u>5</u>	;	.10				4.50	May	3•33
6/22 to 6/	23 1		.10				-10		
Irrig. 6/23 to 6/	'25 2	!		و25	. 20		.45	June	3.43
6/25 to 7/		3.24	.130				3.24		
7/20 to 7/	'21 1		.13				.13	July	4.92
rrig. 7/21 to 7/	' 23 2	2		• 30	و25 ،		۰55		
7/23 to 7/	′27 4	,	•16				-64		
rrig. 7/27 to 7/	(23 27 (27 4) (30 3) (21 22 (25 4)	}		. 30	.25	.20	. ∙75		
7/30 to 8/	['] 21 22	4,25	.193				4.25	Aug.	6.07
8/21 to 8/			.19				76ء		
Irrig. 8/25 to 8/	27 2			۰30	ء25		•55		
8/27 to 9/		2.51	.179				2.51		
9/10 to 9/			٠17				.17	Sept.	4.18
irrig. 9/11 to 9/	1 4 3	3		۰ 30	.25	.20	∘ 75		
9/14 to 10	/14 3 0/19 39	3.40	•097				3.40		
10/19 to 10)/24 9	5	.10				∘50	Oot.	3.02
Irrig. 10/24 to 10				, 20	15،	.10	• 55		
10/28 to 11	./27 30	<u>1</u> /1.69	.056				1.69		
TOTAL	24()	••	- =		••	29.00		2/27.44

^{1/} Includes rain.

^{2/} Use is low because alfalfa only had a four-foot root zone.

Table 0-13 Measured and estimated rates of consumptive use of water by irrigated pasture in the Murrieta area, California, for the period April 1 to October 31, 1953

						nated rate		: Total		ptive use
	Period :	•	: Measured			:after irrigation : lst day : 2nd day : 3rd da			by months	
			: C.U.	: day	: lat day	: 2nd day	: 3rd day	amount	: Month	: 0.0.
			Inohes	Inches	Inches	Inches	Inches	Inohes		Inches
	4/1 to 4/17	16		0.10				1.60		
Irrig.	4/17 to 4/20	3	. 1/		0.25	0.20	0.15	.60	April	4.00
	4/20 to 5/11	21	3.43 <u>1</u> /	. 163				3.43		
	5/11 to 5/13	2		.10				.20		
Irrig.	5/13 to 5/15	2			.25	.20		₋ 45	May	5.10
	5/15 to 6/3	19	3.15	.166				3.15		
	6/3 to 6/7	ц		.166				.66		
Irrig.	6/7 to 6/10	3			.30	.2 5	.20	•75	June	5+33
	6/10 to 7/3	23	3.93	.171				3.93		
	7/3 to 7/10	7		.171				1.20		
Irrig.	7/10 to 7/13	3			. 30	. 25	.20	•75	July	5.69
	7/13 to 7/30	17		.20				3.40		
Irrig.	7/30 to 8/3	ц			. 30	₀ 25	.20	•95		
	8/3 to 8/14	11	1.87	•17				1.86	_	- 4-
	8/14 to 8/17	3		.17				۰51	Aug.	5.65
Irrig.	8/17 to 8/20	3	_		. 30	25 و 25	.20	•75		
	8/20 to 9/4	15	1.98	.132				1.98		
	9/4 to 9/8	Ý.		.13				•52	_	
Irrig.	9/8 to 9/11	3			• 35	•30	• 25	• 90	Sept.	6.50
	9/11 to 9/23	12	2.97	. 246				2.96		
Irrig.	9/23 to 9/25	2			٠35	• 30		٠65		
	9/25 to 9/28	3		• 25				۰75		
	9/28 to 10/9	11	1 .1 6	.106				1.16		
	10/9 to 10/14	5	.10					.50		
Irrig.	10/14 to 10/16	2			ء25	.20		45،	Oct.	3.62
	10/16 to 10/19	3	. 2/	. 15	1			.45		
	10/19 to 11/9	21	2.411/	.115				2,41		
TOTAL		222		- 0				36.92		35.89

^{1/} Includes rain.

Table C-14 Estimated rates of consumptive use of water by lettuce in Murrieta area, California, for the period March 30 to May 26, 1953

	Period			Days	:	Rate : per , :	Total	:		tive use nonths
					:	day :	amount	<u>:</u>	Month	: C.U.
						Inches	Inches			Inches
Irrig.	3/30	to	4/1	2			0.35			
	4/1		4/11	10		0.10	1.00		March	2.002/
Irrig.			4/13	2			。35			
			4/18	5		.15	.75			
Irrig.	4/18		4/20	2			.45			
	4/20		4/27	7		.16	1.12		April	5.07
Irrig.			4/29	2			.45			
	4/29		5/4	5		. 20	1.00			
Irrig.	5/4		5/6	2 3			.45		May	4.15
			5/9			. 20	. 60			
Irrig.			5/11	2			. 45			9/
	5/11	to	5/26	15		.15	2,25		June	1.002/
TOTAL				57		- □	9.22		യയ	12.22

Consumptive use rate-per-day estimate based on periodic soil sampling for moisture content, depth of root zone, and rate of moisture depletion.

^{2/} Estimate based on observations in other areas of southern California.

Table C-15 Estimated rates of consumptive use of water by melons in Murrieta area, California, for the period May 26 to September 22, 1953

	Period	: Days	: Rate : ; per : day1 :	Total : amount :	by mo	
			Inches	Inches		Inches
Irrig.	5/24 to 5/26	2		0.35		
	5/26 to 6/12	16	0.05	.80	Torres	7 10
Irrig.	6/12 to 6/15	3	.12	, 50 1,80	June	3.10
Irrig.	6/15 to 6/30 6/30 to 7/2	15 2	. I Z	.40		
11118.	7/2 to 7/17	15	.15	2.25	July	4.85
Irrig.	7/17 to $7/19$	2	• — -	.45	v	
	7/19 to $7/24$	2 5 2	.15	.75		
<u>Irrig</u> .	7/24 to 7/26		3.5	.45	August	5.25
T	7/26 to 8/10	15	.15	2,25 ,45		
Irrig.	8/10 to 8/12 8/12 to 8/17	2 5	。 1 5	. 45 . 75		
Irrig.		2	, 10	.45		
<u> </u>	8/19 to 8/23	2 4	. 15	. 60		
Irrig.	8/23 to 8/25	2 5		. 45		
	8/25 to 8/30	5	.15	.75		
\underline{Irrig} .	8/30 to 9/1	2 7 2	3.5	. 45	Septembe	er 4.80
T	9/1 to 9/8 9/8 to 9/10	7	,15	1,05 ,45		
Irrig,	9/8 to 9/10 9/10 to 9/22	12	.15	1.80		
TOTAL		121		17.20		18.10

<u>l</u>/ Consumptive use rate-per-day estimate based on periodic soil sampling for moisture content, depth of root zone, and rate of moisture depletion.

Table C=16 Measured rates of consumptive use of water by carrots in Temecula area, California, for the period April 1 to September 30, 1953

	Period	: Days	: : Measured	: Rate :		ated rate or irrigati		Total	: Consump	onths
		:	: C.U.	day :	lat day a	2nd day	3rd day:	amount	: Month :	C.U.
			Inches	Inches	Inches	Inches	Inches	Inches		Inches
	5/11 to 5/15	4		0.05				0.20	May	
Irrig.	5/15 to 5/18	3		-	0.25	0.15	0.10	50ء	(12-31)	
	5/18 to 5/28	10	0.83	•08				-83		2.03
	5/28 to 5/31	3		80ء				. 24		
Irrig.	5/31 to 6/2	2			<i>。</i> 25	.20		45ء		
	6/2 to $6/10$	3 2 8 2	1.01	。12				1.01	June	
	6/10 to $6/12$	2		.1 2				. 24		
rrig.	6/12 to 6/15	3 4			.25	.20	•15	و6.		4.38
	6/15 to 6/19	4		ء12				48،		
Irrig.	6/19 to $6/21$	2			.25	_e 20		.45		
	6/21 to 7/8	17	2 <i>.</i> 38	. 14				2.38		
	7/8 to 7/10	2		.14				.28	July	
rrig:	7/10 to 7/13	3			25 ،	، 20	ء15	•60		
	7/13 to 7/22	9	1.26	، 14				1.26		4.58
	7/22 to 7/24	2		. 14				.28		
Irrig.	7/24 to 7/27	2 3 9 2 3 14			.25	。20	.15	•60		
	7/27 to 8/10		2.12	.15				2.12	Aug.	
Irrig:	8/10 to 8/12	2			25 ء	。20		.45	(1-24)	4.37
	8/12 to 8/24	12	1.82	ء15				1.82		
TOTAL		105	e=			6 0 30		14.79		15.36

Table C-17 Measured and estimated rates of consumptive use of water by alfalfa in Temecula area, California, for the period April 1 to September 30, 1953

		:	:	: Rate :	Es tima	ted rate	C.U.	:	: Consum	ptive us
	Period	: Days : Measured : per :		after	after irrigation			_: Total : by mon		
		:	: C.U.	: day :	lst day :	2nd day	: 3rd day	: amount	: Month	€ C.U.
			Inches	Inches	Inches	Inches	Inches	Inches		Inches
	4/1 to 5/9	38		0.16				6.08	April	4.80
Irrig.	5/9 to 5/11	2			0.35	0.35		<i>₌</i> 70		
	5/11 to 5/26	15	5.52 <u>1</u> /	•37	• •			5.52	May	9.20
Irrig.	5/26 to 5/29	3			۰35	.30	0.30	• 95		
	5/29 to 7/3	35	9,44	.27		-	•	9.44	June	8.10
	7/3 to 7/7	3 35 4 2		.25				1,00		
Irrig.	7/7 to 7/9	2			30ء	.25		٠55	July	5.45
	7/9 to 7/22	13 8	3.11	. 24				3.11	•	
	7/22 to 7/30	8	23 ،	.029				.23		
	7/30 to 8/1	2 4	-	.029				• 06		
Irrig.	8/1 to 8/5	4		•	.25	و20 ء	٠15	۰75	Aug.	2.40
	8/5 to 8/28	23	.84 <u>2</u> /	.037			•	۰,84		
Irrig.	8/28 to $9/1$	23 4		•	. 25	20 ء	۰15	٠75		
	9/1 to 10/2	31	。95 <u>2</u> /	03ء	•		•	95 و	Septo	1.05
	10/2 to $10/3$	1	,,	٥٥3				۰03	•	_
Irrig.	10/3 to 10/5	2		•	٥20	.15		۰35		
	10/5 to 10/7	2 2		15ء				₃3ó	Oot.	3.90
	10/7 to 12/7	62	8.261/	.133				8. 2 6		• •
COTAL		251						39.87		90 ، بلاد

^{1/} Includes rain.

^{2/} Suspect presence of high ground water table causing little or no depletion of moisture.

Table C-18 Measured and estimated rates of consumptive use of water by alfalfa in Aguanga area, California, for the period April 1 to October 31, 1953

Annual Control of Control	Period	: : Days	: : Measured	: Rate : : per :	afte	ated rate C r irrigatio	n	: Total	: Consumpti	
		<u>:</u>	: C.U.	: day :	1st day	: 2nd day :	3rd day	: amount	: Month :	C.U.
			Inohes	Inches	Inches	Inohes	Inohes	Inches		Inches
	4/1 to 4/4	3		0.10				0.30		
Irrig,	4/4 to 4/6	3 2			0,25	0.20		45،		
	4/6 to 4/18	12		.15				1.80	April	5.42
Irrig.	4/18 to 4/22	4	- 1	-	.30	. 25	0.20	∘95		
	4/22 to 5/15	23	4.89 <u>1</u> /	.213				4.89		
	5/15 to 5/18	3	•	. 20				.60	May	5.21
Irrigo	5/18 to 5/20	3	1/		ء 30	25 ء		•55		
	5/20 to 6/5	16	1.45 ¹ /	.089	•	-		1.45		
	6/5 to 6/7	2		.10				.20		
Irrig.	6/7 to 6/9	2			و3،	25 ،		•55	June	4.33
	6/9 to 6/23	14	2,10	ء150				2.10		
	6/23 to 6/25	2		. 15				.30		
Irrig.	6/25 to 6/26	ī		2	.30			.30		
	6/26 to 7/14	18	1.85	.103	-			1.85		
Irrig.	7/14 to 7/16	2			. 30	. 25		• 55	July	5.63
	7/16 to 7/24	8		. 25				2.00	·	, ,
	7/24 to 7/30	6		.20				1.20		
Irrig.	7/30 to 8/3	6 4			.30	.25	.20	• 95		
	8/3 to 8/20	17	3.44	. 202				ુ.મ ્ મ	Aug.	6.74
	8/20 to 8/24	-í4		-15				.60	· ·	·
Irrig.	8/24 to 8/25	1			٠30			.30		
	8/25 to 9/16	22	6.29	. 286				6.29	Sept.	5-98
Irrig.	9/16 to 9/18	2			٠30	. 25		• 55	-	
Manager Commence of the Commen	9/18 to 10/29	41	3.63 <u>1</u> /	。088				3,63	Oct.	2.49
TOTAL		211		= 0	•••	- a	- 4	35.80		35.80

^{1/} Includes rain.

Table C-19 Measured and estimated rates of consumptive use of water by irrigated pasture in the Anza area, California, for the period April 1 to October 31, 1953

	Douglas d	. Done	Managemad	: Rate :		ated rate		: : Total	Consumpt	
	Period	: Dava	C.U.			r irrigati : 2nd day		_	: by months : Month : C.U.	
		•	0,00	; uay ;	1st day	: 2nd day	: 3rd day	: amount	: Fionth :	0.0.
			Inches	Inches	Inches	Inches	Inches	Inches		Inches
	4/1 to 4/5	4		0,10				0.40		
Irrig.	4/5 to 4/9	4			0,25	0.20	0.15	۰75	April	3.88
	4/9 to 5/7	28	3.47	.134				3.47		
	5/7 to 5/24	17		.15				2.55	May	4.36
Irrig.	5/24 to 5/28	4			25ء	。20	.15	•75		
	5/28 to 6/18	21	1.74	.083				1.74		
	6/18 to 6/20	2		•08				.16	June	4.94
Irrig.	6/20 to 6/23	3			•35	.30	، 30	•95		
	6/23 to 7/8	15	4.55	.303				4.55		
Irrig.	7/8 to 7/10	Ź			. 25	.20		،45		
	7/10 to 7/21	11	. 92	.084	-			ه 92	July	6.72
	7/21 to 7/22	1	·	.08				80 ه	_	
Irrig.	7/22 to 7/24	2			•35	.30		.65		
	7/24 to 8/6	13	4.04	.311		•		4.04		
Irrig.	8/6 to 8/10	Ĺ			.25	, 2 0	.15	•75		
	8/10 to 8/16	6		٠10	/			66	August	7.75
Irrig.	8/16 to 8/19	3			• 35	٠30	. 25	.90		, . , ,
	8/19 to 8/24	ź		20 ،	-27	• • • •	>	1.00		
Irrig.	8/24 to 8/26	2			٠35	۰30		.65		
	8/26 to 9/10	15	5.75	• 383	•))	•)•		5.75		
	9/10 to 9/13	<u>-</u> 3	J. / J	.05				°15	September	7.28
Irrig.	9/13 to 9/16	3		••,	،25	.20	.20	.65	- op tall to	,,,,
	9/16 to 9/23	3 7	1.96	.280	v-)	•20	•	1.96		
	9/23 to 9/25	2	2.,0	.20			•	.40	October	2.50
Irrig.	9/25 to 9/29	4		, = 0	۵,20	، 15	،10	•55)-
	9/29 to 12/9	7i	4.50	۰065	0	V-)		4.50		
TOTAL		252			* C	- 22	~~	39.32		37.43

Table C-20 Measured and estimated rates of consumptive use of water by alfalfa grown for seed in Anza area, California, for the period April 1 to June 30, 1953

	Period	: : Days	: Rate :	Total		ptive use months
		\$	day:	amount	Month	: C∘U,
			Inches	Inches		Inches
Irrig.	4/1 to 4/10 4/10 to 4/13	9	0.08	0.72 .45	April	2.86
Irrig.	4/13 to 5/19 5/19 to 5/21	3 36 2	. 092	3.39 .45	May	3.80
Irrig,	5/21 to 6/3 6/3 to 6/5	13 2	.15	1.95 .55		
	6/5 to 7/10 7/10 to 10/1	35 <u>1</u> /	,, 21	7.36	June	6.31
TOTAL		100		14.87		12.97

^{1/} No measured uses

APPENDIX D
PRECIPITATION RECORDS

TABLE OF CONTENTS

PRECIPITATION RECORDS

able No.		Page
D=1	Monthly Precipitation Records at Stations Established by Division of Water Resources in Santa Margarita River Watershed, Not Previously Published	D - 3
D=2	Monthly Precipitation Records of 10 Years or Longer at Stations in Santa Margarita River Watershed, Not Previously Published	D- 4
D-3	Seasonal Precipitation Records of Other Stations Within and Adjacent to the Santa Margarita River Watershed	D - 11

APPENDIX D

TABLE D-1

MONTHLY PRECIPITATION RECORDS AT STATIONS ESTABLISHED BY

Seasonal Inc. 12.76^b Seasonal total 10.61^b 13.70b Seasonal total 8.26^b Inc. 11.73^b 11.27^b Inc. total Inc. 7.29 June June June 0.16 This record includes precipitation through January, 1953, for an adjacent station, previously published 0 ಕ 0 80 000 0,11a 0°,30 0,01 Ta ₽.°0 May May May 080 0.82 2.85 1.86 1.40 0.09 DIVISION OF WATER RESOURCES IN SANTA MARGARITA RIVER WATERSHED. 0.23 Apr. 0,⁴1 Apr. 0.74 Apr. 1,04 4,19^b Anza (Fire Station) - Location No. 75/3E-21B 1.79 1,32 0,33 4,35 1,18 4,03 Mar. 1,12 4,05 Los Alamos Valley - Location No. 7S/2W-12A Mar Mar Murrieta - Location No. 75/3W-16N 2.80 Feb. 0,58 0,33 0,62 1,72 Feb. 1°3% Feb. HYDROGRAPHIC UNIT NO. 2 NOT PREVIOUSLY PUBLISHED HYDROGRAPHIC UNIT NO. 1 0.78 5.70a 1.71 3.88 0.708 4.08 In Inches 0.82 Jan. Jan. Jan 3.97 1.42 0.07 Dec. 0.05 Dec. Dec. 0.78b 0.83 3.37 0.45 Nov. 2,68 0,69 Nov. 0.83 Nov. 0,95 0 0,20ª 0,40 0.30 0.71 Oct. 0,21 Oct. 1.17 Oct. H Sept Sept. Sapt. 0.75 0.03 0,16 1,15 Aug. Aug. % ... % by U.S.W B. Aug. g 0 2.69 0.25 0.35 July July July 00 Note 1949-50 51 52 53 54 1952-53 5^{t4} 1947-48 49 1952-53 54 Season Season Season

Seasonal total Ino. Inc. June 0 | May 0 1 Apr. 1.16^b 4.78ª 0.75 1.62ª Feb. 3.67 Jan. 3.89 Dec. 3.18 Nov. 2,25 0,36 Oot. Sept. 10 0.76 Aug. July 10 1952-53 54 Season

Wilson Craek - Location No. 75/1E-24G

Estimated. Partially estimated. o, s

D-4 TABLE D-2

MONTHLY PRECIPITATION RECORDS OF 10 YEARS OR LONGER AT STATIONS IN SANTA MARGARITA RIVER WATERSHED

In Inches

HYDROGRAPHIC UNIT NO. 1

Greenwood (Los Alamos Valley) - Location No. 7S/2W-15C

Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	Seasonal totel
1912-13 14	0	0	0	0.24	0.33 1.59	0 0.59	1.76 5.92	3.54 5.13	0.50 1.06	0.13 0.80	0.11	0.04	6.64 15.09
1917 - 18 19	0	0 0.29	0 0.06	0 0.80	0.20 0.85	0 1.09	0.95 0.05	2.76 1.88	7.59 2.80	0 0.37	0.25 0.29	0.12	11.87 8.48
1919-20 21 22 23 24	0.05 0.08 0.04	0 0.02 0.19 0	0.08 0 0.16 0 1.05	0.59 0.69 1.39 0.25 0.19	0.69 0.77 0.24 1.54 0.38	0.93 0.45 11.74 2.18 1.53	0.63 2.48 4.71 2.04 0.35	4.00 0.49 3.05 1.10	3.60 3.03 1.95 0.56 5.31	0.32 0.12 0.21 0.98 1.44	0.45 2.46 0.56 0.01	0 0 0	11.29 10.56 24.28 8.70 10.25
1924-25 26	0	0	0	0.10 2.54	0.19 0.59	1.91 0.97	0.18 0.14	0.28 3.77	1.64 0.52	2.00 6.98	0.11	0.29	6.70 15.55
					Sage -	Location	n No. 7S	/1W-12A					
Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	Seaeonal total
1938-39		(July	through	December	6.09)		3.27	2.10	2.09	0.20	0	0	13.75
1939-40 41 42 43 44	0.94 0.0	0 0 1.17 0	2.56 0 0.21 0	0.07 1.59 2.01 0.33 0.64	1.60 1.00 2.07 0.27	0.57 5.70 3.63 1.27 4.98	4.82 1.75 1.13 7.29 0.43	3.10 6.41 2.45 2.50 5.22	1.88 6.61 2.58 4.76 1.67	1.18 4.93 1.51 1.23 1.20	0 0.14 0 0	0 0 0	15.78 28.13 17.70 17.65 14.14
1944-45 46 47 48 49	0 0 0.24 0	0 2.11 0.02 3.16 0	0 2.27 3.59 0.58 3	0 0.80 0.52 0.97	4.95 0 4.58 0.85 0	0.58 4.49 2.32 2.64 3.44	0.54 0.64 0.85 0.26 3.85	2.59 0.94 0.73 3.28 1.75	4.62 2.05 1.60 1.63 1.85	0.71 0.58 0.19 0.41 0.06	0 0.29 0.89 0	0 0 0.68	13.99 13.37 12.81 11.01 12.65
1949-50 51 52 53 54	0 0.13 0	0 0.36 0 0.09	0 0.16 1.40	0.34 0.06 0.73 0	1.45 1.77 0.95 2.94 0.78	1.10 0 6.72 3.42 0.06	1.60 2.00 4.28 0.84 4.35	1.47 0.90 0.49 0.45 2.00	1.07 0.44 6.68 1.39 4.84	1.17 1.79 2.08 0.92	0.64 0.31 0 0.12	0.06 0 0 T	8.90 7.27 22.58 11.48 Inc.
					Temecule	- Locat	ion No.	8S/3W-12	SW				
Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	Sessonal total
1901-02 03 04	0.30 0	0 0	0 0	0.65 0 0	0.35 2.53 0	0 3.35 0	2.74 2.10 0.27	2.30 2.60 1.80	2.66 (9. 3.38	0.63 59)	0 0 0	0 0 0	9.33 20.47 5.87
1904-05 06 07 08 09	0 0 0 0 0.50	0 0 0 0 0.95	0 0 0 0 0.50	0.45 0 0 2.15 0	0 5.10 2.40 0 0.20	1.00 0.60 5.57 0.18 1.40	4.74 1.98 6.20 5.20 7.13	8.58 1.33 2.84 3.40 4.60	6.06 13.04 4.60 1.13 3.00	0 1.40 0 0.67	1.50 0.50 0	0 0 0	22.35 23.95 21.61 12.73 18.28
1909-10 11 12 13 14	0 0 0 0	0 0 0 0.25	0 0 0 0	0 0.60 0.95 0	2.28 0 0 0.25 2.10	6.19 0 0.60 0 1.25	4.35 6.50 0.80 2.35 7.65	0.20 4.73 0 5.20 6.00	2.00 2.00 8.93 0.85 1.30	0 0.33 3.52 0 1.10	0 0 1.40 0	0 0 3 0 0.19	15.02 14.16 15.25 9.85 19.59
1914-15 16 17 18 19	0.10 0 0 0	0 0 0 0	0 0.75 0	0 0.45 0 0.95	0.65 0.50 0 0.30 1.44	3.67 3.80 2.28 0 1.22	8.62 19.16 3.40 1.37 (2.	7.35 1.03 2.90 0.40 80)	0.50 0.75 0.20 8.23 1.95	2.90 0.20 1.90 0	0.70 0.10 0.35 0	0 0 0 0	24.49 25.54 12.23 10.30 8.64
1919-20	0	0	0	0.77	1.00	1.52	0.42	5.26	5.54	0.49	0	0	15.00

MONTHLY PRECIPITATION RECORDS OF 10 YEARS OR LONGER AT STATIONS IN SANTA MARGARITA RIVER WATERSHED

In Inchas (continued)

HYDROGRAPHIC UNIT NO. 1 (continued)

Wildomar - Location No. 6S/4W-34J

Season	July	Aug.	Sapt.	Oct.	Nov.	Dac.	Jan.	Feb.	Mar.	Apr.	Mey	June	Seesonal total
1914-15 16 17 18 19	0 0 0	0 0 0	0 0 0.30 0	0.53 0 1.67 0 0.53	0.59 0.46 0 0.15 0.80	3.34 2.43 2.87 0	8.16 15.79 3.70 1.61 0.77	4.35 0.56 2.77 3.20 1.57	2.41 1.28 0.36 5.72 1.72	1.77 0.24 0.89 0	1.50 0 0 0.16 0.41	0 0 0 0	22.65 20.76 12.56 10.84 6.87
1919-20 21 22 23 24	0 0 0 0	0 0 0 0	0.33 0 0.90 0	0.60 0.90 0 0.06 0.53	0.57 0.44 0 2.00 0.40	1.24 0.56 13.46 1.94 0.82	0.75 2.97 7.33 1.75 0.24	4.41 0.34 3.54 1.11 0	3.73 1.82 2.50 0.35 4.24	0.16 0.11 0.60 0.86 1.14	0.30 2.06 0.46 0	0 0 0	12.09 9.20 28.79 8.07 7.67
1924-25 26 27 28 29	0 0 0 0	0 0 0 0	0 0 0 0	0.13 2.17 T 0.72 1.85	0.53 0.42 1.44 2.10	2.34 0.59 4.20 3.28 1.75	0.20 0.52 0.14 1.87	0.28 3.07 11.98 2.23 0.76	2.00 0.10 1.87 0.84 0.87	1.81 8.49 0.87 0.14 1.24	0.17 0 0.11 0	0 0 0	7.46 14.84 20.99 9.45 8.34
1929-30 31 32 33 34													16.49 12.17 18.54 11.60 6.74
1934-35 36 37 38 39													19.12 11.19 24.84 19.97 16.19
1939-40 41 42 43 44				(See	sonal to	tals on)	. y, 1929	through	1952)				15.14 27.52 9.85 19.26 14.54
1944-45 46 47 48 49													12.91 11.47 8.32 7.34 7.78
1949-50 51 52													6.34 4.44 20.28
				Wil	.domar (N	laer) - I	Location	No. 65/4	W-35C				
Season	July	Aug.	Sept.	Oct.	Nov.	Dac.	Jan.	Feb.	Mar.	Apr.	May	Juna	Seasonal total
1929-30 31 32 33 34	0 0 0 0	0 0 0.13 0	0.95 0 0 0	0.40 0.34 1.54 0.15	0 1.34 2.16 0 0.10	0 0 4.51 2.39 3.42	6.87 2.44 1.33 7.00 0.95	0.45 5.58 9.77 0 2.00	4.19 0.12 0 0 0	1.84 1.89 0 0.50	2.19 0.40 0.30 0.17 0	0 0 0 0 0.12	16.49 12.17 18.54 11.60 6.74
1934-35 36 37 38 39	0 0 0 0	0.02 0.55 0 0	0 0 0 0 0.15	2.16 0 3.37 0	1.46 1.00 0.13 0	4.29 0.52 7.87 1.20 9.12	3.62 0.29 1.67 2.04 2.01	3.48 6.39 5.26 6.39 2.02	2.84 1.86 6.54 9.67 1.04	1.03 0.58 0 0.67 1.85	0.22 0 0 0	0 0 0	19.12 11.19 24.84 19.97 16.19
1939-40 41 42 43 44	0 0 0 0 0 0	0 0 0 0	3.86 0 0 1.02	0.64 0.93 2.50 0	0.65 0 0.80 0.12 0	0.40 7.14 2.48 0.72 6.46	3.43 0.42 0.40 11.19 0.27	4.31 7.05 1.00 3.44 5.26	0 7.81 0.97 3.11 0.93	1.85 3.27 1.70 0.68 0.59	0.90 0 0	0 0 0 0	15.14 27.52 9.85 19.26 14.54
1944-45 46 47 48 49	0 0 0 0	0 1.55 0 0 0	0 0 0 0	0 0.15 0.37 0 0.43	5.73 0.20 5.26 0	1.12 3.05 1.47 2.96 2.11	0.22 0.50 0.14 0 2.91	1.74 0.95 0.13 2.38 1.06	4.10 4.69 0.76 1.05 0.97	0 0.38 0 0.95	0 0.19 0.30	0 0	12.91 11.47 8.32 7.34 7.78
1949-50 51 52 53 54) 0 0	0 0 0 .4 7 0	0 0 0.29 0.33	0.28 0 0.35 0 0.25	1.10 0.67 0.63 3.24 0.70	1.20 0 4.48 3.19 0.08	1.79 1.24 5.78 0.76 5.82	0.73 0.64 0.23 0.58 1.78	0.68 0.68 6.48 0.77 3.45	0.56 1.04 1.57 0.30	0.17 0 0 0	0	6.34 4.44 20.28 9.17 12.08

MONTHLY PRECIPITATION RECORDS OF 10 YEARS OR LONGER AT STATIONS IN SANTA MARGARITA RIVER WATERSHED

In Inches (continued)

HYDROGRAPHIC UNIT NO. 3

Oakgrove - Location No. 9S/2E-17R

Saason	July	Aug.	Sapt.	Oct.	Nov.	Dac.	Jan.	Feb.	Mar.	Apr.	Мау	Juna	Seasonal total
1910-11 12 13 14	0.80 0.44 0.33 0.25 ⁸	0.06 0 0.29 1.70 ⁸	0.34 0.94 0 0.10 ⁸	0.97 0.49 0.99 0.10 ⁸	1.51 0.02 0.49 2.00 ⁸	0.19 1.17 0 0.70 ⁸	5.95 0.18 2.41 7.29	3.96 0.06 4.39 6.02	1.74 9.53 4.72 ^a 1.69	0.55 3.76 0.19 1.28	0 1.20 0.10 0.10 ⁸	0 0.24 0.15 ⁸	16.07 19.05 13.91 21.38
1914-15 16 17 18 19	0 ^a 0.18 1.14 T	0.35 1.09 T 0.65	0.20 ⁸ 0.35 0.06 0.51	0.60 ⁸ 0 1.38 0 1.06	1.00 ⁸ 0.80 T 0.34 1.46	3.24 2.04 3.45 0 1.64	8.13 22.05 3.63 1.14 1.00	6.70 0.60 2.85 2.40 ⁶ 2.79	2.32 1.64 0.13 6.90 ^a 2.22	2.28 0.05 2.63 0 ⁸ 0.26	2.12 0.06 0.06 0.30 ^a 0.45	0 0 0 0.32	26.59 ^b 27.64 15.46 13.05 ^b 11.54
1919-20 21	0.92	0.30 0.35	0.18	0.87 0.18	1.50 0.38	0.92 0.60ª	0.70 ⁸ 4.54	4.18 1.00 ⁸	6.39 1.60 ⁸	0.15 0.28ª	0.26 2.33ª	0 a	16.37 ⁵ 13.63 ⁰
1938-39 40 41 42	0.78 0 0 0	0.47 0 0 0.83	0 4.98 0 0.11	0.08 0 0.52 2.60	0 1.75 0.83 2.89	5.60 0.55 ⁸ 10.30 2.32	2.35 4.00 ⁸ 1.77 0.25	3.20 4.30 ⁸ 5.37 3.72	1.27 1.70 ⁸ 6.16 2.24 ^b	1.10 ⁸ 1.60 ⁸ 4.23 1.80 ⁵	0.35 ⁸ 0 ⁸ 3.43 3	0 0 0	14.90 ^b 18.88 ^b 29.61 16.76
1947-48 49	0 0.06	0.16 0	0.06 0	0.30 1.59	0.06 0	3.60 3.56	0.04 6.51	3.37 1.32	1.93 1.28	0.40 0.14	0.07 0.27	0.30 0	9.99 14.73
1952-53 54	1,37	0	0	0.52	0.56	0.03	5.59	J.82 2.79	1.53 5.36	1.03	3.32 T	0.02	Inc. 16.23
				Pauba R	anch (St	ation E)	- Locati	lon No.	9S/1W-141	D			
Saason	Jul y	Aug.	Sept.	Oct.	Nov.	Dac.	Jan.	Fab.	Mar.	Apr.	May	June	Seasonal total
1920-21 22 23 24	1.11 0 0.07* 0	0 0.56 0 0	0.95 0.95 0	0.86 0.20 0.37 0.51	0.30 0.08 1.45 0.11	0.35 5.89 1.58 1.70	2.53 1.39 2.35 0.16	0 3.21 1.33 0	1.73 ⁸ 0.80 4.97	0.06 0.16 ⁸ 1.80 1.55	1.71 0.72ª 0	0 0 0 0	7.93 14.89b 9.75b 9.00b
1924-25 26 27 29 29	0 0 0	0 0.36 0.03 0	0 0 0 0	0.15 4.32 0 1.83 0.95	0.31 0.58 0.64 0	2.39 0.45 2.34 2.21 1.28	0.14 0.05 2.08 0.73 1.48	0.04 3.02 9.25 2.46 1.43	1.76 0.51 0.98 0.60 ⁸ 1.99	2.74 7.70 0.99 0.41 1.25	0.40 0.20 ^a 0	0.12 0 0 0 0	7.35 17.39 16.31 8.44 8.88
1929-30 31 32 33 34	0 0 0 0	1.50 ^a 0 0.21 0	0.90ª 0 0.11 0	0 0.13 0.95 1.84	0 1.53 2.75 T 0.13	0 0 4.48 3.05 1.64	5.46 0.93 1.20 3.85 0.40	0.90 ⁸ 3.70 8.68 0 1.26	2.35 0 0.15 0 0.20	0.39 1.25 0.73 1.25 0	3.26 0.99 0.04 0.62	0 0 0 0.02 0.10	14.76 ^b 8.53 18.63 13.63 3.73
1934-35 36 37 38 39	0 0 0 0 0.02	0.09 0.86 0.55 0	0.14 0.25 0.10 0	1.28 0 3.52 0	0.91 0.64 0.02 0	1.80 0.42 6.66 1.70 5.91	2.80 0.70 1.41 1.81 2.28	2.20 4.72 4.05 4.23 1.77	1.29 1.40 4.30 8.95 1.33	0.96 0.90 0.44 0.51 0.63	0 0.15 0.44 0.03	0 0 0	11.47 9.89 21.20 17.64 12.44
1939-40 41 42 43 44	0 0 0.10 T 0	0 0.40 0.25	2.45 0.05 0.26 0	0.08 2.14 2.25 0.17 0.43	0.97 0.35 1.84 0.15	0.57 5.80 3.67 0.98 3.60	1.98 1.04 0.28 6.63 0.50	2.61 3.93 1.25 1.79 4.61	0.18 5.82 1.81 2.99 1.51	2.32 4.95 1.52 1.05 1.27	0.50 0.50 0 0.06	O O O T	11.16 24.58 13.38 13.91 12.20
1944-45 46 47 48 49	0 0 0.17 0	0 1.65 0.50 0.08	0 0.37 0.57 T	0.03 0.04 0.46 0.30 0.83	4.65 0.27 2.99 0.37 0.32	0.50 3.05 1.11 1.86 2.69	0.13 0.16 0.47 0.01 2.85	1.72 1.08 0.15 2.36 0.82	2.67 2.49 1.12 0.86 1.30	0.28 0.29 0.19 0.18 0	0 0.29 T 0.20	0 0 0 0.59	9.98 9.40 8.33 6.61 8.71
1949-50 51 52 53 54	0 0.01 T	O.20 O.T	0 0 0.26 1.55	3.19 0 3.92 0 0.72	1.09 0.63 0.64 3.35 0.42	0.94 0 4.98 2.95 0.03	1.39 1.38 4.61 0.41 3.77	0.72 0.94 1.71 0.42 1.50	0.81 0.64 5.12 1.22 4.81	0.98 1.11 1.00 0.61 T	0.16 0.21 0.84 0.01	0 0 T T	6.28 4.81 20.29 10.52 11.25

In Inches (continued)

HYDROGRAPHIC UNIT NO. 4

Pauba Ranch (Station C) - Location No. 85/2W-16M

Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	Saasonal total
1929-21 22 23 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.33 0.00	0 1.21 0	1.16 3.29 3.32 3.65	0.92 0.15 1.73 0.14	0.63 11.42 3.08 2.00	3.82 5.15 2.17 3.23	0.25 3.95 1.82 0	2.24 2.20 0.44 6.39	0.16 0.20 1.10 2.40	2.81 3.91 0	0 T 0 0	11.99 25.71 13.75 11.51
1924-25 26 27 28 29	0 0.10 0 0))))),))))))	3.28 3 1.67	0.50 1.29 1.06 0.79 0.69	2.76 3.98 3.51 2.82 2.78	0.13 0.07 0.56 0.74 2.69	0.34 4.23 15.32 2.24 1.33	1.82 3.45 2.48 1.16 1.66	1.87 9.25 0.62 0	0.01 0.15 0.12	1.13 0 0 0 0 0	8.60 19.65 23.70 9.54 11.33
1929-33 31 32 33 34))))	0 0.25 0.41 0	0.79 0 0.09 0	0 0.36 0.67 1.67 0.12	0 2.75 2.95 0 0.13	0 5.44 3.04 3.30	8.02 1.49 1.45 5.80 1.22	0.81 5.36 10.79 0.04 1.86	4.49 0.13 0.20 0	0.16 2.22 0.58 1.41	4.20 0.60 0 0.34	0 0 0 0 0,40	18.46 13.16 22.58 12.30 7.17
1934-35 36 37 38 39	0 0.23 0	0.18 0.12 0.16 0	0 0.03 0 0	2.35 0 4.03 0 0.29	1.30 0.73 0.63 0	3.61 0.69 8.04 1.69 6.72	3.16 3.32 2.73 1.97 2.64	3.19 7.52 6.83 6.28 2.19	2.92 1.70 7.09 10.04 1.68	1.19 3.94 3.55 1.24 3.62	0.13 0 0 0.17 0.03	0 0 0 0 0 0	17.93 12.05 30.37 21.59 14.19
1939-40 41 42 43 44))))	0 0.25 0	3.79 3.10 0.14 0 0.01	0.16 1.59 2.58 0 0.44	1.38 0.48 1.65 0	3.51 6.88 4.)2 1.12 6.26	3.93 1.16 3.73 10.73 3.77	4.14 4.94 2.19 3.15 5.91	0.16 7.80 1.73 2.20 1.04	3.19 4.62 2.17 0.73 0.40	0 0.61 0	0 0 0 0.05	16.96 28.18 15.43 17.90 14.88
1944-45 46 47 48 49)).2)ª))	3 2.09ª 3.53ª 3	0.47ª 0.50ª 0	0.35 ⁸ 0.22 0 0.83	5.93 ^a 3.34 ^a 4.39 3	0.63 ^a 3.97 ^a 2.50 2.70 3.13	0.16 ^a 3.23 ^a 0.55 3 4.78	2.18 ^a 1.37 ^a 0.60 2.00 1.64	3.39 ⁸ 3.16 ⁸ 3.96 1.32 1.34	0.36ª 0.37ª 0 0.84	0a 0a 0 0 0	0a 0a 0 0 0 0 1.45	12.62 ^b 11.92 ^a 13.12 ^b 7.31 11.82
1949-53 51 52 53 54	3 3 3 3	3 3 3.54 3))))	0 0 0.79 0 0.42	1.55 1.34 1.16 2.41 3.45	1.22 3.43 3.85 3	2.23 2.34 7.82 1.28 4.19	0.96 0.81 0.53 0.75 1.82	1.00 0.88 5.57 1.00 5.24	0.81 1.70 2.01 0.29	0.38 0.33 0 0	0 0 0 0 0 0	8.05 7.10 21.82 9.58 12.12
					нүт	DRCGRAPH.	IC UNIT	NO. 5					
					De Luz	- Locat	lon No.	8 S/4W- 29	Н				
Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Fab.	Mar.	Apr.	May	Juna	Seasonal total
1932-33 34))))))	1.75 J	3.33 3	3.75 3	2.25	3.50 1.50	7.33 5.25	2.53	0.06 0	0	23.81 8.37
1904-05 06 07 08 09	0 0 0 0	0 0 0 0	0 0.12 0.50	3.25 3 3.33 3.53	3 5.00 2.75 1.00 1.25	1.25 3.12 6.75 1.36 1.50	5.25 4.00 9.50 6.75 12.25	10.25 2.00 2.00 4.50 5.25	2.00 13.50 4.50 1.37 2.12	0.60 0.12 0.50	0.75 0.50 0.36 0.50	0 0 0 0 0 0.13	19.75 25.72 25.80 18.98 23.50
1939-13 11 12 13 14	0 0.72 0 0	0 0	0 3 3.12 3	0 0.25 0.12 0.87	1.75 0.56 0.12 0.56 3.75	6.65 0.06 0.69 0.25 2.50	4.70 6.12 0.25 3.25 9.35	0.06 4.00 0 5.13 9.00	2.53 1.12 8.50 3.63 3.75	3.25 3.25 1.37 3.07 3.75	0.01 0.25 0.13 0.13	0.01 0 0.50 0.50	15.92 12.39 11.42 11.39 26.30
1914-15 16 17 18 19	0 0 0	0 0 0 0 0 0.75	0 0.25 0.50 0	0.37 0 0.90 1.12	1.10 0.75 0.25 0.50 1.28	3.30 3.75 1.53 0	9.75 29.25 3.50 3.30 1.53	5.25 2.00 5.25 4.25 1.32	0.75 1.00 0.13 7.12 2.06	1.50 0 2.14 3.01 3.25	1.00 0 0.27 0.01	0 0 0	22.72 37.00 14.44 14.89 9.28
1919-23 21 22 23 24	0 0 0.07 0) 0 0 0	0.50 0 1.50 0	1.37 2.33 3.38 3.53 0.25	0.63 1.00 0 2.38 1.00	1.81 0.56 20.00 4.38 1.63	3.53 4.65 8.33 2.62 1.25	5.20 0.60 5.75 1.60 0	8.88 2.00 3.45 0 4.30	0.63 0 0.68 1.53 1.75	0.13 4.25 1.04 J	0 0 0 0 0 0	19.45 15.06 43.57 12.98 13.18
192 4- 25 26 27 28 29) 0 0 0) 0 3 0 3	0 0.12 0	0.13 3.25 0.13 3.75 0.62	0.81 1.00 2.50 2.08 1.00	3.62 3.31 3.13 4.38 3.75	0.31 1.50 2.00 0.50 2.50	0.40 6.88 21.00 1.81 2.62	1.93 0 3.37 2.18 2.36	2.50 8.75 0.94 0.06 1.61	0 0.06 0	1.25 0 0 0.12	10.95 24.60 33.25 14.58 14.66

In Inches (continued)

HYDROGRAPHIC UNIT NO. 5 (continued)

De Luz - Location No. 85/4W-29H (continued)

Saason	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	Juns	Seasonal total
1929-30 31 32 33 34	0 0 0 0	0 0 0,12 0	0.50 0 0 0 0	0 0.31 1.13 1.50 0.25	0 1.98 3.25 0	0 7.87 1.31 9.62	9.25 1.93 1.33 7.25 3.33	1.00 5.60 7.13 0.12 3.14	4.50 0 0 0 0 0 0	2.50 2.75 0.48 0.43	2.37 0.50 0.18 0.18	0 0 0 0.50	20.12 13.37 23.38 13.79 16.76
1934-35 36 37 38 39	0 0 0 0	0 0 0 0 0	0 0 0 0.25	1.50 0.25 5.81 0 0.25	2.07 1.00 0 0.06	5.86 0.50 10.37 3.25 10.75	4.58 3.13 2.86 4.12	3.96 13.25 10.87 12.69 2.74	4.60 2.96 7.37 14.22 1.86	2.75 1.13 0.50 1.37 0.43	0.25 0 0.38 0.31	0 0 0.06 0	25.57 19.09 38.43 34.76 20.46
1939-40	0	0	6.25	0.50	0.37	0.50	5.94	7.45	1.33	2.21	0	J	24.22
1945-46 47	o 0	0	3	3 1.13	ე 7.99	6.71 3.31	0.28 J.79	0.90 0.85	4.74 1.12	0.83 0.35	0))	13.46 15.24
1953-54	Э	0	၁	0.40	0.69	1.36	9.07	4.75	5.56	0.20	Э	Э	22,33
			\$	Santa Ro	sa Ranc	h, 81 -	Locatio	n No. 8S	/3W-7 K 2				
Season	July	Aug.	Sept.	Oct.	Nov.	Dac.	Jan.	Fab.	Mar.	Apr.	May	June	Seascnal total
1943-44)))	oop	0	0.49	8.35	1.28	7.10	0	1.03	0	1.36	19.31
1944-45 46 47 48 49	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 1.20 0 0	0 0.91 0.28 0.51	8.72 0.16 7.76 0	0 5.97 3.07 1.42 1.10	0 0 1.43 7.20	4.50 0 0.65 1.96	3.04 2.98 3 2.58 3.36	3.02 4.38 1.81 0	0 0.54 0	0.27 0 1.62 0.86	19.85 14.69 14.64 9.29 13.03
1949-50 51 52 53	0 0 0 0	0 3 0	0 0.70 0	0 0 0	1.70 1.53 2.15 3.95	2.23 0 2.63 4.94	2.30 2.42 13.13 0	0 0.86 J	0.92 8.59 0	3.70 0 2.04 0	0.93 0 0.57 3.98	0.11 0.00 0	10.56 7.85 29.78 12.67
			Santa	s Rosa i	Ranch (F	Ranch Ho	изе) - I	Cocation	No. 75/4	W-35Q			
Season	July	Aug.	Sapt.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	Seasonal total
1922-23 24	0 3	0	ე 0	0 3.35	3 1.86	6.36 2.12	3.66 J.73	1.55	J.65 6.69	ე 2.81	o o	3 0	12.22 14.56
1924-25 26 27 28 29	0 0 0.16	0 0 0	0.20 0 0 0	0.55 2.83 0 1.33 0.71	1.60 0.97 3.00 4.07 1.60	4.21 3.09 4.74 4.66 4.29	0.66 1.89 1.49 0.82 3.51	1.59 6.84 24.93 2.60 3.82	2.68 0 4.09 3.12 2.99	3.20 11.35 1.16 0 2.28	0.67 0 0.50 0.23 0	1.64 3 3 3 3	17.00 26.96 39.91 16.99 19.20
1929-30 31 32 33 34	0 0 0 0	0 0 0.39 0.08	1.00 0 0.09 0	0 0.60 0.99 2.15 0.40	0 3.55 4.18 3 0.24	0 9.64 4.17 7.77	10.16 3.08 1.57 9.55 4.83	1.38 6.30 11.88 0.19 3.78	6.32 0.42 0 0.19 0.65	0 1.45 1.33 1.45	5.22 0.97 0 0.53	0 0.19 0.12 1.31	24.08 16.37 30.26 18.35 19.06
1934-35 36 37 38 39	0 0	0 0 0	0.36 0 0 0 0	2.94 3 5.18 3 0.27	2.13 1.30 0.30 0	6.37 0.84 11.07 4.02 9.90	4.78 0 3.91 3.00 4.22	4.56 15.17 12.55 16.48 3.14	5.69 2.86 9.37 15.28 2.78	3.20 0.90 0.72 1.73 1.19	0 3 0 0,87 0	0 0 0 0.25 0	30.03 21.07 43.10 41.63 21.72
1939-40 41))	0	7.89 3	0.82	0.80 0.80	0.56 11.13	8.82 2.89	7.05 9.70	0.40 8.35	3.64 6.09	3 1.87	o 0	29.98 42.44
1948-49	OB	0 8	Os	0.50	э	3.63	5.44	2.46	1.86	0	1.15	0	15.34b
1949-53 51 52 53 54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.09 0	0 0.02 0.42 0	3	1.75 1.45 1.05 4.83 0.20	5.19	4.38 2.99 11.86 3.31 11.29	1.73 1.09 0.05 0	1.47 1.15 9.35 2.36 5.23	0.88 0 3.30 1.42 1.00	0.31 0 0 0.32	0 0 0 0 0	13.52 8.25 33.16 17.25 22.54

In Inches (continued)

HYDROGRAPHIC UNIT NO. 6

Fallbrook (No. 6) - Location No. 95/4W-248

													Faceone)
Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	Seasonel total
1911-12 13 14	C T O.09	O T T	0.15 0 T	0.10 0.85 0.15	0.14 1.11 2.59	1.38 3 1.48	0.49 1.92 9.75	0 4.26 4.88	8.31 3.57 0.99	2.89 3.29 1.34	0.90 T 0.11	0.07 0.31 0.38	14.13 9.31 21.75
1914-15 16 17 18 19	0.07 0 0 0.18	T 0.29 3.37 T	T 0.04 0.57 T	0.89 1.52 0.07 0.69	1.25 0.48 0.33 0.46 2.11	3.57 3.73 3.15 0	7.84 18.97 4.25 2.63 0.63	7.53 2.39 3.44 3.67 3.01	0.59 1.41 0.63 8.81 2.47	3.73 0 2.45 0.10 0.52	1.71 0.18 0.90 0.18 0.13	0 0 0 T	27.18 27.49 17.31 15.92 10.84
1919-20 21 22 23 24	0 0 0.12 T	0 T 0.17 T 0	0.82 0.06 1.31 0	0.96 1.05 0.75 0.23 0.80	0.85 1.35 0 1.34 0.39	1.68 1.15 13.52 3.58 1.89	0.60 4.52 4.75 2.34 1.43	3.17 0.68 4.05 2.17	5.11 2.56 2.67 0.65 4.93	0.79 0.11 0.39 1.54 1.49	0.38 3.41 0.90 T 0.03	0 0 0 0	14.36 14.59 28.63 12.45 10.77
19 24- 25 26	0 0	T O	0.03 T	3.47 3.34	0.88 0.75	3.33 1.39	0.29 1.04	0.98 4.22	1.81	1.85 8.65	0.26 0.33	0.55 0.05	13.45 19.26
				Santa Mai	rgarlta	Ranch -	Location	No. 105	/4W-18F				
Season	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	Seasonal total
1313-14	٥	Э	э	0.04	1.82	0.70	2.33	3.74	0.80	1.00	0.16	0	10.29
1914-15 16 17 18 19	0 0 0 0.20	0 0 0 0 0 0.10	0 1.32 08 0.208	0 0 0 0.50	1.55 0 0 0.35 ⁸ 1.31	2.92 3.56 2.79 0a 1.11	6.82 13.38 3.16 2.43 1.36	6.51 0.54 3.49 2.94 1.87	1.10 1.12 0.38 6.48 2.22	0 1.83 0.10 ⁸ 0.42	0 0.34 0.25 ^a	0 0 0 0 0	18.90 18.30 13.31 12.52b 9.59b
1919-20 21 22 23 24	0 0 0 0.08	0 0 0.23 0	0.69 0 0.24 0	1.00 1.07 1.03 0.18	0.39 0.63 0.14 0.97 0.79	1.74 3.75 9.91 2.48 1.38	0.46 3.74 3.98 1.77 0.48	2.25 0.73 3.07 2.15 0	3.01 2.08 2.02 3.60 3.97	0.62 0.05 0.31 1.86 0.92	0.60 2.63 0.34 0	0 0.38 3.14 0	10.76 11.76 21.41 10.07 8.24
1924-25 26 27 28 29))))	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)))	0.55 2.74 0.13 0.82 0.43	3.33 3.72	2.25 0.39 3.13 4.17 2.72	0.17 0.68 0.62 1.66	0.55 4.70 10.14 1.23 1.19	1.55 0.14 3.64 1.50 1.49	1.66 8.66 0.44 0.12 1.02	0.26 0.30 0.33 0.33	0.30 0 0 0 0	7.84 18.14 20.35 11.97 9.21
1924-3J 31 32 33 34	0 0 0 T	0 0.44 0 T	0.41 0 0 0 0	0.07 0.45 0.90 1.93 0.39	0 2.31 2.61 0 0.37	0 0 6.37 2.45 3.49	5.85 2.89 1.48 6.33 3.77	0.99 4.95 5.69 0.07 1.82	3.27 0 0.27 0.19 1.17	0.27 2.11 0.84 0.63 0.04	3.61 0.89 T 0.48	0 0.06 0.06 1.05	14.47 13.60 18.36 11.79 9.00
1934-35 36 37 38 39	0 0 0 0.13	0.07 0.64 0 0	0.25 0 0 0	0.56 0.12 4.32 0 0.43	2.46 0.76 0.38 0.14	3.48 3.58 5.97 1.95 6.76	3.63 0.69 2.16 1.34 3.00	4.19 7.04 7.97 5.99 2.34	2.72 1.20 5.40 7.13 2.00	1.56 0.53 0.67 1.04 0.38	0.04 0 0.28 0.51	0 0 0 0 0.14	18.95 11.56 27.05 18.53 14.91
1939-40 41 42	0	0	2.56	0.49 0.98	0.71 3.74 (Sa	0.4) 6.3) asonal t	6.02 3.03 otal onl	5.27 4.42 Ly)	0.10 7.01	3,29 4,32	3 3.96	0	18.84 27.88 14.82

a. Estimated.

D. Partially estimated.

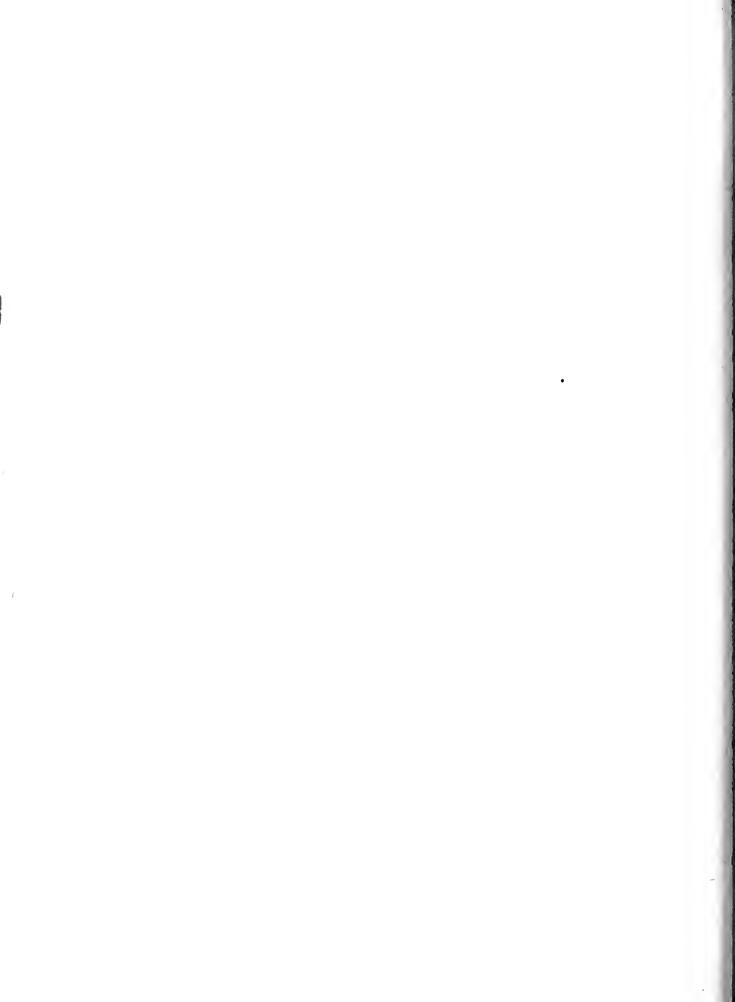


TABLE D-3

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

In Inches

Season a	Precipitation	Season :	Precipitation	Season	Precipitation
		Hydrographi	ic Unit No. 1		
Murrieta Hot S	prings 7S/3W-13N	Santa Rosa Rar (Gate)	nch 75/3W-190	Santa Rosa Re (Mesa) (cor	unch 7S/3W-346
1946-47	6.12	(440)		(,
48	7.43	1923-24	8.50	1929-30	22 .87
49	9.91	-/-/		31	13.64
50	6.26	1924=25	8. 9 ^{l‡}	32	25.84
,	0.20	26	19.99	33	16,52
Pauba Ranch (S	tation A) 7S/2W-26A	27	30, 21	34	18.58
	04010H 4, 7072H-20K	28	12,49	<i>)</i> '	20.)0
1919-20	13.94	29	12,00	1934-35	25°77
21	11.06	-/	12,00	36	18:97
~*	11.00	1929=30	19.87	37	42.07
Santa Rosa Ran	ab 70 /lib 280		11,06	37 38	39.79
	on /3/4#~20F	, 31			
(Clenega)		32	29.78	39	20.57
200). 05	0.00	33	13:97	3 000 110	00 00
1924-25	9.20	34	9.50	1939-40	28,08
26	25.85	2021.05	20.51	41	42.60
27	33.95	1934-35	20,56		. (0) 00 /01 000
28	1728	36	13.00	Santa Rosa Re	noh (E) 7S/3W-32P
29	17.42	37	27 78		
	_	38	26.22	1942-43	28.92
1929-30	87 22 ع	39	16.42	Li _t i	19.63
31	19. 98			45	20.38
32	22。52	1939-40	22, 52	46	16.41
33	19,66	41	30. 54		
34	16.18			1947-48	10.09
		Santa Rosa Rar	neh 7S/3W-34G	49	13.63
1934~35	29 _° 78	(Mesa)		50	10,95
36	18,29			51	7.80
37	38.42	1922-23	5.62	,-	,
38	36.90	24	11.75	1952-53	9.19
39	21,72	,	/5	-//- //	, , ,
		1924-25	15 ,06		
1939-40	27.62	26	25.48		
41	40.57	27	35 29		
	10377	28	16.33		
		29	18.63		
		Hydrograph	nie Unit No. 2		
Aguanga (Upper) 8S/2E-7D	Aguanga (Upper	·) 85/2E-7D	Coahuila 75/3	E-31M
1928-29	8 . 88	(continued)		1911-12	15 87ª
	0.00	1939-40	14.08ª	13	4.43
1929-30	17.01	42	24,20ª	14	18.87
31	8-75	42	14.93a		/
32	18.16	43	13.28ª	1914-15	27.95
33	11.64a	43 44	14,00ª	16	22,70
34	4.628		1.500	17	14.13
,	1.02	1944-45	10.45a	18	15,00
1934-35	13.77ª	46	12.89ª	10	27,00
36	8,228	47	10.73ª	Rancho Ramons	85/1F-7P
37	22 02ª	47 48	7.68a	MELINAN CHAMAN	. 0-/10-/1
38	15.71 ^a			1050. 51	4.25
39	13,03a	Anza (Cartier)	/ 7S/3E=4K	1950-51	7.49
),7	1 3303−	1949-50	10, 50		
			13.40		
		51 52 53 54	35.77		
Ì					
		53	17.20 14.83		

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANFA MARGARITA RIVER WATERSHED

Precipitation	Season :	Precipitation	Season :	Precipitation
	Hydrographia	Unit No 3		
Lower) 85/1E-34G		Lower) 85/1E-34G	Radec 8S/1E-1	90
	(continued)			10.10
11.94ª	1010 20	16.02	1951-52	19,40 1 1. 65
າຮຸນວ			54	12.04
			,.	
			Vail Lake 8S/	1W-10M
	24		- •	
		_	1952-53	9.43
	1924-25	7.18	54	11.55
20,69	26	16.04		
22,92	27	19.71		
10.89	28	8.48ª		
14.02				
10.17	Pauba Ranch 8S (Station K)	5/1W-10R		
	3000 00	1.3 <i>47</i>		
	27	16.75		
	Hydrographio	Unit No. 5		
	Santa Rosa Ran	ash (C) 85/4W-12P1	Santa Rosa Ra	neh (DR) 85/4W-12L
0. 2)	roles les	27.87	1943-44	19,38
11 66	1742 43	19 56	-,,,	-7.70
		18 93	1947-48	9.01
	,	, , ,	, .	
	1948 49	12-86	1949=50	9.55
	· · ·			
	53.	7.75	1951-52	31.22
a				
	19 52~53	13 22	Santa Rosa Ra (Saxman)	neh 8S/3W=7A
	Santa Rosa Ran	10h (0) 85/4W-12P2		
	1 - 1-0			18,81
19.35				16.79
(a) on fair men	45	19 00		12.06
v (n) 02/3m-/WT	عيد خيام و	4 22	47	14.74
20. 20.	T34/-40	プロチン	ായ് പെട്ടവ	13.46
19.36	1950-51	798	51	9°74
13.81	1952-53	12.92	Sky Ranch 8S/	5W23R
7. 60			1949-50	14.42
10.13				11.43
			52	43.72
			53	16.33
- , - , -			5)	25 09
3) 95/4W-2 ¹ 4K	Hydrographia Fallbrook (No.		Lake O.Neill	10S/4W-5Q
		71 /= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/ / -
3) 35/44·24C	(sontinued)			
32 24	(sontinued)		1953 -54	7.0 70
	1939 40	19.80	1953 -54	2.0 70
32 24		19.80 30 05 16.11	1953 -54	2.0 70
	11.94a 15.42 13.33 12.83 8.19 15.43 20.69 22.92 10.89 14.02 10.17 11.66 12.99 31.05 14.69 18.80 14.69 18.80	Hydrographic Continued 11.94a 1919-20 15.42 21 13.33 22 22 23 23 24 15.43 1924-25 26 22.92 27 28 14.02 10.17 Pauba Ranch (S) (Station K) 1923-24 25 26 27 27 28 28 28 29 27 28 28 28 28 28 28 28	Hydrographia Unit No 3 Aguanga No. 1 (Lower) 85/1E-34G (continued) 11.94a 1919-20 15.02 21 8.10 12.83 23 8.35 8.19 24 10.82 15.43 1924-25 7.18 20.69 26 16.04 22.92 27 19.71 10.89 28 8.46a 14.02 10.17 Pauba Ranch (STation K) 1923-24 10.77 25 6.64 26 17.48 27 16.75	Hydrographia Unit No 3 Radee 85/1E-34G Radee 85/1E-1 (continue) 11.94a 1919-20 15.02 1951-52 53 13.33 22 24.17 12.83 8.19 24 10.82 1952-53 15.43 1924-25 7.18 20.69 26 16.04 22.92 27 19.71 10.89 14.02 10.17 Pauba Ranch 85/1W-10R (Station K) 1923-24 10.77 25 6.64 26 17.48 27 16.75 1942-48 18.80 56 10.24 51 7.75 1951-52 1942-48 18.80 56 10.24 51 7.75 1951-52 1943-44 19.35 19.35 19.47-48 19.35 19.47-48 19.35 19.47-48 19.35 19.47-48 19.35 19.47-48 19.35 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.36 19.50 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.47-48 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.36 19.50 51 19.

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACEMY TO THE SANIA MARGARITA RIVER WATERSHED

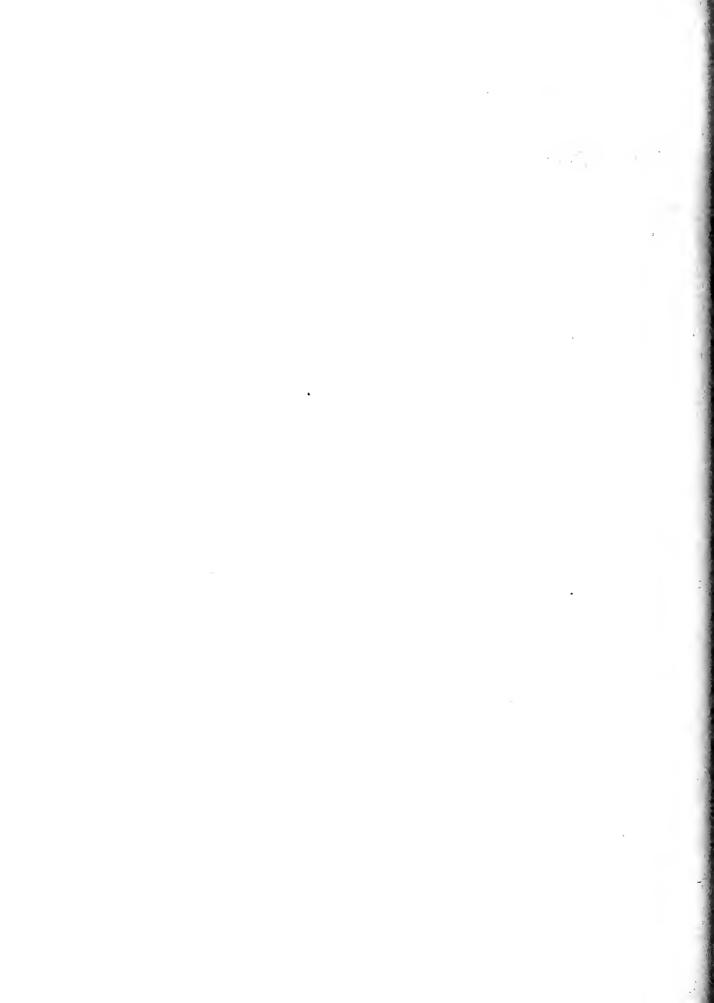
Season :	Precipitation	Season : P	recipitation	Season :	Precipitation
		Adjacent to Waters	s ned		
Agua Tibia (No	. 1) 9S/1W-30Q	Elsinore 5S/5W-341	R	Elsinore 65/4W	-2M
(***		(Station 13802)		(Railroad Ca	nyon Dam) (continu
1931-32	21.67		. 0	and on	a), 0.a
33	15.72	1916-17	15.89 ^a	1934-35	14.89 ^a
34	9.40	18	11.94	36	7.78
		19	8.37	37	20.95
1934~35	23.40			38	16.53
36	12.28	1919-20	17.18ª	39	11.80
37	33.63	21	11.33 ^a		
38	19.65	22	31.59ª	1939-40	10.43
39	15.34	23	12.36	41	23.84
		24	10,60	42	8.89
1939-40	17.41	_		43	13.33
41	30.49	1924-25	8.59	1414	15.18
42	17.29	26	20.53		
43	19.85	27	24.37	1944-45	9.94
7)	17505	28	11,50	46	7.29
man Mahan (No	2) 9S/1W-30H	20 29	11.66ª	47	7.98
Roma ilota (Mo	76 27 93/1W=30H	27	11.00	48	3.86
anko ka	1.0.00		3.0 oz8	49	6.75
1940-41	42.32	1929-30	18.95 ^a	77	0./5
42	23.98	31	12.59 ^a	3 0110 50	2 26
43	26.72	32	23,27ª	1949-50	3.96
		3,3	14.07ª	51	4.07
onsall Basin	10S/3W-10J	34	10.76ª	52	14.81
1939-40	16.06	1934-35	22.89	Escondido No.	ı°
41	27.10	36	13.71	(Key Station)
42	16.76	37	31.82		
43	15.90	<u>3</u> 8	25,91	Fallbrook 9S/3	W-20H
.,	2)0)0	39	15.31	(H. E. White	
nihushus Moun	ntain 9S/3E-35A	27	x).)x	• • • • • • • • • • • • • • • • • • • •	•
initiation 11001	אליל בול לפל אוני	1939-40	16.40	1909-10	18.29
1911-12	15.19 ^b	41	36.02	11	17.70
•		42	14.60 ^a	12	16.65
13 14	13.53			13	10.59
	26.02	43	19.48	14	23.66
15	26.84 ^b	a abb. A. a	a c1.8.	17	25.00
		1944-45	11.64 ^a	10111 15	20.00
nihuahua Vall	ey 9S/3E-23E			1914-15	29.90
		19 ¹ 46- ¹ 47	13.76 ^a	16	29.78
195 2-53	14.31			17	19.26
54	1 5。23	1948-49	13.01	18	16.93
		50	10.32	19	11.74
		51	8.18		
uyamaca (Key	Station)@	52	2 2.75	1919- 20	19 .1 0
` `	•	,	, ,	21	16.78
		Elsinore 65/5W-8K	0	22	34.66
eadman*s Hole	10S/2E=1F	(Key Station)		23	15.07
		(======================================		24	11.52
1911-12	17.31 ^b				
13	12,19	Elsinore 6S/4W-2M		1924-25	11.59
14	23.81	(Railroad Canyon	n Dam)	26	21.96
17	23.01	(Mailioad Canyon	i Daiii)	27	28.33
2021/25	an he	1000 08	2 20	28	12.63
1914-15	32.45	1927-28	3.39	29	12.80
16	34,92	29	6.56	47	12.00
17	21.40			1000 00	10.50
18	19-67	1929-30	15.73	1929-30	19.59
19	14.07	31 32	9.68	31	16.64
	Ţ,	32	16.62	32	24.29
	24.63	33	9.67	33 34	13.17
1919~20	12,72	<u>3</u> 4	7.90	34	12.63
1919~20 21				-	-
21		-			
21 22	38 , 93	-			
21					

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

Season :	Precipitation	Season :			
		Season :	Precipitation	Season :	Precipitation
	<u>A</u>	ijacent to Watersh	ed (continued)		
Fallbrook 9S/3W	-20H	Fallbrook (No	. 4) 9S/3W-20E	Hemet Lake 6S/	/3E-7K1
(H. E. White)		1 3 1 2 1 1 0 3 1 1 1 1	20.2	(oontinued)	, ,
(U. D. MUTCA)	(oon vinued)	1022.22	ולים דו	(oontinued)	
and or	00 20	1932-33 34	11.74 11.00	2020 20	00.00
1934-35	25.55	77	11.00	1919-20	23.83
3 6	16.39	30011.05	30 110	21	15.23
37	34.51	1934-35	19.42	22	34.21
38	25.90	36	14.51	23	20.10
39	20.51	37	32.35	24	14.20
		38	24.51		
1939-40	21.00	39	17.38	1924-25	14.13
41	33.31			26	25 .1 8
42	19.56	193 9- 40	19.09	27	30.86
43	21.86	41	30.59	28	13.53
44	15.66	42	16.87	29	12.54
		43	19, 22	•	
1944-45	13.42		-,	1929-30	28.27
46	11.95	Fallbrook (No	. 5) 9S/4W-25R	31	11.99
47	10.24	101101000 (110	· // /=/ \!! = _ /!!	32	27.61
48	7,85	1938-39	16.82		
40	/:00			33	12.24
n / /	a \ ac /att aa D	40	19.26	34	6.12
Fallbrock (No.	1) 32/3M-57E	41	30.65		
	A 4.	42	17.21	1934-35	20.56
1876-77	8.67	Pallarook	98/311-3111	36	16.87
78	24.84	(Steelc)		37	31.34
79	7.70	1950-51	7.80	38	25.53
		52	24.36	39	15.42
1879-8 0	20.45	53	12.47		•
81	13.47 ^a	54	12.29	1939-40	21,12
82	12.24			-///	
83	13.32	Hemet Lake 6S	/3E-7K1	Hemet Reservoi	r 65/3E-7K2
84	40.77		, , , , , , , , , , , , , , , , , , , ,		. 0-7)- 7
•	,,	1896-97	21.35 ^b	1940-41	30.82
1884-85	12.70	98	13.50	42	17.12
86	26.23	99	11,60	43	22.36
87		./7	11,00	47	
	10.82	1900 1000	30.00	77	1 6.09
88	20.10	1899-1900	13.20	a alile tea	
89	23.46	01	19.70	1944-45 46	16.37
		02	16.22	46	16.65
1889-90	26.91	03	19.33	47	18.24
91	19.68	0,4	7.61	48	10.50 ^a
92	13.49			49	13.52
93	21.27	1904-05	28 .5 7		
94	9.81	06	23.36	1949-50	13.01
	·	07	29.85	51	10.58
1894~95	23.85	08	19.16		
96	9.27	09	27.11	Meagher 10S/1W	-3M
96 97	21.58	~/	-, , , , ,	0	<i>)</i>
98	10.98	1909-10	19.98	1937-38	18.58
99		1)0)-10		39	
77	8.70	12	21.17) 7	16.05
1899-1900	an he		17.68	1939-40	20 115
. ,	13.47	13	14.10		20.45
01	16.60	1;	24.38	41	31.25
02	12.45			42	18.31
03	23.49	1914-15	27.27	43	18.70
		16	25.44		
		17	17.34		
		17 18	17 : 34 16 : 57		

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

Season	: Precipitation	Season	Precipitation	Season :	Precipitation
	Adja	acent to Watersh	ed (continued)		
Mendenhall	Valley 10S/1E-2R	Oceanside (N	o ₃ 1) 11S/5W-26E	Oceanside (No. (continued)	3) 11S/5W-26D
1911-12	30 . 95	1892-93	13,10	·	
13	24.69	94	6.95	1934-35	19,26
14	37.40			36	7.70
15	53.72	1894=95	14,33	37	22.98
16	45.62	96	7.12	38	15.43
•	. ,	97	1608	39	13.80
Mount Palor	mar 9S/1E-27Q	98	6.91		
		99	4,99	1939-40	14.95
1938-39	29.07	•		41	24.95
,,,,,		1899-1900	961	42	12.61
1939-40	24.83	01	9.20	43	13. <i>3</i> 7
41	42.01	02	8. <i>7</i> 6		
42	20.59	03	14, 14	Oceanside (No	. 4) 11S/4W-19E
43	28,69	04	4.52		
1414	27.41			1926-27	15 <i>-9</i> 7
	,	1904=05	16.29	28	10.88
1944-45	23,21	06	15.45	29	8.62
46	26.77	• 07	11₃33		
	-5:77	08	9,41	1929=30	11.84
Nellie 10S	/1 E_9H	09	10,57	31	10.26
1102220 200,	, 22-)	-/		32	15.40
1901-02	42,45	Oceanside (N	lo. 2) 11S/5W-26C	33	11.88
1)01-02	12:1)			34	8.90
1904-05	54.01	1909-10	11.12 ^b		
06	77.40	11	12,26	1934-35	21.47
07	49.96	12	11.67	36	8.67
٠,	.,.,.	13	6.50	37	23.40
1909-10	44.21	14	14.15	38	14.83
11	44. 96			39	12.79
12	39-06	1914-15	22 . 12		
13	39-59	16	17.42	1939-40	15.5 ¹ 4
14	52.95	17	1 4,29	41	26.80
	, ,,,	18	10.50	42	14.76
1914-15	19 ^a ء 67ء	19	8,62	43	15.55
16	65.12	-/			
17	44.57	1919-20	9, 27	Oceanside (No	. 4A) 11S/5W-24C
18	30.85	21	10,64		
19	28 . 8 3	22	19.06	1924-25	6.13
-/		23	9.04	26	13.60
1919-20	50°70°	24	6.06	27	16.05
21	32.04			28	11.09
22	73, 20ª	1924=25	6.19	29	8,62
23	33,93ª	26	12,4 4		
-/	33.73			Oceanside 11S	/4W-19P
Oceanside,	C.A.A. 11S/5W-13Q	Oceanside (1	No. 3) 11S/5W=26D	(Crouch)	
1945-46	10.40	1926-27	11.74 ^b	1873-74	16.56
47	8.85	28	11.19		
48	6.36	29	7.54	1874-75	5-59
49	8.27	-/	7.2.	76	9.80
.,	0/	1929-30	13.77	76 77	3.41
1949~50	7.46	31	11. 22	78	15.94
51	7. TO 5,82	3 2	17.57	79	7.81
91	7,502	33	11:66	• •	
		34	7.97		
		· · · · · · · · · · · · · · · · · · ·	1 - 71		


SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

Season :	Precipitation	Season :	Precipitation	Season :	Precipitation
			The Control of the Co		11 corpi va vi on
		ljacent to Watersh	ed (continued)		
Oceanside 11S (Crouch) (c	/4W-19P ontinued)	Paloma Valley (continued)	6S/3W-22G	Rincon of Warn 10S/2E-16K	er Ranoh
1879-80	14 , 24	1944-45	13.39	1913=14	27.20
81	9 .1 6	46	11.22	15	42.71
82	9.25	47	9.85	15 16	45.18
83	4.84	48	6.93		
84	25.66	49	9.82	San Jacinto (K	ey Station) ⁰
1884~85	8.61	1949-50	6,63	San Luis Rey 1	15/4W-5K
86	16.72	51	4.28	• -	_ , . , , .
87	8.28	52	20.33	1901-02	9,74
88	9.55)2	200))		14.88
		Palomar Mounta	in Obcommiteer	03 04	6.51
89	10.88	9S/1E=34B	In observatory		0.71
1889≔90	14.90			1904-05	19.80
91	10.36	1942-43	16.34	06	23.26
92	8.47	44	27.41	07	15.10
		• • • • • • • • • • • • • • • • • • • •	2/612	08	10.63
93	9.21	1944-45	22.22	09	
94	4.87		23.22	09	17.30
	- 4-	46	26.77		
1894-95	11.67	47	24.86	1909-10	10.99
96	6.16	48	19.43	11	11.19
97	1 1 .70	49	24.47	12	11.97
98	5.06			13	6.87
99	5.07	1949-50	15.89	14	17.33
,,		51	18.29		, , , ,
1899-1900	5.29	52	50,63	1914-15	21, 91
01	10.43	53	20, 13	16	20.10
02	5.61	53 54	30.05	17	15.43
03	11.70	٠,٠	70.07	18	12.59
04	4.40	Puerta La Cruz	10S/3E-17K	19	8.07
	11. 00	1011 10	20 01:	1010 00	0.00
1904-05	14.32	1911-12	13.84	1919~20	9.23
06	14.99	13 14	11.53	21	10.63
07	10,26		19.52		/
08	8.36	15	28.06	Tripp Flats 7S	/2E-3F
09	10,23	16	30.5 1		
		17	15.10	1948-49	9.77
1909-10	9.72			50	12.85
´ 11	12.41	Red Mountain R	anch 9S/3W-16R	51	11.58
12	11.32		, , ,	52	26.23
13	6.06	1925-26	18.08	•	•
14	10.21	27	22,69	Wight 9S/2W-31	P
- '	10022	28	11.97	-8 /-/ /-	
1914-15	14.49	29	12.42	1929-30	16.02ª
		27	12.72	31	13.54
16	13.70	3000 00	30 50	32	
		1929~30	18,59		19.94
Pala 9S/2W-27	' L	31	15-55	33	13.20
,		32	22,36	34	7∘35
1939-40	16.30	33 34	11.75		
41	30.28	34	12.39	1934-35	17 = 07
42	16.88			36	10.7 6
43	18,44	1934~35	21,51	37	27∘50
-		36	14.69	38	16.85
Paloma Valley	65/3W~22G	37	34.52	39	13.61
		38	24.84	//	-,
1939-40	11.00	39	18,66	1939-40	16.04
41)/	10:00	41	25.61
	26.09	1000 110	10.02	42	16.40
42	10.49	1939-40	19,02		
43	18.69	41	30.19	43	14.49
կկ	15.99	42	17.29		
		43	20.36		

SEASONAL PRECIPITATION RECORDS OF OTHER STATIONS WITHIN AND ADJACENT TO THE SANTA MARGARITA RIVER WATERSHED

Season	: Precipitation	Season : P	recipitation	Season :	Precipitation	
		Adjacent to Watershed (continued)			
	(USWB) 5S/2W~27E	Winchester (USWB) (continued)	Winchester (USWB) 5S/2W-27E (continued)			
1940-41 42 43 44	20.17 9.33 ^a 12.86 ^a 12.07 ^a	1944-45 46 47 48 49	12.05 9.69 ^a 8.86 6.86 ^a 8.85	1949-50 51	6 .8 5 4.4 4	

<sup>a. Partially estimated.
b. Partial season.
c. See Table 4 "Seasonal Precipitation and Indices of Wetness at Key Stations", Chapter II.</sup>

APPENDIX E

RECORDS OF STREAM AND SPRING DISCHARGE NOT PREVIOUSLY PUBLISHED

TABLE OF CONTENTS

RECORDS OF STREAM AND SPRING DISCHARGE NOT PREVIOUSLY PUBLISHED

воте мо	.•	rage
E-1	Daily Discharge Measurements at Gaging Stations Established by Division of Water Resources Coahuila Creek, near Anza, 1950-51 Coahuila Creek, near Anza, 1951-52 Coahuila Creek, near Anza, 1951-52 Coahuila Creek, near Anza, 1952-53 Coahuila Creek, near Anza, 1952-53 Coahuila Creek, near Anza, 1953-54 Cole Canyon Creek, near Murrieta, 1952-53 Cole Canyon Creek, near Murrieta, 1953-54 Lancaster Creek, near Radec, 1950-51 Lancaster Creek, near Radec, 1951-52 Temecula Creek, near Aguanga, 1951-52 Temecula Creek, near Aguanga, 1952-53 Temecula Creek, near Aguanga, 1952-53 Temecula Creek, near Oakgrove Valley, 1950-51 Temecula Creek, near Oakgrove Valley, 1951-52 Temecula Creek, near Oakgrove Valley, 1952-53 Temecula Creek, near Radec, 1950-51 Temecula Creek, near Radec, 1951-52 Temecula Creek, near Radec, 1952-53 Temecula Creek, near Radec, 1953-54 Santa Gertrudis Creek, near Temecula, 1952-53 Santa Gertrudis Creek, near Temecula, 1953-54 Warm Springs Creek, near Murrieta, 1952-53 Warm Springs Creek, near Murrieta, 1953-54 .	E-15 E-16 E-17 E-18 E-19 E-20 E-21 E-22 E-23
E-2	Daily Discharge Measurements at Points, with Less than One Year of Record, on Temecula Creek Temecula Creek, above Aguanga Valley, 1953	E-27
E-3	Temecula Creek, below Aguanga Valley, 1954 Miscellaneous Measurements of Stream Discharge .	E-28
E-4	Miscellaneous Measurements of Spring Discharge .	E-43

APPENDIX E

TABLE E-1

COAHUILA CREEK, NEAR ANZA

Location and description: Water-stage recorder, latitude 33°31°30", longitude 116°48°20", in Section 31, T.75., R.2E., on Parks Ranch, about 8 miles west of Anza, Riverside County. Elevation of gage about 3,360 feet.

Drainage area: 80 square miles.

Records available: December 18, 1950, through September, 1954, Division of Water Resources.

Remarks: Records fair, control for station is small concrete dam. Storm flows estimated by application of broad-crested weir formula. No regulation or diversions above station.

Daily discharge, in second-feet, for the year ending September 30, 1951 : Oct. : Nov. : Dec. : Jan. : Feb. : Mar. : Apr. : May : June : July : Aug. : Sep. Day 0.05 0.04 1 0.05 0.05 0.05 0,06 0.05 0.05 0.05 .04 2 .05 .05 .05 05ء ۰06 .05 05ء .05 . 04 , 06 .05 ۰05 a 05 ۰06 .05 . 05 ۰05 3 ű .06 .06 .04 .06 05 ء . 05 . C5 .05 .05 5 .06 ٥5 ء .06 . 05 ۰06 .05 . 05 ۰05 . 04 6 .04 . 06 ۰05 06ء ,05 。06 05ء .05 .05 .04 ٥6 و . 06 7 8 .05 o6 .05 .05 05 ه .05 . 04 .06 .06 .05 05ء ۰06 .05 .05 .05 .06 05ء .06 .05 ۰ 06 05 ء .05 .05 · 04 9 10 .06 .05 。06 05ء .06 05ء 。05 05 ه . Щ .04 .06 .06 05ء ۰06 ۰05 .05 .05 11 .05 05ء 07ء .06 ۰05 ٥04 12 .06 05ء .05 .05 .04 13 .06 .05 .07 .05 .06 05ء .05 ٥05 .04 14 .06 .05 .06 .05 - 06 .05 .05 .05 .04 15 • 06 05ء . 06 05ء • 06 .05 .05 05ء ٥6 ، .04 16 .05 .06 .05 .06 05ء .05 .05 .06 .05 .06 ٥05 .06 .05 ۰05 .05 . 04 17 . 04 .06 .06 .06 .05 ۰05 18 0.06 ۰05 05ء ۰05 40 ه .05 .06 .06 ۰05 05ء .05 ۰05 .06 .05 19 .06 .06 .05 .06 .05 .05 .05 05ء .05 .04 20 ۰04 21 。06 • 06 .05 •06 .05 ٥05 .05 .05 .05 . 04 06ء ۰05 .05 .05 .05 22 .05 •06 -05 .05 06ء 05ء .05 .05 .05 ° 0,4 .05 .05 .05 23 ۰06 24 .04 044 .06 ۰05 .06 ٥٥6 ء ۰05 .05 .05 .05 05ء 05ء . OH - 04 ٥٥6 ء ۰06 05ء 05ء ٥٥5 25 .06 ۰04 .06 06ء 05ء ۰05 .04 .05 ۰05 26 ۰06 - 05 . 04 05ء 27 ۰ 06 06ء .06 05ء , 05 ۰05 .05 . OH .05 .04 .06 60 ، .06 .05 .05 .05 .04 28 0.05 • 04 29 .04 .06 ۰ 06 . 06 05ء .05 05ء .05 و 10 0.04 .04 .05 .05 .05 0,05 30 06ء 0.06 0.04 0.05 0.04 0.05 0.05 0.05 : Year Total sec .: ft. days : 1.83 1.40 1.81 1.57 1.73 1.50 1.55 1.55 1.20 :period Mean sec. ft. 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.04 Max. 0.06 0.05 0.07 0.06 0.06 0.05 0.05 0.05 0.04 sec. ft. Min. 0.04 800. ft. 0,05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 Total 3.4 2.4 ac. ft. 3.6 2.8 3,6 3.0 3.1 <u>3.1</u>

COAHUILA CREEK, NEAR ANZA (continued)

Location and description: Water-stage recorder, latitude 33°31°30", longitude 116°48°20", in Section 31, T.7S., R.2E., on Parks Ranch, about 8 miles west of Anza, Riverside County. Elevation of gage about 3,360 feet.

Drainage area: 80 square miles

Records available: December 18, 1950, through September, 1954, Division of Water Resources.

Remarks: Records fair, control for station is small concrete dam. Storm flows estimated by application of broad-crested weir formula. No regulation or diversions above station.

Daily discharge, in second-feet, for the year ending September 30, 1952

		Daily	disch	arge, in	second-	feet, for	the year						
Day	: Oct.	: Nove	: Dec.	: Jan. :	Feb.	: Mar.	2 Apr.	: May	: June :	July	: Aug.	: Sep.	:
1	0.04	0.04	0.05	0.14	0.05	2.2	0.07	0.08	0.05	0.05	0.05	0.05	
2	• 01	.03	0.05	0.05	.05	0.5	0.07	.08	.05	.05	۰06	.05	
	.04	.04	0.05	0.05	.05	0.08	0.07	.08	.05	.05	.06	۰05	
3 4	. 014	.04	0.05	0.05	.05	0.06	0.07	.08	.05	.05	•06	.05	
5	.04	.05	0.06	0.05	•05	0.06	0.07	.06	•05	.05	.06	•05	
2	•01	809	0.00	0.0)	•••	0.00	0007	800	••)	رده	•••	•••	
6	۰04	.05	0.04	0.05	.05	0.06	0.08	.06	•05	.05	•05	•05	
7 8	• 04	.05	0.04	0.05	۰05	0.6	0.08	.06	•05	•05	. 05	.05	
8	• 04	•05	0.04	0.05	• 05	4.8	0.08	۰06	•05	•05	• 0,4	05ء	
9	•04	.05	0 . 04	0。05*	۰05	1.0	0.08	• 06	•05	۰05	• 01	۰05	
10	• 04	•05	0.04	0.05	.05	7.9	0.6	.06	۰05	•06	• 04	۰05	
11	.04	.05	0.04	0.05*	۰05	80	1.4	•06	•05	.0 6	.04	۰05	
12	.04	.05	0.06	0.05	.06	4.0	0.08	•06	.05	.06	. 04	.05	
	.04	.04	0.05	6.0	.06	4.8	0.08	.06	۰05	.06	.04	.05	
13 14	.04	.04	0.05	0.6	.05	4.2	0.08	.06	.05	.06	°04	•05	
15	.04	.04	0.04	0.06	.05	2.3	0.08	.06	۰05	•06	۰05	.05	
				0,00	vej						0.7		
1 6	• 04	۰04	0.04	13	۰05	8 6	0.08	.06	-05	۰06	۰05	•06	
17	.04	40 ه	0.04	8.8	05ء	3 7	0.08	•06	۰05	. 05	•05	۰06	
18	.04	۰04	0.04	130	۰06	8.1	0.08	.06	۰05	.05	.06	•06	
19	• 04	05ء	0.04	8.5	۰06	0.4	0.08	06ء	05ء	۰05	۰06	.05	
20	۰ 04	.05	0.04	0.06	.06	0.08	0.08	.06	.05	.05	.06	.05	
21	.04	•05	0.04	0.06	•06	0.08	0.08	•06	•05	05ء	•06	05ء	
22	°04	•05	0.04	0.06	•06	0.07	0.08	.06	•05	.05	۰05		
	.04 .04		0.04	0.06			0.08	.06			٠٠٦	.05	
23 24		.05			۰06	0.07	0.00		•05	.05	•05	-05	
	.04	- 05	0.05	0.06	.06	0.08	0.08	•06	a 05	.05	.05	•05	
25	۰05	• 05	0.05	0.06	۰06	0.07	0.08	. 06	.05	۰05	•05	۰05	
26	۰03	.05	0.05	0.06	.06	0.08	0.08	.05	۰05	.05	۰05	.05	
27	03ء	.05	0.05	0.06	•06	0.07	0.08	05ء	-05	•02	.05	.05	
28	03ء	•05	0.06	0.06	• 06	0.07	0.09	05ء	۰05	.01	• 05	.05	
29	.03	.05	0.06	0.06	0.06	0.08	0.08	05ء	۰05	•03	۰05	•05	
30	.03	0.05	41	0.06		0.08	0.08	05ء	0.05	بأن ه	۰05	0.05	
31	0.03	•	3.3	0.06		0.07		0.05	-	0.05	0.05	•	
Total sec	c.:							,					: Year
ft. days	: 1.19	1.39	45.3	168	1.59	245	4.20	1.88	1.50	1.52	1.56	1.53	:period
Mean	:	0.05	1.46	5.42	0.05	7 00	0.14	0.06	0.05	0.00	0.05	0.05	1 20
Max.	<u>. : 0.04</u> :	0.05	1.46	7044	0.05	7∘90	0.14	0,06	0.05	0.05	0.05	0.05	1.30
	. : 0.05	0.05	41	130	0.06	86	1.4	80.0	0.05	0.06	0.06	0.06	130
Min.	. 0.00	0.00	0.01.	0.05		0.0/	0.05	0.05	0.05	0.03	0.00	0.05	0.03
Total	: 0.03	0.03	0.04	0,05	0.05	0.06	0.07	0.05	0.05	0.01	0.04	0.05	0,01
ac. ft.	2.4	2.8	90	333	3.1	485	8.3	3.7	3.0	3.0	3.1	3.0	940

^{*} Estimated.

COAHUILA CREEK, NEAR ANZA (continued)

Location and description: Water-stage recorder, latitude 33°31°30", longitude 116.°48°20", in Section 31, T.7S., R.2E., on Parks Ranch, about 8 miles west of Anza, Riverside County. Elevation of gage about 3.360 feet.

Drainage area: 80 square miles.

Records available: December 18, 1950, through September, 1954, Division of Water Resources.

Remarks: Records fair, control for station is small concrete dam. Storm flows estimated by application of broad-crested weir formula. No regulation or diversions above station.

Daily discharge, in second-feet, for the year ending September 30, 1953 Day Jan. : Feb. : Mar. : Apro : May : June : July : Aug. : Sep. : Oct. : Nov. : Dec. : 0,06 0.04 0.04 0.06 0.05 0.05 0.07 1 0,05 0.06 0.06 0.06 0.3 . 06 ه بُ ٥٥6 ء 。06 . 04 ۰04 2 。06 0.08 。06 05ء 05ء : 05 ₂06 ° 0H ، 04 34 ٥٥6 ه .06 05ء ٥05 .05 0.06 .06 .06 ۰9 04ء ° 0₁1 .05 .05 -, 06 0.06 .06 .06 . 2 ۰06 06ء 05ء 40 ء . 04 。06 ₀ 05 5 05ء o 06 0.06 06ء ٥6 ء 。06 ۰ 06 2 O 5 04ء °C6 , 06 . 04 .05 .05 6 05ء 06ء 0.06 ್ 08 c 06 ٥٥6 ه 04ء . 04 .05 7 05 ۰06 0.06 **، 5*** 。06 .06 ۰ 06 。06 ۰05 40ء ۰04 8 و05 .05 a 05 ٥٥6 ه 0.06 ×30 c . 06 06ء ۰06 。06 ₃05 ٥4 ، 04 .06 05 ٥6 ، 9. 05 06 ه 0.06 。08 。06 。06 ° 04 。04 10 ء 06 0.06 80 ه 。06 . 06 ٥6ء a 06 .05 05ء 05ء 04 ء ° 0₇1 05ء 06ء 0.06 。08 .06 06 ه o 06 ₃ 06 .05 。05 11 。04 ۰04 。06 05 ه 05ء .06 . 06 12 ۰05 06ء 0,06 80 ي ٥٥6 ه ٥٥6 ، .05 06 0.06 ٥٥٥ و 。06 。c6 .05 .05 ₀05 .04 .04 13 ە04 ۰04 06ء ٥٥ ء 05 ه ۰04 14 。06 .06 0.06 。06 。06 .05 ۰04 ۰ 04 ۰04 ٥٥، 。06 .06 ۰06 ۰06 。06 15 。05 o 07 0.06 04 ه ٥4 0.06 .07 .0€ ٥٥6 ، ٥6 ه 05ء .06 。04 04 16 .05 . 04 07ء ٥**٥**6 ء 06ء c 06 04 °OH 17 。05 05ء .05 2.3* .07 04ء . 04 ە 04 : 06 .06 ۰05 ٥6ء 18 . 05 。05 0.7* .07 · 07 ۰04 . 04 .04 。06 19 05ء 05ء 0.06* .07 .07* .06 ۰06 .05 04 ه .06 ٥٥5ء ٥6ء 04 و 04 ء 20 ۰05 05 3.8* .07 . 07 × .07 .04 05 ء 。04 。04 21 0.6* o 07 .07* 06 4ء 05ء 。06 .05 °0Ħ 04 ۰04 4ء .06 22 .05 .05 0.06 。07 .07* ٥6ء .05 ۰04 .04 .05 ,04 .05 23 .05 。08 0.06 .07 .1* 。06 07ء . 04 .04 ۰04 24 0.06 . 06 c 06 05ء .05 .05 06ء .07 .07* و 04 ° 0₁4 06ء .05 04ء 25 ۰05 0.06 .07 .3* 。06 ۰06 a 05 ۰04 با0 ، • Ori 06ء .06 05ء 05ء 26 05ء 。06 0.06 .07 ್08 。06 05ء ۰05 °04 ,04 ° 0₁4 0.06 。08 。06 27 05ء ₃06 06ء ,04 . 04 .04 06 ی .05 ۰05 28 ۰05 0.08 0.08 ٥6ء ٤3 ۰ 06 . Ol; . 04 04ء 05ء 29 .05 ۰06 0.07 。07 ್08 .07 .05 و 04 0.04 004 .05 0.05 0.06 .05 0,06 0.07 。07 606ء 30 0°04 0.04 0.06 0.06 0.05 31 0.05 0.5 : Year Total sec.: 1.20 :period 1.24 ft. days : 1.55 2.11 9.52 2.62 2.09 3.45 2.74 1.69 1,58 1.37 Mean 0,08 0.07 0.11 0.09 0.05 0.05 0.04 0.04 0.04 0,09 sec. ft. : 0.05 0.07 0.31 Max. 0,04 0:04 3.8 0.4 3.8 0,5 0.3 0.9 0.4 0.06 0.06 0,05 sec. ft, : 0.05 Mino 0.06 0.04 0.04 0.04 0.04 0,06 0.05 0.05 sec. ft. : 0.05 0.05 0.06 0.06 0.06 Total 2.4 62 4.1 3:6 5.4 3.3 3,1 2:7 2.5 ac. ft. : 3.1 4,2 19 5.2

^{*} Estimated.

COAHUILA CREEK, NEAR ANZA (continued)

Location and descript[on: Water-stage recorder, latitude 33°31°30", longitude 116°48°20", in Section 31, T.7S., R. 2E., on Parks Ranch, about 8 miles west of Anza, Biverside County. Elevation of gage about 3,360 feet.

Prainage area: 80 square miles:

Records available: December 18, 1950, through September, 1954, Division of Water Resources.

Remarks: Records fair, control for station is small concrete dam. Storm flows estimated by application of broad-crested weir formula. No regulation or diversions above station.

		Daily	in arri	3- 1n se	cond-fest,	for the	year end	ing Sep	tember	30, 19	54		
Day	: Oct.	Nove	Detail	Jah	Febe :	Mar, ;	Apr. &	May &	June	July	Auga	¿ Sep.	
1	0.04	0:05	0.05	0.05	0.06	0.06	0.07	0:05	0.05	0.05	0.05	0.05	
2	.04	•05	υO5	.05	0.06	0.06	.07	₹05	05	.05	. 05	.05	
	,04	•05	٠05 ٥٥5	•05	0.06	0.05	.06	.05	و05	•05	-05	.06	
3 4	°04	°05	-05	• 05 • 05	0,06	0.06	.06	•05	.05	.05	05ء	.06	
5	.04	ون 05	.05	۰۰۶	0.06	0.06	• 06	₅ 05	. 05	.05	. O5	.06	
2	.01	209	,0)	100	0,00	0.00		٥٠٧	,		_		
6	• 04	۰ 05	و05	• 06	0.06	0, 06	ø 06	_e 05	• 05	.05	٠04	06ء	
7	·Oft	05ء	05 ،	» 06	0.06	0.06	e 06	. 05	° 05	۰ 05	° Ort	e 06	
8	.04	° 0,†	₄05	a 06	0.06	0.06	۰ 06	05 ه	• 05	05 ء	° 014	• 06	
9	° CF	° 0∕4	۰05	ે 06	0.06	0.06	. 0 6	.05	05ء	. 05	ه O ¹ 4	٥٥6	
1Ó	.04	• 0,1	.05	- 06	0.06	0.06	₀ 06	. O.	ە 05	.05	• ህዛ	.06	
11	04 ه	.04	, 05	.06	0.06	0.06	۰،06	. 05	.05	₃05	, 0 ¹ 4	۰ 06	
12	.04	. Oli	.05	. 07	0.06	0.06	.06	.05	٥٥5	-05	.05	, 06	
		• O ₁ †	•	.07	0.4	0,06	.06	.05	و06	و05ء	.05	.06	
13	.05		,05					-	,06		-	.06	
14	-05	.05	.05	, 06	1.2	0.06	2 0 6	.05		- 05	.05		
15	.05	.05	.06	.06	0 6	0 .06	06 د	. 05	۰05	۰05	-05	- 06	
16	٥٥5	.05	۰ 06	٥6 ء	0.,07	0.09	. 06	٥5 ،	.05	。05	.05	.06	
17	. 05	. 05	60ء	.06	0.06	0.88	66 ی	+ 05	, 05	.05	۰05	.06	
18	ر ودء	05ء	06	.06	0.06	0.08	66 ء	⇒05	.05	80ء	• 05	و05ء	
19	,05	.05	.05	٠5	0.06	0.07	。06	.05	ە05	. 05	05ء	.05	
20	.05	. 05	,05	.3	0 - 06	0.07	60ء	- 05	66ء	۰05	.05	.05	
21	.05	. 05	. 05	, 06	0.06	0.08	.05	۰05	. 05	- 05	, 05	.05	
22	305	.05	- 05	.06	0:06	7.2	. 05	.05	-05	. 0 <u>5</u>	905	.05	
23	.05	۰ 05	.05	.06	0.06	2.4	,05	. 05	.05	.05	.05	.05	
24 24					0.06	1.4	.05	.05	05	.05	.05	÷05	
	.05	, 05	. 05	07				. 05	. 05	. 05	. 05	.05	
25	.05	.05	. 05	.7	0,06	6.7	. 05	.09	. 05	. UJ	.05	•05	
26	• 05	.05	.05	.09	0 06	0.6	05	. 05	.05	.05	05 ء	.05	
27	. 05	. 05	.05	.06	0,06	0,09	05	.05	.06	. 05	, 05	.05	
28	- 05	.05	.05	06	0,06	0.09	.05	-05	. 06	.05	. 05	, 05	
2 9	. 05	.05	.05	. 06		0,09	.05	.05	, 05	: 05	, 05	. 05	
30	. 05	0.05	.05	.06		80.0	0:05	. 05	0.05	و05 ،	. 05	0.05	
31	0.05		0.05	0.06		0.07		0.05		0.05	0.05		
Total sec.				-	COLUMN TO SERVICE AND ADDRESS OF THE OWNER.								Year
fr. days		1,44	1.59	3.20	3.71	20.9	1.72	1,55	1.55	1.58	1.49	1.65:	Deris 51
Mean	:												
Ses. Et.	. 0.05	0.05	0_05	0,10	0.13	0.67	0.06	0.05	0,05	0.05	0.05	0.06	0.11
Max.	: : (2.0%)	0.05	0.05	0.7	1.2	7.2	0.07	0.05	0 05	60.0	0.06	0.06	7.2
Min	s (°,05	0.05	U, U3	<u></u>	7 4 7		0.0/	0.07	0 05	0,00	0,00	0.00	1.4
sed. ft.	. ٥٠ يال	0.04	0.05	0 05	0.06	0.05	0.65	0.05	0.05	0.05	0.04	0.05	0,04
Total	2:	3.4	3.1	6.3	7.3	41	3.4	6 I	2.1	9 7	2.0	6 8	51.9
ac, 10,			2	0:3	1:2	e companyation and a	5.4	3.1	2:2	3.1	3.0	3.3	82

Location and description. Water-stage recorder, latitude 33°33'40", longitude 117°14'10" in Section 18.

To Alex M. No., 500 pack upstream from Murrieta Creek confluence, about 1.5 miles northwest of Murrieta, Riverside County. Elevation of gage about 1,115 feet.

Drainage area: 8.8 square miles.

Records available: December 26, 1952, through May 17, 1954, Division of Water Resources

Remarks. Records fair, nobble and sand bottom. No regulation or diversions above station-

	Daily	dischar	ge, in se	oond-feet,	for th	ne year e	nding S	eptembe	r 30, 1	253	-	
:/AV	Cot. Nov.	: Dec-	Jen.	Feb	Var.	Apr.	: Mary	June	៖ ភូពវិស	: Aug.	。Sep	
			•									
1			0									
2 3 4 5			0									
3			0									
4			0									
5			0									
6			0									
7			4.1									
8			5.1									
9			1,9									
6 7 8 9 1 0			1,1									
13			0.7									
12			0.7									
12			0:4									
յ փ 13			0.3									
7.5												
15			0,3									
16			0.2									
1 7			0 2									
18			0:2									
19			0.1									
20			0 c 1									
21			0.1									
22			0.1									
23			0.1									
23 2 4			0.1									
25			80.0									
			0.00									
26		0	0.06									
27		0	0.04									
28		0.7	0.03									
29		0	0.02									
30		0.7	0									
31		0 02	0			ar m on supplementaries			-			: Tear
Total sec.			15:6	0	0	0	0	o	0	0	0	: period
ft, days			*/.0									
seo ft.			0,50	0	0	0	0	0	0	0	0	,
Max. sec. ft.			E 1									440 000
Min.		**	5.1			~~~~						
sec. ft.		0	0		SCHOOL SECTION							0
Total ac. ft.			0.5	0		0			0		0	
CANO J. v.		46 06	31	0	0	U	0	0	0	0	D .	en ur

COLE CANYON CREEK, NEAR MURRIETA (continued)

Location and description: Water-stage recorder, latitude 33°33'40", longitude 117°14'10", in Section 18, 2.75., 2.3%., 500 feet upstream from Murrieta Creek confluence, about 1.5 miles northwest of Murrieta, Riverside County. Elevation of gage about 1,215 feet.

Drainage area: 8.8 square miles.

Records available: December 26, 1952, through May 17, 1954, Division of Water Resources.

Remarks: Records fair, cobble and sand bottom. No regulation or diversions above station.

Jag	· Ont	Daily : Nov.	cische:	rge, in s		t, for the	o year end		June	. 30, 19 . July	: Aug.	: San	
20,	. 0000		. 2006	. O'AITE		0 3401 0		12.0	0 2320	, our		. оср.	<u> </u>
1				0	c.4	0.6	2.4	0.3					
2				0	0.2	0.6	2.0	. 2					
3 14				0	0.2	0.5	1.7	. 2					
Ĺ				Ö	0.2	0.5	1.4	. 2					
5				0	0.2	0.5	1.3	.1					
6				0	0.1	0.5	1.3	.08					
7 6				0	0.08	0.4	1.4	。06					
Ġ				0	0.08	0.4	1.2	· Oh					
å				0	0.04	0.4	1.0	.02					
9 10				ő	0	0.4	0.9	02ء					
				•									
13				0	0	0.4	0.8	.01					
12				0	0	0.3	0.8	.01					
1.3				0	35 45	0.3	0.8	01ء					
3.14				0	Ų5	0.3	0.7	。01					
15				0	方。4	0.3	0.7	ە01					
					t. t.	- 1.							
16				0	tt of	0.4	0.6	01،					
17				0	3.1	2.0	0.6	0.01					
18				0	2.8	1.1	0.5						
19				73	2.1	0.6	٥,4						
20				32	1.8	3.9	0.3						
21				1.1	1.5	5.9	0.4						
21						2007	0.4						
22				0	1.3	31							
23 24				0	1,1	15	0.4						
213				0	1.0	7.5	0.3						
25				34)	0.9	12	0.3						
26				5.0	0.8	4.2	0-3						
27				2.6	0.7	3.2	0.3						
00					0.7	2.6	0.4						
28				1.9	0.7	- 0							
29				1.3		2.0	0.4						
30				1.0		73	٥.۴						
31				0.6		3.2							: Year
oval sec St. days	: 0	0	0	152	223.	134	24.,4						: period
Mean					V- 45., 1	2071							. por 10.
seo, ft.		_ 0_	0_	4.90	2.96	3,68	0.81						
rian.	:				1								
sec. ft.	Maria de la compansión de			73	<u>ų5</u>	31	2.Կ		-				
Min.	•			0	0	0.3	0.3						0
Total													
	3 0	0	0	301	220	246	48	0.0					***
V0 100	3 V			JV1		- 10	70						

LANCASTER CREEK, NEAR RADEC

Location and description: Water-stage recordor, latitude 33°29'10", longitude 116°52'50", in Section 9, T.85., R.1E., on Stardust Ranch, about 2.7 miles northeast of Radec, Riverside County. Elevation of gage about 1,800 feet.

Drainage area: 115 square miles.

Records available: December 18, 1950, through December 29, 1951, Division of Water Resources.

Remarks: Records poor. Diversions above station. Stream known variously as Wilson Creek, Cottonwood Creek. Control washed out by peak flow of about 200 ofs. on December 30, 1951.

		y disohar			, for the							
Day	: Oct. : Nov	7. : Deo.	: Jan.	: Feb.	: Mar,	: Apr.	: May :	June :	July :	Aug. :	Sep. :	
1			0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	
2			.2	.2	.2	.2	.2	.2	.2	.2	. 2	
1 2 3 4			. 2	.2	. 2	• 2	.2	.2	.2	, 2	. 2	
μ			.2	.2	. 2	•2	.2	. 2	.2	.2	• 2	
5			.2	.2	.2	.2	.2	.2	.2	.2	.2	
,			• • •		•-	V 2		•-		•-	•-	
6			۰.2	. 2	.2	. 2	۰ 2	. 2	. 2	.2	. 2	
7 8			. 2	. 2	.2	.2	. 2	. 2	۰ 2	.2	. 2	
8			.2	. 2	.2	.2	. 2	.2	.2	. 2	. 2	
9			• 2	.2	.2	.2	۰2	.2	. 2	. 2	. 2	
9 10			. 2	.2	• 2	.2	٠2	.2	.2	. 2	. 2	
- 11			٠2	۰2	. 2	• 2	.2	۰2	• 2	. 2	. 2	
12			ء <u>2</u>	.2	.2	.2	.2	.2	.2	.2	. 2	
			.2					.2	.2	.2	.2	
13 14				.2	•2	.2	• 2		.2	.2	• 2	
			. 2	.2	.2	.2	.3 .2	. 2		.2	.2	
15			.2	.2	.2	. 2	• 2	۰2	۰2	• 2	• 2	
16			. 2	.2	. 2	. 2	. 2	. 2	.2	. 2	. 2	
17			. 2	₂ 2	. 2	. 2	.2	۰.2	. 2	. 2	. 2	
18		0.2	. 2	. 2	. 2	. 2	. 2	. 2	. 2	۰2	.2	
19		. 2	. 2	. 2	. 2	۰2	. 2	, 2	. 2	. 2	۰.2	
20		.2	• 2	.2	. 2	, 2	.2	. 2	.2	. 2	. 2	
20		• • •		-	•-	-	0 -		,-			
21		, 2	. 2	" 2	.2	.2	. 2	. 2	• 2	. 2	. 2	
2 2		• 2	• 2	.2	. 2	.2	. 2	. 2	. 2	. 2	. 2	
23		۰.2	.2	• 2	.2	• 2	٠2	۰.2	. 2	۰ 2	. 2	
214		.2	• 2	• 2	•2	.2	. 2	. 2	. 2·	. 2	.2	
25		• 2	. 2	.2	. 2	.3	. 2	. 2	.2	.2	.2	
		•		•	•	•			. 2	. 2	.2	
26		.2	.2	• 2	. 2	•3	• 2	۰2			.2	
2 7 28		.2	.2	• 3	۰2	• 2	. 2	. 2	۰2	• 2	.2	
		. 2	• 2	0.2	. 2	. 2	. 2	. 2	.2	.2		
29		• 2	.2		.2	.2	.2	.2		.2	.2 0.2	
30 31		•2 0•2	• 2 0 • 2		•2 0•2	0.2	0.2	0.2	0.2	.2 0.2	0.2	
otal seo.:		0.2	0.2		0.2		002		0.2	0.2	:	Year
ft. days :		•	6.2	5.7	6.3	6.2	6.3	6.0	6.2	6.2	6.0:	period
Mean :			- 0 -			0.00	,	0.00	0.00	0.00	0.00	
Max. :			0.20	0,20	0.20	0.21	0.20	0.20	0,20	0.20	0.20	
eeo. ft. :			0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	
Min. :								Name of Astronomy				
sec. f :			0.2	0,2	0,2	0.2	0,2	0.2	0.2	0.2	0.2	
Total : ac. ft. :			12	11	12	12	12	12	12	12	12	
av. Iv.			1-5			7 =						

LANCASTER CREEK, NEAR RADEC (continued)

Location and description: Water-stage recorder, latitude 33°29°10", longitude 116°52°50", in Section 9, T.Es., R.LE., on Stardust Ranch, about 2.7 miles northeast of Radeo, Riverside County. Elevation of gage about 1,800 feet.

Drainage area: 115 square miles.

Records available: December 18, 1950, through December 29, 1951, Division of Water Resources.

Remarks: Records poor. Diversions above station. Stream known variously as Wilson Creek, Cottonwood Creek. Control washed out by peak flow of about 200 ofs. on December 30, 1951.

			• •		_			•				- /	-//								
		Daily	discharge	, in s	900	nd-fe	et,	for th	ie y	ear e	ndin	g Se	ptemb	oer	30, 1	1952					
Дау	: Oct.	: Nov.	: Dec. :	jan.	:		:		:		:	Мау	: Ju	me	: Ju	ly :	Aug.	: S	р.		_
																				•	
1	0.2	0.2	0.2																		
2 3 4	. 2	.2	. 2																		
,3	. 2	.2	. 2																		
	. 2	.2	.2																		
5	, . 2	.2	• 2																		
6	.2	.2	.2																		
7	. 2	.2	.2																		
7 8	.2	.2	.2																		
0	• 2		• 4																		
9	.2	. 2	•2																		
10	.2	.2	.2																		
11	. 2	.2	• 2																		
12	. 2	.2	. 2																		
13	. 2	.2	.2																		
14	.2	.2	.2																		
7.7	.2		.2																		
15	۰۷	. 2	٠.4																		
16	.2	.2	.2																		
1.7	. 2	.2	. 2																		
18	.2	. 2	.2																		
19	. 2	. 2	. 2																		
20	.2	.2	. 2																		
-0	• • •	•-																			
21	.2	.2	.2																		
22	.2	.2	.2																		
23	.2	. 2	• 2																		
23 24	۰ 2	.2	.2																		
25	.2	. 2	۰,2																		
26	. 2	.2	.2																		
27	. 2	.2	。2																		
28	.2	. 2	.2																		
29	.2	.2	0.2																		
3Ó	.2	0.2																			
31	0.2																				
fotal sec.:																			:	Yea	r
ft. days :	6.2	6.0																		peri	
Mean :																					
sec. ft. :	0.20	0.20							_												
Max.																					_
seo. ft. :		0.2																			_
Min. :		_																			
sec. ft. :		0.2	-0																	_==	
Total :																					
ao. ft. :	12	12	•0																	_==	

TEMECULA CREEK, NEAR AGUANCA

Location and description: Water-stage recorder, latitude 33°25'10", longitude 116°50'20", in Section 2, T.9S., R.IE., about 2 miles southeast of Aguanga, San Diego County. Elevation of gage about 2,240 feet.

Drainage area: 71 square miles.

Records available: January 10, 1951, through September 30, 1954, Division of Water Resources.

	Daily disch	arge, in	socond-16	et, for t	he year	ending S	sptembe	r 30, 3	.951		
Day : Oct. :	Nov. : Dec.	: Jan. :	Feb.	Mar. :	Apro	: May :	งินทธ :	July :	Aug.	Sep. :	
1 2 3 4 5			0.7 .7 .7 .7	0.8 .9 .8 .6	0.7 0.7 0.7 0.7 0.7	c.3 .8 .7 .7	0.8 .8 .8 .8*	0.7* 0.6* 0.6 0.6 0.6	0.6 .6 .6	0.6 .6 .6	
6 7 8 9 10		0.7	•7 •7 •7 •7	•7 •7 •7 •7	0.7 0.7 0.6 0.6 0.6	•7 •7 •8 •8	.8* .8* .7* .7*	0.6 0.6 0.6 0.6	.6 .6 .6	.6 .6 .6	
11 12 13 14 15		•7 •7 •7 •7	•7 •7 •7 •7	•7 •7 •7 •7	0.6 0.6 0.6 0.6 0.6	.8 .8 .8	.6* .6 .6	0.6 0.6 0.6 0.6 0.7	.6 .6 .6	.6 .6 .6	
16 17 18 19 20		•7 •7 •7 •7	•7 •7 •7 •7	•7 •7 •7	0.6 0.7 0.7 0.7 0.7	•7 •7 •7 •8	.6 .6 .6	0.6* 0.6* 0.7* 0.6*	.6 .6 .6	•6 •6 •6 •6	
21 22 23 24 25		•7 •7 •7 •7	•7 •7 •7 •7	•7 •7 •7	0.7 0.7 0.7 0.7 0.9	.8	.6 .6 .6	0.6* 0.6* 0.6* 0.6*	•5 •5 •5 •5	.6 .6 .6	
26 27 28 29 30 31		•7 •7 •7 •7 •7	•7 •7 0•7	•7 •7 •7 •7	0.8 0.8 0.6 1.0 0.9	.7 .8 .8 .8	•7 •7 •7 •7* 0•7*	0.6* 0.6* 1.0* 0.6* 0.6*	•5 •5 •8 •8 •8 •8	.6 .6 .6	
Total sec.: ft. days:			30 6	22.2	63.3		20.2		18.4	18.00	Year period
Mean :			19.6		21.1	22.3		19.3			Pet Tod
seo. ft.:		2.0	0.70	0.72	0.70	0.74	0.67	0,62	0.59	0.60	a 5
sec. ft. :			0.7	0.5	1.0	0.8	0.8	700	0.8	0.6	
sec. ft. :		030	9، 7	00%	0.6	0.6	0.6	0.6	0.5	0.6	80
Total : ao. ft. :			39	तेरी	42	45	40	38	36	36	

^{*} Estimated.

TEMECULA CREEK, NEAR AGUANGA (continued)

Location and description: Water-stage recorder, latitude 33°25°10°, longitude 116°50°20°, in Section 2, T.95°, R. LE., about 2 miles southeast of Aguanga, San Diego County. Elevation of gage about 2,240 fset.

Drainage sroe: 71 square miles.

Records available: January 10, 1951 through September 30, 1954, Division of Water Resources.

		Daily	dischar	rge, in	segond-f	est, for i	the year	ending S	optembe	r 30, 1	952		
Day	: 0იზ,		: Dec		: Peb.	: Kero,	e Apr.	: May :	June :	July :	Aug.	S.ep.	:
1. 2 3 4 5	0.7 •7 •7 •7	0.8 .8 .8 .3	0.6 0.6 0.5 0.5 0.8	0.9 0.8 0.8 0.8	0.9 .8 .8 .2	1.1 ^b 1.0 1.0 1.0	2.2 2.1 2.1 2.1 2.0	1.3 1.2 1.2 1.2	0.9 · .9 · .9 · .9	0.8 0.8 0.8 0.8 0.8	0.9 .9 .8 .8	0.6 .6 .6 .7	
6 7 8 9 10	•7 •7 •7 •7	.6 .6 .6	0.6 0.6 0.6 0.6	0.7 0.7 0.7 0.7	.7 .7 .7 .7	1.0 1.2 2.0 1.5 _a	1.9 2.1 2.5 2.2	1.0 1.0 1.0 0.9 0.9	•9 •9 •9	0.8 0.8 0.8 0.8	.8 .7 .7 .7 .7	.6 .6 .6	
11 12 13 14 15	·7·7·7	.6 .6 ,5	0.5 0.8 0.6 0.6 0.6	0.7 0.7 1.1 0.8 0.8	.8 .8 .8	f: Jp = e = e = e	3.2b 2.7b 2.2b 2.1b	0.8 0.9 0.9 0.9 0.9	.8 .8 .8	0.8 0.8 0.8 0.8	•7 ^b •7 ^b •7 ^b •7 ^b •7	.6 .6 .6	
16 17 18 19 20	.7 .5 .6 .7	•6 •6 •5 •6	0.6 0.6 0.5 0.6 0.5	4.0 a 2 a 3.2 b	.8 .7 .7		2.1 ^b 2.0 ^b 1.9 ^b 1.9 ^b 1.6 b	0.9 0.9 0.9 0.8 0.9	.8 .8 .8	0.8 0.7 0.8 0.7 0.7	•7 •7 •7 •6	.6 .6 .8 .8	
21 22 23 24 25	.8 .7 .7	·7 ·7 ·7	0.5 0.5 0.5 0.6 0.6	6 6 6	.7 .7 .7 .7	4,655 4,39,6 2,6	1.8 ^b 1.7 1.6 1.5	0°9 0°9 0°9 0°9	.8 .8 .8	0.7 0.7 0.7 0.7 0.8	.6 .7 .7	•7 •6 •7 •6	
26 27 23 29 30 31	, 9 , 9 , 8 , 8 , 8 , 8 , 8	.7 .7 .6 0.5	0.6 9.6 0.6 0.6 1.2 1.0	2.1 2.1 2.0 1.0 0.9	•7 •7 •7 •7	5.6 3.4 3.3 3.2 2.9	1.5 1.6 1.5 1.4	0.8 0.8 0.8 0.8 0.9	3 3 3 0,8	2.4b 1.0b 1.0b 1.0b 0.9b	•7 •7 •7 •7 •6	.8 .7 .6 .6 0.6	
Total sec.	**************************************		Control of the Parish of	-									: Year
	:	19.4	19.2	80 CO	21.6	œc,	**	29.1	25.0	40 NC	22.0		: period
sec. ft,	100	0,65	0,62	22	0674	6c 20	**	0.9 ¹ ;	0.83		0,71	0.64	
Nex. sec. It.	: : 0.9	0,8	1.2		0.9	e 0	*=	1.3	0,9		0.9	0.8	
	:	0 ₂ 5	0,5	æ.	0.7	1.0	1.4	8.0	0.8	0.7	0.6	0.6	
Total	AND DESCRIPTION OF THE PERSON NAMED IN	38	38	ev =	49	==	*.	58	50		ليل	38	
ر با ۱ و زنت	. 7))U	70						7.7			~~	

a. Flow exceeds maximum station rating of 4.8 ofs.

b. Estimated.c. No record.

TEMECULA CREEK, NEAR AGUANGA (comulmued)

Location and description: Water-stage recorder, latitude 33 25 10", longitude 116 50 20", in Section 2, 7.95., R. LE., about 2 miles southeast of Aguanga, San Diego County. Elevation of gage about 2,240 feet.

Drainage area: 71 square miles.

Records available: January 10, 1951, through September 30, 1954, Division of Water Resources.

		Daily	d1zehs	rge, in	second-	feet, for	the year	ending S	Septembe	r 30.	1953		
Day	: 00°c. :	Now, :	Dec. :	Jar.	: Feb.			: May	: June :	Juiy	Aug.	Sep. :	
1	0.6	0.6*	0.9	1.2	C.8	1.1	0.9	1.0	0.8	0.6	0.7	0.6	
2	. 6	0.6*	0.9	1.0	c.8	2.1	0.9	1.0	.8	.6	.7	•6	
3	.6	0.6*	0.9	1.0	0.8	1.0	0.9	0.9	•8	.6	۰7	•6	
3 4	.6	0.6*	0.9	0.9	0.8	c.9	0.9	0.9	.8	.6	•7	.6	
5	•6	0.6*	1.0	0.9	0.8	0.9	0.9	0.9	.8	.6	•7	•5	
,	•0	0.0	1.0	009	0.0	607	(0)	0.7	•0	•0	•/	• 2	
6	.6	*6ء٥	1.0	0.9	0.8	0.9	0.9	0.8	•8	.6	.6	۰5	
7	•6	0.7	1.0	1.0	0.8	0.9	0.9	0.8	.8	•6	•6	•5	
8	•6	0.7	1.0	0.9	6.0	0.9	0.9	C.8	.8	•6	•6	•5 •4	
9	•6	0.7	1.0	0.9	0.8	0.9	1.0	0.8	•8	۰6	•6	.4	
10	•6	0.7	1.0	0.9	8.0	0.9	1.0	0.8	•8	.6	•7	•4	
11	.6	0.7	1.6	0.9	0.8	0.9	0.9	0.8	.8	•7	•7	.4	
12	•6	0.7	1.6	0.8	0.8	0,9	0.9	C.8	.8	•8	•7	.4	
13	.6	0.7	1.6	0.9	0.8	0.9	0.9	0.8	•7	•6	.6	.3	
14	•6	0.8	1.1	0.8	0.8	0.9	0.9	0.8	•7	.6	.6	.4	
15	•6	1.1	1.0	0.8	0.8	0.9	0.9	0.8	.8*	.6	.6	•5	
			200	0.0	000	20/	0.07	0.0	•0	•0	•0	•,	
16	.6	1.4	1.0	0.9	0.8	0.9	0.9	0.8	•8*	•6	•5	•5	
17	•6	0.9	1.6	0.9	0.8	0.9	0.9	0.8	.8	•6	•5	۰5	
18	•6	0.8	1.2	0.9	0.8	0.9	0.9	0.8	.8	•6	•5	•5	
19	.6	0.8	1.2	0.9	0•8	0.9	0.9	0.8	۰8	.6	•5	۰5	
20	ه.	0.8	1.6	0.8	0.8	1.0	1.0	8。0	.8	•6	•5	•5	
			- 1	_						_	-		
21	•6	0.8	1.4	0.8	C.8	0.9	1.1*	0.8	.8	•6	۰5	•5	
22	•6	0.9	1.4	0.8	0.8	0.9	1.00	0.8	۰7	•6	•5	•5	
23	•6	1.2	1.3	0.8	1.0	0.9	1.0*	0.8	•7	-6	•5	•5	
24	•6	0.9	1.2	0.8	1.0	0.9	1.0*	0.8	۰7	•6	۰5	۰5	
25	•6	0.8	1.2	0.8	c.9	9.9	1.0*	0.8	•7	•6	•5	•5	
26	•6	0.8	1.2	0.8	0.9	C.9	1.0*	0.8	٠7	ه.	•5	•5	
27	•6	0.8	1.1	0.8	0.9	0.9	1.1*	0.8	.6	•6	•5	•5	
28	.6	0.8	1.3	0.8	0.9	0.9	1.0	0.9	•6	.6	.6	٠5	
29	.6*	0.8	1.2	0.8	,	0.9	1.0	0.8	•6	.6	•6	•5	
30	.6*	0.9	1.2	0.8		0.9	1.0	0.8	0.6	•7	.6	0.5	
31	0.6*	•••	1.3	0.8		0.9		0.8		0.7	0.7		
otal sec.				1949 Mark (1977) 444 Person 247								:	
ft. days	: 186	23.8	36.9	27.0	23.2	28.5	28.5	25.6	22.5	19.1	18.3	14.7:	period
Mean	:				- 0			- 0-					
Max.	: 0,60 :	0.79	1.19	0.87	0.83	0.92	0.95	0.83	0.75	0.62	0.59	0.49	0.79
sec. ft.		1.4	1.6	1.2	1.0	1.1	1.1	2.0	0.8	0.8	0.7	0.6	1.6
Min.	:												
Total		0,6	0.9	0.8	8.0		0.9	0.8	0.6	0.6	0.5	0.3	0.3
as. ft.		47	73	53	46	56	56	51	45	38	36	29	567
			<u> </u>	45		marine transcent							

^{*} Estimated.

TEMECULA CREEK, NEAR AGUANGA (continued)

Location and description: Water-stage recorder, latitude 33°25'10", longitude 116°50'20", in Section 2, T.9S., R.IE., about 2 miles southeast of Aguanga, San Diego County. Elevation of gage about 2,240 feet.

Drainage area: 71 square miles.

Records available: January 10, 1951 through September 30, 1954, Division of Water Resources.

		Da117	discha	rga, in a	econd-fe	st, for t	na year	ending S	aptemb	er 30,	1954		
Dey :	0at. :	Nov. :	Dec. :	J8510 :	Fet. :	Mar.:	Apr.	: May :	June :	July:	Aug. :	Sép. :	
•	0.5	0.7	0.6	a 6	0.7	0.8	1 3	1.0	0.8	0.7	0.7	0.8	
2	0.5	0.6 .6	0.6 .6	0.6 0.6	0.7	0.8	1.3 1.2	0.9	8.	•7	0.7 •7	•7	
	۶ <u>5</u>	•6	•6	0.6	0.7	0.8	1.1	0.9	.8	•7	•7	•7	
3 4	۽ ٻا	•6	.6	0.6	0.7	0.8	1.0	0.9	.8	.6	•7	.6	
5	.4	•6	ه.6	0.6	0.7	0.8	1.0	0.9	8	•5	•7	.6	
2	• 1	*0	ε0	0.0	007	400		••,	•••	٠,	•,	••	
6	.4	•6	،6	0.6	0.7	0.8	2.0	0.9	.8	•6	۰7	•6	
7	. 46	•6	6،	0.6	0.7	0.8	1.0	0.9	8ء	•6	•7	•6	
8	٠4	۰5	۰6	0.6	0.7	0.8	1.0	0.9	8ء	6ء	•7	•5	
9	.4	5 ،	•6	0.6	0.7	0.8	1.0	9 ه 0	.8	6،	•7	•5	
10	.4	.6	ه.	0.6	0.7	0.7	1.0	0.9	.8	•6	۰7	.6	
11	۰5	۰6	۰6	0.6	0.7	G.7	1.0	0.9	.8	.6	•6	ه.6	
12	ره 5	٥6 6	.6	0.8	0.7	0.7	1.0	0.9	ું.8	.6	•7	•6	
19	•5	.6	•6	0.7	1.1	0.7	0.9	0.9	.8	.6	.7	•5	
34	•6	.6	•7	0.7	1.1	0.7	0.9	0.9	.8	.6	.6	•5	
15	.6	.6	.6	0.7	0.9	0.7	0.9	1.0	8ه	.6	.6	-5	
19	30	•0	80	007	(30°,	037		200	***	••	••	•)	
16	6،	•5	۰6	0.7	0.9	0.8	0.9	1.0	۰7	.6	.6	۰5	
1.7	.5	.6	۰6	0.7	0.8	r. o	0.9	0.9	-7	٠6	•6	۰5	
18	ော်	٤.	6،	0.7	0.8	o. 8	0.9	0.9	.7	•7	۰5	•5 •5	
19	6ء	6	.6	1.2	ě. 8	0.8	0.9	0.9	.7	•7	•5	•5	
20	υ 6	۰6	. ن	1.2	0.8	0.8	وه	0.9	.7	6ء	۰5	•5	
23.	°ć.	6	.6	0. 9	0.8	1, 7,	0.9	1.0	.7	•6	۰6	۰5	
22	.6	.6	6،	0.8	0.8	40:20	v.ģ	1.0	٠7	.6	ه.	۰5	
23	٠7	ιÉ	٠6	0.8	0.8		0.9	0.9	۰7	6،	ه.	•5	
24	.6	.6	٠6	0.8	0.8	ੂੰ ਭ _ੁਸ	0.9	ۇ تەن	٠7	٠7	•6	۰5	
25	6ء	.6	3.	1.0	0.8	್ಷಡೆ	0.9	0.8	.7	۰7	6	۰5	
26	.6	ુક	.6	0.8	6.8	30 5 6 30 5 30 5 30 5 30 5 30 5 30 5 30 5 30 5	0.6	0.8	.7	۰7	.6	۰5	
27	.6	.6	•6	0.7	C.8	્રે°્રેન	0.9 0.9	0.8	37	°/	.6	•5	
28	6،	, S	.6	0.7	6.3	200	0.9	0.8	37	•6	.6	• 5 • 5	
2.0 2.39	ან ან	,5 ,6	, 6	0.7	040	7 7 0	0.3	0.0	.7	.6	.6	.6	
2.y 30	ەن 6	0.6	.6	0.7		2.2 ⁵ 2.2 ⁵	0.9	0.8	0.7	.6	ه.6	0.6	
31	0.6	000	0.6	0.7		1.6	Us 7	0.8	0.7	0.6	0.6	0,0	
Total ween:			Decimalistic at the group	Economic Comme	more and whitely,	THE AND LITTLE AND						2	Year
ft. days:	16.6	17.7	18.7	22.6	22.0	- -	28.8	27.8	22.5	19.3	19.5	16.6:	period
Mean :	and the same of the same of	an make at a make	Name and Address of the Owner, where		N. OF BARRIOTS	the could not of the circle in health has not notice	MARKET COPPERATOR LEASE	and the state of t	.,				-
Soc. It.:	0,54	0.59	0,60	0.73	C-72	67.23 1. 8. 3. 60 (10) de de de de de de	0.96	0.90	0.75	0.62	0,63	0.55	
Max.	ОТ	0.6	0.7	1.2	1.1	w.c3	1.3	1.0	საგ	0.7	0.7	0.8	
See. ft.	0.7	UaU		E 0 %	ALEAN ELGISTER	mat vist E salddhidhidh mander ei ei 76. d brid		7 1 C	0.0	<u></u>			
384. 1to :	9.4	0.5	0.6	0.6	0.7	0.7	0.9	ს.ქ	0.7	0.6	0,5	0.5	0.4
Total:									1	.0			
an. the	32		. 32	45	idia 	60-3 	- 	55	45	38	_39	33	

^{8.} Flow exceeds maximum starthm ranking of $4.5~\mathrm{efs}$, $6.5~\mathrm{Esbluered}$,

TEMECULA CREEK, NEAR OAKGROVE VALLEY

Location and description: Water-stage recorder, latitude 33°24°20", longitude 116°49°00", in Section 7, T.9S., R.2E., about 2 miles northwest of Oakgrove Valley, San Diego County. Elevation of gage about 2,460 feet.

Drainage area: 61 square miles.

Records available: Intermittent record from February 1, 1951 through September 30, 1954, Division of Water Resources.

	Daily discharge, in second-	-feet, for the year ending September 30, 1951
Day :	Oct.: Nov. : Dec. : Jan. : Feb.	: Mar. : Apr. : May : June : July : Aug. : Sep. :
1	0°9	0.05
	U ₀ 9	0.05
2 3 4 5	√9.	0.05
,	.9	0.05 0 ₃ 05
T E	, 9 , 9	0.05
	()	0°V7
6 7 8 9 10	*9	
7	۰9	
8	. 9	
9	99	
10	۰9	0.04
11	∘9	O ₂ O5
12	ە 9	0,2
13 14	دع ا	0.3
14	٠9	0.3
15	_~ 9	0.3
16	∘9	0.3
17 18	. 9	·
18	.9	
19	وُرُ	
19 20	.9	
21	٠,9	
22	. 9	
23 24	.9	
24	• 9 • 9	
25	.9	0
26	0.9	
27 28	•	
2 8		
29		
29 30		
31		
rotal sec.	:	: Year
ft. days		: period
	:	
sec. ft.		
	:	
seo. ft.		
Min. sec. ft.	:	0
Total	•	V
ac. ft.		4.D 9.9

TEMECULA CREEK, NEAR OAKGROVE VALLEY (continued)

Location and description: Water-stage recorder, latitude 33°24'20", longitude 116°49'00", in Section 7, T. S., R. 2E., about 2 miles northwest of Oakgrove Valley, San Diego County. Elevation of gage about 2,460 feet.

Drainage area: 61 square miles.

Records available: Intermittent record from February 1, 1951 through September 30, 1954, Division of Weter Resources.

Records fair for low flows, storm flows not rated. One diversion above station. Remarks

				narge, in			the year		Septembe	er 30, 1	952		
Dey :	Oct.	: Nov.	: Deo.	Jen	Feb.	3 Mar.	: Apre	: May :	June	July:	Aug.	Sep.	:
1 2 3 4 5			0.8 0.7 0.4 0.4	1.2 1.2 1.2 1.1 1.0	1.2 1.2 1.2 1.a	1.5 1.3 1.2 1.2	1.9b 1.9b 1.9b 1.9b	1.0 1.0 1.0 1.0	0.4 ^b • 3 • 4 • 5 • 7	0.6 -5 .4 .4	0.5 .4 .2 .3	0.08 •1 •3 •4	
6 7 0 9			1.0 1.0 1.0 0.9 0.8	1.0 1.0 1.0 1.0	8. 8. 8. 8. 6. 6. 6. 6. 6. 7. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	1.0 2.2 3.8 2.6 3.5	1.8 ^b 1.8 ^b 1.6 1.7 2.8 ^b	1.0 0.8 0.8 0.8 0.7	.8 .7 .5 .6	.1 .3 .3 .3	.3 .4 .4 .2b	•3 •09 •06 •06	
11 12 13 14 15			0.5 0.7 a a a	0.9 0.8 1.4 1.2		~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	3.5 2.4 2.2 2.0 1.8	0.7 0.7 0.7 0.7 0.8	.5 .7 .6	•3 •3 •08 •3	.1 ^b .2 .2 .4 .4	.4 .4 .4 .1	
16 17 18 19 20		0.7 .6 .4 .3	0.8 0.8 0.7	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a a l.0 l.0		1.6 1.5 1.5 1.5	0.8 0.8 0.7 0.7 0.8	.6 .6 .5 .5	.3 .3 .1 .08	.3b .1b .2b .2b	.07 .1 .4 .6	
21 22 23 24 25		.4 •7 •9 •4	0.7 0.7 0.7 0.7 0.7 0.8	2.7 ^b a a a	0.9 1.0 1.0 0.8 0.6	4,2 2,9 2,2, 1,9,5 1,9,5	1.3 1.3 1.2 1.2	0.7 0.7 0.6 0.7 0.6	• 5 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.2 .3b .3 .3	.4 .4 .2 .08	•3 •3 •2 •3	
26 27 28 29 30 31		.4 .4 .7 0.8	0.8 ^b 0.8 0.8 0.8 1.4 1.2	a a a l.3 l.3	0.7 0.9 0.9 0.9	1.9b 1.9b 1.9b 1.9b 1.9b	1.3 1.3 1.3 1.2 1.1	0,65 0,55 0,45 0,45 0,45	.6 .6 .3 0.6	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	.08 .2 .4 .4 .2 0,2	.6 .3 .2 0.2	
fotal soc.:			· · · · · · · · · · · · · · · · · · ·						2/ 5				: Year
ft. days :		54	# .	* C	===	• •	51.3	22,4	16.5		8.03	0.50	: period
sec, ft. :			e ⊔	W 20		ಲೂ	1.71.	C - 72	0.55	***	0.26	0,29	
Nax. :		-	- 172		÷ 2	de (m	3.5	1.0	0.8	* **	0.5	0.6	
Hin. : sec, ft. :			£ #		90	4: 98	1.1	0.4	0.3		0,07	0,06	
Total :		= tan	N ~	~	υ¢		102	1,14	33	4.5	16	17	

<sup>a. No record.
b. Estimated.
c. Flow exceeds meximum station rating of 8.6 ofs.</sup>

TEMECULA CREEK, NEAR OAKGROVE VALLEY (continued)

Location and description: Water-stage recorder, latitude 33°24'20", longitude 116°49'00", in Section 7, T.9S., R.2E., about 2 miles northwest of Oekgrove Valley, San Diego County. Elevation of gage about 2,460 feet.

Drainage area: 61 square miles.

Records available: Intermittent record from February 1, 1951 through September 30, 1954, Division of Water Resources.

		Daily	discher	ge, in a	econd-f	eet, for t	he year	ending S	eptember	30, 1	9 5 3		
Day	: Oot. :		Dec. :	Jan. :		: Mar, :		: May	June :	July:	Aug. :	Sep.	:
1	0.2	0.9	0.9	1.6	1.3	1.55 1.55 2.5 2.5 2.5 5	1.7	1.5	c.7	0.2	0.3	0.3	
2	94	0.9	0.8	1.6	1.0	1 50	1.7	1.5	.6	.2	•3	•3	
3	.6	0.6	0.7	1.5	0.6	b	1.7	1.4	•6	۰.2	•3	.3	
3 4	•5	0,3	1.2ª	1.5	0.7	b	1.7	1.3	•6	•3	•3	.3	
5	• 3	0,3	1.2	1.5	0.7	ď	1.8	2.3	.6	.2	•2	.3	
י	• >	0,5	102	7.0	0.7		700	-47	30		• -	•)	
6	2 ه	0.7	1,2	1.5	0.7	b b	1.8	1.2	.6	.2	.2	.2	
7 8	۰ 2	0.8	1.2	1.6	0.7	p	1.7	0.7	-6	. 2	. 2	.2	
8	۰3	0.9	1.2	1.5ª	0.7	D	1.7	1.0	•6	.2	.2	. 2ª	
9	.6	0.9	1.2	1.5	0.7	2.3	1.6	1.0	.6	.2	. 2	.2	
10	•6	0.4	1.2	1.5° 1.5° 1.5°	0.7	1.3 1.5	1.6	0.7	.6	.1	.2	.2	
11	•6	0.3	1,2	1.52	0.7	1.3	1.5	0.6	.6	• 2	.2	. 2	
12	.3	0.3	1.2	1.2	0.7	1.3	1.5	0.5	•5	.4	.2	.2	
13	.2	0.6	1.2	0.9	0.7	1.3	1.5	0.9	·ś	.4	. 2	.2	
14	.2	1.0	1.2	0.8	0.7	1.3	1.6	0.9	. L	. 2	.2	.1	
15	.2	1.6	1.3	1.4	0.7	1.3	1.5	1.0	.4	. 2	. 2	. 2	
•/	• •	1,0	20)		00,	-07				•-			
16	•3	1.9	1.3	1.4	0.7	1.4	1.5	0.9	.4ª	.2	. 2	. 2	
17	•6	1.2	1.8	1.4	0∘8	1.5	1.6	1.0	.4	. 2	.2	.2	
18	۰7	0.8		1.4	1,1	1.5	1.6	1.0	۰5	•3	. 2	• 3	
19	•6	0.7	ຼື p ຼື p	1.1	1.2	1.5	1.6	0.9	۰5	•3	. 2	•3	
20	. 2	0.8	^p	0:8	1.2	1.8	1.6	0.8	•4	•3	. 2	•3	
21	. 2	1.2	_=_b	0₃8	1.3	1.7	1.8	0.6	.3	•3	b	•3	
22	.2	1.2	b	1.3	1.3	1.7	1.7	0.9	. 2	.3	= p	.3	
23	.4	1.4	g b	1.3	1.6	1.5	1.6	0.8	. 2	.3	ຼູ້ນ	.3	
24	.6	1.0	p p	1.3	1.7	1.6	1.7	0.6	,2	4	d d	.2	
25	•6	0.6	1.5	1.3	1.6	1.7	1.5	0.9	.2	.3 .4 .4 .4	.1	.2	
29	*0	0.0	139	ر₄≟	1,00	1.7	100	307	•-				
26	.6	0.7	1.5	1.0	1.6	1.7	1.5	0.9	• 2	b	.1	•3 •4	
27	•6	1.2	1.5	0.6	1.5	1.7	1.5	0.6	., 2		.2	.4	
28	•2ª	1.3	1.6	0.7	1,2	1.7	1.6	0.8	.3	.2	. 2 b	.4 .4	
29	. 2ª	1.2	1.5	1.3		1.7	1.5	0.8	.2	. 2			
30	.3 0,8	1.2	1.6	1.3		1.7	1.5	0.6	0.2	•3	b	0.3	
31 Total sec			1.8	1.3		1.7		0.6		0.3			: Year
ft. day	: 12,5	26.9		39.4	28.1		48.4	28.2	12.9				: period
Mean	:						1 (1	0.05	o lic			0.06	
seo. ft.		0.90	8 0	1,27	1,00	4	1.61	0.91	0.43	==		0.26	
Max.	: : 0,8	_ 1.9	90	1.6	1.7	~ *	1.8	1.5	0.7	on cas	-	0.4	
Min.	:					-		-					
sec. ft.		0.3		0.6	0.6	0.0	1.5	0.5	0.2			0.1	
Total	1			20	-/		06	F.(26			15	
ac. ft.	: 25	_53		78	56	@ 12	<u> 9</u> 6	_56	40			<u>+7</u>	

a. Estimated.

b. No record.

TEMECULA CREEK, NEAR OAKGROVE VALLEY (continued)

Location and description: Water-stage recorder, latitude 33°24°20", longitude 116°49°00", in Section 7, T.9S., R.2E., about 2 miles northwest of Oakgrove Valley, San Diego County. Elevation of gage about 2,460 feet.

Drainage area: 61 square miles.

Records available: Intermittent record from February 1, 1951 through September 30, 1954, Division of Water Resources.

		Deily	itecharge	, in seco	nd-feet.	for th	e vear e	nding Se	redmetre	30. 19	54		
Day	: Oct. :	Nov. :	Dec.:	Jan. :	Feb. :	Mar.	Apr	May :	June :	July :	Aug. :	Sepo	:
1 2	0.3	0.6 .6	0,6 .6	0.7 0.7	1.0 0.9	0.8 0.8	2,1 1.8	0.7 .6	0,5 ,3	0. 2 .2	0.2	0.4 .3 .3	
3 4	.3 .4	.6 .5	.6 ∙7	0.6 0.6	0.9 0.9	8°0 8°0	1.6 1.6	.6 .6	•5 •5	•2 •2	.2 .2	•3 •3	
5	.4	•7	•7	0.6	0.9	0.8	1,4	،6	٠,5	• 2	.3	•3	
6	• ² 4	۰7	۰7	0.6	0.9	0.8 0.8	1.3 1.2	•5 •4	ه4 و ع	.2 .1	.2	.2	
7 8	. lş	•7 •6	•7 •7	0.6 0.6	0°9 0°8	0.8	1.2	ء5	4	.2	.2	.2	
9	• 5	.6	°7	0.6	0.8	0.8	1.1	•5	٠5	.1	.1	.2	
10	•5	.6	•7	0.7	0.8	0.8	1.0	.6	٠5	.1	.2	. 2	
11	6ء	.6	۰7	0.7	0.8	3.0	1.0	.6	۰5	.1	.2	.2 .2	
12	•7	۰5	٠7	0.9 1.0	0.8 1.4	0 ₀ 8 0 ₀ 8	0.9 0.9	•6 •6	•5 •5	.2	.3	• 2	
13 14	•7 •7	•7 •7	.7 .7	0.9	2.0	0.8	0.8	ه.6	•5	.2	•3	.2	
15	.6	.8	.7	0.9	1.4	0.8	0.7	.6	• 3	.2	.2	. 2	
16	۰6ء	•8	-7	0.9	1.2 1.2	0.8 1.8	0.7 0.7	ه6	5ء	。2 。2	• 2 • 2	•3 •3	
17 18	a.	•7 •7	.7 .6	0。9 0。9	1.1	1.1	0.7	•5 •5	•5 •4	•3	.2	•) • 2	
19	a	.6	.6	1.7	1.1	1.0	0.7	• 5 .u	ូរុ	.3	. 2	.2	
20		• 7	.6	2.0	1.1	1.0	0.8	•3	•3	.2	. 2	. 2	
21	.6	•7	٠6	1.4	1.0	1.0 _b	0,8	∘5 •5	٠3	٠3	。3 。3	•2 •3	
22	.6 .5	•7 •7	۰6 ۰6	1.2 1.2	1.0 1.0	້ຼື	0.7 0.7	• 5 • 5	•3 •3	ر، 3	•3	•) • 3	
23 2կ	.6	.6	.6	1.2	0.9	4.8	0.7	بنا	.3	, 1 4	.2	. 3	
25	۰5	.6	· 7	1.4	0.9	4.8 b	0.7	÷5	.3	.4	,3	.3	
26	∘ 5	۰6	-7	1.2	0.8	4.5	0.7	۰5	.4	-3	•3	•3	
27	۶۶ ۶۵	۰6	٠ <u>7</u>	1.0	0.8	3.4	0.7	ه. 6	.4 .2	. 2 . 2	•3	۰3 ۰3	
28 29	۰6 6	.6 .6	.7 .7	1.0 1.0	8.0	2∘7 2∘5	0.8 0.8	.6	.2	.2	.2	4	
30	.6	0.6	در م	1.0		2.8	0:5 0:7	٠5	0.2	.1	.2	0.4	
31	0.6	0,0	0.7	1.0		2.3	,	0.5		0.1	0.2		
fotal se													: Year
ft. day		19,5	20.7	29.7	28.1	7 D	29.5	1 6.6	11.7	6,6	7.0	<u>7∘9</u>	: period
Mean seo. ft	, ; <u></u>	0.65	0,67	0 ₂ 96	1.00	cit ca.	0.98	0.54	0.39	0.21	0.23	0 .2 6	
Max.		0.8	0.7	2.0	2,0	E 60	2.1	0.7	0.5	0.4	0,3	0.4	
Min.													
sec. ft		0.6	0,6	0.6	0.8	0.8	0.7	0,3	0,2	0,1	0.1	0.2	
Total		39	41	59	56	02	58	33	23	13	14	16	
					-	-							

a. No record.

b. Flow exceeds maximum station rating of 8.6 ofs.

TEMECULA CREEK, NEAR RADEC

Location and description: Water-stage recorder, latitude 33°27'50", longitude 116°55'40", in Section 19, T.SS., R.LE., near Sunny Brook Ranch, along 37 miles west of Radec, Riverside County. Elevation of gage about 1,560 feet.

Drainage aroa: 133 square miles.

Records available: December 8, 1950, through Soptember 30, 1954, Division of Water Resources.

Remarks: Records good for low flows through flat V-notch of concrete ourb in sand bottom. High flows partially estimated. Diversions above station.

						t, for the	year end	ing Sept	ember	30, 19	51	. Sam	
Dey	. 350	: NOA.	: Dec. :	Jan.	: Feb.	: Mar.	Apu.	; recy	June	outy	; Aug.	; 3ep	
1 2 3 4 5				1.3 1.4 1.6 0.8	4.3 9.1 3.3 3.3 3.3 3.3	4.1 4.6 2.3 3.3 3.2	1.5 1.5 1.1 1.0 1.0	3.5 2.3 1.8 1.1 0.9	0.06 0.06 0.05 b				
6 7 8 9			0.6° 0.2° 0.5°	0.9 1.4 1.4 1.5	3.0 2.8 2.8 2.3	3.2 3.9 3.9 3.6 3.6	1.2 1.6 1.0 1.1	0.8 1.0a 1.0a 1.4	0.06 0.03 0.01				
11 12 13 14 15			0.2ª 0.2ª 0.7 1.0 0.9	1.9 1.9 1.9 2.0	2,2 2,8 2,6 2,4	3.8 3.7 3.4 2.5 3.1	0.8 0.6 0.6 0.6 0.6	1.8 1.7 1.2 1.0	0 0 0 0				
16 17 18 19 20			0.9 0.9 1.0 1.1	0 b b	2.0 2.4 2.6 2.6 2.5	3°5 3°5 3°2 3°1 2°4	0.6 0.6 0.6 0.7 0.8	0.9 0.8 0.7 0.6 0.6	0 0 0 0				
21 22 23 24 25			1.4 1.3 1.3 1.4	2.0 1.6 1.9	2.4 2.6 2.6 2.6	2.5 2.1 1.3 0.9	0.7 0.6 0.5 0.8 1.3	0.6 0.6 0.6 0.5 0.3	0 0 0 0				
26 27 28 29 30 31			1.4 1.4 0.9 0.3a 0.6	1.8 1.9 1.7 4.9 10	2 - 5 3 - 8 9 - կ	1.7 1.0 1.0 1.0	2.8 2.5 2.5 12 7.1	0,2 0,09 0,09 0,09 0,09 0,09	0				
fotal seo.:					#10 D	CHESC SHARP SPECIAL SP	49.6			^	^	0	: Year
ft days :				**	79.5	83.∜	77.0	29.0		0	С	0	: period
seo. ft. :				ng si,	2.83	2,69	1.65	0.94	40	0	0	0	
Max. :			o «	J-2	4.3	4.6	12	3.5	4.5				-
Min. : seo. ft. :				gs Co.	2,6	0.9	0,6	0.09	0				0
Total :				e 2.	157	165	98	57		0	0	0	

a. Estimated.

b. No record.

TEMECULA CREEK, NEAR RADEC (oontinued)

Location and description. Water-stage recorder, latitude 33°27'50", longitude 116°55'40", in Section 19, T.RS., R. IE., near Summy Brook Ranch, about 0.7 mile west of Radec, Riverside County. Elevation of gate about 1,560 feet.

Drainage area: 133 square miles.

Records available: December 8, 1950, through September 30, 1954, Division of Water Resources.

Remarks: Records good for low flows through flat V-notch of concrete curb in sand bottom. High flows partially estimated. Diversions above station.

		Daily d	ischarge,	in sec	ond-feo	t, for the	year end	ing Sept	ember 3	0, 1952			
Day	: 00%,	: Nov.	: Dec. :	Jano	Feb	: Mar.	: Apr.	: May :	June :	July:	Aug.	Sep. :	
_				a),b	9 ^b 9 ^b		20					_	
1	0	0	0.7	24 ^b 15 ^b 10 ^b	9,	37	22	11	2.0	0.2		0	
2	0	0	0.7	15,	. 95	27	21	10	1.9	0.1		0	
3 14	G	0	0.7	100	90	18	1.9	9.0	1.9	0.08		0	
4	0	0	0.7	8,5	8.5	15	18	0.8	1.8	0.03		0	
5	0	0	1.0	8 ^b 7 ^b	8.0	14	18	7.5	1.7	0		0	
6	0	0	0.7	7 ^b 7 ^b 7 ^b 6 ^b 6 ^o	7.5	12	16	7.0	1.7	С		0	
7	ŏ	ō	0.9	7b	7.5	46	15	6.5	1.7	ō		ō	
8	Ö	Ö	1.1	75	7.0	60	24	6.5	1.7	Ō		Ö	
				b		41			1.6			0	
9	0	0	1.2	, ,	7.0		19	6.5		0			
10	0	0	1.2	60	7.0	10 ¹	25	5.6	1.5	0		0	
11	0	0	1.1	6 ^b	6.5	169	5 ¹	4.9	1,4	0		0	
12	O	0	1.7	6þ	7.0	74	32	4.9	1.3	0		0	
13	0	a.	1.5	47b	6.0	62	27	4.9	1.2	0		0	
14	0	ౣౖఽ	1.5	26 ^b	5.2	Լֈ Լդ	22	ų, ģ	1.1	0		0	
15	Ō	0.8	2.0	17 ^b	4.9	86	20	4.9	1.0	0		Ō	
16	0	0.6	2.3	200 ^b	4.9	195	18	4.6	1.0	0		0	
				120 ^b		±25				0		0	
17	0	0.09	2.3	a	5.2	93	1.6	4.1	0.9				
18	0	C. 09	2.3	~ m	6.0	71	16	4.1	8.0	0		0	
19	0	0.09	2.5	a	4.9	58	15	4.1	0.8	0		1.4	
20	0	0.09	2.9	్ఞాа	4.6	50	15	3.5	0.7	0		0.02	
21	o	0.09	2.6	a	4,6	42	14	2.6	0.6	0		0,01	
22	0	0.6	2.5	29 ^b	4.3	35	14	3.1	0.4	0		0	
23	0	1.2	2.2	21,b	4.9	32	12	3.1	0.1	0		0	
2ĺ.	ō	1.0	2.2	21 ^b	4.9	30	12	2.6	0.2	ō		Ō	
25	Ö	1.1	2.2	2Ljb	4.3	30	12	2.6	0.9	ŏ		Ö	
			2.0	aab	14.	•	.1.			0.5			
26	0.2	1.0	2,0	225	4.3	31	114	2.5	0.6	8.1		0	
27	0.2	9.9	2.0	175	4.3	31	12	2.6	0.4	2 8		0	
28	0	8。0	2.0	14p	4.1	30	12	2.2	0.6	Οp		0	
29	0	0.8	3 ∘5	12,5	4.6	27	12	1.8	0.4	Op		0	
30	0	0.8	1 300	11^{b}		26	12	1.8	0.4	1.2		0	
31	0		Tity	10b		2 ^լ ;		1.9		0			
Toval seo.		-											Year
೯೪, ರೇಭಾ :	: 0°f	5 3 53	224		175	1,614	558	149	32.3	12.5	0		period
	:	40 27	7.23	est dip	6.03	52.1	18.6	4.81	1.08	0.40	0	0.05	
	; -m	- 2/	1047	an da	0.05	26.1		7001	Le CO	0,40	 _		
800. 2t.	0,2	E 40	130	89 13	_9	195	54	11	2.0	8.1	-	1,4	
Min.	: 0	0	0.7		4.1	12	12	1.8	0.1	0		0	0
l'otal	2	<u>`</u>											<u>_</u>
eo. It.	: 0,8	e-20	fifti	**	346	3,200	1,100	295	64	25	0	2.8	

a. No record.

b. Estimated.

TEMECULA CREEK, NEAR RADEC (continued)

Location and description: Water-stage recorder, latitude 33°27'50", longitude 116°55'40", in Section 19, T.8S., R.1E., near Sumy Brook Ranch about 0.7 mile west of Radec, Riverside County. Elevation of gage about 1,560 feet.

Drainage area: 133 square miles.

Records available: December 8, 1950, through September 30, 1954, Division of Water Resources.

Remarks: Records good for low flows through flat V-notch of concrete curb in sand bottom. High flows partially estimated. Diversions above station.

		Daily di	ischarge,	in sec	ond-feet,	for the ;							
Day	: Oot.	: Nov.	Doc. :	Jeno	Feb.	Mer.	. Apr.	: May :	June :	July :	Aug.	: Sep	. :
1 2 3 4 5		0 ^a 0 ^a 0,01 ^a 0 ^a 0.01 ^a	- b b - b - b	4.3 3.7 3.3 3.3 3.1	2.6 2.5 2.2 2.2 2.2	4.6 7.5 5.2 4.3	1.8 1.7 1.7 1.6 1.7	2.3 1.8 1.4 1.1	0.2 0.2 0.2 0.08 0.09				
6 7 8 9 10		0.03 ^a 0 0 0 0	2.2 2.5 2.3 2.3 2.3	3•1 12 13 9•5 7•5	2.2 2.2 2.2 2.2 2.2	4.6 3.8 3.1 3.1 2.8	2.1 1.9 1.8 1.7 1.6	0.9 0.9 1.0 1.0	0.09 0.09 0.09 0.1 0.1				
11 12 13 14 15		0 0 0 0,1 4,5	2.3 2.0 1.9 1.9	6.0 5.2 4.9 4.6	2.2 2.2 2.2 2.2 2.1	2.6 2.5 2.3 2.3 2.2	1.5 1.3 1.3 1.3	0.8 0.8 0.7 0.7 0.8	0.1 0.06 0.05 0				
16 17 18 19 20		3.7 1.0 0.8 0.8 0.8	1.9 2.8 3.5 2.6 4.9	4.3 4.1 3.9 3.9 3.7	2.2 1.8 1.9 1.9	2.0 2.0 2.0 1.9 2.8	1.0 1.0 1.0 1.0	1.0 0.9 0.8 0.8 0.3	0 0 0.08 0.06 0.04				
21 22 23 24 25		0.8 0.9 1.2 1.1	6.5 4.3 3.7 3.3 2.8	3.7 3.5 3.5 3.3	1.9 1.9 3.3 3.5 3.1	3.5 2.6 2.8 2.8 2.8	2.0 2.3 1.6 1.4 1.4	0.7 0.7 0.7 0.3 1.3	0.02 0.02 0 0				
26 27 28 29 30 31		b b b	2,6 2,5 3,4 3,3 3,0 5,6	3.1 3.1 3.1 3.1 2.2	2.6 2.8 2.8	2.8 2.8 2.5 2.5 2.2	1.3 1.4 3.7 3.1 2.5	1.0 0.8 0.8 0.4 0.4	0 0 0 0				
Total sec.: ft. days :	: 0		~ =	744	65.4	95-1	49.9	28.8	1.67	0	0	0	: Year : period
Mean :	0		w #	4.65	2.34	3. V7	1:66	0.93	0.06	0	0	0	
Max. sec. ft.		• •		13	3.5	7.5	3:7	2,3	0,2				• **
Min. seo. ft.	;	0	gen.	2.8	1:8	1,9	1.0	0' <i>†</i>	0.02				0
Total ac. ft.			20	285	129	188	99	57.	3.3	0	0	0	••

a. Estimated.

b. No record.

TEMECULA CREEK, NEAR RADEC (continued)

Location and description: Water-stage recorder, latitude 33°27'50", longitude 116°55'40", in Section 19, T.8S., R.1E., near Sunny Brook Ranch, about 0.7 mile west of Radec, Riverside County. Elevation of gago about 1,560 feet.

Drainage area: 133 square miles.

Records available: Decomber 8, 1950, through September 30, 1954, Division of Water Resources.

Remarks: Records good for low flows through flat V-notch of concrete curb in sand bottom. High flows pertially estimated. Diversions above station.

		Daily d	ischarge,	in seco	nd-feet	, for the	year one	ling Sept	ember 30	, 1954			
Day	: Cot.	g Nove	Dec. :	Jan, s	Feb,	a Maro a	4 DE.º	: May :	June :	July:	Aug. :	Sep. 2	
1	0	0	0°f	1.6	3.7	2.8	3Ų.	4.2	0.8*	0	0	4.2	
2	0.1	Ö	0.4	1.6	3.3	2.6	28	4.2	0.8*	ŏ	Ö	0.1	
2	0.1	Ö	0.6	1.6	3.1	2.3	24	3.1.	0.7×	ŏ	ŏ	0.09	
3 4	0.1	ŏ	1.2	1.6	2.8	2.3	19	2.8	0.6*	0	0	0.09	
		0	1.0	1.6	2.8	2.2	15	2.7	0.6*	٥	0	0.09	
5	0.1	U	1.00	1.0	200	404	10	40/	0.0	U	Ü	0.00	
6	0	0	1.3	1.6	2.8	2.2	15	2.7	0.6*	0	0	0	
7	Oxic	0	1.5	1.6	3.3	2.2	રૂમ્	2.6	0.5*	0.05	0	0	
8	0×	0	1.8	1.6	3.1	2.2	13	2.6	*بأ ء0	0	0	0	
9	0	0	.1.8	1.6	3.1	2,2	1.2	2.5	0.11	0	0	0	
16	Ō	0	1.8	1.6	2.3	2,2	11	2.5	0.5	0.02	0	0	
			- 0					a 1.		_	_	_	
11	0	0*	1.8	1.6	1.7	2.2	11	باء2	0.5	0	0	0	
12	0	0¾	1.8	1.8	1.7	2.2	9∘8	2.2	0.5	0	0	0	
13	0	0	1.7*	1.7	4.6	2.0	8.8	2.2	0.5	0	0	0	
24	0	0.01	1.7*	1.6	101	2.0	8.2	2.2	0.4	0	0	0.03	
15	0	0	1.7*	1.6	36	1.7	7.2	2.2	0.4	0	0	0.03	
16	0	0	1.7*	1.7	18	1.7	6.5	2.3	0.4	0	0	0.04	
17	ŏ	Ŏ	1.6	1.7	14	9.6	6.0	2,1	0.4	ŏ	ŏ	0.05	
18	ő	ŏ	1.6	1.8	11	6.1	5.6	1.8	0.4	Ö	Ŏ	0,04	
19	ŏ	Ŏ	1.6	18	9.0	5.4	5.2	1.6	*440	ő	ŏ	0.02	
20	ŏ	0,02	1.6	42	8.0	11	5.2	1.6	0,3*	Ö	Ö	0.02	
20	U	0.02	100	72	0.0	11	202	1.00	۳ر ۵۰	U	U	U	
21	0	0, 02	1.6	11.	7.5	38	5:0	1.6	0.2*	0	0	0	
22	೦.01	0.03	1.6	7:0	5.6	233	4.8	1.6*	0-1*	0	0	0	
23	006	0.03	2:6	4,9	4 1	131	4:6	1.5*	0∘06*	0	0,01	0	
24	0	0.05	1.6	4.1	3∘9	69	44	1,4*	C*	0	0.03	0	
25	0	0.04	1.6	77	3.7	124	4.6	1.2*	0*	0	0.03	0	
26	0	0.05	1.6	28	3.3	62	4.6	1.1*	0%	0	0.04	0	
20	Ö		1.6	20 14		63 46	4.3	1.0*	0*	ŏ		Ö	
27		0.05			3.3				0*	ŏ	0.03	ŏ	
28	0	0.06	1.6	9.0	2.8	37	4.3	1.0*	-	-	0.03		
29	0	0.1	1.6	6.5		31	4.3	1.0%	Oak	0	0	0	
30 31	0	4،0	1.6 1.6	4.6 4.1		76 45	4.2	0, 9* 0, 8*	0	0	0	0.03	
Total sec.:			N. 0	7.1				0.04				:	Year
ft, days :	0.47	0,86	46.2	260	<u>2</u> 70	960	305	63.6	10.5	0.07	0.17		period
Mean :													
sec. ft. ?	0, 02	0⊹03	2,49	8,39	9.64	310	10.2	2,05	0,35	ci so	0.01	0.16	5.28
Max. :	0.1	0,4	1.8	77	101	233	3l	4.2	0.8	0.05	0.04	4.2	233
Min.													
ees. ft.	0	0	0,4	1,6	1.7	1.7	4.2	8,,0	0	0	0	0	0
Total :	Λ α	1.7	91	515	535	1,900	604	126	21	0.1	0.3	9.5	3,804
	<u> </u>		-/-		-43	-,/						<u> </u>	

^{*} Estimated.

SANTA GERTRUDIS CREEK, NEAR TEMECULA

Location and description: Water-stage recorder, latitude 33°31°20", longitude 117°10°00", in Section 35, T.7S., R.3W., at State Highway 71 bridge, about 2 miles northwest of Temecula, Riverside County. Elevation of gage about 1,040 feet.

Drainage area: 88 square miles.

Records available: December 19, 1952, through April, 1954. Division of Water Resources.

Remarks: Records fair, shifting sand bottom. No regulation or diversions above station.

		Daily	dischar	ge, in s	eo ond	fest, for th	e year	ending	Septemb	er 30,	1953		
Day	: Oct.	: Nov.	: Dec.	: Jan. :	Feb.	: Mar. :	Apr.	: May	: June	: July	: Aug.	: Sep.	:
				•		•							
1				0		0							
2				0		5.5							
3 4				0		0							
				0		0							
5				0		0							
6				0		0							
7				0.4		0							
7 8				0		0							
9				0		0							
9 10				0		0							
11				0		0							
12	•			0		0							
13	•			0		0							
13 14				0		0							
15				0		0							
16				0		0							
17				ō		Ō							
18				Ö		ŏ							
19			0	Ö		ŏ							
20			31	Ö		0							
20			٤ر	Ů		Ü							
21			0	0		0							
22			0	0		0							
23 24			0	0		0							
24			0	0		0							
25			0	0		. 0							
26			0	0		o							
27 28			0	0		0							
28			0	0		0							
29			0	0		0							
30			4.1	0		0							
31			4.4	0		0							
Total sec.	.:												: Year
ft, days				0,4	0	5.5	0	0	0	0	0	0	period
Mean seo. ft.	:			0.0	0	0.18	0	0	0	0	0	0	
Max.	:					0020			<u>~</u> _				
sec. ft.	:			0.4		5.5							
Min.	:		•	0		0							^
Total	:		0	0		0							0
	:			0.8	0	11	0	. 0	0_	0	0	0	
					-			14.7				_	

SANTA GERTRUDIS CREEK, NEAR TEMECULA (continued)

Location and description: Water-stage recorder, latitude 33°31°20", 1 ongitude 117°10°00", in Section 35, T.7S., R.3W., at State Highway 71 bridge, about 2 miles northwest of Temecula, Riverside County. Elevation of gage about 1,040 feet.

Drainage area 88 square miles.

Records available: December 19, 1952, through April, 1954, Division of Water Resources.

Remarks: Records fair, shifting sand bottom. No regulation or diversions above station.

		Daily	dischar	ge, in s	ee ond-	fest, for th	e year	ending	September	30,	1954		
Day :	0ot.	: Novo	: Dec.	: Jan.	Feb.	: Mar. :	Apr.	: May	: June	July	: Aug.	: Sep.	
					•	•		•					
1				0	0	0							
2 3 4				0	0	0							
3				0	0	0							
				0	0	0							
5				0	0	0							
6				0	0	0							
7				0	0	0							
7 8 9 10				0	О	0							
9				0	0	0							
10				0	0	0							
11				0	0	0							
12				0	0	0							
13				0	39	0							
14				0	34	0							
15				0	0	0							
16				0	0	0							
17				ŏ	0	Ŏ							
16				ŏ	ŏ	ŏ							
19				0.7	Ö	Ö							
20				5.2	ŏ	ŏ							
20				902	v								
21				0	0	0							
22				0	0	21							
23				0	0	1.8							
24				0	0	0							
25				25	0	1.6							
26				0	0	0							
27				0	0	0							
28				0	0	0							
29				0		0							
30				0		0							
31				0	_	0							
Total seo .:									· · - ·				; Year
ft. days ;	0	0	0	30.9	73	24 ુ ધ	0						:period
Mean :													
sec. ft. :		0	0	1.00	2,6	1 0,79	0						
Max. :				25	20	21							
Min. :				- 42	39								
sec ft :				0	0	0							0
Total :				<u></u>	-1	1.0							
ec. ft. :	0	00	0	61	145	48	0						

WARM SPRINGS CREEK, NEAR MORRIETA

Location and description: Water-stage recorder, latitude 33°31°50°, lengitude 117°10°30°, in Section 27, T.75., R.3W., at State Highway bridge, about 2 miles southeast of Murrieta, Riverside County. Elevation of gage about 1,040 feet.

Drainage area: 58 square miles.

Records available: December 19, 1952, through May, 1954, Division of Water Resources.

Remarks: Records fair, shifting sand bettem. No regulation or diversions above station.

1	Day	· 0=+					et, for the	manus The Committee AV					. 5.5	
2	Day	. 000.	. 1404.	. D000 :	ocus s	1000	· PALY ·	ADF o	rey :	auna :	ours.	: AUE	ႏ ၁၈၉.	A PART - NUMBER
2	1				1.0	0.1	0.4	0.2	0.1*	0,05*			•	
3					0.2		2.7		.1*					
5														
5	Ĺ													
7														
7	6				0.2	. l	0.2	.2	.1*	°05*				
9	7													
9	8													
10	9													
12 13 14 10 15 16 17 18 18 18 19 19 10 11 11 11 11 11 11 11 11 11 11 11 11	1Ó													
12 13 14 10 15 16 17 18 18 18 19 19 10 11 11 11 11 11 11 11 11 11 11 11 11	11				0.1	ı,	0,2	.2	.1*	.04*				
13 14 0.1 .1 0.2 .2* .09* .09* 15 0.1 .1 0.3 .2* .09* .09* 16 0.1 .1 0.3 .2* .09* .03* 16 0.1 .1 0.3 .2* .09* .03* 17 0.1 .1 0.3 .2* .09* .03* 18 0.1 .1 0.3 .2* .09* .03* 18 0.1 .1 0.3 .2* .08* .02* 19 0.2* 0.1 .1 0.3 .2* .08* .02* 20 36 0.1 .1 0.4 .2* .08* .02* 21 12 0.1 .1 0.3 .2* .08* .02* 22 1.2 0.1 .1 0.4 .2* .08* .02* 23 0.6 0.1 .1 0.4 .2* .08* .02* 24 0.4 0.1 .2 0.4 .1 0.4 .1* .07* .02* 25 0.3 0.1 .2 0.4 .1* .07* .02* 25 0.3 0.1 .2 0.4 .1* .07* .01* 26 0.3 0.1 .2 0.4 .1* .07* .01* 27 0.3 0.1 .2 0.4 .1* .07* .01* 28 0.4 0.1 0.2 0.3 .1* .06* .01* 29 0.4 0.1 0.2 0.3 .1* .06* .01* 30 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0.7 0.1 0.2 0.3 .1* .06* .01* 31 0.7 0.1 0.2 0.1 .8 .06* .01* 31 0.7 0.1 0.2 0.1 .8 .06* .01* 31 0.7 0.1 0.2 0.1 .8 .06* .01* 31 0.7 0.1 0.2 0.1 .8 .06* .00* 31 0.7 0.1 0.2 0.1 .8 .06* .00* 31 0.7 0.1 0.2 0.1 .8 .06* .00* 31 0.7 0.1 0.2 0.3 0.1 .06* .00* 31 0.7 0.1 0.2 0.3 0.1 0.2 0.3 0.8 .00* 31 0.7 0.1 0.2 0.1 0.2 0.3 0.8 .00* 32 0.8 0.1 0.1 0.2 0.3 0.1 0.8 .06* .00* 34 0.1 0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0														
14								,2*						
15	14			,				.2*						
17 18 0.1 .1 0.3 .2* .09* .09* 19 0.2* 0.1 .1 0.3 .2* .08* .02* 20 36 0.1 .1 0.4 .2* .08* .02* 21 12 0.1 .1 0.4 .2* .08* .02* 22 1.2 0.1 .1 0.4 .2* .08* .02* 23 0.6 0.1 .1 0.4 .1* .07* .02* 24 0.4 0.1 .3 0.4 .1* .07* .02* 25 0.3 0.1 .2 0.4 .1* .07* .02* 25 0.3 0.1 .2 0.4 .1* .07* .02* 26 0.3 0.1 .2 0.4 .1* .07* .01* 26 0.3 0.1 .2 0.4 .1* .07* .01* 27 0.3 0.1 .2 0.3 .1* .07* .01* 28 0.4 0.1 0.2 0.3 .1* .06* .01* 29 0.4 0.1 0.2 0.3 .1* .06* .01* 30 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0.4 0.1 0.2 0.1 .00* 31 0.4 0.1 0.2 0.1 .00* 31 0.5 0.4 0.1 0.2 0.1 0.2 0.06* 31 0.6 7 0.1 0.2 0.1 0.2 0.06* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.4 0.1 0.2 0.1 0.00* 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								.2*						
17 18 0.1 .1 0.3 .2* .09* .09* 19 0.2* 0.1 .1 0.3 .2* .08* .02* 20 36 0.1 .1 0.3 .2* .08* .02* 21 12 0.1 .1 0.3 .2* .08* .02* 22 1.2 0.1 .1 0.4 .2* .08* .02* 23 0.6 0.1 .1 0.4 .1* .07* .02* 24 0.4 0.1 .3 0.4 .1* .07* .02* 25 0 0.3 0.1 .2 0.4 .1* .07* .02* 25 0 0.3 0.1 .2 0.4 .1* .07* .01* 26 0 0.3 0.1 .2 0.4 .1* .07* .01* 27 0 0.3 0.1 .2 0.4 .1* .07* .01* 28 0 0.4 0.1 0.2 0.3 .1* .06* .01* 29 0 0.4 0.1 0.2 0.3 .1* .06* .01* 30 0 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0 0.4 0.1 0.2 0.3 .1* .06* .01* 31 0 0.4 0.1 0.2 0.1* .06* .00* 11 0.2 0.1* .06* .00* 12 0.0 0.1* .06* .00* 13 0.1 0.2 0.1 0.2 0.1* .06* .00* 14 0.1 0.2 0.1 0.2 0.6* .00* 15 0.1 0.2 0.1 0.06* .00* 16 0.7 0.1 0.2 0.3 0.1* .06* .00* 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	16				0.1	. 1	0,4	.2*	.09*	a03*				
18					0.1									
19	18													
20				0.2*				.2*						
22	20													
22	21			12	0.1	. 1	0.4	.2*	*80ء	. U24				
23	22						Osly							
24	23			0.6										
25	24			0.4		.2	0.U	.1*		.02*				
27	25					.2								
27	26			0.3	0.1	.2	0.3	.).*	。07*	.01*				
28	27				0.1	.2				,01*				
29	28													
30														
31 6.7 0.1 0.2 0.06* otal sec.: ft. days: 4.7 3.5 11.8 5.1 2.63 0.89 0 0 Mean : leo. ft.: 0.15 0.12 0.38 0.17 0.08 0.03 0 0 Max. : lec. ft.: 1.0 0.3 2.7 0.2 0.1 0.05	3Ó													
otal sec.: ft. days: 4.7 3.5 11.8 5.1 2.63 0.89 0 0 Mean : sec. ft.: 0.15 0.12 0.38 0.17 0.08 0.03 0 0 Max. : sec. ft.: 1.0 0.3 2.7 0.2 0.1 0.05				6.7										
ft. days: 4.7 3.5 11.8 5.1 2.63 0.89 0 0 Mean: 0.15 0.12 0.38 0.17 0.08 0.03 0 0 Max.: 1.0 0.3 2.7 0.2 0.1 0.05 Min.: 1.0 0.3 2.7 0.2 0.1 0.05		C . :				Mark and Control Spinor Michigan		CONTRACTOR & COMMO	CONTRACTOR OF COMM					: Year
Max. : 0.15 0.12 0.38 0.17 0.08 0.03 0 0 Max. : 1.0 0.3 2.7 0.2 0.1 0.05 Min. : 1.0 0.3 2.7 0.2 0.1 0.05	ft. day	s:			4:7	3.5	11.8	5.1	2.63	0.89	0	0	0	:period
Max. : sec. ft. : 1.0 0.3 2.7 0.2 0.1 0.05 Min. :					0,15	0.12	0,38	0.17	0.08	0.03	0	0	0	
Min. :	Max.	:												
					1.0	0.3	2./	0.2	0.1	0.05		•		
	sec. ft.	. :			0.1	0.1	0.2	0.1	0.06	0.01				0
Total : ac. ft. : 9.3 6.9 23 10 5.2 1.8 0 0					9, વ	6.9	23	10	5.2	7.8	0	0	0	

^{*} Estimated.

WARM SPRINGS CREEK, NEAR MURRIETA

Location and description: Water-stage recorder, latitude 33°31°50", longitude 117°10'30", in Section 27, T.75., R.3W., at State Highway bridge, about 2 miles southeast of Murrieta, Riverside County. Elevation of gage about 1,040 feet.

Drainage area: 58 square miles.

Records available: December 19, 1952, through May, 1954, Division of Water Resources.

Remarks: Records fair, shifting sand bottom. No regulation or diversions above station.

Daily discharge in second-feet, for the year ending September 30, 1954

		_		Ro TII De			A 2007. 0114			200		4 800	
Day	: Cot.	Nov.	: Dec.	: Jan.	: Feb.	: Mero	Apro	: May	June	s July	: Aug.	: Sep.	<u> </u>
1	0.01	0.01	0	0.01	0.2	0.07	0.4	0.04					
2	.01	.01	Ö	0.01	0.2	0.06	٠,3	.04					
2	.01	.01	ŏ	0.01	0.2	0.06	وَّه	ە03					
3 4	.01	.01	0	0.01	0.2	0.06	.2	.03					
		.01	0	0.01	0.2	0.06	.1	.03					
5	.01	.01	U	0.01	0.2	0,00	0 45	رده					
6	.01	0	0	0.01	0.2	0.06	و0،	03ء					
	.01	0	С	0.01	0.2	0.06	609	。02					
7 8	.01	0	0	0.01	0.2	0.0 6	.09	۰02					
9	.01	0	0	0.01	0.2	0.06	۰09	。02					
10	.01	0	0.01	0.01	0.2	o. o 6	و٥.	。C2					
	0.7	0	(37)	0.03	0.2	0.06	و0.	。02					
11	.01	0	.01	0.01		0.06	و٥٥	.02					
12	.01	0	.01	0.01	0∘2 Կկ∗	0.06	۵09 09	.01					
13	.03.	0	.01	0.01	70*		800	.01					
14	.01	0	.01	0.01	,	0.06							
15	.01	0	.01	0.01	5.8*	0.06	-08	.01					
16	.01	0	.01	0.01	1.4*	0.2	.03	.Ol					
17	.01	Ō	.01	0.01	8.0	0.2	80ء	.01					
18	.01	0	.01	0.01	0.4	0.07	۰07	٥01					
19	.01	ō	oOl	0.8	0.3	0.07	.07	01ء					
20	.01	Ö.	.01	38	0.2	0.2	.07	.01					
		Ψ.		,,,			•						
21	。01	0	.01	2.7	0.2	0.8	.06	。01					·
22	.ca	0	.01	0.4	0.1	38	。06	.01					
23	.01	0	.01	0.3	0.1	18	۰۵6	.01					
24	.01	О	.01	0.3	0.1	8.2	606	.01					
25	.02	0	.01	dala	0.09	9.0	۰05	.01					
		_			0								
26	.01	0	.01	3.4	0.08	2.0	۰05	.01					
27	.01	0	.02	1.4*	0.08	1.2	۰05	.01					
28	.01	0	.01	0.8	0.07	0.9	a05	.01					
29	.01	0	.01	0.6		0.5	۰04	01،					
30	.01	0	.01	0.5		4.6	0.04	.Ol		,			
31	0.01		೧.೧೩	0 c 2	A STATE OF THE PARTY	0.9		0.01					
Total sa					_								: Year
ft. day	3 : 0.31	0.05	0.22	93.6	126.	85.8	3.07	0,51			·- ·- ·		:period
Mean	6				l	0.57		0.00					
	.: 0.01		***	3.02	4,50	2.77	0.10	0.02					
sec. ft	: : 0.01	0.01	0 01	1121	70	38	0.4	0.04					
Min.	: 2072	-001											
sec. ft	.: 0.01	0	0	0.01	0.97	0,06	0.04	0.01	-				0
Total		0.3	0.34	180	249	170	6.1	1.0					
ac, ft.	3 U ₀ b	0.1	0,4	105	477	1/0	Do.A.	7.00	-				

^{*} Estimated.

TABLE E-2

TEMECULA CREEK, ABOVE AGUANGA VALLEY

Location and description: Water-stage recorder and six-inch Parshall flume, in Section 35, T.8S., R.1E., about one mile southeast of Aguanga, Riverside County. Elevation of gage about 2,080 feet.

Records available: May 19 through November 23, 1953, Division of Water Resources.

Remarks: Records good. No diversions immediately above recorder.

Daily discharge, in second-feet for the period May 19 through November 23, 1953

	for	the per	led May 1	9 through	Novemper	23 ₀ 1953		
Day	:	Me.y	Juna	duly:	Aug.	: Sept.:	Oct. :	Novo
1			0.8	0.5	0.6	0.5	0.5	0.5
1 2 3 4			8	۰5	.6	•5		•5*
3			•7		.6	٠5	•5 •5 •5 •4	*
Ú			، 7	:5	. 5	. 5		*
5			.8	÷5	۰5 ۰5	۰5 ۰4	٠,٦	. *
,			•0	۰,7	• 7	•7	• •	
6 7 8			•8	۰5	۰5	4،	.4	*
7			•7	۰5	۰5	.4	.4	*
8			•8	۰5	۰5	.4	.4	
9			•8	•5	۰5	٠4	.4	*
10			₽ 7	۰5	•5	.4	.4	*
11			.7	•7	۰5	.4	•5 .	*
12			•7 •7	.8	.5	.4	.5	*
13			•7	.6	•5 •4	.4	~~*	*
14			°/	•5	ំង	.4	E	*
15			•7 •7	• 2	.4	°4	•5 •5	
49			•/	۰5	• 7	• •	• 7	+- T
16			*	۰5	.4	.4	۰5	*
17			.7 .8	۰5	.4	۰5	۰5	*
18			.8	۰5	3،	۰5	*	6ه
19		0.7	۰7	۰5	٠3	۰5	×	ه.
20		•7	۰7	۰5	۰3	۰5	**	ه.
21		۰7	ه.6	۰5	ہار	۰5	*	۰6
22		۰7	ه.6	۰5	.4	۰5	*	.6
23		،'ُر 7	۰5	ر 5	٠3	۰5	*	0.6
24		۰7	۰5	۰5	ق	°,	*	0.0
25		•7	°5	•5 •5	ر 4،	. 5 . 4	*	
29		• /	۰ ٦	۰,	۰٦	۰۳	-2.4	
26		۰7	• 5 • 6	۰5	٠4	۰5	 *	
27		.8	۰6	۰5	۰,4	ۇ.	-a*	
28		. 8	۰6	۰5	٠4	۰6	6ء	
29		.8	۰5	۰5	۰5	۰5	۰6	
30		۰7	0.5	۰6	پ 5	0.5	۰6	
31		0.7		0.6	0.5		0.6	
Total sec.	9							
ft. days	8	46	au	16.4	13.7	13.9	***	~~
Mean	*				a 1.1:			
seo. ft.		20 20	er en	0.53	0.44	0.46	e.;	+ w
Max.	0							
sec. ft.	:		عد سند مساسم	0.7	0.6	0.6	# 45 	613
Min.	9							
seo. ft.	:	,= (3		0.5	0.3	0.4	444	
Total	0					- 0		
ac. ft.	\$			32	27	28	E 0	# ** **********************************

^{*} No record.

TEMECULA CREEK, BELOW AGUANGA VALLEY

Location and description: Water-stage recorder and 18-inch rectangular contracted weir, in Section 29, T.85., R.1E., about two miles west of Aguanga, Riverside County. Elevation of gage about 1,760 feet.

Resources. July 2 through September, 1954, Division of Water Resources.

Remarks: Records good. Intermittent diversion above weir at 85/1E-290 (Barton). No diversion at 85/1E-29R (Trunnell) during this period.

Daily discharge, in second-feet, for the period July 2 through September, 1954

0.8 0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.9 0.8 0.9	: Aug. 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	: Sept. *** 0.9 0.9 0.9 1.0 1.0 1.0
0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.9 0.9 1.0 0.9	0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.9 0.9 1.0 0.9	0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.9 0.8 0.8 0.8 0.8 0.9 0.9 1.0 0.9	0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.9 0.8 0.8 0.8 0.8 0.9 0.9 1.0 0.9	0.9 0.9 0.9 0.8 0.9 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.9 0.8 0.8 0.8 0.9 0.9 1.0 0.9 0.9	0.9 0.9 0.8 0.9 0.9 0.8 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.8 0.8 0.9 0.8 0.9 1.0 0.9	0.9 0.8 0.9 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.8 0.9 0.8 0.9 1.0 0.9 0.9	0.9 0.8 0.9 0.9 0.8 0.8 0.9 0.9	0.9 0.9 0.9 1.0 1.0 0.9 1.0
0.8 0.9 0.8 0.9 1.0 0.9 0.9	0.8 0.9 0.9 0.8 0.8 0.8 0.9 0.9	0.9 0.9 1.0 1.0 0.9 1.0
0.9 0.8 0.9 1.0 1.0 0.9 0.9	0.9 0.8 0.8 0.9 0.9	0.9 0.9 1.0 1.0 0.9 1.0
0.9 0.8 0.9 1.0 1.0 0.9 0.9	0.9 0.8 0.8 0.9 0.9	0.9 1.0 1.0 0.9 1.0
0.9 1.0 1.0 0.9 0.9 0.8 1.0	0.8 0.8 0.9 0.9 0.9	1.0 1.0 0.9 1.0
1.0 0.9 0.9 0.8 1.0	0.8 0.9 0.9 0.9	1.0 1.0 0.9 1.0
1.0 0.9 0.9 0.8 1.0	0.9 0.9 0.9 0.9	0.9 1.0
1.0 0.9 0.8 1.0	0.9 0.9 0.9 0.9	0.9 1.0
0.9 0.8 1.0	0.9 0.9 0.9	1.0
0.8 1.0 1.0	0.9	
1.0 1.0		1.0
1.0	0.8	200
1.0		1.0
	0.8	1.0
8.0	0.8	1.0
0.9	0.9	1.0
1.0	0.9	0.9
1.0	0.9	1.0
1.1	0.9	1.0
1.0	0.9	0.9
0.9	0.9	1.0
0.9	0.9	0.9
0.8	0.8	0.9
0.8	0.9	0.9
0.7	0.8	0.9
0,8	09	
. 0.00	27.2	40.39
:		
	ō88	
:		
OR HER THAT HE STONE OF THE STO	1.0	
	0.8	
	54	33
	1.0 0.9 0.9 0.8 0.8 0.7 0.8 :	1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.9 0.7 0.8 0.8 0.9 : 27.2 : 1.0 0.88

^{*} No record.

In Second-Feet

Hydrographic Unit No. 1

E 60 1 + U		Murrieta	Creek			Sa	nta Gertrudis Creek ^a :	Tucalota Creek	: Warm Springs Creekb	**	nyon Creek
Stream mile	30,1- : 0,4	30.1- : 30.1- 6.4 : 7.4	30.1- 7.4	•• ••	30.1- 8.5	,	30.1-3.9- 0.6	30.1-3.9- 2.6-10.7	: 30.1-4.8- : 0.5		30.1-9.0- 0.1
Date											
5-8-14	1.2										
12- 1-15	1.1										
2-13-17	2.1										
3-17-17	3.5										
3-27-17	1.7										
10-28-17	8 .0										
12-29-17	1.5										
5-14-18	(1555)										
8-24-18	(1705)										
9- 1-18	(1040)										
9- 8-18	(1030)										
9- 2-19	(0%)										
12- 2-52		(1330)					(1030)		(0945) 35	Ü	(1300)
12- 2-52		>							(1130) 16		
12- 4-52							(0860)		(1540) 0.2		
12- 5-52							(1030) 0.05d		(1130)	5	(1300)
12- 5-52									`		
12-16-52									(1400)		
12-20-52					(1405) 1d				>		

In Second-Feet

Hydrographic Unit No. 1 (continued)

Stream	Murriet	Murrieta Creek		Santa Gertrudis Creeka : Tucalota Creek	Tucalota Creek	: Warm Springs Creek ^b	: Cole Canyon Creek ^o
Stream mile	30 .1- : 30 .1- 0.4 : 6.4	30.1- : 30.1- : 6.4 : 7.4 :	30 .1- : 8.5 :	30 .1- 3.9- 0.6	: 30.1-3.9- : 2.6-10.7	: 30,1-4,8- : 0,5	30.1-9.0- 0.1
Date							
12-30-52			(2035)				
12-31-52			(0020)				
1- 7-53			(0602)				
1- 8-53	(01/11)	(1715)	(1545)				
1-15-53	D	5 . 0	(1300)				
12-21-53			o		(1400)		
1-25-54	(1340)				T 0.0		
2-13-54	1.7				0		

Note: Time of observation in parenthesis.

a. See daily discharge record for period December 19, 1952-April, 1954.

b. See daily discharge record for period December 19, 1952-May, 1954.

c. See daily discharge record for period December 26, 1952-May 17, 1954.

d. Estimated.

In Second-Feet

Hydrographic Unit No. 2

4	-9714 :-	41.6- : 41.6- :		41.6-] 	41.6-7.2-	: 41.6-7.2- : 41	: 41.6-7.2-	: 41.6-7.2-
Stream mile	: 0,1	: 3.6ª	; 5°5° ;	7.5	- 1	1.86	- 1	- 1	6.3
Date 11.97.113	(1610)	(1000)					 		
(1)	2.2	2.4	3.3						
5-28-43	2.2								
7-23-43		(1025)	(1210)						
7-30-43	(1155)	÷	+ * 7						
8-26-43	(1315)	(1030)	(1135)						
9-13-44	۲°0	(1345)	2°1 (1435)						
5-18-45		1.2	1.5						
5-10-46		1.2	6°0						
94-91-8		0.8	0.7						
4-18-47		(1130)	(1255)						
2- 6-47		(3040)	0°7 (1140)						
4-28-48		0.6 (1145)	0°5 (1210)						
84-06-9		(1300)	0.3 (1350)						
9- 3-48		0.5 (1310)	0.2 (1350)						
64-4 -5		(1035)	0.2 (1120)						
6-15-49		(1030) (1030)	(1120)						
11-21-50		† •	(1625)						
1-31-51			٥,	(1550)	0)	(1645)		(1740)	
2- 1-51				•	,			5	(1125)
9-23-52				0		(1045)		(1340)	6
7-31-53						(3330)		0.2	

In Second-Feet

Hydrographio Unit No. 2
(continued)

Stream	04	Lano	moaster Greek	Cree	K	04	Coa	Coahuila Creek	**			Wilson Creek	Ċ	ek	l	
Stream mile	: 41-6- : 0.1		41.6- 3.6a	1.6- 3.68	41.6 5 5.5			41.6- 7.5		41.6-7.2- 1.8	[41.6-7.2- 2.5		41.6-7.2- 4.5d		41.6-7.2-
Date														(ł	
12-18-53										(1410)				(1440)		
12-23-53										0.2				0°5		(1300)
5-14-54										(0060)		(1015)		(1220)		0.03
										0.2		0,05		60.0		

Note: Time of observation in parenthesis.

Upstream from diversion 85/1E-7R (Ranoho Ramona). Upstream from diversion 85/1E-9d (Stardust Ranoh). Upstream from diversion 75/1E-35E (Kerr). Upstream from diversion 75/1E-24G (Shipley). Rained two days prior to measurement.

ရှင် ဝိုင် စ

Hydrographic Unit No. 3

Stream	Temecula Creek	: Arrovo Seco Greek	: Smith : Chihuahua : Cooper :Rattlesnake : Creek : Creek : Creek
Stream mile : 42.2	; 45.5ª ; 46.5³ ; 49	: 41.1- : 41.1- : 41.1- : 0.1 : 1.4 : 2.7	47.4- : 55.1- : 55.1- :55.1-6.0-: 0.1 : 4.0 : 5.9 : 0.1 :
Date 4-27-43		(1630) 2.8	
5-18-43	(1250) (1430) 2°.3 (1250) (1430) 2°.3	000	
7-30-43		(1245) 0.2	
8-26-43		(1330) 0,07	
8-27-43	(1035) h.2		
10- 7-43	(0:(t) 0 T		
8- 9-44	(1330)		
5-18-45	(1315) (1315)		
11-29-45	(0501)		
5-10 ⁻¹ 6	(1225)		
8-16-46	(1335)		
4-18-47	(10ht)		
6-18-47	(1240)		
7-30-47	(1305)		
4-28-48	†	0.2	
5-28-48	(1350)		
84-06-9		0.08	
8- 4-48	(1430)	1.5	
9- 3-48	7.0 (1540) 0.4	(1055)	
11- 4-48		₹ 0. 0	
6h-4 -3	(1305) 2.1		
6-15-49	(1240) 0.6		E-

In Second-Feet

Hydrographic Unit No. 3 (continued)

thue : Cooper :Rattlesnake ok : Clonega : Creek 55.1-:55.1-6.0-: 57.3- 5.9 : 0.1 : 0.1			(1000) (0930) 0.05 0.02					(0950) 0.6 (1200)
: Smith : Chihuahue : Arroyo Seco Greek : Greek : Greek : 41.1- : 41.1- : 41.1- : 47.4- : 55.1- : 55.1- : 0.1 : 1.4 : 2.7 : 0.1 : 4.0 : 5.9		(1730)	0,02 (1050) 0,03				800 *0	
Temecula Creek 147,5° : 48.1° : 55.2° : 55.5° : 57.1° :	(1500)		(5tht)	0.9 0.9				(1155) (1050) 1.7 ^h 1.0
; 45.5ª ; 46.5 ^b ;	(1130) 0.6	(1220) 0.2 0) (1330)			(1240) 2.68 (1640) 1.1 (1350)			
: : : : : :	(1430) 1.1	(1720) 0•9		(1400) 1.2 (1050) 1.0			(1200) 0.4 (1130)	
Streem mile	Date 11-9-50 11-16-50 11-17-50	11-22-50 12-26-50 1-10-51	1-11-51	3-21-51 4-17-51	4-26-51 5-8-51 5-28-51	7- 3-51 9- 4-51	11-15-51	4- 8-52 ⁸ 9-17-52

MISCELLANEOUS NEASUREMENTS OF STREAM DISCHARGE

In Second-Feet

Hydrographic Unit No. 3 (continued)

Stream	: Temeoula Creek	* Arroyo Seco Creek	ek	: Smith : Chihuahua : Cooper :Rattlesnake	Rattlesnake
Stream mile	Stream milo: 42.2: 45.5a : 46.5b : 47.5c : 48.1 : 55.2e : 55.5e : 57.1	1 1 1	41.1	* 47.4- * 55.1- * 55.1- *55.1-6.0- *	57°3- 0 1
Date 12-17-52			(1200)		
12-30-52			(1430)		
1-23-53			(1515)		
3-20-53			3 π0	(1415)	
8-26-53				%. œ	0
12-17-53				(1525)	
12-22-53	80 0	(1030)	(0.01	
2-14-54		0.3	503		
5=13~54					0,11

Miscellaneous measurements of stream discharge, at Temecula Greek Near Oakgrove Valley gaging station, stream mile $5\mu,0$, not included in mean daily discharge records

In Second-Feet

Discharge Date Time Discharge	0.08 10= 1=51 1615	0,04 10~8~51 1700	0.1 10-15-51 1730	0.03 10-22-51 1,500	0,06 10=29-51 1545	0.08 11- 5-51 1630	0.06 11-15-51 0045	0.2 0.11
Date Time								•
9.1	6 0							
Time	1230	0850	1405	1430	1/130	*	1600	0845
Date	1-26-51	1-31-51	3-7-51	3-21-51	4-5-51	5-7-51	7- 9-51	7-24-51

Hydrographic Unit No. 3 (continued)

Temecula Greek Below Aguanga Valley gaging station, stream mile $48_{\circ}1_{\circ}$ not included in mean daily discharge record Miscellaneous measurements of stream disoharge, at

٠
Ð
e
ĒΨ
•
T
c
0
O
Ø
S
_
-

96																								
Discharg	1,3	1.5	1.3	1.1	1,1	1,2	1.3	1.2	1.2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,3	1,3	1.3	1,2	1,5	ויין	6.0	1,0
Time	1545	1200	1400	1230	1230	1120	1100	1025	1030	1335	1130	1100	1330	1000	1025	1420	1225	1505	1535	1240	1000	1445	1500	0915
Date	4- 1-53	4-28-53	5-19-53	6- 9-53	6-30-53	7-14-53	9- 1-53	9~18~53	9-29-53	10-13-53	10-30-53	11-13-53	11-24-53	12- 8-53	12-22-53	1-6-3-	1-22-54	去-1-2	2-19-54	3~ 8-54	4- 2-54	5- 6-54	6-15-54	7- 1-54
Discharge	1.0	1,1	6.0	1,1	0°8	1,0	0°6	1.1	6°0	1,2	8,0	1,3	1,2	1,2	1,2	1,2	2,3	1.5	1.6	1.5	1,5	1,5	1.5	1,6
Time	1250	1115	1455	1100	145	1320	145	1000	1150	1130	1510	1405	1205	1000	1110	1415	1145	1330	1205	1415	1520	1140	1225	1515
Date	8-19-52	8~20~52	8~22-52	8-25-52	8-26-52	8-27-52	9- 2-52	9- 5-55	9-10-52	9-12-52	9-17-52	9~19-52	9-22-52	10- 3-52	10-14-52	10=17=52	11- 3-52	12- 9-52	12-26-52	1-23-53	2- 3-53	2-19-53	3= 5-53	3-19-53
Discharge	1.8	1.5	1,4	1.4	1,3	ት ^የ ተ	J.,6). L	1.3	9.0	1.0	1:1	1,1	1,0	1,0	0.7	1,1	1.1	9°0	6,0	950	0,8	و د و	©
Time	1500	1100	1130	1515	1125	1545	1245	1800	1410	1455	1130	1420	1345	1345	14.5	1405	7.200	1630	1330	1500	1520	14140	1100	1445
Date	1- 2-52	1-15-52	1-29-52	2= 4≈52	2-19-52	3= 4-52	3-25-52	4- 8-52	4~ 22- 52	5-13-52	5-27-52	6-10-52	6-24-52	7= 8=52	7-23 52	7-25-52	7-29-52	7-30-52	8- 7-52	8-11-52	8-12-52	8-14-52	8-15-52	8-18-52
Discharge	1.5	1.7	1.5	1.7	1.7	1.7	1.8	1,3	6.0	1,5	1.0	1,1	1.0	1,0	1,1	1.2		# -	† -i	ָרְ בּי קיי	r L Ä −	ر. د -	ţ = -i -	† 1
Time	1500	1520	1530	1115	1045	1340	1500	1655	1410	ų.	1400	1130	1000	1240	1230	1400	1500	7,00	55.5		1000	717	שנונ	6117
Date	9- 3-48	11- 4-48	11=22-50	12-26-50	3-21=51	4- 5-51	4-26-51	5= 8 51	5-28-51	7-3-51	7~31=51	8-13-51	8-20-51	8-27-51	9~11-51	9-24 51	10-8-51	16-22-01	10-23-01	12-70-11	ולי /ז-זו	12-11-21	12-10-51	16-17-27

Note: Time of observation in parenthesis.

a. Upstream from diversion 8S/1E-1941 (Sunny Brook Ranch).

b. Downstream from diversion 8S/1E-29L (Gibbon-Cottle).

c. Upstream from diversion 8S/1E-29L (Gibbon-Cottle).

Downstream from diversion 8S/1E-29Q (Barton). See separate tabulation. Downstream from diversion 9S/2E-1)F (Oviatt-Brinkerhoff).

Downstream from diversion 9S/2E-21L (Oviatt-Cummings).

After rain.

Not diverting upstream. . To to to

Estimated

In Second-Feet

Hydrographic Unit No. 4

Stream mile		
	30.2 : 31.1 ^a : 31.8 : 32.2 : 32.3 : 34.2	35.7 ; 35.0 ; 35.6 ; 35.7 ; 41.0 ; 6.4
Date		
4=11-1964		7
9-1898		2
11-14-05ª	5.8	2.5
12-30-05ª	9*ग	
1-12-06 [®]	η**η	
2~10-06ª	ተ"ተ	
3- 5-06ª	0.9	
3-18-06ª	17	
4-13-06ª	12	
5-15-06ª	й * 9	
6-26-06 ^a	2.6	
8-5-06ª	0.8	
10-10-06 ⁸	3.9	
11-12-06 ^a	7.6	
12- 4-06ª	7.2	
7-12-08	2.6	
4-3,4-10	13	13
7-25,26-10	5.3	2.0
11-1,2-10	5.9	1.7
2-1,2-11	91	1,1

In Second-Fest

Hydrographic Unit No. 4

Trea.In			ו בוונינות לו הייני מו בפני	ge oreek
Stream mile	30,2	31,1b 31.	31.8 : 32.2 : 32.3 : 34.2 : 34.7 : 35.0 : 35.6 : 35.7 : 41.0 : 6.4	31-0- 6.4
Date 9-19-11		2	1,2	
3-10-14		10		
5~ 8-14		9.1		
7-11-15			ታ * 2	
11-22-16			14	
2-13-17	1 t			
3- 7-17	56			
3-27-17	15			
10-27-17		1.1		
10-28-17	13		(مُركُارُ) بـ بـ د	
12-28-17			(0011)	
12-29-17	(1530)		2-2	
5-11-18	વે		(1625)	
5-14-18	(1545)		(1635)	
8-24-18	£	(1035)		
8-24-18		(1640)	(1610)	
9- 1-18		(0460)	(5480)	
9-8-18		(1000)	3.12	
9- 9-18		7•2	(1030)	
8-23-19		(0900) 4.1	(0700) 2.8d	

MISCELLANEOUS MEASUREMENTS OF STREAM DISCHARGE

In Second-Feet

Hydrographio Unit No. 4 (continued)

(1700) (1	Stream :			Temecula Creek	Pechanga :	Creak
(1700) (0930) (0900) (0900) 18 10 10 10 10 10 11 11 11 11 11	am mile	30.2 : 3:	1,1 ^b :	: 32.2 : 32.3 : 34.2 : 34.7 : 35.0	35.6 : 35.7 : 41.0 :	o =
(0930) (0	Date -23-19	٥	1700)			
18 10 10 1469 184 194 194 195 195 195 195 195 195 195 195			3.0	(0080)		
28 10 469 384 384 (16) (17) (18) (18) (19) (19) (19)			3.2r	2.64		
18 10 16 18 18 19 19 19 19 19 19 19 19 19 19					5.8	
10 1469 384 384 384 4.9 11.9 12.0 13.0 14.0 15.0 16.0	- 6-20		18		25	
βθη βθη (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	-19-20		10			
1984 1.7 (1) (2) (3) (4) (4) (4) (5) (6) (7) (8) (8) (8) (9) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	-22-20	~	694			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-23-20		384			
1.7 γ.1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-29-20				88	
	-12-20		6.4	1.7	3.4	
	-27-43				(05)	
	-18-43				14,615)	
	-27-43				(0501)	
	₩-6 -				2.5	
	-18-45				2.8	
	-10-46				1.7	
	-16 - 46				8.0	
	-18-47				(3051)	
	-18-47				2.8 (1945)	
	-30-47				1.9 (1350)	
	-28-48				1.55 (1055) 3.3	

In Second-Feet

Hydrographic Unit No. (continued)

Stream :			Tem	Temecula Creek			••	Pechanga Creek
Stream mile : 30.2	; 31.1 ^b	31.8	32.2 : 32.3 :	34.2 :	34.7 : 35.0	35.6	35.7 : 41.0	31.0- 6.4
e 42								
8+-+-18							(1030)	
9- 3-48							(0111)	
1-24-51							(1145)	(1350)
1-24-51							† *0	0,002° (1350),
12- 2-52 (1050)	<u> </u>							0.009 ⁿ
3± 12- 5-52							(1050)	
12-17-52							(1200)	
12-22-52							31 (1200) 11	
12-30-52							(1425)	
1-23-53	(1530)						(1520)	
3-11-53 (1110)							60.0	
3-12-53	(1400)							
12-18-53	•					(1540)		
4-19-54 (1210)		(1600)	(1625)		(1145)	(1210)		
5-24-54	(1510)	(1345) 1,6	0.7 (1315) 1.2	(1200)	0.5 (1100) 0.4	(1030)		

Note: Time of observation in parenthesis.

a. Measurements from W.S.P. 300, which includes 20 discharge measurements and eight months of daily gage height readings for period November, 1905 through December 31, 1906.

b. Downstream from Highway Bridge Pumping Plant. Plant.in operation for period 1912 through April, 1930.

o. Bridge Pumping Plant diverting 3.1 cfs.

Total flow diverted.

Bridge Pumping Plant diverting 3.7 cfs.

Not diverting at Bridge Pumping Plant. 450 feet upstream from Collier Spring. 300 feet upstream from Collier Spring. Estimated. . 9 E -

In Second-Feet

Hydrographic Unit No. 5

Stream mile : 12.2- . 4.8 Date									とかいしつ けてつごせつ	
Date	: 12.2- : 6.5	12.2- 7.6	: 12.2-6.6- : 12.2-6.6- : 12.2-6.6- : 12.2-6.6- : : 0.2 : 2.0 : 2.5 : 4.0 :	: 12.2-6.6- : 12.2-6.6- : 2.0 : 2.5	12.2-6.6- : 1 2.5 :	2.2-6.6- : 4.0 :	River 20.5	: 20°.7-	: 20.7-	\$ 20.7- : 6.0
9- 1-18							(1325)			
9-8-18							8.4 (1330)			
6-19-53							7.1	(0480)	(0915)	
7- 8-53								0.07	0.05	
9-25=53	0.2		(1540)					0	0	
12-17-53			T •0					(6032)		
12-22-53 (1500)			0.2*	0	0.02*	0		0		0.01*
4-27-54	0.8*	0	*1.0							

Miscellaneous measurements of stream discharge of Santa Margarita River near Temeoula.

Mean daily discharge records are available in U.S.G.S. publications since 1923.

Prior to October 1, 1952, U.S.G.S. referred to this station as Temecula Creek at Railread Canyon

				In Second-Fest	d-Feet				
Date	Time	Discharge	Date	Time	Discharge	Date	Time	Dischergo	
4-11-1894	•	14	10-29-17	6	17	9- 9-18	1450	7.2	
4-3,4-10	1	17	5-14-18	ļ	16	9- 9-18	1635	0,9	
7-25,26-30	;	5.9	8-24-18	1055	4.1	9- 9-18	1735	5.5	
11-1,2-10	1	12	8-24-18	1705	1,4	9- 9-18	1840	i ur	
2-1,2-11	3 0	22	9- 1-18	1030	4.6	9- 9-18	1920	7	
9-19-11	0	9.9	9- 8-18	1025	8.6	9- 2-19	045	6.9	
5-8-14	0	10	9- 9-18	0830	8.7	12-21-19	9	15	
12- 1-15	3 0	10	9- 9-18	0950	0.6	3- 6-20	!	5	
2-13-17	;	16	9- 9-18	1100	0.6	3-23-20	Ĉ	150	
3-17-17	;	30	9- 9-18	1210	<u>م</u>	3-29-20	0	6.0	
3-27-17	i i	17	9- 9-18	1310	ري در	7-12-20	8	7/0	
10-28-17	G.	14							

Note: Time of observation in parenthesis. * Estimated.

In Second-Fast

Hydrographic Unit No. 6

Stream	: Sante	Santa Margarite River	River	: Fe.11	prook	Fallbrook Creak
Stream mile	10.5 11.6 ^b		12,1	. 8.8- . 6.1		8.8- 7.6
ě						
9- 1-18	(1625)	(1530)	(1500)			
9-8-18	1.64 (1640)	4.3 (1545)	2.1 (1505)			
	1.6a	3.6	207		e	
6-22-53				0.016	•	
6-26-53				0.013	0	
6-30-53				0.0116	v	
7- 3-53				0.011	ø	
7- 9-53				0.0116	v	0.054
12-22-53				(1430)	~	(1500)
				3		5

Note: Time of observation in parentheeis.

a. Total flow diverted in 0'Neill Ditch.

b. Mean daily discharge for this location for period June, 1925
through March, 1926, published by United States Geological
Survey as Santa Margarita River near De Luz Station.

c. Mean daily discharge. Continuous record available for period
June 20 through July 9, 1953.

Estimated. ÷

Table E-4 MISCELLANEOUS MEASUREMENTS OF SPRING DISCHARGE

Spring	: :	Frow	Spring :	*	Pluw
number	: Dats :	gpm	mandpar :	Da+6	2.70
6S/1E-25H	9~18~53	Trickle	8S/2E-13B	3- 6-51	Triskle
250	9-23-53	0.3	21 G1	11- 2-53	Leas than 0.5
6S/2E-30M	9-18-53	Trickla	21G3	12- 2-53	Less than 0.5
65/4W-35Q	8-11-54	Dry	22B	11- 2-53	Trickle
7S/1E-17G	11- 2-53	°.5 ^a	22G]	11- 2-53	3.5ª
20G1	2- 1-51	0.9	22G2	11- 2-53	3.2ª
20G2	2- 1-51	0.1	22P1	11- 1-53	0.7ª
2 ⁾ 4G	9- 2-53	0.5	22P 2	11- 2-53	Less than 0.5
250	9- 2-53	Less than la	2€Q	11- 2-53	7ª
30G	2- 1-51	c•4	28A	11- 2-53	1.5ª
7S/2E- 6Q	9-23-53	2.5	36 E	8-11-54	Dry
20H	3- 8-51	1.4	8S/3E-31G2	8-28-53	82
32H	12- 4-53	0.4	8s/lW-18B	8-10-54	Trickle
7S/1W-18Q	8-10-54	Trickle	18C	8 - 10-54	1.5ª
20J	8-10-54	0.5ª	21C	2- 9-51	2.0
21E	8-10-54	Dry	25B	1-25-51	Less than la
7S/3W-21J	8-11-54	Dry	36Н	1-25-51	2.4
22N	8- 9-54	Trickle	36K	1-25-51	3.3
27C2	8- 9-54	Trickle	360	1-25-51	2.1
27F	8- 9-54	Trickle	8S/2N-31C	7-16-53	28,6
8S/1E- 2P	11- 2-53	0.14	8S/3W- 1N2	8-11-54	50a,b
8G	2-16-51	0.6	9S/2E-10G	8-26-53	0.5ª
8K1	2-16-51	Triskle	23K	2-16-51	0.1
89	2-16-51	11.0	34L	3- 6-51	0.8
			98/3W- 1H	7-14-53	0 22ª 5
			95/4W- 5P	8-25-54	5ື

a. Estimated.b. Reported by owner.

· MEDITORY

* *

APPENDIX F
WATER WELL DATA

TABLE OF CONTENTS

WATER WELL DATA

																Page
Wells	in	Hydrographic	Unit	No.	1	•	•	•	•		•	•				F- 3
Wells	in	Hydrographic	Unit	No.	2	•	•		•		•		•		•	F-35
Wells	in	Hydrographic	Unit	No.	3	•	•		•	•		•		•	•	F-47
Wells	in	Hydrographic	Unit	No.	4				•	•	•	•	•		•	F-55
Wells	in	Hydrographic	Unit	No.	5	•	•	•	•	•		•	•	•	•	F - 59
Wells	in	Hydrographic	Unit	No.	6		•			•				•	•	F - 67

WATER WELL DATA FOR WELLS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED

APPENDIX F

total orași		1	s Vell	Casing		1	t Other	
State a Other	s owner	r drilled	s depth, :	diameter, s in inches:	Pumping	: Use	data s available	: Remarks
			피	Mydrographic Unit No. 1	mit No. 1			
55/1¥- 28K1ª	Searl Bros.	1892	8	;	vindaill	stock	water level	
5201	Searl Bros.		1	ĸ	5 HP. electric	domestic	water levels	
33R1 ^a	Searl Bros.		96	1	15 HP. electric	irrigation	water levels	
3µ113	Searl Bros.		1	₹2	electric	irrigation	water levels	
54NJ a	Searl Bros.		%	12	electric	irrigation	water levels, analysis	
34P1ª	Searl Bros.		120	18	electric	irrigation	water levels, analysis	
34RI ª	1		ŧ	12	1	not used	water level	
5s/2⊌− 5up1ª	K. Young		ध	ţ	vindaill	stock	water levels, analysis	
6S/1⊌- ऋ1 ⁸	Searl Bros.		•	1	10 HP. electric	irrigation	water levels, analysis	
Æ 2ª	Searl Bros.		ŀ	11	:	not used	water levels	
无 3 ^a	Randolph Baatz	1947	%	•	20 HP. electric	domestic, irrigation	water levels	
Œ ^{ца}	Randolph Baatz	prior to 1900	80	~	9	not used	ł	unable to measure
Æ5 ^a	Randolph Baatz	1926	85	**	8	domestic	0	unable to measure
101	Searl Bros.		1	ł	electric	irrigation	water levels	
ГНŢ	Edgar Searl		1	0	1 HP. electric	domestic	ů	unable to measure
[Ct	A. C. Mohlenhoff	July, 1950	121	10	7 H. electric	irrigation, stock	analysis	
4,72	A. C. Hohlenhoff	1953	140	10	9 0	not used	water levei	
£1:43	L. H. Allert		120	co	5 HP. electric	domes⁴ic	water level	

ARTER BELL DATA (confined)

Well numbers State 4 Other	s Owner	Date drilled	1 4 61 10 4 61 10 60 10	s diameters	} : Pump:ng : equipaent	Use	data a data	Remarks	١
			Hydrog	raphic Unit	Hydrographic Unit No. 1 (continued)				
65/14~ 4K1	Searl Bros.		0	16	20 HP. electric	irrigation	water levels		
561	Garbani Bros。		105	12	diesel	irrigation	water levels, analysis		
5н1	Garbani Bros.		107	12	2019° electric	irrigation	water levels		
5H2	Garbani Bros.		0	12	15 H° electric	irrigation	water level		
6A1	Garbani Bros.		105	91	30 H° electric	irrigation	water level		
1001	A. C. Mohlenhoff	prior to 1930	62	*	He. electric	domestic	water level		
1041	Harold Vilhen		0	œ	windmill	domestic	water level		
1042	Harold Wilhem		77	æ	:	not used	water level	open casing	
INTI	J. R. Whaley		22	;	gasoline engine	domestic	water level		
1501	J. R. Whaley	about 1915	11	12	1 H. electric	stock	water level		
15c2	J. R. Whaley	1952	79	*	73 Ho. electric	donestic	water level		
15H1	J. R. Whaley	1952	±2.	*	15 HP. electric	stock	water level		
26P1	I. Duncan		200	ł	gasoline engine	stock	water level log		
SINI	à di		ì	10	gasoline engine	domestic	analysis		
6S/2N- 1A1	Searl Bros.		80	16	vindmill	stock	water levels, analyses		
261	Francis Domenigoni		1	ł	windmill	stock	water level		
. 117	Francis Domenigoni		!	•	1	not used	water levels		
275	Francis Domenigoni	Sept., 1951	110	12	30 MP. electric	irrigation	water level log		
2N1	Francis Domenigoni		1	ï	ł	stock	1		

Francis Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni	1953	sin reet sin inches Hydrographic Unit No.	sin inches	s equipment s		available	
Frencis Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni	1953	Hydrographi	C Hoist No				
Francis Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni	1953		200	1 (continued)			
Pete Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni		ı	8	25 P. electric	irrigation	1	
Pete Domenigoni Pete Domenigoni Pete Domenigoni Pete Domenigoni		13	12	•	not used	water levels	
Pete Domenigoni Pete Domenigoni Pete Domenigoni		83	811	windmill	stock	water levels, log	
Pete Domenigoni Pete Domenigoni Pete Domenigoni		37	10	1	not used	water levels	
Pete Domenigoni Pete Domenigoni		28	10	;	not used	water levels	
Pete Domenigoni		9	12	q	not used	1	abandoned
		57	10	1 0	not used	water level	
Pete Domenigoni	1908	83	9	0	not used	10g	
Francis and William Hedler	July, 1951	8	10	l H° electric	domestic	water levels, log	
Antonio Domenigoni		82	;	* d	not used	102	
F. Domenigoni		112	8	ł	1	log	
Antonio Domenigoni		3	1	8	1	10g	
E. W. Connell	July ₀ 1953	941	12	15 HP. electric	irrigation	water levels, log	
E. W. Connell		87	12	15 H° electric	irrigation	water level, log	
E. V. Comell	July, 1953	102	9	3 H. electric	domestic	water level $_{\it o}$	
1		;	ł	windmill	stock	1	
Francis Domenigoni	AUR. 1951	110	12	vindmill	domestic	100	
Francis Domenigon:		125	12	20 M. electric	irrigation	10g	
Francis Domenigoni		19	:	windmill	stock	log	
1		8	0	vindell	domestic	water levels	
Searl Bros.		54	1	windsill	stock	water levels,	

Remarks																				
data available		water level	water level	water level	water levels, analysis	water levels	water levels	vater levels	water levels	water levels	109	water levels	;	water levels, log	water levels	water level	water levels, analysis	;	water levels	
3 Use		stock	stock	not used	stock	stock	domestic	domestic	domestic	stock, domestic	domestic	not used	abandoned	not used	not used	domestic	stock, domestic	not used	not used	
Pumping equipment	Hydrographic Unit No. 1 (continued)	0	windmil1	1	vindaill	windmill	1	1 Ho. electric	1 P. electric	ì	i	ì	windmill		Ģ.	½ HP. electric	windmill	;	;	
s diameters	raphic Unit	Ŷ	t ⁴ 2	27	81	72	22	81	88 2†	1	10	:	*	ω	*	81	84	01	10	
s deptho	Hydrog	0	;	8	16	8	37	32	35	1	108	:	i	٤	1	O _T	;	;	1	
s Date								5461			June, 1951			June, 1949						
owner 3 owner		9 0	0	0 9	Fred Pourroy	ŀ	Fred Pourroy	Mrs. Arthur Mc Elhinney	Hrs. Arthur Mc Elhinney	Mrs. Arthur Mc Elhinney	Frederick Domenigoni	Richardson	1	H. Bergman	Gilbert Steams	Gilbert Stearns	Arthur Vial	Karl Frick	Karl Frick	
¥ell numbers Sta⁺e s n		65/24-1501	16C1	1991	1 K 1	19E1	1941	1941	19n2	19N3	20A1	20N1	20R1	2101	2101	21R1	1 NL Z	28A1	2881	

⊌ell∩umbers State : Other	3 Owner	s Date s drilleo	depth,	diameter,	Pumping equipment	Use	data available	Rem	Remarks
			Hydrogr	aphic Unit No	Hydrographic Unit No. 1 (continued)				
65/2W~28G1	Karl Frick		20	0	windm:11	1	water levels		
2862	Karl Frick	JUIY ₀ 1948	126	12	5 H° electric	irrigation	water levels, log, analysis		
2863	Karl Frick		175	10	12 Ho electric	irrigetion	water levels, log, analysis		
28.11	Arthur Vial		22	ن 0	windmill, electric	domestic	water levels		
-2872	Arthur Vial	1952	80	38		not used	water levels		
29M1	0 0		9	18	windmill	stock	water levels		
29R1	Pierre Pourroy		8	7	windmill	stock	water levels, analysis		
30A1	Richardson		U g	e C	windmill	domestic	water levels		
30C1	0		0	22	windmill	domestic	water levels, analysis		
30F1	Mc Elhinney		0	72	vindmil.1	stock	water levels		
3052	Mc Elhinney		0	84	windmill	stock	water levels		
30R1	Richardson		9	72	windmil!	domestic	water levels		
3113	Fontana Bros.		51	22	HP. electric	domestic	water levels, analysis		
3152	Fontana Bros.		35	72	2 H. electric	G 0	water levels		
31Pl	3 0		e 0	9	* 2	no∮ used	water levels		
31P2	0 6		9	0	windmill.	domestic	water levels		
31Rl	R. M. Cummins	Feb., 1950	18	10	2 Ho. electric	irrigation	water levels, log		
3182	R. M. Cummins		0 %	22	windmill	domestic	water levels		
32A1	Pierre Pourroy	Dec., 1950	159	10	10 He electric	irrigation	water level, log analyses		

Remarks																			
<pre>continuity continuity contin</pre>		water level, analysis	water levels	water levels	water levels	water levels	water levels, analysis	water levels	water level, log	water level, log	analysis	water level, log,analysis	water levels, log	water level	;	water levels	water levels	water levels	water levels
: USE		irrigation	9 9	not used	not used	not used	domestic	domestic	domestic	domestic, irrigation	domestic	domestic	domestic	domestic	domestic	;	domestic	not used	not used
Pumping equipment	Hydrographic Uni† No∘ 1 (continued)	5 H. electric	windmill	S B	windmill		vindmill	3 H. electric	1 H° electric	;	H. electric	0	windmill	vindmil]	electric	electric	electric	windmill.	:
casing s diameters s in inches	ic Unit No.	01	g 9	10	0	co	27	0	10	œ	0	œ	91	0	80	12	91	09	9
s tell s depth, s sin feet si	Hydrographi	9 0	0	O [†]	0	9	31	0	110	011	9	99	20	•	;	190	250	84	:
Bote drilled									June, 1951	1361		Oct., 1948	0ct., 1948		Oct., 1948				
0 wher		Pierre Pourroy	Pierre Pourroy	Pierre Pourroy	Pierre Pourroy	Pierre Pourroy	Pierre Pourroy	j	S. W. Reigle	Alex Mahas	Lazy B. Ranch	₩. L. Moreno	George D. Evans	George D. Evans	George D. Evans	F. G. Perkins	l. P. Chappel	Sichey Kelsey	Albert Kaznier
well numbers safe softer bs																Elsinore 94	Elsinore 95	Elsinore 99 Local No. 55	Elsinore 100
Well nu State		65/28-32HI	32H2	32.1	32.2	32R1	33£1	3401	65/34-2601 a	26E1	31P1	31R1	3501	3502	3503	65/4⊌-21J1ª	21R1ª	22F1 ^a	2201 ^a

				s Date	s Well	s Casing s	Pumoino	 Use	s other	Remarks
State 8	well numbers ate s Other	Դ		s drilled	.0	s in inches			ava	20
				피	Ydrograph	Hydrographic Unit No. 1 (continued)	(continued)			
65/44-22M1	Elsinore	26	H. H. Hillebrand		001	12	40 HP. electric	irrigation	water levels	
23N18	Elsinore	114	Fred Rathke		100	8	1/3 IP. electric	domestic	water levels	
2681	Elsinore	113	C. R. Dawson		80	81	l H°. electric	domestic	water levels	
26E1ª			Harry Davis		320	8	10 HP. electric	irrigation	water levels	
261.1	Elsinore	111	L. M. Carter		101	æ	4 H. electric	domes % ic	water levels	
261.2	Elsinore	109	Fred Oest		130	0	1 H. electric	domestic	\$ 0	
28H1	Elsinore	108	Ben Edvards		102	ì	1 P. electric	domestic	water levels	
26M2			de Leon		16	8	3 H. electric	domestic	water level	
3801			Tony Stellino		9	8		0	analysis	
27c! a	Elsinore	115	A. Brenner		8	ı	electric	irrigation	water levels	
2702			L. L. Black		0	:	electric	i	:	
276) 4	Elsinore	106	Clyde Blakely		500	12	3 H. electric	domestic	water levels	
1013	Elsinore	110	Villian R. Parks	1949	275	10	1	domestic, irrigation	3 0	unable to measure
27H13			John P. Garrett	Apr., 1953	160	89	1 HP. electric	domestic	water levels	
27N1			Nick Cacia		112	80	1 Ho. electric	8	water levels	
27N2a			Villiam Pright	June _s 1950	141	12	electric	domestic, stock	water levels, log	
28819	Elsinore	96	I. P. Chappel		190	12	1	not used	water levels	
28D), a	Deinars	92	Charles de Boer		0	•	5 H° electric	g q	water level₅ analysis	
28H) ⁸	Elsinore	. 31	6 6		0	9	vindmill	not used	water levels analysis	
28r 19	Elsinore	66 :	L. Kinnster		0	84	3 Ho electric	domestic	water levels	
28M1ª	Elsinore	81	P. P. Hillis		58	~	# HP. electric	domestic	water levels	

Remarks							unable to measure															
Other s data s available s		water levels	water levels	water levels	water level	water levels	_	water levels	water levels		water levels		water levels	water levels	water levels	water level, log	water levels	water level	water levels		water levels	water levels
6c 9/ 00		water	vater	vater	vater	Vater	0	water	Vater	•	water	i	vater	₩ater	vater	vater	water	water	water	ł	vater	vater
Use		0	domestic	domestic	not used	stock		domestic, irrigation	domestic	domestic, irrigation	domestic	;	1	domest ic	domestic	not used	ı	domestic	ı	;	domestic	domestic
Pumping s equipment s	Hydrographic Unit No. 1 (continued)	vindaill	electric	1 HP. electric	0	windmill	½ HP. electric	electric	electric	windsill	H. electric	:	1/3 H. electric	½ H. electric	# HP. electric	9	gasol ine engine	gasoline engine	2 H° electric, windmill	0	1 H. electric	1 H. electric
casing ? dismeter, s	ohic Unit No.	12	0	10	9	8	* 0	**	12	Z†	7	8	10	10	80	9	9	12	84	1	:	12
Well depths in feet	Hydrogra	0	약	22	32	8	9	2	芦	89	ě	;	9	011	8	55	;	252	٤	ł	96	100
Date 3				July, 1951										About 1942		Nov., 1947		1925				
0 Wher		•	V. Cleveland	V. Cleveland	V. Cleveland	0 0	0	J. E. Tarr	L. H. Kingsland	J. E. Tarr	ŀ	1	Blake	J. T. Hutchinson	Mary Turku	Antonio Stellino	Bill Stuart	E. W. Robison	• 0	•	S. M. Morrison	Don Trenary
. D . 10 . 10		e 88	83			ф 8		98	e 85								e 155	e 163			e 88	e 87
Hell numbers		Elsinore	Elsinore			Elsinore		Elsinore	Elsinore								Elsinore 155	Elsinore 163			Elsinore	Elsinore
State 8		65/44~28P1ª	2862a	28P3ª	28b ng	28R1ª	3341	33A2ª	3381 ^a	3382ª	33H1	33H2	32H3	35H4	33H5	335	3481	3401	34£1	34E2	34E3) NET

Elsinore 154 C. J. Spore	Well State	Well numbers	Owner	B Date drilled	depths	dismeter,	Pumping equipment	. Use	to Other data data available	Remarks
Elsinore 154 C. J. Spore Henry Langstraat Henry Langstraat Marthur H. Cooper John Fitzpatrick Arthur H. Cooper Anthur H. Cooper Anthur H. Cooper Anthur H. Cooper Anthur H. Cooper John Fitzpatrick Anthur H. Cooper Anthur H. Cooper John Fitzpatrick John					Hydr	ographic Unit	No. 1 (continued)			
Elsinore 154 C. J. Spore C. J. Spore C. J. Spore Henry Langstraat Arthur H. Cooper John Fitzpatrick Arthur H. Cooper Alten Alg., 1950 Elsinore 153 G. E. Parry Clark a viscoset	1-34E5		£ 0		48	00	1 HP. electric	0	water level	
Elsinore 154 C. J. Spore C. J. Spore 24 electric C. J. Spore 12 12 Henry Langstraat 12 Henry Langstraat 10 1/3 HP. electric Bob and Lea Arthur H. Cooper Dr. Hunter John Fitzpatrick Arthur H. Cooper Anthur H. Cooper 6 1 HP. electric 16 electric 16 electric 16 electric 16 electric 16 electric 17 17 18 18 ½ HP. electric 18 ¼ HP. electric 18 ¼ HP. electric 18 ¼ HP. electric	34E6		00		0	00	0	not used	water levels	open casing
C. J. Spore C. J. Spore ———————————————————————————————————	3461	Elsinore 154	C. J. Spore		011	75	⊌indmill⊳ electric	domestic	water levels	
C. J. Spore	3462		C. J. Spore		9	7г	electric	Q *	water level	
Henry Langstraat 154 12 Henry Langstraat 154 12 Bob and Lea Phillips Arthur H. Cooper 60 6 2 HP. electric Or. Hunter 6 1 HP. electric Arthur H. Cooper 51 20 2 HP. electric Arthur H. Cooper 6 1 HP. electric 16 electric 18 2 HP. electric 18 2 HP. electric 18 2 HP. electric 18 1 HP. electric 19 1 HP. electric 10 1/3 HP. electric 10 1/3 HP. electric 11 HP. electric 12 1 HP. electric 13 1 HP. electric 14 1 HP. electric 15 1 HP. electric	5463		C. J. Spore		ŀ	12	9	not used	water levels	open casing
Henry Langstraat 154 12	3401		1		ŧ	12	9 2	not used	water level	open casing
Bob and Lea 60 6 ½ H° electric Phillips Arthur H° Cooper 60 4 electric Dr. Hunter 60 4 electric Dr. Hunter 60 6 ½ H° electric Arthur H° Cooper 60 4 electric Arthur H° Cooper 60 4 electric Arthur H° Cooper 60 2 H° electric Arthur H° Cooper 60 2 H° electric Arthur H° Cooper 60 2 H° electric Arthur H° Cooper 60 1 H° electric Alten Aug., 1950 51 24 ¼ H° electric Elsinore 153 G. E. Parry 125 12 1 H° electric Clan A viccott An an arthur H° cooper 60 6 1 H° electric Clan A viccott	3475		Henry Langstraat		154	12	• 0	domestic, irrigation, stock	water levels, analysis	
Bob and Lea 60 6 ½ H° electric Arthur H° Cooper 60 ¼ electric John Føtzpatrick 6 ½ H° electric John Føtzpatrick 51 20 ½ H° electric Arthur H° Cooper 16 electric 8 ½ H° electric Allen Augop 1950 51 2¼ ½ H° electric Elsinore 155 G. E. Parry 125 12 1 H° electric 8 1 H° electric 8 1 H° electric	5475		9 0		0	10	1/3 H° electric	domestic	water levels	
Arthur H. Cooper Dr. Hunter John Fitzpatrick Arthur H. Cocper Arthur H. Cocper Alten Aug., 1950 Elsinore 153 G. E. Parry Clan A. Vincent Clan A. Vincent Clan A. Vincent Clan A. Vincent Alter Aug., Vincent Clan A.	4645		Bob and Lea Phillips		09	9	½ HP. electric	domestic	water level	
Dr. Hunter 6 1 HP. electric John Fitzpatrick 51 20 ½ HP. electric Arthur H. Cocper 16 electric 8 ½ HP. electric Alien Aug., 1950 51 24 ¼ HP. electric Elsinore 153 G. E. Parry 125 12 1 HP. electric 8 1 HP. electric Clan A. Vincent 8 1 HP. electric	. 5045		Arthur H. Cooper		09	æ	electric	domestic	water levels	
John Fitzpatrick 51 20 ½ H° electric Arthur H° Cocper 16 electric Allen Aug., 1950 51 24 ¼ H° electric Elsinore 153 G. E. Parry 125 12 1 H° electric 8 1 H° electric 8 1 H° electric	કૃત્મદ		Dr. Hunter		0 0	9	1 Pe electric	domest &c	water level, analysis	
### Aug., 1950 51 24 4 HP. electric ### Allen ### Aug., 1950 51 24 4 HP. electric ### Elsinore 153 G. E. Parry ### Aug., 1950 51 24 4 HP. electric ### Aug., 1950 51 1 HP. electric #### Aug., 1950 51 24 4 HP. electric #### Aug., 1950 51 24 4 HP. electric ###################################	7445		John Fatzpatrick		51	50	½ HP. electric	domestic	water levels	
## Aug., 1950 51 24 ##P. electric ## Aug., 1950 51 24 ##P. electric ## Elsinore 153 G. E. Parry ## Aug., 1950 51 24 ##P. electric	34.78		Arthur H. Cooper		9	91	electric	0	water level	
## Aug., 1950 51 24 ## electric ## Elsinore 153 G. E. Parry	34.09		G *		;	σ	½ Ho. electric	domestic	water levels, analysis	
Elsinore 153 G. E. Parry 125 12 1 HP. electric	34,310		Allen	Aug., 1950		24	4 HP. electric	domestic	water level	
Clan & vincent	34K1	Elsinore 153	G. E. Parry		125	12	1 HP. electric	domestic	water levels	
C. Land A. Vincent	34.1		8 0		0	60	l H° electric	3	water level, analysis	
Clen A vincent	34.2		3			G 9	1 9	Q	0	
OTEN AS VINCENT	34.3		Glen A. Vincent		1	<u>6</u>	0 0	\$ 0	0 0	

Remarks														unable to measure						
dotter s date s available s		water levels, analysis	water levels	water levels	water levels, analyses	water levels	water levels, log	water level	water level, log	water levels, analysis	water levels	water level, log analyses	water level	:	0 0	water level	water levels	water level	water levels	water levels, log
use Use		3 0	0 0	domestic	† 0	domest ic	0	domestic	domes†ic	domestic	:	domestic	domestic	domestic	domestic	domestic	domestic	domestic	not used	irrigation
Pumping equipment	Hydrographic Unit No. 1 (continued)	5 Pc. electric	gasoline engine	windmill	5 H° electric	1 H° electric	gasol ine engine	½ HP. electric	He electric	1 H° electric	vindmi11	½ H. electric	windmil1	9 9	1	electric	½ HP. electric	•	windmill	30 M· electric
Casing diameters in inches	aphic Unit No	D Q	12	ð 0	12	α	Z†	g g	10	Q 0	0	ω	9	0	;	10	æ	ł	;	12
s depths	Hydrogr	0 0	0	81	180	110	0	0	96	0	9	100	0	0	i	8 0	:	•	20	202
: Date drilled									July ₀ 1951			Apr., 1951								Apr., 1952
0 ane r		Lord	C. C. Karl	0 9	C. E. Bittikofer	0	Frank E. Collier	9 8	Russel O. Freeman	Guy S. Clark	Guy S. Clark	6uy S. Clark	00	0 9	ļ	i	B∘ L∘ Freeman	Orville Grow	;	Charles B. Withrow Apr., 1952
Well numbers sure of the sure of the base of the base of the sure of the base of the base of the base of the sure										Elsinore 152										
rell State		ียนท์<-พท์/s9	34P1	3403	3462	3443	\$04 <u>5</u>	3405	3406	34R3	34R2	34R3	34R4	34R5	34R6	34R7	34R8	34R9	3501	3501

			٠	٠	Vol.	(can use)			- 0+bay	
Well n State	Well numbers	3 Owner	: Date : drilled	- 1	اه ۵۰ ۰	ചഗ	Pump≀ng equ≀pment	. USe	s defe	Remorks
					ydrograph	ic Unit No.	Hydrographic Unit No. 1 (continued)			
65/4W-35F1	Elsinore 150	H. E. Blackforn			0	36	ž HP. electric, windmill	domestic	water levels, analysis	
39.1		0			0	හ	l≱ HP∘ electric	domestic	water level	
55.2					6	0	electric	not used	9	unable to measure
35M).	Wildomer 260 Elsinore 151	Wildomar School			313	12	electric	domestic	water levels	
35M2		Stephens			25	œ	electric	domestic	water levels, analysis	
35M3		Thomas L. Sayer			29	80	1/3 Ho electric	0	water level	
35M4		furner			about 60	∞	electric	domestic	water level	
35M5		Q			tr II	7	1/3 H°. electric	0	9 0	
35N1		Orville Grow	1953		200	12	electric	irrigation	vater levels, analysis	
35P1		Mrs. Joan Kelly	1910		165	12	windmill _p electric	domestic	water levels	
3592	Wildomar 259	May Hillman	1926		294	12	25 H° electric	no† ∪sed	water levels, log	
3501		Jhomas Wilks	abo∪† 1888		30	7	electric	domestic.	water levels, analysis	orriginally 225 ft. deep
3502		Thomas Wilks	Sept. 1953	1953	80	10	eleciric	domestic, irrigation	0 0	
36B1		0 0			0	}	wêndmêll	0	8 0	
39C1		2 0	1953		0	00	1 HP. electric	20	water level	
3601	Elsinore 149	H. A. Smith			0 6	œ	electric	domestic	water levels, analysis	
75/1E~ 4F3		Ed Shockley			8.0	o Arko A	windmill	not used	water levels	
										H

				•				*
Well numbers State a Other	s Owner	a Date drilled	s Well s depths sin feets	Casing adiameters an inches a	Pumping equipment	s Use	: Ołher : data : available	* Remerks *
			Hydrograp	hic Unit No	Hydrographic Unit No. 1 (continued)			
7S/1E~ 4G1	Ed Shockley	about 1950	2	12	1 H. electric	domestic, stock	water levels	
4,1	Ed Shockley	about 1950	0	10	2½ H. electric	not used	water levels	
l di	Campbe! 1		0	12	electric	stock	water levels	
5 dt	Campbe!!		0	*	windmill, 1/3 HP. electric	domestic	water levels	
1d9	Duncan Industries		9	18	0	not used	water levels	
601	C. O. Pollard	about 1952	about 40	*	?	0	log	
7A1	S. I. Creech		0	80	vindmill	stock	water level	
7A2	S. I. Creech		0	841	0	not used	water level	
7A3	S. T. Creech		0	ω	0	not used	water level	open casing
7A4	S. T. Creech		0	œ	9	not used	water level	
7C1	Duncan Industries		0 0	90	9 6	not used	water levels	
δi	Duncan Industries		47	10	windmill	not used	water levels, log	
702	Duncan Industries	Мау, 1953	24	91	5 HP. electric	irrigation	water level, log	
50 <i>T</i>	Duncan Industries		about 50	8	5 H°. electric	irrigation	9	unable to measure
Æ1	Duncan Industries		0	₹2	3 0	not used	water levels	test hole
7E.2	Duncan Industries		0	uncased	7 0	not used	water levels	test hole
7E3	Duncan Industries	about 1950	about 40	12	0	not used	water levels	
7E4	Duncan Industries		1	7₹	!	not used	;	unable to measure
801	S. I. Creech	about Apro, 1951	8 [†] 1	*	5 P. electric	domestic, irrigation	water level, log	

well nombers Stafe ∻ Other	s 0wner	; Oate ; drilled	well and depths and feet a	Casing s diameter, s in inches s	Pumping equipment	Use	s Other data s	Remarks
			Hydrograph	ic Unit No.	Hydrographic Unit No. 1 (continued)			
7S/1W- 6G1	John Kazaroff	0ct., 1950	83	Ø	gasoline engine	stock	water levels, log	
5н1	John Kazaroff	Feb., 1950	170	10	windmill	domestic, stock	water level, log	
Æ3	J. N. Bashaw		158	0	gasoline engine	domes†ic	water levels	
8.1	Bessie wilson		35	84	gasol ine engine	domestic, irrigation	water levels	
8.2	Bessie Wilson		35	12	0	irrigation	water levels	
JORI	G. W. Millholland		09	811	windmill	domest ic	water levels, mineral analysis	
1261	L. E. Pittam	about 1948	83	10	He electric	irrigation	P 0	unable to measure
12H1	State Division of Forestry	Aug. 1952	22	80	electric	domestic	50°	unable to measure
1231	Duncan Industries		1 Q	0	1/3 H° electric	domesfic	3	unable to measure
134)	Duncan Industries		0	11	10 H° electric	irrigation	water level	
12R1	F. W. Pittam	Aug., 1953	81	12	electric	domestic _r irrigation	100	
1441	Cyrus J. Mc Daniel		77	Zħ	Windmill, 1/3 HP. electric	domes†≬c	water levels, mineral analysis	
18£1	0		0	09	windmill	s†ock	water levels	
18J1	Well & Son William		29	0 0	gasol ine engine	irrigation	water levels, mineral analysis	
18#1	ì		;	90	vindmill	not used	water levels	
1801	Vail Co.		:	80	windmill	not used	water levels	
1802	Vail Co.		about 40	e :	vindmill	stock	water levels, mineral analysis	
30N1	Vail Co.		206	90	wêndmëll	stock	water levels, mineral analyses	

)
Well numbers State : Other	8 Owner	. Date . drilled	depths	Casing s diameter, s in inches s	Pumping equipment	Use	other a data a data a dailable a	Remarks
			Hydrogra	phic Unit No	Mydrographic Unit No. 1 (continued)			
7S/2⊌~ 1E1	Batts		0	0	windmil1	9	(0	
151	Batts		0	15	vindmil1	not used	water level	
4.1	A. C. Robertson		0	8	0	8 0	9 9	
ī.	A. C. Robertson		龙	2	windmil!	stock	water levels	
2 01	A. C. Robertson		0	7	windmil1	stock	water levels	
28.5	A. C. Robertson		37	9	windmill, 1½ HP. electric	domestic, irrigation	water levels, mineral analysis	
28.1	Bashaw		09	ω	gasoline engine	irrigation	\$ U	unable to measure
3H1	A. C. Robertson		16	12	electric	domestic	water levels	
کالک	Harold Sewell		0	7	1 P. electric	domestic	water levels	
الج	M. A. Nicolas	Apr., 1951	128	12	0	not used	water level $_{s}$ log	
ΙΦ	Fred Pourroy		about 60	09	Windmill	domestic	water levels, mineral analysis	
h€1	9 0		0	12	windmil1	domestic	0	unable to measure
[C#	M. A. Nicolas		0	10	9	not used	water levels	
t , U2	M. A. Nicolas	May, 1951	98	12	5 IP. electric	domestic	water levels, log, mineral analysis	
کِ ابا	M. A. Nicolas	about 1935	10ф	01	9	not used	water level, log	
ήCt	M. A. Nicolas		ê g	84	windmill	not used	water levels	
子	M. A. Nicolas	1951	about 90	ŧ 0	7½ Ho. electric	irrigation	water levels, mineral analysis	
501	Fred Pourroy		R	10	vindmil1	stock	water levels	
5H1	Cummins		91	84	20 H. electric	domestic, irrigation	water levels	

	1	~	l lau	20,367				
Vell numbers State : Other		* Date * drilled	ا ۵۰۰۰	diameter, s in inches s	Pumping equipment	. Nse	s Other s data s available	Remarks
			Hydrograph	ic Unit No.	Hydrographic Unit No. 1 (continued)			
75/214-501	Alamos School		0	0	0 0	domes†ic	9	
543	Fred Pourroy		about 50	8 [†] 1	vindmill	stock	water levels	
6A1	0 8		9	0 0	vindmill	0	0 0	
129	Smoll		69	9	½ HP. electric	ę	9 9	unable to measure
905	Smo!!		₹†ŧ	0	electric	domes†€c	0 9	unable to measure
109	0		0	72	0 0	not used	water levels	abandoned
7.73	Alex Borel		9	81	vindmill	stock	water levels	
783	v. v. Hilliard		0	0	ę	domestic	water levels	
8A}	Alex Borel		0	91	0	no† used	water levels	
8E1	Alex Borel		8	84	windmil:	not used	water levels	
8H1	Alex Borel		- Û	16	5 HP. electric	$irrigation_{\it o}$ stock	mineral analysis	unable to measure
1₩8	Alex Borel	1952	8	Q Q	ę.	0 0	mineral analysis	abandoned
8M2	Alex Borel	Nov., 1927	999	0	⊌indmill _β l½ HP. electric	domestic	water levels, log	
945.1	9		6 0	0	vinchill	not used	0 0	abandoned
1001	M. A. Nicolas		21	9	vindmill	stock	water levels	
126.1	Bill Knezevich		abou† 30	0	D 0	domestic, stock	water levels	
12R1	Alex Borel		0 0	81	P 8	not used	water levels	
1381	Alex Borel		0	0	windmill	domestic	water levels	
1631	M. A. Nicolas	Jan., 1950	81	œ	Q 0	no† used	⊌ater levels, log	
16J2	M. A. Nicolas		0 0	12	vindmil1	not used	water levels	
16.13	M. A. Nicolas		112	10	0 0	not used	10g	
								F

15/24-16.14 H. A. Micolas Babort 60 8 10 10-tosed 10-tose	Well numbers State s Other	s 0vner	. Date . drilled	s depth s sin feets	casing diameter, in inches	Pumping equipment	* Use	data savailable s	Remarks
H. A. Micolass about 60 8 not used water levels below in the control of the c				Hydrograp	hic Unit No	-4			
L. J. Servel L. Servel L. Servel L. J. Servel L. J. Servel L. Servel L. Servel L. J. Servel L. Servel L. J. S	464	M. A. Nicolas		about 60	00	o 6	not used	water levels	
L. J. Servel	1861	L. J. Servel		0	10	0	not used	water levels	
L. J. Servel	1961	L. J. Servel		t o	Ī	5 HP. electric	irrigation	water levels	
L. J. Servel	1962	L. J. Servel		004	0	20 M° electric	irrigation	9	
vindmill, vindmill, vindmill, vindmill, vindmill, vindmill stock water levels, stock water levels, stock water levels, log wait Co 10 windmill stock water levels, log wait Co 10 windmill stock water levels, log wait Co 10 windmill stock water levels levels wait Co 10 windmill stock water levels wait Co 10 windmill stock water levels levels wait Co 10 windmill stock water levels levels levels wait Co 10 windmill stock water levels	1903	L. J. Servel		0	10	0	not used	water levels	
1. Nicolas	20E1	0		B 0	Q 0		1	1	
HV 129 Vail Co.	20 P I	J. Nicolas		0	0 0	Windmill, gasoline engine	0	mineral analysis	
Wail Co. 48 windmill stock water levels, and revels, and revels	21E1	1		9	12	windmill	0	3	
HV 129 Vail Co. 201 windmill domestic, stock water levels, log HV 133 Vail Co. 10 windmill stock water levels, log Vail Co. 10 windmill stock water levels L. Roripaugh 18 windmill not used water levels Vail Co. 8 windmill stock water levels Vail Co. 95 7 windmill stock water levels J. A. Richmond 13 72 not used water levels J. H. Gentry 59 48 windmills water levels Andrew James 36 windmills water levels	24F1	Vail Co.		9	84	v indmil1	stock	water levels	
HV 135 Vail Co. 10 windmill vater levels Vail Co. 10 windmill stock water levels L. Roripaugh 1 HP. electric domestic Vail Co. 8 windmill not used water levels Vail Co. 95 7 windmill stock water levels J. A. Richmond 13 72 not used water levels J. H. Genfry 59 18 windmill, and omestic water levels Andrew James 36 windmill, electric water levels		Vail Co.		201	0	Windmill	domestic, stock	water levels, log	
Vail Co. 10 windmill stock water levels L. Roripaugh 1 HP. electric domestic Vail Co. 8 windmill not used water levels Vail Co. 95 7 windmill stock water levels J. A. Richmond 20 60 ½ HP. electric domestic water levels J. A. Richmond 13 72 not used water levels J. H. Gentry 59 48 windmill, domestic water levels Andrew James 36 windmill domestic water levels		Vail Co.		560	0	;	not used	er levels,	abandoned
Vail Co121 HP. electricnot usedwater levelsL. Roripaugh8windmillnot usedwater levelVail Co.957windmillstockwater levelsJ. A. Richmond2060½ HP. electricdomesticwater levelJ. A. Richmond1372not usedwater levelsI. H. Gentry59µ8windmilldomesticwater levelsAndrew James36windmilldomesticwater levels	27R1	Vail Co.		0	10	windmill	stock	water levels	
L. Roripaugh Vail Co.	3001	Vail Co.		:	12	0	not used	water levels	
Vail Co. 8 windmill not used Vail Co. 95 7 windmill stock J. A. Richmond 20 60 ½ HP. electric domestic J. A. Richmond 13 72 not used I. H. Gentry 59 µ8 windmill domestic Andrew James 36 windmill domestic	3002	L. Roripaugh		9	ů	I HP. electric	domestic		unable to measure
Vail Co. Vail Co. Per official confidence of comparing the comparin	3003	Vail Co.		ļ	80	windmil1	not used	water level	
J. A. Richmond J. A. Richmond J. A. Richmond J. H. Gentry Sy 448 windmill, domestic Andrew James 36 windmill domestic	3 3 E1	Vail Co.		95	7	windmill	stock	water levels	
Jo Ao Richmond 13 72 not used Io Ho Gentry 59 μ 8 windmillo domestic Andrew James 36 windmill domestic	. 261	J. A. Richmond		8	09	½ HP. electric	domestic	water level, mineral analysis	
I. H. Gentry 59 48 windmill, domestic domestic Andrew James 36 windmill domestic	202	J. A. Richmond		13	72	i	not used	water level	
Andrew James 36 windmill domestic	3 X 1	I. H. Gentry		59	81	windmill, ½ H° electric	domestic	water levels	
	201	Andrew James		:	%	windmill	domestic	water levels	

					(200			
well numbers State : Other	s Owner	: Date : drilled	* Well * depth * c	Casing diameter, in inches	Pumping equipment	s USe	ofher can data can a savailable can a	Remarks
			Hydrograph	Hydrographic Unit No. 1	_			
75/5W- 5C1	Q		G 9	9	8 0	0	8	
5.1	J. Borenstein	1945	64	6	gasol ine engine	domestic, stock	water levels, log, mineral analysis	Š.
591	0.00		9	80	windmill	stock	water levels	
109	E. W. Bennett		0	9	3 HP. electric	irrigation	water levels	
6E1	E. ¥. Benne††		375	11	0	\$ 0	water level	
601	Powers		011	12	gasoline engine	Ď.	water levels	
£;	E∘ ¥° Benne††	AUg., 1953	300	6	b 0	irrigation	water levels, log	originally 1,355 ft. deep
7A1	J. W. Povers		about 90	2₫	0	not used	water levels	
7A2	J. W. Powers		abou† 90	12	6.6	not used	water levels	
7A3	J. W. Powers		about 90	12	0	not used	water levels	open casing
正1	J. W. Powers		413	12	₽ 9	not used	water levels	open casing
Æ2	J. W. Powers	1952	102	12	3 H. electric	domestic	water levels	
Æ3	J. M. Powers	1954	152	0	ŷ 0	not used	water level	abandoned
压4	J. W. Powers	1954	0	œ	9	D Q	water level	
1 ک	T. E. and C. H. Bailey		02	10	½ HP. electric	domestic	water levels, log	
I.K	willis Thompson	May _p 1953	135	10	20 P. electric	irrigation	water level	originally 190 ft. deep
7R1	Sam Termini	946 8	285	0 7	20 HP. electric	irrigation	water levels, log	
7R2 MV 2	Howard Morrow	Dec., 1925	644	12	20 H° electric	irrigation	water levels, log mineral analyses	rà)
BR1	Harvey Blackmore		133	89	1 HP. electric	domestic	water levels	
3M3	Harvey Blackmore		9	12	windmill _p l H° electric	not used	water levels	F-
								-

									,
Well State	s Veil numbers Tes Other hs	Owner	Date drilled	Well s depth, s in feet s	Casing : diameter, : in inches :	Pumping equipment	es	s Other s data s available s	Remarks
١				Hydrograp	hic Unit No	Hydrographic Unit No. 1 (continued)			
75/54-901	Jackie Coogan Well	g 0	1922	735	•		not used	109	abandoned
1011		William B. Coleman	June, 1950	91	œ	windmill, gasoline engine	domestic	water levels, log	
10H2		₩. E. Whitney		18	;	small gasoline engine	domestic	3	
10H3		William 8. Coleman		54	77	ì	not used	water levels	
12H1		L. J. Servel		ヹ	91	0	windmil1	water levels	
1201		L. J. Servel		02	80	1 HP. electric	domestic	water levels, mineral analysis	
1261		V. G. Comparette		;	72	;	not used	water levels	
1262		V. G. Comparette	Nov., 1953	150	80	½ HP. electric	domestic	water levels	
14.1		Hugo Guenther	1911	174	ŀ	1	a 0	log	
1441		H. Fisch		001	2	l P. electric	domestic	water levels, log	
1 µN2		Beatrice Eliason		9	0	HP. electric	domestic	;	unable to measure
15NI		i		9	œ	windmill	domestic	water levels	
1501		M. J. Yoder		ł	;	2 HP. electric	domestic, stock	i	unable to measure
1502	HV 57	M. J. Yoder	prior to 1923	318	:	15 P. electric	1	water levels, log	
1503	MV 57A	M. J. Yoder	July, 1923	1120	16	:	not used	water levels, log	
1901		Charles Yoder	Dec., 1953	210	9	electric	domestic	water level, log	unable to measure
1991		C. E. Yoder		168	† 1	windmill	domestic	water levels	

				(paour mos)	(n)				
Well numbers State a Other	s 0wner s	Bate drilled	s Well s depths sin feets	Casing s diameter, s in inches s	Pumping equipment	es n	s Other s data s available s	Rewarks	
			Hydrogra	phic Unit No.	Hydrographic Unit No. 1 (continued)				
7S/3M46H1	C. E. Yoder		50	36	gasoline engine	domestic	water level		
16K1	0. R. Rail		0	9	electric	irrigation	water levels		
1641	0. R. Rail	about 1947	†11	12	1 Ho electric	domestic	water levels		
16N1	Ralph Bates		90	တ	windmill₂ ½ H° electric	domestic, stock	water levels		
16N2	John Inchaustip Robert Rash		65	*	windmill, electric	domestic	water levels, mineral analysis		
16N3	John Inchaustie Robert Rash		100	6	1 Po electric	domes†ic	water levels _p mineral analysis		
1 6ML	0 9		G 0	9	vindmill, 1/3 H° electric	domestic	water levels		
16N5	C. S. Gordon		ù U	G B	3 H. electric	domestic	water levels, mineral analyses		
16%	Joe Kalberer		90	V	He electric	domestic	water levels		
16N7	Hrs. John Farthing	1926 or earlier	596	10	D 0	not used	0	abandoned	
1 7C1	To Co Wickerd		0 0	80	1 Ho electric	domestic	water level		
1.00.1	M∘ J∘ Oakley		0	g 0	25 M. electric	irrigation	mineral analysis	unable to measure	
1751	E. E. Rasch		80	0	# HP. electric	domestic	water level		
1 Æ2	Co yo Potter		122	ω	# HP. electric	domestic	water levels, log		
1753	Paul Thompson		80	œ	windmillp ½ HP. electric	domestic	water levels, mineral analysis		
! Æu	V. E. Clark		0	g 0	4 HP electric	domes†ic	mineral analysis	unable to measure	
171	9 9		9 8	9	1 HP. electric	S #	water levels		

Well State	Well numbers ate : Other	3 Owner	s Daye s drilled	s well s depths sin feets	Casing : diameter, : in inches :	Pumping eguipment	» USe	8 Other 8 data 8 available 8	Remarks
	,			Hydrographi	Hydrographic Uni† No. 1	<pre>1 (continued)</pre>			
75/3W-17F2		N. L. Thorne		abou↑ 65	0	windmill, ≱ HP∘ electric	domes†ic	water levels	
175		V. E. Clark	Aug., 1953	59	50	0 1	not used	waier levels, log	
1761		Claude Fox		71	6	½ H°. electric	domestic	water levels mineral analysis	
1762		E. Bryant		0	2	windmill	domestic	9 0	
1 741		H. C. Arthur		70	ω	3 HP. electric	;	water level, mineral analysis	
1 7H2		E. Bryan†	1953	93	91	1 HP. electric	domestic	water levels	
1771	MV 25A	Robert Jones	Apr., 1926	303	21	10 H° electric	irrigation	water levels, log	
1772	MV 42A	L. Smith		0 9	<u>0</u>	½ HP. electric	!	water levels	
1,735	MV 42	L. Smi†h		596	12	7½ H°. electric	domestic, irrigation	water level, log	
1741		•		0	0	;	domestic, stock	;	
1 JK 2		Ray Bezanson		69	† ₹	1 HB electric	domestic	water levels	
171		Willis A. Thompson		142	g 0	electric	domestic	1	
17.2	MV 19	Willis A. Thompson	about 1913	105	í O	!	:	water levels, log	abandoned
17.3	MV 19A	Willis A. Thampson	Apr., 1926	2 ħ	7	windmill	stock	water levels, log	
1 2 1		R. Thompson		f 0	0 0	electric	irrigation	1	unable to measure
1701		Ira Rail		ł	1	vindmill	domestic	water level	
172		Sam Barnes		52	;	•	domestic	water level	

	00-		Fell	Casing		241	0ther	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well numbers State a Other	b : 0 wher	bate grilled g	depths s	diameter, in inches	. rumping	• • •	s available	Remarks
			Hydrograp	ohic Unit	Hydrographic Unit No. 1 (continued)			
75/344 7P3	Nora Cotter		0	0	0 0	domestic	water level	
1704	U B		0	9	electric	\$ \$	water levels	
1 70 1	Herstmen		10	0	3 0	domestic	ij ŧ	
1792	P. Samaniego	1942	28	æ	1 HP. electric	domestic	water levels	
1703	Max Thompson		38	7	ğ.	domes†ŝc	water levels	
1 TR 1	H. Sykes		0	6	vēndmēž Š	domestic	water level	
ISAL	R. R. Swain		0	ස	Windmills HP. electric	domesfic	water levels, mineral analyses	
1842	0 0		85	114	windmil]	0	water levels	
18A3 MV 4	C. J. and M. W. Thompson	JULY, 1925	416	C2	electric	irredion	water levels, log	unable 10 measure (1953)
18A4	Singletary	about 1944 or 1945	0 0	t. G	1 Ho electric	E O	8 0	
1841	G. W. Sipe		158	æ	1 PP. electric	domestic	water levels	
18H2	Paul Anderson		ή 9	9	0	domes†êç	water level	
1861 MV 15	Amos J. Sykes	1926	51	2	25 HP. electric	irrigation	water levelss log	
18L2 MY 34	Amos J. Sykes		(y Q	0	windmill	stock	water levels	
182,3 MV 13	Amos de Sykes		70	0	vindmill.	domestic	water levels	
18M1	Vail Co.		C B	6 0	windmill	stock	water levels, mineral analyses	
1801 MV 10	John Mc Cool	1913	44	22	€ 9	not used	water levels, log	abandoned
19A1	C. W. Barneti		<u>5</u>	9	1/3 PP. electric	not used	water level, mineral analysis	
19A2	C. W. Barnett		0.0	57	1/3 H° electric	domes†≀c	water levels, mineral analysis	

Remarks																			
: Other		water levels	0.0 1	water levels	water level	water levels $_{\scriptscriptstyle D}$ log	water level, log	water levels, log	water levels	:	;	water level	water level, log	water level	water level	water level	water level	water level	water level, log
Use		not used	D g	not used	domestic, stock	domes†ic	\$!	domestic	domestic	;	;	not used	domestic, industrial	domestic	domestic	domestic	domestic	not used	domestic
Pumping 8 equipment	Hydrographic Unit No. 1 (continued)	gasoline engine	⅓ HP. elec†ric	vindmill	vindmill	electric	; 6		1 H° electric	;	9	9	0	ì	4 H°. electric	4 HP. electric	windmill	windmill	4 H. electric
Casing diameter, in inches	Phic Unit P	91	91	12	0	7	7	9	12	Đ	9	50	œ	0	0	9	:	;	9
s Well : depths	Mydrogra	23	101	59	18	50	09	84	9	9	9	85	89	0 9	*	;	9 0	&	102
8 Date 8 drilled			June, 1948										Oct., 1945		prior to 1934				1945
; Owner		C. ¥. Barne}∤	H. B. and Anna Shaw	Frank Angus	Frank Angus	Clarylin Smith	Clarylin Smith	Malone	Al Reed	i	9	Clarylin Smith	G. W. Gagnon	U. Tarwater	U. Tarwater	C. S. Ergel	J. Young	J. Young	Walter Coy
Yell numbers State s Office		75/5¥49A3	1861	1941	1942	20A1	20A2	20A3	20A4	20A5	20A6	· 20A7	20A8	2081	2082	2083	2001	2002	2003

A STATE OF THE PARTY OF THE PAR		majorama de la comina	N 4-A Representation	WAIER WELL DAIA (Continued)	(pale)		,	end disperie della colo disperie communication con constitution of	
Well numbers State s Offer	s 0 wner 8	s Date s drilled	s Well s s depthy s sin feet s	Casing 8 diameter, 8 in inches 8	Pumping equipment	t Use	t Other data available	r Remarks	, ,
			Hydrograp	hic Unit No.	Hydrographic Unit No. I (continued)				
75/3N-20Ch	E. H. Curran		125	10	1 H. electric	domestic	water level, mineral analysis		
2001	Hike Mence		80	9	½ H. electric	domestic	mineral analysis	unable to measure	
2002	J. Young		8	0	vêndmi I I	domestic, irrigation	water level		
20D3	Floyd Rail		6	0	₽ 0	1	water level		
20E1	0		ł	0	windmill	stock	1		
20Н1	Maude Buchanan		Σħ	co	Viodeill	domestic	water levels, mineral analysis		
20H2	Walter Nielsen		ł	0/×0/	1 H. electric	domestic	water levels		
2043	Walter Nielsen	Nov., 1953	961	12	30 H2 electric	irrigation	water levels, log		
2041	Howell		09	12	3	not used	water levels	open casing	
20.1	L. P. Rios	Nov., 1950	121	01	7½ Ho. electric	domestic, irrigation	water levels, log		
2003	Hovell		120	0	windmill	domestic	water levels		
2002	Silas Mo Hathaway		128	12	15 H. electric	1	water levels $_p$ log		
20R1	Howel }		09	;	1 Ho. electric	0	6 0	unable to measure	
20R2	George Contreras		0	9	He electric	not used	water levels		
2083	George Contreras	Sept., 1949	30£	12	10 H°. electric	irrigation	water levels, log		
2101	8 3		ů	0	9	0	mineral analysis		
2102	L. I. Prestriot	NOVE 1948	101	0 ?	5 H° electric	domestic, irrigation	water levels $_{\it p}$		
2103	Roscoe Frohlich		35	69	1 Po electric	domestic	water levels		
2104	Mack Stone		641	9	D	not used	water levels.	F Suiseo uado	יכד
								- /.	,

Remarks							Wildset o'l well							unable to measure					open casing		open casing	
Other data a		water levels, log	water level, log	water level, mineral analysis	water levels	water levels	log Wile	water levels	water levels	water levels, log	water level	water levels, log	water level, log	log	water level	water level	water levels	water levels, log	water levels ope	water levels, log, mineral analysis	water levels ope	1
9) 9)		domestic	irrigation	domestic	domestic	stock	not used	domestic, stock	not used	irrigation	not used	irrigation	domestic	domestic	domestic	domestic	:	domestic	not used	not used	not used	;
Puaping equipment	Hydrographic Unit No. 1 (continued)	1½ H. electric	7½ Ho. electric	windmil]	1 Ho. electric	windmill	ì	windmill	20 HP. electric	20 HP. electric	;	7½ Ho. electric	1 P. electric	;	1 P. electric	½ HP. electric	windmill	½ Ho. electric	ì	electric	•	;
Casing s diameter, s in inches :	c Unit No.	10	10	00	ထ	9	16	10	11	12	09	12	80	9	œ	•	18	10	12	91	12	ł
sell sopths sopths sopths	Hydrographi	186	† 18	8	1	01	3,106	27	about 500	312	10	117	104	20	about 110	;	18	73	112	252	62	:
s Date s drilled 3			Apr., 1951						about 1926	Sept., 1953		Nov., 1949	1951	Oct., 1947				Nov., 1950				
0*ner		Mack Stone	Warren Lipking	Nettie Lloyd	Harren Lipking	Charnock	1	Myrtle A. Provolt	Carlington Cain	Carlington Cain	Carlington Cain	Fred Mays	Carlington Cain	George Contreras	Fred Mays	Fred Mays	C. D. Westbrook	A. W. Tordoff	C. O. Westbrook	Warren Lipking	A. W. Tordoff	;
#ell numbers ste s Qiher bs							Vernard 1															
Hell State		75/3W-21El	21F1	21F2	21F3	2161	2111	2101	21KI	21K2	21K3	2111	2112	21MI	21112	21113	21NI	21N2	21N3	21P1	21P2	21P3

Vell numbers State s Other	her b.	0 wher	. Date s drilled	: Well : : depth, :	Casing s dismeters s in inches s	Pumping equipment	∪ USe	8 Other 8 data 8 available 8	Remarks
				Hydrograe	Hydrographic Unit No.	(continued)			
75/3W-21P4		Varren Lipking	Dec., 1953	16	12	electric	irrigation	water level, log	
2101	-	Carlington Cain		120	91	10 HP. electric	irrigation	water levels, mineral analysis	
2181	-	Charles Philo		50	10	windmill	stock	8 0	
2182		Charles Philo	1928	80	ů 1	2 Ho. electric	domestic, irrigation	water levels	originally 150 ft. deep
2201		2 0		09	Ü G	9 6	0	water level	
23A1		Guenther's Murrieta Hot Springs		© 6	9 0	0 0	;	* 0	
23A2		Guenther's Murrieta Hot Springs		6 0	0	electric	1	∂ ₹	
2301		Or. Nathaniel Davis	1934	290	œ	0 0	not used	1 0 g	unable to measure
2502		Or. Nathaniel Davis		0	0	2 HP. electric	domestic, irrigetion	8 6	
24A1		Albert Ceas		⊕ #	12	73 H. electric	irrigation	water levels, mineral analysis	
2401		J. C. Bishop	Nov., 1950	31	ę 0	½ Ho electric	domes†ic	water level, log	
2402		Leo Roripaugh		314	8 6	electric	domestic	log	
25E1		Leo Roripaugh		6	ð	electric	irrigation	0 0	
25M1		J. B. Shamel		108	ω	windmill	3 0	water levels, mineral analysis	
25M2 My 67	7	J. B. Shamel		562	12	30 H° electric	irrigation	water levels, log	
26N1 MV 86	9	Leo Roripaugh	Dec. p 1913	103	10	0 9	1	water levels, log	
26R1 MV 68	80	J. B. Shamel		[1	æ	l H° electric	domestic	water levels, log	unable to measure (1954)
27A1 MV 80	c	F. н. на))	Apr., 1925	165	10	Q	not used	water levels, log	
27H3 MV 79A	9A	A. J. Sykes	June, 1926	423	16	0 0	0 1	water levels, log	F-

Well State	Well numbers	: Owner b :	s Date s drilled	s Vell s depth, sin feet	: Casing : diameter, : in inches	Pumping equipment	» Use	% Other % data % available %	Remarks
				Hydrograp	Hydrographic Unit No. 1	[(continued)			
7S/3W-27H2	MV 79	G. T. Hall	,	6	æ	windmill	domestic, stock	water levels, mineral analysis	
27,01	MV 78	Frank Burnham	1927	319	10	ì	not used	log	abandoned
27K1		A. J. Sykes		;	g 0	0	not used	water levels	artesian
27.1		å		•	0	0	;	•	
27M1		Jack Klubnikin	Apr., 1951	112	12	15 H°. electric	irrigation	water levels, log	
27M2		Dutton		37	12	0 0	not used	water levels	open casing
2 7M3		L. S. Brown		29	7	windmil1	domestic	water levels	
2 7M4		Dutton		1 1	24	0 9	not used	water levels	open casing
2 TNI		Carl F. Brellow	Jan., 1953	303	11	• 0	not used	water level, log	abandoned
2 TN 2		Carl F. Brellow	Sept., 1953	301	12	15 H° electric	irrigation	water levels, log mineral analysis	
1 - 27P1		E. M. Lincoln	July ₂ 1951	252	1	15 H° electric	irrigation	water levels, log mineral analysis	
2701		E. M. Lincoln		16	8	windmill, l/6 H°. electric	not used	water level	
2702	му вця	E. M. Lincoln	1926	191	50	3 H electric	9	water levels, log	
2881		Warren Lipking		15	co	•	not used	water levels	open casing
2882		Marren Lipking		81	7	windmill	not used	water levels	
2801		C. D. Westbrook	Sept., 1950	29	01	;	not used	water levels, log	open casing
28E1		Mike Mance		ヹ	œ	windmill.	stock	water levels	
28F1		Mike Mance	Apr., 1950	150	12	0	irrigation	water levels, log	
28F2		Mike Mance	1951	72	12	:	not used	water levels	open casing
28F 3		Mike Mance	1945	۶	12	15 H° electric	irrigation	water levels	originally

Hite Hance 27	Well numbers State : Of	ombers Other	s bs	s Date s drilled	s depth sin feet	casing a diameter, a in inches	Pumping equipment	Use	% Other % data % available %	Remarks
Fred Maye 23 9 vindeill stock					Hydrogra	aphic Unit No	(continued)			
Fred Mays 22 10 windfull 5104 windfull windfull	75/54-2863		Mike Mance		23	∞ ි	⊌indmëll	stock	0	
1	28H1		Fred Mays		22	10	windmill	sfock	water levels	
HAVE 50 Face of the continuence of the continue	28P1		8 8		51	හ	3	not used	water level	
Sueczy and Roem Harr, 1950 275 12 25 HP. electric irrigation water levels, 10g, mineral analysis	2801		8		54	\$	windmil1	sfock	water level	
HV 50 R. H. Ballard HZ 12 25 HP. electric irrigation water levels, log mineral analysis HV 50 R. H. Ballard 85 10 domestic, irrigation water levels, log water l	2802		0 0		51	9	\$ 0	not used	9 0	open casing
HOWELL 98 12 10 H° electric domestic, irrigation water levels, log HW 50A A. Ballard 85 10 domestic water levels, log HW 50A A. B. Hattison 76 6 domestic water levels, log Byron 0. Lilly 124 12 windfill water levels, log Sweezy and Roen Mar., 1950 150 7 electric water levels, log Carlington Cain 14 7½ H°, electric irrigation water levels, log Actesier Jack Roripaugh Mar., 1930 505 16 20 H°, electric irrigation Artesier Leo Roripaugh 12 12 Artesier Leo Roripaugh 12 <td>29A2</td> <td></td> <td>Sweezy and Roen</td> <td>Mar:₀ 1950</td> <td>275</td> <td>2</td> <td>25 H° electric</td> <td>irrigation</td> <td>103</td> <td></td>	29A2		Sweezy and Roen	Mar: ₀ 1950	275	2	25 H° electric	irrigation	103	
HV 50 R. H. Ballard 85 10 domestic vater levels, log HV 50A A. B. Hattison 76 6 not used vater levels, log Byron 0. Lilly 124 12 vindmill vater levels, log E. H. Lincoln 14 7½ HP, electric irrigation vater levels, log Carlington Cain 14 7½ HP, electric irrigation vater levels, log Roripaugh Jack Roripaugh Mar., 1930 505 16 20 HP, electric irrigation log, mineral RV 39 Jack Roripaugh Mar., 1930 505 16 20 HP, electric irrigation log, mineral RV 89 Roy S. Roripaugh irrigation analysis RV 89 Roy S. Roripaugh irrigation vater levels, log RV 92 Roy S. Roripaugh irrigation vater levels, log RV 92 Roy	2981		Howel i		86	12	10 Ho electric	domestic. irrigation		
HV 50A A. B. Mattison 76 6 not used water levels, log Byron 0. Lilly 12µ 12µ 12µ 12µ windmill water levels, log Sweezy and Roen Har., 1950 150 7 electric domestic water levels, log E. M. Lincoln 1½ 7½ HP, electric irrigation water levels, log Roripack Har., 1930 505 16 20 HP, electric irrigation log, mineral analysis Roripack Jack Roripack Har., 1930 505 16 20 HP, electric irrigation log, mineral Roripack Jack Roripack Har., 1930 505 16 MV 93 Roy S. Roripack H2 windmill water levels, 10g MV 93 Vail Co. Hay, 1926 H2 windmill water levels, 10g MV 93 Vail Co. Hay, 1926 H3 windmill	29CI	MV 50	R. H. Ballard		85	10	0 9	domestic	wafer levels	
Byton 0, Lilly 124 12 windmill	2903	MV 50A	A. B. Mattison		9/	9	0 0	no† used	water levels, log	abandoned
Seecy and Roen Mar., 1950 150 7 electric domestic weter levels, log, mineral analyses Carlington Cain 14 7½ HP, electric irrigation water levels, log, mineral analyses Soribaugh Jack Roripaugh Mar., 1930 505 16 20 HP, electric irrigation log, mineral analysis Roripaugh Jack Roripaugh mineral analysis My 89 Roy S. Roripaugh mineral analysis My 89 Roy S. Roripaugh mineral analysis My 89 Roy S. Roripaugh mineral analysis My 89 Roy S. Roripaugh mineral analysis My 89 Roy S. Roripaugh mineral analysis My 89 Roy S. Roripaugh My 89 Wy 80 Wail Co. My 92	2961		Byron 0. Lilly		124	12	windmill	0 0		
Roringuagh Arrester) Carlington Cain 14 7½ HP, electric irrigation or vater levels Roringuagh Arrester) Jack Roringuagh Mar. 1930 505 16 20 HP, electric irrigation Indineral analysis Roringuagh Arresters Jack Roringuagh mineral analysis MV 89 Roy 5, Roringuagh windmill not used water levels, log MV 92 Raiph Barnett 42 windmill domestic water levels, log MV 93 Vail Co. 124 12 windmill water levels, log MV 93 Vail Co. 124 12 water levels, log	2901		Sweezy and Roen	Mar., 1950	150	Prom.	electric	domes†ic	water levels, log, mineral analyses	
Carlington Cain — 12 — — — Adck Roripaugh Mar.p. 1930 505 16 20 HP. electric irrigation log, mineral analysis Roripaugh Jack Roripaugh — — — — mineral analysis Arfesier, Leo Roripaugh — — — — mineral analysis MV 92 Roy S. Roripaugh — — — — mineral analysis MV 92 Roy S. Roripaugh — — — — mineral analysis MV 92 Roy S. Roripaugh — — — — mineral analysis MV 93 Roy S. Roripaugh — — — — — — MV 93 Vail, Co. — 124 12 — — Mater levels, 10g MV 93 Vail, Co. Hoye 1926 452 20 — — — — —	3nc1		E. N. Lincoln		0 0	114		irrigation	water levels	
Aack RoripaughMar. p 19305051620 HP. electricirrigationlog, mineral analysisRoripaugh ArfesierJack Roripaughmineral analysisMV 89Roy S. RoripaughirrigationMV 92Ralph Barnett426windmilldomesticwater levels, logMV 93Vail Co.12412water levels, logMV 132Vail Co.12420water levels, log	3461		Carlington Cain		0	27		0 0	8 5	
Roripaugh Arfesiær.Jack RoripaughirrigationMV 89Roy S. Roripaughwindmillnot usedwater levels, logMV 92Ralph Barnett426windmilldomesticwater levels, logMY 93Vail Co.12412water levels, logMY 132Vail Co.May, 192645220water levels, log	5581		Jack Roripaugh	Mar., 1930	505	18	20 HP. electric	irrigation	logo mineral analysis	
MV 89 Roy S. Roripaugh 42 windmill water levels, log MV 92 Ralph Barnett 42 6 windmill domestic water levels, log MV 93 Vail Co. 124 12 water levels, log MV 132 Vail Co. Mays 1926 452 20 not used water levels, log	5582	Roripaugh			0	ų 9	e *	0 9		
MV 89 Roy S. Roripæugh 42 windmill not used water levels, log MV 92 Ralph Barnet† 42 6 windmill domestic water levels, log MV 93 Vail Co. 124 12 water levels, log MV 132 Vail Co. Mays 1926 452 20 not used water levels, log	1356		Leo Roripaugh		0	Û G	0 0	irrigation	Q g	
MV 92Raiph Barnett426windmilldomesticwater levels, logMY 93Vail Co.12412water levels, logMY 132Vail Co.May, 192645220not usedwater levels, log	35F1	MV 89	Roy S. Roripaugh		75	ŝ	windmill	not used		abandoned
My 93 Vail Co. 124 12 water levels, log MY 132 Vail Co. Mays 1926 452 20 not used water levels, log	35K1	MV 92	Ralph Barnett		142	9	vindmill	domestic		
MY 132 Vail Co. Mays 1926 452 20 not used water levels, log	3501	My 93	Vail Co.		124	12	9	0		
	55P2	MV 132	Vail Co.	Mays 1926	452	20	e 0	not used		abandoned

				WAT)	WATER WELL DATA (continued)	· ·			F-30
Well	Well numbers :	0wner	: : Date : drilled	: Well : : depth, : d :in feet : i	: Casing : : diameter, : : in inches :	Pumping equipment	: Use	data :	Remarks
				Hydrographic	Unit No. 1	Hydrographic Unit No. 1 (continued)			
75/4W- 1A1		E. W. Bennett	1952	197	10	1	not used	water levels, log, mineral analysis	open casing
1A2		E. W. Bennett		:	i	10 M. electric	1	:	unable to measure
101	Elsinore 159	William Curtis		:	10	vindmi11	domestic	water levels	
151		Kenneth Freeman		123	16	windmill, I HP. electric	domestic, stock	water levels, mineral analysis	originally 150 ft. deep
162		Kenneth Freeman	Aug., 1951	10ц	01	5 H. electric	irrigation	water level, log	
1#1		E. W. Bennett		about 23	12	1	not used	water levels	
ורו		C. F. Smith		20	:	windmill	;	:	
11.2		C. F. Smith		98	12	5 H. electric	irrigation	water levels	
11.3		1		about 110	ì		not used	1	
IMI		R. J. Brown		i	;	windmill	;	water level	
INI		Bert Taylor	Jan., 1951	20	7	1½ HP. electric	domestic	water levels, log	
INZ		Sutter		;	;	1	;	:	
IPI	Elsinore 158	R. J. Brown		;	;	windmill	domestic	water levels	
1P2		•		:	₹ 7	electric	domestic	water level, mineral analysis	
101		Shav		;	ŀ	7½ HP. electric	irrigation	water levels	
102		Shaw		about 65	;	windmill, 1 HP. electric	domestic	water levels, mineral analysis	
201		:		;	12	windmill	domestic	water level	
† 01		Gurney Edgar Paule		about 120	:	windmill	stock	water levels	
105		Hayworth		99	i	½ H. electric	domestic, stock	water levels, mineral analysis	

State	Well numbers	Under	s Date s drilled	socptns sin feet s	diameter, in inches	s Pumping s equipment	nse (s data	* Remarks
				Hydrograp	Hydrographic Unit No.) T			
75/4W- 106		;		59	0	4 HP. electric	domestic, stock	water levels	
107		1		9	Ç B	g 0	no† used	9 8	
2F.I	Wildowar 224	R. J. Brown	1921	150	ω	ę.	8 0	water levels, log	
261		R. J. Brown	Apr., 1951	251	12	10 H° electric	irrigation	water levels, log	
262	Wildomar 252 Elsinore 157	R. J. Brown		200	12	electric	not used	water levels	
3A1		e 0		0	9 0	electric	domes†≀c	0	
3A2		ţ		0	<i>1</i> 27	electric	domesfic	0.8	
383		9 8		0	æ	3 Ho electric	domestic	water level _s mineral analysis	
381		Ç 8		0 0	12	5 PP. electric	not used	water levels	
1141		Vail Co.		8 0	2	8	stock	water levels, mineral analysis	
1281		Gurney Edgar Paule	May _p 1952	7 00	12	72 H. electric	irrigation	water levels, log	
1201		Shaw		6	à	9	not used	water level	
1201	Elsinore 156	John Belk		† 0	0	windmill	stock	water levels	
1261		0 0		0 8	2	windmill	stock	water level, mineral analysis	
12H1		Verna Freeman	AU2 0 1947	8	7	24 Hp. gasoline engine	domes†ic	100	unable to measure
12H2		Verna Freeman		8 0	6	windmill	0 9	water levels	
1211	Wildomar 251	J. M. W. Thompson	1913	36	09	8 8	not used	water levels, log	abandoned
1272	Wildomar 250	J. M. W. Thompson		0.00	09	3.6	not used	water levels	
1 2R 1		Willis A. Thompson		0	0	7½ H. electric	0	water levels	
1 12									

				- 1						<
~1 1	1 numbers :	0vner	bate drilled	* Well * depth * in feet	casing adiameter and inches a	Pumping equipment	n nse	other data	00 90 00	Remarks
				tydrograph	Hydrographic Unit No. 1 (continued)	(continued)				
	MV 131 Shrode Well	Vail Co.	Feb., 1926	409	12	windmil	stock	water levels, log _o mineral analysis	log, sis	
		Vail Co.		₹2	g 9	vindmill	not used	water levels		
	Cantarini Murrieta	Vail Co.	Jan., 1952	822	30	30 HP. electric	irrigation	water level, log, analysis	103,	
	0'Kell l4	Vail Co.	Mar., 1927	229		0	not used	water levels, log	J 0g	abandoned
	96 AW	Vail Co.		301	01	• 0	not used	l og		abandoned
		0		9	į	9 **	9 9	0		
		0 0		ę D	g 9	9	9	9		
	MV 109	William Freideman	1921	103	0	vindmill	domestic	water levels, log	log	
	001 VM	Vail Co.		95	01	0	not used	go.1		abandoned
	MV 98	Vail Co.	prior to 1925	245	α	½ H°. electric	domestic	water levels, log	102	
	MV 98A	Vail Co.	1161	942	10	;	not used	log		abandoned
		0		Ŷ	9	windmil1	domestic	0 9		
		:		1	1	;	•	•		
	MV 101	Temecula School		9	ì	3 H. electric	domestic	water levels		
		State Division of Forestry	Dec., 1949	な	ę	2 P. electric	9	• 0		unable to
		Catholic Church		19	∞	1	not used	;		
		•	,	•	ŧ	1	9	0		
		Irene Shirley		ţ	;	;	domestic	ţ		
		Joe Escallier		1	7	0	domestic	water levels		
		0		9	:	•	domestic	1		

Well n	Labers		. Date	deoth.	A CHARACTER	O. O. O.	901	() () ()	
ate	State s Other		a drilled	in feet	in inches		3500 \$	s available	« Kemarks
				Hydrograp	Hydrographic Unit No.	0. 1 (continued)			
85/3W-12N2	ካ11 AW	M. Machado		50	12	0	,	water levels, log	
12N3		0 0		9	0	0 0	domestic	•	
1 2N4		9		;	ę g	g	0 0	ğ	
1 2NS		Howard Taylor		80	12	0 0	domestic	water levels, mineral analysis	
1 2N6		Alfred Knott	abou† 1913	.09	g 0	6	domestic	log	
12N7		P 0		9	9	9	Ç O	g 0	
1 2N8		Carl Swanguen		0	\$ 8	9	domestic	ř	
12N9		0 0		9	9	Ç Ç	ę T	9 0	
12N10		Forest L. White	Sept., 1951	011	20	# H. electric	domest & c	water levels, log	
12011		Henry Gray	1921	69	0	hand bump	not used	300	abandoned
12N12	My 115	A. F. Neinke	prior to 1927	20	∞	electric	domestic	108	
12N13		H∘ Lea†ham	Aug. 1953	72	α	0 9	no† used	water levels log, mineral analysis	
1201		Pete Escallier		125	0	9	domestic	water levels	
1365		0 1		0	0	0	6	0.0	
1363		0 0		0	0	0	0 0	Ü	
1304		9		0	0	0	0 9	9 0	
1305		qu es		0	g û	D 9	Q 6		
136		9		0	9 0	0	0		
1281		Alex Borel		0	20	1 HP. electric	domestic	water levels	
1298		H. Leatham		85	12	Q	domestic	water levels	
1209		10000							

					,			4
Well numbers State s Other	3 Oyner	» Date » drilled	s vell s depth s in feet s	Casing s dismeter, s in inches s	. Pumping . equipment	es O	% Other % data % ayailable %	Remarks
			Hydrograph	nic Unit No	Hydrographic Unit No. 1 (continued)			
85/3W-12Q1	9 0		145	12	9 9	not used	water levels	
1202	H. Midgly	Mar., 1950	200	ω	0 0	0	water levels, log, mineral analysis	
1,581	9		29	3°×3°	windmil1	domestic	water levels	
1301	Lena Munoa	about 1910	about 65	7	windmill	domestic	water levels	
1301	Fred Ramirez		59	α	windmill.	domestic	water levels	
1502	Doming Almaraz		45	ω	windmill.	domestic	water levels	
13F1	Temecula Meat Co.		0	9	l H° electric	industrial	3 3	unable to measure
13F2	Joe Freeman		9	ω	windmill	domestic	water levels	
1×1	Dick Evans		about 55	12	l P. electric	domestic	water levels, mineral analysis	
121	1		•	ρή×ρή	0 9	not used	9	
13R1 TFI	Vail Co.	Dec., 1926	85	;	0	not used	water levels, log	abandoned

Mailer Higenth 1	Well numbers	. Owner	I	s Well s depth,	* Casing * diameter	8 Pumping	: Use	0ther data	* Remarks
Walter Magarth 32 40 3 HP. easoline domestic water levels, log engine Walter Magarth Winter 1954 33 8 not used water level Walter Magarth Winter 1954 45 8 not used water level Ivan he Kinley 16 wncased not used water level Ivan he Kinley 64 10 not used water level Ivan he Kinley 64 10 not used water level Bader about Mar., 64 12 not used water levels Bader about Mar., 64 12 not used water levels Bader about Mar., 64 12 not used water levels Bader about Mar., 1952 12 not used water levels Bader about Mar., 1952 12 not used water levels Bader babolito Jan., 1952	State 8 Utner	000			s in inches	* equipment	eo .	available	80
Maller Hogarth Winter 1954, 15 35 8 not used water level Waller Hogarth Winter 1954, 15 16 0.00 seed not used water level Lyan Hc Kinley 16 10 not used water level, log Lyan Hc Kinley 64 10 not used water level, log Lyan Hc Kinley 64 10 not used water level, log Lyan Hc Kinley 64 10 not used water level, log Lyan Hc Kinley 64 10 not used water level, log Lyan Hc Kinley 45 10 not used water level, log D. Ippolitio 20 10 log D. Ippolitio 20 11 log D. Ippolitio 24 25 log D. Ippolitio 24 25 log <th>16-25J1</th> <th>¥alter Hogarth</th> <th></th> <th>•</th> <th>O[†]</th> <th># HP. gasoline</th> <th>domestic</th> <th>water levels, log</th> <th></th>	16-25J1	¥alter Hogarth		•	O [†]	# HP. gasoline	domestic	water levels, log	
Walter Mogarth Winter 1954 45 8 not used water level Valler Mogarth 103 8 not used water level, log Lvan Mc Kinley 16 uncased not used water level, log Lvan Mc Kinley 64 10 not used water level, log Lvan Mc Kinley 45 uncased log water level, log Bader 300t Mar. 45 uncased log 0. Lippolito 45 uncased log 0. Lippolito 200 14 etectric water level, log 0. Lippolito 300 14 etectric water level, log 0. Lippolito Jan., 1950 210 12 water level, log 0. Lippolito Jan., 1952 210 23 water level, log 0. Lippolito Jan., 1952 15 36 water level, log 0. Lippolito	25R1	Walter Hogarth	Winter 1954	33	80	0 8	not used	water level	open casing
Walter Hogarth 105 8 not used water level, log Ivan Hc Kinley 16 uncased not used water level, log Ivan Hc Kinley 69 10 not used water level, log Ivan Hc Kinley 64 10 not used water level, log Bader 1952 0. Ippolitio water level, log water level, log 0. Ippolitio 200 14 electric log 0. Ippolitio 240 log 0. Ippolitio 340 log 0. Ippolitio 340 water level, log	25R2	Walter Hogarth	Winter 1954	45	œ	0	not used	water level	open casing
Lyan Hc Kinley 16 uncased not used water level, log Lyan Hc Kinley 64 10 not used water level, log Bader 1952 10 not used water level, log 0. Ippolitio 45 ucased not used water levels 0. Ippolitio 45 ucased not used water levels 0. Ippolitio 200 14 electric and estric uater levels, log 0. Ippolitio 340 log 0. Ippolitio Jan., 1952 12 36 water levels, log 0. Ippolitio July, 1950 210 10 72 HP. electric irrigation, water level, log 0. Ippolitio July, 1950 210 36 not used water level, log 0. Ippolitio Jan., 1952 15 36 not used water level, log 0. Ippolitio Jan., 1952 1	36A1	Walter Hogarth		103	œ	D V	not used	water level	open casing
Lyan Hc Kinley 64 10 not used water levels Bader about Hars, 1952 64 10 30 HP, electric stock irrigation, water levels 0. Ippolitio 45 ucased 10g 0. Ippolitio 80 10 electric water level, 10g 0. Ippolitio 200 14 electric 10g 0. Ippolitio 300 14 electric 10g 10. Ippolitio 300 12 36 10g 10. Ippolitio Jane, 1952 12 36 water level, 10g 10. Ippolitio July, 1950 210 10 water level, 10g 10. Ippolitio July, 1950 210 36 water level, 10g 10. Ippolitio Jane, 1952 155 8 water level, 10g 10. Ippolitio Japolitio <td>36K1</td> <td>lvan Mc Kinley</td> <td></td> <td>16</td> <td>uncased</td> <td>3 11</td> <td>not used</td> <td>water level, log</td> <td>test hole</td>	36K1	lvan Mc Kinley		16	uncased	3 11	not used	water level, log	test hole
lander about there, 1952 64 10 30 HP, electric irrigation, stock water levels and there is stock 0. Ippolitio 45 orcased 10g 0. Ippolitio 200 14 electric water level, log or light 10g 0. Ippolitio 240 log water level, log water level, log water level, log or light log water level, log water level, log water level, log domestic 0. Ippolitio July, 1950 210 36 water level, log water level, log domestic 0. Ippolitio Joan, 1952 25 26 water level, log water	E- 1H!	Ivan Mc Kinley		69	10	3 9	not used	water level	
Bader about Hare, 1952 64 12 not used water levels 0. Lppolito 45 uncased 10g 0. Lppolito 80 10 electric water level, 10g 0. Lppolito 200 14 electric water level, 10g 0. Lppolito 3m, 1932 12 36 vater level, 10g 0. Lppolito July, 1950 210 10 vater level, 10g 0. Lppolito July, 1950 210 10 not used water level, 10g 0. Lppolito Jan, 1952 15 36 not used water level, 10g 0. Lppolito Jan, 1952 15 8 not used water level, 10g 0. Lppolito Jan, 1952 15 8 not used water level, 10g 0. Lppolito Jan, 1952 18 not used water level, 10g 0. Lppolito Tan, 1962 10	151	lyan Mc Kinley		ħ9	10	30 H° electric	irrigation, stock	water levels	
0. Ippolitio 45 uncased 10g 0. Ippolitio 80 10 electric domestic water level, log 0. Ippolitio 240 user level, log 0. Ippolitio Jan., 1952 122 36 water level, log 0. Ippolitio July, 1950 210 10 7½ HP, electric irrigation, water level, log 0. Ippolitio Jan., 1952 13 36 not used water level, log 0. Ippolitio Jan., 1952 155 8 not used log 0. Ippolitio Jan., 1952 155 8 not used log 0. Ippolitio Jan., 1952 13 atendoned log 0. Ippolitio 30 8 water level, log log 0. Ippolitio 10 atendoned log 0. Ippolitio atendoned	901	Bader	about Mar., 1952	†19	12	0 0	not used	water levels	
D. Ippolitio 200 14 electric	1501	O. Ippolito		1,5	uncased	e 0	Ç	log	test hole
D. Ippolitio 240 10g D. Ippolitio Jan. 1952 12 36 4 approximate a	1502	D. Appolito		80	10	electric	domestic	water level, log	
D. Ippolitio 240 10g D. Ippolitio Jan. p. 1952 122 36 abendoned 10g D. Ippolitio July p. 1950 210 10 7½ HP. electric irrigation, arter level, log domestic water level, log D. Ippolitio Jan. p. 1952 15 8 not used water level, log D. Ippolitio Japolitio 114 abendoned log D. Ippolitio 10 Ippolitio 114 abendoned log D. Ippolitio 10 Ippolitio 114 water level, log D. Ippolitio 10 Ippolitio 120 8 water levels, log	15E1	D. Eppolito		200	114	electric	0	water level, log	
Do Ippolitio Janoe 1952 123 36 water level, log Do Ippolitio Julyp 1950 210 10 7½ HP, electric irrigation, domestic water level, log domestic Do Ippolitio Janoe 1952 54 36 not used water level, log Do Ippolitio Japolitio 114 not used water level, log Do Ippolitio 150 8 not used water level, log Do Ippolitio 10 11 not used water level, log Do Ippolitio 10 12 not used water level, log Do Ippolitio 10 water level, log	15E2	D. Appolito		2η0	0	D 0	9	log	
D. Lppolito July, 1950 210 10 7½ HP, electric irrigation, domestic water level, log domestic D. Lppolito 54, 36 56 not used water level, log aper level, log D. Lppolito Jan, 1952 155 8 not used water level, log D. Lppolito 114 abandoned log D. Lppolito 500 8 not used water level, log D. Lppolito 120 10 water levels, log	1,5E3	D. Appolito	approxo Janog 1952	122	36	0 9	0 0	water level, log	
Do Lopolito Do Lo	15Eկ	D. Sppolito		110	9	3 0	abandoned	log	test hole
D. Ippolitio 54, 36 36 not used water level, log D. Ippolitio Jan., 1952 155 8 not used water level, log D. Ippolitio 114 not used log D. Ippolitio 500 8 not used water level, log D. Ippolitio 120 10 water levels, log	15E5	D. Ippolito	July, 1950	210	0.	7½ HP. electric	irrigation, domestic	water level, log	unable to measure
D. Ippolitio James 1952 155 8 not used water levels log D. Ippolitio 114 not used water levels log D. Ippolitio 120 10 water levels log	16N1	D. Appolito		54	%	9 9	not used		
Do Ippolito Do Ip	16N2	D. Ippolito	Jan., 1952	155	80	0 0	not used	water level, log	open casing
Do Appolito Do Appolito Do Appolito Do Appolito Do Appolitio Do App	1601	D. Ippolito		114	0	8 3	abandoned	log	test hole
D. Appolifo	1,602	D. Appolito		200	6 0	3 0	not used	water level, log	open casing
	1603	D. Appolifo		120	10	D	9 9	water levels, log	

Well numbers State s Other	0 NOET	Bate drilled	s depth	: Casing : diameter, : in inches	8 Pumping 8 equipment	n NSe	Other data available	Remarks
	,		Hydrograp	Hydrographic Unit No.	2 (continued)			
75/1E=17G1	Charles Bader	Mar., 1952	75	12	5 H° electric	domestic	water levels, log	
1762	Charles Bader		9	9	0	not used	water levels	open casing
1753	Charles Bader	Mar., 1951	3	0	3 HP. electric	irrigation	log	
1861	Q 9		Q 0	:	windmill	domestic		
1987	Duncan Industries		72	9	electric	domestic	water levels	
20P1	L. G. Robertson		0	12	3	not used	water levels	open casing
2001	R. W. Severns	1925	96	01	!	irrigation	analysis	
วรม	Knecht		10	*	windmill	not used	water levels	
26A1	0 1		9	g g	9	domestic	0	unable to measure
29£1	Parks	about 1906	58	7	windmill	domestic $_{ ho}$ stock	water levels, analysis	
30н1	P. B. Cross		18	3°x4°	windmill, I HP. electric	domestic	water levels, analysis	
30J1	A. J. and C. G. Bendler		10	3'x5'	windmill	stock	water levels	
30J2	A. J. and C. G. Bendler		18	μ'×16'	gasol ine engine	stock	water levels, log analysis	
32C1			9	%	windmill	not used	water levels	
3391	Tyler		i	10	vindmill	domestic	water levels	
34 E 1	a }	about 1926	ŀ	8 [†]	:	domestic, stock	water levels	
75/2Е- ІНІ ^а	:		ł	œ	vindmill	domestic	water level	
2E1ª	W. I. Smith		001	9	windmill	domestic	water levels	
3618	C. H. Tripp		#	;	windmill	domestic	water level	sealed

	σ.	g Date g drilled	sin feet	s diameter, s	Pumping equipment	s Use	s data s available	8 Remarks
			Hydrograp	Hydrographic Unit No.	2 (continued)			
75/2E- 6N]	Ivan Mc Kinley		0	70	1	domestic	water levels	
6N2	Ivan Mc Kinley		28	η2	0	not used	water levels	open casing
1101	Frank Lane	1943	8	uncased	vindmill	domestic	water levels	
1102	Frank Lane		92	9	9	not used	water levels	
IKI	Alexander	Dec., 1950	R	•	0	abandoned	100	
1141	E. Hayes	after 1941	33	10	vindmill	domestic	water level	
1301	George Hepburn	1945 or 1946	†† 1	9	gasoline engine	irrigation	water levels	
1502	George Hepburn		Ü.	ω	vindmil1	domestic, stock	water levels, malysis	
1303	Holland	about 0ct., 1953	8	9	electric	domes†≀c	water levels	
1 3N 1	L. W. Holcomb		0	œ	Windmill	domestic	water levels	
1581	C. A. Buchanan		0	ω	windmill	domestic	water level	
Інні	G. H. 01ds	abou† 1923	102	ω	Vindaill _o gasoline engine	domestic	water levels	
1 hH2	G. H. 01ds	about 1951	ĸ	ω	7	not used	water levels	open casing
22A1	Head		0	00	windmill	domestic	water levels	
2341	T. C. Pomeroy		0	B G	windmill	domestic	water levels	
2341	Coahuile Indian Reservation		Ģ N	ω	vindmill	domestic	water levels	
2341	Castillo		22	7	windmil)	not used	water levels	
239)	Coahuila Indian Reservation		Q 0	ω	windmil]	stock	water level	
24H1	Co No Ayers	1952	Ģ Q	ŝ	6 9	not used	water level	

vell numbers State a Other	3 OVPDOT	s Date s drilled	sin feeths	Casing adjanater, a in inches a	Pumping equipment	a 5	data s available s	Remarks
			hdrogra	ohic Init Mo	Adrographic Init No. 2 (continued)			
75/25-2681	Coahuila Indian Reservation	1940	46	œ	windmill.		water level, log	unable to measure
2901	Bradley		ĝ	9	800	not used	water levels	open casing
29R1	e 9		9	12	windmill	stock	water levels	
32A1	Parks		0	12	0 8	not used	water levels	
32F1	Betty 8. Murcell		1	12	gasoline engine	domestic	water levels, mineral analysis	artesian
3211	Parks		1	1	windmill	domestic	water levels, mineral analysis	artesian
3272	Parks		ጽ	œ	windmil1	stock	water levels	
33C1	Coahuila Indian Reservation	July, 1940	52	α	vindmill	stock	water levels, log, mineral analysis	
7S/死- 4HI	Edmund G. Herring	Fall 1949	135	œ	windmill.	irrigation	;	
2H2	Edmund G. Herring	Spring 1950	124	12	1	irrigation	log	
104	J. E. Cartier	1951 or 1952	91	12	gasol ine engine	stock, irrigation	water levels, log	
6E1 ⁴⁸	1		0	9	windmill	domestic	water levels	
i æ	A. T. Thompson		210	10	windwill	domestic, stock	water levels, mineral analyses	
7R2	A. T. Thompson	Apr., or May, 1951	220	æ	i	not used	ì	unable to measure
8£1	Marjorie and Edward F. Roalfe		125	•	vindmill	domestic, stock	water levels	
801	C. Hornback	prior to 1916	107	æ	windmil]	domestic, stock	water levels	
186	Dickson Bros.	1952	220	80	vindmill	not used	water levels, log	

			1177	ouise)		o	3 0 Ther	
Well numbers	3 Owner	p Date of illed	s depth, s	0.0	s equipment	Use	data available	8 Remarks
			Hydrogrep	Hydrographic Unit No.	2 (continued)			
75/3E= 10=1	George M. Schmoll	Octos 1949	252	æ	vindmill	domestic	water levels, log	
1041	Nye		280	α	windmill	domestic	water levels	
1101	J. D. Sherman	1548	38	9	0	not used	yater levels	
1303	Elmer E. Everet	AUg., 1950	32	12	0 0	domes†ic₂ stock	water levels, log	
1303	Elmer E. Everett		10.8	04	9 0	not used	water levels	
1303	Elmer E. Everet†		5.6	တ	2½ kP. gasoline engine	domestic, stock	woter levels	
ThCs	J. D. Sherman		22	ω	windaill	domestic, stock	water leveiss mineral analysis	
લુંગ	Sodoe		95	12	Q Q	not used	water levels	
) 65 65 7	Anne Hurd		a 0	0	windmill	0 0	0 0	unable to measure
C-1	Anne Hurd	AUS:0 1951	112	01	electric	irrigation	d n	unable to measure
3,502	John Pena		213	ග	vindmill	domestic _s stock	3	unable to measure
1503	9		89	ထ	windmöil	stock	water levels	
15N1	Bob Holcomb		7.0	9	wendmell	domestic	water levels	
15N2	Sot Holcomb	Summer 1953	3 106	81	Q 0	ing igation	water levels	contains laterals
1.45)	John Bohlen		20	7	windmill	domestic _p	water levels, mineral analysis	artesian
1501	John Bohllen		8	7	windmill	stock	water levels	
1502	John Bohlen		0	7	windmill	stock	ij	
1503	John Bohlen		8	2	windmill	stock	water leveis	
16K.1	新。	Oct., 1949	15	ω	u HP. gasoline engine	domestic	7 0	unable to measure
1642	Lschwasd	2458	09	æ	v once of 1	stock	water levels	17 ?

: Remarks						unable to measure	Former owner J. H. Arbuckle		open casing									
s Other s date s avasiable		() (†	water levels, log	water levels, mineral analyses	water levels, log	0	water levels	water levels, mineral analysis	water levels, log	water levels	water levels	water levels	water levels	water levels, mineral analyses	water levels, mineral analysis	water level	water levels, mineral analysis	water levels, log, mineral analyses
. 20 20 00 20 20		Ç Q	net used	domestic	domestic, stock	domestic	domestic, stock	domestic, stock	not used	stock	domestic	domestic	not used	irrigation	irrigation	:	irrigation	irrigation
Pumping equipment	Hydrographic Unit No. 2 (continued)	ş. 0	0	vindmil!	0 0	6 6	windmill	windmill	3	windmill	4.5 to 6 HP. gasoline engine	windmill	hand pump	windmill	windmill	gasoline engine	vindmill	g 0
Casing : diameter, : in inches :	hic Uniš No.	9	7	ω	. *	0	0	ω	80	9	10	œ	9	16	10	0	•	11
Welldepthsin feet	Hydrograp	15	190	138	101	841	011	0	260	ů	Q 0	100	20	583	0	0	0	305
o Daie ovilled		1953	Aug. 1950	June, 1948	prior to 1943	Apr., 1950			Feb., 1953			r 1937		NOV. 8 1951	prior to 1916			Sept., 1954
3 0 vne:		Register	E. G. Register	H₀ A₀ Bergman	Robert L. Register	State Division of Forestry	0 0	Lincoln Barbmen	G. Lee Ison	G. Lee Ison	Lydia King	Florence Stonebreaker	Florence Stonebreaker	H. A. Pursche	H. A. Pursche	H. A. Pursche	H. A. Pursche	H. A. Pursche
Well ∩umbers State s Other		75/384341	16N1	16P <u>1</u>	1602	1661	1,781	1701	1721	l 7R1	18A1	18N1	18N2	20A1	2081	2082	2003	2002

Vell	Well numbers	% Ovner	8 8 Date 8 drilled	* Well * depth * in feet	s casing s diameter, s in inches	8 Pumping 8 equipment	o o o	s Other s data s available s	Remarks
				Hydrogr	Hydrographic Unit No.	20.2 (continued)			
75/3E-20E1		Encinitas Ranch		46	6	vindmill	domestic	0	unable to measure
2061		H. A. Pursche	Apr. 2951	230	2	windmill	0 0	water levels, log	
2062		H. A. Pursche	Nov., 1950	158	12	vindmill	irrigation	0	unable to measure
20H3		M. A. Pursche		• 0	0	wêndmêll	ier igation	water levels $_{ ho}$ mineral analysis	
20-11		H. A. Pursche	Apr. 0 1951	100	80	Windmill!	domestic, irrigation	5 0 {	
2012		H. A. Pursche	Apr. 1951	24	80	windmill	domes≑ic	water levels, log mineral analysis	
2013	Rig Well	H. A. Pursche	1950	300	25	gasoline engine	irrigation	Water levels, log	
20.14	Van Winkle 1	H. A. Pursche	Sept., 1950	127	uncased	0	not used	§ o §	abandoned
20.15		Ho As Pursche		g Q	9 0	0	irrigation	water levels	
2005		H. A. Pursche		9	30	0	not used	8 0	
20M1		0 9		0	2	windmill	domes†ic	water levels	
2003	Van Winkle 3	H. A. Pursche		55	uncased	0	not used	108	abandoned
2002		H. A. Pursche	1953	52	18	0	not used	water levels	
2003		H. A. Pursche	1953	23	12	J 0	not used	water levels, log	
20R1	Van Winkle 2	H. A. Pursche	Apr. 1951	120	œ	0 0	not used	water levels, log	
20R2		Ho Ao Pursche		80	#	0 0	not used	water levels	abandoned
20R3		H. A. Pursche	June 1953	168	12	0	not used	water level, log	
2181		Hugo G. Westphalen		0	ů	windmil!	domes†ic	water levels	
2101		Hamilton School		135	œ	vindmill	domestic	water levels	
2151		9 0		6	9	windmill	not used	water levels	
2161		Hugo G. Westphalen		0	0 0	Butene gas eng≀ne	i er igat ion	water levels	F
									7.

Renarks			109	l og	Sis	100	log. Sis		109		1 og		10g	109						109
s û∳her s da†e s aveilable		water levels	water levels,	water levels, log	water levels, mineral analysis	water levels, log	water levels, log, mineral analysis	water levels	water levels, log	0 9	water levels, log	306	water levels, log	water levels,	water levels	1	water levels	water levels	water levels	water levels, log
8 8 Use 8		not used	irrigation	domestic, irrigation	domestic. stock	not used	0	not used	irrigation	not used	irrigation	irrigation	stock	not used	irrigation	irrigation	not used	not used	domestic, stock	irrigation,
Pumping equipmen†	dydrographic Unit No. 2 (continued)	windmill	Q Q	vindmill vindmill	windmill	000	windmil!	windmill	0	0 0	Bu†ane gas engine	gasol ine engine	windmil1	0	gasol ine engine	0 0	0	•	windmill	vindmil1
s Casing s dismeteros s in inches s	aphic Ini† No	œ	12	80	9	10	æ	8	12	ω	12	12	æ	12	8	0 3	09	æ	9	12
s depth sin feet	Hydrogr	04	232	201	\$2	287	88	30	117	9 0	161	178	\$45	230	;	76.	84	93	8	101
Date control of the c	•	Julys 1912	Sep†., 1950	1924	1930	abou∜ 1951	9461 800N		Apr., 1952	1900	0c†∘, 1949	Aug., 1953	1935	1947						July, 1951
s 9 Owner 5 S		C. I. Johnson	C. T. Johnson	C. T. Johnson	C. S. Confreras	C. S. Confreras	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	C. T. Johnson	C. I. Johnson	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	L. J. Hamilton	E. G. Herring
Well numbers State s Other		75/3€-21J1	21,72	21.03	23K1	21K2 Bent l	216.1	21,2	211.3	21.4	21P1	21P2	2181	21R2	2281	2282	2283	228h	2201	2201

				(continued)				
Vell numbers State s Other	owner s	Date drilled	s Well s depths	s Casing s diameters s in inches	Pumping equipment	% % %	s Other s data s available	8 Remorts
			vdrographi	Hydrographic Unit No. 2	(continued)			
7S/ 또- 2⁄202	H. R. Lichwald	prior to 1924	8	•	windmill	domestic _p stock	water levels	
2205	H. R. Lichwald	1948	গ্ৰ	8	windmill	domestic, stock	water levels	
22D4	H. R. Lichwald	Feb., 1950	107	10	8	not used	water levels, log	
2205	H. R. Lichwald	Feb., 1950	107	uncased	0	not used	log	abandoned
2206	H. R. Lichwald		210	10	9	irrigation	water levels	
2271	0		•	80	windmill	0	water levels	
22NI	C. T. Johnson	about June $_{\scriptscriptstyle 0}$ 1950	13%	80	9	not used	water levels, log	
2301	Ever† Ranch		0	ĝ	Û	not used	water levels	
2381	D. Raisis		64	û	windmill	domestic	water levels	
239.2	A. Lappos		90	7	windmill	domestic	water levels	
2701	Coahuila Indian Reservation	about 1950	ì	ω	windmill	stock	water level	
2743	Coahuila Indian Reservation	June, 1940	115	æ	v €ndm ŝ 1 1	stock	water levels, log, mineral analyses	
311.)	Coshuila Indian Reservation	Aug. 1940	5	æ	vindnill	0	water level, log	
34E1	Coahulla Indian Reservation	Nove 1945	549	æ	gasoline engine	not used	water levels, log	
75/4E~1981	0		9	3%	0	not used	water levels	
1961	C 4		0	œ	windsill	not used	water levels	
1947	L. o . F. CO. CO.		ò	84	vindaill	domestic	water levels	
208,	t ockwood		9 5	0	windmill	domestic _r stock	woter level	
1502	Poorner		Cotto	0	windeill	stock	0	

					MATER MELL DATA (continued)	L DATA			1	F-43
S ÷a ÷e ·	tell nimbers	3 0 mag	s Date s dilled	dep 4	s Casing s diameters s n inches	Pumping sequipment		of her	2 x 1 5 C 2 5 C 1	. 1
				Hydrogr	8	2		ı İ		
75 th 5-20K1		Ç		9	0	P D	stock	0		
20° 1		Q Q		0	7 8	vinchill	stock	0		
85/1E- 2E1		0 0		0	84	6	not used	Mater Jove	70.000	
201		Mrs. Farrand		71	84	9 0	irrigation	water levels		
Z		C. J. Clark		37	*	He electric	domestic	water levels		
ฉิ		George Marion	Oct., 1953	Ð	10	electric	domestic	8		
681		J. E. Shanko		57	*	windmill, EMP. electric	domes†ic	water levels		
682		J. E. Shanko		about 100	ì	≠indmill	6.0	water levels		
6M1		Ber† Sharp		29	*	windmil:	domestic	Water levels		
E		James Ovia≯†		512	uncased	1	not used	106	abandoned	
INI.	No. 5	James Oviatt		105	12	electric	irrigation	water levels, log	originally	
JN2	7-5	James Oyiatt	Dec. 1948	*	Ucased	1	not used	water level, log	362 Ft. deep abandoned	
J d	No. 6	Jenes Oviatt	Nov., 1948	130	2	ļ	, , , , ,		test hale	
7P2		James Oviat+		2	7	9	not used	water levels, log	open casing	
102	N. C.			:	1	1	8	9 17	being drilled 1954	
, E			0ct., 1950	256	œ	15 HP. electric	irrigation	water levels, log, mineral analysis		
j k			Apr., 1947	23	12	•	not used	water levels, log	originally 82 ft. deep open casing	<u>.</u> °
<u> </u>	NO. 12	James Oviatt		54	uncased	ı	not used	water levels, log	originally 70 ft. deep	

-
_
4
25
. 2
글.트
m .=
ш.—
35 +-
_
e 8
_ ~
ш
-

85/16-704 8E1 Ho Ro Wood 8K1 12N1 17N2 10 C. Tyler 17A2 17A2 10 C. Tyler 17A4 17A2 10 C. Tyler 17A4 17A5 10 C. Tyler 17A4 17A6 17A6 17A7 10 C. Tyler 17A7 10 C. Tyler 17A8 17A9 10 C. Tyler 17A9 17A9 17A9 18A1 17A1 18B1 19A0 10 C. Tyler 17A1 17A1 18B1 19A0 10 C. Tyler 17A1 17A1 17A1 18A1 19A1 10A1 Oct., 1950	Hydrogræphic Unit No. 81 8	7. 7. 7.					
CI O Q	0ct., 1950	81	INC UNIT NO.	2 (continued)			
0 0			co	7½ HP. electric	domestac	water levels $_{ m p}$ mineral analysis	
% %		112	10	vindaill		water levels	
8 ° ° 8 €		ŧ	10	electric	stock, domesfic	water levels	unable to measure Nov∘⊅ 1953
% %	NOV. B 1953	£28	uncased	Q	not used	log	test hole
8 0 %		95	œ	-0	8	water levels	open casing
8	Мау _о 1948	113	6 0	0	not used	water levels	open casing
8 0 ° 0 2	1948	152	10	5 H° electric	domestic	water levels, logo mineral analysis	
8 0° 23	0ct., 1952	140	uncased	D 1	not used	log	abandoned test hole
8 0° 2	Oct., 1952	273	uncased	0	not used	log	abandoned test hole
8 8		61	œ	Q 0	not used	water levels	open casing
8 80 2	ool	100	9	9 0	not used	9 0	abandoned
X ° °	ool 1953	81	12	3 H. electric	domestic	water levels, with an ending $oldsymbol{g}_i$	
№ 00 × 00 × 00 × 00 × 00 × 00 × 00 × 00	about 1939	821	s	2 H° electric	domestic	log	
	1946	261	12	0	not used	water levels, log	open casing
	1945	92	œ	vindmill.	domestic	water levels, mineral analysis	
	Sept., 1939	198	œ	vindmi11	no: used	water levels, \log_{ρ} mineral analyses	
8S/ZE= 5Al		ē	9	windmill	not used	water levels	
501 Betty B. Murcell	.1 Aug. p 1952	16	0.2	gasoline engine	stock	water levels, log	

state s 011	mbers O†her b	ئ ك ك	s Oate s drilled	s depths	Well a Casing depth, a diameter, an feet a in inches w	Pumping equipment	S O S	other data available	3 Remarks
				Hydrogram	shic Unit No.	Hydrographic Unit No. 2 (continued)			
8S/2E~ 5C2		Betty C. Murcell	AUE . 1952	n.B	Û G	0 0	not used	log	abandoned
M M mc		Mc Grew		0	0	gasoline engine	domestic, stock	Q-15	unable to measure
8S/3E~ 2Elª		Coahuila Indian Reservation	-	0	α	windmill, gasoline engine	domestic, stock	water levels, mineral analyses	
2319		Coahuila Indian Reservation	_	Ĉ	9	windmil!	stock	water levels, mineral analysis	
3C1		Howard Bailey		B 0	8	windmill, gasoline engine	domestic, stock	water levels, mineral analyses	
801		Spook		96	9	0 0	not used	water levels	
802		spoo n		98	ထ	⊭indmi11	domestic	8 0	unable to measure
85/34-1231	9-1	James Oviatt	Dec., 1948	23	uncased	8	not used	I og	abandoned test hole
12x1 No. 7	No. 7	James Oviatt	1948	29	† 1	Ç.	not used	water levels, $\log_{\scriptscriptstyle \mathcal{D}}$ mineral analysis	

	Remarks								abandoned		unable to measure (May 1951)					unable to measure			1
	s Other s data s		water levels	water levels, log, mineral analyses	water level, log	mineral analysis, log	water levels, log, mineral analysis	water levels, log _s mineral analysis	Water level, mineral analysis	water levels, log mineral analysis	water levels, log, mineral analysis	water levels, mineral analysis	water levels, log, mineral analyses	Pog	1	a 0	water levels, log, mineral analysis	water levels, log, mineral analysis	water levels
	s s s		riot used	*	domestic	domestic	domestic	domestic	not used	domestic	domestic	domestic	domestic	Irrigation	domestic	domestic	domestic	domestic	not used
	Pumping equipment	it No. 3		;	0	0	windmil.	¥êndmê1.3	vindmil!	electric	4 HP. electric	vindmil1	vindmill, electric	15 HP. electric	electric	vindmill	C 9	* indnii)	I legal 3
•	<pre>\$ Casing \$ \$ diameter, ? \$ in inches ;</pre>	Hydrographic Unit No. 3	9	9	9	œ	∞	10	0	89	æ	10	12	12	80	æ	3 0	8tı	œ
	Well depth _o n feet	對	62	110	106	110	79	85	ŀ	155	74	19	83	87	14.7	ł	100	F2	i D
	Date 8 drilled si			1947	Dec., 1948	about 1941	about 1937	1934		Apr., 1952	1947		Spring 1942	Mar., 1952			about 1942	prior to 1932	
	s Owner s		ç	S. T. Anderson	C. W. Haggard	C. ¥. Haggard	G. L. Coffer	Lulu Hiller	lrene Barton	Irene Barton	Clinton C. Davidson	W. W. Cottle	We Re Gibbon	W. R. Gibbon	E. M. Dold	Lo Wo Hogesh	G. A. Spaniol	6. A. Spaniol	!
	well numbers State s Other		85/1E-19E1	19+1	19F2	1953	Ізні	1942	£461	19н;	1911	1941	1961	1905	20.1	201.2	20H1	20M2	20P1

A Continued

12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Cate :	Veti Coption in feet	Casing digmeter, in inches	Frequinge '	29 (4)	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	: Remarks
		-1-1	rdrograph	Hydrographic Unit No	3 (0			
	C C C C C C C C C C C C C C C C C C C	Apr. 2 354	130	30	4 ; 0	domes∜ic	water levels, 192, mineral analysis	
	P. Bergman		9	7	electric	domestic	water levels	
	P. Bergman		50	10	windmill	stock	water levels	
	P. Bergman		1	10	3 HP. electric	domestic	water levels	
	G. Holnes		125	12	windmill, electric	domestic	water levels	
	G. Holaes		18	œ	;	not used	water levels	
	0, B. lrunnell		:	;	;	į	;	
	0, 8, irunell		107	œ	⊌indmill, gasoline engine	not used	water levels	
	Robert L. Burchett	1957	105	œ	1 Ho electric	domestic	water levels	unable to measure
	J. F. Bergman	1939	16	:	Vindmill, ½ HP. electric	domestic	water levels, mineral analyses	
	0. B. Trunell		140	œ	D 8	domestic, irrigation	water levels, mineral analyses	
	D∘ B. ĭrunnell		12	9	;	not used	;	abandoned
	D. B. Trunnell	1952	260	12	15 H°. electric	irrigation	water levels, log, mineral analysis	
	E. W. Deter	AUG., 1949	130	9	0	domestic	water levels	
	E. ₩. Deter		;	œ	windmill	not used	water levels	abandoned
	Van Gordon	Summer 1948	140	9	# H. electric	domestic	;	unable to measure
	F. A. Payne	about 1940	87	;	clectric	domestic	water levels	
	P. Bergman		59	*	windmill	domestic	water levels	
	L. Offen		1	ł	2 H. electric	domestic	ı	unable to measure

Well State	Well numbers s State s Other b s	S Owner	s Date s drilled	s Well s depths s sin feets	Casing diameter, in inches	8 Pumping 8 equipment	SS NS	s Other s data s available s	s Remarks
				Hydrogra	Hydrographic Unit No.	00 2 (continued)			
8S/2E-33Cl	No. 11	James Oviatt		126	80	windmill	stock	water level, log	
3302		James Oviatt		£9	0	0.9	not used	log	abandoned
85/14-13K1	Tyrrell 1	G. L. Knox	Julys 1947	279	01	windmill	stock	water levels, log, mineral analyses	originally 2,59¢ ft. deep
1301		Go Lo Knox		190	10	5 HP. electric	domestic, irrigation	water levels, mineral analysis	
2001		Smith		165	0	a 0	domestic	Ģ B	unable to measure
23K1		U. S. A.		0	22	dwnd buey	domes†ic	water levels _s mineral analyses	
2481		G. L. Knox	Feb. 1954	183	10	15 H. electric	irrigation	log	
2501		Bernard Appel		\$ 0	0 D	2 H° electric	2 Q	water level, mineral analysis	
95/1E- 181		H. Yolker		207	10	0 9	not used	water levels	
182		H. WOLKER		125	12	windmill	domestic	water levels	
101		A. A. Ward	6468	33	10	4 HP. electric	domestic $_{\scriptscriptstyle\mathcal{D}}$ stock	vater levels, log, mineral analysis	
102		A. A. Ward		27	æ	windmill	no† used	water levels	open casing
12A1		A. A. Ward	1948	1 1	\$	windmill	domestic $_{ m p}$ stock	water levelsp log∂ analysis	
1241		A. A. Ward	Fall 1949		16	9	not used	water levels, log	
95/2E- 6D1		8		28	6	0.00	O B	water level	
64. B		W. R. Scott	Dec. p 1951	526	41	8 0	domes†ic	water level, log	unable to measure
701		A. Christino		85	6	9.0	not used	water levels	open casing
702		A. Christino	Oct., 1953	100	10	electric	0 0	water levels	
801		James Oviatt		0	80	windmill	stock	water levels	
802		James Oviatt		0	80	windmill	stock	water levels	F-
									į

Vell	Well numbers :	0wner	s Date s	s deping s	in inches	equipment	80	s available s	
	i			Hydrogra	phic Unit N	Hydrographic Unit No. 3 (continued)			
95/2E- 9P1	No. 3	James Oviatt	Feb., 1946	96	12	windmil1	not used	water levels, log	
15F1	9 °0N	James Oviatt		3165	80	windmill	stock	water levels, log	
15R1	No. 10	James Oviatt		59	∞	vindmill	stock	water levels, logo mineral analysis	
15R2		James Oviatt		88	\$ 0	0	not used	10g	abandoned
16A1		James Oviatt		160	# @	7	· not used	10g	abandoned
1891		James Oviatt		200	0	0	not used	10g	abandoned
16E1		P. Bergman		09	œ	à 0	not used	water levels	open casing
16F1	Roberts Well No. 8	James Oviatt		1480	21	1	not used	water levels, log	
1991		Bergman		80	7	1 1	not used	water levels	
161	Crooked hole	James Ovistt		961	0	;	not used	10g	abandoned
161.2	N\ 0	James Oviatt	Dec., 1948	7	uncased	į	not used	log	abandoned
146N1		James Oviatt		202		8	not used	log	abandoned
1691	7-2	James Oviatt	Dec., 1948	9	œ	!	not used	10g	abandoned
1771		Wentworth		•	1	vindmi11	domestic	1	unable to measure
1 7K 1		Bergman		0	ω	windmill	domestic, stock	water level.	
17K2		€. Hatteb∪hr		O _T	∞	½ HP. electric	domestic	water levels	
1763		Anna Bergman	Aug., 1953	19	12	5 HP. electric	irrigation	water level, log	
1 7K U		Bergman		ŀ	ω	½ HP. electric	1	;	unable to measure
1701		R. F. Raybold	1947	92	09	_ {	not used	10g	originally 60 ft. deep
1 78.1		United States Forestry Service		32	*	3 H. electric	domestic	water levels, log	unable to measure (Apr., 1954)

Well n	Well numbers	© Owner S	Date drilled	s well s depth r	Casing s diameters s in inches s	Pumping equipment	Use	10 %	Other data available	Remarks
				Hydrograph	, ,	3 (continued)				
95/2E-20A1		Painter, Mc Alpine, and Knox		O†	10	1 Ho electric	domes†ic	water levels	veis	
20A2		D. L. Martin		09	10	# H° electric	domestic	water levels	vels	
20 A 3		D. L. Mar†in	Sept. 1953	08	01	1 Ho electric	domestic, irrigation	ţ		
20Ats		Harry A. Christman	June, 1953	29	Ø	1 HP. electric	domestic	water levels	vels	
2081		M. M. Lloyd		85	ω	1 Ho electric	domes†ic	water levels	veis	
2108	104	James Oviatt	Dec., 1948	36	uncased	ę. D	not used	go (abendoned
21E1	NO. Blb	James Oviati	Nov., 1950	011	∞	9 0	not used	water levels,	vels, log	unable to messure (June, 1952)
2261		Ho Taylog		0	0	gasoline engine	domes† €c	water levels	veis	
22.11	No. 4	James Oviati	9461	153	12	windmill	stock	water Levels	vels, log	
22N1		Co Ho and Mo Ac Snaveley Uro		ů 0	ij E	hand pump	not used	water levels	vel s	
2 % 1		Dorothy Veazey	Feb., 1950	55	cincased	Q 0	not used	water le	water level, log	abandoned
26E1		Herman Silveria	9461	37	16	Ů Q	not used	water le	water levels, log	
2 9 E5		Herman Silveria	about 1947	50	10	J 6	domestic	100		unable to messure
26E3		Ralph D. Buzard		78	œ	2 Ho electric	domestic _s stock	water levels	vels	
26E L		Ralph D. Buzard		56	0	dwnd bued	stend by	ij ij		unable to measure
26E5		Ho Co Screnton	Nov., 1953	*** ****	3,5	gasoline engine	dom e s†ic	water Ievels	vels	
26.1		B. E. Ward		100	ထ	1 He electric	domestic	3 8		unable to measure
24.2		8. E. Ward	Oct., 1953	ьСъ	යා	5 H. electric	irrigation	water te	ievels	
27H}		C. W. and R. B. Burn	Nov. 1950	90	10	1 Ho electric	not used	water levels,	veis, log	
2703		P. C. Morrissey	1931	35	10	2 HP. electric	not used	water le	water level, log, mineral analyses	F-

Pond vell		a or by led	sin feet s	in inches a	s equipment	dec	8 available	o neiborne
			Hydrograp	hic Unit No.	Hydrogrechic Unit No. 3 (continued)			
	Michael and Clara Komen	Jan., 1950	35	10	b 0	not used	water levels, log	
	See Remarks	Jan., 1950	100	01	7½ PP. electric	recreation	log	well crilled for Koman on property of Deane Bottorf, formerly owned by P. C. Morrissey
Corral well P	P. C. Morrissey.	1947	35	æ	•	not used	water levels, log	
	William R. Hartly		150	12	5 P. electric	domestic	water levels	
-	Holcomb Estetes		82	;	9 9	not used	water level	
	Llcyd Mitchell		ù 0	0	0	not used	water levels	
01	S. J. Curtis	1953	about 60	92	9 8	not used	water levels	
01	S. J. Curtis	1953	09	36	9 0	not used	water levels	
01	S. J. Curtis		57	%	5 H. electric	irrigation	water levels	
01	S. J. Curtis		09	30	12 Ho electric	domestic	water level	
a.	Roy C. Jackson		105	ω	vindmill	domestic, stock	water levels, log, mineral analysis	
œ	Roy C. Jackson	about 1947	52	œ	* * *	irrigation	water levels	
ac.	Roy C. Jackson	about 1930	32	:	b 0	not used	i	abandoned
T	Harriet B. Carr	Sept., 1948	09	21	1½ H. electric	domestic, irrigation	water levels	
_	Harriet B. Carr	0461	61	19×14	1	stand by	water levels	
	L. Zimmerman	Apr., 1951	27	9	He electric	domestic, stock	water levels, log	unable to measure
7	J. R. Tobin	about 1948	50	10	electric	domestic, stock	water level	unable to measure

Hydrographic Unit No. 3 (continued) L. M. Oxley 115 10 1 HP. electric domestic water levels	State : Other :	Owner	bate drilled	- 1	<pre>% Well : Casing : % depth, % diameter, % % in feet : in inches :</pre>	Pumping equipment	ng en t	USe	90 00 00	Other data available	08 WO CO	Remarks
		L. M. Oxley		hydrogre 115	aphic Unit N	2. 3 (continu	ued) tric	domes∜ic		ater levels		

	di-
	-
	- 1
	,
	- 1
	- 9
	4
	1
	4
	4
	1
	,
	1
	- 1
	- 1
	-
	1 3

10 10 10 10 10 10 10 10	Well State	s ⊌ell numbers ste s Other bs	0 wher	s Date s drilled	s depths sin feet	s casing s diameters s in inches	Pumping equipment	s Use	s Other s data s available	* Remarks
E 7 N Vail Co. Dec., 1926 110 not used water levels, log or set of se					Í	varographic	Unit No. 1			
E 7 N Valid Co. Decc, 1926 125 not used water levels, log L 8 N Valid Co. Jan., 1927 266 not used water levels, log P - R - 3 O Valid Co. Hayp 1919 119 20 15 Pr. electric Irrigation water levels, log 30-A Valid Co. July, 1925 122 7 mirerial analysis 10 collector Jr. Valid Co. July, 1925 120 7 irrigation water levels, log P - R - 10 C. Valid Co. Move, 1938 137 irrigation water levels, log P - R - 10 C. Valid Co. July, 1925 78 1 1 Pr. electric irrigation water levels, log P - R - 10 C. Valid Co. July, 1925 78 1 Pr. electric irrigation water levels, log P - 9 C. Valid Co. July, 1925 78 1 Pr. electric <td< td=""><td>189 -#1/58</td><td>Pv 8</td><td>Vail Co.</td><td>Dec., 1926</td><td>110</td><td>U B</td><td>Ü</td><td>not used</td><td>water levels, log</td><td>abandoned</td></td<>	189 -#1/58	Pv 8	Vail Co.	Dec., 1926	110	U B	Ü	not used	water levels, log	abandoned
L B N Vail Co. John, 1927 266 — — — not used water levels, log P, R, 3O Vail Co. May, 1925 139 20 15 Ft, electric Irrigetion water levels, log 3O-A Vail Co. July, 1925 122 7 — not used water levels, log 90-A Vail Co. July, 1925 122 7 — not used water levels, log P, R, 2A Vail Co. May, 1940 177 — — not used vaer levels, log P, R, U. C. Vail Co. July, 1925 7 — — log, mineral P, R, U. C. Vail Co. July, 1925 7 1 PF, electric rrigation water levels, log, log, mineral P, R, U. C. Vail Co. July, 1925 7 1 PF, electric rrigation water levels, log, log, log, log, log, log, log, log	- 2J	~	Vail Co.	Dec., 1926	325	0	G 0	not used	water levels, log	abandoned
Po Ro 30 Vail Co. High 12 20 15 Hr. electric irrigation water levels, log, mineral analysis 30-A Vail Co. July, 1925 122 7 not used vater levels, log, mineral analysis 30-A Vail Co. July, 1925 122 7 not used Jog vater levels, log, log, and log, lighted log, log, log, log, log, log, log, log,	$\frac{7}{2}$	ಬ	vail co.	Jan. 6 1927	506	0	⊌ 0	not used	water levels, log	abandoned
Po R, 30 Vail Co. Hayp, 1915 119 20 15 FP, electric irrigetion water levels, log interal analysis 90-A. R, 31 Co. July, 1925 122 7 — not used vater levels, log interal analysis Diesel Jr. Vail Co. Hay, 1940 177 — — not used log vater levels, log interal analysis P. R. MO Vail Co. July, 1925 290 16 30 FP, electric irrigation vater levels, log interal analysis P. R. MO Vail Co. July, 1925 7 1 FP, electric irrigation vater levels, log interal analyses P. R. MO Vail Co. July, 1925 7 1 FP, electric irrigation vater levels, log interal analyses P. S. William Los Jabout 1901 515 2	THI		Vail Co.		84	12	wêndmê li	stock	water levels	
90-A Vail Co. JULy, 1925 122 7 — not used vater levels, 10g Diesel Jr. Vail Co. Hay, 1940 17 — — not used 10g New Diesel Vail Co. Hay, 1940 17 — — irrigation vater levels, 10g P. R. 40 Vail Co. June, 1952 296 16 30 4P. electric irrigation vater levels, 10g P. R. 40 Vail Co. July, 1925 78 1 PP. electric irrigation vater levels, 10g Well Vail Co. 1953 11k 8 — not used 10g manaral Well Vail Co. 1953 11k 8 — not used 10g manaral Windmill well Vail Co. about 1901 515 12 — not used vater levels, 10g V S well Vail Co. Oct., 1929 15 2 vindmill vater levels, 10g vater levels, 10g V S well Vail Co. Oct., 1993	RAT	P. R. 30		May ₀ 1919	119	20	15 M° electric	irrigation	water levels, log, mineral analysis	
New Diesel Jr.a Vail Co. Hay, 1940 60 not used log New Diesel Jr.a Vail Co. Nov., 1918 171 irrigation vater level, 10g P. R. 26 Vail Co. Nov., 1918 187 7 not used 10g, mineral analysis P. R. 1J. Co. Vail Co. July, 1925 78 7 1 HP. electric 10g, mineral analysis New C. G Co. Vail Co. July, 1925 78 7 1 HP. electric 10g, mineral analysis New C. G Co. Vail Co. July, 1925 78 10g, mineral analyses Vey 9 Vail Co. July, 1925 127 10g, mineral analyses Pv 9 Vail Co. June, 1901 515 12 vindeill 510k vater levels, 10g Pv 5 Vail Co. June, 1902 52 40 HP. electric irrigation vater levels, 10g Pv 5 Vail Co. June, 1902	1132	30~A	Vail Co.	July, 1925	122	fres	Q g	not used	water levels, log	
New Diesel Vail Co. Hay, 1940 171 irrigation water level, 10g P. R. 26 Vail Co. June, 1952 296 16 30 HP. electric irrigation water levels, 10g, mineral analysis P. R. 40 Vail Co. July, 1925 78 7 1 HP. electric 10g, mineral analysis New C. C. Vail Co. Vail Co. 1953 114 8 not used 10g, mineral analysis Ny G. V.	1113	Diesel Jr.	Vail Co.	1929	90	0	ņ	not used	log	abandoned
Po Ro 26 Vail Co. Nove 91918 117 7 not used iog Po Ro 40 Vail Co. June 1952 296 16 30 iP. electric irrigation wet-revels log, mineral analysis Po Ro U. Co. Vail Co. July, 1925 78 7 1 HP. electric 10g, mineral analysis New Co Co. Vail Co. 1953 114 8 not used user levels, log, analysis Py 9 Vail Co. Feb. 1927 127 not used user levels, log, analysis Py 9 Vail Co. Boout 1900, 515 12 vindmill stock water levels, log, analyses Pv 5 Vail Co. 3924 vater levels, log, and log, and log, analyses vater levels, log, and log, and log, analyses Pv 5 Vail Co. 3904 vater levels, log, analyses Pv 5 Vail Co. 3903 540 vater levels, log, analyses Pv 5 Vai	MAL	New Dissel		Мау» 1940	17.1	0	3 0	irrigation	¥ater levelρ log	
Po. Ro. Wolf Co. Vail Co. June, 1952 296 16 30 HP. electric irrigation water levels, log, mineral analysis Po. Ro. Wolf Co. Vail Co. July, 1925 78 7 1 HP. electric log, mineral analysis New Co. G. Co. Vail Co. 1953 114 8 log, mineral analysis Pv 9 Vail Co. Feb., 1927 127 not used uster levels, log windmill well Vail Co. about 1901 515 12 windmill stock uster levels, log Pv 5 Vail Co. 3004 157 vater levels, log China Garden Vail Co. 1393 540 vater levels, log China Garden Vail Co. 1393 540 vater levels, log Wo. 50 Vail Co. 1393 540 vater levels, log Wo. 50 Vail Co. 1293 548	3.05	P. R. 26	Vail Co.	Nove 1918	3.12	~	0	not used	200	open casing
Po. R. U. C. Vail Co. July, 1925 78 7 1 HP. electric log, mineral analysis New C. C. C. Vail Co. 1953 114 8 not used log, mineral analysis Pv 9 Vail Co. Ebb., 1927 127 not used water levels, log Pv 9 Vail Co. about 1900 515 12 vindmill stock water levels, log Pv 5 Vail Co. 3324 water levels, log Pv 5 Vail Co. 3924 water levels, log China Garden Vail Co. 1903 55 20 40 HP. electric irrigation water levels, log Wo. 50 Vail Co. 1903 540 25 HP. electric irrigation water levels, log Dairy Vail Co. 1903 540 25 HP. electric irrigation water levels, log Dairy	1161	P. R. 40	Vail Co.	June, 1952	298	16	30 M. electric	irrigation	water levels, log, mineral analysis	
New Co G Co. Vail Co. Feb. pl 1927 114 8 not used Agter levels, log Py 9 Vail Co. Feb. pl 1927 127 windmill Py 9 Vail Co. about 1904 515 12 windmill stock water levels, log Py 5 Vail Co. 3524 water levels, log Py 5 Vail Co. 0ct., 1929 155 20 40 PP. electric irrigation water levels, log China Garden Vail Co. 1903 540 25 PP. electric irrigation water levels, log No. 50 Vail Co. 1903 540 25 PP. electric irrigation water levels, log No. 50 Vail Co. 1903 540 25 PP. electric irrigation water levels, log Adomestic Vail Co. 1903 548 25 PP. electric water levels, log	11.191	P. R. U. C.	Vail Co.	JULY, 1925	78	7	l HP. electric	0 0	log, mineral analysis	
Py 9Vail Co.Feb. p 1927127not usedwater levels, logWindmill wellVail Co.about 1904,51512windmillstockwater levels, logPv 5Vail Co.3924water levels, logJo Ko wellVail Co.0cto, 19291552040 Ho electricirrigationwater levels, logChina GardenVail Co.190354025 Ho electricirrigationwater levelsNo. 50Vail Co.Jagoz5181225 Ho electricirrigationwater levelspairyvail Co.Jagoz5181225 Ho electricwater levelsirrigationwater levels	11162	New C. G.C.	Vail Co.	1953	्री इस इस	ω	9 0	pasn ↓ou	ìog	
windmill well well Co.about 1901, 51512windmillstockwater levels, log, mineral analysesPv 5vail Co.3924windmillJo Ko wellvail Co.0cto, 19291552040 HP. electricirrigationwater levels, log mineral analysesChina Gardenvail Co.190354025 HP. electricirrigationwater levels, log mineral analysesNo. 50vail Co.Jagoz5481225 HP. electricirrigationwater levels, log mineral analyses	1251	6 Ad	Vail Co.	Feb. 0 1927	121	G 6	J U	not used	water levels, log	abandoned
Pv 5Vail Co.3924water levels. Jog mineral analysesJo Ko wellVail Co.0cto, 19291552040 HP. electricirrigationwater levels. Jog mineral analysesChina GardenVail Co.Juma, 196354025 HP. electricirrigationwater levels log mineral analysesNo. 50Vail Co.Juma, 195325 HP. electricirrigationwater levels log artesian	12H1	Windmill well		about 1904	515	12	w indm i ≧ ≧	stock	water levels, log, mineral analyses	
Jo Ko well yail Coo Octo, 1929 155 20 40 HP electric irrigation water levels. Sognification values analyses of thina Garden yail Coo Juma, 1963 540 25 HP electric irrigation water levels log mineral analyses. No. 50 Vail Coo Juma, 1953 25 HP electric irrigation water levels log artesian mineral analyses stock mineral analyses.	12H2	Pv 5	Vaél Co∘	3924	U 0	6	g G	9	water levels	
China Garden Vail Co. 1903 540 irrigation water levels, log mineral analyses No. 50 Vail Co. Juma, 1953 25 HP. electric irrigation water levels log artesian sates analyses	12	J. K. well	Vail Co.	0et., 1929	155	50	40 H°. elec†ric	irrigation	water levels. Jog mineral analyses	
No. 50 Vail Co. Jume, 1953 25 HP. electric irrigation water levels Dairy Vail Co. 1903 548 12 domestic. water levels, log a artesian stock mine: a) analyses	35C3	China Garden	yaîl Co.	1903	240	Q Q	Q 7	irrigation	water levels, log mineral analyses	artesian
Dairy yail Co. 1903 548 12 domestic, water levels, log a artesian stock mine:all analyses	1501	No. 50	Vail Co.	Ime, 1953	0	¢	25 H. electric	irrigation	water levels	
	16A1	Dairy artesien	Vail Co.	1903	8415	2	0	domestic, stock	water levels, log mine: 0, analyses	व १८३१ का

⊭ell State	#ell numbers 8 te 2 Other bs	Owner.	s Date s drilled	s Well s s depth, s sin feets	Casing s diameters s in inches s	Pumping gquipment	ss use	e Other s data s available	Remarks
				Hydrograph	ije Uništ No.	Hydrographic Unit No. 1 (continued)			
8S/2W~!6Gl	Main Camp Artesian	Vail Cn.	1903	() ()	- 0 6	9 6	domestic, stock	water levels, mineral analyses	artesian
1751	Cantarini D	Vail Co.	Jen., 1927	90	9	C	not used	water levels, log	abandoned
1761	Studley Artesian	Vail Co.	1903	0 9	6 0	§ q	irrigation	water levels, mineral analyses	artesien
1741	Navy well	Vail Co.	Julys 1951	2,473	91	0 0	irrigation	water levels, log, mineral analyses	artesian
1 701	Cantarini A	Vail Co.	Aug., 1925	239	7	0 0	not used	water levels, log	abandoned
1841	T F 3	Vail Co.	Jan., 1927	102	U O	0	no† ∪sed	water levels, log	abandoned
13N3	F (2)	Vail Co.	Jan. 1927	125	0	0	not used	water levels, log	abandoned
18N2	77	Vail Co.	Feb., 1927	87	у О	U D	not used	water levels, log	abandoneo
1881	Mc Sweeny domes†ic	Vail Co.	Feb., 1927	† † fg	⁶ 0	3	not used	water levels, log	abandoned
1611	School House	Little Temecula School District	May _p 1921	53	7	0 0	not used	water levels, logomineral analysis	abandoned
2081	P. R. 27	Vail Co.	Dec., 1918	213	11	1 HP. electric	domestic	water levels, icg	
2082	P. R. 28	Vail Co.	Apr., 1919	220	12	**	pesn tou	water levels, log, analysis	known collectively as
2083	P. R. 29	Vail Co.	Mar., 1919	133	12	0	not used	water levels, log, analysis) "Cantarini Well" .))
2084	Caterpillar pump	Vail Co.	Jan., 1953	0	91	25 H° electric	irrigation	water level $_{\it p}$ mineral analysis	
2001	New 28	Vail Co.	Jan., 1954	298	16	0	irrigation	water levels, log	
2002		Vail Co.		about 100	16	0	not used	water level	abandoned
20E1	Cantarini Camp or Cant. Wm.	Vail Co.		;	7	1	not used	water levels	
201.1	Pen well	Vail Co.	1930	524	91	0	not used	water levels, log, mineral analysis	

And the second second second second second	- A set out the party of the set	de de la companya del companya de la companya del companya de la companya del la companya de la	The same of the sa		(continued)	inued)			Assessed
We]]	Well numbers s	, Owner	S Date	depth o	Casing dismeters in inches	Service of the servic	Use	Other and data	Renarks
0	1			Hydrogr	(2)	-			
\$8/5#~21G}	ed bro _£	Vail Co.	Jan., 1927	<i>3</i> 7 80	ý u	? 0	not used	water levels, log	abandoned
25.2	Nierke Vell	E. S. Gardne:	0ct., 1928	220	∞	windmill	9 6	water levels log mineral analysis	
26N3		Pechanga Indian Reservation		9	M m	w indmill.	0	water levels, log	
2座3		F. A. Cascara		3	κ/ 6	t ' 6	domestic	water level	
28c;	1001	vail Co.		Û 3	\$2	0;	pesa gou	water levels	
284:3	1 2	Vail Co	180 : 927	153	f.	į	not used	water levels, log	abandoned
28M1		E. S. Gardner		0	6	5 W. electric	ivrigation	weier levels	
2981		Pechanga jindian Reservation		500	-T	0	no* used	} og	abandoned
5903	೧೯೩೯ ಸಂಕರ್ಣ	Jartalomeo and Clara I. Stranelli	9.65 Q.8	500	ν., (V)	f.	not used	water levels log	
1,000		Pechanga Indian Reserie™ion		9 0	ω	6	no* used	water level, log	open casing
295	್ರಬತಿಷ್ಟ್ಯ ಹೊಲ್ಲಿ	Pechanga ไรซ์ ลา Reserva†โดก		1)	€4 **	. Salaria	s∜ock	Water Jevels mineral analysis	
ı. bč		igchanga thdian Peserva⁺ion		200	-4	fi fi	not used	30 (abandoned
يُخَرُدُ		0		0	i,	F. electric	i - 7 i gat ion	water levels	
3362		ian Johnson		***	8	1, 1	ţ	water leve's	
1 1/2 1		0 0		e u	*3 G	electric	pash foe	ų .	
24.5		e beer T		917	œ	∄ HF. elec†ric	domesaic	f	thable homeas
K. 57		Pa.: 305		J O	ų	gasoline engine	not used	water levels	
ရှင် ကို		Pechanga (ndla) Reserva≜ಿಯ		වස	<u>C</u> 1	U B	not used	water levely log	
h.)		9.Cu# 3 4		£23	ř +.	o .₊oeje d₁ ;	domes⁴ic	reter level	F.

WATER WELL DATA (continued)

sell mæbers State s Otter	s Owner	. Date drilled	e depth	s well a Casing a depth, a diameter, a sin feet a in inches a	s Pomping sequipment	°°° Use	8 Other 8 data 8 available	Other 8 data 8 ailable 8	Remarks	1
			Hydrograp	hic Unit No.	Hydrographic Unit No. 14 (continued)			-		
85/24~34Ml	Dave Garcia		9	0	windmill	domestic	water level	vel		
35c2	Pechanga Indian Reservation		0 5	8	windmill	0 6	water levels	vels		
85/54-24Ab	vail Co.		0	%	0	domestic	water levels	vels		
24HI	0		57	09	1 HP. electric	irrigation	water levels	vels		
95/28~ 4A1	8 0		8	1	0	:	0			

#\$\frac{24-30Pl}{31Dl}	ခ ခ ခ	HV	Hydrographic Unit No. 5				
Primary Water well 72	a a a a a			it No. 5		-	
Primary Water Well 71	. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	*	0 0	3 0	water level	
Primary Water Well 72	ree ree	1₹	5k	gasoline engine	not used	water levels	
Primary Water well 72	ree	28	0 0	🖁 HP. electric	0	water levels	
Primary Mater Well 72		17	09	gasolire engine	ţ	water levels	
Primary Water well 71		0 0	5°×5°	8 0	domestic	water level	
Primary Water Well 71		56	5°x5°	gasoline engine	not used	water level	
Primary Water well 72	_	0	84	gasoline engine	domestic	water level	
Primary Water Well 72	day	7.14	22	0 0	domestic	water levels	
	Ço°	0 0	ħΖ	0 - 0	not used	water levels, mineral analysis	
	Dec., 1953	5 43	ήζ	0 8	no† used	water levels, mineral analysis	
	Apr., 1954	t 211	η2	F li	not used	water levels, mineral analyses	
		9	8°×8°	l HP. electric	1 0	water level	
	ro co	13	09	HP. electric	0	water level	
	thie	13	84	0 0	not used	water levels, log	
	thie	22	84	1 H° electric	domes∜sc	water levels, log	
36Jy D. B. Chamness	ess	ent) peri	09	1/3 HP. electric	domestic	water levels	
36R1 0. L. Burch		23	80	0 0	domestic	jog	
36R2 Mrs. J. R. Beck	8eck	17	0	° 0	domestic	water levels	
36R3 Mrs. J. R. Beck	Beck	0	0 0	0 0	0 8	water level	
36R4		9	G e	Î	3	0 0	
8S/44~20Al Ro Fo Matthews	S and	0	3%	3½ H° electric	0 D	water level	

Remarks																			
00 00 00											v					v		v	
Other data available		water level		water level	water level	water level	water level	water level		water level	water level, mineral analysis		water level	water level	water level	water level, mineral analysis	water level	water level, mineral analysis	water level
0 00 00 00 00 00 00 00 00 00 00 00 00 0		water	0 9	water	vater	vater	water	vater	1	water	water	;	water	water	water	water	water	water	water
Use		8 0	domestic, irrigation	domestic	domestic, irrigation	domestic, irrigation	domestic	irrigation	not used	domestic	domestic	irrigation	domestic	1	domestic	0	domestic, irrigation	domestic	not used
Pumping equipment	Hydrographic Unit No. 5 (continued)	gasol ine engine	5 H2. electric	vindlass	gasoline engine, hand pump	5 HP. electric	l H. electric	6 H°. gasoline engine	•	1 HP. electric	vindmill	gasol ine engine	1 H2. electric	gasoline engine	½ HP. electric	He. electric	l≱ ⊮o. electric	⊌indmill, gasoline engine	į
Casing s diameter, s in inches :	nic Unit No.	t o	1	4,×5½,	9	81	84	84	ł	09	84	6	29	09	54	9	22	99	2½°×2½°
Well s depths s in feet s	Hydrograp	11	3	32	0	9	about 30	25	7г	9	about 34	about 37	53	84	32.	i	20	53	12
Bate 3											June, 1954						1938		
3 Owner		R. F. Matthews	E. L. Berger	Anna Doerrer	Kinney	Shaver	John Parker	Mrs. Harris	Mrs. Harris	0	R. W. Bleecker	R. W. Bleecker	F. R. Garnsey	•	Mrs. Finest	De Luz School	Homer C. Mc Dowell	Rivers Ranch	G. C. Snow
well numbers State : Other		85/4W-20A2	20 A 3	2081	20.1	20P1	2201	281.1	28.2	28M1	29JI	2972	29#1	2901	3281	5282	32C1	34F1	8S/5W-23Q1

Hedrographic Unit Mg, 5 (continued) Hedrographic Unit Mg, 5 (continued)	Well numbers	s Owner	8 Date	s well s s dep∜h _p s sin feet	s Casing s diameters	8 Pumping	s Use	ofher a date	Remarks
G. C. Snow 18 5/45/3 domestic G. C. Snow 40 35 domestic G. C. Snow 17 domestic W. N. Davis Mar., 1951 23 8 2 HP. electric irrigation Charles E. 46 48 1 HP. electric domestic Shubblefield 48 1 HP. electric domestic Charles E. 45 50 2 HP. electric irrigation Charles E. 40 40 2 HP. electric irrigation Charles E. 40 40 40 irrigation Charles E. 40 40 <			i	Mydrogra	ohic Uni† N	2) 23			
6. C. Snow 6. C. Snow 6. C. Snow 17	94-2302	G. C. Snow		18	5125	0	domes†≬c	water level	
G. C. Snow 17 == not used G. C. Snow 30 36 == not used W. N. Davis Hare, 1951 234 8 5 HP, electric irrigation F. N. Davis Hare, 1951 234 8 2 HP, electric irrigation G. R. Reynolds 1947 20 8 2 HP, electric irrigation Gharles E. 46 48 1 HP, electric domestic Gharles E. 48 1 HP, electric domestic Stubblefield 49 5 49 1 HP, electric irrigation Charles E. 49 78 not used irrigation Charles E. 49 72 4PP, electric irrigation Stubblefield 40 4PP, electric irrigation Wernon L. Beatile 5 575 4PP, electric irrigation Vernon L. Beatile 42 75 4PP, electric irrigation Vernon L. Beatile 25 54	2303	G. C. Snow		83	3%	Ĉ 9	domes†≬c	water level	
Co. C. Snow 17 not used Co. C. Snow 30 36 domestic W. N. Davis Har., 1951 234 8 5 HP. electric irrigation G. R. Reynolds 1947 20 8 2 HP. electric domestic Shubble field 46 48 1 HP. electric domestic Charles E. 45 60 2 HP. electric domestic Shubble field 18 54 irrigation Charles E. 47 60 2 HP. electric irrigation Shubble field 6 windmill Shubble field 6 windmill H. H. Commins 30 72 not used H. H. Commins 30 72 not used H. H. Commins 42 36 1 HP. electric irrigation Vernon L. Beathle 25 34 HP. electric irrigation V	2304	G. C. Snow		04	%	?	not used	water level	
C. C. Show 30 36 domestic W. N. Davis Mar., 1951 234 8 5 HP. electric irrigation G. R. Reynolds 1947 20 8 2 HP. electric domestic Charles E. 46 48 1 HP. electric domestic Charles E. 45 60 2 HP. electric domestic, irrigation Charles E. 18 54 not used Charles E. 8 19 50 2 HP. electric irrigation Charles E. 6 windmill 6 windmill Charles E. 5 windmill 6 windmill 6 windmill 6 windmill 6 windmill 6 windmill 6 windmill 6 windmill 4 <td< td=""><td>2505</td><td>G. C. Snow</td><td></td><td>1 8</td><td>P</td><td>0</td><td>not used</td><td>water level</td><td></td></td<>	2505	G. C. Snow		1 8	P	0	not used	water level	
Wo No Davis Mare, 1951 234 8 5 MP, electric irrigation G. R. Reynolds 1947 20 8 2 MP, electric domestic, stock Charles E., Stubblefield 46 48 1 MP, electric domestic, stock Charles E., Stubblefield 18 54 60 2 MP, electric domestic, irrigation Charles E., Stubblefield 6 4 MP, electric irrigation Charles E., Stubblefield 6 4 MP, electric irrigation Charles E., Stubblefield 6 4 MP, electric irrigation Ho M. Cummins 30 72 not used Ho M. Cummins 30 72 1 MP, electric irrigation Vernon L., Beatitle 25 31×51 4 MP, electric irrigation Vernon L., Beatitle 25 34 4 MP, electric irrigation Vernon L., Beatitle 25 2 MP, electric irrigation Vernon L., Beatitle 25 2 MP, electric	2306	G. C. Snow		8	%	?	domestic	water level	
Go. R. Reynolds 1947 20 8 2 HP, electric domestic, stock Charles E. Stobbeffield 46 48 1 HP, electric domestic, stock Charles E. Stobbeffield 45 60 2 HP, electric domestic, irrigation Charles E. Stobbeffield 18 54 not used Charles E. Stobbeffield 18 54 not used Charles E. Stobbeffield 18 54 not used Charles E. Stobbeffield 19 60 ½ HP, electric irrigation H. H. Cummins 30 72 not used H. H. Cummins 30 72 not used H. H. Cummins 30 72 not used Vernon L. Beatite 59 72 1 HP, electric irrigation Vernon L. Beatite 25 35 × 51 ½ HP, electric irrigation Vernon L. Beatite 25 36 ½ HP, electric irrigation Vernon L. Beatite 35	₩~ CN3	W. N. Davis	Mar. p 1951	234	Ø	5 M. electric	irrigation	water level, log	
Charles E. 46 48 1 HP. electric domestic Stubblefield 43 60 2 HP. electric inrigation Stubblefield 18 54 inrigation Charles E. 6 yindmill Stubblefield 19 60 ½ HP. electric irrigation H. H. Commins 30 72 not used H. H. Commins 30 72 1 HP. electric irrigation Vernon L. Beatitle 25 37×5 ½ HP. electric irrigation Vernon L. Beatitle 35 36 2 HP. electric irrigation Vernon L. Beatitle 35 3 HP. electric irrigation Vernon L. Beatitle 35 3 HP. electric irrigation Vernon L. Beatitle <td< td=""><td>₹¥ - #</td><td>G. R. Reynolds</td><td>1947</td><td>20</td><td>œ</td><td>2 Me. electric</td><td>domestic, stock</td><td>water levels, log</td><td></td></td<>	₹¥ - #	G. R. Reynolds	1947	20	œ	2 Me. electric	domestic, stock	water levels, log	
Charles E. 43 60 2 HP. electric domestic, irrigation Charles E. 18 54 not used Stubblefield 6 ½ HP. electric irrigation H. H. Cummins 19 60 ½ HP. electric irrigation H. H. Cummins 30 72 not used H. H. Cummins 145 12 2 HP. electric irrigation Vernon L. Beatile 59 72 1 HP. electric irrigation Vernon L. Beatile 25 3% 56 ½ HP. electric irrigation Vernon L. Beatile 10 2 HP. electric irrigation Vernon L. Beatile 36 ½ HP. electric irrigation Vernon L. Beatile 10 2 HP. electric irrigation Vernon L. Beatile 3 3 4 4 Vernon L. Beatile 10 2 HP. electric irrigation Vernon L. Beatile	±-2 ₩-	Charles E. Stubblefield		94	8 [†]		domestic	water levels	
Charles E. Stubblefield 54 not used Charles E. Stubblefield 6 ½ HP. electric H. H. Cummins 19 60 ½ HP. electric irrigation H. H. Cummins 30 72 not used H. H. Cummins 34,5 12 2 HP. electric irrigation Vernon L. Beathle 25 5% 5% ½ HP. electric irrigation Vernon L. Beathle 25 5% 5% ½ HP. electric irrigation Vernon L. Beathle 10 2 HP. electric irrigation Vernon L. Beathle 36 ½ HP. electric irrigation Vernon L. Beathle 36 ½ HP. electric irrigation Vernon L. Beathle 35 36 ½ HP. electric irrigation Vernon L. Beathle 35 ½ HP. electric irrigation	352	Charles E. Stubblefield		64	09		domest:c, irrigation	water levels	
Charles E. Stubblefield H. H. Cummins H. H. H. Cummins H. H. Cummins H. H. Cummins H. H. H. H. Cummins H. H	153	Charles E. Stubblefield		60°	3%	0 0	not used	water levels	
He He Cummins Vernon Le Beattle Vernon Le B	ነናሗ	Charles E. S†∪bblefield		n •	Ş	windmill	1 0	water level	
He He Cumins He He Cumins He He Cumins He He Cumins Vernon Le Beattle Vernon Le Beat	1 H	H. H. Cummins		19	9		errigation	water levels	
He He Cumins Vernon Le Beattle	142	H. M. Cummins		8	7.2	0 6	not used	water levels	
Vernon L. Beattle 69 72 1 HP. electric irrigation Vernon L. Beattle 25 30x5F ½ HP. electric irrigation Vernon L. Beattle 10 2 HP. electric irrigation Vernon L. Beattle 35 35 ½ HP. electric irrigation Vernon L. Beattle 35 ½ HP. electric irrigation Steer 15 60 ½ HP. electric	1H3	H. H. Cummins		345	12	2 HP. electric	P 8	water levels	
Vernon L. Beatitle 25 36 x5p 2 HP. electric irrigation Vernon L. Beatitle 10 2 HP. electric irrigation Vernon L. Beatitle 35 36 ½ HP. electric irrigation Steer 15 60 ½ HP. electric 11 irrigation	1 J. L. J. J. L. J. L. J. J. L. J. L. J. J. L. J. J. L. J. J. L. J. J. J. L. J. J. J. J. L. J. J. J. J. J. J. J. J	Vernon L. Beattl	Ų	69	7.2		irrigation	water levels	
Vernon L. Beattle 42 36 1 HP. electric irrigation Vernon L. Beattle 35 36 ½ HP. electric irrigation Greer 15 60 ½ HP. electric	1,12	Vernon L∘ Beat∜l	v	25	38×58	ž	irrigation	water levels	
Vernon L. Beattle102 HP. electricirrigationVernon L. Beattle3536½ HP. electricirrigationGreer1560½ HP. electric	113	Vernon L。Beat⊄	v	142	36		irrigation	water levels	
Vernon L. Beattle 35 36 ½ HP. electric irrigation Greer 15 60 ½ HP. electric	ያ ያ	Vernon L. Beattl	ų.	9	10		irrigation	water level	
Greer 3 Ho electric	115	Vernon L. Beath	v	35	36		irrigation	water levels	
	MI	செய்		15	09		ĵ 0	water level	

Well numbers State s Oftwer	Ower	2 Date 8 drilled	s Well s depth	s Casing s diameter, in inches	8 Pumping 8 equipment	o o o o	s 0ther s data s available	~ ~ ~	Remarks
			Hydrogra	aphic Unit No	Hydrographic Unit No. 5 (continued)				
95/34- 162	Clara Mc Donald		6 0	0	# H. electric	0	water level		
era) ¥ KI	Charles E. Stubblefield		53	811	vindmill	not used	water levels		
18 N	J. J. Moffat		018	1,42	12 H. electric	C C	water level		
INZ	Zana Royal		9	ĝ O	0	0	3 0		
JP1	Zana Royal		92	09	1 HP. electric	irrigation	water levels		
3P2	J. S. Boren		23	8†1	2 HP, electric	irrigation	water levels		
\$ de	J. S. Boren		142	811	1½ HP. electric	irrigation	water levels, analysis		
ħd₹	0 0		17	ηνχήξη	windmill	not used	water levels		
195	J. S. Boren		31	811	l HP. electric	domestic	water levels $_{\mathfrak{d}}$ analysis		
101	Robert Steinberg		35	09	1 HP. electric	irrigation	water levels		
102	Robert Steinberg		*	2 0	2 H°. electric	domestic, irrigation	water levels, analysis		
103	Albert A. James		9	9	1 H. electric	domestic	0		
IRI	George E. Shoudy		89	12	0	not used	water levels		
1R2	George E. Shoudy	1934	25	0	½ HP. electric	irrigation	water levels		
183	George E. Shoudy		38	22	1 HP. electric	irrigation	water levels		
lR4	George E. Shoudy		98	12	3 H. electric	irrigation	water level		
1R5	George E. Shoudy		17	,	3 HP. electric	irrigation	water levels		
1R6	Harry A. Chapman		t	ļ	1½ HP. electric	t g	0		
187	V. A. James		20	0 0	1 P. electric	domestic, irrigation	9		

				(name in the later)	(page			
Mell numbers State a Other	S Owner	s Date s drilled	s Well s depths sin feet	* Casing * diameter _p * in inches	* Pumping * equipment	% Use	s Other data s avaijable	8 8 Remarks 3
			Mydrogra	phic unit N	Mydrographic Unit No. 5 (continued)			
95/34- 6Al	D. H. Bullock		88	09	7½ HP. electric	irrigation	water levels	
6A2	D. H. Bullock		102	84	2 HP. electric	irrigation	water levels	
6A3	D. H. Bullock		23	09	2 HP. electric	irrigation	water levels	
189	Charles Sawday		66	0	10 HP. electric	irrigation	water levels	
6 D 3	E. H. Tipton	Mar., 1950	55	G	5 HP. electric	$domestic_{ ho}$ irrigation	water levels	
602	E. H. Tipton	Dec. 9952	88	%	1 HP. electric	irrigation	water levels	
8н3	Joe Hayes		P P	6 0	q 0	domestic, irrigation	water levels	
{ 6 }	H. Harrison	prior to 1926	22	0	gasoline engine	domes†ic	9 9	
703	A. R. Merickle		10	09	0 0	not used	0	
702	Calloway		32	09	5 H. electric	domestic	water levels	
gent)	A. R. Merickle		2	0	½ H. electric	0	water levels	
75-2	م الم		0	9	1/3 HP. electric	domestic	9	
e d	Tompkins	abou† 1948	20	0	12 Mo electric	domestic ທີ່ມີເຂື້ອສະທິດກ	0 0	
Pl	₩. D. Edwards		38	19	5 HP. electric	$domestic_{o}$	0 9	
3N3	L∘ C∘ Kenworthy		20	0 ¥	5 HP. electric	domestic. irrigation	0 0	
9E1	6. 6. Pepple		0	0	5 H2 electric	domestic, irrigation	D 8	
1111	0. Lester Riggle		0	09	1 Ho electric	$domestic_n$ irrigation	water levels	
11A2	O. Lester Riggle		19	69×69	1½ HP. electric	domestic, irrigation	water levels	

	Well numbers State a Other	0 mer	s Oase s drilled	s depth s sin feets	Casing s diameter, s in inchess	Pumping equipment	s Use	6 Other data svailable	na nn er	Remarks
c. c. chandler 18 60 1 HP, electric irrigation c. c. chandler 6 ½ HP, electric inot used c. c. chandler 39 6 x x 61 ½ HP, electric domestic, irrigation Joseph H, Feuerborn 12 1 HP, electric irrigation Joseph H, Feuerborn 12 1 HP, electric irrigation Joseph H, Feuerborn 12 1 HP, electric domestic, stock Joseph H, Feuerborn 62 ½ x y Y ½ HP, electric domestic, stock James Hacres 31 ¼ x ¼ 5 HP, electric domestic, stock James Hacres 31 ¼ x ¼ 5 HP, electric domestic, stock Conally 5 HP, electric domestic, stock Conally 5 MP, electric domestic, stock Conally 5 MP, electric domestic, stock Rollin Brown 46 ¼ x ¼ mot used Rollin Brown 46 ¼ MP, e				Hydrograp	hic Unit No.			,		
C. C. Chandler 6 ½ P. electric not used C. C. Chandler 38 6½6 ½ P. electric not used C. C. Chandler 90 ½ P. electric irrigation Joseph H. Feverborn 12 1 P. electric irrigation Joseph H. Feverborn 62 ¼½¼¼½ ½ P. electric domestic James Macres 31 ¼¼¼¼ 5 P. electric domestic James Macres 31 ¼¼¼¼ 5 P. electric domestic C. H. Ransy 27 3½½¼¼ 5 P. electric domestic C. H. Ransy 27 3½½¼ 5 P. electric domestic C. H. Ransy 27 3½½¾ 1 P. electric domestic C. H. Ransy 27 3½½¾ 1 P. electric domestic C. H. Ransy 27 3½½ 1 P. electric domestic A. H. Hiff 26 4 4 4 electric domestic S. E. Raffer 26 4<	1917=#5/S6	C. C. Chandler		88	09	l HP. electric	irrigation	water levels		
C. C. Chandler 38 6/x61 in to used C. C. Chandler 90 if HP, electric donestic, irrigation Joseph H- Feverborn 55 3/x61 7½ HP, electric donestic, irrigation Joseph H- Feverborn 62 4½/x4½ 7½ HP, electric donestic James Hacres 31 4/x41 5 HP, electric donestic, irrigation Dean Ransy 60 1/3 HP, electric donestic, irrigation Conally 60 1/3 HP, electric donestic, irrigation Rollin Brown 18 5/x51 i HP, electric donestic, irrigation Rollin Brown 46 4/x41 60 1/3 HP, electric donestic, irrigation V. Johnson 48	1162	C. C. Chandler		9	09	D	not used	0		
Joseph H. Feuerborn 55 3^{1} x6 1 7^{1} HP. electric irrigation Joseph H. Feuerborn 62 4^{11} x4 11 7^{1} HP. electric domestic. James Hacres 31 4^{1} x4 1 7^{1} HP. electric domestic. James Hacres 31 4^{1} x4 1 7^{1} HP. electric domestic. Irrigation. Consily	JIKJa	C. C. Chandler		8%	6°x6°	0.0	no† used	water level		
Joseph H. Feuerborn 55 37.60 7½ HP. electric irrigation Joseph H. Feuerborn 62 4½ 14½ 1/2 HP. electric domestic Joseph H. Feuerborn 62 4½ 14½ 1/2 HP. electric domestic stock James Hacres 31 4/144 5 HP. electric domestic irrigation Dean Ramsy 27 3/145 1 HP. electric domestic irrigation Conally 27 3/145 1 HP. electric domestic irrigation Rollin Brown 46 4/144 — 60 1/3 HP. electric domestic irrigation W. Johnson 46 4/144 — 18	11K2ª	C. C. Chandler		96	י ס	He electric	domestic _ρ irrigation	water levels		
Joseph H. Feverborn 62 Latin H. electric domestic Joseph H. Feverborn 62 Latin H. electric domestic stock James Macres 31 Latin H. electric domestic domestic domestic c. H. Ramsy 27 3/x5/1 1 HP. electric domestic domestic conally 5/x7/1 1 HP. electric domestic irrigation Rollin Brown Latin H. electric domestic irrigation Latin Brown Latin H. electric domestic irrigation V. Johnson Latin H. electric domestic consistence of the H. electric domestic consistence consistence consistence domestic domestic congenies 26 L. S. Brownell 57 12 HP. electric domestic rights of the consistence congenies consistence congenies consistence congenies consistence congenies conge	1161	Joseph H. Feuerborn		55	3°x6°	72 H. electric	irrigation	water levels		
Joseph H. Feuerborn 62 Lathata 72 HP. electric strigation, stock James Macres 31 Lathata 5 HP. electric domestic, irrigation Dean Ramsy	1162	Joseph H. Feuerborn		0	12	1 Ho electric	domestic	water level		
James Macres James Macres James Macres Los Holding Brown Rollin Brown Rollin Brown Rollin Brown Rollin Brown Rollin Brown Wood Johnson Wood Hittle Los Brownell Los Brownell Salabor Walley Los Brownell Salabor Walley Salabo	111.3	Joseph H. Feuerborn		62	。异竹片。异竹	72 H. electric	irrigation, stock	water levels		
Dean Ramsy Co H. Ramsy Conally Rollin Brown W. H. Hitt S. E. Rafter S. E. Rafter S. E. Rafter S. E. Rafter S. E. Brownell C. S. Brownell S. T. S. Brownell S. T. S. Brownell S. E. Rafter S. E. Servenell S. Servenell	11M1	James Macres		31	_ด ฑ× _ด ฑ	5 Ho. electric	domestic, irrigation	water level		
Conally = $5^{9} \times 7^{9}$ if Peretric domestic, irrigation Rollin Brown 18 $5^{9} \times 5^{9}$ if Peretric domestic, irrigation 18 $5^{9} \times 5^{9}$ if Peretric domestic, irrigation 19 $10^{9} \times 10^{9}$ if Peretric domestic $10^{9} \times 10^{9}$ irrigation 10 $10^{9} \times 10^$	1281	Dean Ramsy		ē.	09	1/3 HP. electric	domes†ic	water levels		
Conally Rollin Brown Rollin Brown Rollin Brown Rollin Brown W. H. Hitt S. E. Raffer S. E. Raffer S. E. Raffer Conally	1282	C. H. Ramsy		27	3°×5°	1 Ho. electric	Q	water level		
Rollin Brown Rollin Brown Rollin Brown Rollin Brown V. Johnson W. Hitt S. E. Rafter Rainbow Valley Grange L. S. Brownell Rollin Brown Up 46 $\mu_0 \times \mu_0$ μ_0 $\mu_1 \times \mu_0$ μ_1	1201	Conally		0 0	5°×7°	4 He electric	domestic, $irrigation$	water levels		
Rollin Brown Rollin Brown W. Johnson W. H. Hitt S. E. Rafter S. E. Rafter Rainbow Valley Grange L. S. Brownell Solution Grange L. S. Brownell Solution H. W. H.	1201	Rollin Brown		88	5,×5,	4 H. electric	domestic, irrigation	water levels		
Rollin Brown Ve Johnson We Hitt So Ee Rafter Rainbow Valley Grange Lo So Brownell Solution 145 148 26 26 26 26 24 26 26 26 26 26	1202	Rollin Brown		94	βη×βη	0	not used	water levels		
V. Johnson418W. H. Hiff264 HP. electricdomesticS. E. Raffer264 HP. electricnot usedRainbow Valley296*x6*4 HP. electricdomesticGrange296*x6*4 HP. electricdomesticL. S. Brownell5712 HP. electricdomestic, irrigation, stock	1203	Rollin Brown		511	81	½ HP. electric	irrigation	water levels		
Ψ. H. Hiff26½ HP. electricdomesticS. E. Raffer26ųβ½ HP. electricnot usedRainbow Valley296 x6 %½ HP. electricdomesticGrangeL. S. Brownell571½ HP. electricdomestic, irrigation, stock	1204	V. Johnson		0	84	00	0	water level		
S. E. Rafter 26 48 \$ HP. electric not used Rainbow Valley 29 6'x6' \$ HP. electric domestic Grange L. S. Brownell 57 1\$ HP. electric domestic, irrigation, stock	12.1	W. H. Hitt		56	09	# H. electric	domestic	water levels		
Rainbow Valley 29 6°x6° ¼ HP. electric domestic Grange Crange L. S. Brownell 57 1½ HP. electric domestic, irrigation, stock	12F1a	S. E. Rafter		%	84	÷	not used	water levels		
L. S. Brownell 57 1½ HP. electric domestic, irrigation, stock	12F2 ⁸	Rainbow Valley Grange		23	,9×,9	÷	domestic	water levels		
	12F3 ^a	L. S. Brownell		57	• 6	1½ Ho electric	domestic, irrigation, stock	water levels, analysis		

	_						
Vell numbers State s Other	Owner	Bate drilled	s well s depth, s in feet	casing s diameter, s in inches s	Pumping equipment	Use	s Ofher s data s Remarks s available s
			Hydrograp	Hydrographic Unit No.	5 (0		
85/3€1251°#8/86	E. H. Hitt		28	39% 39	# HP. electric	domestic, irrigation	water levels, log
12559	S. E. Rafter		37	09	12 HP. electric	irrigation	water levels
12F6 ⁸	Fallbrook School District		35	0 €	성 항	domes†ic	water level
1261	6 0		31	09	electric	domestic	water levels
1262	Cleveland		ē f	ω	2 HP. electric	irr igation	9 9
1701	T. C. Nicola		9	£	10 HP. electric	irrigation	analysis
JAI	R. T. Grey		0	99	10 HP. electric	irrigation	water level
1742	R. T. Grey		ę	09	electric	9	waier level
38E1	Papenhausen		38	84	gasoline engine	irrigation	water level
95/4N= 161	Boyer and Chr≀stenson	prior to 1949	29	Ú Ĝ	HP. electric	domestic, irrigation, stock	water level
591	Newton I. Bryant		9 9	09	1 MP. electric	domestic	0.0
592	Frank J. Ches†molowicz		9	5° x5°	gasoline engine	domes†ic	mineral analysis
1901	9		53	8#	windmill	domestic	water level
12.1	Costello and Barrymore		24	84	3 HP. electric	irrigation	water level
13.2	Costello and Barrymore		745	09	3 H°. electric	domestic	water level
ነዎነ	Bruce Sikkings		†8	8 tt	5 HP. electric	industrial, domestic, irrigation	water levels
1922	Johnston		Ģ M	84	3 HP. electric	domestic, irrigation	water level

			1147	000			10440		
Well numbers	0 wher		s depths s dismeters	s depths s dismeters :		 US e	data data	90 00	Remarks
Orner	eo.	8 QF1110 8	in ree; s	Hydrographic Unit No.	in ree; s in inches s equipment Hydrographic Unit No. 5 (continued)	60	available		
	Harry E. Held		83	09	3 H° electric	domestic, irrigation	water level, analysis	G,	
5月月2	U. S. Navy	Septos 1944	57	9	0	not used	water levels, log, analyses	s _p 10g _p	
22MA2	U. S. Navy		0	9	0 6	not used	water levels	Ø	
25WW4	U. S. Navy	Sept., 1945	105	10	20 H° electric	military	water levels, log, analyses	s, 10g,	

				- 1				C court of the contract of the
Well numbers State s Other	% Owner	bate drilled	s depth s sin feets	diameter, in inches	Pumping equipment	Use Use	s Other s data savailable	8 Remarks
			Hydr	Hydrographic Unit No. 6	nit No. 6			
9S/3⊌~18K1	Martin		75	09	6 0	domestic, irrigation	analysis	
1861	L. C. Stokes		58	Q 0	3 HP. electric	domestic, irrigation	water levels, analysis	
1901	S. C. Myers	prior to 1935	abou† 50	, 70 × 8 17	2 Ho. electric	domestic, i⊄rigation	water levels	
1902	Alta M. Terrier		O†1	0	1/3 H. electric	domestic	9 0	unable to measure
1903	Alta M. Terrier		09	81	5 P. electric	irrigation	water level	
1961	Carl G. Daving	prior to 1915	O [†] 1	54	5 Ho electric	irrigation	analysis	
19E1	R. T. Grey		0	81	3 Ho electric	irrigation	0 0	
1961	R. T. Grey		*	81	3 H° electric	domestic, irrigation	0 6	
1941	Robt. J. Marks	1950	96	09	5 HP. electric	irrigation	water level $_{\scriptscriptstyle \mathcal{D}}$ analysis	
19M2	G. Hugo	prior to 1945	80	84	1 Ho. electric	irrigation	0 0	
95/445-44B	A. T. & S. F. R. R.	May ₀ 1917	27	52	d B	not used	water level, log	abandoned
Ztni	Mark Mc Cahan	prior to 1930	25	ħS	3 H°. electric	irrigation	water level	
24P1	Elmer Allen	about 1930	92	84	1 Ho electric	irrigation	0	
24P2	Frank Pucelli	1925	98	72	3 HP. electric	irrigation	water level	
24P3	Frank Pucelli	1931	91	72	3 HP. electric	irrigation	3 9	
24P4	Philips		8 0	0	0 0	irrigation	9 0	
2401	William To Scott		<u>0</u> 8	09	B 0	not used	water levels	
2492	Werneche		ů O	09	# HP. electric	domest≬c	water level	
24R3	william waltz	prior to 1910	80	%	2 H° electric	domestic	water level. analysis	F~

yell r	Yell numbers	06287	s Bate S drilled	e depthy in feet	Casing a diameter, a in inches a	Pumping equipment	Use	s Other date s available	Remarks
				Hydrogram	Hydrographic (hit No.	6 (continued)			
95/14W-25E1		John T. Owens		31	ប់	2 HP. electric	domestic, irrigation	water levels, analysis	
25E2		Praif Mutual Water Co.		ής	180	5 H. electric	domestic, irrigetion	water level	
25E3		T. B. Rogers	0468	350	ස	3 H. electric	irrigation	go s	unable to measure
25€4		T. B. Rogers	prior to	50	ή8	5 HP. electric	errigation	0 0	
25E5		T. B. Rogers	prior to 1920	50	22	2 HP. electric	domes†ic	water level	
26F1		U. S. Navy		0	3 0	9 9	6	0	
26M1		U. S. Navy		9	0	0 0	0	3 6	
3201	Test hole l dam site	U. S. Nevy	1954	٤	0	ÿ G	not used	water level. log	abandoned test hole
3202	Test hole 2 dam site	U. S. Navy	Мау, 1934	132	∞	3 9	not used	water level, log	abandoned test hole
32C3	Test hole 3 dam site	U. S. Navy	May, 1934	150	<u> </u>	9 9	not used	6 80 C	abandoned test hole
32C4	Test hole 4 dam site	U. S. Navy	June, 1934	66	ŧ	1	not used	10g	abandoned test hole
32C5	Test hole 6 dam site	U. S. Navy	June, 1934	23	9	į	not used	log	abandoned test hole
3206	Core hole 53	U. S. Navy	May _p 1951	103	9	i	not used	10g	test hole
32C7	Core hole 75	U. S. Navy	May, 1951	139	0	;	not used	109	test hole
. 32C8	Core hole 92 B	U. S. Navy	May, 1951	151	0	1	not used	water level, log	test hole
3209	Core hole	U. S. Navy	May, 1951	201	:	;	not used	water level, log	test hole

Well r State s	#ell numbers :	8 0wner 8	s Date s drilled	s Well s depths sin feets	Casing diameters in inches	* Pumping * equipment	s Use	s Other s data s s availatie c	Remarks	
				Hydrogre	Hydrographic Unit No.	lo. 6 (continued)				
95/144-32010	Core hole	U. S. Navy	May _p 1951	137	0	ն 9	not used	water level, log	test hole	
32C11	Core hole 94	Us S. Navy	May, 1951	120	9	10	not used	water level, log	test hole	
32C12	Core hole 74	U. S. Navy	May _p 1951	175	0		not used	water level, log	test hole	
32013	Core hole 95	U. S. Navy	May _p 1951	85	i) Ç	¥	not used	water level, log	test hole	
32014	Core hole 73	U. S. Navy	May ₈ 1951	65	0	9	not used	water level, log	test hole	
39.1	R.SM 17-A	U. S. Navy	June, 1934	51	18	·3 O	not used	water level, log	abandoned	
10S ~¥µ/201	Hospital well 25wW.	U. S. Navy	Dec., 1943	80	18	75 PP. electric	military	water levels, log, analyses		
503	RSM 18A3	U. S. Navy	Feb., 1939	11	12	ę, O	not used	log	abanooned	
5E1	RSM 18A1	U. S. Navy	Feb. 1939	ीम	G	1 0	not used	30%	abandoned	
5E2	R.SM 18A2	U. S. Navy	Feb., 1939	85	ų Q	Q	not used	109	abandoned	
743	i o	U. S. Navy	AUE . 1942	ጎተ፣	20	u o	not used	water level, log	abandoned	
IF.	G. S. test	U。S。Navy	June, 1951	130	9	0 U	observation	water levels, log, analyses		
771	Navy 3	U. S. Navy	1942	162	20	D b	militery	water levels, log, analysis		
732	Navy 2	U. S. Navy	JUIY, 1942	82	# [*	8 6	;	water levels, log, analysis		
703		U. S. Navy		6	- 2	0 0	observation	water leveis		
7R1	Navy CB 1 24WW2	U. S. Navy		166	12	100 Ho electric	military	water levels, log, analyses		
JR2		U. S. Navy		g t	0	8	j 0	0 0		
7R3		U. S. Navy		1	12	4 0	observation	water levels		
7R14		U. S. Navy		\$ 0	-RV	1 0	observation	water levels		
8E1		U _o S _o Navy		0	;	3 0	not used	gn 66	abanached	

Remarks		abandoned		abandoned					abandoned	abandoned	open casing					open casing	abandoned	
Other s date s available s		water levelalog	water levels, log, analyses	joj	water levels, log	water levels, log, analyses	water levels, log, analyses	30°	water level, log	water level, log	water levels, log	water levels, log, analyses	water levels, log, analyses	water levels, log, analyses	water levels, log, analyses	water levels, log	3 o g	water levels, log.
» nose »		not used	a itary	not used	observation	0 0	millitery	e 0	not used	not used	not used	observation	0	not used	military	not used	not used	
Pumping equipment	(continued)	0 0	100 H°. elec†ric	9 0	3 6	ů 0	125 P°. electric	ē 0	4 0	9 8	0	0	0 5	1	15 H2. electric		;	ļ
Casing s diameter, s in inches s	Hydrographic Unit No. 6 (continued)	11	20	i G	9	12	517	G 0	0	G	12	9	9	#	16	12	12	ō
s Hell s depth s in feet s	drographi	205	130	3,20	102	169	165	110	99	84	98	85	16	164	320	100	132	011
S Date S	JAR.	June, 1942	Jen. s 1937		Feb., 1946	AUG., 1929	Aug. 1950		Spring 1951	Spring 1951	Feb., 1920	June 1951	June, 1951	July, 1934	Мау» 1954	Mar., 1920		Sent., 1950
Ouner		U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	U. S. Navy	See N. O. III
Well numbers		Navy 1	RSM 11-F 23WW3	RSM 11 = E		RSM 11-X 25WW2	RSM 9-8 22Wk5	RSM 10	Test hole 7	Test hole 8	Green 15 RSM 12-8	G. S. test well 3	G. S. test well 2	11-D 23WN1	RSM 9-E 33WW1	Green 16	Green 6 RSM 9-D	OZWE!
Well r		105/4W- 8E2	18E1	18E2	186.1	18M1	1842	1961	19E2	1961	10S/5W-12Rl	1361	1501	15R1	1401	1041	2361	11.50

WATER WELL DATA (continued)

Phydrographic Unit No., & (continued) Co. S. Navy 1912 179 12	Well State	Well numbers	0 WDer	s Date	s depth	s cliameters s in inches s	Pumping equipment	s . Use	s Other s date s available s	Remarks
RSM 6+-A U. S. Mavy 1912 179 12 — not used water levels, log, analysis 6., S. itest U. S. Mavy Sept-, 1951 11 2 — — water levels, log, analyses 6., S. itest U. S. Mavy Sept-, 1951 17 6 — water levels, log, analyses 6., S. itest U. S. Mavy June, 1951 290 6 — water levels, log, analyses 8.54 it.d. U. S. Mavy June, 1952 12 — water levels, log, analyses 8.54 it.d. U. S. Mavy July, 1952 12 — water levels, log, analyses 8.54 it.d. U. S. Mavy July, 1954 150 16 — — water levels, log, analyses 8.54 it.d. U. S. Mavy July, 1954 150 12 — mot used water levels, log, analyses 8.54 g-H U. S. Mavy July, 1954 125 12 — mot used water levels, log, analyses 8.54 g-H U. S. Mavy July, 1954 25					Hydrogra	ohic Unit No. 6	(continued)			
C., S. week U. S. Neav Jone, 1951 14 6 weter levels, log, analyses C., S. week U. S. Neav Sept., 1951 17 6 not used weter levels, log, analyses C., S. test U. S. Neav June, 1951 290 6 weter levels, log, analyses C., S. test U. S. Neav June, 1951 290 6 weter levels, log, analyses SSH 11-C U. S. Neav July, 1912 112 12 weter level, log, analyses SSH 18-A U. S. Neav July, 1934 160 15	/54-2332	RSM 6-A 23WM5	U. S. Navy	1912	1 79		Ü Ü	not used	water levels, log, analysis	abendoned
Co. 5. auger U. 5. Navy Sept., 1951 11 2 not used veter levels, logs and sept., logs and sept., logs and sept. 6. 5. s. test U. 5. Navy June, 1951 290 6 veter levels, logs and sept., logs and sept. 6. 5. s. test U. 5. Navy June, 1951 290 6 veter levels, logs and sept., logs and sept., logs and sept. 85H 11-C U. 5. Navy June, 1954 165 16 veter level, logs and sept., logs and sept., logs and sept., logs and sept. 85H 13-C U. 5. Navy July, 1954 160 16 <	23,13	G. S. fest well 5	U. S. Navy		140		Ů V	û R	water level, log, analyses	
C. S. Fest Purple U. S. Navy June, 1951 170 6 observation analyses analyses analyses analyses analyses analyses analyses analyses. C. S. Fest Purple U. S. Navy June, 1934 LOS 16 vale revels, 10g. analyses analyses. RSM 11-C U. S. Navy June, 1934 LOS 16 not used valer level, 10g. analyses. RSM 11-G U. S. Navy July, 1934 160 16	23/4	G. S. auger hole	U. S. Navy	Septon 1951			0	no† ∪sed		abandoned
6. S. Atest 1. S. Navy June, 1934 290 6 water levels, 10gs, analyses RSH 11-C U. S. Navy June, 1934 102 16 RSH 11-C U. S. Navy July, 1912 112 12 RSH 11-B U. S. Navy July, 1934 160 16 RSH 11-B U. S. Navy July, 1934 160 16	23.1	G. S. test Well 4	U. S. Nevy	Junes 1951	170		ē 2	observation	Water levels, log, analyses	
RSH 11aC U. S. Navy June, 1934 167 16 not used water level, log RSH 8-A U. S. Navy July, 1912 112 12 RSH 11aB U. S. Navy July, 1934 160 16	2501	G. S. test well 6	U. S. Navy		290		\$ 0	0	water levels, log, analyses	
RSH 8-A U. S. Navy Jolly, 1912 112 12	SHCI	RSM 13-C	U. S. Navy				0 0	not used	water levels log	abandoned
10, 5, Navy 160 16 16 16 16 16 16 1	2402	RSM 8-A	YVEN S. UT.	~			90	not used		abandoned
RSH 11B U. S. Navy July, 1934 160 16 not used water level, log RSH 8 U. S. Navy Fall 1912 150 12 not used water level, log 22WH U. S. Navy July, 1950 172 24 mot used water level, log RSH 9-B U. S. Navy July, 1934 225 16 not used water level, log RSH 9-H U. S. Navy July, 1934 120 12 not used water levels, log Green 7 U. S. Navy June, 1951 17 not used water levels, log G. S. auger U. S. Navy June, 1951 24 water levels, log G. S. auger U. S. Navy Sept., 1951 24 water levels, log G. S. auger U. S. Navy Sept., 1951 24 water levels, log G	24C3		U. S. Navy		0		90	0	\$ 0	
No. S. Navy Fall 1912 150 12 not used water levels 10g	SUDI	RSM 11-8	U. S. Navy				0	not used	water level, log	abandoned
RSH 8 U. S. Navy Fall 1912 150 12 not used weter levels, log-analysis 22WW U. S. Navy July, 1954 225 16 not used weter levels, log-analysis RSH 9-B U. S. Navy 120 12 not used weter levels, log-analyses Green 7 U. S. Navy 141 12 not used weter levels, log-analyses G. S. auger U. S. Navy June, 1951 17 6 weter levels, log-analyses G. S. auger U. S. Navy Sept., 1951 24 12 weter levels, log-analyses G. S. auger U. S. Navy Sept., 1951 24 weter levels, log-analyses G. S. auger U. S. Navy Hay, 1951 weter levels, log-analyses G. S. auger U. S. Navy Hay, 1951 12 weter levels, log-analyses	24Fì		U. S. Navy		0		J e	not used	Ü	abandoned
22MM Lo. S. Navy July, 1950 172 24 military water levels, log, analysis RSM 9-B U. S. Navy July, 1934 225 16 not used water levels, log, analyses Green 7 U. S. Navy 141 12 not used log, enalyses G. S. test U. S. Navy June, 1951 175 6 not used water levels, log, analysis G. S. auger U. S. Navy Sept.e 1951 24 15 water levels, log, analysis G. S. auger U. S. Navy Sept.e 1951 24 12 water levels, log, analyses G. S. auger U. S. Navy Hay, 1951 12 water levels, log, analyses	2461	RSM 8	U. S. Navy	Fall 1912	150		ı) B	not used	water level, log	abandoned
RSH 9-8 U. S. Navy July, 1934 225 16 not used water level, log RSH 9 U. S. Navy 130 12 not used log, analyses Green 7 U. S. Navy June, 1951 175 6 water levels, log, analysis G. S. auger U. S. Navy Sept., 1951 24 1½ water levels, log, analyses G. S. auger U. S. Navy Hay, 1951 1½ water levels, log, analyses G. S. auger U. S. Navy Hay, 1951 1½ water levels, log, analyses	24H1	TAMAS	U. S. Navy				i,	millitery		
RSH 9 U. S. Navy 130 12 not used log, analyses Green 7 U. S. Navy 141 12 not used water levels, log, analysis G. S. auger U. S. Navy June, 1951 24 1½ water levels, log, analyses G. S. auger U. S. Navy Sept., 1951 24 1½ observation water levels, log G. S. auger U. S. Navy Hay, 1951 1½ not used water levels, log	24H2	8-6 MSR	U. S. Navy				0	not used		abandoned
Green 7 U. S. Navy RSH 9-H G. S. test U. S. Navy June, 1951 175 6 G. S. auger U. S. Navy Hill 12 Water levels, log, analyses G. S. auger U. S. Navy Hay, 1951 G. S. auger U. S. Navy Hay, 1951 G. S. auger U. S. Navy Hay, 1951 24H3	RSM 9	U. S. Navy		130		0	not used	log, enalyses	abandoned	
G. S. test U. S. Navy June, 1951 175 6 veter levels, log, analyses G. S. auger U. S. Navy Sept., 1951 24 1½ observation vater levels, log hole G. S. auger U. S. Navy Hay, 1951 1½ not used vater levels, log hole	24N3	Green 7 RSM 9-H	U. S. Navy		141		9 5	not used		capped
6. S. auger U. S. Navy Sept., 1951 24 1½ observation water levels, log hole 6. S. auger U. S. Navy Hay, 1951 1½ not used water levels, log hole	261.1	G. S. test	U. S. Navy				4 0	8 0	/els,	
6. S. auger U. S. Navy Hay, 1951 12 not used water levels, log	26.2	G. S. auger hole	U. S. Navy	Sept., 195			Q 6	observation	water levels₀ log	
	261.3	6. S. auger		May ₀ 1951	0		0	not used	water levels, log	abandwed

Well State	s vell numbers ste s Other bs	s Owner	s Date s drilled	« depth « in feet	s dismeters s in inches s	Pumping equipment	s Use	0 ther a data a data a	Remarks
				Mydrogra	Hydrographic Unit No. 6	6 (continued)			
105/5k~35c1		U. S. Navy		1	9	0 8	;	:	
3561	RSM 4-H	U. S. Navy		0	0	0	1	log	abandoned
3511	Green 5 D RSM 4-E	U. S. Navy	May, 1926	95	114	9 0	observation	water levels, log, analysis	
35K1	RSM 4-1	U. S. Navy	Nov., 1936	166	18	diesel engine	irrigation	water levels, log, analyses	
35K2	RSM 4-6	U. S. Navy		941	8 0	0.00	not used	10g	abandoned
35K3	Green 5 E RSM 5 (old)	U. S. Navy	1912	150	12	1	not used	log	abandoned
35K4	G. S. auger hole	U. S. Navy	May, 1951	58	23-	0 0	1	water levels, log	
35K5	G. S. test	U. S. Navy	June, 1951	149	9	9	į	water levels, log, analyses	
35R1	Green to E RSM t-DD	U. S. Navy	May, 1937	151	18	;	;	water levels, log	
35R2	Green 2 A RSM 4-D	U. S. Navy	May _s 1929	187	12	1	observetion	water levels, log	
35R3	G. S. auger hole	U. S. Navy	May _o 1951	23	~KV	i	observation	water levels, log	
11S/54- 1E1	Windmill No. 4	U. S. Navy		ì	9	vindmill	;	water levels	
2A1	RSM 4-88 22WW3	U. S. Navy	Apr., 1937	156	18	60 P. electric	military	water levels, log, analyses	
2A2	RSM 4-82	U. S. Navy	Apr., 1937	156	;	1	not used	log	abandoned
2A3	RSM 4 B1	U. S. Navy	Apr., 1937	168	•	7 8	not used	log	abandoned
2A4	Green 2 RSM 4-B 2 (old)	U. S. Navy	Apr., 1912	185	12	1	not used	water level, log	abandoned

WATER WELL DATA (continued)

Well vate	Mell numbers s State s Other bs	Owner	8 Date 8 drilled	* depth, *	diameter, in inches	s Pumping s equipment	s Use	s data	8 Remarks
				Hydrograph	Hydrographic Unit No.	6 (continued)			
115/5W- 2A5	G. S. auger hole	U. S. Navy	May _o 1951	8	-10	*	observation	water levels, log	
281		U. S. Navy	Apr. , 1912	152	12	0 0	observation	water levels, log	
282	Green 1 RSM 1 (old)	U. S. Navy		118	12	J Q	observation	water levels, log	
201	Green 17A	U. S. Navy		190	12	0	(o	log	
201	RSM 5-A5	U. S. Navy		124	18	30 HP. electric	irrigation	water levels, log, analyses	
202	RSM 5-AL	U. S. Navy	Jan., 1938	120	18	D	not used	water level, log	abandoned
2E1	RSM 5-A2	U. S. Navy	Dec. 9 1937	345	18	g D	irrigation	water levels, log, analyses	
2E2	RSM 5-A1	U. S. Navy	Dec., 1937	106	Ç Q	9 5	not used	water levels, log	abandoned
2E3	RSM 20	U. S. Navy	Sep†. ₀ 1929	92	12	0	observation	water levels, log, analysts	
2E 4	6. S. auger hole	U. S. Navy	May _s 1951	%		0	observation	water level, log	
2F }	RSM 4-C1 22NN2	U. S. Navy	May, 1927	155	18	30 MP. electric	irrigation	water levels, \log_{ρ} analyses	
2F2	RSM 5-A3	U. S. Navy	Jan., 1938	142	8	3 0	not used	log	abandoned
2F.3	6. S. auger hole	U. S. Navy	0ct., 1951	17	- 1€2	D 0	9 0	water levels, log	
8	RSM Wec, Green 17 22WW.	U. S. Navy	May _p 1921	192	. 12	ş	military	water levels, log, analyses	
2K2	G. S. test well 9	U. S. Navy	June, 1951	300	9	Ů ®	8	water levels, log, analyses	
3		U. S. Navy		9	10	e p	0	water level	open casing
SNI	0, 8, 3	3							

115/54- 2N2 2N3 2N3	0,010 0 0,100,0		s drilled	sin feet s	in inches	s Pumping s equipment	₩. 	s available s	
S/54- 2N 2N 2N		-		Hydrograph	ic Uni∜ No.	Mydrographic Unit No. 6 (continued)			
ž ž	12 Green 19	U. S. Navy	Sept., 1925	151	12	0 0	not used	log, analyses	abandoned
%	15 Green 18	U. S. Navy	Sept., 1925	5 130	0	0	not used	log, analysis	abandoned
	14 G. S. test well 11	U. S. Navy	June, 1951	200	9	0 0	0 0	water levels, log, analyses	
2N5	5 0.8.3	U. S. Navy		0	4.8	0	0	water levels	open casing
2P1	1 6. S. test well 10	U. S. Navy	July, 1951	300	9	0	observation	water levels, log, analysis	
1961	l Test well l	A.T. & S.F. R.R.		124	Ď B	10	0	20 g	
962	2 Test well 2	A.T. & S.F. R.R.		180	10	0 0	0	log	
963	5 Test well 5	A.T. & S.F. R.R.		150	₽	0	0	log	abandoned
196	it Test well it	A.T. & S.F. R.R.		151	0	0	0	log	abandoned
965	5 Test well 5	A.T. & S.F. R.R.		203	9	0	6 0	log	abandoned
906	6 Test well 6	A.T. & S.F. R.R.		155	0	0	!	log	abandoned
196	7 Test well 7	A.I. & S.F. R.R.		159	0	8 0	B 0	100	abandoned
106	11 6. S. test well 13	U. S. Navy	July, 1951	300	9	;	observation	water levels, log, analyses	
975	12 G. S. auger hole	U. S. Navy	oct., 1951	50	-14	!	observation	water levels, log	
10A1	-	U. S. Navy		0	10	1	not used	water levels	open casing
1081	11 6. S. test well 12	U. S. Navy	May, 1951	20t	9	;	observation	water levels, log, analyses	
10E1	,	U. S. Navy		;	1	1	ì	;	
10F1	1	U. S. Navy		;	1	;	;	;	

WATER WELL DATA (continued)

1143	o so character	o car	•	* * * * * * * * * * * * * * * * * * *	Casing	Principle	80 B1	<u>8</u>	0 0 0	0+ber	00 00	Remark c
State	State : Other b:		drilled	sin feet s in inches s	in inches			350		available		remains
				Hydrographi	c Unit No.	Hydrographic Unit No. 6 (continued)						
1901-#5/511	obs. well l	U. S. Navy		1	01	8	ö	observation	, ea	water levels		
1062		U. S. Navy		,	0	9	8	ħ	0			

Well outside watershed adjacent to hydrographic unit.

Numbers with prefix "Elsinore" refer to well numbers used in the Santa Ana River Investigation.

Numbers with prefixes "Wildomar", "MVM", "TF", "PM", "F", "PR", and "LT", were assigned by the Vail Co. All other well numbers are local designations assigned by well owners. مُ هُ

				14
				1
			1	
				3
				- 3
				1
				1
				- 3
				3
				7
				:
				Ps de la de Ps
			4 [
			,	1
			1	
				1
				,
				Y.
				3
			1	<i>v</i>
				3

APPENDIX G

RECORDS OF DEPTHS TO GROUND WATER AT WELLS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED

TABLE OF CONTENTS

RECORDS OF DEPTHS TO GROUND WATER AT WELLS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED

			Page
		Hydrographic	G- 3
		Hydrographic	G - 33
		Hydrographic	G-45
		Hydrographic	G-51
		Hydrographic	G - 59
		Hydrographic	G-67

Measurements made by Division of Water Resources, unless otherwise indicated.

Reference point elevations to the nearest foot have been estimated from topographic maps, except where determined by barometric level as indicated.

Reference point elevations to the nearest tenth or hundredth foot have been determined by differential level.

APPENDIX G

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

- 55/1W-28K1 Searl Bros. Near Diamond Valley; map location only, see location of wells plate; outside watershed. Reference point top of pump column pipe 0.5 foot above ground surface, at elevation 1.565 feet. 5/13/53, 13.3.
- 55/1W-32Q1 Searl Bros. In Diamond Valley; 1.8 miles weet of Highway 79 and 50 feet north of No part Road; in metal pump house. Reference point top of metal cover at ground surface, at elevati 1,578 feet. 8/27/53, 39.5; 11/20/53, 37.7; 4/22/54, 32.9.
- 55/1W-33R1 Searl Bros. In Diamond Valley; 0.59 mile west of Highway 79, and 70 feet north of Newport Road; in metal pump house; outside watershed. Reference point hole in pump base 0.8 foot above ground surface, at elevation 1,614 feet. 8/27/53, 52.0; 11/20/53, 55.1.
- 55/1W-34M1 Searl Bros. In Diamond Valley; 0.25 mile west of Highway 79, and 0.27 mile north of Newport Road; outside watershed. Reference point hole in casing 2 feet above ground surface, at elevation 1,610 feet. 8/27/53, 48.2; 11/20/53, 48.9; 4/22/54, 54.2.
- 55/1W-34N1 Searl Bros. In Diamond Valley; 0.27 mile west of Highway 79, and 70 feet north of Newport Road; outside watershed. Reference point top of outer easing at ground surface, at elevation 1,621 feet. 8/27/53, 60.2; 11/20/53, 55.7; 4/22/54, 59.2.
- 55/1W-34P1 Searl Bros. In Diamond Valley; 0.25 mile north of Newport Road, and 0.1 mile west of Highway 79; outside watershed. Reference point top of easing 0.7 foot above ground surface, at elevation 1,618 feet. 8/27/53, 53.7; 11/20/53, 53.9; 4/22/54, 52.6.
- 55/1W-34R1 In Diamond Valley; 0.5 mile east of Highway 79, and 50 feet north of Newport Road; outside watershed. Reference point top of casing 1.5 feet above ground surface, at elevation 1,670 feet. 5/14/54, 81.7.
- 55/2W-34P1 Ko Young In Domenigoni Valley; 0.39 mile east of Washington Avenue, and about 650 feet north of Newport Road; outside watershed. Reference point top of floor 1 foot above ground surface, at elevation 1,479 feet. 5/12/53, 16.7; 11/6/53, 17.2; 4/22/54, 18.3.
- 6S/1W-3El Searl Bros. In Diamond Valley; 0.48 mile west of Highway 79, and 0.43 mile south of Newport Road; outside watershed. Reference point top of conerete platform 0.7 foot above ground surface, at elevation 1,630 feet. 8/27/53, 58.1; 11/20/53, 57.6.
- 6S/IW-3E2 Searl Bros. In Diamond Valley; 0.48 mile west of Highway 79, and 0.43 mile south of Newport Road; outside watershed. Reference point hole in easing cover 0.2 foot above ground surface, at elevation 1,627 feet. 8/27/53, 58.3; 11/20/53, 57.0; 4/22/54, 58.8.
- 65/1W-3E3 Randolph Baatz In Diamond Valley; 0.24 mile west of Highway 79, and 310 feet north of Baatz Road; outside watershed. Reference point pump base 1.5 feet above ground surface, at elevation 1,635 feet. 1947, 25; 1950, 50; 1951, 60; 4/14/54, 62.7.
- 6S/1W-4G1 Searl Bros. In Diamond Valley; 0.18 mile northeast of well 4K1; in metal pump house. Reference point pump base at ground, surface, at elevation 1,622 feet. 8/27/53, 85; 11/20/53, 80.9.
- 65/1W-4J2 A. C. Molhenhoff In Diamond Valley; 0.5 mile west and 25 feet south of intersection of Highway 79 and Baatz Road; open casing. Reference point top of easing 0.7 foot above ground surface, at elevation 1,628 feet. 5/14/54, 69.5.
- 65/1W-4J3 L. H. Allert In Diamond Valley; 0.2 mile west and 0.04 mile south of intersection of Palm and Baatz Roads; at windmill 100 feet southeast of house. Reference point hole in pump base 0.5 foot above ground surface, at elevation 1,627 feet. 4/14/54, 82.7.
- 6S/1W-UK1 Searl Bros. In Diamond Valley; 1 mile west and 0.63 mile south of intersection of Highway 79 and Newport Road; in metal pump house, 30 feet north of farm road. Reference point hole in pump house at ground surface, at elevation 1,618 feet. 8/27/53, 82.4; 11/20/53, 80.9.
- 65/1W-501 Garbari Bros. In Diamond Valley; 1.2 miles west and 0.3 mile south of intersection of Highway 79 and Newport Road; in metal pump house 180 feet north of farm road. Reference point hole in easing at ground surface, at elevation 1,576 feet. 5/12/53, 57.2; 11/20/53, 50.1; 4/22/54, 60.5.
- 6S/1W-5H1 Garbani Bros. In Diamond Valley; 1.1 miles west and 0.29 mile south of intersection of Highway 79 and Newport Road; in metal pump house 120 feet north of house. Reference point hole in pump base at ground surface, at elevation 1,582 feet. 11/20/53, 52.3.

- 6S/1W-5H2 Garbant Bros. In Diamond Valley; 1.1 miles west and 0.35 mile fouth of intersection of Highway 79 and Newport Road; beside metal building. Reference point top of casing 0.6 foot below ground surface, at elevation 1.581 feet. 11/20/53, 51.2.
- 65/1W-641 Garbeni Bros. In Domenigoni Valley; 2.6 miles west and 0.16 mile south of intersection of Highway 79 and Newport Road; in metal pump house at northeast corner of eucalyptus grove. Reference point hole in pump base at ground surface, at elevation 1.556 feet. 11/20/53. 52.1.
- 6S/IW-IODI A. C. Mchlenhoff In Diamond Valley; 1.25 miles south and 0.5 mile west of intersection of Highway 79 and Newport Read; near pressure tank 45 feet south of house. Reference point top of congrete pit at ground surface, at elevation 1.682 feet. 5/14/54, 53.7.
- 6S/IW-10M1 Harold Wilhem In Diamond Valley; 1.3 miles south from intersection of Palm Avenue and Bastz Road; at windmill 0.15 mile east of Palm Avenue. Reference point top of casing 0.5 foot above ground surface, at elevation 1.720 feet. 4/14/54, 37.8.
- 65/1W-10M2 Harold Wilhem In Diamond Valley; 200 feet northwest of wall 10M1, and 90 feet weet of house; open casing. Reference point top of casing 2 feet above ground surface. 4/13/54, 31.2.
- 65/14-14NA J. R. Whaley In Biamond Valley; 0.6 mile south of well 15Hl. Reference point top of concrete pit at ground surface, at elevation 2.004 feet. 4/13/54, 49.0.
- 65/1W-1501 J. R. Whaley In Diamond Valley; 1.7 miles south from intersection of Palm Avenue and
 Beat: Road; 0.25 mile southeast (measured along dist road) from intersection with Palm Avenue. Reference
 point bottom of pump base at ground surface, at elevation 1,784 feet. 4/13/54, 27.9.
- 65/18-1532 J. R. Whaley In Diamond Valley; 0.13 mile north of well 1501. Reference point bottom of pump base at ground surface, at elevation 1,778 feet. 4/13/54, 37.4.
- 65/1W-15H1 J. R. Wheler In Diamond Valley; 0.44 mile southeast of well 15C1; in open field. Reference point hele in board cover at ground surface, et elevation 1,890 feet. 4/13/54, 41.8.
- 6S/IW-26PA Duncan Endustries Near Sage; 1.7 miles morthwest of Highway 79 (measured along dirt road) from Enterpretion 1.4 miles north of Sage (measured along Highway 79). Reference point Measured from planks occurring top of easing 1.2 feet above ground level. 12/19/53. 10.5.
- 65/2W-1A1 Searl Bros. In Domenigont Velley; 3.5 miles west and 0.2 miles south of intersection of Highway 79 and Newport Road; at windmill. Reference point top of pipe clamp 0.33 feet above ground supplace, at elevation 1,532 feet. 5/11/53, 33.0; 3/6/53, 32.5; 4/7/53, pumping; 8/4/53, 34.4; 9/2/53, 34.6; 10/1/53, 34.9; 11/6/53, 35.3; 2/3/54, 35.7; 4/5/54, 35.8; 4/22/54, 36.2.
- 65,78-33 Francis Demenigoni In Pomenigoni Valley; 0.3 mile south of Newport Road from intersection 2.8 miles west of Washington Awanue (measured along Newport Road) 90 feet south and 12 feet west of east & corner, section 2. Reference point 6 feet above ground surface. 3/6/53, 22.5; 4/7/53, 22.6.
- 68/2W-232 Francis Domenigoni In Domenigoni Valley; O.1 mile south of well 2Jl. Reference point ground surface. 9/27/51, 21(log).
- 65/2W. ORL Pete Demanagent In Domenagent Valley 0.1 mile northeast of well 3R2; 20 feet west of dirt read; open maring. Reference point top of caring 0.43 feet above ground surface, at elevation 1.483.93 feet. 5/11/53, 14.3; 11/6/53, 16.1; 4/22/54, 15.7.
- 6S/2W-JR2 Pets Dominigoni In Dominigoni Valley; at windmill 0.93 mile east of Washington Avenue (mestured along Holland Road); near Stone Reservoir, 100 feet east of house. Reference point top of caring 0.5 foot above ground surface, at elsvation 1,478.91 feet. 5/11/53, 16.4; 11/6/53, 15.1; 4/22/54, 17.3.
- (S/NW-3R3 Pets Drmenigent in Domenigent Valley: 0.06 mile north of well 3R2; 75 feet north of large tree in open field. Reference point top of casing 2.0 feet above ground curface, at elevation 1481.11 feet. 7/22/52, 12.1; 1/19/53, 12.3; 3/6/53, 11.6; 4/7/53, 12.0; 11/6/53, 15.6; 4/22/54, 15.2.
- 6S/2W-3R4 Pets Dominigoni In Dominigoni Valley; 36 feet south of well 3R3. Reference point top of casing 1.1 fest above ground surface, at elevation 1,479.95 feet. 5/11/53, 12.5; 8/4/53, 14.8; 9/2/53, 14.8; 10/2/53, 14.1; 11/6/53, 14.4; 2/3/54, 14.4; 4/5/54, 14.1; 4/22/54, 18.1; 11/7/54, 14.7.
- 65/1W-3R6 Pake Domenigoni In Demenigoni Valley; 0.06 wile north of well 3R2; 125 fort north of tree in open field. Reference point top of casing 0.5 foot above ground surface, at elevation 1,480 feats 11/6/53, 14.4.

- 6S/2W-4L1 Francis and William Hadder In Demondgrad Valley; 0.45 mile west and 0.42 mile norsh of intersection of Washington Agenus and Holland Road; 0.15 mile morth of house. Reference point 3 feet above ground surface, at elevation 1,578 feet. 5/14/53, 16.0; 11/6/53, 17.6; 4/22/54, 15.0.
- 6S/2W-9J1 E. W. Connell In Dumanigoni Valley; 0.51 mile scuth and 200 fest west of interes of Holland Road and Washington Arome. Reference point ground surface, at elevation 1,457 (15t. 7/23/53, 41 (log): 10/53, 22 (wener).
- 65/2W-9K1 E. W. Connell In Domenageni Valley; 0.70 mile south and 0.25 mile west of Washington Avenue and Holland Read. Reference point ground surface, at elevation 1.448 feet. 10/53, 22 (owner).
- 6S/2W-9K2 E. W. Connell In Domenigent Valley; 80 feet south of well 9K1. 7/14/53, 36 (log).
- 6S/2W-10K1 In Domenigoni Valley; at wirdmill, 0.8 mile south of Helland Road (measured along dirt road) from intersection 0.5 mile east of Washington Avenue (measured along dirt road) from intersection 0.5 mile east of Washington Avenue (measured along Helland Avenue; 50 feet east of house). Reference point hole in floor board 0.5 foot above ground eurface, at elevation 1,465 feet. 5/11/53, 7.4; 11/6/53, 16.7; 4/22/54, 12.3.
- 6S/2W-11A1 Searl Bros. In Domenigent Valley; 0.35 mile south of well 932; at windmill. Reference point top of easing 1.2 feet above ground surface, at elevation 1,517 feet. 5/12/53, 13.6; 8/4/53, 31.2; 9/2/53, 32.1; 10/1/53, 32.6; 11/6/53, 33.0; 1/7/54, 34.0; 2/3/54, 33.6; 4/22/54, 33.0.
- 6S/2W-15D1 In Domanigoni Valley; 1.03 miles south and 0.04 mile east of intersection of Holland Road and Washington Avenue. Reference point top of pump clamp 0.1 foot above ground surface. 5/11/53. 8.8.
- 6S/2W-16C1 In Domenigeni Valley; 0.8 mile west of well 15D1. Reference point top of easing 10 feet below ground surface. 5/14/53, 1.1.
- 6S/2W-16C2 In Domonigoni Valley; 100 fact south of well 16Cl. Reference point top of seeing 1.2 feet above ground surface. 5/14/53, 13.9.
- 6S/2W-17N1 Fred Pourroy In Domanigoni Valley; 75 feet east and 35 feet north of intersection of Scott and Leon Roads; at windmill. Reference point top of casing 1 foot above ground surface, at elevation 1,401 feet. 5/19/53, 10.6; 11/6/53, 112.8; 4/22/54, 13.2.
- 65/2W-19El In Domenigeni Valley; 0.45 mile south and 250 feet east of intersection of Scott and Briggs Roads; at windmill. Reference point top of pit 0.5 foot above ground surface, at elevation 1,418 feet. 5/18/53, 13.5; 11/16/53, 16.7.
- 6S/2W-19H1 Fred Pourroy In Domenigoni Valley; 0.45 mile south and 0.13 mile west of intersection of Sectt and Leon Reads; 50 feet southwest of house. Reference point top of pit 0.5 feet above ground surface, at elevation 1,420 feet. 5/19/53, 29.1; 11/6/53, 30.3; 4/22/54, 29.9.
- 6S/2W-19N1 Mrs. Arthur McElhinney In Demonigent Valley; 0.9 mile south and 60 feat east of intersection of Scott and Briggs Roads; 40 feat west of brick house. Reference point hele in converts cover 0.5 fact above ground surface, at elevation 1,410 feet. 11/18/53, 25.0; 4/28/54, 24.3.
- 6S/2W-19N2 Mrs. Arthur McElhinney In Domenigeni Valley; 12 feet south of well 19N1. Reference point top of concrete cover 1.2 feet above graind surface. 11/18/53, 28.1; 4/28/54, 25.3.
- 6S/2W-19N3 Mrs. Arthur McElhinney In Domanigeni Valley; 0.91 mile south and 370 feet east of intersection of Seett and Briggs Roads; at windmill, 40 feet northeast of house. Reference point top of concrete slab 1.2 feet above ground surface, at elevation 1,381 feet. 11/18/53, 29.5; 4/28/54, 25.9.
- 68/2W-20N1 Richardson In French Valley; 500 feet east and 300 feet north of interaction of Keller and Leon Roads; in sucallyptus grows, 40 feet west of house. Reference point top of casing at ground surface, at elevation 1,448 feet. 11/12/53, 77.0; 4/22/54, 74.7.
- 6S/2W-21D1 H. Bergman In Domenigoni Velley; 1.3 mile east and 75 feet south of intersection of Sectt and Leon Roads; open sessing in shed. Reference point top of casing, 1 foot above ground surface, at elevation 1,455 feet. 6/18/49, 20 (log); 4/16/54, 13.5.

DEFTES TO GRO'DE WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

- 65/14-2191 Chibert Steams In French Valley; 0.25 mile north of Kehler Road (measured, along Vinohester Road), and 0.77 mile sast of Vinohester Road; 50 feet northeest of house. Reference point top of wood cover 1.16 feet above ground surface, at elevation 1,435.05 feet. 5/14/53, 22.8; 11/6/53, 23.6; 4/28/54, 20.2.
- 65/2W-21R1 Gilbert Stearns 7 In French Valley: 300 feet west of well 21Q1. Reference point top of floor 0.5 foot above ground surface, at elevation 1.433.59 feet. 11/6/53, 22.6.
- 65/24-2741 Arthur Vial In Franch Valley; 0.62 mile each of Machington Avenue (measured along form read)
 from intersection 0.75 mile south of Keller Read (measured along Washington Avenue); at windmill 70 feet
 each of house. Reference point top of ecnorete slab 0.5 feet above ground surface, at elevation
 1.452.87 feet. 5/14/53, 14.7; 11/12/53, 14.8; 4/28/54, 17.1.
- 65/2W-28B1 Karl Frick In French Velley; 0.24 mile cest and 75 feet south of intersection of Windhester and Keller Reads. Reference point top of casing 1.1 feet above ground surface, at elevation 1,413.82 feet. 4/7/53, 13.4; 5/14/63, 14.4; 8/4/53, 12.7; 9/2/53, 13.6; 10/2/53, 12.9; 11/12/53, 13.2; 1/7/54, 13.6; 2/3/54, 15.0; 4/5/54, 11.6; 4/28/54, 12.6.
- 68/1V-2801 Karl Frick In French Valley; 0.04 mile east and 225 feet south of intersection of Winchester and Koller Reads; at windmill. Reference point top of pipe class 1.8 feet above ground surface, at clovation, 1,412.80 feet. 5/14/53, 15.2; 11/12/53, 16.4; 4/28/54, 13.3.
- 65/24-28th Karl Prick In French Valley; 0.6 mile south and 0.34 mile west of intersection of Washington Arenue and Kellar Road; at windmill 100 feet north of house. Reference point top of floor board 0.5 foot above ground surface, at elevation 1,400.97 feet. 11/12/53, 15.9; 4/28/54, 10.0.
- 68/2W-2862 Kerl Frick In French Valley: 0.55 mile south and 0.26 mile west of intersection of Washington Avenue and Keller Road; in pump house 50 feet mouth of house. Reference point top of concrete slab 0.7 foot above ground surface, at elevation 1.413.65 feet. 7/48, 20 (log): 4/28/54, 23.3.
- 65/2W-2803 Marl Prish In French Valley; 200 feet southwest of well 2802; 150 feet west of house, and beside small reservoir. Reference point top of casing 0.35 foot above ground surface, at elevation 1,412.23 feet. 12/23/49, 30.5 (log); 5/15/53, 35.5; 4/28/54, 32.4.
- 6S/2W-28JR Arthur Vial In French Valley; 0.47 mile nest of well 27NR; at windmill, 60 feet south of house and 100 feet west of barn. Reference point top of casing 0.4 foot above ground surface, at oleration 1,423.22 feet. 5/14/53, 25.3; 11/12/53, 17.6; 4/26/54, 21.7.
- 65/2W-1812 Arthur Vial In French Valley: 235 feet north-east of well 2811; 135 feet north and 50 feet east of house. Reference point top of easing 1.5 feet above ground surface, at elevation 1,425 feet. 11/12/53, 17.7; 4/28/54, 16.0.
- 68/2W-29M1 In Preach Valley's 0.78 mile south and 120 feet oast of intersection of Keller and Leon Reads; at windmill. Reference point top of casing 0.5 feet above ground surface, at elevation 1,395 feet. 5/18/53. 19.21 4/22/54, 18.4.
- 68/NH-19RR Plante Pourray In French Velley; 0.38 mile east of Beeler Roads (measured along Winchester Road), and 70 feet southeast of Winchester Road; at windmill. Reference point top of easing 0.8 foot above ground surface, at elevation 1,376.71 feet. 5/15/53, 18.1; 11/13/53, 19.4; 4/28/54, 19.2.
- 65/24-9041 Richardson In Fromb Valley; 180 feet west and 50 feet south of intersection of Leen and Kolley Reads at windmill, 70 feet mortheast of house. Reference point top of pipe class 0.5 foot above ground surface, at elevation 1,427 feet. 5/18/53, 34.9; 11/6/53, 33.2; 4/22/54, 37.5.
- 6S/2W-3003 In French Valley; 1.3 miles south and 0.4W mile east of intersection of Scott and Briggs Roads; at windmill, 150 feet morth of bend in road. Reference point top of wood floor 0.1 foot above ground surface, at elewation 1,395 feet. 5/22/53, 23.2; 11/18/53, 23.4; 4/28/54, 23.3.
- 68/20-30F1 MaElhinney In French Velley; 0.66 mile east of Briggs Road (measured along farm road) from intersection 1.5 miles south of Scott Road (measured along Briggs Road); at windmill 120 fest northeast of road. Reference point Sup of communes pit 1.0 foot above ground surface, at elevation 1,400 feet. 5/22/53, 42.6; 11/18/53, 46.7; 47/28/54, 40.7.
- 68/24-30F2 MaSihammey In French Velley: 0.3 mile seat of Briggs Road (measured along farm coad) from inversation 1.3 mile south of Santa Read (measured along Briggs Road); at windmill, 120 feet sant of road. Reference point top of someone pit above ground surface, at elevation 1,380 feet. 5/11/53, 15-9: 11/48/53, 20-9: 4/28/54, 19-7.

(Depths to sates in fewt measured from reference point) (worstweed)

- 65/2W-30RL Pichardson In French Valley; 0-9 mile south and 400 feet west of intersection of Keller and Leon Roads; at windmill. Reference point top of 4 x 4 inch peared 067 feet above ground surface, at elevation 1,380 feet. 5/18/53, 15.5; 11/12/53, 14.8; 4/22/54, 10.5.
- 65/2W-31L1 Fontane Bress In Franch Velley; 0.56 mile north and 0.08 mile west of intersection of Briggs and Thompson Roads; 30 feat east of quonast rouse. Reference point top of word floor 1.8 feat above ground surface, at elevation 1,338.77 foct. 1947, 38 (owner); 5/20/53, 40.9; 11/16/53, 47.8; 4/28/54, 47.4.
- 6S/2W-31L2 Fontana Bros. In French Valley; 0.4 mile north and 105 feet west of intersection of Briggs and Thompson Roads. Reference point top of easing at ground surface, at elevation 1,345.74 feet. 1947, 9 (owner); 5/20/53. 1-4; 11/16/53. 18.4; 4/28/54. 16.3.
- 65/2W-31P1 In French Valley, 9.1 mile west and 120 feet south of intersection of Briggs and Lea Alamos Reads. Reference point top of word never, I feet above ground surface, at elevation 1,324.71 feet. 5/20/53. 18.9: 11/16/53. 13.4: 4/28/54. 3.9.
- 68/2W-31P2 In French Valley; 0.18 mile west and 0.63 mile north of intersection of Briggs and Los Alamos Roads; at windmill 15 feet east of house. Reference point top of work sever 0.3 foot above ground surface, at elevation 1.954.08 feet. 5/15/53, 36.6; 11/16/53, 37.3; 4/28/54, 37.5.
- 68/2W-31R1 R. M. Gummins In Franch Valley; 0.17 mile morth and 60 feet west of intersection of Thompson and Leon Roads; in metal pump house. Reference point top of measuring pape, at elevation 1,333 feet. 11/18/53, 16.9; 4/22/54, 14.66
- 65/2W-31R2 R. M. Commins In French Valley: Joi mile wast and J. 06 adde north of intersection of Winohester and Leon Roads; at windmill, 50 feet morthoast of house. Reference point - top of pipe clamp 0.8 foot above ground surface, at clavetion 1,330 feet. 11/18/53, 38.7; 4/22/54, 37.
- 65/2W-32A1 Pierre Pourrey In Franch Veilsy; 0.93 mile north and 0.06 mile west of intersection of Winchester and Bosler Roads. Reference point Ismer lip of measuring pips 0.5 foot above ground surface, at elevation, 1,377.14 fest. 4/28/54, 17.5.
- 65/2W-32H1 Pierre Pourroy In Franch Vellay; 0.72 mile north and 0.05 mile sout of intersection of Beeler and Thompson Reads. Reference point top of pump base 1.6 feet above ground surface, at elevation 1.377.35 feet. 4/28/54, 29.0.
- 65/2W-32L1 Pierra Pourray in Fronch Volley; 1.2 mile southwest from Bealer Read (measured along Winchester Read); 600 fact east of Winchester Read and 40 fact south of windmill. Reference point top of casing 2 feet above ground surface, at elevation 1,358 feet. 5/15/53, 9.3; 12/13/53, 12.0; 4/28/54, 11.7.
- 68/2W-32R1 Pierre Pourroy In French Walleys 0.25 mile west and 900 feet north of intersection of Beeler and Thompson Reads. Reference point top of easing 2.2 feet above ground surface, at elevation 1,370.92 feet. 5/15/53, 28.3; 11/13/53, 29.4; 4/28/54, 29.9.
- 6S/2W-33E1 Pierre Pourcey In Franch Valley; 0.77 mile north and 75 feet east of intersection of Beeler and Thompson Roads; at windmill. Reference point top of easing 0.7 foot above ground surface, at elevation 1,378.07 feet. 5/15/53, 26.9; 11/12/53, 28.0; 4/23/54, 26.8.
- 68/2W-34C1 In French Valley; 0.44 mile equiberst of well 27ML; at windmill tower. Reference point top of wood floor 1.1 feet above ground curface: 5/15/53, 18.0; 11/12/53, 14.7.
- 68/3W-26D1 S. W. Reigle Near Murrieta; C.1 mile south of intersection of Highway 395 and Keller Road; 150 feet southeast of sheet metal house; outside waterghad. Reference point ground surface. 6/18/51, 26 (log).
- 6S/3W-26E1 Alex Mahas Near Marrietz; 0.35 mile south and 50 feet cast of intersection of Highway 395 and Keller Road; in small building. Reference point ground surface. Summer 1951, 22 (leg).
- 68/3W-31R1 W. L. Morens Near Wildemars 0.3 mile northeast of Gath Road (measured along dirt read) from intersection 2.2 miles east of Highway 71 (measured along Gath Road). Reference point ground surface. 10/7/48, 15 (leg).
- 68/3W-35D1 George D. Evans Near Marrietz; I.1 miles south and D.14 mile east of intersection of Highway 395 and Keller Road; at windmill 275 featenest of house. Reference point top of casing 0.5 feet above ground surface, at elevation 1,560 feet. 10/9/48, 36 (log); 4/19/54, 18.7.

- 68/3W-35D2 George D. Evans Near Marrieta; 10 feet west of well 35D1; at windmill tower. Reference point top of easing 0.7 foot above ground surface. 4/19/54. 19.1.
- 65/4W-2131 F. G. Perkins Near Sedoe; C.15 mile northwest from Corydon Street (measured along Cereal Street) from intersection 0.28 mile southwest of Highway 71 (measured along Corydon Street); 75 feet southeast of building; outside watershed. Reference point top of easing, at elevation 1,265.04 feet. 6/18/48. 130.0.
- 65/4W-21R1 I. P. Chappel Near Sedve; C.53 mile southwest of Highway 71 (measured along Corydon Street) and 50 feet southeast of Corydon Street; outside watershod. Reference point top of 2-inch nipple, at elevation 1.266.39 foot. 6/12/48. 58.8; 11/24/48. 63.1; 4/21/53; 93.7; 7/6/53, 93.1.
- 65/4W-22F1 Sidney Kelsey Noar Sodor; 1,200 feet north and 750 feet east of intersection of Highway 71 end Corydon Street; at winduill outside watershed. Reference point top of easing, at elevation 1,290.36 feet. 6/18/48, 16.2; 11/26/48, 16.4; 4/22/49, 17.3; 5/6/52, 17.7; 2/23/53, 18.1; 4/4/53, 19.4; 7/6/53, 18.1; 11/9/53, 17.8.
- 68/4W-22G1 Albert Kaznier Near Seder; 100 feet west and 50 feet south of intersection of Orange and Almond Streets; outside watershed. Reference point top of casing, at elevation 1,422.78 feet. 6/18/48, 24.8; 11/26/48, 34.2; 4/22/49, 34.7; 5/16/52, 36.3; 2/24/53, 36.3; 4/21/53, 36.5; 11/19/53, 36.0.
- 68/4W-22M1 H. H. Hillebrand Near Sedoc; 750 feet southwest of Highway 71 (measured along Corydon Street), and 75 feet northwest of Corydon Street; outside watershed. Reference point top of easing, at elevation 1.272.78 feet. 6/18/43, 163.5; 11/24/48, 172.1; 9/18/50, 173.5; 11/10/53, 171.5.
- 684W-23N1 Fred Rathke Near Sedes; 300 feet north and 300 feet west of intersection of Bundy Road and Cherry Street; west of tank tower; outside watershed. Reference point top of easing, at elevation 1,410.04 feet. 6/18/48, 47.4; 11/26/48, 43.3; 4/22/49, 45.4; 5/16/52, 48.3; 2/23/53, 47.1; 4/21/53, 54.1; 11/9/53, 51.4; 4/19/54, 48.2.
- 68,4W-26B1 C. R. Dewson Near Sodos; 0.67 mile case and 500 feet south of intersection of Orange Street and Bundy Canyon Road: southeast of house. Reference point top of aming 1.3 feet above ground surface, at elevation 1,409.13 feet. Note: Measurements are from numers records except as indicated. 6/1/48, 48.2; 7/1/48, 49.4; 6/1/48, 49.0; 3/1/48, 49.3; 10/1/48, 49.3; 11/1/48, 49.6; 12/1/48, 49.2; 1/1/49, 49.4; 2/1/49, 49.6; 3/1/49, 49.8; 4/1/49, 49.7; 5/15/49, 50.8; 5/1/49, 50.5; 7/1/49, 51.9; 8/1/49, 51.6; 9/1/49, 52.0; 10/1/49, 51.5; 11/1/49, 51.5; 12/1/49, 51.8; 1/1/50, 53.7; 3/1/50, 53.7; 3/1/50, 53.8; 4/1/50, 52.0; 5/1/50, 52.3; 6/1/50, 52.7; 7/1/50, 50.0; 8/1/50, 53.1; 9/15/50, 53.7; 10/1/50, 53.7; 11/1/50, 53.7; 12/1/50, 53.8; 11/1/51, 54.0; 2/1/51, 54.1; 3/1/51, 54.2; 4/1/51, 54.0; 5/1/51, 54.7; 6/1/51, 55.2; 7/1/51, 57.0; 8/1/51, 55.3; 9/1/51, 54.5; 10/1/51, 55.3; 11/1/51, 55.2; 2/1/52, 54.8; 3/1/52, 53.8; 4/1/52, 53.6; 5/1/52, 49.6; 6/1/52, 49.6; 7/1/52, 49.6; 8/1/52, 48.7; 9/1/52, 48.4; 10/1/52, 47.0; 11/1/52, 47.0; 12/15/52, 47.0; 1/1/53, 47.0; 2/1/53, 47.0; 3/1/53, 47.5; 4/1/53, 48.4; 5/6/53, 48.6 (DWR); 7/7/53, 50.4 (DWR); 13/9/53, 52.1 (DWR); 4/18/54, 50.4 (DWR).
- 68/4W-16E1 Harry Daris Near Sodde; 0.4 mile south and 75 feet west of intersection of Bundy Canyon Road and Cherry Street; outside watershed. Reference point lover lip of measuring pipe 0.3 foot above ground surrane, at elevation 1,362 feet. 2/20/48, 53.4 (Calif. Elec. Power Co.); 5/4/51, 55.6; (Calif. Elec. Power Co.); 11/9/53, 58.9; 4/19/54, 47.5.
- 65/4W-26L1 L. M. Corter Near Sedec; 100 feet wast and 25 feet south of intersection of White and Walnut Streets. Reference point top of cosing 0.67 feet above ground surface, at elevation 1,391.28 feet. 6/18/48, 61.8; 11/26/43, 59.6; 4/21/49, 58.2; 5/16/52, 65.8; 2/23/53, 63.5; 14/21/53, 66.5.
- 65/4W-26M1 Ben Edwards Wear Sedon; 600 feet east end 100 feet south of intersection of Orange and Walnut Streets. Reference point hole in pump base, at elevation 1,350.96 feet. 6/18/48, 39.8; 11/26/48, 32.3; 4/21/49, 35.3; 4/21/53, 37.7; 11/9/53, 39.3.
- 65/4W-26M2 de Ezon Weer Sedeo; 660 fost north and 140 feet west of intersection of Grove and Cherry Streets. Reference point ground surface. 7/15/53, 54.3.
- 65/4W-2701 A. Branner Near Sedac; 900 feat north and 600 feat west of intersection of Canyon Drive and Orchard Street, 50 feat east of house; outside watershed. Reference point hole in pump base 0.25 foot above ground surface, at elevation 1,307.53 feat. 6/18/48, 176.0; 11/26/48, 173.6; 4/21/49, 174.5; 9/18/50, 191.5; 5/16/52, 177.9; 4/21/53, 184.2; 11/9/53, 202 4.
- 65/4W-27G1 Clyde Blakely Near Sados; 100 feet sast and 50 feet north of intersection of Valnut and Orchard Streets; outside watershed. Reference point hole in pump base, at elevation 1,328.72 feet. 6/18/48, 175.0; 11/26/48, 180.8; 4/21/49, 171.7; 4/7/53, 182.3; 7/5/53, 192.8; 11/9/53, dry.

- 6S/4W-27M1 John P. Garrett Near Sedoo; 0.21 mile south and 300 feet east of intersection of Highway 71 and Walnut Street; outside watershed. Reference point top of casing 0.7 foot above ground surface, at elevation 1,309.40 feet. 11/9/53, 122.0; 4/19/54, 123.5.
- 6S/4W-27N2 William Wright Near Sedoo; 0.16 mile southeast of Bryant Street (measured along Palomar Street) and 75 feet southwest of Palomar Street; outside watershed. Reference point lower lip of pipe 1.3 feet above ground surface, at elevation 1,292.17 feet. 6/7/50, 64 (log); 7/16/53, 66.4; 11/12/53, 66.3; 4/19/54, 64.2.
- 6S/4W-28B1 I. P. Chappel Near Sedon; 1.550 feet northeast of Palomar Street (measured along Corydon Street) and 300 feet northwest of Corydon Street; 75 feet southeast of bern; outside watershed. Reference point top of casing, at elevation 1,264.07 feet. 6/18/48, 51.6; 11/24/48, 57.4; 4/19/49, 51.3; 4/21/53, 86.3; 11/10/53, 89.5.
- 6S/4W-28D1 Charles de Boer Near Sedoc; 0.45 mile morthwest of Corydon Street (measured along Palcmar Street extended) and 100 feet southwest of Palcmar Street extended; outside watershed. Reference point ground surface. 3/17/47, 21.3 (Calif. Elec. Power Co.).
- 6S/4W-28H1 Near Sedoc; 1,400 feet southeast of Corydon Street (measured along Palomar Street) and 1,050 feet northeast of Palomar Street; at windmill; outside watershed. Reference point top of casing, at elevation 1,289.34 feet. 6/18/48, 48.4; 11/24/48, 49.0; 4/21/49, 50.6; 4/20/53, 67.3.
- 6S/4W-28L1 L. Kinnster Near Sedoo; 1,150 feet northeast of Grand Avenue (measured along Corydon Street) and 200 feet northwest of Corydon Street; at windmill; outside watershed. Reference point top of wood floor, at elevation 1,279.18 feet. 6/18/48, 12.4; 11/24/48, 13.3; 4/21/49, 12.3; 4/21/53, 11.2; 7/6/53, 15.9; 11/10/53, 15.7.
- 6S/4W-28M1 W. W. Hillis Near Sedoo; 360 feet northwest of Corydon Street (measured along Grand Avenue) and 100 feet southwest of Grand Avenue; outside watershed. Reference point hole in pump base, at elevation 1,297.38 feet. 6/18/48, 25.4; 11/24/48, 26.2; 4/21/49, 26.5; 5/15/52, 25.2; 2/24/53, 24.9; 4/20/53, 23.1; 11/10/53, 24.5.
- 6S/4W-28PI Near Sedeo; 600 feet southeast of Corydon Street (measured along Grand Avenue) and 35 feet northeast of Grand Avenue; at windmill; outside watershed. Reference point top of casing, at elevation 1,300.46 feet. 6/18/48, 29.9; 11/24/48, 27.1; 4/7/53, 31.8; 4/20/53, 29.0; 11/10/53, 33.0.
- 6S/4W-28P2 V. Cleveland Near Sedoe; 1,550 feet southeast of Corydon Street (measured along Grand Avenue) and 240 feet southwest of Grand Avenue; outside watershed. Reference point top of wood floor, at elevation 1,301.59 feet. 6/18/48, 28.8; 11/24/48, 25.6; 4/20/53, 32.8; 11/10/53, 33.5; 4/20/54, 32.0.
- 6S/4W-28R1 Near Sedoo; 1,900 feet northeast of Grand Avenue (measured along Bryant Street) and 500 feet southeast of Bryant Street; at windmill; outside watershed. Reference point top of casing, at elevation 1,293.40 feet. 6/18/48, 38.4; 11/24/48, 39.4; 4/21/49, 40.4; 5/10/52, 45.4; 2/24/53, 47.0; 3/6/53, 47.0; 4/7/53, 48.2; 7/6/53, 47.8.
- 6S/4W-33A2 J. E. Tarr Near Wildomar; 850 feet southeast of Bryant Street (measured along Grand Avenue), and 150 feet northeast of Grand Avenue; outside watershed. Reference point top of concrete floor 0.4 foot above ground surface, at elevation 1,304.97 feet. 6/18/48, 50.8; 11/16/50, 57.2 (R.C.F.C.&W.C.D.); 4/23/53, 58.0; 11/10/53, 60.0; 4/20/54, 58.5.
- 6S/4W-33B1 L. H. Kingsland Near Wildomar; 200 fest southeast of Bryant Street (measured along Grand Avenue) and 100 feet southwest of Grand Street; outside watershed. Reference point top of casing 0.74 foot above ground surface, at elevation 1,318.73 feet. 6/18/48, 53.4; 4/21/49, 53.8; 4/20/53, 58.5; 11/10/53, 58.8; 4/20/54, 60.5.
- 65/4W-33H1 Near Wildomar; 0.31 mile northwest of Weeley Street (measured along Grand Avanue), and 120 feet southwest of Grand Avanue; 30 feet southwest of house. Reference point top of casing 0.3 foot above ground surface, at elevation 1.308 feet. 4/20/54, 58.3.
- 6S/4W-33H3 Blake Near Wildomar; 0.43 mile southeast of Bryant Street (measured along Grand Avenue) and 220 feet southwest of Grand Avenue. Reference point top of easing 0.5 foot above ground surface. 4/23/53, 57.1.
- 6S/4W-33H4 J. T. Hutchinson Near Wildomar; 0.43 mile southeast of Bryant Street (measured along Grand Avenue), and 130 feet northeast of Grand Avenue. Reference point top of casing 0.4 foot above ground surface, at elevation 1,300 feet. 4/23/53, 45.9; 4/20/54, 53.4.

(Depths to water in fest measured from reference point)

- 6S/4W-33H5 Mary Turku Near Wildomar; 0.38 mile southeast of Bryant Street (measured along Grand Avenue) and 100 feet northeast of Grand Avenue. Reference point top of casing 0.07 foot above ground surface, at elevation 1,295.54 feet. 4/23/53, 51.0; 11/12/53, 49.5; 4/20/54, 51.0.
- 6S/4W-33H6 Antonio Stellino Near Wildomar; 0.59 mile southeast of Bryant Street (measured along Grand Avenue) and 0.15 mile southwest of Grand Avenue; open ossing at power pole. Reference point top of casing at ground surface. 4/23/53. 32.9.
- 65/4W-34B1 Bill Stuart Near Wildomar; 0.4 mile northwest of Orange Street (measured along Highway 71) and 120 feet northeast of Highway 71; in open field. Reference point top of concrete floor 0.6 foot above ground surface, at elevation 1,286.32 feet. 4/22/53, 67.5; 7/16/53, 68.0; 11/12/53, 69.9; 4/14/54, 68.1.
- 6S/4W-34D1 E. W. Robison Near Wildumar; 0.38 mile northwest of Wesley Street (measured along Highway 71) and 750 feet southwest of Highway 71. Reference point top of casing collar 0.5 foot above ground ourface. 11/12/53, 91.5.
- 65/4W-34E1 Near Wildomar; 0.16 mile northwest of World Street (measured along Grand Avenue), and 100 fest southwest of Grand Avenue; at windmill. Reference point top of wood cover 1.3 foot above ground surface, at elevation 1,292.61 feet. 4/23/53, 61.0; 4/20/54, 62.9.
- 6S/4W-34E3 S. M. Morrison Near Wildomar; 520 feet northwest of well 34E1; at windmill 40 feet south of house. Reference point top of easing 0.35 foot above ground surface, at elevation 1,301.18 feet. 6/18/48, 55.9; 11/24/48, 56.0; 5/16/52, 68.5; 2/24/53, 70.4; 4/23/53; 66.9; 11/12/53, 64.9; 4/19/54, 66.0.
- 65/4W-34E4 Don Trenary Neer Wildomar; 650 feet northwest of Wosley Strest (measured along Grand Avenue) and 170 feet northeast of Grand Avenue; northwest of house. Reference point top of casing, at elevation 1,287,47 feet. 6/18/48, 50.6; 11/24/48, 46.6; 4/23/53, 58.0.
- 65/4W-34E5 Near Wildomar; 400 feet northeasterly of well 34E4. Reference point top of casing 0.5 foot above ground surface. 4/23/53, 63.6.
- 65/4W-34E6 Near Wildomar; 300 feet southeasterly of well 34E4; open casing in open field. Reference point top of casing 0.5 fcct above ground surface, at elevation 1,267 feet. 3/6/53, 61.4; 4/7/53, 59.9; 4/23/53, 59.3; 8/5/53, 54.6; 9/1/53, 54.6; 10/5/53, 54.9; 1/7/54, 55.1; 2/3/54, 55.0; 4/2/54, 55.1; 4/19/54, 55.1.
- 6S/4W-54G1 C. J. Spore Near Wildomar; 700 feet southeast of Wasley Street (measured along Union Avenue) and 150 feet northeast of Union Avenue; open casing. Reference point top of wood cover at ground surface, at elevation 1,258.62 feet. 11/29/48, 25.9; 4/21/49, 29.0; 4/23/53, 33.8; 11/12/53, 35.2; 4/20/54, 35.4.
- 65/4W-34G2 C. J. Spore Near Wildomar; 110 feet northeast of well 34Gl. Reference point top of casing 2.8 feet above ground surface. 4/23/53, 34.6.
- 65/4W-34G3 C. J. Spore Near Wildomar; 210 feet northwest of well 34G1; open casing. Reference point top of casing 2 feet above ground surface. 2/19/53, 34.0; 4/23/53. 34.5.
- 65/4W-34J2 Henry Langstraat Near Wildomar; 0.67 mile southeast of Gruwell Street (measured along Front Street) and 100 feet northeast of Front Street. Reference point top of the easing 0.91 foot above ground surface, at elevation 1,253.10 feet. 4/28/53, 43.3; 3/4/54, 40.
- 65/1W-34J3 Near Wildomar; 0.05 mile northwest of Central Avenue (measured along Front Street), and 50 feet northeast of Front Street. Reference point 2 feet above ground surface, at elevation 1,250 feet. 2/19/53, 36.1; 4/28/53, 35.1; 4/21/54, 35.6.
- 65/4W-34J4 Bob and Lea Phillips Near Wildomar; O.1 mile northwest of Central Avenue (measured along Darby Street) and 150 feet northeast of Darby Street. Reference point top of casing 0.98 foot above ground surface, at elevation 1,244.63 feet. 4/28/53, 31.8.
- 6S/4W-34J5 Arthur H. Cooper Near Wildowar; 370 feat northwest of well 34J4. Reference point top of casing 0.6 foot above ground surface, at elevation 1,248 feat. 4/28/53, 29.8; 11/12/53, 32.1; 4/21/54, 31.1.
- 65/4W-3436 Dr. Hunter Near Wildomar; 0.23 mile northwest of Central Avenue (measured along Darby Street) and 50 feet southwest of Darby Street. Reference point top of concrete ossing 1 foot above ground surface. 4/28/53, 47.1.

- 6S/4W-34J7 John Fitzpatriok Near Wildomar; 75 feet southeast and 150 feet northeast of intersection of Gruwell and Darby Streets. Reference point top of casing at ground surface, at elevation 1,252 feet. 4/28/53, 31.2; 11/12/53, 32.7; 4/20/54, 35.4.
- 65/4W-9438 Arthur H. Cooper Near Wildomar; 190 feet northwest of well 3434. Reference point at top of easing 0.67 foot above ground surface. 4/28/53, 25.7.
- 6S/4W-24J9 Near Wildomar; 50 feet northeast and 50 feet southeast of intersection of Front and Elm Streets. Reference point top of casing 0.67 foot above ground surface, at elevation 1,252 feet. 4/28/53, 33.0; 11/13/53, 32.5.
- 6S/4W-34J10 Allen Near Wildomar; 60 feet southeast of well 34J6. Reference point lower lip of pipe 1 foot above ground surface: 4/28/53, 30.1.
- 6S/4W-34K1 G. E. Parry Near Wildomar; 1,500 feet southeast of Wesley Street (measured along Grand Avenue) and 200 feet northeast of Grand Avenue; in barn. Reference point top of casing 0.8 foot above ground surface, at elevation 1,277.15 feet. 11/29/48, 46.0; 4/21/49, 46.8; 5/16/52, 53.1; 2/24/53, 57.8; 11/13/53, 55.8.
- 65/4W-34L1 Near Wildomar; 200 feet northwest and 200 feet northeast of intersection of Grand and Wilson Avenues. Reference point top of casing 0.45 foot above ground surface, at elevation 1,282.19 feet. 4/27/53. 61.4.
- 6S/4W-34M1 Lord Near Wildomar; 350 feet southwest and 75 feet southeast of intersection of Grand Avenue and Wesley Street; in pump house. Reference point top of wood cover 0.5 foot above ground surface, at elevation 1,300 feet. 11/12/53, 80.1; 4/19/54, 78.9.
- 6S/4W-34P1 C. C. Karl Near Wildomar; 0.2 mile southwest of Grand Avenue (measured along Wilson Avenue) and 60 feet northwest of Wilson Avenue. Reference point top of casing at ground surface, at elevation 1,318 feet. 4/27/53, 75.5; 11/13/53, 83.2.
- 6S/4W-34Q1 Near Wildomar; 190 feet southwest and 100 feet southeast of intersection of Gruwell and Dunn Streets; at windmill. Reference point top of casing at ground surface, at elevation 1,262 feet. 5/27/53, 38.7; 4/20/54, 40.5.
- 6S/4W-34Q2 C. E. Bittikofer Near Wildomar; 50 feet northeast and 50 feet northwest of intersection of Grand Avenue and Gruwell Street. Reference point top of pump base 0.17 foot above ground surface, at elevation 1,278 feet. 4/24/53, 57.4; 11/13/53, 51.4; 4/20/54, 52.8.
- 65/4W-34Q3 Gruwell Near Wildomar; 200 feet southwest and 100 feet northwest of intersection of Grand Avenue and Gruwell Street. Reference point top of casing 0.5 foot above ground surface, at elevation 1,292 feet. 4/27/53, 74.5; 11/13/53, 64.0; 4/20/54, 69.3.
- 6S/4W-34Q4 Frank E. Collier Near Wildomar; 350 feet southwest and 200 feet southeast of intersection of Grand Avenue and Gruwell Street. Reference point top of casing 0.33 foot above ground surface, at elevation 1,266.56 feet. 2/3/27, 46.4; 4/24/53, 49.5; 11/13/53, 50.9; 4/20/54, 51.5.
- 6S/4W-34Q5 Near Wildomar; 300 feet southeast and 100 feet northeast of intersection of Grand Avenue and Gruwell Street. Reference point top of floor at ground surface. 4/27/53, 46.3.
- 6S/4W-3496 Russel O. Freemen Near Wildomar; 300 feet southwest and 200 feet southeast of intersection of Gruwell and Dunn Streets; 50 feet west of house. Reference point ground surface. 7/28/51, 41 (log).
- 6S/4W-34Rl Guy S. Clark Near Wildomar; 75 feet northeast and 30 feet southeast of intersection of Grand Avenue and Elm Street. Reference point top of wood cover, at elevation 1,261.31 feet. 11/29/48, 38.0; 4/21/49, 37.9; 5/16/52, 43.5; 2/23/53, 41.7; 4/7/53, 45.8; 4/27/53, 44.4; 7/6/53, 45.8; 11/13/53, 47.2.
- 6S/4W-34R2 Guy S. Clark Near Wildomar; 150 feet northeast and 150 feet southeast of intersection of Grand Avenue and Elm Street; at windmill. Reference point top of guide bar 0.5 foot above ground surface, at elevation 1,260 foot. 3/6/53, 40.9; 4/7/53, 41.7; 4/27/53, 41.1; 8/5/53, 43.9; 9/1/53, 44.4; 10/5/53, 44.6; 11/13/53, 44.6; 1/7/54, 44.6; 2/3/54, 44.1; 4/2/54, 43.7; 4/21/54, 44.1.
- 6S/4W-34R3 Guy S. Clark Near Wildomar; 100 feet northwest and 50 feet southwest of intersection of Central Avenue and Clive Street. Reference point ground surface 0.5 feet above ground surface. 4/5/51, 41 (log).

- 65/4w-34R4 Near Wildomar; 150 feet scutheast and 100 feet northeast of intersection of Grand and Central Avenues; at windmill. Reference point top of casing at ground surface. 4/27/53, 40.5.
- 6S/4W-34R7 Near Wildomar; 280 feet northwest and 90 feet southwest of intersection of Dunn and Elm Streets.

 Reference point top of casing 0.67 foot above ground surface, at elevation 1.359 feet. 4/27/52, 39.8.
- 65/4W-34R6 B. L. Freeman Near Wildowar; 100 feet northwest and 100 feet southwest of intersection of Elm and Olive Streets. Reference point top of casing, 0.67 foot above ground surface, at elevation 1.258 feet. 4/28/53, 42.5; 4/21/54, 42.6.
- 65/4W-34R9 Ordville Grow Near Wildomar; 200 feat southeast and 190 feat northeast of intersection of Central Avenue and Olive Street. Reference point top of casing at ground surface. 4/29/53, 31.5.
- 65/4W-35C1 Near Wildomar; 0.5 mile northeast of Highway 71 (measured along Central Avenue), and 90 feet southeast of Central Avenue, at windmill. 11/13/53, dry; 4/21/54, dry.
- 6S/4W-35D1 Charles B. Withrow Near Wildomar; 180 feet south and 150 feet east of intersection of Orange Street and Barter Road; in metal building. Reference point hole in casing 0.33 foot above ground surface, at elevation 1.305.40 feet. 4/4/52, 50 (log): 4/22/53, 62.5; 11/13/53, 56.4; 4/20/54, 57.3; 11/23/54, 60.5.
- 65/4W-35F1 H. E. Blackforn Near Wildomar; 0.3 mile northeast of Highway 71 (measured along Central Avenue) and 100 feet southeast of Central Avenue; at Windmill. Reference point top of casing, at elevation 1,285.62 feet. 11/29/48, 33.8; 4/29/53, 37.8; 7/6/53, 38.2; 11/13/53, 39.5; 4/21/54, 39.2.
- 6S/4W-35L1 Near Wildomar; 0.14 mile southeast of Central Avenue (measured along Highway 71) and 100 feet southwest of Highway 71. Reference point top of pump base 1.0 foot above ground surface, at elevation 1.253.39 feet. 4/29/53, 46.4.
- 6S/4W-35M1 Wildomar School In Wildomar; south corner of intersection of Highway 71 and Central Avenue; in northwest corner of schoolyard. Reference point (a) top of steel clamp 0.1 foot above ground surface, atclevation 1,256.02 feet (10/27/26 through 3/7/27); (b) top of casing at ground surface, at elevation 1,255.94 feet (11/3/45 to present). 10/27/26, 47.4 (Vail Co.); 11/4/26, 47.7 (Vail Co.); 2/3/27, 46.5 (Vail Co.); 3/7/27, 43.7 (Vail Co.); 11/3/45, 45.0; 12/29/48, 45.8; 4/21/49, 45.0; 5/16/52, 52.3; 2/23/53, 50.8; 4/28/53, 53.3; 11/3/53, 56.6; 4/21/54, 53.0.
- 6S/4W-35M2 Stephens Near Wildomar; 260 feet southeast and 200 feet northeast of intersection of Front Street and Central Avenue. Reference point top of casing 0.04 foot above ground surface, at elevation 1,245.71 feet. 10/29/52, 30.7; 1/20/53, 34.5; 4/26/52, 31.2; 11/13/53, 33.5; 4/21/54, 33.7.
- 65/4W-35M3 Thomas L. Sayer Near Wildomar; 300 feet northeast and 150 feet northwest of intersection of Front Street and Central Avenue. Reference point top of casing 0.8 foot above ground surface. 4/28/53, 34.5.
- 65/4W-35M4 Turner Near Wildomar; 150 feet northwest and 100 feet southwest of intersection of Highway 71 and Central Avenue. Reference point top of casing 0.5 foot above ground surface. 11/3/45, 25.0 (owner).
- 6S/4W-35NN Orville Grow Near Wildomar; 0.25 mile northeast and 0.25 mile southeast of intersection of Grand and Central Avenues; in open field, 850 feet east of barn. Reference point top of casing 2.0 feet above ground surface, at elevation 1,235.6 feet. 4/29/53, 29.8; 9/1/53, 42.0.
- 6S/4W-35Pl Mrs. Joan Kelly Near Wildomar; 0.3 mile southeast of Central Avenue (measured along Highway 71), and 100 feet southwest of Highway 71; at wimdmill. Reference point top of wood floor 1.0 foot above ground surface, at elevation 1,243.3 feet. 4/29/53, 40.5; 11/13/53, 44.8; 3/4/54, 40.8.
- 65/4W-35P2 May Hillman Near Wildomar; 0.2 mile southwest and 0.27 mile southeast of intersection of Highway 71 and Central Averue; in wood pump house. Reference point hole in pump base, at elevation 1,233.58 feet. Note: Measurements from Wail Company records. 20/27/26, 27.1; 2/3/27, 24.9.
- 65/4W-35Q1 Thomas Wilks Near Wildomar; 0.6 mile southeast of Central Avenue (measured along Highway 71) and 0.1 mile northeast of Highway 71; at windmill tower. Reference point top of elbow on discharge pipe 1.0 foot above ground surface, at elevation 1.245.90 feet. 2/11/53, 2.8; 4/22/53, 1.5.
- 65/4W-36C1 Near Wildomar; 0.9 mile east and 200 feet south of intersection of Baxter Road and Central Avenue. Reference point top of casing 0.4 foot above ground surface. 11/13/53, 43.6.
- 6S/4W-36D1 H. A. Smith Near Wildomar; 0.48 mile east and 150 feet south of intersection of Central Avenue and Baxter Road; 50 feet east of adobe house. Reference point top of easing, at elevation 1,405 feet. 11/29/48, 35.6; 5/16/52, 36.8; 2/23/53, 35.6; 4/22/53, 41.0; 4/20/54, 36.9.

- 75/1E-4F1 Ed Shockley In Weber Valley; 3.4 mile northeast of Highway 79 (measured along dirt road) from intersection 2.2 mile southeast of Sage (measured along Highway 79); 30 feet northwest of owner's house; under windmill tower. Reference point hole in plank cover 1.4 feet above ground surface, at elevation 2.771 feet, 11/18/53, 29.7; 5/4/54, 27.9.
- 7S/1E-4G1 Ed Shookly In Weber Valley; 3.6 miles northeast of Highway 79 (measured along dirt road) from intersection 2.2 miles southeast of Sage (measured along Highway 79); 150 feet northeast of barn. Reference point top of casing 2.7 feet above ground surface, at elevation 2,788 feet. 11/18/53, 32.3; 5/4/54, 30.9.
- 7S/1E-4L1 Ed Shookly In Weber Valley; 3 2 miles northeast of Highway 79 (measured along dirt road) from intersection 2.2 miles southeast of Sage (measured along Highway 79); 750 feet east of road and 100 feet north of fence. Reference point top of casing 1.5 feet above ground surface, at elevation 2.743 feet, 11/18/53, 12.9: 5/4/53, 10.7.
- 7S/1E-4P1 Campbell In Weber Valley; 600 feet east of well 4P2. Reference point top of casing 1.3 feet above ground surface. 11/18/53, 4.7; 5/4/54, 2.8.
- 7S/1E-4P2 Campbell In Weber Valley; 3.0 miles northeast of Highway 79 (measured along dirt road) from intersection 2.2 miles southeast of Sage (measured along Highway 79); at windmill east of dirt road. Reference point top of plank cover 1.8 feet above ground surface, at elevation 2,736 feet. 11/18/53, 19.3; 5/4/54, 21.9.
- 7S/1E-6Pl = Duncan Industries = East of Sage; 0.9 mile east of Highway 79 (measured along dirt road) from intersection at Sage; 600 feet south of road; 130 feet south of reservoir; at base of power line pole. Reference point top of easing 0.5 foot above ground surface, at elevation 2,392 feet. 11/18/53, 41.3; 5/4/54, 41.6.
- 7S/1E-7Al S. T. Creech East of Sage; 1.6 miles east of Highway 79 (measured along dirt road) from intersection at Sage; at windmill 300 feet south of barn on Circle C Ranch. Reference point top of casing 0.75 foot above ground surface, at elevation 2,491 feet. 11/16/53, 14.
- 7S/1E-7A2 S. T. Creech East of Sage; 1.7 miles east of Highway 79 (measured along dirt road) from intersection at Sage; 300 feet south of main residence of Circle C Ranch in east end of white building. Reference point top of casing 0.7 foot above ground surface, at elevation 2,512 feet. 11/16/53, 16.3.
- 7S/1E-7A3 S. T. Cresch East of Sage; 1.7 miles east of Highway 79 (measured along dirt road) from intersection at Sage; 30 feet north of main house on Circle C Ranch; open casing. Reference point top of casing 1.5 feet above ground surface, at elevation 2,521 feet. 11/16/53, 15.8.
- 75/1E-744 S. T. Creech East of Sage; 300 feet southwest of well 742. Reference point top of casing 1.5 feet above ground surface, at elevation 2,510 feet. 11/16/53, 9.2.
- 7S/1E-7C1 Duncan Industries East of Sage; Tucalota Ranch; 600 feet south of well 6Pl. Reference point top of casing at ground surface, at elevation 2,382 feet. 11/18/53, 28.9; 5/4/54, 28.2.
- 75/1E-7D1 Duncan Industries East of Sage; Tucalota Ranch; 0.4 mile east of Highway 79 (measured along dirt road) from intersection at Sage; at windmill beside foreign house. Reference point top of casing 1 foot above ground surface, at elevation 2,359 feet. No date, 45 (log); 11/18/53, 25.5; 5/4/54, 17.9.
- 7S/1E-7D2 Duncan Industries East of Sage; Tucalota Ranch; 0.4 mile east of Highway 79 (measured along dirt road) from intersection at Sage; well in corrugated metal shed, 600 feet west of well 7D3. Reference point measuring pipe 1.3 feet above ground surface, at elevation 2,342 feet. 5/19/53, 8 (log); 11/18/53, 11.7:
- 7S/1E-7El Duncan Industries East of Sage; 0.4 mile east of Highway 79 (measured along dirt road) from intersection at Sage; 400 feet south of Tunalota Ranch house; test hole with capped casing. Reference point top of casing 1.4 feet above ground surface at elevation 2,333 feet. 11/18/53, 9.5; 5/4/54, 7.9.
- 7S/1E-7E2 Duncan Industries East of Sage; 15 feet south of well 7E1. Reference point hole in board cover at ground surface, at elevation 2,332 feet. 11/19/53, 9.5; 5/4/54, 7.7.
- 7S/1E-7E3 Duncan Industries East of Sage; 225 feet southeast of well 7D2. Reference point hole near top of casing 1.3 feet above ground surface, at elevation 2,341 feet. 11/18/53, 12; 5/4/54, 9.8.
- 7S/1E-8D1 Bill Ruckle East of Sage; 300 feet southeast of well 7A2. Reference point hole in board cover at ground surface, at elevation 2,520 feet. 11/16/53, 9.7.

- 75/1W-661 John Kazaroff In Los Alamos Valley; 0.85 mile east of Warren Road (measured along dirt road) from intersection 0.5 mile north of intersection of Warren and Benton Road (measured along Warren Road); in wood pump house 30 feet north of dirt road. Reference point top of casing 0.1 foot above ground surface. 10/26/50, 42 (log); 5/20/53, 48.9.
- 75/1W-6H1 John Kazaroff In Los Alamos Valley; 0.3 mile northeast of well 6G1; at windmill 300 feet northeast of house. Reference point ground surface. 2/10/50, 100 (log).
- 7S/1W-7El J. N. Bashaw In Los Alamos Valley; 200 feet south and 50 feet east of intersection of Warren and Benton Roads. Reference point top of casing 0.6 foot above ground surface, at elevation 1.480 feet. 5/20/52. 37.1: 11/19/53. 39.3: 4/23/54, 38.9.
- 7S/1W-8LI Bessie Wilson Near Sago; 2.3 miles northeast of intersection of Warren and East Benton Roads; 20 feet east of East Benton Road and 400 feet southeast of house. Reference point hole in side of wooden pit 1.5 feet above ground surface, at elevation 1,685 feet. 5/26/53, 18.9; 11/19/53, 22.8; 5/13/54, 18.5.
- 75/1W-8L2 Bessie Wilson Near Sage; 0.2 mile northeast of well SLI; 200 feet south of East Benton Road near Tucalota Creek. Reference point top of casing 2.0 feet above ground surface, at elevation 1.690 feet. 5/26/53, 5.6; 11/19/53, 12.9; 5/13/54, 5.7.
- 75/1W-10R1 G. W. Millholland Near Sage; 0.25 mile north of East Benton Road (measured along dirt road) from intersection 2.9 miles west of Sage (measured along East Benton Road) at windmill 70 feet north of shop building. Reference point top of nonorete pit 0.3 foot above ground surface. 5/26/53, 38.5; 11/19/53, 58.1.
- 75/1W-12K1 Duncan Industries Near Sage; 0.4 mile southwest of Sage (measured along East Benton Road); 200 feet south of East Benton Road. Reference point hole in pump base 1.6 feet above ground surface, at elevation 2,261 feet. 11/25/53, 20.0.
- 75/1W-14A1 Cyrus J. McDaniel Near Sage; 0.3 mile north of East Benton Road (measured along dirt road) from intersection 1.8 miles southwest of Sage (measured along East Benton Road); at windmill 150 feet south of house. Reference point top of casing 1 feet above ground surface, at elevation 2,160 feet. 11/25/53, 19.5; 5/13/54, 20.4.
- 75/1W-18E1 Near Sage; at windmill 1.1 miles north and 150 feet east of intersection of Warren and
 East Benton Roads. Reference point top of concrete pit 0.6 foot above ground surface, at elevation
 1,612 feet. 5/26/53, 33.9; 11/19/53, 39.8; 4/28/54, 29.5.
- 75/1W-1831 William Willis Near Sage; 1.1 miles northeast of Warren Road (measured along East Benton Road); 250 feet north of East Ponton Road and 100 feet northwest of house. Reference point top of concrete cover 1.5 feet above ground surface, at elevation 1,672 feet. 11/19/53, 21.8; 5/13/54, 18.3.
- 75/1W-18M1 Near Sage; 0.42 mile north and 40 feet east of intersection of East Bonton and Warren Roads; at windmill 60 feet southwest of old school building. Reference point top of pipe clamps 1.7 foot above ground surface, at slovation 1,578 feet. 5/26/53, 24.6; 11/19/53, 27.5; 4/28/54, 20.6.
- 7S/1W-1801 Vail Company Near Sage; 0.6 mile east of Warren Road (measured along East Benton Road); 50 feet south of East Benton Road. Reference point top of casing 0.5 foot above ground surface, at elevation 1,593 feet. 5/26/53, 18.8; 8/27/53, 19.8; 11/19/53, 21.9; 5/13/54, 18.7.
- 75/1W-1802 Vail Company Near Sage; at windmill 15 feet wast of well 1801. Reference point hole in casing 2.5 feet above ground surface, at elevation 1,593 feet. 8/27/53, 21.8; 11/19/53, 25.1.
- 7S/1W-30N1 Vail Company In Long Valley; map location only, see location of wells plate. Reference point top of casing 1 foot above ground surface, at elevation 1,438 feet. 3/4/53, 16.0; 5/19/53, 17.4; 11/20/53, 16.3; 4/23/54, 16 4.
- 75/2W-IF1 Batte In Los Alamos Valley; 0.55 mile north of Benton Road (measured along west line of section 1) and 0.4 mile northeast along Tucalota Creek; at windmill on north side of creek bed.

 Reference point top of casing 2.0 feet above ground surface. 5/20/53, 34.7.
- 7S/2W-2M1 A. C. Robertson In Los Alamos Valley; at windmill 1.28 miles east of Washington Avenue and 20 feet south of Benton Road. Reference point top of casing 0.5 foot above ground surface, at elevation 1,402.58 feet. 5/20/53, 11.7; 11/13/50, 13.5; 4/28/54, 14.9.
- 75/2W-2Pl A. C. Robertson In Los Alamos Valley; at wirdmill 1.87 miles east of Washington Avenue and 0.2 mile southwest of Benton Road. Reference point top of casing 1.1 feet above ground sruface, at slevation 1,411 feet. 5/20/53, 14.9; 11/13/53, 17.5; 4/28/54, 17.0.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

- 75/2W-2P2 A. C. Robertson In Les Alamos Valley, at windmill 1.87 miles easterly of Washington Avenue and 100 feet west of Benton Road. Reference point top of concrete slab 0.5 foot above ground surface, at elevation 1,413.04 feet. 5/20/53, 17.0; 11/13/53, 18.7; 4/28/54, 18.4.
- 75/2W-3H1 A. C. Robertson In Los Alamos Valley; 0.75 mile east of Washington Avenue and 250 feet northeast of Benton Road; 50 feet northeast of barn. Reference point top of casing 0.8 foot above ground surface, at elevation 1,438.84 feet. 5/20/53, 52.0; 11/13/53, 52.5, 4/28/54, 51.3.
- 7S/2W-3Jl Harold Sewell In Les Alextos Valley; 0.75 mile east of Washington Avenue and 30 feet south of Benton Road; in open field 125 feet north of house. Reference point top of easing 0.5 foot above ground surface, at elevation 1.434.72 feet. 5/20/53, 55.3; 11/13/53, 62.3; 4/28/54, 56.1.
- 7S/2W-3L1 M. A. Nicolas In Los Alamos Valley; 0.25 mile south and 0.25 mile east of intersection of Washington Avenus and Benton Road. Reference point top of casing 1.0 foot above ground surface, at elevation 1,377 feet. 4/5/54, 8.6.
- 75/2W-4D1 Fred Pourrey In Los Alemos Valley, 0.22 mile east of Beeler Road and 300 feet south of Thompson Road extended; at windmill 25 feet northeast of house. Reference point top of wood cover 0.5 foot above ground surface, at elevation 1,389.42 feet. 5/18/53, 40.7; 11/13/53, 40.9; 4/28/54, 40.0.
- 7S/2W-4J1 M. A. Nisolas In Los Alamos Valley; O.1 mile south of Benton Road and 0.24 mile west of Washington Avenue; covered with oil drum. Reference point hele in side of casing 0.9 foot above ground surface, at elevation 1,399.87 foot. 8/26/52, 49.8; 1/19/53, 49.2; 5/19/53, 53.6; 7/9/53, 54.4; 8/4/53, 53.9; 9/2/53, 56.5; 10/1/53, 59.1; 11/16/53, 53.2; 1/2/54, 52.2; 2/3/54, 55.9; 4/5/54, 51.3; 4/29/54, 51.2.
- 75/2W-4J2 M. A. Nicolas = In Los Alamas Valley; 500 feet south and 500 feet west of intersection of Benton Road and Washington ivenue; 75 feet south of dirt road. Reference point top of casing 2.4 feet above ground surface, at elevation 1,404.60 feet. 8/26/52, 48.0; 9/3/53, 50.8; 11/16/53, 56.8; 4/29/54, 50.1.
- 7S/2W-4J3 M. A. Nicolas In Los Alamos Valley; 25 feet east of well 4J2. Reference point top of casing 3.1 feet above ground surface. 4/29/54, 50.1.
- 75/2W-434 M. A. Nicolas In Los Alemos Valley; 0.24 mile south of Benton Road and 250 feet west of Washington Avenue; at windmill south of house. Reference point top of wood cover 0.16 foot above ground surface, at elevation 1,369.14 feets. 5/21/53, 17.2; 11/16/53, 21.8; 4/29/54, 12.7.
- 75/2W-4K1 M. A. Nicolas In Los Alamos Valley; 40 feet wast of well 4Jl. Reference point hole in casing 0.7 foot above ground surface, at elevation 1,399.18 feet. 8/26/52, 49.6; 5/19/53, 54.3; 8/4/53, 53.4; 9/2/53, 55.4; 11/16/53, 53.0; 1/7/54, 53.7; 2/3/54, 51.1; 4/5/54, 50.5; 4/29/54, 50.6.
- 75/2W-5Cl Fred Pourrey In French Valley; at winduill 0.44 mile east of Winchester Road and 40 feet eouth of Thompson Road. Reference point top of easing 0.4 foot above ground surface, at elevation 1,359.41 feet. 5/18/53, 23.4; 11/15/53, 24.1; 4/28/54, 24.1.
- 7S/2W-5H1 Cummins In Los Alamon Valley; 280 feet west of Bealer Road and 200 feet north of Benton Road; 40 feet north of house. Reference point top of concrete easing 1.0 foot above ground surface, at elevation 1.369:75 feet. 5/19/53, 30:6; 11/12/53, 32:2; 4/29/54, 31:0:
- 7S/2W-5M1 Fred Pourrey Near Murriets; at windmill 0.8 mile west and 0.2 mile south of intersection of Beeler and Benton Roads. Reference point top of pipe clamp 1.3 feet above ground surface, at elevation 1,359.02 feet. 5/19/53, 26.4; 11/16/53, 29.1.
- 7S/2W-601 = Near Murriets; at windmill 0.25 mile north of Auld Road and 0.2 mile west of Winchester Road. Reference point = top of wooden cover 1.0 foot above ground surface, at elevation 1,345.6 feet. 5/21/53, 24.0; 11/16/53, 24.4.
- 7S/2W-7J1 Alex Borel Near Murriete; 0.57 mile south and 470 feet west of intersection of Auld and Leon Roads; at windmill in field between two trees. Reference point top of concrete blocks 0.8 foot above ground surface, at elevation 1.193.13 feet. 5/22/53, 6.6; 11/18/53, 7.3; 4/29/54, 3.8.
- 75/2W-7R1 V. V. Hilliard Near Murrista; 0.14 mile west and 50 feet south of intersection of Borrel and Leon Roads. Reference point top of concrete sazing 1.8 feet above ground surface, at elevation 1,282.88 feet. 5/22/53, 10.3; 11/18/53, 5.9; 4/29/54, 6.9.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

- 75/2W-841 Alex Borel Near Marriota; at windmill 0.25 mile south and 300 feet west of intersection of Beeler and Auld Roads. Reference point top of casing 1.5 feet above ground surface, at elevation 1,347.05 feet. 8/22/52, 17.4; 1/19/53, 17.2; 3/6/53, 17.8; 4/7/53, 19.5; 5/21/53, 20.7; 7/9/53, 19.4; 8/4/53, 20.8; 5/2/53, 21.0; 10/1/53, 19.8; 11/16/53, 20.0; 1/7/54, 19.0; 2/3/54, 19.0; 4/5/54, 18.8; 4/29/54, 18.8.
- 75/2W-8E1 Alex Borel Near Murrieta; 0.3 mile south and 0.1 mile east of intersection of Auld and Leon Roads; et windmill 250 feet north of barn. Reference point top of casing 1.3 feet above ground surface at elevation 1,333.64 feet. 5/22/53, 22.0; 4/29/54, 10.2.
- 7S/2W-8M2 Alex Borel Near Murriets; at windmill 0.65 mile south and 200 fest east of intersection of Auld and Loon Roads. Reference point top of easing 0.2 foot above ground surface, at elevation 1,292.86 feet. 11/21/27, 40 (log); 5/22/53, 73.7; 11/18/53, 51.5; 4/29/54, 41.2.
- 75/2W-10D1 M. A. Nicolas In Los Alamos Valley; 100 feet east of intersection of Auld and Buck Roads; at windmill. Reference point top of easing 1.7 feet above ground surface, at elevation 1,367.97 feet. 5/21/53, 9.6; 11/12/53, 12.7; 4/29/54, 9.1.
- 75/2W-12G1 Bill Knezevich In Los Alexos Valley; 0.32 mile south and 0.25 mile west of intersection of Benton and Warren Roads; in metal nump house. Reference point top of wood cower, at elevation 1,540 feet. 11/19/53, 8.7: 4/28/54, 5.6.
- 7S/2W-12Rl Alex Borel Near Sage; 0.25 mile northwest of wall 7S/1W-18El. Reference point top of red brick pit 0.1 foot above ground surface. 5/26/53, 26.1; 11/19/53, 26.9; 4/28/54, 25.7.
- 7S/2W-13Rl Alex Borel In Glencak Vallay; 0.15 mile north and 0.12 mile west of intersection of Warren and Buck Reads; at windmill 100 fest northwest of house. Reference point top of wood cover 0.5 foot above ground surface, at elevation 1,520 fest. 5/25/53, 11.1; 11/19/53, 14.8; 5/13/54, 8.7.
- 75/2W-16J1 M. A. Nicolas Near Murriste; 1.57 mile south and 10 feet west of intersection of Auld and Buck Roads. Reference point top of casing 2.7 feet above ground surface. 1/30/50, 57 (log).
- 7S/2W-16J2 M. A. Nicolas Near Murrista; at windmill 200 feet west of well 16J1. Reference point top of casing 0.2 foot above ground surface, at elevation 1,380 feet. 11/16/53, 32.8; 4/29/54, 28.6.
- 7S/2W-16J4 M. A. Nicolas Near Murriete; 250 feet south of well 16J1. Reference point top of casing 1.0 foot above ground surface, at elevation 1.380 feet. 11/16/53, 53.0; 4/29/54, 51.8.
- 75/2W-18P1 L. J. Servel Near Murrietz; 0.25 mile northeast of well 1901. Reference point top of casing 0.7 foot above ground surface. 7/52, 79.5; 5/25/53, 81.7; 11/18/53, 83.3; 4/29/54, 83.7.
- 75/2W-1961 L. J. Servel Near Murrieta: 0.7 mile east of Winshester Road (measured along dirt road) from intersection 0.06 mile north of Webster Avanue; 30 feet east of well 1962 pump house. Reference point hole in top of casing 1.5 feet above ground surface, at elevation 1,145 feet. 11/18/53, 82.3; 4/29/54, 73.9.
- 75/2W-1903 L. J. Servel Near Murrieta; 0.2 mile southeast of well 1901. Reference point top of casing 1.0 foot above ground surface. 7/52, 114.5; 5/25/53, 112.5; 11/18/53, 111.7.
- 75/2W-24Fl Vail Company In Glenoak Valley; C.3 mile south and 300 feet east of intersection of Long Valley and Buck Roads; at windmill on bank of Santa Gertrudis Creek. Reference point top of wood cover at ground surface. 5/25/53, 0.2; 11/19/53, 0.0.
- 7S/2W-26N1 Vail Company In Long Valley; 5.5 miles northeast of Highway 395 (measured along Long Valley Road); at windmill 100 feet south of Long Valley Road. Reference point (a) top of casing 0.3 foot below ground surface, at elevation 1,30%.68 feet (6/13/25 through 9/17/27); (b) top of 4 x 6 inch over casing at ground surface, at elevation 1,30%.0 feet (5/19/53 to present). Note: Measurements from Vail Company records, except as indicated. When drilled, 150 (log); 6/13/25, 155.2; 5/4/26, 154.0; 9/8/26, 154.0; 10/15/26, 154.1; 11/3/26, 154.1; 1/13/27, 154.2; 2/19/27, 154.2; 3/15/27, 155.1; 4/25/27, 154.3; 5/14/27, 154.3; 6/5/27, 154.5; 6/18/27, 154.3; 7/18/27, 154.2; 8/16/27, 154.3; 9/17/27, 154.3; 5/19/53, 146.5 (DWR); 11/19/53, 154.7 (DWR), 4/29/54, 148.3 (DWR).
- 75/2W-26N2 Vail Company In Long Valley; map location only, see location of wells plate. Reference point-top of casing, at elevation 1,312.60 feet. Note: Measurements from Vail Company records. 8/9/26, 87.1; 9/8/26, 88.3; 10/15/26, 88.8; 11/3/26, 88.2; 1/13/27, 89.1.

- 7S/2W-27R1 Vail Company In Long Valley; at windmill 0.2 mile northwest of well 26Nl. Reference point top of casing cover 2 feet above ground surface, at elevation 1,300 feet. 5/19/53, 138.5; 11/19/53, 147.8; 4/29/54, 144.7.
- 7S/2W-30D1 Vail Company Near Murrieta; 0.55 mile east of Banana Road (measured along Nicolas Road); open casing 250 feet south of Nicolas Road and 250 feet southeast of house. Reference point top of casing 1.5 feet above ground surface. 5/20/53, 43.2; 11/18/53, 49.5; 4/29/54, 45.8.
- 7S/2W-30D3 Vail Company Near Murrieta; at windmill frame 10 feet west of well 30D1. Reference point top of casing at ground surface. 4/29/54, 40.1.
- 7S/2W-33E1 Vail Company Near Temecula; 3.5 miles east Highway 395 (measured along Long Valley Road); at windmill 300 feet north of Long Valley Road. Reference point top of casing 1.0 foot above ground surface, at elevation 1,230 feet. 5/19/53, 84.8; 11/19/53, 94.0; 4/29/54, 84.8.
- 75/3W-2G1 J. A. Richmond Near Murrieta; 0.12 mile west of Los Alamos Road (measured along dirt road) from intersection 1.9 miles northeast of Highway 395 (measured along Los Alamos Road); 150 feet west of garage. Reference point top of concrete casing at ground surface, at elevation 1,420 feet. 4/23/54, 4.1.
- 7S/3W-2G2 J. A. Richmond Near Murrieta; 100 feet north of well 2G1 and 10 feet west of house. Reference point top of wood cover at ground surface. 4/23/54. 9.8.
- 7S/3W-2K1 I. H. Gentry Near Murrieta; .09 mile southeast of Los Alamos Road (measured along dirt road) from intersection 1.7 miles northeast of Highway 395 (measured along Los Alamos Road). Reference point at opening by discharge pipe. 8/19/52, 52; 11/25/53, 48.1.
- 7S/3W-2Pl Andrew James Near Murrieta; 1.25 miles northeast of Highway 395 (measured along Los Alamos Road) at windmill 35 feet west of Los Alamos Road. Reference point top of casing 1 foot:above ground surface, at elevation 1,300 feet. 11/25/53, 39.4; 4/23/54, 36.6.
- 7S/3W-5L1 J. Borenstein Near Murrieta; 0.32 mile north of well 5P1; north of house. Reference point top of casing 1.3 feet above ground surface. 2/7/52, 18 (owner); 4/24/52, 18 (owner); 11/25/53, 30.1.
- 7S/3W-5Pl Near Murrieta; 1.3 miles northeast of Adams Avenue (measured along Magnolia Street extended); at windmill 30 feet east of Magnolia Street extended. Reference point top of casing 2.7 feet above ground surface. 2/4/53, 24.4; 11/25/53, 28.3.
- 75/3W-6Dl E. W. Bennett Near Wildomar; 0.4 mile northeast of well 6El. Reference point top of casing at ground surface, at elevation 1,340 feet. 2/11/53, 13.7; 5/6/53, 42.5; 11/17/53, 38.3; 4/21/54, 13.4.
- 7S/3W-6El E. W. Bennett Near Wildomar: 0.71 mile northeast of Highway 71 (measured along Oak Springs Ranch road) and 0.13 mile north of Oak Springs Ranch road. Reference point top of casing 2 feet above ground surface. 11/17/53, 8.2.
- 7S/3W-6Jl Powers Near Murrieta; 0.7 mile north of well 7Al (measured along dirt road). Reference point top of wood block at ground surface, at elevation 1,260 feet. 2/4/53, 7.56; 5/4/53, 8.9; 11/17/53, 9.6; 4/22/54, 7.7.
- 7S/3W-6Kl E. W. Bennett Near Murrieta; 0.58 mile east of Oak Springs Ranch road (measured along dirt road) from intersection 6.1 miles northeast of Highway 71 (measured along Oak Springs Ranch road); west of reservoir 950 feet south of dirt road. Reference point top of casing 1.5 feet above ground surface, at elevation 1,320 feet. 11/17/53, 43.3; 4/21/54, 35.0.
- 7S/3W-7Al Powers Near Murrieta; 12 feet northeast of well 17A2; open casing. Reference point top of casing 0.5 foot above ground surface, at elevation 1,200 feet. 5/4/53, 25.7; 4/22/54, 29.8.
- 75/3W=7A2 Powers Near Murriete; 30 feat west of well 7A3; open casing. Reference point top of casing 1.0 foot above ground surface, at elevation 1,200 feet. 5/4/24, 25.4; 4/22/54, 26.5.
- 7S/3W-7A3 Powers Near Murrieta; 1.1 miles easterly of Highway 71 (measured along dirt road) from intersection 0.9 mile northwest of Magnolia Street; open casing. Reference point top of casing 3 feet above ground surface, at elevation 1,200 feet. 2/9/53, 26.6; 5/4/53, 27.2; 11/17/53, 29.3; 4/22/54, 28.6.

- 75/3W-751 Powors Near Murrista; 0.25 mile east of Highway 71 (measured along Powers Ranch road); from intersection 0.8 mile morthwest of Magnolia (measured along Highway 71); 100 feet south of Powers Ranch road and 50 feet south of corral. Reference point top of casing 1.2 feet above ground surface, at elevation 1,175.20 feet. 2/11/53, 135.5; 3/16/53, 141.0; 4/7/53, 130.7; 5/6/53, 133.8; 7/9/53, 130.7; 8/5/53, 130.9; 9/1/53, 131.0 10/5/53, 131.0; 11/17/53, 131.0; 1/7/54, 130.9; 2/3/54, 130.9; 4/2/54, 130.
- 75/3W=7E2 = Powers Near Marrieta; 0.77 mile northwest of Magnolia Street (measured along Highway 71) and 50 feet northwest of Highway 71. Reference point top of casing 0.60 feet above ground surface, at elevation 1,147.71 feet. 5/6/53, 35.9; 11/18/53, 42.1; 4/22/54, 40.2.
- 7S/3W-7E3 Powers Near Marrieta; 200 feet north of well 7E2. Reference point ground surface. 4/22/54, dry.
- 75/3W-7D4 Powers Wear Murrieta; 130 feet northeast of well 752. Reference point top of casing 2 feet above ground surface, at elevation 1.150 feet. 4/22/54, 76.0.
- 75/3W-7L1 Thelma E. and Clifford H. Bailey Near Murrieta; 0.55 mile northwest of Magnolia Street (neasured along Highway 71) and 100 feet northeast of Highway 71. Reference point top of casing 1.3 feet above ground surface, at elevation 1,146.02 feat. When drilled, 39 (log); 10/16/52, 39.8; 1/24/53, 40.0; 3/6/53, 47.2; 4/7/53, 41.9; 7/9/53, 42.9; 8/5/53, 43.3; 9/1/53, 44.1; 10/5/53, 43.5; 11/18/53, 45.1; 1/7/54, 46.2; 2/3/54, 43.8; 4/2/54, 49.2; 4/22/54, 46.1.
- 75/3W-7N1 Willis Thompson Near Murrieta; 0.56 mile northwest of Magnolia Street (measured along Highway 71) and 0.44 mile southwest of Highway 71. Reference point top of casing 1.64 feet above ground surface. 11/18/53, 39 9.
- 7S/3W-7Rl Sam Termini Near Murrieta; 75 feet northwest and 75 feet southwest of intersection of Adams Avenue and Magnolia Strest. Reference point measuring hole at ground surface, at elevation 1,165.8 feet. 6/46, 85 (log); 8/1/52, 179.7; 1/19/53, 153.1; 4/7/53, 150.5; 7/9/53, 153.0; 3/4/53, 156.2; 9/1/53, 158.1; 10/5/53, 155.5; 11/18/53, 152.7; 1/7/54, 158.7; 2/3/54, 156.2; 4/2/54, 134.8; 4/22/54, 141.1.
- 75/3W-782 Howard Morrow Near Imprieta; 200 feet northwest and 140 feet northeast of intersection of Adams Avenue and Magnetic. Street. Reference point (a) not described 1.5 feet above ground surface, at elevation 1,170.89 feet (10/27/25 and 9/16/27), (b) top of measuring hole at ground surface, at elevation 1,170.4 feet (6/19/45 to present). 20/27/25, 78.0 (Vail Co.); 9/16/27, 125.0 (Vail Co.); 6/19/45, 93.2 (Calif. Eleo. Power Co.); 10/21/52, 130; 4/22/54, 139.8.
- 7S/3W-8R1 Harvey Blackmore Near Eurriete; 0.55 mile north of Kalmia Street (measured along dirt road) from intersection 0.27 mile northeast of Jefferson Avenue (measured along Kalmia Street; 75 feet west of house. Reference point top of pump mounting 1.6 feet above ground surface, at elevation 1,175 feet. 5/7/53, 39-3; 1/23/54, 35-5.
- 75/3W-9M1 Harvey Blackmore Near Murrista: 1 16 miles northeast of Jefferson Avanus (measured along Kalmia Street and 300 feet north of Kalmia Street, at windmill. Reference point top of easing 4.0 feet above ground surface, at elevation 1,250 feet. 5/7/53, 76 2, 11/19/53, 74 6, 4/23/54, 74.4.
- 75/3W-10H1 William B. Coleman Noar Murrieta, 0.6 mile northeast of Highway 395 (measured along Los Alamos Road) and 250 feet north of Los Alamos Road; at windmill. Reference point top of casing 1 5 feet above ground surface 6/24/50, 35 (log); 11/25/53, 41.8.
- 75/3W-10H3 William B. Coleman Near Murrieta, 0.6 mile northeast of Highway 395 (measured along Los Alamos Road) and 300 feet northwest of Los Alamos Road, north of house. Reference point top of casing 1.9 feet above ground surface, at elevation 1,280 feet. 11/25/53, 35.2; 4/23/54, 34.6.
- 7S/3W-12H1 L. J. Sorvel Near Hurrieta; 1.77 miles north of Webster Avenue (measured along Winchester Road) and 0.11 mile west of Winchester Road; at windmill 120 feet southeast of house and 50 feet south of barn. Reference point top of casing 2.0 feet above ground surface, at alovation 1,325 feet. 7/52, 41.1, 11/20/53, 42.4, 4/23/54, 42.5.
- 7S/3W-12J1 L. J. Servel Near Murrieta; 1.77 miles north of Wabster Avenue (measured along Winohester Road) and 0-16 mile west of Winohester Road; 200 feet north of house and 40 feet west of metal shed. Reference point top of casing 1.5 feet above ground surface, at elevation 1,325 feet. 7/52, 39.6; 5/25/53, 40.3; 11/20/53, 10.6; 4/23/54, 41.1.

- 7S/3W-12P1 V. G. Comparette Near Murrieta; 0.66 mile west and 0.27 mile north of intersection of Winchester Road and Hunter Road; 70 feet east of barn. Reference point top of casing 1.8 feet above ground surface, at elevation 1,300 feet. 8/22/52, 44.4; 1/19/53, 43.2; 3/6/53, 46.5; 4/7/53, 45.9; 5/21/53, 48.1; 7/9/53, 43.5; 8/4/53, 43.6; 9/2/53, 43.5; 10/1/53, 43.7; 11/20/53, 43.7; 1/7/54, 43.8; 2/3/54, 44.0; 4/5/54, 44.4; 4/23/54, 43.7.
- 7S/3W-12P2 V. G. Comparette Near Murrieta; 25 feet south of well 12P1. Reference point top of lasing 1.2 feet above ground surfame, at elevation 1,300 feet. 11/20/53, 41.8; 4/23/54, 41.9.
- 75/3W-14N1 H. Fisch Near Murrieta; 0.5 mile east of Highway 395 (measured along Webster Avenue) and 250 feet north of Webster Avenue. Reference point hole in pump base at ground surface. When drilled 45 (log); 11/19/53, 49.2.
- 7S/3W-15NI Near Murrieta; 0.28 mile west of Highway 395 (measured along Webster Avenue) and 300 feet south of Webster Avenue; at windmill. Reference point top of casing 0.8 foot above ground surface, at elevation 1,140 feet. 5/14/53, 92: 12/1/53, 86.1: 4/23/54, 85.4.
- 75/3W-15Q2 M. J. Yoder Near Murrieta; 0.12 mile east and 0.12 mile south of intersection of Highway 395 and Webster Avenue; in barn. Reference point ground surface, at elevation 1,170.07 feet. Note: Measurements from Vail Company records. 10/31/25, 104.4; 5/13/26, 103.4; 8/9/26, 105.7; 9/8/26, 105.9; 10/13/26, 106.0; 10/25/26, 106.0; 11/3/26, 106.0; 1/12/27, 104.6; 3/7/27, 105.1; 6/21/27, 103.8; 7/27/27, 104.1; 8/23/27, 104.4.
- 7S/3W-1593 M. J. Yoder Near Murrieta; 0.14 miles and 0.12 miles east of intersection of Highway 395 and Webster Avenue; 25 feet southwest of metal shed. Reference point top of casing 0.6 foot above ground surface, at elevation 1,150 feet. 12/1/53, 16.6; 4/23/54, 18.0.
- 75/3W-16C1 Charles Yoder Near Murrieta; 0.5 mile north of Los Alamos Road (measured along dirt road) from intersection 0.85 mile northeast of Jefferson Avenue (measured along Los Alamos Road); at pressure tank near house. Reference point ground surface, at elevation 1.242 feet. 12/30/53, 94 (log).
- 75/3W-16G1 C. E. Yoder Near Murriets; 0.83 mile northeast of Jefferson Avenue (measured along Lor Alamos Road) and 30 fest northwest of Los Alamos Road; at windmill. Reference point top of casing 0.9 foot above ground surface, at elevation 1,150 feet. 6/30/51, 38 (wwner); 11/25/53, 41.4; 4/23/54, 50.5.
- 78/3W-16H1 C. E. Yoder Near Murrieta; C.87 mile northeast of Jefferson Avenue (measured along Los Alamos Road) and 35 feet southeast of Los Alamos Road; at windmill near tank. Reference point top of metal flange 1.1 feet above ground surface, at elevation 1.140 feet. 11/25/53, 35.3.
- 75/3W-16K1 0. R. Rail Near Murrieta; 0.51 mile mortheast of Jefferson Avenue (measured along Los Alamos Road) and 0.16 mile southeast of Los Alamos Road. Reference point hole in pump base at ground surface, at elevation 1,110 feet. 5/12/53, 22.9; 12/1/53, 22.8; 4/23/54, 23.5.
- 7S/3W-16M1 0. R. Rail Near Murrista; 0.19 mile northeast and 0.04 mile northwest of intersection of Jefferson Avenue and Twy Street; at windmill 20 feet southwest of driveway. Reference point top of easing 0.7 foot above ground aurface, at elevation 1,131.99 feet. 1947, 50 (owner); 10/16/52, 69.3; 5/12/53, 66.9; 12/1/53, 68.6; 4/22/54, 68.0.
- 75/3W-16N1 Ralph Bates Near Murrieta; 0.04 mile northwest and 0.05 mile mortheast of intersection of Jefferson Avenue and Ivy Street; at windmill. Reference point top of casing at ground surface, at elevation 1,109.04 feet. 1344, 17 (cwner); 5/12/53, 32.4; 12/1/53, 34.7.
- 7S/3W-16N2 John Inchausti and Robert Rash Near Murrista; west corner of intersection of Jefferson Avenue and Ivy Street; at windmill 6 feet northwest of building. Reference print top of casing at ground surface, at elevation 1,103.4 feet. 5/12/53, 24.5; 12/1/53, 33.8; 4/22/54, 33.0.
- 75/3W-16N3 John Inchausti and Robert Rash Near Mirrieta; 400 feet southeast and 200 feet northeast of intersection of Jefferson Avenue and Ivy Street; in garage. Reference point top of casing 1.28 feet above ground surface, at elevation 1,102.38 feet. 5/12/53, 20; 12/1/53, 29.
- 75/3W-16N4 Near Murrieta; 0.1 mile southeast and 100 feet northeast of intersection of Jefferson Avenue and Ivy Street; at windmill near shed. Reference point top of casing 1.3 feet above ground surface, at elevation 1,116.50 feet. 12/1/53, 42.5; 4/22/54, 42.2.
- 7S/3W-16N5 C. S. Gordon Neer Murrieta; 460 feet southeast and 260 feet southwest of intersection of Jefferson Avenue and Ivy Street; in shed 300 feet southeast of house. Reference point hole in pump base 1.5 feet above ground surface, at elevation 1,099.2 feet. 9/20/52, 21.7; 5/12/53, 23.2; 8/5/53, 24.4; 9/1/53, 26.7; 10/6/53, 25.0; 11/30/53, 25.2; 1/8/54, 25.1; 2/3/54, 25.4; 4/5/54, 25.2.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

(Depths to water in feat measured from reference point) (southweel)

- 78/3N-16N5 Joe Kalberer Near Murrieta; 400 feet northeast and 30 feet southeast of intersection of Jefferson Avenus and Ivy Street; 25 feet southeast of house. Reference point top of casing at ground surface, at elevation 1,103.59 feet. 5/12/53, 29.3; 12/1/53, 29.7; 4/24/54, 12.4.
- 75/3W-1701 T. C. Wickerd Near Murrieta; O.1 mile southeast and 0.04 mile southwest of intersection of Jefferson Avenue and Lemon Stract; 75 feet southeast of house. Reference point top of easing 0.5 feet above aground surface. 5/7/53, 47.8.
- 75/3W-17E1 E. E. Rasch Near Murricks; 200 feet northwest and 200 feet northeast of intersection of Highway 71 and Lemon Street. Reference point top of concrete slab 0.5 foot above ground surface. 5/5/53, 33.2.
- 7S/3W-17E2 C. V. Potter Near Murrieta; 0.14 mile northeast end 100 feet northwest of intersection of Highway 71 and Lemon Street; 5 feet north of garage. Reference point top of cesing 1.5 feet above grown surface, at elevation 1,130.2 feet. 11/11/45, 30 (log); 5/5/53, 37.5; 7/28/53, 37.5; 11/19/53, 37.0; 2/23/54, 41.4.
- 75/34-17E3 Paul Thompson Mear Murrieta; 0.1 mile northwest and 200 feet northeast of intersection of Highway 71 and Lemon Street; at windmill 100 feet northeast of house. Reference point top of casing 1 foot above ground surface. 11/19/53, 36.4.
- 75/3%-17F1 Near Murrisha; 0.1 mile scutheast and 200 feet northeast of intersection of Adams Avenue and Laman Strast; 20 feet north of house. Reference point top of casing 1.2 feet above ground surface, at elevation 1,134 feet. 5/7/53, 37.9; 11/19/53, 39.0; 4/23/54, 39.2.
- 75/37-1701 N. L. Thomas Nour Murrieta; 0.15 mile southeast and 300 feet northeast of Intersection of Adams Ascomb and Lemon Street; at windmill. Reference point top of casing at ground surface. 9/2/52, 30.8: 11/19/53, 30.5.
- 75/3W-17F3 V. E. Clark Near Murrieta; 265 feet northeast and 185 feet southeast of intersection of Adams Avenue and Lemon Street. Reference point top of casing 1.7 feet above ground surface, at elevation 1.135 feet. 10/14/53, 40.2; 4/19/54, 40.6.
- 78/3W-17G1 Clyde For Near Murrieta; 0.25 mile southeast of Lemon Street (measured along Jefferson Avenue: 75 feet northwest of house. Reference point top of could 1.2 feet above ground surface, at clevation 1,235.51 feet. 5/7/53, 45.3; 11/19/53, 47.0; 4/23/54, 46.7.
- /S/3V-1740 4, C. Arthur Near Murrists; 0.07 mile northeast and 200 feet northwest of intersection of Jeffer on Accoust and Kalmia Street. Reference point top of easing 0.1 foot above ground surface, at election 1,132.45 feet, 5/6/53, 46.3.
- 75/34-11 E. Bryant Near Murriaka; 0.2 mile northeast of Jefferson Avenue (measured along Kalmia Supers) and 100 feet studies of Kalmia Street; 30 feet north of house. Reference point hole in pump hase at ground surface, at elevation 1,160 feet. 5/12/53, 72.6; 11/19/53, 76.5; 4/23/54, 75.5.
- 75/32-1731 Robert Jones Near Murrieta; 0.07 mile southeast and 40 feet southwest of intersection of Kalmia Street and Jefferson Avenue, in metal shed. Reference point hole in pump base 2.2 feet above ground surface, at elevation 1,125.16 feet. 4/26, 38 (log); 11/3/26, 38.9 (Vail Co.); 1/11/27, 38.2 (Veil Co.); 11/17/53, 48.2; 1/8/54, 54.2; 4/23/54, 49.0.
- 75/W-1742 M. Smith Near Murrists; 10 feet north of well 1743, 2 feet northwest of garage. Reference point top of easing 1 foot above ground surface, at elevation 1,113.92 feet. Note: Measurements from Vail Company records. 10/30/25, 28.9; 11/2/25, 28.9; 3/3/26, 28.7; 4/23/26, 28.8; 6/28/26, 29.7; 8/2/26, 30.4.
- /3/3W-1713 M. Smith Near Murriets; 150 feet southeast and 100 feet southwest of intersection of Jefferson Avenue and Junipor Street; in garage. Reference point hole in pump base 1.2 feet above ground surface, at elevation 1,114.17 feet. 5/12/53,54.0.
- 75/3W-1/K2 Reg Bazanson Near Murrists: 0.1 mile northwest and 75 feet northeast of intersection of Kelmia Street and Adams Avenue; 45 feet northwest of house. Reference point hole in casing 2.2 feet above growed surface, at elevation 1,120 feet. 8/17/53, 38.1: 11/25/53, 38.9; 4/23/54, 39.0.
- 75/3W-1712 Willis A. Thompson Near Murriets; map location only see location of wells plate. Reference points top of casing, at elevation 1.119.53 feet. About 1913, 37 (log); 11/3/26, 36.8 (Vail Co.).

- 75/3W-17L3 Willis A. Thompson Near Murrista; 500 feet northwest and 300 feet morthwest of intersection of Washington Avenue and Kalmia Street; at windmill 50 feet east of house. Reference point top of casing, at elevation 1,110 feet. 4/26, 22 (log): 5/12/53, 36.7: 11/30/53, 38.4; 4/23/54, 38.0.
- 78/3W-1721 Ira Rail Near Wurrista; 236 feet northwest and 100 feet southwast of First and B Streets.

 Reference point top of boards 0.6 feet above ground surface. 5/15/59, 21.9.
- 7S/3W-17P2 Sam Barnes In Murriets; 350 feet southeast and 150 feet southwast of intersection of Washington Avenue and Kalmia Street. Reference point top of casing 1.6 feet above ground surface. 5/15/53, 26.2.
- 75/3W-17P3 Nora Cotter In Murrieta; 100 fest northwest and 100 fest northeast of intersection of First Avenue and B Street. Reference point top of pasing 0.6 foot above ground surface. 5/15/53, 23.4.
- 75/3W-17P4 In Murrieta; at windmill 120 feet northeast and 50 feet southeast of intersection of Second Avenue and Kalmia Street. Reference point top of easing 0.8 foot above ground surface, at elevation 1,098 feet. Note: Measurements from Riverside County Flood Control and Water Conservation District records. 8/30/51, 21.0; 10/16/52, 21.4; 6/10/53, 22.0; 7/9/53, 22.0; 8/10/53, 22.0; 9/16/53, 23.1; 10/22/53, 23.5; 11/9/52, 23.6; 12/4/53, 23.8; 1/5/54, 24.1; 6/1/54, 23.5; 7/7/54, 23.7.
- 75/3W-1792 = P. Samaniego In Murrieta; 100 feet southwest and 200 feet morthwest of intersection of Adams Avenue and Juniper Street: 55 feet southwest of house. Reference point top of casing 1.0 feet above ground surface, at elevation 1,104 feet. 5/15/53, 34.5; 12/1/53, 36.6.
- 78/3W-1793 Max Thompson In Murrieta; 0.13 mile northeast and 150 feet southeast of intersection of Washington Avenue and B Street; 20 feet acutheast of house. Reference point top of cazing 1.2 feet above ground surface, at elevation 1,100 feet. 5/20/53, 29.3; 2/18/54, 31.8.
- 7S/3W-17R1 H. Sykes In Murrista; at windmill 250 feet northwest and 250 feet northeast of intersection of Ivy Street and Adams Avenue. Reference point top of pipe clamp 1.0 foot above ground surface, at elevation 1,105.17 feet. 5/12/52, 55.2.
- 78/3W-1841 R. R. Swain In Murriets; Col2 mile northeast and 100 feet southwest of intersection of Magnolia Street and Highway 79; at windmill 25 feet northeast of house. Reference point top of casing Oc6 foot above ground surface, at elevation 1,152.59 feet. 5/5/53, 59.0; 11/19/53, 58.0; 4/22/54, 60.2.
- 75/3W-1842 Near Murrieta; at windmill 0.12 mile southeast and 150 feet northeast of intersection of Magnolia Street and Highway 71. Reference point top of brand cover easing 1 foot above ground surface. 5/5/53, dry; 11/19/53, dry; 4/22/54, dry.
- 7S/3W-18A3 C. J. and M. W. Thompson Near Hurrieta; 0.22 mile scathcast and 50 feet scuthwest of intersection of Magnolia Street and Highway 71. Reference point (a) flange, at elevation 1,135.91 feet (10/27/25 through 9/16/27); (b) not reported (4/2/46 through 5/15/47). Note: Measurements from Vail Company records, except as indicated. 10/27/25, 44.5; 7/27/27, 97.0; 9/15/27, 85.4; 4/2/46, 60.0 (Calif. Elec. Power Co.); 7/12/46, 81.0 (Calif. Elec. Power Co.); 5/15/47, 77.4 (Calif. Elec. Power Co.).
- 75/3W-18H1 G. W. Sips Near Murrieta; 0.32 mile southness and 150 feet northeast of intersection of Highway 71 and Magnolia Street. Reference point top of ceasing 0.5 foot above ground surface, at elevation 1,135 feet. 5/5/53, 43.2; 11/19/53, 39.6; 4/22/54, 40.9.
- 75/3W-18H2 Paul Anderson Near Murrieta: 0.26 mile sortheast and 125 feet northeast of intersection of Highway 71 and Magnelia Street; 10 feet south of house. Reference point top of casing at ground surface, at elevation 1,155.6 feet. 5/15/53, 38.6.
- 7S/3W-18L1 Amos J. Sykes- Near Furrieta; 0.37 mile northwest and 0.1 mile southwest of intersection of Lemon Street and Hayrs Avenue; on north bank of Murrieta Crock south of barn. Reference point (a) top of concrete casing, at elevation 1,113.30 feet (3/3/26 through 7/27/27); (b) hold in pump base 0.5 foot above ground surface, at elevation 1,113.25 feet (5/6/5) to present). Note: Measurements from Vail Company records, except as indicated. 3/3/26, 10.3; 4/23/26, 2.7; 6/28/26, 7.7; 8/2/26, 9.5; 8/30/26, 10.7; 10/13/26, 10.7; 11/3/26, 10.6; 1/11/27, 9.1; 7/27/27, 7.9; 5/6/53, 14.7 (DWR); 10/29/53, 22.6 (DWR); 11/19/53, 22.3 (DWR); 4/22/54, 5.0 (DWR).
- 7S/3W-18L2 Amos J. Sykes Neer Murrista; 0.31 mile northwest and 500 feet scuthwest of intersection of Lemon Street and Hayas Avenue; at windmill at northwest and of concrete reservoir. Reference point top of concrete sasing 0.6 foot above ground surface, at elevation 1,118.21 feet. 5/6/53, 19.0; 10/29/53, 21.6; 11/19/53, 23; 1/22/54, 17.7.

- 75/3W-18L3 Amos J. Sykes Near Murrieta; at windmill 140 feet southeast of well 18L2. Reference point hole in metal plate 1.1 feet above ground surface, at elevation 1,124.09 feet. 11/19/53, 37.0; 4/22/54, 22.0.
- 75/3W-18M1 Vail Company Near Murrieta; at windmill 0.2 mile northwest of confluence of Cole Canyon and Murrieta Creek and 100 feet scuthwest of Cole Canyon Creek. Reference point top of casing 3.5 feet above ground surface, at elevation 1,125 feet. 5/6/53, 25.8: 11/19/53, 23.9.
- 75/3W-18Q1 John McCool Near Murrieta; mar location only, see location of wells plate. Reference point top of concrete casing, at elevation 1,103.61 feet. Note: Measurements from Vail Company records. 1918, 6 (log); 10/27/25, 12.3; 3/3/26, 10.8; 4/23/26, 4.2; 6/28/26, 6.7; 8/2/26, 8.5; 8/30/26, 9.5; 10/13/26, 10.7; 11/3/26, 11.0; 1/11/27, 9.8; 7/27/27, 6.7; 9/16/27, 8.6.
- 75/3W-19Al C. W. Barnett Near Murrieta; 0.2 mile southwest and 0.18 mile northwest of intersection of Hayes Avenue and Kalmia Street; at windmill 20 feet northwest of house. Reference point top of casing 0.9 fcot above ground surface, at elevation 1,137.52 feet. 11/30/53, dry; 4/22/54, 44.7.
- 75/3W-19A2 C. W. Barnett Near Murrieta; 100 feet northeast of well 19A1 and 200 feet northeast of house. Reference point top of casing 1.1 foot above ground surface, at elevation 1,135.96 feet. 5/11/53, 45.9; 5/23/53, 46.2; 11/30/53, 48.2; 4/22/54, 44.2.
- 75/3W-1943 C. W. Barnett Near Murriota; 350 feat north of well 1942. Reference point top of casing 1.9 feet above ground surface, at elevation 1,103.22 feet. 5/11/53, 12.9; 5/22/53, 13.0; 11/30/53, 15.9.
- 75/3W-19H1 Frank Angus Near Murrista; at windmill 0.65 mile southwest and 30 feet southeast of intersection of Washington Avenue and Kalmia Street. Reference point top of casing 0.7 foot above ground surface, at elevation 1.098.51 feet. 5/14/53, 15.4; 11/30/53, 19.2; 4/22/54, 10.8.
- 75/3W-19H2 Frank Angus Near Murrieta; at windmill 300 feet southwest of well 19H1. Reference point top of concrete slab at ground surface, at elevation 1,302.72 feet. 5/14/53, 18.6.
- 75/3W-20Al = Clarylin Smith = In Marrieta; 300 feet southwest and 500 feet southeast of intersection of Adams and Ivy Street; at windmill 50 feet southwest of house. Reference point top of casing 0.5 foot above ground surface, at elevation 1,098.08 feet. 5/13/53, 35.1; 11/18/53, 37.4; 4/22/54, 37.1.
- 7S/3W=20A2 Clarylin Smith In Murriete; 450 feet northwest of well 20AL. Reference point (a) Recorder house floor 1.0 foot below ground surface, at slovation 1,091.59 feet (1/15/53 through 12/2/53); (b) top of casing 1.1 feet below ground surface, at elevation 1,091.53 feet (4/22/54). 1/15/53, 27.8; 2/6/53, 27.6; 3/6/53, 27.6; 4/3/53, 28.2; 5/1/53, 28.5; 6/5/53, 29.3; 7/3/53, 29.6; 8/4/53, 30.3; 9/1/53, 30.9; 10/2/53, 31.2; 11/3/53, 31.7; 12/2/53, 31.6; 4/22/54, 29.6.
- 75/3W-20A3 Malone In Murrieta; 0:12 mile southwest and 40 feet southeast of intersection of Adams and Ivy Street; in stucco pump house. Reference point top of casing: 7/25/51, 26
- 75/3W-20A4 A1 Read In Murraeta; 400 feet southwest of well 20A3. Reference point top of casing 0.65 foot above ground surface, at elevation 1,088.46 feet. 5/13/53, 23.4; 11/20/53, 26.0; 4/22/54, 23.4.
- 75/3W-2017 Clarylin Smith In Murrieta; 120 feet southwest of well 20Al; in stuces shed. Reference point top of concrete casing at ground surface, at elevation 1,030 feet. 11/30/57, 28.0.
- 75/3W-20A8 = C. W. Gagnon In Murrieta; 100 feet northwest and 100 feet southwest of intersection of Ivy Street end Plum Avenue; under sink in plant. Reference point ground surface. 10/7/45, 18 (log).
- 75/3W-20B1 U. Tarwater In Murrieta; 150 feet southwest and 100 feet southeast of intersection of Washington Avenue and C Street) southwest of house. Reference point top of collar 0.8 foot above ground surface. 5/15/53, 22.6.
- 7S/3W-2OB2 U. Tarwater In Murrieta; 100 feet northeast and 100 feet southeast of intersection of Juniper Street and Washington Avenue; at windmill northeast of house. Reference point top of casing 1.3 feet above ground surface. 5/15/53, 24.3.
- 7S/3W-20B3 C. S. Erdel In Murrieta; 200 feet northeast and 200 feet northwest of intersection of Washington Avenue and Ivy Street; 30 feet northwest of house. Reference point top of casing 1.55 feet above ground surface. 5/15/53, 25.6.
- 7S/3W-20Cl J. Young In Murrieta; at windmill 200 feet northwest and 100 feet northeast of intersection of Juniper and First Streets. Reference point top of casing 1.0 foot above ground surface. 5/21/53, 23.1.

- 75/3W-2002 J. Young In Murrieta; at windmill 100 feet couthwest and 50 feet northwest of intersection of Second and Juniper Streats. Reference point top of casing 1:4 feet above ground surface. 5/21/50, 24.5.
- 75/3W-2003 Walter Coy In Mirrieta; 100 feet southwest and 100 feet northwest of intersection of Second and C Streets. Reference point ground surface, 1945, 14 (log).
- 7S/3W-20C4 E. H. Curran In Murriete; 11C feet southwest and 60 feet northwest of intersection of E and Clay Streets. Reference point pump base 0.25 foot above ground surface, at elevation 1,090 feet. 4/9/54, 29.5.
- 78/3W-20D2 J. Young In Murriets; 500 feet southwest and 100 feet southeast of intersection of Clay and Kalmia Streets; at windmill mear water tower. Reference point top of casing 4.2 feet below ground surface. 5/21/53, 8.3.
- 78/3W-20D3 Floyd Rail In Murrieta; 600 feet southeast and 100 feet southwest of intersection of Kalmia and Clay Streets; at feed mill, Reference point top of casing, 5/15/53, 19.3.
- 75/3W-20H1 Maude Bushanan In Murrieta; 0.26 mile southeast and 200 feet southwest of intersection of Washington Avenue and Ivy Street; at windmill 100 feet southwest of house. Reference point top of concrete casing 1.15 feet above ground surface, at elevation 1,101.95 feet. 5/13/53, 38.9; 11/18/53, 39.6; 4/22/54. 43.7.
- 78/3W-20H2 Walter Nielsen In Murrieta; 0.21 mile southeast and 500 feet northeast of intersection of Washington Avenue and Lyy Street; 75 feet northeast of house. Reference point top wood ocver 0.2 feet above ground surface, at elevation 1,090.66 feet. 5/13/53, 28.8; 10/29/53, 30.0; 4/21/54, 28.5.
- 75/3W-20H3 Walter Nielssa In Murrista; 400 feet northeast of well 20H2. Reference point tower lip of measuring pipe 1.4 feet above ground surface, at elevation 1,094.59 feet. 5/13/54, 48.0; 10/29/53, 57.5; 4/21/54, 48.4.
- 7S/3W-20Kl Houell Near Murriets; 0.25 mile southeast and 200 feet northeast of intersection of Twy Street and Hayes Avenue. Reference point hele in barrel over casing 1.1 feet above ground surface, at elevation 1,078.41 feet. 5/14/53, 14.9; 11/18/53, 20.4; 4/22/54, 9.1c
- 75/3W-20L1 L. P. Rios Near Murrieta; 400 feet southeast and 300 feet northeast of intersection of Ivy Street and Hayes Avenue; 150 feet northeast of house. Reference point hole in casing 1.6 feet above ground surface, at elevation 1,080.2 feet. 12/14/50, 15 (log); 7/31/52, 21; 5/14/53, 20.8; 11/18/53, 20.4; 4/22/54, 8.2.
- 75/3W-20Q1 Howell Near Murrieta; at winduill 0.5 mile southeast and 100 feet southwest of intersection of Hayes Avenue and Ivy Street. Reference point top of 4 x 4-inch wood brace 1.2 feet below ground surface, at elevation 1,073,2 feet. 8/1/52, 8.9; 5/14/53, 15.4; 11/18/53, 14.6; 4/22/54, 9.7.
- 75/3W-2002 Silas M. Hathaway In Murrieta; 200 feet northeast of well 2001. Reference point lever lip of measuring pipe 2.4 feet above ground surface, at elevation 1,074.40 feet. 5/14/59, 24.3; 4/22/54, 8.0.
- 78/3W-20R2 George Contrerss In Morrieta; 200 feet northeast of well 20R3. Reference point top of concrete casing 2.5 feet above ground surface, at elevation 1,062.43 feet. 5/13/53, 12.4; 9/1/53; 21.6; 10/5/53, 24.6; 10/29/53, 22.6; 1/7/54, 19.1; 2/3/54, 8.5; 4/5/54, 3.0; 4/22/54, 4.4.
- 75/3W-20R3 George Contrers = Near Marrista; 0.5 mile southeast and 400 feet northeast of intersection of Twy and Clay Streets. Reference point top of cosing 2.5 feet above ground surface, at elevation 1,063 feet. 9/13/49, 7 (log); 1/19/53, 11.2; 3/5/53, 9.4; 4/7/53, 10.5; 10/29/53, 23.1; 2/3/54, 14.5; 4/5/54, 5.0; 4/22/54, 6.2.
- 78/3W-21D2 L. I. Prestivien Near Murrieta; 0.2 mile southeast and 150 feet southwest of intersection of Twy Street and Jafferson Avenue; at edge of reservoir southwest of house. Reference point top of easing 0.65 foot above ground surface, at elevation 1,114.47 feet. 11/20/48, 32 (log); 5/13/53, 43.4; 11/18/53, 41.5; 4/22/54, 41.0.
- 78/3W-21D3 Rosone Frohlish Near Marrista; 300 feet south of well 2DD2; in pump house attached to garage. Reference point top of casing 0.5 foot above ground surface, at elevation 1,127.68 feet. 5/14/53, 53.8; 11/18/53, 54.8; 4/22/54, 57.3:

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 1

- 7S/3W-21D4 Mack Stone Near Murriets; 0.3 mile southeast and 500 feet northeast of intersection of Ivy Street and Adams Avenue; open casing 40 feet northeast of house. Reference point top of casing at ground surface, at elevation 1,153.28 feet. 3/6/53, 130.9; 3/7/53, 126.8; 5/13/53, 127.3; 7/9/53, 133.8; 8/4/53, 133.1; 9/1/53, 134.3; 10/5/53, 135.5; 11/18/53, 134.3; 2/3/54, 132.5; 4/5/54, 132.1.
- 7S/3W-21El Mack Stone Near Murrieta; 0.3 mile southoast and 100 feet northeast of intersection of Adams Avenue and Try Street; at pressure tank 40 feet east of house. Reference point hole in pump base at ground surface, at elevation 1,120.34 feet. 5/13/53, 76.2; 11/19/53, 85.7; 4/22/54, 76.5
- 7S/3W-21F1 Warren Lipking Near Murrieta; 600 feet southeast and 300 feet northeast of intersection of Adams and Webster Avenues; 120 feet northeast of garage. Reference point ground surface. 4/28/51, 24 (log).
- 7S/3W-21F2 Nettie Lloyd Near Murrieta; at windmill 600 feet southeast and 100 feet southwest of intersection of Highway 71 and Webster Avenue. Reference point top of pipe bracket 0.5 foot above ground surface, at elevation 1.076.97 feet. 11/16/53, 15.2.
- 7S/3W-21F3 Warren Lipking Near Murrista; 80 feet south of well 21F1. Reference point top of casing 1.0 feet above ground surface, at elevation 1,072 feet. 11/17/53, 45.7; 4/21/54, 27.9.
- 75/3W-2161 Charmook Near Murrista; at windmill 0.3 mile southeast and 0.15 mile northeast of intersection of Highway 71 and Webster Avenue. Reference point top of casing 1.45 feet above ground surface, at elevation 1.076.92 feet. 2/19/53, 11.3; 5/14/53, 12.0; 11/19/53, 13.5; 4/22/54, 12.0.
- 7S/3W-21J1 Myrtle A. Provolt Near Murrista; 300 fest southeast and 100 feet southwest of intersection of Guava Streat and Highway 71; at windmill 20 feet south of house. Reference point top of 4 x 4 inch timber 0.7 foot above ground surface, at elevation 1,066 feat. 12/16/53, 12.3; 4/21/54, 8.5.
- 75/3W-21K1 Carlington Cain Near Murricts; 70 feet south of well 21K2. Reference point top of casing 1.3 feet above ground surface, at elevation 1.059.70 feet. 5/14/53, 5.2; 11/17/53, 3.6; 4/21/54, 1.5.
- 75/3W-21K2 Carlington Cain Near Murrieta; 200 fert northwest and 70 feet southwest of intersection of Highway 71 and Guava Street. Reference point hole in concrete slab 1.5 feet above ground surface, at elevation 1,062 feet. 9/8/53, 7 (lcg); 11/24/53, 6 7; 4/21/54, 4.2.
- 75/3W-21K3 Carlington Cain Near Murrista; 0.26 mile southeest and 300 feet southwest of intersection of Highway 71 and Webster Avenue. Reference point top of concrete easing 2 feet above ground surface, at elevation 1,067 feet. 11/24/53, 3.9.
- 7S/3W-21L1 Fred Mays Near Murrieta; 500 feet southwest and 100 feet northwest of intersection of Adams Avenue and Brown Street. Reference point top of casing 0.5 foot above ground surface, at elevation 1.058 feet. 11/4/49, 12 (log); 11/13/53, 33.3; 4/21/54; 18.8.
- 7S/3W-21L2 Carlington Cain Near Murrieta; 200 fest southwest and 150 feet southeast of intersection of Adams Avenue and Brown Street. Reference point top of metal plate 1.0 foot above ground surface, at elevation 1.059 feet. 11/17/53, 24.8.
- 7S/3W-21M2 Fred Mays Neur Murrieta; 0.13 mile southeast of Webster Stroet and 150 feet northeast of Washington Avenue. Reference point hole in pump base 0.5 foot above ground surface, at elevation 1,080 feet. 11/13/53, 49.7.
- 75/3W-21M3 Fred Mays Near Murrieta; 200 feet northeast and 100 feet northwest of intersection of Washington Avenue and Brown Street. Reference point top of casing 1.0 foot above ground surface, at elevation 1,077.80 feet. 5/13/53, 40.
- 7S/3W-21N1 C. D. Westbrook Near Murrieta; 350 feet southwest of intersection of Washington Avenue and Brown Street; at windmill. Reference point top of casing 1.4 feet above ground surface, at elevation 1,061.31 feet. 5/13/53, 15.3; 11/16/53, dry; 4/22/54, 8.9.
- 7S/3W-21N2 A. W. Tordoff Near Mirrieta; 100 feet northeast and 100 feet southeast of intersection of Washington Avenue and Brown Street. Reference point top of casing 1 foot above ground surface, at elevation 1,070 feet. 11/10/50, 31 (10g); 11/16/50, 44:8; 4/21/54, 29:2.
- 75/3W-21N3 C. D. Weatbrock Near Murrieta; 26 feet northeast of well 21N1; open casing. Reference point top of casing 2.2 feet above ground surface, at elevation 1,061 &1 feet. 5/13/53, 15.6; 11/16/53, 25.2; 4/21/54, 9.4.

- 78/3W-21P1 Warren Lipking Near Murrieta; 80 feet northeast and 50 feet southeast of intersection of Washington Avenue and Guava Street. Reference point top of casing 0.8 foot above ground surface, at elevation 1,055.39 feet. 11/17/53, 28.6, 4/21/54, 15.6.
- 7S/3W-21P2 A. W. Tordoff Near Marriets; 0.06 mile northwest and 100 feet northeast of intersection of Washington Avenue and Guava Street; open easing. Reference point top of sating 0.8 foot above ground surface, at elevation 1,055.50 feet. 5/13/53, 18.8; 11/17/53, 26.7; 14/21/54, 13.6.
- 78/3W-21P4 Warren Lipking Near Murrieta, 20 feet southwest of well 21P1 Reference point ground surface: 12/4/53, 26 (log)
- 75/3W-21Q1 Carlington Cain Near Murrieta; 0.19 mile northeast and 0.09 mile southeast of intersection of Washington Avenue and Guava Street; in pump house ground surface, at elevation 1.054.13 feet. 5/14/53, 33.5; 11/17/53, 31.4; 4/21/54, 26.1.
- 7S/3W-21R2 Charles Philo Near Murrieta; 0.22 mile northwest of Fig Street (measured along Highway 71) 100 feet south of house. Reference point top of casing 0.3 foot above ground surface, at elevation 1,061.79 feet: 5/14/53, 38.7, 11/16/53, 41 9; 4/22/54, 41.1.
- 7S/3W-22Cl Near Murrieta; 0.3 mile south of Webster Avenue (measured along dirt road) from intersection 0.34 mile east of Highway 395; open casing 150 fest east of dirt road. Reference point top of casing. 5/14/53, dry.
- 7S/3W-24A1 Albert Ceas Near Murrieta; 300 feet southeast of intersection of Webster Avenue and Banana Street; near garage. Reference point top of casing 1.15 feet above ground surface, at elevation 1,106:61 feet. 5/19/53, 44.8; 11/19/53, 42.6; 4/23/54, 36:1.
- 78/3W-24Q1 T. C. Bishop Near Murrieta; 0.54 mile south of Webster Avenue (measured along Banana Road) in shed southeast of Banana Street, Reference point top of casing 8/19/54, 21.4.
- 75/3W-25M1 J. B. Shamel Near Murrieta; 0.9W mile northeast of Highway 395 (measured along Banana Road) and 0.1 mile easterly of Banana Road; at windmill. Reference point top of inner casing 1 foot above ground surface, at elevation 1,105.59 feet. 5/35, 56 (owner); 5/39, 47 (owner); 5/20/53, 60; 12/1/53, 55.5; 4/23/54, 53.2.
- 7S/3W=25M2 = J. B. Shamel = Near Murrieta, 0.76 mile northeast (measured along Banana Road) from intersection with Highway 395; 100 feet southeast of Highway. Reference point = top of discharge pipe 0 8 foot above ground surface, at elevation 1,069,71 feet. Note: Measurements from Vail Company records, except as indicated. 7/8/25, 6.6; 11/10/25, 7.3; 5/14/26, 5.0; 3/9/26, 6.0; 9/10/26, 6.0; 10/13/26, 5.9; 11/3/26, 5.8; 1/12/27, 4.8, 3/17/27, 4.7; 4/9/27, 5.4; 5/7/27, 5.8; 6/24/27, 5.6; 7/12/27, 5.8; 8/6/27, 6.0; 9/3/27, 6.8; 10/3/27, 7.6; 2/53, 7 (comer)
- 7S/3W-26N1 Leo Rori Paugh Near Murrieta; C 43 mile northeast of Banana Road (measured along Highway 71) and 200 feet southwest of Highway 71; in pump house: Reference point top of casing, at elevation 1,058.46 feet. 7/1/25, 19.2; 11/10/25, 19.4; 5/14/26, 18.1; 9/3/26, 19.5; 10/26/26, 19.7; 11/2/26, 19.7; 1/12/27, 19.2; 7/30/27, 18.9; 8/23/27, 19.2; 9/1/27, 19.2; 9/23/27, 19.3.
- 7S/3W-26R1 J. B. Shamel Near Murraeta; 0.56 mile northeast (measured along Banana Road) from intersection with Highway 395; in house 400 feet southeast of road. Reference point (a) wood clamp 3.79 feet above ground surface, at elevation 1,065.90 feet (5/14/26 and 7/12/26), (b) top of wood support 3.25 feet above ground surface, at elevation 1,065.36 feet (5/20/53 to present). 5/14/26, 12.6 (Vail Co.); 7/12/26, 12.2 (Vail Co.), 5/20/53, 17.5; 11/20/53, 19.2
- 7S/3W-27A1 F. H. Hall Near Murrieta, 1 1 miles northwest of Banana Road (measured along Highway 395, and 0.03 mile northeast of Highway 395; south of Warm Springs Creak. Reference point top of casing, at elevation 1,058 68 feet Note: Measurements from Vail Company records. 11/10/25, flowing; 5/13/26, flowing; 7/1/26, flowing, 8/4/26, flowing; 9/1/26, flowing, 10/18/26, flowing; 11/2/26, flowing; 1/11/27, flowing, 7/4/27, flowing, 7/30/27, flowing
- 7S/3W-27H1 Amos J Sykes Near Marrieta, 900 feet northeast of intersection of Warm Springs Croek and Highway 71; southeast of Warm Springs Creek. Reference point top of casing, at elevation 1,052.57 feet. Note: Measurements from Vail Company records: 7/1/26, flowing; 7/4/26, flowing; 9/3/26, flowing; 10/18/26, flowing.
- 78/3W-27H2 G. T. Hall = Near Murrieta; 0.22 mile northerly from Date Street (measured along Madison Street) from intersection 0.21 mile northeast of Highway 71 (measured along Date Street); at windmill, 75 feet northwest of house. Reference point (a) top of casing, at elevation 1,049.80 feet (6/15/25 to 1/11/27); (b) top of casing 1.4 feet above ground surface, at elevation 1,051.53 feet (5/22/53 to present). Note: Measurements from Vail Company records, except as indicated 6/15/25, flowing; 11/10/25, 0.1, 5/13/26, flowing; 7/1/26, flowing; 8/4/26, 0.1; 9/3/26, 0.4; 10/26/26, 0.6; 11/3/26, 0.6; 1/11/27, flowing; 5/22/53, 9.9 (DWR); 11/19/53, 6.2 (DWR); 4/22/54, 3.5 (DWR).

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 3

- 75/3W-27Kl Amos J. Sykes Near Murrieta; 140 feet northeast and 140 feet southeast of intersection of Highway 71 and Warm Springs Creek. Reference point top of pump base 1.6 feet above ground surface, at elevation 1.047.44 feet. 5/26/53, flowing: 11/19/53, flowing.
- 75/3W-27MI Jack Klubnikin Near Murrieta; 0.13 mile southwest of Adems Avenue (measured along Elm Street) and northwest of Elm Street; under shed 20 feet northwest of house. Reference point hole in casing 1.03 feet above ground surface, at elevation 1,037.32 feet. 4/22/51, 17.5 (log); 5/22/53, 20.8; 4/21/54, 14.9.
- 75/3W-27M2 Dutton Near Murrieta; 450 feet northwest and 250 feet northeast of intersection of Adams Avenue and Elm Street; open casing. Reference point top of casing 1.95 feet above ground surface, at elevation 1.038.96 feet. 5/25/53, 21.5; 11/13/53, 26.2; 4/21/54, 13.0.
- 75/3W-27M3 L. S. Brown Near Murrieta; 120 fest northeast and 55 fest southeast of intersection of Adams Avenue and Elm Street; at windmill 7 feet northwest of house. Reference point top of easing 1.3 feet above ground surface, at elevation 1,037.08 feet. 5/25/53, 19.2; 11/13/53, 24.1; 4/21/54, 11.2.
- 75/3W-27M4 Dutton Near Murrieta; 30 fest northwest of well 27M2; open easing. Reference point top of casing 0.5 foot above ground surface, at elevation 1,040 feet. 11/13/53, dry; 4/21/54, 11.0.
- 75/3W-27N1 Carl F. Brellow Near Murrieta; 50 feet northeast of well 27N2, and 20 feet northeast of house. Reference point top of conorate base at ground surface, at elevation 1,035.08 feet. 5/26/53, 14.4.
- 75/3W-27N2 Carl F. Brellow Near Murriste; 0.08 mile southwest and 20 feet southeast of intersection of Washington Avenue and Elm Street; 12 feet south of house. Reference point hole in pump base, at elevation 1.035 feet. 11/13/53, 24.7; 4/22/54, 23.2.
- 75/3W-27P1 E. M. Lincoln Near Murrieta; 0.2 mile northwest of well 2702. Reference point center line of air gags 3.25 feet above ground surface, at elevation 1,036.26 feet. 11/13/53, 32; 4/23/54, 22.
- 75/3W-2701 E. M. Lincoln Near Murriets; at windmill 50 feet north of well 2702. Reference point top of casing 1.2 feet above ground surface, at elevation 1.031.90 feet. 5/22/53, 5.4.
- 75/3W-2702 E. M. Lincoln Near Marrieta; 0.22 mile northwest and 200 feet southwest of intersection of Cherry Street and Adams Avenue; in metal pump house. Reference point (2) top of casing, at elevation 1,031.13 feet (5/14/26 through 8/11/26); (b) hole in steal plate, at elevation 1,030.82 feet (5/22/53 to present). Note: Measurements from Vail Company records, except as indicated. 5/14/26, 8.6; 7/1/26, 8.9; 8/4/26, 10.0; 9/1/26, 11.9; 10/15/26, 15.9; 11/2/26, 15.5; 1/11/27, 12.6; 7/4/27, 8.3; 8/11/27, 13.0; 5/22/53, 4.7 (DWR), 11/13/53, 6.8 (DWR); 1/22/54, 4.2 (DWR).
- 7S/3W-28B1 Warren Lipking Near Murrista; 0.2 mile southeast of Guava Street (measured along Washington Avenue) end 300 feet northeast of Washington Avenue; open sasing. Reference point top of easing 1.6 feet above ground surface, at elevation 1,051.50 feet. 5/13/53, 15.7; 11/17/53, dry; 4/21/54, dry.
- 75/3W-28B2 Warren Lipking Near Murrieta; at windmill 60 feet southeast of well 28B1. Reference point top of casing 0.96 foot above ground surface, at elevation 1,050.30 feet. 5/13/53, 14.6; 11/17/53, 20.8; 4/21/54, 17.8.
- 75/3W-28D1 C. D. Westbrook Near Murrieta; 500 feet southwest and 150 feet northwest of intersection of Washington Avenue and Quava Street; open easing. Reference point top of casing 2.8 feet above ground surface, at elevation 1,065.69 feet (9/26/50 through 12/2/53); (b) top of recorder house floor 2.9 feet above ground surface, at elevation 1,065.76 feet (9/26/50 through 5/11/54). 9/26/50, 46 (log); 5/14/53, 25.3; 11/16/53, 34.4; 12/2/53, 34.4; 1/6/54, 34.4; 2/3/54, 33.5; 3/10/54, 29.5; 4/6/54, 24.5; 5/3/54, 21.4.
- 7S/3W-28E1 Mike Mance Noar Murrieta; 0.22 mile couthwest of Douglas Avenue (measured along dirt road) from intersection 0.23 mile southeast of Guava Street (measured along Douglas Avenue); at windmill near barn. Reference point top of casing 1.55 feet above ground surface, at elevation 1,080.89 feet. 5/13/53, 25.0; 11/16/53, 31.6; 4/21/54, 30.3.
- 75/3W-28F1 Mike Mance Near Murrieta; 0.3 mile southeast of Guava Street (measured along Douglas Avenue) and 100 feet southwest of Douglas Avenue. Reference point (a) top of casing 1.4 feet above ground surface, at elevation 1,066.54 feet (4/27/50 through 5/13/53); (b) top of casing 4.0 feet above ground surface, at elevation 1,069.5 feet (11/16/53 to present). 4/27/50, 20 (log); 5/13/53, 32.2; 11/16/53, 29.2; 4/21/54, 28.2.

(fallog emerater most bernssem took at refar of adopt)

- 75/3W-28F2 Mike Marce Near Murrists; 15 feet northwest of well 28F3; open sazing. Referense point top of casing 1.2 feet above ground surface, at elevation 1,054.08 feet. 5/13/53, 18.5; 11/16/53, 26.0; 4/21/54, 20.3.
- 75/3W-28F3 Mike Manne Near Murrista; 0.29 mile southeast of Guava Street (measured along Clay Avenua and 100 feet southwest of Clay Avenua; in metal pump house. Reference point hole in casing at grantface, at elevation 1.054 foct. 11/16/53. 26.1; 4/21/54, 19.3.
- 78/3W-28H1 Frod Mays Near Murrieta; 1.1 miles northeast and 100 feet southeast of intersection of Fig Street and Washington Avanue; at windmill 15 feet southeast of fence. Reference point top of casing 2.3 feet above ground surface, at elevation 1.044.36 feet. 5/14/53, 15.4; 11/16/53, 18.2; 4/21/54, 16.9.
- 75/3W-28P1 Near Murrieta; 0.25 mile southwest of Douglas Avenue (measured along dirt road) from intersection 0.75 mile southeast at Guava Streat; at windmill, 720 feet northwest of dirt road. Reference point top of easing 0.4 foot above ground surface. 11/17/53, dry.
- 75/3W-28Q1 Near Murrieta; 0.8 mile southeast and 0.25 mile southwast of intersection of Douglas Avenue and Guava Street; at windmill 330 feet southerly from femae corner. Reference point top of casing 0.5 foot above ground surface. 11/17/53, dry.
- 78/3W-29Al Sweery and Roen Near Marrieta; 0.14 mile northwest and 100 feet southwest of intersection of Hayes Avenue and Guava Street. Reference point hold in casing 0.6 foot above ground surface, at elevation 1,078 feet. 3/29/50, 16 (log); 5/20/53, 30.3; 11/17/53, 34.4; 4/22/54, 12.7.
- 78/3W-29B1 Howell 0.46 mile northwest of Guzya Street (measured elong Hayes Avenue) and 140 feet southwest of Hayes Avenue. Reference point lower lip of pipe at ground surface, at elevation 1,077 feet. 8/1/52, 21.6; 11/18/53, 24.6; 4/22/54, 7.8.
- 78/3W-29C1 R. H. Ballard Near Murricta; 0.37 mile southwest and 0.25 mile southeast of intersection of Hayes Avenue and Tvy Street; in shed 250 feet east of house. Reference point pump base at ground surface, at elevation 1,1%7.98 feet. Note: Measurements from Wail Company records, except as indicated. 5/13/26, 53.1; 7/1/26, 55.0; 3/2/26, 56.3; 8/30/26, 58.3; 7/27/27, 57.6; 8/21/53, 80.7 (DWR); 10/19/53, 82.2 (DWR); 4/15/54, 70.0 (LWR).
- 75/3W-19DR A. B. Mattison Near Murrieta; map location only, see location of wells plate. Reference point-clay pipe, at elevation 1,153.24 feat. Note: Measurements from Vail Company records. 10/30/25, 54.6; 5/13/26, 47.2; 6/1/26, 48.3; 1/11/27, 54.6; 7/27/27, 42.9.
- 78/3W-29G1 Byron 0. Lilly Mear Mirriets; 0.18 mile northwest and 0.27 mile southwest of intersection of Hayes Avenue and Guava Street; at windmill in open field. Reference point lower lip of pipe, at elevation 1,142 rest. 8/1/52, 106.3; 2/18/53, 95.4; 5/14/53, 99; 7/9/53, 107.3; 8/4/53, 106.6; 9/1/53, 109.4; 10/5/53, 112.9; 11/18/53, 105.3; 1/7/54, 128.0; 2/3/54, 115.1; 4/2/54, 84.9; 4/22/54, 84.8.
- 78/3W-29J1 Sweezy and Roen Near Murrista; 0.37 mile southwast and 0.05 mile northwest from intersection of Hayes Avenue and Chave Street; in open shad 100 feet west of house. Reference point hole in pump base 1 foot above ground surface. 3/15/50, 20 (log); 5/14/53, 103.
- 78/3W-3WC1 E. M. Lincoln Near Murrista; 0.25 mile southwest from well 27Q2, (measured along fence).

 Reference point bottom of pump base 1.35 fest above ground surface, at elevation 1,030.18 feet. 5/22/53,
 17.5; 11/13/53, 19.8; 4/22/54, 17.0.
- 78/3W-35F1 Roy S. Roripaugh Near Murriete; map location only, see location of wells plate. Reference point concrete block, at elevation 1,044.61 feet. Note: Measurements from Vall Company records. 6/24/25, 8.2; 9/3/26, 8.4; 10/26/26, 8.4; 11/2/26, 8.4; 1/12/27, 7.4; 3/17/27, 5.8; 4/11/27, 6.1; 5/3/27, 6.3; 7/4/27, 7.0; 8/6/27, 0.5; 8/19/27, 7.4; 9/22/27, 7.5; 10/3/27, 7.5.
- 75/3W-35K1 Ralph Barnett Near Murrieta; 0.17 mile southeast of Banana Road (measured along Highway 71) and 200 feet southwest of Highrey 71; at windmill. Reference point clamp, at elevation 1,037.26 feet. Note: Measurements from Well Company records. 7/1/25, 9.6; 8/11/26, 9.4; 9/10/26, 9.4; 10/26/26, 9.5; 11/2/26, 9.5; 1/12/27, 9.8; 3/7/27, 7.9; 3/11/27, 8.1; 4/9/27, 8.4; 5/7/27, 8.4; 7/4/27, 8.9; 8/6/27, 9.3; 9/9/27, 9.2; 10/3/27, 9.3.
- 75/3W-35P1 Wail Campany Near Marriska; map location only, see location of wells plate. Reference point top of easing, at elevation 1,017.00 feet. 11/10/25, 6.6; 5/14/26, 3.2; 6/28/26, 3.4; 7/3/26, 3.5; 4/6/27, 0.4; 4/23/27, 11.0; 9/4/27, 16.2.
- 78/3W-35P2 Vail Company Near Murrista; map location only; see location of wells plate. Reference point top of casing, at elevation 1,01%,78 feet. Note: Measurements from Vail Company records. 8/11/26, 9.3; 10/15/26, 3.7; 11/2/26, 3.9; 1/12/27, flowing; 5/15/27, 1.7; 6/4/27, 3.9.

- 75/4W-1A1 E. W. Bennett Near Wildomar; 0.2 mile west of Odd Springs Ranch read (measured along dirt read) from intersection 0.85 mile northeast of Highway 71 (measured along Oak Springs Ranch read); open oa sing. Reference point lover lip of pipe 1.5 feet above ground surface, at elevation 1,298 feet. 9/22/49, 39 (log); 9/2/52, 49.7; 2/11/53, 41.5; 5/6/53, 55.8; 13/17/53, 78.6; 4/21/54, 70.7.
- 75/4W-101 William Curtis Near Wildomar; 0.65 mile easterly of Highway 71 (neesured along Catt Road) and 200 feet south of Catt Road; at windmill. Reference point top of casing 2.0 feet above ground surface. 12/2/48, 22.7; 5/16/52, 24.1; 2/24/53, 25.9; 5/6/53, 25.8.
- 75/4W-1E1 Konneth Freeman Near Wildomar; 0.42 mile northweet of Santa Rosa Street (measured along Highway 71) and 0.11 mile southwest of Highway 71; at windmill frame. Reference point top of pipe clamp at ground surface, at elevation 1,203.22 feet. 2/11/53, 9.2; 4/30/53, 9.5; 4/21/54, 9.9.
- 75/4W-1E2 Kenneth Freeman Near Wildomar; 150 feet northwest of well 1El. Reference point ground surface. 8/31/51, 14.5 (log).
- 75/4W-lH1 E. W. Bennett Near Wildomar; 0.61 mile northeast of Highway 71 (measured along Oak Springs Ranch road) and 100 feet northwest of Oak Springs Ranch road. Reference point top of casing 1 foot above ground surface, at elevation 1,270 feet. 9/2/52, 11.8; 2/11/53, 12.9; 5/6/53, 13.9; 7/7/53, 15.9; 11/17/53, 20.1; 4/21/54, 20.1.
- 75/4W-1L2 = C. F. Smith Near Wildowar; 0.03 mile southwest and 150 feet northwest of intersection of Sunka Rose Street and Highway 71; at windmill 25 feet south of well 1L1. Reference point top of casing 0.25 foot above ground surface, at elevation 1,203.15 feet. 4/30/53, 17; 11/17/53, 21.6; 3/30/54, 16.8.
- 75/4W-JM1 R. J. Brown Near Wildomar; 0.33 mile northwest of Santa Rosa Street (measured along Clay Avenue) and 200 fest southwest of Clay Avenue. Reference point top of wood cover 0.63 foot above ground surface, at elevation 1,195.00 feet. 2/11/53, 0.9.
- 75/4W-1N1 Bert Taylor Near Wildower; 0.06 mile north and 10? feet east of intersection of Santa Rosa Street and Grand Avenue. Reference point top of casing 1.35 feet above ground surface, at elevation 1,999.91 feet. 1/28/51, 20 (log); 11/17/53, 15.6; 4/21/54, 15.2.
- 75/4W-1P1 R. J. Brown Near Wildomar; 500 feat southwest and 300 feat southeast of intersection of Santa Rosa Strest and Highway 71; at windmill. Reference print top of word cover, at elevation 1,187.4 feat. 12/2/48, 12,4; 5/15/52, 2,2; 2/24/53, 1.8; 3/2/53, 3,7; 4/7/53, 3,7.
- 7S/4W-1F2 Near Wildomar; 75 feat northwest and 75 feet southwest of intersection of Santa Roza Street and Clay Avenue. Reference point top of casing 2-5 fest above ground surface. 4/30/53, 10.00
- 75/4W-1Ql Shaw Near Wildomar; 0.25 mile southeast of Sante Rosa Street (measured along Highway 71) and 0.06 mile southwest of Highway 71; northeast of house. Reference point top of concrete block 1.0 foot above ground surface, at elevation 1,211.11 feet. 5/1/53; 39.9; 11/18/53, 41.3; 4/21/54, 41.3.
- 75/4W-192 Shaw Near Wildomar; 0.25 mile scutheast of Santa Rosa Strest (measured along Highway 71) and 0.06 mile southwest of Highway 71; at windmill, 10 feet southeast of house. Reference point top of pipe clamp 1.05 feet above ground surface, at elevation 1.231.58 feet. 11/18/53, 55.9; 4/21/54, 55.6.
- 75/4W-1Q3 Near Wildomar; 85 feet southwest of well 1Q2; at windmill 75 feet southwest of house and top of hill. Reference point top of clamp 0.5 foot above ground surface, at elevation 1,226.6 feet. 11/18/53; 34.7.
- 75/4W-1Q4 Gurney Edgar Paule Near Wildomar; 300 feet northwest of well 1Q5; at windmill. Reference point top of wood block 1.0 foot above ground surface, at elevation 1,200,4 feet. 5/1/53, 37.5; 11/18/53, 34.9; 4/21/54, 34.8.
- 75/4W-1Q5 Hayworth Near Wildonar; 0.39 mile scuthesst of Santa Rosa Boad (measured along Highway 71) and 200 feet southwest of Highway 71; 75 feet southwest of house. Baference point top of concrete casing 0.67 foot above ground sur/ans, at elevation 1,195,48 feet. 5/1/53, 44.9; 11/18/53, 46.5; 4/21/54, 46.5.
- 75/4W-106 Near Wildomar; 0.35 mile southeast of Santa Roya Street (measured along Highway 71) and 200 feet northeast of Highway 71; 50 feet west of house. Reference point top of casing 1.7 feet above ground surface, at elevation 1,204.16 feet. 5/1/53, 18.3; 11/18/53, 20.6; 1/21/54, 20.1.

- 75/4W-2Fl R. J. Brown Near Wildomar; 0.06 mile northwest and 75 feet northwest of intersection of Grand Avenue and McVicar Street. Reference point top of casing, at elevation 1,221.67 feet. Note: Measurements from Vail Company records, except as indicated. 1921, 19 (log); 10/27/16, 18.7; 11/4/26, 18.7; 2/4/27, 17.8; 3/7/27, 13.5; 2/10/53, 14.6 (DWR).
- 75/4W-2G1 R. J. Brown Near Wildomar; 200 feet southeast and 60 feet southwest of intersection of Clay Avenue and MoVicar Street. Reference point lower lip of pipe at ground surface, at elevation 1,208.08 feet. 5/5/51, 8.5; 2/16/53, 7.6.
- 75/4W-2G2 R. J. Brown Near Wildomar; 50 feet northwest of well 2GL. Reference point (a) top of pump base, at elevation 1,208.08 feet (10/28/26 through 3/7/27); (b) hele in motor base, at elevation 1,208.95 feet (12/2/48 to present). Note: Measurements from Vail Company records except as indicated. 10/28/26, 9.1; 11/4/26, 7.2; 2/4/27, 5.3; 3/7/27, 1.6; 12/2/48, 5.2 (DWR); 2/10/53, 7.6 (DWR); 2/24/53, 7.2 (DWR).
- 7S/4W-3A3 Near Wildomer; 0.11 mile southwest and 250 feet southeast of intersection of Grand and Central Avenues. Reference point top of casing 2 feet above ground surface. 4/29/53, 53.1.
- 7S/4W-3Bl Near Wildomar; 0.22 mile southwest of Grand Avenue (measured along Central Avenue) and 25 feet southeast of Central Avenue. Reference point top of wood floor 1.0 foot above ground surface, at elevation 1,285 feet. 4/29/53, 55.0; 4/21/54, 56.9.
- 75/4W-11A1 Vail Company Near Wildomar; 0.15 mile southwest and 0.20 mile northwest of intersection of Grand Avenue and Santa Rosa Street; at windmill in open field. Reference point top of cover 1.5 feet above ground surface, at elevation 1,216.92 feet. 2/11/53, 15.0; 11/30/53, 16.3.
- 75/4W-12B1 Gurnsy Edgar Paule Near Wildomer; 0.35 mile southeast of Santa Rosa Street (measured along Clay Avenue) and 200 feet northeast of Clay Avenue. Reference point top of casing 0.82 foot above ground surface, at elevation 1,178.75 feet. 5/18/52, 10 (log); 3/2/53, 18.6; 5/1/53, 14.9.
- 75/4W-12Cl Shaw Near Wildomar; 0.24 mile southeast of Santa Rose Street (measured along Clay Avenue) and 50 feet northeast of Clay Avenue. Reference point top of horizontal angle iron 1.67 feet above ground surface, at elevation 1,284.41 feet. 5/1/53, 17.8.
- 75/4W-12D1 John Belk Near Wildomar; southeast of intersection of Grand Avenue and Santa Rosa Street; at windmill. Reference point (a) top of 2 x 4 column clamp (12/2/48 and 5/15/52); (b) top of easing (2/10/53); (c) top of wood support 1.7 feet above ground surface, at elevation 1,208.17 feet (8/5/53 to present). 12/2/48, 22.4; 5/15/52, 19.8; 2/10/53, 22.8; 8/5/53, 23.7; 10/5/53, 21.0; 1/7/54, 21.7; 2/3/54, 21.0; 4/2/54, 20.4.
- 75/4W-12G1 Near Murrista; 0.75 mile southeast of Santa Rose Strest (measured along Clay Avenue) and 0.15 mile southwest of Clay Avenue; at windmill on west bank of creek. Reference point top of casing 1.0 foot above ground surface, at elevation 1,165.31 feet. 4/22/54, 15.6.
- 7S/4W-12H2 Verna Freeman Near Murrieta; 1.18 mile northwest of Magnodia Street (measured along Highway 71) and 200 feet southwest of S-surve of Highway 71; at windmill, 250 feet northwest of house. Reference point top of wood cover 1.0 foct above ground surface, at elevation 1,166.44 feet. 3/6/53, 28.2; 4/7/53, 29.3; 5/4/53, 32.9; 4/2/54, 29.9; 4/21/54, 30.2.
- 75/4W-12J1 J. M. W. Thompson Near Mirrietz; 0.11 mile southeast of well 12G1 (measured along creek). Reference point (a) top of concrete easing, at elevation 1,159.18 feet (10/28/26 through 2/4/27); (b) top of concrete easing 4.5 feet above ground surface, at elevation 1,159.53 feet (2/27/53 to present). 10/28/26, 17.1 (Vail Co.); 11/4/26, 17.2 (Vail Co.); 2/4/27, 16.7 (Vail Co.); 2/27/53, 16.2; 3/2/53, 16.4; 4/7/53, 16.8; 4/30/53, 17.2; 7/7/53, 18.3; 8/5/53, 18.9; 9/1/53, 19.9; 11/18/53, dry; 2/3/54, 15.5; 4/2/54, 14.7; 4/22/54, 15.8.
- 7S/4W-12J2 J. M. W. Thompson Near Murrieta; 0.10 mile southeast of well 12G1 (measured along Creek) and 50 feet northwest of well 12J1. Reference point (a) top of concrete casing, at elevation 1,159.22 feet (10/27/26 through 2/4/27); (b) top of concrete casing 4.0 feet above ground surface, at elevation 1,159.70 feet (4/30/53 to present). Note: Measurements from Vail Company records, except as indicated. 10/27/26, 17.1; 11/4/26, 17.2; 2/4/27, 16.6; 4/30/53, 17.2 (DWR); 11/18/53, dry (DWR); 1/22/54, 15.7 (DWR).
- 75/4W-12R1 Willis A. Thompson Near Murriete; 0.67 mile northwest of Magnelia Street (measured along Highway 71) and 0.28 mile southwest of Highway 71; east bank of creek. Reference point top of casing 1.3 feet above ground surface, at elevation 1,144.64 feet. 2/3/53, 29.6; 3/2/53, 33.9; 9/2/53, 44.2; 11/18/53, 42.5; 4/22/54, 33.0.

- 85/2W-7Al Vail Company Near Temeoule; 2.0 miles east of Highway 395 (measured along Long Valley Road); at windmill 0.7 mile south of Long Valley Road near San Diego Aqueduat. Reference point (a) not reported, at elevation 1,143.78 feet (5/14/26 through 10/3/27); (b) top of pipe clamps 1.0 foot above ground surface, at elevation 1,144 feet (3/9/53); (c) top of easing, 0.8 foot above ground surface, at elevation 1,144 feet (5/19/53). Note: Measurements from Vail Company records, except as indicated. 5/14/26, 64.2; 7/5/26, 63.4; 8/11/26, 63.1; 9/8/26, 62.9; 10/26/26, 63.0; 11/3/26, 63.5; 1/11/27, 63.4; 3/6/27, 64.6; 4/4/27, 63.8; 5/1/27, 63.9; 6/4/27, 63.6; 7/2/27, 63.4; 8/4/27, 63.3; 9/3/27, 63.4; 10/3/27, 63.5; 3/9/53, 93.9 (DWR); 5/19/53, 80.4 (DWR).
- 8S/3W-1P1 Vail Company Near Temesula; 0.2 mile north of Long Valley Road (measured along dirt road) from intersection 0.3 mile northeast of Highway 395 (measured along Long Valley Road); at windmill 420 feet north of house. Reference point top of cover 0.6 foot above ground surface, at elevation 1,058.6 feet. 5/19/53, 8.6; 11/12/53, 20.3; 4/21/54, 19.2.
- 88/3W-1P2 Vail Company Near Temecula; 0.2 mile northwest of Long Valley Road (measured along dirt road) from intersection 0.7 mile easterly of Highway 395 (measured along Long Valley Road). Reference point top of easing 2.71 feet above ground surface, at elevation 1,069.07 feet. 4/21/54, 13.0.
- 8S/3W-1P3 Vail Company Near Temesula; map location only; see location of wells plate. Reference point Not reported, at elevation 1,091.50 feet. Note: Measurements from Vail Company records, except as indicated. 3/17/27, 45 (log); 3/21/27, 38.5; 4/1/27, 38; 4/30/27, 37.4.
- 8S/3W-101 Vail Company Near Temecula; map location only; see location of wells plate. Reference point top of casing, at elevation 1,069.26 feet. Note: Measurements from Vail Company records. 8/11/26, flowing; 10/26/26, flowing; 11/2/26, flowing; 1/13/27, flowing; 4/30/27, flowing; 7/18/27, flowing; 7/29/27, flowing; 8/8/27. flowing: 9/9/27. flowing: 9/17/27, flowing:
- 85/3W-11R3 William Freideman In Tenesula; 100 feet southwest and 200 feet northwest of intersection of Pujol and Sixth Streets; at windmill. Reference point clamp, at elevation 1,012.50 feet. Note: Measurements from Vail Company records. 12/1/25, 24.3; 7/5/26, 24.2; 8/18/26, 24.5; 9/8/26, 24.6; 10/27/26, 24.5; 11/2/26, 24.5; 1/13/27, 24.3; 3/7/27, 23.2; 7/29/27, 24.2.
- 8S/3W-12C1 Vail Company Near Temesula; 0.44 mile easterly of Highway 395 (measured along Long Valley Road) and 30 feet north of Long Valley Road. Reference point (a) top of casing (6/13/25 through 1/29/27); (b) hole in pump base (5/19/53 to present). Note: Measurements from Vail Company records, except as indicated. 6/13/25, flowing; 11/10/25, 4.1; 8/11/26, flowing; 9/8/26, flowing; 10/26/26, flowing; 1/11/27, flowing; 7/29/27, flowing; 1925, 14 (log); 5/19/53, 15.1 (DWR); 11/12/53, 18.2 (DWR); 4/21/54, 14.8 (DWR).
- 85/3W-12C2 Vail Company Near Temecula; map location only, see well location plate. Reference point Not reported, at elevation 1,064.70 feet. Note: Measurements from Vail Company records. 6/13/25, flowing: 10/26/26, flowing.
- 88/3W-12M1 Temegula School In Temegula; at school house. Reference point pump base 1.5 feet above ground surface, at elevation 1,028.45 feet. 8/24/27, 37.7; 5/6/53, 46.0; 4/20/54, 46.4.
- 85/3W-12M6 Joe Escallier In Temesula; at west corner of intersection of Mercedes and Fifth Streets.

 Reference point top of wood cover 1.2 feet above ground surface, at elevation 1,010.33 feet. 5/6/53, 23.6; 7/9/53, 23.9; 8/10/53, 24.0; 9/16/53, 25.2; 10/22/53, 23.7; 11/9/53, 23.7; 12/4/53, 23.6.
- 8S/3N-12N2 M. Machado In Temecula; 150 feet scuthwest and 150 feet northwest of intersection of Main and Pujol Streets. Reference point top of casing, at elevation 1,004.90 feet. Note: Measurements from Vail Company records. 12/1/25, 18.2; 5/14/26, 18.0; 7/5/26, 18.3; 8/11/26, 18.6; 9/8/26, 18.8; 10/27/26, 18.5; 11/2/26, 18.4; 1/13/27, 18.1; 3/7/27, 18.2; 7/29/27, 18.6.
- 8S/3W-12N5 Howard Taylor In Temesule; 0.11 mile northwest and 200 feet northeast of intersection of Pujel and Main Streets. Reference point top of casing 1.1 feet above ground surface, at elevation 1,007.38 feet. 5/6/53, 20.3; 7/9/53, 19.9; 8/6/53, 19.8; 9/8/53, 19.9; 11/12/53, 19.8; 2/8/54, 19.3; 3/30/54, 18.7.
- 8S/3W-12N10 Forest L. White In Temperala; 280 feet southeast and 150 feet southwest of intersection of Pujel and Sixth Streets. Reference point top of casing 0.7 feet above ground surface, at elevation 1,017.71 feet. 5/6/53, 31.2; 11/12/53, 32.0; 4/20/54, 30.7.
- 8S/3W-12N13 H. Leatham In Temeoulle; 60 feet southwest and 15 feet northwest of intersection of Main and Front Street. Reference point not described 1 feet above ground surface. 8/31/53, 15 (owner).

(Depths to water in feet measured from reference point)

- 8S/3W-12Pl Pete Escallier In Temsoula; 130 feet southeast and 200 feet southwest of intersection of Highway 395 and Main Street; in shed. Reference point top of casing 0.6 foot above ground surface, at elevation 1,030.18 feet. 5/13/53, 45.7; 11/12/53, 45.4; 4/21/54, 44.9.
- 8S/3W-12P7 Alex Borel In Temegula; 120 feet southeast and 60 feet southwest of intersection of Front and Third Streets; southwest of building. Reference point top of wood cover 0.8 foot above ground surface, at elevation 1,002.40 feet. 5/6/53, 16.9; 11/10/53, 16.8; 4/20/54, 16.5.
- 8S/3W-12P8 H. Leatham In Temecula; south corner of intersection of Main and Front Street; in shed. Reference point top of casing, at elevation 1,002.85 feet. 5/6/53, 17.8; 7/9/53, 18.0; 8/10/53, 18.2; 9/16/53, 17.9; 10/22/53, 17.5; 11/9/55, 17.6; 12/24/53, 17.2.
- 8S/3W-12P9 Paul Flures In Temecula; 100 feet east and 100 feet northwest of intersection of Highway 395 and First Street; at windmill. Reference point top of casing 0.6 foot above ground surface, at elevation 1,035.21 feet. 5/13/53, 47.2; 11/12/53, 47.4; 4/20/54, 47.3.
- 8S/3W-12Q1 Near Temecula; 0.27 mile northeasterly of Highway 395 (measured along C Street) and 160 feet northwest of C Street; in demetery. Reference point pump base, at elevation 1,070.89 feet. 11/13/53. 78.5; 4/20/54. 79.4.
- 8S/3W-12Q2 H. Midgly Near Temegula; 190 feet northeast of well 12Q1; at northeast corner of cometery. Reference point top of casing, at elevation 1,067.03 feet. 11/13/53, 74.3; 4/20/54, 75.4.
- 8S/3W-13B1 Near Temegula; 200 feet northwest and 150 feet northeast of intersection of Highway 395 and C Street; at windmill. Reference point top of wood cover 0.5 foot above ground surface, at elevation 1,010.0 feet. 5/13/53, 26.2; 11/13/53, 26.4.
- 8S/3W-13C1 Lena Munoa In Temecula; 200 feet southwast and 100 feet southwest of intersection of Front and First Streets; at windmill 30 feet southwest of house. Reference point top of casing 0.7 foot above ground surface, at elevation 999.85 feet. 5/6/53, 16.5; 11/10/53, 15.4; 4/20/54, 15.2.
- 8S/3W-13D1 Fred Ramirer In Temesula; C.18 mile southeast and 150 fest southwest of intersection of Pujol and Main Streets; at windmill. Reference point top of casing 0.35 foot above ground surface, at elevation 1,015.73 feet. 5/6/53, 35.1; 11/12/53, 32.3; 4/21/54, 31.7.
- 8S/3W-13D2 Doming Almaraz In Temesula; 100 feet southwast of well 13D1; at windmill 0.20 mile southeast of Main Street and 150 feet southwest of Pujsl Street at windmill. Reference point top of easing 1.0 foot above ground surface, at elevation 1,018.09 feet. 5/6/53, 38.5; 11/12/53, 35.3.
- 85/3W-13F2 Joe Freeman Near Temocula; 0.45 mile southeast of Main Street (measured along Pujol Street) and 140 feet northeast of Pujol Street; at windmill. Reference point top of casing at ground surface, at elevation 1,013.05 feet. 5/13/53, 31.3; 4/20/54, 30.9.
- 8S/3W-13K1 Dick Evens Near Temenols; 0.82 mile southeast of Main Street (measured along Front Street) and .07 mile south of Front Street; 15 feet south of house. Reference point top of casing 0.6 foot above ground surface, at elevation 993.15 feet. 5/6/53, 14.4; 7/9/53, 14.4; 8/6/53, 15.6; 9/8/53, 15.5; 11/10/53, 14.6; 1/7/54, 14.4; 2/8/54, 14.2; 3/30/54, 13.8.
- 88/3W-13R1 Vail Company Near Texacula; map location only; see location of wells plate. Reference point top of pipe, at elevation 1,014.92 feet. 12/30/26, 36.6; 1/2/27, 36.6; 2/5/27, 36.7; 3/8/27, 36.8; 4/4/27, 37.1.

(a)	20
	-
	-r -f
	-r - J
	4
· · · · · · · · · · · · · · · · · · ·	

(Depths to water in feet measured from reference point)

- 6S/1E-25J1 Walter Hogarth In Raed Valley; 0.2 miles northeast of Red Mountain Lookout Road (measured along dirt road) from intersection 1.3 miles north of Reed Valley Road (measured along Red Mountain Lookout Road) and 9.1 miles north of Wileon Valley Road (measured along Reed Valley and Lookout Mountain Roads); equipped with small gasoline engine, 75 feet west of foreman's house. Reference point top of conseste casing 3.4 feet above ground surface. 9/18/53, 15.4; 11/19/53, 12.9; 5/5/54, 8.2.
- 6S/1E-25R1 Walter Hogarth In Reed Valley; 0.1 mile northeast of Red Mountain Look out Road (measured along dirt road) from intersection 1.3 miles north of Reed Valley Road (measured along Red Mountain Look out Road) and 9.1 miles north of Wilson Valley Road (measured along Reed Valley and Red Mountain Look out Roads); open casing 100 feet southeast of dirt road. Reference point top of casing 2 feet above ground surface. 5/5/54, 9.7.
- 65/1E-25R2 Walter Hogarth In Read Valley; open easing 100 fest southeast of well 25Rl. Reference point top of easing 1 feet above ground surface. 5/5/54, 14.2.
- 6S/1E-36Al Walter Hogarth In Reed Valley; 1.15 miles north of Reed Valley Road (measured along Red Mountain Lookout Road) from intersection 7.8 miles north of Wilson Valley Road (measured along Reed Valley Road); open easing 50 feet east of Red Mountain Lookout Read. Reference point top of easing 0.8 foot above ground surface. 5/5/54, 22.6.
- 6S/1E-36K1 Ivan McKinley In Reed Valley; 0.5 mile north of keed Valley Road (measured along Red Mountain Lockout Road) from intersection 7.8 miles north of Wilson Valley Road (measured along Reed Valley Road); test hole 400 feet west of Red Mountain Lockout Road. Reference point ground surface. 9/16/53, 6.
- 7S/1E-Hil Ivan McKinley In Reed Valley; 7.3 miles north of Wilson Valley Road (measured along Reed Valley Road); 0.4 miles north of house and 300 feet west of Reed Valley Road. Reference point top of easing 1 foot above ground surface. 11/19/53, 20.1.
- 75/1E-131 Ivan McKinley In Read Valley; 7.1 miles north of Wilson Valley Road (measured along Reed Valley Road); 0.2 mile north of fureman's house and 500 feet west of Reed Valley Road. Reference point top of easing 1.5 feet above ground surface. 11/19/53, 14.4; 5/5/54, 11.8.
- 7S/1E-9C1 Bader East of Sage; 2.6 miles northeast of Highway 79 (measured along dirt road) from intersection 2.2 miles southeast of Sage (measured along Highway 79); in open field 800 feet south of fork in dirt road; open easing. Reference point top of casing 0.4 foot above ground surface. 11/18/53, dry; 5/4/54, dry.
- 7S/1E-15D2 D. Ippolito In Lawis Valley; 2.7 miles northeast of Highway 79 (measured along dirt road) from intersection 2.9 miles southeast of Sage (measured along Highway 79); 250 feet northeast of Rancho Del Vallejo house. Reference point hole in casing 0.6 foot above ground surface, at elevation 2,571 feet. 11/17/53, 54.1.
- 7S/1E-15E1 D. Ippolito In Lewis Valley; 2.7 miles northeast of Highway 79 (measured along dirt road) from intersection 2.9 miles southeast of Segs (measured along Highway 79), 600 feet southeast of Rausho Del Valleje house in corrugated netal pump house. Reference point top of casing 0.5 fact above ground surface, at elevation 2,542 feet. 11/17/53, 113.4.
- 75/1E-15E3 D. Ippolite In Lewis Velley; Rancho Del Valleje; concrete casing 500 feet east of well 15 El. Reference point top of concrete casing 2.4 feet above ground surface, at elevation 2,547 feet. 11/17/53, 82.0.
- 75/1E-15E5 D. Ippolito In Lewis Valley: Rancho Del Valley: 1,200 feet east of house and 300 feet northeast of well 15E3; under small matal shalter. Reference point ground surface. 7/6/50, 95 (leg).
- 75/1E-16N1 D. Ippolite In Lewis Valley; Rancho Del Vallejo, 1.6 miles northeast of Highway 79 (measured along main dirt road and dirt road leading to old abandoned house) from intersection 2.9 mile southeast of Sage (measured along Highway 79); 150 feet south of house, 20 feet west of dirt road and 3 feet from fence around house; open conserve casing. Reference point top of 10 inch opening into well 2 feet above ground surface, at elevation 2,410 feet. 11/17/53, 32.9.
- 7S/IE-16N2 D. Ippolito In Lawis Valley; Renanc Dal Vallajo, 12 feet north of well 16N1; open casing. Reference point top of casing 2.2 feet above ground surface, at elevation 2,414 feet. 11/17/53, 32.2.
- 75/1E-1602 D. Ippolito In Lawis Valley, Rancho Del Vellejo, 2.0 miles northeast of Highway 79 (measured along dirt road, from intersection 3.6 miles southeast of Sage (measured along Highway 79), 500 feet east of dirt road; open easing. Reference point top of casing 0.6 foot above ground surface, at elevation 2,436 feet. 11/17/53, 75.2.

(Dapths to water in feet measured from reference point) (continued)

- /S/1E-15Q3 D. Ipp.lite In Lawis Valley: 1.8 miles northeast of Highway 79 (measured elong dirt road): from intersection 2.9 miles scutheast of Sags (measured along Highway 79): 50 fest east of road and 500 feet south of well 16Q1. Reference point ground surface, at elevation 2,380 fest. When drilled, 59 (1:g): 11/17/53, 55 (sweep).
- 75, imaging Charles Bader In Lawis Valley; 0.85 mile northeast of Highway 79 (measured along direction) from intersection 2.2 miles anotheast of Sage (measured along Highway 79); 150 feet east of remaindered. Reference point hile in pump base 1 foot above ground surface, at elevation 2,359 feet. 5/5.53, 15.0c 11/17/53, 12.3c 5/4/54, 12.4c
- 75/1E-1762 Charles Bader In Lewis Valley; 100 feet northwest of well 1761. Reference point top of earing 0.7 foot above ground surface, at elevation 2,359 feet. 11/17/53, 11.9; 5/4/54, 11
- 75/17 1871 Duncan Industries Near Sega; 2 miles southeast of Sage (measured along Highway 79); under month about 50 feet west of Highway 79. Reference point bottom of pump base at ground surface, at elevation 2,321 feet. 5/5/53, 7.0: 11/17/53 8.6: 5/5/53, 5.8.
- 75/1E 20P1 L. G. Robertwon In Lewis Valley; 0.25 mile sent of Highway 79 (measured along dirt mod) from intersection 3.4 miles southeast of Sage (measured along Highway 79); 150 fest southeast of dirt mod; open dasing. Reference point top of casing 2.6 fest above ground surface at elevation 2,143 feet. 10/28/52, 35.8; 5/5/53, 35.4; 5/5/54, dry.
- 75/12-2231 Knacht East of Lewis Valley; 2.05 miles northeest of Wilson Valley Road (measured along distrond) from intersection 2.0 miles east of Highway 79 (measured along Wilson Valley Road); at windmill behind house 0.25 mile west of dist road. Reference point top of plank cover 1 foot above ground surfaces. 9/22/53, 7.5; 11/19/53, 7.9; 5/5/54, 5.9.
- 75/5F-1981 Parks In Lawis Valley; 4 miles scuthoast of Segs (measured along Highway 79), at windmill 15 feet west of Highway 79 and 15 feet south of house. Reference point top of caring 2 feet above 15 feet surface of elevation 2.093 feet barometric level. 2/2/51, 13.0; 12/5/51, 16.0; 10/30/52, 17.2; 5/5/53, 16.5; 11/17/53, 18.8; 5/4/54, 17.5.
- 78/16-10H1 P. B. Greas In Lavis Valley; 1,100 feat southwast of Highway 79 (measured along dirt read) from intersection of stream and Highway 79, 3.9 miles acutheast of Sage (measured along Highway 73) at winimila tower 100 feat south of house. Reference point top of plank cover 1 foot above primal surface, at elevation 2,062 feat becometric level. 2/2/51, 10.8; 12/5/51, 14.7; 10/28/52, 15.4; 5/5/53. 15.7; 11/17/53, 13-8; 5/4/54, 12.5.
- 75/18 3600 A. J. and C. G. Bendler In Lewis Velley: 1,000 feet southwest of Highway 79 (measured along wint road) from intersection of stream and Highway 79, 3.9 miles southeast of Sage (measured along Highway 79); at windmill in open field. 400 feet northeast of house. Reference point lower edge of 1-inch angle brace on windmill tower 2 feet above ground surface, at elevation 2,063 feet barrowstrip level. 2/2/51, 3.8; 12/5/51, 5.2; 10/28/52, 5.3; 5/5/53, 4.9; 5/4/54, 5.9.
- 75/10-30.2 A. J. and C. G. Bendler In Lawis Valley: 2,000 foot couthwest of Highway 79 (measured along first read) from intersection of Highway 79 and stream 3.9 miles scutheash of Sage (measured along Highway 79); in cattle pen 125 feet west of house: equipped with a Dodge engine. Reference point top of plank covering at ground wurface, at elevation 2,046 feet barometric level. 2/2/51, 2.7; 10/5/51, 6.5; 10/28/52, 6.3; 5/5/53, 9.2; 11/17/53, 7.8; 5/4/54, 4.1.
- 75/18-3201 In Lewis Valleys 4.6 miles southeast of Sage (measured along Highway 79), 0.5 mile west of intersection of Wilson Valley Read and Highway 79 (measured along Highway 79); at windmill in open field 500 feet south of Highway 79. Reference point top of casing 1 foot above ground surface, at 2,182 feet. 5/5/53, 48-5; 11/47/53, 49-0; 5/4/54, 49-3.
- 75/xE-33P1 Tyler Near Radec; 0.6 mile east of Highway 79 (measured along dirt road); 4.15 miles north of Radec (measured along Highway 79); at windmill tower in open field. Reference point on toth in caring 1.3 feet above ground surface, at elevation 2,280 feet. 5/5/53, 40.8; 9/16/53, 41.3; 11/16/53, 42.2; 5/4/54, 48.8.
- 75/18-34ER Near Radeo; 1.6 miles west of Highway 79 (measured along Wilson Valley Road); 4.7 miles north of Radeo (measured along Highway 79); northwest of homes in fence corner. Reference point tup of plank covering I foot above ground surface. 9/16/53, 9.2; 11/19/53, 10.6; 5/5/54, 7.
- 75/18-191 Near Anzas 3.0 miles nor threst of Coaluia Road (measured along Riddle and Bautista Canyon Roads) from intermediate 1.5 miles whit of Anza (measured slong Coahulla Road); 0.7 mile north of engineer occurs of Section 1 (measured along Bautista Canyon Road) at windoil 150 feet northise:

 (I Bautista Canyon Road and 25 feet east if nows, outside watershid. Reference point the richard of 9 feet above ground surface. 5/21/53, 99-9.

(Depths to water in fact measured from reference point)

- 7S/2E-2E] W. I. Smith In Tripp Flat; 3.95 miles north of Coamula Road (measured along Cary Road) from intersection 3.5 miles west of Anza; 200 feet east of Cary Road at windmill 25 feet east of house and 10 feet north of garage, outside watershed. Reference point bolt note in flange, 0.8 foot above ground surface. 5/7/53, 39.5; 11/10/53, 44.7.
- 7S/2E-3G) = C. H. Tripp = In Tripp Flat; 4.5 miles north of Coahuila (measured along Cary Road); at windmill 100 feet northwest of house and 75 feet north of Cary Road, outside watershed. 5/7/53, 27 (owner).
- 75/2E-6N1 Ivan McKinley In Reed Valley; 6.9 miles north of Wilson Valley Read (measured along Reed Valley Road) from intersection 3.1 miles east of Highway 79 (measured along Wilson Valley Road); in brick pump house; 300 feet east of Reed Valley Road and 150 feet northwest of main residence. Reference point top of easing 2.2 feet above ground surface. 9/16/53, 16.8; 11/18/53, 17.1; 5/5/54, 13.7.
- 75/2E-6N2 Ivan MoKinley In Reed Valley; 6.9 miles north of Wileon Valley Road (measured along Reed Valley Road) from intersection 3.1 miles east of Highway 79 (measured along Wilson Valley Road); open casing in corrugated metal machine shop, 100 feet east of Ranch foreman's house. Reference point top of casing 2 feet above ground surface. 9/16/53, 24.4; 11/18/53, 27.7; 5/5/54, 20.8.
- 75/2E-1101 Frank Lane Near Coahuila; 3,25 miles north of Coahuila (measured along Cary Road); at windmill 135 feet northeast of Cary Road and 45 feet north of house. Reference point top of casing above ground surface. 11/21/51, dry; 11/10/53, 27.1.
- 75/2E-1102 Frank Lane Near Communitar open sasing 115 feet west and 25 feet south of well 1101.

 Reference point top of casing 0.5 foot above ground surface. 5/7/53, 23.1; 11/10/53, 23.8.
- 75/2E-11M1 E. Hayes Near Coahuila; 0.5 mile northwest of Cary Road (measured along dirt road) from intersection 2.45 miles north of Coshulla (measured along Cary Road); at windmill 100 feet northwest of house. Reference point top of casing 1.5 feet above ground surface. 5/7/53, 24.6.
- 75/2E-13D1 George Hepburn Near Coshulla; 1.7 miles north of Coshulla (measured along Cary Road); well equipped with engine draven pump, 200 feet south of house and 200 feet sast of Cary Road. Reference point top of easing 1.0 foot above ground surface, at elevation 3.773 feet. 11/29/51, 41.2; 11/21/52, 22.1; 5/7/53, 23.0; 11/9/53, 25.9; 5/10/54, 32.8.
- 75/2E-13D2 George Hepburn Near Coahuila; at windmill 200 feet northeast of well 13D1. Reference point top of casing 0.6 foot above ground surface, at elevation 3,766 feet. 12/6/50, 42.5; 11/21/51, 41.6; 5/7/53, 25.5; 11/9/53, 28.5.
- 75/2E-13D3 Holland Near Ccahuila; 1.8 miles north of Coahuila (measured along Cary Road); 500 feet north of house and 215 feet east of Cary Road. Reference point top of casing 2.5 ft above ground surface. 11/10/53, 44.8; 5/10/54, 40.7.
- 7S/2E-13N1 L. W. Holcomb Near Cochuila; 0.83 mile north of Coahuila (measured along Cary Road); at windmill 650 feet east of Cary Road and 135 feet west of house. Reference point top of casing 1 foot above ground surface, at elevation 3,701 Feet. 11/29/51, 51.1; 11/21/52, 41.1; 5/7/53, 40.1; 11/10/53, 43.3; 5/10/54, 43.8.
- 7S/2E-13R1 C. A. Buchanan Near Cochuila; 0.5 mile north of Cochuila Road (measured along Howard Road); at windmill 250 feet west of Howard Road and 40 feet west of house. Reference point top of casing 1.4 feet above ground surface, at elevation 3,850 feet. 11/10/53, 26.0.
- 75/2E-14H1 G. H. Olds In upper Coshuila Valley; 1.5 miles north of Coshuila Read (measured along Cary Road); at windmill 500 feet west of Cary Road and 100 feet southwest of house. Reference point top of casing 1 feet above ground surface. 5/7/53, 50 (owner); 5/10/54, 50 (owner).
- 7S/2E-14H2 G. H. Olds In upper Coahuila Valley: 700 feet southwest of well 14H1. Reference point top of casing 1 foot above ground surface, at elevation 3,750 feet. 11/10/53, 34.7: 5/10/54, 31.8.
- 7S/2E-22Al Head Near Coahuila; 1.7 miles north of Coahuila Road (measured along dirt road) from intersection 1.3 miles west of Coahuila (measured along Coahuila Road); at windmill near house. Reference point top of easing 1.5 foot above ground surface. 5/7/53, 25.0; 11/9/53, 33.5; 5/10/54, 29.4.

(Depths to water in feet measured from reference point) (continued)

- 75/2E-22K1 T. C. Pomeroy Near Coahuila; 0.8 mile north of Coahuila Road (measured along dirt road) from intersection 1.3 miles west of Coahuila (measured along Coahuila Road); at windmill 50 feet southwest of house. Reference point top of casing 1.5 feet above ground surface. 5/7/53, 13.4; 11/9/53, 15.6; 5/10/54, 13.2.
- 75/2E-23K1 Coahulla Indian Reservation Near Coahulla; 0.4 mile north of Coahulla Road (measure/along dirt road) from intersection opposite Coahulla School; at windmill 45 feet east and 35 feet north of house. Reference point top of casing 2.4 feet above ground surface, at elevation 3,639 feet barometric leval. 11/29/51, 29.4; 11/21/52, 23.9; 5/7/53, 21.6; 11/9/53, 22.3; 5/10/54, 22.2.
- 7S/7E-23M1 Castillo Near Coahuila; 0.3 mile west and 0.3 mile north of Coahuila; at windmill in pusture. Reference point top of casing 0.7 foot above ground surface, at elevation 3,600 feet. 5/7/53, 3.4; 11/9/53, 6.7; 5/10/54, 4.2.
- 75/2E-23Pl Combuila Indian Reservation Near Combuila; at windmill in pasture, 0.2 mile north of Combuila Road and 0.1 mile west of Combuila School. Reference point top of casing 3.2 feet above ground surface. 5/10/54, 125.
- 75/2E-24H1 = C. W. Ayors Near Coshuila; 0.1 mile north and 0.1 mile west from intersection 1.0 mile northwest of Cary Road (measured along Coshuila Road); 50 feet west of house. Reference point hole in pump base 1.3 feet above ground surface. 5/7/53, 66.1.
- 75/2E-26Bl Coabuila Indian Reservation Near Coabuila; 200 feet southeast of Coabuila School.
 Reference point ground surface. 8/29/40, 12 (log).
- 75/25-29th Bradley In lower Coahuila Vallay: 1.5 miles northwest of Coahuila Road (measured along direction) from intersection 2.3 miles southwest of Coahuila (measured along Coahuila Road); open on the intersection 2.3 miles southwest of Coahuila (measured along Coahuila Road); open on the intersection 160 feet south of Parks tombstone. Reference point top of casing 2.7 feet above ground surface, at elevation 3,424 feet barometric level. 12/7/50, 21.0; 12/4/51, 19.9; 11/21/52, 20.2; 5/6/53, 18.7; 11/9/53, 20.9; 5/10/54, 19.7.
- 75/2E-29N1 In lover Coahulla Valley; 1.25 miles northeast of Coahulla Road (measured along dirt road) from intersection 2.3 miles southwest of Coahulla (measured along Coahulla Road); 0.2 mile at windmill near water tank south of dirt road. Reference point top of casing 2.9 feet above ground surface, at elevation 3,420 feet. 5/6/53, 14.9; 11/9/53, 17.6; 5/10/54, 16.0.
- 75/2F-32Al Parks In lower Coabuila Valley; 0.6 mile north of Coabuila Road (measured along east line of section 32) from intersection 3.3 miles scuthwest of Coabuila (measured along Coabuila Road); open easing in field 0.5 mile north of reach house and 50 feet west of fence line (east line of Section 32). Reference point top of easing 1 foot above ground surface, at elevation 3,420 feet. 12/4/53, 20.7; 5/10/54, 23.8.
- 75/2E-32F1 Botty B. Marcell In lower Coahuila Valley; 1.3 miles north of Coahuila Road (measured along dirt read) from intersection 4.3 miles southwest of Coahuila (measured along Coahuila Road); in fenced enclosure in pasture 250 fest east of house; artesian well equipped with gasoline engine. Reference point ground surface, at elevation 3,400 feet. Measurement of 12/2/53 represents pressure head in feet above reference point. 11/9/53, flowing: 12/2/53, -1.5; 5/10/54, flowing.
- 75/2E-3281 Parks In lower Coahuila Valley; 0.1 mile north of Coahuila Road from intersection 3.3 miles scuthwest of Coahuila (measured along Coahuila Road); an artesian well at windmill 10 feet eart and 25 feet north of ranch house. Reference point top of casing 2.3 feet above ground surface, at elevation 3,430 feet. 11/9/53, flowing; 12/2/53, flowing; 5/10/54, flowing.
- 75/7E-3232 Packe In lower Combuila Valley; 0.2 mile northwest of Combuila Road from intersection 3.3 miles accepted to Combuila (measured slong Combuila Road); at windmill 750 feet west of house and 10 feet north of weter tenk. Reference point top of casing 2.7 feet above ground surface. 5/6/53, 6.4; 5/10/54, 6.6.
- \$\frac{12-3507}{2E-3507}\$ Combutta Indian Reservation In lower C abulta Valley; 0.25 miles northwest of Coabulta Road (measured along dire road) from intersaction 2.3 miles southwest of Coabulta (measured along Coabulta Road); at winduit1 500 feet vest of dire road and 200 feet south of channel of Coabulta Creek.

 Reference prime top of sover below pipe clamps 1 foot above ground surface, at elevation 3,438 feet becometric level. 7/11/40, 22 (lng); 12/7/50, 40.9; 4/...7/54. 42.9; 12/4/51, 43.2; 11/21/52, 34.5; 5/6/53, 34.7; 11/2/53, 37.7; 5/10/54, 35.5.

(Depths to water in feat measured from reference point) (continued)

- 78/3E-431 = 3. E. Sertier = Near Arres 1.5 miles north of Mitchell Road (measured along dirt road) from intersection 0.1 mile east of Mill Road (measured along Mitchell Road); 500 feet north of house and 50 feet north of clump of cak trees; equipped with jack pump powered by gasoline engine. Reference point = top of planking over wasing 1.5 feet above ground surface; 11/12/53, 22.3; 4/22/54, 21.7.
- 7S/3E-6EI Near Anna; 3.6 miles northwest of Ceahuila Road (measured along Riddle and Bautista Canyon Roads); 275 feet east and 125 feet north of west quarter corner of section 6; at windmill 130 feet northeast of house. Reference point top of casing 1.1 feet above ground surface. 11/10/53, 119.2; 5/7/54, 122.3.
- 78/3E-7R1 A. T. Thompson Near Anna; 200 feet northwest of intersection of Ridile and Mitchell Roads; at windmill 10 feet south of tank and 40 feet east of house. Reference point top of casing 1 foot above ground surface, at elevation 4.086 feet (barometric level). 11/30/50, 185; 7/9/51, 170; 11/15/51, 178; 5/21/53, 176.4; 11/12/53, 171.4; 5/7/54, 173.0; 9/2/54, 180.3; 9/5/54, 171.3; 10/13/54, 194.2; 10/19/54, 172.
- 7S/3E-8E1 Marjorie and Edward F. Roalfe Near Aman; at winduill 0.6 mile north and 200 feet east of intersection of Riddle and Mitchell Roads. Reference point top of casing 2.0 feet above ground surface, at elevation 4,193 feet (baronsyris level). 11/15/51, 107.2; 11/10/53, 110.3; 5/7/54, 123.4.
- 7S/3E-801 C. Hornback Near Anna; C.5 mile west and 400 feet north of intersection of Mitchell and Barham Reads; at windmill 100 feet north of house. Reference point (a) top of casing 1.9 feet above ground surface, at elevation 4,096.68; (b) top of 2 x 4 inch board at center pipe 2.1 feet above ground surface, at elevation 4,096.69; (11/10/52 and 5/21/53). 8/16, 57. (U.S.G.S., W.S.P. 429); 11/30/50, 58.8; 11/21/51, 70.1; 11/10/52, 59.8; 5/21/53, 59.5; 11/12/53, 59.0; 5/7/54, 59.0.
- 7S/3E=9Pl Dickson Bros. Near Anza; at windmill 0.7 mile west and 0.4 mile northeast of intersection of Hill and Mitchell Reeds. Reference point top of cesting 2 feet above ground surface. 1952, 80 (log).
- 7S/3E-10L1 George M. Schmoll Near Anga; at windmill 600 feet northeast of well 10M1. Reference point top of easing 2.5 feet above ground surface, at elevation 4,213 feet (barometric level). 11/15/51, 217.00.
- 7S/3E-10M1 Near Amza; 0.4 mile north and 0.25 mile east of intersection of Hill and Mitchell Roads; at windmill 75 feet west and 60 feet north of house. Reference point slot under easing cover 0.9 feet above ground surface, at elevation 4,211 feet (barometric level). 11/15/51; 221.9; 11/10/52, 243.8; 5/22/53, 240.6; 11/12/53, 225.3; 4/21/54, 226.4.
- 7S/3E-11Q1 = J. D. Sherman Near daza; 0.9 mile east of intersection of Kirby and Mitchell Roads; at mouth of small canvon, 1C feet north of fence line (south line of section 11) and 110 feet east of fire road; open casing. Reference point top of casing 2 feet above ground surface. 12/1/50, 12.7; 11/10/52, 14.0; 5/22/53. 11.7; 11/12/53, 12.4; 4/21/54, 11.6.
- 7S/3E-13D1 Elmer E. Everett Near Amza; 1.0 mile northeast of Ccahuila Road (measured along dirt road) from intersection 2 miles east of Amza (measured along Coahuila Road); 200 fest southeast of house and 20 feet west of well 13D2. Reference point top of easing, 1.4 feet above ground surface. 11/13/53, 9.2; 4/20/54, 11.6
- 78/3E-13D2 Elmer E. Everett Near Anza; at windmill 20 feet east of well 15D1. Reference point top of plank cower, 1:1 feet above ground surface. 11/13/53, 7.2; 4/20/54, 10:3.
- 78/3E-13D3 = Elmer E, Everett = Near Amas, 50 Jest east of well 13D1: Reference point top of casing 0.9 foot above ground surface. 11/13/53, 7.5.
- 78/3E-1401 J. D. Sherman Near Amza; at windwill 0.5 mile east and 500 feet south of intersection of Kirby and Mitchell Roads. Reference point top of sasing 1 foot above ground surface, at elevation 4,088 feet (barometric level 12/1/50, 106.9; 11/15/51, 106.5; 11/10/52, 108.5; 5/22/53, 111.6; 11/12/53, 109.2; 4/21/54, 111.6
- 78/3E-14P1 Lappos = Near Arra; 1.95 miles east of Arra (measured along Coamula Road), at windmill 400 feet northwest of Coamula Road; open easing. Reference point top of easing, 3.3 feet above ground surface, at elevation 1,019.15 feet. 5/27/53, 53.3; 11/13/53, 53.2; 4/20/54, 53.5.

(Depths to water in fact measured from reference point) (continued)

- 75/3E-1511 Near Anza; at windmill C.3 mile north and O.19 mile west of intersection of Kirby and Commila Roads. Reference point top of plank at pump base 0.6 foot above ground surface, at elevation 3,974.25 fest. 11/10/52, 20.6; 5/22/53, 21.9; 11/13/53, 21.1; 4/21/54, 21.0.
- 78/3E-15N1 Bob Holoomb Near Anza; 0.6 mile east of Anza (measured along Coahuila Road); at windmill 300 feet east of house and 130 feet north of Crahuila Road. Reference point top of easing, 0.7 foot above ground surface, at elevation 3,927.21 feet. 5/22/53, 37.3; 11/24/53, 18.3; 4/21/54, 16.4.
- 75/3E-15N2 Bob Holcomb Near Anga; 125 fost northeast of well 15N1. Reference point top of casing at ground surface. 11/24/53, 15.3; 4/21/54, 12.3.
- 75/3E-15P1 John Bohlen Near Anza; 1.1 mile cost of Anza (measured along Coahuila Road); at windmill 200 feet north of Coahuila Road and 75 feet northeast of house. Reference point top of casing 7.0 feet above ground surface, at elevation 3,542.86 feet. 11/24/53, 4.2.
- 75/3E=1501 John Bohlen Near Anza; at windmill 300 feet west of well 15Pl. Reference point top of casing 2.6 feet above ground surface, at elevation 3,942.33 feet. 11/24/53, 4.9.
- 75/3E-1523 John Bohlen Near Anza; 600 feet northeast of well 1591. Reference point top of casing 1.2 feet above ground surface, at elevation 3,949.28 feet. 5/22/53, 8.9; 11/24/53, 6.6; 4/21/54, 6.6.
- 75/3E-16K2 Liohwald Near Anna; 0.5 wile north and 0.5 mile east of intersection of Coahuila and Barham Roads; at windmill 250 feet east of well 16K1. Reference point top of easing 1.3 feet above ground surface, at elevation 3,977.66 feet. 1942, 31(log); 5/21/53, 38.0; 11/25/53, 49.4; 4/21/54, 47.3.
- 7S/3E-16N1 = E. G. Register Near Anza; 400 feet east and 400 feet north of intersection of Coahuila and Barham Roads. Reference point = (a) top of casing 0.9 foot above ground surface, at elevation 3,945.17 feet (12/1/50 and 11/29/51); (b) hole in side of casing at ground surface, at elevation 3,944.3 feet. 12/1/50, 88.9; 11/29/51, 94.3; 11/11/52, 90.5; 5/8/53, 90.1; 11/25/53, 89.5; 4/21/54, 96.9.
- 75/3E-16P1 H. A. Bergman In Anga; at windmill 200 feet north and 170 feet west of intersection of Coahuila and Contreras Roads. Reference point top of iron occur 1.2 feet above ground surface, at elevation 3,926.56 feet. 11/7/40, 69; 12/1/50, 70.6; 1/30/51, 75.1; 3/8/51, 71.5; 4/5/51, 82.9; 5/8/51, 74.5; 6/13/51, 72.5; 7/5/51, 86.2; 8/7/51, 84.4; 9/6/51, 83.9; 10/3/51, 80.6; 11/7/51, 79.4; 1/3/52, 74.0; 1/14/52, 77.4; 11/11/52, 87.8; 5/8/53, 84.5; 11/24/53, 89.8; 4/21/54, 89.2.
- 75/3E-16P2 Robert L. Register Near Arra; 0.12 mile west and 200 feet north of intersection of Contreras and Coahuila Roads; 50 feet north of house. Reference point top of 4 x 4 inch block support 2.5 feet above ground surface, at elevation 3.934.77 feet. 11/25/53, 85.8; 4/21/54, 88.04.
- 75/3E-1781 Near Anza; 0.35 mile west and 165 feet south of intersection of Berham and Mitchell Roads; at windmill 65 feet south of house. Reference point surface of concrete slab 0.7 foot above ground surface, at elevation 4,083.99 feet. 8/16, 84 (U.S.G.S., W.S.P. 429); 11/30/50, 76.5; 1/30/51, 74.5; 3/8/51, 76.3; 4/5/51, 76.3; 5/8/51, 76.3; 6/13/51, 76.4; 7/9/51, 79.9; 8/7/51, 83.0; 9/6/51, 81.8; 11/7/51, 81.3; 1/3/52, 78.0; 2/5/52, 76.1; 3/4/52, 76.3; 4/4/52, 76.1; 5/13/52, 77.7; 6/10/52, 76.3; 7/8/52, 77.0; 7/30/52, 77.9; 8/25/52, 76.5; 1/16/53, 75.9, 2/27/53, 76.0; 3/27/53, 75.7; 5/21/53, 76.4; 7/3/53, 76.1; 11/12/53, 86.8; 1/6/54, 84.9; 2/4/54, 76.0; 4/1/54, 76.8; 5/7/54, 84.0.
- 75/3E-1701 Lincoln Barhem Near Anxa; 0.63 mile west and 0.11 mile south of intersection of Mitchell and Barham Reads; 60 feet south and 70 feet east of house; at windmill 10 feet east of elevated tank. Reference point top of easing 1.5 feet above ground surface, at elevation 4.064.17 feet. 11/30/50, 82.0; 11/21/51, 85.5; 11/10/52, 82.6; 11/12/53, 82.1; 5/7/54, 62.2; 9/2/54, 83.2; 9/5/54, 82.4; 10/19/54, 83.3.
- 75/3E-1731 G. Lee Ison Near Anza; C.4 mile north and 90 feet west of intersection of Barham and Coahmile Roads; open casing. Reference point top of casing 1.5 feet above ground surface, at elevation 3,989.56. 3/53, 105(10g); 5/8/53, 109.2; 11/25/53, 119.5; 4/21/54, 109.9; 4/30/54, 110.0.
- 75/3E-17Rl = G. Lee Ison = Near Anza; at windmill 0.10 mile north and 325 feet west of intersection of Barham and Coahuila Roads. Reference point = top of casing 3.0 feet above ground surface, at elewation 3.961.71. 6/16. 100 (U.S.G.S., W.S. P. 120); 11/30/50. 90.5; 1/30/51. 90.8; 3/8/51, 90.8; 4/5/51, 91.0; 5/8/51. 91.0; 6/13/51. 91.2, 7/3/51. 91.4; 8/7/51. 92.0; 9/5/51. 91.5; 10/3/51. 92.0; 11/7/51, 91.6; 1/3/52, 86.0; 11/11/52. 97.3; 5/8/53, 94.6; 11/25/53, 92.7; 4/21/54, 97.4; 9/2/54, 93.3; 9/5/54, 93.4; 9/28/54, 93.4; 10/19/54, 93.5.
- 75/3E-18A1 Lydia King Near Anza; 0.25 mile south and 110 feet west of intersection of Mitchell and Riddle Roads; 75 feet east and 35 feet north of house; well equipped with jack pump. Reference point (a) Top of casing 0.5 foot above ground surface, at elevation 4.053 feet (barometric level) (11/12/53 through 9/3/54); (b) recorder house floor 0.9 foot above ground surface, at elevation 4.053 feet (barometric level) (9/5/54 through 10/19/54). 11/12/53, 137.1; 4/29/54, 137.4; 9/2/54, 141.7; 9/3/54, 137.9; 9/5/54, 138.4; 9/7/54, 138.4; 9/14/54, 138.4; 9/21/54, 138.5; 9/28/54, 138.6; 10/5/54, 138.7; 10/13/54, 138.8; 10/19/54, 129.0.

(Dapths to water in feet measured from reference point)

- 75/3E-18N1 Florence Stemebreaker Near Arra; 0.5 mile north and 350 feet east of intersection of Howard and Coahuila Roads; at windmill 150 feet southeast of house. Reference point top of easing 0.8 foot above ground surface. 5/7/53, 29.6; 11/10/53, 39.6; 5/7/54, 41.6.
- 78/3E-20A1 H. A. Purschs Near Ange; at winduill 30 feet south and 115 feet west of intersection of Couldula and Burham Roads. Reference point top of easing at ground surface, at elevation 3,937.70 feet. 11/11/52, 69.5; 9/2/54, 125.7; 9/5/54, 103.3; 10/19/54, 118.3.
- 7S/3E-20B1 H. A. Pursone Near Anna; at windmill 0.4 mile west and 850 feet south of intersection of Barham and Coahuila Roads. Reference point top of casing 0.4 foot above ground surface, at elevation 3,918.05 feet. 8/16, 60(U.S.G.S., W.S.P. 429); 11/30/50, 45.6; 11/21/51, 46.7; 11/11/52, 57.4; 5/8/53, 52.5; 11/23/53, 58.5; 4/22/54, 56.9; 9/2/54, 46.0; 9/5/54, 41.5; 10/19/54, 14.5.
- 7S/3E-20B2 H. A. Pursehe Near Anza; 100 feet east of well 20Bl. Reference point top of concrete slab 0.1 fost above ground surface, at elevation 3,928.23 feet. 11/11/52, 40.1.
- 7S/3E-20C1 H. A. Pursche Near Anga; 0.7 mile west and 0.15 mile south at intersection of Barham and Coahuila Roade at windmill near reservoir. Reference point top of pipe section welded to steel plates 0.5 foot above ground surface, at elevation 3,904.78. 5/8/53, 80; 4/22/54, 88.7; 9/3/54, 88.5; 9/5/54, 70.0:
- 75/3E-2002 H. A. Pursche Near Anza; 0.55 mile west and 100 feet south of intersection of Barham and Coahuila Roads. Reference point top of easing 0.2 foot above ground surface, at elevation 3,958 feet (barometric level). 8/9/54, 80; 9/2/54, 102.3; 9/5/54, 192 (pumping); 9/6/54, 82(log).
- 75/3E-20G1 H. A. Pursche Near Anza; at windmill 650 feet east and 200 feet north of center of section 20; 60 feet east of well 20G2. Reference point top of pips welled to base plate 0.5 foot above ground surface, at slevation 3,883.09 feet. 9/2/54, 95.1; 9/5/54, 77.4; 10/19/54, 79.2.
- 75/3E-20H1 R. A. Pursohe Near Anna; at windmill C.25 mile south and O.15 mile west of intersection of Barham and Coahuila Roads. Reference point top of pipe above plate C.4 foot above ground surface, at elewation 3,915.40 feet. 4/22/54, 66.9; 9/2/54, 108.8 (pumping); 10/19/54, 96.9.
- 7S/3E-20J2 H. A. Pursche Near Anxa; 0.5 mile south and 300 feet west of intersection of Barham and Coahuila Roads; at windmill 120 feet east of house. Reference point top of pipe support 1.9 feet above ground surface, at elevation 3,884.35 feet. 6/48, 8 (lng); 11/11/52. 55.8; 5/8/53, 55.7; 11/23/53, 57.4; 4/22/54, 58.3; 9/2/54, 55.3; 10/19/54, 56.4.
- 75/3E-2013 H. A. Pursshe Near Anna; 200 feet northeast of well 2012. Reference point (e) top of casing 0.4 foot above ground surface, at elevation 3,879.72 feet (11/30/50 and 11/11/52; %) pump bese 0.8 foot above ground surface, at elevation 3,880.08 feet. 11/30/50, 51.1; 11/11/52, 53.7; 11/23/53; 59.1; 4/22/54, 52.8.
- 75/3E-20J5 H. A. Pursche Near Anza; 0.7 mile south and 640 feat west of interestion of Barter and Coahuila Roads. Reference point top of pipe welded to plate 0.2 foot above ground surface, at elevation 3,867.97 feet. 11/11/52, 48.6; 11/25/53, 51.2.
- 78/3E-20M1 Near Anza; at windmill 0.55 mile south and 40 fest east of intereseation of Gravena and Coahuila Roads. Reference point pump base, 1.3 feet above ground surface, at elevation 3,980 feet. 5/27/53, 85.0; 11/23/53, 85.5; 5/7/54, 86.0.
- 75/3E-2002 H. A. Pumenhe Near Anga; open desing 0.35 mile west and 40 feet north of southeast corner of Section 20. Reference point top of besing 0.3 foot above ground surface. 11/25/53: 29.2; 4/22/54, 29.4.
- 75/3E-2003 H. A. Pursone Near Ange; 30 feet southwest of vell 2002. Reference point top of basing 1 foot above ground surface. 11/23/53, 29.9; 4/22/54, 30.2.
- 75/3E-20R1 H. A. Pursoha Near Anza: 550 fact most and 40 fact north of envineant corner of Section 20. Reference point top of casing 0.5 foot above ground surface, at elemention 3,837.22 fact 11/30/50, 27.4; 17/21/51, 27.3; 11/20/52, 76.0; 17/25/53, 28.2; 4/22/54, 29.0.
- 70/19220R2 H. A. Parache Near Ania; 5% feet month and 250 feet wast of southeast deemen of Section 20. orderence point top of pipe sumpling 3.5 feet above ground surface, at elevation 3.898 feet (barometric leval), Al/20/50. 27.7; 11/21/51, 25.2.
- 77/75 CR3 E. A. Purrolae Near Anze; capped desing 500 feet north and 30 feet west of southers?

 corner of section 20; 200 feet east of well 20R2. Reference point hole in easing et ground surface.

 19/20/54, 34.00

(Diphis to water in fest beasured from reference point) (confinmed)

- 75/3E-21B1 Hugo C. Wastohalon Neer Anza; at windmill 500 fost east and 400 fest south of intersantion of Contracas and Cashuila Roads. References point - top of clamp 1.6 feet above ground surface, at elevation 3,908.25 feet. 5/6/53.61.4. 11/24/53,60.5; 4/21/54,61.1.
- 75/3E-22Ch Hamilton School-In Array 200 feet west and 50 feet south of intersection of Ocehuila and Confirences Reade; at windmill 100 feet west of school. Reference point top of casing 1.3 feet above ground southean, at elements 3,93C-25 feet. 11/7/49, 88. 5/8/53, 72.5. 4/22/54, 89.2.
- 75/3E-1171 Near Ange, at windwill C.45 miles south and 500 feet west of intersection of Councila and Ochtranas Roads. Reference point top of easing 1.6 feet above ground syrface, at elevation 3,876.88 feet. 5/6/53, 53.8; 4/22/54, 49.7.
- 75/3E-2101 Mugo G. Westphalen Near Amer; C.12 mile east and 50 feet north of intersection of Converse and Johnson Roads; in corrugated metal pump house. Reference point hole for air line 0.6 foot above ground surface, at elemation 3,869.2 feet. 11/29/50, 22.0; 1/20/51, 30.5; 5/8/51, 46.1; 8/7/51, 45.7; 9/6/52, 20.3; 10/3/51, 29.7; 12/10/51, 29.7; 1/3/52, 25.3; 11/11/52, 31.8; 5/26/53, 44.7; 4/22/54, 46.7; 10/19/54, 40.3.
- 75/3E-2111 C. T. Johnson Near Angas 0.32 mile routh and 150 feet west of intersection of Johnson and Hill Roads; at windmill 50 feet south of house. Reference point top of pipe clamps 1 foot above ground surface, at elevation 3,861.45 feet. 6/16, 20 (W.S.G.S., W.S.P. 429); 11/29/50, 21.3; 1/29/51, 21.0; 3/8/51, 20.9; 4/5/51, 27.7; 5/8/51, 27.4; 6/13/51, 27.9; 7/9/51, 27.2; 8/7/51, 20.1; 9/6/51, 23.5; 10/31/51, 22.2; 11/7/51, 22.0; 1/3/52, 17.3; 2/4/54, 19.2; 3/4/52, 19.6; 5/13/52, 16.5; 7/30/52, 27.7; 8/25/52, 26.0; 10/21/52, 20.2; 1/16/53, 18.0; 2/27/53, 20.3; 3/27/53, 18.1; 5/26/53, 22.9; 7/3/53, 25.1; 8/10/53, 26.3; 9/1/53, 25.9; 10/8/53, 25.0; 11/24/53, 27.5; 1/6/54, 26.4; 2/4/54, 22.9; 4/1/54, 22.2; 4/21/54, 26.2; 10/19/54, 27.05.
- 78/18-1811 C. T. Johnson Near Ansa; C.25 mile east and C.25 mile south of interpostion of Controras and Johnson Roads; 0.25 mile west of well 2141. Reference point top of ossing 1.7 feet above ground surface, at elemention 3,850.95 feet. 11/10/50 10.2; 11/29/51, 32.9; 11/18/52, 14.7; 5/26/53, 27.7; 4/22/54, 33.6; 10/19/54, 27.0.
- 75/3E-21J3 0. T. Johnson Near Anza; at windmill 300 feet south and 70 feet west of intersection of Johnson and Hill Reads. Reference point top of pipe clamps 0.7 feet above ground surface; at elevation 3,868.30 feet. 11/30/50, 15.3; 11/20/51, 21.6; 11/11/52, 16.0; 5/26/53, 20.9; 11/24/53, 23.5; 4/22/54, 23.3.
- 75/3E-21Kl = C. S. Centreras Near Anga; at windmill 60 feet south and 50 feet east of intersection of Johnson and Contreras Roads. Reference point hole in drum around casing 2.6 feet above ground surface; at elevation 3,867.92 feet. 11/30/50, 28.3.
- 78/3E-1K2 0. 5. Controves Near Anna; 0.14 mile east and 150 feet south of intersection of Controves and Johnson Foeder; open resing. Reference point top of casing 3 feet below ground surface. 11/24/53, 4.7, 4/30/54, 4.5.
- 78/3E-2111 L. J. Hamilton Near Anga; 0.2 mile south and 400 feet west of intermedian of Contreras and Johnson Roads; at windmill 115 fast south and 15 fast west of house. Reference point top of pipe clamp 1.0 foot above ground surface, at elevation 3.843.51 feet. 11/13/52, 18.5.
- 75/3E-21D2 D. J. Hamilton Near Anga; at windmill 100 feet northweet of well 21D1; 25 feet east of house. Reference point top of caring 1 foot above ground surface. 11/24/53, 30.1; 4/22/54, 31.3.
- 78/3E-2103 C. J. Hamilton Near Anza; 200 feet routhwest of well 2101; 50 feet south of barn. Reference point top of easing. 2.0 feet above ground surface, at elevation 3,349.05 feet. 5/26/55, 28.5; 11/24/53, 30.3; 4/22/54, 31.9.
- 75/38-21F1 L. J. Hamilton Noar Anna; 0.5 mile south and 25 fact wast of interzection of Contraras and Johnson Rouds. Reference point top of measuring tipe 0.1 foot above ground surface, at elevation 3,844.77 fact. 30/49, 7(log); 11/29/50, 8.7; 1/25/51, 8.7; 9/5/51, 17.0; 10/3/51, 17.3; 11/18/52, 13.0;
- 78/3E-21R1 0. T. Johnson Near Amis; 300 feet south of barns Reference point - top of caring, 0.5 feet source ground southers, at elevative 3,855.90 feet, 11/30/50, 15.23; 11/20/51, 26.2; 11/41/52, 16.2, 5/26/53, 22.4.
- 75/3E-21R2 0. T. Jahnsan Near Arms; 60 Seen and and 50 fend weed of yell 21R0; check caring. Reference point top of occaing, 0.8 fend above ground earth.se, on elemetron 3,855.87 feed 11/20/50, 13.5; 11/20/51, 17.0; 11/11/52, 16.2; 5.46/53, 21.9; 11/24,53, 27.0; 4/22/54, 15.3.

(Dapths to water in few measured from reference point) (sontinged)

- 75/3E-22B1 L. J. Hamilton Near Anna; 0.55 miles east and 500 feet south of interrection of Hill and Coahuila Roads; 300 feet east of hours. Reference point top of comercte slab 0.6 fuct above ground surface, at elevation 3,930.10 feet. 11.23/53, 9; 4/21/54, 7.4.
- 78/3E-22B3 L. J. Hamilton Near Anna; 90 feet west and 50 feet scuth of well 22B4. Reference point top of casing, 4.3 feet above ground surface, at elevation 3,95%.3% feet. 5/26/53, 28.6; 1%/13/53, 15.1; 4/21/54, 14.0.
- 7S/3E-22B4 L. J. Hamilton Near Arma; C.25 mile west and 45 feet south of intersection of Coahuila and Kirby Roads; open casing 65 feet west of fence line. Reference point top of casing 1.7 feet above ground surface, at elevation 3,950.69 feet. 5/26/53, 27.3; 11/13/53, 12.5; 4/21/54, 11.5.
- 75/3E-22Cl L. J. Hamilton Near Arra; at winimill 0.5 mile east and 700 feet south of intersection of Coahuila and Hill Roads. Reference point (a) Top of pipe clamp 0.7 foot above ground surface, at elevation 3,925.20 feet (11/30/50 through 5/13/52); (b) top of casing 0.2 feet above ground surface, at elevation 3,924.7 feet (10/21/52 to present). 11/30/50, 6.6; 1/30/51, 5.8; 3/8/51, 5.5; 4/5/51, 5.0; 5/8/51, 4.9; 7/9/51, 8.0; 8/7/51, 7.9; 9/6/51, 8.4; 10/3/51, 10.0; 11/7/51, 8.8; 1/3/52, 6.2; 2/4/52, 7.5; 3/4/52, 4.2; 4/14/52, 3.3; 5/13/52, 3.8; 10/21/52, 9.3; 1/16/53, 7.7; 2/27/53, 8.8; 3/27/53, 6.8; 5/26/53, 13.2; 7/3/53, 10.3; 8/10/53, 9.0; 10/8/53, 9.2; 11/23/53, 8.4; 1/6/54, 7.6; 2/4/54, 7.4; 4/1/54, 6.3; 4/21/54, 6.4.
- 7S/3E-22D1 E. G. Herring Near Anza; at windmill 0.15 mile east and 100 feet south of intersection of Hill and Coahuila Roads. Reference point top of casing 1.0 foot above ground surface, at elevation 3,912.79 feet. 11/20/51, 29.5; 11/18/52, 20.3; 5/26/53, 11.5; 11/23/53, 17.5; 4/21/54, 14.9.
- 7S/3E-22D2 H. R. Lichwald Near Anga; at windmill 200 feet mouthwast of well 22Dl. Reference point top of wood cover 2.3 feet above ground surface, at elevation 3,905.36 feet. 11/30/50, 6.9; 11/15/51, 7.2; 11/18/52, 4.2; 5/26/53, 5.7; 11/23/53, 6.7; 4/21/54, 4.9.
- 78/3E-22D3 H. R. Lishwald Near Amsa; at windmill 180 feet southwast of well 22D2. Reference point top of easing 1.9 feet above ground surface, at elevation 3,903.94. 11/30/50, 15.1; 11/20/51, 20.0; 11/18/52, 19.5; 5/26/53, 15.2; 11/12/53, 14.4; 4/21/54, 12.2.
- 7S/3E-22D4 H. R. Lichwald Near Amea; 400 feet southeast of well 22D2. Reference point top of casing 1.0 foot above ground surface, at elevation 3,897.86 feet. 11/30/50, 13.4; 11/20/51, 15.2; 11/18/52, 14.7; 5/26/53, 13.4; 11/23/53, 15.6; 4/21/54, 14.5.
- 75/3E-22D6 H. R. Lichwald Near Anza; 0.2 mile south and 400 fest east of intersection of Hill and Coahuila Roads; open casing 600 fest southwest of barn. Reference point top of casing 1.7 feet above ground surface, at elevation 3,885.74 feet. 5/26/53, 26.4; 11/23/53, 28.0; 4/21/54, 28.6.
- 7S/3E-2211 Near Anna; at winimill 0.63 mile south and 100 feet west of intersection of Kirby and Coahulla Roads. Reference point top of casing 0.25 foot above ground surface, at elevation 3,946 feet (barometric level). 12/1/50, 12.5; 11/20/51, 21.5; 11/16/52, 17.2; 5/26/53, 16.1; 11/18/53, 15.1.
- 7S/3E-22Nl C. T. Johnson Near Amsa; 200 feet southheast of well 21Jl. Reference point top of casing 2.3 feet above ground surface, at elevation 3,863.59 feet. 11/30/50, 18.5; 11/20/51, 20.3; 11/18/52, 20.9; 8/26/53, 24.5; 11/24/53, 28.5; 4/22/54, 27.3; 10/19/54, 28.1.
- 75/3E-23D1 Evert Rames Near Ames; 0.1 mile south and 200 feet east of intersection of Kirby and Coshuila Roads. Reference point top of waring 0.6 foot above ground surface, at elevation 3,975.18 feet. 5/26/53, 23.7; 11/23/53, 23.0; 4/20/54, 22.9.
- 75/3E-23R1 D. Raisis Near Angus 0.2 mile north and 400 feet west of southeast corner of section 23; at windmill 300 feet northwest of house. Reference point top of sasing 1 feet above groups surface. 11/18/53, 46.4; 4/21/54, 43.4.
- 78/3E-23R2 A. Lappus Neur Amya; at windmill C.3 mile west and 300 feet north of southeast surner of section 23. Reference points top of casing C.9 fort above ground surface. 5/27/53, 81.5; 11/23/53, 84.8; 4/21/54, 83.4.
- 75/3E-2701 Coanuila Indian Recorrection New Marks at windmill 0.3 mile uses and 0.25 mile south of northwest corner of coutlin 27. Reference point top of caring 0.2 foot above ground surface, at elevation 3,840 feets 5/7/54, 17.1.
- 75/3E-27ML Coakmills Indian Restruction Near Arms at which In 0.6 mile south and 300 feet east of northwest corner of section 27. References points top of sading 1.4 feet above ground surface, at elecation 5,840.48 feet. 6/21/40, 13(log): 12/1/50, 7.4; 1/30/51, 3.2; 3/8/51, 4.8; 4/5/51, 7.3; 5/8/51, 7.4; 6/13/51, 9.0; 7/32/51, 8.8; 9/6/51, 7.5; 10/1/51, 8.5; 11/7/51, 8.4; 1/3/52, 6.7; 5/26/53, 8.0; 11/24/53, 9.9; 5/7/54, 12.0.

(Dopules to water in foot measured from reference point) (continued)

- 78/3E-3153 Contains Indian Reservation Durasmo Valley; at windmill 0.4 mile north and 0.35 mile eart of scuthwest corner of section 31; 50 feet west of road through Durasmo Valley. Reference point ground surface. 8/5/40, 10(19g).
- 78/3E-34E1 Crahmila Indian Reservation In Terwilliger Valley; 0.7 mile north and 0.2 mile east of southwest commer of section 34; in fenced analogure 0.3 mile northeast of road through Terwilliger Valley; equipped with gasoline engine. Reference point top of easing 0.6 foot above ground surface, at elevation 3,877.11 fest. 4/19/40, 40(1cg); 1/31/51, 35.1; 3/8/51, 35.3; 4/5/51, 37.5; 5/8/51, 36.8; 6/13/51, 38.5; 7/9/51, 38.5; 7/31/51, 37.6; 9/6/51, 37.3; 10/3/51, 36.9; 11/7/51, 36.5; 11/15/51, 37.9; 1/3/52, 35.3; 11/24/53, 38.2; 5/7/54, 38.8.
- 78/4E-1981 In Burnt Vallay; 1.1 miles southeast of intersection of Councile Road and Hamilton Creek; on south bank of stream. Reference point top of plank 1 foot above ground surface. 8/14/53, 19.5; 11/23/53, 19.3; 4/20/54, 16.1.
- 75/4E-1961 In Burnt Valley; 1.1 miles south and west of Coahuila Road (measured along dirt road) from interpolation 4.6 miles east of Anza; at windmill 300 feet south of dirt road. Reference point top of metal cover. 1.1 feet above ground surface. 11/23/53, 22.6; 4/20/54, 23.1.
- 75/4E-19H1 L. Figaro In Burnt Valley; 0.15 mile east of well 19Gl. Reference point top of plank cover 3 fast above ground surface. 8/14/53, 11.2; 4/20/54, 11.6.
- 75/4E-20BR Lockwood In Burnt Valley; 0.25 mile south and 0.4 mile east of Coshuila Road from intersection 4.6 miles east of Anna; at windmill near house. Reference point - top of casing at ground surface. 8/14/53, 121.4.
- 85/1E-7E] In Wilson Valley; 2.6 miles northwest of Coshuila Road (measured along Wilson Valley Road); open pasing 200 fest east of Wilson Valley Road and 150 fest north of house. Reference point hole in plank occar 1 foot above ground surface. 8/31/53, 40; 11/16/53, 40.5; 5/5/54, 52.2.
- 85/1E-2P1 Mrs. Farrand In Wilson Valley; 1.8 miles northwest of Coshuila Road (measured along Wilson Valley Road) and 500 feet southeast of Coshuila Creek (measured along Wilson Valley Road); near house 60 feet Housemest of road; equipped with pitcher pump. Reference point hole in concrete base at ground surface. 11/16/53, dry; 5/5/54, 7.1.
- 85/18-541 C. J. Clark Near Radeo; 0.3 mile north of Highway 79 (measured along dirt read) 3.6 miles north of Rodeo (measured along Highway 79); 100 feet north of house and 15 feet south of water tower; equipped with jack pump. Reference point top of saming at ground surface. 5/5/53, 32.8; 11/16/53, 33.6; 5/5/54, 32.9.
- 85/AE-681 J. E. Shanko In Lawis Valley: 1.9 miles south of Highway 79 (measured along dirt road) from intersection 6.05 miles north of Rados, measured along Highway 79; at windmill. Reference point top of varing at ground surface, at elevation 1,810 feet. 5/5/53, 35.4; 11/16/53, 38.2; 5/5/54, 39.9.
- 85/1E-680 J. E. Shanko In Lawis Valley; 1.9 miles southwest of Highway 79 (measured along dirt road) from intersection 6.05 miles morth of Rades (measured along Highway 79); at windmill, 0.15 mile east of gate. Reference point ground surface, at elevation 1,837 feet. 10/28/52, 57.2; 5/5/53, 57.7; 11/16/53, 61.8; 5/5/54, 59.7.
- 85/1E-6M1 Bert Sharp Lewis Valley; 2.65 miles south of Highway 79 (measured along dirt road); from intersection 6.05 miles north of Radon (measured along Highway 79); at windmill 300 feet southwest of hours. Reference point top of casing 0.5 foot above ground surface, at elevation 1,730 feet. 5/5/53, 12.7; 11/16/53, 16.8; 5/5/54, 15.1.
- 85/16-7N1 James Ordatt In lover benearter Valley; 0.35 mile west of Renche Ramone house; 10 feet west of metal pump house. Reference point hole in cesing 0.3 foot abuse ground surface, at elevation 1,554.7 feet. 2/28/48, 35.3(leg); 11/16/50, 63.1; 2/5/51, 61.4; 3/7/51, 54.7; 4/4/51, 67.2; 5/7/51, 65.3; 6/13/51. 67.4; 7/3/51, 67.9; 1/3/52, 64.2; 2/5/52, 68.1; 3/12/52, 7 1.8; 4/15/52, 66.8; 9/25/52, 73; 10/21/52, 76.6; 1/16/53, 71.6; 2/17/53, 70.1; 3/27/53, 68.3; 7/3/53, 72.1; 8/6/53, 73.2; 11/13/53, 74.7; 1/6/54, 79.2; 2/5/54, 75.2; 4/2/54, 70.9; 4/20/54, 70.9.
- 85/1E-7PH James Ordett In Inver Lancaster Valley; 300 feet southwest of well 7QL. Reference point tep of cases lol feet above ground surface, at elevation 1,573.54. 31/48. 67(lng); 11/28/51. 87.3; 5/1/53, 86.0; 11/13/53, 91.7; 4/20/54, 85.45.
- 88/18- 791 June 9419 to An lower Languages Walley: 150 feet wouthwest of Ranche Rance house. Reference point top of easing 1.3 feet above ground surface, at elevation 1.578-02 feet. 11/16/50. 83.3: 11/25/51, 86.5.

(Espths to water in feet measured from reference point) (continued)

- 8S/1E-7Q2 James Oriatt In lower Lancaster Valley; 60 feet north of Ramona Ranch names; open cash, in white pump house. Reference point top of casing 1.7 feet above ground surface, at elevation 1,582.47 feet. 4/6/47, 59.5; 5/1/53, dry; 11/12/53, dry; 4/20/54, dry.
- 8S/1E-7Q4 James Oviett In lover Lancaster Valley; 400 feet north of well 7Q2; on north bank of Lancaster Creek. Reference point hole in inner casing 2.5 feet above ground surface, at elevation 1,588.35 feet. 2/5/51, 70.5; 3/7/51, 71.0; 11/28/51, 64.5; 5/1/53, 62.0; 11/13/53, 60.4; 4/20/54, 59.8.
- 88/1E-8E1 H. R. Wood Near Redec; 2.35 miles north of Radec (measured along Highway 79); at windmill 550 feet west of Highway 79 and 400 feet southwest of house. Reference point top of casing at ground surface. 5/5/53, 31.4; 11/13/53, 29.1; 4/22/54, 28.1.
- 8S/IE-8K1 Martin Near Rades; 0.3 mile south of Highway 79 (measured along dirt road) from intersection 2.6 miles north of Rades (measured along Highway 79); in stock pens 150 feet northwest of house.

 Reference point top of casing 1.0 foot above ground surface, at elevation 1,800 feet (barometric level). 2/16/51, 24; 11/28/51, 24:3; 10/27/52, 13.9; 5/5/53, 22.8.
- 8S/1E-12N1 Near Aguarga; 0.3 mile northwest of Coahuila Road (measured along Wilson Valley Road) from intersection 3.1 miles north of Aguanga (measured along Coahuila Road); open easing 500 feet southwest of Wilson Valley Road and 300 feet southwest of house. Reference point top of easing 2.5 feet above ground surface. 8/3/53, 23.3; 4/21/54, 50.0.
- 88/1E-17A1 J. C. Tyler In upper Language Walley; 1.6 mile east of Highway 79 (measured along dirt road) from intersection 1.3 miles nowth of Radec (measured along Highway 79); open casing on Stardust Ranch 500 fest nowth of machine shed. Reference point top of casing 0.8 foot above ground surface, at 1,717.47 feet. 5/%, 63 (log); 11/16/50, 81.2; 2/5/51, 61.9; 3/7/51, 81.2; 3/29/51, 82.2; 6/13/51, 82.7; 7/30/51, 83.0; 9/4/51, 83.2; 10/1/51, 85.4; 11/6/51, 83.7; 1/4/52, 81.2; 1/14/52, 83.0; 2/5/52, 81.6; 3/12/52, 80.6; 4/15/52, 76.5; 5/15/52, 78.5; 6/10/52, 79.0; 7/8/52, 78.6; 7/30/52, 79.8; 8/27/52, 78.5; 10/21/52, 76.3; 1/16/53, 79.6; 2/27/53, 77.9; 3/27/53, 78.0; 5/1/53, 78.6; 7/3/53, 79.2; 8/6/53, 79.8; 9/1/53, 80.2; 10/8/53, 80.7; 11/13/59, 81.1; 1/7/54, 82.0; 2/5/54, 82.0; 4/2/54, 82.4; 4/20/54, 82.3.
- 85/1E-1742 3. 5. Tyler In upper Lancaster Walley; in pump house 270 feet southwest of well 1741.

 Reference point lower lip of measuring pips 2 feet above ground surface, at elevation 1,719.09 feet.
 11/16/50, 84.0; 11/28/51, 84.6.
- 8S/1E-17C1 J. C. Tyler In upper bands ter Valley; C.4 mile east of Highway 79 (measured along dirt road); from intersection 1.3 miles north of Radec (measured along Highway 79); open easing on Stariust Banch 700 feet north of dirt read and 210 feet east of fence line. Reference point top of casing 1.7 feet above ground surface, at elevation 1,660.99 feet. 11/16/50, 33.3; 3/29/51, 34.2; 5/7/51, 34.5; 6/13/51, 34.6; 7/3/51, 34.9; 7/31/51, 35.1; 9/4/51, 35.2; 10/1/51, 38.3; 11/6/51, 35.8; 1/3/52, 32.6; 10/27/52, 36.1; 5/1/53, 30.4; 11/13/53, 31.1; 4/20/54, 34.8.
- 8S/1E-17E2 Cottonwood School In upper Lancaster Valley; 1.3 miles north of Radeo (measured along Highway 79); in word pump house 75 feet northeast of school. Reference point top of easing 1.2 feet above ground surface. 11/12/53, 29.5; 1/20/54, 29.7.
- 8S/1E-18B1 James Oviatt In lawer Lancaster Valley; Rancho Ramone; 400 feet southwest of foreman's house; open casing 20 feet west of machine shep. Betweenes point top of pasing 4 feet above ground surface, at elevation 1,580.18 feets. 2/26/51, 60.6; 4/4/51, 60.6; 11/28/51, 64.8; 2/5/52, 64.2; 3/12/52, 63.4; 4/15/52, 62.5; 5/13/52, 62.3; 6/10/52, 62.8; 7/8/52, 63.5; 7/30/52, 64.2; 8/27/52, 64.9; 10/21/52, 64.7; 1/16/53, 64.1; 2/27/53, 64.0; 3/27/53, 64.0; 5/1/53, 64.5; 7/3/53, 65.6; 8/6/53, 66.1; 9/1/53, 66.3; 10/2/53, 66.5; 11/13/53, 66.5; 1/6/54, 66.1; 2/5/54, 62.5; 4/2/54, 63.4; 4/20/54, 63.4.
- 88/1E-18H1 In upper bandarter Valley: 500 feet southwest of well 17E2; at windmill 50 feet southeast of house. Reference point top of casing 0.8 foot above ground surface, at elevation 1,657.61 feet. 11/28/51, 40.0; 11/12/53, 38.4; 4/20/54, 38.3.
- 85/1E-13K1 Joe Costellie Noar Redee; 6.87 wild north of Radee (measured along Highway 79); at windmill 500 feet west of Highway 79 and 100 feet east of house. Reference point top of concrete slab 0.2 foot above ground surface, at elevation 1,754 feet. 9/59, 127 (leg); 11/30/50, 130.6; 11/16/51, 154.3; 10/27/52, 145.8; 5/1/53, 132.3; 11/12/53, 133.8; 4/20/54, 130.9.

(Depths to water in fact measured from reference point) (acutimmed)

- 85/2E-5Al In lower Coahuila Valley; 0.35 mile south of well 75/2E-32J1; at windmill 300 feet west and 250 feet south of northeast sorner of Section 5. Reference point top of casing 2.1 feet above ground surface. 5/6/53, 10.2; 11/9/53, 11.0.
- 85/2E-501 Betty B. Murdell In lower Coahuila Valley; 0.5 mile north of Coahuila Road (measured along dirt road) from intersection 6.65 miles north of Aguangs (measured along Coahuila Road); 85 feet east of dirt road and 15 feet west of elevated tank near stock correl. Reference point top of casing 0.4 foot above ground surface. 5/6/53, 13.1; 11/9/53, 13.9.
- 8S/3E-2E1 Coshwila Indian Reservation In Terwilliger Valley; C.7 mile north and C.8 mile west of intersection of Badley and Terwilliger Roads; at windmill 500 feet east of house; outside watershed. Reference point top of casing 2 feet above ground surface, at elevation 3,867 feet (barometric level). 12/6/50, 34.8; 1/31/51, 34.5; 3/8/51, 37.8; 4/5/51, 35.9; 5/8/51, 36.4; 6/13/51, 38.3; 7/9/51, 36.2; 7/31/51, 36.2; 10/3/51, 36.1; 11/7/51, 36.0; 11/15/51, 35.9; 1/3/52, 34.2; 2/4/52, 35.0; 3/4/52, 36.8; 4/14/52, 34.7; 5/13/52, 37.5; 6/10/52, 36.0; 7/8/52, 36.4; 7/30/52, 38.0; 8/25/52, 37.4; 10/21/52, 37.4; 1/16/53, 35.3; 2/27/53, 35.5; 3/27/53, 35.1; 5/27/53, 35.9; 7/3/53, 36.3; 8/10/53, 36.8; 9/1/53, 37.5; 10/8/53, 37.5; 11/23/53, 36.4; 1/6/54, 36.5; 2/4/54, 36.5; 4/1/54, 36.0.
- 88/3E-241 Coahuila Indian Reservation In Terwilliger Velley; at windmill 0.3 mile north and 300 feet vest of intersection of Bailey and Terwilliger Roads; outside watershed. Reference point top of casing 2.5 feet above ground surface, at elsvation 3,843 feet. 11/15/51, 16.5; 11/18/52, 15.2; 11/23/53, 15.6; 4/21/54, 16.2.
- 8S/3E-8Cl Howard Bailay In Durasno Vailey; 3.7 miles west of intersection of Beiley and Terwilliger
 Reads; at windmill 300 feet west of house. Reference print top of casing 1.8 feet above ground surface.
 11/18/52, 16.5; 5/27/53, 16.3.
- 88/3E-801 Woods In Duresno Valley; 0.65 mile south of woll 801; 35 feet southwest of house and 30 feet west of well 800. Reference point top of easing 1.3 feet above ground surface. 12/6/50, 63.4; 11/21/51, 66.6; 11/18/52, 62.5; 5/27/53, 62.1; 11/23/53, 61.3; 5/7/54, 61.6.
- 88/IW-12K1 James Oviatt In lover Lancaster Valley; 0.95 mile west of Rancho Ramona house; open casing 300 feet south of Lancaster Greek. Reference point (a) hole in pump base 0.8 foot above ground surface at elevation 1,510.76 feet (1-49 through 11/19/59); (b) top of casing 1 foot below ground surface, at elevation 1,509.0 feet (1/6/54 to present). 11/16/50, 34.4; 2/5/51, 34.5; 3/7/51, 32.2; 4/4/51, 33.6; 7/3/51, 35.4; 10/2/51, 37.3; 11/6/51, 36.0; 1/3/52, 35.0; 1/14/52, 37.5; 2/5/52, 36.1; 4/15/52, 37.0; 7/30/52, 37.9; 8/27/52, 38.1; 1/16/53, 42.5; 2/27/53, 39.8; 3/27/53, 40.0; 5/1/53, 39.6; 7/3/53, 40.4; 8/6/59, 46.5; 9/1/53, 40.1; 10/8/53, 41.5; 11/13/53, 41.2; 1/6/54, 41.7; 2/5/54, 41.9; 4/2/54, 41.9; 4/20/54, 36.3.

(Depths to water in feet measured from reference point)

- 8S/IE-19E1 Near Rades; 0.6 mile east of Highway 71 and Teneurla Creak orosering; 100 feet east of Highway 71 and 50 feet north of house. Reference print top of easing 2.7 feet above ground surface, at elevation 1,665 feet (barometric less). 11/15/50, 61.6; 11/27/52, 64.3; 11/7/52, 39.6; 5/1/53, 28.4; 11/10/53, +0.2, 4/20/54, 36.7.
- 85/1E-19F1 S. T. Anderson Near Rades; 0.5 mile west of Rades (measured along Highway 71), 300 feet no of highway and 50 feet northeast of house. Reference point top of casing 1.5 feet above ground a 11/10/53, 71.9; 4/20/54, 73.7.
- 85/1E-19F2 C. W. Haggard Near Raden; 0.45 mile west of Radeo (measured along Highway 71); in house with metal roof 200 feet north of highway. Reference point ground surface. About 12/48, 67 (puner).
- 8S/1E-19H1 0. L. Coffer Rades; at windmill 160 feet north and 220 feet west of intersection of Highways 71 and 79. Reference point top of casing 1.8 feet above ground surface, at elevation 1,689.71 feet. 11/15/50, 39.6; 2/5/51, 35.5; 3/6/51, 25.9; 4/4/51, 43.8; 5/7/51, 48.6; 6/13/51, 41.4; 7/31/51, 43.4; 9/6/51, 48.0; 10/2/51, 49.6; 11/6/51, 41.0; 1/3/52, 40.2; 2/5/52, 40.8; 3/12/52, 41.0; 4/15/52, 41.2; 5/13/52, 42.3; 6/10/52, 43.2; 7/8/52, 44.9; 1/16/53, 44.5; 5/1/53, 43.9; 7/3/53, 43.5; 8/6/53, 43.7; 10/8/53, 43.1; 11/10/53, 41.9; 1/7/54, 41.1; 2/4/54, 48.9; 4/2/54, 43.3; 4/20/54, 41.2.
- 8S/IE-19H2 Lulu Miller Rades; at windmill 100 fact north and 227 fact east of intersection of Highways 71 and 79. Reference point top of casing collar 2 fest above ground surface, at elevation 1,709 fest (barometric level). 11/15/50, 62.7; 11/28/51, 64.8; 10/27/52, 63.4; 5/1/53, 61.9; 11/10/53, 62.6; 4/20/54, 64.2.
- 8S/1E-19H3 Irene Barton Radee; 50 feet north of Highway 79 and 50 feet east of Barton's store. Reference point top of casing, at elevation 1,725 feet (barometric level). 11/27/51, 73.4.
- 85/1E-19H4 Irone Barton Radee; 3 feet east of well 19H3. Reference point top of casing 1.5 feet above ground surface. 11/10/53, 75.7; 4/20/54, 76.0.
- 85/1E-1911 Clinton C. Davidson Radeu; 60 feet south of intersection of Highways 71 and 79; 15 feet west of house. Referense point top of casing 0.5 foot above ground surface, at elevation 1,692 feet (barometric level). 11/15/50, 43.2; 2/5/51, 41.0; 3/7/51, 41.3; 4/4/51, 41.9.
- 8S/IE-19K1 = W. W. Cottle Mear Rades; 0.17 mile west of intersection of Highways 71 and 79 (measured along Highway 71); at windmill in pasture 700 feet south of Highway 71. Reference point top of pipe clamp 1.85 feet above ground surface, at elevation 1,649.97 feets 11/15/50, 8.0; 10/27/52, 10.2; 5/1/53, 9.2; 11/10/53, 9.0; 4/20/54, 10.1.
- 85/1E-1901 W. R. Gibbon Rades; 0.3 mile south of intersection of Highways 71 and 79; at windmill 600 feet west of house; 53 feet northeast of well 1902. Reference point pump base 1.3 feet above ground surface, at elevation 1,666.44 feet. Spring, 1942, 15 (leg); 11/15/50, 17.0; 2/5/51, 15.5; 3/7/51, 18.1; 4/4/51, 14.8; 5/7/51, 18.6; 6/13/51, 18.5; 8/7/51, 18.1; 9/17/51, 17.0; 10/2/51, 20.2; 1/2/52, 18.3; 1/15/52, 17.6; 2/4/52, 17.9; 3/4/52, 19.3; 4/14/52, 20.7; 6/10/52, 23.4; 7/30/52, 30.8; 10/22/52, 21.3; 1/16/53, 19.0; 2/27/53, 21.0; 4/30/53, 15.9; 1/7/54, 20.4; 2/4/54, 20.0; 4/2/54, 16.9.
- 85/1E-20M1 G. A. Speniol Near Rader; 0.35 mile southeast of Rader (measured along Highway 79) and 250 feet north of Highway 79; at windmill 200 feet northeast of house. Reference point top of casing 1 foot above ground surface. 4/30/53, 53.2; 11/12/53, 65.6; 4/20/54, 80.3; (where reported drop in water level following earthquake in March, 1954).
- 8S/IE-20M2 0. A. Spaniol Near Rades; 0.3 mile southeast of Radeo (measured along Highway 79); at windmili 50 feet southwest of Highway 79, 125 feet south of house. Reference point top of plank cover 0.33 foot above ground surface, at elevation 1,753.26 feet. 4/30/53, 29.3; 11/12/53, 32.5; 4/20/54, 30.8.
- 8S/IE-20P1 Nuar Radeo; 0.85 mile southeast of Radeo (measured along Highway 79); at windmill in canyon 400 feet southwest of Highway 79 and 30 feet east of telephone line. Reference point top of casing 1.5 feet above ground surface. 4/30/53, 7.6; 11/12/53, 8.8; 4/20/54, 7.6.
- 8S/1E-20P2 L. W. Hagman Near Radec; 0.8 mile southeast of Radec (measured along Highway 79) and 30 feet north of Highway 79; 50 feet west of driveway. Reference point top of casing cover 1 foot above ground surface. 4/2/54, 27 (log); 4/21/54, 36.7.
- 85/1E-2711 P. Bergman Near Aguangs; 50 feet north of well 2732. Reference point hole in pump base 1.6 feet above ground surface, at elevation 2,040 feet. 4/30/53, 16.2; 4/21/54, 16.1.
- 85/1E-27J2 P. Bergman Near Aguanga; 0.5 mile northeast of Aguanga from intersection of Highway 79 and Coshuila Road (measured along Coshuila Road); at windmill 25 feet west of road and 100 feet north of barn. Reference point top of casing at ground surface. 11/17/53, 12.0.

(Depths to water in fest measured from reference point)

- 85/12-2701 P. Bargman Aguanga; 200 feet north of Highway 79 and 150 feet northwest of store. Reference point top of casing 0.8 foot above ground surface, at elevation 1,939.84 feet. 4/30/53, 60.0; 11/17/53, 60.0; 4/21/54, 86.2. (drop in water level may have been caused by earthquake in March, 1954; see note on well 20M1).
- 8S/1E-2dB1 G. Holmes Near Aguanga; at windmill on hill 250 feet north of well 28B2. Reference point hole in casing 0.5 foot above ground surface, at elevation 2,020 feet. 4/29/53, 96.7; 11/17/53, 99.8; 4/21/54, 99.6.
- 85/12-2882 G. Hylmes Near Aguanga; 0.9 mile north of Highway 7.9 (measured along dirt road) from intersection 0.85 mile west of Aguanga; open easing 20 feet southeast of house. Reference point top of easing 2 feet below ground surface. 4/29/53, 71.1; 11/17/53, 67.9; 4/21/54, 68.5.
- 85/1E-2941 F. B. Trunnell Near Aguanga; 0.45 mile north of Highway 79 (measured along dirt road) from intersection 2.1 miles northwest of Aguanga (measured along Highway 79); at windmill 100 feet north of house.

 Reference point top of easing 1.6 feet above ground surface, at elevation 1,960 feet. 4/30/53, 68.4;

 4/20/54, 68.5.
- 85/18-2 Fil Robert L. Burchett Near Aguanga; 2.1 miles northwest of Aguanga (measured along Highway 79); 200 feat south of "Halfway House" Service Station. Reference point ground surface. 1937, 45 (owner); 3/49, 40 (owner).
- 8\$\frac{9}11 \$J\$. F. Bergman Near Aguanga; 0.35 mile south of Highway 79 (measured along dirt road) from intersection 2.1 miles morthwest of Aguanga (measured along Highway 79); at windmill 300 fest southeast of house. Reference point top of easing 2 feet above ground surface, at elevation 1,811 feet (barometric level). \frac{11}{16}\frac{60}{50}, \frac{11.8}{5} \frac{2}{51}, \frac{15.3}{5} \frac{3}{751}, \frac{13.3}{5} \frac{4}{451}, \frac{12.2}{5} \frac{5}{751}, \frac{11.2}{5} \frac{6}{13}\frac{51}{51}, \frac{11.8}{5} \frac{7}{13}\frac{51}{51}, \frac{12.3}{5} \frac{10}{251}, \frac{13.4}{51}, \frac{11.2}{5} \frac{6}{13}\frac{51}{51}, \frac{11.8}{5} \frac{7}{13}\frac{51}{51}, \frac{12.2}{5} \frac{1}{3}\frac{52}{5}, \frac{10.2}{5} \frac{11.6}{5}, \frac{12.2}{5} \frac{13}{52}, \frac{10.2}{5} \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{53}, \frac{11.6}{54}, \frac{11.6}{54}
- 85/1E-37F1 D. B. Trunnell Near Aguanga; C.85 mile scuth of Highway 79 (measured along dirt road) from intersection 1.0 mile morthwest of Aguanga; 200 feet north of house. Reference point top of concrete pump base 0.5 feet above ground surface, at elevation 1,872 feet (barometric level). 11/16/50, 29.2; 2/5/51, 32.5.
- 8S/1E-33G1 D. B. Trunnell Near Aguanga; 0.5 mile east of well 33Fl. Reference point hole in pump base 1.5 feet above ground surface, at elevation 1,900 feet. 4/30/53, 47.2; 11/17/53, 48.6; 1/6/54, 56.8; 2/4/54, 48.9; 4/2/54, 49.2; 4/21/54, 50.3.
- 8S/1E-34L1 E. W. Deter Near Aguanga; 0.75 mile south of Highway 79 (measured along dirt read) from intersection at Aguanga; 150 feet southwest of house. Reference point top of easing 0.87 feet above ground surface, at elevation 1,954.11 feet. 12/7/50, 30.9; 11/28/51, 31.9; 10/31/52, 28.5; 4/29/53, 28.7; 11/17/53, 31.4; 1/6/54, 32.7; 2/4/54, 33.5; 4/2/54, 28.6; 4/21/54, 28.8.
- 85/1E-3412 E. W. Deter Near Aguanga; 200 feet mortheast of well 34L1. Reference point top of casing 1.3 feet above ground surface, at elevation 1,972 feet (baremetric level). 12/7/50, 42.7; 11/28/51, 44.3; 1/4/52, 43.3; 2/5/52, 41.8; 3/4/52, 40.1; 4/15/52, 32.1.
- 88/1E-34Pl F. A. Payme Near Aguanga; 1 mile douth of Highway 77 (measured along dirt road) from intersection at Aguanga; under wooden derrick 500 feet monthwest of house and 50 feet southwest of dirt road. Reference point - hole in wood cover 0.5 fort above ground surface, at elevation 1,979.60 feet. 12/7/50, 74.5; 11/28/51, 74.7; 4/29/53, 74.3; 11/17/53, 74.4; 4/21/54, 73.6.
- 85/1E-36P1 P. Bergman Near Aguanga; 2.3 miles southeast of Aguanga (measured along Highway 79) and 0.2 mile north of Highway 79; at windmill 0.15 mile north of house. Reference point top of easing at ground surface, at elevation 2,560 fest. 4/29/53, 42.0; 11/17/53, 58.8; 4/21/54, 58.9.
- 85/2E-3301 James Owiatt In Culp Velley; at windmill. Reference point 3 fest above ground surface. 4/22/54, 77.9.
- 85/1W-13K1 G. L. Know Near Rades; on Sunnybrook Ransh, at windmill 500 feet northeast of house.

 Reference print (a) top of easing 4.5 feet below ground surface, at elevation 1,577.9 feet (12/1/50 through 5/1 /53); (b) top of easing 1.0 foot above ground surface, at elevation 1,583.26 feet (4/29/54).

 12/1/50, 0.9; 11/27/51, 4.0; 11/7/52, 8.9; 5/1/53, 4.2; 4/29/54, 4.6.

DEPTHS TO UROUD WATER AT WELLS IN SYDROGRAPHIC JOST NO. :

(Depths to wands in fast market from ectives we would appear the sale.

- 8S/1W-1301 G. L. Know When Resert on Congression Reset. 1.5 with contributed 200 feet need of intersection of Highway 79 and Tempoula Crasts. Reference points (a) top of nating 1.10 feet short recent surface.

 at elevation 1.535.37 feet (N1/16/32 through 5/7/50) (b) mile in needing 1.07 feet about ground surface.

 at elevation 1.535.34 feet (N1/16/32 the present) 1.1/1/70, NS.11 2/9/12. Whole 3/7/51, 4.5; 4/4/51, 1.2-5/7/51, 40.8; 6/3/51. 37.11 7/20/51. 59.2; 5/4 51. 52.0 11/1/70, SA.6; 1/2/52, 1/2/
- 88/1W-20X1 U. S. A. Pear Radon; 0.5 mile south of Highway 79 on Dripping Surings Publis Camp grounds.

 Reference point too of commute saming, at dispersion ly605 feet (becauseful 1984). 12/25/51, 11.6;
 11/7/52, 13.8; 5/5/53, 20 3; 11/10/53, 14.4; 4/23/56, 9.6.
- 85/1W-25Q1 Bermand Armel Woom Redge; in Bordin Hole. Safersase point not reported. 1/25/51, 25.4.
- 98/1E-181 H. Walker Near Agunages C.S will northeast of Algebras 79 (measured allow fish read); from intersection 8.7 miles acambes at a Aguarge (northeast of Aguarge (los mortheast of Aguarge (northeast of Aguarge (northeast of Aguarge (los markets)); 000 form northwest of house. Reference point top of casing A.I feet above grants surface, at elevation 2,567 feet. 4/29/53, 155.5; 11/17/53, 158.5; 4/21/54, 155.0.
- 98/1E-162 H. Walker Rest Agrange; at windowll 350 foot south of well 181 and 100 feet southwest of house. References points top of element 2 feet above ground status, at element on 1,55% foot. 4/19/53, 98.0; 11/17/53, 98.8; 4/21/54. 96.7.
- 98/1E-101 A. A. Ward Menn agunara; 20 lean abundansk of well 192. Reference prime Sep of easing 1.4 feet above ground surface, on signature 3,412.12 feet. 12/27/50, 88.3; 1/29/51, 26.3; 3/7/51, 26.4; 4/4/51, 25.3; 6/23/51, 25.2; 8/3/51, 37.5; 5/9/51, 27.8; 10/31/52, 25.1; 4/28/53, 23.6; 11/4/52, 27.2; 10/31/52, 25.1; 4/28/53, 23.6; 11/28/53, 28.5; 4/21/34, 12.6.
- 98/12-102 A. A. Mard Hour Agreeness 3.5 miles southwest of Agreeness (moreures along Highway 79; ed windmill 360 feet south of Highway 79 and 300 feet cast of house. Reference points top or cusing 0.5 foot above ground surface, at claration 2.418.7 feet. 10/31/52. 15.0: 4/11/55, 12.6; 11/16/53, 28.5; 4/21/54, 22.7.
- 9\$\1E-12A1 A. A. Weed Moss Agunnya; an windmill 0.3 mils m as of well 162. Sufarence point top of oasing 0.6 foot serve ground rectars, at elevation 1.939.32 feet. 12/17/90. We.0; 1/49/52, 33.02 3/7/51, 42.9; 4/4/52, 35.5; 5/7/51, 95.7; 5/2.5%, 98.6; 3/6/51. 39.5; 5/4/52. 52.5 20/1/52, 42.8; 11/6/51, W7.2; 1/4/52, 45.0; 1/5/52, 38.6; 3/3/52, 10.8; 4/15/92, 19.5; 5/5/52, 39.2; 6/10/52, 30.4; 7/8/52, 31.0; 7/30/52, 32.0; 8/25/53, 40.6; 30/25/53, 20.6; 3/6/53, 20.6; 3/6/53, 20.6; 3/6/53, 42.0; 7/3/50, 37.2; 4/28/53, 42.0; 7/3/50, 37.2; 5/5/53, 30.2; 9/1/33, 40.6; 33/5/53, 40.6; 10/28/53, 42.0; 7/3/50, 57.2; 5/5/53, 30.2; 9/1/33, 40.6; 33/5/53, 40.6; 10/28/53, 40.6; 10/28/53, 40.6; 3/6/54, 40.9; 4/1/54, 34.9; 5/3/53, 52.8;
- 98/12-12H1 A. A. Ward Near Aguanges 0., mile south of well like; open easing an new to beak of Temesula Crock. Reference point top of casing 5 them above ground semicode, as elevation 2,45%.75 feet. 10/25/50, 27.9; 21/17/50, 20.4; 1/29/5%, 17.0; 3/7/74, 16.3; 4/4/54, 19.0; 5,7/54, 19.1; 6/7/51, 27.7; 9/4/51, 25.8; 10/2/51, 26.0; 11/5/51, 21.6; 1/3/52, 19.0; 1/15/52, 14.4; 10/31/54, 17.9; 4/23/53, 23.1; 11/18/53, 16.0; 4/31/54, 13.1.
- 98/2E-6D1 Mear igrange; 0.7 able north of Highway 79 (motaured along dist road) from impersection 3.5 miles southeast of Aguanga (measured along Highway 75.; open causing 150 foot east of list road. 11/18/53, dry.
- 98/2E-611 W. R. Scott Near agrange: C.G. wile northeast of rail 701; at windmill 300 feet northeast of house. Reference point ground surface. 12/17/54, 77.5 (log).
- 98/2E-7Dl A. Christino Near Agusaga; 3-8 miss southers of Automas (seesuped along Highway 75); open casing at large pressure tenk 250 feet morth of store (Noughs Place). Poderence print (a) hole in pump base 0.7 foot above ground surface, at elevation 1,475,8 feet (8/25/5) and 11.15/53;; (b) top of easing 0.6 feet sebage ground surface, at elevation 2.475.8 feet (8/25/5), 47.0; 11.08/53, 51.2; 4/21/54, 42.44.
- 98/2E-7D2 A. Christine Mean Aguange; 300 for a worth of real 7D1. Reference pulmb (a) top of sessing 2.2 feet above ground surface, at elevation 3,480 feet (12/15/99); (b) bole in pump case 2.2 feet above ground surface, at elevation 2,480 feet. 12/18/33, 34-4; 4/23/94, 55.8.
- 98/2E-891 James Ordath In Congress Valleys 30 feet nonthroat of well 8M2; at windmill. Reference point top of casing at ground surface, at elemented 2,755.32 feet. 4/24/59, 40.3; 11/18/59, 24.3; 4/22/54, 19.2.

DEPTES TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 3

(Depths to water in fest measured from reference point)

- 98/21-302 Jemes Oviett In Oskgrupe Wallers C.5 mile northeast if Highway 79 (measured along dirt road); C.9 mile northwest of ranger station (measured along Highway 79); at windmill 5 feet east of concrete block tanks. Reference point top of testing 1.0 foot above ground surface, at elevation 2,756.90 feet. 11/30/51. 21.3: 10/31/52, 32.4: 4/24/53. 24.3: 11/18/53, 23.4: 4/22/54. 20.7.
- 98/2E=921 James Owintt = In Oakgrove Valley; at windmill 0.5 mile east of wall 891. Reference point top of easing 2.3 feet above ground surface, at elevation 2,829 feet (barometric level). 11/30/51, 86.5; 10/31/52, 108.1: 4/24/53, 109: 11/18/53, 87.5; 4/22/54, 81.9.
- 98/2E-15F1 James Oviatt Im Oakgrove Valley, 1.4 miles northeast of Highway 79 (measured along dirt road) from intersection 0.55 mile east of Panger Station (measured along Highway 79); of windmill 155 feet west and 165 feet north of conter of section 15. Reference point top of cesing 1 foot above ground surface, at olevation 2.892 feet (barometric level). 11/18/53, 120.0; 4/22/54, 120.3.
- 98/12-1581 James Owicht Noer Obkgrove Valley; at windmill in canyon 0.75 mile southeast of well 1591. Reference point - hep of casing 4 feet above ground surface, at elevation 3,044 feet. 4/24/53, 28.0; 11/18/53, 26.5; 4/22/54, 26.6.
- 95/22-16E1 P. Bergham In Oakgrove Valley; 0.25 mile west and 800 from north of center of section 16; open casing. Reference point top of enting 1.7 feet above ground surface, at elevation 2,790 feet (barometric level). 4/30/55, 49.0; 11/18/53, 49.1; 4/22/54, 49.3.
- 95/2E-16F1 James Crintt In Osignove Talley; C.25 mile north of center of section 16; open easing.

 Reference point top of casing 0.5 foot above ground surface, at elevation 2,600 feet (barometric level).

 1/17/51, 71.7; 3/7/91, 72.1; 4/4/51, 72.5; 5/7/52, 72.6; 8/7/51, 73.4; 10/2/51, 73.5; 11/6/51, 74.6;

 1/4/52, 71.2; 2/5/50, 74.9; 3/3/52, 75.2; 4/15/52, 75.3; 5/14/52, 75.4; 6/10/52, 75.5; 7/6/52, 75.6;

 10/31/52, 75.3; 1/16/53, 74.2; 2/27/53, 73.6; 3/27/53, 73.5; 4/24/53, 72.5; 7/3/53, 72.6; 8/6/53, 73.0;

 9/1/55, 73.0; 9/29/53, 73.1; 11/15/53, 75.3; 1/6/54, 73.7; 2/4/54, 73.9; 4/1/54, 74.1; 4/22/54, 74.1.
- 95/2E-16G1 Bergman In Ockgrove Walley, at windmill 500 feet ocat of cember of section 16. Reference point top of casing 1.3 feet obone ground surface, at elevation 2,802 feet (barometric level). 1/17/51, 75.5; 1/27/51, 75.5; 4/4/51, 77.5; 5/7/51, 77.8; 8/17/51, dry; 9/6/51, 79.1; 10/2/51, dry; 1/4/52, 77.9; 10/31/52, dry; 4/24/53, 78.5.
- 98/12-17Kl Bergman In Ocksprove Welley: 170 feet northwest of Highest 79; at windmill 90 feet northeast of barm cost of Ocksprove Code: 20 feet southwest of well 17Kk. Reference point - top of casing 1.7 feet above ground surface, at elevation 2,732,49 feet. 4/23/53, 16.1.
- 98/2E-1782 B. Matteomhr In Cokgress Valley; 200 feet mosth of Highway 79; at pressure tank behind house Cal mile seat of Cakgress Vafo. Reference point top of easing Cal foot above ground surface, at elemation 2,757.37 feet. 4/29/53. 17.3: 11/23/53, 18.0: 4/23/54, 16.2.
- 95/2E-1783 Anna Berggeer In Oakgrova Valley; 200 test northwest of well 1781. Reference point top of casing 2.9 fost above ground surface, at elevation 2.724 fort. 3/10/53, 12 (log); 11/23/53, 12.7.
- 98/2E-1781 United States Forestry Service In Cakgrove Valley; 400 feet southwest of Highway 79, at Cakgrove Ranger Station. Reference point top of converte floor 2 feet above ground surface, at elevation 2,750 feet (baromatric level). 11/16/50, 23.5; 11/30/51, 25.6; 10/30/52, 23.4; 4/24/53, 24.5; 11/18/53, 25.6.
- 98/18-2041 Painter, McAlpine and Knar In Oakgrove Valley; see location of wells plate. Reference point top of casing 1.77 feet above ground surface, at elevation 2,772.37 feet. 4/28/53, 29.1; 4/23/53; 32.9; 1/25/54, 24.2.
- 95/22-2040 D. L. Martin In Cakerova Veller; O.1 mile south of Highway 79 (measured along dirt road)
 from intersection 0.19 mile wortheast of Cakerova Ranges Station (measured along Highway 79); 150 feet
 south of house. Reference point top of easing 0.9 fost above ground surface, at elevation 2,796.40
 feet. 4/28/53, 45.0; 11/23/53, 50 5; 1/6/54, 52.5; 2/4/54, 51.0; 4/1/54, 48.5; 4/23/54, 45.6.
- 95/28-2044 Harry A. Christman In Oakgrove Velley, 0.12 mile south of Highway 79 (measured along dirt road); from intersection 0.18 mile southeast of Oekgrove Ranger Station (measured along Highway 79); 100 feet south of house. Reference point top of casing 2.5 feet above ground surface, at elevation 2.780 feet. 11/23/53. 49.3, 4/23/54, 39.3.
- 98/2E-2081 N. M. Lloyd In Oakgrove Valley, see location of wells plate, at pressure tank 100 feet south of house. Reference point top of basing, at elevation 2,801 feet. 11/23/53, 64; 4/23/54, 57.5.

(ducting essentian word romanism for all metast of univerly (ducting essential)

- 98/21-21E1 James Ordatt In Categorous Velley, 10.4 mile scath of Highway 79 (measured along Osagrams Truck Trail) from intermediation 0.19 mile scatheast of Categorous Eanger Startions upon seeing 50 feet aouthwest of Truck Trail. Reference point noise in cating 1 took above grown surface, at Merandin 2,809 feet (barometrie lovel). 11/16/50, 40.04 1/17/51, 43.04 3/7/51, 42.55 4/4/51, 40.24 5/7/51, 35 4: 6/12/51, 40.3; 11/30/51, 45.54 2/5/52, 36.8; 3/3/52, 31.34 4/15/53, 29.3; 5/14/52, 30.2.
- 98/12-2261 H. Taylor In Camprove Valley: 1.9 miles southeast of Camprove Earger Station (measured along Highway 79) and 100 feet morth of Highway 79; 200 feet southeast of house. Reference point sage of 2 x 7 inch pump support at ground surress, at elevation 2,910 feet. 4/23/53, 91.0; 4/23/54, 91.9.
- 98/2E-2211 James Cvistt In Origorous Valley: 0.95 mile scutheast of well 2701; at windmill 300 feet south of Highway 79. Reference point top of caring 2.0 feet above ground surfaces, at elevation 2,936 feet (barometric level). 1/4/52, 136; 10/30/52, 126.%; 4/23/53, 126.5; 11/4/53, 130.6; 4/23/54, 131.3.
- 98/2E-22N1 C. H. and M. A. Snavely, Jr. In Dodge Valley: 1.1 mile northwest of well 27H1; 20 feet morth of cabin. Reference point top of comerate pump base 1.0 feet above ground surface, at elevation 3.015 feet. 11/24/53, 17.0: 4/22/54, 14.9.
- 98/2E-23K1 Denothy Veazer Mear Oakgrove Valley; at Dedge Valley date 2.3 miles southeast of Oakgrove Ranger Station. Reference point ground surface. 12/8/50, dry.
- 98/2E-26El Herman Silveria In Dodge Valley: 0.3 mile west of Highway 79 (measured along dirt read to Paradise Rameh): 7.5 feet southwest of house; 19 feet south of well 26El. Reference point top of easing at ground surface, at elevation 3,148 feet. 11/27/53: 29.2: 4/21/54, 20.1.
- 98/2E-26E3 Ralph D. Buzard In Dudge Valley; 300 fest earl of well 26E1; in pump house 50 feet earl of house. Reference point top of caring 0.6 foot above ground surface, at elevation 9,153 feet. 11/24/53, 20.9; 4/22/54, 16.5.
- 98/2E-26E5 H. C. Seranton In Dudgs Valley; 500 feet north and 200 feet west of well 26E1. Reference point hole in easing cover 0.6 foot above ground surface. 11/24/53, 18.4; 4/21/54, 10.7.
- 98/2E-26&2 B. E. Ward In Dudge Valley; 1.14 mile south of Dudge Valley Cafe (measured slong rights) 79) and C.1 mile west of Highway 79. Reference point top of caring at ground surface, or election 3,180 feet. 11/27/53, 46.7; 4/22/54, 46.5.
- 98/2E-27H1 C. W. and R. B. Burr In Deigs Vailey; 0.51 mile west of Highway 79 imageured along dirt road to Paradise Rangh); at produces tank 80 feet north of dirt road. Reference point top of easing 0.9 foot above ground surface, at elevation 3,136.00 feet. 12/8/50, 39.7; 1/17/51, 40.0; 3/7/51, 40.7; 4/4/51, 40.3; 5/7/51, 45.9; 6/13/51, 40.0; 8/7/51, 39.3; 10/3/51, 40.8; 11/6/51, 41.2; 1/3/52, 39.6; 2/5/52, 39.4; 3/3/52, 39.9; 4/15/52, 35.8; 5/14/52, 76.4; 6/10/52, 35.8; 7/8/52, 37.2; 7/30/52, 37.3; 10/28/52, 39.4; 1/16/53, 38.7; 2/27/53, 39.0; 3/27/53, 39.2; 4/28/53, 39.5; 7/3/53, 39.6; 8/6/53, 41.6; 9/1/53, 39.8; 9/19/53, 39.9; 11/24/53, 40.1; 1/6/54, 37.8; 4/22/54, 36.4
- 95/2E-2711 P. C. Morrissey In Dodge Valley; 0.6 mile were of Highway 79 (measure) elong dive read to Paradise Rangh); at windmill 50 feet month of house. Reference point top of casing 0.8 feet abuse ground surface, at elegation 3.129.46 feet. 17/27/51, dry: 11/24/51, dry:
- 9\$/2E-27K1 Michael and Clara Kenes In Dodge Sully; 520 feet west and 150 feet routh of sull 2711:

 open ceaing. Reference point top of easing 2.5 feet shows ground surface, at elevation 3.126.51 feet
 12/8/50, 32.9; 1/17/50, 32.9; 3/7/51, 33.8; 4/4/51, 36.5; 5/5/51, 35.0; 6/13/51, 35.2; 8/7/51, 32.4;
 9/5/51, 36.5; 10/2/51, 35.1; 11/6/51, 37.1; 1/3/52, 35.8; 1/15/52, 36.9; 10/26/52, 34.2; 4/2x/53, 34.5,
 11/24/53, 33.8; 4/22/54, 35.9.
- 98/2E-2783 P. C. Morrissay In Doigs Walleys 250 feet south and 150 feet west of well 2773; ipon caring-Reference point surface of brick pump base 1 foot above ground surface, at elevation 3,130,20 feet. 12/8/50, 34.4; 1/17/51, 32.8; 3/7/51, 32.5; 4/6/51, 34.3; 5/7/51, 33.5; 6/13/51, 39.5; 8/7/51, 38.0; 9/5/51, 38.0; 10/2/51, 37.9; 11/6/51, 33.9; 1/3/52, 37.4; 10/18/52, 13.2; 4/22/53, 33.0; 11/24/53, 33.2; 4/22/54, 33.5.
- 98/2E-9531 William R. Herely In Doigs Velley: 300 fact wast of Feery elers; outside waterched. Reference point pump base 1.0 foot above ground surface, at elevation 3,290 foot (barometric level) 12/3/51, 28:1; 10/28/52, 33.5.
- 98/2E-3512 Release Estates In Podge Wallung 350 feet southesat of Emery store and 30 feet northeast of Highway 79. Reference point top of plt at ground surface. 11,27/53, dry.

DEPENS TO SECTION MATER AS WELLS IN MEDECCRAPHIC UNITS NO. 3

(They down to survey in foot measured from reformes point)

- 97/36.3M1 1107d Mitchall In Childrehus Valley; 0.6 mile east and 0.9 mile north of well 1711; cribbed pla under imma pite trip d. Palaments point top of eachbring at ground surface, at elevation 4,222 gast. 11.8/50, 12.3; 12/4/51, 6.3; 10/28/52, 10.9; 4/3/53, 10.5; 4/29/54, 10.3.
- FIGURE 1511 S. J. Curtin in Chilurana Vallag: 2.5 miles seet of intermedian of Chihushus Vallag Road and and there is Cymr Truck Trail (messaged slong Chibushus Vallag Road); 450 fast east of dirt road and 150 fast routh of passer line; open casaing. Reference point top of casing 0.5 foot shows ground surising at element 4,435 fast. 4/23/53, 43.1s 11/9/53, 44.43 4/23/54, 43.6.
- 95/38-1591 S. J. turrin No Chimahus Tulker: 0.3 mile south of/15%1 and 350 feet west of dirt road; open rawing: outside ratorshot. Beforence print top of concerts casing 1.5 feet above ground surface, at wheretim 4.370 feet. 4/73/53. 29.8: 11/9/53. 31.4: 4/23/59. 29.7.
- 97/1E-1581 S. J. Gurrina In Chihushua Wallors 150 feet east out 50 feet north of well-1582; outside watershed. Reference point (a) pump bees 2.5 feet above ground surface, at elevation 4,391.5 feet (4/23/53 and 11/9/53); (b) top of easing at ground surface, at elevation 4,389 feet (4/23/54). 4/23/53, 19.4: 11/9/53, 19.4: 4/23/54, 16.8.
- 98/3E-15Rd S. J. Furtis In Chirakhua Valleys 2.6 miles east of intersection of Chihachua Valley Road and Puwata to Count Truck Washi (measured along Chihachua Valley Road); 450 feet morthwest of house out-side watershed. Reference point pump been 2.5 feet above ground surface. 4/23/53, 17.5.
- 98/3E-16Al May C. Jankana In Chihuchua Wallong at mindmill 500 feet north and 100 feet west of well 16dl. Reference point top of pipe clumps 2 feet above ground surface, at elevation 4,276 feet. 19/9/51, 32-4: 4/23/54, 32-8.
- 45/35-16A2 Roy C. Jackrous In Chiluplans Valley; 1.2 wiles seet of intersection of Chikuahua Valley Read and C.35 wile north of Chifrontes walley Road; 190 foot southwast of home. Hefersness point top of easing C.5 foot above ground surface, on elements 4.288 south 10/28/57, 25.0; 4/23/53, 27.3; 11/9/53, 28.4; 4/23/54, 27.8.
- 95/38-1684 Herriot B. Curr In Chibrotum Mclings 1.0 mile east and 0.35 mile north of intersection of Chibrotum Walley Road and Russes La Cruz Truck Trails MOD feet east and 30 feet north of house. Reference point top of musium 1.0 feet above ground surface, at above in 1,646 feet. 12/8/50, 5.0; 1.1/4/51, 6.0; 10/18/52, 5.1; 4/1/52, 5.8; 4/23/54, 4.4.
- 55/9E-16B2 Marriah B. Chr. In Chimmina Tellog: 50 feet enribeest of well 25B1. Reference peint top of wetil cover 1 fort above ground surface, of elevation 4,242 feet. 12/4/51, 6: 10/28/52, 6.9: 4/23/53, 4.7: 11/9/53, 6.8: 4/23/54, 4.3.
- 95/32-1671 6. Thranson In Skilanias Tellog: 0.85 mile seat and 0.15 mile north of intersection of Thilashua Mallag Road and Runner be Caus Tenek Teril: 50 feet west of house. Reference point tep of desire I fold above ground surface. 4/23/53, 10.5 (owner): 11/9/53, 11.5 (cener).
- 95/36-3641 4. B. Tobin in Chilamana Valley: La miles seek and 0.15 mile south of intersection of Chilashus Valley Road and Fuesta in True Truek Trail; 50 feet east of house. Reference point ground context. 11:9/53. 15 (camer).
- 98/38-3700 L. M. Orley In Thimmelms Walleys W.4 mile north and 200 feet west of intersestion of Childraton Villey Road and Purets La Prus Truck Mosils 150 feet month of hours. Reference point top of earing 5.6 feet store ground surface, at stored on 4,20 feet. 4/23/53, 36.1; 4/23/54, 27.4.
- 95/39-1753 Antidor In Childreduc Vailer; 500 feet wort and 200 feet south of intersection of Chihushua Valley Rose and Popula is from Truck track; 10 feet west of house. Reference point top of casing 0.4 to topour group and remarks, \$423/53, 39.1.

(Peorhs to water in feet measured from reference point)

- 8S/1W-6B1 Vail Company In Panba Valley: map location only, see location of walls plate. Reference point top of pipe at ground surface, at elevation 1,293.03 feet. Note: Measurements from Vail Company records. 12/30/26, W6.7; 1/1/27, 67.6; 1/31,27, 71.6; 3/8/27, 65.2; 1/4/27, 58.6; 4/30/27, 56.2; 5/28/27, 55.1; 7/2/27, 55.5; 7/28/27, 55.5; 8/27/27, 56.1; 10/6/27, 69.6.
- 88/2W-2J1 Vail Company Near Temecula; map location only, see location of wells plate; test hole.

 Reference point (a) top of pips at ground surface, at elevation 1,247.92 feet (1/7/27 through 1/20/27); (b) new reference point not described 0.1 feet above ground surface, at elevation 1,248.05 feet (2/3/27 to end of record). Note: Measurements from Vail Company records. 1/7/27, 94.1; 1/20/27, 95.8; 1/20/27, 101.6 (bailed out), 2/3/27, 101.7; 3/9/27, 101.5; 4/5/27, 101.5; 5/7/27, 101.6; 6/4/27, 101.6; 7/4/27, 101.6; 8/6/27. 101.5; 5/9/27, 101.3;
- 8S/2W-3K1 Verl Company Near Temesula; map invation only, see location of valls plate; test hole.

 Reference point top of pipe at ground surface, at elevation 1,263.12 feet. Note: Measurements from Vail Company records. 1/5/27, 125 (log); 1/9/27, 123.5; 3/10/27, 123.4; 3/5/27, 123.2; 4/5/27, 123.2; 5/7/27, 123.2; 6/4/27, 123.3; 7/4/27, 123.3; 8/6/27, 123.2; 9/19/27, 123.3.
- 8S/2W-11H1 Vail Company In Pauba Valley; U.2 mile northwest of well 1201; at windmill 60 feet northeast of fence. Reference point top of casing 1.5 fest above ground surface, at elevation 1,182 feet. 1/15/52, 36.2; 5/15/53, 36.9; 7/3/53, 31.8; 3/6/53, 31.0; 1/3/53, 29.4; 10/8/53, 29.5; 11/20/53, 25.4; 1/7/54, 27.6; 1/24/54, 27.6; 3/30/54, 28.1; 4/23/54, 28.1.
- 88/2W-11J1 Vail Company In Pauba Valloy; 0.5 mile northeast of Highway 71 (measured along dirt read extension of Highway 71); 500 feet increments of dirt read and 50 feet southwest of fence line. Reference point top of easing 0.5 foot above ground surface, at elevation 1;181 feet. Note: Measurements from Vail Compeny records, except as indicated. 67/44, 13.6; 6/28/41, 14.7; 7/30/41, 14.6; 8/31/41, 14.9; 9/27/41, 15.0; 10/31/41, 14.9; 12/25/41, 14.7; 1/1/42, 14.2; 1/28/42, 13.7; 2/28/42, 13.5; 3/30/42, 13.3; 4/29/42, 15.3; 2/1/45, 14.3; 17/20/42, 14.5; 8/31/42, 14.8; 9/36/42, 15.0; 10/29/42, 15.0; 11/30/42, 15.2; 12/31/42, 15.3; 2/1/45, 14.3; 2/27/45, 14.5; 8/31/42, 14.8; 9/36/42, 15.0; 10/29/42, 15.0; 11/30/42, 15.2; 12/31/42, 15.3; 2/1/45, 14.3; 2/27/45, 14.5; 8/31/43, 14.6; 11/20/43, 15.0; 12/30/43, 15.0; 1/31/44, 15.1; 2/29/44, 14.2; 8/33/44, 14.5; 9/30/44, 15.3; 10/30/43, 14.6; 11/20/43, 15.0; 12/30/43, 15.0; 1/31/44, 15.1; 2/29/44, 14.6; 3/31/44, 14.6; 5/31/44, 14.6; 5/31/44, 15.1; 11/30/44, 15.3; 11/30/44, 15.4; 12/30/44, 15.5; 12/31/44, 14.6; 6/31/45, 14.6; 6/31/45, 15.5; 9/21/45, 15.5; 9/21/45, 15.0; 10/25/45, 15.7; 13/26/45, 15.6; 12/31/45, 15.7; 13/046, 15.6; 2/27/46, 15.6; 4/24/46, 15.5; 5/37/46, 16.6; 7/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 12/31/46, 16.6; 19/30/46, 15.6; 11/20/48, 11.1/2
- 8S/2W-11J2 Vail Company In Fauba Valley; 1,000 fest southeast of well lid; open casing. Reference point top of casing at ground surfece, at elevation 1.182.32 feet. Note: Messurements from Vail Company records, except as indicated. 7/28/25, 17.5, 9/3/25, 19.1; 10/1/25, 19.3; 12/4/25, 16.8; 1/2/26, 16.7; 1/29/26, 17.2; 2/27/26, 18.5; 3/31/26, 19.5; 4/30/26, 17.6; 6/2/26, 18.2; 6/30/26, 18.3; 7/28/26, 18.7; 9/2/26, 18.9; 9/30/26, 15.0; 11/1/26, 18.5; 11/29/26, 16.9; 1/2/7, 16.4; 2/2/27, 16.5; 3/3/27, 14.5; 4/4/27, 13.8; 4/30/27, 14.6; 5/28/27, 15.7; 7/2/27, 16.2; 7/30/27, 16.7; 9/3/27, 17.1; 10/8/27, 17.4; 4/8/48, 19.3; 4/29/48, 19.5; 5/20/48, 19.5; 1/3/53, 31.5; 3/2/53, 31.5; 3/2/53, 32.0; 4/1/53, 32.4; 5/1/53, 32.6; 11/20/53, dry (DWR); 1/14/54, dry (DWR); 4/23/54, dry (DWR).
- 8S/2W-11J4 Vail Company In Pauba Valley; 50 feet east of wall 11dl. Reference point ground surface. 5/40, 12.4 (log).
- 8S/2W-1111 Vail Company In Parba Valley; U.S mile northwest of Highway 71 and Temsoula Creek erosting (measured along Highway 71); 2C feet northwest of intersection of Highway 71 and dirt read extension of Highway 71. Reference point top of casing 1 foot above ground swrften, at elevation 1,163 feet. Note: Measurements from Vail Company records. 7/23/52, 25.0; 9/2/52, 26.8; 11/23/52, 27.2; 12/1/52, 26.4; 1/2/53, 25.7; 2/9/53, 26.2; 3/2/53, 26.2; 4/17/53, 26.9; 7/21/53, 27.6; 8/5/53, 27.6; 5/1/53, 25.4; 10/1/53, 25.7; 11/2/53, 29.2; 12/4/53, 24.6; 1/2/54, 25.4; 2/1/54, 26.0; 3/20/54, 24.8; 4/1/54, 24.1; 5/31/54, 24.9; 6/15/54, 24.7; 7/17/54, 24.3; 8/31/54, 24.6; 3/30/54, 24.2; 10/30/54, 25.3; 11/30/54, 23.6; 12/18/54, 23.5; 1/31/55, 23.6; 2/12/55, 23.8; 3/5/55, 24.3.

(Depths to water in feet managed from reference point)

85/2W-12F1 - Tail Company - In Phuba Velley: man location only, son location of wells plate. Reference point - top of pipe at ground surface, at elevation 1,201.46 feet. Note: Messurements from Veil Company resords: 3/5/27, 14-7; 4/4/27, 18-8; 5/7/27, 19-5; 6/4/27, 15-5; 7/4/27, 16-2; 8/6/27, 17-0-9/10/27, 17-6: 10/6/27, 18-3:

88/2w-1241 - Mail Company - In Paulo Melings L.M units morthwest of will 1113, at windutil 0.25 mile southwests at elements product - top of ulto in conserve reside 1.22 feet above ground surface, at elements in 1.215.22 feet. New: Heautheestate from Well Company records, except as indicated. 8/5/20, 3.9; 9/6/20, 4.9; 16/12/20, 6.0; 11/26/20, 5.1; 12/6/20, 8.2; 12/2/3, 8.6; 2/20/21, 9.4; 10/22/3, 11.6; 9/6/22, 11.0; 16/22, 12.0; 16/20, 8.2; 12/2/3, 8.6; 2/20/21, 9.4; 10/22/3, 3.9; 2/19/23, 0.6; 1/21/23, 5.6; 2/30/23, 11.0; 16/20, 8.2; 17/23, 1.0; 17/22, 1.0; 17/22, 1.1; 17/22, 1.0; 17/22

DECENSES FOR CHOIND WATER, AT WITTER IN HITTERINAPHIE INTO HIS. &

(Depths රාග පෙරහා සහ විශාව කොහොත් විශාක පෘථිත කාල po2ක්) (සහාරවාගයක්)

- 88/2W-12K1 Vail Company In Parion Walley, 1,1N first worthwest of well 12F1. Federals point top of easing 0.6 foot above ground stuffer, it direct in 1,277 feat. Note: Marcussments from Vail Company resords, except so indicates. 1,12/1/19, 20.5 (1.28), 6,7 his, here; 6/10/41, 15.23, 7/31/41, 16.23, 8/30/41, 15.65, 9/30/41, 16.93, 10/51/41, 15.55, 11/19/41, 14.93, 12/1/42, 12.03, 1/27/43, 12.23, 12/28/42, 10.61, 3/30/42, 11.33, 14/27/42, 10.61, 3/31/43, 16.33, 11/30/42, 16.03, 1/27/43, 17.55, 2/1/43, 19.73, 2/27/43, 11.73, 3/31/43, 10.67, 1/23/42, 10.63, 3/24/43, 16.63, 9/30/43, 16.63, 10/18/43, 16.43, 11/30/43, 17.64, 12/50/43, 10.63, 1/21/44, 18.63, 12/29/44, 13.63, 9/30/44, 18.63, 10/18/43, 16.43, 11/30/43, 17.64, 12/51/44, 13.63, 9/30/44, 18.63, 10/18/43, 18.63, 11/30/44, 13.63, 9/30/44, 18.63, 10/18/44, 13.63, 9/30/44, 18.63, 10/18/44, 13.63, 9/30/44, 18.63, 10/18/45, 16.63, 9/29/45, 19.03, 10/23/45, 17.73, 2/26/45, 17.63, 3/30/45, 13.63, 11/30/46, 13.64, 11/30/49, 30.03, 4/30/
- 8S/2W-15C1 Vail Company In Pauba Valley: 0.) mile northeast of well 15D1; arterian well 300 feet northwest of Highway 71. Reference point (a) pressure gage 0.8) foot shows ground surface, at elevation 1,116.83 feet. (b) pressure gage 2.0 feet above ground surface, at elevation 1,118.0 feet (1/14/54 only). Note: Measurements from Fall Company records, except as indicated. Measurements represent pressure heads in feet above reference points. 12/15, flowing (V.S.G.S., W.S.P. 429); 1/19/26, -6.2; 3/18/26, -6.1; 4/19/26, -7.9; 10/12/27, -10.3; 1/14/34, -1 (DWR).
- 8S/2W-15D1 Wail Company In Paulo Mailler; 0.9 and to now the authorized in of Angliway 71 and road to reach headquestess; 50 feet was a of Highway 71. Reference point (a) top of saving at 1.093 feet (5/15/53 only); (b) Not repeated. More Measurements from Wall Company records, except as indicated, 5/15/53, 2.2 (2WE) 3/4/55, 6.2; 5/2/59, 5/8; 24/1/53, 3/6; 11/2/53, 3/4; 10/4/53, 5/3; 2/1/54, 6; 3/20/54, 8; 4/1/54, 6; 6/22/54, 5/6.
- 88/2W-16Al Vail Company In fauls valler; for allo northwest of well 1908; artists well 300 feat southwest of feed mill. Reference point (x) pressure gag (3.5 feet above ground states, at elevation 1,105.55 feet; (b) pressure gags + feet above ground states, or elevation 1,201.6 feet (1/14/54 only). Note: Measurements from Vail Company records, except at indicated. Measurements represent pressure heads in feet above the reference points. 1/19/26, -12.0; 3/18/26, -17.0; 4/17/26, -13.0; 10/11/27, -15.4; 1/14/54, -17 (DWR).
- 85/2W-16G1 Vail Company In Poubs Validar, 0.45 mile southeast of well 15D1, artesian well 600 feet southeast of Highway 71. Reference point a) produce gogs 5.8 feet above ground surface at elevation 1,087.80 feet; (b) pressure gogs 1 food above ground surface, at elevation 1,079.0 feet (1/14/54 only). Note: Measurements from Vail Company resords, amount as indicated. Measurements represent pressure heads in feet above reference point. 1/18/16, -9.5; 3/16/26, -10.1; 1/19/26. -16.9; 10/11/27, -9.3; 1/14/54, -8 (DMR).
- 88/2W-17F1 Vail Company In Pauba Wallage map location only, ess location of walter pluss. Reference point top of pipe at ground surface, at elemented 1,356.70 feet. 1/27/27, 36.3; 1/27/27, 39.7 (brilled out); 1/1/27, 37.8; 1/18/27, 16.8; 2/19/27, 30.7; 3/18/27, 31.6; 5/21/27, 31.9; 6/27/21, 33.3; 7/29/27, 33.3; 3/30/27, 33.6; 3/19/27, 33.7.
- 85/2W-1761 Vail Company In Peace Vaile, 5 C.A attraction of renon headquirelens; escartan eact at north company at reservoir. Reference bother (a) pressure gags, we electron 1,061.44 feace; (b) pressure gage 1 foot above ground surface, at aleration 1,066 feat (1/14/54 only). Note: Measurements from Well Company records, except as indicated. Measurements represent pressure needs in feet above reference points. 3/31/46, -18.45 (1/14/54, -1 (PWR)).

(Depths to water in feet measured from reference point) (continued)

- 85/2W-17M1 Vail Company In Pauba Valley; 0.8 mile southwest of intersection of Highway 71 and road to ranch headquarters; artesian well 500 feet northwest of Highway 71 at north end of reservoir.

 Reference point pressure gage 2 feet above ground surface, at elevation 1,052 feet. Measurement represents pressure head in feet above reference point. 5/15/53, -7; 1/14/54, flowing; 4/23/54, flowing.
- 8S/2W-17Q1 Vail Company In Pauba Valley; map location only; see location of wells plate. Reference point top of casing 1.60 feet above ground surface, at elevation 1,041.30 feet. Note: Measurements from Vail Company records. 8/16/25, 7.4; 9/3/25, 8.0; 10/1/25, 8.0; 11/6/25, 6.7; 12/4/25, 6.1; 1/2/26, 6.5; 2/5/26, 6.0; 3/5/26, 6.4; 3/31/26, 6.5; 5/15/26, 6.3; 6/10/26, 6.7; 7/8/26, 7.7; 8/13/26, 8.4; 9/7/26, 8.5; 10/7/26, 7.4; 11/1, 6.8; 12/7/26, 6.2; 1/2/27, 6.1; 2/10/27, 6.0; 3/8/27, 7.5; 4/9/27, 8.2 4/30/27, 8.3; 6/4/27, 8.6; 7/2/27, 9.2; 7/30/27, 9.3; 9/3/27, 9.6; 10/1/27, 9.2.
- 8S/2W-18M1 Vail Company In Pauba Valley; map location only; see location of wells plate. Reference point top of pipe at ground surface, at elevation 1,028.24 feet. Note: Measurements from Vail Company records. 1/19/27, 34 (log); 1/20/27, 30.8; 3/8/27, 31.5; 4/4/27, 31.4; 4/30/27, 31.4.
- 8S/2W-18N1 Vail Company In Pauba Valley; map location only; see location of wells plate. Reference point top of pipe at ground surface, at elevation 1,023.84 feet. Note: Measurements from Vail Company records. 1/14/27, 45 (log); 4/4/27, 44.4; 4/30/27, 44.7.
- 85/2W-18N2 Vail Company In Pauba Valley; map location only; see location of wells plate. Reference point top of pipe at ground surface, at elevation 988.11 feet. 3/16/27, 7.0; 4/4/27, 8.2; 4/30/27, 9.2.
- 8S/2W-18R1 Vail Company In Pauba Valley; map location only; see location of wells plate. Reference point top of pipe at ground surface, at elevation 1,029.38 feet. 2/24/27, 19.4; 3/29/27, 19.6; 4/30/27, 19.8.
- 8S/2W-19J1 Little Temocula School District In Wolf Valley; map location only; see location of wells plate. Reference point top of casing 0.8 feet above ground surface, at elevation 1,032.91 feet. Note: Measurements from Vail Company records. 5/17/21, 24.2 (log); 1/21/25, 23.7; 2/2/25, 23.9; 2/28/25, 23.6; 3/26/25, 23.5; 5/3/25, 23.6; 5/29/25, 23.3; 7/2/25, 26.2; 7/30/25, 24.4; 9/3/25, 24.5; 10/1/25, 24.4; 10/31/25, 24.6; 12/4/25, 24.0; 1/2/26, 24.2; 1/29/26, 24.5; 3/5/26, 24.5; 3/31/26, 24.7; 4/30/26, 24.8; 5/30/26, 24.3; 6/30/26, 24.6; 7/28/26, 24.8; 9/2/26, 24.9; 9/29/26, 24.5; 11/1/26, 24.8; 12/7/26, 24.7; 1/2/27, 24.7; 2/4/27, 24.9; 2/24/27, 23.8; 3/28/27, 24.2; 5/3/27, 24.3; 6/21/27, 24.5; 7/8/27, 24.6; 7/28/27, 24.6; 9/26/27, 24.2.
- 8S/2W-2OB1 ~ Vail Company In Pauba Valley; 0.7 mile northeast of Pala-Temeoula Road (measured elong dirt road) from intersection 0.8 mile southeast of intersection of Highway 79 and Pala Temeoula Road (measured along Pala Temeoula Road); at base of cliff in pit containing three wells. Reference point top of casing, at elevation 1,040 feet. 3/3/53, 8.50; 5/15/53, 9.64 (pumping).
- 8S/2W-20B2 Vail Company In Pauba Valley; 2 feet southerly of well 20Bl. Reference point top of oasing, at elevation 1,040 feet. 4/17/19, flowing (log); 5/15/53, 9.56; 4/23/54, 6.76.
- 8S/2W-20B3 Vail Company In Pauba Valley; 4 feet southerly of well 20Bl. Reference point top of casing, at elevation 1,040 feet. 3/3/53, 8.1; 5/15/53, 9.32.
- 8S/2W-20B4 Vail Company In Pauba Valley; 60 feet southeast of well 20B1. Reference point top of casing 0.5 foot above ground surface, at elevation 1,342 feet. 4/23/54, 9.8.
- 8S/2W-20C1 Vail Company In Pauba Valley; 600 feet southwest of well 20Bl. Reference point top of casing 0.5 foot above ground surface, at elevation 1,032 feet. 11/20/53, 6.5; 1/4/54, 12 (log); 4/23/54, 8.8.
- 85/2W-2002 Vail Company In Pauba Valley; 150 feet southeast of well 2001. Reference point top of casing 2 feet above ground surface, at elevation 1,032 feet. 11/20/53, 9.8.
- 8S/2W-20E1 Vail Company In Wolf Valley; 0.3 mile southwast of well 20C1; 200 feet northwest and 150 feet northwast of intersection of ranch roads. Reference point top of casing 0.82 foot above ground surface, at elevation 1,027.82 feet. Note: Measurements from Vail Company records, except as indicated. 12/23/24, 11.4; 1/8/25, 11.0; 1/21/25, 11.6; 2/9/25, 11.8; 3/26/25, 16.9; 5/3/25, 11.6; 7/11/25, 10.8; 8/12/25, 12.1; 9/11/25, 12.2; 10/21/25, 11.8; 11/28/25, 11.8; 12/27/25, 12.0; 2/5/26, 12.4; 2/27/26, 13.6; 3/31/26, 12.4; 4/30/26, 11.9; 5/30/26, 12.5; 6/30/26, 14.0; 7/28/26, 13.1; 9/9/26, 13.9; 10/8/26, 13.1; 11/1/26, 13.0; 12/22/ 26, 13.0; 2/4/27, 13.1; 3/9/27, 11.8; 4/6/27, 12.3; 5/1/27, 12.5; 6/21/27, 12.7; 7/28/27, 12.9; 8/26/27, 12.3; 9/26/27, 12.7; 6/2/41, 8.2; 6/30/41, 9.5; 7/31/41, 13.1; 8/31/41, 10.1; 9/30/41, 9.6; 10/31/41, 8.4; 11/29/41, 9.9; 1/1/42, 8.1; 1/31/42, 9.9; 2/28/42, 9.1; 3/27/42, 8.2; 4/29/42, 8.5; 5/29/42, 9.1; 6/29/42, 8.4; 7/31/42, 13.8; 8/31/43, 10.4; 9/30/42, 12.1; 10/31/42, 8.8; 11/30/42, 9.1; 12/31/42, 8.7, 2/1/43, 7.8; 2/27/43, 8.0; 3/31/3, 8.0;

(Depths to water in feet measures from reference point) (sontinued)

- 85/2W-20E1 (continued) 4/30/43, 8.0; 5/31/43, 8.1; 6/50/49, 11.2; 7/31/43, 13.0; 8/31/49, 9.5; 9/30/43, 10.1; 10/30/43, 8.5; 11/30/43, 8.4; 12/30/43, 8.1; 1/32/44, 8.4; 2/5/44, 7.7; 3/30/44, 8.2; 4/28/44, 8.4; 5/31/44, 8.6; 6/30/44, 9.6; 7/31/44, 8.9; 8/31/44, 8.9; 9/30/44, 8.9; 10/31/44, 8.2; 11/30/44, 8.8; 12/30/44, 9.6; 7/31/45, 9.2; 2/27/45, 9.2; 3/31/45, 9.1; 4/30/45, 9.4; 5/31/45, 9.6; 6/30/45, 9.7; 7/31/45, 9.9; 8/31/45, 9.9; 9/31/45, 10.1; 10/30/45, 10.1; 11/30/45, 10.0; 12/31/45, 9.7; 1/30/46, 10.1; 2/27/46, 10.2; 3/30/46, 10.2; 4/30/46, 10.3; 5/31/46, 10.5; 6/29/46, 10.7; 7/29/46, 10.5; 8/31/46, 11.6; 9/30/46, 10.7; 10/31/46, 10.6; 11/30/46, 10.5; 12/31/46, 10.6; 1/31/47, 10.6; 2/26/47, 11.0; 3/31/47, 10.7; 4/30/47, 12.0; 5/31/47, 11.4; 6/30/47, 11.0; 7/31/47, 10.6; 2/26/47, 10.0; 3/31/47, 4.9; 10/31/47, 11.0; 5/31/47, 11.0; 6/30/47, 11.0; 7/31/46, 5.3; 5/31/48, 5.8; 6/26/48, 5.0; 7/36/48, 5.3; 8/31/48, 9.0; 9/30/48, 5.3; 10/31/47, 5.1; 11/29/47, 8.8; 1/31/48, 7.3; 2/28/48, 14.3; 3/31/48, 9.0; 9/30/48, 5.3; 10/31/48, 13.5; 5/31/48, 5.1; 1/31/49, 5.1; 2/28/49, 5.3; 8/31/48, 9.0; 9/30/48, 5.3; 10/30/49, 6.2; 11/30/48, 6.2; 12/31/48, 5.1; 1/31/49, 5.1; 2/28/49, 5.4; 3/31/49, 6.0; 4/30/49, 6.3; 11/30/49, 6.2; 8/31/49, 5.4; 2/28/49, 5.4; 3/31/49, 6.0; 11/28/49, 6.3; 11/30/49, 10.3; 11/30/49, 6.2; 12/31/49, 6.2; 8/31/49, 6.5; 9/30/49, 5.4; 10/31/49, 6.0; 11/30/49, 6.3; 11/30/49, 6.2; 8/31/49, 5.3; 8/31/49, 6.0; 11/30/49, 6.3; 11/30/49, 6.3; 8/31/50, 15.4; 8/27/50, 15.5; 8/37/50, 15.3; 6/30/50, 15.2; 7/31/50, 15.4; 8/27/50, 15.3; 9/30/50, 15.2; 10/31/50, 15.4; 1/31/50, 15.4; 8/27/50, 15.5; 9/30/49, 5.6; 10/31/50, 14.6; 4/29/50, 8.5; 5/32/50, 15.3; 12/30/50, 15.3; 1/24/51, 16.6; 10/31/51, 16.2; 10/31/51, 16.3; 11/5/51, 16.3; 11/30/51, 16.3; 10/31/52, 15.3; 4/4/51, 16.6; 10/31/51, 16.3; 10/31/50, 15.3; 3/31/52, 16.4; 10/31/51, 16.3; 6/30/52, 14.5; 7/3/51, 16.6; 10/31/51, 5/3; 2/29/52, 15.5; 3/31/52, 10.3; 3/30/51, 16.4; 10/31/51, 6/30/52, 5/31, 10/31/51, 6/30/52, 7.9; 9/30/52, 5.3; 10/31/53, 7.8; 11/30/54, 6
- 8\$/2W-20L1 Vail Company In Welf Velley; 800 feet northeast of Pala-Temsorie Road and 1.2 miles southeast of intersection of Highway 71 and Pela-Temsorie Road; in field at old winimili frams; open casing covered by barrel. Reference point top of cosing at ground surface, at elevation 1,053 feet. Note: Measurements from Vail Company records, except as indicated. 6/2/41, 30.6; 6/28/41, 30.7; 7/17/41, 31.2; 8/31/41, 31.4; 9/30/41, 31.9; 10/31/41, 30.7; 11/29/81, 30.6; 1/1/42, 30.1; 1/31/42, 30.4; 2/28/42, 30.4; 3/31/42, 30.4; 4/30/42, 30.5; 5/30/42, 31.4; 6/30/42, 30.9; 7/21/42, 33.2; 8/31/42, 32.6; 9/30/42, 30.4; 10/31/42, 31.4; 11/30/42, 31.4; 12/31/42, 31.2; 2/1/43, 30.0; 2/27/43, 30.9; 3/31/43, 30.4; 4/30/43, 30.4; 5/31/43, 30.5; 6/30/43, 30.4; 7/20/43, 32.3; 8/31/43, 32.0; 9/30/43, 32.3; 10/30/43, 30.6; 11/30/43, 30.6; 12/30/43, 30.4; 1/31/44, 30.4; 2/29/44, 29.9; 3/31/44, 30.6; 4/28/44, 31.0; 11/30/43, 30.6; 12/30/43, 30.6; 1/31/44, 31.0; 8/31/44, 31.0; 9/28/44, 31.1; 10/26/44, 90.8; 12/2/44; 30.8; 12/21/44, 31.0; 1/24/51, 38.5 (DWH); 11/4/53, 39.8 (DWR); 4/23/54, 38.3 (DWR).
- 8S/2W-21G1 Vail Company Near Paule Valley; map location only, see location of wells plate; Reference point - top of pips at ground surface, at elevation 1,099.57 float. Note: Massurements from Vail Company records. 1/9/37, 52.2; 2/2/27, 62.3; 2/25/27, 62.6; 4/6/27, 60.8; 5/1/27, 60.3; 6/4/27, 60.5; 7/2/27, 60.6; 7/30/27, 61.3; 8/30/27, 61.2; 9/13/27, 62.6.
- 88/2W-22L1 E. S. Gardner Southeast of Parca Valley: 3.05 miles northerly of surfaced road (measured along dirt read) from intersection 0.1 mile west of San Gabriel (Poshings Indian Reservation) Church; at windmill 300 fest north of dirt road. Authorities points top of taking C.8 foot above ground surface, at chewation 1,190 fests. 3/53, 103.9; 5/20/53, 93.9; 11/20/53, 96.6; 4/23/54, 96.2.
- 85/2W-26N1 Peohanga Englan Reservation On Peohanga Indian Reservation; 0.9 mile east of San Gabriel Church; at windmill 50 feet west of read. Reference point top of easting 2.5 feet above ground surface, at elevation 1,297 feet (becomesorie leval). 11/20/39, 10 (log); 1/29/51, 66.8; 3/7/51, 60.3; 4/4/51, 58; 5/7/51, 59; 7/3/51, 64: 7/38/51, 55; 9/4/51, 60; 16/2/51, 61; 11/5/51, 62.0; 1/2/52, 59; 11/20/53, 41.8; 4/23/54, 39.9.
- 85/2W-27E1 F. A. Cascara On Pesnange Indian Reservations 0.8 Edit northerly of surland read (measured along dirt read) from incorrection 0.1 mile west of San Cabriel Charch; 200 fost east of dirt read. Reference point top of easing 1 foots above ground surface, at elevation 1,060 feet. 5/20/53, 41.5.
- 8S/2W-28C1 Vail Company 15. Well Valley; 2.1 miles southwart of the expectation of Highway 71 and Pala-Temerula Road and 0.3 mile northeast of Pala-Temerula Road; in vilup of trave in open field. Reference point hole in saving asser 1.3 feet so we grown astrone, as elevation 1,130.31 feet. Note: Messurements from Vail Company resords, except as indicated. 1/16/25, 81.3; 2/2/25, 81.4; 3/13/25, 87.2; 4/10/25, 83.4; 5/3/15, d2.6; 6/16/35, 82.9; 7/9/25, 83.1; 8/13/25, 83.4; 9/20/25, 33.7; 10/9/25, 86.0; 11/15/25, 84.6; 12/18/15, 34.7; 1/9/26, 85.6; 2/5/26, 85.4; 3/12/26, 85.8; 4/15/26, d6.1; 5/15/26, 56.4; 6/17/26, 86.6; 7/25/26, 37.3; 8/26/26, 87.1; 9/29/26, 67.3; 11/1/26, 87.5; 12/7/36, 57.5; 1/10/27, 88.0; 14/27, 88.0; 3/11/27, 88.2;

(Digths to water in fest measured from reference point) (sontimed)

- 85/2W-28Cl (scritinged) 4/6/27, 87.5; 5/9/27, 86.6; 6/21/27, 85.9; 7/28/27, 85.5; 8/26/27, 85.2; 9/26/27, 85.0; 12/10/36, 97.9; 12/23/39, 70.66; 3/5/42, 71.02; 10/31/42, 71.04; 12/5/42, 71.06; 1/2/43, 71.08; 3/11/43, 72.0; 3/30/43, 71.08; 5/26/43, 71.04; 7/2/43, 71.04; 8/31/43, 71.04; 10/6/43, 71.5; 11/10/43, 71.5; 12/23/43, 71.02; 2/3/44, 72.03; 5/23/44, 72.03; 5/23/44, 72.03; 7/11/44, 73.2; 7/26/44, 73.3; 8/11/44, 73.3; 8/31/44, 73.6; 9/28/44, 73.08; 10/26/44, 74.03; 12/2/44, 74.04; 12/21/44, 74.06; 6/11/48, 88.1; 8/25/48, 89.2; 9/21/48, 89.7; 10/26/48, 90.2; 11/23/40, 90.7; 12/30/48, 91.5; 2/8/49, 91.8; 3/11/49, 92.3; 4/7/49, 92.7; 5/18/49, 93.4; 6/28/49, 94.0; 8/10/49, 90.6; 9/28/49, 95.3; 11/2/49, 95.8; 12/29/49, 96.5; 1/31/50, 96.9; 2/28/50, 97.2; 3/30/50, 97.6; 4/28/50, 97.0; 6/9/50, 98.2; 7/21/50, 96.7; 8/29/50, 99.1; 9/29/50, 99.3; 10/31/50, 99.6; 11/29/50, 99.9; 12/30/50, 100.1; 1/31/51, 100.04; 2/28/51, 100.06; 3/31/51, 100.08; 4/30/51, 101.1; 5/31/51, 101.3; 6/29/51, 101.6; 7/31/51, 101.6; 8/30/51, 101.7; 9/28/51, 101.9; 10/31/51, 102.01; 11/30/51, 102.01; 1/4/52, 102.06; 1/31/52, 102.08; 2/29/52, 103.0; 4/1/52, 103.1; 5/1/52, 103.2; 5/29/52, 103.0; 6/30/52, 102.7; 7/30/52, 102.4; 9/3/52, 102.01; 9/30/52, 102.01; 1/31/53, 100.02; 7/2/53, 99.9; 7/31/53, 99.7; 9/1/53, 99.6; 10/2/53, 99.6; 11/2
- 85/2W-28Kl Vail Company In Wolf Valley; map location only, see location of wells plate. Reference point top of pipe at ground surface, at elevation 1,154.37 feet. Note: Measurements from Vail Company records. 2/2/27, 76.6; 3/9/27, 93.9; 4/6/27, 96.6; 4/25/27, 89.3; 5/1/27, 89.3.
- 8S/2W-28M1 E. S. Gardner In Wolf Valley; O.1 mile southwest of Pala-Temecula Road (measured along dirt read) from intersection 2.7 miles southeast of intersection of Highway 71 and Pala-Temecula Road; 200 feet northwest of dirt road. Hererence point top of casing 4 feet above ground surface, at elevation 1,130 feet. 6/5/53, 76.5; 11/20/53, 79.5; 4/33/54, 79.2.
- 85/2W-29C1 Simonelli In Wolf Valley; 1.7 miles southeast of intersection of Pala-Temesula Road and Highway 71, 550 feet southwest of Pala-Temesula Road; 120 feet northwest of northwestern boundary of Pechanga Indian Reservation. Reference point top of casing 0.9 feet above ground surface at elevation 1,070.87 feet. 5/27/53, 4.0; 11/20/53, 6.8; 4/23/54, 7.0.
- 85/2W-29Fl Pechangs Indian Reservation On Pechangs Indian Reservation; map location only, see location of walls plate; open casing. Reference point ground surface, at elevation 1,092 feet. 1/29/40, 24 (log).
- 88/20-2961 Perhonge Indian Reservation On Pachenge Indian Reservation; 2.0 miles southeast of intersection of Highway 71 and Pala-Temocula Road and C.1 mile routhwest of Pala-Temocula Road; at winduill near water tank. Reference point (a) description not reported 1.28 feat above ground surface, at elevation 1,092.08 feat (11/28/24 through 6/30/26), (b) description not reported 1.52 feat above ground surface, an elevation 1,092.32 feet (7/28/26 through 3/20/26); (c) top of sating 1.55 feat above ground surface, an elevation 1,092.32 feet (7/28/26 through 3/20/26); (c) top of sating 1.55 feat above ground surface, at elevation 1,092.32 feet (10/8/26 through 3/20/26); (c) top of sating 1.55 feat above ground surface, at elevation 1,06/25, 36 to 10/8/26 through 3/20/26, (d) top of sating 1.55 feat above ground surface, at elevation 1,06/25, 36 to 10/8/26 through 3/20/26, (d) top of sating 1.55 feat above ground surface, at elevation 1,06/25, 36 to 10/8/26 through 3/20/26, 41.55 feat (10/8/26 through 3/20/25, 41.51 feat above ground surface, at elevation 1,06/25, 41.55 feat (10/8/26 through 3/20/26, 41.55 feat (10/8/26 through 3/20/25, 41.55 feat (10/8/26 through 3/20/25, 41.55 feat (10/8/26 through 3/20/25, 41.55 feat (10/8/26, 41.55 feat (1
- 85/2W-35G. Southwest of Wolff Velley: Oak mile south of information of Pala-Temesule Road and surfaced road leading of Pechanga Indian Repertation; and 60 fest east of Pala-Temesule Road. Reference point holy in pump base I fort above ground surface, at sincerion 1,160 fest. 5/20/53, 18; 11/20/53, 15:8; 4/23/54, 16:9.
- 85/2W-33G1 Lan Semision Southeast of Well Valls, 300 feet methrest of wall 33G1; 60 feet west of Pala-Temecola Rend and 100 feet south of house - Reference point - top of casing at ground surface, at eleganton 1,160 feet. 5/20/53, 16.5; 4/23/54, 18.7
- 85/2W-33K3 Faultin Southeast of Wolf Valley; 6.9. mais southeast of intersection of Pala-Tersocial Road and confided road heading to Pechanga Indian inservation in smed 140 feet east of Pala-Tersocial Road. Reference point top of plank coset 1 too, above ground surface, at elevation 1,160 feet. 11/20/53, 12.5; 4/23/54, 5.8.

(Depths to water in fest measured from reference point)

- 8S/2W-34B1 Pechanga Indian Reservation In Wolf Valley; map location only, see location of wells plate. Reference point ground surface, at elevation 1.240 feet. 9/25/40, 45 (log).
- 8S/2W-34F1 W. E. Moore In Wolf Valley; 0.5 mile south of surfaced road (measured along dirt road) from intersection 0.2 mile east of San Gabriel Church; in woodshed at base of hill, 100 feet east of dirt road. Reference point pump base 1 foot above ground surface, at elevation 1,259 feet. 5/21/53, 69.0.
- 88/2W-34M1 Dave Garcia On Pechanga Indian Reservation; 0.3 mile south and 0.3 mile west of well 34F1; at windmill 300 feet south of house. Reference point pump base 1 foot above ground surface, at elevation 1,285 feet. 5/20/53, 48.
- 8S/2W-35C1 Pechanga Indian Reservation On Pechanga Indian Reservation; 500 feet southeast of well 26N1; at windmill 100 feet west of house. Reference point top of plank sower at ground surface, at 1,328 feet (barometric level). 1/24/51, 4.7; 11/27/51, 5.5; 11/7/52, 5.6; 5/20/53, 4.7; 11/20/53, 5.5; 4/23/54, 4.1.
- 8S/3W-24Al Vail Company Near Temecula; map location only; see location of wells plate. Reference point top of hole by discherge pipe 4.5 feet above ground surface, at elevation 984.7 feet. 5/6/53, 5.3; 11/10/53, 5.6.
- 8S/3W-24H1 Near Temecula; map location only; see location of wells plate. Reference point top of board cover 1.3 fest above ground surface, at elevation 1,018.70 feet. 5/6/53, 20.7; 11/10/53, 21.8; 4/20/54, 21.0.

(Depths to water in feet messured from reference point)

- 85/2W-30P1 Near Reinbow; 0.6 mile northeast of intersection of Rainbow Canyon Road and Highway 395, 100 feet west of Rainbow Canyon Road. Reference point ground surface, at elegation 1,280 feet. 7/16/53, 10.6.
- 8S/2W-31D1 0. L. Crabtres Near Rainbow; 250 feet northwest of well 3LD2. Reference point top of casing 0.4 foot above ground surface, at elevation 1,201.85 feet. 11/13/52, 15.2; 2/10/53, 12.2; 3/6/53, 12.2; 4/7/53, 12.3; 4/22/53, 12.6; 4/20/54, 5.0.
- 8S/2W-31D2 0. L. Crabtree Near Rainbow; 0.3 mile northeast of intersection of Rainbow Canyon Road and Highway 395 and 250 feet west of Rainbow Canyon Road; 100 feet west and 90 feet south of house. Reference point top of plank cover 0.5 foot above ground surface, at elevation 1,200.36 feet. 6/27/52, 7.3; 4/22/53, 11.8.
- 8S/2W-31E1 0. L. Crabtres Near Rainbow; 0.13 mile north of intersection of Highway 395 and Rainbow Canyon Road and 100 feet east of Highway 395. Reference point top of concrete casing 1.6 feet above ground surface, at elevation 1,185.98 feet. 2/10/53, flowing; 3/6/53, 1.4; 4/7/53, 1.5; 4/22/53, 1.5; 7/9/53, 3.3; 8/6/53, 3.6; 9/8/53, 4.0; 11/14/53, 4.3; 1/7/54, 5.1; 2/8/54, 3.4; 4/2/54, 1.0.
- 8S/3W-7D1 Vail Company Northeast of De Luz; see location of wells plate; at windmill, 60 feet southerly of De Luz Road. Reference point top of wood cover at ground surface, at elevation 1,260 feet. 6/18/54, 10.1.
- 8S/3W-7D2 Vail Company Near Murrista; 320 feet southwest of well 7D1; 250 feet south of house and 6 feet south of wood shed. Reference point top of concrete pit at ground surface, at elevation 1,240 feet. 6/18/54, 4.2.
- 85/3W-8D1 W. H. Saxman Northeast of De Luz; see location of wells plate; 280 feet northwest of metal shed. Reference point top of casing at ground surface, at slewation 1,420 feet. 6/18/54, 9.8.
- 8S/3W-31M1 Charles Sawday North of Fallbrook; see location of wells plate; 150 feet northwest of house. Reference point top of casing 4 feet above ground surface, at elevation 680 feet. 11/13/52, 30.7; 2/10/53, 15.6; 3/6/53, 11.6; 4/7/53, 10.5; 5/5/53, 10.2; 7/8/53, 19.1; 9/3/53, 14.8; 11/6/53, 13.0; 2/4/54, 9.9.
- 8S/3W-32N1 Gavilan Development Company North of Fallbrook; see location of wells plate; 1,000 feet upstream from King Ranch buildings, and 25 feet east of dirt road. Reference point top of easing 1.7 feet above ground surface. 12/4/53, 9 (cwnex); 12/11/53, 9.2; 12/17/53, 8.9; 3/11/54, 8.2; 4/19/54, 6.4.
- 8S/3W-32N2 Gavilan Development Company North of Fallbrook; 30 feet northeast of well 32Nl. Reference point top of casing 2 feet above ground surface. 12/11/53, 8; 3/11/54, 7.9; 4/19/54, 6.9.
- 85/3W-32N3 Gavilan Development Company North of Fallbrook: 120 feet northwest of well 32N2. Reference point (a) top of casing 0.9 .oot above ground surface (3/11/54; (b) hole in casing 0.3 foot above ground surface (4/19/54). 3/11/54, 5.1; 4/19/54, 4.8.
- 8S/3W-36H1 North of Rainbow; 4 mile south of First Street (measured along Highway 395) and 170 feet west of old Highway 395; 40 feet south of driveway. Asfershes point top of wood cover 1.6 feet above ground surface, at elevation 1.173.79 feets. 4/22/53, 3.2.
- 8S/3W-36dl V. D. Simpson North of Rainbow; 300 fest south of well 36Hl. Reference point top of casing 0.8 foot above ground surface, at elevation 1,168.55 feet. 4/22/53, 2,2.
- 8S/3W-36J2 J. M. McKathnie North of Rainbow; 0.15 mile south of well 36H1; 100 feet south of house. Reference point top of casing 2.15 feet above ground surface, at elevation 1,165.12 feet. 4/22/53, 7.5; 11/10/53, 14.7; 4/20/54, 3.9.
- 8S/3W-36J3 J. M. McKathnie North of Rainbow; 100 feet south of well 36J2. Reference point top of casing 1.85 feet above ground surface, at elevation 1,164.17 feet. 4/22/53, 6.8; 7/9/53, 10.0; 11/10/53, 13.8; 4/20/54, 3.9.
- 8S/3W-36J4 D. B. Chamness Reference point top of casing 1.8 foot above ground surface, at elevation 1,15%, 36 feet. 4/22/53, 3.7; 7/9/53, 6.0; 11/10/53, 8.8; 4/20/54, 2.6, "North of Rainbow; 650 feet south of well 36J3; 25 feet southeast of house."
- 88/3W-36R2 Mrs. J. R. Back North of Rainbow; 660 fast south of well 3634; in pump house. Reference point top of concrete floors 8/28/52, 10 (Metropolithan Water District); 7/14/53, 9.7.
- 8S/3W-36R3 Mrs. J. R. Beck North of Rainbows 150 fest west of well 36R2; 50 feet east of house. Reference point top of concrete filter. 7/14/53, 4.6.

DEPTHS TO GROUND WATER AT WELLS IN HEDROGRAPHIC UNIT NO. 5

(Dapths to water in feet measured from reference point) (continued)

- 85/4w-20A1 R. F. Mathews North of De Luz; as a location of wells plate; 60 feet southeast of dirt road; and 90 feet westerly from gate. Reference point top of wood cover 3 feet above ground surface, at elevation 560 feet. 6/18/54, 4.4.
- 85/4W-20A2 R. F. Mathews North of De Lue; 130 feet northeast of well 20A1; 50 feet northeast of gate and 10 feet southwast of road. Reference print top of casing 1 foot above ground surface, at elevation 560 feet. 6/18/54, 3.8.
- 85/4W-20Bl Anna Doerrer North of De Larg was lesstion of wells plate; 100 feet west of house. Reference point east corner of word frame 1.5 feet above grazed surface, at elevation 580 feet. 6/18/54, 14.2.
- 85/4W-10L1 Kinney North of De Luz; see lesation of wells plate; 60 feet westerly of road, and 45 feet northeast of house. Reference point top of concrete pit 2.5 feet above ground surface, at elevation 490 feet. 6/18/54, 5.7.
- 85/4W-20Pl Shaver North of De Luz; see location of wells plate; 100 feet northeast of De Luz Creek and 40 feet southeast from driveway. Reference point top of concrete pit 1 foot above ground surface, at elseation 490 feet. 6/18/54, 8.3.
- 85/4W-2001 John Parker Northeast of Da Laz; see location of wells plate; 150 feet southeast of Da Luz Rosal. Reference print top of wood sover at ground surface, at elevation 565 feet. 6/18/54, 12.1.
- 85/4W-28L1 Mrs. Harris Northwast of Do Luz; see location of wells plate; 80 feet north of well 28L2.

 Reference paint top of weed support 1 foot above ground surface, at elevation 460 feet. 6/18/54, 12.2.
- 85/4W-26MM Nurthwast of De Luz; see location of wells plats; 160 feet east of house and 30 feet south of read. Reference point top of concrete pit at ground surface, at elevation 455 feet. 6/18/54, 20.7.
- 85/4W-2971 R. N. Bloocker Northeast of De Luz; see location of wells plate; at windmill 1.4 mile northeasterly from De Luz Post Office (measured along De Luz Road). Reference point - top of casing at ground surface; at elevation 450 feet. 6/18/54, 16.9.
- 85/4W-29Ml F. R. Garnsey North of De Luz; see location of wells plate; 530 feet east and 125 feet north of road. Reference point top of conorate slab under pump base at ground surface, at elevation 450 feet. 6/18/54. 42.8.
- 85/4W-2901 Northeast of De Mur; see leastlon of wells piste; 30 feet north of Murrieta De Luz Road. Reference point top of wood.cover at ground surface, at elevation 460 feet. 6/18/54, 29.9.
- 85/4W-92Bl Mrs. Pinest Northeast of Ds Luz; see location of wells plate; in emberkment, west of Murrista Ds Luz Road. Reference point top of wood cover at ground surface, at elevation 410 feet. 6/16/54, 20.9.
- 85/4W-32Bl De Laz School Northeast of De Laz; 0.04 mile east of well 32Bl; 35 feet east of Murrista De Laz Road. Reference point top of easing 3.3 feet above ground surface, at elevation 400 feet. 6/18/54, 8.9.
- 85/4W=32C1 Homer C. MaDowell Near De Lung 300 feet southwest of well 32B2; west of Murrieta De Luz Road. Reference point top of casing 1.5 feet above ground surface, at elevation 400 feet. 6/18/54, 7.4.
- 85/4W-94Fd Rivers Renen East of Po Man; des location of wells plate; at windmill 120 feet south of gravel read. Reference point top of wood cover at ground surface. 8/25/54, 9.7.
- 8S/5W-2301 G. C. Snow Northwest of De Luz; see locatio of wells plate; 25 feet east and 200 feet north of house at Sky Ranch. Reference point = top of casing 0.6 foot above ground surface. 9/16/53, 8.2.
- 88/5W-73Q2 C. C. Snow Northwest of De Luce 120 feet southeast of well 23Q1; 100 feet east and 75 feet north of house. Reference point top of casing 1.5 feet above ground surface. 9/16/53, 12.7.
- 88/5W-23Q3 G. C. Snow Northwest of De Larg 150 feet southwast of well 23Q2; 200 feet southeast of house. References point top of casing 0.5 foot above ground surface. 9/16/53, 11.2.
- 85/5W-23Q4 G. C. Snow Northwest of De Luzy 800 feet routh of well 23Q1; 600 feet routh of house and 50 feet east of water wank. Reference point top of casing 2.8 feet above ground surface. 9/16/53, 23.7.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 5

(Depths to water in feet measured from reference point)

- 88/5W-2305 G. C. Snow Northwest of De Dur; 500 feet south of well 2301, 25 feet north of house.
 Reference point top of easing 1 foot above ground surface. 9/16/53, 16.8.
- 88/5W-2306 G. C. Snow Northpeast of De Lun; 60 feet south of well 2505, 25 feet south of house.
 Reference point top of casing 1.5 feet above ground surface. 9/16/53, 21.3.
- 98/2W-6M W. N. Davig Near Rainbow; see location of wells plate. Reference point ground surface. 3/21/51, 18.2 (log).
- 98/3W-1A1 G. R. Reymolds Near Raimbow; 0.15 mile southeast of intersection of old and new highway 395 (measured along new highway 395); northwest of highway 395. Reference point top of casing 2 feet above ground surface. 6/25/52, 3.9; 7/16/53, 6.9.
- 98/3W-IF1 Charles E. Stubblefield Wear Redabou; 650 feet northeest of well IML. Reference point top of easing at ground surface, at elevation 1,073.09 feet. 4/22/53, 12.6; 7/9/53, 13.7; 7/13/53, 14.5; 8/6/53, 14.2; 9/8/53, 15.0; 11/10/53, 20.6; 1/7/54, 18.0; 2/8/54, 15.9; 4/2/54, 7.9; 4/20/54, 7.7.
- 98/3W-IF2 Charles E. Stubblefield Mear Rainbrw; 500 feet east of well IF1; 200 feet east of Highway 395. Reference point top of casing 1.0 foot above ground surface, at elevation 1,065.26 feet. 4/22/53, 6.3; 11/10/53, 10.1; 4/20/54, 4.3.
- 98/3W-1F3 Charles E. Stubblefield Mear Raimbow; 60 feet south of well 1F2. Reference point top of easing 0.5 foot above ground surface, at elevation 1,064.08 feet. 4/23/53, 5.1; 11/10/53, 8.9; 4/20/54, 3.1.
- 98/3W-IF4 Charles E. Stubblefield Near Reinbow; 4 feet south of well IF1; at windmill. Reference point top of easing 1.0 foot above ground surface. 7/13/53, 15.6.
- 98/3W-1H1 H. H. Cummins Near Rainbow; 0.65 mile south of intersection of old and new Highways 395; 120 feet east of old Highway 395. Reference point top of casing at ground surface, at elevation 1,093.31 feet. 4/24/53, 9.3; 11/9/53, 13.5; 4/10/54, 2.5.
- 98/3W-1H2 H. M. Cummins Near Rainbow; 600 feet morth of well lH1; at windmill 90 feet east of old Highway 395. Reference point top of easing 0.7 food above ground surface, at elevation 1,105.88 feet. 4/24/53, 8.1; 7/9/53, 9.7; 8/6/53, 10.1; 9/8/53, 10.4; 11/9/53, 11.2; 1/7/54, 12.8; 2/8/54, 9.0; 4/2/54, 1.2; 4/20/54, 1.3.
- 98/3W-1H3 H. H. Cummins Near Reinbow; 650 feat each of well 1H2; north of house. Reference point top of easing 1.0 foot above ground surface, at elevation 1,132.11 feet. 4/24/53, 25.9; 11/9/53, 49.1; 4/20/54, 7:8.
- 98/3W-111 Vernon L. Beattle Near Hainbow; 0.2 mile east and 180 feet north of intersection of Highway 395 and First Street. Reference point top of 2 x 5 inch board under pump 0.75 feet above ground surface, at slovation 1,068.82 feet. 1/20/54, 3.5.
- 98/9W-1J2 Vernon L. Beattle Mear Rainberg 760 feet north of well LJL and 200 feet southwest of well LJ3, in shed. Reference point ter of word cover 0.5 feet above ground surface, at elevation 1,083.25 feet. 4/24/53, 4.4; 21/9/53, 24.7; 4/20/54, 2.3.
- 98/3W-133 Vernon L. Beattle Near Reinber; 850 feet north of well 137 and 200 feet northeast of well 132, in shed. Reference point top of word cover at ground surface, at elevation 1,086.13 feet. 4/24/53, 25.8; 11/9/53, 38.9; 4/20/54, 33.7.
- 98/3W-1J4 Vernon L. Beattle Near Rainbow; 200 feet north of well 1J3; 15 feet south of road. Reference point top of easing 0.4 foot above ground surface, at elevation 1,091.84 feet. 4/20/54, 8.9.
- 98/3W-135 Vernon L. Beattle Wear Rainbow; 420 feet north of well 151. Reference point top of casing at ground surface, at elevation 1,078.09 feet. 11/9/53, 3.2; 4/20/54, 4.6.
- 95/3W-111 Greer Mear Raimbow; 3.1 mile esist of intersection of Huffstutler Street. Reference point top of cover 0.5 foot above ground surdece, at elemention 1,057.2 feet. 4/23/53, 6.3.
- 98/3W-1L2 Clare McDoneld Near Rainbow; 0.2 mile north and 60 fest west of intersection of Pirat Street and old Highway 395, extended; northwest of house. References point top of casing 0.9 fort above ground surface, at elevation 1,080.54 feet. 4/23/53, 38.8.
- 95/3W-1M1 C. E. Stubbleffald Near Rainbow, 0.5 mile hortheast of Second Street (measured along Highway 395); 200 feet northwest of intersection of Highway 395; at windmill. Reference point top of wood cover at ground surface, at elevation 1,080.31 feet. 4/23/53, 11.5; 11/10/53, 15.4; 4/20/54, 3.7.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 5

(Dapths to water in fast measured from reference point) (continued)

- 95/3W-1P1 Zana Royal Wear Rainbows 360 feet east and 270 feet north of intersection of Second and Huffatutlar Stronge. Reference point tup of wood over at ground surface, at elevation 1,046.40 feet. 3/6/53, 7.4; 4/7/53, 8.0; 4/22/53, 7.9; 11/10/53, 14.0; 4/20/54, 8.4.
- 98/3W-1P2 J. S. Bomen Near Rednburg 480 feet same end 20 feet south of intersection of First and Huffstubles Streets. Reference point top of casing 0.3 foot above ground surface, at elevation 1,054.63 feet. 6/37/52, 5.5; 3/6/53, 5.7; 4/7/53, 7.1; 4/43/53, 7.1; 12/10/53, 9.6; 4/20/54, 4.2.
- 98/3W-1P3 J. S. Borron Near Palmetr; 650 face south and 140 feet wast of intersection of old Highway 395 and Pirat Stream. Beforence point top of casing 0.7 foot above ground surface, at elevation 1,051.36 fact. 6/27/52, 9; 3/6/53, 9.3; 4/20/54, 8.6.
- 98/5W-1P4 Near Rainbow; 3.1 wills south of wall 1P3; at wandmill 60 feet west of old highway 395.
 Reference point top of wood cover 1.1 feet above ground surface, at elevation 1,050.38 feet. 4/23/53, 8.5; 11/9/53, 14.5; 4/20,54, 5.4.
- 98/9W-1P5 = 3. S. Buren Near Rainbow; 460 feet southmast of well 1P2. Reference point top of concrete pit at ground surface, at elements in 1.045 feet. 12/10/53, 14.5; 4/20/54, 3.4.
- 98/9W-1Q1 Robert Stadnborg New Radnbor; 0.14 mile south and 120 feet east of intersection of First Street and old Highway 395, extended; 100 feet north of driveway. Reference point wood cover 0.8 foot abore ground surdane, at elevation 1,052.68 feet. 6/7/52, 11.0; 11/23/52, 16.0; 2/9/53, 11.2; 3/6/53, 10.6; 4/7/53, 11.7; 4/13/53, 12.0; 7/9/53, 14.1; 8/6/53, 17.6; 9/8/53, 16.4; 11/9/53, 17.6; 1/7/54, 17.7; 2/6/54, 16.2; 4/2/54, 10.9; 4/20/54, 9.3.
- 98/34-192 Robert Steinberg Mear Rainberg 650 feet east of well 104; 20 feet north of house. Reference point top of wood sever 0.6 foot shows ground surress, at elevanion 1,057.71 feet. 6/25/52, 17; 3/6/53, 11.6; 4/23/53, 11.4; 11/9/53, 14.9; 4/10/54, 11.0.
- 95/76-191 George E. Shoudy Near Rainbow, 0.19 wills east and 35 feet south of intersection of First Street and old Highway 395. Reference print top of metal cover 0.9 foot above ground surface, at elevation 1,062.16 feet. 3/6/53, 10.6; 4/7/59, 11.5; 4/24/53, 12.0; 11/9/53, 16.1; 8/6/53, 18.0; 9/8/53, 12.8.
- 98/34-1Rt George E. Shoudy Neer Robbby; 856 fest anoth of well 1R1 and 90 fest east of well 1R3.

 Reference point top of 2 x 6 inch board at ground archaeo, at elevation 1,062.61 feet. 6/25/52, 5.1;

 11/13/52, 8.6; 2/9/53, 5.8; 3/6/53, 5.5; 4/7/53, 6.3; 4/24/53, 6.4; 4/2/54, 4.9.
- 98/3W-1R3 Goorge E. Shoudy Near Raisbury 850 feet south of well IR1 and 90 feet west of well IR2.

 Reference point top of plank cover 1.0 fort above ground surface, at elevation 1,062.85 feet. 11/13/52,

 8.6; 3/6/53, 5.5; 4/14/53, 7.1.
- 95/3W-1RH Garage E. Shoudy Near Rainlows 108 foat west of well 1R2 and 50 feat northwest of well 1R3. Reference point top of earling 1 foot above ground nurface. 11/9/53, 24.0.
- 98/3W-185 George E. Shoudy Near Rathbors 750 Zent southeast of well IRL and 350 feet northeast of well 182; at ainduitle. Reference point top of word cover let feet above ground surface, at elevation 1,067.74 feet. 3/6/53, 7.4, 4/7/53, 7.6; 4/24/53, 8.8; 31/9/53, 13.9.
- 95/3W-6Al D. N. Bullback North of Fallbrook; see lemution of wolls place; in ravine. Reference point top of making 2 feet above ground surface. 6/23/52, 40.7; 11/13/52, 56.8; 2/10/53, 43.0; 3/6/53, 42.5; 4/7/53, 43.4; 5/5/53, 41.2; 7/7/53, 41.5; 11/6/53, 47.4; 4/28/54, 43.4.
- 98/9W-642 D. H. Buillouis North of Fallbrows: see location of wells plate; 450 feet bast of well 6Al.

 Reference voint to of beam 7 feet above ground surface. 6/23/52, 54.1; 2/10/53, 49.7; 3/6/53, 47.6;

 4/7/53, 46.5; 5/5/53, 48.0; 7/8/53, 48.6; t/6/53, 47.0; 9/3/53, 46.0; 11/6/53, 45.4; 1/7/54, 45.2;

 2/4/54, 45.0; 4/5.54, 44.5; 4/28/54, 44.4.
- 95/3W-6A3 D. H. Builland North of Fallancing and location of walls plate; 450 feet south of wall 6A1.

 Reference point top of book 2 flow above ground auxiers. 6/23/5%, 33.4; 2/10/53, 33.1; 3/6/53, 31.8; 4/7/53, 30.1; 5/4/5%, 30.4; 11/6/53, 48.8; 4/28/5%, 30.3.
- %/W-6Bl Charles Saveley bosto of Fallbrooks son tonation of walls plate; 700 feet south of well 6Al.
 References pulses top of essing at greened surfaces. 6/18/52, 58.0; 11/6/53, 66.0; 4/28/54, 49.1.

DEFTHS TO GROUND WATER AT "BLAS IN HYDROGRAPHIC UNIT NO. 5

(Depths to writer in 1965 measured from reformus point)

- 98/3W-6D1 E. H. Tipton North of Fallbrook; see Location of white places in rawins 100 foot Aouth of house. Reference point top of word earen 2 feet above grand surface. 11/13/52, 34; 2/10/53, 22.8; 3/6/53, 22.0; 4/7/53, 22.6; 5/5/53, 22.6; 7/7/53, 23.0; 8/6/53, 22.4; 9/3/53, 25.8; 11/6/53, 33.4; 1/7/54, 28.2; 2/4/54, 21.1; 4/28/54, 13.6.
- 98/3W-6D2 E. H. Tipton North of Fallbrook; set location of walks plats; 0.1 mile southeast of house.

 Reference point top of 4 x 6 inch board at ground southeast. 5/5/53, 56.8; 11/6/53, 57.4; 4/28/54; 47.6.
- 98/3W-7C2 Calleway North of Fallbrook; see location of wells picte; 20 feet northest of well 7F1. Reference point top of camerate pix at ground surface. 1/7/54, 12.5; 2/4/54, 10.8; 4/5/54, 11.0.
- 98/3W-7F1 A. R. Merickis North of Fallbrook; 160 feet sown of well 701; 100 feet west of house. Reference point top of 2 x 6 inch plank at ground surface. 11,12/57, 11.0; 2/10/53, 10.3; 3/6/53, 8.8; 4/7/53, 8.6; 5/5/53, 8.5; 7/3/53, drg; 8/6/53, 11.8; 9/3/53, dry; 11/6/53, dry; 2/4/54, 8.7; 4/5/54, 9.2; 4/28/54, 10.0.
- 98/3W-1141 0. Lester Riggle Near Rainbow; 0.31 mile was and 30 feet north of intersection of Huffstrutler and Fifth Streets. Reference point top of wood acres 1.0 foot above ground surface, at elevation 1.032.61 feet. 11/10/53. 13.2; 4/20/54. 6.5.
- 98/3W-11A2 0. Laster Riggis Near Rainbows 0.25 mile west and 140 feet north of intersection of Huffstrutler and Fifth Streets. Reference point top of wood cover at ground sortage, at elevation 1,033.49 feet. 11/10/53, 13.75 4/20/54, 4.1.
- 98/3W-1161 C. C. Chamiler Near Haimbor; 800 fact northeast of well 1111 and 45 feet east of well 1162; in ravine 90 feet southeast of granel read. Reference point top of concrete pit 3 feet above ground surface. 4/24/53, 6.2; 11/10/53, 10.6; 4/20/54, 1.
- 98/3W-11X1 C. C. Chandler Near Rainburg C., mile somehwest of Second Street (messured along Highway 395) and 400 feet southeast of Highway 395; careful watership. Reference point top of wood sever 2.7 feet above ground surface. 4/24/53, 12.5.
- 98/3W-11K2 C. C. Chandler Near Brandwerg 320 I and south of well 11King out lide watershed. Reference point pump base 1 foot above ground supplement 4/24/55, 7.68 13/10/53, 16.7.
- 98/3W-1111 Joseph H. Fsusrborn Near Rainburg 0.45 mile a wanter of Highway 395 (measured along gravel road) from intersection 0.45 mile southwest of Sesund States. (measured along Highway 395); 110 feet south of gravel road. Reference point top of wood cover at gravel road. 4/24/53, 16.3; 11/10/53, 20.5; 4/20/54, 8.7.
- 98/3W-11L2 Joseph H. Feuerborn Near Rainbows 75 feat northeast of wall 1251. Reference point pump base at ground aurgane. 4/24/53. 16.2.
- 98/3W-1113 Joseph H. Fenerborn Near Rainbow; 300 feet west of well littly 75 feet south of Turrey Shelters. Reference point top or beam at ground surface. 4/24/53, 21.4; 11/10/53, 18.6.
- 98/3W-11M1 James Magres Near Reinbowg 0.25 mile somewhert of well 11M1 and 500 feet west of well 11M3.

 Reference point top of 2 m 6 inch from 3.3 feet above ground surface. 14,10/55, 15.5.
- 98/3W-12B1 Dean Ramay Near Radinburg 800 food in which and 400 feets wast of interresection of Fifth Struct and old Highway 395; 60 feet wast of hears. Reference point top of wood cover 1.7 feet source ground surface, at elevation 1,052.50 feets. 4/25/52, 20.6; 11/9:53, 14.3; 4/20/54, 10.6.
- 98/3W-12B2 C. H. Ramay Near Raintows C.1 mile scutch and 60 feet eset of inversention of Second Strows and old Highway 395. Reference point map of word career 0.75 form below ground surfaces, at elseation 1,046.61 feet. 4/23/53, 5.8.
- 98/3W-1261 Contily Near Rainbows 0.1 mil. north 400 feet west of intersection of Firth and old Highway 395. Reference point top of cover, at alreation 1,005 forth 6/27/52, 804; 4/7/53, 502; 4/23/53, 10.0.

(Repuber to water in feat measured from reference point)

- 98/3W-12D1 Rollin Brown Near Rainbow; 480 feat went and 400 feat north of intersection of Huffetutler and Fifth Streams; 205 feat southerly of nume. Reference point top of cover 1 feat above ground surface, at elevation 1,059,49 feat. 7/1/52, 7.3; 11/13/52, 15.0; 2/10/53, 6.9; 3/6/53, 7.1; 4/7/53, 7.5; 4/22/53, 7.9; 11/10/53, 12.0; 4/20/54, 4.7.
- 98/3W-12D2 Rollin Brown Near Rainbow; 650 feet north and 310 feet west of intersection of Huffstutler and Fifth Streets; open maxing 400 feet mast of house. Reference point top of concrete pit 1.2 feet above ground surface, at elevation 1,040.78 feet. 7/1/52, 6.4; 2/10/53, 8.0; 3/6/53, 7.9; 4/7/53, 8.0; 4/22/53, 8.1; 7/9/53, 9.5; 8/6/53, 10.1; 9/8/53, 10.6; 11/10/53, 11.4; 1/7/54, 11.6; 2/8/54, 10.1; 4/2/54, 4.8; 4/20/54, 5.2.
- 98/3W-12D3 Rollin Brown Near Reinbows 22D feet worth and 70 feet west side of intersection of Second and Huffutualer Streets. Reference point top of wood over 0.8 foot above ground surface, at elevation 1,044.30 feet. 7/1/52, 8.9; 3/6/53, 3.4; 4/24/53, 3.0; 4/20/54, 6.8.
- 98/3W-12DW W. Johnson Near Rainbour C.21 mile east and 500 feet north of intersection of Highway 395 and Fifth Stream. Reference point top of casing at ground sumface, at elevation 1,032 feet. 4/22/53, 3.1.
- 98/3W-1281 W. H. Alts Near Infinore; 350 feet west and 100 feet south of intersection of Huffstatler and Fifth Streams. Reference point top of concrete pit 0.75 feet above ground surface, at elevation 1.057.52 feets. 7/1/52, 7.5; 3/6/53, 6.5; 4/23/53, 8.3; 11/10/53, 14.4; 4/20/54, 5.1.
- 98/3W-12F1 5. E. Refter Wear Reinbows 0.21 mile south and 120 feet west of intersection of Fifth Street and all Highway 395s outside waterwhid. Reference point top of concrete pit at ground surface, at elevation 1,039.7 feet. 4/23/53, 12.3; 1x/9/53, 19.2.
- 98/JW-1281 Patabow Valley brange Near Asinbows 320 fewt north of well 12Pl; outisds watershed. Reference points top of outer 2.6 feet above ground surfaces at edevation 1,044.84 feet. 4/23/53, 15.6; 11/9/53, 22.3; 4/20/54, 11.80
- 98/3W-12F3 L. S. Brownell Wear Reinbor- 550 feet east of well 12F1; outside watershed. Reference point top of concrete page an elementary 1,042.20 feet. 7/16/53, 46.3.
- 95/3W-12P4 = R. R. Mark = Near Rainoux; 96 feat east and 500 fact south of intersection of Huffstutler and Fifth Streams; putation watergued. Reference point + top of concrets pit at ground surface, at elevation 1,085/47 feats. 7/1/52, 10.3; 4/23/53, 6.2: 13/9/53, 23.5.
- 98/39-1275 S. E. Rafter boar Reinberg 150 feet south of well 1174; outends watershed. Reference point top of 4 x 4 inch word support over 500 st ground surface, at elevation 1,047.96 feet. 4/23/53, 8.2; 11/9/53, 3.4, 4/20/54, 11.3.
- 95/3M-1976 Valingook School Pistrict Near Reinboog 600 feet west and 150 feet south of intersection of Fritz Super and cid Highway 395: to pump newsey outside watershed. Reference point not reported, at alreading 1,045 feet. 7/16/53, 10.4.
- 95/3W-13G1 Near Reinbows and fest sand in 80 fest south of intersection of Fifth Street and old Highway.

 395; 35 feet exactionable of house. Reinson point top of pump support 0.5 feet above ground surface, at
 white tien 1.00m; of fest. 7/1/52, 70.00 4/23/50, 10.00 II 9/53, 15.48 4/20/54, 22.22.
- 99/30-1781 R. T. 1999 Meriboses of Fallocock, C.S mile month of Mission Road (mosaured along dirt road) from independent of the first male vertex, of Rivorman Drive measured along Mission Road. Reference point top of compress product from above g. a.e. sands to 9/15/56, 54-7.
- 98/3M=3782 R. T. Green Normalean of Fellbrock. 260 feet northwest of well 1782. Reference point Wap of word cases i for a source ground alleignes 5/35/54. 16:0.
- 98/3W-12Bl Pavardasumer Northeath of Yallis or 1081 mile north and 0.15 mile west of intorsection of Shoke Mangardas. Daine and Halliamest ban. . Beforenous point top of scherate pit 4 feet above ground surface. 9/15/5% Jo le
- 98/4W 100 The Francis Stein manufact Wash Talloworker was locate on of wolls plate; at mindmill 100 feet age to of Sender Stein W. Reference print when neprinted 6/44/62, 15 (caretaker).
- 98/AW-1000 a Northwest of Fabracount with motive no the compatible toward at Da Luz Road and Santa Burgarias relief alling the sea Boule at almin of 90 feet minor of Da Luz Road. Reference point top of our my as ground and aca. 8/45/54, 2436

DEPTHS TO GEOUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 5

(Depths to water in feet measured from reference point)

- 95/46-13L1 Costello-Barrymore North of Fallbrook; 0.45 mile north of Kalmia Street (acasured along De Luz Road) and 50 feet west of De Luz Road; in metal shed. Reference point top of concrete casing at ground surface. 9/15/54, 20.9.
- 98/4W-13L2 Costello-Barrymore North of Fallbrook; 100 feet scuth of well 13L1. Reference point top of concrete pit 2 feet above ground surface. 9/15/74. 11.8.
- 98/4W-13P1 Bruce Sikkings In Fallbrock; north of Fallbrock; 0.27 mile north and 0.15 mile west of intersection of De Luz Road and Kalmia Street; 3 feet south of building. Reference point top of 6 x 6 inch timber at ground surface. 5/5/53, 28.0; 7/8/53, 39.4; 8/6/53, 39.7; 9/3/53, 42.3; 11/6/53, 42.7; 2/4/54, 23.4; 4/2/54, 17.9; 4/28/54, 16.0.
- 98/4W-13P2 Johnston North of Fallbrook; 0.3 mile westerly of well 13Q1; 60 feet east of fenos.

 Reference point top of beam at ground surface. 9/15/54, 47.7.
- 98/4W-1301 Harry E. Held North of Fallbrock; 0.3 mile north and 25 feet west of intersection of De Luz Road and Kalmia Street. Reference point top of senerate cazing 0.5 foot above ground surface. 8/25/54, 53.2.
- 9S/4W-29C1 U. S. Nasy 4,225 feet north and 2,900 feet west of southeast corner of section 29; 30 feet east of well 29C2; Camp Pendleton. Reference point top of casing. Note: Measurements from U. S. Navy records, except as indicated. 7/23/52, 14.1 (DWR); 8/5/52, 14.6; 9/5/52, 15.4; 9/30/52, 15.8; 10/17/52, 15.9 (DWR); 11/3/52, 16.0 (DWR); 12/4/52, 14.6 (DWR); 12/18/52, 14.8 (DWR).
- 98/4W-2902 U. S. Navy 4,225 foot murth and 2,930 feet west of southeast corner of section 29; 30 feet west of well 2903; Camp Pendleten. Note: Measurements from U. S. Navy records, except as indicated. 7/23/52, 14.4 (DWR); 8/5/52, 14.8; 1/27/53, 13.0; 2/17/53, 13.0; 6/9/53, 14.5; 7/17/53, 16.7. Reference point top of casing.
- 9S/4W-29L1 U. S. Navy 2,025 feet merth and 2,775 feet west of southeast corner of section 29; Camp Pendelton. Reference petat-hole in casing 4.0ft. above ground surface Note: Messurements from U. S. Navy records, except as indicated. 9/45, 6 tag; 9/14/50, 11.5; 10/12/50, 10.8; 11/6/50, 10.1; 12/4/50, 9.7; 1/3/51, 7.5; 2/12/51, 9.6; 3/20/51, 7.7; 5/16/51, 9.9; 6/20/51, 11.2; 7/16/51, 11.6; 8/20/51, 12.0; 9/17/51, 12.9; 10/10/51, 12.9; 11/19/51, 12.4; 12/18/51, 9.9; 8/5/52, 9.6; 9/30/52, 7.9; 10/17/52, 10.1; 11/3/52, 9.3; 12/4/52, 8.7; 1/27/53, 7.9; 2/17/53, 8.0; 6/9/53, 9.6.

•		
		i e

(Dapths to water in feet measured from reference point)

- 98/3W-18P1 L. C. Stokes Northeast of Fallbrook; 0.2 mile east and 95 feet north of intersection of Mission Road and Santa Margarita Drive; 75 feet northeast of garage. Reference point top of 4 x 6 inch timber at ground surface, at slewation 770 feet. 4/7/53, 34.4; 5/5/53, 34.8; 7/8/53, 35.2; 8/6/53, 35.5; 9/3/53, 36.6; 11/6/53, 36.8; 1/7/54, 37.0; 2/4/54, 36.7; 4/2/54, 33.7; 4/28/54, 32.2.
- 98/3W-19C1 S. C. Myers West of Pallbrook; 300 feet east and 360 feet south of intersection of Mission Road and Santa Margarita Drive; in shed. Reference point top of concrete pit at ground surface. 7/54, 20 (owner): 8/25/54, 24.0.
- 9S/3W-19C3 Alta M. Terrier West of Fallbrock; 0.12 mile east and 0.07 mile south of inversection of Mission Road and Santa Margarita Drive; in shed 20 feet east of road. Reference point top of beams 4 inches above top of concrete pit at ground surface. 9/15/54, 27.6.
- 98/3W-19M1 Robert J. Marks In Fallbrook; 0.26 mile east and 400 feet north of intersection of Fallbrook and old Stage Roads. Reference point top of congrete caring at ground surface. 8/25/54, 49.1.
- 9S/4W-24H1 A.T. & S.F. Railread In Fallbrook; Q.26 mile sast and 30 feet north of intersection of Main and Alvarado Streets; 427 feet east of Fallbrook Railroad Station. Reference point ground surface. 5/17. 6.
- 95/4W-24N1 Mark McCahan In Fallbrook; 360 feet south and 12 feet west of intersection of Alturae and Fallbrook Streets. Reference point top of wood cover at ground surface. 8/24/54, 13.2.
- 95/4W-24P2 Frank Pueelli In Fallbrook; 0.13 mile and 10 feet north of intersection of Aviation Road and Main Street. Reference point top of 4 x 6 inch timber 1 foot above ground surface. 3/24/54, 10:0.
- 98/4W-24Q1 William T. Scott In Fallbrook; 0.09 mile west and 75 feet south of intersection of Main Strest and Aviation Road. Reference point top of word cover at ground surface. 5/5/53, 4.1; 7/8/53, 4.9; 8/6/53, 5.2; 9/3/53, 5.8; 11/6/53, 5.8; 1/7/54, 6.0; 2/4/54, 3.9; 4/2/54, 3.0; 4/28/54, 3.6.
- 98/4W-24Q2 Werneshe In Fallbrock; 0.08 mile north and 280 feet west of intersection of Aviation Road and Main Street; 55 feet west of house. Reference point top of concrete casing 1.4 feet above ground surface. 8/24/54, 6.7.
- 98/4W-24R1 William Walts In Fallbrook; 230 feet east and 90 feet north of intersection of old Stage and Aviation Roads. Reference point top of 4 x 6 inch timber at ground surface. 8/25/54, 21.3.
- 98/4W-25E1 John T. Owens In Fallbrook; 0.33 male south and 0.4 mile west of intersection of Main Street and Aviation Road; west of Fallbrook Greek. Reference point top of 4 x 4 inch timbers at ground surface. 5/5/53, 9.4; 9/3/53, 10.8; 11/6/53, 6.3; 4/28/54, 4.9.
- 95/4W-25E2 Pratt Mitual Water Company In Fallbrook; 0.07 mile south and 0.05 mile west of intersection of Clemens Lane and Aviation Road; in open Kielá. Reference point top of concrete pit 1 foot above ground surface. 8/24/54, 4.
- 98/4W-25E5 = T. B. Rogers In Fallbrook; 900 feet southwest of well 25E2 and 300 feet south of well 25E4; in shed 60 feet east of fense. Reference point top of concrete lip 1 foot above ground surface. 8/24/54, 19.3.

Measurements for the following walls are from U. S. Navy records, except as indicated

- 9S/4W-32C1 U. S. Navy 4,400 feet north, 3,900 feet west of southeast corner of section 32; Camp Rendleton. Reference point ground surface, at elevation 125 feet. 4/34, 2 (log).
- 98/4W-32C2 U. S. Navy 4,400 feet north, 3,800 feet week of southeast corner of section 32; Camp Pendleton. Reference point ground surface, at elevation 124 feet. 5/34, 2 (log).
- 98/4W-3208 U. S. Nawy 4,400 feet north, 3,750 feet west of southeast corner of section 32; Camp Pendleton. Reference peint ground surface, at elevation 130.2 feet. 5/51, 1.7 (10g).
- 98/4W-3209 U. S. Nawy 4,400 feet north,),720 feet west of southeast sorner of section 32; Camp Pendleton. Reference point ground surface, at elevation 130.4 feet. 5/51, 1.9 (log).
- 95/4W-32Cl0 = U. S. Navy = 4,400 feet north, 3,680 feat west of southeast eorner of section 32; Camp Pendleton. Reference point = ground surface, at elevation 131.5 feet. 5/51, 3.0 (log).

(Depths to water in feet measured from reference point) (continued)

Measurements for the following wells are from U. S. Navy records, except as indicated

- 98/4W-32C11 U. S. Nawy 4,400 feet north, 3,670 feet west of southeast corner of section 32; Camp Pendleton. Reference point - ground surface, at elevation 132.2 feet. 5/51, 3.7 (log).
- 95/4W-32C12 U. S. Navy 4,400 feet north, 3,620 feet west of southeast corner of section 32; Camp Pendleton. Reference point - ground surface, at elevation 132.0 feet. 5/51, 3.4 (log).
- 98/4W-32Cl3 U. S. Navy 4,400 feet north, 3,570 feet west of southeast corner of section 32; Camp Pendleton. Reference point ground surface, at elevation 131.4 feet. 5/51, 2.8 (log).
- 98/4W-32C14 U. S. Navy 4,400 feet north, 3,520 feet west of southeast corner of section 32; Camp Pendleten. Reference point - ground surface, at elevation 129.1 feet. 5/51, 0.4 (log).
- 95/4W-35L1 U. S. Navy 2,000 feet north, 2,625 feet west of southeast corner of section 35; Camp Pendleton. Reference point - ground surface, at elevation 575 feet. 6/34, 16 (log).
- 105/4W-5D1 U. S. Navy 5,000 feet north, 5,300 feet west of southeast corner of section 5; Camp Pendleton. Reference point lower lip of measuring pape 4.6 feet above ground surface, at elevation 115 feet. 12/43, 5.5 (log); 10/25/50, 9.9; 11/28/50, 5.8; 1/3/51, 5.8; 3/20/51, 5.9; 4/17/51, 6.1; 5/16/51, 6.1; 10/10/51, 11.3; 11/19/51, 11.3; 12/18/51, 6.1; 3/27/52, 8.9; 7/23/52, 9.7 (DWR); 8/5/52, 9.8; 8/28/52, 9.8; 9/30/52, 10.1; 11/3/52, 8.8; 12/4/52, 8.1; 12/31/52, 7.4; 1/27/53, 6.6; 9/24/53, 11.9; 11/4/53, 11.8.
- 105/4W-7A1 U. S. Navy 5,200 feet north, 400 feet west of seutheast corner of section 7; Camp Pendleton.
 Reference point ground surface, at elevation 103 feet. 9/42, 7 (log).
- 105/4W-7H1 = U. S. Navy = 3,240 fest north, 270 feet west of southeast corner of section 7; Camp Pendleton. Reference point = top of casing 0.75 foot above ground surface, at elevation 99 feet. 8/20/51, 9.2; 9/12/51, 9.6; 10/10/51, 10.1; 11/19/51, 10.7; 12/18/51, 10.8; 3/27/52, 5.5; 4/22/52, 6.2; 5/19/52, 6.5; 6/17/52, 6.8; 7/29/52, 8.1 (DWR); 8/20/52, 8.7; 10/14/52, 10.0; 11/18/52, 10.3; 12/23/52, 6.9; 1/20/53, 6.5; 2/17/53, 6.6; 3/24/53, 6.7; 5/25/53, 7.5; 6/30/53, 8.4; 10/26/53, 10.0.
- 10S/4W-7J1 ~ U. S. Navy 1,825 feet north, 300 feet west of southeast corner of section 7; Camp Pendleton. Reference point ~ (a) top of recorder floor 1.4 feet above ground surface, at elevation 94.5 feet (10/19/50 through 11/3/52); (b) top of casing 1.3 feet above ground surface, at elevation 94.4 feet (11/28/52 to present). 10/19/50, 7.3; 11/1/50, 7.3; 12/1/50, 7.4; 1/2/51, 7.1; 2/1/51, 5.2; 3/1/51, 4.8; 4/1/51, 5.1; 5/1/51, 4.8; 6/1/51, 5.5; 7/1/51, 6.0; 8/1/51, 6.5; 9/1/51, 6.9; 10/1/51, 7.2; 11/12/51, 7.7; 12/12/51, 7.9; 1/1/52, 6.3; 2/6/52, 4.8; 3/1/52, 4.1; 4/1/52, 4.8; 5/19/52, 5.7; 6/1/52, 5.7; 7/15/52, 6.7; 8/20/52, 7.2; 9/20/52, 7.6; 11/3/52, 7.8; 11/28/52, 7.4; 6/9/53, 6.6; 7/17/53, 7.2.
- 10S/4W-732 U. S. Navy 1,625 feet north, 100 feet west of southeast corner of section 7; Camp Pendleton. Reference point notch in broken casing at ground surface, at elevation 931 feet. 7/42, 7 (log); 9/12/50, 8.7; 10/12/50, 8.9; 11/6/50, 9.1; 12/4/50, 9.2; 7/23/52, 7.2 (DWR); 8/5/52, 7.3.
- 105/4W-701 = U. S. Navy = 1,025 feet north, 1,275 feet west of southeast corner of section 7; Camp Pendleton. Reference point = top of 1.5 inch pipe 2.1 feet above ground surface, at elevation 92 feet. 7/23/52, 10.0 (OWR); 8/20/52, 10.0; 9/22/52, 10.1; 10/27/52, 10.2; 11/3/52, 10.3; 12/4/52, 9.5; 1/27/53, 8.3; 2/17/53, 8.2; 6/9/53, 9.7; 7/17/53, 10.1; 9/24/53, 9.5; 10/28/53, 9.9; 11/4/53, 9.1.
- 105/4W-7R1 = U. S. Navy = 975 feet north, 1,275 feet west of southeast corner of section 7; Camp Pendleton. Reference point = pump base 0.67 foot above ground surface, at elevation 100 feet. 7/29/52, 17.5 (DWR); 3/27/50, 19.
- 105/4W-7R3 U. S. Navy 700 feat north, 1,100 feet west of southeast corner of section 7; Camp Pendleton. Reference point 1.5-inch pipe in auger hole 2.25 feet above ground surface, at elevation 92 foet. 7/23/52, 10.0 (DWR); 8/5/52, 9.9; 9/5/52, 10.3; 10/17/52, 10.4; 11/3/52, 10.5; 12/4/52, 9.7; 1/27/53, 8.4; 2/17/53, 8.5; 7/17/53, 10.2; 9/24/53, 9.5; 10/28/53, 10.0; 11/4/53, 9.3.
- 10S/4W-7R4 U. S. Navy 500 feet north, 900 feet west of southeast corner of section 7; Camp Pendleton. Reference point 1.5-inch pipe in auger hold 2.7 feet above ground surface, at elevation 93 feet. 7/23/52, 8.4 (DMR); 7/29/52, 8.4 (DMR); 6/9/53, 8.2 (DMR).
- 108/4W-8E2 U. S. Nawy 3,200 fest north, 4,400 fest west of southeast normer of section 8: Camp Pendleton. Reference point ground surface, 6/42 9 (log).

DEPTHS TO GROUND MATER AT WELLS IN HEDROGRAPHIC UNIT NO. 6

(Depths to wares in feet measured from reference point)

Measurements for the full suling wills are from U. S. May resords, except as inflicated

- 108/4W-18E1 U. S. Navy 3,450 feet north, 4,300 feet west of consteast corner of section 18; Cump Pendleton. Reference point not reported, at alexacien 75 feet. 1/19/37, 8 (log); 2/20/47, 6; 1/15/8, 4.5; 2/12/48, 6; 9/23/49, 4.
- 10S/4W-18L1 U. S. Namy 2,350 feet north, 3,875 feet west of southeast corner of section 18; Camp Penileton. Reference point (a) top of recorder floor 3.5 feet above ground surface, at elevation 76.3 feet (10/18/50 through 3/5/51); (b) top of casing 3.0 feet above ground surface, at elevation 75.78 feet (4/17/54 to present). 2/9/46, 11 (log); 10/18/50, 15.3; 11/6/50, 15.9; 12/4/50, 17.9; 1/2/51, 19.0; 2/5/51, 19.7; 3/5/51, 19.8; 4/17/51, 19.4; 5/16/51, 19.0; 7/16/51, 19.0; 8/17/51, 19.4; 9/17/51, 19.6; 10/10/51, 19.8; 11/19/51, 20.2; 12/18/51, 20.5; 4/22/52, 10.2; 5/19/52, 9.9; 6/17/52, 10.0; 7/23/52, 10.6 (DWR); 8/5/52, 10.9; 9/5/52, 11.9; 10/7/52, 13.4; 11/3/52, 14.5; 12/4/52, 14.8; 1/27/53, 13.7; 2/17/53, 13.1; 6/9/53, 12.1; 7/17/53, 12.6; 9/24/53, 12.4; 10/28/53, 13.7; 11/4/53, 13.8.
- 108/4W-18M1 U. S. Navy 1,850 feet north, 4,725 feet west of sections to exact of sestion 18; Camp Pendiston. Reference point top of measuring pipe 4 feet below ground surfaces. 2/8/48, 9; 3/27/48, 5.2; 1/51, 17; 2/51, 17; 7/18/51, 20.
- 105/4W-18M2 U. S. Nawy 1,850 feet north, 4,825 feet west of southeast corner of section 18; Camp Pandleton. Reference point lip of 1-inch pipe 0.5 fost above ground surface, at elevation 71.5 feet. 8/16/50, 17 (log); 10/12/50, 19.6; 11/6/50, 20.2; 12/4/50, 20.6; 1/3/51, 20.6; 2/12/51, 20.2; 3/20/51, 18.2; 4/17/51, 18.6; 5/16/51, 15.6; 7/16/51, 19.7; 8/17/51, 20.7; 9/17/51, 21.0; 10/10/51, 21.7; 11/19/51, 22.5; 12/18/51, 22.9; 3/25/52, 9.4; 4/22/52, 9.4; 5/19/52, 9.5; 6/16/52, 9.9; 7/23/52, 11.5; 8/5/52, 12.1; 9/5/52, 13.6; 10/17/52, 15.3; 11/3/52, 16.0; 12/3/52, 14.8; 6/9/53, 12.4; 10/21/53, 14.4.
- 10S/4W-19E2 U. S. Navy 2,875 foot morth, 4,450 foot west of southeast corner of section 19; Camp Pendistan, Reference point ground surface. Spring 1951, 10 (log).
- 10S/4W-19L1 U. S. Navy 2,525 feet north, 3,850 feet west of Southeast corner of section 19; Camp Pendleton.
 Reference point ground surface. Spring 1951. 25 (leg.
- 10S/5W-12R1 U. S. Navy 1,050 fact north, 300 fact west of southeast acreer of section 12; Camp Pendiatan. Reference point top of casing at grouns surface. 2/17/20, 14 (1eg); 9/12/50, 21.9; 10/12/50, 22.4; 11/6/50, 22.7; 12/4/50, 23.7; 1/3/51, 23.6; 2/15/51, 24.0; 3/20/51, 23.9; 4/17/51, 23.8; 4/16/51, 24.0; 7/16/51, 24.4; 8/17/51, 24.8.
- 108/5W-1361 U. S. Nawy 3,460 feet north end 2,200 feet west of seatheast corner of section 13; Camp Pendleton. Reference point top of casing 1.4 feet above ground surface, at elevation 116.4 feet. 8/17/51, 66.4; 9/12/51, 66.7; 10/10/51, 67.1; 11/19/51, 67.7; 11/17/51, 68.0; 3/25/52, 64.4; 4/22/52, 56.3; 5/19/52, 56.3; 6/17/52, 56.6; 7/15/52, 57.3; 8/20/52, 58.5; 9/8/52, 59.2; 10/14/52, 60.4; 11/18/52, 61.7; 12/23/52, 61.2; 1/20/53, 57.8; 2/17/53, 56.8; 3/24/53, 56.5; 5/26/53, 58.1; 6/30/53, 59.0; 10/26/53, 59.9.
- 10S/5W-13J1 U. S. Nawy 2,050 feet north, 1,160 feet west of southeast engine of section 13; Camp Pendleton. Reference point (a) top of casing 1.6 feet above ground surface, at elevation 70.60 feet (8/17/51 and 9/12/51); (b) not described 1.85 feet above ground surface, at elevation 70.85 feet (10/23/27 to present). 8/17/51, 19.3; 9/12/51, 15.7; 10/23/51, 16.7; 12/1/51, 16.8; 12/1/51, 17.3; 12/17/51, 17.5; 6/16/52, 4.9; 7/1/52, 5.5; 8/5/52, 6.6; 9/5/52, 7.9; 10/17/52, 9.6; 11/3/52, 10.3; 7/15/53, 5.8; 8/20/53, 7.3; 9/2/53, 8.0; 9/22/53, 8.4.
- 10S/5W-13R1 U. S. Nawy 275 feet north, 1,050 feet west of southeast earner of section 13; Camp Pendloton. Reference point lower 15p of measuring pipe 4.0 feet above ground surface, at elevation 62 feet. 2/18/47, 8; 12/10/47, 5.5; 1/1/48, 12; 2/7/48, 9; 9/14/49, 8; 10/2/49, 8; 3/27/50, 9; 7/23/52, 3.5 (DWR).
- 10S/5W-14P1 U. S. Nawy 525 feet north, 2,700 fest west of southcast corner of sestion 14; Camp Pendiston. Reference point pump base 6 feet above ground surface, at elevation 64 feet. 5/34, 2 (log); 7/23/52, 8.5 (DWR).
- 108/5W-1401 U. S. Nawy 1,125 feat north, 1,925 feat west of southeast morner of section 14; Camp Pendleton. Reference point top of casing 2 feat below ground surface, at elevation 57 feat. 3/5/50, 3.5 (log); 9/14/50, 5.6; 10/12/50, 5.9; 11/6/50, 6.2; 12/4/50, 6.1; 1/3/51, 6.4; 2/12/51, 6.4; 3/20/51, 6.5; 4/17/51, 6.5; 5/16/51, 6.6; 7/16/51, 7.2; 9/3/51, 8.6; 10/10/51, 8.0; 12/17/51, 8.3; 3/25/52, 1.9; 4/22/52, 2.4; 5/19/52, 2.8; 6/17/52, 3.2; 7/23/52, 3.8 (DWR): 8/5/52, 4.1; 9/5/52, 4.7; 10/17/52, 5.1; 11/3/52, 5.3; 12/4/52, 5.0; 2/17/53, 3.0 (DWR): 7/27/53, 5.8 (DWR): 7/27/53, 5.8 (DWR):
- 108/5W-2311 U. S. Namy 2,550 feet north, 900 feet west of southeast corner of *ection 23; Camp Pendleton. Reference point top of casing 3.0 feet above ground surface, at elevation 54.8 feet. 9/19/50, 9.5; 10/25/50, 9.6; 11/20/50, 9.6; 12/11/50, 9.6; 1/15/51, 9.4; 2/12/51, 9.2; 3/20/51, 9.0.

(Depths to water in feet measured from reference point)

- 108/5W-2333 U. S. Nawy 2,060 feet nearth, 550 feet west of southeast error of section 23; Camp Feedlaten. Reference puint top of caring 3.8 feet above ground surface, at elevation 55 feet. 8/20/5%, 9.25 5/12/5%, 9.3; 10/3/5%, 9.5; 11/15/5%, 10.0; 12/18/5%, 10.0; 3/25/52, 4.6; 4/22/52, 4.7; 5/25/52, 5.3; 6/37/52, 5.8; 7/14/52, 6.2; 8/4/52, 6.7; 9/8/52, 7.3; 10/14/52, 7.7; 11/18/52, 7.1; 12/23/52, 5.9; 1/20/53, 5.0; 2/27/53, 5.%; 3/24/53, 5.%; 5/26/53, 7.7; 6/30/53, 6.5; 7/24/53, 7.7; 8/24/53, 9.3; 9/28/53, 8.3; 10/46/53, 10.4; 11/30/53, 7.9; 12/28/53, 8.0.
- Ins/5W=2324 = U. S. Nawy = 2,550 feet north, 500 feet west of southeast corner of acction 23; Camp Fendleton. Reference print = 2-inch pip: Stading in 40 x 40 feet point, at elevation 3.0 feet above ground surface, at elevation 55 feets. 10/3/51, 10.1; 11/19/51, 10.7; 12/18/51, 10.6; 3/25/52, 6.4; 4/22/52, 6.7; 5/19/52, 7.1; 7/17/52, 7.5; 8/47/52, 9.0; 9/5/52, 9.6.
- 105/54-2301 U. S. Navy 2,610 fact norms, 2,845 feet west of contheast corner of section 23; Camp Pandlebon. References point (a) top of recorder floor 2.09 feet above ground surface, at elevation 53.09 feet floor (12/17/51 through 2/1/52); (b) top of oaking 1.4 feet above ground surface, at elevation 50.4 feet above ground surfa
- 105/5W-1941 T. S. Newy 260 feet morth, 1,510 feet west of southerst corner of section 23; Camp Fencheben. References point top of saring 1.9 feet shows ground surface at elevation 51.9 (8/17/51 turns to 6/11/52); (b) not described 2.14 feet atoms ground surface, at elevation 52.1 feet (7/7/52 to presents). 6/17/51, 8.3; 9/12/51, 9.5; 10/10/51, 8.9; 11/19/51, 8.8; 12/18/51, 8.5; 3/25/52, 6.6; 4/23,52, 7.3; 5/19/52, 7.5; 6/17/52, 7.5; 10/10/51, 8.9; 11/19/51, 7.7; 8/5/52, 7.8; 9/5/52, 7.8; 10/10/52, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5; 13/14/53, 7.5;
- 105/5%-44-1 M. S. Mary 5,225 foot burden, 3,400 for west of anathress corner of section 24; Camp Frailoten. Beforess point - ground surface, 6/94, 5 (log).
- 108/54-3460 7. S. Newy 4,106 field march, 3,700 food mast of southwart corner of south of
- 1-S/N-ADA D. S. Yeorg 4,775 food north, 4,150 feet wash of southeast empher of section 24; Camp Pendistra. Autorems points - ground surface. 7 No. : 1 g .
- 198 July 1942 A. S. Many 9, 125 Cark appelle, 4, 775 from more of arms, based ocener of social a Camp From Labour References plant - ground social socials (1932, 8 - 10g -
- LIS 198-1-100. B. S. Mary: 3,700 from north, 650 * 100 4 4-2 of a tribeset serror of section 24; Camp Partition. Reference print is a vop of stands pugg, d.O facts start serves ground surface, at elevation 65-5 facts (3/2/5) the regular 12/4/50); et not described 2.3 feet elevate ground surface, at elevation 65-8 fact tal/4/50 to presente: 6, it /50. 9-5 (100; et not described 2.3 feet northese ground surface, at elevation 65-8 fact tal/4/50 to presente: 6, it /50. 9-5 (100; et not 100; et not 100; et not 12/4/50, 14-5; 11/6/50, 14-7; 12/4/50, 14-9; 11/6/50, 15-9; 12/18/51, 12/4/50, 14-9; 11/6/51, 17-5; 12/18/51, 11-5; 1/4/50, 16-9; 1/2/52, 16-9; 5/19/52, 16-9; 5/19/52, 16-9; 5/19/52, 16-9; 1/6/53, 17-53; 11/4/53, 11/6/51, 12/4/53, 11/6/51,
- TIS/FINALLESS V. S. Newy 3.650 from a mass, 900 leave mass of smarriaged corner of someton 24g Camp. Smartinger. References to its growing sometons. 77%, 6 line.
- 108/5%-24NL No. S. Navy 1,005 fort morem, 4,000 fore west of scathesat corner of section 24; Camp Functions. Inflormance points the of conting 1.4 fore store ground suctions, as elevation 52.4 feats 5/1/50, 5.1; 10/11/50, 5.5; 12/6/50, 5.5; 1.4/50, 5.5; 1/3/51, 5.7; 1/17/51, 5.3; 3/20/51, 5.1; 4/37/51, 5.5; 5/16/51, 5.3; 3/20/51, 5.1; 4/37/51, 5.5; 5/16/51, 5.3; 7/16/51, 6.3; 5/17/51, 7.5; 3/17/51, 7.0; 10/10/51, 8.2; 11/19/51, 7.9; 11/18/51, 7.9; 12/18/51, 1.5; 1/3/52, 13.3; 12/4/52, 13.3; 12/4/52, 13.3; 12/4/53, 13.6; 1/17/53, 13.6; 1/17/53, 13.6;
- 18/54-7613 U. S. Mary 1,755 form screen, 7,000 form west of -markers as maker of section 26; Camp Pon Button. Beforemark point top of section 3007 forts.

 8/17/51, 14/55; 30-754, 34000 1003/50, 3500; 1500; 1006/51, 1006/51, 14/50, 14/50; 10/7/52, 1004; 2/14/52, 7098

 3/4/55; 705-6/7/51, 704; 5/39, 500 7050 6/2052, 8040 7/7/52, 3040 8/4/50, 902; 9/2/52, 1000 10/7/52,

 1006; 11/1/51, 7007; 11/1/51, 3000 10/1/53, 3000 10/1/53, 3000 10/53, 3000 10/53, 700; 5/4/53, 701;

 6/2/50, 707; 2/1/53, 300; 7/400; 300; 3/400; 3/2005; 00/16/53, 1003; 10/50 10/50

 18/2/50, 1005.

Depths to water in fast measured from reference boint) (continued)

Measurements for the following walks are from U.S. Navy records, except as indivated

- 10S/5W-26L2 = U. S. Navy 1,785 feat north, 3,010 feat west of southeast corner of section 26, 2 feat west of well 26L1; Camp Pendleton. Reference point top of casing 0.78 feet above ground surface, ew elevation 34.78 feet. 10/3/51, 14.7: 11/5/51, 14.7: 12/4/51, 14.9, 1/7/54, 12.6, 8/5/52, 3.7; 9/5/52, 9.0: 10/17/52, 9.4; 11/3/52, 9.4; 12/4/52, 8.8. 1/27/50, 7.4; 2/17/53, 6.2; 6/9/50, 7.3; 9/22/53, 10.2; 10/27/53, 10.6; 11/4/53, 10.6.
- 105/5W-2613 U. S. Nawy 1,625 feet morth, 3,025 feet wash of contrest corner of section 26; Camp Pendiaton. Reference point top of casing 1.5 feet above ground surface. 5/51, 10 (log); 5/4/52; 11.5, 5/16/52, 11.6, 7/16/52, 12.2; 8/20/52, 12.8, 9/12/52, 12.8
- 105/5W-35J1 = U S. Navy = 2,300 feet north. 1,000 feet west of southeast corner of section 35; Jamp Feidleton. Reference point top of casing at ground surface, at elevation 28 feet 7/29/52, 13.1 (DMM), 8/5/52, 13.2; 9/5/52, 14.2; 9/15/52, 15.1; 10/17/52, 14.4, 11/3/52, 14.9; 12/4/52, 15.6; 12/18/52, 15.9, 11/4/53, 13.9.
- 10S/5W-35K1 U. S. Navy 2,500 feet north, 2.450 feet west of southeast counter of section 35, Jamp Pandleton. Reference point pump base 0.5 foot above ground surface, at alevation 28.1 feet. 31/36, 12 (2og), 3/27/51, 22.5; 4/17/51, 23 1, 5/16/51, 23.3, 6/20/51, 26.3; 7/16/51, 25.3; 8/12/51, 27.7; 11/26/51, 22.6; 15/25/51, 22.0; 1/7/52, 21.2; 2/14/52, 14 5; 3/4/52, 11.8, 4/7/52, 11 5, 3/5/52, 12.0; 6/2/52, 12 2; 6/30/52, 14.6; Spring 1953, 11.9; fall 1953, 16.3; Spring 1954, 10.4.
- 105/5W-35KW U. S. Navy 2,525 feet north, 2,400 feet most of southeast corner of section 3; Camp Pendleton. Reference point top of easing 3.0 feet above ground surface, at elevation 30 56 feet. 5/5h, 22 (heg); 5/4/51, 24.7, 5/16/51, 25.1, 7/16/51, 26.0; 8/20/51, 27.1; 9/12/51, 26.4; 10/3/51, 27.7; 11/5/51, 27.7; 12/4/51, 26.3; 1/7/52, 24.7, 2/26/52, 14.5; 3/4/52, 14.8, 4/7/52, 13.1; 5/5/52, 13.2; 6/2/52, 13.7; 5/5/52, 17.5; 9/15/52, 19.2; 10/17/52, 20.0; 11/3/52, 20.9, 12/4/52, 19.5; 1/27/53, 15.2; 2/17/53, 14.8; 6/9/53, 15.6; 7/17/53, 17.7; 9/22/53, 21.4; 10/27/5), 20.9, 11/4/53, 20.1.
- 10S/5W-35K5 U. S. Navy 2,045 feat morth, 2,350 feat west of southeast commer of section 35; Camp Pendinton. Reference point top of easing 1.6 feat above ground surface, at alwesten 26.80 foot. 8,47/51, 27.4; 9/12/51, 25.5; 10/3/51, 29.6; 11/5/51, 27.4; 12/4/51, 24.7; 1/7/51, 22.7; 2/14/52, 16.0; 3/4/52; 12.7; 4/7/52, 12.4; 5/5/52, 12.9; 6/2/52, 13.0; 6/20/52; 16.0; 8/5/52, 17.5; 9/5/53, 21.0; 10/17/32, 19.8; 11/3/52, 19.4; 12/4/52, 18.2; 1/20/55, 14.0; 2/27/59, 14.0; 3/24/53, 12.8, 5/26/53, 14.9; 6/30/53, 19.1; 9/28/53, 20.3; 10/26/53, 22.1.
- 105/5W-35R1 U S. Navy 525 feet north, 1,050 feet west of southerest element of section 35; Gemp Fondleton. Reference point (a) top of casing 1.5 feet above ground surface, at element of 35.0 feet (5/15/50 and 10/12/50); (b) not described 2 0 feet above ground surface, at element of 35.0 feet (11/6/50 through 3/4/51). 5/37, 6 (log); 9/13/50, 31.3, 10/12/50, 29.6; 11/6/50, 32.3, 12/4/50, 26.8; 1/2/51, 29.0; 2/5/51, 25.6; 3/5/51, 24.6; 4/2/51, 27.4; 5/7/51, 26.6; 6/4/51, 28.1; 7/2/51, 26.5; 6/6/51, 03.8; 9/4/51, 26.8; 10/3/51, 30.0; 11/5/51, 25.3; 12/4/51, 27.7; 12/28/51, 23.3; 1/7/52, 23.2; 3/18/52, 14.1; 8/5/52, 20.3; 9/5/52, 23.5; 10/17/52, 23.2; 3/18/52, 21.0; 12/4/52, 19.3; 1/2/53, 15.5; 2/17/53, 16.9; 6/9/53, 16.1; 7/17/50, 18.5; 9/22/53, 22.5; 10/27/53, 20.1; 11/4/53, 18.2.
- 10S/5W-35R2 = U. S. Newy 500 feet morth, 900 feet wort of sentheast corner of section 35; Cemp Pendleton. Reference point top of assing 1 25 feet above ground surface, at elevation 25,29 feet. 9/13/50, 31.2; 10/12/50, 29.4; 11/6/50, 31.8; 12/4/50, 26.5; 3/18/52, 21.4; 7/29/52, 20.1 (EWR); 6/9/53, 17.0 (DWR); 11/4/53, 18.0.
- 10S/5W-35R3 = U. E. Navy 450 foot north, 1,050 foot west of southeast corner of southon 35; 4 foot northeast of well 35R1; Camp Pendleton. Reference point top of casing 3.0 fact cooke ground sumfoce, at elevation 26.6 feet. 5/51, 21.5 (3eg); 5/4/51, 22.5; 6/4/51. 22.6; 7/36/51, 22.5; 8/20/51. 23.1; 9/4/51, 23.1; 10/3/51, 23.2; 11/5/52, 23.0; 12/4/51, 23.1; 1/7/52, 22.0; 3/25/52. 21.3; 4/7/52, 21.1; 5/5/52, 20.7; 6/2/52, 20.4; 6/30/52, 20.2; 7/29/52, 20.2 (DWR); 8/12/52, 20.2, 9/5/52, 20.3; 2/17/53, 17.9; 6/9/53, 16.1, 7/17/53, 16.5; 3/22/53, 16.2; 10/27/53, 15.7; 11/4/53, 15.7.
- 115/5W-1E1 U. S. Newy 3,600 foet worth, 5,250 feet west of southeast occurr of section 1; Camp Pendleton. Reference point top of casing 2 5 feet above ground scribbs, at elevation 23.5 feet, 9/13/50, 30.3, 10/12/50, 29.3; 11/6/50, 05.6; 12/4/50, 26.2, 1/3/51, 25.9; 2/12/51, 22.7; 3/20/51, 26.6; 5/16/51, 28.4, 6/20/51, 40.0; 8/17/51, 30.0; 9/12/51, 27.3; 10/10/51, 28.1, 12/18/51, 24.1; 3/4/52, 10.8; 4/7/52, 13.1; 5/5/52, 14.0, 6/2/52, 19.6; 6/30/52, 19.1; 7/20/52, 23.2 (JME), 3/5/52, 20.7; 5/5/52, 26.7, 10/17/52, 23.4, 12/5/92, 20.6; 12/11/52, 20.0; 1/27/53, 13.6 (DMR); 2/17/53, 16.0 (DMR); 6/9/53, 19.2 (DMR); 10/21/53, 19.8 (DMR); 11/4/53, 17.4.

(Depths to water in fest measured from reference point) (Goutinued)

Measurements for the following wells are from U. S. Navy records, except as indicated

- 115/5W-2A1 U. S. Navy 5,700 feet north, 850 feet west of southeast corner of section 2; Camp Pendleton. Reference point hole in pump base 2.6 feet above ground surface, at elevation 24.61 feet. 4/37, 5 (log); 2/18/47, 23; 12/10/47, 22; 1/9/48, 21; 2/7/48, 18; 2/22/48, 23; 8/15/49, 27; 10/2/49, 30; 11/29/49, 30; 3/2750, 24; 12/15/50, 33; 1/51, 32; 2/51, 33; 5/21/51, 25.1; 9/12/51, 27.0; 10/1/51, 27.8; 11/551, 24.4; 11/27/51, 24.6; 12/28/51, 22.9; 1/7/52, 22.9; 3/4/52, 11.4; 4/7/52, 13.2; 4/28/52, 22; 5/19/52, 12.1; 6/2/52, 14.0.
- 118/5W-244 U. S. Navy 4,550 feet north, 650 feet west of southeast corner of soction 2; Camp Pendleton. Reference point ground surface. 4/12, 6 (log).
- 115/5H-2A5 U. S. Newy 5,050 feet north, 800 feet west of southeast corner of section 2; 25 feet north-east of well 2A1; Camp Pendleton. Reference point (a) top of pipe 3.0 feet above ground surface, at elevation 25.0 (5/16/51 through 10/1/51); (b) not described 4.4 feet above ground surface, at elevation 26.4 feet (11/5/51 to present). 5/51, 16 (log); 5/16/51, 18.9; 6/20/51, 18.9; 7/16/51, 18.9; 8/17/51, 19.1; 9/12/51, 19.1; 10/1/51, 19.1; 11/5/51, 20.0; 12/4/51, 20.2; 1/7/52, 20.2; 3/18/52, 19.3; 4/7/52, 19.1; 5/5/52, 18.8; 6/2/52, 18.7; 6/30/52, 18.6; 7/23/54, 18.6 (DWR); 3/5/52, 18.5; 9/5/52, 18.4; 10/17/52, 18.4; 11/14/52, 18.2; 12/4/52, 17.8; 1/27/53, 16.2 (DWR); 2/17/53, 15.6; 6/9/53, 13.5 (DWR); 7/17/53, 13.1; 9/22/53, 13.4; 10/27/53, 13.0; 11/4/53, 12.9.
- 118/5W-2B1 U. S. Navy 4,750 foot north. 1,675 feet west of southeast corner of section 2; Camp Pendleton. Reference point top of casing 2.33 feet above ground surface, at elevation 24.3 feet. 4/12, 8 (log); 7/29/52, 20.9 (DWR); 8/5/52, 21.5; 9/5/52, 23.3; 10/17/52, 23.8; 11/3/52, 22.4; 12/4/52, 20.0; 12/31/52; 19.2; 1/27/53, 13.7; 2/17/53, 16.7; 6/9/53, 19.1; 7/17/53, 20.3.
- 115/5N-2B2 U. S. Navy 4,750 feet north, 1,675 feet west of scutheast corner of section 2; west of well 2B1; Camp Pendleton. Reference point top of casing 2.0 feet below ground surface, at elevation 20.0 feet. 5/16/51, 23.9; 6/20/51, 24.3; 7/16/51, 26.1; 8/17/51, 27.3; 9/12/51, 23.9; 10/10/51, 24.9; 11/15/51, 22.5; 12/18/51, 20.7; 3/18/52, 11.0; 4/22/52, 11.3; 5/19/52, 12.6; 6/17/52, 16.1; 7/29/52, 19.2; 8/5/52, 18.2; 9/5/52, 20.4; 10/17/52, 21.6; 11/3/52, 21.4; 12/4/52, 18.1; 1/27/53, 14.2; 2/17/53, 14.4; 6/9/53, 17.6; 7/17/53, 19.2; 9/22/53, 20.7; 10/27/53, 18.7; 11/4/53, 18.4.
- 118/5:-201 = U. S. Navy = 4,350 feet north, 3,950 feet west of southeast corner of section 2; Camp Pendleton. Reference point = not reported, at elevation 28.21 feet. 2/18/47, 22; 12/10/47, 27; 1/9/48, 26; 2/6/48, 30; 2/14/48; 25; 3/27/50, 27.
- 118/38-202 U. S. Navy 4,500 feet north, 4,000 feet west of southeast corner of section 2; Camp Pendleton. Reference point ground surface. 1/38, 8 (log).
- 115/54-2E1 U. S. Navy 3,375 fost north, 4,300 feet west of southeast corner of scotion 2; Camp Pendleton. Reference point notch in casing 1.0 foot above ground surfage, at elevation 2.1 feet. 12/36, 8 (log); 2/6/48, 25; 3/27/50, 25; 9/13/50, 26.6; 10/12/50, 29.2; 11/20/50, 24.2; 12/4/50, 24.6; 1/15/51, 25.1; 4/17/51, 27.6; 5/16/51, 26.1; 6/20/51, 29.7; 7/16/51, 30.2; 8/17/51, 29.0; 9/12/51, 26.8; 10/3/51, 26.1; 11/5/51, 24.1; 12/4/51, 24.6; 1/7/52, 21.9; 2/14/52, 17.3; 3/4/52, 10.3; 4/7/52, 13.2; 5/5/52, 12.4; 5/19/52, 12.8; 6/17/52, 14.8; 6/30/52, 16.4; 7/29/52, 21.3 (DVR); 8/5/52, 20.7; 9/5/52, 22.1; 10/11/52, 22.6; 11/3/52, 20.2; 12/4/52, 19.1; 1/27/53, 15.0; 2/17/53, 16.2; 7/17/53, 18.7; 9/22/53, 16.8; 10/27/53, 17.4; 11/4/53, 17.3.
- 115/54-2E2 = U. S. Navy 3,950 feet north, 4,300 feet wort of southeast corner of section 2; Camp Pendleton. Reference point not reported. 2/16/47, 26; 12/10/47, 23; 1/9/48, 28.
- 118/5W-2E3 U. S. Navy 2,750 feet north, 4,925 feet west of southeast corner of section 2; Camp Pendleton. Reference point top of casing 2.5 feet above ground surface, at elevation 20.9 feet. 5/16/51, 24.5; 7/16/51, 27.1; 8/17/51, 27.9; 9/12/51, 26.6; 10/3/51, 26.5; 11/5/51, 25.7; 12/4/51, 25.0; 1/7/52, 24.0; 3/25/52, 9.0; 4/7/52, 9.0; 5/5/52, 9.0; 6/30/52, 10.0; 7/29/52, 13.8; 8/5/52, 14.0; 9/5/52, 15.5; 10/17/52, 17.2; 11/3/52, 17.6; 12/4/52, 17.6; 1/27/53, 14.5; 2/17/53, 10.5; 6/9/53, 13.0; 7/17/53, 14.8; 10/27/53, 13.2; 11/4/53, 13.3.
- 118/5W-2E4 = U. S. Navy 3,375 feet north, 4,300 feet west of southeast corner of section 2; Camp Pendleton. Reference point ground surface. 5/51, 24 (log).
- 118/5W-2W1 U. S. Navy 2,700 feet north, 2,975 feet wast of southeast corner of section 2; Camp Pendleton. Reference point not reported, at elevation 26.6 feet. 9/14/49, 28; 10/2/49, 26; 11/29/49, 29; 3/27/50, 20; 12/15/50, 26; 1/51, 28; 2/51, 26; 7/18/51, 30.

(Sapths to water in section and bearing point)

Measurements for the following wells are from N. 3. Nevy monoris, extend or indicated

- 118/5W-2F3 U.S. Navy 2,700 feet mouth, 2,475 leet went of purthessy neutral of socion 2; Camp Pendlaton. Reference point for the pipe in suger hole 2 2 feet above ground surface, at elevation 21.2 feet. 10/10/51, 12.7; 11/5/51, 12.6; 12/10/51, 12.0; 1/7/50. 12.7; 3/12/52, 3.4; 1/7/52, 5.2; 5/5/52, 5.4; 6/2/52, 5.7; 6/10/52. 6.0; 7/23/52, 6.4; 8/3/52. 6.4; 9/5/52, 6.9; 10/17/53, 6.9; 11/3/52, 7.0; 12/4/53, 5.0; 1/27/53, 3.8; 1/17/53, 3.8; 1/17/53, 3.7; (DWR); 7/17/53, 3.9; 9/22/53, 5.5; 10/27/53, 5.0; 11/4/53, 4.4;
- 115/5W-2K1 U. S. Navy 2,325 frot markl. 2,615 feet west of acutorear corner of excelon 2; Samp Fendleton. Reference point top of coulng 5.0 feet above ground our face, as elevation 23.31 feet. 4/21, 4 (log); 12/20/47; 26.5; 1/3/48, 43; 1/25/46, 12; 2/35/48. 23; 11/25/51, 23.4; 12/3/51, 26.5; 1/7/52, 22.2; 3/11/52, 10.5; 4/14/52, 10.5; 5/5/52, 13.6; 6/2/52, 13.3; 6/20/52, 16.6; 7/23/52, 24.8; 6/12/52, 15.3; 6/9/53, 19.0.
- 118/5W-2K2 U. S. Navy 1,900 feet north. 1,795 feet was not southness corner of section f; Camp Pendleton. Reference point (a) top of sesting 2.3 feet above ground surface, at elevation 26.0 (8/17/51 and 9/3/51); (b) not conscribed 1.6 feet above ground surface, at elevation 26.4 feet (9/1/51 to present). 5/17/51, 19.5; 9/3/31, 14.5; 10/1/51, 19.5; 11/5/51, 12.5; 12/3/51, 20.5; 1/4/52, 22.2; 3/18/52, 15.5; 5/5/52, 15.0; 5/2/52, 15.6; 7/23/32, 19.6; 7/23/32, 17.6; 3/5/52, 28.5; 10/7/52, 19.2; 11/2/52, 18.5; 10/4/51, 19.0; 1/27/33, 13.6; 2/3/37, 15.6; 6/9/53, 16.0 (IWR); 7/17/53, 17.5; 10/26/53, 17.5;
- 115/5W-2M1 U. S. Mary 2,500 feet north, 4,100 feet most of southsquit surer of section 2; Camp Pendleton. Reference point tor of seaing) feet above ground surface, at elevation 17.4 feet. 6/9/53. 3.7 (DWR).
- 115/5W-2M1 U. S. Navy 600 feet torth, 5,200 feet that of southeast terms of section 2; Camp Pendloton. Reference point top of casing 4 feet there ground studies, at alexation 13.7 feet. 7/23/52, 5.8 (DWR); 5/5/52, 6.0; 6/9/53, 5.4 (DWR); 7/17/53, 6.6; 9/22/53, 5.1; 10/27/53, 8.8.
- 118/5W-2NM U. S. Navy 810 Ires across, 4,775 feet when of provised as series of gention 2; Camp Pendleten. Reference point (a) top of ording 1 foot above ground surface, at element on 17.2 feet (6/11/51 through 10/1/51); (b) not described 1.4 feet (10/9/51 to present). 8/17/51, 11.6; 3/12/51, 10.0; 10/1/51, 13.9; 10/9/51, 21.9; 11/5/51, 13.2; 12/3/51, 18.7; 1/4/52, 17.9; 3/11/52, 8.5; 4/7/32, 5.3; 5/5/52, 8 f; 4/2/52, 7.7; 7/7/52, 13.6; 8/5/52, 13.2; 9/5/52, 14.3; 10/27/52, 14.0; 11/2/52, 13.6; 13/2/52, 13.6; 14.6; 14.6/53, 9.5; 5/4/33, 9.5; 5/2/32, 10.1; 4/6/53, 9.5; 5/4/33, 9.4; 6/2/32, 10.0; 7/13/33, 10.0; 5/10/53, 13.6; 9/8/53, 14.8; 10/12/53, 13.6; 11/9/53, 14.2; 10/15/53, 14.2.
- 115/5W-2N5 U. S. Norm 800 feet merels, 5,100 feet went of stubhoart normer of section 2; Camp Pendleton. Reference point try of cesing 0.5 feet there ground surface, at closuiden 18.4 foot. 8/17/51, 20.8; 9/12/51, 20.7; 10/1/51, 00.7; 12/5/51, 20.5; 12/3/51, 00.6; 1/4/51, 20.0; 3/18/52, 7.2; 4/7/52, 8.5; 5/5/52, 8.7; 6/2/52, 9.5; 7/23/52, 10.7; 7/24/52, 11.0; 3/5/52, 11.0; 9/5/52, 11.7; 10/17/52, 12.5; 11/3/52, 32.3; 20/4/52, 13.1; 1/7/53, 7.7; 2/17.53, 8.6; 6/9/53, 10.1 (DVR); 7/17/53, 11.4; 9/22/53, 12.9; 10/2/53, 23.5; 11/4/53, 13.6.
- 115/5%-2P1 U. S. Nevy 270 Seed nord, 3.150 flow wast of southeast somes of section 2; Camp Pendleton. Reference point 305 of casing 2 Seed above ground surface, as elevation 44 feet. 7/26/51, 44.9; 8/17/51, 45.0; 9/11/52, 44.1; 10/10/61, 44.5; 11/21/51, 44.0; 12/21/51, 45.6; 3/18/52, 38.2; 4/22/52, 37.0; 5/19/52, 36.7; 6/17/52, 36.1; 7/20/52, 37.1; 9/0/62, 37.0; 10/14/52, 37.7; 11/18/52, 36.0; 12/28/53, 37.7; 1/20/53, 35.8; 2/17/53. 35.4; 5/24/53, 50.1; 6/15/53, 36.6; 6/29/53, 35.7; 10/26/53, 35.4.
- 115/5W-931 U. S. Newy 2,000 Cost negative 1,105 food week of southhouse access of southouse access of southouse 9; Camp Pendleton. References point pop of seeing 3.0 feet above ground ancient, at closure 9.3 feet. 8/17/51, 3.6; 9/11/31, 3.3; 10/2/31, 3.0; 11/5/51, 1.7; 12/3/52, 7.8; 3/47/52, 5.0; 4/22/52, 5.2; 5/19/52, 5.4; 6/16/52, 6.1; 7/14/52, 6.1; 8/19/52, 6.4; 10/24/52, 6.9; 11/28/52, 6.9; 1/20/53, 7.2; 2/17/53, 5.7; 3/23/53, 5.4; 5/26/53, 3.7; 3/23/53, 5.4; 5/26/53, 5.6;
- 118/5W-932 U. S. Nawy 2,000 feet sorth. 1,105 feet word of southeast corner of section 9; Camp Pendleton. Reference print vop of easing 1.5 feet above ground surface, at elevation 4.5 feet. 10/3/51, 7.6; 11/5/51. 7.4; 11/3/51. 7.6; 1/5/50, 6.1; 3/17/50, 6.1; 3/17/50, 4.1; 3/17/50, 4.5; 5/19/52, 5.3; 6/16/52, 5.9; 7/17/53, 6.2; 6/17/52, 5.6; 5/5/51, 6.7; 10/17/53, 6.8; 11/3/52, 6.7; 12/4/51, 5.8; 1/27/53, 5.0; 7/17/53, 6.7; 9/22/53, 6.0; 10/17/53, 7.1.

DEPTHS TO GROUND WATER AT WELLS IN HYDROGRAPHIC UNIT NO. 6

(Depths to water in feet measured from reference point)
(acrtinued)

Measurements for the following wells are from U. S. Navy records, except as indicated

- 138/58-1041 U. S. Navy 4,400 feet north, 300 feet west of southeast corner of section 10; Camp PendLeton. Reference point top of casing 4 feet above ground surface, at elevation 13.4 feet. 7/23/52, 7.1 (DWR); 8/5/52, 7.3; 9/5/52, 7.7; 10/17/52, 8.3; 11/3/52, 8.4; 12/4/52, 8.3; 1/27/53, 6.4; 2/17/53, 6.3; 6/9/53, 7.0 (DWR); 7/17/53, 7.5; 9/22/53, 8.6; 10/27/53, 9.0; 11/4/53, 9.0.
- 118/54-1031 U. S. Navy 4,025 feet north, 1,650 feet wast of southeast corner of section 10; Camp Pendleton. Reference point top of casing 1.5 feet above ground surface, at elevation 13.5 feet. 5/17/51, 15.0; 9/11/51, 15.5; 10/1/51, 13.2; 11/5/51, 12.6; 12/3/51, 13.1; 1/2/52, 11.8; 3/25/52, 6.4; 4/7/52, 5.4; 5/5/52, 6.7; 6/17/52, 8.0; 7/14/52, 9.0; 8/20/52, 9.2; 10/14/52, 10.5; 11/18/52, 9.4; 12/23/52, 8.7; 1/20/53, 6.3; 2/17/53, 7.4; 3/24/53, 6.9; 5/26/53, 8.2; 6/29/53, 8.7; 7/24/53, 9.7; 8/24/53, 9.4; 9/28/53, 10.1; 10/26/53, 10.0; 11/30/53, 9.4; 12/28/53, 9.6;
- 118/5%-1001 U. S. Nawy 3,850 feet north, 1,450 feet west of southeast corner of section 10; Camp Pendleton. Reference point top of casing 4.0 feet above ground surface, at elevation 12.8 feet. \$\(\frac{11}{51}, 12.2; \) 9/11/51, 12.3; 10/1/51, 12.3; 11/5/51, 12.4; 12/3/51, 12.4; 1/7/52, 11.9; 3/25/52, 6.1; 4/7/52, 6.8; 5/7/52, 7.0; 6/17/52, 7.7; 7/14/52, 8.0; 8/5/52, 8.2; 9/5/52, 8.6; 10/17/52, 8.7; 11/3/52, 8.3; 12/4/52, 8.5; 1/27/53, 7.3; 2/17/53, 7.7; 6/9/53, 8.2 (DMR); 7/17/53, 8.7; 9/22/53, 9.3; 10/27/53, 9.4; 11/4/53, 3.3.

APPENDIX H RECORDS OF MINERAL ANALYSES

TABLE OF CONTENTS

RECORDS OF MINERAL ANALYSES

Eble No.		Page
H-1	Mineral Analyses of Spring Waters in Santa Margarita River Watershed	H 3
H-2	Mineral Analyses of Surface Waters in Santa Margarita River Watershed	н - 9
H-3	Mineral Analyses of Ground Waters in and Adjacent to Santa Margarita River Watershed	H-27
H-4	Partial Mineral Analyses of Ground Waters in Santa Margarita River Watershed	H- 59

TABLE H-1

APPENDIX H

MINERAL ANALYSES OF SPRING WATERS IN SANTA MARGARITA RIVER WATERSHED^A

Spring	: Spring : name	: Date :ECx10 ⁶ : sempled : ct : 25 ^o C			8 U	Unera Mg	Mineral constituents in Mg : Na : K : C	stuen:	10	equavalente per million	in SO ₄	: C1	on .			dissolve solids, ppm	B :dissolved:hardness: ppm: solids; :as GsCG3; : ppm : ppm :	Per cent
				Hydro	Hydrographic Unit	Unit	No. 1											
75/3W=14J2	Kidney Spring (Murrieta Hot Springs)	10-10-52	1,030 8.9	8°9	$\frac{2}{0.10}$	0.06	8.90	1		1.1	0.30	3 266	0.03	ì	2.1	523b	∞	98
‡ [Marrista Hot Springs (Sampled downstream from resort)	1- 5-54	1,351 7.8	7.8	22	0.36	250	0.11		1.8	0.95	362	0.05	में मे	¢ 0°8	731	78	88
14	Murieta Hot Springs (largest spring)	July® 1936	1 9	4	13	0.20	237 10.30		14.0	0.31	0.50	350	00	9	0	745	η-5	92
35K2		8-19-53	1,280 7.8	7.8	1.2	1,29	228	0		250 4.1	0.77	7 7.5	0.05	600	1.0	744	124	80
35K3		8-19-53	9°2 062	9°2	28	15	111			158	30	2.56	0.02	0°2	ή°0 2	1941	134	69
8S/3W- 1N2	Sheep Camp Spring	1939 ^d	832	;	39	0.77	5.09	00	00	146 2.40	35 0.72	156 156 14.40	5 0.14	1	1	511	135	69

Spring	Spring same	: Date : sempled	ECx106:	五	 gj	Minoral o	constituents in No. : K : CC	lents 1: K : (nbe E	parts par equivalents 23 : HCO3 :	Parts per million lvalence rer million HGO3 : SQ : Cl	11 on C1	NO3	i sadd	Fotal B : dissolve ppm: colide,	0		Per cant
					Hydrogra	ographie Unit	Unit No. 2											4
6S/1E-259		9~23~53	323	7.8	33	0.72	25 1:08 0	. <u>9</u> 1.0		159	0.14	21	1 0.02	0.2 0	0°02	242	118	30
7S/1E-20G1		2- 1-51	290	9.5	0.1	0.04	67 2,92	:	15.5		0.19	1.25	ू जु	;	0°5	171 ^b	7	95
2062		2- 1-51	280	9.1	0.15	0.03	66 2.89		12/5	•	10	1.3	4 000	1	0°5	174 ^b	6	お
246		9-23-52	1480	<i>ಷ</i> ಬ	31	5,00,00	25.41	:		171 2.8	19	15.3	0.02	1	0,2	243p	6	55
áħZ		9-23-52	760	4°8	2.35	1.35	114 1,96	:]		299	72 1,50	2.2	0.05	i	0.2	q084	185	22
250		11-16-51	0 1 1	8.2	32	0.72 2	60 2.62			3.0	0.36	12/2	0.02	!	0.1	267 ^b	911	53
306		2= 2-51	9	9	4.1	31 2.54 2	2.56		8	140 2,3	235 4.88	1.8	50.08	1	0.01	2946	332	28
7S/2E- 6N2		9-23-53	370	7.7	1:45	0.86	36	0.10		$\frac{137}{2.25}$	30	28 0.8	00	0.3	6.0	272	311	39
99	Daval Spring	9=23~53	9/9	7.8	3.8	2°0 2	2.00	0.22	•	165 2.6	186 3.88	35	0,02	0.2	0°5	506	290	3 8
20H		3-8-51	630	7.8	3.25	1.87	1.87	:		3.0	123 2.57	1.4	ू ह	!	0°0	398b	256	27
260	Coahuile Spring	11-15-51	310	9.8	0.10	0.06	38		18	:	27 0.57	0.7	0.02	1	0.2	113 ^b	∞	91
		8-18-53	330	8.8	0.1	00	2.89	:		101	24	28 0.8	0.02	1,2 (†. 0	242	2	4
8s/1E- 8G		2-16-51	450	9.0	4 0°5	0.05	108	1	2.0	1	12	89	ू इ.	1	0.2	283 ^b	12	*
8K1		2-16-51	530	9.3	40.2	0.03	119 - 5.16	:	60	:	200	3.0	्रहे	!	0.2	312 ^b	ជ	K

		MINERAL ANALYSES OF SPRIN	TSES OF	SPRIN	G WATE	ntinned	G WATERS IN SANTA MARGARITA RIVER WATERSHED	GARITA	RIVER	WATERS	HED					Š		
. see a pearly	Spring	. Date	901x03	•••		Mneral	Mineral constituents in	tuents	tn equ	perts equivalen	ts per u			[24	B :d1	Total : Total dissolved:hardness	Total :	Per
. Sur sign	emeu emeu	sampled : at : pH : C	25°C:	畏	දී	Ca : Mg : Na :	84 	*	: K : CO3 : HCO3 :	HC03	₹os	ເວ	NO ₃	add	s :wdd	olids, :	: Cl : NO ₃ : ppm: ppm: solids, :a.s CaCO ₃ , : eert	eert Na
			HY	ydrogra	phie Ur	it No.	phie Unit No. 2 (continued)	(penut										
8S/1E- 8Q		2-16-51	550 8.9	8.9	3 0.15	$\frac{3}{0.15} \frac{0}{0.02}$	125 5.43	•	1.5	1	22 0.45	3.6	0.03	i	0.5 325 ^b	325 ^b	ထ	96
8S/2E- 7D		8-20-53	430 7.5	7.5	10	$\frac{10}{0.5} \frac{5}{0.42} \frac{7^2}{3.13}$	3.13	9	:	1:4	36.0	1.6	$\frac{85}{1.4}$ $\frac{36}{0.76}$ $\frac{57}{1.6}$ $\frac{3}{0.04}$	2.1	2.1 0.4	281	¥	11

MINERAL ANALYSES OF SPRING WAFERS IN SANTA MARGARITA RIVER WATERSHED^R (contained)

						a resonal	1000000	1000		ľ	Carl Management	The many tracks				The second second		ŀ
Spring	Spring		: ECz106			Mineral		eons tituents	r.		Der J	iten millien	oc ••	·· ··	., т. Д		Total hardness	Per
រាម ព័ ធារាព	: neme	: sampled	at : 25°C :	瓷	6 9	89. ₩	. Na.	×	. c ₀	еоэн :	30°	: :	NO ₃	nodd.	: mdd	solids, ppm	: as caco ₃ ,	cent Na
					Hvd	Hydrographic	ie Unit	No. 3										
8s/1W-21C	Dripping Spring	2- 9-51	041	7.8	2,4	1.21	1.57	0	:	3.7	0.49	1,000	0.07	9	0°0	273b	180	30
25в		1-25-51	510	8.2	2.9	1.28	2.16	:	:	$\frac{128}{2.1}$	$\frac{53}{1.10}$	2.1	2 0.0	}	0.1	318 ^b	209	ま
25N		1-25-51	500	7.8	3 25 2.75	1.41	1.94		:	262 4.3	0.57	1.0	0.05	;	0.0	313 ^b	208	恏
36н	Savyer Spring	1-25-51	300	9.6	o o	0.19	$\frac{73}{3.19}$	1	2.0	1	$\frac{29}{0.61}$	14 0.40	ू हुं	1	ተ° 0	181 ^b	10	ま
36K		1-25-51	280	10.2	0.05	$\frac{2}{0.13}$	3.21	ij	63	1	19	0.05	0.03	ŀ	ħ°0	163 ^b	6	95
369		1-25-51	300	10.1	00	0.28	3.33		2.2	1	23	0.05	9°0	;	0.5	180b	1 1	92
8S/2E-19B		3-16-51	580	8°0	1.65	0.32	105	1	1	2.3	1:06	2,4	0.05	;	0.2	387 ^b	98	70
2261	Twin Oaks Spring	11- 2-53	627	8.0	3.6	1.25	2.21	0.18	1	122	3.63	1.2	0.0	0.3	0.1	510	242	31
Composite of 8S/3E-31Gl 31G2		3-15-54	1,190	8.0	0 164 8.2	2.77	2.33	0.25	:	2.05	458 9.55	1.45	0.05	0.2	0.01	926	548	18
9S/1E- 3C		12- 7-50	%	7.6	5.55	2.55	111 4.82	1	!	214 3.5	$\frac{295}{6.15}$	2.0	60.10	i	0.03	732 ^b	405	읔
ήΑ <u>1</u>	Fault Spring	12- 7-50	1,800	7°h	- 288 14.4	82 7.28	124	1	:	$\frac{171}{2.8}$	1000 20.85	2.2	0.08	1	0.0	1,643 ^b	1,085	16
4.42	Tunnel Spring	12~ 7-50	1,710	7.4	14.35	86.89 6.89	4.01	ij		164	220 19.18	2.2	0.10	;	0.2	1,549b	1,063	%
12R		8-24-53	1,820	7.8	3 244	23	4.28	:	:	3, <u>4</u>	820 17.1	1.8	2 0.04	9.0	0.1	1,564	910	19
9S/2E-23K		2-16-51	940	7.6	33	0.78	37	:	:	3.3	0.14	20 0.55	9.04 10.04	ł	0.1	210 ^b	122	04

WATERSHED®
RIVER
MARGARITA
IN SANTA
COU
Z
F SPRING WA
ANALYSES OF SPRING WA
MINERAL ANALYSES OF SPRING WA

Spring number	Spring name	: Date : sampled	ECX106:		E S	ineral Mg :	const1	tuents K :	tn equ	In equivalents per m 60_3 : 80_4 : 80_4	Mineral constituents in equivalents per million Mg : Na : K : CO3 : HCO3 : SO4 : C1	111110n Cl	NO.3	. H	B :dis	Lved Is,	rotal rdness caco _{3,}	Cont Sont
		•	**	lydrogr	phic U	nit No.	3 (%	Hydrographic Unit No. 3 (continued										1
95/2E-34L		3- 6-51	510	80	3.35	0.89	1.28		:	3.9	5th 1.13	28 0.8	40.07	;	0.0	312 ^b	212	23
		10- 8-53	520	7.7	3.2	13	23	:	;	3.7	1.0	$\frac{27}{0.75}$	0.05	0.1	0°0	349	212	19
				H	ydrographic Unit No. 4	hie Un	t No.	41										
8S/2W-18J	MoSweeny Spring	1939	419	9 t	50.02	000	84 3.66	00	6.20	113	11 0,22	58 1.65	0.02	Ü	ð	278	15	83
22N		3-12-53	510	9.0	0.5	0.20	103			116	10	2.8	0.13	ų.	0.2	250 ^b	35	%
36F	Collier Spring	2-11-52	350	7.8	0.85	4 0.31	66 2.87	0	8	13 ⁱ t	25	1.3	0.01	;	0.1	229 ^b	58	71
8S/3W-24R		3-26-53	240	7.7	10	8	1.37	0	9	37	0.07	28	0.02	1	0.02	129 ^b	58	杰

MINERAL ANALYSES OF SPRING WATERS IN SANTA MARGARITA RIVER WATERSFED[®] (continued)

Spring : number ;	Spring name	: Date : sompled	Date : MXIO ⁶ : :		Ca : Mg : Na : Hadrographic Unit Wa.	Mg	Na :	>: r.	00) ;	, tos set s	so _t	<u>.</u>		99 4		ipm: 80116s, :es GeCJ ₃ ,	ppm: solids, :as CeCog; : ppm : ppm	oent Na
8S/4W-32M		5-24-54	358 9	9.6	0.05	00	3.03		10	94	† 0°0	1.2	0.03	F. 0	0.3	238	8	98
8S/5W-13Q1		5-26-54	222 7	7.8	13 0.65 0	0.2	30	0.02	9	$\frac{76}{1.25}$	0.02	30 0.85	0.03	0°5	ĩ°0	193	142	09
9S/3W- 4R		2~26~54	535 7	7.9	2:2	$\frac{21}{1.75}$	36	0,02	2	3.7	10 0.21	1:4	0.03	0°5	0°0	327	198	28
17F		7- 9-52	9 056	6.9	30 2	26 2.14	2.03		;	3.0	0.34	2.1	0.16	1	0.1	295 ^b	182	%
95/4W- 5P		8≈25∞54	373 7.	7.5	2:4 0	9 9	41	0.08	:	171	17 0.35	122	0.10	0.2	0.1	288	<u>‡</u>	37

All analyses by Division of Water Resources unless otherwise noted. Total dissolved solids determined by summation. United States Geological Survey, Water Supply Paper 429, 1919. Analysis obtained from Vail Company.

ရှိ ငိ ဝို အ

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®]

TABLE H-2

200 88			. Dis-	ECX10	# H		Minerel ©	constituents in	iente i		Parts p	parts per million equivalents per million	11on 1111on	•• •• •			in Tokal :	Potal hardness	Par
irae Ja	1	Time	recenter:	, , ,	• • > > = 5	g)	B _W	<u>8</u>	 ≥	CO3 :HCO		30°	5 5	NG ₃	6 !	8		3	section.
				£	rarogra	Hydrographic Unit	nît No	~* A											
Colle Canyon Cresk	93~30°1-9°0-0°1	1-25-54	£2 #	6भूग	2.6	10	0.50	10	0.06	0	43 00.7	15 0.32	14	0,12	0 6.0	0.01	132	50	30
		1-26-54	4 5.3	253	7.9	20	8 0.70	20 0.89	3 0.07		68	19 00.39	0.8	20.14	0.3 0	0.0	195	83	煮
		3-23-54	13	235	7.7	130	6.48	19.0	0.03	0	13.4	18	14 0.29 0	0.03	0.3 0	50.0	176	47	lis Cr
		3-24-54	7.5	267	7.6	2.2	0.53	2.2	0.03	e e e e e e e e e e e e e e e e e e e	3.4	23	15.0	30.00	0.1 0	0,02	190	&⊃ (1	%
Marieta Cresk	93-3001-00%	q6561	9	1,370	а Э В	3.02	1.90	3.94	00	32 2	3.55 2	2.65 6	238	00	1	9	1,48	•	63
		agree	9 8	1,930	8 1 0	3.45	32 20 59	292	0	00	4.50	3.66	10.5	00	8		1,315	d i	89
	11.0-	1939 ^b	9 9 9	0,6901	9 3	3.35	2.36	20th	0 0	0 0	259 1	3,26	350	00	i fr	5(12 0	1,065	Si Ti	9
		45-11-94	e	1,266	7.6	111	1.22	396	0.38	7	256	76 2	223 6.3 0	00.00	0 9.0	4	743	1/1	69
	n°1.	8-19-53	23 28	760	7.27	30	9/.0	5.09	0.00	210	3.7 0	17 1	3.4	20.04	0.2 0	0.2	1463	113	89
Tributary to Murrieta 9953.1-7.1-4.1 Creak (Barenatein's Canyon)	ta 99.50.1-7.1=4c1	4-22-53	53	3,800	6.2	123	15.53 15.53	205	5 0	\$ 100 \$ 100	8.7	3.16 7	7.7 0	15.0	<u> </u>	0.15 1	1,038	₹S	Sti
Santa Gerekudde Creek 99-30.1-3.9-0.6	ok 93-30.1-3.9-0.6	1-25-54	£.	%	7.00	800	3 0.25	0.23	0.06	~~°	0.5	0.20	0.2 0	60.0	0°0	10.0	103	87 24	25.
		1-25-54	9 #	148	7.5	10	3.20	0.58	- th		21 6.5 0	0.56		0.04	0	0,05	267	35	η5
Warm Springs track	93-30,1-4,8-0.5	2-27-53		0°12 1,040	7.9	38	11	169	O T	2 2	2.3	80 2	216	2 0.03	0	1.05	586 ^d	340	73
		Ju 2-53	33 3.3	1,780	8.3	200	3.93	226 3.83	8	213	287 2	4.35	がまる。	90.0	0	0.8	1,07½ ^d	9nti	23
]

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (continued)

						's and an in a													-0
Streem	Stream male	Date	Dis ECKIOS: Charge, at: second.: 25°C: feet:	ECE 106	E.	Mina Ge:	arsl co Mg :	onstitu Na :	K 3	n aqui	Minaral constituents in sarts per million equivalents per million is: Mg : Na : K : 605 : HCC3 : SO; : U1 :	So.	tor UISon C1	ion 81180n U1 : NO ₃	d. mdd	B dis	F : B :dissolved: as : cans PPm :ppm : solides : CaCos : contains	fotal hardness as caco ₃	Par 690%
			Hyd	Hydrographie Unit No. 1 (continued)	ie Uni	s No.	į (cont	fuued)											
Werm Springs Creek	99 30.1-4.8-0.5 1-25-54 81	1-25-54	81	749	7.5	3000	1.13	98 4.25	0.11	:	130	86 1.80	142 4.0	$\frac{2}{0.32}$	0.9 0.3	φ,	487	152	55
		1-25-54	09	196	7.5	114	0.40	23	0.13	0	1.0	0.51	0.7 0	2 0.0	0	0°03	335	55	45
		1-27-54	630	905	7.8	3 50	15	130	4 0°00	9	2.3 2	2.00	277 5.0	5 0.08 0.08	0 6.0	9°0	578	179	61
		3-22-54 110	110	417	2.6	13.4	8	40 1.73	60.00	?	1.3	1.05	154 0	0.0	0.1 0	0.03	306	104	45
		3-23-54 1600	11	552	7.9	30	10	2.86	0.08	:	116	41 0.85 2	2.2	2 (c)	ο 1 °0	0.3	335	118	弘

IN SANTA MARGARITA RIVER WATERSHED®
(continued)

Stream	: : Stream mile	Da.t.e	: Dis :	ECX106:	······································	Mineral	ttuents 1	oquiv	ts per	111	n 11 on	E4	<u> </u>	77		Per
	40 40	. Tine	: 25°C	250€ :	90 00	ී දී	Ma K	600	: Ecou:	20 tos	C1 : NO ₃	add :	mdd:	: solide, :	CaCO ₃₉	: sodium
				Hydr	dezeo.	rographie Unit No.	21									
Coenulla Creek	93-41°6-7.6	1-31-51	0.22	1,550	7.7	4.65 2.95 1	238		1 ting 1	416 188 8.66 5.3	3 0.04	1	0°2	1,0% ^d	380	58
		14~ 8~5h	is a	885	8.3	3.8 2.2	217 9 9,42 0,23	1	323 2 5.3 4	226 206 4.72 5.8	90°0 8	4	÷°0	296	300	09
	-11.3	12- 7-50 0900	\$ •	520	8.0	10 33 2.0 1.06	69		346 254	70 57 1.46 1.6	2 2	, 1	0°0	331 ^d	153	50
		12- 9-53	3 0.17	909	8°0	10 13 2.6 1.10	73 4 3.19 0.11	0	207 1	$\frac{83}{1.72} \frac{67}{1.9}$	7 4 6.07	†°0	0°3	1139	155	20
Lenoastor Creek	93 41.6-0.2	11-10-50	ŧ, 0	1,850	7.8	86 33 4.3 2.58	337	711	7.5 5	276 266 5.75 7.5	5 0.04	fi 9	ή°ο	1,2104	500	99
		11-27-51	•	1,870	3.2	84 21 4.2 2.57 1	300	7 2	402 6.5 5	272 255	2 0.06	Ì	φ°0	3,147 ^d	338	99
	4,6=	12-10-50	0	1,900	8.1	3.55	293	2	2 <u>h°9</u>	322 305	5 6,12	8	0,3	1,221 ^d	och	0.9
		11-19-51	1	1,790	7.8	4.75 3.03 1	285	1	397	284 2% 8.0 6.16	10°0 91	9	0°3	1,200d	389	62
		4- 1-53	1	1,780	8.1	3.6 3.10 11	272	3	336 5.5	265 259	3 6.03	3	0°4	1,075 ^d	335	1 9
	-5.5	11-21-50	0.28	1,410	8.6	60 33 3 3.0 2.7 10	250 10,90		24t	247 220 5.14 6.2	2 0.06	0	0°0	936 ^d	285	49
		1-26-51	1	1,360	8.5	80 30 1 4.0 2.43 9	226 9.83		378	220 202 4.57 5.7	7 0.0	i	0°5	950 ^d	322	61
		11-19-51	;	1,410	†° 8	$\frac{71}{3.55}$ $\frac{31}{2.60}$ $\frac{3}{9}$	225 9.78	1	385 6.3 T	226 199 4.72 5.6	5 0.03	0	0,2	_p 9η6	308	51
		4-14-53	•	1,380	8.2	$\frac{67}{3.35}$ $\frac{27}{2.20}$ $\frac{2}{8}$	201	:	330 1	22th 160 4.56 4.5	5 0.02	9	0.2	846 d	278	61
	-5.8	1-26-51	:	1,360	8.2	3.9 2.44 9	214 9.26	1	366	192 220 5.4 4.57	20.0 45	9	0.2	921 ^d	317	09
																H-

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (continued)

Stream

Wilson Creek

Strammile	Date	Dis- ECXIO	ECX106:	是	Minar	al con	stituc	Minaral constituents in	123	perts pe uvalents	equivalents per million	ton 1111100	80,	64 DQ C	B di	: Total :h :dissolved: :solids. :	Total: thardness: tas tas CaCO ₃ :	: Per : cent :sodium
• ••		feet								`			2		00	00	bbw	
		E.	Hydrographic	ie Unit	t No. 2	(continued	(penu											
93-41.6-7.2-1.8	1-31-51	0.01	0.01 1,490	7.8	147 7.35 T	1.18 7	7.00	:1	6	470	323	145	ф 0°0	Q •	0.1	1,066 ^d	576	38
	11-16-51	0.002	0.002 1,560	8°₽	151 7.55 4	4.45 7	183 7.93	:	:	513 8.4	340 7.08	160	0.03	1	0.2	1,146 ^d	009	0†1
	9-23-52 1045		0.06 1,270	8.2	5.50	40 1 3-33 5	135	1	1	421	219 4.56	3.2	ू हैं	;	0.2	831 ^d	442	011
	5-14-54 0855	0.19	0.19 1,321	8,3	126 6.3	3.25 5	125 5.43	71.0	t	396	5.35	3.35	0.04	9°0	0.1	957	1478	Ж
-2.4	11-16-51	0.02	1,050	8.3	5.30	37 1	112	:1	:	表 2.3	3.31	2.3	0.02	1	0.11	721 ^d	μ18	37
	9-23-52	;	1,300	8.5	102 5.10	3.36	143	:	1	470	2.97	12t 3.5	2 0 <u>.0</u>	:	0.2	_P 064	423	η2
4.5	2- 1-51	ηo•0	890	8.2	4.25 2	29 2.40 4	93	:		287	3.98	67	† 0°08	ł	₽0°0	610 ^d	332	38
	11-16-51	;	950	8.6	4.4	30 2.48	3.56	:	:	293	198	2.1	0.03	1	0.1	620 ^d	₹	ま
	2-23-52 1340	0,20	1,180	4°8	5.00	3.10	109	1	:	293	264 5.55	2.3	2 0.0	1	0.1	740d	405	37
-6.3	2- 1-51 1125	0.05	049	8.1	3.2 1	22 1.80	65 2.82	:	:	336	900	3 5	0.05	;	0.0	₽80 1	250	Ж
5-9-	-6.5 2- 1-51	ł	049	8.1	$\frac{72}{3.60}$	22 1.82	6 ^t 2.76	1	:	385	35	3/5	\$ 0.00	1	0.03	p ^{†fE} †	171	₹

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED (continued)

Stream	Stream mile	Date Time	Dis- charge second- foet	:ECx106: : at :: : 25°C :	F.	Mineral Ca : Mg		1 tuents K	tn equ	parts ulvalen :HCO3	constituents in parts per million equivalents per million in Na i K i CO3 ifCO3 i SO4 i Cl i	lion million Cl	NO3 :	E dd	e dd	Total : dissolved: solids, appn	Total nardness caco _{3,} ppm	Per cent sodium
				Hyd	Hydrographic	ic Unit	Ne. 3											
Arroyo Sess Creek	7.1-1.14-66	1939 ^b	;	747	1	65 17 3.24 1.39	39 3,14	이	00	293 4.80	% <u>0</u>	69 1.95	00	;	;	562	232	040
		11-10-50	9	620	7.8	$\frac{63}{3.15} \frac{27}{1.39}$	39 2095	15	: [244 14°0	1.7	1.6	2 0.04	6	і ю°0	422ª	227	0 1
		45-8-4	26	357	8.1	35 1	13 24 00 00 00 00 00 00 00 00 00 00 00 00 00	9 000	9	2.45	μ ₁ 0.86	32	4 0°00	†°0	0.1	282	132	35
	7.8	3-29-51	ę I	330	8,2	36	0.75 1.60	1 19	1	153	0.36	25	0.01	à	0.0	191 ^d	102	‡
Chimehus Creek	93-55.1=4.0	1730	0,02	2,130	8,1	234	92 230 50 1000		:	1300	802	195	3 0.05	0.8	0.1	3,751d	096	콗
		11-15-51	0.01	3,080	6.1	326 1	118 318 9.80 13.45	21E	9	458	1165 24.30	258	<u>,</u> १०°०	h- Ü	0°5	2,454,2	1,305	*
	5,9	1-11-51	0°05	1,220	က် 2	7.1 3	$\frac{29}{3.20} \frac{123}{5.35}$		3 1	7.5	250 5,26	2.3	30.06	9 1	٥٠٥	867 ^d	515	<u>19</u>
Unnamed tributary to Cooper Canyon, tributary to Chibushua Creek	93-55,1-6.0-0.8-0.7 4-27-52"	8-05 4-27-52 1200	0.02	1,085	7.9	7.79 2	32 53 2.67 2.30	0.23	00	2.14	950	1.53	0.08	9 (-	0.1	136	523	1ß
Kohler Canyon	93-57.5-1.3	120-51	0.19	390	8.0	2.45	10 27 0.78 1.60		1	164	0.93	0.7	0.0	ij B	0°0	5β2°	152	ش/ ش/
		2- 9-51	6,19	05t ₁	8.3	2.65	10, 29 0, 34, 1,25	21	ê	3.1	1.08	35	14 0°09	ů *	0.0	p+12c	14.7	56
		11-19-51	9	4 20	8.6	49	10 36 0.80 1.57	4		3.0	144	28	0,02	*	;	259 ^d	281	33
		4- 1-53	1	1480	φ°β	3.3	1.35 1.64	1		3.2	15 0.98	0 5.0	0000	ì	0.1	272 ^d	182	33
Rattlesnake Creek	93-57-3-0.4	5-13-54	0.13	787	စိ	4.55	24 55 2,02 2,41	10 0.25		265	3.36	1.1	0.05	4.0	°°	585	328	36
Tempoule Creek	93-41.3	1939 ^b	9	646	3 8	10.4	24 95 1.98 4.13	00	6.20	365	3.86	1.70	00	0	i	5	27	H3

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARCARITA RIVER WATERSHED[©] (continued)

Streem	Stream mile	75C 1350 60 60 60 60 60 60 60 60 60 60 60 60 60	Dis-	ECX106:		Minerel Ge : Mg		constituents in		parts per million equivalents per million CO2 :HCO2 : SO1 : C1 :	ents por 3 : Sou	parts per million lyalents per milli HGO ₂ : SO ₁ : Cl	100 : NO3	 E C C	e dd	Total :	Totel hardness as caco ₃ ,	Per cent sodium
			Ay.	Hydrographie Unit	o Unit	t No. 3	(continued)	(penu	,	,		,						
Temecula Creek	93-42.5	11-10-50	8	1,200	7.7	121 6.05 2	34 14 2.73 5	5.80	0	342	2 281 5 5.85	35 3.0	4 9 0°0/	9	0.2	820 ^d	6Etq	04
	93-42.8	1939 ^b	5°†	938	8	60	1.96 T	69. ¹		- 4.45	2 183 5 3.82	32 50		9	ŀ	712	į	011
		11-27-51	0.56	0.56 1,070	9.0	101 5.05 7	29 1. 2,38 4	114 =		505	5 239	32 25	5 0.03	9	0.2	726 ^d	372	앜
	93-45.0	1-21-526	35	417	8.0	33	10 5.84 7	32 -	0	1.55	28 78	3 0.30 0.30	0 0.03	0°3	0°1	303	124	×
		3-17-52	0	241	2°6	1.10	0.57 0	20 0.87 0	0 30°0	1.28	143 18 0.90	3 16	5 0.05	9	0.02	185	#8	33
		3-22-54 1730	350	135	7.3	16 0.8	0.2 0	0.39 0.	0.08	8:0	7 0.31	31 0.05	15 0°02	0.1	0°01	316	20	27
		$\frac{3-23-5^{13}}{1305}$	122	210	7.8	20 0.1	0.33	14 0.61 0.	- 40.0	- 67	31 0.64	4 0.25	55 0°0 \$4	0°5	0°05	191	49	30
		$\frac{3-24-54}{1000}$	58	256	8.0	25 (1.25)	<u>84°0</u> 9	20 0°86 0	20.0	116	6 36	5 0.35	5 0.03	0.1	0.1	194	84	32
		1210	‡ .	0£4	8.1	43 2.15	12	35 1	0.10	2.30	1.58 1.58	8 0°8	- to	0.3	0.03	317	158	32
	45.2	1-24-51	2¢	1,190	8°°	129 6.45	3.03	140 6.08		1	3 6.17	7 2.9	7 0.0	!	60*0	901 ^d	11/11	39
		1-31-51	55	1,000	8.2	96.4	28 2.26	107		- 281	11 232 15 4.83	3 2.1	7000	:	0.1	681 ^d	353	141
		11-30-51	0.56	1,920	8.3	250 12.5	200.5	210	1	7.8	8 4.70 8 9.80	160	0.03	1	0.2	1,337 ^d	635	742
	£•5 ₁	1-26-54	31	001	8.1	1:7	0.86	35 1.53	1 80.0	1181	1.52	2 0.7	600 1000	0.3	0.03	259	128	37
,	146.2	11-10-50	:	990	7.9	14.95	2.47 T	110		- 511	11 219	2.2 2	9000	1	0.1	-697 ^d	371 %.	39

Temecula Creek

:sodium 38 39 33 37 : oent 2 4:0 # 3 33 35 £ × 37 4 :hardness: Per 8 : solids, : CaCO3, 200 312 345 260 262 375 364 327 Total 358 386 354 305 362 308 538 381 :dissolved: 547^d 1,056^d 457ª 726^d 611^{d} 147^d 961^d p669 618^d p049 691^d 636g 712^{d} 685 797 0,02 す。。 0,02 90°0 0,1 0°2 0,1 0,1 0.1 udd: udd 0.1 0.1 0.2 0,1 0,2 0.1 <u>в</u> 0,5 η°0 ¥ 1 5 ŀ ŧ ** ** 0.05 0,02 0.05 0003 0.02 0.03 0,02 0,0 000 . No.3 **#** equivalents per million F12 1.6 10,7 2,4 2.2 1,5 254 3.1 CJ parts per million ••• 264 3.38 3.88 2,39 2,52 HCO3 : SOIT 269 317 455 4.25 4.25 205 317 4.7 છુ : 3 0 ! 9 : 1 1 0 3 ţ 1 0.11 : | 1 Mineral constituents 1 1 9 × Hydrographic Unit No. 3 (continued) 60 2.61 3.01 약 3,36 3.61 4.93 5.05 100 Ne 1.59 35 2.87 30 2°47 25°5 2,04 25.7 1:15 3.17 1.53 1.81 2.6 . . . Mg. . 3.55 3.6 4.95 4.35 1 88 1 2 4 4.6 4.5 8/2, 40,2 5.3 5.7 100 86 8 5 8 7.9 န္ 7.8 င္ပံ 8,4 ھ گ 8 0 9 8,2 8°,3 8,2 8,0 7.7 8.7 4°8 8.1 돐 710 810 870 1,010 200 1,010 1,080 1,188 900 1,090 1,050 1,000 1,540 1,110 930 : ECx106 coharge: at: 0°19 0.50 0.42 0,8 1,1 8 6 I feat 8 8 ŧ ŧ ì 11-19-52 1-26-54 9-51 11-14-51 7-14-53 11-10-50 1-19-51 11- 8-50 1-26-54 4 1-53 11-10-50 11-27-51 4- 1-53 11-14-51 11-27-51 Date Time Stream mile 9299 54.0 53°5 53.7 48,3 48.5 51.2 52,4 93-116.3 47.8 48,1 Stream

H-15

MINERAL ANALYSES OF SURFACE WATERS IN SAITA MARÇANIYA RIVER MATRISHED[©]

Stream	Stream mile	. Data	: Dis-	: :Dis= :ECxlo6: :charge : at :	 Z	uzu V	ral e	onstitu	Mineral constituents in eq	n equit	arts p	parts par million equivalents per million	10n 1111 en	10 00 90	,, ., ., E4		: Totel : : : B :dissolved:	lotel Lrdness	r Per
	00 00	Timo	: feet :	:second= 25°C:		8 77 80	60		۰۰ ۰۰ کذ	င်ဝင	НССЭ	cog : HCog : Sou	5	NC3	l wdd	. mr.c	PPT FPT	Sactor, ppm	anibos:
			Ξ.	Hydrographic Unit No. 3 (continued)	10 Un	& No.	2 (00)	ıtınu ed	_										
Temecula Greek	93~55.7	2- 9-51	ጎ ፱	1,430	7.9	132	3.92	152 6.93	1	1	5.5	475	2.7	90°0	•	0.1	1,081 ^d	526	04
	55.8	11-10-50	ů ů	609	7.8	3.35	12	2.4	C ii	0	281 4.6	$\frac{62}{1.28}$	1,3	2 0.03	;	0°05	387 ^d	239	¥
	6.9	1-17-51	0	680	8.1	67 3.35	16.1	40 1°73	1	0	269 4°4	52 1.08	35	3 0.05	;	0°0	347 ^d	233	27
		11-19-51	ţ	260	8°6	67 3.35	18 1.49	33	•	1	250 4.1	47	35	0.01	1	0.03	326 ^d	242	23

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®].

Stream

Pechanga Crack

Tamsoula Creek

: Streem mile	. Date	: Dis- :ECxlo :charge : at :second-: 2500 : feet :	ECX106: at: 25°C:	E .	D D	neral o	onstit	Mineral constituents in a: Mg : Na : K : Co		parts per julvalents HCO3 : S(Ted so	parts per million equivalents per million	. NO3	F ppm	B :d1	Total : :dissolved: solids, : ppm :	: Total : : hardness : as : : CaCO3, : : ppm	Per cent
			Hyo	Hydrographio		Unit No.	-											
93-31.0-6.3	1-24-51	0.002	064	7.8	23	6.50	4.10	9	0	3.2	41 0.84	2.7	0.05	?	0	360 ^d	108	99
	11-27-51	ð 0	510	8.1	900	0.08	4.05	0		134	40 0.83	1.3	0.02	0	0.03	25 ⁴ ^d	19	91
93-30.3	1939 ^b	;	1,020	9	3.73	1.81	5.08	00	05.30	265 4.35	3.08	101	0.03	B O	:	739	0	8 11
	45-4 -9	i	97.1	8.1	4.2	1.60	100	30.08		296	117 2.43	2.7	0°.08	η°0	0.2	222	290	43
30°9	1939 ^b	6° ф	953	0	4.09	25.07	96 4.16	00	0.70	247	3.91	1.60	0.02	1	tr 8	717	1	017
	1939 ^b	5°5	923	i	81 4.05	1.99	3.94	00	12 0°40	256 4.20	3.74	1.60	00	ì	;	701	ů,	04
	1939 ^b	;	1,020	1	3.63	23	5.06	00	00	272 4.45	3.41	2.60	0.02	ì	1	741	1	₁ +8
	11-8-50	;	096	7.6	3.7	25 2.09	106	:	!	336	13	103	D Total	;	0,2	519 ^d	290	∄
	11-30-51	1	770	7.9	3.6	$\frac{21}{1.070}$	111	1	0	381	125 2.61	2.7	ू ठ.०		0.2	618 ^d	265	₁ 48
	2-11-52	94	1,014	8.1	4.32	$\frac{23}{1.85}$	110	0.07	00	279 4.58	3.48	3.18	4 0.06	i	1.0	692	308	t 3
	5-12-52		985	7.3	86 4.29	$\frac{21}{1.73}$	108	0.22	00	$\frac{317}{5.20}$	148 3.09	3.16	60.0	•	0.2	673	301	143
	8-19-53	8	9%	7.9	3.7	2.3	3,8	1	00	3.15	222 4.63	2.2	2 0.0म	0.3	0.20	9699	300	01
	1200	126	1,058	7.9	4:34	$\frac{21}{1.73}$	5.22	0.07	00	307 5.04	3.00	3.05	00	:	0.1	620	304	3
	15-11-9	;	1,076	7.6	4.35	22 1.83	104	0.10	00	305	129	3.0	6 0.10	ή°ο	0.2	299	309	42
																		H

MINERAL ANALYSES OF SURPACE WATERS IN SANTA MARGARITA RIVER WATERSHED^A (sontinued)

Stream

Temecula Crock

														1	-	۰	ľ	· 6+00	
_	Stress alle	Date	: Dis- :charge :second- : feet	ECX105	Hđ.	Man	Mg :	onstitu Na :	M K	n equit	erts per valents HCO3 :	Mineral constituents in parts per million equivalents per million a : Mg : Ms : K : CO3 : HCO5 : SO4 : Cl	00 00	, con	d: wdd	: T	: Total :: :dissolved: : solids, : : ppm ::	60	Per sent sedium
				Hydrographic Unit	aphic	Unit No.	⊅ 1	(continued)	(þ)										
	93-30•9	8-16-54	2 _c	935	7.8	3.56	1.38	103	3 0.07	00	279 4.57	102	2.7	9 0.15	0.5	0.3	594	247	47
•		1-17-55	150	3,036	7.8	4.34	1.97	120	$\frac{12}{0.31}$	00	290 4.76	157 3.28	3.4	0.12	9	0.16	049	316	#
	31.6	July ^f 1916	1	1	;	3,34	$\frac{21}{1\circ 73}$	139		10	263 4.31	3.56	20.93	00	ŀ	ì	688	254	45
	31.7	4-19-54	1.5	1,152	8.3	4.7	$\frac{27}{2.20}$	135	4 0°0	1	4.9	193 4.02	3.7	4 0.0	9°0	0.3	778	345	3
	32°2	1939 ^b	1	1,060	;	3.65	23	124 5.38	1	15 0°50	3.95	3.91	98 2.75	0.02	1	9	767	6 8	84
		4-19-61-4	17.0	1,178	7.9	102	2.40	138	0.07	:	317	226 4.70	3.5	0.01	0.5	0.2	823	375	∰
		115-11 -9	0	1,295	တိ့	5.0	$\frac{28}{2.35}$	247 6.38	0.13	:	333	223 4.65	3.5	0.06	9°0	0.45	818	88	¥
	34.8	1939 ^b	5.8	1,100	t	4.15	25.04	5.33	0	12 0.40	250 4.10	200	2.70	3.000	;	i	792	:	3
		1939 ^b	9.4	1,000	:	3.73	1.89	110	00	0.30	24t	164 3:41	2.55	3.05	1	ł	717	ł	¥
		4-19-54	0.52	950	7.9	4.1	1.86	108 4.69	2 0.0	;	4.5	$\frac{152}{3.17}$	2.8	00	0.7	0.2	638	298	#
	35.6	1939 ^b	3.8	982	1	3.47	1,275	112 4.87	00	Tr.	256 4.20	159 3.31	2.55	2 0.03	1	1	604	261	84
		1939 ^b	1	1,020	1	3.72	$\frac{23}{1.85}$	117 5.08	00	6.3	259 4.25	151 3.04	101 2.85	2 0.03	;	1	736	278	84
		4-19-54	0.12	870	7.9	3.5	20	106	0.04	1	12 10 10 10	$\frac{131}{2.72}$	2.8	2 0.04	9.0	0.1	286	236	47

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (continued)

Stream	: Stream mile	Date	: Dis- :ECx106:	ECX106:	·	Mine	ral co	Mineral constituents in	ents 1		arts pe	parts per million equivalents per million	l Hon		fie.		: Total : Total : : Total : : Total : hardness: Per : dissolved: as : cen	Total hardness as	Per cent
	08 82	Time	second-: 25°C: feet:	: 25°C :	'	ස න් ට	 29 ¥	Na eg	X	, co	. со ³ : нсо ³ :	: †0S	ເນື	N03	mdd: wdd		solids, : CaCO _{3,}	Ceco ₃ ,	socium
			* U	Hydrographic Unit No. 4 (sontinued)	hie Un	1t No.	00) 7	ntinue	d)										
Temecula Crask	93-35.7	1939 ^b	;	1,030	1	73	22 1.78	122 5-32	00	0.30	256 4.20	3.23	105 2,95	0.03	1	•	t a	270	50
		1-24-51 0.36 1145	%°°°°	910	⊗	3.85	10.74	121		;	262 4.3	3.27	3.2	90.00	•	0.1	626 ^d	280	47
		11-30-51		730	8.2	3.85	17	134	:	0	244	3.37	2.8	50.07	b	0.1	586 ^d	26 ¹ 4	£.
		8-19-53	1	890	7.6	2.9	1,38	113	:	*	302	1:8	3.7	1 0°0	9.0	0.2	572	199	54:
	39.0	1939 ^b	1	1,710	1	100	3.01	226 9.85	:	24 0°80	317	293	5.70	1	1	•	1,200	1	55
	η ι. 0	1939 ^b	8.7	1,820	1	4.76	3,08	262 11.4	00	22 0.40	269 6.05	308 6.42	6.30	0.01	;	1	1,307	392	59

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (continued)

Figure F	явакх	Stream male	# # # # # # # # # # # # # # # # # # #		1 10		Mineral	rel 601	stitue	constituents in	parts equivales	s per m	parts per million equivalents per million	ΙĔ	30 00 1	, a	fotal sl	1 838	Por
93-12.0-7.6-1i+1.7 (8-7)-57 180 8-1	- TROP (A C	0.000	Time	seend-		ž,	ဦ		1 1	** 00	^-	66 00	** **	F _{ON}	edd		olidu, ppm	CaCO33	cent
9.12.2.2.0.1.						H	rograph	ie Uni	No.	101									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleman Creek (Pributary to Doinz			8 1	1,20	8.2	g		30		,	2	,	0,02		0.01	233	9=	3%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(Jaak)		1 26 - 1 3	0	364	3.6				Ĭ,			•	0,02		0.01	253	12.3	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	de lus Creek	93-22.2-0.7	3-22-52€		059	7,9			3	5				7		ت	0	C 3 9	7.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		93-12,2-6,5	12-22-53	0, 1 ⁱ	064	7.8	8			- 1		i	•	10.0		0.0	233	368	رن ش
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fern Crosk	93-12,2-6,2-0,2-0,4	5-24-54	P E	255	7.9		1		!	q	•		~ 10°		0,05	185	99	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rajubuw Croak	93-23.1-0.6	2-5-54	3	841	8.2								4 0.07	2	0.02	52.	362	e/\
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		₽° ±	4-2-5	100	307	7.9				20.06	9			0.13		0.05	227	65	1 5
$\frac{2-14-51}{06550} \begin{array}{ccccccccccccccccccccccccccccccccccc$	Sandia Greek	93-2007-003	3-6-53	1.5°	620	9.0	25.3 2.3		1	1	0			0.0		0.1	Take Take	213	×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Santa Margaritta Rive	F 93-20.0	2-14-51 0850	6,9	1,090	ສາຊ	-							0.01		0.1	699	28t;	61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4- 2-51	5.0	2,080	& %	•	0	1	9		ę		9	e I	•	;	267	1
$2.0 \ 1,063 \ 8.3 = \frac{2.0 \ 1,063 \ 8.3 = \frac{2.0 \ 1,004 \ 7.7 = \frac{2.5 \ 1,071 \ 8.2 = \frac{0.352 \ 3.70}{0.5.76} = \frac{122}{3.576} = \frac{2.84}{3.576}$			5- 7-51 1535	2,56	1,109	0.2	3.74		67	1	4			00		0.0	949	386	90
2.5 1,124 7.7 0 352 131 284 2.5 1,071 8.2 0 352 129 288			6- 4-51	2,0	1,063	80	0.00	3	9	1		'	3.59		;	8 R	D 0 0	286	ij ġ
$2.5 \ 1.071 \ 8.2 $ $\frac{0}{5.76} \ \frac{352}{5.76} $ $\frac{129}{3.64} $ 288			$\frac{7-8-51}{2015}$	2.5	1,124	7.7	1	;	1	ł	2	1		8	9	1		284	0
			8-6-51	2.5	1,071	8.2	1	· ·) 0	1		ğ			1	ŀ	* *	288	ę •

MINESAL ANALYSES OF SURPAGE WATERS IN SANTA MAHUARITA HIVER WALEPSIED^A (contémusé)

Santa Mergarita River

Streum

Stroam mile	Section 19	: 135= : ICTIO : 67656 : 57: : 808082-: 250C : 8086	375C : 25°C :	იი იი იი იი იი ლე ექვ	٦	erui. F g	sonstinants : Na : K		m (440) (100)	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SO:	1120n n1311167 . G		E Ed	8	: Total :ha :dissolvad: :solids: C	notes:	Per contum
			Hydrogran	2 2 1 3 1 3 3	Unit No.	4.7	(continued)	(par										
93~20°C	2-10-51	0.5		8,2	30,70	1.89	126 5.48	0	ပုပ	27.5	34,	157	7,00	0.12	0.2	909	28 0	50
	10- 5-51	00,70	1,058	တို့ လို	0		0	9	20	5.334	9	128 3.51	ît a	3	9	e C	284	ζ _έ ø
	12-13-51	7,80	3,036	8.2	3	B 1			ပါဝ	5.55	8	3.47		8	0 A	0	258	8 0
	12-10-51	ተ	1,133	8.1	9	2	2	9	ole	327		3.95		8	0 0	9 8	297	8 9
	1-14-52	₆ 0†	195	5.	0	0 1	1	9	00	2,33		65		3	0	9 8 8	142	2
	2-11-52 1045	1,28	1,543	8	ę	8	8	9	00	278		298	0	•	ř j	₩ ₩ 8	296	ţ
	3-10-52 1130	100	769	6./		9	8	0	00	178		2.82	0	;	<u>;</u>	ii ii 0	200	1
	1100	13	853	3.0	0		0	8 8	olo	3.88		122 3.44	8	9	8	9	646	e C
	5-12-52 1100	9 4	1,010	7.9	3.3	25 25 26	106	43	10	264	$\frac{110}{2.29}$	3,33	0.01	ሳ°0	0,3	_p 409	270	34
	6- 9-52	म [°] ग	736	8.1	!		9		00	5.38		3.72		;	8 1	!	313	;
	7-7-52	3°	933	8,3	9	:	0		:	320 5.24		3.75	:	ů ;	0	!	292	ŧ
	8- 4-52	0°3	1,068	8°0	1		•	1	00	2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3		152 4.28	t		;	0	307	:
	2- 2-52 1600	0°5	1,016	8.2	:	1	:	:	130.04	1278 14.56	: `	5.50		;	:	8 8 1	280	1
	10- 7-52 ^h 1230	h 1,5	1,093	8.1	4.45	0.41	130	0.11	၀ ၀	334 5.16	1.99	142	0.03	9°0	0.1	655	243	53

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (oontinued)

Santa Margarita River 93-20.0

Stream

11-17-52 20 1,230 7.8 207 3.40 3.40 1.150 1.150 8.4 207 3.40 3.40 1.150 1.150 8.4 207 1.150 8.4 207 1.150 8.4 1.024 7.9 208 1.150 1.150 8.4 1.024 7.9 208 1.150 1.150 8.4 1.024 7.9 208 1.150 1.150 8.4 1.024 7.9 208 1.150 1.150 8.2 1.008 7.9 208 1.150 1.150 8.2 1.008 7.9 208 1.150 1.150 8.2 1.008 7.0 1.150 1.150 8.2 1.150	charge at pH :	Minera Ca: Mg	consti : Na :	tuents K	in perts equivaler	walents per	Mineral constituents in Parts per million equivalents per million s Mg : Na : K : CO ₂ : HCO ₃ : SO ₄ : Cl :	1 on NO3	ed d	. B :d	: Total :: :dissolved: : solids, : : ppm :	as CaCo3, ppm	: Per : cent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	W	(continu	(pe									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*	ı	:	•			4.57	1	9	B	0 0	237	1
11 1,218 8.3 26 2 $\frac{244}{4,00}$ 1024 7.9 26 $\frac{245}{4,00}$ 26 $\frac{245}{4,00}$ 26 $\frac{253}{4,00}$ 27 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 28 $\frac{253}{4,00}$ 29 $\frac{253}{4,00}$ 29 $\frac{253}{4,00}$ 20 $\frac{253}{4,00}$ -	ထိ	1				•	150	0	0	1	2 3 0	298	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ထိ	6	1	4		ð	31.00		1	0	60	295	Û G
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.	ı	0			'	1 50° T	1	1	Q 9	% 3 0	287	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ဆ်	r c	3	9	1	11	145	9]	9	•	Ç N	281	Ģ B
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	€,		5.30	4		1	1,2	8	ì	0,26	\$7 0 6	284	1
0.5 1,098 7.6 239 1.91 1,0074 7.9 239 239 239 1,012 8.0 239 $\frac{24}{3.94}$ $\frac{24}{1.97}$ $\frac{24}{3.94}$ $\frac{125}{3.94}$ $\frac{4}{1.97}$ $\frac{24}{3.44}$ $\frac{125}{0.10}$ $\frac{4}{0.10}$ $\frac{300}{0.10}$ $\frac{156}{0.10}$ $\frac{156}{0.10}$ $\frac{1}{0.10}$	တိ					-	10 135 29 3.80	0.03	9*0	0.3	660	276	50
0.1 1,074 7.9 0 342 1.9 981 8.0 0 342 1.2 1,100 7.8 72 24 1.097 5.44 0.10 0 4.92 3.29 1.1 1,076 8.1 0 310 10 310 -	7,	',	1				利	ő	£ 9	0,2	j B	298	47
1.2 1,100 7.8 29 24 1.25 4 0.10 0 342 1.1 1,076 8.1 5.3 1,012 8.0 1.2 1.3 1,012 8.0 1.4 0.10 0 310 1.5	3		1	:	1	l s	162		9	0.2	9 1 1	ħ62	51
1.2 1,100 7.8 $\frac{29}{3.94}$ $\frac{214}{1.97}$ $\frac{125}{5.44}$ $\frac{4}{0.10}$ 0 $\frac{300}{4.92}$ $\frac{156}{3.29}$ 1.1 1,076 8.1 0 310 5.3 1,012 8.0 0 310	ထိ	-		0		1	123	9	;	0,2	3	882	22
1.1 1,076 8.1 0 310 5.3 1,012 8.0 0 310	7.8			0.10			26 29 3,24	00	9.0	0.2	689	2%	8
5.3 1,012 8.0 0 310		,	1		4	•	113		1	0.3	į	300	49
200				1		•	125	: [1	0.1	? !	288	50

MINERAL ANALYSES OF SURFACE WATERS IN SANTA MARGARITA RIYER WATERSHED[®] (continued)

						2	(constant)											
Stream	Streem mile	Date	Dis- ECXIO Sherge: at second-: 25°C	*ECX106	22 00 00 00 00 00		eral oc	onstitu Ne :	Mineral constituents in a . Mg : Ns : K : C		parts per million equivalents per million 0_3 ; HCO ₃ ; SO ₄ ; Cl	Per at		F03	i F : B Prod :	: Fotal :: dissolved: m : Solids; : ppm	: Total al :hardness lyed: as ds,: CaCO3,	ss: Per cent
				Hydi	Hydrographie Unit No.	ie Uni	* No.	5 (oont	(continued)									
Santa Margarita River	93-20°0	12-14-53 1300	0*4	1,184	8.1	:	:	!	ij	58	797	0	151		0.2		2%	53
		1-18-54	9°9	1,251	8°0	1		9	:	0	312	1	159	· :}	0.2	5	298	£
		$\frac{2-15-5^4}{1215}$	20	994	8°5	1	1	1	:	0	178	;	27	:	0.2		175	50
		3-15-54 1330	21	1,095	8.3	1	1	;	;	77	268	1	138	:1	- 0°5	.2	2%	53
		1225	9.8	990	8.2	1	1	1	;	13	1 2 2	1	721	;	- 0.2	.2	256	50
		5-13-54 2000	0.8	1,108	8.0	3.74	25 2.05	115	4 0.11	00	322	2.18	3.47	0	0.5 0.2	.2 637	290	暑
		6-14-54	12	1,141	7.8	1	1	:	:	12	310	1	121	:	- 0.2	2	292	34
		7- 7-54	ή°ς	1,111	8.0	1			1	0	37.1		132 -	:	- 0.1	-	314	84
	20.8	3- 6-53	106	1,160	8.6	3.85	$\frac{29}{2.34}$	150	:	:	305	138	163	6.05 1	- 0.2	2 712 ^d	310	51
	21.0	6-18-52	1	1,090	8.0	3.85	$\frac{25}{2.10}$	133 5.80	:		335 5.5 2	103 2.14	3.8 0.	0.03	0.2	2_ 641 ^d	1 298	641
	30.0	1939 ^b	ET .	1,030	1	3.77	23	5.11	00	00	287 4.70 3	3.06	103 2.90 0.	0.04	} }	754	ì	9~641
Unnamed tributary to Santa Margarita River	93-21.2-2.0	11-20-53	0.01	590	7.8	3.4	$\frac{24}{1.95}$	100	0.0	1	287 4.7 0	0.52	1.5	2 0.04	0.1 0.	0.06 441	268	† ₁Z

MINERAL ANALYSES OF SURPACE WATERS IN SANTA MARGARITA RIVER WATERSHED[®] (continued)

Stream	Stream mile	Date	Dis- charge :second- feet	: Dis- :ECX106: :charge : at ::second-: 25°C :	五	MAIX : eO	nsrel oo Mg :	nstitue Ns : K	ents in	equive	ts per lents	n parts per million equivalents per million	13 on	F 60	g dd	: : Total : Total : : Total : : Total : hardness: Per : B : dissolwed: as : cent : ppm : solids, : CaCO3, :sodium : ppm :	Total: hardness: as caco ₃ :	Per cent sodium
				ᄣ	ydrogr	aphis [Hydregraphie Unit No. 6	9										
Fallbrock Greek	93-8-8-7-9	1130	6	1,710	8,3	107	4.15 7.	17.54	0.02	127	275 264 4.5 5.51	51 238	3 27	0.7	0.34	1,138	475	∄
Lake O'Neill	93-8.8-1.2	2- 1-49 ^g	i	* * 5	80 2	53	1.81 5	136	0.10		3.64 2.33	12 140 33 3.95	35	0	•	592 ^d	11 2 1	23
		3- 9-528	6 0	1,260	0°6	2.80	32 1	8.25	;	30 23	232 113 3.8 2.35	13 230 35 6.50		•	0.12	P 2 0	€ € ₽	09
Santa Margarita River	93-0.6	3- 9-52B	;	25,000	9.8	264 13.20 5	666 54.60 23	236.52	0.40		244 1015 4.00 21.15	15 2900	1	T °0	2.06	17,558 ^d	ir ti	78
		3-26-54	9	925	7.9	2,15	1.73 5	120 6	6 0 0		203 80 3.32 1.66	911 25 911 25	0.04	•	0.1	9475	461	23
		1-19-55	80	28,500	8°0	14.6 6	790 6	6992 304.0 5.	5.30	966	602 1635 9.85 34.03	35 11880	30 B 0.12	1,0	3.00	23,621	000 مال	78

a. All analyses by Division of Water Resources unless otherwise noted.

b. Analysis obtained from Vail Company.

d. Intal dissolved solids devormined by summation.

e. Analyzed by Peoiffo Chemical Consultants.

f. Analysis from United States Geological Survey Water Supply Paper 429.

g. Analysis obtained from United States Navy.

h. Analyzed by United States Geological Survey, Quality of Water Branch, unpublished records subject to revision.

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^A

TABLE H-3

		, ,	"		Mineral	•	constituents	u,	parts per million	milli	uo uo				Total	: Total :	
Well number	Date sampled	. ECX10° : 25°C :	·····································	S.	N _R		K.		нсоэ:	SOT	1 1	NO ₃	. E.	E DOM	dissolved solids, ppm	: hardness : as CaCO _{3,} : . ppm	Per cent Na
							HYDROGI	HYDROGRAPHIC UNIT NO.	NIT NO.	1							
							DIE	Diamond Basin	sin								
55/1W~33 (5W [‡])	Augustb 1916	0 5 8	1	3.09	17	3.30		00	224 3.67	83	83 2.34	0.03	0	;	664	225	42
164 -M1/S9	4-13-54	647	7.5	₹ 5°5	11 0.94	57 2.49	90.08	8	3.45	21 0.43	1,30	20	η°O	0.2	349	157	75
501	5-12-53	1,180	7.5	110	3.18	101	1	:	335	134 2.79	146	$\frac{13}{0.20}$		0.1	709°	464	ŧ,
6S/2W- 1AI	11- 5-52	810	8°2	3.85	1.81	3.26	0	a a	3.4	132 2.76	2.5	0.18		0.2	512°	283	37
	4-7-53	820	8,3	2.6	2.40	3.30			153	140 2.91	2.5	0.10	9	0.1	4720	250	04
							Domer	Domentgont Ba	Basin								
6S/2W~ 2 (SW ¹ / ₄)	August ^b 1916	g G	l	3.24	10 0,82	548 23.82	0	5.00	253 4°15	515	387	120	ir g	i	2,014	203	83
(SW_4^1)	November ^b 1915	# # # # # # # # # # # # # # # # # # #	:	9	:		:	00	349	100 2.08	172 4.99	0	1 1	6 0	760	75	i
1141	8-19-52	095	7.9	3.35	1.98	69 2.98	:		134	143 2.97	2.7	4000	9	0.1	470°		%
	11- 5-52	770	7.7	3.45	25 2.06	3.41	:	1	147 2.4	3.08	2.8	10	i i	0,1	5010	275	38
							Fr	French Basin	빏								
6S/2W-28G2	5-15-53	1,090	9-6	4.65	2.2	103		:	165	222 4.61	3.8	0.11	đ 0	0.1	₉ 699	342	39
2863	5-15-53	1,100	7.3	4.65	2.20	108	:	8	3.2	205 4.27	142	0.02	8	0.13	0469	242	ľή
29R1	4- 7-53	790	8.2	42	1.87	4.30	:	:	3.9	53	92 2.6	14	:	0.1	°2मग	198	52

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED⁸.

									PAPES D	F 1111	ug		ľ		Tabel.	- Actor	
	Date	: ECx106	•• ••	•••••	Mane	el oon	st1tuen	Mineral constituents in equivalents per million	walent	per mi	IIIon		ρ _ε ,		dissolved	: hardness	. Per
: Leganu	sampled	: at	H d.	ცე		. Na.	×	έ _{οο} :	HCO3	ħos :	.	s NO ₃	mdd	: wdd	solids, ppm	: as CaCO ₃ ,	: cent
					:	HYE	HYDROGRAPHIC UNIT		NO. 1 (oc	(continued)	~						
							Frenc	French Basin ((continued)	(pq							
6s/2W-30C1	5-22-53	500	7.8	1.4	1.50	5 2.18	- Jee	:	153	15 0.32	53	0.47	0	0.01	269°	145	£4
3111	5-19-53	096	7.8	3.3	2 3±	5 2.85	110	1	287 4.7	30	3.5	0.30	;	0.0	otion	335	%
32A1	5-15-53	1,350	7.9	10t 5.20	25. 25.	132	: v	9	4.1	234 4.78	163	0.15	;	0.0	8040	412	H
	1- 7-54	1,150	7.8	102	2.55	124 5 5.39	100	:	3.85	218 4.53	149	$\frac{12}{0.19}$	†°0	₹.	800	388	#
32H1	5-15-53	730	7.7	3.1	$\frac{23}{1.91}$	1 2.47	1	:	171 2.8	1.89	2.5	14	1	₹ •	422°	250	33
33E1	5-15-53	610	7.8	2.75	20 1.64	± 1.3 €	1 2		2.7	1.36	67	0.21	1	0.03	346°	225	8
							۱۲.	Los Alamos	Basin								
IN16-W1/S9	9-18-52	1,540	ት °8	5.10	1.16	5 6.61		Î	# 10°	292 6.09	227 6.4	0.28	1	0.1	962°	1463	ᅄ
75/2W- 2P2	5-20-53	1,360	8.2	\$1.	3.36	25.87		:	2.7 2.7	118	192 5.4	$\frac{7}{0.12}$	1	0.1	761°	to4	142
432	8-26-52	720	6.5	2.9	- 1.39	^{#6} 2:01	:	:	3.4	1:14	2.0	0.20	1	0.1	363°	215	ಜ್ಞ
ήΚΊ	4- 7-53	1,090	7.5	4:75	25 2:10	5 T		:	4.5	$\frac{111}{2.31}$	149	0.10	ł	0.1	6730	342	38
								Murrieta Basin	Basin								
75/3W- 7R2	11- 3-52	650	7.8	1:128	99.0	5 4.75	15	1	3.0	40 0.83	2.7	0.0	;	0.2	3490	103	2
	5- 6-53	069	8.6	1.10	0.70	116 5.04	: 참	:	2.9	0.7 24 25	3.25	0.01	1	0.1	384€	96	ま

MINERAL ANALYSES OF CROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®]

	Per cent Na			8 0	29	%	32	32	44	71	39	58	2/2	39	3 #	37	4
: Total	: hardness : as CaCO ₃ , : ppm			381	321	259	304	310	260	46	226	102	61	232	597	180	371
Total	dissolved solids, ppm			556°	504°	4320	₀ 69 ₁₁	14670	9/5	364°	373°	307	292°	00Th	438c	308°	270c
	e sadd			0.1	0.1	0.1	0.17	0.1	ŀ	0.3	0,1	0.01	0.03	0.03	0,1	0°02	1°0
	ppm			i	ì	t	1	ì	ì	;	1	0.5	1	ì	;	:	1
	NO ₃			58	55 0.89	19	23	$\frac{23}{0.38}$	12	0.03	23	19 0.31	0.11	8	35	0.34	14 0.22
اء	C1 :			3,15	2.8	2.8	3.0	3.0	134 3°78	8 8 8	60	2.0	7 th 2.1	2.7	2.6	1.5	1.2
m11110	SOL 3	(p		20	29	25 0.53	2100.世	27 0.56	64	38	21 0.43	40 0.83	16	27 0.56	0.53	16	0.36
parts per million	odulvalents per miliion	(continued)	(penu	329	293	262	293	275	27.3 4.2.43	2.9	256 4.2	128	165	4.2	256 4.2	3.5	3.2
u,	003 :	NO. 1 (o	(continued)	:	1		0	0	00	ij	:	1	0	:	;]	:	1
		UNIT	Murrista Basin	1	;	:	ü				8	0.19	;		:	:	
constituents	Na.	HYDROGRAPHIC	Murris	3.00	62 2.68	68 2.97	66 2.87	68 2.94	106 4.61	106 4.63	2.82	3.06	3.96	3.01	65 2.84	50 2.16	1,85
Mineral	Mg	HY DR(31 2.57	24 1.98	20 1.68	$\frac{23}{1.87}$	2.39	$\frac{22}{1.81}$	8	$\frac{21}{1.76}$	0.0	ф 0.33	18	$\frac{21}{1.73}$	17	1,42
	gg (G			101 5.05	89	3.50	84	3.8	3.39	26 1.30	2.75	25 1,25	18 0° 90	$\frac{64}{3.20}$	3.6	2.20	39
	五			9.8	7.6	8,2	8.3	8.5	0	8.5	7.7	7.3	7.9	8,0	7.8	8.0	7.4
3000	et 25°C			096	870	810	830	770	6 8 8	630	610	538	510	710	820	530	470
	Dare sampled			5-12-53	8-15-52	10-14-52	3-19-53	5-20-53	December 1915 ^b	7-22-52	7-22-52	10-14-53	5- 7-53	5- 7-53	7-16-52	5- 6-53	7-17-52
	a 			5						10							덛
	number			7S/3W-16N2	16N3	16N5			17	1701	1753	1754	1761	1741	1841		18M

		٤																
	. Per cent	Na Na			39	37	30	47	38	1	36	42	1 47	17	¾	53	8 ₁₁	49
	: Total : hardness : as CaCO ₂ ,	andd :			215	215	183	398	945	144	212	276	186	217	270	195	110	63
	Total dissolved solids,	bpm			368°	364°	271°	880	%5 _°	380	374	523°	326°	859°	809	462	2310	223°
					0.2	0.1	0.1	0.0	0.1	;	₽0.0	0.1	0.1	2.5	0.1	0.1	0.1	0.03
	NO.				1 0.02	0.11	12 0.19	39 0.1 0.62	2 0.03	; ;	8 0.14	20°0 h	12 0.19	4	5.0 60.0	90.0	2 - 0.03	15 0.24
	igon C1	- 1			60	2,2	1.3	234	234	188 5.30	67	3.2	1.8	369 10.4	149	3.6	1 °	60
	per mill		q)		67 1.37	36 0.75	20 0.41	103 2.14	2.31	36	16 0.33	$\frac{83}{1.72}$	22 0.46	1.60	34:1	1.54	1.09	0.15
18G)	parts per miliion aquivalents per million 30. : HCO. : SO, : Cl		(continued)	(continued)	3.6	3.7	3.1	336 5.4	8.2	3.03	3.8	268 4.4	3.3	2.9	287 4.7	3.6	165	2.0
(constuded)	upe us	5	NG. 1	11 (con	:	:	1	1	0	00		:	1	1	:	:	:	:
	constituents		IC UNIT	Murrista Besin	:	1		0.03	1	!		!	:	:	0.03	:	:	:
	1		HYDROGRAPHIC UNIT	Murri	$\frac{61}{2.63}$	58 2.51	36	162 7.06	155 6.73	1	5 ⁴ 2.26	464	$\frac{61}{2.63}$	244 10.62	109	102 4.42	47 2.03	<u>59</u> 2.55
-	Mineral	ø	HYD		2.35	$\frac{21}{1.70}$	18	25.86	14 1,12	:	$\frac{16}{1.33}$	$\frac{26}{2.13}$	11 0.93	$\frac{17}{1.39}$	$\frac{22}{1.81}$	1.8	0.89	0.56
	S. S.				39	$\frac{52}{2.60}$	2.20	102	136 9°8	1	2.9	3.4	2°.80	59 2.95	3.8	1.35	1:3	14 0.70
					7.5	8.2	8.5	8.2	7.9	1	8.5	7.9	7.9	8.1	7.7	7.8	7.7	7.7
	ECX106	. 25°C			620	200	510	1,481	1,670	1	1 59	750	560	1,500	980	800	200	η10
	Data	pardinas			5- 6-53	7-17-52	7-17-52	45-6 -1	5-21-53	December 1915	9- 2-53	11- 3-52	7-11-52	7-10-52	4-23-54	5-26-53	4-21-53	5-19-53
	Well	· Fedima			75/3W-18MI	1941	19A2	2004	20D1	21	. 21F2	21P1	2101	27н2	27N2	27P1	2941	8s/3W- 1P2

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED

	1																11) 1
Per cent			0	142	1	58	62	72		7	87		51	×	3	38	25
: Total : hardness : as CaCO_3 : ppm			112	%	46	255	317	53		ë 1	×		112	210	133	214	281
Total dissolved solids,			390	234	560	711	486	220°		1	369		2210	338°	251°	351°	£94
add:			1	1	1	0.1	ተ°0	ŀ		0.2	ŀ		0.1	0.1	0.1	0.1	ł
F Ppm			1	:	1	0.3	ተ•0	;		:	1		1	i	ì	1	ŀ
			1	14	1	4 0.07	15 0.24	21 0.34		1	14 0.07		0.17	2800年	8	18	12 0.19
million per million SO ₄ : Cl	(penul	(T)	$\frac{33}{0.69} \frac{128}{3.60}$	8 45	36 158 0.75 4.46	3.96 6.2	$\frac{109}{2.27}$ $\frac{238}{6.7}$	12 50 0.26 1.4		$\frac{16}{0.33} \frac{71}{2.0}$	$\frac{23}{0.47}$ $\frac{128}{3.60}$		$\frac{7}{0.14} \frac{25}{0.7}$	2 53 0.18 1.5	8 43 0.17 1.2	34 53	$\frac{19}{0.39} \frac{86}{2.43}$
valents HCO3		ontino	$\frac{117}{1,91}$	102	4.16	253	433	911	e Basin	1:55	88 1.45	sin	3.0	244	3.1	3.9	273 4.47
អ្		Sasin (e	00	00	00	:	:	ı	ertrud1	0.10	:	lonar Ba	:	:	:	:	1
	APHIC UI		1		:	0.05	1 0.04		Santa (1	:	W110	:	;	;	1	:
	HYDROGR	म्	:	3 1.39	1	5 7.15	242 7 10.53	62 1 2.70		- 3.07	112 9 4.85		52 2.28	2,31	2.31	2.52	1.87
Miner:				90.6	1					1			12		1.17		24
දිස			1	1.30	1	63	3.7	0.55		1	12 0.62		24	2.75	1.5	2°5	3.64
뛶.			1	1	9	7.9	8.3	8.1		i	1		8,0	2.6	8.3	8.3	1
ECx10 ⁶ at 25°C			6 1	1	ì	1,276	1,500	410		1130	630		η ³⁰	620	1480	£ €	1
Date sampled			December 1915 ^b	December 1915 ^b	December 1915b	2- 8-54	November 1953	5- 6-53		3- 3-38 ^d	1939 ^d		4-28-53	4-28-53	4-28-53	10-29-52	December 1915b
Well :			8S/34-2 (NE4)	$(NW_{\overline{A}}^{+})$	12 (nr. 54 cor.)	12N5	12N13	13K1		7S/3W-35B1	3582		65/44-34J2	34.16	34.19	35M2	(S₩ 1)
	: Date : ECx10 ⁵ : Mineral constituents in parts per million : : Total : Total : Total : Total : Total : Total : Sampled : ECx10 ⁵ : : Ex pm : Pissolved : hardness : sampled : at : pm : Ex marks : Expa :	: Date : ECxlo ⁶ : Mineral constituents in parts per million : F : B : dissolved : hardness : sampled : at : ph : Ca : Mg : Na : K : Cog : HCog : Sol ₄ : Cl : Nog : ppm : solids, : as CaCog, : : : : : : : : : : : : : : : : : : :	Bate : ECxlo ⁶ : Mineral constituents in parts per million : F : B : Total : Total : sampled : at : pB : Ca : Mg : Na : K : Cog : HCog : Sol ₄ : Cl : Nog : ppm : solids, : as CaCo _g : : : : : : : : : : : : : : : : : : :	Date ECx106 Huneral constituents in parts per million F B Total Total	i Date ECx106 i	December Extroplet Partie Parti	Date ECRIO6 1	Second S	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	The completed Complete Comp	Part Part	December Exercised Secretaria Mineral constituents in a parallel Permittian Permittan Permittian Permittian Permittian Permittian Permittan Permitta	1 1 1 1 1 1 1 1 1 1	Bota Exception Exception	In the control of t	

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^B (continued)

Per cent		47	34	39	≆	武	L ‡	33		72	;	27	111	38	95
: Total : herdness : as CaCO ₃		48	209	535	180	331	217	228		2,065	721	172	188	256	15
Total dissolved solids, ppm		266°	34%	116	3 ₇₇ 6	789°	1004	397		9,0036	0 11 9	393°	•91111	4150	2126
B : Pigg		0.03	₹°°	0.1	0.1	0.1	0.1	0.01		0.3	ţ	0.1	0.0	0.1	0.1
F. Bodd		1	;	:	:	ł	1	•		•	t	ŧ	ŀ	•	1
NO ₃		± 0.0	28 0.45	0.27	0.38	10 0.16	6.학	0.11		1	1	12 0.20	37 0.59	2 0.03	0.02
110n C1 :		1.5	64 1.8	256	57 1.6	263 7.4	2.5	2.1		2730 77.2	258 7.30	2.2	2.0	3.3	1.4
million per mill SO ₄ :	ued)	0.30	12 0.26	3.72	.# <u>.</u>	1.54	1.48	1.14		2822 58.8	37	58 1.21	116 2.42	29 0.61	24
parts per million equivalents per million 0_3 : 100_3 : 50_4 : 0_3 :	<pre>10. 1 (continued) (continued)</pre>	3.0	232 3.8	366	3.7	202	3.3	3.9	Unit	738	159 2.60	3.5	2.9	232 3.8	3.1
1 ' 15 1	UNIT NO. 3	:	:	:	3	:	:	1	8	:	00	:	i	1	:
101	2 8				_				Ě				_		
tuent K	HIC U	1	1	1	H	H	*	:	Remainder	1	1	1	1	1	1
oonstitu Na :	DROGRAPHIC U	2.43 2.43	5 72	160 6.94	'	•	•		Кепа	·	1	ŀ	'		•
Mineral Ng :	HYDROGRAPHIC UNIT NO. Wildomer Besin (c.	ı		,	17 21	$\frac{32}{2.62}$ $\frac{178}{7.75}$ ==	18 69	2.06 2.88	Rena	28.9 2485 28.9 108.05		22 45 1.87 1.96	25 75 ===	2.47 3.03	1 82 0.05 3.58
[등 기 :	HYDROGRAPHIC U	2.43	25.46	160	3.06	7.75	<u>69</u> 2.99	66 2.88	Rema	2485 108.05		1.8	3.28	3,03	82 3.58
Mineral : Ng :	HYDROGRAPHIC U	16 56 1.35 2.43	20 1.68 57 -	50 160 4.10 6.94	17 3.6	$\frac{32}{2.62}$ $\frac{178}{7.75}$	18 69 1.45 2.99	25 66 2.06 2.88	Rema	349 2485 28.9 108.05	:	22 45 1.87 1.96	25 75 2.06 3.28	30 70 2.47 3.03	1 82 0.05 3.58
Mineral Ca Ng	HYDROGRAPHIC U	28 16 56 1.4 1.35 2.43	50 20 57 2.5 1.68 2.46 -	132 50 160 6.6 4.10 6.94	17 21 21 21 21 2.20 - 1.41 3.06	$\frac{80}{4.0}$ $\frac{32}{2.62}$ $\frac{178}{7.75}$ -	58 18 69 2.9 1.45 2.99	2.50 2.06 2.88 -	Rema	248 349 2485 12.4 28.9 108.05	; ; ;	71 22 45 3.55 1.87 1.96	34 25 75 1.70 2.06 3.28	51 30 70 2.55 2.47 3.03	5 1 82 0.25 0.05 3.58
Mineral Mineral	HYDROGRAPHIC U	8.3 28 16 56 1.4 1.35 2.43	$8.5 \frac{50}{2.5} \frac{20}{1.68} \frac{57}{2.46}$	$8.5 \frac{132}{6.6} \frac{50}{4.10} \frac{160}{6.94}$	7.8 $\frac{44}{2.20}$ $\frac{17}{1.41}$ $\frac{71}{3.06}$ -	$8.6 \frac{80}{4.0} \frac{32}{2.62} \frac{178}{7.75}$	$7.7 \frac{58}{2.9} \frac{18}{1.45} \frac{69}{2.99}$	8.6 $\frac{50}{2.50}$ $\frac{25}{2.06}$ $\frac{66}{2.88}$	Rena	8.2 248 349 2485 12.4 28.9 108.05	1 1 1 1 1 1	$7.7 \frac{71}{3.55} \frac{22}{1.87} \frac{45}{1.86}$	$7.7 \frac{34}{1.70} \frac{25}{2.06} \frac{75}{3.28}$	7.7 51 30 70 7.55 2.47 3.03	8,4 5 1 82 0.25 0.05 3.58

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®]. (continued)

1.27-53 620 8.0 2.8 2.3 2.8 2.5	Well number	: Date : sampled		ECX106	五	6 5	••		oonstituents Na. : K		in equivalents per million $\frac{1}{2}$ equivalents per million $\frac{1}{2}$	HCO3:	per mil	Tron Cl	: NO3	e dd	e add	dis So		00 100 00
Hydricochathy DNIT No. 1 (continued) Hazi-55 620 8.0 1.9 1.89 1.89 2.51		00	••	25 c	1	00	••	••	00		Ð				••	00	••	edd	andd .	₹
Here, $7-5$ (20 8.0 8.0 $\frac{26}{1.5}$ $\frac{2}{1.5}$ $\frac{1}{1.5}$ 1								HYDR	OGRAPH.		NO. 1	(contin	(pe							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								Æ.	ema ind	8	Init (cor	tinued)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.146=W4/89	4-27	-53	620	8°0		n		58 2.51	0		3.8	0.08	'			0°1	335°	188	041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34MI	-82-h	53	580	ထိ				65 2,82			3.4	16				0°0	3190	152	84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3402	10-29	-53	1480	8,0				57	0	O 80	171	53		1		0.2	3216	152	ST.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14-27	-53	1470	7.8				38		0	171	13 0.28				0.1	264°	159	34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34R1	14-27-	53	909	ထိ				49	0	0	238	20				0°1	3450	208	₹.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3483	2-19-	53	510	80				49	0	0	3.5	15		a		0.2	289 [©]	180	33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-27	53	υ99	3				53	0	00	3.7					0°03	3596	228	表
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3581	h-23°	-53	9 4 0	ထိ				3.92	0	0	3.08			n		0.01	5126	275	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3502	2-20	-53	069	ထိ			٠	3,01	0	00	3.3	42 0.88				0.03	389 [®]	210	14.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36D1	i, 2%	53	260	7.6				2.32	8		23.4	15	25.3	1		0.1	3208	158	42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75/1W-10R1	5~26	-53	1,160	δ,		Œ4		162	0	0	133	86 1.80	3.6	n		003	691	290	it.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14A1	5-13-	₹	873	706				89 3.85	5,0,12		308 5.05		TI &		ô	ô	2967	246	ä
5-13-54 978 70 27 91 4 4 -2 317 41 142 6 0.6 0.2 622 280 $5-13-54$ 978 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36	1811	5-26-	-53	670	0				3.20	0	000	3.3	0.51	200			٥٠٠٥	372	385	*
	≥84€	5-13-	45	978	2				36.98	01°0	9	3.7		11			°°	623	285	<u>.</u>

Mineral analyses of ground waters in and adjacent to santa marcirita riter watershed³⁵ (contlined)

d : Pardness :
dissolvad solida ppm
B
a a
S S
SO ₄ : C3
HCO4
co ₃ Hoo ₄
00
8
ρ
· · · ·
e e e e e e e e e e e e e e e e e e e
bar car and s
. pH : CR : Mg

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®].

(continued)

Well	Date	: ECx10 ⁶			Mineral		constituents in	edu	parts per militon squivalents per mill	per mil	ilon million	••	Ç£,	ф	Total dissolved	. Total	β Ω
number	sampled	: at	፟፟፟፟፟	အသ	₽ W «	Na.	×	: coj :	нсо ₃	tos:	: C1 :	· NO3	ndd d	mdd:	solids,		
						HYDROGE	APHIC U	HYDROGRAPHIC UNIT NO.	~	(continued)							
						Rema	Remainder c	of Unit	(continued)	(per							
7S/3W-29Jl	4-21-53	630	7.5	1.8	1.59	58	8 8	9	3.0	62	1.8	0.03	ŀ	0.01	3320	165	142
30 (in or near Sec. 30)	December 1915	0	9 9	69	22 1.80	3.70	0 0000	00	273	63	3.15	3	D 6	ł	524	262	lη
75/4W= 1A1	9- 2-52	9	7.5	36	17.37	72 3,14	0	0.0	3.3	1.8	82	10	g B	0.1	335°	158	90
343	4-30-53	029	8,3	207	2.15	47	•	S .	262	20,42	2.0	10	ì	0.01	359°	242	30
8S/2W- 7A1	1939 ^d	340	t) iv	0.15	0.05	2.90	0	18	52 0.85	10	50	0.02	ê ê	9 0	202	10	93
8s/3W-1202	1-11-53	900	8.3	1.8	18	2.59	9	0	2.9	30.0	2.0	0.31	Ð 6	0,01	295¢	162	44
						Outside Santa Adjacent to	ta Marge	Margarita River Watershad Hydrographic Unit No. 1	ver Waters Unit No.	rshed,							
58/1W-34NI	11- 5-52	610	7.9	2.6	16.1	62 2.70	Ü	9	3.0	1.79	53	20 0.32	1	0.1	381°	197	141
3421	11- 5-52	680	8.1	3.2	18	3.04	9	9	3.0	102	2.1	14 0.23	9 0	0.2	433°	236	39
55/2W-34P1	5-12-53	1,080	7.2	89 4.45	2.71	81 3.52	7	D I	2.5	14.0	227	37.00.59	•	0.1	\$90°	358	33
6s/1W- 3El	5-13-53	009	7.5	20.35	17	58 2.52	1	8 0	3.0	73	50	18	ė e	0.1	3540	188	0,7
6S/4W-28D1	2-19-53	650	8,0	2.4	1.36	59 2.58	2	•	244	28 0.58	2.1	0.15	1	0.1	364°	218	37
28н1	4-21-53	1,740	7.5	1.0	1.31	309		1	134	0.17	13.2	0.10	Q P	0.1	898°	116	85

WATERSHED
RIVER WAT
TA MARGARITA
SANTA
ľo
AND ADJACENT T
AND Co
Z
WATERS
GROUND WATERS
OF GROUND WATERS
IINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHEI

Per sont			91	17	12	#	147	17.5	इं	37	53	533	23	2.8	3	38
Total : hardness : as CaCO3, : ppm			145	534	553	342	191	159	245	5 11 6	197	290	202	560	214	247
				o 1792		600°	341°	30406	313°	o/2th	507°				397°	itu5°
fotal dissolved solids,			499	9/	696	09	46	30	33	12	50	583	6%	504	8	
add:			0.1	0°1	0.02	0.1	0.1	ti D	0°1	0.1	0°1	0.2	5 0.12	0.2	0°0	90.0
F G			ě.	¥ •	1	G W	Ü	1)	5) h	;		0,2	र्वम् ०	0.1	9	
: NO3			0°,70	18	23	10.0	0.03	0.19	10	230	0.08	0.19	2°00	15	15 0.34	20
on Hiich : 03			3.8	3.8	3.8	1:3	1.50	2.5	1.9	107	202	3.0	39	1.9	2.0	10,3
r m1111 per m1 SO ₄			391	311,5	04°9	3.70	1:17	2.07	101	30,1	3.86 3.88	3.35	202	131	2029	800
parts per million equivalents per million 503 : HGO : SO4 : CI	NO. 2		1,08	116	101	336	3.5	67 101	1.2	3.4	124	2.50	346	159	3.0	24 E
ដ	HYDROGRAPHIC UNIT NO.	ngsag 1	0	0	9 9			9	ą	0	ú B		0	9	9	96
sonstituents Na : K	ROGRAPH	Anza	1	9	10	0	3	0	6	9	ē	0.15	0,14	6.15	0	fe B
	HYD		202	52 2,24	35	3.58	20.95	2.26	5.2 2.28	68 2.94	100	3.34	37	1,8	3.37	3.05
Mineral Ms:			3,02	2.98	36	23	12 0.98	20	17,40	1.92	13	1.30	12 1.03	14 1,20	17	20
Ca			مام	2/2	cu es	38	2.30	32.	30	3.0	2,3	4:5	3.0	80	2.9	3.3
			156 7.8	7.7	162	(1)	100	1~	ğ (red	80 1		•				
PH			8.1 15	7.8 15	7,1	7.8	0.0	7.2	70	7.6	80 E)	7.2	7.3	7.1	8.0	2°6
ECx10 ⁶ : pH : 25°0 : pH	Name of the latter of the latt													748 7.1	760 8.0	750 7.6
Hq.	TO STATE OF THE PARTY OF THE PA		೯೦	7.8	7.1	7.8	00	7,2	70	2.6	8.3	7.2	7.3			

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED.

	Per oent Ne			35	37		09	75	641		59	61	ή9	1, 9		35
	Fots. herdness as ${\tt CaCO}_{j_p}$: PPm			361	308		249	41	162		420	338	294	313		78
	Total : dissolved : solids, : ppm ;			682°	585°		783	227	374°		1,205°	1,005°	966	1,008°		135°
	B Pro			0,2	0.2		0°2	0°03	0.03		0.2	0.3	0.2	0.3		0.0
	e edd			8	G •		0.5	0°3	:		1	0	:	Pr 1		;
	NO.			0.08	0.03		0,05	2 0.04	$\frac{2}{0.12}$		0.19	8	0.02	0,01		23
	11cn exilica h : Cl :			82	82		160	1.5	2.1		7.8	23t 6.6	241 6.8	234		0.2
	per millich nts per mill 3 % SOp %	(penu		306	240		3.79	37	33		285 5.93	222 4.63	241 5.02	235 4.89		0.20
1304	parts per fralents HCO3 :	2 (continued)	(penu	140	2.3	Basin	3.8	3.45	3.7	Basin	1427	366	311	35th 5.8	Bas1n	1.4
(Sevier med)	1n equi		n (continued)	8	9		1	11	8		g •	9	9	:	huila Be	:
	tuenta K s	PRIC UN	Anza Basin		9	Lower Coahuila	60.16	00.10	8	Lower Lancaster	:	;	;	:	Upper Coahuila	:
	consti Na ;	hydrocraphic' unit no.	4	3.91	3.60	וני	7.4	3.07	3.08	기	275	2 ¹⁴ 10.60	$\frac{257}{11.20}$	256 11.14	음	15 15 18 10 18
	freral Mg :	H		$\frac{25}{2.02}$	22 1.85		20 1.68	$\frac{2}{0.14}$	12 0.98		3,25	2.55	$\frac{27}{2.22}$	23		0.40 0.40
	8 8 8			104	88		3.3	36	45 2.25		5.15	8t t.20	$\frac{73}{3.65}$	3.85		1.15
	 T.			7.7	8.3		7.9	7.8	8,0		7.7	7.7	7.5	7.9		7.7
	MCK10 ⁶ at 25°C			946	790		1,163	358	570		1,800	1,560	1,250	1,270		210
	Date sempled			12- 1-50	11-20-51		12- 9-53	12- 9-53	4-17-51		6-10-52	6-10-52	3-12-52	3-12-52		11-21-51
	Well :			75/3E-27MI			7S/2E-32F3	3211	3301		8S/1W-12K1	8S/1E- 7N1	701	704		7S/2E-13D2

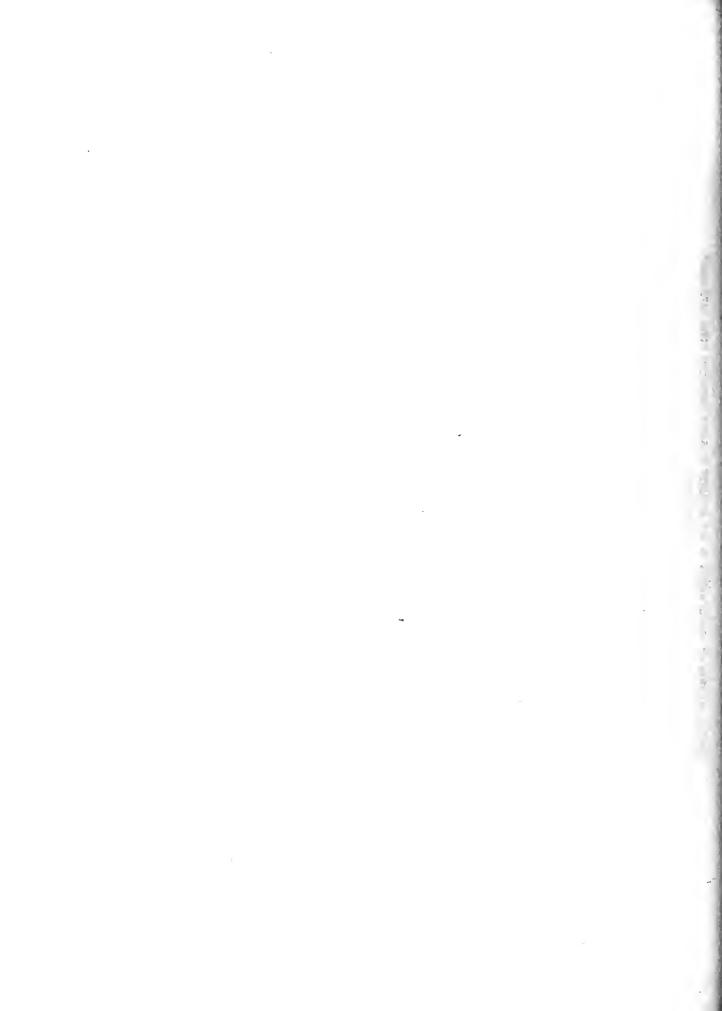
HINERAL ANALISES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®] (continued)

al : Per CO3, coent			11	62	63		44	20	K	64	27	29	25	0	28	*
: Total i: hardness : as CaCO ₃ ,			115	343	528		461	142	186	291	275	218	293	•	274	28
Total dissolved solids, pps			0.C+174	1,083	1,899		270	332	atst1	643°	1480	394	589	i	557	93%
g :			0.2	ተ°0 -	9°0		⊅°°	0.03	0.1	0.1	5 0°3	0.1	0.1	8	0°0	0°1
F Ppm			•	8	8		0	8	1	8	0.55	0	0	8	0°2	8
. NO.3			1 0.01	0.00	0.03		0.18	16 0.26	0.10	0.05	0.20	18 0.29	0,00	8	0.08	#
(on (113 on : C1	med)		252	248	613		1.35	60	2.4	153	1.8	2.0	78	2,25	2	79Z
equivalents per million equivalents per million 103: HCO3: SO4: C	(continued)	Basin	1.51	5,32	10.20	\$11	0.19	33	1.06	130	1.70	16 0.32	3,98	000	15 E	206
parts pe usvalonts HGO3	IT NO. 2		3.7	248	269	es of Unit	3.5	213	287	4.4	3.75	235 3.85	101	101	1.57	226
₽	PHIC UNIT	Upper Lansaster	8			Remainder	9	9	8		0		0	0	00	8
constituents Na : K	HYDROGRAPHIC	'n	8							9	5 0.18	3 0,34	S 0.2	0	8 0.21	0
			5.64	261	19.55		2.38	67 2.90	107	129	2.05	1.83	2,02	0	20.18	343
Mineral 8 Mg :			0.89	23,76	2007		0.77	13	20	2.33	20	90.66	18	• H	127	7
a			28	4.1	178		38	, Q 80	20.3	30.1	3.8	3.7	88 1.1	3	81 4.06	6
3 .			7.9	7.8	7.9		8.3	8.0	7.8	7.07	7.1	7.3	7.2	7.3	7.8	80,2
Exlob at 25°e			009	1,740	3,820		0६भ	520	720	J. 000	7+8	610	755	750	810	1,550
Date sampled			3-12-52	8-17-53	11-28-51		2-1-51	2- 2-51	2- 2-51	2- 2-51	9- 2-54	45-6-8	9= 5-54	η5-5 -6 ¢s	10-19-546	11-29-50
Well :			8S/1E-17A2	1752	18H2		75/1E-2003	1367	3041	3032	7s/3E-20B1	2061	2002 9= 5=54 (papg 14 bres)	(papg. 4½ hrs.) 9- 5-54		85/1E-18KI

Mineral analyses of group waters in and adjacent to santa margarita river watershed^a (contâmued)

Per s oems		24	173	£4		20	rt 2	#
Total hardness as CaCO ₃ , ppm		20	81	78		911	128	322
: Total : Total : dissolved : hardness : solids; : es CaCO ₃ : ppm : ppm		282	1590	147°		244°	2300	995
B & d		0.2	₹°°	0°1		0.1	₹0°0	す。
e dd		b 9	Q	0		9	ł	9
⁸⁶ 3		- 6	24 24 00.33	2 23		0.17	0.19	. 01
lon C <u>1</u> :	_	255	18	12 0.35	p q	1 20	: 120	195
parks per million equivalints per million CC : HCO : SO, : C	penugan	188	6 0.12	0.04	Waters	14 0.29	0.13	1+3
rte per slante HCO3	0, 2 (Ġc	of Unit (continued)	011		ta River	152	2,4	238
- 4	HYDROCRAPHIC UNIT NO. 2 (continued)	r of Uni	0	0	Outside Santa Margarita River Watershed, Adjacent to Hydrographio Unit No. 2	99	9	0
ineral constituents in Mg : Ns : K :	OCRAPHI	Remainder	8		e Santa	0	0	0
eensti . Ne	HYDH	337		27	Outs 1d	2.30	1.87	%
Eneral Mg		-	1°0	940		10 0.81	8 0.65	25
		∞ -				30	38	88
<u> </u>		8.8	7.7	8.3		8.2	8.2	8,0
ECx10 ⁶		1,370	270	240		1430	390	1,000
Dete sampled		11-16-51 1,370	12- 6-50	11-21-51		12- 7-50	11-15-51	11-15-51
Mell .		85/1E-18K1	85/3E- 803			8S/3E- 2E1		231

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED (continued)


		901-04			Minaral		oonstituents	***	orate poi	Verys per million	100	** *	6		**	Total	
number:	vere sampled	250°C	E.	8	E		×		S MOU		ະ ອີ້ຍົ	MGg	් කුරුග්	වූ සුරුල්	dissolvod : solids, : ppm :	naronesa 25 CaCo _g , Prm	No.
							HTERO	HTDROGRAPHIC UNIT	UNIT 3								
							AE	Aguanga Be	Bestn								
33/18-2911	11-10-50	530	8.0	33	6.47	3.70	1	9	317	50 2	2.1	0.0	i e	0°3	3256	104	40
	3-25-52	300	7.4	1.25	13	$\frac{23}{1.02}$		3	165	0.02	18	20.02	ı ş	0.1	164°	116	31
3381	1-26-51	510	ည က	3,0	1.15	49		6	3.3	2,50	21	3 0.05	i	0.01	361°	200	#. **
	11-27-51	049	7.8	3.55	$\frac{12}{1.58}$	2.3	0	î .	3.4	3.07	0°3	3 0.05	;	0.1	4236	246	32
5,563	7=18-52	1,020	7.5	5.65	2.00	66 2.85		53 8	3.6	25th 5-49 I	1.25	η 0°00	;	0.1	9819	382	60
							EI)	Dodge Besin	uts								
95/25-2731	12= 1-50	004	707	2002	1.24	33	: [3-3	0.43	3.0	4 0o	9	1.00	2326	1 64	°,
	11-21-51	370	8.5	5.5	0000	32	B	C T	3.3	0.37 0	18	0.00	B	0.3	\$6?	168	39
							Lawer	Culp	Basin								
95/1E- 101	3- 3-52	900	7.8	5.5	1,98	137 5.95		8	329	230	2.4	09.0	i	0.2	755°	374	科
1241	3-4-52	830	7.7	106 5.3	13	140		3	366	200	64 1.3	11	;	0.1	722°	339	9
							Z.	Nigger Ba	Basin								
8s/1W-1391	3-12-52	009	8-7	0.15	0.0	164	1	9	128	26 1 1.58 3	3.4	10.0	;	2.9	,9Et1	26	66
							ፈ	Radec Besin	ng.								
0S/1E-19JI	11-16-50	2,300	7.9	304 15.2	25.05	175 7.58		C) as	5.8	5.29	560 15.8	0.03	5	0.1	2,4990	863	30

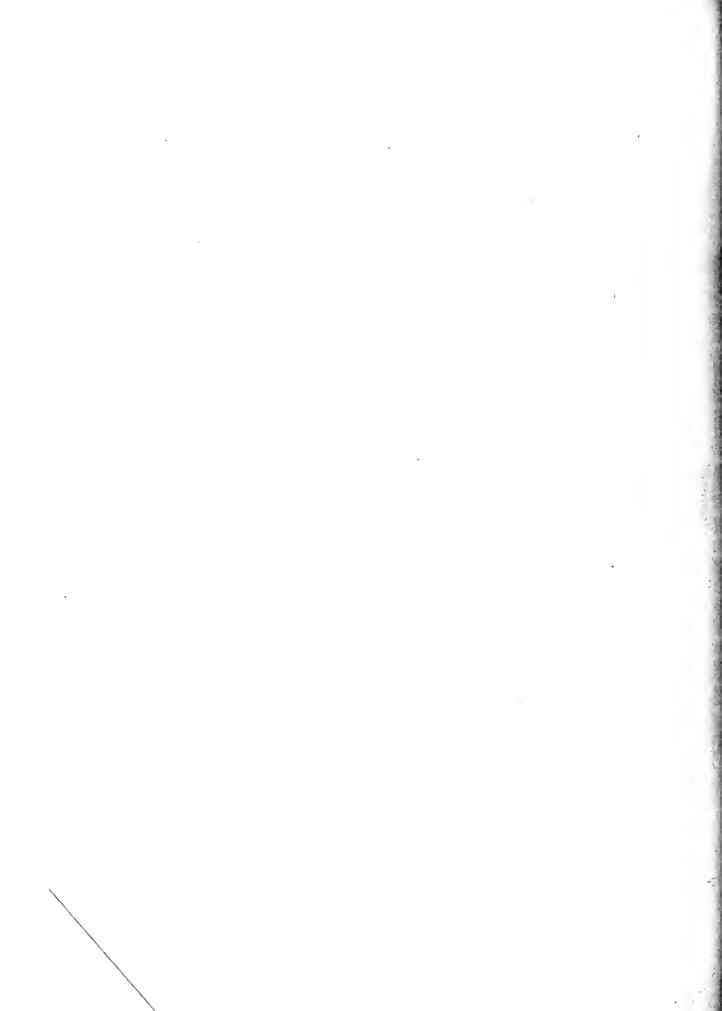
MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARCARITA RIVER WATERSHED^B (continued)

Per Sent			37	64	45		27	%	56	04	35	37	98	49	68	92
fotal hardness as CafO3,			525	894	480		963	785	ħ Z ħ	8448	692	1,028	09	126	32	10
Total dissclved solids,			953°	1,057°	915%		1,494°	1,805	637°	863°	1,207	1,854°	530	438°	318°	269
E GG			0.2	0.2	0.3		0°1	0°1	0,1	0°3	0.2	ተ"0	† °0	9.0	9*0	0.7
d dd.			<u>5</u>	1	ě		1	±°0	0 0	ı	i	1	6.0	:	;	1.8
NO ₃			90°0	4 0.07	2 0.0		0.08	8	12 0.19	0.08	16 0.28	13	2 0.03	90°0	2 0.04	0.02
1 1			2.9	255	160		692 19.5	706 19.9	7.8	352	595	27.5 27.5	174	3.06	2.5	1.8
F millic Per mi	(continued)	(pe	276 5.76	252 5.25	269 5.60		138 2.76	2.02	$\frac{27}{0.56}$	118	81	124 2.59	1.58	78	3400.70	0.32
in equivelents per million to cool and the c	3 (cont)	(continued)	482	351	2.9	of Unit	268 4°4	168 2.75	2.9	2.3	159	2.3	122 2.0	171 2.8	134	118
in equi	IC UNIT	Basin	:	0	6	Remainder		B a	l l			:	0	1		$\frac{7}{0.22}$
constituents Na : K	HYDROGRAPHIC UNIT	Radec	:		Đ	Rei	:	0,10		6	:	:	2 0.04	0	:	0.0
	HYDE		33.05	203 8.82	7.57		165 7.20	201	2.98	90°9	171 7.42	277 12.07	7,50	1118	116.38	4.05
Mineral Me			32.55	2.46	$\frac{34}{2.79}$		3.11	00.8	0.74	12 1,02	20 1464	2.40	4 003	8 <u>0°48</u>	0.09	0.05
5			7.95	138	133		323	298 14.9	155 7°75	159	244 12.2	363 18.15	18	41 2.05	0.55	0.15
五			7.5	8.0	8.3		7.5	7.2	8°0	8.1	8.1	7.5	4°8	8.1	8.3	4°6
ECx106			1,370	1,650	1,440		2,530	2,450	1,180	1,460	2,150	3,220	848	710	530	362
Date :			11~17~50	11-17-50	11-19-51		11-16-50	11-12-53	11-16-50	11-16-50	11-16-50	1-16-51	11-12-53	11-16-50	11-16-50	4-15-5 4
Well :			8S/1E-19K1	1901			8S/1E-19F1		19F3	1911	1942	1943	1984	20M1	201/2	20P2

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®] (continued)

Well	Data	ECz 10	ç e 04	Mineral constituents in parts	sonsti	tuents	in par	arts per	1110	2,0		līr,		Total :	. Total	,
number	sampled	25° C	ි. රම්	Mg B	e N	×	έ _Ω Ο	20°3	500	ပြ	NO ₃	undd		1	as CaCC3,	Sen t
					Н	DROGRAF	HIC UNI	HYDROGRAPHIC UNIT NO. 3 (nontinued)	(sontin	(pen						
						Remainder	8	Unit (oc	(continued)	\odot						
8S/1W-13K1 (Bailed)	12- 1-50 1,920	1,920	11.6 103	00.25	169	1	6110		40 0°83	170	3000	P.	1.1	702°	276	58
(Hand pumbed)	11-27-53	1,130	7.09 44	4.18	102	0	:	604	0.0	173	0,02	H B	2.7	580 ₆	319	6:4
22K1	11-8-50	570	7.9 60	1.26	2.03		8	293	68 1.41	39	30.05	0	40°0	3780	213	32
	11.27-51	01/5	7.7 54	10.19	54 2.34	0	9	3.9	63	39	0.03	;	0°0	345	194	38
2501	1=25=51	929	7.8 66	3.18	50 2.16		0	5.3	1.90	32	40.07	i	0.1	450c	324	25
9S/2E-15R1	11-30-51	640	7.6 144	15	2.37	4		293	6.19	00.75	20.04	¥ 1	0.0	295°	171	t [‡] 1
9S/3E-16A1	12- 8-50	980	7.8 60	1:24	58 2.53	1	0	202 5°0	14	1:1	$\frac{7}{0.12}$	8	0°0	345°	212	37

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^{8.} (continued)


	Per : cont	» Na			×	44	98	43	143	641	91	24	72	97	46	8	ηb	49
4.	hardness				350	280	9	2 ⁴ 2	268	188	202	212	78	S	ω	33	15	100
- C+-	کا و				763	703	354	607	409	519	531	658°	340	344	287°	292°	301	ħZ11
	g .				Û •	6,0	8.0	ti •	0.2	6 8	į. U	0.0	e 1	in B	0.3	0.5	6.0	†
	a dd				1	ት.0	i	1	ħ `0	(g 1	3 9	8	N B	í 3	ř	0	1,5	;
	NO2	- 1			0.14	50.00	0	0.05	$\frac{7}{0.11}$	0	00	50.08	30.00	00	4 0.07	± 0°00	40.07	0.11
	Ion C1	- 1			87 2.45	3.3	20	2,05	20.7	53 1.50	50 1,40	3.0	83	1,50	69	2.1	69	103 2 90
B1 11 00	equivalents per million CO2: HCO2: SO, : C	*	#		3.71	3.36	50	2.30	126	2.07	2.10	3.39	18	14 0.30	15 0.31	0.22	0.00	0.27
Page Day	Blents HCO ₂	- 1	UNIT NO	esin	274 4.50	4.45	10	250	256	3.60	3.80	268 4.4	168	131 2,15	9 8	164	159	2.80
			HYDROGRAPHIC UNIT NG.	Pauba Besin	00	3 8	2年	00		00	00	0	၁၂၀	02.0	34	B 9	3	00
	K :	-	HYDROG		00	50.14	5	00	2 0°.06	00	00		:	00	8	0	0.02	00
	constituonts Na : K				3.30	115	111	3.72	3.82	3,56	3.36	129	3.96	111	5.03	109	107	4.12
	Ineral Mg	,			24 1.98	1.0	1	20	20	15	1.23	8	0.55	0.04	00.02	2 0.15	0.15	09.0
	S. S.	- 1			101 5.03	4.0	64	3,24	3.7	50 2,52	55 2.80	3.55	2c 1.00	3.00.13	3.00.15	10	0.15	28
ľ	 Æ	- 1			ł	7.9	9.2	j	7.9	9	e a	8°0	*	ő	8°8	9°8	8.9	i
	ECx106	25°C			1,040	1,053	450	831	923	703	716	980	କ କ କ	521	1480	1480	900	633
	Date :				1939 ^d	5-26-54	8- 5-52 ^d	1939 ^d	5-26-54	1939 ^d	1939 ^d	2- 9-51	December 1915 ^b	1939	2- 9-51	11-14-51	5-26-54	1939 ^d
	Well :	••			8S/2W-11J1	1111	1111	12H1		12%1			1501			1		16A1

MINERAL ANALYSES OF GROUND FRFESS IN AND ADJACENT TO SAFFA MARGARITA RITER WATERSHED[©] (continued)

regr.		ή9	ή9	61	96	90	46	₺	95	ま	20	64	;		38	C2 .::0
දුන් දැක්කියියි. මෙන රමුර්දිය වුන්ක		917	1114	118	29	30	33	#3	12	16	506	240	196	<u>}</u>	152	01.6
alles solles, pps		350°	335°	376	101	359°	357°	378	324	321 ^{&}	581	694	6%	ì	363	90.0
EG.		0,1	0.2	C.2	i	10°0	0.2	0°5	9	0.3	:	0°1	1		ŀ	
ECC		0	0	c. 55	9	0	•	9•0	0	:	!	0.3	:		1	
. EOK .		0.21	4000	15 0.24	0.14	14 0.22	11	16 0.25	8 0.13	14 0,23	0.05	0.10	28		60.0	•
1	â	203	3.0	203	103 2.90	2.9	2.9	2.9	3.50	2.6	30	2.8	S.	1	1.0	•
19 : 100 : 50 : 61	4 (continued)	16	10	0.14	36 00.74	42 0.87	38 0.80	31	$\frac{19}{6.39}$	28 0.58	1.91	124 2.58	71		0.35	
HCO3	NO. 4 (continued)	2.2	2.7	171 2.8	107		134	134	1.35	9	3.65	241 3.95	Baein	1	3.40	
. 60°	unit	2	50	8	12 0.40	63	6	0	15 0.59	1.9	0.20	:	Pechanga 12		00	
003 00 [42]	HTDROGRAPHIC Pauda	ß	9	2 0.05	00	0 -	0	0°.06	00	1	00	0.08	•		00	
୍ଦ୍ର : ପୁରୁ	H7DR0	92 4.01	3.97	3.83 82	324 5.41	124 5.40	126 5.49	112 4.88	701	113	4.13	110	17	1	1,83	
2		0.61	8 5.08	8	0.11	0.05	0.11	0.1	0.11	0.06	1.28	16	ž		0.72	
ී අට අට		34	35.	34	9 0°47	13	11 0.55	15	0.13	0.25	2.84	3.5	ដ	1	2.33	•
100 00 100 100		ರಿ	7.9	8°5	ů V	8°5	8.3	8,3	ñ •	8.6	;	7°4	;		;	
25°C		900	520	643	949	900	520	652	532	530	305	£ 3	ļ		475	,
eamplod :		2= 9-53	11-30-51	5-26-54	1939 ^d	2- 9-51	11-30-51	5-26-54	1939 ^d	2- 9-51	1939 ^d	45-t1 -9	Jish	1916	1939 ^d	
number :		8S/2W-16Al	•		1661		•		1761		20B2 and B3 (composite)	20B4	RS /2W-19.11		20L1	

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^a (continued)

•					Manon	Manney Compations	- Constant	:	parts per mil	er m1111	ų,	••		"	Total Total	Total	,,
Well :	Well : Date : ECKIO : number : sampled : at : 25° C :	: EGx10° : 25°C	# d	යි	1	Na	: K	00 °	equivalents per 0 3 HCO3: SO4	집['' '']	1110n C1	NO.	F : B		disscived : hardness : Per solids, : as CaCO,, : cent PER : DER ? : NE	hardness ss CaCO,	. cent
						HYDR	OGRAPHI	C UNIT	NO. 4 (c	HYDROGRAPHIC UNIT NO. $^{oldsymbol{\mu}}$ (continued)	q)						
							Ren	ainder	Remainder of unit								
8S/2W-17M1	8- 6-51	094	8.7	0.45	0,22	3.93	9	:	134	12 0.26	1,8	0,15	ę.	ሳ•0	2550	*	85
	5-26-54	# 5	9.3	0.15	00	3.96	0.02	14 0.45	122	11	1.35	4 0°0)	3°8	1.0	263	80	88
22L1	3-12-53	340	8.2	14 0.70	8 0.65	2.10		B	116	0.06	1.42	0.02	0	0.01	182°	89	61

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^a. (continued)

		9			Mineral		constituents	ä	parts per million	r millio	G .	** *	[C-	,	Total :	2	Pass
well number	bate sampled	: ECXIO : at : 25°C	Fa.	6 0	9	Na.	X	CO3 :	E MCO3	20t	1 1	, NO3	P.		- 1	as CaCO ₃ ,	1
							нур	HYDROGRAPHIC UNIT	I LINI CI	NO. 5							
								Rairb	Rainber Basin								
55/3W= 1P3	11-16-53	952	7.7	2.3	35	3,48	η 0°.10	:	100	35	199	35 0.57	9°0	0.0	L in9	290	38
185	11-10-53	458	7.5	24	12	53 2,32	1 0.03	:	110	28	200	11 0.18	ή"0	0.1	332	110	5
102	4-20-54	3,116	7.5	1,00	1,30	5.59	0.10	0	116	72 1.49	330	48 5.78	9°0	0.1	897	405	Ĩ h
								Remainder	er of Unit	ا دي انجو							
88/38-32NJ	12-28-53	588	7.8	3.3	20	事	0.14		27.5	23	100	2 0°00	0.0	0.02	60h	248	28
32N2	12-26-53	516	80,3	42 201	18	27 2.45	0,00	0	3.2	26 0.54	62	0.05	0°0	0.02	868	167	7 t ₁ 5
32N3 2-1-54 (Bailed at 4 ft.)	2- 1-54 ft.)	633	8°3	3.5	1	100 E0	0.12		250	142 0.88	1,045	0,05	0°2	0.1	384	247	56
	4-20-54	568	2.6	3.6	21	1.63	3 0.08	0	282	34	1.5	2 0,04	0.2	ή0.0	415	266	77
854W=293).	7-27-54	21c	7.4	b2 2,1	101	3.5	0.0	0 4	3.15	27 0.55	57	9 20	ų°ο γ	e 4 C	339	175	%
3282	7-27-54	1	7.4	100	0.75	25.2	3,02	N A	2.75	245	10.3	0.08	0,5	0.3	म स्ट्रिट	222	왘
34Fl (Banled)	8-25-54	288	7.00	1515	5 0 5 0	32	0.03	ti 0	10.15	0.17		00.55	01	0.2	270	74	831
95,/3W-17701	7- 5-52	82c	7.2	2035	3.36	2.87	9	0 H	25.5	#°1	3.10	بار 0°0	P ₁	0.1	4713	302	32
95/eW= 592	8-25-54	1425	7.3	2.6	0.56	36	0.08	0	325	0.18	35	11 C . 06	10	€0.0	275	158	28
1321	4-2-54	1,026	7.8	3.70	3.0	65 2083	0.07	D 00	735	6 <u>7</u>	3.8	128	0.2	40°0	730	335	30

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIFER MATERSHED[®] (continued)

Totel: hardness: Per as CaCto, : eest	•		525 35	:	•	;	841	B	55	128 45		230 14
00 00 00 0			<u>π</u>	i		1	•	i	9			2
Total dissolved solids,			1,067	220	230	ů ů	286°	210	373	253		525
			0.2	;	;	i	6	;	0.1	0.1		0°1
Be 64			9°0	:	6	:	Û	9	0°3	:		0.9
Son Son	ि		1.08	:	1		1		00	0.05	shed,	16
11193 CO	nttnue	(penu	261 7.35	20	32	52	1,24	82	1.50	1.5	Water 1t No.	149
per edillion to per million 5 : 50, : 61	, 5 (co	(continued)	250 5.20	21	#	162	21 0。中	42	2t 0.5	23	ta River	142
Wales HCO	HYDROGRAPHIC UNIT NO. 5 (continued)	of Unit	134	0	0	0	161 2.64	6	159	164	Outside Santa Margarita River Watershed, Adjacent to Hydrographio Unit No. 5	171
11.3	RAPHIC	Remainder	1	:	0	Û	00	:	00	:	Santa int to	;
1 tuents	HYDROC	Ren	2 0.04	:]	:	8	1	6	1	:	Ad Jac	œ
Mineral constituents in	0		5.60	:	1	0	2.58	å	3,02	49 2.14		8
Minera Mg			5,4	49	∄	15	18	20	0.92	$\frac{12}{1 \circ 02}$		28
වී			102	88	102	70	25 1,24	76	1:58	31		3
'			6.8	7.9	2.6	7.9	7.7	7.2	7.9	7.7		8,6
ECELOS es	2 2		1,500	, P	ţ	;	1	0	530	1480		793
Date :			8-25-54 1,500	11-29-518	11-29-51 ^{fg}	8-10-48 ^{££}	3- 1-49fB	11-29-518	1-29-528	6- 9-53		11- 9-53
Well :			95/4W-1301	1961		2911						95/3W-12F3

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®] (continued)

Per cent	Na			63	1	52	;	i	641	3	45		9	1	1 1	53	;
8.1 : ess : :				v	•	•	·	•	~	•	•		·				
8 8				9	5 9 9	B G 1	İ	!	252	8	1		j 8 1	;	ì	† 1	}
Total : dissolved : solids, :	e wdd			589°	1,50	1 69	720	754	909ء	064	176		1	869	520	727	i
g Edd				e 1	is 0	90.0	1	t	1	y ¥	0°5		:	и. Ф	:	0°3	1
udd.	••			Q E	6	ħ°0	ì	6	0.2	5 1	0.5		i	1	;	4.0	*
EON :				\$:]	1	3	i	0.02	:	00		:	:	:	00	1
				106 2.99	112	3.1	124	186	3,52	128	126 3.55		120	116	128	3.4	120
parts per million equivalents per million 03: HCO2: SO4: Cl	9	1 Basin		118 2.46	35	1.9	99	100	108	112	2.34	e i	102	88	121	2.3	90
fvalents	ic UNIT	a Coastal	Upper Sub-basin	256	•	263	All persons and the second	212	280 4.59		285 4.68	Sub-basin	1	264		264	:]
# S	ROGRAPH	rgarit	per Su	00	:	00	2	0	00	5	00	Cha.ppo		0	:	00	:
tuents		Santa Margarita	키	:	:	0	8 1	*	8	:	1	Öl	ì		2	:	1
constituents Na : K		ωι		151	:	120	:	128	116 5.04	8	141		:	9	:	126	:]
Mineral Mg :				$\frac{23}{1.91}$	88	1.8	125	23	22	88	26 2,12		42	24	92	20 1-92	43
a s	••			38	152	3.1	130	80	65 3.25	166	3.12		152	34	मुं	62 2.92	150
	••			7.8	2.6	7.8	7.7	7.8	7.5	7.7	7.5		1 °8	8.0	7.6	8.1	8.1
ECx106 :	: 2,6			1 6 1	6 8	066	£ 1	i t	985		1,100		0 8	i	}	1,030	;
				3-1-4968		1-25-528	6-12-5 18 h	3- 1-4968	10~25~5 18 1	11-29-518	1-10-528		8-10-48 [₽]	3- 1-49fB	11-29-518	1-10-52 ^g	8-10-48 ^{fE}
Date sampled					11-29-518	1-25			10~2¢	11-29	1-1(ψ	11-2	1-1	
	••			105 ~W#/801			УнЈ	7R1					10S/4W-18E1				18M
Well				10S/4									10S/A				

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED⁴ (continued)

Per coart				ł	9	3	09	8	8 8	9	ì	;	;	51	:	55	:	52
Total hardness as Ce.Co ₃ , Ppm				9 9	į	ļ	9	,	0 0	ļ	9	1	•	3 6 2	į	•	ŀ	236
Totel dissolved solids, ppm				705	390	01/1	806	1,241	598	}	638	1	₅ 64°	7220	059	890	247	60%
B and c				:	;	ł	ቲ•0	1	ł	1	1	1	į	i	:	0.1	:	1
E and d				i	0	;	0.5	0	:	ţ	;	0	ł	0.3	;	0.5	:	η•0
NO.3				9 0	:	:	9	:	9	1	:	:	:	4 0°00	:	٦	1	96
: 12 C.13		(pe		122 3.44	124	721	3.5	330	120	011	120	236	246	232 6.53	1	7.1	割	3.52
parts per million voulvaients per million co, Hoo, So, co	(sontinued)	Basin (continued)	(per	88 1.83	8	88	130	20	98	81	63	69	33	67	35	1:4	88	1.94
rts per HCG :	100s) 9	asin ((continued)	252 4.13	:	¥	286	:	:	:	238	1	134	270 4.42	:	268 4.4	:	295 4.83
	II NO.			3.00	9	:	00	:	•	:	2	:	0	:	:	00	:	:
1 = 1	HYDRCGRAPHIC UNIT NO.	Santa Margarita Coastal	Chappo Sub-basin	:		ij	:	i		0	;]	;	8	10 0.15	9	:	:1	8 0.13
corstituents Na	YDROGRA	e Marge	Cha	- <u>751</u>		:	161		:	g.	•	:	:	145 6:30 6:30	- ' I -	7.5 =	۱۰ ۱.	123 5.35 C
Mneral o	표	Sant		2 86°1	76	72	13 1	352	72	9	23	ᆀ	22	23 <u>23</u> 5	힏	24 2.0	8	21 1.73 5
30 30				34 1:70 1	70	7251	3.1	268 3	124	130	35	203	78	81 4.05	188	4.2	135	3.00
, Hd				8.3	7.8	त %	7.8	7.6 26	7.6 12	8.2	8.1	7.7 20	8.1	7.3	ਸ 	7.4	7.6 1	3.6
ECXIC6 : a.t : 25°C :				1	R	1	1,150 7	1		8		7	8	1,240 7	' 	1,270 7	7	985 7
E E E E E E E E E E E E E E E E E E E																		
Date sampled				3- 1-49 68	11-29-518	11-29-518	1-25-528	8-31-50fg	7- 6-51 ^{Eh}	8-10-48 ^{fg}	3- 1-49£	8-10-48fg	3- 1-49[8	10-25-51 ⁶¹	11-29-518	1-11-528	9-26-50 ^{fg}	10 - 23-51 ⁸¹
Well: number:				10S/4W-18M1		18M2		10S/5W-13J1		1381		1461					2311	

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED (continued)

	Per aant Ne.				ěj V	Х	9 (4) B	Ø /	27	ų,	90	3	ir 9		j b	*	g F	52	6
ال مهدي	hardness es CeCO ₃ ,				ў я 0	Dr. P	6 4 1	y Si Ri	i i	6, 0 8) 0 0	ήδ	0 8 8	ř. d e		tr B E	(r () 2	i i	293	# # 5
1940	dissolved solids, Fpm				1,80	7.16	612	₹%	क्ता 9	1,030	1,334	1,250°	785	651		750	2,066	416	7350	550
۰	B				1	0.2	a B	.1 U	i a	0	8	† °0	9	G		9	?	ş 2	٥٠٠٥	û 0
	E. Edd					0.1	ŭ 4	J V	i	t;°0	ël B	0.5	•	0		9	8	0	0.2	1
	NO3				b P	0	8 8	6 2	:	ér Ú	0 2	0.02	: {	2			Ē	:	0.02	;
	ion Ci		(pe		128	3.50	138	116	911	280 7,90	011	60c 16.90	126	131		168	347	375	11.87	168
27.7 (20	SG S	(confinued)	Basin (continued)	(pen	30	98	105	82	90	2,30	80	30	51	09		ä	198	817	2.23	110
4	equivalents per million	9		(continued)	Ü	295		U II	2.0	308	rt. by	140	5	25.9	Sub-basin	8; S	424	397	338	:
	in aquiy	UNIT NO.	Coastal	Chappo Sub-barin	0 60	00	3 1	Ü Ü	G 60	00	0	9	: 1	b		*	0	\sim	0	1
	tuonts K	HYDROGRAPHIC UNIT	Margarita	appo St	8	: [6	1	(s	C	9 99	0.05		0	Ysidora	8	9	;	0.23	9
	Na	HYDR OC	Santa Ma	ਹੀ	:	24th	2.0	0.8	8	212	3	19.30	0	122			472	178	149	:
	Mineral Hg		Š		75	23	83	3	1.09	31 2.50	55	D. 23	25	17		139	75	22	$\frac{27}{2.22}$	110
	S S S S S S S S S S S S S S S S S S S				148	2,92	243	126	142	4.3	106	31	135	547		124	234	7.7	3.65	178
-	a.				7.07	7.9	7.6	7.3	7.8	8.1	7.08	8.1	7.4	8		7.5	0	8,0	7.5	7.7
	ECK106 25°C				в 3	1,060	6 8 8	8 0 8	b I	1,470	1 6 0	2,220	is 15 9	b b		6 8 8) 1	;	1,210	į
	Date : sampled :				11-29-518	1-25-528	9= 1=50Es	6-23-518	6-22-5183	1-22-528	7-12-5184	1-11-528 ^k	8-21-508	12-18-26 ^{dm}		6-18-51 ^{8h}	11-19-26 ^d	3- 1-49rB	10-24-5181	11-29-518
	Well :				10S/5W-23J1		2532	2333	2317		2301		24H1	24н3		103/5W-26L1	3511	35%1		

MINERAL AMLYSES OF GROUND WATERS IN AND ADJACENT TO SAMMA MARGARITA RIVER WATERCHED[®]. (contained)

Per cont Ne				58	0	×2	:	;	1	:	ъ.	58	;	84	ŀ	ł	:
: Total : hardness : es CaCO ₃ ,				8	i	239	fr 0	G B	0	ì	f) G R	i	;	ł	!	į	682
Total dissolved solids, Prm				2,642	740	625°	•	g ü i	406	610	953°	9270	800	1,172°	1,034	550	1,2990
B : avgq				0.2	i i	0°5	ij V	;	;	;	0.2	:	1	0.2	•	:	0.2
E CC				0.5	ŀ	1	ì	8	;	!	ł	ì	:	0.5	;	;	ŀ
. NO		(P)		00	;	0.01	ę	:	1		0	:	:	00	:	:	0.02
	(continued)	ontinus	(pa)	176	160	146 4.12	190	1%	176	184	20 ⁴ 5.8	200	232	240 6.8	216		168 1.74
eillio sr mil Sc _h	6 (cont	Besin (continued)	(sontinued)	2.3	88	102	103	1 ⁴	122	119	116	275	217	210	162	25	510 10.62
restrate per state programme process p	II NO.			5.33	:	300	1	•	38	:	315	188	:	3,5	298	:	424
1 1 1	VPHIC UN	unite Co	Vsidora Sub-basin	00		1	9	9 [0	:	00	:	:	00	0	:[:
uents in K	HYDROGRAPHIC UNIT NO.	Senta Mergarita Coastal	Yside	:	0	0.07	Ŷ	9		1	:	•	:	:	:	:	4 0.0 <u>9</u>
sonstituents Na K		Sen		7.77	7	071	:	8	509	:	188 8.06	208	:	196 8.5	:	:	7.09
ineral Mg				25 2.04	134	20	25	119	₹	118	30	38	192	3.6	23	81	4.11
CE.				3.64	122	3.14	178	280	£1	186	3.7	98	278	113	88	28	191 9.53
· · · · · · · · · · · · · · · · · ·				7.5	7.5	7.9	8.1	7.6	7.7	7.8	7.5	8°1	2.6	7.4	7.9	8.2	7.7
ECKLUE:				1,300	9 # 0	1,100	P 0 0	ţ	•	1	1,360	į	1	1,670	Ì	ł	1,940
Nete B				1-11-52 ^g	6-13-51 [£]	11~18-52 ^{gn}	8-10-48 ^{fg}	9- 3-48 E	3- 1-49 ^{fB}	11-29-518	1-8-528	3- 1-49E	11-29-518	1-11-528	3- 1-49 ^{fg}	11-29-518	11-18-52&
Velž :				108/5W-35K1	35%5		11S/5W- 2A1					201			2E1		

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED^A (continued)

Per cent				;	g vi	;	;	59	0	1	ţ	ì	89	69	75	51	69	ì	69
Total hardness ac CaCO3,				54 13 19			9 8	E de la	ër si	1	ij ₩ ₩	# # 2	527	9 11 6	Tr dr dr	ST No.	i i	9 8 8	2,390
Total dissolved solids, ppm				044	u •	488	630	892	3	ât Q B	1,411	9	1,970	1,3276	302	327	818	1,460	9,030°
B :				1 1	;	l	ł	0.3	Î	ÿ ¥	:	1	ሳ•0	0.2	:	ł	;	;	1.0
F C				:	1	Ý	1	t°°	9	9	ĝ T	8	0.3	1	:	;	;	1	0.3
NO.				:	:	ı	E	0	ii I	0	:	1	0.01	0.02	9	:	;	:	:
1 1 1	(ģ.	(panu		145	180	176	헍	136 5,50	314	192	428	:	875 24.7	532 15.00	152	9	224	1460	4910
Per millic SO ₄	6 (continued)	Basin (continued)	(penut	104	88	107	2	1.97	120	116	184	13	203	3,33	112	12	35	222	602 12.5
parts per million equivalents per million 0_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ; 100_3 ;		al Basir	Sub-basin (continued)	275	;	310	1	303	:	G	308	304	303	130 100 100 100 100 100 100 100 100 100	281	143	244	9	362
1 #	HYDROCRAPHIC UNIT NO.	a Coastal	Sub-bas	:	:	0		00			0	0	:	1	0	:	:	:	# ************************************
30 004	OGRAPHI	arger1t	Ysidora	e		:		:	0	0	0 3	0	0.18	0,13	9 1	:]	1.	3	12007
constituents Na : K	HYDR	Santa Margerita	XI	142	:	186		182	:	0 0		i	232	355 15°#	140	함	192	:	2500 108.8
Mineral Mg :		031		22	55	42	114	22 1.80	76	76	56	179	62 5.11	2.36	23	3	25	204	289 2 23.8 1
ස් ව				12	156	256	164	3.50	150	236	56	25	5.45	4.54	†19	30	計	268	480 24,0
# #.				;	8.1	7.9	7.7	7.9	8.0	7.4	ر. ص	9.1	7.6	8°0	9	1	ì	8.0	7°4
ECX106				E H S	9	ì	ù ù	1,270	0 H	ft # 9	0	2 2	3,340	2,400	0		i	0 #	14,100
Date : Esampled :				12-18-26 ^{do}	8-10-48 E	3- 1-49FB	11-29-518	1° 8-528	8-10-43 ^E E	8784=E =6	3- 2-49fB	11-29-518	1-10-528P	11-18-528	9-19-25 ^{dq}	12-18-26 ^{d r}	12-18-26 ^{d r}	6- 4-518s	1- 4-52 1
Hell : number :				11S/5W= 2E3	2F1				2K1						2N2		2N3	2Nt	

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED[®].

(continued)

Per oent Na			62		3	35	32	29	Ж	¥	1	:	*	;	:	92
Total : hardness : a.g. CaCO ; ppm 3 ;			346		208	325	290	345	215	162	i) 	i	18	ŀ	ŀ	7,280
Total : dissolved : solids, :			1,0800		477	650	592	999	£ 113	395	351	650	7230	960	4,370	36,1000
e dd			0.3		7 0.2	t 0.1	2 0°1	2 0°1	2 0.1	 	1	1	1 0.8	1	:	7 3.3
NO3 : PPm			0.02		20 20	4°0 60	3 0.2	3 0.2	, 0°2	\$ 0°\$.1	. 1	1.1	.1	.1	. 0.7
00	led) ntinued)	F	422 11.90 0.		62 16 1.75 0.26	2.0 0.09	119 53 3.35 0.86	170 4.8 0.05	2.1 th	87 64 2.45 1.02	120	160	25 1 37 0.01	: 2	 	2
perts per million equivalents per million 10 : HCO3 : SO4 : C1	6 (continued) Basin (continued)	(continued)	130 45 2°71 11		2.78	262 5.45 2	1.86	2.22	1.32	0.15 2	37 13	IS IS	30 155 0.62 4.37	70 392	1900	2380 20300
rts per mi Alents per HCO3 : S	NO.			of Unit							•	'		1		
perts quivale	HYDROGRAPHIC UNIT	s Sub-basin	292 4°79	Remainder of	2.7	159	2.84	2.75	3.05	180 2.95	!	1	7.00	 	9	182
#	HYDROCRAPHIC U	Ysidore	1	Rem	၀ ၀	1	9	00	00	00	9	;	1:06	1	1	1
oonstituents Na : K	HYDR		0.15		0.08	0.11	2 0.06	0.08	0.06	0.09		:	0.08	1	1	27
	0,	•	261 11.35		3.56	3.54	65 2.83	67 2.90	2.7g	66 2.87	ō	1	282 12.70		1	11000
Mineral Mg			3,04		1.50	2.3	2.8 8.8	3.90	28 2.35	10.1	才	0/	0.21	230	670	1420
න් වූ			3.84		2.65	4.2	2.85	3.0	$\frac{39}{1.95}$	45 2.25	120	5	0.15	130	300	577
Hd			8,3		7°₁	8.3	7.3	7.2	3° 2	8°0	7.5	9	8.9	8°0	2.6	6.9
ECX106 at 25°C			1,990		752	900	865	47	645	615	ļ	i	1,310	ì	ŀ	48,300
Date sampled			11-18-528		9~15~5⁴	4- 2-54	8-25-54	8~25~54	8-25-54	8-24-54	8-24-51 ^{Eu}	8-23-518	1-11-52 ^{gv}	8-23-5181	7-10-518h	1- 3-528" 48,300
Well: number			115/5W- 2NH		9S/3W-18K1	1871	1901	1941	95/4%-24R1	25E3	108/54-1361	11S/5W- 2K2		2P1	116	

MINERAL ANALYSES OF GROUND WATERS IN AND ADJACENT TO SANTA MARGARITA RIVER WATERSHED® (continued)

aequn	Well Date ECXIO : number sampled at pH Ga : 25 C : :	25 C	E	5	Mg	Mg Ma K CO HOU, : HYDROGRAPHIC UNIT NO. 6	K	COS PHIC UN	K : Con : HCOn : SOn : CI	Sop	CI CI CI CI CI CI CI CI CI CI CI CI CI C	£	F gg	P B B B B B B B B B B B B B B B B B B B	digmolywed : hardness : Per : solids, : as CaCO _{3,0} : oant : ppm : ppm : Na	hardness as CaCO32	Per S
							Kens	Remainder of Unit		(confinned)	9G)						
/5W- 9JJ	118/5W- 9Jl 11-18-52 ⁸ 22 ₆ 300	22,300		7.5 255	32.32	4330	3.50	•	3.44	784	7810 220.27	0.10	9	9.0	13,6848	2,250	79
1081	5-31-518x	0 0	7.4	7.4 188	105	9	0	00	000	235	390	9	0	8 D	1,206	†- 9	0
	1-3-5283	1- 3-5287 4,170		7.2 201	8.23	23.90	24 0.35	0.000	9000	2332	1210 34.1	0,02	T°0	9°0 1°0	2° 440°	516	56
	11-18-5287	11-18-5287 2,640		8.2 142	î,	A	7	e ;	36.2	163	643	g=-2	0	6,3	\$ 674°	(r 9 9	0

All analyses by Disision of Water Arsources unless otherwise noted. United States Geological Survey Water Supply Paper 429.

Total dissolved solids determined by summetton.

Analysis objeshed from Vall Commany.

Analyzed by Pacific Gnemieal Consultants.

Date analyzed.

Analysis obtained from United Stains Name.

Sampled after 2 hours praping with Homeline.

Sampled at 280 feet with meanantes! thiss, while pumping, after conductivity stabilized. J. Sampled after I hour pumping with Homolite. k. Sampled at 280 feet with mechanical thief. wm. Sampled at 6 feet.

e c

Sampled at 6 feet. Sampled at 12 hours pumping with Homolite. Sampled at 90 feet.

Sampled at 185 fest with mechanical thick, while pumping, after conductivity stabilized. Sampled at 100 feet.

Sampled at 90 feat.

Sampled after 3 hours pumping with Homolites.

Partial analysis show: 02 650 ppm and Sampled at 195 feet with mechanical thiss, while pumping, effer conductivity stabilized. EC 2,700 for pumped sample after 4 3/4 hours.

u. Sampled after I hour discharge.

w. Sampled at 289 feet with mechanical thief, while pumping, after conductivity stabilized. Sampled at 248 feet with mechanical thisf while pumping, after conductivity stabilized.

K. Sampled after 52 hours with Hamoiste.

y. Sampled at 194 feat with mechanical thief, while pumping, after conductivity stabilized.

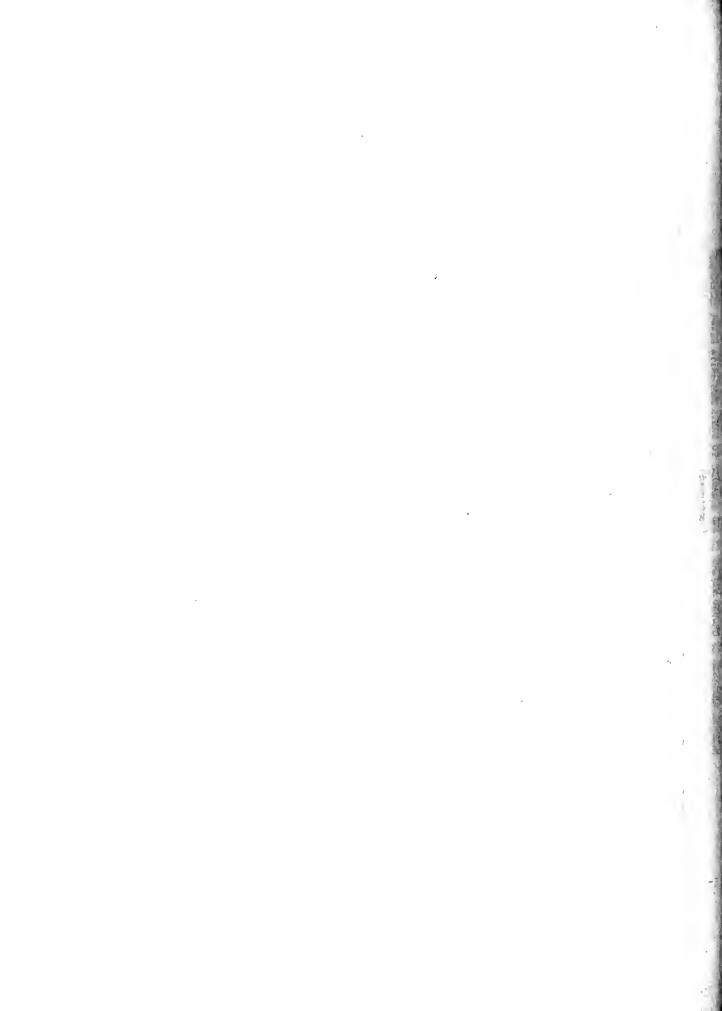


TABLE H-4

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MARGARITA RIVER WATERSHED^a

Well : number :	Date :	Chloride, ppm	: Total : dissolved : solids, : ppm	Well : number :	Date :	Chloride, ppm	: Total : dissolved : aclids, : ppm
105/4W- 7H1	7-21-50	460	1,350	10S/5W-35K1	10-24-50	165	8435
	6-11-51	132	KHK p	- // // -	10-27-50	180	544
	6-12-51	126	630 ⁰		11- 3-50	180	544
7J1	10-24-50	163	666b		11-10-50	188	527
7J2	10-24-50	122	701 ^b		11-17-50	184	544
7R1	10-24-50	124	6996		12- 1-50	170	539
, -	10-25-51	132	707.b		9-28-51	188	644_
18E1	10-24-50	123	70 1 5		10- 9-51	177	875
18M2	7-21-50	124	554		10-19-51	188	644
	,)		<i>))</i> ·		10-24-51	179	8546
10S/5W-13G1	6-22-51	122	749b		10-25-51.	180	600
	8-24-51	108	491 ^b		11- 1-51	188	600
	9-24-52	120	351		11-15-51	212	600
13J1	6-20-51	245	721b		11-22-51	184	590
	7- 6-51	116	658b		11-29-51	168	590
13R1	10-24-50	116	649b		12- 6-51	176	620
14P1	10-25-51	232	875 ^b		3- 6-52	172	700.
23J1	10-23-51	128	692b	35K5	6-12-51	158	764 ^b
23J3	6~20-51	112	646 b	לאכל	6-13-51	157	750 ^b
23L1	6-20-51	130	749b		6-11-52	148	777 ^b
2,01	6-22-51	129	728b		0-11-52	140	///-
2391	7-12-51	216	1,435 ^b	115/5W- 2A1	11-12-47	145	
2 3 41	1-11-520		1,420b	113/3#= 2#1	11-12-47	149	
2411	10-24-50	525 180	542b		12- 4-47	146	
26L1	6-18-51	168	854b		748		
	7-29-49	180	646		12- 8-48	190 200	
35K1	8-11-49	204			1- 5-49		595
	8-12-49		595 505		1-10-49	126	
		176	595			192	595
	8-19-49	176	629		1-24-49	208	590
	8-26-49	176	544		1-28-49	184	595
	9- 2-49	184	595		2- 4-49	196	595
	9-12-49	176	510		2-11-49	192	595
	9-16-49	172	656		2-21-49	190	600
	9-26-49	176	476		2-24-49	192	595
	10- 3-49	176	510		3- 4-49	192	595
	10- 7-49	172	595		3-14-49	208	600
	10-14-49	184	595		3-18-49	192	595
	10-21-49	176	5 114		4- 4-49	200	595
	10-31-49	172	646		4- 8-49	212	595
	11- 4-49	172	510		4-15-49	208	650
	11-14-49	212	590		5- 7-49	212	595
	11-18-49	168	513		5-13-49	208	595
	11-28-49	172	610		5-24-49	220	510
	12- 2-49	182	561		5-31-49	208	600
	12- 9-49	178	513		6- 3-49	212	59 5
	12-19-49	176	544		6-10-49	192	595
	12-23-49	180	544		6-17-49	200	595
	12-30-49	180	5 95		6-24-49	200	595
	1- 6-50	184	595		7- 1-49	204	800
	1-20-50	188	576		7- 8-49	204	680
	1-27 - 50	192	576		7-18-49	200	647
	2- 3-50	188	576		7-22-49	184	629
	5 - 5 - 50	310	810		7-29-49	200	646
	5-19-50	212	810		8-11-49	220	680
	5-26-50	208	810		8-12-49	204	561
	6- 2-50	208	720		8-19-49	204	595
	6- 9-50	216	774		8-26-49	208	59 5
	9-15-50	180	714		9- 2-49	200	680
	9-22-50	180	714		9-12-49	192	544
	9-29-50	200	731		9-16-49	204	680
	10- 6-50	190	731		9-26-49	204	595
	10-13-50	180	697 540		10- 3-49	204	544
					10- 7-49	204	

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MARGARITA RIVER WATERSHED^a (continued)

Well number	Date	Chloride,	: Total : dissolved : solids, : ppm	Well : number :	_ :	Chlorids, ppm	: Total : dissolve : solids, : ppm
20 /FW 012	20.20.00	100	FOE	11S/5W- 2A1	2- 3-51	228	680
1S/5W= 2A1	10-14-49	192 204	595	113/ 54- 241	3-27-51	188	599
	10-21-49		595 646		3-30-51	1.84	599
	10-31-49	200			4- 6-51	192	6 1 6
	11- 4-49	200	595		4-13-51	192	599
	11-14-49	208			5- 4-51	204	63 2
	11-18-49	190	595		5-12-51	20 ¹	616
	11-28-49	190	513		5-18-51	204 204	
	12- 2-49	197	610			208	599
	12- 9-49	1.94	59 5		6- 1-51 6- 8-51	204	615
	12-19-49	184	513		6-15-51	200	615
	12-23-49	208	595			184	599
	12-30-49	200	578		6-22-51		581
	1- 6-50	200	630		7- 6-51	212	670
	1-13-50	216	630		7-24-51	214	685
	1-20-50	204	630		7-27-51	200	685
	1-27-50	212	630		8- 8-51	196	685
	2- 3-50	212	630		8-13-51	208	670
	2-10-50	216	630		8-24-51	208	640
	2-17-50	192	630		9- 4-51	208	599
	2 - 24-50	196	630		9-10-51	204	616
	3- 3 - 50	184	576		9-14-51	202	633
	3-10-50	192	630		9-24-51	220	684
	3-17-50	1%	630		9-28-51	200	633
	3-27-50	184	630		10-19-51	192	600
	3-31-50	188	630		10-25-51	196	600
	4- 7-50	1 7 6	59 ^L t		11- 1-51	208	618
	4-14-50	196	630		11- 8-51	184	610
	4-21-50	192	630		11-15-51	200	600
	4-28-50	184	630		11-22-51	204	633
	5- 5-50	204	630		11-29-51	1 814	600
	5-15-50	208	630		12- 6-51	188	610
	5-19-50	192	594		12-13-51	180	650
	5-26-50	212	684		12-21-51	192	650
	6- 2-50	192	5 7 6		12-27-51	184	650
	6- 9-50	212	620		1- 3-52	192	565
	6-16-50	208	576		1-10-52	180	580
	6-23-50	180	550		1-25-52	180	600
	6-29-50	212	630		1-31-52	212	840
	7- 6-50	208	630		2- 7-52	174	670
	7-14-50	212			2-14-52	196	790
			576 576		3- 6-51	204	740
	7-21-50 7-31-50	192	576 265		3-14-52	212	750
		220	765		3-21-52	208	730
	8-18-50	23.2	782 782		3-28-52	208	750 750
	8-25-50	208	7 8 2	ana			
	9- 1-50	200	752 265	201	11-12-47	156	
	9 - 8-50	208	765 703		11-20-47	174	
	9-15-50	204	731		12- 4-47	177	
	9-22-50	212	76 5		2- 6-48	183	
	9-29-50	212	918		12- 8-48	210	
	10- 6-50	21.2	646		12-16-48	210	765
	10-13-50	210	748		1- 5-49		
	10~20~50	212	594			206	7/5
	10-27-50	216	578		1-10-49	208	765
	11- 3-50	208	578		1-24-49	192	700
	11-10-50	212	561		1-28-49	204	700
	11-17-50	204	527		2- 4-49	216	765
	1 1- 30-50	200	561		2-11-49	216	765
	12-1-50	202	583		2-21-49	21 0	765
	12= 8-50	196	565		2-24-49	204	700
	12-15-50	200	616		3- 4-49	160	700
	1- 5-51	180	582		3-14-49	136	700
	1-12-51	246	727		3-18-49	208	70 0
	1-19-51	236	702		4- 4-49	204	765
					4- 8-49	204	720

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MARGARITA RIVER WATERSHELP (continued)

Well : number :	Date :	ebisolds, and	: Total : disselved : solids; : ppm	Wall number	. Date	Chilorias, ppm	Total cofssolved sociats ppm
1S/5W- 2D1	4-15-49	212	765	11S/5W= 2I:1	8-25-50	274	1,054
	4-29-49	212	720		9- 1-50	232	2,020
	5- 7-49	204	76 5		9- 8-50	228	1,071
	5-13-49	212	765		9-15-50	2/8	786
	5-24-49	212	725		9-22-50	232	1,105
	5-31-49	224	680		9-29-50	232	1,020
	6- 3-49	216	765		10- 6-50	232	1,020
	6-10-49	192	700		10-13-50	224	986
	6-17-49	192	700		10-20-50	232	720
	6-24-49	198	700		10-24-50	217	843
	7- 1-49	220	840		10-27-50	228	7.4
	7-8-49	204	765		11- 3-50	236	714
	7-18-49 7-22-49	212 228	714		11-10-50	240	714
	7-29-49	204	850 265		11-17-50	236	714
	8-11-49	224	765 765		11-30-50 12- 1-50	228 224	680 726
	8-12-49	210	765		12-15-50	176	676
	8-19-49	188	799		12-29-50	194	684
	8-26-49	200	714		2- 9-51	228	820
	9- 2-49	204	850		2~17~51	228	826
	9-12-49	204	765		2-23-51	224	787
	9-16-49	208	850		3- 3-51	248	735
	9-26-49	204	714		3- 9-51	220	770
	10- 3-49	208	680		3-16-51	228	812
	10-7-49	208	765		3-27-51	192	760
	10-14-49	212	850		3~30~51	188	735
	10-21-49	204	680		4- 6-52	184	770
	10-31-49	208	765		4-13-51	≵8 4	752
	11- 4-49	204	686		4-20-51	184	752
	11-14-49	216	200		4-27-52	208	752
	11-18-49	204	765		5-4-51	200	750
	11-28-49	193	769		5-12-51	212	770
	12- 2-49	209	765		5-18-51	220	786
	12- 9-49 12-19-49	209 212	765 685		6- 1-51 6- 8-51	224 2:24	770
	12-23-49	224	ウ14		6-25-51	216	770
•	12-30-49	212	714		6-22-51	224	727 770
	1- 6-50	208	774		7- 6-51	228	770
	1-13-50	208	810		7-24-51	204	770
	1~20~50	204	774		7-27-51	224	800
	1-27-50	212	819		8-8-51	216	790
	2- 3-50	216	654		8-13-51	220	820
	2-10-50	212	810		8-24-51	220	685
	2-17-50	-60	810		9- 4-51	224	684
	3-10-50	208	820		9-10-51	228	684
	3-17-50	196	810		9-14-51	220	684
	3-27-50	200	810		9-24-51	228	820
	3-31-50	200	810		9-28-51	236	821
	4- 7-50	204	774		10- 5-51	226 .	1,127
	4-14-50 4-21-50	200 208	720 810		10-25-51 10-25-51	240 236	810
	4-28-50	204	810		11- 1-51	232	810 812
	5~ 5~50	208	810		11- 8-51	2144	840
	5-15-50	204	810		11-29-51	232	815
	5-19-50	212	810		12- 6-51	228	800
	5-26-50	208	810		12-13-51	220	840
	6- 2-50	213	720		12-21-51	278	850
	6- 9-50	216	774		12-27-51	232	860
	6-16-50	216	756		1 3 54	246	840
	6-23-50	212	730	2E1	11-12-47	468	
	6-29-50	224	756		1 - 20-47	160	
	7- 6-50	220	810		12- 4-47	:69	the state of
	7-14-50	224	774		7 - 6-40	105	3
	7-21-50	224	774		12- 6 48	228	73.
	7-31-50	228	1,,020		12-16-48	240	73.

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MARGARITA RIVER WATERSHED^a (continued)

Well :		Chlardde	fotal dissolved	Well :	0	Chloride.	: Total : dissolved
nuaber			: solida,	number	Date		: solids,
1s/5w- 2E1	1-10-49	212	685	115/5W- 2F1	4- 4-49	184	550
مدة حدر رحو	1-24-49	196	680	, ,	4-8-49	192	550
	1-28-49	208	600		4-15-49	200	595
	2- 4-49	214	700		4-29-49	200	550
	2-11-49	212	680		5- 7-49	184	595
	2021049	210	680		5-13-49	192	595
	224-49	206			5-24-49	192	476
			59 5		5-31-49	200	580
	3- 4-49	212	680		6- 3-49	200	
	3-14-49	214	680		6-10-49	200	595 550
	3-18-49	212	600		6-17-49	200	
	4-4-49	204	595		6-24-49	200	580
	وبنده دبا	212	595		7- 1-49		580
	4-15-49	220	680			184	520
	4-29-49	575	600		7- 8-49	194	595
	5- 7-49	208	680		7-18-49	188	544
	5-13-49	212	680		7-22-49	196	629
	5-24-49	240	680		7-29-49	192	561
	5-31-49	224	595		8-11-49	212	595
	6- 3-49	228	700		8-12-49	184	561
	6-10-49	216	600		8-19-49	188	595
	6-17-49	212	690		8-26-49	192	595
	6-24-49	234	720		9- 2-49	204	595
	7- 1-49	244	600		9-12-49	192	595
	7- 8-49	238	765		9-16-49	188	595
		244			9-26-49	192	510
	7-18-49		680		10- 3-49	196	544
	11-10-50	170	626		10= 7=49	192	
	12- 8-50	152	598		10-14-49		510 505
	12-21-50	184	667			208	595
	12-29-50	196	684		10-21-49	192	510
	1- 5-51	212	701		10-31-49	192	595
	}∘12∘51	196	7:18		11- 4-49	192	510
	1-19-51	224	718		11-14-49	200	595
	1-26-51	31.6	7%		11-18-49	190	476
	2- 3-51	244	714		11-28-49	186	595
	2- 9-51	248	769		12- 2-49	197	595
	2-17-51	252	76 5		12- 9-49	198	547
	2-23-51	252	769		12-19-49	204	561
	3- 3-51	224	769		12-23-49	212	510
	30 9051	252	727		12-30-49	192	594
	3-16-51	248	770		1∍๊6≔50์	200	576
	3-27-51	276	7.0		1-13-50	192	540
	3-30-51	276	804		1-20-50	180	630
	4-6-51	₹76 300	840		1-27-50	196	59 ⁴
	4-13-51				2- 3-50	204	576
	4≈13=5± 4≈20=51	300	839 838		2-1.0-50	192	5/0 630
		308	838		2-17-50	196	576
	4-27-51	192	684		2-24-50	196	
	11-29-51	184	512				630 576
- Mar	6-12-52	148	1,030b		3~ 3~50	200	576
2 F]	11-12-47	149	.7:39		3-10-50	192	576
	11-20-47	142	-0 I =		3-17-50	192	576
	12- 4-47	147	ಕಾಟಕ		3-27-50	184	576
	7= -48	180	4.00		3-31-50	172	576
	12- 8-48	190	ത്രായ		4- 5-50	176	576
	12 -16 -48	200	595		4-14-50	188	594
	1- 5-49	126	000		4-21 50	192	594
	1-10-49	164	595		4-28-50	176	594
	1-24-49	192	550		5 550	180	476
	1-28 49	180	550		515~50	200	594
	2. 4 49	190	595		5-19-50	204	630
	2-11-47	190	550		5-26-50	204	630
	2-21-49	152			6- 2-50	204	576
			595 505		6- 9 50	184	540
	2-24-49	194	5 9 5		- / /-		
	3-4-49	J80	5 50		6-26-50	208	57t
	3-74-46	192	595		6-2:4-50	200	550
	3 48 49	192	554		6-29-50	204	594

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MAROARITA RIVER WATERSHED^a (continued)

Well number	: : : : : : : : : : : : : : : : : : :	Chloride, ppm	: Total : dissolved : solids,	Well :	Dato	ppm	Total dissolve olida,
	: :		: ppm	:			ppm
15/5W- 2P1	7- 6-50	196	59 ¹ 4	115/5W- 2F1	11-22~51	216	600
	7-14-50	204	540		11-29-51	186	590
	7-21-50	200	576		12- 6-51	200	650
	7-31-50	208	731		12-13-51	184	640
	8-18-50	204	748		12-21-51	208	700
	8-25-50	200	714		12-27-51	196	680
	9- 1-50	196	731		1- 2-52	184	842
	9- 8-50	212	765		1- 3-52	184	580
	9-15-50	212	714		1-10-52	180	580
	9-22-50	204	765		1-25-52	208	670
	9 ~29~ 50	212	765		1-31-52	192	790
	10- 6-50	212	714		2- 7-52	172	660
	10-13-50	204	/ 14 / 14		2-14-52	208	
			697				750
	10-20-50	212	576 850b		3- 6-52	212	750
	10-24-50	195	859b		3-14-52	188	700
	10-27-50	212	561		3-21-52	180	660
	11- 3-50	220	544	A	3-28-52	180	660
	11-10-50	212	544	2K1	11-12-47	243	900
	11-17-50	200	544		11-20-47	260	
	11-30-50	192	510		12- 4-47	297	
	12- 1-50	200	548		2- 6-48	167	
	12- 8-50	200	5 65		7= 48	314	
	12-15-50	200	598		12- 8-48	450	1,100
	12-21-50	201	599		12-16-48	450	Links
	12-29-50	198	607		1- 5-49	480	***
	1- 5-51	200	599		1-10-49	340	680
	1-12-51	190	633		1-24-49	480	1,020
	1-19-51	196	598		1-28-49	480	1,020
	1-26-51	208	633		2-4-49	468	1,190
	2- 3-51	212	595		2-11-49	480	1,020
	2- 9-51	204	649		2-21-49	465	1,100
	2-17-51	212	612		2-24-49	480	1,020
	2-23-51	204	615		3- 4-49	480	1,100
	3- 3-51	212	615		3-14-49	480	1,100
		208			3-18-49	480	1,020
	3- 9-51		599		4-4-49	400	
	3-16-51	198	615				1,020
	3-27-51	190	590		4- 8-49	484	1,100
	3-30-51	200	599		4-15-49	488	1,020
	4- 6-51	208	616		4-29-49	500	910
	4-13-51	200	599		5-7-49	488	1,100
	4-20-51	204	599		5-13-49	356	800
	4-27-51	204	617		5-24-49	376	850
	5 -1 8-51	204	59 9		5-31-49	384	900
	6- 1-51	204	599		6- 3-49	428	900
	6- 8-51	200	599		6-10-49	408	950
	6-15-51	192	55 6		6-17-49	# ₁ 48	1,020
	6-22-51	200	581		6-24-49	38 8	920
	7- 6-51	208	616		7- 1-49	492	1,040
	7-24-51	200	632		7- 8-49	496	1,105
	7-27-51	224	650		7-18-49	488	1,020
	8- 8-51	204	620		7-22-49	468	1,105
	8-13-51	208	650		7 29-49	420	1,020
	8-24-51	228	820		8-11-49	538	1,190
	9- 4-51	232	820		8-12-49	492	1,020
	9-10-51	232	820		8-19-40	412	1,020
	9-14-51	230	804		8-26-49	432	935
		206	633		9- 2-49	528	1,190
	9-24-51				9-12-49		
	9~28~51	204	633			512	1,020
	10-19-51	216	618		9-16-49	496	1,139
	10-25-51	212	618		9-26-49	480	1,105
	11- 1-51	212	618		10- 3-49	440	935
	11- 8-51	204	650		10- 7-49	464	1,120
	11-15-51	216	632		10-14-49	476	1,215

PARTIAL MINERAL ANALYSES OF GROUND WATERS IN SANTA MARCARITA RIVER WATERSHED (continued)

0			Total	11.00	ering glands and the series ()	71.3	Total
Well :		Chloride,		Well :			dissolved
number :	Date:	ppm	: golida,	umpes.	Date :	p pm	solids
:		-	ppm		<u> </u>		ppm
11S/5W- 2K1	10-21-49	4.28	1.02C	115/5W- 2K1	8-25-50	550	1,445
	11= 4=49	48+	1 6 c		9- 1-50	5 7 0	1,442
	11-14-49	200	3,020		9 850	520	1,360
	11-18-49	428	1,096		9-15-50	570	1,394
	11-28-49	483	1,180		9-22-50	590	1,440
	12- 2-49	512	1,190		10-20-50	580	1,116
	12- 9-49	512	735		11~ 3~50	610	1,037
	12~19~49	312	765		11~10~50	590	1,037
	12-23-49	340	935		11-17-50	450	850
	12-30-49	430	1,116		11-30-50	550	1.020
		520	1,116		12~ 1~50	570	1,020
	1~ 6~50				12- 8-50	460	890
	1-13-50	540	1,090				
	1-20-50	540	1,120		12-15-50	420	958
	1~27~50	530	1,116		12-21-50	451	1,026
	2- 3-50	560	1, 224		12-29-50	475	1,060
	2-10-50	340	810		1- 5-51	410	975
	2-17-50	330	720		1-12-51	338	804
	2-24-50	480	1,080		1-19-51	380	873
	3-50	536	116 و ٦		1-26-51	980	889
	3-10-50	520	1,170		2- 3-51	452	884
	3-17-50	560	1,170		2- 9-51	570	1,197
	3~27~50	530	1,170		2~17~51	450	935
	3-31-50	510	1,170		2-23-51	370	872
	4- 7-50	310	810		3- 3-51	rijto	975
	4-14-50	460	1,116		3- 9-51	450	1,009
	4-21-50	420	1,100		3-27-51	530	960
	4-28-50	480	1,134		3-30-51	400	898
	5-15-50	200	630		4- 6-51	420	941
	5-19-50	430	990		4-13-51	430	906
	5-26-50	470	1,080		4-20-51	508	1,368
	6≈ 9≈50	500	1,080		11~29~51	30 4	590
	6~16-50	409	1,080		1-10-524		7.582 ^t
	6-23-50	512	1,240	2K2	8-23-51	143	835 ^t
	6-29-50	500	1,080	electric green	1-11-52		812
	7- 6-50	520	1,060		9- 9-52	160	650
	7-14-50	520	1,080	1081	プ ^ロ プ ^ロ フェ 5-29-51	267	9941
	7-21-50	530	1,116	1001	1- 2-52	650	1,852
	7-31-50	540	1,495		10 2072	050	1,002
		•					
	8-18-50	550	1,462				

a. All analyses obtained from United States Navy.

b. Calculated as electrical conductance times 0.7.
c. Bailed at 250 feets
d. Samplei after two hours pumping.
Bailed at 292 feet.

APPENDIX I RESERVOIR YIELD STUDIES

TABLE OF CONTENTS

RESERVOIR YIELD STUDIES

Table No.		Page
I-l	Yield Study, Vail Reservoir on Temecula Creek	I - 3
	Reservoir on Santa Margarita River Yield Study, De Luz Reservoir on	I-4
	Santa Margarita River Yield Study, De Luz Reservoir on Santa Margarita River, In Combination With	I-5
	Reservoir at Fallbrook With 65,000 Acre-Feet Storage Capacity	.I-6
I=2	Seasonal Runoff From Streams Within The Santa Margarita River Watershed and Semiseasonal Inflow to Existing and Proposed Reservoirs, Including Explanation	
	of Derivation of Data	I-7

TABLE I-1

YIELD STUDY

VAIL RESERVOIR ON TEMECULA CREEK

In Acre-Feet

	2	October	-March			:_			Apg:11-	Sep	tember		
Season	: : : : : : : : : : : : : : : : : : :	Demand :	Net evapo- ration	:	Storage, end of Maroh	:	Inflow	:	Demand	:	Net evapo- ration	:	Storage, end of September
	Gross Ster	age Capacity	7: 49,52	0 a	ore-feet								
1894-95													49,520
95-96	1,610	2.200	620		48,310		790		4,900		2,020		42,180
96-97	4,230	2,200	20		44,190		2,070		4,900		2,020		39, 340
97-98	1,340	2,200	520		37,960		660		4,900		1,640		32,080
98-99	1,140	2,200	430		30,590		560		4,900		1,410		24,840
1899-1900	1,140	2,200	370		23,410		560		4,900		1,020		18,050
1900-01	2,760	2,200	40		18,570		1,340		4,900		910		14,100
01-02	1,950	2,200	140		13,710		950		4,900		790		8,970
02-03	2,620	2,200	60		9,330		1,280		4,900		510		5,200
03-04	1,480	2,200	120		4,360		720		4,900		180		0
	Net Storag	e Capacity:	44,880	801	e-feet (Si	lt:	4,640	aor	e-feet)				
189 4- 95													44,880
95-96	1,610	2.020	620		43,850		790		4,480		2,040		38,120
96-97	4,230	2,020	30		40,300		2,070		4,480		2,100		35,790
97-98	1,340	2,020	5 5 0		34,560		660		4,480		1,680		29,060
98-99	1,140	2,020	450		27,730		560		4,480		1,480		22,330
1899-1900	1,140	2,020	400		21,050		560		4,480		1,130		16,000
1900-01	2,760	2,020	50		16,690		1,340		4,480		1,040		12,510
01-02	1,950	2,020	150		12,290		950		4,480		880		7,880
02-03	2,620	2,020	60		8,420		1,280		4,480		710		4,510
03-04	1,480	2,020	210		3,760		720		4,480		0		(

Average Seasonal Yield: 6,800 acre-fest

YIELD STUDY
FALLBROOK (LIPPINCOTT) RESERVOIR ON SANTA MARGARITA RIVER

In Aore-Feet

		October	r-March			: April-September						
Season	Inflow	: : : : : : : : : : : : : : : : : : :	Net evapo- ration	:	Scorage, end of March	:	Inflow	:	Demand	:	Net evapo- ration	: Storage, : end of : September
	Grose Sto	rage Capacity	y: 65,000) a	cre-feet							
18 94- 95					65,000		5,000		8,170		2,490	59,340
95-96	4,400	4,030	370		59,340		1,800		8,170		2,100	50,870
96-97	7,600	4,030	-300		54,740		3,100		8,170		2,160	47,510
97-98	3,900	4,030	410		46,970		1,600		8,170		1,760	38,640
98-99	3,690	4,030	270		38,030		1,510		8,170		1,520	29,850
1899-1900	3,690	4,030	310		29,200		1,510		8,170		1,140	21,400
1900~01	6,320	4,030	-70		23,760		2,580		8,170		1,040	17,130
01-02	4,900	4,030	50		17,950		2,000		8,170		810	10,970
02-03	6,110	4,030	-20		13,070		2,490		8,170		500	6,890
03-01+	4,120	4,030	100		6,880		1,680		8,170		390	0
	Net Stora	ge Capacity:	56,300 E	aor	e-fest (Sil	t:	8,700 a	ore	-feet)			
1894-95					56,300		5,000		7,440		2,530	51,330
95-96	4,400	3,660	370		51,700		1,800		7.440		2,160	43,900
96-97	7,600	3,660	-320		48,160		3,100		7,440		2,220	41,600
97~98	3,900	3,660	440		41,400		1,600		7,440		1,890	33,670
98-99	3,690	3,660	290		33,410		1,510		7,440		1,680	25,800
1899-1900	3,690	3,660	350		25,480		1,510		7,440		1,300	18,250
1900-01	6,320	3,660	-90		21,000		2,580		7,440		1,280	14,860
01-02	4,900	3,660	70		16,030		2,000		7,440		1,110	9,480
02-03	6,110	3,660	-30		11.960		2,490		7,440		890	6,120
03-04	4,120	3,660	160		6,420		1,680		7,440		660	0

Average Seasonal Yield: 11,650 acre-feet

YIELD STUDY DE LUZ RESERVCIR ON SANTA MARGARITA RIVER

In Acre-Feet

		October	-March		,	April-Ser	temper	
:		;	Net	: Storage,	:		Net :	Storage,
Season :	Inflow :	Demand :	evapo-	end of	Inflow :	Demand :	етаро- :	end of
			ration	Marc'n	:	:	ration :	September
	Crocc Stor	age Capacit	188 000	l same-cost				
	01035 5001	age vapasio	y . 1100,000	. 2010-1000				
1894-95				188,000	9,,780	320 ء 1.3	6, 44 0	178,020
95-96	6,310	8,880	1,100	174,350	2,090	13,320	5,620	157,500
96-97	11,430	8,850	-440	160,490	3,670	13,320	5,870	145,270
97-98	5,550	8,880	1,030	140,810	1,850	13,320	4,880	124,460
98-99	5,260	8,880	870	119,970	1,740	13,320	4,450	103,940
			0' -	1.00		30.000	0 (00	Oh aa-
1899-1900	5,260	8,880	840	99,480	1,740	13,320	3,620	84,281
1900-01	9,020	8,880	-30	84,450	2,980	13,320	3,380	70,730
01-02	6,990	880ر8	290	68,550	2,310	13,320	2,,990	54,550
02-03	8,720	8,880	60	54,330	2,880	13,320	2,280	41,610
03-04	5,860	8,880	460	38,130	1,940	13,320	1,870	24,880
1904-05	14,750	8,880	-390	32,140	4,550	13,320	1,600	20 ,7 70
05-06	38,140	8,880	-540	50,570	11,160	13,320	2,480	45,930
06-07	27,020	8,880	-480	64,550	7,980	13,320	3,060	56,150
07-08	10,960	8,880	200	58.030	3,540	13,320	2,560	45,690
08-09	16,620	8,880	~250	53,680	5,080	13,320	2,570	42,870
10 17		•					o haa	20.000
1909-10	15,920	8,880	-100	50,010	4,880	13,320	2,490	39,080
10-11	12,770	8,880	20	42,950	4,030	13,320	2,150	31,510
11-12	9,470	8,880	270	31,830	3,130	13,320	1,560	20,080
12-13	6,620	8,880	190	17,630	2,180	13,320	800	5,690
13-14	12,540	8,880	-40	9,390	3,960	13,320	30	С
	Net Stora	ge Capacity	: 174,000	aore-feet (Sil	t: 14,000	acre-feet)		
1894-95				174,000	9,780	12,780	6,470	164,530
	6 210	8,520	1,110	161,210	2,090	12,780	5,630	144,890
95-96	6,310		-440	148,240	3,670	12,780	5,680	133,450
96-97	11,430	8,520	1,040	129,440	1,850	12,780	4,950	113,560
97-98	5,550	8,520		109,440	1,740	12,780	4,520	93,860
98-99	5,260	8,520	880	109,420	1,9/40	12,700	1,520	7,7,000
1899-1900	5,260	8,520	850	89,750	1,740	12,780	3,660	75,050
1900-01	9,020	8,520	-30	75,580	2,980	12,780	3,490	62,290
01-02	6,990	8,520	290	60,470	2,310	12,780	3,050	46,950
02-03	8,720	8,520	60	47,090	2,880	12,780	2,350	34,840
03-04	5,860	8,520	470	31,710	1,940	12,780	1,960	18,910
		0 =00	hac	05 550	11 550	12,780	1,720	15,600
1904-05	14,750	8,520	-410	25,550	4,550		2,660	41,510
05-06	38,140	8,520	-570	45,790	11,160	12,780	3,280	52,440
06-07	27,020	8,520	~510	60,520	7,980	12,780		42,620
07-08	10,960	8,520	220	54,660	3,540	12,780	2,800	40,480
08-09	16,620	8,520	- 280	51,000	5,080	12,780	2,820	400
1909~10	15,920	8,520	-110	47,990	4,880	12,780	2,750	37,340
10-11	12,770	8,520	20	41,570	4,030	12,780	2,430	30,390
11-12	9,470	8,520	300	31,040	3,130	12,780	1,820	19,570
12-13	6,620	8,520	240	17,430	2,180	12,780	1,330	5,500
13-14	12,540	8,520	-60	9,580	3,960	12,780	760	0
17-14	12,540	0,520	00	7,700	-77-		•	

Average Seasonal Yield: 21,750 apre-feet

TIELD STUDY DE LUZ RESERVOIR ON SANTA MARGARITA RIVER IN COMBINATION WITH RESERVOIR AT FALLBROOK WITH 65,000 ACRE-FEET CAPACITY

In Acre-Feot

		October-E	arch			April-S	eptember	
Spason		: Demand	Net evapo-	Storage, .	Inflow		Net :	
		:	ration	March :			ration	Septembe
	a a.		-					
	Cross Stor	age Capacity.	75,000	cro-feet				
894-95				75,000	4,780	3,930	3 ,5 60	72,290
95~96	1,950	3,220	600	70,380	290	3,930	3,160	63,580
96=97	3,830	3,220	- 240	64,430	570	3,930		
97-98	1,650	3,220	560				3,130	57,940
98-99	1,570	3,220	980 480	55,810	250	3,930	2,720	49,410
70977	18210	25.620	400	47,280	230	3,930	2,520	41,060
899-1900	1,570	3,220	470	38,940	230	3,930	2,070	33,170
900-01	2.700	3,220	~20	32,670	400	3,930	1,950	27,190
01-02	2,000	3,220	160	25,200	310	3,930	1,730	20,550
02-03	2,610	3,220	30	19,910	390	3,930	1,370	15,000
03-04	1,740	3,220	250	13,270	260	3,930	1,100	
0, 01	29/10	7,0220	~)0	1)92/0	200	28720	1,100	8,500
904-05	5,660	3,220	-220	11,160	84c	3,930	950	7,120
05-06	17,050	3,220	-330	21,280	2,550	3,930	1,540	18,360
06-07	11,830	3,220	- 290	27,260	1,770	3,930	1,880	23,220
07-08	3,650	3,220	12 0	25,530	550	3,930	1,640	18,510
08≈09	6,610	3,220	- 150	22,050	990	3,930	1,670	17,440
					,,,	23.22	2, 2, 2	2 / 3 · · · ·
909=10	260 و 6	3,220	60	20,540	940	3,930	1,590	15,960
10=11	4,610	3,220	10	17,340	690	3 ,930	1,380	12,720
11=12	2,870	3,220	160	12,210	430	3,930	970	7,740
12-13	2,000	3,220	110	6,410	300	3,930	630	2,150
13-14	4,520	3,220	- 30	3,480	680	3,930	230	0
	Net Storage	Capacity:	71,100 asa	e-fost (Silt	3,900 ao	re-feet)		
894=95				71,100	4,780	2 270	2 1:00	(0 (00
	1 05.0	2 080	600			3,770	3,480	68,630
95-96	1,910 3,830	3,080	-2 ⁴ 0	66,860	290	3,770	3,130	60,250
96-97		3,080		61,240	570	3,770	3,140	54,900
97-98	1,650	3,080	560	52,910	250	3,770	2,740	46,650
	1,570	3,080	480	44,660	230	3,770	2 ,5 30	38,590
98-99								
	1,570	3,080	480	26,600	230	3 .7 70	2,100	30, 960
899=1900	1,570 2,700	3,080 3,080	48∪ ∞20	26,600 30,600	230 400	3,770 3,770	2,100 2,020	30,960 25,210
899=1900 900=01	2,700	3ે.08૦	∞20	30,600	400	3,770	2,020	25,210
899=1900 900=01 01-02	2,700 2,090	3,080 3,000	-20 1,660	30,600 22,560	400 319	3,770 3,770	2,020 1,740	25,210 17,360
899=1900 900=01	2,700	3ે.08૦	∞20	30,600 22,560 16,850	400	3.770 3,770 3,770	2,020 1,740 1,340	25,210 17,360 12,130
899=1900 900=01 01-02 02=03 03=04	2,700 2,099 2,610 1,740	3,080 3,000 3,080 3,080	+20 1,660 40 260	30,600 22,560 16,850 10,530	400 310 390 260	3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130	25,210 17,360 12,130 5,890
899=1900 900=01 01-02 02-03 03-04	2,700 2,099 2,610 1,740 5,660	3,080 3,000 3,080 3,080 3,080	-20 1,660 40 260 -230	30,600 22,560 16,850 10,530	400 319 390 260 840	3,770 2,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130	25,210 17,360 12,130 5,890
899=1900 900=01 01-02 02-03 03-04 904 05 05-66	2,700 2,090 2,610 1,740 5,660 17,050	3,080 3,000 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -310	30,600 22,560 16,850 10,530 8,700 19,050	400 319 390 260 840 2,550	3.770 2.770 3.770 3.770 3.770 3.770	2,020 1,740 1,340 1,130	25,210 17,360 12,130 5,890 4,740 16,240
899=1900 900=01 01-02 02-03 03-04 904 05 05-06 05-07	2,700 2,090 2,610 1,740 5,660 17,050 11,830	3,080 3,000 3,080 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -300	30,600 22,560 16,850 10,530 8,700 19,050 25,290	400 319 390 260 840 2,550 1,770	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,030 1,590 1,930	25,210 17,360 12,130 5,890 4,740 16,240 21,360
899=1900 900=01 01-02 02-03 03-04 904 05 05-06 05-06 05-08	2,700 2,090 2,610 1,740 5,660 17,050 11,830 2,650	3,080 3,000 3,080 3,080 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -300 -300	30,600 22,560 16,850 10,530 8,700 19,050 25,290 21,800	400 319 390 260 840 2,550	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,030 1,590	25,210 17,360 12,130 5,890 4,740 16,240
899=1900 900=01 01-02 02-03 03-04 904 05 05-06 05-07	2,700 2,090 2,610 1,740 5,660 17,050 11,830	3,080 3,000 3,080 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -300	30,600 22,560 16,850 10,530 8,700 19,050 25,290	400 319 390 260 840 2,550 1,770	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,030 1,590 1,930	25,210 17,360 12,130 5,890 4,740 16,240 21,360
899=1900 900=01 01-02 02-03 03-04 904 05 05-66 05-66 05-09	2,700 2,099 2,610 1,740 5,660 17,050 11,830 9,650 6,610	3,080 3,000 3,000 3,000 3,080 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -300 -300 130 -150	39,600 22,560 16,850 10,530 8,700 19,050 25,290 21,800 20,620	400 310 390 260 840 2,550 1,770 550 990	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,590 1,590 1,650 1,720	25,210 17,360 12,130 5,890 4,740 16,240 21,360 16,930 16,120
899=1900 900=01 01-02 02-03 03-04 904 05 05-66 05-66 05-67 07-08 08-09	2,700 2,099 2,610 1,740 5,660 17,050 11,830 9,650 6,610	3,080 3,000 3,000 3,000 3,080 3,080 3,080 3,080	-20 1,660 40 260 -230 -300 -300 130 -150	39,600 22,560 16,850 10,530 8,700 19,050 25,290 21,800 20,620	400 310 390 260 840 2,550 1,770 550 990	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,590 1,590 1,650 1,720	25,210 17,360 12,130 5,890 4,740 16,240 21,360 16,930 16,120
899=1900 900=01 01-02 02=03 03=04 904 05 05-06 05-06 05-07 909=10 10=11	2,700 2,099 2,610 1,740 5,660 17,050 11,830 9,650 6,610 6,260 4,610	3,080 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	-20 1,660 40 260 -230 -300 -300 130 -160 -60 10	39,600 22,560 16,850 19,530 8,700 19,050 25,290 21,800 20,620	400 310 390 260 840 2,550 1,770 550 990 940 690	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,590 1,590 1,650 1,720 1,640 1,460	25,210 17,360 12,130 5,890 4,740 16,240 21,360 16,930 16,120 14,890 11,870
899=1900 900=01 01-02 02=03 03=04 904 05 05-06 05-06 05-07 07=08 05-09 909=10 10=11 11=12	2,700 2,099 2,610 1,740 5,660 17,050 11,830 9,650 6,610 6,260 4,610 2,870	3,080 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	-20 1,660 40 260 -230 -300 -300 -300 -160 -60 10 180	39,600 22,560 16,850 19,530 8,700 19,050 25,290 21,800 20,620 19,060 16,410 11,480	400 310 390 260 840 2,550 1,770 550 990 940 690 430	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,030 1,590 1,590 1,450 1,720 1,640 1,460 1,100	25,210 17,360 12,130 5,890 4,740 16,240 21,360 16,930 16,120 14,890 11,870 7,040
899=1900 900=01 01-02 02-03 03-04 904 05 05-06 05-06 05-07 07-08 05-09 909=10 10-11	2,700 2,099 2,610 1,740 5,660 17,050 11,830 9,650 6,610 6,260 4,610	3,080 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	-20 1,660 40 260 -230 -350 -300 130 -160 -60 10	39,600 22,560 16,850 19,530 8,700 19,050 25,290 21,800 20,620	400 310 390 260 840 2,550 1,770 550 990 940 690	3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770 3,770	2,020 1,740 1,340 1,130 1,590 1,590 1,650 1,720 1,640 1,460	25,210 17,360 12,130 5,890 4,740 16,240 21,360 16,930 16,120 14,890 11,870

TABLE I-2

SEASONAL RUNOFF FROM STREAMS WITHIN THE SANTA MARGARITA RIVER WATE S $^{1/2}$ and semiseasonal inflow to existing and proposed reservoirs $^{\prime\prime}$

NATURAL RUNOFF

In Aure-Fest

Water : year :		: Creek		Santa Marga	ariva Kivor	
					THE RESERVE OF THE PARTY OF THE	THE RESERVE AND ADDRESS OF THE PARTY OF THE
1894-95		•	: Near	: Near	: At De Luz	: A5
1894-95	Canyon	: Temesula	: Tomecula	: Fallbrook	: dan site	: Yaldora
	htt*,400	28,700	82,700	105,000	142,000	143,000
96	2,400		6,600	6,200		
		3,200			8,400	8,400
97	6,300	4,100	13,700	12,700	17,100	17,000
9 8	2,000	3,000	6,000	5,500	7,450	7,100
99	1,700	3,200	6,000	5,200	7,000	6,700
1899-1900	1,700	3,200	6,000	5,200	7,000	6,700
01	4,100	3,500	8,800	8,900	12,000	11,800
02	2,900	3,300	7,300	6,900	9,300	9,000
03	3,900	J,500	8,500	8,,600	11,600	11,400
04	2,200	3,100	6,300	5,800	7,800	7,500
1904-05	9,900	4,700	16,100	18,600	25,100	25,100
	27,600	13,100				
06			45,100	56,100	75,700	76,400
07	20,200	8,800	32,900	38,900	52,500	52,900
80	6,100	3,700	11,000	12,000	16,200	16,100
09	11,600	4,800	18,000	21,700	29,300	29,400
1909-10	10,900	5,100	17,700	20,600	27,800	27,800
11	7,700	4,400	13,600	15,100	20,400	20,300
12	4,300	3,900	9,500	9,300	12,600	12,300
13	1,900	3,800	6,900	6,500	8,800	8,400
14	7,700	4,200	13,300	14,800	20,000	19,900
1914-15	24,200	oil con	56,800	77 200	06 200	06 000
		24,500		71,200	96,100	96,900
16	80,600	60,300	161,000	206,000	278,000	282,000
17	10,400	5,500	17,700	20,300	27,400	27,400
18	500وع	4,100	13,900	15,500	20,900	20,800
19	2,900	3,800	7,900	7,900	10,700	10,500
1919-20	8,200	4,300	12 000	15,500	20,900	20,800
			13,900			
21	2,400	2,900	6,300	5,300	7,800	7,600
22	43,200	20,500	70,700	100و8	120,000	400, 123
23	5,100	4,400	11,000	12,000	16,200	16,000
24	5,310	3,200	9,500	9,300	12,600	7,190
angle of	2 520	0.800	2 -02	0.070	12 200	(000
1924-25	3,520	3,800	8,580	8,370	11,300	6,320
26	8,930	2,800	12,600	15,600	21,400	20,300
27	40,500	26,400	75,800	87,500	111,000	95,100
28	3,350	3,400	7,930	8,460	9,960	8,570
29	4,660	2,000	7,390	7,290	7,790	5,430
1020 20	(000	0.202	0 0/20	0 010	36 500	30.600
1929-30	6,020	2,200	8,370	9,940	12,500	12,300
31	2,130	2,700	5 , 770	5,720	7,320	6,160
32	17,300	15,700	33,000	37,600	49,700	43,300
33	4,160	990	7,430	7,830	9,730	8,940
34	1,810	430	5,520	5,800	8,100	7,650
100h 05	1, 000	0.000	0.000	2 000	21, 222	alı lıaa
1934-35	4,270	2,020	7,220	8,280	14,000	14,400
36	3,930	2,590	7,520	7,810	12,000	13,500
37	36,700	22,400	61,300	78,800	116,000	119,000
38	31,900	31,500	72,800	91,900	125,000	125,000
39	8,400	4,990	16,500	20,200	28,200	25,700
1020 110	6 1170			19 300	26 200	
1939-40	6,470	6,420	15,100	18,100	26,300	24,600
41	25,000	31,000	60 ,50 0	84,300	120,000	120,000
42	10,300	1,520	15,000	17,700	22,800	20,100
1.0	13,600	31,300	49,500	59,900	78,000	82,100
43		7,480	19,800	23,600	32,900	34,800

SEASONAL RUNOFF FROM STREAMS WITHIN THE SANTA MARGARITA RIVER WATERSHED, AND SEMISEASONAL INFLOW TO EXISTING AND PROPOSED RESERVOIRS *

NATURAL RUNOFF

In Aore-Feet (continued)

Water :	Temeoula Creek at	: Murrieta : Creek	•	Senta Margarita River							
year :	Nigger Canyon	: at : Temegula	: Near : Temeoula	: Near : Fallbrock	: At De Luz : : dam site :	At Ysidora					
1.944-45 46 47 48 49	7,230 4,890 3,070 2,370 3,140	4,700 2,830 1,300 690 700	14,600 12,500 9,640 7,550 6,740	17,300 13,300 10,700 8,300 7,400	2 ¹ 4,900 16,900 13,300 10,100 9,000	27,500 19,700 14,200 8,660 8,270					
1949-50 51 52 53	1,900 1,470 12,600 2,290	560 440 2 4,600 1 ,230	6,060 5,780 40,000 8,190	6,200 5,800 54,400 8,960	7,000 6,100 69,000 10,700	8,100 7,3 5 0 56,100 11,000					
18-year Mean 1895-96 through 1942-4	3 11,600	8,630	2 2 ,900	27,300	37,000	36,300					

GAGED RUNOIT

Water	;	Temecula Creek at	: Murrieta : Creek	0	De Luz : Creek :		. Margarita Riv	ar	
year	:	Nigger	at		near	Noar	Near	<u>:</u>	At
	:	Canyon	: Temapula	ě	Failbrook 3	Temecula	Fallbrook	:	Ysidora
1923-24		5,310			·	6,180			2,36
192½-25		3,520				4,510			79
26		8,930				9, 580	12,500		15,70
27		40,500				73,400	85,100		91,20
28		J,350				Ĺ4°, 950	5,480		4,00
29		4,660				4,930	1,830		1,36
1929-30		6,020				7,710	8,680		
31		2,130	950			4,,970	4,920		3,66
32		17,300	15 ₂ 700			32,300	36, 900		40,60
33 34		4,160	990			6,540	6, 9 1 10		6,52
34		1,810	430			4,590	4,870		5,01
1934=35		4,270	2,020			6,720	7, ₇ 80		13,00
36		3,930	2,390			6,780	7 ₀ 070 م		11,10
37		36,700	22,400			60, 900	78 _° 300		117,00
38		31,900	31,,500			71,900	91,100		122,00
39		8,400	4, 930			15,100	18,800		22,90
1939-40		6,470	6,420			13,800	16,700		22,30
43		25,000	31,300			59,300	83,100		118,00
42		10,300	1,520			13,100	15,800		16,90
43		13,500	31,000			47,600	57,300		74,30
1,14		7,820	7,480			18,200	21,800		27,80
1944-45		7,230	4,700			13,000	15,600		20,30
46		4,890	830 و 2			10,500	11,200		11,70
47		3,070	1,300			7,780	8,700		6,93
48		2,370	690			5,,920	6,640		56
49		3,240	700			5,310	5,880		48
1949-50		1,900	560			4,160	3,910		
51		1,470	मृंग0			3,340	2,750		
52 53		12,600	2h,600		11,700	33,700	47,000		47,60
53		2,290	1 ,230		1,500	4,850	3,970		1,04

SEASONAL RUNOFF FROM STRAIMS WITHIN THE SAMEW WARCARITY PIWES WATERSHOEL ALD PROPOSED RESERVOIDS (continued)

SEMISEASONAL INFLOW TO RESERVOIRS UNDER PRESENT CONDITIONS"

in acre-feet

Water :	Va	il	FE1:	brook	Te :	raz
year :	Octo-Mare	: Apr.=Sept.,	. OctMar.	s Apro-Septo	e Out. Mar.	: Apra-Sorta
1894~95	29 ₅ 800	14,600	78,100	5,000	120,000	9,950
96	1,610	790	4,400	1,860	5,310	2,092
97	4,230	2,070	7,600	3,100	11,470	3,736
	2 200		7,5000	2.600		
98 99	1,340 1,140	660 5 60	3,,900 3,,690	1,600 1,510	5, 550 5, 260	1,850 1,740
	,			y /- -		
1899-1900	1,140	560	3,690	1,510	5,, 260	1,740
01	2,760	1, 340	6,320	2 ,5 80	9,020	2,930
02	1,950	950	#*200	2,000	6,990	2,310
03	2,620	1,280	6,110	2,490	8,720	2,830
04	1,480	720	4,320	1,680	5,860	1,940
10011.05	((+0	0.050	0.300	0.730	21: 01:2	1, 500
1904-05	6,650	3,250	9,090	3,710	14,800	4,500
06	18,500	9,100	21,100	8,600	38,100	77:300
07	13,600	6 ₉ 600	15,200	6,,200	27,000	S, 000
80	4,100	2,000	7,310	2,990	11,000	3,500
09	7,800	3, ⁸ 800	10,000	4,100	16,600	5,100
1909=10	7,320	3,580	9,660	3,940	15,300	4.900
11				3,340	12,800	11,000
	5,170	2,530	8,160) j~J		
12	2,890	1,410	6,600	2,700	9,470	3,100
13	1,280	620	4,620	2,830	6,620	2,200
14	5,170	2,530	8,020	3,280	12,500	F,000
1914-15	16,300	7,900	38,500	ö,500	60,200	11,700
16	75,800	4,800	184,000	7.400	247,000	16,500
17	6,990	3,410	12,100	4,000	18,300	4,900
18	5,710		8,020	3,280	12,700	4,606
-	, .	2,790				0.770
19	1,950	95 0	5 610	2,290	8,050	2,550
1919-20	5,500	2,700	8,160	3,340	12,900	¥ ₁₉ ∩00
21	1,610	790	4,120	1.530	5,860	2,940
22	35,400	7.8óg	53,800	9,100	81,000	10,110
23	3,180	1,920	7,420	2,780	11,100	3,300
2Ú	3,380	1,900	4,270	1,730	7,3140	2,360
	- 0					
1924-25	1,820	1,700	3,170	1,130	5,700	1,500
26	2,430	6,500	3,400	8,100	3,800	13,500
27	38,400	2,100	68,500	3,000	90°203	4,600
28	2,450	900	4,570	950	5, 950	1,050
29	2,440	2,220	3,770	1,090	5, 950 4, 120	1 ₉ 177
1929-30	2,650	3,370	5,000	2,,900	6,480	4,020
	1,240	890		1,200	5,000	1,000
31 32			3,500			3,000
32	15,300	2,000	25,330	2,500	36,900	
33 34	2,890 1,230	1,270 580	4,690 3,660	1,910	6,550 5,880	1,950 1,220
1934-35	2,800	1,470	5,800	1,800	30,900	2,400
36	2,710	1,220	5,280	1,320	9,050	1,750
37	30,600	6,100	43,600	6,600	77,000	10,600
	400	4,500	78,300	6,500	107,600	10,700
38	~/ • (00	2,620	, 05.200	0,2,300	10/9000	5,800

SHACONAL RUNCHF FROM STREAMS WITHIM THE SANTA MARGARITA RIVER WATERSHED, AND SENTSHACONAL INFLOW TO EXISTING AND PROPOSED RESERVOIRS $^{\times}$

SEMISEASONAL INFLOW TO RESERVOIRS UNDER PRESENT CONDITIONS*

In Asro-Yest (continued)

Weter	٧a	11	Fal	lbrook	De l	Luz		
yaar :	Oct Mer	: AprSept.	: Octomiano	? AprSopt.	OctMar.	: AprSept		
1939-40	4,290	2,180	12,300	3,400	19,500	4,400		
41	14,000	11,000	49,700	23,600	74,200	35,300		
42	7,360	2,940	11,400	3,900	15,500	4,900		
43	11,200	2,400	48,000	5,200	6 ¹ 4,300	7,000		
1414	5,870	1,950	14, 100	4,000	22,500	4,900		
1944-45	5,020	2,210	10,400	3,600	17,100	4,500		
46	3,070	1,820	6,600	3,100	8,930	4,370		
47	2,230	840	5,750	2,570	8,270	2,630		
48	1.490	880	4,360	2,240	5,350	2,550		
49	2,3.60	960	3, 940	2,060	5,300	2,300		
1949-50	1,150	750	2,880	1,420	3,500	1,600		
51	900	570	2,170	2,230	2,490	1,110		
52	9,996	2,610	44,300	3, 900	56 ,8 00	6,000		
53	1,500	790	3,650	1,550	5,400	1,600		
year Kean								
95-96								
ough 1942-40	3.1,	,500	21	₂ 800	31,	31,500		

^{*} See following page for description of derivation of data in this table.

EXPLANATION OF DERIVATION OF DATA APPEARING IN TABLE 1-2

- Nigger Canyon and in Murrieta Creek at Temecula for the period 1894-95 through 1946-47 are from State Water Resources Board Bulletin No. 1, and are the measured values of runoff for the periods of record and quantities based on correlations of these values with longer records of flow in streams outside the watershed for the years prior to the period of record. For the period from 1947-48 through 1952-53, the values presented for Murrieta Creek are the measured quantities of runoff. For the year 1947-48, the runoff presented for Temecula Creek at Nigger Canyon is the measured discharge at the gaging station. From October, 1948, when Vail Dam gates were closed, the runoff presented equals measured inflow to the reservoir.
- near Temecula and Santa Margarita River near Fallbrook for the period 1894-95 through 1946-47 are from State Water Resources Board Bulletin No. 1. Values for both stations are the measured runoff quantities plus 60 per cent of Vail Company combined surface and ground water diversions for the period of record, and quantities based on correlations of these values with longer records of flow in streams cutside the watershed for the years prior to the period of record. Also added to the Fallbrook values are the actual diversions by Fallbrook Public Utility District. From 1947-48 through 1952-53, the values are similarly determined, except that corrections are made for regulation by Vail Reservoir after its construction.

The Natural runoff in Santa Margarita River at De Luz dam site is the sum of natural runoff at Fallbrook plus the estimated runoff from the drainage area between Fallbrook and De Luz dam site. Runoff from the latter area, on a monthly basis, is calculated to be 88 per cent of the difference between measured runoff at Fallbrook and Ysidora during wet periods, when there is little, if any, percolation into Santa Margarita Coastal Basin. For dry periods when there is little or no flow at Ysidora because of percolation, ground water pumpage, and phreatophyte use, the estimated values of runoff are assumed to be 194 per cent of the runoff between Fallbrook and Temecula gages. The values 88 and 194 per cent result from considerations of rainfall-runoff relationships of the respective areas concerned.

Annual estimates of runoff from the area between the Fallbrook gage and De Luz dam site for the period prior to establishment of stream gaging stations are made by comparing annual summations of monthly estimates for the period of record with the estimated seasonal natural runoff at Fallbrook. This correlation is used to extend annual estimates of runoff from the area to the water year 1894-95. The assumptions used in these calculations are believed to result in conservative values of runoff in that they are probably less than the actual values.

4. Values of natural runoff in Santa Margarita River at Ysidora for the period of record at Ysidora are the measured values of runoff at the station plus (a) the corrections due to diversions by the Vail Company, diversion from Santa Margarita River by Fallbrook Public Utility District, and operation of Vail Reservoir, all as used in determination of natural flow at Fallbrook in paragraph (2) above: (b) O'Neill Lake evaporation for the period

1923-24 through 1952-53; (c) 60 per cent of the difference between O'Neill ditch diversions and evaporation from O'Neill Lake for the period 1923-24 through 1941-42; (d) diversions from Santa Margarita River by Fallbrook Naval Ammunition Depot; (e) gross pumping from Santa Margarita Coastal Basin less sewage returned to the basin.

- 5. Under gaged runoff are listed the values of runoff measured at the gaging stations.
- 6. Inflows to Vail Reservoir under present conditions are assumed equal to the natural flow at Nigger Canyon. Semiseasonal distribution of the flow prior to the period of record was, except as noted, 67 and 33 per cent for the October-March and April-September periods, respectively, based on the distribution as gaged during the period of record. During the period of record, since April, 1923, semiseasonal inflows are from U.S.G.S. records of gaged runoff. During the two water years 1915-16 and 1921-22, records at nearby stations indicated a greater percentage of runoff than normal occurred during the period October-March. These percentages were 94 and 6 per cent for the October-March and April-September periods, respectively, for 1915-16, and 82 and 18 per cent for 1921-22.
- 7. Inflows to Fallbrook and De Luz Reservoirs under present conditions are calculated on the assumption that all present diversions and development in the Santa Margarita River system upstream from Fallbrook Public Utility District Diversion 9S/3W-7Dl, including the Vail Reservoir development, had been in operation throughout the entire period of study 1894-95 through 1952-53. Diversions by Fallbrook Public Utility District, and others downstream therefrom, are not deducted from reservoir

inflow, but the effect of such water development is accounted for in calculating the net safe seasonal yield or new water.

8. Inflows to Fallbrook Lippincott and Fallbrook Border Reservoirs are assumed equal and are determined by adjusting the measured runoff at the U.S.G.S. gaging station near Fallbrook for the period of record. Prior to the period of record, correlated values of runoff were adjusted. Most of the diversions in the watershed upstream from diversion 98/3W-7Dl were in operation throughout the period of record and are automatically reflected in the historic record. The measured runoff at the gaging station is therefore adjusted by adding actual quantities of water diverted at diversion 98/3W-VDl, and by deducting for the calculated effects of operation of Vail Reservoir.

Adjustments to measured flow at Fallbrook gaging station, to account for Vail Reservoir, were made on the assumption that the operation of Pauba Basin, with regard to regimen of ground water levels and consequent rising water, will continue in the future as in the past. That is, with Vail Reservoir yield applied on lands overlying the Basin, in accordance with terms of the permit for storage at Vail Dam, the return from such irrigation application would supply the Basin in lieu of the former supply by natural percolation, and it is assumed that pumping of ground water would be practiced to the extent that the water table and consequent rising water would fluctuate in the future in the same manner and to the same extent as in the past. With knowledge of the past occurrence and magnitude of rising water and utilizing daily runoff records, the runoff at the Fallbrook gage is estimated under the assumed conditions. Under such conditions, during periods of low flow when the entire flow at Fallbrook consists of rising water

from Pauba and Murrieta Valleys, the measured Fallbroo flows are unadjusted, but during wet periods when Pauba Basin is assentially full and it is assumed that no percolation of Temetula Creek discharge occurs in the Basin, the entire flow at Vail Dam (Nigger Canyon) is deducted from the measured flow at Fallbrook.

Detailed analyses were developed on a mean daily basis, and it was found from further study that the adopted methods for adjusting the daily runoff could be applied on the monthly basis during the period of measured flow in the Santa Margarita River system with practically the same degree of reliability. The methods also gave reasonably good results on a seasonal basis, and prior to the period of measured runoff, adjusted runoff was determined by applying the methods on a seasonal basis. To seasonal values are added the calculated spills from Vail Reservoir, which were routed unimpaired to the Fallbrook reservoirs, and the total values, on a semiseasonal basis, appear in the table.

Semiseasonal distribution of the flow prior to the period of record was, except as noted, 71 and 29 per cent for the October-March and April-September periods, respectively, based on the distribution of adjusted runoff during the period of record. During the period of record, semiseasonal inflows were determined by summation of monthly adjusted values. During the water years 1914-15, 1915-16, and 1921-22, records at nearby stations indicated a greater percentage of runoff than normal occurred during the period October-March. These percentages were, for 1914-15 and 1921-22, 82 and 18 per cent for October-March and April-September, respectively, and 94 and 6 per cent for 1915-16. The above percentages were applied to "adjusted Fallbrook" flows.

Vail Reservoir spills were added after the annual adjusted Fallbrook flows were distributed semiseasonally.

9. Inflows to De Luz Reservoir represent summation of the inflows to the Fallbrook reservoirs and the estimated natural runoff from the area between Fallbrook and De Luz dam site, as discussed in paragraph (3). Semiseasonal distribution of the additional runoff between Fallbrook and De Luz dam site was 87 and 13 per cent for October-March and April-September, respectively, and was applied to annual correlated values of runoff, prior to 1925-26. For the period beginning in 1925-26, semiseasonal values of inflow from this drainage area were determined by summation of monthly correlated values determined in detailed studies.

APPENDIX J
ESTIMATES OF COST

TABLE OF CONTENTS

ESTIMATES OF COST

	Page
Estimated Cost of De Luz Dam and Reservoir With Storage Capacity of 50,000 Acre-Feet	J- 4
Estimated Cost of De Luz Dam and Reservoir With Storage Capacity of 75,000 Acre-Feet	J- 6
Estimated Cost of De Luz Dam and Reservoir With Storage Capacity of 143,000 Acre-Feet	J- 8
Estimated Cost of De Luz Dam and Reservoir With Storage Capacity of 188,000 Acre-Feet	J - 10
Estimated Cost of Upper De Luz Dam and Reservoir With Storage Capacity of 50,000 Acre-Feet	J - 12
Estimated Cost of Fallbrook Lippincott Dam and Reservoir With Storage Capacity of 35,000 Acre-Feet	J-14
Estimated Cost of Fallbrook Lippincott Dam and Reservoir With Storage Capacity of 65,000 Acre-Feet	J - 16
Estimated Cost of Fallbrook Border Dam and Reservoir With Storage Capacity of 65,000 Acre-Feet	J - 18
Estimated Cost of Fallbrook Border Dam and Reservoir With Storage Capacity of 125,000 Acre-Feet	J-20
Estimated Cost of Fallbrook Border Dam and Reservoir With Storage Capacity of 150,000 Acre-Feet	J - 22
Estimated Cost of Vallecitos Dam and Reservoir With Storage Capacity of 3,000 Acre-Feet	J - 24
Estimated Cost of Facilities to Deliver 6,200 Acre-Feet of Water Per Season From De Luz Reservoir to Fallbrook	J - 26
Estimated Cost of Facilities to Deliver 4,900 Acre-Feet of Water Per Season From De Luz Reservoir to Fallbrook	J - 27
Estimated Cost of Facilities to Deliver 7,600 Acre-Feet of Water Per Season From Fallbrook, Lippincott Reservoir to Fallbrook	J - 28

	Page
Estimated Cost of Facilities to Deliver 5,800 Acre-Feet of Water Per Season From Fallbrook, Lippincott Reservoir to Fallbrook	J - 29
Estimated Cost of Facilities to Deliver 9,000 Acre-Feet Per Season of Colorado River Water From San Diego Aqueduct to Camp Pendleton	J ~ 30
Estimated Cost of Facilities to Deliver 6,000 Acre-Feet Per Season of Colorado River Water From San Diego Aqueduct to Fallbrook	J- 31
Estimated Cost of Santa Margarita Basin Well Field, Pumping Plant, Pipe Line, and Regulatory Reservoir	J-32

APPENDIX J

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 50,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 270 feet, U.S.G.S. datum

Elevation of crest of spillway: 242 feet

Height of dam to spillway crest, above

stream bed: 117 feet

Capacity of reservoir to crest of spillway: 50,000 acre-feet Capacity of spillway with 5-foot freeboard: 151,000 second-feet

Unit : Item : Quantity price Cost CAPITAL COSTS Dain \$ 15,000 Exploration lump sum Diversion of stream and dewatering of foundation 20,000 lump sum Stripping topsoil \$ 0.35 36,000 cu.yd. 12,600 Excavation for embankment Foundation 187,000 cu.yd. 0.90 168,300 0.45 From borrow pits 749,800 cu.yd. 337,400 0.45 From stream bed 657,500 cu.yd. 295,900 Embankment Impervious 652,000 cu.yd. 0.16 104,300 756,000 cu.yd. 0.12 90,700 Pervious Pervious, salvage 349,400 cu.yd. 0.20 69,900 39,000 cu.yd. Rock riprap 3.00 117,000 22,500 lin.ft. Drilling grout holes 3.00 67,500 Pressure grouting 15,000 cu.ft. 4.00 60,000 \$1,358,600 Spillway Excavation, unclassified 251,000 cu.yd. 1.80 451,800 Concrete Weir and cutoff 35.00 97,600 2,790 cu.yd. Fleor 3,900 cu.yd. 30.00 117,000 Walls 580 cu.yd. 40.00 23,200 Reinforcing steel 570,500 lbs. 0.13 74,200 763,800 Cutlet Works Excavation Inlet and outlet 3,000 cu.yd. structures 4,500 1.50 Conduit 5,200 cu.yd. 1.20 6,200 Backfill 1,600 cu.yd. 0.80 1,300 Concrete Conduit 1,340 cu.yd. 50.00 67,000 Intake structure 150 cu.yd. 60.00 9,000 Gate chamber and valve house 280 cu.yd. 50.00 14,000 176,700 lbs. Reinforcing steel 0.13 23,000

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 50,000 ACRE-FEET (continued)

:		: Unit :		
Item :	Quantity	: price :	Cost	
CAPITAL COSTS				
Outlet Works (continued) Miscellaneous metalwork Steel pipe, 42-inch dia. High pressure slide gate Howell-Bunger valve, 30-inch dia. Needle valve, 30-inch dia.	19,000 lbs. 83,000 lbs.	\$ 0.40 0.25 lump sum lump sum lump sum	\$ 7,600 20,800 12,500 9,200 9,600	184,700
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	980 ac.	lump sum 100.00 lump sum lump sum	9,000 98,000 10,000 1,000	118,000
Subtotal			4	\$2,425,100
Administration and engineering Contingencies, 15% Interest during construction	, 10%		\$	242,500 363,800 121,300
TOTAL			•	\$3,152,700
ANNUAT COOMS				
ANNUAL COSTS				
Interest, 3.5% Amortization, 40-year sinking Operation and maintenance	fund at 3.5%		\$	110,300 37,300 7,500
TOTAL			4	155,100

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 75,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 293 feet,

U.S.G.S. datum

Elevation of crest of spillway: 265 feet

Height of dam to spillway crest, above stream bed: 140 feet

Capacity of reservoir to crest of spillway: 75,000 acre-feet Capacity of spillway with 5-foot

freeboard: 151,000 second-feet

			_	TT-24		
Item	: Quant:	i tar	:	Unit : price :	Co	st
Toem	• Quario	LOY	•	price .		30
CAPITAL COSTS						
Dam						
Exploration				lump sum	\$ 16,000	
Diversion of stream and						
dewatering of foundation				lump sum	25,000	
Stripping topsoil	55,000	cu.yd.		\$ 0.35	19,200	
Excavation for embankment		_		- 0-		
Foundation	262,000			0.80	209,600	
From borrow pits	1,155,000			0.50	577,500	
From stream bed	1,017,000	cu.yd.		0.45	457,600	
Embankment	7 001 000			0.36	7 (0 (00	
Impervious	1,004,000			0.16	160,600	
Pervious	884,000			0.12 0.20	106,100	
Pervious, salvage	765,000				153,000	
Rock riprap		cu.yd.		3.00	186,300	
Drilling grout holes		lin.ft.	•	3.00 4.00	7,800	#1 00 # 700
Pressure grouting	1,140	Cu.I U.		4.00	7,000	\$1,925,700
Spillway						
Excavation, unclassified	000 و 166	cu.vd.		1.20	832,800	
Concrete	2,4,			_,_,	0,2,000	
Weir and cutoff	2,880	cu.yd.		35.00	100,800	
Floor		cu.yd.		30.00	96,000	
Walls		cu.yd.		40.00	21,200	
Reinforcing steel	513,000	lbs.		0.13	66,700	1,117,500
Outlet Works						
Excavation						
Inlet and outlet				• ~	. س	
structures		cu.yd.		1.50	4,500	
Conduit		cu.vd.		1.20	7,800	
Backfill	500 و 2	cu.yd.		0.80	2,000	
Concrete	7 700	3		۲۵ ۵۵	50.000	
Conduit		cu.yd.		50.00	79,000	
Intake structure	200	cu.yd.		60.00	12,000	
Gate chamber and	220	a.,d		۲0, 00	36 500	
valve house	211,000	cu.yd.		50.00	16,500	
Reinforcing steel.	2110000	TOS		0.13	27,400	

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 75,000 ACRE-FEET (continued)

Item	Quantity	<pre>: Unit : : price :</pre>	Cost
CAPITAL COSTS			
Outlet Works (continued) Miscellaneous metalwork Steel pipe, 48-inch dia. High pressure slide gate Howell-Bunger valve, 36-inch dia. Needle valve, 36-inch dia.	24,600 lbs. 103,000 lbs.	\$ 0.40 0.25 lump sum lump sum lump sum	\$ 9,800 25,800 18,000 10,300 14,000 \$ 227,100
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	1,260 ac.	lump sum 100.00 lump sum lump sum	20,000 126,000 15,000 1,000 162,000
Subtotal Administration and engineer: Contingencies, 15% Interest during construction			\$3,432,300 \$ 343,200 514,800 171,600
TOTAL			\$4,461,900
ANNUAL COSTS Interest, 3.5% Amortization, 40-year sinkin Operation and maintenance	ng fund at 3.5%		\$ 156,200 52,800 11,000
TOTAL			\$ 220,000

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 143,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 334 feet,

U.S.G.S. datum

Elevation of crest of spillway: 307 feet

Height of dam to spillway crest, above

stream bed: 182 feet

Capacity of reservoir to crest of spillway: 143,000 acre-feet Capacity of spillway with 5-foot

freeboard: 141,000 second-feet

	: Quant:	ity		Unit : price :	Cos	st
CAPITAL COSTS						
Dam			_		A -0	
Exploration			11	ump sum	\$ 18,000	
Diversion of stream and			٦.		٥٢ ٥٥٥	
dewatering of foundation		ou red		ump sum 0.35	25,000 40,600	
Stripping topsoil Excavation for embankment	116,000	cueyue	₩	0.55	40,000	
Foundation	394,000	cu.wd.		0.80	315,200	
From borrow pits	2,161,000			0.50	1,080,500	
From stream bed	3,719,000			0.45	1,673,600	
Embankment	J., 1 – J., 1				_,,,,,,	
Impervious	1,879,000	cu.yd.		0.16	300,600	
Pervious	3,234,000			0.12	388,100	
Pervious, salvage	868,000			0.20	173,600	
Rock riprap	121,000			3.00	363,000	
Drilling grout holes		lin.ft.		3.00	115,200	
Pressure grouting	25,600	cu.ft.		4.00	102,400	\$4,595,800
Asset 13 cars. Dom						
Auxiliary Dam Stripping topsoil	2.000	cu.yd.		0.35	700	
Excavation for embankment	2,9000	o a o y a o		V 8))	100	
Foundation	3,000	cu.yd.		0.80	2,400	
From borrow pits	41,000			0.50	20,500	
Embankment					,,,	
Impervious	12,000	cu.yd.		0.16	1,900	
Pervious		cu.yd.		0.12	2,900	
Rock riprap	5,900	cu.yd.		3.00	17,700	46,100
Cont. T. Thursday						
Spillway Excavation, unclassified	627,000	cu vd		1.60	1,003,200	
Backfill	15,000			0.80	12,000	
Concrete	10000	oungue		0 8 0 0	12,000	
Weir and cutoff	3,200	cu.yd.		35.00	112,000	
Floor	14,200			30.00	426,000	
Walls		cu.yd.		40.00	98,400	
Reinforcing steel	1,642,000			0.13	213,500	1,865,100
Outlet Works Excavation						
Inlet and outlet						
structures	4.000	Layda		1.50	6,000	
Conduit	14.300			1.20	17,200	

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 143,000 ACRE-FEET (continued)

Item :	Quant:	ity		nit :		Cos	t	
CAPITAL COSTS								
Outlet Works (continued)								
Backfill Concrete	000,8	cu.yd.	\$	0.80	\$	6,400		
Conduit	-	cu.yd.		50.00		155,000		
Intake structure Gate chamber and	390	cu.yd.		60.00		23,400		
valve house	450	cu _c yd:		50.00		22,500		
Reinforcing steel	390,000			0,13		50,700		
Miscellaneous metalwork	14,000			0.710		5,600		
Steel pipe, 66-inch dia	212,000	Tp2°	٦.,	0.25		53,000		
High pressure slide gate Howell-Bunger valve,			Lu	mp sum		37,000		
48-inch dia				mp sum		13,500		
Needle valve, 36-inch dia			lu	mp sum	_	14,000	\$	404,300
Reservoir			_					
Land and improvements	7 010			mp sum		66,000		,
Clearing reservoir lands	1,940	ac.		00.00		194,000		
Relocation of utilities Road relocation				mp sum mp sum		30,000 21,000		
Access road				mp sum	_	30,000	-	000, 1با3
Subtotal							\$7	,252,300
Administration and engineering	, 10%						\$	725,200
Contingencies, 15%							1	,087,800
Interest during construction							QCME	543,900
TOTAL							\$ 9	,609,200
ANNUAL COSTS							4-19- 4-1	
Interest, 3.5% Amortization, 40-year sinking Operation and maintenance	fund at 3	3 _° 5%					\$	336,300 113,700 15,000
TOTAL							\$	465,000

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 188,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

: Unit

Elevation of crest of dam: 355 feet,

U.S.G.S. datum

Elevation of crest of spillway: 328 feet

Height of dam to spillway crest, above

stream bed: 203 feet

Capacity of reservoir to crest of spillway: 188,000 acre-feet Capacity of spillway with 5-foot

freeboard: 137,000 second-feet

Item	• Quant:	itar s	price :	Cos	+
Toem	• Quairo	<u> </u>	price .	003	
CAPITAL COSTS					
_					
Dam			3	# 00.000	
Exploration			lump sum	\$ 20,000	
Diversion of stream and				٠, ,,,,	
dewatering of foundation			lump sum	35,000	
Stripping topsoil	004, 137	cu.yd.	\$ 0.35	48,100	
Excavation for embankment					
Foundation	476,000		0.80	380,800	
From borrow pits	2,929,000		0.55	1,611,000	
From stream bed	5,101,000	cu.yd.	0.52	2,652,500	
Embankment					
Impervious	2,547,000	cu.yd.	0.16	407,500	
Pervious	4,435,000	cu.yd.	0.12	532,200	
Pervious, salvage	1,105,000	cu.yd.	0.20	221,000	
Rock riprap	164,600	cu.yd.	3.00	493,800	
Drilling grout holes	40 , 800	lin.ft.	3.00	122,400	
Pressure grouting		cu.ft.	4.00	108,800	\$ 6,633,100
	•				
Auxiliary Dam					
Stripping topsoil	8,200	cu.yd.	0.35	2,900	
Excavation for embankment	•			,	
Foundation	23,000	cu.yd.	0.80	18,400	
From borrow pits	176,400		0.50	88,200	
Embankment	_, ·, , _, . ·			00,000	
Impervious	69,000	cu.yd.	0.16	11,000	
Pervious	104,000		0.12	12,500	
Rock riprap	12,200		3.00	36,600	169,600
mock liptep	12,200	cusyas	7,000	50,000	107,000
Spillway					
Excavation, unclassified	825,000	cu . vd	1.60	1,320,000	
Backfill	15,000		0.80		
	000ور1	cu.yu.	0.00	12,000	
Concrete Weir and cutoff	2 220	on 11d	35.00	770 1.00	
		cu.yd.		112,400	
Floor	13,750		30.00	412,500	
Walls		cu.yd.	40.00	94,800	0.760.000
Reinforcing steel	1,604,000	TDS.	0.13	208,500	2,160,200
Outlet Works					
Excavation					
Inlet and outlet	1. 500	an	ז לס	4 900	
structures		cu.yd.	1.50	6,800	
Conduit	15,900	cu.yu.	1.20	19,100	

ESTIMATED COST OF DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 188,000 ACRE-FEET (continued)

			: U	nit :				Diffs. Afficially, only approximate responses to
Item	Quant	ity		rice :		Cos	t	
CAPITAL COSTS								
Outlet Works (continued)	0.1.00	3	d)s	0.00	dh.	7 500		
Backfill Concrete	9,400	cu.jd.	\$	0.80	\$	7,500		
Conduit	3.850	cu.yd		50.00		192,500		
Intake structure		ca.yd.		60.00		29,400		
Gate chamber and	-4,							
valve house	480	cu.yd.		50,00		24,000		
Reinforcing steel	482,000			0.13		62,700		
Miscellaneous metalwork	48,000			0.70		19,200		
Steel pipe, 72-inch dia.	241,700	lbs.		0.25		60,400		
High pressure slide gate			lw	mp sum		46,000		
Howell-Bunger valve,			_					
48-inch dia.				mp sum		13,500	А	f00 200
Needle valve, 42-inch dia.			lu	mp sum		21,000	\$	502,100
Reservoir								
Land and improvements			3 111	mp sum		74,000		
Clearing reservoir lands	2,340	ac.		00.00		234,000		
Relocation of utilities			lu	mp sum		30,000		
Road relocation				mp sum		40,000		
Access road			lui	mp sum	CAMID	30,000	O _{rm} Pro	408,000
Subtotal							\$ 9	9,873,000
Administration and an element	300						\$	007 200
Administration and engineering Contingencies, 15%	9 10%						,,	987,300
Interest during construction							-	1,481,000 863,900
inocreso du ing consu acoron								0000
TOTAL							\$13	3,205,200
ANNUAL COSTS						AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, TH		and the second second second second second second second second second second second second second second seco
Interest, 3.5%							\$	462,200
Amortization, 40-year sinking	fund at 3	3.5%					-	156,200
Operation and maintenance								17,800
TOTAL							\$	636,200
101101							₩	0)0,200

ESTIMATED COST OF UPPER DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 50,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 392 feet,

U.S.G.S. datum

CAPITAL COSTS

Elevation of crest of spillway: 372 feet Height of dam to spillway crest, above

stream bed: 187 feet

Capacity of reservoir to crest of spillway: 50,000 acre-feet
Capacity of spillway with 5-foot

freeboard: 41,000 second-feet

and the state of t	0		:	Unit	ç	
Item	*	Quantity	:	price	8	Cost

Om Time Copie						
Dam						
Exploration			lump sum	\$ 15	,000	
Diversion of stream and						
dewatering of foundation			lump sum		000و،	
Stripping topsoil	77,200	cu.yd.	\$ 0.35	27	°,000	
Excavation for embankment			_			
Foundation	196,000		0.80		800و	
From borrow pits	1,217,000		0.72		,200	
From stream bed	2,632,000	cu.yd.	0.48	1,263	400وا	
Embankment				- (-		
Impervious	1,058,000		0.16		,300	
Pervious	2,289,000		0.12		,700	
Pervious, salvage	289,000		0.20		,800	
Rock riprap		cu.yd.	3,00		,100	
Drilling grout holes		lin.ft.	3.00	40	,300	40 000 100
Pressure grouting	8,960	cu.ît.	Jt°00	35	,800	\$3,090,400
Spillway						
Exeavation, unclassified	164,500	cu.yd.	1.20	197	,400	
Concrete		·			•	
Weir and cutoff	1,100	cu.yd.	35,00	38	500	
Floor		cu.yd.	30.00		800	
Walls		cu.yd.	40.00		000و.	
Reinforcing steel	217,000	lbs.	0.13		,200	318,900
Outlet Works						
Excevation						
Inlet and outlet						
structures	1.000	cu.yd.	1.50	1	,500	
Conduit		cu.yd.	1.20		700	
Backfill		cu.yd.	0.80		000	
Concrete	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Conduit	2,100	cu.yd.	50. 0 0	105	000	
Intake structure		cu.yd.	60.00		,000	
Gate chamber and		<i>J</i>		·	•	
valve house	280	cu.yd.	50.00	1/4	,000	
Reinforcing steel	253,000		0.13		900	
Miscellaneous metalwork	23,800		0.40		500	
Steel pipe, 42-inch dia.	126,000		0.25		,500	
High pressure slide gate	,		lump sum		,000	
			-			

ESTIMATED COST OF UPPER DE LUZ DAM AND RESERVOIR WITH STORAGE CAPACITY OF 50,000 ACRE-FEET (continued)

	:	: Unit	0		
Item	: Quantity	: price	:	Cos	<u>t</u>
CAPITAL COSTS					
Outlet Works (continued) Howell-Bunger valve, 30-inch dia. Needle valve, 30-inch dia	Α.,	lump sun lump sun	_	9,200 9,600	\$ 248,300
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	675 ac.	lump sum \$100.00 lump sum lump sum	1	43,000 67,500 15,000 15,000	140,500
Subtotal					\$3,798,700
Administration and engineer Contingencies, 15% Interest during construction	_,				\$ 379,900 569,800 189,900
TOTAL					\$4,938,300
NNUAL COSTS					
nterest, 3.5% mortization, 40-year sinki peration and maintenance	ng fund at 3.5%				\$ 172,800 58,400 7,500
TOTAL					\$ 238,700

ESTIMATED COST OF FALLBROOK LIPPINCOTT DAM AND RESERVOIR WITH STORAGE CAPACITY OF 35,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dem: 482 feet, U.S.G.S. datum

Elevation of crest of spillway: 457 feet Height of dam to spillway crest, above

stream bed: 143 feet

Capacity of reservoir to crest of spillway: 35,000 acre-feet Capacity of spillway with 5-foot freeboard: 136,000 second-feet

Item :	Quant	itv	: Unit : : price :	Co	st
er australie ist aufan i proposantele elemen administration in Markey probable die Abrelle-de art arteriories		The state of the s		<u></u> -	
CAPITAL COSTS					
Dam					
Exploration			lump sum	\$ 10,000	
Diversion of stream and			7 a	۲ ,000	
dewatering of foundation Stripping topsoil	37 300	cu.yd.	lump sum \$ 0.35	5,000 13,100	
Excavation for embankment	المارو الر	cu.yu.	₩ 0.00	1),100	
Foundation	32,600	cu.yd.	0.80	26,100	
From borrow pits	373,800		0.60	224,300	
From stream bed	349,800		0.45	157,400	
Embankment			Λ.		
Impervious	325,000		0.1.6	52,000	
Pervious	304,000		0.12	36,500	
Pervious, salvage	521,000		0.20	104,200	
Rock riprap		cu.yd.	3.00	73,200	
Drilling grout holes		lin.ft.	3.00	24,900	# 719 700
Pressure grouting	5,500	cu.ft.	4.00	22,000	\$ 748,700
Spillway					
Excavation, unclassified	683,700	cu.yd.	0.80	547,000	
Backfill	8,100	cu.yd.	0.80	6,500	
Concrete					
Weir and cutoff		cu.yd.	35.00	101,300	
Floor		cu.yd.	30.00	200,100	
Walls		cu.yd.	40.00	106,400	
Reinforcing steel	981,000	lbs.	0.13	127,500	1,088,800
Outlet Works					
Excavation					
Inlet and outlet					
structures	500	cu.yd.	1.50	800	
Conduit	6,400	cu.yd.	1.20	7,700	
Backfill	1,900	cu.yd.	0.80	1,500	
Concrete					
Conduit		cu.yd.	50.00	82,000	
Intake structure	150	cu.yd.	60.00	9,000	
Gate chamber and	000		۲۵ ۵۵	71 000	
valve house		cu.yd.	50.00	14,000	
Reinforcing steel Miscellaneous metalwork	207,600		0.13	27,000 8,700	
Steel pipe, 42-inch dia	100,000		0.40 0.25	8,700 25,000	
High pressure slide gate	TOO 9000	エロシ・	lump sum	25,000 14,500	
"Ten broome strue gave			Tumb Sum	14,000	

ESTIMATED COST OF FALLBROOK LIPPINCOTT DAM AND RESERVOIR WITH STORAGE CAPACITY OF 35,000 ACRE-FEET (continued)

	• .	: Unit :	
Item	: Quantity	: price :	Cost
CAPITAL COSTS			
Outlet Works (continued) Howell-Bunger valve, 30-inch dia Needle valve, 30-inch dia	ı.	lump sum	\$ 9,200 9,600 \$ 209,000
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	580 ac.	lump sun \$60.00 lump sum lump sum	237,000 34,800 7,500 15,000 294,300
Subtotal			\$2,340,800
Administration and engineer Contingencies, 15% Interest during construction			\$ 234,100 351,100 117,000
TOTAL			\$3,043.000
ANNUAL COSTS			
Interest, 3.5% Amortization, 40-year sinki Operation and maintenance	ing fund at 3.5%		\$ 106,500 36,000 6,000
TOTAL			\$ 148,500

ESTIMATED COST OF FALLBROOK LIPPINCOTT DAM AND RESERVOIR WITH STORAGE CAPACITY OF 65,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Unit

6

Elevation of crest of dam: 525 feet U.S.G.S. datum
Elevation of crest of spillway: 497 feet Height of dam to spillway crest, above stream bed: 183 feet

Capacity of reservoir to crest of spillway: 65,000 acre-feet
Capacity of spillway with 5-foot freeboard: 130,400 second-feet

Item			price:	Cost	
CAPITAL COSTS					
Dam					
Exploration			lump sum	\$ 12,000	
Diversion of stream and					
dewatering of foundation			lump sum	10,000	
Stripping topsoil	72,000	cu.yd.	\$ 0.35	25,200	
Excavation for embankment					
Foundation	46,000	cu.yd.	0.80	36,800	
From borrow pits	625,000	cu.yd.	0.65	406,200	
From stream bed	1,799,000	cu.yd.	0.50	899,500	
Embankment					
Impervious	543,000	cu.yd.	0.16	86,900	
Pervious	1,564,000	cu.yd.	0.12	187,700	
Pervious, salvage	358,000		0.20	71,600	
Rock riprap		cu.yd.	3.00	147,600	
Drilling grout holes		lin.ft.		31,200	
Pressure grouting		cu.ft.	4.00	27,600	\$1,942,300
g	,,		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Auxiliary Dam					
Stripping topsoil	7,000	cu.yd.	0.35	2,400	
Excavation for embankment	. ,			-,	
Foundation	9,000	cu.yd.	0.80	7,200	
From borrow pits	32,000		0.450	16,000	
Embankment	J-,***				
Impervious	10,000	cu.vd.	0.60	6,000	
Pervious		cu.yd.	0.50	11,000	
Rock riprap		cu.yd.	3.00	13,500	56 ,1 00
100 ck 1 1ph ap	4,900	cusyus	J. CO		70,100
Spillway					
Excavation, unclassified	472,000	cu.vd.	0.80	377,600	
Backfill		cu.yd.	0.80	4,800	
Concrete	0,000	ouvjuv	0,00	4,000	
Weir and cutoff	2.080	cu.yd.	35,00	72,800	
Floor		cu.yd.	30,00	178,800	
Walls		cu.yd.	40.00	92,400	•
Reinforcing steel	843,400		0.13	109,600	836,000
100111101011116 00001	045,400	1004	ردده	107,000	0,000
Outlet Works					
Excavation					
Inlet and outlet					
structures	500	cu.yd.	1.50	800	
Conduit	11,500		1.20	13,800	
- VIII UL V		Junyus	7 + CO	٥٥٥٥وريا	

ESTIMATED COST OF FALLBROOK LIPPINCOTT DAM AND RESERVOIR WITH STORAGE CAPACITY OF 65,000 ACRE-FEET (continued)

	(CONTOLINGER)			
	0	: Unit :		
item :	Quantity	: price :	Cost	
CAPITAL COSTS				
Outlet Works (continued)				
Backfill Concrete	5,100 c u.yd.	\$ 0.80	\$ 4,100	
Conduit	2,760 cu.yd.	50.00	138,000	
Intake structure Gate chamber and	250 cu.yd.	60:00	15,000	
valve house	375 cu.yd	50 - 00	18,800	
Reinforcing steel	338,000 lbs.	0-13	43,900	
Miscellaneous metalwork	37,800 lbs.	0.40	15,100	
Steel pipe, 54-inch dia. High pressure slide gate	182,000 lbs.	0.25 lump sum	45,500 25,000	
Howell-Bunger valve,		Tump Sum	2),000	
42-inch dia.		lump sum	11,800	
Needle valve, 36-inch dia		lump sum	14,000 \$	345,800
Reservoir				
Land and improvements		lump sum	375,000	
Clearing reservoir lands	960 ac.	60,00	57,600	
Relocation of utilities		lump sum	7,500	1 (0. 7.00
Road relocation		lump sum	20,000	460,100
Subtotal			\$	3,640,300
Administration and engineering	3, 10%		#	364,000
Contingencies, 15%				546,000
Interest during construction				273,000
TOTAL			\$	4,823,300
ANNUAL COSTS				
Interest, 3,5%			3	168,800
Amortization, 40-year sinking	fund at 3.5%		,	57,100
Operation and maintenance				9,500
TOTAL			\$	235,400
IOIAL			₩	400 وروء

ESTIMATED COST OF FALLBROOK BORDER DAM AND RESERVOIR WITH STORAGE CAPACITY OF 65,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 500 feet,

U.S.G.S. datum

Elevation of crest of spillway: 472 feet Height of dam to spillway crest, above

stream bed: 195 feet

Capacity of reservoir to crest of spillway: 65,000 acre-feet Capacity of spillway with 6-foot freeboard: 129,000 second-feet

Unit : Item price Cost Quantity : CAPITAL COSTS Dam Exploration lump sum 12,000 Diversion of stream and dewatering of foundation 15,000 lump sum 32,800 cu.yd. \$ 0.35 11,500 Stripping topsoil Excavation for embankment 0.80 Foundation 90,500 cu.yd. 72,400 From borrow pits 726,600 cu.yd. 0.65 472,300 From stream bed 676,000 cu.yd. 0.50 338,000 Embankment 0.16 631,800 cu.yd. Impervious 101,100 70,500 587,800 cu.yd. 0.12 Pervious Pervious, salvage 848,700 cu.yd. 0.20 169,700 31,400 cu.yd. 1.50 100, 47 Rock riprap 3.00 Drilling grout holes 4,200 lin.ft. 12,600 Pressure grouting 2,800 cu.ft. 4.00 11,200 \$1,333,400 Spillway Excavation, unclassified 897,400 cu.yd. 2.30 2,064,000 Concrete Weir and cutoff 35.00 1,920 cu.yd. 67,200 4,580 cu.yd. Floor 30.00 137,400 160,000 Walls 4,000 cu.yd. 40.00 855,000 lbs. Reinforcing steel 0.13 111,200 2,539,800 Outlet Works Excavation Inlet and outlet structures 500 cu.yd. 1.50 800 Conduit 11,500 cu.yd. 13,800 1.20 Backfill 0.80 5,200 cu.yd. 4,200 Concrete Conduit 2,720 cu.yd. 50,00 136,000 Intake structure 250 cu.yd. 60.00 15,000 Gate chamber and valve house 375 cu.yd. 50.00 18,800 Reinforcing steel 335,000 lbs. 0.13 43,600 Miscellaneous metalwork 14,300 35,700 lbs. 0.40 Steel pipe, 54-inch dia. 165,000 lbs. 0.25 41,300 High pressure slide gate 25,000 lump sum

ESTIMATED COST OF FAILBROOK BORDER DAM AND RESERVOIR WITH STORAGE CAPACITY OF 65,000 ACRE-FEET (continued)

Item	Quantity	: Unit : : price :	Cost	
CAPITAL COSTS				
Outlet Works (continued) Howell-Bunger valve, 42-inch dia. Needle valve, 36-inch dia.		lump sum lump sum	\$ 11,800 14,000 \$ 338,600	
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	900 ac.	lump sum \$60.00 lump sum lump sum	171,000 54,000 7,500 56,700 289,200	
Subtotal			\$4,501,000	
Administration and engineering Contingencies, 15% Interest during construction	ng, 10%		\$ 450,100 675,200 	
TOTAL			\$5,963,900	
ANNUAL COSTS	and the second of the second o		and a first continued interpretation of another production of the first continued and a	
Interest, 3.5% Amortization, 40-year sinking Operation and maintenance	fund at 3.5%		\$ 208,700 70,600 9,000	
TOTAL			\$ 288,300	

ESTIMATED COST OF FAILBROOK BORDER DAM AND RESERVOIR WITH STORAGE CAPACITY OF 125,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 550 feet,

U.S.G.S. datum

Elevation of crest of spillway: 523 feet

Height of dam to spillway crest, above

stream bed: 246 feet

Capacity of reservoir to crest of spillway: 125,000 acre-feet Capacity of spillway with 6-foot freeboard: 128,000 second-feet

	:		: Unit :		
Item	: Quant	ity	: price :	Cos	t
CAPITAL COSTS					
00012					
Dam					
Exploration			lump sum	\$ 15,000	
Diversion of stream and					
dewatering of foundation			lump sum	20,000	
Stripping topsoil	59,900	cu.yd.	\$ 0.35	21,000	
Excavation for embankment					
Foundation	120,400		0.80	96 , 300	
From borrow pits	1,058,000	cu.yd.	0.75	793 , 500	
From stream bed	2,632,000	cu.yd.	0.55	1,447,600	
Embankment					
Impervious	920,000	cu.yd.	0.16	147,200	
Pervious	2,289,000		0.1.2	274,700	
Pervious, salvage	874,000		0.20	174,800	
Rock riprap		cu.yd.	1.50	93,800	
Drilling grout holes		lin.ft.	3.00	15,600	
Pressure grouting	3,500	cu.ft.	4.00	14,000	\$3,113,500
G *33					
Spillway	221 222	. ,	0.00	0.310.000	
Excavation, unclassified	000وبا93	cu.ya.	2.30	2,148,200	
Concrete	0.700	,	25 00	72 500	
Weir and cutoff		cu.yd.	35.00	73,500	
Floor		cu.yd.	30.00	174,900	
Walls		cu.yd.	70.00	188,400	0 530 000
Reinforcing steel	1,032,000	lbs.	0.13	134,200	2,719,200
Outlet Works					
Excavation					
Inlet and outlet					
structures	1,000	cu.yd.	1.50	1,500	
Conduit		cu.yd.	1.20	24,200	
Backfill		cu.yd.	0.80	9,500	
Concrete	,,,			/,	
Conduit	1,.120	cu.yd.	50.00	206,000	
Intake structure		cu.yd.	60.00	28,800	
Gate chamber and	400	Judgas	0000	20,000	
valve house	1,70	cu.yd.	50.00	23,500	
Reinforcing steel	507,000		0.13	65,900	
Miscellaneous metalwork	55,000		0.40	22,000	
Steel pipe, 72-inch dia.	303,000		0.40	75,800	
High pressure slide gate	000ورتار	TO 9 8		52,000	
urgu bressme strae gare			lump sum	92,000	

ESTIMATED COST OF FALLBROCK BOILDER DAM. WE RELERVOIM WITH STORAGE CAPACITY OF 125,000 ACRE-FLET (continued)

	Annance Properties and the contract for	ordinasion signate society and portrain to the street of t	Unit :	elmanda, en este financiario de l'apendant de l'apendant de l'apendant de l'apendant de l'apendant de l'apenda	e par manerita galance primeriran egipte e la primerira de la mentra de la mentra de la mentra de la mentra de
Item	: Quanti	ty	price :	Cos	t
CAPITAL COSTS					
Outlet Works (continued) Howell-Bunger valve, h8-inch dia Needle valve, 42-inch di	.a .		lump sum lump sum	\$ 13,500 21,000	\$ 543,700
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation	1,250	ac.	lump sum \$60.00 lump sum lump sum	232,700 75,000 7,500 6h,900	380,100
Subtotal					\$6,756,500
Administration and engineer Contingencies, 15% Interest during constructions					\$ 675,700 1,013,500 675,700
TOTAL					\$9,121,400
ANNUAL COSTS	and the state of t		And the second s	g vanniger gamener gabet here the Stanford Political Williams	
Interest, 3.5% Amortization, 40-year sind Operation and maintenance	king fund at 3	3 5%			319,200 107,900 14,000
TOTAL			•	•	الله الله الله الله

ESTIMATED COST OF FALLBROOK BORDER DAM AND RESERVOIR WITH STORAGE CAPACITY OF 150,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 565 feet,

U.S G.S datum

Elevation of crest of spillway: 538 feet

Height of dam to spillway crest, above

stream bed: 261 feet

Capacity of reservoir to crest of spillway: 150,000 acre-feet Capacity of spillway with 6-foot freeboard: 128,000 second-feet

Unit : price Cost Item Quantity : CAPITAL COSTS Dam lump sum 18,000 Exploration Diversion of stream and dewatering of foundation lump sum 22,000 Stripping topsoil 75,700 cu.yd. \$ 0.35 26,500 Excavation for embankment 0.80 Foundation 200,300 cu.yd. 160,200 1,284,000 cu.yd. 0.80 From borrow pits 1,027,200 From stream bed 3,734,000 cu.yd. 0.60 2,240,400 Embankment Impervious 1,117,000 cu.yd. 0.16 178,700 Pervious 3,247,000 cu.yd. 0.12 389,600 Pervious, salvage 856,000 cu yd. 0.20 171,200 Rock riprap 79,600 cu.yd. 1,50 119,400 5,500 lin.ft. Drilling grout holes 3 。00 16,500 Pressure grouting 3,680 cu.ft \$ 4,384,400 4.00 14:700 Spillway Excavation, unclassified 973,000 cu yd. 2,30 2,237,900 Concrete Weir and cutoff 35,00 2,100 cueyd. 73,500 Floor ნ,300 cu.yd | 189,000 30,00 Walls 4,750 cu.yd. 40.00 190,000 1,315,000 lbs Reinforcing steel 0.13 2,861,400 171,000 Outlet Works Excavation Inlet and outlet 1,50 1,000 cu.yd. 1,500 structures 23,600 cu.yd. 1:20 Conduit 28,300 Backfill 13,900 cu.yd. 0.80 11,100 Concrete Conduit 4,760 cu.yd. 50.00 238,000 480 cu.yd. 28,800 60,00 Intake structure Gate chamber and valve house 23,500 470 cu.yd. 50.00 Reinforcing steel 571,000 lbs. 0,13 74,200 Miscellaneous metalwork 0.40 23,500 58,700 lbs. Steel pipe, 72-inch dia. 337,000 lbs. 0 , 25 300 و 84 High pressure slide gate 52,000 lump sum

ESTIMATED COST OF FALLBROOK BORDER DAM AND RESERVOIR WITH STORAGE CAPACITY OF 150,000 ACRE-FEET (continued)

	namen (namen (na					
Item	:	Quantity	Unit : price :	Cos	10	
CAPITAL COSTS						
Outlet Works (continued) Howell-Bunger valve, 48-inch dia, Needle valve, 42-inch dia	·o		lump sum	\$ 13,500 21,000	\$	599,700
Reservoir Land and improvements Clearing reservoir lands Relocation of utilities Road relocation		1,660 ac.	lump sum \$60.00 lump sum lump sum	239,400 99,600 7,500 67,200		413,700
Subtotal					\$ 8	, 259, 200
Administration and engineer Contingencies, 15% Interest during construction		10%			\$ 	825,900 238,900 325,900
TOTAL					\$11	900 ر149 و
ANNUAL COSTS			eringa yangkandi madaga ekster interferinga di			ray ayoneya ayorikin ndike digadilirani
Interest, 3.5% Amortization, 40-year sinki: Operation and maintenance	ng fur	nd at 3,5%			\$	390,200 131,900 15,500
TOTAL					4	537,600

ESTIMATED COST OF VALLECITOS DAM AND RESERVOIR WITH STORAGE CAPACITY OF 3,000 ACRE-FEET

(Based on prices prevailing in spring of 1955)

Elevation of crest of dam: 890 feet, U.S.G.S. datum Elevation of crest of spillway: 880 feet Height of dam to spillway crest, above Capacity of reservoir to crest of spillway: 3,000 acre-feet Capacity of spillway with 4-foot freeboard: 2,000 second-feet

stream bed: 115 feet

			: Unit :		
Item :	Quan	ti ty	: price :	Cost	
CAPITAL COSTS					
Dam					
Exploration Diversion of stream and			lump sum	\$ 2,000	
dewatering of foundation			lump sum	1,000	
Stripping topsoil	10,000	cu.yd.	\$ 0.35	3,500	
Excavation for embankment	,			,,,,,	
Foundation	28,000	cu.yd.	0,60	16,800	
From borrow pits	168,000		0.60	100,800	
From stream bed	229,000		0:45	103,100	
Embankment		v	•	•	
Impervious	146,000	cu.yd.	0.16	23,400	
Pervious	199,000	cu.yd.	0.12	23,900	
Pervious, salvage	22,000	cu.yd.	0.20	4,400	
Rock riprap		cu.yd.	3.00	28,200	
Drilling grout holes	3,100	lin.ft.	3.00	9,300	
Pressure grouting	2,000	cu.ft.	4.00	8,000	\$324,400
Spillway					
Excavation, unclassified	6,000	cu.yd.	0.80	4,800	
Backfill	500	cu.yd.	0.80	400	
Concrete					
Weir and cutoff	45	cu.yd.	35.00	1,600	
Floor	270	cu.yd.	30,00	8,100	
Walls		cu.yd.	40.00	12,400	
Reinforcing steel	52,000	lbs.	0,13	6,800	34,100
Outlet Works					
Excavation					
Inlet and outlet					
structures	130	cu.yd.	1.50	200	
Conduit		cu.yd.	1.20	600	
Backfill	200	cu.yd.	0.80	200	
Concrete					
Pipe encasement and					
control works		cu.yd.	40.00	31,200	
Reinforcing steel	78,000	lbs,	0.13	10,100	

ESTIMATED COST OF VALLECITOS DAM AND RESERVOIR WITH STORAGE CAPACITY OF 3,000 ACRE-FEET (continued)

T.		: Unit :	2 .		
Item	Quanti ty	: price :	Cos	t	
CAPITAL COSTS					
Outlet Works (continued)					
Miscellaneous metal work Reinforced concrete pipe,	4,000 lbs.	\$ 0.40	\$ 1,600		
18-inch dia.	965 ft.	7.10	6,900		
High pressure slide gates	3 each	2,000.00	6,000		
Needle valve, 12-inch dia.		lump sum	600	\$ 57,400	
Reservoir					
Land and improvements		lump sum	40,000		
Clearing reservoir lands	90 ac.	60.00	5,400	70.100	
Relocation of utilities		lump sum	5,000	50,400	
Subtotal				\$466,300	
Administration and engineering,	10%			\$ 46,600	
Contingencies, 15%				70,000	
Interest during construction				11,700	
TOTAL				\$594,600	
ANNUAL COSTS		terre a final in 200 miles in 2			
Interest, 3.5%				\$ 20,800	
Amortization, 40-year sinking f	und at 3.5%			7,000	
peration and maintenance				3,000	
TOTAL				\$ 30,800	
				# J= y= 0	

ESTIMATED COST OF FACILITIES TO DELIVER 6,200 ACRE-FEET OF WATER PER SEASON FROM DE LUZ RESERVOIR TO FALLBROOK

(Based on prices prevailing in spring of 1955)

Capacity of conduit: 16.6 cfs

Length of conduit: 23,000 feet

			: Unit	:	
Itəm	Quant	ity	: price	: Co	st
CAPITAL COSTS					
Pipe line					
Excavation		cu.yd.			
Backfill	24,200	cu.yd.	0.70	9,700	
Pipe, reinforced concrete,					
furnish and install	23 000	1 i m -£+	9.70	223,100	
30-inch dia.	23,000	lin.ft.	lump sum		
Fittings Valves			Tump bam	11,500	
Air release, 3-inch dia.	7	each	370.00	2,600	
Blowoff, 6-inch dia.	•	each	1,450.00		
Gate, 30-inch dia.	2	each	2,200.00		
Meter	1	each	1,200.00		
Chlorinator and equipment			lump sum		\$298,800
					-1
Regulatory reservoir			lump sum	14,000	14,000
Pumping plant and equipment	3	each	30,700.00	92,100	92,100
	•			•	
Subtotal					\$404,900
Administration and engineering	ng. 10%				\$ 40,500
Contingencies, 15%	.6, 22,				60,700
Interest during construction					5,100
TOTAL					\$511,200
SERVICE AND THE TO SERVICE THE APPROXIMATION OF THE	NA		, March		
ANNUAL COSTS					
Interest, 3.5%					\$ 17,900
Amortization, 40-year sinking	fund at	3.5%			6,000
Replacement	,				2,000
Electrical energy					53,300
Operation and maintenance					4,000
					* • • • • • • • • • • • • • • • • • • •
TO TAI,					\$ 83,200

ESTIMATED COST OF FACILITIES TO DELIVER 4,900 ACRE-FEET OF WATER PER SEASON FROM DE LUZ RESERVOIR TO FALLBROOK

(Based on prices prevailing in spring of 1955)

			: Uni	t :		
Item :	Quant	i ty	: pri	ce :	Cos	<u>t </u>
CAPITAL COSTS						
Pipe line						
Excavation	25,900	cu.yd.	\$	0.90	\$ 23,300	
Backfill	22,300	cu.yd.		0.40	8,900	
Pipe, reinforced concrete, furnish and install		·				
27-inch dia.	23,000	lin.ft.		9.00	207,000	
Fittings Valves				psum	10,500	
Air release, 3-inch dia.	7	each	3	70,00	2,600	
Blowoff, 6-inch dia.	8	each	1,4	50.00	11,600	
Gate, 30-inch dia.	2	each	2,2	00.00	4,400	
Meter	1	each	1,2	00.00	1,200	
Chlorinator and equipment			lum	p sum	8,800	\$278,300
Regulatory reservoir			lum	p sum	14,000	14,000
Pumping plant and equipment	3	each	26,3	00,00	78,900	78,900
Subtotal						\$371,200
Administration and engineering, Contingencies, 15% Interest during construction	10%					\$ 37,100 55,700 4,600
TOTAL						\$468,600
ANNUAL COSTS						
Interest, 3.5% Amortization, 40-year sinking f Replacement Electrical energy	und at 3.	. 5%				\$ 16,400 5,500 1,700 42,600
Operation and maintenance						3,800
TOTAL						\$ 70,000

ESTIMATED COST OF FACILITIES TO DELIVER 7,600 ACRE-FEET OF WATER FELL SEASON FROM FALLBROOK, LIPPIN COTT RESERVOIR TO FALLBROOK

(Based on prices prevailing in spring of 1955)

Capacity of conduit: 30.5 cfs

Length of conduit: 7,200 feet

*			: Unit :		
I tem :	Quanti	ty	: price :	Cost	
CAPITAL COSTS					
Pipe line					
Excavation	10,800			\$ 9,700	
Backfill Pipe, reinforced concrete, furnish and install	8,800 (cu.yd.	0.40	3,500	
36-inch dia.	7,200	lin.ft.	12.70	91,400	
Fittings Valves			lump sum	4,600	
Air release, 4-inch dia.	2 6	each	370.00	700	
Blowoff, 6-inch dia.		each	1,430.00	2,900	
Gate, 30-inch dia		each	2,400.00	4,800	
Meter		each	1,200.00	1,200	
Right of way	-		lump sum	1,000	\$119,800
Regulatory reservoir			lump sum	42,000	42,000
Pumping plant and equipment			lump sum	110,000	110,000
Subtotal					\$271,800
Administration and engineering Contingencies, 15% Interest during construction	3, 10%				\$ 27,200 40,800 3,400
TOTAL					\$343,200
ANNUAL COSTS	 			6	
Interest, 3.5%					\$ 12,000
Amortization, 40-year sinking	fund of 3	54			4,100
Replacement	Tunu at)	6 7 /0			
Repracement Electrical energy					2,200
					46,300
Operation and maintenance					3,600
TOTAL					\$ 68,200

\$ 53,300

ESTIMATED COST OF FACILITIES TO DELIVER 5,800 ACRE-FEET OF WATER PER SEASON FROM FALLBROOK, L1PPINCOTT RESERVOIR TO FALLBROOK

(Based on prices prevailing in spring of 1955)

Capacity of conduit: 23.3 cfs	`	Length of conduit: 7,200 feet					
Item :			: Unit :	Cost			
CAPITAL COSTS							
Pipe line Excavation Backfill Pipe, reinforced concrete, furnish and install 33-inch dia.	8,100	cu.yd. cu.yd.	\$ 0.90 0.40	\$ 8,900 3,200 82,800			
Fittings Valves Air release, 4-inch dia. Blowoff, 6-inch dia. Gate, 24-inch dia. Meter Right of way	2 2 2	each each each	370.00 1,430.00 2,400.00 1,200.00 lump sum	4,500 700 2,900 4,800 1,200 1,000	\$110,000		
Regulatory reservoir			lump sum	42,000	42,000		
Pumping plant and equipment Subtotal			lump sum	68,000	68,000 \$220,000		
Administration and engineering, Contingencies, 15% Interest during construction TOTAL	, 10%				\$ 22,000 33,000 2,800 \$277,800		
ANNUAL COSTS	Ni			1 A A			
Interest, 3.5% Amortization, 40-year sinking f Replacement Electrical energy Operation and maintenance	fund at 3	1.5%			\$ 9,700 3,300 1,400 35,300 3,600		

TOTAL

ESTIMATED COST OF FACILITIES TO DELIVER 9,000 ACRE-FEET PER SEASON OF COLORADO RIVER WATER FROM SAN DIEGO AQUEDUCT TO CAMP PENDLETON

(Based on prices prevailing in spring of 1955)

Interest, 3.5%

TOTAL

Operation and maintenance

Amortization, 40-year sinking fund at 3.5%

Capacity of conduit: 36.0 cfs						70,400 feet
Quan	tity	* *	Unit price	6	Co	st
J						
		€\$	1.10 0.50		\$1.05,700 40,300	
12,000	lin.ft.	lı	_		692,100 104,400 81,000 44,000 5,000	
12 1 3	each each each	2; 2; 1;	.200.00 ,000.00 ,200.00		4,100 17,400 2,200 6,000 2,400 15,900	\$1,120,500
		lı	ump sum		42,000	42,000
						\$1,162,500
;, 10%						\$ 116,300 174,400 29,100 \$1,482,300
	Quan 96,100 80,600 48,400 12,000 10,000	Quantity 96,100 cu.yd. 80,600 cu.yd. 48,400 lin.ft. 12,000 lin.ft. 10,000 lin.ft. 11 each 12 each 1 each 2 each 2 each	Quantity : 96,100 cu.yd. \$ 80,600 cu.yd. 48,400 lin.ft. 12,000 lin.ft. 10,000 lin.ft. 11 each 12 each 1 each 2,3 each 2 each 1 lin.	## Quantity : Unit price 96,100 cu.yd.	Quantity price ;	Quantity price Co 96,100 cu.yd. \$1.10 \$1.05,700 80,600 cu.yd. 0.50 40,300 40,300 48,400 lin.ft. 8.70 104,400 12,000 lin.ft. 8.10 81,000 1ump sum 1ump sum 5,000 12 each 1,450.00 17,400 1 each 2,200.00 2,200 3 each 2,000.00 2,400 1ump sum 15,900 1 ump sum 15,900 1 ump sum 15,900 1 ump sum 12,000.00 12,000 1 ump sum 12,000.00 12,000 10 ump sum 12,000.00 10 ump sum 15,900 1 ump sum 12,000.00 10 ump sum
51,900

17,500

700 و 3

73,100

\$ 46,000

ESTIMATED COST OF FACILITIES TO DELIVER 6,000 ACRE-FEET PER SEASON OF COLORADO RIVER WATER FROM SAN DIEGO AQUEDUCT TO FALLBROOK

(Based on prices prevailing in spring of 1955)

Item	:	Quan	ti tv	:		Unit price	:	Cos	st
CAPITAL COSTS		44441	<u> </u>			P1 100			
Pipe line									
Excavation			cu.yd.		\$	1.10		\$ 61,500	
Backfill		45 , 600	cu.yd.			0.50		22,800	
Pipe, reinforced concret furnish and install	ce,								
24-inch dia.		7 000	lin.ft.			8.50		8,500	
36-inch dia.			lin.ft.			14.60		534,400	
Fittings		50,000			ı	ump sum		27,200	
Outlet structure						ump sum		5,000	
Valves									
Air release, 3-inch di	.a.	_	each		_	370.00		2,200	
Blowoff, 6-inch dia.			each			,450.00		8,700	
Gate, 24-inch dia. 30-inch dia.			each each			,000.00		4,000 4,400	
Venturi meter			each			,200.00		2,400	
Right of way		_	oaon			ump sum		8,400	\$689,500
· ·						. 1		<u></u>	
Regulatory reservoir					1	ump sum		42,000	42,000
Q-1-4-4-7									8727 EOO
Subtotal									\$731,500
Administration and enginee	ring	7. 10%							\$ 73,200
Contingencies, 15%		5 , — • /•							109,700
Interest during constructi	on								18,300
TOTAL									\$932,700
									#/J=3100
ANNUAL COSTS									
Interest, 3.5% Amortization, 40-year sink	ci ng	fund at	3.5%						\$ 32,600 11,000
Operation and maintenance		- uii u u	J • J / ·						2,400

TOTAL

ESTIMATED COST OF SANTA MARGARITA BASIN WELL FIELD, PUMPING PLANT, PIPE LINE, AND REGULATORY RESERVOIR

(Based on prices prevailing in spring of 1955)

Capacity of pumps: 18 cfs		Seasonal	extractions:	5,700 acre-fee
Item :	Quanti ty		0	Cost
CAPITAL COSTS				
Well, gravel packed, drilled and cased, 18-inch dia.	8 each	\$2,900.00	\$ 23,200	
Pump, motor, and equipment installed	8 each	3,200.00	25,600	
Pipe, reinforced concrete in place 12-inch dia. 18-inch dia. 24-inch dia. 30-inch dia.	l,200 lin.ft. 5,600 lin.ft. 8,500 lin.ft. 4,200 lin.ft.	4.40 6.20 7.20 10.60	5,300 34,700 61,200 44,500	
Fittings		lump sum	7,300	
Valves		lump sum	5,200	
Meter	l each	1,200.00	1,200	\$208,200
Regulatory reservoir		lump sum	42,000	42,000
Pumping plant		lump sum	52,600	52,600
Subtotal				\$302,800
Administration and engineerin Contingencies, 15% Interest during construction	g, 10%			\$ 30,300 45,400
TOTAL				\$382,300
ANNUAL COSTS				
Interest, 3.5% Amortization, 40-year sinking Replacement Electrical energy Operation and maintenance	fund at 3.5%			\$ 13,400 4,500 2,200 35,200 5,700
TOTAL				\$ 61,000

APPENDIX K APPLICATIONS TO APPROPRIATE WATER

					,
					<i>U</i> ,
					1
					,
					A
					1
					e d
					r
					•
			,		
					Ap.
					- 3
		•			
					d
					- 3
					4
					ó
				•	133
				•	

APPLICATIONS TO APPROPRIATE WATER

APPENDIX K

7-19-20 R. R. and Georgia Kerr 75/1E-35E 3-13-31 Milton M. and Evelyn M. Lloyd 55/2E-20C 8-10-31 Gustav and Eugene Lawler, Jr. 95/1E-29C 11- 2-33 Milton M. and Evelyn M. Lloyd 55/2E-20E 7- 3-34 Estate of Alexander R. Hansen 85/4W-36D 11- 4-35 B. M. Jurkovioh 85/1W-25B 10- 7-37 Elmer B. Dendo 55/1E-12L 2-19-38 Cyril Meade Ewing 85/1W-29A 3-22-38 Sydney Grossman 8½/3E-31R 5-13-38 Adelbert S. Nelson 85/4W-30B Theodora L. Garnsey and 75/1E-39R 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-44 Maytin Grammer 56/2E-34L 9-21-45 Georgia E. Karr 75/1E-35E 9-26-45 Estate of Adalbert V. Studer 55/1E-28C	Appli- estion number	: Date : filed	: : Applicant :	Diversion : number :	Souroe	1/4	Location of point of diversion : Sec-:Town-: :Ner 4 : 1/4 : tion :ship :Range: 14	Seo- tion	nt of diversion :Town-: :Meric :ship :Range: 1an	Range:	on Merio- 1en	ion : Amount : :Merid-:applied for; :ian :or licensed :	Purpose :	Status
3-13-31 Milton M. and Evelyn M. Lloyd 95/2E-20C 8-10-31 Gustav and Eugene Lawler, Jr. 95/1E-29C 11- 2-33 Milton M. and Evelyn M. Lloyd 95/2E-20E 7- 3-34 Estate of Alexander R. Hansen 85/4W-36D 11- 4-35 B. M. Jurkovich 85/1W-25B 10- 7-37 Elmer B. Denic 95/1E-12L 2-19-38 Cyril Meade Eving 85/7W-29C 3-22-38 Sydney Grossman 85/4W-30B F-13-38 Adelbert S. Nelson 85/4W-30B 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-44 Macritin Grammer 9-21-45 Georgia E. Karr 9-21-45 Georgia E. Karr 9-22-45 Sylvey Grossmer 55/1E-39E	1922	7-19-20	R. R. and Georgia Kerr	75/1E-35E	Wilson Creek	Σ.	M	35	R	Ħ	S S	0.19 efs	Irrigation	Lioense
8-10-31 Gustav and Eugene Lawler, Jr. 95/JE-29C 11-2-33 Milton M. and Evelyn M. Lloyd 95/2E-20E 7-3-34 Estate of Alexander P. Hansen 85/W-36D 11-4-35 B. M. Jurkovloh 85/1W-25B 10-7-37 Elmer B. Dento 95/1E-12L 2-19-36 Cyril Heade Eving 85/JW-23G 3-22-36 Sydney Grossman 8½/3E-31R 5-13-36 Adelbert S. Nelson 85/5W-23J 12-6-39 Felix R. Garnsey and 7heodora L. Garnsey 85/W-29R 12-6-39 Felix R. Garnsey and 85/W-29R 12-6-39 Felix R. Grammer 95/1E-39E 1-22-44 Georgia E. Kerr 9-21-45 Georgia E. Kerr 9-21-45 Georgia E. Kerr 9-21-45 Georgia E. Kerr 9-26-45 Zerate of Adelbert V. Studer 95/2E-38C	6893	3-13-31	Milton M. and Evelyn M. Lloyd	9S/2E-20C	Unnamed Spring	M M	AN	20	82	2E	g S	820 gpd	Irrigation and domestic	Lioense
11- 2-33 Hilton M. and Evelyn M. Lloyd 95/2E-20E 7- 3-34 Estate of Alexander P. Hansen 85/4W-36D 11- 4-35 B. M. Jurkovich 85/1W-25B 10- 7-37 Elmer B. Denic 95/1E-12L 2-19-36 Cyril Heade Ewing 85/5W-23d 3-22-36 Sydney Grossman 8½/3E-31R 5-13-36 Adelbert S. Nelson 85/7W-23d 12- 6-39 Felix R. Garnsey and Theodora L. Garnsey 85/1W-29R 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-444 Martin Grammer 95/1E-34L 9-21-45 Georgia E. Kerr 75/1E-35E 9-21-45 Georgia E. Kerr 75/1E-35E 9-21-45 Georgia E. Kerr 75/1E-35E	7035	8-10-31	Gustay and Eugene Lawler, Jr.	9S/JE-29C	Cutca Creek	E E	N	29	84	8	ω ω	5,725 gpd	Irrigation and domestic	License
7- 3-34 Estate of Alexander F. Hansen 85/4W-36B 11- 4-35 B. M. Jurkovich 85/1W-25B 10- 7-37 Elmer B. Denic 95/1E-12L 2-19-38 Gyril Heade Ewing 85/5W-23d 3-22-38 Sydney Grossman 8½5/3E-31R 5-13-38 Adelbert S. Nelson 85/5W-23J 12- 6-39 Felix R. Garnsey and Theodora L. Garnsey 85/1W-29R 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-44 Maytin Grammer 55/1E-35E 9-26-45 Georgia E. Kerr 9-26-45 Georgia E. Kerr 9-26-45 Georgia E. Kerr	7731	11- 2-33	Milton M. and Evelyn M. Lloyd	9S/2E-20E	Unnamed Spring	≫	×	20	82	2E	g S	7,200 gpd	Irrigation and domestio	Lioense
11- 4-35 B. M. Jurkovich 85/18-25B 10- 7-37 Elmer B. Dendo 95/1E-12L 2-19-36 Cyril Meade Ewing 85/5W-23G 3-22-38 Sydney Grossman 8½/3E-31R 5-13-36 Adelbert S. Nelson 85/5W-23J 12- 6-39 Felix R. Garnsey and Theodora L. Garnsey 85/4W-30B 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-44 Maxtin Grammer 95/2E-34L 9-21-45 Georgia E. Kerr 75/1E-35E 9-26-45 Erate of Adelbert V. Studer 95/2E-38C	8007	7- 7-34	Estate of Alexander F. Hansen	8s/4w-36D	Sandia Creek	N N	K K N N	**	ន្តន	EE	SB)	2.5 efs	Irrigation and domestic	Permit
10- 7-37 Elmer B. Dento 9S/1E-12L 2-19-38 Cyril Meade Ewing 8S/5W-23a 3-22-38 Sydney Grossman 8½/3E-31R 5-13-38 Adelbert S. Nelson 8S/5W-23J 12-6-39 Felix R. Garns ey and Theodora L. Garns ey 8S/4W-30B 8-21-41 Edgar S. Lohman 8S/1W-29R 4-22-444 Maxtin Grammer 9S/2E-3HL 9-21-45 Georgia E. Kerr 7S/1E-35E 9-26-45 Eraste of Adelbert V. Studer 9S/2E-38C	1848	11- 4-35	B. M. Jurkovich	8S/14-25B	Unnamed Spring	N	R	25	೫	AT	ω ω	640 gpd	Domestie	Lioenge
2-19-38 Cyril Mesde Ewing 85/5W-234 3-22-38 Sydney Grossman 8½/3E-31R 5-13-38 Adelbert S. Nelson 85/5W-23J 12-6-39 Felix R. Garnsey and Theodora L. Garnsey and Theodora L. Garnsey 82/1W-29R 8-21-41 Edgar S. Lohman 85/1W-29R 4-22-444 Maxtin Grammer 95/2E-34L 9-21-445 Georgia E. Kerr 9-26-445 Georgia E. Kerr 9-26-445 Georgia E. Kerr	9137	10- 7-37	Elmer B. Denic	9S/1E-12L	Unnamed Spring	N	≯ S	12	8	3	s S	too gpd	Domestie	Tais en a
3-22-36 Sydney Grossman 8½S/3E-31R 5-13-38 Adelbert S. Nelson 8S/5W-23J 12-6-39 Felix R. Garnsey and Theodora L. Garnsey 8S/4W-30B 8-21-41 Edgar S. Lohman 8S/1W-29R 4-22-444 Maxtin Grammer 9S/2E-34L 9-26-45 Georgia E. Kerr 7S/1E-35E 9-26-45 Erate of Adelbert V. Studer 9S/2E-28C	9242	2-19-38	Cyril Meade Ewing	8s/5W-23Q	Unnamed Spring	j≊ Ω	N E	23	କ୍ଷ	M2	g S	0.025 cfs	Irrigation and domestic	License
5-13-36 Adelbert S. Nelson 85/5W-23J 12-6-39 Felix R. Garnsey and Theodora L. Garnsey 85/4W-30B 8-21-41 Edgar S. Lohman 85/1W-29R 14-22-444 Martin Grammer 9-21-445 Georgia E. Kerr 75/1E-39E 9-26-445 Georgia E. Kerr 75/1E-39E 9-26-445 Georgia C. Adelbert V. Studer 95/2E-28C	9259	3-22-38	Sydney Grossman	8 <u>4</u> 5/3E-31R	Cooper Caryon Greek	ι Ε	N E	33	3 2	3£	g S	0.10 of a and 9.0 af	Mining and domestic	Permit
12-6-39 Felix R. Garnsey and Theodora L. Garnsey and Theodora L. Garnsey 8-21-41 Edgar S. Lohman 4-22-44 Maxtin Grammer 9-21-45 Georgia E. Kerr 9-26-45 Zerate of Adelbert V. Studer 95/2E-286	9291	5-13-38	Adelbert S. Nelson	8S/5W-23J	Nelson Creek and Colman Creek	NANNN	別は 単 単 単 図 図 図 図 図 図 図 図 図 図 図 図 図 図 図 図	\$\$\$333	ន្ ន ន ន ន ន ន	<i>ቬቘቘቘቘ</i>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.025 ofs and 4.3 af	Irrigation and domestio	Permi
8-21-41 Edgar S. Lohman 8S/1W-29R 1 4-22-44 Magric Grammer 9-21-45 Georgia E. Kerr 7S/1E-39E 1 9-26-45 Zerate of Adelbert V. Studey 95/2E-28C	9783	12- 6-39	Felix R. Garnsey and Theodora L. Garnsey	8s/4w-30B	Cottonwood Creek	N	N	30	ষ্	**	s S	1.0 cfs	Irrigation	Permit
4-22-44 Martin Grammer 95/2E-34L 9-21-45 Georgia E. Kerr 75/1E-35E 19-26-45 Georgia C. Adelbert V. Studer 95/2E-280	10269	8-21-41	Edgar S. Lohman	8S/1W-29R	Hillside Cienega	N Fel	S E	29	೫	MΤ	ν m	3,500 gpd	Irrigation and domestio	License
9-21-45 Georgia E. Kerr 9-26-45 Egrate of Adelbert V. Studer 95/2E-280	30801	44-22-4	Martin Grammer	95/2E-34L	Unnamed Spring	N	S	ま	82	2E	S	16,000 gpd	Domestic	Permit
Estate of Adelbert V. Studer 95/2E-280	11158	9-21-45	Georgia E. Kerr	75/1E-35E	Wilson Greek	≯ ≡	×	35	K	=	S	0.25 cfs	Irrigation	Permit
	11363	9-26-25		95/2E-280	Ratšlesnakė Canyon	E Z	×	28	82	2E	en So	pd5/ 000 "9T	Irrigation and domestic	Parmire

APPLICATIONS TO APPROPRIATE WATER (acntimied)

Status	Permit	Pending	Permit	Permit d	Pending	Pending d	Pending	Pending	Permit	Pending	Pending	Permit	Pending
Purpose	Irrigation and demostic	Irrigation and donestic	Irrigation domestic, and municipal	Irrigation, domestic, and municipal	Irrigation and domestic	Irrigation, domestic, and municipal	irrigation, domestie, and municipal	Municipal	Irrigation	Irrigation and stock	Irrigation	Domestie and stock	Domestic
ion : Amount :Menic-sapplied for, : Aan : or licensed	40,000 af	60.0 ofs)	5,000 af) 2.5 afs	10,000 af	60.0 of snd 60,000 af	500 at 9,500 at	1,500 at 8,500 at	165,000 at	0.75 efs and 42 af	100 af	35 af	25 gra	2,000 gpd
slon :Meric-	ω ω		n n	g S	ω ω	n N N	ω α ν ν	S	SB)	s S	s S	m M	S B)
19.32 B	E	34	# #	Atq	Мų	程為	Min	Min	Atq Atq	2W	35	25	思思
nt of d :Temm=: :Ship :	8	ន	8 8	&	&	88	88	82	_{ని} న	R	88	82	ង ង
of point: 50c- :10	10	24	7	7	7	12 8	22	32	333	9	31	12	ដូដ
Losafion : 1/4	zi zi		2	e X	년 보	e e Z	E E	×	M M Z Z	3	\$# (2)	Se CO	S S
1/1	N		M B	N Ea	E E	Ω Ω	阿克克	3 2	習典	B	E Z	\$1 (1)	ល ល គេ គេ
Source	Temecula Greek	(1) Santa Margarita River	(2) Temeoula Creek Santa Margarita River	Santa Margarita River	Santa Margarita River	Rainbow Creek Santa Margarita River	Sandia Creek Santa Margarita River	Santa Margarita River	Cottonwood Greek	East Fork Varm Springs Creek	Briens Creek	Unnamed Spring Tributary to Coshuila Creek	Three Unnamed Springs Tributary to Cottonwood Greek
Diversion :	0S/1W-10D	None*	95/3W- 7DI	None*	None*	None*	None*	Mone*	8S/4W-30H	None*	8S/34-31L	75/2E-12N	8S/5W-13Q
Applicant	Vall Company	Santa Margarita Mutual Water Co.	Fallbrook Public Utility District	Pallbrock Public Utility District	Santa Margarita Mutual Water Co.	Pallbrook Public Utility District	Fallbrook Public Utility District	United States Mavy Department	Felix R. Garnsey and Theodora	Ao F. Borel	Paul D. Braúshaw, et al.	Doris I. Worsester	Mike A. Seery
Date filed	8-16-46	10- 4-46	10-11-46	10-11-46	11-12-47	11-28-47	11-28-47	84-06-9	12-12-49	2-10-50	11- 2-51	3~10~52	9~26~52
Appli- cation mumber	11518	11578	11586	11587	12152	12178	12179	12576	13505	13577	14561	14707	1,5031 A

^{*} Diversion works not acastrusted.

T)			
	1		

			- 3
			100
			,
			١
			* 4
	•	•	
			,
		•	

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

38' HIII, [

LUU LIUNAMI

DUE NUV 20 1969

NOV 1 7 REC'D

Book Slip-10m-8,'58(5916s4)458

168124 Calif. Dept. of public works. Div. of water

resources.

TC824 C2 A2 no•57

Call Number:

PHYSICAL SCIENCES LIBRARY

LIBRARY
university of california
davis
1681.24

