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INTRODUCTION

It is to be hoped that, as a consequence of the

present active scrutiny of our educational aims

and methods, and of the resulting encouragement

of the study of modern languages, we shall not

remain, as a nation, so much isolated from

ideas and tendencies in continental thought and

literature as we have been in the past. As things

are, however, the translation of this book is

doubtless required; at any rate, it brings vividly

before us an instructive point of view. Though

some of M. Poincaré's chapters have been collected

from well-known treatises written several years

ago, and indeed are sometimes in detail not quite

up to date, besides occasionally suggesting the

suspicion that his views may possibly have been

modified in the interval, yet their publication in

a compact form has excited a warm welcome in

this country.

It must be confessed that the English language
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hardly lends itself as a perfect medium for the

rendering of the delicate shades of suggestion

and allusion characteristic of M. Poincaré's play

around his subject ; notwithstanding the excel-

lence of the translation, loss in this respect is

inevitable.

There has been of late a growing trend of

opinion, prompted in part by general philosophical

views, in the direction that the theoretical con-

structions of physical science are largely factitious,

that instead of presenting a valid im_age of the

relations of things on which further progress can

be based, they are still little better than a mirage.

The best method of abating this scepticism is to

become acquainted with the real scope and modes

of application of conceptions which, in the popular

language of superficial exposition—and even in

the unguarded and playful paradox of their

authors, intended only for the instructed eye

—

often look bizarre enough. But much advantage

will accrue if men of science become their own

epistemologists, and show to the world by critical

exposition in non-technical terms of the results

and methods of their constructive work, that more

than mere instinct is involved in it: the com-

munity has indeed a right to expect as much as

this.
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It would be hard to find any one better

qualified for this kind of exposition, either

from the profundity of his own mathematical

achievements, or from the extent and freshness

of his interest in the theories of physical science,

than the author of this book. If an appreciation

might be ventured on as regards the later chapters,

they are, perhaps, intended to present the stern

logical analyst quizzing the cultivator of physical

ideas as to what he is driving at, and whither he

expects to go, rather than any responsible attempt

towards a settled confession of faith. Thus, when

M. Poincare allows himself for a moment to

indulge in a process of evaporation of the

Principle of Energy, he is content to sum up:

" Eh bien, quelles que soient les notions nouvelles

que les expériences futures nous donneront sur le

monde, nous sommes sûrs d'avance qu'il y aura

quelque chose qui demeurera constant et que nous

pourrons appeler énergie'' (p. i66), and to leave

the matter there for his readers to think it out.

Though hardly necessary in the original French, it

may not now be superfluous to point out that

independent reflection and criticism on the part

of the reader are tacitly implied here as else-

where.

An interesting passage is the one devoted to
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Maxwell's theory of the functions of the aether,

and the comparison of the close-knit theories of

the classical French mathematical physicists with

the somewhat loosely-connected corpus of ideas by

which Maxwell, the interpreter and successor of

Faraday, has (posthumously) recast the whole

face of physical science. How many times has

that theor^^ been re-written since Maxwell's day ?

and yet how little has it been altered in essence,

except by further developments in the problem of

moving bodies, from the form in which he left it!

If, as M. Poincaré remarks, the French instinct

for precision and lucid demonstration sometimes

finds itself ill at ease with physical theories of

the British school, he as readily admits (pp. 223,

224), and indeed fully appreciates, the advantages

on the other side. Our own mental philosophers

have been shocked at the point of view indicated

by the proposition hazarded by Laplace, that a

sufficiently developed intelligence, if it were made

acquainted with the positions and motions of the

atoms at any instant, could predict all future

history: no amount of demur suffices sometimes

to persuade them that this is not a conception

universally entertained in physical science. It

was not so even in Laplace's own day. From

the point of view of the study of the evolution



INTRODUCTION. XV

of the sciences, there are few episodes more

instructive than the collision between Laplace

and Young with regard to the theory of capil-

larity. The precise and intricate mathematical

analysis of Laplace, starting from fixed pre-

conceptions regarding atomic forces which were

to remain intact throughout the logical develop-

ment of the argument, came into contrast with the

tentative, mobile intuitions of Young; 3-et the

latter was able to grasp, by sheer direct mental

force, the fruitful though partial analogies of this

recondite class of phenomena with more familiar

operations of nature, and to form a direct picture

of the way things interacted, such as could only

have been illustrated, quite possibly damaged or

obliterated, by premature effort to translate it

into elaborate analytical formulas. The aperçus

of Young were apparently devoid of all cogency

to Laplace; while Young expressed, doubtless in

too extreme a way, his sense of the inanity of the

array of mathematical logic of his rival. The
subsequent history involved the Nemesis that the

fabric of Laplace was taken down and recon-

structed in the next generation by Poisson ; while

the modern cultivator of the subject turns, at any

rate in England, to neither of those expositions

for illumination, but rather finds in the partial
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and succinct indications of Young the best start-

ing-point for further effort.

It seems, however, hard to accept entirely

the distinction suggested (p. 213) between the

methods of cultivating theoretical physics in

the two countries. To mention only two

transcendent names which stand at the very

front of two of the greatest developments of

physical science of the last century, Carnot and

Fresnel, their procedure was certainly not on the

lines^thus described. Possibly it is not devoid of

significance that each of them attained his first

effective recognition from the British school.

It may, in fact, be maintained that the part

played by mechanical and such-like theories

—

analogies if you will—is an essential one. The

reader of this book will appreciate that the human

mind has need of many instruments of comparison

and discovery besides the unrelenting logic of the

infinitesimal calculus. The dynamical basis which

underlies the objects of our most frequent ex-

perience has now been systematised into a great

calculus of exact thought, and traces of new real

relationships may come out more vividly when

considered in terms of our familiar acquaintance

with dynamical systems than when formulated

under the paler shadow of more analytical abstrac-
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tions. It is even possible for a constructive

physicist to conduct his mental operations entirely

by dynamical images, though Helmholtz, as well

as our author, seems to class a predilection in this

direction as a British trait. A time arrives when,

as in other subjects, ideas have crystallised out

into distinctness ; their exact verification and

development then becomes a problem in mathe-

matical physics. But whether the mechanical

analogies still survive, or new terms are now
introduced devoid of all naïve mechanical bias,

it matters essentially little. The precise de-

termination of the relations of things in the

rational scheme of nature in which we find

ourselves is the fundamental task, and for its

fulfilment in any direction advantage has to be

taken of our knowledge, even when only partial,

of new aspects and types of relationship which

may have become familiar perhaps in quite

different fields. Nor can it be forgotten that the

most fruitful and fundamental conceptions of

abstract pure mathematics itself have often been

suggested from these mechanical ideas of flux

and force, where the play of intuition is our

most powerful guide. The study of the historical

evolution of physical theories is essential to the

complete understanding of their import. It is in

b
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the mental workshop of a Fresnel, a Kelvin, or

a Helmholtz, that profound ideas of the deep

things of Nature are struck out and assume

form; when pondered over and paraphrased by

philosophers we see them react on the conduct

of life : it is the business of criticism to polish

them gradually to the common measure of human

understanding. Oppressed though we are with

the necessity of being specialists, if we are

to know anything thoroughly in these days of

accumulated details, we may at any rate pro-

fitably study the historical evolution of knowledge

over a field wider than our own.

The aspect of the subject which has here been

dwelt on is that scientific progress, considered

historically, is not a strictly logical process, and

does not proceed by syllogisms. New ideas

emerge dimly into intuition, come into con-

sciousness from nobody knows where, and become

the material on which the mind operates, forging

them gradually into consistent doctrine, which

can be welded on to existing domains of know-

ledge. But this process is never complete : a

crude connection can always be pointed to by a

logician as an indication of the imperfection of

human constructions.

If intuition plays a part which is so important,
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it is surely necessary that we should possess a firm

grasp of its limitations. In M. Poincaré's earlier

chapters the reader can gain very pleasantly a

vivid idea of the various and highly complicated

ways of docketing our perceptions of the relations

of external things, all equally valid, that were

open to the human race to develop. Strange to

say, they never tried any of them ; and, satisfied

with the very remarkable practical fitness of the

scheme of geometry and dynamics that came

naturally to hand, did not consciously trouble

themselves about the possible existence of others

until recently. Still more recently has it been

found that the good Bishop Berkeley's logical

jibes against the Newtonian ideas of fluxions and

limiting ratios cannot be adequately appeased in

the rigorous mathematical conscience, until our

apparent continuities are resolved mentally into

discrete aggregates which we only partially

apprehend. The irresistible impulse to atomize

everything thus proves to be not merely a disease

of the physicist ; a deeper origin, in the nature

of knowledge itself, is suggested.

Everywhere w^ant of absolute, exact adaptation

can be detected, if pains are taken, between the

various constructions that result from our mental

activity and the impressions which give rise to
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them. The bluntness of our unaided sensual

perceptions, which are the source in part of the

intuitions of the race, is well brought out in this

connection by M. Poincaré. Is there real con-

tradiction ? Harmony usually proves to be re-

covered by shifting our attitude to the phenomena.

All experience leads us to interpret the totality of

things as a consistent cosmos—undergoing evolu-

tion, the naturalists will say—in the large-scale

workings of which we are interested spectators

and explorers, while of the inner relations and

ramifications we only apprehend dim glimpses.

When our formulation of experience is imperfect

or even paradoxical, we learn to attribute the

fault to our point of view, and to expect that

future adaptation will put it right. But Truth

resides in a deep well, and we shall never get

to the bottom. Only, while deriving enjoyment

and insight from M. Poincaré's Socratic exposi-

tion of the limitations of the human outlook on

the universe, let us beware of counting limitation

as imperfection, and drifting into an inadequate

conception of the wonderful fabric of human

knowledge.

J.
LARMOR.
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To the superficial observer scientific truth is un-

assailable, the logic of science is infallible ; and if

scientific men sometimes make mistakes, it is

because they have not understood the rules of

the game. Mathematical truths are derived from

a few self-evident propositions, by a chain of

flawless reasonings ; they are imposed not only on

us, but on Nature itself. By them the Creator is

fettered, as it were, and His choice is limited to

a relatively small number of solutions. A few

experiments, therefore, will be sufficient to enable

us to determine what choice He has made. From
each experiment a number of consequences will

follow by a series of mathematical deductions,

and in this way each of them will reveal to us a

corner of the universe. This, to the minds of most

people, and to students who are getting their first

ideas of physics, is the origin of certainty in

science. This is what they take to be the rôle of
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experiment and mathematics. And thus, too, it

was understood a hundred years ago by many
men of science who dreamed of constructing the

world with the aid of the smallest possible amount

of material borrowed from experiment.

But upon more mature reflection the position

held by hypothesis was seen ; it was recognised that

it is as necessary to the experimenter as it is to the

mathematician. And then the doubt arose if all

these constructions are built on solid foundations.

The conclusion was drawn that a breath would

bring them to the ground. This sceptical attitude

does not escape the charge of superficiality. To
doubt everything or to believe everything are two

equally convenient solutions ; both dispense with

the necessity of reflection.

Instead of a summary condemnation we should

examine with the utmost care the rôle of hypo-

thesis ; we shall then recognise not only that it is

necessary, but that in most cases it is legitimate.

We shall also see that there are several kinds of

hypotheses; that some are verifiable, and when

once confirmed by experiment become truths of

great fertility; that others may be useful to us in

fixing our ideas ; and finally, that others are

hypotheses only in appearance, and reduce to

definitions or to conventions in disguise. The
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latter are to be met with especially in mathematics

and in the sciences to which it is applied. From

them, indeed, the sciences derive their rigour;

such conventions are the result of the unrestricted

activity of the mind, which in this domain recog-

nises no obstacle. For here the mind may affirm

because it lays down its own laws ; but let us

clearly understand that while these laws are

imposed on owr science, which otherwise could

not exist, they are not imposed on Nature. Are

they then arbitrary? No; for if they were, they

would not be fertile. Experience leaves us our

freedom of choice, but it guides us by helping us to

discern the most convenient path to follow. Our

laws are therefore like those of an absolute

monarch, who is wise and consults his council of

state. Some people have been struck by this

characteristic of free convention which may be

recognised in certain fundamental principles of

the sciences. Some have set no limits to their

generalisations, and at the same time they have

forgotten that there is a difference between liberty

and the purely arbitrary. So that they are com-

pelled to end in what is called nominalism ; they

have asked if the savant is not the dupe of his

own definitions, and if the world he thinks he has

discovered is not simply the creation of his own
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caprice.^ Under these conditions science would

retain its certainty, but would not attain its object,

and w^ould become powerless. Now, we daily see

what science is doing for us. This could not be

unless it taught us something about reality; the

aim of science is not things themselves, as the

dogmatists in their simplicity imagine, but the

relations between things; outside those relations

there is no reality knowable.

Such is the conclusion to which we are led; but

to reach that conclusion we must pass in review

the series of sciences from arithmetic and

geometry to mechanics and experimental physics.

What is the nature of mathematical reasoning ?

Is it really deductive, as is commonly supposed ?

' Careful analysis shows us that it is nothing of the

kind; that it participates to some extent in the

nature of inductive reasoning, and for that reason

it is fruitful. But none the less does it retain its

character of absolute rigour ; and this is what

must first be shown.

When we know more of this instrument which

is placed in the hands of the investigator by

mathematics, we have then to analyse another

fundamental idea, that of mathem.atical magni-

^ Cr. M. le Roy: "Science et Philosoplùe," Revue de Méta-

physique et de Morale^ 1901.
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tude. Do we find it in nature, or have we our-

selves introduced it ? And if the latter be the

case, are we not running a risk of coming to

incorrect conclusions all round ? Comparing the

rough data of our senses with that extremely com-

plex and subtle conception which mathematicians

call magnitude, we are compelled to recognise a

divergence. The framework into w^hich we wish

to make everything fit is one of our ow^n construc-

tion ; but w^e did not construct it at random, we
constructed it by measurement so to speak; and

that is why we can fit the facts into it without

altering their essential qualities.

Space is another framework which we impose

on the world. Whence are the first principles of

geometry derived ? Are they imposed on us by

logic ? Lobatschewsky, by inventing non-Euclid-

ean geometries, has shown that this is not the case.

Is space revealed to us by our senses ? No ; for

the space revealed to us by our senses is absolutely

different from the space of geometry. Is geometry

derived from experience ? Careful discussion will

give the answer—no ! We therefore conclude that

the principles of geometry are only conventions
;

but these conventions are not arbitrary, and if

transported into another world (which I shall

call the non-EucHdean w^orld, and which I shall
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endeavour to describe), we shall find ourselves

compelled to adopt more of them.

In mechanics we shall be led to analogous con-

clusions, and we shall see that the principles of

this science, although more directly based on

experience, still share the conventional character

of the geometrical postulates. So far, nominalism

triumphs; but we now come to the physical

sciences, properly so called, and here the scene

changes. We meet with hypotheses of another

kind, and we fully grasp how fruitful they are.

No doubt at the outset theories seem unsound,

and the history of science shows us how ephemeral

they are ; but they do not entirely perish, and of

each of them some traces still remain. It is these

traces which we must try to discover, because in

them and in them alone is the true reality.

The method of the physical sciences is based

upon the induction which leads us to expect the

recurrence of a phenomenon when the circum-

stances which give rise to it are repeated. If all

the circumstances could be simultaneously re-

produced, this principle could be fearlessly applied
;

but this never happens; some of the circumstances

will always be missing. Are we absolutely certain

that they are unimportant ? Evidently not ! It

may be probable, but it cannot be rigorously
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certain. Hence the importance of the rôle that is

played in the physical sciences by the law of

probability. The calculus of probabilities is there-

fore not merely a recreation, or a guide to the

baccarat player; and we must thoroughly examine

the principles on which it is based. In this con-

nection I have but very incomplete results to lay

before the reader, for the vague instinct w^hich

enables us to determine probability almost defies

analysis. After a study of the conditions under

which the work of the physicist is carried on, I

have thought it best to show him at work. For

this purpose I have taken instances from the

history of optics and of electricity. We shall thus

see how the ideas of Fresnel and Maxwell took

their rise, and what unconscious hypotheses were

made by Ampère and the other founders of

electro-dynamics.
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PART I.

NUMBER AND MAGNITUDE.

CHAPTER I.

ON THE NATURE OF MATHEMATICAL REASONING,

L

The very possibility of mathematical science seems

an insoluble contradiction. If this science is only

deductive in appearance, from whence is derived

that perfect rigour which is challenged by none ?

If, on the contrary, all the propositions which it

enunciates may be derived in order by the rules

of formal logic, how is it that mathematics is

not reduced to a gigantic tautology? The sj'llo-

gism can teach us nothing essentially new, and
if everything must spring from the principle of

identity, then everything should be capable of

being reduced to that principle. Are we then to

admit that the enunciations of all the theorems
I
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with which so many volumes are filled, are only

indirect ways of saying that A is A ?

No doubt we may refer back to axioms which

are at the source of all these reasonings. If it is

felt that they cannot be reduced to the principle of

contradiction, if we decline to see in them any

more than experimental facts which have no part

or lot in mathematical necessity, there is still one

resource left to us: we may class them among
à priori synthetic views. But this is no solution

of the difficulty—it is merely giving it a name; and

even if the nature of the synthetic views had no

longer for us any mystery, the contradiction would

not have disappeared ; it would have only been

shirked. Syllogistic reasoning remains incapable

of adding anything to the data that are given it
;

the data are reduced to axioms, and that is all we
should find in the conclusions.

No theorem can be new unless a new axiom

intervenes in its demonstration ; reasoning can

only give us immediately evident truths borrowed

from direct intuition; it would only be an inter-

mediary parasite. Should we not therefore have

reason for asking if the syllogistic apparatus serves

only to disguise what we have borrowed ?

The contradiction will strike us the more if we
open any book on mathematics ; on every page the

author announces his intention of generalising some

proposition already known. Does the mathematical

method proceed from the particular to the general,

and, if so, how can it be called deductive ?
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Finally, if the science of number were merely

analytical, or could be analytically derived from a

few synthetic intuitions, it seems that a sufficiently

powerful mind could with a single glance perceive

all its truths ; nay, one might even hope that some

day a language would be invented simple enough

for these truths to be made evident to any person

of ordinary intelligence.

Even if these consequences are challenged, it

must be granted that mathematical reasoning has

of itself a kind of creative virtue, and is therefore to

be distinguished from the syllogism. The difference

must be profound. We shall not, for instance,

find the key to the mystery in the frequent use of

the rule by which the same uniform operation

applied to two equal numbers will give identical

results. All these modes of reasoning, whether or

not reducible to the syllogism, properly so called,

retain the analytical character, and ipso facto, lose

their power.

II.

The argument is an old one. Let us see how
Leibnitz tried to show that two and two make
four. I assume the number one to be defined, and

also the operation a'+i—i.e., the adding of unity

to a given number x. These definitions, whatever

they may be, do not enter into the subsequent

reasoning. I next define the numbers 2, 3, 4 by

the equalities :

—

(i) 1 + 1= 2; (2) 2 + 1= 3; (3) 3+ i =+ and in
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the same way I define the operation x-\-2 by the

relation; (4) x+2= {x+i)+i.

Given this, we have :

—

2+ 2= (2+ i)+ i; (def. 4).

(2+i)+ i=3+i (def. 2).

3+1=4 (def. 3).

whence 2+2= 4 Q.E.D.

It cannot be denied that this reasoning is purely

analytical. But ifwe ask a mathematician, he will

reply: "This is not a demonstration properly so

called; it is a verification." We have confined

ourselves to bringing together one or other of two

purely conventional definitions, and we have verified

their identity ; nothing new has been learned.

Verification differs from proof precisely because it

is analytical, and because it leads to nothing. It

leads to nothing because the conclusion is nothing

but the premisses translated into another language.

A real proof, on the other hand, is fruitful, because

the conclusion is in a sense more general than the

premisses. The equality 2 + 2 = 4 can be verified

because it is particular. Each individual enuncia-

tion in mathematics may be always verified in

the same way. But if mathematics could be

reduced to a series of such verifications it

would not be a science. A chess-player, for

instance, does not create a science by winning a

piece. There is no science but the science of the

general. It may even be said that the object of

the exact sciences is to dispense with these direct

verifications.
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III.

Let us now see the geometer at work, and try

to surprise some of his methods. The task is

not without difficulty; it is not enough to open a

book at random and to analyse any proof we may
come across. First of all, geometry must be ex-

cluded, or the question becomes complicated by

difficult problems relating to the rôle of the

postulates, the nature and the origin of the idea

of space. For analogous reasons we cannot

avail ourselves of the infinitesimal calculus. We
must seek mathematical thought where it has

remained pure

—

i.e., in Arithmetic. But we
still have to choose ; in the higher parts of

the theory of numbers the primitive mathemati-

cal ideas have already undergone so profound

an elaboration that it becomes difficult to analyse

them.

It is therefore at the beginning of Arithmetic

that we must expect to find the explanation we
seek ; but it happens that it is precisely in the

proofs of the most elementary theorems that the

authors of classic treatises have displayed the least

precision and rigour. We may not impute this to

them as a crime ; they have obeyed a necessity.

Beginners are not prepared for real mathematical

rigour ; they would see in it nothing but empty,

tedious subtleties. It would be waste of time to

try to make them more exacting ; they have to

pass rapidly and without stopping over the road
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which was trodden slowly by the founders of the

science.

Why is so long a preparation necessary to

habituate oneself to this perfect rigour, which

it would seem should naturally be imposed on

all minds ? This is a logical and psychological

problem which is well worthy of study. But we
shall not dwell on it ; it is foreign to our subject.

All I wish to insist on is, that we shall fail in our

purpose unless we reconstruct the proofs of the

elementary theorems, and give them, not the rough

form in which they are left so as not to weary the

beginner, but the form which will satisfy the skilled

geometer.

DEFINITION OF ADDITION.

I assume that the operation x+i has been

defined ; it consists in adding the number i to a

given number x. Whatever may be said of this

definition, it does not enter into the subsequent

reasoning.

We now have to define the operation x + a, which

consists in adding the number a to any given

number x. Suppose that we have defined the

operation ,^+(^-1); the operation x + a will be

defined by the equality : (i) x + a= [x-{- {a - 1)]+ i.

We shall know what x + a is when we know what

x+{a~i) is, and as I have assumed that to start

with we know what x+i is, we can define

successively and " by recurrence " the operations

x + 2,x H- 3, etc. This definition deserves a moment's
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attention ; it is of a particular nature which

distinguishes it even at this stage from the purely

logical definition; the equality (i), in fact, contains

an infinite number of distinct definitions, each

having only one meaning when we know the

meaning of its predecessor.

PROPERTIES OF ADDITION.

Associative.—I say that a-j-{b-\-c)= {a-^b)-\-c; in

fact, the theorem is true for c=:i. It may then be

written a-}-{b-\-i)= {a-\-b)-\-i; which, remembering

the difference of notation, is nothing but the equality

(i) by which I have just defined addition. Assume
the theorem true for c=y, I say that it will be true for

c=y-\-i. Let (a+è)-f7=a+(6+y), it followsthat

[{a+ b) + y]+i=[a + {b + y)]-hi; or by def. (i)—

{a+ b) + (7+ i)= a + (6 + y + i)= a + [6+ (7+ i)]

,

which shows by a series of purely analytical deduc-

tions that the theorem is true for 7+1. Being

true for c = i, we see that it is successively true for

c = 2, c = 3, etc.

Commutative.— (i) I say that a + i = i-{-a. The
theorem is evidently true for a=i; we can verify

by purely analytical reasoning that if it is true for

a = 7 it will be true for a = y + i.^ Now, it is true for

a=i, and therefore is true for a— 2, a = ^, and so

on. This is what is meant by saying that the

proof is demonstrated " by recurrence."

(2) I say that a + b---b + a. The theorem has just

^ For (7-f i) + i = (i r7) + i = i+(7+i/-—[TR-]
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been shown to hold good for b=i, and it may be

verified analytically that if it is true for b=P, it

will be true for b=/^-\-i. The proposition is thus

established by recurrence.

DEFINITION OF MULTIPLICATION.

We shall define multiplication by the equalities:

(i) aXi=a. (2) aXb=[aX{b-ï)]-\-a. Both of

these include an infinite number of definitions;

having defined ^Xi, it enables us to define in

succession ax 2, ax^, and so on.

PROPERTIES OF MULTIPLICATION.

Distributive.— I say that (a-\-b)Xc= (aXc)+
(bxc). We can verify analytically that the theorem

is true for c=i; then if it is true for c=y, it will be

true for c=:y-\-i. The proposition is then proved

by recurrence.

Commutative.— (i) I say that aXi=^iXa. The
theorem is obvious for a=:i. We can verify

analytically that if it is true for a— a, it will be

true for «r^a+ i.

(2) I say that axb= bxa. The theorem has

just been proved for b=i. We can verify analy-

ticallv that if it be true for b=f^ it will be true for

b=fS+j.
IV.

This monotonous series of reasonings may now
be laid aside; but their very monotony brings

vividly to light the process, which is uniform,
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and is met again at every step. The process is

proof by recurrence. We first show that a

theorem is true for n^i; we then show that if

it is true for ;; — i it is true for n, and we conclude

that it is true for all integers. We have now seen

how it may be used for the proof of the rules of

addition and multiplication—that is to say, for the

rules of the algebraical calculus. This calculus

is an instrument of transformation which lends

itself to many more different combinations than

the simple syllogism ; but it is still a purely analy-

tical instrument, and is incapable of teaching us

anything new. If mathematics had no other in-

strument, it would immediately be arrested in its

development; but it has recourse anew to the

same process

—

i.e., to reasoning by recurrence, and
it can continue its forward march. Then if we
look carefully, we find this mode of reasoning at

every step, either under the simple form which we
have just given to it, or under a more or less modi-

fied form. It is therefore mathematical reasoning

par excellence, and we must examine it closer.

V.

The essential characteristic of reasoning by re-

currence is that it contains, condensed, so to

speak, in a single formula, an infinite number of

syllogisms. We shall see this more clearly if we
enunciate the syllogisms one after another. They
follow one another, if one may use the expression,

in a cascade. The following are the hypothetical
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syllogisms:—The theorem is true of the number i.

Now, if it is true of i, it is true of 2 ; therefore it is

true of 2. Now, if it is true of 2, it is true of 3;

hence it is true of 3, and so on. We see that the

conclusion of each syllogism serves as the minor

of its successor. Further, the majors of all our

syllogisms may be reduced to a single form. If

the theorem is true of n - i, it is true of 11.

We see, then, that in reasoning by recurrence

we confine ourselves to the enunciation of the

minor of the first syllogism, and the general

formula which contains as particular cases all the

majors. This unending series of syllogisms is thus

reduced to a phrase of a few lines.

It is now easy to understand why every par-

ticular consequence of a theorem may, as I have

above explained, be verified by purely analytical

processes. If, instead of proving that our theorem

is true for all numbers, we only wish to show that

it is true for the number 6 for instance, it will be

enough to establish the first five syllogisms in our

cascade. We shall require g if we wish to prove

it for the number 10; for a greater number we
shall require more still; but however great the

number may be we shall always reach it, and the

analytical verification will always be possible.

But however far we went we should never reach

the general theorem applicable to all numbers,

which alone is the object of science. To reach

it we should require an infinite number of syllo-

gisms, and we should have to cross an abyss
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which the patience of the analyst, restricted to the

resources of formal logic, will never succeed in

crossing.

I asked at the outset why we cannot conceive of

a mind powerful enough to see at a glance the

whole body of mathematical truth. The answer is

now easy. A chess-player can combine for four or

five moves ahead; but, however extraordinary a

player he may be, he cannot prepare for more than

a finite number of moves. If he applies his facul-

ties to Arithmetic, he cannot conceive its general

truths by direct intuition alone; to prove even the

smallest theorem he must use reasoning by re-

currence, for that is the only instrument which

enables us to pass from the finite to the infinite.

This instrument is always useful, for it enables us

to leap over as many stages as we wish; it frees

us from the necessity of long, tedious, and

monotonous verifications which would rapidly

become impracticable. Then when we take in

hand the general theorem it becomes indispens-

able, for otherwise we should ever be approaching

the analytical verification without ever actually

reaching it. In this domain of Arithmetic we may
think ourselves very far from the infinitesimal

analysis, but the idea of mathematical infinity is

already playing a preponderating part, and without

it there would be no science at all, because there

would be nothing general.
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VI.

The views upon which reasoning by recurrence

is based may be exhibited in other forms; we may
say, for instance, that in any finite collection of

different integers there is always one which is

smaller than any other. We may readily pass from

one enunciation to another, and thus give our-

selves the illusion of having proved that reason-

ing by recurrence is legitimate. But we shall

always be brought to a full stop—we shall always

come to an indemonstrable axiom, which will at

bottom be but the proposition we had to prove

translated into another language. We cannot there-

fore escape the conclusion that the rule of reason-

ing by recurrence is irreducible to the principle of

contradiction. Nor can the rule come to us from

experiment. Experiment may teach us that the

rule is true for the first ten or the first hundred

numbers, for instance; it will not bring us to the

indefinite series of numbers, but only to a more or

less long, but always limited, portion of the series.

Now, if that were all that is in question, the

principle of contradiction would be sufficient, it

would always enable us to develop as many
syllogisms as we wished. It is only when it is a

question of a single formula to embrace an infinite

number of syllogisms that this principle breaks

down, and there, too, experiment is powerless to

aid. This rule, inaccessible to analytical proof

and to experiment, is the exact type of the à priori
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synthetic intuition. On the other hand, we
cannot see in it a convention as in the case of the

postulates of geometry.

Why then is this view imposed upon us with

such an irresistible weight of evidence ? It is

because it is only th-e affirmation of the power of

the mind which knows it can conceive of the

indefinite repetition of the same act, when the act

is once possible. The mind has a direct intuition

of this power, and experiment can only be for it an

opportunity of using it, and thereby of becoming

conscious of it.

But it will be said, if the legitimacy of reasoning

by recurrence cannot be established by experiment

alone, is it so with experiment aided by induction ?

We see successively that a theorem is true of the

number i, of the number 2, of the number 3, and

so on—the law is manifest, we say, and it is so on

the same ground that every physical law is true

which is based on a very large but limited number

of observations.

It cannot escape our notice that here is a

striking analogy with the usual processes of

induction. But an essential difference exists.

Induction applied to the physical sciences is

always uncertain, because it is based on the be-

lief in a general order of the universe, an order

which is external to us. Mathematical induction

—i.e., proof by recurrence—is, on the contrar}^

necessarily imposed on us, because it is only the

affirmation of a property of the mind itself.
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VII.

Mathematicians, as I have said before, always

endeavour to generaHse the propositions they have

obtained. To seek no further example, we have

just shown the equality, a + i = i + a, and we then

used it to establish the equality, a + b = b + a, which

is obviously more general. Mathematics may,

therefore, like the other sciences, proceed from the

particular to the general. This is a fact which

might otherwise have appeared incomprehensible

to us at the beginning of this study, but which has

no longer anything mysterious about it, since we
have ascertained the analogies between proof by

recurrence and ordinary induction.

No doubt mathematical recurrent reasoning and
physical inductive reasoning are based on different

foundations, but they move in parallel lines and in

the same direction—namely, from the particular

to the general.

Let us examine the case a little more closely.

To prove the equality a-\-2 = 2 + a (i), we need

only apply the rule a + 1^-1 + a, twice, and write

a + 2 = a+i + i = i + a + i = i + i + a = 2 + a (2).

The equality thus deduced by purely analytical

means is not, however, a simple particular case. It

is something quite different. We may not therefore

even say in the really analytical and deductive

part of mathematical reasoning that we proceed

from the general to the particular in the

ordinary sense of the words. The two sides of
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the equality (2) are merely more complicated

combinations than the two sides of the equality

(i), and analysis only serves to separate the ele-

ments which enter into these combinations and to

study their relations.

Mathematicians therefore proceed "by construc-

tion," they ''construct " more complicated combina-

tions. When they analyse these combinations,

these aggregates, so to speak, into their primitive

elements, they see the relations of the elements

and deduce the relations of the aggregates them-

selves. The process is purely analytical, but it is

not a passing from the general to the particular,

for the aggregates obviously cannot be regarded as

more particular than their elements.

Great importance has been rightly attached to

this process of "construction," and some claim

to see in it the necessary and sufficient condi-

tion of the progress of the exact sciences.

Necessary, no doubt, but not sufficient ! For a

construction to be useful and not mere waste of

mental effort, for it to serve as a stepping-stone to

higher things, it must first of all possess a kind of

unity enabling us to see something more than the

juxtaposition of its elements. Or more accurately,

there must be some advantage in considering the

construction rather than the elements themselves.

What can this advantage be ? Why reason on a

polygon, for instance, which is always decom-
posable into triangles, and not on elementary

triangles ? It is because there are properties of
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polygons of any number of sides, and they can be

immediately applied to any particular kind of

polygon. In most cases it is only after long efforts

that those properties can be discovered, by directly

studying the relations of elementary triangles. If

the quadrilateral is anything more than the juxta-

position of two triangles, it is because it is of the

polygon type.

A construction only becomes interesting when
it can be placed side by side with other analogous

constructions for forming species of the same
genus. To do this we must necessarily go back

from the particular to the general, ascending one

or more steps. The analytical process " by
construction" does not compel us to descend, but

it leaves us at the same level. We can only

ascend by mathematical induction, for from it

alone can we learn something new. Without the

aid of this induction, which in certain respects

differs from, but is as fruitful as, physical in-

duction, construction would be powerless to create

science.

Let me observe, in conclusion, that this in-

duction is only possible if the same operation can

be repeated indefinitely. That is why the theory

of chess can never become a science, for the

different moves of the same piece are limited and

do not resemble each other.



CHAPTER II.

MATHEMATICAL MAGNITUDE AND EXPERIMENT.

If we want to know what the mathematicians

mean by a continuum, it is useless to appeal to

geometry. The geometer is always seeking, more
or less, to represent to himself the figures he is

studying, but his representations are only instru-

ments to him ; he uses space in his geometry just

as he uses chalk ; and further, too much import-

ance must not be attached to accidents which are

often nothing more than the whiteness of the

chalk.

The pure analyst has not to dread this pitfall.

He has disengaged mathematics from all extra-

neous elements, and he is in a position to answer

our question :
—

" Tell me exactly what this con-

tinuum is, about which mathematicians reason."

Many analysts who reflect on their art have

already done so^M. Tannery, for instance, in

his Introduction à la théorie des Fonctions d'une

variable.

Let us start with the integers. Between any

two consecutive sets, intercalate one or more inter-

mediary sets, and then between these sets others

2
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again, and so on indefinitely. We thus get an

unlimited number of terms, and these will be the

numbers which we call fractional, rational, or

commensurable. But this is not yet all ; between

these terms, which, be it marked, are already

infinite in number, other terms are intercalated,

and these are called irrational or incommensurable.

Before going any further, let me make a pre-

liminary remark. The continuum thus conceived

is no longer a collection of individuals arranged in

a certain order, infinite in number, it is true, but

external the one to the other. This is not the

ordinary conception in which it is supposed that

between the elements of the continuum exists an

intimate connection making of it one whole, in

which the point has no existence previous to the

line, but the line does exist previous to the point.

Multiplicity alone subsists, unity has disappeared—"the continuum is unity in multiplicity," accord-

ing to the celebrated formula. The analysts have

even less reason to define their continuum as they

do, since it is always on this that they reason when
they are particularly proud of their rigour. It

is enough to warn the reader that the real

mathematical continuum is quite different from

that of the physicists and from that of the

metaphysicians.

It may also be said, perhaps, that mathematicians

who are contented with this definition are the

dupes of words, that the nature of each of these

sets should be precisely indicated, that it should
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be explained how they are to be intercalated, and

that it should be shown how it is possible to do it.

This, however, would be wrong; the only property

of the sets which comes into the reasoning is that of

preceding or succeeding these or those other sets;

this alone should therefore intervene in the defini-

tion. So we need not concern ourselves with the

manner in which the sets are intercalated, and

no one will doubt the possibility of the operation

if he only remembers that " possible " in the

language of geometers simply means exempt from

contradiction. But our definition is not yet com-

plete, and we come back to it after this rather long

digression.

Definition of Incommensnvahles.—The mathe-

maticians of the Berlin school, and Kronecker

in particular, have devoted themselves to con-

structing this continuous scale of irrational and

fractional numbers without using any other

materials than the integer. The mathematical

continuum from this point of view would be a

pure creation of the mind in which experiment

would have no part.

The idea of rational number not seeming to

present to them any difficulty, they have confined

their attention mainly to defining incommensurable

numbers. But before reproducing their definition

here, I must make an observation that will allay

the astonishment which this will not fail to provoke

in readers who are but little familiar with the

habits of geometers.
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Mathematicians do not study objects, but the

relations between objects; to them it is a matter

of indifference if these objects are replaced by

others, provided that the relations do not change.

Matter does not engage their attention, they are

interested by form alone.

If we did not remember it, we could hardly

understand that Kronccker gives the name of

incommensurable number to a simple symbol

—

that is to say, something very different from the

idea we think we ought to have of a quantity

which should be measurable and almost tangible.

Let us see now what is Kronecker's definition.

Commensurable numbers may be divided into

classes in an infinite number of ways, subject

to the condition that any number whatever

of the first class is greater than any number
of the second. It may happen that among the

numbers of the first class there is one which is

smaller than all the rest ; if, for instance, we
arrange in the first class all the numbers greater

than 2, and 2 itself, and in the second class all the

numbers smaller than 2, it is clear that 2 will be

the smallest of all the numbers of the first class.

The number 2 may therefore be chosen as the

symbol of this division.

It may happen, on the contrary, that in the

second class there is one which is greater than all

the rest. This is what takes place, for example,

if the first class comprises all the numbers greater

than 2, and if, in the second, are all the numbers
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less than 2, and 2 itself. Here again the

number 2 might be chosen as the symbol of this

division.

But it may equally well happen that we can find

neither in the first class a number smaller than all

the rest, nor in the second class a number greater

than all the rest. Suppose, for instance, we
place in the first class all the numbers whose

squares are greater than 2, and in the second all

the numbers whose squares are smaller than 2,

We know that in neither of them is a number whose

square is equal to 2. Evidently there will be in

the first class no number which is smaller than all

the rest, for however near the square of a number
may be to 2, we can always find a commensur-

able whose square is still nearer to 2. From
Kronecker's point of view, the incommensurable

number tJ'Z is nothing but the symbol of this

particular method of division of commensurable

numbers ; and to each mode of repartition corre-

sponds in this way a number, commensurable or

not, which serves as a symbol. But to be satisfied

with this would be to forget the origin of these

symbols ; it remains to explain how we have been

led to attribute to them a kind of concrete

existence, and on the other hand, does not the

difficulty begin with fractions ? Should we have

the notion of these numbers if we did not previously

know a matter which we conceive as infinitely

divisible

—

i.e., as a continuum ?

The Physical Continuum.—We are next led to ask
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if the idea of the mathematical continuum is not

simply drawn from experiment. If that be so, the

rough data of experiment, which are our sensations,

could be measured. We might, indeed, be tempted

to believe that this is so, for in recent times there

has been an attempt to measure them, and a law

has even been formulated, known as Fechner's

law, according to which sensation is proportional

to the logarithm of the stimulus. But if we
examine the experiments by which the endeavour

has been made to establish this law, we shall be

led to a diametrically opposite conclusion. It has,

for instance, been observed that a weight A of lo

grammes and a weight B of ii grammes produced

identical sensations, that the weight B could no

longer be distinguished from a weight C of 12

grammes, but that the weight A was readily

distinguished from the weight C. Thus the rough

results of the experiments may be expressed by

the following relations: A= B, B=C, A < C, which

may be regarded as the formula of the physical

continuum. But here is an intolerable disagree-

ment with the law of contradiction, and the

necessity of banishing this disagreement has com-

pelled us to invent the mathematical continuum.

We are therefore forced to conclude that this

notion has been created entirely by the mind, but

it is experiment that has provided the opportunity.

We cannot believe that two quantities which are

equal to a third are not equal to one another, and

we are thus led to suppose that A is different from
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B, and B from C, and that if we have not been

aware of this, it is due to the imperfections of our

senses.

The Creation of the Mathematical Continuum: First

Stage.—So far it would suffice, in order to account

for facts, to intercalate between A and B a small

number of terms which would remain discrete.

What happens now if we have recourse to some
instrument to make up for the weakness of our

senses ? If, for example, we use a microscope ?

Such terms as A and B, which before were

indistinguishable from one another, appear now
to be distinct : but between A and B, which are

distinct, is intercalated another new term D,

which we can distinguish neither from A nor from

B. Although we may use the most delicate

methods, the rough results of our experiments

will always present the characters of the physical

continuum with the contradiction which is inherent

in it. We only escape from it by incessantly

intercalating new terms between the terms already

distinguished, and this operation must be pursued

indefinitely. We might Conceive that it w^ould be

possible to stop if we could imagine an instrument

powerful enough to decompose the physical con-

tinuum into discrete elements, just as the telescope

resolves the Milky Way into stars. But this we
cannot imagine ; it is always with our senses that

we use our instruments ; it is with the eye that we
observe the image magnified by the microscope,

and this image must therefore always retain the
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characters of visual sensation, and therefore those

of the physical continuum.

Nothing distinguishes a length directly observed

from half that length doubled by the microscope.

The whole is homogeneous to the part ; and there

is a fresh contradiction—or rather there would be

one if the number of the terms were supposed

to be finite; it is clear that the part containing

less terms than the whole cannot be similar to the

whole. The contradiction ceases as soon as the

number of terms is regarded as infinite. There is

nothing, for example, to prevent us from regarding

the aggregate of integers as similar to the aggregate

of even numbers, which is however only a part

of it; in fact, to each integer corresponds another

even number which is its double. But it is not

only to escape this contradiction contained in the

empiric data that the mind is led to create the

concept of a continuum formed of an indefinite

number of terms.

Here everything takes place just as in the series

of the integers. We have the faculty of conceiving

that a unit may be added to a collection of units.

Thanks to experiment, we have had the opportunity

of exercising this faculty and are conscious of

it ; but from this fact we feel that our power is

unlimited, and that we can count indefinitely,

although we have never had to count more than

a finite number of objects. In the same way, as

soon as we have intercalated terms between two
consecutive terms of a series, we feel that this
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operation may be continued without limit, and
that, so to speak, there is no intrinsic reason for

stopping. As an abbreviation, I may give the

name of a mathematical continuum of the first

order to every aggregate of terms formed after the

same law as the scale of commensurable numbers.

If, then, we intercalate new sets according to the

laws of incommensurable numbers, we obtain

what may be called a continuum of the second

order.

Second Stage.—We have only taken our first

step. We have explained the origin of con-

tinuums of the first order ; we must now see why
this is not sufficient, and why the incommensurable

numbers had to be invented.

If we try to imagine a line, it must have the

characters of the physical continuum—that is to

say, our representation must have a certain

breadth. Two lines will therefore appear to us

under the form of two narrow bands, and if we
are content with this rough image, it is clear

that where two lines cross they must have some
common part. But the pure geometer makes one

further effort ; without entirely renouncing the

aid of his senses, he tries to imagine a line without

breadth and a point without size. This he can

do only by imagining a line as the limit towards

which tends a band that is growing thinner and
thinner, and the point as the limit towards which
is tending an area that is growing smaller and

smaller. Our two bands, however narrow they
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may be, will always have a common area ; the

smaller they are the smaller it will be, and its

limit is what the geometer calls a point. This is

why it is said that the two lines which cross

must have a common point, and this truth seems

intuitive.

But a contradiction would be implied if we
conceived of lines as continuums of the first order

—

i.e., the lines traced by the geometer should only

give us points, the co-ordinates of which are

rational numbers. The contradiction would be

manifest if we were, for instance, to assert the

existence of lines and circles. It is clear, in fact,

that if the points whose co-ordinates are com-

mensurable were alone regarded as real, the

in-circlc of a square and the diagonal of the

square would not intersect, since the co-ordinates

of. the point of intersection are incommensurable.

Even then we should have only certain incom-

mensurable numbers, and not all these numbers.

l>ut let us imagine a line divided into two half-

rays {dcnii-dnnlcs). Each of these half-rays will

appear to our minds as a band of a certain breadth;

these bands will fit close together, because there

must be no interval between them. The common
part will appear to us to be a point which will still

remain as we imagine the bands to become thinner

and thinner, so that we admit as an intuitive truth

that if a line be divided into two half-rays the

common frontier of these half-rays is a point.

Here we recognise the conception of Kronecker,
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in which an incommensurable number was regarded

as the common frontier of two classes of rational

numbers. Such is the origin of the continuum of

the second order, which is the mathematical con-

tinuum properly so called.

Summary.—To sum up, the mind has the faculty

of creating symbols, and it is thus that it has con-

structed the mathematical continuum, which is

only a particular system of symbols. The only

limit to its power is the necessity of avoiding all

contradiction ; but the mind only makes use of it

when experiment gives a reason for it.

In the case with which we are concerned, the

reason is given by the idea of the physical con-

tinuum, dra^^ n from the rough data of the senses.

But this idea leads to a series of contradictions

from each of which in turn we must be freed.

In this way we are forced to imagine a more
and more complicated system of symbols. That
on which we shall dwell is not merely exempt
from internal contradiction,— it was so already at

all the steps we have taken,—but it is no longer in

contradiction with the various propositions which

are called intuitive, and which are derived from

more or less elaborate empirical notions.

Measurable Magnitude.—So far we have not

spoken of the measure of magnitudes; we can tell

if any one of them is greater than any other,

but we cannot say that it is two or three times

as large.

So far, I have only considered the order in which
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the terms are arranged ; but that is not sufficient

for most appHcations. We must learn how to

compare the interval \^'hich separates any two
terms. On this condition alone will the con-

tinuum become measurable, and the operations

of arithmetic be applicable. This can only be

done by the aid of a new and special con-

vention ; and this convention is, that in such a

case the interval between the terms A and B is

equal to the interval which separates C and D.

For instance, we started with the integers, and
between two consecutive sets we intercalated n

intermediary sets ; by convention we now assume
these new sets to be equidistant. This is one
of the ways of defining the addition of two
magnitudes; for if the interval AB is by definition

equal to the interval CD, the interval AD will by

definition be the sum of the intervals AB and AC.
This definition is very largely, but not altogether,

arbitrary. It must satisfy certain conditions—the

commutative and associative laws of addition, for

instance; but, provided the definition we choose
satisfies these laws, the choice is indifferent, and
we need not state it precisely.

Remarks.—We are now in a position to discuss

several important questions.

(i) Is the creative power of the mind exhausted
by the creation of the mathematical continuum ?

The answer is in the negative, and this is shown
in a very striking manner by the work of Du Bois

Reymond.
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We know that mathematicians distinguish

between infinitesimals of different orders, and that

infinitesimals of the second order are infinitely

small, not only absolutely so, but also in relation

to those of the first order. It is not difficult to

imagine infinitesimals of fractional or even of

irrational order, and here once more we find the

mathematical continuum which has been dealt

with in the preceding pages. Further, there are

infinitesimals which are infinitely small with

reference to those of the first order, and infinitely

large with respect to the order i + e, however

small e may be. Here, then, are new terms inter-

calated in our series; and if I may be permitted to

revert to the terminology used in the preceding

pages, a terminology which is very convenient,

although it has not been consecrated by usage, I

shall say that we have created a kind of con-

tinuum of the third order.

It is an easy matter to go further, but it is idle

to do so, for we would only be imagining symbols

without any possible application, and no one will

dream of doing that. This continuum of the third

order, to which we are led by the consideration of

the different orders of infinitesimals, is in itself

of but little use and hardly worth quoting.

Geometers look on it as a mere curiosity. The
mind only uses its creative faculty when experi-

ment requires it.

(2) When we are once in possession of the

conception of the mathematical continuum, are
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we protected from contradictions analogous to

those which gave it birth ? No, and the follow-

ing is an instance :

—

He is a savant indeed who will not take it as

evident that every curve has a tangent ; and, in

fact, if we think of a curve and a straight line as

two narrow bands, we can always arrange them in

such a way that they have a common part without

intersecting. Suppose now that the breadth of

the bands diminishes indefinitely: the common
part will still remain, and in the limit, so to speak,

the two lines will have a common point, although

they do not intersect

—

i.e., they will touch. The
geometer who reasons in this way is only doing

what we have done when we proved that two lines

which intersect have a common point, and his

intuition might also seem to be quite legitimate.

But this is not the case. We can show that there

are curves which have no tangent, if we define

such a curve as an analytical continuum of the

second order. No doubt some artifice analogous

to those we have discussed above would enable us

to get rid of this contradiction, but as the latter is

only met with in very exceptional cases, we need

not trouble to do so. Instead of endeavouring to

reconcile intuition and analysis, we are content to

sacrifice one of them, and as analysis must be

flawless, intuition must go to the wall.

The Physical Continuum of several Dimensions.—
We have discussed above the physical continuum
as it is derived from the immediate evidence of our
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senses—or, if the reader prefers, from the rough

results of Fechner's experiments ; I have shown
that these results are summed up in the contra-

dictory formulae :—A=B, B= C, A < C.

Let us now see how this notion is generalised,

and how from it may be derived the concept of

continuums of several dimensions. Consider any

two aggregates of sensations. We can either

distinguish between them, or we cannot; just as in

Fechner's experiments the weight of lo grammes
could be distinguished from the weight of 12

grammes, but not from the weight of 11 grammes.

This is all that is required to construct the con-

tinuum of several dimensions.

Let us call one of these aggregates of sensations

an element. It will be in a measure analogous to

the point of the mathematicians, but will not be,

however, the same thing. We cannot say that

our element has no size, for we cannot distinguish

it from its immediate neighbours, and it is thus

surrounded by a kind of fog. If the astronomical

comparison may be allowed, our ''elements"

would be like nebulae, whereas the mathematical

points would be like stars.

If this be granted, a system of elements will

form a continuum, if we can pass from any one of

them to any other by a series of consecutive

elements such that each cannot be distinguished

from its predecessor. This linear series is to the

line of the mathematician what the isolated element

was to the point.
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Before going further, I must explain what is

meant by a cut. Let us consider a continuum C,

and remove from it certain of its elements, which
for a moment we shall regard as no longer belong-

ing to the continuum. We shall call the aggregate

of elements thus removed a cut. By means of this

cut, the continuum C will be subdivided into

several distinct continuums ; the aggregate of

elements which remain will cease to form a single

continuum. There will then be on C two ele-

ments, A and B, which we must look upon as

belonging to two distinct continuums; and we see

that this must be so, because it will be impossible

to find a linear series of consecutive elements of C
(each of the elements indistinguishable from the

preceding, the first being A and the last B), unless

one oj the elements of this series is indistinguishable

front one of the elements of the cut.

It may happen, on the contrary, that the cut

may not be sufficient to subdivide the continuum
C. To classify the physical continuums, we must
first of all ascertain the nature of the cuts which
must be made in order to subdivide them. If a

physical continuum, C, may be subdivided by a cut

reducing to a finite number of elements, all dis-

tinguishable the one from the other (and therefore

forming neither one continuum nor several con-

tinuums), we shall call C a continuum of one

dimension. If, on the contrary, C can only be sub-

divided by cuts which are themselves continuums,

we shall say that C is of several dimensions; if
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the cuts are continuums of one dimension, the-n

we shall say that C has two dimensions ; if cuts of

two dimensions are sufficient, we shall say that C
is of three dimensions, and so on. Thus the

notion of the physical continuum of several dimen-

sions is defined, thanks to the very simple fact,

that two aggregates of sensations may be dis-

tinguishable or indistinguishable.

The Mathematical Continuum ofSeveral Dimensions,

—The conception of the mathematical continuum

of n dimensions may be led up to quite naturally

by a process similar to that which we discussed at

the beginning of this chapter. A point of such a

continuum is defined by a system of n distinct

magnitudes which we call its co-ordinates.

The magnitudes need not always be measurable;

there is, for instance, one branch of geometry

independent of the measure of magnitudes, in

which we are only concerned with knowing, for

example, if, on a curve ABC, the point B is

between the points A and C, and in which it is

immaterial whether the arc A B is equal to or

twice the arc B C. This branch is called Analysis

Situs. It contains quite a large body of doctrine

which has attracted the attention of the greatest

geometers, and from which are derived, one from

another, a whole series of remarkable theorems.

What distinguishes these theorems from those of

ordinary geometry is that they are purely quali-

tative. They are still true if the figures are copied

by an unskilful draughtsman, with the result that
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the proportions are distorted and the straight lines

replaced by lines which are more or less curved.

As soon as measurement is introduced into the

continuum we have just defined, the continuum

becomes' space, and geometry is born. But the

discussion of this is reserved for Part II.



PART II.

SPACE.

CHAPTER III.

NON-EUCLIDEAN GEOMETRIES.

Every conclusion presumes premisses. These

premisses are either self-evident and need no

demonstration, or can be established only if based

on other propositions ; and, as we cannot go back

in this way to infinity, every deductive science,

and geometry in particular, must rest upon a

certain number of indemonstrable axioms. All

treatises of geometry begin therefore with the

enunciation of these axioms. But there is a

distinction to be drawn between them. Some of

these, for example, " Things which are equal to

the same thing are equal to one another," are not

propositions in geometry but propositions in

analysis. I look upon them as analytical à priori

intuitions, and they concern me no further. But

I must insist on other axioms which are special

to geometry. Of these most treatises explicitly

enunciate three :— (i) Only one line can pass

through two points; (2) a straight line is the
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shortest distance between two points
; (3) through

one point only one parallel can be drawn to a

given straight line. Although we generally dis-

pense with proving the second of these axioms, it

w^ould be possible to deduce it from the other two,

and from those much more numerous axioms

which are implicitly admitted without enuncia-

tion, as I shall explain further on. For a long

time a proof of the third axiom known as Euclid's

postulate w^as sought in vain. It is impossible to

imagine the efforts that have been spent in pursuit

of this chimera. Finally, at the beginning of the

nineteenth century, and almost simultaneously,

two scientists, a Russian and a Bulgarian, Lobat-

schewsk}^ and Bolyai, showed irrefutably that this

proof is impossible. They have nearly rid us of

inventors of geometries without a postulate, and

ever since the Académie des Sciences receives only

about one or two new demonstrations a year.

But the question was not exhausted, and it was

not long before a great step was taken by the

celebrated memoir of Riemann, entitled : Ucber

die Hypothesen welche der Géométrie ziun Griinde

liegen. This little work has inspired most of the

recent treatises to which I shall later on refer, and

among which I may mention those of Beltrami

and Helmholtz.

The Geometry of Lobatschewsky. — If it were

possible to deduce Euclid's postulate from the

several axioms, it is evident that by rejecting

the postulate and retaining the other axioms we



NON-EUCLIDEAN GEOMETRIES. yj

should be led to contradictory consequences. It

would be, therefore, impossible to found on those

premisses a coherent geometry. Now, this is

precisely what Lobatschewsky has done. He
assumes at the outset that several parallels may
be drawn through a point to a given straight line,

and he retains all the other axioms of Euclid.

From these hypotheses he deduces a series of

theorems between which it is impossible to find

any contradiction, and he constructs a geometry

as impeccable in its logic as Euclidean geometry.

The theorems are very different, however, from

those to which we are accustomed, and at first

will be found a little disconcerting. For instance,

the sum of the angles of a triangle is always less

than two right angles, and the difference between

that sum and two right angles is proportional to

the area of the triangle. It is impossible to con-

struct a figure similar to a given figure but of

different dimensions. If the circumference of a

circle be divided into n equal parts, and tangents

be drawn at the points of intersection, the n

tangents will form a polygon if the radius of

the circle is small enough, but if the radius is

large enough they will never meet. We need not

multiply these examples. Lobatschewsky's pro-

positions have no relation to those of Euclid,

but they are none the less logically interconnected.

Riemanns Geometry.—Let us imagine to our-

selves a world only peopled with beings of no

thickness, and suppose these "infinitely flat"
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animals are all in one and the same plane, from

which they cannot emerge. Let us further admit

that this world is sufficiently distant from other

worlds to be withdrawn from their influence, and

while we are making these hypotheses it will not

cost us much to endow these beings with reason-

ing power, and to believe them capable of making

a geometry. In that case they will certainly

attribute to space only two dimensions. But

now suppose that these imaginary animals, while -

remaining without thickness, have the form of a

spherical, and not of a plane figure, and are all on

the same sphere, from which they cannot escape.

What kind of a geometry will they construct ? In

the first place, it is clear that they will attribute to

space only two dimensions. The straight line to

them will be the shortest distance from one point

on the sphere to another—that is to say, an arc of

a great circle. In a word, their geometry will be

spherical geometry. What they will call space

will be the sphere on which they are confined, and

on which take place all the phenomena with

which they are acquainted. Their space will

therefore be itnhounded, since on a sphere one may
always walk forward without ever being brought

to a stop, and yet it will be finite; the end will

never be found, but the complete tour can be

made. Well, Riemann's geometry is spherical

geometry extended to three dimensions. To con-

struct it, the German mathematician had first of

all to throw overboard, not only Euclid's postulate,
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but also the first axiom that only one line can pass

through two points. On a sphere, through two

given points, we can in general draw only one great

circle which, as we have just seen, w^ould be to

our imaginary beings a straight line. But there

was one exception. If the two given points are

at the ends of a diameter, an infinite number of

great circles can be drawn through them. In

the same way, in Riemann's geometry—at least in

one of its forms—through two points only one

straight line can in general be drawn, but there are

exceptional cases in which through two points

an infinite number of straight lines can be drawn.

So there is a kind of opposition between the

geometries of Riemann and Lobatschewsky. For

instance, the sum of the angles of a triangle is

equal to two right angles in Euclid's geometry,

less than two right angles in that of Lobat-

schewsky, and greater than two right angles in that

of Riemann. The number of parallel lines that

can be drawn through a given point to a given

line is one in Euclid's geometry, none in Riemann's,

and an infinite number in the geometry of Lobat-

schewsky. Let us add that Riemann's space is

finite, although unbounded in the sense which we
have above attached to these words.

Surfaces with Constant Curvature.—One objection,

however, remains possible. There is no contradic-

tion between the theorems of Lobatschewsky and

Riemann; but however numerous are the other

consequences that these geometers have deduced
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from their hypotheses, they had to arrest their

course before they exhausted them all, for the

number would be infinite; and who can say that

if they had carried their deductions further they

would not have eventually reached some con-

tradiction ? This difficulty does not exist for

Riemann's geometry, provided it is limited to

two dimensions. As we have seen, the two-

dimensional geometry of Riemann, in fact, does

not differ from spherical geometry, which is only a

branch of ordinary geometry, and is therefore out-

side all contradiction. Beltrami, by showing that

Lobatschewsky's two-dimensional geometry was
only a branch of ordinary geometry, has equally

refuted the objection as far as it is concerned.

This is the course of his argument: Let us con-

sider any figure whatever on a surface. Imagine
this figure to be traced on a flexible and in-

extensible canvas applied to the surface, in such

a way that \\hen the canvas is displaced and
deformed the different lines of the figure change
their form without changing their length. As a

rule, this flexible and inextensible figure cannot be

displaced without leaving the surface. But there

are certain surfaces for which such a movement
would be possible. They are surfaces of constant

curvature. If we resume the comparison that we
made just now, and imagine beings without thick-

ness living on one of these surfaces, they will

regard as possible the motion of a figure all the

lines of which remain of a constant length. Such
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a movement would appear absurd, on the other

hand, to animals without thickness living on a

surface of variable curvature. These surfaces of

constant curvature are of two kinds. The
curvature of some is positive, and they may be

deformed so as to be applied to a sphere. The
geometry of these surfaces is therefore reduced to

spherical geometry—namely, Riemann's. The cur-

vature of others is negative. Beltrami has shown
that the geometry of these surfaces is identical

^^•ith that of Lobatschewsky. Thus the two-

dimensional geometries of Riemann and Lobat-

schewsky are connected with Euclidean geometry.

Interpretation of Non-Euclidean Geometries.—Thus
vanishes the objection so far as two-dimensional

geometries are concerned. It would be easy to

extend Beltrami's reasoning to three-dimensional

geometries, and minds which do not recoil before

space of four dimensions will see no difficulty in

it; but such minds are few in number. I prefer,

then, to proceed otherwise. Let us consider a

certain plane, which I shall call the fundamental

plane, and let us construct a kind of dictionary by

making a double series of terms written in two

columns, and corresponding each to each, just as

in ordinary dictionaries the words in two languages

which have the same signification correspond to

one another:

—

Space The portion of space situated

above the fundamental

plane.



42 SCIENCE AND HYPOTHESIS.

Plane

Line

Sphere

Circle

Angle

Distance between

two points

Sphere cutting orthogonally

the fundamental plane.

Circle cutting orthogonally

the fundamental plane.

Sphere.

Circle.

Angle.

Logarithm of the anharmonic

ratio of these two points

and of the intersection

of the fundamental plane

with the circle passing

through these two points

and cutting it orthogon-

ally.

Etc. Etc.

Let us now take Lobatschewsky's theorems and

translate them by the aid of this dictionary, as we
would translate a German text with the aid of

a German - French dictionary. We shall then

obtain the theorems of ordinary geometry. ¥ot

instance, Lobatschewsky's theorem :
" The sum of

the angles of a triangle is less than two right

angles," may be translated thus: " If a curvilinear

triangle has for its sides arcs of circles which if

produced would cut orthogonally the fundamental

plane, the sum of the angles of this curvilinear

triangle will be less than two right angles." Thus,

however far the consequences of Lobatschewsky's

hypotheses are carried, they will never lead to a
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contradiction; in fact, if two of Lobatschewsky's

theorems were contradictory, the translations of

these two theorems made by the aid of our

dictionary would be contradictory also. But

these translations are theorems of ordinary

geometry, and no one doubts that ordinary

geometry is exempt from contradiction. Whence
is the certainty derived, and how far is it justified?

That is a question upon which I cannot enter

here, but it is a very interesting question, and I

think not insoluble. Nothing, therefore, is left of

the objection I formulated above. But this is not

all. Lobatschewsky's geometry being susceptible

of a concrete interpretation, ceases to be a useless

logical exercise, and may be applied. I have no

time here to deal with these applications, nor

with w^hat Herr Klein and myself have done by

using them in the integration of linear equations.

Further, this interpretation is not unique, and
several dictionaries may be constructed analogous

to that above, which will enable us by a simple

translation to convert Lobatschewsky's theorems

into the theorems of ordinary geometry.

Implicit Axioms. — Are the axioms implicitly

enunciated in our text-books the only foundation

of geometry ? We may be assured of the contrary

when we see that, when they are abandoned one

after another, there are still left standing some
propositions which are common to the geometries

of Euclid, Lobatschewsky, and Riemann. These

propositions must be based on premisses that
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geometers admit without enunciation. It is in-

teresting to try and extract them from the classical

proofs.

John Stuart Mill asserted^ that every definition

contains an axiom, because by defining we im-

plicitly affirm the existence of the object defined.

That is going rather too far. It is but rarely in

mathematics that a definition is given without

following it up by the proof of the existence of the

object defined, and when this is not done it is

generally because the reader can easily supply

it; and it must not be forgotten that the word
"existence" has not the same meaning when it

refers to a mathematical entity as when it refers to

a material object.

A mathematical entity exists provided there is

no contradiction implied in its definition, either in

itself, or with the propositions previously admitted.

But if the observation of John Stuart Mill cannot

be applied to all definitions, it is none the less true

for some of them. A plane is sometimes defined

in the following manner:—The plane is a surface

such that the line which joins any two points

upon it lies wholly on that surface. Now, there is

obviously a new axiom concealed in this definition.

It is true we might change it, and that would be

preferable, but then we should have to enunciate

the axiom explicitly. Other definitions may give

rise to no less important reflections, such as, for

example, that of the equality of two figures. Two
^ Logic ^ c. viii., cf. Definitiuns, g 5-6.— Tr.
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figures are equal when they can be superposed.

To superpose them, one of them must be displaced

until it coincides with the other. But how must

it be displaced ? If we asked that question, no

doubt we should be told that it ought to be done

without deforming it, and as an invariable solid is

displaced. The vicious circle would then be evi-

dent. As a matter of fact, this definition defines

nothing. It has no meaning to a being living in a

world in which there are only fluids. If it seems

clear to us, it is because we are accustomed to the

properties of natural solids which do not much
differ from those of the ideal solids, all of whose

dimensions are invariable. However, imperfect as

it may be, this definition implies an axiom. The
possibility of the motion of an invariable figure is

not a self-evident truth. At least it is only so in

the application to Euclid's postulate, and not as an

analytical à priori intuition would be. More-

over, when we study the definitions and the proofs

of geometry, we see that we are compelled to

admit without proof not only the possibility of

this motion, but also some of its properties. This

first arises in the definition of the straight line.

Many defective definitions have been given, but

the true one is that which is understood in all the

proofs in which the straight line intervenes. " It

may happen that the motion of an invariable figure

may be such that all the points of a line belonging

to the figure are motionless, while all the points

situate outside that line are in motion. Such a
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line would be called a straight line." We have

deliberately in this enunciation separated the

definition from the axiom which it implies. Many
proofs such as those of the cases of the equality of

triangles, of the possibility of drawing a perpen-

dicular from a point to a straight line, assume pro-

positions the enunciations of which are dispensed

with, for they necessarily imply that it is possible

to move a figure in space in a certain way.

The Fourth Geometry.—Among these explicit

axioms there is one which seems to me to deserve

some attention, because when we abandon it we
can construct a fourth geometry as coherent as

those of Euclid, Lobatschewsky, and Riemann.

To prove that we can always draw a perpendicular

at a point A to a straight line A B, we consider a

straight line A C movable about the point A, and

initially identical with the fixed straight line A B.

We then can make it turn about the point A until

it lies in A B produced. Thus we assume two

propositions—first, that such a rotation is possible,

and then that it may continue until the two lines

lie the one in the other produced. If the first

point is conceded and the second rejected, we are

led to a series of theorems even stranger than those

of Lobatschewsky and Riemann, but equally free

from contradiction. I shall give only one of these

theorems, and I shall not choose the least remark-

able of them. A real straight line may he perpen-

dicular to itself.

Lie's Theorem.—The number of axioms implicitly
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introduced into classical proofs is greater than

necessary, and it would be interesting to reduce

them to a minimum. It may be asked, in the first

place, if this reduction is possible—if the number of

necessary axioms and that of imaginable geometries

is not infinite? A theorem due to Sophus Lie is of

weighty importance in this discussion. It may be

enunciated in the following manner:—Suppose the

following premisses are admitted: (i) space has n

dimensions; (2) the movement of an invariable

figure is possible; (3) p conditions are necessary to

determine the position of this figure in space.

The numhev oj geometries compatible with these

premisses will he limited. I may even add that if 11

is given, a superior limit can be assigned to p. If,

therefore, the possibility of the movement is

granted, we can only invent a finite and even

a rather restricted number of three-dimensional

geometries.

Riemanns Geometries.— However, this result

ssems contradicted by Riemann, for that scientist

constructs an infinite number of geometries, and
that to which his name is usually attached is only

a particular case of them. All depends, he says,

on the manner in which the length of a curve is

defined. Now, there is an infinite number of ways
of defining this length, and each of them may be

the starting-point of a new geometry. That is

perfectly true, but most of these definitions are in-

compatible with the movement of a variable figure

such as we assume to be possible in Lie's theorem.
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These geometries of Riemann, so interesting on

various grounds, can never be, therefore, purely

analytical, and would not lend themselves to

proofs analogous to those of Euclid.

On the Nature of Axioms.—Most mathematicians

regard Lobatschewsky's geometry as a mere logical

curiosity. Some of them have, however, gone

further. If several geometries are possible, they

say, is it certain that our geometry is the one that

is true ? Experiment no doubt teaches us that the

sum of the angles of a triangle is equal to two

right angles, but this is because the triangles we
deal with are too small. According to Lobat-

schewsky, the difference is proportional to the area

of the triangle, and will not this become sensible

when we operate on much larger triangles, and

when our measurements become more accurate ?

Euclid's geometry would thus be a provisory

geometry. Now, to discuss this view we must

first of all ask ourselves, what is the nature of

geometrical axioms ? Are they synthetic à priori

intuitions, as Kant affirmed ? They would then

be imposed upon us with such a force that we
could not conceive of the contrary proposition, nor

could we build upon it a theoretical edifice. There

would be no non-Euclidean geometry. To con-

vince ourselves of this, let us take a true synthetic

à^n'on intuition—the following, for instance, which

played an important part in the first chapter:—If

a theorem is true for the number i, and if it has

Deen proved that it is true of ;/ + i, provided it is
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true of n, it will be true for all positive integers.

Let us next try to get rid of this, and while reject-

ing this proposition let us construct a false

arithmetic analogous to non-Euclidean geometry.

We shall not be able to do it. We shall be even

tempted at the outset to look upon these intui-

tions as analytical. Besides, to take up again

our fiction of animals without thickness, we can

scarcely admit that these beings, if their minds

are like ours, would adopt the Euclidean geometry,

which would be contradicted by all their experi-

ence. Ought we, then, to conclude that the

axioms of geometry are experimental truths ?

But we do not make experiments on ideal lines or

ideal circles; we can only make them on material

objects. On what, therefore, would experiments

serving as a foundation for geometry be based ?

The answer is easy. We have seen above that we
constantly reason as if the geometrical figures

behaved like solids. What geometry would borrow

from experiment would be therefore the pro-

perties of these bodies. The properties of light

and its propagation in a straight line have also

given rise to some of the propositions of geometry,

and in particular to those of projective geometry,

so that from that point of view one would be

tempted to say that metrical geometry is the study

of solids, and projective geometry that of light.

But a difficulty remains, and is unsurmountable.

If geometry were an experimental science, it would

not be an exact science. It would be subjected to

4
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continual revision. Nay, it would from that day

forth be proved to be erroneous, for we know that

no rigorously invariable solid exists. The geo-

metrical axioms are therefore neither synthetic à priori

intuitions nor experimental facts. They are conven-

tions. Our choice among all possible conventions

is guided by experimental facts; but it remains

free, and is only limited by the necessity of avoid-

ing every contradiction, and thus it is that pos-

tulates may remain rigorously true even when the

experimental laws which have determined their

adoption are only approximate. In other words,

the axioms of geometry (I do not speak of those of

arithmetic) arc only definitions in disguise. What,
then, are we to think of the question : Is

Euclidean geometry true ? It has no meaning.

We might as well ask if the metric system is true,

and if the old weights and measures are false; if

Cartesian co-ordinates are true and polar co-

ordinates false. One geometry cannot be more
true than another ; it can only be more convenient.

Now, Euclidean geometry is, and will remain, the

most convenient: ist, because it is the simplest,

and it is not so only because of our mental habits

or because of the kind of direct intuition that we
have of Euclidean space ; it is the simplest in

itself, just as a polynomial of the first degree is

simpler than a polynomial of the second degree;

2nd, because it sufficiently agrees with the pro-

perties of natural solids, those bodies which we
can compare and measure by means of our senses.



CHAPTER IV.

SPACE AND GEOMETRY.

Let us begin with a little paradox. Beings whose

minds were made as ours, and with senses like

ours, but without any preliminary education,

might receive from a suitably-chosen external

world impressions which would lead them to

construct a geometry other than that of Euclid,

and to localise the phenomena of this external

world in a non- Euclidean space, or even in space

of four dimensions. As for us, whose education

has been made by our actual world, if we were

suddenly transported into this new world, .we

should have no difficulty in referring phenomena
to our Euclidean space. Perhaps somebody may
appear on the scene some day who will devote his

life to it, and be able to represent to himself the

fourth dimension.

Geometrical Space and Representative Space.— It is

often said that the images we form of external

objects are localised in space, and even that they

can only be formed on this condition. It is also

said that this space, which thus serves as a kind of

framework ready prepared for our sensations and
representations, is identical with the space of the
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geometers, having all the properties of that space.

To all clear-headed men who think in this way,

the preceding statement might well appear extra-

ordinary; but it is as well to see if they are not

the victims of some illusion which closer analysis

may be able to dissipate. In the first place, what

are the properties of space properly so called ?

I mean of that space which is the object of

geometry, and which I shall call geometrical

space. The following are some of the more

essential :

—

1st, it is continuous; 2nd, it is infinite; 3rd, it

is of three dimensions; 4th, it is homogeneous

—

that is to say, all its points are identical one

with another; 5th, it is isotropic. Compare this

now with the framework of our representations

and sensations, which I may call representative

space.

Visual Space.—First of all let us consider a

purely visual impression, due to an image formed

on the back of the retina. A cursory analysis shows

us this image as continuous, but as possessing only

two dimensions, which already distinguishes purely

visual from what may be called geometrical space.

On the other hand, the image is enclosed within

a limited framework ; and there is a no less

important difference: this pure visual space is not

homogeneous. All the points on the retina, apart

from the images which may be formed, do not

play the same rôle. The yellow spot can in no

way be regarded as identical with a point on the
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edge of the retina. Not only does the same object

produce on it much brighter impressions, but in

the whole of the limited framework the point

which occupies the centre will not appear identical

with a point near one of the edges. Closer

analysis no doubt would show us that this con-

tinuity of visual space and its two dimensions are

but an illusion. It would make visual space even

more different than before from geometrical space,

but we may treat this remark as incidental.

However, sight enables us to appreciate dis-

tance, and therefore to perceive a third dimension.

But every one knows that this perception of the

third dimension reduces to a sense of the effort of

accommodation which must be made, and to a

sense of the convergence of the two eyes, that

must take place in order to perceive an object

distinctly. These are muscular sensations quite

different from the visual sensations which have

given us the concept of the two first dimensions.

The third dimension will therefore not appear to us

as playing the same rôle as the two others. What
may be called complete visual space is not therefore

an isotropic space. It has, it is true, exactly

three dimensions; which means that the elements

of our visual sensations (those at least which

concur in forming the concept of extension) will

be completely defined if we know three of them;

or, in mathematical language, they will be func-

tions of three independent variables. But let us

look at the matter a little closer. The third
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dimension is revealed to us in two different ways:

by the effort of accommodation, and by the con-

vergence of the eyes. No doubt these two in-

dications are alwa3's in harmony ; there is between

them a constant relation; or, in mathematical

language, the two variables which measure these

two muscular sensations do not appear to us as

independent. Or, again, to avoid an appeal to

mathematical ideas which are already rather too

refined, we may go back to the language of the

preceding chapter and enunciate the same fact as

follows:— If two sensations of convergence A and

B are indistinguishable, the two sensations of

accommodation A' and B' which accompany them
respectively will also be indistinguishable. But

that is, so to speak, an experimental fact. Nothing

prevents us à priori from assuming the contrary,

and if the contrary takes place, if these two

muscular sensations both vary independently, we
must take into account one more independent

variable, and complete visual space will appear

to us as a physical continuum of four dimensions.

And so in this there is also a fact of external

experiment. Nothing prevents us from assuming

that a being with a mind like ours, with the same

sense-organs as ourselves, may be placed in a world

in which light would only reach him after being

passed through refracting media of complicated

form. The two indications which enable us to

appreciate distances would cease to be connected

by a constant relation. A being educating his
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senses in such a world would no doubt attribute

four dimensions to complete visual space.

Tactile and Motor Space.—"Tactile space" is

more complicated still than visual space, and differs

even more widely from geometrical space. It is

useless to repeat for the sense of touch my remarks

on the sense of sight. But outside the data of

sight and touch there are other sensations which

contribute as much and more than they do to the

genesis of the concept of space. They are those

which everybody knows, which accompany all our

movements, and which we usually call muscular

sensations. The corresponding framework con-

stitutes what may be called motor space. Each
muscle gives rise to a special sensation \n hich may
be increased or diminished so that the aggregate

of our muscular sensations will depend upon as

many variables as we have muscles. From this

point of view motor space would have as many dimen-

sions as we have muscles. I know that it is said

that if the muscular sensations contribute to form

the concept of space, it is because we have the

sense of the direction of each movement, and that

this is an integral part of the sensation. If this

were so, and if a muscular sense could not be

aroused unless it were accompanied by this geo-

metrical sense of direction, geometrical space

would certainly be a form imposed upon our

sensitiveness. But I do not see this at all when
I analj'se my sensations. What I do see is that

the sensations which correspond to movements in
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the same direction are connected in ni}' mind by a

simple association of ideas. It is to this association

that what we call the sense of direction is reduced.

We cannot therefore discover this sense in a single

sensation. This association is extremely complex,

for the contraction of the same muscle may cor-

respond, according to the position of the limbs,

to very different movements of direction. More-

over, it is evidenth' acquired ; it is like all

associations of ideas, the result of a Jiabit. This

habit itself is the result of a very large number of

experiments, and no doubt if the education of our

senses had taken place in a different medium,

where we would have been subjected to different

impressions, then contrary habits would have been

acquired, and our muscular sensations would have

been associated according to other laws.

Characteristics of Representative Space.—Thus re-

presentative space in its triple form— visual,

tactile, and motor—differs essentially from geo-

metrical space. It is neither homogeneous nor

isotropic; we cannot even say that it is of three

dimensions. It is often said that we '' project
"

into geometrical space the objects of our external

perception; that we "'localise'' them. Now, has

that any meaning, and if so what is that meaning ?

Does it mean that we represent to ourselves ex-

ternal objects in geometrical space ? Our repre-

sentations are only the reproduction of our sensa-

tions; they cannot therefore be arranged in the

same framework—that is to say, in representative
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space. It is also just as impossible for us to repre-

sent to ourselves external objects in geometrical

space, as it is impossible for a painter to paint on

a flat surface objects with their three dimensions.

Representative space is only an image of geo-

metrical space, an image deformed by a kind of

perspective, and we can only represent to our-

selves objects by making them obey the laws of

this perspective. Thus we do not represent to our-

selves external bodies in geometrical space, but we

reason about these bodies as if they were situated

in geometrical space. When it is said, on the

other hand, that we " localise " such an object in

such a point of space, what does it mean ? It

simply means that we represent to ourselves the move-

ments that must take place to reach that object. And

it does not mean that to represent to ourselves

these movements they must be projected into

space, and that the concept of space must therefore

pre-exist. When I say that we represent to our-

selves these movements, I only mean that we

represent to ourselves the muscular sensations

which accompany them, and w^hich have no

geometrical character, and ^^hich therefore in no

way imply the pre-existence of the concept of

space.

Changes of State and Changes of Position.—But,

it may be said, if the concept of geometrical space

is not imposed upon our minds, and if, on the

other hand, none of our sensations can furnish us

with that concept, how then did it ever come into
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existence ? This is what we have now to examine,

and it will take some time; but I can sum up in a

few words the attempt at explanation which I am
going to develop. None of our sensations, if isolated,

could have brought us to the concept of space; we are

brought to it solely by studying the laws by which those

sensations succeed one another. We see at first that

our impressions are subject to change; but among
the changes that we ascertain, we are very soon

led to make a distinction. Sometimes we say that

the objects, the causes of these impressions, have

changed their state, sometimes that they have

changed their position, that they have only been

displaced. Whether an object changes its state or

only its position, this is always translated for us in

the same manner, by a modification in an aggregate

of impressions. How then have we been enabled

to distinguish them ? If there were only change

of position, we could restore the primitive aggre-

gate of impressions by making movements which

would confront us v/ith the movable object in

the same relative situation. We thus correct the

modification which was produced, and we re-

establish the initial state by an inverse modifica-

tion. If, for example, it were a question of the

sight, and if an object be displaced before our

eyes, we can ''follow it with the eye," and retain

its image on the same point of the retina by

appropriate movements of the eyeball. These

movements we are conscious of because they are

voluntary, and because they are accompanied by
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muscular sensations. But that does not mean
that we represent them to ourselves in geometrical

space. So what characterises change of position,

what distinguishes it from change of state, is that

it can always be corrected by this means. It may
therefore happen that we pass from the aggregate

of impressions A to the aggregate B in two differ-

ent ways. First, involuntarily and without ex-

periencing muscular sensations—which happens

when it is the object that is displaced; secondly,

voluntarily, and with muscular sensation—which

happens when the object is motionless, but when
we displace ourselves in such a way that the

object has relative motion with respect to us. If

this be so, the translation of the aggregate A to

the aggregate B is only a change of position. It

follows that sight and touch could not have given

us the idea of space without the help of the

"muscular sense." Not only could this concept

not be derived from a single sensation, or even from

a scries of sensations; but a motionless being could

never have acquired it, because, not being able to

correct by his movements the effects of the change

of position of external objects, he would have had

no reason to distinguish them from changes of

state. Nor would he have been able to acquire

it if his movements had not been voluntarv,

or if they \\ere unaccompanied by any sensations

whatever.

Conditions of Compensation.—How is such a

compensation possible in such a way that two
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changes, otherwise mutually independent, may be

reciprocally corrected ? A mind already familiar

with geometry would reason as follows :—If there

is to be compensation, the different parts of the

external object on the one hand, and the different

organs of our senses on the other, must be in the

same relative position after the double change.

And for that to be the case, the different parts of

the external body on the one hand, and the differ-

ent organs of our senses on the other, must have

the same relative position to each other after the

double change; and so with the different parts of

our body with respect to each other. In other

words, the external object in the first change must
be displaced as an invariable solid would be dis-

placed, and it must also be so with the w^hole of our

body in the second change, which is to correct the

first. Under these conditions compensation may
be produced. But we who as yet know nothing of

geometry, whose ideas of space are not yet formed,

we cannot reason in this way—we cannot predict

à priori if compensation is possible. But experi-

ment shows us that it sometimes does take place,

and we start from this experimental fact in order

to distinguish changes of state from changes of

position.

Solid Bodies and Geometry.—Among surrounding

objects there are some which frequently experience

displacements that may be thus corrected by a

correlative movement of our own body—namely,

solid bodies. The other objects, whose form is vari-
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able, only in exceptional circumstances undergo

similar displacement (change of position without

change of form). When the displacement of a

body takes place with deformation, we can no

longer by appropriate movements place the organs

of our body in the same relative situation with

respect to this body; we can no longer, therefore,

reconstruct the primitive aggregate of impressions.

It is only later, and after a series of new experi-

ments, that we learn how to decompose a body of

variable form into smaller elements such that each

is displaced approximately according to the same

laws as solid bodies. We thus distinguish "de-

formations" from other changes of state. In these

deformations each element undergoes a simple

change of position which may be corrected; but the

modification of the aggregate is more profound,

and can no longer be corrected by a correlative

movement. Such a concept is very complex even

at this stage, and has been relatively slow in

its appearance. It would not have been conceived

at all had not the observation of solid bodies shown

us beforehand how to distinguish changes of

position.

If, then, there were no solid bodies in nature there

would he no geometry.

Another remark deserves a moment's attention.

Suppose a solid body to occupy successively the

positions a and /?; in the first position it will give

us an aggregate of impressions A, and in the second

position the aggregate of impressions B. Now let
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there be a second solid body, of qualities entirely

different from the first—of different colour, for

instance. Assume it to pass from the position a,

where it gives us the aggregate of impressions A' to

the position [3, where it gives the aggregate of

impressions B'. In general, the aggregate A will

have nothing in common with the aggregate A',

nor will the aggregate B have anything in common
with the aggregate B'. The transition from the

aggregate A to the aggregate B, and that of the

aggregate A' to the aggregate B', are therefore

two changes which in themselves have in general

nothing in common. Yet we consider both

these changes as displacements; and, further, we
consider them the same displacement. How can

this be ? It is simply because they may be both

corrected by the same correlative movement of our

body. " Correlative movement," therefore, con-

stitutes the sole connection between two phenomena
which otherwise we should never have dreamed of

connecting.

On the other hand, our body, thanks to the

number of its articulations and muscles, may have

a multitude of different movements, but all are not

capable of " correcting " a modification of external

objects; those alone are capable of it in which
our whole body, or at least all those in which
the organs of our senses enter into play are

displaced en bloc—i.e. y without any variation of

their relative positions, as in the case of a solid

body.
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To sum up :

1. In the first place, we distinguish two categories

of phenomena :—The first involuntary, unaccom-

panied b}- muscular sensations, and attributed to

external objects—they are external changes; the

second, of opposite character and attributed to the

movements of our own body, are internal changes.

2. We notice that certain changes of each in

these categories may be corrected by a correlative

change of the other category.

3. We distinguish among external changes those

that have a correlative in the other category

—

which we call displacements; and in the same way
we distinguish among the internal changes those

which have a correlative in the first category.

Thus by means of this reciprocity is defined a

particular class of phenomena called displace-

ments. The laws of these phenomena are the object of

geometry.

Law of Homogeneity.—The first of these laws

is the law of homogeneity. Suppose that by an

external change we pass from the aggregate of

impressions A to the aggregate B, and that then

this change a is corrected by a correlative

voluntary movement ft so that we are brought

back to the aggregate A. Suppose now that

another external change a brings us again from

the aggregate A to the aggregate B. Experiment
then shows us that this change a, like the change
a, may be corrected by a voluntary correlative

movement ft, and that this movement ft corre-
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sponds to the same muscular sensations as the

movement ^ which corrected a.

This fact is usually enunciated as follows :

—

Space

is homogeneous and isotropic. We may also say that a

movement which is once produced may be repeated

a second and a third time, and so on, without any
variation of its properties. In the first chapter, in

which we discussed the nature of mathematical

reasoning, we saw the importance that should be

attached to the possibility of repeating the same
operation indefinitely. The virtue of mathematical

reasoning is due to this repetition; by means of the

law of homogeneity geometrical facts are appre-

hended. To be complete, to the law of homo-
geneity must be added a multitude of other laws,

into the details of which I do not propose to enter,

but which mathematicians sum up by saying that

these displacements form a "group."

The Xon-Euclidean World.—If geometrical space

were a framework imposed on each of our repre-

sentations considered individuallv, it would be

impossible to represent to ourselves an image

without this framework, and we should be quite

unable to change our geometry. But this is not

the case; geometry is only the summary of the

laws by which these images succeed each other.

There is nothing, therefore, to prevent us from

imagining a series of representations, similar in

every way to our ordinary representations, but

succeeding one another according to laws which

differ from those to which we are accustomed. We
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may thus conceive that beings whose education

has taken place in a medium in which those laws

would be so different, might have a very different

geometry from ours.

Suppose, for example, a world enclosed in a large

sphere and subject to the following laws :—The
temperature is not uniform; it is greatest at the

centre, and gradually decreases as we move towards

the circumference of the sphere, where it is absolute

zero. The law of this temperature is as follows :

—

If R be the radius of the sphere, and r the distance

of the point considered from the centre, the abso-

lute temperature will be proportional to R-—r-.

Further, I shall suppose that in this world all bodies

have the same co-efficient of dilatation, so that the

linear dilatation of any body is proportional to its

absolute temperature. Finally, I shall assume that

a body transported from one point to another of

different temperature is instantaneously in thermal

equilibrium with its new environment. There is

nothing in these hypotheses either contradictory

or unimaginable. A moving object will become
smaller and smaller as it approaches the circum-

ference of the sphere. Let us observe, in the first

place, that although from the point of view of our

ordinary geometry this world is finite, to its inhabit-

ants it will appear infinite. As they approach the

surface of the sphere they become colder, and at

the same time smaller and smaller. The steps

they take are therefore also smaller and smaller,

so that thev can never reach the boundarv of the
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sphere. If to us geometry is only the stud}- of the

laws according to which invariable solids move, to

these imaginary beings it will be the study of the

laws of motion of solids deformed by the differences

of temperature alluded to.

No doubt, in our world, natural solids also ex-

perience variations of form and volume due to

differences of temperature. But in laying the

foundations of geometry we neglect these varia-

tions; for besides being but small they are irregular,

and consequently appear to us to be accidental.

In our hypothetical world this will no longer be

the case, the variations will obey very simple and

regular laws. On the other hand, the different

solid parts ofwhich the bodies of these inhabitants

are composed will undergo the same variations of

form and volume.

Let me make another hypothesis: suppose that

light passes through media of different refractive

indices, such that the index of refraction is inversely

proportional to R-—r-. Under these conditions it

is clear that the rays of light will no longer be

rectilinear but circular. To justify what has been

said, we have to prove that certain changes in the

position of external objects may be corrected by

correlative movements of the beings which inhabit

this imaginary world; and in such a way as to

restore the primitive aggregate of the impressions

experienced by these sentient beings. Suppose,

for example, that an object is displaced • and

deformed, not like an invariable solid, but like a
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solid subjected to unequal dilatations in exact con-

formity with the law of temperature assumed

above. To use an abbreviation, we shall call such

a movement a non-Euclidean displacement.

If a sentient being be in the neighbourhood of

such a displacement of the object, his impressions

will be modified; but by moving in a suitable

manner, he may reconstruct them. For this

purpose, all that is required is that the aggregate

of the sentient being and the object, considered as

forming a single body, shall experience one of those

special displacements which I have just called non-

Euclidean. This is possible ifwe suppose that the

limbs of these beings dilate according to the same
laws as the other bodies of the world they inhabit.

Although from the point of view of our ordinary

geometry there is a deformation of the bodies in

this displacement, and although their different

parts are no longer in the same relative position,

nevertheless we shall see that the impressions of

the sentient being remain the same as before; in

fact, though the mutual distances of the different

parts have varied, yet the parts which at first were

in contact are still in contact. It follows that

tactile impressions will be unchanged. On the

other hand, from the hypothesis as to refraction

and the curvature of the rays of light, visual im-

pressions will also be unchanged. These imaginary

beings will therefore be led to classify the pheno-

mena they observe, and to distinguish among them

the " changes of position," which may be corrected
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by a voluntary correlative movement, just as we
do.

If they construct a geometry, it will not be like

ours, which is the study of the movements of our

invariable solids; it will be the study of the

changes of position which they will have thus

distinguished, and will be *'' non-Euclidean dis-

placements," and this u-'ill he non-Euclidean geo-

metry. So that beings like ourselves, educated in

such a world, will not have the same geometry as

ours.

The World of Four Dimensions,—Just as we have

pictured to ourselves a non-Euclidean world, so we
may picture a world of four dimensions.

The sense of light, even with one eye, together

with the muscular sensations relative to the move-

ments of the eyeball, will suffice to enable us to

conceive of space of three dimensions. The images

of external objects are painted on the retina, which

is a plane of two dimensions; these s^re perspectives.

But as eye and objects are movable, we see in

succession different perspectives of the same body

taken from different points of view. We find at

the same time that the transition from one per-

spective to another is often accompanied by

muscular sensations. If the transition from the

perspective A to the perspective B, and that of the

perspective A' to the perspective B' are accom-

panied by the same muscular sensations, we
connect them as we do other operations of the

same nature. Then when we stud the laws
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according to which these operations are com-

bined, we see that they form a group, which has

the same structure as that of the movements of

invariable sohds. Now, we have seen that it is

from the properties of this group that we derive

the idea of geometrical space and that of three

dimensions. We thus understand how these

perspectives gave rise to the conception of three

dimensions, although each perspective is of only

two dimensions,—because they succeed each other

according to certain laws. \\'ell, in the same way
that we draw the perspective of a three-dimen-

sional figure on a plane, so we can draw that of a

four-dimensional figure on a canvas of three (or

two) dimensions. To a geometer this is but child's

play. We can even draw several perspectives of

the same figure from several different points of

view. We can easily represent to ourselves these

perspectives, since they are of only three dimen-

sions. Imagine that the different perspectives of

one and the same object to occur in succession,

and that the transition from one to the other is

accompanied by muscular sensations. It is under-

stood that we shall consider two of these transitions

as two operations of the same nature when they

are associated with the same muscular sensations.

There is nothing, then, to prevent us from imagin-

ing that these operations are combined according

to any law we choose— for instance, by forming

a group with the same structure as that of the

movements of an invariable four-dimensional solid.
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In this there is nothing that we cannot represent

to ourselves, and, moreover, these sensations are

those which a being would experience who has a

retina of two dimensions, and who may be dis-

placed in space of four dimensions. In this sense

we may say that we can represent to ourselves the

fourth dimension.

Conclusions.— It is seen that experiment plays a

considerable rôle in the genesis of geometry; but

it would be a mistake to conclude from that that

geometry is, even in part, an experimental science.

If it were experimental, it would only be ap-

proximative and provisory. And what a rough

approximation it would be ! Geometry would be

only the study of the movements of solid bodies;

but, in reality, it is not concerned with natural

solids: its object is certain ideal solids, absolutely

invariable, which are but a greatly simplified and

very remote image of them. The concept of these

ideal bodies is entirely mental, and experiment is

but the opportunity which enables us to reach the

idea. The object of geometry is the study of a

particular "group"; but the general concept of

group pre-exists in our minds, at least potentially.

It is imposed on us not as a form of our sensitive-

ness, but as a form of our understanding; only,

from among all possible groups, we must choose

one that will be the standard, so to speak, to

which we shall refer natural phenomena.

Experiment guides us in this choice, which it

does not impose on us. It tells us not what is the
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truest, but what is the most convenient geometr\\

It will be noticed that my description of these

fantastic worlds has required no language other

than that of ordinary geometry. Then, were we
transported to those worlds, there would be no

need to change that language. Beings educated

there would no doubt find it more convenient to

create a geometry different from ours, and better

adapted to their impressions; but as for us, in the

presence of the same impressions, it is certain that

we should not find it more convenient to make a

change.



CHAPTER V.

EXPERIMENT AND GEOMETRY.

1. I have on several occasions in the preceding

pages tried to show how the principles of geometry

are not experimental facts, and that in particular

Euclid's postulate cannot be proved by experiment.

However convincing the reasons already given

may appear to me, I feel I must dwell upon them,

because there is a profoundly false conception

deeply rooted in many minds.

2. Think of a material circle, measure its radius

and circumference, and see if the ratio of the two

lengths is equal to -. What have we done ? We
have made an experiment on the properties of the

matter with ^^•hich this roundness has been realised,

and of which the measure we used is made.

3. Geometry and Astronomy.—The same question

may also be asked in another way. If Lobat-

schewsky's geometry is true, the parallax of a very

distant star will be finite. If Riemann's is true, it

will be negative. These are the results which

seem within the reach of experiment, and it is

hoped that astronomical observations may enable

us to decide between the two geometries. But
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what we call a straight line in astronomy is simply

the path of a ray of light. If, therefore, we were

to discover negative parallaxes, or to prove that all

parallaxes are higher than a certain limit, we
should have a choice between two conclusions:

we could give up Euclidean geometry, or modify

the laws of optics, and suppose that light is not

rigorously propagated in a straight line. It is

needless to add that every one would look upon

this solution as the more advantageous. Euclidean

geometry, therefore, has nothing to fear from fresh

experiments.

4. Can we maintain that certain phenomena
which are possible in Euclidean space would be

impossible in non-Euclidean space, so that experi-

ment in establishing these phenomena would

directly contradict the non-Euclidean hypothesis?

I think that such a question cannot be seriously

asked. To me it is exactly equivalent to the fol-

lowing, the absurdity of which is obvious:—There

are lengths which can be expressed in metres and

centimetres, but cannot be measured in toises, feet,

and inches; so that experiment, by ascertaining the

existence of these lengths, would directly contra-

dict this hypothesis, that there are toises divided

into six feet. Let us look at the question a little

more closely. I assume that the straight line in

Euclidean space possesses any two properties,

which I shall call A and B; that in non-Euclidean

space it still possesses the property A, but no

longer possesses the property B; and, finally, I
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assmnc lli.'il in holli iMiclidcin iiiid noii-lùiclidc'iii

space the stniif^dit line is llic Diily line lli.it pos-

sesses tin; property A. If this were so, experiment

would be rd)l(^ to decide between the hypotheses of

ICiiclid nnd Lobntschcwsk}'. It would Ix; found

that some concrete; object, upon which we can

experiment - for example, a pencil of rays of li;^dit

—

possesses the |)iop(ily A. We should conclude

th.'it it is recliline.'ir, .'ind v\(; should then endeavour

to find out if it does, or does not, i)ossess tlu; pro-

])erty !'>. iîiil il is not so. There exists no

projxrty which (an, like this prop(;rty A, be an

absolute criteiion enabliiif^^ us to rcîcof^nise the

straijdil line, and lo dist in;,Miish it from every

otli(!r line. Shall we say, for instance, "This pro-

perty will be tin; followin^^: tlu; straight line; is a

line sue h that a lif;iirc of wlii( h this line is a part

can mov(i without the mutual distances of its

points varyin^s and in such a way that all the

j)()iuts in this straij.dit line remain lixed"? Now,

this is a property which in either Jùiclidean or

non-lMiclidea,n space belouf^s to the straight line,

and belongs to it alone. \\\\\ how can we ascer-

tain by experim(;nt if it belongs to any particular

concrete object? Distances must be measured,

and how shall \\v. know that any c:oncret(; magni-

tude; which I have measunul with my material

instrum(;nt really represents the abstract distance:?

We have only removcid tlu; dilliculty a lit tic larther

off. In reality, the |)i()peity that I have; just

cmmcialed is not a property of the straight line
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alone; it is a property of the straight hue and of

distance. For it to serve as an absolute criterion,

we must be able to show, not only that it does not

also belong to any other line than the straight line

and to distance, but also that it does not belong

to any other line than the straight line, and to any

other magnitude than distance. Now, that is not

true, and if we are not convinced by these con-

siderations, I challenge any one to give me a

concrete experiment which can be interpreted in

the Euclidean system, and which cannot be inter-

preted in the system of Lobatschewsky. As I

am well aware that this challenge will never be

accepted, I may conclude that no experiment will

ever be in contradiction with Euclid's postulate;

but, on the other hand, no experiment will ever be

in contradiction with Lobatschevvsky's postulate.

5. But it is not sufficient that the Euclidean

(or non-Euclidean) geometry can ever be directly

contradicted by experiment. Nor could it happen

that it can only agree with experiment by a viola-

tion of the principle of sufficient reason, and of

that of the relativity of space. Let me explain

myself. Consider any material system whatever.

We have to consider on the one hand the ''state"

of the various bodies of this system—for example,

their temperature, their electric potential, etc.;

and on the other hand their position in space.

And among the data which enable us to define

this position we distinguish the mutual distances

of these bodies that define their relative positions,
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.'iii'l the conditions wine li dcdnc the absolute posi-

tion of the system atul its absolute orientation in

sj>a(;e. The law of the phenomc^na which will be

profhifcfl in this system will flepeiul on the state

of these bodies, and on their ninfn.il distances;

but because of the relativity ;ind the inertia of

space, they will not depend on the absolute posi-

tion and orientation of the system. In other

words, the state of the bodies and their mutual

distances nt nny nujment will solely depenrl on

the state of tlx! snnie bodies nnd on their nuiln.d

distances :it ihe inifi.-d nionicnt, bnl will in wi)

way depend on the ;il);>oliile inili;d jiositioii of

the syst(;ni ;ind of its nbsolute initinl orientait ion.

This is \\h;il we sli.dl e;dl, for the sake of

abbrevi;it ion, the lnw oj yclalivily.

So fill' I have spoken as n Imk lide.in {geometer.

I^ut I have said th.it .in ( xpeiiiiK ii(, whatever it

may be, recpiires an inlei pietation on the ICnclidean

hypothesis; it e(jn;illy requires one on the non-

lùiclidean hypothesis. Well, we have made a series

of ex|)erinients. We have interpreted them on the

Euclidr.iii hypothesis, and we have recof^nised

th.'it these experinienis thus interpreted <lo iiol

viol.ifc lliis*'l;iwof rel.'it i\il\'." We tiow inlei[)iet

tlieiii on ihe noil l'Jl(lidr;ii) h \| )ol Ik-j;. This is

always ])ossiblc, oiiI\- (he noii I .ik IkIciii distances

of our differeiil hodic:, in ihi:, new interpretation

will nol ;;eneiall\- be (he i^aiiie a:; the haielideaii

distances in (lie |)iiinili\c iiitei |)i elat ion. Will

our e.xperinieiit iileipieled in this new maniiei
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l)c slill ill ;i.f;ir(>mci)l willi our " l;i\\ ol rchil i\i(y,"

iind il (111:; ii!;i t'cincnl li.ul iiol l.ik(Mi |)l;ic(\ would

we iiol slill li.ixc (lie ri{;lit (o s;iy lli:il cxpcriiiuMit

li;is |)i()\('(l I Ik- (iilsil\' of non- lùiclidcnti jMM^iiu'lry ?

il is cMSy lo sec I li.M lliisis.in idle (cii. In did,

lo .'il>pl\' IIk' liiw ()( icliil i\il\' in ;ill ils ri:M)iir, il

innsl !)(' .'ipplicd lo llic ciiliif nnucisc; it)V il we

w ere I () (( (fi-idcr oiiK ;i |);ii( ol llic iiiii\ci sc, ;i nd

if llic ;il):;()lii((" po'ilioii ol ihis |kii1 wcic (o \iii\,

llic dislMiiccs ol (lie ollici bodies ol llic iiiii\(Msc

would ('(HKilU' \iii\ ; llicii inllucncc on (li(> |);nl ol

llic nni\'('i',^(' considcicd niif;iil llicicloic incrc.'isc^

or diniinisli, nnd lliis nn;;li( niodiU llic lnws of

llic j)licnonicn;i wlii(li Like |)l;icc in il. ImiI ii

onr system is llic (Milirc nni\crsc, cxpciiincnl is

powerless lo !',i\f ns a\\\ opinion on ils position

;ind ils iil)soliilc ol iciil.i I ion in s-piicc. ,\ll lli.il

onr iii:.l inniciils. Iiowcxcr pci led llic\- iii;i\- he,

c.in Id lis knowwill I »c llic sl.ilcol (lie dillcrciil

pMilsol I lie niii\ (I se. ;ind llieii iniiliiid disliinees.

llenee, onr I.iw ol iekili\il\ in;i\ he cinmci.ilcd ;is

follows: ilic i(Mdiii;;s I li.il we ciin iii;ik(> w il li onr

nisi I iiiiKMil s 111 iin\- !;i\('n moiiiciil will depend

onl\ on llie ie;idinf;s lli;il we weie ;d)le lo iii;ike

on lli(> siiiiie insdnineiils .il IIk- inili.d nioinenl.

Now siK h .111 einiiiei;i( ion is independeid ol .ill

in(ei pie(.il ion 1)\ expel iinents. 11 (lie hiw is tiiie

in (li(" I'lK lide.in inlerpr(>t;it ion, il will he also trne

111 I lie noli I'lK lide.in inlei pi dill loll. .Allow ine

to make a shoi t dif^ression on this point. I lia\e

spoken ahove of the (hit;i whieh dciine the position
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of the different bodies of the system. I might also

have spoken of those which define their velocities.

I should then have to distinguish the velocity with

which the mutual distances of the different bodies

are changing, and on the other hand the velocities

of translation and rotation of the system ; that is

to say, the velocities with which its absolute posi-

tion and orientation are changing. For the mind

to be fully satisfied, the law of relativity would

have to be enunciated as follows:—The state of

bodies and their mutual distances at any given

moment, as well as the velocities with which

those distances are changing at that moment,

will depend only on the state of those bodies,

on their mutual distances at the initial moment,

and on the velocities with which those distances

were changing at the initial moment. But they

will not depend on the absolute initial position

of the system nor on its absolute orientation, nor

on the velocities with which that absolute posi-

tion and orientation were changing at the initial

moment. Unfortunately, the law thus enunciated

does not agree with experiments—at least, as they

are ordinarily interpreted. Suppose a man were

translated to a planet, the sky of which was con-

stantly covered with a thick curtain of clouds, so

that he could never see the other stars. On that

planet he would live as if it were isolated in space.

But he would notice that it revolves, either by

measuring its elhpticity (which is ordinarily done

by means of astronomical observations, but which
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could be done by purely geodesic means), or by

repeating the experiment of Foucault's pendulum.

The absolute rotation of this planet might be

clearly shown in this way. Now, here is a fact

which shocks the philosopher, but which the

physicist is compelled to accept. We know that

from this fact Newton concluded the existence of

absolute space. I myself cannot accept this way
of looking at it. I shall explain why in Part III.,

but for the moment it is not my intention to

discuss this difficulty. I must therefore resign

m3'self, in the enunciation of the law of relativity,

to including velocities of every kind among the

data which define the state of the bodies. How-
ever that may be, the difficulty is the same for

both Euclid's geometry and for Lobatschewsky's.

I need not therefore trouble about it further, and
I have only mentioned it incidentally. To sum
up, whichever way we look at it, it is impossible

to discover in geometric empiricism a rational

meaning.

6. Experiments only teach us the relations of

bodies to one another. They do not and cannot

give us the relations of bodies and space, nor the

mutual relations of the different parts of space.

"Yes!" you reply, "a single experiment is not

enough, because it only gives us one equation with

several unknowns ; but when I have made enough
experiments I shall have enough equations to

calculate all my unknowns." If I know the height

of the main-mast, that is not sufficient to enable
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me to calculate the age of the captain. When
you have measured every fragment of wood in a

ship you will have many equations, but you will

be no nearer knowing the captain's age. All your

measurements bearing on your fragments of wood

can tell you only what concerns those fragments
;

and similarly, your experiments, however numerous

they may be, referring only to the relations of

bodies with one another, will tell you nothing

about the mutual relations of the different parts

of space.

7. Will you say that if the experiments have

reference to the bodies, they at least have reference

to the geometrical properties of the bodies. First,

what do you understand by the geometrical pro-

perties of bodies ? I assume that it is a question

of the relations of the bodies to space. These

properties therefore are not reached by experi-

ments which only have reference to the relations

of bodies to one another, and that is enough to

show that it is not of those properties that there

can be a question. Let us therefore begin by

making ourselves clear as to the sense of the

phrase: geometrical properties of bodies. When
I say that a body is composed of several parts, I

presume that I am thus enunciating a geometrical

property, and that will be true even if I agree to

give the improper name of points to the very

small parts I am considering. When I say that

this or that part of a certain body is in contact

with this or that part of another body, I am
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enunciating a proposition which concerns the

mutual relations of the two bodies, and not their

relations with space. I assume that you will

agree with me that these are not geometrical

properties. I am sure that at least you will

grant that these properties are independent of

all knowledge of metrical geometry. Admitting

this, I suppose that we have a solid body formed

of eight thin iron rods, oa, ob, oc, od, oc, of, og, oh,

connected at one of their extremities, o. And let

us take a second solid body—for example, a piece

of wood, on which are marked three little spots

of ink which I shall call a /3 y. I now suppose

that we find that we can bring into contact a (3 y

with ago; by that I mean a with a, and at the

same time /? with g, and y with o. Then we can

successively bring into contact af3y with bgo, ego,

dgo, ego, fgo, then with aho, bho, cho, dho, eho, fho;

and then ay successively \vith ab, be, ed, dc, ef, fa.

Now these are observations that can be made
without having any idea beforehand as to the

form or the metrical properties of space. They
have no reference whatever to the '' geometrical

properties of bodies." These observations will

not be possible if the bodies on which we experi-

ment move in a group having the same structure

as the Lobatschewskian group (I mean according

to the same laws as solid bodies in Lobatschewsky's

geometry). They therefore suffice to prove that

these bodies move according to the Euclidean

group; or at least that they do not move according
6
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to the Lobatschewskian group. That they may
be compatible with the EucHdean group is easily

seen ; for we might make them so if the body
a/?y were an invariable solid of our ordinary

geometry in the shape of a right-angled triangle,

and if the points ahcdefgh were the vertices of

a polyhedron formed of two regular hexagonal

pyramids of our ordinary geometry having abcdef

as their common base, and having the one g and
the other h as their vertices. Suppose now,

instead of the previous observations, we note that

we can as before apply a.[3y successively to ago,

bgo, ego, dgo, ego, fgo, alio, hlio, cho, dho, eho, fJw,

and then that we can apply a/3 (and no longer ay)

successively to ab, be, ed, de, ef, and fa. These are

observations that could be made if non-Euclidean

geometry were true. If the bodies afiy, oabcdefgh

were invariable solids, if the former were a right-

angled triangle, and the latter a double regular

hexagonal pyramid of suitable dimensions. These

new verifications are therefore impossible if the

bodies move according to the Euclidean group
;

but they become possible if we suppose the bodies

to move according to the Lobatschewskian group.

They would therefore suffice to show, if we carried

them out, that the bodies in question do not move
according to the Euclidean group. And so, with-

out making any h}-pothesis on the form and the

nature of space, on the relations of the bodies

and space, and without attributing to bodies any

geometrical property, I have made observations
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which have enabled me to show in one case that

the bodies experimented upon move according to

a group, the structure of which is EucHdean, and

in the other case, that they move in a group, the

structure of which is Lobatschewskian. It can-

not be said that all the first observations would

constitute an experiment proving that space is

Euclidean, and the second an experiment proving

that space is non-Euclidean ; in fact, it might be

imagined (note that I use the word imagined) that

there are bodies moving in such a manner as

to render possible the second series of observations:

and the proof is that the first mechanic who came
our way could construct it if he would only take

the trouble. But you must not conclude, however,

that space is non-Euclidean. In the same way,

just as ordmary solid bodies would continue

to exist when the mechanic had constructed the

strange bodies I have just mentioned, he would

have to conclude that space is both Euclidean

and non-Euclidean. Suppose, for instance, that

we have a large sphere of radius A', and that its

temperature decreases from the centre to the

surface of the sphere according to the law of

which I spoke when I was describing the non-

Euclidean world. We might have bodies whose

dilatation is négligeable, and which would behave

as ordinary invariable solids; and, on the other

hand, we might have very dilatable bodies, w hich

would behave as non-Euclidean solids. We
might have two double pyramids oabcdcfgh and
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oa'h'cd'e'f'gli, and two triangles a /i 7 and a p y'.

The first double pyramid would be rectilinear, and

the second curvilinear. The triangle a/^y would

consist of undilatable matter, and the other of very

dilatable matter. We might therefore make our

hrst observations with the double pyramid o'ali

and the triangle 0/ p 7'.

And then the experiment would seem to show—
first, that Euclidean geometry is true, and then

that it is false. Hence, experiments have reference

not to space hut to bodies.

SUPPLEMENT.

8. To round the matter off, I ought to speak of

a very delicate question, which will require con-

siderable development : but I shall confine myself

to summing up what I have written in the Revue

de Métaphysique et de Morale and in the Monist.

When we say that space has three dimensions,

what do we mean ? We have seen the importance

of these "internal changes" which are revealed to

us by our muscular sensations. They may serve

to characterise the different attitudes of our body.

Let us take arbitrarily as our origin one of these

attitudes, A. When we pass from this initial

attitude to another attitude B we experience a

series of muscular sensations, and this series S of

muscular sensations will define B. Observe, how-

ever, that we shall often look upon two series S
and S' as defining the same attitude B (since the
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initial and final attitudes A and B remaining the

same, the intermediary attitudes of the corre-

sponding sensations may differ). How then can

we recognise the equivalence of these two series ?

Because they may serve to compensate for the same
external change, or more generally, because, when
it is a question of compensation for an external

change, one of the series may be replaced by the

other. Among these series we have distinguished

those which can alone compensate for an external

change, and which we have called "displacements."

As we cannot distinguish two displacements which

are very close together, the aggregate of these

displacements presents the characteristics of a

physical continuum. Experience teaches us that

they are the characteristics of a physical con-

tinuum of six dimensions ; but we do not know as

yet how many dimensions space itself possesses, so

we must first of all answer another question.

What is a point in space ? Every one thinks he

knows, but that is an illusion. What we see when
we try to represent to ourselves a point in space is

a black spot on white paper, a spot of chalk on

a blackboard, always an object. The question

should therefore be understood as follows :—What
do I mean when I say the object B is at the

point which a moment before was occupied by the

object A ? Again, what criterion will enable

me to recognise it ? I mean that although I have

not moved (my muscular sense tells me this), my
finger, which just now touched the object A, is
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now touching the object B. I might have used

other criteria—for instance, another finger or the

sense of sight—but the first criterion is sufficient.

I know that if it answers in the affirmative all

other criteria will give the same answer. I know
it from experiment. I cannot know it à priori.

For the same reason I say that touch cannot

be exercised at a distance ; that is another way of

enunciating the same experimental fact. If I

say, on the contrary, that sight is exercised at a

distance, it means that the criterion furnished by
sight may give an affirmative answer while the

others reply in the negative.

To sum up. For each attitude of my body my
finger determines a point, and it is that and that

only which defines a point in space. To each

attitude corresponds in this way a point. But it

often happens that the same point corresponds to

several different attitudes (in this case we say that

our finger has not moved, but the rest of our body
has). We distinguish, therefore, among changes

of attitude those in which the finger does not

move. How are we led to this ? It is because we
often remark that in these changes the object

which is in touch with the finger remains in con-

tact with it. Let us arrange then in the same
class all the attitudes which are deduced one from

the other by one of the changes that we have thus

distinguished. To all these attitudes of the same
class will correspond the same point in space.

Then to each class will correspond a point, and to
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each point a class. Yet it may be said that what
we get from this experiment is not the point, but

the class of changes, or, better still, the corre-

sponding class of muscular sensations. Thus, when
we say that space has three dimensions, we merely

mean that the aggregate of these classes appears to

us with the characteristics of a physical continuum
of three dimensions. Then if, instead of defining

the points in space with the aid of the first finger,

I use, for example, another finger, would the

results be the same ? That is by no means à

priori evident. But, as we have seen, experiment

has shown us that all our criteria are in agree-

ment, and this enables us to answer in the

affirmative. If we recur to what we have called

displacements, the aggregate of which forms, as

we have seen, a group, we shall be brought to

distinguish those in which a finger does not move;
and by what has preceded, those are the displace-

ments which characterise a point in space, and
their aggregate will form a sub-group of our

group. To each sub-group of this kind, then, will

correspond a point in space. We might be

tempted to conclude that experiment has taught

us the number of dimensions of space ; but in

reality our experiments have referred not to space,

but to our body and its relations with neighbour-

ing objects. What is more, our experiments

are exceeding crude. In our mind the latent idea

of a certain number of groups pre-existed ; these

are the groups with which Lie's theorv is con-
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cerned. Which shall we choose to form a kind of

standard by which to compare natural pheno-

mena ? And when this group is chosen, which

of the sub-groups shall we take to characterise a

point in space ? Experiment has guided us by

showing us what choice adapts itself best to the

properties of our body ; but there its rôle ends.



PART III.

FORCE.

CHAPTER VI.

THE CLASSICAL MECHANICS.

The English teach mechanics as an experimental

science; on the Continent it is taught always more
or less as a deductive and à priori science. The
English are right, no doubt. How is it that the

other method has been persisted in for so long; how
is it that Continental scientists who have tried to

escape from the practice of their predecessors have

in most cases been unsuccessful ? On the other

hand, if the principles of mechanics are only of

experimental origin, are they not merely approxi-

mate and provisory ? May we not be some day

compelled by new experiments to modify or even

to abandon them ? These are the questions which

naturally arise, and the difficulty of solution is

largely due to the fact that treatises on mechanics

do not clearly distinguish between what is experi-

ment, what is mathematical reasoning, what is

convention, and what is hvpothesis. This is not

all.
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1. There is no absolute space, and we only

conceive of relative motion ; and yet in most cases

mechanical facts are enunciated as if there is an

absolute space to which they can be referred.

2. There is no absolute time. When we say that

two periods are equal, the statement has no

meaning, and can only acquire a meaning by a

convention.

3. Not only have we no direct intuition of the

equality of two periods, but we have not even

direct intuition of the simultaneity of two events

occurring in two different places. I have ex-

plained this in an article entitled " Mesure du

Temps." ^

4. Finally, is not our Euclidean geometry in

itself only a kind of convention of language ?

Mechanical facts might be enunciated with refer-

ence to a non- Euclidean space which would be

less convenient but quite as legitimate as our

ordinary space ; the enunciation would become
more complicated, but it still would be possible.

Thus, absolute space, absolute time, and even

geometry are not conditions which are imposed on

mechanics. All these things no more existed

before mechanics than the French language can

be logically said to have existed before the truths

which are expressed in French. We might

endeavour to enunciate the fundamental law of

mechanics in a language independent of all these

^ Revile de Métaphysique et de Morale, t. vi,, pp. 1-13, January,
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conventions; and no doubt we should in this way
get a clearer idea of those laws in themselves.

This is what M. Andrade has tried to do, to

some extent at any rate, in his Leçons de Mécanique

physique. Of course the enunciation of these laws

would become much more complicated, because all

these conventions have been adopted for the very

purpose of abbreviating and simplifying the enun-

ciation. As far as we are concerned, I shall ignore

all these difficulties; not because I disregard

them, far from it; but because they have re-

ceived sufficient attention in the first two parts

of the book. Provisionally, then, we shall admit

absolute time and Euclidean geometry.

The Principle of Inertia. — A body under the

action of no force can only move uniformly in a

straight line. Is this a truth imposed on the mind

à priori ? If this be so, how is it that the Greeks

ignored it ? How could they have believed that

motion ceases with the cause of motion ? or, again,

that every body, if there is nothing to prevent it,

will move in a circle, the noblest of all forms of

motion ?

If it be said that the velocity of a body cannot

change, if there is no reason for it to change, may
we not just as legitimately maintain that the

position of a body cannot change, or that the

curvature of its path cannot change, without the

agency of an external cause? Is, then, the prin-

ciple of inertia, which is not an à priori truth, an

experimental fact ? Have there ever been experi-
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ments on bodies acted on by no forces? and, if so,

how did we know that no forces were acting ?

The usual instance is that of a ball rolling for a

very long time on a marble table; but why do

we sa}' it is under the action of no force ? Is it

because it is too remote from all other bodies to

experience any sensible action ? It is not further

from the earth than if it were thrown freely into

the air; and we all know that in that case it

would be subject to the attraction of the earth.

Teachers of mechanics usually pass rapidly over

the example of the ball, but they add that the

principle of inertia is verified indirectly by its con-

sequences. This is very badly expressed; they

evidently mean that various consequences may be

verified by a more general principle, of which the

principle of inertia is only a particular case. I

shall propose for this general principle the

following enunciation:—The acceleration of a

body depends only on its position and that of

neighbouring bodies, and on their velocities.

Mathematicians would say that the movements
of all the material molecules of the universe

depend on differential equations of the second

order. To make it clear that this is really a

generalisation of the law of inertia we may again

have recourse to our imagination. The law of

inertia, as I have said above, is not imposed on us

à priori; other laws would be just as compatible

with the principle of sufficient reason. If a body

is not acted upon by a force, instead of supposing
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that its velocity is unchanged we may suppose

that its position or its acceleration is unchanged.

Let us for a moment suppose that one of these

two laws is a law of nature, and substitute it for

the law of inertia: what will be the natural

generalisation? A moment's reflection will show

us. In the first case, we may suppose that the

velocity of a body depends onty on its position and

that of neighbouring bodies; in the second case,

that the variation of the acceleration of a body

depends only on the position of the body and of

neighbouring bodies, on their velocities and

accelerations; or, in mathematical terms, the

differential equations of the motion would be of

the first order in the first case and of the third

order in the second.

Let us now modify our supposition a little.

Suppose a world analogous to our solar system,

but one in which by a singular chance the orbits

of all the planets have neither eccentricity nor

inclination; and further, I suppose that the

masses of the planets are too small for their

mutual perturbations to be sensible. Astronomers

living in one of these planets would not hesitate to

conclude that the orbit of a star can only be

circular and parallel to a certain plane; the

position of a star at a given moment would then

be sufficient to determine its velocity and path.

The law of inertia which they would adopt would

be the former of the two hypothetical laws I have

mentioned.
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Now, imagine this system to be some day

crossed by a body of vast mass and immense
velocity coming from distant constellations. All

the orbits would be profoundly disturbed. Our
astronomers would not be greatly astonished.

They would guess that this new star is in itself

quite capable of doing all the mischief; but, they

would say, as soon as it has passed by, order will

again be established. No doubt the distances of

the planets from the sun will not be the same as

before the cataclysm, but the orbits will become
circular again as soon as the disturbing cause has

disappeared. It would be only when the perturb-

ing body is remote, and when the orbits, instead of

being circular are found to be elliptical, that the

astronomers would find out their mistake, and

discover the necessity of reconstructing their

mechanics.

I have dwelt on these hypotheses, for it seems to

me that we can clearly understand our generalised

law of inertia only by opposing it to a contrary

hypothesis.

Has this generalised law of inertia been veri-

fied by experiment, and can it be so verified ?

When Newton wrote the Principia, he certainly

regarded this truth as experimentally acquired and

demonstrated. It was so in his eyes, not only

from the anthropomorphic conception to which I

shall later refer, but also because of the work of

Galileo. It was so proved by the laws of Kepler.

According to those laws, in fact, the path of a
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planet is entirely determined by its initial position

and initial velocity; this, indeed, is what our

generalised law of inertia requires.

For this principle to be only true in appearance

—lest we should fear that some day it must be re-

placed by one of the analogous principles which I

opposed to it just now—we must have been led

astray by some amazing chance such as that which

had led into error our imaginary astronomers.

Such an hypothesis is so unlikely that it need not

delay us. No one will believe that there can be

such chances; no doubt the probability that two

eccentricities are both exactly zero is not smaller

than the probability that one is o.i and the other

0.2. The probability of a simple event is not

smaller than that of a complex one. If, however,

the former does occur, we shall not attribute its

occurrence to chance; we shall not be inclined to

believe that nature has done it deliberately to

deceive us. The hypothesis of an error of this

kind being discarded, we may admit that so far as

astronomy is concerned our law has been verified

by experiment.

But Astronomy is not the whole of Physics.

May we not fear that some day a new experi-

ment will falsify the law in some domain of

physics ? x\n experimental law is always subject

to revision; we may always expect to see it re-

placed by some other and more exact law. But

no one seriously thinks that the law of which we
speak will ever be abandoned or amended. Why ?
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Precisely because it will never be submitted to a

decisive test.

In the first place, for this test to be complete,

all the bodies of the universe must return with

their initial velocities to their initial positions after

a certain time. We ought then to find that they

would resume their original paths. But this test

is impossible; it can be only partially applied, and

even when it is applied there will still be some

bodies which will not return to their original

positions. Thus there will be a ready explanation

of any breaking down of the law.

Yet this is not all. In Astronomy we see the

bodies whose motion we are studying, and in most

cases we grant that they are not subject to the

action of other invisible bodies. Under these con-

ditions, our law must certainly be either verified or

not. But it is not so in Physics. If physical

phenomena are due to motion, it is to the motion

of molecules which we cannot see. If, then, the

acceleration of bodies we cannot see depends on

something else than the positions or velocities of

other visible bodies or of invisible molecules, the

existence of which we have been led previously

to admitj there is nothing to prevent us from

supposing that this something else is the position

or velocity of other molecules of which we have

not so far suspected the existence. The law

will be safeguarded. Let me exprezs the same

thought in another form in mathematical language.

Suppose we are observing n molecules, and find
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that their 3« co-ordinates satisfy a system of 3«

differential equations of the fourth order (and

not of the second, as required by the law of

inertia). We know that by introducing 3;^ variable

auxiliaries, a system of ^n equations of the fourth

order may be reduced to a system of 6n equations

of the second order. If, then, we suppose that the

3;i auxiliary variables represent the co-ordinates of

11 invisible molecules, the result is again conform-

able to the law of inertia. To sum up, this law,

verified experimentally in some particular cases,

may be extended fearlessly to the most general

cases; for we know that in these general cases

it can neither be confirmed nor contradicted by

experiment.

The Law of Acceleration.—The acceleration of a

body is equal to the force which acts on it divided

by its mass.

Can this law be verified by experiment ? If so,

we have to measure the three magnitudes men-
tioned in the enunciation : acceleration, force,

and mass. I admit that acceleration may be

measured, because I pass over the difficulty

arising from the measurement of time. But how
are we to measure force and mass ? We do not

even know what they are. What is mass ?

Newton replies: "The product of the volume and
the density." " It were better to say," answer
Thomson and Tait, *' that density is the quotient

of the mass by the volume." What is force ?

"It is," replies Lagrange, "that which moves or

7
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tends to move a body." '' It is,'* according to

Kirchoff, "the product of the mass and the

acceleration." Then why not say that mass is

the quotient of the force by the acceleration ?

These difficulties are insurmountable.

When we say force is the cause of motion, we
are talking metaphysics ; and this definition, if we
had to be content with it, would be absolutely

fruitless, would lead to absolutely nothing. For a

definition to be of any use it must tell us how to

measure force ; and that is quite sufiicient, for it is

by no means necessar}^ to tell what force is in

itself, nor whether it is the cause or the efiect of

motion. We must therefore first define what is

meant by the equality of two forces. When are

two forces equal ? We are told that it is when
they give the same acceleration to the same mass,

or W'hen acting in opposite directions they are in

equilibrium. This definition is a sham. A force

applied to a body cannot be uncoupled and

applied to another body as an engine is uncoupled

from one train and coupled to another. It is

therefore impossible to say what acceleration such

a force, applied to such a body, would give to

another body if it were applied to it. It is im-

possible to tell how two forces which are not

acting in exactly opposite directions would be-

have if they were acting in opposite directions.

It is this definition which we tr}- to materialise, as

it were, when we measure a force with a dyna-

mometer or with a balance. Two forces, F and
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F', which I suppose, for simpHcity, to be acting

vertically upwards, are respectively applied to two

bodies, C and C\ I attach a body weighing P
first to C and then to C; if there is equilibrium in

both cases I conclude that the two forces F and

F' are equal, for they are both equal to the weight

of the body P. But am I certain that the body P
has kept its weight ^^•hen I transferred it from the

first body to the second ? Far from it. I am
certain of the contrary. I know that the magni-

tude of the weight varies from one point to

another, and that it is greater, for instance, at the

pole than at the equator. No doubt the difference

is very small, and we neglect it in practice ; but a

definition must have mathematical rigour ; this

rigour does not exist. What I say of weight

would apply equall}- to the force of the spring of

a dynamometer, Vvhich would vary according to

temperature and many other circumstances. Nor
is this all. We cannot say that the weight of the

body P is applied to the body C and keeps in

equilibrium the force F. What is applied to

the body C is the action of the body P on the

body C. On the other hand, the body P is

acted on by its weight, and by the reaction R
of the body C on P the forces F and A are

equal, because they are in equilibrium; the forces

A and R are equal by virtue of the principle

of action and reaction ; and finally, the force

R and the weight P are equal because they

are in equilibrium. From these three equalities
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we deduce the equality of the weight P and the

force F.

Thus we are compelled to bring into our defini-

tion of the equality of two forces the principle

of the equality of action and reaction ; hence this

principle can no longer he regarded as an experimental

law hut only as a definition.

To recognise the equality of two forces we are

then in possession of two rules: the equality of

two forces in equilibrium and the equality of action

and reaction. But, as we have seen, these are not

sufficient, and we are compelled to have recourse

to a third rule, and to admit that certain forces—

the weight of a body, for instance—are constant in

magnitude and direction. But this third rule is

an experimental law. It is only approximately

true : it is a had definition. We are therefore

reduced to Kirchoff 's definition ; force is the pro-

duct of the mass and the acceleration. This law

of Newton in its turn ceases to be regarded as an

experimental law, it is now only a definition. But

as a definition it is insufficient, for we do not

know what mass is. It enables us, no doubt, to

calculate the ratio of two forces applied at

different times to the same body, but it tells us

nothing about the ratio of two forces applied to

two different bodies. To fill up the gap we must

have recourse to Newton's third law, the equality

of action and reaction, still regarded not as

an experimental law but as a definition. Two
bodies, A and B, act on each other ; the accéléra-
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tion of A, multiplied by the mass of A, is equal to

the action of B on A ; in the same way the

acceleration of B, multiplied by the mass of B, is

equal to the reaction of A on B. As, by definition,

the action and the reaction are equal, the masses

of A and B are respectively in the inverse ratio of

their masses. Thus is the ratio of the two masses

defined, and it is for experiment to verify that the

ratio is constant.

This would do very well if the two bodies were

alone and could be abstracted from the action of

the rest of the world ; but this is by no means
the case. The acceleration of A is not solely due

to the action of B, but to that of a multitude of

other bodies, C, D, . . . To apply the preceding

rule we must decompose the acceleration of A into

many components, and find out which of these

components is due to the action of B. The
decomposition would still be possible if we
suppose that the action of C on A is simply added

to that of B on A, and that the presence of the

body C does not in any way modify the action of

B on A, or that the presence of B does not modify

the action of C on A ; that is, if we admit that

any two bodies attract each other, that their

mutual action is along their join, and is only de-

pendent on their distance apart ; if, in a word, we
admit the hypothesis of central forces.

We know that to determine the masses of the

heavenly bodies we adopt quite a different prin-

ciple. The law of gravitation teaches us that the
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attraction of two bodies is proportional to their

masses; if r is their distance apart, in and m their

masses, k a constant, then their attraction will be

kmm'jr-. What we are measuring is therefore not

mass, the ratio of the force to the acceleration, but

the attracting mass ; not the inertia of the body,

but its attracting power. It is an indirect process,

the use of which is not indispensable theoretically.

We might have said that the attraction is in-

versely proportional to the square of the distance,

without being proportional to the product of the

masses, that it is equal to //r- and not to kmin.

If it were so, we should nevertheless, by observing

the relative motion of the celestial bodies, be able

to calculate the masses of these bodies.

But have we any right to admit the hypothesis

of central forces ? Is this hypothesis rigorously

accurate ? Is it certain that it will never be

falsified by experiment ? Who will venture to

make such an assertion ? And if we must abandon

this hypothesis, the building which has been so

laboriously erected must fall to the ground.

W^e have no longer any right to speak of the

component of the acceleration of A which is

due to the action of B. We have no means of

distinguishing it from that which is due to the

action of C or of any other body. The rule

becomes inapplicable in the measurement of

masses. What then is left of the principle of

the equality of action and reaction ? If we

reject the hypothesis of central forces this prin-
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ciple must go too ; the geometrical resultant of

all the forces applied to the different bodies of a

system abstracted from all external action will be

zero. In other words, the motion of the centre of

gravity of this system will be uniform and in a

straight line. Here would seem to be a means of

defining mass. The position of the centre of

gravity evidently depends on the values given to

the masses ; we must select these valucG so that

the motion of the centre of gravity is uniform

and rectilinear. This will always be possible if

Newton's third law holds good, and it will be in

general possible only in one way. But no system

exists which is abstracted from all external action
;

every part of the universe is subject, more or less,

to the action of the other parts. The law of the

motion of the centre of gravity is only rigorously true

when applied to the whole icniverse.

But then, to obtain the values of the masses

we must find the motion of the centre of gravity

of the universe. The absurdity of this conclusion

is obvious; the motion of the centre of gravity

of the universe will be for ever to us unknown.
Nothing, therefore, is left, and our efforts are

fruitless. There is no escape from the follow^ing

definition, which is only a confession of failure :

Masses are co-efficients which it is found convenient to

introduce into calculations.

We could reconstruct our mechanics by giving

to our masses different values. The new me-
chanics would be in contradiction neither with



104 SCIENCE AND HYPOTHESIS.

experiment nor with the general principles of

dynamics (the principle of inertia, proportion-

ality of masses and accelerations, equality of

action and reaction, uniform motion of the centre

of gravity in a straight line, and areas). But the

equations of this mechanics would not he so simple.

Let us clearly understand this. It would be only

the first terms which would be less simple

—

i.e.,

those we already know through experiment
;

perhaps the small masses could be slightly altered

without the complete equations gaining or losing

in simplicity.

Hertz has inquired if the principles of mechanics

are rigorously true. " In the opinion of many
physicists it seems inconceivable that experiment

will ever alter the impregnable principles of

mechanics; and yet, what is due to experiment

may always be rectified by experiment." From
what we have just seen these fears would appear

to be groundless. The principles of dynamics

appeared to us first as experimental truths, but

we have been compelled to use them as defini-

tions. It is by definition that force is equal to

the product of the mass and the acceleration
;

this is a principle which is henceforth beyond

the reach of any future experiment. Thus

it is by definition that action and reaction are

equal and opposite. But then it will be said,

these unverifiable principles are absolutely devoid

of any significance. They cannot be disproved by

experiment, bttt we can learn from them nothing
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of any use to us ; what then is the use of studying

dynamics ? This somewhat rapid condemnation
would be rather unfair. There is not in Nature any
system perfectly isolated, perfectly abstracted from

all external action ; but there are systems which
are nearly isolated. If we observe such a system,

we can study not only the relative motion of its

different parts with respect to each other, but the

motion of its centre of gravity with respect to the

other parts of the universe. We then find that

the motion of its centre of gravity is nearly uniform

and rectilinear in conformity with Newton's Third

Law. This is an experimental fact, which cannot

be invalidated by a more accurate experiment.

What, in fact, w^ould a more accurate experiment

teach us ? It would teach us that the law is only

approximately true, and we know that already.*

Thus is explained how experiment may serve as a basis

for the principles of mechanics, and yet will never

invalidate them.

Anthropomorphic Mechanics.—It will be said that

Kirchoff has only followed the general tendency of

mathematicians towards nominalism ; from this his

skill as a physicist has not saved him. He wanted
a definition of a force, and he took the first that

came handy ; but we do not require a definition

of force ; the idea of force is primitive, irreducible,

indefinable ; we all know what it is ; of it we have

direct intuition. This direct intuition arises from

the idea of effort which is familiar to us from

childhood. But in the first place, even if this
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direct intuition made known to us the real nature

of force in itself, it would prove to be an insufficient

basis for mechanics ; it would, moreover, be quite

useless. The important thing is not to know
what force is, but how to measure it. Everything

which does not teach us how to measure it is as

useless to the mechanician as, for instance, the

subjective idea of heat and cold to the student of

heat. This subjective idea cannot be translated

into numbers, and is therefore useless ; a scientist

whose skin is an absolutely bad conductor of heat,

and who, therefore, has never felt the sensation

of heat or cold, would read a thermometer in just

the same way as any one else, and would have

enough material to construct the whole of the

theory of heat.

Now this immediate notion of effort is of no use

to us in the measurement of force. It is clear, for

example, that I shall experience more fatigue in

lifting a weight of lOO lb. than a man who is

accustomed to lifting heavy burdens. But there

is more than this. This notion of effort does not

teach us the nature of force ; it is definitively re-

duced to a recollection of muscular sensations, and

no one will maintain that the sun experiences

a muscular sensation when it attracts the earth.

All that we can expect to find from it is a symbol,

less precise and less convenient than the arrows

(to denote direction) used by geometers, and quite

as remote from reality.

Anthropomorphism plays a considerable historic
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rôle in the genesis of mechanics
;
perhaps it may

yet furnish us with a symbol which some minds
may find convenient; but it can be the foundation

of nothing of a really scientific or philosophical

character.

The Thread School.—M. Andrade, in his Leçons

de Mécanique physique, has modernised anthropo-

morphic mechanics. To the school of mechanics

with which Kirchoff is identified, he opposes a

school which is quaintly called the " Thread
School."

This school tries to reduce everything to the con-

sideration of certain material systems of negligible

mass, regarded in a state of tension and capable

of transmitting considerable effort to distant

bodies—systems of which the ideal type is the

fine string, wire, or iliread. A thread which

transmits any force is slightly lengthened in the

direction of that force; the direction of the thread

tells us the direction of the force, and the magni-

tude of the force is measured by the lengthening of

the thread.

We may imagine such an experiment as the

following :

—

h. body A is attached to a thread
;

at the other extremity of the thread acts a force

which is made to vary until the length of the

thread is increased by a, and the acceleration

of the body A is recorded. A is then detached,

and a body B is attached to the same thread, and

the same or another force is made to act until

the increment of lensth again is a, and the
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acceleration of B is noted. The experiment is

then renewed with both A and B until the incre-

ment of length is p. The four accelerations

observed should be proportional. Here w^e have

an experimental verification of the law of accelera-

tion enunciated above. Again, we may consider

a body under the action of several threads in

equal tension, and by experiment we determine

the direction of those threads when the body

is in equilibrium. This is an experimental

verification of the law of the composition of

forces. But, as a matter of fact, what have we
done ? We have defined the force acting on the

string by the deformation of the thread, which is

reasonable enough; we have then assumed that if

a body is attached to this thread, the effort which

is transmitted to it by the thread is equal to the

action exercised by the body on the thread; in

fact, w^e have used the principle of action and

reaction by considering it, not as an experimental

truth, but as the very definition of force. This

definition is quite as conventional as that of

Kirchoff, but it is much less general.

All the forces are not transmitted by the thread

(and to compare them they would all have to be

transmitted by identical threads). If we even

admitted that the earth is attached to the sun by

an invisible thread, at any rate it will be agreed

that we have no means of measuring the increment

of the thread. Nine times out of ten, in con-

sequence, our definition will be in default ; no
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sense of any kind can be attached to it, and we
must fall back on that of Kirchoff. Why then go

on in this roundabout way ? You admit a certain

definition of force which has a meaning only in

certain particular cases. In those cases you verify

by experiment that it leads to the law of accelera-

tion. On the strength of these experiments you

then take the law of acceleration as a definition of

force in all the other cases.

Would it not be simpler to consider the law of

acceleration as a definition in all cases, and to

regard the experiments in question, not as verifica-

tions of that law, but as verifications of the

principle of action and reaction, or as proving

the deformations of an elastic body depend only

on the forces acting on that body ? W^ithout

taking into account the fact that the conditions

in which your definition could be accepted can

only be very imperfectly fulfilled, that a thread is

never without mass, that it is never isolated from

all other forces than the reaction of the bodies

attached to its extremities.

The ideas expounded by M. Andrade are none
the less very interesting. If they do not satisfy our

logical requirements, they give us a better view of

the historical genesis of the fundamental ideas of

mechanics. The reflections they suggest show us

how the human mind passed from a naive

anthropomorphism to the present conception of

science.

We see that we end with an experiment which
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is very particular, and as a matter of fact very

crude, and we start with a perfectly general law,

perfectly precise, the truth of which we regard as

absolute. We have, so to speak, freely conferred

this certainty on it by looking upon it as a con-

vention.

Are the laws of acceleration and of the com-

position of forces only arbitrary conventions ?

Conventions, yes ; arbitrary, no—they would be

so if we lost sight of the experiments which led the

founders of the science to adopt them, and which,

imperfect as they were, were sufficient to justify

their adoption. It is well from time to time to let

our attention dwell on the experimental origin of

these conventions.



CHAPTER VII.

RELATIVE AND ABSOLUTE MOTION.

The Principle of Relative Motion.— Sometimes
endeavours have been made to connect the law of

acceleration with a more general principle. The
movement of any system whatever ought to

obey the same laws, whether it is referred to fixed

axes or to the movable axes which are implied

in uniform motion in a straight line. This is

the principle of relative motion ; it is imposed
upon us for two reasons: the commonest experi-

ment confirms it; the consideration of the contrary

hypothesis is singularly repugnant to the mind.

Let us admit it then, and consider a body under

the action of a force. The relative motion of this

body with respect to an observer moving with a

uniform velocity equal to the initial velocity of the

body, should be identical with what would be its

absolute motion if it started from rest. We con-

clude that its acceleration must not depend upon
its absolute velocity, and from that we attempt to

deduce the complete law of acceleration.

For a long time there have been traces of this

proof in the regulations for the degree of B. es Se.
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It is clear that the attempt has failed. The
obstacle which prevented us from proving the

law of acceleration is that we have no definition

of force. This obstacle subsists in its entirety,

since the principle invoked has not furnished us

with the missing definition. The principle of

relative motion is none the less very interesting,

and deserves to be considered for its own sake.

Let us try to enunciate it in an accurate manner.

We have said above that the accelerations of the

different bodies which form part of an isolated

system only depend on their velocities and their

relative positions, and not on their velocities and

their absolute positions, provided that the mov-
able axes to which the relative motion is referred

move uniformly in a straight line; or, if it is pre-

ferred, their accelerations depend only on the

differences of their velocities and the differences of

their co-ordinates, and not on the absolute values

of these velocities and co-ordinates. If this prin-

ciple is true for relative accelerations, or rather

for differences of acceleration, by combining it

with the law of reaction we shall deduce that it is

true for absolute accelerations. It remains to be

seen how we can prove that differences of accelera-

tion depend only on differences of velocities

and co-ordinates; or, to speak in mathematical

language, that these differences of co-ordinates

satisfy differential equations of the second order.

Can this proof be deduced from experiment or

from à priori conditions ? Remembering what we
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have said before, the reader will give his own
answer. Thus enunciated, in fact, the principle of

relative motion curiously resembles what I called

above the generalised principle of inertia; it is not

quite the same thing, since it is a question of

differences of co-ordinates, and not of the co-

ordinates themselves. The new principle teaches

us something more than the old, but the same
discussion applies to it, and would lead to the

same conclusions. We need not recur to it.

Newton's Argument.—Here we find a very im-

portant and even slightly disturbing question. I

have said that the principle of relative motion

was not for us simply a result of experiment; and
that à priori every contrary hypothesis would be

repugnant to the mind. But, then, why is the

principle only true if the motion of the movable
axes is uniform and in a straight line? It seems
that it should be imposed upon us with the same
force if the motion is accelerated, or at any rate

if it reduces to a uniform rotation. In these two
cases, in fact, the principle is not true. I need not

dwell on the case in which the motion of the

axes is in a straight line and not uniform. The
paradox does not bear a moment's examination.

If I am in a railway carriage, and if the train,

striking against any obstacle whatever, is suddenly

stopped, I shall be projected on to the opposite

side, although I have not been directly acted upon
by any force. There is nothing mysterious in

that, and if I have not been subject to the action

8
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of any external force, the train has experienced an

external impact. There can be nothing para-

doxical in the relative motion of two bodies being

disturbed when the motion of one or the other is

modified by an external cause. Nor need I dwell

on the case of relative motion referring to axes

which rotate uniformly. If the sky were for ever

covered with clouds, and if we had no means of

observing the stars, we might, nevertheless, con-

clude that the earth turns round. We should be

warned of this fact by the flattening at the poles,

or by the experiment of Foucault's pendulum.

And yet, would there in this case be any meaning

in saying that the earth turns round? If there is

no absolute space, can a thing turn without turn-

ing with respect to something; and, on the other

hand, how can we admit Newton's conclusion and

believe in absolute space? But it is not sufficient

to state that all possible solutions are equally

unpleasant to us. We must analyse in eaCh case

the reason of our dislike, in order to make our

choice with the knowledge of the cause. The
long discussion which follows must, therefore, be

excused.

Let us resume our imaginary story. Thick

clouds hide the stars from men who cannot observe

them, and even are ignorant of their existence.

How will those men know that the earth turns

round ? No doubt, for a longer period than did

our ancestors, they will regard the soil on which

they stand as fixed and immovable ! They will
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wait a much longer time than we did for the

coming of a Copernicus; but this Copernicus will

come at last. How will he come? In the first

place, the mechanical school of this world would
not run their heads against an absolute contradic-

tion. In the theory of relative motion we observe,

besides real forces, tw^o imaginary forces, which

v^e call ordinary centrifugal force and compounded
centrifugal force. Our imaginary scientists can

thus explain everything by looking upon these two
forces as real, and they would not see in this a

contradiction of the generalised principle of inertia,

for these forces would depend, the one on the

relative positions of the different parts of the

system, such as real attractions, and the other on

their relative velocities, as in the case of real

frictions. Many difficulties, however, would before

long awaken their attention. ' If they succeeded in

realising an isolated system, the centre of gravity

of this S3'stem would not have an approximately

rectilinear path. They could invoke, to explain

this fact, the centrifugal forces which they would

regard as real, and which, no doubt, they would

attribute to the mutual actions of the bodies—only

they would not see these forces vanish at great

distances—that is to say, in proportion as the

isolation is better realised. Far from it. Centri-

fugal force increases indefinitely with distance.

Already this difiiculty would seem to them suffi-

ciently serious, but it would not detain them for

long. They would soon imagine some very subtle
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medium analogous to our ether, in which all

bodies would be bathed, and which would exer-

cise on them a repulsive action. But that is not

all. Space is symmetrical—yet the laws of

motion would present no symmetry. They should

be able to distinguish between right and left.

They would see, for instance, that cyclones always

turn in the same direction, while for reasons of

symmetry they should turn indifferently in any

direction. If our scientists were able by dint of

much hard work to make their universe perfectly

symmetrical, this symmetry w^ould not subsist,

although there is no apparent reason why it

should be disturbed in one direction more than

in another. They would extract this from the

situation no doubt—they would invent something

which would not be more extraordinary than the

glass spheres of Ptolemy, and would thus go on

accumulating complications until the long-ex-

pected Copernicus would sweep them all away

with a single blow, saying it is much more simple

to admit that the earth turns round. Just as

our Copernicus said to us: '' It is more convenient

to suppose that the earth turns round, because the

laws of astronomy are thus expressed in a more

simple language," so he would say to them: "It

is more convenient to suppose that the earth turns

round, because the laws of mechanics are thus

expressed in much more simple language. That

does not prevent absolute space—that is to say,

the point to which we must refer the earth to
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know if it really does turn round—from having

no objective existence. And hence this affirma-

tion: "the earth turns round," has no meaning,

since it cannot be verified by experiment; since

such an experiment not only cannot be realised or

even dreamed of by the most daring Jules Verne,

but cannot even be conceived of without con-

tradiction ; or, in other words, these two proposi-

tions, "the earth turns round," and, "it is more

convenient to suppose that the earth turns round,"

have one and the same meaning. There is nothing

more in one than in the other. Perhaps they will

not be content with this, and may find it surpris-

ing that among all the hypotheses, or rather all

the conventions, that can be made on this subject

there is one which is more convenient than the

rest? But if we have admitted it without diffi-

culty when it is a question of the laws of

astronomy, why should we object when it is a

question of the laws of mechanics ? We have

seen that the co-ordinates of bodies are deter-

mined by differential equations of the second

order, and that so are the differences of these

co-ordinates. This is what we have called the

generalised principle of inertia, and the principle

of relative motion. If the distances of these

bodies were determined in the same way by

equations of the second order, it seems that the

mind should be entirely satisfied. How far does

the mind receive this satisfaction, and why is it

not content with it? To explain this we had
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better take a simple example. I assume a system

analogous to our solar system, but in which fixed

stars foreign to this system cannot be perceived,

so that astronomers can only observe the mutual

distances of planets and the sun, and not the

absolute longitudes of the planets. If we deduce

directly from Newton's law the differential equa-

tions which define the variation of these distances,

•these equations will not be of the second order. I

mean that if, outside Newton's law, we knew the

initial values of these distances and of their de-

rivatives with respect to time—that would not be

sufficient to determine the values of these same
distances at an ulterior moment. A datum would

be still lacking, and this datum might be, for

example, what astronomers call the area-constant.

But here we may look at it from two different

points of view. We may consider two kinds of

constants. In the eyes of the physicist the world

reduces to a series of phenomena depending, on the

one hand, solely on initial phenomena, and, on the

other hand, on the laws connecting consequence

and antecedent. If obser\'ation then teaches us

that a certain quantity is a constant, we shall have

a choice of two ways of looking at it. So let us

admit that there is a law which requires that this

quantity shall not var}', but that by chance it has

been found to have had in the beginning of time

this value rather than that, a value that it has

kept ever since. This quantity might then be

called an accidental constant. Or again, let us
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admit on the contrary that there is a law of nature

which imposes on this quantity this value and not

that. We shall then have what may be called an

essential constant. For example, in virtue of the

laws of Newton the duration of the revolution of

the earth must be constant. But if it is 366 and

something sidereal days, and not 300 or 400, it is

because of some initial chance or other. It is an

accidental constant. If, on the other hand, the

exponent of the distance which figures in the

expression of the attractive force is equal to -2

and not to -3, it is not by chance, but because it

is required by Newton's law. It is an essential

constant. I do not know if this manner of giving

to chance its share is legitimate in itself, and if

there is not some artificiality about this distinc-

tion; but it is certain at least that in proportion

as Nature has secrets, she will be strictly arbitrary

and always uncertain in their application. As far

as the area-constant is concerned, we are accus-

tomed to look upon it as accidental. Is it certain

that our imaginary astronomers would do the

same ? If they were able to compare two different

solar systems, they would get the idea that this

constant may assume several different values. But

I supposed at the outset, as I was entitled to do,

that their system would appear isolated, and that

they would see no star which was foreign to their

system. Under these conditions they could only

detect a single constant, which would have an

absolutely invariable, unique value. They would
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be led no doubt to look upon it as an essential

constant.

One word in passing to forestall an objection.

The inhabitants of this imaginary world could

neither observe nor define the area-constant as we
do, because absolute longitudes escape their notice;

but that would not prevent them from being

rapidly led to remark a certain constant which
would be naturally introduced into their equations,

and which would be nothing but what we call the

area-constant. But then what would happen ?

If the area-constant is regarded as essential, as

dependent upon a lav/ of nature, then in order to

calculate the distances of the planets at any given

moment it would be sufficient to know the initial

values of these distances and those of their first

derivatives. From this new point of view, dis-

tances will be determined by differential equations

of the second order. ^^^ould this completely

satisfy the minds of these astronomers ? I think

not. In the first place, they would very soon see

that in differentiating their equations so as to

raise them to a higher order, these equations

would become much more simple, and they would
be especially struck by the difficulty which arises

from symmetry. They would have to admit

different laws, according as the aggregate of the

planets presented the figure of a certain polyhedron

or rather of a regular polyhedron, and these conse-

quences can only be escaped by regarding the area-

constant as accidental. I have taken this particular
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example, because I have imagined astronomers

who would not be in the least concerned with

terrestrial mechanics and whose vision would be

bounded by the solar system. But our con-

clusions apply in all cases. Our universe is more

extended than theirs, since we have fixed stars;

but it, too, is very limited, so we might reason on

the whole of our universe just as these astronomers

do on their solar system. We thus see that we
should be definitively led to conclude that the

equations which define distances are of an order

higher than the second. Why should this alarm

us—why do we find it perfectly natural that the

sequence of phenomena depends on initial values

of the first derivatives of these distances, while we
hesitate to admit that they may depend on the

initial values of the second derivatives ? It can

only be because of mental habits created in us by

the constant study of the generalised principle of

inertia and of its consequences. The values of the

distances at any given moment depend upon their

initial values, on that of their first derivatives, and
something else. What is that something else ? If

we do not want it to be merely one of the second

derivatives, we have only the choice of hypotheses.

Suppose, as is usually done, that this something

else is the absolute orientation of the universe in

space, or the rapidity with which this orientation

varies; this may be, it certainly is, the most con-

venient solution for the geometer. But it is not

the most satisfactory for the philosopher, because
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this orientation does not exist. We may assume

that this something else is the position or the

velocity of some invisible body, and this is what is

done by certain persons, who have even called the

body Alpha, although we are destined to never

know anything about this body except its name.

This is an artifice entirely analogous to that of

which I spoke at the end of the paragraph con-

taining my reflections on the principle of inertia.

But as a matter of fact the difficulty is artificial.

Provided that the future indications of our instru-

ments can only depend on the indications which

they have given us, or that they might have

formerly given us, such is all we want, and with

these conditions we may rest satisfied.



CHAPTER VIII.

ENERGY AND THERMO-DYNAMICS.

Energetics.—The difficulties raised by the classi-

cal mechanics have led certain minds to prefer a

new system which they call Energetics. Energetics

took its rise in consequence of the discovery of the

principle of the conservation of energy. Helm-
holtz gave it its definite form. We begin by de-

fining two quantities which play a fundamental

part in this theory. They are kinetic energy, or

vis viva, and potential energy. Every change

that the bodies of nature can undergo is regulated

by two experimental laws. First, the sum of the

kinetic and potential energies is constant. This

is the principle of the conservation of energy.

Second, if a system of bodies is at A at the time t^,

and at B at the time t^, it always passes from the

first position to the second by such a path that

the mean value of the difference between the two
kinds of energy in the interval of time which
separates the two epochs t^ and fi is a minimum.
This is Hamilton's principle, and is one of the

forms of the principle of least action. The
energetic theory has the following advantages
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over the classical. First, it is less incomplete

—

that is to say, the principles of the conservation of

energy and of Hamilton teach us more than the

fundamental principles of the classical theory, and
exclude certain motions which do not occur in

nature and which would be compatible with the

classical theory. Second, it frees us from the

hypothesis of atoms, which it was almost impos-

sible to avoid with the classical theory. But in

its turn it raises fresh difficulties. The definitions

of the two kinds of energy would raise difficulties

almost as great as those of force and mass in the

first system. However, we can get out of these

difficulties more easily, at any rate in the simplest

cases. Assume an isolated system formed of a

certain number of material points. Assume that

these points are acted upon by forces depending

only on their relative position and their dis-

tances apart, and independent of their velocities.

In virtue of the principle of the conservation of

energy there must be a function of forces. In this

simple case the enunciation of the principle of the

conservation of energy is of extreme simplicity.

A certain quantity, w^hich may be determined by
experiment, must remain constant. This quantity

is the sum of two terms. The first depends only on
the position of the material points, and is inde-

pendent of their velocities; the second is pro-

portional to the squares of these velocities. This

decomposition can only take place in one way.

The first of these terms, which I shall call U, will
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be potential energy; the second, which I shall call

T, will be kinetic energy. It is true that if T + U
is constant, so is any function of T + U, (f> (T+U).
But this function </> (T+U) will not be the sum of

two terms, the one independent of the velocities,

and the other proportional to the square of the

velocities. Among the functions which remain

constant there is only one which enjoys this pro-

perty. It is T + U (or a linear function of T + U),

it matters not w^hich, since this linear function may
always be reduced to T + U by a change of unit

and of origin. This, then, is what we call energy.

The first term we shall call potential energy, and

the second kinetic energy. The definition of the

two kinds of energy may therefore be carried

through without any ambiguity.

So it is with the definition of mass. Kinetic

energy, or vis viva, is expressed very simply by the

aid of the masses, and of the relative velocities of all

the material points with reference to one of them.

These relative velocities may be observed, and

when we have the expression of the kinetic energy

as a function of these relative velocities, the co-

efficients of this expression will give us the masses.

So in this simple case the fundamental ideas can

be defined without difiiculty. But the difiiculties

reappear in the more complicated cases if the

forces, instead of depending solely on the dis-

tances, depend also on the velocities. For ex-

ample, Weber supposes the mutual action of two

electric molecules to depend not only on their
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distance but on their velocity and on their accelera-

tion. If material points attracted each other

according to an analogous law, U would depend

on the velocity, and it might contain a term

proportional to the square of the velocity. How
can we detect among such terms those that arise

from T or U ? and how, therefore, can we dis-

tinguish the two parts of the energy ? But there

is more than this. How can we define energy

itself? We have no more reason to take as our

definition T+U rather than any other function of

T + U, when the property which characterised

T + U has disappeared—namely, that of being the

sum of two terms of a particular form. But that

is not all. We must take account, not only of

mechanical energy properly so called, but of the

other forms of energy— heat, chemical energy,

electrical energy, etc. The principle of the con-

servation of energy must be written T + U + Q =

a constant, where T is the sensible kinetic energy,

U the potential energy of position, depending only

on the position of the bodies, Q the internal

molecular energy under the thermal, chemical, or

electrical form. This would be all right if the

three terms were absolutely distinct ; if T were

proportional to the square of the velocities, U
independent of these velocities and of the state of

the bodies, Q independent of the velocities and of

the positions of the bodies, and depending only on

their internal state. The expression for the energy

could be decomposed in one way only into three
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terms of this form. But this is not the case. Let

us consider electrified bodies. The electro-static

energy due to their mutual action will evidently

depend on their charge

—

i.e., on their state
;

but it will equally depend on their position.

If these bodies are in motion, they will act

electro-dynamically on one another, and the

electro-dynamic energy will depend not only on

their state and their position but on their velocities.

We have therefore no means of making the selec-

tion of the terms which should form part of T,

and U, and Q, and of separating the three parts of

the energy. If T4-U + Q is constant, the same is

true of any function whatever, </> (T-h U + Q).

If T + U + Q were of the particular form that I

have suggested above, no ambiguity would ensue.

Among the functions ^ (T + U + Q) which remain

constant, there is only one that would be of this

particular form, namely the one which I would

agree to call energy. But I have said this is not

rigorously the case. Among the functions that

remain constant there is not one which can

rigorously be placed in this particular form. How
then can we choose from among them that which
should be called energy ? We have no longer

any guide in our choice.

Of the principle of the conservation of energy

there is nothing left then but an enunciation:

—

There is something which remains constant. In this

form it, in its turn, is outside the bounds of ex-

periment and reduced to a kind of tautology. It
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is clear that if the world is governed by laws

there will be quantities which remain constant.

Like Newton's laws, and for an analogous reason,

the principle of the conservation of energy being

based on experiment, can no longer be invalidated

by it.

This discussion shows that, in passing from the

classical system to the energetic, an advance has

been made ; but it shows, at the same time, that

we have not advanced far enough.

Another objection seems to be still more serious.

The principle of least action is applicable to revers-

ible phenomena, but it is by no means satisfactory

as far as irreversible phenomena are concerned.

Helmholtz attempted to extend it to this class

of phenomena, but he did not and could not

succeed. So far as this is concerned all has yet to

be done. The very enunciation of the principle of

least action is objectionable. To move from one

point to another, a material molecule, acted upon

by no force, but compelled to move on a surface,

will take as its path the geodesic line

—

i.e., the

shortest path. This molecule seems to know the

point to which we want to take it, to foresee

the time that it will take it to reach it by such

a path, and then to know how to choose the most

convenient path. The enunciation of the prin-

ciple presents it to us, so to speak, as a living

and free entity. It is clear that it would be better

to replace it by a less objectionable enunciation,

one in which, as philosophers would say, final
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effects do not seem to be substituted for acting

causes.

Thermo-dynamics.—The rôle of the two funda-

mental principles of thermo-dynamics becomes
daily more important in all branches of natural

philosophy. Abandoning the ambitious theories

of forty years ago, encumbered as they were with

molecular hypotheses, we now try to rest on

thermo-dynamics alone the entire edifice of

mathematical physics. Will the two principles

of Mayer and of Clausius assure to it founda-

tions solid enough to last for some time ? We
all feel it, but whence does our confidence

arise ? An eminent physicist said to me one day,

apropos of the law of errors:—every one stoutly

believes it, because mathematicians imagine that

it is an effect of observation, and observers imagine

that it is a mathematical theorem. And this was
for a long time the case with the principle of the

conservation of energy. It is no longer the same
now. There is no one who does not know that it

is an experimental fact. But then who gives us

the right of attributing to the principle itself more
generality and more precision than to the experi-

ments which have served to demonstrate it? This
is asking, if it is legitimate to generalise, as we do
every day, empiric data, and I shall not be so

foolhardy as to discuss this question, after so many
philosophers have vainly tried to solve it. One
thing alone is certain. If this permission were
refused to us, science could not exist; or at least

9
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would be reduced to a kind of inventory, to the

ascertaining of isolated facts. It would not longer

be to us of any value, since it could not satisfy our

need of order and harmony, and because it would

be at the same time incapable of prediction. As
the circumstances which have preceded any fact

whatever will never again, in all probability, be

simultaneously reproduced, we already require a

first generalisation to predict whether the fact will

be renewed as soon as the least of these circum-

stances is changed. But every proposition may
be generalised in an infinite number of ways.

Among all possible generalisations we must

choose, and we cannot but choose the simplest.

We are therefore led to adopt the same course

as if a simple law were, other things being equal,

more probable than a complex law. A century

ago it was frankly confessed and proclaimed

abroad that Nature loves simplicity; but Nature

has proved the contrary since then on more than

one occasion. We no longer confess this tendency,

and we only keep of it what is indispensable, so

that science may not become impossible. In

formulating a general, simple, and formal law,

based on a comparatively small number of not alto-

gether consistent experiments, we have only obeyed

a necessity from which the human mind cannot

free itself. But there is something more, and that

is why I dwell on this topic. No one doubts that

Mayer's principle is not called upon to survive all

the particular laws from which it was deduced, in
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the same way that Newton's law has survived the

laws of Kepler from which it was derived, and
which are no longer anything but approximations,

if we take perturbations into account. Now why
does this principle thus occupy a kind of privileged

position among physical laws? There are man}-

reasons for that. At the outset we think that we
cannot reject it, or even doubt its absolute rigour,

without admitting the possibility of perpetual

motion; we certainly feel distrust at such a

prospect, and we believe ourselves less rash in

affirming it than in denying it. That perhaps is

not quite accurate. The impossibility of perpetual

motion only implies the conservation of energy for

reversible phenomena. The imposing simplicity

of Mayer's principle equally contributes to

strengthen our faith. In a law immediately de-

duced from experiments, such as Mariotte's law%

this simplicity would rather appear to us a reason

for distrust ; but here this is no longer the case.

We take elements which at the first glance are

unconnected; these arrange themselves in an un-

expected order, and form a harmonious whole.

We cannot believe that this unexpected har-

mony is a mere result of chance. Our conquest

appears to be valuable to us in proportion to the

efforts it has cost, and we feel the more certain of

having snatched its true secret from Nature in pro-

portion as Nature has appeared more jealous of our

attempts to discover it. But these are only small

reasons. Before we raise Mayer's law to the
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dignity of an absolute principle, a deeper discussion

is necessary. But if we embark on this discussion

we see that this absolute principle is not even easy

to enunciate. In every particular case we clearly

see what energy is, and we can give it at least a

provisory definition; but it is impossible to find

a general definition of it. If we wish to enunciate

the principle in all its generality and apply it to

the universe, we see it vanish, so to speak, and

nothing is left but this

—

there is something which

remains constant. But has this a meaning ? In

the determinist hypothesis the state of the uni-

verse is determined by an extremely large number
n of parameters, which I shall call Xi, Xo, x^ . . . x„.

As soon as we know at a given moment the values of

these n parameters, we also know their derivatives

with respect to time, and we can therefore cal-

culate the values of these same parameters at an

anterior or ulterior moment. In other words,

these n parameters specify n differential equations

of the first order. These equations have n-i
integrals, and therefore there are n - 1 functions of

x^, X.2, % . . . x„^ which remain constant. If we
say then, there is something which remains constant,

we are only enunciating a tautology. We would

be even embarrassed to decide which among all

our integrals is that which should retain the name
of energy. Besides, it is not in this sense that

Mayer's principle is understood when it is applied

to a limited system. We admit, then, that p of

our n parameters vary independently so that we
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have only n -p relations, generally linear, between
our n parameters and their derivatives. Suppose,
for the sake of simplicity, that the sum of the

work done by the external forces is zero, as well

as that of all the quantities of heat given off from
the interior: what will then be the meaning of

our principle ? There is a combination of these n -p
relations, of which the first member is an exact

differential; and then this differential vanishing

in virtue of our n-p relations, its integral is a

constant, and it is this integral which we call

energy. But how can it be that there are several

parameters whose variations are independent ?

That can only take place in the case of external

forces (although we have supposed, for the sake

of simplicity, that the algebraical sum of all the

work done by these forces has vanished). If,

in fact, the system were completely isolated from
all external action, the values of our n parameters

at a given moment would suffice to determine

the state of the system at any ulterior moment
whatever, provided that we still clung to the deter-

minist hypothesis. We should therefore fall back
on the same difficulty as before. If the future

state of the system is not entirely determined

by its present state, it is because it further depends
on the state of bodies external to the system.

But then, is it likely that there exist among the

parameters x which define the state of the system of

equations independent of this state of the external

bodies? and if in certain cases we think we can
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find them, is it not only because of our ignorance,

and because the influence of these bodies is too

weak for our experiment to be able to detect it ?

If the system is not regarded as completely

isolated, it is probable that the rigorously exact

expression of its internal energy will depend upon

the state of the external bodies. Again, I have

supposed above that the sum of all the external

work is zero, and if we wish to be free from

this rather artificial restriction the enunciation

becomes still more difficult. To formulate

Mayer's principle by giving it an absolute

meaning, we must extend it to the whole

universe, and then we find ourselves face to

face with the very difficulty we have endeavoured

to avoid. To sum up, and to use ordinary

language, the law of the conservation of energy

can have only one significance, because there is

in it a property common to all possible properties;

but in the determinist hypothesis there is only one

possible, and then the law has no meaning. In

the indeterminist hypothesis, on the other hand,

it would have a meaning even if we wished to

regard it in an absolute sense. It would appear

as a limitation imposed on freedom.

But this word warns me that I am wandering

from the subject, and that I am leaving the

domain of mathematics and physics. I check

myself, therefore, and I wish to retain only one

impression of the whole of this discussion, and

that is, that Mayer's law is a form subtle enough
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for US to be able to put into it almost anything we
like. I do not mean by that that it corresponds

to no objective reality, nor that it is reduced to

mere tautology; since, in each particular case, and

provided we do not wish to extend it to the

absolute, it has a perfectly clear meaning. This

subtlety is a reason for believing that it will last

long; and as, on the other hand, it will only

disappear to be blended in a higher harmony,

we may work with confidence and utilise it,

certain beforehand that our work will not be

lost.

Almost everything that I have just said

applies to the principle of Clausius. What
distinguishes it is, that it is expressed by an

inequality. It will be said perhaps that it is

the same with all physical laws, since their

precision is always limited by errors of

observation. But they at least claim to be

first approximations, and we hope to replace

them little by little by more exact laws. If,

on the other hand, the principle of Clausius

reduces to an inequality, this is not caused by

the imperfection of our means of observation, but

by the very nature of the question.

General Conclusions on Part III.—The prin-

ciples of mechanics are therefore presented to us

under two different aspects. On the one hand,

there are truths founded on experiment, and

verified approxmiately as far as almost isolated

systems are concerned; on the other hand,



136 SCIENCE AND HYPOTHESIS.

there are postulates applicable to the whole of

the universe and regarded as rigorously true.

If these postulates possess a generality and a

certainty which falsify the experimental truths

from which they were deduced, it is because

they reduce in final analysis to a simple con-

vention that we have a right to make, because

we are certain beforehand that no experiment

can contradict it. This convention, however, is

not absolutely arbitrary; it is not the child

of our caprice. We admit it because certain

experiments have shown us that it will be con-

venient, and thus is explained how experiment

has built up the principles of mechanics, and

why, moreover, it cannot reverse them. Take a

comparison with geometry. The fundamental

propositions of geometry, for instance, Euclid's

postulate, are only conventions, and it is quite

as unreasonable to ask if they are true or false

as to ask if the metric system is true or false.

Only, these conventions are convenient, and there

are certain experiments which prove it to us. At

the first glance, the analogy is complete, the rôle

of experiment seems the same. We shall there-

fore be tempted to say, either mechanics must

be looked upon as experimental science and then

it should be the same with geometry; or, on the

contrary, geometry is a deductive science, and
then we can say the same of mechanics. Such

a conclusion would be illegitimate. The experi-

ments which have led us to adopt as more
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convenient the fundamental conventions of
geometry refer to bodies which have nothing
in common with those that are studied by
geometry. They refer to the properties of sohd
bodies and to the propagation of hght in a straight
hne. These are mechanical, optical experiments.
In no way can they be regarded as geometrical
experiments. And even the probable reason why
our geometry seems convenient to us is, that our
bodies, our hands, and our limbs enjoy the properties
of solid bodies. Our fundamental experiments are
pre-eminently physiological experiments which
refer, not to the space which is the object that
geometry must study, but to our body—that is to
say, to the instrument which we use for that
study. On the other hand, the fundamental
conventions of mechanics and the experiments
which prove to us that they are convenient,
certainly refer to the same objects or to analogous
objects. Conventional and general principles are
the natural and direct generalisations of experi-
mental and particular principles. Let it not be
said that I am thus tracing artificial frontiers
between the sciences; that I am separating by
a barrier geometry properly so called from the
study of solid bodies. I might just as well
raise a barrier between experimental mechanics
and the conventional mechanics of general
principles. Who does not see, in fact, that
by separating these two sciences we mutilate
both, and that what will remain of the conven-
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tional mechanics when it is isolated will be but

very little, and can in no way be compared with

that grand body of doctrine which is called

geometry.

We now understand why the teaching of

mechanics should remain experimental. Thus
only can we be made to understand the genesis

of the science, and that is indispensable for

a complete knowledge of the science itself.

Besides, if we study mechanics, it is in order

to apply it ; and we can only apply it if it remains

objective. Now, as we have seen, when principles

gain in generality and certainty they lose in

objectivity. It is therefore especially with the

objective side of principles that we must be

early familiarised, and this can only be by

passing from the particular to the general, instead

of from the general to the particular.

Principles are conventions and definitions in

disguise. They are, however, deduced from

experimental laws, and these laws have, so to

speak, been erected into principles to which

our mind attributes an absolute value. Some
philosophers have generalised far too much.

They have thought that the principles were

the whole of science, and therefore that the

whole of science was conventional. This para-

doxical doctrine, which is called Nominalism,

cannot stand examination. How can a law

become a principle ? It expressed a relation

between two real terms, A and B; but it was
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not rigorously true, it was only approximate.

We introduce arbitrarily an intermediate term, C,

more or less imaginary, and C is hy definition that

which has with A exactly the relation expressed

by the law. So our law is decomposed into an

absolute and rigorous principle which expresses

the relation of A to C, and an approximate experi-

mental and révisable law which expresses the

relation of C to B. But it is clear that however

far this decomposition may be carried, laws will

always remain. We shall now enter into the

domain of laws properly so called.



PART IV.

NATURE.

CHAPTER IX.

HYPOTHESES IN PHYSICS.

The Rôle of Expei'tment and Generalisation.—
Experiment is the sole source of truth. It alone

can teach us something new; it alone can give

us certainty. These are two points that cannot

be questioned. But then, if experiment is every-

thing, what place is left for mathematical physics?

What can experimental physics do with such an

auxiliary—an auxiliary, moreover, which seems

useless, and even may be dangerous?

However, mathematical physics exists. It has

rendered undeniable service, and that is a fact

which has to be explained. It is not sufficient

merely to observe ; we must use our observations,

and for that purpose we must generalise. This

is what has always been done, only as the recollec-

tion of past errors has made man more and more

circumspect, he has observed more and more and

generalised less and less. Every age has scoffed

at its predecessor, accusing it of having generalised
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too boldly and too naively. Descartes used to

commiserate the lonians. Descartes in his turn

makes us smile, and no doubt some day our

children will laugh at us. Is there no way of

getting at once to the gist of the matter, and

thereby escaping the raillery which we foresee ?

Cannot we be content with experiment alone ?

No, that is impossible ; that would be a complete

misunderstanding of the true character of science.

The man of science must work with method.

Science is built up of facts, as a house is built of

stones ; but an accumulation of facts is no more a

science than a heap of stones is a house. Most

important of all, the man of science must exhibit

foresight. Carlyle has written somewhere some-

thing after this fashion. " Nothing but facts are

of importance. John Lackland passed by here.

Here is something that is admirable. Here is a

reality for which I would give all the theories in

the world."^ Carlyle was a compatriot of Bacon,

and, like him, he wished to proclaim his worship

of the God of Things as they are.

But Bacon would not have said that. That is

the language of the historian. The physicist

would most likely have said :
" John Lackland

passed by here. It is all the same to me, for he

will not pass this way again."

We all know that there are good and bad

experiments. The latter accumulate in vain.

Whether there are a hundred or a thousand,

1 V. Past and rresent, end of Chapter I., Book II.—[Tr.]
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one single piece of work by a real master—by a

Pasteur, for example—will be sufficient to sweep

them into oblivion. Bacon w^ould have thoroughly

understood that, for he invented the phrase experi-

mentum cruets; but Carlyle would not have under-

stood it. A fact is a fact. A student has read

such and such a number on his thermometer.

He has taken no precautions. It does not matter;

he has read it, and if it is only the fact which

counts, this is a reality that is as much entitled

to be called a reality as the peregrinations of King

John Lackland. What, then, is a good experiment?

It is that which teaches us something more than

an isolated fact. It is that which enables us to

predict, and to generalise. Without generalisa-

tion, prediction is impossible. The circumstances

under which one has operated will never again

be reproduced simultaneously. The fact observed

will never be repeated. All that can be affirmed

is that under analogous circumstances an analogous

fact will be produced. To predict it, we must

therefore invoke the aid of analogy—that is to say,

even at this stage, w^e must generalise. However
timid we may be, there must be interpolation.

Experiment only gives us a certain number of

isolated points. They must be connected by a

continuous line, and this is a true generahsation.

But more is done. The curve thus traced will

pass between and near the points observed; it

will not pass through the points themselves.

Thus we are not restricted to generalising our
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experiment, we correct it ; and the physicist who
would abstain from these corrections, and really

content himself with experiment pure and simple,

would be compelled to enunciate very extra-

ordinary laws indeed. Detached facts cannot

therefore satisfy us, and that is why our science

must be ordered, or, better still, generalised.

It is often said that experiments should be made
without preconceived ideas. That is impossible.

Not only would it make every experiment fruitless,

but even if we wished to do so, it could not be

done. Every man has his own conception of the

world, and this he cannot so easily lay aside. We
must, for example, use language, and our language

is necessarily steeped in preconceived ideas. Only
they are unconscious preconceived ideas, which

are a thousand times the most dangerous of all.

Shall we say, that if we cause others to intervene of

which we are fully conscious, that we shall only

aggravate the evil? I do not think so. I am
inclined to think that the}^ will serve as ample
counterpoises— I was almost going to say antidotes.

They will generally disagree, they will enter into

conflict one with another, and ipso facto, they will

force us to look at things under different aspects.

This is enough to free us. He is no longer a slave

who can choose his master.

Thus, by generalisation, every fact observed

enables us to predict a large number of others
;

only, we ought not to forget that the first alone

is certain, and that all the others are merely



144 SCIENCE AND HYPOTHESIS.

probable. However solidly founded a prediction

may appear to us, we are never absolutely sure that

experiment will not prove it to be baseless if we
set to work to verify it. But the probability of its

accuracy is often so great that practically we may
be content with it. It is far better to predict

without certainty, than never to have predicted

at all. We should never, therefore, disdain to

verify when the opportunity presents itself. But

every experiment is long and difficult, and the

labourers are few, and the number of facts which

we require to predict is enormous ; and besides

this mass, the number of direct verifications that

we can make will never be more than a negligible

quantity. Of this little that we can directly attain

we must choose the best. Every experiment must

enable us to make a maximum number of predic-

tions having the highest possible degree of prob-

ability. The problem is, so to speak, to increase

the output of the scientific machine. I may be

permitted to compare science to a library which

must go on increasing indefinitely; the librarian

has limited funds for his purchases, and he must,

therefore, strain every nerve not to waste them.

Experimental physics has to make the purchases,

and experimental physics alone can enrich the

library. As for mathematical physics, her duty

is to draw up the catalogue. If the catalogue is

well done the library is none the richer for it ; but

the reader will be enabled to utilise its riches;

and also by showing the librarian the gaps in his
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collection, it \vill help him to make a judicious

use of his funds, which is all the more important,

inasmuch as those funds are entirely inadequate.

That is the rôle of mathematical physics. It

must direct generalisation, so as to increase what
I called just now the output of science. By what
means it does this, and how it may do it without

danger, is what we have now to examine.

The Unity of Nature.—Let us first of all observe

that every generalisation supposes in a certain

measure a belief in the unity and simplicity of

Nature. As far as the unity is concerned, there

can be no difficulty. If the different parts of the

universe were not as the organs of the same body,

they would not re-act one upon the other; they

would nmtually ignore each other, and we in

particular should only know one part. We need

not, therefore, ask if Nature is one, but how she

is one.

As for the second point, that is not so clear. It

is not certain that Nature is simple. Can we
without danger act as if she were ?

There was a time when the simplicity of

Mariotte's law was an argument in favour of its

accuracy: when Fresnel himself, after having said

in a conversation with Laplace that Nature cares

naught for analytical difficulties, was compelled

to explain his words so as not to give offence to

current opinion. Nowadays, ideas have changed

considerably ; but those who do not believe that

natural laws must be simple, are still often obliged

10
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to act as if they did believe it. They cannot

entirely dispense with this necessity without

making all generalisation, and therefore all science,

impossible. It is clear that any fact can be

generalised in an infinite number of ways, and

it is a question of choice. The choice can only

be guided by considerations of simplicity. Let

us take the most ordinary case, that of interpola-

tion. We draw a continuous line as regularly as

possible between the points given by observation.

Why do we avoid angular points and inflexions

that are too sharp ? Why do we not make our

curve describe the most capricious zigzags ? It

is because we know beforehand, or think we know,

that the law we have to express cannot be so

complicated as all that. The mass of Jupiter

may be deduced either from the movements of

his satellites, or from the perturbations of the

major planets, or from those of the minor planets.

If we take the mean of the determinations obtained

by these three methods, we find three numbers

very close together, but not quite identical. This

result might be interpreted by supposing that the

gravitation constant is not the same in the three

cases; the observations would be certainly much
better represented. Why do we reject this inter-

pretation ? Not because it is absurd, but because

it is uselessly complicated. We shall only accept

it when we are forced to, and it is not imposed

upon us yet. To sum up, in most cases every law

is held to be simple until the contrary is proved.
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This custom is imposed upon physicists by the

reasons that I have indicated, but how can it be

justified in the presence of discoveries which daily

show us fresh details, richer and more con^plex?

How can we even reconcile it with the unity of

nature ? For if all things are interdependent,

the relations in which so many different objects

intervene can no longer be simple.

If we study the history of science we see pro-

duced two phenomena which are, so to speak,

each the inverse of the other. Sometimes it is

simplicity which is hidden under what is

apparently complex ; sometimes, on the contrary,

it is simplicity which is apparent, and which
conceals extremely complex realities. What is

there more complicated than the disturbed

motions of the planets, and \\hat more simple

than Newton's law ? There, as Fresnel said.

Nature playing with analytical difficulties, only

uses simple means, and creates by their combina-

tion I know not what tangled skein. Here it is

the hidden simplicity which must be disentangled.

Examples to the contrary abound. In the kinetic

theory of gases, molecules of tremendous velocity

are discussed, whose paths, deformed by incessant

impacts, have the most capricious shapes, and
plough their way through space in every direction.

The result observable is Mariotte's simple law.

Each individual fact was complicated. The law

of great numbers has re-established simplicity in

the mean. Here the simplicity is only apparent.
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and the coarseness of our senses alone prevents us

from seeing the complexity.

Many phenomena obey a law of proportion-

ality. But why? Because in these phenomena

there is something which is very small. The
simple law observed is only the translation of

the general analytical rule by which the infinitely

small increment of a function is proportional

to the increment of the variable. As in reality

our increments are not infinitely small, but only

very small, the law of proportionality is only

approximate, and simplicity is only apparent.

What I have just said applies to the law of the

superposition of small movements, which is so

fruitful in its applications and which is the founda-

tion of optics.

And Newton's law itself? Its simplicity, so

long undetected, is perhaps only apparent. Who
knows if it be not due to some complicated

mechanism, to the impact of some subtle matter

animated by irregular movements, and if it has

not become simple merely through the play of

averages and large numbers? In any case, it

is difficult not to suppose that the true law con-

tains complementary terms which may become

sensible at small distances. If in astronomy they

are negligible, and if the law thus regains its

simplicity, it is solely on account of the enormous

distances of the celestial bodies. No doubt, if our

means of investigation became more and more

penetrating, we should discover the simple beneath
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the complex, and then the complex from the
simple, and then again the simple beneath the
complex, and so on, without ever being able to

predict what the last term will be. We must stop
somewhere, and for science to be possible we must
stop where we have found simplicity. That is the
only ground on which we can erect the edifice of

our generalisations. But, this simplicity being
only apparent, will the ground be solid enough ?

That is what we have now to discover.

For this purpose let us see what part is played
in our generalisations by the belief in simplicity.

We have verified a simple law in a considerable

number of particular cases. We refuse to admit
that this coincidence, so often repeated, is a result

of mere chance, and we conclude that the law
must be true in the general case.

Kepler remarks that the positions of a planet

observed by Tycho are all on the same ellipse.

Not for one moment does he think that, by a
singular freak of chance, Tycho had never looked
at the heavens except at the very moment when
the path of the planet happened to cut that

ellipse. What does it matter then if the simplicity

be real or if it hide a complex truth? Whether it

be due to the influence of great numbers which
reduces individual differences to a level, or to the

greatness or the smallness of certain quantities

which allow of certain terms to be neglected—in

no case is it due to chance. This simplicity, real

or apparent, has always a cause. We shall there-
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fore always be able to reason in the same fashion,

and if a simple law has been observed in several

particular cases, we may legitimately suppose that

it still will be true in analogous cases. To refuse

to admit this would be to attribute an in-

admissible rôle to chance. However, there is a

difference. If the simplicity were real and pro-

found it would bear the test of the increasing

precision of our methods of measurement. If,

then, we believe Nature to *be profoundly simple,

we must conclude that it is an approximate and

not a rigorous simplicity. This is what was
formerly done, but it is what we have no longer

the right to do. The simplicity of Kepler's laws,

for instance, is only apparent ; but that does not

prevent them from being applied to almost all

systems analogous to the solar system, though

that prevents them from being rigorously exact.

Rôle of Hypothesis.—Every generalisation is a

hypothesis. Hypothesis therefore plays a neces-

sary rôle, which no one has ever contested. Only,

it should always be as soon as possible submitted

to verification. It goes without saying that, if it

cannot stand this test, it must be abandoned

without any hesitation. This is, indeed, what

is generally done; but sometimes with a certain

impatience. Ah well ! this impatience is not

justified. The physicist who has just given up

one of his hypotheses should, on the contrary,

rejoice, for he found an unexpected opportunity of

discovery. His hypothesis, I imagine, had not
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been lightly adopted. It took into account all the

known factors which seem capable of intervention

in the phenomenon. If it is not verified, it is

because there is something unexpected and extra-

ordinary about it, because we are on the point

of finding something unknown and new. Has
the hypothesis thus rejected been sterile ? Far
from it. It may be even said that it has rendered

more service than a true hypothesis. Not only

has it been the occasion of a decisive experiment,

but if this experiment had been made by chance,

without the hypothesis, no conclusion could have

been drawn ; nothing extraordinary would have

been seen; and only one fact the more would have

been catalogued, without deducing from it the

remotest consequence.

Now, under what conditions is the use of

hypothesis without danger ? The proposal to

submit all to experiment is not sufficient. Some
hypotheses are dangerous,— first and foremost

those which are tacit and unconscious. And
since we make them without knowing them,

we cannot get rid of them. Here again, there

is a service that mathematical physics may
render us. By the precision which is its char-

acteristic, we are compelled to formulate all the

hypotheses that we would unhesitatingly make
without its aid. Let us also notice that it is

important not to multiply hypotheses indefinitely.

If we construct a theory based upon multiple hypo-

theses, and if experiment condemns it, which of
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the premisses must be changed ? It is impossible

to tell. Conversely, if the experiment succeeds,

must we suppose that it has verified all these

hypotheses at once? Can several unknowns be

determined from a single equation ?

We must also take care to distinguish between

the different kinds of hypotheses. First of all,

there are those which are quite natural and

necessary. It is difficult not to suppose that the

influence of very distant bodies is quite negligible,

that small movements obey a linear law, and that

effect is a continuous function of its cause. I will

say as much for the conditions imposed by

symmetry. All these hypotheses affirm, so to

speak, the common basis of all the theories of

mathematical physics. They are the last that

should be abandoned. There is a second category

of hypotheses which I shall qualify as indifferent.

In most questions the analyst assumes, at the

beginning of his calculations, either that matter is

continuous, or the reverse, that it is formed of

atoms. In either case, his results would have

been the same. On the atomic supposition he has

a little more difficulty in obtaining them—that is

all. If, then, experiment confirms his conclusions,

will he suppose that he has proved, for example,

the real existence of atoms ?

In optical theories two vectors are introduced,

one of which we consider as a velocity and the

other as a vortex. This again is an indifferent

hypothesis, since we should have arrived at the
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same conclusions by assuming the former to be

a vortex and the latter to be a velocity. The
success of the experiment cannot prove, therefore,

that the first vector is really a velocity. It onl\-

proves one thing—namely, that it is a vector;

and that is the only hypothesis that has really

been introduced into the premisses. To give it

the concrete appearance that the fallibility of our

minds demands, it was necessary to consider it

either as a velocity or as a vortex. In the same
way, it was necessary to represent it by an a; or a

y, but the result will not prove that we were right

or wTong in regarding it as a velocity; nor wûU it

prove we are right or wrong in calling it x and
wo\.y.

These indifferent hypotheses are never danger-

ous provided their characters are not misunder-

stood. They may be useful, either as artifices for

calculation, or to assist our understanding by
concrete images, to fix the ideas, as we say. They
need not therefore be rejected. The hypotheses

of the third category are real generalisations.

They must be confirmed or invalidated by experi-

ment. Whether verified or condemned, they will

always be fruitful; but, for the reasons I have
given, they will only be so if they are not too

numerous.

Origin of Mathematical Physics.—Let us go
further and study more closely the conditions

which have assisted the development of mathe-
matical physics. We recognise at the outset that
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the efforts of men of science have alwaj^s tended

to resolve the complex phenomenon given directly

by experiment into a very large number of ele-

mentary phenomena, and that in three different

v^ays.

First, with respect to time. Instead of embracing

in its entirety the progressive development of a

phenomenon, we simpty try to connect each

moment with the one immediately preceding.

We admit that the present state of the world

only depends on the immediate past, without

being directly influenced, so to speak, by the

recollection of a more distant past. Thanks to

this postulate, instead of studying directly the

whole succession of phenomena, we may confine

ourselves to writing down its differential equation;

for the laws of Kepler we substitute the law of

Newton.

Next, we try to decompose the phenomena in

space. What experiment gives us is a confused

aggregate of facts spread over a scene of consider-

able extent. We must try to deduce the element-

ary phenomenon, which will still be localised in a

very small region of space.

A few examples perhaps will make my meaning

clearer. If we wished to study in all its com-

plexity the distribution of temperature in a cooling

solid, we could never do so. This is simply be-

cause, if we only reflect that a point in the solid

can directly impart some of its heat to a neigh-

bouring point, it will immediately impart that
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heat only to the nearest points, and it is but

gradually that the flow of heat will reach other

portions of the solid. The elementary pheno-

menon is the interchange of heat between two

contiguous points. It is strictly localised and

relatively simple if, as is natural, we admit that

it is not influenced by the temperature of the

molecules whose distance apart is small.

I bend a rod: it takes a very complicated form,

the direct investigation of which would be im-

possible. But I can attack the problem, however,

if I notice that its flexure is only the resultant of

the deformations of the very small elements of the

rod, and that the deformation of each of these

elements only depends on the forces which are

directly applied to it, and not in the least on

those which may be acting on the other elements.

In all these examples, which may be increased

without difficulty, it is admitted that there is no

action at a distance or at great distances. That

is an hypothesis. It is not always true, as the law

of gravitation proves. It must therefore be verified.

If it is confirmed, even approximately, it is valu-

able, for it helps us to use mathematical physics,

at any rate by successive approximations. If it

does not stand the test, we must seek something

else that is analogous, for there are other means
of arriving at the elementary phenomenon. If

several bodies act simultaneously, it may happen
that their actions are independent, and may be

added one to the other, either as vectors or as scalar
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quantities. The elementary phenomenon is then

the action of an isolated body. Or suppose, again,

it is a question of small movements, or more
generally of small variations which obey the v^^ell-

known law of mutual or relative independence.

The movement observed will then be decomposed
into simple movements—for example, sound into

its harmonics, and white light into its monochro-

matic components. When we have discovered in

which direction to seek for the elementary pheno-

mena, by what means may we reach it ? First, it

will often happen that in order to predict it, or rather

in order to predict what is useful to us, it will not

be necessary to know its mechanism. The law of

great numbers will suffice. Take for example the

propagation of heat. Each molecule radiates to-

wards its neighbour—we need not inquire accord-

ing to what law; and if we make any supposition

in this respect, it will be an indifferent hypothesis,

and therefore useless and unverifiable. In fact,

by the action of averages and thanks to the

symmetry of the medium, all differences are

levelled, and, whatever the hypothesis may be, the

result is always the same.

The same feature is presented in the theory of

elasticity, and in that of capillarity. The neigh-

bouring molecules attract and repel each other, we
need not inquire by what law. It is enough for us

that this attraction is sensible at small distances

only, and that the molecules are very numerous,

that the medium is symmetrical, and we have
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only to let the law of great numbers come into

play.

Here again the simplicity of the elementary

phenomenon is hidden beneath the complexity of

the observable resultant phenomenon; but in its

turn this simplicity \Yas only apparent and dis-

guised a very complex mechanism. Evidently the

best means of reaching the elementary pheno-

menon would be experiment. It would be neces-

sary by experimental artifices to dissociate the

complex system which nature offers for our in-

vestigations and carefully to study the elements as

dissociated as possible; for example, natural white

light would be decomposed into monochromatic
lights by the aid of the prism, and into polarised

lights by the aid of the polariser. Unfortunately,

that is neither always possible nor always suffi-

cient, and sometimes the mind must run ahead of

experiment. I shall only give one example which

has always struck me rather forcibly. If I de-

compose white light, I shall be able to isolate a

portion of the spectrum, but however small it may
be, it will always be a certain width. In the same
way the natural lights which are called mono-

chromatic give us a very fine array, but a y which
is not, however, infinitely fine. It might be

supposed that in the experimental study of the

properties of these natural lights, by operating

with finer and finer rays, and passing on at last

to the limit, so to speak, we should eventually

obtain the properties of a rigorously mono-
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chromatic light. That would not be accurate.

I assume that two rays emanate from the same
source, that they are first polarised in planes at

right angles, that they are then brought back

again to the same plane of polarisation, and that

we try to obtain interference. If the light were

rigorously monochromatic, there would be inter-

ference; but with our nearly monochromatic
lights, there will be no interference, and that,

however narrow the ray may be. For it to be

otherwise, the ray would have to be several million

times finer than the finest known rays.

Here then we should be led astray by proceeding

to the limit. The mind has to run ahead of the

experiment, and if it has done so with success, it

is because it has allowed itself to be guided by the

instinct of simplicity. The knowledge of the ele-

mentary fact enables us to state the problem in

the form of an equation. It only remains to de-

duce from it by combination the observable and

verifiable complex fact. That is what we call

integration, and it is the province of the mathe-

matician. It might be asked, why in physical

science generalisation so readily takes the

mathematical form. The reason is now easy to

see. It is not only because we have to express

numerical laws; it is because the observable

phenomenon is due to the superposition of a large

number of elementary phenomena which are all

similar to each other ; and in this way differential

equations are quite naturally introduced. It is
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not enough that each elementary phenomenon
should obey simple laws: all those that we have

to combine must obey the same law; then only

is the intervention of mathematics of any use.

Mathematics teaches us, in fact, to combine like

with like. Its object is to divine the result of a

combination without having to reconstruct that

combination element by element. If we have to

repeat the same operation several times, mathe-

matics enables us to avoid this repetition by telling

the result beforehand by a kind of induction.

This I have explained before in the chapter on

mathematical reasoning. But for that purpose

all these operations must be similar; in the con-

trary case we must evidently make up our minds

to working them out in full one after the other,

and mathematics will be useless. It is therefore,

thanks to the approximate homogeneity of the

matter studied by physicists, that mathematical

physics came into existence. In the natural

sciences the following conditions are no longer to

be found:—homogeneity, relative independence of

remote parts, simplicity of the elementary fact;

and that is why the student of natural science is

compelled to have recourse to other modes of

generalisation.



CHAPTER X.

THE THEORIES OF MODERN PHYSICS.

Significance of Physical Theories.—The ephemeral
nature of scientific theories takes by surprise the

man of the world. Their brief period of prosperity

ended, he sees them abandoned one after another
;

he sees ruins piled upon ruins; he predicts that

the theories in fashion to-day will in a short time

succumb in their turn, and he concludes that they

are absolutely in vain. This is what he calls the

bankruptcy of science.

His scepticism is superficial ; he does not take

into account the object of scientific theories and
the part they play, or he would understand that

the ruins may be still good for something. No
theory seemed established on firmer ground than

Fresnel's, which attributed light to the m^ove-

ments of the ether. Then if Maxwell's theory is

to-day preferred, does that mean that Fresnel's

work was in vain ? No; for Fresnel's object was
not to know whether there really is an ether, if it

is or is not formed of atoms, if these atoms really

move in this way or that ; his object was to

predict optical phenomena.

This Fresnel's theory enables us to do to-
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day as well as it did before Maxwell's time. The
differential equations are always true, they may
be always integrated by the same methods, and
the results of this integration still preserve their

value. It cannot be said that this is reducing

ph3'sical theories to simple practical recipes
;

these equations express relations, and if the

equations remain true, it is because the relations

preserve their reality. They teach us now, as they

did then, that there is such and such a relation

between this thing and that ; only, the something

which we then called motion, we now call electric

current. But these are merely names of the images

we substituted for the real objects which Nature

will hide for ever from our eyes. The true relations

between these real objects are the only reality we
can attain, and the sole condition is that the same
relations shall exist between these objects as between

the images we are forced to put in their place. If

the relations are known to us, what does it matter

if we think it convenient to replace one image by

another ?

That a given periodic phenomenon (an electric

oscillation, for instance) is really due to the

vibration of a given atom, which, behaving like

a pendulum, is really displaced in this manner or

that, all this is neither certain nor essential.

But that there is between the electric oscillation,

the movement of the pendulum, and all periodic

phenomena an intimate relationship which corre-

sponds to a profound reality; that this relationship,

II
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this similarity, or rather this paralleHsm, is con-

tinued in the details ; that it is a consequence of

more general principles such as that of the con-

servation of energy, and that of least action ; this

we may affirm ; this is the truth which will ever

remain the same in whatever garb we may see fit

to clothe it.

Many theories of dispersion have been proposed.

The first were imperfect, and contained but little

truth. Then came that of Helmholtz, and this

in its turn was modified in different ways ; its

author himself conceived another theory, founded

on Maxwell's principles. But the remarkable

thing is, that all the scientists who followed

Helmholtz obtain the same equations, although

their starting-points were to all appearance widely

separated. I venture to say that these theories

are all simultaneously true; not merely because

they express a true relation—that between absorp-

tion and abnormal dispersion. In the premisses

of these theories the part that is true is the part

common to all: it is the affirmation of this or

that relation between certain things, which some

call by one name and some by another.

The kinetic theory of gases has given rise to

many objections, to which it would be difficult

to find an answer were it claimed that the theory

is absolutely true. But all these objections do

not alter the fact that it has been useful,

particularly in revealing to us one true relation

^^llich would otherwise have remained profoundly
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hidden—the relation between gaseous and osmotic

pressures. In this sense, then, it may be said to

be true.

When a physicist finds a contradiction between

two theories which are equally dear to him, he

sometimes says: "Let us not be troubled, but let

us hold fast to the two ends of the chain, lest

we lose the intermediate links." This argument

of the embarrassed theologian would be ridiculous

if we were to attribute to physical theories the

interpretation given them by the man of the

world. In case of contradiction one of them at

least should be considered false. But this is no

longer the case if we only seek in them what
should be sought. It is quite possible that they

both express true relations, and that the contra-

dictions only exist in the images we have formed

to ourselves of reality. To those who feel that

we are going too far in our limitations of the

domain accessible to the scientist, I reply: These
questions which we forbid you to investigate,

and which you so regret, are not only insoluble,

they are illusory and devoid of meaning.

Such a philosopher claims that all physics can be

explained by the mutual impact of atoms. If he

simply means that the same relations obtain

between physical phenomena as between the

mutual impact of a large number of billiard

balls—w^ell and good! this is verifiable, and
perhaps is true. But he means something more,

and we think we understand him, because we
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think we know what an impact is. Why? Simply

because we have often watched a game of bilHards.

Are we to understand that God experiences the

same sensations in the contemplation of His

work that we do in watching a game of billiards ?

If it is not our intention to give his assertion

this fantastic meaning, and if we do not wish

to give it the more restricted meaning I have

already mentioned, which is the sound meaning,

then it has no meaning at all. Hypotheses of

this kind have therefore only a metaphorical sense.

The scientist should no more banish them than a

poet banishes metaphor; but he ought to know
what they are worth. They may be useful to

give satisfaction to the mind, and they will do

no harm as long as they are only indifferent

hypotheses.

These considerations explain to us why certain

theories, that were thought to be abandoned and

definitively condemned by experiment, are suddenly

revived from their ashes and begin a new life.

It is because they expressed true relations, and

had not ceased to do so when for some reason or

other we felt it necessary to enunciate the same

relations in another language. Their life had been

latent, as it were.

Barely fifteen years ago, was there anything

more ridiculous, more quaintly old-fashioned, than

the fluids of Coulomb ? And yet, here they are

re-appearing under the name of electrons. In what

do these permanently electrified molecules differ
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from the electric molecules of Coulomb ? It is

true that in the electrons the electricity is sup-

ported by a little, a very little matter ; in other

words, they have mass. Yet Coulomb did not

deny mass to his fluids, or if he did, it was with

reluctance. It would be rash to affirm that the

belief in electrons will not also undergo an eclipse,

but it was none the less curious to note this un-

expected renaissance.

But the most striking example is Carnot's

principle. Carnot established it, starting from

false hypotheses. When it was found that heat

was indestructible, and may be converted into

work, his ideas were completely abandoned
;

later, Clausius returned to them, and to him is

due their definitive triumph. In its primitive

form, Carnot's theory expressed in addition to

true relations, other inexact relations, the débris

of old ideas ; but the presence of the latter did

not alter the reality of the others. Clausius had

only to separate them, just as one lops off dead

branches.

The result was the second fundamental law of

thermodynamics. The relations were always the

same, although they did not hold, at least to all

appearance, between the same objects. This was
sufficient for the principle to retain its value.

Nor have the reasonings of Carnot perished on
this account ; they were applied to an imperfect

conception of matter, but their form

—

i.e., the

essential part of them, remained correct. What
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I have just said throws some hght at the same
time on the rôle of general principales, such as

those of the principle of least action or of the

conservation of energy. These principles are of

very great value. They were obtained in the

search for what there was in common in the

enunciation of numerous physical laws ; they

thus represent the quintessence of innumerable

observations. However, from their very generality

results a consequence to which I have called

attention in Chapter VU I.—namely, that they are

no longer capable of verification. As we cannot

give a general definition of energy, the principle

of the conservation of energy simply signifies that

there is a something which remains constant.

Whatever fresh notions of the world may be

given us by future experiments, we are certain

beforehand that there is something which remains

constant, and which may be called energy. Does
this mean that the principle has no meaning and
vanishes into a tautology ? Not at all. It means
that the different things to which we give the

name of energy are connected by a true relation-

ship ; it affirms between them a real relation.

But then, if this principle has a meaning, it may
be false ; it may be that we have no right to

extend indefinitely its applications, and yet it is

certain beforehand to be verified in the strict

sense of the word. How, then, shall we know
when it has been extended as far as is legitimate ?

Simply when it ceases to be useful to us

—

i.e..
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when we can no longer use it to predict correctly

new phenomena. We shall be certain in such a

case that the relation affirmed is no. longer real,

for otherwise it would be fruitful ; experiment

without directly contradicting a new extension of

the principle will nevertheless have condemned it.

Physics and Mechanism.—Most theorists have a

constant predilection for explanations borrowed

from physics, mechanics, or dynamics. Some

would be satisfied if they could account for all

phenomena by the motion of molecules attracting

one another according to certain laws. Others

are more exact ; they would suppress attractions

acting at a distance ; their molecules would follow

rectilinear paths, from which they would only be

deviated by impacts. Others again, such as Hertz,

suppress the forces as well, but suppose their

molecules subjected to geometrical connections

analogous, for instance, to those of articulated

systems; thus, they wish to reduce dynamics to a

kind of kinematics. In a word, they all wish to

bend nature into a certain form, and unless they

can do this they cannot be satisfied. Is Nature

flexible enough for this ?

We shall examine this question in Chapter XII.,

apropos of Maxwell's theory. Every time that the

principles of least action and energy are satisfied,

we shall see that not only is there always a

mechanical explanation possible, but that there

is an unlimited number of such explanations. By
means of a well-known theorem due to Konigs,
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it may be shown that we can explain everything

in an unhmited number of ways, by connections

after the manner of Hertz, or, again, by central

forces. No doubt it may be just as easily de-

monstrated that everything may be explained by

simple impacts. For this, let us bear in mind
that it is not enough to be content with the

ordinary matter of which we are aw^are by means
of our senses, and the movements of which we
observe directly. We may conceive of ordinary

matter as either composed of atoms, whose internal

movements escape us, our senses being able to

estimate only the displacement of the whole ; or

we may imagine one of those subtle fluids, which

under the name of ether or other names, have

from all time played so important a rôle in

physical theories. Often we go further, and regard

the ether as the only primitive, or even as the

only true matter. The more moderate consider

ordinary matter to be condensed ether, and
there is nothing startling in this conception; but

others only reduce its importance still further,

and see in matter nothing more than the geo-

metrical locus of singularities in the ether. Lord
Kelvin, for instance, holds' what we call matter

to be only the locus of those points at which the

ether is animated by vortex motions. Riemann
believes it to be locus of those points at which
ether is constantly destro3-ed ; to Wiechert or

Larmor, it is the locus of the points at which

the ether has undergone a kind of torsion of a
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veiy particular kind. Taking any one of these

points of view, I ask by what right do we apply

to the ether the mechanical properties observed

in ordinary matter, which is but false matter ?

The ancient fluids, caloric, electricity, etc., were

abandoned when it was seen that heat is not

indestructible. But they were also laid aside

for another reason. In materialising them, their

individuality was, so to speak, emphasised—gaps

were opened between them ; and these gaps had

to be filled in when the sentiment of the unity of

Nature became stronger, and when the intimate

relations which connect all the parts were per-

ceived. In multiplying the fluids, not only did

the ancient physicists create unnecessary entities,

but they destroyed real ties. It is not enough for

a theory not to affirm false relations ; it must not

conceal true relations.

Does our ether actually exist ? We know the

origin of our belief in the ether. If light takes

several years to reach us from a distant star, it

is no longer on the star, nor is it on the earth.

It must be somewhere, and supported, so to speak,

by some material agency.

The same idea may be expressed in a more

mathematical and more abstract form. What we

note are the changes undergone by the material

molecules. We see, for instance, that the photo-

graphic plate experiences the consequences of a

phenomenon of which the incandescent mass of

a star was the scene several years before. Now,
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in ordinary mechanics, the state of the system

under consideration depends only on its state at

the moment immediately preceding ; the system

therefore satisfies certain differential equations.

On the other hand, if we did not believe in the

ether, the state of the material universe would

depend not only on the state immediately pre-

ceding, but also on much older states ; the system

would satisfy equations of finite differences. The
ether was invented to escape this breaking down
of the laws of general mechanics.

Still, this would only compel us to fill the

interplanetary space with ether, but not to

make it penetrate into the midst of the material

media. Fizeau's experiment goes further. By
the interference of rays which have passed

through the air or water in motion, it seems to

show us two different media penetrating each

other, and yet being displaced with respect to

each other. The ether is all but in our grasp.

Experiments can be conceived in which we come
closer still to it. Assume that Newton's principle

of the equality of action and re-action is not true

if applied to matter alone, and that this can be

proved. The geometrical sum of all the forces

applied to all the molecules would no longer be

zero. If we did not wish to change the whole of the

science of mechanics, we should have to introduce

the ether, in order that the action which matter

apparently undergoes should be counterbalanced

by the re-action of matter on something.



THE THEORIES OF MODERN PHYSICS. I7I

Or again, suppose we discover that optical and
electrical phenomena are influenced by the motion

of the earth. It would follow that those pheno-

mena might reveal to us not only the relative

motion of material bodies, but also what would

seem to be their absolute motion. Again, it would

be necessary to have an ether in order that these

so-called absolute movements should not be their

displacements with respect to empty space, but

with respect to something concrete.

Will this ever be accomplished ? I do not

think so, and I shall explain why ; and yet, it is

not absurd, for others have entertained this view.

For instance, if the theory of Lorentz, of which I

shall speak in more detail in Chapter XIII., were

true, Newton's principle would not apply to matter

alone, and the difference would not be very far

from being within reach of experiment. On the

other hand, many experiments have been made
on the influence of the motion of the earth. The
results have always been negative. But if these

experiments have been undertaken, it is because

we have not been certain beforehand; and indeed,

according to current theories, the compensation

would be only approximate, and we might expect

to find accurate methods giving positive results.

I think that such a hope is illusory ; it was none

the less interesting to show that a success of this

kind would, in a certain sense, open to us a new
world.

And now allow me to make a digression ;
I
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must explain why I do not believe, in spite of

Lorentz, that more exact observations will ever

make evident anything else but the relative dis-

placements of material bodies. Experiments have

been made that should have disclosed the terms

of the first order; the results were nugatory.

Could that have been by chance ? No one has

admitted this ; a general explanation was sought,

and Lorentz found it. He showed that the terms

of the first order should cancel each other, but

not the terms of the second order. Then more
exact experiments were made, which were also

negative ; neither could this be the result of

chance. An explanation was necessary, and was
forthcoming ; they always are ; hypotheses are

what we lack the least. But this is not enough.

Who is there who does not think that this leaves

to chance far too important a rôle ? Would it

not also be a chance that this singular concurrence

should cause a certain circumstance to destroy the

terms of the first order, and that a totally different

but very opportune circumstance should cause

those of the second order to vanish? No; the

same explanation must be found for the two
cases, and everything tends to show that this

explanation would serve equally well for the

terms of the higher order, and that the mutual

destruction of these terms will be rigorous and
absolute.

The Prescrit State of Physics.—Two opposite

tendencies may be distinguished in the history
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of the development of physics. On the one hand,

new relations are continuall}' being discovered

between objects which seemed destined to remain

for ever unconnected ; scattered facts cease to be

strangers to each other and tend to be marshalled

into an imposing synthesis. The march of science

is towards unity and simplicity.

On the other hand, new phenomena are con-

tinually being revealed; it will be long before

they can be assigned their place—sometimes it

may happen that to find them a place a corner of

the edifice must be demolished. In the same way,

we are continually perceiving details ever more

varied in the phenomena we know, where our

crude senses used to be unable to detect any lack

of unity. What we thought to be simple becomes

complex, and the march of science seems to be

towards diversity and complication.

Here, then, are two opposing tendencies, each of

which seems to triumph in turn. Which will win ?

If the first wins, science is possible ; but nothing

proves this à priori, and it may be that after

unsuccessful efforts to bend Nature to our ideal of

unity in spite of herself, we shall be submerged by

the ever-rising flood of our new riches and com-

pelled to renounce all idea of classification—to

abandon our ideal, and to reduce science to the

mere recording of innumerable recipes.

In fact, we can give this question no answer.

All that we can do is to observe the science of

to-day, and compare it with that of yesterday.
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No doubt after this examination we shall be in a

position to offer a few conjectures.

Half-a-century ago hopes ran high indeed. The
unity of force had just been revealed to us by the

discovery of the conservation of energy and of its

transformation. This discovery also showed that

the phenomena of heat could be explained by

molecular movements. Although the nature of

these movements was not exactly known, no one

doubted but that they would be ascertained before

long. i\s for light, the work seemed entirely com-
pleted. So far as electricity was concerned, there

was not so great an advance. Electricity had just

annexed magnetism. This was a considerable and
a definitive step towards unit}'. But how was
electricity in its turn to be brought into the

general unity, and how was it to be included in

the general universal mechanism ? No one had

the slightest idea. As to the possibility of the in-

clusion, all were agreed ; they had faith. Finally,

as far as the molecular properties of material

bodies are concerned, the inclusion seemed easier,

but the details were very hazy. In a word, hopes

were vast and strong, but vague.

To-day, what do we see ? In the first place, a

step in advance—immense progress. The relations

between light and electricity are now known ; the

three domains of light, electricity, and magnetism,

formerly separated, are now one ; and this annexa-

tion seems definitive.

Nevertheless the conquest has caused us some
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sacrifices. Optical phenomena become particular

cases in electric phenomena; as long as the former

remained isolated, it was easy to explain them by

movements which were thought to be known in

all their details. That was easy enough ;
but any

explanation to be accepted must now cover the

whole domain of electricity. This cannot be done

without difficulty.

The most satisfactory theory is that of Lorentz;

it is unquestionably the theory that best explains

the known facts, the one that throws into relief

the greatest number of known relations, the one in

which we find most traces of definitive construc-

tion. That it still possesses a serious fault I

have shown above. It is in contradiction with

Newton's law that action and re-action are equal

and opposite—or rather, this principle according

to Lorentz cannot be applicable to matter alone
;

if it be true, it must take into account the action

of the ether on matter, and the re-action of the

matter on the ether. Now, in the new order, it is

very likely that things do not happen in this way.

However this may be, it is due to Lorentz that

the results of Fizeau on the optics of moving

bodies, the laws of normal and abnormal dis-

persion and of absorption are connected with

each other and with the other properties of the

ether, by bonds which no doubt will not be

readily severed. Look at the ease with which the

new Zeeman phenomenon found its place, and

even aided the classification of Faraday's magnetic
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rotation, which had defied all Maxwell's efforts.

This facility proves that Lorentz's theory is not a

mere artificial combination which must eventually

find its solvent. It will probably have to be

modified, but not destroyed.

The only object of Lorentz was to include in a

single whole all the optics and electro-dynamics

of moving bodies ; he did not claim to give a

mechanical explanation. Larmor goes further
;

keeping the essential part of Lorentz's theory, he

grafts upon it, so to speak, MacCullagh's ideas on

the direction of the movement of the ether.

MacCullagh held that the velocity of the ether

is the same in magnitude and direction as the

magnetic force. Ingenious as is this attempt, the

fault in Lorentz's theory remains, and is even

aggravated. According to Lorentz, we do not

know what the movements of the ether are; and

because we do not know this, we may suppose

them to be movements compensating those of

matter, and re-affirming that action and re-action

are equal and opposite. According to Larmor

we know the movements of the ether, and we
can prove that the compensation does not take

place.

If Larmor has failed, as in my opinion he has,

does it necessarily follow that a mechanical ex-

planation is impossible ? Far from it. I said

above that as long as a phenomenon obeys the

two principles of energy and least action, so long

it allows of an unlimited number of mechanical
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explanations. And so with the phenomena of

optics and electricity.

But this is not enough. For a mechanical

explanation to be good it must be simple ; to

choose it from among all the explanations that are

possible there must be other reasons than the

necessity of making a choice. Well, we have no

theory as yet which wall satisfy this condition and

consequently be of any use. Are we then to

complain ? That would be to forget the end we
seek, which is not the mechanism ; the true and

only aim is unity.

We ought therefore to set some limits to

our ambition. Let us not seek to formulate a

mechanical explanation ; let us be content to

show that we can always find one if we wish. In

this we have succeeded. The principle of the

conservation of energy has always been confirmed,

and now it has a fellow in the principle of least

action, stated in the form appropriate to physics.

This has also been verified, at least as far as

concerns the reversible phenomena which obey

Lagrange's equations—in other words, which obey

the most general laws of physics. The irreversible

phenomena are much more difficult to bring into

line; but they, too, are being co-ordinated and

tend to come into the unity. The light which

illuminates them comes from Carnot's principle.

For a long time thermo-dynamics was confined to

the study of the dilatations of bodies and of their

change of state. For some time past it has been
12
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growing bolder, and has considerably extended its

domain. We owe to it the theories of the voltaic

cell and of their thermo-electric phenomena; there

is not a corner in physics which it has not ex-

plored, and it has even attacked chemistry itself.

The same laws hold good ; everywhere, disguised

in some form or other, we find Carnot's principle
;

everywhere also appears that eminently abstract

concept of entropy which is as universal as the

concept of energy, and like it, seems to conceal a

reality. It seemed that radiant heat must escape,

but recently that, too, has been brought under the

same laws.

In this way fresh analogies are revealed which

may be often pursued in detail ; electric resistance

resembles the viscosity of fluids ; hysteresis would

rather be like the friction of solids. In all cases

friction appears to be the type most imitated by

the most diverse irreversible phenomena, and this

relationship is real and profound.

A strictly mechanical explanation of these

phenomena has also been sought, but, owing to

their nature, it is hardly likely that it will be

found. To find it, it has been necessary to

suppose that the irreversibility is but apparent, that

the elementary phenomena are reversible and obey

the known laws of dynamics. But the elements

are extremely numerous, and become blended

more and more, so that to our crude sight all

appears to tend towards uniformity

—

i.e., all seems

to progress in the same direction, and that without
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hope of return. The apparent irreversibihty is

therefore but ap effect of the law of great numbers.

Only a being of infinitely subtle senses, such as

Maxwell's demon, could unravel this tangled skein

and turn back the course of the universe.

This conception, which is connected with the

kinetic theory of gases, has cost great effort and

has not, on the whole, been fruitful ; it may
become so. This is not the place to examine if it

leads to contradictions, and if it is in conformity

with the true nature of things.

Let us notice, however, the original ideas of

M. Gouy on the Brownian movement. According

to this scientist, this singular movement does not

obey Carnot's principle. The particles which it sets

moving would be smaller than the meshes of that

tightly drawn net; they would thus be ready to

separate them, and thereby to set back the course

of the universe. One can almost see Maxwell's

demon at work.^

To resume, phenomena long known are gradually

being better classified, but new phenomena come
to claim their place, and most of them, like the

Zeeman effect, find it at once. Then we have the

cathode rays, the X-rays, uranium and radium

rays; in fact, a whole world of which none had

suspected the existence. How many unexpected

^ Clerk-Maxwell imagined some supernatural agency at work,

sorting molecules in a gas of uniform temperature into {a) those

possessing kinetic energy above the average, {0) those possessing

kinetic energy below the average. *—[Tr.]
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guests to find a place for ! No one can yet predict

the place they will occupy, but I do not believe

they will destroy the general unity ; I think that

they will rather complete it. On the one hand,

indeed, the new radiations seem lo be connected

with the phenomena of luminosity; not only do

they excite fluorescence, but they sometimes come
into existence under the same conditions as that

property; neither are they unrelated to the cause

which produces the electric spark under the action

of ultra-violet light. Finally, and most important

of all, it is believed that in all these phenomena
there exist ions, animated, it is true, with velocities

far greater than those of electrolytes. x\ll this is

very vague, but it will all become clearer.

Phosphorescence and the action of light on the

spark were regions rather isolated, and consequently

somewhat neglected by investigators. It is to be

hoped that a new path will now^ be made which

will facilitate their communications with the

rest of science. Not only do we discover new
phenomena, but those we think we know are

revealed in unlooked-for aspects. In the free ether

the laws preserve their majestic simplicity, but

matter properly so called seems more and more
complex ; all we can say of it is but approximate,

and our formulae are constantly requiring new
terms.

But the ranks are unbroken, the relations that

we have discovered between objects we thought

simple still hold good between the same objects
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when their complexity is recognised, and that

alone is the important thing. Our equations

become, it is true, more and more complicated, so

as to embrace more closely the complexity of

nature ; but nothing is changed in the relations

which enable these equations to be derived from

each other. In a word, the form of these equations

persists. Take for instance the laws of reflection.

Fresnel established them by a simple and attractive

theory which experiment seemed to confirm. Sub-

sequently, more accurate researches have shown
that this verification was but approximate; traces

of elliptic polarisation were detected everywhere.

But it is owing to the first approximation that the

cause of these anomalies was found in the existence

of a transition layer, and all the essentials of

Fresnel's theory have remained. We cannot help

reflecting that all these relations would never have

been noted if there had been doubt in the first

place as to the complexity of the objects they

connect. Long ago it was said: If Tycho had had

instruments ten times as precise, we would never

have had a Kepler, or a Newton, or Astronomy.

It is a misfortune for a science to be born too late,

when the means of observation have become too

perfect. That is what is happening at this moment
with respect to physical chemistry; the founders

are hampered in their general grasp by third and

fourth decimal places; happily they are men of

robust faith. As we get to know the properties

of matter better we see that continuity reigns.
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From the work of Andrews and Van der Waals,

we see how the transition from the Hquid to the

gaseous state is made, and that it is not abrupt.

Similar!}^, there is no gap between the Hquid and

sohd states, and in the proceedings of a recent

Congress we see memoirs on the rigidity of Hquids

side by side with papers on the flow of solids.

With this tendency there is no doubt a loss of

simplicity. Such and such an effect was represented

by straight lines; it is now necessary to connect

these lines by more or less complicated curves.

On the other hand, unity is gained. Separate

categories quieted but did not satisfy the mind.

Finally, a new domain, that of chemistry, has

been invaded by the method of physics, and we see

the birth of physical chemistry. It is still quite

young, but already it has enabled us to connect

such phenomena as electrolysis, osmosis, and the

movements of ions.

From this cursory exposition what can we con-

clude? Taking all things into account, we have

approached the realisation of unity. This has not

been done as quickly as was hoped fifty years ago,

and the path predicted has not always been

followed; but, on the whole, much ground has

been gained.



CHAPTER XI.

THE CALCULUS OF PROBABILITIES.

No doubt the reader will be astonished to find

reflections on the calculus of probabilities in such

a volume as this. What has that calculus to do

with physical science ? The questions I shall raise

—without, however, giving them a solution— are

naturally raised by the philosopher who is examin-

ing the problems of physics. So far is this the case,

that in the two preceding chapters I have several

times used the words '"probability" and "chance."
" Predicted facts," as I said above, " can only be

probable." However solidly founded a predic-

tion may appear to be, we are never absolutely

certain that experiment will not prove it false; but

the probability is often so great that practically

it may be accepted. And a little farther on I

added:—"See what a part the belief in simplicity

plays in our generalisations. We have verified a

simple law in a large number of particular cases,

and we refuse to admit that this so-often-repeated

coincidence is a mere effect of chance." Thus, in a

multitude of circumstances the physicist is often

in the same position as the gambler who reckons

up his chances. Every time that he reasons by
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induction, he more or less consciously requires the

calculus of probabilities, and that is why I am
obliged to open this chapter parenthetically, and to

interrupt our discussion of method in the physical

sciences in order to examine a little closer what this

calculus is worth, and what dependence we may
place upon it. The very name of the calculus of

probabilities is a paradox. Probability as opposed

to certainty is what one does not know, and how
can we calculate the unknown ? Yet many eminent

scientists have devoted themselves to this calculus,

and it cannot be denied that science has drawn there-

from no small advantage. How can we explain

this apparent contradiction ? Has probability been

defined ? Can it even be defined ? And if it can-

not, how can we venture to reason upon it ? The
definition, it will be said, is very simple. The
probability of an event is the ratio of the number

of cases favourable to the event to the total number

of possible cases. A simple example will show how
incomplete this definition is:— I throw two dice.

What is the probability that one of the two

at least turns up a 6 ? Each can turn up in six

different ways; the number of possible cases is

6 X 6 = 36. The number of favourable cases is 11
;

the probability is i^. That is the correct solution.

But why cannot we just as well proceed as follows?

—The points which turn up on the two dice form

^-^ = 21 different combinations. Among these

combinations, six are favourable ; the probability
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is — Now why is the first method of calculating

the number of possible cases more legitimate than

the second ? In any case it is not the definition

that tells us. We are therefore bound to complete

the definition by saying, ''
. . . to the total number

of possible cases, provided the cases are equally

probable." So we are compelled to define the

probable by the probable. How can we know
that two possible cases are equally probable ?

Will it be b}' a convention ? If we insert at the

beginning of every problem an explicit convention,

well and good ! We then have nothing to do but to

apply the rules of arithmetic and algebra, and we
complete our calculation, when our result cannot

be called in question. But if we wish to make the

slightest application of this result, we must prove

that our convention is legitimate, and we shall find

ourselves in the presence of the very difficulty we
thought we had avoided. It may be said that

common-sense is enough to show us the convention

that should be adopted. Alas ! M. Bertrand has

amused himself by discussing the following simple

problem :
—

" W^hat is the probability that a chord

of a circle may be greater than the side of the

inscribed equilateral triangle?" The illustrious

geometer successively adopted two conventions

which seemed to be equally imperative in the eyes

of common-sense, and with one convention he finds

^, and with the other J. The conclusion which

seems to follow from this is that the calculus of

probabilities is a useless science, that the obscure
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instinct which we call common-sense, and to which

we appeal for the legitimisation of our conventions,

must be distrusted. But to this conclusion we can

no longer subscribe. We cannot do without that

obscure instinct. Without it, science would be

impossible, and without it we could neither discover

nor apply a law. Have we any right, for instance,

to enunciate Newton's law ? No doubt numerous

observations are in agreement with it, but is not

that a simple fact of chance ? and how do we know,

besides, that this law which has been true for so

man}^ generations will not be untrue in the next ?

To this objection the only answer you can give is:

It is very improbable. But grant the law. By
means of it I can calculate the position of Jupiter

in a year from now. Yet have I any right to sa}-

this? Who can tell if a gigantic mass of enormous

velocity is not going to pass near the solar system

and produce unforeseen perturbations ? Here

again the only answer is : It is ver}' improbable.

From this point of view all the sciences would only

be unconscious applications of the calculus of prob-

abilities. And if this calculus be condemned, then

the whole of the sciences must also be condemned.

I shall not dwell at length on scientific problems

in which the intervention of the calculus of prob-

abilities is more evident. In the forefront of these

is the problem of interpolation, in which, knowing

a certain number of values of a function, we try

to discover the intermediary values. I may also

mention the celebrated theory of errors of observa-
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tion, to which I shall return later; the kinetic

theory of gases, a well-known hypothesis wherein

each gaseous molecule is supposed to describe an

extremely complicated path, but in which, through

the effect of great numbers, the mean phenomena
which are all we observe obey the simple laws of

Mariotte and Gay-Lussac. All these theories are

based upon the laws of great numbers, and the

calculus of probabilities would evidently involve

them in its ruin. It is true that they have only a

particular interest, and that, save as far as inter-

polation is concerned, they are sacrifices to which

we might readily be resigned. But I have said

above, it would not be these partial sacrifices that

would be in question ; it would be the legitimacy

of the whole of science that would be challenged.

I quite see that it might be said: We do not know,

and yet we must act. As for action, we have not

time to devote ourselves to an inquiry that will

suffice to dispel our ignorance. Besides, such an

inquiry would demand unlimited time. We must

therefore make up our minds without knowing.

This must be often done whatever may happen,

and we must follow the rules although we may
have but little confidence in them. What I know
is, not that such a thing is true, but that the best

course for me is to act as if it were true. The
calculus of probabilities, and therefore science

itself, would be no longer of any practical value.

Unfortunately the difficulty does not thus dis-

appear. A gambler wants to try a coup^ and he
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asks my advice. If I give it him, I use the

calculus of probabilities; but I shall not guarantee

success. That is what I shall call subjective prob-

ability. In this case wc might be content with the

explanation of which I have just given a sketch.

But assume that an observer is present at the play,

that he knows of the coup, and that play goes

on for a long time, and that he makes a summary
of his notes. He will find that events have

taken place in conformit}^ with the laws of the

calculus of probabilities. That is what I shall call

objective probability, and it is this phenomenon
which has to be explained. There are numerous
Insura"nce Societies which apply the rules of the

calculus of probabilities, and they distribute to

their shareholders dividends, the objective reality

ofwhich cannot be contested. In order to explain

them, we must do more than invoke our ignorance

and the necessity of action. Thus, absolute scepti-

cism is not admissible. We may distrust, but we
cannot condemn en bloc. Discussion is necessar}-.

I. Classijication of the Problems of Probability.—In

order to classif}' the problems which are presented

to us with reference to probabilities, we must look at

them from different points of view, and first of all,

from that of (generality. I said above that prob-

ability is the ratio of the number of favourable to

the number of possible cases. What for want of a

better term I call generality will increase with the

number of possible cases. This number may be

finite, as, for instance, if we take a throw of the
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dice in which the number of possible cases is 36.

That is the first degree of generaHty. But if we
ask, for instance, what is the probabihty that a

point within a circle is within the inscribed square,

there are as many possible cases as there are points

in the circle—that is to say, an infinite number.

This is the second degree of generality. Generality

can be pushed further still. We may ask the prob-

ability that a function will satisfy a given condi-

tion. There are then as many possible cases as one

can imagine different functions. This is the third

degree of generality, which we reach, for instance,

when we try to find the most probable law after a

finite number of observations. Yet we may place

ourselves at a quite different point of view. If we
were not ignorant there would be no probability,

there could only be certainty. But our ignorance

cannot be absolute, for then there would be no

longer any probability at all. Thus the problems

of probability may be classed according to the

greater or less depth of this ignorance. In mathe-

matics we may set ourselves problems in prob-

ability. What is the probability that the fifth

decimal of a logarithm taken at random from a

table is a g. There is no hesitation in answering

that this probability is i-ioth. Here we possess

all the data of the problem. We can calculate

our logarithm without having recourse to the

table, but we need not give ourselves the trouble.

This is the first degree of ignorance. In the

physical sciences our ignorance is already greater.
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The state of a system at a given moment depends

on two things—its initial state, and the law

according to which that state varies. If we know
both this law and this initial state, we have a

simple mathematical problem to solve, and we
fall back upon our first degree of ignorance.

Then it often happens that we know the law

and do not know the initial state. It may be

asked, for instance, what is the present distribu-

tion of the minor planets ? We know that from

all time they have obeyed the laws of Kepler,

but we do not know what was their initial dis-

tribution. In the kinetic theory of gases we
assume that the gaseous molecules follow recti-

linear paths and obey the laws of impact and
elastic bodies; yet as we know^ nothing of their

initial velocities, we know nothing of their present

velocities. The calculus of probabilities alone

enables us to predict the mean phenomena which

will result from a combination of these velocities.

This is the second degree of ignorance. Finally

it is possible, that not only the initial conditions

but the laws themselves are unknown. We then

reach the third degree of ignorance, and in general

we can no longer affirm anything at all as to the

probability of a phenomenon. It often happens

that instead of trying to discover an event by

means of a more or less imperfect knowledge of

the law, the events may be known, and we want

to find the law; or that, instead of deducing

effects from causes, we wish to deduce the causes
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from the effects. Now, these problems are classified

d.?, probability of causes, and are the most interesting

of all from their scientific applications. I play at

écarté with a gentleman whom I know to be per-

fectly honest. What is the chance that he turns

up the king? It is \. This is a problem of the

probability of effects. I play with a gentleman

whom I do not know. He has dealt ten times,

and he has turned the king up six times. What
is the chance that he is a sharper ? This is a

problem in the probability of causes. It may be

said that it is the essential problem of the experi-

mental method. I have observed n values of x

and the corresponding values of y. I have found

that the ratio of the latter to the former is prac-

tically constant. There is the event ; what is

the cause ? Is it probable that there is a general

law according to which y would be proportional

to X, and that small divergencies are due to errors

of observation ? This is the type of question that

we are ever asking, and which we unconsciously

solve whenever we are engaged in scientific work.

I am now going to pass in review these different

categories of problems by discussing in succession

what I have called subjective and objective prob-

ability.

II. Probability in Mathematics.—The impossi-

bility of squaring the circle was shown in 1885, but

before that date all geometers considered this im-

possibility as so "probable" that the Académie des

Sciences rejected without examination the, alas !



ig2 SCIENCE AND HYPOTHESIS.

too numerous memoirs on this subject that a

few unhappy madmen sent in every year. Was
the Académie wrong ? Evidently not, and it

knew perfectly well that by acting in this

manner it did not run the least risk of stifling

a discovery of moment. The Académie could

not have proved that it was right, but it knew
quite well that its instinct did not deceive it.

If you had asked the Academicians, they would

have answered :
" We have compared the prob-

ability that an unknown scientist should have

found out what has been vainly sought for so

long, with the probability that there is one mad-

man the more on the earth, and the latter has

appeared to us the greater." These are very

good reasons, but there is nothing mathematical

about them; they are purely psychological. If

you had pressed them further, they w^ould have

added: " Why do you expect a particular value of

a transcendental function to be an algebraical

number; if tt be the root of an algebraical equa-

tion, why do you expect this root to be a period of

the function sin 2x, and why is it not the same

with the other roots of the same equation?" To
sum up, they would have invoked the principle of

sufficient reason in its vaguest form. Yet what

information could they draw from it ? At most a

rule of conduct for the employment of their time,

which would be more usefully spent at their

ordinary work than in reading a lucubration

that inspired in them a legitimate distrust. But
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what I called above objective probability has

nothing in common with this first problem. It is

otherwise with the second. Let us consider the

first 10,000 logarithms that we find in a table.

Among these 10,000 logarithms I take one at

random. What is the probability that its third

decimal is an even number ? You will say with-

out any hesitation that the probability is J, and in

fact if you pick out in a table the third decimals

in these 10,000 numbers you will find nearly as

many even digits as odd. Or, if you prefer it, let

us write 10,000 numbers corresponding to our

10,000 logarithms, writing down for each of these

numbers + i if the third decimal of the correspond-

ing logarithm is even, and - 1 if odd; and then

let us take the mean of these 10,000 numbers. I

do not hesitate to say that the mean of these

10,000 units is probably zero, and if I were to

calculate it practically, I would verify that it is

extremely small. But this verification is needless.

I might have rigorously proved that this mean is

smaller than 0.003. To prove this result I should

have had to make a rather long calculation for

which there is no room here, and for which I

may refer the reader to an article that I pub-

lished in the Revue générale des Sciences, April

15th, 189g. The only point to which I wish to

draw attention is the following. In this calcula-

tion I had occasion to rest my case on only two

facts—namely, that the first and second derivatives

of the logarithm remain, in the interval considered,

13



194 SCIENCE AND HYPOTHESIS.

between certain limits. Hence our first conclusion

is that the property is not only true of the

logarithm but of any continuous function what-

ever, since the derivatives of every continuous

function are limited. If I was certain beforehand

of the result, it is because I have often observed

analogous facts for other continuous functions; and

next, it is because I went through in my mind in

a more or less unconscious and imperfect manner

the reasoning which led me to the preceding in-

equalities, just as a skilled calculator before finish-

ing his multiplication takes into account what it

ought to come to approximately. And besides,

since what I call my intuition was only an incom-

plete summary of a piece of true reasoning, it is

clear that observation has confirmed my predic-

tions, and that the objective and subjective proba-

bilities are in agreement. As a third example I shall

choose the following:—The number u is taken at

random and n is a given very large integer. What
is the mean value of sin nu ? This problem has

no meaning by itself. To give it one, a convention

is required—namely, we agree that the probability

for the number u to lie between a and a + da is

(t>{a)da; that it is therefore proportional to the

infinitely small interval da, and is equal to this

multiplied by a function </)(rz), only depending

on a. As for this function I choose it arbitrarily,

but I must assume it to be continuous. The value

of sin nu remaining the same when ti increases by

2 TT, I may without loss of generality assume that
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u lies between o and 2 tt, and I shall thus be
led to suppose that <l^{a) is a periodic function
whose period is 2 tt. The mean value that we
seek is readily expressed by a simple integral,

and it is easy to show that this integral is smaller
2-M -

*^^^
~7J^'

•^^'^' being the maximum value of the

Kth derivative of <f>{u). We see then that if the
Kth derivative is finite, our mean value will

tend towards zero when n increases indefinitely,

and that more rapidly than ^. The mean

value of sin nn when n is very large is therefore

zero. To define this value I required a conven-
tion, but the result remains the same whatever
that convention may he. I have imposed upon
myself but slight restrictions when I assumed that

the function (^{a) is continuous and periodic, and
these hypotheses are so natural that we may ask
ourselves how they can be escaped. Examination
of the three preceding examples, so different in all

respects, has already given us a glimpse on the
one hand of the rôle of what philosophers call the

principle of sufficient reason, and on the other hand
of the importance of the fact that certain pro-

perties are common to all continuous functions.

The study of probability in the physical sciences

will lead us to the same result.

III. Probability in the Physical Sciences.—We
now come to the problems which are connected
with what I have called the second degree of
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ignorance—namely, those in which we know the

law but do not know the initial state of the

system. I could multiply examples, but I shall

take only one. What is the probable present

distribution of the minor planets on the zodiac ?

We know they obey the laws of Kepler. We may
even, without changing the nature of the problem,

suppose that their orbits are circular and situated

in the same plane, a plane which we are given.

On the other hand, we know absolutely nothing

about their initial distribution. However, we do

not hesitate to affirm that this distribution is now
nearly uniform. Why? Let b be the longitude

of a minor planet in the initial epoch—that is to

say, the epoch zero. Let a be its mean motion.

Its longitude at the present time

—

i.e.^ at the time

t will be at + h. To say that the present distribu-

tion is uniform is to say that the mean value of

the sines and cosines of multiples of at + h is zero.

Why do we assert this ? Let us represent our

minor planet by a point in a plane—namely, the

point whose co-ordinates are a and h. AW these

representative points will be contained in a certain

region of the plane, but as they are very numerous

this region will appear dotted with points. We
know nothing else about the distribution of the

points. Now what do we do when we apply the

calculus of probabilities to such a question as

this? What is the probability that one or more

representative points may be found in a certain

portion of the plane ? In our ignorance we are
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compelled to make an arbitrary hypothesis. To
explain the nature of this hypothesis I may be

allowed to use, instead of a mathematical formula,

a crude but concrete image. Let us suppose

that over the surface of our plane has been

spread imaginary matter, the density of which is

variable, but varies continuously. We shall then

agree to say that the probable number of repre-

sentative points to be found on a certain portion

of the plane is proportional to the quantity of

this imaginary matter which is found there. If

there are, then, two regions of the plane of the

same extent, the probabilities that a representative

point of one of our minor planets is in one or

other of these regions will be as the mean densities

of the imaginary matter in one or other of the

regions. Here then are two distributions, one

real, in which the representative points are very

numerous, very close together, but discrete like the

molecules of matter in the atomic hypothesis; the

other remote from reality, in which our representa-

tive points are replaced by imaginary continuous

matter. We know that the latter cannot be real,

but we are forced to adopt it through our ignorance.

If, again, we had some idea of the real distribution

of the representative points, we could arrange it so

that in a region of some extent the density of this

imaginary continuous matter may be nearly pro-

portional to the number of representative points,

or, if it is preferred, to the number of atoms which

are contained in that region. Even that is im-
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possible, and our ignorance is so great that we are

forced to choose arbitrarily the function which

defines the density of our imaginary matter. We
shall be compelled to adopt a hypothesis from

which we can hardly get away ; we shall sup-

pose that this function is continuous. That is

sufficient, as we shall see, to enable us to reach our

conclusion.

What is at the instant t the probable distribu-

tion of the minor planets—or rather, what is the

mean value of the sine of the longitude at the

moment t— î.^., of sin {at + h)l We made at the

outset an arbitrary convention, but if we adopt it,

this probable value is entirely defined. Let us

decompose the plane into elements of surface.

Consider the value of sin (at + b) at the centre of

each of these elements. Multiply this value by the

surface of the element and by the corresponding

density of the imaginary matter. Let us then take

the sum for all the elements of the plane. This

sum, by definition, will be the probable mean
value we seek, which will thus be expressed by a

double integral. It may be thought at first that

this mean value depends on the choice of the

function cf) which defines the density of the imagin-

ary matter, and as this function </> is arbitrary, we
can, according to the arbitrary choice which we
make, obtain a certain mean value. But this is

not the case. A simple calculation shows us that

our double integral decreases very rapidly as t

increases. Thus, I cannot tell \\hat hypothesis to
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make as to the probability of this or that initial

distribution, but when once the hypothesis is

made the result will be the same, and this gets

me out of my difficulty. Whatever the function

4> may be, the mean value tends towards zero

as t increases, and as the minor planets have
certainly accomplished a very large number of

revolutions, I may assert that this mean value is

very small. I may give to cf) any value I choose,

with one restriction: this function must be con-

tinuous; and, in fact, from the point of view of

subjective probabilit}-, the choice of a discontinuous

function would have been unreasonable. What
reason could I have, for instance, for supposing

that the initial longitude might be exactly o°, but

that it could not lie between o° and i'?

The difficulty reappears if we look at it from the

point of view of objective probability; if we pass

from our imaginary distribution in which the sup-

posititious matter was assumed to be continuous,

to the real distribution in which our representative

points are formed as discrete atoms. The mean
value of sin (at + b) will be represented quite

simply by

j^
T sin (at + b),

n being the number of minor planets. Instead of

a double integral referring to a continuous

function, we shall have a sum of discrete terms.

However, no one will seriously doubt that this

mean value is practically very small. Our repre-
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sentative points being very close together, our

discrete sum will in general differ very little from

an integral. An integral is the limit towards

which a sum of terms tends when the number of

these terms is indefinitely increased. If the terms

are very numerous, the sum will differ very little

from its limit—that is to say, from the integral,

and what I said of the latter will still be true of

the sum itself. But there are exceptions. If, for

instance, for all the minor planets h = at, the

longitude of all the planets at the time / would be

-, and the mean value in question would be

evidently unity. For this to be the case at the

time 0, the minor planets must have all been

lying on a kind of spiral of peculiar form, with

its spires very close together. All will admit that

such an initial distribution is extremely im-

probable (and even if it were realised, the distribu-

tion would not be uniform at the present time—for

example, on the ist January igoo ; but it would

become so a few years later). Why, then, do we
think this initial distribution improbable ? This

must be explained, for if wc are wrong in rejecting

as improbable this absurd hypothesis, our inquiry

breaks down, and we can no longer affirm any-

thing on the subject of the probability of this or

that present distribution. Once more we shall

invoke the principle of sufficient reason, to which

we must always recur. We might admit that at

the beginning the planets were distributed almost
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in a straight line. We might admit that they

were irregularly distributed. But it seems to us

that there is no sufficient reason for the unknown
cause that gave them birth to have acted along a

curve so regular and yet so complicated, which

would appear to have been expressly chosen so

that the distribution at the present day would not

be uniform.

IV. Rouge ct Noir,—The questions raised by

games of chance, such as roulette, are, funda-

mentally, quite analogous to those we have just

treated. For example, a wheel is divided into thirty-

seven equal compartments, alternately red and

black. A ball is spun round the wheel, and after

having moved round a number of times, it stops in

front of one of these sub-divisions. The probability

that the division is red is obviously ^. The needle

describes an angle 0, including several complete

revolutions. I do not know what is the prob-

ability that the ball is spun with such a force that

this angle should lie between ^ and (^ + dO, but I

can make a convention. I can suppose that this

probability is cp{6)dd. As for the function <fi(0), I

can choose it in an entirely arbitrary manner. I

have nothing Jo guide me in my choice, but I am
naturally induced to suppose the function to be

continuous. Let e be a length (measured on the

circumference of the circle of radius unity) of each

red and black compartment. We have to calcu-

late the integral of 4>{0)dO, extending it on the one

hand to all the red, and on the other hand to all
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but series of six reds followed by a black are

also very rare. They have noticed the rarity of

the series of seven reds; if they have not remarked

the rarity of six reds and a black, it is only

because such series strike the attention less.

V. The Probability oj Causes.—We now come to

the problems of the probability of causes, the

most important from the point of view of

scientific applications. Two stars, for instance,

are very close together on the celestial sphere. Is

this apparent contiguity a mere effect of chance?

Are these stars, although almost on the same

visual ray, situated at very different distances

from the earth, and therefore very far indeed from

one another? or does the apparent correspond

to a real contiguity ? This is a problem on the

probability of causes.

First of all, I recall that at the outset of all

problems of probability of effects that have

occupied our attention up to now, we have had

to use a convention which was more or less

justified; and if in most cases the result was to

a certain extent independent of this convention,

it was only the condition of certain hypotheses

which enabled us à priori to reject discontinuous

functions, for example, or certain absurd con-

ventions. We shall again find something

analogous to this when we deal with the prob-

ability of causes. An effect may be produced

by the cause a or by the cause b. The effect

has just been observed. We ask the probability
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that it is due to the cause a. This is an à

posteriori probabiHty of cause. But I could not

calculate it, if a convention more or less justified

did not tell me in advance what is the à priori

probability for the cause a to come into play

—

I mean the probability of this event to some one

who had not observed the effect. To make my
meaning clearer, I go back to the game of écarté

mentioned before. My adversary deals for the

first time and turns up a king. What is the

probability that he is a sharper ? The formulae

ordinarily taught give ^j ^ result which is

obviously rather surprising. If we look at it

closer, we see that the conclusion is arrived at

as if, before sitting down at the table, I had

considered that there was one chance in two

that my adversary was not honest. An absurd

hypothesis, because in that case I should certainly

not have played with him ; and this explains the

absurdity of the conclusion. The function on

the à priori probability was unjustified, and that

is why the conclusion of the à posteriori probability

led me into an inadmissible result. The import-

ance of this preliminary convention is obvious.

I shall even add that if none were made, the

problem of the à posteriori probability would have

no meaning. It must be always made either

explicitly or tacitly.

Let us pass on to an example of a more

scientific character. I require to determine an

experimental law; this law, when discovered, can
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be represented by a curve. I make a certain

number of isolated observations, each of which

may be represented by a point. When I have

obtained these different points, I draw a curve

between them as carefully as possible, giving-

my curve a regular form, avoiding sharp angles,

accentuated inflexions, and any sudden variation

of the radius of curvature. This curve will repre-

sent to me the probable law, and not only will

it give me the values of the functions intermediary

to those which have been observed, but it also

gives me the observed values more accurately

than direct observation does; that is why I make
the curve pass near the points and not through

the points themselves.

Here, then, is a problem in the probability of

causes. The effects are the measurements I have

recorded; they depend on the combination of two

causes—the true law of the phenomenon and errors

of observation. Knowing the effects, we have to

find the probability that the phenomenon shall

obey this law or that, and that the observations

have been accompanied by this or that error.

The most probable law, therefore, corresponds to

the curve we have traced, and the most probable

error is represented by the distance of the cor-

responding point from that curve. But the

problem has no meaning if before the observa-

tions I had an à priori idea of the probability of

this law or that, or of the chances of error to

which I am exposed. If my instruments are
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good (and I knew whether this is so or not before

beginning the observations), I shall not draw the

curve far from the points which represent the

rough measurements. If they are inferior, I may
draw it a little farther from the points, so that I

may get a less sinuous curve; much will be sacri-

ficed to regularity.

Why, then, do I draw a curve without sinu-

osities ? Because I consider à priori a law

represented by a continuous function (or function

the derivatives of which to a high order are small),

as more probable than a law not satisfying those

conditions. But for this conviction the problem

would have no meaning ; interpolation would be

impossible ; no law could be deduced from a

finite number of observations; science would

cease to exist.

Fifty years ago physicists considered, other

things being equal, a simple law as more probable

than a complicated law. This principle was even

invoked in favour of Mariotte's law as against

that of Regnault. But this belief is now
repudiated ; and yet, how many times are we
compelled to act as though we still held it!

However that may be, what remains of this

tendency is the belief in continuity, and as we
have just seen, if the belief in continuity were

to disappear, experimental science would become
impossible.

VI. The Theory of Errors.—We are thus brought

to consider the theory of errors which is directly
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connected with the problem of the probabiHty

of causes. Here again we find effects—to wit,

a certain number of irreconcilable observations,

and we try to find the causes which are, on the

one hand, the true value of the quantity to be

measured, and, on the other, the error made in

each isolated observation. We m.ust calculate

the probable à posteriori value of each error, and
therefore the probable value of the quantity to be

measured. But, as I have just explained, we
cannot undertake this calculation unless we admit

à priori— i.e., before any observations are made

—

that there is a law of the probability of errors.

Is there a law of errors ? The law to which
all calculators assent is Gauss's law, that is

represented by a certain transcendental curve

known as the " bell."

But it is first of all necessary to recall

the classic distinction between systematic and
accidental errors. If the metre with which we
measure a length is too long, the number we get

will be too small, and it will be no use to measure

several times—that is a systematic error. If we
measure with an accurate metre, we may make a

mistake, and find the length sometimes too large

and sometimes too small, and when we take the

mean of a large number of measurements,

the error will tend to grow small. These are

accidental errors.

It is clear that systematic errors do not satisfy

Gauss's law, but do accidental errors satisfy it ?
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Numerous proofs have been attempted, almost all

of them crude paralogisms. But starting from

the following hypotheses we may prove Gauss's

law : the error is the result of a very large number

of partial and independent errors; each partial

error is very small and obeys any law of prob-

ability whatever, provided the probability of a

positive error is the same as that of an equal

negative error. It is clear that these conditions

will be often, but not always, fulfilled, and we

may reserve the name of accidental for errors

which satisfy them.

We see that the method of least squares is not

legitimate in every case ; in general, physicists

are more distrustful of it than astronomers. This

is no doubt because the latter, apart from the

systematic errors to which they and the physicists

are subject alike, have to contend with an

extremely important source of error which is

entirely accidental— I mican atmospheric undula-

tions. So it is very curious to hear a discussion

between a physicist and an astronomer about a

method of observation. The physicist, persuaded

that one good measurement is worth more than

many bad ones, is pre-eminently concerned with

the elimination by means of every precaution of

the final systematic errors; the astronomer retorts:

" But you can only observe a small number of stars,

and accidental errors will not disappear."

What conclusion must we draw ? Must we

continue to use the method of least squares ?
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We must distinguish. We have ehminated all

the systematic errors of which we have any

suspicion ; we are quite certain that there are

others still, but we cannot detect them ; and yet

we must make up our minds and adopt a definitive

value which will be regarded as the probable

value ; and for that purpose it is clear that the

best thing we can do is to apply Gauss's law.

We have only applied a practical rule referring

to subjective probability. And there is no more

to be said.

Yet we want to go farther and say that not

only the probable value is so much, but that the

probable error in the result is so much. This

is absolutely invalid : it would be true only if

we were sure that all the systematic errors

were eliminated, and of that we know absolutely

nothing, ^^'e have two series of observations; by

applving the law of least squares we find that the

probable error in the first series is twice as small

as in the second. The second series may, how-

ever, be more accurate than the first, because the

first is perhaps aftected by a large systematic

error. All that we can say is, that the first series

is probably better than the second because its

accidental error is smaller, and that we have no

reason for affirming that the systematic error is

greater for one of the series than for the other,

our ignorance on this point being absolute.

VII. Conclusions.—In the preceding lines I have

set several problems, and have given no solution.

14
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I do not regret this, for perhaps they will invite

the reader to reflect on these delicate questions.

However that may be, there are certain points

which seem to be well established. To undertake

the calculation of any probability, and even for

that calculation to have any meaning at all, we
must admit, as a point of departure, an hypothesis

or convention which has always something

arbitrary about it. In the choice of this con-

vention we can be guided only by the principle

of sufficient reason. Unfortunately, this principle

is very vague and very elastic, and in the cursory

examination we have just made we have seen it

assume different forms. The form under which

we meet it most often is the belief in continuity,

a belief which it would be difficult to justify by

apodeictic reasoning, but without which all science

would be impossible. Finally, the problems to

which the calculus of probabilities may be applied

with profit are those in which the result is inde-

pendent of the hypothesis made at the outset,

provided only that this hypothesis satisfies the

condition of continuity.



CHAPTER XII.i

OPTICS AND ELECTRICITY.

FresneVs Theory.—The best example that can be

chosen is the theor}' of hght and its relations

to the theory of electricity. It is owing to Fresnel

that the science of optics is more advanced than

any other branch of physics. The theory called the

theory of undulations forms a complete whole,

which is satisfying to the mind ; but we must

not ask from it what it cannot give us. The
object of mathematical theories is not to reveal

to us the real nature of things ; that would be

an unreasonable claim. Their only object is to

co-ordinate the physical laws with w^hich physical

experiment makes us acquainted, the enunciation

of which, without the aid of mathematics, we
should be unable to effect. Whether the ether

exists or not matters little—let us leave that to

the metaphysicians; what is essential for us is, that

everything happens as if it existed, and that this

hypothesis is found to be suitable for the explana-

tion of phenomena. After all, have we any other

^ This chapter is mainly taken from the prefaces of two of my
books

—

Théorie Mathématique de la himiére (Paris: Naud, 1889),

and Électricité et Optique (Paris: Naud, 1901).
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reason for believing in the existence of material

objects? That, too, is only a convenient hypothesis
;

only, it will never cease to be so, while some day,

no doubt, the ether will be thrown aside as useless.

But at the present moment the laws of optics,

and the equations which translate them into the

language of analysis, hold good—at least as a first

approximation. It will therefore be always useful

to study a theory which brings these equations

into connection.

The undulatory theory is based on a molecular

hypothesis ; this is an advantage to those who
think they can discover the cause under the law.

But others find in it a reason for distrust ; and

this distrust seems to me as unfounded as the

illusions of the former. These hypotheses play

but a secondary rôle. They may be sacrificed,

and the sole reason why this is not generally done

is, that it would involve a certain loss of lucidity

in the explanation. In fact, if we look at it a

little closer we shall see that we borrow from

molecular hypotheses but two things—the principle

of the conservation of energy, and the linear form

of the equations, which is the general law of small

movements as of all small variations. This ex-

plains why most of the conclusions of Fresnel

remain unchanged when we adopt the electro-

magnetic theory of light.

Maxwell's Theory.—We all know that it was

Maxwell who connected by a slender tie two

branches of physics—optics and electricity—until
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then unsuspected of having anything in common.
Thus blended in a larger aggregate, in a higher

harmony, Fresnel's theory of optics did not perish.

Parts of it are yet alive, and their mutual relations

are still the same. Only, the language which we
use to express them has changed; and, on the

other hand. Maxwell has revealed to us other

relations, hitherto unsuspected, between the

different branches of optics and the domain of

electricity.

The first time a French reader opens Maxwell's

book, his admiration is tempered with a feeling of

uneasiness, and often of distrust.

It is only after prolonged study, and at the cost

of much effort, that this feeling disappears. Some
minds of high calibre never lose this feeling. Why
is it so difficult for the ideas of this English

scientist to become acclimatised among us? No
doubt the education received by most enlightened

Frenchmen predisposes them to appreciate pre-

cision and logic more than any other qualities.

In this respect the old theories of mathematical

physics gave us complete satisfaction. All our

masters, from Laplace to Cauchy, proceeded along

the same lines. Starting with clearly enunciated

hypotheses, they deduced from them all their

consequences with mathematical rigour, and then

compared them with experiment. It seemed to

be their aim to give to each of the branches

of physics the same precision as to celestial

mechanics.
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A mind accustomed to admire such models is

not easily satisfied with a theory. Not only will

it not tolerate the least appearance of contradic-

tion, but it will expect the different parts to be

logically connected with one another, and will

require the number of hypotheses to be reduced

to a minimum.
This is not all ; there will be other demands

which appear to me to be less reasonable. Behind

the matter of which our senses are aware, and

which is made known to us by experiment, such

a thinker will expect to see another kind of matter

—the only true matter in its opinion—which will

no longer have anything but purely geometrical

qualities, and the atoms of which will be mathe-

matical points subject to the laws of dynamics

alone. And yet he will try to represent to

himself, by an unconscious contradiction, these

invisible and colourless atoms, and therefore

to bring them as close as possible to ordinary

matter.

Then only will he be thoroughly satisfied, and

he will then imagine that he has penetrated the

secret of the universe. Even if the satisfaction is

fallacious, it is none the less difficult to give it up.

Thus, on opening the pages of Maxwell, a French-

man expects to find a theoretical whole, as logical

and as precise as the physical optics that is founded

on the hypothesis of the ether. He is thus pre-

paring for himself a disappointment which I

should like the reader to avoid ; so I will warn
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him at once of what he will find and what he will

not find in Maxwell.

Maxwell does not give a mechanical explanation

of electricity and magnetism ; he confines himself

to showing that such an explanation is possible.

He shows that the phenomena of optics are only

a particular case of electro-magnetic phenomena.

From the whole theory of electricity a theory of

light can be immediately deduced. Unfortunately

the converse is not true ; it is not always easy to

find a complete explanation of electrical pheno-

mena. In particular it is not easy if we take

as our starting-point Fresnel's theory; to do so,

no doubt, would be impossible; but none the less

we must ask ourselves if we are compelled to

surrender admirable results which we thought we
had definitively acquired. That seems a step

backwards, and many sound intellects will not

willingly allow^ of this.

Should the reader consent to set some bounds

to his hopes, he will still come across other

difficulties. The English scientist does not try

to erect a unique, definitive, and well-arranged

building ; he seems to raise rather a large number
of provisional and independent constructions,

between which communication is difficult and

sometimes impossible. Take, for instance, the

chapter in which electrostatic attractions are

explained by the pressures and tensions of the

dielectric medium. This chapter might be sup-

pressed without the rest of the book being
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thereby less clear or less complete, and yet

it contains a theory which is self-sufficient, and
which can be understood without reading a

word of what precedes or follows. But it is

not only independent of the rest of the book ; it

is difficult to reconcile it with the fundamental

ideas of the volume. Maxwell does not even

attempt to reconcile it; he merely says: "I have

not been able to make the next step—namely, to

account by mechanical considerations for these

stresses in the dielectric."

This example will be sufficient to show what
I mean ; I could quote many others. Thus, who
would suspect on reading the pages devoted to

magnetic rotatory polarisation that there is an

identity between optical and magnetic pheno-

mena?
We must not flatter ourselves that we have

avoided every contradiction, but we ought to

make up our minds. Two contradictory theories,

provided that they are kept from overlapping, and
that we do not look to find in them the explana-

tion of things, may, in fact, be very useful instru-

ments of research ; and perhaps the reading of

Maxwell would be less suggestive if he had not

opened up to us so many new and divergent ways.

But the fundamental idea is masked, as it were.

So far is this the case, that in most works that are

popularised, this idea is the only point which is

left completely untouched. To show the import-

ance of this, I think I ought to explain in what this
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fundamental idea consists; but for that purpose

a short digression is necessary.

The Mechanical Explanation oj Physical Phenomena.

—In every physical phenomenon there is a certain

number of parameters which are reached directly

by experiment, and which can be measured. I

shall call them the parameters q. Observation

next teaches us the laws of the variations of these

parameters, and these laws can be generally stated

in the form of differential equations which connect

together the parameters q and time. What can

be done to give a mechanical interpretation to

such a phenomenon ? We may endeavour to

explain it, either by the movements of ordinary

matter, or b}^ those of one or more hypothetical

fluids. These fluids will be considered as formed

of a very large number of isolated molecules m.

When may we say that we have a complete

mechanical explanation of the phenomenon? It

will be, on the one hand, when we know the

differential equafions which are satisfied by the

co-ordinates of these hypothetical molecules m,

equations which must, in addition, conform to the

laws of dynamics; and, on the other hand, when we
know the relations which define the co-ordinates

of the molecules ni as functions of the parameters

q, attainable by experiment. These equations, as

I have said, should conform to the principles of

dynamics, and, in particular, to the principle of

the conservation of energy, and to that of least

action.
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The first of these two principles teaches us that

the total energy is constant, and may be divided

into two parts :

(i) Kinetic energy, or vis viva, which depends

on the masses of the hypothetical molecules m,

and on their velocities. This I shall call T. (2)

The potential energy which depends only on the

co-ordinates of these molecules, and this I shall

call U. It is the sum of the energies T and U that

is constant.

Now what are we taught by the principle of

least action ? It teaches us that to pass from the

initial position occupied at the instant t^ to

the final position occupied at the instant ti, the

system must describe such a path that in the

interval of time between the instant t^ and t^,

the mean value of the action

—

i.e., the difference

between the two energies T and U, must be as

small as possible. The first of these two principles

is, moreover, a consequence of the second. If we

know the functions T and U, this second principle

is sufficient to determine the equations of motion.

x\mong the paths which enable us to pass from

one position to another, there is clearly one for

which the mean value of the action is smaller than

for all the others. In addition, there is only such

path ; and it follows from this, that the principle

of least action is sufficient to determine the path

followed, and therefore the equations of motion.

We thus obtain what are called the equations of

Lagrange. In these equations the independent
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variables are the co-ordinates of the hypothetical

molecules in; but I now assume that we take for

the variables the parameters q, which are' directly
.

accessible to experiment.

The two parts of the energy should then be

expressed as a function of the parameters q and

their derivatives ; it is clear that it is under this

form that they will appear to the experimenter.

The latter will naturally endeavour to define

kinetic and potential energy by the aid of

quantities he can directly observe.^ If this be

granted, the system will always proceed from one

position to another by such a path that the mean
value of the action is a minimum. It matters

little that T and U are now expressed by the aid

of the parameters q and their derivatives; it

matters little that it is also by the aid of these

parameters that we define the initial and fina

positions; the principle of least action will always

remain true.

Now here again, of the whole of the paths which

lead from one position to another, there is one and

only one for which the mean action is a minimum.

The principle of least action is therefore sufficient

for the determination of the differential equations

which define the variations of the parameters q.

The equations thus obtained are another form of

Lagrange's equations.

1 We may add that U will depend only on the c/ parameters, that

T will depend on them and their derivatives with respect to time,

and will be a homogeneous polynomial of the second degree with

respect to these derivatives.
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To form these equations we need not know the

relations which connect the parameters q with the

co-ordinates of the hypothetical molecules, nor the

masses of the molecules, nor the expression of U
as a function of the co-ordinates of these molecules.

All w^e need know is the expression of U as a

function of the parameters q, and that of T as a

function of the parameters q and their derivatives

—i.e., the expressions of the kinetic and potential

energy in terms of experimental data.

One of two things must now happen. Either for

a convenient choice of T and U the Lagrangian

equations, constructed as we have indicated, will

be identical with the differential equations deduced

from experiment, or there will be no functions T
and U for which this identity takes place. In the

latter case it is clear that no mechanical explana-

tion is possible. The necessary condition for a

mechanical explanation to be possible is therefore

this: that we may choose the functions T and U so

as to satisfy the principle of least action, and of the

conservation of energy. Besides, this condition is

sicfficient. Suppose, in fact, that we have found a

function U of the parameters q, which represents

one of the parts of energy, and that the part of the

energy which we represent by T is a function of

the parameters q and their derivatives; that it

is a polynomial of the second degree with respect

to its derivatives, and finally that the Lagrangian

equations formed by the aid of these two functions

T and U are in conformity with the data of the
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experiment. How can we deduce from this a

mechanical explanation ? U must be regarded as

the potential energy of a system of which T is the

kinetic energy. There is no difficulty as far as U
is concerned, but can T be regarded as the vis viva

of a material system ?

It is easily shown that this is always possible,

and in an unlimited number of ways. I will be

content with referring the reader to the pages of

the preface of my Électricité et Optique for further

details. Thus, if the principle of least action

cannot be satisfied, no mechanical explanation is

possible; if it can be satisfied, there is not only one

explanation, but an unlimited number, whence it

follows that since there is one there must be an

unlimited number.

One more remark. Among the quantities that

may be reached by experiment directly we shall

consider some as the co-ordinates of our hypo-

thetical molecules, some will be our parameters q,

and the rest will be regarded as dependent not

only on the co-ordinates but on the velocities—or

what comes to the same thing, we look on them as

derivatives of the parameters q, or as combinations

of these parameters and their derivatives.

Here then a question occurs: among all these

quantities measured experimentally which shall we
choose to represent the parameters q ? and which

shall we prefer to regard as the derivatives of these

parameters ? This choice remains arbitrary to a

large extent, but a mechanical explanation will be
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possible if it is done so as to satisfy the principle of

least action.

Next, Maxwell asks : Can this choice and that of

the two energies T and U be made so that electric

phenomena wall satisfy this principle ? Experiment
shows us that the energy of an electro-magnetic

field decomposes into electro-static and electro-

dynamic energy. Maxwell recognised that if we
regard the former as the potential energy U, and
the latter as the kinetic energy T, and that if on
the other hand we take the electro-static charges

of the conductors as the parameters q, and the in-

tensity of the currents as derivatives of other

parameters q—under these conditions, Maxwell
has recognised that electric phenomena satisfies the

principle of least action. He was then certain of

a mechanical explanation. If he had expounded
this theory at the beginning of his first volume,

instead of relegating it to a corner of the second, it

would not have escaped the attention of most
readers. If therefore a phenomenon allows of a

complete mechanical explanation, it allows of an

unlimited number of others, which wall equally take

into account all the particulars revealed by experi-

ment. And this is confirmed by the history of

every branch of physics. In Optics, for instance,

Fresnel believed vibration to be perpendicular to

the plane of polarisation; Neumann holds that it is

parallel to that plane. For a long time an expevi-

mentum crucis was sought for, which would enable

us to decide between these two theories, but in
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vain. In the same way, without going out of the

domain of electricity, we find that the theory of

two fluids and the single fluid theory equally

account in a satisfactory manner for all the laws

of electro-statics. All these facts are easily ex-

plained, thanks to the properties of the Lagrange

equations.

It is easy now to understand Maxwell's funda-

mental idea. To demonstrate the possibility of a

mechanical explanation of electricity we need not

trouble to find the explanation itself; we need only

know the expression of the two functions T and U,

which are the two parts of energy, and to form with

these two functions Lagrange's equations, and

then to compare these equations with the experi-

mental laws.

How shall we choose from all the possible

explanations one in which the help of experiment

will be wanting ? The day will perhaps come
when physicists will no longer concern themselves

with questions which are inaccessible to positive

methods, and will leave them to the metaphy-

sicians. That day has not yet come; man does not

so easily resign himself to remaining for ever ignor-

ant of the causes of things. Our choice cannot be

therefore any longer guided by considerations in

which personal appreciation plays too large a part.

There are, however, solutions which all will reject

because of their fantastic nature, and others which

all will prefer because of their simplicity. As
far as magnetism and electricity are concerned,
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Maxwell abstained from making any choice. It is

not that he has a systematic contempt for all that

positive methods cannot reach, as may be seen

from the time he has devoted to the kinetic theory

of gases. I may add that if in his magnum opus he

develops no complete explanation, he has attempted

one in an article in the Philosophical Magazine.

The strangeness and the complexity of the

hypotheses he found himself compelled to make,

led him afterwards to withdraw it.

The same spirit is found throughout his whole

work. He throws into relief the essential

—

i.e.,

what is common to all theories; everything that

suits only a particular theory is passed over almost

in silence. The reader therefore finds himself in

the presence of form nearly devoid of matter,

which at first he is tempted to take as a fugitive

and unassailable phantom. But the efforts he is

thus compelled to make force him to think, and

eventually he sees that there is often something

rather artificial in the theoretical " aggregates
"

which he once admired.



CHAPTER XIII.

ELECTRO-DYNAMICS.

The history of electro-dynamics is very instructive

from our point of view. The title of Ampere's

immortal work is, Théorie des phénomènes eledvo-

dynamiques, uniquement fondée sur expérience. He
therefore imagined that he had made no hypotheses;

but as we shall not be long in recognising, he was
mistaken ; only, of these hypotheses he was quite

unaware. On the other hand, his successors see

them clearly enough, because their attention is

attracted by the weak points in Ampere's solution.

They made fresh hypotheses, but this time

deliberately. How many times they had to change

them before they reached the classic system, which

is perhaps even now not quite definitive, we shall

see.

I. Ampere's Theory.—In Ampere's experimental

study of the mutual action of currents, he has

operated, and he could operate onl}-, with closed

currents. This was not because he denied the

existence or possibility of open currents. If two

conductors are positively and negatively charged

and brought into communication by a wire, a

current is set up which passes from one to the

15
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other until the two potentials are equal. Accord-

ing to the ideas of Ampere's time, this was

considered to be an open current ; the current was

known to pass from the first conductor to the

second, but they did not know it returned from the

second to the first. All currents of this kind were

therefore considered by Ampère to be open

currents—for instance, the currents of discharge

of a condenser; he was unable to experiment on

them, their duration being too short. Another

kind of open current may be imagined. Suppose

we have two conductors A and B connected by a

wire AMB. Small conducting masses in motion

are first of all placed in contact with the conductor

B, receive an electric charge, and leaving B are

set in motion along a path BNA, carrying their

charge with them. On coming into contact with A
they lose their charge, which then returns to B
along the wire AMB. Now here we have, in a

sense, a closed circuit, since the electricity describes

the closed circuit BNAMB; but the two parts of

the current are quite different. In the wire AMB
the electricity is displaced through a fixed conductor

like a voltaic current, overcoming an ohmic resist-

ance and developing heat; we say that it is

displaced by conduction. In the part BNA the

electricity is carried by a moving conductor, and is

said to be displaced by convection. If therefore the

convection current is considered to be perfectly

analogous to the conduction current, the circuit

BNAMB is closed; if on the contrary the convec-
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tion current is not a " true current," and, for

instance, does not act on the magnet, there is only

the conduction current AMB, which is open. For
example, if we connect by a wire the poles of a

Holtz machine, the charged rotating disc transfers

the electricity by convection from one pole to the

other, and it returns to the first pole by conduction

through the wire. But currents of this kind are

very difficult to produce with appreciable intensity;

in fact, with the means at Ampere's disposal we
may almost say it was impossible.

To sum up, Ampère could conceive of the exist-

ence of two kinds of open currents, but he could

experiment on neither, because they were not

strong enough, or because their duration was too

short. Experiment therefore could only show him
the action of a closed current on a closed current

—

or more accurately, the action of a closed current

on a portion of current, because a current can be

made to describe a closed circuit, of which part may
be in motion and the other part fixed. The displace-

ments of the moving part may be studied under the

action of another closed current. On the other

hand, Ampère had no means of studying the action

of an open current either on a closed or on another

open current.

I. TJie Case of Closed Currents.—In the case of

the mutual action of two closed currents, ex-

periment revealed to Ampère remarkably simple

laws. The following will be useful to us in the

sequel :

—



228 SCIENCE AND HYPOTHESIS.

(i) If the intensity of the currents is kept constant,

and if the two circuits, after having undergone any

displacements and deformations whatever, return

finally to their initial positions, the total work
done by the electro-dynamical actions is zero. In

other words, there is an electro-dynamical potential

of the two circuits proportional to the product of

their intensities, and depending on the form and

relative positions of the circuits ; the work done

by the electro-dynamical actions is equal to the

change of this potential.

(2) The action of a closed solenoid is zero.

(3) The action of a circuit C on another voltaic

circuit C depends only on the " magnetic field
"

developed by the circuit C. At each point in

space we can, in fact, define in magnitude and

direction a certain force called " magnetic force,"

which enjoys the following properties:

—

{a) The force exercised by C on a magnetic

pole is applied to that pole, and is equal to the

magnetic force multiplied by the magnetic mass

of the pole.

(6) A very short magnetic needle tends to take

the direction of the magnetic force, and the couple

to which it tends to reduce is proportional to the

product of the magnetic force, the magnetic

moment of the needle, and the sine of the dip

of the needle.

(c) If the circuit C is displaced, the amount of

the work done by the electro-dynamic action of

C on C will be equal to the increment of " flow
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of magnetic force" \vhich passes through the

circuit.

2. Action of a Closed Cuivrent on a Portion oj

Current.—Ampère being unable to produce the

open current properly so called, had only one

way of studying the action of a closed current

on a portion of current. This was by operating

on a circuit C composed of two parts, one mov-

able and the other fixed. The movable part was,

for instance, a movable wire a/3, the ends a and ^

of which could slide along a fixed wire. In one of

the positions of the movable wire the end a rested

on the point A, and the end /? on the point B of

the fixed wire. The current ran from a to fS—i.e.,

from A to B along the movable wire, and then

from B to A along the fixed wire. This current

was therefore closed.

In the second position, the movable wire

having slipped, the points a and /3 were respect-

ively at xV and B' on the fixed wire. The current

ran from « to fi
—i.e., from A' to B' on the mov-

able wire, and returned from B' to B, and

then from B to A, and then from A to A'—all on

the fixed wire. This current was also closed.

If a similar circuit be exposed to the action of a

closed current C, the movable part will be dis-

placed just as if it were acted on by a force.

Ampère admits that the force, apparently acting on

the movable part A B, representing the action of

C on the portion a/5 of the current, remains the

same whether an open current runs through afi,
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stopping at a and ft or whether a closed current

runs first to ft and then returns to a through the

fixed portion of the circuit. This hypothesis

seemed natural enough, and Ampère innocently

assumed it; nevertheless the hypothesis is not a

necessity, for we shall presently see that Helmholtz
rejected it. However that may be, it enabled

Ampère, although he had never produced an open
current, to lay down the laws of the action of a

closed current on an open current, or even on an

element of current. They are simple:

(i) The force acting on an element of current

is applied to that element ; it is normal to the

element and to the magnetic force, and pro-

portional to that component of the magnetic force

which is normal to the element.

(2) The action of a closed solenoid on an

element of current is zero. But the electro-

dynamic potential has disappeared

—

i.e., when a

closed and an open current of constant intensities

return to their initial positions, the total work
done is not zero.

3. Continuous Rotations.—The most remarkable

electro-dynamical experiments are those in which
continuous rotations are produced, and which are

called unipolar induction experiments. A magnet
may turn about its axis ; a current passes first

through a fixed wire and then enters the magnet
b}^ the pole N, for instance, passes through

half the magnet, and emerges by a sliding con-

tact and re-enters the fixed wire. The magnet
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then begins to rotate continuously. This is

Faraday's experiment. How is it possible ? If it

were a question of two circuits of invariable form,

C fixed and C movable about an axis, the latter

would never take up a position of continuous

rotation ; in fact, there is an electro-dynamical

potential ; there must therefore be a position of

equilibrium when the potential is a maximum.
Continuous rotations are therefore possible only

when the circuit C is composed of two parts

—

one fixed, and the other movable about an axis,

as in the case of Faraday's experiment. Here
again it is convenient to draw a distinction. The
passage from the fixed to the movable part, or

vice versa, may take place either by simple contact,

the same point of the movable part remaining

constantly in contact with the same point of the

fixed part, or by sliding contact, the same point of

the movable part coming successively into con-

tact with the different points of the fixed part.

It is only in the second case that there can

be continuous rotation. This is what then

happens :—the system tends to take up a position

of equilibrium ; but, when at the point of reaching

that position, the sliding contact puts the moving

part in contact with a fresh point in the fixed

part ; it changes the connexions and therefore the

conditions of equilibrium, so that as the position

of equilibrium is ever eluding, so to speak, the

system which is trying to reach it, rotation may
take place indefinitely.
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Ampère admits that the action of the circuit on

the movable part of C is the same as if the fixed

part of C did not exist, and therefore as if the

current passing through the movable part were

an open current. He concluded that the action of

a closed on an open current, or vice versa, that of

an open current on a fixed current, may give rise

to continuous rotation. But this conclusion

depends on the hypothesis which I have enunci-

ated, and to which, as I said above, Helmholtz

declined to subscribe.

4. Mutual Action of Tivo Open Currents.—As far

as the mutual action of two open currents, and in

particular that of two elements of current, is

concerned, all experiment breaks down. Ampère
falls back on hypothesis. He assumes: (i) that

the mutual action of two elements reduces to a

force acting along their join
; (2) that the action

of two closed currents is the resultant of the

mutual actions of their different elements, which

are the same as if these elements were isolated.

The remarkable thing is that here again Ampère
makes two hypotheses without being aware of it.

However that may be, these two hypotheses,

together with the experiments on closed currents,

suffice to determine completely the law of mutual

action of two elements. But then, most of the

simple laws we have met in the case of closed

currents are no longer true. In the first place,

there is no electro-dynamical potential ; nor was

there any, as we have seen, in the case of a closed
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current acting on an open current. Next, there

is, properly speaking, no magnetic force ; and we
have above defined this force in three different

ways : (i) By the action on a magnetic pole
;

(2) by the director couple which orientates the

magnetic needle; (3) by the action on an element

of current.

In the case with which we are immediately

concerned, not only are these three definitions not

in harmony, but each has lost its meaning :

—

(i) A magnetic pole is no longer acted on by a

unique force applied to that pole. We have seen,

in fact, the action of an element of current on a

pole is not applied to the pole but to the element
;

it may, moreover, be replaced by a force applied to

the pole and by a couple.

(2) The couple w^hich acts on the magnetic

needle is no longer a simple director couple, for its

moment with respect to the axis of the needle is

not zero. It decomposes into a director couple,

properly so called, and a supplementary couple

which tends to produce the continuous rotation of

which we have spoken above.

(3) Finally, the force acting on an element of

a current is not normal to that element. In

other words, the unity of the magnetic force has

disappeared.

Let us see in what this unity consists. Two
systems which exercise the same action on a mag-

netic pole will also exercise the same action on an

indefinitely small magnetic needle, or on an element
15*
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of current placed at the point in space at which the

pole is. Well, this is true if the two systems only

contain closed currents, and according to Ampère
it would not be true if the systems contained open

currents. It is sufficient to remark, for instance,

that if a magnetic pole is placed at A and an

element at B, the direction of the element being

in AB produced, this element, which will exercise

no action on the pole, will exercise an action

either on a magnetic needle placed at A, or on

an element of current at A.

5. Induction.—We know that the discovery of

electro-dynamical induction followed not long after

the immortal work of Ampère. As long as it is

only a question of closed currents there is no

difficulty, and Helmholtz has even remarked that

the principle of the conservation of energy is

sufficient for us to deduce the laws of induction

from the electro-dynamical laws of Ampère. But
on the condition, as Bertrand has shown,—that

we make a certain number of hypotheses.

The same principle again enables this deduction

to be made in the case of open currents, although

the result cannot be tested by experiment, since

such currents cannot be produced.

If we wish to compare this method of analysis

with Ampere's theorem on open currents, we get

results which are calculated to surprise us. In

the first place, induction cannot be deduced from

the variation of the magnetic field by the well-

known formula of scientists and practical men;
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in fact, as I have said, properly speaking, there

is no magnetic field. But further, if a circuit C
is subjected to the induction of a variable voltaic

system S, and if this system S be displaced and

deformed in an}- way whatever, so that the

intensity of the currents of this system varies

according to any law whatever, then so long

as after these variations the system eventually

returns to its initial position, it seems natural

to suppose that the mean electro-motive force

induced in the current C is zero. This is true if

the circuit C is closed, and if the system S only

contains closed currents. It is no longer true if

we accept the theory of Ampère, since there would

be open currents. So that not only will induction

no longer be the variation of the flow of magnetic

force in any of the usual senses of the word, but

it cannot be represented by the variation of that

force whatever it may be.

II. Hclmholiz's Theory.— I have dwelt upon the

consequences of Ampere's theory and on his

method of explaining the action of open currents.

It is difficult to disregard the paradoxical and

artificial character of the propositions to which

we are thus led. We feel bound to think " it

cannot be so." We may imagine then that

Helmholtz has been led to look for something

else. He rejects the fundamental hypothesis of

Ampère—namely, that the mutual action. of two

elements of current reduces to a force along their

join. He admits that an element of current is not
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acted upon by a single force but by a force and a

couple, and this is what gave rise to the cele-

brated polemic between Bertrand and Helmholtz.

Helmholtz replaces Ampere's hypothesis by the

following:—Two elements of current always

admit of an electro-dynamic potential, depending

solely upon their position and orientation; and the

work of the forces that they exercise one on the

other is equal to the variation of this potential.

Thus Helmholtz can no more do without

hypothesis than Ampère, but at least he does

not do so without explicitly announcing it. In

the case of closed currents, which alone are

accessible to experiment, the two theories agree;

in all other cases they differ. In the first place,

contrary to what Ampère supposed, the force

which seems to act on the movable portion of

a closed current is not the same as that acting

on the movable portion if it were isolated and

if it constituted an open current. Let us return

to the circuit C, of which we spoke above, and

which was formed of a movable wire sliding on

a fixed wire. In the only experiment that can be

made the movable portion a^ is not isolated, but is

part of a closed circuit. When it passes from

AB to A'B', the total electro-dynamic potential

varies for two reasons. First, it has a slight incre-

ment because the potential of A'B' with respect

to the circuit C is not the same as that of AB;
secondly, it has a second increment because it

must be increased by the potentials of the elements
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AA' and B'B with respect to C. It is this double

increment which represents the work of the force

acting upon the portion AB. If, on the contrar}-,

a^ be isolated, the potential would only have the

first increment, and this first increment alone

would measure the work of the force acting on

AB. In the second place, there could be no

continuous rotation without sliding contact, and

in fact, that, as we have seen in the case of closed

currents, is an immediate consequence of the

existence of an electro-dynamic potential. In

Faraday's experiment, if the magnet is fixed,

and if the part of the current external to the

magnet runs along a movable wire, that movable

wire may undergo continuous rotation. But it

does not mean that, if the contacts of the weir

with the magnet were suppressed, and an open

current were to run along the wire, the wire

would still have a movement of continuous rota-

tion. I have just said, in fact, that an isolated

element is not acted on in the same way as a

movable element making part of a closed circuit.

But there is another difference. The action of a

solenoid on a closed current is zero according to

experiment and according to the two theories.

Its action on an open current would be zero

according to x\mpère, and it would not be

zero according to Helmholtz. From this follows

an important consequence. We have given above

three definitions of the magnetic force. The third

has no meaning here, since an element of current
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is no longer acted upon by a single force. Nor
has the first any meaning. Wliat, in fact, is a

magnetic pole? It is tiie extremity of an

indefinite linear magnet. This magnet may be

replaced by an indefinite solenoid. ¥or the

definition of magnetic force to have any mean-

ing, the action exercised b}- an open current on

an indefinite solenoid would only depend on the

position of the extremity of that solenoid

—

i.e.,

that the action of a closed solenoid is zero. Now
we have just seen that this is not the case. On
the other hand, there is nothing to prevent us

froni adopting the second definition which is

founded on the measurement of the director

couple which tends to orientate tlu^ magnetic

needle; but, if it is adopted, neither the effects

of induction nor electro-d)'namic effects will

depend solely on the distribution of the lines

of force in this magnetic field.

III. Difficulties raised by these Theories.—Helm-

holtz's theory is an advance on that of Ampère;

it is necessar}', however, that every difficulty

should be removed. In both, the name " magnetic

field " has no meaning, or, if we give it one by a

more or less artificial convention, the ordinar\'

laws so familiar to electricians no longer apply;

and it is thus that the electro-motive force induced

in a wire is no longer measured by the number

of lines of force met by that wire. And oiu"

objections do not proceed only from the fa( t that

it is difficult to give up deeply-rooted hal)its of
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language and thought. There is something more.

If we do not beheve in actions at a distance,

electro-dynamic phenomena must be explained by

a modification of the medium. And this medium
is precisely what we call " magnetic field," and

then the electro-magnetic effects should only

depend on that field. All these difficulties arise

from the hypothesis of open currents.

IV. MaxwclVa Theory.—Such were the difficulties

raised by the current theories, when Maxwell with

a stroke of the pen caused them to vanish. To
his mind, in fact, all currents are closed currents.

Maxwell admits that if in a dielectric, the electric

field happens to var}', this dielectric becomes the

seat of a particular phenomenon acting on the

galvanometer like a current and called the current

of displacement. If, then, two conductors bearing

positive and negative charges are placed in con-

nection by means of a wire, during the discharge

there is an open current of conduction in that

wire; but there are produced at the sam.e time in

the surrounding dielectric currents of displace-

ment which close this current of conduction. We
know that Maxwell's theor}- leads to the explana-

tion of optical phenomena which would be due to

extremely rapid electrical oscillations. At that

period such a conception was only a daring hypo-

thesis which could be supported by no experiment;

but after twenty years Maxwell's ideas received the

confirmation of experiment. Hertz succeeded in

producing systems of electric oscillations which
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reproduce all the properties of light, and only

differ by the length of their wave—that is to say,

as violet differs from red. In some measure he

made a synthesis of light. It might be said that

Hertz has not directly proved Maxwell's funda-

mental idea of the action of the current of

displacement on the galvanometer. That is true

in a sense. What he has shown directly is that

electro-magnetic induction is not instantaneously

propagated, as was supposed, but its speed is the

speed of light. Yet, to suppose there is no current

of displacement, and that induction is with the

speed of light ; or, rather, to suppose that the

currents of displacement produce inductive effects,

and that the induction takes place instantaneously

—comes to the same thing. This cannot be seen at

the first glance, but it is proved by an analysis

of which I must not even think of giving even a

summary here.

V. Rowland''s Experiment.—But, as I have said

above, there arc two kinds of open conduction

currents. There arc first the currents of discharge

of a condenser, or of an}- conductor whatever.

There are also cases in which the electric charges

describe a closed contour, being displaced by con-

duction in one part of the circuit and by convec-

tion in the other part. The question might be

regarded as solved for open currents of the first

kind; they were closed by currents of displace-

ment. For open currents of the second kind the

solution appeared still more simple.
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It sccnujd that il tlu; curjciit were closed it

could only be by tlu^ curient of convection itself.

For that purpose it was sufficient to admit that a
" convection current "

—

i.e., a charged conductor in

motion (ould ;u:t on the galvanometer. lUit ex-

peiimc,nt;d confirmation was lacking. It appeared

difficult, in fact, to obtain a sulfici(;nt intensity

even by incrcjasing as much as possible the charge

and the velocity of the conductors. Rowland, an

extremely skilful experiinentalist, was the first to

tiiunij)li, or to seem to ti'iuii)|)li, ovc;r these difli-

culties. A (hsc received a strong electrostatic

charge and ,1 very high sj)eed of rotation. An
astatic magnetic system j)]ac(;d beside; the disc

underwent deviations. The experiment was made
twice by Rowland, once in l)erlin and once at l>alti-

more. It was afterwards repeated by llimst(;dt.

These physicists even believed that they could

announce that they had succeeded in making

cpiantitat i\c measurements. b'or twenty years

Rowland's law was admitted without objection

by all physicists, and, indeed, everything seemed

to conlirm it. The spark c(;rtainly does produce; a

magnetic effect, and does it not seem extremc^ly

likely that the spark discharged is due to particles

taken from one of the electiodcs and transferred

to the other electrode with their charge ? Is not

the very spectrum of the spark, in which wc

recognise the lines of the metal of the electrode,

a proof of it? The spark would then be a real

current of induction.
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On the other hand, it is also admitted that in

an electrolyte the electricity is carried by the ions

in motion. The current in an electrolyte would

therefore also be a current of convection; but it

acts on the magnetic needle. And in the same
way for cathodic rays; Crooks attributed these

rays to very subtle matter charged with negative

electricity and moving with very high velocity.

He looked upon them, in other words, as currents

of convection. Now, these cathodic rays are

deviated by the magnet. In virtue of the

principle of action and re-action, they should in

their turn deviate the magnetic needle. It is

true that Hertz believed he had proved that the

cathodic rays do not carry negative electricity, and
that they do not act on the magnetic needle; but

Hertz was wrong. First of all, Perrin succeeded

in collecting the electricity carried by these rays

—

electricity of which Hertz denied the existence; the

German scientist appears to have been deceived

by the effects due to the action of the X-rays,

which were not yet discovered. Afterwards, and
quite recently, the action of the cathodic rays on
the magnetic needle has been brought to light.

Thus all these phenomena looked upon as currents

of convection, electric sparks, electrolytic currents,

cathodic rays, act in the same manner on the

galvanometer and in conformity to Rowland's

law.

VI. Lorentz's Theory,—We need not go much
further. According to Lorentz's theory, currents
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of conduction would themselves be true convection

currents. Electricity would remain indissolubly

connected \Nith certain material particles called

electrons. The circulation of these electrons

through bodies would produce voltaic currents,

and what would distinguish conductors from

insulators would be that the one could be traversed

by these electrons, while the others would check

the movement of the electrons. Lorentz's theory

is very attractive. It gives a very simple explana-

tion of certain phenomena, which the earlier

theories—even Maxwell's in its primitive form

—

could only deal with in an unsatisfactory manner;

for example, the aberration of light, the partial

impulse of luminous waves, magnetic polarisation,

and Zeeman's experiment.

A few objections still remained. The pheno-

mena of an electric system seemed to depend on

the absolute velocity of translation of the centre

of gravity of this system, which is contrary to

the idea that we have of the relativity of space.

Supported by M. Crémieu, M. Lippman has pre-

sented this objection in a very striking form.

Imagine two charged conductors with the same
velocity of translation. They are relatively at

rest. However, each of them being equivalent

to a current of convection, they ought to attract

one another, and by measuring this attraction

we could measure their absolute velocity.

"No!" replied the partisans of Lorentz. "What
w^e could measure in that way is not their



244 SCIENCF. AND H MU )IIli:siS.

absolute \c'lc)c-il\', but thilr H'l;i(i\i' velocity wilh

respect to tlic cUh'v, so Ibat \\\c principle of ii'la-

tivity is safe." Whatever tlu'ii" in:iy be in these

objections, tlu^ edifice of elect ro-ilynamiis st^enied,

at any rate in its broad lines, definitively (ow-

structed. Everything was presented nncUr tlu^

most satisfactory aspect. The theories of Anipèic;

and Helniholt/, which were made foi- the open

currents that no longer existed, seem to ha\'e no

more than purel}' historic interest, antl the in-

extricable complications to which these theories

led have been almost forgotten. This (juiescence

has been reeentl\- disturbi-d by the e\perinu>nts of

M. Crémieu, which havi' {-oiitra(li(-ted, or at least

have seemed to contradict, the results foinierl)-

obtained by Rowland. Numeious invest igatoi s

have endeavoured to solve; the (piestion, and fiish

experiments havi; been undertaken. What result

will they give ? I shall take care not to risk a

prophecy which might be falsified between the

day this book is ready for the press and the day on

which it is i)laccd before the public.

TUl'; I'M).

'IIIK UALIKU SCOTT J'l'llI.ISIIlNc; CO., l.tMIlltl», !• l.l.l.lNC.-uN-l VM
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THE WALTER SCOTT PUBLISHING COMPANY, LIMH ED,

LONDON AND NEVVCASTLE-ON-TVNE.



Ibsen's Prose Dramas

Edited by WILLIAM ARCHER

Complete in Five Vols. Crown 8vo, Cloth^ Price 3^. dd. each.

Set of Five Vols., in Case, lys. 6d. ; in Half Morocco,

in Case, 32;. (>d.

* We seem at last to bi skcwn ttten and tuotnen as tkty are ; and aifirit

it is more than we can etidure. . , . All lèsens characters speak and act

as if they were hypnotised, and urtAtr their creates imperious deinand

to revtal themselves. There never %vas such a mirror held up to nature

before; it it too terrible. , . . Vet we must return to Ibsen, iuith his

remorseless surgery, his remorseless electric-iight, until we, too, have

gro7vn strong and learned tofacf the naked—if necessary, theflayed and
bleeding—reality.'—Spkaker {London).

Vol. I. 'A DOLL'S HOUSE,' 'THE LEAGUE
OF YOUTH,' and 'THE PILLARS OF SOCIETY.'
With Portrait of the Author, and Biographical Introduc-

tion by WiLLiAH Archer.

Vol. il 'GHOSTS,' 'AN ENEMY OF THE
PEOPLE,' and ' THE WILD DUCK.» With an Intro-

ductory Note.

Vol. IIL 'LADY INGER OF ÔSTRÂT,' 'THE
VIKINGS AT HELGELAND,» *THE PRETEND-
ERS.' With an Introductory Note and Portrait of Ibsen.

Vol. IV. ' EMPEROR AND GALILEAN.' With
an Introductory Note by William Arch>:k.

Vol. V. ' ROSMERSHOLM,' 'THE LADY
FROM THE SEA,' 'HEDDA GABLER.' Translated

by V/illiam Archer. With an Introductory Note.

The sequence of the pla5's i>* icxk voh:me is chronological ; the complets
sei of vol amcs cornprising the dramas presents them in chronological order.

The Walter Scott Publishing Company, Limited,

london and nzwcastlk-ok-tyne.



Great Writers
À NEW SERIES OF CRITICAL BIOGRAPHIES.

Edited by ERIC ROBERTSON and FRANK T. MARZIALS.

À Complete Bibliography to each Volume, by J. P. Anderson, Brilish
Museum, London.

Ciotht Uncut Edges, Gilt Top. Price is tcL

VOLUMES ALREADY ISSUED.
LIFE OF LONGFELLOW. By Professor Eric S. Robertson.
LIFE OF COLERIDGE. By Hall Cainb.
LIFE OF DICKENS. By Frank T. Marzials.
LIFE OF DANTE GABRIEL ROSSETTI. By J. Knight.
LiFE OF SAMUEL JOHNSON. By Colonel F. Grant.
LIFE OF DARWIN. By G. T. Bettany.
LIFE OF CHARLOTTE BRONTE. By A. Bikrkll.
LIFE OF THOMAS CARLYLE. By R. Garnett. LL.D.
LIFE OF ADAM SMITH. By R. B. Hai.danb, M'.P.
LIFE OF KEATS. By W. M. Rossetti.
LIFE OF SHELLEY. By William Shaki-.
LIFE OF SMOLLETT. By David Hannay.
LIFE OF GOLDSMITH. By Austin Doeson.
LIFE OF SCOTT. By Professor Yokg?.
LIFE OF BURNS. Ly Professor Blackie.
LIFE OF VICTOR HUGO. By Frank T. Marzials.
LIFE OF EMERSON. By Richard Garnett, LL.D.
LIFE OF GOETHE. By James Sime.
LIFE OF CONGREVE. By Edmund Go55S.
LIFE OF BUNYAN. By Canon Venables.
LIFE OF CRABBE. By T. E. Kebbel.
LIFE OF HEINE. By William Sharp.
LIFE OF MILL. By W. L. Courtney.
LIFE OF SCHILLER. By Henry W. Nevinson.
LIFE OF CAPTAIN MARRYAT. Ey David Hannav.
LIFE OF LESSING. By T. W. Roî.leston.
LIFE OF MILTON. By R. Garnett, LL.D.
LIFE OF BALZAC. By Frederick Wedmore.
LIFE OF GEORGE ELIOT. By Oscar Browning.
LIFE OF JANE AUSTEN. By Goldwin Smith.
LIFE OF BROWNING. By William Sharf.
LIFE OF BYRON. By Hon. Rodsn Noel.
LIFE OF HAWTHORNE. By Moncurs D. Conwav,
LIFE OF SCHOPENHAUER. By Professor Wallace.
LIFE OF SHERIDAN. By Lloyd Sanders
LIFE OF THACKERAY. By Herman Merivale and Fra.kk T.

iVÎARZIAT s

LIFE OF CERVANTES. By H. E. Watts
LIFE OF VOLTAIRE. By Francis Espjnas>p.
LIFE OF LEIGH HUNT. By Cosmo Monkhquse.
LIFE OF WHITTIER. By W. I Linton.
LIFE OF RENAN. By Francis Ssfina-^ss.

LIFE OF THOREAU. Ey H. S. Salt.

LIBRARY EDITION OF 'GREAT WRITERS/ Demy 8vo. :.-.. 6d.

The Walter Scott Publishing Company, LiMirr-D,

LONDON AND NSWCASTLE-0?i-rY:>E.



COMPACT AND PRACTICAL,

In Limp Cloth ; for the Pocket. Price One Shilling,

THE EUROPEAN

CONVERSATION BOOKS,

FRENCH ITALIAN

SPANISH GERMAN
NORWEGIAN

CONTENTS.

Hints fo Travellers—Everyday Expressions—Arriving at

and Leaving a Railway Station—Custom House Enquiries—In

a Train—At a BuffetandRestaurant—At an Hotel—Paying an

Hotel Bill—Enquiries in a Town—On BoardShip—Embarking

and Disembarking—Excursion by Carriage—Enquiries as to

Diligences—Enquiries as to Boats—Engaging Apartments-^

Washing List and Days of Week—Restaurant Vocabulary-

Telegrams and Letters, etc.^ etc.

The conitûts of these liltle handbooks are so arranged as to

permit direct and immsdiate reference. AU dialogues or enquiries not

consiwered absolutely essential have been purposely excluded, nothing

being introduced which might confuse the traveller rather than assist

him. A few hints are given in the introduction which v/ili be found

valuable to those unaccustomed to foreign traveL

Thb Walter Scott Publishing Compajjy, Limited,

LOaNDO.N Xm> XKWCASTÎ tt~ON-T¥N*.



NEW ENGLAND LIBRARY.

GRAVURE EDiTiON.

PRINTED ON ANTIQUE PAPER. 2s. 6d. PER VOU

Each Volume with a Frontispiece in Photogravure,

By NATHANIEL HAWTHORNE.

THE SCARLET LETTER.
THE HOUSE OF THE SEVEN GABLES*
THE BLITHEDALE ROMANCE.
TANGLEWOOD TALES.
TWICE-TOLD TALES.

A WONDER-BOOK FOR GIRLS AND BOYS.

OUR OLD HOME.
MOSSES FROM AN OLD MANSE.
THE SNOW IMAGE.
TRUE STORIES FROM HISTORY AND BIOGRAPHY.
THE NEW ADAM AND EVE.

LEGENDS OF THE PROVINCE HOUSE.

By OLIVER WENDELL HOLMES.

THE AUTOCRAT OF THE BREAKFAST-TABLE.
THE PROFESSOR AT THE BREAKFAST-TABLE.
THE POET AT THE BREAKFAST-TABLE.
ELSIE VENNER-

By HENRY THOREAU.

ESSAYS AND OTHER WRITINGS.
WALDEN; OR, LIFE IN THE WOODS.
A WEEK ON THE CONCORD.

The Walter Scott Publishing Company, Limit el>,

london and nev/castls-c.n-tfne,



EYERY-DAY HELP SERIES
OF USEFUL HANDBOOKS. Price 6d. each,

OR IH ROAE^ BirJDING, PRICE Is.

Contributors—J. Langdon Down, M.D., F.R.C.P.; Henry
Power, M.B., F.R.C.S.; J. Mortimer-Granville, M.D.;

J. Crichton Browne, M.D., LL.D.; Robert Farquharson,
M.D. Edin.; W. S. Greenfield, M.D., F.R.C.P.; and others.

1. How to Do Busmees. A Guide to Success in Life.

2. How to Behave. Manual of Etiquette and Personal Habits.

3. HO'W to V/rstS. A Manual of Composition and Letter Writing.
4. How to Debate. With Hints on Public Speaking.
5. Don't : Directions for avoiding Common Errors of Speech.
6. The Parental Don't s Warnings to Parents.

7. Why SniOke ar«d Drink. By Tames Parton.

8. ESocution. By T. R. W. Pearson, M.A., of St. Catharine's

College, Cambridge, and F. W. Waithman, Lecturers ca Elocution.

9. The Secret of a OSear Head.
10. Con^inon IVfind Troubles.
It. The Secret o-P a Good :vlsmory.
12. Youth: Bts Care and Culture.
13. The Heart and sts Function.
14. Personai Appearances in Health and Disease
13. The House and its Surroundings.
16. Alcohol: Its Use and Abuse.
17. Exercise and Training.
18. Baths and Bathing.
19. Health in Schools.
20. The Skin and its Troubles.
21. How to make the Best of Life.
22. Nerves and Nerve-Troubles.
23. The Sight, and How to Preserve it.

24. Premature Death: Its Promotion and Prevention*

25. Change, as a Mental Restorative.
26. The Gentle Art of Nu^sin^ the Sick.
27. The Care of Infants and Young Children.
28. Invalid Feeding, with Hints on Diet.
29. Every-day Ailments, and How to Treat Them.
30. Thrifty Housekeeping^.
31. Home Cooking.
32. Flowers and Flower Culture.
33. Sieep and Sleeplessness.
34. The Story of Life.
35. Household Nursing.

The Walter Scott Publishing Company, Limited,

LONDON and NEWCASTLB-ON-TYNK.



^he Aîusic Story Series.

A SERIES OF LITERARY-MUSICAL MONOGRAPHS.

Edited by FREDERICK J. CROWEST,
Author of '• Toe Great Tone Poets."

Illustrated with Photogravure and Collotype Portraits, Half-tone and Line
Pictures, Facsimiles, etc.

Square Crown 8v0y Cloih^ js. 6d, raf.

VOLUMES KOW READY.
THE STORY OF ORATORIO. By ANNIE W. PATTER-

SON, B.A., Mus. Doc.

THE STORY OF NOTATION, By C. F. ÀBDY WILLIAMS,
M.A., Mus. Bac.

THE STORY OF THE ORGAN. By C. F. ABDY
WILLIAMS, M.A., Author of "Bach" and "Handei"' ('^Master

Musicians' Series ").

THE STORY OF CHAMBER MUSIC. By N. KILBURN,
Mus. Bac. (Cantab.), Conductor of the Middlesbrough, Sunderland,

and Bishop Auckland Musical Societies.

THE STORY OF THE VIOLIN. By PAUL STOEVING,
Professor of the Violin, Guildhall School of Music, London.

NEXT VOLUME.
THE STORY OF THE HARP. By WILLIAM H. GRATTAN

FLOOD.
m PREPARATION.

THE STORY OF THE PIANOFORTE. By ALGERNON S.

ROSE, Author of " Talks with Bandsmen."

THE STORY OF HARMONY, By EUSTACE J. BREAK-
SPEARE, Author of " Mozart," "Musical ^Esthetics," etc.

THE STORY OF THE ORCHESTRA, By STEV/ART
MACPHERSON, Fellow and Professor, Royal Academy of Music.

THE STORY OF BIBLE MUSIC, By ELEONORE
D'ESTERRE-KEELING, Author of "The Musicians' Biiihday
Book."

THE STORY OF CHURCH MUSIC, By THE EDITOR.
ETC., ETC., ETC.

Ths Walter Scott Publishing Comfany, LiMïrïD.
LO:-îDvN AND V5WCASTLS-ON-TYK5.



MUSICIANS' WIT, HUMOUR, AND

ANECDOTE :

BEING ON DITS OF COMPOSERS, SINGERS, AND
INSTRUMENTALISTS OF ALL TIMES.

By FREDERICK J. CROWEST,
Author of "The Great Tone Poets,'- '* The Story of British Music,"

Editor of **The Master Musicians" Series, etc., etc.

Profusely illustrated with Quaint Drawings by

J. P. DONNE.

I'd One Vohime— Crovon Svo, Cloth^ Richly Gilt^ Price 3/6.

Among the hundreds of stories abounding in wit and pointed

repartee which the volume contains, will be found anecdotes of

famous musicians of all countries and periods.

TOLSTOY: His Life and Works.

By JOHN C. KENWORTHY,
An Intimate Friend of the Great Russian Writer.

Ciie Volums, Crown Sz;^, 256 pages. Richly Bounds containing

Portraits^ Facsimile Letter^ Vieivs, etc,

PRICE SIX SHILLINGS.

THE WALTER SCOTT PUBLISHING COMPANY, LTD.,
LONDON AND NEWCASTLE-ON-TYNS.



The Emerald Library.
Crown 8vo, Gilt Top, Half Bound in Dark Green Ribbed

Cloth, with Light Green Cloth Sides, 2s. each.

Wuthering HeightsBarnaby Rudge
Old Curiosity Shop
Piokwick Papers
Nioholas Kickleby
01i»«r Twist
Martin Chuzzlewit
Sketches by Boz
Olive
The Ogilvies
Ivanhoe
Kenihvorth
Jacob Faithful
Peter Simple
Paul Clifford
Eugene Aram
Ernest Maltraver.^
Alice ; or, The Jlys-

teriea

Rienzi
Pelham
The Last Days of

Pompeii
The Scottish Chiefs
Wilson's Tales
The Fair God
Miss Beresford's
Mystery

A Mountain Daisy
Hazel ; or, Perilpoint
Lighthouse

Vicar of Wakefield
Prince of the House

of David
Wide, Wide World
Village Tales
Ben-Hur
Uncle Tom's Cabin
Robinson Crusoe
The White Slave
Charles O'Malley
Midshipman Easy
Bride of Lammeinioor
Heart of Midlothian
Last of the Barons
Old Mortality
Tom Cringle's Log
Cifuise of the Midge
Colleen Ea'svn

Valentine Vox
Night and Morning
Bunyan
Foxe's Book of Mar-

tyrs
Mansfield Park
Last of the Mohicans
Poor Jack
The Lamplighter
Jane Eyre
Pillar of Fire
Throne of David
Dombey and Son
Vanity Fair
Infelice
Beulah
Harry Lori equer
Essays of Elia
Sheridan's Plays
Waverley
Quentin Durward
Talisman
From Jest to Earnest
Knight of 19th Century

Caudle's Lectures
Jack Hinton
Bret Harte
Ingoldsby Legends
Handy Andy
Lewis Arundel
Guy Manneriug
Rob Roy
Fortunes of Nigel
Man in the Iron Jlask
Great Composers
Louise de la Valliere
Great Painters
Rory O'More
Arabian Nights
Swiss Family Robinson
Andersen's Fairy Tales
Three Musketeers
Twenty Years After
Vicomte de Bragelonne
Monte Cristo—Dantes

,, Revenge ofDantes
The Newcomes
Life of Robert Moffat
Life of Gladstone
Cranford
North and South
Life of Gen. Gordon
Lincoln and Garfield
Great Modern Women
Henry Esmond
Alton Locke
Life of Livingstone
Life of Grace Darling
White's Selborne
Tales of the Covenanters
Barriers Burned Away
Opening a ChestnutBurr
Pendennis
David Copperfield
i.uck of Barry Lyndon
St. Elmo
Son of Porthos
Stanley and Africa
Life of Wesley
Life of Spurgeon
For Lust of Gold
Wooing of Webster
At the Mercy of Ti-
berius

Countess of Rudol-
stadt

Consuelo
Two Years before the
Mast

Fair Maid of Perth
Peveril of the Peak
Shirley
Queechy
Naomi; or, the Last
Days of Jerusalem

Little Women and
Good Wives

Hypatia
Viilette

Ruth
Agatha's Husband
Head of the Family
Old Helmet
Bleak House
Cecil Dretiiie
Melbuiirno House

The Days of Bruce
The Vale of Cedars
Hunchback of Notre
Dame

Vashti
The Caxtous
Harold, Last of the
Saxon Kings

Toilers of the Sea
What Can She Do?
New Border Tal-i
Frank Fairlegb
Zanoni
Macaria
Inez
Conduct and Duty
Windsor Castle
Hard Times
Tower of London
John Halifax, Gentle.
Westward Ho 1 [man
Lavengro
It is Never Too Late
to Mend

Two Years Ago
In His Steps
Crucifixion of Phillip
Strong

His Brother's Keeper
Robert Hardy's Seven
Days, and Malcom
Kirk (in 1 vol.)

Richard Bruce
The Twentieth Door
House of the Seven
Gables

Elsie Venner
The Romany Rye
Little Dorrit
The Scarlet Letter
Mary Barton
Home Influence
The Mother's Recom-
pense

Tennyson's Poems
Harry Coverdale's
Courtship

The Bible in Spain
Handbook of House-
keeping

The Dead Secret
Queen Victoria
Martin Rattler
Ungava
The Coral Island
Adam Bede
The Young Fur-Traders
The Virginians
A Tale of Two Cities
Scenes of Clerical Life
The Mill on the Floss
Danesbury House
A Life for a I,ife

Christmas Books
Tom Brown'sSchooldays
Grimm's Fairy Tales
East Lynne (.Stress

Through Storm and
The Channings
Old St. Paul's [Hearth
The Cloister and the
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THE WORLD'S GREAT NOVELS,

A series of acknowledged masterpieces by the most emi'aent writers

of fiction. Excellent paper, large type, handsomely and strongly

bound in Russia Red Cloth, these books are admirably suited eitherfor
presentation or for a permanent place in the library, while the low

price brings them within reach ofevery class of readers.

Large Crown 8vo. Hundreds of Pages. Numerous Illustrations.

Sa, 6d. per Vol.

Adam Bede. By George Eliot. With Six Fuil-page Illustra

tiens by S. H. Vedder and J. Jellicoe.

Anna Karenina. By Count Tolstoy. With Ten Illustrations

by Paul Frenzeny, and a Frontispiece Portrait of Count Tolstoy.

Chicot^ the Jester (La Dame de Monsoreau). By Alexandre
Dumas. New and Complete Translation. With Nine Full-page Illus-

trations by Frank T. Merrill.

Count of Monte-Cfisto^ The* By Alexandre Dumas. With
Sixteen Full-page Illustrations by Frank T. Merrill.

David Copperfield, By Charles Dickens. With Forty Illus-

trations by Hablot K. Browne (" Phiz").

Forty-Five Guardsmen^ The, By Alexandre Dumas. New
and Complete Translation. With Nine Full-page Illustrations bv Frank
T. Merrill.

Ivanhoe, By Sir Walter Scott. With Eight Full-page Illustra-

tions by Hugh M. Eaton.

Jane Eyre, By Charlotte Bronte. With Eight FuU-pago
Illustrations, and Thirty-two Illustrations in the Text, and Photogravure
Portrait of Charlotte Bronte.

John Halifax, Gentleman, By Mrs. Craik. With Eight Full-

page Illustrations by Alice Barber Stephens.

Marguerite de Vaîois, By Alexandre Dumas. New and
Complete Translation. With Nine Full-page Illustrations by Frank T.

Merrill.

Misérables, Les, By Victor Hugo. With Twelve Full-page
Illustrations.

Notre Dame, By Victor Hugo. With many Illustrations.

Three Musketeers, The. By Alexandre Dumas. With
Twelve Full-page Illustrations by T. Eyre Macklin.

Twenty Years After. By Alexandre Dumas. With numerous
Illustrations.

Vicomte de Bragelonne, The. By Alexandre Dumas. New
and Complete Translation. With Eight Full-page Illustrations.

The Walter Scott Publishing CoMrANy, Limited,
LONDOÎÎ AND NEWCASTLa-ON.TYNE.
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