

UNIVERSITY*

A
;^N,VCHAM^IGN
* BOOKSTACKS

<#
LO

<NJ

O
o
z

lo

b
z
Ul
o
LU

a.

o

Scheduling a General Flexible

Manufacturing System to Minimize

Tardiness Related Costs

BEBR
FACULTY WORKING
PAPER NO. 89-1548

rHr Lfft/^y
Of H£

AP* 1 ? 1989
Of,

"' , '•
,

•.....:• -'i

AT. Raman
F. B. Talbot

R. V. Rachamadugu

College of Commerce and Business Administration

Bureau of Economic and Business Research

University of Illinois Urbana-Champaign

BEBR

FACULTY WORKING PAPER NO. 89-1548

College of Commerce and Business Administration

University of Illinois at Urbana- Champaign

April 1989

Scheduling a General Flexible Manufacturing System to

Minimize Tardiness Related Costs

N. Raman, Assistant Professor
Department of Business Administration

F. B. Talbot
University of Michigan

R . V . Rachamadugu
University of Michigan

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/schedulinggenera1548rama

Scheduling a General Flexible Manufacturing System
to Minimize Tardiness Related Costs

N. Raman
Department of Business Administration

University of Illinois
1206 South Sixth Street
Champaign, IL 61820

F. B. Talbot
Graduate School of Business Administration

University of Michigan
Ann Arbot, MI 48109

R. V. Rachamadugu
Graduate School of Business Administration

University of Michigan
Ann Arbot, MI 48109

ABSTRACT

We consider the problem of minimizing total tardiness in a

dynamic general flexible manufacturing system. While previous

investigations of this problem have focused on the relative

effectiveness of priority rules, we propose a solution approach

which decomposes the dynamic problem into a series of static

problems. An implicit enumeration algorithm is constructed for

solving the static problem exactly. We also develop a heuristic

solution procedure which is based on decomposing the multiple

machine problem into several single machine problems. A schedule

for the entire FMS is then developed around the sequence

generated for the bottleneck machine. Computational studies

indicate the efficacy of this procedure for both static and

dynamic scheduling problems.

1. INTRODUCTION

This paper addresses the problem of minimizing penalties arising

from job tardiness in a flexible manufacturing system (FMS) which

produces several part types to specific orders. We consider a

dynamic system with random job arrivals. We assume that the

operation sequence for each part type establishes a serial

precedence relationship among the operations. In addition, the

machine required for each operation, operation processing times

and travel times are deterministic and known. Preemption of any

operation is not permitted. The manufacturing system considered

in this paper is the Automated Manufacturing Research Facility at

the National Institute of Standards and Technology in

Gaithersburg, Maryland.

Much of the prior research on dynamic due date based scheduling

deals with the use of priority dispatching rules in job shops.

[See, for example, Carroll (1965), Conway (1965), Baker and

Bertrand (1982), Kanet and Hayya (1982), Baker and Kanet (1983),

Baker (1984) and Vepsalainen and Morton (1987).] One of the facts

which emerge from these studies is that the relative

effectiveness of a given priority rule depends upon the shop

loading conditions such as machine utilization, flow allowance

values, etc. However, under balanced machine workloads, Baker

(1984) found that the Modified Operation Due Date (MDD) rule

yielded lower tardiness values across a wide range of flow

allowances. [Raman's (1988) study showed that its effectiveness

is not carried forward to the case of unbalanced workloads.]

In this paper, we employ a solution methodology which is an

alternative to dispatching rules. We treat the dynamic scheduling

problem as a series of static problems. The proposed approach

requires solving the static problem entirely and implementing the

imminent solution on a rolling basis. In contrast to the local

dispatching rules investigated in previous studies, this approach

entails solving the global scheduling problem. Rinnooy Kan (1976)

shows this problem to be NP-complete. Development of effective

algorithms is difficult because of the lack of dominance

conditions and efficient bounding mechanisms.

We propose an implicit enumeration based algorithm for solving

this problem. In addition, we also develop a heuristic solution

procedure which is based on decomposing the multiple machine

problem into several one machine problems, and constructing the

schedule for the entire FMS around the bottlenecks machine. While

this solution approach requires greater computational effort, we

show that it results in significant improvement over some of the

well-known dispatching rules.

The remainder of this paper is organized as follows. The static

problem is formulated in. Section 2. The branch and bound

procedure used for solving this problem optimally is presented in

Section 3. Section 4 describes the decomposition-based heuristic

solution procedure. Experimental investigations of the static

problem are given in Section 5. We address the implementation of

the static solution procedure within a dynamic framework, and

present our computational experience in Section 6. Section 7

gives a summary evaluation of the suggested solution methods.

The notation used in this chapter is given in Appendix 1.

2. THE STATIC SCHEDULING PROBLEM

The static problem is generated for the jobs currently available

in the system. An integer programming formulation is presented

below for this problem. We assume without loss of generality

that the operations for each job are numbered such that the

successor operation has an index higher than that of its

predecessor.

Minimize E Tj (1)
J

subject to

E xtjk = 1; j = 1, . .,N, k = 1, .
. ,Nj (2)

t

E (t - Pjl) xtJ1 > E t xtjk ; j = 1 N, (3)
t t

k = 1, . . ,Nj f and (k, 1) t S
i

t+pJk -l
Z E E RiHm xqjk < 1; t = 1....T, m = 1....M (4)
j k q=t

I t x t j „ + E, - T, = d, ; k = N j , j = 1 , . . , N (5

)

t

xtj „ c {0,1}; Ej , Tj > 0, integer; for all j, k, t (6)

Equation (1) corresponds to the objective of minimizing total

tardiness. Constraints (2) ensure that each operation is

completed exactly once. Constraints (3) indicate the precedence

relationships among the various operations within a job, and

ensure that the operation processing times are taken into

consideration appropriately. Constraints (4) ensure that each

resource (machine and transporter) is assigned to at most one

operation at any given time. Constraints (5) measure the

tardiness of each job. Finally, constraints (6) specify the

integer nature of the variables.

In the above formulation, transportation is treated as a move

operation between two machining operations, or the load/unload

station and a machining operation. This is a reasonable

approximation of the real system for the following reasons.

First, in the system modeled, the transporter always returns to

the load/unload station after moving parts between machines.

Second, there are small, but adequate, input and output buffers

at each machine. Third, the time to return the transporter to the

load/unload station is small relative to the machining times.

If the transporter did not return to the load/unload station,

then the formulation would have to be modified to account for the

potentially large number of possible alternative routings. If

there were no buffers, or if the buffers were serious bottle-

necks, then these conditions would have to be modeled explicitly,

otherwise the schedule resulting from (1) - (6) could be

infeasible. Also, the above formulation and the proposed

solution approach assume that any machining operation does not

begin until the transporter returns to the load/unload station.

Because of condition three given above, this is a reasonable

approximation of reality. As a consequence, travel time can be

treated as the sum of the transporter round trip time and the

transfer time from one machine to another.

3. EXACT SOLUTION PROCEDURE

The formulation given by equations (1) - (6) results in a large

number of variables and constraints for problems of practical

size, thereby precluding the use of general-purpose integer

programming codes as solution methods. This problem can, however,

be viewed as a resource-constrained project scheduling problem

(or its subset, the resource-constrained job shop scheduling

problem) for which reasonably efficient optimum-seeking codes

exist for some objective functions. For example, the procedure

developed by Talbot (1982) can be used directly to solve the

objective of minimizing makespan, and it has been modified by us

to solve the tardiness problem.

Figure 1 illustrates how the problem given by equations (1) -

(6) can be viewed as a project scheduling problem. Each job

comprises a series of machine operations and transporter

movements, each of which is represented by a node in an acyclic

network. Each operation or move requires the use of a specific

resource for a specified period of time. A due date is associated

with the last move (returning the finished part to the

load/unload station) of each job.

Job 1

Job 3

Figure 1 - Network Representation of
the Scheduling Problem

The proposed solution methodology exploits this network structure

which obviates the need to explicitly generate the objective

function and the constraint set given by (1) - (6).

The procedure uses a depth-first branch and bound algorithm which

builds a schedule forward in time. A node at level L in the

solution tree has an associated array A n which contains the

indexes of operations which are schedulable at the next level.

The precedence relationships restrict the cardinality of A„ to

the number of jobs in the system, which reduces computer storage

as well as computational time requirements.

Starting with the unique node at level 0, the procedure selects

the next operation based on a priority index associated with each

operation or move. The priority scheme used in this study is

based on the Modified Due Date (MDD) rule. The descendent nodes

(operations) of any node are ranked in the nondecreasing order of

the modified due date of the job to which the operation belongs.

MDD is also used to generate the initial solution. Backtracking

rather than skiptracking is employed to keep storage requirements

at a minimum.

4. HEURISTIC SOLUTION APPROACH

In view of the computational complexity of the mean tardiness

problem and the limited effectiveness of dominance conditions and

lower bounding mechanisms, we need to consider heuristic solution

methods. As mentioned in Section 1, virtually all heuristic

approaches reported in the scheduling literature are based on

using local dispatching rules. While these procedures require

relatively less computational effort, the solution is of unknown

quality. The proposed solution procedure is an improvement

8

heuristic which uses global information. A brief description of

the procedure is given below. The individual steps are discussed

in detail subsequently.

First, we decompose the job due dates into the due dates for

individual operations within each job. Next, we construct the

initial solution through a forward scheduling approach starting

with the first operation of each job.

The third step attempts to improve upon the initial solution by

reassigning operation due dates (ODDs) and rescheduling

operations at each machine. The machines are ranked in the non-

increasing order of their total workload. At each machine,

starting with the most heavily loaded one, we rank the jobs in

the order of non-increasing job tardiness. The machines, and the

jobs at each machine, are scanned in the order of their ranks.

Scanning involves determining the best due date for each

operation within each job using a binary search procedure. For

each possible ODD value investigated during this search, the

entire system is rescheduled, and the value which yields the

minimum total tardiness is selected. Because each ODD

reassignment and rescheduling step may change the current

tardiness of one or more jobs, their ranks are continuously

updated.

The efficiency of such a decomposition approach is likely to

depend upon the order in which the machines are selected.

Because an average job spends the bulk of its total waiting time

at the bottleneck machine, it appears reasonable to suppose that

the performance of the entire FMS is significantly affected by

the sequence of operations at this machine. This explains the

rationale behind using relative machine workloads for determining

the criticality of machines. The individual steps of the

procedure are now discussed.

4.1 Determination of Initial ODDs

The ODDs used for generating the initial solution are derived

from the job due dates using the Total Work Content (TWK) rule.

Under this rule, the ODD of operation i in job j is given by

dj i = dj
, i . , + dj pj ± /pd

It can be seen that the flow allowance for operation i,

dj i
- d,

t j _ ! , is proportional to its processing time p i ± .

4.2 Construction of the Initial Solution

Given the operation due dates, the initial sequence is

constructed through a non-delay schedule generation procedure

[see, for example, Baker (1974)]. Ties among operations at a

given machine are broken using the Modified Operation Due Date

10

(MOD) rule. This rule selects the operation with the minimum

modified operation due date.

The modified operation due date of operation i in job j is given

by

MOD., i
= max (t + p 6 L , d

i ±)

where t is the time which the scheduling decision needs to be

made.

MOD has been found effective in several studies [see, for

example, Baker (1984)]. The following result states a possible

reason for its effectiveness.

THEOREM 1: For a given set of operation due dates, the total

tardiness incurred by two adjacent operations in a non-delay

schedule on any given machine does not increase if they are

sequenced according to the MOD rule.

PROOF: Refer to Appendix 2.

At the end of this step, if all jobs are completed on time, the

algorithm terminates. Otherwise, we proceed to reassign ODDs and

reschedule operations.

11

4.3 ODD Reassignment and Rescheduling of Operations

The initial solution generation procedure has three limitations.

First, it considers ODD assignment and operation scheduling

sequentially. Note that MOD addresses operation tardiness, not

job tardiness. While it provides a locally optimal schedule for a

given set of ODDs, the overall solution quality depends upon how

effectively job due dates are decomposed into the operation due

dates. Because it is possible for a scheduling rule to yield a

better solution for a different selection of ODDs, it is

desirable to consider ODD assignment and operation scheduling

simultaneously.

Second, it ignores the global impact of selecting an operation

ahead of another at a given machine. This is so because it is a

solution construction procedure, and at the time a scheduling

decision is made, its impact on operations to be scheduled later

is not known. Third, the MOD rule considers only non-delay

schedules. While non-delay schedules are reasonably effective in

general, they do not constitute the dominant set. On the other

hand, the set of active schedules does contain the optimal

solution. The proposed solution method attempts to eliminate

these limitations.

We rank the machines according to their workloads. Since the

relative ranking of machines remains unchanged, we can number

12

them according to their rank. We start with machine 1, i.e., the

most heavily loaded machine, and move down the list until all

machines are scheduled. At a given machine, all jobs are scanned

in the order of non-increasing tardiness. The rest of the

solution procedure is described with the help of the solution

tree shown in Figure 2. This tree is similar to a branch-and-

bound enumeration tree with the difference that each node

represents a complete solution.

Consider machine 1 first. Suppose we are considering job j which

requires operations numbered il, i2,.., II on machine 1.

Consider operation il. Let its ODD, as determined by TWK be

dj ± j , and let X! denote its reassignment. Also suppose that Xi

can take any value in the interval (Lj , Uj) . A descendant is

generated for each value of X 1 in this interval. For a given

value of X x , say x, the ODDs of other operations in j are

generated as follows:

dj K =
<*i . K - i

+ (x - Pj , ± j) Pj „ /Pj . t ! _ ,

for k = 1, . . , il-1

and djk = dj
,
„. x + (d

3
- x) pj ../(p, - P,

, x x)

for k = il+1, il+2 (.. t Nj

13

Initial Solution

tion

Job
J

Next
job

Machine
1

Next
Machine

Figure 2 - Solution Tree

14

In effect, we split job j into three "sub-jobs" j x j 2 and j 3 ,

where jj , consists of all operations prior to il, j 2 contains

only il, and j 3 comprises all operations subsequent to il. Due

dates of all operations within a sub-job are set independently of

other sub- jobs. These due dates are derived from the due date of

the corresponding sub- job using the TWK method, due dates of j a ,

j 2 and j 3 being x - p^ _ ± j , x and d., respectively. ODDs of

operations in other jobs remain unchanged.

The solution value for the descendant is determined by

rescheduling all jobs at all machines for the revised set of

ODDs. The rescheduling procedure generates an active schedule by

considering operations which are expected to arrive at a given

machine imminently, in addition to those which are already at the

machine at the time the scheduling decision is to be made. This

procedure is a revision of the Modified Operation Due Date rule

and it selects the operation with the minimum revised modified

operation due date (RMOD); RMOD of operation u in job v at time t

is given by

RMOD, „ = max [max (t,rwu)
+ p, u] + max (t,r, u) (7)

To ensure that no local left-shift is possible, the RMOD rule

considers only those operations which can be started before any

one of the conflicting operations can be completed. The

motivation behind using the RMOD rule is given by the following

result which parallels Theorem 1.

15

THEOREM 2: Suppose operation a in job b is the immediate

predecessor of operation c in job d on any machine in a given

sequence. Suppose further that operation a starts at time t, and

t< rdc < t + pb .. Then the total tardiness incurred by these

two operations does not increase with an interchange of a and c

if

RMODdc < RMODb

PROOF: Refer to Appendix 2.

The branch corresponding to the node with the minimum tardiness

is selected for further investigation. Also, the ODD of il is

frozen at the corresponding value of X x , say x*j . Simultaneously,

ODDs of all operations in job j preceding il are updated as

follows:

dj k = d>
. k . , + (x* ,

- Pj , i ,) Pj./Pj.ii-i

k = 1, . . ,il-l

Next, consider operation i2. The interval scanned for the

possible reassignment of its ODD X2 is (L2 , U2) where

i2
L 2

= I pj 1
+ x*

l=il+l

and U2
= dj

For a given value of X2 = x, the due dates of operations in job j

16

excluding il, i2 and those which precede il are generated as
follows

:

dj 1 =^.1-! + (* " **1) Pjl /(P j . i2 _, - Pj
. i !)

for 1 = il+1, il+2,.., i2-l

and dj 1
= d

t . t . > + (

d

d
- x) p i L / (p 5

- P
i # ± 2)

for 1 = 12+1, i2+2, . . , N,

ODDs of operations preceding and including il remain unchanged.

The ODD updating and operation rescheduling steps for i2 are

similar to those described earlier for il. We continue in this

manner for the remaining operations of job j. Subsequently, we

consider the job with the next highest tardiness and so on until

all operations on machine 1 are investigated. This cycle is

repeated at machines 2 through M in that order. In the general

step, suppose we are considering ODD reassignment of operation k

of job j at machine m. Also, suppose that after investigating

machines 1 through m-1, and all operations of job j prior to k on

machine m, we have frozen the due dates of operations Uj , u 2 , .
.

,

u x in job j. Suppose further that operation k is processed

between operations u L and u L j with frozen due dates of x* L and

x* x . ! respectively. Then, the ODD of k needs to be searched in

the interval (x* x , x* x . x) only. In addition, ODDs need to be

generated for only those operations which occur between u L and

17

It can be seen that as we go down the list of machines and move

from one operation to another of a given job at a machine, the

search interval reduces. However, near the top of the tree, it

can be quite wide resulting in a large number of descendant nodes

from a given parent node. We now describe an efficient procedure

for improving the search routine.

ODD Search Procedure

Theoretically, while searching for the reassigned ODD value of

the first operation il of job j on a given machine, we need to

consider the interval (0, dj) in unit steps. However, the lower

limit of this interval can be tightened by noting that the

il-1
earliest time il can start is I Pj i • Therefore,

1=1

il-1

1= 1

From (7) we have

RMODj
, ± , = max [max (t , r

3 . ± ,) + p t , ± x , d
s . 4 x] + max (t , r

i , ± ,)

RMODj
_ i i and, therefore, the priority of operation il is

independent of d
s t ± , if

dj.ii ^ max (t.rj
, ± ,) + P 3 . t i

il
The minimum value that dj ±1 can take is I p^ L . Hence,

1=1

18

il
the search interval can be limited to (I p., L , d^)

1 = 1

The search procedure can be further improved by noting that while

X can take many values, an operation can only occupy a given

number of positions in any sequence. In a single machine

problem, it can only be in n positions in a permutation schedule

where n is the total number of operations (or jobs). In the

multiple machine case, it is higher because of the interaction

effects at different machines. Nevertheless, the number of

positions that an operation can occupy at a given machine is

usually much smaller than the number of different values that X

can take.

Consequently, the operation completion time and, therefore, total

tardiness as well, remains unchanged for many sub-intervals

il
within (I pj t , dj) . [This is true for all operations, not

1 = 1

merely il]. Figure 3 illustrates this characteristic by

depicting the typical behavior of total tardiness with respect to

the reassigned ODD value X for any operation u of job v in the

interval (U, L)

.

19

Total

Tardiness

U X

Figure 3 - Graph of Total Tardiness against X

The procedure for searching the best value of X for an operation

in a given job employs a modification of the binary search

method. As shown in Figure 4, suppose that we need to search in

the interval (

L

, U) . Using TARD(x) to denote the total

tardiness of all jobs when X = x, we compute TARD (

L

) and TARD

(U) . Starting with the interval (L , U) we successively divide

each interval into two equal halves and compute the total

tardiness value at the midpoint of each half-interval. Within any

generated interval, scanning for the next half-interval is

initially done to the left. In other words, with reference to

Figure 4, we have

L + U± . ,

Ut = , i = 1,2,3,4

Total

Tardi-
ness

20

L U4 U3 U 2 U 4 Un

X

Figure 4 - Search Procedure

Scanning to the left within a half-interval terminates when it is

fathomed. An interval is said to be fathomed if it is the most

recently generated interval and the total tardiness values at its

end-points and mid-point are the same. In Figure 4, for example,

the interval (

L

, U4) is fathomed. Note that the fathoming

procedure will ignore changes in total tardiness values within an

interval, if in spite of such changes, t he same tardiness value

is realized at both end points and the mid-point of that

interval. While such occurrences are possible, they are somewhat

unlikely in most real problems. [We did not observe it in any one

of the 50 randomly generated problems.] It should, nevertheless,

be noted that while trying to achieve computational efficiency,

this search procedure may not always return the best value of X.

21

At the termination of left-scanning, the procedure next evaluates

the most recently generated and unfathomed interval to its right.

If the total tardiness values at both its end-points and its mid-

point are not the same, another half-interval is generated and

left-scanning is resumed. The procedure terminates when all

half-intervals are fathomed.

The search procedure yields all or nearly all such values of X

which give different values of total tardiness. The due date of

the operation under consideration is reassigned to the X value

which results in the minimum total tardiness.

Note that it is possible that the position of any operation of a

given job which results in the minimum total tardiness may result

in that job itself being late (if by doing so, tardiness of other

jobs improves significantly) . For this reason, it is desirable to

increase the upper limit of the search interval for the initial

operations of job j from d
s

to some arbitrarily large value T.

The actual value used for T is of marginal importance because

intervals which do not affect total tardiness are rapidly

fathomed. In our experimental study, T equaled the makespan of

the initial solution generated through the MOD rule.

We now describe our computational experience with this procedure

for both static and dynamic problems.

22

5 EXPERIMENTAL STUDY - STATIC PROBLEM

Two sets of experiments were conducted to assess the relative

performance of the scheduling procedure [hereafter referred to as

the Global Scheduling Procedure (GSP)] given in Section 4. The

first set compared GSP with six other well-known scheduling

procedures. The second set evaluated its performance relative to

the optimal solution obtained by the enumeration method described

in Section 3. The experimental design and test results are now

presented.

5.1 Experimental Design

The design of the first set of experiments is described first.

The heuristic solution methods selected for comparative purpose

were

:

1. Shortest Processing Time Rule (SPT) : This rule selects the

operation with the minimum processing time whenever a tie needs

to be broken at any machine. SPT was included in this study

because of its reported effectiveness in the case of tightly set

due dates.

2. Earliest Due Date Rule (EDD) : This procedure breaks ties in

favor of the operation with the minimum job due date. Previous

studies have shown EDD to be effective when due dates are loose.

23

3. Critical Ratio Rule (CRIT) : The critical ratio rule resolves

conflicts among operations by selecting the operation with the

minimum critical ratio, where the critical ratio of

operation i in job j is given by

CRj± = (cL. - tJ/Pj 4

where t is the time at which the scheduling decision is to be

made. To prevent anomalies arising when d^ < t, this ratio was

defined as

CRj± = (d
:

- t) P j±

in such cases.

4. Modified Job Due Date Rule (MDD) : The MDD rule breaks ties

in favor of the operation with the minimum modified job due date

MDD, where MDD of operation i in job j is given by

MDDj ±
= max (t + P., ± , d^)

5. Modified Operation Due Date Rule (MOD) : This rule is

described in Section 5.2. It is used for generating the initial

solution for GSP . While GSP is a solution improvement procedure,

and therefore, is likely to do better, MOD was included primarily

to evaluate the degree of improvement achieved. Consistent with

the previous studies, MOD was implemented in conjunction with the

TWK operation due date assignment procedure.

24

6. Hybrid Rule (HYB) : The hybrid rule is a combination of MOD

and MDD, and it recognizes the differences between machine

workloads. Under this rule, MDD is used at machines with more

than average workload, while MOD is used at non-bottleneck

machines

.

A comment will be made here regarding the relative computational

efforts of the various heuristic solution procedures. Except

GSP, all the scheduling rules are dispatching methods. SPT and

EDD require 0(MN log N) effort while CRIT, MOD, MDD and HYB

require 0(MN 2 log N) effort. Without the binary search

procedure, GSP runs in 0[MN 4
(I p

j) log N] time; the proposed
J

search method reduces this to 0(MN 5 log N) . In view of the larger

computational effort required, GSP was implemented with a time

trap of 20 seconds.

Data Design

For the first set of experiments, various scenarios were

generated by varying one or more of the following parameters:

1. System Configuration : Two system sizes - 5 machines and 10

machines, were considered. For each size, three levels of

relative machine workloads were generated. The first level

simulated a perfectly balanced system by providing equal

workloads at all machines. The second level represented systems

25

with a single bottleneck. In this scenario, the workloads on all

machines except the bottleneck were equal; the bottleneck machine

had 50% higher workload. The third level simulated systems with

a range of workloads. The relative workloads used for the 5-

machine system were (0.6, 0.8, 1.0, 1.3, 1.6), and for the 10-

machine system were (0.4, 0.6, 0.8, 0.9, 1.0, 1.0, 1.1, 1.2, 1.4,

1.6).

2. Job Configuration ; Two ranges were considered for the number

of jobs available for scheduling. The first varied uniformly

between 10 and 20 for the smaller problems, and the second varied

between 30 and 40 for the larger problems. For each range, the

number of operations within a job was allowed to vary uniformly

between 1 and 5 for the 5-machine system, and between 1 and 10

for the 10-machine system. All jobs had random machine routing

although the processing of successive operations on the same

machine was prohibited. Operation processing times were selected

from a uniform distribution in the interval (5,100). Two

parameters were used to control the tightness and the variation

of job due dates. The tardiness factor Z measures approximately

the proportion of jobs likely to be tardy while R determines the

range of job due dates. For given Z and R, the job due dates

were sampled from a uniform distribution in the

interval

[d (1 - R/2), d (1 + R/2)]

26

where the average job due date d is given by

-IN
d = -

(I Pj) (1 - Z).
M j=l

Z and R have been used extensively for generating test data in

single machine tardiness problems [see, for example, Srinivasan

(1971)]. Ow (1985) suggests a modification for a flow shop.

Because of the interaction effects among operations, Z is only an

approximate measure of the proportion of tardy jobs in multiple

machine systems. Nevertheless, it helps to anchor due date

tightness at various levels. Four combinations of due date

tightness and due date range were used by considering two levels

of Z - 0.2, and 0.6, and two levels of R - 0.5 and 1.5.

Scheduling Measures

The performance measure of primary interest is the mean (or

total) job tardiness (MT). For better comparison, we used a

normalized version of total tardiness (NMT) which is obtained by

dividing the sum of job processing times into total job

tardiness

.

To evaluate the robustness of a given scheduling rule, we also

monitored the measures of the proportion of tardy jobs (PT), the

standard deviation of tardiness (SDT), and total job flow time

(FT).

27

A total of 48 test scenarios was constructed using different

combinations of the system and job configurations. For each

scenario, 20 problems were generated by varying the seed values

for the random number generator. Performance measure values

reported for each scenario in Section 5.2 indicate the average

values over these 20 problems.

The second set of experiments considered a 3-machine, 5-job

system. The number of operations within each job was allowed to

vary between 1 and 3, and the operation processing times were

sampled from a uniform distribution in the interval (5,30). As

in the case of the first set of experiments, four combinations of

the tardiness factor and job due date range, for Z = 0.2 and 0.6,

and R =0.5 and 1.5, were considered. For each combination, 10

problems were generated randomly. The mean tardiness values for

these problems were aggregated and the average was recorded. The

size of the problems considered in the second set of experiments

was deliberately restricted in order to keep the computational

costs within reasonable limits. The scheduling procedures used in

both sets of experiments were coded in FORTRAN.

5.2 Experimental Results

The experimental results are shown in Tables 1 through 10. For

better presentation, the results obtained under the HYB

scheduling rule are omitted because they were quite similar to

28

the values obtained under MOD. The relative performance of

different scheduling rules with respect to normalized mean

tardiness for each test scenario is shown in Tables 1 through 4.

The results for the proportion of tardy jobs and the standard

deviation of tardiness are given in Tables 5 through 8. For the

sake of brevity, the values of these two scheduling measures

obtained at different levels of workload balance have been

averaged for reporting purposes. Table 9 depicts the total flow

time values obtained under different scheduling rules for

different combinations of the number of machines and the number

of jobs in the system. The values obtained under the other

combinations of the experiment parameters are averaged to yield

the reported results.

For ease of presentation, we denote the expected number of jobs

in a scenario by NJ and the number of machines by NOM. WL1

denotes the case in which machine workloads are balanced, WL2

represents the case with a single bottleneck and WL3 denotes the

case with a range of machine workloads.

Table 10 compares the mean tardiness values obtained under GSP

with the optimal solution values for the second set of

experiments. The number of times GSP found the optimal

solution in the 10 problems generated for each scenario is shown

in parentheses next to the GSP solution value.

29

As mentioned in Section 5.1, GSP was implemented with a time trap

of 20 seconds. This time trap was never required for the 5-

machine, 15-job; 10-machine, 15-job; and 5-machine, 35-job

problems. The average solution times for these problems were

0.209 seconds, 1.812 seconds, and 3.105 seconds respectively.

For the 10-machine, 35-job problem, however, the time trap was

required on many occasions, especially for the case in which

Z = 0.6 and R = 0.5. The average solution time for this problem

was 19.456 seconds after considering the time trap.

5.3 Analysis of Results

GSP can be seen to provide the best results for the measure of

normalized mean tardiness. It yields the lowest values of NMT in

45 out of 48 cases, resulting in improvements of the order of 3%-

28% over the next best rule. Its performance relative to other

scheduling rules, except MDD, remains robust across the various

test scenarios. Also, the improvement achieved over the initial

solution provided by MOD is significant. However, for the

measures of proportion of tardy jobs and standard deviation of

tardiness, it has an average performance. In general, these

experiments reveal that rules which are superior for PT give

inferior results for SDT. GSP can, therefore, be seen as

providing a compromise between these two criteria. For the

measure of total flow time, however, GSP is, without exception,

the best rule across all scenarios. Its relative performance

30

improves as the number of machines and/or the number of jobs

increase

.

Among the other rules, MDD is, in general, the best for NMT. It

yields the best solutions in the remaining 3 cases. Unlike GSP,

however, it has a variable performance relative to other

scheduling rules, and in particular, is less effective when the

tardiness factor and the job due date range are small. MDD is

quite effective for reducing the proportion of tardy jobs and

performs reasonably well for the total flow time criterion as

well. It can, however, lead to large values of the standard

deviation of tardiness.

MOD and HYB yield reasonably good results for NMT, while EDD and

CRIT are the best rules for SDT, and SPT is effective for PT and

FT.

The results of the second experiment depicted in Table 10,

indicate that GSP frequently finds the optimal solution, and in

general, gives mean tardiness values close to the optimum for

small problems. However, we note that these results cannot be

generalized to larger problems.

0..286 0,.299 0..297 0,.248 0. . 179

0.,347 0,.387 ,337 0,.287 0.,235

0. 459 0.,531 0.,424 0, 390 0. 331

31

TABLE 1

NORMALIZED MEAN TARDINESS

5-Machine System; Average Number of Jobs = 15

SPT EDD CRIT MDD MOD GSP

Z=0.2; R=0.5

WL1 0.329

WL2 0.364

WL3 0.455

Z=0.2; R=1.5

WL1 0.536

WL2 0.560

WL3 0.632

Z=0.6; R=0.5

WL1 0.795

WL2 0.818

WL3 0.898

Z=0.6; R=1.5

WL1 0.884

WL2 0.914

WL3 0.990

0.417 0.427 0,.391 0.431 0,.334

0.456 0.503 0,,442 0.457 0..366

0.531 0.599 0. 518 0.521 0.,440

0,.847 .900 0,.797 0,,819 0.671

0,.898 .965 0.,809 0.,838 0.711

1. 004 1 .060 0.,871 0. 923 0.782

0.879 0.922 0.830 .832 0.,727

0.932 1.023 0.848 0..879 0.,753

1.042 1.131 0.917 0.,946 0. 839

32

TABLE 2

NORMALIZED MEAN TARDINESS

10-Machine System; Average Number of Jobs = 15

Z=0.2; R=0.5

WL1

WL2

WL3

Z=0.2; R=1.5

WL1

WL2

WL3

Z=0.6; R=0.5

WL1

WL2

WL3

Z=0.6; R=1.5

WL1

WL2

WL3

SPT EDD CRIT MDD MOD GSP

0.,521 0,,508 0,,512 ,511 0,,495 0,,426

0.,522 0,,520 0. 508 0.,529 0.,484 0,,436

0.,601 0. 595 0. 598 0.,600 0.,577 0. 509

0,,609 0,,580 0, 580 0,,595 0,,568 0,.505

0. 613 0.,593 0. 592 0. 603 0,,567 0.,514

0, 692 0. 655 0. 660 0. 656 0. 649 0. 582

0,,832 0,.836 0,.852 0,,831 0,.817 0,,732

0.,839 0,.844 0,,852 0.,826 0,,827 0.,750

0.,914 0,.926 0.,937 0. 908 0.,908 0. 822

0.875 0,,868 0,,888 0,,862 0,,865 0,,781

0.882 0,,878 0.,884 0.,864 0.,864 0.,794

0.958 0.,958 0.,969 0,,951 0. 940 0. 860

33

TABLE 3

NORMALIZED MEAN TARDINESS

5-Machine System; Average Number of Jobs = 35

SPT EDD CRIT MDD MOD GSP

Z=0.2; R=0.5

WL1 0.354 0. , 180 0.231 0. 175 0..194 0. 136

WL2 0.443 0. 409 0.521 0.346 0..304 0.265

WL3 0.633 0. 642 0.849 0.524 0. 544 0.440

Z=0.2; R=1.5

WL1 0.850 0..367 0,.411 0.328 0.424 0.345

WL2 0.923 0.,510 0,,578 0.427 0.509 0.432

WL3 1.061 0. 678 0.,760 0.575 0.643 0.553

Z=0.6; R=0.5

WL1

WL2

WL3

Z=0.6; R=1.5

WL1

WL2

WL3

1.201 1 .165 1,.506 0,.991 1.305 0,,963

1.227 1,.335 1..693 1,.084 1.317 0.,995

1.405 1.,661 2..043 1..255 1.475 1. 148

1 .463 1 . 122 1,.303 0.977 1.268 .980

1,.507 1..316 1,.512 1.067 1.293 1,.031

1,.666 1,.638 1,,902 1.262 1.488 1..194

34

TABLE 4

NORMALIZED MEAN TARDINESS

10-Machine System; Average Number of Jobs = 35

SPT EDD CRIT MDD MOD GSP

Z=0.2; R=0.5

WL1

WL2

WL3

Z=0.2; R=1.5

WL1

WL2

WL3

Z=0.6; R=0.5

WL1

WL2

WL3

Z=0.6; R=1.5

WL1

WL2

WL3

0..416 0,.337 0,.363 0.,344 0.,336 0.268

0,.456 0..418 0,.478 0. 395 0.,385 0.305

0.,633 0.,624 0,,745 0. 555 0.,608 0.460

0.,665 0.,424 0,.458 0. 434 0,,501 0,.420

0.,692 0.,489 0.,536 0. 480 0..543 0.,449

0.,841 0. 675 0. 716 0. 604 0. 701 0.,565

.989 .980 1. . 124 0.919 1.010 .881

1 .030 1 .055 1..202 0.934 1.043 .905

1,.202 1..278 1..476 1.075 1.251 1,.041

1.100 1.007 1,.094 0. 960 1.071 .920

1.133 1.080 1,.184 0. 984 1.101 0..957

1.296 1.302 1,.398 1. 125 1.298 1..090

NJ=15

35

TABLE 5

PROPORTION OF TARDY JOBS

5-Machine System

SPT EDD CRIT MDD MOD GSP

Z=0.2;
R=0.5 0.410 0.447 0.563 0.379 0.540 0.399

Z=0.2;
R=1.5 0.441 0.490 0.558 0.429 0.472 0.428

Z=0.6;
R=0.5 0.654 0.740 0.867 0.612 0.800 0.668

Z=0.6;
R=1.5 0.637 0.757 0.851 0.618 0.748 0.650

NJ=35

Z=0 . 2

;

R=0.5 0.651 0.645 0.740 0.575 0.708 0.651

Z=0.2;
R=1.5 0.640 0.669 0.715 0.610 0.659 0.622

Z=0 . 6

;

R=0.5 0.783 0.822 0.887 0.741 0.841 0.802

Z=0 . 6

;

R=1.5 0.796 0.824 0.877 0.744 0.841 0.799

36

TABLE 6

PROPORTION OF TARDY JOBS

10-Machine System

SPT EDD CRIT MDD MOD GSP

NJ=15

Z=0.2;
R=0.5 0.271 0.267 0.412 0.223 0.342 0.228

Z=0 . 2

;

R=1.5 0.353 0.311 0.364 0.262 0.325 0.259

Z=0.6;
R=0.5 0.557 0.620 0.849 0.528 0.819 0.524

Z=0.6;
R=1.5 0.559 0.675 0.817 0.546 0.750 0.565

NJ=35

Z=0.2;
R=0.5 0.441 0.471 0.700 0.403 0.591 0.478

Z=0 . 2

;

R=1.5 0.467 0.499 0.592 0.424 0.528 0.452

Z=0.6;
R=1.5 0.687 0.724 0.911 0.602 0.849 0.784

Z=0.6;
R=1.5 0.678 0.767 0.885 0.642 0.820 0.752

37

TABLE 7

STANDARD DEVIATION OF TARDINESS

5-Machine System

SPT EDD CRIT MDD MOD GSP

NJ=15

Z=0.2;
R=0.5 100.0 87.3 87.0 102.3 78.0 78.7

Z=0 . 2

;

R=1.5 134.7 93.7 97.0 115.3 108.3 100.3

Z=0.6;
R=0.5 150.3 140.7 140.0 174.7 142.7 153.3

Z=0.6;
R=1.5 165.0 132.0 139.0 175.7 157.7 163.7

NJ=35

Z=0 . 2

;

R=0.5 173.7 169.0 156.3 201.7 161.7 159.7

Z=0.2;
R=1.5 202.0 181.3 176.3 214.0 193.0 186.3

Z=0.6;
R=0.5 211.0 207.0 203.0 246.0 203.0 205.7

Z=0 . 6

;

R=1.5 222.0 208.3 210.0 254.0 219.0 220.7

38

TABLE 8

STANDARD DEVIATION OF TARDINESS

10-Machine System

SPT EDD CRIT MDD MOD GSP

NJ=15

Z=0.2;
R=0.5 171.7 134.3 146.0 144.7 134.3 134.3

Z=0.2;
R=1.5 263.3 107.3 118.3 139.0 158.3 158.7

Z=0.6;
R=0.5 283.0 272.3 281.0 285.0 269.7 279.7

Z=0.6;
R=1.5 324.3 226.7 243.7 290.7 294.7 302.0

NJ=35

Z=0 . 2

;

R=0.5 221.7 193.0 186.0 223.0 191.0 190.0

Z=0.2;
R=1.5 297.0 173.3 183.3 233.0 239.3 239.0

Z=0.6;
R=0.5 321.3 310.0 292.3 366.3 302.7 316.3

Z=0 . 6

;

R=1.5 353.7 270.3 276.7 372.3 333.3 343.0

39

TABLE 9

TOTAL FLOW TIME

SPT EDD CRIT MDD MOD GSP

N0M=5

;

NJ=15 346.7 375.9 404.4 357.8 389.8 305.0

N0M=5

;

NJ=35 675.3 737.1 846.3 702.8 821.7 628.6

N0M=10;
NJ=15 473.0 479.3 489.9 467.4 482.5 324.0

NOM=10;
NJ=35 753.0 782.2 871.2 746.5 840.9 591.9

TABLE 10

MEAN TARDINESS

Comparison with Optimal Solution

Optimal GSP ' s Degree of

Solution Solution Suboptimality

Value Value (%)

Z=0.2;
R=0.5 16.6 17.5 (7) 5.4

2=0.2;
R=1.5 23.5 24.8 (6) 5.5

Z=0.6;
R=0.5 42.7 44.1 (5) 3.3

Z=0 . 6

;

R=1.5 46.4 47.8 (6) 3.0

40

6. EXPERIMENTAL STUDY - DYNAMIC PROBLEM

Experimental investigation of the dynamic scheduling problem

addressed the effectiveness of implementing the solution of the

static problem on a rolling basis. In a dynamic environment, a

static problem needs to be generated whenever a new job arrives.

At that point in time, the network depicted in Figure 1 is

generated afresh taking into account the operations already in

process. Note that at that point in time, one or more machines or

the material transporter can be busy. Since pre-emption is not

permitted, such resources are blocked out for the period of

commitment. The optimal (or best) solution determined by the

solution procedure is implemented until the next job arrives when

the process of generating and solving the static problem is

repeated. Because of the computational costs involved, the

experimental study utilized GSP, instead of the optimum-seeking

method described in Section 3, for generating the solution to the

static problem.

6.1 Experimental Design

The experimental study addresses the measures of mean job

tardiness, proportion of tardy jobs, standard deviation of

tardiness and mean flow time. The simulation model considered

twenty part types. The number of operations in each part type

ranged between 4 and 10; successive operations on any part type

41

were done on different machines. The system comprised five

machines and a material transporter. In addition, there was a

load/unload station where incoming jobs were received and to

which finished jobs were routed. The material transporter was

assumed to be located at the load/unload station when not in

service. The experiments were designed to yield an overall system

utilization of 80%.

Job arrival followed a Poisson process. An incoming job was

equally likely to belong to any of the twenty part types. Upon

its arrival, a job was assigned a due date based on the Total

Work Content (TWK) rule. According to this rule, the due date dj

of job j is given by,

dj = a, + F Pj

where a
t

is the arrival time of job j, p^ is its total processing

time and F is the flow allowance. As seen from the above

equation, due date tightness can be controlled by varying the

flow allowances.

Three levels of due date tightness were achieved by using job

flow allowances of 3, 4, and 5. In addition, another set of

simulation runs was conducted in which the job flow allowance was

allowed to vary uniformly between 1 and 8. This set was used

primarily to assess the robustness of ODD assignment rules with

respect to variability in flow allowance. The operation

processing times were designed to yield workload imbalance; the

42

actual machine utilization ranged from 66% to 93%, while the

transporter utilization was 7%.

We also generated an additional scenario in which the machine

workloads were balanced while keeping the overall system

utilization fixed. This was achieved by varying the operation

processing times while ensuring that the job processing times

remain the same as in the case of unbalanced workloads. [The

realized utilizations varied between 78% and 82%.

]

We compared MOD, MDD and HYB dispatching rules with GSP. For

implementing HYB, any machine with more than average workload was

treated as a bottleneck. GSP was implemented with a time trap of

1.0 CPU seconds in order to keep computational costs within

reasonable limits. In the experiment conducted, the size of the

static problem, expressed in terms of the number of operations,

varied between 9 and 107. Statistics pertaining to individual

jobs were aggregated over a week and recorded as a single

observation. The length of the simulation run covered 2650 jobs

in the steady state. The method of batching was used to develop

the summary statistics.

The scheduling rules were coded in FORTRAN and were interfaced

with the simulation model written in SIMAN.

43

6.2 Experimental Results

The experimental results are shown in Tables 12 through 19.

Tables 12 and 13 show the values of mean tardiness obtained under

the MOD, MDD, HYB and GSP scheduling rules in the second

experiment under the conditions of balanced and unbalanced

workloads respectively. Tables 14 and 15 present the values of

the proportion of tardy jobs, while the standard deviation of

tardiness is shown in Tables 16 and 17. Mean flow time values

are shown in Tables 18 and 19.

While implementing GSP, we monitored the number of times GSP was

not able to fully solve a static problem generated during the

simulation run because of the time trap. In the case of balanced

workloads, the proportion of such problems of the total number of

problems generated was approximately 19%. It increased to 34%

for unbalanced workloads. This was primarily due to the fact

that unbalanced workloads increase average job flow time. At any

given point in time, therefore, there are more jobs in the system

which results in larger static problems. Consequently, in the

presence of the time trap, fewer static problems were solved over

the length of the simulation run.

44

TABLE 12

MEAN TARDINESS

Balanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UNI[1,8)

324 115 36 84

483 164 31 82

354 141 42 96

288 100 13 65

TABLE 13

MEAN TARDINESS

Unbalanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UN(1,8)

869 552 363 508

901 502 268 361

855 467 250 325

791 461 240 370

45

TABLE 14

PROPORTION OF TARDY JOBS

Balanced Workloads

Scheduling Flow Allowance

Rule

MOD

MDD

HYB

GSP

3 4 5 UN(1,8)

0.279 0. 125 .042 0. 137

0.338 0. 142 0,.050 0. 152

0.272 0. 114 0,.041 0. 144

0.265 0.113 0,.026 0. 126

TABLE 15

PROPORTION OF TARDY JOBS

Unbalanced Workloads

Scheduling Flow Allowance

Rule

MOD

MDD

HYB

GSP

3 4 5 UN(1,8)

0.361 0. 198 0.,125 0.233

0.400 0.231 0. , 154 0.254

0.400 0.221 0. , 144 0.251

0.386 0.218 0. 146 0.260

46

TABLE 16

STANDARD DEVIATION OF TARDINESS

Balanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UN(1,8)

357 171 81 118

523 210 45 82

357 194 69 105

346 158 33 69

TABLE 17

STANDARD DEVIATION OF TARDINESS

Unbalanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UN(1,8)

885 647 472 610

926 624 352 456

896 599 342 409

875 564 321 456

47

TABLE 18

MEAN FLOW T IME

Balanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UN(1,8)

2614 2706 2773 2725

2786 2720 2653 2705

2627 2664 2686 2685

2546 2632 2715 2679

TABLE 19

MEAN FLOW TIME

Unbalanced Workloads

Scheduling

Rule

MOD

MDD

HYB

GSP

Flow Allowance

3 4 5 UN(1,8)

3254 3360 3480 3450

3254 3226 3229 3228

3195 3134 3286 3163

3040 3259 3359 3322

48

6.3 Analysis of Results

The results indicate that the selection of a different (and

appropriate) dispatching rule at the bottleneck machine improves

the system performance substantially. In particular, HYB

produced results which were both effective and robust across

varying levels of due date tightness.

However, among the scheduling rules, GSP yields the best overall

results for mean tardiness. In the case of balanced workloads,

there is a noticeable difference in the tardiness values obtained

under GSP and the next best rule at a given flow allowance. This

difference is retained for all flow allowance levels, and for

random flow allowance as well. One-tailed tests of paired

differences between GSP and the next best rule at a given flow

allowance indicate that the null hypothesis concerning the

equality of means can be rejected at a significance level of 0.24

when F =3, and at significance levels in the range of 0.30-

0.32 for other F values. [Stronger results, in terms of lower

significance levels, are difficult to achieve primarily because

of the large values of standard deviation of tardiness obtained

as shown in Table 16. This is typical of dynamic problems

especially when job arrival follows a Poisson process.]

The other scheduling rules exhibit variable relative performance,

with MOD emerging superior at lower F values while MDD gives

49

better results when due dates are loosely set and when they are

assigned randomly.

When workloads are unbalanced, GSP continues to yield superior

results for deterministic flow allowances. At F =3, the null

hypothesis can be rejected at a significance level of 0.22.

However, the difference between GSP and the next best rule HYB is

not significant at higher values of F. In fact, HYB emerges

superior (at a significance level of 0.26) when due dates are set

randomly

.

Deterioration in the relative performance of GSP in the

experiments with unbalanced workloads is, at least partially,

attributable to the fact that, in this case, less than the best

solution is returned in many more instances of the static problem

within the computational time trap used. This is due to two

factors. First, for the reason stated in Section 5.2, the size

of the average static problem is larger.

Second, investigations of the static problem reveal that, for the

same problem size, greater job due date variability leads to

larger solution times. This explains why GSP ' s performance is

bettered by HYB and MDD when due dates are randomly set. If the

available solution time is not adequate to obtain the best

solution, GSP is likely to yield results similar to those given

by MOD which provides the initial solution, although a comparison

50

of these two rules indicates that significant improvements in

tardiness values are achieved within the time trap itself.

GSP also results in the best values of proportion of tardy jobs

when workloads are balanced, although when due dates are tightly

set, HYB gives results which are not significantly different.

However, for unbalanced workloads, MOD is consistently superior,

while GSP, HYB, and MDD exhibit similar performance.

GSP is effective for the criterion of standard deviation of

tardiness as well for balanced workloads across the range of flow

allowances studied. The other three rules show variable relative

performance with MOD, and to a lesser extent, HYB giving better

results for tight due dates, while MDD is superior for higher as

well as variable flow allowances.

For the measure of mean flow time, GSP exhibits a more variable

performance. For both balanced and unbalanced workloads, GSP

gives the best results when due dates are tight. For higher flow

allowances, MDD and HYB yield better results in general.

7 . SUMMARY

This study examines the effectiveness of decomposing a dynamic

mean tardiness problem into a series of static problems and

implementing the solution to the static problem on a rolling

51

basis in a FMS . In doing so, it also evaluates the impact of the

solution quality for the static problem within a dynamic

framework. We present an implicit enumeration-based optimum-

seeking method for the static problem. We also develop a

decomposition heuristic which provides efficient solutions with

reasonable computational effort.

The results of this study reveal that the efficacy of

implementing the optimal or near-optimal solutions to the static

problems on a rolling basis reported in Raman et al. (1989) is

carried to a multiple machine system as well. Experimental

investigations of both static and dynamic problems indicate that

by expending a little extra computational effort in developing a

global schedule for the entire system, significant improvement

over local dispatching rules can be achieved. Note that, for the

dynamic problem, GSP was implemented with a time trap of 1.0 CPU

second, and therefore, it was not able to solve many static

problems completely. In a real system, the CPU time trap would

not be needed. Computations could continue until there was a

system change (for example, a job arrival) that triggered the

need for a new schedule. Generally, this time would be in

minutes or hours (not 1.0 second), and hence, more static

problems would be solved completely which could possibly lead to

further improvement in the performance of GSP. These arguments

also imply that, in real systems, optimum- seeking approaches such

52

as the procedure presented in Section 3 merit serious

consideration.

However, if for some reason there is no recourse other than to

use dispatching rules, this study indicates the need to recognize

the difference in the relative machine workloads. In a balanced

system, MOD emerges as the best rule when due dates are tightly

set while MDD is shown to be the best for larger flow allowances.

V/hen workload imbalances exist, HYB is shown to be effective

across all levels of due date tightness investigated in this

study.

ACKNOWLEDGEMENT

This research was partially supported by the IBE Summer Research

Grant at the University of Illinois.

53

APPENDIX 1

NOTATION FOR THE MULTIPLE-MACHINE TARDINESS PROBLEM

j Job index, j = 1, . . , N

J Set of available jobs = [j}

m Machine index, m = 1, . . , M

t Time period, t = 1, . . , T, where T is the scheduling
horizon

dj Due date of job j

Pj Processing time of job j

r., Ready time of job j

Cj Completion time of job j

Sj Set of pairs of adjacent operations in job j, (k,l) z S
j

if
operation K immediately precedes operation 1 in job j

N, Number of operations in job j

T;, Tardiness of job j = max (0, c
i

- d
t)

E
i

Earliness of job j = max (0, d
i

- c
i)

Pi k Processing time of operation k in job j

Pj k Remaining processing time for job j at operation k

Wj k Remaining waiting time for job j at operation k

54

dj „ Due date of operation k in job j

r
i k Ready time of operation k in job j

x t i *

1, if operation k of job j is

completed at time t

0, otherwise

Rj k

1, if operation k of job j requires

machine m

0, otherwise

55

APPENDIX 2

PROOFS OF THEOREMS 1 AND 2

We present the proof of Theorem 2 first. As shown in Figure 5,

let o be a sequence of operations on a given machine in which

operation a in job b is the immediate predecessor of operation c

in job d. Let a' be the sequence of operations formed by

interchanging these operations as shown in Figure 6.

Figure 5 - Sequence a

Figure 6 - Sequence a'

Let T(o) and T(o') denote the total tardiness of operations a

and c in a and o' respectively. Given that

t < rdc < t + p b .

we need to show that

RMODdc <, RMODb . implies T = T(o) - T(o') >

56

We have

T = max (0, t + pb . - db .) + max (, t + pb . + pd c - dd c)

- max (, rd c + pd
- dd c)

- max (, rd c + pd c + pb . - db .)

For simplicity, we drop references to jobs b and d from our

notation. Then

T = T. + Tc - T' e - T\ (Al)

where

T. = max (0, t + p. - d.) ; Tc = max (0, t + p. + pc - dc)

T' c = max (0, rc + pe - dc) and

T'. = max (0, r + pc + p. - d.) .

Note that T'. > T. , and Tc > T' c .

Because RM0D e <, RMOD. , we have

max [max (t,rc) + pe , dc] + max (t,r c)

< max [max (t,r.) + p. , d.] + max (t,r.)

or max (

r

c + pc , dc) + r c < max (t + p. , d.) + t (A2)

Depending upon the values of rc + pc , dc , t + p. , and d. ,

the following four cases are possible.

57

Case I ; r + p c £ d c ; t + p. > d.

From (A2) it follows that

(r c + Pc) + r c < (t + p a) + t (A3)

In this case T. , Te , T" . , and T' c > 0, and

T = T, +TC - T' c - T'.

= (t + p.) - (r c + p c) + t - r c > [from (A3)]

Case II : rc + p c > dc ; t + p. < d.

From (A2) we have

(rc + p c) + r c < d. + t (A4)

In this case, Tc > 0, T' B > 0, T a = 0, and T'. > 0.

Also, T = T c - T' c - T'. . It suffices to consider only

the case in which T" . > 0. In this case,

T = (t + p.) - rc - (

r

e + pc + p. - d a)

= d. - (r e + pc) + (t - rc) > [from (A4)]

Case III ; rc + pe < dc ; t + p. > d.

From (A2) we have

dc + rc < (t + p.) + t (A5)

In this case, T. > 0, Tc > 0, T" c =0, and T' c > 0.

58

It follows that

T = T. + Tc - T'.

= t + (t + p.) - (r e + dc) > [from (A5)]

Case IV : r c + p c < dc ; t + p. < d.

From (A2), we have

d c + rc < d. + t (A6)

In this case T. = Tc = 0, T'. > 0, and T'„ > 0. Hence,

T = Te - T'.

= max (0, t + p. + p c - dc)

- max (0, rc + p c + p. - d.)

> [from (A6)

]

This completes the proof of Theorem 2. Consider Theorem 1 next.

In a non-delay schedule generation procedure, we consider only

those operations which are currently available at a machine.

Therefore, max (t,rc) = t, and the RMOD rule reduces to the MOD

rule. Also, since there is no idle time inserted in the sequence

because of an interchange of operations a and c, the tardiness of

operations following these remains unchanged. The result stated

in Theorem 1 follows immediately. This completes the proof of

Theorem 1

.

59

REFERENCES

Baker, K. R. (1974), Introduction to Sequencing and Scheduling ,

John Wiley and Sons, New York, NY.

Baker K. R. (1984), "Sequencing Rules and Due Date Assignments
in a Job Shop", Management Science , Vol. 30, 1093-1104.

Baker, K. R. and J. M. W. Bertrand (1982), "A Dynamic Priority
Rule for Sequencing Against Due dates", Journal of
Operations Management , Vol. 3, 37-42.

Baker, K. R. and J. J. Kanet (1983), "Job Shop Scheduling with
Modified Due dates", Journal of Operations Management ,

Vol. 4, 11-22.

Carroll, D. C. (1965), "Heuristic Sequencing of Single and
Multiple Component Jobs", Ph.D. Dissertation, MIT,
Cambridge, MA.

Conway, R. W. (1965), "Priority Dispatching and Job Lateness in a
Job Shop", Journal of Industrial Engineering , Vol. 16,
123-130.

Kanet, J. J. and J. C. Hayya (1982), "Priority Dispatching with
Operation Due dates in a Job Shop", Journal of Operations
Management , Vol. 2, 155-163.

Ow, P. S. (1985), "Focused Scheduling in Proportionate
Flowshops", Management Science , Vol. 31, 852-869.

Rachamadugu, R. V., N. Raman and F. B. Talbot (1986)
, "Real-Time

Scheduling of an Automated Manufacturing Center", in
Proceedings of the Conference on Real-Time Optimization in
Automated Manufacturing Facilities , National Bureau of
Standards, Gaithersburg, MD, 293-316.

Raman, N. (1988), "Real Time Scheduling Problems in a General
Flexible Manufacturing System", Ph. D. Dissertation,
University of Michigan, Ann Arbor, MI.

Rinnooy Kan, A. H. G. (1976), Machine Scheduling Problems
Classification, Complexity, and Computations , Nijhoff,
The Hague, Netherlands.

Talbot, F. B. (1982), "Resource Constrained Project Scheduling
with Time-Resource Tradeoffs: The Nonpreemptive Case",
Management Science , Vol. 28, 1197-1210.

60

Vepsalainen, A. P. J. and T. E. Morton (1987), "Priority Rules
for Job Shops with Weighted Tardiness Costs", Management
Science, Vol. 33, 1035-1047.

HECKMAN
BINDERY INC

JUN95
1T „ id MANCHESTER

Bound -To-PW |ND1ANA 46962

