


BOSTON UNIVERSITY
LIBRARIES

m
Mugar Memorial Library









gAz^k^ IS^€eiAy'^lia'^c>i^Ai^,

Qna^a/i/etl^t, ^io^laM^-^ .S^-<s



THE SCIENTIFIC PAPERS OF

JAMES CLERK MAXWELL

Edited by W. D. NIVEN, M.A., F.R.S.

Two Volumes Bound As One

DOVER PUBLICATIONS, INC., NEW YORK



All rights reserved under Pan American and In-

ternational Copyright Conventions.

Published in Canada by General Publishing Com-
pany, Ltd., 30 Lesmill Road, Don Mills, Toronto,

Ontario.

Published in the United Kingdom by Constable

and Company, Ltd., 10 Orange Street, London
W. C. 2.

This Dover edition, first published in 1965, is an

unabridged and unaltered republication of the work

first pubhshed by Cambridge University Press in

1890. This edition is published by special arrange-

ment with Cambridge University Press.

The work was originally pubhshed in two separate

volumes, but is now published in two volumes

bound as one.

Library of Congress Catalog Card Number: A53 -9813

Manufactured in the United States of America

Dover Publications, Inc.

180 Varick Street

New York, N. Y. 10014



THE SCIENTIFIC PAPERS OF

JAMES CLERK MAXWELL

Edited by W. D. NIVEN, M.A., F.R.S,

Volume One





TO HIS GRACE

THE DUKE OF DEVONSHIRE K.G.

CHANCELLOR OF THE UNIVERSITY OF CAMBRIDGE

FOUNDER OF THE CAVENDISH LABORATORY

THIS MEMORIAL EDITION

OF

THE SCIENTIFIC PAPERS

OF

THE FIRST CAVENDISH PROFESSOR OF EXPERIMENTAL PHYSICS

IS

BY HIS GRACE'S PERMISSION

RESPECTFULLY AND GRATEFULLY DEDICATED





SHORTLY after the death of Professor James Clerk Maxwell a Committee was

formed, consisting of graduate members of the University of Cambridge and

of other friends and admirers, for the purpose of securing a fitting memorial of

him.

The Committee had in view two objects : to obtain a likeness of Professor

Clerk Maxwell, which should be placed in some public building of the Uni-

versity ; and to collect and publish his scattered scientific writings, copies of

which, so far as the funds at the disposal of the Committee would allow,

should be presented to learned Societies and Libraries at home and abroad.

It was decided that the likeness should take the form of a marble bust.

This was executed by Sir J. E. Boehm, R.A., and is now placed in the

apparatus room of the Cavendish Laboratory.

In carrying out the second part of their programme the Committee

obtained the cordial assistance of the Syndics of the University Press, who

willingly consented to publish the present work. At the request of the Syndics,

Mr W. D. Niven, M.A., Fellow and Assistant Tutor of Trinity College and

now Director of Studies at the Royal Naval College, Greenwich, undertook the

duties of Editor.

The Committee and the Syndics desire to take this opportunity of

acknowledging their obligation to Messrs Adam and Charles Black, Publishers

of the ninth Edition of the EiicyclopcEdia Biitannica, to Messrs Taylor and

Francis, Publishers of the London, Edinburgh, and Dublin Philosophical Maga-

zine and Journal of Science, to Messrs Macmillan and Co., Publishers of

Nature and of the Cambridge and Dublin Mathematical Joui-nal, to Messrs

Metcalfe and Co., Publishers of the Quarterly Journal of Pure and Applied

Mathematics, and to the Lords of the Conmiittee of Council on Education,

Proprietors of the Handbooks of the South Kensington Museum, for their

courteous consent to allow the articles which Clerk Maxwell had contributed to

these publications to be included in the present work ; to Mr Norman Lockyer

for the assistance which he rendered in the selection of the articles re-printed

from Nature; and their further obligation to Messrs Macmillan and Co. for

permission to use in this work the steel engravings of Faraday, Clerk Maxwell,

and Helmholtz from the Nature Series of Portraits.



Numerous and important Papers, contributed by Clerk Maxwell to the

Transactions or Proceedings of the Royal Societies of London and of Edinburgh,

of the Cambridge Philosophical Society, of the Royal Scottish Society of Arts,

and of the London Mathematical Society; Lectures delivered by Clerk Maxwell

at the Royal Institution of Great Britain pubHshed in its Proceedings; as well

as Communications and Addresses to the British Association published in its

Reports, are also included in the present work with the sanction of the above

mentioned learned bodies.

The Essay which gained the Adams Prize for the year 1856 in the

University of Cambridge, the introductory Lecture on the Study of Experimental

Physics delivered in the Cavendish Laboratory, and the Rede Lecture delivered

before the University in 1878, complete this collection of Clerk Maxwell's scientific

writings.

The diagrams in this work have been re-produced by a photographic

process from the original diagrams in Clerk Maxwell's Papers by the Cambridge

Scientific Instrument Company.

It only remams to add that the footnotes inserted by the Editor are

enclosed between square brackets.

Cambridge, Augv^t, 1890.



PEEFACE.

CLERK MAXWELL'S biography has been written by Professors Lewis Campbell and

Wm. Garnett with so much skill and appreciation of their subject that nothing further

remains to be told. It would therefore be presumption on the part of the editor of his

papers to attempt any lengthened narrative of a biographical character. At the same time

a memorial edition of an author's collected writings would hardly be complete without

some account however slight of his life and works. Accordingly the principal events of

Clerk Maxwell's career will be recounted in the following brief sketch, and the reader

who wishes to obtain further and more detailed information or to study his character in

its social relations may consult the interesting work to which reference has been made.

James Clerk Maxwell was descended from the Clerks of Penicuick in Midlothian,

a well-known Scottish family whose history can be traced back to the IGth century. The

first baronet served in the parliament of Scotland. His eldest son, a man of learning,

was a Baron of the Exchequer in Scotland. In later times John Clerk of Eldin a

member of the family claimed the credit of having invented a new method of breaking

the enemy's line in naval warfare, an invention said to have been adopted by Lord

Rodney in the battle which he gained over the French in 1782. Another John Clerk,

son of the naval tactitian, was a lawyer of much acumen and became a Lord of the

Court of Session. He was distinguished among his Edinburgh contemporaries by his ready

and sarcastic wit.

The father of the subject of this memoir was John, brother to Sir George Clerk of

Penicuick. He adopted the surname of Maxwell on succeeding to an estate in Kirkcud-

brightshire which came into the Clerk family through marriage with a Miss Maxwell. It

cannot be said that he was possessed of the energy and activity of mind which lead

to distinction. He was in truth a somewhat easy-going but shrewd and intelligent

man, whose most notable characteristics were his perfect sincerity and extreme benevolence.

He took an enlightened interest in mechanical and scientific pursuits and was of an

essentially practical turn of mind. On leaving the University he had devoted himself

to law and was called to the Scottish Bar. It does not appear however that he met

mth any great success in that profession. At all events, a quiet life in the country
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presented so many attractions to his wife as well as to himself that he was easily induced

to relinquish his prospects at the bar. He had been married to Frances, daughter of

Robert Cay of N. Charlton, Northumberland, a lady of strong good sense and resolute

character.

The country house which was their home after they left Edinburgh was designed

by John Clerk Maxwell himself and was built on his estate. The house, which was named

Glenlair, was surrounded by fine scenery, of which the water of Urr with its rocky and

wooded banks formed the principal charm.

James was bom at Edinburgh on the 13th of June, 1831, but it was at Glenlair

that the greater part of his childhood was passed. In that pleasant spot under healthful

influences of all kinds the child developed into a hardy and ccirageous boy. Not

precociously clever at books he was yet not without some signs of future intellectual

strength, being remarkable for a spirit of inquiry into the caupjs and connections of the

phenomena around him. It was remembered afterwards when he had become distinguished,

that the questions he put as a child shewed an amount of thoughtfulness which for his

years was very unusual.

At the age of ten, James, who had lost his mother, was placed under the charge of

relatives in Edinburgh that he might attend the Edinburgh Academy. A charming account

of his school days is given in the narrative of Professor Campbell who was Maxwell's

schoolfellow and in after life an intimate friend and constant correspondent. The child is

father to the man, and those who were privileged to know the man Maxwell will easily

recognise Mr Campbell's picture of the boy on his first appearance at school,—the home-

made garments more serviceable than fashionable, the rustic speech and curiously quaint

but often humorous manner of conveying his meaning, his bewilderment on first undergoing

the routine of schoolwork, and his Spartan conduct under various trials at the hands of

his schoolfellows. They will further feel how accurate is the sketch of the boy become

accustomed to his surroundings and rapidly assuming the place at school to which his

mental powers entitled him, while his superfluous energy finds vent privately in carrying

out mechanical contrivances and geometrical constructions, in reading and even trying his

hand at composing ballads, and in sending to his father letters richly embellished with

grotesquely elaborate borders and drawings.

An event of his school-days, worth recording, was his invention of a mechanical method

of drawing certain classes of Ovals. An account of this method was printed in the

Proceedings of the Royal Society of Edinburgh and forms the first of his writings

collected in the present work. The subject was introduced to the notice of the Society

by the celebrated Professor James Forbes, who from the first took the greatest possible

interest in Maxwell's progress. Professor Tait, another schoolfellow, mentions that at the

time when the paper on the Ovals was written. Maxwell had received no instruction in

Mathematics beyond a little Euclid and Algebra.
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In 1847 Maxwell entered the University of Edinburgh where he remained for three

sessions. He attended the lectures of Kelland in Mathematics, Forbes in Natural Philosophy,

Gregory in Chemistry, Sir W. Hamilton in Mental Philosophy, Wilson (Christopher North)

in Moral Philosophy. The lectures of Sir W. Hamilton made a strong impression upon
him, in stimulating the love of speculation to which his mind was prone, but, as might
have been expected, it was the Professor of Natural Philosophy who obtained the chief share

of his devotion. The enthusiasm which so distinguished a man as Forbes naturally inspired

in young and ardent disciples, evoked a feeling of personal attachment, and the Professor, on

his part, took special interest in his pupil and gave to him the altogether unusual

privilege of working with his fine apparatus.

What was the nature of this experimental work we may conjecture from a perusal of

his paper on Elastic Solids, written at that time, in which he describes some experiments

made with the view of verifying the deductions of his theory in its application to Optics.

Maxwell would seem to have been led to the study of this subject by the following cir-

cumstance. He was taken by his uncle John Cay to see William Nicol, the inventor of

the polarising prism which bears his name, and was shewn by Nicol the colours of unan-

nealed glass in the polariscope. This incited Maxwell to study the laws of polarised light

and to construct a rough polariscope in which the polariser and analyser were simple glass

reflectors. By means of this instrument he was able to obtain the colour bands of unannealed

glass. These he copied on paper in water colours and sent to Nicol. It is gratifpng to

find that this spirited attempt at experimenting on the part of a mere boy was duly

appreciated by Nicol, who at once encouraged and delighted him by a present of a couple of

his prisms.

The paper alluded to, viz. that entitled "On the Equilibrium of Elastic Solids," was

read to the Royal Society of Edinburgh in 1850. It forms the third paper which Maxwell

addressed to that Society. The first in 1846 on Ovals has been abready mentioned. The
second, under the title "The Theory of Rolling Curves," was presented by Kelland in 1849.

It is obvious that a youth of nineteen years who had been capable of these efforts

must have been gifted with rare originality and with great power of sustained exertion.

But his singular self-concentration led him into habits of solitude and seclusion, the tendency

of which was to confirm his peculiarities of speech and of manner. He was shy and

reserved with strangers, and his utterances were often obscure both in substance and in

his manner of expressing himself, so many remote and unexpected allusions perpetually

obtruding themselves. Though really most sociable and even fond of society he was

essentially reticent and reserved. Mr Campbell thinks it is to be regretted that Maxwell

did not begin his Cambridge career eai'lier for the sake of the social intercourse which

he would have found it difficult to avoid there. It is a question, however, whether in

losing the opportunity of using Professor Forbes' apparatus he would not thereby have lost

what was perhaps the most valuable part of his early scientific training.
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It was originally intended that Maxwell should follow his father's profession of advocate,

but this intention was abandoned as soon as it became obvious that his tastes lay in a

direction so decidedly scientific. It was at length determined to send him to Cambridge

and accordingly in October, 1850, he commenced residence in Peterhouse, where however he

resided during the Michaelmas Term only. On December 14 of the same year he migrated

to Trinity College.

It may readily be supposed that his preparatory training for the Cambridge course

was far removed from the ordinary type. There had indeed for some time been practically

no restraint upon his plan of study and his mind had been allowed to follow its natural

bent towards science, though not to an extent so absorbing as to withdraw him from

other pursuits. Though he was not a sportsman,—indeed sport so called was always repugnant

to him—he was yet exceedingly fond of a country life. He was a good horseman and a

good swimmer. Whence however he derived his chief enjoyment may be gathered from the

account which Mr Campbell gives of the zest with which he quoted on one occasion the

lines of Bums which describe the poet finding inspiration while wandering along the banks

of a stream in the free indulgence of his fancies. Maxwell was not only a lover of poetry

but himself a poet, as the fine pieces gathered together by Mr Campbell abundantly testify.

He saw however that his true calling was Science and never regarded these poetical

efforts as other than mere pastime. Devotion to science, already stimulated by successful

endeavour, a tendency to ponder over philosophical problems and an attachment to English

literature, particularly to English poetry,—these tastes, implanted in a mind of singular

strength and purity, may be said to have been the endowments with which young Maxwell

began his Cambridge career. Besides this, his scientific reading, as we may gather from his

papers to the Royal Society of Edinburgh referred to above, was already extensive and

varied. He brought with him, says Professor Tait, a mass of knowledge which was really

immense for so young a man but in a state of disorder appalling to his methodical

private tutor.

Maxwell's undergraduate career was not marked by any specially notable feature. His

private speculations had in some measure to be laid aside in favour of more systematic

study. Yet his mind was steadily ripening for the work of his later years. Among those

with whom he was brought into daily contact by his position, as a Scholar of Trinity

College, were some of the brightest and most cultivated young men in the University. In

the genial fellowship of the Scholars' table Maxwell's kindly humour found ready play, while

in the more select coterie of the Apostle Club, formed for mutual cultivation, he found a field

for the exercise of his love of speculation in essays on subjects beyond the lines of the

ordinary University course. The composition of these essays doubtless laid the foundation

of that literary finish which is one of the characteristics of Maxwell's scientific writings.

His biographers have preserved several extracts on a variety of subjects chiefly of a specu-

lative character. They are remarkable mainly for the weight of thought contained in them

but occasionally also for smart epigrams and for a vein of dry and sarcastic humour.
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These glimpses into Maxwell's character may prepare us to believe that, with all his

shyness, he was not without confidence in his own powers, as also appears from the account

which was given by the late Master of Trinity College, Dr Thompson, who was Tutor when

Maxwell personally applied to him for permission to migrate to that College. He appeared

to be a shy and diffident youth, but presently surprised Dr Thompson by producing a

bundle of papers, doubtless copies of those we have already mentioned, remarking " Perhaps

these may shew you that I am not unfit to enter at your College."

He became a pupil of the celebrated William Hopkins of Peterhouse, under whom his

course of study became more systematic. One striking characteristic was remarked by his

contemporaries. Whenever the subject admitted of it he had recourse to diagrams, though

his fellow students might solve the question more easily by a train of analysis. Many

illustrations of this manner of proceeding might be taken from his writings, but in

truth it was only one phase of his mental attitude towards scientific questions, which

led him to proceed from one distinct idea to another instead of trusting to symbols and

equations.

Maxwell's published contributions to Mathematical Science during his undergraduate career

were few and of no great importance. He found time however to carry his investigations

into regions outside the prescribed Cambridge course. At the lectures of Professor Stokes*

he was regular in his attendance. Indeed it appears from the paper on Elastic Solids,

mentioned above, that he was acquainted with some of the writings of Stokes before he

entered Cambridge. Before 1850, Stokes had published some of his most important contri-

butions to Hydromechanics and Optics ; and Sir W. Thomson, who was nine years' Maxwell's

senior in University standing, had, among other remarkable investigations, called special

attention to the mathematical analogy between Heat-conduction and Statical Electricity.

There is no doubt that these authors as well as Faraday, of whose experimental researches

he had made a careful study, exercised a powerful directive influence on his mind.

In January, 1854, Maxwell's undergraduate career closed. He was second wrangler, but

shared with Dr Routh, who was senior wrangler, the honours of the First Smith's Prize.

In due course he was elected Fellow of Trinity and placed on the staff of College Lecturers.

No sooner was he released from the restraints imposed by the Trinity Fellowship

Examination than he plunged headlong into original work. There were several questions

he was anxious to deal with, and first of all he completed an investigation on the Trans-

formation of Surfaces by Bending, a purely geometrical problem. This memoir he presentel

to the Cambridge Philosophical Society in the following March. At this period he also

set about an enquiry into the quantitative measurement of mixtures of colours and the

causes of colour-blindness. During his undergraduateship he had, as we have seen, found

time for the study of Electricity. This had already borne fruit and now resulted in the

first of his important memoirs on that subject,—the memoir on Faraday's Lines of Force.

• Now Sir George Gabriel Stokes, Bart., M.P. for the University.
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The number and importance of his papers, published in 1855—6, bear witness to his

assiduity during this period. With these labours, and in the preparation of his College

lectures, on which he entered with much enthusiasm, his mind was fully occupied and the

work was congenial. He had formed a number of valued friendships, and he had a variety of

interests, scientific and literary, attaching him to the University. Nevertheless, when the chair

of Natural Philosophy in Marischal College, Aberdeen, fell vacant, Maxwell became a candidate.

This step was probably taken in deference to his father's wishes, as the long summer

vacation of the Scottish College would enable him to reside with his father at Glenlair for

half the year continuously. He obtained the professorship, but unhappily the kind intentions

which prompted him to apply for it were frustrated by the death of his father, which took

place in April, 1856.

It is doubtful whether the change from the Trinity lectureship to the Aberdeen

professorship was altogether prudent. The advantages were the possession of a laboratory and

the long uninterrupted summer vacation. But the labour of drilling classes composed chiefly

of comparatively young and untrained lads, in the elements of mechanics and physics, was

not the work for which Maxwell was specially fitted. On the other hand, in a large college

like Trinity there could not fail to have been among its undergraduate members, some of the

most promising young mathematicians of the University, capable of appreciating his original

genius and immense knowledge, by instructing whom he would himself have derived ad-

vantage.

In 1856 Maxwell entered upon his duties as Professor of Natural Philosophy at Marischal

College, and two years afterwards he married Katharine Mary Dewar, daughter of the

Principal of the College. He in consequence ceased to be a Fellow of Tiinity College,

but was afterwards elected an honorary Fellow, at the same time as Professor Cayley.

During the yeai*s 1856—60 he was still actively employed upon the subject of colour

sensation, to which he contributed a new method of measurement in the ingenious instru-

ment known as the colour-box. The most serious demands upon his powers and upon his

time were made by his investigations on the Stability of Saturn's Rings. This was the

subject chosen by the Examiners for the Adams Prize Essay to be adjudged in 1857, and

was advertised in the following terms:

—

"The Problem may be treated on the supposition that the system of Rings is

exactly or very approximately concentric with Saturn and symmetrically disposed about

the plane of his equator and different hypotheses may be made respecting the physical

constitution of the Rings. It may be supposed (1) that they are rigid; (2) that they

are fluid and in part aeriform
; (3) that they consist of masses of matter not materially

coherent. The question will be considered to be answered by ascertaining on these

hypotheses severally whether the conditions of mechanical stability are satisfied by the

mutual attractions and motions of the Planet and the Rings."
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"It is desirable that an attempt should also be made to determine on which of

the above hypotheses the appearances both of the bright rings and the recently

discovered dark ring may be most satisfactorily explained; and to indicate any causes

to which a change of form such as is supposed from a comparison of modem with the

earlier observations to have taken place, may be attributed."

It is sufficient to mention here that Maxwell bestowed an immense amount of labour

in working out the theory as proposed, and that he arrived at the conclusion that "the

only system of rings which can exist is one composed of an indefinite number of unconnected

particles revolving round the planet with different velocities according to their respective

distances. These particles may be arranged in a series of narrow rings, or they may move

about through each other irregularly. In the first case the destruction of the system will be

very slow, in the second case it will be more rapid, but there may be a tendency towards

an aiTangement in narrow rings which may retard the process."

Part of the work, dealing with the oscillatory waves set up in a ring of satellites,

was illustrated by an ingenious mechanical contrivance which was greatly admired when

exhibited before the Royal Society of Edinburgh.

This essay, besides securing the prize, obtained for its author great credit among

scientific men. It was characterized by Sir George Airy as one of the most remarkable

applications of Mathematics to Physics that he had ever seen.

The suggestion has been made that it was the irregular motions of the particles which

compose the Rings of Saturn resulting on the whole in apparent regularity and uni-

formity, which led Maxwell to the investigation of the Kinetic Theory of Gases, his first

contribution to which was read to the British Association in 1859. This is not unlikely,

but it must also be borne in mind that Bernoulli's Theory had recently been revived by

Herapath, Joule and Clausius whose writings may have drawn Maxwell's attention to the

subject.

In 1860 King's College and Marischal College were joined together as one institution,

now known as the University of Aberdeen. The new chair of Natural Philosophy thus

created was filled up by the appointment of David Thomson, formerly Professor at King's

College and Maxwell's senior. Professor Thomson, though not comparable to Maxwell as a

physicist, was nevertheless a remarkable man. He was distinguished by singular force of

character and great administrative faculty and he had been prominent in bringing about

the fusion of the Colleges. He was also an admirable lecturer and teacher and had done

much to raise the standard of scientific education in the north of Scotland. Thus the choice

made by the Commissioners, though almost inevitable, had the effect of making it appear

that Maxwell failed as a teacher. There seems however to be no evidence to support such

an inference. On the contrary, if we may judge from the number of voluntary students

attending his classes in his last College session, he would seem to have been as popular as a

professor as he was personally estimable.
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This is also borne out by the fact that he was soon afterwards elected Professor of

Natural Philosophy and Astronomy in King's College, London. The new appointment had

the advantage of bringing him much more into contact with men in his own department

of science, especially with Faraday, with whose electrical work his own was so intimately

connected. In 1862—63 he took a prominent part in the experiments organised by a

Committee of the British Association for the determination of electrical resistance in

absolute measure and for placing electrical measurements on a satisfactory basis. In the

experiments which were conducted in the laboratory of King's College upon a plan due

to Sir W. Thomson, two long series of measurements were taken in successive years. In

the first year, the working members were Maxwell, Balfour Stewart and Fleeming Jenkin ; in

the second, Charles Hockin took the place of Balfour Stewart. The work of this Committee

was communicated in the form of reports to the British Association and was afterwards

republished in one volume by Fleeming Jenkin.

Maxwell was a professor in King's College from 1860 to 1865, and this period of his

life is distinguished by the production of his most important papers. The second memoir

on Colours made its appearance in 1860. In the same year his first papers on the Kinetic

Theory of Gases were published. In 1861 came his papers on Physical Lines of Force

and in 1864 his greatest memoii' on Electricity,—a Dynamical Theory of the Electro-

magnetic Field. He must have been occupied with the Dynamical Theory of Gases in 1865,

as two important papers appeared in the following year, first the Bakerian lecture on the

Viscosity of Gases, and next the memoir on the Dynamical Theory of Gases.

The mental strain involved in the production of so much valuable work, combined

with the duties of his professorship which required his attention during nine months of

the year, seems to have influenced him in a resolution which in 1865 he at length

adopted of resigning his chair and retiring to his country seat. Shortly after this he had

a severe illness. On his recovery he continued his work on the Dynamical Theory of

Gases, to which reference has just been made. For the next few years he led a quiet

and secluded life at Glenlair, varied by annual visits to London, attendances at the British

Association meetings and by a tour in Italy in 1867. He was also Moderator or Examiner

in the Mathematical Tripos at Cambridge on several occasions, ofiBces which entailed a few

weeks' residence at the University in winter. His chief employment during those years

was the prepai-ation of his now celebrated treatise on Electricity and Magnetism which,

however, was not published till 1873. He also wrote a treatise on Heat which was

published in 1871.

In 1871 Maxwell was, with some reluctance, induced to quit his retreat in the

country and to enter upon a new career. The University of Cambridge had recently

resolved to found a professorship of physical science, especially for the cultivation and

teaching of the subjects of Heat, Electricity and Magnetism. In furtherance of this

object her Chancellor, the Duke of Devonshire, had most generously undertaken to build

a laboratory and furnish it with the necessary apparatus. Maxwell was invited to fill the
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new chair thus formed and to superintend the erection of the laboratory. In October,

1871, he delivered his inaugural lecture.

The Cavendish Laboratory, so called after its founder, the present venerable chief of

the family which produced the great physicist of the same name, was not completed

for practical work until 1874. In June of that year it was formally presented to the

University by the Chancellor. The building itself and the fittings of the several rooms

were admirably contrived mainly by Maxwell himself, but the stock of apparatus was

smaller than accorded with the generous intentions of the Chancellor. This defect must

be attributed to the anxiety of the Professor to procure only instruments by the best

makers and with such improvements as he could himself suggest. Such a defect therefore

required time for its removal and afterwards in great measure disappeared, apparatus being

constantly added to the stock as occasion demanded.

One of the chief tasks which Maxwell undertook was that of superintending and

directing the energies of such young Bachelors of Arts as became his pupils after

having acquired good positions in the University examinations. Several pupils, who have

since acquired distinction, carried out valuable experiments under the guidance of the

Professor. It must be admitted, however, that the numbers were at first small, but perhaps

this was only to be expected from the traditions of so many years. The Professor was

singularly kind and helpful to these pupils. He would hold long conversations with them,

opening up to them the stores of his mind, giving them hints as to what they might try

and what avoid, and was always ready with some ingenious remedy for the experimental

troubles which beset them. These conversations, always delightful and instructive, were,

according to the account of one of his pupils, a liberal education in themselves, and were

repaid in the minds of the pupils by a grateful affection rarely accorded to any teacher.

Besides discharging the duties of his chair, Maxwell took an active part in conducting

the general business of the University and more particularly in regulating the courses of

study in Mathematics and Physics.

For some years previous to 1866 when Maxwell returned to Cambridge as Moderator

in the Mathematical Tripos, the studies in the University had lost touch with the great

scientific movements going on outside her walls. It was said that some of the subjects most

in vogue had but little interest for the present generation, and loud complaints began to

be heard that while such branches of knowledge as Heat, Electricity and Magnetism, were

left out of the Tripos examination, the candidates were wasting their time and energy

upon mathematical trifles barren of scientific interest and of practical results. Into the

movement for reform Maxwell entered warmly. By his questions in 1866 and subsequent

years he infused new life into the examination ; he took an active part in drafting the

new scheme introduced in 1873 ; but most of all by his writings he exerted a powerful

influence on the younger members of the University, and was largely instrumental in

bringing about the change which has been now effected.
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In the first few years at Cambridge Maxwell was busy in giving the final touches

to his great work on Electricity and Magnetism and in passing it through the press.

This work was published in 1873, and it seems to have occupied the most of his attention

for the two previous years, as the few papers published by him during that period relate

chiefly to subjects forming part of the contents. After this publication his contributions to

scientific journals became more numerous, those on the Dynamical Theory of Gases being

perhaps the most important. He also wrote a great many short articles and reviews

which made their appearance in Nature and the Encyclopcedia Britannica. Some of these

essays are charming expositions of scientific subjects, some are general criticisms of the

works of contemporary writers and others are brief and appreciative biographies of fellow

workers in the same fields of research.

An undertaking in which he was long engaged and which, though it proved exceedingly

interesting, entailed much labour, was the editing of the "Electrical Researches" of the Hon.

Henry Cavendish. This work, published in 1879, has had the eflfect of increasing the

reputation of Cavendish, disclosing as it does the unsuspected advances which that acute

physicist had made in the Theory of Electricity, especially in the measurement of electrical

quantities. The work is enriched by a variety of valuable notes in which Cavendish's

views and results are examined by the light of modern theory and methods. Especially

valuable are the methods applied to the determination of the electrical capacities of con-

ductors and condensers, a subject in which Cavendish himself shewed considerable skill

both of a mathematical and experimental character.

The importance of the task undertaken by Maxwell in connection with Cavendish's

papers will be understood from the following extract from his introduction to them.

"It is somewhat difficult to account for the fact that though Cavendish had

prepared a complete description of his experiments on the charges of bodies, and had

even taken the trouble to write out a fair copy, and though all this seems to have

been done before 1774 and he continued to make experiments in Electricity till 1781

and lived on till 1810, he kept his manuscript by him and never published it."

"Cavendish cared more for investigation than for publication. He would under-

take the most laborious researches in order to clear up a difficulty which no one

but himself could appreciate or was even aware of, and we cannot doubt that the

result of his enquiries, when successful, gave him a certain degree of satisfaction.

But it did not excite in him that desire to communicate the discovery to others

which in the case of ordinary men of science, generally ensures the publication of

their results. How completely these researches of Cavendish remained unknown to

other men of science is shewn by the external history of electricity."

It will probably be thought a matter of some difficulty to place oneself in the

position of a physicist of a century ago and to ascertain the exact bearing of his

experiments. But Maxwell entered upon this undertaking with the utmost enthusiasm and
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succeeded in completely identifying himself with Cavendish's methods. He shewed that

Cavendish had really anticipated several of the discoveries in electrical science which have been

made since his time. Cavendish was the first to form the conception of and to measure

Electrostatic Capacity and Specific Inductive Capacity; he also anticipated Ohm's law.

The Cavendish papers were no sooner disposed of than Maxwell set about preparing

a new edition of his work on Electricity and Magnetism; but unhappily in the summer

term of 1879 his health gave way. Hopes were however entertained that when he returned

to the bracing air of his country home he would soon recover. But he lingered through

the summer months with no signs of improvement and his spirits gradually sank He was

finally informed by his old fellow-student, Professor Sanders, that he could not live more

than a few weeks. As a last resort he was brought back to Cambridge in October that he

might be under the charge of his favourite physician, Dr Paget*. Nothing however could

be done for • his malady, and, after a painful illness, he died on the 5th of November, 1879,

in his 49th year.

Maxwell was thus cut oflf in the prime of his powers, and at a time when the depart-

ments of science, which he had contributed so much to develop, were being every day

extended by fresh discoveries. His death was deplored as an irreparable loss to science and

to the University, in which his amiable disposition was as universally esteemed as his genius

was admired.

It is not intended in this preface to enter at length into a discussion of the relation

which Maxwell's work bears historically to that of his predecessors, or to attempt to estimate

the effect which it has had on the scientific thought of the present day. In some of his

papers he has given more than usually copious references to the works of those by whom

he had been influenced; and in his later papers, especially those of a more popular nature

which appeared in the Encyclopoedia Britannica, he has given full historical outlines of some

of the most prominent fields in which he laboured. Nor does it appear to the present

editor that the time has yet arrived when the quickening influence of Maxwell's mind on

modem scientific thought can be duly estimated. He therefore proposes to himself the duty

of recalling briefly, according to subjects, the most important speculations in which Maxwell

engaged.

His works have been arranged as far as possible in chronological order but they fall

naturally under a few leading heads; and perhaps we shall not be far wrong if we place

first in importance his work in Electricity.

His first paper on this subject bearing the title "On Faraday's Lines of Force" was

read before the Cambridge Philosophical Society on Dec. 11th, 1855. He had been previously

attracted by Faraday's method of expressing electrical laws, and he here set before himself

the task of shewing that the ideas which had guided Faraday's researches were not incon-

sistent with the mathematical formulae in which Poisson and others had cast the laws of

Now Sir George Edward Paget, K.C.B.
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Electricity. His object, he says, is to find a physical analogy which shall help the mind

to grasp the results of previous investigations "without being committed to any theory

founded on the physical science from which that conception is borrowed, so that it is neither

draw aside from the subject in the pursuit of analytical subtleties nor carried beyond the

truth by a favorite hypothesis."

The laws of electricity are therefore compared with the properties of an incompressible

fluid the motion of which is retarded by a force proportional to the velocity, and the fluid

is supposed to possess no inertia. He shews the analogy which the lines of flow of such

a fluid would have with the lines of force, and deduces not merely the laws of Statical

Electricity in a single medium but also a method of representing what takes place when the

action passes from one dielectric into another.

In the latter part of the paper he proceeds to consider the phenomena of Electro-

magnetism and shews how the laws discovered by Ampere lead to conclusions identical with

those of Faraday. In this paper three expressions are introduced which he identifies with

the components of Faraday's electrotonic state, though the author admits that he has not

been able to frame a physical theory which would give a clear mental picture of the

various connections expressed by the equations.

Altogether this paper is most important for the light which it throws on the principles

which guided Maxwell at the outset of his electrical work. The idea of the electrotonic

state had afready taken a firm hold of his mind though as yet he had formed no physical

explanation of it. In the paper "On Physical Lines of Force" printed in the Philosophical

Magazine, Vol. xxi. he resumes his speculations. He explains that in his former paper he

had found the geometrical significance of the Electrotonic state but that he now proposes

"to examine magnetic phenomena from a mechanical point of view." Accordingly he propounds

his remarkable speculation as to the magnetic field being occupied by molecular vortices,

the axes of which coincide with the lines of force. The cells within which these vortices

rotate are supposed to be separated by layers of particles which serve the double purpose

of transmitting motion from one cell to another and by their own motions constituting an

electric current. This theory, the parent of several working models which have been devised

to represent the motions of the dielectric, is remarkable for the detail vnth which it is

worked out and made to explain the various laws not only of magnetic and electromagnetic

action, but also the various forms of electrostatic action. As Maxwell subsequently gave a

more general theory of the Electromagnetic Field, it may be inferred that he did not desire

it to be supposed that he adhered to the views set forth in this paper in every particular;

but there is no doubt that in some of its main features, especially the existence of

rotation round the lines of magnetic force, it expressed his permanent convictions. In his

treatise on "Electricity and Magnetism," Vol. ii. p. 416, (2nd edition 427) after quoting from

Sir W. Thomson on the explanation of the magnetic rotation of the plane of the polarisation

of light, he goes on to say of the present paper,
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"A theory of molecular vortices which T worked out at considerable length was

published in the Phil. Mag. for March, April and May, 1861, Jan. and Feb. 1862."

- " I think we have good evidence for the opinion that some phenomenon of rotation

is going on in the magnetic field, that this rotation is performed by a great number

of very small portions of matter, each rotating on its own axis, that axis being parallel

to the direction of the magnetic force, and that the rotations of these various vortices

are made to depend on one another by means of some mechanism between them."

"The attempt which I then made to imagine a working model of this mechanism

must be taken for no more than it really is, a demonstration that mechanism may

be imagined capable of producing a connection mechanically equivalent to the actual

connection of the parts of the Electromagnetic Field."

This paper is also important as containing the first hint of the Electromagnetic Theory

of Light which was to be more fully developed afterwards in his third great memoir

" On the Dynamical Theory of the Electromagnetic Field." This memoir, which was presented

to the Royal Society on the 27th October, 1864, contains Maxwell's mature thoughts on a

subject which had so long occupied his mind. It was afterwards reproduced in his Treatise

with trifling modifications in the treatment of its parts, but without substantial changes

in its main features. In this paper Maxwell reverses the mode of treating electrical

phenomena adopted by previous mathematical writers; for while they had sought to build

up the laws of the subject by starting from the principles discovered by Ampere, and

deducing the induction of currents from the conservation of energy, Maxwell adopts the

method of first arriving at the laws of induction and then deducing the mechanical

attractions and repulsions.

After recalling the general phenomena of the mutual action of cuiTents and magnets

and the induction produced in a circuit by any variation of the strength of the field m

which it lies, the propagation of light through a luminiferous medium, the properties of

dielectrics and other phenomena which point to a medium capable of transmittmg force

and motio^i, he proceeds.

—

"Thus then we are led to the conception of a complicated mechanism capable

of a vast variety of motions but at the same time so connected that the motion of

one part depends, according to definite relations, on the motion of other parts, these

teotions being communicated by forces arising from the relative displacement of their

connected parts, in virtue of their elasticity. Such a mechanism must be subject

to the laws of Dynamics."

On applying dynamical principles to such a connected system he attains certain general

propositions which, on being compared with the laws of induced currents, enable him to

identify certain features of the mechanism with properties of currents. The induction of

currehts and their electromagnetic attraction are thus explained and connected.
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In a subsequent part of the memoir he proceeds to establish from these premises

the general equations of the Field and obtains the usual formulae for the mechanical

force on currents, magnets and bodies possessing an electrostatic charge.

He also returns to and elaborates more fully the electromagnetic Theory of Light.

His equations shew that dielectrics can transmit only transverse vibrations, the speed of

propagation of which in air as deduced from electrical data comes out practically identical

with the known velocity of light. For other dielectrics the index of refraction is equal

to the square root of the product of the specific inductive capacity by the coefficient of

magnetic induction, which last factor is for most bodies practically unity. Various comparisons

have been made with the view of testing this deduction. In the case of paraffin wax and

some of the hydrocarbons, theory and experiment agree, but this is not the case with

glass and some other substances. Maxwell has also applied his theory to media which

are not perfect insulators, and finds an expression for the loss of light in passing through

a stratum of given thickness. He remarks in confirmation of his result that most good

conductors are opaque while insulators are transparent, but he also adds that electrolytes

which transmit a current freely are often transparent, while a piece of gold leaf whose

resistance was determined by Mr Hockin allowed far too great an amount of light to

pass. He observes however that it is possible "there is less loss of energy when the

electromotive forces are reversed with the rapidity of light than when they act for sensible

times as in our experiments." A similar explanation may be given of the discordance

between the calculated and observed values of the specific inductive capacity. Prof. J. J,

Thomson in the Proceedings of the Royal Society, Vol. 46, has described an experiment by

which he has obtained the specific inductive capacities of various dielectrics when acted

on by alternating electric forces whose frequency is 25,000,000 per second. He finds that

under these conditions the specific inductive capacity of glass is very nearly the same as

the square of the refractive index, and very much less than the value for slow rates of

reversals. In illustration of these remarks may be quoted the observations of Prof. Hertz who

has shewn that vulcanite and pitch are transparent for waves, whose periods of vibration are

about three hundred millionths of a second. The investigations of Hertz have shewn that

electro-dynamic radiations are transmitted in waves with a velocity, which, if not equal to, is

comparable with that of light, and have thus given conclusive proof that a satisfactory

theory of Electricity must take into account in some form or other the action of the

dielectric. But this does not prove that Maxwell's theory is to be accepted in every

particular. A peculiarity of his theory is, as he himself points out in his treatise, that

the variation of the electric displacement is to be treated as part of the current as well

as the current of conduction, and that it is the total amount due to the sum of these

which flows as if electricity were an incompressible fluid, and which determines external

electrodynamic actions. In this respect it differs from the theory of Helmholtz which

also takes into account the action of the dielectric. Professor J. J. Thomson » in his

Review of Electric Theories has entered into a full discussion of the points at issue
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between the two above mentioned theories, and the reader is referred to his paper for

further information *. Maxwell in the memoir before us has also applied his theory to

the passage of light through crystals, and gets rid at once of the wave of normal vibrations

which has hitherto proved the stumbling block in other theories of light.

The electromagnetic Theory of Light has received numerous developments at the hands

of Lord Rayleigh, Mr Glazebrook, Professor J. J. Thomson and others. These volumes

also contain various shorter papers on Electrical Science, though perhaps the most complete

record of Maxwell's work in this department is to be found in his Treatise on Electricity

and Magnetism in which they were afterwards embodied.

Another series of papers of hardly less importance than those on Electricity are the

various memoirs on the Dynamical Theory of Gases. The idea that the properties of

matter might be explained by the motions and impacts of their ultimate atoms is as

old as the time of the Greeks, and Maxwell has given in his paper on " Atoms " a full

sketch of the ancient controversies to which it gave rise. The mathematical difficulties of

the speculation however were so great that it made little real progress till it was taken

up by Clausius and shortly afterwards by Maxwell. The first paper by Maxwell on the

subject is entitled "Illustrations of the Dynamical Theory of Gases" and was published

in the Philosophical Magazine for January and July, 1860, having been read at a meeting

of the British Association of the previous year. Although the methods developed in this

paper were afterwards abandoned for others, the paper itself is most interesting, as it indicates

clearly the problems in the theory which Maxwell proposed to himself for solution, and so far

contains the germs of much that was treated of in his next memoir. It is also epoch-making,

inasmuch as it for the first time enumerates various propositions which ai-e characteristic

of Maxwell's work in this subject. It contains the first statement of the distribution of velo-

cities according to the law of errors. It also foreshadows the theorem that when two gases

are in thermal equilibrium the mean kinetic energy of the molecules of each system is the

same ; and for the first time the question of the viscosity of gases is treated dynamically.

In his great memoir "On the Dynamical Theory of Gases" published in the Philo-

sophical Transactions of the Royal Society and read before the Society in May, 1866, he

returns to this subject and lays down for the first time the general d3niamical methods

appropriate for its treatment. Though to some extent the same ground is traversed as in

his former paper, the methods are widely different. He here abandons his former h}^othesis

that the molecules are hard elastic spheres, and supposes them to repel each other with

forces varying inversely as the fifth power of the distance. His chief reason for assuming

this law of action appears to be that it simplifies considerably the calculation of the

collisions between the molecules, and it leads to the conclusion that the coefficient of

viscosity is directly proportional to the absolute temperature. He himself undertook an

experimental enquiry for the purpose of verifying this conclusion, and, in his paper on the

Viscosity of Gases, he satisfied himself of its correctness. A re-examination of the numerical

* British Association Report, 1885.
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reductions made in the course of his work discloses however an inaccuracy which materially

affects the values of the coefl&cient of viscosity obtained. Subsequent experiments also seem

to shew that the concise relation he endeavoured to establish is by no means so near

the truth as he supposed, and it is more than doubtful whether the action between two

molecules can be represented by any law of so simple a character.

In the same memoir he gives a fresh demonstration of the law of distribution of

velocities, but though the method is of permanent value, it labours under the defect of

assuming that the distribution of velocities in the neighbourhood of a point is the same

in every direction, whatever actions may be taking place within the gas. This flaw in

the argument, first pointed out by Boltzmann, seems to have been recognised by Maxwell,

who in his next paper "On the Stresses in Rarefied Gases arising from inequalities of

Temperature," published in the Philosophical Transactions for 1879, Part I., adopts a form

of the distribution function of a somewhat different shape. The object of this paper was

to arrive at a theory of the effects observed in Crookes's Radiometer. The results of the

investigation are stated by Maxwell in the introduction to the paper, from which it would

appear that the observed motion cannot be explained on the Dynamical Theory, unless it

be supposed that the gas in contact with a solid can slide along the surface with a finite

velocity between places whose temperatures are different. In an appendix to the paper

he shews that on certain assumptions regarding the nature of the contact of the solid

and gas, there will be, when the pressure is constant, a flow of gas along the surface

from the colder to the hotter parts. The last of his longer papers on this subject is

one on Boltzmann's Theorem. Throughout these volumes will be found numerous shorter

essays on kindred subjects, published chiefly in Nature and in the Encyclopcedia Britannica.

Some of these contain more or less popular expositions of this subject which Maxwell

bad himself in great part created, while others deal with the work of other writers in

the same field. They are profoundly suggestive in almost every page, and abound in acute

criticisms of speculations which he could not accept. They are always interesting; for

although the larger papers are sometimes difficult to follow, Maxwell's more popular writings

are characterized by extreme lucidity and simplicity of style.

The first of Maxwell's papers on Colour Perception is taken from the Transactions of

the Royal Scottish Society of Arts and is in the form of a letter to Dr G. Wilson dated

Jan. 4, 1855. It was followed directly afterwards by a communication to the Royal Society

of Edinburgh, and the subject occupied his attention for some years. The most important

of his subsequent work is to be found in the papers entitled "An account of Experiments

on the Perception of Colour " published in the Philosophical Magazine, Vol xiv. and " On

the Theory of Compound Colours and its relation to the colours of the spectrum " in the

Philosophical Transactions for the year 1860. We may also refer to two lectures delivered

at the Royal Institution, in which he recapitulates and enforces his main positions in his

usual luminous style. Maxwell from the first adopts Young's Theory of Colour Sensation,

according to which all colours may ultimately be reduced to three, a red, a green and
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a violet. This theory had been revived by Helmholtz who endeavoured to find for it a

physiological basis. Maxwell however devoted himself chiefly to the invention of accurate

methods for combining and recording mixtures of colours. His first method of obtaining

mixtures, that of the Colour Top, is an adaptation of one formerly employed, but in

Maxwell's hands it became an instrument capable of giving precise numerical results by

means which he added of varying and measuring the amounts of colour which were

blended in the eye. In the representation of colours diagrammatically he followed Young

in employing an equilateral triangle at the angles of which the fundamental colours were

placed. All colours, white included, which may be obtained by mixing the fundamental

colours in any proportions will then be represented by points lying within the triangle.

Points without the triangle represent colours which must be mixed with one of the funda-

mental tints to produce a mixture of the other two, or with which two of them must be

mixed to produce the third.

In his later papers, notably in that printed in the Philosophical Transactions, he

adopts the method of the Colour Box, by which different parts of the spectrum may be

mixed in different proportions and matched with white, the intensity of which has been

suitably diminished. In this way a series of colour equations are obtained which can be

used to evaluate any colour in terms of the three fundamental colours. These observations

on which Maxwell expended great care and labour, constitute by far the most important

data regarding the combinations of colour sensations which have been yet obtained, and

are of permanent value whatever theory may ultimately be adopted of the physiology of the

perception of colour.

In connection with these researches into the sensations of the normal eye, may be

mentioned the subject of colour-blindness, which also engaged Maxwell's attention, and is

discussed at considerable length in several of his papers.

Geometrical Optics was another subject in which Maxwell took much interest. At an early

period of his career he commenced a treatise on Optics, which however was never completed.

His first paper "On the general laws of optical instruments," appeared in 1858, but a brief

account of the first part of it had been previously communicated to the Cambridge Philosophical

Society. He therein lays down the conditions which a perfect optical instrument must fulfil,

and shews that if an instrument produce perfect images of an object, i.e. images free from

astigmatism, curvature and distortion, for two different positions of the object, it will give

perfect images at all distances. On this result as a basis, he finds the relations between

the foci of the incident and emergent pencils, the magnifying power and other characteristic

quantities. The subject of refraction through optical combinations was afterwards treated

by him in a different manner, in three papers communicated to the London Mathematical

Society. In the first (1873), "On the focal lines of a refracted pencil," he applies Hamilton's

characteristic function to determine the focal lines of a thin pencil refracted from one

isotropic medium into another at any surface of separation. In the second (1874), "On
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Hamilton's characteristic function for a narrow beam of light," he considers the more general

question of the passage of a ray from one isotropic medium into another, the two media

being separated by a third which may be of a heterogeneous character. He finds the most

general form of Hamilton's characteristic function from one point to another, the first being

in the medium in which the pencil is incident and the second in the medium in which

it is emergent, and both points near the principal ray of the pencil. This result is then

applied in two particular cases, viz. to determine the emergent pencil (1) from a spectroscope,

(2) from an optical instrument symmetrical about its axis. In the third paper (1875) he

resumes the last-mentioned application, discussing this case more fully under a somewhat

simplified analysis.

It may be remarked that all these papers are connected by the same idea, which was

—

first to study the optical efiects of the entire instrument without examining the mechanism

by which these effects are produced, and then, as in the paper in 1858, to supply whatever

data may be necessary by experiments upon the instrument itself.

Connected to some extent with the above papers is an investigation which was published

in 1868 " On the cyclide." As the name imports, this paper deals chiefly with the geometrical

properties of the surface named, but other matters are touched on, such as its conjugate

isothermal functions. Primarily however the investigation is on the orthogonal surfaces to

a system of rays passing accurately through two lines. In a footnote to this paper Maxwell

describes the stereoscope which he invented and which is now in the Cavendish Laboratory.

In 1868 was also published a short but important article entitled " On the best arrange-

ment for producing a pure spectrum on a screen."

The various papers relating to the stresses experienced by a system of pieces joined

together so as to form a frame and acted on by forces form an important group connected

with one another. The first in order was "On reciprocal figures and diagrams of forces,"

published in 1864. It was immediately followed by a paper on a kindred subject, "On

the calculation of the equilibrium and stiffness of frames." In the first of these Maxwell

demonstrates certain reciprocal properties in the geometry of two polygons which are related

to one another in a particular way, and establishes his well-known theorem in Graphical

Statics on the stresses in frames. In the second he employs the principle of work to

problems connected with the stresses in frames and structures and with the deflections

arising from extensions in any of the connecting pieces.

A third paper " On the equilibrium of a spherical envelope," published in 1867, may

here be referred to. The author therein considers the stresses set up in the envelope by

a system of forces applied at its surface, and ultimately solves the problem for two normal

forces applied at any two points. The solution, in which he makes use of the principle

of inversion as it is applied in various electrical questions, turns ultimately on the deter-

mination of a certain function first introduced by Sir George Airy, and called by Maxwell
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Airy's Function of Stress. The methods which in this paper were attended with so much
success, seem to have suggested to Maxwell a reconsideration of his former work, with the

view of extending the character of the reciprocity therein established. Accordingly in 1870
there appeared his fourth contribution to the subject, "On reciprocal figures, frames and
diagrams of forces." This important memoir was published in the Transactions of the Royal

Society of Edinburgh, and its author received for it the Keith Prize. He begins with a

remarkably beautiful construction for drawing plane reciprocal diagrams, and then proceeds

to discuss the geometry and the degrees of freedom and constraint of polyhedral frames,

his object being to lead up to the limiting case when the faces of the polyhedron become
infinitely small and form parts of a continuous surface. In the course of this work he

obtains certain results of a general character relating to inextensible surfaces and certain

otjiers of practical utility relating to loaded frames. He then attacks the general problem of

representing graphically the internal stress of a body and by an extension of the meaning

of "Diagram of Stress," he gives a construction for finding a diagram which has mechanical

as well as geometrical reciprocal properties with the figure supposed to be under stress. It

is impossible with brevity to give an account of this reciprocity, the development of which

in Maxwell's hands forms a very beautiful example of analysis. It will be suflScient to

state that under restricted conditions this diagram of stress leads to a solution for the

components of stress in terms of a single function analogous to Airy's Function of Stress.

In the remaining parts of the memoir there is a discussion of the equations of stress, and

it is shewn that the general solution may be expressed in terms of three functions analogous

to Airy's single function in two dimensions. These results are then applied to special

cases, and in particular the stresses in a horizontal beam with a uniform load on its upper

surface are fully investigated.

On the subjects in which Maxwell's investigations were the most numerous it has

been thought necessary, in the observations which have been made, to sketch out briefly

the connections of the various papers on each subject with one another. It is not how-

ever intended to enter into an account of the contents of his other contributions to science,

and this is the less necessary as the reader may readily obtain the information he may
require in Maxwell's own language. It was usually his habit to explain by way of

introduction to any paper his exact position with regard to the subject matter and to

give a brief account of the nature of the work he was contributing. There are however

several memoirs which though unconnected with others are exceedingly interesting in them-

selves. Of these the essay on Saturn's Rings will probably be thought the most important

as containing the solution of a diflScult cosmical problem ; there are also various papers on

Dynamics, Hydromechanics and subjects of pure mathematics, which are most useful con-

tributions on the subjects of which they treat.

The remaining miscellaneous papers may be classified under the following heads: (a)

Lectures and Addresses, (b) Essays or Short Treatises, (c) Biographical Sketches, (d) Criticisms

and Reviews.
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Class (a) comprises his addresses to the British Association, to the London Mathematical

Society, the Rede Lecture at Cambridge, his address at the opening of the Cavendish

Laboratory and his Lectures at the Royal Institution and to the Chemical Society.

Class (6) includes all but one of the articles which he contributed to the Encyclo-

pcedia Britanrdca and several others of a kindred character to Nature.

Class (c) contains such articles as " Fai-aday " in the Encyclopcedia Britannica and

" Helmholtz " in Nature.

Class (d) is chiefly occupied with the reviews of scientific books as they were pub-

lished. These appeared in Nature and the most important have been reprinted in these

pages.

In some of these writings, particularly those in class (b), the author allowed himself a

gi-eater latitude in the use of mathematical symbols and processes than in others, as

for instance in the article " Capillary Attraction," which is in fact a treatise on that subject

treated mathematically. The lectures were upon one or other of the three departments

of Physics with which he had mainly occupied himself;—Colour Perception, Action through

a Medium, Molecular Physics; and on this account they are the more valuable. In the

whole series of these more popular sketches we find the same clear, graceful delineation of

principles, the same beauty in arrangement of subject, the same force and precision in

expounding proofs and illustrations. The style is simple and singularly free fi-om any kind

of haze or obscurity, rising occasionally, as in his lectures, to a strain of subdued eloquence

when the emotional aspects of the subject overcome the purely speculative.

The books which were written or edited by Maxwell and published in his lifetime but

which are not included in this collection were the "Theory of Heat" (1st edition, 1871);

"Electricity and Magnetism" (1st edition, 1873); "The Electrical Researches of the Hon-

ourable Henry Cavendish, F.R.S., written between 1771 and 1781, edited from the original

manuscripts in the possession of the Duke of Devonshire, K.G." (1879). To these may be

added a graceful little introductory treatise on Dynamics entitled "Matter and Motion"

(published in 1876 by the Society for promoting Christian Knowledge). Maxwell also

contributed part of the British Association Report on Electrical Units which was afterwards

published in book form by Fleeming Jenkin.

The "Theory of Heat" appeai-ed in the Text Books of Science series published by

Longmans, Green and Co., and was at once hailed as a beautiful exposition of a subject,

part of which, and that the most interesting part, the mechanical theory, had as yet but

commenced the existence which it owed to the genius and laboui-s of Rankine, Thomson and

Clausius. There is a certain charm in Maxwell's treatise, due to the freshness and originality

of its expositions which has rendered it a great favourite with students of Heat.

After his death an " Elementary Treatise on Electricity," the greater part of which he

had written, was completed by Professor Garnett and published in 1881. The aim of this
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treatise and its position relatively to his larger work may be gathered from the following

extract from Maxwell's preface.

" In this smaller book I have endeavoured to present, in as compact a form as I

can, those phenomena which appear to throw light on the theory of electricity and to

use them, each in its place, for the development of electrical ideas in the mind of

the reader."

"In the larger treatise I sometimes made use of methods which I do not think

the best in themselves, but without which the student cannot follow the investigations

of the founders of the Mathematical Theory of Electricity. I have since become more

convinced of the superiority of methods akic to those of Faraday, and have therefore

adopted them from the first."

Of the "Electricity and Magnetism" it is difficult to predict the future, but there is

no doubt that since its publication it has given direction and colour to the study of

Electrical Science. It was the master's last word upon a subject to which he had devoted

several years of his life, and most of what he wrote found its proper place in the treatise.

Several of the chapters, notably those on Electromagnetism, are practically reproductions of

his memoirs in a modified or improved form. The treatise is also remarkable for the handling

of the mathematical details no less than for the exposition of physical principles, and is

enriched incidentally by chapters of much originality on mathematical subjects touched on

in the course of the work. Among these may be mentioned the dissertations on Spherical

Harmonics and Lagrange's Equations in Dj-namics.

The origin and growth of Maxwell's ideas and conceptions of electrical action, cul-

minating in his treatise where all these ideas are arranged in due connection, form an

interesting chapter not only in the history of an individual mind but in the history of

electrical science. The importance of Faraday's discoveries and speculations can hardly be

overrated in their influence on Maxwell, who tells us that before he began the study of

electricity he resolved to read none of the mathematics of the subject till he had first

mastered the "Experimental Researches." He was also at first under deep obligations to

the ideas contained in the exceedingly important papers of Sir W. Thomson on the analogy

between Heat-Conduction and Statical Electricity and on the Mathematical Theory of

Electricity in Equilibrium. In his subsequent efforts we must perceive in Maxwell, possessed

of Faraday's views and embued with his spirit, a vigorous intellect bringing to bear on a

subject still full of obscurity the steady light of patient thought and expending upon it

all the resources of a never failing ingenuity.

Royal Navax College,

Greenwich,

August, 1890.
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[From the Proceedings of the Royal Society of Edinburgh, Vol, li. April, 1846.]

I. On the Description of Oval Curves, and those having a plurality of Foci; ivith

remarks by Professor Forbes. Communicated by Professor Forbes.

Mr Clerk Maxwell ingeniously suggests the extension of the common

theory of the foci of the conic sections to curves of a higher degree of com-

plication in the following manner :

—

(1) As in the ellipse and hyperbola, any point in the curve has the

sum or difference of two lines drawn from two points or foci = a. constant

quantity, so the author infers, that curves to a certain degree analogous, may

be described and determined by the condition that the simple distance from

one focus pliLS a multiple distance from the other, may be = a constant quantity;

or more generally, m times the one distance + n times the other = constant.

(2) The author devised a simple mechanical means, by the wrapping

of a thread round pins, for producing these curves. See Figs. 1 and 2. He

Fig. 1. Two FocL Katios 1, Fig. 2. Two Foci Ratios 2, 3.

then thought of extending the principle to other curves, whose property

should be, that the sum of the simple or multiple distances of any point of
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the curve from three or more points or foci, should be = a constant quantity

;

and this, too, he has effected mechanically, by a very simple arrangement of

a string of given length passing round three or more fixed pins, and con-

straining a tracing point, P. See Fig. 3. Farther, the author regards curves

Fig. 3. Three Foci. Eatios of Equality.

of the first kind as constituting a particular class of curves of the second

kind, two or more foci coinciding in one, a focus in which two strings meet

being considered a double focus; when three strings meet a treble focus, &c.

Professor Forbes observed that the equation to curves of the first class is

easily found, having the form

V^+7= a-VhJ{x- c)' + y\

which is that of the curve known under the name of the First Oval of

Descartes*. Mr Maxwell had already observed that when one of the foci was

at an infinite distance (or the thread moved parallel to itself, and was confined

in respect of length by the edge of a board), a curve resembling an ellipse

was traced ; from which property Professor Forbes was led first to infer the

identity of the oval with the Cartesian oval, which is well known to have this

property. But the simplest analogy of all is that derived from the method of

description, r and r being the radients to any point of the curve from the two

foci

;

mr + nr — constant,

which in fact at once expresses on the undulatory theory of light the optical

character of the surface in question, namely, that light diverging from one

focus F without the medium, shall be correctly convergent at another point /
* Herschel, On Light, Art. 232 ; Lloyd, On Light and Vision, Chap. vii.
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within it ; and in this case the ratio — expresses the index of refraction of

the medium*.

If we denote by the power of either focus the number of strings leading

to it by Mr Maxwell's construction, and if one of the foci be removed to an

infinite distance, if the powers of the two foci be equal the curve is a parabola

;

if the power of the nearer focus be greater than the other, the curve is an

eUipse; if the power of the infinitely distant focus be the greater, the curve

is a hyperbola. The first case evidently corresponds to the case of the reflection

of parallel rays to a focus, the velocity being unchanged after reflection; the

second, to the refraction of parallel rays to a focus in a dense medium (in

which light moves slower) ; the third case to refraction into a rarer medium.

The ovals of Descartes were described in his Geometry, where he has also

given a mechanical method of describing one of themt, but only in a particular

case, and the method is less simple than Mr Maxwell's. The demonstration of

the optical properties was given by Newton in the Principia, Book i., prop. 97,

by the law of the sines; and by Huyghens in 1690, on the Theory of Undu-

lations in his Traite de la Lumiere. It probably has not been suspected that

so easy and elegant a method exists of describing these curves by the use of

a thread and pins whenever the powers of the foci are commensurable. For

instance, the curve. Fig. 2, drawn with powers 3 and 2 respectively, give the

proper form for a refracting surface of a glass, whose index of refraction is 1'50,

in order that rays diverging fromf may be refracted to F.

As to the higher classes of curves with three or more focal points, we

cannot at present invest them with equally clear and curious physical properties,

but the method of drawing a curve by so simple a contrivance, which shall

satisfy the condition

mr + nr +pr" + &c. = constant,

is in itself not a little interesting; and if we regard, with Mr Maxwell, the

ovals above described, as the limiting case of the others by the coalescence

of two or more foci, we have a farther generalization of the same kind as that

so highly recommended by Montucla^ by which Descartes elucidated the conic

sections as particular cases of his oval curves.

This was perfectly well shewn by Hnyghens in his Traite de la Lumiere, p. 111. (1690.)

+ Edit. 1683. Geometria, Lib. ii. p. 54.

X Histoire dea Mathematiqties. First Edit IL 102.



[From the Transactions of the Royal Society of Edinburgh, Vol. xvi. Part v.]

II. On the Theory of Rolling Curves. Communicated by the Eev. Professor

Kelland.

There is an important geometrical problem which proposes to find a curve

having a given relation to a series of curves described according to a given

law. This is the problem of Trajectories in its general form.

The series of curves is obtained from the general equation to a curve by

the variation of its parameters. In the general case, this variation may change

the form of the curve, but, in the case which we are about to consider, the

curve is changed only in position.

This change of position takes place partly by rotation, and partly by trans-

ference through space. The roUing of one curve on another is an example of

this compound motion.

As examples of the way in which the new curve may be related to the

series of curves, we may take the following :

—

1. The new curve may cut the series of curves at a given angle. When
this angle becomes zero, the curve is the envelope of the series of curves.

2. It may pass through correspondiug points in the series of curves.

There are many other relations which may be imagined, but we shall confine

our attention to this, partly because it aSbrds the means of tracing various

curves, and partly on account of the connection which it has with many

geometrical problems.

Therefore the subject of this paper will be the consideration of the relations

of three curves, one of which is fixed, while the second rolls upon it and

traces the third. The subject of rolling curves is by no means a new one.

The first idea of the cycloid is attributed to Aristotle, and involutes and

evolutes have been long known.
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In the Histmy of the Royal Academy of Sciences for 1704, page 97,

there is a memoir entitled "Nouvelle formation des Spirales," by M. Varignon,

in which he shews how to construct a polar curve from a curve referred to

rectangular co-ordinates by substituting the radius vector for the abscissa, and

a circular arc for the ordinate. After each curve, he gives the curve into

which it is " unrolled," by which he means the curve which the spiral must

be rolled upon in order that its pole may trace a straight line; but as this

18 not the principal subject of his paper, he does not discuss it very fully.

There is also a memoir by M. de la Hire, in the volume for 1706, Part ii.,

page 489, entitled "Methode generale pour r^duire toutes les Lignes courbes ^

des Roulettes, leur generatrice ou leur base ^tant donnde telle qu'on voudra."

M. de la Hire treats curves as if they were polygons, and gives geome-

trical constructions for finding the fixed curve or the rolling curve, the other

two being given; but he does not work any examples.

In the volume for 1707, page 79, there is a paper entitled, "Methode

generale pour determiner la nature des Courbes form^es par le roulement de

toutes sortes de Courbes sur une autre Courbe quelconque." Par M. Nicole.

M. Nicole takes the equations of the three curves referred to rectangular

co-ordinates, and finds three general equations to connect them. He takes the

tracing-point either at the origin of the co-ordinates of the rolled curve or not.

He then shews how these equations may be simplified in several particular

cases. These cases are

—

(1) When the tracing-point is the origin of the roUed curve.

(2) When the fixed curve is the same as the rolling cxirve.

(3) When both of these conditions are satisfied.

(4) When the fixed line is straight.

He then says, that if we roll a geometric curve on itself, we obtain a new

geometric curve, and that we may thus obtain an infinite number of geometric

curves.

The examples which he gives of the application of his method are all taken

from the cycloid and epicycloid, except one which relates to a parabola, rolling

on itself, and tracing a cissoid with its vertex. The reason of so small a

number of examples being worked may be, that it is not easy to eliminate

the co-ordinates of the fixed and rolling curves from his equations.

The case in which one curve roUing on another produces a circle is treated

of in Willis's Principles of Mechanism. Class C. Boiling Contact.
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He employs the same method of finding the one curve from the other

which is used here, and he attributes it to Euler (see the Acta Petropolitana,

Vol. v.).

Thus, nearly all the simple cases have been treated of by different authors;

but the subject is still far from being exhausted, for the equations have been

applied to very few curves, and we may easily obtain new and elegant proper-

ties from any curve we please.

Almost all the more notable curves may be thus linked together in a great

variety of ways, so that there are scarcely two curves, however dissimilar,

between which we cannot form a chain of connected curves.

This will appear in the list of examples given at the end of this paper.

Let there be a curve KAS, whose pole is at C.
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Let the angle DCA = 6, and CA=r, and let

Let this curve remain fixed to the paper.

Let there be another curve BAT, whose pole is B.

Let the angle MBA = 0t, and BA=r^, and let

Let this curve roll along the curve KAS without slipping.

Then the pole B will describe a third curve, whose pole is C.

Let the angle DCB = 0^, and CB = r„ and let

We have here six unknown quantities 0,dAr,r^r^; but we have only three

equations given to connect them, therefore the other three must be sought for

in the enunciation.

But before proceeding to the investigation of these three equations, we must

premise that the three curves will be denominated as follows :

—

The Fixed Curve, Equation, e^ = ^^{r^.

The Rolled Curve, Equation, 0. = <f>,{r,).

Tlie Traced Curve, Equation, 6^ = 4>.,{r^.

When it is more convenient to make use of equations between rectangular

co-ordinates, we shall use the letters x^^, x^^, x^ij^. We shall always employ the

letters s^s^^ to denote the length of the curve from the pole, p.p^p^ for the per-

pendiculars from the pole on the tangent, and q^q/i^ for the intercepted part of

the tangent.

Between these quantities, we have the following equations:

—

r = ^/^T?, ^ = tan-|,

a? = r cos ^, y = r sin 6,

r" ydx — xdy

jm'S ""^w+w'
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rdr

dS _ xdx + ydy
2=-r=7x!fi' r-

J{dxy + (dyY'

' "^ W '^d^ daf

We come now to consider the three equations of rolling which are involved

in the enunciation. Since the second curve rolls upon the first without slipping,

the length of the fixed curve at the point of contact is the measure of the

length of the rolled curve, therefore we have the following equation to connect

the fixed curve and the rolled curve

—

«! = Sj.

Now, by combining this equation with the two equations

it is evident that from any of the four quantities 6{r^6^r^ or x^^x^^, we can

obtain the other three, therefore we may consider these quantities as known

functions of each other.

Since the curve rolls on the fixed curve, they must have a common tangent.

Let PA be this tangent, draw BP, CQ perpendicular to PA, produce CQ,

and draw BR perpendicular to it, then we have CA=r^, BA = r^, and CB = r,;

CQ=p„ PB=p,, and BN=p,; AQ = q„ AP = q„ and CN=q,.

Also r,'=CR=CR+RR= (CQ +PBY+(AP-AQf

=p,'+ 2p,p, +p,'+ r,' -p,' - 2q,q,+ r," -p,'

fz = n' + n' + 2piPa - 2q,q^.

Since the first curve is fixed to the paper, we may find the angle 6,.

Thus e, =DCB =DCA +ACQ+RCB

= e?.+tan-| + tan-|§

^, = ^, +tan--^ + tan-^ ^^^^
TjdO^ Pi +pi
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Thus we have found three independent equations, which, together with the

equations of the curves, make up six equations, of which each may be deduced

from the others. There is an equation connecting the radii of curvature of the

three curves which is sometimes of use.

The angle through which the rolled curve revolves during the description of

the element ds„ is equal to the angle of contact of the fixed curve and the

rolling curve, or to the sum of their curvatures,

ds^ ds^ ds.

But the radius of the rolled curve has revolved In the opposite direction

through an angle equal to dO,, therefore the angle between two successive posi-

tions of r, is equal to -^-dd,. Now this angle is the angle between two

successive positions of the normal to the traced curve, therefore, if be the

centre of curvature of the traced curve, it is the angle which ds^ or ds^ subtends

at 0. Let OA^T, then

ds^ r4d^ ds, ,^ _ ds^ ds, ,.

^J__J_ 1 _^
•*•

'^'ds, T~ R, R, ds/

-tAt^tJ RJR.'

As an example of the use of this equation, we may examine a property

of the logarithmic spiral.

In this curve, p = mr, and R = —
, therefore if the rolled curve be the

^ m
logarithmic spiral

/I 1\ 1 ^m
"^[t^tJ-r^v/

m_ 1

t~r:,*

AO
therefore ^0 in the figure = ?ni2i, and -^ = m.

Let the locus of 0, or the evolute of the traced curve LYBH, be the

curve OZY, and let the evolute of the fixed curve KZAS be FEZ, and let

us consider FEZ as the fixed curve, and OZF as the traced curve.
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Then in the triangles BPA, AOF, we have OAF=PBA, and ^='^ =^y
therefore the triangles are similar, and FOA =APB = - , therefore OF is perpen-

dicular to OA, the tangent to the curve OZY, therefore OF is the radius of

the curve which when roUed on FEZ traces OZY, and the angle which the

curve makes with this radius is OFA=PAB = %mr^m, which is constant, there-

fore the curve, which, when rolled on FEZ, traces OZY, is the logarithmic

spiral. Thus we have proved the following proposition :
" The involute of the

curve traced by the pole of a logarithmic spiral which rolls upon any curve,

is the curve traced by the pole of the same logarithmic spiral when rolled on

the involute of the primary curve."

It follows from this, that if we roll on any curve a curve having the

property
_2:»i
— Wjri, and roll another curve having Pi = 'm^r^ on the curve traced,

and so on, it is immaterial in what order we roll these curves. Thus, if we

roll a logarithmic spiral, in which jp = mr, on the nth involute of a circle whose

radius is a, the curve traced is the w+lth involute of a circle whose radius

is Jl-m\

Or, if we roll successively m logarithmic spirals, the resulting curve is the

n + mth involute of a circle, whose radius is

aJl—m^ sll- m/, Jkc.

We now proceed to the cases in which the solution of the problem may

be simplified. This simplification is generally effected by the consideration that

the radius vector of the rolled curve is the normal drawn from the traced

curve to the fixed curve.

In the case in which the curve is rolled on a straight line, the perpen-

dicular on the tangent of the rolled curve is the distance of the tracing point

from the straight line ; therefore, if the traced curve be defined by an equation

in iCg and y„

'^.°p.= /
"'„... (1)'

and '••=^'^©^ ^'^-
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By substituting for r, in the first equation, its value, as derived from the

second, we obtain

-©[©-]=©'
If we know the equation to the rolled curve, we may find (-7-^') in

terms of r,, then by substituting for r, its value in the second equation, we

dx (1

X

have an equation containing x^ and -^, from which we find the value of -t—
'

dy, du,

in terms of x^; the integration of this gives the equation of the traced curve.

As an example, we may find the curve traced by the pole of a hyperbolic

spiral which rolls on a straight line.

a

fdrA' _ rl

,ddj ~
a'

The equation of the rolled curve is 6^ =

- •©-[(IJ-]'
dx^ _ ^3

'*
dy,~Ja'-x,''

This is the differential equation of the tractory of the straight line, which

is the curve traced by the pole of the hyperbolic spiral.

By eliminating x^ in the two equations, we obtain

dr^_ /dxA

This equation serves to determine the rolled curve when the traced cuive

is given.

As an example we shall find the curve, which being rolled on a straight

line, traces a common catenary.

Let the equation to the catenary be

'l(e' + e-^.
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Then
dy,~N a' '

dr

then by integration ^ =cos'^ ( 1
j

2a
r=

1+COS0'

This is the polar equation of the parabola, the focus being the pole ; there-

fore, if we roll a parabola on a straight line, its focus will trace a catenary.

The rectangiilar equation of this parabola is af = Aay, and we shall now

consider what curve must be rolled along the axis of y to trace the parabola.

By the second equation (2),

n = ^9 /-4- + l> but x^^Pi,
V ^»

.-. r/=^/+ 4a",

.-. 2a = Vr/-jp/ = g'„

but q^ is the perpendicular on the normal, therefore the normal to the curve

always touches a circle whose radius is 2a, therefore the curve is the involute

of this circle.

Therefore we have the following method of describing a catenary by con-

tinued motion.

Describe a circle whose radius is twice the parameter of the catenary; roll a

straight line on this circle, then any point in the line will describe an involute
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of the circle ; roll this curve on a straight line, and the centre of the circle will

describe a parabola ; roll this parabola on a straight line, and its focus will trace

the catenary required.

We come now to the case in which a straight line rolls on a curve.

When the tracing-point is in the straight line, the problem becomes that

of involutes and evolutes, which we need not enter upon ; and when the tracmg-

point is not in the straight line, the calculation is somewhat complex; we shall

therefore consider only the relations between the curves described in the first

and second cases.

Definition.—The curve which cuts at a given angle all the circles of a

given radius whose centres are in a given curve, is called a tractory of the

given curve.

Let a straight line roll on a curve A, and let a point in the straight

line describe a curve B, and let another point, whose distance from the first

point is b, and from the straight line a, describe a curve C, then it is evident

that the curve B cuts the circle whose centre is in C, and whose radius is b,

at an angle whose sine is equal to r, therefore the curve 5 is a tractory of

the curve C.

When a = b, the curve B is the orthogonal tractory of the curve C. If

tangents equal to a be drawn to the curve B, they will be terminated in

the curve C; and if one end of a thread be carried along the curve C, the

other end will trace the curve B.

When a = 0, the curves B and C are both involutes of the curve A,

they are always equidistant from each other, and if a circle, whose radius is

6, be rolled on the one, its centre will trace the other.

If the curve A is such that, if the distance between two points measured

along the curve is equal to 6, the two points are similarly situate, then the

curve B is the same with the curve C. Thus, the curve A may be a re-

entrant curve, the circumference of which is equal to 6.

When the curve -4 is a circle, the curves B and C are always the same.

The equations between the radii of curvature become

1 1 _ r
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When a = 0, T=0, or the centre of curvature of the curve B is at the

point of contact. Now, the normal to the curve C passes through this point,

therefore

—

"The normal to any curve passes through the centre of curvature of its

tractory,"

In the next case, one curve, by rolling on another, produces a straight

line. Let this straight line be the axis of y, then, since the radius of the

rolled curve is perpendicular to it, and terminates in the fixed curve, and

since these curves have a common tangent, we have this equation,

If the equation of the rolled curve be given, find -j-^ in terms of r^, sub-

stitute Xi for r^, and multiply by x^, equate the result to -^ , and integrate.

Thus, if the equation of the rolled curve be

d = Ar-"" + &c. + Kr-^+ Lr'^ + iflog r + iVr + &c. + Zr"",

^ = - n^r-(»+^) - &c. - 2Kr-' - I/p-' + Mr'' +N+ &c. + wZr"-^
dr

-r-= - nAx~'* - &c. - 2Kx~"- - Lx~^ +M+ Nx + &c. + nZx",
ax

y =-^ Aa^-"" + &c. + 2Kx-' -L\ogx +Mx + ^Naf + &c. +-^ Zx""^',

which is the equation of the fixed curve.

If the equation of the fixed curve be given, find -^ in terms of cc, sub-

stitute r for X, and divide by r, equate the result to -t-, and integrate.

Thus, if the fixed curve be the orthogonal tractory of the straight line,

whose equation is

y = a log . + Ja^
a + \la^ — x^

dy _ Jo' — af

dx~ X
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de _ Ja?-7*

dr r*

= cos"^

this is the equation to the orthogonal tractory of a circle whose diameter is

equal to the constant tangent of the fixed curve, and its constant tangent

equal to half that of the fixed curve.

This property of the tractory of the circle may be proved geometrically,

thus—Let P be the centre of a circle whose radius is PD, and let CD be

a line constantly equal to the radius. Let BCP be the curve described by

the point C when the point D is moved along the circumference of the circle,

then if tangents equal to CD be drawn to the curve, their extremities will

be in the circle. Let ACH be the curve on which BCP rolls, and let OPE
be the straight line traced by the pole, let CDE be the common tangent,

let it cut the circle in D, and the straight line in E.

Then CD = PD, .'. LDCP^ LDPC, and CP is perpendicular to OE,

.'. L CPE= LDCP+ LDEP. Take away LDCP-^ L DPC, and there remains

DPE=DEP, .-. PD=^DE, .-. CE=2PD.
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Therefore the curve ACH haa a constant tangent equal to the diameter of

the circle, therefore ACH is the orthogonal tractorj of the straight line, which

is the tractrix or equitangential curve.

The operation of finding the fixed curve from the rolled curve is what

Sir John Leslie calls " divesting a curve of its radiated structure."

The method of finding the curve which must be rolled on a circle to

trace a given curve is mentioned here because it generally leads to a double

result, for the normal to the traced curve cuts the circle in two points, either

of which may be a point in the rolled curve.

Thus, if the traced curve be the involute of a circle concentric with the

given circle, the rolled curve is one of two similar logarithmic spirals.

If the curve traced be the spiral of Archimedes, the rolled curve may be

either the hyperbolic spiral or the straight line.

In the next case, one curve rolls on another and traces a circle.

Since the curve traced is a circle, the distance between the poles of the

fixed curve and the rolled curve is always the same; therefore, if we fix the

rolled curve and roll the fixed curve, the curve traced will still be a circle,

and, if we fix the poles of both the curves, we may roU them on each other

without friction.

Let a be the radius of the traced circle, then the sum or difference of

the radii of the other curves is equal to a, and the angles which they make

with the radius at the point of contact are equal,

.. n-=±(a±r,)andn^^ = r,^\

dO, _ ±(a±r^ dS,

drt~ r, dvi'

If we know the equation between ^j and r,, we may find ^— in terms of r„

substitute ± (a ± r,) for r„ multiply by ^ \ and integrate.

Thus, if the equation between 6^ and r^ be

r, = a sec $,,



TEU: THEORY OF ROLLING CURVES. 17

which is the polar equation of a straight line touching the traced circle whose

equation is r = ay then

dd _ a

dr, ~ r, -Jr.'-a'

a

{r,±a)Jr,'±2r,a

dO^ r^±a a

dr, r, (r,±a) Jrf±2r^

a

_ 2a _ 2a

Now, since the rolling curve is a straight line, and the tracing point is

not in its direction, we may apply to this example the observations which

have been made upon tractories.

2a
Let, therefore, the curve ^ = ^

—

7 be denoted by A, its involute by B, and

the circle traced by C, then B is the tractory of C; therefore the involute

2a
of the curve ^ = ^—r is the tractory of the circle, the equation of which is

^ = cos"' /— — I. The curve whose equation is ^'=s—; seems to be among

spirals what the catenary is among curves whose equations are between rec-

tangular co-ordinates ; for, if we represent the vertical direction by the radius

vector, the tangent of the angle which the curve makes with this line is

proportional to the length of the curve reckoned from the origin ; the point

at the distance a from a straight line rolled on this curve generates a circle,

and when rolled on the catenary produces a straight line ; the involute of this

curve m the tractory of the circle, and that of the catenary is the tractory

of the straight line, and the tractory of the circle rolled on that of the straight

line traces the straight line ; if this curve is rolled on the catenary, it produces

the straight line touching the catenary at its vertex ; the method of drawing
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tangents is the same as in the catenary, namely, by describing a circle

radius is a on the production of the radius vector, and drawing a tangent to the

circle from the given point.

In the next case the rolled curve is the same as the fixed curve. It is

evident that the traced curve wiU be similar to the locus of the intersection

of the tangent with the perpendicular from the pole ; the magnitude, however,

of the traced curve will be double that of the other curve; therefore, if we

call n = <^o^o the equation to the fixed curve, r, =
<f>,6,

that of the traced curve,

we have

also, £^ = f.

SimUarly, r, = 2p, = 2r,f =A^ Ar,
(^J,

0,^6,-2 cos- ^ .

Similarly, r„ = 2p„., = 2r„_,^ &c. =2^
(^^J

,

and ^^f.

^„ = ^„-7lC0S-f-\
'o

V
0n = 6. — ncos~^ -^

.

Let e, become 6^'; 0„ 6,' and ^ , ^. Let ^„^-^„ = a,

^„^ = ^;-ncos- ^,
» «.

a = ^„^- e„ = ^.^-^o-ncos-^ ^' +n cos-^ ^

-1 Pn -1 Pn O-
,

^0 ~ ^0
\ cos ^ ^^-^ — COS * -^— = - 4 .
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Now, cos"^ — is the complement of the angle at which the curve cuts the
' n

radius vector, and cos"' — —cos"' -^ is the variation of this angle when 6^ varies

by an angle equal to a. Let this variation = (^ ; then if 6^ — 6J = fi,

^ n n

Now, if n increases,
<f>

will diminish ; and if n becomes infinite,

<^ =^ +^ = when a and )8 are finite.

Therefore, when n is infinite, <}> vanishes ; therefore the curve cuts the radius

vector at a constant angle ; therefore the curve is the logarithmic spiral.

Therefore, if any curve be rolled on itself, and the operation repeated an

infinite number of times, the resulting curve is the logarithmic spiral

Hence we may find, analytically, the curve which, being rolled on itself,

traces itself.

For the curve which has this property, if rolled on itself, and the operation

repeated an infinite number of times, will still trace itself.

But, by this proposition, the resulting curve is the logarithmic spiral

;

therefore the curve required is the logarithmic spiral. As an example of a curve

rolling on itself, we will take the curve whose equation is

n=2"a(cos|)".

-1=2". (sing (oosf-;

2"a'(cos^")'"

.'. r^ = 2p,= 2

r, = 2

^2-a'(cosg%2-a^(sing (cosg"^'^

2"a cos — / n\ „+i

^^cos-j+(sm-j
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Now ^1-^0= -cos-^^"= -cos-' cos -" = -^,

" n+1

substituting this value of 6^ in the expression for r^,

r. = 2-'a^cos--J ,

similarly, if the operation be repeated ni times, the resulting curve is

*afcos—^^y
\ n + mj

When n=l, the curve is

r = 2a cos 9,

the equation to a circle, the pole being in the circumference.

When n = 2, it is the equation to the cardioid

r = 4a (cos
-J

.

In order to obtain the cardioid from the circle, we roll the circle upon

itself, and thus obtain it by one operation ; but there is an operation which,

bei6g performed on a circle, and again on the resulting curve, will produce a

cardioid, and the intermediate curve between the circle and cardioid is

r = 2
> / 20\i

As the operation of rolling a curve on itself is represented by changing n

into (n + 1) in the equation, so this operation may be represented by changing n

into (w + i).

Similarly there may be many other fractional operations performed upon

the curves comprehended under the equation

r = 2"a(cos-j.

We may also find the curve, which, being rolled on itself, will produce a

given curve, by making 7i= — 1.
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We may likewise prove by the same method as before, that the result of

performing this inverse operation an infinite number of times is the logarithmic

spiral.

As an example of the inverse method, let the traced line be straight, let

its equation be

r<, = 2a sec d^,

then
P^^p,^2a^2a_

therefore suppressing the suflSx,

= ar,

* • \d0j a '

dr
r7i-''

&-')
- 2a

^~l-cos^'

the polar equation of the parabola whose parameter is 4rt.

The last case which we shall here consider affords the means of constructing

two wheels whose centres are fixed, and which shall roll on each other, so that

the angle described by the first shall be a given function of the angle described

by the second.

Let 0^ = (f}0i,
then r^ + r^ = a, and -j^ = — ;

d0^ a-r^'

Let us take as an example, the pair of wheels which will represent the

angular motion of a comet in a parabola.
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Here 6^ = tan -^

,

. ^_
2 cos' -^

a 2 + cos ^1

'

therefore the first wheel is an ellipse, whose major axis is equal to | of the

distance between the centres of the wheels, and in which the distance between

the foci is half the major axis.

Now since ^i = 2 tan"' B^ and r^ = a - r„

'• 1+ 1
a ^2(2-^)'

'-'-±;'
a

which is the equation to the wheel which revolves with constant angular velocity.

Before proceeding to give a list of examples of rolling curves, we shall

state a theorem which is almost self-evident after what has been shewn pre-

viously.

Let there be three curves. A, B, and C. Let the curve A, when rolled

on itself, produce the curve B, and when rolled on a straight line let it

produce the curve C, then, if the dimensions of C be doubled, and B be

rolled on it, it will trace a straight line.

A Collection of Examples of Rolling Curves.

First. Examples of a curve rolling on a straight line.

Ex. 1. When the rolling curve is a circle whose tracing-point is in the

circumference, the curve traced is a cycloid, and when the point is not in the

circumference, the cycloid becomes a trochoid.

Ex. 2. When the rolling curve is the involute of the circle whose radius

is 2a, the traced curve is a parabola whose parameter is 4a.
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Ex. 3. When the rolled curve is the parabola whose parameter is 4a, the

traced curv^e is a catenary whose parameter is a, and whose vertex is distant

a from the straight line.

Ex. 4. "When the rolled curve is a logarithmic spiral, the pole traces a

straight line which cuts the fixed line at the same angle as the spiral cuts

the radius vector.

Ex. 5. When the rolled curve is the hyperbolic spiral, the traced curve

is the tractory of the straight line.

Ex. 6. When the rolled curve is the polar catenary

r 2a

the traced curve is a circle whose radius is a, and which touches the straight

line.

Ex. 7. When the equation of the rolled curve is

the traced curve is the hyperbola whose equation is

y' = d' + a^.

Second. In the examples of a straight Hne I'olling on a curve, we shall

use the letters A^ B, and C to denote the three curves treated of in page 22.

Ex. 1. When the curve ^ is a circle whose radius is a, then the cui-ve B
is the involute of that circle, and the curve C is the spiral of Archimedes, r = ad.

Ex. 2. When the curve ^ is a catenary whose equation is

the curve B is the tractory of the straight line, whose equation is

X I

y = a log , + JcL' — -f^,

a + V a' - ar"

and C is a straight line at a distance a from the vertex of the catenary.
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Ex. 3. When tKe curve A is the polar catenaxy

the curve B is the tractory of the circle

and the curve (7 is a circle of which the radius is -

.

Third. Examples of one curve rolling on another, and tracing a straight

line.

Ex. 1. The curve whose equation is

= Ar-"* + &c. + Kr-'+ Lr'^+ Jflog r+ iVr+ &c. + Zt^,

when rolled on the curve whose equation is

n — 1 71+ L

traces the axis of y.

Ex. 2. The circle whose equation is r= a cos ^ rolled on the circle whose

radius is a traces a diameter of the circle.

Ex. 3. The curve whose equation is

^=J'i-
1 — versm -

,

a

rolled on the circle whose radius is a, traces the tangent to the circle.

Ex. 4. If the fixed curve be a parabola whose parameter is 4a, and if we

roll on it the spiral of Archimedes r = ad, the pole will trace the axis of the

parabola.

Ex. 5. If we roll an equal parabola on it, the focus will trace the directrix

of the first parabola.

Ex. 6. If we roll on it the curve ^ = t^ t^® P^^® "^^ ^^^^ ^^® tangent

at the vertex of the parabola.
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Ex. 7. If we roll the curve whose equation is

r= a cos (t^)

on the ellipse whose equation is

the pole will trace the axis h.

Ex. 8. K we roll the curve whose equation ia

on the hyperbola whose equation is

the pole will trace the axis h.

Ex, 9. If we roll the lituus, whose equation is

on the hyperbola whose equation is

the pole will trace the asymptote.

Ex. 10. The cardioid whose equation is

r = a(H- cos ^),

rolled on the cycloid whose equation is

12 = a versin"' - + J2ax - ic*,
^ a

traces the base of the cycloid.

Ex. 11. The curve whose equation is

= versm-'- + 2^/ 1,

rolled on the cycloid, traces the tangent at the vertex.
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Ex. 12. The straight line whose equation is

r= a sec B,

rolled on a catenary whose parameter is a, traces a line whose distance from

the vertex is a.

Ex. 13. The part of the polar catenary whose equation is

rolled on the catenary, traces the tangent at the vertex.

Ex. 14. The other part of the polar catenary whose equation is

rolled on the catenary, traces a line whose distance from the vertex is equal to 2a.

Ex. 15. The tractory of the circle whose diameter is a, rolled on the

tractory of the straight line whose constant tangent is a, produces the straight

line.

Ex. 16. The hyperbolic spiral whose equation is

a
'=5'

rolled on the logarithmic curve whose equation is

1 ^
2/ = alog-,

traces the axis of y or the asymptote.

Ex. 17. The involute of the circle whose radius is a, rolled on an orthogonal

trajectory of the catenary whose equation is

traces the axis of y.

Ex. 18. The curve whose equation is
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rolled on the witch, whose equation is

traces the asymptote.

Ex. 19. The curve whose equation is

r — a tan Q,

rolled on the curve whose equation is

traces the axis of y.

Ex. 20. The curve whose equation is

2r
e=

rolled on the curve whose equation is

y = / , or r = a tan $,

traces the axis of y.

Ex. 21. The curve whose equation is

r = a (sec d — tan 0),

rolled on the curve whose equation is

2/=alogg+l),

traces the axis of y.

Fourth. Examples of pairs of rolling curves which have their poles at a fixed

distance = a.

Ce
straight line whose equation is ^=sec"'-

..„ , .

r

2a
The polar catenary whose equation is 0= ±fj I ±

Ex. 2. Two equal ellipses or hyperbolas centered at the foci.

Ex. 3. Two equal logarithmic spirals.

(Circle whose equation is r = 2a cos 6.

Curve whose equation is ^-/J^
— l + versin"^-.

Ex. 4.
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fCaxdioid whose equation is r=2a(l+co8^).

Ex. 5.

Ex. 6.

Ex. 7.

[Curve whose equation is ^ = sin"*-+ log ,——— .

(Conchoid, r= a
(
secg- 1).

Icurve, ^ =>A-?
Spiral of Archimedes, r = a0.

T T
Curve, ^ = - + log

+ sec"^ -
a

a ° a

fHyperbolic spiral, r=-Q

Ex. 8. -!

ICurve,
a

e'+l

1

Cpse
whose equation is ^"^^2+ ~Q'

Ex. 10.

(Involute of circle, ^~Ja^^^
®®^"^

a

'

'curve, e^J^±2l±log(-±l+J^.±2'^.

Fifth. Examples of curves rolling on themselves.

Ex. 1. When the curve which rolls on itself is a circle, equation

r= a cos 6,

the traced curve is a cardioid, equation r = a(l+cos^).

Ex. 2. When it is the curve whose equation is

r = 2"a (cos-j ,

the equation of the traced curve is

Ex. 3. When it is the involute of the circle, the traced curve is the spiral

of Archimedes.
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Ex. 4. When it is a parabola, the focus traces the directrix, and the vertex

traces the cissoid.

Ex. 5. When it is the hyperbolic spiral, the traced curve is the tractory of

the circle.

Ex. 6. When it is the polar catenary, the equation of the traced curve is

J
2a , . ., r

1 — versin - .

r a

Ex. 7. When it is the curve whose equation is

the equation of the traced curve is r = a (e' — €~").

This paper commenced with an outline of the nature and history of the problem of rolling

curves, and it was shewn that the subject had been discussed previously, by several geometers,

amongst whom were De la Hire and Nicolfe in the Memoires de I'Academie, Euler, Professor

Willis, in his Principles of Mechanism, and the Rev. H. Holditch in the Cambridge Philosophical

Transactions.

None of these authors, however, except the two last, had made any application of their

methods ; and the principal object of the present communication was to find how far the general

equations could be simplified in particular cases, and to apply the results to practice.

Several problems were then worked out, of which some were applicable to the generation

of curves, and some to wheelwork ; while others were interesting as shewing the relations which

exist between different curves ; and, finally, a collection of examples was added, as an illus-

tration of the fertihty of the methods employed.



[From the Transactions of the Royal Society of Edinburgh, Vol. XX. Part i,]

III.

—

On the Equilibrium of Elastic Solids.

There are few parts of mechanics in which theory has differed more from

experiment than in the theory of elastic sohds.

Mathematicians, setting out from very plausible assumptions with respect to

the constitution of bodies, and the laws of molecular action, came to conclusions

which were shewn to be erroneous by the observations of experimental philoso-

phers. The experiments of (Ersted proved to be at variance with the mathe-

matical theories of Navier, Poisson, and Lame and Clapeyron, and apparently

deprived this practically important branch of mechanics of all assistance from

mathematics.

The assumption on which these theories were founded may be stated thus :

—

Solid bodies are composed of distinct ^molecules, which are kept at a certain

distance from each other by the opposing principles of attraction and heat. When
the distance between two molecules is changed, they act on each other with a force

whose direction is in the line joining the centres of the molecules, and whose

magnitude is equal to the change of distance multiplied into a function of the

distance which vanishes when that distance becomes sensible.

The equations of elasticity deduced from this assumption contain only one

coefficient, which varies with the nature of the substance.

The insufficiency of one coefficient may be proved from the existence of

bodies of different degrees of solidity.

No effort is required to retain a liquid in any form, if its volume remain

unchanged; but when the form of a solid is changed, a force is called into

action which tends to restore its former figure ; and this constitutes the differ-
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ence between elastic solids and fluids. Both tend to recover their vohirne, but

fluids do not tend to recover their shape.

Now, since there are in nature bodies which are in every intermediate state

from perfect soHdity to perfect liquidity, these two elastic powers cannot exist

in every body in the same proportion, and therefore all theories which assign to

them an invariable ratio must be erroneous.

I have therefore substituted for the assumption of Navier the following

axioms as the results of experiments.

If three pressures in three rectangular axes be applied at a point in an

elastic solid,

—

1. TTie sum of the three pressures is proportional to the sum of the com-

pressions ichich they produce.

2. The difference between two of the pressures is propo7'tional to the differ-

ence of the compressions which they produce.

The equations deduced from these axioms contain two coefficients, and differ

from those of Navier only in not assuming any invariable ratio between the

cubical and linear elasticity. They are the same as those obtained by Professor

Stokes from his equations of fluid motion, and they agree with all the laws of

elasticity which have been deduced from experiments.

In this paper pressures are expressed by the number of units of weight to

the unit of surface ; if in English measure, in pounds to the square inch, or

in atmospheres of 15 pounds to the square inch.

Compression is the proportional change of any dimension of the solid caused

by pressure, and is expressed by the quotient of the change of dimension divided

by the dimension compressed'".

Pressure will be understood to include tension, and compression dilatation

;

pressure and compression being reckoned positive.

Elasticity is the force which opposes pressure, and the equations of elasticity

are those which express the relation of pressure to compression f.

Of those who have treated of elastic solids, some have confined themselves

to the investigation of the laws of the bending and twisting of rods, without

* The laws of pressure and compression may be found in the Memoir of Lam6 and Clapeyrou. St^t-

note A.

t See note B.



32 THE EQUIUBRIUM OF ELASTIC SOLIDS.

considering the relation of the coefficients which occur in these two cases;

while others have treated of the general problem of a solid body exposed to

any forces.

The investigations of Leibnitz, Bernoulli, Euler, Varignon, Young, La Hire,

and Lagrange, are confined to the equilibrium of bent rods; but those of

Navier, Poisson, Lam^ and Clapeyron, Cauchy, Stokes, and Wertheim, are

principally directed to the formation and application of the general equations.

The investigations of Navier are contained in the seventh volume of the

Memoirs of the Institute, page 373; and in the AnnoUes de Chimie et de

Physique, 2^ Sdrie, xv. 264, and xxxviii. 435 ; L'AppUcati(m de la Micanique,

Tom. I.

Those of Poisson in Mem. de I'lnstitut, vm. 429 ; Annales de Chimie, 2"

S^rie, XXXVI, 334 ; xxxvii. 337 ; xxxvtil 338 ; xlu. Journal de VEcole

Polytechnique, cahier xx., with an abstract in Annales de Chimie for 1829.

The memoir of MM. Lam^ and Clapeyron is contained in Crelle's Mathe-

matical Journal, Vol. vii. ; and some observations on elasticity are to be found

in Lamp's Cours de Physique,

M. Cauchy's investigations are contained in his Exercices d!Analyse, Vol. in.

p. 180, published in 1828.

Instead of supposing each pressure proportional to the linear compression

which it produces, he supposes it to consist of two parts, one of which is pro-

portional to the linear compression in the direction of the pressure, while the

other is proportional to the diminution of volume. As this hypothesis admits

two coefficients, it differs from that of this paper only in the values of the

coefficients selected. They are denoted by K and h, and K^fi — ^m, k = m.

The theory of Professor Stokes is contained in Vol. vin. Part 3, of the

Cambridge Philosophical Transactions, and was read April 14, 1845.

He states his general principles thus :
—" The capability which solids possess

of being put into a state of isochronous vibration, shews that the pressures

called into action by small displacements depend on homogeneous functions of

those displacements of one dimension. I shall suppose, moreover, according to

the general principle of the superposition of small quantities, that the pressures

due to different displacements are superimposed, and, consequently, that the

pressures are linear functions of the displacements."
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Having assumed the proportionality of pressure to compression, he proceeds

to define his coefficients.—"Let -^8 be the pressures corresponding to a uniform

linear dilatation 8 when the solid is in equilibrium, and suppose that it becomes

mA8, in consequence of the heat developed when the solid is in a state of rapid

vibration. Suppose, also, that a displacement of shifting parallel to the plane

xy, for which 8x = kx, Sy= - hj, and hz = 0, calls into action a pressure - Bk

on a plane perpendicular to the axis of x, and a pressure Bk on a plane

perpendicular to the axis of y; the pressure on these planes being equal and

of contrary signs; that on a plane perpendicular to z being zero, and the tan-

gential forces on those planes being zero." The coefficients A and B, thus

defined, when expressed as in this paper, are ^ = 3/x,, B = -.

Professor Stokes does not enter into the solution of his equations, but gives

their results in some particular cases.

1. A body exposed to a uniform pressure on its whole surface.

2. A rod extended in the direction of its length.

3. A cylinder twisted by a statical couple.

He then points out the method of finding A and B from the last two cases.

While explaining why the equations of motion of the luminiferous ether are

the same as those of incompressible elastic solids, he has mentioned the property

of jylasticity or the tendency which a constrained body has to relieve itself

from a state of constraint, by its molecules assuming new positions of equi-

librium. This property is opposed to Hnear elasticity ; and these two properties

exist in all bodies, but in variable ratio.

M. Wertheim, in Annales de Chimie, 3« Sdrie, xxiii., has given the results

of some experiments on caoutchouc, from which he finds that K=k, or fi = ^m;

and concludes that k =K in all substances. In his equations, fi is therefore

made equal to f m.

The accounts of experimental researches on the values of the coefficients

are so numerous that I can mention only a few.

Canton, Perkins, (Ersted. Aime, CoUadon and Sturm, and Regnault, have

determined the cubical compressibilities of substances; Coulomb, Duleau, and

Giulio, have calculated the linear elasticity from the torsion of wires; and a

great many observations have been made on the elongation and bending of beams.

VOL. I.
^



34 THE EQUILIBRIUM OF ELASTIC SOLIDS.

I have found no account of any experiments on the relation between the

doubly refracting power communicated to glass and other elastic solids by com-

pression, and the pressure which produces it^^" ; but the phenomena of bent glass

seem to prove, that, in homogeneous singly-refracting substances exposed to

pressures, the principal axes of pressure coincide with the principal axes of

double refraction ; and that the diflference of pressures in any two axes is

proportional to the difference of the velocities of the oppositely polarised rays

whose directions are parallel to the third axis. On this principle I have

calculated the phenomena seen by polarised light in the cases where the solid

is bounded by parallel planes.

In the following pages I have endeavoured to apply a theory identical

with that of Stokes to the solution of problems which have been selected on

account of the possibility of fulfilling the conditions. I have not attempted to

extend the theory to the case of imperfectly elastic bodies, or to the laws of

permanent bending and breaking. The solids here considered are supposed not

to be compressed beyond the limits of perfect elasticity.

The equations employed in the transformation of co-ordinates may be found

in Gregory's Solid Geometry.

I have denoted the displacements by Zx, By, Bz. They are generally denoted

by a, /8, y ; but as I had employed these letters to denote the principal axes

at any point, and as this had been done throughout the paper, I did not alter

a notation which to me appears natural and intelligible.

The laws of elasticity express the relation between the changes of the

dimensions of a body and the forces which produce them.

These forces are called Pressures, and their effects Compressions. Pressures

are estimated in pounds on the square inch, and compressions in fractions of the

dimensions compressed.

Let the position of material points in space be expressed by their co-ordinates

X, y, and z, then any change in a system of such points is expressed by giving

to these co-ordinates the variations Bx, By, Bz, these variations being functions of

X, y, 2.

* See note C.
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The quantities Sx, Sy, 8z, represent the absolute motion of each point in

the directions of the three co-ordinates ; but as compression depends not on

absolute, but on relative displacement, we have to consider only the nine

quantities

—

dSx
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By resolving the displacements 8a, h/S, By, B6„ B9.„ Z6„ in the directions

of the axes x, y, z, the displacements in these axes are found to be

hx = a,8a+ h,Bp + c3y -Be^ + Bd,y,

By =aM + h,Bl3 -f c,By - Bd,x + Bd.z,

Bz = a,Ba+hM+ CsBy- BO^ + Bd,x.

Sa .^ ^Si8
But B^^rf, and 8y =y^,

and Q. = a^x + a^ + a.^, /3 = b,x + h^ + h.^, and y = c,x + c,y -h c^z.

Substituting these values of Sa, Sy8, and By in the expressions for Bx, By,

Bz, and differentiating with respect to x, y, and z, in each equation, we obtain

the equations

dBx Ba, ,. 8/8,2
,
^y

dy a ^ y

dBz _ Ba

dz a p y

(1)-

dBx Ba B^
T J By ,5s/,

dy a ' ^ ya

dBx Ba

dz a

Ba

BI3

J'
8^

dz a p y

dBy Ba BB T ^ By

dx a p y

Be,

c.f^+ Bdi

Be,

-J— =— ctjCti + -^ 6361 + -^ C3C1 + 8^2
dZz

dx

dBz

8^
a

Sa

8^

S/8

r

Be,

Equations of

compression.

{2).

Equations of the equilibnum of an element of the solid.

The forces which may act on a particle of the solid are :

—

1. Three attractions in the direction of the axes, represented by X, Y, Z.

2. Six pressures on the six faces.
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3. Two tangential actions on each face.

Let the six faces of the small parallelopiped be denoted by x^, 3/,, z„ x^ y„

and z,, then the forces acting on x^ are :

—

1. A normal pressure jp, acting in the direction of x on the area dydz,

2. A tangential force g, acting in the direction of y on the same area.

3. A tangential force q^ acting in the direction of z on the same area,

and so on for the other five faces, thus :

—

Forces which act in the direction of the axes of

a; 2/
z

On the face a:,
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The resistance which the sohd opposes to these pressures is called Elasticity,

and is of two kinds, for it opposes either change of volume or change of Jigure.

These two kinds of elasticity have no necessary connection, for they are possessed

in very different ratios by different substances. Thus jelly has a cubical elas-

ticity little different from that of water, and a linear elasticity as small as we

please ; while cork, whose cubical elasticity is very small, has a much greater

Imear elasticity than jelly.

Hooke discovered that the elastic forces are proportional to the changes

that excite them, or as he expressed it, " Ut tensio sic vLs."

To fix our ideas, let us suppose the compressed body to be a parallelepiped,

and let pressures Pi, Pj, P3 act on its faces in the direction of the axes

a> A y, which will become the principal axes of compression, and the com-

pressions will be
So. 8^ Sy

a' ^' y

The fundamental assumption from which the following equations are deduced

is an extension of Hooke's law, and consists of two parts.

I. The sum of the compressions is proportional to the sum of the pressures.

II. The difference of the compressions is proportional to the difference of

the pressures.

These laws are expressed by the following equations

I. (P. + P, + P.) = 3,(^ +f +^ (4).

II.

(P,-P,) =m

(P._p.) =„,g_^

(P.-P,) = m

rv ^rts T
Equations of Elasticity.

h
7

By Ba

(5).

The quantity
fj.

is the coefiicient of cubical elasticity, and m that of linear

elasticity.
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By solving these equations, the values of the pressures P„ P,, P„ and the

8a 8^ Sy , r Jcompressions —
' ~S

'

^^7 ^^ found.

a \9/x 3m/ ^ ^ m

! = (!_ M(p.+ P, + p.) + lp,
j3 \9/x 3m/ ^ * ^ ?7i '

?r = (_L_ i\(P_+P_+P_) + ip_
y \9/z 3m/ ^ ^ m

(6).

(7).

From these values of the pressures in the axes a, )8, y, may be obtained..

the equations for the axes x, y, z, by resolutions of pressures and compressions*.

For

and q = aaP^ + hhP, + ccP,

;

, . . IdZx
,
d%y

,
d8z\

.
d8x'

, . V IdZx
.
d8y

,
d8z\ dBy

, , , fdSx ,
d8y

,
rfSj\

,
dSz

m /c?Sz c?Sx

(8)-

2 Vo?a; c?2
.(9).

See the Memoir of Lame and Clapeyron, and note A.
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d$X /I 1 \ , , , N ,
1

(10).

dy * ax ' m^

dz dy m ^

d^
dx dz m^

(11).

By substituting in Equations (3) the values of the forces given in Equa-

tions (8) and (9), they become

(12).

These are the general equations of elasticity, and are identical with those

of M. Cauchy, in his Exercices d'Analyse, Vol. ni., p. 180, published in 1828,

where h stands for m, and K for ft - o" > and those of Mr Stokes, given in the

Cambridge Philosophical Transactions, Vol. viii., part 3, and numbered (30);

in his equations ^ = 3/x, B = — .

If the temperature is variable from one part to another of the elastic

soHd, the compressions -y- , -r^, -J^ , at any point will be diminished by a

quantity proportional to the temperature at that point. This prmciple is applied

in Cases X. and XI. Equations (10) then become
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dy

^ = fe
- 3mj (P^-^P^+P^) + '^^^^P^

(13).

CfV being the linear expansion for the temperature v.

Having found the general equations of the equilibrium of elastic solids, I

proceed to work some examples of their application, which afford the means of

determining the coefficients /t, m, and o), and of calculating the stiffness of

solid figures. I begin with those cases in which the elastic soHd is a hollow

cylinder exposed to given forces on the two concentric cylindric surfaces, and

the two parallel terminating planes.

In these cases the co-ordinates x, y, z are replaced by the co-ordinates

x = x, measured along the axis of the cylinder.

2/ = r, the radius of any point, or the distance from the axis.

z — rd, the arc of a circle measured from a fixed plane passing

through the axis.

Px = o, are the compression and pressure in the direction of the

axis at any point.

-^ = -J— , Pi =p, are the compression and pressure in the direction of the

radius.

dBz dhrd Br . . _ . , ,. . - 1

~dz~'db¥~l^' JP8 = ?, are the compression and pressure m the direction of the

tangent.

Equations (9) become, when expressed in terms of these co-ordinates

—

m doO

dZx

dx

dSx

dx

m dB0

m dSx

dr*=2

.(14).

The length of the cylinder is h, and the two radii a, and a, in every

VOL. I. G
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Case I.

The first equation is applicable to the case of a hollow cylinder, of which

the outer surface is fixed, while the inner surface is made to turn through

a small angle Bd, by a couple whose moment is M.

The twisting force M is resisted only by the elasticity of the solid, and

therefore the whole resistance, in every concentric cylindric surface, must be equal

to M.

The resistance at any point, multiplied into the radius at which it acts, is

expressed by

m „ dhd

Therefore for the whole cylindric surface

ar

Whence 8,=_^^ (1,_1.)

,

^^ "'=2^&-i) ('«>

The optical effect of the pressure of any point is expressed by

I=<oq,b = <o.^^ (15).

Therefore, if the solid be viewed by polarized light (transmitted parallel to

the axis), the difference of retardation of the oppositely polarized rays at any

point in the solid will be inversely proportional to the square of the distance fi-om

the axis of the cylinder, and the planes of polarization of these lays will be

inclined 45" to the radius at that point.

The general appearance is therefore a system of coloured rings arranged

oppositely to the rings in uniaxal crystals, the tints ascending in the scale as

they approach the centre, and the distance between the rings decreasing towards

the centre. The whole system is crossed by two dark bands inclined 45* to the

plane of primitive polarization, when the plane of the analysing plate is perpen-

dicular to that of the first polarizing plate.
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A jelly of isinglass poured when hot between two concentric cylinders forms,

when cold, a convenient solid for this experiment ; and the diameters of the rings

may be varied at pleasure by changing the force of torsion appUed to the interior

cylinder.

By continuing the force of torsion while the jeUy is allowed to dry, a hard

plate of isinglass is obtained, which still acts in the same way on polarized light,

even when the force of torsion is removed.

It seems that this action cannot be accounted for by supposing the interior

parts kept in a state of constraint by the exterior parts, as in, unannealed and

heated gla^s ; for the optical properties of the plate of isinglass are such as

would indicate a strain preserving in every part of the plate the direction of

the original strain, so that the strain on one part of the plate cannot be main-

tained by an opposite strain on another part.

Two other uncrystallised substances have the power of retaining the polariz-

ing structure developed by compression. The first is a mixture of wax and resin

pressed into a thin plate between two plates of glass, as described by Sir David

Brewster, in the Philosophical TransoLctions for 1815 and 1830.

When a compressed plate of this substance is examined with polarized light,

it is observed to have no action on light at a perpendicular incidence ; but when

inclined, it shews the segments of coloured rings. This property does not belong

to the plate as a whole, but is possessed by every part of it. It is therefore

similar to a plate cut from a uniaxal crystal perpendicular to the axis.

I find that its action on light is like that of a jpositive crystal, while that

of a plate of isinglass similarly treated would be negative.

The other substance which possesses similar properties is gutta percha. This

substance in its ordinary state, when cold, is not transparent even in thin films;

but if a thin film be drawn out gradually, it may be extended to more than

double its length. It then possesses a powerful double refraction, which it

retains so strongly that it has been used for polarizing light""'. As one of its

refractive indices is nearly the same as that of Canada balsam, while the other

is very different, the common surface of the gutta percha and Canada balsam

will transmit one set of rays much more readdy than the other, so that a film

of extended gutta percha placed between two layers of Canada balsam acts like

* By Dr Wright, I believe.
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a plate of nitre treated in the same way. That these films are in a state of

constraint may be proved by heating them slightly, when they recover their

original dimensions.

As all these permanently compressed substances have passed their limit of

perfect elasticity, they do not belong to the class of elastic solids treated of in

this paper ; and as I cannot explain the method by which an imcrystallised body

maintains itself in a state of constraint, I go on to the next case of twisting,

which has more practical importance than any other. This is the case of a

cylinder fixed at one end, and twisted at the other by a couple whose moment

is M.

Case II.

In this case let hB be the angle of torsion at any point, then the resistance

to torsion in any circular section of the cylinder is equal to the twisting force M,

The resistance at any point in the circular section is given by the second

Equation of (14).

?2 = 1^^ dx
'

This force acts at the distance r from the axis ; therefore its resistance to torsion

will be q.r, and the resistance in a circular annulus will be

q^r^Ttrdr = mirr' -r- dr

and the whole resistance for the hollow cylinder will be expressed by

„, mn dS6 , ^ ,. /,^v

720 M̂(-1-] (17).

In this equation, m is the coefl&cient of linear elasticity; a^ and a^ are the

radii of the exterior and interior surfaces of the hollow cyUnder in inches ; M is

the moment of torsion produced by a weight acting on a lever, and is expressed
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bj the product of the number of pounds in the weight into the number of inches

in the lever; b is the distance of two points on the cylinder whose angular

motion is measured by means of indices, or more accurately by small mirrors

attached to the cylinder ; n is the difference of the angle of rotation of the two

indices in degrees.

This is the most accurate method for the determination of m independently

of /x, and it seems to answer best with thick cylinders which cannot be used

with the balance of torsion, as the oscillations are too short, and produce a

vibration of the whole apparatus.

Case III.

A hollow cylinder exposed to normal pressures only. When the pressures

parallel to the axis, radius, and tangent are substituted for p^, p^, and pt,

Equations (10) become

S = (i-34)(^+^-^^) +^ (^«)-

^^t^(±-±]io+p + q) + :^q (20).

By multiplying Equation (20) by r, differentiating with respect to r, and

comparing this value of —j— with that of Equation (19),

p-q _(J__ _1\ /^ . ^ . ^\ _ i ^
rm "

\9/x 3m/ \dr dr drj m dr

'

The equation of the equilibrium of an element of the solid is obtained by

considering the forces which act on it in the direction of the radius. By

equating the forces which press it outwards with those pressing it rnwarde, we

find the equation of the equiHbrium of the element,

ir£ =4 (21).
r dr
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By comparing this equation witli the last, we find

\9fi Zmj dr \9/i ^ 3m/ \dr ^ drj

Integrating,

Since o, the longitudinal pressure, is supposed constant, we may assume

c -(^-^]o
' \9u, 3m/ .

,
.

c. = 12 =(^ + g)-

9/x, 3m

Therefore q—p = c^ — 2p, therefore by (21),

a linear equation, which gives

1 ^c,
^ = ^3^ + 2-

The coefficients Cj and Cj must be found from the conditions of the surface

of the soHd. If the pressure on the exterior cylindric surface whose radius is a,

be denoted by A,, and that on the interior surface whose radius is a^ by A,,

then p = h^ when r = ai

and p = h.j when r = a^

and the general value of p is

_a^h^ — a^\ a^a^ h^ — h^ /22\^"
a,' -a,' ^ oT^^ ^ ^'

2-i'=2i^ ^73^- ''y (21).

*= «.'-«.' +^^57::^' (^^^

/=5<.(^-2)=-26<.^"A^. (24).

This last equation gives the optical eflfect of the pressure at any point. The

law of the magnitude of this quantity is the inverse square of the radius, as in
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Case I. ; but the direction of the principal axes ia different, as in this case they

are parallel and perpendicular to the radius. The dark bands seen by polarized

Ught wiU therefore be parallel and perpendicular to the plane of polarisation, in-

stead of being inclined at an angle of 45", as in Case I.

By substituting in Equations (18) and (20), the values of p and q given in

(22) and (23), we find that when r = a,.

hx (l\( ^aX-ct'h-X
.

2 / a,%-a,%\
]

X \9/x

=o(^ + ~] + 2{Ka,^-Ka,^)
1/1 1

.(25).

,9/x 3m/ ' ^ ' ' ' 'Ui,'-a,'\9fj, 3mJ

r 9/x \ a/ — a/ / 3?
When r = a., - ^ ^ fo4-2 ^4-^) +

^^^ (
- ^._^. '

' -o

(26).

~
VSft 3my "^

' a; - a,' \ 9/x ^ 3m / ^ cv - a,' 1,9/x
"^ 3m/ J

From these equations it appears that the longitudinal compression of cylin-

dric tubes is proportional to the longitudinal pressure referred to unit of surface

when the lateral pressures are constant, so that for a given pressure the com-

pression is inversely as the sectional area of the tube.

These equations may be simplified in the following cases :

—

1. When the external and internal pressures are equal, or h^ = h^.

2. When the external pressure is to the internal pressure as the square of

tlie interior diameter is to that of the exterior diameter, or when a^-h^ = a^-h^.

3. When the cylinder is soHd, or when a. = 0.

4. When the solid becomes an indefinitely extended plate with a cylindric

hole in it, or when a^ becomes infinite.

5. When pressure is applied only at the plane surfaces of the solid cylinder,

and the cylindric surface is prevented from expanding by being inclosed in a

strong case, or when — = 0.

6. When pressure is applied to the cylindric surface, and the ends are

retained at an invariable distance, or when — = 0.
X
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1. When ^ji
= A„ the equations of compression become

\9fi'*"3mj"'"^ '\9ij. 3m
(27).

7 =
i('>+2^) + 3i(^-<')

When hi = hi= o, then

Zx _hr _ \
X ~ r "

Sfi'

The compression of a cylindrical vessel exposed on all sides to the same

hydrostatic pressure is therefore independent of m, and it may be shewn that

the same is true for a vessel of any shape.

2. When a,% = a^%

^ \9yx
"^ 3m/

Bx

X

7 =|w + 3l(3^--»)^
(28).

In this case, when o = 0, the compressions are independent of /x.

3. In a solid cylinder, aj= 0,

The expressions for — and — are the same as those in the first case, when

h^ — hf

When the lon^tudinal pressure o vanishes,

Bx

X

r ' \9/x 3m/
'
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When the cylinder ia pressed on the plane sides only,

8x

r \9fi dmj

4. When the solid is infinite, or when a, is infinite,

p = K--._a-(\-K)

I=<o{p-q)=-^a.;{h,-h,)

r 9/x ^ ' 3m ^ '

(29).

5. When 8r = in a solid cylinder,

Zx Zo

6. When

X 2m + 3/A

So; _ hr _ 2>h

x~ * r ~ m + 6iM

.(30).

Since the expression for the efiect of a longitudinal strain is

Bx

if we make

VOL. I.

-=o(— + —)
X \9/i, 3m/

'

r, 9mu, ^, 8x 1E = ^ , then — = o ^^m + 6/x cc E (31).
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The quantity E may be deduced from experiment on the extension of wires

or rods of the substance, and /x is given in terms of m and E by the equation,

„ = _^!!L_ (32),

^^^ ^ =S (^^)'

P being the extending force, h the length of the rod, s the sectional area,

and Bx the elongation, which may be determined by the deflection of a wire,

as in the apparatus of S' Gravesande, or by direct measurement.

Case IV.

The only known direct method of finding the compressibihty of liquids is

that employed by Canton, (Ersted, Perkins, Aime, &c.

The liquid is confined in a vessel with a narrow neck, then pressure is

applied, and the descent of the liquid in the tube is observed, so that the

difference between the change of volume of liquid and the change of internal

capacity of the vessel may be determined.

Now, since the substance of which the vessel is formed is compressible, a

change of the internal capacity is possible. If the pressure be applied only to

the contained liquid, it is evident that the vessel will be distended, and the

compressibihty of the liquid will appear too great. The pressure, therefore, is

commonly applied externally and internally at the same time, by means of a

hydrostatic pressure produced by water compressed either in a strong vessel or

in the depths of the sea.

As it does not necessarily follow, from the equality of the external and

internal pressures, that the capacity does not change, the equilibrium of the

vessel must be determined theoretically. (Ersted, therefore, obtained from Poisson

his solution of the problem, and applied it to the case of a vessel of lead.

To find the cubical elasticity of lead, he appUed the theory of Poisson to the

numerical results of Tredgold. As the compressibility of lead thus found was

greater than that of water, (Ersted expected that the apparent compressibility

of water in a lead vessel would be negative. On making the experiment the

apparent compressibihty was greater in lead than in glass. The quantity found
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by Tredgold from the extension of rods was that denoted by E, and the value

of ft deduced from E alone by the formulae of Poisson cannot be true, unless

— = |-; and as — for lead is probably more than 3, the calculated compressi-

bility is much too great.

A similar experiment was made by Professor Forbes, who used a vessel of

caoutchouc. As in this case the apparent compressibility vanishes, it appears

that the cubical compressibihty of caoutchouc is equal to that of water.

Some who reject the mathematical theories as unsatisfactory, have conjec-

tured that if the sides of the vessel be sufficiently thin, the pressure on both

sides being equal, the compressibility of the vessel will not affect the result.

The following calculations shew that the apparent compressibility of the liquid

depends on the compressibility of the vessel, and is independent of the thickness

when the pressures are equal.

A hollow sphere, whose external and internal radii are a^ and a,, is acted

on by external and internal normal pressures h^ and K, it is required to deter-

mine the equilibrium of the elastic solid.

The pressures at any point in the solid are :

—

1. A pressure p in the direction of the radius.

2. A pressure q in the perpendicular plane.

These pressures depend on the distance from the centre, which is denoted

by r.

The compressions at any point are -.— in the radial direction, and — in

the tangent plane, the values of these compressions are :

—

fr=[h-^^P^''i)*h^ ('")•

T =
fe-3fJ(^

+ 2,) + l5 (35).

Multiplying the last equation by r, differentiating with respect to r, and
equating the result with that of the first equation, we find
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Since the forces whicli act on the particle in the direction of the radius

must balance one another, or

2qdrde+p (rdey =(^p + ^d7^(r + dry 6,

_r dp
therefore ^""-^ = 2 37 ^^^^'

Substituting this value of q -p in the preceding equation, and reducing,

therefore ^ +2^ = 0.
dr dr

Integrating,

But

and the equation becomes

therefore

p-\-2q = c,.

r dp
,

dp
dr

+ 3^-^-i = 0,

1 c.

Since p = h, when r = a.,, and p =K when r = a,, the value of p at any

distance is found to be

^~ a^-af r' a^-a,'

9- a,'-ai
"^^

7^ <-a/

(37).

.(38).

When r = a„ -y = -^r:^^ - + t ^^ ^^737^3 ^

~
a,' - a/ U 2»i/ a/ - «/ \jx 2wi/

_

When the external and internal pressures are equal

.(39).

h^ = h.,=p = q, and -y-
SV K .(40),
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the change of internal capacity depends entirely on the cubical elasticity of the

vessel, and not on its thickness or linear elasticity.

When the external and internal pressures are inversely as the cubes of the

radii of the surfaces on which they act,

aX = a,%, p = ^ K q= -i^K

when r = r- — ^ '

(41).

V 2 ^^

In this case the change of capacity depends on the linear elasticity alone.

M. Regnault, in his researches on the theory of the steam engine, has

given an account of the experiments which he made in order to determine

with accuracy the compressibility of mercury.

He considers the mathematical formulae very uncertain, because the theories

of molecular forces from which they are deduced are probably far from the

truth ; and even were the equations free from error, there would be much

uncertainty in the ordinary method by measuring the elongation of a rod of

the substance, for it is diflScult to ensure that the material of the rod is the

same as that of the hollow sphere.

He has, .therefore, availed himself of the results of M. Lam6 for a hollow

sphere in three different cases, in the first of which the pressure acts on the

interior and exterior surface at the same time, while in the other two cases

the pressure is applied to the exterior or interior surface alone. Equation (39)

becomes in these cases,

—

1. When ^1 = /ij, -^ = — and the compressibility of the enclosed liquid being

/x,, and the apparent diminution of volume S'F,

v-.£-;) «
2. When /i, = 0,
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3. When h,^0,

8V_ h K , 9^\

V a^-a^ \ii ^ m ^ ' V2 J

M. Lamp's equations differ from these only in assuming that fi, = |-m. If

this assumption be correct, then the coefficients /u,, m, and jMj, may be found

from two of these equations ; but since one of these equations may be derived

from the other two, the three coefficients cannot be found when /u, is supposed

independent of m. In Equations (39), the quantities which may be varied at

pleasure are \ and h^, and the quantities which may be deduced from the

apparent compressions are,

'=G+4)^°<^S-i)=^"
therefore some independent equation between these quantities must be found,

and this cannot be done by means of the sphere alone; some other experiment

must be made on the liquid, or on another portion of the substance of which

the vessel is made.

The value of /x^, the elasticity of the liquid, may be previously known.

The linear elasticity m of the vessel may be found by twisting a rod of

the material of which it is made

;

Or, the value of E may be found by the elongation or bending of the

We have here five quantities, which may be determined by experiment.

on sphere.

, audi:
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When the elastic sphere is solid, the internal radius a, vanishes, and

fh=p = q, and -y = ^-

When the case becomes that of a spherical cavity in an infinite solid, the

external radius a^ becomes infinite, and

P=K-f{K-K)

r-
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Let a rectangular elastic beam, whose length is 2irc, be bent into a circular

form, so as to be a section of a hollow cylinder, those parts of the beam which

lie towards the centre of the circle will be longitudinally compressed, while the

opposite parts will be extended.

The expression for the tangential compression is therefore

Br _ r — c

r ~ c '

r

Sr
Comparing this value of — with that of Equation (20),

V=(^-4)<''+-p+«)+^'''

dr

,,. , /I 2\ .,

ion

and by (21), q=p+ r

By substituting for q its value, and dividing by r (q- + ^) • the equat:

becomes
dp 2m + 3/x j9 _ 9?n/i. — {m — 3/x) o 9m/x c

dr m + 6fx r~ (m+ 6fi) r (m + 6/x) r'
*

a linear differential equation, which gives

^ ^ m — 3fir 2m + 3/x

Ci may be found by assumiQg that when r^a^, p = \, and q may be found

from p by equation (21).

As the expressions thus found are long and cumbrous, it is better to use

the following approximations :

—

_/_9m^\ y
( )

l^\llcl^ \
(48).

In these expressions a is half the depth of the beam, and y is the distance

of any part of the beam from the neutral surface, which in this case is a cylin-

dric surface, whose radius is c.

These expressions suppose c to be large compared with a, since most sub-

stances break when - exceeds a certain small quantity.
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Let b be the breadth of the beam, then the force with which the beam

resists flexure =M
M=lhyq =^^^-^ =Ef (49),

which is the ordinary expression for the stiffness of a rectangular beam.

The' stiffness of a beam of any section, the form of which is expressed by

an equation between x and y, the axis of x being perpendicular to the plane of

flexure, or the osculating plane of the axis of the beam at any point, is ex-

pressed by

Mc = E{ifdx (50),

M being the moment of the force which bends the beam, and c the radius of

the circle into which it is bent.

Case YI.

At the meeting of the British Association in 1839, Mr James Nasmyth

described his method of making concave specula of silvered glass by bending.

A circular piece of silvered plate-glass was cemented to the opening of an

iron vessel, from which the air was afterwards exhausted. The mirror then

became concave, and the focal distance depended on the pressure of the air.

Buffon proposed to make burning-mirrors in this way, and to produce the

partial vacuum by the combustion of the air in the vessel, which was to be

effected by igniting sulphur in the interior of the vessel by means of a burn-

ing-glass. Although sulphur evidently would not answer for this purpose, phos-

phorus might; but the simplest way of removing the air is by means of the

air-pump. The mirrors which were actually made by Buffon, were bent by

means of a screw acting on the centre of the glass.

To find an expression for the curvature produced in a flat, circular, elastic

plate, by the difference of the hydrostatic pressures which act on each side

of it,—

Let t be the thickness of the plate, which must be small compared with

its diameter.

Let the form of the middle surface of the plate, after the curvature is

produced, be expressed by an equation between r, the distance of any point

from the axis, or normal to the centre of the plate, and x the distance of

the point from the plane in which the middle of the plate originally was, and let

ds=-^{dxY + {dr)\

VOL I. 8
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Let A, be the pressure on one side of the plate, and h^ that on the other.

Let p and q be the pressures in the plane of the plate at any point, p
acting in the direction of a tangent to the section of the plate by a plane

passing through the axis, and q acting in the direction perpendicular to that

plane.

By equating the forces which act on any particle in a direction parallel to

the axis, we find

^ drdx
,

^ dpdx
,

^ d^x
^

,, j^dr

By making p = when r = in this equation, when integrated,

p-l^l^^--'^-) ("^-

The forces perpendicular to the axis are

[drV . dpdr
, ^ d^r .^ i\dx ^ .

Substituting for p its value, the equation gives

_ (^1 - h^ idr dr dx\ (h^ - h^ /dr ds^d^^ds ^r\ , .

^"
t ''[d'sdi'^d^)'^ 2t "^^[didxd^ dxd^)""^ ^'

The equations of elasticity become

dSs (\ 1 \ / ^ h,+h\^p

Differentiating -j- = -^ (""''')' ^^^ ^ ^^ *^^^®

dhr dr dr dSs

dr ~ ds ds ds
'

By a comparison of these values of -t— ,

ds

dr\

ds) \9iJ,

, t^rwl 1\/
, ,K +h\,qdrp^ (I l\fdp,dq\

w dr as



THE EQUILIBRIUM OF ELASTIC SOUDS. 59

To obtain an expression for the curvature of the plate at the vertex, let a
be the radius of curvature, then, as an approximation to the equation of the

plate, let

r»
x —— .

2a

By substituting the value of a: in the values of p and q, and in the equa-
tion of elasticity, the approximate value of a is found to be

a =
18m/x, \-\-h^ m- 3/x
. 1 c 1 "T" ' T 7~ ~T~z ;—TT" .(53).

^i-A, lOm + 51/x A,-^2 lOw + 51/t
'

Since the focal distance of the mirror, or -, depends on the difference of

pressures, a telescope on Mr Nasmyth's principle would act as an aneroid baro-

meter, the focal distance varying inversely as the pressure of the atmosphere.

Case VIL

To find the conditions of torsion of a cylinder composed of a great number
of parallel wires bound together without adhering to one another.

Let X be the length of the cylinder, a its radius, r the radius at any point,

hS the angle of torsion, M the force producing torsion, hx the change of length,

and P the longitudinal force. Each of the wires becomes a helix whose radius

is r, its angular rotation Zd, and its length along the axis x-Zx.

Its length is therefore {rZey— IJ

and the tension is = jE; 1 1 - /[ 1 - - ]V r^ (-]'] .

This force, resolved parallel to the axis, is
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and since — and r— are small, we may assumeXX

-"-{-l-n?)'} <">

The force, when resolved in the tangential direction, is approximately

"-^m'i-m '">

By eliminating — between (54) and (55) we have
X

M:
^^'̂ip.E.^m (56).

X 24 \ a?/

When P = 0, M depends on the sixth power of the radius and the cube

of the angle of torsion, when the cylinder is composed of separate filaments.

Since the force of torsion for a homogeneous cylinder depends on the

fourth power of the radius and the first power of the angle of torsion, the

torsion of a wire having a fibrous texture will depend on both these laws.

The parts of the force of torsion which depend on these two laws may be

found by experiment, and thus the difference of the elasticities in the direction

of the axis and in the perpendicular directions may be determined.

A calculation of the force of torsion, on this supposition, may be found in

Young's Mathematical Principles of Natural Philosophy; and it \s introduced

here to account for the variations from the law of Case II., which may be

observed in a twisted rod.

Case VIII.

It is well known that grindstones and fly-wheels are often broken by the

centrifugal force produced by their rapid rotation. I have therefore calculated

the strains and pressure acting on an elastic cylinder revolving round its axis,

and acted on by the centrifugal force alone.
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The equation of the equilibrium of a particle [see Equation (21)], becomes

dp Air'k
,

where q and p are the tangential and radial pressures, k is the weight in

pounds of a cubic inch of the substance, g is twice the height in inches that
a body falls in a second, t is the time of revolution of the cylinder in seconds.

By substituting the value of q and ^ in Equations (19), (20), and neglect-

ing 0,

-(i-3^)(«|-?-g)-M^S-f-^.^)
which gives

1 TT^k

2gt^\

1 , Tj'k

2+^K+ ^«

(-"?)
TT'k

2gf^=-V + 2^»(-2 +f)^+ c.

(57).

If the radii of the surfaces of the hollow cylinder be a, and cu„ and the
pressures actmg on them h^ and h^, then the values of c^ and c, are

(58).

-f^'-(«--.')S(^-S.
When o, = 0, as in the case of a solid cylinder, c,= 0, and

«=*'+0 {2('^+ «.') + |(3'^-«,')} (59).

When A, = 0, and r^a^,

^ =^U-2) (60).

When q exceeds the tenacity of the substance in pounds per square inch,

the cylinder will give way; and by making q equal to the number of pounds
which a square inch of the substance will support, the velocity may be found
at which the bursting of the cylinder will take place.
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Since I=ho>(q-p) ='^ (^-2\br', a transparent revolving cylinder, when

polarized light is transmitted parallel to the axis, will exhibit rings whose

diameters are as the square roots of an arithmetical progression, and brushes

parallel and perpendicular to the plane of polarization.

Case IX.

A hollow cylinder or tube is surrounded by a medium of a constant

temperature while a liquid of a different temperature is made to flow through

it. The exterior and interior surfaces are thus kept each at a constant tem-

perature till the transference of heat through the cylinder becomes uniform.

Let V be the temperature at any point, then when this quantity has

reached its limit,

rdv _

v = Ci\ogr+ Ci (61).

Let the temperatures at the surfaces be 0^ and 0^, and the radii of the

surfaces a, and a^, then

^ 0^-0^ loga,0^-logaA

^'""logaj-loga/ '~ loga^-loga^

Let the coeflBcient of linear dilatation of the substance be c,, then the

proportional dilatation at any point will be expressed by c,v, and the equations

of elasticity (18), (19), (20), become

r \,9/x 3m/ ^ ^ ^' m

The equation of equHibrivuu is

2-P+r'^ (21),

and since the tube is supposed to be of a considerable length

-J— =c^ a constant quantity.
CL2C
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From these equations we find ttat

9/x 3m

and hence v = c^\ogr + Cz, p may be found in terms of r.

Hence ? = (|l + 4)
"

^.«' •«§ '- ^. ^ + <'• + (|l + ^) ''.^-

Since I—hco (q —p) = ho)i— + -— ) CjCg — 260)05 -^

,

the rings seen in this case will differ from those described in Case III. only

by the addition of a constant quantity.

When no pressures act on the exterior and interior surfaces of the tube

^j = ^„ = 0, and

/2
. J_V^.^ Aoo-r I

^i'^/ log^i-log«2
,

a/logct,-a/logaA

/^ 1_\- I a^a^ log g, - log ct , a^ log a, - a/ log a \

^-1,9,. + 3m/ ^^^3^^^S^
r^ a'-a^

+
<-a,^ +V'

\9/x 3m/ ' ' \ r" a{-a^ J

...(62).

There will, therefore, be no action on polarized light for the ring whose

radius is r when

r" = 2 „ log - .

Case X.

Sir David Brewster has observed {Edinburgh Transacticms, Vol. viii.), that

when a solid cylinder of glass is suddenly heated at the cylindric siuface a

polarizing force is developed, which is at any point proportional to the square

of the distance from the axis of the cylinder ; that is to say, that the dif-
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ference of retardation of the oppositely polari^ied rays of %ht is proportional

to the square of the radius r, or

/= bCj^cor'= h(o {q —p) = hayr -^ ,

Since if a be the radius of the cylinder, ^ = when r^a,

Hence ?=J(3r'-o").
2

By substituting these values of p and q in equations (19) and (20), and

, . d h' dhr T ^ ,

^=|(4 + li)'-' + »" (««)•

c^ being the temperature of the axis of the cylinder, and c, the coefficient of

linear expansion for glass.

Case XI.

Heat is passing uniformly through the sides of a spherical vessel, such as

the ball of a thermometer, it is required to determine the mechanical state of

the sphere. As the methods are nearly the same as in Case IX., it will be

sufficient to give the results, using the same notation.

, dv c,

dr ^' * r

Ci = aM,— ?, c- = -5-2 —,
o, — o, o, — a,

1 /2 .1 \-^ 1
.

When h, = h, = the expression for p becomes

p = /2 ly- r_aXLl _^A.l^ a.'-a» |
^ \9/t* 3m/ '^ ' ''[a/-a/7^ a,-o^r {0,-0,) (o^-o^)] ^ '

From this value of p the other quantities may be found, as in Case IX.,

from the equations of Case IV.
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Case XII.

When a long beam is bent into the form of a closed circular ring (as in

Case v.), all the pressures act either parallel or perpendicular to the direction

of the length of the beam, so that if the beam were divided into planks, there

would be no tendency of the planks to slide on one another.

But when the beam does not form a closed circle, the planks into which it

may be supposed to be divided will have a tendency to slide on one another,

and the amount of sliding is determined by the linear elasticity of the sub-

stance. The deflection of the beam thus arises partly from the bending of the

whole beam, and partly from the sHding of the planks ; and since each of these

deflections is small compared with the length of the beam, the total deflection

will be the sum of the deflections due to bending and sliding.

Let A=Mc = E\xi/'dy (65).

A is the stiffiiess of the beam as found in Case Y., the equation of the

transverse section being expressed in terms of x and y, y being measured from

the neutral surface.

Let a horizontal beam, whose length is 2l, and whose weight is 2w, be

supported at the extremities and loaded at the middle with a weight W.

Let the deflection at any point be expressed by h^, and let this quantity

be small compared with the length of the beam.

At the middle of the beam, 8,y is found by the usual methods to be

% =^ {-h^w + ^^l'W) (66).

Let B = — \xdy = — (sectional area) (jo7).

B is the resistance of the beam to the sliding of the planks. The de-

flection of the beam arising from this cause is

% = 2]b(^'+^^ (68).

VOL. I. 9
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This quantity is small compared with S^y, when the depth of the beam is

small compared with its length.

The whole deflection ^y = B^ + S^

A3/ =- (^.Z-^iS + ^ {U +^l) (^^)-

Case XIII.

When the values of the compressions at any point have been found, when

two difierent sets of forces act on a solid separately, the compressions, when

the forces act at the same time, may be found by the composition of com-

pressions, because the small compressions are independent of one another.

It appears from Case I., that if a cylinder be twisted as there described,

the compressions will be inversely proportional to the square of the distance

from the centre.

If two cylindric surfaces, whose axes are perpendicular to the plane of an

indefinite elastic plate, be equally twisted in the same direction, the resultant

compression in any direction may be found by adding the compression due to

each resolved in that direction.

The result of this operation may be thus stated geometrically. Let A^ and

A^ (Fig. 1) be the centres of the twisted cylinders. Join ^1^25 and bisect A^A,

in 0. Draw OBC at right angles, and cut off OB^^ and OB^ each equal to OA^.

Then the difference of the retardation of oppositely polarized rays of light

passing perpendicularly through any point of the plane varies directly as the

product of its distances from B^ and B^, and inversely as the square of the

product of its distances from A^ and A^.

The isochromatic lines are represented in the figure.

The retardation is infinite at the points ^1 and A^; it vanishes at B^^

and jBj ; and if the retardation at be taken for unity, the isochromatic curves

2, 4, surround Aj^ and A^; that in which the retardation is unity has two

loops, and passes through 0; the curves ^, ^ are continuous, and have points

of contrary flexure ; the curve ^ has multiple points at Cj and C,, where
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.4,(7, = -4,^,, and two loops surrounding B^ and B^', the other curves, for which

/=l4-» -gS-j ^c-» consist each of two ovals surrounding B^ and jB,, and an

exterior portion surrounding all the former curves.

Fig. 1.

I have produced these curves in the jelly of isinglass described in Case I.

They are best seen by using circularly polarised light, as the curves are then

seen without interruption, and their resemblance to the calculated curves is

more apparent. To avoid crowding the curves toward the centre of the figure,

I have taken the values of / for the different curves, not in an arithmetical,

but in a geometrical progression, ascending by powers of 2.
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Case XIV.

On the determination of the pressures which act in the interior of trans-

parent solids, from observations of the action of the solid on polarized light.

Sir David Brewster has pointed out the method by which polarized light

might be made to indicate the strains in elastic solids ; and his experiments on

bent glass confirm the theories of the bending of beams.

The phenomena of heated and unannealed glass are of a much more complex

nature, and they cannot be predicted and explained without a knowledge of the

laws of cooling and solidification, combined with those of elastic equilibrium.

In Case X. I have given an example of the inverse problem, in the case

of a cylinder in which the action on light followed a simple law ; and I now
go on to describe the method of determuiing the pressures in a general case,

applying it to the case of a triangle of unannealed plate-glass.

D D

Fig. 3.

The lines of equal intensity of the action on Hght are seen without

interruption, by using circularly polarized light. They are represented in Fig. 2,

where A, BBB, DDD are the neutral points, or points of no action on light,

and CCC, EEE are the points where that action is greatest ; and the intensity
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of the action at any other point is determined by its position with respect to

the isochromatic curves.

The direction of the principal axes of pressure at any point is found by

transmitting plane polarized light, and analysing it in the plane perpendicular

to that of polarization. The light is then restored in every part of the triangle,

except in those points at which one of the principal axes is parallel to the

plane of polarization. A dark band formed of all these points is seen, which

shifts its position as the triangle is turned round in its own plane. Fig. 3

represents these curves for every fifteenth degree of inclination. They correspond

to the lines of equal variation of the needle in a magnetic chart.

From these curves others may be found which shall indicate, by their own

direction, the direction of the principal axes at any point. These curves of

direction of compression and dilatation are represented in Fig. 4 ; the curves

whose direction corresponds to that of compression are concave toward the

centre of the triangle, and intersect at right angles the curves of dilatation.

Let the isochromatic lines in Fig. 2 be determined by the equation

<^,{x,y) = I- = (o{q-p)-,

where / is the difference of retardation of the oppositely polarized rays, and

q and p the pressures in the principal axes at any point, z being the thick-

ness of the plate.

Let the lines of equal inclination be determined by the equation

<^2 (^. y) = tan 6,

6 being the angle of inclination of the principal axes ; then the differential

equation of the curves of direction of compression and dilatation (Fig. 4) is

By considering any particle of the plate as a portion of a cylinder whose
axis passes through the centre of curvature of the curve of compression, we find

?-?>=^^ (21).
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Let R denote the radius of curvature of the curve of compression at any

point, and let S denote the length of the curve of dilatation at the same

point,

and since {q -p), R and S are known, and since at the surface, where (^^ {x, y) = 0,

j9 = 0, all the data are given for determining the absolute value of p by inte-

gration.

Though this is the best method of finding p and q by graphic construc-

tion, it is much better, when the equations of the curves have been found, that

is, when ^i and <j>^ are known, to resolve the pressures in the direction of the

axes.

The new quantities are p^, p„ and ^3 ; and the equations are

tan^=-^, {p-qY = q.' + (p.-p.y, Pi+P.=P + q-

Pi Pi

It is therefore possible to find the pressures from the curves of equal tint

and equal inclination, in any case in which it may be required. In the mean-

time the curves of Figs. 2, 3, 4 shew the correctness of Sir John Herschell's

ingenious explanation of the phenomena of heated and unannealed glass.

Note A.

As the mathematical laws of compressions and pressures have been very thoroughly

investigated, and as they are demonstrated with great elegance in the very complete and

elaborate memoir of MM. Lamd and Clapeyron, I shall state as briefly as possible their results.

Let a solid be subjected to compressions or pressures of any kind, then, if through any

point in the solid lines be drawn whose lengths, measured from the given point, are pro-

portional to the compression or pressure at the point resolved in the directions in which the

lines are drawn, the extremities of such lines will be in the surface of an ellipsoid, whose

centre is the given point.

The properties of the system of compressions or pressures may be deduced from those

of the ellipsoid.
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There are three diameters having perpendicular ordinates, which are called the principal

axes of the ellipsoid.

Similarly, there are always three directions in the compressed particle in which there

is no tangential action, or tendency of the parts to slide on one another. These directions

are called the principal axes of compression or of pressure, and in homogeneous solids they

always coincide with each other.

The compression or pressure in any other direction is equal to the sum of the products

of the compressions or pressures in the principal axes multiplied into the squares of the

cosines of the angles which they respectively make with that direction.

Note B.

The fundamental equations of this paper differ from those of Navier, Poisson, &c., only

in not assuming an invariable ratio between the linear and the cubical elasticity; but since

I have not attempted to deduce them from the laws of molecular action, some other reasons

must be given for adopting them.

The experiments from which the laws are deduced are

—

1st. Elastic solids put into motion vibrate isochronously, so that the sound does not

vary with the amplitude of the vibrations.

2nd. Regnault's experiments on hollow spheres shew that both linear and cubic com-

pressions are proportional to the pressures.

3rd. Experiments on the elongation of rods and tubes immersed in water, prove that

the elongation, the decrease of diameter, and the increase of volume, are proportional to the

tension.

4th. In Coulomb's balance of torsion, the angles of torsion are proportional to the

twisting forces.

It would appear from these experiments, that compressions are always proportional to

pressures.

Professor Stokes has expressed this by making one of his coefficients depend on the

cubical elasticity, Avhile the other is deduced from the displacement of shifting produced by

a given tangential force.

M. Cauchy makes one coefficient depend on the linear compression produced by a force

acting in one direction, and the other on the change of volume produced by the same force.

Both of these methods lead to a correct result ; but the coefficients of Stokes seem to

have more of a real signification than those of Cauchy ; I have therefore adopted tiiose of

Stokes, using the symbols m and fi, and the fundamental equations (4) and (5), which define

them.
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Note C.

As the coefficient <w, which determines the optical effect of pressure on a substance,

varies from one substance to another, and is probably a function of the linear elasticity, a
determination of its value in different substances might lead to some explanation of the

action of media on light.

This paper commenced by pointing out the insufficiency of all theories of elastic solids,

in which the equations do not contain two independent constants deduced from experiments.

One of these constants is common to liquids and solids, and is called the modulus of cubical

elasticity. The other is peculiar to solids, and is here called the modulus of linear elasticity.

The equations of Navier, Poisson, and Lam^ and Clapeyron, contain only one coefficient;

and Professor G. G. Stokes of Cambridge, seems to have formed the first theory of elastic

solids which recognised the independence of cubical and linear elasticity, although M. Cauchy
seems to have suggested a modification of the old theories, which made the ratio of linear

to cubical elasticity the same for all substances. Professor Stokes has deduced the theory

of elastic solids from that of the motion of fluids, and his equations are identical with those

of this paper, which are deduced from the two following assumptions.

In an element of an elastic solid, acted on by three pressures at right angles to one

another, as long as the compressions do not pass the limits of perfect elasticity

—

1st. The sum of the pressures, in three rectangular axes, is proportional to the sum
of the compressions in those axes.

2nd. The difference of the pressures in two axes at right angles to one another, is

proportional to the difference of the compressions in those axes.

Or, in symbols:

(P. + P..i'J =3.(^%|4).

(^.-^.)=-(l

(P, p,)=r,j'y.

(P,-P^ =m fZz Bx

fi being the modulus of auhical, and m that of linear elasticity.

These equations are found to be very convenient for the solution of problems, some
of which were given in the latter part of the paper.
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These particular cases were

—

That of an elastic hollow cylinder, the exterior surface of which was fixed, while the

interior was turned through a small angle. The action of a transparent solid thus twisted

on polarized light, was calculated, and the calculation confirmed by experiment.

The second case related to the torsion of cylindric rods, and a method was given by

which m may be found. The quantity E= ^ was found by elongating, or by bending

the rod used to determine m, and fi is found by the equation,

_ Em
^~dm-6E'

The effect of pressure on the surfaces of a hollow sphere or cylinder was calculated,

and the result applied to the determination of the cubical compressibility of liquids and

solids.

An expression was found for the curvature of an elastic plate exposed to pressure on

one side ; and the state of cylinders acted on by centrifugal force and by heat was

determined.

The principle of the superposition of compressions and pressures was applied to the case of

a bent beam, and a formula was given to determine E from the deflection of a beam
supported at both ends and loaded at the middle.

The paper concluded with a conjecture, that as the quantity a (which expresses the

relation of the inequality of pressure in a solid to the doubly-refracting force produced) is

probably a function of m, the determination of these quantities for different substances

might lead to a more complete theory of double refraction, and extend our knowledge of the

laws of optics.
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[Extracted from the Cambridge and Dublin Mathematical Journal, Vol. viii. p. 188,

February/, 1854.]

Solutions of Problems.

1. If from a point in the circumference of a vertical circle two heavy particles be suc-

cessively projected along the curve, their initial velocities being equal and either in the same

or in opposite directions, the subsequent motion will be such that a straight line joining

the particles at any instant will touch a circle.

Note. The particles are supposed not to interfere with each other's motion.

The direct analytical proof would involve the properties of elliptic integrals,

but it may be made to depend upon the following geometrical theorems.

(1) If from a point in one of two circles a right line be drawn cutting

the other, the rectangle contained by the segments so formed is double of the

rectangle contained by a line drawn from the point perpendicular to the radical

axis of the two circles, and the line joining their centres.

The radical axis is the line joining the points of intersection of the two

circles. It is always a real hne, whether the points of intersection of the circles

be real or imaginary, and it has the geometrical property—that if from any point

on the radical axis, straight lines be drawn cutting the circles, the rectangle con-

tained by the segments formed by one of the circles is equal to the rectangle

contained by the segments formed by the other.

The analytical proof of these propositions is very simple, and may be resorted

to if a geometrical proof does not suggest itself as soon as the requisite figure

is constructed.

If ^, B be the centres of the circles, P the given point in the circle whose

centre is ^, a line drawn from P cuts the first circle in p, the second in Q
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and q, and the radical axis in R. If PH be drawn perpendicular to the radical

axis, then

PQ.Pq = 2AB.HP.

CoR. If the line be drawn from P to touch the circle in T, instead of

cutting it in Q and q, then the square of the tangent PT is equal to the

rectangle 2AB . HP.

Similarly, if ph be drawn from p perpendicular to the radical axis

p'P = 2AB.hp.

Hence, if a line be drawn touching one circle in T, and cutting the other

in P and p, then

(PTY : {pT)' :: HP : hp.

(2) If two straight lines touching one circle and cutting another be made

to approach each other indefinitely, the small arcs intercepted by their inter-

sections with the second circle wiU be ultimately proportional to their distances

from the point of contact.

This result may easily be deduced from the properties of the similar

triangles FTP and ppT.

Cor. If particles P, p be constrained to move in the circle A, while

the line Pp joining them continually touches the circle B, then the velocity

of P at any instant is to that of p as PT to pT ; and conversely, if the

velocity of P at any instant be to that of P as PT to pT, then the line

Pp will continue to be a tangent to the circle B.

Now let the plane of the circles be vertical and the radical axis horizontal,

and let gravity act on the particles P, p. The particles were projected from

the same point with the same velocity. Let this velocity be that due to the

depth of the point of projection below the radical axis. Then the square of

the velocity at any other point will be proportional to the perpendicular from

that point on the radical axis ; or, by the corollary to (l), if P and p be at

any time at the extremities of the line PTp, the square of the velocity of P
will be to the square of the velocity of p as PH to ph, that is, as (PTf to

(pTf. Hence, the velocities of P and p are in the proportion of PT to pT,

and therefore, by the corollary to (2), the line joining them will continue a

tangent to the circle B during each instant, and will therefore remain a tangent

during the motion.
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The cb'cle A, the radical axis, and one position of the line Pp, are given

by the circumstances of projection of P and p. From these data it is easy to

determine the circle jB by a geometrical construction.

It is evident that the character of the motion will determine the position

of the circle B. If the motion is oscillatory, B will intersect A. If P and p
make complete revolutions in the same direction, B will lie entirely within A,

but if they move in opposite directions, B will lie entirely above the radical axis.

If any number of such particles be projected from the same point at equal

intervals of time with the same direction and velocity, the lines joining successive

particles at any instant will be tangents to the same circle ; and if the time

of a complete revolution, or oscillation, contain n of these intervals, then these

lines will form a polygon of ?i sides, and as this is true at any instant, any

number of such polygons may be formed.

Hence, the following geometrical theorem is true

:

"If two circles be such that n lines can be drawn touching one of them

and having their successive intersections, including that of the last and first,

on the circiunference of the other, the construction of such a system of lines

wiU be possible, at whatever point of the first circle we draw the first tangent."

2. A transparent medium is such that the path of a ray of light within it is a given

circle, the index of refraction being a function of the distance from a given point in the

plane of the circle.

Find the form of this function and shew that for light of the same refrangibility

—

(1) The path of every ray witJdn the medium is a circle,

(2) All the rays proceeding from any point in the medium will meet accurately in

another point.

(3) If rays diverge from a point without the medium and enter it through a spherical

surface having that point for its centre, they will be made to converge accurately to a point

within the medium.

Lemma I. Let a transparent medium be so constituted, that the refractive

index is the same at the same distance from a fixed point, then the path of

any ray of light within the medium will be in one plane, and the perpen-
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dicular from the fixed point on the tangent to the path of the ray at any

point will vary inversely as the refractive index of the medium at that point.

We may easily prove that when a ray of light passes through a spherical

surface, separating a medium whose refractive index is /x, from another where

it is /Aj, the plane of incidence and refraction passes through the centre of

the sphere, and the perpendiculars on the direction of the ray before and after

refraction are ir the ratio of /i, to fi^. Since this is true of any number of

spherical shells of different refractive powers, it is also true when the index of

refraction varies continuously from one shell to another, and therefore the

proposition is true.

Lemma II. If from any fixed point in the plane of a circle, a perpen-

dicular be drawn to the tangent at any point of the circumference, the rectangle

contained by this perpendicular and the diameter of the circle is equal to the

square of the line joining the point of contact with the fixed point, together

with the rectangle contained by the segments of any chord through the fixed

point.

Let APB be the circle, the fixed point; then

OY.FE=OP' + AO.OB,

Produce PO to Q, and join QR, then the triangles OYP, PQR are similar;

therefore

OY.PR=OP.PQ
= OP' + OP.OQ;

.: OY.PR=OP' + AO.OB.
If we put in this expression AO . OB = a^,

PO = r, OY=p, PR = 2p,

it becomes 2pp = ?'*+ a*,
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To find the law of the index of refraction of the medium, so that a ray

from A may describe the circle APB, /x must be made to vary inversely as p
by Lemma I.

Let AO = r^, and let the refractive index at A=fii; then generally

h'
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Since CP touches the circle, we have

CP'^CA. CB,

= {CO-OA){CO-\-OB);

but 0A= -^;

therefore CF' = CQ + CO (oB - ^^

an equation whence OB may be found, B being the point in the medium

through which all rays from C pass.

Note. The possibility of the existence of a medium of this kind possessing

remarkable optical properties, was suggested by the contemplation of the structure

of the crystalline lens in fish; and the method of searching for these properties

was deduced by analogy from Newton's Principia, Lib. L Prop. vii.

It would require a more accurate investigation into the law of the refractive

index of the different coats of the lens to test its agreement with the supposed

medium, which is an optical instrument theoretically perfect for homogeneous

light, and might be made achromatic by proper adaptation of the dispersive

power of each coat.

On the other hand, we find that the law of the index of refraction which

would give a minimum of aberration for a sphere of this kind placed in water,

gives results not discordant with facts, so far as they can be readily ascertained.



[From the Transactions of the Cambridge Philosophical Society, Vol. ix. Part iv.]

IV. On the Transformation of Surfaces by Bending.

Euclid has given two definitions of a surface, which may be taken as

examples of the two methods of investigating their properties.

That in the first book of the Elements is

—

"A superficies is that which has only length and breadth."

The superficies difiers from a line in having breadth as well as length,

and the conception of a third dimension is excluded without being expHcitly

introduced.

In the eleventh book, where the definition of a soHd is first formally

given, the definition of the superficies is made to depend on that of the solid

—

" That which bounds a soHd is a superficies."

Here the conception of three dimensions in space is employed in forming

a definition more perfect than that belonging to plane Geometry.

In our analytical treatises on geometry a surface is defined by a function

of three independent variables equated to zero. The surface is therefore the

boundary between the portion of space in which the value of the function is

positive, and that in which it is negative; so that we may now define a

surface to be the boundary of any assigned portion of space.

Surfaces are thus considered rather with reference to the figures which they
limit than as having any properties belonging to themselves.

But the conception of a surface which we most readily form is that of

a portion of matter, extended in length and breadth, but of which the thick-
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ness may be neglected. By excluding the thickness altogether, we arrive at

Euclid's first definition, which we may state thus

—

" A surface is a lamina of which the thickness is diminished so as to become

evanescent."

We are thus enabled to consider a surface by itself, without reference to

the portion of space of which it is a boundary. By drawing figures on the

surface, and investigating their properties, we might construct a system of

theorems, which would be true independently of the position of the surface in

space, and which might remain the same even when the form of the solid of

which it is the boundary is changed.

When the properties of a surface with respect to space are changed, while

the relations of lines and figures in the surface itself are unaltered, the surface

may be said to preserve its identity, so that we may consider it, after the

change has taken place, as the same surface.

When a thin material lamina is made to assume a new form it is said

to be hent. In certain cases this process of bending is called development, and

when one surface is bent so as to coincide with another it is said to be

applied to it.

By considering the lamina as deprived of rigidity, elasticity, and other

mechanical properties, and neglecting the thickness, we arrive at a mathemati-

cal definition of this kind of transformation.

" The operation of bending is a continuous change of the form of a surface,

without extension or contraction of any part of it."

The following investigations were undertaken with the hope of obtaining

more definite conceptions of the nature of such transformations by the aid of

those geometrical methods which appear most suitable to each particular case.

The order of arrangement is that in which the different parts of the subject

presented themselves at first for examination, and the methods employed form

parts of the original plan, but much assistance in other matters has been

derived from the works of Gauss*, Liouvillef, Bertrand^, Puiseux§, &c., references

to which will be given in the course of the investigation.

* Disquisitiones generalea circa superficies curvas. Presented to the Royal Society of Gottingen,

8th October, 1827. Commentationes Recentiores, Tom. vi.

t Liouville's Journal, xii. X ^^'^- ^^'^' § ^^"^

VOL, I. 11
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On the Bending of Surfaces generated hy the motion of a straight line in space.

If a straight line can be drawn in any surface, we may suppose that

part of the surface which is on one side of the straight line to be fixed,

while the other part is turned about the straight line as an axis.

In this way the surface may be bent about any number of generating lines

as axes successively, till the form of every part of the surface is altered.

The mathematical conditions of this kind of bending may be obtained in

the following manner.

Let the equations of the generating line be expressed so that the constants

involved in them are functions of one independent variable u, by the variation of

which we pass from one position of the line to another.

If in the equations of the generating line Aa, u = u^, then in the equations

of the line Bh we may put u = U2, and from the equations of these lines we
may find by the common methods the equations of the shortest line PQ between

Aa and Bb, and its length, which we may call S^. We may also find the

angle between the directions of ^a and Bb, and let this angle be SO.

In the same way from the equations of

Cc, in which u = u^, we may deduce the equa-

tions of RS, the shortest line between Bb and

Cc, its length 8^5 and the angle hd^ between

the directions of Bb and Cc. We may also

find the value of QR, the distance between

the points at which PQ and RS cut Bb.

Let QR = h(T, and let the angle between the

directions of PQ and RS be S^.

Now suppose the part of tlie surface between the lines Aa and Bb to be

fixed, while the part between Bb and Cc is turned round Bb as an axis. The

line RS wiU then revolve round the point R, remaining perpendicular to Bhy

and Cc will still be at the same distance from Bb, and wiU make the same

angle with it. Hence of the four quantities S4j S^2> ^cr and 8</>, 8^ alone will

be changed by the process of bending. 8<^, however, may be varied in a

perfectly arbitrary manner, and may even be made to vanish.

,•?_..
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For, PQ and RS being both perpendicular to Bh, RS may be turned

about Bh till it is parallel to PQ, in which case 8^ becomes = 0.

By repeating this process, we may make all the " shortest lines" parallel to

one another, and then all the generating lines will be parallel to the same

plane.

We have hitherto considered generating lines situated at finite distances from

one another ; but what we have proved will be equally true when their distances

are indefinitely diminished. Then in the limit
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Since ia this case the quantities C> ^, and cr are represented bj distinct

geometrical quantities, we may simplify the consideration of all surfaces generated

by straight lines by reducing them by bending to the case in which those lines

are parallel to a given plane.

In the class of surfaces in which the generating lines ultimately intersect,

-T- = 0, and ^ constant. If these surfaces be bent so that <j> = 0, the whole of

the generating lines will lie in one plane, and their ultimate intersections will

form a plane curve. The surface is thus reduced to one plane, and therefore

belongs to the class usually described as "developable surfaces." The form of a

developable surface may be defined by means of the three quantities 0, a- and

(f>.
The generating lines form by their ultimate intersections a curve of double

curvature to which they are all tangents. This curve has been called the

cuspidal edge. The length of this curve is represented by a, its absolute

curvature at any point by -j-
, and its torsion at the same point by — .

When the surface is developed, the cuspidal edge becomes a plane curve,

and every part of the surface coincides with the plane. But it does not follow

that every part of the plane is capable of being bent into the original form

of the surface. This may be easily seen by considering the surface when the

position of the cuspidal edge nearly coincides with the plane curve but is not

confounded with it. It is evident that if from any point in space a tangent

can be drawn to the cuspidal edge, a sheet of the surface passes through that

point. Hence the number of sheets which pass through one point is the same

as the number of tangents to the cuspidal edge which pass through that

point ; and since the same is true in the limit, the number of sheets which

coincide at any point of the plane is the same as the number of tangents

which can be drawn from that point to the plane curve. In constructing a

developable surface of paper, we must remove those parts of the sheet from

which no real tangents can be drawn, and provide additional sheets where more

than one tangent can be drawn.

In the case of developable surfaces we see the importance of attending to

the position of the lines of bending; for though all developable surfaces may
be produced from the same plane surface, their distinguishing properties depend

on the form of the plane curve which determines the lines of bending.
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II.

On the Bending of Surfaces of Revolution.

In the cases previously considered, the bending in one part of the surface

may take place independently of that in any other part. In the case now
before us the bending must be simultaneous over the whole surface, and its

nature must be investigated by a different method.

The position of any point P on a surface of revolution may be deter-

mined by the distance FV from the vertex, measured

along a generating line, and the angle AVO which

the plane of the generating line makes with a fixed

plane through the axis. Let FV=s and AVO = 6.

Let r be the distance {Pp) of P from the axis ; r

will be a function of s depending on the form of the

generating curve.

Now consider the small rectangular element of the surface at P. Its length

PR = Ss, and its breadth PQ = rhd, where r is a function of s.

If in another surface of revolution r is some other function of s, then the

length and breadth of the new element will be hs and rB$', and if

r = /xr, and 0' = -0,

rze'=rze,

and the dimensions of the two elements will be the same.

Hence the one element may be applied to the other, and the one surface

may be applied to the other surface, element to element, by bending it. To

effect this, the surface must be divided by cutting it along one of the generating

lines, and the parts opened out, or made to overlap, according as /x is greater

or less than unity.

To find the effect of this transformation on the form of the surface we
must find the equation to the original form of the generating line in terms of

6" and r, then putting / = /ir, the equation between s and r will give the form

of the generating line after bending.
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When /x is greater than 1 it may happen that for some values of 5, y- is

greater than -. In this case

-j- = fi-j- is greater than 1
;

a result which indicates that the curve becomes impossible for such values of

s and ft.

The transformation is therefore impossible for the corresponding part of

the surface. If, however, that portion of the original surface be removed, the

remainder may be subjected to the required transformation.

The theory of bending when apphed to the case of surfaces of revolution

presents no geometrical difficulty, and little variety; but when we pass to

the consideration of surfaces of a more general kind, we discover the insufficiency

of the methods hitherto employed, by the vagueness of our ideas with respect

to the nature of bending in such cases. In the former case the bending is

of one kind only, and depends on the variation of one variable ; but the

surfaces we have now to .consider may be bent in an infinite variety of ways,

depending on the variation of three variables, of which we do not yet know the

nature or interdependence.

We have therefore to discover some method sufficiently general to be appli-

cable to every possible case, and yet so definite as to limit each particular case

to one kind of bending easily imderstood.

The method adopted in the following investigations is deduced from the

consideration of the surface as the limit of the inscribed polyhedron, when the

size of the sides is indefinitely diminished, and their number indefinitely increased.

A method is then described by which such a polyhedron may be inscribed

in any surface so that all the sides shall be triangles, and aU the solid angles

composed of six plane angles.

The problem of the bending of such a polyhedron is a question of trigo-

nometry, and equations might be found connecting the angles of the different

edges which meet in each soHd angle of the polyhedron. It will be shewn that
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the conditions thus obtained would be equivalent to three equations between

the six angles of the edges belonging to each solid angle. Hence three addi-

tional conditions would be necessary to determine the value of every such angle,

and the problem would remain as indefinite as before. But if by any means

we can reduce the number of edges meeting in a point to four, only one con-

dition would be necessary to determine them all, and the problem would be

reduced to the consideration of one kind of bending only.

This may be done by drawing the polyhedron in such a manner that the

planes of adjacent triangles coincide two and two, and form quadrilateral facets,

four of which meet in every solid angle. The bending of such a polyhedron

can take place only in one way, by the increase of the angles of two of the

edges which meet in a point, and the diminution of the angles of the other two.

The condition of such a, polyhedron being inscribed in any surface is then

found, and it is shewn that when two forms of the same surface are given,

a perfectly definite rule may be given by which two corresponding polyhedrons

of this kind may be inscribed, one in each surface.

Since the kind of bending completely defines the nature of the quadrilateral

polyhedron which must be described, the lines formed by the edges of the

quadrilateral may be taken as an indication of the kind of bending performed

on the surface.

These lines are therefore defined as " Lines of Bending."

When the lines of bending are given, the forms of the quadrilateral facets

are completely determined ; and if we know the angle which any two adjacent

facets make with one another, we may determine the angles of the three edges

which meet it at one of its extremities. From each of these we may find the

angles of three other edges, and so on, so that the form of the polyhedron

after bending will be completely determined when the angle of one edge is given.

The bending is thus made to depend on the change of one variable only.

In this way the angle of any edge may be calculated from that of any

given edge ; but since this may be done in two different ways, by passing

along two different sets of edges, we must have the condition that these results

may be consistent with each other. This condition is satisfied by the method
of inscribing the polyhedron. Another condition will be necessary that tlie

change of the angle of any edge due to a small change of the given angle,

produced by bending, may be the same by both calculations. This is the con-

dition of " Instantaneous Lines of Bending." That tliis condition mav ccntinue
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to be satisfied during the whole process we must have another, which is the

condition for " Permanent Lines of Bending."

The use of these lines of bending in simplifying the theory of surfaces is

the only part of the present method which is new, although the investigations

connected with them naturally led to the employment of other methods which

had been used by those who have already treated of this subject. A state-

ment of the principal methods and results of these mathematicians will save

repetition, and will indicate the different points of view under which the

subject may present itself.

The first and most complete memoir on the subject is that of M. Gauss,

already referred to.

The method which he employs consists in referring every point of the

surface to a corresponding point of a sphere whose radius is unity. Normals

are drawn at the several points of the surface toward the same side of it,

then lines drawn through the centre of the sphere in the direction of each of

these normals intersect the surface of the sphere in points corresponding to

those points of the original surface at which the normals were drawn.

If any line be drawn on the surface, each of its points will have a

corresponding point on the sphere, so that there will be a corresponding Hne
on the sphere.

If the line on the surface return into itself, so as to enclose a finite area

of the surface, the corresponding curve on the sphere will enclose an area on
the sphere, the extent of which will depend on the form of the surface.

This area on the sphere has been defined by M. Gauss as the measure of

the "entire curvature" of the area on the surface. This mathematical quantity

is of great use in the theory of surfaces, for it is the only quantity connected

with curvature which is capable of being expressed as the sum of all its parts.

The sum of the entire curvatures of any number of areas is the entire

curvature of their sum, and the entire curvature of any area depends on the

form of its boundary only, and is not altered by any change in the form of

the surface within the boundary line.

The curvature of the surface may even be discontinuous, so that we may
speak of the entire curvature of a portion of a polyhedron, and calculate its

amount.

If the dimensions of the closed curve be diminished so that it may be

treated as an element of the surface, the ultimate ratio of the entire curvature
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to the area of the element on the surface is taken as the measure of the
" specific curvature " at that point of the surface.

The terms "entire" and "specific" curvature when used in this paper are

adopted from M. Gauss, although the use of the sphere and the areas on its

surface formed an essential part of the original design. The use of these terms
will save much explanation, and supersede several very cumbrous expressions.

M. Gauss then proceeds to find several analytical expressions for the measure
of specific curvature at any point of a surface, by the consideration of three
points very near each other.

The co-ordinates adopted are first rectangular, x and y, or x, y and z, being
regarded as independent variables.

Then the points on the surface are referred to two systems of curves drawn
on the surface, and their position is defined by the values of two independent
variables p and q, such that by varying p while q remains constant, we obtain

the different points of a line of the first system, while p constant and q
variable defines a line of the second system.

By means of these variables, points on the surface may be referred to lines

on the surface itself instead of arbitrary co-ordinates, and the measure of cur-

vature may be found in terms of p and q when the surface is known.
In this way it is shewn that the specific curvature at any point is the

reciprocal of the product of the principal radii of curvature at that point, a
result of great interest.

From the condition of bending, that the length of any element of the
curve must not be altered, it is shewn that the specific curvature at any point
is not altered by bending.

The rest of the memoir is occupied with the consideration of particular

modes of describing the two systems of lines. One case is when the lines of.

the first system are geodesic, or "shortest" lines having their origin in a point,

and the second system is drawn so as to cut off equal lengths from the curv^es

of the first system.

The angle which the tangent at the origin of a line of the first system
makes with a fixed line is taken as one of the co-ordinates, and the distance

of the point measured along that line as the other.

It is shewn that the two systems intersect at right angles, and a simple
expression is found for the specific curvature at any point.

M. Liouville (Journal, Tom. xii.) has adopted a different mode of simpli-

VOL. I. 22
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tying the problem. He has shewn that on every surface it is possible to find

two systems of curves intersecting at right angles, such that the length and

breadth of every element into which the surface is thus divided shall be equal,

and that an infinite number of such systems may be found. By means of these

curves he has found a much simpler expression for the specific curvature than

that given by M. Gauss.

He has also given, in a note to his edition of Monge, a method of testing

two given surfaces in order to determine whether they are applicable to one

another. He first draws on both surfaces lines of equal specific curvature, and

determines the distance between two corresponding consecutive lines of curvature

in both surfaces.

If by assuming the origin properly these distances can be made equal for

every part of the surface, the two surfaces can be applied to each other. He

has developed the theorem analytically, of which this is only the geometrical

interpretation.

When the lines of equal specific curvature are equidistant throughout their

whole length, as in the case of surfaces of revolution, the surfaces may be

applied to one another in an infinite variety of ways.

When the specific curvature at every point of the surface is positive and

equal to a^, the surface may be applied to a sphere of radius a, and when the

specific curvature is negative = —a" it may be applied to the surface of revo-

lution which cuts at right angles all the spheres of radius a, and whose centres

are in a straight line.

M. Bertrand has given in the Xlllth Vol. of Liouville's Journal a very

simple and elegant proof of the theorem of M. Gauss about the product of

the radii of curvature.

He supposes one extremity of an inextensible thread to be fixed at a point

in a surface, and a closed curve to be described on the surface by the other

extremity, the thread being stretched all the while. It is evident that the

length of such a curve cannot be altered by bending the surface. He then

calculates the length of this curve, considering the length of the thread small,

and finds that it depends on the product of the principal radii of curvature

of the surface at the fixed point. His memoir is followed by a note of

M. Diguet, who deduces the same result from a consideration of the area of

the same curve ; and by an independent memoir of M. Puiseux, who seems to

give the same proof at somewhat greater length.
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Note. Since this paper was written, I have seen the Rev. Professor Jellett's Memoir, On
the Properties of Inextensible Surfaces. It is to be found in the Transactions of the Royal Irish

Academy, Vol. XXII. Science, &c., and was read May 23, 18.53.

Professor Jellett has obtained a system of three partial differential equations which express

the conditions to which the displacements of a continuous inextensible membrane are subject.

From these he has deduced the two theorems of Gauss, relating to the invariability of the product

of the radii of curvature at any point, and of the " entire curvature" of a finite portion of the

surface.

He has then applied his method to the consideration of cases in which the flexibihty of the

surface is limited by certain conditions, and he has obtained the following results :

—

If the displacements of an inextensible surface he all parallel to the same plane, the mrface
moves as a rigid body.

Or, more generally,

If the movement of an inextensible surface, parallel to any one line, be that of a rigid body, the

entire movement is that of a rigid body.

The following theorems relate to the case in which a curve traced on the surface is rendered

rigid :—

// any curve be traced upon an inextensible surface whose principal radii of curvature are finite

and of the same sign, and if this curve he rendered immoveable, the entire surface will become

immoveable also.

In a developable surface composed of an inextensible membrane, any one of its rectilinear

sections may be fixed without destroying the fiexibility of the membrane.

In convexo-concave surfaces, there are two directions passing through every point of the

surface, such that the curvature of a normal section taken in these directions vanishes. We
may therefore conceive the entire surface to be crossed by two series of curves, such that

a tangent drawn to either of them at any point shall coincide with one of these direc-

tions. These curves Professor Jellett has denominated Curves of Flexure, from the following

properties :

—

Any curve of fiexure may he fi^ed without destroying the fiexibility of the surface.

If an arc of a curve traced upon an inextensible surface be rendered fixed or rigid, the entire of
the quadrilateral, formed by drauring the two curves of fiexure through each extremity of the curve,

become fixed or rigid also.

Professor Jellett has also investigated the properties of partially inextensible surfaces, and
of thin material laminae whose extensibility is small, and in a note he has demonstrated the
following theorem :

—

If a closed oval surface he perfectly inextensible, it is also perfectly rigid.

A demonstration of one of Professor Jellett's theorems will be found at the end of this paper.

J. C. M.
Aug. 30, 1851
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On the properties of a Surface considered as the limit of the inscribed

Polyhedron.

1. To inscribe a polyhedron in a given surface, aU whose sides shall he

triangles, and all whose solid angles shall he hexahedral.

On the given surface describe a series of curves

according to any assumed law. Describe a. second series

intersecting these in any manner, so as to divide the

whole surface into quadrilaterals. Lastly, describe a

third series (the dotted lines in the figure), so as to

pass through all the intersections of the first and second

series, forming the diagonals of the quadrilaterals.

The surface is now covered with a network of curvilinear triangles. The

plane triangles which have the same angular points will form a polyhedron

fulfilling the required conditions. By increasing the number of the curves in

each series, and diminishing their distance, we may make the polyhedron

approximate to the surface without limit. At the same time the polygons

formed by the edges of the polyhedron will approximate to the three systems

of intersecting curves.

2. To find the measure of the ''entire curvature" of a solid angle of the

'polyhedron, and of a finite portion of its surface.

From the centre of a sphere whose radius is unity draw perpendiculars to

the planes of the six sides forming the solid angle. These lines will meet the

surface in six points on the same side of the centre, which being joined by

arcs of great circles will form a hexagon on the surface of the sphere.

The area of this hexagon represents the entire curvature of the solid angle.

It is plain by spherical geometry that the angles of this hexagon are the

supplements of the six plane angles which form the solid angle, and that the

arcs forming the sides are the supplements of those subtended by the angles

of the six edges formed by adjacent sides.

The area of the hexagon is equal to the excess of the sum of its angles

above eight right angles, or to the defect of the sum of the six plane angles

from four right angles, which is the same thing. Since these angles are
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invariable, the bending of the polyhedron cannot alter the measure of curvature

of each of its solid angles.

If perpendiculars be drawn to the sides of the polyhedron which contain

other solid angles, additional points on the sphere will be found, and if these

be joined by arcs of great circles, a network of hexagons will be formed on

the sphere, each of which corresponds to a solid angle of the polyhedron and

represents its " entire curvature."

The entire curvature of any assigned portion of the polyhedron is the sum
of the entire curvatures of the solid angles it contains. It is therefore repre-

sented by a polygon on the sphere, which is composed of all the hexagons

corresponding to its solid angles.

If a polygon composed of the edges of the polyhedron be taken as the

boundary of the assigned portion, the sum of its exterior angles will be the

same as the sum of the exterior angles of the polygon on the sphere ; but

the area of a spherical polygon is equal to the defect of the sum of its

exterior angles from four right angles, and this is the measure of entire curva-

ture.

Therefore the entire curvature of the portion of the polyhedron enclosed

by the polygon is equal to the defect of the sum of its exterior angles from

four right angles.

Since the entire curvature of each solid angle is unaltered by bending,

that of a finite portion of the surface must be also invariable.

3. On the " Conic of Contact," and its use in determining the curvature

of normal sections of a surface.

Suppose the plane of one of the triangular facets of the polyhedron to

be produced till it cuts the surface. The form of the curve of intersection

\7ill depend on the nature of the surface, and when the size of the triangle

is indefinitely diminished, it will approximate, to the form of a conic section.

For we may suppose a surface of the second order constructed so as to

have a contact of the second order with the given surface at a point within

the angular points of the triangle. The curve of intersection with this surface

will be the conic section to which the other curve of intersection approaches.

This curve will be henceforth called the " Conic of Contact," for want of a better

name.
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To Jind tJie radius of curvature of a normal section

of the surface.

Let ARa be the conic of contact, C its centre, and

CP perpendicular to its plane. rPR a normal section, and

its centre of curvature, then

= 1.^ in the limit, when CR and PR coincide,
^ CP

-s CP'

or calling CP the "sa,gitta," we have this theorem:

"The radius of curvature of a normal section is equal to the square of

the corresponding diameter of the conic of contact divided by eight times the

sagitta."

4. To insciihe a polyhedron in a given surface, all ivhose sides shcdl he

plane quadrilaterals, and all whose solid angles shall he tetraliedral.

Suppose the three systems of curves drawn as described in sect. (1), then

each of the quadrilaterals formed by the intersection of the first and second

systems is divided into two triangles by the third system. If the planes of

these two triangles coincide, they form a plane quadrilateral, and if every such

pair of triangles coincide, the polyhedron will satisfy the required condition.

Let ahc be one of these triangles, and acd the

other, which is to be in the same plane with ahc.

Then if the plane of ahc be produced to meet the

surface in the conic of contact, the curve will pass

through ahc and d. Hence ahcd must be a quad-

rilateral inscribed in the conic of contact.

But since ah and dc belong to the same system of curves, they will be

ultimately parallel when the size of the facets is diminished, and for a similar

reason, ad and ho will be ultimately parallel. Hence ahcd will become a paral-

lelogram, but the sides of a parallelogram inscribed in a conic are parallel to

conjugate diameters.
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Therefore the directions of two curves of the first and second system at

their point of intersection must be parallel to two conjugate diameters of the

conic of contact at that point in order that such a polyhedron may be inscribed.

Systems of curves intersecting in this manner will be referred to as "conju-

gate systems."

5. On the elementary conditions of the applicahilitij of two surfaces.

It is evident, that if one surface is capable of being appUed to another by

bending, every point, line, or angle in the first has its corresponding point, line,

or angle in the second.

If the transformation of the surface be eflfected without the extension or

contraction of any part, no line drawn on the surface can experience any change

in its length, and if this condition be fulfilled, there can be no extension or

contraction.

Therefore the condition of bending is, that if any line whatever be drawn

on the first surface, the corresponding curve on the second surface is equal to it

in length. All other conditions of bending may be deduced from this.

6. If two curves on the first surface intersect, the corresponcling curves on the

second surface intersect at the same angle.

On the first surface draw any curve, so as to form a triangle with the

curves already drawn, and let the sides of this triangle be indefinitely dimin-

ished, by making the new curve approach to the intersection of the former

curves. Let the same thing be done on the second surface. We shall then

have two corresponding triangles whose sides are equal each to each, by (5),

and since their sides are indefinitely small, we may regard them as straight

lines. Therefore by Euclid i. 8, the angle of the first triangle formed by the

intersection of the two curves is equal to the corresponding angle of the second.

7. At any given point of the first surface, two directions can he found, which

are conjugate to each other with respect to the conic of contact at that point, and

continue to he conjugate to each other when tJie first surface is transformed into the

second.

For let the first surface be transferred, without changing its form, to a

position such that the given point coincides with the corresponding point of the

second surface, and the normal to the first surface coincides with that of the
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second at the same point. Then let the first surface be turned about the normal

as an axis till the tangent of any line through the point coincides with the

tangent of the corresponding line in the second surface.

Then by (6) any pair of corresponding lines passing through the point will

have a common tangent, and will therefore coincide in direction at that point.

If we now draw the conies of contact belonging to each surface we shall

have two conies with the same centre, and the problem is to determine a pair

of conjugate diameters of the first which coincide with a pair of conjugate

diameters of the second. The analytical solution gives two directions, real,

coincident, or impossible, for the diameters required.

In our investigations we can be concerned only with the case in which these

directions are real.

When the conies intersect in four points, P, Q, R, S, FQES is a parallelo-

gram inscribed in both conies, and the axes CA, CB,

parallel to the sides, are conjugate in both conies.

If the conies do not intersect, describe, through any

point P of the second conic, a conic similar to and con-

centric with the first. If the conies intersect in four

points, we must proceed as before; if they touch in two

points, the diameter through those points and its conju-

gate must be taken. If they intersect in two points only,

then the problem is impossible ; and if they coincide

altogether, the conies are similar and similarly situated,

and the problem is indeterminate.

8. Two surfaces being given as before, one pair of conjugate systems of
curves may be drawn on the first surface, which shall correspond to a pair of
conjugate systems on the second surface.

By article (7) we may find at every point of the first surface two
directions conjugate to one another, corresponding to two conjugate directions on
the second surface. These directions indicate the directions of the two systems
of curves which pass through that point.

Knowing the direction which every curve of each system must have at every
point of its course, the systems of curves may be either drawn by some direct

geometrical method, or constructed from their equations, which may be found by
solving their difierential equations.
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Two systems of curves being drawn on the first surface, the corresponding

systems may be drawn on the second surface. These systems being conjugate

to each other, fulfil the condition of Art. (4), and may therefore be made the

means of constructing a polyhedron with quadrilateral facets, by the bending of

which the transformation may be effected.

These systems of curves will be referred to as the "first and second systems

of Lines of Bending."

9. General considerations applicable to Lines of Bending.

It has been shewn that when two forms of a surface are given, one of

which may be transformed into the other by bending, the nature of the Hnes

of bending is completely determined. Supposing the problem reduced to its

analyticid expression, the equations of these curves would appear under the

form of double solutions of differential equations of the first order and second

degree, each of which would involve one arbitrary quantity, by the variation of

which we should pass from one curve to another of the same system.

Hence the position of any curve of either system depends on the value

assumed for the arbitrary constant ; to distinguish the systems, let us call one

the first system, and the other the second, and let all quantities relating to

the second system be denoted by accented letters.

Let the arbitrary constants introduced by integration be u for the first

system, and u for the second.

Then the value of lo will determine the position of a curve of the first

system, and that of u a curve of the second system, and therefore u and u will

suffice to determine the point of intersection of these two curves.

Hence we may conceive the position of any point on the surface to be

determined by the values of u and u for the curves of the two systems which

intersect at that point.

By taking into account the equation to the surface, we may suppose x, y,

and 2 the co-ordinates of any point, to be determined as functions of the two

variables u and u. This being done, we shall have materials for calculating

everything connected with the surface, and its lines of bending. But before

entering on such calculations let us examine the principal properties of these lines

which we must take into account.

Suppose a series of values to be given to u and u, and the corresponding

curves to be drawn on the surface.

VOL, I. 13
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The surface will then be covered with a system of quadrilaterals, the size

of which may be diminished indefinitely by interpolating values of u and u
between those already assumed; and in the limit each quadrilateral may be
regarded as a parallelogram coinciding with a facet of the inscribed polyhedron.

The length, the breadth, and the angle of these parallelograms will vary at

different parts of the surface, and will therefore depend on the values of u
and It.

The curvature of a line drawn on a surface may be investigated by consider-

ing the curvature of two other lines depending on it.

The first is the projection of the line on a tangent plane to the surface at

a given point in the line. The curvature of the projection at the point of

contact may be called the tangential cwvature of the line on the surface. It

has also been called the geodesic curvature, because it is the measure of its

deviation from a geodesic or shortest line on the surface.

The other projection necessary to define the curvature of a line on the

surface is on a plane passing through the tangent to the curve and the normal
to the surface at the point of contact. The curvature of this projection at that

point may be called the normal cw^ature of the line on the surface.

It is easy to shew that this normal curvature is the same as the curvature

of a normal section of the surface passing through a tangent to the curve at

the same point.

10. General considerations applicable to the inscribed polyhedron.

When two series of lines of bending belonging to the first and second systems

have been described on the surface, we may proceed, as in Art. (l), to describe

a third series of curves so as to pass through all their intersections and form

the diagonals of the quadrilaterals foi-med by the first pair of systems.

Plane triangles may then be constituted within the surface, having these

points of intersection for angles, and the size of the facets of this polyhedron may
be diminished indefinitely by increasing the number of curves in each series.

But by Art. (8) the first and second systems of lines of bending are conju-

gate to each other, and therefore by Art. (4) the polygon just constructed will

have every pair of triangular facets in the same plane, and may therefore be
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considered as a polyhedron with plane quadrilateral facets all whose solid angles

are formed by four of these facets meeting in a point.

When the number of curves in each system is increased and their distance

diminished indefinitely, the plane facets of the polyhedron will ultimately coincide

with the curved surface, and the polygons formed by the successive edges between

the facets, will coincide with the lines of bending.

These quadrilaterals may then be considered as parallelograms, the length

of which is determined by the portion of a curve of the second system inter-

cepted between two curves of the first, while the breadth is the distance of

two curves of the second system measured along a curve of the first. The

expressions for these quantities will be given when we come to the calculation of

our results along with the other particulars which we only specify at present.

The angle of the sides of these parallelograms will be ultimately the same

as the angle of intersection of the first and second systems, which we may

call
<f>

; but if we suppose the dimensions of the facets to be small quantities

of the first order, the angles of the four facets which meet in a point will difier

from the angle of intersection of the curves at that point by small angles of

the first order depending on the tangential curvature of the lines of bending.

The sum of these four angles will differ from four right angles by a small

angle of the second order, the circular measure of which expresses the entire

curvature of the solid angle as in Art. (2).

The angle of inclination of two adjacent facets will depend on the normal

curvature of the lines of bending, and will be that of the projection of two con-

secutive sides of the polygon of one system on a plane perpendicular to a side

of the other system.

11. Explanation of the Notation to be employed in calculation.

Suppose each system of lines of bend-

ing to be determined by an equation con-

taining one arbitrary parameter.

Let this parameter be u for the first

system, and u' for the second.

Let two curves, one from each system,

be selected as curves of reference, and let

their parameters be u^ and u\.
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Let ON and OM in the figure represent these two curves.

Let PM be any curve of the first system whose parameter is u, and PN
any curve of the second whose parameter is u, then their intersection P may

be defined as the point (w, u'), and all quantities referring to the point P may

be expressed as functions of u and u.

Let PN, the length of a curve of the second system (u), from N (wj to P
(u), be expressed by s, and PM the length of the curve {u) from {u\) to (u), by

s\ then s and s will be functions of u and u.

Let (w + Sm) be the parameter of the curve QF of the first system consecu-

tive to PM. Then the length of PQ, the part of the curve of the second system

intercepted between the curves (u) and (w + Sw), will be

ds ^

du

Similarly PR may be expressed by

ds\ ,

These values of PQ and PR will be the ultimate values of the length and

breadth of a quadrilateral facet.

The angle between these lines will be ultimately equal to ^, the angle of

intersection of the system ; but when the values of 8w and hu are considered as

finite though small, the angles a, 6, c, d of the facets which form a soHd angle

will depend on the tangential curvature of the two systems of lines.

Let T be the tangential curvature of a curve of the first system at the

given point measured in the direction in which u increases, and let r\ that of the

second system, be measured in the direction in which xC increases.

Then we shall have for the values of the four plane angles which meet at P,

, \ ds ^ , 1 ds^

1 _, 1 c?/ ^ . 1 ds
^~^

It du It du '

, \ ds rs , \ ds ^

J . I ds' , 1 ds ^
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These values are correct as far as the first order of small quantities. Those

corrections which depend on the curvature of the surface are of the second order.

Let p be the normal curvature of a curve of the first system, and p that

of a curve of the second, then the inclination I of the plane facets a and 6,

separated by a curve of the second system, will be

p sin ^ du

as far as the first order of small angles, and the inclination V of h and c will be

7/ 1 0^ ^
/ = -7—.—7 -J- ou

p Bin.<f> du

to the same order of exactness.

12. On the corresponding polygon on the surface of the sphere of reference.

By the method described in Art. (2) we may

find a point on the sphere corresponding to each

facet of the polyhedron.

In the annexed figure, let a, b, c, d be the

points on the sphere corresponding to the four facets

which meet at the solid angle P. Then the area

of the spherical quadrilateral a, h, c, d will be the

measure of the entire curvature of the solid angle P.

This area is measured by the defect of the sum of the exterior angles

from four right angles ; but these exterior angles are equal to the four angles

a, h, c, d, which form the solid angle P, therefore the entire curvature is

measured by
k = 2'rr-{a + h + c-{-d).

Since a, h, c, d are invariable, it is evident, as in Art. (2), that the entire

curvature at P is not altered by bending.

By the last article it appears that when the facets are small the angles b

and d are approximately equal to <j), and a and c to (tt — ^), and since the sides

of the quadrilateral on the sphere are small, we may regard it as approximately

a plane parallelogram whose angle bad =
<f).

The sides of this parallelogram will be I and I', the supplements of the

angles of the edges of the polyhedron, and we may therefore express its area

as a plane parallelogram

k = IV sin
<f>.
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By the expression for I and V in the last article, we find

, 1 ds ds\ ^ ,

k =—r-.—7 J- J-/ ou du
pp sm<^ du du

for the entire curvature of one solid angle.

Since the whole number of solid angles is equal to the whole number of

facets, we may suppose a quarter of each of the facets of which it is composed

to be assigned to each solid angle. The area of these will be the same as that

of one whole facet, namely,

, ds ds' o ^ ,sm 9 -J- T-> ou ou ;

therefore dividing the expression for k by this quantity, we find for the value

of the specific curvature at P
1

^ pp sm'<^

which gives the specific curvature in terms of the normal curvatures of the

lines of bending and their angle of intersection.

13. Further reduction of this expression by rmans of the " Conic of Con-

tact" as defined in Art. (3).

Let a and b be the semiaxes of the conic of contact, and h the sagitta

or perpendicular to its plane from the centre to the surface.

Let CP, CQ be semidiameters parallel to the

lines of bending of the first and second systems, and

therefore conjugate to each other.

By (Art. 3),
, CP"

p=^-hr

and p=i-j^;

and the expression for p in Art. (12), becomes

^~{CP.CQsm(t>)''

But CP .CQbukJ) is the area of the parallelogram CPRQ, which is one

quarter of the circumscribed parallelogram, and therefore by a well-known

theorem
CP .CQsm4> = ah,
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and the expression for p becomes

or if the area of the circumscribing parallelogram be called A,

The principal radii of curvature of the surface are parallel to the axes of

the conic of contact. Let H and i^ denote these radii, then

and therefore substituting in the expression for p,

1

or the specific curvature is the reciprocal of the product of the principal radii

of curvature.

This remarkable expression was introduced by Gauss in the memoir referred

to in a former part of this paper. His method of investigation, though not

80 elementary, is more direct than that here given, and wUl shew how this

result can be obtained without reference to the geometrical methods necessary

to a more extended inquiry into the modes of bending.

14. 0)1 the variation of normal curvature of the lines of bending as we pa^s

from one point of the surface to another.

We have determined the relation between the normal curvatures of the

lines of bending of the two systems at their points of intersection; we have

now to find the variation of normal curvature when we pass from one hne of

the first system to another, along a line of the second.

In analytical language we have to find the value of

du \pj

Referring to the figure in Art. (11), we shall see that this may be done

if we can determine the difierence between the angle of inclination of the

facets a and h, and that of c and d : for the angle I between a and b is

J
1 ds 5. ,

psiJKp du
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and therefore the difference between the angle of a and b and that of c and d is

~ du ~ du \psm<f> du'j

whence the differential of p with respect to u may be found

We must therefore find U, and this is done by means of the quadrilateral

on the sphere described in Art. (12).

15. To find the values of hi and U\

In the annexed figure let ahcd repre-

sent the small quadrilateral on the surface

of the sphere. The exterior angles a, h,

c, d are equal to those of the four facets

which meet at the point P of the surface,

and the sides represent the angles which

the planes of those facets make with each

other ; so that

ah = l, lc = l\ cd = l + U, da = l' + Br,

and the problem is to determine Bl and hi" in terms of the sides I and V and

the angles a, h, c, d.

On the sides ha, he complete the parallelogram ahcd.

Produce ad to p, so that ap = aS. Join Bp.

Make eq = cd and join dq.

then Bl = cd- ah,

= cq — ch,

= -(qo + oB),

Now qo = qd tan qdo

= cd sin qcd cot qod,

but cd = I nearly, sin qcd = qcd==(e + h-7r) and qod = <f>;

.'. qo^l (c+ h- it) cot
<f>.
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Also oS = -—-^—
Sin bop

= aB (Bap) ——

7

^ ^' 8m<f>

= l'(a+h-7T)J-r.

Substituting the values of a, h, c, d from Art. (11),

Sl= — (qo + 08)

= —I —, ^- cot <i>Su — V—T—,
-—r Bu.

r du ^ r du sm0

Finally, substituting the values of I, V, and Bl from Art. (14),

d ( \ ds"\
sj 5 , cot (/) cZs' 1 (i5 5. ^ , 1 ds I ds' ^ ,

du \p sin <p du / p sm <f>
du r du p sm <j> du r du

which may be put under the more convenient form

— n ^ =— 1 / 1 ^^'\ 1 ds
, p I ds 1

du^ °'^'~du ^ \sin <j> du) r du ^ p' r du sin <^
'

and from the value of Bl' we may similarly obtain

d
,, '\ _ _^ 1 / 1 ^\ ,i^ +^j_^i^ ^

du ^ ^ ^ ' du' ° \sin
<f>

du) r du' ^ p r du sin (ft

'

We may simplify these equations by putting p for the specific curvature of

the surface, and q for the ratio , , which is the only quantity altered by bending.

We have then

p =—/ . , . , and q = —,,^ pp sm=<^' ^
p

whence p' = q—^^-r
,

p'^ = t-tj y^ ^ p sin
<f) 9. P s^ Y

and the equations become

d ,. \ d , ( ^Tl'X 1 ds , , 2 ds 1

In this way we may reduce the problem of bending a surface to the

consideration of one variable q, by means of the lines of bending.

VOL. I. 14

d_

du'
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16. To obtain the conditio of Instantaneous lines of bending.

We have now obtained tlie values of the differential coefficients of q with

respect to each of the variables u, u.

From the equation

we might find an equation which would give certain conditions of lines of

bending. These conditions however would be equivalent to those which we have

already assumed when we drew the systems of lines so as to be conjugate to

each other.

To find the true conditions of bending we must suppose the form of the

surface to vary continuously, so as to depend on some variable t which we

may call the time.

Of the difierent quantities which enter into our equations, none are changed

by the operation of bending except q, so that in differentiating with respect

to t all the rest may be considered constant, q being the only variable.

Differentiating the equations of last article with respect to t, we obtain

d" ,, . 2 ds 1 d ,, .

Whence

c?" ,, . 2 ds' 1 I d ,. .

A^t'^^'^^^
=

{.4 1- 1 si^)-'^ Tu ^, ii'^^H^'o^'^' 1 1 ii^^ 3^.<(">^*)-

and

(log l)dududt

( d /2ds 1 \ 2 ds 1 d , } ^ d ,, 2 ds 1 1 d ,, .

{M?d^^^'r-di7^^d^^'^'irqdt^^'^^^

two independent values of the same quantity, whence the requiied conditions

may be obtained.
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Substituting in these equations the values of those quantities which occur

in the original equations, we obtain

I ds ( d , , ds

du
sin

*) + -
, \, cot <!> y

2 ds

r du

\l ds ( d , f ,ds . A 2 ds . ,\

which is the condition which must hold at every instant during the process of

bending for the lines about which the bending takes place at that instant.

When the bending is such that the position of the lines of bending on the

surface alters at every instant, this is the only condition which is required.

It is therefore called the condition of Instantaneous lines of bending.

17. To find the condition of Permanent lines of bending.

Since q changes with the time, the equation of last article will not be

satisfied for any finite time unless both sides are separately equal to zero. In

that case we have the two conditions

(!)

d , / ds . ,\ 2ds ^ , ^^
^,log(i^r^^sm<^j + -^,cotc^ = 0,
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We are now able to determine whether any system of lines drawn on a

given surface is a system of instantaneous or permanent lines of bending.

We are also able, by the method of Article (8), to deduce from two con-

secutive forms of a surface, the lines of bending about which the transformation

must have taken place.

If our analytical methods were sufficiently powerful, we might apply our

results to the determination of such systems of lines on any known surface, but

the necessary calculations even in the simplest cases are so compHcated, that,

even if useful results were obtained, they would be out of place in a paper of

this kind, which is intended to afford the means of forming distinct conceptions

rather than to exhibit the results of mathematical labour.

18. On the application of the ordinary unethods of analytical geometry to the

consideration of lines of bending.

It may be interesting to those who may hesitate to accept results derived

from the consideration of a polyhedron, when applied to a curved surface, to

inquire whether the same results may not be obtained by some independent

method.

As the following method involves only those operations which are most

familiar to the analyst, it will be sufficient to give the rough outline, which may

be filled up at pleasure.

The proof of the invariability of the specific curvature may be taken from

any of the memoirs above referred to, and its value in terms of the equation of

the surface will be foimd in the memoir of Gauss.

Let the equation to the surface be put under the form

then the value of the specific curvature is

d\ dh d^
dot? dif dx

~dJz'^ dz^

dx dy\

The definition of conjugate systems of curves may be rendered independent

of the reasoning formerly employed by the following modification.
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Let a tangent plane move along any line of the first system, then if the line

of ultimate intersection of this plane with itself be always a tangent to some line

of the second system, the second system is said to be conjugate to the first.

It is easy to show that the first system is also conjugate to the second.

Let the system of curves be projected on the plane of xy, and at the point

(x, y) let a be the angle which a projected curve of the first system makes with

the axis of x, and /8 the angle which the projected curve of the second system

which intersects it at that point makes with the same axis. Then the condition

of the systems being conjugate will be found to be

a and y3 being known as functions of x and y, we may determine the nature

of the curves projected on the plane of xy.

Supposing the surface to touch that plane at the origin, the length and

tangential curvature of the lines on the surface near the point of contact may

be taken the same as those of their projections on the plane, and any change

of form of the surface due to bending will not alter the form of the projected

lines indefinitely near the point of contact. We may therefore consider z as the

only variable altered by bending; but in order to apply our analysis with facility,

we may assume

72

^ = Pg sin' a +PQ- sin'

A

d'z
, J = — PQ sin a cos a — PQ~^ sin y3 cos ^,

^ =PQ cos' a + P^-^ cos' /8.

It will be seen that these values satisfy the condition last given. Near the

origin we have

d*z dh d\
I* n- . , / n\

and q=Q'*.
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Differentiating these values of -y-^ , &c., we shall obtain two values of , ,

and of 1—7—3, which being equated will give two equations of condition.

Now if s' be measured along a curve of the first system, and R be any

function of x and y, then

dE dR dR .

-^j-y = -^j- cos a+ -7- sm a,
as dx ay

, dR _ dR ds'

du' ds du
'

We may also show that -=-^ = -

,

, ,, , da . da d . (ds' . ,\
and that cos a ;i— sm a ;t- = t- log

(
-j—, sm 1

.

cty (j/X cLs \ci/U I

By substituting these values in the equations thus obtained, they are

reduced to the two equations given at the end of (Art. 15). This method of

investigation introduces no difficulty except that of somewhat long equations, and

is therefore satisfactory as supplementary to the geometrical method given at

length.

As an example of the method given in page (2), we may apply it to

the case of the surface whose equation is

(^.) *{rf-j-©'
This surface may be generated by the motion of a straight line whose

equation is of the form

= acosnl— j, 2/ = asinni-f-

t being the variable, by the change of which we pass from one position of the

line to another. This line always passes through the circle

z = 0, ar' + y = a',

and the straight lines z = c, cc=^0,

and z— —c, y= 0,

which may therefore be taken as the directors of the surface.
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Taking two consecutive positions of this line, in which the values of t

are t and t + Bt, we may find by the ordinary methods the equation to the

shortest line between them, its length, and the co-ordinates of the point in which

it intersects the first line.

Calling the length 8^,

ac
8C= ,/^ Bin 2tBt,

Ja' + c

and the co-ordinates of the point of intersection are

x = 2a cos' t, y = 2a sin* t, z= —c cos 2t.

The angle 80 between the consecutive lines is

Ja- + c

The distance So- between consecutive shortest lines is

^ 3a'-F-2c*

and the angle S<^ between these latter lines is

sin 2t8t,

'Ja' + c

Hence if we suppose ^, 6, cr,
(f),

and t to vanish together, we shall have by

integration

(T = ~—,
( 1 — cos 2t),

Ja' + c'

By bending the surface about its generating lines we alter the value of (ft

in any manner without changing 4, 0, or or. For instance, making <^ = 0, all the

generating lines become parallel to the same plane. Let this plane be that of

xy, then ^ is the distance of a generating line from that plane. The projections
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of the generating lines on the plane of xy will, by their ultimate intersections,

form a curve, the length of which is measured by a, and the angle which its

tangent makes with the axis of x hj 0, 6 and o- being connected by the equation

^ I
1 - cos 6

,

which shows the curve to be an epicycloid.

The generating lines of the surface when bent into this form are therefore

tangents to a cylindrical surface on an epicycloidal base, touching that surface

along a curve which is always equally inclined to the plane of the base, the

tangents themselves being drawn parallel to the base.

We may now consider the bending of the surface of revolution

Putting r = Jaf + f, then the equation of the generating line is

r^ + z^ = c^.

This is the well-known hypocycloid of four cusps.

Let s be the length of the curve measured from the cusp in the axis of z,

then,

s = |<jV\

wherefore, r= (|)' c " * 5^.

Let 6 be the angle which the plane of any generating line makes with

that of xz, then s and 6 determine the position of any point on the surface.

The length and breadth of an element of the surface will be Ss and rB$.

Now let the surface be bent in the manner formerly described, so that

becomes 0^, and r, r, when

0^ = 1x0 and r' = -ry

then r' = (f)'c-V"'s'

provided o' = /u,'c.

The equation between r' and s being of the same form as that between
r and ^ shows that the surface when bent is similar to the original surface, its

dimensions being multiphed by fi*.
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This, however, is true only for one half of the surface when bent. The

other half is precisely symmetrical, but belongs to a surface which is not con-

tinuous with the first.

The surface in its original form is divided by the plane of xy into two

parts which meet in that plane, forming a kind of cuspidal edge of a circular

form which limits the possible value of s and r.

After being bent, the surface still consists of the same two parts, but the

edge in which they meet is no longer of the cuspidal form, but has a finite

angle = 2 cos"^ - , and the two sheets of the surface become parts of two different

surfaces which meet but are not continuous.

NOTE.

As an example of the application of the more general theory of " lines of bending," let us

consider the problem which has been already solved by Professor Jellett.

To determine the conditions under which one portion of a surface may he rendered rigid, while

the remainder is flexible.

Suppose the lines of bending to be traced on the surface, and the corresponding poly-

hedron to be formed, as in (9) and (10), then if the angle of one of the four edges which

meet at any solid angle of the polyhedron be altered by bending, those of the other three

must be also altered. These edges terminate in other solid angles, the forms of which will

also be changed, and therefore the efifect of the alteration of one angle of the polyhedron will

be communicated to every other angle within the system of lines of bending which defines

the form of the polyhedron.

If any portion of the surface remains unaltered it must lie beyond the limits of the

system of lines of bending. We must therefore investigate the conditions of such a system

being bounded.

The boundary of any system of lines on a surface is the curve formed by the ultimate inter-

section of those lines, and therefore at any given point coincides in direction with the curve of

the system which passes through that point. In this case there are two systems of lines of

bending, which are necessarily coincident in extent, and must therefore have the same boundary.

At any point of this boundary therefore the directions of the lines of bending of the first

and second systems are coincident.

But, by (7), these two directions must be "conjugate" to each other, that is, must corre-

spond to conjugate diameters of the "Conic of Contact." Now the only case in which con-

VOL. I. 15
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jugate diameters of a conic can coincide, is when the conic is an hyperbola, and both diameters
coincide with one of the asymptotes ; therefore the boundary of the system of lines of bending
must be a curve at every point of which the conic of contact is an hyperbola, one of whose
asymptotes lies in the direction of the curve. The radius of " normal curvature " must there-
fore by (3) be infinite at eveiy point of the curve. This is the geometrical property of
what Professor Jellett calls a " Curve of Flexure," so that we may express the result as
follows :

If one portion of a surface be fixed, while the remainder is bent, the boundary of the fixed
portion is a curve of fiexure.

This theorem includes those given at p. (92), relative to a fixed curve on a surface, for in
a surface whose curvatures are of the same sign, there can be no "curves of flexure," and
in a developable surface, they are the rectilinear sections. Although the cuspidal edge, or
arete de rebroussement, satisfies the analytical condition of a curve of flexure, yet, since its

form determines that of the whole surface, it cannot remain fixed while the form of the surface
is changed.

In concavo-convex surfaces, the curves of flexure must either have tangential curvature or
be straight lines. Now if we put <^=0 in the equations of Art. (17), we find that the
lines of bending of both systems have no tangential curvature at the point where they touch
the curve of flexure. They must therefore lie entirely on the convex side of that curve, and
therefore

If a curve of fiexure be fi^ed, the surface on the concave side of the curve is not flexible.

I have not yet been able to determine whether the surface is inflexible on the convex side
of the curve. It certainly is so in some cases which I have been able to work out, but I
have no general proof.

When a surface has one or more rectilinear sections, the portions of the surface between
them may revolve as rigid bodies round those lines as axes in any manner, but no other motion
is possible. The case in which the rectilinear sections form an infinite series has been discussed
in Sect. (I.).



[From the Cambridge and Dublin Mathematical Journal, Vol. ix.

V. On a particular case of the descent of a heavy body in a resisting

medium.

Every one must have observed that when a slip of paper falls through

the air, its motion, though undecided and wavering at first, sometimes becomes

regular. Its general path is not in the vertical direction, but inclined to it

at aji angle which remains nearly constant, and its fluttering appearance will

be found to be due to a rapid rotation round a horizontal axis. The direction

of deviation from the vertical depends on the direction of rotation.

If the positive directions of an axis be toward the right hand and upwards,

and the positive angular direction opposite to the direction of motion of the

hands of a watch, then, if the rotation is in the positive direction, the hori-

zontal part of the mean motion will be positive.

These efiects are commonly attributed to some accidental peculiarity in the

form of the paper, but a few experiments with a rectangular slip of paper

(about two inches long and one broad), will shew that the direction of rotation

is determined, not by the irregularities of the paper, but by the initial circum-

stances of projection, and that the symmetry of the form of the paper greatly

increases the distinctness of the phenomena. We may therefore assume that

if the form of the body were accurately that of a plane rectangle, the same

effects would be produced.

The following investigation is intended as a general explanation of the true

cause of the phenomenon.

I suppose the resistance of the air caused by the motion of the plane to

be in the direction of the normal and to vary as the square of the velocity

estimated in that direction.

Now though this may be taken as a sufficiently near approximation to the

magnitude of the resisting force on the plane taken as a whole, the pressure

15—2
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on any given element of the surface will vary with its position so that the
resultant force will not generally pass through the centre of gravity.

It is found by experiment that the position of the centre of pressure

depends on the tangential part of the motion, that it lies on that side of the
centre of gravity towards which the tangential motion of the plane is directed,

and that its distance from that point increases as the tangential velocity in-

creases.

I am not aware of any mathematical investigation of this effect. The
explanation may be deduced from experiment.

Place a body similar in shape to the sHp of paper obliquely in a current

of some visible fluid. Call the edge where the fluid first meets the plane the

first edge, and the edge where it leaves the plane, the second edge, then we
may observe that

(1) On the anterior side of the plane the velocity of the fluid increases

as it moves along the surface from the first to the second edge, and therefore

by a known law in hydrodynamics, the pressure must diminish from the first

to the second edge.

(2) The motion of the fluid behind the plane is very unsteady, but may
be observed to consist of a series of eddies diminishing in rapidity as they

pass behind the plane from the first to the second edge, and therefore relieving

the posterior pressure most at the first edge.

Both these causes tend to make the total resistance greatest at the first

edge, and therefore to bring the centre of pressure nearest to that edge.

Hence the moment of the resistance about the centre of gravity will always

tend to turn the plane towards a position perpendicular to the direction of the

current, or, in the case of the slip of paper, to the path of the body itself. It

will be shewn that it is this moment that maintains the rotatory motion of

the falling paper.

When the plane has a motion of rotation, the resistance will be modified

on account of the unequal velocities of difierent parts of the surface. The
magnitude of the whole resistance at any instant will not be sensibly altered

if the velocity of any point due to angular motion be small compared with that

due to the motion of the centre of gravity. But there will be an additional

moment of the resistance round the centre of gravity, which will always act in

the direction opposite to that of rotation, and wOl vary directly as the normal

and angular velocities together.
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The part of the moment due to the obliquity of the motion will remain

nearly the same as before.

We are now prepared to give a general explanation of the motion of the

slip of paper after it has become regular.

Let the angular position of the paper be determined by the angle between

the normal to its surface and the axis of x, and let the angular motion be

such that the normal, at first coinciding with the axis of x, passes towards

that of y.

The motion, speaking roughly, is one of descent, that is, in the negative

direction along the axis of y.

The resolved part of the resistance in the vertical direction will always

act upwards, being greatest when the plane of the paper is horizontal, and

vanishing when it is vertical.

When the motion has become regular, the effect of this force during a

whole revolution will be equal and opposite to that of gravity during the same

time.

Since the resisting force increases while the normal is in its first and third

quadrants, and diminishes when it is in its second and fourth, the maxima of

velocity will occur when the normal is in its first and third quadrants, and

the minima when it is in the second and fourth.

The resolved part of the resistance in the horizontal direction will act in

the positive direction along the axis of x in the first and third quadrants, and

in the negative direction during the second and fourth; but since the resistance

increases with the velocity, the whole effect during the first and third quadrants

will be greater than the whole effect during the second and fourth. Hence

the horizontal part of the resistance will act on the whole in the positive

direction, and will therefore cause the general path of the body to incline in

that direction, that is, toward the right.

That part of the moment of the resistance about the centre of gravity

which depends on the angular velocity will vary in magnitude, but wUl always

act in the negative direction. The other part, which depends on the obliquity

of the plane of the paper to the direction of motion, will be positive in the

first and third quadrants and negative in the second and fourth ; but as its

magnitude increases with the velocity, the positive effect will be greater than

the negative.

When the motion has become regular, the effect of this excess in the
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positive direction will be equal and opposite to the negative effect due to the

angular velocity during a whole revolution.

The motion will then consist of a succession of equal and similar parts

performed in the same manner, each part corresponding to half a revolution of

the paper.

These considerations will serve to explain the lateral motion of the paper,

and the maintenance of the rotatory motion.

Similar reasoning will shew that whatever be the initial motion of the

paper, it cannot remain uniform.

Any accidental oscillations will increase till their amphtude exceeds half a

revolution. The motion will then become one of rotation, and will continually

approximate to that which we have just considered.

It may be also shewn that this motion will be unstable unless it take

place about the longer axis of the rectangle.

If this axis is incHned to the horizon, or if one end of the slip of paper

be different from the other, the path will not be straight, but in the form of

a helix. There will be no other essential difference between this case and that

of the symmetrical arrangement.

Trinity College, April 5, 1853.



[From the Transactions of the Royal Scottish Society of Arts, Vol. iv. Part in]

VI. On the Theory of Colours in relation to Colour-Blindness.

A letter to Dr G. Wilson.

Dear Sir,—As you seemed to think that the results which I have obtained

in the theory of colours might be of service to you, I have endeavoured to

arrange them for you in a more convenient form than that in which I first

obtained them. I must premise, that the first distinct statement of the theory

of colour which I adopt, is to be found in Young's Lectures on Natural Philo-

sophy (p. 345, Kelland's Edition) ; and the most philosophical enquiry into it

which I have seen is that of Helmholtz, which may be found in the Annals of

Philosophy for 1852.

It is well known that a ray of light, from any source, may be divided by

means of a prism into a number of rays of different refranglbility, forming a

series called a spectrum. The intensity of the light is different at different

points of this spectrum ; and the law of intensity for different refrangibilities

differs according to the nature of the incident light. In Sir John F. W.

Herschel's Treatise on Light, diagrams will be found, each of which represents

completely, by means of a curve, the law of the intensity and refranglbility of

a beam of solar light after passing through -various coloured media.

I have mentioned this mode of defining and registering a beam of light,

because it is the perfect expression of what a beam of light is in itself, con-

sidered with respect to all its properties as ascertained by the most refined

instruments. When a beam of light falls on the human eye, certain sensations

are produced, from which the possessor of that organ judges of the colour and

intensity of the light. Now, though every one experiences these sensations, and

though they are the foundation of all the phenomena of sight, yet, on account

of their absolute simplicity, they are incapable of analysis, and can never become

in themselves objects of thought. If we attempt to discover them, we must
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do SO by artificial means ; and our reasonings on tKem must be guided by some

theory.

The most general form in which the existing theory can be stated is this,

—

There are certain sensations, finite in number, but infinitely variable in

degree, which may be excited by the difierent kinds of light. The compound

sensation resulting from all these is the object of consciousness, is a simple act

of vision.

It is easy to see that the numher of these sensations corresponds to what

may be called in mathematical language the number of independent variables, of

which sensible colour is a function.

This will be readily understood by attending to the following cases :

—

1. When objects are illuminated by homogeneous yellow light, the only

thing which can be distinguished by the eye is difference of intensity or

brightness.

If we take a horizontal line, and colour it black at one end, with increasing

degrees of intensity of yellow light towards the other, then every visible object

wiU have a brightness corresponding to some point in this line.

In this case there is nothing to prove the existence of more than one

sensation in vision.

In those photographic pictures in which there is only one tint of which

the different intensities correspond to the different degrees of illumination of the

object, we have another illustration of an optical effect depending on one variable

only.

2. Now, suppose that different kinds of light are emanating from different

sources, but that each of these sources gives out perfectly homogeneous light,

then there will be two things on which the nature of each ray will depend :

—

(1) its intensity or brightness ; (2) its hue, which may be estimated by its

position in the spectrum, and measured by its wave length.

If we take a rectangular plane, and illuminate it with the different kinds

of homogeneous light, the intensity at any point being proportional to its hori-

zontal distance along the plane, and its wave length being proportional to its

height above the foot of the plane, then the plane will display every possible

variety of homogeneous light, and will furnish an instance of an optical effect

depending on two variables.
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3. Now, let us take the case of nature. We find that colours differ not

only in intensity and Ime, but also in tint ; that is, they are more or less pure.

We might arrange the varieties of each colour along a line, which should begin

with the homogeneous colour as seen in the spectrum, and pass through all

gradations of tint, so as to become continually purer, and terminate in white.

We have, therefore, three elements in our sensation of colour, each of which

may vary independently. For distinctness sake I have spoken of intensity, hue,

and tint ; but if any other three independent qualities had been chosen, the

one set might have been expressed in terms of the other, and the results identified.

The theory which I adopt assumes the existence of three elementary sen-

sations, by the combination of which all the actual sensations of colour are

produced. It will be shewn that it is not necessary to specify any given colours

as typical of these sensations. Young has called them red, green, and violet ; but

any other three colours might have been chosen, provided that white resulted

from their combination in proper proportions.

Before going farther I would observe, that the important part of the theoiy

is not that three elements enter into our sensation of colour, but that there are

only three. Optically, there are as many elements in the composition of a ray

of light as there are different kinds of light in its spectrum; and, therefore,

strictly speaking, its nature depends on an infinite number of independent

variables.

I now go on to the geometrical form into which the theory may be thrown.

Let it be granted that the three pure sensations corre-

spond to the colours red, green, and violet, and that we

can estimate the intensity of each of these sensations

numerically.

Let V, r, g be the angular points of a triangle, and

conceive the three sensations as having their positions at

these points. If we find the numerical measure of the

red, green, and violet parts of the sensation of a given

colour, and then place weights proportional to these parts

at r, g, and v, and find the centre of gravity of the three weights by the

ordinary process, that point will be the position of the given colour, and the

numerical measure of its intensity will be the sum of the tliree primitive

sensations.

In this way, every possible colour may have its position and intensity

VOL. I. 16



122 THE THEORY OF COLOURS IN RELATION TO COLOUR-BLINDNESS.

ascertained; and it is easy to see that when two compound colours are com-

bined, their centre of gravity is the position of the new colour.

The idea of this geometrical method of investigating colours is to be found

in Newton's Opticks (Book I., Part 2, Prop. 6), but I am not aware that it has

been ever employed in practice, except in the reduction of the experiments

which I have just made. The accuracy of the method depends entirely on the

truth of the theory of three sensations, and therefore its success is a testimony

in favour of that theory.

Every possible colour must be included within the triangle rgv. White

will be foimd at some point, w, within the triangle. If lines be drawn through

w to any point, the colour at that point will vary in hue according to the

angular position of the line drawn to w, and the purity of the tint will depend

on the length of that line.

Though the homogeneous rays of the prismatic spectrum are absolutely pure

in themselves, yet they do not give rise to the "pure sensations" of which we

are speaking. Every ray of the spectrum gives rise to all three sensations,

though in different proportions ; hence the position of the colours of the spectrum

is not at the boundary of the triangle, but in some curve C R Y G B V
considerably within the triangle. The nature of this curve is not yet determined,

but may form the subject of a future investigation *.

All natural colours must be within this curve, and all ordinary pigments

do in fact lie very much within it. The experiments on the colours of the

spectrum which I have made are not brought to the same degree of accuracy as

those on coloured papers. I therefore proceed at once to describe the mode of

making those experiments which I have found most simple and convenient.

The coloured paper is cut into the form of discs, each with a small hole

in the centre, and divided along a radius, so as to admit ^ ^
of several of them being placed on the same axis, so that C^^ J
part of each is exposed. By slipping one disc over another,

we can expose any given portion of each colour. These >^
—
~^

j:«^« „i J „ ^:^.^.^^ j. j.^^i.^4. ,'4.; ^v ( <=> )discs are placed on a little top or teetotum, consisting of \^ y
a flat disc of tin-plate and a vertical axis of ivory. This

axis passes through the centre of the discs, and the quantity of each colour exposed

is measured by a graduation on the rim of the disc, which is divided into 100 parts.

* [See the author's Memoir in the Philosophical Transactions, 1860, on the Theory o£ Compound

Colours, and on the relations of the Colours of the Spectrum.]
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By spinning the top, each colour is presented to the eye for a time pro-

portional to the angle of the sector exposed, and I have found by independent

experiments, that the colour produced by fast spinning is identical with that

produced by causing the light of the different colours to fall on the retina at

once.

By properly arranging the discs, any given colour may be imitated and

afterwards registered by the graduation on the rim of the top. The principal

use of the top is to obtain colour-equations. These are got by producing, by

two different combinations of colours, the same mixed tint. For this purpose

there is another set of discs, half the diameter of the others, which lie above

them, and by which the second combination of colours is formed.

The two combinations being close together, may be accurately compared, and

when they are made sensibly identical, the proportions of the different colours

in each is registered, and the results equated.

These equations in the case of ordinary vision, are always between four

colours, not including black.

From them, by a very simple rule, the different colours and compounds have

their places assigned on the triangle of colours. The rule for finding the position

is this :—Assume any three points as the positions of your three standard colours,

whatever they are ; then form an equation between the three standard colours,

the given colour and black, by arranging these colours on the inner and outer

circles so as to produce an identity when spun. Bring the given colour to the

left-hand side of the equation, and the three standard colours to the right hand,

leaving out black, then the position of the given colour is the centre of gravity

of three masses, whose weights are as the number of degrees of each of the

standard colours, taken positive or negative, as the case may be.

In this way the triangle of colours may be constructed by scale and compass

from experiments on ordinary vision. I now proceed to state the results of

experiments on Colour-Blind vision.

If we find two combinations of colours which appear identical to a Colour-

Blind person, and mark their positions on the triangle of colours, then the

straight line passing through these points will pass through all points corre-

sponding to other colours, which, to such a person, appear identical-with the first

two.

We may in the same way find other lines passing through the series of

IG—2
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colours wMch appear alike to the Colour-Blind. All these

lines either pass through one point or are parallel, ac-

cording to the standard colours which we have assumed,

and the other arbitrary assumptions we may have made.

Knowing this law of Colour-Blind vision, we may predict

any number of equations which will be true for eyes

having this defect.

The mathematical expression of the difference between

Colour-BUnd and ordinary vision is, that colour to the

former is a function of two independent variables, but to an ordinary eye, of

three ; and that the relation of the two kinds of vision is not arbitrary, but

indicates the absence of a determinate sensation, depending perhaps upon some

undiscovered structure or organic arrangement, which forms one-third of the

apparatus by which we receive sensations of colour.

Suppose the absent structure to be that which is brought most into play

when red light falls on our eyes, then to the Colour-Blind red light will be

visible only so far as it affects the other two sensations, say of blue and

green. It will, therefore, appear to them much less bright than to us, and will

excite a sensation not distinguishable from that of a bluish-green light.

I cannot at present recover the results of all my ^periments ; but I recollect

that the neutral colours for a Colour-Blind person may be produced by com-

bining 6 degrees of ultramarine with 94 of vermiUon, or 60 of emerald-green

with 40 of ultramarine. The first of these, I suppose to represent to our eyes

the kind of red which belongs to the red sensation. It excites the other two

sensations, and is, therefore, visible to the Colour-BHnd, but it appears very

dark to them and of no definite colour. I therefore suspect that one of the

three sensations in perfect vision will be found to correspond to a red of the

same hue, but of much greater purity of tint. Of the nature of the other two,

I can say nothing definite, except that one must correspond to a blue, and the

other to a green, verging to yellow.

I hope that what I have written may help you in any way in your

experiments. I have' put down many things simply to indicate a way of thinking

about colours which belongs to this theory of triple sensation. We are indebted

to Newton for the original design ; to Young for the suggestion of the means

of working it out; to Prof. Forbes'' for a scientific history of its application

*Phil. Mag. 1848.
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to practice; to Helmholtz for a rigorous examination of the facts on which it

rests; and to Prof Graasman (in the Phil. Mag, for 1852), for an admirable
theoretical exposition of the subject. The colours given in Hay's Nomenclature
of Colours are illustrations of a similar theory applied to mixtures of pigments,
but the results are often different from those in which the colours are combined
by the eye alone. I hope soon to have results with pigments compared with
those given by the prismatic spectrum, and then, perhaps, some more definite

results may be obtained. Yours truly,

J. C. MAXWELL.

Edinburgh, 4tli Jan. 1855.



[From the Transactions of the Royal Society of Edinburgh, Vol xxi. Part ii.]

VII. Experiments on Colour, as perceived hy the Eye, with remarks on Colour-

Blindness. Communicated by Dr Gregory.

The object of tbe following communication is to describe a method by

which every variety of visible colour may be exhibited to the eye m such a

form as to admit of accurate comparison ; to shew how experiments so made

may be registered numerically; and to deduce from these numerical results

certain laws of vision.

The different tints are produced by means of a combination of discs of paper,

painted with the pigments commonly used in the arts, and arranged round an

axis, so that a sector of any required angular magnitude of each colour may be

exposed. "When this system of discs is set in rapid rotation, the sectors of

the different colours become indistinguishable, and the whole appears of one uni-

form tint. The resultant tints of two different combinations of colours may be

compared by using a second set of discs of a smaller si^e, and placing these over

the centre of the first set, so as to leave the outer portion of the larger discs

exposed. The resultant tint of the first combination will then appear in a ring

round that of the second, and may be very carefully compared with it.

The form in which the experiment is most manageable is that of the com-

mon top. An axis, of which the lower extremity is conical, carries a circular

plate, which serves as a support for the discs of coloured paper. The circumfer-

ence of this plate is divided into 100 equal parts, for the purpose of ascertainmg

the proportions of the different colours which form the combination. When the

discs have been properly arranged, the upper part of the axis is screwed down,

so as to prevent any alteration in the proportions of the colours.

The instrument used in the first series of experiments (at Cambridge, in

November, 1854) was constructed by myself, with coloured papers procured from
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Mr D. R Hay. The experiments made in the present year were with the

improved top made by Mr J. M. Bryson, Edinburgh, and coloured papers pre-

pared by Mr T. Purdie, with the unmixed pigments used in the arts. A number

of Mr Bryson's tops, with Mr Purdie's coloured papers has been prepared, so as

to afford different observers the means of testing and comparing results inde-

pendently obtained.

The colour used for Mr Purdie's papers were

—

Vermilion
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the operator arranges the colours and spins the top, leaving the eye of the

observer free from the distracting effect of the bright colours of the papers when
at rest.

After placing discs of these three colours on the circular plate of the top,

and smaller discs of white and black above them, the operator must spin the

top, and demand the opinion of the observer respecting the relation of the

outer ring to the inner circle. He will be told that the outer circle is too

red, too blue, or too green, as the case may be, and that the inner one is too

light or too dark, as compared with the outer. The arrangement must then be

changed, so as to render the resultant tint of the outer and inner circles more

nearly alike. Sometimes the observer will see the inner circle tinted with the

complementary colour of the outer one. In this case the operator must interpret

the observation with respect to the outer circle, as the inner circle contains only

black and white.

By a little experience the operator will learn how to put his questions, and

how to interpret their answers. The observer should not look at the coloured

papers, nor be told the proportions of the colours during the experiments.

When these adjustments have been properly made, the resultant tints of the

outer and inner circles ought to be perfectly indistinguishable, when the top

has a sufficient velocity of rotation. The number of divisions occupied by the

different colours must then be read off on the edge of the plate, and registered

in the form of an equation. Thus, in the preceding experiment we have ver-

milion, ultramarine, and emerald green outside, and black and white inside. The
numbers, as given by an experiment on the 6th March 1855, in dayhght without

sun, are

—

•37 V + -27 U + '36 EG = -28 SW+-72 Bk (1).

The method of treating these equations will be given when we come to the

theoretical view of the subject.

In this way we have formed a neutral gray by the combination of the

three standard colours. We may also form neutral grays of different intensities

by the combination of vermilion and ultramarine with the other greens, and thus

obtain the quantities of each necessary to neutralize a given quantity of the

proposed green. By substituting for each standard colour in succession one of the

colours which stand under it, we may obtain equations, each of which contains

two standard colours, and one of the remaining colours.
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Thus, in the case of pale chrome, we have, from the same set of experiments,

•34 PC + -55U + -12 EG = '37 SW + -63Bk (2).

"We may also make experiments in which the resultiag tint is not a neutral

gray, but a decided colour. Thus we may combine ultramarine, pale chrome, and

black, so as to produce a tint identical with that of a compound of vermilion

and emerald-green. Experiments of this sort are more difficult, both from the

inability of the observer to express the difference which he detects in two tints

which have, perhaps, the same hue and intensity, but differ in purity ; and also

from the complementary colours which are produced in the eye after gazing too

long at the colours to be compared.

The best method of arriving at a result in the case before us, is to render

the hue of the red and green combination something like that of the yellow, to

reduce the purity of the yellow by the admixture of blue, and to diminish its

intensity by the addition of black. These operations must be repeated and

adjusted, till the two tints are not merely varieties of the same colour, but

absolutely the same. An experiment made 5th March gives

—

•39 PC-I--21 U + -40 Bk = ^59 V-f41 EG (3).

That these experiments are really evidence relating to the constitution of the

eye, and not mere comparisons of two things which are in themselves identical,

may be shewn by observing these resultant tints through coloured glasses, or by

using gas-light instead of day-light. The tints which before appeared identical

will now be manifestly different, and will require alteration, to reduce them to

equality.

Thus, in the case of carmine, we have by day-light,

•44 C-h-22 JJ + 'U EG= •I? SW-f-^83 Bk,

while by gas-light (Edinburgh)

•47 C-l-^08 U-1-^45 EG = ^25 SW-|-^75 Bk,

which shews that the yellowing effect of the gas-light teUs more on the white

than on the combination of colours. If we examine the two resulting tints

which appeared identical in experiment (3), observing the whirling discs througli

a blue glass, the combination of yellow, blue, and black, appears redder than- the

other, while through a yellow glass, the red and green mixture appears redder.

So also a red glass makes the first side of the equation too dark, and a green

glass makes it too light.

VOL. I. 17
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The apparent identity of the tints in these experiments is therefore not real,

but a consequence of a determinate constitution of the eye, and hence arises

the importance of the results, as indicating the laws of human vision.

The first result which is worthy of notice is, that the equations, as observed

by different persons of ordinary vision, agree in a remarkable manner. If care

be taken to secure the same kind of light in all the experiments, the equations,

as determined by two independent observers, will seldom shew a difference of

more than three divisions in any part of the equation containing the bright

standard colours. As the duller colours are less active in changing the resultant

tint, their true proportions cannot be so well ascertained. The accuracy of vision

of each observer may be tested by repeating the same experiment at different

times, and comparing the equations so found.

Experiments of this kind, made at Cambridge in November 1854, shew that

of ten observers, the best were accurate to within 1^ division, and agreed

within 1 division of the mean of all ; and the worst contradicted themselves to

the extent of 6 degrees, but still were never more than 4 or 5 from the mean
of all the observations.

We are thus led to conclude

—

1st. That the human eye is capable of estimating the likeness of colours

with a precision which in some cases is very great.

2nd. That the judgment thus formed is determined, not by the real identity

of the colours, but by a cause residing in the eye of the observer.

3rd. That the eyes of different observers vary in accuracy, but agree with

each other so nearly as to leave no doubt that the law of colour-vision is

identical for all ordinary eyes.

Investigation of the Law of the Perception of Colour.

Before proceeding to the deduction of the elementary laws of the perception

of colour from the numerical results previously obtained, it will be desirable

to point out some general features of the experiments which indicate the form
which these laws must assume.

Betuming to experiment (1), in which a neutral gray was produced from
red, blue, and green, we may observe, that, while the adjustments were incom-
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plete, the difference of the tints could be detected only by one circle appearing

more red, more green, or more blue than the other, or by being lighter or

darker, that is, having an excess or defect of all the three colours together.

Hence it appears that the nature of a colour may be considered as dependent

on three things, as, for instance, redness, blueness, and greenness. This is con-

firmed by the fact that any tint may be imitated by mixing red, blue, and

green alone, provided that tint does not exceed a certain brilliancy.

Another way of shewing that colour depends on three things is by con-

sidering how two tints, say two lilacs, may differ. In the first place, one may

be lighter or darker than the other, that is, the tints may differ in shade.

Secondly, one may be more blue or more red than the other, that is, they may
differ in hue. Thirdly, one may be more or less decided in its colour ; it may vary

fi*om purity on the one hand, to neutrality on the other. This is sometimes

expressed by saying that they may differ in tint.

Thus, in shade, hue, and tint, wo have another mode of reducing the

elements of colour to three. It will be shewn that these two methods of con-

sidering colour may be deduced one from the other, and are capable of exact

numerical comparison.

On a Geographical Method of Exhibiting the Relations of Colours.

The method which exhibits to the eye most clearly the results of this theory

of the three elements of colour, is that which supposes each colour to be repre-

sented by a point in space, whose distances from three co-ordinate planes are

proportional to the three elements of colour. But as any method by which the

operations are confined to a plane is preferable to one recLuiring space of three

dimensions, we shall only consider for the present that which has been adopted

for convenience, founded on Newton's Circle of colours and Mayer and Young's

Triangle.

Vermilion, ultramarine, and emerald-green, being taken (for convenience) as

standard colours, are conceived to be represented by three points, taken (for con-

venience) at the angles of an equilateral triangle. Any colour compounded of

these three is to be represented by a point found by conceiving masses propor-

tional to the several components of the colour placed at their respective angular

points, and taking the centre of gravity of the three masses. In this way, each

17—2
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colour will indicate by its position the proportions of the elements of which it is

composed. The total intensity of the colour is to be measured by the whole

number of divisions of V, U, and EG, of which it is composed. This may be

indicated by a number or coefficient appended to the name of the colour, by

which the number of divisions it occupies must be multiplied to obtain its mass

in calculating the results of new combinations.

This will be best explained by an example on the diagram (No. 1). We
have, by experiment (l),

•37 Y+-27 U + -36 EG= -28 SW4- 72 Bk.

To find the position of the resultant neutral tint, we must conceive a mass

of -37 at V, of -27 at U, and of '36 at EG, and find the centre of gravity.

This may be done by taking the line UV, and dividing it in the proportion of

•37 to ^27 at the point a, where

aV : aU :: ^27 : '37.

Then, joining a with EG, divide the joining line in W in the proportion of ^36

to ("37 + "27), W will be the position of the neutral tint required, which is not

white, but 0*28 of white, diluted with 0^72 of black, which has hardly any effect

whatever, except in decreasing the amount of the other colour. The total in-

tensity of our white paper will be represented by oi = 3'57; so that, whenever

white enters into an equation, the number of divisions must be multiplied by

the coefficient 3-57 before any true results can be obtained.

We may take, as the next example, the method of representing the relation

of pale chrome to the standard colours on our diagram, by making use of ex-

periment (2), in which pale chrome, ultramarine, and emerald-green, produced a

neutral gray. The resulting equation was

•33PC + -55U + -12EG = -37SW + -63Bk (2).

In order to obtain the total intensity of white, we must multiply the

number of divisions, -37, by the proper coefficient, which is 3*57. The result is

1-32, which therefore measures the total intensity on both sides of the equation.

Subtracting the intensity of •55U + -12EG, or '67 from 1-32, we obtain '65

as the corrected value of -33 PC. It will be convenient to use these corrected

values of the different colours, taking care to distinguish them by small initials

instead of capitals.
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Equation (2) then becomes

•65 pc + -55 U + -12 EG = 1 -32 w.

Hence pc must be situated at a point such that w is the centre of gravity

of •65pc + -55U + '12EG.

To find it, we begin by determining ^ the centre of gravity of -55 U + '12EG,

then, joining /8w, the point we are seeking must lie at a certain distance on

the other side of w from c This distance may be found from the proportion,

•65 : (-55 + -12) :: ^ : w pc,

which determines the position of pc. The proper coefficient, by which the ob-

served vakies of PC must be corrected, is ^, or 1-97.

We have thus determined the position and coefficient of a colour by a single

experiment, in which it was made to produce a neutral tint along with two of

the standard colours. As this may be done with every possible colour, the

method is applicable wherever we can obtain a disc of the proposed colour. In

this way the diagram (No. l) has been laid down from observations made in

daylight, by a good eye of the ordinary type.

It has been observed that experiments, in which the resultant tint is neutral,

are more accurate than those in which the resulting tint has a decided colour,

as in experiment (3), owing to the effects of accidental colours produced in the

eye in the latter case. These experiments, however, may be repeated till a

very good mean result has been obtained.

But since the elements of every colour have been already fixed by our

previous observations and calculations, the agreement of these results with those

calculated from the diagram forms a test of the correctness of our method.

By experiment (No. 3), made at the same time with (l) and (2), we have

•39PC + -2lU + -40Bk = -59V + -4lEG (3).

Now, joining XJ with pc, and V with EG, the only common point is that

at which they cross, namely y.

Measuring the parts of the line V EG, we find them in the proportion of

•58 V and "42 EG = 1*00 7.

Similarly, the line U pc is divided in the proportion

78 pc and •22U=r00y.
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But -78 pc must be divided by 1-97, to reduce it to PC, as was previously

explained. The result of calculation is, therefore,

•39 PC + -22 U + -39 Bk = -58 V + "42 EG,

the black being introduced simply to fill up the circle.

This result differs very little from that of experiment (3), and it must be

recollected that these are single experiments, made independently of theory, and

chosen at random.

Experiments made at Cambridge, with all the combinations of five colours,

shew that theory agrees with calculation always within 0-012 of the whole,

and sometimes within 0*002. By the repetition of these experiments at the

numerous opportunities which present themselves, the accuracy of the results

may be rendered still greater. As it is, I am not aware that the judgments

of the human eye with respect to colour have been supposed capable of so

severe a test.

Further consideration of the Diagram of Colours.

We have seen how the composition of any tint, in terms of our three

standard colours, determines its position on the diagram and its proper coefficient.

In the same way, the result of mixing any other colours, situated at other

points of the diagram, is to be found by taking the centre of gravity of their

reduced masses, as was done in the last calculation (experiment 3).

We have now to turn our attention to the general aspect of the diagram.

The standard colours, V, U, and EG, occupy the angles of an equilateral

triangle, and the rest are arranged in the order in which they participate in

red, blue, and green, the neutral tint being at the point w within the triangle.

If we now draw lines through w to the different colours ranged round it, we

shall find that, if we pass from one line to another in the order in which they

lie from red to green, and through blue back again to red, the order will be

—

Carmine .

Vermilion

.

Red Lead

.

Oi-ange Orpiment

Orange Chrome

Chrome Yellow

Gramboge .

Coefficient.
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It may be easily seen that this arrangement of the colours corresponds to

that of the prismatic spectrum ; the only difference being that the spectrum

is deficient in those fine purples which lie between ultramarine and vermilion,

and which are easily produced by mixture. The experiments necessary for deter-

mining the exact relation of this list to the lines in the spectrum are not yet

completed.

If we examine the colours represented by different points in one of these

lines through w, we shall find the purest and most decided colours at its outer

extremity, and the faint tints approaching to neutrality nearer to w.

If we also study the coefficients attached to each colour, we shall find that

the brighter and more luminous colours have higher numbers for their coefficients

than those which are dark.

In this way, the qualities which we have already distinguished as hue, tint,

and shade, are represented on the diagram by angular position with respect to ir,

distance from w, and coefficient; and the relation between the two methods of

reducing the elements of colour to three becomes a matter of geometry.

Theory of the Perception of Colour.

Opticians have long been divided on this point ; those who trusted to

popular notions and their own impressions adopting some theory of three primary

colours, while those who studied the phenomena of light itself proved that no

such theory could explain the constitution of the spectrum. Newton, who was

the first to demonstrate the actual existence of a series of kinds of light,

countless in number, yet all perfectly distinct, was also the first to propound

a method of calculating the effect of the mixture of various coloured light

;

and this method was substantially the same as that which we have just

verified. It is true, that the directions which he gives for the construction

of his circle of colours are somewhat arbitrary, being probably only intended

as an indication of the general nature of the method, but the method itself

is mathematically reducible to the theory of three elements of the colour-

sensation*.

See Note III. For a confirmation of Newton's analysis of Light, see Helmholtz, Pogg. Ann,
1852; and Phil. Mag. 1852, Part ii.
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Youno", who made the next great step in the establishment of the theory

of light, seems also to have been the first to follow out the necessary conse-

quences of Newton's suggestion on the mixture of colours. He saw that, since

this tripUcity has no foundation in the theory of light, its cause must be looked

for in the constitution of the eye; and, by one of those bold assumptions

which sometimes express the result of speculation better than any cautious

trains of reasoning, he attributed it to the existence of three distinct modes

of sensation in the retina, each of which he supposed to be produced in different

deo-rees by the different rays. These three elementary effects, according to his

view, correspond to the three sensations of red, green, and violet, and would

separately convey to the sensorium the sensation of a red, a green, and a violet

picture ; so that by the superposition of these pictures, the actual variegated

world is represented*.

In order fully to understand Young's theory, the function which he

attributes to each system of nerves must be carefully borne in mind. Each nerve

acts, not, as some have thought, by conveying to the mind the knowledge of the

length of an undulation of light, or of its periodic time, but simply by being

Quore or less affected by the rays which fall on it. The sensation of each

elementary nerve is capable only of increase and diminution, and of no other

change. We must also observe, that the nerves corresponding to the red

sensation are affected chiefly by the red rays, but in some degree also by those

of every other part of the spectrum
;

just as red glass transmits red rays freely,

but also suffers those of other colours to pass in smaller quantity.

This theory of colour may be illustrated by a supposed case taken from

the art of photography. Let it be required to ascertain the colours of a land-

scape, by means of impressions taken on a preparation equally sensitive to rays of

every colour.

Let a plate of red glass be placed before the camera, and an impression

taken. The positive of this will be transparent wherever the red light has been

abundant in the landscape, and opaque where it has been wanting. Let it now

be put in a magic lantern, along with the red glass, and a red picture will be

thrown on the screen.

Let this operation be repeated with a green and a violet glass, and, by

* Young's Lectures, p. 345, Kelland's Edition. See also Helmholtz's statement of Young's Theory,

in his Paper referred to in Note I. ; and Herschel's LigJU, Art. 518.
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means of three magic lanterns, let the three images be superimposed on the

screen. The colour of any point on the screen will then depend on that of the

corresponding point of the landscape; and, by properly adjusting the intensities

of the lights, &c., a complete copy of the landscape, as far as visible colour is

concerned, will be thrown on the screen. The only apparent difference will be,

that the copy will be more subdued, or less pure in tint, than the original.

Here, however, we have the process performed twice—first on the screen, and

then on the retina.

This illustration will shew how the functions which Young attributes to the

three systems of nerves may be imitated by optical apparatus. It is therefore

unnecessary to search for any direct connection between the lengths of the

undulations of the various rays of light and the sensations as felt by us, as

the threefold partition of the properties of light may be effected by physical

means. The remarkable correspondence between the results of experiments on

different individuals would indicate some anatomical contrivance identical in all.

As there is little hope of detecting it by dissection, we may be content at

present with any subsidary evidence which we may possess. Such evidence is

furnished by those individuals who have the defect of vision which was

described by Dalton, and which is a variety of that which Dr G. Wilson has

lately investigated, under the name of Colour-Blindness.

Testimony of the Colour-Blind with respect to Colour.

Dr George Wilson has described a great number of cases of colour-

bhndness, some of which involve a general indistinctness in the appreciation

of colour, while in others, the errors of judgment are plainly more numerous

in those colours which approach to red and green, than among those which

approach to blue and yellow. In these more definite cases of colour-blindness,

the phenomena can be tolerably well accoimted for by the hypothesis of an

insensibility to red light; and this is, to a certain extent, confirmed by the

fact, that red objects appear to these eyes decidedly more obscure than to

ordinary eyes. But by experiments made with the pure spectrum, it appears

that though the red appears much more obscure than other colours, it is not

wholly invisible, and, what is more curious, resembles the green more than

any other colour. The spectrum to them appears faintly luminous in the red;

VOL. L 18
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bright yellow from orange to yellow, bright but not coloured from yellow-

green to blue, and then strongly coloured in the extreme blue and violet,

after which it seems to approach the neutral obscure tint of the red. It is

not easy to see why an insensibihty to red rays should deprive the green

rays, which have no optical connection with them, of their distinctive appearance.

The phenomena seem rather to lead to the conclusion that it is the red

serisation which is wanting, that is, that supposed system of nerves which is

affected in various degrees by all light, but chiefly by red. We have fortunately

the means of testing this hypothesis by numerical results.

Of the subjects of my experiments at Cambridge, four were decided cases

of colour-bHndness. Of these two, namely, Mr E. and Mr S., were not

suflficiently critical in their observations to afford any results consistent within

10 divisions of the colour-top. The remaining two, Mr N. and Mr X., were

as consistent in their observations as any persons of ordinary vision can be,

while the results shewed all the more clearly how completely their sensations

must differ from ours.

The method of experimenting was the same as that adopted with ordinary

eyes, except that in these cases the operator can hardly influence the result

by yielding to his own impressions, as he has no perception whatever of the

similarity of the two tints as seen by the observer. The questions which he

must ask are two, Which circle appears most blue or yellow ? Which appears

lightest and which darkest ? By means of the answers to these questions he

must adjust the resulting tints to equality in these respects as it appears to

the observer, and then ascertain that these tints now present no difference of

colour whatever to his eyes. The equations thus obtained do not require five

colours including black, but four only. For instance, the mean of several obser-

vations gives

—

•19 G+'05 B + -76 Bk=100R (4).

[In these experiments R, B, G, Y, stand for red, blue, green, and yellow

papers prepared by Mr D. R. Hay. I am not certain that they are identical

with his standard colours, but I beUeve so. Their relation to vermihon, ultra-

marine, and emerald-green is given in diagram (1). Their relations to each other

are very accurately given in diagram (2).]

It appears, then, that the dark blue-green of the left side of the equation

is equivalent to the full red of the right side.
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Hence, if we divide the line BG in the proportion 19 to 5 at the point y8,

and join R)8, the tint at ^ will differ from that at R (to the colour-blind)

only in being more brilliant in the proportion of 100 to 24, and all inter-

mediate tints on the line R^ will appear to them of the same hue, but

of intermediate intensities.

Now, if we take a point D, so that RD is to R^ in the proportion of

24 to 100 — 24, or 76, the tint of D, if producible, should be invisible to

the colour-blind. D, therefore, represents the pure sensation which is unknown

to the colour-blind, and the addition of this sensation to any others cannot

alter it in their estimation. It is for them equivalent to black.

Hence, if we draw lines through D in different directions, the colours

belonging to any line ought to differ only in intensity as seen by them, so

that one of them may be reduced to the other by the addition of black

only. If we draw DW and produce it, all colours on the upper side of DW
will be varieties of blue, and those on the under side varieties of yellow, so

that the line DW is a boundary line between their two kinds of colour, blue

and yellow being the names by which they call them.

The accuracy of this theory will be evident from the comparison of the

experiments which I had an opportunity of making on Mr N. and Mr X. with

each other, and with measurements taken from the diagram No. 2, which was

constructed from the observations of ordinary eyes only, the point D alone

being ascertained from a series of observations by Mr N.

Taking the point y, between R and B, it appears, by measurement of the

lines Ry and By, that y corresponds to

•07 B + -93R.

By measurement of Wy and Dy, and correction by means of the coeflScient

of W, and caUing D black in the colour-blind language, y corresponds to

•105 W-f895 Bk.

Therefore

By measurement -93 R+ '07 B = ^105 W + •sgs Bk 1

By observation N. & X. together "94 R-f -06 B = •lO W-f-^90 Bk I (5).

By X. alone -93 R-h-07 B = -10 W + -90 Bk
J

The agreement here is as near as can be expected.

18—2
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By a similar calculation with respect to the point 8, between B and G,

By measurement -43 B + -57 G = -335 W + *665 Bk 1

Observed by N. and X '41 B + '59 G = '34 W+ -66 Bk I (6).

By X. alone -42 B + -58 G = -32 W + -68 Bk
J

We may also observe, that the line GD crosses RY. At the point of inter-

section we have

—

By calculation '87 B + 'IS Y = -34 G + -66 Bk

Observed by N. and X -86 R + -14 Y = -40 G + 'GO Bk

X •84R + '16 Y=-31 G + '69 Bk

X -QOR + 'IO Y = -27 G + 73Bk

.(7).

Here observations are at variance, owing to the decided colours produced

affecting the state of the retina, but the mean agrees well with calculation.

Drawing the line BY, we find that it cuts lines through D drawn to every

colour. Hence all colours appear to the colour-blind as if composed of blue

and yellow. By measurement on the diagram, we find for red

Measured -138 Y+-123 B + 749 Bk = 100 R'

Observed by N..., -15 Y + 'll B-1--74 Bk = 100RJ- (8).

X....-13 Y + 'll B + -76 Bk = 100R

.(9).

For green we have in the same way

—

Measured 705 Y + -295 B = '95 G+ -05 Bkl

Observed by N.... 70 Y + -30 B = -86 G + -14 Bk i ....

X.... 70 Y+-30 B = '83 G+-17BkJ

For white

—

Measured '407 Y + -593 B = '326 W + "674 Bk

Observed by N.... -40 Y+-60 B = -33 W+-67 Bk

X.... -44 Y+-56 B=-33 W+-67 Bk

The accuracy of these results shews that, whether the hypothesis of the

want of one element out of three necessary to perfect vision be actually true

or not, it affords a most trustworthy foundation on which to build a theory

of colour-blindness, as it expresses completely the observed facts of the case.

They also furnish us with a datum for our theory of perfect vision, namely,

the point D, which points out the exact nature of the colour-sensation, which

must be added to the colour-blind eye to render it perfect. I am not aware
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of any method of determining by a legitimate process the nature of the other

two sensations, although Young's reasons for adopting something like green and

violet appear to me worthy of attention.

The only remaining subject to which I would call the attention of the

Society is the effect of coloured glasses on the colour-blind. Although they can-

not distinguish reds and greens from varieties of gray, the transparency of red

and green glasses for those kinds of light is very different. Hence, after finding

a case such as that in equation (4), in which a red and a green appear iden-

tical, on looking through a red glass they see the red clearly and the green

obscurely, while through a green glass the red appears dark and the green light.

By furnishing Mr X. with a red and a green glass, which he could dis-

tinguish only by their shape, I enabled him to make judgments in previously

doubtful cases of colour with perfect certainty. I have since had a pair of

spectacles constructed with one eye-glass red and the other greeiL These Mr X.

intends to use for a length of time, and he hopes to acquire the habit of discri-

minating red from green tints by their different effects on his two eyes. Though

he can never acquire our sensation of red, he may then discern for himself what

things are red, and the mental process may become so familiar to him as to act

unconsciously like a new sense.

In one experiment, after looking at a bright light, with a red glass over one

eye and a green over the other, the two tints in experiment (4) appeared to him

altered, so that the outer circle was lighter according to one eye, and the inner

according to the other. As far as I could ascertain, it appeared as if the eye

which had used the red glass saw the red circle brightest. This result, which

seems at variance with what might be expected, I have had no opportunity of

verifying.

This paper is already longer than was originally intended For further

information I would refer the reader to Newton's Optich, Book i. Part ii., to

Young's Lectures on Natural Philosophy, page 345, to Mr D. R. Hay's works on

Colours, and to Professor Forbes on the "Classification of Colours" (Phil. Mag.,

March, 1849).

The most remarkable paper on the subject is that of M. Helmholtz, in the

Philosophical Magazine for 1852, in which he discusses the different theories of

primary colours, and describes his method of mixing the colours of the spectrum.

An examination of the results of M. Helmholtz with reference to the theory
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of three elements of colour, by Professor Grassmann, is translated in the Phil.

Mag., April, 1854.

References to authors on colour-blindness are given in Dr G. Wilson's papers

on that subject. A valuable Letter of Sir J. F. W. Herschel to Dalton on his

peculiarity of vision, is to be found in the Life of Dalton by Dr Henry.

I had intended to describe some experiments on the propriety of the method

of mixino- colours by rotation, which might serve as an extension of Mr Swan's

experiments on instantaneous impressions on the eye. These, together with the

explanation of some phenomena which seem to be at variance with the theory of

vision here adopted, must be deferred for the present. On some future occasion,

I hope to be able to connect these simple experiments on the colours of pigments

with others in which the pure hues of the spectrum are used. I have already

constructed a model of apparatus for this purpose, and the results obtained are

sufficiently remarkable to encourage perseverance.

Note I.

On different Methods of Exhibiting the Mixtures of Colours.

(1) Mechanical Mixture of Coloured Powders.

By grinding coloured powders together, the differently-coloured particles may

be so intermingled that the eye cannot distinguish the colours of the separate

powders, but receives the impression of a uniform tint, depending on the nature

and proportions of the pigments used. In this way, Newton mixed the powders

of orpiment, purple, bise, and viride ceris, so as to form a gray, which, in sun-

light, resembled white paper in the shade. (Newton's Opticks, Book i. Part n.,

Exp. XV.) This method of mixture, besides being adopted by all painters, has

been employed by optical writers as a means of obtaining numerical results.

The specimens of such mixtures given by B. R. Hay in his works on Colour,

and the experiments of Professor J. D. Forbes on the same subject, shew the

importance of the method as a means of classifying colours. There are two

objections, however, to this method of exhibiting colours to the eye. When

two powders of unequal fineness are mixed, the particles of the finer powder

cover over those of the coarser, so as to produce more than their due effect

in influencing the resultant tint. For instance, a small quantity of lamp-black.
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mixed with a large quantity of chalk, will produce a mixture which is nearly

black. Although the powders generally used are not so different in this respect

as lamp-black and chalk, the results of mixing given weights of any coloured

powders must be greatly modified by the mode in which these powders have

been prepared.

Again, the light which reaches the eye from the surface of the mixed pow-

ders consists partly of light which has fallen on one of the substances mixed

without being modified by the other, and partly of light which, by repeated

reflection or transmission, has been acted on by both substances. The colour of

these rays will not be a mixture of those of the substances, but will be the

result of the absorption due to both substances successively. Thus, a mixture of

yellow and blue produces a neutral tint tending towards red, but the remainder

of white light, after passing through both, is green; and this green is generally

sufficiently powerful to overpower the reddish gray due to the separate colours

of the substances mixed. This curious result has been ably investigated by

Professor Helmholtz of Konigsberg, in his Memoir on the Theory of Compound

Colours, a translation of which may be found in the Annals of Philosophy for

1852, Part 2.

(2) Mixture of differently-coloured Beams of Light by Superposition

on an Opaque Screen.

When we can obtain light of sufficient intensity, this method produces the

most beautiful results. The best series of experiments of this kind are to be

found in Newton's Opticks, Book i. Part ii. The different arrangements for

mixing the rays of the spectrum on a screen, as described by Newton, form

a very complete system of combinations of lenses and prisms, by which almost

every possible modification of coloured light may be produced. The principal

objections to the use of this method are—(1) The difficulty of obtaining a con-

stant supply of uniformly intense light; (2) The uncertainty of the effect of

the position of the screen with respect to the incident beams and the eye of

the observer; (3) The possible change in the colour of the incident light due

to the fluorescence of the substance of the screen. Professor Stokes haa found

that many substances, when illuminated by homogeneous light of one refrangi-

bility, become themselves luminous, so as to emit light of lower refrangibility.

This phenomenon must be carefully attended to when screens are used to exhibit

light.
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(3) Union of Coloured Beams hy a Piism so as to form one Beam.

The mode of viewing the beam of light directly, without first throwing it

on a screen, was not much used by the older experimenters, but it possesses

the advantage of saving much light, and admits of examining the rays before

they have been stopped in any way. In Newton's 11th proposition of the 2nd

Book, an experiment is described, in which a beam is analysed by a prism,

concentrated by a lens, and recombined by another prism, so as to form a beam

of white light similar to the incident beam. By stopping the coloured rays at

the lens, any proposed combination may be made to pass into the emergent

beam, where it may be received directly by the eye, or on a screen, at pleasure.

The experiments of Helmholtz on the colours of the spectrum were made

with the ordinary apparatus for directly viewing the pure spectrum, two oblique

slits crossing one another being employed to admit the light instead of one

vertical sht. Two pure spectra were then seen crossing each other, and so

exhibiting at once a large number of combinations. The proportions of these

combinations were altered by varying the inclination of the slits to the plane of

lefraction, and in this way a number of very remarkable results were obtained,

—

for which see his Memoir, before referred to.

In experiments of the same kind made by myself in August 1852 (inde-

pendently of M. Helmholtz), I used a combination of three moveable vertical

slits to admit the light, instead of two cross shts, and observed the compound

ray through a slit made in a screen on which the pure spectrum is formed.

In this way a considerable field of view was filled with the mixed light, and

might be compared with another part of the field illuminated by light proceeding

from a second system of slits, placed below the first set. The general character

of the results agreed with those of M. Helmholtz. The chief difficulties seemed

to arise from the defects of the optical apparatus of my own eye, which ren-

dered apparent the compound nature of the light, by analysing it as a prism

or an ordinary lens would do, whenever the lights mixed differed much in

refrangibility.
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(4) Union of two beams by means of a transparent surface, which reflects

the first and transmits the second.

The simplest experiment of this kind is described by M. Helmholtz. He

places two coloured wafers on a table, and then, taking a piece of transparent

glass, he places it between them, so that the reflected image of one apparently

coincides with the other as seen through the glaas. The colours are thus mixed,

and, by varying the angle of reflection, the relative intensities of the reflected

and transmitted beams may be varied at pleasure.

In an instrument constructed by myself for photometrical purposes two re-

flecting plates were used. They were placed in a square tube, so as to polarize

the incident light, which entered through holes in the sides of the tubes, and

was reflected in the direction of the axis. In this way two beams oppositely

polarized were mixed, either of which could be coloured in any way by coloured

glasses placed over the holes in the tube. By means of a Nicol's prism placed

at the end of the tube, the relative intensities of the two colours as they

entered the eye could be altered at pleasure.

(5) Union of two coloured beams by means of a doubly-refracting Prism.

I am not aware that this method has been tried, although the opposite

polarization of the emergent rays is favourable to the variation of the experiment.

(6) Successive presentation of the different Colours to the Retina.

It has long been known, that light does not produce its full effect on the

eye at once, and that the effect, when produced, remains visible for some time

after the light has ceased to act. In the case of the rotating disc, the various

colours become indistinguishable, and the disc appears of a imiform tint, which

is in some sense the resultant of the colours so blended. This method of com-

bining colours has been used since the time of Newton, to exhibit the results

of theory. The experiments of Professor J. D. Forbes, which I witnessed in

1849, first encouraged me to think that the laws of this kind of mixture might

be discovered by special experiments. After repeating the well-known experiment

in which a series of colours representing those of the spectrum are combined

VOL. I.
^^
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to form gray, Professor Forbes endeavoured to form a neutral tint, by the

combination of three colours only. For this purpose, he combined the three

so-called primary colours, red, blue, and yellow, but the resulting tint could

not be rendered neutral by any combination of these colours ; and the reason

was found to be, that blue and yellow do not make green, but a pinkish tint,

when neither prevails in the combination. It was plain, that no addition of

red to this, could produce a neutral tint.

This result of mixing blue and yellow was, I beUeve, not previously known.

It directly contradicted the received theory of colours, and seemed to be at

variance with the fact, that the same blue and yellow paint, when ground

together, do make green. Several experiments were proposed by Professor Forbes,

in order to eliminate the effect of motion, but he was not then able to under-

take them. One of these consisted in viewing alternate stripes of blue and

yellow, with a telescope out of focus. I have tried this, and find the resultant

tint pink as before*. I also found that the beams of light coloured by trans-

mission through blue and yellow glasses appeared pink, when mixed on a screen,

while a beam of light, after passing through both glasses, appeared green. By

the help of the theory of absorption, given by Herschelf, I made out the

complete explanation of this phenomenon. Those of pigments were, I think, first

explained by Helmholtz in the manner above referred to J.

It may still be asked, whether the effect of successive presentation to the

eye is identical with that of simultaneous presentation, for if there is any action

of the one kind of light on the other, it can take place only in the case of

vsimultaneous presentation. An experiment tending to settle this point is recorded

by Newton (Book i. Part ii., Exp. 10). He used a comb with large teeth to

intercept various rays of the spectrum. When it was moved slowly, the various

colours could be perceived, but when the speed was increased the result was

perfect whiteness. For another form of this experiment, see Newton's Sixth

Letter to Oldenburg (Horsley's Edition, Vol. iv., page 335).

In order more fully to satisfy myself on this subject, I took a disc in

which were cut a number of sUts, so as to divide it into spokes. In a plane,

net-rly passing through the axis of this disc, I placed a blue glass, so that one

* See however Encyc. Metropolitana, Art. "Light," section 502. t lb. sect. 516.

X I have lately seen a passage in Moigno's Cosmos, stating that M. Plateau, in 1819, had obtained

jjray by whirling together gamboge and Prussian blue. Correspondance Math, et Phys. de M. Quet«let,

Vol. v., p. 221.
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half of the disc might be seen by transmitted light—blue, and the other by

reflected light—white. In the course of the reflected light I placed a yellow

glass, and in this way I had two nearly coincident images of the slits, one

yellow and one blue. By turning the disc slowly, I observed that in some

parts the yellow slits and the blue slits appeared to pass over the field alter-

nately, while in others they appeared superimposed, so as to produce alternately

their mixture, which was pale pink, and complete darkness. As long as the

disc moved slowly I could perceive this, but when the speed became great, the

whole field appeared uniformly coloured pink, so that those parts in which the

colours were seen successively were indistinguishable from those in which they

were presented together to the eye.

Another form in which the experiment may be tried requires only the

colour-top above described. The disc should be covered with alternate sectors

of any two colours, say red and green, disposed alternately in four quadrants.

By placing a piece of glass above the top, in the plane of the axis, we make

the image of one half seen by reflection coincide with that of the other seen

by transmission. It wiU then be seen that, in the diameters of the top which

are parallel and perpendicular to the plane of reflection, the transmitted green

coincides with the reflected green, and the transmitted red with the reflected

red, so that the result is always either pure red or pure green. But in the

diameters intermediate to these, the transmitted red coincides with the reflected

green, and vice versa, so that the pure colours are never seen, but only their

mixtures. As long as the top is spun slowly, these parts of the disc will

appear more steady in colour than those in which the greatest alternations

take place ; but when the speed is sufficiently increased, the disc appears per-

fectly uniform in colour. From these experiments it appears, that the apparent

mixture of colours is not due to a mechanical superposition of vibrations, or

to any mutual action of the mixed rays, but to some cause residing in the

constitution of the apparatus of vision.

(7) Presentation of the Colours to he mixed one to each Eye.

This method is said not to succeed with some people ; but I have always

found that the mixture of colours was perfect, although it was difficult to con-

ceive the objects seen by the two eyes as identical. In using the spectacles,

19—2
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of which one eye is green and the other red, I have found, when looking at

an arrangement of green and red papers, that some looked metallic and others

transparent. This arises from the very different relations of brightness of the

two colours as seen by each eye through the spectacles, which suggests the false

conclusion, that these differences are the result of reflection from a polished

surface, or of light transmitted through a clear one.

Note IT.

Results of Experiments with Mr Hay's Papers at Cambridge, November, 1854.

The mean of ten observations made by six observers gave

•449 E+-299 G + -252 B=-224 W+776 Bk (l).

696 R+-304 G = '181 B + -327 Y + '492 Bk (2).

These two equations served to determine the positions of white and yellow

in diagram No. 2. The coeflScient of W is 4*447, and that of yellow 2'506.

From these data we may deduce three other equations, either by calcu-

lation, or by measurement on the diagram (No. 2).

Eliminating green from the equations, we find

•565 B + -435 Y = -307 E. + -304 W + -389 Bk (3).

The mean of three observations by three different observers gives

•573 B-f477 Y = ^313 E + ^297 W + -390Bk.

Errors of calculation - '008 B + ^008 Y - '006 K + ^007 W - •OOl Bk.

The point on the diagram to which this equation corresponds is the intersec-

tion of the lines BY and RW, and the resultant tint is a pinkish-gray.

Eliminating red from the equations, we obtain

Calculation "533 B-fl50 G-f317 Y = ^337 W-f -663 Bk"

By 10 observations -537 B-l- '146 G-h ^317 Y= -337 W-f '663 Bk (4).

Errors -'004 -f- -004 — — —
Eliminating blue •660 R-f340 G = -218 Y + -108 W-f '682 Bkl

By 5 observations ^672 R-f '328 G = "224 Y+ '094 W-f672 Bk i (5).

Errors -'012 -f012 -•006 -f014 -f008 I
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Note III.

On the Tlicory of Compound Colours.

Newton's theorem on the mixture of colours is to be found in his Opticks,

Book I., Part ii., Prop. vi.

In a mixtiu'e of primary colours^ the quantity and quality of each being

gicen, to know the colour of the compound.

He divides the circumference of a circle into parts proportional to the seven

musical intervals, in accordance with his opinion of the divisions of the spectrum.

He then conceives the colours of the spectrum arranged round the circle, and at

the centre of gravity of each of the seven arcs he places a little circle, the

area of which represents the number of rays of the corresponding colour which

enter into the given mixture. He takes the centre of gravity of all these circles

to represent the colour formed by the mixture. The hue is determined by

drawing a line through the centre of the circle and this point to the circum-

ference. The position of this line points out the colour of the spectrum which

the mixture most resembles, and the distance of the resultant tint from the

centre determines the fulness of its colour.

Newton, by this construction (for which he gives no reasons), plainly shews

that he considered it possible to find a place within his circle for every possible

colour, and that the entire nature of any compound colour may be known from

its place in the circle. It will be seen that the same colour may be compounded

from the colours of the spectrum in an infinite variety of ways. The apparent

identity of all these mixtures, which are optically different, as may be shewn by

the prism, implies some law of vision not explicitly stated by Newton. This

law, if Newton's method be true, must be that which I have endeavoured to

establish, namely, the threefold nature of sensible colour.

With respect to Newton's construction, we now know that the proportions

of the colours of the spectrum vary with the nature of the refracting medium.

The only absolute index of the kind of light is the time of its vibration. The

length of its vibration depends on the medium in which it is ; and if any pro-

portions are to be sought among the wave-lengths of the colours, they must

be determined for those tissues of the eye in which their physical effects are
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supposed to terminate. It may be remarked, *that the apparent colour of the

spectrum changes most rapidly at three points, which lie respectively in the

yellow, between blue and green, and between violet and blue. The wave-lengths

of the corresponding rays in 'water are in the proportions of three geometric

means between 1 and 2 very nearly. This result, however, is not to be con-

sidered established, unless confirmed by better observations than mine.

The only safe method of completing Newton's construction is by an exami-

nation of the colours of the spectrum and their mixtures, and subsequent

calculation by the method used in the experiments with coloured papers. In

this way I hope to determine the relative positions in the colour-diagram of

every ray of the spectrum, and its relative intensity in the solar light. The

spectrum will then form a curve not necessarily circular or even re-entrant, and

its peculiarities so ascertained may form the foundation of a more complete

theory of the colour-sensation.

On the relation of the pure rays of the Spectrum to the three assumed Elementary

Sensations.

If we place the three elementary colour-sensations (which we may call, after

Young, red, green, and violet) at the angles of a triangle, all colours which

the eye can possibly perceive (whether by the action of light, or by pressure,

disease, or imagination) must be somewhere within this triangle, those which lie

farthest from the centre being the fullest and purest colours. Hence the colours

which lie at the middle of the sides are the purest of their kind which the

eye can see, although not so pure as the elementary sensations.

It is natural to suppose that the pure red, green, and violet rays of the

spectrum produce the sensations which bear their names in the highest purity.

But from this supposition it would follow that the yellow, composed of the red

and green of the spectrum, would be the most intense yellow possible, while

it is the result of experiment, that the yellow of the spectrum itself is much

more full in colour. Hence the sensations produced by the pure red and green

rays of the spectrum are not the pure sensations of our theory. Newton has

remarked, that no two colours of the spectrum produce, when mixed, a colour

equal in fulness to the intermediate colour. The colours of the spectrum are

all more intense than any compound ones. Purple is the only colour which
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must be produced by combination. The experiments of Helmholtz lead to the

same conclusion ; and hence it would appear that we can find no part of the

spectrum which produces a pure sensation.

An additional, though less satisfactory evidence of this, is supplied by the

observation of the colours of the spectrum when excessively bright. They then

appear to lose their peculiar colour, and to merge into pure whiteness. This

is probably due to the want of capacity of the organ to take in so strong an

impression ; one sensation becomes first saturated, and the other two speedily

follow it, the final efiect being simple brightness.

From these facte I would conclude, that every ray of the spectrum is capable

of producing all three pure sensations, though in different degrees. The curve,

therefore, which we have supposed to represent the spectrum will be quite within

the triangle of colour. All natural or artificial colours, being compounded of

the colours of the spectrum, must lie within this curve, and, therefore, the colours

corresponding to those parts of the triangle beyond this curve must be for ever

unknown to us. The determination of the exact nature of the pure sensations,

or of their relation to ordinary colours, is therefore impossible, unless we can

prevent them from interfering with each other as they do. It may be possible

to experience sensations more pure than those directly produced by the spec-

trum, by first exhausting the sensibility to one colour by protracted gazing, and

then suddenly turning to its opposite. But if, as I suspect, colour-blindness be

due to the absence of one of these sensations, then the point D in diagram (2),

which indicates their absent sensation, indicates also our pure sensation, which

we may call red, but which we can never experience, because all kinds of

light excite the other sensations.

Newton has stated one objection to his theory, as follows:

—

"Also, if only

two of the pnmanj colours, which in tJw circle are opposite to one another, be

mixed in an equal proportion, the point Z" (the resultant tint) "shall fall upon

the centre " (neutral tint) ;
" and yet the colour compounded of these two shcdl

not he p>erfectly white, hut some faint anonymous colour. For I could never yet, by

mixing only two primary colours, produce a perfect ivhite" This is confirmed by

the experiments of Helmholtz ; who, however, has succeeded better with some

pairs of colours than with others.

In. my experiments on the spectrum, I came to the same result ; but It

appeared to me that the very peculiar appearance of the neutral tints produced



152 EXPERIMENTS ON COLOUR, AS PERCEIVED BY THE EYE.

was owing to some opticjal effect taking place in the transparent part of the

eye on the mixture of two rays of very different refrangibility. Most eyes are

by no means achromatic, so that the images of objects illuminated with mixed

light of this kind appear divided into two different colours; and even when

there is no distinct object, the mixtures become in some degree analysed, so as

to present a very strange, and certainly "anonymous" appearance.

Additional Note on the more recent experiments of M. Helmholtz*.

In his former memoir on the Theory of Compound Colours f, M. Helmholtz

arrived at the conclusion that only one pair of homogeneous colours, orange-

yellow and indigo-blue, were strictly complementary. This result was shewn by

Professor Grassmann| to be at variance with Newton's theory of compound

colours ; and although the reasoning was founded on intuitive rather than

experimental truths, it pointed out the tests by which Newton's theory must

be verified or overthrown. In applying these tests, M. Helmholtz made use of

an apparatus similar to that described by M. Foucault§, by which a screen of

white paper is illuminated by the mixed light. The field of mixed colour is

much larger than in M. Helmholtz's former experiments, and the facility of

forming combinations is much increased. In this memoir the mathematical theory

of Newton's circle, and of the curve formed by the spectrum, with its possible

transformations, is completely stated, and the form of this curve is in some

degree indicated, as far as the determination of the colours which he on oppo-

site sides of white, and of those which He opposite the part of the curve which

is wanting. The colours between red and yellow-green are complementary to

colours between blue-green and violet, and those between yellow-green and blue-

green have no homogeneous complementaries, but must be neutrahzed by various

hues of purple, i.e., mixtures of red and violet. The names of the complementary

colours, with their wave-lengths in air, as deduced from Fraunhofer's measure-

ments, are given in the following table :

—

• PoggendorflF's Annalen, BA xciv. (I am indebted for the perusal of this Memoir to Professor

Stokes.)

+ lb. Bd. Lxxxvii. Annals of Philosophy, 1852, Part ii.

t Ih. Bd. Lxxxix. Ann. Phil., 1854, April.

§ lb. Bd. LXixvm. Moigno, Cosmos, 1853, Tom. ii,, p. 232.
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No. 2. represents the relations of Mr Hay's red, blue, green, white, and yellow papers, as deter-

mined by a large number of experiments at Cambridge.—(See Note II.). The use of the

point D, in calculating the results of colour-blindness, is explained in the Paper.

Fig, 3. represents a disc of the larger size, with its slit.

Fig. 4. shows the mode of combining two discs of the smaller size.

Fi«^. 5. shows the combination of discs, as placed on the top, in the first experiment described

in the Paper.

Fig. 6. represents the method of spinning the top, when speed is required.

The last four figures are half the actual size.

Colour-tops of the kind used in these experiments, with paper discs of the colours whose relations

are represented in No. 1, are to be had of Mr J. M. Bryson, Optician, Edinburgh.
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[From the Transactions of the Cambridge Philosophical Society, VoL x. Part i.]

VIII. On Faraday's Lines of Force.

[Read Dec. 10, 1855, and Feb. 11, 1856.]

The present state of electrical science seems peculiarl^^ unfavourable to specu-

lation. The laws of the distribution of electricity on the surface of conductors

have been analytically deduced from experiment; some parts of the mathematical

theory of magnetism are established, while in other parts the experimental data

are wanting ; the theory of the conduction of galvanism and that of the mutual

attraction of conductors have been reduced to mathematical formulae, but have

not fallen into relation with the other parts of the science. No electrical theory

can now be put forth, unless it shews the connexion not only between electricity

at rest and current electricity, but between the attractions and inductive effects

of electricity in both states. Such a theory must accurately satisfy those laws,

the mathematical form of which is known, and must afford the means of calcu-

lating the effects in the limiting cases where the known formulae are inapplicable.

In order therefore to appreciate the requirements of the science, the student

must make himself familiar with a considerable body of most intricate mathe-

matics, the merfi retention of which in the memory materially interferes with

further progress. The first process therefore in the effectual study of the science^,

must be one of simplification and reduction of the results of previous investiga-

tion to a form in which the mind can grasp them. The results of this simplifi-

cation may take the form of a purely mathematical formula or of a physical

hypothesis. In the first case we entirely lose sight of the phenomena to be

explained ; and though we may trace out the consequences of given laws, we

can never obtain more extended views of the connexions of the subject^ If,

on the other luiml, we adopt a physical hypothesis, we see the phenomena only

throucrh a medium, and are liable to that blindness to facts and rashness m
20—2
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assumption wKich a partial explanation encourages. "We must therefore discover

some method of investigation which allows the mind at every step to lay hold

of a clear physical conception, without being committed to any theory founded

on the physical science from which that conception is borrowed, so that it is

neither drawn aside from the subject in pursuit of analytical subtleties, nor carried

beyond the truth by a favourite hypothesis.

In order to obtain physical ideas without adopting a physical theory we must

make ourselves familiar with the existence of physical analogies. By a physical

analogy I mean that partial similarity between the laws of one science and those

of another which makes each of them illustrate the other. Thus all the mathe-

matical sciences are founded on relations between physical laws and laws of

numbers, so that the aim of exact science is to reduce the problems of nature

to the determination of quantities by operations with numbers. Passing from

the most universal of all analogies to a very partial one, we find the same

resemblance in mathematical form between two different phenomena giving rise

to a physical theory of light.

The changes of direction which light undergoes in passing from one medium

to another, are identical with the deviations of the path of a particle in moving

through a narrow space in which intense forces act. This analogy, which extends

only to the direction, and not to the velocity of motion, was long believed to

he the true explanation of the refraction of Ught ; and we still find it useful

in the solution of certain problems, in which we employ it without danger, as

an artificial method. The other analogy, between light and the vibrations of an

elastic medium, extends much farther, but, though its importance and fruitfulness

cannot be over-estimated, we must recollect that it is founded only on a resem-

blance in form between the laws of light and those of vibrations. By stripping

it of its physical dress and reducing it to a theory of " transverse alternations,"

we might obtain a system of truth strictly founded on observation, but probably

deficient both in the vividness of its conceptions and the fertility of its method.

I have said thus much on the disputed questions of Optics, as a preparation

for the discussion of the almost universally admitted theory of attraction at a

distance.

We have all acquired the mathematical conception of these attractions. We
can reason about them and determine their appropriate forms or formulae. These

formulae have a distinct mathematical significance, and their results are found

to be in accordance with natural phenomena. There is no formula in applied
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mathematics more consistent with nature than the formula of attractions, and no

theory better estabUshed in the minds of men than that of the action of bodies

on one another at a distance. The laws of the conduction of heat in uniform

media appear at first sight among the most different in their physical relations

from those relating to attractions. The quantities which enter into them are

teviperature, flow of heat, conductivity. The word force is foreign to the subject.

Yet we find that the mathematical laws of the uniform motion of heat in

homogeneous media are identical in form with those of attractions varying in-

versely as the square of the distance. We have only to substitute source of

heat for centre of attrax^tion, flow of heat for accelerating effect of attraction at

any point, and temperature for potential, and the solution of a problem in

attractions is transformed into that of a problem in heat.

This analogy between the formulae of heat and attraction was, I believe,

first pointed out by Professor William Thomson in the Camh. Math. Journal,

Vol. III.

Now the conduction of heat is supposed to proceed by an action between

contiguous parts of a medium, while the force of attraction is a relation be-

tween distant bodies, and yet, if we knew nothing more than is expressed in

the mathematical formulae, there would be nothing to distinguish between the

one set of phenomena and the other.

It is true, that if we introduce other considerations and observe additional

facts, the two subjects will assume very difierent aspects, but the mathematical

resemblance of some of their laws will remain, and may still be made useful

in exciting appropriate mathematical ideas.

It is by the use of analogies of this kind that I have attempted to bring

before the mind, in a convenient and manageable form, those mathematical ideas

which are necessary to the study of the phenomena of electricity. The methods

are generally those suggested by the processes of reasoning which are found in

the researches of Faraday"*', and which, though they have been interpreted

mathematically by Prof. Thomson and others, are very generally supposed to be

of an indefinite and unmathematical character, when compared with those em-

ployed by the professed mathematicians. By the method which I adopt, I hope

to render it evident that I am not attempting to estabhsh any physical theory

of a science in which I have hardly made a single experiment, and that the

limit of my design is to shew how, by a strict application of the ideas and

* See especially Series xxxviii. of the Experimental Researcltes, and Phil. Mag. 1852.
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methods of Faraday, the connexion of the very different orders of phenomena
which he has discovered may be clearly placed before the mathematical mind.

I shall therefore avoid as much as I can the introduction of anything which

does not serve as a direct illustration of Faraday's methods, or of the mathe-

matical deductions which may be made from them. In treating the simpler

parts of the subject I shall use Faraday's mathematical methods as well as

his ideas. When the complexity of the subject requires it, I shall use analytical

notation, still confining myself to the development of ideas originated by the

same philosopher.

I have in the first place to explain and illustrate the idea of "lines of

force."

When a body is electrified in any manner, a small body charged with posi-

tive electricity, and placed in any given position, will experience a force urging

it in a certain direction. If the small body be now negatively electrified, it will

be urged by an equal force in a direction exactly opposite.

The same relations hold between a magnetic body and the north or south

poles of a small magnet. If the north pole is urged in one direction, the south

pole is urged in the opposite direction.

In this way we might find a line passing through any point of space, such

that it represents the direction of the force acting on a positively electrified

particle, or on an elementary north pole, and the reverse direction of the force

on a negatively electrified particle or an elementary south pole. Since at every

point of space such a direction may be found, if we commence at any point

and draw a line so that, as we go along it, its direction at any point shall

always coincide with that of the resultant force at that point, this curve wiU
indicate the direction of that force for every point through which it passes, and
might be called on that account a line of force. We might in the same way
draw other lines of force, till we had filled all space with curves indicating by
their direction that of the force at any assigned point.

We should thus obtain a geometrical model of the physical phenomena,
which would tell us the direction of the force, but we should stiU require some
method of indicating the intensity of the force at any point. If we consider

these curves not as mere lines, but as fine tubes of variable section carrying

an incompressible fluid, then, since the velocity of the fluid is inversely as the

section of the tube, we may make the velocity vary according to any given law,

by regulating the section of the tube, and in this way we might represent the
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intensity of the force as well as its direction by the motion of the fluid in

these tubes. This method of representing the intensity of a force by the velocity

of an imaginary fluid in a tube is applicable to any conceivable system of forces,

but it is capable of great simplification in the case in which the forces are such

as can be explained by the hypothesis of attractions varying inversely as the

square of the distance, such as those observed in electrical and magnetic pheno-

mena. In the case of a perfectly arbitrary system of forces, there will generally

be interstices between the tubes ; but in the case of electric and magnetic forces

it is possible to arrange the tubes so as to leave no interstices. The tubes will

then be mere surfaces, directing the motion of a fluid filling up the whole space.

It has been usual to commence the investigation of the laws of these forces by

at once assuming that the phenomena are due to attractive or repulsive forces

acting between certain points. We may however obtain a different view of the

subject, and one more suited to our more difficult inquiries, by adopting for the

definition of the forces of which we treat, that they may be represented in

magnitude and direction by the uniform motion of an incompressible fluid.

I propose, then, first to describe a method by which the motion of such a

fluid can be clearly conceived; secondly to trace the consequences of assuming

certain conditions of motion, and to point out the application of the method to

some of the less complicated phenomena of electricity, magnetism, and galvanism

;

and lastly to shew how by an extension of these methods, and the introduction

of another idea due to Faraday, the laws of the attractions and inductive actions

of magnets and currents may be clearly conceived, without making any assump-

tions as to the physical nature of electricity, or adding anything to that which

has been already proved by experiment.

By referring everything to the purely geometrical idea of the motion of an

imaginary fluid, I hope to attain generahty and precision, and to avoid the

dangers arising from a premature theory professing to explain the cause of the

phenomena. If the results of mere speculation which I have collected are found

to be of any use to experimental philosophers, in arranging and interpreting

their results, they will have served their purpose, and a mature theory, in which

physical facts will be physically explained, will be formed by those who by

interrogating Nature herself can obtain the only true solution of the questions

which the mathematical theory suggests.
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I. Theoi-y of the Motion of an incompressible Fluid.

(1) The substance here treated of must not be assumed to possess any of

the properties of ordinary fluids except those of freedom of motion and resistance

to compression. It is not even a hypothetical fluid which is introduced to

explain actual phenomena. It is merely a collection of imaginary properties

which may be employed for establishing certain theorems in pure mathematics in

a way more intelligible to many minds and more applicable to physical problems

than that in which algebraic symbols alone are used. The use of the word

"Fluid" will not lead us into error, if we remember that it denotes a purely

imaginary substance with the following property :

The poHion of fluid which at any iTistant occupied a given volume, will at

any succeeding instant occupy an equal volume.

This law expresses the incompressibility of the fluid, and furnishes us with

a convenient measure of its quantity, namely its volume. The unit of quantity

of the fluid will therefore be the unit of volume.

(2) The direction of motion of the fluid will in general be dlflerent at

different points of the space which it occupies, but since the direction is deter-

minate for every such point, we may conceive a line to begin at any point and

to be continued so that every element of the line indicates by its direction the

direction of motion at that point of space. Lines drawn in such a manner that

their direction always indicates the direction of fluid motion are called lines of

fluid motion.

If the motion of the fluid be what is called steady motion, that is, if the

direction and velocity of the motion at any fixed point be independent of the

time, these curves will represent the paths of individual particles of the fluid,

but if the motion be variable this will not generally be the case. The cases

of motion which will come under our notice will be those of steady motion.

(3) If upon any surface which cuts the lines of fluid motion we draw a

closed curve, and if from every point of this curve we draw a line of motion,

these lines of motion will generate a tubular surface which we may call a tube

of fluid motion. Since this surface is generated by lines in the direction of fluid
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motion no part of the fluid can flow across it, so that this imaginary surface

is as impermeable to the fluid as a real tube.

(4) The quantity of fluid which in unit of time crosses any fixed section

of the tube is the same at whatever part of the tube the section be taken.

For the fluid is incompressible, and no part runs through the sides of the tube,

therefore the quantity which escapes from the second section is equal to that

which enters through the first.

If the tube be such that unit of volume passes through any section in

unit of time it is called a unit tube of fluid motion.

(5) In what follows, various units will be referred to, and a finite number

of lines or surfaces will be drawn, representing in terms of those units the

motion of the fluid. Now in order to define the motion in every part of the

fluid, an infinite number of lines would have to be drawn at indefinitely small

intervals ; but since the description of such a system of lines would involve

continual reference to the theory of limits, it has been thought better to suppose

the lines drawn at intervals depending on the assumed unit, and afterwards to

assume the unit as small as we please by taking a small submultiple of the

standard unit.

(6) To define the motion of the whole fluid by means of a system of unit

tubes.

Take any fixed surface which cuts all the lines of fluid motion, and draw

upon it any system of curves not intersecting one another. On the same surface

draw a second system of curves intersecting the first system, and so arranged

that the quantity of fluid which crosses the surface within each of the quadri-

laterals formed by the intersection of the two systems of curves shall be unity

in unit of time. From every point in a curve of the first system let a line

of fluid motion be drawn. These lines will form a surface through which no

fluid passes. Similar impermeable surfaces may be drawn for all the curves of

the first system. The curves of the second system will give rise to a second

system of impermeable surfaces, which, by their intersection with the first system,

will form quadrilateral tubes, which will be tubes of fluid motion. Since each

quadrilateral of the cutting surface transmits unity of fluid in unity of time,

every tube in the system will transmit unity of fluid through any of its sections

in unit of time. The motion of the fluid at every part of the space it occupies

VOL, I. 21
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is determined by this system of unit tubes ; for the direction of motion is that

of the tube through the point in question, and the velocity is the reciprocal

of the area of the section of the unit tube at. that point.

(7) We have now obtained a geometrical construction which completely

defines the motion of the fluid by dividing the space it occupies into a system

of unit tubes. We have next to shew how by means of these tubes we may

ascertain various points relating to the motion of the fluid.

A unit tube may either return into itself, or may begin and end at differ-

ent points, and these may be either in the boundary of the space in which we

investigate the motion, or within that space. In the first case there is a con-

tinual circulation of fluid in the tube, in the second the fluid enters at one end

and flows out at the other. If the extremities of the tube are in the bound-

ing surface, the fluid may be supposed to be continually supplied from without

from an unknown source, and to flow out at the other into an unknown reser-

voir ; but if the origin of the tube or its termination be within the space under

consideration, then we must conceive the fluid to be supplied by a source within

that space, capable of creating and emitting unity of fluid in unity of time, and

to be afterwards swallowed up by a sink capable of receiving and destroying

the same amount continually.

There is nothing self-contradictory in the conception of these sources where

the fluid is created, and sinks where it is annihilated. The properties of the

fluid are at our disposal, we have made it incompressible, and now we suppose

it produced from nothing at certain points and reduced to nothing at others.

The places of production will be called sources, and their numerical value will be

the number of units of fluid which they produce in unit of time. The places

of reduction will, for want of a better name, be called sinks, and will be esti-

mated by the number of units of fluid absorbed in unit of time. Both places

win sometimes be called sources, a source being understood to be a sink when

its sign is negative.

(8) It is evident that the amount of fluid which passes any fixed surface

is measured by the number of unit tubes which cut it, and the direction in

which the fluid passes is determined by that of its motion in the tubes. If

the surface be a closed one, then any tube whose terminations lie on the same

side of the surface must cross the surface as many times in the one direction

as in the other, and therefore must cany as much fluid out of the surface as
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it carries in. A tube which begins within the surface and ends without it

will carry out unity of fluid; and one which enters the surface and terminates

within it will carry in the same quantity. In order therefore to estimate the

amount of fluid which flows out of the closed surface, we must subtract the

number of tubes which end within the surface from the number of tubes which

begin there. If the result is negative the fluid will on the whole flow inwards.

If we call the beginning of a unit tube a unit source, and its termination

a unit sink, then the quantity of fluid produced within the surface is estimated

by the number of unit sources minus the number of unit sinks, and this must

flow out of the surface on account of the incompressibility of the fluid.

In speaking of these imit tubes, sources and sinks, we must remember what

was stated in (5) as to the magnitude of the unit, and how by diminishing

their size and increasing their number we may distribute them according to any

law however complicated.

(9) If we know the direction and velocity of the fluid at any point in

two diSerent cases, and if we conceive a third case in which the direction and

velocity of the fluid at any point is the resultant of the velocities in the two

former cases at corresponding points, then the amount of fluid which passes a

given fixed surface in the third case will be the algebraic sum of the quantities

which pass the same surface in the two former cases. For the rate at which

the fluid crosses any surface is the resolved part of the velocity normal to the

surface, and the resolved part of the resultant is equal to the sum of the

resolved parts of the components.

Hence the number of unit tubes which cross the surface outwards in the

third case must be the algebraical sum of the numbers which cross it in the

two former cases, and the number of sources within any closed surface will be

the sum of the numbers in the two former cases. Since the closed surface may

be taken as small as we please, it is evident that the distribution of sources

and sinks in the third case arises from the simple superposition of the distri-

butions in the two former cases.

n. TTieory of the uniform motion of an imponderable incompressible fluid

through a resisting medium.

(10) The fluid is here supposed to have no inertia, and its motion is opposed

by the action of a force which we may conceive to be due to the resistance of a

21—2
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medium through which the fluid is supposed to flow. This resistance depends on

the nature of the medium, and will in general depend on the direction in which

the fluid moves, as well as on its velocity. For the present we may restrict

ourselves to the case of a uniform medium, whose resistance is the same in all

directions. The law which we assume is as follows.

Any portion of the fluid moving through the resisting medium is directly

opposed by a retarding force proportional to its velocity.

If the velocity be represented by i', then the resistance will be a force equal

to kv acting on unit of volume of the fluid in a direction contrary to that of

motion. In order, therefore, that the velocity may be kept up, there must be a

greater pressure behind any portion of the fluid than there is in front of it, so

that the difference of pressures may neutrahse the effect of the resistance. Con-

ceive a cubical unit of fluid (which we may make as small as we please, by (5)),

and let it move in a direction perpendicular to two of its faces. Then the resist-

ance will be kv, and therefore the difference of pressures on the first and second

faces is kv, so that the pressure diminishes in the direction of motion at the rate

of kv for every unit of length measured along the line of motion ; so that if w6

measure a length equal to h units, the difference of pressure at its extremities

will be kvh.

(11) Since the pressure is supposed to vary continuously in the fluid, all

the points at which the pressure is equal to a given pressure p will lie on a

certain surface which we may call the surface (p) of equal pressure. If a series

of these surfaces be constructed in the fluid corresponding to the pressures 0, 1,

2, 3 &c., then the number of the surface will indicate the pressure belonging to

it, and the surface may be referred to as the surface 0, 1, 2 or 3. The unit of

pressure is that pressure which is produced by unit of force acting on unit of

surface. In order therefore to diminish the unit of pressure as in (5) we must

diminish the unit of force in the same proportion.

(12) It is easy to see that these surfaces of equal pressure must be perpen-

dicular to the lines of fluid motion; for if the fluid were to move in any other

direction, there would be a resistance to its motion which could not be balanced

by any difference of pressures. (We must remember that the fluid here con-

sidered has no inertia or mass, and that its properties are those only which are

formally assigned to it, so that the resistances and pressures are the only things
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to be considered.) There are therefore two sets of surfaces which by their inter-

section form the system of unit tubes, and the system of surfaces of equal pres-

sure cuts both the others at right angles. Let h be the distance between two

consecutive surfaces of equal pressure measured along a line of motion, then since

the difference of pressures = 1,

kvh= 1,

which determines the relation of v to h, so that one can be found when the

other is known. Let s be the sectional area of a unit tube measured on a

surface of equal pressure, then since by the definition of a unit tube

vs = \,

we find by the last equation

s = kh.

(13) The surfaces of equal pressure cut the unit tubes into portions whose

length is h and section s. These elementary portions of unit tubes will be called

unit cells. In each of them unity of volume of fluid passes from a pressure p to

a pressure (p — 1) in unit of time, and therefore overcomes unity of resistance in

that time. The work spent in overcoming resistance is therefore unity in every

cell in every unit of time.

(14) If the surfaces of equal pressure are known, the direction and magni-

tude of the velocity of the fluid at any point may be found, after which the

complete system of unit tubes may be constructed, and the beginnings and end-

ings of these tubes ascertained and marked out as the sources whence the fluid

is derived, and the sinks where it disappears. In order to prove the converse of

this, that if the distribution of sources be given, the pressure at every point may

be found, we must lay down certain preliminary propositions.

(15) If we know the pressures at every point in the fluid in two different

cases, and if we take a third case in which the pressure at any point is the

sum of the pressures at corresponding points in the two former cases, then the

velocity at any point in the third case is the resultant of the velocities in the

other two, and the distribution of sources is that due to the simple superposition

of the sources in the two former cases.

For the velocity in any direction is proportional to the rate of decrease of

the pressure in that direction; so that if two systems of pressures be added



166 ON FARADAY S LINES OF FORCE.

together, since the rate of decrease of pressure along any line will be the sum

of the combined rates, the velocity in the new system resolved in the same

direction will be the sum of the resolved parts in the two original systems.

The velocity in the new system will therefore be th€ resultant of the velocities

at corresponding points in the two former systems.

It follows from this, by (9), that the (quantity of fluid which crosses any

fixed surface is, in the new system, the sum of the corresponding quantities in

the old ones, and that the sources of the two original systems are simply

combined to form the third.

It is evident that in the system in which the pressure is the diiBPerence

of pressure in the two given systems the distribution of sources will be got

by changing the sign of all the sources in the second system and adding them

to those in the first.

(16) If the pressure at every point of a closed surface be the same and

equal to p, and if there be no sources or sinks within the surface, then there

will be no motion of the fluid within the surface, and the pressure within it

will be uniform and equal to p.

For if there be motion of the fluid within the surface there will be tubes

of fluid motion, and these tubes must either return into themselves or be

terminated either within the surface or at its boundary. Now since the fluid

always flows from places of greater pressure to places of less pressure, it

cannot flow in a re-entering curve; since there are no sources or sinks within

the surface, the tubes cannot begin or end except on the surface ; and since

the pressure at all points of the surface is the same, there can be no motion

in tubes having both extremities on the surface. Hence there is no motion

within the surface, and therefore no difference of pressure which would cause

motion, and since the pressure at the bounding surface is p, the pressure at

any point within it is also p.

(17) If the pressure at every point of a given closed surface be known,

and the distribution of sources within the surface be also known, then only

one distribution of pressures can exist within the surface.

For if two different distributions of pressures satisfying these conditions

could be found, a third distribution could be formed in which the pressure at

any point should be the difference of the pressures in the two former distri-

butions. In this case, since the pressures at the surface and the sources within



ON Faraday's lines of force. 107

it are the same in both distributions, the pressure at the surface in the third

distribution would be zero, and all the sources within the surface would

vanish, by (15).

Then by (16) the pressure at every point in the third distribution must

be zero ; but this is the difference of the pressures in the two former cases,

and therefore these cases are the same, and there is only one distribution of

pressure possible.

(18) Let us next determine the pressure at any point of an infinite body

of fluid in the centre of which a unit source is placed, the pressure at an

infinite distance from the source being supposed to be zero.

The fluid will flow out from the centre symmetrically, and since unity of

volume flows out of every spherical surface surrounding the point in unit of

time, the velocity at a distance r from the source will be

k
The rate of decrease of pressure is therefore hv or —

-^, and since the

pressure = when r is infinite, the actual pressure at any point will be

=A
The pressure is therefore inversely proportional to the distance from the

source.

It is evident that the pressure due to a unit sink will be negative and

equal to — -— .

If we have a source formed by the coalition of »S' unit sources, then the

TcS
resulting pressure will be X>=t—,, so that the pressure at a given distance

varies as the resistance and number of sources conjointly.

(19) If a number of sources and sinks coexist in the fluid, then in order

to determine the resultant pressure we have only to add the pressures which

each source or sink produces. For by (15) this will be a solution of the

problem, and by (17) it will be the only one. By this method we can

determine the pressures due to any distribution of sources, as by the method
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of (14) we can determine the distribution of sources to which a given distri-

bution of pressures is due.

(20) We have next to shew that if we conceive any imaginary surface

as fixed in space and intersecting the lines of motion of the fluid, we may
substitute for the fluid on one side of this surface a distribution of sources

upon the surface itself without altering in any way the motion of the fluid

on the other side of the surface.

For if we describe the system of unit tubes which defines the motion of
the fluid, and wherever a tube enters through the surface place a unit source,

and wherever a tube goes out through the surface place a unit sink, and at the
same time render the surface impermeable to the fluid, the motion of the fluid

in the tubes will go on as before.

(21) If the system of pressures and the distribution of sources which pro-

duce them be known in a medium whose resistance is measured by k, then in

order to produce the same system of pressures in a medium whose resistance

is unity, the rate of production at each source must be multiplied by k. For
the pressure at any point due to a given source varies as the rate of produc-

tion and the resistance conjointly; therefore if the pressure be constant, the

rate of production must vary inversely as the resistance.

(22) On the conditions to he fulfilled at a surface which separates two media
whose coefficients of resistance are k and k\

These are found from the consideration, that the quantity of fluid which

flows out of the one medium at any point flows into the other, and that the

pressure varies continuously from one medium to the other. The velocity normal

to the surface is the same in both media, and therefore the rate of diminution

of pressure is proportional to the resistance. The direction of the tubes of

motion and the surfaces of equal pressure will be altered after passing through

the surface, and the law of this refraction will be, that it takes place in the

plane passing through the direction of incidence and the normal to the surface,

and that the tangent of the angle of incidence is to the tangent of the angle

of refraction as k' is to k.

(23) Let the space within a given closed surface be filled with a medium
different from that exterior to it, and let the pressures at any point of this

compound system due to a given distribution of sources within and without
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the surface be given ; it is required to determine a distribution of sources which

would produce the same system of pressures in a medium whose coefficient of

resistance is unity.

Construct the tubes of fluid motion, and wherever a unit tube enters either

medium place a unit source, and wherever it leaves it place a unit sink. Then

if we make the surface impermeable all will go on as before.

Let the resistance of the exterior medium be measured by k, and that of

the interior by V. Then if we multiply the rate of production of all the sources

in the exterior medium (including those in the surface), by k, and make the

coefficient of resistance unity, the pressures will remain as before, and the same

will be true of the interior medium if we multiply all the sources in it by k',

including those in the surface, and make its resistance unity.

Since the pressures on both sides of the surface are now equal, we may

suppose it permeable if we please.

We have now the original system of pressures produced in a uniform medium

by a combination of three systems of sources. The first of these is the given

external system multipHed by k, the second is the given internal system multi-

plied by k', and the third is the system of sources and sinks on the surface

itself. In the original case every source in the external medium had an equal

sink in the internal medium on the other side of the surface, but now the

source is multiplied by k and the sink by k', so that the result is for every

external unit source on the surface, a source ={k — k'). By means of these three

systems of sources the original system of pressures may be produced in a medium

for which k = \.

(24) Let there be no resistance in the medium within the closed surface,

that is, let /t' = 0, then the pressure within the closed surface is uniform and

equal to p, and the pressure at the surface itself is also p. If by assuming

any distribution of pairs of sources and sinks within the surface in addition to

the given external and internal sources, and by supposing the medium the same

within and without the surface, we can render the pressure at the surface uni-

form, the pressures so found for the external medium, together with the uniform

pressure p in the internal medium, will be the true and only distribution of

pressures which is possible.

For if two such distributions could be found by taking diffijrent imaginary

distributions of pairs of sources and sinks within the medium, then by taking

VOL. I. 22
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the difference of the two for a third distribution, we should have the pressure

of the bounding surface constant in the new system and as many sources as

sinks within it, and therefore whatever fluid flows in at any point of the surface,

an equal quantity must flow out at some other point.

In the external medium all the sources destroy one another, and we have

an infinite medium without sources surrounding the internal medium. The pres-

sure at infinity is zero, that at the surface is constant. If the pressure at the

surface is positive, the motion of the fluid must be outwards from every point

of the surface ; if it be negative, it must flow inwards towards the surface. But

it has been shewn that neither of these cases is possible, because if any fluid

enters the surface an equal quantity must escape, and therefore the pressure at

the surface is zero in the third system.

The pressure at all points in the boundary of the internal medium in the

third case is therefore zero, and there are no sources, and therefore the pressure

is everywhere zero, by (16).

The pressure in the bounding surface of the internal medium is also zero,

and there is no resistance, therefore it is zero throughout; but the pressure in

the third case is the difference of pressures in the two given cases, therefore

these are equal, and there is only one distribution of pressure which is possible,

namely, that due to the imaginary distribution of sources and sinks.

(25) When the resistance is infinite in the internal medium, there can be

no passage of fluid through it or into it. The bounding surface may therefore

be considered as impermeable to the fluid, and the tubes of fluid motion will

run along it without cutting it.

If by assuming any arbitrary distribution of sources within the surface in

addition to the given sources in the outer medium, and by calculating the

resulting pressures and velocities as in the case of a uniform medium, we can

fulfil the condition of there being no velocity across the surface, the system of

pressures in the outer medium will be the true one. For since no fluid passes

through the surface, the tubes in the interior are independent of those outside,

and may be taken away without altering the external motion.

(26) If the extent of the internal medium be small, and if the difference

of resistance in the two media be also small, then the position of the unit tubes

will not be much altered from what it would be if the external medium filled

the whole space.
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Oq this supposition we can easily calculate the kind of alteration which

the introduction of the internal medium will produce ; for wherever a unit tube

enters the surface we must conceive a source producing fluid at a rate -^^

,

and wherever a tube leaves it we must place a sink annihilating fluid at the

k'-k
rate —^ , then calculating pressures on the supposition that the resistance in

both media is k, the same as in the external medium, we shall obtain the true

distribution of pressures very approximately, and we may get a better result

by repeating the process on the system of pressures thus obtained.

(27) If instead of an abrupt change from one coeflBcient of resistance to

another we take a case in which the resistance varies continuously from point

to point, we may treat the medium as if it were composed of thin shells each

of which has uniform resistance. By properly assuming a distribution of sources

over the surfaces of separation of the shells, we may treat the case as if the

resistance were equal to unity throughout, as in (23). The sources will then

be distributed continuously throughout the whole medium, and will be positive

whenever the motion is from places of less to places of greater resistance, and
negative when in the contrary direction.

(28) Hitherto we have supposed the resistance at a given point of the

medium to be the same in whatever direction the motion of the fluid takes

place ; but we may conceive a case in which the resistance is different in

different directions. In such cases the lines of motion will not in general be

perpendicular to the surfaces of equal pressure. If a, 6, c be the components
of the velocity at any point, and a, yS, y the components of the resistance at

the same point, these quantities will be connected by the following system of

linear equations, which may be called ''equations of conduction" and will be

referred to by that name.

a^P,a + QS + R.y,

h = Fj3+Q,y + EA,
c = P,y+Q,a + JR,l3.

In these equations there are nine independent coefficients of conductivity. In

order to simplify the equations, let us put

Qt + Ji, = 2S„ Q,-B, = 2lT,

&c &c.

22—2
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where 4^ = «?,-i2,)' + (^»-^.)' + (^3-^s)',

and I, m, n are direction-cosines of a certain fixed line in space.

The equations then become

a = P,a+ SJ3+ S,y+ (nfi -my) T,

b=F^+ S,y + S,a + {lY - na) T,

c = P,y + S,a+S^ + {ma~ l^) T.

By the ordinary transformation of co-ordinates we may get rid of the

coeflBcients marked S. The equations then become

a= P(a + (n'^-m'y)T,

b = P:/3 + {ry-n'a)T,

c = P,y+{m'a- Vfi) T,

where I', m, n' are the direction-cosines of the fixed line with reference to the

new axes. If we make

the equation of continuity

becomes

%^-i' -^-|.

da dh c^c _
dx dy dz '

' dx'^ ' dy'^^' dz'
^'

and if we make x = JP^^, y^^fPT^], z = JP^l,

^'^^^ 3|+^ +? = °-

the ordinary equation of conduction.

It appears therefore that the distribution of pressures is not altered by

the existence of the coefficient T. Professor Thomson has shewn how to

conceive a substance in which this coefficient determines a property having

reference to an axis, which unlike the axes of P^, P^, P^ is dipolar.

For further information on the equations of conduction, see Professor

Stokes On the Conduction of Heat in Crystals {Cambridge and Dublin Math.

Journ.), and Professor Thomson On the Dynamical Theory of Heat, Part v.

{Transactions of Royal Society of Edinburgh, VoL xxi. Part i.).
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It is evident that all that has been proved in (14), (15), (16), (17), with

respect to the superposition of different distributions of pressure, and there being

only one distribution of pressures corresponding to a given distribution of sources,

will be true also in the case in which the resistance varies from point to point,

and the resistance at the same point is different in different directions. For

il' we examine the proof we shall find it applicable to such cases as well as to

that of a uniform medium.

(29) We now are prepared to prove certain general propositions which are

true in the most general case of a medium whose resistance is different in

different directions and varies from point to point.

We may by the method of (28), when the distribution of pressures is

known, construct the surfaces of equal pressure, the tubes of fluid motion, and

the sources and sinks. It is evident that since in each cell into which a unit

tube is divided by the surfaces of equal pressure unity of fluid passes from

pressure p to pressure (p — 1) in unit of time, unity of work is done by the

fluid in each cell in overcoming resistance.

The number of cells in each unit tube is determined by the number of

surfaces of equal pressure through which it passes. If the pressure at the

beginning of the tube be p and at the end p\, then the number of cells in

it will be p—p- Now if the tube had extended from the source to a place

where the pressure is zero, the number of cells would have been p, and if

the tube had come from the sink to zero, the number would have been p\

and the true number is the difference of these.

Therefore if we find the pressure at a source S from which S tubes

proceed to be p, Sp \s. the number of cells due to the source S ; but if iS' of

the tubes terminate in a sink at a pressure p\ then we must cut off Sp cells

from the number previously obtained. Now if we denote the source of S

tubes by S, the sink of S tubes may be written -S, sinks always being

reckoned negative, and the general expression for the number of cells in the

system will be S (5p).

(30) The same conclusion may be arrived at by observing that unity of

work is done on each cell. Now in each source S, S units of fluid are

expelled against a pressure p, so that the work done by the fluid in over-

coming resistance is Sj?. At each sink in which S' tubes terminate, S' units

of fluid sink into nothing under pressure p'
; the work done upon the fluid by
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the pressure is therefore S'p\ The whole work done by the fluid may there-

fore be expressed by

W= tSp^tS'p,

or more concisely, considering sinks as negative sources,

W= t(Sp).

(31) Let S represent the rate of production of a source in any medium,

and let p be the pressure at any given point due to that source. Then if we
superpose on this another equal source, every pressure will be doubled, and

thus by successive superposition we find that a source nS would produce a

pressure np, or more generally the pressure at any point due to a given

source varies as the rate of production of the source. This may be expressed

by the equation

p = RS,

where R is a, coefficient depending on the nature of the medium and on the

positions of the source and the given point. In a uniform medium whose

resistance is measured by k,

R may be called the coefficient of resistance of the medium between the source

and the given point. By combining any number of sources we have generally

p = %{RS),

(32) In a uniform medium the pressure due to a source S

k S

At another source S' at a distance r we shall have

a, k SS' CI f

if 2^' he the pressure at S due to S\ If therefore there be two systems of

sources X{S) and %{S'), and if the pressures due to the first be p and to the

second p', then

2(S» = 2{S/).

For every term S'p has a term Sp' equal to it.
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(33) Suppose that in a uniform medium the motion of the fluid is every-

where parallel to one plane, then the surfaces of equal pressure will be

perpendicular to this plane. If we take two parallel planes at a distance equal

to k from each other, we can divide the space between these planes into unit

tubes by means of cylindric surfaces perpendicular to the planes, and these

together with the surfaces of equal pressure will divide the space into cells of

which the length is equal to the breadth. For if h be the distance between

consecutive surfaces of equal pressure and s the section of the unit tube, we

have by (13) s = kh.

But s is the product of the breadth and depth ; but the depth is k,

therefore the breadth is h and equal to the length.

If two systems of plane curves cut each other at right angles so as to

divide the plane into little areas of which the length and breadth are equal,

then by taking another plane at distance k from the first and erecting

cyhndric surfaces on the plane curves as bases, a system of cells will be

formed which will satisfy the conditions whether we suppose the fluid to run

along the first set of cutting lines or the second*.

Application of the Idea of Lines of Force.

I have now to shew how the idea of lines of fluid motion as described

above may be modified so as to be apphcable to the sciences of statical elec-

tricity, permanent magnetism, magnetism of induction, and uniform galvanic

currents, reserving the laws of electro-magnetism for special consideration.

I shall assume that the phenomena of statical electricity have been ah*eady

explained by the mutual action of two opposite kinds of matter. If we consider

one of these as positive electricity and the other as negative, then any two

particles of electricity repel one another with a force which is measured by the

product of the masses of the particles divided by the square of their distance.

Now we found in (18) that the velocity of our imaginary fluid due to a

source *S at a distance r varies inversely as r". Let us see what will be the

effect of substituting such a source for every particle of positive electricity. The

velocity due to each source would be proportional to the attraction due to the

corresponding particle, and the resultant velocity due to all the sources would

* See Cambridge and Dublin MalJiematical Jownal, Vol. in. p. 286.
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be proportional to the resultant attraction of all the particles. Now we may find

the resultant pressure at any point by adding the pressures due to the given

sources, and therefore we may find the resultant velocity in a given direction

from the rate of decrease of pressure in that direction, and this will be

proportional to the resultant attraction of the particles resolved in that direction.

Since the resultant attraction in the electrical problem is proportional to

the decrease of pressure in the imaginary problem, and since we may select

any values for the constants in the imaginary problem, we may assume that the

resultant attraction in any direction is numerically equal to the decrease of

pressure in that direction, or

ax

By this assumption we find that if F be the potential,

dV=Xdx+ Ydy+ Zdz= -dp,

or since at an infinite distance F= and p = 0, V= —p.

In the electrical problem we have

7. Q
In the fluid p = S [-

^ r

S= -jr dm.

If k be supposed very great, the amount of fluid produced by each source

in order to keep up the pressures will be very small.

The potential of any system of electricity on itself will be

If t (dm), X (dm') be two systems of electrical particles and p, p' the potentials

due to them respectively, then by (32)

or the potential of the first system on the second is equal to that of the second

system on the first.
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So that in the ordinary electrical problems the analogy in fluid motion is

of this kind :

V=-p,

dm = -— S,
Ait

whole potential of a system = -XVdm^— W, where W is the work done by

the fluid in overcoming resistance.

The lines of forces are the unit tubes of fluid motion, and they may be
estimated numerically by those tubes.

Theory of Dielectrics,

The electrical induction exercised on a body at a distance depends not
only on the distribution of electricity in the inductric, and the form and posi-

tion of the inducteous body, but on the nature of the interposed medium, or

dielectric. Faraday* expresses this by the conception of one substance having
a greater inductive capacity, or conducting the lines of inductive action more
freely than another. If we suppose that in our analogy of a fluid in a resisting

medium the resistance is diflerent in difierent media, then by making the
resistance less we obtain the analogue to a dielectric which more easily conducts
Faraday's lines.

It is evident from (23) that in this case there will always be a:n apparent
distribution of electricity on the surface of the dielectric, there being negative
electricity where the lines enter and positive electricity where they emerge. In
the case of the fluid there are no real sources on the surface, but we use
them merely for purposes of calculation. In the dielectric there may be no
real charge of electricity, but only an apparent electric action due to the surface.

If the dielectric had been of less conductivity than the surrounding medium,
we should have had precisely opposite eflects, namely, positive electricity where
lines enter, and negative where they emerge.

* Series xi.

VOL. I. 23
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If the conduction of the dielectric is perfect or nearly so for the small

quantities of electricity with which we have to do, then we have the case of

(24). The dielectric is then considered as a conductor, its surface is a surface

of equal potential, and the resultant attraction near the surface itself is per-

pendicular to it.

Theory of Permanent Magnets.

A magnet is conceived to be made up of elementary magnetized particles,

each of which has its own north and south poles, the action of which upon

other north and south poles is governed by laws mathematically identical with

those of electricity. Hence the same application of the idea of lines of force

can be made to this subject, and the same analogy of fluid motion can be

employed to illustrate it.

But it may be useful to examine the way in which the polarity of the

elements of a magnet may be represented by the unit cells in fluid motion.

In each unit cell unity of fluid enters by one face and flows out by the opposite

face, so that the first face becomes a unit sink and the second a unit source

with respect to the rest of the fluid. It may therefore be compared to an

elementary magnet, having an equal quantity of north and south magnetic

matter distributed over two of its faces. If we now consider the cell as forming

part of a system, the fluid flowing out of one cell will flow into the next, and

so on, so that the source will be transferred from the end of the cell to the

end of the unit tube. If all the unit tubes begin and end on the bounding

surface, the sources and sinks will be distributed entirely on that surface, and in

the case of a magnet which has what has been called a solenoidal or tubular

distribution of magnetism, all the imaginary magnetic matter will be on the

surface^".

Theory of Paramagnetic and Diamagnetic Induction.

Faraday t has shewn that the effects of paramagnetic and diamagnetic bodies

in the magnetic field may be explained by supposing paramagnetic bodies to

* See Professor Thomson On the Matliematical Theory of Magnetism, Chapters in. and v. Ph^.

Trans. 1851.

t Experimental Researches (3292).
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conduct the lines of force better, and diamagnetic bodies worse, than the

surrounding medium. Bj referring to (23) and (26), and supposing sources to

represent north magnetic matter, and sinks south magnetic matter, then if a

paramagnetic body be in the neighbourhood of a north pole, the lines of force

on entering it will produce south magnetic matter, and on leaving it they will

produce an equal amount of north magnetic matter. Since the quantities of

magnetic matter on the whole are equal, but the southern matter is nearest

to the north pole, the result will be attraction. If on the other hand the body

be diamagnetic, or a worse conductor of lines of force than the surrounding

medium, there will be an imaginary distribution of northern magnetic matter

where the lines pass into the worse conductor, and of southern where they pass

out, so that on the whole there will be repulsion.

"We may obtain a more general law from the consideration that the poten-

tial of the whole system is proportional to the amount of work done by the

fluid in overcoming resistance. The introduction of a second medium increases

or diminishes the work done according as the resistance is greater or less than

that of the first medium. The amount of this increase or diminution will vary

as the square of the velocity of the fluid.

Now, by the theory of potentials, the moving force in any direction is

measured by the rate of decrease of the potential of the system in passing along

that direction, therefore when ¥, the resistance within the second medium, is

greater than k, the resistance in the surrounding medium, there is a force tend-

ing from places where the resultant force v is greater to where it is less, so

that a diamagnetic body moves from greater to less values of the resultant

force *.

In paramagnetic bodies V is less than k, so that the force is now from

points of less to points of greater resultant magnetic force. Since these results

depend only on the relative values of k and k', it is evident that by changing

the surrounding medium, the behaviour of a body may be changed from para-

magnetic to diamagnetic at pleasure.

It is evident that we should obtain the same mathematical results if we
had supposed that the magnetic force had a power of exciting a polarity in

bodies which is in the same direction as the lines in paramagnetic bodies, and

* Experimental Heaearchei (2797), (2798). See Thomson, Canibridge and Dublin Mathe)naticcU

Journal, May, 1847.
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in the reverse direction in diamagnetic bodies*. ' In fact we have not as yet

come to any facts which would lead us to choose any one out of these three

theories, that of lines of force, that of imaginary magnetic matter, and that of

induced polarity. As the theory of lines of force admits of the most precise,

and at the same time least theoretic statement, we shall allow it to stand for

the present.

TJieory of Magnecrystallic Induction.

Ihe theory of Faraday t with respect to the behaviour of crystals in the

magnetic field may be thus stated. In certain crystals and other substances the

lines of magnetic force are conducted with difierent facility in different directions.

The body when suspended in a uniform magnetic field will turn or tend to turn

into such a position that the lines of force shall pass through it with least resist-

ance. It is not difficult by means of the principles in (28) to express the laws

of this kind of action, and even to reduce them in certain cases to numerical

formulae. The principles of induced polarity and of imaginary magnetic matter

are here of Httle use; but the theory of lines of force is capable of the most

perfect adaptation to this class of phenomena.

Theory of the Conduction of Current Electricity.

It is in the calculation of the laws of constant electric currents that the

theory of fluid motion which we have laid down admits of the most direct appU-

cation. In addition to the researches of Ohm on this subject, we have those

of M. Kirchhoff, Ann. de Chim. xli. 496, and of M. Quincke, XLvn. 203, on the

Conduction of Electric Currents in Plates. According to the received opinions

we have here a current of fluid moving uniformly in conducting circuits, which

oppose a resistance to the current which has to be overcome by the application

of an electro-motive force at some part of the circuit. On account of this

resistance to the motion of the fluid the pressure must be diflerent at difierent

points in the circuit. This pressure, which is commonly called electrical tension,

Uxp. Ees. (2429), (3320). See Weber, PoggendorflF, lxxxvil p. H5. Prof. TyndaU, Fhxi.

Trans. 1856, p. 237.

t Fxp. Res. (2836), &c.
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is found to be physically identical with the potential in statical electricity, and

thus we have the means of connecting the two sets of phenomena. If we knew

what amount of electricity, measured statically, passes along that current which

we assume as our unit of current, then the connexion of electricity of tension

with current electricity would be completed*. This has as yet been done only

approximately, but we know enough to be certain that the conducting powers of

diflferent substances differ only in degree, and that the difference between glass

and metal is, that the resistance is a great but finite quantity in glass, and a

small but finite quantity in metal. Thus the analogy between statical electricity

and fluid motion turns out more perfect than we might have supposed, for there

the induction goes on by conduction just as in current electricity, but the quan-

tity conducted is insensible owing to the great resistance of the dielectricst.

On Electro-motive Forces.

When a uniform current exists in a closed circuit it is evident that some

other forces must act on the fluid besides the pressures. For if the current

were due to difference of pressures, then it would flow from the point of

greatest pressure in both directions to the point of least pressure, whereas in

reahty it circulates in one direction constantly. We must therefore admit the

existence of certain forces capable of keeping up a constant current in a closed

circuit. Of these the most remarkable is that which is produced by chemical

action. A cell of a voltaic battery, or rather the surface of separation of the

fluid of the ceU and the zinc, is the seat of an electro-motive force which

can maintain a current in opposition to the resistance of the circuit. If we
adopt the usual convention in speaking of electric currents, the positive current

is from the fluid through the platinum, the conducting circuit, and the zinc,

back to the fluid again. If the electro-motive force act only in the surface of

separation of the fluid and zinc, then the tension of electricity in the fluid

must exceed that in the zinc by a quantity depending on the nature and
length of the circuit and on the strength of the current in the conductor.

In order to keep up this difference of pressure there must be an electro-motive

force whose intensity is measured by that difference of pressure. If F be the

electro-motive force, / the quantity of the current or the number of electrical

See Exp. Ees. (371). t Hxp. Ret. Vol iii. p. 513.
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units delivered in unit of time, and K a quEfntity depending on the length

and resistance of the conducting circuit, then

F=IK=p-p\

where p is the electric tension in the fluid and p' in the zinc.

If the circuit be broken at any point, then since there is no current the

tension of the part which remains attached to the platinum will be p, and

that of the other will be p, p-p or F afibrds a measure of the intensity

of the current. This distinction of quantity and intensity is very useful *,

but must be distinctly understood to mean nothing more than this :—The

quantity of a current is the amount of electricity which it transmits in unit

of time, and is measured by / the number of unit currents which it contains.

The intensity of a current is its power of overcoming resistance, and is

measured by F or IK, where K is the resistance of the wliole circuit.

The same idea of quantity and intensity may be applied to the case of

magnetism f. The quantity of magnetization in any section of a magnetic

body is measured by the number of lines of magnetic force which pass through

it. The intensity of magnetization in the section depends on the resisting

power of the section, as well as on the number of lines which pass through

it. If h be the resisting power of the material, and S the area of the section,

and / the number of lines of force which pass through it, then the whole

intensity throughout the section

h
=F=I-

When magnetization is produced by the influence of other magnets only,

we may put p for the magnetic tension at any point, then for the whole

magnetic solenoid

F=l(^dx =IK=p-p,

When a solenoidal magnetized circuit returns into itself, the magnetization

does not depend on difference of tensions only, but on some magnetizing force

of which the intensity is F.

If i be the quantity of the magnetization at any point, or the number of

lines of force passing through unit of area in the section of the solenoid, then

* Hxp. Res. Vol. HI. p. 519. t Exp. Res. (2870), (3293).
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the total quantity of magnetization in the circuit is the number of lines which

pass through any section, I=Xidydz, where dydz is the element of the section,

and the summation is performed over the whole section.

The intensity of magnetization at any point, or the force required to

keep up the magnetization, is measured by Jci=f, and the total intensity of

magnetization in the circuit is measured by the sum of the local intensities all

round the circuit,

F=t(fdx),

where dx is the element of length in the circuit, and the summation is extended

round the entire circuit.

In the same circuit we have always F= IK, where K is the total resistance

of the circuit, and depends on its form and the matter of which it is

composed.

On the Action of closed Currents at a Distance.

The mathematical laws of the attractions and repulsions of conductors have

been most ably investigated by Ampere, and his results have stood the test of

subsequent experiments.

From the single assumption, that the action of an element of one current

upon an element of another current is an attractive or repulsive force acting

in the direction of the line joining the two elements, he has determined by
the simplest experiments the mathematical form of the law of attraction, and
has put this law into several most elegant and useful forms. We must
recollect however that no experiments have been made on these elements of

currents except under the form of closed currents either in rigid conductors

or in fluids, and that the laws of closed currents can only be deduced from

such experiments. Hence if Ampere's formulae applied to closed currents give

true results, their truth is not proved for elements of currents unless we
assume that the action between two such elements must be along the line which

joms them. Although this assumption is most warrantable and philosophical in

the present state of science, it wiQ be more conducive to freedom of investi-

gation if we endeavour to do without it, and to assume the laws of closed currents

as the ultimate datum of experiment.
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Ampere has shewn that when currents are combined according to the law

of the parallelogram of forces, the force due to the resultant current is the

resultant of the forces due to the component currents, and that equal and

opposite currents generate equal and opposite forces, and when combined

neutralize each other.

He has also shewn that a closed circuit of any form has no tendency to

turn a moveable circular conductor about a fixed axis through the centre of

the circle perpendicular to its plane, and that therefore the forces in the case

of a closed circuit render Xdx + Ydy + Zdz a complete differential.

Finally, he has shewn that if there be two systems of circuits similar

and similarly situated, the quantity of electrical current in corresponding

conductors being the same, the resultant forces are equal, whatever be the

absolute dimensions of the systems, which proves that the forces are, cceteris

paribus, inversely as the square of the distance.

From these results it follows that the mutual action of two closed currents

whose areas are very small is the same as that of two elementary magnetic

bars magnetized perpendicularly to the plane of the currents.

The direction of magnetization of the equivalent magnet may be pre-

dicted by remembering that a current travelling round the earth from east

to west as the sun appears to do, would be equivalent to that magnetization

which the earth actually possesses, and therefore in the reverse direction to

that of a magnetic needle when pointing freely.

If a number of closed unit currents in contact exist on a surface, then at

aU points in which two currents are in contact there will be two equal and

opposite currents which will produce no effect, but all round the boundary of the

surfeice occupied by the currents there will be a residual current not neutralized

by any other; and therefore the result will be the same as that of a single

unit current round the boundary of all the currents.

From this it appears that the external attractions of a shell uniformly

magnetized perpendicular to its surface are the same as those due to a current

round its edge, for each of the elementary currents in the former case has

the same effect as an element of the magnetic shell.

If we examine the Unes of magnetic force produced by a closed current,

we shall find that they form closed curves passing round the current and

embracing it, and that the total intensity of the magnetizing force all along

the closed line of force depends on the quantity of the electric current only.
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The number of unit lines* of magnetic force due to a closed current depends

on the form as well as the quantity of the current, but the number of unit

cellst in each complete line of force is measured simply by the number of unit

currents which embrace it. The unit cells in this case are portions of space in

which unit of magnetic quantity is produced by unity of magnetizing force.

The length of a cell is therefore inversely as the intensity of the magnetizing

force, and its section inversely as the quantity of magnetic induction at that

point.

The whole number of cells due to a given current is therefore proportional

to the strength of the current multiplied by the number of lines of force

which pass through it. If by any change of the form of the conductors the

number of cells can be increased, there will be a force tending to produce that

change, so that there is always a force urging a conductor transverse to the

lines of magnetic force, so as to cause more lines of force to pass throuo-h the

closed circuit of which the conductor forms a part.

The number of cells due to two given currents is got by multiplying

the number of lines of inductive magnetic action which pass through each by

the quantity of the currents respectively. Now by (9) the number of lines

which pass through the first current is the sum of its own lines and those

of the second current which would pass through the first if the second current

alone were in action. Hence the whole number of cells will be increased by
any motion which causes more lines of force to pass through either circuit,

and therefore the resultant force will tend to produce such a motion, and the

work done by this force during the motion will be measured by the number
of new cells produced. All the actions of closed conductors on each other may
be deduced from this principle.

On Electric Currents prodiiced by Induction.

Faraday has shewn| that when a conductor moves transversely to the lines

of magnetic force, an electro-motive force arises in the conductor, tending to

produce a current in it. If the conductor is closed, there is a continuous

current, if open, tension is the result. If a closed conductor move transversely

to the lines of magnetic induction, then, if the number of lines which pass

Hxp. Rea. (3122). See Art. (6) of this paper. t Art. (13).

X Exp. lies. (3077), &c.

VOL. I. 24
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through it does not change during the motion, the electro-motive forces in the

circuit will be in equilibrium, and there will be no current. Hence the electro-

motive forces depend on the number of lines which are cut by the conductor

during the motion. If the motion be such that a greater number of lines pass

through the circuit formed by the conductor after than before the motion,

then the electro-motive force will be measured by the increase of the number

of lines, and will generate a current the reverse of that which would have

produced the additional Hnes. When the number of lines of inductive magnetic

action through the circuit is increased, the induced current will tend to diminish

the number of lines, and when the number is diminished the induced current

will tend to increase them.

That this is the true expression for the law of induced currents is shewn

from the fact that, in whatever way the number of lines of magnetic induction

passing through the circuit be increased, the electro-motive effect is the same,

whether the increase take place by the motion of the conductor itself, or of other

conductors, or of magnets, or by the change of intensity of other currents, or

by the magnetization or demagnetization of neighbouring magnetic bodies, or

lastly by the change of intensity of the current itself.

In all these cases the electro-motive force depends on the change in the

number of lines of inductive magnetic action which pass through the circuit*.

* The electro-magnetic forces, which tend to produce motion of the material conductor, must be

carefully distinguished from the electro-motive forces, which tend to produce electric currents.

Let an electric current be passed through a mass of metal of any form. The distribution of

the currents within the metal will be determined by the laws of conduction. Now let a constant

electric cuiTent be passed through another conductor near the first. If the two currents are in the

same direction the two conductors will be attracted towards each other, and would come nearer if

not held in their positions. But though the material conductors are attracted, the currents (which

are free to choose any course within the metal) will not alter their original distribution, or incline

towards each other. For, since no change takes place in the system, there will be no electro-motive

forces to modify the original distribution of currents.

In this case we have electro-magnetic forces acting on the material conductor, without any

electi"o-motive forces tending to modify the current which it can-ies.

Let us take as another example the case of a linear conductor, not forming a closed circuit,

and let it be made to traverse the lines of magnetic force, either by its own motion, or by changes

in the magnetic field. An electro-motive force wiU act in the direction of the conductor, and, as it

cannot produce a current, because there is no circuit, it will produce electric tension at the extremi-

ties. There will be no electro-magnetic attraction on the material conductor, for this attraction

depends on the existence of the cun-ent within it, and this is prevented by the circuit not being closed.

Here then we have the opposite case of an electro-motive force acting on the electricity in the

conductor, but no attraction on its material particles.
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It is natural to suppose that a force of this kind, which depends on a

change in the number of lines, is due to a change of state which is measured

by the number of these lines. A closed conductor in a magnetic field may-

be supposed to be in a certain state arising from the magnetic action.

As long as this state remains unchanged no effect takes place, but, when the

state changes, electro-motive forces arise, depending as to their intensity and

direction on this change of state. I cannot do better here than quote a

passage from the first series of Faraday's Experimental Researches, Art. (60).

"While the wire is subject to either volta-electric or magno-electric

induction it appears to be in a peculiar state, for it resists the formation of

an electrical current in it ; whereas, if in its common condition, such a current

would be produced; and when left uninfluenced it has the power of originating a

current, a power which the wire does not possess under ordinary circumstances.

This electrical condition of matter has not hitherto been recognised, but it

probably exerts a very important influence in many if not most of the phe-

nomena produced by currents of electricity. For reasons which will immediately

appear (7) I have, after advising with several learned friends, ventured to

designate it as the electro-tonic state." Finding that all the phenomena could

be otherwise explained without reference to the electro-tonic state, Faraday in

his second series rejected it as not necessary ; but in his recent researches
'"'

he seems still to think that there may be some physical truth in his

conjecture about this new state of bodies.

The conjecture of a philosopher so familiar with nature may sometimes be

more pregnant with truth than the best established experimental law disco-

vered by empirical inquirers, and though not bound to admit it as a physical

truth, we may accept it as a new idea by which our mathematical conceptions

may be rendered clearer.

In this outline of Faraday's electrical theories, as they appear from a

mathematical point of view, I can do no more than simply state the mathe-

matical methods by which I believe that electrical phenomena can be best

comprehended and reduced to calculation, and my aim has been to present the

mathematical ideas to the mind in an embodied form, as systems of lines or

surfaces, and not as mere symbols, which neither convey the same ideas, nor

readily adapt themselves to the phenomena to be explained. The idea of the

electro-tonic state, however, has not yet presented itself to my mind in such a

* (3172) (3269).

24—2
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form that its nature and properties may be clearly explained witliout reference

to mere symbols, and therefore I propose in the following investigation to use

symbols freely, and to take for granted the ordinary mathematical operations.

By a careful study of the laws of elastic solids and of the motions of viscous

fluids, I hope to discover a method of forming a mechanical conception of this

electro-tonic state adapted to general reasoning*.

Part II.

On Faraday's " Electro^tonic State"

When a conductor moves in the neighbourhood of a current of electricity,

or of a magnet, or when a current or magnet near the conductor is moved, or

altered in intensity, then a force acts on the conductor and produces electric

tension, or a continuous current, according as the circuit is open or closed. This

current is produced only by changes of the electric or magnetic phenomena sur-

rounding the conductor, and as long as these are constant there is no observed

effect on the conductor. Still the conductor is in different states when near- a

current or magnet, and when away from its influence, since the removal or

destruction of the current or magnet occasions a current, which would not have

existed if the magnet or current had not been previously in action.

Considerations of this kind led Professor Faraday to connect with his

discovery of the induction of electric currents the conception of a state into

which all bodies are thrown by the presence of magnets and currents. This

state does not manifest itself by any known phenomena as long as it is undis-

turbed, but any change in this state is indicated by a current or tendency

towards a current. To this state he gave the name of the " Electro-tonic

State," and although he afterwards succeeded in explaining the phenomena

which suggested it by means of less hypothetical conceptions, he has on several

occasions hinted at the probability that some phenomena might be discovered

which would render the electro-tonic state an object of legitimate induction.

These speculations, into which Faraday had been led by the study of laws

which he has well established, and which he abandoned only for want of experi-

* See Pro£ W. Thomson On a Mechanical Representation of Electric, Magnetic and Galvanic

Forces. Camvb. and Dub. Math. Jour. Jan. 1847.
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mental data for the direct proof of the unknown state, have not, I think, been

made the subject of mathematical investigation. Perhaps it may be thought

that the quantitative determinations of the various phenomena are not suffi-

ciently rigorous to be made the basis of a mathematical theory ; Faraday,

however, has not contented himself with simply stating the numerical results of

his experiments and leaving the law to be discovered by calculation. Where

he has perceived a law he has at once stated it, in terms as unambiguous as

those of pure mathematics ; and if the mathematician, receiving this as a physical

truth, deduces from it other laws capable of being tested by experiment, he

has merely assisted the physicist in arranging his own ideas, which is con-

fessedly a necessary step in scientific induction.

In the following investigation, therefore, the laws established by Faraday

will be assumed aa true, and it will be shewn that by following out his

speculations other and more general laws can be deduced from them. If it

should then appear that these laws, originally devised to include one set of

phenomena, may be generalized so as to extend to phenomena of a different

class, these mathematical connexions may suggest to physicists the means of

establishing physical connexions; and thus mere speculation may be turned to

account in experimental science.

On Quantity and Intensity as Properties of Electric Currents.

It is found that certain effects of an electric current are equal at what-

ever part of the circuit they are estimated. The quantities of water or of

any other electrolyte decomposed at two different sections of the same circuit,

are always found to be equal or equivalent, however different the material and

form of the circuit may be at the two sections. The magnetic effect of a

conducting wire is also found to be independent of the form or material of

the wire in the same circuit. There is therefore an electrical effect which is

equal at every section of the circuit. If we conceive of the conductor as the

channel along which a fluid is constrained to move, then the quantity of fluid

transmitted by each section will be the same, and we may define the quantity

of an electric current to be the quantity of electricity which passes across a

complete section of the current in unit of time. We may for the present

measure quantity of electricity by the quantity of water which it would decom-

pose in unit of time.
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In order to express mathematically the electrical currents in any conductor,

we must have a definition, not only of the entire flow across a complete section,

but also of the flow at a given point in a given direction.

Def. The quantity of a current at a given point and in a given direction

is measured, when uniform, by the quantity of electricity which flows across

unit of area taken at that point perpendicular to the given direction, and when
variable by the quantity which would flow across this area, supposing the flow

uniformly the same as at the given point.

In the following investigation, the quantity of electric current at the point

(xyz) estimated in the directions of the axes x, y, z respectively will be denoted

by Oj, 5j, C3.

The quantity of electricity which flows in unit of time through the ele-

mentary area dS
= dS (la^+ ?nZ)2 + nc^),

where I, m, n are the direction-cosines of the normal to dS.

This flow of electricity at any point of a conductor is due to the electro-

motive forces which act at that point. These may be either external or internal.

External electro-motive forces arise either from the relative motion of currents

and magnets, or from changes in their intensity, or from other causes acting

at a distance.

Internal electro-motive forces arise principally from diSerence of electric

tension at points of the conductor in the immediate neighbourhood of the point

in question. The other causes are variations of chemical composition or of tem-

perature in contiguous parts of the conductor.

Let Pi represent the electric tension at any point, and X^, F,, Z, the sums

of the parts of all the electro-motive forces arising from other causes resolved

parallel to the co-ordinate axes, then if Og, ySj, y^ be the efiective electro-motive

forces

"^-^^'dx

dp,

^'-^'"dy

dp,

y^^^'^-d^

(A).
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Now the quantity of the current depends on the electro-motive force and
on the resistance of the medium. If the resistance of the medium be uniform

in all directions and equal to k^,

a^ = Jc,a„ ^, =kK y2 = Kc2 (B),

but if the resistance be different in different directions, the law will be more

complicated.

These quantities Oj, /3j, y., may be considered as representing the intensity

of the electric action in the directions of x, y, z.

The intensity measured along an element da of a curve is given by

€ = Za+ mji + ny,

where Z, m, n are the direction-cosines of the tangent.

The integral JecZcr taken with respect to a given portion of a curve line,

represents the total intensity along that line. If the curve is a closed one, it

represents the total intensity of the electro-motive force in the closed curve.

Substituting the values of a, /8, y from equations (A)

l^da-= l{Xdx + Ydy + Zdz) -p + a
If therefore {Xdx+ Ydy + Zdz) is a complete differential, the value of Jedo- for

a closed curve will vanish, and in all closed curves

leda- = l{Xdx+Ydy + Zdz),

the integration being effected along the curve, so that in a closed curve the

total intensity of the effective electro-motive force is equal to the total intensity

of the impressed electro-motive force.

The total quantity of conduction through any surface is expressed by

\edS,

where

e = la + mh + nc,

I, m, n being the direction-cosines of the normal,

.
•. \edS= l\adydz + ^bdzdx + \\cdxdy,

the integrations being effected over the given surface. AVhen the surface is a

closed one, then we may find by integration by parts

w.=///(:-
7a dh dc\ , , ,
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If we make

da dh
^

d.c /^v

Tx + dy+di^^^P (^)'

\edS= iirlWpdxdydz,

where the integration on the right side of the equation is effected over every

part of space within the surface. In a large class of phenomena, including all

cases of uniform currents, the quantity p disappears.

Magnetic Quantity and Intensity.

From his study of the lines of magnetic force, Faraday has been led to

the conclusion that in the tubular surface
''' formed by a system of such lines,

the quantity of magnetic induction across any section of the tube is constant,

and that the alteration of the character of these lines in passing from one

substance to another, is to be explained by a difference of inductive capacity

in the two substances, which is analogous to conductive power in the theory

of electric currents.

In the following investigation we shall have occasion to treat of magnetic

quantity and intensity in connection with electric. In such cases the magnetic

symbols wiU be distinguished by the sufiix 1, and the electric by the suffix 2.

The equations connecting a, h, c, h, a, /8, y, p, and p, are the same in form as

those which we have just given, a, 6, c are the symbols of magnetic induction

with respect to quantity ; k denotes the resistance to magnetic induction, and

may be different in different directions ; a, /8, y, are the effective magnetiang

forces, connected with a, h, c, by equations (B)
; p is the magnetic tension or

potential which will be afterwards explained
; p denotes the density of real

magnetic matter and is connected with a, h, c by equations (C). As all the

details of magnetic calculations will be more intelligible after the exposition of the

connexion of magnetism with electricity, it will be sufficient here to say that

all the definitions of total quantity, with respect to a surface, the total intensity

to a curve, apply to the case of magnetism as well as to that of electricity.

* Exp. Res. 3271, definition of " Sphondyloid."
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Electro-magnetism.

Ampere has proved the following laws of the attractions and repulsions of

electric currents :

I. Equal and opposite currents generate equal and opposite forces.

II. A crooked current is equivalent to a straight one, provided the two

currents nearly coincide throughout their whole length.

IIL Equal currents traversing similar and similarly situated closed curves

act with equal forces, whatever be the linear dimensions of the circuits.

IV. A closed current exerts no force tending to turn a circular conductor

about its centre.

It is to be observed, that the currents with which Ampere worked were constant

and therefore re-entering. All his results are therefore deduced from experiments

on closed currents, and his expressions for the mutual action of the elements

of a current involve the assumption that this action is exerted in the direction

of the line joining those elements. This assumption is no doubt warranted by the

universal consent of men of science in treating of attractive forces considered

as due to the mutual action of particles ; but at present we are proceeding

on a different principle, and searching for the explanation of the phenomena,

not in the currents alone, but also in the surrounding medium.

The first and second laws shew that currents are to be combined like

velocities or forces.

The third law is the expression of a property of all attractions which may

be conceived of as depending on the inverse square of the distance from a fixed

system of points ; and the fourth shews that the electro-magnetic forces may

always be reduced to the attractions and repulsions of imaginary matter properly

distributed.

In fact, the action of a very small electric circuit on a point in its neigh-

bourhood is identical with that of a small magnetic element on a point outside

it. If we divide any given portion of a surface into elementary areas, and

cause equal currents to flow in the same direction round all these Httle areas,

the effect on a point not in the surface will be the same as that of a shell

coinciding with the surface, and uniformly magnetized normal to its surface.

But by the first law all the currents forming the little circuits will destroy

VOL. L 25
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one another, and leave a single current running round the bounding line. So

that the magnetic effect of a uniformly magnetized shell is equivalent to that

of an electric current round the edge of the shell. If the direction of the current

coincide with that of the apparent motion of the sun, then the direction of

magnetization of the imaginary shell will be the same as that of the real mag-

netization of the earth*.

The total intensity of magnetizing force in a closed curve passing through

and embracing the closed current is constant, and may therefore be made a

measure of the quantity of the current. As this intensity is independent of the

form of the closed curve and depends only on the quantity of the current which

passes through it, we may consider the elementary case of the current which

Hows through the elementary area dydz.

Let the axis of x point towards the west, z towards the south, and y

upwards. Let x, y, z be the coordinates of a point in the middle of the area

dydz, then the total intensity measured round the four sides of tlie element is

(A*Si)*
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These equations enable us to deduce the distribution of the currents of

electricity whenever we know the values of a, y3, y, the magnetic intensities.

If a, /3, y be exact differentials of a function of x, y, z with respect to x, y

and 2 respectively, then the values of a,, h^, c, disappear; and we know that the

magnetism is not produced by electric currents in that part of the field which

we are investigating. It is due either to the presence of permanent magnetism

within the field, or to magnetising forces due to external causes.

We may observe that the above equations give by differentiation

^ + ^'4.^^ =
dx dy dz *

which is the equation of continuity for closed currents. Our investigations are

therefore for the present limited to closed currents ; and we know little of the

magnetic effects of any currents which are not closed.

Before entering on the calculation of these electric and magnetic states it

may be advantageous to state certain general theorems, the truth of which may

be established analytically.

Theorem I.

The equation

d'V d^V d'V ^ ^

d^-^W'^^'^ ^^^ '

(where V and p are functions of x, y, z never infinite, and vanishing for all points

at an infinite distance), can be satisfied by one, and only one, value of V. See

Art. (17) above.

Theorem II.

The value of V which will satisfy the above conditions is found by inte-

grating the expression

pdxdydz

///,

where the limits of x, 3/, 2 are such as to include every point of space where />

is finite.
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The proofs of these theorems may be found in any work on attractions or

electricity, and in particular in Green's Essay on the Application of Mathematics

to Electricity. See Arts. 18, 19 of this paper. See also Gauss, on Attractions^

translated in Taylor's Scientijtc Memoirs.

Theorem III.

Let U and V be two functions of x, y, z, then

d'U d'U d'-U\ J., , ,

where the integrations are supposed to extend over all the space in which U
and V have values differing from 0.—(Green, p. 10.)

This theorem shews that if there be two attracting systems the actions

between them are equal and opposite. And by making U= V we find that

the potential of a system on itself is proportional to the integral of the square

of the resultant attraction through all space ; a result deducible from Art. (30),

since the volume of each cell is inversely as the square of the velocity (Arts.

12, 13), and therefore the number of cells in a given space is directly as the

square of the velocity.

Theorem IV.

Let a, /8, y, p be quantities finite through a certain space and vanishing

in the space beyond, and let k be given for all parts of space as a continuous

or discontinuous function of x, y, z, then the equation in p

has one, and only one solution, in which p is always finite and vanishes at

an infinite distance.

The proof of this theorem, by Prof W. Thomson, may be found in the

Cambridge and Dublin Mathematical Journal, Jan. 1848.
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If a, /3, y be the electro-motive forces, p the electric tension, and Ic the

coefficient of resistance, tlien the above equation is identical with the equation

of continuity

da^ ,dh,dc,
ax dy dz r

'

and the theorem shews that when the electro-motive forces and the rate of

production of electricity at every part of space are given, the value of the

electric tension is determinate.

Since the mathematical laws of magnetism are identical with those of elec-

tricity, as far as we now consider them, we may regard a, /8, y as magnetizing

forces, p as magnetic tension, and p as real magnetic density, k being the

coefficient of resistance to magnetic induction.

The proof of this theorem rests on the determination of the minimum value

where V is got from the equation

d'V d'V d'V
,

and p has to be determined.

The meaning of this integral in electrical language may be thus brought

out. If the presence of the media in which k has various values did not

affect the distribution of forces, then the '^quantity" resolved in x would be

simply -7— and the intensity k -^ . But the actual quantity and intensity are

J-
(a — j-j and a— ^, and the parts due to the distribution of media alone

are therefore

1 / dp\ dV , dp
,
dV

T {°'-~ji—7- and a —~ — k -i- .

fc \ ax) dx dx dx

Now the product of these represents the work done on account of this

distribution of media, the distribution of sources being determined, and taking

in the terms in y and z we get the expression Q for the total work done
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by that part of the whole effect at any point which is due to the distribution

of conducting media, and not directly to the presence of the sources.

This quantity Q is rendered a minimum by one and only one value of p,

namely, that which satisfies the original equation.

Theorem V.

If a, h, c be three functions of x, y, % satisfying the equation

da db ^ _r.

dx dy dz~ '

it is always possible to find three functions a, /3, y which shall satisfy the equa-

tions

dz dy '

i-
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In the same way it may be shewn that the values of a, ^, y satisfy

the other given equations. The function i/; may be considered at present as

perfectly indeterminate.

The method here given is taken from Prof. W. Thomson's memoir on

Magnetism {Phil Trans. 1851, p. 283).

As we cannot perform the required integrations when a, h, c are discon-

tinuous functions of x, y, z, the following method, which is perfectly general

though more compUcated, may indicate more clearly the truth of the proposition.

Let A, B, C be determined from the equations

d'A d'A d'A

^ + ^^ + £^ + 6 =
dor dy^ dz'

'

d'Cd'Ccr-c^ ^

by the methods of Theorems I. and II., so that A, B, C are never infinite,

and vanish when x, y, or z is infinite.

Also let

then

a =
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and since A, B, C are always finite and vanish at an ir finite distance, the

only solution of this equation is

dA dB dC^^
dx dy dz *

and we have finally

d§ _dY_
dz dy~ '

with two similar equations, shewing that a, /9, y have been rightly determined.

The function i/» is to be determined from the condition

dx^ dy^ dz~ [dx" '^dy'^ dz') ^
'

if the left-hand side of this equation be always zero, xp must be zero also.

Theorem YI,

Let a, h, c he any three functions of x, y, z, it is possible to find three

functions a, /8, y and a fourth V, so that

dx dy dz '

and =^_^ ^
dz dy dx '

,_dy^dadV
dx dz dy '

dy dx dz

Let
da dh dc

di + Ty + dz^-^^'P'

and let V be found from the equation

d^V d'V d'V
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then



202 ON Faraday's lines of force.

For, if we put a, in the form

dz dy dx '

and treat h^ and c, similarly, then we have by integration by parts through

infinity, remembering that all the functions vanish at the limits,

or <? = + ///{(47rV) - (aA + A&. + y.c,)] dxdydz,

and by Theorem III.

Ill Vp dxdydz = lUppdxdydz,
so that finally

Q = lll{^7rpp - (a„a, + A^2 + y«cj} dxdydz.

If afi^c^ represent the components of magnetic quantity, and a^iyi those

of magnetic intensity, then p will represent the real magnetic density, and p
the magnetic potential or tension. aJ)iCi will be the components of quantity

of electric currents, and a^^.y^ will be three functions deduced from afi^c^,

which will be found to be the mathematical expression for Faraday's Electro-

tonic state.

Let us now consider the bearing of these analytical theorems on the

theory of magnetism. Whenever we deal with quantities relating to magnetism,

we shall distinguish them by the suffix d). Thus aj^iC, are the components

resolved in the directions of x, y, z of the quantity of magnetic induction acting

through a given point, and aJS^yi are the resolved intensities of magnetization

at the same point, or, what is the same thing, the components of the force

which would be exerted on a unit south pole of a magnet placed at that

point without disturbing the distribution of magnetism.

The electric currents are found from the magnetic intensities by the equations

djB, dy,
,

dz dy

When there are no electric currents, then

a^dx + P^dy -f y^dz = dp,
,
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a perfect differential of a function of x, y, z. On the principle of analogy we

may call jo, the magnetic tension.

The forces which act on a mass m of south magnetism at any point are

in the direction of the axes, and therefore the whob work done during any

displacement of a magnetic system is equal to the decrement of the integral

Q = ll\p,p4xdydz

throughout the system.

Let us now call Q the total potential of the system on itself. The increase

or decrease of Q will measure the work lost or gained by any displacement

of any part of the system, and will therefore enable us to determine the

forces acting on that part of the system.

By Theorem III. Q may be put under the form

Q = +^ j I

(ctio, + hSi + c,y,) dxdydz

in which a^iji are the differential coefficients of p^ with respect to x, y, z

respectively.

If we now assume that this expression for Q is true whatever be the

values of Oj, )8„ yi, we pass from the consideration of the magnetism of permanent

magnets to that of the magnetic effects of electric currents, and we have then

by Theorem VII.

So that in the case of electric currents, the components of the currents have

to be multiplied by the functions a„, ySj, yo respectively, and the summations of

all such products throughout the system gives us the part of Q due to those

currents.

We have now obtained in the functions a,,, Aj yo the means of avoiding

the consideration of the quantity of magnetic induction which passes through

the circuit. Instead of this artificial method we have the natural one of con-

sidering the current with reference to quantities existing in the same space

with the current itself. To these I give the name of Electro-tonic functions, or

components of the Electro-tonic intensity.

2G—

2
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Let us now consider the conditions of the conduction of the electric

currents within the medium during changes in the electro-tonic state. The

method which we shall adopt is an appHcation of that given by Helmholtz in

his memoir on the Conservation of Force*.

Let there be some external source of electric currents which would generate

in the conducting mass currents whose quantity is measured by a^, h^, c, and

their intensity by cu,, /Sa, y^.

Then the amount of work due to this cause in the time dt is

dt lll{a^(h + hS^ + c^y^ dxdydz

in the form of resistance overcome, and

^^ J j J
(^2^0 4- 6A + c,yo) dxdydz

in the form of work done mechanically by the electro-magnetic action of these

currents. If there be no external cause producing currents, then the quantity

representing the whole work done by the external cause must vanish, and we

have

dt \\ \(a,a^ + hS, + c.y,) dxdydz +
4^ ^ I I I («**o+ ^So + c^Jo) dxdydz,

where the integrals are taken through any arbitrary space. We must therefore

have

for every point of space ; and it must be remembered that the variation of

Q is supposed due to variations of a^, ySo, y^, and not of a^, \, c^. We must

therefore treat a^, 63, c^ as constants, and the equation becomes

In order that this equation may be independent of the values of a^, b^, Cj,

each of these coefficients must = ; and therefore we have the following

expressions for the electro-motive forces due to the action of magnets and

currents at a distance in terms of the electro-tonic functions,

°^~
ATrdt' ^^~ Andt' '^'~ An dt

'

* Translated in Taylor's N'ew Scientific Memoirs, Part 11.
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It appears from experiment that the expression -jj refers to the change

of electro-tonic state of a given particle of the conductor, whether due to

change in the electro-tonic functions themselves or to the motion of the particle.

If Oo be expressed as a function of x, y, z and t, and \£ x, y, z be the

co-ordinates of a moving particle, then the electro-motive force measured in the

direction of a; is

_ _ Jl (^' dx da^dy da,dz doA
°^~

477 \dx dt dy dt dz dt dtj

The expressions for the electro-motive forces in y and z are similar. The

distribution of currents due to these forces depends on the form and arrange-

ment of the conducting media and on the resultant electric tension at any

point.

The discussion of these functions would involve us in mathematical formulae,

of which this paper is already too full. It is only on account of their physical

importance as the mathematical expression of one of Faraday's conjectures that I

have been induced to exhibit them at all in their present form. By a more

patient consideration of their relations, and with the help of those who are

engaged in physical inquiries both in this subject and in others not obviously

connected with it, I hope to exhibit the theory of the electro-tonic state in a

form in which all its relations may be distinctly conceived without reference to

analytical calculations.

Summary of the Theory of the Electro-tonic State.

We may conceive of the electro-tonic state at any point of space as a

quantity determinate in magnitude and direction, and we may represent the

electro-tonic condition of a portion of space by any mechanical system which

has at every point some quantity, which may be a velocity, a displacement, or

a force, whose direction and magnitude correspond to those of the supposed

electro-tonic state. This representation involves no physical theory, it is only

a kind of artificial notation. In analytical investigations we make use of the

three components of the electro-tonic state, and call them electro-tonic functions.

We take the resolved part of the electro-tonic intensity at every point of a
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closed curve, and find by integration what we may caU the entire electro-tonic

intensity round the curve.

Prop. I. If on any surface a closed curve be drawn, and if the surface

within it he divided into small areas, then the entire intensity round the closed

curve is equal to the sum of the intensities round each of the small areas, all

estimated in the same direction.

For, in going round the small areas, every boundary line between two of

them is passed along twice in opposite directions, and the intensity gained in

the one case is lost in the other. Every eflfect of passing along the interior

divisions is therefore neutraUzed, and the whole efiect is that due to the

exterior closed curve.

Law I. The entire dectro-tonic intensity round the boundary of an element of

surface measures the quantity of magnetic induction which passes through that

surface, or, in other words, the number of lines of magnetic force which pass

through that surface.

By Prop. I. it appears that what is true of elementary surfaces is true also

of surfaces of finite magnitude, and therefore any two surfaces which are

bounded by the same closed curve will have the same quantity of magnetic

induction through them.

Law II. The magnetic intensity at any point is connected with the quantity

of magnetic induction by a set of linear equations, called the equations of con-

duction*.

Law III. The entire magnetic intensity round the boundary of any surface

measures the quantity of electric current which passes through that surface.

Law IV. The quantity and intensity of electric currents are connected by a

system of equations of conduction.

By these four laws the magnetic and electric quantity and intensity may be

deduced from the values of the electro-tonic functions. I have not discussed

the values of the units, as that will be better done with reference to actual

experiments. We come next to the attraction of conductors of currents, and to

the induction of currents within conductors.

* See Art. (28).



ON FARADAY S LINES OF FORCE. 207

Law v. The total electro-magnetic potential of a closed current is measxired

by the product of the quantity of the current multiplied by the entire electro-tonic

intensity estimated in t/ie same direction round the circuit.

Any displacement of the conductors which would cause an increase in the

potential will be assisted by a force measured by the rate of increase of the

potential, so that the mechanical work done during the displacement will be

measured by the increase of potential.

Although in certain cases a displacement in direction or alteration of inten-

sity of the current might increase the potential, such an alteration would not

itself produce work, and there will be no tendency towards this displacement,

for alterations in the current are due to electro-motive force, not to electro-

magnetic attractions, which can only act on the conductor.

Law VI. The electro-motive force on any element of a conductor is measured

by the instantaneous rate of change of the electro-tonic intensity on that element,

whether in magnitude or direction.

The electro-motive force in a closed conductor is measured by the rate of

change of the entire electro-tonic intensity round the circuit referred to unit

of time. It is independent of the nature of the conductor, though the current

produced varies inversely as the resistance ; and it is the same in whatever

way the change of electro-tonic intensity has been produced, whether by motion

of the conductor or by alterations in the external circumstances.

In these six laws I have endeavoured to express the idea which I believe to

be the mathematical foundation of the modes of thought indicated in the Ex-

perimental Researches. I do not think that it contains even the shadow of a

true physical theory; in fact, its chief merit as a temporary instrument of

research is that it does not, even in appearance, account for anything.

There exists however a professedly physical theory of electro-dynamics, which

is so elegant, so mathematical, and so entirely different from anything in this

paper, that I must state its axioms, at the risk of repeating what ought to

be well known. It is contained in M. W. Weber's Electro-dynamic Measure-

ments, and may be found in the Transactions of the Leibnitz Society, and of the

Royal Society of Sciences of Saxony*. The assumptions are,

* When this was written, I was not aware that part of M. Weber's Memoir is translated in

Taylor's Scientific Memoirs, VoL v. Art. xiv. The value of his researches, both experimental and

theoretical, renders the study of his theory necessary to every electrician.
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(1) That two particles of electricity when in motion do not repel each other

with the same force as when at rest, but that the force is altered by a quantity

depending on the relative motion of the two particles, so that the expression for

the repulsion at distance r is

eeV, dr

(2) That when electricity is moving in a conductor, the velocity of the

positive fluid relatively to the matter of the conductor is equal and opposite to

that of the negative fluid.

(3) The total action of one conducting element on another is the resultant

of the mutual actions of the masses of electricity of both kinds which are

in each.

(4) The electro-motive force at any point is the difference of the forces

acting on the positive and negative fluids.

From these axioms are deducible Ampere's laws of the attraction of

conductors, and those of Neumann and others, for the induction of currents.

Here then is a really physical theory, satisfying the required conditions better

perhaps than any yet invented, and put forth by a philosopher whose experi-

mental researches form an ample foundation for his mathematical investigations.

What is the use then of imagining an electro-tonic state of which we have

no distinctly physical conception, instead of a formula of attraction which we
can readily understand ? I would answer, that it is a good thing to have

two ways of looking at a subject, and to admit that there are two ways of

looking at it. Besides, I do not think that we have any right at present to

understand the action of electricity, and I hold that the chief merit of a

temporary theory is, that it shall guide experiment, without impeding the

progress of the true theory when it appears. There are also objections to

making any ultimate forces in nature depend on the velocity of the bodies

between which they act. If the forces in nature are to be reduced to forces

acting between particles, the principle of the Conservation of Force requires

that these forces should be in the line joining the particles and functions of

the distance only. The experiments of M. Weber on the reverse polarity of

diaraagnetics, which have been recently repeated by Professor Tyndall, establish

a fact which is equally a consequence of M. Weber's theory of electricity and

of the theory of lines of fcH-ce.



ON FARADAY S LINES OF FORCE. 209

With respect to the history of the present theory, I may state that the

recognition of certain mathematical functions as expressing the "electro-tonic

state " of Faraday, and the use of them in determining electro-dynamic

potentials and electro-motive forces is, as far as I am aware, original ; but the

distinct conception of the possibility of the mathematical expressions arose in

my mind from the perusal of Prof W. Thomson's papers "On a Mechanical

Representation of Electric, Magnetic and Galvanic Forces," Cambridge and

Dublin Mathematical Journal, January, 1847, and his "Mathematical Theory of

Magnetism," Philosophical Transactions, Part I. 1851, Art. 78, &c. As an

instance of the help which may be derived from other physical investigations,

I may state that after I had investigated the Theorems of this paper

Professor Stokes pointed out to me the use which he had made of similar

expressions in his "Dynamical Theory of Diffraction," Section 1, Camhndge

Transactions, Vol. ix. Part 1. Whether the theory of these functions, consi-

dered with reference to electricity, may lead to new mathematical ideas to be

employed in physical research, remains to be seen. I propose in the rest of

this paper to discuss a few electrical and magnetic problems with reference to

spheres. These are intended merely as concrete examples of the methods of

which the theory has been given ; I reserve the detailed investigation of cases

chosen with special reference to experiment till I have the means of testing

their results.

Examples.

I. Theory of Electrical Images.

The method of Electrical Images, due to Prof W. Thomson"", by whicli

the theory of spherical conductors has been reduced to great geometrical sim-

plicity, becomes even more simple when we see its connexion with the methods

of this paper. We have seen that the pressure at any point in a uniform

medium, due to a spherical shell (radius = a) giving out fluid at the rate of

a"
AnPa^ units in unit of time, is ^P— outside the shell, and kPa inside it,

r

where r is the distance of the point from the centre of the shell.

* See a series of papers "On the Mathematical Theory of Electricity," in the Cambridge and

Dublin Math. Jour., beginning March, 1848.

VOL L 27
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If there be two shells, one giving out fluid at a rate inPa\ and the

other absorbing at the rate of iirFa\ then the expression for the pressure will

be, outside the shells,

J^ r r

where r and / are the distances from the centres of the two shells. Equating

this expression to zero we have, as the surface of no pressure, that for which

/ _ Fa''

r ~ Pa'

Now the surface, for which the distances to two fixed points hav^e a given

ratio, is a sphere of which the centre is in the line joining the centres of

the shells CC produced, so that

and its radius ^ ^

Pa'lt-F^'

If at the centre of this sphere we place another source of the fluid, then

the pressure due to this source must be added to that due to the other two;

and since this additional pressure depends only on the distance from the centre,

it will be constant at the surface of the sphere, where the pressure due to

the two other sources is zero.

We have now the means of arranging a system of sources within a given

sphere, so that when combined with a given system of sources outside the

sphere, they shall produce a given constant pressure at the surface of the sphere.

Let a be the radius of the sphere, and p the given pressure, and let the

given sources be at distances 6„ h„ &c. from the centre, and let their rates of

production be 4.TrP„. 47rP„ &c.

Then if at distances ^ , ?- , &c. (measured in the same direction as h„ \, &c.

from the centre) we place negative sources whose rates are

-47rP,?, -477P,^, &c.,
0, Oj
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the pressure at the surface r = a will be reduced to zero. Now placing a source

477-^ at the centre, the pressure at the surface will be uniform and equal to />.

The whole amount of fluid emitted by the surface r = a may be found by

adding the rates of production of the sources within it. The result is

To apply this result to the case of a conducting sphere, let us suppose

the external sources inP^, AnP^ to be small electrified bodies, containing e„ e,

of positive electricity. Let us also suppose that the whole charge of the con-

ducting sphere is =E previous to the action of the external points. Then all

that is required for the complete solution of the problem is, that the surface

of the sphere shall be a surface of equal potential, and that the total charge

of the surface shall be E.

If by any distribution of imaginary sources within the spherical surface we

can effect this, the value of the corresponding potential outside the sphere is

the true and only one. The potential inside the sphere must really be constant

and equal to that at the surface.

We must therefore find the images of the external electrified points, that

is, for every point at distance b from the centre we must find a point on the

same radius at a distance j- , and at that point we must place a quantity

= — e , of imaginary electricity.

At the centre we must put a quantity E' such that

K =E+ e,^ + e,^- + kc.;

then if i^ be the distance from the centre, r„ r^, &c. the distances from the

electrified points, and r\, r\, &c. the distances from their images at any point

outside the sphere, the potential at that point will be

E e, ( a \ ci\ e, /a b, a\
,

.
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This is the value of the potential outside the sphere. At the surface we
have

K = a and — = -7- , — = -7- , ac.

so that at the surface

and this must also be the value oi p for any point within the sphere.

For the application of the principle of electrical images the reader is referred

to Prof Thomson's papers in the Cambridge and Dublin Mathematical Journal.

The only case which we shall consider is that in which A = /, and b^ is infi-

nitely distant along the axis of x, and j&=0.

The value p outside the sphere becomes then

and inside ^ = 0.

II. On the effect of a paramagnetic or diam/xgnetic sphere in a uniform field oj

magnetic force'^.

The expression for the potential of a small magnet placed at the origin of

co-ordinates in the direction of the axis of x is

dx \rj~
i:^i'-]=-lm^

The eflPect of the sphere in disturbing the lines of force may be supposed

as a first hypothesis to be similar to that of a small magnet at the origin,

whose strength is to be determined. (We shall find this to be accurately true.)

* See Prof. Thomson, on the Theory of Magnetic Induction, PhiL Mag. March, 1851. The induc-

tive capadiy of the sphere, according to that paper, is the ratio of the qv/iTiiUy of magnetic induction

(not the intensity) within the sphere to that without It is therefore equal to j^T =
2k k

' ^^^^^'

ing to our notation.
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Let the value of the potential undisturbed by the presence of the sphere be

'p = Ix.

Let the sphere produce an additional potential, which for external points is

, . a'

and let the potential within the sphere be

Pi = Bx.

Let k' be the coefficient of resistance outside, and k inside the bphere, then

the conditions to be fulfilled are, that the interior and exterior potentials should

coincide at the surface, and that the induction through the surface should be the

same whether deduced from the external or the internal potential. Putting

a; = rcos^, we have for the external potential

P= //r + ^^')cos^,

and for the internal

p^ = Brco%dy

and these must be identical when r = a, or

I+A = B.

The induction through the surface in the external medium is

and that through the interior surface is

and .•. i(7-2^) = i£.

These equations give

A = ^^f^J, B= ^^
2k + k'

'

ik + k'

The effect outside the sphere is equal to that of a little magnet whose
length is I and moment ml, provided
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Suppose this uniform field to be that due to terrestrial magnetism, then,

if k is less than k' as in paramagnetic bodies, the marked end of the equi-

valent magnet will be turned to the north. If A; is greater than F as in

diamagnetic bodies, the unmarked end of the equivalent magnet would be turned

to the north.

III. Magnetic Jield of variable Intensity.

Now suppose the intensity in the undisturbed magnetic field to vary in

magnitude and direction from one point to another, and that its components

in X, y, z are represented by a, /8, y, then, if as a first approximation we re-

gard the intensity within the sphere as sensibly equal to that at the centre,

the change of potential outside the sphere arising from the presence of the

sphere, disturbing the lines of force, will be the same as that due to three

small magnets at the centre, with their axes parallel to x, y, and z, and their

moments equal to

k-k'
3

k-k' 5^ k-k'

2kTk'^^' 2FFF^^' 2FfF"^-

The actual distribution of potential within and without the sphere may be

conceived as the result of a distribution of imaginary magnetic matter on the

surface of the sphere ; but since the external effect of this superficial magnetism

is exactly the same as that of the three small magnets at the centre, the

mechanical effect of external attractions will be the same as if the three ma^ets

really existed.

Now let three small magnets whose lengths are l^, k, k, and strengths

m„ m^, m„ exist at the point x, y, z with their axes parallel to the axes of

then resolving the forces on the three magnets in the direction of X, weX, y, z

have

X= 'm^

da Zi

•a +
da l^

dx 2

Y +'in.-{

a +

a +

da I,

dy 2

da It

dy2\

+«i.

da /g"

a+
da Zj

dz 2.

J da T da , da
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Substituting the values of the moments of the imaginary magnets

J da ^(IB dy\ k-k' a' d , , r>^
, 2\

2k + k'

The force impelling the sphere in the direction of x is therefore dependent

on the variation of the square of the intensity or (a' +^ + y), as we move along

the direction of x, and the same is true for y and z, so that the law is, that

the force acting on diamagnetic spheres is from places of greater to places of

less intensity of magnetic force, and that in similar distributions of magnetic

force it varies as the mass of the sphere and the square of the intensity.

It is easy by means of Laplace's CoeflBcients to extend the approximation

to the value of the potential as far as we please, and to calculate the attrac-

tion. For instance, if a north or south magnetic pole whose strength is M, be

placed at a distance b from a diamagnetic sphere, radius a, the repulsion will be

When r is small, the first term gives a sufficient approximation. The repul-

sion is then as the square of the strength of the pole, and the mass of the

sphere directly and the fifth power of the distance inversely, considering the

pole as a point.

IV. Tivo Spheres in uniform jield.

Let two spheres of radius a be connected together so that their centres are

kept at a distance h, and let them be suspended in a uniform magnetic field,

then, although each sphere by itself would have been in equilibrium at any part

of the field, the disturbance of the field will produce forces tending to make the

balls set in a particular direction.

Let the centre of one of the spheres be taken as origin, then the undis-

turbed potential is

p = Ir cos dy

and the potential due to the sphere is

^ k — k' a? a
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The whole potential is therefore equal to

l(r +
'2jc+ k'

dp
dr

,^003 0= p..

dp

dr

\ldp

Idp
rdS

1 dp\

|=«-

T^^m'Bdi

^'{i+^'^*(i-3-«''')+i5r^'(i+3-''')}

This is the value of the square of the intensity at any point. The moment
of the couple tending to turn the combination of balls in the direction of the

original force

L= l^a^i7;fn?<n when r = h,
dd \2k+ k'

L^^P k-k'

2k-\-k'

k — k' a\ . ^^

This expression, which must be positive, since h is greater than a, gives the

moment of a force tending to turn the line joining the centres of the spheres

towards the original lines of force.

Whether the spheres are magnetic or diamagnetic they tend to set in the

axial direction, and that without distinction of north and south. If, however,

one sphere be magnetic and the other diamagnetic, the line of centres will set

equatoreally. The magnitude of the force depends on the square of (k — k'), and

is therefore quite insensible except in iron*.

V. Two Spheres between the poles of a Magnet.

Let us next take the case of the same balls placed not in a uniform field

but between a north and a south pole, ±M, distant 2c from each other in the

direction of x.

* See Prof. Thomson in Phil. Mag. March, 1851.
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The expression for the potential, the middle of the line joining the poles

being the origin, is

p=m(, ' —,
'

)
Wc*+ i^-2crcos0 Vc' + ?-' + 2crcos^/

From this we find as the value of P,

P = i^7l_3!:+9^,cos-<^):
c* \ C^ & ]

.'. I~= - 18 ^^V sin 2^.

and the moment to turn a pair of spheres (radius a, distance 2h) in the

direction in which is increased is

-^'wvk'-^''''^^'

This force, which tends to turn the line of centres equatoreally for diamagnetic

and axially for magnetic spheres, varies directly as the square of the strength of

the magnet, the cube of the radius of the spheres and the square of the dis-

tance of their centres, and inversely as the sixth power of the distance of the

poles of the magnet, considered as points. As long as these poles are near each

other this action of the poles will be much stronger than the mutual action of

the spheres, so that as a general rule we may say that elongated bodies set

axially or equatoreally between the poles of a magnet according as they are mag-

netic or diamagnetic. If, instead of being placed between two poles very near

to each other, they had been placed in a uniform field such as that of terrestrial

magnetism or that produced by a spherical electro-magnet (see Ex. viii.), an

elongated body would set axially whether magnetic or diamagnetic.

In all these cases the phenomena depend on k — k', so that the sphere con-

ducts itself magnetically or diamagnetically according as it is more or less

magnetic, or less or more diamagnetic than the medium in which it is placed.

VI. On the Magnetic Phenomena of a Sphere cut from a substance whose

coefficient of resistance is diffierent in different directions.

Let the axes of magnetic resistance be parallel throughout the sphere, and

let them be taken for the axes of x, y, z. Let K, k„ k„ be the coefficients of

resistance in these three directions, and let k' be that of the external medium,

VOL. I. 28
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and a the radius of the sphere. Let / be the undisturbed magnetic intensity

of the field into which the sphere is introduced, and let its direction-cosines

be I, m, n.

Let us now take the case of a homogeneous sphere whose coefficient is ^,

placed in a uniform magnetic field whose intensity is II in the direction of x.

The resultant potential outside the sphere would be

and for internal points

So that in the interior of the sphere the magnetization is entirely in the direc-

tion of X. It is therefore quite independent of the coefficients of resistance in

the directions of x and y, which may be changed from X\ into k^ and ^3 with-

out disturbing this distribution of magnetism. We may therefore treat the sphere

as homogeneous for each of the three components of /, but we must use a

different coefficient for each. We find for external points

and for internal points

The external effect is the same as that which would have been produced

if the small magnet whose moments are

te§'^"''
^™^"''

te^'"-^"*'

had been placed at the origin with their directions coinciding with the axes of

Xy y, z. The effect of the original force / in turning the sphere about the axis

of x may be found by taking the moments of the components of that force

on these equivalent magnets. The moment of the force in the direction of y

acting on the third magnet is

and that of the force in z on the second magnet is

2k^-\-k
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The whole couple about the axis of a; is therefore

tending to turn the sphere round from the axis of y towards that of z. Sup-

pose the sphere to be suspended so that the axis of x is vertical, and let /

be horizontal, then if 6 be the angle which the axis of y makes with the

direction of /, m = cos 6, n= — sin 0, and the expression for the moment becomes

f TT^T ĥT}? i' \
^'«' sin 2d,

tending to increase 0. The axis of least resistance therefore sets axially, but

with either end indifferently towards the north.

Since in all bodies, except iron, the values of k are nearly the same as in

a vacuum, the coefficient of this quantity can be but little altered by changing

the value of k' to k, the value in space. The expression then becomes

i^^^/Vsin2(9,

independent of the external medium'".

VII. Permanent magnetism in a spherical shell.

The case of a homogeneous shell of a diamagnetic or paramagnetic substance

presents no difficulty. The intensity within the shell is less than what it would

have been if the shell were away, whether the substance of the shell be dia-

magnetic or paramagnetic. When the resistance of the shell is infinite, and when

it vanishes, the intensity within the sheU is zero.

In the case of no resistance the entire effect of the shell on any point,

internal or external, may be represented by supposing a superficial stratum of

Taking the more general case of magnetic induction referred to in Art. (28), we find, in the

expression for the moment of the magnetic forces, a constant term depending on T, besides those

terms which dejjend on sines and cosines of 6. The result is, that in every complete revolution in

the negative direction round the axis of T, a certain jMJsitive amount of work is gained ; but, since

no inexhaustible source of work can exist in nature, we must admit that T-0 in all substances,

with resf>ect to magnetic induction. This argument does not hold in the case of electric conduction,

or in the case of a body through which heat or electricity is passing, for such states are main-

tained by the continual expenditure of work. See Prof Thomson, Phil. Mag. March, 1851, p. 186.

28—2
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magnetic matter spread over the outer surface, the density being given by the

equation

p = 3/ cos d.

Suppose the shell now to be converted into a permanent magnet, so that the

distribution of imaginary magnetic matter is invariable, then the external poten-

tial due to the shell will be

p = —I—CO3 0,

and the internal potential Pi— ~ ^*' ^^^ 0.

Now let us investigate the eflfect of filling up the shell with some substance

of which the resistance is k, the resistance in the external medium being k".

The thickness of the magnetized shell may be neglected. Let the magnetic

moment of the permanent magnetism be la^, and that of the imaginary super-

ficial distribution due to the medium k = Aa\ Then the potentials are

external p' = {I-\-A)~ cos 6, internal ^, = (/+^ ) r cos 0.

The distribution of real magnetism is the same before and after the introduc-

tion of the medium k, so that

l/+|/=i(/+4)+|(/+^),

The external efiect of the magnetized shell is increased or diminished according

as A; is greater or less than k'. It is therefore increased by filling up the shell

with diamagnetic matter, and diminished by filling it with paramagnetic matter,

such as iron.

VIII. Electro-magnetic spherical shell.

Let us take as an example of the magnetic effects of electric currents,

an electro-magnet in the form of a thin spherical sheU. Let its radius be a,

and its thickness t, and let its external effect be that of a magnet whose

moment is /a*. Both within and without the shell the magnetic effect may be

represented by a potential, but within the substance of the shell, where there
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are electric currents, the magnetic effects cannot be represented by a potential.

Let p', pi be the external and internal potentials,

p' = 1 -^cosd, p^ = Ar cos 0,

and since there is no permanent magnetism, -^ = -^- , when r = a,

A=-2L

If we draw any closed curve cutting the shell at the equator, and at some

other point for which is known, then the total magnetic intensity round this

curve will be Sla cos 0, and as this is a measure of the total electric current which

flows through it, the quantity of the current at any point may be found by

differentiation. The quantity which flows through the element tcW is — 3/a sin 0d0,

so that the quantity of the current referred to unit of area of section is

-3l^sm0.
t

If the shell be composed of a wire coiled round the sphere so that the number

of coils to the inch varies as the sine of 0, then the external effect will be

nearly the same as if the shell had been made of a uniform conducting sub-

stance, and the currents had been distributed according to the law we have just

given.

If a wire conducting a current of strength /, be wound round a sphere

of radius a so that the distance between successive coUs measured along the

2a
axis of cc is — , then there wiU be n coils altogether, and the value of /, for

the resulting electro-magnet will be

The potentials, external and internal, will be

P=I,Q^ 003 0, p,=

The interior of the shell is therefore a uniform magnetic field.

P =I,Q ^ cos^, p,= -21,- -cos^.
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IX. Effect of the core of the electro-magnet.

Now let us suppose a sphere of diamagnetic or paramagnetic matter intro-

duced into the electro-magnetic coil. The result may be obtained as in the

last case, and the potentials become

., J n Zk' a? ^ .J. n Sk r

The external effect is greater or less than before, according as yfc' is greater

or less than k, that is, according as the interior of the sphere is magnetic or

diamagnetic with respect to the external medium, and the internal effect is

altered in the opposite direction, being greatest for a diamagnetic medium.

This investigation explains the effect of introducing an iron core into an
electro-magnet. If the value of k for the core were to vanish altogether, the

effect of the electro-magnet would be three times that which it has without
the core. As k has always a finite value, the effect of the core is less than this.

In the interior of the electro-magnet we have a uniform field of magnetic
force, the intensity of which may be increased by surrounding the coil with a
shell of iron. If k' = 0, and the shell infinitely thick, the effect on internal points

would be tripled.

The effect of the core is greater in the case of a cylindric magnet, and
greatest of aU when the core is a ring of soft iron.

X. Electro-tonic functions in spherical dectro-magnet.

Let us now find the electro-tonic functions due to this electro-magnet.

They will be of the form

ao = 0, ^^ — oiZ, y^= —<»y,

where tu is some function of r. Where there are no electric currents, we must

have ttj, 6j, Cj each = 0, and this implies

d /_ . doi\ ^

the solution of which is
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Within the shell co cannot become infinite ; therefore oi = C^ is the solution,

and outside a must vanish at an infinite distance, so that

is the solution outside. The magnetic quantity within the shell is found by last

article to be

therefore within the sphere

Ln 1

* 2a 3^ + ^"

Outside the sphere we must determine w so as to coincide at the surface

with the internal value. The external value is therefore

= _:?> 1 a'

^ 2a 3k + k' r'
'

where the shell containing the currents is made up of n coils of wire, con-

ducting a current of total quantity /j.

Let another wire be coiled round the shell according to the same law, and

let the total number of coils be n ; then the total electro-tonic intensity EI^

round the second coil is found by integrating

EI^ = I (oa sin 6ds,

-i:

along the whole length of the wire. The equation of the wire is

/, <^
cos = -y- .nv

where n' is a large number; and therefore

ds = a sin 6d<^,

= — ariTT sin- Odd,

T?T ^'"' 2 / 27r ,j 1
.*. EI^= -— (oan =—— ann 1

3
""" ""

3
'"""^

3k + k"

E may be called the electro-tonic coeflBcient for the particular wire.
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XI. Spherical electro-magnetic CoU-Machine.

We have now obtained the electro-tonic function which defines the action

of the one coil on the other. The action of each coil on itself is found by-

putting n* or n* for nn\ Let the first coil be connected with an apparatus

producing a variable electro-motive force F. Let us find the efiects on both

wires, supposing their total resistances to be i2 and R, and the quantity of

the currents / and /'.

Let N stand for -^ (sk+k") ' *^^^ *^® electro-motive force of the first

wire on the second is

dl

That of the second on itself is

Nnn , .

at

-^<-
The equation of the current in the second wire is therefore

-iyr„n'f-iyr«-f=ij'i' (i).

The equation of the current in the first wire is

-Nn'^^^-Nnn'§ + F=RI. (2).

EHminating the differential coefficients, we get

n n' ~ n*

^^ ^[r^r] di +^-E^^RW (^)'

from which to find / and F. For this purpose we require to know the value

of i^ in terms of t.

Let us first take the case in which F is constant and / and T initially = 0.

This is the case of an electro-magnetic coil-machine at the moment when the

connexion is made with the galvanic trough.
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Putting ^T for ^
[ji + j^J

"^^ ^^

The primary current increases very rapidly from to >, , and the secondary

commences at --jy — and speedily vanishes, owing to the value of t being

generally very small

The whole work done by either current in heating the wire or in any other

kind of action is found from the expression

PRdt.

The total quantity of current is

^
Idt.

f.

For the secondary current we find

/; '-"-S;. f."-m'r
The work done and the quantity of the current are therefore the same as

if a current of quantity F = —jrr- had passed through the wire for a time t, where

--(^a-
This method of considering a variable current of short duration is due to

Weber, whose experimental methods render the determination of the equivalent

current a matter of great precision.

Now let the electro-motive force F suddenly cease while the current in the

primary wire is /<, and in the secondary = 0. Then we shall have for the subse-

quent time

, . -^ „ /„ Rn -f
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R n
The equivalent currents are ^I^ and ^I^ -^ — , and their duration is t.

When the communication with the source of the current is cut off, there

will be a change of E. This will produce a change in the value of t, so that

if i2 be suddenly increased, the strength of the secondary current will be increased,

and its duration diminished. This is the case in the ordiaaiy coU-machines. The

quantity N depends on the form of the machine, and may be determined by

experiment for a machine of any shape.

XII. Spherical shell revolving in magnetic field.

Let us next take the case of a revolving shell of conducting matter under

the influence of a uniform field of magnetic force. The phenomena are explained

by Faraday in his Experimental Researches, Series ii., and references are there

given to previous experiments.

Let the axis of z be the axis of revolution, and let the angular velocity

be 6). Let the magnetism of the field be represented in quantity by /, inclined

at an angle 6 to the direction of z, in the plane of zx.

Let R be the radius of the spherical sheU, and T the thickness. Let the

quantities Oj, ^o* yoj.he the electro-tonic functions at any point of space; a^, \, c„

«i» Aj 7i symbols of magnetic quantity and intensity; a^, h^, c„ a,, 13,, y, of

electric quantity and intensity. Let p, be the electric tension at any point,

^'+*a.l

(1).
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The expressions for a,, ^„ y, due to the magnetifim of the field are

^,= 5,+ 2 (2 Bin ^ - a; cos ^),

A^, B,, Co being constants; and the velocities of the particles of the revolving

sphere are

dx dy dz ^

We have therefore for the electro-motive forces

An dt 4iT 2
a>=-7Z-^=-- 7^008^0)0;,

_ 1 d^o I I n
$,= P = — -:—

7T cos uayy,
^* 47r dt An 2

^'

1 / .

' 4n dt An 2

Returning to equations (1), we get

^db, dct\ dfii <^y»
j^

(db^ _dc,\d§, _dy,^^
\dz dy) dz dy '

\dx dz I dx dz An 2

^
/da, _ dbA ^^ _ ^^ ^ q
dy dx) ' '

^dy dx) dy dx

From which with equation (2) we find

11/..
ttj = - 7- -7- -7 sin C/a>;

k An A

h, = 0,

I 1 I
. a

C, = T T- T Sin U(OX,
k An A

p, = - —- loi {(x*+ 2/*) cos ^ - a:s sin $].
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These expressions would determine completely the motion of electricity in

a revolving sphere if we neglect the action of these currents on themselves.

They express a system of circular currents about the axis of y, the quantity

of current at any point being proportional to the distance from that axis.

The external magnetic effect will be that of a small magnet whose moment

is jx—i w/sin 6, with its direction along the axis of y, so that the magnetism of

the field would tend to turn it back to the axis of x*.

The existence of these currents will of course alter the distribution of

the electro-tonic functions, and so they will react on themselves. Let the

final result of this action be a system of currents about an axis in the plane

of xy inclined to the axis of x at an angle ^ and producing an external effect

equal to that of a magnet whose moment is FR^.

The magnetic inductive components within the shell are

/i sin ^— 2/' cos ^ in x,

— 21' sm(f> in. y,

/i cos 6 in 2,

Each of these would produce its own system of currents when the sphere

is in motion, and these would give rise to new distributions of magnetism,

which, when the velocity is uniform, must be the same as the original distri-

bution,

(Ii sin 6 — 21' cos
<l>)

in x produces 2 t^—r ot {I^ sin 6 — 2J' cos
(f>)

in y,

T
( — 2T sin <^) in y produces 2 , m (21' sin ^) in x

;

IiQoad in z produces no currents.

We must therefore have the following equations, since the state of the shell

is the same at every instant,

T
Lam 6- 2r cos <f) = /, sin ^ -^——y (o2T sin 6

T- 2/ sin <^ =-—T oj (/, sin ^- 2r cos <^),

* The expression for p^ indicates a variable electric tension in the shell, so that cuirents might

be collected by wires touching it at the equator and poles.
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-hence cot <^ = - j w, / = ^ ,
5-,^^ /i sin 6.

7-©"
To understand the meanmg of these expressions let us take a particular case.

Let the axis of the revolving shell be vertical, and let the revolution be

from north to west. Let / be the total intensity of the terrestrial magnetism,

and let the dip be d, then Ico3$ is the horizontal component in the direction

of magnetic north.

The result of the rotation is to produce currents in the shell about an

T
axis inclined at a small angle = tan"* ——rco to the south of magnetic west, and

the external effect of these currents is the same as that of a magnet whose

moment is

i ,

^"^
i?7cos d.

The moment of the couple due to terrestrial magnetism tending to stop the

rotation is

2i7rk To)

2 24tTrkY + Tq}*
i?Pc08'^,

and the loss of work due to this in unit of time is

24:Trk T(o'

2 247r^?+Pa>'
i?P cos' d.

This loss of work is made up by an evolution of heat in the substance of

the shell, as is proved by a recent experiment of M. Foucault (see Coniptefi

Rendus, XLi. p. 450).



[From the Transacti&M of the Royal Scottish Society of Arts, VoL iv. Part rv.]

IX. Description of a New Form of the Platometer, an Instrument for

measuring the Areas of Plane Figures drawn on Paper*.

1. The measurement of the area of a plane figure on a map or plan is an

operation so frequently occurring in practice, that any method by which it may

be easily and quickly performed is deserving of attention. A very able expo-

sition of the principle of such instruments will be found in the article on

Planimeters in the Reports of the Juries of the Great Exhibition, 1851.

2. In considering the principle of instruments of this kind, it will be most

convenient to suppose the area of the figure measured by an imaginary straight

line, which, by moving parallel to itself, and at the same

time altering in length to suit the form of the area,

accurately sweeps it out.

Let AZ be a fixed vertical line, APQZ the boundary

of the area, and let a variable horizontal line move

parallel to itself firom A to Z, so as to have its extremi-

ties, P, M, in the curve and in the fixed straight line.

Now, suppose the horizontal line (which we shall caU the

generating line) to move from the position PM to QNy

MN being some small quantity, say one inch for distinct-

ness. During this movement, the generating line will

have swept out the narrow strip of the surface, PMNQ,
which exceeds the portion PMNp by the smaU triangle PQp,

But since MN, the breadth of the strip, is one inch, the strip will contain

as many square inches as PM is inches long; so that, when the generating

Bead to the Society, 22nd Jan. 1855.
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line descends one inch, it sweeps out a number of square inches equal to the

number of linear inches in its length.

Therefore, if we have a machine with an index of any kind, which, while

the generating line moves one inch downwards, moves forward as many degrees

as the generating line is inches long, and if the generating line be alternately

moved an inch and altered in length, the index will mark

the number of square inches swept over during the whole

operation. By the ordinary method of limits, it may be

shown that, if these changes be made continuous instead

of sudden, the index will still measure the area of the

curve traced by the extremity of the generating line.

3. When the area is bounded by a closed curve, as

ABDC, then to determine the area we must carry the tra-

cing point from some point A of the curve, completely round

the circumference to A again. Then, while the tracing point

moves from A to C, the index will go forward and mea-

sure the number of square inches in ACRP, and, while it

moves from C to D, the index will measure backwards the

square inches in CRPD, so that it will now indicate the

square inches in ACD. Similarly, during the other part of the motion from

D to B, and from B to D, the part DBA will be measured; so that when

the tracing point returns to D, the instrument will have measured the area

ACDB. It is evident that the whole area will appear positive or negative

according as the tracing point is carried round in the direction ACDB or ABDC.

4. We have next to consider the various methods of communicating the

required motion to the index. The first is by means of two discs, the first

having a flat horizontal rough surface, turning on a vertical

axis, OQ, and the second vertical, with its circumference rest-

ing on the flat surface of the first at P, so as to be driven

round by the motion of the first disc. The velocity of the

second disc will depend on OP, the distance of the point of

contact from the centre of the first disc; so that if OP be

made always equal to the generating line, the conditions of the instrument will

be fulfilled.

This is accomplished by causing the index-disc to slip along the radius of
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the horizontal disc ; so that in working the instrument, the motion of the index-

disc is compounded of a rolling motion due to the rotation of the first disc,

and a slipping motion due to the variation of the generating line.

5. In the instrument presented by Mr Sang to the Society, the first disc is

replaced by a cone, and the action of the instrument corresponds to a mathe-

matical valuation of the area by the use of oblique co-ordinates. As he has

himself explained it very completely, it will be enough here to say, that the

index-wheel has still a motion of slipping as well as of rolling.

6. Now, suppose a wheel rolling on a surface, and pressing on it with a

weight of a pound; then suppose the coefficient of friction to be |, it will

require a force of 2 oz. at least to produce shpping at all, so that even if the

resistance of the axis, &c., amounted to 1 oz., the rolling would be perfect. But

if the wheel were forcibly pulled sideways, so as to slide along in the direction

of the axis, then, if the friction of the axis, &c., opposed no resistance to the

turning of the wheel, the rotation would still be that due to the forward motion

;

but if there were any resistance, however small, it would produce its effect in

diminishing the amount of rotation.

The case is that of a mass resting on a rough surface, which requires a

great force to produce the shghtest motion; but when some other force acts

on it and keeps it in motion, the very smallest force is sufficient to alter that

motion in direction.

7. This effect of the combination of slipping and rolling has not escaped

the observation of Mr Sang, who has both measured its amount, and shown how

to eliminate its effect. In the improved instrument as constructed by him, I

believe that the greatest error introduced in this way does not equal the ordi-

nary errors of measurement by the old process of triangulation. This accuracy,

however, is a proof of the excellence of the workmanship, and the smoothness

of the action of the instrument; for if any considerable resistance had to be

overcome, it would display itself in the results.

8. Having seen and admired these instruments at the Great Exhibition in

1851, and being convinced that the combination of shpping and roUing was a

drawback on the perfection of the instrument, I began to search for some

arrangement by which the motion should be that of perfect rolling in every
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motion of which the instrument is capable. The forms of the rolUng parts which

I considered were

—

1. Two equal spheres.

2. Two spheres, the diameters being as 1 to 2.

3. A cone and cylinder, axes at right angles.

Of these, the first combination only suited my purpose. I devised several modes

of mounting the spheres so as to make the principle available. That which I

adopted is borrowed, as to many details, from the instruments already con-

structed, so that the originality of the device may be reduced to this principle

—

The abolition of sUpping by the use of two equal spheres.

9. The instrument (Fig. 1) is mounted on a frame, which rolls on the two

connected wheels, MM, and is thus constrained to travel up and down the

paper, moving parallel to itself

CH is a horizontal axis, passing through two supports attached to the

frame, and carrying the wheel K and the hemisphere LAP. The wheel K rolls

on the plane on which the instrument travels, and communicates its motion to

the hemisphere, which therefore revolves about the axis AH with a velocity

proportional to that with which the instrument moves backwards or forwards.

FCO is a framework (better seen in the other figures) capable of revolving

about a vertical axis, Cc, being joined at C and c to the frame of the instru-

ment. The parts CF and CO are at right angles to each other and horizontal.

The part CO carries with it a ring, SOS, which turns about a vertical axis Oo.

This ring supports the index-.sphere Bh by the extremities of its axis Ss, just

as the meridian circle carries a terrestrial globe. By this arrangement, it will

be seen that the axis of the sphere is kept always horizontal, while its centre

moves so as to be always at a constant distance from that of the hemisphere.

This distance must be adjusted so that the spheres may always remain in con-

tact, and the pressure at the point of contact may be regulated by means of

springs or compresses at and o acting in the direction OC, oc. In this way

the rotation of the hemisphere is made to drive the index-sphere.

10. Now, let us consider the working of the instrument. Suppose the arm

CE placed so as to coincide with CD, then 0, the centre of the index-sphere

will be in the prolongation of the axis HA. Suppose also that, when in this

position, the equator hB of the index-sphere is in contact with the pole A of

the hemisphere. Now, let the arch be turned into the position CE as in the
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figure, then the rest of the framework will be turned through an equal angle,

and the index-sphere will roll on the hemisphere till it come into the position

represented in the figure. Then, if there be no slipping, the arc AP = BP, and
the angle ACF = BOP.

Next, let the instrument be moved backwards or forwards, so as to turn

the wheel Kk and the hemisphere LI, then the index-sphere will be turned

about its axis Ss by the action of the hemisphere, but the ratio of their veloci-

ties will depend on their relative positions. If we draw PQ, PR, perpendiculars

from the point of contact on the two axes, then the angular motion of the

index-sphere will be to that of the hemisphere, as PQ is to PR; that is, as

PQ is to QC, by the equal triangles POQ, PQC ; that is, as ED is to DC,
by the similar triangles CQP, CDE.

Therefore the ratio of the angular velocities is as ED to DC, but since

DC is constant, this ratio varies as ED. We have now only to contrive some

way of making ED act as the generating line, and the machine is complete

(see art. 2).

11. The arm CF is moved in the following manner:

—

Tt is a rectangular

metal beam, fixed to the frame of the instrument, and parallel to the axis AH.
cEe is a little carriage which rolls along it, having two rollers on one side and

one on the other, which is pressed against the beam by a spring. This carriage

carries a vertical pin, E, turning in its socket, and having a collar above,

through which the arm CF works smoothly. The tracing point G is attached

to the carriage by a jointed frame eGe, which is so arranged that the point

may not bear too heavily on the paper.

12. When the machine is in action, the tracing point is placed on a point

in the boundary of the figure, and made to move round it always in one

direction till it arrives at the same point again. The up-and-down motion of

the tracing point moves the whole instrument over the paper, turns the wheel

K, the hemisphere LI, and the index-sphere Bh ; while the lateral motion of

the tracing point moves the carriage E on the beam Tt, and so works the arm

CF and the framework CO; and so changes the relative velocities of the two

spheres, as has been explained,

13. In this way the instrument works by a perfect rolling motion, in what-

ever direction the tracing point is moved; but since the accuracy of the result

depends on the equality of the arcs AP and BP, and since the smallest error
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of adjustment would, in the course of time, produce a considerable deviation

from this equality, some contrivance is necessary to secure it. For this purpose

a wheel is fixed on the same axis with the ring SOs, and another of the same

size is fixed to the frame of the instrument, with its centre coinciding with the

vertical axis through C. These wheels are connected by two pieces of watch-

spring, which are arranged so as to apply closely to the edges of the wheels.

The first is firmly attached to the nearer side of the fixed wheel, and to the

farther side of the moveable wheel, and the second to the farther side of the

fixed wheel, and the nearer side of the moveable wheel, crossing beneath the

first steel band. In this way the spheres are maintained in their proper relative

position; but since no instrument can be perfect, the wheels, by preventing

dei-angement, must cause some slight slipping, depending on the errors of work-

manship. This, however, does not ruin the pretensions of the instrument, for it

may be shown that the error introduced by slipping depends on the distance

through which the lateral slipping takes place ; and since in this case it must

be very small compared with its necessarily large amount in the other instru-

ments, the error introduced by it must be diminished in the same proportion.

14. I have shewn how the rotation of the index-sphere is proportional to

the area of the figure traced by the tracing point. This rotation must be

measured by means of a graduated circle attached to the sphere, and read oti"

by means of a vernier. The result, as measured in degrees, may be interpreted

in the following manner :

—

Suppose the instrument to be placed with the arm CF coinciding with CD,

the equator Bh of the index-sphere touching the pole A of the hemisphere, and

the index of the vernier at zero : then let these four operations be performed :

—

(1) Let the tracing point be moved to the right till DE = DC, and there-

fore DCE, ACP, and F0B = A5\

(2) Let the instrument be rolled upwards till the wheel K has made a

complete revolution, carrying the hemisphere with it ; then, on account of the

equality of the angles SOP, PCA, the index-sphere will also make a complete

revolution.

(3) Let the arm CF be brought back again till F coincides with D.

(4) Let the instrument be rolled back again through a complete revolution

of the wheel K. The index-sphere will not rotate, because the point of contact

is at the pole of the hemisphere.
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The tracing point has now traversed the boundary of a rectangle, whose

length is the circumference of the wheel A", and its breadth is equal to CD;

and during this operation, the index-sphere has made a complete revolution,

360" on the sphere, therefore, correspond to an area equal to the rectangle con-

tained by the circumference of the wheel and the distance CD. The size of

the wheel K being known, different values may be given to CD, so as to make

the instrument measure according to any required scale. This may be done,

either by shifting the position of the beam Tt, or by having several sockets

in the carriage E for the pin which directs the arm to work in.

15. If I have been too prolix in describing the action of an instrument

which has never been constructed, it is because I have myself derived great

satisfaction from following out the mechanical consequences of the mathematical

theorem on which the truth of this method depends. Among the other forms

of apparatus by which the action of the two spheres may be rendered available,

is one which might be found practicable in cases to which that here given

would not apply. In this instrument (Fig. 4) the areas are swept out by a

radius-vector of variable length, turning round a fixed point in the plane. The

area is thus swept out with a velocity varying as the angular velocity of the

radius-vector and the square of its length conjointly, and the construction of the

machine is adapted to the case as follows :

—

The hemisphere is fixed on the top of a vertical pillar, about which the rest

of the instrument turns. The index-sphere is supported as before by a ring and

framework. This framework turns about the vertical pillar along with the tra-

cing point, but has also a motion in a vertical plane, which is communicated to

it by a curved slide connected with the tracing point, and which, by means of a

prolonged arm, moves the framework as the tracing point is moved to and from

the pillar.

The form of the curved slide is such, that the tangent of the angle of

inclination of the line joining the centres of the spheres with the vertical is

proportional to the square of the distance of the tracing point from the vertical

axis of the instrument. The curve which fulfils this condition is an hyperbola,

one of whose asymptotes is vertical, and passes through the tracing point, and

the other horizontal through the centre of the hemisphere.

The other parts of this instrument are identical with those belonging to

that alreadv described.
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When the tracing point is made to traverse the boundary of a plane figure,

there is a continued rotation of the radius-vector combined with a change of

length. The rotation causes the index-sphere to roll on the fixed hemisphere,

while the length of the radius-vector determines the rate of its motion about its

axis, so that its whole motion measures the area swept out by the radius-vector

during the motion of the tracing point.

The areas measured by this instrument may either lie on one side of the

pillar, or they may extend all round it. In either case the action of the

instrument is the same as in the ordinary case. In this form of the instrument

we have the advantages of a fixed stand, and a simple motion of the tracing

point; but there seem to be difficulties in the way of supporting the spheres

and arranging the shde ; and even then the instrument would require a tall

pillar, in order to take in a large area.

16. It will be observed that I have said little or nothing about the prac-

tical details of these instruments. Many useful hints will be found in the large

work on Platometers, by Professor T. Gonnellu, who has given us an account

of the difficulties, as well as the results, of the construction of his most

elaborate instrument. He has also given some very interesting investio-ations

into the errors produced by various irregularities of construction, although, as

far as I am aware, he has not even suspected the error which the sliding of

the index-wheel over the disc must necessarily introduce. With respect to this,

and other points relating to the working of the instrument, the memoir of

Mr Sang, in the Transactions of this Society, is the most complete that I

have met with. It may, however, be as well to state, that at the time when
I devised the improvements here suggested, I had not seen that paper, though

I had seen the instrument standing at rest in the Crystal Palace.

Edinburgh, 30th January, 1855,

Note.—Since the design of the above instrument was submitted to the Society of Arts,

I have met with a description of an instrument combining simplicity of construction with
the power of adaptation to designs of any size, and at the same time more portable than
any other instrument of the kind. Althougli it does not act by perfect rolling, and there-

fore belongs to a different class of instruments from that described in this paper, I think

that its simplicity, and the beauty of the principle on which it acts, render it worth the
attention of engineers and mechanists, whether practical or theoretical. A full account of

this instrument is to be found in Moigno's " Cosmos," 5th year, Vol. viii., Part viii., p. 213,
published 20th February 1856. Description et Theorie du planiniHre polaire, invents par
J. Amsler, de Schaffuuse en Suisse.

Cambridge, 30th April, 1856.



[From the Cambridge Philosophical Society Proceedings, Vol. i. pp. 173—175.]

X. 0?i the Elementary TJieory of Optical Instruments.

The object of this communication was to shew how the magnitude and

position of the image of any object seen through an optical instrument could

be ascertained without knowing the construction of the instrument, by means

of data derived from two experiments on the instrument. Optical questions

are generally treated of with respect to the pencils of rays which pass through

the instrument. A pencil is a collection of rays which have passed through one

point, and may again do so, by some optical contrivance. Now if we suppose

all the points of a plane luminous, each will give out a pencil of rays, and

that collection of pencils which passes through the instrument may be treated

as a beam of hght. In a pencil only one ray passes through any point of

space, unless that point be the focus. In a beam an infinite number of rays,

corresponding each to some point in the luminous plane, passes through any

point; and we may, if we choose, treat this collection of rays as a pencil

proceeding from that point. Hence the same beam of light may be decomposed

into pencils in an infinite variety of ways; and yet, since we regard it as the

same collection of rays, we may study its properties as a beam independently

of the particular way in which we conceive it analysed into pencils.

Now in any instrument the incident and emergent beams are composed

of the same light, and therefore every ray in the incident beam has a

corresponding ray in the emergent beam. We do not know their path within

the instrument, but before incidence and after emergence they are straight

lines, and therefore any two points serve to determine the direction of each.

Let us suppose the instrument such that it forms an accurate image of a

plane object in a given position. Then every ray which passes through a given
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point of the object before incidence passes through the corresponding point of

the image after emergence, and this determines one point of the emergent ray.

If at any other distance from the instrument a plane object has an accurate

image, then there will be two other corresponding points given in the incident

and emergent rays. Hence if we know the points in which an incident ray

meets the planes of the two objects, we may find the incident ray by joining

the points of the two images corresponding to them.

It was then shewn, that if the image of a plane object be distinct, flat, and

similar to the object for two different distances of the object, the image of any

other plane object perpendicular to the axis will be distinct, flat and similar

to the object.

When the object is at an infinite distance, the plane of its image is the

principal focal plane, and the point where it cuts the axis is the piincipal

focus. The line joining any point in the object to the corresponding point of

the image cuts the axis at a fixed point called the focal centre. The distance

of the principal focus from the focal centre is called the principal focal length,

or simply the focal length.

There are two principal foci, etc., formed by incident parallel rays passing

in opposite directions through the instrument. If we suppose light always to

pass in the same direction through the instrument, then the focus of incident

rays when the emergent rays are parallel is the Jirst principal focus, and the

focus of emergent rays when the incident rays are parallel is the second

principal focus.

Corresponding to these we have first and second focal centres and focal

lengths.

Now let Q, be the focus of incident rays, P^ the foot of the perpendicular

from ^1 on the axis, Q, the focus of emergent rays, P, the foot of the corre-

sponding perpendicular, F^F^ the first and second principal foci, A^A^ the first and

second focal centres, then

F\F\ _PjQr_FJP,
A^Frp.QrFA.'

lines being positive when measured in the direction of the light. Therefore

the position and magnitude of the image of any object is found by a simple

proportion.
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In one important class of instruments there are no principal foci or focal

centres. A telescope in which parallel rays emerge parallel is an instance. In

such instruments, if m be the angular magnifying power, the linear dimensions

of the image are — of the object, and the distance of the image of the object

from the image of the object-glass is —^ of the distance of the object from

the object-glass. Rules were then laid down for the composition of instruments,

and suggestions for the adaptation of this method to second approximations, and

the method itself was considered with reference to the labours of Cotes, Smith,

Euler, Lagrange, and Gauss on the same subject.



[From the Report of the British Association, 1856.]

XI. On a Method of Drawing the Theoi-etical Forms of Faraday s Lines of

Force without Calculation.

The method applies more particularly to those cases in which the lines

are entirely parallel to one plane, such as the lines of electric currents in a

thin plate, or those round a system of parallel electric currents. In such cases,

if we know the forms of the lines of force in any two cases, we may combine

them by simple addition of the functions on which the equations of the lines

depend. Thus the system of lines in a uniform magnetic field is a series of

parallel straight lines at equal intervals, and that for an infinite straight electric

current perpendicular to the paper is a series of concentric circles whose radii

are in geometric progression. Having drawn these two sets of lines on two

separate sheets of paper, and laid a third piece above, draw a third set of lines

through the intersections of the first and second sets. This will be the system

of lines in a uniform field disturbed by an electric current. The most interesting

cases are those of uniform fields disturbed by a small magnet. If %ve draw a

circle of any diameter with the magnet for centre, and join those points in which

the circle cuts the lines of force, the straight lines so drawn will be parallel and

equidistant; and it is easily shown that they represent the actual lines of

force in a paramagnetic, diamagnetic, or crystallized body, according to the

nature of the original lines, the size of the circle, &c. No one can study

Faraday's researches without wishing to see the forms of the Hnes of force.

This method, therefore, by which they may be easily drawn, is recommended

to the notice of electrical students.



[From the Report of the British Association, 1856.]

XII. On the Unequal Sensibility of the Foramen Centrale to Light of

different Colours.

When observing tlie spectrum formed by looking at a long vertical slit

through a simple prism, I noticed an elongated dark spot running up and down

in the blue, and following the motion of the eye as it moved up and down

the spectrum, but refusing to pass out of the blue into the other colours. It

was plain that the spot belonged both to the eye and to the blue part of the

spectrum. The result to which I have come is, that the appearance is due to

the yellow spot on the retina, commonly called the Foramen Centrale of Soem-

mering. The most convenient method of observing the spot is by presenting

to the eye in not too rapid succession, blue and yellow glasses, or, still better,

allowing blue and yellow papers to revolve slowly before the eye. In this way

the spot is seen in the blue. It fades rapidly, but is renewed every time the

yellow comes in to relieve the effect of the blue. By using a Nicol's prism

along with this apparatus, the brushes of Haidinger are well seen in connexion

with the spot, and the fact of the brushes being the spot analysed by polarized

light becomes evident. If we look steadily at an object behind a series of bright

bars which move in front of it, we shall see a curious bending of the bars as

they come up to the place of the yellow spot. The part which comes over the

spot seems to start in advance of the rest of the bar, and this would seem to

indicate a greater rapidity of sensation at the yellow spot than in the surround-

ing retina. But I find the experiment diflScult, and I hope for better results

from more accurate observers.



[From the Report of the British Association, 1856.]

XIII. On the TJieory of Compound Colours with reference to Mixtures of Blue

and Yellow Light.

When we mix together blue and yellow paint, we obtain green paint. This

fact is well known to all who have handled colours ; and it is universally

admitted that blue and yellow make green. Red, yellow, and blue, being the

primary colours among painters, green is regarded as a secondary colour, arising

from the mixture of blue and yellow. Newton, however, found that the green

of the spectrum was not the same thing as the mixture of two colours of the

spectrum, for such a mixture could be separated by the prism, while the green

of the specti-um resisted further decomposition. But still it was believed that

yellow and blue would make a green, though not that of the spectrum. As

far as I am aware, the first experiment on the subject is that of M. Plateau,

who, before 1819, made a disc with alternate sectors of prussian blue and gam-

boge, and observed that, when spinning, the resultant tint was not green, but

a neutral gray, inclining sometimes to yellow or blue, but never to green. Prof

J. D, Forbes of Edinburgh made similar experiments in 1849, with the same

result. Prof Helmholtz of Konigsberg, to whom we owe the most complete

investigation on visible colour, has given the true explanation of this phaenomenon.

The result of mixing two coloured powders is not by any means the same as

mixing the beams of light which flow from each separately. In the latter case

we receive all the light which comes either from the one powder or the other.

In the former, much of the light coming from one powder falls on particles of

the other, and we receive only that portion which has escaped absorption by one

or other. Thus the light coming from a mixture of blue and yellow powder,

consists partly of light coming directly from blue particles or yellow particles,

and partly of light acted on by both blue and yellow particles. This latter light

is green, since the blue stops the red, yellow, and orange, and the yellow stops
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the blue and violet I have made experiments on the mixture of blue and

vellow light—by rapid rotation, by con\bined reflexion and transmission, by view-

ing them out of focus, in stripes, at a gre;it distiince, by throwing the colours

of the spectrum on a screen, and by receiving them into the eye directly ; and

I have arranged a portable apparatus by which any one may see the result of

this or any other mLxture of the colours of the spectrum. In all these cases

blue and yellow do not make green. I have also made experiments on the

mixture of coloured powders. Those which I used principally were "mineral

blue" (from copper) and "chrome-yellow." Other blue and yellow pigments gave

curious results, but it was more difficult to make the mixtures, and the greens

were less uniform in tint. The mixtures of these colours were made by weight,

and were painted on discs of paper, which were afterwards treated in the manner

described in my paper " On Colour as perceived by the Eye," in the Transactions

of the Boyal Soi.'icti/ of Edinburgh, Vol. xxi. Part 2. The \'isible effect of the

colour is estimated in terms of the standard-coloured papers :—vermilion (V),

ultramarine (U), and emerald-green (E). The accmucy of the results, and their

sijjnificance, can be best understood by referring to the paper before mentioned.

I shall denote mineral blue by B, and chrome-yellow by Y ; and B, Y, means

a mixture of three parts blue and five parts yellow.

Given Colour. Standard Colours. Coefficient

V. U. E. of brightness.

B, , 100 = 2 36 7 45

B- Y, , 100 = 1 18 17 37

B. Y, , 100 = 4 11 34 49

B, Y, , 100 =9 5 40 54

B, Y. , 100 = 15 1 40 56

B, Y, , 100 = 22 - 2 44 64

B, Y. , 100 = 35-10 51 76

B, Y, , 100 = 64-19 64 109

Y, , 100 = 180 -27 124 277

The columns Y, U, E give the proportions of the standard colours which

are equivalent, to 100 of the given colour; and the sum of V, U, E gives a co-

efficient, which gives a general idea of the brightness. It will be seen that the

tirst admixture of yellow diminishes the brightness of the blue. The negative

vidues of U indicate that a mixture of Y, U, and E cannot be made equivalent

to the given colour. The experiments from which these results were taken had
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the negative values tran-sferred to the other side of the equation. They were

all made by means of the colour-top, and were verified by repetition at different

times. It may be necessary to remark, in conclusion, with reference to the mode

of registering visible colours in terms of three arbitrary standard colours, that it

proceeds upon that theory of three primary elements in the sensation of colour,

which treats the investigation of the laws of visible colour as a bmnch of human

physiology, incapable of being deduced from the laws of light itself, as set forth

in physical optics. It takes advantage of the methods of optics to study vision

itself; and its appeal is not to physical principles, but to our consciousness of

our own sensations.



[From the Report of ike British Association, 1856.]

XIV. On an Instrument to illxLstrate Poinsdt's Theory of Rotation.

In studying the rotation of a solid body according to Poinsdt's method, we

have to consider the successive positions of the instantaneous axis of rotation

with reference both to directions fixed in space and axes assumed in the moving

body. The paths traced out by the pole of this axis on the invariable plane and

on the central ellipsoid form interesting subjects of mathematical investigation.

But when we attempt to follow with our eye the motion of a rotating body,

we find it difficult to determine through what point of the body the instantaneous

axis passes at any time,—and to determine its path must be still more difficult.

I have endeavoured to render visible the path of the instantaneous axis, and to

vary the circumstances of motion, by means of a top of the same kind as that

used by Mr Elliot, to illustrate precession^'. The body of the instrument is a

hoUow cone of wood, rising from a ring, 7 inches in diameter and 1 inch thick.

An iron axis, 8 inches long, screws into the vertex of the cone. The lower

extremity has a point of hard steel, which rests in an agate cup, and forms the

support of the instrument. An iron nut, three ounces in weight, is made to

screw on the axis, and to be fixed at any point; and in the wooden ring are

screwed four bolts, of three ounces, working horizontally, and four bolts, of one

ounce, working vertically. On the upper part of the axis is placed a disc of

card, on which are drawn four concentric rings. Each ring is divided into four

quadrants, which are coloured red, yellow, green, and blue. The spaces between

the rings are white. When the top is in motion, it is easy to see in which quad-

rant the instantaneous axis is at any moment and the distance between it and

the axis of the instrument; and we observe,— 1st. That the instantaneous axis

travels in a closed curve, and returns to its original position in the body. 2ndly.

* Transactions of the Royal Scottish Society of Arts, 1855.
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That by working the vertical bolts, we can make the axis of the instrument

the centre of this closed curve. It will then be one of the principal axes of

inertia. 3rdly. That, by working the nut on the axis, we can make the order

of colours either red, yellow, green, blue, or the reverse. When the order of

colours is in the same direction as the rotation, it indicates that the axis of the

instrument is that of greatest moment of inertia. 4thly. That if we screw the

two pairs of opposite horizontal bolts to different distances from the axis, the

path of the instantaneous pole will no longer be equidistant from the axis, but

will describe an ellipse, whose longer axis is in the direction of the mean axis

of the instrument. 5thly. That if we now make one of the two horizontal axes

less and the other greater than the vertical axis, the instantaneous pole will

separate from the axis of the instrument, and the axis will incline more and more

till the spinning can no longer go on, on account of the obliquity. It is easy

to see that, by attending to the laws of motion, we may produce any of the

above effects at pleasure, and illustrate many different propositions by means of

the same instrument.



[From the Transactions of the Royal Society of Edinburgh, Vol. xxi. Part iv.]

XV. On a Dynamical Top, for exhibiting the phenomena of the motion of a

system of invariable form about a fixed point, with some suggestions as to

the Earth's mx)tion.

(Read 20th April, 1857.)

To those who study the progress of exact science, the common spinning-top

is a symbol of the labours and the perplexities of men who had successfully

threaded the mazes of the planetary motions. The mathematicians of the last

age, searching through nature for problems worthy of their analysis, foimd in

this toy of their youth, ample occupation for their highest mathematical powers.

No illustration of astronomical precession can be devised more perfect than

that presented by a properly balanced top, but yet the motion of rotation has

intricacies far exceeding those of the theory of precession.

Accordingly, we find Euler and D'Alembert devoting their talent and their

patience to the estabhshment of the laws of the rotation of solid bodies.

Lagrange has incorporated his own analysis of the problem with his general

treatment of mechanics, and since his time M. Poins6t has brought the subject

under the power of a more searching analysis than that of the calculus, in

which ideas take the place of symbols, and intelligible propositions supersede

equations.

In the practical department of the subject, we must notice the rotatory

machine of Bohnenberger, and the nautical top of Troughton. In the first of

these instruments we have the model of the Gyroscope, by which Foucault has

been able to render visible the effects of the earth's rotation. The beautiful

experiments by which Mr J. EUiot has made the ideas of precession so familiar

to us are performed with a top, similar in some respects to Troughton's, though

not borrowed from his.
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The top which I have the honour to spin before the Society, differs from

that of Mr Elliot in having more adjustments, and in being designed to exhibit

far more complicated phenomena.

The arrangement of these adjustments, so as to produce the desired effects,

depends on the mathematical theory of rotation. The method of exhibiting the

motion of the axis of rotation, by means of a coloured disc, is essential to the

success of these adjustments. This optical contrivance for rendering visible the

nature of the rapid motion of the top, and the practical methods of applying

the theory of rotation to such an instrument as the one before us, are the

grounds on which I bring my instrument and experiments before the Society

as my own.

I propose, therefore, in the first place, to give a brief outline of such parts

of the theory of rotation as are necessary for the explanation of the phenomena
of the top.

I shall then describe the instrument with its adjustments, and the effect of

each, the mode of observing of the coloured disc when the top is in motion, and

the use of the top in illustrating the mathematical theory, with the method of

making the different experiments.

Lastly, I shall attempt to explain the nature of a possible variation in the

earth's axis due to its figure. This variation, if it exists, must cause a periodic

inequality in the latitude of every place on the earth's surface, going through its

period in about eleven months. The amount of variation must be very small,

but its character gives it importance, and the necessary observations are already

made, and only require reduction.

On the Tlieory of Rotation.

The theory of the rotation of a rigid system is strictly deduced from the
elementary laws of motion, but the complexity of the motion of the particles of
a body freely rotating renders the subject so intricate, that it has never been
thoroughly understood by any but the most expert mathematicians. Many who
have mastered the lunar theory have come to erroneous conclusions on this sub-

ject
;
and even Newton haa chosen to deduce the disturbance of the earth's axis

from his theory of the motion of the nodes of a free orbit, rather than attack
the problem of the rotation of a solid body.
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The method by which M. Poinsot has rendered the theory more manageable,

is by the liberal introduction of "appropriate ideas," chiefly of a geometrical

character, most of which had been rendered familiar to mathematicians by the

writings of Monge, but which then first became illustrations of this branch of

dynamics. If any further progress is to be made in simplifying and arranging

the theory, it must be by the method which Poins6t has repeatedly pointed out

as the only one which can lead to a true knowledge of the subject,—that of

proceeding from one distinct idea to another, instead of trusting to symbols and

equations.

An important contribution to our stock of appropriate ideas and methods has

lately been made by Mr R. B. Hayward, in a paper, "On a Direct Method of

estimatmg Velocities, Accelerations, and all similar quantities, with respect to axes,

moveable in any manner in Space." {Trans. Cambridge Phil. Soc. Vol. x. Part i.)

* In this communication I intend to confine myself to that part of the

subject which the top is intended to illustrate, namely, the alteration of the

position of the axis in a body rotating freely about its centre of gravity. I

shall, therefore, deduce the theory as briefly as possible, from two considera-

tions only,—the permanence of the original angular momentum in direction and

magnitude, and the permanence of the original vis viva.

•"' The mathematical difiSculties of the theory of rotation arise chiefly from

the want of geometrical illustrations and sensible images, by which we might

fix the results of analysis in our minds.

It is easy to understand the motion of a body revolving about a fixed axle.

Every point in the body describes a circle about the axis, and returns to its

original position after each complete revolution. But if the axle itself be in

motion, the paths of the different points of the body will no longer be circular

or re-entrant. Even the velocity of rotation about the axis requires a careful

definition, and the proposition that, in all motion about a fixed point, there is

always one Hne of particles forming an instantaneous axis, is usually given in

the form of a very repulsive mass of calculation. Most of these difficulties may

be got rid of by devoting a little attention to the mechanics and geometry of

the problem before entering on the discussion of the equations.

Mr Hayward, in his paper already referred to, has made great use of the

mechanical conception of Angular Momentum.

* 7th May, 1857. The paragraphs marked thus have been rewritten since the paper was read.
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Definition.— Jlie Angular Momentum of a particle about an axis is mea-

sured by the product of the mass of the particle, its velocity resolved in the normal

plane, and the perpendicular from the axis on the direction of motion.

^' The angular momentum of any system about an axis is the algebraical

sum of the angular momenta of its parts.

As the rate of change of the linear momentum of a particle measures the

moving force which acts on it, so the rate of change of angular momentum
measures the moment of that force about an axis.

All actions between the parts of a system, being pairs of equal and opposite

forces, produce equal and opposite changes in the angular momentum of those

parts. Hence the whole angular momentum of the system is not aflfected by

these actions and re-actions.

* When a system of invariable form revolves about an axis, the angular

velocity of every part is the same, and the angular momentum about the axis is

the product of the angular velocity and the moment of inertia about that axis.

* It is only in particular cases, however, that the whole angular momentum
can be estimated in this way. In general, the axis of angular momentum differs

from the axis of rotation, so that there will be a residual angular momentum
about an axis perpendicular to that of rotation, imless that axis has one of three

positions, called the principal axes of the body.

By referring everything to these three axes, the theory is greatly simplified.

The moment of inertia about one of these axes is greater than that about any

other axis through the same point, and that about one of the others is a mini-

mum. These two are at right angles, and the third axis is perpendicular to

their plane, and is called the mean axis.

* Let A, B, C be the moments of inertia about the principal axes through

the centre of gravity, taken in order of magnitude, and let Wj oj., cd^ be the

angular velocities about them, then the angular momenta wHl be Ao)„ Bco.

and Cwj

.

Angular momenta may be compounded like forces or velocities, by the

law of the "parallelogram," and since these three are at right angles to each

other, their resultant is

JA^:^JTB%JTC^' =H (1),

and this must be constant, both in magnitude and direction in space, since no
external forces act on the body.
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We shall call this axis of angular momentum the invariable axis. It is

perpendicular to what has been called the invariable plane. Poins6t calls it

the axis of the couple of impulsion. The direction-cosines of this axis in the

body are,

, A(o, B(o. Ca)o
« =^, m = -^, ^ =^-

Since I, m and n vary during the motion, we need some additional

condition to determine the relation between them. We find this in the property

of the vis viva of a system of invariable form in which there is no friction.

The vis viva of such a system must be constant. We express this in the

equation

Aoj,' + B(o,'+C(o,'=V (2).

Substituting the values of Wi, w^, Wj in terms of I, m, n,

Let -i=a\ -T, = h\ ^=c\ = e'A ' B ' C~ ' W
and this equation becomes

a'Z'+6W +cV = e» (3),

and the equation to the cone, described by the invariable axis within the

body, is

(a'-e')x' + {h'-e')y'-\-{c'-e')z' = (4).

The intersections of this cone with planes perpendicular to the principal

axes are found by putting x, y, or z, constant in this equation. By giving

e various values, all the different paths of the pole of the invariable axis,

corresponding to different initial circumstances, may be traced.

*In the figiu-es, I have supposed a' = 100, 6'= 107, and c" = 110. The
first figure represents a section of the various cones by a plane perpendicular

to the axis of x, which is that of greatest moment of inertia. These sections

are ellipses having their major axis parallel to the axis of h. The value of e*

corresponding to each of these curves is indicated by figures beside the curve.

The ellipticity increases with the size of the ellipse, so that the section

corresponding to 6^=107 would be two parallel straight lines (beyond the bounds

of the figure), after which the sections would be hyperbolas.
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*The second figure represents the sections made by a plane, perpendicular

to the mean axis. They are all hyperbolas, except when 6^=107, when the

section is two intersecting straight lines.

The third figure shows the sections perpendicular to the axis of least

moment of inertia. From e'=110 to ^"=107 the sections are ellipses, e*=107

gives two parallel straight lines, and beyond these the curves are hyperbolas.

*The fourth and fifth figures show the sections of the series of cones

made by a cube and a sphere respectively. The use of these figures is to

exhibit the connexion between the different curves described about the three

principal axes by the invariable axis during the motion of the body.

*We have next to compare the velocity of the invariable axis with respect

to the body, with that of the body itself round one of the principal axes.

Since the invariable axis is fixed in space, its motion relative to the body

must be equal and opposite to that of the portion of the body through which

it passes. Now the angular velocity of a portion of the body whose direction

-

cosines are I, m, n, about the axis of x is

Substituting the values of w^, w^, w,, in terms of I, m, n, and taking

account of equation (3), this expression becomes

Changing the sign and putting 1=^tt we have the angular velocity of

the invariable axis about that of x

_ o>, e' — a"

always positive about the axis of greatest moment, negative about that of least

moment, and positive or negative about the mean axis according to the value

of e*. The direction of the motion in every case is represented by the arrows

in the figures. The arrows on the outside of each figure indicate the direction

of rotation of the body,

*If we attend to the curve described by the pole of the invariable axis
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on the sphere in fig. 5, we shall see that the areas described by that point,

if projected on the plane of yz, are swept out at the rate

a"

Now the semi-axes of the projection of the spherical ellipse described by

the pole are

Dividing the area of this ellipse by the area described during one revo-

lution of the body, we find the number of revolutions of the body during

the description of the ellipse

—

The projections of the spherical ellipses upon the plane of yz are all

similar ellipses, and described in the same number of revolutions; and in each

ellipse so projected, the area described in any time is proportional to the

number of revolutions of the body about the axis of x, so that if we measure

time by revolutions of the body, the motion of the projection of the pole of

the invariable axis is identical with that of a body acted on by an attractive

central force varying directly as the distance. In the case of the hyperbolas

in the plane of the greatest and least axis, this force must be supposed

repulsive. The dots in the figures 1, 2, 3, are intended to indicate roughly

the progress made by the invariable axis during each revolution of the body

about the axis of x, y and z respectively. It must be remembered that the

rotation about these axes varies with their inclination to the invariable axis,

so that the angular velocity diminishes as the inclination increases, and there-

fore the areas in the ellipses above mentioned are not described with uniform

velocity in absolute time, but are less rapidly swept out at the extremities of

the major axis than at those of the minor.

*When two of the axes have equal moments of inertia, or h — c, then

the angular velocity (o^ is constant, and the path of the invariable axis is

circular, the number of revolutions of the body during one circuit of the

invariable axis, being
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The motion is in the same direction as that of rotation, or in the opposite

direction, according as the axis of x is that of greatest or of least moment

of inertia.

*Both in this case, and in that in which the three axes are unequal, the

motion of the invariable axis in the body may be rendered very slow by

dimlulshing the difference of the moments of inertia. The angular velocity of

the axis of x about the invariable axis in space is

to.

a'(l-l')'

which is greater or less than Wj, as e* is greater or less than a\ and, when

these quantities are nearly equal, is very nearly the same as Wj itself. This

quantity indicates the rate of revolution of the axle of the top about its

mean position, and is very easily observed.

*The instantaneous axis is not so easily observed. It revolves round the

invariable axis in the same time with the axis of x, at a distance which Is very

small in the case when a, h, c, are nearly equal. From its rapid angular motion

in space, and Its near coincidence with the invariable axis, there Is no advantage

in studying its motion in the top.

*By making the moments of inertia very unequal, and in definite proportion

to each other, and by drawing a few strong lines as diameters of the disc, the

combination of motions will produce an appearance of epicycloids, which are the

result of the continued intersection of the successive positions of these lines, and

the cusps of the epicycloids lie in the curve in which the instantaneous axis

travels. Some of the figures produced in this way are very pleasing.

In order to illustrate the theory of rotation experimentally, we must have

a body balanced on its centre of gravity, and capable of having Its principal

axes and moments of inertia altered in form and position within certain limits.

We must be able to make the axle of the instrument the greatest, least, or

mean principal axis, or to make it not a principal axis at all, and we must be

able to see the position of the Invariable axis of rotation at any time. There

must be three adjustments to regulate the position of the centre of gravity,

three for the magnitudes of the moments of inertia, and three for the directions

of the principal axes, nine Independent adjustments, which may be distributed

as we please among the screws of the instrument.
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The form of the body of the instrument which I have found most suitable is

that of a bell (p. 262, fig. 6). (7 is a hollow cone of brass, i2 is a heavy

ring cast in the same piece. Six screws, with heavy heads, x, y, z, x, y', z,

work horizontally in the ring, and three similar screws, I, m, n, work vertically

through the ring at equal intervals. AS is the axle of the instrument, SS is

a brass screw working in the upper part of the cone (7, and capable of being

firmly clamped by means of the nut c. 5 is a cylindrical brass bob, which may
be screwed up or down the axis, and fixed in its place by the nut 7).

The lower extremity of the axle is a fine steel point, finished without emery,

and afterwards hardened. It runs in a little agate cup set in the top of the

pillai' P. If any emery had been embedded in the steel, the cup would soon

be worn out. The upper end of the axle has also a steel point by which it may

be kept steady while spinning.

When the instrument is in use, a coloured disc is attached to the upper

end of the axle.

It will be seen that there are eleven adjustments, nine screws in the brass

ring, the axle screwing in the cone, and the bob screwing on the axle. The

advantage of the last two adjustments is, that by them large alterations can be

made, which are not possible by means of the small screws.

The first thing to be done with the instrument is, to make the steel point

at the end of the axle coincide with the centre of gravity of the whole. This

is done roughly by screwing the axle to the right place nearly, and then balancing

the instrument on its point, and screwing the bob and the horizontal screws till

the instrument will remain balanced in any position in which it is placed.

When this adjustment is carefully made, the rotation of the top has no

tendency to shake the steel point in the agate cup, however irregular the motion

may appear to be.

The next thing to be done, is to make one of the principal axes of the

central ellipsoid coincide with the axle of the top.

To effect this, we must begin by spinning the top gently about its axle,

steadying the upper part with the finger at first. If the axle is already a

principal axis the top will continue to revolve about its axle when the finger is

removed. If it is not, we observe that the top begins to spin about some other

axis, and the axle moves away from the centre of motion and then back to it

again, and so on, alternately widening its circles and contracting them.
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It is impossible to observe this motion successfully, without the aid of the

coloured disc placed near the upper end of the axis. This disc is divided into

sectors, and strongly coloured, so that each sector may be recognised by its colour

when in rapid motion. If the axis about which the top is really revolving, falls

within this disc, its position may be ascertained by the colour of the spot at the

centre of motion. If the central spot appears red, we know that the invariable

axis at that instant passes through the red part of the disc.

In this way we can trace the motion of the invariable axis in the revolving

body, and we find that the path which it describes upon the disc may be a circle,

an ellipse, an hyperbola, or a straight line, according to the arrangement of the

instrument.

In the case in which the invariable axis coincides at first with the axle of

the top, and returns to it after separating from it for a time, its true path is

a circle or an ellipse having the axle in its circumference. The true principal

axis is at the centre of the closed curve. It must be made to coincide with the

axle by adjusting the vertical screws I, in, n.

Suppose that the colour of the centre of motion, when farthest from the

axle, indicated that the axis of rotation passed through the sector L, then the

principal axis must also lie in that sector at half the distance from the axle.

If this principal axis be that of greatest moment of inertia, we must raise

the screw I in order to bring it nearer the axle A. If it be the axis of least

moment we must lower the screw /. In this way we may make the principal

axis coincide with the axle. Let us suppose that the principal axis is that of

greatest moment of inertia, and that we have made it coincide with the axle of

the instrument. Let us also suppose that the moments of inertia about the

other axes are equal, and very little less than that about the axle. Let the top

be spun about the axle and then receive a disturbance which causes it to spin

about some other axis. The instantaneous axis wiU not remain at rest either

in space or in the body. In space it will describe a right cone, completing a

revolution in somewhat less than the time of revolution of the top. In the

body it will describe another cone of larger angle in a period which is longer

as the difierence of axes of the body is smaller.' The invariable axis will be

fixed in space, and describe a cone in the body.

The relation of the different motions may be understood from the following

illustration. Take a hoop and make it revolve about a stick which remains at

rest and touches the inside of the hoop. The section of the stick represents the
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path of the instantaneous axis in space, the hoop that of the same axis in the

body, and the axis of the stick the invariable axis. The point of contact repre-

sents the pole of the instantaneous axis itself, travelling many times round the

stick before it gets once round the hoop. It is easy to see that the direction in

which the instantaneous axis travels round the hoop, is in this case the same as

that in which the hoop moves round the stick, so that if the top be spinning in

the direction i, M, N, the colours will appear in the same order.

By screwing the bob B up the axle, the difference of the axes of inertia

may be diminished, and the time of a complete revolution of the invariable

axis in the body increased. By observing the number of revolutions of the top

in a complete cycle of colours of the invariable axis, we may determine the

ratio of the moments of inertia.

By screwing the bob up farther, we may make the axle the principal axis of

least moment of inertia.

The motion of the instantaneous axis will then be that of the point of

contact of the stick with the outside of the hoop rolling on it. The order of

colours will be N, M, L, if the top be spinning in the direction Z, M, N, and

the more the bob is screwed up, the more rapidly will the colours change, till

it ceases to be possible to make the observations correctly.

In calculating the dimensions of the parts of the instrument, it is necessary

to provide for the exhibition of the instrument with its axle either the greatest

or the least axis of inertia. The dimensions and weights of the parts of the top

which I have found most suitable, are given in a note at the end of this paper.

Now let us make the axes of inertia in the plane of the ring unequal. We
may do this by screwing the balance screws x and x^ farther from the axle

without altering the centre of gravity.

Let us suppose the bob B screwed up so as to make the axle the axis of

least inertia. Then the mean axis is parallel to xt^, and the greatest is at right

angles to xdd^ in the horizontal plane. The path of the invariable axis on the

disc is no longer a circle but an ellipse, concentric with the disc, and having

its major axis parallel to the mean axis xo^.

The smaller the difference between the moment of inertia about the axle and

about the mean axis, the more eccentric the ellipse will be; and if, by screwing

the bob down, the axle be made the mean axis, the path of the invariable axis

will be no longer a closed curve, but an hyperbola, so that it will depart alto-

gether from the neighbourhood of the axle. When the top is in this condition
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it must be spun gently, for it is very difficult to manage it when its motion

gets more and more eccentric.

When the bob is screwed still farther down, the axle becomes the axis of

greatest inertia, and a:x^ the least. The major axis of the ellipse described by
the invariable axis will now be perpendicular to ccx", and the farther the bob

is screwed down, the eccentricity of the ellipse will diminish, and the velocity

with which it is described will increase.

I have now described all the phenomena presented by a body revolving freely

on its centre of gravity. If we wish to trace the motion of the invariable axis

by means of the coloured sectors, we must make its motion very slow compared
vvith that of the top. It is necessary, therefore, to make the moments of inertia

about the principal axes very nearly equal, and in this case a very small change

in the position of any part of the top will greatly derange the 'position of the

principal axis. So that when the top is well adjusted, a single turn of one of

the screws of the ring is sufficient to make the axle no longer a principal axis,

and to set the true axis at a considerable inclination to the axle of the top.

All the adjustments must therefore be most carefully arranged, or we may
have the whole apparatus deranged by some eccentricity of spinning. The method

of making the principal axis coincide with the axle must be studied and prac-

tised, or the first attempt at spinning rapidly may end in the destruction of

the top, if not of the table on which it is spun.

On the Earth's Motion.

We must remember that these motions of a body about its centre of gra-

vity, are not illustrations of the theory of the precession of the Equinoxes.

Precession can be illustrated by the apparatus, but we must arrange it so that

the force of gravity acts the part of the attraction of the sun and moon in

producing a force tending to alter the axis of rotation. This is easily done by

bringing the centre of gravity of the whole a little below the point on which

it spins. The theory of such motions is far more easily comprehended than

that which we have been investigating.

But the earth is a body whose principal axes are unequal, and from the

phenomena of precession we can determine the ratio of the polar and equatorial

axes of the "central ellipsoid;" and supposing the earth to have been set in

motion about any axis except the principal axis, or to have had its original
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axis disturbed in any way, its subsequent motion would be that of the top

when the bob is a little below the critical position.

The axis of angular momentum would have an invariable position in space,

and would travel with respect to the earth round the axis of figure with a velo-

C—A
city = 0) -—:— where w is the sidereal angular velocity of the earth. The apparent

pole of the earth would travel (with respect to the earth) from west to east

A
round the true pole, completing its circuit in

jy—^ sidereal days, which appears

to be about 325*6 solar days.

The instantaneous axis would revolve about this axis in space in about

a day, and would always be in a plane with the true axis of the earth and

the axis of angular momentum. The effect of such a motion on the apparent

position of a star would be, that its zenith distance would be increased and

diminished during a period of 325-6 days. This alteration of zenith distance

is the same above and below the pole, so that the polar distance of the star

is unaltered. In fact the method of finding the pole of the heavens by obser-

vations of stars, gives the pole of the invan-aUe axis, which is altered only by
external forces, such as those of the sun and moon.

There is therefore no change in the apparent polar distance of stars due to

this cause. It is the latitude which varies. The magnitude of this variation

cannot be determined by theory. The periodic time of the variation may be

found approximately from the known dynamical properties of the earth. The
epoch of maximum latitude cannot be found except by observation, but it must
be later in proportion to the east longitude of the observatory.

In order to determine the existence of such a variation of latitude, I have

examined the observations of Polaris with the Greenwich Transit Circle in the

years 1851-2-3-4. The observations of the upper transit during each month were

collected, and the mean of each month found. The same was done for the lower

transits. The difference of zenith distance of upper and lower transit is twice

the polar distance of Polaris, and half the sum gives the co-latitude of Greenwich.

In this way I found the apparent co-latitude of Greenwich for each month
of the four years specified.

There appeared a very slight indication of a maximum belonging to the set

of months,

March, 51. Feb. 52. Dec. 52. Nov. 53. Sept. 54.
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Tliis result, liowever, is to be regarded as very doubtful, as there did not

appear to be evidence for any variation exceeding half a second of space, and

more observations would be required to establish the existence of so small a

variation at all.

I therefore conclude that the earth has been for a long time revolving

about an axis very near to the axis of figure, if not coinciding with it. The

cause of this near coincidence is either the original softness of the earth, or

the present fluidity of its interior. The axes of the earth are so nearly equal,

that a considerable elevation of a tract of country might produce a deviation

of the principal axis within the limits of observation, and the only cause which

would restore the uniform motion, would be the action of a fluid which would

gradually diminish the oscillations of latitude. The permanence of latitude essen-

tially depends on the inequality of the earth's axes, for if they had been all

equal, any alteration of the crust of the earth would have produced new prin-

cipal axes, and the axis of rotation would travel about those axes, altering the

latitudes of all places, and yet not in the least altering the position of the

axis of rotation among the stars.

Perhaps by a more extensive search and analysis of the observations of

different observatories, the nature of the periodic variation of latitude, if it exist,

may be determined. I am not aware of any calculations having been made to

prove its non-existence, although, on dynamical grounds, we have every reason

to look for some very small variation having the periodic time of 325-6 days

nearly, a period which is clearly distinguished from any other astronomical cycle,

and therefore easily recognised.
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NOTK

Dimensions and Weights of the parts of the Dynamical Top.

I. Body of the top

—

Mean diameter of ring, 4 inches.

Section of ring, | inch square.

The conical portion rises from the upper and inner edge of the ring, a

height of 1| inches from the base.

The whole body of the top weighs 1 lb. 7 oz.

Each of the nine adjusting screws has its screw 1 inch long, and the

screw and head together weigh 1 ounce. The whole weigh . . 9 „

II. Axle, &c.—

Length of axle 5 inches, of which | inch at the bottom is occupied by

the steel point, 3J inches are brass with a good screw turned on it,

and the remaining inch is of steel, with a sharp point at the top.

The whole weighs 1^ „

The bob B has a diameter of 1'4< inches, and a thickness of •4. It weighs 2| „

The nuts b and c, for clamping the bob and the body of the top on the

axle, each weigh ^ oz. 1 „

Weight of whole top 2 lb. 5J oz.

The best arrangement, for general observations, is to have the disc of card divided

into four quadrants, coloured with vermilion, chrome yellow, emerald green, and ultramarine.

These are bright colours, and, if the vermilion is good, they combine into a grayish tint

when the revolution is about the axle, and burst into brilliant colours when the axis is

disturbed. It is useful to have some concentric circles, drawn with ink, over the colours,

and about 12 radii drawn in strong pencil lines. It is easy to distinguish the ink from

the pencil lines, as they cross the invariable axis, by their want of lustre. In this way,

the path of the invariable axis may be identified with great accuracy, and compared with

theory.
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[From the Philosophical Magazine, Vol. xiv.]

XVI. Account of Experiments on the Perception of Colour.

To the Editors of the Philosophical Magazine and Journal.

Gentlemen,

The experiments which I intend to describe were undertaken in order

to render more perfect the quantitative proof of the theory of three primary

colours. According to that theory, every sensation of colour in a perfect human

eye is distinguished by three, and only three, elementary qualities, so that in

mathematical language the quahty of a colour may be expressed as a function

of three independent variables. There is very little evidence at present for

deciding the precise tints of the true primaries. I have ascertained that a

certain red is the sensation wanting in colour-blind eyes, but the mathematical

theory relates to the number, not to the nature of the primaries. If, with Sir

David Brewster, we assume red, blue, and yellow to be the primary colours, this

amounts to saying that every conceivable tint may be produced by adding

together so much red, so much yellow, and so much blue. This is perhaps the

best method of forming a provisional notion of the theory. It is evident that if

any colour could be found which could not be accurately defined as so much of

each of the three primaries, the theory would fall to the ground. Besides this,

the truth of the theory requires that every mathematical consequence of assum ing

every colour to be the result of mixture of three primaries should also be true.

I have made experiments on upwards of 100 diiferent artificial colours, con-

sisting of the pigments used in the arts, and their mechanical mixtures. These

experiments were made primarily to trace the effects of mechanical mixture on

various coloured powders ; but they also afford evidence of the truth of the

theory, that all these various colours can be referred to three primaries. The
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following experiments relate to the combinations of six well-defined colours only,

and I shall describe them the more minutely, as I hope to induce those who

have good eyes to subject them to the same trial of skill in distinguishing

tints.

The method of performing the experiments is described in the Transactions

of the Royal Society of Edinburgh, Vol. xxi. Part 2. The colour- top or teetotum

which I used may be had of Mr J. M. Bryson, Edinburgh, or it may be easily

extemporized. Any rotatory apparatus which will keep a disc revolving steadily

and rapidly in a good light, without noise or disturbance, and can be easily

stopped and shifted, will do as well as the contrivance of the spinning-top.

The essential part of the experiment consists in placing several discs of

coloured paper of the same size, and slit along a radius, over one another, so

that a portion of each is seen, the rest being covered by the other discs. By

sliding the discs over each other the proportion of each colour may be varied,

and by means of divisions on a circle on which the discs lie, the proportion of

each colour may be read off. My circle was divided into 100 parts.

On the top of this set of discs is placed a smaller set of concentric discs,

so that when the whole is in motion round the centre, the colour resulting from

the mixture of colours of the small discs is seen in the middle of that arising

from the laro-er discs. It is the object of the experimenter to shift the colours

till the outer and inner tints appear exactly the same, and then to read off the

proportions.

It is easy to deduce from the theory of three primary colours what must

be the number of discs exposed at one time, and how much of each colour must

appear.

Every colour placed on either circle consists of a certain proportion of each

of the primaries, and in order that the outer and inner circles may have precisely

the same resultant colour in every respect, there must be the same amount of

each of the primary colours in the outer and inner circles. Thus we have as

many conditions to fulfil as there are primary colours; and besides these we

have two more, because the whole number of divisions in either the outer or

the inner circle is 100, so that if there are three primary colours there wiU be

five conditions to fulfil, and this will require five discs to be disposable, and

these must be arranged so that three are matched against two, or four against one.

If we take six difierent colours, we may leave out any one of the six, and

so form six different combinations of five colours. It is plain that these six
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combinations must be equivalent to two equations only, if the theory of three

primaries be true.

The method which I have found most convenient for registering the result

of an experiment, after an identity of tint has been obtained in the inner and

outer circles, is the following :

—

Write down the names or symbols of the coloured discs each at the top of

a column, and underneath write the number of degrees of that colour observed,

calling it + when the colour is in the outer circle, and — when it is in the inner

circle ; then equate the whole to zero. In this way the account of each colour

is kept in a separate column, and the equations obtained are easily combined and

reduced, without danger of confounding the colours of which the quantities have

been measured. The following experiments were made between the 3rd and 11th

of September, 1856, about noon of each day, in a room fronting the north,

without curtains or any bright-coloured object near the window. The same

combination was never made twice in one day, and no thought was bestowed

upon the experiments except at the time of observation. Of course the gradua-

tion was never consulted, nor former experiments referred to, till each combi-

nation of colours had been fixed by the eye alone; and no reduction waa

attempted till all the experiments were concluded.

The coloured discs were cut from paper painted of the following colours :
—

Vermilion, Ultramarine, Emerald-green, Snow-white, Ivory-black, and Pale

Chrome-yellow. They are denoted by the letters V, U, G, W, B, Y respectively.

These colours were chosen, because each is well distinguished from the rest, so

that a small change of its intensity in any combination can be observed. Two

discs of each colour were prepared, so that in each combination the colours might

occasionally be transposed from the outer circle to the inner.

The first equation was formed by leaving out vermilion. The remaining

colours are Ultramarine-blue, Emerald-green, White, Black, and Yellow. We
might suppose, that by mixing the blue and yellow in proper proportions, we

should get a green of the same hue as the emerald-green, but not so intense,

80 that in order to match it we should have to mix the green with white to

dilute it, and with black to make it darker. But it is not in this way that we

have to arrange the colours, for our blue and yellow produce a pinkish tint, and

never a green, so that we must add green to the combination of blue and yellow,

to produce a neutral tint, identical with a mixture of white and black.
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Blue, green, and yellow must therefore be combined on the large discs, and

stand on one side of the equation, and black and white, on the small discs, must

stand on the other side. In order to facilitate calculations, the colours are

always put down in the same order; but those belonging to the small discs

are marked negative. Thus, instead of writing

54U + UG + 32Y = 32W + 68B,

we write +54U + 14G-32W-68B + 32Y = 0.

The sum of all the positive terms of such an equation is 100, being the

whole number of divisions in tne circle. The sum of the negative terms is

also 100.

The second equation consists of all the colours except blue ; and in this

way we obtain six different combinations of five colours.

Each of these combinations was formed by the unassisted judgment of my

eye, on six different occasions, so that there are thirty-six independent observa-

tions of equations between five colours.

Table I. gives the actual observations, with their dates.

Table II. gives the result of summing together each group of six equations.

Each equation in Table 11. has the sums of its positive and negative co-

eflBcients each equal to 600.

Having obtained a number of observations of each combination of colours,

we have next to test the consistency of these results, since theoretically two

equations are sufficient to determine all the relations among six colours. We

must therefore, in the first place, determine the comparative accuracy of the

different sets of observations. Table III. gives the averages of the errors of

each of the six groups of observations. It appears that the combination IV. is

the least accurately observed, and that VI. is the best.

Table IV. gives the averages of the errors in the observation of each colour

in the whole series of experiments. This Table was computed in order to detect

any tendency to colour-blindness in my own eyes, which might be less accurate

in discriminating red and green, than in detecting variations of other colours.

It appears, however, that my observations of red and green were more accurate

than those of blue or yellow. White is the most easily observed, from the
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brilliancy of the colour, and black is liable to the greatest mistakes. I would

recommend this method of examining a series of experiments as a means of

detecting partial colour-blindness, by the different accuracy in observing differ-

ent colours. The next operation is to combine all the equations according to

their values. Each was first multiplied by a coefficient proportional to its ac-

curacy, and to the coefficient of white in that equation. The result of adding

all the equations so found is given in equation (W).

Equation (Y) is the result of similar operations with reference to the

yellow on each equation.

We have now two equations, from which to deduce six new equations, by

eliminating each of the six colours in succession. We must first combine the

equations, so as to get rid of one of the colours, and then we must divide by

the sum of the positive or negative coefficients, so as to reduce the equations

to the form of the observed equations. The results of these operations are given

in Table V., along with the means of each group of six observations. It will

be seen that the differences between the results of calculation from two equations

and the six independent observed equations are very small. The errors in red

and green are here again somewhat less than in blue and yellow, so that there

is certainly no tendency to mistake red and green more than other colours.

The average difference between the observed mean value of a colour and the

calculated value is 77 of a degree. The average error of an observation in any

group from the mean of that group was '92. No observation was attempted

to be registered nearer than one degree of the top, or yo7 of ^ circle ; so that

this set of observations agrees with the theory of three primary colours quite

as far as the observations can warrant us in our calculations ; and I think that

the human eye has seldom been subjected to so severe a test of its power of

distinguishing colours. My eyes are by no means so accurate in this respect as

many eyes I have examined, but a little practice produces great improvement

even in inaccurate observers.

I have laid down, according to Newton's method, the relative positions of

the five positive colours with which I worked. It will be seen that W lies

within the triangle VUG, and Y outside that triangle.

The first combination. Equation I., consisted of blue, yellow, and green,

taken in such proportions that their centre of gravity falls at W,
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In Equation II. a mixture of red and green, represented in the diagram

by the point 2, is seen to be equivalent to a mixture of white and yellow, also

represented by 2, which is a pale yellow tint.

Equation III. is between a mixture of blue and yellow and another of

white and red. The resulting tint is at the intersection of YU and WV
;

that

is, at the point 3, which represents a pale pink grey.

Equation IV. is between VG and UY, that is, at 4, a dirty yellow.

Equation V. is between a mixture of white, red, and green, and a mixture

of blue and yellow at the point 5, a pale dirty yellow.

Equation VI. has W. for its resulting tint.

Blue, U.

Bed, V G, Green.

Y, Yellow.

Of all the resulting tints, that of Equation IV. is the furthest from white ;

and we find that the observations of this equation are affected with the greatest

errors. Hence the importance of reducing the resultant tint to as nearly a

neutral colour as possible.

It is hardly necessary for me to observe, that the whole of the numerical

results which I have given apply only to the coloured papers which I used,

and to them only when illuminated by daylight from the north at mid-day in

September, latitude 55". In the evening, or in winter, or by candlelight, the

results are very different. I believe, however, that the results would differ far

less if observed by different persons, than if observed under different lights

;

for the apparatus of vision is wonderfully similar in different eyes, and even in

colour-blind eyes the system of perception is not different, but defective.
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Table I.—The observations arranged in groups.

Equation I.
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These operations being performed, gave

V. U. G. W. B. Y.

(W) + 701 + 2282 + 1060-1474-3641 + 1072 = 0.

(Y) +2863-2761 + 1235 + 1131^ 299-2767 = 0.

From these were obtained the following results by elimination:

—

Table V.

Equation

J
r From (W) and (Y)

\ From observation
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XVII. On the General Laws of Optical Instruments.

The optical effects of compound instruments have been generally deduced

from those of the elementary parts of which they are composed. The formulae

given in most works on Optics for calculating the effect of each spherical sur-

face are simple enough, but, when we attempt to carry on our calculations from

one of these surfaces to the next, we arrive at fractional expressions so com-

phcated as to make the subsequent steps very troublesome.

Euler (Acad. R. de Berlin, 1757, 1761. Acad. R. de Paris, 1765) has attacked

these expressions, but his investigations are not easy reading. Lagrange (Acad.

Berhn, 1778, 1803) has reduced the case to the theory of continued fractions

and so obtained general laws.

Gauss [Dioptrische Untersuchungen, Gottingen, 1841) has treated the subject

with that combination of analytical skiU with practical ability which he displays

elsewhere, and has made use of the properties of principal foci and principal

planes. An account of these researches is given by Prof. Miller in the third

volume of Taylor's Scientific Memoirs. It is also given entire in French by

M. Bravais in Liouvilles Journal for 1856, with additions by the translator.

The method of Gauss has been followed by Prof Listing in his Treatise

on the DioptHcs of the Eye (in Wagner's Handworterhuch der Physiologie) from

whom I copy these references, and by Prof Helmholtz in his Treatise vn

Physiological Optics (in Karsten's Cyclopadie).

The earliest general investigations are those of Cotes, given in Smith's

Optics, II. 76 (1738). The method there is geometrical, and perfectly general,

but proceeding from the elementary cases to the more complex by the method

of mathematical induction. Some of his modes of expression, as for instance his

measure of "apparent distance," have never come into use, although his results

may easily be expressed more intelligibly ; and indeed the whole fabric of
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Geometrical Optics, as conceived by Cotes and laboured by Smith, has fallen

into neglect, except among the writers before named. Smith tells us that it

was with reference to these optical theorems that Newton said " If Mr Cotes

had lived we might have known something."

The investigations which I now offer are intended to show how simple and

how general the theory of instruments may be rendered, by considering the

optical effects of the entire instrument, without examining the mechanism by

which those effects are obtained. I have thus established a theory of "perfect

instruments," geometrically complete in itself, although I have also shown, that

no instrument depending on refraction and reflexion, (except the plane mirror)

can be optically perfect. The first part of this theory was conununicated to

the Philosophical Society of Cambridge, 28th April, 1856, and an abstract will

be found in the Philosophical Magazine, November, 1856. Propositions VIII.

and IX. are now added. I am not aware that the last has been proved before.

In the following propositions I propose to establish certain rules for deter-

mining, from simple data, the path of a ray of light after passing through any

optical instrument, the position of the conjugate focus of a luminous point, and

the magnitude of the image of a given object. The method which I shall use

does not require a knowledge of the internal construction of the instrument and

derives all its data from two simple experiments.

There are certain defects incident to optical instruments from which, in the

elementary theory, we suppose them to be free. A perfect instrument must

fulfil three conditions

:

I. Every ray of the pencil, proceeding from a single point of the object,

must, after passing through the instrument, converge to, or diverge from, a

single point of the image. The corresponding defect, when the emergent rays

have not a common focus, has been appropriately called (by Dr Whewell)

Astigmatism.

II. If the object is a plane surface, perpendicular to the axis of the

instrument, the image of any point of it must also lie in a plane perpendicular

to the axis. When the points of the image lie in a curved surface, it is said

to have the defect of curvature.

III. The image of an object on this plane must be similar to the object,

whether its linear dimensions be altered or not; when the image is not similar

to the object, it is said to be distorted.
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An image free from these three defects is said to be jycrfect.

In Fig. 1, p. 285, let A^x^a^ represent a plane object perpendicular to the

axis of an instrument represented by I., then if the instrument is perfect, as

regards an object at that distance, an image A.a.p^_ will be formed by the

emergent rays, which will have the following properties :

I. Every ray, which passes through a point a^ of the object, will pass

through the corresponding point a. of the image.

II. Every point of the image will lie in a plane perpendicular to the axis.

III. The figure A.ap^ will be similar and similarly situated to the figure

Now let us assume that the instrument is also perfect as regards an object

in the plane i?i?>,y8i perpendicular to the axis through -B„ and that the image

of such an object is in the plane B^fio and similar to the object, and we

shall be able to prove the following proposition

:

Prop. I. If an instrument give a perfect image of a plane object at two

different distances from the instrument, all incident rays having a common focus

will have a common focus after emergence.

Let Pj be the focus of incident rays. Let P-,a^^ be any incident ray.

Then, since every ray which passes through a^ passes through a,,, its image after

emergence, and since every ray which passes through Z;, passes through 6,, the

direction of the ray P^a^\ after emergence must be ah..

Similarly, since a^ and ySj are the images of Oj and ^i, if P^a^^^ be any

other ray, its direction after emergence will be a„fi.y

Join a,a,, h^^„ a.xL.., hfi.,; then, since the parallel planes AjCt^a^ and BJ}^,

are cut by the plane of the two rays through P^, the intersections cTiOi and

?jjSi are parallel.

Also, their images, being similarly situated, are parallel to them, therefore

a„a, is parallel to 6^j, and the lines aJj„ and a,^^ are in the same plane, and

therefore either meet in a point P^ or are parallel.

Now take a third ray through P,, not in the plane of the two former.

After emergence it must either cut both, or be parallel to them. If it cuts

both it nuist pass through the point P., and then every other ray must pass

through P., for no line can intersect three Hues, not in one plane, without

passing through their point of intersection. If not, then all the emergent rays
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are parallel, which is a particular case of a perfect pencil. So that for every

position of the focus of incident rays, the emergent pencil is free from astig-

matism.

Prop. II. In an instrument, perfect at two different distances, the image

of any plane object perpendicular to the axis will be free from the defects of

curvature and distortion.

Through the point P, of the object draw any line P,Q, in the plane of

the object, and through P,Q, draw a plane cutting the planes A„ B, in the hnes

ttio,, h^,. These lines will be parallel to P,Q, and to each other, wherefore

also their images, a^o,, b^„ will be parallel to P,Q, and to each other, and

therefore in one plane.

Now suppose another plane drawn through P^Q, cutting the planes A, and

B, in two other lines parallel to P,Q^. These will have parallel images in the

planes A^ and B„ and the intersection of the planes passing through the two

pairs of images wiU define the line P^Q, which will be parallel to them, and

therefore to P,Q„ and will be the image of P,Q,. Therefore P^, the image

of P,Qi is parallel to it, and therefore in a plane perpendicular to the axis.

Now if all corresponding lines in any two figures be parallel, however the lines

be drawn, the figures are similar, and similarly situated.

From these two propositions it follows that an instrument giving a perfect

image at two different distances will give a perfect image at all distances. We
have now only to determine the simplest method of finding the position and

magnitude of the image, remembering that wherever two rays of a pencil inter-

sect, all other rays of the pencil must meet, and that aU parts of a plane

object have their images in the same plane, and equally magnified or diminished.

Prop. III. A ray is incident on a perfect instrument parallel to the axis,

to find its direction after emergence.

Let aJ), (fig. 2) be the incident ray, A,a, one of the planes at which an

object has been ascertained to have a perfect image. A,a, that image, similar

to A^tti but in magnitude such that A/t^^xA.a,.

Similarly let BJ), be the image of BJj„ and let BM, = yBA- Also let

A,B, = c, and A.X^ = c^.

Then since a, and h„ are the images of a, and \, the line F^aK will be

the direction of the ray after emergence, cutting the axis in F^, (unless x = y.
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when a.})^ becomes parallel to the axis). The point F._ may be found, by

remembering that A^a, = B^b^, Ajii = xAfL^, B]j. = yDJj^. We find

—

" 'y-x

Let g^ be the point at which the emergent ray is at the same distance

from the axis as the incident ray, draw gfi^ perpendicular to the axis, then

we have

' y-x
Similarly, if aSiF^ be a ray, which, after emergence, becomes parallel to

the axis ; and gfi^ a line perpendicular to the axis, equal to the distance of

the parallel emergent ray, then

A,F, = c,-y~, F,G,^^^^ .x—y ^—y

Definitions.

I. The point F^, the focus of incident rays when the emergent rays are

parallel to the axis, is called the Jirst jprincii^al focus of the instrument.

II. The plane G^^ at which incident rays through F^ are at the same

distance from the axis as they are after emergence, is called the first princi-

pal plane of the instrument. F^G^ is called the first focal length.

III. The point F^, the focus of emergent rays when the incident rays

are parallel, is called the second principal focus.

IV. The plane G,^., at which the emergent rays are at the same distance

from the axis, as before incidence, is called the second principal plane, and

Ffi^ is called the second focal length.

When x = y, the ray is parallel to the axis, both at incidence and emerg-

ence, and there are no such points as F and G. The instrument is then

called a telescope. x( = y) is called the linear ina^nifying power and is denoted

by I, and the ratio - is denoted by n, and may be called the elongation.

In the more general case, in which x and y are different, the principal

foci and principal planes afford the readiest means of finding the position of

images.
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Prop. IV. Given the principal foci and principal planes of an instrument,

to find the relations of the foci of the incident and emergent pencils.

Let F„ F„ (fig. 3) be the principal foci, G^, G., the principal planes, Q^

the focus of incident light, Q^P^ perpendicular to the axis.

Through ^1 draw the ray Q^g^F^. Since this ray passes through F^ it

emerges parallel to the axis, and at a distance from it equal to G^g^. Its

direction after emergence is therefore Q.,g^ where G^g„ = G^g^. Through Q^ draw

Q{Yi parallel to the axis. The corresponding emergent ray wiD pass through

F^^, and will cut the second principal plane at a distance G^y^_= G-^y^, so that

jP„y, is the direction of this ray after emergence.

Since both rays pass through the focus of the emergent pencil, Q^, the

point of intersection, is that focus. Draw Q^P^ perpendicular to the axis.

Then PxQi = G{Y^ = G^y., and G,g, = G^g^ = P,Q.,. By similar triangles F,P,Q, and

F.G^r

P,F, : F,G, :: P,Q, : {G,g, = ) P,Q,.

And by similar triangles F^P^Q^ and F^G^y^

Pm = Gry^) P^Q^ ^^. F^P^--

We may put these relations into the concise form

P,F,_P,Q,_G^,
F^r p.Qr F,p,'

and the values of F„P^ and PJ^^ are

F G GJF F G
F..P.=

'^'pf^"
- and P.Q. = ^'P.Q,.

These expressions give the distance of the image from F^ measured along the

axis, and also the perpendicular distance from the axis, so that they serve to

determine completely the position of the image of any point, when the princi-

pal foci and principal planes are known.

Prop. V. To find the focus of emergent rays, when the instrument is a

telescope.

Let ^1 (fig. 4) be the focus of incident rays, and let Q^aJ)^ be a ray

parallel to the axis ; then, since the instrument is telescopic, the emergent

ray Q^aM^ will be parallel to the axis, and Q^P^^l. Q^P^.
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Let QiOiB^ be a ray through ^,, the emergent ray will be Q,a,J5,, and

AM, ~ A,a,~ I. A,a, " A.a, " A,B,

'

so that -FT^ = -4 r>' = n, a constant ratio.
P^B, A,B^

Cor. If a point C be taken on the axis of the instrument so that

^^^ = A,B,-A^, ^'^' = T:^ ^^^"

then CP, = n.CP,.

Def. The point C is called the centre of the telescope.

It appears, therefore, that the image of an object in a telescope has its

dimensions perpendicular to the axis equal to I times the corresponding dimen-

sions of the object, and the distance of any part from the plane through C
equal to n times the distance of the corresponding part of the object. Of

course all longitudinal distances among objects must be multipUed by n to

obtain those of their images, and the tangent of the angular magnitude of an

object as seen from a given point in the axis must be multipHed by - to

obtain that of the image of the object as seen from the image of the given

point. The quantity - is therefore called the angular magnifying power, and

is denoted by m.

Prop. VI. To find the principal foci and principal planes of a combina-

tion of two instruments having a common axis.

Let /, /' (fig. 5) be the two instruments, G^F^Ffi, the principal foci and

planes of the first, G^F^F^G^ those of the second, V^<^^^S, those of the com-

bination. Let the ray g^jJj'g^ pass through both instruments, and let it be

parallel to the axis before entering the fii'st instrument. It will therefore pass

through F„ the second principal focus of the first instrument, and through g.

so that G^^ = (xi(7i.

On emergence from the second instrument it will pass through ^^ the

focus conjugate to F,, and through g^ in the second principal plane, so that
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(r.'g' = G^g^.
(f>i

is by definition the second principal focus of the combination

of instruments, and if T^y^ be the second principal plane, then r„y, = G^g^

We have now to find the positions of
<f>,

and Tj.

By Prop. IV., we have

^^^==

—

F:Fr~
•

Or, tlie distance of the principal focus of the combination, from that of the

second instrument, is equal to the product of the focal lengths of the second

instrument, divided by the distance of the second principal focus of the first

instrument from the first of the second. From this we get

r"jp' jp'A
^"'^^ {FjF^ — F^G()

Ctj i^j - -t^2 9a = jrpT ,

oi G,<f>, = jrp7 .

Now, by the pairs of similar triangles ^G^g^, (jtV^y, and FJjr(g', F^G^^,

T,<j>, _ r,y, ^ %, _ F„G,

~g:4>. Gig. G:g( g;f,-

Multiplying the two sides of the former equation respectively by the first and

last of these equal quantities, we get

, Gr ,̂ . GiF„'

Or, the second focal distance of a combination is the product of the second

focal lengths of its two components, divided by the distance of their consecutive

principal foci.

If we call the focal distances of the first instrument f^ and /,, those of

the second // and //, and those of the combination J\, /j, and put FJF^=d,

then the positions of the principal foci are found fi:om the values

and the focal lengths of the combination from

'~ d '
J'~ d '
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When d = 0, all these values become infinite, and the compound instruiaent

becomes a telescope.

Prop. VII. To find the linear magnifying power, the elongation, and the

centre of the instrument, when the combination becomes a telescope.

Here (fig. 6) the second principal focus of the first instrument coincides at J'

with the first of the second. (In the figure, the focal distances of both instru-

ments are taken in the opposite direction from that formerly assumed. They are

therefore to be regarded as negative.)

In the first place, F,' is conjugate to F^, for a pencil whose focus before

incidence is F^ will be parallel to the axis between the instruments, and will

converge to i^/ after emergence.

Also if G^g^ be an object in the first principal plane, G,g„ will be its first

image, equal to itself, and if Hh be its final image

^^^- Gjr-~- f:^

Now the linear magnifying power is 7,- , and the elongation is .'
.

because F.' and H are the images of F.^ and G^ respectively ; therefore

l=-4^ and n=££-.

The angular magnifying power = in = -= — 4-7 •

The centre of the telescope is at the point C, such that

When n becomes 1 the telescope has no centre. The efiect of the Instruineni

is then simply to alter the position of an object by a certain distance measured

along the axis, as in the case of refraction through a plate of glass bounded bv

parallel planes. In certain cases this constant distance itself disappears, as in

the case of a combination of three convex lenses of which the focal lengths arr
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4, 1, 4 and the distances 4 and 4. This combination simply inverts every object

without altering its magnitude or distance along the axis.

The preceding theory of perfect instruments is quite independent of the

mode in which the course of the rays is changed within the instrument, as

we are supposed to know only that the path of every ray is straight before

it enters, and after it emerges from the instrument. We have now to con-

sider, how far these results can be applied to actual instruments, in which

the course of the rays is changed by reflexion or refraction. "We know that

such instruments may be made so as to fulfil approximately the conditions of

a perfect instrument, but that absolute perfection has not yet been obtained.

Let us inquire whether any additional general law of optical instruments can

be deduced from the laws of reflexion and refraction, and whether the imper-

fection of instruments is necessary or removeable.

The following theorem is a necessary consequence of the known laws of

reflexion and refraction, whatever theory we adopt.

If we multiply the length of the parts of a ray which are in diflerent

media by the indices of refraction of those media, and call the sum of these

products the reduced path of the ray, then :

I. The extremities of all rays from a given origin, which have the same

reduced path, lie in a surface normal to those rays.

II. When a pencil of rays is brought to a focus, the reduced path from

the origin to the focus is the same for every ray of the pencil.

In the undulatory theory, the " reduced path " of a ray is the distance

through which light would travel in space, during the time which the ray

takes to traverse the various media, and the surface of equal " reduced paths

"

is the wave-surface. In extraordinary refraction the wave-surface is not always

normal to the ray, but the other parts of the proposition are true in this and all

other cases.

From this general theorem in optics we may deduce the following propo-

sitions, true for all instruments depending on refraction and reflexion.

Prop. VIII. In any optical instrument depending on refraction or reflex-

ion, if ajtti, />i^i (fig. 7) be two objects and a.a.^, h.fi^ their images, A^B^ the

distance of the objects, AM. that of the images, ^i^ the index of refraction of
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the medium in which the objects are, /a, that of the medium in which tlie

images are, then

«,a, X /^,y8, _ a,a, x h.fi.,

^' AA ~^' A,B.,
''

approximately, when the objects are small.

Since a, is the image of a^, the reduced path of the ray a,6,a,, will be

equal to that of a^^a„_, and the reduced paths of the rays a^/3,cu and a,/Aa, will

be equal.

Also because l)^^ and h.^„ are conjugate foci, the reduced paths of the

rays b^ajj, and h^aj),, and of ^ia,,/8j and ^,a.,/3, will be equal. So that the

reduced paths

afi, + h,a^ = a^ySj + ^.a^

aJ3, + I3,0L, = tti^i + b.cL,

feiOj + Oj^j = b^a^ + alt.,

these being still the reduced paths of the rays, that is, the length of each

ray multiplied by the index of refraction of the medium.

If the figure is symmetrical about the axis, we may write the equation

Fi (aA - «i^i) = /^2 (aA - ci-A),

where aJS^, &c. are now the ax^tual lengths of the rays so named.

Now aA' = A,B;' + 1 (a,a, + b^.f,

so that a^i — aj)^ = OiC^ x 6^8,

,

a.a, X 61)8,
and ft, (a^ - aj),) = fi^

aA + aj)^

Similarly /x, (a^ - a,&,) = fi,

^^^^^j
^'

So that the equation /x,^ ,
"T' = /x^ —^—— , ,
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is true accurately, and since when the objects are small, the denominators are

nearly 2A,B^ and 2A^„ the proposition is proved approximately true.

Using the expressions of Prop. III., this equation becomes

1 xy

Now by Prop. III., when x and y are different, the focal lengths /, and /,

are

. xy ^ 1

^1 'x-y ^ y — ^

therefore -^ = -^ = - by the present theorem.

So that in any instrument, not a telescope, the focal lengths are directly as

the indices of refraction of the media to which they belong. If, as in most

cases, these media are the same, then the two focal distances are eqiial

When x = y, the instrument becomes a telescope, and we have, by Prop. V.,

l = x and n=-; and therefore by this theorem

m n'

We may find I experimentally by measuring the actual diameter of the

image of a known near object, such as the aperture of the object glass. If be

the diameter of the aperture and o that of the circle of light at the eye-hole

(which is its image), then

From this we find the elongation and the angular magnifying power

n = ^'l\ and m = ^'y.

When ix,
= fi„ as in ordinary cases, m = y = -, which is Gauss' rule for deter-

mining the magnifying power of a telescope.
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Prop. IX. It is impossible, bj means of any combination of reflexions

and refractions, to produce a perfect image of an object at two different distances,

unless the instrument be a telescope, and

l = n=-, m=l.

It appears from the investigation of Prop. VIII. that the results there

obtained, if true when the objects are very small, will be incorrect when the

objects are large, unless

ajSi + tti^i : a^^ + a,h :: A^B^ : A^^,

and it is easy to prove that this cannot be, unless all the Hnes in the one figure

are proportional to the corresponding lines in the other.

In this way we might show that we cannot in general have an astigmatic,

plane, undistorted image of a plane object. But we can prove that we cannot

get perfectly focussed images of an object in two positions, even at the expense

of curvature and distortion.

We shall first prove that if two objects have perfect images, the reduced

path of the ray joining any given points of the two objects is equal to that

of the ray joining the corresponding points of the images.

Let tto (fig. 8) be the perfect image of a^ and yS^ of /B^. Let

Ajai = a^, BJ3, = b„ Ajx^ = a^, B.J3., = b., A^B^ = c^, A^^ = c^.

Draw a^D^ parallel to the axis to meet the plane B^y and aJD, to the plane

of A.

Since everything is symmetrical about the axis of the instrument we shall

have the angles D^Bfi^ = D.M.fi, = d, then in either figure, omitting the sufl&xes,

= c' + a' + b'-2ahcose.

It has been shown in Prop. VIII. that the difference of the reduced paths

of the rays aj)^, afi^ in the object must be equal to the difference of the reduced

paths of a^^j, a^^ in the image. Therefore, since we may assume any value for 6

/^i J{(^x + &i' + Ci* - lajb, cos 6) - fi, J{a^+ h^ + c^ - 2a,h cos 6)
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13 constant for all values of 6. This can be only when

and fi, J{aJ),) =fi,J (aM,),

which shows that the constant must vanish, and that the lengths of lines

joining corresponding points of the objects and of the images must be inversely

as the indices of refraction before incidence and after emergence.

Next let ABC, DEF (fig. 9) represent three points in the one object

and three points in the other object, the figure being drawn to a scale so that

all the lines in the figure are the actual lines multiplied by /Xj. The lines of

the figure represent the reduced paths of the rays between the corresponding

points of the objects.

Now it may be shown that the form of this figure cannot be altered with-

out altering the length of one or more of the nine lines joining the points ABC
to DEF. Therefore since the reduced paths of the rays in the image are equal

to those in the object, the figure must represent the image on a scale of /n,

to 1, and therefore the instrument must magnify every part of the object alike

and elongate the distances parallel to the axis in the same proportion. It is

therefore a telescope, and m=l.

If iJi, = ix,, the image is exactly equal to the object, which is the case in

reflexion in a plane mirror, which we know to be a perfect instrument for all

distances.

The only case in which by refraction at a single surface we can get a

perfect image of more than one point of the object, is when the refracting

surface is a sphere, radius r, index /x, and when the two objects are spherical

surfaces, concentric with the sphere, their radii being - , and r ; and the two

images also concentric spheres, radii /ar, and r.

In this latter case the image is perfect, only at these particular distances

and not generally.

I am not aware of any other case in which a perfect image of an object

can be formed, the rays being straight before they enter, and after they emerge

from the instrument. The only case in which perfect astigmatism for all pencils

has hitherto been proved to exist, was suggested to me by the consideration
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of the structure of the crystalline lens in fish, and was published in one of

the problem-papers of the Camhiidge and Dublin Mathematical Journal. My
own method of treating that problem is to be found in that Journal, for

February, 1854. The case is that of a medium whose index of refraction varies

with the distance from a centre, so that if fi, be its value at the centre, a

a given line, and r the distance of any point where the index is /x, then

/^ = /Ao
a' + r''

The path of every ray within this medium is a circle in a plane passing through

the centre of the medium.

Every ray from a point in the medium, distant b from the centre, will

converge to a point on the opposite side of the centre and distant from it ^ .

It will be observed that both the object and the image are included in

the variable medium, otherwise the images would not be perfect. This case

therefore forms no exception to the result of Prop. IX., in which the object and

image are supposed to be outside tho instrument.

Aberdeen, 12th Jan., 1858.



[From the Proceedings of the Royal Society of Edinburgh, Vol. rv.]

XYIII. On Theories of the Constitution of Saturn's Rings.

The planet Saturn is surrounded by several concentric flattened rings, which

appear to be quite free from any connection with each other, or with the planet,

except that due to gravitation.

The exterior diameter of the whole system of rings is estimated at about

176,000 miles, the breadth from outer to inner edge of the entire system,

36,000 miles, and the thickness not more than 100 miles.

It is evident that a system of this kind, so broad and so thin, must

depend for its stability upon the dynamical equihbrium between the motions of

each part of the system, and the attractions which act on it, and that the

cohesion of the parts of so large a body can have no effect whatever on its

motions, though it were made of the most rigid material known on earth. It

is therefore necessary, in order to satisfy the demands of physical astronomy,

to explain how a material system, presenting the appearance of Saturn's Kings,

can be maintained in permanent motion consistently with the laws of gravitation.

The principal hypotheses which present themselves are these

—

I. The rings are solid bodies, regular or irregular.

II. The rings are fluid bodies, liquid or gaseous.

in. The rings are composed of loose materials.

The results of mathematical investigation appHed to the first case are,

—

1st. That a uniform ring cannot have a permanent motion.

2nd. That it is possible, by loading one side of the ring, to produce

stability of motion, but that this loading must be very great compared with

the whole mass of the rest of the ring, being as 82 to 18.
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3rd. That this loading must not only be very great, but very nicely

adjusted; because, if it were less than '81, or more than 83 of the whole,

the motion would be unstable.

The mode in which such a system would be destroyed would be by the

collision between the planet and the inside of the ring.

And it is evident that as no loading so enormous in comparison with the

ring actually exists, we are forced to consider the rings as fluid, or at least

not solid ; and we find that, in the case of a fluid ring, waves would be gene-

rated, which would break it up into portions, the number of which would

depend on the mass of Saturn directly, and on that of the ring inversely.

It appears, therefore, that the only constitution possible for such a ring is

a series of disconnected masses, which may be fluid or solid, and need not be

equal. The \iomplicated internal motions of such a ring have been investigated,

and found to consist of four series of waves, which, when combined together,

will reproduce any form of original disturbance with all its consequences. The

motion of one of these waves was exhibited to the Society by means of a small

mechanical model made by Ramage of Aberdeen.

This theory of the rings, being indicated by the mechanical theory as the

only one consistent with permanent motion, is further confirmed by recent obser-

vations on the inner obscure ring of Saturn. The limb of the planet is seen

through the substance of this ring, not refracted, as it would be through a

gas or fluid, but in its true position, as would be the case if the light passed

through interstices between the separate particles composing the ring.

As the whole investigations are shortly to be published in a separate form,

the mathematical methods employed were not laid before the Society.



XIX. On the Stability of the motion of Saturn's Rings.

[An Essay, which obtained the Adams Prize for the year 1856, in the University

of Cambridge.]

ADVERTISEMENT.

The Subject of the Prize was announced in the following terms ;

—

The University having accepted a fimd, raised by several members of St John's Collegp,

for the purpose of founding a Prize to be called the Adams Prize, for the best Essay

on some subject of Pure Mathematics, Astronomy, or other branch of Natural Pliilosophy,

the Prize to be given once in two years, and to be open to tlhe competition of all persons

who have at any time been admitted to a degree in this University:—

The Examiners give Notice, that the following is the subject for the Prize to be adjudged

in 1857:—

The Motions of iSaturn's Rings.

*** The problem may be treated on the supposition that the system of Rings is exactly or

very approximately concentric with Saturn and symmetrically disposed about the plane of his Equator,

and different hypotheses may be made respecting the physical constitution of the Rings. It may
be supposed (1) that they are rigid: (2) that they ai-e fluid, or in part aeriform: (3) that they

consist of masses of matter not mutually coherent. The question will be considered to be answered

by ascertaining on tliese hypotheses severally, whether the conditions of mechanical stability are

satisfied by the mutual attractions and motions of the Planet and the Rings.

It is desirable that an attempt should also be made to determine on which of the above

hypotheses the appearances both of the bright Rings and the recently discovered dark Ring may
be most satisfactorily explained; and to indicate any causes to which a change of form, such as

is supposed from a comparison of modern with the earlier observations to have taken place, may

be attributed.

E. GUEST, rice-Chancellor.

J. CHALLIS.
S. PARKINSON.
W. THOMSON.

March 23, 1855.
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There are some questions in Astronomy, to which we are attracted rather

on account of their pecuHarity, as the possible illustration of some unknown

principle, than from any direct advantage which their solution would afford to
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mankind. The theory of the Moon's inequalities, though in its first stages it

presents theorems interesting to all students of mechanics, has been pursued into

such intricacies of calculation as can be followed up only by those who make

the improvement of the Lunar Tables the object of their lives. The value of

the labours of these men is recognised by all who are aware of the importance

of such tables in Practical Astronomy and Navigation. The methods by which

the results are obtained are admitted to be sound, and we leave to professional

astronomers the labour and the merit of developing them.

The questions which are suggested by the appearance of Saturn's Rings

cannot, in the present state of Astronomy, call forth so great an amount of

labour among mathematicians. I am not aware that any practical use has been

made of Saturn's Rings, either in Astronomy or in Navigation. They are too

distant, and too insignificant in mass, to produce any appreciable effect on the

motion of other parts of the Solar system; and for this very reason it is diflS-

cult to determine those elements of their motion which we obtain so accurately

in the case of bodies of greater mechanical importance.

But when we contemplate the Rings from a purely scientific point of view,

they become the most remarkable bodies in the heavens, except, perhaps, those

still less useful bodies—the spiral nebulae. When we have actually seen that

great arch swung over the equator of the planet without any visible connexion,

we cannot bring our minds to rest. We cannot simply admit that such is the

case, and describe it as one of the observed facts in nature, not admitting or

requiring explanation. We must either explain its motion on the principles of

mechanics, or admit that, in the Saturnian realms, there can be motion regu-

lated by laws which we are unable to explain.

The arrangement of the rings is represented in the figure (l) on a scale

of one inch to a hundred thousand miles. S is a section of Saturn through

his equator, A, B and C are the three rings. A and B have been known for

200 years. They were mistaken by Galileo for protuberances on the planet itself,

or perhaps satellites. Huyghens discovered that what he saw was a thin flat

ring not touching the planet, and Ball discovered the division between A and B.

Other divisions have been observed splitting these again into concentric rings,

but these have not continued visible, the only well-established division being one

in the middle of A. The third ring C was first detected by Mr Bond, at

Cambridge U.S. on November 15, 1850; Mr Dawes, not aware of Mr Bond's

discovery, observed it on November 29th, and Mr Lassel a few days later. It
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gives little light compared with the other rings, and is seen where it crosses

the planet as an obscure belt, but it is so transparent that the limb of the

planet is visible through it, and this without distortion, shewing that the rays

of light have not passed through a transparent substance, but between the

scattered particles of a discontinuous stream.

It is difficult to estimate the thickness of the system ; according to the

best estimates it is not more than 100 miles, the diameter of A being 176,418

miles; so that on the scale of our figure the thickness would be one thousandth

of an inch.

Such is the scale on which this magnificent system of concentric rings is

constructed; we have next to account for their continued existence, and to

reconcile it with the known laws of motion and gravitation, so that by rejecting

every hypothesis which leads to conclusions at variance with the facts, we may

learn more of the nature of these distant bodies than the telescope can yet

ascertain. We must account for the rings remaining suspended above the planet,

concentric with Saturn and in his equatoreal plane ; for the flattened figure of the

section of each ring, for the transparency of the inner ring, and for the gradual

approach of the inner edge of the ring to the body of Saturn as deduced

from all the recorded observations by M. Otto Struvd {Sur les dimensions des

Anneaux de Saturne—Recueil de Memoires Astronomiques, Poulkowa, 15 Nov.

1851). For an account of the general appearance of the rings as seen from the

planet, see Lardner on the Uranography of Saturn, Mem. of the Astronomical

Society, 1853. See also the article "Saturn" in Nichol's Cyclopcedia of the

Physical Sciences.

Our curiosity with respect to these questions is rather stimulated than

appeased by the investigations of Laplace. That great mathematician, though

occupied with many questions which more imperiously demanded his attention,

has devoted several chapters in various parts of his great work, to points con-

nected with the Saturnian System.

He has investigated the law of attraction of a ring of small section on a

point very near it {Mec. Cel. Liv. iii. Chap, vi.), and from this he deduces the

equation from which the ratio of the breadth to the thickness of each ring is

to be found,

E' p X(X-l)

^~3a'p (\+l) (3X^+1)'

where R is the radius of Saturn, and p his density; a the radius of the ring,
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and p its density; and X the ratio of the breadth of the ring to its thick-

ness. The equation for determining X when e is given has one negative root

which must be rejected, and two roots which are positive while e<0"0543, and

impossible when e has a greater value. At the critical value of e, X = 2-594

nearly.

The fact that X is impossible when e is above this value, shews that the

ring cannot hold together if the ratio of the density of the planet to that of

the ring exceeds a certain value. This value is estimated by Laplace at I'S,

assuming a = 2R.

We may easily follow the physical interpretation of this result, if we observe

that the forces which act on the ring may be reduced to

—

(1) The attraction of Saturn, varying inversely as the square of the dis-

tance from his centre.

(2) The centrifugal force of the particles of the ring, acting outwards, and

varying directly as the distance from Saturn's polar axis.

(3) The attraction of the ring itself, depending on its form and density,

and directed, roughly speaking, towards the centre of its section.

The first of these forces must balance the second somewhere near the mea,n

distance of the ring. Beyond this distance their resultant will be outwards,

within this distance it will act inwards.

If the attraction of the ring itself is not sufl&cient to balance these residual

forces, the outer and inner portions of the ring will tend to separate, and the

ring will be split up ; and it appears from Laplace's result that this will be

the case if the density of the ring is less than ^ of that of the planet.

This condition applies to all rings whether broad or narrow, of which the

parts are separable, and of which the outer and inner parts revolve with the

same angular velocity.

Laplace has also shewn (Liv. v. Chap, iii.), that on account of the oblate-

ness of the figure of Saturn, the planes of the rings will follow that of Saturn's

equator through every change of its position due to the disturbing action of

other heavenly bodies.

Besides this, he proves most distinctly (Liv. iii. Chap, vi.), that a solid uni-

form ring cannot possibly revolve about a central body in a permanent manner,

for the slightest displacement of the centre of the ring from the centre of the

planet would originate a motion which would never be checked, and would
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inevitably precipitate the ring upon the planet, not necessarily by breaking the

ring, but by the inside of the ring falling on the equator of the planet.

He therefore infers that the rings are irregular solids, whose centres of

gravity do not coincide with their centres of figure. We may draw the con-

clusion more formally as follows, "If the rings were solid and uniform, their

motion would be unstable, and they would be destroyed. But they are not

destroyed, and their motion is stable; therefore they are either not uniform or

not solid."

I have not discovered"" either in the works of Laplace or in those of more

recent mathematicians, any investigation of the motion of a ring either not uni-

form or not solid. So that in the present state of mechanical science, we do

not know whether an irregular solid ring, or a fluid or disconnected ring, can

revolve permanently about a central body; and the Saturnian system still re-

mains an unregarded witness in heaven to some necessary, but as yet unknown,

development of the laws of the universe.

We know, since it has been demonstrated by Laplace, that a uniform solid

ring cannot revolve permanently about a planet. We propose in this Essay to

determine the amount and nature of the irregularity which would be required

to make a permanent rotation possible. We shall find that the stability of the

motion of the ring would be ensured by loading the ring at one point with a

* Since this -was written, Prof. Challis has pointed out to me three important papers in Gould's

Astronomical Journal:—Mr G. P. Bond on the Rings of Saturn (May 1851) and Prof. B. Pierce of

Harvard University on the Constitution of Saturn's Rings (June 1851), and on the Adams' Prize

Problem for 1856 (Sept. 1855). These American mathematicians have both considered the conditions

of statical equilibrium of a transverse section of a ring, and have come to the conclusion that the

rings, if they move each as a whole, must be very narrow compared with the observed rings, so

that in reality there must be a great number of them, each revolving with its own velocity. They

have also entered on the question of the fluidity of the rings, and Prof. Pierce has made an

investigation as to the permanence of the motion of an irregular solid ring and of a fluid ring.

The paper in which these questions are treated at large has not (so far as I am aware) been

pxiblished, and the references to it in Gould's Journal are intended to give rather a popular account

of the results, than an accurate outline of the methods employed. In treating of the attractions of

an irregular ring, he makes admirable use of the theory of potentials, but his published investi-

gation of the motion of such a body contains some oversights which are due perhaps rather to the

imperfections of popular language than to any thing in the mathematical theory. The only part of

the theory of a fluid ring which he has yet given an account of, is that in which he considers

the form of the ring at any instant as an ellipse; corresponding to the case where n = u), and

m=l. As I had only a limited time for reading these papers, and as I could not ascertain the

methods used in the original investigations, I am unable at present to state how far the results of

this essay agree with or differ from those obtained by Prof. Pierce.



ON THE STABILITY OF THE MOTION OF SATURN's RINGS. 295

heavy satellite about 4-^ times the weight of the ring, but this load, besides

being inconsistent with the observed appearance of the rings, must be far too

artificially adjusted to agree with the natural arrangements observed elsewhere,

for a very small error in excess or defect would render the ring again unstable.

We are therefore constrained to abandon the theory of a solid ring, and

to consider the case of a ring, the parts of which are not rigidly connected,

as in the case of a ring of independent satellites, or a fluid ring.

There is now no danger of the whole ring or any part of it being pre-

cipitated on the body of the planet. Every particle of the ring is now to be

regarded as a satellite of Saturn, disturbed by the attraction of a ring of

satellites at the same mean distance from the planet, each of which however is

subject to slight displacements. The mutual action of the parts of the ring will

be so small compared with the attraction of the planet, that no part of the

ring can ever cease to move round Saturn as a satellite.

But the question now before us is altogether different from that relating to

the solid ring. We have now to take account of variations in the form and

arrangement of the parts of the ring, as well as its motion as a whole, and

we have as yet no security that these variations may not accumulate till the

ring entirely loses its original form, and collapses into one or more satellites,

circulating round Saturn. In fact such a result is one of the leading doctrines

of the " nebular theory " of the formation of planetary systems : and we are

familiar with the actual breaking up of fluid rings under the action of "capil-

lary " force, in the beautiful experiments of M. Plateau.

In this essay I have shewn that such a destructive tendency actually exists,

but that by the revolution of the ring it is converted into the condition of

dynamical stability. As the scientific interest of Saturn's Rings depends at

present mainly on this question of their stability, I have considered their motion

rather as an illustration of general principles, than as a subject for elaborate

calculation, and therefore I have confined myself to those parts of the subject

which bear upon the question of the permanence of a given form of motion.

There is a very general and very important problem in Dynamics, the solu-

tion of which would contain all the results of this Essay and a great deal

more. It is this

—

"Having found a particular solution of the equations of motion of any

material system, to determine whether a slight disturbance of the motion indi-
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cated by the solution would cause a small periodic variation, or a total

derangement of the motion."

The question may be made to depend upon the conditions of a maximum

or a minimum of a function of many variables, but the theory of the tests

for distinguishing maxima from minima by the Calculus of Variations becomes

so intricate when applied to functions of several variables, that I think it doubt-

ful whether the physical or the abstract problem will be first solved.

PART I.

ON THE MOTION OF A RIGID BODY OF ANY FORM ABOUT A SPHERE.

We confine our attention for the present to the motion in the plane of

reference, as the interest of our problem belongs to the character of this motion,

and not to the librations, if any, from this plane.

Let S (Fig. 2) be the centre of gravity of the sphere, which we may call

Satiu-n, and E that of the rigid body, which we may call the Ring. Join RS,

and divide it in G so that

SG : GR '.: R : S,

R and S being the masses of the Ring and Saturn respectively.

Then G will be the centre of gravity of the system, and its position will

be unaffected by any mutual action between the parts of the system. Assume G
as the point to which the motions of the system are to be referred. Draw GA
in a direction fixed in space.

Let AGR = e, and SR = r,

then ^^^'S+R^' ^^^ ^^^STR^'

so that the positions of S and R are now determined.

Let BRR be a straight line through R, fixed with respect to the substance

of the ring, and let BRK=^.
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This determines the angular position of the ring, so that from the values

of r, 6, and ^ the configuration of the system may be deduced, as far as relates

to the plane of reference.

We have next to determine the forces which act between the ring and

the sphere, and this we shall do by means of the potential function due to

the ring, which we shall call V.

The value of V for any point of space S, depends on its position relatively

to the ring, and it is found from the equation

where dm is an element of the mass of the ring, and r is the distance of that

element from the given point, and the summation is extended over every element

of mass belonging to the ring. V will then depend entirely upon the position

of the point S relatively to the ring, and may be expressed as a function

of r, the distance of S from R, the centre of gravity of the ring, and ^, the

angle which the line SR makes with the line RB, fixed in the ring.

A particle P, placed at S, will, by the theory of potentials, experience a

dV . ... . \ dV
moving force P —p in the direction which tends to increase r, and P - -jj

in a tangential direction, tending to increase ^.

Now we know that the attraction of a sphere is the same as that of

a particle of equal mass placed at its centre. The forces acting between the

dV . .

sphere and the ring are therefore S -j~ tending to increase r, and a tangential

\ dV .

force S - -j-r , applied at S tending to increase <;^. In estimating the efiect of

this latter force on the ring, we must resolve it into a tangential force S - -jj-

dV
acting at R, and a couple S -j-r tending to increase

(f).

We are now able to form the equations of motion for the planet and the

ring.
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For the planet

^d
jf

Rr Ydd\ _R_ ^Jy , .

^ dt ]S^VRl dtj
'- " S+R '^

d<f>
^'^'

«l(^)-^(f)'=^^' (^)-

For the centre of gravity of the ring,

j.d
(f

Sr Y ^^1 S dV , .

^dt\\S+-R) Ttr~STR^df ^
^'

j.d^
f

Sr \ Sr (d0Y_ dV , .

For the rotation of the ring about its centre of gravity,

^S(''+«=^f (5)'

where h is the radius of gyration of the ring about its centre of gravity.

Equation (3) and (4) are necessarily identical with (l) and (2), and shew

that the orbit of the centre of gravity of the ring must be similar to that

of the Planet. Equations (1) and (3) are equations of areas, (2) and (4) are

those of the radius vector.

Equations (3), (4) and (5) may be thus written,

M-'^T!-'-'^}-(^-^i'- («)'

-{§-©}-(---)f - (^)-

-(f-^f)--^ - («)•

These are the necessary and sufficient data for determining the motion of

the ring, the initial circumstances being given.

Prob. I. To find the conditions under which a uniform motion of the

ring is possible.

By a uniform motion is here meant a motion of uniform rotation, during

which the position of the centre of the Planet with respect to the ring does

not change.



ON THE STABILITY OF THE MOTION OF SATURN's RINGS. 299

In this case r and </> are constant, and therefore V and its differential

coefficients are given. Equation (7) becomes,

which shews that the angular velocity is constant, and that

dey R+S dV
, ,^.

r- = <o\ say (9).
dtj Rr dr

(PB
Hence, -71 = 0, and therefore by equation (8),

%-^ • ••••(-)•

Equations (9) and (10) are the conditions under which the uniform motion

is possible, and if they were exactly fulfilled, the uniform motion would go on

for ever if not disturbed. But it does not follow that if these conditions were

nearly fulfilled, or that if when accurately adjusted, the motion were slightly

disturbed, the motion would go on for ever nearly uniform. The effect of the

disturbance might be either to produce a periodic variation in the elements

of the motion, the ampUtude of the variation being small, or to produce a

displacement which would increase indefinitely, and derange the system altogether.

In the one case the motion would be dynamically stable, and in the other it

would be dynamically unstable. The investigation of these displacements while

still very small wiU form the next subject of inquiry.

Prob. II. To find the equations of the motion when slightly disturbed.

Let r = r„ = o}t and
(f)
=

(f>^
in. the case of uniform motion, and let

r=ro +r„

e=a)t+e„

when the motion is slightly disturbed, where r^, 6^, and ^1 are to be treated

as small quantities of the first order, and their powers and products are to be

dV dV
neglected. We may expand -j-^ and -j-r by Taylor's Theorem,

dV_dV drV d'V

dr ~dr "^
di^

'''"*
cZrc/t^"^^'

d<f>~'d<f'^drd<t>''''^ d<i>''^''
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where the values of the differential coeflBcients on the right-hand side of the

equations are those in which i\ stands for r, and ^^ for ^.

CaJlmg ^=A ^^^ = M^ ^^=N,

and taking account of equations (9) and (10), we may write these equations,

a^= -sirs'"
+^''+^^"

Substituting these values in equations (6), (7), (8), and retaining all small

quantities of the first order while omitting their powers and products, we have

the following system of linear equations in r^, O^, and ^i,

E (2r,co^ + r,^^^y{E + S)(Mr, + N<f.,) =0 (11),

R d% , „ de\
df

(o%-2r,(o-^]-{R + S){L7\ + M<f>,) = (12),

RlH'^^ + ^-SiMr^ + N^:) =0 (13).df ' df

Prob. III. To reduce the three simultaneous equations of motion to the

form of a single linear equati:ion.

Let us write n instead of the symbol -j- , then arranging the equations in

terms of i\, 6^, and j>^, they may be written:

{2R,o>n + (R + S)M}r, + (Rr:n')e, + {R + S)N<i>, =0 (14),

{Rn'-R<^'^-(R + S) L}r,-(2Rr,con)d,^{R+ S)M<f>, = (15),

- (SM) r, + (Rk'n') 0, + {RUrv -SN)<j>, =0 (16).

Here we have three equations to determine three quantities r,, 6„ ^i ; but

it is evident that only a relation can be determined between them, and that

in the process for finding their absolute values, the three quantities will vanish

together, and leave the following relation among the coefiicients,
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-{2Rr,oin+ {R + S)^r} [2R)\(on] [Rlcrc'-SN}

+ {Rn' - Rco' -(R + S) L] {Rh'rf} {(R + >S') N]

+ {SM) {Rrjn') {R +S)M- (SM) {2Rr,<on) (R + S)Xi=0 (17).

+ {2Rr,<on + (R + S)M} {RLni'} {(R + S) if}

- {Rn' - Rxo' -{R + S)} {Rr.'if} {RJc'n' -SN}

By multiplying up, and arranging by powers of n and dividing by Rn\

this equation becomes
Aii* + B)v+C=0 (18),

where

B = SRr-r:i''<o-'-R{R + S)Lr:Jc'-R{{R + S)]if + Si''}N- i (19).

C=R{(R + S)l''- 3Sr:} oy+ (R + S) {{R + S) t + Sr^} (Z.V- IP) J

Here we have a biquadratic equation in ?i which may be treated as a

quadratic in ?r, it being remembered that ?i stands for the operation -j- .

Prob. IV. To determine whether the motion of the ring is stable or

unstable, by means of the relations of the coefficients A, B, C.

The equations to determine the forms of r^, 6^, and <^i are all of the form

. d*u -r, dhi ^ ^ /^^\^*+-^*+^"=» (-°''

and if n be one of the four roots of equation (18), then

will be one of the four terms of the solution, and the values of i\, 6^, and

<^i will differ only in the values of the coefficient D.

Let us inquire into the nature of the solution in different cases.

(1) If n be positive, this term would indicate a displacement which

must increase indefinitely, so as to destroy the arrangement of the system.

(2) If n be negative, the disturbance which it belongs to would gradually

die away.

(3) If n be a pure impossible quantity, of the form ±aj —\, then there

will be a term in the solution of the form D cos [at + a), and this would indi-

277
cate a periodic variation, whose amplitude is D, and period ^^

.
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(4) If n be of the form b±J'^a, the first term being positive and

the second impossible, there will be a term in the solution of the form

De^' cos {at + a),

which indicates a periodic disturbance, whose amplitude continually increases

till it disarranges the system.

(5) If n be of the form -h±s/-la, a negative quantity and an im-

possible one, the corresponding term of the solution is

i>e"*'cos {(it + a),

which indicates a periodic disturbance whose amplitude is constantly diminishing.

It is manifest that the first and fourth cases are inconsistent with the

permanent motion of the system. Now since equation (18) contains only even

powers of n, it must have pairs of equal and opposite roots, so that every

root coming under the second or fifth cases, implies the existence of another

root belonging to the first or fourth. If such a root exists, some disturbance

may occur to produce the kind of derangement corresponding to it, so that

the system is not safe unless roots of the first and fourth kinds are altogether

excluded. This cannot be done without excluding those of the second and fifth

kinds, so that, to insure stability, aU the four roots must be of the third kind,

that is, pure impossible quantities.

That this may be the case, both values of n" must be real and negative,

and the conditions of this are

—

1st. That A, B, and C should be of the same sign,

2ndly. That R>iAC.

When these conditions are fulfilled, the disturbances will be periodic and

consistent with stability. When they are not both fulfilled, a small disturbance

may produce total derangement of the system.

Prob. V. To find the centre of gravity, the radius of gyration, and the

variations of the potential near the centre of a circular ring of small but variable

section.

Let a be the radius of the ring, and let 6 be the angle subtended at the

centre between the radius through the centre of gravity and the line through

a given point in the ring. Then if /i be the mass of unit of length of the
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ring near the given point, ft will be a periodic function of 6, and may there-

fore be expanded by Fourier's theorem in the series,

li =— {1 + 2/cos^ + §^cos2^+ §/isin2^ + 2ico3(3^ + a) + &c.} (21),

where/, g, h, &c. are arbitrary coefficients, and R is the mass of the ring.

(1) The moment of the ring about the diameter perpendicular to the

prime radius is

R)\= r ficr cos ecW = Raf,

therefore the distance of the centre of gravity from the centre of the ring,

(2) The radius of gyration of the ring about its centre in its own plane

is evidently the radius of the ring =a, but if k be that about the centre of

gravity, we have

.'. Af = a=(l-f).

(3) The potential at any point is found by dividing the mass of each

element by its distance from the given point, and integrating over the whole

mass.

Let the given point be near the centre of the ring, and let its position be

defined by the co-ordinates r and xjj, of which r is small compared with a.

The distance (p) between this point and a point in the ring is

i = i {1 + %03 (^ - 0) + i (Q' + 1 (3' cos 2{i,-0)+&c.}.

The other terms contain powers of — higher than the second.

We have now to determine the value of the integral,

Jo P

and in multiplying the terms of (/i) by those of f-J , we need retain only

those which contain constant quantities, for all those which contain sines or
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cosines of multiples of {^1^ — 0) will vanisti when integrated between the limits.

In this way we find

^=- {l+/%osr/; + i^'(l-4-5rcos2i/, + ^sin2tA)} (22).

The other terms containing higher powers of —

.

In order to express V in terms of r, and
(f)„ as we have assumed in the

former investigation, we must put

r' C09 xjj= — Tj + ^r^^/,

^=§{^-f'i^it^^+9) + i^fr.<f>. + ir<l>n^-9)} (23).

From which we find , ,

dr'^.-s^-

S.='^=i'(i+^)

K).=^=i^'(^-^)
These results may be confirmed by the following considerations applicable to

any circular ring, and not involving any expansion or integration. Let af be

the distance of the centre of gravity from the centre of the ring, and let

the ring revolve about its centre with velocity o). Then the force necessary

to keep the ring in that orbit will be —Rafoi^.

But let >S be a mass fixed at the centre of the ring, then if

a'

every portion of the ring will be separately retained in its orbit by the attrac-

tion of S, so that the whole ring will be retained in its orbit. The resultant

attraction must therefore pass through the centre of gravity, and be

-^ a}

therefore ^^^rL,
dr a:
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cl'V cfV d'V
The equation 3^ +

rf^-
+

dz'
+ *'P = «

is true for any system of matter attracting according to the law of gravitation.

If we bear in mind that the expression is identical in form with that which

measures the total efflux of fluid from a differential element of volume, where

-J-
, -J-

, -7- are the rates at which the fluid passes through its sides, we may

easily form the equation for any other case. Now let the position of a point

in space be determined by the co-ordinates r, ^ and z, where z is measured

perpendicularly to the plane of the angle <j>. Then by choosing the directions

of the axes x, y, z, so as to coincide with those of the radius vector r, the per-

pendicular to it in the plane of <^, and the normal, we shall have

dx = dr^ dy = rd^, dz = dz,

dV^dV dV^ldV dV^dV
dx~ dr ^ dy r d<l>' dz dz

The quantities of fluid passing through an element of area in each direction are

-T- rd(paz, -j-7 - ardz, -p rdcpdr,

so that the expression for the whole efflux is

1 dV d^V 1 d^V d^V

r dF^d^^7 df^d^ ^^^'

which is necessarily equivalent to the former expression.

d^V
Now at the centre of the ring -r^ may be found by considering the attrac-

tion on a point just above the centre at a distance z,

dV_ p z

dz {a'->tz'f'

d'V R .-^=--3,whenz = 0.

Ai 1
\ dV R , .

Also we know ^ = —^ , and r = aj,
V (XV (Xi

so that m any curcular rmg "^^^^ d^^ a^ ^ **

an equation satisfied by the former values of L and N.
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By referring to tlae original expression for the variable section of the ring,

it appears that the effect of the coefficient / is to make the ring thicker on

one side and thinner on the other in a uniformly graduated manner. The eflfect

of ^ is to thicken the ring at two opposite sides, and diminish its section in

the parts between. The coefficient h indicates an inequality of the same kind,

only not symmetrically disposed about the diameter through the centre of

gravity.

Other terms indicating inequalities recurring three or more times in the

circumference of the ring, have no effect on the values of X, M and N. There is

one remarkable case, however, in which the irregularity consists of a single

heavy particle placed at a point on the circumference of the ring.

Let P be the mass of the particle, and Q that of the uniform ring on

which it is fixed, then R = P-{-Q,

> K'

-^S-^.=^(-^S=.4(-^)
••• 3 =^ = 3/- (27)-

Prob. VI. To determine the conditions of stability of the motion in terms

of the coefficients/, g, h, which indicate the distribution of mass in the ring.

The quantities which enter into the differential equation of motion (18)

are R, S, k", i\, (o", L, M, N. We must observe that S is very large compared

with R, and therefore we neglect R in those terms in which it is added to S,

and we put
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Substituting these values in equation (18) and dividing by H'a*/-, we obtain

{l-P)n* + (l-y^ + y^g)nW + (^-&r-lg^-lh^ + 2fg)<.^ = (28).

The condition of stability is that this equation shall give both values of n*

negative, and this renders it necessary that all the coefficients should have the

same sign, and that the square of the second should exceed four times the

product of the first and third.

(1) Now if we suppose the ring to be uniform, /, g and h disappear,

and the equation becomes

n' + nV + | = (29),

which gives impossible values to n' and indicates the instability of a uniform

ring.

(2) If we make g and A = 0, we have the case of a ring thicker at one

side than the other, and varying in section according to the simple law of sines.

We must remember, however, that / must be less than ^, in order that the

section of the ring at the thinnest part may be real. The equation becomes

(l_/=),,* + (l.|/^)^V + (|-6/>* = (30).

The condition that the third term should be positive gives

/*<'375.

The condition that n' should be real gives

71/^-112/^ + 32 negative,

which requires/" to be between "37445 and 1'2.

The condition of stability is therefore that /^ should lie between

•37445 and '375,

but the construction of the ring on this principle requires that /- should be

less than "25, so that it is impossible to reconcile this fonn of the ring with

the conditions of stability.

(3) Let us next take the case of a uniform ring, loaded with a heavy

particle at a point of its circumference. We have then g = Sf, h = 0, and the

equation becomes

(l-/=)n^ + (l-|/^ + f/ViV+(|-y/'+6/>^ = (31).
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Dividing each term by 1 -/, we get

(l+/)n^+(l+/-f/0^^V + f{3(l+/)-8/=}a,^ = O (32).

The first condition gives /less than '8279.

The second condition gives / greater than '8 15865.

Let us assume as a particular case between these limits /= •82, which

makes the ratio of the mass of the particle to that of the ring as 82 to 18,

then the equation becomes

l-82 7i^ + '8114?iV+-9696a>' = (33),

which gives >J^^n= ±'5916(o or ±-3076w.

These values of n indicate variations of r^, O^, and ^i, which are com-

pounded of two simple periodic inequalities, the period of the one being 1"69

revolutions, and that of the other 3 '2 51 revolutions of the ring. The relations

between the phases and ampUtudes of these inequalities must be deduced from

equations (14), (15), (16), in order that the character of the motion may be

completely determined.

Equations (14), (15), (16) may be written as follows:

{Anco + hoi') ^ +2f7i%+f(3-g) (o"'(l>,
= (34),

{ii^-l<o'^{S+g)}^'-2fcone,^ifh<o'<f>, = (35),

-/ho>^ '^ + 2 (1 -f^)n% + {2 (1 -f) n'-r {S-g) co^}<l>, = (36).

By eliminating one of the variables between any two of these equations,

we may determine the relation between the two remaining variables. Assuming

one of these to be a periodic function of t of the form A cos pt, and remem-

bering that n stands for the operation -7- , we may find the form of the other.

Tlius, eliminating 6^ between the first and second equations,

{n' + i7i<o'{5-g) + hoj'f-^+foy'{{3-g)<o-ym}cf>, = (37).
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T
Assuming — =A^\wvt^ and

<f)i
= Q cos (ut — ^),

{-v' + ^vo)' (5 - g)} A cos pt + h(o^A sin vt +fo/ (3 -rj) Qcos{vt - /3) + Ifhui'vQ sin {yt - /3).

Equating vt to 0, and to -
, we get the equations

[v'-^voy (5 -g)} A =f<o'Q {(3 -g) cj cos /8 - ^/ii/ sin /3},

- h<o' A =fo)'Q {(3 - </) o) sin /8 + -l/ii/ cos ^8},

from which to determine Q and ^.

In all cases in which the mass is disposed symmetrically about the diameter

through the centre of gravity, A = and the equations may be greatly simplified.

Let 6i =P cos (vt — a), then the second equation becomes

{v' + ^0)' (3 + g)} A sin vt = 2Pfa}v sin {vt - a),

whence a = 0, P = ^^JtMiijO .4 (38).
2j(DV ^ '

The first equation becomes

^Aoiv cos vt - 2Pfv- cos vt + Qf (3 -g) w' cos (I'f - /S) = 0,

whence ^ = 0, <? = '^"t.f' w^^-^ (S^)-

In the numerical example in which a heavy particle was fixed to the cir-

cumference of the ring, we have, when /= '82,

V

^ 1-3076

/•5916 P_r3-21 Q_f-l-229
t-3076' A~\b-72' A~\- 797'

so that if we put (ot = 0^ = the mean anomaly,

^ = .4sin(-5916(9o-a)+^sin(-3076 6'o-^) (40),

^1 = 3-21^ cos (-5916(90- a) + 5-72^ cos (-3070 ^0-/3) (41),

<^,= -l-229^cos(-5916l9o-a)-5-7975cos(-30766',-/3) ... (42).

These three equations serve to determine 1\, 6^ and <^i when the original

motion is given. They contain four arbitrary constants A, B, a, /3. Now since
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the original values 1\, 0^, <^i, and also their first differential coefficients with

respect to t, are arbitrary, it would appear that six arbitrary constants ought

to enter into the equation. The reason why they do not is that we assume

r„ and 0^ as the Tiiean values of r and 6 in the actucd motion. These quantities

therefore depend on the original circumstances, and the two additional arbitrary

constants enter into the values of ^o and d^. In the analytical treatment of the

problem the differential equation in n was originally of the sixth degree with a

solution n- = 0, which implies the possibihty of terms in the solution of the

form Ct + D.

The existence of such terms depends on the previous equations, and we find

that a term of this form may enter into the value of 6, and that r^ may contain

a constant term, but that in both cases these additions will be absorbed into

the values of 0, and r,.

PART IL

ON THE MOTION OF A RING, THE PARTS OF WHICH ARE NOT RIGIDLY CONNECTTED.

1. In the case of the Ring of invariable form, we took advantage of the

principle that the mutual actions of the parts of any system form at all times

a system of forces in equilibrium, and we took no account of the attraction

between one part of the ring and any other part, since no motion could result

from this kind of action. But when we regard the different parts of the ring

as capable of independent motion, we must take account of the attraction on

each portion of the ring as affected by the irregularities of the other parts, and

therefore we must begin by investigating the statical part of the problem in

order to determine the forces that act on any portion of the ring, as depending

on the instantaneous condition of the rest of the ring.

In order to bring the problem within the reach of our mathematical methods,

we limit it to the case in which the ring is nearly circular and uniform, and has

a transverse section very small compared with the radius of the ring. By

analysing the difficulties of the theory of a linear ring, we shall be better able

to appreciate those which occur in the theory of the actual rings.
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The ring which we consider is therefore small in section, and very nearly

circular and uniform, and revolving with nearly uniform velocity. The variations

from circular form, uniform section, and uniform velocity must be expressed by a

proper notation.

2. To express the position of an element of a variable ring at a given time

in terms of the original position of the element in the ring.

Let S (fig. 3) be the central body, and SA a direction fixed in space.

Let SB be a radius, revolving with the mean angular velocity w of the

ring, so that ASB = (ot.

Let n be an element of the ring in its actual position, and let P be the

position it would have had if it had moved uniformly with the mean velocity w

and had not been displaced, then BSP is a constant angle =s, and the value

of 5 enables us to identify any element of the ring.

The element may be removed from its mean position P in three different

ways.

(1) By change of distance from S by a quantity l^TT = p.

(2) By change of angular position through a space Pp = a.

(3) By displacement perpendicular to the plane of the paper by a quantity C

p, a- and ^ are all functions of s and t. If we could calculate the attrac-

tions on any element as depending on the form of these functions, we miglit

determine the motion of the ring for any given original disturbance. We cannot,

however, make any calculations of this kind without knowing the form of the

functions, and therefore we must adopt the following method of separating the

original disturbance into others of simpler form, first given in Fourier's Tmitc

de Chaleur.

3. Let C/" be a function of s, it is required to express U in a series of

sines and cosines of multiples of s between the values 5 = and .s = 2t.

Assume U=A,coss + A., cos 2*- + &c. -f A ^ cos nis + A „ cos ns

+ B, sin ,s + B, cos 2.s + &c. + B,„ sin ms + B„ sin ns.
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Multiply by coa Tusds and integrate, then all terms of the form

J cos ms cos nsds and / cos ms sin nsds

will vanish, if we integrate from s = to s= 27r, and there remains

I U COS msds= ITA^, Ua\-D.msds = 'TrB^.

If we can determine the values of these integrals in the given case, we
can find the proper coefficients A^, B^, &c., and the series will then represent

the values of U from s = to 5 = 27r, whether those values be continuous or

discontinuous, and when none of those values are infinite the series will be

convergent.

In this way we may separate the most complex disturbances of a ring into

parts whose form is that of a circular function of s or its multiples. Each of

these partial disturbances may be investigated separately, and its efiect on the

attractions of the ring ascertained either accurately or approximately.

4. To find the magnitude and direction of the attraction between two

elements of a disturbed ring.

Let P and Q (fig. 4) be the two elements, and let their original positions

be denoted by s^ and 5j, the values of the arcs BP, BQ before displacement.

The displacement consists in the angle BSP being increased by ctj and BSQ
by 0*2 , while the distance of P from the centre is increased by p, and that of

Q by Pj.
We have to determine the effect of these displacements on the distance

PQ and the angle SPQ.

Let the radius of the ring be unity, and 5j — .9i
= 2^, then the original

value of PQ will be 2 sin 0, and the increase due to displacement

= (/>2+ Pi) sin ^+ (o-j - (Ti) cos 6.

We may write the complete value of PQ thus,

PQ = 2Bme{l+i{p, + p,)+^{(T,-(T,)cot0\ (1).

The original value of the angle SPQ was -^-6, and the increase due to

displacement is i{Pi — Pi) cot ^ - ^ (o-j - Ci),
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30 that we may write the values of sin SPQ and cos SPQ,

Gin SFQ = cos e {I +i{p,-p,)-i {a-,- a,) ta,n0} (2),

cos SPQ = am e {I -i(p,-p,)coVd + i (a-,- a-,) cot 6} (3).

If we assume the masses of P and Q each equal to - R, where P is the

mass of the ring, and p, the number of satellites of which it is composed, the

accelerating effect of the radial force on P is

li}22^ = l--«_^{l_(p. + p,)_i(p._p,)eof^-iK-.T.)cot3}...(4),

and the tangential force

I j^sinSPQ li^COS^-. ,

\ / + ^ , l x mi /r:\

]1^ PQ ^^H^i^I^-^/^^-f/^^-l^'-^Olcot^ + itan^)} (5).

1 L — l
The normal force is -R ^ . , \.

p. 8 sm^ 6

5. Let us substitute for p, or and { their values expressed in a series of

sines and cosines of multiples of 5, the terms involving ms being

Pi =A cos {ms + a), pi =A cos (ms + a + 20),

o-, = -Bsin(m5 + ^), cr. =B sin {7}is-\-fi + 20),

C, = C cos (ms + y), C2 = Ccos {ms + y + 26).

The radial force now becomes

1 —^ cos {ms + a) ( 1 + cos 2m0) +A sin {ms + a) sin 2md i

+ ^A cos {ms + a) (1 - cos 2m6) cot' ^ - ^^ sin (t/i^ + a) sin 2ni6 cot"6
\ (6).

+^B sin {ms + ft) {1 -cos 2m^) cot ^-^5cos(??i5 + /8) siii2w^cot^.

The radial component of the attraction of a corresponding particle on the

other side of P may be found by changing the sign of 6. Adding the two

together, we have for the effect of the pair

- ^-^—^ {1 — ^ COS {ms + a) (2 cos" md — sin' md cot' 6)

- B cos {ms + 13) ^ sin 2m6 cot 6]

I_i2_
/x 4 sin ^

(?)•



314

Let us put
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sin* mO cos'' 6 cos' m6\

K=t

f^va. 2m6 cos

\ 4sin*^

/sin" md cos' 6

sin' mt

2 sin^

1

+ i
sin'?n^

2sin^

(8)^:

where the summation extends to all the sateUites on the same side of F,

that is, every value of 6 of the form - tt, where x is a whole number less

than

The radial force may now be written

P =~R {K+ LA cos ims + a) -MB cos {'tm + ^)} (9).

* Tlie following values of several quantities which enter into these investigations are calculated for a

ring of 36 satellites.

A' =24-5.
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The tangential force may be calculated in the same way, it is

T=- R{MAam(iiis-\-a) + NBsm(7ns + IB)} (10).

The normal force is

Z= -^-RJC cos (ms + y) (11).

G. We have found the expressions for the forces which act upon each

member of a system of equal satellites which originally formed a uniform ring,

but are now aflfected with displacements depending on circular functions. If

these displacements can be propagated round the ring in the form of waves

with the velocity — , the quantities a, y8, and y will depend on t, and the

complete expressions will be

p = ^ cos (ms + nt-\- a)
'

a = Bam(ms + nt+^) (12).

^ = Ccos (ms+ nt + y).

Let us find in what cases expressions such as these will be true, and

what will be the result when they are not true.

Let the position of a satellite at any time be determined by the values

of r, (j), and C, where r is the radius vector reduced to the plane of reference,

<t>
the angle of position measured on that plane, and ^ the distance from it.

The equations of motion will be

[dtj df ^ r-^-^

dr d4 d^_^
^Tt dt

^"^ df~

d^
df' 1^

.(13).

If we substitute the value of ^ in the third equation and remember that r

is nearly = 1 , we find

(14).

As this expression is necessarily positive, the value of n' is always real,

and the disturbances normal to the plane of the ring can always be propa-
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gated as waves, and therefore can never be the cause of instability. We
therefore confine our attention to the motion in the plane of the ring as

deduced from the two former equations.

Putting r = 1 4- /) and
(f>
= <ot + s + a; and omitting powers and products of

p, cr and their differential coeflScients,

''+'">+2-t-t='^-2«''+^

-l+§=^
(15).

Substituting the values of p and cr as given above, these equations become

oi'-S-- RK+ U- -]-2S--EL + 7f)A cos (ttis + nt + a)

+ (2(071 + -RM)B COS (ins + nt + ^) = ...(16),
H'

(2(071 + - EM) A sin (ins + nt + a) + (if +-RN)Bam(7ns + nt-\-^) = 0.... (17).
p p

Putting for (ins + nt) any two diflferent values, we find from the second

equation (17)

a=)8 (18),

and (2(on+ -E]\f)A + (n'+-EN)B = (19),

and from the first (16) ((o' + 2S-- EL + iv) A + (2(on+ - EM) B = (20),

and (o'-S--EK=0 (21).
p

Eliminating A and B from these equations, we get

n'-{S(o'-2S+ -E(L-N)}n^

-'4(o-EMn + ((o' + 2S--EL)-EN--,E'M' = (22),

a biquadratic equation to determine n.

For every real value of n there are terms in the expressions for p and o-

of the form
A cos (nis + nt + a).
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For every pure impossible root of the form ±7 — In' there are terms of

the forms

^e^^'cos (ms + a).

Although the negative exponential coefficient indicates a continually diminlshmg

displacement which is consistent with stability, the positive value which neces-

sarily accompanies it indicates a continually increasing disturbance, which would

completely derange the system in course of time.

For every mixed root of the form ±n/ — In' + n, there are terms of the form

.46*"'' cos {ms + nt + a).

If we take the positive exponential, we have a series of m waves travelling

with velocity — and increasing in amplitude with the coefficient e"^"'. The

negative exponential gives us a series of m waves gradually dying away, but

the negative exponential cannot exist without the possibility of the positive one

having a finite coefficient, so that it is necessary for the stability of the motion

that the four values of n be all real, and none of them either impossible

quantities or the sums of possible and impossible quantities.

We have therefore to determine the relations among the quantities K, L,

M, N, R, S, that the equation

n'-lS+^RidK+L-N)]?^

'-4<o-RMn + {SS+ - R (K-L)} - RN- \ R'M'^ U=0

may have four real roots.

7. In the first place, U is positive, when tz is a large enough quantity,

whether positive or negative.

It is also positive when 7i=;0, provided S be large, as it must be, com-

pared with - RL, -RM and - RN.

If we can now find a positive and a negative value of n for which U
is negative, there must be four real values of n for which U=0, and the four

roots will be real.
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Now if we put n= ±J^JS,

U= -^S'+ l -R{7N±ij2M-L-dK) S+ \r{KN-LN^M%

which is negative if >S be large compared to R.

So that a ring of satellites can always be rendered stable by increasing

the mass of the central body and the angular velocity of the ring.

The values of L, M, and N depend on m, the number of undulations in

the ring. When m = ^, the values of L and N will be at their maximum

and M=0. If we determine the relation between S and R in this case so

that the system may be stable, the stability of the system for every other

displacement will be secured.

8. To find the mass which must be given to the central body in order

that a ring of satellites may permanently revolve round it.

We have seen that when the attraction of the central body is sufficiently

great compared with the forces arising from the mutual action of the satellites,

a permanent ring is possible. Now the forces between the satellites depend on

the manner in which the displacement of each satellite takes place. The con-

ception of a perfectly arbitrary displacement of all the satellites may be rendered

manageable by separating it into a number of partial displacements depending

on periodic functions. The motions arising from these small displacements will

take place independently, so that we have to consider only one at a time.

Of all these displacements, that which produces the greatest disturbing

forces is that in w^hich consecutive satellites are oppositely displaced, that is,

when m = -, for then the nearest satellites are displaced so as to increase as
z

much as possible the effects of the displacement of the satellite between them.

If we make /x a large quantity, we shall have

2™^<^ = e;(l + 3-'+ 5-+ &c.) = ^.(l-0518).
sm^ n'

^ TT

M=0, N=2L, J5r very small.
IT
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Let - RL = X, then the equation of motion will be
/A

n*-{S-x)n' + 2x{'iS-x)=U=0 (23).

The conditions of tliis equation having real roots are

S>x (24),

(S-xY>^x{'iS-x) (25).

The last condition gives the equation

6:'-26*Sx + 9ar>0,

whence S>2Q-U2x, or>S<0-351a; (26).

The last solution is inadmissible because S must be greater than x, so that

the true condition is »S>25*649a:,

> 25-649 i 72^3 -5259,
/X IT

S>-ASd2im'R (27).

So that if there were 100 satellites in the ring, then

5>4352i2

is the condition which must be fulfilled in order that the motion arising from

every conceivable displacement may be periodic.

If this condition be not fulfilled, and if S be not sufiadent to render the

motion perfectly stable, then although the motion depending upon long undu-

lations may remain stable, the short undulations wiill increase in amplitude till

some of the neighbouring satellites are brought into collision.

9. To determine the nature of the motion when the system of satellites

is of small mass compared with the central body.

The equation for the determination of n is

^ /x ^ /x

+ {Zoy-- R{2K+L)]~ RN -\R'M'=^0 (28).
F' r" r"

When R is very small we may approximate to the values of n by assuming

that two of them are nearly ± co, and that the other two are small.
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If we put n= ±(0,

dU
dn

= ±2g>' + &c.

Therefore the corrected values of n are

n^±{<o +^R(2K + L-.m)} +^RM. (29).

The small values of n are nearly ±/3-i2iV^: correcting them in the

way, we find the approximate values

n=±./3^EN^2~RM

same

(30).

The four values of n are therefore

1
^1= -<o-^-E{2K+L^iM-4N)

RN-— RM
fXCt)

^z=+J^-RN-—RM
(31),

^4= +o>+^--R(2K+L+ iM-4N)

and the complete expression for p, so far as it depends on terms containing ms,

is therefore P = A, cos {ms + n^t + a^)-\-A^ cos (ws+ n^t + c^)

+ A^co&(ms + nJ, + a^-{-A^coB{ms-\-nJ^ + a^) (32),

and there will be other systems, of four terms each, for every value of m in

the expansion of the original disturbance.

We are now able to determine the value of o- from equations (12), (20), by
putting /8 = a, and

2<an+ - RM
5= — (33).

n'+ -RN
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So that for every term of p of the form

p = Acos (ms -{-111 + a) (34),

there is a corresponding term in a,

2w7i + - RM

7t' +-RN
A sin {ms-¥7it + a) (35).

10. Let us now fix our attention on the motion of a single satellite,

and determine its motion by tracing the changes of p and a- while t varies

and 5 is constant, and equal to the value of s corresponding to the satellite

in question.

We must recollect that p and a- are measured outwards and forwards from

an imaginary point revolving at distance 1 and velocity o, so that the motions

we consider are not the absolute motions of the satellite, but its motions

relative to a point fixed in a revolving plane. This being understood, we may

describe the motion as elliptic, the major axis being in the tangential direc-

tion, and the ratio of the axes being nearly 2 ^ , which is nearly 2 for n, and n,

and is very large for n^ and n^.

The time of revolution is — , or if we take a revolution of the ring as

the unit of time, the time of a revolution of the satellite about its mean

... . it)

position IS - .

The direction of revolution of the satellite about its mean position is in

every case opposite to that of the motion of the ring.

11. The absolute motion of a satellite may be found from its motion

relative to the ring by writing

r=l+p = l+^cos {ms + nt + a),

d = (ot + s-{-<T = (ot +s-2 -Asm{ms-\-nt-\-a).
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When n is nearly equal to ±(0, the motion of each satellite in space is

nearly elliptic. The eccentricity is A, the longitude at epoch s, and the longi-

tude when at the greatest distance from Saturn is for the negative value n^

- — R{2K+L-iM-4N)t + {m+l)s + a,

and for the positive value n^

- — R{2K+L + 4M^4.N)t-{m+l)s-a.

We must recollect that in all cases the quantity within brackets is negative,

so that the major axis of the ellipse travels forwards in both cases. The chief

difference between the two cases lies in the arrangement of the major axes of

the ellipses of the different satellites. In the first case as we pass from one

satellite to the next in front the axes of the two ellipses lie in the same

order. In the second case the particle in front has its major axis behind that

of the other. In the cases in which n is small the radius vector of each

satellite increases and diminishes during a periodic time of several revolutions.

This gives rise to an inequality, in which the tangential displacement far exceeds

the radial, as in the case of the annual equation of the Moon.

12. Let us next examine the condition of the ring of satellites at a given

instant. We must therefore fix on a particular value of t and trace the changes

of p and <r for different values of s.

From the expression for p we learn that the satellites form a wavy line,

which is furthest from the centre when (ms+ nt + a) is a multiple of 27r, and

nearest to the centre for intermediate values.

From the expression for cr we learn that the satellites are sometimes in

advance and sometimes in the rear of their mean position, so that there are

places where the satellites are crowded together, and others where they are

drawn asunder. When n is positive, ^ is of the opposite sign to A, and the

crowding of the satellites takes place when they are furthest from the centre.

When n is negative, the satellites are separated most when furthest from the

centre, and crowded together when they approach it.

The form of the ring at any instant is therefore that of a string of beads

forming a re-entering curve, nearly circular, but with a small variation of distance
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from the centre recurring m times, and forming m regular waves of trans-

vei-se displacement at equal intervals round the circle. Besides these, there are

waves of condensation and rarefaction, the effect of longitudinal displacement.

When n is positive the points of greatest distance from the centre are points

of greatest condensation, and when n is negative they are points of greatest

rarefaction.

13. We have next to determine the velocity with which these waves of

disturbance are propagated round the ring. We fixed our attention on a par-

ticular satellite by making s constant, and on a particular instant by making t

constant, and thus we determined the motion of a satellite and the form of the

ring. We must now fix our attention on a phase of the motion, and this we

do by making p or a- constant. This implies

ms + nt + a = constant,

ds _ n

dt~ m*

So that the particular phase of the disturbance travels round the ring with an

angular velocity = relative to the ring itself. Now the ring is revolving

in space with the velocity w, so that the angular velocity of the wave in space is

tj- = w (36).m

Thus each satellite moves in an ellipse, while the general aspect of the

ring is that of a curve of m waves revolving with velocity ct. This, however,

is only the part of the whole motion, which depends on a single term of the

solution. In order to understand the general solution we must shew how to

determine the whole motion from the state of the ring at a given instant.

14. Given the position and motion of every satellite at any one time, to

calculate the position and motion of every satellite at any other time, provided

that the condition of stability is fulfilled.

The position of any satellite may be denoted by the values of p and cr for

that satellite, and its velocity and direction of motion are then indicated by the

values of -r and -y- at the g:iven instant.
dt at
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These four quantities may have for each satellite any four arbitrary values,

as the position and motion of each satellite are independent of the rest, at the

beginning of the motion.

Each of these quantities is therefore a perfectly arbitrary ftmction of s, the

mean angular position of the satellite in the ring.

But any function of s from s = to s = 27r, however arbitrary or discontinuous,

can be expanded in a series of terms of the form A cos (5 + a) + A' cos (2s + a') + &c.

See § 3.

Let each of the four quantities p, -^ , a, -j- he expressed in terms of such

a series, and let the terms in each involving ms be

p = Ecoa{'ms + e) (37),

^^=Fcos(ins+f) (38).

<T=G cos (ms+g) (39),

^ = Hco3{ms + h) (40).

These are the parts of the values of each of the four quantities which are

capable of being expressed in the form of periodic fimctions of ms. It is

evident that the eight quantities E, F, G, H, e, f, g, h, are all independent and

arbitrary.

The next operation is to tind the values of X, M, N, belonging to disturb-

ances in the ring whose index is m [see equation (8)], to introduce these

values into equation (28), and to determine the four values of n, (ti,, tIj, 1I3, n^).

This being done, the expression for p is that given in equation (32), which

contains eight arbitrary quantities (A,, A^, A3, At, «„ a^, a^, aj.

Giving t its original value in this expression, and equating it to Eco3{7m-\-e),

we get an equation which is equivalent to two. For, putting 7ns= 0, we have

^1 cos Oi + .^2 cos a, + -^3 cos a, + ^^ cos a^ = -E' cos e (41).

And putting ms= , we have another equation

-4i sin Oi + ^j sin aj + ^3 sin 03 + ^< sin a^ =^ sin e (42).
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Differentiating (32) with respect to t, we get two other equations

- A^n^ Bina-kc.-F cos/ (43),

Aji^ cos a + &c.=F sin/ (44 ).

Bearing in mind that B„ B^, &c. are connected with A„ A^, &c. by equa-

tion (33), and that B is therefore proportional to A, we may write B = A^,

where

2o)n + - RM
P ^
P= 7

H'

^ being thus a fiinction of n and a known quantity.

The value of <r then becomes at the epoch

<r = ^i)8i sin (m5 4- Oi) -I- &c. = Gcoa('ms-\-g),

from which we obtain the two equations

^^1 sin Oi -I- &c. = 6^ cos g (45),

^^iC0Sai + &c. = —Geing (46).

Differentiating with respect to t, we get the remaining equations

A^jij^ cos Oj + &c. =^ cos A (47),

^^iniSinai-l-&c. = iZ'sinA (48).

We have thus found eight equations to determine the eight quantities

^1, &c. and Oi, &c. To solve them, we may take the four in which -^iCosoi,

&c. occur, and treat them as simple equations, so as to find ^iCosoj, &c. Then

taking those in which ^isinoi, &c. occur, and determining the values of those

quantities, we can easily deduce the value of A^ and a,, &c. from these.

We now know the amplitude and phase of each of the four waves whose

index is m. All other systems of waves belonging to any other index must

be treated in the same way, and since the original disturbance, however arbitrary,

can be broken up into periodic functions of the form of equations (37—40),

our solution is perfectly general, and applicable to every possible disturbance of

a ring fulfilling the condition of stability (27).
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15. We come next to consider the effect of an external disturbing force,

due either to the irregularities of the planet, the attraction of satellites, or

the motion of waves in other rings.

All disturbing forces of this kind may be expressed in series of which the

general term is

A cos {vt + ms + a),

where v is an angular velocity and m a whole number.

Let P cos {ins + vt +p) be the central part of the force, acting inwards, and

Q sin (ms + vt + q) the tangential part, acting forwards. Let p = A cos {tus + vt + a)

and a- =Bsm (ms + vt-]- fi), be the terms of p and a which depend on the

external disturbing force. These will simply be added to the terms depending

on the original disturbance which we have already investigated, so that the

complete expressions for p and <t will be as general as before. In consequence

of the additional forces and displacements, we must add to equations (16) and

(17), respectively, the following terms:

{Zar--R (2K+ L) + v"] A cos (m^-{-vt-\- a)

+ (2q)V -\- - RM) B COS (ms + vt + f3)-P cos (ms + vt-hp) = (49).

(2a)i; 4- - EM) A sin (ms + vt + a)

+ (v" + - EN)B Bm(ms + vt + fi)-¥Q sin (ms + vt + q) = (50).

Making 7ns + vt = in the first equation and - in the second,

{S(o'-- E (2K+L) + if} A cos a+ (2(ov + -E3f) B cos fi-P coap = (51).

(2a>v + - EM) A cosa + (v'+ - EN)B COB fi + Qcosq = (52).

Then if we put

U' = v'-{oj' +-E(2K+L-N)}v'-A-EMv

+{Sa>'--E(2K+L)}-EN-\E'M' (53),
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we shall find the value of A cos a and B coa fi

;

v' + -RN 2cov-i-~RM

A cosa = ft; P coa p + t4 Qcoaq (54).

2(ov 4- - RM y' + 3<o'--R {K+ L)

Bcoafi= j^
Pcoap

jp
Qcoaq (55).

Substituting sines for cosines in equations (51), (52), we may find the

values of A sin a and B sin ^.

Now U* is precisely the same function of v that Z7 is of ?i, so that if u

coincides with one of the four values of n, U' will vanish, the coefiicients A
and B will become infinite, and the ring will be destroyed. The disturbing

force is supposed to arise from a revolving body, or an undulation of any kind

which has an angular velocity relatively to the ring, and therefore an

absolute angular velocity = w .

If then the absolute angular velocity of the disturbing body is exactly or

nearly equal to the absolute angular velocity of any of the free waves of the

ring, that wave will increase till the ring be destroyed.

The velocities of the free waves are nearly

l+i\ a> + i /s-i^.V, o>-- /s-i^iV^, and 0) fl-i) (56).

When the angular velocity of the disturbing body is greater than that of

the first wave, between those of the second and third, or less than that of

the fourth, U' is positive. When it is between the first and second, or between

the third and fourth, U' is negative.

Let us now simplify our conception of the disturbance by attending to the

central force only, and let us put ^ = 0, so that P is a maximum when ms + vt

is a multiple of 27r. We find in this case a = 0, and /8 = 0. Also

if+^- RN^=—^P (57),

2cjv + -RM
B= ^. P (58).
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When U' is positive, A will be of the same sign as P, that is, the parts

of the ring wlU be furthest from the centre where the disturbing force towards

the centre is greatest. When U' is negative, the contrary will be the case.

When V is positive, B will be of the opposite sign to A, and the parts

of the ring furthest from the centre will be most crowded. When v is negative,

the contrary will be the case.

Let us now attend only to the tangential force, and let us put ^' = 0. We
find in this case also a = 0, )3 = 0,

2(ov+-RM
^=—tr— ^ (^^)'

B= ^. Q (60).

The tangential displacement is here in the same or in the opposite direc-

tion to the tangential force, according as £/"' is negative or positive. The

crowding of sateUites is at the points farthest from or nearest to Saturn

according as -y is positive or negative.

16. The effect of any disturbing force is to be determined in the following

manner. The disturbing force, whether radial or tangential, acting on the ring

may be conceived to vary from one satellite to another, and to be different at

different times. It is therefore a perfectly arbitrary function of s and t.

Let Fourier's method be applied to the general disturbing force so as to

divide it up into terms depending on periodic functions of s, so that each term

is of the form F (t) cos {ms + a), where the function of i is still perfectly arbitrary.

But it appears from the general theory of the permanent motions of the

heavenly bodies that they may all be expressed by periodic functions of t

arranged in series. Let vt be the argument of one of these terms, then the

corresponding term of the disturbance will be of the form

P cos (ttis + vt + a).

This term of the disturbing force indicates an alternately positive and

negative action, disposed in m waves round the ring, completing its period
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relatively to eaxih particle in the time — , and travelling as a wave among

the particles with an angular velocity , the angular velocity relative to fixed

space being of course oj — -
. The whole disturbing force may be split up into

terms of this kind.

17. Each of these elementary disturbances will produce its own wave in

the ring, independent of those which belong to the ring itself. This new wave,

due to external disturbance, and following different laws from the natural waves

of the rincy, is called the farced wave. The angular velocity of the forced wave

is the same as that of the disturbing force, and its maxima and minima coin-

cide with those of the force, but the extent of the disturbance and its direction

depend on the comparative velocities of the forded wave and the four natural

waves.

When the velocity of the forced wave lies between the velocities of the

two middle free waves, or is greater than that of the swiftest, or less than

that of the slowest, then the radial displacement due to a radial disturbing

force is in the same direction as the force, but the tangential displacement

due to a tangential disturbing force is in the opposite direction to the force.

The radial force therefore in this case produces a positive forced wave, and

the tangential force a negative forced ivave.

When the velocity of the forced wave is either between the velocities of

the first and second free waves, or between those of the third and fourth, then

the radial disturbance produces a forced wave in the contrary direction to that

in which it acts, or a negative wave, and the tangential force produces a positive

wave.

The coefficient of the forced wave changes sign whenever its velocity passes

through the value of any of the velocities of the free waves, but it does so

by becoming infinite, and not by vanishing, so that when the angular velocity

very nearly coincides with that of a free wave, the forced wave becomes very

great, and if the velocity of the disturbing force were made exactly equal t-o

that of a free wave, the coefficient of the forced wave would become infinite.

In such a case we should have to readjust our approximations, and to find

whether such a coincidence might involve a physical impossibility.
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The forced wave which we have just investigated is that which would main-

tain itself in the ring, supposing that it had been set agoing at the commence-

ment of the motion. It is in fact the form of dynamical equiUbrium of the

ring under the influence of the given forces. In order to find the actual motion

of the ring we must combine this forced wave with all the free waves, which

go on independently of it, and in this way the solution of the problem becomes

perfectly complete, and we can determine the whole motion under any given

initial circumstances, as we did in the case where no disturbing force acted.

For instance, if the ring were perfectly uniform and circular at the instant

when the disturbing force began to act, we should have to combine with the

constant forced wave a system of four free waves so disposed, that at the given

epoch, the displacements due to them should exactly neutralize those due to the

forced wave. By the combined effect of these four free waves and the forced

one the whole motion of the ring would be accounted for, beginning from its

undisturbed state.

The disturbances which are of most importance in the theory of Saturn's

rings are those which are produced in one ring by the action of attractive

forces arising from waves belonging to another ring.

The effect of this kind of action is to produce in each ring, besides its

own four free waves, four forced waves corresponding to the free waves of the

other ring. There will thus be eight waves in each ring, and the corresponding

waves in the two rings will act and react on each other, so that, strictly speak-

ing, every one of the waves will be in some measure a forced wave, although

the system of eight waves will be the free motion of the two rings taken

together. The theory of the mutual disturbance and combined motion of two

concentric rings of satellites requires special consideration.

18. On the motion of a ring of satellites when the conditions of stability

are not fulfilled.

We have hitherto been occupied with the case of a ring of satellites, the

stability of which was ensured by the smaUness of mass of the satellites com-

pared with that of the central body. We have seen that the statically unstable

condition of each satellite between its two immediate neighbours may be com-

pensated by the dynamical effect of its revolution round the planet, and a planet

of sufiicient mass can not only direct the motion of such satellites round its
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own body, but can likewise exercise an influence over their relations to each

other, so as to overrule their natural tendency to crowd together, and distribute

and preserve them in the form of a ring.

We have traced the motion of each satellite, the general shape of the

disturbed ring, and the motion of the various waves of disturbance round the

ring, and determined the laws both of the natural or free waves of the ring,

and of the forced waves, due to extraneous disturbing forces.

We have now to consider the cases in which such a permanent motion of

the ring is impossible, and to determine the mode in which a ring, originally

regular, will break up, in the different cases of instability.

The equation from which we deduce the conditions of stability is

—

U = n'-i(o' + -E(2K+L-N)\n'-4:(o-EMn

+ hco'--R{2K+L)\-RN -\r'M' = 0.

The quantity, which, in the critical cases, determines the nature of the

roots of this equation, is N. The quantity M in the third term is always

small compared with L and N when m is large, that is, in the case of the

dangerous short waves. We may therefore begin our study of the critical cases

by leaving out the third term. The equation then becomes a quadratic in n\

and in order that all the values of n may be real, both values of n' must be

real and positive.

The condition of the values of n^ being real is

oj* + co'-R{AK+ 2L-UN) + \b'{2K+L-\-NY>0 (61),

which shews that ay must either be about 14 times at least smaller, or about 14

times at least greater, than quantities like - RN.

That both values of if may be positive, we must have

co' + -R{2K+ L-N)>0

i3co''--R(2K-^L)\-RN>0
(62).
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We must therefore take the larger value 6£ oi\ and also add the condition

that N be positive.

RN
We may therefore state roughly, that, to ensure stability, ,

the coefficient

of tangential attraction, must lie between zero and -^oi\ If the quantity be

negative, the two small values of n will become _pwre impossible quantities. If

it exceed ^oi\ all the values of n will take the form of mixed impossible

quantities.

If we write x for - RN, and omit the other disturbing forces, the equation

becomes U=n*-{(o'-x)n' + Sco'x = (63),

whence n' = ^{co'-x)±^^/<o*-U(o'x + x' (64).

If X be small, two of the values of n are nearly ±<o, and the others are

small quantities, real when x is positive and impossible when x is negative.

2

If x be greater than {7-^IS)ar, or ^ nearly, the term under the radical

becomes negative, and the value of ?i becomes

n= ±^^fjT2^ + o}'-x±^/^-^'Jl2co'x-ajr + x (65),

where one of the terms is a real quantity, and the other impossible. Every

solution may be put under the form

n=p±J^^q (66),

where ry = for the case of stability, p = for the pure impossible roots, and p
and q finite for the mixed roots.

Let us now adopt this general solution of the equation for n, and determine

its mechanical significance by substituting for the impossible circular functions

their equivalent real exponential functions.

Substituting the general value of n in equations (34), (35),

p = A[cos {ms +(p + 'J^^q)t + a} + cos {ms + ip- J -lq)t + a}] ... (67),

^^_^MP+±zlAsm{,ns + (p +^^q)t + a}
]

(p + J-lqf + x

_^MEpdIi^sm{ms+(p-sr^lq)t + a}
\

{p-'J -IqY + x J
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Introducing the exponential notation, these values become

p = A(^^ + €-''')co3(ms-{-pt + a) (69),

W r 2) (^' + r/ + x) (€«' + €-«') sin (771,5 +j9« + a) 1

We have now obtained a solution free from impossible quantities, and applicable

to every case.

When ^ = 0, the case becomes that of real roots, which we have already

discussed. When p = 0, we have the case of pure impossible roots arising from

the negative values of if. The solutions corresponding to these roots are

/3 = ^ (e«' + €-«') cos (m5 + a) (71).

o-=-^r^^^(€''-e-^0cos(m5 + a) (72).

The part of the coefficient depending on e"'' diminishes indefinitely as the

time increases, and produces no marked effect. The other part, depending on

€^', increases in a geometrical proportion as the time increases arithmetically, and

so breaks up the ring. In the case of x being a small negative quantity, q' is

nearly 3x, so that the coefficient of cr becomes

It appears therefore that the motion of each particle is either outwards and

backwards or inwards and forwards, but that the tangential part of the motion

greatly exceeds the normal part.

It may seem paradoxical that a tangential force, acting towards a position

of equilibrium, should produce instability, while a small tangential force from that

position ensures stability, but it is easy to trace the destructive tendency of

this apparently conservative force.

Suppose a particle slightly in front of a crowded part of the ring, then

if X is negative there will be a tangential force pushing it fonvards, and this

force will cause its distance from the planet to increase, its angular velocity U>

diminish, and the particle itself to fall back on the crowded part, thereby

increasing the irregularity of the ring, till the whole ring is broken up. In

the same way it may be shewn that a particle hehiiid a crowded part will be

pushed into it. The only force which could preserve the ring from the effect
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of tills action, is one which would prevent the particle from receding from the

planet under the influence of the tangential force, or at least prevent the dimi-

nution of angular velocity. The transversal force of attraction of the ring is of

this kind, and acts in the right direction, but it can never be of sufficient magni-

tude to have the required effect. In fact the thing to be done is to render the

last term of the equation in w positive when N is negative, which requires

fX

and this condition is quite inconsistent with any constitution of the ring which

fiilfils the other condition of stability which we shall arrive at presently.

We may observe that the waves belonging to the two real values of n,

±(D, must be conceived to be travelling round the ring during the whole time

of its breaking up, and conducting themselves like ordinary waves, till the

excessive irregularities of the ring become inconsistent with their uniform propa-

gation.

The irregularities which depend on the exponential solutions do not travel

round the ring by propagation among the sateUites, but remain among the same
satellites which first began to move irregularly.

We have seen the fate of the ring when x is negative. When x is small

we have two small and two large values of n, which indicate regular waves,

as we have already shewn. As x increases, the small values of n increase, and

the large values diminish, till they meet and form a pair of positive and a

pair of negative equal roots, having values nearly +"68w. When x becomes

greater than about -^(o", then all the values of n become impossible, of the

form ^j-F-n/ — Ig", q being small when x first begins to exceed its limits, and p
being nearly + '6S(o.

The values of p and cr indicate periodic inequalities having the period —
,

but increasing in amplitude at a rate depending on the exponential e''. At the

beginning of the motion the oscillations of the particles are in eUipses as in the

case of stability, having the ratio of the axes about 1 in the normal direction

to 3 in the tangential direction. As the motion continues, these ellipses increase

in magnitude, and another motion depending on the second term of cr is com-

bined with the former, so as to increase the ellipticity of the oscillations and to
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turn the major axis into an inclined position, so that its fore end points a little

inwards, and its hinder end a little outwards. The oscillations of each particle

round its mean position are therefore in ellipses, of which both axes increase

continually while the eccentricity increases, and the major axis becomes sUghtly

inclined to the tangent, and this goes on till the ring is destroyed. In the

mean time the irregularities of the ring do not remain among the same set of

particles as in the former case, but travel round the ring^ with a relative angular

velocity - ^^ Of these waves there are four, two travelling forwards among the

satellites, and two travelling backwards. One of each of these pairs depends

on a negative value of q, and consists of a wave whose amplitude continually

decreases. The other depends on a positive value of q, and is the destructive

wave whose character we have just described.

19. We have taken the case of a ring composed of equal satellites, as

that with which we may compare other cases in which the ring is constructed

of loose materials diiferently arranged.

In the first place let us consider what will be the conditions of a ring

composed of satellites of unequal mass. We shall find that the motion is of

the same kind as when the satellites are equal.

For by arranging the satellites so that the smaller satellites are closer

together than the larger ones, we may form a ring which will revolve uni-

formly about Saturn, the resultant force on each satellite being just sufficient

to keep it in its orbit.

To determine the stability of this kind of motion, we must calculate the

disturbing forces due to any given displacement of the ring. This calculation

will be more complicated than in the former case, but will lead to results of

the same general character. Placing these forces in the equations of motion,

we shall find a solution of the same general character as in the former case,

only instead of regular waves of displacement travelling round the ring, each

wave will be split and reflected when it comes to irregularities in the chain of

satellites. But if the condition of stability for every kind of wave be fulfilled,

the motion of each satellite will consist of small oscillations about its position

of dynamical equilibrium, and thus, on the whole, the ring will of itself assume

the arrangement necessary for the continuance of its motion, if it be originally

in a state not very different from that of equilibrium.
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20. We now pass to the case of a ring of an entirely different construc-

tion. It is possible to conceive of a quantity of matter, either solid or liquid,

not collected into a continuous mass, but scattered thinly over a great extent

of space, and having its motion regulated by the gravitation of its parts to

each other, or towards some dominant body. A shower of rain, hail, or cinders

is a familiar illustration of a number of unconnected particles in motion; the

visible stars, the milky way, and the resolved nebula?, give us instances of a

similar scattering of bodies on a larger scale. In the terrestrial instances we

see the motion plainly, but it is governed by the attraction of the earth, and

retarded by the resistance of the air, so that the mutual attraction of the

parts is completely masked. In the celestial cases the distances are so enor-

mous, and the time during which they have been observed so short, that we

can perceive no motion at all. StiU we are perfectly able to conceive of a

collection of particles of small size compared with the distances between them,

acting upon one another only by the attraction of gravitation, and revolving

round a central body. The average density of such a system may be smaller

than that of the rarest gas, while the particles themselves may be of great

density ; and the appearance from a distance will be that of a cloud of vapour,

with this difference, that as the space between the particles is empty, the rays

of light will pass through the system without being refracted, as they would

have been if the system had been gaseous.

Such a system will have an average density which may be greater in some

places than others. The resultant attraction wiU be towards places of greater

average density, and thus the density of those places wiU be increased so as

to increase the irregularities of density. The system will therefore be statically

unstable, and nothing but motion of some kind can prevent the particles from

forming agglomerations, and these uniting, till all are reduced to one solid

mass.

We have already seen how dynamical stability can exist where there is

statical instability in the case of a row of particles revolving round a central

body. Let us now conceive a cloud of particles forming a ring of nearly uni-

form density revolving about a central body. There will be a primary effect of

inequalities in density tending to draw particles towards the denser parts of the

ring, and this will ehcit a secondary effect, due to the motion of revolution,

tending in the contrary direction, so as to restore the rings to uniformity. The
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relative magnitude of these two opposing forces determines the destruction or

preservation of the ring.

To calculate these effects we must begin with the statical problem :—To

determine the forces arising from the given displacements of the ring.

The longitudinal force arising from longitudinal displacements is that which

has most effect in determining the stability of the ring. In order to estimate ita

limiting value we shall solve a problem of a simpler form.

21. An infinite mass, originally of uniform density Tc, has its particles

displaced by a quantity f parallel to the axis of x, so that ^ = AcQ^mx, to

determine the attraction on each particle due to this displacement.

The density at any point will differ from the original density by a quantity

k' , so that

{k + k') (dx + d^) = kdx (73),

k'= —k-r- =Akm sin mx (74).

The potential at any point will be V+V, where V is the original potential,

and F' depends on the displacement only, so that

dT d'V d'V ^ ,, ^ ,^,,^+-5^ + ^- + ^'^^=^ (^^)-

Now V is a function of x only, and therefore,

V = AirAk —sinmx (76),

and the longitudinal force is found by differentiating V with respect to x.

dVX= -,— = inkA cos mx = 'ink^ (77).

Now let us suppose this mass not of infinite extent, but of finite section

parallel to the plane of yz. This change amounts to cutting off all portions

of the mass beyond a certain boundary. Now the effect of the portion so cut

off upon the longitudinal force depends on the value of m. When m is large,

so that the wave-length is small, the effect of the external portion is insensible,

so that the longitudinal force due to short waves is not diminished by cutting

off a great portion of the mass.
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22. Applying this result to the case of a ring, and putting s for x, and

a- for $ we have
cr = ^ cos ms, and T= AttJcA cos ms,

so that -RN=4:Trk,

when on is very large, and this is the greatest value of N.

The value of L has little effect on the condition of stability. If L and

M are both neglected, that condition is

(o'>27-S5e (2nk) (78),

and if L be as much as ^N, then

o>^>25-649 (27rk) (79),

so that it is not important whether we calculate the value of L or not.

The condition of stability is, that the average density must not exceed a

certain value. Let us ascertain the relation between the maximum density of

the ring and that of the planet.

Let h be the radius of the planet, that of the ring being unity, then the

mass of Saturn is ^Trh'k' = o)"' if k' be the density of the planet. If we assume

that the radius of the ring is twice that of the planet, as Laplace has done,

then h = ^ and

1 = 334-2 to 307-7 (80),

so that the density of the ring cannot exceed 3^ of that of the planet. Now

Laplace has shewn that if the outer and inner parts of the ring have the same

angular velocity, the ring will not hold together if the ratio of the density of

the planet to that of the ring exceeds 1-3, so that in the first place, our ring

cannot have uniform angular velocity, and in the second place, Laplace's ring

cannot preserve its form, if it is composed of loose materials acting on each

other only by the attraction of gravitation, and moving with the same angular

velocity throughout.

23. On the forces arising from inequalities of thickness in a thin stratum

of fluid of indefinite extent.

The forces which act on any portion of a continuous fluid are of two kinds,

the pressures of contiguous portions of fluid, and the attractions of all portions of

the fluid whether near or distant. In the case of a thin stratum of fluid, not
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acted on by any external forces, the pressures are due mainly to the component

of the attraction which is perpendicular to the plane of the stratum. It is

easy to shew that a fluid acted on by such a force will tend to assume a

position of equilibrium, in which its free surface is plane ; and that any irregu-

larities will tend to equalise themselves, so that the plane surface will be one

of stable equilibrium.

It is also evident, that if we consider only that part of the attraction

which is parallel to the plane of the stratum, we shall find it always directed

towards the thicker parts, so that the effect of this force is to draw the fluid

from thinner to thicker parts, and so to increase irregularities and destroy

equilibrium.

The normal attraction therefore tends to preserve the stability of equilibrium,

while the tangential attraction tends to render equilibrium unstable.

According to the nature of the irregularities one or other of these forces

will prevail, so that if the extent of the irregularities is small, the normal

forces will ensure stability, while, if the inequaUties cover much space, the

tangential forces will render equilibrium unstable, and break up the stratum into

beads.

To fix our ideas, let us conceive the irregularities of the stratum split up

into the form of a number of systems of waves superposed on one another,

then, by what we have just said, it appears, that very short waves will disap-

pear of themselves, and be consistent with stability, while very long waves will

tend to increase in height, and will destroy the form of the stratum.

In order to determine the law according to which these opposite effects

take place, we must subject the case to mathematical investigation.

Let us suppose the fluid incompressible, and of the density k, and let it

be originally contained between two parallel planes, at distances +c and — c

from that of (xy), and extending to infinity. Let us next conceive a series of

imaginary planes, parallel to the plane of {ijz), to be plunged into the fluid

stratum at infinitesimal distances from one another, so as to divide the fluid

into imaginary slices perpendicular to the plane of the stratum.

Next let these planes be displaced parallel to the axis of x according to this

law—that if x be the original distance of the plane from the origin, and ^ its

displacement in the direction of x,

i=A cosmx (81).
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According to this law of displacement, certain alterations will take place in

the distances between consecutive planes ; but since the fluid is incompressible,

and of indefinite extent in the direction of y, the change of dimension must

occur in the direction of z. The original thickness of the stratum was 2c. Let

its thickness at any point after displacement be 2c + 2^, then we must have

.+i)=2^ («2)'

1= — c -r-=cmA sinwa; (83).

(2c + 20 (l

Let us assume that the increase of thickness 2^ is due to an increase of C,

at each surface ; this is necessary for the equilibrium of the fluid between the

imaginary planes.

We have now produced artificially, by means of these planes, a system of

waves of longitudinal displacement whose length is — and amplitude A ; and

we have found that this has produced a system of waves of normal displace-

ment on each surface, having the same length, with a height =cmA.

In order to determine the forces arising from these displacements, we must,

in the first place, determine the potential function at any point of space, and

this depends partly on the state of the fluid before displacement, and partly

on the displacement itself We have, in all cases

—

d'V d'V d'V
^^+^ + ^=-^^^ («^)-

Within the fluid, p = k; beyond it, p = 0.

Before displacement, the equation is reduced to

d^'
= -'-p («^)-

Instead of assuming F=0 at infinity, we shall assume F=0 at the origin,

and since in this case all is symmetrical, we have

within the fluid F, = - 2nkz' -, ^ = - inJcz

at the bounding planes F= — iirkc^ ; ->- = T 47r^c

beyond them V,= 27r^c ( + 2z ± c) ; -y- = =F ^nkc

.(86);
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the upper sign being understood to refer to the boundary at distance +c, and

the lower to the boundary at distance — c from the origin.

Having ascertained the potential of the undisturbed stratum, we find that

of the disturbance by calculating the effect of a stratum of density k and

thickness t„ spread over each surface according to the law of thickness already

found. By supposing the coeJB&cient A small enough, (as we may do in calcu-

lating the displacements on which stabiUty depends), we may diminish the

absolute thickness indefinitely, and reduce the case to that of a mere " super-

ficial density," such as is treated of in the theory of electricity. We have here,

too, to regard some parts as of negative density ; but we must recollect that we

are dealing with the difference between a disturbed and an undisturbed system,

which may be positive or negative, though no real mass can be negative.

Let us for an instant conceive only one of these surfaces to exist, and let

us transfer the origin to it. Then the law of thickness is

l, = mcABm.'mx (83),

and we know that the normal component of attraction at the surface is the

same as if the thickness had been uniform throughout, so that

on the positive side of the surface.

Also, the solution of the equation

d'V dyv_
dx"

"^
dz'

~
'

consists of a series of terms of the form Ce'" sin ix.

Of these the only one with which we have to do is that in which i= —m.

Applying the condition as to the normal force at the surface, we get

V=2'irkce''^Asmmx (87),

for the potential on the positive side of the surface, and

V=27rkce'^ABm7nx (88),

on the negative side.
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Calculating the potentials of a pair of such surfaces at distances +c and —c

from the plane of xy, and calling V the sum of their potentials, we have for

the space between these planes

F/ = 2TrkcA sin mxe""" (e"^+ e-*^)

beyond them F/ = 27rZ;c^ sinma!;e^"^(e'^ + e~'^)

the upper or lower sign of the index being taken according as z is positive or

negative.

These potentials must be added to those formerly obtained, to get the

potential at any point after displacement.

We have next to calculate the pressure of the fluid at any point, on the

supposition that the imaginary planes protect each shce of the fluid from the

pressure of the adjacent sHces, so that it is in equilibrium under the action of

the forces of attraction, and the pressure of these planes on each side. Now
in a fluid of density h, in equilibrium under forces whose potential is V, we

have always

—

so that if we know that the value of p is 2\ where that of F is F^, then at

any other point

jD=^„ + ^(F-F„).

Now, at the free surface of the fluid, ]p = 0, and the distance from the

free surface of the disturbed fluid to the plane of the original surface is ^, a

small quantity. The attraction which acts on this stratum of fluid is, in the

first place, that of the undisturbed stratum, and this is equal to A^irkc, towards

that stratum. The pressure due to this cause at the level of the original

surface will be AnJifcC, and the pressure arising from the attractive forces due

to the displacements upon this thin layer of fluid, will be small quantities of

the second order, which we neglect. We thus find the pressure when z = c to be,

Pa = AvJc^c^mA sin mx.

The potential of the undisturbed mass when z = c is

V,= -2TTkc\

and the potential of the disturbance itself for the same value of z, is

F; = 2TrkcA sin mx (1 + e""^).



ON THE STABILITY OF THE MOTION OF SATURN's RINGS. 343

So that we find the general value of jp at any other point to be

^ = 27r^^ (c' - z') + 27r/:'c^ sin ?7ia; {2c»i - 1 - €- ^"^ + e"^ (e"- + e""^)} . . . (90).

This expression gives the pressure of the fluid at any point, as depending

on the state of constraint produced by the displacement of the imaginary planes.

The accelerating effect of these pressures on any particle, if it were allowed to

move parallel to x, instead of being confined by the planes, would be

_1 dp

k dx'

The accelerating effect of the attractions in the same direction is

dV
dx'

so that the whole acceleration parallel to cc is

X= -lirkmcA cos 7nx {2mc - e''^ - I) (91).

It is to be observed, that this quantity is independent of z, so that every

particle in the slice, by the combined effect of pressure and attraction, is urged

with the same force, and, if the imaginary planes were removed, each slice

would move parallel to itself without distortion, as long as the absolute dis-

placements remained small. We have now to consider the direction of the

resultant force X, and its changes of magnitude.

We must remember that the original displacement is A cos 7nx, if therefore

(2mo-e~"^— 1) be positive, X will be opposed to the displacement, and the

equilibrium will be stable, whereas if that quantity be negative, X will act

along with the displacement and increase it, and so constitute an unstable

condition.

It may be seen that large values of nic give positive results and small

ones negative. The sign changes when

2mc = l'lA7 (92),

which corresponds to a wave-length

\ = 2c^^^ = 2c{5'i7l) (93).

The length of the complete wave in the critical case is 5*471 times the

thickness of the stratum. Waves shorter than this are stable, longer waves

are unstable.
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The quantity 2mc{2mc-e-^-l),

has a minimum when 2mc = '607 (94),

and the wave-length is 10 '3 5 3 times the thickness of the stratum.

In this case 2mc (2mc-e-^"^- 1)= - '509 (95),

and X='5097rMcosmx (96).

24. Let us now conceive that the stratum of fluid, instead of being infinite

in extent, is limited in breadth to about 100 times the thickness. The pressures

and attractions will not be much altered by this removal of a distant part of

the stratum. Let us also suppose that this thin but broad strip is bent round

in its own plane into a circular ring whose radius is more than ten times the

breadth of the strip, and that the waves, instead of being exactly parallel to

each other, have their ridges in the direction of radii of the ring. We shall

then have transformed our stratum into one of Saturn's Kings, if we suppose

those rings to be liquid, and that a considerable breadth of the ring has the

same angular velocity.

Let us now investigate the conditions of stability by putting

x= - 27rkmc (2mc - e"^ - 1)

into the equation for n. We know that x must lie between and ^^ to

ensure stabihty. Now the greatest value of x in the fluid stratum is -50917^-.

Taking Laplace's ratio of the diameter of the ring to that of the planet, this

gives 42-5 as the minimum value of the density of the planet divided by that

of the fluid of the ring.

Now Laplace has shewn that any value of this ratio greater than 1-3 is

inconsistent with the rotation of any considerable breadth of the fluid at the

same angular velocity, so that our hypothesis of a broad ring with uniform

velocity is untenable.

But the stabihty of such a ring is impossible for another reason, namely,

that for waves in which 2mc> 1-147, x is negative, and the ring will be destroyed

by these short waves in the manner described at page (333).

When the fluid ring is treated, not as a broad strip, but as a filament of

circular or elliptic section, the mathematical difiSculties are very much increased.
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but it may be shown that in this case also there will be a maximum value

of X, which will require the density of the planet to be several times that of

the ring, and that in all cases short waves will give rise to negative values

of X, inconsistent with the stability of the rmg.

It appears, therefore, that a ring composed of a continuous liquid mass

cannot revolve about a central body without being broken up, but that the

parts of such a broken ring may, under certain conditions, form a permanent

ring of satellites.

On the Mutual Perturbations of Two Rings.

25. We shall assume that the difference of the mean radii of the rings

is small compared with the radii themselves, but large compared with the

distance of consecutive satellites of the same ring. We shall also assume that

each ring separately satisfies the conditions of stability.

We have seen that the effect of a disturbing force on a ring is to produce

a series of waves whose number and period correspond with those of the dis-

turbing force which produces them, so that we have only to calculate the

coefficient belonging to the wave from that of the disturbing force.

Hence in investigating the simultaneous motions of two rings, we may

assume that the mutually disturbing waves travel with the same absolute

angular velocity, and that a maximum in one corresponds either to a maximum

or a minimum of the other, according as the coefficients have the same or

opposite signs.

Since the motions of the particles of each ring are affected by the disturbance

of the other ring, as well as of that to which they belong, the equations of

motion of the two rings will be involved in each other, and the final equation

for determining the wave-velocity will have eight roots instead of four. But as

each of the rings has four free waves, we may suppose these to originate forced

waves in the other ring, so that we may consider the eight waves of each ring

as consisting of four free waves and four forced ones.

In strictness, however, the wave-velocity of the "free" waves will be

affected by the existence of the forced waves which they produce in the other

ring, so that none of the waves are really " free " in either ring independently,

though the whole motion of the system of two rings as a whole is free.
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We shall find, however, that it is best to consider the waves first as free,

and then to determine the reaction of the other ring upon them, which is such

as to alter the wave-velocity of both, as we shall see.

The forces due to the second ring may be separated into three parts.

1st. The constant attraction when both rings are at rest.

2nd. The variation of the attraction on the first ring, due to its own

disturbances.

3rd. The variation of the attraction due to the disturbances of the second

ring.

The first of these affects only the angular velocity. The second affects the

waves of each ring independently, and the mutual action of the waves depends

entirely on the third class of forces.

26. To deteivnine the attractions between two rings.

Let R and a be the mass and radius of the exterior ring, R and a' those

of the interior, and let all quantities belonging to the interior ring be marked

with accented letters. (Fig. 5.)

1st. Attraction between the rings when at rest.

Since the rings are at a distance small compared with their radii, we may

calculate the attraction on a particle of the first ring as if the second were an

infinite straight line at distance a' — a from the first.

7?'

The mass of unit of length of the second ring is -—> , and the accelerating

effect of the attraction of such a filament on an element of the first ring is

TV——, 7\ inwards (97).
na [a — a) ^

The attraction of the first ring on the second may be found by transposing

accented and unaccented letters.

In consequence of these forces, the outer ring will revolve faster, and the

inner ring slower than would otherwise be the case. These forces enter into

the constant terms of the equations of motion, and may be included in the

value of K.
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2nd. Variation due to disturbance offirst ring.

If we put a(l+p) for a in the last expression, we get the attraction

when the first ring is displaced. The part depending on p is

r-, TT, P inwards (98).
Tra [a-ay '^

This is the only variation of force arising from the displacement of the

first ring. It affects the value of X in the equations of motion.

3rd. Variation due to waves in the second ling.

On account of the waves, the second ring varies in distance from the

first, and also in mass of unit of length, and each of these alterations produces

variations both in the radial and tangential force, so that there are four things

to be calculated

:

1st. Radial force due to radial displacement.

2nd, Radial force due to tangential displacement.

3rd. Tangential force due to radial displacement.

4th. Tangential force due to tangential displacement.

1st. Put a'(l+p') for a\ and we get the term in p

—
-, \ ?

~
,; p' inwards = XV> say (99).

ira (a -af ^ t^ > J v
^

2nd. By the tangential displacement of the second ring the section is

iced in the proportion

of the radial force equal to

reduced in the proportion of 1 to l--j , , and therefore there is an alteration

-yr inwards = — /x' -j-, say (100).
ird'(a — a') ds'

'^
ds'

3rd. By the radial displacement of the second ring the direction of the

filament near the part in question is altered, so that the attraction is no longer

radial but forwards, and the tangential part of the force is

.5 '^
^'=+/^' forwards (lOl).

ira (a-a) ds '^ ds

44—2
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4th. By the tangential displacement of the second ring a tangential force

arises, depending on the relation between the length of the waves and the

distance between the rings.

"-ot' J f+«xsinp^ ,

If we make m — - = p, and m -i ax = H,
a ^ J-o.(l+x-y

/?'

the tangential force is a (a-a'Y
^^' ^ *''^' (102).

We may now write down the values of X, /x, and v by transposing accented

and unaccented letters.

g^(2a-a) R ^^ _?_ n (103).
ira (a-aj '^ TTa{a-a)' ira {a-af

Comparing these values with those of X', /x', and v, it will be seen that

the following relations are approximately true when a is nearly equal to a:

^'=-'i = ^ =|> (104).
X H' ^ R^

27. To form the equations of motion.

*The original equations were

^' + o,'p + -2o,^-'^, =P=S+K-(2S-L)Ap-MBp + yp--y:'^,

Putting p = ^ cos {ills + nt), ar=B8m (ms + nt),

p' = A' cos {im + nt), cr'^R sin {ins + nt),

then u>' = S-vK
{(o'V2S+n'-L)A + {2(on+M)B-XA' + |J:mB = 0^ ,^^^.

{2con +M)A + {n'^-N)B-ij:mA' +vR = o] ^
''

The corresponding equations for the second ring may be found by trans-

posing accented and unaccented letters. We should then have four equations

to determine the ratios of A, B, A', B', and a resultant equation of the eighth

degree to determine n. But we may make use of a more convenient method,

since X', ix, and v are small. Eliminating B we find

An'-A(ai'^-lK+L-N)n'-iAo>Mn + AN{Zoy)\_ , .

(-X'A' + fx'mR)n'+ {ix'mA' -v'B') 2<onj ^ ''

* [The analysis in this article is somewhat unsatisfactory, the equations of motion employed being

those which were applicable in the case of a ring of radius unity. Ed.]
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Putting B = ^A, A' = xA, B' = ^A' = ^xA,

we have ii* - {o.' ( + 2 A") + X - iV} n' - 4(oMn + Sco'N] ^jj^^ / ^qj^x

~ = 47i'-2a;';i + &c (108),
an

-r = - ^''^' + H''ml3'}r + 2/»iw?i - 2u^'a)n (109),

28. If we were to solve the equation for n, leaving out the terms involving

X, we should find the wave-velocities of the four free waves of the first ring,

supposing the second ring to be prevented from being disturbed. But in reality

the waves in the first ring produce a disturbance in the second, and these in

turn react upon the first ring, so that the wave-velocity is somewhat difierent

from that which it would be in the supposed case. Now if x be the ratio

of the radial amplitude of displacement in the second ring to that in the first,

and if n be a value of n supposing cc = 0, then by Maclaurin's theorem,

n= Jfn + -j-x (Ill)-

The wave-velocity relative to the ring is , and the absolute angular

velocity of the wave in space is

n n I dn . ^-.
'ar = oi =0) j-x (112),m m m ax '

= +p-qx (113),

, n , \ dn
where » = w , and o = — -j-

.

^ m ^ m ax

Similarly in the second ring we should have

-=/-<z'^ (114);

and since the corresponding waves in the two rings must have the same abso-

lute angular velocity,

^ = 25-', or 'p — qx^'p—ci - (115)-
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This is a quadratic equation in x, the roots of which are real when

is positive. When this condition is not fulfilled, the roots are impossible, and

the general solution of the equations of motion will contain exponential factors,

indicating destructive oscillations in the rings.

Since q and q' are small quantities, the solution is always real whenever

p and p' are considerably different. The absolute angular velocities of the two

pairs of reacting waves, are then nearly

V -\—^^/ , and r) —^^,

,

instead of p and p\ as they would have been if there had been no reaction

of the forced wave upon the free wave which produces it.

When 2^ and p' are equal or nearly equal, the character of the solution

will depend on the sign of qq. We must therefore determine the signs of q

and q' in such cases.

Putting P = —7-, we may write the values of q and q'

x/ ^ / /6> fO\ ,,(0 0)

X + 211 m — - - - 4i/ - -
n ^ \n 71/ 71 71

7n

'

4?i^ — 2<xr

Oi Ct/\ , Oi 0)

, _ n ^ \n 71

1

71 n

^~m" in"-2o)"

Referring to the values of the disturbing forces, we find that

X' IX V _ Ka
X iL V Ra"

(116).

TT g n 471* — 2&> Ra l^^*7\Hence X = _^— , —-, (117).
q n 4n'-2w* Ra

Since qq' is of the same sign as -^ , we have only to determine whether

2 '2

2n--, and 2n'-— , are of the same or of different signs. If these quantities
n 71

'

are of the same sign, qq is positive, if of different signs, qq' is negative.
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Now there are four values of n, which give four corresponding values of

2n

721= -W + &C., 2?ii- is negative,

??j = — a small quantity, 2n^ is positive,

jjj = -f. a small quantity, 211^ is negative,
^3

n^ = oi — kc., 271^ is positive.

The quantity with which we have to do is therefore positive for the even

orders of waves and negative for the odd ones, and the corresponding quantity

in the other ring obeys the same law. Hence when the waves which act upon

each other are either both of even or both of odd names, qq will be positive,

but when one belongs to an even series, and the other to an odd series, qq

is negative.

29. The values of j) and p' are, roughly,

X>^
= oi + — — &c., ^o = w + &c., ^3 = (u — &c., ^4 = (o — —- + &c.

^j' = Co' H &C., p.' = 0) + &c., Pa' = co' — &c., Pi=Oi 1- &C.

(118).

<ji is greater than <u, so that j>^ is the greatest, and Pi the least of these

values, and of those of the same order, the accented is greater than the unac-

cented. The following cases of equahty are therefore possible under suitable

circumstances

;

P, =P,\ Pi =p/»

P4=P,' (when m=l), p,=2^3,

p.=p:,

In the cases in the first column qq' will be positive, in those in the second

column qq' will be negative.
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30. Now each of the four values of p is a function of w, the number

of undulations in the ring, and of a the radius of the ring, varying nearly

as cfl Hence m being given, we may alter the radius of the ring till any

one of the four values of p becomes equal to a given quantity, say a given

value of /, so that if an indefinite number of rings coexisted, so as to form

a sheet of rings, it would be always possible to discover instances of the

equality of x>
^^^ V among them. K such a case of equahty belongs to the

first column given above, two constant waves will arise in both rings, one

travelling a little faster, and the other a little slower than the free waves.

If the case belongs to the second column, two waves will also arise in each

ring, but the one pair will graduaUy die away, and the other pair wHl increase

in ampUtude indefinitely, the one wave strengthening the other till at last both

rino-s are thrown into confusion.

The only way in which such an occurrence can be avoided is by placing

the rings at such a distance that no value of m shall give coincident values

of _p and J),
For instance, if w > 2a), but w < So), no such coincidence is possible.

For j)^ is always less than p./, it is greater than p, when m = 1 or 2, and less

than _p4 when m is 3 or a greater number. There are of course an infinite

number of ways in which this noncoincidence might be secured, but it is plain

that if a number of concentric rings were placed at small intervals from each

other, such coincidences must occur accurately or approximately between some

pairs' of rings, and if the value of [p-fj is brought lower than -^qq, there

will be destructive interference.

This investigation is applicable to any number of concentric rings, for, by

the principle of superposition of small displacements, the reciprocal actions of

any pair of rings are independent of all the rest.

31. On the effect of long-continued disturbances on a system of rings.

The result of our previous investigations has been to point out several

ways in which disturbances may accumulate till collisions of the different par-

ticles of the rings take place. After such a collision the particles wUl still

continue to revolve about the planet, but there will be a loss of energy in

the system during the colUsion which can never be restored. Such coUisions

however will not affect what is called the Angular Momentum of the system

about the planet, which will therefore remain constant.
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Let M be the mass of tlie system of rings, and hm that of one ring

whose radius is r, and angular velocity (o = S^r~^. The angular momentum of

the ring is

half its vis viva is ^tuV'Sm = ^Sr~^ hm.

The potential energy due to Saturn's attraction on the ring is

-Sr-'hm.

The angular momentum of the whole system is invariable, and is

S'^%{r^hm) = A (119).

The whole energy of the system is the sum of half the vis viva and the

potential energy, and is

-^St{r-'hm) =E (120).

A is invariable, while E necessarily diminishes. We shall find that as E
diminishes, the distribution of the rings must be altered, some of the outer

rings moving outwards, while the inner rings move inwards, so as either to

spread out the whole system more, both on the outer and on the inner edge

of the system, or, without affecting the extreme rings, to diminish the density

or number of the rings at the mean distance, and increase it at or near the

inner and outer edges.

Let us put x = r^-,
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Now t(dm) =M a constant, t(xdm) = 0, and t(x"-Bm) is a quantity which

increases when the rings are spread out from the mean distance either way,

X being subject only to the restriction t (xdm) = 0. But % (x'dm) may

increase without the extreme values of x being increased, provided some other

values be increased.

32. In fact, if we consider the very innermost particle as moving in an

ellipse, and at the further apse of its orbit encountering another particle

belonging to a larger orbit, we know that the second particle, when at the

same distance from the planet, moves the faster. The result is, that the

interior satellite will receive a forward impulse at its further apse, and will

move in a larger and less eccentric orbit than before. In the same way one

of the outermost particles may receive a backward impulse at its nearer apse,

and so be made to move in a smaller and less eccentric orbit than before.

When we come to deal with collisions among bodies of unknown number, size,

and shape, we can no longer trace the mathematical laws of their motion with

any distinctness. All we can now do is to collect the results of our investi-

gations and to make the best use we can of them in forming an opinion as

to the constitution of the actual rings of Saturn which are still in existence

and apparently in steady motion, whatever catastrophes may be indicated by

the various theories we have attempted.

33. To find the Loss of Energy due to internal friction in a hroad Fluid

Ring, the parts of which revolve about the Planet, each with the velocity of a

satellite at the same distance.

Conceive a fluid, the particles of which move parallel to the axis of x

with a velocity u, u being a function of z, then there will be a tangential pres-

sure on a plane parallel to xy

dU .. r.= /x-y- on umt 01 area
'^ dz

due to the relative sliding of the parts of the fluid over each other.

In the case of the ring we have

The absolute velocity of any particle is tor. That of a particle at distance

{r-\-Zr) is

(ar + -j- {(ar) hr.
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If the angular velocity had been uniform, there would have been no sliding,

and the velocity would have been

cji" + (ohr.

The sliding is therefore

d(o ^r -J- or,
ar

and the friction on unit of area perpendicular to r is fir -p •

The loss of Energy, per unit of area, is the product of the sliding by the

friction,

or, /x?-*-^ Sr in unit of time.

The loss of Energy in a part of the Ring whose radius is r, breadth

Sr, and thickness c, is

27rr*c/x -j- Sr.

In the case before us it is fTr/x/Scr"* Sr.

If the thickness of the ring is uniform between r = a and r = h, the whole

loss of Energy is

in unit of time.

Now half the vis viva of an elementary ring is

npcrhr r^oy = nfxSSr,

and this between the limits r = a and r = h gives

npcS (a — h).

The potential due to the attraction of 5 is twice this quantity with the

sign changed, so that

E=-TrpcS(a-b),

E dt~ ^ p ah'

45—2
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Now Professor Stokes finds a/^ = 0-0564 for water,
^ P

and =0'116 for air,

taking the unit of space one English inch, and the unit of time one second.

We may take a = 88,209 miles, and ?> = 77,636 for the ring A) and a = 75,845,

and 6 = 58,660 for the ring B. We may also take one year as the unit of

time. The quantity representing the ratio of the loss of energy in a year to

the whole energy is

I dE 1 p .-L • ^

E W= 60,880,000,000,000
^^' ^^' "^^ ^'

^^
39,540,000,000,000

^'' ^^^ ^^"^ ^'

showing that the efiect of internal friction in a ring of water moving with

steady motion is inappreciably small. It cannot be from this cause therefore

that any decay can take place in the motion of the ring, provided that no

waves arise to disturb the motion.

Recapitulation of the Tlieory of the Motion of a Rigid Ring.

The position of the ring relative to Saturn at any given instant is defined

by three variable quantities.

1st. The distance between the centre of gravity of Saturn and the centre

of gravity of the ring. This distance we denote by r.

2nd. The angle which the line r makes with a fixed line in the plane of

the motion of the ring. This angle is called 0.

3rd. The angle between the line r and a Hne fixed with respect to the

ring so that it coincides with r when the ring is in its mean position. This is

the angle <^.

The values of these three quantities determine the position of the ring so

far as its motion in its own plane is concerned. They may be referred to as

the radius vector, longitude, and angle of lihration of the ring.

The forces which act between the ring and the planet depend entirely upon

their relative positions. The method adopted above consists in determining the
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potential
(
V) of the ring at the centre of the planet In terms of r and <^. Then

the work done by any displacement of the system is measured by the change

of VS during that displacement. The attraction between the centre of gravity

(IV
of the Ring and that of the planet Is ~S , , and the moment of the couple

clV
tending to turn the ring about Its centre of gravity Is S-j-j,

It Is proved In Problem V, that if a be the radius of a circular ring, r^^uf

the distance of its centre of gravity from the centre of the circle, and R the

mass of the ring, then, at the centre of the ring, ,- = 5/, -yj = 0.

(PV Ji
It also appears that T-^ = -k~3 {^ +9)> "which is positive when g > —I,

d'V R
and that -n\=^—f'(^—g), which is positive when ^<3.

d'V . . .

If -y— is positive, then the attraction between the centres decreases as the

distance increases, so that, if the two centres were kept at rest at a given

d'V . . .

distance by a constant force, the equilibrium would be unstable. If -t-t; is positive,

then the forces tend to increase the angle of libration, in whichever direction

the libration takes place, so that if the ring were fixed by an axis through its

centre of gravity, its equilibrium round that axis would be unstable.

In the case of the uniform ring with a heavy particle on its circumference

whose weight ="82 of the whole, the direction of the whole attractive force of

the ring near the centre will pass through a point lying in the same radius as

the centre of gravity, but at a distance from the centre = fa. (Fig. 6.)

If we call this point 0, the line SO will indicate the direction and position

of the force acting on the ring, which we may call F.

It Is evident that the force F, acting on the ring in the line OS, will tend

to turn it round its centre of gravity R and to increase the angle of libration

KRO. The direct action of this force can never reduce the angle of libration

to zero again. To understand the indirect action of the force, we must recollect

that the centre of gravity (i?) of the ring is revolving about Saturn in the

direction of the arrows, and that the ring is revolving about its centre of gravity
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with nearly the same velocity. If the angular velocity of the centre of gravity

about Saturn were always equal to the rotatory velocity of the ring, there

would be no libration.

Now suppose that the angle of rotation of the ring is in advance of the

longitude of its centre of gravity, so that the line RO has got in advance of

SRK by the angle of libration KRO. The attraction between the planet and

the ring is a force F acting in SO. We resolve this force into a couple, whose

moment is FRN, and a force F acting through R the centre of gravity of the

ring.

The couple affects the rotation of the ring, but not the position of its centre

of gravity, and the force RF acts on the centre of gravity without affecting the

rotation.

Now the couple, in the case represented in the figure, acts in the positive

direction, so as to increase the angular velocity of the ring, which was already

greater than the velocity of revolution of R about S, so that the angle of

libration would increase, and never be reduced to zero.

The force RF does not act in the direction of >S', but behind it, so that it

becomes a retarding force acting upon the centre of gravity of the ring. Now

the effect of a retarding force is to cause the distance of the revolving body to

decrease and the angular velocity to increase, so that a retarding force increases

the angular velocity of R about S.

The effect of the attraction along SO in the case of the figure is, first, to

increase the rate of rotation of the ring round R, and secondly, to iacrease the

angular velocity of R about S. If the second effect is greater than the first,

then, although the line RO increases its angular velocity, SR will increase its

angular velocity more, and will overtake RO, and restore the ring to its original

position, so that SRO will be made a straight line as at first. If this accelerat-

ing effect is not greater than the acceleration of rotation about R due to the

couple, then no compensation will take place, and the motion will be essentially

unstable.

If in the figure we had drawn ^ negative instead of positive, then the

couple would have been negative, the tangential force on R accelerative, r would

have increased, and in the cases of stability the retardation of 6 would be greater

than that of (^ + <^), and the normal position would be restored, as before.
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The object of the investigation is to find the conditions under wliich this

compensation is possible.

It is evident that when SRO becomes straight, there is still a difference

of angular velocities between the rotation of the ring and the revolution of

the centre of gravity, so that there will be an oscillation on the other side,

and the motion will proceed by alternate oscillations without limit.

If we begin with r at its mean value, and <^ negative, then the rotation

of the ring will be retarded, 7* will be increased, the revolution of r will be

more retarded, and thus
<f>

will be reduced to zero. The next part of the

motion will reduce r to its mean value, and bring
(f)

to its greatest positive

value. Then r will diminish to its least value, and
(f>

will vanish. Lastly r

will return to the mean value, and
<f)

to the greatest negative value.

It appears from the calculations, that there are, in general, two different

ways in which this kind of motion may take place, and that these may have

different periods, phases, and amplitudes. The mental exertion required in follow-

ing out the results of a combined motion of this kind, with all the variations of

force and velocity during a complete cycle, w^ould be very great in proportion to

the additional knowledge we should derive from the exercise.

The result of this theory of a rigid ring shows not only that a perfectly

uniform ring cannot revolve permanently about the planet, but that the irregu-

larity of a permanently revolving ring must be a very observable quantity, the

distance between the centre of the ring and the centre of gravity being between

•8158 and '8279 of the radius. As there is no appearance about the rings

justifying a belief in so great an irregularity, the theory of the solidity of the

rings becomes very improbable.

When we come to consider the additional difficulty of the tendency of the

fluid or loose parts of the ring to accumulate at the thicker parts, and thus

to destroy that nice adjustment of the load on which stability depends, we
have another powerful argument against solidity.

And when we consider the immense size of the rings, and their comparative

thinness, the absurdity of treating them as rigid bodies becomes self-evident.

An iron ring of such a size would be not only plastic but semifluid under the

forces which it would experience, and we have no reason to believe these rings

to be artificially strengthened with any material unknown on this earth.
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Recapitulation of the Theory of a Ring of equal Satellites.

In attempting to conceive of the disturbed motion of a ring of unconnected

satellites, we have, in the first place, to devise a method of identifying each

satellite at any given time, and in the second place, to express the motion of

every satellite under the same general formula, in order that the mathematical

methods may embrace the whole system of bodies at once.

By conceiving the ring of satellites arranged regularly in a circle, we may

easily identify any satellite, by stating the angular distance between it and a

known satellite when so arranged. If the motion of the ring were undisturbed,

this angle would remain unchanged during the motion, but, in reality, the

satellite has its position altered in three ways : 1st, it may be further from

or nearer to Saturn; 2ndly, it may be in advance or in the rear of the position

it would have had if undisturbed ; 3rdly, it may be on one side or other of

the mean plane of the ring. Each of these displacements may vary in any way

whatever as we pass from one satellite to another, so that it is impossible

to assign beforehand the place of any satellite by knowing the places of the

rest. § 2.

The formula, therefore, by which we are enabled to predict the place of

every satellite at any given time, must be such as to allow the initial position

of every satellite to be independent of the rest, and must express all future

positions of that satellite by inserting the corresponding value of the quantity

denoting time, and those of every other sateUite by inserting the value of the

angular distance of the given satelUte from the point of reference. The three

displacements of the satellite will therefore be functions of two variables—the

angular position of the satellite, and the time. When the time alone is made

to vary, we trace the complete motion of a single satellite ; and when the time

is made constant, and the angle is made to vary, we trace the form of the

ring at a given time.

It is evident that the fonn of this function, in so far as it indicates the

state of the whole ring at a given instant, must be wholly arbitrary, for the

form of the ring and its motion at starting are limited only by the condition

that the irregularities must be small. We have, however, the means of breaking

up any function, however complicated, into a series of simple functions, so that

the value of the function between certain limits may be accurately expressed
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as the sum of a series of sines and cosines of multiples of the variable. This

method, due to Fourier, is peculiarly applicable to the case of a ring returning

into itself, for the value of Fourier's series is necessarily periodic. We now

regard the form of the disturbed ring at any instant as the result of the

superposition of a number of separate disturbances, each of -which is of the nature

of a series of equal waves regularly arranged round the. ring. Each of these

elementary disturbances is characterised by the number of undulations in it, by

their amplitude, and by the position of the first maximum in the ring. § 3.

When we know the form of each elementary disturbance, we may calculate

the attraction of the disturbed ring on any given particle in terms of the con-

stants belonging to that disturbance, so that as the actual displacement is the

resultant of the elementary displacements, the actual attraction will be the

resultant of the corresponding elementary attractions, and therefore the actual

motion will be the resultant of all the motions arising from the elementary

disturbances. We have therefore only to investigate the elementary disturbances

one by one, and having established the theory of these, we calculate the actual

motion by combining the series of motions so obtained.

Assuming the motion of the satellites in one of the elementary disturbances

to be that of oscillation about a mean position, and the whole motion to be

that of a uniformly revolving series of undulations, we find our supposition to

be correct, provided a certain biquadratic equation is satisfied by the quantity

denoting the rate of oscillation. § 6.

When the four roots of this equation are all real, the motion of each

satellite is compounded of four difierent oscillations of difi'erent amplitudes and

periods, and the motion of the whole ring consists of four series of undulations,

travelling round the ring with different velocities. When any of these roots

are impossible, the motion is no longer oscillatory, but tends to the rapid

destruction of the ring.

To determine whether the motion of the ring is permanent, we must assure

ourselves that the four roots of this equation are real, whatever be the number

of undulations in the ring; for if any one of the possible elementary distui'b-

ances should lead to destructive oscillations, that disturbance might sooner or

later commence, and the ring would be destroyed.

Now the number of undulations in the ring may be any whole number

from one up to half the number of satellites. The forces from which danger
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is to be apprehended are greatest when the number of undulations is greatest,

and by taking that number equal to half the number of satellites, we find the

condition of stability to be

S>.A352tiR,

where S is the mass of the central body, R that of the ring, and /x the number

of sateUites of which it is composed. § 8. If the number of satelHtes be too

great, destructive oscillations will commence, and finally some of the satellites

will come into coUision with each other and unite, so that the number of

independent satellites will be reduced to that which the central body can retain

and keep in discipline. When this has taken place, the satellites will not only

be kept at the proper distance from the primary, but will be prevented by its

preponderating mass from interfering with each other.

We next considered more carefully the case in which the mass of the ring

is very small, so that the forces arising from the attraction of the ring are

small compared with that due to the central body. In this case the values

of the roots of the biquadratic are all real, and easUy estimated. § 9.

If we consider the motion of any satellite about its mean position, as

referred to axes fixed in the plane of the ring, we shall find that it describes

an ellipse in the direction opposite to that of the revolution of the ring, the

periodic time being to that of the ring as o> to n, and the tangential ampli-

tude of oscillation being to the radial as 2(0 to n. § 10.

The absolute motion of each satellite in space is nearly elliptic for the large

values of n, the axis of the ellipse always advancing slowly in the direction of

rotation. The path of a satellite corresponding to one of the small values of

n is nearly circular, but the radius slowly increases and diminishes during a

period of many revolutions. § 11.

The form of the ring at any instant is that of a re-entering curve, having

m alternations of distance from the centre, symmetrically arranged, and m points

of condensation, or crowding of the satellites, which coincide with the points of

greatest distance when n is positive, and with the points nearest the centre

when n m negative. § 12.

This system of undulations travels with an angular velocity relative to

the ring, and co in space, so that during each oscillation of a satellite a

complete wave passes over it. § 14.
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To exhibit the movements of the satellites, I have made an arrangement

by which 36 little ivory balls are made to go through the motions belonging

to the first or fourth series of waves. (Figs. 7, 8.)

The instrument stands on a pillar A, in the upper part of which turns

the cranked axle CC. On the parallel parts of this axle are placed two wheels,

RR and TT, each of which has 36 holes at equal distances in a circle neai-

its circumference. The two circles are connected by 36 small cranks of the

fonn KK, the extremities of which turn in the corresponding holes of the two
wheels. That axle of the crank K which passes through the hole in the wheel
S is bored, so as to hold the end of the bent wire which carries the satellite >S'.

This wire may be turned in the hole so as to place the bent part carrying

the satellite at any angle with the crank. A pin F, which passes through the

top of the pillar, serves to prevent the cranked axle from turning ; and a pin Q,
passing through the pillar horizontally, may be made to fix the wheel R, by
inserting it in a hole in one of the spokes of that wheel. There is also a

handle H, which is in one piece with the wheel T, and serves to turn the axle.

Now suppose the pin P taken out, so as to allow the cranked axle to

turn, and the pin Q inserted in its hole, so as to prevent the wheel R from
revolving; then if the crank C be turned by means of the handle H, the

wheel T will have its centre carried round in a vertical circle, but will remain
parallel to itself during the whole motion, so that every point in its plane will

describe an equal circle, and all the cranks K will be made to revolve exactly

as the large crank C does. Each satellite will therefore revolve in a small

circular orbit, in the same time with the handle H, but the position of each

satellite in that orbit may be arranged as we please, according as we turn the

wire which supports it in the end of the crank.

In fig. 8, which gives a front view of the instrument, the satelHtes are so

placed that each is turned 60^ further round in its socket than the one behind
it. As there are 36 satellites, this process will bring us back to our starting-

point after six revolutions of the direction of the arm of the satellite; and
therefore as we have gone round the ring once in the same direction, the ami
of the sateUite will have overtaken the radius of the ring five times.

Hence there will be five places where the satellites are beyond their mean
distance from the centre of the ring, and five where they are within it, so

that we have here a series of five undulations round the circumference of the

46—2
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ring. In this case the satellites are crowded together when nearest to the centre,

so that the case is that of the first series of waves, when m = 5.

Now suppose the cranked axle C to be turned, and all the small cranks

K to turn with it, as before explained, every satellite will then be carried

round on its own arm in the same direction ; but, since the direction of the

arms of different satellites is different, their phases of revolution will preserve

the same difference, and the system of satellites will still be arranged in five

undulations, only the undulations will be propagated round the ring in the

direction opposite to that of the revolution of the satellites.

To understand the motion better, let us conceive the centres of the orbits

of the satellites to be arranged in a straight line instead of a circle, as in

fig. 10. Each satellite is here represented in a different phase of its orbit, so

that as we pass from one to another from left to right, we find the position

of the satellite in its orbit altering in the direction opposite to that of the

hands of a watch. The satellites all lie in a trochoidal curve, indicated by

the line through them in the figure. Now conceive every satellite to move in

its orbit through a certain angle in the direction of the arrows. The satellites

will then lie in the dotted line, the form of which is the same as that of

the former curve, only shifted in the direction of the large arrow. It appears,

therefore, that as the satellites revolve, the undulation travels, so that any

part of it reaches successively each satellite as it comes into the same phase

of rotation. It therefore travels from those satellites which are most advanced

in phase to those which are less so, and passes over a complete wave-length

in the time of one revolution of a satellite.

Now if the satellites be arranged as in fig. 8, where each is more advanced

in phase as we go round the ring in the direction of rotation, the wave will

travel in the direction opposite to that of rotation, but if they are arranged

as in fig. 12, where each satellite is less advanced in phase as we go round

the ring, the wave will travel in the direction of rotation. Fig. 8 represents

the first series of waves where m = 5, and fig. 12 represents the fourth series

where m = 7. By arranging the satellites in their sockets before starting, we
might make w equal to any whole number, from 1 to 18. If we chose any

number above 18 the result would be the same as if we had taken a number

as much below 18 and changed the arrangement from the first wave to the

fourth.
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In this way we can exhibit the motions of the satellites in the first and

fourth waves. In reality they ought to move in ellipses, the major axes being

twice the minor, whereas in the machine they move in circles : but the character

of the motion is the same, though the form of the orbit is diflferent.

We may now show these motions of the satellites among each other, com-

bined with the motion of rotation of the whole ring. For this purpose we

put in the pin P, so as to prevent the crank axle from turning, and take

out the pin ^ so as to allow the wheel R to turn. If we then turn the

wheel T, all the small cranks will remain parallel to the fixed crank, and the

wheel R will revolve at the same rate as T. The arm of each satellite will

continue parallel to itself during the motion, so that the satellite will describe

a circle whose centre is at a distance from the centre of R, equal to the arm

of the satellite, and measured in the same direction. In our theory of real

satellites, each moves in an ellipse, having the central body in its focus, but

this motion in an eccentric circle is sufficiently near for illustration. The

motion of the waves relative to the ring is the same as before. The waves

of the first kind travel faster than the ring itself, and overtake the satellites,

those of the fourth kind travel slower, and are overtaken by them.

In fig. 11 we have an exaggerated representation of a ring of twelve satel-

lites afiected by a wave of the fourth kind where m = 2. The satellites here lie in

an eUipse at any given instant, and as each moves round in its circle about

its mean position, the ellipse also moves round in the same direction with half

their angular velocity. In the figure the dotted line represents the position of

the ellipse when each satellite has moved forward into the position represented

by a dot.

Fig. 13 represents a wave of the first kind where m = 2. The satellites at

any instant lie in an epitrochoid, which, as the satellites revolve about their

mean positions, revolves in the opposite direction with half their angular velocity,

so that when the satellites come into the positions represented by the dots,

the curve in which they lie turns round in the opposite direction and forms the

dotted curve.

In fig. 9 we have the same case as in fig. 13, only that the absolute orbits

of the satellites in space are given, instead of their orbits about their mean
positions in the ring. Here each moves about the central body in an eccentric
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circle, which in strictness ought to be an ellipse not differing much from the

circle.

As the satellites move in their orbits in the direction of the arrows, the

curve which they form revolves in the same direction with a velocity 1^ times

that of the ring.

By considering these figures, and still more by watching the actual motion

of the ivory balls in the model, we may form a distinct notion of the motions

of the particles of a discontinuous ring, although the motions of the model are

circular and not elliptic. The model, represented on a scale of one-third in figs.

7 and 8, was made in brass by Messrs. Smith and Ramage of Aberdeen.

We are now able to understand the mechanical principle, on account of

which a massive central body is enabled to govern a numerous assemblage of

satellites, and to space them out into a regular ring; while a smaller central

body would allow disturbances to arise among the individual satelHtes, and

collisions to take place.

When we calculated the attractions among the satellites composing the ring,

we found that if any satellite be displaced tangentially, the resultant attraction

will draw it away from its mean position, for the attraction of the satellites it

approaches will increase, while that of those it recedes from will diminish, so that

its equilibrium when in the mean position is unstable with respect to tangential

displacements ; and therefore, since every satellite of the ring is statically unstable

between its neighbours, the slightest disturbance would tend to produce coUisions

among the satellites, and to break up the ring into groups of conglomerated

sateUites-

But if we consider the dynamics of the problem, we shall find that this

effect need not necessarily take place, and that this very force which tends

towards destruction may become the condition of the preservation of the ring.

Suppose the whole ring to be revolving round a central body, and that one

satellite gets in advance of its mean position. It will then be attracted forwards,

its path will become less concave towards the attracting body, so that its distance

from that body will increase. At this increased distance its angular velocity

will be less, so that instead of overtaking those in front, it may by this means

be made to fall back to its original position. Whether it does so or not must

depend on the actual values of the attractive forces and on the angular velocity

of the ring. When the angular velocity is great and the attractive forces small,
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the compensating process will go on vigorously, and the ring wiU be preserved.

When the angular velocity is small and the attractive forces of the ring great,

the dynamical effect wiU not compensate for the disturbing action of the forces

and the ring ^vill be destroyed.

If the satellite, instead of being displaced forwards, had been originally

behind its mean position in the ring, the forces would have pulled it backwards,

its path would have become more concave towards the centre, its distance from

the centre would diminish, its angular velocity would increase, and it would

gain upon the rest of the ring till it got in front of its mean position. This

effect is of course dependent on the very same conditions as in the former case,

and the actual effect on a disturbed satellite would be to make it describe an

orbit about its mean position in the ring, so that if in advance of its mean

position, it first recedes from the centre, then falls behind its mean position in

the ring, then approaches the centre within the mean distance, then advances

beyond its mean position, and, lastly, recedes from the centre till it reaches its

starting-point, after which the process is repeated indefinitely, the orbit being

always described in the direction opposite to that of the revolution of the

ring.

We now understand what would happen to a disturbed satellite, if all the

others were preserved from disturbance. But, since all the satellites are equally

free, the motion of one will produce changes in the forces acting on the rest,

and this will set them in motion, and this motion will be propagated from one

satellite to another round the ring. Now propagated disturbances constitute

waves, and all waves, however complicated, may be reduced to combinations of

simple and regular waves; and therefore all the disturbances of the ring may

be considered as the resultant of many series of waves, of different lengths, and

travelling with different velocities. The investigation of the relation between

the length and velocity of these waves forms the essential part of the problem,

after which we have only to split up the original disturbance into its simple

elements, to calculate the effect of each of these separately, and then to combine

the results. The solution thus obtained will be perfectly general, and quite

independent of the particular form of the ring, whether regular or irregular at

starting. § 14.

We next investigated the effect upon the ring of an external disturbing

force. Having split up the disturbing force into components of the same type
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with the waves of the ring (an operation which is always possible), we found

that each term of the disturbing force generates a " forced wave " travelling with

its own angular velocity. The magnitude of the forced wave depends not only

on that of the disturbing force, but on the angular velocity with which the dis-

turbance travels round the ring, being greater in proportion as this velocity

more nearly coincides with that of one of the "free waves" of the ring, "We

also found that the displacement of the satellites was sometimes in the direction

of the disturbing force, and sometimes in the opposite direction, according to

the relative position of the forced wave among the four natural ones, producing

in the one case positive, and in the other negative forced waves. In treating

the problem generally, we must determine the forced waves belonging to every

term of the disturbing force, and combine these with such a system of free

waves as shall reproduce the initial state of the ring. The subsequent motion

of the rmg is that which would result from the free waves and forced waves

together. The most important class of forced waves are those which are pro-

duced by waves in neighbouring rings. § 15.

We concluded the theory of a ring of satellites by tracing the process by

which the ring would be destroyed if the conditions of stability were not

fulfilled. We found two cases of instability, depending on the nature of the

tangential force due to tangential displacement. If this force be in the direction

opposite to the displacement, that is, if the parts of the ring are statically

stable, the ring will be destroyed, the irregularities becoming larger and larger

mthout being propagated round the ring. When the tangential force is in the

direction of the tangential displacement, if it is below a certain value, the

disturbances will be propagated round the ring without becoming larger, and

we have the case of stability treated of at large. If the force exceed this value,

the disturbances will still travel round the ring, but they will increase in ampli-

tude continually till the ring falls into confusion. § 18.

We then proceeded to extend our method to the case of rings of different

constitutions. The first case was that of a ring of satellites of unequal size.

If the central body be of suflScient mass, such a ring will be spaced out, so that

the larger satellites will be at wider intervals than the smaller ones, and the

waves of disturbance will be propagated as before, except that there may be

reflected waves when a wave reaches a part of the ring where there is a change

in the average size of the satellites. § 19.
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The next case was that of an annular cloud of meteoric stones, revolving

uniformly about the planet. The avercige density of the space through which

these small bodies are scattered will vary with every irregularity of the motion,

and this variation of density will produce variations in the forces acting upon

the other parts of the cloud, and so disturbances will be propagated in this

ring, as in a ring of a finite number of satellites. The condition that such a

ring should be free from destructive oscillations is, that the density of the

planet should be more than three hundred times that of the ring. This would

make the ring much rarer than common air, as regards its average density,

though the density of the particles of which it is composed may be great.

Comparing this result with Laplace's minimum density of a ring revolving as

a whole, we find that such a ring cannot revolve as a whole, but that the inner

parts must have a greater angular velocity than the outer parts. § 20.

We next took up the case of a flattened ring, composed of incompressible

fluid, and moving with uniform angular velocity. The internal forces here arise

partly from attraction and partly from fluid pressure. We began by taking the

case of an intinite stratum of fluid affected by regular waves, and found the accurate

values of the forces in this case. For long waves the resultant force Is in the

same direction as the displacement, reaching a maximum for waves whose

length is about ten times the thickness of the stratum. For waves about five

times as long as the stratum is thick there is no resultant force, and for shorter

waves the force is in the opposite direction to the displacement. § 23.

Applying these results to the case of the ring, we find that it will be

destroyed by the long waves unless the fluid is less than -^ of the density of

the planet, and that in all cases the short waves will break up the ring into

small satellites.

Passing to the case of narroiv rings, we should find a somewhat larger

maximum density, but we should still find that very short waves produce forces

in the direction opposite to the displacement, and that therefore, as already

explained (page 333), these short undulations would increase in magnitude without

being propagated along the ring, till they had broken up the fluid filament into

drops. These drops may or may not fulfil the condition formerly given for the

stability of a ring of equal satellites. If they fulfil it, they will move as a

permanent ring. If they do not, short waves will arise and be propagated among

the satellites, with ever increasing magnitude, till a sufficient number of drops
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have been brought into collision, so as to unite and form a smaller number of

larger drops, which may be capable of revolving as a permanent ring.

We have already investigated the disturbances produced by an external

force independent of the ring ; but the special case of the mutual perturbations

of two concentric rings is considerably more complex, because the existence of a

double system of waves changes the character of both, and the waves produced

react on those that produced them.

We determined the attraction of a ring upon a particle of a concentric

ring, first, when both rings are in their undisturbed state ; secondly, when the

particle is disturbed ; and, thirdly, when the attracting ring is disturbed by a

series of waves. § 26.

We then formed the equations of motion of one of the rings, taking in the

disturbing forces arising from the existence of a wave in the other ring, and

found the small variation of the velocity of a wave in the first ring as dependent

on the magnitude of the wave in the second ring, which travels with it. § 27.

The forced wave in the second ring must have the same absolute angular

velocity as the free wave of the first which produces it, but this velocity of

the free wave is slightly altered by the reaction of the forced wave upon it.

We find that if a free wave of the first ring has an absolute angular velocity

not very different from that of a free wave of the second ring, then if both

fi:ee waves be of even orders (that is, of the second or fourth varieties of waves),

or both of odd orders (that is, of the first or third), then the swifter of the

two free waves has its velocity increased by the forced wave which it produces,

and the slower free wave is rendered still slower by its forced wave ; and even

when the two free waves have the same angular velocity, their mutual action

will make them both split into two, one wave in each ring travelling faster,

and the other wave in each ring travelling slower, than the rate with which

they would move if they had not acted on each other.

But if one of the free waves be of an even order and the other of an odd

order, the swifter free wave will travel slower, and the slower free wave will

travel swifter, on account of the reaction of their respective forced waves. If

the two free waves have naturally a certain small difference of velocities, they

will be made to travel together, but if the difference is less than this, they

will again split into two pairs of waves, one pair continually increasing in
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magnitude without limit, and the other continually diminishing, 30 that one

of the waves in each ring will increase in violence till it has thrown the ring

into a state of confusion.

There are four cases in which this may happen. The first wave of the

outer ring may conspire with the second or the fourth of the inner ring, the

second of the outer with the third of the inner, or the third of the outer with

the fourth of the inner. That two rings may revolve permanently, their distances

must be arranged so that none of these conspiracies may arise between odd

and even waves, whatever be the value of m. The number of conditions to

be fulfilled is therefore very great, especially when the rings are near together

and have nearly the same angular velocity, because then there are a greater

number of dangerous values of m to be provided for.

In the case of a large number of concentric rings, the stability of each pair

must be investigated separately, and if in the case of any two, whether con-

secutive rings or not, there are a pair of conspiring waves, those two rings will

be agitated more and more, till waves of that kind are rendered impossible by

the breaking up of those rings into some different arrangement. The presence

of the other rings cannot prevent the mutual destruction of any pair which

bear such relations to each other.

It appears, therefore, that in a system of many concentric rings there will

be continually new cases of mutual interference between different pairs of rings.

The forces which excite these disturbances being very small, they will be slow

of growth, and it is possible that by the irregularities of each of the rings the

waves may be so broken and confused (see § 19), as to be incapable of mounting

up to the height at which they would begin to destroy the arrangement of the

ring. In this way it may be conceived to be possible that the gradual dis-

arrangement of the system may be retarded or indefinitely postponed.

But supposing that these waves mount up so as to produce collisions among

the particles, then we may deduce the result upon the system from general

dynamical principles. There will be a tendency among the exterior rings to

remove further from the planet, and among the interior rings to approach the

planet, and this either by the extreme interior and exterior rings diverging

from each other, or by intermediate parts of the system moving away from the

mean ring. If the interior rings are observed to approach the planet, while it

47—2
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is known that none of the other rings have expanded, then the cause of the

chancre cannot be the mutual action of the parts of the system, but the resistance

of some medium in which the rings revolve. § Si-

There is another cause which would gradually act upon a broad fluid ring

of which the parts revolve each with the angular velocity due to its distance

from the planet, namely, the internal friction produced by the slipping of the

concentric rings with different angular velocities. It appears, however (§ 33),

that the effect of fluid friction would be insensible if the motion were regular.

Let us now gather together the conclusions we have been able to draw

from the mathematical theory of various kinds of conceivable rings.

We found that the stability of the motion of a solid ring depended on

so delicate an adjustment, and at the same time so unsymmetrieal a distribution

of mass, that even if the exact condition were fulfilled, it could scarcely last

long, and if it did, the immense preponderance of one side of the ring would

be easily observed, contrary to experience. These considerations, with others

derived from the mechanical structure of so vast a body, compel us to abandon

any theory of solid rings.

We next examined the motion of a ring of equal satellites, and found that

if the mass of the planet is sufficient, any disturbances produced in the arrange-

ment of the ring will be propagated round it in the form of waves, and will not

introduce dangerous confusion. If the satellites are unequal, the propagation of

the waves will no longer be regular, but disturbances of the ring will in this,

as in the former case, produce only waves, and not growing confusion. Sup-

posing the ring to consist, not of a single row of large satellites, but of a cloud

of evenly distributed unconnected particles, we found that such a cloud must

have a very small density in order to be permanent, and that this is inconsistent

with its outer and inner parts moving with the same angular velocity. Supposing

the ring to be fluid and continuous, we found that it will be necessarily broken

up into small portions.

We conclude, therefore, that the rings must consist of disconnected particles

;

these may be either solid or liquid, but they must be independent. The entire

system of rings must therefore consist either of a series of many concentric rings,

each moving with its own velocity, and having its own systems of waves, or else

of a confused multitude of revolving particles, not arranged in rings, and

continually coming into collision with each other.
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Taking the first case, we tbund that in an indefinite number of possible

cases the mutual perturbations of two rings, stable in themselves, might mount

up in time to a destructive magnitude, and that such cases must continually

occur in an extensive system like that of Saturn, the only retarding cause being

the possible irregularity of the rings.

The result of long-continued disturbance was found to be the spreading

out of the rings in breadth, the outer rings pressing outwards, while the inner

rings press inwards.

The final result, therefore, of the mechanical theory is, that the only system

of rings which can exist is one composed of an indefinite number of unconnected

particles, revolving round the planet with different velocities according to their

respective distances. These particles may be arranged in series of narrow rings,

or they may move through each other irregularly. In the first case the destruc-

tion of the system will be very slow, in the second case it will be more rapid,

but there may be a tendency towards an arrangement in narrow rings, which

may retard the process.

We are not able to ascertain by observation the constitution of the two

outer divisions of the system of rings, but the inner ring is certainly transparent,

for the limb of Saturn has been observed through it. It is also certain, that

though the space occupied by the ring is transparent, it is not through the

material parts of it that Saturn was seen, for his limb was observed without

distortion ; which shows that there was no refraction, and therefore that the

rays did not pass through a medium at all, but between the solid or liquid

particles of which the ring is composed. Here then we have an optical argument

in favour of the theory of independent particles as the material of the rings.

The two outer rings may be of the same nature, but not so exceedingly rare

that a ray of light can pass through their whole thickness without encounterino^

one of the particles.

Finally, the two outer rings have been observed for 200 years, and it appears,

from the careful analysis of all the observations by M. Struve, that the second

ring is broader than when first observed, and that its inner edge is nearer the

planet than formerly. The inner ring also is suspected to be approaching the

planet ever since its discovery in 1850. These appearances seem to indicate

the same slow progress of the rings towards separation which we found to be

the result of theory, and the remark, that the inner edge of the inner ring is
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most distinct, seems to indicate that the approach towards the planet is less

rapid near the edge, as we had reason to conjecture. As to the apparent

unchangeableness of the exterior diameter of the outer ring, we must remember

that the outer rings are certainly far more dense than the inner one, and that

a small change in the outer rings must balance a great change in the inner

one. It is possible, however, that some of the observed changes may be due

to the existence of a resisting medium. If the changes already suspected should

be confirmed by repeated observations with the same instruments, it will be

worth while to investigate more carefully whether Saturn's Rings are permanent

or transitionary elements of the Solar System, and whether in that part of

the heavens we see celestial immutability, or terrestrial corruption and generation,

and the old order giving place to new before our own eyes.

APPENDIX.

On the Stability of the Steady Motion of a Rigid Body about a Fixed Centre of Force.

By Peofessor W. Thomson {communicated in a letter).

The body will be supposed to be symmetrical on the two sides of a certain plane

containing the centre of force, and no motion except that of parts of the body parallel

to the plane will be considered. Taking it as the plane of construction, let G (fig. 14)

be the centre of gravity of the body, and a point at which the resultant attraction of

the body is in the line OG towards G. Then if the body be placed with coinciding

with the centre of force, and set in a state of rotation about that point as an axis, with

an angular velocity equal to A/Ajr. (where / denotes the attraction of the body on a

unit of matter at 0, S the amount of matter in the central body, M the mass of the

revolving body, and a the distance OG), it will continue, provided it be perfectly undis-

turbed, to revolve uniformly at this rate, and the attraction Sf on the moving body will

be constantly balanced by the centrifugal force oi'aM of its motion.

Let us now suppose the motion to be slightly disturbed, and let it be required to

investigate the consequences. Let X, S, Y, be rectangular axes of reference revolving

uniformly with the angular velocity (o, round S, the fixed attracting point. Let x, y, be

the co-ordinates of G with reference to these axes, and let XS, YS denote the components
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of the whole force of attraction of S on the rigid body. Then since this force is in the

line through S, its moment round G is

SYx-SXy;

the components of the forces on the moving body being reckoned as positive when they

tend to diminish x and y respectively. Hence if k denote the radius of gyration of the

body round G, and if
<f>

denote the angle which OG makes with SX {i.e. the angle GOK),

the equations of motion are,

In the first place we see that one integral of these equations is

This is the "equation of angidar momentum."

In considering whether the motion round S with velocity co when coincides with

-S' is stable or unstable, we must find whether every possible motion with the same

" angular momentum " round S is such that it will never bring to more than an infinitely

small distance from S : that is to say, we must find whether, for every possible solution

in which H =M {ct" + k"") o), and for which the co-ordinates of are infinitely small at one

time, these co-ordinates remain infinitely small. Let these values at time t be denoted

thus: 8^ = ^, and NO='rj; let OG be at first infinitely nearly parallel to OX, i.e. let
<f>

be infinitely small (the full solution will tell us whether or not
<f)

remains infinitely small)

;

then, as long as
<f)

is infinitely small, we have

x = a+ ^, y = v + ^<^>

and the equations of motion have the forms

31

and we may write the equation of angular momentum instead of the third equation.

If now we suppose f and rj to be infinitely small, the last of these equations becomes

{a' + k^)f^+2a>a^+af^=0 (a).
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If p and q denote the components parallel and perpendicular to OG of the attraction

of the body on a unit of matter at S, we have

X = pco?,^-q?,m4> = p, and F=psin^ + 5^003 ^=j3</> 4-^,

since q and ^ are each infinitely small ; and if we put V= potential at S, and

then p =/- a| - 777, q = -0v- 7^.

If we make these substitutions for X and Y, and take into account that

.f=co'a^ (*).

the first and second equations of motion become

g_2.^_„.f_2„af4(.f+„)=0 (0),

A,2„|_„., +„^4(^,+,« = W.

Combining equations (a), (c), and (tf), by the same method as that adopted in the text,

we find that the differential equation in ^, 7), or </>, is of the form

d*u ^d^u ^

where A = A;',

C = a>* (A;* - 3a*) + «" -^ {{a* + ^*) (a + yS) - 4a»y8} + {a' + Fj^^, (a'yS - 7).

In comparing this result with that obtained in the Essay, we must put

r^ for a,

R for M,

B+S for S,

L for o,

Nt: for y8,

Mr^ for 7.
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[From the Philosophical Magazine for January and July, I860.]

XX. Illustrations of the Dynamical Theory of Gases*.

PART L

On the Motions and Collisions of Perfectly Elastic Spheres.

So many of the properties of matter, especially when in the gaseous form,

can be deduced from the hypothesis that their minute parts are in rapid motion,

the velocity increasing with the temperature, that the precise nature of this

motion becomes a subject of rational curiosity. Daniel Bemouilli, Herapath,

Joule, Kronig, Clausius, &c. have shewn that the relations between pressure,

temperature, and density in a perfect gas can be explained by supposing the

particles to move with uniform velocity in straight lines, striking against the

sides of the containing vessel and thus producing pressure. It is not necessary

to suppose each particle to travel to any great distance in the same straight

line ; for the effect in producing pressure \vill be the same if the particles

strike against each other ; so that the straight line described may be very short

.

M. Clausius has determined the mean length of path in terms of the average

distance of the particles, and the distance between the centres of two particles

when collision takes place. We have at present no means of ascertaining either

of these distances ; but certain phenomena, such as the internal friction of gases,

the conduction of heat through a gas, and the diffusion of one gas through

another, seem to indicate the possibility of determining accurately the mean

length of path which a particle describes between two successive collisions. In

order to lay the foundation of such investigations on strict mechanical principles,

I shall demonstrate the laws of motion of an indefinite number of small, hard,

and perfectly elastic spheres acting on one another only during impact.

* Read at the Meeting of the British Association at Aberdeen, Sei)tember 21, 1859.

VOL. I. 48
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If the properties of such a system of bodies are found to correspond to

those of gases, an important physical analogy will be established, which may

lead to more accurate knowledge of the properties of matter. If experiments

on gases are inconsistent with the hypothesis of these propositions, then our

theory, though consistent w^th itself, is proved to be incapable of explaining

the phenomena of gases. In either case it is necessary to follow out the

consequences of the hypothesis.

Instead of saying that the particles are hard, spherical, and elastic, we may

if we please say that the particles are centres of force, of which the action is

insensible except at a certain small distance, when it suddenly appears as a

repulsive force of very great intensity. It is evident that either assumption

will lead to the same results. For the sake of avoiding the repetition of a

long phrase about these repulsive forces, I shall proceed upon the assumption

of perfectly elastic spherical bodies. If we suppose those aggregate molecules

which move together to have a bounding surface which is not spherical, then

the rotatory motion of the system will store up a certain proportion of the

whole vis viva, as has been shewn by Clausius, and in this way we may

accoimt for the value of the specific heat being greater than on the more

simple hypothesis.

On the Motion and Collision of Perfectly Elastic Spheres.

Prop. I. Two spheres moving in opposite directions with velocities* inversely

us their masses strike one another; to determine their motions after impact.

Let P and Q be the position of the centres at

impact; AP, BQ the directions and magnitudes of ^-V at

the velocities before impact; Pa, Qh the same after ^^^^^^^^—j^

impact; then, resolving the velocities parallel and per- ^

pendicular to PQ the line of centres, we find that

tlie velocities parallel to the line of centres are exactly

reversed, while those perpendicular to that line are

luichanged. Compounding these velocities again, we find that the velocity of

each ball is the same before and after impact, and that the directions before

and after impact lie in the same plane with the line of centres, and make equal

angles with it.
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Prop. 11. To find the probability of the direction of the velocity after

impact lying between given limits.

In order that a collision may take place, the line of motion of one of the

balls must pass the centre of the other at a distance less than the sum of

their radii ; that is, it must pass through a circle whose centre is that of the

other ball, and radius (s) the sum of the radii of the balls. Within this circle

every position is equally probable, and therefore the probability of the distance

from the centre being between r and r + dr is

2rdr
~7~'

Now let
<f>

be the angle APa between the original direction and the directioii

after impact, then APN=^<f>, and 7- = 5 sin ^<^, and the probabihty becomes

^ sin 6d^.

The area of a spherical zone between the angles of polar distance <j> and
<f)
+ d<f) is

27r sin (f)d<f>

;

therefore if a> be any small area on the surface of a sphere, radius unity, the

probability of the direction of rebound passing through this area is

to

4:ir
*

so that the probability is independent of ^, that is, all directions of rebound

are equally likely.

Prop. III. Given the direction and magnitude of the velocities of two

spheres before impact, and the line of centres at impact ; to find the velocities

after impact.

Let OA, OB represent the velocities before impact, so that if there had been

no action between the bodies they would

have been at A and B at the end of a

second. Join AB, and let G be their centre

of gravity, the position of which is not

affected by their mutual action. Draw GN
parallel to the line of centres at impact (not

necessarily in the plane AOB). Draw aGh

in the plane AGN, making NGa = NGA, and Ga=GA and Gb = GB; then by

48—2
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Prop. I. Ga and Gh will be the velocities relative to G ;
and compounding

these with OG, we have Oa and Oh for the true velocities after impact.

By Prop. 11. all directions of the Une aGh are equally probable. It appears

therefore that the velocity after impact is compounded of the velocity of the

centre of gravity, and of a velocity equal to the velocity of the sphere relative

to the centre of gravity, which may with equal probability be in any direction

whatever.

If a great many equal spherical particles were in motion in a perfectly

elastic vessel, collisions would take place among the particles, and their velocities

would be altered at every collision; so that after a certain time the vis viva

will be divided among the particles according to some regular law, the average

number of particles whose velocity lies between certain Umits being ascertainable,

though the velocity of each particle changes at every colUsion.

Prop. IV. To find the average number of particles whose velocities he

between given limits, after a great number of collisions among a great number

of equal particles.

Let N be the whole number of particles. Let x, y, z be the components

of the velocity of each particle in three rectangular directions, and let the number

of particles for which x lies between x and x-hdx, be Nf{x)dx, where f{x) is

a function of x to be determined.

The number of particles for which y lies between y and y + dy wUl be

Nf{y)dy; and the number for which z Hes between z and z + dz will be Nf(z)dz,

where / always stands for the same function.

Now the existence of the velocity x does not in any way affect that of

the velocities y or z, since these are all at right angles to each other and

independent, so that the number of particles whose velocity lies between x and

x + dx, and also between y and y-{-dy, and also between z and z + dz, is

If we suppose the N particles to start from the origin at the same instant,

then this wil) be the number in the element of volume (dxdydz) after unit of

time, and the number referred to unit of volume will be
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But the directions of the coordinates are perfectly arbitrary, and therefore this

number must depend on the distance from the origin alone, that is

f{x)f(y)f(z) = ^{^+y' + z%

Solving this functional equation, we find

f{x) = Ce^'', (^M = CV.

If we make A positive, the number of particles will increase with the

velocity, and we should find the whole number of particles infinite. We there-

fore make A negative and equal to —„ , so that the number between x and

x + dx is

NCe'^'dx.

Integrating from a:=— <» toa;=-foo,we find the whole number of particles,

aVTT

1 -?:

f[x) is therefore /-e "
.

Whence we may draw the following conclusions :

—

1st. The number of particles whose velocity, resolved in a certain direction,

lies between x and x + dx is

N^i'^'dx (1).

2nd. The number whose actual velocity lies between v and v + dv is

]Sf-^^^e~^'dv (2).

3rd. To find the mean value of v, add the velocities of all the particles

together and divide by the number of particles ; the result is

mean velocity = -p- (3).

Vtt

4th. To find the mean value of v; add all the values together and

divide by N,
mean value of t;' = |a- (4).

This is greater than the square of the mean velocity, as it ought to be.
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It appears from this proposition that the velocities are distributed among

the particles according to the same law as the errors are distributed among

the observations in the theory of the " method of least squares." The velocities

i-ange from to oo , but the number of those having great velocities is com-

paratively small. In addition to these velocities, which are in all directions

equally, there may be a general motion of translation of the entire system of

particles which must be compounded with the motion of the particles relatively

to one another. We may call the one the motion of translation, and the other

the motion of agitation.

Prop. V. Two systems of particles move each according to the law stated

in Prop. IV. ; to find the number of pairs of particles, one of each system,

whose relative velocity lies between given limits.

Let there be N particles of the first system, and N' of the second, then

NN' is the whole number of such pairs. Let us consider the velocities in the

direction of x only ; then by Prop. IV. the number of the first kind, whose

velocities are between x and x + dx, is

1 -^N—j=e '^ dx.
aV-Tr

The number of the second kind, whose velocity is between x + y and x + y + dy, is

1 (i±vl

N'—7= e ^ dy,

where fi is the value of a for the second system.

The number of pairs which fulfil both conditions is

NN'^e'^^'^' dxdy.
apir

Now X may have any value from — qo to +cx> consistently with the difference

of velocities being between y and y + dy; therefore integrating between these

limits, we find

^^'7^^^"'^''^ ^'^

for the whole number of pairs whose difference of velocity lies between y and

y + dy.
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This expression, which is of the same form with (1) if we put XN' for

X, a' +^ for a', and y for x, shews that the distribution of relative velocities

is regulated by the same law as that of the velocities themselves, and that

the mean relative velocity is the square root of the sum of the squares of tlie

mean velocities of the two systems.

Since the direction of motion of every particle in one of the systems may

be reversed without changing the distribution of velocities, it follows that the

velocities compounded of the velocities of two particles, one in each system, .-irr

distributed according to the same formula (5) as the relative velocities.

Prop. VI. Two systems of particles move in the same vessel ; to prove

that the mean vis viva of each particle will become the same in the two

systems.

Let P be the mass of each particle of the first system, Q that of each

particle of the second. Let p, q be the mean veloci-

ties in the two systems before impact, and let p', ((

be the mean velocities after one impact. Let OA = p
and OB = q, and let AOB be a right angle; then, by

Prop, v., AB will be the mean relative velocity, OG will

be the mean velocity of the centre of gravity ; and drawing

aGh at right angles to OG, and making aG = AG and

bG = BG, then Oa will be the mean velocity of P after

impact, compounded of OG and Ga, and Ob will be that of Q after impact.

^~ P+Q '

therefore p' = Oa =^!^^±^Ipl±^:

,

^ P + Q

and q' = Ob =^-^M±S±El±W,P+Q

and Pp"-Qq" = {^)\Pp'-Qq') C^).



384 ILLUSTRATIONS OF THE DYNAMICAL THEORY OF GASES.

It appears therefore tKat the quantity Pp' — Qq^ is diminished at every impact

in the same ratio, so that after many impacts it will vanish, and then

Now the mean vis viva is fPa'' = -^ Pp* for P, and ^ Qq^ for Q ; and it is
8 8

manifest that these quantities will be equal when Pp^ = Qq^.

If any number of different kinds of particles, having masses P, Q, R and

velocities jp, q, r respectively, move in the same vessel, then after many impacts

Pf^Q^ = m^, &c (7).

Prop. VII. A particle moves with velocity r relatively to a number of

particles of which there are N in imit of volume ; to find the number of these

which it approaches within a distance 5 in unit of time.

If we describe a tubular surface of which the axis is the path of the

particle, and the radius the distance s, the content of this surface generated

in unit of time will be irrs^, and the number of particles included in it will be

Nirrs' (8),

which is the number of particles to which the moving particle approaches within

a distance s.

Prop. VIII. A particle moves with velocity v in a system moving according

to the law of Prop. IV.; to find the number of particles which have a velocity

relative to the moving particle between r and r + dr.

Let u be the actual velocity of a particle of the system, v that of the

original particle, and r their relative velocity^ and 6 the angle between v and r,

then

u^z=v^+ 7^ — 2vr cos 0.

If we suppose, as in Prop. IV., all the particles to start from the origin, at

once, then after imit of time the "density" or number of particles to unit of

volume at distance u will be

1 -^

aM
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From this we have to deduce the number of particles in a shell whose centre

is at distance v, radius = r, and thickness = dr,

^-n=l{^ *• -« *^ }^^' (9)>

which is the number required.

CoR. It is evident that if we integrate this expression from r = to

/• = oo
, we ought to get the whole number of particles = iV, whence the following

mathematical result,

dx.x{e »' —e~ »'
) = V77-aa (lO).

Prop. IX. Two sets of particles move as in Prop. V.; to find the number

of pairs which approach within a distance s in unit of time.

The number of the second kind which have a velocity between v and v + dv ia

4 -^

The number of the first kind whose velocity relative to these is between r

and ri-dr is

iV—= - (e »' -e »* )dr = n,

and the number of pairs which approach within distance 5 in unit of time is

4 t. _ ("-»•)* (o^-r)*

^NN' -^.s'r've ^ {e »' -e" «" \drdv.

By the last proposition we are able to integrate with respect to v, and get

Integrating this again from r = to r = oo
,

2NN' J^ J'^FT^s' (11)

is the number of collisions in unit of time which take place in unit of volume

between particles of difierent kinds, s being the distance of centres at collision.

vol. I. 49
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The number of collisions between two particles of the first kind, 5, being the

striking distance, is

and for the second system it is

The mean velocities in the two systems are -7= and -^ ; so that if l^ and l^

be the mean distances travelled by particles of the first and second systems

between each collision, then

ii a

Prop. X. To find the probability of a particle reaching a given distance

before striking any other.

Let us suppose that the probability of a particle being stopped while

passing through a distance dx, is adx ; that is, if iV particles arrived at a

distance x, Nadx of them would be stopped before getting to a distance x-^dx.

Putting this mathematically,

^=-Na, or N=Ce-'^.

Putting iV"=l when x = 0, we find e""* for the probability of a particle not

striking another before it reaches a distance x.

The mean distance travelled by each particle before striking is - = l. The

probability of a particle reaching a distance = 7i? without being struck is e"".

(See a paper by M. Clausius, Philosophical Magazine, February 1859.)

If all the particles are at rest but one, then the value of a is

a = Trs'N,

where s is the distance between the centres at collision, and N is the number

of particles in unit of volume. If v be the velocity of the moving particle

relatively to the rest, then the number of collisions in unit of time wiU be

virsW

:
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and if V, be the actual velocity, then the number will be r,a ; therefore

a = -7rsW,

where v, is the actual velocity of the striking particle, and v its velocity

relatively to those it strikes. If -y, be the actual velocity of the other particles,

then V — Jv* + v*. If i\ = i\ , then v = sl2i\ , and

a = j2TTS*N.

Note*. M. Clausius makes a = ^Trs^N,

Prop. XI. In a mixture of particles of two different kinds, to find the

mean path of each particle.

Let there be iV, of the first, and N^ of the second in unit of volume.

Let Si be the distance of centres for a collision between two particles of the

first set, 5j for the second set, and s for collision between one of each kind.

Let r, and i\ be the coefficients of velocity, M^, M^ the mass of each particle.

The probability of a particle M^ not being struck till after reaching a

distance x, by another particle of the same kind is

* [In the Philosophical Magazine of 1860, Vol I. pp. 434—6 Clausius explains the method by
which he found his value of the mean relative velocity. It is briefly as follows: If u, v be the

velocities of two particles their relative velocity is >Ju* + v* - 2uv cos 6 and the mean of this as

regards direction only, all directions of v being equally probable, is shewn to be

1 w*
, ^ 1 V* ,f + o — when u<v, and w + ^ — when u> v.

o V 3 w

If r = M these expressions coincide. Clausius in applying this result and putting u, v for the

mean velocities assumes that the mean relative velocity is given by expressions of the same form,

so that when the mean velocities are each equal to u the mean relative velocity would be ^u.

This step is, however, open to objection, and in fact if we take the expressions given above for the

mean velocity, treating u and v as the velocities of two particles which may have any values between

and 00 , to calculate the mean relative velocity we should proceed as follows : Since the number of

4 _*!
particles with velocities between u and w + rfu is N , , tt*g~«' du, the mean relative velocity is

2
This expression, when reduced, leads to -j= Ja* + /3', which is the result in the text. Ed.]

49—2
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The probability of not being struck by a particle of the other kind in the same

distance is

Therefore the probability of not being struck by any particle before reaching a

distance x is

and if k be the mean distance for a particle of the first kind,

\ = j27rs-N, + 7:^f^.s^N, (12).

Similarly, if k be the mean distance for a particle of the second kind,

l=^/27r5,W, + 7^ /l+^^/W, (13).

The mean density of the particles of the first kind is N,M, = p„ and that of

the second NJiI, = p,. If we put

i =Ap, + Bp,,
l
= Cp, + Dp, (15),

^^ C-Wr~< ^
^

Prop. XII. To find the pressure on unit of area of the side of the vessel

due to the impact of the particles upon it.

Let iV= number of particles in unit of volume;

M= mass of each particle
;

V = velocity of each particle

;

I = mean path of each particle

;

then the number of particles in unit of area of a stratum dz thick is

Ndz (17).

The number of colHsions of these particles in unit of time is

Ndz
J

(18).
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The number of particles which after collision reach a distance between nl and

(n 4- dn) I is

Njc-^dzdn (19).

The proportion of these which strike on unit of area at distance z is

rd — z
,(20);

2nl

the mean velocity of these in the direction of 2 is

.'4±? (21).

Multiplying together (19), (20), and (21), and M, we find the momentum at

impact

MN-^j,(nn'-z')e-''dzdn.

Integrating with respect to z from to nl, we get

^MNi? nt"" dn.

Integrating with respect to n from to 00 , we get

for the momentum in the direction of z of the striking particles ; for the

momentum of the particles after impact is the same, but in the opposite

direction ; so that the whole pressure on unit of area is twice this quantity, or

This value of _p is independent of I the length of path. In applying this

result to the theory of gases, we put MN=p, and v- = 2>h, and then

which is Boyle and Mariotte's law. By (4) we have

^'^ = |a^ .-. o: = 2k (23).

We have seen that, on the hypothesis of elastic particles moving in straight

lines, the pressure of a gas can be explained by the assumption that the square

of the velocity is proportional directly to the absolute temperature, and inversely

to the specific gravity of the gas at constant temperature, so that at the same
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r

pressure and temperature the value of NMif is the same for all gases. But

we found in Prop. VI. that when two sets of particles communicate agitation

to one another, the value of Mif is the same in each. From this it appears

that N, the number of particles in unit of volume, is the same for all gases

at the same pressure and temperature. This result agrees with the chemical law,

that equal volumes of gases are chemically equivalent.

We have next to determine the value of I, the mean length of the path

of a particle between consecutive collisions. The most direct method of doing

this depends upon the fact, that when different strata of a gas slide upon

one another with different velocities, they act upon one another with a tan-

gential force tending to prevent this sliding, and similar in its results to the

friction between two solid surfaces sliding over each other in the same way.

The explanation of gaseous friction, according to our hypothesis, is, that particles

having the mean velocity of translation belonging to one layer of the gas, pass

out of it into another layer having a different velocity of translation ; and

by striking against the particles of the second layer, exert upon it a tangential

force which constitutes the internal friction of the gas. The whole friction

between two portions of gas separated by a plane surface, depends upon the

total action between all the layers on the one side of that surface upon all the

layers on the other side.

Prop. XIII. To find the internal friction in a system of moving particles.

Let the system be divided into layers parallel to the plane of xy, and

let the motion of translation of each layer be u in the direction of x, and

let u = A+Bz. We have to consider the mutual action between the layers on

the positive and negative sides of the plane xy. Let us first determine the

action between two layers dz and dz\ at distances z and — z' on opposite sides

of this plane, each unit of area. The number of particles which, starting from

dz in unit of time, reach a distance between nl and (n-{-dn)l is by (19),

N J e"** dz dn.

The number of these which have the ends of their paths in the layer dz' is

N —-jt e"" dz dz' dn.

The mean velocity in the direction of x which each of these has before impact

is A + Bz, and after impact A+Bz'; and its mass is M, so that a mean
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momentum =MB{z-z) is communicated by each particle. The whole action due

to these collisions is therefore

NMB ^, (z - z) e-** dz dz dn.

We must first integrate with respect to z' between z' = and z' = z — nl; this

gives

^NMB 2^ (nH' -z')e-''dz dn

for the action between the layer dz and all the layers below the plane xy.

Then integrate from z = to z = nl,

^MNBlm'e-'' dn.

Integrate from n = to n = oo , and we find the whole friction between unit

of area above and below the plane to be

where /x is the ordinary coefficient of internal friction,

-i'^^-iTlS"
• ^^^>'

where p is the density, I the mean length of path of a particle, and v the

... 2a ^ lYk
mean velocity v = -j= = 2J—

,

'=I^V.T (^^)-

Now Professor Stokes finds by experiments on air.

J:
'^ = •116.

If we suppose n/^ = 930 feet per second for air at 60°, and therefore the mean

velocity 1^ = 1505 feet per second, then the value of I, the mean distance

travelled over by a particle between consecutive collisions, =4 47^000^^ ^^ ^^

inch, and each particle makes 8,077,200,000 collisions per second.

A remarkable result here presented to us in equation (24), is that if this

explanation of gaseous friction be true, the coefficient of friction is independent

of the density. Such a consequence of a mathematical theory is very startling,

and the only experiment I have met with on the subject does not seem to

confirm it. We must next compare our theory with what is known of the

difiusion of gases, and the conduction of heat through a gas.
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PART II.

* On the Process of Diffusion of two or more kinds of moving particles

AMONG one AI^OTHER.

We have shewn, in the first part of this paper, that the motions of a

system of many small elastic particles are of two kinds : one, a general motion

of translation of the whole system, which may be called the motion in mass;

and the other a motion of agitation, or molecular motion, in virtue of which

velocities in all directions are distributed among the particles according to a

certain law. In the cases we are considering, the collisions are so frequent that

the law of distribution of the molecular velocities, if disturbed in any way,

will be re-established in an inappreciably short time; so that the motion will

always consist of this definite motion of agitation, combined with the general

motion of translation.

When two gases are in communication, streams of the two gases might

run freely in opposite directions, if it were not for the collisions which take

place between the particles. The rate at which they actually interpenetrate each

other must be investigated. The diffusion is due partly to the spreading of the

particles by the molecular agitation, and partly to the actual motion of the

two opposite currents in mass, produced by the pressure behind, and resisted

* [The methods and results of this paper have been criticised by Clausius in a memoir published

in PoggendorflTs Anncden, VoL cxv., and in the Philosophical Magazine, Vol xxiiL His main objec-

tion is that the various circumstances of the strata, discussed in the paper, have not been sufficiently

represented in the equations. In particular, if there be a series of strata at different temperatures

perpendicular to the axis of x, then the proportion of molecules whose directions form with the

axis of X angles whose cosines lie between /a and /i + <?/x is not \dfj. sa has been assumed by Maxwell

throughout his work, but \Hdfi. where £f is a factor to be determined. In discussing the steady

conduction of heat through a gas Clausius assumes that, in addition to the velocity attributed to

the molecule according to Maxwell's theory, we must also suppose a velocity normal to the stratum

and depending on the temperature of the stratum. On this assumption the factor H is iuA'estigated

along with other modifications, and an expression for the assumed velocity is determined from the

consideration that when the flow of heat is steady there is no movement of the mass. Clausius

combining his own results with those of Maxwell points out that the expression contained in (28)

of the paper involves as a result the motion of the gas. He also disputes the accuracy of ex-

pression (59) for the Conduction of Heat. In the introduction to the memoir published in the

Phil Trans., 1866, it will be found that Maxwell expresses dissatisfaction with his former theory

of the Diffusion of Gases, and admits the force of the objections made by Clausius to his expression

for the Conduction of Heat. Ed.l
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by the collisions of the opposite stream. When the densities are equal, the

diffusions due to these two causes respectively are as 2 to 3.

Prop. XIV. In a system of particles whose density, velocity, &c. are

functions of x, to find the quantity of matter transferred across the plane of yz,

due to the motion of agitation alone.

If the number of particles, their velocity, or their length of path is greater

on one side of this plane than on the other, then more particles will cross the

plane in one direction than in the other ; and there will be a transference of

matter across the plane, the amount of which may be calculated.

Let there be taken a stratum whose thickness is dx, and

area unity, at a distance x from the origin. The number of

collisions taking place in this stratum in unit of time will be

Njdx. '^^

The proportion of these which reach a distance between nl and {n-^dn)l before

they strike another particle is

e"" dji.

The proportion of these which pass through the plane yz is

nl + x

2nl
when X is between —nl and 0,

and ^r-T- when x is between and + nl

;

2nl

the sign being negative in the latter case, because the particles cross the plane

in the negative direction. The mass of each particle is M ; so that the quantity

of matter which is projected from the stratum dx, crosses the plane yz in. a.

positive direction, and strikes other particles at distances between nl and

(n + dn) I is

MNvlxTnl) J _„, ,^-s
2^^ -dxe ""dn (26),

where x must be between ±nl, and the upper or lower sign is to be taken

according as x is positive or negative.

In integrating this expression, we must remember that N, v, and I are

functions of x, not vanishing with x, and of which the variations are very

small between the limits x= —nl and x= +nl.

VOL. L 50
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As we may have occasion to perform similar integrations, we may state

here, to save trouble, that if U and r are functions of x not vanishing with x,

whose variations are very small between the limits x= +r and x= —r,

/>^^^ = sf2^(^'"")
(^^)-

When m is an odd number, the upper sign only is to be considered;

when m is even or zero, the upper sign is to be taken with positive values

of X, and the lower with negative values. Applying this to the case before us,

We have now to integrate

n being taken from to oo . We thus find for the quantity of matter trans-

ferred across unit of area by the motion of agitation in unit of time,

«=-*s('"'^) (^^)'

where p =MN is the density, v the mean velocity of agitation, and I the mean

length of path.

Prop. XV. The quantity transferred, in consequence of a mean motion of

translation V, would obviously be

Q^Vp (29).

Prop. XVI. To find the resultant dynamical effect of all the collisions

which take place in a given stratum.

Suppose the density and velocity of the particles to be functions of x,

then more particles will be thrown into the given stratum from that side

on which the density is greatest ; and those particles which have greatest

velocity will have the greatest effect, so that the stratum will not be generally
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in equilibrium, and the dynamical measure of the force exerted on the stratum

will be the resultant momentum of all the particles which lodge in it during

unit of time. We shall first take the case in which there is no mean motion

of translation, and then consider the effect of such motion separately.

Let a stratum whose thickness is a (a small quantity

compared with I), and area unity, be taken at the origin,

perpendicular to the axis of x ; and let another stratum, of

thickness dx, and area unity, be taken at a distance x from

the first.

If M^ be the mass of a particle, N the number in unit of volume, v the

velocity of agitation,- I the mean length of path, then the number of collisions

which take place in the stratum dx is

Njdx,

The proportion of these which reach a distance between n/ and (n + dn) I is

e"" dn.

The proportion of these which have the extremities of their paths in the

stratum a is

a

2nl'

The velocity of these particles, resolved in the direction of x, is

vx

^nl'

and the mass is M ; so that multiplying all these terms together, we get

NMv'ax _„ , J /„-.x

-2^?^' ''^''" <3°>

for the momentum of the particles fulfilling the above conditions.

To get the whole momentum, we must first integrate with respect to x

from x= —nl to x = + nl, remembering that I may be a function of x, and is a

very small quantity. The result is

50-2
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Integrating with respect to n from n = to n = co
, the result is

-4A^>^^ ^^^>

as the -whole resultant force on the stratum a arising from these collisions,

jyjow =p by Prop. XII., and therefore we may write the equation

dp

the ordinary hydrodynamical equation.

-1=^" (^^)'

Prop. XVII. To Jind the resultant effect of the collisions upon each of

several different systems of particles mixed together.

Let M^, Mj, &c. be the masses of the different kinds of particles, N„

N,, &c. the number of each kind in unit of volume, v^, v^, &c. their velocities

of agitation, Z,, l^ their mean paths, p^, p^, &c. the pressures due to each

system of particles ; then

J
= Ap^ + Bp^ + &c.

\=Cp, + Dp, + kc.

(33).

The number of collisions of the first kind of particles with each other in unit

of time will be

N{OiAp^.

The number of collisions between particles of the first and second kinds will be

N{o^Bp^, or N^vJJp^y because v^B=v*C.

The number of colHsions between particles of the second kind will be

N^vJ)pi, and so on, if there are more kinds of particles.

Let us now consider a thin stratum of the mixture whose volume is unity.

The resultant momentum of the particles of the first kind which lodge in

it during unit of time is

dx
'
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The proportion of these which strike particles of the first kind is

The whole momentum of these remains among the particles of the first kind.

The proportion wliich strike particles of the second kind is

BpA.

The momentum of these is divided between the striking particles in the ratio

M
of their masses ; so that p^—W of the whole goes to particles of the first

M
kind, and -^t^—^^, to particles of the second kind.

Jtf1 + M, ^

The effect of these collisions is therefore to produce a force

on particles of the first system, and

on particles of the second system.

The effect of the collisions of those particles of the second system whic^i

strike into the stratum, is to produce a force

on the first system, and

on the second.

The whole effect of these collisions is therefore to produce a resultant force

-1 (^M.^M^) -1W.^/^c (3.)

on the first system,

on the second, and so on.
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Prop. XVIII. To find the mechanical effect of a difference in the mean

velocity of translation of two systems of moving particles.

Let F,, Fj be the mean velocities of translation of the two systems

MM
respectively, then ^ ' ' ( Fj — Fj) is the mean momentum lost by a particle

of the first, and gained by a particle of the second at collision. The number

of such collisions in unit of volume is

NjBp^v,, or N^Cp^v,;

therefore the whole effect of the collisions is to produce a force

= -^'^''="-]^^. ('"-'"•) (*«)

on the first system, and an equal and opposite force

= +^=C'p.t..-^^^ (F.- V,) (37)

on unit of volume of the second system.

Prop. XIX. To find the law of diffusion in the case of two gases diffu^ng

into each other through a plug made of a porous material, as in the case of

the experiments of Graham.

The pressure on each side of the plug being equal, it was found by Graham

that the quantities of the gases which passed in opposite directions through the

plug in the same time were directly as the square roots of their specific gravities.

We may suppose the action of the porous material to be similar to that

of a number of particles fixed in space, and obstructing the motion of the

particles of the moving systems. If Z, is the mean distance a particle of the

first kind would have to go before striking a fixed particle, and L^ the distance

for a particle of the second kind, then the mean paths of particles of each

kind will be given by the equations

J
= ^^, + -Bp,+ i, l = Cp, + Z>^, + -i (38).

The mechanical effect upon the plug of the pressures of the gases on each side,

and of the percolation of the gases through it, may be found by Props. XVII.

and XVIII. to be

M,N,v,V,
^

MJs[,v,V, dp, I dp, k^^ ,3^.

L, Zj dx Li dx L.i
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and this must be zero, if the pressures are equal on each side of the plug.

Now if Q,, Qj be the quantities transferred through the plug by the mean

motion of translation, ^, = PiV, = J/jiV, F, ; and since by Graham's law

we shall have

M^N{Ui Fi = - MJSf^i\ F, = Z7 suppose

;

and since the pressures on the two sides are equal, -p= ~~j^> ^^^ ^^® ^^^7

way in which the equation of equilibrium of the plug can generally subsist is

when L^ = L^ and l^= ly This implies that A = C and B = D. Now we know

that ViB= v*C. Let K=^ —., then we shall have

A = C=^Kv,\ B =D = ^Kv^ (40),

and i=i=K{v,p, + i\p,)^-j^ (41).

The diffusion is due partly to the motion of translation, and partly to that of

agitation. Let us find the part due to the motion of translation-

The equation of motion of one of the gases through the plug is found by

adding the forces due to pressures to those due to resistances, and equating

these to the moving force, which in the case of slow motions may be neglected

altogether. The result for jthe first is

dx (^M+^M^^j + fcpA^li,,

+ ^-^'''*'' -^k (^- ^=)+ -i-' =
'> (*2).

Making use of the simplifications we have just discovered, this becomes

^^^ {v,% + v:p:) +K-^, (p,v, +p,v,) U+yU (43),

whence l^= -^ ia(v,^p,^v,%)

A^iVj {p^V^ +i?aVi) + f~



400 ILLUSTRATIONS OF THE DYNAMICAL THEORY OF GASES.

whence the rate of diffusion due to the motion of translation may be found
;
for

(?.=
J,

andft=-J (45).

To find the difiusion due to the motion of agitation, we must find the

value of q^.

L d p.

V, dx 1+KL (v,p^ + v^p,)
'

^'--.t1I^i+^^^(^^-^^^» ('')•

SimHarly, q,= + l^^{l+KLi^{p,+p:)} (47).

The whole diffusions are Q^ + q, and Q, + q,. The values of q, and q, have a

term not following Graham's law of the square roots of the specific gravities,

but following the law of equal volumes. The closer the material of the plug,

the less will this term affect the result.

Our assumptions that the porous plug acts like a system of fixed particles,

and that Graham's law is fulfilled more accurately the more compact the

material of the plug, are scarcely sufficiently well verified for the foundation of

a theory of gases ^ and even if we admit the original assumption that they are

systems of moving elastic particles, we have not very good evidence as yet for

the relation among the quantities A, B, C, and D.

Prop. XX. To find the rate of diffusion between two vessels connected hy a

tube.

When diffusion takes place through a large opening, such as a tube con-

necting two vessels, the question is simplified by the absence- of the porous

diffusion plug; and since the pressure is constant throughout the apparatus, the

volumes of the two gases passing opposite ways through the tube at the same

time must be equal Now the quantity of gas which passes through the tube

is due partly to the motion of agitation as in Prop. XIV., and partly to the

mean motion of translation as in Prop. XV.
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Let US suppose the volumes of the two vessels to be a and h, and the

length of the tube between them c, and its trans-

verse section s. Let a be filled with the first gas, /^ * ^ /^
and h with the second at the commencement of

the experiment, and let the pressure throughout

the apparatus be P.

Let a volume y of the first gas pass from a to 6, and a volume y of the

second pass from h to a \ then if p, and p^ represent the pressures in a. due

to the first and second kinds of gas, and p\ and p\ the same in the vessel h,

r>='±^:yp r)=y-P r>'=y-P V'^—^P {i%\

Since there is still equilibrium,

which gives y = y and p^ +^, =P =p\ \-p„ (49).

The rate of diffusion will be +-^ for the one gas, and —-— for the other,

measured in volume of gas at pressure P.

Now the rate of diflfusion of the first gas will be

dji_^iji,±pj,_^-±yp^'^^^^
dt~' p -'—

p
—

(50)'

and that of the second,

-di=' p (='i)-

We have also the equation, derived from Props. XVI. and XVIL,

^ {Ap,l, (M, + if,) + BplM, - CpJ^M} + Bp,p,vM{ F. - F,) = (52).

From these three equations we can eliminate F, and V., and find -^ in
ift

terms of p and -j-
, so that we may w^rite

S=/(^"S) (-)•

VOL. I. 51
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Since the capacity of the tube is small compared with that of the vessels,

we may consider -^ constant through the whole length of the tube. "We may

then solve the differential equation in p and x; and then making p=Pi when

x = 0, and p=Pi when x = c, and substituting for p^ and p\ their values in

terms of y, we shall have a differential equation in y and t, which being solved,

will give the amount of gas diffused in a given time.

The solution of these equations would be difficult unless we assume rela-

tions among the quantities Ay B, C, D, which are not yet sufficiently estab-

lished in the case of gases of different density. Let us suppose that in a

particular case the two gases have the same density, and that the four quan-

tities A, B, Cy D are all equal.

The volume diffused, owing to the motion of agitation of the particles, is

then

3 P dx
''''

and that due to the motion of translation, or the interpenetration of the two

gases in opposite streams, is

5 dp kl

P dx V
'

The values of v are distributed according to the law of Prop. IV., so that

the mean value oi v is -i^ , and that of - is -7=- , that of k being \a^. The
VTT V Vira

diffusions due to these two causes are therefore in the ratio of 2 to 3, and

their sum is

dy _ ^ J2k si dp , .

di-~^s]~^Pdx ^^^^•

If we suppose -^ constant throughout the tube, or, in other words, if we

regard the motion as steady for a short time, then -r- will be constant and

equal to ———\ or substituting from (48),

ah ,, ~t^ (a+6)^
whence y =—/(I— e"" "*** ) (56).
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By choosing pairs of gases of equal density, and ascertaining the amount

of diffusion in a given time, we might determine the value of I in this expres-

sion. The diffusion of nitrogen into carbonic oxide or of deutoxide of nitrogen

into carbonic acid, would be suitable cases for experiment. The only existing

experiment which approximately fulfils the conditions is one by Graham, quoted

by Herapath from Brande's Quarterly Journal of Science, Vol. xviiL p. 7Q.

A tube 9 inches long and 0*9 inch diameter, communicated with the

atmosphere by a tube 2 inches long and 0'12 inch diameter; 152 parts of

olefiant gas being placed in the tube, the quantity remaining after four hours

was 99. parts.

In this case there is not much difference of specific gravity between the

and we have a = 9 x (0'9)'' - cubic inches, 2^=00, c = 2 inches, and

(0*12)' - square inches;

^^ log. 10.^. log.. (^^) (57);

.-. ^ = 0-00000256 inch =39^000 i"ch (58).

Prop. XXI. To Jind the amount of energy which crosses unit of area in

unit of time when the velocity of agitation is greater on one side of the area

than on the other.

The energy of a single particle is composed of two parts,—the vis viva

of the centre of gravity, and the vis viva of the various motions of rotation

round that centre, or, if the particle be capable of internal motions, the vis

viva of these. We shall suppose that the whole vis viva bears a constant

proportion to that due to the motion of the centre of gravity, or

where )8 is a coefficient, the experimental value of which is 1*634. Substituting

E for Ji" in Prop. XIV., we get for the transference of energy across unit

of area in unit of time,

51—2
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where J is the mechanical equivalent of heat in foot-pounds, and q[ is the

transfer of heat in thermal units.

Now MN=p, and l = -i-, so that MNl = -.
;'^^ Ap A

••••^^=-*'^l (-)

Also, if T is the absolute temperature,

1 dT^2dv^^
T dx~ V dx'

..Jq= -ify.lv ^"^ (60),

where p must be measured in dynamical units of force.

Let J=772 foot-pounds, _p = 2116 pounds to square foot, ^ = 4:ooVoo i^^^^'

v=1505 feet per second, T=522 or 62" Fahrenheit; then

2=;« (">'

where q is the flow of heat in thermal units per square foot of area ; and T'

and T are the temperatures at the two sides of a stratum of air x inches thick.

In Prof. Rankine's work on the Steam-engine, p. 259, values of the thennal

resistance, or the reciprocal of the conductivity, are given for various substances

as computed from a Table of conductivities deduced by M. Peclet from experi-

ments by M. Despretz :
—

Resistance.

Gold, Platinum, Silver 0-0036

Copper 0-0040

Iron 0-0096

Lead 0-0198

Brick 0-3306

Ail' by our calculation 40000

It appears, therefore, that the resistance of a stratum of air to the con-

duction of heat is about 10,000,000 times greater than that of a stratum of
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copper of equal thickness. It would be almost impossible to establish the value

of the conductivity of a gas by direct experiment, as the heat radiated from the

sides of the vessel would be far greater than the heat conducted through the

air, even if currents could be entirely prevented*.

PART III.

ON THE COLLISION OF PERFECTLY ELASTIC BODIES OF ANY FORM.

When two perfectly smooth spheres strike each other, the force which acts

between them always passes through their centres of gravity ; and therefore their

motions of rotation, if they have any, are not affected by the collision, and

do not enter into our calculations. But, when the bodies are not spherical,

the force of compact will not, in general, be in the line joining their centres

of gravity ; and therefore the force of impact will depend both on the motion

of the centres and the motions of rotation before impact, and it will affect

both these motions after impact. .

In this way the velocities of the centres and the velocities of rotation

will act and react on each other, so that finally there will be some relation

established between them ; and since the rotations of the particles about their

three axes are quantities related to each other in the same way as the three

velocities of their centres, the reasoning of Prop. IV. will apply to rotation as

well as velocity, and both will be distributed according to the law

dN ^r 1 --
-T- = iV —j^ e *'

.

ax a. 'Ju

* [Clausius, in the memoir cited in the last foot-note, has pointed out two oversights in this

calculation. In the first place the numbers have not been proi^erly reduced to English measure,

and have still to be multiplied by 4356, the ratio of the English pound to the kilogramme. The

numbers have, further, been calculated with one hour as the unit of time, whereas Maxwell h>\s

used them as if a second had been the unit. Taking account of these circumstarces and using his

own expression for the conduction which differs from (59) only in haNnng ^V in place of ^ on the

right-hand side, Clausius finds that the resistance of a stratum of air to the conduction of heat is

1400 times greater than that of a stratum of lead of the same thickness, or about 7000 times greater

than that of copper. Ed.]
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Also, by Prop. V., if a; be tbe average velocity of one set of particles, and y
that of another, then the average value of the sum or difference of the velocities is

from which it is easy to see that, if in each individual case

w = ax + fey + cz,

where x, y, z are independent quantities distributed according to the law above
stated, then the average values of these quantities will be connected by the
equation

Prop. XXII. Two perfectly elastic bodies of any form strike each other:
given their motions before impact, and the line of i^npact, to find their motions
after impact.

Let M, and M, be the centres of gravity of the two bodies. M,X„ M,Y„
and i¥jZ, the principal axes of the first; and MJC^,
M,Y, and M^, those of the second. Let / be the
point of impact, and EJE, the line of impact.

Let the co-ordinates of / with respect to if, be
x^,z„ and with respect to M^ let them be x.^.jt,.

Let the direction-cosines of the line of impact
RJR, be l,m,n, with respect to M„ and l,7n,n, with
respect to M^.

^

Let M, and M, be the masses, and A.B^ and A,BA the moments of
inertia of the bodies about their principal axes.

Let the velocities of the centres of gravity, resolved in the direction of
the principal axes of each body, be

Z7„ F„ W„ and U,, V„ Tr„ before impact,

^^^ ^» y» W\, and ir„ F„ W'„ after impact.

Let the angular velocities round the same axes be

Pi, q^ r„ and p„ q„ r„ before impact,

^^^
P\> ?'i. f^'i, and p\, q\, r^ after impact.
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Let R be the impulsive force between the bodies, measured by the momentum

it produces in each.

Then, for the velocities of the centres of gravity, we have the following

equations :

^'=
^'+f''

^'•= ^'-K (^2),

with two other pairs of equations in V and W.

The equations for the angular velocities are

p\ =Pi + -J
(y^n, - z,m,), p, =p, -

-J
(y,n, - z,m,) (63),

with two other pairs of equations for q and r.

The condition of perfect elasticity is that the whole vis viva shall be the

same after impact as before, which gives the equation

M, (
U\ - U\) + M, (

U'\ - U\) + A, {p\ -p\) + A, {p\ -p\) + &c. = 0. . .
.
(64).

The terms relating to the axis of x are here given ; those relating to y and

z may be easily written down.

Substituting the values of these terms, as given by equations (62) and (63),

and dividing by R, we find

h{U\+ U,)-k{U\+ U,) + (y,n,-z,m,)(p\+p,)-{y,n,-z,m,) (p\+p,) + &c. = 0...{e5).

Now if v^ be the velocity of the striking-point of the first body before

impact, resolved along the line of impact,

v^ = lJJ^-\- (y^Tii — z^mi) pi + &c.

;

and if we put v^ for the velocity of the other striking-point resolved along the

same line, and v\ and v\ the same quantities after impact, we may write,

equation (65),

v^-\-v\ — v^ — v\ = (66),

or v^-Vj = v\-v\ (67),

which shows that the velocity of separation of the striking-points resolved in

the line of impact is equal to that of approach.
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Substituting the values of the accented quantities in equation (65) by means
of equations (63) and (64), and transposing terms in J?, we find

2 {UJ, - UJ, +Pi {y,n, - z,m,) -p, {y,n, - zjn,)} 4- &c.

the other terms being related to y and z as these are to x. From this equation

we may find the value of E ; and by substituting this in equations (63), (64),

we may obtain the values of all the velocities after impact.

"We may, for example, find the value of U\ from the equation

ir (^'
,

4'
,
{y.n,-z,m,Y . {y.n.-z.'m^Y ] M,

]^^\M^M^ A,
+

A, ^^7T

-^a M^M^—A
— ^—A

—
"^^'TT

+ 2 U,l, - 2p, {y,n, - z,m,) + 2p, (y^i, - z,m,) - &c.

(69).

Prop. XXIII. To find the relations between the average velocities of trans-

lation and rotation after many collisions among many bodies.

Taking equation (69), which applies to an individual collision, we see that
U\ is expressed as a linear function of Z7„ U„ p„ p„ &c., all of which are

quantities of which the values are distributed among the different particles

according to the law of Prop. IV. It follows from Prop. V., that if we square
every term of the equation, we shall have a new equation between the average
values of the different quantities. It is plain that, as soon as the required
relations have been estabUshed, they will remain the same after collision, so that
we may put Z7;"= U,' in the equation of averages. The equation between the
average values may then be written

Now since there are collisions in every possible way, so that the values of

I, m, n, &c. and x, y, z, &c. are infinitely varied, this equation cannot subsist

unless

The final state, therefore, of any number of systems of moving particles of

any form is that in which the average vis viva of translation along each of the
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three axes ia the same in all the systems, and equal to the average vis viva

of rotation about each of the three principal axes of each particle.

Adding the tires vivcn with respect to the other axes, we find that the

whole via viva of translation is equal to that of rotation in each system of

particles, and is also the same for different systems, as was proved in Prop. VI.

This result (which is true, however nearly the bodies approach the spherical

form, provided the motion of rotation is at all afiected by the collisions) seems

decisive against the unqualified acceptation of the hypothesis that gases are such

systems of hard elastic particles. For the ascertained fact that y, the ratio of

the specific heat at constant pressure to that at constant volume, is equal to

1-408, requires that the ratio of the whole vis viva to the vis viva of translation

should be

^=3(^) = '-«^^^

whereas, according to our hypothesis, )S = 2

.

We have now followed the mathematical theory of the collisions of hard

elastic particles through various cases, in which there seems to be an analogy

with the phenomena of gases. We have deduced, as others have done already,

the relations of pressure, temperature, and density of a single gas. We have

also proved that when two different gases act freely on each other (that is, when

at the same temperature), the mass of the single particles of each is inversely

proportional to the square of the molecular velocity ; and therefore, at equal

temperature and pressure, the number of particles in unit of volume is the same.

We then offered an explanation of the internal friction of gases, and deduced

from experiments a value of the mean length of path of a particle between

successive collisions.

We have applied the theory to the law of diffusion of gases, and, from an

experiment on olefiant gas, we have deduced a value of the length of path not

very different from that deduced from experiments on friction.

Using this value of the length of path between collisions, we found that the

resistance of air to the conduction of heat is 10,000,000 times that of copper, a

result in accordance with experience.

Finally, by establishing a necessary relation between the motions of trans-

lation and rotation of all particles not spherical, we proved that a system of

such particles could not possibly satisfy the known relation between the two

specific heats of all gases.
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XXI. On the Theory of Compound Colours, and the Relations of the Colours

of the Spectrum. Communicated by Professor Stokes, Sec. R.S.

(Received January 5,—Read March 22, 1860.)

§ I. Introduction.

According to Newton's analysis of light ^', every colour in nature is pro-

duced by the mixture, in various proportions, of the different kinds of light

into which white %ht is divided by refraction. By means of a prism we may

analyse any coloured light, and determine the proportions in which the different

homogeneous rays enter into it; and by means of a lens we may recombine

these rays, and reproduce the original coloured light.

Newton has also shewnt how to combine the different rays of the spectrum

80 as to form a single beam of light, and how to alter the proportions of the

different colours so as to exhibit the result of combining them in any arbitrary

manner.

The number of different kinds of homogeneous light being infinite, and the

proportion in which each may be combined being also variable indefinitely, the

results of such combinations could not be appreciated by the eye, unless the

chromatic effect of every mixture, however complicated, could be expressed in

some simpler form. Colours, as seen by the human eye of the normal type, can

all be reduced to a few classes, and expressed by a few well-known names; and

even those colours which have different names have obvious relations among them-

selves. Every colour, except purple, is similar to some colour of the spectrum |,

* Optics, Book I. Part 2, Prop. 7.

t Lectiones Opticce, Part 2, § 1, pp. 100 to 105; and Optics, Book i. Part 2, Prop. 11.

X Optica, Book L Part 2, Prop. 4.
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although less intense ; and all purples may be compounded of blue and red,

and diluted with white to any required tint. Brown colours, which at first

sight seem different, are merely red, orange or yellow of feeble intensity, more

or less diluted with white.

It appears therefore that the result of any mixture of colours, however

complicated, may be defined by its relation to a certain small number of

well-known colours. Having selected our standard colours, and determined the

relations of a given colour to these, we have defined that colour completely as

to its appearance. Any colour which has the same relation to the standard

colours, will be identical in appearance, though its optical constitution, as

revealed by the prism, may be very different.

We may express this by saying that two compound colours may be chro-

matically identical, but optically different. The optical properties of light are

those which have reference to its origin and propagation through media, till it

falls on the sensitive organ of vision; the chromatical properties of light are

those which have reference to its power of exciting certain sensations of colour,

perceived through the organ of vision.

The investigation of the chromatic relations of the rays of the spectrum

must therefore be founded upon observations of the apparent identity of com-

pound colours, as seen by an eye either of the normal or of some abnormal

type; and the results to which the investigation leads must be regarded as

partaking of a physiological, as well as of a physical character, and as indicating

certain laws of sensation, depending on the constitution of the organ of vision,

which may be different in different individuals. We have to determine the

laws of the composition of colours in general, to reduce the number of standard

colours to the smallest possible, to discover, if we can, what they are, and to

ascertain the relation which the homogeneous light of different parts of the

spectrum bears to the standard colours.

§ II. History of the Theory of Compound Colours.

The foundation of the theory of the composition of colours was laid by

Newton*. He first shews that, by the mixture of homogeneal light, colours

may be produced which are "like to the colours of homogeneal light as to

the appearance of colour, but not as to the immutabOity of colour and consti-

* Optics, Book I. Part 2, Props. 4, 5, 6.
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tution of light." Red and yellow give an orange colour, which is chromatically

similar to the orange of the spectrum, but optically different, because it is

resolved into its component colours by a prism, while the orange of the spectrum

remains unchanged. When the colours to be mixed lie at a distance from one

another in the spectrum, the resultant appears paler than that intermediate

colour of the spectrum which it most resembles; and when several are mixed,

the resultant may appear white. Newton* is always careful, however, not to

call any mixture white, unless it agrees with comnon white light in its optical

as well as its chromatical properties, and is a mixture of all the homogeneal

colours. The theory of compound colours is first presented in a mathematical

form in Prop. 6, " In a mixture of priinary colours, the quantity arid quality

of each being given, to know the colour of the compound." He divides the

circumference of a circle into seven parts, proportional to the seven musical

intervals, in accordance with his opinion about the proportions of the colours

in the spectrum. At the centre of gravity of each of these arcs he places a

little circle, whose area is proportional to the number of rays of the corre-

sponding colour which enter into the given mixture. The position of the centre

of gravity of all these circles indicates the nature of the resultant colour. A
radius drawn through it points out that colour of the spectrum which it most

resembles, and the distance from the centre determines the fulness of its colour.

With respect to this construction, Newton says, " This rule I conceive

accurate enough for practice, though not mathematically accurate." He gives no

reasons for the different parts of his rule, but we shall find that his method

of finding the centre of gravity of the component colours is completely con-

firmed by my observations, and that it involves mathematically the theory of three

elements of colour ; but that the disposition of the colours on the circumference

of a circle was only a provisional arrangement, and that the true relations of

the colours of the spectrum can only be determined by direct observation.

Young t appears to have originated the theory, that the three elements of

colour are determined as much by the constitution of the sense of sight as by

anything external to us. He conceives that three different sensations may be

excited by light, but that the proportion in which each of the three is excited

depends on the nature of the light. He conjectures that these primary sensa-

* 7th and 8th Letters to Oldenburg.

+ Young's Lectures on Natural Philosophy, Kelland's Edition, p. 345, or Quarto, 1807, Vol. i.

p. 441 ; see also Young in Philosophical Transaction, 1801, or Works in Quarto, Vol il. p. 617.
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tions correspond to red, green, and violet. A blue ray, for example, though

homogeneous in itself, he conceives capable of exciting both the green and the

violet sensation, and therefore he would call blue a compound colour, though

the colour of a simple kind of light. The quality of any colour depends,

according to this theory, on the ratios of the intensities of the three sensations

which it excites, and its bHghtness depends on the sum of these three intensities.

Sir David Brewster, in his paper entitled " On a New Analysis of Solar

Light, indicating three Primary Colours, forming Coincident Spectra of equal

length*," regards the actual colours of the spectrum as arising from the inter-

mixture, in various proportions, of three primary kinds of light, red, yellow,

and blue, each of which is variable in intensity, but uniform in colour, from

one end of the spectrum to the other ; so that every colour in the spectrum

is really compound, and might be shewn to be so if we had the means of

separating its elements.

Sir David Brewster, in his researches, employed coloured media, which,

according to him, absorb the three elements of a single prismatic colour in

different degrees, and change their proportions, so as to alter the colour of the

light, without altering its refrangibility.

In this paper I shall not enter into the very important questions affecting

the physical theory of light, which can only be settled by a careful inquiry

into the phenomena of absorption. The physiological facts, that we have a

threefold sensation of colour, and that the three elements of this sensation are

affected in different proportions by light of different refrangibilities, are equally

true, whether we adopt the physical theory that there are three kinds of light

corresponding to these three colour-sensations, or whether we regard light of

definite refrangibility as an undulation of known length, and therefore variable

only in intensity, but capable of producing difierent chemical actions on different

substances, of being absorbed in different degrees by different media, and of

exciting in different degrees the three different colour-sensations of the human

eye.

Sir David Brewster has given a diagram of three curves, in which the

base-line represents the length of the spectrum, and the ordinates of the curves

represent, by estimation, the intensities of the three kinds of light at each point

of the spectrum. I have employed a diagram of the same kind to express the

* Transactions of the Royal Society of Edivimrgh, Vol. xii. p. 123.
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results arrived at in this paper, the ordinates being made to represent the

intensities of each of the three elements of colour, as calculated from the

experiments.

The most complete series of experiments on the mixture of the colours of

the spectrum, is that of Professor Helmholtz*, of Konlgsberg. By using two

sHts at right angles to one another, he formed two pure spectra, the fixed

lines of which were seen crossing one another when viewed in the ordinary-

way by means of a telescope. The colours of these spectra were thus combined

in every possible way, and the effect of the combination of any two could be

seen separately by drawing the eye back from the eye-piece of the telescope^

when the compound colour was seen by itself at the eye-hole. The proportion

of the components was altered by turning the combined slits round in their

own plane.

One result of these experiments was, that a colour, chromatically identical

with white, could be formed by combining yellow with indigo. M. Helmholtz.

was not then able to produce white with any other pair of simple colours, and

considered that three simple colours were required in general to produce white^

one from each of the three portions into which the spectrum is divided by

the yellow and indigo.

Professor Grassmannf shewed that Newton's theory of compound colours

implies that there are an infinite number of pairs of complementary colours in

the spectrum, and pointed out the means of finding them. He also shewed

how colours may be represented by lines, and combined by the method of the

parallelogram.

In a second memoirj, M. Helmholtz describes his method of ascertaining

these pairs of complementary colours. He formed a pure spectrum by means

of a slit, a prism, and a lens ; and in this spectrum he placed an apparatus

having two parallel slits which were capable of adjustment both in position

and breadth, so as to let through any two portions of the spectrum, in any

proportions. Behind this slit, these rays were united in an image of the prism,

which was received on paper. By arranging the slits, the colour of this image

may be reduced to white, and made identical with that of paper illuminated with

white light. The wave-lengths of the component colours were then measured by

observing the angle of diffraction through a grating. It was found that the

* Poggendorffs Anncden, Band lxxxvil {Philosophical Magazine, 1852, December).

t Ibid. Band lxxxix. (Philosophical Magazine, 1854, April). J Ibid. Band xciv.
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colours from red to green-yellow (X=2082) were complementary to colours ranging

from green-blue (X=1818) to violet, and that the colours between green-yellow

and green-blue have no homogeneous complementaries, but must be neutralized

by mixtures of red and violet.

M. Helmholtz also gives a provisional diagram of the curve formed by the

spectrum on Newton's diagram, for which his experiments did not furnish him

with the complete data.

Accounts of experiments by myself on the mixture of artificial colours by

rapid rotation, may be found in the Transactions of the Royal Society of

Edinburgh, Vol. xxi. Pt. 2 (1855); in an appendix to Professor George Wilson's

work on Coloiu--Blindness ; in the Report of the British Association for 1856,

p. 12; and in the Philosophical Magazine, July 1857, p. 40. These experiments

shew that, for the normal eye, there are three, and only three, elements of

colour, and that in the colour-blind one of these is absent. They also prove

that chromatic observations may be made, both by normal and abnormal eyes,

with such accuracy, as to warrant the employment of the results in the calcu-

lation of colour-equations, and in laying down colour-diagrams by Newton's rule.

The first instrument which I made (in 1852) to examine the mixtures of

the colours of the spectrum was similar to that which I now use, but smaller,

and it had no constant light for a term of comparison. The second was 6^ feet

long, made in 1855, and shewed tico combinations of colour side by side. I have

now succeeded in making the mixture much more perfect, and the comparisons

more exact, by using white reflected light, instead of the second compound

colour. An apparatus in which the light passes through the prisms, and is

reflected back again in nearly the same path by a concave mirror, was shewn

by me to the British Association in 1856. It has the advantage of being

portable, and need not be more than half the length of the other, in order

to produce a spectrum of equal length. I am so well satisfied with the working

of this form of the instrument, that I intend to make use of it in obtaining

equations from a gi-eater variety of observers than I could meet with when I

was obliged to use the more bulky instrument. It is difficult at first to get

the observer to believe that the compound light can ever be so adjusted as to

appear to his eyes identical with the white light in contact with it. He has to

learn what adjustments are necessary to produce the requisite alteration under

all circumstances, and he must never be satisfied till the two parts of the

field are identical in colour and illumination. To do this thoroughly, implies
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not merely good eyes, but a power of judging as to the exact nature of the

difference between two very pale and nearly identical tints, whether they differ

in the amount of red, green, or blue, or in brightness of illumination.

In the following paper I shall first lay down the mathematical theory of

Newton's diagram, with its relation to Young's theory of the colour-sensation.

I shall then describe the experimental method of mixing the colours of the

spectrum, and determining the wave-lengths of the colours mixed. The results

of my experiments will then be given, and the chromatic relations of the

spectrum exhibited in a system of colour-equations, in Newton's diagram, and
in three curves of intensity, as in Brewster's diagram. The differences between

the results of two observers will then be discussed, shewing on what they

depend, and in what way such differences may affect the vision of persons

othei-wise free from defects of sight.

§ III. Mathematical Theory of Newton's Diagram of Colours.

Newton's diagram is a plane figure, designed to exhibit the relations of

colours to each other.

Every point in the diagram represents a colour, simple or compound, and
we may conceive the diagram itself so painted, that every colour is found at

its corresponding point. Any colour, differing only in quantity of illumination

from one of the colours of the diagram, is referred to it as a unit, and is

measured by the ratio of the illumination of the given colour to that of the

corresponding colour in the diagram. In this way the quantity of a colour is

estimated. The resultant of mixing any two colours of the diagram is found
by dividing the line joining them inversely as the quantity of each; then, if

the sum of these quantities is unity, the resultant will have the illumination

as weU as the colour of the point so found; but if the sum of the components

is different from unity, the quantity of the resultant will be measured by the

sum of the components.

This method of determining the position of the resultant colour is mathe-
matically identical with that of finding the centre of gravity of two weights,

and placing a weight equal to their sum at the point so found. We shall

therefore speak of the resultant tint as the sum of its components placed at

their centre of gravity.
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By compounding this resultant tint with some other colour, we may find the

position of a mixture of three colours, at the centre of gravity of its components

;

and by taking these components in different proportions, we may obtain colours

corresponding to every part of the triangle of which they are the angular points.

In this way, by taking any three colours we should be able to construct a

triangular portion of Newton's diagram by painting it with mixtures of the three

colours. Of course these mixtures must be made to correspond with optical

mixtures of light, not with mechanical mixtures of pigments.

Let us now take any colour belonging to a point of the diagram outside

this triangle. To make the centre of gravity of the three weights coincide with

this point, one or more of the weights must be made negative. This, though

following from mathematical principles, is not capable of direct physical inter-

pretation, as we cannot exhibit a negative colour.

The equation between the three selected colours, x, y, z, and the new colour

u, may in the first case be written

u = x+ y-\-z (1),

05, y, % being the quantities of colour required to produce u. In the second case

suppose that z must be made negative,

u = x-^-y — z (2).

As we cannot realize the term — z as a negative colour, we transpose it to the

other side of the equation, which then becomes

u-\-z = x-\-y (3),

which may be interpreted to mean, that the resultant tint, u + z, is identical

with the resultant, x-\-y. We thus find a mixture of the new colour with one

of the selected colours, which is chromatically equivalent to a mixture of the

other two selected colours.

When the equation takes the form

u — x — y— z (4),

two of the components being negative, we must transpose them thus,

u + y-\-z = x (5),

which means that a mixture of certain proportions of the new colour and two

of the three selected, is chromatically equivalent to the third. We may thus in

all cases find the relation between any three colours and a fourth, and exhibit



418 ON THE THEORY OF COMPOUND COLOURS.

this relation in a form capable of experimental verification; and by proceeding

in this way we may map out the positions of all colours upon Newton's diagram.

Every colour in nature will then be defined by the position of the corresponding

colour in the diagram, and by the ratio of its illumination to that of the

colour in the diagram.

§ lY. Method of representing Colours by Straight Lines drawn from a Point.

To extend our ideas of the relations of colours, let us form a new geome-

trical conception by the aid of solid geometry.

Let us take as origin any point not in the plane of the diagram, and let

us draw lines through this point to the different points of the diagram; then

the direction of any of these lines will depend upon the position of the point

of the diagram through which it passes, so that we may take this line as the

representative of the corresponding colour on the diagram.

In order to indicate the quantity of this colour, let it be produced beyond

the plane of the diagram in the same ratio as the given colour exceeds in

illumination the colour on the diagram. In this way every colour in nature will

be represented by a line drawn through the origin, whose direction indicates

the quality of the colour, while its length indicates its quantity.

Let us find the resultant of two colours by this

method Let O be the origin and AB be a section

of the plane of the diagram by that of the paper.

Let OP, 0^ be lines representing colours, A, B the

OP
corresponding points in the diagram ; then the quantity of P will be jr-^ —P>

and that of Q will be jyD = 9.- The resultant of these will be represented in

the diagram by the point C, where AC : CB wq-.p, and the quantity of the

resultant will be p + q, so that if we produce OC to R, so that OR = (p-\-q)OC,

the line OR will represent the resultant of OP and OQ in direction and

magnitude. It is easy to prove, from this construction, that OR is the diagonal

of the parallelogram of which OP and OQ are two sides. It appears therefore

that if colours are represented in quantity and quality by the magnitude and

direction of straight lines, the rule for the composition of colours is identical
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witli that for the composition of forces in mechanics. This analogy has been

well brought out by Professor Grassmann in Poggendorflf's Annalen, Bd. lxxxix.

We may conceive an arrangement of actual colours in space founded upon

this construction. Suppose each of these radiating lines representing a given

colour to be itself illuminated with that colour, the brightness increasing from

zero at the origin to unity, where it cuts the plane of the diagram, and

becoming continually more intense in proportion to the distance from the origin.

In this way every colour in nature may be matched, both in quaUty and

quantity, by some point in this coloured space.

If we take any three lines through the origin as axes, we may, by co-ordi-

nates parallel to these lines, express the position of any point in space. That

point will correspond to a colour which is the resultant of the three colours

represented by the three co-ordinates.

This system of co-ordinates is an illustration of the resolution of a colour

into three components. According to the theory of Young, the human eye is

capable of three distinct primitive sensations of colour, which by their composition

in various proportions, produce the sensations of actual colour in all their varieties.

Whether any kinds of light have the power of exciting these primitive sensations

separately, has not yet been determiaed.

If colours corresponding to the three primitive sensations can be exhibited,

then all colours, whether produced by light, disease, or imagination, are com-

pounded of these, and have their places within the triangle formed by joining

the three primaries. If the colours of the pure spectrum, as laid down on the

diagram, form a triangle, the colours at the angles may correspond to the primitive

sensations. K the curve of the spectrum does not reach the angles of the circum-

scribing triangle, then no coloiir in the spectrum, and therefore no colour in

nature, corresponds to any of the three primary sensations.

The only data at present existing for determining the primary colours, are

derived from the comparison of observations of colour-equations by colour-blind,

and by normal eyes. The colour-blind equations ditfer from the others by the

non-existence of one of the elements of colour, the relation of which to known

colours can be ascertained. It appears, from observations made for me by two

colour-blind persons*, that the elementary sensation which they do not possess

is a red approaching to crimson, lying beyond both vermilion and carmine. These

Trfmsactiona of the Royal Society of Edinburgh, Vol. xiL Pt 2, p. 286.
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observations are confirmed by those of Mr Pole, and by others which I have

obtained since. I have hopes of being able to procure a set of colour-blind

equations between the colours of the spectrum, which will indicate the missing

primary in a more exact manner.

The experiments which I am going to describe have for their object the

determination of the position of the colours of the spectrum upon Newton's

diagram, from actual observations of the mixtures of those colours. They were

conducted in such a way, that in every observation the judgment of the observer

was exercised upon two parts of an illuminated field, one of which was so

adjusted as to be chromatically identical with the other, which, during the whole

series of observations, remained of one constant intensity of white. In this way
the efiects of subjective colours were entirely got rid of, and all the observa-

tions were of the same kind, and therefore may claim to be equally accurate

;

which is not the case when comparisons are made between bright colours of

different kinds.

The chart of the spectrum, deduced from these observations, exhibits the

colours arranged very exactly along two sides of a triangle, the extreme red and

violet forming doubtful portions of the third side. This result greatly simplifies

the theory of colour, if it does not actually point out the three primary colours

themselves.

§ V. Description of an Instruinent for making definite Mixtures of the

Colours of the Spectrum.

The experimental method which I have used consists in forming a combi-

nation of three colours belonging to different portions of the spectrum, the quantity

of each being so adjusted that the mixture shall be white, and equal in intensity

to a given white. Fig. 1, Plate VI. p. 444, represents the instrument for

making the observations. It consists of two tubes, or long boxes, of deal, of

rectangular section, joined together at an angle of about 100".

The part AK is about five feet long, seven inches broad, and four deep ;

KN is about two feet long, five inches broad, and four deep ; BD is a partition

parallel to the side of the long box. The whole of the inside of the instrument

is painted black, and the only openings are at the end AC, and at E. At the

angle there is a Hd, which is opened when the optical parts have to be adjusted

or cleaned.
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At -£^ is a fine vertical slit ; Z is a lens ; at P there are two equilateral

prisms. The slit E, the lens L, and the prisms P are so adjusted, that when

light is admitted at -fiJ a pure spectrum \a formed at AB, the extremity of the

long box. A mirror at M is also adjusted so as to reflect the light from E
along the narrow compartment of the long box to BC. See Fig. 3.

At ^5 is placed the contrivance shewn in Fig. 2, Plate I. ^'^ is a rect-

angular frame of brass, having a rectangular aperture of 6 x 1 inches. On this

frame are placed six brass sliders, A', Y, Z. Each of these carries a knife-edge

of brass in the plane of the surface of the frame.

These six moveable knife-edges form three sUts, X, Y, Z, which may be

so adjusted as to coincide with any three portions of the pure spectrum formed

by Hght from E. The intervals behind the sliders are closed by hinged shutters,

which allow the sliders to move without letting hght pass between them.

The inner edge of the brass frame is graduated to twentieths of an inch,

so that the position of any slit can be read off. The breadth of the slit is

ascertained by means of a wedge-shaped piece of metal, six inches long, and

tapering to a point from a breadth of half an inch. This is gently inserted into

each sht, and the breadth is determined by the distance to which it enters, the

divisions on the wedge corresponding to the 200th of an inch difference in

breadth, so that the unit of breadth is '005 inch.

Now suppose hght to enter at E, to pass through the lens, and to be

refracted by the two prisms at P; a pure spectrum, shewing Fraunhofer's lines,

is formed at AB, but only that part is allowed to pass which faUs on the three

slits X, Y, Z. The rest is stopped by the shutters. Suppose that the portion

faUing on X belongs to the red part of the spectrum ; then, of the white Hght

entering at E, only the red will come through the slit X. If we were to admit

red Hght at X it would be refracted to E, by the principle in Optics, that the

course of any ray may be reversed. If, instead of red light, we were to admit

white light at X, still only red Hght would come to E ; for aU other light

would be either more or less refracted, and would not reach the slit at E.

Applying the eye at the slit E, we should see the prism P uniformly illuminated

with red Hght, of the kind corresponding to the part of the spectrum which

falls on the slit X when Hght is admitted at E.

Let the sHt Y correspond to another portion of the spectrum, say the green ;

then, if white light is admitted at Y, the prism, as seen by an eye at E, will

be uniformly illuminated with green Hght; and if white Hght be admitted at X
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and Y simultaneously, tlie colour seen at E will be a compound of red and green,

the proportions depending on the breadth of the sUts and the intensity of the

Hght which enters them. The third sHt Z, enables us to combine any three kinds

of light in any given proportions, so that an eye at E shall see the face of the

prism at P uniformly illuminated with the colour resulting from the combination

of the three. The position of these three rays in the spectrum is found by

admitting the light at E, and comparing the position of the slits with the

position of the principal fixed lines ; and the breadth of the sHts is determined

by means of the wedge.

At the same time white light is admitted through BC to the mirror of black

glass at M, whence it is reflected to E, past the edge of the prism at P, so that

the eye at E sees through the lens a field consisting of two portions, separated

by the edge of the prism; that on the left hand being compounded of three

colours of the spectrum refracted by the prism, while that on the right hand is

white light reflected from the mirror. By adjusting the slits properly, these two

portions of the field may be made equal, both in colour and brightness, so that

the edge of the prism becomes almost invisible.

In making experiments, the instrument was placed on a table in a room

moderately lighted, with the end AB turned towards a large board covered with

white paper, and placed in the open air, so as to be uniformly illuminated by

the sun. In this way the thi'ee sHts and the mirror M were all illuminated

with white light of the same intensity, and all were affected in the same ratio

by any change of illumination; so that if the two halves of the field were

rendered equal when the sun was under a cloud, they were found nearly correct

when the sun again appeared. No experiments, however, were considered good

unless the sun remained uniformly bright during the whole series of experiments.

After each set of experiments light was admitted at E, and the position of

the fixed lines D and F of the spectrum was read off on the scale at AB. It

was found that after the instrument had been some time in use these positions

were invariable, shewing that the eye-hole, the prisms, and the scale might be

considered as rigidly connected.
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§ VI. Method of determining the Wave-length corresponding to any point

of the Spectrum on the Scale AB.

Two plane surfaces of glass were kept apart by two parallel strips of gold-

beaters' leaf, so as to enclose a stratum of air of nearly uniform thickness. Light

reflected from this stratum of air was admitted at E, and the spectrun formed

by it was examined at AB by means of a lens. This spectrum consists of a

large number of bright bands, separated by dark spaces at nearly uniform intervals,

these intervals, however, being considerably larger as we approach the violet end

of the spectrum.

The reason of these alternations of brightness is easily explained. By the

theory of Newton's rings, the light reflected from a stratum of air consists of

two parts, one of which has traversed a path longer than that of the other, by

an interval depending on the thickness of the stratum and the angle of incidence.

Whenever the interval of retardation is an exact multiple of a wave-length, these

two portions of light destroy each other by interference ; and when the interval

is an odd number of half wave-lengths, the resultant light is a maximum.

In the ordinary case of Newton's rings, these alternations depend upon the

varying thickness of the stratum ; while in this case a pencil of rays of different

wave-lengths, but aU experiencing the same retardation, is analysed into a spectrum,

in which the rays are arranged in order of their respective wave-lengths. Every

ray whose wave-length is an exact submultiple of the retardation will be destroyed

by interference, and its place will appear dark in the spectrum; and there will

be as many dark bands seen as there are rays whose wave-lengths ftdfil this

condition.

If, then, we observe the positions of the dark bands on the scale AB,

tlie wave-lengths corresponding to these positions will be a series of submultiples

of the retardation.

Let us call the first dark band visible on the red side of the spectrum zero,

and let us number them in order 1, 2, 3, &c. towards the violet end. Let N
be the number of undulations corresponding to the band zero which are con-

tained in the retardation R; then if n be the number of any other band, N+n
wiU be the number of the corresponding wave-lengths in the retardation, or in

symbols,

R = (N+n)\ (6).
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Now observe the position of two of Fraunhofer's fixed lines with respect to

the dark bands, and let n„ n^ be their positions expressed in the number of

bands, whole or fractional, reckoning from zero. Let Xj, X, be the wave-lengths

of these fixed lines as determined by Fraunhofer, then

R= (N+n,)K= (N+n,)K (7);

whence N^-^^Jj^X^^n, (8),

and -R= v'_ jj
KK W

Having thus found N and R, we may find the wave-length corresponding to

the dark band n from the formula

X =^ (10).

In my experiments the line D corresponded with the seventh dark band, and

F was between the 15th and 16th, so that n^=15'7. Here then for D,

. „ „ ^'~,'rr« ^~.rn.r '^ Fraunhofcr's measure (11),
and for F, 7i,= 15-7, X,= 1794J

"^ '

whence we find iV=34, i2 = 89175 (12).

There were 22 bands visible, corresponding to 22 different positions on the

scale AB, as determined 4th August, 1859.

Table I.

Band.
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Table II.

oale.
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§ VII. Method of Observation.

The instrument is turned with the end AB towards a board, covered with

white paper, and illuminated by sunlight. The operator sits at the end AB, to

move the sliders, and adjust the sHts ; and the observer sits at the end E,

which is shaded from any bright light. The operator then places the sHts so

that their centres correspond to the three standard colours, and adjusts their

breadths till the observer sees the prism iQuminated with pure white light of

the same intensity with that reflected by the mirror M. In order to do this,

the observer must tell the operator what difference he observes in the two halves

of the illuminated field, and the operator must alter the breadth of the slits

accordingly, always keeping the centre of each sKt at the proper point of the

scale. The observer may call for more or less red, blue or green; and then

the operator must increase or diminish the width of the slits X, Y, and Z
respectively. If the variable field is darker or lighter than the constant field,

the operator must Aviden or narrow all the slits in the same proportion. When

the variable part of the field is nearly adjusted, it often happens that the

constant white light from the mirror appears tinged with the complementary

colour. This is an indication of what is required to make the resemblance of

the two parts of the field of view perfect. When no difference can be detected

between the two parts of the field, either in colour or in brightness, the observer

must look away for some time, to relieve the strain on the eye, and then look

again. If the eye thus refreshed still judges the two parts of the field to be

equal, the observation may be considered complete, and the operator must measure

the breadth of each slit by means of the wedge, as before described, and write

down the result as a colour-equation, thus

—

Oct. 18, J. 18-5 (24) + 27 (44) + 37 (68) = W-^'^ (13).

This equation means that on the 18th of October the observer J. (myself) made

an observation in which the breadth of the slit X was 18-5, as measured by

the wedge, while its centre was at the division (24) of the scale ;
that the breadths

of Y and Z were 27 and 37, and their positions (44) and (68) ;
and that the

illumination produced by these slits was exactly equal, in my estimation as an

observer, to the constant white W.
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The position of 'the slit A" was then shifted from (24) to (28), and when

the proper adjustments were made, I found a second colour-equation of this form

—

Oct. 18, J. 16 (28) + 21 (44) + 37 (68) =W (14).

Subtracting one equation from the other and remembering that the figures in

brackets are merely symbols of position, not of magnitude, we find

16(28) = 18-5 (24) + 6(44) (15),

shewing that (28) can be made up of (24) and (44), in the proportion of IS'o

to 6.

In this way, by combining each colour with two standard colours, we may

produce a white equal to the constant white. The red and yellow colours from

(20) to (32) must be combined with green and blue, the greens from (36) to (52)

with red and blue, and the blues from (56) to (80) with red and green.

The following is a specimen of an actual series of observations made in this

way by another observer (K.) :

—

Table III.

Oct. 13, 1859. Observer (K.).

(X) {Y) {Z)

18|(24) + 32^(44) + 32 (68) =W*
17|(24) + 32|(44) + 63 (80) = W.
18 (24) + 32|(44) + 35 (72) = W.
19 (24) + 32 (44) + 31|(68) =W*
19 (24) + 30|(44) + 35 (64) = W.
20 (24) + 23 (44) + 39 (60) = W.
21 (24) + 14 (44) + 58 (56) = W.
22 (24) + 62 (52) + 11 (68) = W.
22 (24) + 42 (48) + 29|(68) = W.
19 (24) + 31|(44) + 33 (68) = W*.
16 (24) + 28 (40) + 32^(68) = W.
6 (24) + 27 (36) + 32^(68) = W.

23 (32)+ 11|(44) + 821(68) = W.
17 (28) + 26 (44) + 32^(68) = W.
20 (24) + 33|(44) + 32|(68) = W».
46 (20) + 33 (44) + 30 (68) = W.

The equations marked with an asterisk (*') are those which involve the

three standard colours, and since every other equation must be compared with

them, they must be often repeated.
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The following Table contains the means of' four sets of observations by the

same observer (K.) :

—

Table IV. (K.)

44-3 (20) + 31 -0 (44) + 27-7 (68) = W.
16-1 (28) + 25-6 (44) + 30-6 (68) = W.
22-0 (32) + 12-1 (44) + 30-6 (68) = W.
6-4 (24) + 25-2 (36) + 31 -3 (68) = W.

15-3 (24) + 26 -0 (40) + 307 (68) = W.
19-8 (24) + 35-0 (46) + 30-2 (68) = W.
21-2 (24) + 41 -4 (48) ^ 27-0 (68) = W.
22-0 (24) + 62-0 (52) + 13-0 (68) = W.
21 -7 (24) + 10-4 (44) + 61 -7 (56) = W.
20-5 (24) + 23-7 (44) + 40-5 (60) = W.
19-7 (24) + 30-3 (44) + 33-7 (64) = W.
18-0 (24) + 31-2 (44) + 32-3 (72) = W.
17-5 (24) + 30-7 (44) + 44-0 (76) = W.
18-3 (24) + 33-2 (44) + 63-7 (80) = W.

§ VIII. Detet-mination of the Average Error in Observations of different kinds.

In order to estimate the degree of accuracy of these observations, I have

taken the differences between the values of the three standard colours as

originally observed, and their means as given by the above Table. The sum

of all the errors of the red (24) from the means, was 31 '1, and the number

of observations was 42, which gives the average error 74.

The sum of errors in green (44) was 48-0, and the number of observa-

tions 31, giving a mean error 1-55.

The sum of the errors in blue (68) was 46-9, and the number of observa-

tions 35, giving a mean error 1*16.

It appears therefore that in the observations generally, the average error

does not exceed 1*5
; and therefore the results, if confirmed by several obser-

vations, may safely be trusted to that degree of accuracy.

The equation between the three standard colours was repeatedly observed,

in order to detect any alteration in the character of the light, or any other

change of condition which would prevent the observations from being comparable

with one another; and also because this equation is used in the reduction of
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in another colour. Now the hue of the resultant depends on the ratios of the

components, while its brightness depends on their sum. Since, therefore, the

difference of two colours is always more accurately observed than their sum,

variations of colour are more easily detected than variations in brightness, and

the eye appears to be a more accurate judge of the identity of colour of the

two parts of the field than of their equal illumiiiation. The same conclusion may

be drawn from the value of the mean error of the sum of the three standards,

which is 2-67, while the square root of the sum of the squares of the errors

is 176.

§ X. Reduction of the Observations.

By eliminating W from the equations of page 428 by means of the standard

equation, we obtain equations involving each of the fourteen selected colours of

the spectrum, along with the three standard colours; and by transposing the

selected colour to one side of the equation, we obtain its value in terms of

the three standards. If any of the terms of these equations are negative, the

equation has no physical interpretation as it stands, but by transposing the

negative term to the other side it becomes positive, and then the equation may

be verified.

The following Table contains the values of the fourteen selected tints in

terms of the standards. To avoid repetition, the symbols of the standard colours

are placed at the head of each colunm.
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From these equations we may lay down a chart of the spectrum on Newton's

diagram by the following method :—Take any three points, A, B, C, and let A
represent the standard colour (24), B (44), and C (68). Then, to find the position

of any other colour, say (20), divide AC in P so that (18'6) ^P= (28) PC, and

then divide BP in Q so that (IS'G + 2-8) P^ = (0-4) (?P. At the point Q the

colour corresponding to (20) must be placed. In this way the diagram of fig. 4,

Plate VI., p. 444, has been constructed from the observations of all the colours.

§ XL Tlie Spectrum as laid down on Newton's Diagram.

The curve on which these points lie has this striking feature, that two

portions of it are nearly, if not quite, straight lines. One of these portions

extends from (24) to (46), and the other from (48) to (64). The colour (20)

and those beyond (64), are not far from the line joining (24) and (68). The

spectrum, therefore, as exhibited in Newton's diagram, forms two sides of a

triangle, with doubtful fi-agments of the third side. Now if three colours in

Newton's diagram lie in a straight line, the middle one is a compound of the

two others. Hence all the colours of the spectrum may be compounded of

those which lie at the angles of this triangle. These correspond to the following

colours :

—

Table VII.
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another in the perception of colour. The standard colours are connected by the

following equation, as determined by six observations :

—

18-l(24) + 27-5(44) + 37(68) =W* (17).

The average errors in these observations were

—

Table VIII.

R, -28

G, -83

B, -16

G + B, -83

B + R, -42

R + G, -95

G - B, -83

B-R, -28

R-G, -72

R + G + B, -95

shewing that in this case, also, the power of distinguishing colour is more to be

depended on than that of distinguishing degrees of illumination.

The average error in the other observations from the means was '64 for red,

76 for green, and 1*02 for blue.

Table IX.
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from tlie line joining (24) and (68) than in the other diagram, but I have not

obtained satisfactory observations of these extreme colours. It will be observed

that (32), (36), and (40) are placed further to the right in fig. 5 than in fig. 4,

shewing that the second observer (J.) sees more green in these colours than

the first (K.), also that (48), (52), (56), and (60) are much further up in fig. 5,

shewing that to the second observer they appear more blue and less green.

These differences were well seen in making an observation. When the instru-

ment was adjusted to suit the first observer (K.), then, if the selected colour

were (32), (36), or (40), the second (J.), on looking into the instrument, saw it

too green ; but if (48), (52), (56), or (60) were the selected colour, then, if right

to the first observer, it appeared too blue to the second. If the instrument

were adjusted to suit the second observer, then, in the first case, the other saw

red, and in the second green ; shewing that there was a real difference in the

eyes of these two individuals, producing constant and measurable differences in

the apparent colour of objects.

§ XIV. Comparison hy Curves of Intensity of the Primaries.

Figs. 6 and 7, Plate VI. p. 444, are intended to indicate the intensities of

the three standard colours at different points of the spectrum. The curve marked

(R) indicates the intensity of the red or (24), (G) that of green or (44), and (B)

that of blue or (68). The curve marked (S) has its ordinates equal to the

sum of the ordinates of the other three curves. The intensities are found by
dividing every colour-equation by the coefficient of the colour on the left-hand

side. Fig. 6 represents the results of observations by K., and fig. 7 represents

those of J. It will be observed that the ordinates in fig. 7 are smaller between

(48) and (56) than in fig. 6. This indicates the feeble intensity of certain kinds

of light as seen by the eyes of J., which made it impossible to get observations

of the colour (52) at all without making the slit so wide as to include all

between (48) and (56).

This blindness of my eyes to the parts of the spectrum between the fixed

lines E and F appears to be confined to the region surrounding the axis of

vision, as the field of view, when adjusted for my eyes looking directly at the

colour, is decidedly out of adjustment when I view it by indirect vision, turning

the axis of my eye towards some other point. The prism then appears greener
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and brighter than the mirror, shewing that the parts of my eye at a" distance

from the axis are more sensitive to this blue-green light than the parts close

to the axis.

It is to be noticed that this insensibility is not to all light of a green

or blue colour, but to Hght of a definite refrangibility. If I had a species of

colour-blindness rendering me totally or partially insensible to that element of

colour which most nearly corresponds with the light in question, then the light

from the mirror, as well as that from the prism, would appear to me deficient

in that colour, and I should still consider them chromatically identical ;
or if

there were any difierence, it would be the same for ail colours nearly the same

in appearance, such as those just beyond the line F, which appear to me quite

bright.

We must also observe that the peculiarity is confined to a certain portion

of the retina, which is known to be of a yellow colour, and which is the seat

of several ocular phenomena observed by Purkinje and Wheatstone, and of the

sheaf or brushes seen by Haidinger in polarized light ; and also that though,

of the two observers whose results are given here, one is much more affected

with this peculiarity than the other, both are less sensible to the light between

E and F than to that on either side; and other observers, whose results are

not here given, confirm this.

§ XV. Explanation of the Differences between the two Observers.

I think, therefore, that the yellow spot at the foramen centrale of Soemmering

will be found to be the cause of this phenomenon, and that it absorbs the rays

between E and F, and would, if placed in the path of the incident light,

produce a corresponding dark band in the spectrum formed by a prism.

The reason why white light does not appear yellow in consequence, is that

this absorbing action is constant, and we reckon as white the mean of all the

colours we are accustomed to see. This may be proved by wearing spectacles

of any strong colour for some time, when we shall find that we judge white

objects to be white, in spite of the rays which enter the eye being coloured.

Now ordinary white light is a mixture of all kinds of light, including that

between E and F, which is partially absorbed. If, therefore, we compound an

artificial white containing the absorbed ray as one of its three components, it
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will be much more altered by the absorption than the ordinary light, which

contains many rays of nearly the same colour, which are not absorbed. On the

other hand, if the artificial light do not contain the absorbed ray, it will be

less altered than the ordinary light which contains it. Hence the greater the

absorption the less green will those colours appear which are near the absorbed

part, such as (48), (52), (56), and the more green will the colours appear which

are not near it, such a^ (32), (36), (40). And these are the chief differences

between fig. 4 and fig. 5.

I first observed this peculiarity of my eyes when observing the spectrum

formed by a very long vertical slit. I saw an elongated dark spot running up

and down in the blue, as if confined in a groove, and following the motion

of the eye as it moved up or down the spectrum, but refusing to pass out

of the blue into other colours. By increasing the breadth of the spectrum, the

dark portion was found to correspond to the foramen centrale, and to be visible

only when the eye is turned towards the blue-green between E and F. The

spot may be well seen by first looking at a yellow paper, and then at a blue

one, when the spot will be distinctly seen for a short time, but it soon dis-

appears when the eye gets accustomed to the blue*.

I have been the more careful in stating this peculiarity of my eyes, as I

have reason to believe that it affects most persons, especially those who can see

Haidinger's brushes easily. Such persons, in comparing their vision with that

of others, may be led to think themselves affected with partial colour-blindness,

whereas their colour-vision may be of the ordinary kind, but the rays which

reach their sense of sight may be more or less altered in their proportions by

passing through the media of the eye. . The existence of real, though partial

colour-blindness will make itself apparent, in a series of observations, by the

discrepancy between the observed values and the means being greater in certain

colours than in others.

§ XVI. General Conclusions.

Neither of the observers whose results are given here shew any indications

of colour-blindness, and when the differences arising from the absorption of the

rays between E and F are put out of account, they agree in proving that there

are three colours in the spectrum, red, green, and blue, by the mixtures of

* See the Report of tlie British Association for 1856, p. 12.
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which colours chromatically identical with the other colours of the spectrum

may be produced. The exact position of the red and blue is not yet ascer-

tained; that of the green is ^ from E towards F.

The orange and yellow of the spectrum are chromatically equivalent to

mixtures of red and green. They are neither richer nor paler than the corre-

sponding mixtures, and the only difference is that the mixture may be resolved

by a prism, whereas the colour in the spectrum cannot be so resolved. This

result seems to put an end to the pretension of yellow to be considered a

primary element of colour.

In the same way the colours from the primary green to blue are chro-

matically identical with mixtures of these ; and the extreme ends of the spectrum

are probably equivalent to mixtures of red and blue, but they are so feeble

in illumination that experiments on the same plan with the rest can give no

result, but they must be examined by some special method. When observations

have been obtained from a greater number of individuals, including those whose

vision is dichromatic, the chart of the spectrum may be laid down independently

of accidental differences, and a more complete discussion of the laws of the

sensation of colour attempted.

POSTSCRIPT.

[Keceived May 8,—Read May 24, I860.]

Since sending the above paper to the Royal Society, I have obtained

some observations of the colour of the spectrum by persons whose vision is

"dichromic," and who are therefore said to be " colour-bhnd."

The instrument used in making these observations was similar in principle

to that formerly described, except that, in order to render it portable, the rays

are reflected back through the prisms, nearly in their original direction ; thus

rendering one of the limbs of the instrument unnecessary, and allowing the

other to be shortened considerably on account of the greater angular dispersion.

The principle of reflecting light, so as to pass twice through the same prism,

was employed by me in an instrument for combining colours made in 1856,

and a reflecting instrument for observing the spectrum has been constructed

independently by M. Porro.
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Light from a sheet of paper illuminated by sunlight is admitted at the slits

X, Y, Z (fig. 8, Plate VIL p. 444), falls on the prisms P and F (angles = 45"),

then on a concave silvered glass, S, radius 34 inches. The light, after reflexion,

passes again through the prisms R and P, and is reflected by a small mirror,

e, to the slit E, where the eye is placed to receive the light compounded of

the colours corresponding to the positions and breadths of the slits X, Y, and Z.

At the same time, another portion of the light from the illuminated paper

enters the instrument at BC, is reflected at the mirror M, passes through the

lens L, is reflected at the mirror M', passes close to the edge of the prism P,

and is reflected along with the coloured light at e, to the eye-slit at E.

In this way the compound colour is compared with a constant white light

in optical juxtaposition with it. The mirror M is made of silvered glass, that

at M' is made of glass roughened and blackened at the back, to reduce the

intensity of the constant light to a convenient value for the experiments.

This instrument gives a spectrum in which the lines are very distinct,

and the length of the spectrum from A to H is, 3-6 mches. The outside

measure of the box is 3 feet 6 inches, by 11 inches by 4 inches, and it can

be carried about, and set up in any position, without readjustment. It was

made by Messrs Smith and Ramage of Aberdeen.

In obtaining observations from colour-blind persons, two sHts only are

required to produce a mixture chromatically equivalent to white; and at one

point of the spectrum the colour of the pure rays appears identical with white.

This point is near the line F, a little on the less refrangible side. From this

point to the more refrangible end of the spectrum appears to them "blue."

The colours on the less refrangible side appear to them all of the same quahty,

but of different degrees of brightness; and when any of them are made

sufficiently bright, they are called "yellow." It is convenient to use the term

"yellow" in speaking of the colours from red to green inclusive, since it will

be found that a dichromic person in speaking of red, green, orange, and brown,

refers to different degrees of brightness or purity of a single colour, and not

to different colours perceived by him. This colour we may agree to call

"yellow," though it is not probable that the sensation of it is like that of

yellow as perceived by us.

Of the three standard colours which I formerly assumed, the red appears

to them "yellow," but so feeble that there is not enough in the whole red

division of the spectrum to form an equivalent to make up the standard white.
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The green at E appears a good "yellow," and the blue at f from F towards

G appears a good "blue." I have therefore taken these as standard colours for

reducing dichromic observations. The three standard colours will be referred to

as (104), (88), and (68), these being the positions of the red, green, and blue on

the scale of the new instrument.

Mr James Simpson, formerly student of Natural Philosophy in my class, has

ftimished me with thirty-three observations taken in good sunlight. Ten of

these were between the two standard colours, and give the following result :

—

337 (88) + 33-1 (68) =W (1).

The mean errors of these observations were as follows :

—

Error of (88) = 2-5; of (68) = 2-3; of (88) + (68) = 4'8
; of (88)-(68) = 1-3.

The fact that the mean error of the sum was so much greater than the mean

error of the difference indicates that in this case, as in all others that I have

examined, observations of equality of tint can be depended on much more than

observations of equality of illumination or brightness.

From six observations of my own, made at the same time, I have deduced

the " trichromic " equation

22-6 (104)4-26 (88) + 37-4 (68) =W (2).

If we suppose that the light which reached the organ of vision was the

same in both cases, we may combine these equations by subtraction, and so find

22-6(104)-77(88) + 4-3(68) = i> (3),

where D is that colour, the absence of the sensation of which constitutes the

defect of the dichromic eye. The sensation which I have in addition to

those of the dichromic eye is therefore similar to the full red (104), but

different from it, in that the red (104) has 7'7 of green (88) in it which must

be removed, and 4*3 of blue (68) substituted. This agrees pretty well with the

colour which Mr Pole* describes as neutral to him, though crimson to others.

It must be remembered, however, that different persons of ordinary vision require

different proportions of the standard colours, probably owing to differences in the

absorptive powers of the media of the eye, and that the above equation (2), if

observed by K., would have been

23(104) + 32(88) + 3l(68) =W (4).

Philosophical Transactions, 1859, Part I. p. 329.
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and the value of D, as deduced from these observers, would have been

23(104)- 17 (88)- ri (68) = Z) (5),

in which the defective sensation is much nearer to the red of the spectrum. It

is probably a colour to which the extreme red of the spectrum tends, and

which differs from the extreme red only in not containing that small proportion

of "yellow" light which renders it visible to the colour-blind.

From other observations by Mr Simpson the following results have been

deduced :

—

Table a.
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G the colour is mixed, varying from " yellow " to " blue," and becoming neutral

or "white" at a point near F. In this part of the spectrum, the total inten-

sity, as given by the dotted line, is decidedly less than on either side of it, and

near the line F, the retina close to the "yellow spot" is less sensible to light

than the parts further from the axis of the eye. This peculiarity of the light

near F is even more marked in the colour-blind than in the ordinary eye.

Beyond F the " blue " element comes to a maximum between F and G, and

then diminishes towards H ; the spectrum from this maximum to the end being

pure "blue."

In fig. 10, Plate VII. p. 444, these results are represented in a different

manner. The point D, corresponding to the sensation wanting in the colour-blind,

is taken as the origin of coordinates, the "yellow" element of colour is represented

by distances measured horizontally to the right from D, and the "blue" element

by distances measured vertically from the horizontal line through D. The

numerals indicate the different colours of the spectrum according to the scale

shewn in fig. 9, and the coordinates of each point indicate the composition of

the corresponding colour. The triangle of colours is reduced, in the case of

dichromic vision, to a straight line "B" "Y," and the proportions of "blue"

and "yellow" in each colour are indicated by the ratios in which this line is

cut by the line from D passing through the position of that colour.

The results given above were all obtained with the light of white paper,

placed in clear simshine. I have obtained similar results, when the sun was

hidden, by using the light of uniformly illuminated clouds, but I do not consider

these observations suflficiently free from disturbing circumstances to be employed

in calculation. It is easy, however, by means of such observations, to verify the

most remarkable phenomena of colour-blindness, as for instance, that the colours

from red to green appear to differ only in brightness, and that the brightness

may be made identical by changing the width of the slit; that the colour

near F is a neutral tint, and that the eye in viewing it sees a dark spot in

the direction of the axis of vision ; that the colours beyond are all blue of

different intensities, and that any "blue" may be combined with any "yellow"

in such proportions as to form "white." These results I have verified by the

observations of another colour-blind gentleman, who did not obtain sunlight for

bis observations; and as I have now the means of carrying the requisite

apparatus easily, I hope to meet with other colour-blind observers, and to obtain

their observations under more favourable circumstances.
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On the Comparison of Colour-blind with ordinary Vision by means of Observations

with Coloured Papers.

In March 1859 I obtained a set of observations by Mr Simpson, of the

relations between six coloured papers as seen by him. The experiments were

made with the colour-top in the manner described in my paper in the Trans-

actions of the Royal Society of Edinburgh, Vol. xxi. pt. 2, p. 286; and the

colour-equations were arranged so as to be equated to zero, as in those given

in the Philosophical Magazine, July, 1857. The colours were—Vermilion (V),

ultramarine (U), emerald-green (G), ivory-black (B), snow-white (W), and pale

chrome-yellow (Y). These six colours afford fifteen colour-blind equations, since

four colours enter into each equation. Fourteen of these were observed by

Mr Simpson, and from these I deduced three equations, giving the relation of

the three standards (V), (U), (G) to the other colours, according to his kind of

vision. From these three equations I then deduced fifteen equations, admitting

of comparison with the observed equations, and necessarily consistent in

themselves.

The comparison of these equations furnishes a test of the truth of the theory

that the colour-blind see by means of two colour-sensations, and that therefore

eveiy colour may be expressed in terms of two given colours, just as in ordinary

vision it may be expressed in terms of three given colours. The one set of

equations are each the result of a single observation ; the other set are deduced

from three equations in accordance with this theory, and the two sets agree to

within an average error = 2*1.

Table b.
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Table b (continued).



ON THE THEORY OF COMPOUND COLOURS. 443

six colours may be deduced from two equations, of which the most convenient

form is

V. U. G. B. W. Y.

+ 397 +2G-6 +337 -227 -77-3 =0 (17).

-62-4 +18-6 -37-6 +457 +357 = (18).

The value of D, as deduced from a comparison of these equations with the

colour-blind equations, is

1-198 V + 0-078U-0-276G = D (19).

By making D the same thing as black (B), and eliminating W and Y
respectively from the two ordinary colour-equations by means of D, we obtain

three colour-blind equations, calculated from the ordinary equations and con-

sistent with them, supposing that the colour (D) is black to the colour-blind.

The following Table is a comparison of the colour-bhnd equations deduced

from Mr Simpson's observations alone, with those deduced from my observations

and the value of D.
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»

of these equations with my o\7n, are given at "D," *'W," and "Y." The

difference of these positions from those of "c?," "w;," and "3/," shews the amount

of discrepancy between observation and theory.

It will be observed that D is situated near V (vermilion), but that a line

from D to W cuts UV at C near to V. D is therefore a red colour, not

scarlet, but further from yellow. It may be called crimson, and may be imitated

by a mixture of 86 vermiHon and 14 ultramarine. This compound colour will be

of the same hue as D ; but since C hes between D and W, C must be

regarded as D diluted with a certain amount of white ; and therefore D must

be imagined to be like C in hue, but without the intermixture of white which

is unavoidable in actual pigments, and which reduces the purity of the tint.

Lines drawn from D through "W" and "Y," the colour-blind positions of

white and yeUow, pass through W and Y, their positions in ordinary vision.

The reason why they do not coincide with W and Y, is that the white and

yeUow papers are much brighter than the colours corresponding to the points

W and Y of the triangle V, U, G; and therefore lines from D, which represent

them in intensity as well as in quality, must be longer than DW and DY in

the proportion of their brightness.
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[Lecture at the Royal Institution of Great Britain. May 17, 1861.]

XXII. On the Theory of Three Primary Colours.

The speaker commenced by shewing that our power of vision depends

entirely on our being able to distinguish the intensity and quality of colours.

The forms of visible objects are indicated to us only by differences in colour

or brightness between them and surrounding objects. To classify and arrange

these colours, to ascertain the physical conditions on which the dijfferences of

coloured rays depend, and to trace, as far as we are able, the physiological

process by which these different rays excite in us various sensations of colour,

we must avail ourselves of the united experience of paintei-s, opticians, and

physiologists. The speaker then proceeded to state the results obtained by these

three classes of inquirers, to explain their apparent inconsistency by means of

Young's Theory of Primary Colours, and to describe the tests to which he had

subjected that theory.

Painters have studied the relations of colours, in order to imitate them by

means of pigments. As there are only a limited number of coloured substances

adapted for painting, while the number of tints in nature is infinite, painters

are obliged to produce the tints they require by mixing their pigments in

proper proportions. This leads them to regard these tints as actually com-

pounded of other colours, corresponding to the pure pigments in the mixture.

It is found, that by using three pigments only, we can produce all colours

lying within certain limits of intensity and purity. For instance, if we take

carmine (red), chrome yellow, and ultramarine (blue), we get by mixing the

carmine and the chrome, all varieties of orange, passing through scarlet to

crimson on the one side, and to yeUow on the other; by mixing chrome and

ultramarine we get all hues of green; and by mixing ultramarine with carmine,

we get all hues of purple, from violet to mauve and crimson. Now these are

all the strong colours that we ever see or can imagine :
all others are like
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these, only less pure in tint. Our three colours can be mixed so as to form

a neutral grey; and if this grey be mixed with any of the hues produced by

mixing two colours only, all the tints of that hue will be exhibited, from the

pure colour to neutral grey. If we could assume that the colour of a mixture

of different kinds of paint is a true mixture of the colours of the pigments,

and in the same proportion, then an analysis of colour might be made with

the same ease as a chemical analysis of a mixture of substances.

The colour of a mixture of pigments, however, is often very different from

a true mixture of the colours of the pure pigments. It is found to depend on

the size of the particles, a finely ground pigment producing more effect than

one coarsely ground. It has also been shewn by Professor Helmholtz, that when

light falls on a mixture of pigments, part of it is acted on by one pigment

only, and part of it by another ; while a third portion is acted on by both pig-

ments in succession before it is sent back to the eye. The two parts reflected

directly from the pure pigments enter the eye together, and form a true mixture

of colours ; but the third portion, which has suffered absorption from both

pigments, is often so considerable as to give its own character to the resulting

tint. This is the explanation of the green tint produced by mixing most blue

and yellow pigments.

In studying the mixture of colours, we must avoid these sources of error,

either by mixing the rays of light themselves, or by combining the impressions

of colours within the eye by the rotation of coloured papers on a disc.

The speaker then stated what the opticians had discovered about colour.

White light, according to Newton, consists of a great number of different kinds

of coloured light which can be separated by a prism. Newton divided these

into seven classes, but we now recognize many thousand distinct kinds of light

in the spectrum, none of which can be shewn to be a compound of more

elementary rays. If we accept the theory that light is an undulation, then,

as there are undulations of every different period from the one end of the

spectrum to the other, there are an infinite number of possible kinds of Hght,

no one of which can be regarded as compounded of any others.

Physical optics does not lead us to any theory of three primary colours,

but leaves us in possession of an infinite number of pure rays with an infinitely

more infinite number of compound beams of Hght, each containing any propor-

tions of any number of the pure rays.

These beams of light, passing through the transparent parts of the eye, fall
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on a sensitive membrane, and we become aware of various colours. We know

that the colour we see depends on the nature of the light; but the opticians

say there are an infinite number of kinds of light ; while the painters, and all

who pay attention to what they see, tell us that they can account for all

actual colours by supposing them mixtures of three primary colours.

The speaker then next drew attention to the physiological difficulties in

accounting for the perception of colour. Some have supposed that the different

kinds of light are distinguished by the time of their vibration. There are

about 447 billions of vibrations of red light in a second; and 577 billions of

vibrations of green light in the same time. It is certainly not by any mental

process of which we are conscious that we distinguish between these infini-

tesimal portions of time, and it is difficult to conceive any mechanism by which

the vibrations could be counted so that we should become conscious of the

results, especially when many rays of different periods of vibration act on the

same part of the eye at once.

Besides, all the evidence we have on the nature of nervous action goes

to prove that whatever be the nature of the agent which excites a nerve, the

sensation will differ only in being more or less acute. By acting on a nerve

in various ways, we may produce the faintest sensation or the most violent

pain ; but if the intensity of the sensation is the same, its quality must be

the same.

Now, we may perceive by our eyes a faint red light which may be made

stronger and stronger till our eyes are dazzled. We may then perform the

same experiment with a green light or a blue light. We shall thus see that

our sensation of colour may differ in other ways, besides in being stronger or

fainter. The sensation of colour, therefore, cannot be due to one nerve only.

The speaker then proceeded to state the theory of Dr Thomas Young, as

the only theory which completely reconciles these difficulties in accounting for

the perception of colour.

Young supposes that the eye is provided with three distinct sets of nervous

fibres, each set extending over the whole sensitive surface of the eye. Each

of these three systems of nerves, when excited, gives us a different sensation.

One of them, which gives us the sensation we call red, is excited most by

the red rays, but also by the orange and yellow, and slightly by the violet

;

another is acted on by the green rays, but also by the orange and yellow and

part of the blue; while the third is acted on by the blue and violet rays.
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If we could excite one of these sets of nerves without acting on the

others, we should have the pure sensation corresponding to that set of nerves.

This would be truly a primary colour, whether the nerve were excited by pure

or by compound light, or even by the action of pressure or disease.

If such experiments could be made, we should be able to see the primary-

colours separately, and to describe their appearance by reference to the scale

of colours in the spectrum.

But we have no direct consciousness of the contrivances of our own bodies,

and we never feel any sensation which is not infinitely complex, so that we

can never know directly how many sensations are combined when we see a

colour. Still less can we isolate one or more sensations by artificial means, so

that in general when a ray enters the eye, though it should be one of the

pure rays of the spectrum, it may excite more than one of the three sets of

nerves, and thus produce a compound sensation.

The terms simple and compound, therefore, as applied to colour-sensation,

have by no means the same meaning as they have when appHed to a ray of

light.

The speaker then stated some of the consequences of Young's theory, and

described the tests to which he had subjected it:

—

1st. There are three primary colours.

2nd. Every colour is either a primary colour, or a mixture of primary

colours.

3rd. Four colours may always be arranged in one of two ways. Either

one of them is a mixture of the other three, or a mixture of two of them

can be found, identical with a mixture of the other two.

4th. These results may be stated in the form of colour-equations, giving

the numerical value of the amount of each colour entering into any mixture.

By means of the Colour Top'", such equations can be obtained for coloured

papers, and they may be obtained with a degree of accuracy shewing that the

colour-judgment of the eye may be rendered very perfect.

The speaker had tested in this way more than 100 different pigments and

mixtures, and had found the results agree with the theory of three primaries

* Described in the Trans, of the Royal Society of Edinburgh, Vol. xxi., and in the Phil. Mag.
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in every case. He had also examined all the colours of the spectrum with

the same result.

The experiments with pigments do not indicate what colours are to be

considered as primary ; but experiments on the prismatic spectrum shew that

all the colours of the spectrum, and therefore all the colours in nature, are

equivalent to mixtures of three colours of the spectrum itself, namely, red,

green (near the line E), and blue (near the line G). Yellow was found to be

a mixture of red and green.

The speaker, assuming red, green, and blue as primary colours, then exhi-

bited them on a screen by means of three magic lanterns, before which were

placed glass troughs containing respectively sulphocyanide of iron, chloride of

copper, and ammoniated copper.

A triangle was thus illuminated, so that the pure colours appeared at its

angles, while the rest of the triangle contained the various mixtures of the

colours as in Young's triangle of colour.

The graduated intensity of the primary colours in different parts of the

spectrum was exhibited by three coloured images, which, when superposed on

the screen, gave an artificial representation of the spectrum.

Three photographs of a coloured ribbon taken through the three coloured

solutions respectively, were introduced into the camera, giving images represent-

ing the red, the green, and the blue parts separately, as they would be seen

by each of Young's three sets of nerves separately. When these were super-

posed, a coloured image was seen, which, if the red and green images had

been as fully photographed as the blue, would have been a truly-coloured image

of the ribbon. By finding photographic materials more sensitive to the less

refrangible rays, the representation of the colours of objects might be greatly

improved.

The speaker then proceeded to exhibit mixtures of the colours of the pure

spectrum. Light from the electric lamp was passed through a narrow slit, a

lens and a prism, so as to throw a pure spectrum on a screen containing three

moveable slits, through which three distinct portions of the spectrum were

suffered to pass. These portions were concentrated by a lens on a screen at

a distance, forming a large, uniformly coloured image of the prism.

When the whole spectrum was allowed to pass, this image was white, as

in Newton's experiment of combining the rays of the spectrum. When portions

of the spectrum were allowed to paas through the moveable slits, the image was
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uniformly illuminated with a mixture of the corresponding colours. In order

to see these colours separately, another lens was placed between the moveable

slits and the screen. A magnified image of the sHts was thus thrown on the

screen, each sHt shewing, by its colour and its breadth, the quality and quantity

of the colour which it suffered to pass. Several colours were thus exhibited,

first separately, and then in combination. Red and blue, for instance, produced

purple ; red and green produced yellow ; blue and yellow produced a pale pink
;

red, blue, and green produced white; and red and a bluish green near the

line F produced a colour which appears very different to different eyes.

The speaker concluded by stating the peculiarities of colour-blind vision,

and by shewing that the investigation into the theory of colour is truly a

physiological inquiry, and that it requires the observations and testimony of

persons of every kind in order to discover and explain the various peculiarities

of vision.



[From the Philosophical Magazine, Vol. xxi.]

XXIII. On Physical Lines of Force.

PART I.

The Theory of Molecular Vortices applied to Magnetic Phenomena.

In all phenomena involving attractions or repulsions, or any forces depend-

ing on the relative position of bodies, we have to determine the magnitude and

direction of the force which would act on a given body, if placed in a given

position.

In the case of a body acted on by the gravitation of a sphere, this force

is inversely as the square of the distance, and in a straight line to the centre

of the sphere. In the case of two attracting spheres, or of a body not spherical,

the magnitude and direction of the force vary according to more complicated

laws. In electric and magnetic phenomena, the magnitude and direction of the

resultant force at any point is the main subject of investigation. Suppose that

the direction of the force at any point is known, then, if we draw a line so

that in every part of its course it coincides in direction with the force at that

point, this hne may be called a line of force, since it indicates the direction

of the force in every part of its course.

By drawing a sufficient number of lines of force, we may indicate the

direction of the force in every part of the space in which it acts.

Thus if we strew iron filings on paper near a magnet, each filing will be

magnetized by induction, and the consecutive filings will unite by their opposite

poles, so as to form fibres, and these fibres will indicate the direction of the lines

of force. The beautiful illustration of the presence of magnetic force afforded

by this experiment, naturally tends to make us think of the lines of force as

something real, and as indicating something more than the mere resultant of

two forces, whose seat of action is at a distance, and which do not exist there
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at all until a magnet is placed in that part of the field. We are dissatisfied

with the explanation founded on the hypothesis of attractive and repellent

forces directed towards the magnetic poles, even though we may have satisfied

ourselves that the phenomenon is in strict accordance with that hypothesis, and

we cannot help thinking that in every place where we find these lines of force,

some physical state or action must exist in sufficient energy to produce the

actual phenomena.

My object in this paper is to clear the way for speculation in this direction,

by investigating the mechanical results of certain states of tension and motion

in a medium, and comparing these with the observed phenomena of magnetism

and electricity. By pointing out the mechanical consequences of such hypotheses,

I hope to be of some use to those who consider the phenomena as due to the

action of a medium, but are in doubt as to the relation of this hypothesis to

the experimental laws already established, which have generally been expressed

in the language of other hypotheses.

I have in a former paper* endeavoured to lay before the mind of the

geometer a clear conception of the relation of the lines of force to the space

in which they are traced. By making use of the conception of currents in a

fluid, I shewed how to draw lines of force, which should indicate by their

number the amount of force, so that each line may be called a unit-line of

force (see Faraday's Resweardies, 3122); and I have investigated the path of

the lines where they pass from one medium to another.

In the same paper I have found the geometrical significance of the "Elec-

trotonic State," and have shewn how to deduce the mathematical relations

between the electrotonic state, magnetism, electric currents, and the electromotive

force, using mechanical illustrations to assist the imagination, but not to account

for the phenomena.

I propose now to examine magnetic phenomena from a mechanical point of

view, and to determine what tensions in, or motions of, a medium are capable

of producing the mechanical phenomena observed. If, by the same hypothesis,

we can connect the phenomena of magnetic attraction with electromagnetic phe-

nomena and with those of induced currents, we shall have found a theory

which, if not true, can only be proved to be erroneous by experiments which

will greatly enlarge our knowledge of this part of physics.

See a paper " On Faraday's Lines of Force," Cambridge Philosophical Transactions, Vol. i. Part i.

Page 155 of this volume.



ON PHYSICAL LINES OF FORCE. 453

The mechanical conditions of a medium under magnetic influence have been

variously conceived of, as currents, undulations, or states of displacement or

strain, or of pressure or stress.

Currents, issuing from the north pole and entering the south pole of a

magnet, or circulating round an electric current, have the advantage of repre-

senting correctly the geometrical arrangement of the lines of force, if we could

account on mechanical principles for the phenomena of attraction, or for the

currents themselves, or explain their continued existence

Undulations issuing from a centre would, according to the calculations of

Professor Challis, produce an effect similar to attraction in the direction of the

centre ; but admitting this to be true, we know that two series of undulations

traversing the same space do not combine into one resultant as two attractions

do, but produce an effect depending on relations of phase as well as intensity,

and if allowed to proceed, they diverge from each other without any mutual

action. In fact the mathematical laws of attractions are not analogous in any

respect to those of undulations, while they have remarkable analogies with those

of currents, of the conduction of heat and electricity, and of elastic bodies.

In the Cambridge and Dublin Mathematical Journal for January 1847,

Professor William Thomson has given a "Mechanical Representation of Electric,

Magnetic, and Galvanic Forces," by means of the displacements of the particles of

an elastic solid in a state of strain. In this representation we must make the

angular displacement at every point of the solid proportional to the magnetic

force at the con-esponding point of the magnetic field, the direction of the axis

of rotation of the displacement corresponding to the direction of the magnetic

force. The absolute displacement of any particle will then correspond in magni-

tude and direction to that which I have identified with the electrotonic state
;

and the relative displacement of any particle, considered with reference to the

particle in its immediate neighbourhood, will correspond in magnitude and direc-

tion to the quantity of electric current passing through the corresponding point

of the magneto-electric field. The author of this method of representation does

not attempt to explain the origin of the observed forces by the effects due to

these strains in the elastic solid, but makes use of the mathematical analogies

of the two problems to assist the imagination in the study of both.

We come now to consider the magnetic influence as existing in the form of

some kind of pressure or tension, or, more generally, of stress in the medium.

Stress is action and reaction between the consecutive parts of a body, and
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consists in general of pressures or tensions different in different directions at

the same point of the medium.

The necessary relations among these forces have been investigated by mathe-

maticians ; and it has been shewn that the most general type of a stress

consists of a eombmation of three principal pressures or tensions, in directions

at right angles to each other.

When two of the principal pressures are equal, the third becomes an axis

of symmetry, either of greatest or least pressure, the pressures at right angles

to this axis being all equal.

When the three principal pressures are equal, the pressure is equal in every

direction, and there results a stress having no determinate axis of direction, of

which we have an example in simple hydrostatic pressure.

The general type of a stress is not suitable as a representation of a mag^

netic force, because a line of magnetic force has direction and intensity, but

has no third quahty indicating any difference between the sides of the line,

which would be analogous to that observed in the case of polarized light*.

We must therefore represent the magnetic force at a point by a stress

having a single axis of greatest or least pressure, and all the pressures at right

angles to this axis equal. It may be objected that it is inconsistent to represent

a line of force, which is essentially dipolar, by an axis of stress, which is

necessarily isotropic; but we know that every phenomenon of action and reaction

is isotropic in its results, because the effects of the force on the bodies between

which it acts are equal and opposite, while the nature and origin of the force

may be dipolar, as in the attraction between a north and a south pole.

Let us next consider the mechanical effect of a state of stress symmetrical

about an axis. We may resolve it, in all cases, into a simple hydrostatic

pressure, combined with a simple pressure or tension along the axis. When the

axis is that of greatest pressure, the force along the axis will be a pressure.

When the axis is that of least pressure, the force along the axis will be a

tension.

K we observe the lines of force between two magnets, as indicated by iron

filings, we shall see that whenever the Hnes of force pass firom one pole to

another, there is attraction between those poles; and where the lines of force

from the poles avoid each other and are dispersed into space, the poles repel

* See Faraday's Researches, 3262.
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each other, so that in both cases they are drawn in the direction of the

resultant of the lines of force.

It appears therefore that the stress in the axis of a line of magnetic force

is a tension, like that of a rope.

If we calculate the lines of force in the neighbourhood of two gravitating

bodies, we shall find them the same in direction as those near two magnetic

poles of the same name ; but we know that the mechanical effect is that of

attraction instead of repulsion. The lines of force in this case do not run

between the bodies, but avoid each other, and are dispersed over space. In

order to produce the effect of attraction, the stress along the lines of gravi-

tating force must be a pressure.

Let us now suppose that the phenomena of magnetism depend on the

existence of a tension in the direction of the lines of force, combined with a

hydrostatic pressure; or in other words, a pressure greater in the equatorial

than in the axial direction : the next question is, what mechanical explanation

can we give of this inequality of pressures in a fluid or mobUe medium ? The

explanation which most readily occurs to the mind is that the excess of pres-

sure in the equatorial direction arises from the centrifugal force of vortices or

eddies in the medium having their axes in directions parallel to the lines of force.

This explanation of the cause of the inequality of pressures at once suggests

the means of representing the dipolar character of the line of force. Every

vortex is essentially dipolar, the two extremities of its axis being distinguished

by the direction of its revolution as observed from those points.

We also know that when electricity circulates in a conductor, it produces

lines of magnetic force passing through the circuit, the direction of the lines

depending on the direction of the circulation. Let us suppose that the direction

of revolution of our vortices is that in which vitreous electricity must revolve

in order to produce lines of force whose direction within the circuit is the

same as that of the given lines of force.

We shall suppose at present that all the vortices in any one part of the

field are revolving in the same direction about axes nearly parallel, but

that in passing from one part of the field to another, the direction of the

axes, the velocity of rotation, and the density of the substance of the vortices

are subject to change. We shall investigate the resultant mechanical effect upon

an element of the medium, and from the mathematical expression of this

resultant we shall deduce the physical character of its different component parts.
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Prop. I.—If in two fluid systems geometrically similar the velocities and

densities at corresponding points are proportional, then the differences of pres-

sure at corresponding points due to the motion will vary in the duplicate ratio

of the velocities and the simple ratio of the densities.

Let I be the ratio of the linear dimensions, m that of the velocities,

n that of the densities, and p that of the pressures due to the motion. Then
the ratio of the inasses of corresponding portions will be Vn, and the ratio of

the velocities acquired in traversing similar parts of the systems will be m ;

so that l^mn is the ratio of the momenta acquired by similar portions in

traversing similar parts of their paths.

The ratio of the surfaces is P, that of the forces acting on them is I'^p,

and that of the times during which they act is —
; so that the ratio of the

impulse of the forces is — , and we have now

m
or m^n =jp ;

that is, the ratio of the pressures due to the motion (p) is compounded of

the ratio of the densities (n) and the duplicate ratio of the velocities {ni"), and

does not depend on the linear dimensions of the moving systems.

In a circular vortex, revolving with uniform angular velocity, if the

pressure at the axis is p^, that at the circumference will be i>i=jPo + ip^j where

p is the density and v the velocity at the circumference. The mean pressure

parallel to the axis will be

If a number of such vortices were placed together side by side with their

axes parallel, they would form a medium in which there would be a pressure

Pz parallel to the axes, and a pressure p^ in any perpendicular direction. If the

vortices are circular, and have uniform angular velocity and density throughout,

then

Pi-P2 = lp'^'

If the vortices are not circular, and if the angular velocity and the density

are not uniform, but vary according to the same law for all the vortices,

Pi-p.^Cpif,
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where p is the mean density, and C is a numerical quantity depending on the

distribution of angular velocity and density in the vortex. In future we shall

write -7^ instead of Co, so that
477- '^

^'"^'^4^''''' (^)'

where /n is a quantity bearing a constant ratio to the density, and v is the

linear velocity at the circumference of each vortex.

A medium of this kind, filled with molecular vortices having their axes

parallel, differs from an ordinary fluid in having different pressures in different

directions. If not prevented by properly arranged pressures, it would tend to

expand laterally. In so doing, it would allow the diameter of each vortex to

expand and its velocity to diminish in the same proportion. In order that a

medium having these inequalities of pressure in different directions should be in

equihbrium, certain conditions must be fulfilled, which we must investigate.

Prop. II.—If the direction-cosines of the axes of the vortices with respect

to the axes of x, y, and z be /, m, and n, to find the normal and tangential

stresses on the co-ordinate planes.

The actual stress may be resolved into a simple hydrostatic pressure p^ acting

in all directions, and a simple tension Pi—p^, or -7- fiif, acting along the axis

of stress.

Hence if p^x, pyy, and p^ be the normal stresses parallel to the three axes,

considered positive when they tend to increase those axes ; and if p^^, p^, and

Pj^ be the tangential stresses in the three co-ordinate planes, considered positive

when they tend to increase simultaneously the symbols subscribed, then by
the resolution of stresses*,

Pxx = j^l^vn'-p„

1 . ,

* Rankine's Applied Mechanics, Art. 106.
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If we write

then

a = vl, ^ = vm, and y= vn,

Air

1
(2).

Prop. III.—To find the resultant force on an element of the medium,

arising from the variation of internal stress.

"We have in general, for the force in the direction of x per unit of volume

by the law of equilibrium of stresses*,

V d d d ,„v

^'TxP-'+TyP-'+ dzP' (^)-

In this case the expression may be written

Remembering that a^+ /8^+ y^ = i^ (a"+ jff + y"), this becomes

. I ld& da.\ _ 1 Ida. dy\ dp, , ,

-l'^i^[di-Ty)+l'->'Tn[di-di)-dS---^^'-

The expressions for the forces parallel to the axes of y and z may be written

down from analogy.

* Baiikine's Applied MecJianics, Art. 116.
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We have now to interpret the meaning of each term of this expression.

We suppose a, /3, y to be the components of the force which would act

upon that end of a unit magnetic bar which points to the north.

/x represents the magnetic inductive capacity of the medium at any point

referred to air as a standard, /la, /i,/3, /xy represent the quantity of magnetic

induction through unit of area perpendicular to the three axes of x, y z

respectively.

The total amount of magnetic induction through a closed surface surrounding

the pole of a magnet, depends entirely on the strength of that pole ; so that

if dxdydz be an element, then

(-T-/xa + -i-/>t/3 + -T- /lyj dxdydz = i'rrm dxdydz (6),

which represents the total amount of magnetic induction outwards through the

surface of the element dxdydz, represents the amount of "imaginary magnetic

matter" within the element, of the kind which points north.

The first term of the value of X, therefore,

1 /d d n d \ /_.

''ii[dx''^ + d^l'^+ dz''V
(^)'

may be written

am (8),

where a is the intensity of the magnetic force, and m is the amount of mag-

netic matter poLnting north in unit of volume.

The physical interpretation of this term is, that the force urging a north pole

in the positive direction of a; is the product of the intensity of the magnetic

force resolved in that direction, and the strength of the north pole of the magnet.

Let the parallel lines from left to right in fig. 1 represent a field of mag-

netic force such as that of the earth, sn being the direction from south to north.

The vortices, according to our hypothesis, will be in the direction shewn by the

arrows in fig. 3, that is, in a plane perpendicular to the lines of force, and

revolving in the direction of the hands of a watch when observed from 5

looking towards n. The parts of the vortices above the plane of the paper

will be moving towards e, and the parts below that plane towards w.
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Fig. 1.

1^
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placed in the field will be urged towards places of stronger magnetic intensity

with a force depending partly on its own capacity for magnetic induction, and

partly on the rate at which the square of the intensity increases.

If the body be placed in a fluid medium, then the medium, as well as the

body, will be urged towards places of greater intensity, so that its hydrostatic

pressure will be increased in that direction. The resultant effect on a body

placed in the medium will be the difference of the actions on the body and

on the portion of the medium which it displaces, so that the body will tend

to or from places of greatest magnetic intensity, according as it has a greater

or less capacity for magnetic induction than the surrounding medium.

In fig. 4 the lines of force are represented as converging and becoming

more powerful towards the right, so that the magnetic tension at B is stronger

than at A, and the body AB will be urged to the right. If the capacity for

magnetic induction is greater in the body than in the surrounding medium, it

will move to the right, but if less it will move to the left.

Fig. 4. Fig. 5.

We may suppose in this case that the lines of force are converging to a

magnetic pole, either north or south, on the right hand.

In fig. 5 the Hues of force are represented as vertical, and becoming more

numerous towards the right. It may be shewn that if the force increases

towards the right, the lines of force will be curved towards the right. The

effect of the magnetic tensions wiU then be to draw any body towards the right

with a force depending on the excess of its inductive capacity over that of the

surrounding medium.

We may suppose that in this figure the lines of force are those surrounding

an electric current perpendicular to the plane of the paper and on the right

hand of the figure.

These two iUustrations will shew the mechanical effect on a paramagnetic

or diamagnetic body placed in a field of varying magnetic force, whether the

increase of force takes place along the lines or transverse to them. The form



462 ON PHYSICAL LINES OF FORCE.

of the second term of our equation indicates the general law, which is quite

independent of the direction of the lines of force, and depends solely on the

manner in which the force varies from one part of the field to another.

"We come now to the third term of the value of X,

1 fd/B da.\

^^ 47r \dx dy,

Here y^^ is, as before, the quantity of magnetic induction through unit of area

perpendicular to the axis of y, and
-J-

— -j- ^^ ^ quantity which would disap-

pear if adx + ^dy + ydz were a complete differential, that is, if the force acting

on a unit north pole were subject to the condition that no work can be done

upon the pole in passing round any closed curve. The quantity represents the

work done on a north pole in travelHng round unit of area in the direction

from +x to +y parallel to the plane of xy. Now if an electric current whose

strength is r is traversing the axis of z, which, we may suppose, points

vertically upwards, then, if the axis of x is east and that of y north, a unit

north pole will be urged round the axis of z in the direction from x to y, so

that in one revolution the work done will be = 47rr. Hence t- ( -t^—7- ) repre-

477 \dy

Att \dx dy/

sents the strength of an electric current parallel to z through unit of area ; and

if we write

dz] P' 4,w\dz dx)~^- 4n\dx dyj~^ ^^''

then p, q, r will be the quantity of electric current per unit of area perpen-

dicular to the axes of x, y, and z respectively.

The physical interpretation of the third term of X, —fi^r, is that if /xyS is

the quantity of magnetic induction parallel to y, and r the quantity of electricity

flowing in the direction of z, the element will be urged in the direction of —x,

transversely to the direction of the current and of the lines of force; that is,

an ascending current in a field of force magnetized towards the north would

tend to move west.

To illustrate the action of the molecular vortices, let sn be the direction

of magnetic force in the field, and let C be the section of an ascending mag-

netic current perpendicular to the paper. The lines of force due to this current
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will be circles drawn in the opposite direction from that of the hands of a

watch ; that is, in the direction nwse. At c the lines of force

will be the sum of those of the field and of the current, and

at w they will be the difference of the two sets of lines ; so

that the vortices on the east side of the current will be more

powerful than those on the west side. Both sets of vortices have

their equatorial parts turned towards C, so that they tend to

expand towards C, but those on the east side have the greatest

effect, so that the resultant effect on the current is to urge it towards the west

The fourth term,

^da dy

Fig. 6.

1 da
or ^-iiyq (10),

may be interpreted in the same way, and indicates that a current q in the

direction of y, that is, to the north, placed in a magnetic field in which the

lines are vertically upwards in the direction of z, will be urged towards the ecLnt.

The fifth term,

dx
(n),

merely implies that the element wiQ be urged in the direction in which the

hydrostatic pressure p^ diminishes.

We may now write down the expressions for the components of the resultant

force on an element of the medium per unit of volume, thus

:

^"^"^^^ ^('^)"''^'' + ''>'^"^ (^^)'

fiyp + n-tar —
dp,

dy
(13),

The first term of each expression refers to the force acting on magnetic

poles.

The second term to the action on bodies capable of magnetism by induction.

The third and fourth terms to the force acting on electric currents.

And the fifth to the effect of simple pressure.
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Before going further in the general investigation, we shall consider equations

(12, 13, 14), in particular cases, corresponding to those simplified cases of the

actual phenomena which we seek to obtain in order to determine their laws by

experiment.

We have found that the quantities p, q, and r represent the resolved parts

of an electric current in the three co-ordinate directions. Let us suppose in the

first instance that there is no electric current, or that p, q, and r vanish. We
have then by (9),

^_^ = ^-^ = ^-^ = (15)
dy dz ' dz dx ' dx dy ^

''

whence we learn that adx + /3dy + ydz = d<l) (16),

is an exact differential of <^, so that

-t ^ =f • r =f (m:

fi is proportional to the density of the vortices, and represents the " capacity

for magnetic induction" in the medium. It is equal to 1 in air, or in whatever

medium the experiments were made which determined the powers of the magnets,

the strengths of the electric currents, &c.

Let us suppose fi constant, then

m=h{T>'^^4^^^^4M--rA?^^9^'^) (-)

represents the amount of imaginary magnetic matter in unit of volume. That

there may be no resultant force on that unit of volume arising from the action

represented by the first term of equations (12, 13, 14), we must have m = 0, or

'J-g^-S = o (-)•

Now it may be shewn that equation (19), if true within a given space,

implies that the forces acting within that space are such as would result from

a distribution of centres of force beyond that space, attracting or repelling

inversely as the square of the distance.

Hence the lines of force in a part of space where fi is uniform, and where

there are no electric currents, must be such as would result from the theory

of "imaginary matter" acting at a distance. The assumptions of that theory

are unlike those of ours, but the results are identical
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Let us first take the case of a single magnetic pole, that is, one end of

a long magnet, so long that its other end is too far off to have a perceptible

influence on the part of the field we are considering. The conditions then are,

that equation (18) must be fulfilled at the magnetic pole, and (19) everywhere

else. The only solution under these conditions is

't'=--,l (^«).

where r is the distance from the pole, and m the strength of the pole.

The repulsion at any point on a unit pole of the same kind is

d(f> _'in 1

In the standard medium /i = 1 ; so that the repulsion is simply — in that

medium, as has been shewn by Coulomb.

In a medium having a greater value of fi (such as oxygen, solutions of

salts of iron, &c.) the attraction, on our theory, ought to be less than in air,

and in diamagnetic media (such as water, melted bismuth, &c.) the attraction

between the same magnetic poles ought to be greater than in air.

The experiments necessary to demonstrate the difference of attraction of two

magnets according to the magnetic or diamagnetic character of the medium in

which they are placed, would require great precision, on account of the limited

range of magnetic capacity in the fluid media known to us, and the small

amount of the difference sought for as compared with the whole attraction.

Let us next take the case of an electric current whose quantity is C,

flowing through a cylindrical conductor whose radius is R, and whose length is

infinite as compared with the size of the field of force considered.

Let the axis of the cylinder be that of z, and the direction of the current

positive, then within the conductor the quantity of current per unit of area is

C 1 /d^ da\

) (22):
ir-R* Air \dx dy^

80 that within the conductor

o-=-2^,y, /3 = 2-^a:, y = (23).

VOL. L 59
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Beyond the conductor, in the space round it,

«^ = 2Ctan-' ^ (24),

« =i=-^^^.- ^ =g = ^^^-^.' r =f = (25).

If p — sjdi^-^y^ is the perpendicular distance of any point from the axis of

the conductor, a unit north pole will experience a force =— , tending to move

it round the conductor in the direction of the hands of a watch, if the observer

view it in the direction of the current.

Let us now consider a current running parallel to the axis of z in the

plane of xz at a distance p. Let the quantity of the current be c', and let

the length of the part considered be I, and its section 5, so that - is its

strength per unit of section. Putting this quantity for p in equations (12, 13,

14), we find

^= -M^
"-

per unit of volume; and multiplying by Is, the volume of the conductor con-

sidered, we find

X= -p.^c'1

=
-2.f (26),

shewing that the second conductor will be attracted towards the first with a

force inversely as the distance.

We find in this case also that the amount of attraction depends on the
value of /A, but that it varies directly instead of inversely as /i ; so that the
attraction between two conducting wires will be greater in oxygen than in air,

and greater in air than in water.

We shall next consider the nature of electric currents and electromotive

forces in connexion with the theory of molecular vortices.
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PART 11.

The Theory of Molecular Vortices applied to Electric Currents.

We have already shewn that all the forces acting between magnets, sub-

stances capable of magnetic induction, and electric currents, may be mechanically

accounted for on the supposition that the surrounding medium is put into such

a state that at every point the pressures are different in different directions,

the direction of least pressure being that of the observed lines of force, and

the difference of greatest and least pressures being proportional to the square

of the intensity of the force at that point.

Such a state of stress, if assumed to exist in the medium, and to be

arranged according to the known laws regulating lines of force, will act upon

the magnets, currents, &c. in the field with precisely the same resultant forces

as those calculated on the ordinary hypothesis of direct action at a distance.

This is true independently of any particular theory as to the cause of this

state of stress, or the mode in which it can be sustained in the medium. We
have therefore a satisfactory answer to the question, "Is there any mechanical

hypothesis as to the condition of the medium indicated by lines of force, by

which the observed resultant forces may be accounted for?" The answer is,

the hues of force indicate the direction of minimum pressure at every point of

the medium.

The second question must be, "What is the mechanical cause of this

difference of pressure in different directions?" We have supposed, in the first

part of this paper, that this difference of pressures is caused by molecular

vortices, having their axes parallel to the lines of force.

We also assumed, perfectly arbitrarily, that the direction of these vortices

is such that, on looking along a line of force from south to north, we should

see the vortices revolving in the direction of the hands of a watch.

We found that the velocity of the circumference of each vortex must be

proportional to the intensity of the magnetic force, and that the density of

the substance of the vortex must be proportional to the capacity of the medium

for magnetic induction.

We have as yet given no answers to the questions, " How are these vortices

set in rotation?" and "Why are they arranged according to the known laws

59—2
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of lines of force about magnets and currents?" These questions are certainly

of a higher order of difficulty than either of the former ; and I wish to separate

the suggestions I may offer by way of provisional answer to them, from the

mechanical deductions which resolved the first question, and the hypothesis of

vortices which gave a probable answer to the second.

We have, in fact, now come to inquire into the physical connexion of these

vortices with electric currents, while we are still in doubt as to the nature of

electricity, whether it is one substance, two substances, or not a substance at

all, or in what way it differs from matter, and how it is connected with it.

We know that the lines of force are affected by electric currents, and we
know the distribution of those lines about a current ; so that from the force

we can determine the amount of the current. Assuming that our explanation

of the lines of force by molecular vortices is correct, why does a particular

distribution of vortices indicate an electric current? A satisfactory answer to

this question would lead us a long way towards that of a very important one,

"What is an electric current?"

I have found great difficulty in conceiving of the existence of vortices in a

medium, side by side, revolving in the same direction about parallel axes. The
contiguous portions of consecutive vortices must be moving in opposite directions

;

and it is difficult to understand how the motion of one part of the medium
can coexist with, and even produce, an opposite motion of a part in contact

with it.

The only ibnception which has at all aided me in conceiving of this kind of

motion is that of the vortices being separated by a layer of particles, revolving

each on its own axis in the opposite direction to that of the vortices, so that

the contiguous surfaces of the particles and of the vortices have the same

motion.

In mechanism, when two wheels are intended to revolve in the same direc-

tion, a wheel is placed between them so as to be in gear with both, and this

wheel is called an "idle wheel." The hypothesis about the vortices which I

have to suggest is that a layer of particles, acting as idle wheels, is interposed

between each vortex and the next, so that each vortex has a tendency to make
the neighbouring vortices revolve in the same direction with itself

In mechanism, the idle wheel is generally made to rotate about a fixed

axle; but in epicyclic trains and other contrivances, as, for instance, in Siemens's
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governor for steam-engines*, we find idle wheels whose centres are capable of

motion. In all these cases the motion of the centre is the half sum of the

motions of the circumferences of the wheels between which it is placed. Let

us examine the relations which must subsist between the motions of our vortices

and those of the layer of particles interposed as idle wheels between them.

Prop. IV.—To determine the motion of a layer of particles separating two

vortices.

Let the circumferential velocity of a vortex, multiplied by the three direc-

tion-cosines of its axis respectively, be a, ;8, y, as in Prop. II. Let I, m, n be

the direction-cosines of the normal to any part of the surface of this vortex,

the outside of the surface being regarded positive. Then the components of the

velocity of the particles of the vortex at this part of its surface will be

nfi — my parallel to x,

hf— na parallel to y,

ma — l^ parallel to z.

If this portion of the surface be in contact with another vortex whose velocities

are a, ^, y, then a layer of very small particles placed between them will

have a velocity which wiU be the mean of the superficial velocities of the

vortices which they separate, so that if u ia the velocity of the particles in

the direction of x,

u = ^m(y-y)^in{^-fi) (27),

since the normal to the second vortex is in the opposite direction to that of

the first.

Prop. V.—To determine the whole amount of particles transferred across

unit of area in the direction of x in unit of time.

Let Xi, 2/1, Zi be the co-ordinates of the centre of the first vortex, x.,, y„, z.,

those of the second, and so on. Let F,, Fj, &c. be the volumes of the first,

second, &c. vortices, and F the sum of their volumes. Let dS be an element

of the surface separating the first and second vortices, and x, y, z its co-ordinates.

Let p be the quantity of particles on every unit of surface. Then if p be the

whole quantity of particles transferred across irnit of area in unit of time in

See Goodeve's ElemenU of Mechanism, p. 118.
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the direction of rr, the whole momentum parallel to x of the particles within

the space whose volume is V will be Fp, and we shall have

Vp==tupdS (28),

the summation being extended to every surface separating any two vortices

within the volume V.

Let us consider the surface separating the first and second vortices. Let an

element of this surface be dS, and let its direction-cosines be Zj, m^, n^^ with

respect to the first vortex, and l^, m^, n, with respect to the second; then we
know that

^1 + 4 = 0, mi + ma= 0, ni + n, = (29).

The values of a, ^, y vary with the position of the centre of the vortex

;

so that we may write

with similar equations for )8 and y.

The value of u may be written >—

w = i^H {x-x,) + m^ (x-x,)]

+i^H(2/-2/i)+w2(2/-y.)}+i^H (2-^0+^.(2-2;.)}

-l-J^{^i{^-^^) + '^h{x-x,)]-:^-£j{n,{y-y,) + n,{y-y,)]

-if K(2-2.) + n, (.-.,)} (31).

In effecting the summation of %updS, we must remember that round any

closed surface XldS and all similar terms vanish ; also that terms of the form

XlydS, where I and y are measured in different directions, also vanish; but that

terms of the form tlxdS, where I and x refer to the same axis of co-ordinates,

do not vanish, but are equal to the volume enclosed by the surface. The

result is

^^=4''(|-S<'''+''"+*")
^''^'
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or dividing by F= F,+ F,4-&c.,

i^l-f) '^^)-

If we make P = 7r (3^).

then equation (33) will be identical with the first of equations (9), which give

the relation between the quantity of an electric current and the intensity of

the lines of force surrounding it.

It appears therefore that, according to our hypothesis, an electric current

is represented by the transference of the moveable particles interposed between

the neighbouring vortices. We may conceive that these particles are very small

compared with the size of a vortex, and that the mass of all the particles

together is inappreciable compared with that of the vortices, and that a great

many vortices, with their surrounding particles, are contained in a single complete

molecule of the medium. The particles must be conceived to roll without sliding

between the vortices which they separate, and not to touch each other, so that,

as long as they remain within the same complete molecule, there is no loss of

energy by resistance. When, however, there is a general transference of par-

ticles in one direction, they must pass from one molecule to another, and in

doing so, may experience resistance, so as to waste electrical energy and generate

heat.

Now let us suppose the vortices arranged in a medium in any arbitraiy

manner. The quantities j^ — ~r > &c. will then in general have values, so that

there will at first be electrical currents in the medium. These will be opposed

by the electrical resistance of the medium ; so that, unless they are kept up

by a continuous supply of force, they will quickly disappear, and we shall then

have j^ "~ ;j~ = ^> ^^•'> ^^^^ is, adx + fidy + ydz will be a complete difierential

(see equations (15) and (16)); so that our hypothesis accounts for the distri-

bution of the lines of force.

In Plate VIII. p. 488, fig. 1, let the vertical circle EE represent an

electric current flowing from copper C to zinc Z through the conductor EE',

as shewn by the arrows.
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Let the homontal circle MM' represent a line of magnetic force embracing

the electric circuit, the north and south directions being indicated by the lines

SN and NS.

Let the vertical circles V and V represent the molecular vortices of which

the line of magnetic force is the axis. V revolves as the hands of a watch,

and F' the opposite way.

It will appear from this diagram, that if V and V were contiguous vortices,

particles placed between them would move downwards ; and that if the particles

were forced downwards by any cause, they would make the vortices revolve as

in the figure. We have thus obtained a point of view from which we may

regard the relation of an electric current to its lines of force as analogous to

the relation of a toothed wheel or rack to wheels which it drives.

In the first part of the paper we investigated the relations of the statical

forces of the system. We have now considered the connexion of the motions

of the parts considered as a system of mechanism. It remains that we should

investigate the dynamics of the system, and determine the forces necessary to

produce given changes in the motions of the different parts.

Prop. VI.—To determine the actual energy of a portion of a medium due

to the motion of the vortices within it.

Let a, /8, y be the components of the circumferential velocity, as in Prop. II.,

then the actual energy of the vortices in unit of volume will be proportional

to the density and to the square of the velocity. As we do not know the

distribution of density and velocity in each vortex, we cannot determine the

numerical value of the energy directly; but since /x also bears a constant

though unknown ratio to the mean density, let us assume that the energy

in unit of volume is

where (7 is a constant to be determined.

Let us take the case in which

«=g. ^=f- y=t (^^)-

Let
<l>
=

<f>i+ <f> (36),
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then <^i is the potential at any point due to the magnetic system m„ and <^„

that due to the distribution of magnetism represented by m^. The actual

energy of all the vortices is

/; = 2C/x(a' + /8' +y)dF (38),

the integration being performed over all space.

This may be shewn by integration by parts (see Green's * Essay on Elec-

tricity,' p. 10) to be equal to

E= -4:iTCt{cf>,m,-h(f>,'m, + <f>,m, + (j>,m,)dV (39).

Or since it has been proved (Green's 'Essay/ p. 10) that

t<l>,m,dV=t<f>^m,dV,

E=^-4:7rC{(fy{m, + <j),vi, + 2<f),m,)dV (40).

Now let the magnetic system m^ remain at rest, and let w, be moved

parallel to itself in the direction of x through a space Sx; then, since ^i

depends on m^ only, it will remain as before, so that ^iTti^ will be constant

;

and since
<f>j

depends on m, only, the distribution of (j), about m^ will remain

the same, so that ^^rrij will be the same as before the change. The only part

of E that will be altered is that depending on 2^,171^, because <^i becomes

<^j 4- -p^ Zx on account of the displacement. The variation of actual energy due
ux

to the displacement is therefore

hE=-inCt (2'^w,) dnx (41).

But by equation (12) the work done by the mechanical forces on m^ during

the motion is

hW=t ("^^^dv) Bx (42);

and since our hypothesis is a purely mechanical one, we must have by the

conservation of force,

hE+8W=0 (43);

that is, the loss of energy of the vortices must be made up by work done iu

moving magnets, so that

AnCt (2^ m,dv\ Bx + X ("^ m,d v) Sx = 0,

<^=l (^^)^

VOL. L 60
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SO that the energy of the vortices in unit of volume is

^/.(a'+^ + y) (45);

and that of a vortex whose volume is F is

^^(a^ + /3^+ /)F. (46).

In order to produce or destroy this energy, work must be expended on,

or received from, the vortex, either by the tangential action of the layer of

particles in contact with it, or by change of form in the vortex. We shall first

investigate the tangential action between the vortices and the layer of particles

in contact with them.

Prop. VII.—To find the energy spent upon a vortex in unit of time by

the layer of particles which surrounds it.

Let P, Q, R be the forces acting on unity of the particles in the three

co-ordinate directions, these quantities being functions of a;, y, and z. Since

each particle touches two vortices at the extremities of a diameter, the reaction

of the particle on the vortices will be equally divided, and will be

-iP, -IQ, -iR
on each vortex for unity of the particles; but since the superficial density of

the particles is — (see equation (34)), the forces on unit of surface of a vortex

will be

"4^^' "4^^' "4^^-

Now let dS be an element of the surface of a vortex. Let the direction-cosines

of the normal be I, m, n. Let the co-ordinates of the element be x, y, z. Let

the component velocities of the surface be u, v, w. Then the work expended on

that element of surface will be

'^=-±(Fu+ Qv+ Rw)dS (47).

Let us begin with the first term, PudS. P may be written

^dP dP
^^^d^'^^d^y

and u^n^'-my.

J,
^dP ^dP dP ....

^"+^^+ ^2/+^^ (48),
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Remembering that the surface of the vortex is a closed one, so that

XnxdS= XmxdS= %mydS= tmzdS = 0,

and XmydS = tnzdS= F,

we find 2P^S=(f^-^r)F

and the whole work done on the vortex in unit of time will be

dE 1

(49).

^=-iz^(Pu + Qv + Rw)dS
0.1 An

1
f

/dQ dRX^^fdR dP\^ (dP dQ\\y
:^Hd^-Wy)^^[dx-^z)^y[d^-dx)j^47r l*Uz

(50).

Prop. VIII.—To find the relations between the alterations of motion of the

vortices, and the forces P, Q, R which they exert on the layer of particles

between them.

Let V be the volume of a vortex, then by (46) its energy is

1

OTT

and
dE 1 Tr/ ^*

. /o^/3_L ^y

(51),

.(52).

(53).

dt ' ^ dt ^ dtj

Comparing this value with that given in equation (50), we find

/dQ dR da\
,
^ /dR dP d^\ ^ fdP dQ dy\ .

This equation being true for all values of a, ^, and y, first let yS and y

vanish, and divide by a. We find

dQ_dR_ da^

dz dy~^ dt

^. ., , dR dP d^

and
dP_dQ^ dry

dy dx ^ dt

From these equations we may determine the relation between the alterations

of motion -j- , &c. and the forces exerted on the layers of particles between

60—2
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the vortices, or, in the language of our hypothesis, the relation between changes

in the state of the magnetic field and the electromotive forces thereby brought

into play.

In a memoir "On the Djoiamical Theory of Diffraction" (Cambridge Philo-

sophical Transactions, Vol. ix. Part 1, section 6), Professor Stokes has given a

method by which we may solve equations (54), and find P, Qy and R in tenns

of the quantities on the right hand of those equations. I have pointed out*

the application of this method to questions in electricity and magnetism.

Let us then find three quantities F, G, H from the equations

dG
dz

~
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We shall in the first place examine the process by which the lines of force

are produced by an electric current.

Let AB, Plate VIII.
, p. 488, fig. 2, represent a current of electricity in the

direction from A to B. Let the large spaces above and below AB represent the

vortices, and let the small circles separating the vortices represent the layers of

particles placed between them, which in our hypothesis represent electricity.

Now let an electric current from left to right commence in AB. The

row of vortices gh above AB will be set in motion in the opposite direction

to that of a watch. (We shall call this direction +, and that of a watch -.)

We shall suppose the row of vortices kl still at rest, then the layer of particles

between these rows will be acted on by the row gh on their lower sides, and

will be at rest above. If they are free to move, they will rotate in the

negative direction, and will at the same time move from right to left, or in

the opposite direction from the current, and do form an induced electric current.

If this current is checked by the electrical resistance of the medium, the

rotating particles will act upon the row of vortices Jcl, and make them revolve

in the positive direction till they arrive at such a velocity that the motion of

the particles is reduced to that of rotation, and the induce4 current disappears.

If, now, the primary current AB be stopped, the vortices in the row gh will

be checked, while those of the row kl still continue in rapid motion. The

momentum of the vortices beyond the layer of particles pq will tend to move

them from left to right, that is, in the direction of the primary current; but

if this motion is resisted by the medium, the motion of the vortices beyond pq
will be gradually destroyed.

It appears therefore that the phenomena of induced currents are part of the

process of communicating the rotatory velocity of the vortices from one part of

the field to another.

As an example of the action of the vortices in producing induced currents,

let us take the following case :—Let B, Plate VIIL, p. 488, fig. 3, be a circular

ring, of uniform section, lapped uniformly with covered wire. It may be shewn

that if an electric current is passed through this wire, a magnet placed within

the coil of wire wiU be strongly affected, but no magnetic effect wUl be produced

on any external point. The effect will be that of a magnet bent round till

its two poles are in contact.

If the coil is properly made, no effect on a magnet placed outside it can
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be discovered, whether the current is kept constant or made to vary in strength

;

but if a conducting wire C be made to embrace the ring any number of times,

an electromotive force will act on that wire whenever the current in the coil is

made to vary ; and if the circuit be closed^ there will be an actual current in

the wire C.

This experiment shews that, in order to produce the electromotive force, it

is not necessary that the conducting wire should be placed in a field of magnetic

force, or that lines of magnetic force should pass through the substance of the

wu'e or near it. All that is required is that lines of force should pass through

the circuit of the conductor, and that these lines of force should vary in quantity

during the experiment.

In this case the vortices, of which we suppose the lines of magnetic force

to consist, are all within the hollow of the ring, and outside the ring all is at

rest. If there is no conducting circuit embracing the ring, then, when the

primary current is made or broken, there is no action outside the ring, except

an instantaneous pressure between the particles and the vortices which they

separate. If there is a continuous conducting circuit embracing the ring, then,

when the primary current is made, there will be a current in the opposite

direction through C; and when it is broken, there will be a current through C
in the same direction as the primary current.

We may now perceive that induced currents are produced when the elec-

tricity yields to the electromotive force,—this force, however, still existing

when the formation of a sensible current is prevented by the resistance of the

circuit.

The electromotive force, of which the components are P, Q, R, arises from

the action between the vortices and the interposed particles, when the velocity

of rotation is altered in any part of the field. It corresponds to the pressure

on the axle of a wheel in a machine when the velocity of the driving wheel

is increased or diminished.

The electrotonic state, whose components are F, G, H, is what the electromotive

force would be if the currents, &c. to which the lines of force are due, instead

of arriving at their actual state by degrees, had started instantaneously from

rest with their actual values. It corresponds to the impulse which would act

on the axle of a wheel in a machine if the actual velocity were suddenly given

to the driving wheel, the machine being previously at rest.
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If the machine were suddenly stopped by stopping the driving wheel, each

wheel would receive an impulse equal and opposite to that which it received

when the machine was set in motion.

This impulse may be calculated for any part of a system of mechanism,

and may be called the reduced momentum of the machine for that point. In

the varied motion of the machine, the actual force on any part arising from

the variation of motion may be found by diiferentiating the reduced momentum

with respect to the time, just as we have found that the electromotive force

may be deduced from the electrotonic state by the same process.

Having found the relation between the velocities of the vortices and the

electromotive forces when the centres of the vortices are at rest, we must

extend our theory to the case of a fluid medium containing vortices, and

subject to all the varieties of fluid motion. If we fix our attention on any

one elementary portion of a fluid, we shall find that it not only travels from

one place to another, but also changes its form and position, so as to be elon-

gated in certain directions and compressed in others, and at the same time (in

the most general case) turned round by a displacement of rotation.

These changes of form and position produce changes in the velocity of the

molecular vortices, which we must now examine.

The alteration of form and position may always be reduced to three simple

extensions or compressions in the direction of three rectangular axes, together

with three angular rotations about any set of three axes. We shall first con-

sider the effect of three simple extensions or compressions.

Prop. IX.—To find the variations of a, yS, y in the parallelepiped .r, y, z

when X becomes x-^-hx; y, y + Sy ; and z, z + Bz; the volume of the figure

remaining the same.

By Prop. II. we find for the work done by the vortices against pressure,

hW=p,B{xyz)-^(a'yzBx-i-p:'zxZy-\-'/x2jSz) (59);

and by Prop. VI. we find for the variation of energy,

BE=-^(aBa+ ^h^-{-yBy)xyz (60).
477
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The sum SW+BE must be zero by the conservation of energy, and 8 (xyz) = 0,

since xyz is constant; so that

(Sa-af)+^(s^-^|)+y(Sy-y|) = (61).

In order that this should be true independently of any relations between a, /8,

and y, we must have

Sa = a«|, S^=;8j, Sy =y| (62).

Prop. X.—To find the variations of a, /8, y due to a rotation 0^ about the

axis of X from y to 2;, a rotation O^ about the axis of y from z to x, and a

rotation ^3 about the axis of z from ic to y.

The axis of y8 will move away from the axis of x by an angle $3 ; so

that /8 resolved in the direction of x changes from to —JSO^.

The axis of y approaches that of x by an angle 6^ ; so that the resolved

part of y in direction x changes from to yd^.

The resolved part of a in the direction of x changes by a quantity depending

on the second power of the rotations, which may be neglected. The variations of

a, )8, y from this cause are therefore

8a = yl9,-M, S^ = a^3-y(9„ hy^^d.-aO, (63).

The most general expressions for the distortion of an element produced by

the displacement of its different parts depend on the nine quantities

d ^ d ^ d ^ d ^ d ^ d ^ d ^ d ^ d ^

tJ""' 3^^^' Tz^"' Tx^J- Ty^y- di^' Tx^' Ty^- Tz^-'

and these may always be expressed in terms of nine other quantities, namely,

three simple extensions or compressions,

Zx Zy hz'

^' Y' ~^

along three axes properly chosen, x\ y\ z', the nine direction-cosines of these

axes with their six connecting equations, which are equivalent to three inde-

pendent quantities, and the three rotations 6^, 0,, 0^ about the axes of x, y, z.

Let the direction-cosines of x' with respect to cc, y, z be /„ mj, n^^ those of

y\ \y 7?ij, Tiy and those of z\ Zj, ma, n, ; then we find
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dx X y z

-J- Bx = I,m, — + km, 4- + ^wi,— - d.

dy ' ' X ' ' y

(C4),

witli similar equations for quantities involving Sy and 8z.

Let a, 13', y be the values of a, ^, y referred to the axes x, y, z; then

a=l,a + mJ3 + n,y^

^' = l,a + mS-^n,y I (65).

y = l,a + m^fi + n{y J

We shaU then have ha = kha +a^ ^-l,^' + ye,-^e, {^(:>),

=i^a'^+ij3'K+W^f+ye.-^d. (67).

By substituting the values of a, /3', y, and comparing with equations (64), we

find

^-=4^--^4'"^^^'^ ^''^

as the variation of a due to the change of form and position of the element.

The variations of ^ and y have similar expressions.

Prop. XI.—To find the electromotive forces in a moving body.

The variation of the velocity of the vortices in a moving element is due to

two causes—the action of the electromotive forces, and the change of form and

position of the element. The whole variation of a is therefore

«"=KS-f)^'^"^^^^^4^^^^^^^ ^''\

But since a is a function of x, y. z and t, the variation of a may be aiso written

^'^=Pj^-py-^TJ'^'i^ (^»'-

Equating the two values of Sa and dividing by ht, and remembering that in the

motion of an incompressible medium

d dx ddy d dz_ /^,x

didt^dy dt^ dzdt~^ ^ ^'

vol. l ^1
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id that in the absence of free magnetism

dx dy dz
•(72).

we find

\/dQ
fi\dz

Putting

dy)

d dx

'^'^dz'dt

d dz d dy ^n d dx

'^dzdt~°'dydi ' '^'dyTt

dy dx da dz da dy d^ dx _^da _
dz dt dz dt dy dt dy dt di

and
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The physical meaning of the terms in the expression for the electromotive

force depending on the motion of the body, may be made simpler by supposing

the field of magnetic force uniformly magnetized with intensity a in the direction

of the axis of x. Then if /, m, n be the direction-cosines of any portion of a

linear conductor, and S its length, the electromotive force resolved in the direction

of the conductor will be

e = S{Pl + Qm + Rn) (78),

' = ^^^{'''jt-''t) (^^)'

that is, the product of /xa, the quantity of magnetic induction over unit of area

multiplied by Sim y, -" ;7r)» the area swept out by the conductor S in unit of

time, resolved perpendicular to the direction of the magnetic force.

The electromotive force in any part of a conductor due to its motion is

therefore measured by the number of lines of magnetic force which it crosses

in unit of time ; and the total electromotive force in a closed conductor is

measured by the change of the number of lines of force which pass through it

;

and this is true whether the change be produced by the motion of the con-

ductor or by any external cause.

In order to understand the mechanism by which the motion of a conductor

across lines of magnetic force generates an electromotive force in that conductor,

we must remember that in Prop. X. we have proved that the change of form

of a portion of the medium containing vortices produces a change of the velocity

of those vortices ; and in particular that an extension of the medium in the

direction of the axes of the vortices, combined with a contraction in all direc-

tions perpendicular to this, produces an increase of velocity of the vortices

;

while a shortening of the axis and bulging of the sides produces a diminution

of the velocity of the vortices.

This change of the velocity of the vortices arises from the internal effects

of change of form, and is independent of that produced by external electro-

motive forces. If, therefore, the change of velocity be prevented or checked,

electromotive forces will arise, because each vortex will press on the surrounding

particles in the direction in which it tends to alter its motion.

Let A, fig. 4, p. 488, represent the section of a vertical wire moving in the

direction of the arrow from west to east, across a system of lines of magnetic force

61—2
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running north and south. The curved lines in fig. 4 represent the lines of fluid

motion about the wire, the wire being regarded as stationary, and the fluid as

having a motion relative to it. It is evident that, from this figure, we can trace

the variations of form of an element of the fluid, as the form of the element

depends, not on the absolute motion of the whole system, but on the relative

motion of its parts.

In front of the wire, that is, on its east side, it will be seen that as the

wire approaches each portion of the medium, that portion is more and more

compressed in the direction from east to west, and extended in the direction

from north to south ; and since the axes of the vortices lie in the north and

south direction, their velocity will continually tend to increase by Prop. X.,

unless prevented or checked by electromotive forces acting on the circumference

of each vortex.

We shall consider an electromotive force as positive when the vortices tend

to move the interjacent particles upwards perpendicularly to the plane of the

paper.

The vortices appear to revolve as the hands of a watch when we look at

them from south to north ; so that each vortex moves upwards on its west side,

and downwards on its east side. In front of the wire, therefore, where each

vortex is striving to increase its velocity, the electromotive force upwards must

be greater on its west than on Its east side. There will therefore be a con-

tinual increase of upward electromotive force from the remote east, where it is

zero, to the front of the moving wire, where the upward force wiU be strongest.

Behind the wire a difierent action takes place. As the wire moves away

from each successive portion of the medium, that portion is extended from east

to west, and compressed from north to south, so as to tend to diminish the

velocity of the vortices, and therefore to make the upward electromotive force

greater on the east than on the west side of each vortex. The upward electro-

motive force wiU therefore increase continually from the remote west, where it

is zero, to the back of the moving wire, where it will be strongest.

It appears, therefore, that a vertical wire moving eastwards will experience

an electromotive force tending to produce in it an upward current. If there

is no conducting circuit in connexion with the ends of the wire, no current will

be formed, and the magnetic forces wHl not be altered ; but if such a circuit

exists, there will be a current, and the lines of magnetic force and the velocity
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of the vortices will be altered from their state previous to the motion of the

wire. The change in the lines of force is shewn in fig. 5. The vortices in

front of the wire, instead of merely producing pressures, actually increase in

velocity, while those behind have their velocity diminished, and those at the

sides of the wire have the direction of their axes altered; so that the final

effect is to produce a force acting on the wire as a resistance to its motion.

We may now recapitulate the assumptions we have made, and the results we
have obtained.

(1) Magneto-electric phenomena are due to the existence of matter under
certain conditions of motion or of pressure in every part of the magnetic field,

and not to direct action at a distance between the magnets or currents. The
substance producing these effects may be a certain part of ordinary matter, or

it may be an aether associated with matter. Its density is greatest in iron,

and least in diaraagnetic substances ; but it must be in all cases, except that of

iron, very rare, since no other substance has a large ratio of magnetic capacity

to what we call a vacuum.

(2) The condition of any part of the field, through which lines of magnetic

force pass, is one of unequal pressure in different directions, the direction of

the lines of force being that of least pressure, so that the lines of force may
be considered lines of tension.

(3) This inequality of pressure is produced by the existence in the medium
of vortices or eddies, having their axes in the direction of the lines of force,

and having their direction of rotation determined by that of the lines of force.

We have supposed that the direction was that of a watch to a spectator

looking from south to north. We might with equal propriety have chosen the

reverse direction, as far as known facts are concerned, by supposing resinous elec-

tricity instead of vitreous to be positive. The effect of these vortices depends

on their density, and on their velocity at the circumference, and is independent

of their diameter. The density must be proportional to the capacity of the

substance for magnetic induction, that of the vortices in air being 1. The
velocity must be very great, in order to produce so powerful effects in so rare

a medium.

The size of the vortices is indeterminate, but is probably very small as

compared with that of a complete molecule of ordinary matter^''.

* The angular momentum of the system of vortices depends on their average diameter ; so tkat if the

diameter were sensible, we might expect that a magnet would behave as if it contained a revoh-ing bodv
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(4) The vortices are separated from each other by a single layer of round

particles, so that a system of cells is formed, the partitions being these layers

of particles, and the substance of each cell being capable of rotating as a vortex.

(5) The particles forming the layer are in rolling contact with both the

vortices which they separate, but do not rub against each other. They are

perfectly free to roll between the vortices and so to change their place, provided

they teep within one complete molecule of the substance; but in passing from

one molecule to another they experience resistance, and generate irregular

motions, which constitute heat. These particles, in our theory, play the part of

electricity. Their motion of translation constitutes an electric current, their

rotation serves to transmit the motion of the vortices from one part of the

field to another, and the tangential pressures thus called into play constitute

electromotive force. The conception of a particle having its motion connected

with that of a vortex by perfect rolling contact may appear somewhat awkward.

I do not bring it forward as a mode of connexion existing in nature, or even

as that which I would willingly assent to as an electrical hypothesis. It is,

however, a mode of connexion which is mechanically conceivable, and easily

investigated, and it serves to bring out the actual mechanical connexions

between the known electro-magnetic phenomena; so that I venture to say that

any one who understands the provisional and temporary character of this

hypothesis, will find himself rather helped than hindered by it in his search

after the true interpretation of the phenomena.

The action between the vortices and the layers of particles is in part

tangential; so that if there were any slipping or difierential motion between

the parts in contact, there would be a loss of the energy belonging to the

lines of force, and a gradual transformation of that energy into heat. Now we

know that the hues of force about a magnet are maintained for an indefinite

time without any expenditure of energy; so that we must conclude that

wherever there is tangential action between difierent parts of the medium, there

is no motion of slipping between those parts. We must therefore conceive that

the vortices and particles roll together without shpping ; and that the interior

strata of each vortex receive their proper velocities from the exterior stratum

without slipping, that is, the angular velocity must be the same throughout each

vortex.

within it, -and that the existence of this rotation might be detected by experiments on the free rotation of a

magnet. I have made experiments to investigate this question, but have not yet fully tried the apparatus.
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The only process in which electro-magnetic energy is lost and transforaied

into heat, is in the passage of electricity from one molecule to another. In all

other cases the energy of the vortices can only be diminished when an equivalent

quantity of mechanical work is done by magnetic action.

(6) The effect of an electric current upon the surrounding medium is to

make the vortices in contact with the current revolve so that the parts next

to the current move in the same direction as the current. The parts furthest

from the current will move in the opposite direction ; and if the medium is a

conductor of electricity, so that the particles are free to move in any direction,

thfe particles touching the outside of these vortices will be moved in a direction

contrary to that of the current, so that there will be an induced current in

the opposite direction to the primary one.

If there were no resistance to the motion of the particles, the induced

current would be equal and opposite to the primary one, and would continue

as long as the primary current lasted, so that it would prevent all action of

the primary current at a distance. If there is a resistance to the induced

current, its particles act upon the vortices beyond them, and transmit the motion

of rotation to them, till at last all the vortices in the medium are set in

motion with such velocities of rotation that the particles between them have no

motion except that of rotation, and do not produce currents.

In the transmission of the motion from one vortex to another, there arises u

force between the particles and the vortices, by which the particles are pressed

in one direction and the vortices in the opposite direction. We call the force

actino- on the particles the electromotive force. The reaction on the vortices is

equal and opposite, so that the electromotive force cannot move any part of

the medium as a whole, it can only produce currents. When the primary

current is stopped, the electromotive forces all act in the opposite direction.

(7) When an electric current or a magnet is moved in presence of a

conductor, the velocity of rotation of the vortices in any part of the field is

altered by that motion. The force by which the proper amount of rotation is

transmitted to each vortex, constitutes in this case also an electromotive force,

and, if permitted, will produce currents.

(8) When a conductor is moved in a field of magnetic force, the vortices

in it and in its neighbourhood are moved out of their places, and are changed

in form. The force arising from these changes constitutes the electromotive
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force on a moving conductor, and is found by calculation to correspond with

that determined by experiment.

"We have now shewn in w-hat way electro-magnetic phenomena may be

imitated by an imaginary system of molecular vortices. Those who have been

already inclined to adopt an hypothesis of this kind, will find here the con-

ditions which must be fulfilled in order to give it mathematical coherence, and

a comparison, so far satisfactory, between its necessary results and known facts.

Those who look in a different direction for the explanation of the facts, may

be able to compare this theory with that of the existence of currents flowing

freely through bodies, and with that which supposes electricity to act at a

distance with a force depending on its velocity, and therefore not subject to

the law of conservation of energy.

The facts of electro-magnetism are so complicated and various, that the

explanation of any number of them by several different hypotheses must be

interesting, not only to physicists, but to all who desire to understand how

much evidence the explanation of phenomena lends to the credibility of a theory,

or how far we ought to regard a coincidence in the mathematical expression of

two sets of phenomena as an indication that these phenomena are of the same

kind. We know that partial coincidences of this kind have been discovered

;

and the fact that they are only partial is proved by the divergence of the

laws of the two sets of phenomena in other respects. We may chance to find,

in the higher parts of physics, instances of more complete coincidence, which

may require much investigation to detect their ultimate divergence.

NOTE.

Since the first part of this paper was written, I have seen in Crelle's Journal for 1859,

a paper by Prof. Helmholtz on Fluid Motion, in which he has pointed out that the lines

of fluid motion are arranged according to the game laws as the Hnes of magnetic force, the

path of an electric current corresponding to a line of axes of those particles of the fluid

which are in a state of rotation. This is an additional instance of a physical analogy, the

investigation of which may illustrate both electro-magnetism and hydrodynamics.
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[From the Philosophical Magazine for January and February, 1802.]

PART III.

THE THEORY OF MOLECULAR VORTICES APPLIED TO STATICAL ELECTRICITY.

In the first part of this paper ^^ I have shewn how the forces acting between

ma^ets, electric currents, and matter capable of magnetic induction may be

accounted for on the hypothesis of the magnetic field being occupied with

innumerable vortices of revolving matter, their axes coinciding with the direction

of the magnetic force at every point of the field.

The centrifugal force of these vortices produces pressures distributed in such

a way that the final efiect is a force identical in direction and magnitude

with that li^ich we observe.

In the second partf I described the mechanism by which these rotations

may be made to coexist, and to be distributed according to the known laws

of magnetic lines of force.

I conceived the rotating matter to be the substance of certain cells, divided

from each other by cell-walls composed of particles which are very small com-

pared with the cells, and that it is by the motions of these particles, and their

tangential action on the substance in the cells, that the rotation is communi-

cated from one cell to another.

I have not attempted to explain this tangential action, but it is necessary

to suppose, in order to account for the transmission of rotation from the exterior

to the interior parts of each cell, that the substance in the cells possesses

elasticity of figure, similar in kind, though different in degree, to that observed

in BoUd bodies. The undulatory theory of light requires us to admit this kind

of elasticity in the luminiferous medium, in order to account for transverse

vibrations. We need not then be surprised if the magneto-electric medium

possesses the same property.

PhiL Mag. March, 1861 [pp. 4.51—466 of this vol.].

t Phil. Mag. April and May, 1861 [pp. 467—488 of this vol.].

VOL. I. ^-
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According to our theory, the particles which forta the pai-titions between

the cells constitute the matter of electricity. The motion of these particles

constitutes an electric current; the tangential force with which the particles

are pressed by the matter of the cells is electromotive force, and the pressure

of the particles on each other corresponds to the tension or potential of the

electricity.

If we can now explain the condition of a body with respect to the

surrounding medium when it is said to be "charged" with electricity, and

account for the forces acting between electrified bodies, we shall have established

a connexion between all the principal phenomena of electrical science.

We know by experiment that electric tension is the same thing, whether

observed in statical or in current electricity; so that an electromotive force

produced by magnetism may be made to charge a Leyden jar, as Ls done by

the coil machine.

When a difference of tension exists in different parts of any body, the

electricity passes, or tends to pass, from places of greater to places of smaller

tension. If the body is a conductor, an actual passage of electricity takes

place; and if the difference of tensions is kept up, the current continues to

flow with a velocity proportional inversely to the resistance, or directly to the

conductivity of the body.

The electric resistance has a very wide range of values, that of the metals

being the smallest, and that of glass being so great that a charge of electricity

has been preserved'"* in a glass vessel for years without penetrating the thick-

ness of the glass.

Bodies which do not permit a current of electricity to flow through them

are called insulators. But though electricity does not flow through them,

the electrical effects are propagated through them, and the amount of these

effects differs according to the nature of the body; so that equally good insu-

lators may act differently as dielectrics t.

Here then we have two independent qualities of bodies, one by which they

allow of the passage of electricity through them, and the other by which they

allow of electrical action being transmitted through them without any electri-

city being allowed to pass. A conducting body may be compared to a porous

membrane which opposes more or less resistance to the passage of a fluid,

* By Professor W. Thomson. t Faraday, Experimental Researc/tes, Series xi.
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while a dielectric is like an elastic membrane which may be impervious to the

fluid, but transmits the pressure of the fluid on one side to that on the other.

As long as electromotive force acts on a conductor, it produces a current

which, as it meets with resistance, occasions a continual transformation of

electrical energy into heat, which is incapable of being restored again as electri-

cal energy by any reversion of the process.

Electromotive force acting on a dielectric produces a state of polarization

of its parts similar in distribution to the polarity of the particles of iron under

the influence of a magnet*, and, like the magnetic polarization, capable of

being described as a state in which every particle has its poles in opposite

conditions.

In a dielectric under induction, we may conceive that the electricity iri

each molecule is so displaced that one side is rendered positively, and the

other negatively electrical, but that the electricity remains entirely connected

with the molecule, and does not pass from one molecule to another.

The eSect of this action on the whole dielectric mass is to produce a

general displacement of the electricity in a certain direction. This displace-

ment does not amount to a current, because when it has attained a certain

value it remains constant, but it is the commencement of a current, and its

variations constitute currents in the positive or negative direction, according as

the displacement is increasing or diminishing. The amount of the displacement

depends on the nature of the body, and on the electromotive force ; so that

if h is the displacement, R the electromotive force, and E a coefficient

depending on the nature of the dielectric,

R=-iTrE'h',

and if r is the value of the electric current due to displacement,

_dh
'''

dt'

These relations are Independent of any theory about the internal mechanism

of dielectrics ; but when we find electromotive force producing electric displace-

ment in a dielectric, and when we find the dielectric recovering from its state

of electric displacement with an equal electromotive force, we cannot hel{)

* See Prof. Mossotti, " Discussione Analitica," Memorie della Soc. Itaiiaiui (Modena), Vol. xxiv.

Part 2, p. 49.

G-2—

2
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regarding the phenomena as those of an elastic body, yielding to a pressure,

and recovering its form when the pressure is removed.

According to our hypothesis, the magnetic medium is divided into cells,

separated by partitions formed of a stratum of particles which play the part

of electricity. When the electric particles are urged in any direction, they will,

by their tangential action on the elastic substance of the cells, distort each

cell, and call into play an equal and opposite force arising from the elasticity

of the cells. When the force is removed, the cells will recover their form,

and the electricity will return to its former position.

In the following investigation I have considered the relation between the

displacement and the force producmg it, on the supposition that the cells are

spherical. The actual form of the cells probably does not differ from that of

a sphere sufficiently to make much difference in the numerical result.

I have deduced from this result the relation between the statical and

dynamical measures of electricity, and have shewn, by a comparison of the

electro-magnetic experiments of MM. Kohlrausch and Weber with the velocity

of light as found by M. Fizeau, that the elasticity of the magnetic medium

in air is the same as that of the luminiferous medium, if these two coex-

istent, coextensive, and equally elastic media are not rather one medium.

It appears also from Prop. XV. that the attraction between two electrified

bodies depends on the value of E\ and that therefore it would be less in

turpentine than in air, if the quantity of electricity in each body remains the

same. If, however, the j^otentials of the two bodies were given, the attraction

between them would vary inversely as E\ and would be greater in turpentine

than in air.

Prop. XII. To find the conditions of equilibrium of an elastic sphere

whose surface is exposed to normal and tangential forces, the tangential forces

being proportional to the sine of the distance from a given point on the sphere.

Let the axis of z be the axis of spherical co-ordinates.

Let ^, -q, C be the displacements of any particle of the sphere in the direc-

tions of X, y, and z.

Let p^, p,jy, 2^zz be the stresses normal to planes perpendicular to the three

axes, and let Py^, 2^zx> X>xy be the stresses of distortion in the planes yz, zx,

and xy.
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Let fJL be the coefficient of cubic elasticity, so that if

(80).P-^d^Ty^S
Let in be the coefficient of rigidity, so that

^-^»=-(i-|)-^« («^)-

Then we have the following equations of elasticity in an isotropic medium,

(82);

with similar equations in y and z, and also

m /dr] dC
P-=2[d-z+dy)'^

In the case of the sphere, let us assume the radius = a, and

i=exz, y) = ezy, i=f{x' + y')+gz' + d

Then p„ = 2(ix-^m){e-irg)z-{-mez=Pyy'

p,, = 2 (/x

-

^m) {e-\-g)z + 2mgz

i'» = 2(« + 2/)2

(83).

(84).

(85).

(86),

The equation of internal equilibrium with respect to z is

d d d ^

dxP-+ d^P- + dzP'' = '>

which is satisfied in this case if

m(e + 2/+2^) + 2(^-im)(e+^) = (87).

The tangential stress on the surface of the sphere, whose radius is a at

an angular distance from the axis in plane xz,

T={Pxx -Pzz) sin cos 6 +jp„ (cos' 6 - sin' 6) (88)

ma
2m {e+f-g) a sin ^cos'^-^ (e + 2/) sin ^. .(89).
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In order that T may be proportional to sin 6, the first term must vanish, and

therefore

9 = ^+f (90).

r=_!^(e + 2/)sin^ (91).

The normal stress on the surface at any point is

N =2^xx sin'^ ^-^Vyy ^'^^'^ ^ + '^Pxz sin 6 cos d

= 2 (/x - \m) (e+g)a cos 6 + 2ma cos {{e +/) sin"- O + g cos' 6} (92)

;

or by (87) and (90), iV^= -77ia (e + 2/) cos ^ (93).

The tangential displacement of any point is

t = ico9e-Csm0= - {arf+d)sme (94).

The normal displacement is

n = ^sm0 + CGOse = {a'{e+f) + d}cos0 (95).

If we make a'{e+f) + d = (96),

there will be no normal displacement, and the displacement will be entirely

tangential, and we shall have

t = a-esm0 (97).

The whole work done by the superficial forces is

U=^X{Tt)dS,

the summation being extended over the surface of the sphere.

The energy of elasticity in the substance of the sphere is

the summation being extended to the whole contents of the sphere.

We find, as we ought, that these quantities have the same value, namely

U=-^Tra'me{e + 2f) (98).

We may now suppose that the tangential action on the surface arises from a

layer of particles in contact with it, the particles being acted on by their own

mutual pressure, and acting on the surfaces of the two cells with which they

are in contact.
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We assume the axis of z to be in the direction of maximum variation of

the pressure among the particles, and we have to determine the relation

between an electromotive force R acting on the particles in that direction, and

the electric displacement h which accompanies it.

Prop. XIII.—To find the relation betNveen electromotive force and electric

displacement when a uniform electromotive force R acts parallel to the axis of z.

Take any element IS of the surface, covered with a stratum whose density

is /3, and having its normal inclined 6 to the axis of 2; then the tangential

force upon it will be
pRhS sin = 2 TBS (99),

T being, as before, the tangential force on each side of the surface. Putting

p = -— as in equation (34)*, we find

R=-27rma(e + 2f) (100).

The displacement of electricity due to the distortion of the sphere is

tSS^ptsmd taken over the whole surface (101)5

and if h is the electric displacement per unit of volume, we shall have

iTTa% = ^i*e (102),

h = ^ae (103);
2tt

so that R = in-m^^-fh (104),
e

or we may write R= — inE-h (105),

e + 2f
provided we assume E'=—7nn~ " (lOG).

or

Finding e and / from (87) and (90), we get

E^ = Trm 1— (107).

3 /x

The ratio of m to /x varies in different substances; but in a medium whose

elasticity depends entirely upon forces acting between pairs of particles, this

ratio is that of G to 5, and in this case

E' = Trm (108).

Phil. Mag. April, ISGl [p. 471 of this vol.].
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When the resistance to compression is infinitely greater than the resistance to

distortion, as in a liquid rendered slightly elastic by gum or jelly,

E'^^TTin (109).

The value of Er must lie between these limits. It is probable that the substance

of our cells is of the former kind, and that we must use the first value of E\

which is that belonging to a hypothetically "perfect" solid'^ in which

5m = 6/i (110),

so that we must use equation (108).

Prop. XIV.—To correct the equations (9)t of electric currents for the efiect

due to the elasticity of the medium.

We have seen that electromotive force and electric displacement are

connected by equation (105). Differentiating this equation with respect to t, we

find

f=--^§ (-)

shewing that when the electromotive force varies, the electric displacement also

varies. But a variation of displacement is equivalent to a current, and this

current must be taken into account in equations (9) and added to r. The three

equations then become

_ J_ /^ _^ _ i ^^
-^~

47r \dv dz E' dt

^"477 \dy dx £> dt)

1 /cZy8 da ]^dR\
E^ dt)

(112),

4Tr\dx dy E"

where p, q, r are the electric currents in the directions of x, y, and z; a, ^, y
are the components of magnetic intensity; and P, Q, R are the electromotive

forces. Now if e be the quantity of fi:ee electricity in unit of volume, then the

equation of continuity will be

I4M+S- (^^«)-

See Rankine "On Elasticity," Camb. and Dub. Math. Joum. 1851.

t Phil Mag. March, 1861 [p. 462 of this vol.].
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Differentiating (112) with respect to x, y, and z respectively, and substituting,

we find

de_J^d (JP clQ dR\

dt~ inE'dtydx dy dz j
^ "

1 (dP
.
dQ

.
dR\ .....

the constant being omitted, because e = when there are no electromotive forces.

Prop. XV.—To find the force acting between two electrified bodies.

The energy in the medium arising from the electric displacements is

U=-t^{Pf+Qg + Rh)hV (116),

where P, Q, R are the forces, and/, g, h the displacements. Now when there

is no motion of the bodies or alteration of forces, it appears from equations (77)*

that

j^ d^ ^ d^ j._ d^ , .

and we know by (105) that

P= ^AirElf, Q= -iirE'g, R=-i7rPPh (119);

dy\

^. 1 ^ fd^
whence ^=8^^U -^4-g)^^ (-).

Integi-ating by parts throughout all space, and remembering that ^ vanishes at

an infinite distance,

^-sk'H^.-w-^y (-)^

or by (115), U=it{^e)hV (122).

Now let there be two electrified bodies, and let e, be the distribution of

electricity in the first, and ^i the electric tension due to it, and let

1 fd^ d^ d^,\ , .

Let Cj be the distribution of electricity in the second body, and ^, the

tension due to it; then the whole tension at any point will be "^i + "*!'„ and

the expansion for U will become

ir=it(%e,-\-%e, + %e, + %e,)BV (124).

PhU. Mag. May, 1861 [p. 482 of this vol.].

VOL. I. 63
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Let the body whose electricity is e^ be moved in any way, the electricity

moving along with the body, then since the distribution of tension ^j moves

with the body, the value of %e^ remains the same.

%ei also remains the same; and Green has shewn (Essay on Electricity,

p. 10) that %e^ = %ei, so that the work done by moving the body against

electric forces

W=BU=S%(%e,)BV (125).

And if ei is confined to a small body,

W=e,B%,

or Fdr = e,'^dr (126),

where F is the resistance and dr the motion.

If the body e^ be small, then if ?' is the distance from e^, equation (123)

gives

r

whence F=-JS^%' (127);

or the force is a repulsion varying inversely as the square of the distance.

Now let 7)i and 172 be the same quantities of electricity measured stati-

cally, then we know by definition of electrical quantity

F=-'^ (128);

and this will be satisfied provided

ri, = Fe, and r), = Ee, (129);

so that the quantity F previously determined in Prop. XIII. is the number by

which the electrodynamic measure of any quantity of electricity must be

multipUed to obtain its electrostatic measure.

That electric current which, circulating round a ring whose area is unity,

produces the same efiect on a distant magnet as a magnet would produce

whose strength is unity and length unity placed perpendicularly to the plane

of the ring, is a unit current; and F units, of electricity, measured statically,
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traverse the section of this current in one second,— these units being such that

any two of them, placed at unit of distance, repel each other with unit of force.

We may suppose either that E units of positive electricity move in the

positive direction through the wire, or that E units of negative electricity move

in the negative direction, or, tliirdly, that \E units of positive electricity move

in the positive direction, while ^E units of negative electricity move in the

negative direction at the same time.

The last is the supposition on which MM. Weber and Kohlrausch* proceed,

who have found

^^=155,370,000,000 (130),

the unit of length being the millimetre, and that of time being one second,

whence
j5'= 310,740,000,000 (131).

Prop. XVI.—To find the rate of propagation of transverse vibrations

through the elastic medium of which the cells are composed, on the suppo-

sition that its elasticity is due entirely to forces acting between pairs of particles.

By the ordinary method of investigation we know that

y=J^, (132),

where m is the coefiScient of transverse elasticity, and p is the density. By
referring to the equations of Part I., it will be seen that if /) is the density

of the matter of the vortices, and /x is the " coefficient of magnetic induction,"

l^
= TTp (133);

whence 7rm= F'/i (134);

and by (108), E= V\fjx (135).

In air or vacuum /x = 1, and therefore

V=E
1

= 310,740,000,000 millimetres per second | (136).

= 193,088 miles per second J

* Abhandlungen der K&nig. Sdchnachen Geaellschaftf Vol. iii. (1857), p. 260.

63—2
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The velocity of light in air, as determined by M. Fizeau*, ia 70,843 leagues

per second (25 leagues to a degree) which gives

7=314,858,000,000 millimetres

= 195,647 miles per second (137).

The velocity of transverse undulations in our hypothetical medium, calculated

from the electro-magnetic experiments of MM. Kohlrausch and Weber, agrees so

exactly with the velocity of light calculated from the optical experiments of

M. Fizeau, that we can scarcely avoid the inference that light consists in the

transverse undulations of the same medium which is the cause of electric and

nmgnetic phenomena.

Prop. XVII.—To find the electric capacity of a Leyden jar composed of

any given dielectric placed between two conducting surfaces.

Let the electric tensions or potentials of the two surfaces be "^^ and Sl'.j.

Let S be the area of each surface, and 6 the distance between them, and let

e and - e be the quantities of electricity on each surface ; then the capacity

^=^ <i'^«)-

Within the dielectric we have the variation of "^ perpendicular to the surface

Beyond either surface this variation is zero.

Hence by (115) applied at the surface, the electricity on unit of area is

OT ('''^'

and we deduce the whole capacity of the apparatus,

^-l&e (^^°)'

so that the quantity of electricity required to bring the one surface to a

* Comptes Rmdus, Vol. xxix. (1849), p. 90. In Galbraitu and Haughton's Manual of Astronomy,

M. Fizeau's result is stated at 169,944 geographical miles of 1000 fathoms, which gives 193,118

statute miles; the value deduced from aberration is 192,000 miles.
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given tension varies directly as the surface, inversely as the thickness, and

inversely as the square of E.

Now the coefl&cient of induction of dielectrics is deduced from the capacity

of induction-apparatus formed of them ; so that if D is that coefficient, D varies

inversely as E", and is unity for air. Hence

^=Yr^
<"•)•

where V and V^ are the velocities of light in air and in the medium. Now

V
if i is the. index of refraction, -jir = i, and

Z> = - (142);

so that the inductive power of a dielectric varies directly as the square of the

index of refraction, and inversely as the magnetic inductive power.

In dense media, however, the optical, electric, and magnetic phenomena

may be modified in different degrees by the particles of gross matter ; and their

mode of arrangement may influence these phenomena differently in different

directions. The axes of optical, electric, and magnetic properties will probably

coincide ; but on account of the unknown and probably complicated nature of

the reactions of the heavy particles on the setherial medium, it may be im-

possible to discover any general numerical relations between the optical, electric,

and magnetic ratios of these axes.

It seems probable, however, that the value of E, for any given axis,

depends upon the velocity of light whose vibrations are parallel to that axis,

or whose plane of polarization is perpendicular to that axis.

In a uniaxal crystal, the axial value of E will depend on the velocity of

the extraordinary ray, and the equatorial value will depend on that of the

ordinary ray.

In "positive" crystals, the axial value of E will be the least and in

negative the greatest.

The value of D„ which varies inversely as E\ will, cwteris panbus, be greatest

for the axial direction in positive crystals, and for the equatorial direction in

negative crystals, such as Iceland spar. If a spherical portion of a crystal,

radius =a, be suspended in a field of electric force which would act on unit of



502 ON PHYSICAL LINES OF FORCE.

electricity with force =1, and if A and D, be the coefficients of dielectric

induction along the two axes in the plane of rotation, then if 6 be the incli-

nation of the axis to the electric force, the moment tending to turn the sphere

will be

3 ^J^L;L?^_^^^7Vsin2^ (143),
^ (2A+1)(2A + 1)

and the axis of greatest dielectric induction (D^ will tend to become parallel to

the lines of electric force.

PART IV.

THE THEORY OF MOLECULAR VORTICES APPLIED TO THE ACTION OF MAGNETISM

ON POLARIZED LIGHT.

The connexion between the distribution of lines of magnetic force and that

of electric currents may be completely expressed by saying that the work done

on a unit of imaginary magnetic matter, when carried round any closed curve,

is proportional to the quantity of electricity which passes through the closed

curve. The mathematical form of this law may be expressed as in equations (9)*,

wliich I here repeat, where a, /8, y are the rectangular components of magnetic

intensity, and p, q, r are the rectangular components of steady electric cuiTents,

^ 47r \dy dz

1 /da
^= ii[d-z-
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(2) If a, /8, y represent rotatory displacements in a uniform and continuous

substance, then p, q, r represent the relative linear displacement of a particle

with respect to those in its immediate neighbourhood. See a paper by Prof. W.

Thomson "On a Mechanical Representation of Electric, Magnetic, and Galvanic

Forces," Camh. and Dublin Math. Journal, Jan. 1847.

(3) If a, j8, y represent the rotatory velocities of vortices whose centres

are fixed, then p, q, r represent the velocities with which loose particles placed

between them would be carried along. See the second part of this paper (Phil.

Mag. April, 1861) [p. 469].

It appears from all these instances that the connexion between magnetism

and electricity has the same mathematical form as that between certain

pairs of phenomena, of which one has a linear and the other a rotatory

character. Professor Challis* conceives magnetism to consist in currents of a

fluid whose direction corresponds with that of the lines of magnetic force
;
and

electric currents, on this theory, are accompanied by, if not dependent on, a

rotatory motion of the fluid about the axis of the current. Professor Helmholtzf

has investigated the motion of an incompressible fluid, and has conceived lines

drawn so as to correspond at every point with the instantaneous axis of

rotation of the fluid there. He has pointed out that the lines of fluid motion

are arranged according to the same laws with respect to the lines of rotation,

as those by which the lines of magnetic force are arranged with respect to

electric currents. On the other hand, in this paper I have regarded magnetism

as a phenomenon of rotation, and electric currents as consisting of the actual

translation of particles, thus assuming the inverse of the relation between the

two sets of phenomena.

Now it seems natural to suppose that all the direct efiects of any cause

which is itself of a longitudinal character, must be themselves longitudinal, and

that the dii^ect eflects of a rotatory cause must be themselves rotatory\ A

motion of translation along an axis cannot produce a rotation about that axis

unless it meets with some special mechanism, like that of a screw, which

connects a motion in a given direction along the axis with a rotation in a given

direction round it; and a motion of rotation, though it may produce tension

along the axis, cannot of itself produce a current in one direction along the axis

rather than the other.

* Phil. Mag. December, 1860, January and February, 18G1.

t Crelle, Journal, Vol. LV. (1858), p. 25.
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Electric currents are known to produce effects of transference in tlie direc-

tion of the current. They transfer the electrical state from one body to another,

and they transfer the elements of electrolytes in opposite directions, but they

do not* cause the plane of polarization of light to rotate when the light tra-

verses the axis of the current.

On the other hand, the magnetic state is not characterized by any strictly

longitudinal phenomenon. The north and south poles differ only in their names,

and these names might be exchanged without altering the statement of any

magnetic phenomenon ; whereas the positive and negative poles of a battery are

completely distinguished by the different elements of water which are evolved

there. The magnetic state, however, is characterized by a well-marked rotatory

phenomenon discovered by Faradayf—the rotation of the plane of polarized light

when transmitted along the lines of magnetic force.

When a transparent diamagnetic substance has a ray of plane-polarized light

passed through it, and if lines of magnetic force are then produced in the

substance by the action of a magnet or of an electric current, the plane of

polarization of the transmitted light is found to be changed, and to be turned

through an angle depending on the intensity of the magnetizing force within

the substance.

The direction of this rotation in diamagnetic substances is the same as that

in which positive electricity must circulate round the substance in order to

produce the actual magnetizing force within it; or if we suppose the horizontal

part of terrestrial magnetism to be the magnetizing force acting on the sub-

stance, the plane of polarization would be turned in the direction of the earth's

true rotation, that is, from west upwards to east.

In paramagnetic substances, M. VerdetJ has found that the plane of polari-

zation is turned in the opposite direction, that is, in the direction in which

negative electricity would flow if the magnetization were effected by a helix

surrounding the substance.

In both cases the absolute direction of the rotation is the same, whether

the light passes from north to south or from south to north,—a fact which dis-

tinguishes this phenomenon from the rotation produced by quartz, turpentine, &c.,

Faraday, Experimental Eesearclies, 951—954, and 2216—2220.

t Ibid., Series xix.

X Comptes Rendus, Vol. XLiii. p. 529; Vol. XLiv, p. 1209.
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in which the absolute direction of rotation is reversed when that of the light

is reversed. The rotation in the latter case, whether related to an axLs, as in

quartz, or not so related, as in fluids, indicates a relation between the direction

of the ray and the direction of rotation, which is similar in its formal expression

to that between the longitudinal and rotatory motions of a right-handed or a

left-handed screw; and it indicates some property of the substance the mathe-

matical form of which exhibits right-handed or left-handed relations, such as are

known to appear in the external forms of crystals having these properties. In

the magnetic rotation no such relation appears, but the direction of rotation is

directly connected with that of the magnetic lines, in a way which seems to

indicate that magnetism is really a phenomenon of rotation.

The transference of electrolytes in fixed directions by the electric current,

and the rotation of polarized light in fixed directions by magnetic force, are

the facts the consideration of which has induced me to regard magnetism as a

phenomenon of rotation, and electric currents as phenomena of translation, instead

of following out the analogy pointed out by Helmholtz, or adopting the theory

propounded by Professor Challis.

The theory that electric currents are linear, and magnetic forces rotator}'

phenomena, agrees so far with that of Ampere and Weber ; and the hypothesis

that the magnetic rotations exist wherever magnetic force extends, that the

centrifugal force of these rotations accounts for magnetic attractions, and that

the inertia of the vortices accounts for induced currents, is supported by the

opinion of Professor W. Thomson*. In fact the whole theory of molecular vor-

tices developed in this paper has been suggested to me by observing the

direction in which those investigators who study the action of media are looking

for the explanation of electro-magnetic phenomena.

Professor Thomson has pointed out that the cause of the magnetic action

on light must be a real rotation going on in the magnetic field. A right-handed

circularly polarized ray of light is found to travel with a different velocity

according as it passes from north to south, or from south to north, along a

line of magnetic force. Now, whatever theory we adopt about the direction of

vibrations in plane-polarized light, the geometrical arrangement of the parts of

the medium during the passage of a right-handed circularly polarized ray is

exactly the same whether the ray is moving north or south. The only difference

* See Nichol's Cyclopcedia, art "Magnetism, Dynamical Relations of," edition 1860; Proceedings

of Royal Society, June 1856 and June 1861 ; and Phil. Mag. 1857.

VOL. I. 64
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is, that the particles describe their circles in opposite directions. Since, therefore,

the configuration is the same in the two cases, the forces acting between par-

ticles must be the same in both, and the motions due to these forces must be

equal in velocity if the medium was originally at rest; but if the medium be

in a state of rotation, either as a whole or in molecular vortices, the circular

vibrations of light may differ in velocity according as their direction is similar

or contrary to that of the vortices.

We have now to investigate whether the hjrpothesis developed in this

paper—that magnetic force is due to the centrifugal force of small vortices, and

that these vortices consist of the same matter the vibrations of which constitute

liglit—leads to any conclusions as to the effect of magnetism on polarized light.

We suppose transverse vibrations to be transmitted through a magnetized

medium. How will the propagation of these vibrations be affected by the

circumstance that portions of that medium are in a state of rotation ?

In the following investigation, I have found that the only effect which the

rotation of the vortices will have on the light will be to make the plane of

polarization rotate in the same direction as the vortices, through an angle

proportional

—

{A) to the thickness of the substance,

(B) to the resolved part of the magnetic force parallel to the ray,

(C) to the index of refraction of the ray,

{D) inversely to the square of the wave-length in air,

[E) to the mean radius of the vortices,

{F) to the capacity for magnetic induction.

A and B have been fully investigated by M. Verdet'"*, who has shewn that

the rotation is strictly proportional to the thickness and to the magnetizing

force, and that, when the ray is inclined to the magnetizmg force, the rotation

is as the cosine of that inclination. D has been supposed to give the true

relation between the rotation of different rays; but it is probable that C must

be taken into account in an accurate statement of the phenomena. The rotation

varies, not exactly inversely as the square of the wave length, but a little faster;

so that for the highly refrangible rays the rotation is greater than that given

by this law, but more nearly as the index of refraction divided by the square

of the wave-lfength.

Annates de Chimie et de Physique, s6r. 3, Vol. XLi. p. 370; Vol. xliii. p. 37.
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The relation (E) between the amount of rotation and the size of the

vortices shews that different substances may differ in rotating power inde-

pendently of any observable difference in other respects. We know nothing

of the absolute size of the vortices ; and on our hypothesis the optical phenomena

are probably the only data for determining their relative size in different sub-

stances.

On our theory, the direction of the rotation of the plane of polarization

depends on that of the mean moment of momenta, or angular momentum, of the

molecular vortices ; and since M. Verdet has discovered that magnetic substances

have an effect on light opposite to that of diamagnetic substances, it follows that

the molecular rotation must be opposite in the two classes of substances.

We can no longer, therefore, consider diamagnetic bodies as being those

whose coeflBcient of magnetic indu-ction is less than that of space empty of

gross matter. We must admit the diamagnetic state to be the opposite of the

paramagnetic ; and that the vortices, or at least the influential majority of them,

in diamagnetic substances, revolve in the direction in which positive electricity

revolves in the magnetizing bobbin, while in paramagnetic substances they

revolve in the opposite direction.

This result agrees so far with that part of the theory of M. Weber*

which refers to the paramagnetic and diamagnetic conditions. M. Weber sup-

poses the electricity in paramagnetic bodies to revolve the same way as the

surrounding helix, while in diamagnetic bodies it revolves the opposite way.

Now if we regard negative or resinous electricity as a substance the absence

of which constitutes positive or vitreous electricity, the results will be those

actually observed. This will be true independently of any other hypothesis

than that of M. Weber about magnetism and diamagnetism, and does not

require us to admit either M. Weber's theory of the mutual action of electric

particles in motion, or our theory of cells and cell-walls.

I am inclined to believe that iron differs from other substances in the

manner of its action as well as in the intensity of its magnetism; and I think

its behaviour may be explained on our hypothesis of molecular vortices, by

supposing that the particles of the iron itself are set in rotation by the tan-

gential action of the vortices, in an opposite direction to their own. These

large heavy particles would thus be revolving exactly as we have supposed the

* Taylor's Scientific Memoirs, Vol. v. p. 477.

64—2
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infinitely small particles constituting electricity to revolve, but without being

free like them to change their place and form currents.

The whole energy of rotation of the magnetized field would thus be greatly

increased, as we know it to be ; but the angular momentum of the iron

particles would be opposite to that of the aethereal cells and immensely greater,

so that the total angular momentum of the substance will be in the direction

of rotation of the iron, or the reverse of that of the vortices. Since, however,

the angular momentum depends on the absolute size of the revolving portions

of the substance, it may depend on the state of aggregation or chemical

arrangement of the elements, as well as on the ultimate nature of the com-

ponents of the substance. Other phenomena in nature seem to lead to the

conclusion that all substances are made up of a number of parts, finite in size,

the particles composing these parts being themselves capable of internal motion.

Prop. XVIII.—To find the angular momentum of a vortex.

The angular momentum of any material system about an axis is the sum

of the products of the mass, dm, of each particle multipHed by twice the area

it describes about that axis in unit of time ; or if ^ is the angular momentum
about the axis of x,

As we do not know the distribution of density within the vortex, we shall

determine the relation between the angular momentum and the energy of the

vortex which was found in Prop. VI.

Since the time of revolution is the same throughout the vortex, the mean

angular velocity o> will be uniform and =-, where a is the velocity at the

circumference, and )• the radius. Then

A = ^dmroi,

and the energy E= \^dmr^(a^ = ^Ao>,

= -!^/xa-Fby Prop. VI.*
OTT

whence A = -—[xraV (144)

* Phil. Mag. April 1861 [p. 472 of this vol.].
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for the axis of x, with similar expressions for the other axes, V bein^r tlie

volume, and r the radius of the vortex.

Prop. XIX.—To determine the conditions of undulatory motion in a medium

containing vortices, the vibrations being perpendicular to the direction of pro-

pagation.

Let the waves be plane-waves propagated in the direction of 2, and let

the axis of x and y be taken in the directions of greatest and least elasticity

in the plane xy. Let x and y represent the displacement parallel to these axes,

which will be the same throughout the same wave-surface, and therefore we

shall have x and y functions of z and t only.

Let X be the tangential stress on unit of area parallel to xy, tending to

move the part next the origin in the direction of x.

Let Y be the corresponding tangential stress in the

direction of y.

Let ^1 and k^ be the coefficients of elasticity with respect

to these two kinds of tangential stress ; then, if the medium

is at rest,

Now let us suppose vortices in the medium whose velocities are represented

as usual by the symbols a, ^, y, and let us suppose that the value of a is

increasing at the rate -j- , on account of the action of the tangential stresses

alone, there being no electromotive force in the field. The angular momentum

in the stratum whose area is unity, and thickness dz, is therefore increasing

at the rate — fir -j- dz; and if the part of the force Y which produces this effect

is Y', then the moment of Y' is - Y'dz, so that Y' = --— fir ^- .

'

Air'^ at

The complete value of Y when the vortices are in a state of varied motion

(145).

dy 1 da

dz~4n'^'^ dt

o- 1 1 ^ J
dx 1 d^

Similarly. Z=*,^ + j^M*"^
,
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The whole force acting upon a stratum whose thickness is dz and area

unity, is ,— dz in the direction of x, and -p dz in direction of y. The mass

of the stratum is pdz, so that we have as the equations of motion,

d'x dX J d'x , d I d^
'diP df-~~d^~^'dz^'^dzi^'^'^

d'y _dY_i d-y d 1

df dz dz'

da.

dz Att'^ di

(146).

Now the changes of velocity -j- and -^ are produced by the motion of

the medium contaiimig the vortices, which distorts and twists every element

of its mass; so that we must refer to Prop. X.* to determine these quantities

in terms of the motion. We find there at equation (68),

da = a-T- Sx-\-fi
-J-

Bx + y — Bx (68).
dx dy '' dz

Since Bx and By are functions of z and t only, we may write this equation

and in like manner,

so that if we now put

equations of motion

da _ d"x

dt ~^ dzdt

d^_ d?y_

dt ^ dzdt

.(147),

I /xr
a'/), h^ = Tfp, and — — y = c', we may write the

d'x .d'x d^y
^"^

dz'^"" dz^dtdf

df~ dz:' dz'dtl

These equations may be satisfied by the values

(148).

provided

and

X = A cos (nt — mz + a)\ h49)
y = BsiD.(nt-mz + a) J

(n'-m'a')A=m^nc'Bl

(n'-m'b')B = 7n'nc'Aj ^ ^'

Phil. Mag. May 1861 [p. 481 of this vol.].
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Multiplying the last two equations together, we find

{)f-m-'cr)(n'-m'h') = m*n'c* (151)

an equation quadratic with respect to 771*, the solution of which is

2n'

a' + h'TJia'-hJ + An'c*
(152).

These values of m" being put in the equations (150) will each give a ratio

of A and B,

A ^ d'-h'T J{(r - b'Y + 4nrc*

B
~

2nc'

which being substituted in equations (149), will satisfy the original equations

(148). The most general undulation of such a medium is therefore compounded

of two elliptic undulations of different eccentricities travelling with different

velocities and rotating in opposite directions. The results may be more easily

explained in the case in which a = & ; then

m' =—ip—: and A = TB (153).

Let us suppose that the value of A is unity for both vibrations, then we

shall have

X = cos nt

y-

nz \ I nz \ '—
, + cos nt— .

sfcf^cV \ Ja' + n&l

[nt—
,

\+sm.(nt-
,

-̂

]

\ sIce-ncV \ -Ja' + iic-JJ

(154).

The first terms of x and y represent a circular vibration in the negative

direction, and the second term a circular vibration in the positive direction,

the positive having the greatest velocity of propagation. Combining the terms,

we may write

x = 2 cos {nt—jyz) cos qz'] d")
'J

where

and

y = 2 cos (nt —pz) sin qzj

n n

2 Ja^ — nc-

n

+
2Ja'-\-nc'

n

"i-^Ja^ nc- 2^a' +

.(156).
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These are the equations of an undulation consisting of a plane vibration

whose periodic time is — , and wave-length — = X, propagated in the direction

of % with a velocity ~ = v, while the plane of the vibration revolves about the

axis of z in the positive direction so as to complete a revolution when z =— .

Now let us suppose c^ small, then we may write

^=5^<i5=S ('")'

1 T
and remembering that c'= t— v-y, we find

«=i;-^. <-«)•

Here r is the radius of the vortices, an unknown quantity, p is the density

of the luminiferous medium in the body, which is also unknown ; but if we

adopt the theory of Fresnel, and make s the density in space devoid of gross

matter, then

p = si^ (159),

where i is the index of refraction.

On the theory of MacCullagh and Neumann,

p = s (160)

ill all bodies.

/x is the coefficient of magnetic induction, which is unity in empty space

or in air.

y is the velocity of the vortices at their circumference estimated in the

ordinary units. Its value is unknown, but it is proportional to the intensity of

the magnetic force.

Let Z be the magnetic intensity of the field, measured as in the case of

terrestrial magnetism, then the intrinsic energy in air per unit of volume is

1 ^„ 1

where 5 is the density of the magnetic medium in air, which we have reason

to believe the same as that of the luminiferous medium. We therefore put

y=^^ (161),
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X is the wave-length of the undulation in the substance. Now if A be the

wave-length for the same ray in air, and i the index of refraction of that ray in

the body,

>^ =| (162).

Also V, the velocity of light in the substance, is related to F, the velocity of

light in air, by the equation

V
^ =J (163).

Hence if z be the thickness of the substance through which the ray passes, the

angle through which the plane of polarization will be turned will be in degrees,

^ =^q^ (164);

or, by what we have now calculated,

'='^7-^-y^ i^'^y

In this expression all the quantities are known by experiment except r, the

radius of the vortices in the body, and s, the density of the luminiferous

medium in air.

The experiments of M. Verdet* supply all that is wanted except the deter-

mination of Z in absolute measure ; and this would also be known for all his

experiments, if the value of the galvanometer deflection for a semi-rotation of

the testing bobbin in a known magnetic field, such as that due to terrestrial

magnetism at Paris, were once for all determined.

* Annates de Chimie et de Physique, ser. 3, Vol. xli. p. 370.
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[From the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.

Vol. XXVII. Fourth Series.]

XXIV. On Reciprocal Figures and Diagrams of Forces.

Reciprocal figures are such that the properties of the first relative to the

second are the same as those of the second relative to the first. Thus inverse

figures and polar reciprocals are instances of two difierent kinds of reciprocity.

The kind of reciprocity which we have here to do with has reference to

figures consisting of straight lines joining a system of points, and forming

closed rectilinear figures; and it consists in the directions of all lines in the

one figure having a constant relation to those of the lines in the other figure

which correspond to them.

In plane figures, corresponding lines may be either parallel, perpendicular,

or at any constant angle. Lines meeting in a point in one figure form a

closed polygon in the other.

In figures in space, the lines in one figure are perpendicular to planes in

the other, and the planes corresponding to lines which meet in a point form

a closed polyhedron.

The conditions of reciprocity may be considered from a purely geometrical

point of view; but their chief importance arises from the fact that either of

the figures being considered as a system of points acted on by forces along

the lines of connexion, the other figure is a diagram of forces, in which these

forces are represented in plane figures by lines, and in solid figures by the

areas of planes.

The properties of the "triangle" and "polygon" of forces have been long

known, and the "diagram" of forces has been used in the case of the funicular

polygon; but I am not aware of any more general statement of the method
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of drawing diagrams of forces before Professor Rankine applied it to frames,

roofs, &c. in his Applied Mechanics, p. 137, &c. The "polyhedron of forces,"

or the equilibrium of forces perpendicular and proportional to the areas of the

faces of a polyhedron, has, I believe, been enunciated independently at various

times; but the application to a "frame" is given by Professor Rankine in the

Philosophical Magazine, February, 1864.

I propose to treat the question geometrically, as reciprocal figures are

subject to certain conditions besides those belonging to diagrams of forces.

On Reciprocal Plane Figures.

Definition.—Tyfo plane figures are reciprocal when they consist of an equal

number of lines, so that corresponding lines in the two figures are parallel,

and corresponding lines which converge to a point in one figure form a closed

polygon in the other.

Note.—If corresponding lines in the two figures, instead of being parallel

are at right angles or any other angle, they may be made parallel by turning

one of the figures round in its own plane.

Since every polygon in one figure has three or more sides, every point in

the other figure must have three or more lines converging to it; and since

every line in the one figure has two and only two extremities to which lines

converge, every line in the other figure must belong to two, and only two

closed polygons. The simplest plane figure fulfilling these conditions is that

formed by the six lines which join four points in pairs. The reciprocal figure

consists of six lines parallel respectively to these, the points in the one figure

corresponding to triangles in the other.

General Relation between the Numbers of Points, Lines, and Polygons in

Reciprocal Figures.

The effect of drawing a line, one of whose extremities is a point connected

with the system of lines already drawn, is either to introduce one new point

into the system, or to complete one new polygon, or to divide a polygon into

two parts, according as it is drawn to an isolated point, or a point already

connected with the system. Hence the sum of points and polygons in the

65—2
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system is increased by one for every new line. But the simplest figure consists

of four points, four polygons, and six lines. Hence the sum of the points and

polygons must always exceed the number of lines by two.

JSfote.—This is the same relation which connects the numbers of summits,

faces, and edges of polyhedra.

Conditions of indeterminateness and impossibility in drawing reciprocal Diagrams.

Taking any line parallel to one of the lines of the figure for a base,

every new point is to be determined by the intersection of two new lines.

Calling s the number of points or summits, e the number of lines or edges,

and / the number of polygons or faces, the assumption of the first line deter-

mines two points, and the remaining s — 2 points are determined by 2 (s — 2)

lines. Hence if

e = 2s-3,

every point may be determined. If e be less, the form of the figure will be

in some respects indeterminate; and if e be greater, the construction of the

figure will be impossible, unless certain conditions among the directions of the

lines are fulfilled.

These are the conditions of drawing any diagram in which the directions

of the lines are arbitrarily given; but when one diagram is already drawn in

which e is greater than 2s — S, the directions of the lines will not be altogether

arbitrary, but will be subject to e-(2s-3) conditions.

Now if e, s', f be the values of e, s, and / in the reciprocal diagram

e = s+/-2, e' = s'+/'-2.

Hence if s =/, e = 2z - 2 ; and there will be one condition connecting the

directions of the lines of the original diagram, and this condition will ensure

the possibility of constructing the reciprocal diagram. If

s >/, e > 2s - 2, and e' < 2s' - 2 ;

so that the construction of the reciprocal diagram will be possible, but inde-

terminate to the extent of s —f variables.

If s<f, the construction of the reciprocal diagram will be impossible unless

(s-f) conditions be fulfilled in the original diagram.



ON RECIPROCAL FIGURES AND DIAGRAMS OF FORCES. 517

Fig. 1.

If any number of the points of the figure are so connected among them-

selves aa to form an equal number of closed polygons, the conditions of

constructing the reciprocal figure must be found by considering these points

separately, and then examining their connexion with the rest.

Let us now consider a few cases of reciprocal figures in detail. The

simplest case is that of the figure formed by the six lines connecting four

points in a plane. If we now draw the six lines con-

necting the centres of the four circles which pass through

three out of the four points, we shall have a reciprocal

figure, the corresponding lines in the two figures being

at right angles.

The reciprocal figure formed in this way is definite

in size and position ; but any figure similar to it and

placed in any position is still reciprocal to the original

figure. If the reciprocal figures are lettered as in fig. 1,

we shall have the relation

AP^BQ^CR
ap bq cr

In figures 2 and IL we have a pair of reciprocal figures in which the

lines are more numerous, but the construction very easy. There are seven

points in each figure corresponding to seven polygons in the other.

Fig. 2. Fig. II.

The four points of triple concourse of lines ABC, BDE, IIIL, LJK
correspond to four triangles, ahc, bde, Ml, Ijk.

The three points of quadruple concourse ADFH, CEGK, IFGJ correspond

to three quadrilaterals, adfh, cegk, ifgj.

The five triangles ADB, BBC, GJK, IJL, HIF correspond to five point.s

of triple concourse, adb, ebc, gjk, ijl, hif.
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The quadrilateral DEGF corresponds to the point of quadruple concourse

degf.

The pentagon ACKLH corresponds to the meeting of the five lines cvcklh.

In drawing the reciprocal of fig. 2, it is best to begin with a point of triple

concourse. The reciprocal triangle of this point being drawn, determines three

lines of the new figure. If the other extremities of any of the lines meeting

in this point are points of triple concourse, we may in the same way deter-

mine more lines, two at a time. In drawing these lines, we have only to

remember that those lines which in the first figure form a polygon, start from

one point in the reciprocal figure. In this way we may proceed as long as

we can always determine all the lines except two of each successive polygon.

The case represented in figs. 3 and III. is an instance of a pair of reci-

procal figures fulfilling the conditions of possibility and determinateness, but

Fig. III.

Fig. 3.

presenting a slight difficulty in drawing by the foregoing rule. Each figure has

here eight points and eight polygons; but after we have drawn the lines s,

n, 0, k r, we cannot proceed with the figure simply by drawing the last two

lines of polygons, because the next polygons to be drawn are quadrilaterals, and

we have only one side of each given. The easiest way to proceed is to produce

ahcd till they form a quadrilateral, then to draw a subsidiary figure similar to

tlmpq, with abed similarly situated, and then to reduce the latter figure to

such a scale and position that a, h, c, d coincide in both figures.
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In figures 4 and IV. the condition that the number of polygons is equal

to the number of points is not fulfilled. In fig. 4 there are five points and

Fig. IV.

six triangles; in fig. IV. there are six points, two triangles, and three quadri-

laterals. Hence if fig. 4 is given, fig. IV. is indeterminate to the extent of one

variable, besides the elements of scale and position. In fact when we have drawn

ABC and indicated the directions of P, Q, R, we may fix on any point of P
as one of the angles of XYZ and complete the triangle XYZ. The size of

XYZ is therefore indeterminate. Conversely, if fig. IV. is given, fig. 4 cannot

be constructed unless one condition be fulfilled. That condition is that P, Q,

and R meet in a point. When this is fulfilled, it follows by geometry that

the points of concourse of A and X, B and Y, and C and Z He in one straight

line W, which is parallel to w in fig. 4. The condition may also be expressed

by saying that fig. IV. must be a perspective projection of a polyhedi'on whose

quadrilateral faces are planes. The planes of these faces intersect at the concourse

of P, Q, R, and those of the triangular faces intersect in the line W.

Figs. 5 and V. represent another case of the same kind. In fig. 5 we
have six points and eight triangles ; fig. V. is therefore capable of two degrees

of variability, and is subject to two conditions.
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The conditions are that the four intersections of corresponding sides of

opposite quadrilaterals in fig. V. shall lie in one straight line, parallel to the

Fig. V. Fig. 5.

line joining the opposite points of fig. 5 which correspond to these quadrilaterals.

There are three such lines marked a?, y, z, and four points of intersection lie on

each line.

"We may express this condition also by saying that fig. V. must be a per-

spective projection of a plane-sided polyhedron, the intersections of opposite

planes being the lines x, y, z.

In fig. 6, let ABODE be a portion of a polygon bounded by other polygons

of which the edges are PQRST, one or more of these edges meeting each angle

of the polygon.

In fig. VI., let ahcde be lines parallel to ABODE and meeting in a point,

and let these be terminated by the lines pqrst parallel to PQRST, one or

more of these lines completing each sector of fig. VI.

In fig. 6 draw Y through the intersections of ^C and PQ, and in fig.

VI, draw y through the intersections of a, p and c, q. Then the figures of

six lines ABOPQY and ahcpqy will be reciprocal, and y will be parallel to Y.

Draw X parallel to x, and through the intersections of TX and OE draw Z,

and in fig. VI. draw z through the intersections of ex and et ; then ODETXZ
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and cdetxz will be reciprocal, and Z will be parallel to z. Then through the

intersections oi AE and YZ draw W, and through those of ay and ez draw

w; and since ACEYZW and aceyzw are reciprocal, W will be parallel to w.

Fig. 6.

Fig. VI.

By going round the remaining sides of the polygon ABODE in the same

way, we should find by the intersections of lines another point, the line joining

which with the intersection of AE would be parallel to w, and therefore we

should have three points in one line; namely, the intersection of Y and Z,

the point determined by a similar process carried on on the other part of the

circumference of the polygon, and the intersection of A and E
-,
and we should

find similar conditions for every pair of sides of every polygon.

Now the conditions of the figure 6 being a perspective projection of a

plane-sided polyhedron are exactly the same. For A being the intersection of

the faces AP and AB, and C that of BC and QC, the intersection ylC will

be a point in the intersection of the faces AP and CQ.

Similarly the intersection PQ will be another point in it, so that Y is the

line of intersection of the faces AP and CQ.

In the same way Z is the intersection of ET and CQ, so that the inter-

section of Y and Z is a point in the intersection of AP and ET.

Another such point can be determined by going round the remaining sides

of the polygon; and these two points, together with the intersections of the

lines AE, must aU be in one straight line, namely, the intersection of the faces

AP and ET.

Hence the conditions of the possibility of reciprocity in plane figures are

the same as those of each figure being the perspective projection of a plane-

sided polyhedron. When the number of points is in every part of the figure

equal to or less than the number of polygons, this condition is ftilfilled of

itself. When the number of points exceeds the number of polygons, there will

VOL. I. 66
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be an impossible case, unless certain conditions are fulfilled so that certain sets

of intersections lie in straight lines.

Application to Statics.

The doctrine of reciprocal figures may be treated in a purely geometrical

manner, but it may be much more clearly understood by considering it as a

method of calculating the forces among a system of points in equilibrium ; for,

If forces represented in magnitude by the lines of a figure be made to act

between the extremities of the corresponding lines of the reciprocal figure, then

the points of the reciprocal figure will all be in equilibrium under the action

of these forces.

For the forces which meet in any point are parallel and proportional to

the sides of a polygon in the other figure.

If the points between which the forces are to act are known, the problem

of determining the relations among the magnitudes of the forces so as to produce

equilibrium wiU be indeterminate, determinate, or impossible, according as the

construction of the reciprocal figure is so.

Reciprocal figures are mechanically reciprocal; that is,- either may be taken

as representing a system of points, and the other as representing the magnitudes

of the forces acting between them.

In figures like 1, 2 and II., 3 and III., in which the equation

e = 2s-2

is true, the forces are determinate in their ratios; so that one being given,

the rest may be found.

When e>2.s-2, as in figs. 4 and 5, the forces are indeterminate, so that

more than one must be known to determine the rest, or else certain relations

among them must be given, such as those arising firom the elasticity of the

parts of a frame.

When e<2s-2, the determination of the forces is impossible except under

certain conditions. Unless these be fulfilled, as in figs. IV. and V., no forces

along the lines of the figure can keep its points in equilibrium, and the figure,

considered as a frame, may be said to be loose.

When the conditions are fulfilled, the pieces of the frame can support forces,

but in such a way that a small disfigurement of the frame may produce in-
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finitely great forces in some of the pieces, or may throw the frame into a loose

condition at once.

The conditions, however, of the possibility of determining the ratios of the

forces in a frame are not coextensive with those of finding a figure perfectly

reciprocal to the frame. The condition of determinate forces is

e = 2s - 2
;

the condition of reciprocal figures is that every line belongs to two polygons

only, and
e = s+f-2.

In fig. 7 we have six points connected by ten lines in such a way that

the forces are all determinate ; but since the line Z is a side of three triangles,

we cannot draw a reciprocal figure, for we should have to draw a straight line

I with three ends.

If we attempt to draw the reciprocal figure as in fig. VII., we shall find

that, in order to represent the reciprocals of all the lines of fig. 7 and fi-x

their relations, we must repeat two of them, as h and e by h' and e, so as

to form a parallelogram. Fig. VII. is then a complete representation of the rela-

tions of the force which would produce equilibrium in fig. 7 ; but it is redundant

by the repetition of h and e, and the two figures are not reciprocal.

Fig. VII.

On Reciprocal Figures in three dimensions.

Definition.—Figures in three dimensions are reciprocal when they can be so

placed that every line in the one figure is perpendicular to a plane face of the

other, and every point of concourse of lines in the one figure is represented by

a closed polyhedron with plane faces.

66—2
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The simplest case is that of five points in space with their ten connecting

lines, forming ten triangular faces enclosing five tetrahedrons. By joining the five

points which are the centres of the spheres circumscribing these five tetrahedrons,

we have a reciprocal figure of the kind described by Professor Rankine in the

Philosophical Magazine, February 1864; and forces proportional to the areas of

the triangles of one figure, if applied along the corresponding lines of connexion

of the other figure, will keep its points in equilibrium.

In order to have perfect reciprocity between two figures, each figure must

be made up of a number of closed polyhedra having plane faces of separation,

and such that each face belongs to two and only two polyhedra, corresponding

to the extremities of the reciprocal line in the other figure. Every line in the

figure is the intersection of three or more plane faces, because the plane face in

the reciprocal figure is bounded by three or more straight lines.

Let s be the number of points or summits, e the number of lines or edges,

/ the number of faces, and c the number of polyhedra or cells. Then if about

one of the summits in which polyhedra meet, and a edges and -q faces, we

describe a polyhedral cell, it will have ^ faces and cf summits and -q edges,

and we shall have
i7 = <^ + o-^2

;

s, the number of summits, will be decreased by one and increased by <t\

c, the number of cells, wiU be increased by one

;

/, the number of faces, wiU be increased by <^

;

e, the number of edges, will be increased by -q;

so that c + c-(s4-/) will be increased by 77+ 1 -(cr + <^- 1), which is zero, or

this quantity is constant. Now in the figure of five points already discussed,

e = 10, c = 5, s = 5, /= 10 ; so that generally

e + c=^s+f,

in figures made up of ceils in the way described.

The condition of a reciprocal figure being indeterminate, determinate, or im-

possible except in particular cases, is

e = 3s -5.
<

This condition is sufficient to determine the possibiHty of finding a system of

forces along the edges which will keep the summits in equilibrium ; but it is
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manifest that the mechanical problem may be solved, though the reciprocal figure

cannot be constructed owing to the condition of all the sides of a face lying

in a plane not being fulfilled, or owing to a face belonging to more than two

cells. Hence the mechanical interest of reciprocal figures in space rapidly

diminishes with their complexity.

Diagrams of forces in which the forces are represented by lines may be

always constructed in space as well as in a plane, but in general some of the

lines must be repeated.

Thus in the figure of five points, each point is the meeting place of four

lines. The forces in these lines may be represented by five gauche quadrilaterals

(that is, quadrilaterals not in one plane) ; and one of these being chosen, the

other four may be applied to its sides and to each other so as to form five

sides of a gauche hexahedron. The sixth side, that opposite the original quad-

rilateral, will be a parallelogram, the opposite sides of which are repetitions of

the same line.

We have thus a complete but redundant diagram of forces consisting of

eight points joined by twelve lines, two pairs of the lines being repetitions.

This is a more convenient though less elegant construction of a diagram of

forces, and it never becomes geometrically impossible as long as the problem is

mechanically possible, however complicated the original figure may be.



[From the Royal Society Transactions, Vol. CLV.]

XXV. A Dynamical Theory of tJie Electromagnetic Field.

(Received October 27,—Read December 8, 1864.)

PAET I.

INTRODUCTORY.

(1) The most obvious mechanical phenomenon in electrical and magnetical

experiments is the mutual action by which bodies in certain states set each

other in motion while still at a sensible distance from each other. The first

step, therefore, in reducing these phenomena into scientific form, is to ascertain

the magnitude and direction of the force acting between the bodies, and when

it is found that this force depends in a certain way upon the relative position

of the bodies and on their electric or magnetic condition, it seems at first sight

natural to explain the facts by assuming the existence of something either at

rest or in motion in each body, constituting its electric or magnetic state, and

capable of acting at a distance according to mathematical laws.

In this way mathematical theories of statical electricity, of magnetism, of

the mechanical action between conductors carrying currents, and of the induction

of currents have been formed. In these theories the force acting between the

two bodies is treated with reference only to the condition of the bodies and

their relative position, and without any express consideration of the surrounding

medium.

These theories assume, more or less explicitly, the existence of substances

the particles of which have the property of acting on one another at a distance

by attraction or repulsion. The most complete development of a theory of this
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kind is tliat of M. W. Weber*, who has made the same theory include elec-

trostatic and electromagnetic phenomena.

In doing so, however, he has found it necessary to assume that the force

between two electric particles depends on their relative velocity, as well as on

their distance.

This theor}% as developed by MM. W. Weber and C. Neumann t, is ex-

ceedingly ingenious, and wonderfully comprehensive in its application to the

phenomena of statical electricity, electromagnetic attractions, induction of currents

and diamagnetic phenomena ; and it comes to us with the more authority, as

it has serv-ed to guide the speculations of one who has made so great an

advance in the practical part of electric science, both by introducing a consistent

system of units in electrical measurement, and by actually determining electrical

quantities with an accuracy hitherto unknown.

(2) The mechanical difficulties, however, which are involved in the assump-

tion of particles acting at a distance with forces which depend on their velocities

are such as to prevent me from considering this theory as an ultimate one.

though it may have been, and may yet be useful in leading to the coordina-

tion of phenomena,

I have therefore preferred to seek an explanation of the fact in another

direction, by supposing them to be produced by actions which go on in the

surrounding medium as well as in the excited bodies, and endeavourino- to

explain the action between distant bodies without assuming the existence of

forces capable of acting directly at sensible distances.

(3) The theory I propose may therefore be called a theory of the EJectro-

mcignetic Field, because it has to do with the space in the neighbourhood of

the electric or magnetic bodies, and it may be called a Dynamical Theory,

because it assumes that in that space there is matter in motion, by which

the observed electromagnetic phenomena are produced.

(4) The electromagnetic field is that part of space which contains and

surrounds bodies in electric or magnetic conditions.

* " Electrodynamische Maassbestimmungen." Leipzic Trans. Vol. i. 1849, and Taylor'.s Scieudjir

Memoirs, Vol. v. art. xiv.

t JUxplirnre tentntur quomodo fiat ut lucis planum polarizationis per vires electricas vel matfVJ'tints

declinetur.—Halis Saxonum, 1858.
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It may be filled with any kind of matter, or we may endeavour to render

it empty of all gross matter, as in the case of Geissler's tubes and other po-

called vacua.

There is always, however, enough of matter left to receive and transmit

the undulations of light and heat, and it is because the transmission of these

radiations is not greatly altered when transparent bodies of measurable density

are substituted for the so-called vacuum, that we are obliged to admit that the

undulations are those of an sethereal substance, and not of the gross matter,

the presence of which merely modifies in some way the motion of the sether.

"We have therefore some reason to beheve, from the phenomena of light

and heat, that there is an ^ethereal medium filling space and permeating bodies,

capable of being set in motion and of transmitting that motion from one part

to another, and of communicating that motion to gross matter so as to heat

it and afiect it in various ways.

(5) Now the energy communicated to the body in heating it must have

formerly existed in the moving medium, for the undulations had left the source

of heat some time before they reached the body, and during that time the

energy must have been half in the form of motion of the medium and half in

the form of elastic resilience. From these considerations Professor W. Thomson

has argued'", that the medium must have a density capable of comparison with

that of gross matter, and has even assigned an inferior limit to that density.

(6) We may therefore receive, as a datum derived from a branch of science

independent of that with which we have to deal, the existence of a pervading

medium, of small but real density, capable of being set in motion, and of trans-

mitting motion from one part to another with great, but not infinite, velocity.

Hence the parts of this medium must be so connected that the motion of

one pai-t depends in some way on the motion of the rest; and at the same

time these connexions must be capable of a certain kind of elastic yielding,

since the communication of motion is not instantaneous, but occupies time.

The medium is therefore capable of receiving and storing up two kinds of

energy, namely, the "actual" energy depending on the motions of its parts, and

"potential" energy, consisting of the work which the medium will do in recover-

ing from displacement in virtue of its elasticity.

* "On the Possible Density of the Lnminiferous Medium, and on the Mechanical Value of a

Cubic Mile of Sunlight," Trarisactwis of the Royal Society of Edinburgh (1854), p. 57.



A DYNAMICAL THEORY OF THE ELECTROMAGNETIC FIELD. 520

The propagation of undulations consists in the continual transformation of

one of these forms of energy into the other alternately, and at any instant

the amount of energy in the wliole medium is equally divided, so that half

is energy of motion, and half is elastic resilience.

(7) A medium having such a constitution may be capable of other kinds

of motion and displacement than those which produce the phenomena of light

and heat, and some of these may be of such a kind that they may be

evidenced to our senses by the phenomena they produce.

(8) Now we know that the luminiferous medium is in certain cases acted

on by magnetism ; for Faraday* discovered that when a plane polarized ray

traverses a transparent diamagnetic medium in the direction of the lines of

magnetic force produced by magnets or currents in the neighbourhood, the plane

of polarization is caused to rotate.

This rotation is always in the direction in which positive electricity must

be carried round the diamagnetic body in order to produce the actual mag-

netization of the field.

M. Verdetf has since discovered that if a paramagnetic body, such as

solution of perchloride of iron in ether, be substituted for the diamagnetic body,

the rotation is in the opposite direction.

Now Professor W. Thomson J has pointed out that no distribution of forces

actincr between the parts of a medium whose only motion is that of the lumi-

nous vibrations, is sufficient to account for the phenomena, but that we must

admit the existence of a motion in the medium depending on the magnetization,

in addition to the vibratory motion which constitutes light.

It is true that the rotation by magnetism of the plane of polarization has

been observ^ed only in media of considerable density; but the properties of the

magnetic field are not so much altered by the substitution of one medium for

another, or for a vacuum, as to allow us to suppose that the dense medium

does anything more than merely modify the motion of the ether. We have

therefore warrantable grounds for inquiring whether there may not be a motion

of the ethereal medium going on wherever magnetic effects are observed, and

* ExperimenUil Researches, Series xix.

t Cainptes Reudus (185G, second half year, p. 529, ami 1857, first half year, p. 1209).

% Proceedings of the Royal ISociety, June 185G and June ISGl.
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we have some reason to suppose that this motion is one of rotation, having

the direction of the magnetic force as its axis.

(9) We may now consider another phenomenon observed in the electro-

magnetic field. When a body is moved across the lines of magnetic force it

experiences what is called an electromotive force ; the two extremities of the

body tend to become oppositely electrified, and an electric current tends to flow

through the body. When the electromotive force is sufficiently powerful, and is

made to act on certain compound bodies, it decomposes them, and causes one

of their components to pass towards one extremity of the body, and the other

in the opposite direction.

Here we have evidence of a force causing an electric current in spite of

resistance ; electrifying the extremities of a body in opposite ways, a condition

which is sustained only by the action of the electromotive force, and which, as

soon as that force is removed, tends, with an equal and opposite force, to

produce a counter current through the body and to restore the original electrical

state of the body ; and finally, if strong enough, tearing to pieces chemical

compounds and carrying their components in opposite directions, while their

natural tendency is to combine, and to combine with a force which can generate

an electromotive force in the reverse direction.

This, then, is a force acting on a body caused by its motion through the

electromagnetic field, or by changes occurring in that field itself; and the effect

of the force is either to produce a current and heat the body, or to decompose

the body, or, when it can do neither, to put the body in a state of electric

polarization,—a state of constraint in which opposite extremities are oppositely

electrified, and from which the body tends to relieve itself as soon as the

disturbing force is removed.

(10) According to the theory which I propose to explain, this "electro-

motive force " is the force called into play during the communication of motion

from one part of the medium to another, and it is by means of this force

that the motion of one part causes motion in another part. When electromotive

force acts on a conducting circuit, it produces a current, which, as it meets

with resistance, occasions a continual transformation of electrical energy into

heat, which is incapable of being restored again to the form of electrical energy

by any reversal of the process.
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(11) But when electromotive force acts on a dielectric it produces a state

of polarization of its parts similar in distribution to the polarity of the parts

of a mass of iron under the influence of a magnet, and like the magnetic

polarization, capable of being described as a state in which every^ particle has

its opposite poles in opposite conditions'".

In a dielectric under the action of electromotive force, we may conceive

that the electricity in each molecule is so displaced that one side is rendered

positively and the other negatively electrical, but that the electricity remains

entirely connected with the molecule, and does not pass from one molecule to

another. The effect of this action on the whole dielectric mass is to produce

a general displacement of electiicity in a certain direction. This displacement

does not amount to a current, because when it has attained to a certain value

it remains constant, but it is the commencement of a current, and its varia-

tions constitute currents in the positive or the negative direction according as

the displacement is increasing or decreasing. In the interior of the dielectric

there is no indication of electrification, because the electrification of the surface

of any molecule is neutralized by the opposite electrification of the surface of

the molecules in contact with it ; but at the bounding surface of the dielectric,

where the electrification is not neutralized, we find the phenomena which indicate

positive or negative electrification.

The relation between the electromotive force and the amount of electric

displacement it produces depends on the nature of the dielectric, the same

electromotive force producing generally a greater electric displacement in solid

dielectrics, such as glass or sulphur, than in air.

(12) Here, then, we perceive another effect of electromotive force, namely,

electric displacement, which according to our theory is a kind of elastic yielding

to the action of the force, similar to that which takes place in structures and

machines owing to the want of perfect rigidity of the connexions.

(13) The practical investigation of the inductive capacity of dielectrics is

rendered difficult on account of two disturbing phenomena. The first is the

conductivity of the dielectric, which, though in many cases exceedingly small,

is not altogether insensible. The second is the phenomenon called electric absorp-

* Faraday, Experimental Researches, Series xi. ; Mossotti, Mem. delta Soc. Italiana (Modena),

Vol. XXIV. Part 2, p. 49.

67—2
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tion*, in virtue of which, when the dielectric is exposed to electromotive force,

the electric displacement gradually increases, and when the electromotive force

is removed, the dielectric does not instantly return to its primitive state, but

only discharges a portion of its electrification, and when left to itself gradually

acquires electrification on its surface, as the interior gradually becomes depolarized.

Almost all solid dielectrics exhibit this phenomenon, which gives rise to the

residual charge in the Leyden jar, and to several phenomena of electric cables

described by Mr F. Jenkint.

(14) We have here two other kinds of yielding besides the yielding of

the perfect dielectric, which we have compared to a perfectly elastic body. The

yielding due to conductivity may be compared to that of a viscous fluid (that

is to say, a fluid having great internal friction), or a soft solid on which the

smallest force produces a permanent alteration of figure increasing with the

time during which the force acts. The yielding due to electric absorption may

be compared to that of a cellular elastic body containing a thick fluid in its

cavities. Such a body, when subjected to pressure, is compressed by degrees

on account of the gradual yielding of the thick fluid ; and when the pressure

is removed it does not at once recover its figure, because the elasticity of the

substance of the body has gradually to overcome the tenacity of the fluid before

it can regain complete equilibrium.

Several solid bodies in which no such structure as we have supposed can

be found, seem to possess a mechanical property of this kind J ; and it seems

probable that the same substances, if dielectrics, may possess the analogous

electrical property, and if magnetic, may have corresponding properties relating

to the acquisition, retention, and loss of magnetic polarity.

(15) It appears therefore that certain phenomena in electricity and mag-

netism lead to the same conclusion as those of optics, namely, that there is

an Ebthereal medium pervading all bodies, and modified only in degree by their

presence ; that the parts of this medium are capable of being set in motion

by electric currents and magnets ; that this motion is communicated from one

* Fai-aday, Experwiental Researches, 1233—1250.

t Reports of British Association, 1859, p. 248; and Report of Committee of Board of Trade on

Submarine Cables, pp. 136 & 464.

J As, for instance, the composition of glue, treacle, <fec., of wliich small plastic figures are made,

which after being distorted gradually recover theii- shape.
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part of the medium to another by forces arising from the connexions of those

pai-ts ; that under the action of these forces there is a certain yielding depending

on the elasticity of these connexions ; and that therefore energy in two different

forms may exist in the medium, the one form being the actual energy of motion

of its parts, and the other being the potential energy stored up in the con-

nexions, in virtue of their elasticity.

(IG) Thus, then, we are led to the conception of a complicated mechanism

capable of a vast variety of motion, but at the same time so connected that

the motion of one part depends, according to definite relations, on the motion

of other parts, these motions being communicated by forces arising from the

relative displacement of the connected parts, in virtue of their elasticity. Such

a mechanism must be subject to the general laws of Dynamics, and we ought

to be able to work out all the consequences of its motion, provided we know

the form of the relation between the motions of the parts.

(17) We know that when an electric current is established in a conducting

circuit, the neighbouring part of the field is characterized by certain magnetic

properties, and that if two circuits are in the field, the magnetic properties of

the field due to the two currents are combined. Thus each part of the field

is in connexion with both currents, and the two currents are put in connexion

with each other in virtue of their connexion with the magnetization of the field.

The first result of this connexion that I propose to examine, is the induction of

one current by another, and by the motion of conductors in the field.

The second result, which is deduced fi:om this, is the mechanical action

between conductors carrying currents. The phenomenon of the induction of

currents has been deduced from their mechanical action by Helmholtz * and

Thomson t. I have followed the reverse order, and deduced the mechanical action

from the laws of induction. I have then described experimental methods of

determining the quantities L, M, N, on which these phenomena depend.

(18) I then apply the phenomena of induction and attraction of cuiTents

to the exploration of the electromagnetic field, and the laying down systems

of lines of magnetic force which indicate its magnetic properties. By exploring

* "Conservation of Force," Physical Society of Berlin, 1847; and Taylor's Scieniijic Memoirs, 1853,

p. lU.

t Reports of live British Association, 1848; Philosophical Magazine, Dec. 1851.
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the same field with a magnet, I shew the distribution of its equipotential

magnetic surfaces, cutting the hnes of force at right angles.

In order to bring these results within the power of symbolical calculation,

I then express them in the form of the General Equations of the Electro-

magnetic Field. These equations express

—

(A) The relation between electric displacement, true conduction, and the

total current, compounded of both.

(B) The relation between the lines of magnetic force and the inductive

coefficients of a circuit, as already deduced from the laws of induction.

(C) The relation between the strength of a current and its magnetic effects,

according to the electromagnetic system of measurement.

(D) The value of the electromotive force in a body, as arising from the

motion of the body in the field, the alteration of the field itself, and

the variation of electric potential from one part of the field to

another.

(E) The relation between electric displacement, and the electromotive force

which produces it.

(F) The relation between an electric current, and the electromotive force

which produces it.

(G) The relation between the amount of free electricity at any point, and

the electric displacements in the neighbourhood.

(H) The relation between the increase or diminution of free electricity and

the electric currents in the neighbourhood.

There are twenty of these equations in all, involving twenty variable

quantities.

(19) I then express in terms of these quantities the intrinsic energy of

the Electromagnetic Field as depending partly on its magnetic and partly on

its electric polarization at every point.

From this I determine the mechanical force acting, 1st, on a moveable con-

ductor carrying an electric current; 2ndly, on a magnetic pole; 3rdly, on an

electrified body.

The last result, namely, the mechanical force acting on an electrified body,

gives rise to an independent method of electrical measurement founded on its
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electrostatic effects. The relation between the units employed in the two methods

is shewn to depend on what I have called the "electric elasticity" of the medium,

and to be a velocity, which has been experimentally determined by MM. Weber

and Kohlrausch.

I then shew how to calculate the electrostatic capacity of a condenser, and

the specific inductive capacity of a dielectric.

The case of a condenser composed of parallel layers of substances of different

electric resistances and inductive capacities is next examined, and it is shewn

that the phenomenon called electric absorption will generally occur, that is, the

condenser, when suddenly discharged, will after a short time shew signs of a

residual charge.

(20) The general equations are next applied to the case of a magnetic

disturbance propagated through a non-conducting field, and it is shewn that

the only disturbances which can be so propagated are those which are transverse

to the direction of propagation, and that the velocity of propagation is the

velocity v, found from experiments such as those of Weber, which expresses

the number of electrostatic units of electricity which are contained in one electro-

magnetic unit.

This velocity is so nearly that of light, that it seems we have strong

reason to conclude that light itself (including radiant heat, and other radiations

if any) is an electromagnetic disturbance in the form of waves propagated through

the electromagnetic field according to electromagnetic laws. If so, the agree-

ment between the elasticity of the medium as calculated from the rapid alterna-

tions of luminous vibrations, and as found by the slow processes of electrical

experiments, shews how perfect and regular the elastic properties of the medium

must be when not encumbered with any matter denser than air. If the same

character of the elasticity is retained in dense transparent bodies, it appears

that the square of the index of refraction is equal to the product of the specific

dielectric capacity and the specific magnetic capacity. Conducting media are

shewn to absorb such radiations rapidly, and therefore to be generally opaque.

The conception of the propagation of transverse magnetic disturbances to

the exclusion of normal ones is distinctly set forth by Professor Faraday* in

liis " Thoughts on Ray Vibrations." The electromagnetic theory^ of light, as

* Philosophical Magazine, May 1846, or Expenmintal Researches, ill. p. 447.
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proposed by him, is the same in substance as that which I have begun to

develope in this paper, except that in 1846 there were no data to calculate

the velocity of propagation.

(21) The general equations are then applied to the calculation of the coef-

ficients of mutual induction of two circular currents and the coefficient of self-

induction in a coil. The want of uniformity of the current in the different

parts of the section of a wire at the commencement of the current is investi-

gated, I believe for the first time, and the consequent correction of the coefficient

of self-induction is found.

These results are applied to the calculation of the self-induction of the coil

used in the experiments of the Committee of the British Association on Standards

of Electric Kesistance, and the value compared with that deduced from the

experiments.

PART 11.

ON ELECTROMAGNETIC INDUCTION.

Electromagnetic Momentum of a Current.

(22) We may begin by considering the state of the field in the neigh-

bourhood of an electric current. We know that magnetic forces are excited in

the field, their direction and magnitude depending according to known laws

upon the form of the conductor carrying the current. When the strength of

the current is increased, all the magnetic effects are increased in the same pro-

portion. Now, if the magnetic state of the field depends on motions of the

medium, a certain force must be exerted in order to increase or diminish these

motions, and when the motions are excited they continue, so that the effect

of the connexion between the current and the electromagnetic field surrounding

it, is to endow the current with a kind of momentum, just as the connexion

between the driving-point of a machine and a fly-wheel endows the driving-point

with an additional momentum, which may be called the momentum of the fly-

wheel reduced to the driving-point. The unbalanced force acting on the driving-

point increases this momentum, and is measured by the rate of its increase.



A DYNAMICAL THEORY OF THE ELECTROMAGNETIC FIELD. 537

In the case of electric currents, the resistance to sudden increase or dimi-

nution of strength produces effects exactly like those of momentum, but the

amount of this momentum depends on the shape of the conductor and the

relative position of its different parts.

Mutual Action of two Currents.

(23) If there are two electric currents in the field, the magnetic force at

any point is that compounded of the forces due to each current separately,

and since the two currents are in connexion with every point of the field,

they will be in connexion with each other, so that any increase or diminution

of the one will produce a force acting with or contrary to the other.

Dynamical Illustration of Reduced Momentum.

(24) As a dynamical illustration, let us suppose a body C so connected

with two independent driving-points A and B that its velocity is p times that

of A together with q times that of B. Let u be the velocity of A, v that

of B, and w that of C, and let hx, By, Sz be their simultaneous displacements,

then by the general equation of dynamics*;

C~Sz = XZx+YBy,

where A' and Y are the forces acting at A and B.

^ , dw du dv

and Zz=phx + qSy.

Substituting, and remembering that Bx and By are independent,

Y= j^{Cpq"+Cq'v)
0)-

We may call Cphi+Cpqv the momentum of C referred to A, and Cpqu + Cq'v

its momentum referred to B ; then we may say that the effect of the force

X is to increase the momentum of C referred to A, and that of Y to increase

its momentum referred to B.

* Lagrange, Mec. Anal. ii. 2, § 5.
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If there are many bodies connected with A and i? in a similar way but
with diffierent values of p and q, we may treat the question in the same way
by assuming

L = %(Cp% M=t{Cpq), and N=t{Cq'),

where the summation is extended to all the bodies with their proper values of

C, p, and q. Then the momentum of the system referred to A is

Lu + Mv,

and referred to B, Mu + Nv,

and we shall have -^=X (Lu + Mv)
dt

Y=^(Mu + Nv)

(2),

dt

where X and Y are the external forces acting on A and B.

(25) To make the illustration more complete we have only to suppose

that the motion of A is resisted by a force proportional to its velocity, which

we may call Ru, and that of ^ by a similar force, which we may call Sv^ R and

S being coefficients of resistance. Then if ^ and -q are the forces on A and B,

^=X+ Ru = Ru +
j^

(Lu + Mv)

rj= Y + Sv= Sv +j^{Mu + Nv)

(3).

If the velocity of A be increased at the rate -r- , then in order to prevent B

from moving a force, rj = -,- (Mu) must be applied to it.

This effect on B, due to an increase of the velocity of A, corresponds to

the electromotive force on one circuit arising from an increase in the strength

of a neighbouring circuit.

This dynamical illustration is to be considered merely as assisting the

reader to understand what is meant in mechanics by Reduced Momentum. The

facts of the induction of currents as depending on the variations of the quantity

called Electromagnetic Momentum^ or Electrotonic State, rest on the experiments

<^f Faraday", Felicif, &c.

* Experimental Besearclics, Series i., ix. t Annates de Chimie, ser. 3, xxxiv. (1852), p. 64.
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Coefficients of Induction for Two Circuits.

(26) In the electromagnetic field the values of Z, M, N depend on the

distribution of the magnetic effects due to the two circuits, and this distri-

bution depends only on the form and relative position of the circuits. Hence

L, M, N are quantities depending on the form and relative position of the

circuits, and are subject to variation with the motion of the conductors. It will

be presently seen that L, M, N are geometrical quantities of the nature of lines,

that is, of one dimension in space ; L depends on the form of the first conductor,

which we shall call A, N on that of the second, which we shall call B, and

M on the relative position of A and B.

(27) Let ^ be the electromotive force acting on A, x the strength of the

current, and R the resistance, then Ex will be the resisting force. In steady

currents the electromotive force just balances the resisting force, but in variable

currents the resultant force ^-Rx is expended in increasing the "electro-

magnetic momentum," using the word momentum merely to express that which

is generated by a force acting during a time, that is, a velocity existing in a

body.

In the case of electric currents, the force in action is not ordinary

mechanical force, at least we are not as yet able to measure it as common force,

but we call it electromotive force, and the body moved is not merely the

electricity in the conductor, but something outside the conductor, and capable

of being afiected by other conductors in the neighbourhood carrying currents.

In this it resembles rather the reduced momentum of a driving-point of a

machine as influenced by its mechanical connexions, than that of a simple

moving body like a cannon ball, or water in a tube.

Electromagnetic Relations of two Conducting Circuits.

(28) In the case of two conducting circuits, A and B, we shall assume

that the electromagnetic momentum belonging to A is

Lx + My,

and that belonging to B, Mx + Ny,

where L, M, N correspond to the same quantities in the dynamical illustration,

except that they are supposed to be capable of variation when the conductors

A or B are moved.

G8—

2
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Then the equation of the current x in A will be

^=R^ + :jl{Lx-^My) (4),

and that of y in ^ r} = Sy+ -^-(Mx-j-Ny) (5)^

where ^ and tj are the electromotive forces, x and y the currents, and R and S
the resistances in A and B respectively.

Induction of one Current by another.

(29) Case 1st. Let there be no electromotive force on B, except that

which arises from the action of A, and let the current of A increase from

to the value x, then

Sy + ^^(Mx + Ny) = 0,

'hence 1
ft M

-^\ydt=.-— x, (6)

that is, a quantity of electricity Y, being the total induced current, will flow

through B when x rises from to x. This is induction by variation of the

current in the primary conductor. When M is positive, the induced current

due to increase of the primary current is negative.

Induction hy Motion of Conductor.

(30) Case 2nd. Let x remain constant, and let M change from M to M',

then

M'-M
(7)

so that if M is increased, which it will be by the primary and secondary

circuits approaching each other, there will be a negative induced current, the

total quantity of electricity passed through B being Y.

This is induction by the relative motion of the primary and secondary con-

ductors.
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Equation of Work and Energy.

(31) To form the equation between work done and energy produced,

multiply (1) by x and (2) by y, and add

^x + -ny=^Rx^^Sy' + Xj^(Lx + My) + yj^(Mx + Ny) (8).

Here ^x is the work done in unit of time by the electromotive force ^ actmg

on the current x and maintaining it, and r^y is the work done by the elec-

tromotive force 7). Hence the left-hand side of the equation represents the work

done by the electromotive forces in unit of time.

Heai produced by the Current.

(32) On the other side of the equation we have, first,

Rx? + Sf =H (9),

which represents the work done in overcoming the resistance of the circuits in

unit of time. This is converted into heat. The remaining terms represent

work not converted into heat. They may be written

Intrinsic Energy of the Currents.

(33) U L, M, N are constant, the whole work of the electromotive forces

which is not spent against resistance will be devoted to the development of

the currents. The whole intrinsic energy of the currents is therefore

^Laf + Mxy + iNy' =E (10).

This energy exists in a form imperceptible to our senses, probably as actual

motion, the seat of this motion being not merely the conducting circuits, but

the space surrounding them.

Mechanical Action between Conductors.

(34) The remaining terms,

dL dM dN ^y (11)
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represent the work done in unit of time arising from the variations of L, M,

and N, or, what is the same thing, alterations in the form and position of the

conducting circuits A and B.

Now if work is done when a body is moved, it must arise from ordinary

mechanical force acting on the body while it is moved. Hence this part of

the expression shews that there is a mechanical force urging every part of the

conductors themselves in that direction in which L, M, and N will be most

increased.

The existence of the electromagnetic force between conductors carrying

currents is therefore a direct consequence of the joint and independent action

of each current on the electromagnetic field. If A and B are allowed to approach

a distance ds, so as to increase M from M to M' while the currents are x

and y, then the work done will be

{]\r-3i)xij,

and the force in the direction of ds will be

f^^ 02).

and this will be an attraction if x and y are of the same sign, and if 31 is

increased as A and B approach.

It appears, therefore, that if we admit that the unresisted part of electro-

motive force goes on as long as it acts, generating a self-persistent state of

the current, which we may call (from mechanical analogy) its electromagnetic

momentum, and that this momentum depends on circumstances external to the

conductor, then both induction of currents and electromagnetic attractions may

be proved by mechanical reasoning.

What I have called electromagnetic momentum is the same quantity which

is called by Faraday '" the electrotonic state of the circuit, every change of which

involves the action of an electromotive force, just as change of momentum
involves the action of mechanical force.

If, therefore, the phenomena described by Faraday in the Ninth Series of

his Experimental Researches were the only known facts about electric currents,

the laws of Ampere relating to the attraction of conductors carrying currents,

* Experiinental Researches, Series i. 60, &c.
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as well as those of Faraday about the mutual induction of currents, might be

deduced by mechanical reasoning.

In order to bring these results within the range of experimental verifica-

tion, I shall next investigate the case of a single current, of two currents, and

of the six currents in the electric balance, so as to enable the experimenter

to determine the values of L, M, N.

Case of a single Circuit.

(35) The equation of the current a: in a circuit whose resistance is 7i*,

and whose coefficient of self-induction is L, acted on by an external electro-

motive force ^, is

f-^=ai^- <")

When i is constant, the solution is of the form

x = h + (a — h)e-L\

where a is the value of the current at the commencement, and h is its tinal

value.

The total quantity of electricity which passes in time t, where t is great, is

rxdt = ht + {a-h)~ (14).

The value of the integral of of with respect to the time is

jydt = lHHa-l)^{^) (15).

The actual current changes gradually from the initial value a to the final vatue

b, but the values of the integrals of x and af are the same as if a steady

current of intensity ^(a + h) were to flow for a time 2-^, and were then suc-

ceeded by the steady current h. The time 2 -^ is generally so minute a fraction

of a second, that the effects on the galvanometer and dynamometer may be

calculated as if the impulse were instantaneous.

If the circuit consists of a battery and a coil, then, when the circuit is

first completed, the eflfects are the same as if the current had only half its
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filial strength during the time 2-^. This diminution of the current, due to

induction, is sometimes called the counter-current.

(36) If an additional resistance r is suddenly thrown into the circuit, as

by breaking contact, so as to force the current to pass through a thin wire

of resistance r, then the original current is ct=pj ^^^ ^^^ ^^^^ current is

The current of induction is then i^ p/p , .\ ' ^^^ continues for a time

2 . This current is greater than that which the battery can maintain in

the two wires R and r, and may be sufficient to ignite the thin wire r.

When contact is broken by separating the wires in air, this additional

resistance is given by the interposed air, and since the electromotive force across

the new resistance is very great, a spark will be forced across.

If the electromotive force is of the form Esinpt, as in the case of a coil

revolving in the magnetic field, then

X = — sin (pt — a),

P

where p' =R + L^2^\ and tan <^ = -& -

Case of two Circuits.

(37) Let R be the prunary circuit and S the secondary circuit, then we

have a case similar to that of the induction coil.

The equations of currents are those marked A and B, and we may here

assume L, M, N as constant because there is no motion of the conductors.

The equations then become

(13*).
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To find the total quantity of electricity which passes, we have only to

integrate these equations with respect to t', then if x„ y, be the strengths of

the currents at time 0, and x„ y, at time t, and if A', Y be the quantities

of electricity passed through each circuit during time t,

(in
Y=\[M(x,-x,) + N{y,-y,)}

J

When the circuit R is completed, then the total currents up to time t,

when t is great, are found by making

P

then X = x,{t--^'j, Y=--^x, (15*).

The value of the total counter-current in R is therefore independent of the

secondary circuit, and the induction current in the secondary circuit depends only

on M, the coefficient of induction between the coils, S the resistance of the

secondary coil, and x^ the final strength of the current in R.

When the electromotive force ^ ceases to act, there is an extra current

in the primary circuit, and a positive induced current in the secondary circuit,

whose values are equal and opposite to those produced on making contact.

(38) All questions relating to the total quantity of transient currents, as

measured by the impulse given to the magnet of the galvanometer, may be

solved in this way without the necessity of a complete solution of the equa-

tions. The heating effect of the current, and the impulse it gives to the

suspended coil of Weber's dynamometer, depend on the square of the current

at every instant during the short time it lasts. Hence we must obtain the

solution of the equations, and from the solution we may find the effects both

on the galvanometer and dynamometer ; and we may then make use of the

method of Weber for estimating the intensity and duration of a current uniform

while it lasts which would produce the same effects.



546 A DYNAMICAL THEORY OF THE ELECTROMAGNETIC FIELD.

(39) Let n„ lu be the roots of the equation

(LN-M')n'-\r(RN+LS)n-\-RS=-0 (16),

and let the primary coil be acted on by a constant electromotive force Re, so

that c is the constant current it could maintain; then the complete solution of

the equations for making contact is

^-i^.£-^y-^.-^y-''^] (^^)'

y-'-^-^r-^^ <^^)-

From these we obtain for calculating the impulse on the dynamometer,

Ix-* =o'{<-|^-i^^} (19),

m = c'l^^^l^^ (20).

The effects of the current in the secondary coil on the galvanometer and

dynamometer are the same as those of a uniform current

MR
~^ RN+LS

for a time 2 ("d + "^) •

(40) The equation between work and energy may be easily verified. The

work done by the electromotive force is

^lxdt = c'{Rt-L).

Work done in overcoming resistance and producing heat,

R]oedt + Sly'dt = & {Rt - |Z).

Energy remaining in the system, =^-L.

(41) If the circuit R is suddenly and completely interrupted while carrying

a current c, then the equation of the current in the secondary coil would be

M

M
This current begins with a value c-^, and gradually disappears.
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M M*
Tlie total quantity of electricity is c -^ , and the value of jy'dt is c'-^ .

The effects on the galvanometer and dynamometer are equal to those of a

M . N
uniform current ^c ^r for a time 2 -^ .

The heating effect is therefore greater than that of the current on making

contact.

(42) If an electromotive force of the form $=E cospt acts on the circuit

R, then if the circuit S is removed, the value of x will be

x = -j sin (pt — a),

where

and

A'= R'+ Ly,

tan a =-R̂
The effect of the presence of the circuit S in the neighbourhood is to

alt€r the value of A and a, to that which they would be if R became

R+p'
MS

and L became X-p'

S'+p'N''

MN
S'+p'N''

Hence the effect of the presence of the circuit >S is to increase the apparent

resistance and diminish the apparent self-induction of the circuit R.

On the Determination of Coefficients of Induction hy the Electric Balance.

(43) The electric balance consists of six con-

ductors joining four points, A, C, D, E, two

and two. One pair, AC, of these points is con-

nected through the battery B. The opposite pair,

DE, is connected through the galvanometer G.

Then if the resistances of the four remaining

conductors are represented by P, Q, R, S, and

the currents in them by x, x — z, y, and y + z,

69—2
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the current through G will be z. Let the potentials at the four points be ^, C,

D, E. Then the conditions of steady currents may be found from the equations

Px =A~D, Q{x-z) =D-C ^

Ry = A-E, S(y + z) =E-C i (21).

Gz=D-E, B{x +y)=-A + C+F\

Solving these equations for z, we find

{i
1 1 1 j,[l 1

^+i^+^ R'^ S

BG , j-j ^ R^S^ =FiPS
_1

QR.
.(22).

In this expression F is the electromotive force of the battery, z the current

through the galvanometer when it has become steady. P, Q, R, S the resistances

in the four arms. B that of the battery and electrodes, and G that of the

galvanometer.

(44) If PS=QR, then 2 = 0, and there will be no steady current, but a

transient current through the galvanometer may be produced on making or

breaking circuit on account of induction, and the indications of the galvano-

meter may be used to determine the coeflScients of induction, provided we
understand the actions which take place.

We shall suppose PS=QR, so that the current z vanishes when sufiicient

time is allowed, and

x{P + Q) = y(R + S)
F{P+Q){R + S)

(P + Q){R + S) + B{P+Q){R + S)

Let the induction coeflScients between P, Q, R, S
be given by the following Table, the coefficient of in-

duction of P on itself being p, between P and Q, h,

and so on.

Let g be the coefficient of induction of the gal-

vanometer on itself, and let it be out of the reach of

the inductive influence of P, Q, R, S (as it must be

in order to avoid direct action 'of P, Q, R, S on the

needle) Let .Y, Y, Z be . the integi-als of x, ~y, z

(23).
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making contact x, y, z are zero. After a time z disappears, and x and y reach

constant values. The equations for each conductor will therefore be

PX +{p + h)x + (k+l)y = jAJt-jDdt^

Q(X-Z) + (h'+q)x-{-{m + n)y = jDdt-jCdt

RY +{k+m)x + (r+o)y = jAdt-jEdt

S{Y+Z) -h(l +n)x + (o +s)y=SEdt-jCdt

GZ=\Ddt-\Edt.

Solving these equations for Z, we find

(24).

,(25).

(45) Now let the deflection of the galvanometer by the instantaneous

current whose intensity is Z be a.

'"Let the permanent deflection produced by making the ratio of PS to QR,

p instead of unity, be 6.

Also let the time of vibration of the galvanometer needle from rest to rest

be T.

Then calling the quantity

p q T s , /I 1'r 5
J
/I

Q~R'^ S'^'^P'Q, S-fl-Ki-i)-&4)
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In determining t by experiment, it is best to make the alteration of resist-

ance in one of the arms by means of the arrangement described by Mr Jenkin

in the Report of the British Association for 1863, by which any value of p

from 1 to rOl can be accurately measured.

We observe (a) the greatest deflection due to the impulse of induction

when the galvanometer is in circuit, when the connexions are made, and when

the resistances are so adjusted as to give no permanent current.

We then observe (/3) the greatest deflection produced by the permanent

current when the resistance of one of the arms is increased in the ratio of

1 to p, the galvanometer not being in circuit till a little while after the con-

nexion is made with the battery.

In order to eliminate the effects of resistance of the air, it is best to vary

p till /3 = 2a nearly; then

^=^^(-^)^'' (^«)-

If all the arms of the balance except P consist of resistance coils of very

line wire of no great length and doubled before being coiled, the induction

coefticients belonging to these coils will be insensible, and r will be reduced

to 'p. The electric balance therefore afibrds the means of measuring the self-

induction of any circuit whose resistance is known.

(46) It may also be used to determine the coefficient of induction between

two circuits, as for instance, that between P and S which we have called m;

but it would be more convenient to measure this by directly measuring the

current, as in (37), without using the balance. We may also ascertain the

equality of ^ and — by there being no current of induction, and thus, when
P V

we know the value of jp, we may determine that of g by a more perfect method

than the comparison of deflections.

Exploration of the Electromagnetic Field.

(47) Let us now suppose the primary circuit A to be of invariable form,

and let us explore the electromagnetic field by means of the secondary circuit

B, which we shall suppose to be variable in form and position.
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We may begin by supposing B to consist of a short straight conductor

with its extremities sliding on two parallel conducting rails, which are put in

connexion at some distance from the sliding-piece.

Then, if sliding the moveable conductor in a given direction increases the

value of 3/, a negative electromotive force will act in the circuit B, tending

to produce a negative current in B during the motion of the sliding-piece.

If a current be kept up in the circuit B, then the sliding-piece will itself

tend to move in that direction, which causes M to increase. At every point

of the field there will always be a certain direction such that a conductor moved

in that direction does not experience any electromotive force in whatever direc-

tion its extremities are turned. A conductor carrying a current will experience

no mechanical force urging it in that direction or the opposite.

This direction is called the direction of the line of magnetic force through

that point.

Motion of a conductor across such a line produces electromotive force in

a direction perpendicular to the line and to the direction of motion, and a con-

ductor carrying a current is urged in a direction perpendicular to the line and

to the direction of the current.

(48) We may next suppose B to consist of a very small plane circuit

capable of being placed in any position and of having its plane turned in any

direction. The value of M will be greatest when the plane of the circuit is

perpendicular to the line of magnetic force. Hence if a current is maintained

in B it ^vill tend to set itself in this position, and will of itself indicate, like

a magnet, the direction of the magnetic force.

On Lines of Magnetic Force.

(49) Let any surface be drawn, cutting the Hnes of magnetic force, and

on this surface let any system of lines be drawn at small intervals, so as to

lie side by side without cutting each other. Next, let any line be drawn on

the surface cutting all these lines, and let a second line be drawn near it, its

distance from the first being such that the value of M for each of the small

spaces enclosed between these two lines and the lines of the first system is

equal to unity.

In this way let more lines be drawn so as to form a second system, so
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that the value of M for every reticulation formed by the intersection of the

two systems of lines is unity.

Finally, from every point of intersection of these reticulations let a line be

drawn through the field, always coinciding in direction with the direction of

magnetic force.

(50) In this way the whole field will be filled with lines of magnetic force

at regular intervals, and the properties of the electromagnetic field will be com-

pletely expressed by them.

For, 1st, If any closed curve be drawn in the field, the value of M for

that curve will be expressed by the number of lines of force which pass through

that closed curve.

2ndly. If this curve be a conducting circuit and be moved through the

field, an electromotive force will act in it, represented by the rate of decrease

of the number of lines passing through the curve.

Srdly. If a current be maintained in the circuit, the conductor will be

acted on by forces tending to move it so as to increase the number of lines

passing through it, and the amount of work done by these forces is equal to

the current in the circuit multiplied by the number of additional lines.

4thly. If a small plane circuit be placed in the field, and be free to turn,

it will place its plane perpendicular to the lines of force. A small magnet will

place itself with its axis in the direction of the lines of force.

5thly. If a long uniformly magnetized bar is placed in the field, each pole

Avill be acted on by a force in the direction of the lines of force. The number

of lines of force passing through unit of area is equal to the force acting on

a unit pole multiplied by a coefiicient depending on the magnetic nature of the

medium, and called the coefiicient of magnetic induction.

In fluids and isotropoic solids the value of this coefficient /ot is the same

in whatever direction the lines of force pass through the substance, but in

crystallized, strained, and organized solids the value of /x may depend on the

direction of the lines of force with respect to the axes of crystallization, strain,

or growth.

In all bodies /x is affected by temperature, and in iron it appears to diminish

as the intensity of the magnetization increases.
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On Magnetic Equipotential Surfaces.

(51) If we explore the field with a uniformly magnetized bar, so long that

one of its poles is in a very weak part of the magnetic field, then the mag-

netic forces will perform work on the other pole as it moves about the field.

If we start from a given point, and move this pole from it to any other

point, the work performed will be independent of the path of the pole between

the two points; provided that no electric current passes between the diflferent

paths pursued by the pole.

Hence, when there are no electric currents but only magnets in the field,

we may draw a series of surfaces such that the work done in passing from one

to another shall be constant whatever be the path pursued between them. Such

surfaces are called Equipotential Surfaces, and in ordinary cases are perpendicular

to the Lines of magnetic force.

If these surfaces are so drawn that, when a unit pole passes from any one

to the next in order, unity of work is done, then the work done in any motion

of a magnetic pole will be measured by the strength of the pole multiplied by

the number of surfaces which it has passed through in the positive direction.

(52) If there are circuits carrying electric currents in the field, then there

will still be equipotential surfaces in the parts of the field external to the con-

ductors carrying the currents, but the work done on a unit pole in passing

from one to another will depend on the number of times which the path of

the pole circulates round any of these currents. Hence the potential in each

surfiice will have a series of values in arithmetical progression, differing by the

work done in passing completely round one of the currents in the field.

The equipotential surfaces w^ill not be continuous closed surfaces, but some

of them will be limited sheets, terminating in the electric circuit as their common

edge or boundary. The number of these will be equal to the amount of work

done on a unit pole in going round the current, and this by the ordinary

measurement = A-ny, where y is the value of the current.

These surfaces, therefore, are connected with the electric current as soap-

bubbles are connected with a ring in M. Plateau's experiments. Every current

y has A-ny surfaces attached to it. These surfaces have the current for their

common edge, and meet it at equal angles. The form of the surfaces in other

parts depends on the presence of other currents and magnets, as well as on

the shape of the circuit to which they belong.
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PART III.

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.

(53) Let US assume three rectangular directions in space as the axes of

X, ]), and z, and let all quantities having direction be expressed by their com-

ponents in these three directions.

Electrical Cui^ents (p, q, r).

(54) An electrical current consists in the transmission of electricity from

one part of a body to another. Let the quantity of electricity transmitted in

unit of time across unit of area perpendicular to the axis of x be called p, then

j) is the component of the current at that place in the direction of x.

We shall use the letters p, q, r to denote the components of the current

per unit of area in the directions of x, y, z.

Electrical Displacements (f, g, h).

(55) Electrical displacement consists in the opposite electrification of the

sides of a molecule or particle of a body which may or may not be accom-

panied with transmission through the body. Let the quantity of electricity which

would appear on the faces dy . dz of an element dx, dy, dz cut from the body

be f . dy . dz, then f is the component of electric displacement parallel to x. We
shall use /, g, h to denote the electric displacements parallel to x, y, z respectively.

The variations of the electrical displacement must be added to the currents

p, q, r to get the total motion of electricity, which we may call p', q, r\ so that

P =P + idt
dg

dh
= ' + dt

(A).
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Electromotive Force (P, Q, R).

(56) Let P, Q, R represent the components of tlie electromotive force at

any point. Then P represents the difference of potential per unit of length in

a conductor placed in the direction of x at the given point. We may suppose

an indefinitely short wire placed parallel to a: at a given point and touched,

during the action of the force P, by two small conductors, which are then

insulated and removed from the influence of the electromotive force. The value

of P might then be ascertained by measuring the charge of the conductors.

Thus if / be the length of the wire, the difference of potential at its ends
will be PI, and if C be the capacity of each of the small conductors the charge

on each will be ^CPl. Since the capacities of moderately large conductors,

measured on the electromagnetic system, are exceedingly small, ordinary electro-

motive forces arising from electromagnetic actions could hardly be measured in

this way. In practice such measurements are always made with long conductors,

forming closed or nearly closed circuits.

Electromagnetic Momentum (F, G, H).

(57) Let F, G, H represent the components of electromagnetic momentum
at any point of the field, due to any system of magnets or currents.

Then F is the total impulse of the electromotive force in the direction of

X that would be generated by the removal of these magnets or currents from
the field, that is, if P be the electromotive force at any instant during the

removal of the system

F = lPdt.

Hence the part of the electromotive force which depends on the motion of

magnets or currents in the field, or their alteration of intensity, is

--f. ^=-f - --f (-)•

Electromagnetic Momentum of a Circuit.

(58) Let s be the length of the circuit, then if we integrate

/(4>4^-^^^ (-)

70—2
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round the circuit, we shall get the total electromagnetic momentum of the circuit,

vv the number of lines of magnetic force which pass through it, the variations

of which measure the total electromotive force in the circuit. This electromag-

netic momentum is the same thing to which Professor Faraday has applied the

name of the Electrotonic State.

If the circuit be the boundary of the elementary area di/ dz, then its electro-

mao-uetic momentum is

\ dy dz

and this is the number of lines of magnetic force which pa^ss through the

area dij dz.

Magnetic Force {a, /3, y).

(59) Let a, /S, y represent the force acting on a unit magnetic pole placed

at the given point resolved in the directions of x, y, and z.

Coefficient of Magnetic Induction (/x).

(60) Let /x be the ratio of the magnetic induction in a given medium to

that in air under an equal magnetizing force, then the number of lines of force

in unit of area perpendicular to x will be [xa (/x is a quantity dependmg on

the nature of the medium, its temperature, the amount of magnetization already

produced, and in crystalline bodies varying with the direction).

(61) Expressing the electric momentum of small circuits perpendicular to

the three axes in this notation, we obtain the following

Equations of Magnetic Force,

dH
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Equations of Currents.

(62) It is known from experiment that the motion of a magnetic pole

in the electromagnetic field in a closed circuit cannot generate work unless the

circuit which the pole describes passes round an electric current. Hence, except

in the space occupied by the electric currents,

adx + fidi/ + ydz = d(f> (31)

a complete differential of
<f),

the magnetic potential.

The quantity
(f>
may be susceptible of an indefinite number of distinct values,

according to the number of times that the exploring point passes round electric

currents in its course, the difference between successive values of
(f)

corre-

sponding to a passage completely round a current of strength c being inc.

Hence if there is no electric current,

dy dz

but if there is a current p,

(C).o- M 1
da dy

^ , \

Similarly, -i^~ -f
= '^'^^ ^

dx dy~

We may call these the Equations of Currents.

Electromotive Force in a Circuit.

(63) Let ^ be the electromotive force acting round the circuit A, then

f=/(^S+«?l-^3'^ (-)

where c^ is the element of length, and the integration is performed round the

circuit.
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Let the forces in the field be those due to the circuits A and B, then

the electromagnetic momentum of A is

^'^+G^ +Hf)ds = Lu + Mv (33),
da ds dsIt

where u and v are the currents in A and B, and

^=-^ilAL + Mi^ (34).

(35),

dt

Hence, if there is no motion of the circuit A,

p^_dF_d^'
dt dx

^~ dt dy .

P_ d^_chp\^-~
dt dz]

where ^ is a function of x, y, z, and t, which is indeterminate as far as regards

the solution of the above equations, because the terms depending on it will

disappear on integrating round the circuit. The quantity ^ can always however

be determined in any particular case when we know the actual conditions of

the question. The physical interpretation of V'
is, that it represents the electnc

liotential at each point of space.

Electromotive Force on a Moving Conductor.

(64) Let a short straight conductor of length a, parallel to the axis of

X, move with a velocity whose components are ^, -^, ^, and let its ex-

ds

tremities sHde along two parallel conductors with a velocity ^. Let us find

the alteration of the electromagnetic momentum of the circuit of which this

arrangement forms a part.

dx dy dz

In unit of time the moving conductor has travelled distances ^ » ;^ > ^

aloncr the directions of the three axes, and at the same time the lengths of

the parallel conductors included in the circuit have each been increased by ^

.
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Hence the quantity

lis as/(
F''-UG''l + Jlf^)

will be Increased by the following increments,

/dFdx dF dy
,
dF dz\ , ^ ^- c ^ ^

ai-i r- + -i r- + -7--rK ciue to motion of conductor,
\dx dt dy dt dz dtj

dsfdFdx dGdiidHdz\ , . i ^i • c -,

-a-ri-,- -J- + -i- -i + —1 r >
due to lengthening ot circuit.

dt \dx ds dx ds dx dsj ^ ^

The total increment will therefore be

fdF_d^dy_ (dH_clF\dz
''[dy dx) cit ^\dx dzjdt'

or, by the equations of Magnetic Force (8),

If P is the electromotive force in the moving conductor parallel to x referred

to unit of length, then the actual electromotive force is Pa ; and since this is

measured by the decrement of the electromagnetic momentum of the circuit, the

electromotive force due to motion will be

^^-l-'^^s (-)•

(65) The complete equations of electromotive force on a moving conductor

may now be written as follows :
—

Equations of Electromotive Force.

-K4'-
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force is perpendicular to the direction of motion and to the lines of magnetic

force ; and if a parallelogram be drawn whose sides represent in direction

and magnitude the velocity of the conductor and the magnetic induction at that

point of the field, then the area of the parallelogram will represent the electro-

motive force due to the motion of the conductor, and the direction of the force

is perpendicular to the plane of the parallelogram.

The second term in each equation indicates the effect of changes in the

position or strength of magnets or currents in the field.

The third term shews the effect of the electric potential \jj. It has no effect

in causing a circulating current in a closed circuit. It indicates the existence

of a force urging the electricity to or from certain definite points in the field.

Electric Elasticity.

{QQ) Wlien an electromotive force acts on a dielectric, It puts every part

of the dielectric into a polarized condition, in which its opposite sides are

oppositely electrified. The amount of this electrification depends on the electro-

motive force and on the nature of the substance, and, in solids having a structure

defined by axes, on the direction of the electromotive force with respect to these

axes. In isotropic substances, if k is the ratio of the electromotive force to the

electric displacement, we may write the

Equations of Electmc Elasticity,

Q = kg\ (E).

R = kh

Electric Resistance.

(Q7) When an electromotive force acts on a conductor it produces a current

of electricity through it. This effect is additional to the electric displacement

already considered. In soHds of complex structure, the relation between the

electromotive force and the current depends on their direction through the solid.
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In isotropic substances, which alone we shall here consider, if p is the specific

resistance referred to unit of volume, we may write the

Equations of Electric Resistance,

Q=-pq\ (F)-

R=-pr\

Electric Quantity.

(68) Let e represent the quantity of free positive electricity contained in

unit of volume at any part of the field, then, since this arises from the electri-

fication of the different parts of the field not neutralizing each other, we may
write the

Equation of Free Electncity,

df da dh ^ ,^.

«+i+i+ar=° (G).

(69) If the medium conducts electricity, then we shall have another con-

dition, which may be called, as in hydrodynamics, the

Equation of Continuity,

dt^dx^Ty^di-^ W-

(70) In these equations of the electromagnetic field we have assumed twenty

variable quantities, namely.

For Electromagnetic Momentum iF G H
„ Magnetic Intensity a /3 y
„ Electromotive Force P Q R
„ Current due to true Conduction p q r

„ Electric Displacement / (j h

„ Total Current (including variation of displacement) p' q r

„ Quantity of Free Electricity c

„ Electric Potential ^I'
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Between these twenty quantities we have found twenty equations, viz.

Three equations of Magnetic Force (B)

Electric Currents (C)

Electromotive Force (D)

Electric Elasticity (E)

Electric Resistance (F)

Total Currents (A)

One equation of Free Electricity (G)

„ Continuity (H)

These equations are therefore sufficient to determine all the quantities which

occur in them, provided we know the conditions of the problem. In many

questions, however, only a few of the equations are required.

Intrinsic Energy of the Electromagnetic Field.

(71) We have seen (33) that the intrinsic energy of any system of currents

is found by multiplying half the current in each circuit into its electromagnetic

momentum. This is equivalent to finding the integral

E = it{Fp+Gq+Hr')dV (37)

over all the space occupied by currents, where p, q, r are the components of

currents, and F, G, H the components of electromagnetic momentum.

Substituting the values of p', q, r from the equations of Currents (C),

this becomes

Integrating by parts, and remembering that a, /8, y vanish at an infinite

distance, the expression becomes

l^r [dH dG\ ^(dF dH\ ^ IdG dF\\,^

where the integration is to be extended over aU space. Referring to the equa-

tions of Magnetic Force (B), p. 556, this becomes

E=~t{a.,Ma + l3.ti^ + y.lJiy}dV (38),
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where a, ^, y are the components of magnetic intensity or the force on a unit

magnetic pole, and /la, /x^, /xy are the components of the quantity of magnetic

induction, or the number of lines of force in unit of area.

In isotropic media the value of /x is the same in all directions, and we

may express the result more simply by saying that the intrinsic energy of any

part of the magnetic field arising from its magnetization is

Stt

per unit of volume, where / is the magnetic intensity.

(72) Energy may be stored up in the field in a different way, namely,

by the action of electromotive force in producing electric displacement. The

work done by a variable electromotive force, P, in producing a variable dis-

placement, f, is got by integrating

\pdf

from P = to the given value of P.

Since P =
^f,

equation (E), this quantity becomes

mf=ikr=^pf.
Hence the intrinsic energy of any part of the field, as existing in the

form of electric displacement, is

^t(Pf+Qg + Rh)dV.

The total energy existing in the field is therefore

E = ^{^{a^.a + ^y.^ + yiiy) + \{Pf+Qg + Rh)^^ (I)-

The first term of this expression depends on the magnetization of the field,

and is explained on our theory by actual motion of some kind. The second

term depends on the electric polarization of the field, and is explained on our

theory by strain of some kind in an elastic medium.

(73) I have on a former occasion" attempted to describe n particular kind

of motion and a particular kind of strain, so arranged as to account for the

phenomena. In the present paper I avoid any hypothesis of this kind
;
and

"On Physical Lines of Force," Philosophical Magazine, 1861—62. (In this voL p. 451.)

71—2

in
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using such words as electric momentum and electric elasticity in reference to

the known phenomena of the induction of currents and the polarization of

dielectrics, I wish merely to direct the mind of the reader to mechanical pheno-

mena which will assist him in understanding the electrical ones. All such phrases

in the present paper are to be considered as illustrative, not as explanatory.

(74) In speaking of the Energy of the field, however, I wish to be under-

stood literally. All energy is the same as mechanical energy, whether it exists

in the form of motion or in that of elasticity, or in any other form. The

energy in electromagnetic phenomena is mechanical energy. The only question

is, Where does it reside ? On the old theories it resides in the electrified bodies,

conducting circuits, and magnets, in the form of an unknown quality called

potential energy, or the power of producing certain efiects at a distance. On
our theory it resides in the electromagnetic field, in the space surrounding the

electrified and magnetic bodies, as well as in those bodies themselves, and is

in two different forms, which may be described without hypothesis as magnetic

polarization and electric polarization, or, according to a very probable hypothesis,

as the motion and the strain of one and the same medium.

(75) The conclusions arrived at in the present paper are independent of

this hypothesis, being deduced from experimental facts of three kinds

:

1. The induction of electric currents by the increase or diminution of

neighbouring currents according to the changes in the lines of force passing

through the circuit.

2. The distribution of magnetic intensity according to the variations of a

magnetic potential.

3. The induction (or influence) of statical electricity through dielectrics.

We may now proceed to demonstrate fi:om these principles the existence

and laws of the mechanical forces which act upon electric currents, magnets, and

electrified bodies placed in the electromagnetic field.
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PART IV.

MECHANICAL ACTIONS IN THE FIELD.

Mechanical Force on a Moveable Conductor.

(76) We have shewn (§§ 34 & 35) that the work done by the electro-

magnetic forces in aiding the motion of a conductor is equal to the product

of the current in the conductor multiplied by the increment of the electro-

magnetic momentum due to the motion.

Let a short straight conductor of length a move parallel to itself in the

direction of x, with its extremities on two parallel conductors. Then the incre-

ment of the electromagnetic momentum due to the motion of a will be

(dFdx dGdy dH dz\^

\dx ds dx ds dx ds)

That due to the lengthening of the circuit by increasing the length of the

parallel conductors will be

(dFdx dFdy dFdz\^
\dx ds dy ds dz ds)

The total increment is

\ds \dx dyj ds\dz dx Jj
'

which is by the equations of Magnetic Force (B), p. 556,

Let X be the force acting along the direction of x per unit of length of

the conductor, then the work done is XaSx.

Let C be the current in the conductor, and let p, q\ r be its com-

ponents, then

XaZx = Cahx (^ ^y " "^ /^^j .
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or X= iiyq -^l^r^

Similarly, Y=fiar — y.yp \ (J).

These are the equations which determine the mechanical force acting on a

conductor carrying a current. The force is perpendicular to the current and

to the lines of force, and is measured by the area of the parallelogram formed

by lines parallel to the current and lines of force, and proportional to their

intensities.

Mechanical Force on a Magnet.

(J 7) In any part of the field not traversed by electric currents the dis-

tribution of magnetic intensity may be represented by the difterential coefficients

of a function which may be called the magnetic potential. When there are no

currents in the field, this quantity has a single value for each point. When
there are currents, the potential has a series of values at each point, but its

differential coefficients have only one value, namely,

d(f) d4> n ^^

Substituting these values of a, y8, y in the expression (equation 38) for the

intrinsic energy of the field, and integrating by parts, it becomes

^h(-B-'f,-'t)V^-

The expression S (^ +^ + ^) cZF=S/7icZF (39)

indicates the number of lines of magnetic force which have their origin within

the space F. Now a magnetic pole is known to us only as the origin or

termination of lines of magnetic force, and a unit pole is one which has 47r

lines belonging to it, since it produces unit of magnetic intensity at unit of

distance over a sphere whose surface is 47r.

Hence if m is the amount of free positive magnetism in unit of volume,

the above expression may be written 47r>/i, and the expression for the energy

of the field becomes

E=-X{\^ni)dV (40).
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If there are two magnetic poles 7>i, and vi^ producing potentials ^, and <^,

in the field, then if m, is moved a distance dx, and is urged in that direction

by a force A', then the work done is Xdx, and the decrease of energy in the

field is

and these must be equal by the principle of Conservation of Energy.

Since the distribution <^i is determined by m^, and
(f),

by vi„ the quantities

^,7?ii and (fi.pn^ will remain constant.

It can be shewn also, as Green has proved (Essay, p. 10), that

m,</>, = mj<^„

so that we get Xdx = d{7n^<f>^),

„ d(f>,

or X = m^-T- = rryx^,

where c^ represents the magnetic intensity due to m^. \ (K).

Similarly, Y= m^,,

Z = m^yi.

So that a magnetic pole is urged in the direction of the lines of magnetic

force with a force equal to the product of the strength of the pole and the

magnetic intensity.

(78) If a single magnetic pole, that is, one pole of a very long magnet,

be placed in the field, the only solution of
(f>

is

t>—fl (").

where m, is the strength of the pole, and r the distance from it.

The repulsion between two poles of strength m, and w, is

d<f>i m/ni^ f ^ _.

"^^ = 7^5- (^2)-

In air or any medium in which /x = 1 this is simply \
*

, but in other

media the force acting between two given magnetic poles is inversely propor-

tional to the coefficient of magnetic induction for the medium. This may be

explained by the magnetization of the medium induced by the action of the

poles.
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Mechanical Force on an Electrified Body.

(79) If there is no motion or change of strength of currents or magnets

in the field, the electromotive force is entirely due to variation of electric

potential, and we shall have (§65)

dx* dy* dz
'

Integrating by parts the expression (I) for the energy due to electric

displacement, and remembering that P, Q, R vanish at an infinite distance, it becomes

i^{-(l+|43<^^-
or by the equation of Free Electricity (G), p. 561,

-^t(^e)dV.

By the same demonstration as was used in the case of the mechanical

action on a magnet, it may be shewn that the mechanical force on a small

body containing a quantity e^ of free electricity placed in a field whose

potential arising from other electrified bodies is '^\, has for components

(D).

So that an electrified body is urged in the direction of the electromotive

force with a force equal to the product of the quantity of free electricity and

the electromotive force.

If the electrification of the field arises from the presence of a small

electrified body containing e^ of free electricity, the only solution of ^i is

-.=r.^- (^^)'

where r is the distance from the electrified body.

The repulsion between two electrified bodies e^, e^ is therefore

"'Hf-^T^V (">•



A DYNAMICAL THEORY OF THE ELECTROMAGNETIC FIELD. 569

Measurement of Electrostatic Effects.

(80) The quantities with which we have had to do have been hitherto

expressed in terms of the Electromagnetic System of measurement, which is

founded on the mechanical action between currents. The electrostatic system of

measurement is founded on the mechanical action between electrified bodies,

and is independent of, and incompatible with, the electromagnetic system ; so

that the units of the different kinds of quantity have different values according

to the system we adopt, and to pass from the one system to the other, a

reduction of all the quantities is required.

According to the electrostatic system, the repulsion between two small

bodies charged with quantities 7)^, t], of electricity is

where r is the distance between them.

Let the relation of the tw^o systems be such that one electromagnetic unit

of electricity contains v electrostatic units; then r), = ve, and ri., = ve„ and this

repulsion becomes

v'^^' = A ^J^ by equation (44) (45),

whence h, the coefficient of "electric elasticity" in the medium in which the

experiments are made, i. e. common air, is related to v, the number of electro-

static units in one electromagnetic unit, by the equation

A; = 47ri'' (46).

The quantity v may be determined by experiment in several ways. Ac-

cording to the experiments of MM. Weber and Kohlrausch,

v = 310,740,000 metres per second.

(81) It appears from this investigation, that if we assume that the medium

which constitutes the electromagnetic field is, when dielectric, capable of receiving

in every part of it an electric polarization, in which the opposite sides of every

element into which we may conceive the medium divided are oppositely elec-

trified, and if we also assume that this polarization or electric displacement is

proportional to the electromotive force which produces or maintains it, then we
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can shew that electrified bodies in a dielectric medium will act on one anotKer

with forces obeying the same laws as are established by experiment.

The energy, by the expenditure of which electrical attractions and repul-

sions are produced, we suppose to be stored up in the dielectric medium which

surrounds the electrified bodies, and not on the surface of those bodies them-

selves, which on our theory are merely the bounding surfaces of the air or other

dielectric in which the true springs of action are to be sought.

Note on the Attraction of Gravitation.

(82) After tracing to the action of the surrounding medium both the

magnetic and the electric attractions and repulsions, and finding them to depend

on the inverse square of the distance, we are naturally led to inquire whether

the attraction of gravitation, which follows the same law of the distance, is

not also traceable to the action of a surrounding medium.

Gravitation differs from magnetism and electricity in this ; that the bodies

concerned are all of the same kind, inatead of being of opposite signs, like

magnetic poles and electrified bodies, and that the force between these bodies

is an attraction and not a repulsion, as is the case between like electric and

magnetic bodies.

The lines of gravitating force near two dense bodies are exactly of the

same form as the lines of magnetic force near two poles of the same name

;

but whereas the poles are repelled, the bodies are attracted. Let I^ be the

intrinsic energy of the field surrounding two gravitating bodies M^, M^, and

let E' be the intrinsic energy of the field surrounding two magnetic poles,

ra^, n\ equal in numerical value to iltfj, M^, and let X be the gravitating

force acting during the displacement hx, and X' the magnetic force,

Xhx = hE, X^x = hE';

now X and X are equal in numerical value, but of opposite signs ; so that

hE=-hK,

or E=C-E'

where a, ^, y are the components of magnetic intensity. If R be the resultant
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gravitating force, and li^ the resultant magnetic force at a corresponding part

of the field,

R=-R:, and a' + fi' + '/ = Ii' = R'\

Hence

E=C-tj- ir-dV (47).

The intrinsic energy of the field of gravitation must therefore be less where-

ever there is a resultant gravitating force.

As energy is essentially positive, it is impossible for any part of space to

have negative intrinsic energy. Hence those parts of space in which there is

no resultant force, such as the points of equiUbrium in the space between the

different bodies of a system, and within the substance of each body, must have

an intrinsic energy per unit of volume greater than

where R is the greatest possible value of the intensity of gravitating force in

any part of the universe.

The assumption, therefore, that gravitation arises from the action of the

surrounding medium in the way pointed out, leads to the conclusion that every

part of this medium possesses, when undisturbed, an enormous intrinsic energy,

and that the presence of dense bodies influences the medium so as to diminish

this energy wherever there is a resultant attraction.

As I am unable to understand in what way a medium can possess such

properties, I cannot go any further in this direction in searching for the cause

of gravitation.
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PART V.

THEORY OF CONDENSERS.

Capacity of a Condenser.

(83) The simplest form of condenser consists of a uniform layer of insulating

matter bounded by two conducting surfaces, and its capacity is measured by tbe

quantity of electricity on either surface when the difference of potentials is unity.

Let S be the area of either surface, a the thickness of the dielectric, and
h its coefficient of electric elasticity; then on one side of the condenser the

potential is ^j, and on the other side "^'i + l, and within its substance

di=a = ^f W.

Since ^ and therefore / is zero outside the condenser, the quantity of electricity

on its first surface = - Sf, and on the second + Sf. The capacity of the con-

S
denser is therefore >§/'= -^ in electromagnetic measure.

Specific Capacity of Electric Induction (D).

(84) If the dielectric of the condenser be air, then its capacity in electro-

ns'

static measure is —- (neglecting coiTections arising from the conditions to be

fulfilled at the edges). If the dielectric have a capacity whose ratio to that of

air is D, then the capacity of the condenser will be ~-
.

Arra

Hence i) = | (49)^

where k^ is the value of k in air, which is taken for unity.
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Electric Absorption.

(85) When the dielectric of which the condenser is formed is not a perfect

insulator, the phenomena of conduction are combined with those of electric dis-

placement. The condenser, when left charged, gradually loses its charge, and in

some cases, after being discharged completely, it gradually acquires a new charge

of the same sign as the original charge, and this finally disappears. These

phenomena have been described by Professor Faraday {Expenmental Researches,

Series XL) and by Mr F. Jenkin {Report of Committee of Board of Trade on

Submarine Cables), and may be classed under the name of "Electric Absorption."

(86) We shall take the case of a condenser composed of any number of

parallel layers of different materials. If a constant difference of potentials between

its extreme surfaces is kept up for a suflBcient time till a condition of perma-

nent steady flow of electricity is established, then each bounding surface will

have a charge of electricity depending on the nature of the substances on each

side of it. If the extreme surfaces be now discharged, these internal charges

will gradually be dissipated, and a certain charge may reappear on the extreme

surfaces if they are insulated, or, if they are connected by a conductor, a certain

quantity of electricity may be urged through the conductor during the re-

establishment of equilibrium.

Let the thickness of the several layers of the condenser be a^, a„, &c.

Let the values of k for these layers be respectively /:„ k.^, k^, and let

aJc^-\- aJc^-{- kc. =ak (50),

where k is the "electric elasticity" of air, and a is the thickness of an equiva-

lent condenser of air.

Let the resistances of the layers be respectively r^, r,, &c., and let

r, -I- r, -I- &c. = r be the resistance of the whole condenser, to a steady current

through it per unit of surface.

Let the electric displacement in each layer be /, fj, &c.

Let the electric current in each layer be J9„ p^ &c.

Let the potential on the first surface be ^i, and the electricity per unit

of surface e,.
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Let the corresponding quantities at the boundary of the first and second

surface be % and e„ and so on. Then by equations (G) and (H),

de

&c. &c.

But by equations (E) and (F),

&c. &c. &c.

.(51),

(52).

After the electromotive force has been kept up for a sufficient time the

current becomes the same in each layer, and

where ^ is the total difference of potentials between the extreme layers. We
have then

and
t= j- , &c.

r \ajc^ akj'

These are the quantities of electricity on the different surfaces.

(53).

(87) Now let the condenser be discharged by connecting the extreme surfaces

through a perfect conductor so that their potentials are instantly rendered equal,

then the electricity on the extreme surfaces will be altered, but that on the

internal surfaces will not have time to escape. The total difference of potentials

is now
^' = ajc/, + ajc,{e\ + e,) + ajcle\ + e,-\-e^, &c. = (54),

whence if e\ is what e^ becomes at the instant of discharge,

^ r ajc^ ak~ * ak'
(55).
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The instantaneous discharge is therefore —r, or the quantity which would

be discharged by a condenser of air of the equivalent thickness a, and it is

unaffected by the want of perfect insulation.

(88) Now let us suppose the connexion between the extreme surfaces

broken, and the condenser left to itself, and let us consider the gradual dissi-

pation of the internal charges. Let ^ be the difference of potential of the

extreme surfaces at any time t ; then

^' = «A/i +«M + &c (56);

but «i^V/i= -^i^^>

Ml Mi
Hence f^ = Afi'^' , f^^Af' n\ &c. ; and by referring to the values of e\, e^,

&c., we find

vir ,' -vlr 'I

^ =_ li JL
^ r ajc^ ak

A=t3..^\
^"*'

' r ajc., ak
\

I

&c. J

so that we find for the difference of extreme potentials at any time,

---{(^S"'-(^t>"""-^ <^^'-

(89) It appears from this result that if all the layers are made of the

same substance, "^^ will be zero always. If they are of different substances,

the order in which they are placed is indifferent, and the effect will be the

same whether each substance consists of one layer, or is divided into any number

of thin layers and arranged in any order among thin layers of the other sub-

stances. Any substance, therefore, the parts of which are not mathematically

homogeneous, though they may be apparently so, may exhibit phenomena of

absorption. Also, since the order of magnitude of the coeflicients is the same

as that of the indices, the value of ^' can never change sign, but must start

from zero, become positive, and finally disappear.
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(90) Let us next consider the total amount of electricity which would

pass from the first surface to the second, if the condenser, after being thoroughly-

saturated by the current and then discharged, has its extreme surfaces connected

by a conductor of resistance R. Let p be the current in this conductor; then,

during the discharge,

^'=p^r^-\-jp^r^-\-kc.=pR (59).

Integrating with respect to the time, and calling q„ q^, q the quantities of

electricity which traverse the different conductors,

q^r^ + q^r^-\- kc. = qR (60).

The quantities of electricity on the several surfaces will be

e.+ qi-qt.

&c.

;

and since at last all these quantities vanish, we find

qi = e\-q,

q, = e\ + e,-q',

a quantity essentially positive; so that, when the primary electrification is in

one direction, the secondary discharge is always in the same direction as the

primary discharge *.

Since this paper was communicated to the Royal Society, I have seen a paper by M. Gaugain

in the Annates de Chimie for 1864, in which he has deduced the phenomena of electric absorption and

secondary discharge from the theory of compound condensers.
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PART VI.

ELECTROMAUNETIC THEORY OF LIGHT.

(91) At the commencement of this paper we made uae of the optical

hypothesis of an elastic medium through which the vibrations of light are

propagated, in order to shew that we have warrantable grounds for seeking,

in the same medium, the cause of other phenomena as well as those of light.

We then examined electromagnetic phenomena, seeking for their explanation in

the properties of the field which surrounds the electrified or magnetic bodies.

In this way we arrived at certain equations expressing certain properties of

the electromagnetic field. We now proceed to investigate whether these pro-

perties of that which constitutes the electromagnetic field, deduced from electro-

magnetic phenomena alone, are sufficient to explain the propagation of light

through the same substance.

(92) Let us suppose that a plane wave whose direction cosines are Z, m, n

is propagated through the field with a velocity V. Then all the electro-

ma^etic functions will be functions of

w = Ix + my-{-7iz— Vt.

The equations of Magnetic Force (B), p. 556, will become

dH dG
iia = m —i n -j—

,'^ dw dw

'^ dw dw '

^^ ~ dw dw
'

If we multiply these equations respectively by /. m, n, and add, we find

lfj.a-\-7nixj3 + nny = (62),

which shews that the direction of the magnetization must be in the plane of

the wave.
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(93) If we combine the equations of Magnetic Force (B) with those of

Electric Currents (C), and put for brevity

dF dG dH J _

,

+ —-jf.-r-=J, and
dx dy dz daf'^df^dz^''^

,.,p' = ^^V^F

4irfiq' ^-VG
dJ-V'H

(63).

(64).

If the medium in the field is a perfect dielectric there is no true conduction,

and the currents p, q, r are only variations in the electric displacement, or,

by the equations of Total Currents (A),

i'-f' «-4- ^-=§ <«^)-

But these electric displacements are caused by electromotive forces, and by the

equations of Electric Elasticity (E),

P = hf, Q = kg, R = Tck (66).

These electromotive forces are due to the variations either of the electro-

magnetic or the electrostatic functions, as there is no motion of conductors in

the field; so that the equations of electromotive force (D) are

dF^_d^'
dt dx

P =

^ ~ dt dy

R=-dH d^

(67).

dt dz

(94) Combining these equations, we obtain the following:-

.(^_,..)..„(«.«)..
\dy

dm
df

"*
dzdt)

(68).
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If we differentiate the third of these equations with respect to y, and

the second with respect to z, and subtract, J and "^ disappear, and by remem-

bering the equations (B) of magnetic force, the results may be written

de

(69).

(95) If we assume that a, fi, y are functions of Ix + my + 7iz — Vt = ic, the

first equation becomes

*''S=^VF'S (70).

^=±^/5 (")

The other equations give the same value for V, so that the wave is propa-

gated in either direction with a velocity V.

This wave consists entirely of magnetic disturbances, the direction of mag-

netization being in the plane of the wave. No magnetic disturbance whose

direction of magnetization is not in the plane of the wave can be propagated

as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field

agree with light in this, that the disturbance at any point is transverse to

the direction of propagation, and such waves may have all the properties of

polarized light.

(96) The only medium in which experiments have been made to determine

the value of ^ is air, in which /u,= l, and therefore, by equation (46),

V=v (72).

By the electromagnetic experiments of MM. Weber and Kohlrausch *,

t> = 310,740,000 metres per second

• Leipzig Transactions, Vol. v. (1857), p. 260, or PoggendorflTs AnnaUn, Aug. 1856, p. 10.

73—2
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is the number of electrostatic units in one electromagnetic unit of electricity,

and this, according to our result, should be equal to the velocity of light in

air or vacuum.

The velocity of light in air, by M. Fizeau's * experiments, is

F= 314,858,000;

according to the more accurate experiments of M. Foucatilt t,

F= 298,000,000.

The velocity of light in the space surrounding the earth, deduced from

the coefficient of aberration and the received value of the radius of the earth's

orbit, is

F= 308,000,000.

(97) Hence the velocity of light deduced from experiment agrees sufficiently

well with the value of v deduced from the only set of experiments we as yet

possess. The value of v was determined by measuring the electromotive force

with which a condenser of known capacity was charged, and then discharging

the condenser through a galvanometer, so as to measure the quantity of electricity

in it in electromagnetic measure. The only use made of light in the experiment

was to see the instruments. The value of V found by M. Foucault was

obtained by determining the angle through which a revolving mirror turned,

while the light reflected from it went and returned along a measured course.

No use whatever was made of electricity or magnetism.

The agreement of the results seems to shew that light and magnetism

are affections of the same substance, and that light is an electromagnetic dis-

turbance propagated through the field according to electromagnetic laws.

(98) Let us now go back upon the equations in (94), in which the

quantities J and ^ occur, to see whether any other kind of disturbance can

be propagated through the medium depending on these quantities which disappeared

from the final equations.

* Comptes Re-ndus, Vol. xxix. (1849), p. 90.

t Ibid. Vol. LV. (1862), pp. 501, 792.
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If we determine x ^^om the equation

Vx=g-|-§=-^ (")•

and F', G', //' from the equations

581

r=F- dx
G' = G- dx

then

dx' dy

dF' dG'
^

dlT^^
dx dy dz

ir=H- dx
dz'

•(74),

(75),

and the equations in (94) become of the form

.V.^ =4..{^f'.^(..|)} (76).

Differentiating the three equations with respect to x, y, and z, and adding, we

find that

^=-:^+^(^' y^ ^)- {77),

and that

(78).

dt

Hence the disturbances indicated by F', G', H' are propagated with the velocity

V= /—— through the field ; and since

djT dG^ dir=o
dx dy '^-

'dz

the resultant of these disturbances is in the plane of the wave.

(99) The remaining part of the total disturbances F, G, H being the part

depending on x. is subject to no condition except that expressed in the equation

dt ^ df
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If we perform the operation V" on this equation, it becomes

ke = ^^-hV^4>(x, y, z) (79).

Since the medium is a perfect insulator, e, the free electricity, is immove-

able, and therefore --7- is a function of x, y, z, and the value of J is either

constant or zero, or uniformly increasing or diminishing with the time ; so that

no disturbance depending on J can be propagated as a wave.

(100) The equations of the electromagnetic field, deduced from purely

experimental evidence, shew that transversal vibrations only can be propagated.

If we were to go beyond our experimental knowledge and to assign a definite

density to a substance which we should call the electric fluid, and select either

vitreous or resinous electricity as the representative of that fluid, then we might

have normal vibrations propagated with a velocity depending on this density.

We have, however, no evidence as to the density of electricity, as we do not

even know whether to consider vitreous electricity as a substance or as the

absence of a substance.

Hence electromagnetic science leads to exactly the same conclusions as

optical science with respect to the direction of the disturbances which can be

propagated through the field ; both affirm the propagation of transverse vibra-

tions, and both give the same velocity of propagation. On the other hand, both

sciences are at a loss when called on to affirm or deny the existence of normal

vibrations.

Relation between the Index of Refraction and the Electromagnetic Character

of the substance.

(101) The velocity of light in a medium, according to the Undulatory

Theory, is

If

where i is the index of refraction and V^ is the velocity in va<;uum. The

velocity, according to the Electromagnetic Theory, is

where, by equations (49) and (71), h = jjk^, and k„ = AnV^\
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Hence i) = - (80),

or the Specific Inductive Capacity is equal to the square of the index of refrac-

tion divided by the coefficient of magnetic induction.

Propagation of Electromagnetic Disturbances in a Crystallized Medium.

(102) Let -us now calculate the conditions of propagation of a plane wave

in a medium for which the values of k and /x are different in different direc-

tions. As we do not propose to give a complete investigation of the question

in the present imperfect state of the theory as extended to disturbances of

short period, we shall assume that the axes of magnetic induction coincide in

direction with those of electric elasticity.

(103) Let the values of the magnetic coefficient for the three axes be

X, fi, V, then the equations of magnetic force (B) become

dH dG
dy dz

^ dF dH
f'^^'d^- d^

^dG_dF
^ dx dy

(81).

The equations of electric currents (C) remain as before.

The equations of electric elasticity (E) will be

^=47r6V (82),

R = A'nc'h\

where 47ra', 47r6', and Attc^ are the values of k for the axes of x, y, z.

Combining these equations with (A) and (D), we get equations of the form

\ [,d'F d'F d'F\ I d (JF dG dH\ I fd'F ,
d'^\ ,^,-

jr.[^d^-^f'df-^''^)-]ruMd^-^f'dJ^'' dz) = a^[-de^~d^tH^-^^-

(104) If /, m, n are the direction-cosines of the wave, and V its velocity,

and if

lx + my + 7iz- Vt=w (84),
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then F, G, H, and ^ will be functions of w\ and if we put F\ G\ H\ '^'

for the second differentials of these quantities with respect to w, the equations

will be

X V
{..-.gV?)}.-

If we now put

(85).

(86),

we shall find

F'V'U-WVU=0
with two similar equations for G' and H', Hence either

F =

U=Q

(87),

(88),

(89),

or

VF' = W, F(?' =m^ and VH' = n']!' (90).

The third supposition indicates that the resultant of F\ G', H' is in the

direction normal to the plane of the wave ; but the equations do not indicate

that such a disturbance, if possible, could be propagated, as we have no other

relation between ^' and F', G\ H'.

The solution F=0 refers to a case in which there is no propagation.

''• The solution Z7= gives two values for F^ corresponding to values of F\

G\ H', which are given by the equations

-2^' + ri^' + -2^' =
a' 0' c*

-p (6> - cV) + -^ (c-v - a'\) + -j^, (a'k- b'fi) =

(91).

(92).

* [Although it is not expressly stated in the text it should be noticed that in finding equations

(91) and (92) the quantity ^ is put equal to zero. See § 98 and also the corresponding treat-

ment of this subject in the Electricity and Magnetism il § 796. It may be observed that the
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The experiments of Knoblauch* on electric induction through crystals seem

to shew that a, b and c may be different.

The inequality, however, of X, /x, v is so small that great magnetic forces

are required to indicate their difference, and the differences do not seem of

sufficient magnitude to account for th§ double refraction of the crystals.

On the other hand, experiments on electric induction are liable to error

on account of minute flaws, or portions of conducting matter in the crystal.

Further experiments on the magnetic and dielectric properties of crystals

are required before we can decide whether the relation of these bodies to mag-

netic and electric forces is the same, when these forces are permanent as when

they are alternating with the rapidity of the vibrations of light.

Relation between Electric Reshtance and Trayisparency.

(106) If the medium, instead of being a perfect insulator, is a conductor

whose resistance per unit of volume is p, then there will be not only electric

displacements, but true currents of conduction in which electrical energy is

transformed into heat, and the undulation is thereby weakened. To determine

the coefficient of absorption, let us investigate the propagation along the axis

of X of the transverse disturbance G.

By the former equations

4^/^(1+?) by (A),

d'G
, ,

fld'G ldG\ , ,^. , ,„. ,^,.d'G . nd'G ldG\

P

If G is of the form

G = e-'^ cos (qx + nt) (96),

we find that
2^n^2^F

^ p q p I

where V is the velocity of light in air, ^nd i is the index of refraction. J'he

proportion of incident light transmitted through the thickness x is

e-*' (98).

* PhUpnophicaX Magazine, 1852.
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Let R be the resistance in electromagnetic measure of a plate of the

substance whose thickness is x, breadth h, and length I, then

OX,

2px = 4.^Zjl-^ (99).

(107) Most transparent solid bodies are good insulators, whereas all good

conductors are very opaque.

Electrolytes allow a current to pass easily and yet are often very trans-

parent. "We may suppose, howaver, that in the rapidly alternating vibrations

of light, the electromotive forces act for so short a time that they are unable to

effect a complete separation between the particles in combination, so that when

the force is reversed the particles oscillate into their former position without

loss of energy.

Gold, silver, and platinum are good conductors, and yet when reduced to

suflSciently thin plates they allow light to pass through them. If the resistance

of gold is the same for electromotive forces of short period as for those witli

which we make experiments, the amount of light which passes through a piece

of o-old-leaf, of which the resistance was determined by Mr C. Hockin, would

be only lO""*" of the incident light, a totally imperceptible quantity. I find that

between -=-Jjo and xoVo" ^^ green hght gets through such gold-leaf. Much of thiis

is transmitted through holes and cracks ; there is enough, however, transmitter!

through the gold itself to give a strong green hue to the transmitted light.

This result cannot be reconciled with the electromagnetic theory of light, unless

we suppose that there is less loss of energy when the electromotive forces are

reversed with the rapidity of the vibrations of light than when they act for

sensible times, as in our experiments.

Absolute Valves of the Electromotive and Magnetic Forces called into play in tin

Propagation of Light.

(108) If the equation of propagation of light is

i^=^cos^(2-F0.

74—2
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the electromotive force will be

F=-A^Vsm^{z-Vt);

and the energy per unit of volume will be

Stt/xP'

where P represents the greatest value of the electromotive force. Half of this

consists of magnetic and half of electric energy.

The energy passing through a unit of area is

so that

P= s/S7riJiVW,

where V is the velocity of light, and W is the energy communicated to unit

of area by the Ught in a second.

According to Pouillet's data, as calculated by Professor W. Thomson*, the

mechanical value of direct sunlight at the Earth is

83'4 foot-pounds per second per square foot.

This gives the maximum value of P in direct sunlight at the Earth's distance

from the Sun,

P= 60,000,000,

or about 600 Darnell's cells per metre.

At the Sun's surface the value of P would be about

13,000 Daniell's cells per metre.

At the Earth the maximum magnetic force would be 193 f.

At the Sun it would be 4*13.

These electromotive and magnetic forces must be conceived to be reversed

twice in every vibration of Hght ; that is, more than a thousand miUion million

times in a second.

* Transactions of Uie Royal Society of Edirthurgh, 1854 ("Mechanical Energies of the Solar

System").

t The horizontal magnetic force at Kew is about 1'76 in metrical units.
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PART VII.

CALCULATION OF THE COEFFICIENTS OF ELECTROMAGNETIC INDUCTION.

General Methods.

(109) The electromagnetic relations between two conducting circuits, A and

B, depend upon a function M of their form and relative position, as has been

already shewn.

M may be calculated in several different ways, which must of course all

lead to the same result.

First Method. M is the electromagnetic momentum of the circuit B when

A carries a unit current, or

^=/(^l-4-^S-)*''

where F, G, H are the components of electromagnetic momentum due to a unit

current in A, and ds is an element of length of B, and the integration is

performed round the circuit of B.

To find F, (t, H, we observe that by (B) and (C)

d?F d'F d'F

with corresponding equations for G and Hy p\ q, and / being the components

of the current in A.

Now if we consider only a single element ds of A, we shall have

p=s*' 'i=±'^' ^=s;*'

and the solution of the equation gives

F^t^ds, G=f^i^ds. H=t<i^ds,
p ds p as pels
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where p is the distance of any point from ds. Hence

]] p \ds da' ds ds' ds ds'

= - cos Odsds',

Jj P

where 6 is the angle between the directions of the two elements ds, ds', and

p is the distance between them, and the integration is performed round both

circuits.

In this method we confine our attention during integration to the two linear

circuits alone,

(110) Second Method. M is the number of lines of magnetic force which

pass through the circuit B when A carries a unit current, or

M= t (fial+ p.fim + ixyn) dS',

where fia, p.^, py are the components of magnetic induction due to unit current

in A, S' is a surface bounded by the current B, and I, m, n are the direction-

cosines of the normal to the surface, the integration being extended over the

surface.

We may express this in the form

M= 11%— sin 6 sin 6' sin (bdS'ds,r p.

where dS' is an element of the surface bounded by B, ds is an element

of the circuit ^, ^ is the distance between them, and 9' are the angles

between p and ds and between p and the normal to dS respectively, and
(f)

is

the angle between the planes in which and 0' are measured. The integration

is performed round the circuit A and over the surface bounded by B.

This method is most convenient in the case of circuits lying in one plane,

in which case sin^ = l, and sin<^=l.

(111) Third Method. M is that part of the intrinsic magnetic energy of

the whole field which depends on the product of the currents in the two

circuits, each current being unity.
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Let a, yS, y be the components of magnetic intensity at any point due to

the first circuit, a', yS', y the same for the second circuit ; then the intrinsic-

energy of the element of volume dV of the field is

'' {(a + aT + (^ + yS-r + iy + /)'}</ r.
OTT

The -part which depends on the product of the currents is

^^-[o.o:^m'ryy')dV.
477

Hence if we know the magnetic intensities / and /' due to the unit current

in each circuit, we may obtain M by integrating

f-S/i/rcos^c^F

over all space, where 6 is the angle between the directions of / and /'.

Application to a Coil.

(112) To find the coefiicient (M) of mutual induction between two circular

linear conductors in parallel planes, the distance between the cur\ es being every-

where the same, and small compared with the radius of either.

If r be the distance between the curves, and a the radius of either, then

when r is very small compared with a, we find by the second method, as a

first approximation,

M=A7ra(\og~-2

To approximate more closely to the value of M, let a and a, be the radii of

the circles, and h the distance between their planes ; then

T^ = {a-a,y + b\

We obtain M by considering the following conditions:

—

1st. M must fulfil the difierential equation

d'M d'M IdM^^
da^ dJ/ a da

This equation being true for any magnetic field symmetrical with respect to the

common axis of the circles, cannot of itself lead to the determination of 3/ ;vy

a function of a, a^, and h. We therefore make use of other conditions.
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2ndly. The value of M must remain the same when a and a, are exchanged.

3rdlj. The first two terms of M must be the same as those given above.

M may thus be expanded in the following series :

—

(113) We may apply this result to find the coeflScient of self-induction

(//) of a circular coil of wire whose section is small compared with the radius

of the circle.

Let the section of the coil be a rectangle, the breadth in the plane of
the circle being c, and the depth perpendicular to the plane of the circle being h.

Let the mean radius of the coil be a, and the number of windings n;
then we find, by integrating,

^-6|-2
j J J J

M{xy xy) dx dy dx' dy\

where M(xy x'y') means the value of M for the two windings whose coordinates

are xy and xy respectively; and the integration is performed first with respect

to X and y over the rectangular section, and then with respect to x and y'

over the same space.

L = 47rn^a|log.^ + 1^ - |
(^-f)cot2^-|cos2^-icot^^logcos^-itan'^logsin^|

Here a= mean radius of the coil.

„ r= diagonal of the rectangular section = Jb" + c".

,, 6= angle between r and the plane of the circle.

„ n= numbei of windings.

The logarithms are Napierian, and the angles are in circular measure.
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In the experiments made by the Committee of the British Association for

determining a standard of Electrical Resistance, a double coil was used, con-

sisting of two nearly equal coils of rectangular section, placed parallel to each

other, with a small interval between them.

The value of L for this coil was found in the following way.

The value of L was calculated by the preceding formula for six different

cases, in which the rectangular section considered has always the same breadth,

while the depth was

A, B, C, A + B, B+C, A+B+C,
and n = 1 in each case.

Calling the results L{A), L(B), L{C), &c.,

we calculate the coefficient of mutual induction M(AC) of the two coils thus,

2ACM{AC) = {A+B+CYL{A+B + C)-(A+BYL(A-\-B)
-{B+CyL{B-^C) + RL(B).

Then if n^ is the number of windings in the coil A and w, in the coil C, the

coefficient of self-induction of the two coils together is

L = n,'L{A) + 2n,n,M{ACr)-\-n.^L{C).

(114) These values of L are calculated on the supposition that the windings

of the wire are evenly distributed so as to fill up exactly the whole section.

This, however, is not the case, as the wire is generally circular and covered with

insulating material. Hence the current in the wire is more concentrated than it

would have been if it had been distributed uniformly over the section, and the

currents in the neighbouring wires do not act on it exactly as such a uniform

current would do.

The corrections arising from these considerations may be expressed as nu-

merical quantities, by which we must multiply the length of the wire, and they

are the same whatever be the form of the coil.

Let the distance between each w^ire and the next, on the supposition that

they are arranged in square order, be D, and let the diameter of the wire

be d, then the correction for diameter of wire is

VOL. I. 75
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The correction for the eight nearest wires is

+ 0-0236.

For the sixteen in the next row +0-00083.

These corrections being multiplied by the length of wire and added to the

former result, give the true value of L, considered as the measure of the

potential of the coil on itself for unit current in the wire when that current

has been established for some time, and is uniformly distributed through the

section of the wire.

(115) But at the commencement of a current and during its variation the

current is not uniform throughout the section of the wire, because the induc-

tive action between different portions of the current tends to make the current

stronger at one part of the section than at another. When a uniform electro-

motive force P arising from any cause acts on a cylindrical wire of specific

resistance p, we have

where F is got from the equation

d'F 1 dF

r being the distance from the axis of the cylinder.

Let one term of the value of F be of the form T/'", where T is a

function of the time, then the term of p which produced it is of the form

1

Hence if we write

dT\ fiTT d-T fin

pp=\'^-dtrv^
\ d'T

^ ,
r* — &c.

V .
2* df

The total counter current of self-induction at any point is

from < = to « = Qo .

k:
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When . = 0.^ = 0, ••(§) =i',O.= 0,&c.
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where I is the length of the wire, and /n is the coefficient of magnetic induc-

tion for the substance of the wire.

(116) The dimensions of the coil used by the Committee of the British

Association in their experiments at King's College in 1864 were as follows:—

metre.

Mean radius =a= -158194

Depth of each coil =6 = -01608

Breadth of each coil =c = '01841

Distance between the coils ='02010

Number of windings n= 313

Diameter of wire ="00126

The value of L derived from the first term of the expression is 437440

metres.

The correction depending on the radius not being infinitely great compared

with the section of the coil as found from the second term is -7345 metres.

The correction depending on the diameter of the wire is 1 , ...qq^

per unit of length J

Correction of eight neighbouring wires + '0236

For sixteen wires next to these + '0008

Correction for variation of current in difierent parts of section - "2500

Total correction per unit of length '22437

Length 311-236 metres.

Sum of corrections of this kind 70

Final value of i by calculation 430165

This value of L was employed in reducing the observations, according to

the method explained in the Report of the Committee*. The correction de-

pending on L varies as the square of the velocity. The results of sixteen

experiments to which this correction had been applied, and in which the velocity

varied from 100 revolutions in seventeen seconds to 100 in seventy-seven seconds,

* British Association Reports, 1863, p. 169.
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were compared by the method of least squares to determine what further cor-

rection depending on the square of the velocity should be applied to make the

outstanding errors a minimum.

The result of this examination shewed that the calculated value of L should

be multiplied by 1*0618 to obtain the value of L, which would give the most

consistent results.

We have therefore L by calculation 430165 metres.

Probable value of L by method of least squares 456748 „

Result of rough experiment with the Electric Balance (see § 46) 41 0000 „

The value of L calculated from the dimensions of the coil is probably much

more accurate than either of the other determinations.



[From the Philosophical Magazine, Vol. xxvii]

"' XXVI. On the Calculation of the Equilibrium and Stiffness of Frames.

The theory of the equilibrium and deflections of frameworks subjected to

the action of forces is sometimes considered as more complicated than it really

is, especially in cases in which the framework is not simply stiff, but is

strengthened (or weakened as it may be) by additional connecting pieces.

I have therefore stated a general method of solving all such questions in

the least complicated manner. The method is derived from the principle of

Conservation of Energy, and is referred to in Lame's Legons sur VElasticite,

Lefon 7"'^ as Clapeyron's Theorem ; but I have not yet seen any detailed

application of it.

K such questions were attempted, especially in cases of three dimensions,

by the regular method of equations of forces, every point would have three

equations to determine its equilibrium, so as to give 3s equations between

e unknown quantities, if s be the number of points and e the number of

connexions. There are, however, six equations of equilibrium of the system

which must be fulfilled necessarily by the forces, on account of the equality

of action and reaction in each piece. Hence if

e = 3s-6,

the effect of any external force will be definite in producing tensions or pressures

in the different pieces; but if e>35 — 6, these forces will be indeterminate.

This indeterminateness is got rid of by the introduction of a system of e equa-

tions of elasticity connecting the force in each piece with the change in its

length. In order, however, to know the changes of length, we require to assume

3s displacements of the s points ; 6 of these displacements, however, are equiva-

lent to the motion of a rigid body so that we have 3s — 6 displacements of

points, e extensions and e forces to determine from 3s — 6 equations of forces, e

* [Owing to an oversight this paper is out of its proper place ; it should have been immediately

before the memoir on "The Electro-magnetic Field." (No. XXV.)]
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equations of extensions, and e equations of elasticity ; so that the solution is

always determinate.

The following method enables us to avoid unnecessary complexity by treating

separately all pieces which are additional to those required for making the frame

stiff, and by proving the identity in form between the equations of forces and

those of extensions by means of the principle of work.

On the Stiffness of Frames.

Geometrical dejinition of a Fram^i. A frame is a system of lines connecting

a number of points.

A stiff frame is one in which the distance between any two points cannot

be altered without altering the length of one or more of the connecting lines

of the frame.

A frame of s points in space requires in general 35 — 6 connecting lines to

render it stiff. In those cases in which stiffness can be produced with a smaller

number of lines, certain conditions must be fulfilled, rendering the case one of

a maximum or minimum value of one or more of its lines. The stiffness of

such frames is of an inferior order,, as a small disturbing force may produce

a displacement infinite in comparison with itself.

A frame of s points in a plane requires in general 26- — 3 connecting lines to

render it stiff.

A frame of s points in a line requires s — 1 connecting lines.

A frame may be either simply stiff, or it may be self-strained by the intro-

duction of additional connecting lines having tensions or pressures along them.

In a frame which is simply stiff, the forces in each connecting line arising

from the application of a force of pressure or tension between any two points

of the frame may be calculated either by equations of forces, or by drawing

diagrams of forces according to known methods.

In general, the lines of connexion in one part of the frame may be affected

by the action of this force, while those in other parts of the frame may not

be so affected.

Elasticity and Extensibility of a connecting piece.

Let e be the extension produced in a piece by tension-unity acting in it,

i-hen e may be called its extensibility. Its elasticity, that is, the force required
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to produce extension-unity, will be - . We shall suppose that the efiect of

pressure in producing compression of the piece is equal to that of tension in

producing extension, and we shall use e indifferently for extensibility and com-

pressibility.

Wcyrk done against Elasticity.

Since the extension is proportional to the force, the whole work done will

be the product of the extension and the mean value of the force ; or if x is

the extension and F the force,

x = eF,

work =iFx = ^eF' = ^-af.

When the piece is inextensible, or e = 0, then all the work applied at one end

is transmitted to the other, and the frame may be regarded as a machine whose

efficiency is perfect. Hence the following

Theorem. If p be the tension of the piece A due to a tension-unity

between the points B and C, then an extension-unity taking place in A will

bring B and C nearer by a distance p.

For let X be the tension and x the extension of ^4, F the tension and

// the extension of the line BC; then supposing all the other pieces inextensible,

no work will be done except in stretching A, or

iXx +iYy = 0.

But X=pY, therefore y= —px, which was to be proved.

Problem I. A tension F is applied between the points B and C of a

frame which is simply stiff; to find the extension of the line joining D ai d F,

all the pieces except A being inextensible, the extensibility of A being e.

Determine the tension in each piece due to unit tension between B and C,

and let p be the tension in A due to this cause.

Determine also the tension in each piece due to unit tension between D
and F, and let y be the tension in the piece A due to this cause.

Then the actual tension of ^ is Fp, and its extension is eFp, and the

extension of the line DE due to this cause is -Fepq by the last theorem.
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Cor. If the other pieces of the frame are extensible, the complete value

of the extension in DE due to a tension F in BC m

-F%{epq),

where 'Z{epq) means the sura of the products of epq, which are to be found

for each piece in the same way as they were found for A.

The extension of the line BC due to a tension F in BC itself will be

-Ft{ep%

t{ep') may therefore be called the resultant extensibility along BC.

Problem IL A tension F is applied between B and C; to find the

extension between D and E when the frame is not simply stiff, but has

additional pieces R, S, T, &c. whose elasticities are known.

Let p and q, as before, be the tensions in the piece A due to unit

tensions in BC and DE, and let r, s, t, &c. be the tensions in A due to

unit tension in R, S, T, &c. ; also let R, S, T be the tensions of R, S, T,

and p, (T, T their extensibilities. Then the tension A
= Fp + Rr + Ss+Tt + &c.;

the extension of A
= e{Fp + Rr + Ss + Tt + &c.);

the extension of R
= -Ft (epr) - RXer" - Sters - TXert + &c. = Rp

;

extension of S
= - Ft{eps) - Rt{ers) - Stes' - Tt{est) = Sa

;

extension of T
= - FX(ept) - Rt{ert) - SX{est) - Tt(ef) = TV

;

also extension of DE
= - FX{epq) - Rt(eqr) - S%(eqs) - Tt(eqt) = x,

the extension required. Here we have as many equations to determine R, S, T,

&c. as there are of these unknown quantities, and by the last equation we

determine x the extension of DE from F the tension in BC.

Thus, if there is only one additional connexion R, we find

R=-F t(epr)

X(er^) + p'

and

t(^^)-'-%^S?}
VOL. I. 76
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If there are two additional connexions R and S, with elasticities p and <r,

x=-F

r % (epr) t (ers)t (eqs) + % (eps) t (eqr) % (ers) + 1 {epq) %e (r=+ p) le {s' + a)^

\-t (epr) t {eqr) %e {5^ + a-)-t {eps) S {eqs) te{r' + p)-t {epq) (2 {ers)Y J

*

The expressions for the extensibility, when there are many additional pieces,

are of course very complicated.

It will be observed, however, that p and q always enter into the equations

in the same way, so that we may estabhsh the following general

Theorem. The extension in BC, due to unity of tension along DE, is

always equal to the tension in DE due to unity of tension in BC. Hence we

have the following method of determining the displacement produced at any

joint of a frame due to forces applied at other joints.

1st. Select as many pieces of the frame as are sufficient to render all its

points stiff. Call the remaining pieces R> S, T, &c.

2nd. Find the tension on each piece due to unit of tension in the

direction of the force proposed to be applied. Call this the value of _p for each

piece.

3rd. Find the tension on each piece due to unit of tension in the

direction of the displacement to be determined. Call this the value of q for

each piece.

4th. Find the tension on each piece due to unit of tension along R, S, T,

&c., the additional pieces of the frame. Call these the values of r, s, t, &c.

for each piece.

5th. Find the extensibility of each piece and call it e, those of the

additional pieces being p, <t, t, &c.

6th. R, S, T, &c. are to be determined from the equations

Rp + Rt (er") + S{ers) + Tt {ert) + Ft {epr) = 0,

So- + Rt{ers) + S{es') + T% {est) + Ft {eps) = 0,

Tt + Rt{ert) + S{est) + Tt{ef) + Ft{ept) = 0,

as many equations as there are quantities to be found.

7th. X, the extension required, is then found from the equation

x= -Ft{epq)-Rt{erq)-St{eqs)-Tt{eqt).
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In structures acted on by weights in which we wish to determine the

deflection at any point, we may regard the points of support as the extremities

of pieces connecting the structure with the centre of the earth ; and if the

supports are capable of resisting a horizontal thrust, we must suppose them

connected by a piece of equivalent elasticity. The deflection is then the

shortening of a piece extending from the given point to the centre of the

earth.

Example. Thus in a triangular or Warren girder of length l, depth d,

with a load W placed at a distance a from one end, ; to find the deflection

at a point distant h from the same end, due to the yielding of a piece of

the boom whose extensibility is e, distant x from the same end.

The pressure of the support at 0=W -j~ ; and if x is less than a, the

W
force at x will be -jr x{l-a), or

If X is greater than a,

Similarly, if a: is less than 6,

but if ic is greater than b,

x(l-a)
P~ dl

a{l-x)
^~ dl

^" dl

^" dl

The deflection due to x is therefore Wepq, where the proper values of p
and q must be taken according to the relative position of «, h, and x.

If a, b, I, X represent the number of the respective pieces, reckoning from

the beginning and calling the first joint 0, the second joint and the piece

opposite 1, &c., and if L be the length of each piece, and the extensibility of

each piece =e, then the deflection of b due to W at a will be, by summation

of series,

= \ WeD .^^^^ {2b{l -a)- (b<- af + 1}.

76—2
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This is the deflection due to the yielding of all the horizontal pieces.

The greater the number of pieces, the less is the importance of the last term.

Let the inclination of the pieces of the web be a, then the force on a

. „^ I —

a

piece between and a v& W j-^'^, or

/ l — <^ 1-
r/ = :r—.— when x<a,
^ t sm a

and

p' = i—— when x>a.
^ f sin a

Also

when x<o,
I sin a

b

I sin a
when a; > 6.

If e be the extensibility of a piece of the web, we have to sum Wte'pq

to get the deflection due to the yielding of the web,
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