

WATSON \& SON'S NEW MICROSCOPES \& APPARATUS.

WATSON'S New Parachromatic Oil Immersion Con- $£ \mathrm{~s}$. d. denser, i $^{3} 30$ N.A.. aplanatic Aperture, I'25 N.A., undoubtedly the best condenser yet produced for undoubtedly the best condenser yet produced Optical part only
Optical part only WEST' Table Stage, as described in Microscopy
column, ScIENCE-GOSSIP, June, 1899
WATSON'S Van Heurck Microscope
WATSON'S Edinburgh Student's Microscope
WATSON'S "Fram" Microscope

For Field Work:

BOTANI.-Very strong Digger with leather cover Field Books, with thick bibulous pads, wooden boards and straps
Vasculum, Japanned tin, with shoulder straps
$610 \quad 0$
$\begin{array}{lll}5 & 0 & 0\end{array}$
0176

2 sizes, each 3s. and

Micro: Objects:

$\begin{array}{lll}£ & \text { s. } & d . \\ 0 & 2 & 6\end{array}$
Anatomy of a Leaf (9 pieces), arranged on one slide
Section through entire Bud of Lily, showing ovary, anthers, petals, pollen grains, \&
Set of 24 Botanical Slides (elementary tissues), specialy arranged for the use of students, in case
Det of 12 Slides, illustrating structure of Typical Rocks
Ditto \quad ditto Physiography .. Genus Diatomacez Slides, consisting of several species of one genus-
Navicula, ıoo species, 7s. 6d. : Aulacodiscus, 25 species
Pleurosigma .. 50 species, 15 s .; Surirella, 50
Coscinodiscus, soo species, 7s. 6 d .; Triceratium, 50 ,, $\quad 0066$
METAMORPHOSES.-Actual specimens arrangeả and labelled
in museum jars to illustrate life histories. List of subjects on application.

Watson's Illustrated Catalogue of Miscroscopes (No. 2), containing full particulars of the above, forwarded post free on application.
Watson's Catalogue (No. 3), is a Classified List representing a stock of over 40,000 first-class specimens. Post free on application.
W. WATSON \& SONS, (Establisbci 1837), Opticians to H.M. Government, 3I3, HIGH HOLBORN, LONDON, W.C.
New Branch Now Open: 16, FORREST ROAD, EDINBURGH. And at 78, Swanston Street, Melbourne, Australia. Awardert 30 Gold and other Medals at the principal International Exthititions of the World.

JUST OUT.-Bacteria. Especially as they are related to the Economy of Nature, to Industrial Processes, and to the Public Health. By George Newanan, M.D., F.R.S.E., D.P.H., Demonstrator of Bacteriology in King's College, London. With fifteen microphotographs of actual organisms taken expressly for this work by Dr. Spitta, nine others kindly lent by the publishers of "The Atlas of Bacteriology," and over seventy other illustrations.
The Study of Man: An Introduction to Ethnology. By Professor A. C. Haddon, D.Sc., M.A., M.R.I.A. Illustrated.
The Groundwork of Science. By St. George Mivart, M.D., Ph.D., F.R.S.
Earth Sculpture. By Professor Geikie, LL, D., F.R.S. Illustrated.
Earth Seulpture. By Pror Development. As Illustrated by the Rivers of North America. By Professor I. C. Russell. Illustrated.
Volcanoes. By Professor Bonney, D.Sc., F.R.S. Illustrated.
NEW EDITION (the ${ }^{1}$ th). Again thoroughly revised, with new ratter and illustrations, and an alteration of the arrangement in deference to the wishes and advice of numerous teachers.
HANDBOOK OF PHYSIOLOGY, By W. D. Halliburton, M.D., F.R.S., Prafersor of physiolary. Kingr's College, Lomadon. With upwards of 600 Illustrations. Including some Coloured Plates. Large crown Svo. 14 s .
EARLY CHAPTERS IN SCIENCE. A Popular Acconst of the Elements of Natural History, Botany,

Classifcation: Marnmalia-Birds-Reptiles and Amphibians-Fishes-Invertebrate Animals-Physiology of Plants-Plant Life.
The Forces of Nature: Forces at Work-Three States of Matter-Weight and Pressure-Heat-Light-Sound-Chemistry-Electricity.

Murray's University Extension Manuals. Edited biv Profesor Rxishr, of

The Study of Animal Life. By J. Arthor Thomson, Lecturer on Zoology, School of Medicine, Edinburgh, Joint
Author of the "Evolution of Sex," Author of "Outlines of Zoology," With many Iflustrations. Crown Svo. S5.
The Realm of Nature. A Manual of Physingraphy. By Dr. Hugh Robert Mill, Librarian to the Royal Geographical Society. With 19 Coloured Maps and 68 Illustrations. (880 pp .) Crown 8yo. $5 \mathbf{5}$.
An Introduction to Modern Geology. By R. D. Roberts. With Coloured Maps and Illustrations. Crown 8 ro. 5 s. Chapters in Modern Botany. By Patrick Geddes, Professor of Botany, University College, Dundee. With IllusChapters in Modern Bota
A History of Astronomy. By Arthur Berry, M.A., Fellow of King's College, Cambridge. Gs.
The Tides and Kindred Phenomend in the Solap System, The Substance of Lectures delivered at the Lowell
By CEORGE HOWARD DARWIN F/uminh Professor aut Fellow of Trintity Institute, Boston, Massachusetts, in i897.
COLOUR IN NATURE: A Study in Biology, By MARION NEWBIGIN. Crown swo. 7s. Gd.
JOEIN MIURERE, ARbemaple Btreet. MK.

No. 54--Stand, Iris diaphragm and mahogany case, $\mathrm{f}_{2} 2$ IIS. 6 d.

No. 55.-Stand, Iris diaphragm and malogany case, £ 3 I2s. 6 d .

No. 56.-Stand, Iris diaphragm and mahogany case. 647 s .6 d.

No. 57.-Stand, Iris diaphragm and mahogany case, $\star 5$ I2s. 6d.

らしだじい。

T－HE regrams of the Sikhime Himalayat，atmove S，ooolt．，are proctically unimbthited during the greater part wf the year．The chamate is severe and heavy fallo of snow lake place preventing toxelin abd herds from ohtaining fooml．

I resided for alnus 1 ano and at hall years in the inhospitable region of（inatoms\％a locality stuated in the Eastern side of Indeperselent bihkim．This gate me an opportunity of nturlying the thra and fanna of the neightuourhas，Our Camp or Fort wats at an elevation of $12,300 \mathrm{ft}$ ．（tbe latonneter standing on the average about tom．The temperature in winter descended to $3^{20} \mathrm{~F}$ ，in smmmes it attamed a height of
abraid the lecectues which inkent the junglem at that
 foung gras that shonst up，when the soms melts．
 （1）any part of an antmat，extracting laresequantition of homed，and produce serious symploms．čpecially when they gatin admission to the nasal cavitien at frepuently oceurs in sheep，cows，dogs，andotbers．They ate alou prone to attach themsetves to the conjunctiva of the eye or the eyelitcti．．De certain scasans，every leaf in the jungle seems to swarm with them，lout wien cold weather sets in，they soon disappear．I hase mot seen them above an clevation of 9,000 th

$65{ }^{\circ} \mathrm{F}$ ．Fierce storms raged at certain times of the year，acompanied by thumer．On one aconsion a military signaller was killed by lightning in the telegraph office．The wain and snow falt combined， registered over 180 in ．The climate was cxacessively damp from the heay randall and mantle of chouds． in which we were enteloped during the greater pate of the year．The snow usually began in Jamary，and lay until the commencement of the rains in Junc．

As already mentioned these regions are uninhabited in the winter，but about June when the snows are meleing，the natises who have wintered with theirflocks and heres in the lower regions ascend the hill sides ${ }^{(0)}$

From the month of Nay to the enel of August vigomus vegetative activity prevailed，and one would satrecly believe the wonderful show of flowers which appear in successive crops during that period，leading （1）the hillsides from time to time，mantles of purple， yellow，and blue．In May and June the magnificent rhododendrons come into flower．They vary in size from a tree $30 f$ ．in height at 8,000 ft altitude，wa mere scrub with large white or purple fowers，at 14，000ft．

Sikkim is also the country of primulas．We find Promula petiolaris flowering under the snow．（）her－

thousands on the hills. They are small species, but most elegant in appearance. Primula sikkimensis covers acres of marshy ground, and sweetly scents the air. Gentians, swertias and potentillas are countless. Edible rheubarb (Rheum actminatum) grows in quantities, and numberless plants of Rheum nobile are to be found on the hill sides at about $14,500 f$. In the distance they resemble huge heads of the common cabbage. This plant is very remarkable. Its height is from three to five feet, and the infloresence of small greenish flowers is covered by membranous strawcoloured tracts, the whole being more or less pyramidal in shape. Saussurea gossypithora is another quaint product of the vegetable world. The large composite flower is surrounded by a mass of white woolly material, the size and shape of an orange, or larger.

Sir Joseph Hooker does not mention the particular locality of which I write, but he and subsequent collectors have made such a thorough investigation of the flora of Siklim that I only succeeded in finding two undescribed plants. One of these Lathraea purpurea Cummins, I collected in the Dichu valley. Since that time Major D. Prain, Superintendent of the Royal Botanic Gardens, Calcutta, informs me a great number of specimens had been brought from Iongri, a place far distant from my collecting ground.

Poppies are a prominent feature in the flora. Meconopsis nipalensis is ubiquitous, and has handsome yellow flowers. M. simplicifolia and Cathcartia villosa are also fine plants. Aconites are plentiful, and are said sometimes to cause the death of sheep and goats, as these animals do not recognise that the leaves are poisonous, but horses and cattle avoid such plants. The edelweis (Leontopodiunn alpinum) grows in large quantities, but I have never seen it above 13,oooft. altitude. Many species of Pedicularis are to be seen, some with a stem a couple of feet high, such as P. thithoflossa, P. megralantha, P. excelsa, etc. Other species, such as P. tutbiflora and P. siphonantha are peculiar, on account of the extreme length of the corolla tube.

Butterflies and moths were very numerous, particularly at lower elevations, and the latter a nuisance at night time. At Gnatong, moths clustered round the windows in the summer. In 1893 a swarm of locusts alighted on the lower parts of Sikkim, and stripped large areas of the jungle of leaves. Some even reached Gnatong. I was told that many were seen dead on the snows of the Kinchinjunga range, at an elevation of about 20,000 ft. They had succumbed to the cold when endeayouring to cross this enormous ridge of mountains.

Gnatong is about nine miles fron the Jalep and Pemberingo passes. The hills through which these passes trend, reach an altitude of some $15,000 \mathrm{ft}$, and can be easily ascended. The ragged tous are destitute of vegetation, except lichens. Therockshecomecracked by the action of frost and huge blocks roll down the hillside or precipice, forming masses of boulders. In a particular case I remember, one block must have weighed several hundred tons. This had descended
a slope for about 1 ,oooft. On the way down it broke into two parts. A deep rill was left on the hillside and in it could be seen species of plants differing from the normal ones of the locality. These had been carried down from above, in the catastrophe. Salvia campamulata Wall, was one of the plants previously absent, which appeared. It is remarkable that this plant at a high elevation ($13,500 \mathrm{ft}$.) possesses a purple corolla marked with yellow; while in lower situations, yellow becomes the prevailing colour.

The solitary snipe was not an infrequent visitor at Gnatong. The birds were usually seen in pairs. On one occasion during an expedition our camping ground was in a sheltered spot about 14 ,oooft. altitude. We saw a great number of solitary snipe, and after dark, we heard their cries around our tent. This place appeared to have been a regular haunt for them, and was no doubt their breeding ground.

On a similar trip we camped near a place called Pangola 10,7roft. allitude. Here we found footprints of an elephant measuring nearly 2 ft . long. We traced them for several miles down the mountain ridge, until we reached a bamboo jungle in the Dichu Valley, into which they disappeared. This elephant must have been very large, judging by the marks on the trees against which he rubbed himself to remove mud from his back. He was probably a "rogue." I am not aware that elephants have been previonsly noted as voluntarily travelling to such an elevation. The lower parts of the Dichu Valley abound in elephants, and we saw many fresh marks of them.

The birds in the neighbourhood of Gnatong are comparatively few : the monaul, the blood, and tragopan pheasants live in the forests, which consist chiefly of Abies webbiana, at 9,000 to 13,000 t. altitude. The pheasants and musk deer are snared by the natives, by means of a "spring stick," that is a pliable stick with one end fastened in the ground and a noose on the other. A sapling is often used for the "stick." This is bent, the noose placed on the ground and retained by a rough spring made of a flexible branch formed into the shape of a hoop. When the animal touches this, the "stick" is released and the noose secures him by the head or leg. In order to direct animals to these snares a barrier, composed of branches of trees and underwood, is built along the crest of a hill frequently extending many hundred yards. Here and there in the fence, openings are made, and traps placed in them. The unwary deer or bird meets the obstruction, and too lazy to leap or fly as the case may be, walks by the side of the barrier and in attempting to pass the opening, which he soon finds, is quickly strung up in the air and securely held. The shooting is poor on account of this method of destroying the game.

The streams in the lower parts ($5,000 f \mathrm{ft}$) contain many fish, but they are, I believe, seldom more than a pound in weight. The following is the method employed by the natives to catch them. The fishing line is attached to a strong rod at one extremity, and at the other to a piece of rope, the fibres of which have been frayed out. On the line near the rope, two
 them it hate of caterpillars, or something allotactise to the fish, is also fixed to the lines. I bibere of the some is then separated from the others and fastencel wa stone of a few ounces weight. The whole is lowered inten the water. The fish sees the late atm in making delart at it, passe throbgh the nooses. The tistherman gives a sudden jerk, the rope blife breaks, ind the stone falls to the boltom, while the nosere tightens an the fish, which is broughe to the shore The device is ingentuls, and abswers well in pratetice. I have seen matives make agorallagof fish in this manner.

Wild doge which hunt in packs are said to bee not uncommon. They find the track of a deer, and humt himso the death. "Barking deer" are common at about 5,000f. The natives systematically hunt them
 perperece atorl aton for the mitk they atpply. Yal. linet is exeedlent. The Thimetam lawe thens herels of yath
 pasturagre. The yah lowh of fience amimal, hat I lowe
 their showing a hostile diapositisn. The wollaty Sikkim cattle are much moreforice. Aboll the memerl (1) attack me and on close was he that I hat su! fown at my shoulder reaty to fire 11 onerber it lorawne Thibetan in whese charge he wis, hit him with a great rock letween the eyes, and he was driven and white his attention was thes distracted. Fantern Gihkian is much prized as a pasture land ly Leeptchas and Thiletatns, and this was arme of the catuen of disputce which gave rine (1) the late Silibim-Thileet wat.

whith clogs trained for the purpose. Like the hare when pursued, the barking deer or "khakur" is mikl for run in a circle. The native knows the course his quarry will take, and lies in wate armed with at hes and poisoned arrows. As the deer, driven by the dogs, passes the hunter he receives one of the arrons: and soon rolls over, dead. I helieve a poison whtained from the root of tionitumf firox is commonly cmpleyed. If the hunter misses his aim the deer will prolathly have been pulled down by the dogs and kilted cre he completes his circuit ; and the clogs having enjoyed a feast, return home at their leisure. Bells are usually suspended from the dogs' neeks to warn the humtsmen of their whereabouts. The meat of the barking deer is fairly good for eating.
small hlack hears are common in the warmer parts of sikkim. They are satul to be very auggressive. One frequenty sees natives bearing scars, the resull of having lieen mauled.

Sikkim is a veritable paradise for the naturalist, be - he botanist, zoologist, or geologist, hut especialty for the botanist.

20, .V̈ghtingrale I'lace, If ookwith.
JIune 2Sth, rSog.
Xelw Localities for Eurolean Landsherlis. - Dr. Westerlund records in the " Annuaire du Musece Zoologique de l'Académic Inpériale des Sciences de Si. Petersbourg," IS98, p. TSo, two important new localities. Hilix (Acanthinula) hown Sas, hitherto known only from the Boreal Regions of Europe, Asia and Smerica, and the Kiffel Alps near Zermatt in Switzerland, has been found near Astrahat, Transkaspia. Helix (Tribio) reaclata, whose Eavtern Limit was considered in be 5° E. Long. finds its range extended by 15° at one bound, specimens in the So. Petersburg Museum, collected at Kiev so far back as $1 \$ 49$, having been referred to that species by Dr. Westerhund,-G. K: Gende, 88f. 太íchuk hinad. London.

HUXLEY: A REMINISCENCE.

$I^{\text {N }}$N the recently-issued "Reminiscences" of Mr. Justin McCarthy, M.P. (Chatto and Windus, 1899), we find an entertaining appreciation of Professor Huxley. This is the more valuable as it emanates from one who says, "I am myself entirely lacking in all culture of the field of science." We quote a portion, feeling it cannot fail to interest our readers. This sketch of the late Professor Huxley's character being the independent opinion of a layman, who is not affected by the influence of any particular scientific party, has a freshness that will appeal to those who have formed other views upon the character of this eminent leader in science. [F. Winstone.]
" More than a quarter of a century has passed away since the election of Professor Huxley as President of the British Association was declared by a large proportion of his admirers to be a distinct triumph of the scientific school over the orthodox school in England. I do not suppose that Professor Huxley himself regarded his election in any such light, and I believe he was far too sincere and devoted a student of science and too modest a worshipper of science to believe that a personal honour paid to hinself was a rebuke to the followers of any other school of thought. But it so happened that at the time it was the fashion in England to regard the whole world of thought as divided between science and orthodoxy, and to get possessed with the idea that these were two rival forces engaged in' a struggle which must end in a total overthrow of the one or the other. 'It is the' struggle between light and darkness,' said an eloquent writer of the time-I shall not specify the school to which he belonged-'and one or the other must hold the world.' The writer did not seem to remember at the moment that the world had been undergoing successive and regular visitations of alternate light and darkness for as long as time had been, and that there seenied $n \circ$ immediate prospect of the extinction of either.
"Huxley was as delightful in society as he was powerful on the lecture platform. He was a brilliant talker, and he carried much of the spirit of the controversialist wherever he went, but as he had a keen sense of humour his controversial reply took the form of a jest quite as often as that of a direct argument. To hear Herbert Spencer and him sometimes engage in conversational controversy was something ta be remembered, even by one as little qualified as myself to form any sound mental reasons for awarding the palm of debate.
"I remember one discussion, at which, however, Herbert Spencer was not present, wherein I thought Huxley showed a determined wrong-headedness such as only a great scientific philosopher could display. It was during a small dinner-party given at the house of Mrs. Frank H. Hill, and I do not know how it came about that the American Declaration of Inde-
pendence rose up as a subject of conversation. Huxley suddenly declared that the opening passage of the Declaration contained a statement which was on the face of it obviously and ludicrously false. We all showed natural anxiety to learn what was the ignorant \sin which this great historical documemt had committed. Huxley explained to us that the error lay in the opening statement that 'all men are created equal.' This he declared to be a manifest absurdity; all men, he pointed out, were not created equal. Some were born with good health, some with hereditary taint; some came into the world distorted, some of goodly shape ; some were born black; some were born white. Huxley, we all knew, loved a joke and had a boyish zest for humour, not common among philosophers, and we were inclined to think that this method of criticising the Declaration of Independence was but a passing freak of humour. Huxley, however, repudiated all idea of sportiveness or levity, assured us that he was perfectly serious, and declared that to his mind it marred the whole effect of the historical Declaration when he found it thus starting off with a scientific falsehood. Some of us endeavoured to point out that the framers of the Declaration of Independence must have been at least as well aware as most other people of the time that some men were born white while other men were born negroes; that the knowledge of this fact, at all events, must have been brought clearly home to the minds of American citizens, and that probably the framers of the Declaration only meant to maintain that all men were born with a right to the equal protection of the laws. But Huxley would not admit this reading of the Declaration, which he insisted was vitiated from the very beginning by an inaccurate statement, just as the most ingenious arithmetical calculation would have been if it had started on the assumption that two and two make five. I only introduce this anecdote to show how the acutest mind may sometimes puzzle itself in a difficulty which it has itself created, and how the joy of argument may sometimes for a moment narrow the broadest intellect. One may also be allowed perhaps to feel the natural delight of inferiority on finding a superior intellect entangled in sophism.
"Huxley had, even in ordinary conversation, an intelligence so luminous that it shed light all around him on any topic which came within his range. Even where strictly political questions were concerned his judgment seemed always to sever, at once and at a stroke, the essentials from the non-essentials of any proposition and to cleave away directly to the heart of the argument. Of course there was nothing of the mystic about him. The most superficial knowledge of his intellectual form would have forewarned anyone of that, but there was also nothing of the scientific recluse about him ; he had never shut him-
self in his shell: his fine perceprions were alive to all that was stiring in at ind literature, in the world of poltitics, and in the world of socicely. I can hardly imagine his finding any subject uninteresting which had an interest for even the smatlest section of humanity. Many a time I have thurght, and nu doube sthers have thought, when some political controversy was going on and when Husley founal or made stime to take part in it, that he would have made a great name for himmelf ats a political debater if he had been nothing else. Nthough a lifelong politician myself, I could mol pretend to feet any regret that Muxley hat not been stolen from science and made a present so politics ; lout I hase often felt that if Husley were in the House of Commons he woutd hase proved a mont formidable antagronist to any ministry with whom he had felt bound to come into antagonism. Ilis power of phrase-making was sometimes as telling as that of Dinracli ; and he had not merely a puwer of phase-making, but a power of discovering and exposing the central weakness of an alversary's povition, which would have been of inestimable value during a great struggle in the House of Commons. It may seem a strange thing to say, but I must say it, that I cannet think of Thomas HivNey only as a great scicntific man. (of course, we all know that he will so down inte famse as a great illustrator of scientific yucstions, and this surely wotsld be fame enough for even the most ambitious. But when I think of Huskey I cannot help thinking of him as a worker in many follds, an a man whose mind had many different spheres of thouglit. Huxley came readily down into the arena of public controversy, and was a famitiar and formidable figure there. Wherever there was atrife there was Husles.
"Husley was in point of fact as well its a scientific man a literary man and a writer. What he wrote would le worth reading for its style and its expression alone were it of no scientific authority: whereas we all know perfectly well that scientific men generally are read only for the sake of what they teach, and not at all for their manner of teaching it-rather, indeet, in despite of their manner of teaching it. Huxley was a fascinating writer, and had a happy way of pressing continually into the service of strictly scientific expositions illustrations caught from literature and art-even from popular and light literature. He seemed to understand clearly that you can never make scientific doctrines really popular while you are content with the ear of strictly scientific men, and therefore culuvated seclubously and succusfully the literary art of expression. A London friend of mine, who has had long experience in the editing of highclass periodicals, is in the habit of affirming humorously that the teachers of the public are divided into two classes: those who know something and cannot write, and those who know nothing and can write. Every literary man, especially every editor, will cordially agree with me that at the heart of this humorous extravagance is a solid keenet of eruth. Now, scientific men very often belong to the class of
those who hoow sente thing, lene comen write: No one, however, could pewility comfound "Themos Husley with the band of thome for whom the gift if expression is denied. He was at visul, burcible. fascinatiog writer. His style as at lectures was and which, for me at least, Bad a puecial chasme. It wats, inteed, devoid of any rhetorical dexperace : last it had all the elospuence which is born of the anon of profound thought with simple exprovion ant lasminntes diction. There wats nom much of the poetic, certainly, about him: whly the frequerte dramatic vividness of his illustrations suggested the existence in him of any of the higher inaginative qualities. I think there was something like at gleat of the poetic in the half-melancholy. half-humorow introcluction of Bakac"s famous. "toau de. Chagrin" into the Protoplasm lecture.
"But luxley as a rule trox only the firm carth, and deliberately, perhaps scomfully, rejected any attempts and aspirings after the clouds. His mind was in this way far more rigir?]! practical than that of Richard Owen. IIe was never elopuent in the sense in which Humboldt, for example, was so often eloguent. Being a politician, I may be excolsed for borrowing an illustration from the pultical atrena, and saying that Huxley's elogtaence was like that of Cobden: it was eloquence omly hecause it wats su simply and tersely truthful. The whole lone of his mind, the whole tendency of his phitmoplyy may be obscrved to have this character of quict, learles, and practical touthfulness. No sectier after truth could be more earnest, more patient, more dis. interested. 'Dry light," as Bacon calls it-light uncoloured by prejudice, undimmeal by illusion, undistorted by interposing obstacle--was all that Huxley desired to have. He pus mo trounds to the range of human inquiry."
 August contains an article by Dr. S. H. Aloock, on "Irish Bats," in which he describes a specimen of the hairy-anmed bat, while in a state of captivity. This appears to be the first time the habits of the species have been observed in confinement since 1558 , when Mr. Darragh had one that lived eight days. Dr. Alcock's was a female, given to him on the izth of Feboruary last, and he says: "for nearly a month it remaned in a typical state of hibernation: but on March Itth it woke up and ate raw meat dipped in milk, not appearing in the least degree wild or shy. A few elays of cold weather sent it back to sleep, then it reappeared, very lively, and with a great appetite. It always slept during the day. waking up about 8. 30 p.m., when it was taken out of its cage and placed on the table. Here it ate raw meat in truly chormous quantities, and exercised itself, scurrying round the table, never attempting to fly, though uccasionally falling offi on to the floor. It learned tw come to a pair of scissors, the clinking logether of the blades serving as a 'dinner bell.' and would always walk towards one's hands, which it climbed wer and finally crouched down in, apparently enjoying the warmth." Unfortunately on April 6th, it was accidertally crushed while careering round the foor, after having become a favourite with all whe had made its acquaintance.

BRITISH FRESHWATER MITES.

By Charles D. Soar, F.R.M.S.

(Continued from page 80.)

GENUS $H Y G R O B A T E S$ KOCH, 1835-41.

THIS genus according to Piersig contains five species. A much larger number had at different times previously been named, but Piersig proved them to be the same mites under different names, and therefore reduced the number to five. In Britain at present there appears to be only three species. I have had a very large number through my hands from different localities, both my own collecting and from friends; but can find only two species. There are numbers of variations. No two seem to be exactly alike. They vary a great deal in proportions, no doubt due to the chitinous parts of the mites being nearly fully developed at the time they leave the inert stage preceeding the imago, the soft parts only being left to grow. This growing gradually alters the arrangement and position of the epimera and genital plates by pushing the chitinous parts further apart, and thus altering the appearance of the ventral surface. I mention this fact because it gave me much trouble, as I had to make a number of drawings, before I could be satisfied the specimens were all the same species. I do not think there is any doubt about it, and hope these remarks will save others working at this genus, some of the labour I have expended to arrive at this con. clusion.

Fig. 1.-H. lonsibmipis, ferale.
The mites belonging to the genus Hygrobates are characterised by having the body soft skinned. Legs sparingly supplied with hairs. Claws to all feet. Eyes wide apart. Epinera arranged in three groups. Three comparatively large discs let into each genital plate.

1. Hygrobates longipalpis Hermann, 1804 .

Female.-Body: (Fig. 1.) Oval in form, sometimes slightly flattened on the anterior margin. Length about 2.0 mm . Width about 1.60 mm . Colour yellow with dark brown markings on dorsal and ventral surface. Over, and in, these brown markings run a quantity of coloured streaks, or veins, of a very light yellow or sometimes white tint. If a tube containing several of these mites is held up to the sunlight they are seen to be of a very brilliant colour. Eyes, pink.

Legs.-First pair about 1.23 mm ., fourth pair about 1.72 mm . They have a number of bristles, or stiff hairs, on each leg (fig. a), but are quite without the long swimming hairs at the joints, we noticed in Curvipes and Limnesia. Nevertheless they are quick and strong swimmers, as it is necessary they should be, for I have sometimes talsen them in very rapid streams. In colour the legs are a pale blue.

Fig. 2.-H. longipalpis, eprmera.
Epimera.-Forms three groups. The centre group is formed by the first two pairs being jointed on to the plate which holds the mouth organs as seen in fig. 2. In colour they are pale blue, as are all the chitinous parts of this mite. I say all the chitinous parts, but it is well to note I have taken some specimens with the legs and epimera quite colourless, and others with these parts a pale yellow, though pale blue seems to be the predominant colour.

Fig. 3. - H. longipalpis, palpus.
Palpi.-(Fig. 3.) Is about 0.72 mm . in length This varies in different specimens, but I find the size given is most usual. There are two short bristles, close together, about the centre, on the bow side of the penultimate segment of the palpi, which differentiate this from the next species.
(ifmitar Mrea, -(Fige q.) I have drawn half the arear here, one plate only showing the three dises, which is reperated on the other sille.

Fig. 4 .

Fig. 5.

> 11. tonsipalhis.

Fig. 4.-genitat area, framale. Fig. 5-Gienital area, male.

Male.-Is, as usuat, a little smaller, but exhibits no difference in structure except in the genital area. Figg 5 will show the plate of the male drawn from one side only.

Lodalities.-Common everywhere. Found both in ponds and streams, more often in streams. Mr. Taverner found them in Scotand, and Dr. Freeman in his lise of mites records it from co. Dublin and reports them ats common in Ireland. (Tobe continued.)

ARCHEOLOGY IN DERBYSHIRE.

A^{T}T a recent mecting of the British Association it was decided to include archeology among the sciences. It is not, therefore, necessary to give any excuse to our readers for the following short account of the proceedings of the British Archeological Associntion, during the 56 h Congress, held this year at Buxton. Space will not permit of a detailed description of the various churches, earthworks and other places of interest visited by the Society nor of the papers read by members at the erening meetings, but one or two connected with the early history of man are especially sutable for notice in this magrazine. I will especially mention a risit paid to Arbor Low, a circle of stones situated on the hills near Parsley Hay Station. This is one of the earliest, in fact, according to some authorities, the most ancient monument of the kind in Britain. It has fortunately been protected by Sir John Lubbock's Act for the preservation of ancient monuments. 1)r. Brushtield, F.S.A., who described the circle, said the word " low " was usually understood to mean " high," but it was really Saxon for "barrow." In this case, the barrow is supposed to have been a temple of early neolithic tines, probably erected over the remains of some chief, or fighting man, famous in his day and venerated after his death. It is surrounded by a bank having the ditch inside the circle: which is very unusual. Near the centre is a circle of stones thirty-two in number, the largest being about ten feet
in lengeth, lant they are sfatio, bae blocks. In the midst was a crombech wr johnen. Abroul thece hundred and fifty yards away wuside the fosse, on Gils Hill, while investigatings a supposed bumblue, at cisevaen was found with other rematios of the neolithic period, such as worked diints and spear heads. There was some discussion as to the reaton of the komans having made a road within a short distance of Arbor.

At one of the evensing mectings the keve 11. Dunkinfield Astley read a paper on jet and cannel coal ornaments and state implements, ilfustrated with numerons drawings of a crannog at Dumbuck, and a very good exhibition of otjects found there. After an exhaustive survey of these ornaments and implements the lecturer compared them with those still in use among people in a neolithic condition of culture. He was of opinion that the lumbuck crannog is a monument of the later Stone Age.

Mr. J. C. Gould conducted the party to the earthworks on Castle Hill overlooking Bakewell. This he pointed out was never a castle, but a good example of an Anglo-Saxon earthwork. The outer line of fortitications of the "ballium" and the central mound, which corresponds to the Norman keep, are distinctly visible. A charming view of the counery is ohtained from this mound, doubly interesting because everyone of the hills around, have prehistoric remains in the shape of harrows. It is supposed that a plateau a litule distance up the valley, cut out on one of the hillside:s was an ancient "moot-place" where the men of the village, or "tun" $=$ town, met to settle their affairs. Mr. Gould also read a paper on Defensive Earthworks in which he fully explained the importance of these defences in early days. The preNorman Crosses of Bakewell, Eyam and Hope are marvels of workmanship and artistic design when one realises the absence of suitable instruments for construction. That at Eyam was the most interesting both on account of its basrelief sculpture and excellent state of preservation. Eyam was the village visited by the plague in 1666, when the spread of infection to the surrounding neighbourhood was only saved by the intrepid courage and advanced thought of the vicar, Mr. Mompesson. He arranged a system of isolation so perfect that for one year, the infected village had no communication with the adjacent district, food being placed by the neighbours at a certain distance. The register of those who died is still to be seen in the church. amongst the names being that of the vicar's wife.

At the final meeting held in the afternoon of July $22 n$, it was announced, that as one of the results of the congress, it was proposed to form a Field Club for Buxton and the neighbourhood. Mr. Blashill, the hon. treasurer, who was in the chair, in replying expressed great satisfaction that a Field Club was to be formed, as he pointed out the pleasure and profic of field rambles would be greatly enhanced on the part of the naturalist by a knowledge of Archeology., and on that of the archeologist by an acquaintance with Natural History.
F. Winstone.

COLLECTION AND PREPARATION OF FORAMINIFERA.

By Arther Earland.

(Continued from pages 54 and 74.)

FOR the successful preparation of the material, $\left({ }^{1}\right)$, whether freshly gathered or not, it must first be thoroughly dried, using a very moderate degree of heat. Great heat has a tendency to crack the foraminifera, and also deprives the hyaline specimens of their glassy transparency, turning them milky white. After drying, the material is passed through a very coarse sieve of 10 or 12 meshes to the inch in order to separate the larger fragments, stones, mollusca, \&c., from the foraminiferous sand. Very few of our British foraminifera, except the parasitic forms, will be found among this cnarse residum, but it should nevertheless be carefully examined with a pocket lens for abnormally large specimens. If the material, however, is from tropical seas or from deep water, the coarse residuum will often be found to consist very largely of more or less perfect foraminifera.
If the quantity of sand is small, the collector may proceed to float it without further preparation ; but if a large quantity is to be dealt with, it will be found advantageous to pass it through a succession of sieves in order to separate the material into parcels of varying sizes. This will be found to facilitate the floating operations by ensuring that all the particles are of approximately equal weight.
The floating operations should be performed at a sink, a liberal supply of water being required, and if possible by daylight, as it is easier to judge how the process is going on than by artificial light. The ripod (fig. I), containing a sieve covered with the finest gatze (I20 mesh wire or preferably i50-mesh silk) is placed in the sink, the gauze being first thoronghly wetted to facilitate the draining away of the water. The glass jar is then nearly filled with water, and two or three tablespoonsful of sand poured in. If the material is coarse the sand sinks immediately, followed in the course of a few seconds by the greater number of the foraminifera. If the jar is held up between the eyes and the light, the falling grains can be observed, and at the right moment the bulk of the water containing nearly all the forams in suspension is poured quickly into the sieve from which the water drains away. The purity of the material gathered in the sieve depends entirely upon the judgment with which the operator has timed his actions; but practice is all that is required to obtain good results. The residuum left in the glass jar will still contain many foraminifera, principally those specimens which are too heary to float. This is washed out into a large basin or jar for later treatment, and the previous operation repeated with a fresh supply of sand, until the "first floatings" have

[^0]been separated from the whole of the material. The time allowed for sulsidence will of course vary with the size of the particles, so that in the case of the finest grades of material it may amount to a minute or more. The actual time can only be settled by the judgment of the operator, who must decide by watching the falling material in a strong light.

In the case of the finest siftings of sand the tension of the surface film is so great, that unless the particles are thoroughly wetted the sand grains float as readily, or rather take nearly as long to sink, as the foraminifera. This difficulty may be overcome by shaking up the contents of the jar, covering up the top with one's hand to prevent the water splashing out, or even by putting the sand into the jar before filling up with water.

When the whole of the material has been treated in the marmer described and illustrated on page 54 in July Sciexce-Gossip the foraminifera may be extracted from the residuum which had been put aside in a jar, and which will be found to consist almost entirely of sand. Take a flat dish or pan with fairly straight sides, and a spout. A half-plate photographic developing dish answers as well as anything I know. Into this put about a teacupful of the sand, covering it to a depth of about three-quarters of an inch with water. If the dish is then gently rocked with combined up and down and circular motion, the foraminifera will rise in suspension in the water. By careful manipulation they may be worked towards the corner of the dish, when a sharp tilt empties them into the sieve. The operation should be repeated two or three times, until the whole of the formminifera have been separated from the sand, which after a brief inspection, to ensure that no specimens of importance are left in it, may be thrown away.

The material has now become very much less in bulk, the reduction depending upon the amount of sand included in the original gathering. The contents of the sieve which I may call "First Floatings," though consisting principally of foraminifera will be found to include organic and inorganic debris of many kinds; such as fragments of mollusca, bryozoa, hydrozoa, ostracoda, sponges, seaweed, coal and coke dust, mica, etc. If the material is intended for study and selection only, the cleansing process need not be carried any farther ; but if it is intended to be mounted as spread slides, it will be necessary to eliminate the greater part of these foreign substances by a further process of floating, or in some cases by repeated flotations.
The first floatings should be thoroughly, but slowly, dried, and a few teaspoonsfil stirred up again in the glass jar which should be filled with water almost to the brim. Some minutes having been allowed for the material to settle, the floating portions may be

Cries and Call Notes of Wild airds．
hirds in themir
Naturalist＇s Directory livr imk｜l゙ith

Practical Taxidermy
 Itiabry Specimate of ath kinds．With Evasmples iand Wiork－ Leceester Muncouns．Sevord Lidition．
7s．odd．by Aus
Freshwater Aquaria．Their（innstructinn，Mrrank ment，Stocking and Maname A．K．

Marine Aquaria．Their Convtrutions，Arrankome＂se ams Mamamement．Ju R．A．R．IBi．N．Nerr，B．．．．Fulls illus Book of British Butterfiles．
 throughout with sery accurate Engratomas at the C＂ater pillare，Chry valid，and lsutterllice
（rum
Book of British Hawk Moths． Pratertall Mamall fisp all Lepidop
 S゙nakes，Lizards，and wher Koprilés，and How to Kicep

Full Catalogue on Application．
LONDON：L．UPCOTT GILL，170．STRAND，W．O．

THE SCIENTIFIC ROLL

and macazine of systematized notes．

This Work is a Valuable GUIDE，BIBLIO－ GRAPHY and INDEX to SCIENCE

This work，now in course wi pubatation，embraces
1．I fitalios rapley chassitied aceording
under ach veal accordins to the nime
has its stistinctive number for reference purpo
An／udex，which，althugh arransed alpla
med in grouns more than is usual in an inde：
－whect indexes into one renemal classilied ind
their relationship to each other．The aim of the
ant person colsoted is selemtine reve．tren to
be seeks with a minimmmexpenditure nit trouble
As the work is the result onf forty years labour
cannot be fully described ith a sinort advertiser
conmmencing a research，are invited to send io
fulfer particulars to
A．R．IM－

BOTANICAL BOOKS．

just remm
John Wheldon \＆Co．＇s Catalogue of Books and Papers on Ferns，Fungi，Mosses，\＆c．， free on application．
38，GREAT QUEEN ST．，LONDON，W．C． N．B．－－Books on all classes of Natural Hittory kept in stock．

ROYAL BOTANIC SOCIETY＇S GARDENS， Regent＇s Park．

GARDENS OPEN DAILV from 9a．m．to Sunser．SUNDAl＇S
from 2 p．m．to Sunset．Admission by Orders from Fellows of the Sovietyonly．

Griffin＇s Scientific Publications．

THE THRESHOLD OF SCIENCE．

OPEN－AIR STUDIES IN BOTANY：

OPEN－AIR STUDIES IN GEOLOGY：

The Making of a Daisy；＂Wheat out of Lilies，＂ atadies an Plant Lite and Exalotion．A b＇apular Introduction

How Plants Live and Work．ISimple Ineruduction to Real Life

LONDON：Gharles Criffin \＆Co．，Ltd．，Exeter Street，Strand． Just Published．
RAMBLES WITH NATURE STUDENTS．
By．Mrs．BRIGHTWEN，Aurhor of＂W＇\％ld Nature Hon by Kinalaess，＂\＆c．
Wieh t．30 Illustrations．Lurge crown Sber，5s．，cloth hoards， ilt edres
An admirable litele gudde for all who are weary of bricks and hortar．＂－．lcademp．＂A twok which may help beth teacher and oupil to see，and thus ope＇n up a new world for doservation －periment，and research．－Eiche＂Mrs．Brightwen is a past and perviry．＂An ideal gitebook for thenghthel young people． Chrisfon．＂W＂ell written，well printed，and capitally illustrated．＂ －It aray happily enougls be kept in mind when die schenal－prize seasons comes upons us．A work of this kind is worth many tanes of the kind which unforemately often doduty for schowl rewards．＂－cilizsene／／e rahel．

PNTEKNOSTER ROW，LONDON

THE MARINE DIATOMACEE DE FRANCE．

Including all the British Species and those of Countries in Europe．
By MM．H．\＆M．PERAGALLO．
The first part（RAPHIDIER）is just out． so Plates with 2,124 species and vars．descrited，and 240 pages Text．

Price \＆2 post free：

S．B．－The subscription to the complete wark is $\mathbf{x 4} \mathbf{u p}$ ow the end of $\mathbf{8} 8 \mathrm{gog}$ ，after which date it will be raisud th $\boldsymbol{E} 5$ until čompletion．

Send Remittance and orders to J．TEMPERE．Micrographe et Publisher，168，Rue St－Antoine，PARIS

STEVENS' AUCTION ROOMS.

SALE ANNOUNCEMENTS.

Tuesday, Sept. 12.-Curiosities from all parts of the World,
Tuesday, Sept.19.-A Collection of Natural History Specimens.

SCIENTIFIC INSTRUMENTS

Photographic and Optical Apparatus, Electricals, Mathematical, Surgical, and Musical Instruments, and Miscellaneous Property of every description. every friday.
NATURAL HISTORY SPECIMENS ONCE AND TWICE A MONTH. Mr. J. C. STEVENS
Begs to call attention to the above Sales at his Great Rooms, 38, King Street, Covent Garden.
Goods Received at any Time, and Incuded in these Sales.

TO
 MUSEUM CURATORS.

SEND FOR DESCRIPTIVE CATALOGUE
SPECIALTIES FOR MUSEUMS.
Post free from LIBRARY SUPPLY CO., 4, Are Maria Lane. London, E.C.
"CARD SYSTEM", CATALOGUE, showing a Perfuct System of Indexing-applicable to all branches of Science and Library Work-Pont free.

SEND FOR OUR
 New Illustrated Catalogue MICROSCOPES

> And Apparatus
> POST FREE.

MICRO-OBJECT LENDING DEPT. Particulars Post Free.
A large Stock of Second-hand Microscopes, by all the best makers always on hand. List of application.

> ㅇ. BAERER, Established r765,
> 244, High Holborn, LONDON, W.C.

W. LONGLEY,

ENTOMOLOGICAL CABINET
and APPARATUS MAKER,

12, WHITE HART STREET,

Catherine Street, Strand, London, W.C.
Nets, Breeding Cages, and Apparatus of every description; Cabinets for Insects, Birds' Eggs, Minerals, Shells, Coins, etc., etc. ; Pocket Boxes, Store Boxes, and Book Boxes. Sheets of Cork any size to order.

NATURAL HISTORY AGENT AND BOOKSELLER.

Microscopical \& Lantern Slides.

Illustrative of every department of

ZOOLOGY, BOTANY

GEOOLOGY,

AT THE UNIFORM RATE OF

$F \equiv F$
 65 DOz.

The Student's Series of 48 Preparations in Elementary and Advanced BOTANY, sent out packed in rack boxes at $£_{1}$ is. net, post free. This Series contains fourteen Type Preparations, which can only be supplied separately at is. to is. 6d. per slide.

Stem Structure, Leai Structure, Floral Structure, Ovaries, Fruits, Seeds, Plant Hairs, Scales and Glands, 6s. per dozen.

Type Slide Preparations of the Mouse, the Newt, the Earth Worm, Peripatus, Cerianthus and Alcyonium, Is. to is. 6d. per Slide.

Set Slides of Foraminifera, 9d. to 1s. per Slide.
Sections of Cotton, Flax, Hemp, Jute, China Grass, Wcol and Silk, \&c., at is. per slide.

The Pharmaneutiral Serien of Microscopical Studies in Elementary and Advanced Botany; comprising 48 preparations, are published to meet the requirements of Tharmaceutical Teachers and Studerts, and are sent packed in rack-box, price 2 I s. post free.

microscopical and lantern slide CIRCULATING LIBRARY.

Slides to the number of $\mathbf{3 0 0}$ per year, supplied in sets as required by subscribers, will be sent, post paid, for the Annual Subscription of Ell Is. payable in advance.

The slides will be sent one or two days prior "to the day of the lecture or exhibition, and must be retumed the day following the lecture, post paid. Special post boxes will be provided for this purpose, which will obviate the usual trouble of packing.

The whole of my rery extensive stock will be at the disposal of subscribers and Lists of Additions to it will be sent from time to time.

ABRAHAM FLATTERS,

 16 \& 18, Church Road, Longsight, MANCHESTER.Preparer of Textile Fibies and Demonstrator in Microscopy to the Manchester Municipal Techuical School.
(Send for Lists, \&c., tree per post.

 If the Hows ate we.thty they we leent separateal form
 plated uver : smatl vieve, or ly meath of bagrommed

 and ateer diry ing the formens moty lic brushed off into at fube. The material whidh has suak to the tontwom of the jar consists of the heas ien formanifera, watracoda, exc. This should be preserscet fon selections.
 mateer, as is frequenty the ease, they should be lusited in at strong sulution of callstic potash, which will remese :his, whent damaging the foraminifera. The efuantity of thatings obtabable from a gathering and their comblition of freedom from extraneoses matter varies very greatly: Some gatherings will be found (1) yield an aboundant supply of pure foraminifera at the first thatengt, while in ather casses it is necessatry tw beferat the uperation several fimes fo procare satio factury reallo.

The foreswing methode are intended for the preparaLion of recent sundy materials. When the material is on the form of dredesed mad. a predininary proces in necessary to remose the bise matter, as if the water is turbid and opropuce it tecomen very ditricult wo julge the mament for pouring oti the thats. The noud must bee boben up inte lumpu almat an inch in diameter, and thomeshly, but very slemby, dricd. It is then placel in a tmsin amd conered with water, which yuickly disintegrates the lamps. If few foraminiferat A ating daring this process may be remowed with cigarette papers. The mud is then washed wat by plaing the material, a sporontal at a time in a seve cosered with fine silk gata, throngh which a gentle stream of water is allowed por hlow until it piances through yuite clear. The mudely water shouble be attowed tor settle in a bath and the sulid protion then seroped out and thrown away, as it will proinath? cathe a stoppage of the waste pipes if adtoned wrun alown the sink. The residum left in the sieve shomel be thoroughly dried, and may then be picked user on atray under the microsicope, or if desired the thatints may be separated in the mamer already dencriberl.

Foraminifera have existed from the earlient fimes. and from the Silurian downwards there are probably few marine formations which would not yieh them to the diligent worker. Cintil we reach the (retacous period they are, however, few in number and difticult to obtain, except in sections. From thin formed to the present day they may be foumd in nearly all marine depusits. The state of preservation varice considerably, those from clay formations being unailly in the hest condition. Owing to the infiltration of mineral matter, it is, as a rule, imposable to obsain Rematings from fossil material : although in exceptional cases, vandy gatherings such as the Crage, will yield sume floating forms. Clays and shaten may be treated in the same manmer as elrodged mod, the material generally breaking up under the action of water, if
 sieve is still mumbly atter wanlangio it mats lee dreed
 velecervial.

 at Itunstamon north-westh Surfolth. The neightana. hosed is rieh in plates which inhabat lens, wht marnhes, atnd chalky suil ; lout perhatps the mone interesting upsor is at frore lount, three-athl-at-hatt mites motht wf Hunsanaton lier. There, Between the caltisated land and the sobst-dumes, is a tract of salt motrob
 and Shotice Fticulater Linn., called by some author; S. arspiz and S. helliditutia ly uthers. This atation is also famous for the beatuty of colour displayed hy a vast lred, perhaps five actes or more, of Sfalio limonimm, the common sea lavender, which is in its glory all through the month of dugust. The rich purple carpet is a very striking and lovely object, the colour being mather lirighter than that of the purple heather. The bulk of the colour is due to the large panicles of S. fimonrimen, but a grond deal of the smaller S. ampulacfitios is there also, chiefly in the drier spots, bloming at the same time, while abundance of S. fifiudafa may be found here and there, but its small pale flowers louk as if they were withered levide the richer hues of its compeers. Nixed with the seta
 the rarer S. radians in thick clusters, with crecping rhizomes, fiter fripolium var. disionitia, Glaun mbatimea and simada maritima. On the drier borders of the matrsh are frazokiniz lacivis, Sutczide firmioosa and Gibierga marilimen, and on the sand.
 i'ulus suldanello, and Eyうかsimm marivimum.

The seal Inolly (Fegurgiont) is particularly fine here, and wonderfully blue. I noticed that the central flower-heads of this plant were neardy always green. while those on the branches were of a bright lavender bhe: and seeing that only styles were visible on the green heads, while the coloured stamens were conspicutous on the blue ones, I fancied at first that the plant must be munuecions: I believe however that the central heals had drupped their blue corollas and stamens. while the younger heads on the branches had just upened. This. however, implies that the primary inforescence is cymuse and not umbellate, if, as. Sime states, the branches in this plant represent the primary umbel. f'erhaps however that is a mistake, as it is in accordance with a frequent if not a universal rule among the Combelliferae for the central or truly terminal umbel to open first.

Opposite to Gore Point there is exposed at low water a green bank which lonks at a distance like a ridge of grass. It is really covered with a green algot. (Fra, with narrow undulated fronds from the (0) two feet long. A variety of other Seaweeds are cast up here on the sands.

On the LIunstanton Cliffs the most conspreunus plants are Cinfatria sozbiosa, Scabiosa aizamsis,
 z'ulicizris. In a street at King's Lynn I met a small girl wheeling a bis barrow full of vaiamonia barbact. On asking her what she was going to do with it she answered wonderingly, "lboil it and eat it like cabbage. Its sampher." I did not knos that it was so used. It is not of course the true rock samphire (C)riblumamt) but it is known in some pats as marsh samphise, and was formerly burnt to extract the soda
 Lidicister, Alesrest T, rsigs.

TICKS AND "LOUPING-ILL."

By E. G. Wheler.
(Conclated from page 50.)
IXODES PLUMBEUS. (1) I. HEYAGONUS kindly assistance, assures me that it is a variety of var. (?)

AT the time of the attack of I_{0} reduaizes on the sheep, large quantities of ticks were present on the shepherds' collie dogs. Being assured that these never reached the size of those on the sheep, they

Fig. 14:-I.todes plumbers, \ddagger " (in bal-am). b dorsal aspect. c coxa of fore legs. d tarsus of fore legr. c capitulum enlarged. were examined, and it was at once evident that they were of a different species. Its right name is doubt. ful. I'rofessor Neumann, to whom I am indebted for

Ixodes hexagonus, but there seem so many differences between the specimens to which he assigns this name, that I hesitate to think further investigation is unnecessary.

The name of I. Alumbozes was assigned to it on

Fig. 15.-hrorles plumbers, in balwam. a larva, b capitulum enlarged. c fore leg. d pupa. \& capitulum enlarged. f coxa of fore leg.
evmmation of nomber sperimens at the latitish Muscum，lat the＂e were sordel and diacoleured，that nu very relable information condd the whatined．In nearly all comen fermate had haed presersed，and there is ars mach arenerall simibuty in the appeatrance of
 wheterate．（fige is．）
When diaterated thee femmale fores the met vibat
 latel colatur．

distended fomate of elifferent species，and so much diversity between individuals of the name specteo in difterent stages of distension，that much confurion in nomenclature has arinen．

This tick，which is very common，appears to have one essential difference in habit from \％Futurion， which is that mon males could toe found with the females on the host．So far，I have alungether failed to secure a specimen of the male．The life history of this tick is probably very different from that of the grass－tick．It must be chiefly passed in the interstices of boarding，floors，walls，and other partis of kennels inhabited by the host．

The eggs are nearly white，length 52 mom．，braulth 42 mm ．The number laid appeas much fewer than in 1．redmaius．In no single case was this tick fund in the sheep．

The drawing and description of the femate were taken from a solitary undistended specimen，all the others ubtained，some sceres in number，leing par． tially distencled．The larvate described were hatched out in confinement．Nowpecimen of an madioteneted pupa was whatamble．

AbULT FEMASE．－Lensth 2.86 mm .4 .16 .50 mm ． when distended．Colour of budy light lirownish grey，with eight lagge brown radiating intestinal marks：two other small wes being nearly concealerl by the shield．The booly somewhat obscurely margined．Head，shield and legs light pale testaceuns， Four slight posterior indentations on matrgin of body． Conate uf anterior tegs are short and triangular． They have no distinct spine，but merely a eubercle． The second and third pair also have smatl tutereles． Rostrum with eighe large harls and comona．Chelifers

I＇roportionate istasurements．

lentuth I ath R	Rostrum so	Palpi 22		Spirsiclev 12			Shicld	
Breadth 90	． 8	＂	10	＊		12	＂	f^{8}
Legs（ast）	t）．．．．	L． 4.4	12	4	32	22	＊	
		H 16	12	12	10	9	8	
（2nd）	l）	L．an	14	20	18	10	22	
		1312	11	10	9	8	7	
1.3 rd	（1）．．．	L 2	84	24	20	20	4	
		H $\mathrm{Bd}^{\text {d }}$	10	9	9	8	7	
tith	h	1.20	20	30	4	24	28	
		13 b		9	9	9	8	

LAKVi．－Lenerth 0.74 before distemsion．Barly bansparent，with four faint radiating intestinal marks －not always present．Other parts pale testaceous． kostrum 8 harlos，chelfers 4 books．（＇laws extend begond the caruncles of feet．（Fig．I $5, a, b, a$ ）

Length fo	Kıットリカm			Palpi	8	Shiu		16
Braadth 28	．．	3		．	3			14
Leges（1st）		$\frac{1}{13}$	6 5	4	6 +		6	10 +
（ n d）		L	6	4	5	4	4	8
		f	5	，	：	$\stackrel{ }{ }$	；	\therefore
（iril）		$!$	1		5	5	5	${ }^{1}$

 shorter and thicker．Kostrum with 8 harbs，chelifers four hooks．Cohnur when distended，livid almose black．（Fig．15，it，i，f．）

foength	Routrum	8	Palpi	18		racle			Shield	28
Breadth	－	4	，	3		．．		6	，	\therefore
Leg	（ist）	\ldots	L	8	5	$?$	8	8	${ }^{1+}$	
			B	8	6	6	5	5	5	
	（2nd）	．．．．	L	8	6	8	7	6	11	
			B	8	6	4	4	4	$+$	
	（3rd）		1.	\％	${ }_{6}$	）	\％	\＄	：	
			1	s	6	t	＋	7	4	
	（4th）		1.	8	6	10	：	8	\therefore	

INODES HEXAGONLTS, Leach. I. AUTVIINALIS (?), Leach.
Several specimens of this tick have been received. They were found on stoats, ferrets, and hedgehogs. Prufessor Neumann names it Ixodes hexagonzes, after Leach. An examination of Leach's type specimens at the British Museum led to the conclusion that it was his Ixodes aummmalis; but the specimens, as above said, were too old to depend upon. All the

Fig. 18.-Ixodes hexagonths. Length 1.70 mm . a dorsal aspect. b in balsam. c capitulum enlarged. e coxa of fore leg. d tarsus of fore leg.
individuals received were partially-distended females, and distended larvae abrl pupac. Some were sent to me by Mr. Pocock on February 7th, and were kept alive on damp sand and moss in the usual way. On April 29th, after eleven weeks and forr days, it was discovered that two of the larvae had undergone their metamorphosis, but one larva remained unchanged.

Whilst the total length of the ticks is little altered, other considerable clanges have taken place. The shield is greatly enlarged, the rostrum and palpi lengthened, and not only has the fourth pair of legs appeared, but the others are much developed. A con-

Fig. 17.-Txodes hexagonus. if partly distended. siderable alteration has also taken placein the intestinal markings, which seem to have reappeared in the larva (previously all black), as the time of metamorphosis approached. The exact day on which it occurred was not observed. Distended ticks in all stages become very sluggish, attempting to escape notice by feigning death; but in this case, so soon

Fig. 19.- Ixades hexagomus. a larva, fully distended dorsal aspect. bin balsam. rcapitulum enlarged. d fore leg.
as the change had tahen pllae the yonmg fupse recosered their active habita, olimging tena innly th every mosing ubject.
 2. 80 was. 16 wh $\$ 1$ imm. When fally distended. Shield
 Rostrum evtending leyomd palpi, which are shont and loread. It is arrucd with ten latge hargas atod coronat. Chelifers with bive bushs. (oxate of anterior lege with
smatl spince Brely linely hirsute. Heat, shichl, leges, exte., testateonm. Bundy when slighty distended drab (hig. 17), develupping to head coleur when filleal with bhond.
wery pate tematemps. Conde il ant-rion ligg whb

 (1) worlerge betamorphosis the inte ntimet morthinge ire小- hown 11 (1) fig. 19 6.

	Kowlrum	4	['.11)	7	Siond		is
Ereobleh 42	-	.	'	3			181
1.ctas (5w)	. . .	1.	1.4	t)	to	1	(1) ${ }^{1}$
		13	(1) 1	1	1	1	1
(2md)		1.	$8+$	6)	5	1	8
		13	5	3	3	1	.
(ard)		1.	$\times 5$	6	(3)	"	'
		13	',	;			

1

i

Lengeth sof Kowerum at Palpi 28 Spiracter - Shicld so
Brotidth 13 -

Lego (5 ()	. .	L	32^{*}	16	28	st	S	30
		13	± 2	14	14	$1+$	12	11
(2nd)		1.	28	16	2	\therefore	20	28
		\%	20	18	12	12	10	8
(.35d)		1.	30	20	38	24	2.2	28
		H	24	4	12	12	1.2	10
(sth)		L	28	24	3	32	28	36
		13	20	14	$1+$	13	13	10

Lakva, - Length undistended 0.88 mm . 101.76 num. when fully distended. Body lighe, translucid, becoming dark when replete. Shield, legs, etc.,

- Inc luder 6 for length of spine.

1rind.-Length 1.76 mm. to 3.03 mm . when dis tended. Budy light bluish grey, marsimed. tramsparent, with feur posterior large intestinal marks. joined logether behind the shield. and smallet ones extending to the front and sides, visible through the hickl. Eniform brownish white when dosiculed. The: shield, legs, head. ctc., palle lestaceous. Cowae of anterior legs with a small tubercle, or cmbsumic sfine. Kostrum with sesen barbs. Cholifers with four houks, fig. IS, t, b, i, d, a

It will be seen that the chief differences are the larger size of body, shicld and rostrum, the number of barbs on the latter, and the presence of a spine on the coxae of the fore legs. Also the fact that the I. plumbers (?) were all taken from dogs; whereas, I. hexagomus was found on ferrets, stoats and hedgehogs, though to this but little importance must be atlached.

ITODES REDUITUSS additional notes (wide S.-G. ante 5).

Since commencing these descriptions, an opportunity has occurred of observing the ovipositior of eggs by the female, which is most remarkable. The head, which in the more youthfil stages is carried horizontally, is in the distended female held more or less at right angles to the body. When about to lay an egg, the head is further inclined till it rests close up against the breast (fig. 20a). In this attitude the end of the rostrum actually touches the genital orifice. The palpi are at the same time widely opened out, though for what purpose is not apparent. Behind the head, and from under the shield, at what (for the purposes of explanation) may be described as "the back of the neck," a white, perfectly transparent, delicate gelatinous membrane is protruded by inflation with air, or a transparent fluid, over the head, which it entirely conceals. The end of this membrane terminates in two horns, or "fingers." It appears covered with a glutinous secretion. At the same time, an ovipositor of a very similar character, but not quite so transparent, is pushed out from the genital orifice (fig. 20b). This latter is a tube, within which is the egg. As it projects, this tube turns itself inside out, like the finger of a glove, leaving the egg protruded at the end. The egg is then seized by the two "fingers." The membrane from behind the head, and the ovipositor are then both mutually withdrawn (fig. 20c). The egg adheres to the former, which drags it forward to the top of the head, where it is deposited as the membrane collapses, owing to the withdrawal of its contents (fig. 20/d).

This membrane in its action closely resembles the toy dolls of thin indiarubler, which are blown up, and collapse when the air pressure is removed. The time occupied in depositing an egg was three minutes, and the period between the laying of two eggs ahout six minutes. The egge measure 53 mm . by 38 mm .

A paper describing the uriposition ly a foreign tick was read by Mr. R. T. Lewis hefore the Royal Ticroscopical Sociely, on May ISth, IS92. There are some points of difference, attrilmtalice no doubt to he difference of species.
The foregoing notes are merely the collection of
personal observations made during the past twelve months, and are therefore necessarily most imperfect.

The object of publishing them has been to call attention to a very interesting and important subject. It is hoped that others more accustomed to scientific research will take up the question, especially with reference to the obscure conditions which cause susceptibility to louping-ill in some cases, and immunity in others.

A complete and careful classification of the British ticks and allied genera, as well as descriptions in all three stages of their existence is much needed to assist those who may desire to investigate the life history of these pests, the want of which has been the occasion of much confusion in the past.

Szwansfield House, Alnzwick, August, 1899.

Albinism in Flowers.--It may be desirable to explain more fully the subject-matter of my remarks on Albinism in Flowers (vol. v. 250 ante). I will endeavour to do what is not very easy within the limits of a short note. It has been stated that (I) white-flowered specimens seem as healthy and vigorous as those of the usual colour. They may appear so, but their vital powers and processes are really not so active and complete. (2) Is the whiteness permanent? I should think not, but will refer to this Jater. (3) As the pigments are derived from the soil, how is it that a white-flowered plant will grow on the same soil and the same spol as those of the usual colour? As far back as 1832, the great De Candolle was obliged to declare that "the opinion long prevalent that red flowers owe their colour to an oxide of iron appears without foundation." There is, however, still a wide-spread and popular belief that the floral pigments are derived from the soil. One correspondent writes me to know why I said the flowers of meadow-sweet ought to be red; also, if dryness is proper for the plant, why it grows in wet localities? What I meant by "they uught to be red," is that there is. an abundant sufficiency of chromogen in the parts concerned, but owing to the moist surroundings it doesnot in this particular species develop into red pigment. Under unusual circumstances this flower has, however, actually been observed to be red, like many of its allied species. My observation that "there are no absolutely white flowers," seems to have surprised many people. The proposition may be a little too strong; but overlooking older authorities, I will translate the words of M. Gillot, of the Botanical Society of France. He says, "It is, in fact, very rare that the white of the petals is absolutely pure; in most cases there exists a yellow, blue, or red colouring matter in very minute quantity, which can be detected only by the help of a close observation or of artifices such as withdrawal lyy an air-pump of the air which fells the intercellular spares, and contributes to make the organ appear white; its true colour can then be recognised." A deficiency of phosphorous in the soil, on the one hand, and a deficiency, on the other, of that suction force which is especially incidental to flowers borne on specially long stalks would, combined or singly, directly and indirectly, give occasion for abnormal phenomena, such as doubling, albinism, etc. I think from my own observations that annual plants habituated to damp habitats are especially liable to lose a guod deal of this normal transpiratory activity.-[$\left.D_{r}\right]$] P. Kéegan, I'atterdale, Westmoreland.

WE：now come to the enumeration of the butter Hies of the l＇alibearctic Kegion．I hase already indicated the system of classitication，which will be used．The method of description will be based on that of the late Henry T．Stainton in his well－known Manual of Britioh lbuterties and Mothe． This work has never been surpassed for consenience and concieness．The following altheviations will be used throughout：－
size will bee expressed in millimeters，and printed －mom．＂indicating the distance between the apices of The fore wings．When two measurements are given， reparated bey a dash，it is meant that the insect arries in sias berween the two dintersions．Thas，

\＆means male ；f female．
hybr．hybrid teetween two species．
ab．Wefore a name alerration．
var．varicty．
f．w．－fore wings．
h．w．＝hind wings．
u．s．－underside．
The upperside is to be understond in any descrip． tion，where the u．s．is not specially mentioned．
ant．－magl．＝ante－marginal．
ang，－angle．
an．ang．＝anal angle．
cl．－central．
c．cell－disconidal cell．
d．sp．discuidal spot．
gr．col．ground colour．
mar．margin．
in．marg．＝inner margin．
on．marg．＝outer margin．
f．plt．＝food plant．
hals．－habitat．
ibb．－abundant．
com．＝common．
N ．＝north of northern．
S．＝south．
li．．－east．
W．＝west．
C．Central．
The times of appearance will be shown hy koman numerals，indicating the month thu－：$V:=$ May， These will be followed when necessery by b． leginning，m．$=$ middte， $\mathrm{e}_{\mathrm{a}}=\mathrm{e}$ end， h ．＝alter hyberna－ tion．

The abbreviations of authors＇names will be those that are usually accepted，and will be added to the end．Ximes that are but seldom used will be given n lull．

The athiturlen of mountaine will be gisest in teed，for the reaces that most lenglish puekel atherojds are thun grabluated．

Fögures and description of all the louropecan－pecies will be found in my work＂The Gutterdlien of Europe＂－which will be referted（1）as 1 gg ．B．Bi
 ties＂will he referred to as Kia．K＂．Ib．

Dic palacarctischen grosshmelterlinge of Kuhl and lleyne will，when reference to it is necessary，ise indicated by R ．and I ．

The following tabulation indicates the abbrevia－ tions wed for the different loxalities in the Amur district．They are taken from 1）r．Staudinger＇s valuable volume of komanofics Memoirs，i Soz．
．Wh．－Askokd．
Baran．laranomkat
Bik．Bikin．
Blag．－Hagoneachischessas．
Bur．Bureja．
Chabs．＝Chalmatowla．
Nik．＝Nikolajewsk．
Ionkr．Pokrolka．
Kiadd．－Kitudethir．
sid．Sidemi．
Suif．Suifun．
Uss．－Unsuri．
Wlad．Wladiwostuk．
The figures given will be from phobographs of actual specimens，from my own collection，unless wherwise specified．As a rule European species will not be figured，as they have appeared in＂The Butterflies of Eurupe，＂and many of them are shown in the works of other authors．In most instances， therefore，these form the first illustrations of the species selected，that have been made in connection with deseriptions in English text．

Fsimus I．PAPILIONID．AE．

L．IR以゙A－Cylindical，usually without spines，and with two retractile tentacles on the second segment．

P＇res．－Attached by the caudal end and by a silken girth which supports it in an upright pesition．

IMagの，－Usually of large or medium size．The inner marg．of h. w．distinctly concave，in this respect diflering from all other families，Discoidal cells， chmed．Anterior legs，fully developed．Antennae． distinctly clubsed．

This family contains seven lalacarctie genera． Three of these are exclusively Niatic，viz．．Sh ri，ints， Covihdorkia and Hypermencosita．Only one sentio． lapilio，is represented in Britain，and that by the single species，＂the swallow－tail＂（ Γ ．mati－l大゚ン：），
which is very local in England. P. podalirizs probably at one time occurred in Britain, and still appears in some popular books as the "scarce swallow-tail." It has not been seen in this country for at least a century, except when accidentally imported from the Continent of Europe.
Genus I. PAPILIO L.

This genus is of very wide distribution, extending over the greater part of the world. The genus as restricted by Latreille, is now being split up into

Fur species are found in Europe, two of these, P. podalivius and P. machaon, are widely distributed. They are common in most countries, appearing from IV. e. to V. according to latitude, and again in VII. and VIII. They are, therefore, generally to be seen throughout the butterfly season. The next most common is P. alexanor, which however is far less widely distributed than the two former, occurring only in mountain regions, and is very local. It is abundant in certain spots near Digne, and other

Papilio machacz, ab. sphymes Hb .
numerous generic groups. I prefer however to keep the seven species here described under the heading of Papilio.

All the Palaearctic species are of large size and have the h.w. tailed and at the an. ang, an ocellated
places in S. France; in some of these localities being commoner than either P. podalzzizus or P. machaon. P. hospiton is only to be taken in Corsica and Sardinia, at an elevation of not less than $2,000 \mathrm{ft}$. In Corsica it is not so frequent as in Sardinia.

Papilio xuthus L.
spot. The f. w. are triangular in shape, and generally have the ou. marg. slightly concave. Palpi short. Antennae long, with elongate clubs, which are more or less curved upwards.

The remaining species in our list are Asiatic, P. xuthus, which somewhat resembles P. machaon, but is larger and paler, with its smaller dimorphic form xuthulus, and P. maackii, a splendid species of
oriental aspect, with its smaller dimurphic form reddeti. are only fuoud in the Imur Valley. I have admitted one more vpectes f: ahiowors from Corea, a hand some llack species, markell with redl lunules on the h. w. . whict: alon occur in China and Japan.

A good way of obtaining fapilio aleazmor and P. hospites is to collect, at the proper season, the larvae on their food plants. The larva of the former is not difficult to findi at ligne about the end of July, on Seseli montunum and other umbellifers. Those who visit Vizawoma, which is of comparatively ensy access in the centre of Corsica, should search, in June, rennel plant: (focmisblum z'ulyari) and others of the same urder, for the larva of P. hospiton. I heard of several captures in tSon in the abure locality. Of the Asiatic species I cannot speak with anthing like personal knowledge, but I believe that they are none of them rare in their respective localities.

The E゙uropean species of Papilio are remark. able for their graceful, sailing Hight, but they are capable of flying very strengly and rapidly, especially in the mid-day sun. To capture them it is liest not to attempt a chase, but take up a position where they will pass. If mis sed, they gencrally soar high into the air, out of reach. They are easiest to take in the carlier part of the morning. before the sun is in full power, and again in the afternoon. At these times, though they are not to be seen in their greatest numbers, they fly more slowly.

III., VIII. MAB., Spain, Portugal and N. Mrica. Oran and Cunstantine. III.-.VI.
*, ab., zanilacus Zell. -Sometimes larger :har. type, : with the abdomen white. An al., if \ldots, m brood in S. liurope and Caucasus.
c. var., meigii Meig.-An intermediate form between the type and foisthamelii. Hab., S.E. France.
d. var. latteri Aust.-Much resembles feisthamelii, but larger and paler, of with white abdomen. Hab., N. Africa. Vil., X.
c. ab., andecemlineatus Eimer. - This has the 3rd black band on $\mathrm{f}_{\text {o }}$ w., divided into two on a level with the median nervure, the upper part enclosing a whitish streak. There are also considerable traces of an extra black band between the 3 rd and 4th near the costa. The stripes thus appear to run more or less in pairs, recalling the figure II, hence the name. This seems to be a merely trivial aberration, intermediate forms occurring. Hasi, Germany, Mediterranean, littoral, etc.
f. var. witgatus, a smaller and lighter form, with white abdomen in f. The usual summer form in Syria.
This species is wrongly called sinonz Poda by Staudinger, Cat. I871, and this mistake has been repeated by several writers who apparently have omitted to notice the correction at the end of the work, in which the name podalirius L. is substituted.
2. P. alexanor Esp. Lg. B. E., p. 6, pl. I, fig. 3. Ka. E. B., p. 2, pl. I., fig. I.
$6 \mathrm{I}-70 \mathrm{~mm}$.
Ground colour much deeper yellow than in P. podalivizes, sometimes deeper than in P. machaon. F. w. with a rather broad black band dusted with yellow, running the whole length of wing, parallel to on. marg. widest at costa. Wing area with three black stripes, the two outer short, the third broader and extending to in. marg. H. w. with ante-marg. band, dusted with blue and enclosing at an. ang. an orange spot, a central black stripe meeting a black basal stripe at about c. of in. marg., a distinct black oblong disc. spot. Clubs of antennae tipped with yellow. This species varies in size much more than P. machaon, it is generally smaller, but the largest specimens quite equal that species in expanse.
VI. e.-VII. e. in S. France and N. Italy, but perhaps earlier in Greece, Asia Minor, and Persia. It frequents rocky mountain gorges.

Larya on Seseli dioicum and S. montanum, VII. m.-VIII. e.
a var. juduezts Stgr. Has the ante-marginal bands broader than in type. $55-72 \mathrm{~mm}$. HAB, Syria (Jerucalenit).
b var. oricntalis Romanoff. A large pale form with bands manower than in type. Hab, Asia Minor, C. Asia.
3. P. machaon L. L. I. E., p. 7, pl. I, fig. 4, larva pl. v., 3. "Swallow-tail."
$70-85 \mathrm{~mm}$.
Ground colour of wings bright yellow. W,w. broadly black at hase. Three costal black blotches and a broad antemarginal land extending the whole length of wing, nervures broadly black. Basal patch and marg. lands dusted with yellow. A row of yellow lunules along ou. marg. H.w. with broad black land dusted with blue, not reaching as
far as disc. cell. A large dull red ocellas at an. ang. Between the hand and the margin a low of welldefined yellow lunules, tails as long as in the last.
IV. e. to IN. e.

Hab, the Palaearctic Region, except the Polar portion and the Canaries. In England, only in the Fens. It is chiefly found in lowland districts, but sometimes as high as $2,000 f t$. in elevated regions.

Hab., distributed throughout Palaearctic Regions, N. India, China, and Japan.

Larva on Dauczs carota, Anethum foeniculum, Anselica sylvestris, and other umbelliferae. VI. and IN.

In enumerating the varietal forms I have purposely onitted some that do not belong to the Palaearctic Region.
a. ab. sphyruzs Hb. 54-6omm. Resembles type, but has the fascia on the how. so broad as to touch the disc. cell. VII.
Habi, S. Europe, Caucasus, Sicily, Syria.
b. var, saharae Obert. 50 mm . A small form inhabiting desert regions in Algeria.
c. var. asiatica Mén. $60-62 \mathrm{~mm}$. Like Sphyrzts, but larger and with a broader band on h.w. Hab., Siberia.
d. var. aurantiaca Speyer. Ground colour much deeper yellow than in type.

Hab, S. Europe, Corsica and Sardinia. Occasionally as an ab. in England (?)
e. ab. niger, Reutti. A melanic form in which the dark markings are extended and more dusky than in type, and the red spot at an. ang. h.w. is replaced by black. Hab., Germany, etc.
f. ab. nigrofasciata Rothke. Darker than type, and with broader stripes and bands. FIAB., Germany.
g. var. centralis Stgr. Dark markings less intense, ground colour yellower. HAB., C. Asia, Turkestan. Jarva on Capparis spinosa. V.
h. ab. watzkai Garbowski. A more slender and lighter form inhabiting Galicia.
i. ab. drusus Fuchs. A brightly coloured and pilose form. Hab., E. Germany (Nassati).
j. var. hippocrates Feld. IIO mm. The largest form of the species, the second brond of Asiatica. Hab., Amur, Corea.
.h. var. kamtschatadalus Alph. Size of type, tails of h. w. shorter. Ground colour darker. Marginal bands narrower. HAB., Kamtschatka.
4. P. hospiton Géné. Lg. B. E.s p. 8, pl. II., fig. I, larva, pl. v., 4.
$70-76 \mathrm{~mm}$.
In size and coloration this species greatly resembles P. machaon, but on all the wings the dark markings are more intense. II.w. with exceptionally short or even rudimentary tails. The ante-marginal fascia very broad reaching to the discoidal spot, and shaded off into the ground colour, the blue scales upon it very vivid and more circumscribed in arrangement, the sp. at an. ang. very small.
V. and VI.
M.un, Surdmia and Corsicat only, freptuentiug rocky grages in the mountains at from 2,00oft (0) 4, oooli. In Corsica for instance from Vivarios to the Col de Viafawoma, on the lower slopes of Monte do ()rosamd other like places. Said to be commoner in Sirelinia, though the species is aboolutely combined to these istanels. It is not an insular form of I '. medilatone which also oceurs thete, but is perfectly distinct.
 aml covered with shore prickles on fiound conmmuni) VI. and VII. h.

5. \%. xuthus I.

So. 102 mm .

Llas sontewhat the aspect of l. machoon, hit considerably larger, the ground colour much lighter, and the dark markings blacker and ditierently dis. posed, especially at base of f. w. A very smatl black spot at an. ang. h. w.

Vll., VIII.
Hab., Amur-Corea, also China and Japan.
1.AKvid on Phellodendron ambernse. I...
as. var. suthu/as Brem. Resembles type, but much smaller margimal lands proportionally narower, h. w. withan orame spot at an. ang. V., VI. Havio, Amur. Spring brood wf Tuthes from hiber. pupat.
6. I' maackii Men.
$90-115 \mathrm{~mm}$.
llings black, f. w. with metallic greenish Hhes scales at base, and an ill-tlefined lame of the same colour towards out marg. II. W. indented on ou. marg., abel with well-developed tail. shiny metallic bheegreen central band undefined at edges, and marginat lumules of the same colour. I dult red or purple spot at an. ans.
VII., VII.

Has., Amur, Asko, Chabo, Pokro, Wlacl.
L.AKVA on /Wollokendion ammeresc. IN.
a var. raddei Brem. So -86 mm . Smaller than type and generally lighter, h. w. more suffised with greenish blte. The i marginal lunules and an. spt. light red. V.. VI. Spring brood of Matactio. Il.us. Amur (Bureja, USs.. Ask.), Corea.

7. P. alcinous Kile.

$80-85 \mathrm{~mm}$.
F. w. dark grey with lnoad black markings alwng course of nervures. II. W. black, strongly indented on ou. marg, and with wide and rounded tails. A row of five marginal scarlet lunules.

Habs, Corea, also found in Amur and dapan
(To lie continated.)
 ing soon upon the death of Sir Williams II. Flower, comes the loss of another who, for the sake al science, was honoured with knighthood. Sir Erlward Frankland was an eminent chemist, his speciality having been water examination and its increased purity for human consumption. Jle was born at Churchtown, near Lancaster, in 1825 , and studied unter Bunsen, who also died within a few days of Frankland. I)r. Frankland received homorary degrees from the U'niversities of O,ford and Edinhurgh, and from several European ('niversities. He died white on a pleasure trip in Norway, on the gth of August, 1899.

A HISTORY ()f ('HALK

cionsinued from far in

T"If: natue " Chathe" Wats lirst uncel in at g'otempinal sense by Martim binter in 108 datad moty lue deseriterd an a white limestone, sos great in the propere tion of carbonate of lime it contaitas. Chemically considered, thete is a great diflesence loctseera AthaticOozeanst IVhite Chath, as the former, atcondines (o) David Jourtess, contains 26.77 per cent, of insuluble gritey sand and rocky debtris, while in chalk there is seldom more than two per cent. of equivatent matter. This marked difference is connterbalanced loy the great calcareous purity of the Chalk, which was foumet w contain no less than 98.4 per cent, of cartonate of lime, with a trace of carbunate of maronesia and of alumima. This is shown in the following tabutation by Forbes.

Dialyses of the finer portions of Globiserina ooze, after the coarser parts had been washed away, showed a great resemblance in chemical composition to amalyses of the ocenn Ked Clays. The coarser portions consist almost entirely of Globiscrina tests, of the same uoze. Ifence the conclusion is that the Red Clay is, in reality, in coarse of deposition, wherever there is a water surface to receive metentic dust: but in the Oozes its deposit is masked !y the ingredient. of the calcareous organisms.

In passing upward through the Chalk from the basement-bed of the impure Chalk Marl, it is to be expected that analyes of Chalk taken from the various beds womld differ to some extent as to the percentage of carbonate of lime, which each specimen contained. In two analyses made by Irofessor J. T. Way of specimens of Chalk Marl, 73.19 and S6. II per cent. of cartonate of lime were found respectively. A picce from the Chalk with Flints, containel 98.22 per cent. of carbonate of lime, whilst a portion from the Cpper Chalk yoilded 97.75 per cent. A specimen from the lase of the Grey Chalk at Folkestone, gave only 94.09 per cent. of carbonate of lime. In three samples of the more highly calcarenus enges, two of which were from the South Itlantic, and one from the Pacific ocean, the proportions of calcium catmmate were found to be $91.17,89.5$ and 79.79 per cem. respectively. In referring to these analyses, the
analysts call altention to the fact that the dredgings are more or less from the surface of the ooze, where it must be full of newly-acquired carcases of dead Foraminifera. Had it been possible to obtain specimens for analysis from beneath the surface of the ooze, where it had been longer exposed to chemical action, the organisms would have been in a more divided condition, and there would have been a larger proportion of amorphous matrix. These oozes in the present deep seas, at depths of between 1,800 and 2,000 fathoms, may be held to possess a great chemical and microscopic resemblance to chalk.
We have now touched upon the results of this famous deep-sea expedition, in so far as it is germain to our subject. As may be imagined from the task which was placed before it at the outset, a mass of knowledge was collected, much of which is of intense interest to the geologist, as showing the method of deposition of strata, and especially of the gradual building-up of organically-formed rocks.
It will also be observed that the characters of the Chalk which have been previously represented, agree more particularly with those layers of globigerina ooze which are found, more or less consolidated, beneath the upper creamy surface, layer at the bed of the Atlantic and other ocean areas. Generally speaking Chalk has a specific gravity of from 2.4 to 2.6 . There is usually a small proportion of water contained in it when fresh from the quarry, amounting to about 5 per cent., whilst there are generally, even in its purest forms, traces of free silica and ferric oxide. The silica is often present in greater proportions, whilst in the red varieties of Chalk there is frequently as much as 9.28 per cent. of silica and 9.6 per cent. of oxide of iron, together with a little magnesia. Alumina may be present in very varying proportions.

It is a remarkable fact that the true Challs is the only formation of its lind throughout the whole succession of geological strata. In this way we see now-a-days in the deep ocean depths a certain kind of formation accumulating, known as calcareous noze, leaving out of consideration for the moment the siliceous ooze. This ooze bears the character of mudem Chalk. There is no reason why in former times, over and over agrin, a similar calcareous formation-a Chalk, should not have been accumulating in the oceans of those days. Our hard white Chalk stands out peculiarly alone, as the sole formation of its kind known to geologists. Yet we know of no reason why there should not be a representative Chalk in each of the fifteen great periods known in the geolngical ages. The greater portion of the stratified systems are marine in character: there are a few fresh water, and rather more of estuarine deposits. The marine strata, however, exhibit no intercalated beds to show that they were formed so far out at sea as to give nise to a calcareous ooze. It is only when we come to cretaceous times we find any trace of such a ooze. Mr. Jukes-Browne says it is now generally acknowledged that the great mass of the rocks which form our modern continents are such as are now formed only within zooand 300 miles of land,
and they very scldom include any deposits resembling those now accumulating in the depth of the Atlantic and Pacific Oceans. There is only one formation in Britain, undoubtedly accumulated in deep water, at a great distance from land of a continental character, and that is the Chalk (${ }^{1}$). Therefore, with this one exception, all the formations it is possible for the geologist to examine, are such as have been formed in a comparatively narrow area of 200 to 300 miles in width around the lands of the various periods. Beyond this area, we are unable to judge what forms of life existed.
Deep sea life is absolutely hidden from us until Cretaceous times, and then we get a temporary glimpse of life at a depth of 400 to 500 fathoms, or 2,400 to 3,000 feet. If, as Professor Hull maintains, the birth of the Atlantic Ocean took place at the end of the Carboniferous era, it would seem almost possible that the Atlantic ooze has been in process of formation ever since that epuch. Its eastern extension, including those in the whole of Europe, has undergone a series of oscillations which have caused the deposition of post-carboniferous stratified Europe. Whilst in that period which we call Cretaceous, the continent sank deepest of all, until it constituted to all intents and purposes a portion of the bed of the long-ago Atlantic Ocean.
It is now generally accepted that in the modern seaoozes we have the analogues of the Chalk deposits, and it is fairly agreed that their rate of growth represents the probable rate at which the Chalk itself grows. It has been reckoned as an outside estimate, that certainly not more than a foot of ooze accumulates in a hundred years. If the ancient fossil ooze we call Chalk, which, reckoning all its various stages, we may estimate at a $\mathrm{I}, 000$ feet thick, accumulated no more quickly, we have a period of 10,000 years at least, during which the Chalk Sea was in existence. Too much stress must not, however, be laid upon the period meationed as being in any way exact. There would be local causes that might affect the rate of deposition. The various platforms in the Chalk indicate changes of conditions which would affect it. Further, certain stages in the Chalk that appear in some parts, are unrepresented in others, whilst much of the chalky ooze at one time laid down, has since suffered greatly by denudation. The Chalk as we know it cannot be the whole of what formerly existed. A hundred and more years ago we find Gilbert White writing: "was there ever a time when these immense masses of calcareous matter were thrown into fermentation by some adventitious moisture ; and were raised and leavened into such shapes by some plastic power? Perhaps I may be singular in my opinion, and not so happy as to convey to you the same idea; but I never contemplate these mountains without thinking I perceive somewhat analogous to growth in their gentle swellings and smooth fungus-like protuberances, their fluted sides, and regular hollows and slopes, that carry at once the air of vegetative dilation and expansion." White was an early geologist, but a much more recent
once the Late l'rufesur frestwith, could most, in the spirit of unifurmitarianism, accept in the full, the belief that the Chalk was depersited in the samse waty and by similar agencies as those which we bow see in progtes in the lacilic and Athantic obeans. He thoughe that the conditisus then prevaliog were special, or at least pectuliar to the age, and that in addition to the ace tomblations of whataic matter, there was, "a considerable chembeal precipitate of carbomate of lime taking place in the Chatk wea." ()n the other
 precipitation of lime from seat water is prasilfle untal wier 17. IS of the water hat evapprated. It is fos
 for atry spectal conditions of depositions. New dis covelies are estatantly being mate, ats the flalk is being moreand more examined, which whw the great similarities, in the methods of their depmesition, of the Chatk atorl of wecan mose.

METEORITES.

By JoHn T, CARRINOTHX

(Contintrid froun porge on.)

IN my article last moneh, special attention was pait to the securrence of iron and nickel in meterntes and viderotites. Among the more important conatewents hitheros identibed, there have been found, in varying quantities the following:-iron. magnesiom, amimony, silicon, oxygen, nickel, cobalt, chromizm, mangatne-2., titanium, tin, copper, alaminitu,

Meteorite, emel. Wiat laberty, Iows, is-s. potassium, sodium, calcium, lithium, arsenic, phosphorus, nitrogen, sulphur, chlorine, carbon, hyidugen.

Among the minerals there have been identitied enstatite, triclinic, felspar, chromite, peridute, masnetic pyrites, pyroxene, iron oxide, sraphite, schreibersite, oldhamite, laurencite, and datherectite. with, perhaps, traces of one or two others. thougth these do not appear to have been very dedintes

The gases obtained by analysis incluck hydroger and oxygen, as alrearly stated. Carbonic acid gas, and carbonic oxide in association with hydrogen, is found in the stony meteorites. The latter gas is perhaps the most abundant. Traces of nitengen have been decected.

The evanescent character of the train following the puth through the sky, of a meteor, renclers olservation and accurate flefintion of its character and
origin extremely dithentt. Attempin hate been made, though with but limited succens, to investigate the phenomenon by the aid of the spectrumeope. It may, howerer, he said that the result are sos small, that with the exception of the usual lines representing oxygen and hydrogen, little else has been identitied. The coleur of the trail of lighe varies cunsiderably, and is probably due to the gases released during combustion, nthenced by the sodium, manganest or other metal or mineral near the surfice of the metcorite, whilst being consumed.

Returning to the Gregory Cullection of Meteorites, it contains examples of upwards of four hundred distinct falls, and somewhat more than five hundrect and fifty spocimens. These may lee divided intor 225 stone meterrites or aerolites, 155 examples of meteoric iron, and 24 viderolites, some of the sarious sections being in duplicate. The collection is especiatly rich, consiklering that it has been entirely the work of an indlividual and without Gowernment aid, in examples of the ancient falls: which are now

Meteorite, fell 1803 , L'Ahele. Franch
unattainable, unless some puhlic or private collection is dispersed.

The Ensisheim stony meteorite mentioned last month as having fallen in 1492 is reptesented in the

Gregory Collection by a fine picce. Among other stony ones are examples of falls from Barbotan (I790); Salles (1789): L'digle ($\mathrm{ISO3}$), two fine complete stones; a characteristic piece from Chantonnay (1812); a fine specimen from Chassigny (1815), which is a rare type; another great rarity of which only one stone is known, is from Aubres (1836); another difficult one to obtain is from Chandakapur (1838); there is a fine example from Chatean Renard (184I) ; the rare American meteorite from Cabarras county (1849); a fine specimen from Dhurmsala (1860); a rare type from Grosnaja (1861) ; a small complete stone of the rare type from Orguiel (1864); a fine complete stone of the Saint Mesmin fall (1866); a choice fragment of the Daniels Kuil fall (I868); a piece obtained from the late Albe Moigno of the Cleguéréc (1869) ; a fine complete stone from West Liberty (I875) ; a very fine specimen from Soko Banja (1877); a characteristic specimen of the Pavlovka fall (1882) ; a large example of the fall at Alfianello (1883); a very rare specimen of extremely siarce type is from NovoUrei (Alatyr) (1886) ; a rare Indian stone from Lalitpur (I887) ; an exceptionally fine specimen from Tabory (I887); a very rare complete stone from Bielo-Krynitschie (1887) ; about half the whole stone that fell at Yipe Creek in 1888.

Among the siderolites and siderites is a portion of the earliest known of the former, from Krasnojarsk (1749) ; a fine slice of the Sierra de Chaco (1864); a piece of the very rare fall from Pavlodar (1885); a complete mass found in 1890 at Nejed; another found in 1891, of the Youndegin fall, portions of which were figured in Science-Gossip last month; a very fine mass from Thunda, which fell in 1886 ; a mass from Waldrons Ridge; a complete mass found in IS9I at Canon Diahlo, and many others of great interest.

Most of the above-named examples of meteorites are good-sized specimens for handling, but many, very rare specimens, are only of small size. In a number of cases the whole stones were quite small, from which only little pieces were detached. Some of the rarest in the collection and most difficult to procure are those from Iorkshire(1795), Tabor(1753), Luponnas(1753), Albareto (1766), Mauerkirchen (1768), Siena (1794), Kralhut (1798), all of them having fallen previously 10 I 800 . Since that date, there are many good examples in the collection such as Stannern (1808), which has a black shining glazed crust, rather a rare type: Monresfort, Tipperary (18 Io), and another from Limerick ($\mathrm{I}_{1} \mathrm{I}_{3}$), both rare Irish specimens, the former from the Craker Collection. There are also specimens of more modern falls, some from an enormous shower that fell at Pultusk, in Poland, in 1868, there being many thousands, from the size of a pea upwards. In 1872 a curious stone. a few pounds in weight, fell at Orvinio, near Nome, this had a very unusual brecciated structure which is of some rarity. The falls of Srika-Banja, Servia (1877), Mocs, Ifungary (I882), Alfianello, Italy (18831-a big stome of 400 Jhs, Kesen, Japan (I850), Wimnelrago Co., Iowa
(ISgo), a large shower; at Bath, Dakota (IS92), Beaver Creek, Brit. Columbia (1893), Fisher, Minnesota (I894), Ambapur-Nugla, India (I895), Lesves, Belgium ($\mathrm{IS96}$), Zavid, Bosnia (1897) are also represented.

Of Meteoric Irons some rare ones are those of Elbogen, Bohemia, described in 18ir, Lenarto, Hungary (1814), Lockport (1818), Scriba (1834), Burlington (1819), all in New York State; Jewell Hill, North Carolina (1854), Chesterville, South Carolina (I849), Ruffs Mountain (1850), Chulafianee, Alabama (1873), Lagrange, Kentucky (I860), are some of the earlier irons which are now difficult to procure. There are others later of which that from South Catarina, Bıazil contains nearly 30 per cent. of nickel. is a very remarlable one, being one of the richest in that metal.

Several Meteoric Irons have been found of late years in S. Africa, probably partly owing to facilities of travelling and of exploration. From the same region also, several accounts have come of falls, that have created some sensation in newspapers; but one seldom hears anything further about them.

Many interesting siderolites are represented especially those wonderful little complete masses, of which several pounds were obtained, ranging in size from $\frac{1}{\text { a oz. to } 2}$ or 3 ozs . each, by raking them in from the edge of a lake at Estherville, Iowa, where they fell on May 10, 1879. Each piece being complete in itself two or three large masses fell at the same time the largest over 400 lbs . Another rave example is that in the possession of the Shah of Persia, which fell at Karand, near Teheran in Persia in 1880. It is a mass of about yoo lbs . in weight, and being the private property of the Shah, it is now very difficult to procure specimens from it, as it is very highly valued by its possessor. The Kiowa, Kansas siderolite, found in 1890, is also shown by a fine example It is a siderolite of the "Hallasite" type.

The illustrations are taken from specimens in Mr. Gregory's collection and are both from complete stony meteorilites. No. I fell in Felruary 1875 at West Liberty (Homestead) Iowa County, Iowa, U.S.A. Its weight being seven pounds five ounces. This specimen is particularly interesting because it is covered all over with a thin black crust formed during incandescence through the friction with the air its descent. Fig. 2 is one of the fall on April 26, I803, at L'Aigle, Orme, France. Its weight is 26 ounces. It is also covered with the black crust excepting the portion at the right end where the crust has been chipped probably through striking a stone on reaching the earth.

One could imagine the destruction which would occur through a metcorilite of considerable size striking any object on its reaching the earth. If one were to insure against such destruction or death, caused by the fall of a meteorite, it is probable that Lloyd's or other Assurance Companies would accept the insurance at the lowest known premiums. Still there is al least one known case of a man being killed by a meteorite, a priest in fact, and of more "than one house being destroyed.

 have now returned fromi their hilid.as, and are nu douln prepareal with genlegical noter, mate while away. May I remind them that we are always glad to hear from them, antern find space fier anything which may tre of interest. W'e are anxinn that our geolengical colume hatl comean the hest of materials for genhugical stuly, and at the same time the needs of the elementary geentegis shmold
 to appeal to every class of rearlers, and we shatl tw particularly pleased if the hegimer will make une of these cilumas when he requiree elaciktation of at -ubject that may have been but briefly wothed "pon herein.

 a mason of resin, which the latherfund in the gres chalh, atnee forty feet anme the l'pper fireensand. The recin in of a dark amber collour and hurn freedy.
 Weigho a frifle moter three mincos, and meawore three and a half inches longs tme there are appearances on ome virte of expmatere on the face of the clitro, wh that powibly more may have been lust by sub-acrial denutating. The finder had on presions wecestiondisenwered in the same focality priecen of womel. In cretacems heds other than chalk, an extenise Anta
 N.S. Vol. iven p. 158.
 is a convenient place for studying geelngy: (on the west there is the lower Greensand, such as the Hythe, Sandgate, and Folkestence Reds, called after the place where they were finst examined. The last-named forms the East Cliff. Il Copr Puine the Gaule rise from beneath the higher heds with phomphatic nuxlutes at its hase. Gradually lower heds are expmeet, till the Epper Greensand crops up), then the (iney (hath and Chalk Marl. Fossils fentod in the llothe Poels

 and Terebratula solla. The Sandgate Becls comain but few fossils, but in the folkestone Bed, there arelarge Expgrera simuta. The Chalk Marl is much faulted: in some place it touches the showe, and in mhers it is ten of welve feet abme it. Fowil, finund in the Gault are frocerctums conconetrices, /. whitutes,

 End. Rowden.

Rate of Ieveliculw, - From observations made hy Mr. E. J. Garwood in Spietorgen, in IS97, the icesheet seemed tu inticate a rate of movement of tom less than 15 to 20 feet in 24 humes. whilst the glaciers near the sea-margin appeated to be traveling alout 25 feet in the samic tincs.

Tete death is ammmencel of Charlen flasien of
 lished at thera of the momes of life atad Kinare

 Astromomy was represented ly Belle. Klumplece from the obsertatory at l'arin: (icellagey ley Mise Raision of Betfurd Cullege: Chemistay by Winn Durteny
 Frankland, and Jiokegy by Mine Ithel sotgant.
The sum of L45,000, the anmant athnted by the Guvermment toward the expenses of the propersed Sational Anarctic Eapedition in ather disapmonting. This is espectially so als it leasee the ammont of \&100,000, the extimated comt of the mumertaking, thort 1y some L 15,000 . It is hepped that the dustrabasian Cobnics may come formard with part if the desired limancial and still necessary,
The "Matriculation bivectory." recemty puilwhed by Mr. W. ls. Clive for the divervity College Irest. comains chanstive information concening the siconce and Art examination of the Londen University. Though its tite is amply maticulation, it gives the intending student all detaib he ran reguire with regard to preparation for the intermediate scientific abil the Pachelor of Science examinations. the leet text lowks, and the point to which epectal preparalion should loe given.
Wrows: in the "Entomulngia" fing June. Mr. 1. Henry Fowler of kingwowl, draws atsention to the number of moths fleming on the surface of tan pits. The fluid combained in thene pite is largely an esence of wat hark. Ile suggests :" guol lipuin from the tanyards might be tried loy collectors as a substute for tracle in attracting moths." We imagine mome collecturs would prefer (o) put another "goud liquor" intu their areacle-or elsenheres. Still it may be worth a trial.
Thes Manchester Museum has acyuirell the Dresser Collection of lifds. The ambor of the " Dinds of Burope" has spared neither trouthe nor expense (0) make this collection as complete as pussible. his apecial aim having been to render it of utility of workers. It cuntains the allied species from the lalaearctic region generally, and alson the materials uned by Mr. Dresser in preparing his monograph on liececaters and roblers.
Sablaty of Seallater, it friend who liwe here and bathes every morning in summer, tells me that the sea is apparemly much mure salt than usual on some few days. This unly weurs nnce or twice during the summer. IIe noticed that it was sor a day or two ago. Is it a fact that the sea in the Engthin Channel is more salt sometimes than at whers? If so, What is the cause? Also, is the sea more salt on the coast of Wiales than in the Channel? firt the same friend found it apparently so on the corast of Sueth Wales last summer. I am sorry I cannnt sive von more detail as to winl, tide, ete., but thene particulars
 brarase, Shorchom, Sussent

NOTICES BY JOHN T. CARRINGTON.
Birds of the Humber District. By John Cordeaux, J.P., F.K.G.S., M.B.O.U. viii. +40 pp., $9 \mathrm{in} . \times$ $5^{33} \mathrm{in}$. (London : R. H. Parter, I899.) 2s. 6d. net.

The exact title of this work is, "A list of British Birds belonging to the Humber District, having special reference to their migrations." It is revised up to April, I899, and prefaced by an introduction. The number of species reaches 322 , a very large record for so limited an area. Of course, they include resicents, summer visitors, winter visitors, and periodical visitors, also rare and accidental occurrences. This is no mere list of names, for attached to each species are one or two paragraphs of notes, defining the position of the bird as an inhabitant, as regards numbers increasing or decreasing when resident, dates of arrivals and departures if migrants. There is also much other valuable information, which has the advantage of Mr. Cordeaux's high reputation for accuracy and experience as one of our leading ornithologists.

The Birds of Breconshire. By E. Cambridge Phillips, F.L..S. xi. +158 pp., 8 in. $\times 5 \frac{1}{2}$ in., with two illustrations. (Brecon: Edwin Davis, 1899.) 75. 9d.

Although the title page does not indicate the fact, this does not appear to be the first edition, as the author republishes the preface to a former issue, which appears to have been privately circulated about seventeen years ago. The previous edition has been rewritten and considerably enlarged, and where possible the Welsh names of birds have been added, these having been largely taken from a rare old Welsh dictionary by Edward Williams, the Blue Bard of Glamorganshire, and printed in Brecon in I826. Williams seems to have had some knowledge of birds, but his local names unfortunately appear to have been rather generally applied, and without much attempt at identity of species. We are glad to find among the increasing numbers of native birds in South Wales may be included the peregrine falcon, black grouse, stock dove, nut hatch, and greater and lesser spotted woodpeckers. The illustrations are of black grouse and pheasant hybrids from near Builth, and of a kite's nest, found in 1875 near Upper Chapel. The book closes with a list of scientific names of the county birds.
Lancaskire Sea Fisheries. By Charles L. Jackson, viii. +85 pp., $7 \frac{1}{2} \mathrm{in}$. by 5 in . (Manchester: Abel Hayward and Son, IS99), 2s.

On the 24th of May last, Mr. Jackson delivered a lecture at the Chadwick Musemm, Bolton, upon the Lancashire sea-fisheries. This he has now reprinted with some additions and an introduction. The book contains a good many notes of some natural history value, for instance, he describes the growth of conger eels in the Southport Aquarium, where they increased during about five years captivity from three pounds weight to upwards of one hundred pounds weight. The book is chattily written as becomes a popular lecture.

Aluseztms Association. Report of Meeting held at Sheffield, i898. Edited by Herbert Bolton, F.R.S.E., xx. +193 pp., $8 \frac{1}{2}$ in. by $5 \frac{1}{2} \mathrm{in}$., with six illustrations (London: Dulan and Co., I899.)

This volume is a report of the proceedings of the Museums Association with the papers read at the Ninth Annual General Meeting, held in Sheffield, July 4th to 8th, I898. It contains also the balance sheet of the Association for the year previous and the President's address. Among the papers read was one by Professor A. Denny, F.L.S., University College, Sheffield, on the "Relation of Museums to Elementary Teaching"; "The Peoples' Palace" by James Paton, F.L.S., Superintendent of Museums, Glasgow; "The Arrangement of Herberia" by E. W. Holmes, F.L.S., Curator of Museums of the Pharmaceutical Society of Great Britain; "' Provincial Museums" by H. Bolton, F. R.S.E.; "Marine Animals Mounted as Transparencies " by H. C. Sorby, L.S.D., F.R.S., also several others dealing with science and art subjects.

The Siory of the Eclipses. By George F. Chambers, F. R.A.S. 259 pp., 6 in. $\times 4$ in., illustrated. (London: George Newnes, Ltd., I899.) Is.

In writing this little work the author has had in view that his readers will find it useful to know something of eclipses generally, with special reference to the total eclipse of the sun on the 28th of May next. He deals with his subject in a pleasantly popular manner, and his scientific side of the work is liberally interspersed with anecdote and history. The illustrations are helpful.

The Marine Diatoms of France and England. Part i. By MM. H. and M. Peragallo. 2 volumes. Vol. I. Text iii +236 pp ., 1 Iin. $\times 7 \frac{1}{2} \mathrm{in}$. Vol. II. Plates. 50 plates, with I, I24 species and variations. (Paris: J. Tempère, 168, Rue St. Antoine.) £2, post free.

The first part of this elaborate and costly work is now published, and should prove of the utmost value to those microscopists, and they are many, whose special study is diatoms. We cannot do better than quote in entenso the opening paragraph of M. H. Peragallo's preface. "It is with confidence that my brother and I present to the restricted but select world of amateur diatomists, our. Flora of French Diatoms. We hope that all who, like ourselves, devote some of the leisure moments left them by the often absorbing claims of their profession, to the study, or even to the examination simply of these algae, all curious, and all interesting, will encourage us in our enterprise, and that our work will be one of those of which the amateur of diatoms will love to turn the leaves for his pleasure, and to utilise for his work." The book is meant as a supplement to that of the famous diatomist Dr. Henri Van Heurck, of Antwerp, and the editors claim for it, that when completed, it will contain all the species identified in France and England. The classification adopted is known in this country as that of H. L. Smith, and this, the first part, deals with the Raphideae, leaving the PseudoRaphideae, and the Anaraphideae to be completed in subsequent parts. The present section is in two volumes, the first being devoted entirely to description, and the second containing the plates. These last are 50 in number, and illustrate no less than I, 124 species and varieties. The drawings are, as far as possible, made on a uniform scale of $\times 900$, and reduced to $\times 600$. The advantage of this is obvious. The price of the present part is $\sim \mathfrak{\sim} 2$, post free, and of the complete work $£ 4$, but the price will be raised to $£ 5$ at the end of the present year. The work is of course in French. F. S. S.

\section*{Animalad

Animalad
 $\mathscr{T h}$ なiokamt. ior Photography

A combined Cinematograph and Snapshot Camera, Printer, Projector, Reverser and Enlarger, fitted with two

SPECIAL VOIGTLANDER LENSES.

Highty Finishen is Pulishen Ebost

Sire $3 \times 5!\times 9$!.

THE BIOKAM PROJECTOR.

For Projecting, Reversing and Enlarging, fitted with One voictlander wide angle lens and adapted to screw into Leņs Flange of ANY EXISTINC LANTERN.

PRICE £4 4s.
Positive and Negative Films, perforated (length 25 ft /, price 3s. 6d, each. Biokam Film Subjects (length 25 ft .) price 10s. each. Send for Handsome Illustrated Catalogue.
THE WARWICK TRADING COMPANY, LIMITED,
4 \& 5, Warwick Court, High Holborn, London, W.c.

Students' Celescopes,

From $4^{\frac{1}{2}}$ in. 102^{\prime} in. apertures, with first quality (ohite Glasses and Fitions, at muclerate pri

Illustrated Catalogue ot Telescopes, Vicroscopes, \&c.. dic., iorstamp Highest Class Micro-Objectives, also made on premises, at Closest Prices.

MAGIC LANTERNS.

No Smell. No Smoke. No Broken Glasses.

 Limelteht : stond the test abran? at us ix Partanulan iree

GIICHRIST SCIEXCE LANTERN. - Oxyhyumgen Microscones, Polariscopes, \&ic. The Cinematograpli for Living Plctures. Mr. Hughos's Grandly Illustrated Cotahgue, ove: we (lngu Whod Emeravings. Price, Gd.: Postace, add. Cheapest, Be-f. and

THEART OF PROJECTION, AND COMPLETE MAGIC LANTERX Maxtale br an Expert. Over too mane scopse and Polarising Lanterns. Slivic if,
bound in cloth, 3 s . 6 d . : Postaxe, 5 d .
W. C. HUGHES, Patentee and Speciallist, BREWSTER HOLSE, MORTIMER ROAD, KINGSLAND, LONDON, N.

50 Beautifully Coloured Slides on Loan for 3 s

MINERALS，ORES， ROCKS，FOSSILS，\＆c．
 New Collection to Illustrate ＂GEOLOGY FOR BEEINERSS，＂

BY
Professor W．W．WATTS，M．A．，F．G．S．，
Assistant Professor in Gcology，Mason Collcge，Birnnnghan．
SET C．C．115．－100 Specimens，Minerals，Rocks and Fossils，in Cabinet，with three Trays $\quad .$. SEI O．C．117．－ 130 Specimens，Minerals
SET C．C．119．－160 Specimens，Minerals，Rocks and Fossils，good hand size specimens，in Cabinet，with five Trays
SET C．O．121．－ 24 Microscope Slides for hand
SET C．O． $113 .-S C H O O ̈ L O R$ OOLLEGE COILECTION．Special collection of 670 Minerals，Rocks and Fossils，suitable for a School or College Museum；size of specmens about 2 in．by $1 \frac{2}{2}$ in．，enclosed in a Iz－drawer stained deal cabinet，with pilasters to lock．Dimensions deal cabinet．with piasters to lions． \rightarrow See Editorial Notice，January No．of

MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM．

THE LABORATORY，PLYMOUTH．
The following Animals can always be supplied either living or preserved by the best methods：
sycon；Claya，Obelia，Sertularia；Actinia，Tealia，Caryophyllia， Alcyonium；Hormiphoria（preserved）；Leptoplana；Lineus， Amphiporus；Nereis Aphrotite，Arenicola，Lanice，Terebella： Lepas，Balanus，Gammarus，Ligia，Mysis，Nebalia，Carcinus； Patella，Buccinum，Eledone，Pecten；Bugula，Crisia，Perdicellina Hotothuria，Asterias，Echinus ；Ascidla，Salpa（preserved），Scylltum， Raia，etc．，etc．

For Prices and more detailed Lists apply to
The Director，Biological Laboratory，Plymouth．

BIRKBEOK BANK

SOUTHAMPTON BUILDINGS，CHANCERY LANE，W．C．
TWO－AND－A－HALF per Cent．INTEREST allowed on Deposits， repayable on demand．I WO per Cent．on CE゙RKENT ACCOUN＇IS on the minimum monthly baiances，when no

SAVINGS DEPARTMENT．
For the encouragement of Thrit the Bank receives small sums on deposit，and allows Interest monthly on eac＇s completed £1． BIRKBECK BUILDING SOCIETY．
How to PURCHASE A HOUSE for Two Guinens per Month． BIRKBECK FREEHOLD LAND SOCIETY．
How to Purchase a PLOT OF LAND for 5 s ．per Month．
The BIRKBECK ALMANACK，with full particulars，post free．
EgTABLISHED 185ı．FRANCIS RAVENSCROFT，MAnager

BORD＇S

 PIANOS25 Per Cent．Discount for Cash，or 14s．6d．Per Month （Second－Hand，10s．6d．Per Jionth），on the Three Y＇ears＇Hire System．Illustrated L ists free，of CHAS．STYLES \＆Co． 40 and 42，Southampton Row，London，W．C．Planus Exchanged．

THE ZOOLOGICAL SOCIETY＇S GARDENS，

 Regent＇s Park．Are OPEN DAILY（except Sundays），from 9 a．m．till Sunset Admission is．；on Mondays， $6 d$ ．；Children， $6 d$.
Amongst the recent additions are three Lion Cubs，presented by C．A．Osborne，Esq，and two Ivory Gulls from Spitzbergen．

LOUIS＇S MICROSCOPICAL OBJECTS．

${ }^{2} 24$ Series，Unmounted，of Cloaned Diatoms， 12 tubes in each Series，4s．per Series． 5 Series of 24 Foraminiferous Sands at ${ }^{25}$ ．each． 5 Series of 24 Microfungi at 2 s ．each． 7 Series－of 24 Sections of Woods，2s．each． 18 Spicules of Gorgonia， 25 ． 18 Spicules of Sponges，25． 18 objects from Echinodermata， 25. r8 Zoophytes，2s． 18 Sections of Horns，Hoofs，etc．，2s． 24 Hairs of Antimals， 25 ．（2 series）． 24 Scales and Skins of Reptiles and Fishes． 5 Series of 24 Miscellaneous Non－botanical Objects，

CLEANED UNMOUNTED DIATOMS．

Serpsinoe musica．
Aulacodiscus africanus
Tukuro（Japan）
Hopkinton（N．H．U．S．A．）
Fragilaria capucina．
Redondo beach（Cala．）．
Etc．，etc．

W．WEST， 26 \qquad
MISCELLANEOUS NON－ BOTANICAL．
series lv．-24 Objects， 2 s. Polycistines（Barbadoes）． Foraminifera（Haiti）． Isthmia enervis．
Spicules Desmacidon fruticosa． Spines of Echinứs brevi－ spinosa．
Wing of Panorpa vulgaris．
Etc．，etc．

Terrace BRADFORD

MICROSCOPICAL．

For the benefit of amatcues who find difficulty in obtain－ ing good objects at a moderate rate，I＇offer first－class slides，including insects，rare crystals，foraminifera， ďc．，at cost price（3d．each）．Material，lists，and information free．Dealers not supplied．
Frank P．Smith，15，Cloudesley Place，Istington，London，N．

W．F．H．ROSENBERG，

 Traveller＝風刦uralist，48a，CHARING CROSS ROAD，LONDON，W．C．
Every clescription of Natural History Apparatus．

Che Young Collector＇s Outfit，

Butterfy Net，Pocket Box，Relaxing Box，Larva Box，Three Setting Boards（various sizes），Store Box，Mixed Pins，Killing Bottle，Setting Needle，Clip Boxes，Blow－pipe and Egg Drill． Price， $10 \mathrm{~s}, 6 \mathrm{~d}$ ，cumplete．Itusirated Catuterze of dpparatrs post free．

INSECTS：
THEIR STRUCTURE AND LIFE． A PRIMER OF ENTÓMOLOCY．
By GEORGE II．CARPENTER，B．Sc．（Lond．） Cloth Gilt， 4 s．6d．net．
J．M．DENT \＆CO．，Aldine House，Bedford Street，London，W．C．

TRILOBITES

From the Upper Silurian of Dudley． Phacops caudatus，is，6d．to i5s．｜Phacops Downingiz，is．6d，to 5 s Acidaspis coronata， 2 s．to 4 s ． Calymene Blumenbachii， 5 s ，to

12 s ． 6 d ． Encrinurus variolaris，is，6d，to 3s．6d，
Homolonotus， 3 s ： 6 d ．to 7 s ．
${ }^{\text {a }}$ few Upper Silurian Crinoids，Corals and Brachiopods．
Collections to Ilustrate Geology and Physiography．
THOMAS D．RUSSELL，Mineralogist， 78，Newgate Street，London，E．C．

THE SCIENTIFIC ROLL．

Clinnate：Baric Condition．To be completed in s6 Numbers．

 Conducted by ALEXANDER RAMSAY．Prospectuses and Subscription Forms free by post on applica－ tion to the Publishers
A few of Nos．I to 12 still in print，price 15 ．each．
The Geological Time Papers and Charts．No．1．The＂R＂ Geological Time Scale，price id．Nos．o to 3 Charts， 3 d．each． Post free，jd．extra．Now Ready，
London：O＇DRISCOLL，LENNOX \＆CO．，
10 \＆ 12 ，Elephant Road，Elephant \＆Castle．
 SuFt, F.I... 357 pp.. 7 in. " 5 in., with zoo illustralions. (Landon amd Xeu Vort: : Fecterick Wiame and (6., thou.) Be.
 lisitinh lilora," indicater the intention of the . wothor, and is he watge in his preffice, it in mat internteal for
 undectand even hay thane who flave bent pard illy pecial tramme. (One at the platameen beatution it

SIVIMHRE,

botanists, but for the unscientific loser of thesers. It is a series of chatty chapters, thentyonine in number, that will appeal to many persons who delight in wandering through leafy lanes, umbrageous wood. lands or wer breezy downs. It is a collection of udds and ends of the pleasanter kind conneeted with the lighter side of howany. It is, honever, not all plant lore, as there are frequent tenties of science, especially with regard to the seceling operations.
successful. Some are distinctiven, and by permesinn we reproduce one of samphire. In addition to these plates are large numbers of drawings in the text. which, though somewhat diagrammatic will the must useful to the uninitiated reader. The work as a whole can be recommended, and will doubtless give pleasure to many readers, and cannot fail worac at taste for the inve-ligation of t ur wild plants and? their structure.

CONDUCTED By F. C. DENNETT.

Moon's Phases.

$$
\text { h.m. } \quad \text { h.m. }
$$

New, . Sep. $5 .{ }^{\text {. }} 3.33$ a.m. 1 st $Q_{2} \ldots$ Sep. 12 .. 9.49 p.m. In apogee September 3 rd , at I a.m., distant 252,600 miles; in perigee on I8th, at $7 \mathrm{a} . \mathrm{m}$. , distant 223,400 miles; and in apogee again on 3oth, at noon, distant 252,000 miles.
Conjunctions of Planets with the Moon.

The Sun has of late been in a state of great quietude, but should be watched. On September 23 rd at $6 \mathrm{a} . \mathrm{m}$., the sun's centre crosses the equator.

Mercury is a morning star all the month, reaching its greatest elongation, $18^{\circ} 2^{\prime}$ west at $7 \mathrm{a} . \mathrm{m}$. on 5 th September. It is well placed for observation during the first half of the month. On the 3 rd it will be only a few degrees distant from the crescent mon. On the 8th it will be less than a degree from the first magnitude star Regulus, or a Leonis.

Venus is too close to the sun for observation, being in superior conjunction with that orb at $8 \mathrm{a} . \mathrm{m}$. on 16 h of September.

Mars, JUpiter and Urinus are evening stars, but too close to the sun for successful observation.

Saturn must be looked for as soon as it is dark enough to be found.

Nepture rises about 1 I p.m. at the beginning of the month, and about two hours earlier at the end.

Meteors may be seen about September ist, 2nd, 6 th, 7 th, IIth- $13^{\text {th }}$ and 25 th.

Holmes' Comet should be looked for on every available opportunity, and when once found, carefully watched for change. It will probably be seen on September Ist, not very far from the third magnitude, variable, double star, β. Persei.

Condington's Comet.-On the ist it should be placed about a degree and a half north-west of the north-western star β of Orion's belt.

Allegheny Observatory, Pennsylvania, over which Professor F. L. O. Wadsworth was recently appointed director, is having a 3oin. achromatic constructed for it by Mr. Brashear. Subscriptions have been sent in to such a sum, that the observatory will be enabled to occupy a prominent place so far as instrumental appliances are concerned. Astro-physical observations will be the object of its work.

The McClean Equatorial at the Cape observalory, has a first-class visual telescope of 18 inches aperture. The 24in. photographic telescope is, however, not so good, for its outer portions give objects a coma, and in other ways also it is not satisfactory, but Sir Howard Grubb is going to again take it in hand to cure its imperfections.

New Minor Planet.-Professor Max Wolf, on July I7th, at Heidelberg, picked up a tiny planet, if it proves to be new, the known list is 445 .
SATURN AND His RINGS.-The Spectra given by the planet and the rings, according to Professor George F. Hale, of the Yerkes observatory, are found to sensibly differ. A dark band, readily visible in the red portion of the spectrum of the planet, at wavelength 6183 (Vogel), is absent in that of the rings, seeming to demonstrate the absence of the absorption due to an atmosphere to those appendages.

Yerkes Observatory. - A conference of astronomers and astro-physicists is to be held here on the 6th and 8th of September.

Mars in 1898 And 1899.-MM. Camile Flammarion and Eugene A. Antoniadi have published the results of their observations with the $10 \% 24 \mathrm{in}$. Mailhat telescope at the Juvisy sbservatory in the "Astronomische Nachrichten," No. 3,581, for July. The paper is illustrated by six drawings and a map, and seems to indicate some well marked changes on the surface.

The Geodetic Survey of South Africa is making good progress under the direction of Dr. David Gill, Her Majesty's astronomer at the Cape of Good Hope.

Lick Observatory. - Numbers 3584-5 of the "Astronomische Nachrichten" are almost entirely taken up with the results of double star observations by Mr. R. G. Aitken, at this observatory during 1898 . Many of the measurements were made at the request of Professor S. W. Burnham, who is now printing a general catalogue. Mr. Aitken makes it a rule to only use the 36 inch for such stars as are beyond the reach of the 12 inch.

Professor Robert Wilhelm Eberhard Bunsen, who together with Kirchoff did so much towards establishing the true meaning of the lines visible in the spectrum, passed away on August 16th, at Heidelberg, in his 88 th year. He was born Göttiagen in I8If.

Mr. F. C. Dennett has removed from 60, Lenthall Road, Dalston, N.E., to I4I, Essex Road, London, N.

IEIESCOPLC APPARATLS

 'Comentiod finems fager 川.3.)THI: - peatemenpe is another piece of apparation that hat fevolutionizal astromomiocal work. "hia in its simplest form comsints of a fine slit plated accurately in the foras of an achromatic conver lems. This stit in then examined throstgh it prism, preferably. made of clense flimt glaso, with the edge paratlel to the slit as shown in the accompanying diagram (fig. 8). A is the slit, is, the colmating lens, (1) the

Fig. b. -Dharam of Spectroncorls.
prism, and ") the telesenpe. By increasing the number of prisms, the ammunt of the dispersion is increased when the light is sufficient. When very great divpervinn is mom, for the une of the amateur, required. the direce vision spectroseope is much the
 may loe wed but only with the equatorially momberd telencope, hat exen with an alsammuth. In adjunt. able slit, with a colsmatimg lens may lac placed in front of the primm instead of the cylinulreat lens. The. ait beeng in the fricus of the ubjece glaw: then wher whjects maty be examined. The nest ndegram (fris. 3) thows the firm of the arrangement. A in the priom, is the adtapter, e' the conves fens, assh is the blt with it screw to enathe its opening t" he regubated. The dimpersion in not howereer sulficient to permit of the nbservation of the forms of the sular prominemees, though the bright hedrogern lines indicatiog theis prenence may vometime tre seen.

It will be well to saly a worrl or twon almut dispersion. The spectrim is really mate up of a multitule of images of the slit, cath raty of every degree of refrangitsitity, recording its own image. Xutwithstancling that the slit in wftell less than one-threchundredth of an inch open. these tiny images overlay to a great extent. The eftect inf increaned dispersion is in some measure to overcame this overlapping, The two figures below (Figs. 4 and 5) illustrate the effect, the upper figure shows the apectrum spread wer nearly double the length of the lower one. The conseyuence of this is topermit many finer lines to become visilite, and several that appeared single to be doubled. When the sun is under observation greal dispersion may lee used, which will of curse decrease the lirilliance of the light, and su permit of the thit buing opencel sutticiently to allow the lomms, as well as the presence. of the solar prominences to be seen. For further explamations of the spec. troscope I canmot do better than refer the reader to the late kichard A. 'roctor's litule shilling manual on "The spectruscope and its Wurk," and John Browning's "I Inw to Work with the spectroscupe.

Fig. 3
most convenient. These have thres, five, or seven prisms, sume of denare Hint glase and whers of alass having much less dispersive power, arranged in such a way that the light atthough disperserl, is not bent, as when the simple prism is employed. When used with the telencope the object underobservation is accurately focussed upon the slit. The image of a star is however only a point, so that its spectrum would simply appear as a briltiant cobured line, tero thin for its lines to be observed. To orercome this difticult? a cylindrical lens is employed, which changes the figure of the star from a point to a shorl line. If the bine be made to coincide with the slit. the spectram, if sufficiently brilliant, may he readily nloserved.

One of the most convenient forms is the Jeclean. It can be used either for sun, planets, nelutae or stars, and with any telescope from 3 in. aperture upwards: Fur the stars no slit is required, a concave cylindrical lens, within the focus of the object glass, turns their images into short brilliant lines. which by means of a direct vision prism are spreat out intu at neat spectrum. Fig. 2 shows the arrangement: A being the direct vision prism; B the adapter screw, and to the cytindrical lens. Thus arranged it screws inte the teloserpe like an ordinary evepiece. Nebulae may receive a preliminary examination without a slit, giseous nebulae retaining their form, whitst the stellar lines are apread into a band. ()ne great

J. Browining's, Machlean's Spectroncupe.
before leaving the spectroscope I would suggent a frequent examination of the northern heavens, on clear nighes: especially if they appear at all light. If there be any trace of aurora, its presence will lee quickly seen by its characteristic bright lines, if the slit be adjusted slightly more open than when used in the daytime. If the telescope be equatorially mounted, photography may be executed both of the sun and moon. A convenient attachment is supplied for this purpose by Messrs. Horne and Thornthwaite. If stellar photngraphy be attenpted, a gond driving clock is an indispensable adjunct. When the stellar photographs are being taken at the Greenwish Ohservatory, not only is the clockwork going. hut the star is watched in the finder all the time. by an assistant holding an electric controller in his hand. So? as to speed or retard the clock if necessary.
(To be continused.)

CONDUCTED BY F. SHILLINGTON SCALES, F.R.M.S.
Parasites of House Fly.-In regard to the note in Science-Gossip on parasites of house flies and birds (ante p. 87), a parasite which may be identical with the one mentioned was extremely common on the house flies in Bermuda. It is, I believe, a species of Trombidiun. Those that I noticed could move rapidly nver the body of the fly, and when disturbed concealed themselves under the halteres. At other times they appeared to usually attach themselves to the abdomen of the host. The parasite was of a red colour. Another curious parasite which I observed on the house fly in Bermuda was a small red ant. This creature attaches itself to the tarsus of the fly by means of its mandibles. It was a matter of common observation to see flies on the wing with these small ants attached. On one occasion I disengaged the ant and placed it on a table. It remained quiet until a fly came within suitable distance, when it made a rush, and was carried off clinging to the leg of the fly. I believe the reason of attack was made for the purpose of finally eating the fly. The ant hung on until its host became exhausted, and then attacked a more vital spot than the foot, and killed it. These ants eat the soft parts out of a dead cockroach in avery short tume. The Empusa mutscae is a well-known fungoid parasite of the housefly. The fungus "rests" during the hot weather in Bermuda, but during the cool weather it decimates these insects. I belieye that I succeeded in reducing the numbers of flies in my house by placing bodies of some dead from Eupusa in a suitable cage. I then introduced many healthy ones. In a few days these became injected, and I let them out in order to communicate the disease to others. The result was that the walls of the rooms were soon covered by flies dead from the Empusa disease. Mr. A. D. Michael, F.R.M.S., etc., if I remember rightly, once told me that it was his custom to style the common house-fly a " menagerie in miniature," because of the number of parasiles to which it acts as host.-H. A. Cummins, Major R.A.M.C., 29, Nightingale Place, Woolvich.

Microscopical Preparations.-Mr. Abraham Flatters, of 16-18, Church Road, Longsight, Manchester, has sent us new catalogues of his well-known microscopical and lantern slides. The catalogue of microscopical slides includes both botanical and zoological subjects, and we would call attention to a series of 48 slides, especially arranged to meet the requirements of pharmaceutical students, and sold at the very moderate price of a guinea. We have had an opportunity of examining these, and found them uniformly good, while some are really excellent, such as slides showing laryokinetic division in developing tissue, a section of the root of Phajues grandifolius, showing cell contents, sections of the male cone of Pinuts sildestris, and of the fertile spike of Selaginella martensiz. Many of the sections are double stained, and one of potato is worthy of notice as being stained with Mr. Flatters" "Gossypimine" stain, which differentiates starch grarules most beautifully, and appears to be practically per-
manent. The stain itselt can be obtained from Mr. Flatters direct, as well as other mounting stains, cements, and requisites, amongst which we may mention a new elastic black cement for finishing slides with one ring. The catalogue of lantern slides represents very fully zoology, botany, geology, physical geography, and such special subjects as insect metamorphoses, evolution, mimicry, etc. It is unusually complete. The slides, both lantern and microscopical, are sold at the modest price of 6s. per dozen, and are in no way inferior to those at double the price elsewhere.

Mr. J. J. Browning's Catalogue. - Mr. Browning's catalogue contains many things of interest to microscopists. His micro-spectroscopic apparatus is well-known and requires no detailed notice here, but amongst the now numerous pocket aplanatic lenses in the market we may mention his Platyscopic lenses which were amongst the earliest in the field, and still hold their own. A useful novelty is Mr." Browning's small micro-camera, concerning which we hope to give our readers further information afterapractical trial of its efficiency. Amongst microscopes we may mention the "Iris," fitted with sliding coarse adjustment, micrometer screw fine adjustment, draw-tube, diaphragm plate, and tube for sub-stage apparatus.

The "Iris" Microscope. It is sold with one eye-piece for the modest sum of f2 17s. 6d.

Z̈eiss' New Catalogue. - Cari Zeiss' Catalogue for 1898 is worthy of the reputation of the firm. Beautifully printed and bound, excellently arranged, and completely illustrated, it is more than a catalogue in virtue of the practical explanatory remarks interspersed in the text. Of the eminence of this firm, pre-eminent as makers of the famous apo-chromatic objectives, it is unnecessary to speak, but their catalogue gives detailed information with regard to their stands, objectives, eyepieces, and accessories, and should be in every worker's hands.

Mr. J. J. Hicks' Catalogue.-Mr. Hicks, of Hatton Garden, is well known as a maker both of microscopes and objectives, and his catalogue therefore scarcely requires detailed notice. Microscopes ranging from $£ 2210 \mathrm{~s}$. to $£ 317 \mathrm{~s} .6 \mathrm{~d}$. are listed. We may mention what appears to be a comparatively new model in his "Histological" microscope, which is fitted with rack-work coarse adjustment and micrometer-screw fine adjustment, stage with the Nelson type of horse-shoe opening, swinging understage fitment for condenser, and claw-shaped stand. It is sold at a price that brings it well within the reach of students.

Note. - In consequence of pressure on our space, upwards of a column of "Microscopy Notes" have unavoidably to stand over until next month. These include one upon pond life al Richmund Park and others of interest.

11 antrusted frove fage 8s.
The lase stands whith we can mention in detait must he the " firam" and "Eiclinburgh" stands of Menors. Wateon amel Soms, of H igh Whollorn. The "fram" stand is quite a new mothel. It is on a triped like the preveding, bat a cuarse adjustment hy rack and pinion, aml a particularly sensitive amel steady lever tine adjustment. There is alan at daw. tulne, extending from 15010250 nim, liteing for suls. stage apparatus of the society sife, and so arranged ats tos suing out of the optic adio when denired, also the nsua! mirrors. With one eve-piece, inch and! inch objectives, Abse illmminator, whth iris diaphragm, stop and corricer for same, etce, amb mahngany case complete, the price in fis 5s. The stand atonce, with one eye-piece, custs 4 .

This firm": "Fidinlurgh" stand is one concerning which we can sueak highly from peranond knowledge, and it is capable of almost any work of original rescarch. It is a larger stand than the fore. going, and is made in many forms, lout the " G" model, with rack and pimion focursing sub-stage, in addition for the requirements mentionel abover, would cost 212.

We cannat, for wantot space, mention in detail the standeof Dessrs. Baher, Collions, Crouch, Newton, etc.. in Engeland, or thone of Zeins. Leita, Keichert, Bausch ancl Lomb, etc., abrowel. We may be pardoned if we express here our opinion. fommed by practical observation, that the best English stands are, on the whole, preferable (1) those of Continental matke. Wi.e are aware that this statement runs connter the belief of $t(x)$ many science tachers, but it will be supported by the opinion of those whose work makes it necessary for them to use the mierosenpe ats more than a mere magnifying glass. Fiven tras, when the English condenser has liecome so umiversal. we see microscopes by foreign opticians of repute sold without condenser fittinss, and even withnut a joint by which the microscope can be inclined at will, while the stand has invarialdy the horse-anoe forn, with a more or less lup-heary stage aboue it.

We have purposely given examples and quoterd prices of micrescoper fitted with all the essentials conmerated in our preceding papers, because they are essentials in a moulern microciopes. Of course, money. at first cost mat be saved by buying, for instance, a microscupe without a condenser, as in the pretentious stands one meets in every wher optician's window; hut it is wo save the legermer form the mistake of
 wrollen. Ke"pmog in vien alsw our deare tw olnain at shand that can be used fors serions phetetical worh, we hatse nut aldurderl tw the hinncular, which, consecnicur as it is and leatstitul an are the imagere it gracen in not viteol tor wor purpuse un wommo of its practioally
 used with aljectiver up toralmot !in. Focus, or, is, (4) air-athyt
 timat mechatical stagere, thonght mene of the fore goving misconenper condt to litted with them. Thes are comsentemt, lout are omly cosemtial for certaif work. A small sliding thefe, however, combing alomet ton. upwand, is well whth the estra expense.
 trspeak if the abjectiver. The improvement in the ese of hate years has leeth emomoma. Firs a reasomalole sumb the micrascopiat catn now get objectives with a deliation that leases but litele tiole desired. Is we wish (t) kecep emtirely free from technicalitien, we will noll ge intu the ditterence between afobliromation and achematios, further than to vay, that the former, if genuince, are quite free from all sut vanding cotour, and give umanplased delinition, whilet they also bear heavy ebe-piecing more atiatactorily that the achers. matics. On the wher hand, their price is prohibitese
 Lis 11, 620, ac.
 erarling to its aperture. The rearler may rest atsured that somd achromas-ticolydirst-ctas makers, will show himafoust dll that the microscope is capableotreveal. ing. and we cubld mention specifically not a few achro. matice by inclividual makers whac fratorm ance on really. critical test: compares very closcly indeed with that of the aprochromatics. The selection of the objectives is, however, a most inportant matter, and the advice of a really competent friend is invaluable. Certain makers are well known for objectives of certain puswers, and we strongly recommend the beginner to get his objectives only from the very foremost makers. The best all-round objective for the beginner is the inch, after that the fin. or in .- the former for preference for hotanical work, the latter for human hintulogy. Ats the worker becomes further adsanced he will wish 10 add others. The zin. is a mom uneful lens, as it takes in a large field, the din. comes in berween the rin. and the $\frac{1}{4}$ in., and an lin. (dry) is useful in cerain circumsances. Iny higher power than this should bo an " immersion" lens, either water or oil, and the most frequently met with is a $1^{1} \mathrm{i}$ in, oil immersion. But the leginner is not advised to get really high Pusers until he actually requires them. IIe will fint that mere magnification is by no means the main oliject in microscopical work, and that the real wirker invariably uses the lowest pussible power.

To le continsed.)

CONDUCTED BY JAMES QUICK.
Newton and Optics.- The Rede lecture upon "The Wave Theory of Light," was delivered at Cambridge in July by Professor A. Cornu, on the occasion of the Jubilee celebration of Sir G. Stokes as Lucasian professor. The French savant sketched in an absorbing and brilliant manner the history of the theories of Light from the ancients, down through Boyle, Descartes, Newton, Young, and Fresnel, to our present physicists. He naturally laid stress upon the thoughts of Sir Isaac Newton and Augustin Fresnel as foremost workers of their time. Professor Cornu dilated upon the troubled mind of the former in endeavouring to apply at one time the emission theory, then the theory of fits, then again the undulatory theory to the elucidation of optical problems. Indeed, Thos. Young cites some of Newton's "Queries" as proof of the final conversion of Newton to the wave theory. Although it is to Thos. Young we owe the discovery in 8 Sor of the true wave nature of light, yet it was the illustrous Fresnel who so vigorously pursued it, and to his investigations it is in a great measure due that the wave theory of Light was so firmly established.

Photography at Low Temperatures. According to MM. Lumiere, a great decrease in the sensitiveness of photographic plates takes place at low temperatures. Their experiments show that some ultra-sensitive phato-plates cooled to - 191° C. require from 350 to 400 times as long an exposure to light to produce a given effect, as is taken at ordinary temperatures. Most sensitive photographic preparations are not acted upon at all under such cold conditions. The plates, however, are not permanently affected by the cooling.

Fluorescent Solin Solutions. - In an interestcontribution to "Comptes Rendus" I2S, J. R. Mourelogives the results of his experiments upon fluorescent substances. Taking various mixtures, he fincls that the best results are obtained with strontium carbonate 100 grams, flowers of sulphur 33 grams, sorlium carbonate I'4 gram, fused sodium chloride 0.85 gram, manganese carbonate 0.15 gram. This mixture is finely powdered, compressed, and placed in an earthenware crucible. It is kept at a red heat for three hours and then allowed to conl slowly. If it is then exposed to daylight it shows a brilliant green fluorescence.

Measurement of Thermal Conductivity.Further experiments have been made to determine the thermal conductivity of various substances. An arrangement used recently by Dr. C. H. Lees consisted of a dise of the material whose conductivity was to be determined, having a copper disc placed upon one face, while upon the other were applied a pair of copper discs, having between them an electrical heating coil of platinoid wire. The discs were all the same diameter. Radial holes were bored into each copper disc and thermo-junctions inserted, so that the differences of temperature could be measured by halancing the differences of potential produced, against known potential differences on
a potentiometer. Dr, Lees summarised some of his results as follows:-1. Solids, which are not very good conductors of heat, in general decrease in conductivity with increase of temperature in the neighbourhood of $40^{\circ} \mathrm{C}$. Glass is an exception to this rule. 2. Liquids, in the neighbourhood of $30^{\circ} \mathrm{C}$. follow the same law. 3. The conductivity of a substance does not invariably change abruptly at the melting point.

Contact Break for Induction Coils.-The spring contact break is now generally regarded as quite unsuitable for large induction coils, having given place to mercury breals and more recently to the Wehnelt electrolytic break (wide S.-G., May, I899, p. 372). For coils giving up to about 3 in. or 4 in . sparks, however, the spring break may be advantageously used. A modified form has recently been introduced having two contacts instead of one, so that as the spring vibrates it closes and opens the circuit twice during each complete oscillation. The frequency of break is thus doubled for the same period of vibration of the spring.

Electroplating the Hulls of Vessels.-A satisfactory report has recently been submitted to the United States Government upon a four years' test of Crane's system of copperplating the hulls of vessels. The ocean tug "Assistance" was electroplated, and launched in February, 1895. Quite recently she was docked and subjected to a critical examination, when it was found that her bottom was absolutely free from marine growth of any kind. Flexible shallow baths are used in the process in order to conform to the curvature of the ship. These baths, with suitable watertight packing, are fixed to the sides of the ship like snails. The ship forms the negative pole, the plating bath the positive, and the plating is done in overlapping sections so as to form a continuous coating. It is thus possible to plate the bottom of a ship $400 f t$. long in eight or nine days. The electricians suggest in their report that not less than one-sixteenth of an inch of copper should be allowed. It is claimed that as much as $\not 64,000$ per annum is expended by various ships in the trans-Atlantic trade to overcome the added friction caused by fouling, while the cost of docking a big vessel twice a year, would nearly double the total loss as a penalty for unprotected bottoms. An iron vessel with a speed of 20 lnots, if coated with copper, will have, it is calculated, a speed of 21 knots.

Glass and Porcelain Instlators. - Up to the present time porcelain insulators have been most generally used for telegraph and telephone work on account of the hygroscopic nature of glass. Recently, however, insulators have been made of a coarse kind of glass, its composition being a trade secret, which do not condense any film of moisture on their surface. Experiments with these appear to show conclusively, that they are much superior to porcelain.

Printing by Röntgen Rays.-A process, known as the Tzambard process, has been brought forward for printing by X-rays. A number of sheets of sensitized paper are piled one on the top of the other, and between the pile and the source of X -rays is placed the copy, printed or written in ink made in part of finely divided metallic or calcareous powder. Bronze, copper, or white lead may be used. For a writing ink, white lead in a solution of gum ; for a type-writing ink, metallic powder mixed with boiled linseed oil. An improvement recently made upon the Izambard process consists in making the paper in a continuous strip, and sensitizing it in page sections alternately on opposite sides, in such a way that, when folded, each section will still retain the features of a single sheet.

CONTKIBUTED HY FIORA WINSTONE.
ProteEbivosof Au whemyor Natural. Sctexies (Philadelphia), August Sth. This number comtains some notes on Coscidac by Prof. T. D. A. Cockerell. He describes several new genera, and also gives detailed measurements of Debelylopius ablicelderie and D. sacchari, two sugar-cane mealy bugs, that have not hitherto been fully described. Mr. Witmer Stone writes on a collection of birds from bogotat and un the South American species of Speotylo and Troolodyles. Mr. Witmer Stone after griving a list, and in some cases descriptions, says that it is with hesitation he ventures to propose the name Trogrlodyte's colmumbe for a new species of South American wrens as there is already such a long list. This species however, found near Bugota, is so different to any described form, that there scems nu alternative. The writer gives a careful description of the differences between the better known species of Trostodjles. Mr. Henry A. Pilsbry contributes a few notes on ". North. West American Land Snails" figuring levtigo souldii : laseranemsis a new variely found in Alberta, liethso andrusizna a new species from Dougtas county, south west Oregon, and for the purposes of comparison whth the two former, a specimen of l. himncyana from Winnipeg.

Tite Victorais Sitcratist (Melbourne), July. Mr. J. Sheģhard and Mr. W. Strickland kescribe with illuseration a new rotifer Ielicerta fombriata obtained in a gathering from the Botanical Gariens, Melbourne. It was found on stems of Nitilla in company with $1 /$. rinscus, several species of Limmia and Stiphanociros cikhomii, then observed for the first time in Victoria. At first sight the general appearance suggested Mi/icora hreticolaria, but on closer examination it differed in the following points ; the ventral antennae were shorter, the position and form of the dorsal antennae differs as does the terminal peduncle. The chief differentiation is in the sertacture of the tube, which is constructed of fibres formed in the ciliated cup and arranged radially. The length of the animal was 1 mm .

Burifein de la Sochete Philomatiecte (I'aris), I 899. . This number is the first of a new series of the Bulletin of the Sociely. It contains some notes ly D. Giacomo Candado on Rectilinear Trigomometry, explaining a new system, which he chams is a simple and expeditious method of working ont these problems. M. E. L Bouvice occupies the remainaler of the Bulletin with the second part of his articte on the crustaceous parasites of the genus Poions of Audouin. It is illustraterl by twenty figures. The object of the article is to make known for the first time the specific characturs of this genus and thus facilitate the discovery of new forms. The writer however ventures to suggest some generalizations relative (0) the affinities of these animals and also their probable origin from the Argulidae.

Les Mots Scientrfigue et Industrafi, (Paris) July, coneains some interesting articles on Lighting and Automobilism, also notes on Engineering and Applied Science from American, German, French, Italian. Spanish. English ancl Dutch scientific joumals.

 bately hech kecping in caprivity all the species of Syphatate I combly atain, in order to alserve their hathis. They are kept in a very large bos with at glass lid and holes jut the vides covered with veiling for vensilation. Yesterday 1 hearel a wrill singing noise, whough nome were flying, nor did they appear to be viltrating their wings. if then took up one, moistened its luings, and placed it so that it stuck to me finger beyits wings, antl certainly could not mowe them in the least. The singing gave place to at jarring noise, as I was evidomly interfering in some way with the prouluction of the songe. I then looked clusely, and suddenly saw two livile white projections which I can hest compare 10 miniature Irumsticks, one on eath sifle of the thomax where it it is joined to the abotomen. They were vibrating rapidly against the wings, and it was evident that here was the lome cause of the sing. ing noise. I afterwards found on holding the insect, in such manner its wings were free to mose, that this did catse them to sibrate slightly, but it was scarcely perceppible. The hases of these projections are hrown, and they each have a white hull, at the end, in some species if is greenish or yellowish. The one on which 1 first observed them was Syephews ribrsiz, lut I have since found that six wher species possess them, and see no reason to doubt that all species of Syphidac have them. I have heard seven or eight species singing. they usually dow when picked up, hut I have also freguently heard them when resting on a leaf. Thenote cminted seems to the the same in all species, athough that produced when flying varies consitletaldy: I might have mentioned that all the syrphidae mahe a particularly loud noise when seized. The sibrations can lee distinctly felt in the fingers, and make the insect rather difficult is hold. I think, quite posully, me reason that they make this moine is to cause lirds of drop them. My captives feed on the pullen of (imbelliferae, and many other flowers in which the petals of the cornlla are united, so as $\{0$ firm a cap of hond. cespecially on the white Conemlanar majo) Firom the way I have seen them eat I think I know the reason why thene flowers are arranged to bee eapectally altractive to this som of Ay. I will take as an example a large suphus I moserved this moming leeding on the convolvulus. It already had many grains of pollen sticking to the down on its thomax. a gond deal of which fell on (0) the sligma as it entered the flower. I have seen one syrphus actually stand and clean off the pollen sticking to it, with its legs, right over the stigma. It then liggan to eat the pollen off the anthers, and in so doing brushed its back against the inside of the corolla, getting covered with the pollen which was there. As is very often the case in the convolvulus, the grains appear to fall of the anthers into the inside of the fower. Presently it turned round to cat some of this pollen and then got a shower from the anthers, so in the end it Hew away with about as much pollen as it had eaten. These flowers thus makic what appears to be an enemy into a friend. - R. / Hosthes, Nornan Conm, Shurlisat, Ifth tieguat. Ision.

CORRESPONDENCE.

At the suggestion of several correspondents we open with this volume a department in which our readers may address the Editor in letter form. We have pleasure in inviting any who desire to raise discussions on scientific subjects, to address their letters to the Editor, at ro, Strand, London, W.C. Our only restriction will be, in case the correspondence exceeds the bounds of courtesy; which we trust is a matter of great improbability. These letters may be anonymous. In that case they must be accompanied by the full name and address of the writer, not for publication, but as an earnest of good faith. The Editor does not hold himself responsible for the opinions of the correspondents. - Ed. $S_{.}-G_{.}$

Exchange Clubs.

To the Editor of SCIENCE-GOSSIP.

Sir,--With regard to the letter on this subject in July Scievce-Gossip (ante p. 63), I may mention that some years ago it was suggested to me by Mr. E. L. Layard, C.M.G., that I should devote the cover of the "Journal of Malacology" to lists of duplicate shells, in connection with a possible Exchange Club. This latter was to be on the lines of the Stamp Clubs, and I was very much inclined to take it up. The difficulty in the way was one pointed out from the beginning by Mr. Layard, and had reference to the values of shells. If more valuable stamps are taken out of the circulating "basket" than are put in, the exchanger can pay the difference based on current prices, to the Secretary at the end of the month. There are no complete lists of prices to be applied to shells at present, and we must I think continue to exchange in the old friendly way, where one gets the advantage, as a rule on the bargain, or compile a standard lisst, thus conducting the proceedings, on a purely business basis. In the lepidopterists' clubs, I fancy there is the objection that the first to receive the baskets may have it all their own way.

Yours, etc.,
Wilfred Mark Werb.

NOTICES OF SOCIETIES.

Ordinary metings are marked + excursions *; names of persons follozuing excursions are of Conductors. Lantern Illustrations.
North London Natural History Society.
Sept. I6.- Epping Forest. L. J. Tremayne.
21.- +Fruits and Seeds on their travels. H. W. S.

Worsley Benison. F.L.S.
Oct. 5.-+Pocket Box, Microscope and Lantern Exhibition.
7.- Kew Gardens. L. B. Prout.

Selborne Society-Croydon and Norwood Branch.
Sep. 16. - Mitcham Common to River Wandle.
Yorkshire Naturalists' Union.
Sept. - Fungus Foray, Campsall Woods.
Oct. -tAnnual Meeting at Harrogate.
Preston Scientific Society.
Sept. 7.-Port Sunlight. E. C. Booth.
W. ${ }^{2}$ H. He ${ }^{*}$ Riblhcotester. F. L. J. J. Bramwell.
ivood Strect.
Notingham Natural Science Rambling Club.
Sept. 9.- Radeliffe-on-Trent.
Oct. 28.-Annual Meeting, Natural Science, Laboratory University College. H. Pickerton, Hon, Sec., ISt. Kinowole Street.

Tunbridgre Wells Natural History and Philosophical Society.
Sept. 2.- Pembury and the Borough Waterworks. H.S. Roberton.

30-(?) Fungus Foray, R. R. Hutchinson. Hon. Sec. R. R. Futchimson, 2s. Princes Street,
North Kent Natural History Society.
Nept. 2.- Ficld Ramble.
6.- + Land and Freshwater Shells. J. Stacey,
6. - + Land and Freshwater Shells. J. Stacey
20. + Deep Sea Life. A. J. Jenkins, M.C.S.
20.- + Deep Sea Life. A. J. Jenkins
Oct.
4.-

+ Breathing Organs. C. Dyes.
7.- Field Ramble.

18. - + Microscopic Wonders trom Ponds and Ditches. T. W. Brown.
T. W. Brown, Hon. Sec., Rosemount, Bo, Church Lane,
old Charlton.

Geologists' Assoclation of London. Exchlysions.
Sept. 9.-"Charlton, Erith and Crayford. W. Whitaker, B.A., F.R.S., P.G.S.
11. ${ }^{*}$ Visit to British Museum, Jermyn Street Museum and Natural History Museum.
Frederich Meeson, Chairnan, Excursions Committee 29, Thurloe Place, South Kensington, S.W. Huli Scientific and Fielo Naturalistsi Club.
Sep. - Yorkshire Naturalists' Union Fungus Foray to Barnsley.
6.-t"An Anglo-Saxon Garden." J. R. Boyle, F.S.A.
" 20.-Annual Meeting.

[MPORTANT NOTICE.

The Proprietor of Science-Gossip having decided to manage the business department from independent offices at iro, Strand, London, W.C., all subscriptions, advertisements and payment for advertisements must in future be sent to that address, and no longer to the Nassau Press, which latterly managed the commercial department for the proprietor.

Subscriptions (6s. 6d.) for Vol. VI. are now due. The postage of Science-Gossip is really one penny, but only half that rate is charged to subscribers.

NOTICES TO CORRESPONDENTS,

To Correspondents and Exchangers.-Science-Gossip is published on the $25^{\text {th }}$ of each month. All notes or other communications should reach us not later than the 18 th of the month for insertion in the following number. No communications can be inserted or noticed without full name and address of writer. Notices of changes of address admitted free.

Business Communications.-All Business communications relating to Science-Gossip must be addressed to the Proprietor of Science-Gossip, iro, Strand, London.

Subscriptions.-Subscriptions to Science-Gossip, which may commence with any number, at the rate of $6 s .6 d$. for twelve months (including postage), should be remitted to the Office, iro, Strand, London, W.C.
Editorial Communications, articles, books for review, instruments for notice, specimens for identification, \&c., to be addressed to John T. Carringron, ilo, Strand, London, W.C.

The Editor will be pleased to answer questions and name specimens through the Correspondence column of the magazine. Specimens, in good condition, of not more than three species to be sent at one time, carriage paid. Duplicates only to be sent, which will not be returned, unless accompanied by return postage, and then at owner's risk. The specimons must have identifying numbers attached, together with locality, date, and particulars of capture.

The Editor is not responsible for unused MSS., neither can he undertake to return them, unless accompanied with stamps for return postage.

ANSWERS TO CORRESPONDENTS.

C.G.S-M. (London, W.C.) - Your question should be addressed to a medical paper. We imagine that the experiments you suggest have long ago been carried through with affirmative results. Note our change of address.

EXCHANGES.

Noxice.-Exchanges extending to thirty words (including name and address) admitted free, but additional words must be prepaid, at the rate of threepence for every seven words or less.

Lias Fossils offered in exchange for others.-T. Stock, Frome Hill, Radstock, Bath.

Offered, North and South American diurnal lepidoptera. Also N.A. aboriginal relics, for diurnal lepidoptera from Africa and Australian Islands.-Levi W. Meugel, Reading, Pa., U.S.A., P.O. Box 326.

Offered,-Clutches of Sandlark, Common and Little Terns, Herring, Lesser B-B and Black H Gulls, Corn Crake, Moor Hen and many other British Birds ; also a number of United States birds eggs in clutches ; full data given. Wanted Exotic Land Shells, and eggs not in collection. W. J. Farrer, Bassenthwaite, Keswick.

Correspondence wanted in all parts of the world, for exchange of crustacea star-fish, sea urchins, etc.H, W, Parritt, 8, Whitehall Park, London, N.

Society's Journal of Botany Linnean.-Would exchange vol. xxxiv. Nos. $236-7-8$, for Science Gossip new series, vol, iv.-Surgeon K. H. Jones, R.N., H.M.S. "Repulse," Channel Squadron.

WATKINS \＆DONCASTER，

Naturalists and Manufacturers of Entomological Apparatus and Cabinets．

 「axidermine＇s Compansion，i．a．．．a powkes leatherFolding Neten， $3^{\text {no }}$ ． 0 d．and ts．
Umbrella Nets（nelfoacting）， 7 s ．
Pocket Boxes， 6 d ．Zinc Relaxing：Boxer，od．o am．，in，©xl．，and on
Fexted Chip Boxes，+ dazen Bd．．かo wh．arow
Entomological Pins，mixed，is．od wz．Sugaring Lanterne．2w．6d．to sow，owl．
Sugaring Tin，wilh brush，wo，Gd．，as．
Sugaring Mixture，ready for use，Mite Destroyer（not dangeroun wuse），1s．od．per the．
Store Boxeso with Camphor Cells, so tul., fo. so. and on
Diste, Beok Pattern, Sx, bud. on. Bal, and son, ed.

Setting Houses, on, od. and ans, od., with worked back, t小,
Zinc Larva Boxer, od. is. Brass Chlornowm Buetle, as
Breeding cage. aso 6d.. 4.., 5ro and 7s. ox.
mant uncfoll inetruments for skinninge，rome end．
 Scimors，per pair，tw．Setting Nexder，id and end．per hex Coltopteriot：Collecting Bothe，with tulle．is．ed．．w．kd．

 Cement for replacing Antemade ota．per bottic．

 Pupha Dighers，in leather theath，wowl．Intect Lenw，is，to ba． Glaw Top and Glawn Bontomed Boxes，from in．ad，per dowen． Label Livts of British Butterthiew，ad．
bitt，Land and Fresh－Water Shells，zd．
Ekg Drillw，sul．，sud．．14．，：Metal Rlow Pipe，ad，and fed．
Gur new Lathel List of Britioh Macromedepidoptera，with Latin and Ensliwh Simew，in．bd．Our new Catalogue of British Lepidop－ tera，every－pecies numbered，iv．；or on one side for Labele，as．

The＂DIXON＂LAMP NET（invaluable for taking Moths of Street Lamps without climbing the lamp posts），2s． 6 d ． CABINETS．Spocial Show Room．
The following ate the price of a fow of the smaller sizes ；for meaturements and larger size wee catalegue
 4 Drawers

A LARGE STOCK OF INSECTS＇AND BIRDS＇EGGS． Birds，Mammals，\＆cc．，Preserved and Mounted by First－class Workmen．

36，STRAND，W．C．（Five Doors from Charing Cross）．

 The Automatic Cyclostyle．THE LATEST IMPROVEMENT IN DUPLICATING APPARATUS． FURTHER IMPROVEMENTS JUST MADE．

cleancr．Onc inking suffices fir too th 200 cupies．hut 2，000 copico may be taken from one stencil．

Eyually adapted for re－ producing written or type－ written matter． copies．It is cmly necewary to turn a handle which lifts and lowers the frame，ind time is gained by having a less in gumber of re－inkings．
6．－The difficultics which frequently arise in the working of other duplicating apparatu－ CYCLOSTYLE．

COMPLETE OUTFIT FOR REPRODUCING HANDWRITING．
Octavo size， $\boldsymbol{£ 3}$ IOs．；（uarto size， $\boldsymbol{£ 4} \mathbf{I 5 s}$ ．；Fonlscap size， $\boldsymbol{£ 5}$ ．
Extras for Reproducing Typewriting：Octan size，10s．6d．；Uurto size，IIs．6d．；Fonlscap size，12s．6d．； Fitted with Unmeltable Rollers for Hot Climates，EII Is．extra，any size up to Fonlecap．

To those requiring a cheaper process，less easy of manipulation，the following is suitatle ：－
THE＂NEO－CYCLOSTYLE＂HAND－ROLLER PROCESS．
Prices from $\mathbf{2 5 s}$ ．Unmeliable lonllers for Ilot Climates supplied at an extra cost．
THE CYCLOSTYLE COMPANY，34，SNOW HILL，LONDON，E．C．

JOHN J. GRIFFIN \& SONS, LTD.,

Chemical, Philosophical, and Photographic Instrument Makers.
MAKERS TO THE ADMIRALTY, HAK DEPARTMENT, INHHA G゙ COMON/AK GOVERNMENTS

Physical and Chemical Apparatus of Every Description.

HOLLOWAY'S PA'TENT GAS FURNACE with griffins radial burner.

This Furnace, in addition to its cheapness, possesses several advantages over other reverberatory laboratory gas furnaces. The body is separate from the base, which extends forward, and forms a convenient stand for hot crucibles, etc., and for the furnace doors. The material of which it is made is such that although, like all internally-fired gas furnaces, it will crack, the crack is usually a single one, which can be readily closed up if desired, with fireclay.

Full particulars of above, or complete General Catalogue, on application.
20-26, SARDINIA STREET, Lincoln's Inn Fields, LOINDON, W.C.

JAMES J. HICKS, $8,9, \& 10$, Hatton Garden, London,

SCIENTIFIC INSTRUMENT MAKER TO THE WAR OFFICE, INDIA OFFICE, ADMIRALTY, \&c.

IS SOLE MAKER OF THE NEW PATENT
"WATIKINT"
MOUNTAIN ANEROID BAROMETER.
TuE only Aneroid that can be thrown in and out of action as required, and which, when out of action, is absolutely impervious to the influence of variations in atmospheric presable to ascertain comict altitudes owing to the marvellous accuracy of this Instrument, which is described at length by Mr. Whymper, -Times" of December 17, a 898 .
It is made in Aluminium for lightness, in either 3 -inch or $4 \frac{3}{2}$-inch sizes, with Sling Leather Case. prices:
Scaleto Siale to
5,000 feet ... £5 5s. ${ }^{15}$,000 feet .. £ $\mathbf{5}^{\mathbf{1 5}} \mathbf{5}$.

HICKS'S famous Student's MICROSCOPE

 Righthand Illustration)With A Eyepiece, Double Mirrur, Brasn Slipping Stage. Sliding Draw Tube z in. long, 1 Objective dividing $1, \frac{3}{2}$ and 1 inch, Cuarse and Fine Adjustment, Live Cage, Forceps and Condenser, in neat Mahogany Cabinet, with lock and key: Price, £3 15 s . Od.

MAKER of all kinds of Standard Barometers and Thermometers. Illustrated Price Lists FREE on Application.

[^1]
[^0]: (1) By an unfortunate oversight of the printers, this portion of Mr. Earland's article was omitted last month. It should be read on from end of p. 54 (ante).-(Ed. S.-G.)

[^1]: London : Printed by the Butolph Press, Limitwo. Sweedland Court, Bishopsgate Street, and Middlesex Street, E.C.

