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PREFACE.

"\\7~HEN the Syndics of the University Pi ess did me the unexpected
honour of proposing to reprint such of my scientific papers as I should

select, they advised me to lean, in doubtful cases, rather to the side of

comprehension than *to that of exclusion. The selection has given me
considerable anxiety, for (even after the numerous polemical items had, of

course, been set aside) the doubtful cases formed a large majority.

Since I took my degree the greater part of my time has been spent
in teaching and its necessary concomitants. The rest, except in so far as

it was devoted to the preparation of text-hooks, has been occupied rather

with fresh mathematical or experimental inquiries than in fully "writing out"

the results of earlier ones. Thus the present collection presents a very

irregular aspect . a few only of the papers giving anything like full details,

while the remaindei are often of the most fragmentary character, being in

many cases no more than very condensed abstracts.

Among the more detailed papers are the earlier of those in which

quaternions are employed. These were written while I was endeavouring
to familiarise myself with the new calculus, and were, in great part, worked

out before I had any communication \vith Sir W. R. Hamilton except

through his Lectures (1853), a fascinating book, which, by great good fortune,

I had taken with me on a vacation tour as a companion for wet days.

When T made Hamilton's acquaintance a year or two later, through
Dr Andrews, I submitted to him some of tho more formidable difficulties

which I had met in the study of his great work, and the hints I thus

obtained were of much use to me in finally preparing these papers for

publication. As they ^received a cordial imprimatur from Hamilton, with

a notice
J
"'

recommending them to the attention of students of the subject,

I had no hesitation in deciding to reprint them in the present collection.

* Element* of Quatenuonn, 1866, p 755 (foot-note)



But 1 feel that this explanation of their second appearance is called for,

as their contents are mainly, as it were, a translation of other men's

investigations into a vastly superior (though at the time they were written

an all-but-unknown) language, not an incursion into unexplored regions of

physics. And, when I wrote them, my practical acquaintance with the

extraordinary resources and flexibility of the new language was still very

limited.

I have not icprinted any papers which are not exclusively my own.

Those in which I was associated with Dr Andrews have already been

reprinted in his Life (Macmillan, 1881)). But the titles of all such joint

productions, along with slight indications of the nature of their contents,

will be given in a supplementary list, containing references to nearly all

but the most ephemeral of my scientific articles.

Several of the papers in the present collection have already been in

part reprinted in text-books, such as my Quaternion*, Properties of Matter,

&c. On the othei hand, some of these books (especially Dynamics of a

Particle, which I wrote in conjunction with the late Mr W. J Steele)

contain a consideiable amount of oiiginal work which was not laid before any
scientific Society. No part of that has been reproduced in this collection,

mainly because the books containing it have already passed through seveial

editions. 1 was much inclined, however, to make some extracts from the

last named work, such as for instance my proof (the first, T believe, which

was given) of Hamilton's Theorem, oj Hodoyraphic Isochroiusm, and some

similar investigations These would have taken the first place in the present

volume, for the order of the various ai tides has been determined, as a inle,

by their dates. The sole exception is in the cases wheie there is a senes

of articles on one subject, such as that which deals with Knots. The earliest

(reprinted) paper of such a series is inseited at its propei place, and the

others (each provided with its special date) follow immediately in their

own relative order.

In preparing the collection for press I have simply rectified obvious slips

or exaggerations, and printers' eriors. Of these by far the most serious have

evidently been caused by careless replacement of typos which had fallen

out during printing. On the other hand, all ma-ferial alterations, however

slight, have been indicated by the use of square brackets, [containmy the

date of the chanye~\. Under the head of obvious slips 1 include some of the

choice expressions current in Cambndge in my undergraduate days- such as

"velocity" for "speed," the "equation to a curve," the "center of a circle,"

and the doubly-dyed "center of yravtty" The
I notation for factorials,



much in vogue in those days, has been replaced by the '
; and the very

useful "solidus" has been called in where required.

L / Several of the more condensed Abstntcts have been reprinted although

they contain, as bare statements without detail of processes, results which

have not yet been tested by subsequent verification one or two even

contain speculations which have been shown by myself to be inaccurate as

they at present stand But these take up little space ; and No. XIV,
for instance, which is one of the latter and less defensible class, shows

how I was led to make the protracted experimental inquiries which are

described in detail in Nos. XXVIII, XXIX, and XLVIII. It has, on this

account, still a very special interest for myself and there seems to be

no doubt that it contains at least the germs of an important truth, which

I have not as yet succeeded in putting in an unexceptionable form.

My special thanks are due to the Council of the Royal Society of

Edinburgh, and to Sir John Murray of the Challenger Expedition, not

alone for permission to reprint the papeis which form the bulk of the

present collection but for the loan of the large number of wood-blocks

employed in their illustration.

Also to Drs (J. (j. Knott and W. Peddie, former and present Official

Assistants to the Professor of Natural Philosophy in Edinburgh University,
both adepts in Quaternions as well as in Physics, for the assistance which

they have given me in the reading of the proof-sheets

P. G. TAIT.
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I.

QUATERNION INVESTIGATIONS CONNECTED WITH
FRESNEL'S WAVE-SURFACE.

[Quarterly Journal of Mathematics, May, 1859.]

1. THOUGH the following investigation oi various equations and properties of

Fvesnel's Wave-Surface is my own, I must premise that I owe much besides the

Calculus employed to Sh W. R. Hamilton. 1 was induced to attack the question

by a passage in his Lectures (p. 687) which, he has since informed me, referred

principally to the [i, K] equation (28) of which he had long been in possession,

und t which I had icceiitly ai rived independently. The application to this question

of the separable symbol of operation of his Vllth Lecture, and the very elegant

symbolical equation of the wave (.39) deduced by its use, weie recently communicated

by him to the Royal Irish Academy

Much of the work might have been considerably shortened, such for instance as

that in Art [12], where the system oi equations giving the wave by its tangent

plane is changed to another giving it by points But these oiiguml methods have

been preserved, partly from a fear of unconsciously borrowing from MS investigations

which Sir W R. Hamilton has lately communicated to me, and partly because, as

they stand, they introduce a good many equations whose interpretation is not without

interest. I have not earned the inquiry in any case farther than the immediate

interpretation of the various equations. Particulars, such as the directions of vibration

at the cusps and along the ridges, for instance, can be easily deduced without

analysis from the geneial results. I reserve for another occasion simple quaternion
solutions of some interesting problems connected with the passage of light through

doubly-refracting media.

As to the Calculus of Quaternions in general, I must remark, though I have

only very recently taken it up, that it appears to me to possess in a marvellous

T. -*9 1



2 QUATERNION INVESTIGATIONS
[l.

degree the attributes of simplicity and suggestiveness. The treatment of the wave-

surface is perhaps not a question in which its superiority over (/artesian methods is

at once so marked, as it is in all cases where no direction in space is regarded as

preeminent. Still it is worthy of notice that the three directions of the axes of

elasticity may be at once reduced to two reference lines (the wave, or the ray, axes)
and a still farther reduction obtained by the introduction of a certain linear and

vector operation Equations (?;) and those in 17, 23, and 24 below, belonging to the

Ellipsoids, Fresnol's Surface of Elasticity, and the Wave, are striking instances of such

simplification.

A few quaternion results, which will be useful in the subsequent transformations,

may first be noticed

2 If the vector semiaxes of an ellipsoid be at, bj,
ck (where t, j, k are the

quaternion rectangular vector units), its equation is

which is in fact the same as the Cartesian equation

But Sir W. R Hamilton (Quaternion* , p. 4-b'7) has shown that it may also be

presented in the form

where 4 -
< /f^*}V^\ +W-
2 V \a -c) \ ab be

ac / (a
-

c\ M(a> - b*) . V(&'-c),][* = ~
2" v Ur~c; i -b

-
l

be
"
'T

supposing a > b > c. i and K are thus vectors perpendicular to the planes of the circulai

sections of (a).

It is easy to show by actual substitution that with the above values of i, K,

we have identically

If we have a reciprocal ellipsoid, whose vector semiaxes are i/a, j/b, k/c, its equation
is one of the following

^ ..............(),

where the first equality is an identity, and t', K are what t, K become when in
(ft),

I/a, 1/6, 1/c are put for a, b, c respectively.
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CONNECTED WITH FRESNEI/S WAVE-SURFACE. 3

If we differentiate (7), we get

tiip ftp' Sjp Sjp' Shp Skp' = 8(tp + pK ) (p'i + Xp'h
a8 > ~'<?~

'

(K--^Y
~

I

, (),

= *S (
tP

/ + p'*)(pt + *p)

(*
2 -

<
J

)'
J /

which also is an identity, whatever be p and p'

A biimlai expression may of course be derived from (8). And they may be

verified by actual substitution of the values of t, tc, or if, K

It is easy from equations (/3) to show that

formulae which we shall afterwards employ to interpret ceitain quaternion expressions

3. Anothct very useful foim of the equations of these ellipsoid
1- is found thus.

Let be any vector, and let

Then evidently B = <f>0
=- *iVSY0

d = <j>-*0
= - iRM - &c ., and so on.

And we see that (a) and (S) take the veiy simple forms

Tp = 1 or T^p =
Ij

and 7"p
= I or T$p - 1 1

These functions aie possessed ot the following geneial and useful property, and

\^ being any two vectors

if m + n = p + q, where m, n, p, and q may be any real quantities whatever



4 QUATERNION INVESTIGATIONS
[l.

Hence, for example, *S* . 0ty = 8 . 6-ty S . 0-fy 8 . 0-^r
= &c. Another such property is

8 . 000 = 8i08j08k0 am bm c
m

an bn cn

In this notation -
$-- is Sh W. H. Hamilton's linear and vector function (Quaternions,

p. 480).

4. If f(p) be the scalar equation of a surface, containing as an arbitrary

constant a vector a. which satisfies the equation

it is required to find the envelope of/(p)=0 subject to the variation of a.

Let Svda. =

be the derived equation of f(p) = 0, supposing a alone to vary, then we have also

Sada = 0,

and a.1? da is indeterminate these two equations give

a\\v or Fai> = ........ ........ (X)

This vector equation is equivalent to two scalai equations, and these, combined with

y(p) = and aa -fl = 0, will theoretically be sufficient to eliminate the three indeter-

minate scalars involved in a, and so to give F(p) = 0, the jequired equation of the

envelope This corresponds in ordinary Geometry of Three Dimensions to the finding

the envelope of a series of surfaces whose common equation involves two arbitrary

constants, since a, with the condition Ta. \, contains only two indetermmates

5. Assuming then, m A biax.il crystal, the existence of thiee mutually peipen-
dicular axes of elasticity (Griffin's Tract, pp 8, 4), take i, j, k in their directions,

and let a particle of othei be displaced in the direction of r, where

-. . (1),

and through a space t, in a wave-front whose normal is a, where

We have theiefore

The force of restitution called into play

(2)

(3)

t^ ....................... (4),

and the icsolved part of this perpendicular to r must be, on Fresnel's hypothesis,

perpendicular to the wave-front or
j] a.



I.] CONNECTED WITH FRESNEL 8 WAVE-SURFACE.

..(5),

..(6),

Hence

or

or, by (e),

or

or, by (3) or (5),

These cones of the second order ((>) and (6') are cut by (3) in two common

generating lines
; and, if ta be one of these, the form of the equations shows that

wot ib the other. Hence, for any given ivave-front there are two directions of vibra-

tion perpendicular to each other.

) \\ a,

a'SivSiv* + b*Sj>vSj<vOL + <?8kv8kv* =

S . (itffOL + VTO.K) (vrt + fc'iar)
= 0,

S* . tVa/c'cr =

S* . /c'wottV =

G. By (6) *S' .
-

Lic' =

Hence a, K, and Wta- are coplanar, and as m -*- a it is equally inclined to Vi'a

and VK'VL.

Foi if /', K', and A be the projections of t, K, a. on the unit-sphere, fiC the

great eircle whose pole is A (AI'C and AK'B being arcs of great circles), we aie

to hnd tor the projections of the values of w on the spheie points P and P', such

that if I'P be produced till PQ = fl>, Q may he in AK'. Hence, evidently, C1>=PB

or (fP'=P'B, which pioves the above, since the projections of Via and VK'O. on the

sphere are points b and c in B(\ 90
r

distant from C and /? respectively.

7. Oi thus

theiefon

V . raV . ainfK .

= V. a.V . oa'tsK (where x is a scalai )



6 QUATERNION INVESTIGATIONS [l.

therefore (Six #) w =
(i + aSt'a) SK'VT + (K + a*SVa) Si -or.

Operate by Si and we obtain

(# + .SVa&e'a) Ni'w = {t
/Ja2 -

(St'a)
2

}

'

= rjFt'a/S*V

Hence, by symmetry,

and as S'-oj-a = 0,

w =6T(tnYa/VYa) . ... .. (7)

The planes oj polarization, therefore (whose normals on Fresnel's hypothesis are sr

and era respectively), bisect the angles contained by planes passing through the normal

to the wave-front and the optic a,ies (i, ')

8 The force of restitution (4) resolved along the direction of displacement ia

fa~ l

\a" (SivrY + b' (Sjiv)* + C
2

(Slcvr)*] ,

01 tiff
{ ((S'l-srV +...J = tvrvr

2
.

Hence the normal velocity of propagation is

v =
x/{

J
(Sivy + .

{

= (K-
- i"

2

)'
1 T (iv + vrtc')

= Tm . . . . .(8)

But * ^ I

(tV + r*
/

)
= (*'--*'Vw

J + 4>SVflnS*'iar

But (T*
-

fr) Via VK'O. = - V 1 VIOL VK'OL = (8 t'/c'a)
J

,

therefore T 1
(t'v + VK) = -(*'- :')- T 52 (T 8) . Ft'a VK'OL. .... (9).

Hence, if v
{\ v,- be the scjuares of the velocities of the two wavea whovse vibrations

are perpendicular to a,

?,;-
- v/ = 4 (*'

J -
i'
2
)-

2 T . Ft'a F'a

oc sin t'a sin /e'a

Or, the difference of the squares of the velocities of the two waves varies as the product

of the sines of the angles between the normal to the wave-front and the optic axes (i, K")



I.] CONNECTED WITH FRESNEL'S WAVE-SURFACE. 7

9. For the tangent plane to the wave-surface of Fresnel, we have therefore

Sap = - o = - ('
J - i

3
)-

1 T (t'v + VTK) = -Tv (10) \

w = U(UVi'a CVict) (7)

'

2 =-l (2))

From (10) and (7) we might eliminate sr, and so reduce the determination of the

required equation to an application of the method of 4. But, as this process would

lead to results of considerable complexity, it is advisable to take a different course

10. It is easy to form directly the equation of the reciprocal of tho wave-

surface, or the surface of normal slowness.

For the length of the perpendicular from the origin on the tangent plane to

Fresnel's wave is, by (10), (8),

Therefore, if p be the vectoi of the point in the surface of normal slowness which

corresponds to the tangent plane (10) to the wave,

1

=(^_ t/2)

_

or, by (9), = (*"
- t'T J

{- ('
-

')'

J

Hence (K- - i*)>
= (t- ') p' + 2 (T S ) Vt'p Vic'p

(or, by an obvious transformation,)

We hhall leave this result m the meantime, in order to obtain the equation of

this surface in a foim independent of the (i
f

, K') transfoimation,

11. By the help of 3, it is evident that, since by (3) wa is a vector, (5) may
be written thus

Hence the equations for determining that of the surface of noimal slowness may be

written, remembeiing (10;, (11), and (12),

Svrp
=

\

from which it is required to eliminate r. This we might now proceed to do, but it

seems preferable to form for the wave-surface itself the equations corresponding to (15),

and we shall thus perform the elimination for both surfaces at once



8 QUATERNION INVESTIGATIONS
[l.

12. With the present notation the equations, of the tangent plane to the wave,
and the conditions, are

Sap TV (10) .

tfwa =0 (3)
I

8 wra=0 (5) or (14)1 (16)

a-' = - 1 (2)

= -1 (1)

Hence if a' = da, w' = dur,

SOL'-ST = - Sm'a \

S . a'rr = S'r'rj( /S' . w'ar ,

L

tfa'a =
)

therefore aW . araFizrw = a'xSW

-sja>S' BT'OTQ tora>S' . ra-'aw ( V . a }
r/arT&SvT'a. =) artfoLiffSis''a.

But, by (10), Na'p
=

_J Sw'w,

and, by (1), Afer'cr =

Henco, by (\), ,' being a M-alai,

fl-sr = - <S
Y w jwg + VOLIS] AS' ia-ap OASa-pASW . .(17)

Operate by S era = - 8. map {W1 - w2

]
. . (18)

Hence, generally, ti.vrap
= () ... (19).

Attending to (19), and operating on (17) by N.-sr and AS
Y

a,

<r=7W?.
{

Q = 8a* + T*!!!*p\
( '

And (17) becomes TOjT- =
^f

-
afcrp (21).

Opeiatuig on (21) b) S'
p, <S' pa, and $ orp separately, we obtain

tfwp =0 .... (22),

N.wap =0 (23),

# wt?p = (24).

From (22) and (23)

yp = or Far.
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Operate by 8 . a.

- y (by (20)) = -

Put now for simplicity

Ufa = &), or ra = wTia i

therefore a- = toT-or

and w = 57%)

And our system of equations, freed from differentials, becomes,

from (22), tiwp =0

(24), H o,p
=

(26), Tw = 1
,'

(26) and (25), 7>7'w = 7'o> )

(25).

(26)

...(27).

A glanco at (27) and (15) shows that the equation of the Wave-Surface differs

fiom that of the surface of normal slowness merely by the substitution of (~) for (_), &c.,

01 of I/a, 1/6, 1/c for a, b, c respectively . and hence, by (13), one form of the equation

of the Wave-Surface is

. .. . (28).

13 We may obtain another foim, which corresponds to the ordinary Cartesian

equation, in the following marinei

By (27)

where n is a scalar,

Operate by S .

But by (29)

Hence, u = 1 and

i(u>=p\
r
tip .. .......(29),

=
/tp

2w2 = w by (27)

to = pStop tap" (30)



10 QUATERNION INVESTIGATIONS [l

Operate by 8. i

Sio) = Sip SSp -
p

2
8ito.

But 1=
s

t by (f),

therefore
[
1 4- ) S'to> = Sip SSp,

and similarly with j and &

Multiplying by Stp, Sjp, and &p respectively, and remembering that

SipSio) 4- SjpSjo> + SkpSkw Spa*
=

by (27), we have

a-' (SipV 6" (%)-' o
j

(N%); = 8
a* + p* Ir + p* c' + p

9
" ' '

which in Cartesian coordinates is, at once,

(where r" = x* +
,'/"'
+ ^) the well-known form

It is evident that from (15) we might have deduced foi the surface of normal

slowness an auxiliary equation similar to (30), viz

BT = pSvp - tffp
2

. . ...... (30'),

and thence found tor the equation of that surface

14 It may be interesting to effect the elimination of &> between (30) and the

fii>t equation in (27) without employing directly i, j, k or i, K Foi this purpose

operate'' on (30) by 8 . p and /S
Y

. p successively, and we obtain

tfto
(g
-

ptfpp + pp-)
=

OJ

Also Sa>p

Hence S.p(p- pSpp + pp'*) (p
-

pp- + pp")
= 0,

or 8 . ppp
-

p-S p(>p
-

Sp_pS
. ppp + p'S . ppp

-
p*?S ppp = . . (32),

which, by the foimulse in 3, is easily i educed to Kresnel's ongmal form

(j? + if 4- z1

) (oa 4- 6y 4- c-z*)
- a2

(6
J
4- c-)^ - 6J

(c
a
4-

a
) / - cj (a

2
4- 62

) ^
J
4-aW = 0,

if we put Sf^
=

a;, &c. and note that

S . ppp
j~ _: = (a 4- 6) (6 4- c) (c 4- a)S ppp
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15. Fresnefs construction of the Wave by points.

By (27) Sf . Stop = 0.

This is equivalent to

SVw

SVo> =

tito'p
=

Now these aie the equations we should hnd it we were to make Tot a maximum
or minimum undei the two conditions Ta> = 1 and S'wp

= 0, p being supposed constant,

ie. to find the greatest and least radii vectores of a diametral section of the ellipsoid

TV = 1 made by the plane flap
= 0. Combining this with the two last equations of

(27) we see that if the ellipsoid, whose semiaxes are a, b, c, be constructed, and if

through itt> centre perpendiculars be drawn to each diametral section, and their lengths

be made equal to the seniiaje* of the section, the locus of their extremities is the Wave

And it is obvious fiom (15) that the smface of normal slowness may be constiuctcd

in the same manner from the ellipsoid 7'r = 1 whose semiaxes are I/a, 1/6, 1/c.

1() These ellipsoids are reciprocal This is easily seen thus Too = 1
, therefore

SSco' = 0, and hence the noimal v = x<a. Operate by $&>

Saw = I = ,*$&>o> = .-cor = x ,

therefoie v = <a (ft).

Hence for the reciprocal surface

CT = O>
,

whence CT = &> ,

and therefoie m- = &>
2 = 1,

17. Fresnel's surface of elasticity is constructed by taking on each vector from

the origin a portion pioportional to the square root of the resolved part of the force

of restitution corresponding to a given displacement parallel to the vector

If then p be a \ector of this surface, evidently

or T*p
=

Tp,

or finally T(p~l)=\ .......... ...... (v)

Comparing this with Tvr = 1, it is clear that condirectional radii of the surface

of elasticity and of this ellipsoid are reciprocal in length, which gives one means of

constructing the former

22
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It ia known also to be the locus of the foot of the perpendicular from the centre

on the tangent plane to the other ellipsoid Tn - 1. In fact by (IM) v in the latter

is - 5,

therefore v~ l =
( 5)~'

= p of the required locus,

or p~
l = oi ,

therefore (p~
l

)
= w,

and T (p-
1

)
= 1 as before.

The locus of the foot of the perpendicular from the centre on the tangent piano

to TV = 1 may similarly be shown to have the equation T (p~
l

)
= 1

, and to have with

jTw == 1 condirectiorial i adii of reciprocal lengths.

18 It may be proper to give the interpretations of some of the equations
noticed incidentally in these processes.

(14) for instance shows that m -1- -era or that ga -*- &
,
that is, the force of restitution

for either direction of displacement in a plane front is perpendicular to the other

direction; or, interpreting it directly, the force of restitution, the direction of displace-

ment, and the normal to the front ore coplanar ,
which lattei is, however, only another

way of expressing the condition from which (14) or (5) was obtained

(19) shows that tJie rat/, the normal to the front, and the direction of vibration

are coplanar, or, the direction of vibration u the projection of the ray on the wave-front

(23) throws the force of restitution into the same plane

(20) shows that the part of the force of restitution which is perpendicular to the

wave-front is the product of the wave-velocity and the projection of the ray-velocity on

the wave-front.

This is included in the two following which aie given at once by (22) and (25).

TJye direction of ray-propagation is perpendicular to the force of restitution.

That force is proportional to the product of the ray-, and wave-, velocities.

1.9 The form (28) of the equation of the wave is well adapted for the exhibition

of the cusps and ridges on which conical refraction depends

If we suppose for instance

TVip=TV,cp ............................. (33),

(28) gives at once

or, the wave surface intersects the cone (33) in two coincident curves on each of the

parallel planes (34), which latter therefore touch the wave along those curves. That

the curves are circles will be seen by putting (33) in the form
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whence, by (84),

P
3 = *#(*+)/> .................................... (34'),

the equations of two spheres passing through the centre of the wave, on which also

lie the curves in question

Taking the lower sign,

T(O -
I ^\- T l + K

1
(
P 2 J-

1
2"'

arid therefore the vector of its centre is + ^ , and its ladms is T
^ . Also, as

S(i K) (t + K) = tc~ L-,

the plane (34) (lower sign) passes through the other extremity of the diameter drawn

from the centre of the wave Hence diameter of circular ridge on wave

Also (33') may be put in the form

H( l + K)

showing that the cyclic nonnals of the internal cone are i + K and i K. These arc

also evidently sides of the cone. And it is to be noticed that I K\\I one of the

optic axes 01 lines of single wave--velocity.

The angle of the cone in the plane of t, K is evidently

cos" 1

. ;->S'. ?r(t-*)tr(t + ")j

= COR-' ,, . = jbv 2}
f(lK)T(l+IC)

' * '

which may be verified by noting that the optic axis of length b is the cyclic

normal and terminates in the circulai ndge. Hence, angle of cone in plane of i, K is

which agrees with the above.

20 If in (28) we suppose p to coincide in direction with i or K we find only

one value of Tp Ui and UK are therefoie the lines of single ray-velocity It is

sufficient to consider one of them. Let therefore
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Then (^_,)2=

1C
3 &

x =
^- (taking the positive sign),

and therefore PO
= ^T^- .Ui^bUi, {by 2|.

1 (l K)

To study the nature of the surface near the extremity of this vector put

p=po+v

Substituting in (28), and keeping only terms which contain the first power of T-er

(thus supposing TV to be indefinitely small), we have easily

(S-8uc + M*)tiiv-i*8icm* TViicTViv=0 .................. (36),

which is evidently the equation of a cone oi the second order.

For the sides of this cone, which he in the plane of i, K, we see at once that

iViK is one, and corresponds to the upper sign. Assume for the other (ct + tVix and

we find

The angle of the cone (in i, K) is therefore

cos-' H U(tVuc)

'Tr
7

Equation (36) being written for a moment

S'S^-F'tm ......................... (36'),

it is required to find the equation of the complementary cone, or that whose sides

are perpendicular to the tangent planes to the former.

(36') may be written

therefore SV (S*S'8r + iSivr - rt
a
)
= 0.
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Hence x<a = BSBv + tSiw wt* or SS&m iVivr is a side of the new cone, as it is

obviously perpendicular to and to r'.

Therefore J'Stoa = 8t&Sov ;

*w-*3v,oto

so that t Vfsr - x 18 J? - D
j

;

therefore by (36')

S = 0,

which, if we notice that

-
it is not difficult to reduce to

Xta)^}(t
J + /c

2)t-2tJ

ja)-ft)
2ra

tP(t-/c)=() ................. (37),

of which t and (i
2 + K*)I

- 2/ct
2 are the cyclic normals. These lines are evidently

perpendiculai to the tangents at the cusp to the circle and ellipse m the section

of the wave by the plane of (i, #), since

and S' tVuc- 2i
lK-

l(i
l + *J

) i - 2/ct
J

|
= 0.

|
L (t /c)l

21. The process in 20 gives the four cusps on the wave, but that in 19 gives

only two of the circular ridges. The others however are easily found by the con-

sideration that the ellipsoid equation, and analogously that of the wave-surface, retains

its form if the tensois of t and K bo interchanged but their versors preserved

22. To find surfaces whose intersections with the wave touch the lines of vibration.

Let p' be the tangential vector to such a curve of intersection, then

p' \\w\\S by (26).

But fy = by (27);

therefore Spp' = 0,

whose integral is evidently

T=C,
a set of ellipsoids concentric with, similar and similarly situated to, 7V = 1, that from
which tlie index-surface was constructed.
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22'. To find surfaces whose intersections with the wave cut the lines of vibration

at right angles.

Here evidently

p'|| w.

But Strap=0,

therefore Spp' = 0,

or TP = C ................................. (38).

This is the equation of a set of spheres about the origin as centre, and we shall find

presently that their curves of intersection with the wave are spherical comes.

23. As before

o> = pSSp - wp
2

(30),

Operate by tf . p (<p* + p*)~
l and we have at once

8P (P + p*)-*p=\ .......................... (39),

the symbolical equation of the wave-surface, already referred to.

24. This may be put in the following forms

whence 8p p^O .................................... (40),

If we seek the intersection of the wave with the concentric sphere (38), we find at

once, by (39),

a central surface of the second order, generally an hyperboloid, or

fy(C<-^-l)-'p = -p',

the equation of a cone of the second order.
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25. Writing (39) in the form

Sp<r = l (42),

we have <r (<p
a + p

a
)~

l

p,

or p =(0a + p
J)r (43).

Differentiating, 8 (ptr
1

-f p'<r)
= 0,

and p'
= (0

a
4- p") <r' + 2<rSpp' ;

therefore e = (0 4- p
3
)"

1

(p
-

2<rSpp') (44),

and &r (p'
-

2<rSpp') + SfpV
= 0,

or 2Sp' (<r
-

p<r
3
)
=

(45),

and if v be the reciprocal of the vector perpendicular on the tangent plane, let

xv = <r per
8 = <r Vpar (46);

we have xSpv x = 1 p
2
<r

s = Vz
pr ;

therefore i> = tr ( Vpo-)"
1

(47).

Hence <SV<r =
0]

and $ . vpar Oj

which show, first that <r is in the tangent plane, and second that it is coplanar with

v and p ;
<r is therefore tfte direction of vibration, or

J.2

<r II w ,
therefore 3

<7

whence (40) becomes Svrp = 0, (22), which shows that the equation of tfte wave is an

expression of the fact that the ray is perpendicular to the force of restitution. This

remark is due, I believe, to Sir W. R. Hamilton.

2(). It may be noticed in passing that from (15) we should evidently find for

the index-surface

tsr =p%p-p3
(48),

whence, as before, 8. p (<f>~"' + p
4
)"

1

p = 1 (49),

the symbolical equation of the latter, which differs from that of the wave merely by
the change of $? into <>~2

, or of a, 6, c into I/a, 1/6, 1/c.

Also from (3) and (14) we might at once deduce by a similar process

tfa (<p
2 + &)- 1 a - (50),

which in the ordinary notation is the well-known equation

^rr^3
+
ir_^

+
^r .

- -

T. 3
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27. Equation (46) is convenient for the investigation of the directions of the lints

of curvature at any point of the wave.

Differentiating, we obtain

xv + x'v ff -- pV" 2p8a-a-'

But for a line of curvature (Quat. p. 598)

8 . pW = 0.

Operating then by S . p'v, we have

S.p (<r- per
8
) (<r'

- pV - 2/&SW) = 0,

or = S . p'ffff' 28 . p'ffpSdo-' o*S . p'pa'

= 8<rp8 . p'a-a-' 2Sffff'S . p'a-p 0*8 . p'pa

= S . <r (pS . p'cre 2a'S . p'erp 08 . p'pa-')

= 8<r (p'S . peer' <r'8 . p'<rp).

(For p'S . p<r<r'
= pS . cap + <rS . cr'pp + v'8 . pa-p) ;

therefore =
Strp'S ,

p<r<r' + Scrar'8 . p<rp'
= 8 . p'o-o-'Vpo:

Let (<^
s + p

3
)"

1
a- = T, and substitute for a-' from (44),

=
8<rp'S . pa- (<p + p-)-

1

(p
-

2o-,Sfpp')

+ Sr (p'
-

2erSpp') S . pa-p.

But p'
-1- v

;
therefore p xv + yVpo-

aw + yO suppose

Hence Spft
= Sa-0 = 0.

Let (<
8 + p

8
)"

1 =
fji ;

and therefore So-p - S0r. Hence

= a*T<r86r - tfT*080r
-
xyT<rT6 \

Also p'
= xT<rU<T

Hence if ft be the angle at which the line of curvatmo crosses a- (the line of vibration)

And with this the above equation gives

= 1- tan'J/9
- tan ft

tan 2^ -
x _-t

-

T* TO- Sa-

2s . (p- + p'H^Mf + p
ar

{(^ + pT 4f7Fp<r}
-
{(> + pT ffrrji
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which cannot = unlews

S6r - 8 . p<rr
= 8 . p (<p + p')-

1

p (<J>
+ p

3
)-

8
p = 0,

or, by 3, 1 1 1

_JL !_ 1

a? + p
8 62 + p

a c8 H-
/5

s

i i

j

Stp Sjp Mp = 0,

19

a? b* ca

1

a* 6* c*

Hence the lines of curvature do not generally coincide with those of vibration.

Queen's Colleye, Belfast, April 2nd, 1859.

32
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II.

NOTE ON THE CARTESIAN EQUATION OF THE
WAVE-SURFACE.

[Quarterly Journal of Mathematics, August, 1859.]

THE equation of the wave-surface

^+&c. = ...............................(1)

where r* = a-
8 + y

z + # .................................(2)

may be written thus-

where^ ?*,
a = a?x* + 6y + cV ....................................(4)

I am not aware that this transformation has been given before. I was led to it by
a quaternion process, not however so simple as the obvious algebraic verification.

Of course the corresponding equations of the index-surface, or the reciprocal of (1)

with respect to
" + jf +*! ....................................(5)

may be written

where ?-
2 = #2 + y

a + *a
(20

or +&c=0 (80
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These equivalencies give a very simple proof of the following theorem, due, I believe,

to PHlcker.

"The wave-surface is its own reciprocal with respect to an ellipsoid whose semiaxes

are \/(6c), *J(ca\ and

The equation of this ellipsoid is

++5"
Tangent planes to (6) from & rj, f have for their plane of contact

& +W+& =1
be ca alt

and the reciprocal of (7) with respect to (5) is the point

+ =1 .......................................(7),ca alt
v '

Hence the reciprocal with respect to (5) of the reciprocal of (1) with respect to (6)

has the equation

a^(W? "+ &c7)
+ &c ' "

'

which is (3') or the index-surface, proving the theorem in question.

It is evident that the circles of contact on the wave correspond in this process
to the conical cusps ;

and indeed (6) cannot pass through a cusp unless (substituting

in (6) the coordinates of the cusp)

be o^"c"J ab a* - c2
~

'

or (6
-

a) (6
-

c)
= 0,

which can happen only in uncrystallized bodies or uniaxal crystals.

The transformation (3) shows at once that the index-surface may be changed into

the wave by a process of linear deformation (i.e. of compression or extension in different

degrees parallel to the three axes), that in fact by which the ellipsoid

bcx- + cay- + abz- = 1 ...................................(8)

is changed to g + +
|!

= l .......................................(C),

namely, by putting x/bc for x
t &c.

Hence it is evident that the index-surface is its own reciprocal with respect to the

ellipsoid (8)

The above is only one of a host of easily assignable transformations of (1).

Queen's College, Belfast, May Z7th, 1859.
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III.

QUATERNION INVESTIGATIONS CONNECTED WITH ELECTRO-
DYNAMICS AND MAGNETISM.

[Quarterly Journal of Mathematics, January, 1860]

1. THE following pages are intended to show, in the particular cases of the

mutual action of galvanic currents, and of the forces exerted by permanent magnets
on each other, the superiority of the Calculus of Quaternions over the ordinary

analytical processes of Geometry of Three Dimensions. I have followed therefore very

closely the method already employed for the action of currents, based as it is on the

seemingly legitimate assumption that the action between two elements of currents is

in the line joining them.

I intend to give, on another occasion, some more general quaternion investigations,

in which no such assumption is made.

A comparison between the processes employed in this paper and those of Ampere
(Thtorie des Phenoniknes filectrodynamiques, <&c., many of which are well given by Murphy
in his Electricity) will at once show how much is gained in simplicity and directness

by the use of Quaternions.

The same gain in simplicity will be noticed in the investigations of the mutual

effects of permanent magnets, where the resultant forces and couples are at once

introduced in their most natural and direct forms.

Somewhat of the conciseness of the method is lost by the necessity of going
out of the way to prove results in Quaternions, a step which would not be requisite

if the Calculus were more generally known.
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2. Ampere's experimental laws may be stated as follows-

I. Equal and opposite currents in the same conductor produce equal and opposite
effects on other conductors, whence it follows that an element of one current has no

effect on an element of another which lies in the plane bisecting the former at right

angles.

II. The effect of a conductor bent or twisted in any manner is equivalent to

that of a straight one, provided that the two are traversed by equal currents, and

the former nearly coincides with the latter.

III. No closed circuit can set in motion an element of a circular conductor

about an axis through the centre of the circle and perpendicular to its plane.

IV. In similar systems traversed by equal currents the forces are equal.

To these we add the assumption already referred to (1), and two others, viz

that the effect of any element of a current on another is directly as the product
of the quantities of the currents, and of the lengths of the elements.

3. Let there be two closed currents whose quantities are a and d; let ', a,

be elements of these, a being the vector joining their middle points. Then the effect

of a' on ai must, when resolved along a,, be a complete differential with respect to

(i.e. with respect to the three independent variables involved in a), since the

total resolved effect of the closed circuit of which
'

is an element is zero by III

Also by I, II, the effect is a function of To.. Sao.', $ai, and /Sa'a,, since these

are sufficient to resolve
'

and i
into elements parallel and perpendicular to each

other and to a. Hence the mutual effect

= aa, Uof(ToL, SOLO.', &,, tfa'a,),

and resolved effect = aa^fSUol Uo.

Also, that action and reaction may be equal in absolute magnitude, f must be

symmetrical m Sxa.' and Sota
t Again a' (as differential of a) can enter only to the

first power, and must appear in each term of /.

Hence /= A tf

But, by IV, this must be independent of the dimensions of the system. Hence A
is of 2 and B of 4 dimensions in To.. Uiuler these circumstances,

~-
[ASo^Sa'a, 4- BSaa.' (Soot^]

J.O.

is to be a complete differential, with respect to a, if do. = a'. Let A C/Ta?, where C is

a constant depending on the units employed Then
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C
or B "

i 2V '

and the resolved effect

The factor in brackets is evidently proportional in the ordinary notation to

(sin 6 sin ff cos o> cos cos #')

4. Thus the whole force is

2 jSao, ( "2V j

"~

2iSW *

(
To? \

'

as we should expect, d& being ,. (This may easily be transformed into

_WaalU*^ (Ta^

which is the Quaternion expression for Ampere's well-known form.)

o. The whole effect on a, of the closed circuit, of which a' is an element, is

therefore
2 JSX

_ Cao, (a/Seta, v /Taa"

between proper limits. As the integrated part is the same at both limits, the effect is

* Cuoi ,r Q , a [Vaa fdUa.-
-|5 7^, where /9

=
J-^-

-
J

,

and depends on the form of the closed circuit.

5'. This vector & which is of great importance in the whole theory of the

effects of closed or indefinitely extended circuits, corresponds to the line which is

called by Ampere "directrice de I'action flectrodynamique." It has a definite value at

each point of space, independent of the existence of any other current.

Considei the circuit a polygon whose sides are indefinitely small; join its angular

points with any assumed point, erect at the latter, perpendicular to the plane of

each elementary triangle so formed, a vector whose length is <a/r, where <o is the

vertical angle of the triangle and r the length of one of the containing sides; the

sum of such vectors is the "
directrice" at the assumed point.
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6. The form of the result of (5) shows at once that if the element a, be

turned about its middle point, the direction of the resultant action is confined to the

plane whose normal is ft.

Suppose that the element Oj is forced to remain perpendicular to some given
vector 8, we have Sa^^O,

and the whole action in its plane of motion is proportional to TV.SVctifi.

But F.8Fal)9 = ~ a.StfS.

Hence the action is evidently constant for all possible positions of t ;
or

The effect of any system of closed currents on an element of a conductor which

is restricted to a given plane is (in that plane) independent of the direction of the

element. [The force-component in the plane is B~1 V. 8Foi# = - 8~lalS^8 1897.]

7. Let the closed current be plane and very small Let e (where Te**!) be

its normal, and let 7 be the vector of any point within it (as the centre of gravity
of its area); the middle point of a, being the ongin of vectors.

Let a = 7 + p ; therefore a' =
p',

to a sufficient approximation.

Now (between limits) fVpp' =

where A is the area of the closed circuit.

Also generally (see Art. (13))

Hence for this case

8. If, instead of one small plane closed current, there be a series of such, of

equal area, disposed regularly in a tubular form, let a; be the distance between two

consecutive currents measured along the axis of the tube
; then, putting 7' = are, we

have for the whole effect of such a set of currents on
,

= (between limits) AyVye

* A /

o""
1

~>fS (between proper limits).
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If the axis of the tubular arrangement be a closed curve this will evidently vanish.

Hence a closed solenoid exerts no influence on an element of a conductor. The same

/.y evidently true if the solenoid be indefinite in both directions.

If the axis extend to infinity in one direction, and 70 be the vector of the other

extremity, the effect

_ CMtttt, Vdfln~
~~&i~ iry

'

and is theiefore perpendicular to the element ami to the line joining it with the extremity

<>f the solenoid It is evidently inversely as Ty
* and directly as the sine of the angle

contained between the direction of the element and that of the line joining the latter

with the extremity of the solenoid. It is also inversely as x, and therefore directly as

the number of currents in unit of the VMS of the solenoid.

9. To find the effect of the whole circuit, whose clement is a,, on the extremity

ot the solenoid, we must change the sign of the above and put j
= y

'

>
therefore

^ CAaa, fV%'%
effect ----

J ^-if

an integral of the species considered in (5'), whose value is easily assigned in par-

ticular cases.

10. Suppose the conductor to be straight, and indefinitely extended m both

directions.

Let /< be the vector perpendicular to it from the extremity of the solenoid, and

let the conductor be \\rf t where T^Tr) = l.

Therefore %~h + yr) (where y is a scalar),

and ttte integral in (9) is

hV^j
-_ _ _ =- V^f

The whole effect is therefore -.-- Vv)%,

and is thus perpendicular to the plane passing through the conductor and the extremity

of the solenoid, and varies inversely as the distance of the latter from the conductor.

This is exactly the observed effect of an indefinite straight conductor on a

magnetic pole, or particle of free magnetism.

11. Suppose the conductor to be circular, and the pole nearly in its axis. [This

is not a proper subject for Quaternions. 1890]

Let EPD (fig. 1) be the conductor, AB its axis, and C the pole; BG perpen-

dicular to AB, and small m comparison with AE=h the radius of the circle
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Let

where

Then

ELECTRODYNAMICS AND MAGNETISM.

AB be c,i, BC = bk, AP = h (jac + ky)

yj isinj
hAP

~\fnn\

CP = 7 = Cl i + M - / (> + ky)

27

And the effect on C or /-^f| ,

where the integral extends to the whole circuit.

11'. Suppose in particular C to be one pole of a small magnet or solenoid CC'

whose length is 21, and whose middle point is at G and distant c from the centre of the
<

conductor Let CGB = A. Then evidently

Cj= C+ I COS A,

b = I sin A.

Also the effect on C becomes, if Ci

irh

v(
il'-T +3^' + T*> +

-)-

since for the whole circuit

0,

\&xy
m = 0.

42
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If we suppose the centre of the magnet fixed, the vector axis of the couple

produced by the action of the current on C is

Trlrl sin A . L 36"-
,
15 A26a

3c,6 cos A)* ~
A* 1 2 '

A*
+

2 ^ ~
-ZiFn

'A y r ^ 2

If A, &c. be now developed in powers of I, this at once becomes

sm A . ( 6ccos A locffi coss A

I cos A) I cos A / f)d cos A'_
2" (J'l- /t

2
)
2

*

c
2 + /i

j

/

V

Putting I for J and changing the s>ign of the whole to get that for pole C'
,
we

have for the vector axis of the complete couple

4mh'l sin A .

j
3 I- (4c

2 - /t
3

) (4
- 5 sm2

A) |

(c'+^'^t ^ ^y +
r

which is almost exactly proportional to sin A if 2c = /* and I be small

On this depends Gaugam's modification of the tangent galvanometer. (Bravais

Ann. de Chimie, xxxvin. 309.)

12. As before, the effect of an indefinite solenoid on a
1

is

Now biippose j to be an element of a small plane circuit, 8 the vector of the centre

of gravity of its area, the pole of the solenoid being origin

feet 7 = 8 + p, then
,
= p.

Whole effect therefore =- -a""
1

l~^/g"jl y~

where A
l
and e, aie for the new circuit, what A and e were for the former (7)

Let the new circuit also belong to an indefinite solenoid, and let S be the vector

joining the poles of the two solenoids. Then the mutual effect is

CAA.ua, {[ 8'
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which is exactly the mutual effect of two magnetic poles. Two finite solenoids then

act on each other exactly as two magnets, and the pole of an indefinite solenoid acts as

a particle of free magnetism.

13. The mutual attraction of two indefinitely small plane closed circuits, whose

normals are e and en may evidently be deduced by twice differentiating the expression

US
r& f()r ^e mutual action of the poles of two indefinite solenoids, making d& in one

differentiation ||e and in the other i|et .

But it may otherwise be calculated directly by a process which will also give us the

couple impressed on one of the circuits by the other, supposing for simplicity the first to

be circular.

In fig. 2 let A and B be the centres of gravity of the areas of A and B,

e and 6, vectors normal to their planes, a any vector ladius of B, AB =
ft.

Fig 2.

Then whole effect on a-', by (7),

1
J

',3^ .Wv'ftSfr,',,55/5^ SFcr'^SW lV*flx
T&V

fft
(
l+ TprTp- (

l +
-Tp)

+
Tf-+*-'Tp

But, between proper limits, (6 being now any constant vector)

for generally /Wi;tf0<r = - ( Vr)<rM<T + V .
77
V . B

j JW).

Hence after a reduction 01 two wo find the whole- force exerted by A on the

centre of gravity of the area of B,

This, as already observed, may bo at once found by twice differentiating UftfT/3
1
.

In the same way the vector moment due to A, about the centre of gravity of B,
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These expressions for the whole force of one small magnet on the centre of

gravity of another, and the couple about the latter, seem to be the simplest that

can be given. It is easy to deduce from them the ordinary forms For instance, the

whole resultant couple on the second magnet

may easily be shoAvn to coincide with that given by Ellis (Cainb. Math. Journal, IV. 95),

though it seems to lose in simplicity arid capability of interpretation by such modifi-

cations

13'. The above formula show that the whole force exerted by one small magnet
M on the centre of gravity of another m, consists of four terms which are in ordei,

1st. In the line joining the magnets and proportional to the cosine of their mutual

inclination.

2nd In the same line and proportional to Jive times the product of the cosines

of their respective inclinations to this line

3rd and 4th. Parallel to \^> and proportional to the cosine of the inclination of

\ I to the joining line.

All these forces are in addition inversely as the fourth power of the distance

between the magnets.

For the couples about the centre of gravity of m we have

1st. A couple whose axis is perpendicular to each magnet and which is as the

sine of their mutual inclination.

2nd. A couple whose axis is perpendicular to m and to the line joining the

magnets', and whose moment is as three times the product of the sine of the inclination

of m, and the cosine of the inclination of M, to the joining line

In addition these couples vary inverse!} as the third power of the distance

between the magnets

These results afford a good example of what has been called the internal nature

of the methods and results of Quaternions, reducing as they do at once the forceb

and couples to others independent of any lines of reference, other than those neces-

sarily belonging to the system under consideration

To show their ready applicability, I take a Theorem due to Gauss

If two small magnets be at right angles to each other, the moment of rotation

of the first is approximately twice as great when the axis of the second passes

through the centre of the first, as when the axis of the first passes through tlie centre

of the second.
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In the first case \\j3-*-ei',

C' 2C'
therefore moment =

gs Tfa -
3efj)

=
J-^ 2V*!.

In the second <?i || /3
->-

<
,

therefore moment = -Tefj. Hence the theorem.

14. Again we may easily reproduce the results of (13), if for the two small

circuits we suppose two small magnets perpendicular to their planes to be substi-

tuted. /8 is then the vector joining the middle points of these magnets, and by

changing the tensors we may take 2e and 2^ as the vector lengths of the magnets.

Hence evidently the mutual effect

x ~( + 6 - 6])-^2 (/3- 6 - 6l)+y a (/8- e + l)-^( + e + ei ),

which is easily reducible to

if smaller terms be omitted.

If we operate with V e, on the two first terms of the unreduced expression,

and take the difference between the result and the same with the sign of ^ changed,
we have the whole vector axis of the couple on the magnet 2e,

15. A theorem which Ampere used for a time as one of his fundamental

experiments, is A circular conductor cannot set in rotation about its axis another

conductor of any form whose e-rtremities are in that axis.

Let
flj,

be an element of the circular conductor,

a' other

By (5) the whole force on a, is

a (Sac*! . fVaa.'

between proper limits. And whole moment, about axis, of force on ctj oc S^ij,

oc ,_ 3
between limits.

But at the extremities Saa^ = 0, since they lie in the axis. Hence there is no

force tending to rotate the element j about the axis, and consequently o, exerts

none to turn the moveable conductor.
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16. We might apply the foregoing formulae with great ease to other cases

treated by Ampeie, De Montfeirand, &c. or to two finite circular conductors as in

Weber's Dynamometer but in general the only difficulty is in the integration, which

even in some of the simplest cases involves Elliptic Integrals, &c., &c.

17 Quaternions give a simple method of deducing the well-known property of

the magnetic cm ves.

Let A, A' (fig. 3) be two magnetic poles, whoso vector distance = 2 is bisected

m O, QQ' an indefinitely small magnet whose length is 2p', where p = OP. Then

evidently, taking moments

V(p + *)p'^ V(p-*)p'
T(p + eCf

~
T(p -a)'

Operate by # . V*p,

,<V Q> + ) -S*(p + ) Up' (p 4-a)

JL (p + a)

or *S' o.V (
p

")
U(p + a) = + {same with -

a},

ie ~ S.adU(p + )= S adU(p-a),

S.a. [U(p + a) U(p - a)}
= const ,

or cos GAP cos OA'P = const ,

the property referred to

Queen's College, Belfast, October Zlst, 1859
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IV.

QUATERNION INVESTIGATION OF THE POTENTIAL OF A
CLOSED CIRCUIT.

[Quarterly Journal of Mathematics, Oct. I860.]

LET ^(7) be the potential of any system upon a unit particle at the extremity
of 7 .

F(y)-C .................... (I)

is the equation of a level surface.

Let the differential of (1) be

fi.vdy = Q .................. (2),

then v is a vector normal to (1), and is theu-fore the direction ot the force

But, passing to a proximate level surface, we have

S.vby^SC.

Make fy^xv, then - atfV = 86',

Hence v expresses the force in magnitude also.

Now by Art, 7 of my Paper on Quaternion Investigations connected with Electro-

dynamics (p. 25 above), we have for the vector force exerted by a small plane closed

circuit on a particle of free magnetism the expression

A
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omitting the factors depending on the quantity of the current and the strength <>t

magnetism of the particle.

Hence the potential, by (2) and (1),

x 4^7

area of circuit projected perpendicular to y

x solid angle subtended by circuit

The constant is omitted in the integration as the potential must evidently vanish fot

infinite values of Ty

By means of Ampere's idea of breaking up a hmto circuit into an indefinite

number of indefinitely small ones, it is evident that the above result may be at once

extended to the case of such a finite closed circuit

Queens College, Belfast, February 22, 1800
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V.

NOTE ON A MODIFICATION OF THE APPARATUS EMPLOYED
FOR ONE OF AMPERE'S FUNDAMENTAL EXPERIMENTS IN

ELECTRODYNAMICS.

[Proceedings of the Royal Society of Edinburgh, Feb 18, 1861.]

MY attention was recalled by Principal Forbes's note (read to the Royal Society
on January 7th), to his request that I should at leisure try to repeat Ampere's

experiment for the mutual repulsion of two parts of the bame straight conductor, by
means oi an apparatus which he had procured tor the Natural Philosophy Collection

in the University. Some days later I tried the experiment, but found that, on

account of the narrowness of the troughs of mercury, it was1

impossible to prevent
the capillary forces from driving the floating wire to the sides of the vessel. I there-

tore constructed an apparatus in which the troughs were two inches wide, the arms of

the float being also at that distance apart. Making the experiment according to

Ampere's method with this arrangement, I found one small Grove's cell sufficient to

produce a steady motion of the float from the poles of the pile ,
in fact, the only

difficulty in repeating the experiment lies in obtaining a perfectly clean mercurial surface

Two objections have been raised against Ampere's interpretation of this experiment,
one of which is intimately connected with the subject of Principal Forbes's note. This

is the difficulty of ascertaining exactly what takes place where a voltaic current passes

from one conducting body to another of different material. It is known that thermal

and theimo-electric effects generally accompany such a passage. To get rid of this

source of uncertainty, I have repeated Ampere's experiment in a form which excludes

it entirely. In this form of the experiment the polar conductors and the float form

one continuous metallic mass with the mercury m the troughs , the float being formed

52
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of glass tube filled with mercury, with its extremities slightly curved downwards so

as to dip all but entirely under the surface of the fluid
;
and the wires from the battery

being plunged into the upturned outward extremities of two glass tubes, which are

pushed through the ends of the troughs so as to project an inch or two inwards

tinder the surface of the mercury A little practice is requisite to success in filling

the float and immersing it in the troughs without admitting a bubble of air. This

float, being heavier than the ordinary copper wire, plunges deeper m the fluid, and

encounters more resistance to its motion, but, with two small Grove's cells only,

Ampere's result was easily reproduced, even when the extremities of the float rested

in contact with those of the polar tubes before the circuit was completed. It is

obvious that here no thermo-electric effects can be produced in the mercury, and I

have satisfied myself that the motion commences before the passage of the current

ran have sensibly heated tlu> fluid in the tubes.

The othei class of objections to Ampere's conclusion from this experiment, depending
on the spreading of the current in the mercury of the troughs, is of course not met

by this modification. I have made several experiments with a view to obviate this

also, but my time has been so much occupied that I have not been able as yet to

put them in a foim suitable for communication to this Society
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VI.

FORMULA CONNECTED WITH SMALL CONTINUOUS DISPLACE-
MENTS OF THE PARTICLES OF A MEDIUM.

[Proceedings of the Royal Society of Edinburgh, April 4, 1862 ]

ALTHOUGH most of the results deduced in this Note have been long known,
I venture to offer it to the Society on account of the extreme simplicity of the

analysis employed, and the consequent insight it affords us into the connection of

various formula?. I intend on a future occasion to give large further developments

especially bearing on physics. I employ the calculus of quaternions throughout, but

where some unusual expressions occur, I have given them in their common Cartesian

form, as well as in the quaternion one.

1. If Fp = C (1)

be the equation of one of a system of surfaces, and if the differential of (1) be

S.vdp = (2),

v is a vector perpendicular to the surface, and its length is inversely proportional to

the normal distance between two consecutive surfaces. In fact (2) shows that v is

perpendicular to dp, which is any tangent vector, thus proving the first assertion.

Also, since in passing to a proximate surface we may write

s ity
= se,

we see that F (p + v~l

BC) = + 8(7.

This proves the latter assertion.

It is evident from the above that if (1) be an equipotential, or an isothermal,



38 FORMULA CONNECTED WITH SMALL CONTINUOUS DISPLACEMENTS [VI.

surface, - v represents in direction and magnitude the force at any point, or the

vector-gradient of temperature. And we see at once that if

then v-VFp ..................................... (4).

This is due to Sir W. R Hamilton (Lectures on Quaternions, p. 611).

From this it follows that the effect of the vector operator V, upon any scalar

function of the vector of a point, is to produce the vector which represents in magnitude
and direction the most rapid change in the value of the function.

Let us next consider the effect of V upon a vector as

a=t+>? +^..........................................(5).

We have at once *,-g +J +
) -<g-g

- &c......................... (6),

and in this semi-Cartesian form it is easy to see that

If c represent a small vector displacement of a point situated at the extremity of
the vector p (drawn from the origin)

S . Vtr represents the consequent cubical compression of the group of points in the

vicinity of that considered, and

V . V<r represents twice the vector axis of rotation of the same group of points.

Smnlarly S.* = -
(f

+ , 4 (
)
= - D. .......................... (7),

or is equivalent to total differentiation in virtue of our having passed from one end

to the other of the vector a.

The interpretation of V <rV is also easy enough, but it is not required for the

present investigation.

2. Suppose we fix our attention upon a group of points which originally filled

a small sphere about the extremity of p as centre, whose equation referred to that

point is

T<* = e............................................... (8).

After displacement p becomes p + <r t and by (7) p + o> becomes p + o> + <r (8 . <yV) <r.

Hence the vector of the new surface which encloses the group of points (drawn from

the extremity of p + <r), is

Wn-w-OS.wV)*.......................................... (9).
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Hence w is a homogeneous linear and vector function of ,; or

to = fat

in Sir W. R. Hamilton's notation, and therefore by (8)

Tju^e........................................... (10),

the equation of the new surface, which is evidently a central surface of the second

order, and therefore, of course, an ellipsoid (Cauchy Exercises, vol. II.).

We may solve (9) with great ease by approximation, if we remember that To- is

very small, and therefore that in the small term we may put w, for o> i.e. omit

squares of small quantities ; thus,

6) = W1 + (-Sf.O) 1V)c7- . .. . .............(11)

Or if we choose we may obtain the exact solution very easily Operating on (9)

with S.i, S
j, S.k, we get

&'! = S<a (i + Vf), &c. = &C

Hence <*S . (i + V) (j + Vr,) (k + V) = V . (j + V^) (Jc + V) &, + &c

From this we may easily verify the former expression by omitting products of
, 77,

o> (- 1 - h) = ft (1 + //,)
-
^1 Sim, + &c + &c

,Thus

, d% drj dZ
where A = j + ;r + i

'

djc dy dz

Or w = -(iVS

=
&>! + (S . WjV) <r, as before

Thus it appears that the equation of the ellipsoid may be written

T {w + (Soft) a-}
= e

3 The differential of this equation is

S {to + (&V) v] [do + (Sdatf) <r\
= 0,

whence, omitting the second order of small quantities, the normal vector is

to + (&oV) a- + VSaxr.

To find the axes we must therefore express that the normal is parallel to a>, or

pu = (SwV) a- + V,SW (12),

where p is an undetermined scalar.
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The most obvious method of solving this equation is to operate in succession by
S.i, S.j and S.k. We thus obtain,

pSio) SuVSia- + SiVSaxr,

&c. &c.

Or, remembering (5), S . o> (pi + Vf + -~\ = 0,

Sec. = 0,

p is therefore a root of the equation

or, as it may evidently be written,

. (13).

df_

A value of p having been found from (13), the direction of the corresponding axis

is given by

(14).

3 a. As a very simple example of distortion, suppose p to represent the position

of each particle with regard to a centre attracting according to Newton's law,

and let <r the vector of distortion be a small constant multiple of the vector force.

Then

,- = C (the potential).

Hence <r = ^ -
,
where a is very small,*

:. when p becomes p + <r, p + w becomes

ingly small, this may be written

- As Ta> is exceed-
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Hence >,
= o +

*!jr\(<*
+ %P 7??)

an<* an O1'igina% spherical surface TV = e (8) becomes

after distortion approximately

a spheroid of revolution whose axis is p, as indeed is evident.

4. In this latter case wo see at once that V<r = 0, and it is easy to show

that in general, if the small displacement of each point of a medium is in the direction

of, and proportional to, the attraction exerted at that point by any system of masses,

the displacement is effected without rotation. For if Fp = C be the potential surface,

we have S<rdp a complete differential i e., in Cartesian co-ordinates %dac + rjdy + %dz

is a differential of three independent variables. Hence the vector axis of rotation

i ( -
j

)
+ &c- vanishes by the vanishing of each of its constituents, or Wcr = 0.

Conversely, if there be no rotation the displacements are in the direction of, and

proportional to, the normal vectors to a series of surfaces.

For = V . dpVVo- = (SdpV) a- - VSvdp.

Now, of the two terms on the right, the first is a complete differential, since

it may be written D^ff (see (7)), and therefore the remaining term must be so.

Thus, in a distorted system, there is no compression if

SVo- = 0,

and no rotation if FVo- =
;

and evidently merely transference if v = a, a constant

vector, which is one case of Vo- = 0.

In the important case of or = eVFp there is evidently no rotation, since V<r = e^*Fp
is evidently a scalar. In this case, then, there are only translation and compression,
and the latter is at each point proportional to the density of a distribution of matter,

which would give the potential Fp. For if r be such density, we have at once

V*Fp = 47rr (see (3)'). This suggests a host of physical analogies which we cannot

enter upon at present.

5. Keeping still to the meaning of cr as the vector of displacement, as we have

seen that Vo- = s + 1>,
where s is the condensation of the particles near the extremity

of p, and i the doubled vector axis of rotation of the group we may apply the vector

operation a second time. Thus,

W = Vs + Vi

Now, our former results enable us to assign meanings to these expressions. Vs
is the normal-vector to any of the surfaces of equal condensation. The scalar and

T. 6
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vector parts of Vt represent the compression, and the doubled-axis of the rotation,

consequent on the displacement of each point through a space represented by i. Also

it is easy to see that Vv is a pure vector. Hence

If therefore there be two similar media, and the particles of one be slightly dis-

placed in a continuous mannei the particles of the other being displaced through vectors

proportional to the rotations at each point in the first mass this displacement takes

place without condensation.

And, as VVV = 0, we have the other result, that if the particles of the second

medium be displaced through vectors representing the direction and rate of most rapid

change of compression in the first, such displacement will take place without rotation

But this is merely another way of stating the first proposition in 4. (Compare
Thomson, "On a Mechanical Representation of Electric, Magnetic, and Galvanic Forces"

Camb/ridge and Dublin Mathematical Journal, vol. n.
;
and Maxwell,

" On Physical Lines

of Force "Philosophical Magazine, 186162.)
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VII.

NOTE ON A QUATERNION TRANSFORMATION.

[Proceedings of the Royal Society of Edinburgh, April 6, 1863.]

THE following paper gives an idea of the natuie of the physical applications of

quaternions to which I referred in a previous note [VI. above], but which other

avocations have, as yet, prevented me from developing into a form and bulk suitable

for publication m the Society's Transactions The equations I now give form the

basis of the investigations m question, which I hope to present tq the Society in

detail on some future occasion.

1 If the vector of any point be denoted b}

P = +j!/ + k~~ ................................ (1),

there are many interesting and important transformations depending upon the effects

of the quaternion operator

- . d . d
,
d* =

*d*
+
Jdy

+
^d*

............................... <2>>

upon various functions of p. When the function of p is a scalar, the effect of V is

to give the vector of most rapid increase. Its effect on a vector function is indicated

briefly in my former note.

2. I shall commence with one or two very simple examples, which arc not only

interesting, but, as we shall see, very useful in subsequent transformations

(3),

62
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..(5),

1 f C7 1 nP /CM
and, of course, v

-,-rr~\n
= ~~

7W\n+
'
*) >

and, of course, V-^
= -^^ = (6)

1
.

Also, Vp = - 3 = 2>V Up + VTp . Up = TpV Up - 1,

therefore VUp =
-^
r (7).

3. By the help of the above results, of which (6) is especially useful (though
obvious on other grounds), and (4) and (7) very remarkable, we may easily find the

effect of V upon more complex functions.

Thus V#ap = -V(o# + &c) = -a (8),

VFap = V Fpa = V (pa Sap) 3a a= 2a (9).

._ __ Fop 2a 3o Fap 2ap
2 + 3pFap ap

3

3p$ap ,,
.

Hence V^ =^ -
-^-

=
^-g

=
-^- (10).

TT ,, .. _ Fap p-SaBo SSapSpSp SaSp SSapSpbp .. Sap /11NHence tf.fy>V_y=s- ,-
fl

=
~~7rT y B

r =
0^3 (H).

This is the principal transformation alluded to in the title of this note. By (6)

it can be put in the sometimes more convenient form

Fap Y
1

And it is worthy of remark that, as may easily be seen, S may be put for F in the

left-hand member of the equation. [This follows at once from K(ap) = pa. 1897.]

We have also

Hence, if < be any self-conjugate linear and vector function of the form

<p = SF. ftpy + mp (14),

then V<p = ~Sj3y 3m = scalar (l^)
1
.

Hence, an integral of

Vo- = scalar constant, is <r = <p (15).
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If the constant value of V<r contain a vector part, there will be a term of the

form Vep in the expression for tr, which will then express a distortion accompanied

by rotation.

Also, a solution of Vg = a (where q and a are quaternions) is q = Sp + Vep + <pp.

It may be remarked also, as of considerable importance m physical applications,

that, by (8) and (9), V (S -h $V}ap = 0, but I cannot enter at present into details on

this point.

4. In this brief note, I shall not give any more of these transformations, which

really present no difficulty, but I shall show the ready applicability to physical questions
of one or two of those already obtained, a property of great importance, as it may
now be asserted that the next grand extensions of mathematical physics will, in all

likelihood, be furnished by quaternions.

Thus, if a- be the vector-displacement of that point of a homogeneous elastic solid

whose vector is p, we have, p being the consequent pressure produced,

Vjj + VV =
...(16),

whence /S'8/>V
J
0- = - S8pVp = Sp, a complete differential. .. ..(16)

1
.

Also, generally, p kSV<r,

and if the solid be incompressible

SV<r = (17).

Thomson has shown (Camb. and Dub. Math. Journal, II p b'2), that the forces

produced by given distributions of matter, electricity, magnetism, or galvanic currents,

can be represented at every point by displacements of fetich a solid producible by
external forces. It may be useful to give his analysis, with some additions, in a

quaternion form, to show the insight gained by the simplicity of the present method.

Thus, if S&Sp = 8 ,
we may write each equal to HSpV This gives

the vector-force exerted by one particle of matter or free electricity on another. This

value of <r evidently satisfies (16)
1 and (17).

Again, if $ . BpVa- = &
-^- A . either is equal to

-S.BpV^ by (11).

Here a particular case is <r =
--^j,

which [III. above, 12] is the vector-force

exerted by an element a of a current upon a particle of magnetism at p.
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Also, by (10), V -,-;=-- y
p

,
and the same paper shows that this is the

vector-force exerted by a small plane current at the origin (its plane being perpen-
dicular to a) upon a magnetic particle, or pole of a solenoid, at p. This expression,

being a pure vector, denotes an elementary rotation caused by the distortion of the

solid, and it is evident that the above value of cr satisfies the equations (16)
1

, (17),

and the distortion is therefore producible by external forces. Thus the effect of an

element of a current on a magnetic particle is expressed directly by the displacement,
while that of a small closed current or magnet is represented by the vector-axis of

the rotation caused by the displacement.

Again, let SBp^
y
<r = 8 -, ^

.

It is evident that <r satisfies (16)
1

, and that the right-hand side of the above equation

may be written

-.**.

Hence a particular case is V<r = ,.,-, and this satisfies (17) also Hence the

corresponding displacement is producible by external forces, and Ver is the rotation

axis of the element at p, and is seen as before to represent the vector-force exerted

on a particle of magnetism at p by an element a of a current at the origin.

It is interesting to observe that a, particular value of <r in this case is

as may easily be proved by substitution.

Again, if 88pa = -S
S
p

P
3 ,

we have evidently cr = V -^ .

Now, as _fj is the potential of a small magnet a, at the origin, on a particle

of fiee magnetism at p, cr is the resultant magnetic force and repiesents also a possible

distortion of the elastic solid by external forces, since Vo- = Vv = 0, and thus (10)
1 and

(17) are both satisfied
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VIII.

ON THE LAW OF FREQUENCY OF ERROR.

[Transactions of the Royal Society of Edinburgh, Vol. xxiv.

Read 3rd January, 1865.]

1. IT has always appeared to me that the difficulties which present themselves

in investigations concerning the Frequency of Error, and the deduction of the most

probable result from a large number of observations by the Method of Least Squares

(which is an immediate consequence of the ordinary
" Law of Error "), are difficulties

of reasoning, or logic, rather than of analysis Hence I conceive that
^
the elaborate

analytical investigations of Laplace, Poisson, and others, do not in anywise present

the question in its intrinsic simplicity. They seem to me to be necessitated by the

unnatural point of view from which their authors have contemplated the question. It

is, undoubtedly, a difficult one
,
but this is a strong reason for abstaining from the use

of unnecessarily elaborate analysis, which, however beautiful in itself, does harm when

it masks the real nature of the difficulty it is employed to overcome. J believe that,

so far at least as mathematics is concerned, the subject ought to be found extremely

simple, if we only approach it in a natural manner.

2. It occurred to me lately, while I was writing an elementary article on the

Theory of Probabilities, that such a natural process might possibly be obtained by

taking as the basis one of the common problems in probabilities, viz. To find the

relative probabilities of different combinations of mutually exclusive simple events in the

course of a large number of trials.

3. In fact, this is really the basis of Laplace's investigation, an elegant, but very

troublesome piece of analysis. With the view, apparently, of attaining the utmost

possible generality, he considers an error to be made up of an infinite number of
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starting, that these

Another, which is, to

result finally arrived

given finite error is

ntributions, combined

^ovv, thougn it is not a harsh

. mate effects should be, in certain cases, the results of

.active operations with infinite quantities, it does appear unlikely in

me extreme, that finite effects should be due to such operations in a far greater measure

than to operations with finite quantities It is true that Laplace subsequently shows

that the same law will be arrived at by assuming any law of probability for the

contributions to the error from each separate cause, provided positive and negative errors

of equal amount are equally likely, but it is the complexity, not the sufficiency, of his

processes, which I think requires attention.

4. Gauss' investigation is founded on the assumption, that the arithmetical mean,

of the results deduced from equally trustworthy observations, is the most probable value

of the quantity sought So far as I can see, Ellis* has satisfactorily hhown that this,

however apparently natural, is not justifiable as an a priori assumption In fact, it

would seem that we have no right to assume that, because errors of equal magnitude
and opposite signs are equally likely, their sum will vanish in a large number of trials,

any more than that the sum of their third or fifth powers will vanish Why the first

powers should be chosen, appears to arise from the extreme simplicity of the requisite

operations; yet, though complexity of calculations is undesirable, it must be submitted

to, if necessary for the evolution of truth. The principle of the arithmetical mean has

been adopted, among a multitude of others equally likely, jusfc as we might suppose
a calculator to insist on gravity varying as the direct distance instead of its inverse

square, on the ground that the problem of Three Bodies would then become as simple
and its solution as exact, as they are now complicated, and at best only approximate.
" La nature ne s'est pas embarrasses des difficult^ d'analyse, elle na foitt que la

complication des moyens," in the words of Fresnel.

5. It is with some hesitation that I communicate the present paper to the Society;
for 1 have not devoted much time to the study of the Theory of Probabilities; and

I know well how easy it is to fall into the gravest errors of reasoning on such a subject,

from the fact that D'Alembert, Ivory, and many others, have published investigations

and proofs (sometimes m its most elementary parts), which are now seen to be entirely

fallacious.

6. I proceed to show how I think the principle, above ( 2) enunciated, may be

applied. The most direct method would be, of course, to assume any one set of causes

of error whatever, and to determine what will, in the long run, be the chance of each

separate amount of error as due to their joint action. Supposing this to be determined,

let us try to combine the probabilities of error from any indefinite number of sets of

*
Cambridge Phil Tram ,

vm. p. 205.



VIII.] ON THE LAW OF FREQUENCY OF ERROR. 49

possible causes; and, if this process should lead to a definite law of error, such will

be the law to which, by an inverse application of the Theory of Probabilities, we should

expect each separate observation to be subject. But this process, which is analogous
to that of Laplace, though not identical with it, cannot easily be carried out, for it

essentially involves in its first steps the assumption of a law of error which it is the

object of the investigation to determine. We must try a less direct method.

7. We shall, therefore, investigate what must be, in the long run, the chance

of any combination whatever of independent events, and consider the deviation of this

combination from the most probable combination as the Error, and the ratio of its

probability to that of the most probable combination, as the function which expresses the

Law of Error. If we find, as we proceed, that the law thus arrived at, is (in form
at least) totally independent of the number, variety, &c., of the several simultaneously

acting causes, we shall thus have a very strong argument in favour of the correctness

of the process; whose real difficulty, be it remembered, is logical and not mathematical.

The mathematical processes to be employed below are, of course, known, and will be

found in most treatises on Algebra; but, for the present application, it will be

convenient to put them in a form slightly different from the usual one.

8. Taking the simplest case, let us suppose a bag to contain white and black

balls, whose numbers are as p : q, where p + q
= l. The chance of drawing a white,

and @ black, balls in n (= a + y9) drawings, replacing before each drawing, and dis-

regarding the order in which they appear, is

This is a maximum, when ot : & :: p : q, which, when n is indefinitely great, can

always be exactly attained. This maximum value is

. (2)
pi! qn !

r i ^ '

The ratio of these two numbers is

Now, according to the principle above assumed, we must treat apn, the deviation

from the most probable result, as measuring the error in some observation, while the

expression (3) measures the probability of it, as compared with that of the most

probable result. To introduce the ordinary notation, let x be the error, and y the

(indefinitely small) probability of that error, then, A and m being constants,

a pn = mx .................... , ..................... (4),

while y may be expressed as the product of (3) into A, that is, by (4),

A- -i-
-p

mx
q~

mx
....f. ....................... (5).

pn + mx \ qn mx \

r *

7
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When n is a large number, the value of .this is easily found from Stn ling's Theorem,

viz,

1.2.3.. H = n ! = V-2w n+*e-w (l + ^L + &c \
}

where the inverse powers of n may be neglected if n is large For (5) thus becomes

_ A ( />)
pB+*

y
( pn 4 wtf)*"*'"

l+_ 1-'-
V pnj \ qnj

Hence,

logy log A = -
(pn 4- nix+ ) log (

1 4-
) (gn

- ma;+^) log (
1

)

. . ( ?na? mV* ^nV )

(qn - mx 4- i) 1
---

~^ . , ,
&c - rv^ /J/

( gn 29
2
n,
a 3qW j

The first term of this expression is finite when <mx is of the order n*
;
and in this

case the other terms in the first line are infinitely small, being of the orders

n~*, n."1
, &c. respectively. The latter remark applies to the second line of the ex-

pression, which depends upon the \ in the exponents. When mx is of an order

higher than w*, it is obvious from the undeveloped form that the expression must

be infinitely large, and negative. Hence, generally, we may neglect all but the first

term, and we have therefore

= Ae-^ ............................................(6),

which is the ordinary expression

9. This shows that, as is well known, the chance of a result differing x from the

most probable combination is, in this very simple case, represented by a number propor-

tional to e-"z
*
times that of the most probable event. But if we now consider, not one

but, any number of causes conspiring to produce the observed result, we find that the

law is still precisely the same in form, and this luhether the most probable event be the

same as regards each caitse or not. And it is this fact which appears completely to

justify the proposed method of regarding the question.
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10. For, if the various causes all tend to produce the same most probable event, if*

probability will be, by (6),

^^A 1A aA,.,.A r .......................................(7),

while that of a result, whose error is CD, will be

y-yiy,y....y,-at- ("1+ ''' + +^** = <
- x*

........................(8)

(where M =
/*1 + /4j + /u3 + ...+ ft,),

which is the same form as (6).

If the most probable result, as depending on the several sets of causes, be different

for each, the formula (6) becomes, for any one cause,

y ..4 -M<*-ir)" .......................................... (9),

where A is the (small) chance of the most probable result, which is, of course, 57 = 7.

The chance of any particular value of x, as due to the simultaneous action of all

the causes, is now

y = A 1 ...A ve-^<*-^- -M*-iv) J

...........................(10),

which may, of course, be put in the form

where the most probable result is now

while a=A...Xr^' + +^, JHMF'

(where, as before, M = ^ + /*2 + . . . + /*)

is its probability.

If we take this as our point of departure for the error x, we must write x for

x r, and we have

yaa Se-
Mj: '

............................ ;............(12),

for the form of the law of error, which is precisely that of (6) deduced from the simplest

conceivable case,

11 Another remarkable confirmation of the validity of the process suggested above,

is to be found in the fact that not only are the curves expressed by equations such as

(6) and (9) compounded, by multiplication of corresponding ordmates, into another of the

same class, whatever be the positions of their axe*! of symmetry, but that the same

principle holds good in three, four, &c., dimensions also

Thus, any number of hills on the plane of xy, represented by equations such as

z=A ~^x~^ + (y~^ .................................... (13),

give, by multiplication of their corresponding ordmates, another hill of the same general

form, the values only of the constants being changed

72
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[Many curious geometrical results may ,be derived from this construction. One of

the most singular is the fact that the projection on xy of the line of intersection of any
two surfaces whose equations are of the form (13) is a circle, and that another such

surface (viz., that whose ordinates are mean proportionals between those of the former)

can be described, passing through the curve of double curvature of which this circle is

the projection But, besides being foreign to our subject, these theorems follow at once

from well-known properties of circles.]

12. Returning to equation (12), it is obvious that & and M must be connected,

since we have to satisfy the condition that the probability that the error lies between

infinite positive and negative limits is certainty. Hence, as we may write

(14),

for the chance that the error lies between so and a; + 8x
;
we must have

i .....................................(is).

( + 00
, _

But we know that I e~^
3

dy= A/W,

which reduces (15) at once to the form

the required relation.

13 It is obvious from (12) that large errors have less probability when M is

large ;
that is when h is small, if we put

M =
/T
2

*

Hence h becomes an indication of the comparative accuracy of the process whose errors

we are testing, and it is thus desirable to retain it in the expression for the law

of error.

By (16) we have & = -i=
,

h VTT

and therefore, by (14), we obtain

h VTT
'

for the chance that the error lies between x and x + &, the usual expression.

14. It only remains that we give an idea of the accuracy with which this law of

error is approximated to, in cases such as we have assumed as the basis of our reasoning,

even in a very small number of trials. For this purpose we take the case of 20 tosses
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of a coin. Here the most probable result is, of course, 10 heads and 10 tails, and the

chances of the various possible combinations are the terms of the expansion of

If we erect these as ordinatcs at successive distances, each equal to unit, along a line,

we may graphically represent their relative values by a curve drawn, libenl mann, through
their extremities. The area of this curve will evidently approximate to unity, which is the

exact value of the sum of the areas of the rectangles of unit breadth, each of which

is bisected by one of the ordmates laid down from the expansion.

To find the corresponding curve of error, notice that the maximum ordmate is

20.19. ..11 1_ 184750

1.2. ..10
'

220
~
1048576

Taking this as the value of - we have for (12) the expression
h v TT

( 1 7 N
( >'

The following table shows a few of the values of y from thib formula, compared
with the corresponding terms in the binomial : it is sufficient for our purpose, as it

would not be worth while to take the trouble of calculating the areas of the curve of

error corresponding respectively to the rectangles above mentioned.

x y from (17) y from Binomial Difference

15. Nothing is better calculated to show the general soundness of the method we

have adopted in this paper, than the fact of the excessive closeness of the above

approximation : the case having been specially chosen as one in which we could hardly

have expected more than a rude resemblance to the law of error.
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IX.

ON THE APPLICATION OF HAMILTON'S CHARACTERISTIC
FUNCTION- TO SPECIAL CASES OF CONSTRAINT.

[Transactions of the Royal Society of Edinburgh, Vol xxiv.

Read 20th March, 1865.]

1. ONE of the grandest steps which has ever been made in Dynamical Science

is contained in two papers, "On a General Method in Dynamics," contributed to the-

Philosophical Transactions for 1834 and 1835 by Sir W. R. Hamilton. It is there

shown that the complete solution of any kinetical problem, involving the action of a

given conservative system of forces, and constraint depending upon the reaction of

smooth guiding curves or surfaces, also given, is reducible to the determination of a

single quantity called the Characteristic Function of the motion. This quantity is to

be found from a partial differential equation of the first order, and second degree ,

and it has been shown that, from any complete integral of this equation, all the

circumstances of the motion may be deduced by differentiation. So far as I can

discover, this method has not been applied to inverse problems, of the nature of the

Brachistochrone for instance, where the object aimed at is essentially the determina-

tion of the constraint requisite to produce a given result. It is easy to see, however,

tbat a large class of such questions may be treated successfully by a process perfectly

analogous to that of Hamilton, though the characteristic function in such cases is

not the same function (of the quantities determining the motion) as that of the

Method of Varying Action.

2. It is unnecessary to enter into any great detail with reference to the present

subject, because any one who is familiar with Hamilton's beautiful investigations

will have no difficulty in applying them, with the requisite slight modifications, to
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the subject of this paper. I shall therefore content myself with a brief explanation
of the application of the method to the problem of the Brachistochrone, and a mere

indication of some other curious problems which are easily solved in a similar manner.

3. The problem of the Brachistochrone for a single particle is, in its simplest

form, as follows:

Find the form of the (smooth) constraining curve along which a particle will pass,

under the action of a given conservative system of forces, from one given point to

another in the least possible time, the initial speed being given.

The problem may easily be complicated by supposing, for instance, the terminal

points not to be definitely assigned, but to lie each on a given surface- still farther,

by supposing the initial speed to depend, according to some given law, upon the

coordinates of the initial point, and so forth. But such complications introduce

analytical difficulties of the quasi-arithmetical kind merely, not of a physical nature ;

and we leave them to those who are curious in such matters.

4. In symbols, if r be the time of pas-sing from #
, y , z^ to a; y, z, we must

have

_ f*. v> * ds

J *,*,* v

a minimum : subject to the sole condition

va = 2(#-F)

where H is the whole energy, and V the potential of the system of
%
forces on unit

mass at the point #, y, z.

Hence, taking the variation,

fc.ff*_).A & I

But dsdSs = dxdSx + dydty + dzdSz ,

and vBv = B(ff-V) = X8x + YSy + ZBz + BH,

if X, Y, Z be the component forces on unit mass at x, y, z. Thus we have

i (dx * dy * dz ~

* (at
*"

where the whole, integrated or not, is to be taken between the given limits.
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If the limits and the initial speed be fixed, the first part of the expression for

BT disappears; and, that the integral may vanish, we must have

..(A),

with similar equations in y and z. This is simply the ordinary result given in

treatises on kinetics.

But if we consider the effect of the alteration of the limits, or of the initial

energy, we have

ST 1 dx ST /I dx\

,.(1).&c. &c.

and ST r*<v>* da

5. Hence, if T could be found as a function of x, y, z, #, y ,
z

, and H, it

is obvious that its partial differential coefficients with respect to these quantities

would give the motion completely.

But, neglecting altogether the initial limit, we see that

rfry /<fry /dry
i f

/<fcy /<fyy /<fry
y
+

tety)
+ UJ

=
* lUJ

+ UJ +UJ
.

6 It can be easily shown, by a process similar to that employed for Varying

Action*, that, if any integral of this equation can be found, its partial differential

coefficients with respect to x, y, z are respectively equal to the corresponding speed-

components of the velocity, in a curve which is a brachistochrone for the given forces,

each divided by the square of the speed.

A complete integral of (2) must of course contain, besides H, two arbitrary con-

stants a, $. If, then, T be a complete integral, the equations of the brachistochrone

are easily shown to be

- $- <3 >;

where & and 23 are two new arbitrary constants.

Also we have the relation

dr Cdt Cds ,..

rfr j 3 I-T (4).an j v j IT

* Thomson and Tait's Natural Philosophy, 828, or Tait and Steele's Dynamics of a Particle (2nd edition),

252, 253.
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7 Before proceeding farther with the theory, we may apply the results alread)
obtained to one or two well-known problems; commencing with the original case

proposed by Bernoulli.

8 To find the brachistochrone, when gravity is the only impressed force, and the

particle IMS the speed due to a fall from a given horizontal plane.

Taking the axis of y vertically downwards, we have

K0y.
Also, we may write H = ga.

fdr\* /dr\- fdT\* 1
Hence

(
, +

( -,- +(j~) =
5~7
-

\
\daej \dy) \dej 2g(a + y)

This equation is obviously satisfied by

(?)-* (1
T

)
= ^> (irT-T-r

1

,-*-*> -

\dxJ \dz) \dy) tg (a + y)

/dr\ da;

\dx) dt ,, P ., dor
But

T3TN-a;<
b^ 4) -a.-

\dz) dt

Hence ~r -*f>
that is the path is in a vertical plane. We may take this as the

plane of xy. Hence our equation becomes

^YVrfTY=_L_
\dx)

*
\dy) 2g (a + y)

We may now write

where 6 is an arbitrary constant.

By (5) we have, at once, J2g r =~ +
jdy ^/-^

-
^

........................... (6).

Hence the equation of the brachi&tochrone it> (by 6)

that is, changing the constant, and effecting the integration,

6 2 (a + y)VeiN-'
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the common equation of the Cycloid, the speed at any point being that due to a fall

from the base.

In this case we have evidently

dr _ tds_\dr_ 1 r dy"""
- ] J 1

~
l
+ C

~7V-+l,-6 + c '-

The above (at first sight apparently too limited) assumptions

dr ,, dr , r
-_,

= M
, -j N,dx dz

and the consequent reduction of the question to a plane problem, may seem to require

some justification. This is easily supplied, thus : in the equation

/dry /dr\* /dry ,,.,

the direction-cosines of the tangent to the brachistoohrone, at tho point x, y, 2, are

by (i),

I
- 1 dr m- ld

~ n- ldr

At the adjacent point x + Bx, y + By, z + Bz, where we have, of course,

Bx By Bs .

-Y = = = Bs,
I in n

dr
+ d-r^ .

rf
ar

.
d-r ^

the value of I becomes V
. &g>
-

r + Of

dr Bs /dr d-r dr d-r dr rfV \

dx
+ F (dx dx*

+
dydxdy

+
dz dxdz)

F+&F

dr (dF\ s
j- + [-T-)08dx \dx)

F+BF

But in the above problem F is a function of y only, and we must therefore have

L = l
n' n '

which shows that the curve is in a plane parallel to the axis of y.
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9 To find the Brachistochroiie wfien the force is central, and proportional to a

power of the distance; the speed being also proportional to a power of the distance,

that is, beinf/ the speed from infinity if the force is attractive, from the centre if it is

repulsive

Here v- = 2 (H - F) = ~ ,

and the central force at distance r is evidently

~"

dr 2r"+T
'

Thus (2) becomes ffi + (fY + ()' = ?\dasJ \dyj \dsj /j,

or, changing to polar co-ordinates,

/rfrV
+

1 idrV
+ __ /dr \ = r

It is obvions that we must take ^ = 0,
d<f>

which shows that the path is in a plane passing through the centre of force. The
above equation will then be satisfied by

dr _ dr_ /rn _ o^
dd

~ a>
dr

~V /u, f1

Hence we have r = oB 4- I dr \f ,

And the equation of the brachiHtochrone

O
( /rn+r

\ = 8+~\J' -!-<
n + 2 1 v fiaf

r"+
_-

\

2
J ^ . 4fi _\

n + 2] 7^ ._j. A,^V pa* V rn+a/

82
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while the equation of the free path is

The above integration fails in the case of n = 2
;

that is, when the force is

repulsive and directly as the distance, the speed vanishing at the centre of force. But
in this case

/*

and the equation of the brachistochrone is

= 4- A/-
- a? log Cr,

-loggr,

the logarithmic spiral. Eliminating r between these equations, we see that the time

is proportional to the polar angle.

Since a definite form has been assigned to the expression for the speed in

this problem, it is obvious that H is given, and therefore that there is no
-jjj.

The assumption rr =
a<p

is easily justified, in the case of any equation of the form

\dr)
+

r* \d6)
+

r^swft) \d<j>)

=
'

if F be a function of r only. For

dr ,, dr dr rd9 dr r sin
But dr-* dt> rdO

= F * ' r^m = ~~

s /dr\ SMdr S?r I dr d?r 1 dr d>r) S
Hencc 6 ~

That is, unless F contains ^>, , is necessarily a constant, j3 suppose.

But, m the present case, if we give this constant any value but zero, we introduce

(i problem much more general than that proposed, for the expression for the reciprocal

of the square of the speed becomes

_ P
p r3 sm

'
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10. As an example of a tortuous curve we take the following:

Determine the form of the brachiatochrone when the speed at any point of space is

proportional to the distance from a given line.

Taking the line as the axis of z, our equation obviously becomes

/dry /dry /dry_ aa

(fa)
+

(dj,J
+

(dz) -*H^7>-

,, dr
Hence -j-

=
a,dz '

and, substituting this, and changing to polar co-ordinates in a plane parallel to xy,

Hence we may take
70

dr 1
and there remains ,

^

= *Ja* (& aV.

Integrating, we have

T = az + /3B- Ja^W log

By actuating to constants the partial differential coefficients of r with respect to a

and ft, we obtain the two equations of the brachistochrone

jand

The former of thet>e is the ecjuation of a sphere, as may be seen at once by

putting it in the form

a (z
- &) = Ja* -p- Jo? - /9

2 - aV2

The remaining equation, by altering the value of 13, may be reduced to the form

which is at once recognised as a cylinder, whose base is one of Cotes' Spirals.

Also, if we remark that, by (1),

r
de

=tfdL = !f & = PV

dt rdd
~

a*
'

r a
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dO
r
dt a

we sec that cos
-\Jr
= = = const.

where
i/r

is the inclination of the element r&6 to the corresponding element 8s of

the brachistochrone. That is, the brachistochrone cuts all circles on the above sphere,

whose planes are parallel to xy, at a constant angle. (Loxodronie.)

11 It is easily seen that r = G

is the equation of an Isochronous surface.

(dr\
fdr\

(dr\
Veto/ \dy) \dz)AI Veto/ \cLy \

Also, since .1 = .Ijii. = --.
(

dx dy dz

dt dt dt

the brachistochronc cuts all such surfaces at right angles.

And the normal distance between two consecutive isochronous surfaces is propor-
tional to the speed in the brachistochrone of which it foims an element. For, of

course,
Sit = rSr

12. GcneraUv, putt.ng -(Hj)'+ ()'-*<- D ^
wo have 2(#-K) =

^.,

I ( J

with similar expressions for Y and Z

Also, by (1), we have ~ = {& ^', &c
)

- (9)>

and .->,
=

-T d2
./; d ( 1

Hence

1 d/eir\ 1 drd
"ft-ertU-J'SPcto A (10)>

R rf
fdr\ _ d?r oLr d*r dy d*r dz

dt (daJ
~
do* dt dyda dt

+
dzdx di

1 (dfrdr d*r dr d^r dr] _ Id
W\d&dx

+
dydxdy

+
dzdxdz} 2 dx (11)>

which is the ordinary form of the equation of the brachistochrone, (A) in 4.
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(dr d /dr\ dr d /dr\ dr d fdT\\

\fadi UJ +
dy dt (dy)

+
dzdt (dz)}

dr d1& dr d}
dy'dy

+
dz dz]

............................. (I-) -

1 (dr

..
Al8

d

The above value of becomes therefore

<fo_ 1 dUL _ 1 dr (dr d drdlg, d^d&) .

dt*~2W dx ~&d.c.\dx dx
+
dydj

+
~dz~ dz\

............ ( ''

which (8) i educes to the form

|: = -x +^^
T

jzf+ytdt1 1&d.r (
dx dy

4 i 1. f -i ^ d-y j d*z
And >ve have, of course, similar expressions tor 7 , and 7

-
.

dt3 dt3

13. We may thus easily prove the fundamental propeity of brachistochronea given

in most treatises on dynamics.

The pressure on the curve, due to the motion, is equal to that due to the impressed

forces

For (14) may be written

d*x , dx_
( y dx r dy dz=-

dt
+Z

dt

dy

ds]

V 9 i Y dx
( Y doc

-i. Y dy a-
r/ dz

^\(= A ^ <A , -A , +J , + > -j If ,

[
ds \ ds d,s dsj)

Now X ~ f- F^ +^"-^18 the component of the impressed forces alone: ds. Hence
ds ds ds

^ r 6

rf^
( Y dx vdy dz\A --

, Aj \r 1 -j t- j- } ,

ds \ ds a,s' as/

y dyf y dx ydy ,.dz\ dz
( y dx y dy , 7 dz\

i j~ I -A , + i
-j H^-j-, Z --j- I A -,- + f j

- + /} j- ,

ds \ ds ds ds} ds\ ds ds ds)

are the rectangular components of the component of the impressed force perpendicular
to the path

But, if R be the force of constraint, X, ft, v its direction-cosines, we have by

ordinary kinetics
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Hence R\ = 2 \X
-% (x%+Y$.+Z

d*
}\ , &c., &c,

[ ds V ds ds ds))

and therefore the whole pressure is double that due to the impressed forces.

From the above follows also the well-known theorem, that the osculating plane of

the brachistochrone contains, at each point, the resultant of tlie impressed forces. For it

has been shown that this resultant coincides in direction with the centrifugal force,

and the latter of course lies in the osculating plane.

14. Another, and perhaps simpler proof of the theorem above is furnished directly

by (10). Thus, squaring and adding the three equations of that form, after substituting

in them from (11), we have

W/ 4t 4 (W#/ Wy

1 d (dr d& dr d1&

Hence the whole acceleration is equal to the resultant of the impressed forces ;
and

therefore the component of the acceleration, normal to the curve, must be equal to

that of the resultant of the impressed forces
;
from which the theorem follows at once

if we can show independently that the resultant of the impressed forces lies in the

osculating plane. This is easily done as follows. We have

tr o.. &t o fdr\ Sx -v-.. oHence *.^ 8 (^
-
^m, &c.

Now, by (8) and (11), 8
(-,-} &c., are proportional to the direction-cosines of ths resultant
\rfay

force, which therefore lies in the common plane of two consecutive elements of the curve.

15. The equation of the surfaces which are orthogonal to the path is

T=<7,

and that of equipotential surfaces F=<7,.
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That these may coincide we must have

T-^(F),

where < is any function whatever.

WW&ffl+
If we write 17 == ()/2(ir- V)$' (V)dV =^(V) .......................... (15),

A complete primitive of this equation is, of couise,

Iff = Ix + wiy + nz p,

where p is any function of I, m, n, and

The general piimitive, equated to a constant, is therefore obviously the equation of a

series of surfaces such that the normal distance between any two consecutive members
of the series is everywhere the same. It is evident from (15) that the surfaces thus

found are identical with the isochronous and cquipotential surfaces, when these coincide

The equations of their orthogonal trajectory, that is, of the free path which is also a

brachistochrone, are therefore,

(<W\ , (dV\ t fcflrT\ fi-, }6X + (
,
-

)8l/ + (
, }S2

\ d>r J \dy )
y \dz )

.........

Hence bx^w, &c.,
V dx )

and, therefore,

But, substituting the values of &x, &c., from (17), this becomes

. = (so. \(f}
m + (1^) (ff)l\ a*

1

/ V rfaH / V <ty / \djcdyl

and the first part vanishes, by (10).

62
,r 8-y &z B-C

Hence -K- = ,,

J = -s- = -=7= ,

to Sy dc SO'

which show that when the path is simultaneously a free path and a brachistochrone,

it is necessarily rectilinear.
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This might have been inferred at once, from the theorem of 13, which shows

that if the free path be a brachistochrone, there can be no pressure due to the

motion, i.e., no curvature. But the above investigation is given as containing curious

additional information. It shows, for instance, that if the force be the same at all

points of each of a series of equipotential surfaces, the lines of force are rectilinear.

Also, that if the flux of heat be constant per unit of area over each one of a series of

isothermal surfaces, though not necessarily the same for all, the propagation of heat

takes place in straight lines And, as particular cases of these theorems, if the force

or the flux of heat be the same throughout a given space, the attraction, or the

flux, therein takes place in parallel lines.

16. Hamilton's equation for the determination of the Characteristic Function

(A) in the case of the free motion of a single particle is

Tbe comparison of this with (2) suggests a useful transformation. Introducing in

that equation a factor 0*, an undetermined function of a:, y, z, we have

If we make = f (T) ............................................(20),

and

(19) becomes (^J + ^-> )
+^

T|

)

= 2(^-7,) (22).

Here it is obvious, by (18), that <(T) is the action in a free path coinciding with

the brachistochrone, and that 2 (H^ Fj) is the square of the speed in this path.

Hence the curious result that, if T be the time through any arc of a given

brachistochrone, the same path will be described freely under the action of forces whose

potential is F,, where

2 (H F)
'

<f> being any function whatever ; and
<f> (T) representing the action in the free path.

17. The simplest supposition we can make is that $'(T) is constant. In this

case the speed in the free path is inversely proportional to that in the brachis-

tochrone at the same point ,
and the action in the one is proportional to the time

in the other. In fact, as Professor W. Thomson has pointed out to me, in this

case the investigation may be made with extreme simplicity, thus
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In the brachistochrone we have

[da
I a minimum.
J v

Putting v = -
,
and considering v as the speed in the same path due to another

(easily determmable) potential ;
we must have

I vds a minimum.

This is the ordinary condition of Least Action, and belongs, therefore, to a free path.

Hence, since the cycloid is the brachistochrone for gravity, and since in it v9 = %gy,

will be a :

is found from

it will be a free path if i/
a = = , that is for a system of force where the potential

9U

H.-V,^ 7
-

.

gy

This gives ,
* = 0,

--
j

l
=* -.- >6 dx dy tyy

In other words, a cycloid may be described freely under the action of a force

towards, and inversely as the square of the distance from, the base
,
and the speed

at any point will be the reciprocal of that in the same cycloid when it is the

common brachistochrone

This result is easily verified by a direct process

18. But we have, by 16, an infinite number of other systems of forces under

which this cycloid will be described freely.

For by 8 we have, putting a = 0, since the base is now the axis of ac,

Hence, whatever be < , the cycloid is a free path for the system

-

19 The converse of the proposition in 16 is also curious. Taking Hamilton's

equation (18), we have,

92
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Comparing this with (2), we see that r = <f>(A) is the brachistochronic expression

for the time in a path which is a free path for potential V. The requisite potential

is now found from

Hence, if A be the action in a given free path, the same path will be a brachisto-

chrone for forces whose potential is Vl} determined by (24), V being the potential in the

free path,

Thus, the parabola (x
- &)a = 4a (y

-
a)

is the free path for vs =
2gy. And the action is given by

Hence this parabola is the brachistochrone for

In the simplest case <J>'(.4)
= 1, and we have

_ dv
j = o _ d.HL- 1

dx '

dy fyy*'

Hence, by 17, the parabola is a brachistochrone when a cycloid is the free path.

20. Again, if
t*=2^-/f) ........................(25),

where H and /* are essentially positive, the free path is an ellipse of which the

origin (the centre of force) is a focus.

This ellipse is the brachistochrone for the potential Va , and whole energy H1}

where

This corresponds to a central force

_ 4L = C GHr
dr

~
4 (/i -Hr)

+
4 0*

- Hi

=
4(^-^r?'
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The speed at any point is \/^j^IBr)'

In the ellipse, we know by ordinary kinetics that

/2 1\
v = u,[

---
.

*\r aj

Comparing this with the above formula (25) we have

|. s*

Hence the speed in the free ellipse is

That in the same ellipse, when it is a brachistochrone, is, as above,

l~ ~Cr
"

/Ca / ~r

Vl ~V m^Hr)~VJ V 2a-r*

But if we refer it to the other focus of the ellipse we have

r, = 2a - r.

Hence ^ ....................................(27).

Comparing (26) and (27), we have the singular result that a planet moving

freely about a centre of force in the focus of its elliptic orbit is describing a brachis-

tochrone (for the same law of speed as regards position) about the other focus. The

reason of this remarkable property, as well as of the connected one that while the

time in an elliptic orbit is (of course) measured by tlie area described 'about one focus,

the action is measured by that described about the other*, is easily traced to the fact

that the rectangle under the perpendiculars from the foci on any tangent is constant.

21. It follows from Hamilton's investigations, that in the free ellipse we have

A

where a depends upon the excentncity of the ellipse by the formula

"-^(l-#).

*
Tait, Proc. R S.E., March, 1865, or Tait and Steele's Dynamics of a Particle (2nd edition), 258.
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The theorem may therefore be generalized as follows: The free ellipse will be a

brachistochrone, if the speed be given by

where $' is any function, and A is the integral last written. By differentiation with

respect to r, we get the law of central force requisite.

But results of this nature may be deduced to any desired extent, without more

trouble than the requisite integrations involve.

22. The examples immediately preceding are but particular cases of the following

general theorem, which is easily seen to be involved in the results of 16, 19

If we have two curves, P and Q, of which P is a free path, and Q a brachisto-

chrone, for a given conservative system of forces; P will be a brachistochrone for a

system of forces for which Q is a free path: and the action and time in any arc of

either, when it is described freely, are functions of the time and action respectively, in

the same arc, when it is a brachistochrone.

23. It is easy to see, that there exists a very singular analogy between the

processes we have just given, and those suggested by certain problems in optics.

Assuming, for an instant, the exploded corpuscular theory of Light, Varying
Action is at once applicable to the determination of the path of a corpuscle. On the

other hand, if we assume, as our fundamental hypothesis, that light takes the least*

possible time to pass from one point of its path to another, the foregoing investiga-

tions would be directly applicable to find the path in a medium whose refractive

index (on which the speed depends), at any point, is a given function of the co-

ordinates
;

in other words, in a heterogeneous singly refracting medium.

In the beautiful investigations of Hamilton, on the Theory of Systems of Rays

(Trans. R.I.A., 1824 32), the path of a ray is assumed to be a straight line in

any one medium. Here the speed depends only upon the direction of the ray, as

in homogeneous doubly refracting media, and the problem has no analogy with the

conservative case which is treated above.

24. As an instance of an optical problem I take the following, due I believe to

Maxwell*. If the refractive index of a medium be such a function of the distance

from a given point that the path of any one ray is a circle, the path of every other

ray is a circle; and att rays diverging from any one point converge accurately in

another. Or, in another form, find the relation between the &peed and the distance

from the centre of force that the brachistochrone may always be a circle.

*
Cambridge and Dublin Math. Journal, ., p. 9.
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The symmetry shows that our investigations need involve only two dimensions.

Taking the centre of force as po!^ the equation of a piHP is

r* + 2ar cos (0
- &) = p

a - a\ = 6a

suppose.

b3 r2

Hence & = 6 - cos-1 --
.

zar

This is obviously the equation before written (3), in the form

-

f
52 _ 7*3

Hence r = ad - Ida. cos- 1

But, if v be the speed (the reciprocal of the refractive index in the optical problem),

/^Y+ if-V-i
\dr) ^i\dti) ~v*'

dr /la2 d f . fr-i*
Hence = - - ^a cos- -r

But v is not a function of a, so that we get by differentiation with respect to

that quantity

v '-,

This is easily reduced to vW

The condition, that v is a function of r and absolute constants

at once to two conclusions: b is an absolute constant; and so is 2pa, for which we

may write c. a is therefore inversely as the diameter of the circle
;
and ,

From the form of the equation of the path it is obvious that 6a is the rect-

angle under the segments of any chord drawn through the centre of force.

Hence, in the optical problem, if a ray leave, in any direction, a point distant

r from the origin, it will pass through another point in the prolongation of r, distant

from the origin; and, in the kinetic problem, there is an infinite number of

brachistochrones (circles all, and the time being the same for all) when two points

thus related are taken as the initial and final points.
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25. Such examples might be multiplied indefinitely. For instance, if the refractive

index of a nicuium be inversely proportion?.' to fV quare root of the distance from

a given point, the path is a parabola about the point as focus
;
that every ray may

be a cardioid whose cusp is at the point, the square of the refractive index must

be inversely as the cube of the distance : and so on.

26. The processes of 4 may of course be applied to innumerable problems
besides the determination of the form and properties of brachistochrones, but I shall

content myself with an example or two. Thus, if we take

as the characteristic function, we have

f-Wb Ac, aDd
*>

/> (!))rf,dx v dt dH J
J v '

Of this, besides the cases f(v)=v, and f(v) = -, which we have already considered,

the most curious is that where

/<>-*;

that is, when the space average of the kinetic energy is a minimum. In this case,

(fHSHsK-^
d$>

and M = s.

Again, if we take 4>= \F(x, y, z)f(v)ds

TT n / v Constant
Hence, if F (x, y, z)

>
=

j,
,-. -,

we have -,-,>
= Gt,

da.

so that there is an infinite number of values of the characteristic function, besides

that of Hamilton, which give the time through any arc of the orbit by their dif-

ferential coefficients with respect to H.

27. Enough of this; I conclude with the remark that various investigations in
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Statics supply us with excellent examples in our subject*. Take the common catenary,
for instance, its equation is found by the conditions

I yds = minimum, and Ids = constant,

the axis of y being directed vertically upwards.

This gives 8 \(y + a) ds 0.

Hence the catenary is the free path of a particle whose speed is given by

v = (y + a) ;

that is, if the force be in the direction of, and proportional to, the ordinate, and

repulsive from the axis of a; In the same way we see that the catenary is the

brachistochrone if the speed be inversely as the distance from the axis; that is, if

the force be attractive, and inversely as the cube of the distance from the axis.

*
Compare Thomson and Tait's Natural Philosophy, 581, 582.

10
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X.

NOTE ON THE REALITY OF THE ROOTS OF THE SYMBOLICAL
CUBIC WHICH EXPRESSES THE PROPERTIES OF A SELF-

CONJUGATE LINEAR AND VECTOR FUNCTION.

[Proceedings of the Royal Society of Edinburgh, February 18, 1867.]

HAMILTON has shown that if
<f>p

= ^aSpp + Ap,

where a and /S are given vectors, and A a given scalar, we have

(<>
8

m-ifi* + wir, < m) p
= 0,

where m, Wj, m, are scalars depending only on
<p.

When the function < is its own conjugate, i.e. when

p and <r being any vectors whatever, the vectors for which

(<pg)p=0, or <pp\\p, or Vp^p-0,

form in general a real and definite rectangular system. This, of course, may in

particular cases degrade into one definite vector, and any pair of others perpendicular
to it

;
and cases may occur in which the equation is satisfied for every vector.

Suppose the roots of m,j
= in + tnlg + m^y* + g*

= to be real and different, then

where p^ t p2 > Pa are definite vectors.
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Hence

because
<f>

is its own conjugate.

But

and therefore

which, as g^ and g^ are by hypothesis different, requires

Spl pa
= Q.

Similarly Sp^p,
=

0, Sp^ = 0.

If two roots be equal, as g*, gt ,
we still have, by the above proof, $p,/32 =0, and

Splpt Q But there is nothing farther to determine p2 and pt ,
which are therefore

any vectors perpendicular to plt

If all three roots be equal, every real vector satisfies the equation

Next, as to the reality of the three roots when the function is self-conjugate.

Suppose gi +hvJi to be a root, and let pa + o-2 / 1 be the corresponding value

of p, where g3 and h 2 are real numbers, p2 and o-2 real vectors, and -J 1 the old

imaginary of algebra.

Then ^(pa + <raN/-T) = ( 5ra + ^7-l)( /32 + <raN/-rl),

and this divides itself, as in algebra, into the two equations

Operating on these by So-*, Spy respectively, and subtracting the results, remembering our

condition as to the nature of
<f>

(S<r2 <#ip !j
=

iSp.i <|>o-j,

we have /ta (<ra
a + pa

2
)
= 0.

But, as <72 and p2 are both real vectors, the sum of their squares cannot vanish.

Hence A2 vanishes, and with it the impossible part of the root.

102
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XL

NOTE ON A CELEBRATED GEOMETRICAL PROBLEM.

[Proceedings of the Royal Society of Edinburgh, April 29, 1867.]

THE following problem, originally proposed by Fermat to Torricclh, To find the

point the sum of whose distances from three given points is the least possible, seems

to have given considerable trouble to the older mathematicians, and even in modern

times (see Gregory's Examples, p. 126) to have been solved m a very tedious manner.

Simpler solutions have since been given (e.g. Cambridge and Dublin Mathematical

Journal, Vlil. p. 92), but none, to my knowledge, so direct as that indicated by

Quaternions. The object of this note is to show the simplicity of the quaternion

method.

If a, 13 be the vectors of two of the given points, the origin being the third,

and if p be the vector of the required point, we must have (by the conditions of

the problem)
Tp + T (o

-
p) + T (/9

-
p) a minimum.

Hence S[Up - U(oi-p)-U(& - p)] dp = 0,

for all values of Udp. Hence the versor sum in square brackets must vanish identically.

The immediate interpretation is, that lines parallel to p, p a, p /8, form an equilateral

triangle. The required point is therefore m the same plane as the three given points ,

and their distances, two and two, subtend equal angles at it, which is the well-known

solution.

Equally simple is the quaternion solution of the same problem if more points than

three be given. Let their vectors, to any origin, be a, /8, 7, &c., and let p be the vector

of the sought point. We have

2 T (a p)
= minimum,

from which, as above, $U(a-p) = Q (1).
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Hence, if unit forces act at the required point, in tfie lines joining it with the

given points, these forces are in equilibrium. Or, in another form, a closed equilateral

gauche polygon may be drawn whose sides are parallel to the lines joining the sought

point with the given ones. This opens up some very curious geometrical speculations,

which I have not time to pursue.

That there is but one point whose vector satisfies equation (1) may easily be proved

by quaternions, but even more easily by the following reasoning Consider the system of

unit-forces, just mentioned, at any two points, one of which satisfies the problem. It is

obvious that, if these forces be referred to the line joining the two points, each will be

less inclined to it at one than at the other
,

so that, as at one they produce equi-

librium, at the other they must have a finite component in the diiection of this line.

Tho quaternion investigation at once suggests the following kmematical solution of

the problem. Suppose an mextensible string to be passed through a small movable ring,

then through small rings at two of the fixed points, then again through the movable

ring, and so on one end of the string being fixed to the movable ring when the

number of given points is odd, and to the first fixed ring when the number is even.

When the string is drawn tight, i.e when the sum of the lengths joining each fixed

ring to the movable one is a minimum, the movable ring will evidently be in the

position of the required point. Also, since the tension of the cord is the same through-

out, the movable ring is kept in equilibrium by a set of equal forces in the directions

of the lines joining it with the given points, which is the condition above found.

This kinematical process, equally with the quaternion one, whose form directly

suggests it, gives easily the solution of the more general problem, To find a point
such that m times its distance from A, together with n times its distance from B,

&c., may be a minimum
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XII.

NOTE ON THE HODOGRAPH.

[Proceedings of the Royal Society of Edinburgh, December 16, 1867 ]

\ THE object of the present Note is to show, by a few examples (of which, however,

tne last is the only one of any real importance), how easily the geometrical ideas

supplied by Hamilton's beautiful invention of the Hodograph enable us to dispense

with analytical processes in the establishment of some of the fundamental propositions

connected with the motion of a single particle, besides many others which are merely
curious

,
and also how they help us to understand the full bearing of some of the

analytical methods. Some of the simplest of such geometrical investigations are given
in Tait and Steele's Dynamics of a Particle, and will not be reproduced here

; though
a few of the results will be assumed, as, for instance, that when the acceleration is

directed to a fixed point, and varies inversely as the square of the distance from it,

the hodograph is a cucle, and the path a conic section, of which the point is a focus.

1. If the figure represent an ellipse and its auxiliary circle,

it is known that the circle may be considered as the hodograph

corresponding to planetary motion in the ellipse, but turned through
a right angle. In fact, if YPZ be a tangent to the ellipse at P,

SY' is proportional to the speed at P, and perpendicular to it

in direction. The actual speed bears to S7' the ratio of /* to ha,

in the usual notation

Hence the tangent at Y' is perpendicular to SP (the direction of acceleration),

and thus we have an immediate proof that SP is parallel to Y'CZ. But by this
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means we also get at once, and without analysis, the two well-known and peculiar

first integrals, in the form

ay u, fx \
* = - T- > y = ? (- + )h r y h \r )

which cannot be directly deduced from the equations of acceleration

[The equation of the orbit is, of course,

, . it
,

.

h = xy yx = r (f
-^

GX),

from which we see that h3 = fia(l e8) ]

2. The only central orbits whose hodographs also are described as central orbits,

are those in which the acceleration vanes directly as the distance from the centre.

Let 8 be the centre, P any point in the path, p the corresponding point in the

hodograph, p' that in the hodograph of the hodograph. Then Sp'

is parallel to the tangent at p, which again is parallel to SP. Hence

PSp' is a straight line. Also, since p belongs (by hypothesis) to a

central orbit, the tangent at p' is parallel to Sp, i.e., to the tangent

at P. Hence the locus of p' is similar to that of P, and therefore

Sp' is proportional to SP. But 8p' represents the acceleration at P
Hence the proposition

3. If II be the acceleration in a central orbit, H' that required

for the description of the hodograph as a central orbit, h, h', the

moments of momentum, and r, r, the radii vectores in the two orbits,

In the figure above let $K=cr and Sy = -ar' be the perpendiculars from 8 on

the tangents at P and p, p and p' the radii of curvature at P and p, then

Also the speed at p is

But, since we have .

p vr

(as we see by expressing it in terms of the angular velocity of Sp), if Sp' be called

r", we have
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Hence, as
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, h r'r"* h r'h'* h"* ,

[XII.

Or, more simply, if v be the speed in the orbit, we have, by expressing the

centrifugal force in terms of the normal component of the acceleration,

v* w
p~ r'

Hence

h*
[This is the well-known formula H = -r-

'

L
is* dr

Thus HH' = -^. -** ,=

because from

we have at once

rur' = r'vr == h

4 Again, if the hodograph be a circle described with uniform angular velocity

about a point m its circumference, the path is the cycloidal brachistochrone.

For, if AP be the cycloid described by the point P of the circle SP rolling

uniformly on the line .4$, the speed at P is proportional to

8P, and the direction of motion is perpendicular to SP. Hence

the hodograph (turned through a right angle in its own plane)

may be represented by the circle SP, described with uniform

angular velocity about the point 8. That the motion is due

to constant acceleration perpendicular to AS is obvious from

the fact that, if Pp be drawn perpendicular to AS, SP* oc Pp

5 If the orbit be central, and be a circle described about a point in its

circumference, the hodograph is a parabola described about the focus with angular

velocity proportional to the radius vector.

For, if 8 be the centre of force, P the point in its circular orbit, p the corre-

sponding point of the hodograph : gp, the tangent to the

hodograph at p, must be parallel to 8P
; and, therefore, if

SQq be the tangent at 8, the triangle pSq (being similar to

P8Q) is isosceles. Thus the locus of p is a parabola. Also

the angular velocity of Sp, being the same as that of PQ, is

double that of SP, and is, therefore, inversely as SP". But

the length of Sp is inversely as the perpendicular from 8

upon PQ, ie., inversely as SP*.
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6. A point describes a logarithmic spiral with uniform angular velocity about
the pole find the acceleration.

Since the angular velocity of SP and the inclination of this line to the tangent
are each constant, the linear velocity of P is as SP.

Take a length PT, equal to nSP, to represent it. Then
the hodograph, the locus of p, where Sp is parallel, and

equal, to PT, is evidently another loganthmic spiral similni

to the former, and described with the same uniform

angular velocity. Hence pt, the acceleration required, is

equal to eSp, and makes with Sp an angle equal to SPT
Hence, if Pu be drawn parallel and equal to pt, and v

parallel to PT, the whole acceleration Pu may be resolved into Pv and vu
,
and Pvu

is an isosceles triangle, whoso base angles are each equal to the angle of the spiral

Hence Pv and vu bear constant ratios to Pu, or to SP or PT

The acceleration, therefore, is composed of a central attractive part proportional
to the distance, and a tangential retarding part proportional to the velocity

And, if the resolved part of P's motion parallel to any line in the plane of the

spiral be considered, it is obvious that in it also the acceleration will consist of two

parts one directed towards a point in the line (the projection of the pole of the

spiial), and proportional to the distance from it, the other proportional to the speed,

but retarding the motion

Hence a particle which, unresisted, would have a simple harmonic motion, has,

when subject to resistance proportional to its speed, a motion represented by the

resolved part of the spiral motion just described.

If a be the angle of the spiral, u> the angular velocity of SP, we have evidently

PT.sm a = SP . ca, so that w = nhm.

Hence

and

PT

i = 2Pw cosa =
2(UCOSa Pr = PT (suppose).sma \ if /

Thus the central force at unit distance is n- =
, and the coefficient of resistance

sin' a

is A;=
2 <yc

<*.
bin a

The time of oscillation is evidently ; but, if there had been no resistance,

the properties of simple harmonic motion show that it would have been
,

so that

it is increased by the resistance m the ratio coseca : 1, or n A/ 7i3 ~~T

T. 11
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The rate of diminution of SP is evidently

k
that is, SP diminishes in geometrical progression as time increases, the rate being ^

per unit of time per unit of length. By an ordinary result of arithmetic (compound

interest payable every instant) the diminution of log SP m unit of time is .

This process* of solution is only applicable to resisted harmonic vibrations when

k k
n is greater than

^
When n is not greater than

^
the auxiliary curve can no

longer be a logarithmic spiral, for the moving particle never describes more than a

finite angle about the pole. A curve, derived from an equilateral hyperbola, by a

process somewhat resembling that by which the logarithmic spiral is deduced from a

circle, must be introduced
;

and then the geometrical method ceases to be simpler
than the analytical one, so that it is useless to pursue the investigation farther, at

least from this point of view.
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XIII.

PHYSICAL PROOF THAT THE GEOMETRIC MEAN OF ANY
NUMBER OF POSITIVE QUANTITIES IS LESS THAN THE
ARITHMETIC MEAN.

[Proceedings of the Royal Society of Edinburgh, 16 February, 1868.]

IF a number of equal masses of the same material be given, at different tem-

peratures, and enclosed m an envelope impervious to heat, they will finally assume a

common temperature; which is the arithmetic mean of the initial tcmpeiatures, if the

material be one whose specific heat does not vary with temperature

But they may be brought to a common temperature by means of reversible thermo-

dynamic engines employed to obtain the utmost amount of woik irom the initial

unequal distubution. This question was first investigated by Thomson (Phil. Mag.

1853, "On the Restoration of Energy fiom an unequally heated Spare"), and the

application of his method to the present problem shows that the final common

temperature of the masses, when as much -\\ork as possible has been obtained from

them, is the geometric mean of the initial temperatures, but this investigation intro-

duces the condition that the temperatures must be measured from the absolute zero

Obviously the whole eneigy restoied is piopoitional to the excess of the arithmetic

over the geometric mean

Far more complex analytical theorems may easily be proved by means of the

above process; for instance, if <,, t2 ,..., c, , c>, . be any positive quantities, we have

112
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XIV.

ON THE DISSIPATION OF ENERGY.

[Proceedings of the Royal Society of Edinburgh, 16 February, 18(38]

THE paper contains some curious applications of the principle of dissipation to the

conduction of heat, the connection of heat and electricity, thermo-electric currents, the

electric convection of heat, &c. But in this abstract we confine ourselves to one very

simple case of the conduction of heat, as the hypothesis on which 11 is investigated
is fundamentally assumed in all the other applications.

If an infinite plate be kept permanently heated in layers, each of equal tempe-
rature throughout the temperature rising gradually from one bide to the other the

hypothesis is made that the temperatures of any three contiguous layers (of equal

thickness) so adjust themselves that the least possible energy can be restored from

the system of three. From this it immediately follows that if ^ be the thickness

of the plate, t and
,
the (absolute) temperatures of its sides; and if the specific heat

be the same for all temperatures between t and
,

: the temperature t at a distance

x from the side at t will be

But if k be the conductivity of the substance, at temperature <, we have for

the flux of heat

dt
S=k dx

xkt'

This must be the same throughout the plate, because there is equilibrium of

temperature, and therefore
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The only published experiments, so far as I am aware, by which this result can

be tested, are the very valuable series by Forbes (Trans Roy. Soc. Edin , 1864), which

are, unfortunately, confined to iron. They agree uncommonly well with the above

theoretical result, as the following short table shows:

No account has, in this abstract, been taken of the alteration of -specific heat

with temperature, which is as yet only approximately known, but which is applied

in the paper to account completely for the increase of kt with temperature. As to

the increase of kt at the low temperature of 290 C
,

it may be remarked that the

first two or three numbers in Forbes' table are (as he points out) probably much

less accurate than those which follow them, on account of the temperature at which

they weie obtained, which was but little above that of the atmospheie
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XV.

ON THE ROTATION OF A RIGID BODY ABOUT A FIXED
POINT.

[Transactions of the Royal Society of Edinburgh, Vol. xxv Received October 13th,

Read December 21bt, 1808]

ALTHOUGH it is very improbable that there remains to be discovered any new, and

at the same tune simple, fact connected with a question which has been elaborately
treated by many of the greatest mathematicians of this and the preceding century,
the employment of a new mathematical method may enable us to present some of

their results in a more intelligible form, and with far less expenditure of analytical

power than has hitherto been deemed necessary, and it may give us such an insight

into the question, that we shall be able easily to discover the mutual relations among
the various processes which have been aheady employed, so far, at least, as these

differ in principle, and not merely in the peculiar co-oidmates assumed for the purpose
of simplifying the equations Such a method is that of Quaternions, which seems to

be expressly fitted for the symmetrical evolution of truths which are usually obtained

by the ordinary Cartesian methods only after great labour of calculation, and by modes

of attack so indirect, and at first sight so purposeless, as to bewilder all but a very

small class of readers. Quaternions afford so clear a view of the nature of the question

they are applied to, that even the .student, if he have some little knowledge of them,

can often see why a transformation is made, who^e object he would have beer unable

to discover had the problem been masked in the unnecessarily artificial difficulties of

Cartesian geometry, or the outrageously repulsive formulae of spherical trigonometry.

By far the most elegant and most easily intelligible representations of the motion

of a solid body yet discovered, are due to Pomsot With the following extract from
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his splendid work, Thtorie Nouvelle de la Rotation des Corps (Liouville's Journal, 1851),

I most cordially agree, though it appears to me that, when he does condescend to use

analytical methods, he is by no means so happy as others have been, who, trusting

to mathematical analysis alone, had not the benefit of his beautiful geometrical re-

presentations. But in perusing the extract, let the reader bear in mind that a quaternion

equation is quite as suggestively intelligible, to those who understand it, as any

geometrical diagram can possibly be. In fact, I might almost say, that it is more

readily intelligible than diagrams usually are
, for, m reading a work illustrated by

figures, we have generally to go through a laborious explanation of what the figure

is intended to represent before we can make use of it for further developments. On
the other hand, a purely quaternion formula draws, as it were, its own figure in the

reader's mind, and saves him at least the trouble just mentioned. In this way every
one has his figures drawn so as best to suit himself, and is not perplexed by having
to pick up the principles on which they have been drawn for him by another, very

probably of a different mode of thought. Still, such words as the following, when

properly applied, not to quaternions but, to ordinary so-called analysis, must always

convey a much-needed warning-
" Gardons-nous de croire qu'une science soit faite quand

on 1'a re'duite a des fortnules analytiques. Rien ne nous dispense d'etudier les choses

en ellcs-m6mes, ct de nous bien rendre compte des ide'es qui font 1'objet de nos

speculations N'oublions point quo les re'&ultats de nos calculs ont presque toujours

besoin d'etre v&ifie's, d'un autre cOte", par quelque raisonnement simple, ou par 1'ex-

pe'rience. Que si le calcul seul peut quelquefois nous offrir une vnte uouvelle, il ne

faut pas croire que, our ce point meme, 1'esprit n'ait plus rien a faire . mais, au

contraire, il faut songor que, cette verite e'tant mdependante des methodes ou des artifices

qui ont pu nous y conduire, il existe certaincment quelque demonstration simple qui

pouirait la porter a 1'evidence : ce qui doit etre le grand objet et le dernier resultat

de la science mathe'matiqne
" " Ce n'est qu'une apparente fecondit de cette

me"thode de pur calcul qu'on appelle assez improprement Vanalyse, Car si les thdoremes

sont deja connus on ddcouvre bien vite les transformations a faire pour que les

equations y r^pondent, mais quand on n'a aucurie idee de ces theoremes, on ne

transforme guere qu'au hasard, et le plus souvent on n'arnve a rien. La vraie

analyse cst dans I'exiimen attentif du probleme a re'soudre, et dans ces premiers
raisonnements qu'on fait pour le mettre en Equations. Transformer ensuite ces Equations,
c'est-a-dire les combiner ensemble, ou en pober d'autres evidentes que 1'on combine avec

elles, n'est au fond que de la synthese ,
a moms que 1'idee de chaque transformation rie

nous soit donnee par quelque vue nouvelle de 1'esprit, ou quelque nouveau raisonnement,

ce qui nous fait rentier dans la veritable analyse. Hors de cette voie lummeuse, il n'y

a done plus d'analyse, mais unc obscure synthese de formules algebriques que Ton pose,

pour ainsi dire, 1'une sur 1'autre, et sans trop preVoir ce que pourra donner cette

combmaisori. Voila les ide'es nettes qu'il faut attacher aux mots- et c'est au fond ce

que tout le monde parait scntir, puisqu'on dit tres-bien une heureuse transformation, ct

qu'on ne dit point un heureux raisonnement, m unc heureuse analyse."

I was led to the following investigations by a desire to simplify, if possible, by
a symmetrical process, the usual modes of treating the rotation of a rigid body The
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methods ordinarily employed are essentially unsymmetrical, e.g. the determination, by
means of three angles, ot the position of the body at a given time, when its angular

velocities about its piincipal axes are given, or can be found It was not till after

my investigations were nearly completed, and the chief fundamental equations had been

communicated to the British Association at Norwich, that I became aware of the

existence of Professor Cayley's admirable Second Report on Theoretical Dynamics*, which

contains an immense amount of valuable information, especially bearing on the present

subject. Fioin this I found that the notion of attaining symmetry, by seeking the

single lotation which would bring the body from some initial position to its actual

position at a given time, which had been suggested to me by Hamilton's^ beautiful

results, is due to Eulei
,
and I also found that, by the help of certain formula due

to Rodrigues, Cayley has completely solved the question in the Cambridge Mathematical

Journal, vol. ill. (1843)+. Comparative symmetry, however, is only attained by means of

a brilliant display of analytical power at a great expense of time and bewilderment

to the ordinary reader In the Philosophical Magazine, 1848, n., Cayley has translated

some of his foimulaj into quaternions, and has thus arrived, though by a very circuitous

route, at the fundamental kinematical equation of the present paper ( 7 below). He
does not give it in its simplest form, and he remarks that he has "

not ascertained

whether it leads to any results of importance." Under these circumstances, I have had

no hesitation in laying this paper before the Society ,
for although many of its more

important results have been otheiwisc obtained, few, with the exception of those due

to Hamilton (which will be given in their turn), have hitherto been arrived at so

easily or in such simple forms.

As symmetry has been the particular object which I have had in view, by far the

greater part of the investigation bears upon the determination of the quaternion, b)

which the transition can at one step be effected from any initial position to the actual

position of the body at a given time; and a good many results have been retained,

which are of more interest as properties of quaternions, than as regards their connection

with the physical question. In the kinematical part of the paper, to which I proceed
as a necessary preliminary, I have exhibited, for facility of comparison with other works

on the subject, the values of this quaternion in terms of the various sets of co-ordinates

usually employed This, I need hardly say, does not lead to very simple or elegant

results
;
but the fault is due, not to quaternions, but to the unnaturalness and want

of symmetry of these common methods of attacking the problem. On the other hand,

nothing can be neater than the set of formula? which are suggested directly b}

quaternions

*
Repoit on the Progress of the Solution of certain Special Problems of Dynamics -But ASK Repoit, 1802.

t Proc. R. I A ,
1840. See also 1 and 4 below

J Soe also Cambudge and Dublin Math Journal, vol i (1846)
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1 14. Kinematics of a Rigid System with one Point fixed.

1. If e represent the instantaneous axis of a rigid body, its length being employed
to denote the angular velocity about it

, then, in- being the vector of any point of the

body, drawn from a point m the axis as origin, we obviously have (using Newton's

convenient notation)

This formula was long ago given by Hamilton.

2. Every infinitely small displacement of a Rigid System, one point of which is

fixed, takes place about an instantaneous axis

Let -BT, -BT,, be the vectors of any two points of the system, referred to the fixed

point as origin, then, whatever displacements nitty occur, we must have (on account

of the rigidity of the system)

TTS = const
, Tia-j = const

, Smar^ = const

Hence, differentiating with respect to t,

&W = 0, ^VlWl = 0, *SW, + 8vw l
= .........................(2)

The first shows that tj = FVor,

where e is some vector. With this the third gives

S . vr ( Fewj - n-j)
= 0,

which must be true for all values of -cr. Hence we have also

This is consistent with the second of equations (2), so that the existence of the

instantaneous axis is proved. From the fact of its existence follows at once the

representation of tho motion, in every case, by the rolling of a cone fixed in the rigid

system upon another cone fixed in space. The case of finite displacements will be

treated farther on ( 5 below).

3. To find the instantaneous axis, when the vectors, and vector-velocities, of any two

points of the si/stem are given.

Here we have to find e from the two equations

^Fetsr, w.-Few,.

They give by inspection V^IST^ eS-ansr^ = S-sf-ar l ,

or, more symmetrically, = 79-7
---

J J S (OTT!
- Z

12
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4. If q be any quaternion, the operator

turns the vector, quaternion, or system, to luhich it is applied, about the axis of q

through double the angle of q.

This was one of Hamilton's early* discoveries in his new calculus, but it was

independently obtained by Cayley (only a month or two later)f by the help of the

formulae of Rodrigues already referred to. Conversely, when its truth has been

established by an independent process, these formulae may be at once derived from

it: not only far more simply, but even in a somewhat improved form.

The quaternion q may obviously be considered as a mere versor, since its tensor

does not appear in the operator q( )<y~
1

,
and a glance at the annexed figure proves,

by the multiplication of versor arcs, the theorem above stated. (See Tait's Quateinions,

353, or Hamilton's Lectures, 282, and Elements, 308 (9).)

5. In quaternions we have, of course, whatever be q and r,

Hence 7 . r ( ) r-
1

. q~
l = qr ( ) (qr)-\

which shows how to combine any two rotations into a single one

6. Given the initial and final positions of any two vectors of a rigid system,

drawn from the fixed point; to find the quaternion operator by which the rotation

can be effected. Let them be a, /3, a,, ft, and let q be the required quaternion,

then

qvj-
l = a

l , qffq-
1 -^,

or </a
=

i7, qff
=

/3lq ................................. (3)

Hence S (a
-

a,) q = 0, 8(0- ft) q = 0,

as we might at once have seen by the geometry of the question

Hence q = a + yV (a
-

j) (
-

ft).

* Pwc. R. I. A., Novembez 11, 1844. f Phil. Mag, Feb. 1845.
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By the help of this, the first of equations (3) becomes

or = a;-f y S (a + a^ (0 - &)

[The second of equations (3) merely gives us a condition which is equivalent to

this, because

or flfa/9
=

,&.]

Thus, finally, q = y {- 8 (a + a,) (0 - ft) + V (a
- oj (

-
ft)]

where, as was to be expected, the tensor is left indeterminate.

7. Given the instantaneous axis in terms of the time, it is required to find the

single rotation which will bring the body from any initial position to its position at a

given time. ,

If a be the initial vector of a point of the body, CT the value of the same at

time t, and q the required quaternion, we have

& = qaq-
1 .................................... (4).

Differentiating with respect to t, this gives

But tJr = Few = V . eqotq~
l

Hence, as qaq~
l

may be any vector whatever in the displaced body, we must

have

e=2F??-> ........................................ (5)

This is the fundamental kinematical relation already referred to. Cayley's*

quaternion form of it (which will be understood by the help of 13 below) is

where A = 1 -f iX -f jp. + kv

8. The result of 7 may be stated in even a himpler form than (5), for we

have always, whatever quaternion q may be,

Phil Mag., Sept. 1848.

122
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and, therefore, if we suppose the tensor of q, which may have any value whatever,

to be a constant (unity, for instance), we may write (5) in the form

eg -2j ............................................. (6).

An immediate consequence, which will be of use to us later, is

q.q-^q=Zq .......................................... (7).

9. It may appear to some that the demonstration of 7, founded on the

differentiation of quaternions, is not very convincing. For such it is easy to put it

m an expanded form in which no process of differentiation of a function of a

quaternion is alluded to though in principle it is the same proof.

Let q become q -f r in the indefinitely short interval r Then the change of

position of the extremity of

w = qaq~
l

may be expressed either as

Vca . r or as (q + r) a (q + r)~
l

q&q'
1
*

Hence

rV . eqo.q~
l = (q + r) a (q + r)"

1 - qwf
1

,

(!
-*-r1

r)"
1 - a

] IT
1

.

=
2*71V^) K 1 + r ' r)*(l+K. <r r)

-
(1 + T 1

r) (l+K. gr' r) a] r '

But r is the change of q in time r, and we may therefore write

r = qr.

Substituting, expanding, and neglecting small quantities of the orders r- and

upwards, we have

V. eqaq-
1 = 23 V ( Vq~

l

q . a)^
=

</ ( Vq~
l

q . a - a Fry-
1

j)y 1

i

q) q~* . q*q~
l -

qa.q~* . q ( Vq~
l

q) q~*

the same equation as in 7

9*. [Inserted Dec. 19th, 1868 ] A geometrical investigation may also easily be

given, if for no other purpose than to iserve as an instance of the justice of my
introductory remarks on diagrams as compared with quaternion equations
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Let Q, Q' be the poles, on the unit-sphere, of the versor angles BQE\ BQ'E',

whose bounding arcs intersect in E'\ and let P, P' be the poles of these bounding

arcs, A the pole of QQ'B [A coincides with the projection of 0, the centre of the

sphere] Then evidently AP(=q) and AP'(=q) are the versor arcs, corresponding
to the above versor angles. Obviously the point E' is deduced from a point e on

the other side of the sphere [whose projection coincides with that of E'], by a

lotation about Q thiough double of BQE', or about Q' through double of BQ'E'.

Hence we have obviously

OE' - qOeq~
l = q Oeq'-

1
.

Thus a rigid body may pass from the position q ( ) q~
l to the position q' ( ) q''

1

,

whatever be q and q', by a rotation about OE' Also, by q ( ) q~
l

, Q remains fixed
,

but by q ( )?'-> it moves to R, where Z QE'R = 2 Z QE'Q' = 2 Z POP'

Hence if OE' Ue =(Ue)~
l

, the versor arc PP' may be expressed by either of

the equal quantities

But the actual rotation about e is 2PP', because Q moves to H. Hence if we put

q'
= q + qSt + &c

,
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we have Te8<=2PP',

T<st $tT . $tTe
and thus 1 + qq~

l bt + &c =
( Ue) * = cos . 4- Ue sin

-^

Hence, as in (6), when St is indefinitely small

2qq-i
= e.

10 To express q i?i ferws o/ <^e ??<ai angles ^r, 6, <f>.

Here the vectors i, j, k in the original position of the body correspond to OA,

OB, OC, respectively, at time t. The transposition is effected byfirst, a rotation ty

about k; second, a rotation about the new position of the line originally coinciding

with j . third, a rotation
</>

about the final position of the line at first coinciding

with k

Let i, j, k be taken as the initial directions of the three vectors which at time t

terminate at A, B, C respectively.

The rotation ^ about k has the operator

* _*

*<)* "
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This converts j into 17, where

* _*
r) k n

jk
w =j cos -^

- i sin V-

The body next rotates about rj through an angle 6. This has the operator

$ 9"

It converts k into

= k cos + sin 6 (i cos ^ +j sin 1^).

The body now turns through the angle <f>
about f, the operator being

* *

r< )r~
w

.

Hence

*!,(/

(0
<t>\ r \i/ \L> \ti \i/ ~~\

cos
J
+ fsin

7^ J j^cos

- cos
|
+ A. cos

^
sin

J
+ sin

2
cos

| (7 cos ^ - t sin ^) + sin
^
sm x

(/
cos f +7 m <A)

J

/<* 0\ r ^ o \j/ \t> \i/~\=
\
cos

j
+ fsm |J L

008
2
C08

|
~

' 8in
2
8m

2
+J 81D

2
C S

? +
*" 8

2
8m

SU

d> 6 \b d> 6 ib d> \b <b \1/= cos
^

cos - cos + sm sin
g
sm

|
sin ^ cos ^ - sm sm

^
cos ~ sm sin ^ - sin

,|
cos sin

^
cos d

(rf)^i/'d>d\i'
<t> \i/ d> 6 \J/ \-

cos^
sm

^
sin

|
-f sin

^cos ^
cos

^
sm 6 cos ^ - sm sm ^ cos

|
cos ^ + sm

|cos .,
sm

|
sm

ffam^j

(<h
& \J/ <h \1/ d) \I/ <h tl/ \

cos
g
sm - cos

^ + sm ^ cos - cos sin tf sm
i/>
- sm

^ sin
r>
sin

|
cos - Bin

|
co^ sm

|
sm tf cos ^ \

+ k ( cos 5 cos- sm ^ + sm ^
cos - cos ^ cos tf + sm

^
sm -sin

,J
sm dsm

i//
+ sm - sm -

cos^sm
tfcos ^

J

+ ^ tf 0-^ ^ ^'-'A ^ , 0+^ ^= cos ^ooBg + iBin
^

2

r sm -+JCOB
w
g

^ sm
2
+ l sm v

.2
cos

2
,

which is, of course, essentially unsymmctrical

11. To find the usual equations connecting -ty, 6, <f>
with the angular velocities about

three rectangular axes fixed in the body.

Having the value of q in last section in terms of th*Three angles, it may be useful

to employ it, in conjunction with equation (6) of 8, partly as a verification of that

equation Of course, this is an exceedingly roundabout process, and does not in the

least resemble the .simple one which is immediately suggested by quatei'nions.
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We have 2q = eq
= faOA + o>2OB + w3 00} q,

whence 2q~
}

q
=

q~* faOA + w2UB+ <usOC j q,

or 2q = q (ia>, + ja>2 + kwa).

This breaks up into the four (equivalent to three independent) equations

_ d ( < + -f B\ .

dt V
S

2
s
2J
= ~ Wl Sm

a d f 4>--b 0\ + ^/r
> r <>-- .

fft V
m

2~
8m

2 J

=
&>1 S

~~2
S
2
~ w '

2 8m S
9 + Ws COS

*>
sul

O rf/ 0-i|r 6\
COS sm = Wl s

_.<> >r 0\ 6-^.9 . A--dr . < + -vr

2 -,- sm --- cos - = -
w, cos -

r
- sm - + &>., sm

" "
sin ^ + w^ cos -- -^ cos ~nt\zz/ , & 2 z '22

From the second and third eliminate 0--^, and we get by inspection

9
cos

^ .
=

(<i sin < + o) 2 cos 0) cos
^ ,

=
&>! sm ^> -f eo^ cos ^> ................................. (8).

Similarly, by eliminating 6 between the same two equations,

bin
^ (0 )

= <y3 sm ^ + w, cos
</>

cos - &) sin ^> cos ^ .

And from the first and last of the group of four

These last two equations give

<j>
+ ^cos0 = o>3.............................(9)

<f>
cos + -^

=
( o, cos ^> + ft)j sin <f>)

sm -f &>., cos

From the last two we have

^ sm =
G>! cos $ + &>j sin < .................... (10).

(8), (9), (10) are the forms in which the equations are usually given.

12. The essential want of symmetry, in the system of three angles usually employed,

has led me to try various othci systems. None of them, however, were quite symmetncal,

and I therefore introduce only one of them here

Suppose the position of the body to be determined by the angles ^, 0, <f>, through
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which it has been made to turn about three rectangulai axes which are fixed in it ,

and which may be considered as

~
Iwidt, -l(i).,dt, -rlwidt respectively,

&>,, o>3 ,
ei>3 having values in general different from ta l , &>.,, &>,,, but easily dednciblc from

them

The essential difference between this process and the ordinal y one (just tieated),

consists in using rotations about each of the three axes fixed m the body, instead of

one about one axis, followed by another about a second, and then a final rotation about

the first axis instead of the third.

We have first a rotation ty about i, next 6 about the new position of j, and finally

about the final position of k.

t _*
i

ir

( ) i "is the operator due to the rotation about %

It converts j into
77 =j cos ^ + k sin

i/r,

and k into k cos ^r j sin
i/r.

Next, the operator due to the rotation 8 is

and this converts kcos ty j sin
i|r into ^

% = i sin 6 + (k cos
-\fr j sin $) cos 0.

Thus 7
= {* if =

(cos f + fsm | ) (cos ^ + tj sin 5 ) f
cos J + 1 sin 5

\ ^ ^/ \ ^ ,] \ L t

T. 13
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Substituting the above values of f and 17, multiplying out and arranging, we find

finally

A 9 -b . d> . V>
q = cos

I
cos .- cos -_- - sm

|
sin

^
m

-|

. -

-I- 1
(

cos cos o sm + 8ln Sm C 8
\

J

The expressions for <BI, w2 ,
wa in terms of

<^, Q, -ty
and their differential co-

efficients are not very simple, and can scarcely be of any use.

We see by the equation of 11 that

&>)
= 2S . i<~ 1

q.

If we put q = w + ix + jy + kz

this gives
- Wj = 2 (xw wx + yz zy)

from which the required expression may be obtained

I have not examined the question, but I fancy that to deduce the constituents

of the above value of q by means of spherical trigonometry would not be very

easy.

13. To deduce expressions for the direction-cosines of a set of rectangular axes in

any position in terms of rational functions of three quantities only.

Let a, yS, y be unit-vectors in the directions of these axes Let q be, as in

7, the requisite quaternion operator for turning the co-ordinate axes into the

position of this rectangular system. Then

where, as in 8, we may write

1 = w2 + x> + if + z*.

Then we have
<f~

l = w xi yj zk,

and therefore

a = qiq-i
=

(Wi - x - yk + zj) (w-cn- yj
-

zk)

= (w
3 + a? - f -

*") i + 2 (wz + xy)j + 2 (xz
-
wy) k,

where the coefficients of i, j, k are the direction-cosines of a as required. A similar

process gives by inspection those of ft and 7.
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As given by Cayley, after Rodrigues, they have a slightly different and

somewhat leas simple form to which, however, they are easily reduced by putting

x y z 1
w = - = J =- = -r

A,
(Jk

V K*

The geometrical interpretation of either set is obvious fiom the nature of quaternions.

For (taking Cay ley's notation) if 6 be the angle of rotation, cos/, cos*/, cos/i,

the direction-cosines of the axis, we have
a a

q = w-\-ari + yj + zk = cos -
-f sin

^ (i cosf+j cos g + k cos h),

so that

a

(7 -

x = sin
^ cos/

e
y = sin ^

cos
^r

sin cos /

From these we pass at once to Rodrigues' subsidiary formulae,

\ =s - = tan - cos fw 2

&c = &c.

14 In ttie system of three angles, corresponding to that usually employed in

132
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astronomy viz., 6 the longitude of node, ^> the inclination of orbit, r the angle from

node in plane of orbit to find the quaternion operator.

Here we relapse into the essential asymmetry of the method of 10. First,

a rotation 6 about j, second, a rotation
<f>

about the new position of k; third, a

rotation r about the final position of what was originally j. The connection of this

process with that of 10 is sufficiently obvious.

o

Here j' ( ) j
*

is the operator for #, and converts k into

7 / . . 6\ , ( 6 . . 6\
OC'j = if

=
(cos g

+ j wn 2J
k

(^cos

- -
j sin

gj

= i sin -f A; cos 6.

Next, the operator for
<f>

is

and converts j into

Ol? = f=
jcos |

+ sin f ( sin + k cos 0)1 j jcos |
- bin (t sin + cos 0)1

= i sin 4> cos 6 +j cos 4- k sin < sin 0.

Hence we have

i * ?

</=* i
;

/'

=
Tco8^

-f em^ (
- tsm

<f> cos0+j cos <j> + k sin
<f>

sin
i9)J |cos|

+ sin
^ (< sin ^ + ^ cos

tf)|
f co

2
+j sin

2 J

-
jcos ^

+ sm
g (

- 1 sin cos +.; cos + k sin sin 0)J
( cos

|
cos - + 1 sin

^
sin

2 +j
cos - sm - + A, sm

^
c

As a verification, we have by 11

OA qiq~
l

=
(,o* + x*-y*-z*)i + 2(wz+ry)j + 2(xz-wy)k

= fcos (0 + r) cos
3

1
- COB (0

-
T) sin1 ~1 I + OOBT sm tfy + jsm (6

-
r) sin8 ~ - sm (5 + T) cos

2

|J
A,

= (cos 6 cos T cos </>
- sin 6 sin T) t + cos T sin Qj 4- (

- sin 6 cos r cos
(/>
- COB 9 sin T) k.

The coefficients of t, j, k, in this are the usual expressions for three of the

direction-cosines. The other six may be obtained by the same process.
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To express the angular velocities about OA, OB, OC in terms of the three

angles 6, <f>, T, we have at once

-
w, = 2*9 iq~

l

q

= 2 (xw wx + yz zij)

~ d cos T sin <
<f>

sin r

And the others can be found in a similar manner

15 GO. Kinetics of a Rigid Body with one Point Fixed.

15 Having premised these kmematical theorems, we pass to the consideration

of the motion of a rigid mass. It was of course at once obvious to Hamilton

(Proc. R 1. A 1847), that if be (as in 7) the vector of the portion m of the

mass referred to the fixed point, /? the vector-force acting \t in, Lagrange's general

equation of motion takes in quaternions the form

or, if we put >/r
= S . Vvr@

so that ^ denotes the vector-couple acting on the body,

S.mVW =
>/r ........................... (11).

This is our sole dynamical equation

16 Integrating once with respect to t, we have, putting

'S, . mVvrv = y................. (13),

where, if we please, we may omit the V, as trrsr is necessarily a vector

Now, by the kmematical relation in 1, if e be the vector instantaneous axis,

we may write (13) as

2.MwrFew = 7 ....................... (14).

17 From these equations Hamilton has deduced, in an extremely simple way,

many known results of great interest. For instance, if i/r vanish, i.e , if there be no

applied forces, 7 is a constant vector, and (operating on (14) or (13) by $ . e)

Sey=2.m(VeT*)'
i =?.nn** = -h*......................(15),

a constant, by the principle of conservation of energy.

Of these equations 2/w ( Few)
2 = h*

denotes obviously an ellipsoid fixed in the body, and such that e is a radius-vector
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of it. The tangent plane to it at the extremity of e is easily seen to be the fixed

plane

Sey = - h\

Hence we have at once Poinsot's beautiful construction of the motion, by the rolling

of the central ellipsoid on the invariable plane. But this, although extremely elegant,

is not well adapted to assist us in the determination of the position of the body
in space after a given time

18. In most of the investigations which follow, we shall use the form (14) as

given by Hamilton; and we shall omit for the present the consideration of whether

y is a constant vector or not.

19. Let a be the initial position of -or, q the quaternion by which the body
can be at one step transferred from its initial position to its position at time t Then

and Hamilton's equation (14) becomes

S . mqaq~
l V . eqaq~

l =
y,

or S . mq [a.8 . a.q~
l

eq q-
l

eqa?} q~
l =

y.

Let
<t>p

= 2 . m (aSap
- as

p) ......................... (16),

where
<f>

is a self-conjugate linear and vector function, whose constituent vectors are

fixed in the body in its initial position. Then the previous equation may be written

For simplicity let us write

r'w-fJ

Then Hamilton's dynamical equation becomes simply

<t>rj
= (18)

20. It is easy to see what the new vectors if and represent. For we may write

(17) in the form

(17)',

from which it is obvious that
17 is that vector in the initial position of the body

which, at time t, becomes the instantaneous axis in the moving body. When no forces

act, 7 is constant, and is the initial position of the vector which, at time t, is

perpendicular to the invariable plane.
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21. The complete solution of the problem is contained m equations (7), (17),

(18).* Writing them again we have, attending to (17), while introducing 17 instead

of e into (7),

OT = 2j ........................ (7),

fa = Z ........................... (18).

We have only to eliminate f and 77, and we get

in which q is now the only unknown
, <y,

if variable, being supposed known in terms

of q and t. It is hardly conceivable that any simpler, or more easily mterpretablo,

equation for q can be presented until symbols are devised far more comprehensive
in their meaning than any we yet have.

22. Before entering into considerations as to the integiation of this equation, we

may investigate some other consequences of the group of equations in 21. Thus, for

instance, differentiating (17), we have

yq + jq

arid, eliminating q by means of (7)

whence

which gives, in the case when no forces act, the forms

i-Fty-1

? .......................... (20),

and (as f = 0i)), fa = - V . info................ (21).

To each of these the term q~
l

yq, or q~*tyq, must be added on the right, if forces act

23. It is now desirable to examine the formation of the function <. By its

definition (1C) we have

<}>p
= UL . m (aSap a*p)

= 2 . inctVctp.

Hence

* To these it is unnecessary to add

Tq=. constant,

as this constancy of Tq is proved by the fonit of (7). For, had Tq been variable, there must have been

a quaternion in place of the vector 17.
In fact,

W= 2,5 . qKq = (Tqy S = 0.
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so that Sp$p is the moment of inertia of the body about the vector p, multiplied

by the square of the tensor of p. Thus the equation

evidently belongs to an ellipsoid, of which the radn-vectores are inversely as the square
roots of the moments of inertia about them*, so that, if i, j, k be taken as unit

vectors in the directions of its axes respectively, we have

Sijri
= -A,

(22),

A, B, C, being the principal moments of meitia. Consequently

(23).

Thus the equation (21) for ij breaks up, if we put

into the three following scalar equations

^d>i+(G
Y - B) w,G>J

= 0,

Ba>i -f (A - C) &>.)&>!
= 0,

Cua + (B -A) &)i&)^
= 0,

which are the same as those of Euler. Only, it is to be understood that the equations

just written are not primarily to be considered as equations of rotation. They rathei

express, with reference to fixed axes in the initial position of the body, the motion

of the extremity, u>
l , &>.,, o)3 of the vector corresponding to the instantaneous axis in

the moving body. It, howevei, we consider w
l , u>,

t o>, as standing foi then values in

terms of w, x, y, z ( 27 below), or any other coordinates employed to refer the bod)
to fixed axes, they are the equations of motion

Similar remarks apply to the equation which determines f, for if we put

(20) may be reduced to three scalar equations of the foim

24. Euler's equations in their usual form are easily deduced from what precedes.

For, let

whatever be p ;
that is, let

<p represent with reference to the moving principal axes

* For further information about this equation, see Hamilton, Proc. R. /. A., 1847, and Elements of

Quaternion*, p. 755. Also Tait, Quaternion*, 367 (3rd ed. 387).
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what
<f> represents with reference to the principal axes in the initial position of the

body, and we have

- V . qvj<f> (77) q-
1

which is the required expression.

But perhaps the simplest mode of obtaining this equation is to start with Hamilton's

unmtegrated equation (11), which foi the case of no forces is simply

S . m VVTW = 0.

But from m = Few

we deduce -a Few + Few

= we2 - eflew + Few,

so that 2 . m ( VemSeiff
- ew8 + w^ew) = 0.

If we look at equation (16), and remember that p differs from < simply in having
TO- substituted for at, we bee that this may be written

Fie<pe + $ = 0,

the equation befoie obtained. The Hrst mode of arriving at it has been given because

it leads to an interesting set of transformations . for which reason we append, other two

By (17) 7-tfr 1

.

therefore = qq~
l

. q

But, by the beginning of this section, and by (14), this is again the equation lately

proved.

Perhaps, however, the following is neater*.

By (14) ? = 7

Hence <pe
=

<pe
= 2 . in (r Few + -or Few)

= 2 . m'ST^evT

= - V. e . mvrSevr

= - Fepe.

*
[Inserted Dec. 19, 1868.] I have lately found that Hamilton, in Ins Elements of Quaternions (1866), has

obtained this equation in a manner almost identical with that last given.

T 14
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25. However they are obtained, such equations as those of 23 were shown long

ago by Euler to be integrable as follows.

Putting 2 lo>i&>.ja>3cfa
=

s,

we have Aa? AH,
3 + (B - C) s

with other two equations of the same form. Hence

*o that i is known in terms of s by an elliptic integral. Thus, finally, 77 or may
be expressed in terms of

,
and in some of the succeeding investigations for q we

shall suppose this to have been done. It is with this integration, or an equivalent

one, that most writeis on the farther development of the subject have commenced

their investigations.

26. By 16, 7 is evidently the vector moment of momentum of the rigid body,
and the kinetic energy is, as m 17,

But Sey = ft . q~
l

eqq~
l

yq = Stf,

so that when no forces act

Sft-
1 = Siifa = - h*.

But, by (17), we have also

T=Ty, or T<t>i)
= Ty,

bo that we have, for the equations of the cones described in the initial position of

the body by 77 and , that is, for the cones desciibed in the moving body by the

instantaneous axis and by the perpendicular to the invariable plane,

This is on the supposition that 7 and h are constants. If forces act, these quantities
are functions of t, and the equations of the cones then described in the body must

be found by eliminating t between the respective equations. The final results to

which such a process will lead must, of course, depend entirely upon the way in

which t is involved m these equations, and therefore no general statement on the

subject can be made.

27. Recurring to our equations for the determination of q, and taking first the
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of no forces, we see that, if we assume y to have been found (as in 25) by
18 of elliptic integrals, we have to solve the equation

it is, we have to integrate a system of four other differential equations harder

in the first

case

means

Putting, as in 23, ij ^ ,

where o>j, eo,,, <w3 are supposed to be known functions of t, and

. . 1 , dw dx dii dz
this system is

'^ W~ X~~Y
~

Z*

where W = &>j# coy to^z,

X = WflV + &>,?/ (D^Z,

Y = Q).2W + (OiZ 0)3.7',

Z = a)jv 4- o>yV &>!?/,

or, a.s suggested by Cayley to bring out the skew s^mmetiy,

X =
. (i)B

Z = to.;?: a),j/ . + (ojiv,

W = (Dvr 0)$ &>3^

* To get an idea of the nature of this equation, let us integrate it on the supposition that 77 is

constant vector By differentiation and substitution, we got

Hence ,= % cos
*

t + Vs n t

Substituting in the given equation we have

Tr,
(
-
^Bin^t +

^oos^t)
=

(Q,
cos ^ t +

Hence Tn Q^Q^,
-T1,.Q l

= Q2
il ,

which are virtually the same equation and thus

And the interpretation of q ( )q~
l will obviously then be a rotation about y through the angle tTtj, together

with any other arbitiary rotation whatever Thus any position whatever may be taken as the initial one

of the body and Ql ( ) Qj~
l

brings it to its required position at time <=0.

142



108 ON THE ROTATION OF A RIGID BODY ABOUT A FIXED POINT. [XV.

Here, of course, one integral is

wa + & + y* + a3 = constant.

It may suffice thus to have alluded to a possible mode of solution, which, except

for very simple values of i), involves very great difficulties. The quaternion solution,

when rj is of constant length and revolves uniformly in a right cone, will be given

later.

28. If, on the other hand, we eliminate 17, we have to integrate

so that one integration theoretically suffices. But, in consequence of the present

imperfect development of the quaternion calculus, the only known method of effecting

this is to reduce the quaternion equation to a set of four ordinary differential

equations of the first order. It may be interesting to form these equations.

Put 7
= w + ix +jy + kz,

and 7 = ia +jb + kc,

then, by ordinary quaternion multiplication, we easily reduce the given equation to

the following set :

dt dw _ dx
__ dy _ dz _ . .

2
=
TF

=T~T- ................................... (**>'

where W = - #& -
yiS

- z<& or .Y = . y<&
-

and & = -f[a(w*-a?-yA

33 = ^ [6 (w
3 - a? - y>

-
z*) + 2y (ax + by + cz) + 2w (ex

-
CUB)]

W, X, F, Z are thus homogeneous functions of w, x, y, z of the third degree.

Perhaps the simplest way of obtaining these equations is to translate the group
of 21 into w, x, y, z at once instead of using the equation from which f and

rj are eliminated.

We thus see that ij
= i<& + J23 + k<&.
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One obvious integral of these equations ought to be

w2 + a? + if + z* = constant,

which has been assumed all along. In fact, we see at once that

identically, which leads to the above integral.

These equations appear to be worthy of attention, partly because of the homo-

geneity of the denominators W, X, Y, Z, but particularly as they afford (what does

not appear to have been sought) the means of solving this celebrated problem at

one step, that is, without the previous integration of Euler's equations ( 23).

A set of equations identical with these, but not in a homogeneous form (being

expressed, in fact, in terms of K, \, p, v of 13, instead of w, x, y, z), is given by

Cayley (Camb. and Dub. Math. Journal, Vol. I. 1846), and completely integrated (in

the sense of being reduced to quadratures) by assuming Euler's equations to have

been previously integrated. (Compare 27.)

Caylcy's method may be even more easily applied to the above equations than

to his own
;

and I therefore leave this part of the development to the reader, who
will at once see (as in 27) that &, 33, < correspond to ,, &>3 ,

a>3 of the ij

type 23

29. It may be well to notice, in connection with the formula? for direction

cosines in 13 above, that we may write

& = -7 [ (w
2 + a? -y*- z*} + 26 (xy + wz) -f 2c (xz

-
wy)],

A.

53 = ^ [2a (xy -wz) + b (w*
- ^ + if

-
z*) + 2c (yz + was)],

<2T = G [2a (xz + wy) + 26 (yz -wx) + c (w
2 - X* - if + z-)].

These expressions may be considerably simplified by the usual assumption, that

one of the fixed unit-vectors (t suppose) is perpendicular to the invariable plane,

which amounts to assigning definitely the initial position of one line in the body ;
and

which gives the relations

6 = 0, c = 0.

30. When forces act, 7 is variable, and the quantities a, b, c will in general
involve all the variables w, x, y, z, t, so that the equations of last section become

much more complicated. The type, however, remains the same if 7 involves t only ;

if it involve q we must differentiate the equation, put in the form



110 ON THE ROTATION OF A RIGID BODY ABOUT A FIXED POINT. [XV.

and we thus easily obtain the differential equation of the second order

+ = 4 v.
q<t> (?-' g)r> + 2?* ( v. ?-> ) g'

1

;

if we recollect that, because q~
l

q is a vector, we have

Though remaikably simple, this formula, in the present state of the development
of quaternions, must be looked on as intractable, except in certain very particular

cases.

31. Instead of solving the differential equation (7) of the group m 21, having

previously eliminated 77 from it by means of the other two, we may solve the second

equation of the group,

yq = qt ....................................... (17),

for q, and treat 77 as known in terms of f. f, of course, is to be regarded as found

by the processes of 23, 25. As this mode of attack leads to a determination of

q by a set of three new differential equations, instead of the four of 27, it may
be useful to consider it briefly, but only for the case of 7 = constant. Its interest

seems to be derived entirely from the quaternion investigation to which it leads.

32. In consequence of (17), just cited, we may write

?=78 + 8 .................................... (25),

which will be found to satisfy that equation, whatever value is assigned to 8.

But 8 is really not unrestricted in value
; for, if we exhibit it as the sum of

two vectors, thus

8 = 8:+ B2 ,

of which satisfies the equation 78.^ + 8^=0,

or, which is the same thing, the pair

we see that 8a || 7

satisfies both. [This depends on the fact that T% = Ty.] Hence 8 must be deprived

of its resolved part parallel to 7- : or we must have

SS(7-) = ......................................... (26).

33. By differentiation of (25) we have

Substituting in (7) we have
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But, 22, t-Ffr,

whence
(ft
- 2 =

i/f,

and the above equation becomes

2(78 + 80 = 7^ +^..................................(27),

of which a particular solution is evidently

28 = 8*7.

But this must be completed by the addition (to the second member) of a solution

of the equation

7r + r=0,
since any such term in the value of 8 would disappear from the differential

equation

Such a solution is easily found, by putting for in (17), and attending to

32, in the form

r=7A-A .................................... (28),

with (as in 32) the condition S(7+)A = .......................................(29).

Hence, finally, 28 = 8?/ + 7A- A ................................ (80),

which, by taking the scalar, gives

S(7-C)A--flf&7 .............................. (31).

34 By differentiation of (26) we have

8(v-S)$ = sst=s.sfo

Substituting the value of 8 from (30) we have

8 . (7
- O 877 + 2S . 7$A = 2S . Sfr,

or 2S.7$A = -/S (7+0817 ............. (32)

From
(20), (31), and (32), we find A by the usual quaternion process in the form

(33),

where, in transforming the last term, we must recollect the equation T=Ty.

From this we deduce at once

or, finally, remembering that
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35. Substituting this in (30), we get, after a slight transformation, consisting in

omitting the scalar parts of the right-hand side, whose sum is zero,

-
7')

= <#tf - 7
8
) V*n + i (7 - S . (7 + &f -

This may easily be put in the simpler form

.(7 -)-'^ ........................... (34).

Reduced to scalars, this gives three linear differential equations of the first order,

the coefficients being functions of t These can, of course, be reduced to depend

upon one linear differential equation of the third order with coefficients functions

oft.

36 As a verification of the preceding work, we may try whether the result is

consistent, as it ought to be, with the condition (assumed throughout)

Constant = (Tq? = 2y*S* + 28 . 7SS.

This expression gives, by differentiation,

= - 8vSf7J + 2 (7"
-

Substituting for 8 its value from (34), we have

. WSb, + SySS . 7S7,
-

fy&Sf .
(

. 1778 + yS. &

which is true, because by (20) =
Vfyj.

37. Another mode of attacking the problem, at first sight entirely diffeient fiom

that in 19, but in reality identical with it, is to seek the linear and vector function

which expresses the Homogeneous Strain which the body must undergo to pass fiom

its initial position to its position at time t.

Let TS = xa.

a being (as in 19) the initial position of a vector of the body, m its position at time t.

In this case ^ w a linear and vector function. (Quaternions, 355 [3rd ed. 376].)

Then, obviously, we have, , being the vector of some other point, which had

initially the value ,,

X-arw-j = S . X<*Xai
~ *

V
"'aai

(a particular case of which is Tut T^p. = Toi)

and Vifftff
1
= V . xaXai

= X âot
i
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These are necessary properties of the strain-function %, depending on the fact that in

the present application the system is rigid

38. The kmematical equation r = Fer

becomes %a = Ve^a,

(the function % being formed from ^ by the differentiation of its constituents with

respect to t).

Hamilton's kinetic equation SWOT Few = 7,

becomes 2 . m^aFe^a =
7-

This may be written S . m (xa^ Xa ~ ea^ = 7>

or 2 . m (aSax'e %~
l
e . oj

)
= %~

l

7,

where ^' is the conjugate of ^

But, becaiiso XaXy
i

~ ^a3t)

we have Saa
}
= $ax'xi ,

whatever be a and a,, so that X =
X~*

Hence 2 . in (atfa^"
1
e %

-1
e . a2

)
= x~

l

7.

or, by 19, 0X~le = X~
1

7

39. Thus we have, as the analogues of (17), (17'), the equations

and the former result %a.
= Fe^a

becomes
x<x.

= F^p^a

This is oui equation to determine %, 77 being supposed known To find 77 we

may remark that

<^ = r

and t^X"^

But XX~
l = a >

so that XX"
1 a + XX~

l a =

Hence J = -
x'

1

XX~
l

7

15
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These are the equations we obtained before. Having found TJ from the last we

have to find % from the condition

X~
l

X* = *V-

40. We might, however, have eliminated T? so as to obtain an equation containing

X alone, and corresponding to that of 21. For this purpose we have

so that, finally, x~* Xa ~ V<i>~
1

X~
l

7 a >

or X~
1 = FX~Ja</>

~
1 X^%

which may easily be formed from the preceding equation by putting X~ICL f r a
- an( ^

attending to the value of x~
l

given in last section.

41. We have given this process though really a disguised form of that in 19,

21, and though the final equations to which it leads are not quite so easily attacked in

the way of integration as those there arrived at, mainly to show how free a uue we

can make of symbolic functional operators in quaternions without lisk of error. It

would be very interesting, however, to have the problem worked out afresh from this

point of view by the help of the old analytical methods as several new foirns of

long-known equations, and some useful transformations, would certainly be obtained.

42. As a verification, let us now try to pass from the final equation, in ^ alone,

of 40 to that of 21 in q alone.

We have, obviously, r =
qot.q~

l = ^a

which gives the relation between q and %

[It shows, for instance, that, as (/3 being any vector whatever)

while 8/3x* = tiftqaq-
1 - Saq'

1

/3q,

we have X^ T1^
and therefore that xx'0 ~ (1 (<T

l

&<i) 4~
l

@>

or
^'
=

^-1, as above.]

Differentiating, we have ?a2~
1 ~

q&q~
l

qq~
l = Xa -

Hence ^~
l

^a = q~* qa aq~
l

q

= 27. F(7-'g) a
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Also <Jr
l

x~
l

7 = 0'
1

(?~
l

79),

so that the equation of 40 becomes

2V. V(q-
1

q)a = V. 0-
1

(g- 79) a,

or, as a may have any value whatever,

2Vq~
l

q = <JT
l

(q~
l

yq),

which, if we put Tq = constant

tis was originally assumed, may be written

2q=-q<f>-
l

(q-
l

yq)

as in 21

43 Let p be the vector joining the extremity of e to the intersection of 7 with

the invariable plane Then

Operating by >S' . 7, and remembering the condition

ASVy = -K
\ve have r*f-= h-

so that p + 7

In the initial position of the body this vector, considered as being drawn from the

fixed point, was

- ~

In the initial position of the body, therefore, this vector passes through the inter-

section of the ellipsoid

< \

-

0"
1 +

J
<r = T%= Ty.

It therefore lies on the cone

~ l "'

+
^)

"
^ (^ +

j^)"

1

a = 0,

152
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or So- U- 1 +
-^~

l

<r = 0.

[We might have saved the last seven lines by noticing that

Syp =

in the present position of the body, involves

Sfr =

in the initial state, which, with the value of in terms of a- above, gives the result

at once.]

44. This cone is seen at once to be normal to the -cone in the initial body,

viz, by 26,

The vector a constantly changes so as to be perpendicular to Hence in the moving

body, the vector p, which is always in the plane through the fixed point and per-

pendicular to 7, belongs to a cone of which 7 is a normal, and which therefore rolls

011 that plane. But the cone also slides, because the vector p which is in contact

with the plane is not the instantaneous axis of the body. This construction for the

illustration of the motion is also due to Poinsot, and the complete analytical solution

of the problem has been given, from this point of view, by Rueb and Jacobif. It

is easy to &ee that the angular velocity of the sliding motion is> the constant resolved

angular velocity of the body about the fixed lino 7, which has the value

45. When two of the moments of inertia of the rigid body are equal, i.e. when

the symbolical cubic in
<j>

or
<p

has two equal roots, all the previous dynamical work

* In fact any equation such as Sp\f/p=0,

where ^ is a constant self-conjugate linear and vector function, gives

v
\f/p

where v represents the normal-vector For its locus, we have

p=r l
,

and by substitution for p and \f/p
in the given equation, we have

Svf-
1 v=0.

r See Cayley, B. A. Report, 1862.
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becomes immensely simplified. In fact, if wo now take a, 0, y as unit-vectors coinciding
with the principal axes of the moving body, we have by (23)

<pp
= - AaSap - Bj3S@p

-
BySyp.

But p
= - aSap - @S/3p

-
ySyp,

so that
<pp
= Bp-(A-B)aSap .....................................(35),

and thus depends upon the position of the one vector a. We may attempt to determine

the motion without at first introducing the consideration of the quaternion which has

been our principal object of study in this paper

40. The general equation of 24

$ Ve<pe

becomes, by substituting for p from (35),

&-(A-B)a8ai = -(A-Ji)VotSae ........... (36).

Operating by S a, we have Sa = ... ... ................. (37).

Omitting, therefore, this term from (36) and operating by 8 . e, we have

See = 0,

whose integral is e
2 = constant = II2

, suppose ........... (38).

But we have always by 1

a = Fea,

because a is fixed in the body

From this we see that $ed =

This, taken in conjunction with (37), gives

Sue + Sea = 0,

whose integral is Sae = constant, = H cos ft, suppose .... . . (39).

Equation (36) may now be written

Be = - (A -B) Ha cos 0,

or Be = (A B) Ha cos ft + constant vector.

But we have always, by (14), (see 24)

or, by (35), (36), (39), Be + (A - 5)ncos /
S = 7....... . (40)

So that the constant vector is 7.

Thus we see that a and e are always coplanar with 7, and that each remains

constantly at the same inclination to it.
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47 Operating on (40) by S . e, S .a, S .y, respectively, we have

- B& -(A-B) Hz cos2
ft
= -

h-,

- Bfl cos ft
- (A - B) H cos /3

= Say,

- Bh* + (A-B) Say to cos # = 7
2

,

and these gne, in order,

(^L cos2 /9 -f B sin2
ft) H2 = A2

,

-
(^l

2 cos2
ft +& sin2

) ft
3 = 7

s
.

The first and third determine /3 and fl in terms of the given constants h

and ^7, and the second gives the value of the constant inclination of a to the

fixed line 7

Introducing a2
, which is unity, as a multiplier of 7* m the third equation,

and adding to its members the squares of the corresponding members of the second,

we have

48. We get equations immediately derivable from these b) seeking at oiice

the equations of the fixed and rolling cones, by which the motion may be ex-

hibited Thus the locus of e in the body, i.e., the rolling cone, has by (14) and (38)

the equation

TyTe,

which may be tiansformed as follows

- B) tfbe -(A-

(#T1
2 + 7

2

) e
2 - (A* - &) n a Sfae = 0,

and finally e2 cos2 + S*ae =

This might have been written down at once by inspection of (38) and (39)

The locus of e m space, i.e, the fixed cone, has the equation

49. In the preceding solution we began with the very simple equation for e,

which immediately presented itself. Let us now apply to the same problem the

general equation of 21, viz.,
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Here, of course, we have

^~
l

P = ~ A iSip
~
B JSJp ~ B kSkpl

Hence
2ry
=
q |^

-
A )

iS . tg-' 7? + 5 2'
1

*)

which, because a = qiq~
l

y

, ..
,

/I IN _ 1
becomes e = 2^o

-1 = I y: -j- a/Sfoy 4- r> 7
\/> ^l/ XJ

which is (40) of | 46, as we see by substituting for Say from 47

50. Employing this value of e in the kinetic equation

d = Fea,

we have a = j Vya.

Hence

--*.
of which the integral is obviously

a = 7~
J

^07 + K cos
-j~

t + \ sin
,J ^,

wheie /c And \ are vectoi constants of integration.

The two last terms must be, together, equal to

y~
l

Vya,

and, as they vanish alternately, the tensors of K and X must be equal. Also

unless

tf*\=0

the tensor of this part of a will vary. Hence

a = - UySa Uy+TVaUy.(U,cco*
T
?t+U\ sin

T
^ t\ .

Let us, for simplicity, take the usual z, j, k of quaternions as coinciding with

Uy, UK, U\ and let
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Then TVaUy = sm /3.

Also let

Thus we have a = i cos # + (j cos nt + k &m nt) sin /3

whence

f \ i \

2qq~
l

( 5 , I .B cos $ [i cos @ + (j cos w + k sin ??) sm @] + ?n
V-O ^l./

= 2<n' 4- 26 (^ cos nt 4- fc sin nt),

whole 26 = .# (73 j)cos/3sin/3
\JJ AJ

/I 1\ / B \
"2a = nB ( ,. -j J

cot,2 /3 + ?i = -n ( sin2 P + T cos2 P
}

51. For the complete solution of the problem, it remains that ue integrate the

equation above, which wo may write as

q [ai -f b (j cos nt + k sin nt)~\ q

= (ai + bvr)q (41),

if we put CT =
j
cos nt -f k sin nt

This giveh at once the following results, which are necessary in the elimination of

-ST by differentiation,

wcr = ni, i-sr = nur,

Also, because Si-sr 0,

we have (ai + tar)
2 = -

(a
2 + 63

).

Differentiating (41), and simplifying at every step by the above auxiliary equations,

we have

q
=

(ai + bvi) q

q = - ( tt + b*)q + birq

q = -
(a" + b-)q brf-srq + bn (avr bt) q

q = -(a"- + b*) q
-

(6n
s -

bna) nrq + (bn* bna) t-vr + b\q- b*n f
- a+

nrjq

= - (a
2 + &2

) q
- (bn- - 2bna + 6a2 + b*) vrq + bWq

Eliminating -aq from the la*t equation by means of the second, we have for the

determination of q the linear equation of the fourth order with constant coefficients

q 4- [2 (a
2 + b-} + n- - 2na] q + [(a

2 + 67 + (a
8 + &2

) (n
3 -

2na)
- &V] 7 = (42).
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Assume, as a particular integral, q = Qe
mt

,

where Q is an arbitrary, but constant, quaternion, and 6 is the base of Napier's

Logarithms Then we find for ra the equation

m* + [2 (a
3 + 62

) + n3 - 2na] m* + (a* + 62 -
na)* = 0,

or m3 + a4 + 62 na = J m2
?i

2
.

Hence m is imaginary, so we may write

m^pj-l,

and our equation gives /u,

2
/u,/i

= a2 + 62
//a,

whence /*
=

| ^J (a -
^J

+ 62
.

By 50 this may be written

*-g{l(l-f)c^} ........................... (43).

These values may be called +/*!, fa, and we have

fr + fa = n

52. The complete solution of the equation (42) is therefore

siri
/u,i< + Q3 cos fiJt + Q4 sin /

This, however, is far too general for the solution ot the original problem, for it

involves sixteen arbitrary constants instead of four But it is a mere piece of ordinary

analysis to find twelve of these in terms of the other foui.

Thus, let us wnte Ql
= H, + I,i + J, j + KJc,

If these values be substituted in the above expiession for q, and the resulting value

of q be used in the equation

q = [ai + b (j cos nt -f k sin nt)] q,

we find, on replacing products of sines and cosines of multiples of t by sums of sines

or cosines, two sets of terms. One of these is of the type

cos (n /AI) t,

which, being equal to cos/isf,

T. 16
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may be allowed to remain in the equation. The other set is of the type

cos (n + ,*,)<>

and the terms introducing it must vanish identically.

This consideration gives us the following relations among the sixteen constants

above

so that the values of eight are assigned in terms of the remainder.

Next, by equating coefficients of each such distinct term as

&mnat, &c.,

we obtain sixteen additional equations, of which, however, eight are mere repetitions

of the other eight. Rejecting them, we find the remainder to be

6#3
= (a

-
/*,) K, bK}

= - (a
- &)H3

6/3
= (a-/*i)A 6J, =-(a-/4a)7,

bJ3 =-(a-M.)/, &/, = (a-fr)Js

WT,- - (a
- K) H, bH> = (a

- ^) K3 .

These are, again, identical in pairs; for each pair containing the bame two

constants agree with the others in giving

or aJ +

But, by (43), we have ^ + ^ = n

and the condition is satisfied identically.

The final value of the quaternion in the case of the uniform rolling of one

right cone on another is therefore

q = (Hi + 7ji + /jj + KJc) cos pj

-
(I,

- H,i + K,j
-

/,&) sin pj
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+ ^ (K, + J,i -I,j- H,k) cos pj

_ tt -*
(Jr

_ K,i -ffj + /,*) sin /M
*

Putting q
= w + ix+jy + fez,

the ordinary differential equations, corresponding to that just solved, are

w = -axby cos nt bz sin nt,

x = aw + bz cos nt by sin nt,

y bw cos w -f- bx sin w as,

z = bw sin nt + ay- bx cos fc

By substitution in these the above result may be verified.

53. Consider, as an example of applied forces, a homogeneous solid of revolution

moving about a faced point in its axis, which is not its centre of gravity To deter-

mine the motion.

If a, a unit-vector, represent at time t the position of the axis of the solid, we

may choose the tensor of y, a vertical vector, so that the couple due to gravity is

Fay Hence the equation of motion is, 24, 22,

<pe -I- Fepe = Fay.

But fp = p-(A- B) aSotp,

so that Bc-(A-B)*Sae-(A-B)Ve*Sae=*Vay..................... (44).

This, with the kinematical relation

a=Fe .......................................... (1),

contains the complete solution of the problem

* The tensor of q lias been assumed constant. Accordingly we find by this formula

fj^cos/ujt-/, sinMi' +
tt

^
Ml

(A'j co8/*a- J, Bm/<a t)
j

+ f/, cos ^ f + ffj sin /*! + *-

^- (J\ cos i^t + K^ sin f^t)
|

+ fjj cos
/KJ

t - A'! sin
/tij

t -
rt

y-
1
(/! cos fj^t-H^ sin /x2 1)

|

+ FA'! cos ^t + J^sini^t-
a
-
~
- 1

(H, COB^ t + 7j sm /x,2 1)
|

= (H! + 1," + Jj
8 + A',

2
)

1 - j=A .

162
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54. Operating on (44) by S . a, we have

Sae = 0.

But, by (1), we have * Sze = Q.

Hence tfae = constant = fi ......................................(45)

(that is, the angular velocity about the axis of revolution of the solid is constant)

and (44) is reduced to the form

Bt-(A-B)Cl&**Vciy ....................................(46).

But, by (45) and (1), ea = ft + a,

or e = -na + aa ..................................... (47).

Since oa is a vector, we have (as in 30)

Saa = -da........................................... (48),

so that the substitution in (46) of the value of e from (47) gives

BVw-Ana=Vay ....................................(49),

an extremely simple equation to determine a. It is curious to remark that this is

the equation of motion of a simple pendulum, disturbed by a force constantly per-

pendicular to the cone described by the btring, and proportional to the rate at which

the area of the surface of the cone is swept out by the suspending cord. When
A=0 it becomes that of the undisturbed motion*, and gives a number of curious

theorems relating to the curvature of the general path of a simple pendulum. These

we need not at present consider; though we may mention that the corresponding

equation for the motion of Foucault's pendulum may be written in the form

where $ is a vector known in terms of t

55. If we suppose a determined in terms of t from equation (49), (46) gives e

in the form

Be = (A - B) fla - V. 7 / adt.

This equation may be obtained, even more simply, from (47).

*
If r be the mans of the pendulum bob, a the vector representing the string, C its tension, and /

the acceleration due to gravity

ina=my-CC7o,

01, eliminating ff, Vaa.= Vay'.

It is well to observe that this is the equation of motion of a pendulum bob, acted on by no forces, if

-/ be the acceleration of the point of suspension.
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56. But, without finding either a or e, we may deduce various facts connected

with the motion. Thus operating on (46) by S . e, we get

BSei = S.eay = Sya,

which gives
-Be3 = 2y + C ...................................... (50).

Also, by operating on the same equation by S.y and integrating, \\c have

BSye-(A-B)fl8ya = Cl ............................... (51),

which may be written in the form

&VV = Swe = Cl ............................... (51').

By (50) and (51) B* = 2 fj^Q + C,

so that e is a vector of a fixed sphere, of which however the centre is not at the

fived point.

57. From (40) we have at once, by operating by 8 . 7 and integrating,

BM . 7<xa
= AnSya + C'.......................(52)

Also, operating by S Vyu,

B$ . yctVaa = AUS . you
-

(Vay)*................. (53),

or B (- Sya - SytRaa.) = A CIS . 7a + a'V - >S
Y2

a7

A n-W AW=
-g- hyx + -g-

- r - >S'
2
a7,

by (52)

This may bo written

ASIC'
-1,1' o cr / n, ^V* + C\~] ^ sn

B I

- %x - ^7
^-
na ---^-J

=
B Sya -f

which leads, by integration, to the ordinary expression for #ya in terms of an elliptic

function. It is to be observed, however, that this quantity is not one which the

quaternion calculus directly points out ab an object of rebeaich . the propriety of seeking
a in the first place being clearly indicated.

58 From the above equations all the ordinary results connected with thib problem

may be at once deduced by any one who has a little skill in quaternion analysis*

but the determination of the quaternion which gives the position of the body at any
time does not appear, so far as I have yet examined the question, to lead to any very

simple expressions.

If we could, generally, integrate equation (49), e would be at once given by (47)



126 ON THE ROTATION OP A RIGID BODY ABOUT A FIXED POINT. [XV.

and the determination of the motion would be reduced to comparative simplicity. The

equation for the direct determination of e may be formed as follows, but it is not so

simple as that for a.

From the equation

B - (A - B) flFea = Fa?,

we have, by operating by V. e, the result

BFee - (A
-

jB)O (ae
a -

efi)
=

fly
-

aSye,

... . BV e
which gives a -_ -

The condition d = Feet

gives, by substituting this value of a,

59. Processes very similar to these may be applied to the motions of the Gyroscope
and to Precession and Nutation. I confine myself at present to the formation of the

equation for the latter question, reserving for another communication the details of the

solutions of these three problems ;
as they involve some curious and delicate points of

quaternion analysis

60. To form the equation for Precession and Nutation. Let a be the vector, from

the centre of inertia of the earth, to a particle in of its mass, and let p be the

vector of the disturbing body, whose mass is M. The vector-couple produced is evidently

Tot
no farther terms being necessary, since ,-- is always small in the actual cases presented

in nature. But, because a is rneasured from the centre of inertia,
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Also, as in 19, <t>p
= 2 . m(aSap - a?p).

Thus the vector-couple required is

3M
T^V-P+P-

Referred to co-ordinates moving with the body, $ becomes
<p

as m 24, and 24 gives

Introducing the value of p from 53 i.e., assuming that the earth hass two principal

axes of equal moment of inertia, we have

Be -(A- B) a e = 3M (A -
B) j

V
"^"

P
dt.

This gives, as in 54, $ae = const. = fl,

whence e = Ha + aa,

so that, finally, BVa* - Atla = (A - B) Sap Vap.

The most Htriking peculiarity of this equation is that the form of the solution

is entirely changed, not modified as in ordinary cases of disturbed motion, according
to the nature of the value of p

Thus, when the right-hand side vanishes, we have the equation (49) with the

restriction that the body moves about its centre of inertia (easily seen to be identical

with that at the beginning of 50) ; which, m the case of the earth, would represent

the rolling of a cone fixed in the earth on one fixed in space, the angles of both

being exceedingly small.

If p be finite, but constant, we have a case nearly the same as that of the top
in 53, 54, the axis on the whole revolving conically about p.

But if we assume the expression

P~ r (j cos mt + k cos mt)

(which represents a circular orbit described with uniform velocity) a revolves on the

whole conically about the vector i, perpendicular to the plane in which p lies.

I hope, on a future occasion, to give detailed solutions of these problems, to a

sufficient degree of approximation.
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XVI.

NOTE ON ELECTROLYTIC POLARIZATION.

[Proceedings of the Royal Society of Edinburgh, May 31, 1869.]

THE following note refers to some experiments instituted at the request of

Mr Dewar, who asked me to determine the polarization of the Palladium electrodes

whose singular behaviour he recently described to the Society.

I had just obtained one of Sir W. Thomson's most recent forms of quadrant

electrometer, and it occurred to me that this must be the proper instrument for

determining polarization, as its indications are not affected by electric resistance, and

give directly that is, without assuming the truth of Ohm's law for reverse elec-

tromotive forces, and the consequent necessary determinations of resistance the

quantities required. The method employed by Wheatstone, Poggendorff, Buff, and

others, assumes that the whole electromotive force in the circuit is the algebraic

sum of those of the decomposing battery and of the electrodes, an assumption
whose truth sonic may consider to require proof, and which it is certainly useful to

verify by an independent process Again, after the decomposing action has ceased,

the resistance of the films (of gas or oxide) which arc deposited on the electrodes

may change in value. That neither of these circumstances produces any marked

effect is, however, amply proved by the numbers which follow, which, though given

only as first approximations, are within the limits of difference of the results given

(from galvanometric determinations) by former experimenters.

The experiments were all made in my laboratory, mainly under my own direction,

but sometimes under the eye of my assistant, Mr W. R. Smith. Able assistance

was rendered by several of my practical students, two months ago by Messrs

Russell Smith and J. C. Young, more recently by Messrs Browning and Nichol.
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As the polarization in most cases diminishes with very great rapidity from the

instant of breaking contact with the decomposing battery, and as (for this and other

reasons) the mode of measurement by the first swing of the index-needle of the

electrometer is not deserving of much confidence, it was necessary to devise a process

by which the electrometer could be charged at leisure up to any desired potential,

and then, for an instant only, placed in connection with the electrodes. The apparatus

I employed bears a certain analogy to the Wippe of Poggendorff, but differs from it

in some essential particulars, both of construction and mode of working.

In a plate of vulcanite, or other good insulator, ten holes are cut as below,

and filled with mercury. Those marked E are connected with pairs of opposite

quadrants of the electrometer, P with the electrodes, B
l with the decomposing

battery, and Bs with the auxiliary (or charging) battery. Also metallic connection,

as indicated in the sketch, is permanently established between the two central holes

and the holes connected with the electrometer.

The rocker consists of four wires, supported on an insulating bar of vulcanite,

the two outermost having three points, the middle one longer than the others, and

the two inner being similar, but wanting one of the extremities. When the four

middle stems dip vertically into the four central mercury cups, the other stems do

not reach the mercury in any of the other six cups. If the in&trurnent be inclined

to the right the four prongs enter the holes to the right thus simultaneously

connecting the electrodes with the decomposing battery, and the electrometer with

the charging battery. When the instrument inclines to the left, the electrodes are

shunted from the decomposing battery on to the electrometer, the latter having

just before, by the same action, been cut off from the charging battery, and thus

left charged.

The modus operandi is simply this : Leave the rocker leaning to the right by
its own gravity, decomposition and polarization going on; adjust the wires J3a to

different points in a wet string (or a narrow canal of water) closing the circuit of

the charging battery , work the rocker quickly to the left, and allow it instantly to

fall back again, a process which need not occupy more than a small fraction of a

second; yet which must not be performed too quickly, on account of the inertia

T. 17
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(small as it is) of the needle and mirror of the electrometer. If the deflection of

the electrometer be suddenly increased or diminished by this action, slide one of the

wires 5, along the wet string, a little farther from or nearer to the other, and rock

again, continuing this process till a charge is found which leaves the electrometer

at rest when the rocking to and fro is performed. Eeverse a commutator attached

to the wires E, and repeat the operation. The difference of the scale readings in

these two cases gives a number proportional to the electromotive force of the

polarized plates (I say difference, because the scales commonly used with Sir W.
Thomson's instruments are, to avoid confusion, graduated from one end to the other,

as they ought to be, instead of being graduated opposite ways from the middle).

To enable this measure to be reduced to absolute units, a normal Darnell's cell was

applied at intervals, during each day's work, directly to the electrodes of the electro-

meter, then reversed; and the difference of the readings was tabulated as representing
its electromotive force.

In the earlier experiments I used a plate of gutta-percha in which the ten

holes were bored, but for a time discontinued its use on suspecting that it sometimes

led to irregular working of the apparatus by imperfect insulation. The cups were

then separately mounted on insulators three inches high, but this was not found to

be an improvement of any consequence ;
and the holes are now made in a small,

but thick, plate of vulcanite

In this note the numbers presented must be looked upon only as first approxi-

mations; but the apparatus has now been carefully constructed by an instrument

maker, and Mr Dewar has begun an elaborate series of experiments with it, from

which valuable results may soon be expected. In the trials which have as yet been

made we employed a temporary apparatus, rudely built up of wires, sealing-wax, and

gutta-percha. We have rather been endeavouring to determine whether the process,

complicated as it is by the inertia of the movable part of the electrometer, the

quickness with which the rocking can be conducted, and the rate at which the

polarization begins to diminish as soon as the polarized plates are detached from the

decomposing battery, is capable of being made to give good results, than in actually

attempting to get such. So far as I can yet see, the first of these complications is

alone likely to cause any serious embarrassment; and should such be the case, which

I do not anticipate, a form of experiment a little more laborious than that above

described, and which I have already once or twice tried, seems to be well adapted
to meet it.

The following are, for the most part, means of a great number of determinations.

The electrolyte was usually dilute commercial sulphuric acid, 1 part acid to 10 of

water
;
and to the lead and other impurities it was found to contain, we may

ascribe the fact that the results were not very accordant from day to day, so that

it was not easy to decide how to take the means. Mr Dewar is now working with

substances chemically pure, and obtains much more constant results.

The unit employed is the electromotive force of an ordinary Daniell's cell. The
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Grove's cells used m the electrolysis had (very constantly) an electromotive force

about 1 74 times as great.

I. FRESHLY BURNED PLATINUM PLATES

No. of Grove's cells in decomposing battery

Resulting polarization

12348
164 1-98 2-01 212 2-30

Cells .

Polarization

II. PLATINUM -f- , PALLADIUM - .124
1-50 1 82 1 85

III. PALLADIUM -f , PLATINUM

Cells ... ] 24
Polarization 160 192 T91(?)

Polarization

IV. WITH THREE CELLS

Platinum + , Iron -
. I Platinum -

, Iron + . I Iron Plates.

2-16 0-0 0-0

V ALUMINIUM PLATES.

Cells .

Polarization

1

]09

2

2-17

3

244(?)

4

401

6

5-20

The la&t results are very remarkable, showing, as they do, from aluminium

electrodes a reverse electromotive force of more than five Darnell's when six Grove's

are in circuit The polarization alters so rapidly during the electrolysis (in the case

of aluminium) that I cannot be certain that the numbers above given represent

fully the maximum effect. Various other combinations have been tried, but are being

repeated by Mr Dewar.

172
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XVII.

ON THE STEADY MOTION OF AN INCOMPRESSIBLE FLUID
IN TWO DIMENSIONS.

[Proceedings of the Royal Society of Edinburgh, March 21, 1870.]

WHILE discussing some of Mr Smith's *
applications of Maxwell's ingenious idea

of representing galvanic currents by the motions of an imaginary fluid, I was led

to the present investigation. I have since found that, as was only to be expected,

I had been anticipated in a great many of the results I obtained: especially by

Stokes, in the Trans, of the Cambridge Phil. Soc. 1843. Still it appears to me
that I have a few novel results to communicate.

If
>Jr
= const, be the equation of a current-line, Stokes has shown that

where f is an arbitrary function.

By the integration of this equation various singular results are obtained, especially

as to the nature of the families of curves which can be lines of flow.

The equation of lines of equal pressure is then formed, and from it corresponding

results are derived. A curious result is obtained when the motion is irrotational
,

m which case there is a velocity-potential <, and we have

*
[The reference is to Proc. E.S E. vn. p. 79, where there is a remarkable paper, "On the Flow of

Electricity in Conducting Surfaces,'" which seems not to have received the attention it deaerveB. The

Author, the late Prof. Robertson Smith, was for a short time Official Assistant to the Professor of

Natural Philosophy m Edinburgh University, and of course directed his attention mainly to physical

subjects. 1897.]
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Here the elimination of < gives us

The method is also applied to certain cases of motion which, though not steady,

can be treated as if they were steady viz., cases in which a given state of motion

is propagated in the fluid by translation or rotation
;

so that to a spectator moving
in a given manner in a plane parallel to the fluid, the motion appears to be steady.

Thus, for instance, we can treat as steady motion the case of two equal parallel

vortex-filaments rotating either in the same or in contrary directions.

[It is easy to see that, because

,_
daf df

~
'

we have -j- log \( ,- ) + ( -p- } ( = 2
,

tan"1 --
, ,

ax (\dx/ \dy) } dy dy dx

, (^ . ((d<b\
z

fd&V*} c. d ^ ,d<f>/rf<f>and
7 log \( -/ + (

./ H = 2 -r- tan"1
/ /
~

;

t/y
s

IVrfaJ/ Wy/ J
^ dy/ d

whence the theorem above.

But the reason for it appears even more clearly, thius

*-/(* + *y) + * 1

(a -*y),

so that P =^ +
^)'

= (/' + FJ - (f - FJ = 4/'J

and log P is therefore of the same form as
<f>. 1897.]



134 [XVIIL

XVIII.

ON THE MOST GENERAL MOTION OF AN INCOMPRESSIBLE
FLUID.

[Proceedings of the Royal Society of Edinburgh, March 21, 1870 ]

THIS is a quaternion investigation into the circumstances of fluid motion,

especially "with reference to the case of vortices. The method employed is very

similar to that which I gave to the Society in 1862 (No. VI. above).

It is shown that if <r be the vector-velocity of a particle of fluid, so that

a- = iu +jv + kw,

and if we introduce the operators D9 and 8, such that

T\ d d d d d ~

D, - T+ + u j- + ^ T- + w -J- j* + *<"
dt dx dy dz dt

together with Hamilton's operator

*-6+4 + *S-

the equations of fluid motion and of continuity are

SV<r = 0,

where r is the density, and P the potential of the applied forces.
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The principal transformation is effected by means of the curious theorem in

kinematics

F(VD o--Z><,Vc7) = -8v<r<r--FV0-SV<7 .................... (A).

Thus, for instance, we have from the equation of motion

because V 2 fP
-J

is obviously a scalar. The above theorem then gives

Z^Vo- = Sr<r<r,

which proves that if Vo- is ever zero for any particle of the fluid it must remain

so for that particle.

As an additional instance of the simplicity of the method employed, the following

may be given in this abstract .

If T be the instantaneous axis of the element of fluid, whose velocity is a, we

have

V<T = -2r.

But SV'<r = 0,

whence -|w=FVr,

and -<r = V-aO + V-'FVT.

This contains the solution of the problem, treated by Helmholtz, to determine

the linear velocity of each fluid particle, when the angular velocity is given.

[In the original the last term on the right of equation A, above, was un-

fortunately omitted. Though there were obvious printer's errors also, the omission

was probably due to a premature introduction of the physical condition

The absence of the term did not, of course, affect the physical results which

follow. A later Note, of date June 4th, 1888, will supply some detail about the

transformation above. 1897.]
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XIX.

ON GREEN'S AND OTHER ALLIED THEOREMS.

[Transactions of the Royal Society of Edinburgh, Vol. xxvi. Received April 29th,

Read May 16th, 1870.]

I WAS originally attracted to the study of Quaternions by Sir W. R Hamilton's

ingeniously devised and most valuable operator

_ _ . d . d d

dx 3
dy dz

y

to which he called special attention (Lectures on Quaternions, G20) on account of its

promise of usefulness in physical applications. But I soon found that in order that

its full power may be applied, in general investigations, it is necessary that we should

have processes of definite integration, ot the kinds required in physics, applicable to

quaternion symbols and not merely to scalar variables. I often consulted Hamilton

about this want, and he promised to endeavour to supply it at some future time I

fancy that shortly before his death he must in some way have supplied it, though he

certainly did not print, nor docs he appear even to have wntten, anything on the subject

In one of the last letters I received from him, he said that he intended to conclude

the final chapter of his Elements, which is devoted to physical applications, by some

sections on the use of the operatoi mentioned above. That chapter remains unfinished,

and as Hamilton rarely wrote down the steps of even a complex tram of mathematical

reasoning until he had mentally completed it, it is to be feared that this portion of

his investigations is entirely lost. So far as the analytical aspect of Quaternions is

concerned, this loss is very serious iudeed, for there can be little doubt that Hamilton's

solution would have been of immense value from the purely mathematical point of

view. [From a letter of Hamilton's, quoted in his Life (in 194), it appears that

in this idea I was altogether mistaken. 1889.]
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I have recently succeeded to a certain extent, by a simple, though not very direct,

process, in supplying the want so far at least as to enable me to use quaternions
in mquiiies connected with potentials and have thus armed at very simple proofs of

Green's celebrated theorem and various allied results, some of which appeal to be new
and valuable. The quaternion calculus can, in consequence, be applied without loss of

its enormous special advantages to various general theories, such as Attractions,

Spherical Harmonies, Fluid Motion, &c , &c Curiously enough, I find that T had almost

arrived at one of the geneial theorems given in the present papci so long ago a? 1860

("Quaternion Investigations connected with Electrodynamics and Magnetism," No. III.

above, 7, 13. Also last sentence of No IV. above), but though I then gave a special

case I did not see that a very slight modification of my work would have enabled

me to generalise it I was then seeking to derive from my foimulse the well-known

physical result, and not thinking of extending the calculus itself.

Even the little advance that 1 have made in the present paper has enabled me
to see, with a thoroughness of comprehension which I had despaired of attaining (at

least by Caitcsian processes), the mutual lelationship of the many singular properties
of the great class of analytical and physical magnitudes which satisfy what is usually

known as Laplace's equation. This is, of course, due solely to the simplicity and

expressiveness of quaternions in general

1. In what follows we have constantly to deal \vith integrals extended over a

closed surface, compared with others taken through the space enclosed by such a surface
,

or with integrals over a limited surface, compared with others taken round its bounding
curve The notation employed is ah follows. If Q per unit of length, of surface, 01

of volume, at the point x y z, Q being any quaternion, be the quantity to be summed,
these sums will be denoted by

and fffQdi,

when comparing integrals over a closed surface with otheis through the enclosed space,

and by
ffQds and fQTdp,

when compaiing integrals over an unclosed surface with otheis round its boundary.
No ambiguity is likely to arise from the double use of

for its meaning in any case will be obvious from the integral with which it is compared.

2 I have ahcady shown (No. VI. above) that, if a be the vector displacement of

a point originally situated at

p = ix +jy + kz t

then tf V<r

exprcsses the increase of density of aggregation of the points of the system caused

by the displacement. (See Appendix to this paper.)

T. 18
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3. Suppose, now, space to be uniformly filled with points, and a closed surface 2
to be drawn, through which the points can freely move when displaced

Then it is clear that the increase of number of points within the space S, caused

by a displacement, may be obtained by either of two processes by taking account of

the increase of density at all points within 2, or by estimating the excess of those

which pass inwards through the surface over those which pass outwards These are

the principles usually employed (for a mere element of volume) in forming the so-called
"
Equation of Continuity

"

Let v be the normal to 2 at the point p, drawn outwards, then we have at

once (by equating the two different expressions of the same quantity above explained)
the equation

which is our fundamental equation so long as we deal with triple integrals

4. As a first and very simple example of its use, suppose <r to represent the

vector force exerted upon a unit particle at p (of ordinary matter, electricity, or

magnetism) by any distribution of attracting matter, electricity, or magnetism partly

outside, partly inside S. Then, if P be the potential at p,

a- = VP,

and if r be the density of the attracting matter, &c., at p,

Vo- = V 2P = 47JT,

by Poisson's extension of Laplace's equation.

Substituting in the fundamental equation, we have

4>7rM = //# . VPUvds,

where M denotes the whole quantity of matter, &c., inside . This is a well-known

theorem.

5. Let P and P, be any scalar functions of p, we can of course rind the distribu-

tion of matter, &c., requisite to make either of them the potential at p , for, if

the necessary densities be r and rl respectively, we have as before

V"-P=47rr, VPlSa 4w/v

Now V . PP, = PVP, + PxVP,

and V . PP, = PV'P, + Pt
V2P + 2S . VPVP1 .

But, by the fundamental theorem,

///V' . PParf?
=
JfS . (V . PP.) Uvds = JfS . (PVP, + P,VP) Uvds.

Substituting the above value of V'.PPj, this becomes

JfS . (PVP, + P,VP) Uvds = f
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But, obviously, we have also by the fundamental theorem

ffS . (PVP, - PtVP) Uvila = /// (PV'P, - P,V*P) r/s-,

and the two lattei equations give

ffjfi . VPVP,^ = -
///P^'Pflfc + //P..S . VP #,/ v,

= - J/TPV/V* + ffPS . VP, &W.s>,

which are the common forms of Green's Theorem. Sir W. Thomson's extension of it

follows at once from the same proof.

6 If PI be a many-valued function, but VP, [single-valued, and if S be a

multiply-connected* space, the above expressions require a modification which was

first shown to be necessary by Helmholtz, arid first supplied by Thomson For simplicity,

suppose to be doubly-connected (as a ring or endless rod, whether knotted or not)

Then if it be cut through by a surface s, it will become simply-connected, but the

surface-integrals have to be increased by terms depending upon the portions thus

added to the whole surface In the first form of Green's Theorem, just given, the

only term altered is the last . and it is obvious that if
|>,

be the increase of P,

after a complete circuit of the ring, the portion to be added to the right-hand
side of the equation is

taken over the cutting surface only Snnilai modifications .ue easily seen to be

produced by each additional complexity in the space 2.

7. The immediate consequences of Green's Theoiem are \\ell known, so that J

take only one instance

Let P and P, be the potentials of one and the same distribution of matter, and

let none of it be within 2. Then we have

.((/(VP)-
1

dt = //Ptf . VP Uvd* t

so that if VP is xero all over the surface of S, it is zero all through the interior,

i.e., the potential is constant inside - If P be the velocity-potential in the urota-

bional motion of an incompressible fluid, this equation shows that there can be no

such motion of the fluid unless there is a normal motion at some pait of the bounding
surface, so long at least as S is simply-connected

Again, if ! is an equipoteiitial suiface,

/(((VP)' rf* = PffS . VP Uvds = P/r/V=Pd?

by the fundamental theoiern But there is by hypothesis no matter inside S, so this

shows that the potential is constant throughout the interior Thus there can be no

*
Called by Helmholtz, aftei Kiemann, melnfach zuttammenluingtiul In translating Helmholtz's papoi

(Phil Mag 1807) I used the above as an English equivalent Sn W. Thomson in his great paper on

Vwtev Motion (Trnnn RHh 1868) uses the expression "multiply-continuous"

182



140 ON GREEN'S AND OTHER ALLIED THEOREMS. [xix.

equipotential surface, not including some of the attracting matter, within which the

potential can change. Thus it cannot have a maximum or minimum value at points

unoccupied by matter.

8 If, in the fundamental theorem, we suppose

<r = Vr,

which imposes the condition that *S* . V<r = 0,

i.e , that the <r displacement is effected without condensation, it becomes

fJS.VrUvds =///. VVrf9 = 0.

Suppose any closed curve to be traced on the surface S, dividing it into two parts

This equation shows that the surface-integral is the same for both parts, the difference;

of sign being due to the fact that the normal is drawn in opposite directions on the

two paits. Hence we see that, with the above limitation of the value of <7, the

double integial is the same for all surfaces bounded by a given closed curve. It

must theiefore be expressible by a single integral taken round the curve. The value

of this integral will presently be determined.

9. The theorem of 4 may be written

From this we conclude at once that if

o- = iP +JP, + kPt,

(which may, of course, represent any vector whatever) we have

JT//VW? = JjS ( UiX) <rds,

or, if W = T,

This gives us the means of representing, by a surface-integral, a vector-integral taken

through a definite space. We have already seen how to do the same for a scalar-

integral so that we can now express m this way, subject, however, to an ambiguity

presently to be mentioned, the general integral

where q is any quaternion whatever. It is evident that it is only in certain classes

of cases that we can expect a perfectly definite expression of such a volume-integral
in terms of a surface-integral.

10. In the above formula for a vector-integral there may present itself an ambiguity
introduced by the inverse operation

y-i

to which we must devote a few words. The assumption
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is tantamount to saying that, as the constituents of cr are the potentials of certain

distributions of matter, &c., those of r are the corresponding densities each multiplied

by 4>>rr.

If, therefore, r be given throughout the space enclosed by 2, a- is given by this

equation so far only as it depends upon the distribution within 2, and must be

completed by an arbitrary vector depending on three potentials of mutually independent
distributions exterior to 2.

But, if <r be given, r is perfectly definite . and as

V<r = V-'T,

the value of V~ J is also completely defined These remarks must be carefully attended

to in using the theorem above since they involve as paiticular cases of their applica-

tion many curious theorems in Fluid Motion, &c. To these, however, I shall not

further allude heie, as I propose to make them the subject of a separate communication

to the Society. [See, however, Appendix to this paper, 25. 1897.]

11. We now come to relations between the results of integration extended ovei

a non-closed surface and round its boundary.

Let <r be any vector function of the position of a point. The line-integral whose

value we seek as a fundamental theorem is

where r is the vector of any point in a small closed curve, drawn from a point within

it, and in its plane

Let aru be the value of <r at the ongin of r, then

(No. VI. above, see also Appetidia; to this papei), so that

(8 . <rdr = fS . {<r -S(rV) <7
}
dr

But JdT=0,

because the curve is closed, and (Tait on Electro-Dynamics, &c. No III above, 13),

we have generally

JS . rVtf . <r dr = i/S . V (rtfcvr -tr JV. rdr).

Here the integrated part vanishes for a closed circuit, and

ftV. rdr = ds Uv,

where ds is the area of the small closed curve, and Uv is a unit-vector perpendicular

to its plane. Hence

fti . cr dr = AS .V<ru Uv. ds.

Now, any finite portion of a surface may be broken up into small elements such as
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we have just treated, and the sign only of the integral along each portion of a bounding
curve is changed when we go round it in the opposite direction Hence, just as

Ampere did with electric currents, substituting for a finite closed circuit a network

of an infinite number of infinitely small ones, in each contiguous pair of which the

common boundary is described by equal currents in opposite directions, we have for a

finite unclosed surface

f$.<rdp=jfS.V<rUv.ds.

There is no difficulty in extending this result to cases in which the bounding curve

consists, of detached ovals, or possesses multiple points. This theorem seems to have

been first given by Stokes (Smith's Prize Examination, 1854. See also Thomson and

Tait's Nat Phil. 190 (j) ;
and Thomson on Vortev Motion, Trans RSE, LS68-9,

60 (7)), where it has the form

It solves the problem suggested by the result of 8 above.

12. If <r represent the vector force acting on a particle of matter at p, S.<rdp

icpresents the work done while the particle is displaced along dp, so that the single integial

. <rdp

of last section, taken with a negative sign, represents the work done during a complete

cycle When this integial vanishes it is evident that, if the path be divided into

any two parts, the woik spent during the particle's motion through one part is equal

to that gained in the other. Hence the system of forces must be conservative, i e ,

must do the same amount of work for all paths having the same extremities

But the equivalent double integral must also vanish. Hence a conservative system
is such that

[fdsti.V<rUv = 0,

whatever be the form of the finite portion of surface of which ds is an element.

Hence, as Vo- has a fixed value at each point of space, while Uv may be altered at

will, we must have

yv<7 = o,

or V<T = scalar.

If we call X, Y, Z the component forces parallel to rectangular axes, this

extremely simple equation is equivalent to the well-known conditions

dX dY A dY dZ . dZ dX .

j ~~
j u, i

--
T
= v> i

---
T~
~ v.

dy dx dz dy dx dz

Returning to the quaternion form, as far less complex, we see that

Vo- = scalar = 4-Tr?', suppose,

implies that <r = VP,
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where P is a scalar such that V 2P = 47T/
1

;

that is, P is the potential of a distribution of matter, magnetism, or statical electricity,

of volume-density r.

Hence, for a non-closed path, under conservative forces

= fd(ipP=fdP (see Appendix)

depending solely on the values of P at the extremities of the path.

13. A Vector theorem, which is of great use, and which corresponds to the

Scalar theorem of 11, may easily be obtained. Thus, with the notation already employed,

Now V. F(KTrfr.V)7 = S(rV) V . v^r + ft (drV) Vrtrot

and d {8 (TV) Va r]
= 8 (TV) V. <r,/Zr + 8 (drV) V<r r

Adding, and omitting the term which is the same at both limits, we have

fV.odr = -V.(V UvV)<rds.

Extended aw above to any closed curve, this takes at once the form

/F. <rdp
= -ffdsV.(V. UvV) <r.

Of course, m many cases of the attempted representation of a quaternion surface-

integral by another taken round its bounding curve, we are met by ambiguities as

m the cabe of the .space-integral ( 9) : but their origin, both analytically and physically,

is in general obvious.

14. If P bo any scalar function of p, we have (by the process of 11, above)

jPdr = ${P-S(TV)P,}dT

= -/tf.TVP dr.

But -F(FTdT.V) = d-nS rV-Ttf drV,

and d (rtirV )
= dr8 . rV + r8 . drV.

These give JPdr = - ^(rSrV + fF(Frdr.V))P = dsV. UvVP .

Hence, for a closed curve of any form, we have

fPdp = ffdsV. UvVP,

from which the theorems of 11, 13 may easily be deduced.
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15. The above are but a few of the simpler of an immense host of theorems

which any one with some knowledge of quaternions may easily work out for himself,

by developing a little farther, or applying to other combinations, the processes just

explained. I shall, therefore, give no more of them until I have an opportunity of,

at the same time, showing their ready applicability and great value in physical

investigations.

Appendix, added June 3rd, 1870.

16. At the instance of Prof. Kclland, to whom this paper was referred, I append
a slight sketch of some of the properties of the operator V, of which so much use

has been made in the foregoing paragiaphs. Most of the results now to be given
have been already published by myself, but the mode in which they were formerly
deduced has been abandoned for one more purely quaternionic.

17. It may perhaps be useful to commence with a different form of definition

of the operator V, as we shall thus, if we desire it, entirely avoid the use of ordinary

Cartesian co-oidmates. For this puipose we wiite

where a is any unit-vector, the meaning of the right-hand operator (neglecting its

sign) being the rate of change of the function to which it is applied per unit of

length in the direction of the unit-vector a If a be not a unit-vector we may treat

it as a vector-velocity, and then the right-hand operator means the rate of change

per unit of time due to the change of position.

Let o, $, 7 be any rectangular system of unit-vectors, then by a fundamental

quaternion transformation

V = - otfaV - @8/3V - y/S'yV

which is identical with Hamilton's form given above (Lectures, 620.)

18 This mode of viewing the subject enables us to see at once that the effect

of applying V to any scalar function of the position of a point is to give its vector

of most rapid increase. Hence, when it is applied to a potential u, we have

Vu = vector-force at p.

If u be a velocity-potential, we obtain the velocity of the fluid element at p ;

and if u be the temperature of a conducting solid we obtain the flux of heat. Finally,

whatever series of surfaces is represented by

the vector Vu is the normal 'at the point p, and its length is inversely as the

normal distance at that point between two consecutive surfaces of the series.



xix.] ON GREEN'S AND OTHER ALLIED THEOREMS. 145

Hence it is evident that S.dpVu = du,

or, as it may be written, S . dpV = d
;

the left-hand member therefore expresses total differentiation in virtue of any arbitrary,

but small, displacement dp.

19. To interpret the operator V . oV let us apply it to a potential function u

Then we easily see that u may be taken under the vector sign, and the expression

7(aV) M = F.aVtt

denotes the vector-couple due to the force at p about a point whose relative vector

is a.

Again, if a be any vector function of p, we have by ordinary quaternion operations

V(V) . a- = S . aFVo- + aV<r - VSa<r.

The meaning of the third term (in which it is of course understood that V operates

on a alone) is obvious from what precedes. It remains that we explain the other

terms

20. These involve the very important quantities (not operators such as the

expressions we have been hitherto considering),

S.Vo- and V V<r,

which occur very frequently in the preceding paper. There we looked upon a- as the

displacement, or as the velocity, of a point situated at p. Let us now consider the

group of points situated near to that at p, as the quantities to be interpreted have

reference to the deformation of the group.

21. Let r be the vector of one of the group relative to that situated at p

Then after a small interval of time t, the actual co-ordinates become

and p + T + t{o--S(TV)<r}

by the definition of V in 17. Hence, if
</>

be the linear and vector function

representing the deformation of the group, we have

</>T
= T-^(TV)(7.

The farther solution is rendered very simple by the fact that we may assume t to

be so small that its square and higher powers may be neglected.

If <' be the function conjugate to
</>,

we have

<J>'
T = T _ tVSra-

Hence <T

19

-
S [S (TV) <r + V/SVo-]

- F. T V V<r.
2 2
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The first three terras form a self-conjugate linear and vector function of T, which

we may denote for a moment by tor. Hence

or, omitting t* as above, <j>r
= vrr - V. nrrWo:

Hence the deformation may be decomposed into 1st, the pure strain r, 2nd, the rotation

IFV*.

Thus the vector-axis of rotation of the group is

If we were content to avail ourselves of the ordinary results of Cartesian investi-

gations, we might at once have reached this conclusion by noticing that

Fv,-<(*-*o +j (-SU*(;J-),\dy dzj J
\dz dx] \dx dyj

'

and remembering the formula) of Stokes and Helmholtz.

22. In the same way, as

SVff ,__ df_^_d?
dx dy dz

'

we recognise the cubical compression of the group of points considered. It would be

easy to give this a more strictly quatermonic form by employing t\ie definition of

17. But, working with quaternions, we ought to obtain all our results by their

help alone
;

so that we proceed to prove the above result by finding the volume of

the ellipsoid into which an originally spherical group of points has been distorted in

time t.

For this purpose, we refer again to the equation of deformation

4>T
= T-fcSf(TV)<r,

and form the cubic in < according to Hamilton's exquisite process. We easily obtain,

remembering that V is to be neglected*,

=
<f>'
-

(3
-

tSVff)& + (3
-

2fcSTC7r) <-(!- fcSfVcr),

*
Thus, in Hamilton's notation, X, /*, v being any three non-coplanar vectors, and m, wi1( ?n2 the

coefficients of the cubic,

= S.(\- tVSX<r) (/t
- t

= S.(\- tVS\<r) ( P> - tF/*V6W + tVvVSfur)

= S . \fj.v
- t [S . fu>VS\ff + & . v\VS(ur + S . \uVSW]

= 8 . XMJ-
- tS . [\S . M"V + M-S . vXV + vS . \/*V] a

= S . \f4.
- tS . \nSV<r.
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The roots of this equation are the ratios of the diameters of the ellipsoid whose

directions are unchanged to that of the sphere. Hence the volume is increased by
the factor

1 - tSV<r,

from which the truth of the preceding statement is manifest.

23. As the process in last section depends essentially on the use of a non-

conjugate vector function, with which the reader is less likely to be acquainted than

with the more usually employed forma, I add another investigation.

Let *r =
<f>r

= T - tS (rV) a:

Then T = <f>-
lvr = vr + tS(V) a-

Hence since if, before distortion, the group formed a sphere of radius 1, wo have

ZV-1,

the equation of the ellipsoid is T{vr + tf?(rV) ff
}

= I,

This may be written 8 . tax ~8.if\v + WSvtr + tS (wV) <r]
= I,

where % is now self-conjugate.

Hamilton has shown that the reciprocal of the product of the squares of the

semiaxes is

whatever rectangular system of unit-vectors is denoted by i, j, k.

Substituting the value of %, we have

-S.{i + tfSia- + tS (iV) <r} (j + &c
.) (k + &c.)

= - 8 . {i 4- tVSia- + tS (iV) ff
] {i + 2<tSVr - tS (tV) a- - WSi

The ratio of volumes of the ellipsoid and sphere is therefore, as before,

S . \nv - tS . \nVSv<T - tS . v\V Sfur + &G

= 88. \iir-2tSVffS.\i4*.

= S . XM^V + S . fu><t>'\ + S . \<t>'ft.

= 8. \fiv-tS \ftVS'IHT + &O.

= 3S . \/M>
- tSVffS . \nv.

192
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24. Before concluding I may append a generalised form of Green's Theorem,

which is obviously fitted to be of use in quaternion investigations. If we put

we easily see by the equations at the end of 5 that

fffS (VP, . V) rds = -fffP^nh + fjPfi ( Uv V) rds,

= -JJJW'PA + f/rS . VP; Uv . ds.

As a particular case, let P, = Sap

so that VP, = iSia. + jSja. + kSka. = - a,

V*P, = 0,

we have fffS (oV) rds = fffSap^rdi
-
f/SvpS ( UvV) rds,

^jfrS.aUvds.

Any constant may be added to the value of 1\. The additional terms thus introduced

must vanish, so that the "
generalized form

"
above gives, as in 9,

As another verification, suppose T constant, and we have

JfS.aUvds = 0,

which is obviously true. Interesting results are obtained by treating this by the

processes of 8, 11.

25. From one of the theorems above viz.,

ff/S (aV) r<fr = ffrS . Uvds,

we have by the formula of 17 fff^rd<f=ffU'v.rds,

a considerable extension of the fundamental theorem of 3, which is, in fact, only

its scalar part. It might have been obtained, however, as the reader will easily see,

by a much more direct process. The vector part

as we see by the meaning of FVr in 21, is of great importance in physical applica-

tions, especially in connection with Electricity and with Fluid Motion. When

r=VP,

where P is a scalar, the left-hand member vanishes, and the value of the right-
hand member limited to a non-closed surface is then found as in 14.

26. Again, let P1
= p

2
,

which gives VPj = 2p,

V'P:
= 6.

We have -
2J/JS (PV) rds = - //j>

2VVd9 + J/p'S ( UvV) rds

-
2/JYS . p Uvds.
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Now if the constituents of r be homogeneous functions of p of the nth degree, we
have for any one of them

S.pV=-nt,
so that under these circumstances

(n + 3)JIM* = - ffrS . p Uvds.

Of this a particular case is (n + 3)///fe = -// .pUvds,

which suggests many curious theorems.

27. As a verification of it, let the closed surface 2 which determines the limits

of the integrations be itself

t-0,

which, of course, subjects the form of to further limitations.

The right-hand member is obviously equal to

30 x vol. of 2,

because -S.pUv is the perpendicular from the origin to the tangent plane at p to

the element ds. The left-hand side may be broken up into a set of shells bounded

by surfaces whose equations are

= e0,

where e varies from to 1. [This follows from the assumption that is homogeneous.]

The volume of the surface corresponding to any value of e is obviously

e8 x vol. of 2.

Hence efc = 3&de x vol. of 2,

so that the left-hand member of the equation above becomes

(n + 3) P 30en+a de x vol. of 2 = 30 x vol. of 2,

and the proposition is proved.

28. A very interesting case is when

^ =
2>

3 '

in which case n = 3, and our equation appears to become

It is obvious, however, that there is an infinite element on the left hand, when

Tp 0, i.e., when the origin lies inside 2; and it is easy to see that tho correct

result is a simple case of the well-known equation of 4. In fact, the expression on
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the right denotes, as is evident, the whole spherical opening subtended at the origin

by 2. Its value is therefore if the origin be without 2, and 4nr if within -2 being

supposed to be simply-connected.

29. As a final example let us suppose in 26 that is a Spherical Harmonic.

Then, in addition to the condition of homogeneity there given, we have the condition

V a

f = 0,

and the general equation of the section referred to gives

so that, with the help of the final equation of 26, we have for any closed surface

whatever

ffS . Uv (2npf + nTV?)(fc = 0.

This integral, whose value is obviously the same for all surfaces bounded by a

given closed curve, can be reduced to the form

(Tp)+
8 8. UvV fq V-\ ds,

JJ
\

i

where q is any quaternion which satisfies the condition

This is susceptible of various remarkable transformations, both as a double and as a

single integral But this digression might be indefinitely extended, and perhaps has

already gone too far

30. The essential basis of the whole of this theory is the great invention of

Hamilton, by which it is made possible to represent as a vector-operator the square

root of Laplace's operator

da? dy* dz*
'

which has not yet been done by any but quaternion symbols, at least in a symmetrical,

easily intelligible, and practically useful form.

It is rash to make any definite assertions on such matters, especially when a

writer of such extraordinary fertility, knowledge, and power as Sir W. R Hamilton

is concerned, but to the best of my knowledge the greater part of the results given

above is my own. Hamilton's treatment of V, so far as I am aware of its having
been published, will be found in Proc. R LA., 1846 and 1854, (in the latter of

which there is a very curious and interesting proof of Dupin's Theorem,) and in his

Lectures on Quaternions, 620. My own is to be found in Quarterly Math Journal,

October, 1860, Proc. R.S.E., 1861-2, 1862-3, and Elementary Treatise on Quaternions,

317, 319, 364, &c., 418, 421-8, Ex. 24 to Chap. ix. and 10 to Chap. XL
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XX.

NOTE ON LINEAR PARTIAL DIFFERENTIAL EQUATIONS.

[Proceedings of the Royal Society of Edinburgh, June 6, 1870.]

THE equation PS +Q?+jR^ =

may be put in the very simple form

(Sf(<rV)w = 0,

if we write <r = iP+jQ + kR,

and v = t.
d
+j-+*A.dx J

dy dz

This gives, at once, VumVBa;

where m is a scalar and a vector (in whose tensor m might have been included,

but it is kept separate for a special purpose). Hence

= - m8 . d<rdp

= -S.0dr,

if we put dr = -mV.<rdp

so that m is an integrating factor of V.trdp. If a value of m can be found, it is

obvious, from the form of the above equation, that 6 must be a function of r alone
;

and the integral is therefore

u - F (T) = const.

where F is an arbitrary scalar function.
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Thus the differential equation of Cylinders is

S(aV)w = 0,

where a is a constant vector. Here m =
1, and

u = F(

That of Cones referred to the vertex is

Here the exprebsion to be made integrable is

V.pdp.

But Hamilton long ago showed that

dUp_ dp _ V.pdp

Up~
r

p- (TPy
'

which indicates the value of m, and gives

u = F(Up) = const.

It is obvious that the above is only one of a great number of different processes

which may be applied to integrate the differential equation. It is quite easy, for

instance, to pass from it to the assumption of a vector integrating factor instead of

the scalar m, and to derive the usual criterion of integrabihty. There is no difficulty

in modifying the process to suit the case when the right-hand member is a multiple

of u. In fact it seems to throw a very clear light upon the whole subject of the

integration of partial differential equations But I have not at present leisure to pursue
the subject farther than to notice that if, instead of S (<rV), we employ other operators

as $(<rV)S(TV), S.crVrV, &c (where V may or may not operate on u alone), we can

pass to linear partial differential equations of the second and higher orders. Similar

theorems can be obtained from vector operators, as F(o-V).
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XXI.

NOTE ON LINEAR DIFFERENTIAL EQUATIONS IN

QUATERNIONS.

[Proceedings of the Royal Society of Edinburgh, December 20, 1870 ]

THE generally non-commutative character of quaternion multiplication introduces into

the solution even of linear differential equations with constant (quaternion) coefficients,

difficulties of a somewhat novel character. To some of these which have presented them-

selves to me in many investigations, I wish to draw attention in the following note, but

want of leisure prevents my attempting at present either to classify the numerous

curious forms which may be met with in phjsical inquiries, even when these lead to

mere vector equations of an order no higher than the second, or to develope the subject
of the curious functional equations which are incidentally involved.

1. The integration of an equation such as

q + mq = a,

where m is a scalar (usually a function of t, which is assumed throughout as the

independent variable), and q an unknown quaternion, is obviously to be effected by
the ordinary method, multiplication by dmdt

2. But if a be a quaternion, the integration of

q + aq = a',

even when a is constant, requires a little care, unless we boldly treat a as m was treated

in the preceding section. This, no doubt, gives the correct result, but the process

requires to bo defended Assume therefore r to be a factor which makes the left-hand

member mtegrable Then we must have

r ra,

T. 20
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or, if r' be a proximate value of r,

Hence, dividing the finite interval t into a great number of equal parts, and taking the

limit

where r is an arbitrary but constant quaternion.

Now we have
at = t(Sa+TVa VVa) = ft(m

Hence the solution of the given equation is

"Int ,. 2nt

mt
OL

n
<7= \

mt
OL

lr

d'dt,*
J

the arbitrary quaternion constant r having disappeared, but a new one being introduced

by the integration on the right.

When a is variable, the tensor of r is easily seen to be ^Sadi
, but its versor, s, is to

be found from the equation

the fundamental relation between the instantaneous axis and the versor of rotation of

a rigid body (No. XV. above, 7).

When r is a vector, 6 suppose, we have

= Vda,

whence, as above, 6 = V0 eJadt .

3. In the succeeding examples we restrict ourselves to equations for the determina-

tion of unknown vectors, as we thus avoid the introduction of the quartic equation which

has been shown by Hamilton to be satisfied by a linear function of a quaternion. This

would appear, for instance, in the solution of even the simple equation

q + aqb = c

where a and 6 are constant quaternions , though, of course, its use may be avoided by

employing a somewhat more cumbrous process.

4. Suppose we have

p + <f>p
= a

where $ is a self-conjugate linear and vector function with constant constituents.

Operate by 8 . 8, and we have

<f>3 = 3a.
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The left-hand side is a complete differential if

S =
<f>8.

The general integral of this equation may be written as

S = e'*8

where e* is another linear and vector function
;
but it is not necessary to discuss here

the validity of such a result, deduced as it must be by a process of separation of

symbols [See Tait's Quaternions, 290, 3rd ed 307.] For, on account of the properties

of 0, we may assume (since but three distinct and non-coplanar values of 8 are required)

8 = XT]

where
TJ

is a constant unit-vector, and x a scalar function of t. This gives

The values of ?/ are therefore unit-vectors parallel to the axes of the surface

8p(f)p
= I,

and those of - are the roots of the auxiliary cubic in
</>.

Call them rj l> rj2 , rj3 and

ffi> 9*> ffa respectively, then the values of 8 (into which no arbitrary constant need be

introduced), are of the form

otr}

Thus, finally, p = ^qSrjp

5. If, in the equation of (4), we suppose a constant, we may easily apply a process

bimilar to that of (2).

For p = p + p8t = (1
- Bt . 0) p + aSt.

Hence, as a is constant,

where p (which is arbitrary) has been increased by <p~
l
a. It is easy to show that this

agrees with the final result of (4), and the coincidence is so far a justification of the use

of the method of separation of symbols.

The verification of the general result of (4), where a is variable, can also be

effected by this method, but not so readily.

202
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6. Let us take the linear equation of the second order with constant coefficients

(equivalent to three simultaneous linear equations in scalars of a very general form)

p -f 0p -f ^p = 0,

where
<f>

and ty may, or may not, be self-conjugate.

If they be self-conjugate, this represents oscillation under the action of a force

whose components, m each of three rectangular directions, are made up of parts pro-

portional to (though not necessarily equimultiples of) the displacements m the^e directions.

The resistance parallel to each of three other rectangular directions depends in a similar

manner on the corresponding components of the velocity.

The operator m the left-hand member may be written

suppose, where ^ and are two new linear and vector functions.

Hence, comparing, we must have

X + =
<J>

X& = ^r,

or, eliminating 0, X* + 'ty
=

jtf>

a curious and apparently novel species of equation from which to determine the function ^.

[We might have arrived at it, by a somewhat more perilous but shorter route, by

assuming as a particular integral of the given equatiola the expression

If we take their conjugates in addition to the two eo nations connecting 9 and ^, we

see at once that all four are satisfied by assuming these two functions to be conjugate

to one another, provided < an(l ^ are self-conjugate. Hence in this special case we

may write

It only remains that we should find e, and the rest of the solution is to be effected

as in (4) or (5).

We have f = X = + (V. e</>
-

<j>V. e)
- V. eV. e.

'

When < is a constant scalar, le when the resistance is in the direction of motion

(which is the case generally in physical applications), the middle tenn vanishes, and

we have
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or, as it may be written,

'..-(?-*)'

In fact, in this case, </>
and ^ are commutative in multiplication, so that the

equation in ^ may be solved as an ordinary quadratic.

Even this very particular case involves a singular question, though not one of

such difficulty as that of the general problem above We have, in fact, to solve an

equation of the form
cr2 = co,

where w is a given, and vr a sought, linear and vector function. This leads to an

equation of the sixth degree in -BT with pairs of roots equal but of opposite signs.

The coefficients of the cubic in -or are formed by the solution of a biquadratic

equation *.

*
Suppose the cubic in -a to be ro3 +i;nr

2 + J 'nr + 72 =0,

the given equation enables us to write it in either of the (really identical) forms

, /<7<<H-<7,\
2

whence w=U + 0i)
'

or wj + (20 ,
-

<7-')
w2 + (f/,

2 -
2r;</3 )

w - g?=

If the cubic in w be wJ + mw8+ i,w + Mi2
= 0,

we have b} comparison of coefficients

'2(/ l
-

<7
2 -

m, '7,

2 -
2gg, -11^, a?= - m,

so that g. is known and g= ? 1
"~

n>1
,

2 V -

where 2
tfl
= i

-^^mi)
".

The values of g being found, or is given by the expression above

A similar piocess may easily be applied to the general equation of (6), but it may be well to exhibit

the present simple case in its Cartesian form.

Let Sitai=plt Siuj=p3 ,
Siwk = ps ,

Sj*n= q l , Sjug = q a , Sjuk = q3 ,

Skui= rj , Skua = r
-z - Skuk=r3 .

Also let m= t>Si + pUj + ySk,

wheie a= Xj +JT, +fcr3 ,

then the problem reduces itself to the determination of the nine scalars x, y, z, &c
, from nine equations

of the second degree, of which we write only the first three viz.
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In fact, if we apply the members of the general equation above to e, we have

r.*.-(*-)*
This leads to the two equations

which, belonging to two cones of the second degree, give m general four values of e

7. The interest of the general question before us, from the analytical point of vie\v,

lies mainly in the determination of the two unknown linear and vector functions % and

6 from the equations

each of which is m general equivalent to nine or in certain cases six (not, as in ordinary

quaternion equations, four, or as in vector equations three) simultaneous scalar equations.

They have also a physical interest, inasmuch as they include the problem of finding

two homogeneous strains, such that the vector-sum of their effects on any vector shall

represent the effect of one given strain on that vector, while the effect of their

successive performance in a given order on any vector shall be equivalent to that of

another given strain. It is curious to compare this with the physical meaning of the

differential equation from which these forms are derived.

If g be one of the roots of the symbolical cubic in ^ (of which two will in this

case generally be imaginary) and
77 the corresponding unit vector, such that we have

three conditions of the type

(x-sO^o,
we have (g

3 - g$ + $>) 77
= 0.

The vectors, which satisfy this and the two similar equations, arc (all three) sides (real

or imaginary) of the cone of the third order

8

One curious result, which is easily derived from the equations above, is that, if

a solid experience a pure strain, the planes in which any three, originally rectangular,

vectors are displaced intersect in one line.
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XXII.

ON SOME QUATERNION INTEGRALS.

PART I.

[Proceedings of tlie Royal Society of Edinburgh, December 20, 1870.]

IN my paper on "Green's and other allied theorems" (XIX. above), I showed that

where P is any scalar function of p, and the single integral is extended round any
closed curve, while the double integral extends over any surface bounded by the curve,

v being its normal vector.

Writing <r

this gives at once f(rdp=ffds(S. UvV<r F.(F7iA7)o-),

of which the scalar and vector parts respectively were, in the paper referred to, shown to

be equal.

From these equations many very singular results may be derived, some of which

form the first part of the subject of the present communication.

Let a be a vector which, having continuously varying values over the surface in

question, becomes Udp at its edge. Then

there being no vector part on the left-hand side. This gives the length of any closed

curve in terms of an integral taken over any surface bounded by it.
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We have evidently TpdTp = -Spdp,

whence fPdTp = -JPS. Updp = -SJdsS.UvV(PUp).

Hence frdTp = -ffdsS.(Up UvV) r,

Now if Tp be constant over the boundary, i.e. if the bounding curve he on a sphere
whose centre is the origin, we have for any surface bounded by it

whatever be the value of the vector or.

Again, if cr be a function of Tp only, we have

firdTp
=

for all closed curves. Hence, whatever be the vector-function
</>,

and whatever the

surface and its bounding curve, we have always

But, generally, we have also from the chief formula of this paper,

JfS . UvVvds - ffS . UvVS . Vo-ds = fS . V<rdp,

and ffUvV'Pds-ffS UvV . VPds=JV(dpV)P ,

giving finally jfV. UvV'ffds - ff8 . UvV VV<rds=JV. V(dpV)<r

These results appear to be of considerable importance for physical applications ,
and

are particularly interesting, because they involve the operator (indicated merely in my
former paper)

V(dPV).

The paper contains several applications and modifications of these theorems

[The concluding portion of the above Abstract contained some strange inadvertences,

arising from an attempt to extend the application of the formulae m an unwarrantable

direction. (The proper method had aheady been given in Nob. III. and IV. above,)

Attention was called to this matter in the Abstract of Part II which follows; and

I have therefore modified the later part of the Abstract above, to a considerable

extent from data there supplied for the purpose, and not otherwise repimted. 1897.]
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PART II. [Read Jwie 3, 1872.]

Commencing afresh with the fundamental integral

put o- = w/3

and we have !Jf(S.ff7)nd? = ffu

from which at once fJfVud^-ffuUvds ............................. (a),

or fffVrdi^ffUv.rds ....................... (6).

Putting ttjT for T, and taking the scalar, we have

/// (S (TV) .
, + v,8 VT) d? = /JV* . Uvrds

whence ///(#(rV) 0- + o^ VT)(fe = //<rS. ^i/rds ........................... (c).

As one example of the important results derived from these simple formulae, I

take in thia abstract the following, viz.:

//7. (V . <r Uv) rds = ffaS . Uvrds - tfUvS . ards,

where by (c) and (a) we see that the right-hand member may be written

(d)

This, and similar formula), are applied in the paper to find the potential and

vector-force due to various distributions of magnetism. To show how this is introduced,

I briefly sketch the mode of expressing the potential of a distribution.

T. 21
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Let <r be the vector expressing the direction and intensity of magnetisation, per
unit of volume, at the element cfc. Then if the magnet be placed in a field of

magnetic force whose potential is u, we have for its potential energy

Vr) <fr
-
ffuS . Uv<rds.

This shows at once that the magnetism may be resolved into a volume-density

S(V<r), and a surface-density S. Uv<r. Hence, for a solenoidal distribution,

S.V<r=0.

What Thomson has called a lamellar distribution (Phil. Trans. 1852), obviously

requires that
8 <rdp

be integrable without a factor, i.e., that

F.V<r = 0.

A complex lamellar distribution requires that the same expression be integrable by
the aid of a factor. If this be u, we have at once

F.V(<r) = 0,

or S . <rV<T = 0.

We see at once that (d) may be written

-JfV.(V.<rUv)Td8 = -fSSV.TV.Vffd*-fSfV.oVTds+JJJ8<rV.Td,

Now, if T=Vf-j, where r is the distance between any external point and the

element efc, the last term on the right is the vector-force exerted by the magnet
on a unit pole placed at the point. The second term on the right vanishes by

Laplace's equation, and the first vanishes as above if the distribution of magnetism
be lamellar, thus giving Thomson's result in the form of a surface integral.

Another of the applications made is to Ampere's Directrice de faction electro-

dynannque, which (No. III. above, 5) is the vector-integral

where dp is an element of a closed circuit, and the integration extends round the

circuit This leads again to the consideration of relations between single and double

integrals, as in Part I. of this paper.

Returning to the electrodynamic integral, note that it may be written

- IF

so that, by one of the last formulae of Part I. above, its value as a surface integral
is

(JS.
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Of this the last term vanishes, unless the origin is in, or infinitely near to, the

surface over which the double integration extends. The value of the first term is

seen (by what precedes) to be the vector-force due to uniform normal magnetisation
of the same surface

2
Again, since V Up ^- ,

we obtain at once 2 III ~- = II,

whence, by differentiation, or by putting p + a. for p, and expanding in ascending

powers of To. (both of which tacitly assume that the origin is external to the space

integrated through, ie., that Tp nowhere vanishes), we have

[[[dslfp _ fC
V . Up V. UvUp , _ ff Uvds

and this, again, involves

The interpretation of these, and of more complex formula; of a similar kind,

leads to many curious theorems in attraction and in potentials Thus, from (a)

we have

IS*-///'*-//?*
which gives the attraction of a mass of density t in terms of the potentials of volume

distributions and surface distributions Putting

,. , fffVo-cfc rrrup.o-ds rrUv.a-ds
thi. becomes

JJJ -j^-jjj-
P

Tp
r~ =JJ

--

Tp
--.

By putting a- = p, and taking the scalar, we recover a formula given above
;
and by

taking the vector we have

This may be easily verified from the formula

by remembering that VTp= Up.

Again if, in the fundamental integral, we put

212
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XXIII.

ADDRESS TO SECTION A OF THE BRITISH ASSOCIATION.

[British Association Report, Edinburgh, August 3rd, 1871.]

IN opening the proceedings of this Section my immediate predecessors have exercised

their ingenuity in presenting its widely differing component subjects from their several

points of view, and in endeavouring to coordinate them. What they were obliged to

leave unfinished, it would be absurd in me to attempt to complete. It would be

impossible, also, in the limits of a brief address to give a detailed account of the

recent progress of physical and mathematical knowledge Such a work can only be

produced by separate instalments, each written by a specialist, such as the admirable
"
Reports

"
which form from time to time the moist valuable portions of our annual

volume.

I shall therefore confine my remarks in the mam to those two subjects, one in

the mathematical, the other in the purely physical division of our work, which are

comparatively familiar to myself. I wish, if possible, to induce, ere it be too late,

native mathematicians to pay much more attention than they have yet paid to Hamilton's

magnificent Calculus of Quaternions and to call the particular notice of physicists to

our President's grand Principle of Dissipation of Energy I think that these are, at

this moment, the most important because the most promising parts of our field

If nothing more could be said for Quaternions than that they enable us to exhibit

in a singularly compact anJ elegant form, whose meaning is obvious at a glance on

account of the utter inartificiahty of the method, results which in the ordinary Cartesian

coordinates are of the utmost complexity, a very powerful argument for their use would

be furnished. But
ty

would be unjust to Quaternions to be content with such a

statement; for we ate fully entitled to say that in all cases, even in those to which
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the Cartesian methods seem specially adapted, they give as simple an expression as

any other method; while in the great majority of cases they give a vastly simpler
one. In the common methods a judicious choice of coordinates is often of immense

importance in simplifying an investigation ;
in Quaternions there is usually ?io choice,

for (except when they degrade to mere scalars) they are in general utterly independent
of any particular directions m space, and select of themselves the most natural reference

lines for each particular problem. This is easily illustrated by the most elementary
instances, such as the following. The general equation of Cones involves merely the

direction of the vector of a point, while that of Surfaces of Revolution is a relation

between the lengths of that vector and of its resolved part parallel to the axis
;
and

Quaternions enable us by a mere mark to separate the ideas of length and direction

without introducing the cumbrous and clumsy square roots of sums of squares which
are otherwise necessary.

But, as it seems to me that mathematical methods should be specially valued in

this Section as regards their fitness for physical applications, what can possibly fiom
that point of view be more important than Hamilton's V ?

Physical analogies have
often been invoked to make intelligible various mathematical processes Witness the

case of Statical Electricity, wherein Thomson has, by the analogy of Heat-conduction,

explained the meaning of various important theorems due to Green, Gauss, and others;
and wherein Clerk-Maxwell has employed the properties of an imaginary incompressible

liquid (devoid of inertia) to illustrate not merely these theorems, but even Thomson's
Electrical Images [In fact he has gone much further, having applied his analogy to

the puzzling combinations presented by Electrodynamics] There can be little doubt
that these comparisons owe their birth to the small intelligibility, per se, of what has

been called Laplace's Operator, -7-- +
'

-
-f -^ ,

which appears alike in all theories of

attraction at a distance, in the steady flow of heat m a conductor, and in the steady
motion of incompressible fluids But when we are taught to understand the operator
itself we aie able to dispense with these analogies, which, however valuable and

beautiful, have certainly to be used with extreme caution, as tending very often to

confuse and mislead. Now Laplace's operator is merely the negative of the square of

Hamilton's V, which is perfectly intelligible m itself and m all its combinations, and
can be denned as giving the vector-rate of most rapid increase of any scaLar function

to which it is applied giving, for instance, the vector-force from a potential, the

heat-flux from a distribution of temperature, &c. Very simple functions of the same

operator give the rate of increase of a quantity in any assigned direction, the conden-
sation and elementary rotation produced by given displacements of the parts of a system,
&c. For instance, a very elementary application of V to the theory of attraction

enables us to put one of its fundamental principles in the following extremely suggestive
form : If the displacement or velocity of each particle of a medium represent in

magnitude and direction the electric force at that particle, the corresponding statical

distribution of electricity is proportional everywhere to the condensation thus produced.

Again, Green's celebrated theorem is at once seen to be merely the well-known equation
of continuity expressed for a heterogeneous fluid, whose density at every point is
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proportional to one electric potential, and its displacement or velocity proportional to

and in the direction of the electric force due to another potential. But this is not

the time to pursue such an inquiry, for it would lead me at once to discussions as

to the possible nature of elective phenomena and of gravitation. I believe myself to

be fully justified in saying that, were the theory of this operator thoroughly developed
and generally known, the whole mathematical treatment of such physical questions as

those just mentioned would undergo an immediate and enormous simplification; and

this, in its turn, would be at once followed by a proportionately large extension of

our knowledge*.

And this is but one of the claims of Quaternions to the attention of physicists.

When we come to the important questions of stress and strain in an elastic solid, we

find again that all the elaborate and puzzling machinery of coordinates commonly

employed can be at once comprehended and kept out of sight in a mere single symbol
a linear and vector function, which is self-conjugate if the strain be pure. This is

simply, it appears to me, a proof either that the elaborate machinery ought never to

have been introduced, or that its use was an indication of a comparatively savage
state of mathematical civilization. In the motion of a rigid solid about a fixed point,

a quaternion, represented by a single symbol which is a function of the time, gives

us the operator which could bring the body by a single rotation from its initial

position to its position at any assigned instant. In short, whenever with our usual

means a result can be obtained in, or after much labour reduced to, a simple form,

Quaternions will give it at once in that form
;

so that nothing is ever lost in point

of simplicity On the other hand, in numberless cases the Quaternion result is

immeasurably simpler and more intelligible than any which can bo obtained or even

expressed by the usual methods. And it is not to be supposed that the modern

Higher Algebra, which has done HO much to simplify and extend the ordinary Cartesian

methods, would be ignored by the general employment of Quaternions ;
on the contrary,

* The following extracts from letters of Sir W. R. Hamilton have a perfectly general application, so

that I do not hesitate to publish them " De Morgan was the very first person to notice the Quaternions

in print; namely in a Paper on Triple Algebra, m the Camb. Phil Tram, of 1844 It was, I think,

about that time, or not very long afterwards, that he wrote to me, nearly a* follows :
'
I suspect, Hamilton,

that you have caught the nrjht now by the far !

' Between us, dear Mr Tait, I think that ice shall begin

the HHEARINO of it"" " You might without offence to me, consider that I abused the license of hope,

which may be indulged to an inventor, if I were to confess that I expect the Quaternions to supply,

hereafter, not merely mathematical methods, but also physical suggestions. And, m particular, you are quite

welcome to smile if I say that it does not seem extravagant to me to suppose that a full possession of

those 11 pnon principles of mine, about the multiplication of vectors (including the Law of the Foui Scales

and the conception of the Extra-spatial Unit), which have as yet been not much more than hinted to the

public, MIGHT have led (I do not at all mean that in my hand* they ever would have done so) to an

ANTICIPATION of the great discovery of OEBSTED."

"It appears to me that one, and not the least, of the services which quaternions may be expected to

do to mathematical analysis generally, is that their introduction will compel those who adopt them (or even

who admit that they may be reasonably adopted by other persons) to consider, or to admit that others

may usefully inquire, what common ground* can be established for conclusion* common to quaternions and

to older branches of mathematics."

"Could any thing be simpler or more satisfactory? Don't you feel, as well as think, that we are on a

right track, and shall be thanked hereafter? Never mind when."
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Determinants, Invariants, &c. present themselves in almost every Quaternion solution, and

in forma which have received the full benefit of that simplification which Quaternions

generally produce. Comparing a Quaternion investigation, no matter in what department,
with the equivalent Cartesian one, even when the latter has availed itself to the

utmost of the improvements suggested by Higher Algebra, one can hardly help making
the remark that they contrast even more strongly than the decimal notation with the

binary scale or with the old Greek Arithmetic, or than the well-ordered subdivisions

of the metrical system with the preposterous no-systems of Great Britain, a mere

fragment of which (in the form of Tables of Weights and Measures) forms perhaps

the most effective, if not the most ingenious, of the many instruments of torture

employed in our elementary teaching.

It is true that, in the eyes of the pure mathematician, Quaternions have one grand
and fatal defect. They cannot be applied to space of n dimensions, they are contented

to deal with those poor three dimensions in which mere mortals are doomed to dwell,

but which cannot bound the limitless aspirations of a Cayley or a Sylvester From

the physical point of view this, instead of a defect, is to be regarded as the greatest

possible recommendation. It shows, in fact, Quaternions to be a special instrument

so constructed for application to the Actual as to have thrown overboard everything
which is not absolutely necessary, without the slightest consideration whether or no it

was thereby being rendered useless for applications to the Inconceivable.

The late Sii John Herschel was one of the first to perceive the value of Quater-

nions, and there may be piebent some who remember him, at a British Association

Meeting not long after their invention, characterizing them as a "Cornucopia from

which, turn it how you will, something valuable is sine to fall" Is it not strange,

to use no harsher woid, that such a harvest has hitherto been left almost entirely

to Hamilton himself If but half a dozen tolerably good mathematicians, such as

exist in scoies in this country, were seriously to work at it, instead of spending (or

rather wasting) their time, as so many who have the requisite leisure now do, in

going over again what has been already done, or in working out mere details where

a grand theory has been sketched, a very great immediate advance would be certain.

From the majoiity of the papers in our few mathematical journals one would almost

be led to fancy that British mathematicians have too much pride to use a simple
method while an unnecessarily complex one can be had. No more telling example of

this could be wished for than the insane delusion under which they permit Euclid

to be employed in our elementary teaching. They seem voluntarily to weight alike

themselves and their pupils for the race
,

and a cynic might, perhaps without much

injustice, say they do so that they may have mere self-imposed and avoidable difficulties

to face instead of the new, real, and dreaded ones (belonging to regions hitherto

unpenetratcd) with which Quaternions would too soon enable them to come into contact.

But this game will certainly end in disaster. As surely as Mathematics came to a

relative stand-still in this country for nearly a century after Newton, so surely will

it do so again if we leave our eager and watchful rivals abroad to take the initiative

in developing the grand method of Hamilton. And it is not alone French and Germans
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whom we have now to dread, Russia, America, regenerated Italy, and other nations

are all fairly entered for the contest.

The flights of the imagination which occur to the pure mathematician are in

general so much better described in his formulae than in words, that it is not

remarkable to find the subject treated by outsiders as something essentially cold and

uninteresting, while even the most abstruse branches of physics, as yet totally incapable

of being popularized, attract the attention of the uninitiated. The reason may perhaps
be sought in the fact that, while perhaps the only successful attempt to invest

mathematical reasoning with a halo of glory that made in this Section by Prof.

Sylvester is known to a comparative few, several of the highest problems of physics

are connected with those simple observations which are possible to the many The

smell of lightning has been observed for thousands of years, it required the sagacity

of Schonbem to trace it to the formation of Ozone Not to speak of the (probably

fabulous) apple of Newton, what enormous consequences did he obtain by passing light

through a mere wedge of glass, and by simply laying a lens on a flat plate' The

patching of a trumpery model led Watt to his magnificent inventions. As children

at the sea-shore playing with a "
roaring bxickie," or in later life lazily puffing out

rings of tobacco-smoke, we are illustrating two of the splendid researches of Helmholtz.

And our President, by the bold, because simple, use of reaction instead of action, has

eclipsed even his former services to the Submarine Telegraph, and given it powers
which but a few years ago would have been deemed unattainable

In experimental Physics our case is not hopeless, peihaps not as yet even alarming

Still something of the same kind may be said in this as m pure Mathematics If

Thomson's Theory of Dissipation, for instance, be not speedily developed in this country,

we shall soon learn its consequences from abroad The grand test of our science, the

proof of its being a reality and not a mere inventing of new terms and squabbling
as to what they shall mean, is that it is ever advancing. There is no standing still

;

there is no running round and round as m a beaten donkey-track, coming back at

the end of a century or so into the old positions, and fighting the self-same battles

under slightly different banners, which is merely another form of stagnation (Kinetic

Stability in fact). "A little folding of the hands to sleep," in chuckling satisfaction

at what has been achieved of late years by our great experimenters, and we shall be

left hopelessly behind. The sad fate of Newton's successors ought ever to be a warning
to us Trusting to what he had done, they allowed mathematical science almost to

die out in this country, at least as compared with its immense progress in Germany
and France. It required the united exeitions of the late Sir J. Herschel and many
others to render possible in these islands a Boole and a Hamilton. If the successors

of Davy and Faraday pause to ponder even on their achievements, we shall soon be

again m the same state of ignominious inferiority Who will then step in to save us ?

Even as it is, though we have among us many names quite as justly great as

any that our rivals can produce, we have also (even in our educated classes) such an

immense amount of ignorance and consequent credulity, that it seems matter for
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surprise that true science is able to exist. Spiritualists, Circle-squarers, Perpetual-

motionists, Believers that the earth is flat and that the moon has no rotation, swarm
about us. They certainly multiply much faster than do genuine men of science. This

is characteristic of all inferior races, but it is consolatory to remember that in spite
of it these soon become extinct Your quack has his little day, and disappears except
to the antiquary. But in science nothing of value can ever be lost

,
it is certain to

become a stepping-stone on the way to further truth. Still, when our stepping-stones
are laid, we should not wait till others employ them. " Gentlemen of the Guard be

kind enough to fire first" is a courtesy entirely out of date; with the weapons of

the present day it would be simply suicide

There is another point which should not be omitted in an address like this. For

obvious reasons I must speak of the general quebtion only, not venturing on examples,

though I could give many telling ones. Even among our greatest men of science in

this country there is comparatively little knowledge of what has been already achieved,

except of course in the one or more special departments cultivated by each individual.

There can be little doubt that one cause at least of this is to be sought in the

extremely meagre interest which our statesmen, as a rule, take in bcientific progress

While abroad we find half a dozen professors teaching parts of the same subject in

one University (each having therefore reasonable leisure), with us one man has to do

the whole, and to endeavour as he best can to make something out of his very few

spare moments. Along with this, and in great part due to it, there is often found

a proneness to believe that what seems evident to the thinker cannot but have been

long known to others Thus the credit ot many valuable discoveries is lost to Britain

because her philosophers, having no time to spare, do not know that they are discoveries.

The scientific men of other nations are, as a rule, better informed [certainly far better

encouraged and less over-worked], and perhaps likewise are nob so much given, to

self-depreciation. Until something resembling the ' Fortschntte der Physik,' but in an

improved form, and published at smaller intervals and with much less delay, is

established in this country, there is little hope of imptovement in this respect. Why
should science bo imperfectly summarized in little haphazard scraps here and there,

when mere property has its elaborate series of Money-articles and exact Broker's Share-

lists ? Such a work would be very easy of accomplishment: we have only to begin

boldly ;
we do not need to go back, for in every year good work is being done at

almost every part of the boundary between, as it were, the cultivated land and the

htill impenetrated foiest enough at all events to show with all necc&sary accuracy

whereabouts that boundary lies.

There is no need of entering here on the question of Conservation of Energy ;

it is thoroughly accepted by scientific men, and has revolutionized the greater part

of Physics. The facts as to its history also are generally agreed upon, but differences

of a formidable kind exist as to the deductions to be drawn from them. These are

matters, however, which will be more easily disposed of thirty years hence than now.

The Transformation of Energy is also generally accepted, and, in fact, under various

unsatisfactory names was almost popularly known before the Conservation of Energy

T. 22
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was knpwn in its entirety to more than a very few. But the Dissipation of Energy
is by no moans well known, and many of the results of its legitimate application

have been received with doubt, sometimes even with attempted ridicule. Yet it appears

to be at the present moment by far the most promising and fertile portion of Natural

Philosophy, having obvious applications of which as yet only a small percentage appear
to have been made. Some, indeed, were made before the enunciation of the Principle,

and have since been recognized as instances of it. Of such we have good examples
in Fourier's great work on Heat-conduction, in the optical theorem that an image can

never be brighter than the object, m Gauss's mode of investigating electrical distribution,

and in some of Thomson's theorems as to the energy of an electromagnetic field

But its discoverer has, so far as I know, as yet confined himself in its explicit

application to questions of Heat-conduction and Restoration of Energy, Geological Time,

the Earth's Rotation, and such like. Unfortunately his long-expected Rede Lecture has

not yet been published, and its contents (save to those who were fortunate enough
to hear it) are still almost entirely unknown.

But there can be little question that the Principle contains implicitly the whole

theory of Thermo-electricity, of Chemical Combination, of Allotropy, of Fluorescence,

&c., and perhaps even of matters of a higher order than common physics and chemistry.

In Astronomy it leads us to the grand question of the age, or perhaps moie correctly

the phase of life,
of a star or nebula, shows us the material of potential suns, other

suns in the process of formation, in vigorous youth, and in every stage of slowly

protracted decay. It leads us to look on each planet and satellite as having been at

one time a tiny sun, a member of some binary or multiple group, and even now

(when almost deprived, at least at its surface, of its original energy) presenting an

endless variety of subjects for the application of its methods It leads us forward in

thought to the far-distant time when the materials of the present stellar system shall

have lost all but their mutual potential energy, but shall in virtue of it form the

materials of future larger suns with their attendant planets Finally, as it alone is

able to lead us, by sure steps of deductive reasoning, to the necessary future of the

universe necessary, that is, if physical laws for ever remain unchanged so it enables

us distinctly to say that the present order of things has not been evolved through

infinite past time by the agency of laws now at work, but must have had a distinctive

beginning, a state beyond which we are totally unable to penetrate, a state, m fact,

which must have been produced by other than the now acting causes.

Thus also, it is possible that in Physiology it may, ere long, lead to results of a

different and much higher order of novelty and interest than those yet obtained,

immensely valuable though they certainly are

It was a grand step in science which showed that just as the consumption of

fuel is necessary to the working of a steam-engine, or to the steady light of a candle,

so the living engine requires food to supply its expenditure m the forms of muscular

work and animal heat. Still grander was Rumford's early anticipation that the animal

is a more economic engine than any lifeless one we can construct. Even in the



XXIII.] ADDRESS TO SECTION A OF THE BRITISH ASSOCIATION. 171

explanation of this there is involved a question of very great interest, still unsolved,

though Joule and many other philosophers of the highest order have worked at it.

Joule has given a suggestion of great value, viz. that the animal resembles an electro-

magnetic- rather than a heat-engine ; but this throws us back again upon our difficulties

as to the nature of electricity. Still, even supposing this question fully answered,
there remains another perhaps the highest which the human intellect is capable of

directly attacking, for it is simply preposterous to suppose that we shall ever be able

to understand scientifically the source of Consciousness and Volition, not to speak of

loftier things there remains the question of Life. Now it may be startling to some
of you, especially if you have not particularly considered the matter, to hear it

surmised that possibly we may, by the help of physical principles, especially that of

the Dissipation of Energy, some time attain to a notion of what constitutes Life

mere Vitality I repeat, nothing higher If you think for a moment of the vitality

of a plant or a zoophyte, the remark perhaps will not appear so strange after all.

But do not fancy that the Dissipation of Energy to which I refer is at all that of

a watch or such-hke piece of mere human mechanism, dissipating the low and common
form of energy of a single coiled spring. It must be such that every little part of

the living organism has its own store of energy constantly being dissipated, and as

constantly replenished from external sources drawn upon by the whole arrangement in

their harmonious working together. As an illustration of my meaning, though an

extremely inadequate one, suppose Vaucanson's Duck to have been made up of exces-

sively small parts, each microscopically constructed as perfectly as was the comparatively
coarse whole, we should have had something barely distinguishable, save by want of

instincts, from the living model But let no one imagine that, should we ever penetrate

this mystery, we shall thereby be enabled to produce, except from life, even the lowest

form of life Our President's splendid suggestion of Vortex-atoms, if it be correct, will

enable us thoioughly to understand matter, and mathematically to investigate all its

properties. Yet its very basis implies the absolute mcessity of an intervention of Creative

Power to form or to destroy one atom even of dead matter The question really

stands thus- Is Life physical or no? For if it be in any sense, however slight or

restricted, physical, it is to that extent a subject for the Natural Philosopher, and for

hun alone. It would be entirely out of place for me to discuss such a question as

this now and here
,

I have introduced it merely that I may say a word or two about

what has been so often and so persistently croaked against the British Association,

viz that it tends to devclope what are called Scientific Heresies No doubt such

charges are brought more usually against other Sections than against this; but

Section A has not been held blameless It seems to me that the proper answer to

all such charges will be very simply and easily given, if we merely show that in our

reasonings from observation arid experiment we invanably confine our physical conclusions

strictly to matter and energy (things which we can weigh and measure) in their

multiform combinations Excepting that which is obviously purely mathematical, whatever

is certainly neither matter nor energy, nor dependent upon these, is not a subject to

be discussed here, even by implication. All our reasonings in Physics intuit, so far as

we know, be based upon the assumption, founded on experience, that in the universe,

whatever be the epoch or the locality, under exactly similar circumstances exactly

222
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similar results will be obtained. If this be not granted there is an end of Physical

Science, or, rather, there never could have been such a Science*. To use the word
"
Heresy

"
with reference to purely physical reasonings about Geological Time, or

matters of that kind, is nowadays a piece of folly which even Galileo's judges, were

they alive, would shrink from, as calculated to damage none but themselves and the

cause which of old they, according to their lights, very naturally maintained.

There must always be wide limits of uncertainty (unless we choose to look upon

Physics as a necessarily finite Science) concerning the exact boundary between the

Attainable and the Unattainable. One herd of ignorant people, with the sole prestige

of rapidly increasing numbers, and with the adhesion of a few fanatical deserters from

the ranks of Science, refuse to admit that all the phenomena even of ordinary dead

matter are strictly and exclusively in the domain of physical science. On the other

hand, there is a numerous group, not in the slightest degree entitled to rank as

Physicists (though in general they assume the proud title of Philosophers), who assert

that not merely Life, but even Volition and Consciousness are mere physical manifes-

tations. These opposite errors, into neither of which is it possible for a genuine

scientific man to fall, so long at least as he retains his reason, are easily seen to

be very closely allied. They are both to be attributed to that Credulity which is

characteristic alike of Ignorance and of Incapacity. Unfortunately there is no cure;

the case is hopeless, for great ignorance almost necessarily presumes incapacity, whether

it show itself in the comparatively harmless folly of the Spiritualist or in the pernicious

nonsense of the Materialist.

Alike condemned and contemned, we leave them to their proper fate oblivion
;

but still we have to face the question, where to draw the line between that which

is physical and that which is utterly beyond physics. And, again, our answer is

Experience alone can tell us
;

for experience is our only possible guide. If we attend

earnestly and honestly to its teachings, we shall never go far astray. Man has been

left to the resources of his intellect for the discovery not merely of physical laws,

but of how far he is capable of comprehending them And our answer to those who

denounce our legitimate studies as heretical is simply this, A revelation of any thing

which we can discover for ourselves, by studying the ordinary course of nature, would

be an absurdity.

A profound lesson may be learned from one of the earliest little papers of our

President, published while he was an undergraduate at Cambridge, where he shows

that Fourier's magnificent treatment of the Conduction of Heat leads to formulae for

its distribution which are intelligible (and of course capable of being fully verified by

*
It might be possible, and, if so, perhaps interesting, to speculate on the results of secular changes

in physical laws, or in particles of matter which are subject to them, but (so far as experience, which is

our only guide, has taught us since the beginning of modern science) there seems no trace of such. Even

if there were, as these changes must be of necessity extremely slow (because not yet even suspected), we may

reasonably expect, from the analogy of the history of such a question as gravitation, especially in the

discovery of Neptune, that our work, far from becoming impossible, will merely become considerably more

difficult as well as more laborious, but, on that account, all the more creditable when successfully carried out.
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experiment) for all time future, but which, except in particular cases, when extended

to time past, remain intelligible for a finite period only, and then indicate a state of

things which could not have resulted under known laws from any conceivable previous
distribution. So far as heat is concerned, modern investigations have shown that a

previous distribution of the matter involved may, by its potential energy, be capable
of producing such a state of things at the moment of its aggregation ;

but the example
is now adduced not for its bearing on heat alone, but as a simple illustration of the

fact that all portions of our Science, and especially that beautiful one the Dissipation

of Energy, point unanimously to a beginning, to a state of things incapable of being
derived by present laws from any conceivable previous arrangement.

I conclude by quoting some noble words used by Stokes in his Address at Exeter,

words which should be stereotyped for every Meeting of this Association .

" When
from the phenomena of life we pass on to those of mind, we enter a region still

more profoundly mysterious Science can be expected to do but little to aid us

here, since the instrument of research is itself the object of investigation. It can but

enlighten us as to the depth of our ignorance, and lead us to look to a higher aid

for that which most nearly concerns our wellbeing."
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XXIV.

NOTE ON A SINGULAR PROPERTY OF THE RETINA.

[Proceedings of the Royal Society of Edinburgh, Jan. 15, 1872]

WHILE suffering some of the annoyances seemingly inseparable from re-vaccination

at too advanced an age, I was led to the curious observation presently to bo

described. I was unable to sleep, except in
"
short and far between

"
dozes, from

which I woke with a sudden start, my eyelids opening fully I found by trial that

this state of things became somewhat less intolerable when I lay on my back, with

my head considerably elevated. In this position I directly faced a gas jet, burning
not very bnghtly, placed close to a whitish wall, and surrounded by a ground glass

shade, through which the flame could be prominently perceived The portions of the

wall surrounding the burner were moderately illuminated, and hyperbolic portions

above and below somewhat more strongly. I observed, on waking, that the gas flame

seemed for a second or two to be surrounded by a dark crimson ground, though
itself apparently unchanged in colour. Gradually, after the lapse of, at the very

utmost, a couple of seconds, everything resumed its normal appearance As this

phenomenon appeared not only to be worthy of observation in itself, but to furnish

me with something definite to reflect upon, which is far the best alleviation of

annoyances similar to those from which I was suffering, I determined to watch it,

transitory as it was, feeling assured that I should have many opportunities of

observing it After two nights' practice, I found myself getting dangerously skilful

m repioducing it, and decided somewhat reluctantly, that I must give t up. What
I observed, however, has already been almost completely described as having been

seen on the very first occasion I endeavoured to prepare myself to note any possible

difference of colour in the crimson field, as distinguished from mere difference of

intensity of illumination, and I could perceive none. I also endeavoured to ascertain

the nature of the transition from this state to the normal one, but this was so
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exceedingly rapid that I could form no conclusion, and I found that under the

necessary circumstances of the observation, viz., as it could be made only at the

instant of awakening, it was impossible for me to estimate, even approximately, the

duration of the crimson appearance.

Several possible modes of explaining the phenomenon at once occurred to me.

Of these, however, I shall mention but three, and give reasons for rejecting two of

them, while not pretending to specify them in the order in which they occurred to

me. It cannot be ascribed to any visual defects in my eyes, which are normal as

to colour sensations, and very perfect optically. 1st, I imagined it might be clue to

light passing through the almost closed eyelid, or through a portion of the eyeball

temporarily filled with blood. Besides feeling certain that my eyes were fully open,
I had the additional argument against this explanation, that I could not reproduce
the phenomenon by carefully and gradually closing them, and that I am not aware

that an effusion of blood in any part of the eye could possibly disappear so rapidly.

2nd, It might be due to diffraction either by my eyelashes or by small particles,

whether on the cornea or in the transparent substances of the eye, coarse enough
to produce nearly the same tint for some distance round the flame. This is negatived

by several considerations, among which (in addition to those urged against the

preceding explanation) it is only necessary to mention again the facts, that the

colour is not one which caii be produced by diffraction under such circumstances,

and that it appeared to be the same on the more illuminated, as well as on the

darker part ot the field. 3rd, I suggest, as a possible explanation, but one which

is more specially in the province of the physiologist than of the natural philosopher,

that the retina (or the nerve cells connected with it ?
) partakes of sleep with the

other nerve cells, by which that phenomenon has been accounted for, and that on a

sudden awakening, the portions connected with the lowest of the primary forms of

colour are the first to come into action, the others coming into play somewhat

later, and almost simultaneously This would completely account for the
_ peculiar

cumson colour, and for its uniformity of tint over the whole field, excepting the

gas flamo itself, the comparative intensity of whose light may easily be supposed to

have simultaneously aroused all the three sensations in the small portion of the

retina on which it fell, though it is just possible that it also may have appeared
crimson for an exceedingly short period I am not aware of any experiments or

observations having been made with reference to the subject of this note, and I

hope to have no further opportunities of making them, at least in the way in which

these were made, but the point is a curious one, and worthy of the careful attention

of all who may be forced to consider it. Professor Clerk-Maxwell informs me that

he and others have observed that the lowest of the three colour sensations is the

first to evanesce with famtness of light, and that it has been asserted to be the

most sluggish in responding to the sudden appearance of light. This, however, is not

necessarily antagonistic to my explanation, but will rather, if my explanation be

correct, tend to show a greater interval between the awakening of the red, and that

of the other colour sensations than that above hinted at.
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XXV.

ON ORTHOGONAL ISOTHERMAL SURFACES. PART I.

[Trans. R.S.E. 1873-4. Read Jan. 2, 1866; Revised and Improved, Jan 15, 1872]

THE following pages contain, in a comparatively compact foim, pait of the substance

of a voluminous paper read to the Society six years ago Of that paper, which employed

ordinary analysis alone, only a few pages had been put in type when I succeeded in

overcoming a formidable difficulty which had presented itself m my quaternion treatment

of the subject. I therefore withdrew the paper in order that it might have the benefit of

the simplification which quaternions always give ;
but it is only of late that I have found

time to complete part of the translation into the new language From the circumstances

under which the paper has thus been produced, i, j, k come forward with undue prominence,

a thing to be regaided (in Hamilton's words) "as an inelegance and imperfection in

this calculus, or rather in the state to which it has hitherto been unfolded." Immense

as is the simplification already attained, it is clear that in many places still more is

attainable. But I have not postponed my paper till it should receive this final polish,

partly because the time I can devote to such inquiries is extremely limited, and partly

because I think that several of the results obtained, and of the modes of obtaining

them, are new and remarkable. Besides, a question of this order of difficulty is

admirably adapted to show in what respects quaternion methods require improvement.
There must be some simple mode of deducing (13) and (21) below from (7) without the

explicit use of i, j, k, but I have not yet been fortunate enough to discover it. [This

has been, to some extent, supplied in later papers: Dec. 1877, and Dec. 1892. 1897.]

I append to this introduction, for comparison, a few extracts from the paper in

its original form.
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d ( d\ d ( d\ d ( d\
l u *} + ( u /) + -. (u ,/)=0,

dx\ d,vj dy\ dyj dz\ dz)
'

[
XXV -

with similar equations in v, q and M>, (

d Now if =c be one of a system of surfaces isothermal us well as orthogonal, we must have,

by the above equation,

D(u, )
= 0,

But the orthogonality gives D
(17, )

=
0, D ({, )

=
0,

and the elimination of among these three equations gives A (M, ;, ()=Q, ie by the property of

functional detei minants, u ii a function of
T;
and alone Thus wo have

V o
C

a well-known relation, &c.

1. Consider the equation T.
{<f> +f(h)}-*<r = 1,

or, as it may be written, S . a-
{<j> +f(h)}-

1
o- = - 1 ...................... (1),

where
<f>

is any self-conjugate linear and vector function, of which i, j, k are the principal

vector directions We assume that the roots of Hamilton's equation

are finite and different from one another, so that cylinders, surfaces of revolution, &c ,

are excluded from (1)

For any assigned value of or, (1) gives in general three values of /(/) and therefore

of h Omitting for the present the consideration that each value of f(h) may give

more than one value of h, these values may be any assigned functions of the position

of a point in space , because, when they and the function / are assigned, the squares
of the constituents of tr (or, what comes to the same thing, the values of <r

a
, S<r<f><r,

S<r<f>
3
<r) can at once be found in terms of them, by a system of three linear equations.

In this first part I confine myself to cases in which each of these squares is

positive, so as to avoid for the present the use of biquatermons.

2. For any assigned constant value of h, (1) represents in general a surface whose

normal vector, V/t, is given by

(2),

being written for convenience in place of
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Now if hi, hz be the other two values of h given by (1) for a paiticular value

of ff, the conditions of orthogonality of the surfaces h, h lt A2 , are of the form

= 8

where

3. The three equations (3) may be put m the new form

whence S ~ 8 . ^~v ||
V. ^rl

<r^r
l
<r ...........

4. But, by the nature of self-conjugate linear and vector functions,

-'- "1 1

with two other equations of the same kind These give (when the values of h are

different) three equations of the form

t-^li F.^r'o-trv ................... (6),

where, of course, we may dispense with the V

5 By (4) and (6) we see that we have three equations of the form

. . u v (da- a d<r . \

^~ l
<r i, -7- S . , Tlr~

l
cr

,r "
\dx dx r

/

i xi_ T i. ^i ^ ^" do- dcr
and these show at once that ,--

,
.

, -j-
.// ay az

are rectangular vectors whose tensors are equal For

rS . ctfiy
= ati . &yr + 08 . 7ar + 7>S . a/3r

is the or^?/ decomposition of r parallel to a, 0, 7 respectively ,
and we have here the

equation
T

||
aSar + j3S/3r + ySyr,

holding good for the three non-coplanar vectors ^-"V, -^"V, ^"V, and therefore true

for all vectors. Hence we must have

a||F/?7, ft \\Vya, 7 II Va&

of which any two include the third as a necessary consequence, and in all three of

which the coefficient of proportionality is evidently the same The only exception to

this is when

But, in this case, by (2) VA
|| i, &c.,

and we have series of rectangular planes.

232
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6. Hence there must exist a scalar function u, and a quaternion q (which may
obviously be taken as a mere versor), such that

d<r .
, ,

2X
= "<M >

&c
'

or, in one expression, d<r = uqdpq~
l

(7).

Thus it appears that, in order that (1) (with the limitations above imposed) may
represent a triple series of orthogonal surfaces, tr must be such a function of p that,

if the extremities of a set of values of p form the corners of an indefinitely small

cube, those of the corresponding values of a- (drawn from a common origin) form the

corners of another such cube
,
and that, therefore, the passage from p to a- is that from

one mode of dividing space into indefinitely small cubes to another.

Whatever, therefore, may be thought of the logic of the investigation above, it is

worth while to pursue the inquiry thus suggested, by developing the consequences of

the equation (7) to which it has led us.

7. From the equations just written we see that if

cr-if+.pi + fcr (8),

the direction cosines of giq~
l are

1
<Z|

1 dr. Id?
u dx

'

u dx
' u dx

'

From these, and other six of similar form, we see that the direction cosines of i re-

ferred to qiq~
l

, qjq~\ qkq'
1 are

1 dj ld 1 d%
u dx

'

u dy' u dz
'

and similarly for those of j and k.

Hence it follows that V, VT;, V form a set of mutually perpendicular vectors

whose common tensor is u.

The same result may be obtained as follows:

v*--(?+j-?-+*|Uv*
\ dx J

dy dz/

= - u (18 iqiq-
1

+j$ . iqjq~
l + kS . iqkq~

l

)

= u (iti i

= uq~
l

iq (9)

Hence we have d!-= uti . q^iqdp,

of which the condition of integrability is

V. V .uq~
l

iq
= 0.
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Thus u and q must be determined so as to satisfy the equation

V.V.ug-'ag^O .................................. (10),

whatever constant vector be represented by a.

We may state our present conclusions in the following simple form In order

that (1) may represent a triple series of orthogonal surfaces, it is necessary and sufficient

that the constituents of cr satisfy three equations of the form (9) i c ,
that when

severally equated to constants, they represent three series of surfaces which together

cut space into cubes.

8. As a verification of (9) we see that it and tho similar expressions for VT;

and V give

da u (iSq~
l

iqdp +.................. )

= -
uqdpq~\

which is equation (7).

9. Performing the operations indicated in (10), it becomes

V(Vu q-^q) + uV.S
(iq^a j?

-
iq~*
%

q-*aq)
= 0,

or V .

V- -'a + 22 V l V. q~^qq^ ^ = 0,
u ax

(this simplification being permitted because ( (>) the tensor of q may be regarded as

unity) or, finally,

V. q-^q - 25-'^ iT
1 + 22 . (8 . griog,) q-*

=
,

which may be written

V
c/-

1

aq + 2<r
1

aqS (V^-
1

. q)
- 22 . (8 . q~* aqi)^- q = 0,U (jix

Vu
or V. q-iaq + Zq-taqS^q-

1

.q)-2S.(q-
l

aqV)q-
1

? =

Here a has the values ^, j, k, so that if we write

q-
l

OLq=zi', &c,

we have three equations of the type

? = o (ii).

From these we have

2 . i'V . i' 6$ . Vq~
l

q + 2V<p
1

. q = 0,
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. q) + Vgr* . q = 0.

Henco

and ^
or, finally,

V . uq~
l = .......................................... (13).

10 But this is not the only relation between u and q For by (12) we may
write (11) in the form

-V(Vq-*.qq-**q)q^-2S.(q-**qV)q-i = Q .................. (14)

It is obvious that, by adding the three equations of this form, each multiplied by
a proper scalar, we may derive from them three equivalent ones of the form

V(Vq~
l

.qi)q-
l + 2S(W)q- l = ............ (15)

This may be written by the help of (12) in the form

2^g = -F.Tg-' ? =7.i^
M
=7.Vlogu .......... (16),

and we thus see that the constancy of the tensor of q is recognised.

Differentiating again after multiplying into q~*, we have

^- V(* l9g)^+ K.t A V logu.r*

= i(7.V log)g- l + V.i^V \ogu.q~
1

.

Adding the three equations of this foim, we have

- 2V 2

9~
1 = (V log uf q~* ............................... (17),

for obviously V J

logw is a scalar.

But we have also V uq~
l = ........... ........... (18),

which gives V log u . q~
l + Vq~

l =

and Vs

log u . q'
1 + 2 . t (

V log it)

*

+ Va

?
~l = 0,

or V8
log u . q-

1 + 2 . i (V log u)V (iV log M) q~
l + V^-1 = 0,

which may be simplified into

Together, (17) and (19) give

Vs
log u . q~*

- V*3~
l =

(20)

V2Mogu + (V logw)'=
rtl
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The latter of these equations) may be written

V <uW log u)-0 =
?(**),

or finally V 3

(*) = <) .................................. (21).

11. Hence u is the square of the potential of some distribution of matter, none

of which is contained in the space occupied by the surfaces.

Hence the only strict solution, i e ,
the only one that holds at every point of

infinite space, is

u = constant,

and, of course, q
= constant

From this we have V = nq~
l

iq
= u (ia l

Thus the constituents ot a-, separately equated to constants, give the equations of

three series of mutually perpendicular planes cutting space into cubes, for u is the

same for all When we turn the axes so as to be perpendicular to these planes

respectively, and adopt a suitable origin, we have

= ux, i)
=

uy, % = uz,

whence <r = up,

and thus equation (1) gives in this case the confocal surfaces of the second order.

12. We omit for the present, in consequence of the remark at the beginning of

last section, other obvious solutions of (21), such as

But if we admit that at one point of space there may be a particle of matter of

mass ??i, we have, of course,

Tp"

so that Vq~
l

q = _
^ ,

which gives as a particular integral q~
l = Up

7H.
2

Hence, in this case, da = uqdpq~
l =

, g (lUpSUpdp + dp)

or cr = m'p~
l
.

The corresponding surfaces are the electric images of the confocal quadrics, taken

from the common centre, and include Fresnel's surface of elasticity.
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13. It follows, from what we have just proved, that the only orthogonal surfaces

which divide all space into indefinitely small cubes are planes and their electric images,

or images of images, &c. These are all, therefore, included in a triple series of spheres

having a common point, and their centres m three rectangular axes passing through
that point.

In fact, if m (7) we put for cr

,
dcr' ,dcr ,we have T

= <r -r- cr, &c..
ax ax

,
dcr' dcr' , dcr dcr .

whence S -r- .
= <r*S -p -7- = 0, &c.,ax ay ax ay

and J.
,

- = J.
-
1
= / -,

- M J- & J
-

dx dy dz

Hence the electric image of any orthogonal system is also orthogonal ; and, if the

system cut space into cubes, so does the image.

14 We are now prepared to introduce the conditions that the surfaces (1) shall

each be isothermal. If h, hlt / 2 represent their temperatures, these conditions are simply

V 2h = Q, 7^ = 0, V 2
/i2
=

(22).

To express these in another form we must now differentiate equations (2).

15 By (2) we have

This gives

o L , , // / \ dh
-5
-- 2>S -j- ^~2

a- ,/ (/i) T"r J ^ '

.> & / 1 \

"

c aa 11 , o a ff
t i

tr o L
f

+ 8ar\lr-* or . f (h) , ,
= 2$ . , -Jr~

l
<r + 28 ,-j~ ^lr~l

-5
-- 2>S -j- a- , T"r J ^ '

dx* dx* r
da,

r dx dx r J ^ ' dx

Eliminating -7- from these equations, we have

dx

cv />i /i\d*h _ ,-, <J?<T _, Y dcr dcr . .-,

4- (So-Jr"2 cr . f (h)-r- = 2$ . -5- ^lf~
l
cr + 2&

'

. -r- ->~1
-, 4iS .

d>? dx* T dx r dx

Now, whatever vector -cr may be, we have by (5), (6)

a
dcr dcr dcr dcr dcr dcr

dx
'

dx dy dy dz
'

dz
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so that, if (o be any other vector,

ct v tt dor
LI d<T

U*8 . OJVT = 8 . -j- 0)8 -r OT
dx dx

Adding, then, the three equations, of which that containing
-* is given above, we find

-a^jT
1 ^- 1

^,,,/:^) tf.-t'ervr-or* ^ <ff^-2o
.

*"
{/'(/Op 8.0+-**

where the term in V s
/i of course vanishes by (22). This is seen at a glance to be

equivalent to

^7AT.
= ~ 2S v-*-' <^ + 22S .f f- r'

-
if

The last term here is seen at once, by Hamilton's beautiful theory of linear and vector

functions, to be equivalent to

if A, B, C be the constants of
</> Calling the expression in brackets for the present

H, we have

(24)-

The left-hand member, if multiplied by f'(h}dh, is the differential of a function

of h only If, as in 11 we have

or = up, tt constant,

the right-hand .side vanishes, and integration gives

If <r have the value given in 12, equation (24) is obviously not satisfied. Thus
confocal quadrics arc the only isothermal orthogonal surfaces included in equation (1)
with our present limitations.

16. It is interesting in itself, and will be useful for the second part of this

paper, to eliminate <r from (24) by the help of our previous equations. For this

purpose we may write (2) in the form

-2V 1 *f

= 2 1*2 (18 . iq~
l

^r~
l

trq)

(25),

24
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the tensor of which is T^o-f' (h) TVh = 2w.

But it is shown in (29) below that VM = g-'W q,

so that (25) gives T*^<rf CO s VuVh = 2uS . VV ^~l
<r,

or, by (24), -2--/f+2 #>, (26).

The three equations of this form give

S . T^-l

<rf (h) Vh S . VAVtt = 2tt2 . Vh (-H + 2 Ar^|a
)

,

or, by (25) and (3),
- 4u JV = 2w3S ./' (h) VA (- ff + 2 /C/^L) .

\ Jy ("vj /

Operating by S.d/9, this gives

of which the integral, by (23), is

C" - 2 log u = 2 [2 log/ (/,)
- lo

7{

-_w _ . ,W ......................(2T),

then - = F (h) F (h^ F (hf ) .................................. (28).

17. The following is the first quaternion method that occurred to me. I give

it here, though it is considerably more prolix than the preceding, because it exhibits,

incidentally, many curious properties of the system cr, u, q above defined.

Starting again with equation (7), we see that it gives

This, as we shall see immediately, may be reduced to

-qVaq-
1

(29).

18. From (7) we obtain at once

1 dV dq . . , dq ,
\ du d<r

- -=- . =
, 10" 1 OlO"1

-y
2 O"1 + j- -j- ,

u dxdy dy dy u? ay ax

^L -i _ -i ^2 -i j. 1 -i -w~
rfy

l(* ^
dy^ u^^ dy'

1 dV dr/ . , . _, dq _, .

1
.

. _,rfw
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Comparing the last two values, we have

V1 ^? q = -2V.*rr*$ + i =
u^ dxdy^

1
dy u dy

Operating by S.k, we have S-jq*
1

jr = $ I7~
l

;j~,

From this, and other equations similar to it, it is obvious that

187

- ........... (30).ndx '

Foi we should find, as their common value, the expression of their sum

S.iq-^ + S.jq-^ + ^.kq-^.*
dj:

Ji
dy

l dz

19. Also, from (30) and the other similar equations, we have the following
series of values

1 du __ . da-
, =28, iq~

l

-fu dz 1

dy

udy

_1 du_
u dz

These give three equations of the form

v -v~
l =

1 / du , dn\

..(32).

which enable us at once to make the transformation assumed in 17 above, and

may be all summed up in the following in which the omission of the V is due

to the remark in 6 that the tensor of q may be assumed constant

2V.q-
1

dq = 2q-*dq = -V.(dpV)\ogu ................... (33).

This is the equation determining the quaternion which gives the position of a rigid

body in terms of the vector-axis of instantaneous rotation. (" On the Rotation of a

Rigid Body about a Fixed Point," No. XV. above.)

242
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20. But by 6, we have

(da\

2

_ /doA" _ / da\- _ ,
\

dx) \dy) \dz i
'

^da da- a da- do- L,d" da- A
j..~r.="-r ~r =0
dy dz dz dj-

From these

~ do- dV _ du

dx d.'/;
3 dx

'

S
-, -f

= S r- ,^ ,
= u j ,

ay d.r* d,r axay dy

da- dj
o- _ do- dV _ du

dz dx* d.r dxdz dz
'

... . d*o- / du da- du da- du dcr\
which give w j = M

1 j j + T" j + 3~ ~ie dx3
, \ dx dx dy dy dzdz,

_ du da- /du da- du da- du d&\

dx dx \dx dx dy dy dz dz)

From the three equations of this form we obtain, first,

__ (du da- du da- du doA

and, secondly, three equations of the form

d /I do-\ _ 1 /du da- duda- du da-\

dx Vn
2 dx u 3 \dx da- dy dy dz dz)

These are summed up in

d /ldcr>_ d /I dcrN d(ld<r\ I
'̂

which express some of the conditions of orthogonality of the three series of surfaces

given by equation (1).

21. To obtain the others, remark that by (30) we have

1 _ da
o- OT_ ,_ do i du nT, . Tr .do j du,

* ^- 2VlV^ + = - 2V^ + '

=.. =..,
rt

*
d*-dy

^ J & u dy
J 6 w dx

and that each of the two latter expressions may be written

i du j du

u dy u dx
'

Hence *J .\(%
*

+ %*!) .................................(37),
axdy u \dxdy dy dx/ ^ '

and there are, of course, other two vector equations of a similar form.
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From these we have nine scalar equations of the form

189

=
dxdy

~
u \dx dy dy da:'

.. (38)

Now'
dy \M

S dx) \u? dxdy ua

dy dx)

Symmetry shows from this that

1 /d| du d% du\

u3

\dy dx dx dy)

which is one of another set of nine equations, three each for f, ?;,

22. Now, by (36), it is obvious that we may write, Wj being a new variable,

u* dx dydz
'

n? dy dzdx
'

w2 dz dxdy

and thus (39) becomes

dy'*dz dx~dz

with two others in or, and three each in vr^, V7S .

Putting

these give by differentiation

d'-or,
&),= ,, ,

,

clxaydz

dy'
2 dx-

so that all three quantities vanish. Hence we have

w, =^^- = Zhxyz + 2lyz + 2mzx + Znxy + 2ax + Zby + 2cz + e,

where h, I, m, n, a, b, c, e are absolutely constant. From this, and (40), we have

i ^fc

z + Zlxyz + mzx* + nafy + ax- + 2bxy + 2czx + ex +/, (y, z\

- * =
hxyz* + lyz* + mz3x + Znxyz + Zazx + 2byz + cz* + ez +/3 (a?, y),
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In the other set of three, we have by the same process

*'-e'y
-

ey'}
= ......

7/7 - 8y/ya'}
- ZSypfyip- ZSypSySp + Sy.lPSya'p

= .....

=
Sytfi' SySyi" = Syi'y^.

We might easily have obtained this last set of equations from that which preceded, by
a species of differentiation, p being constant, and dy = y, dy =

y", &c

24. From these we conclude that, if they exist at all, 7, y, y", and 7,, 7/, 71", form

rectangular systems with equal tensors. In terms of them we obtain

7i
= *7i c'V/ + e'y" = cy + e"y e'y"

where K and c are scalar constants to be determined.

Expressing, from these, 71 in terms of 7, 7', y", we have

7)
= _ 7 +

C

-~^ {(K
- + e-) y + (ee' + Ke") y' + (ee"

-
KB') y"},

K, -e", e'

where D =
e", K, e

-e', e
t

K

Now, the above expressions for 72, &c., show that

Ty, = Ty, &c.,

hence by expanding and simplifying

This admits of no values but K = T c,

and = e = e' = e" = 0.

The first of these three values of K gives

7i
=

7, &c.,

and thence, by the equations at the end of 23, leads to an impossibility, which requires
that all three sets of vectors 7, 7,, 73 shall be null, and thus gives no solution. A
similar nugatory result is obtained from the second.
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The third thus shows that the only solution is

Hence V 1 = 0,

and, finally, a = w3
(iS^

where 7,, 7/, 71" form a rectangular system with equal tensors, whose common value

must obviously be the reciprocal of u But we have seen that

do- da- da
da;

'

dy' dz
'

also form a rectangular set of vectors with equal tensors. Hence

=
SiViSjj! + Siy.'SJv,' + tftV'tf/V, &c.

These equations also are satibfied identically, and we therefore have, as before,

a = uqpq~
1

where u and q are each constant.



192 ON ORTHOGONAL ISOTHERMAL SURFACES. [XXV.

In the other set of three, we have by the same process

= Sp {Vyy, + Vyy3'-e'y - ey'}

= p
s

{ee' + Sy'y, + /Sfy/7
-

Sy,y.;}
-

'Z^y'

= &yl7l
' = 7/7," = fity/Vi-

We might easily have obtained this last set of equations from that which preceded, by
a species of differentiation, p being constant, and dy = y', dy'

=
y", &c

24. From these we conclude that, if they exist at all, 7, 7', y", and 7!, y/, 7,", form

rectangular systems with equal tensors. In terms of them we obtain

-
y-2
= *7i

-
e"yi + e'yi"

=
cy + e"y e'y"

-
7a'
=

e'Vi + 7/
-

671"
= -

e"7 + 07' + ey"

-
72"

= ~ e'7i + yi' + 7i"
= e 7 ~ y' + 07",

where arid c are scalar constants to be determined.

Expressing, from these, 7, in terms of 7, 7', y", we have

7l = -
7 +^* {

K, -e",

where D= e", K, -e = K [K* + e* + e'* + e"1

}.

\

e, e, K

Now, the above expressions for yz> &c., show that

Ty> = Ty, &c.,

hence by expanding and simplifying

This admits of no values but K T c,

and * = e e e" - 0.

The first of these three values of K gives

7,
=

7, &c.,

and thence, by the equations at the end of 23, leads to an impossibility, which requires
that all three sets of vectors 7, 7,, yz shall be null, and thus gives no solution. A
similar nugatory result in obtained from the second.
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The third thus shows that the only solution is

Hence V 1 = 0,

and, finally, cr =

where 7,, 7,', /" form a rectangular system with equal tensors, whose common value

must obviously be the reciprocal of u But we have seen that

da- da- da
dx' dy' dz

'

albo form a rectangular set of vectors with equal tensors Hence

=
Siy^jjj + Bvfi'Sjji + Sir/i'tiffi', &c

These equations also are .satisfied identically, and we therefore have, as before,

a- = nqpq~
l

where u and q are each constant.

25
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XXVI.

NOTE ON THE STRAIN-FUNCTION.

[Proceedings of the Royal Society of Edinburgh, March 4, 1872]

WHEN the linear and vector function expressing a strain is self-conjugate the

strain is pure. When it is not self-conjugate, it may be broken up into pure and

rotational parts in various ways (analogous to the separation of a quaternion into

the sum of a scalar and a vector part, or into the product of a tensor and A verisoi

part), of which two are particularly noticeable. Denoting by a bar a self-conjugate

function, we have thus either

<f>
= qv( ) </-'>

or < = ^ 9 ( ) q~
l

,

where e is a vector, and q a quaternion (which may obviously be regarded as a

mere versor).

That this is possible is seen from the fact that $ involves nine independent

constants, while
-^r

and 5 each involve six, and e and q each three If
<f>'

be the

function conjugate to
<j>,

we have

4>'
= ^-F.e( )

so that 2>/r
= < +

(f>'

and 2F.e( )
= <-<'

which completely determine the first decomposition. This is, of couise, perfectly well

known in quaternions, but it does not seem to have been noticed as a theorem in

the kinematics of strains that there is always one, and but one, mode of resolving
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a strain into the geometrical composition of the separate effects of (1) a pure strain,

and (2) a rotation accompanied by uniform dilatation perpendicular to its axis, the

dilatation being measured by (sec 1) where is the angle of rotation.

In the second form (whose solution does not appear to have been attempted)
we have

<t>
= q( )q~\

where the pure strain precedes the rotation
,
and fi om this.

or in the conjugate strain the rotation (reversed) is followed by the pure strain.

From these

=
,

and lif is therefore to be found by the solution of a biquadratic equation, as in

foot-note to XXI. 6, above. It is evident, indeed, from the identical equation

that the operator <f>'(j>
is self-conjugate

In the same way

which show the relations between </><', <'</>,
and q.

To determine q we have

whatever be p, so that

or S.p(<l>-v)Vq=0,

which gives (</>' w) Vq =

The first of these thiee equations gives evidently

whatever be a and
;

and the rest of the solution follows at once. A similar

process gives us the solution when the rotation precedes the pure strain.

252
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[Addition, read March 17, 1873.]

The author gave an account of the mode in which he had treated the Strain-

Function in an elementary Treatise on Quaternions, soon to be published, mainly
from the pen of Professor Kelland

The coefficients of the cubic in
<f>

are determined easily from the condition that

homogeneous strain alters the volume of every part of a body in the same ratio.

A careful examination is bestowed upon the case of three real roots of the

cubic; especially with regard to the distinction between the results of a self-conjugate

strain and a rotational one.

The separation of the pure and rotational parts of a strain is very fully treated,

and as special examples, the strain of a rigid body and a simple shear are analysed.

Finally, the following problems are solved :

Find the conditions which must be satisfied by the simple shear, which is capable

of reducing a given strain to a pure strain.

Find the relation between two linear and vector functions whose successive appli-

cation produces rotation merely.

All this is independent of the differential calculus, but as the following results

regarding the stress-function require its aid, they cannot be introduced into the work

referred to. They will appear, with extensions, iti the second edition (now printing)

of the author's Treatise on Quaternions.

At any point of a strained body, let X be the vector stress per unit of aiea

perpendicular to i
; /*,

and if, the same for planes perpendicular to j and k respecti\ ely.

Then, by considering an indefinitely small tetrahedron, we have for the stress

per unit of area perpendicular to a unit vector a>, the expression

\Sia> + pSju + vSka> =
<f>a>,

so that the stress across any plane is represented by a linear and vector function of

the unit normal to the plane

But if we consider the equilibrium, as regards rotation, of an infinitely small

rectangular parallelepiped whose edges are parallel to t, j, k, respectively, we have

(supposing that there are no molecular couples)
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This shows that
<j>

is self-conjugate, or, in other words, involves not nine distinct

constants but only six.

Consider next the equilibrium, as regards translation, of any portion of the

solid filling a simply-connected closed space. Let u be the potential of the external

forces Then the condition is obviously

where v is the normal vector of the element of surface ds.

Here the double integral extends over the whole boundary of the closed space,

and the triple integral throughout the whole interior.

To reduce this to a form to which the method of my paper
" On Green's and

other Allied Theorems "
(No. XIX. above) is directly applicable, operate by 8. a where

a is any constant vector whatever, and we have

u = 0,

by taking advantage of the self-conjugateness of $. This may be written

JJ/ck (8 . V0 + 8 . ctfu) = 0,

and, as the limits of integration may be any whatever,

.V<a+ S.aVw = ....................................... (1).

This is the required equation, the mdetermmateness of a rendering it equivalent to

three scalar conditions.

As a verification, it may be well to show that from this equation we can get
the condition of equilibrium, as regards rotation, of a simply-connected portion of

the body, which can be written by inspection, as

ffV .
p<l> ( Uv) ds + /jr/7 .

This is easily done as follows : (1) gives

if, and only if, a- satisfy the condition,

Now this condition is satisfied if

<r =
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where a is any constant vector For

Hence ///rf? (8 . V< Vap + 8 . apVu) = 0,

or JfdsS . ap<f> Uv + fffdiS . apVu = 0.

Multiplying by a, and adding the results obtained by making a in succession each

of three rectangular unit vectors, we obtain the required equation.

Suppose <r to be the displacement of a point originally at p, then the work

done by the stress on any simply-connected portion of tho solid is obviously

because <j>(Uv) is the vector force overcome on the element ds.

This is easily transformed to
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XXVII.

ON A QUESTION OF ARRANGEMENT AND PROBABILITIES.

[Proceedings of the Royal Society of Edinburgh, January 6, 1873]

MANY of the common illustrations of probabilities are taken from games in which

each hand, or trick, must necessarily be won by one player, and lost by the other It

becomes an interesting question to inquire what modification is introduced if we contem-

plate the possibility of a hand, or trick, being drawn i.e. not won or lost by either

player The only difficulty lies in taking account of the limiting conditions

In the game of golf, for instance, where each hole separately may be won, halved,

or lost, we have the following question. When a player is x holes
"
up," and y

"
to play,"

in how many ways may he win ?

Let this number be represented by PA ,,.
Then obviously

* z-H, v+1
= -* z+2, V + -* *-H, v + J- x, y

If 1\, y
= axbv

be a particular integral, we have

ab = a2 + a + 1,

so that P^^ScWa +
l-l-^.

Now the conditions are obviously

P, y
= l, if x>y,

and P_a.
( v
= 0, if x 5 y.
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Failing in several attempts to determine fully the special form of P^ y from these con-

ditions, I had recourse to a graphical method, which will be given below. But before

I do so, I take another mode of integration, which leads easily to special numerical

results.

Suppose y & + n,

then the equation becomes AP^ v+n = Px+->, x+n + PX+\, x+n

from which it appears that if we can find expressions for Pjctf+ ,n and Px+l x+m we can

deduce by summation that for Pj-1( +

Let us first put n =
;
we have

AP,
l
, = P.^. + PWi ,-2 f

since, obviously, each of these quantities is unity. Integrating, we have

P,.-2,

no constant being added, since it is clear that

Po,o
=

Again, by the fundamental equation, putting n = I, we have

&Px>x+1 = Px+2>x^ + Px+liX+l

= 1 + 2 (x + 1)

for we have obviously P
0) ,
= 1

Next, AP*, x+a
= Px+2t x+, +Px+1> x+l

= 2 (x+ 2) + (x+ 2) + (x + 1) (a; + 2),

no constant being added, for P
0) 3
= 3

Similarly,

for Po, 3
=

PI, , + Po, 2 + P-,, >
= 4 + 3 + 1 = 8.

P.,^|(* + 2)(* + 3)(*+4)+^(*+l)(*+2)(* + 3)(*+4) + ^*(* + l)(* +

for P
0i 4
= P

lt , -I- P
0i 3 + P_,, 3=1
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We may now, in conformity with these expressions, assume

Now, if y = x 4- n, the original equation of differences gives

&Px, x+n = 1\+*, X+n + Px+l , *+u

where A lefers to x and not to n. By the assumed value of P
Xi x+n this becomes

nBn (n-\}(
1

n

r + 2)'
r
-J

whence, equating coefficients of like faetonals, we have

Let (n + l)

then the&e equations become

-2)i>,, = A,-i + C'B_J> &c., &c.

oB , niBH =/3 n , (n
-

1) '(? =
7,,,

Pn-i^nft*

Thus we have

26
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for no negative powers of
j.

^re to be retained, as n is a mere constant

The trouble of carrying out this process is considerable, depending on the deter-

mination of the constants in each finite integral so as to satisfy the limiting conditions

of the problem. To a few terms we have

By a slight modification of the piecedmg process we get in succession

AD n I p-"
-x, x+n ~ *

lx+1), x+n ~r -* -te-M, x+n,

fi+T-

(D)

n, -1 (n
-

4)(.
- 1 ) (rt-2)(.fi-l

The graphical method to which I referred above consists simply in supposing the

various values of Px> v to be written each at the point whose co-ordinates are the values

of x and y. If, to fix the ideas, we suppose the axis of as to be horizontal and th.it

of y vertically downwards, then the fundamental equation shows that by adding together

any three contiguous numbers in, a horizontal line, we produce the number immediately

under the middle one of the three.

The limiting conditions show that all the numbers along the line

as -I- y = 0,

and those between it and the negative part of the axis of x, are zeros
;
while those along

are each equal to 1.
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Hence we have the figure

000 0001 100 00. ..#

000001211000
000013441100

(a)000148 11 961 10
001 5 13 23 28 26 16 8 11

1 6 19 41 64 77 70 60 25 10 1

&c. y &c.

where the numbers punted in darker type are inserted by the rule given above. This

is, of course, in one sense a complete solution of the problem ,
but the results may

easily be put in an analytical form

Had we had zeros along the line

we should have had the following scheme instead of that above-

010 ... x

01110
0123210

t _ >

013676310
1 4 10 16 19 16 10 4 1

&c y &c

Hence the part added by the units along the line

... x

1

0112
012433 .........

(

1 3 7 9 10 4

y &c

262
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This, again, differs from (6) shifted one place downwards, by

...x

1
.................................... (d).0112

12433
//

&c.

But it is obvious that this is a repetition of the same one place diagonally down-

wards to the right.

Also (b) is obviously the coefficients of the powers of a in

a (a + 1 + -V
V a/

for the several positive integral values of y. Call the term in ax in this, i.e. the

coefficient of a*- } in
fa+l-f-J ,

A v
,

, and that at x, y in the scheme (c) Qx>tf ,
then

Qx, ,j Qx-i, ?/-i
= A

Xi v_!,

and thus P
Xt y

= A
Xi v + Qx> y

= A x>y + A x> j,_i + A^ _,+ ....

This points to a very simple way of constructing the values of Px>y from those of A x
, y .

In scheme (6), add to the number in any position that immediately above it, and

also those lying in the left-handed upward diagonal drawn from the last named, their

sum is the number in the corresponding position in (a). Thus 16 + 6 + 3 + 1 = 26.

If D refer to x and D' to y, we have

It is to be observed that, since if one player wins the other must lose, P_
Tj v

is the number of ways in which a player may lose, when he is x "up" and y
"to play."

The number of ways m which the game may be drawn, is also a solution of the

same equation of differences, but the limiting conditions are now obviously independent

of the sign of ac: and are, taking it positive,

P.,,-1 if *-y,

P,, y
= if x>y.
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Hence the values are represented by the following scheme

010 ... x

01110
0123210

013676310
&c. y &c.

Thus the value of P^ ,,
in this case is the coefficient of a* in

Hence the number of different modes in which the game may finish, when one

of the players is .7; "up" and there remain y "to play" is, calling Rx lf
the co-

/ l\ y

efficient of a* in I a + 1 -f I
,

while the number of different ways of finishing if the whole y holes are played out

is 3".

There are very many curious pioperties of the numbers we have denoted by
P

Xi y,
A

x> y, Qx< y. Thus, for instance, it is easy to see that

all of which are included in
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XXVIII.

THERMO-ELECTRICITY *

[Nature, Vol. vni.j

THE subject I have chosen is one intimately connected with the names of at

least two well-known members of this University the late Prof. Gumming arid Sir

William Thomson. It possesses at present peculiar interest for the physicist , for,

though a great many general facts and laws connected with it are already experi-

mentally, or otherwise, secured to science the pioneers have done little more than

map the rough outlines of some of the more prominent features of a comparatively
new and almost unexplored region. Some of its experimental problems are extremely

simple, others seem at present to present all but insuperable difficulties. And it does

not appear that any further application of mathematical analysis can be safely, or at

least usefully, made until some doubtful points are cleared up experimentally.

The grand idea of the conservation, or indestructibility, of eneigy . pointed out

by Newton in a shoit Scholium a couple of centimes ago, so far at least as the

progress of experimental science in his time enabled him to extend his statements .

conclusively established for heat at the very end of last century by Rumford and

Davy ,
and extended to all other forms of energy by the splendid researches of

Joule : forms the groundwork of modern physics.

Just as, in the eye of the chemist, every chemical change is merely a rearrange-

ment of indestructible and unalterable matter; so to the physicist, every physical

change is merely a transformation of indestructible energy ,
and thus the whole aim

of natural philosophy, so far at least as we yet know, may be described as the

study of the possible transformations of energy, with their conditions and limitations
;

and of the present forms and distribution of energy in the universe, with their past

and future.

* Abstract of the Rede Lecture delivered in the Senate House, Cambridge, May 23, 1873
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It is found by experiment that some forms of energy are more easily or more

completely transformable than others, and thus we speak of higher arid lower forms,

and are introduced to the enormously important consideration of the degradation, or,

as it is more commonly called, the dissipation, of energy. The application of mathe-

matical reasoning to the conservation of energy presented no special difficulties which

had not, to some extent at least, been overcome in Newton's time : but it was

altogether otherwise with the transformations of energy. And it is possible that, had

it not been for the wonderfully original processes devised by Carnot in 1824, we

might not now have secured more than a small fraction of the immense advances which

science has taken during the last thirty years.

For a transformation of heat we must have bodies of different temperatures.

Just as water has no " head
"

unless raised above the sea-level, so heat cannot do

work except with the accompaniment of a transference from a hotter to a colder

body. Carnot showed that to reason on this subject We must have cycles of opera-

tions, at the end of which the working substance is restored exactly to its initial

state. And he also showed that the test ot a perfect engine (i.e the best which is,

even theoretically, attainable) is simply that it must be reversible By this term we

do not mean mere backing, as in the popular use of the word, but something much

higher viz. that, whereas, when working directly, the engine does work during the

letting down of heat from a hot to a cold body ,
when reversed, it shall spend the

same amount of work while pumping up the same quantity of heat from the cold

body to the hot one As a reversible engine may be constiucted (theoretically at

least) with any working substance whatever, and as all reversible engines working

under similar circumstances must be equivalent to one another (since each is as good

as an engine can be) it is clear that the amount of work derivable from a given

amount of heat under given circumstances (ie the amount of transformation possible)

can depend only upon the temperatures ot the hot and cold bodies employed. In

this sense we speak of Carnot's Function of Temperatuie, which is as imperishably

connected with his name as is the Dynamical Equivalent of Heat with that ot

Joule.

Building upon this work of Carnot, Sir W. Thomson gave the first absolute

definition of temperature that is a definition independent of the properties of any

particular substance. Perhaps there is no term in the whole range of science whose

meaning is correctly known to so few even of scientific men, as this common word

temperature It would not, I think, be an exaggeration to say that there are not

six books yet published m which it is given with even an approach to accuracy

The form m which the definition ultimately came from the hands of Joule and

Thomson enables us to state as follows the laws of transformation of energy from

the heat form.

1. A given quantity of heat has a definite transformation equivalent.

2. But only a fraction of this heat can be transformed by means even of a

perfect engine: and this fraction is DEFINED as the latio of the range through which
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the heat actually falls to that through which it might fall were it possible to obtain

and employ bodies absolutely deprived of heat.

This definition has two great advantages. 1st, The utmost amount of work to

be got from heat under any circumstances of temperature is determined by precisely

the same law as that assigning the work to be had from water under similar

circumstances of level. In this case the sea-level corresponds to what is called the

Absolute Zero of temperature [It is well to observe here that it is the potential

energy of the water, not the quantity of water itself, which corresponds in this

analogy to the quantity of heat. In this simple remark we have all that is necessary

to correct Carnot's reasoning in so far as it was rendered erroneous by his assumption

of the materiality (and consequent indestructibility) of heat] 2nd, Temperatures thus

defined correspond, as Thomson and Joule have shown by elaborate experiments, very

closely indeed with those given by the air-thermometer the absolute zero being

about 274 of the Centigrade scale below the freezing point of water I have made

this digression as I shall have frequently to use the word temperature, and I shall

always employ it in the sense just explained [except when I use a qualifying C. 1897]

The subject of Thermo-electricity of course includes all electric effects depending
on heat, but in this lecture I shall confine myself to the production by heat of

currents in a circuit of two metals.

The transformation of heat into the energy of current electricity was first observed

by Seebeck in 1820 or 1821. His paper on the subject (Berlin Ac., 1822-3, or

Pogg. vi.) is particularly interesting, as he gives the whole history of his attempts
to obtain a voltaic current from a circuit of two metals without a liquid, und the

steps by which he was led to see that heat was the active agent in producing the

currents he eventually obtained. In this paper Seebeck gave tho relative order of a

great number of metals and alloys in the so-called thermo-electric series, and showed

that several changes of order occurred among them as the temperature was gradually

raised.

In a note attached to this paper, Seebeck recognises that in this further

discovery he was anticipated by Gumming (who seems, in fact, to have made an

independent discovery of Thermo-electricity). Gumming showed that when wires of

copper, gold, &c., were gradually heated with iron, the deflection rose to a maximum,
then fell oft', and was reversed at a red heat

[Seebeck
'

original experiment and Cumming's extension of it were exhibited.]

You see that, keeping one of the copper-iron junctions at the temperature of

the room and gradually heating the other, I produce a current which increases in

intensity more and more slowly till it reaches a maximum, then falls off faster and

faster till at last it vanishes and thereafter sets in the opposite direction. We are

still far below the melting point of copper, yet further heating up to that point

produces but little additional effect. The reason of this will be apparent from some

iacts to be described towards the end of the lecture. At the moment of maximum
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current the two metals are thermo-electrically Neutral to one another. The tempera-
ture in the present case is about 280 C.

Seebeck pointed out that bismuth and antimony (to the choice of which he had

been led by a very curious sot of arguments) were very far removed from one

another in the series, and therefore gave large effects for small differences of tem-

perature. This is still taken advantage of in the Thermo-electric Pile, which, when

combined with a sufficiently delicate galvanometer, is even now by far the most

delicate thermometer we possess. It has recently enabled astronomers to detect and

measure the heat winch reaches us from the moon, and oven from the brighter fixed

stars. In the skilful hands of Forbes and Melloni this instrument was the effective

agent in demonstrating the identity of thermal and luminous radiations a step which,

as regards the simplification of science, is as important as the discovery of magneto-

electricity ,
a step which was completed by Forbes when he succeeded in polarising

ladiant heat

But when we come to look at this question from the point of view of trans-

formation of energy, wo havo to ask where is the absorption, and where the letting-

down of heat, to which the development of the current considered as a rise of

energy is due Veiy lemarkably, an experiment of Peltier supplies us with at least

part of the answer. Peltier showed that, given a metallic junction which when heated

would give a current in a certain direction, then provided a battery were interposed

in that circuit (initially at a uniform temperature) so as to send a current in that

direction, the passage of the cm rent cooled the junction, while' a reversal of the

current heated it This, considering the circumstances uudei which it was made, and

the deductions since drawn ft on* it, is one of the most extraordinary experimental
discoveries ever made Water was frozen, in an experiment by Lenz, by means of the

Peltier effect

Here then is a reversible heat effeet, and to it we may reasonably assume that

the laws of thermodynamics may be applied , although from the very nature of the

experiment the reversible effect must always be accompanied by non-reversible ones,

such as dissipation by heat-conduction, and by heat generated in consequence of the

resistance of the circuit. The latter of these is in general small in thermo-electric

researches, but the former may have large values

It is known from the beautiful experiments of Magnus that no thermo-electric

current can be produced by unequal heating in a homogeneous circuit, whatever be

the variations of section a negative result of the highest importance Sir W.

Thomson, to whom we are indebted for the first and the most complete application

of thermodynamics to our subject, showed that the existence of a neutral point

necessitates the existence of some other reversible effect besides that of Peltier. And
even if the circuit varied in section, the result of Magnus, just referred to, showed

that this could only be of the nature of a convection of heat by the current between

portions of the same metal at different temperatures. Thomson's reasoning is of the

very simplest character, as follows . Suppose the temperature of the hotter junction

T. 27
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to be that of the neutral point, there is no absorption or evolution of heat there
;

yet there is evolution of heat at the colder junction, and (by resistance) throughout
the whole circuit. The energy which supplies this must be that of the heat in one

or both of the separate metals
,

but reasoning of this kind, though it proves that

there must be such an effect, leaves to be decided by direct experiment what is the

nature and amount of this effect in each of the metals separately. By an elaborate

series of ingenious experiments Thomson directly proved the existence of a current

convection of heat, and (curiously enough) of opposite signs in the first two metals

(iron and copper) which he examined. In his own words, "Vitreous Electricity carries

heat with it in an unequally heated copper conductor, and Resinous Electricity carries

heat with it in an unequally heated iron conductor." This statement is riot very

easy to follow. It may perhaps be more intelligible in the form- In copper a

current of positive electricity tends to equalise the temperature of the point it is

passing at any instant with that of the point of the conductor which it has just

left, i.e., when it passes from cold to hot it tends to cool the whole conductor; when

from hot to cold, to heat it, thus behaving like a real liquid in an irregularly

heated tube. The effects m iron are the opposite ,
and Thomson therefore speaks

of the specific heat of electricity as being thus positive in copper and negative m
iron. He gives a very remarkable analogy from the motion of water in an endless

tube (with horizontal and vertical branches), produced by differences of density, due

to differences of temperature Here the maximum density of water plays a prominent

part. Neumann has recently attempted, by means of the laws of motion of fluids,

and the unequal expansibility of different metals, to give a physical explanation of

thermo-electric currents. But, not to speak of the fact that positive electricity is by
him considered as a real fluid, there are the fatal objections that his method makes

no provision for the explanation of the Peltier, or of the Thomson, effect
;
and therefore

cannot be looked upon as having any useful relation to the subject. Similar remarks

apply to the attempt of Avenarius to account for thermo-eloctrio currents by the

variation with temperature of the electrostatic difference of potentials at the points

of contact of different metals.

By employing the thermo-electric pile instead of the thermometers used by

Thomson, Le Roux has lately measured the amount of the specific heat of electricity

in various metals, and has shown that it is very small, or altogether absent, in lead.

Strangely enough, though he has verified Thomson's results, he does not wholly accept
the theoretical reasoning which led to their prediction and discovery.

One of Thomson's happiest suggestions connected with this subject is the con-

struction of what he calls a thermo-electric diagram. In its earliest form this

consisted merely of parallel columns, each containing the names of a number of metals

arranged in their proper thermo-electric order for some particular temperature. Lines

drawn connecting the positions of the name of any one metal in these successive

columns indicate how it changes its place among the other metals as the temperature,
is raised. Thomson points out clearly what should be aimed at in perfecting the

diagram, but he left it merely as a preliminary sketch. The importance of the idea,
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however, is very great; for, as we shall see, the diagram when carefully constructed

gives us not merely the relative positions of the metals at various temperatures, with

the temperatures of their neutral points, but alho gives graphic representations of the

specific heat of electricity in each metal in terms of the temperature, the amount

of the Peltier effect, and the electromotive force (and its direction) for a circuit of

any two metals with given temperatures of the junctions. In short, the study of

the whole subject may be reduced to the careful drawing by experiment of the

thermo-electric diagram, and the verification of Thomson's thermodynamic theory will

then be effected by a direct determination either of Peltier effects or of specific heat

of electricity at various temperatures, and their companson with the corresponding

indications of the diagram.

The diagram is constructed so that abscissae represent absolute temperatures, and

the difference of the ordmates of the lines for any two metals at a given tempera-
ture is the electromotive force of a circuit of these metals, one of the junctions

being half a degree above, the other half a degree below, the given temperature.

It will be seen by what follows that nothing but direct measurement of the

value of the specific heat of electricity at various temperatures can give us the actual

form of the line representing any particular metal
,

but if the line for any one

metal be assumed, those of all others follow from it by the process of differences of

oidmates just described So that it is well to begin by assuming the axis of abscissae

a> the line for a particular metal (say lead, in consequence of Le Roux's result) ;

and if, at any future time, this should be found to require change, a complex shearing
motion of the diagram parallel to the axis of ordmates will put all the lines

simultaneously into their proper form.

Thomson's theoretical investigation may be put in a very simple form as follows

Let us suppose an arrangement of two metallic wires, one end of each of which is

heated, their cold end* being united, and m which the circuit can be closed by a

sliding piece or ring, always so placed as to join points of the two metals which

are at the same temperature t Let E be the electromotive force in the circuit, II

the Peltier effect, and er,, az the specific heats of electricity in the two metals.

Then, if the sliding piece be moved from points at temperature t to others at t + St,

the first law of thermodynamics gives by inspection the equation

and the second law gives

These equations show at once that, if there were no electric convection of heat,

or if it were of equal amount in the two metals, the Peltier effect would always be

proportional to the absolute temperature ,
and the electromotive force would be pro-

portional to the difference of temperatures of the junctions ^so that there could not

be a neutral point in any case. In fact, the lines in theNuliagram for all metals

^ 272
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would be parallel : and, on the former of the two hypotheses, parallel to the axis of

abscissae.

Eliminating <r,
- <ra between the equations, we have

SE=JjSt
t-rt

Now, by the construction of the diagram, -j-
is the difference of the ordinates

of the lines for the two metals at temperature t. Hence, whatever be the form of

the lines for two metals, the Peltier effect at a junction at temperature t is always

proportional to the area of the rectangle whose base is the difference of the ordinates,

and whose opposite side is part of the axis of ordinates corresponding to absolute

zero of temperature. This area becomes less and less as we approach the neutral

point, and changes sign (ie., is turned over) after we pass it; the current being

supposed to go from the same one of the two metals to the other in each case.

7
Tjl

The electromotive force itself, being the integral of ~ between the limits of

temperature, is proportional to the area intercepted between the lines of the two

metals, and ordinates drawn to correspond to the temperatures of the junctions

respectively.

Again, the second of the preceding equations shows us that the difference of

specific heats in the two metals is proportional to the absolute temperature and to

the difference of the tangents of the inclinations of the lines for the metals to the

axis of abscissae. If we assume this axis to be the line of a metal in which the

electric convection of heat is wholly absent, the measure of this convection in any
other metal is simply the product of the absolute temperature into the tangent of

inclination of its line to the axis. Thus, if the thermo-electric line for a metal be

straight, electnc convection is in it always proportional to the absolute temperature ;

and it is positive or negative according as the line goes off to infinity in the first

or in the fourth quadrant. If the lines for any two metals be straight, and if one

junction be kept at a constant temperature, the electromotive force will be a para-

bolic function of the temperature of the other junction the vertex of the parabola

being at the temperature of the neutral point of the two metals, and its axis being

parallel to the axis of ordinates.

For the benefit of such of my audience as are not familiar with mathematical

terms, I may give an illustration which is numerically exact. Let time stand for

temperature, years corresponding say to degrees. Let the ordmate of one of the

metals represent a man's income, that of the other his expenditure. The difference

of these ordinates represents the rate of increase of his capital or accumulated savings,

which here stands for electromotive force. As long as income exceeds expenditure,

the capital increases
;
when income and expenditure are equal (i e) at a "

neutral
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point," capital remains stationary, indicating, in this case, a maximum value; for in

succeeding years expenditure exceeds income, and capital is drawn upon

Guided by considerations of Dissipation of Energy*, I was led some years ago to

the hypothesis that specific heat of electricity must be, like thermal and electric

resistance, directly proportional to the absolute temperature. If this were the case,

the lines in the diagram would be straight for all metals . and parabolas would be

the graphic representation not only of electromotive force, but of the Peltier effect,

m terms of the temperature of a junction And I found by actual measurement of

curves plotted from experiment, that, within the range of mercury thermometers, the

curves of electromotive force for junctions of any two of iron, cadmium, zinc, copper.

silver, gold, lead, and some other metals, are parabolas with then* axes vertical
,

the

differences from parabolas being in no case greater than the inevitable errors of

experiment and the deviation of mercury thermometers from absolute temperature

If, then, the line for any one of these metals be straight within these limits of

temperatxire, so are those of all the others This makes the tracing of the diagram
within these limits a very simple matter indeed And an easy verification is furnished

by the fact that from the parabolas for metals A and R, and A and 6f

,
we can

draw the lines foi B and C, assuming any line for A
,

arid we can then compare
the temperature of the intersection of these lines with that of the neutral point of

B and C as found directly Another verification is supplied by the tangents of the

angles at which these parabolas cut the axis of abscis.sse, for the sum of two of them

ought in every case to be equal to the third.

In fact, if we assume, in accoidance with what has been said above,

/<r,=A,, J<72
=

,,,

where &, and k, are constants, Thomson's formula? give at once

where '1\ <2 (the constant of integration) is obviously the temperature of the neutral

point.

Also E=jdt = (kl -kj(Tl . a -t)dt

where t is the temperature of the cold junction. This is the parabolic formula

already mentioned.

Comparing with the parabola as given by observation we get the values of

ki k-t and T
lt ^. Similarly we obtain ^ kA and 2\ iS

. Hence we may calculate

*
[The only simple way in which the conditions of No. XIV., above, can be realized (while the current

raises or lowers the temperature all along the wire) is by making the changes directly proportional to the

(absolute) temperatures themselves. 1897]
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k^-k,, and (by the second equation above) the value of T9tl
from the relation

& -
k.) T,. , -f (k,

-
k,) 2V 3 + (k - *,) JP

If s
= 0.

Thus we have the means of verification above alluded to for the equation just written

expresses the relation among the tangents of the angles at which the three para-

bolas cut the axis of abscissae.

[It is to be remarked that if the circuit consist of one and the same metal,

we have

k
t =ki, T= oo

, (/-,
-

,) T= r suppose,

whence JH rt,

which shows that the electric convection of heat may be regarded as an infinitesimal

case of Peltier effect between adjacent portions of the same metal at infimtesimally
different temperatures.

Also, on the same hypothesis, we have

which seems to accord with the result of some experiments made for me by Mr
Durham [Proc. R.S.E

,
VII. 788], in which the deflection due to the contact of the

hot and cold ends of the same wire was shown to be proportional to the difference

of temperatures and independent of the actual temperature of either.]

Endeavouring to extend the investigation to temperatures beyond the reach of

mercury thermometers, I worked for a long time with a small air-thermometer, of

which the principle was suggested to me by Dr Joule. But this involved very great

experimental difficulties, due mainly to chemical action at high temperatures , and, after

much unsatisfactory work, I resolved to make one thermo-electric junction play the

part of thermometer in observing the indications of another In fact, an exceedingly

elegant result follows at once from the preceding formulae, if we suppose the specific

heat of electricity to be proportional to the absolute temperature in each of four

metals, and then draw a curve whose ordmate and abscissa are the simultaneous

galvanometnc indications of pairs of these metals, with their hot and cold junctions

respectively at the same temperatures. For if r be the difference of absolute tem-

perature of the junctions, we have

y = CT

where the four constants depend upon the nature of the metals and upon the absolute

temperature of the cold junction. These equations give

(Das
- By? = (CB-AD)(Cx- Ay}

which is the equation of another parabola, also passing through the origin, but with

its axis no longer vertical.
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A simple proof of this theorem is furnished by the motion of projectiles in vacuo.

Suppose a particle to move under gravity, and subject, besides, to another constant

force parallel to a given horizontal lineits path would have both ordmatc and

abscissa parabolic functions of the time. But its path might also be found by com-

pounding into one the two accelerations, and as each of these is constant in direction

and magnitude, their resultant will have the same property, and thus the resultant

path is a parabola. Tried in this way through ranges of temperature up to a red

heat, I found that while some pairs of circuits gave excellent parabolas, others were

far from doing so, sometimes in fact giving curves with points of contrary flexure.

I was on the point of recurring to the air-thermorneter, when I noticed that in

nearly every case in which the curve was not a parabola, iron was one of the metals

employed , and, by the help of some alloys of platinum, I was enabled to get an

idea of the true cause of the anomaly, and afterwards to verify it by an independ-

ent method The cause is this, that while, as Thomson discovered, the specific heat

of electricity m iron is negative at oidinary temperatures, it becomes positive at some

temperature near low red heat , and remains positive till near the melting point of

iron, where it appears possible, from some of my experiments, that it may again

change sign. Thus the line for iron, straight at ordinary temperatures, passes down-

wards from the first quadrant to the fourth, and thenco rises into the first again.

To recur to our analogy, an income represented by the iron line is one which

for a number of years steadily diminishes, reaches a minimum, and then steadily

increases If this be associated with a steady expenditure, the fluctuations of capital

will depend upon the comparative values of the expenditure and the minimum income.

If the expenditure be less than the minimum income, the capital will go on. increasing

slower and slower to a certain point, then faster and faster; there will be no stationary

point, but there will be a point of contrary flexure. If the expenditure be just equal
to the minimum income, the point of contraiy flexure will be also a stationary point

If the expenditure be greater than the minimum income there will be a maximum
of capital, then a point of contrary flexure, and then a minimum; the maximum
and minimum being the stationary points coi responding to the two occasions on

which the expenditure equals the income The maximum and minimum will obviously

be farther apart, and smaller, the larger is the expenditure compared with the minimum
income

The latter part of these statements is well exhibited by the behaviour of circuits

of iron, and various alloys of platinum with Indium, Nickel, and Copper

[Some of these, involving two, and in one case three, neutral points, were shown.]

In each of these cases there are obviously two neutral points, at least Now

suppose the two junctions raised to the tempcratuies of these two neutral points

respectively, and we have a thermo-electric current maintained entirely by the specific

heat of electricity, as there is obviously neither absorption nor evolution of heat at

either junction. Still further, suppose (as is very nearly the case with one of the

alloys I have just used) that the specific heat of electricity is null in the metal

associated with iron, and we have the very remarkable fact of a current maintained
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in a circuit, without absorption or evolution of heat at either junction or in one of the

metals, but with evolution of heat in one part of the second metal and absorption in

another part. This suggests immediately the idea that iron becomes, as it were, a

different metal on being raised above a certain temperature. This may possibly have

some connection with the Ferricum and Ferrosum of the chemists
; with the change

of magnetic properties of iron, and of its electric resistance, at high temperatures.
Dr Russell has kindly enabled me to verify these properties in a specimen of pure
iron prepared by Matthiessen. I find similar effects with Nickel at a much lower

temperature. The method of control which I employed to satisfy myself that these

peculiarities are due to iron and not to the platinum alloys, requires a little explana-
tion. It depends upon the fact that by the help of two metals made into a double
arc (wires of the two being stretched side by side, without contact except at the

ends) we can explore any portion of the field between the lines for these two metals

by simply altering the ratio of the resistances in the two parts of tho double arc.

Such a complex arrangement gives a line passing through the intersection of the

lines of the two constituents, and depending for its position on their relative resist-

ances. I shall not, at this stage of my lecture, trouble you with the formula which

gives the line for the double arc in terms of the resistances of the two metals and
their lines, but simply show the expeiiments with the help of a gold and a palla-
dium wire, the one having the specific heat of electricity positive, tho other negative,
while their neutral point is considerably below the temperature of the room. Between
their lines is included the peculiar portion of the 11011 line, arid by making shots at

it, as it were, in vanous directions from the neutral point of gold and palladium,
wo bhall be able to study its bearings.

[Several of these experiments were shown, till finally the gold wire was melted
]

I have here wires of iron, gold, and palladium, bound together at one end, which
is to be the hot junction. Ono end of the galvanometer coil is connected with the
free end of the iron wire, the other slides along a long copper wire which connects
the free ends of the gold and palladium wires By sliding it towards cither I

dimmish the resistance of that branch of the double arc and increase that in the
other ic I give that branch of the double arc the greater importance in the com-
bination

Throwing the greater part of the resistance into the palladium branch, I find a
neutral point at a moderate temperature, but I cannot reach a second without

melting the gold. Throw more resistance into the gold, the first neutral point occurs
at a higher temperature than before, but a second is attainable. By still further

increasing the resistance in the gold the two neutral points gradually approach one
another, one rising in temperature the other descending, until at last we reach a

maximum-minimum, the result of the confluence of the two points. The line for the
double arc is now such as to touch the iron line. Still further increase the resistance
ot the gold, and we find a mere point of inflexion, the galvanometer indications

having constantly risen, though at a retarded and then accelerated rate, during the

heating of the junction.
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Two of the platinum alloys which I employed with iron seem to give lines almost

exactly parallel to the lead line i.e. in them the specific heat of electricity is practically
nil. When a circuit is formed of these alloys the current therefore depends upon
the Peltier effects at the junctions alone, and is sensibly proportional to the differ-

ence of their absolute temperatures, thus furnishing a very convenient thermometer
for the approximate estimation of high temperatures *. I am at present engaged in

drawing the thermo-electric diagram in terms of temperatures as given by this com-

bination, and the reduction to absolute temperatures will finally be effected by a

comparison of this temporary but very convenient standard with an air-thermometer.

* This idea had boon a little more fully developed in a paper read to the hntinh Axnociahon in 1871.

The following abstract is from the Proceedings of Sections at that Meeting, p. 48

NOTE ON THERMO-ELECTRICITY

It results from Thomson's investigations, founded on the beautiful discoveries of Peltier and

Camming, that the graphic representation of the electromotive force of a thormo-elei trie circuit, in

terms of temperatures as abscissa), IN ,i uirvc symmetrical about a vertical axis. This 1 have found

to bo, within the hunts of experimental error, a parabola in each one of a very extensive series of

investigations wrath I have made with wires of every metal 1 could procure To verify this result

with great exactness, and at the same time to extend the trial to temperatures l>eyond the range
of a mercurial thei mometer, I made a graphic representation, in which the abscissae were the successive

indications of one circuit, the orrhnates those of another, the temperatures being the same in both

It IH easy to see that il the separate circuits give parabolas (as above) in terms of temperature,
this process also should lead to a parabola, the axis, however, being no longer vertical This severe

test was well borne, even to temperatures approaching a dull red heat Unfortunately, i.t is difficult

to procure wires of the more infusible metals, with the exception of platinum and palladium, so that

I have not yet been able to push tins test to very high temperatures I hope, however, with the

kind assistance of M H. Samte-Claue Deville, to have wires of nickel and cobalt, with which to test

the parabolic law through a very wide range

Parabolas being similar figures, it is easy to adjust the resistances in any two circuits so as to

make their parabolas (in terms of temperature) equal When this is done, if the neutral points l>e

different, it is obvious that by making them act in opposite directions on a differential galvanometer
we shall have deflections directly pi oportional to the temperature-differences of the junctions

It is a curious result of this investigation, that, supposing the parabolic law to be true, the

Peltier eliect is also expressed by a parabolic function of temperature, vanishing at absolute zero.

1 was led to this inquiry by a hypothetical application of the Dissipation of Energy to what

Thomson calls the electric convection of heat, and my result is verified (within the range of my
experiments), that the specific heat of electricity is directly proportional to the absolute temperature

It is scarcely necessary to point out that the above results appear to promise a very simple solution

of the problem of measuring high temperatures, such as those of furnaces, the melting-points of

rocks, &c

28
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XXIX.

FIRST APPROXIMATION TO A THERMO-ELECTRIC DIAGRAM.

[Transactions of the Royal Society of Edinburgh, Vol. xxvn. Read December 1, 1873.]

IN the Session of 1867-8 I communicated to this Society a paper on the Dissipation

of Energy, of which only a very brief abstract WHS published in the Proceedings. [Ante

No. XIV.] The main feature of that paper was the suggestion, as at least a valuable

working hypothesis, that even in cases of the steady motion of heat, electricity, &c.,

the unexhausted energy is probably as small as possible, consistently with the conditions

of each form of experiment.

Applied to the conduction of heat, this hypothesis was shown to lead to the result

that thermal conductivity is inversely as the absolute temperature, a result closely

agreeing with the experimental determinations of Forbes. A similar result follows (from

the hypothesis) for electric conductivity, where it has long been known from experiment
that the resistance is nearly proportional to the absolute temperature. As the latter

experimental law, however, is subject to numerous exceptions, notably in the case of

alloys, it was found necessary to introduce considerations of molecular change (such as

alteration of specific heat, &c., with temperature) ,
so that I determined to apply Forbes'

methods as well as electric testing to other pure metals than iron, and also to an alloy

such as German silver. The reduction of my observations is still far from complete,

but I have already stated to the Society that the change of thermal conductivity by

temperature in German silver is, like that of electric conductivity, certainly much less

than in iron.

These experimental determinations involved very great difficulties of various kinds,

so that it was not till 1870 that I had an opportunity of testing experimentally the

working hypothesis above mentioned in its application to the very curious phenomena
of thermo-electricity. After a few experiments, however, 1 found that (at least within



XXIX.] FIRST APPROXIMATION TO A THERMO-ELECTRIC DIAGRAM. 219

the limits where mercury thermometers can be employed) the so-called Specific Heat

of Electricity is proportional to the absolute temperature, precisely the result indicated

by the hypothesis The following note is reprinted from the Proceedings of the Society

for Dec. 19, 1870 :

" In a paper presented to the Society in 1867-8 I deduced from certain hypo-

thetical considerations regarding Dissipation of Energy results connected with the thermal

and electric conductivity of bodies, the electric convection of heat, &c. As these were

all of a confessedly somewhat speculative character, I printed at the time only that

connected with thermal conductivity, which I had the means of comparing with ex-

periment, and which seemed to accord fairly with Forbes' experimental results. But

the assumption on which this, was based was essentially involved in all the other

portions of the paper.

" With a view to the testing of my hypothetical result as to electric convection

of heat, several of my students, especially Messrs May and Straker, last summer made

a careful determination of the electromotive force in various thermo-electric circuits

through wide langes of temperature Their results for a standard iron-wire connected

successively with two very different specimens of copper, when plotted, showed curves

HO closely resembling parabolas that I was led to look over my former investigations

and determine what, on rny hypothetical reasoning, the curves should be. This I had

entirely omitted to do I easily found that the parabola ought, on my hypothesis,

to be the curve in every case, and I made last August a numerous and careful set of

determinations with Kcw standard mercunal thermometers as an additional verification

"
My hypothetical result was to the effect that what Thomson (Trans. R.S.E. 1854,

Phil Tram. 1856) calls the specific heat of elcctucity, should be, like thermal and

electric lesiistance, directly proportional in pure metals to the absolute temperature, the

coefficient of proportionality being, for some substances, negative.

"Hence, ubing Thomson's notation as in Trans USE, we have for any two metals

Jo-j = k\t, Jo-t
=

kjt,

where k
t
und ky are constants, whose sign as well as value depends on the properties

of each metal, a,, cra are the specific heats of electricity, and J is Joule's Equivalent

"
Thus, introducing these values into Thomson's formula1

, we have

// ; v* Tf \ lY11 dK\
(A?,

-
fc2) t = /(<r,

- <ra)
= /

[j
-
^- J

,

where II is the Peltier effect at a junction at absolute temperature t. Integrating,
we have

C-fa-kjt-Jj,

or /y -(*,-*,) ,-),

where t is the constant of integration, obviously in this case the temperature at

282
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which the two metals are thermo-electrically neutral to one another Hence the Peltier

effect may be represented by the ordinates of a parabola of which temperatures are

the abscissas
,

the ordinates being parallel to the axis of the curve.

" The electromotive force in a circuit whose junctions are at absolute temperatures

t and t' is then represented by

This, of course, is again the equation of a parabola. That t t' is a factor of E has

long been known, and Thomson has given the results of many experiments tending

to show that t ^~ is also a factor. But it was not till the experiments in my

Laboratory had been carried on for some months that I was referred by Thomson to

a paper by Avenaims (Pogg. Ann, 119), in which it is experimentally proved (partly

m contradiction of an assertion of Becquerel) that in a series of five different thermo-

electric circuits the electromotive force can be very accurately expressed by two terms

of the assumed series

where ^ and tt are temperatures as shown by the ordinary mercuiial thermometer.

It follows from this that (neglecting the difference between absolute temperatures
and those given by the mercurial thermometer) K has 110 other variable factor than

those above given

"

Curiously enough, Avenanus, whose paper seems to have been written mainly for

the purpose of attempting to explain (by the consideiation merely of the effect of

heat on electricity of contact of two metals) the production of thermo-electric currents,

does not allude to the fact that the above equation represents a parabola In fact

he gives several figures, in all of which it is represented as a very accmatcly diawn

semicircle. He makes no application of hih empirical formula to the determination of

the amount of the Peltier effect, noi does he seem to recognise the existence of what

Le Roux has called
'

1'effct Thomson,' which is indispensable to the explanation of the

observed phenomena.

"All the curves plotted by Messis May and Straker, which were derived from

iron, copper, and platinum alone, as well as my own, which included cadmium, zinc,

tin, lead, brass, silver, and various other substances (sometimes arranged with a double

arc of two different metals connecting the hot and cold junctions) were excellent

parabolas. When the temperatuies were very high, the parabola was slightly steeper
on the hotter than on the colder side This, however, was a deviation of very small

amount, and quite within the limits of error introduced by the altered resistance of

the circuit at the hotter parts, the deviations of the mercury thermometers from

absolute temperature, and the non-correction of the indication of the thermometers for

the long column of mercury not immersed in the hot oil round the junction.
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" To settle the question rigorously, I have been for some time experimenting with

an arrangement sometimes of double metallic arcs, sometimes of two separate thermo-

electric circuits acting on a differential galvanometer a second object being to obtain,

if it be possible, an arrangement capable of replacing with sufficient accuracy the

air-thermometer in the measurement of very high temperatures, and where very exact

results are not required.

"In fact, if the formula above be correct, we have for two circuits with their

junctions immersed in the same vessels

so that if the resistances in the circuits be made as a to a', their resultant effect

on the differential galvanometer will be proportional to

"
It is obvious that so far as these factors are concerned, the rnobt sensitive

arrangements will be such as have their neutral points farthest apart. On a future

occasion I hope to lay the results of my new experiments before the Society They

appear to promise to be of great use in furnishing an easily working and approxi-

mately accurate substitute for the air-thermometer in an inquiry on which I am

engaged respecting specific heats and melting points of various igneous, rocks, &c.,

while the comparison of the indications of two such arrangements at very high tem-

peratures will give the means of determining whether the quantities called k above

are really constants."*

A year later (Dec. 18th, 1871) the following communication, giving rough materials

for the construction of n thermo-electric diagiam, was made to the Society, and

appeared in the Proceedings

"For some time back I have been endeavouimg to prove, by experiment, through

great ranges of tempeiature, the lesult announced by me in December last, viz
,
that

the electromotive force of a thermo-electric cucuit is in general, unless the temperature

be very high, a parabolic function of the absolute temperature of eithei junction, that

of the other being maintained constant

" For moderate ranges of temperature the experiment presents little difficulty ,
but

when mercurial thermometers cannot be employed, a modification of the experimental

method mubt be made. I have employed in succession several such modifications, of

which the following are the chief:

" The simplest of all is to dispense altogether with thermometers, and to employ
two thermo-electric circuits, whose hot and whose cold junctions are immersed in the

essels
;

and to plot the curve whose abscissae and ordmates are simultaneoussame

* In Pogy. Ann. 1878, Heft 7, which has just reached this country, there is another paper on this subject by

Avenarius, in which he altogether deserts his earlier assumptions and line of reasoning, and comes to conclusions

somewhat lesemblmg those just quoted from my paper of 1870.
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readings of the electromotive forces in the two circuits. In every case I have tried

the curve thus obtained is almost accurately a parabola, most of the few deviations

yet observed being in the case of silver and other metals at temperatures not very
much below their melting points under circumstances, in fact, in which we should

naturally expect that the law would no longer hold. There are, also, cases in which

the whole electromotive force is so small, even for very large differences of tem-

perature, that very much more delicate apparatus would be required for their proper

investigation. And there are cases in which the neutral point is so far off that for

moderate ranges of temperature the curves obtained are sensibly straight lines. I

intend to examine these cases with care the former by using more delicate galvano-

meters, the latter by employing metals which are practically infusible The difficulty

of obtaining wires of such metals has been the chief one I have had to face.

"
It we assume the experimental curve to be a parabola, then it is easily seen

(Proc. May 29, 1871) that in each circuit the electromotive force must be a parabolic
function of some function of the absolute temperatures of the junctions. And, as in

the iron-silver, iron-zinc, iron-copper, iron-cadmium, &c., circuits, this function has been

proved to be simply the absolute temperature itself (at least, within the range of

mercury thermometers), it is probable that such is the general law, at least for ranges
of temperature short of those which materially alter the molecular structure of the

metals employed
" The second method consisted in employing two pairs of circuits, all four hot

junctions being in the same heated substance, and all tour cold junctions kept at a

common temperature. The members of each pair acted on a differential galvanometer (as

explained in Proc. Dec. 19, 1870) in buch a way as to eliminate the term containing
the square of the absolute temperature In this case the readings of the galvanometers
should be simply proportional to one another, and likewise to the diffeiences of

absolute temperature of the junctions The method is exact in theory, but by no

meaus easy in practice, especially with the very limited number of metals capable
of resisting a high tempeiature which I could manage to obtain. That a very exact

and useful thermometnc arrangement can be made on this principle admits of no

doubt, when we examine the results of the experiments
" The third method consisted in assuming the parabolic law, and the following

consequence of it which follows directly by the use of Thomson's general formulae.

These may easily be reproduced as folk/ws : Suppose a sliding ring or clip to be

pabbed round the wires, so as to press together points of the wires which are ac the

same temperature, t. Its effects are known by experiment to be ml, whatever be its

material. Let it be slid along so that the temperature of what is now effectively

the hot junction becomes t + &t, then the two laws of thermodynamics give, respectively,

ami = 8 + l-8.
t t

Here E is the electromotive force, II the Peltier effect at a junction at temperature

t, and <TI, <ra ,
are the specific heats of electricity in the two metals.
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"Hence SE=* J (sil - tS~\ -J -
to.

Introducing the hypothesis, obtained from considerations of Dissipation of Energy (Proc.
Dec. 19, 1870), that

Jo-, = kat, Jv* = kbt,

we have J = ^ = (ka
- kb ) (7^ - 1),

where T& is the well-known '

neutral point.'

since it vanishes for t t^, the temperature of the cold junction. Now, if the neutral

point be between such limits as C. and 300
r

C., the exact determination of it is

an easy matter, and this exact knowledge of it greatly facilitates the determination

of .
,
which cannot be very accurately found by drawing a tangent to the plotted

curve. For if one junction be at t, the other at 7^, we have

ET and Tab -I are easily measuied on the experimental curve, and thus ka kt, is found.

The following values have thus been (roughly) calculated from observations. Where the

neutral point was not reached, it LS put in brackets. The unit for ka kb is 3 or 4

per cent less than 2 10~B of the electromotive force of a good Grove's cell.

" Now it is an immediate consequence of the second law of thermo-dynamics, that

as Peltier effects are reversible with the direction of the current, and are the unly

sensible thermal effects when a very feeble current passes through a thermo-electric

circuit all of whose parts are at one temperature, we must have

2^ = 0,
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or, assuming the parabolic law,

This holds for any number of separate materials m the conductor. As t is the same

throughout, the terms involving it evidently vanish identically ,
but there remains the

equation

establishing a relation between the specific heats of electricity in a number of metals

and the absolute temperatures of the neutral points of each junction of two of them

Other relations may be obtained by altering the order of the metals if there be more

than three but they are all virtually contained in the formula for three, which we
write at full length,

(*.
-

fc) Zrt + (kb
- kc) Tbe + (kc

- ka) Tca
= 0.

From the direct experiments of Le Roux on "
1'effet Thomson," as he calls it, it

appears that k is null in lead* At all events, since Thomson showed that it has

opposite signs in iron and copper, we may imagine a substance for which ^% = 0. We
may now construct an improved

"
Thermo-electric diagram

"
to represent these relations

numerically, employing the line for this substance as our axis of absolute temperatures ;

while the ordinates perpendicular to it give, for this substance employed with any

other in a circuit of two metals, the values of
,

or j- or (what comes to the

same thing) the electromotive force of a circuit whose junctions are both very nearly
at t, but have a small constant temperature difference. This quantity corresponds with

what has been called the thermo-electric power of the circuit

" The two oblique straight lines in the diagram f belong to the metals a, 6,

respectively. The tangents of their inclination to the horizontal axis (the line of

the supposed metal for which & = ()) are kat kb and they cut it at the points Ta , Tb ,

V

* Annales de Chimie, 1867, Vol. x. p 277.

t [A Note, which has not been reprinted, was appended to No. XXVIII In its diagram lines parallel to the

temperature-axis were drawn from d and d\ as well as from c and c'
, and thus the area c'd'dc was de-

composed into the (algebraic) sura of its four constituents, the two Peltier, and the two Thomson, effects. 1897 ]
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where they are neutral to it, cutting one another at a point A whose abscissa is

their own neutral point Tab . The only change which would be introduced, by taking
as horizontal axis the line corresponding to a metal for which k does not vanish,

would be a dislocation of the diagram, by a simple shear. This follows at once

from the equation of one of the lines

" The diagram gives the Peltier effect at the junction of a and b for any

temperature tlt by drawing the ordmate at tlt and completing a rectangle cc'gf on

the part intercepted, its opposite end being at absolute zero. The area of this rect-

angle is to be taken positively or negatively according as the corner corresponding to

is nearer to, or further from, the horizontal axis than that corresponding to b, the

current being supposed to pass from a to 6.

" The electro-motive force in a circuit of the two metals a and 6, with its junctions

at j and J2 respectively, is found by drawing ordinates at these temperatures, so as

to cut off triangular spaces Ace', Add', whose vertices are at the neutral point The

difference of the aieas of these spaces, cdd'c', is proportional to the electro-motive

force When the higher temperature tt is above the neutral point, the electro-motive

force is the difference of the areas Ace', Aee'. The case above mentioned, in which,

by a differential galvanometer, we get rid of the terms in t2 , is obviously a process

for making the curves of two separate complex arrangements into parallel straight lines

" In conclusion, 1 may give a few instances of the comparison of results of

calculation of the neutral point of two metals from their observed neutral points, and

differences ot k, as regards iron, with calculation of the same neutral point from the

portion of the curve (assumed to be a parabola) which expresses their electro-motive

force within ranges of temperature where mercurial theimometers can be applied.

"Thus with Fe, Cd, Pb, we have from the iron circuits 001 12 -0'00209 *= -000097,
while the direct experiment with Cd, Pb gave

- 0-00096.

"The neutral point, as calculated from the data for the iron circuits is 69 C.,

while the calculation from direct experiment gives 74 C.

" When the quantities to be found are very small, as for instance in the case

Ag Cu, we cannot expect to get a good approximation by introducing a third

metal. In fact, introducing Fe we find indirectly 000147 -0-00151 =- 0'00004, while

the direct determination gives 0*00006.

"
Again with Zn and Cu, indirectly we get

- 0-00042 and - 144 C.

Directly
- 00048 and - 146 C.

"
Several of the other groups give results as closely agreeing with one another

as those, others are considerably out.

T. 29
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"The numerical determinations above are founded entirely on a series of experi-

ments made for me by Messrs J. Murray and R. M. Morrison. Mr W. Durham is

at present engaged in determining the electro-motive force of contact of wires of

the same metal at different temperatures, with the view of inquiring into its relation

to ordinary thermo-electric phenomena uhich appears to be suggested by some of the

formulae above given."

Mr Durham's results were published in the Proc. R.8.E. (June 17th, 1872), and

showed that in the case of platinum, the only metal he examined, the integral

deflection of a somewhat massive galvanometer needle is independent of the absolute

temperature of either wire, and proportional simply to the difference of their tem-

peratures. This was the result I had expected from the formulae given above (p 223) ,

for if

ka = h,

we have .
Tab = oo

,

but consistently with these we may have

a finite quantity. Hence E = Jr (t
-

t^.

Various other communications on the subject were made by me to the Society,

and published in the Proceedings, but of these I need quote only the following,

of date June 3rd, 1872, as it shows a novel difficulty which I met with, and which

prevented me from publishing earlier an^ attempt at constructing a thermo-electnc

diagram :

"
Having lately obtained from Messrs Johnson and Matthey some wires of plati-

num, and of alloys of platinum and iridium, I formed them into circuits with iron

wire of commerce, and noticed that with all, excepting what is called 'soft' platinum,
there is more than one neutral point situated below the temperature of low white

heat, and that at higher temperatures other neutral points occur. This observation

is, in itself, highly interesting, but my first impression was one of disappointment,
as I imagined it depended on some peculiarity of the platinum metals, which I had

hoped would furnish me with the means of accurately measuring high temperatures

(by a process described in previous notes of this series). As this hope may possibly
not be realised, I can as yet make only rough approximations to an estimation of

the temperatures of these neutral points.

" So far as I am aware, the phenomenon discovered by Gumming and analysed

by Thomson has hitherto been described thus: When the temperature of the cold

junction is below the neutral point, the gradual raising of the temperature of the

other produces a current which increases in intensity till the neutral point is reached,
thenceforth diminishes, vanishes when one junction is about as much above the

neutral point as the other is below it, and is reversed with gradually increasing
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intensity as the hot junction is farther heated To discover how my recent observa-

tion affects this statement, I first simply heated one junction of a circuit of iron

and (hard) platinum gradually to whiteness, by means of a blowpipe, and observed

the indications of a galvanometer both during the heating and during the subse-

quent cooling when the flame was withdrawn. The heating could obviously not be

effected at all so uniformly as the cooling , but, making allowance for this, the effects

occurred in the opposite order, and very nearly at the same points of the scale m
the descent and in the ascent. [I have noticed a gradual displacement of the

neutral points when the junction was heated and cooled several times in rapid

succession , but as my galvanometer, though it comes very quickly to rest, is not

quite a dead-beat instrument, I shall not farther advert to this point till I have

made experiments with an instrument of this more perfect kind, which is now being
constructed for me.] The observed effect of heating, then, was a rise from zero to

110 scale divisions when the higher temperature was that of the first neutral point,

then descent to 95 at a second neutral point, then ascent to a third, descent to a

fourth, neither of which could be at all accurately observed, and finally ascent until

the junction was fused

" With an alloy of 15 per cent iridium and 85 per cent, platinum, the galvano-
meter rose to 53*5 at a neutral point, then fell to 50 at a second, then rose to a

third, at H9'5, and thence fell, but I could not observe a possible fourth neutral

point on account of the fusion of the iion. As shown on the plate, the first of

these occurs ;it about 240
' C of a mercurial thermometer.

" With another alloy supposed to be of the same metals, but of which I do

not yet know the composition, also made into a junction with iron, the behaviour

was nearly the same, but tho readings at the successive neutral points were

28, - 137, - 132. The temperature of the first is about 200 C. by mercurial ther-

mometei

"An iron-palladium circuit showed no neutral points within the great range of

temperatures mentioned above
; though it showed a remarkable peculiarity which must

be more closely studied, as it appears to point to the cause of the above effects in

a property of iron. It was therefore employed to give (very roughly) an indication

of the actual temperatures in these experiments. But as for this purpose it is

necessary to measure the simultaneous indications of two circuits whose hot and whose

cold junctions are respectively at the same temperatures, I was obliged to employ a

steadier source of heat than the naked flame. I therefore immersed the hot junctions

in an iron crucible containing borax glass, subsequently exchanged for a mixture of

fused carbonate of soda and carbonate of potash , but, to my surprise, the former of

these substances at a red heat disintegrated both the platinum and the alloy, and

thus broke both circuits without sensibly acting on the iron, while the mixture

(evidently by the powerful currents discovered by Andrews, Phil Mag 1837) interfered

greatly with the indications of the thermo-electric circuit, as will be seen by the

dotted curve in the wood-cut. [I may remark here that the deviations of this curve

292
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from its form when these currents are prevented are quite easily observed and plotted

by the process next to be mentioned, so that the study of the Andrews effect may
be carried out with great accuracy by my method] Finally, determining to dispense

altogether with fused salts, which conduct too well besides acting on the metals,

I simply suspended a red-hot bombshell, vent downwards, in such a way that the

hot junction was near its centre. This arrangement worked admirably, until a white

heat was required, for this melted the shell. In its place a wrought-iron tube (an

inch in bore, four inches long, half an inch thick, and closed at the upper end) has

been substituted, and answers excellently. It does not cool too fast for accurate

reading at the higher temperatures, and by elevating it by degrees from over the

hot junction we can make the cooling fast enough at the lower ranges. In fact,

I believe that if I do not succeed in getting a sufficient number of practically

infusible metals to construct my proposed thermometric arrangement, I may be able

to make a fair approximation to temperatures by simple time observations made with

the hot tube, surrounded by some very bad conductor, such as sand, where the surface

in contact with the air is always comparatively cool, and where therefore we can

accurately calculate the rate of cooling.

"Curves I., II., III., in the woodcut were drawn by means of this apparatus.

The hot junction consisted of an iron wire, a palladium wire, and (for the several

curves in order) I. Hard platinum, II. Ft 85, Ir 15; III. The other alloy of Pt

and Ir. The free ends of the palladium wire, and of the platinum or alloy, were

joined to iron wires, and the junctions immersed in test-tubes filled with water resting

side by side m a large vessel of cold water. The other ends of these three iron

wires, and the wires of the galvanometer, were led to a sort of switch, by means of

which either circuit could be instantly made to include the galvanometer. Readings
were taken of each circuit as fast after one another as possible (with the galvano-
meter I employed about 6'5 seconds was the necessary interval), and the mean of
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two successive readings of one circuit was taken as being at the same temperature
as that of the intermediate reading of the other.

"The indications of these curves are very curious as regards the effect of even

small impurities on the thermo-electric relations of some metals. It is probable, from

analogy, that the curve for iron and pure platinum, in terms of temperature, would

be (approximately, at least; even if it should be the iron, and not the platinum

metal, which is represented by a broken or curved line) a parabola with a very

distant vertex. And it appears probable that when the wire of curve III. is analysed

it will be found to contain even a larger percentage of indium (
?
) than that of

curve II.

"
I find by tracing these curves on ground glass, allowing for the difference

between temperatures and the indications of an Fe-Pd circuit, and superposing them

on a nest of parabolas with a common vertex and axis, that they can be closely

represented by successive portions of different parabolas (with parallel axes) whose

tangents coincide at the points of junction, though the curvature is necessarily not

continuous from one to the other. Hence, as at least a fair approximation to the

electro-motive force in terms of difference of temperature in the junctions, we may
assume a parabolic function, which up to a certain temperature belongs to one parabola,

then changes to another without discontinuity of direction, and so on.

"Hence either the iron, or the hard platinum and the platinum-indium alloys,

will be (approximately, at least) represented on my form of Thomson's thermo-

electric diagram (ante, p. 224) by broken lines, of which the successive parts are

straight. This, contrasted with the (at least nearly) straight lines for pure metals,

seems to show that some bodies take successively different states (i.e., become different

fiiibstances) at certain 'critical' temperatures, retaining their thermo-electric properties

neaily unchanged from one of those critical points to another.

" The curve marked IV. in the woodcut was obtained by plotting against each

other the simultaneous indications of the alloy of curve III and iron, and of the

alloy of curve II. and iron, so as to avoid any disturbance from possible peculiarities

of palladium. Then, to obtain an idea of the share taken by iron in the results,

it was found that the electro-motive force in a circuit formed by the two alloys, or

by either with hard Pt, is (for a very great range of temperature) sensibly proportional

to the temperature difference of the junctions.

"The same result is easily seen from the plate, if we notice that the difference

of corresponding ordinates in any two of curves I
, II., III., is nearly proportional

to the corresponding abscissa. Now, it seems a less harsh supposition that the lines

representing platinum and its alloys are nearly straight and parallel, while that of

iron is a broken line, than that the latter should be straight and the former all

broken at the ssame temperatures On the other hand, this latter hypothesis would

make k alternately negative and positive in iron, while the former would only

require the platinum metals to have values of k alternately less and more negative

than that of iron.
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"
I may add that none of the above-mentioned effects can be due to altered

electric resistance of the heated junctions, because the galvanometer resistance was

about 23 BA. units, while that of the iron and platinum wires together was m
each case not more than one such unit. The palladium-iron circuit was so much more

powerful than the others that a resistance coil of about 146 u.A. units had to be

inserted in its course
"

To this paper was added during printing the following postscript "I have since

made out that the lines of the diagram are approximately straight, and parallel to

the lead line, for the platinum metals, that of hard platinum being below the lead

line, while those of most of the other alloys are above it, and that the multiple neutral

points depend upon the peculiar sinuosity of the line for iron. I have also obtained

curious results of a somewhat similar kind with steel wire. The method I employed was

to explore the part of the thermo-electric diagram included between the lines of gold
and palladium, by making a multiple arc of these two metals, and varying the ratio

of their separate resistances But I reserve details until I have carefully examined

the behaviour of nearly pure iron."

The peculiarity thus exhibited by iron I afterwauls found to bo also possessed

by nickel, and with the farther advantage that the changes of sign of specific heat

of electricity occur in that metal at temperatures within the range of mercury
thermometers. (Proc. Ji.ti.E., May 1873.) These results I developed m the Rede

Lecture of 1873, a full abstract of which was printed in Nature [ante, No XXVIII
],

and to this I refer the reader for some speculations as to the connection of theso

phenomena with known chemical and magnetic relations, as well as for a great deal

of additional matter connected with Thermo-electricity, but not so directly connected

with my present subject, the construction of a Thermo-electric Diagram.

I have given this resume' of a few of my former papers to show how I was led

to attempt the construction of a thermo-electric diagram, by the result of experiments

originally devised to test the truth of a hypothetical application of the Dissipation of

Energy.

The following results were obtained mainly during the summer of the present year,

the experiments being in great part made by Messrs C. E. Greig and C. G. Knott

in my laboratory The extracts above show sufficiently the nature of the processes

employed, so that but a very few remarks need be made about the therrno-eloctric

diagram (Plate L), which is constructed from them, and embraces the greater part

of the temperature-region in which mercury thermometers can be used. Metals

like bismuth and antimony are quite beyond the capabilities of even a double plate

on this scale.

1. A very small amount of impurity, or even of permanent strain, is capable

of considerably altering the line of a metal in the diagram; so that I have given

in general a sort of average position to each line, and have not attempted absolute

exactness where it was obviously not requisite nor even desirable. N is the alloy
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of 15 Ir, 85 Pt described in the last extract above, M is the other alloy Nos 1,

2, 3 denote platmum-iridium alloys containing respectively 5, 10, 15 per cent, of the

latter metal. These were prepared for me from pure metals by Messrs Johnson and

Matthey, as I fancied from the behaviour of M and N that I might get a series

of alloys whose lines should be parallel to that of lead The result does not for

the present appear encouraging.

2 I have not yet been able to arrive at any definite conclusion with regard
to the form of the dotted portions in the lines of nickel and of German silver.

In fact, had it not been that the palladium line intersects that of nickel near the

middle of the most interesting region, I might have missed altogether the detection

of the peculiarities of nickel, though I was led to seek for them near that region

by induction from those of iron. It is obvious, in fact, from the diagram, that had

copper, gold, iron, &c
,
been associated with nickel, the modification due to these

peculiarities would have been only a very small fraction of the whole electro-motive

force, and might easily have been attributed to errors of observation. As it is, my
best specimen of pure nickel has been destroyed by exposure several times to a

white heat, and I must wait for another before I can resume this part of the inquiry

8. Having made no direct experiments on the electric convection of heat in

lead, I have retained its line as the axis, on the authority of Le Roux above alluded

to As already stated, this is a question involving the actual specific heat of electricity

in each metal
,
not the difference of the specific heats in any two metals, which is all

that my experiments furnish.

Subject to these remarks we have the following table of the values of k, whose

contents are represented graphically in Plate I., and where the unit of elec'tro-motive

force employed is neaily 10~5 of a Grove's cell. The tangents of the inclinations of the

lines in the plate may be reduced to the corresponding numerical values of k in terms

of a Grove's cell by the factor 4 x lO"8
.

Fe - -00247 Cd + 00218

Steel - -00171 Zn +00122
M - -00000 Ag + 00076

Pt Ir (No. 1)
- 00028 An + 00052

Pt Ir (No. 2)
- -00068 Cu + -00048

Pt Ir (No. 3)
- 00032 Pb 00000

N - -00000 Sn + -00028

Pt (soft)
- -00056 Al + -00020

Pt Ni - -00056 Pd - -00182

Pt (hard)
- -00038 Ni (to 175 C.) - '002GO

Mg - -00048 Ni (250 310 C.) + -01225

Arg
- -00260 Ni (from 340 C.)

- 00260

Plate II. shows directly the galvanornetric indications of circuits including

various iron and steel wires
;

one of which is a ribbon of pure iron, prepared by
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Dr Matthiessen, kindly put at my disposal by Dr Russell. The other specimens

of iron consist of two from the ordinary stock in my laboratory, and a third

(probably, from its position so close to that of Dr Matthiessen, very pure) which

I owe to Sir R. Christison, who has used portions of it for chemical testing for

more than thirty years. It was, therefore, prepared at a time when more care was

employed to secure purity than in the present day. The circuits were completed by
the platinum alloy called N above, whose line is nearly parallel to that of lead,

but a little above it The temperature scale is the temporary one given by the

galvariometric indications* of the two platinum alloys M and N Their lines are drawn

as almost exactly parallel in Plate I
,
but they intersect at some temperature about

a white heat
;

so that to reduce the diagram to something roughly corresponding to

absolute temperatures, the whole must be extended parallel to the temperature axis,

and in ratios continually increasing for higher ranges of temperature The experimental
work on which this diagram is based has been performed almost entirely by Messrs

C G. Knott and C. Michie Smith, and its general accuracy may be estimated by the

smoothness of the curves obtained : particularly as all the observed points which do not

he exactly on the cmves have been inserted in the diagram

The points of contraiy flexure in these curves correspond to the pointb of

change of sign of specific heat of electricity in the specimens of iron and steel,

and it is obvious that it is a matter of great difficulty to estimate with precision

where they he. The wire called B Thin shows so remarkable a resemblance to steel

in its thermo-electric properties though it is certainly not steel that, as a verifi-

cation, I tried the electro-motive force of a circuit formed of it and of B Thick

which so nearly coincides with pure iron. The result is given by the lower curve

in Plate II., which is easily seen to be in entire agreement with the curves in

the upper part of the plate, the ordmates of one being the differences of those of the

other two

In Plate III. I have endeavoured, by drawing tangents to the curves of Plate

II., to construct (to the same distorted temperature-scale) the thermo-electric diagram
for N, and the various specimens of iron and steel. It will be seen that all of these

specimens have at least two changes of sign of the specific heat of electricity It

is to be remarked, however, that as the heating of the junctions was effected by
means of a white-hot iron cylinder (as described in one of the extracts above), the

diagram belongs to specimens of iron and steel which have been raised to a white heat

and are cooling. This process generally produces a marked change in the thermo-electric

properties of steel, though a very slight one in those of iron

In the same Plate, III., I have attempted (by means of the parabolic law, assumed

for M, N) to approximate to the diagram for pure iron in terms of absolute tempera-
ture The result is indicated by a double line, which may be compared with the line

for nickel in Plate I., to which it has more than a mere general resemblance. But
this figure also shows one way of forming a thermo-electric circuit which shall give a
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current without any Peltier effect at either junction, and without electric convection of

heat in one of the two metals concerned

Note Since this paper was read to the Society I have seen in the Phil. Mag.
for December 1873 a paper by Prof Barrett, in which he recalls attention to Mr (lore's

singular observation regarding the sudden changes of length which take place in an

iron wire at a low red heat, and adds his own very curious discovery of the sudden

glow which occurs simultaneously with them I have for some time been seeking
for other physical changes, besides the well-known magnttic ones, and the above

described thermo-electric ones, which may be expected to take place in iron about

this temperature A brief note on the change of electric resistance of iron appears

in Proc R.ti.E. (Dec 16, 1872) at? a first instalment which I hope soon to be able

considerably to extend

[The lines of Na, K, and Co have been inserted in the leprmt of the Diagram from the

following data
, given to the Koyal Society of Edinburgh on Maich 2, and 16, 1874 ; and March 6,

Ib76, respectively.

Na K Co

Sp Heat of Electricity
- 00212 - -00066 - O0585

Neutral Point (with Pb)
- 20^ 0. (with Arg) - 20 (with Pb) - 228

With reference to some remarks in the two preceding articles, the following investigation of the

first effects of a current on the distribution of temperature in a conducting wire may bo appended

Let the wire at a point x have, at time t, the absolute temperature v, and let its electric resistance

and the temperature-gradient be both small, so as to avoid, as far as possible, resistance-heating and

conduction. The heat developed per unit of time in the portion 81 is measured from one point of view

by c, dx, where c is the water-equivalent per unit of length But it is also proportional to ~af>o,

i . to - kv 8v, and to the strength of the current. Thus we ha^e the equation

in which a may be treated as constant

The complete integral is v =f( v
")

>

where / is an arbitrary function, expiessing the distribution of tempeiature at t

Generally, while t is small, this gives the relation

In particular if, initially, we have throughout a uniform temperature-gradient

then, while none but thermo-electric processes arc sensibly at work,

Thus, in the standard case (when e and k are both positive) the temperature-gradient becomes loss

steep ; and it does so because the temperatures are simultaneously diminished m the same ratio. 1886.]

T. 30
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XXX.

NOTE ON THE TRANSFORMATION OF DOUBLE AND

TRIPLE INTEGRALS.

[Proceedings of the Royal Society of Edinburgh, December 1, 1873.]

1 IF we have two equations of the form

/(, v, ri)
= 0,

M and v are given as functions of and 77, or vice versd Here either u and v, or

and
77, may be the ordinary Cartesian x and y, or any given functions of them

Now, if we write with Hamilton, since we are dealing with two independent
variables only,

_ . d .d
V = i-r- + J-T- ,

dx J
dy

we have V = Vn A + Vv ^-
= V|-^ + Vy ~ ........................(1)da dv * d dtj

^ '

The proof may be easily given in a Cartesian form by operating by Si and Sj

separately. For the former operation gives

d _^du d^ ^^^_^|_^,^A
da;

~
dx du d,c dv

~~

dx d dx dt)
'

equations manifestly true
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2. Now, the elementary area included by the curves u, u + 8ii, v, v + &v, is easily

seen to be [See, for instance, No. VI. above. 1897]

8uSv

TVVuVv'

Hence we have the following transformations of a double integral extended over a

given area .

But by (1) we see at once that

df df
du

'

dv

dr) dr)

dn
'

dv

whence, of course, the general proposition

df d%
du '

(hi

dr) di)

du
'

dv

and the common transformation

1 dn dv

du dv

di)' dr) \

dx dj~ dndv.

di/ dy
dn,

'

du

3 Dealing with triple integiala, V takes the oidmary Hamiltonian form, and an

additional term is added to each of the members of (1), which thus at once gives
us the mode of introducing V into any system of curvilinear co-ordinates.

The clement of volume included by the surfaces
,

u + Bu, v, vSv, w, w + &w,

is easily seen to be expressed by

Hence we have the following

rrr

JJJ

From these we have, besides the more complex transformation from u, v, w, to , 17,

302
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the common one

fff rff j_- j_ j_

dudvdw,

and also the general theorem

du' dv
' dw

dr) dr) dr)

du' dv' dw

du' dv' dw

dx dx dx

du' dv' dw

dy dy dy
du' dv' dw

dz dz dz

du' dv' dw

du du du

dv dv dv

d%' dr)' d

du^ dw dw
d '

drj
'

d%

= 1
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XXXI.

NOTE ON THE VARIOUS POSSIBLE EXPRESSIONS FOR THE
FORCE EXERTED BY AN ELEMENT OF ONE LINEAR CON-
DUCTOR ON AN ELEMENT OF ANOTHER.

[Proceedings of the Royal Society of Edinburgh, December 1, 1873]

IN the Quart. Math. Journal for 1860 (No. III. above), I gave a quaternion process
for obtaining m a very simple manner, from Ampere's experimental data, his well-known

expression for the mutual action between two elements of currents. As one of the

data the assumption was made, after Ampere, that the action is a force whose

direction is that of the line joining the; middle points of the elements, ? e
,

it was

assumed that the necessary equality of action and reaction hokU, not merely for two

closed circuits but, for each pair of elements of these circuits I promised in that

paper to publish a more general investigation, in which no such assumption should

be made
,

but I was prevented from doing this by having seen a reference to a

memoir by Cellcrier, m which it was stated that such an investigation had been

given. I did not, till very recently, succeed in getting any information about that

memoir, none of which seems indeed to have been printed except a veiy brief extract

in the Comptes Rendus for 1850, vol. xxx., giving no details: but the subject was

recalled to my memory by Clerk-Maxwell's Treatise on Electricity, &c., in which there

is an investigation of the possible expressions for the forces which satisfy Ampere's
data without necessarily satisfying his assumption. Both of these authors make the

undetermined part of the expression depend upon a single arbitiary function. My
investigation leads to two. The question is one of comparatively little physical im-

portance, but I give this investigation for its extreme simplicity.

The following is, as nearly as I can recollect, my original process, which has, at

least at first sight, nothing m common with that of Clerk-Maxwell.
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1. Ampere's data for closed currents are briefly as follows-

1. Reversal of either current reverses the mutual effect.

II. The effect of a sinuous or zig-zag current is the same as that of a straight

or continuously curved one, from which it nowhere deviates much

III. No closed current can set in motion a portion of a circular conductor movable

about an axis through its centre, and perpendicular to its plane

IV. In similar systems, traversed by equal currents, the forces are equal.

2. First, let us investigate the expression for the force exerted by one element on

another.

Let a be the vector joining the elements j, a', of two circuits; then, by I, II.,

the vector action of flj on a! is linear in each of at , of, and may, therefore, be expressed as

where
<f>

is a linear and vector function, into each of whose constituents a^ enters

linearly.

The resolved part of this along a is

8 .
Ua.'<f>a?,

and, by III
,

this mubt be a complete differential as regards the circuit of which
j

is an element Hence,

</>a'
= - (8 . c^V) -fa' + W^,

where ty and ^ are linear and vector functions whose constituents involve a only.

That this is the case follows from the fact that $a' is homogeneous and linear in

each of alt a.'. It farther follows, from IV., that the part of <a' which does not

disappear after integration round each of the closed circuits is of no dimensions in

To., To.', TO.I. Hence ^ is of - 2 dimensions in To., and thus

2V '

where p, q, r are numbers.

Hence we have

Change the sign of a in this, and interchange of and alt and we get the action of
'

on a, This, with a' and eti again interchanged, and the sign of the whole changed,
should reproduce the original expression since the effect depends on the relative, not

the absolute, positions of a, alf a'. This gives at once,

p = 0, 5 = 0,
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and ^ = _ S

with the condition that the first term changes its sign with a, and thus that

>Jra'
= aSaa'F (To.} + *'F(T*),

which, by change of F, may be written

where / and F are any scalar functions whatever.

Hence <' = - S(^V) [aS (a.'V)f(Ta) + a.'F(Ta)] +
rV
^J^

1
,

which is the general expression required.

3 The simplest possible form for the action of one current-element on another

is, therefore,

Here it is to be observed that Ampere's directnce for the circuit ^ is

J la?

the integral extending round the circuit
;

so that, finally,

<f>a!
= - nSXV . Fa'0.

4. We may obtain from the general expression above the absolutely symmetrical

form,
rV a'cro,

if we assume f(Ta} = const., F(Ta) = ^ .

Here the action of
'

on
or, is parallel and equal to that of e^ on a' The forces,

m fact, form a couple, for a is to be taken negatively for the second and their

common direction is the vector drawn to the corner a of a spherical triangle abc,

whose sides ab, be, ca in order are bisected by the extremities of the vectors Ua',

Uoi, Uoti. Compare Hamilton's Lectures on Quaternions, 223 227.

5. To obtain Ampere's form for the effect of one element on another write, in

the general formula above,
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di -*
i / ci n \

'l-"*<* I V O, r ftfltj

we have -
<J>

= - tfc^V
|

-
-^^- |

+ -
^-

-
[-

"~2V" 2V

2o / I= ~
77r-R S Vaa'Faai -h x
^ ft \ A

which are the usual forms.

6. The remainder of the expression, containing the arbitrary terms, is of course

still of the form

In the ordinary notation this expresses a force whose components are propoitional to

(Note that, in this expression, r is the distance between the elements.)

(2) Parallel to a,
d
/- ,

dsl

(3) Parallel to *lt -^ .

If we assume f=F= Q, we obtain the result given by Clerk-Maxwell (Elec-

tricity and Magnetism, 525), which diffeis from the above only because he assumes

that the force exerted by one element on another when the first is parallel and the

second perpendicular to the line joining them is equal to that exerted when the first

is perpendicular and the second parallel to that hue.

7 What precedes is, of course, only a particular case of the following interesting

problem

Required the most general expression for the mutual action of two rectilinear

elements, each of which has dipolar symmetry in the direction of its length, and which

may be resolved and compounded according to the usual fnnemntirnf law,

The data involved in this statement are equivalent to I. and II. of Ampere's data

above quoted Hence, keeping the same notation as in 2 above, the force exerted

by a, on a' must be expressible as

<K

where
<f>

is a linear and vector function, whose constituents are linear and homogeneous
in c^; and, besides, involve only o.
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By interchanging ,
and of, and changing the sign of a, we get the force exerted

by a' on a, If in thin we again interchange a, and a', and change the sign ot the

whole, we. must obviously leproduce fa. Hence we must have fa' changing its sign

with a, 01

fa = Paa,a' + QaSaa^aa' + R^Saa' + Ra'tfaa,

Avheie P, Q, R, R are functions of Ta only

<S The vectoi couple exerted by a, on a must obviously be expressible in the

form

V . a'tsror, ,

wheie -or us a new hneai and vector function depending on a alone. Hence its most

general form is

isa
l
= Pa l + QaSaa, ,

wheie P and Q are new functions of Ta only. The form of these functions, whether in

the expression for the force or for the couple, depends on the special data, for each

particular case. Symmetry shows that there is no term such as

As an example, let a, and ' be elements of solenoids or of uniformly and

linearly magnetised wires

It is obvious that, as a closed solenoid or ring-magnet exerts no external action,

fa'
= - XajV .

-fy-a!

Thus we have mtioduccd a different datum in place of Ampere's No. ITT Hut in

the case of solenoids the Third Law of Newton holds hence

\\heie x ls il hneai !lll( ' vector function, and can therefore be of no other form than

af(Ta).

Now two solenoids, each extended to infinity in one direction, act on one anothei

like two magnetic poles, so that (this being our equivalent for Ampeie's datum No. IV )

W-Pfif

Hence the vectoi tbice exerted by one small magnet on another is

10 For the couple exerted by one element of a solenoid, 01 of a umforml}
and longitudinally magnetised wire, on another, we have of course the expression

V oVa,,

where ta is some linear and vector function.

T. 31
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Here, in the first place, it is obvious that

for the couple vanishes for a closed circuit of which
j

is an element, and the

integral of w, must be a linear and vector function of a alone. It is easy to see

that in this case

11. If, again, a, be an element of a solenoid, and a' an element of current,

the force is

where
>Jra'

= Pa' + QaSaa' + RVaa

But no portion of a solenoid can produce a force on an element of current in the

direction of the element, so that

HO that P = 0, Q = 0,

and we have </>'
= -

flf,V (R Fas').

This must be of 1 linear dimensions when we integrate for the effect ot one pole

of a solenoid, so that

If the current be straight and infinite each way, its equation being

a = ft + xy,

where Ty = 1 and 7 = 0,

we have, for the whole force exerted on it by the pole of a solenoid, the expression

which agrees with known facts.

12. Similarly, for the couple produced by an element of a solenoid on an

element of a current we have

Fa'-Brcti ,

where wa, =s flfe^V ^ra,

and it is easily seen that
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13. In the case first treated, the couple exerted by one current-element on

another is ( 8, above)

F.et'wa,,

where, of course, r, are the vector forces applied at cither end of of Hence the

work done when a changes its direction is

8 . Sa'wotj ,

with the condition >S' . a'Sa' = 0.

So far, therefore, as change of direction of
'

alone is concerned, the mutual

potential energy of the two elements is of the form

S a'r,

This gives, by the expression for m m 8, the following value

Hence, integrating round the circuit of which ^ is an element, we have (On Green's

and otfier Allied Theorems, 11, No. XIX. above)

f(PSa'ce, + Q&xa'tfaa,) = ffds.S . Uv$ (7V + Qa&w'),

P'
where $> = ^ + Q

Integrating this round the other circuit we have for the mutual potential energy of

the two, so far as it depends on the expression above, the value

/AM.

But, by Ampere's result, that two closed circuits act on one another as two magnetic

shells, it should be

312
(s

. uVl Uv' ~
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Comparing, we have

which are consistent with one another, and load to

Hence, if we put

r> 1 +
we get P= 2^V

and the mutual potential of two elements ih of the form

which is the expression employed by Helm hoitz in his recent paper (Ueber (he

Bewegungsgleichimgen der Electricitdt, Crelle, 1870, p. 76)
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XXXII.

ON A SINGULAR T11EOKEM GIVEN BY ABEL.

[Proceedings of the Ruijal Society of Kdinbunjh, December 21, 1874]

THE theorem in question, in its simplest hum, is

Abel's proof of it involves the propeities ot tin- ganiina-tunctum, and requites that

/''() should be capable of development in powers of {(Envr&t, J. 27.)

Independently ot the interesting kinetic application foi which it was originally

designed, this result is very curious, as suggesting a torm of the wjuare toot of the

operation of simple integration. In fact it iven

Seeking to obtain an elementary proof ot Abel's result, which should at the

same time be applicable to any function, whether developable or not, I hit upon the

simple expedient of inverting the order ot the two integrations We thus get the

proof immediately in the form

C C
dif'(^^L = rr f(

Jo Jo *Jx-y\/y %

'

'f <Jos

Now it is known (and a simple geometrical proof is easily given) that
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Hence the integial becomes at once

[XXXII.

Numerous extensions and applications of the theorem are given

As one example of these extensions the following, which assigns an expression

for ( / P , may here be given

r' -~. r *ST- ......... r f~- d^ - ** ........ i/<>
<

<*,-*,)
'

(*,-*,)
J

<<r-f)

Here *,-(' -----*L-
,

Sl-.>;.-i
and therefore

The theorem given by Abel is easily seen to be the particular case of

when n = 2, for then

Another form of the above multiple integral is easily seen to be

and curious expressions for ( .

J
(when i is even) may be obtained by evaluating

the integral

m , fc

(a?,
-

asj)
mn

(ara
-

as,)
mn

(a?-
- #n)

mn
(

w - f)
mn

where wt is any real quantity whatever.

Other instances of the use of this process were adduced, but those just given
are sufficient for an abstract like the present.
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XXXIII.

ON A FUNDAMENTAL PRINCIPLE IN STATICS.

[Proceedings of the Royal Society of Kdmbnrgh, December 21, 1874]

THE principle that, while additional constraints cannot disturb equilibrium, un-

necessary constraints may be removed without disturbing equilibrium, is of very great

use in the statics of fluids and of elastic and flexible bodies But it seems not to

have been made use of to the extent its importance deserves

My attention was recalled to it when attempting to compare the shares taken

by gravity and cohesion in resisting the tendency of the so-called centrifugal force

to split a planet The problem which first proposed itself was to determine the

gravitation attraction of one-half of a uniform sphere upon the other

The sextuple integral which a direct solution of this problem would require may
be entirely dispensed with, and its place supplied by a simple single integral, if we

imagine a thin film of the solid on each side of a diametral plane to be converted

(without change of bulk or density) into an incompressible liquid.

Or we may commence with a sphere of homogeneous incompressible liquid. If a

be its radius, p its density, it is easily shown that the whole pressure normal to

any diametral plane which is of course the attraction of the hemispheres on one

another is

If each hemisphere were collected at its centre of inertia the attraction would be

/4\
f

sj
times as great.
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The centrifugal force tending to split the planet across a diametral plane through
the axis (it is easily shown to be greater per unit of area on a diametral than on

any other plane) is

^ TrpeuW,

where w is the angular velocity of rotation The ratio of these is

am-

or the ratio ot gravity to centrifugal force at any point on the equator Hence, so

fai as giavity is concerned, the earth would split across a meridian if it were to

revolve more than seventeen times faster than it does.

It is known that, if the earth revolved seventeen times faster than it does,

centrifugal force would just; balance gravity at the equator. The relation of this fact

to the above statement depends upon the geometrical proposition that the volume of

a very small slice from the surface of a sphere is half the product of its thickness

by the area of its base

And cohesion would not sensibly alter this state ot things , for, assuming the

earth's diameter to be 8000 miles, its mean density 5 5, and the weight of a cubic

foot ot watei at the surface 63 Ibs., while the average tensile strength of its materials

is taken as 500 Ibs weight per square inch, the cohesion between the hemispheres is

shown to be only ,
41(.th part of their gravitation attraction.

Even if we made the extieme assumption that the tensile strength is (throughout)

that of steel, cohesion would in the case of the eaith be only about -./w\th of

gravitation attiaction between hemispheres.

AH a consequence, a planet of the earth's mean density and the above assumed

tensile strength is held together as much by cohesion as by gravitation if its radius

is ,- th of that of the earth, or about 25 miles If of steel's tenacity it would
V25.410

have a radius of about 409 miles
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XXXIV.

ON THE APPLICATION OF SIR W. THOMSON'S DEAD-BEAT

ARRANGEMENT TO CHEMICAL BALANCES.

[Proceedings of the Royal Society of Edinburgh, February 15, 1875.]

A CONSIDERABLE amount of time is lost in making an accurate weighing on

account of the slowness of oscillation of the balance when the loads are nearly equal
and this loss of time is nearly proportional to the delicacy or sensitiveness of tho

balance

Hence it becomes a matter of importance to endeavour to bring the balance

speedily to rest without, if possible, impairing its sensitiveness as thus much time

and labour would be saved in weighing

Seveial methods of applying gaseous friction for this purpose have been tried by
me of late. By far the most successful consists in suspending from the beam, either

within or beyond the scale-pans, two very light closed cylinders which fit closely (but

without touching) into two fixed cylinders open at the top only. Applied to a long
and massive beam with considerable loads in its scale-pans, which vibrated for some

minutes when disturbed, this trial apparatus brought it to rest after, at most, three

half vibrations.

It is now evident that, with a damper properly constructed on this plan, then 1

is practically no limit (so far as rapidity of weighing alone is concerned) to the length
which may be given to a balance-beam

, and, of course, no limit to the consequent

sensibility of the instrument

A very instructive hydrokinetical illustration is afforded by this instrument The
closed cylinder, exactly balanced inside the cylinder open at the top, is made to ascend

briskly by a gentle current of air blown even veitically downwards on the centre of its

upper end.

T. 32
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XXXV.

ON THE LINEAB DIFFERENTIAL EQUATION OF THE SECOND
ORDER.

[Proceedings of the Royal Society of Edinburgh, January 3, 1876.]

THIS paper contains the substance of investigations made for the most part many

years ago, but recalled to me during last summer by a question started by Sir W.

Thomson, connected with Laplace's theory of the tides

A comparison is instituted between the results of various processes employed to

reduce the general linear differential equation of the second order to a non-linear

equation of the first order The relation between these equations seems to be most

easily shown by the following obvious process, which I lit upon while seeking to

integrate the reduced equation by finding how the arbitrary constant ought to be

involved in its integral.

Let u and v be any functions of #,

A% + B$ . ,

dx dx _ u + Cv
* Au+Bv 1T+ Cv

................................... '
''

where B and A, and therefore their ratio C, are arbitrary constants. The elimination

f C from (1) must of course give a differential equation of the first order in f.o

We have f = _ /'
Wy* u + Cv \ u + Cv /

Now we have, by adding and subtracting multiples of (1), &c.,

fc , _ u" + Pu' + QuC (v" + Pv' + Qv) (u' + Ctfy- ~
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whence, if u and v are independent integrals of the equation

Qy = o .......................................... (2),

we have the required equation
f

and the process above shows why it takes this particular form.

But (2) gives y = Au + Bv

as the complete integral, so we see that

*-*
y

Various classes of cases in which this form is mtegrable are given, of which the

following is one

Let g rj'JQ, then the equation becomes integrable in the form

provided

~!Pdx
- -.-=- = in fe~

!Pdx dx
}

The next subject treated is the effect of the alteration of sign of P or Q in (2).

This is illustrated by the equation

y" #/ y = 0,

which is integrable or at least reducible to quadratures for any of the four combi-

nations of sign

The always integrable case where

P = (C-x)Q
is next examined

Another portion of the investigation deals with certain infinite but convergent

series, whose sums can always be expressed in terms of the integral of a linear

differential equation of the second order

Consider, for instance, the expansion

= ^Pnx
n

, suppose

Obviously we have Pn -J*P-.- +
rr<rT)l+2l^l + "'

From this at once ~ = P^, whence Pn = (fdp)
nP .............................. (5).

dp
322
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A1-
i()-jE-

whence p ^(ff p (6>-

Eliminating Pn between (5) and (6), we obtain

MIMS"* >

This equation is thus true for all positive integral values of n, and its form at

once shows that it is true for negative integral values also. It is very singular that such

a series of equations of all orders should have a common solution. But it depends upon
the fact, which I do not recollect having seen in print, that

fd d\
n

fd\
U'a) -U)

This can be verified at once by applying it to "*; as can also the companion formula

(,*x.+(*}*.
\ dx ) \dx)

Suppose we had, instead of (5) and (6),

we should find the same equation (7) for Q as for P ' In fact, as is easily seen,

Qn=P,,

Other pairs which alike give the equation

<">

dRn d (Rn\
dr

=Rn+ dr(r)

and

We thus get the two distinct particular integrals of each of the corresponding differential

equations

More generally,

I ~T~ }
Pn = Pnv>

\apj

md
p
=
(^)/:' ;

whence P,,_, = (
- Y p

n
(- -Y^ .
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Changing n - v to m, this becomes

which, when m=0, agrees with (7). Here n may have any positive integral value not

less than m. When we write n=m wo have merely a truism. If we put n=m + l,

we arrive at the same result as we should have obtained directly from the first forms of

the equations (5) and (6) All these series satisfy differential equations of the form

Corresponding properties are easily proved for the series forming the coefficients of

the various powers of x in the expansions of expressions like

1 (

px
m
+-r. px + - .

v
,

x
, &C., &C.

It is easily seen that what has been called P above is the infinite series

and that quite generally if

we have IIm = (

-J fp'Mi
) )

Hm

whatever positive integer be represented by n. Of this the simplest case is Tl
l
= ep,

where of course

Again, just as the solution of this equation has the property

ep ei = *>+?,

so it is easy to see that we have in (8)

where the bracket over p + q is employed to indicate that in the expansion we must

square the numerical coefficients of each term of a power of this binomial, e
,

p + q =p + q,

=p4 + q
4 + # (p*q + p(f) + 6yg,

&c., &c.,
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and a similar property, though of course involving higher powers of the coefficients,

holds for each of the functions nm above

For the product of any two similar expansions (with different variables) is easily

seen to have all its numerical coefficients raised to any given power when those of

the separate expansions are so raised.

The paper contains also an account of various attempts to solve the general

equation of the second order, of which the following may be noted.

a Transform to -^ Xy = 0,

and evaluate 1 1
-

,
J

da?

f 1 dy ,
at once, just as

f
- -- axJ

J y dx

is evaluated. The difficulty is reduced to finding the value of

where a single operation is to be effected [See a sort of converse of this notion in

No. XXXII., above. 1897.]

b. Transform to ^ + f> = Z,

and express this by the help of an auxiliary operation in terms of a merely artificial

quantity z, so that

and then all equations of the kind considered can be reduced to the very simple foim

If this were integrated, the only remaining difficulty would lie in the separation

of symbols from the quantities they operate upon.
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XXXVI.

ON A POSSIBLE INFLUENCE OF MAGNETISM ON THE

ABSORPTION OF LIGHT, AND SOME CORRELATED SUBJECTS.

[Proceedings of the Royal Society of Edinburgh, February 7, 1876.]

PROFESSOR G. Forbes' paper, road at a late meeting of the Society, and some

remarks made upon it by Professor Clerk-Maxwell, have once more recalled to me
an experiment which I tried for the first time rather more than twenty years ago,

in Queen's College, Belfast. I have since that time tried it again and again,

whenever I succeeded in getting improved diamagnetics, a more powerful field of

magnetic force, or a more powerful spectroscope. Hitherto it has led to no result,

but it cannot yet be said to have been fairly tried. I mention it now because I

may thus possibly be enabled to get a medium thoroughly suitable for a proper

trial.

The idea is briefly this, The explanation of Faraday's rotation of the plane of

polarization of light by a transparent diamagnetic requires, as shown by Thomson,

molecular rotation of the luminiferous medium. The plane polarized ray is broken up,

while in the medium, into its circularly-polarized components, one of which rotates with

the ether so as to have its period accelerated, the other against it m a retarded

period Now, suppose the medium to absorb one definite wave-length only, then if

the absorption is not interfered with by the magnetic action the portion absorbed

in one ray will be of a shorter, in the other of a longer, period than if there

had been no magnetic force
;
and thus, what was originally a single dark absorption line

might become a double line, the components being less dark than the single one.

Other allied forms of experiment connected with this subject were discussed
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XXXVII.

FOKCE*.

[Nature, September 21, 1876.]

IT was not to be expected that at short notice I could produce a lecture which

should commend itself to the Association by its novelty or originality. But in

science there are things of greater value than even these namely defmitcness and

accuracy. In fact without them there could not be any science except the very

peculiar smattering which is usually (but I hope erroneously) called
"
popular." It is

vain to expect that more than the elements of science can ever be made m the

true sense of the word popular ;
but it is the people's right to demand of their

teachers that the information given them shall be at least definite and accurate,

so far as it goes And as I think that a teacher of science cannot do a greater

wrong to his audience than to mystify or confuse them about fundamental piinciples,

so I conceive that wherever there appears to be such confusion it is the duty of a

scientific man to endeavour by all means in his power to remove it Recent criticisms

of works in which I have had at least a share, have shown me that, even among
the particularly well-educated class who write for the higher literary and scientific

journals, there is wide-spread ignorance as to some of the most important elementary

principles of physics. I have therefore chosen, as the subject of my lecture to-night,

a very elementary but much abused and misunderstood term, which meets us at

every turn in our study of natural philosophy.

I may at once admit that I have nothing new to tell you, nothing which (had

you all been properly taught, whether by books or by lectures) would not have been

familiar to all of you. But if one has a right to judge of the general standard of

popular scientific knowledge from the statements made in the average newspaper
*
Evening lecture by Prof Tait at the Glasgow meeting of the British Association, Sept. 8.
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or even fiom those made in some of the most pretentious among so-called scientific

lectures there can be but few people in this country who have an accurate know-

ledge of the proper scientific meaning of the little word Force.

We read constantly of the so-called
"
Physical Forces

"
heat, light, electricity, &c

of the "Correlation of the Physical Forces," of the
"
Persistence or Conservation of Force"

To an accurate man of science all this is simply error and confusion, and I have

full confidence that the inherent vitality of truth will render the attempt to force

such confusion upon the non-scientific public quite as futile as the hopelessly ludicrous

endeavour of the Times to make us spell the word chemistry with a Y instead of

an E. It is true that in matters such as this last a good deal depends (as Sam
Weller said) "on the taste and fancy of the speller" and sometimes even absolute

eiror is of little or no consequence. But it is quite another thing when we deal with

the fundamental terms of a science. He who has not exactly caught their meaning,
is pretty certain to pass from chronic mistakes to frequent blunders, and cannot

possibly acquire a definite knowledge of the subject

In populai language there is no paiticular objection to multiple meanings for the

same word The context usually shows exactly which of these is intended and then-

existence is one of the most fertile sources of really good puns, such as those of

Hood, Hook, 01 Barham And there is no leason to object to such phrases as the

force of habit, the force of example, the force of circumstances, or the force of public

opinion. But when we read, as I did last week, m one newspaper, that the "force"

of a projectile from the 81-ton gun has at last reached the extraordinary amount of

1,450 feet, m another that the "force" of a ball from the great Armstrong gun,

lately made foi the Italian government, is expected to average somewhere about

30,000 foot-tons and in a third that the water in the boiler of the Thunderer " would

m a second of time generate a '

force
'

sufficient to raise 2,000 tons one foot high
"

wo see that there must be, somewheie at least, if not everywhere, a most reckless

abuse of language In fact we have come to what ought to be scientific statements,

and there even the slightest degree of unnecessary vagueness is altogether intolerable.

Perhaps no scientific English word has been so much abused as the word "
force

"

We hear of "Acceleiatmg Force," "Moving Force," "Centrifugal Force," "Living Force,"

"Projectile Force," "Centripetal Force," and what not Yet, as William Hopkins, the

greatest of Cambridge teachers, used to tell us 'Force is Force" ie,, there is but

one idea denoted by the word, and all force is of one kind, whether it be due to

gravity, magnetism, or electricity This alone serves to give a prelimmaiy hint that

(as I shall presently endeavour to make clear to you) there is probably no such

thing as force at all ' That it is, in fact, merely a convenient expression for a certain
"
rate." If anyone should imagine that

" 3 per cent
"

is a sum of money, he will

soon be grievously undeceived. "3 per cent." means nothing moic or less than the

vulgar fraction y^. True, the " Three Per dents
"

usually means something very

substantial but there the term is not a scientific one. Think for a moment how

utterly any one of you, supposed altogether ignorant of shipping, would be puzzled

by such a newspaper heading as
" The White Star Line

"
or

" The Red Jacket Clipper."

T. 33
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No doubt some of our scientific terms approach as near to slang as do these ;
but

we are doing our best to get rid of them.

A good deal of the confusion about Force is due to Leibnitz and some of hi->

associates and followers, who, whatever they may have been as mathematicians, were

certainly grossly ignorant of some elementary parts of dynamics, insomuch that Leibnitz

himself is known to have considered the fundamental system of the Principia to be

erroneous, and to have devised another and different system of his own. This fact

is carefully kept back now-a-days, but it is a fact, and (as I have just said) has

had a great deal to do with the vagueness of the terms for Force and Energy in

some modern languages. In fact, in their modern dress the Vis Viva, Vis Mortua, and

Vis Acceleratrix of that time have, in some of their Protean shapes, hooked themselves

like Entozoa into the great majority of our text-books

Before dealing more definitely with the proper meaning of the word " Force
"

1

must briefly consider how we become acquainted with the physical world, and how

consequently it is more than probable that some of our most profound impressions,

if uninformed, are completely erroneous and misleading.

In dealing with physical science it is absolutely necessaiy to keep well in view

the all-important principle that

Nothing can be learned as to the physical world save by observation and experi-

ment, or by mathematical deductions from data so obtained

On such a text, volumes might be written , but they are unnecessary, for the

student of physical science feels at each successive stage of his piogiess more and

more profound conviction of its truth He must receive it, at starting, as the

unanimous conclusion of all who have in a legitimate manner made true physical

science the subject of their study , and, as he gradually gams knowledge by this

the only method, he will see more and more clearly the absolute impotence of all

so-called metaphysics, or a priori reasoning, to help him to a single step in advance.

Man has been left entirely to himself as regards the acquirement of physical

knowledge. But he has been gifted with various senses (without which he could not

even know that the physical world exists) and with reason to enable him to control

and understand their indications

Reason, unaided by the senses, is totally helpless m .such matters. The indications

given by the senses, unless interpreted by reason, are utterly unmeaning. But when
reason and the .senses work harmoniously together, they open to us an absolutely
illimitable prospect of mysteries to be explored This is the test of true science

there is no resting-place each real advance discloses so much that is new and easily
accessible that the investigator has but scant time to co-ordinate and consolidate his

knowledge before he has additional materials poured into his store.

To sight without reason, the universe appears to be filled with light except, of

course, in places surrounded by opaque bodies.
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Reason, controlling the indications of .sense, shows us that the sensation of light

is our own property ;
and that what we understand by brightness, &c ,

does not

exist outside our minds. It shows us also that the sensation of colour is purely

subjective, the only difference possible between different so-called rays of light outside

the eye being merely in the extent, form, and rapidity of the vibrations of the

humniferous medium

To hearing, without reason, the air of a busy town seems to be rilled with

sounds Reason, interpreting the indications of sense, tells us that if we could SEE

the pai tides of air, we should observe among them simply a comparatively slow

agitation of the nature of alternate compressions and dilatations superposed upon their

rapid motions among one another. And our classification of sounds as to loudness,

pitch, and quality, is merely the subjective correlative of what in the air-particles is

objectively the amounts of compression, the rapidity of its alternations, and the greater
or less complexity of the alternating motion

A blow from a stick or a stone produces pain and a bruise
,
but the motion of

thr btiek or stone before it reached the body is as different from the sensation

produced by the blow as is the alternate compression and dilatation of the air from

the sensation of sound, or the ethenal wave-motion from the sensation of light.

Hence to speak, as the great majority even of " educated
"

people do, of what

we ordinarily mean by light or sound, as existing outside ourselves, is as absurd a.s

to speak of a swiftly-moving stick or stone as pain. But no inconvenience is occa-

sioned if wo announce the intention to use the terms light and sound for the

objective phenomena, and to speak of their subjective effects as
" luminous impressions

"

or "
noise," as the case may bo In this case there is outside us energy of motion

of every kind, but in the mind mere corresponding impressions of brightness and

colour, noise or harmony, pain, &c., &c.

At. another instance, it is obvious that we must be extremely cautious in our

interpretation of the immediate evidence of our own senses as to heat.

Touch, in succession, vanous objects on the table. A paper-weight, especially if

it be metallic, is usually cold to the touch
; books, paper, and especially a woollen

table-cover, compaiatively warm. Test them, however, by means of a thermometer, not

by the sense of touch, and in all probability you will find little or no difference in

what we call their temperatures. In fact, any number of bodies of any kind shut up
in an mclosure (within which there is no fire or other source of heat) all tend to

acquire ultimately the same temperature. Why, then, do some feel cold, others warm to

the touch ?

The reason ib simply this the sense of touch does not inform us directly of

temperature, but of the rate at which our finger gains or loses heat. As a rule

bodies in a room are colder than the hand, and heat always tends to pass from a

warmer to a colder body. Of a number of bodies, all equally colder than the hand,

that one will seem coldest to the touch which is able most rapidly to convey away
heat from the hand. The question, therefore, is one of conduction of heat And to

assure ourselves that it is so, reverse the process : let us, in fact, try an experiment,

332



260 FORCE, [xxxvir.

though an exceedingly simple one; for the essence of experiment is to modify the

circumstances of a physical phenomenon so as to increase its value as a test. Put

the paper-weight, the books, and the woollen table-cloth into an oven, and raise them

all to one and the same temperature considerably above that of the hand. The

woollen cloth will still be comparatively cool to the touch, while the metal paper-

weight may be much too hot to hold. The order of these bodies, as to warm and

cold, in the popular sense, is in fact reversed
;

and this is so because the hand is

now receiving heat from all the various bodies experimented on, and it receives most

rapidly from those bodies which in their previous condition were capable of abstracting

heat most rapidly However it may be in the moral world, in the physical universe

the giving and taking powers of one and the same body are strictly correlative and

equal.

Thus the direct indications of sense are in general utterly misleading as to the

relative temperatures of different bodies.

Tn a baker's oven, at temperatures far above the boiling point of water (on one

occasion even 320 F., so high indeed that a beef-steak was cooked in thirteen

minutes), Tillet in France, and Blagden and Chantrey in England, remained for

nearly an hour in comparative comfort. But though their clothes gave them no great

inconvenience, they could not hold a metallic pencil-case without being severely burned.

On the other hand, gieat care has to be taken to cover with hemp, or wool, or

other badly conducting substance, every piece of metal which has to be handled in

the intense cold to which an Arctic expedition is subjected, for contact with very

cold metal produces soies almost undistinguishable from burns, though due to a

directly opposite cause. Both of these phenomena, however, ultimately depend on the

comparative facility with which heat is conducted by metals.

Even from the instance just given, you cannot fail to see that there is a

profound distinction between heat and temperature. Heat, whatever it may be, is

SOMETHING which can be transferred from one portion of matter to another
;

the

consideration of temperatures is virtually that of the mere CONDITIONS which determine

whether or not theie shall be a transfer of heat, and in which direction the transfer

is to take place. Bear this carefully in mind, because it has most important analogies

to the results we meet with in considering the nature of Force.

It has been definitely established by modern science that heat, though not material,

has objective existence in as complete a sense as matter has.

This may appear, at first sight, paradoxical ;
but we must remember that so-called

paradoxes are merely facts as yet unexplained, and therefore still apparently incon-

sistent with others already understood in their full significance.

When we say that matter has objective existence, we mean that it is something
which exists altogether independently of the senses and brain-processes by which alone

we are informed of its presence. An exact or adequate conception of it, if it could

be formed, would probably be something very different from any conception which
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our senses will ever enable us to form
;

but the object of all pure physical science

is to endeavour to grasp more and more perfectly the nature and laws of the

external world, using the imperfect means which are at our command reason acting
as interpreter as well as judge, while the senses are merely more or less untrust-

worthy and incompetent witnesses, but still of inconceivable value to us because they
are our only available ones.

Without further discussion we may state once for all that our conviction of the

objective reality of matter is based mainly upon the fact, discovered solely by expen-

ment, that we cannot in the slightest degree alter its quantity We cannot destroy,

nor can we produce, even the smallest portion of matter. But reason requires us to

be consistent in our logic ,
and thus, if we find anything else in the physical world

whose quantity we cannot alter, we are bound to admit it to have objective reality

as truly as matter has, however strongly our senses may predispose us against the

concession. Heat therefore, as well as light, sound, electric currents, &c., though not

forms of matter, must be looked upon as being as real as matter, simply because they
have been found to be forms of energy which in all its constant mutations satisfies

the test which we adopt as conclusive of the reality of matter. We shall find that

this test fails when applied to force.

But you must again be most carefully warned to distinguish between hoat and

the mere sensation of warmth
, just as you distinguish between the motion of a cudgel

and the pain produced by the blow. The one is the thing to be measured, the other is

only the more or less imperfect reading or indication given by the instrument with

which we attempt to measure it in terms of some one of its effects So that when

your muscular sense impresses on you the notion that you are exerting force as in

pushing or pulling, you ought to be very cautious in forming a judgment as to what

is really going on, and you ought to demand much farther evidence before admitting

the objective reality of force

Until all physical science is reduced to the deduction of the innumerable mathe-

matical consequences of a few known and simple laws, it will be impossible altogether

to avoid some confusion and repetition, whatever be the arrangement of its various parts

which we adopt in bunging them before a beginner. But when we confine ourselves to

one definite branch of the subject, all of whose fundamental laws can be distinctly

formulated, there need be no .such confusion Here in fact the mathematician has it all

in his own hands. He is the skilled artificer with his plan and his trowel, and the

hodmen have handed up to him all the requisite bricks and mortar.

[Prof. Tait gave a quotation in support of this view.]

Whether there is such a thing as force or not I shall consider presently But

m the meanwhile there can be no doubt that it is a convenient term, provided it

be employed in one definite sense, and one only. Let us then first see how it is

to be correctly used. Here we cannot but consult Newton. The sense in which he

uses the word "
force," and therefore the sense in which we must continue to use
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it if we desire to avoid intellectual confusion, will appear clearly from a bnef con-

sideration of his simple statement of the laws of motion.

The first of these laws is : Every body continues in its state of rest or of uniform

motion in a straight line, except in so far as it is compelled by impressed forces to change

that state

In other words, any change, whether in the direction or in the rate of motion

of a body is attributed to force. Thus a stone let fall moves quicker and quicker,

and we say that a force (viz , the weight of the stone, or the earth's attraction for

it) is continually acting so as to increase the rate of the motion. If the stone be

thrown upwards, the rate of its motion continually diminishes, and we say that the

same force (the stone's weight) is continually acting so as to produce this diminution

ot speed. So far, none of you probably feels the least difficulty. But we have got

only half of the information on this point which Newton's first law affords. You

see the moon revolving .about the earth, and the earth and other planets revolving

about the sun approximately, at least, in circles. Why is this ? Their directions of

motion are constantly changing; in fact, a curved line is merely a line whose

direction changes from point to point, while a straight line is one whose direction

does not change ,
but to produce this change of direction force is required just as

much as to produce change of speed. That is supplied by the gravitation attraction

of the central body of the system. The old notion was that a centripetal force was

required to balance the so-called centrifugal force, it being imagined that a body

moving in a circle had a tendency to fly outwards from the centre ! Newton's

simple Taw exposes fully the absurdity of this. If a body is to be made to move

in a curved line instead of its natural straight path, you must apply force to compel
it to do so, certainly not to prevent it from flying outwards from the centre, about

which it is for the moment revolving. In fact, inertia means, not revolutionary

activity, but dogged perseverance, and just as you must apply force in the direction

of motion to change the rate of motion, so must you apply force perpendicular to

the direction of motion to change that direction.

Newton's second law is now required : Change of motion is proportional, to the

impressed force, and takes place in the direction of the straight line in which the

force acts.

Mark here most carefully that this one simple law holds for att kinds of force

alike. There is no special law for gravitation-force and others for electric and magnetic
forces. All are defined alike, without reference to their origin.

Motion, as Newton has previously defined it, is here used as a technical scientific

term for what we now call momentum. It is the product of the mass moving into the

velocity with which it moves. "
Change of motion," therefore, is change of momentum,

or the product of the mass of the moving body into its change of velocity. Now a

change of velocity is itself a velocity, as we see by the science of mere motion

kinematics the purely mathematical science of mixed space and time.
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Newton's words, however, imply more than this. Of course, the longer a given

force acts, the greater will be the change of momentum which it produces; so that to

compare forces, which is the essence of the process of measuring them, wo must give

them equal times to act or, in scientific language, we must measure a force by the

rate at which it produces change of momentum Rate of change of velocity is called in

kinematics acceleration. Thus the measure of a force is the product of the mass of

the body moved into the acceleration which the force produces in it This is the

so-called Vis matrix, or "
moving force

"
of the Cambridge text-books the so-called Vis

acceleratrix, or
"
accelerating force," being really no force at all, but another name

for the kinematical quantity acceleration which I have just defined.

Unit force is thus that force which, whatever be its source, produces unit momentum
in unit of time. If we employ British units unit of force is that which, in one second,

gives to one pound of matter a velocity of one foot per second Here you must carefully

notice that a pound of matter is a certain mass or quantity of matter. When you buy a

pound of tea, you buy a quantity of the matter called tea, equal in mass to the standaid

pound of platinum. The idea of weight does not enter primarily into the process

In fact, the use of an ordinary balance depends upon one clause of Newton's law

of gravitation which tells us that in any locality whatever, the weights of bodies

are equal if then masses are equal The weight of a pound of matter varies from place

to place on the earth's surface it depends on the attracting as well as the attracted

body. The mass of <i body is its own propeity The earth's attraction for a body,
or the weight of the body, is a force which produces in it in one second, a velocity

which (in this latitude, and at the sea-level) is about 32*2 feet per second. So that,

in Glasgow the weight of a pound which we take as our standard of mass is

rather more than thirty-two units of force, or, what comes to the same thing, the

British unit of foice is about the former weight of a penny letter half an ounce.

Some people are in the habit ot confounding force with momentum. No one having

sound ideas of even elementary mathematics could bo guilty of this or any smiilai

monstrosity. He would as soon, as Hopkins used to say, measure heights in acres,

or arable land in cubic miles. But to show to a non-mathematician that it is really

monstrous to confound force and momentum, it suffices to change the system of units

employed in measuring them, when it will be found that, if numerically equal for

any one system of units, they are necessarily rendered unequal by a mere change of the

unit employed for time. Now two things which are really equal to one another must

necessarily be expressed by the same numerical quantity whatever system of units be

adopted. Let us try then unit of force and unit of momentum, as defined by pound,

foot, second, units : and see what alterations a common change of these fundamental

units will make in their numerical expression.

Unit momentum is that of one pound of matter moving with a velocity of one

foot per second. Unit force is that force which, acting for one second, produces in

unit of mass a velocity of one foot per second. In each of these statements you

may put an ounce or a ton, instead of a pound, and an inch or a mile in place

of a foot, and their relative value will not be altered. But suppose we take a



264 FORCE. [xxxvn.

minute instead of a second as the unit of time One foot per second is sixty feet

per minute so this change of the time unit increases sixty-fold the nominal value

of the momentum considered But in the case of the force our statement would stand

thus: What we formerly called unit of force is that which, acting for one-sixtieth

only of our new unit of time produces in a mass of one pound, sixty-fold the new

unit of velocity. In other words the number expressing the momentum is increased

sixty-fold, while that representing the force is increased three thousand six hundred

fold.

In fact, whatever be the system of units you employ if you increase in any

proportion the unit of time, the measure of a momentum is increased, in that proportion

simply, while that of a force is increased in the duplicate ratio. The two things

are, therefore, of quite dissimilar nature, and cannot lawfully be equated to one another

under any circumstances whatever

The mathematician expresses this distinction at once by saying that momentum
is the time-integral of force, because force is the rate of change of momentum.

But what I have already said as to the meaning of Newton's two first laws leaves

absolutely no doubt as to the only definite and correct meaning of the word force.

It is obviously to be applied to any pull, push, pressure, tension, attraction, or repulsion,

&c
,

whether applied by a stick or a string, a chain or a girder ;
or by means of

an invisible medium such as that whose existence is made certain by the phenomena of

light and radiant heat, and which has been shown with great probability to be capable

of explaining the phenomena of electricity and magnetism

I have already mentioned to you that the notion of force is suggested to us

by the so-called muscular sense, which gives us a peculiar feeling of pressure when

we attempt to move a piece of matter. To get a notion of what it really means we

must again have recourse to physical facts instead of the uncontrolled evidence of

the senses. Almost all that is required for this purpose is summed up for us in the

remaining law of motion. Before we take it up, however, let us briefly consider the

position at which we have arrived

We have seen how to get rid of two gratuitous absurdities the so-called centri-

fugal force and accelerating force, and we must proceed to exterminate living force.

Cormoran and Blunderbore have been disposed of, but a more dangerous giant remains

More dangerous because he is a reality, not a phantom like the other two. What-

ever force may be, there is no such thing as centrifugal force
,
and accelerating force

is not a physical idea at all. But that which is denoted by the term living force,

though it has absolutely no right to be called force, is something as real as matter

itself. To understand its nature we must have recourse to another quotation from

the Principia.

Newton's third law of motion is to the effect that

" To every action there is always an equal and contrary reaction ; or, the mutual

actions of any two bodies are always equal and oppositely directed."
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This law Newton first shows to hold for ordinary pressures, tensions, attractions,

impacts, &c., that is for forces exerted on one another by two bodies, or their time-

integrals. And when he says
"
If any one presses a stone with his finger his finger

is pressed with an equal and opposite force by the stone," we begin to suspect that

force is a mere name a convenient abstraction not an objective reality.

Pull one end of a long rope, the other being fixed. You can produce a prac-

tically infinite amount of force, for there is stress across every section throughout the

whole length of the rope Press upon a movable piston in the side of a vessel full

of liquid. You produce a practically infinite amount of force for across every ideal

section of the liquid a pressure per square inch is produced equal to that which you

applied to the piston. Let go the rope, or cease to press on the piston, and all

this practically infinite amount of foice is gone
'

The only man who, to my knowledge, ever tried to discover experimentally what

might be correctly called conservation of force, was Faraday. He was not satisfied with

the mode of statement of Newton's law of gravitation, in which the mutual attraction

between two bodies is said to VARY inversely as the square of their distance from

one another. When the distance between two bodies is doubled, their mutual attrac-

tion falls off to one-fourth of what it formerly was. Faraday seriously set to work

to determine what became of the three-fourths which have disappeared, but all his

skill was insufficient to give him any result Faraday's insight was so profound that

we cannot assert that something may not yet be discovered by such experiments,

but it will assuredly not be a conservation of force.

But Newton proceeds to point out that this third law is true in another and

much higher sense He says:
"
If the action of an agent be measured by the product of its force into its

velocity, and
if, similarly, the reaction of the resistance be measured by the velocities

of its several parts into their forces, whether these arise from friction, cohesion, weight,

or acceleration, action and reaction, in all combinations of machines, will be equal and

opposite."

The actions and reactions which are here stated to be equal and opposite, are

no longer simple forces, but the products of forces into their velocities; ie., they are

what arc now called rates of doing work, the time-rate of increase, or the increase

per second of a very tangible and real SOMETHING, for the measurement of which

rate Watt introduced the practical unit of a hoise-power, or the late at which an

agent works when it lifts 33,000 pounds 1 foot high per minute against the earth's

attraction

Now think of the difference between raising a hundredweight and endeavouring
to raise a ton With a moderate exertion you can raise the hundredweight a few

feet, and in its descent it might be employed to drive machinery, or to do some othei

species oj work But tug as you plea*c at the ton, you will not be able to lift it ,

and therefore, after all your exertion, it will not be capable of doing any work by

descending again

T. 34
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Thus it appears that force is a mere name, and that the product of a force

into the displacement of its point of application has an objective existence. In fact,

modern science shows us that force is merely a convenient term employed for the

present (very usefully) to shorten what would otherwise be cumbrous expressions ;
but

it is not to be regarded as a thing, any more than the bank rate of interest (be it

2, 2^, or 3 per cent.) is to be looked upon as a sum of money, or than the birth-

rate of a country is to be looked upon as the actual group of children born in a

year. Another excellent instance is to be had from the rainfall We say rain fell

on such a day at the rate of an inch in twenty-four hours. What can be an inch

of rain ?
especially when we mean a linear, not a cubic inch But there is no con-

fusion or absurdity here What is implied is that, if it had gone on raining at that

rate for twenty-four hours, and if the rain (like snow) remained where it fell, the

ground would have been coated to the depth of an inch.

In fact, a simple mathematical operation shows us that it is piecisely the same

thing to say
The horse-power of an agent, or the amount of work done by an agent in each second,

is the product of the force into the average velocity of the agent,

and to say

Force is the rate at which an agent does work per unit of length.

In the special illustration of Newton's words which I have just given, the resistance

was a weight, that of a hundredweight or of a ton When the resistance was overcome,

work was done, arid it was stored up for use in the raised mass in a form which

could be made use of at any futuro time

Following a hint given by Young, we now employ the term ENERGY to signify

the power of doing work, in whatever that power may consist The raised mass, then,

we say possesses, in virtue of its elevation, an amount of energy precisely equal to

the work spent in raising it This dormant, or passive, form is called potential energy.

Excellent instances of potential energy are supplied by water at a high level, or with

a "
head," as it is technically called, in virtue of which it can in its descent drive

machinery , by the wound-up
"
weights

"
of a clock, which in their descent keep it going

for a week
, by gunpowder, the chemical affinities of whose constituents are called into

play by a spark ,
&c

, &c

Another example of it is suggested by the word "
cohesion," employed in Newton's

statement, which must obviously be taken to include what are called molecular forces

in general, such as, for instance, those upon which the elasticity of a solid depends.

When we draw a bow, we do work, because the force exerted has a velocity;

but the drawn bow (like the raised weight) has in potential energy the equivalent
of the work so spent That can in turn be expended upon the arrow

,
and what

then ?

Turn, again, to Newton's words, and we see that he speaks of one of the forms of

resistance as arising from "
acceleration." In fact the arrow, by its inertia, resists being
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set in motion
,
work has to be spent in propelling it, but the moving arrow has that

work in store in virtue of its motion. It appears from Newton's previous statements

that the measure of the rate at which work is spent in producing acceleration is

the product of tlie momentum into the acceleration in the direction of motion, and the

energy produced is measured by half the product of the mass into the square of the

velocity produced in it. This active form is called kinetic energy, and it is the double of

this to which the term vis viva, or living force, has been erroneously applied.

As instances of ordinary kinetic energy, or of mixed kinetic and potential energies,

take the following: A current of water capable of driving an undershot wheel ,

winds, which also are used for driving machinery ;
the energy of water-waves or of sound

waves, the radiant energy which comes to us from the sun, whether it affect our nerves

of touch or of sight (and therefore be called radiant heat or light) or produce chemical

decomposition, as of carbonic acid and water in tho leaves of plants, or of silver salts in

photography (and be therefore called actinism) ,
the energy of motion of the particles

of a gas, upon which its pressure depends, &c [When the motion is vibratory the

energy is generally half potential, half kinetic.]

These explanations and definitions being premised, we can now translate Newton's

words (without alteration of their meaning) into the language of modern science, as

follows

Work done on any system of bodies (in Newton's statement the parts of any

machine) has its equivalent in work done against friction, molecular forces, or gravity,

if there be no acceleration ,
but if there be acceleration, part of the work is expended

in overcoming the resistance to acceleration, and the additional kinetic energy developed

is equivalent to the work so spent

But we have just seen that when work is spent against molecular forces, as ID

drawing a bow or winding up a spring, it is stored up as potential energy. Also it

is stored up in a similar form when done against gravity, as in raising a weight.

Hence it appears that, according to Newton, whenever work is spent it is stored

up either as potential or as kinetic energy, except, possibly, in the case of work done

against friction, about whose fate he gives us no information Thus Newton expressly

tells us that (except, possibly, when there is friction) work is indestructible, it is

changed from one form of energy to another, and so on, but never altered in quantity.

To make this beautiful statement complete, all that is requisite is to know wliat

becomes of work spent against friction.

Heie, of couise, experiment is> requisite Newton, unfortunately, seems to have

forgotten that savage men had long since been in the habit of making it whenever

they wished to procure fire. The patient rubbing of two dry sticks together, or (still

better) the drilling of a soft piece of wood with the slightly blunted point of a hard

piece, is known to all tribes of savages as a means of setting both pieces of wood on fire

Here, then, heat is undoubtedly produced, but it is produced by the expenditure of
work. In fact work done against friction has its equivalent in the heat produced

342
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This Newton failed to see, and thus his grand generalisation was left, though on one

point only, incomplete. The converse transformation, that of heat into work, dates

back to the time of Hero at least. But the knowledge that a certain process will

produce a certain result does not necessarily imply even a notion of the
"
why

"
;

and Hero as little imagined that in his seolipile heat was converted into work, as do

savages that work can be converted into heat.

But whenever any such conversion or transference takes place there is necessarily
motion : and the mere rate of conversion or transference of energy per unit length
of that motion is, m the present state of science, very conveniently called force No
confusion can arise from using such a word in such a sense. On the contrary, there

is always a gain m clearness when compactness can lawfully be introduced.

Rumford and Davy, at the very end of last century, by totally different experi-
mental processes, showed conclusively that the materiality of heat could not be

maintained, and thus gave the means of completing Newton's statement which, still

farther extended and generalised rather more than thirty years ago by the magnificent

experimental work of Coldmg and Joule, now stands as one massive pillar of the fast-

rising temple of science . known as the law of the conservation of energy

The conception of kinetic energy is a very simple one, at least when visible

motion alone is involved. And from motion of visible masses to those motions of the

particles of bodies whose energy we call heat, is by no means a very difficult mental
transition Mark, however, that heat is not the mere motions but the energy of these

motions, a very different thing, for heat and kinetic energy in general are no more
"modes of motion" than potential energy of every kind (including that of unfired

gunpowder) is a "mode of rest!" In fact a "mode of motion" is, if the word motion
be used in its ordinary sense, purely kinematical, not physical, and if motion be used
in Newton's sense, it refers to momentum, not to energy

The conception of potential energy, however, is not by any means so easy or

direct In fact, the apparently direct testimony of our muscular sense to the existence

of force makes it at first much easier for us to conceive of force than of potential

energy. Why two masses of matter possess potential energy when separated in virtue

of which they are conveniently said to attract one another is still one of the most
obscure problems in physics. I have not now time to enter on a discussion of the

very ingenious idea of the ultramundane corpuscles, the outcome of the life-work of
Le Sage, and the only even apparently hopeful attempt which has yet been made to

explain the mechanism of gravitation. The most remarkable thing about it is that, if

it be true, it will probably lead us to regard all kinds of energy as ultimately kinetic.

And a singular quasi-metaphysical argument may be raised on this point, of which
I can give only the barest outline. The mutual convertibility of kinetic and potential
energy shows that relations of equality (though not necessarily of identity) can exist

between the two, and thus that their proper expressions involve the same fundamental
units, and m the same way. Thus, as we have already seen that kinetic energy
involves the unit of mass and the square of the linear unit directly, together with
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the square of the time unit inversely, the same must be the case with potential

energy; and it seems very singular that potential energy should thus essentially involve

the unit of time if it do not ultimately depend in some way on energy of motion

[Prof. Taifc then gave instances of the inaccurate use of the word Force.]

To conclude In defence of accuracy, which is the sine qud non of all science, we

must be "zealous," as it were, even to "slaying." And, as all the power of the

Times will not compel us to put a y instead of an e into the word chemist, so

neither will the bad example of Germany and France, though recommended to us

with all the authonty which may be attributed to an ex-president of this Association,

succeed in inducing us to attach two or more perfectly distinct and incompatible

scientific meanings to that useful little word,
"
force," which Newton has once and

for ever defined for us with his transcendent clearness of conception.

I have now only to ask your indulgence for the crudeness of this lecture. All

I can say is that in preparing it, I have done my best, under circumstances of time,

place, and surroundings, all alike unpropitious But the chance of being able to back

up, however imperfectly, my old friend, Di Andrews, in whose laboratory I first

learned properly to use scientific apparatus, and whose sage counsel impressed upon
me the paramount importance of scientific accuracy, and above all, of scientific

honesty such a chance was one which no surroundings (however unpropitious) could

have induced me to forego.
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XXXVIII.

SOME ELEMENTARY PROPERTIES OF CLOSED PLANE CURVES*

[Messenger of Mathematics, New Series, No. 69, 1877.]

THE closed curves contemplated are supposed to have nothing higher thun double

points. By infinitesimal changes of position of the branches intersecting in it, a triple

point is decomposable into 3 double points, a quadruple point into 6, and generally
x (x 1)

an #-ple point into v
~o double points

I. A closed curve cuts any infinite unknotted line in an even number of points

[Infinite here implies merely that both ends are outside the closed cforve]

For, if it be broken anywhere, as at A (fig 1), both free nds are on the same

side of the infinite line.

II. The same is true if the infinite line be knotted

For, as there is nothing higher than a double point, the
^
knotted line may be

opened up into an unknotted one (as in
fig. 2) without changing the circumstances.

It is an interesting problem to find the number of such modes of opening a

given knot. An extension of this problem leads to the question of the number of

essentially distinct ways in which a closed curve may be broken up into separate
closed curves, knotted or unknotted (fig. 3).

*

III. If any two closed curves cut one another, there is an
ev^en

number of points
of intersection. i

* Communicated to Section A, at the 1876 Meeting of the British Ass
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For there must be points of one of them at least in the outer boundary of the

complex figure. Open it at such a point, and the lino becomes infinite in the sense

of I. above (fig 4).

IV. In going continuously along a closed curve from a point of intersection to

the same point again an even number of intersections is passed.

For (a) If the partial path cross itself, it must pass twice through each such

intersection.

(6) As regards the rest, the two parts may be considered to be separate closed

curves as in III

V. Hence, in going lound such a closed cuive we may go alternately above and

below the branches as we meet them (fig. 5). Strictly speaking, we have only now

arrived at Knots; and, in what precedes, we ought to read 'autotomic' for 'knotted'

VI By III. the s"ame proposition is true of a complex arrangement of any
number of bepaiate closed curves superposed m any manner (fig 6).

VII. In passing from the interior of any one cell to that of any other in any

system of superposed closed curves the number of crossings is always even or always

odd, whatever path be taken.

For any path from the exterior, through each ot these cells to the exterior

again, has an even number of crossings. Varying only the part of this path between

the two cells, it must have alwajs an even or an odd number of crossings.

VIII. Hence, the cells may be coloured black and white in such a way that

from white to white there is always an even number of crossings, and from white to

black an odd number. Such closed curves therefore divide the plane as nodal lines

do a vibrating plate (fig. 7)

The development of this subject promises absolutely endless work but work of

a very interesting and useful kind because it is intimately connected with the theory

of knots, which (especially as applied in Sir W. Thomson's Theory of Vortex Atoms)
is likely soon to become an important branch of mathematics.
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XXXIX

ON KNOTS.

[Transactions of the Royal Society of Edinburgh, 1876-7. Revised May 11, 1877]

THK following paper contains, in a compact form, the substance of seveial some-

what bulky communications laid before the Society during the present session The

gist of each of these separate papers will be easily seen from the abstracts given in

the Proceedings. Those contain, in fact, many things which I have not reproduced

in this digest. Nothing of any importance has been added since the papers were

read, but the contents have been very much simplified by the adoption of a different

order of arrangement and long passages of the earlier papers have been displaced

in favour of short general statements from the later ones. With the exception of the

portion which deals with the mam question raised, this paper is fragmentary in the

extreme Want of leisure or press of other work may justly be pleaded as one

cause
,
but there is more than that. The subject is a very much more difficult and

intricate one than at first sight one is inclined to think, and I feel that I have not

succeeded in catching the key-note. When that is found, the various results here

given will no doubt appear in their real connection with one another, perhaps even

as immediate consequences of a thoroughly adequate conception of the question.

I was led to the consideration of the forms of knots by Sir W. Thomson's

Theory of Vortex Atoms, and consequently the point of view which, at least at first,

I adopted was that of classifying knots by the number of their crossings , or,

what comes to the same thing, the investigation of the essentially different modes of

joining points in a plane, so as to form single closed plane curves with a given

number of double points.

The enormous numbers of lines in the spectra of certain elementary substances

show that, if Thomson's suggestion bo correct, the form of the corresponding vortex

T. 35
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atoms cannot be regarded as very simple. For though there is, of course, an infinite

number of possible modes of vibration for every vortex, the number of modes whose

period is within a few octaves of the fundamental mode is small unless the form of

the atom be very complex. Hence the difficulty, which may be stated as follows

(assuming, of cour&e, that the visible rays emitted by a vortex atom belong to the

graver periods): "What has become of all the simpler vortex atoms?" or "Why
have we not a much greater number of elements than those already known to us ?

"

It will be allowed that, from the point of view of the vortex-atom theory, this is

almost a vital question

Two considerations help us to an answer. First, however many simpler forms

may be geometrically possible, only a very few of these may be forms of kinetic

stability, and thus to get the sixty or seventy permanent forms required for the

known elements, we may have to go to a very high order of complexity. This leads

to a physical question of excessive difficulty. Thomson has brieHy treated the subject

in his recent paper on " Vortex Statics*," but he cannot be said to have as yet

fven crossed the threshold But secondly, stable or not, are there after all very many
different forms of knots with any given small number of crossings

? This is the

main question treated in the following paper, and it seems, so far as I can ascertain,

to be an entirely novel one

When I commenced my investigations I was altogether unaware that anything had

been written (from a scientific point of view) about knots. No one in Section A at

the British Association of 1876, when I read a little paper (No. XXXVIII. above) on

the subject, could give me any leference, and it was not till after I had sent rny

second paper to this Society that I obtained, in consequence of a hint from Professor

Clerk-Maxwell, a copy of the very remarkable Essay by Listing, Vorstudien zur

Topologie^, of which (so far as it bears upon my present subject) I have given a

full abstract m the Proceedings of the Society for Feb. 3, 1877. Here, as was to be

<>xpected, I found many of my results anticipated, but I also obtained one or two

hints which, though of the briefest, have since been very useful to me. Listing does

not enter upon the determination of the number of distinct forms of knots with a

given number of intersections, in fact he gives only a very few forms as examples,
and they are curiously enough confined to three, five, and seven crossings only; but

he makes several very suggestive remarks about the representation of knots in general,

arid gives a special notation for the representation of a particular class of
"
reduced

"

knots. Though this has absolutely no resemblance to the notation employed by me
for the purpose of finding the number of distinct forms of knots, I have found a

slight modification of it to be very useful for various purposes of illustration and

transformation. This work of Listing's, and an acute remark made by Gauss (which,

with some comments on it by Clerk-Maxwell, will be referred to later), seem to bo

all of any consequence that has been as yet written on the subject I have acknow-

ledged in the text all the hints I have got from these writers
,
and the abstract of

Listing's work above referred to will show wherein he has anticipated me.

*
Proc. R S.K 18756 (p. 59) t GMtingei Studien, 1847.
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PART I.

The Scheme of a Knot, and the number of distinct Schemes for each degree

of Knottiness

I. My investigations commenced with a recognition of the fact that in any
knot or linkage whatever the crossings may be taken throughout alternately over

and under. It has been pointed out to me that this seems to have been long

known, if we may judge from the ornaments on various Celtic sculptured stones, &c.

It was probably suggested by the processes of weaving or plaiting I am indebted

to Mr Dallas for a photograph of a remarkable engraving by Diirer, exhibiting a

very complex but symmetrical linkage, in which this alternation is maintained

throughout Formal proofs of the tiuth of this and some associated properties of

knots will be found in the little paper already referred to*. They are direct con-

sequences of the obvious fact that two closed curves in one plane necessarily intersect

one another an even number of times It follows as an immediate deduction from

this that 111 going continuously round any closed plane curve whatever, an even

number of intersections is always passed on the way from any one intersection to

the same again Hence, of course, if we agree to make a knot of it, and take the

ciossmgs (which now correspond to the intersections) over and under alternately,

when we come back to any paiticular crossing we shall have to go under if we

previously went over, and vice versa This is virtually the foundation of all that follows

But it ih essential to remark that we have thus two alternatives for the crossing

with which we start. We may make the branch we begin with cross under instead

of over the other at that crossing This has the effect of changing any given knot

into its own im.ige m a plane minor what Listing calls Perversion. Unless the form

be an Atnphicheiral one (a term which will be explained later), this perversion makes

an essential difference in its character makes it, in fact, a different knot, incapable

ot being deformed into its original shape.

Listing speaks of crossings as demotrop or iaeotrop If we think of the edges
of a Hat tape or india-rubber band twisted about its mesial line, we recognise at

once the difference between a right and a left handed crossing (Plate IV fig 1.)

Thus the acute angles m the following figure are left handed, the obtuse, right

handed , and they retain these characters if the figure be turned over (i.e., about an

axis in the plane of the paper) :

but in its image in a plane mirror these characters are interchanged.

* No XXXVIII iibo\e.
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2. Suppose now a knot of any form whatever to be projected as a shadow

cast by a luminous point on a plane The projection will always necessarily have

double points*, and in general the number of these may be increased though not

always diminished by a change of position of the luminous point, or by a distortion

of the wire or cord, which we may suppose to form the knot. This wire or cord

must be supposed capable of being bent, extended, or contracted to any amount whatever,

subject to the sole condition that no lap of it can be pulled through another, i.e
,
that

its continuity cannot be interrupted. There are, therefoie, projections of every knot

which give a minimum number of intersections, and it is to these that our attention

must mainly be confined. Later we will consider the question how to determine this

minimum number, which we will call Knottiness, for any particular knot , but tor

our present purpose it is sufficient to get rid of what are necessarily nugatory inter-

sections, i.e., intersections which no alteration of the mode of crossing can render

permanent. These crossings arc essentially such that if both branches of the string were

cut across at one of them, and their ends reunited crosswise, so as to form two separate

closed curves, these separate curves shall not be linked together, however they may
individually be knotted, i e

,
that if they are knots they are separate from one another,

so that one of them may be drawn tight so as to present only a roughness in the

string For in this case the nugatory crossing will thus be made to bound a mere

loop.

[We may define a necessarily nugatory crossing as one through which a closed,

or an infinitely extended, surface may pass without meeting the string anywhere but

at the crossing. Or, as will be seen later ( 20), \ve may recognise a necessarily

nugatory crossing as a point where a compartment meets itself.]*

In the first two of the sketches subjoined all the crossings aiv necessarily nugatory ,

in the third, only the middle one is so.

Now these diagrams, when lettered in the manner forthwith to be explained

(see, for instance, Plate V. fig. 1), present respectively the following schemes

|

A

A.CBBCA
|

A

ACUDCBDAEGVEGF
\
A.

*
Higher multiple points may, of course, occur, but an infinitesimal change of position of the luminous

point, or of the relative dimensions of the coils of the knot, will remove these by splitting them into a number

of doable points, so that we need not consider them.
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These and similar examples show that in a scheme a crossing is necessarily

nugatory, if between the two appearances of the letter denoting that crossing there

is a group consisting of any set of letters each occurring twice. The set may consist of

any number whatever, including zero. For our present purpose it will be found sufficient

to consider this last special case alone, i.e., the sanw letter twice in succession denotes a

necessarily nugatory crossing

8 If we affix letters to the various crossings, and, going continuously round the

curve, write down the name of each crossing in the order in which we reach it, we

have, as will be proved later, the means of drawing without ambiguity the projection

of the knot. If, in addition, we are told whether we passed over or under on each

occasion of reaching a crossing we can, again without any ambiguity, construct the knot

in wire or cord. Passing over is, in what follows, indicated by a + subsciibed to

the letter denoting the crossing passing undei by a Any specification which

includes these two pieces of information is necessarily fully descriptive of the knot
,

and when it is given in the particular form now to be explained we shall call it the

Scheme

If in accordance with 1 we make the ciossings alternately over and undei, it is

obvious that the odd places and even places of the scheme will each contain all the

crossings. As the choice of letteis is at our disposal, we may therefore call the

crossings in the odd places A, B, C, &c, in alphabetical ordei, starting from any

crossing we please, and going round the knotted wire in any of the four possible ways,

i e
, starting from any crossing by any of the four paths which lead from it, put the

successive letters at the Hist, third, fifth, &c
, crossings as we meet them Then it

is obvious that the essential character of the projected knot must depend only upon

the way in which the letter's are arranged in the even places of the scheme Of course,

the nature and reducibihty (ie, capability of being simplified by the removal of

nugatory crossings) of the knot itself depend also upon the subscribed signs [In

general there will be foui different schemes for any one knot, but in the simplei cases

these arc often identical, two and two, sometimes all four.]

4 Here we may remark that it is obvious that when the crossings are alternately

+ and no i eduction is possible, unless there be essentially nugatory crossings, as

explained in 2. For the only way of getting rid of such alternations of + and

along the same cord is by untwisting, and this process, except in the essentially

nugatory cases, gets rid of a crossing at one place only by introducing it at .mother

It will be seen later that this process may in certain cases be employed to change the

scheme of a knot, and thus to show that in these cases there may be more than foui

different schemes representing the same knot
, though, as we have already seen, a

scheme is perfectly definite as to the knot it represents Hence, in the first part of

our work, we shall suppose that the crossings are taken alternately + and
,
so that

no reduction is possible. But it will afterwards be shown that, even when all essentially

nugatory crossings are removed, it is not always necessary to have the regular alter-

nation of -f and in order that the knot may not be farther reducible. It is easy
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to sec a reason for this, if we think of a knot made up of different knots on the

same string, whether separate from one another or linked together For the irre-

ducibihty of each separate knot depends only upon the alternations of + and in

itself, and the two knots may be put together, so that this condition is satisfied in

the partial schemes, but not in the whole. AN there cannot be a knot with fewer

than three crossings, we do not meet with this difficulty till we come to knots with

six crossings. And as there can be no linking without at least two crossings, we do

not meet with linked knots on the same string till we come to eight crossings at least

5. We are now prepared to attack our main question.

Given the number of its double points, to find all the essentially different forms which

a closed curve can assume.

Going round the curve continuously, call the first, third, &c , intersections A, B, 0, &c
In this category we evidently exhaust all the intersections. The complete scheme is

then to be iormed by properly interpolating the same letters in the even places ,
and

the form of the curve depends solely upon the way in which this is done.

It cannot, however, be done at random For, first, neither A nor B can occui in

the second place, B nor C in the fourth, and so on, else we should have necessarily

nugatory intersections, as shown in 2. Thus the number of possible arrangements
of n letters (viz., n.n 1 .2.1) is immensely greater than the number which need

here be tried. But, secondly, even when this is attended to, the scheme may be an

impossible one. Thus, the scheme

A D B E C A D H E
\

A
is lawful, but

AUB^CA'DC'E^IA
is not.

The former, m fact, may be treated as the result of superposing two closed (ami

not self-intersecting) curves, both denoted by the letters A D B E C A, so as to make
them cross one another at the points marked B, C, D, E, then cutting them open
at A, and joining the free ends so as to make a continuous circuit with a crossing

at A.

But in the lattei scheme above we have to deal with the curves A D B A and

C E C E, and in the last of these we cannot have junctions alternately -f and as

required by our fundamental principle. In fact, the scheme would require the point C
to lie simultaneously inside and outside the closed circuit A D B A.

Or we may treat A D B A and C E D C as closed curves intersecting one another

and yet having only one point, D, in common

Thus, to test any arrangement, we may strike out from the whole scheme all the

letters of any one closed part as A A, and the remaining letters must satisfy the

fundamental principle, ^.e., that they can be taken with suffixes + and alternately, or
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(what coines to the same thing) that an even number of letters intervenes between the

two appearances of each of the remaining letters.

Oi we may .strike out all the letters of any two sets which begin ,md end similarly,

e.g., A....X, X....A, the two together being treated as one closed curve, and the test must

still apply.

More generally, we may take the sides of any closed polygon as A X, X F, Y Z,

Z A, and apply them in the same way But in this, as in the simpler case just given,

the sides must all be taken the same way round in the scheme itself.

A simple mode of applying these tests will be given later, when we aie dealing with

the question of BeLnottedness

It may be well to explain here how a change of the crossing selected as the initial

one alters the scheme. Take the simple case of making B the first, and reckoning on

from it. Then B becomes A, &c ,
and the scheme, which may be any whatevei, suppose

for example
A F B L A' 1) H .

becomes (by wilting for each letter that which alphabetically precedes it)

N # A # B D C .

01 beginning with A, A K B D C G

Hence the letters F, L, E, H, ...

in the oven place* of a scheme are equivalent to

K
t D, 0,... E,

te, wo may change each to tho preceding letter taken in the cyclical order of the

alphabet and put the first to tho end, or vice versd, without altering the scheme An

arrangement of this kind is unique (reproducing itself) if tho letters are in cyohcal order ,

and if the number of letters be a prime, any arrangement is eithei unique or is reproduced
after a number of operations of this kind oqual to the number of letters If it be not

prime, arrangements may be found which will reproduce themselves after a number of

operations oqual to any one of its aliquot parts

Another lawful change is this Begin from the A in the even places and letter as

usual, ie., start from the same crossing as before, and in the same direction round the

curve, but not by the same branch of tho cord or wire This will be evident from an

example Beginning at the second A, and lettering alphabetically every second crossing,

we have the suffixed letters,

A D B A C F D B E C F E
\
A

F A B D E

Now write the same equivalents for the same letters in the odd places, and the scheme

in its new lettering is

AFC ADBFCEDBE
|

A
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or the following are equivalents in the even places

D A F B C E

D F E B A C,

and each ot these haw, of course, five other equivalents found by the first of these two

piocesses.

But we may also start from the same intersection A by either of these paths, but in,

the reverse direction round the curve To effect this we have only to read the scheme

backwards, beginning at either A, and changing the lettering throughout in accordance

with our plan Thus, taking the last example,

A D B A C F D B E C F E
\

A

F E D C B
|

A

we keep the terminal A unchanged, and write B, C, &c., for the 2nd, 4th, &c., preceding

letters. We have thus, as it were, the key for translating from the upper line to the

lower. Apply this key to all the letters, and then write the result in the reverse order

Thus we get ACBECFV BKA F
|

A.

This new scheme hat- for its even places

C E F B A D
which is equivalent (in this particular case) to the second of the two direct schemes just

given, viz

D F E B A C.

Finally, if we read this reversed scheme from the A in the even places, its even

letters become
E A F C B D

which (m this case) is the same as

D A FBCE
the even letters of the onginal scheme

The notation we shall employ is this do, de, ro, re, signifying the even places of

the four cases

d o the direct scheme, read from A m the odd place

d e the direct scheme, read from A in the even place

r o the reversed scheme, read from A in the odd place

i e the reversed scheme, read from A in the even place

and we shall denote by an appended numeral the number of times the operation above

has to be performed Thus, in the example just given it will be found that

/ o = d e 2
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6' With one intersection or two only, u knot is thus impossible, for the crossings

must necessarily be nugatory. Hence we commence with three. And here there is but

one case, for by our rule we must write A, B, C in the odd places, and we have no

choice as to what to interpolate in the even ones. Thus the only knot with three

intersections has the scheme

A C B A G B
|

A.

One of its two projection* is the "trefoil" knot below

For four intersections our choice in the even places it> restricted to C or D for

the second, D 01 A foi the fourth, &c., as expressed below,

B

C.

No\\, if we take (
1

to begin with, we obviously must take D next, else we shall not

get it at all Similarly A must come third. And if we begin with D, we mitM end

with C, so that this case also is determinate The only possible sets, therefore, are

given by these two rows as they are written. But it is obvious that, as they are in

cyclical order, the full schemes will be identical if one be read from the beginning,

the other from the A m the even places. Thus the) represent the same arrangement,
.ind the sole knot with four mtei sections has the scheme

of its two projections IH given by the annexed figure:

7 When wo have Jive intersections, our choice for the even places in order is

limited to the following groups of three foi each, viz. :

C D E A B

D E

E A

A B C

B C D.

36
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This gives the following thirteen arrangements:

[xxxix.

Now of these (1), (5), and (13) are unique, (6), (7), (8), and (10) can be obtained

from (2) by cyclical alteration of the letters and biinging the last to be the beginning,
find by the same process (4), (9), (11), (12) may be deduced from (3)

Hence the only possible forms are included in the following arrangements toi the

letters in the even places:
C D E A B

C E A B D
C E B A D
1) K A B C
E A B C D

Of these the 1st, 3rd, and oth violate the conditions laid down in ."> above Hence

there are but two schemes for five intersections, viz.

A C B EC A 1) B E D
\
A,

of which this is one of the four forms

and A D B E C A D B E ('
\
A,

one of the two forms of which is the pentacle or Solomon's seal,
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8. The case of six intersections gives the following choice .

C D E F A B

D E F A 13 (.!

E F A B C D
F A B C D E.

I found, by trial, that there are 80 possible arrangements included in this form
,
and

that the following 20 alone are distinct. I have appended to each the number of

apparently different forms in which it occurs among the HO arrangements

Of these, all but (5), (6), (7), (8), (12), (14), (15), (18), violate the conditions of

5, and therefore do not correspond to real knots Of those excepted the schemes

agree in pairs when the branch first taken fiom the stai ting-point is changed.

Hence there aie only four forms of 6-fold knottmess. These are as follows:

(a). (5) and (18) agree in giving the scheme

KC BA C

of \\hich one form is the following

This form consists of two separate trefoil knots.

(). (6) and (14) give the scheme

362
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one form of which is as follows :

fxxxix.

(7) From (7) and (12) \ve have

A C B K C F D A E H F D
\
A,

which has as one form

(8) (8) and (15) give

of which one form is

A (! 13 E C -4 D F E /* F D
\ A,

9 The case of seven intersections is the only other to which T have found leisure

to apply this method. As I did not see how otherwise to make certain that I had

got all possible forms, I wrote out all the combinations of seven different letters, one

from each column (in order) of the scheme

1) E F G A B

D E F G A B C

E F G A B C D

F G A B C D E

G A B C D E F.

These I thus tound to amount to 579. Then, by the help of an improvised

arrangement of cardboard, somewhat resembling Napier's Bones, I rapidly struck off six



XXXIX.
J

ON KNOTS. *J85

of each equivalent set of 7. Thus 87 forms in all were left, viz., one form from each

of 82 groups of seven, and 5 unique forms. Here they are

On testing these by the rules of 5, I found that 22 only, viz, those marked

with an asterisk, correspond to real knots.

10 When we study these group,s by the method of 5, we find that more

than one of them correspond to different readings of the scheme of one and the same
knot. Of course that knot will be the least symmetrical which has the greatest number
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of essentially different schemes. The following grouping has thus been arrived at (the

notation is that of 5 above)

Thus it appeals that the knot V., represented by any of the tour scheme** (24),

(20), (39), and (52), is devoid of symmetry, \vhile VI, VIII, IX.. X, XI have the

highest symmetry. No number has been in this table affixed to (14), because it is

only accidentally a 7-fold knot It is represented by the third figuie in 2 above,

and when the nugatory crossing is removed, it becomes (a) of the 6-fold type, 8

Also it will be noticed that (4) and (03), although thcii common scheme differs from

that oi (13) and (15), are included with them under I. The reason is that the knot

represented is a composite one, consisting of a 3-fold and a 4-fold knot, and that either

may be slipped along the string or wire into any position whatevei relative to the

other But even with this licence it appears that there are only 4 really distinct

schemes.

In the second and third rows of figures of Plate IV. projections of each of these

classes of 7-fold knottmess aie given, with the number of the class attached.

| 11. But the knots represented by these eleven forms are not all distinct. It

will readily be seen that (by the process of inversion of 15 below) II, when formed

of wire, with crossings + and alternately, may be brought into the form (whose

pw^versiwi will be found in Sir W. Thomson's paper on "
Vortex-Motion," Trans. R. 8. E,,

1807-68, p. 244)
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while IV. may be modified into

Those are two of the three figures of 7-fold knots given as examples by Listing,
and he has stated, though without any explanation, that these two forms are equivalent,

i.e., convertible into one another. Hence II. and IV. form but one class of 7-fold knot.

How to effect this transformation has been already hinted in 4-. It is merely
the passing of a crossing from one loop of the string to another (which intersects it

twice) by a twist through two right angles And the diagrams 5, 6, 7 of Plate IV
show the nature of this transformation, as well as of two others which I have since

detected, viz , that of III. into V., and of VI. into VII. Hence there are in reality

only eight distinct forms of 7-fold knottmess.

Thus, as the result of the last six sections, we have the following table

Kriottiness, 3, 4, 5, 6, 7.

No of Forms, 1, I, 2, 4-, 8.

12. I have not attempted the application of the preceding method to forms

with more than 7 intersections. Prof Cayley and Mr Muir kindly sent me general
solutions of the problem,

" Ht>w many arrangements are there of n letters, when A cannot

be in the first or second place, B not in the second or third, <{
-

c." Their papers, which

will be found in the Proceedings R.8E* of course give the numbers 13, 80, and 579,

which I had found by actually writing out the combinations for o, (}, and 7 letters.

But they show that the number for 8 letters is 4738, and that for f), 43,387 ,
so that

the labour of the above-described process for numbers higher than 7 rises at a fearful

rate 1 cannot spare time to attack the 8-fold knots, but I hope some one will soon

do it There is little chance of anything more than that, at least of <m exhaustive

character, being done about knots in this direction, until an analytical solution is given
of the following problem

Form all the distinct arrangements of n letters, when A cannot be first or second,

tt not second or third, <C'C.

[Arrangements are said to be distinct when no one can be formed from another

by cyclic alteration of the letters, at eveiy step bringing the last to the head of the

row, as in 5.] This, I presume, will be found to be a much harder problem than

that of merely finding the number of such arrangements, which itself presents very

grave difficulties, at least where n is a composite number. In fact it is probable that

the solution of these and similar problems would be much easier to effect by means

*
1877, p 338, and p. 382.
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of special (not very complex) machinery than by direct analysis. This view of the case

deserves careful attention.

In a later section it will be shown how, by a species of partition, the various

forms of any order of knottmess may be investigated. But we can never be quite

sure that we get all possible results by a semi-tentative process of this kind. And

we have to try an immensely greater mimber of partitions than there are knots, as

the great majority give links of greater or less complexity.

13. But even supposing the processes indicated to have been fully cairied out

for 8, 9, and 10-fold knottiness, a new difficulty comes in which is not met with, except

in a very mild form, in the lower orders. For when a knot is single, i.e., not composite
or made up of knots (whether interlinked or not) of lovvei orders, any deviation fiom

the rule of alternate + and at the crossings gives it, in general, nugatoiy crossings,

in virtue of which it sinks to a lower order. But when it is composite, and the

component knots are sepaiately irreducible, the whole is so. Thus there are more distinct

forms of knots than there are of their plane projections. Foi instance, the first species (a)

of the 6-fold knots ( 8) may be made of three essentially different forms, for the sepaiate

"trefoil" knots of which it is made may (when neither is nugatory) be both right-

handed, both left-handed, or one right and the other left-handed. This species is

thus, fiom the physical point of view, capable of fu Hashing three quite distinct forms

of vortex-atom And it will presently be shown that in each of these forms it is capable

of having regular alternations of 4- and , or a set of sequences at pleasure.

At least one knot of every even order is amphicheiral, i.e., right or left-handed

indifferently, but no knot of an odd order can be so. Hence, as there is but one

3-fold knot foim, and one 4-fold, there are two possible 3-fold vortices, light and left-

handed, but only one 4-fold. A combination of two trefoil knots gives, as we have

seen, three distinct knots; that of two 4-fold knots would give an 8-fold, with only

one form When a 3-fold and a 4-fold are combined, as in Class I. of 10, there are

two distinct vortices, for the trefoil part may be right or left-handed. Thus it appears
that though we have shown that there are very few distinct outlines of knots, at least

up to the 7-fold order, and though probably only a very small percentage of these

would be stable as vortices, yet the double forms of non-amphicheiral knots give more

than one distinct knot for each projected form into which they enter as components.

PART II.

The number- of Forms for each Scheme.

14 A possible scheme being made according to the methods just described,

with the requisite number of intersections, let it be constructed in cord, with the

intersections alternately + and . Then [since all schemes involving essentially nugatory

crossings, like those mentioned in 2, must be got rid of, as they do not realty possess

the requisite number of intersections] no deformation which the cord can suffer will
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reduce, though it may increase, the number of double point*. If it do increase the

number, the added terms will be of the nugatory character presently to be explained
If it do not increase that number, the scheme will in general still represent the altered

figure. For, as we have seen, the scheme is a complete and definite statement of

the nature of the knot But, as already stated, in certain cases the knot can be

distoited so as no longer to be represented by the same scheme

All defoimations of such a knotted cord or wire may be considered as being effected

by bending at a time only a limited portion of the wire, the rest being held fixed.

This corresponds to changing the point of view jimtely with regard to the part altered,

and yet inJituteoMmdly with regard to all the rest. This, it is clear, can always be

done, as the ; elatlce dimensions of the various coils may be alteied to any extent

without altcnng the chauicter of the knot In general such deformations ma^ be

obtained by alteung the position of a luminous point, and the plane on which it

easts a shadow of the knot Any addition to the normal number of intersections

which may be produced by this process is essentially nugatory. As is easily seen,

it geneially occurs m the foim of the avoidable overlapping of two branches, giving
cuntiiHUttwnv of wgii

The piocess pointed out in 11 gives a species of deformation which it is perhaps
h.vrdh fair to class with those just described, though by a slight extension of mathe-

matical language such a classification may be made strictly accurate It may be

\\ell to present, in passing, a somewhat different view of the application of this method

Thus, it is obvious at a glance that the two following figures are mere distortions

of the second form of the 4-fold knot figuied in 17 below.

Also it will be seen that by twisting, the dotted parts being held fixed, either of

the.sc may be changed into the other, or changed to it* own reverse (as from left

to light)

We may now substitute what we please for the dotted paits. I give only the

particular mode which reproduces the two forms stated by Listing to be equivalent .

Another mode of viewing the subject, really depending on the same principles,

consists in fixing temporarily one or more of the crossings, and considering the im-

possibility of unlocking in any way what is now virtually two 01 more separate

T. 37
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interlacing closed curves, or a single closed curve with full knotting, but with fewer

intersections than the original one.

Another depends upon the study of the cases of knots in which one or moie

crossings can be got rid of. Here, as will be seen in 33 below, it is proved that

continuations of sign are in general lost when an intersection is lost
,

so that, as

our system has no continuations of sign, it can lose no intersections.

15. Practical proceases for producing graphically all such deformations as are

icpiesented by the same scheme are given at once by various simple mechanisms.

Thus, taking O any fixed point whatever, let p, a point in the deformed curve, be

found from its corresponding point, P, by joining PO and producing it according to

any rule such as

a, &c., &c.

The essential thing is that points near O should have images distant from O,

and vice versd And p must be taken in PO produced, else the distorted knot is

altered from a right-handed to a left-handed one, and vice versd, as will be seen at

onco by taking the image of the crossing figured in 1 above.

It is obvious, from the mode of formation, that these figures arc all represented

by the same scheme, for the scheme tells the order in which the various crossings

occui, and it is easy to show that they give merely different views of the same

knot The simplest way of doing this is to suppose the knot projected on a sphere,.

and there constructed in cord, the eye being at the centre Arrange so that one

closed branch, eg, A-A, forms nearly a great circle Looking towards the centie

of the sphere from opposite sides of the plane of this great circle, the coil presents

exactly the two appearances related to one another by the deformation processes

given above. What was inside the closed branch from the one point of view is outside

it from the other, and vice versd. In fact, because the new figure is represented by
the same scheme as the old, the numbers of sides of the various compartments are

the same as before, and so also is the way m which they are joined by their

corners. The deformation process is, in fact, simply one of ftyping, an excellent

word, very inadequately represented by the nearest equivalent English phrase
"
turning

outside in
"

Hence to draw a, scheme, select in it any closed circuit, eg., A...A the more

extensive the better, provided it do not include any less extensive one. Draw this,

and build upon it the rest of the scheme . commencing always with the common

point A, and passing each way from this to the next occurring of the junctions
named in the closed circuit. [It is boinetimes better to constiuct both parts of the

rest of the scheme inside, and then invert one of them, as we thus avoid some

puzzling ambiguities.] Inversions with respect to vanous origins will now give all

possible forms of the scheme, though not necessarily of the knot.
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16. Applying these methods to the "trefoil" knot ( 0)

291

we easily see that if be external, 01 be inside the inner three-sided compartment,
we reproduce (generally with much distortion, but that is of no consequence, 2)

the same foim, but if O be in any one of the two-sided compartments, we have

the form

This again is reproduced from itself if O be external, or be within cither of

the twu-Ridcd compartments But it gives the trefoil knot if O be placed inside either

of the three-sidod compartments.

Here notice that the angles of the two-sided compartments aie left-handed, and

those of the three-sided right-handed m each of the figures The perverted or right-

handed form is ot course

and its sohtaiy deformation is the perversion of the other figure above

17 When we come to the deformations of the single 4-fold knot

we obtain a very singular result. If we place O external to the figure, we simply

reproduce it
;

but if we put O inside the two-sided compartment in the middle we

get the perversion of the same figure.

Again, if we place O in either of the boundary thiee-sided compartments we get

372
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but if we place it in either of the interior three-hided spaces we get the perversion
of this last figure.

Thus this 4-fold knot, in each of its forms, can be deformed 'into -its own per-
version. In what follows all knots possessing this property will be called Amphicheiral.

18. The first of the two 5-fold knots ( 7) has the following forms:

These I found were long ago given by Listing a.s reduced forms of a reducible

7-fold knot, and 1 have now substituted for my former di awing of the second form

his more symmetiical one.

The second of the 5-fold knots has only two forms, viz

19 Plate IV figs. 2, 3, 4, give various forms of the 0-fold knot distinguished

as a it) the classification in H It will be seen that in the first of these the

crossings arc alternately over and under, but that it is not so in the others

And in fig.
N we have a collection (not complete) of loims of various species

of the 7th order, drawn so as to show their relation to a lowei form the trefoil

knot. It will be seen that in none of these is the connection merely apparent, the

tiefoil part having its signs alternately + and if those of the complete knot ha\e

this alternation But if, for instance, we had drawn the fine line horizontally through
the trefoil, so as to divide each of the upper two-cornered compaitrnents into t\\o

three-coi nered ones, we should have got No. II of the 7-fold foims, and the original

tiefoil would have been rendered only apparent

20 In my British Association paper, No. XXXVIII. above, I showed that any closed

plane curve, or set of closed plane curves, provided there be nothing higher than double

points, divides the plane into spaces which may be coloured black and white alternately,

like the squares of a chess-board, 01, to take a closer analogy, as the adjacent elevated

and depressed regions of a vibrating plate, separated from one another by the nodal

hues (Plate IV. figs. 9 and 10). I afterwards found that Listing had employed in

his notation for knots, in which the crossings arc alternately ovei and under, a repre-

<entation which comes practically to the same thing , depending as it does on the

fact that in such a knot all the angles in each compartment arc either right or
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left-handed, and that these right and left-handed compartments alternate as do my
black and white ones.

1 have since employed a method, based on the above proposition, as a mode of

symbolising the form of the projections of a knot, altogether independent ot its

reducibihty. I was led to this by finding that Listing's notation, though expressly

confined to reduced knots, in which each compartment has all its angles of the samo

character, is ambiguous- in the sense that a Type-Symbol, as he calls it, may in

curtain cases not only stand for a linkage as well as a knot, but may even stand foi

two quite different reduced knots incapable of being transformed into one another*

The scheme, already desciibed, has no sueh ambiguity, but it is much less easy to use

in the classification of knots Hence, following Listing, I give the number of coiners

of each compaitment, but, unlike him, only ot those which are black 01 of those which

aie white. But I connect these in the diagram by lines which show how they fit into

one another in the figure of the knot. An inspection of Plate IV. figs. 11 and 12

(species VII. of sevenfold knottme&s) will show at once how diagrams are a i rived at,

either of which fully expresses the projection of the knot in question by means of

the black or of the white spaces singly. The connecting lines in the diagrams

evidently stand for the crossings in the projection, and thus, of course, either diagram
can be formed by mere inspection of the othert, and the rule for drawing the cuive

when the diagram is given is obvious. Thus the annexed diagram shows the lesiilt of

the process as applied to <i symmetrical symbol.

An inspection of one of these diagrams sho\\,s it once

(1) The number of joining lines is the same .is the numbei of crossings. Hence,

as each line has two ends, the sum of the numbei s lepresenting the number ot corners

in either the black 01 the white spaces is twice the number of crossings

(2) Every additional crossing involves one additional compartment, tor the abolition

of a crossing runs two compaitments into one. But wheie there is no crossing there

are two compartments, the inside and outside (Ampler, in Listing's phraseology), ot

* Proc li S E. 1S77, p 310 (footnote), and p. .T2.
r
>.

t Some further illustrations of this will be found in the abstiact of my paper on "Links," l'ioi USE
1S77, p. 821
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what must then be merely a closed oval. Thus when there are n crossings there are

it + 2 compartments

(3) No compartment can have more than n cornel's. For, as the whole number

of corners in the black or white compartments is only 2//, if one have more than n,

the rest must together have less, and thus some of the joining lines in the diagram
must unite the large number to itself, i.e., must give essentially nugatory intersections.

As an illustration, let us use this process in giving <i second enumeration or

delineation of the forms of 7-fold knottiness. The numbering of the- various forms is

the same as that already employed in 10, 11 above.

The second form of this symbol is particulaily interesting as consisting of two

parts This accords with the composite nature of the knot.

<

3
"

3
3

\i7 !l!

Ill IV

I/

VIT

VIII. IX.
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The relations of equivalence in pairs among six of these forms, which were

jxmited out in 11 and in Plate IV. figs. 5, 6, 7, are even more cleaily seen a*

below

5=4

IV.

2

/ \

/

VI VT1

wheto the mode ot passing from one form to the equivalent one is obvious

21. A tentative method of drawing ,ill possible systems of closed curves with a

given number (n) of double points is thus at once obvious.

Write all the partitions of 2, in which no one shall be gi eater than n and no

one less than 2. Join each of these sets of numbers into a group, so that each number

has as many lines terminating in it as it contains units. Then join the middle points

of these lines (which must not intersect one another) by a continuous lint' which

intersects itself at these middle points and there only. When this can be done \ve

have the projection of a knot When more continuous lines than one are required we

have the projection of a linkage.
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To give simple examples of this process, let us limit ourselves to 4 and .">

intei section-.

Tlu 1

only partitions of <S, subject to the conditions above, aie

(1) 4 4

(2) 4 2 2

(3) 3 3 2

(4) 2 2 2 2

Now the number of black and white compartments together must in this case be 4 + 2.

Hence there are but foui combinations to try, viz, (1) and (4), (2) and (2), (3) and

(3), (2) and (3), Of those, the last is impossible, the otheis are as in Plate V.

fig 10 The third is the amphicheiral knot already spoken of, and the second may
for the same reason be called an amphicheiiul link

The partitions of 10, subject to our rule, are

5 3 2

442
4 3 3

4 "2 2 2

3 3 2 2

22222
and the four figuies. (Plate V. fig 17) give the only valid combinations of these

The third and the fiist are the knots already described ( 18), the otheis arc links

22 The sphencal projection already mentioned ( 15) will in general allow us

to regard and exhibit any knot as a, moie or less perfect plait. It does go perfectly

whenever the coil is clear, te, when all the windings of the cord may be regarded
as passing in the same direction round a common veitical axis thrust through the

knot When the coil is not clear some of the cords of the plait are doubled back on

themselves Thus by drawing the phut corresponding to a given scheme we can tell

at once whether one of its forms is a cleai coil or not.

Let us confine our attention for a moment to clear coils. It is easy to see that

If the number of windings is even the number of crossings is odd, and vice versa.

Various proofs of this may be given, all depending on the fundamental theorem

of 1, but the following one is simple enough, and will be useful in some other

applications

First, in a clear coil of two turns there mu&t be an odd number of intersections.

For theie mu&t be one intersection, and the two loops thus formed must have their

other intersections (if any) in pairs
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Now begin with any point in a clear coil, where the curve intersects itself for

the first time. The loop so formed intersects the rest in an even number of points.

Hence every turn we take off removes an odd number of intersections. Thus, as

two turns give an odd number (or, more simply, as one turn gives none), the

proposition is proved.

Thus, to form the symmetrical clear coil of two turns and of any (odd) number
of intersections, make the wire into a helix, and bring one end through the axis in

the same direction as the helix (not in the opposite direction, as in Ampere's

Solenoids), then join the ends. [The solenoidal arrangement, regarded from any point
of view, has only nugatory intersections.]

23. A very curious illustration of the irreducible clear coils which have two

tiuns only is given by the edges of a long narrow strip of paper. Bend it, without

twisting, till the ends meet, and then paste them together. The two edges will form

separate non-linked closed curves without crossings.

Give the slip one half twist (i.e. through 180) before pasting the ends together.

The edges now form one continuous curve a clear coil of two turns with one

(nugatory) crossing

Give one, full twist before pasting. Each edge forms a closed curve, but there

are two crossings. The curves are, in fact, once linked into one another. (See Plate

IV. tig. 13.)

Give three half twists before joining. The edges now form one continuous clear

coil with three intersections

Two full twists give two separate closed curves with four crossings, ie, twice

linked together. (See Plate V. % 12.)

Five half twists give the pentacle of 7 above. And so on In all thebe

examples, from the very nature of the case, the crossings are alternately + and .

| 24. Now suppose that, in any of the above examples, after the pasting, we

cut the slip of paper up the middle throughout its whole length.

The first, with no twist, splits of course into two separate simple cncuits.

That which has half a twist, having originally only one edge, and that edge
not being cut through in the process of splitting, remains a closed curve. It is, in

fact, a clear coil of two turns, which, having only one intersection, may be opened out

into a single turn. But in this form it ha? two whole twists, half a twist for each

half of the original strip, and a whole twibt additional, due to the bending into a

closed circuit.

That with one whole twist splits, of course, into two interlinking single coils,

each having one whole twist.

That with three half twists gives, when split, the trefoil knot, and when flattened

out it has three whole twists.

T. 38
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From two whole twists we get two single coils twice linked, each with two whole

twists. This result may be obviously obtained from a continuous strip, with only

half a twist. One continued cut, which takes off a strip constantly equal to one

quarter of the original breadth of the slip, gives a half twist ring of half breadth,

intersecting once a double twist ring of quarter breadth. A second cut splits the

wider ring into one similar to the narrow one, but there is now double linking.

25. A good many of these relations may be exhibited by dipping a wiie,

forming a two-coil knot, into Plateau's glycerine soap solution, and destroying the

film which fills up the clear interior of the coil. Neglecting the surface curvature

of the remaining film, it has twists similar to those of the paper strips above

treated, and the integral amounts of twist show how far the wire-knot is, if at all,

reducible.

This mode of regarding a clear coil of two turns, as, in certain case&, the con-

tinuous edge of a stnp of paper whose ends are pasted together after any odd

number of half twists, is one of many ways in which we are led to study all clear

coils as specimens of more or less perfect plaiting, the number of threads plaited

together being the same as the number of turns of the coil. Another mode in

which we are led to the same way of regarding them is by supposing a cylmdei
to be passed through the middle of the (flattened) clear coil, and then to expand so

as to draw all the turns tight As there can be only a finite number of inter-

sections, we have always an infinite choice of generating lines of the cylinder on

which no intersection lies. Suppose the whole to be cut along such a line and

rolled out flat. It would, of course, be a more or less perfect plait, but with a

special characteristic, depending upon the fact that it is formed from one continuous

cord or wire.

Call the several laps of the cut cord a, 0, 7, &c Then we may arrange the

cut ends anyhow as follows: a to 7, 7 to e, e to /9, /3 to B, 8 to a if there be

but five
;
and similarly for any other number, exhausting all before repeating any one

oftener than once. We may now, after having settled their order, diange their

designations, so as to name them, as they occur, in the natuial older of the alphabet.
Thus any such plait may be represented by a diagram as in Plate IV. fig. 14,

where the dotted parts may cross and recross in any conceivable way, but must

begin and end as above

The number of ways in which such coils can be exhibited in plaits essentially

distinct from one another is therefore, if n be the number of laps, nln 2 2.1.

All the other possible arrangements, n 1 times the last written number, correspond
to links or, at all events, to more than one continuous cord.

26. From this point of view another notation for clear coils may be given in

the form
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Here
, y9, 7...... are, as above, the several strings plaited, so that in the coil /Q is

the prolongation of a, 7 that of 0, &c, and a that of the last of the series. The

expression means that a crosses over . It is sometimes useful to indicate whethei

a crossing takes place to the right or left. This is done by putting + or over

the symbol. Thus the four crossings above may be more fully written as

+ - + -

a. 7 /3 a

6ay(3'"
'

The properties of this otation were examined in detail in my first paper ,
but as

they are more curious than useful, I merely mention one or two.

Thus the combination just wntten cannot be simplified in itself, but

7 7 a _ 7 7 & .

fttftfi- 0*'
ficc>

This notation requires care For instance, the terms

a a

0/3

are simply nugatory, and may be cancelled. But, on the other hand, the terms

usually add to the beknottedness of the whole scheme.

When the scheme is not compatible with a clear coil there occur terms of the

form
a

,

and the application of this method becomes very troublesome.

27. A question closely connected with plaited clear coils is that of the numbers

of possible airangements of given numbers of intersections in which the cyclical

order of the letters in the 2nd, 4th, 6th, &c., places of the scheme shall be

the same as that in the 1st, 3rd, 5th, &c
, i.e., the alphabetical. Instances of such

have already been given above. In the first scheme of 5, for example, the letters

in the even places are

DEABC.

Here the cyclical order of the alphabet is maintained, but A is postponed by two

places. It is easy to see that the following statements are true.

Whatever be the number of intersections a postponement of no places leads to

nugatory results.

A postponement of one place is possible for three and for four intersections only.

382
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Postponement of two places is possible only for (four), five, and eight three for

seven and ten four for nine and fourteen five for {eight), eleven and sixteen, six

for (ten), thirteen, and twenty, &c. Generally there are in all cases n postponements
for 2n 4- 1 intersections

,
and for 3n + 2, or 3w + 1 intersections, according as n is even

or odd. The numbers which are italicised and put in brackets above, arise from the

fact that a postponement of r places, when there are n intersections, gives the same

result as a postponement of n r-1 places. [It will be observed that this cyclical

order of the letters in the even places is possible for any number of intersections

which is not 6 or a multiple of 6.]

When there are n postponements with 2n + 1 intersections the curve is the

symmetrical double coil, i.e., the plait is a simple twist.

The case with 3n + 2 or 3i 4- 1 intersections is a clear coil ot three turns,

corresponding to a regular plait of three strands.

Figures 16, 17 of Plate IV. give the diagrams corresponding to the latter case

for n = 2, 3 respectively; i.e., with 8 and 10 crossings. The diagrams 15 and 18,

constructed according to the same plan for 6 and 12 intersections, show why there

are no multiples of six in this form of coil. In fact, whenever the number of

crossings in this three-ply plait is a multiple of 6, the strands are separate closed

curves.

PART III.

Methods of Reduction.

28. Before taking up the question of the complexity of a knot, a word or two

must be said about the methods of reducing any given knot to its simplest form.

I have not been able as yet to find any general method of doing this, nor have

I even disco\ered, what would probably solve thiis difficulty, any perfectly general

method of pronouncing at once from an inspection of its scheme or otherwise, whether

a knot is reducible or not It is easy to give multitudes of special conformations in

which reduction can always be effected; but of these I shall give only a few, with

the view of showing their general character.

One very simple case of such reduction has already been given, viz., where a

letter occurs twice in succession

For, if we have as part of a scheme, the letters

...PQQR....
the corresponding part of the coil must have the form shown in Plate IV. fig. 19.

Whichever way the crossing at Q is effected, the loop can be at once got rid of,

and it is thus nugatory, because the scheme shows that it is not intersected by any
other branch



XXXIX.] ON KNOTS. 301

If we put in the signs of the crossings, they must obviously be different for the

two Q's; and thus in

...PQQR....
+

we may treat them as + Q-Q = 0, and obliterate Q altogether.

An immediate consequence of this is, of course, that any group such as

...PQRRQP....

whatever be the number of letters arranged in this form, may be wholly struck out.

Cases corresponding to this have been already figured in 1.

29. Another useful step in simplification occurs when we have a scheme con-

taining the following terms :

.. .PQ ..... PQ....
+ + --

for then both P and Q may be struck out

[N.B The order of P and Q need not be the same at each occurrence, the

essential thing is that they should twice occur together, and with like signs. This

explanation shows that the process is not confined to clear coils ]

For the corresponding part of the diagram must evidently be of the form shown

in Plate IV. fig 20, since the scheme shows that there are no intersections

between P and Q on cither branch. Hence, as P and Q have the same sign for

each branch, one branch may be slipped off from the other without otherwise

altering the coil.

If a single turn of the coil pass across between P and Q, the only ways in

which it can prevent the slipping off just described are that shown in Plate IV.

fig. 21, and the same looked at from the other side, i e., with all the signs changed.

Hence in the scheme

.PRQ....PSQ. ...RS ....

+ + - -

(where the order is again indifferent m each of the groups) we can always leave out

P and Q, unless R be negative and S positive, ie., unless this part of the scheme

has in itself the greatest possible number of changes of sign.

But when we can thus strike out P and Q, it is necessary to observe that in

R S or S R, which must occur at some other part of the scheme, the order is to be

changed Thus

...PRQ ...... PSQ... .RS....

IB simplified into ...R ..... S ........ SR
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30. Such a portion as that figured in Plate IV. fig. 22 evidently goes out of

itself, whatever be the character of B
; i.e , the whole of it

. . . ABC ABC
- + + -

may be struck out of any scheme. In fact, whichever sign be given to B, 29 applies

and removes two of the intersections. Then 28 disposes of the remaining one.

This is merely a particular case of the general and obvious theorem, that any

portion of a coil which may be treated as a separate coil, and which, if alone, could

be reduced, may be reduced in situ.

A rnorc general theorem, which includes the preceding, is that, if in

. .ABC GH A

the signs of B, C, . . . G, H, where they occur between the two A's, are all alike, all

these intersections, including A, may be struck out. This is-, quite obvious, because it

indicates a complete turn of the coil entirely above or below the rest. When one or

more of B, C, G, H has a different sign from the others, a less amount of simplifi-

cation is usually still possible.

Along with this we may take the case of fig. 23. Here we have

. . . . P Q R P S ... . R Q S

If the sign of P were changed these parts of the scheme would contain alternately

+ and The scheme obviously loses three intersections, and becomes

If the signs in the complete knot, with the exception of that of P, were all

+ and alternately, there will generally be farther reductions possible

31. A glance shows that the firbt of the diagrams, 24, 2o, Plate IV, can be

reduced to the second. Hence in the scheme of a knot

PQRP QR

may be simplified into QR RQ

[N B. The essential point is that P and Q should have the same sign, and R
the opposite If Q and R had the same sign they might both be struck out, 29.

But if P and Q have different signs, as also Q and R, no simplification can be effected,

though, as has been shown in 11, a change of scheme is practicable.]
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32. The scheme

....ABC....EFG ...... AMN....PQG...

always admits of striking out A and G. But special consideration is necessary as to

what is to take the place of B, C, . . . E, F. Their substitutes will all be positive, and

may be called m, n, , . . p, q t
since they are in number the same as M, N, . . . P, Q

irrespective altogether of the number of B, C, . . . E, F. In fact, M and in, N and n, ... &c.,

he (as near one another, in pairs, as we please) on the several turns of the coil which

intersect the arc A M . . . Q G. And m, n, ... &c., are on the opposite side of that

arc from B, C, . . . F.

33. There are numberless other special rules, but those just given are among
the simplest, and they are in general sufficient for coils with only a moderate number

of intersections. With the present notation it is not easy to classify them, or to show

how they may be exhibited as particular cases of more general rules. We will

therefore, for the present, employ them only for the simplification (where possible) of a

few diagrams of knots. But it must be particularly noticed that the simplifications

above arc mainly such as tend to remove continuations of sign from a scheme, none of

them but the first being applicable to a scheme whose signs present no continuations.

34. Examples.

. I. AEBFCGDAEKFLGDHBKCLH|A

This is, of course, rendered irreducible by changing the sign of B. It is figured

Plate V. fig 1.

[If we were to change the sign of F, L, H, the knot would acquire a great

increase of beknottedness, and would consist, in its simplest foim, of a pentacle and a

trefoil knot linked together, as in Plate V
fig. 25.]

(a) Now ..EBF... EKF....BK....
+ + + - 4-- --

become ..B....K ..... KB ...

+ +

(6) Two intersections being thus lost, the knot has now the foirn, Plate V hg. 2,

with the scheme

ABCGDAKLGDHKBCLH|A
-+- + - + + + -+ --- + - +

Now in ....... DAKLG .....

+ + +

with G before or D after, we can at once get rid of K, L, if A be put close to (*
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(c) Hence the scheme becomes

BCAGDAGDHBCHj B
+ + _+_+ + +

and the knot is as in the figure 3, Plate V.

Now H B H B . . . go out ( 29).

+ +

(d) The scheme is now

CAGDAGDC|C
+_+_++

so that C goes out by 28, and wo have finally

A G D AG D| A
- + - + - +

the trefoil knot.

II. The knot figured in Plate V.
fig.

4 has no beknottedncss.

III. That in fig. 5 is reducible to the trefoil.

These are left as exercises to the reader.

PART IV.

Beknottedness.

35. Recurring to the two species of five-crossing knots discussed in 18, we

easily see that there is less entanglement or complication in the first species than m
the second. For if the sign of either of the two crossings towards the top of the

first figure be changed, it is obvious that it will no longer possess any but nugatory

crossings. But if we change the sign of any one crossing in the pentacle, that

crossing, and one only of the adjacent ones, become nugatory, so that the knot

becomes the trefoil with alternating -f and This, in turn, has all its intersections

made nugatory by the change of sign of any one of them Thus one change of sign

removes all the knotting from the first of these knots, but two changes are required

for the second.

In what follows the term Beknottedness will be u^ed to signify the peculiar

property in which knots, even when of the same order of knottiness, may thus differ:

and we may define it, at least provisionally, as the smallest number of changes of

sign which will render all the crossings in a given scheme nugatory. This question is,

as we shall soon see, a delicate and difficult one. It is probable that it will not

be thoroughly treated until one considers along with it another property, which may
be called Knotfulness to indicate the number of knots of lower orders (whether
interlinked or not) of which a given knot is in many cases built up. But this term

will not be introduced in the present paper.
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3b'. It may be well to premise a few lemmas which will be found useful in

examining for our piesent purpose the plane projection of a knot.

(a) Regarding the projection as a wall dividing the plane into a number of fields,

if we walk along the wall and drop a coin into each field as we reach it, each

field will get as many coins as it has corners, but those fields only will have a coin

in each corner whose sides are all described in the same direction round. For we
enter by one end of each side and leave by the other The number of coins is four

times the number of intersections . and two coins arc in each corner bounded by
sides by each of which we enter, none in those bounded by sides by each of which

we leave. Hence a mesh, or compartment, which has a coin in each corner has all

its sides taken in the same direction round
,

and we see by fig. 6, Plate V
,

that

this is the case with twists in which the laps of the cord run opposite ways, not

if they run the same way Compare this with the remarks of 35, as to the two

species of 5-fold knottmess

(/3) To make this process give the distinction between crossing over and crossing

tinder, we may suppose the two coins to be of different kinds, silver and copper for

instance. Let the rule be silver to the right when crossing over, to the left when

crossing under. Then, however the path be arranged, of the four angles at each

crossing, one will have no coins, the vertical or opposite corner will have two silver

or two copper coins, the others one copper or one silver coin each

It is easily .seen that a reversal of the direction of going lound leaves the single

coins as they \veie, but shifts the pair of coins into the angle formerly vacant: also

th.it in all defoimed hguies the circumstances are exactl} the same as in the original

Hence we may divide the ciossings into silver and coppei ones, according as two

silvei 01 two copper coins come together And the excess of the silver ovei the

coppei crossings, 01 vice versa, furnishes an exceedingly simple and readily applied test

(not, howcvei, as will soon be seen, in itself absolutely conclusive of identity, though

absolutely conclusive against it), which is of great value in arranging in family

gioiips (those of each family having the same number of silvei crossings), the various

knots having a given number of intersections

(7) Or, still more simply, we ma) dispense altogether with the copper coins, so

that, going lound, we pitch a com into the field to the right at each crossing over,

to the left at each crossing under. When the coins are in the same angle the

ciossmg is a silver one, when in two vertical angles it is copper. Each of these

three processes has its special uses

| 37. This process, thus limited, is obviously intimately connected with that

required for the estimation of the work necessary to carry a magnetic pole along the

curve, the curve being supposed to be traversed by an electric current Hence it

occurred to me that we might possibly obtain a definite measurement of beknotted-

ness in terms of such a physical quantity . as it obviously must be always the same

for the same knot, and must vanish when there is no beknottcdness To make the

measure complete, we must record the numbers of non-nugatory silver and copper

T. 39
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crossings separately, with the number to be deducted as due merely to the coiling

of the figure. This last is a very important matter, and will be dealt with later.

38. When unit current circulates in a simple circuit, it is known that the

work required to carry unit magnetic pole once round any closed curve once linked

with the circuit is 4fir Instead of the current we may substitute a uniformly and

normally magnetized surface bounded by the circuit. The potential energy of the

pole in any position is measured by the spherical aperture subtended at the pole by
the circuit

,
but its sign depends upon whether the north or south polar side is

turned to the pole. Hence the pole has no potential cneigy when it is situated in

the plane of the circuit but external to it, and the potential energy i^ ZTT when

the pole just reaches the plane of the circuit internally.

In fact the electro-magnetic force exerted by an element d* of a unit cuirent,

on a unit north pole placed at the origin of a, is

Vada

2V
or, as we may write it,

This is identical in form with the expression for the differential whose integral,

taken round a closed circuit, is Ampere's Directrice*.

Hence the element of work done by the closed circuit while the pole describes

a vector 8a, is

But, if rfH be the spherical angle subtended at a by a little plane area ds,

whose unit normal vector (drawn towards the origin of a) is Uv, obviously

<zn- '-

Ttf
ds

a.ViXp-ds.

Now, in the general formula (No XIX above, p. 143)

put

and we have

la

Now the double integral always vanishes while To. is finite, and we have therefore

8Br.|:J**. w .j.vn Ml

* "
Electrodynamics and Magnetism," 3 58, Ante, p. 24
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That is, the work done during any infinitesimal displacement of the pole is

numerically equal to the change in the value of the spherical angle subtended by
the circuit The angle is, of course, a discontinuous function, its values differing by
4-7T at points indefinitely near to one another, but lying on opposite sides of the

uniformly and normally magnetized surface whose edge is the circuit. Theie is,

however, no discontinuity in the value of the work, for the element of the double

integral is finite, and equal to 4vr, when To. =

Gauss* sa,ys (with date January 22, 1833).
" Eine Hauptaufgabe aus dcm Grenz-

yebiet der Geometma Situs und der Oeometria Afagmtudims wird die bein, die Um-

schlingungen zweier ge?hlossener oder unendlicher Linien zu zahleri" And he add**

that the integral

|Y (''
-

*') (dydz dzdy) 4- (y iy) (dzdx
- dxdz) + (z

1 -
z) (dxdy - dydx')

H
((*'

- xy 4- (/ - y? + (z
-

z)rf

extended over both curves, has the value

where in is the numbei of hnkings (Umschlmguugen) This is obviously the sam
the integral of &W above, viz ,

S adaSa

To?

extended round each of two closed curves, of which rfa and So. are elements

f[
~JJ

3i) A very excellent investigation, by means of Cartesian co-ordinates, will be

found in Cletk-Max well's Electricity and Magnetism, 417 422 It is there shown

that the above integral may vanish, even when the circuits are inseparably linked

together In fact m may vanish either because there is no leal linking at all, or

because the number of Imkings for which the electro-magnetic work is negative is

the same as that for which it is positive For our present application this is ot

very great consequence, because it shows that the electro-magnetic work, under the

cncumstances with which we arc dealing, cannot in all cases measure the amount of

beknottedness In fact the processes, soon to be described, enable us, without trouble

toi ;my given linkage, to find the value of in in Gauss' formula, but there are

.special ambiguities when we try to apply the process to knots

40 To construct the magnetized surface which shall exert the same action on

a pole as a current in any given closed circuit does, we may either

suppose a cylinder extending to infinity in one direction (say for

defimteness, upwards from the plane of the paper), and having the

cucuit for its edge ,
or we may form, as in the figure, a finite

autotomic surface of one sheet, having the circuit for its edge In

dealing with the two cuives of Gauss' proposition our procedure is

perfectly definite
,

but when one and the same curve is to be the current and also

*
Wfrke, Gottingen, 1867, v p. fiOo

392
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the path of the pole, there is an ambiguity in estimating the electro-magnetic work.

To clear this away we require a definite statement of how the pole moves along

the curve itself. For if its path screw round the curve + 4-rr must be added to the

work for each complete turn. As an illustration, suppose
we bend, as in the figure, an india-rubber band coloured

black on one side, so that the black is alwavs the

concave surface, and so that one loop is the pel version

of the other, we find on pulling it out straight that

it hsis no twist. If both loops be made by over\iiyu\g, when pulled out it becomes

twisted through two whole turns This illustrates the krnernatical principle that spiral

springs act by torsion. An excellent instance of its connection with knots is to be

^een in the profess employed in 11 For if we have poitions of a cord, as in the

diagram (Plate V. tig 7), the pulling out of the loop in the upper cord changes
the arrangement, as shown iu the second figuie

A practical rule, which completely meets the Gaussian problem, m.iy easily be

given from the consideration of the cylindrical magnetized surface above mentioned.

(Jo round the cuive, maiking ,iu ariow-head aftei each mossing to hho\v the direction

in which you passed it Then a junction like the following gives

+ 4?r for the upper branch, and nothing for the lower (which, on

this supposition, does not pass through the magnetic sheet) Uhangc
the crossing from over to under, and this quantity changes sign

The junction figured above would, in our first illustration, be a

silver one But, a still simpler process is to go round, as in *J6 (7), putting a

dot to the riyltt after each crossing over, and vice wsrt

41. Now, in oider that our rule when applied to knots may give no work

where there is no beknottedness, we must make the required expression such as to

vanish whenever all the intersections aie nugatory. Those which are nugatory only
in consequence of their signs aie in pans, silvei and copper, and will take care of

themselves-, as we see by special examples like the following Hence

the only pait to collect for is that depending on the number of

whole turns, and the sketch of the india-rubbei band above shows

that the work at the \ertex of each such partial closed circuit

is simply not to be counted, ? e , that the 4rrr, which would be reckoned for each

such crossing by our rule (positively or negatively as the case may be), is to be

considered as made up for by the corresponding screwing of the pole round the curve.

42 There must be some very simple method of determining the amount of

beknottedness for any given knot, but I have not hit upon it I shall therefore

content myself with a few remarks on the subject, some of which are general,

others applicable only to certain classes of forms. There seems to be little doubt

that the difficulty will be solved with ease when the true method of attacking

amphicheiral forms is found

1. To form from a given projection the knot with the greatest amount of

beknottedness, it is clear that we must in general so arrange the crossings over and
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under as to make all the crossings simultaneously silver or copper ones. And when

this is done, a projection will give greater beknottedness for the same number of

crossings the smaller is the number of crossings which have to be left out of account.

Thus the simple twists (or clear coils with two turns) are the forms which, with a

given amount of knottmess, can have the greatest beknottedness. For in them (see

41) only one crossing has to be left out of the reckoning. Even a regular plait

if of more than two strands cannot have so much beknottedness as it would acquire

with the .same amount of knottiriess if two of its strands were first twisted together,

then a third round these, and so on And thus also entirely nugatory forms like

the two first cuts in 1 can have no beknottedness, for all their crossings have to

be left out of the reckoi..ng

As an illustration, take the figure (Plate V fig. 8) where the supposed
number of loops may be any whatever The free ends must, of course, be joined

externally.

If we make the crossings alternately + and it will be; seen at a glance that

a change of one sign (ie., that of the extreme crossing at eithei end) removes the

whole knotting, so that there is but one degree of beknottedness The crossings in

this figure are in three rows Those in the upper row aie .ill coppei (the last, of

course, becomes silver when its sign is changed), and their number is n the number

of loops. Each of the other rows has 1, and all of thorn are silver. Thus when

the one sign is changed there aie n 1 copper crossings, and 2n 1 silver. By
pulling out the right-hand loop we change >i to n 1, so that one copper and two

silvei crossings aie lost After 1 operations like this theie lemains only one

(silver) crossing. It is easy to see fiom this that the ciossings to be omitted in the

reckoning of beknottedness (as in
| 41) must be the lowei low. To prove "that it is

so, study the beknottedness when the crossings aie made so that the upper low are

copper, silver, copper, &c
, alternately, and those of the two other rows, silvei, copper,

silver, &e., alternately. It will be easily seen that with five loops theie- aie two

degrees of beknottedness, &c., and thus that our mle ts coireet It is a curious

problem to investigate the torsional and flevural rigidities of a wire bent in this foini.

To give the gieatest beknottedness to a knot with the same piojection, it is

obvious that all we have to do i.s to make the coppei crossings into silver ones,

i.e, change the sign ot each of the upper row of crossings. This gives fig. With

five loops it has foui degrees of beknottedness.

Another excellent illustration is given by the coils of the class figured in Plate

IV. figs 16 and 17, which have been already described ( 27). A full investigation

ot the higher knottmesscs of this class (especially when fully beknotted) would well

repay the trouble it would involve.

As they arc all amphicheiral, and in each case the crossings are divisible into

two sets, those of each set being in all respects alike, while those of different sets

differ only as to silver or copper, it is no matter (.so far as testing beknottedness is

concerned) which crossing we suppose to have its sign changed
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In the 8-fold amphicheiral of fig. 16 the change of any one sign reduces the

whole to the irreducible trefoil knot ( 16), right or left-handed according as we have

changed one of the four outei, or of the four inner, crossings in the figure. Hence

it has two degrees of beknottedness. But if we change the signs of one set of crossings

(Plate V.
fig. 24) so as to make all the crossings alike silver (or copper), we find

the knot irreducible, though with continuations of sign ,
but with three degrees of

beknottedness. And it is easy to see that it can now be analysed into two right-

handed trefoil knots linked together as shown in the other part of the figure. But

the linking is left-handed Had it been right-handed we should have had + and -

alternately, and thus we could not have transformed back to the form with continua-

tions of sign ( 4).

Similar remarks apply to the 10-fold amphicheiral plait (Plate IV. fig. 17)'

Change of any one sign reduces it to the third form of 6-fold knottincss (y, 8),

which has only one degree of beknottednest,. Hence the 10-fold plait has but two

degrees of beknottedness when its signs are alternate. If we make all its crossings

silver (or copper), as an Plate V. fig. 25, it has four degrees of beknottedness;

and the reason is obvious from the other half of the figure, where it is seen to be

made up of a pair of irreducibles a pentaclo and a trefoil, once linked together.

There is one degree of beknottedness for the trefoil, one for the link, and two for

the pentacle. The trefoil and pentacle arc right-handed, the link left-hnnded, else we

should not have had the continuations of sign which the figure must show.

A very curious illustration of this is to be found in the excepted cases, where

the number of crossings is a multiple of six. From the two figured (Plate IV figs.

1."), 18) it is obvious that all of these are formed by three unknottod closed cuives, )w

two of which are linked together, yet the whole is irreducible, having alternate higns.

Hence we require a third term to complete our descriptions knotting, linking, lock-

ing (
?
)-

To give the greatest amount of behnkedness to these figures, let us suppose the

ovals taken all the same way round, and arrange so that all the ciossings shall be

silver Then we have continuations of sign (Plate V. tig. 2(5) as in the knots of

the same series. But whereas Plate IV. fig 15, if made of wire, is particulaily

stiff, the new figure is eminently flexible. This beerns to have been practically known

to the makers of chain armour

The 9-fold knot of Plate V. fig. 15 has its crossings so drawn as to be all

copper. Three must be left out of reckoning for the coiling, so it has three degrees
of beknottedness

But if we made the crossings alternately + and we should find zero for the

corrected electro-magnetic work three copper and three silver crossings remaining.

Change, then, the sign of any one of the three outer or inner crossings, and the

whole reduces to the 4-fold knot. Hence it has two degrees of beknottedness.

If the crossing whose sign is changed be neither an outer nor an inner one,

the result is a very singular 8-fold knot (irreducible, though having continuations of
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sign), differing from that of fig. 24, Plate V., in the fact that its component trefoil

knots are unsymmetrically linked together. And it has but one degree of beknotted-

ness, while that of fig. 24 has three.

I have called attention to this example because of its bearings on the question
of the numbers of different irreducible knots having the same projection, which we meet
with as soon as we reach 8-fold knottiriess*.

2. To remove all beknottedness from a projection it is only necessary to make

every crossing in its scheme + (or ) when it is first met with, reading from any

point whatever. For then the several laps of the coil are, as it were, paid out in

succession one over the other. When the beknottedness of a scheme so marked is

calculated (as in 41), it will be found that there is always at least one choice of

a set of crossings such that, when these arc omitted from the count, the electro-

magnetic work is zero.

As an illustration take the very simplest form, the trefoil knot, with the suffixed

signs determined by this rule. The scheme is

-
-I +

ACB ACB
+ + 4- +

Now, by 41 we are entitled to leave out of count either A, B, or C. Leaving
out cither A or B gives zero for the electro-magnetic work, as it ought to be

;
but

leaving out C gives STT.

3. The only way in which we can have the intersections + and alternately

while every letter is -f- on its first appearance, i.e., when there is no beknottedness,

is obviously the wholly nugatory scheme

A A B B, &c.

43 To illustrate these method* let us take again the 5-fold knots (as in 18)

whose schemes are

ADBECADCEB A,

ADBECADBEO A.

The lower signs refer to over or under, the upper to the electro-magnetic work, or

to the silver-copper distinction

Hence to determine the electro-magnetic work we must divide each scheme into

independent circuits, no. one of which includes a less extensive one; and omit from

the reckoning the work for the terminal of each such circuit, and for each of the

intersections which is not included in any one of the separate circuits. There are

usually more ways than one of doing this. Sometimes these agree in their results .

*
[This very interesting question has since been discussed, for 8-fold and for 9-fold kuottmess, by Prof. C. N.

Little (Tiant. R. S. K. xkxv., 1889). 1898.]
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but the rule for choosing which to omit is to take them such that with their proper

signs, and the rest with any signs whatever, they may be capable of making each

letter positive on its first appearance. But there are cases even when the knot is

not amphicheiral in which this process cannot be carried out These occur specially

when a part of the knot forma a lower knot with which the string is again linked.

In the first of the two schemes above there is but one independent non-auto-

tomic circuit, which may be taken a*.

A D B E C A.

In this all the intersections are included, so that the whole work is to be found by

leaving out that for A only; ie, it is 16?r

But in the second scheme we may take the two circuits

BADE and C A D C,

and E is not included in either. Hence we must leave out of count the work for

B, (J, and E. This is found to satisfy our test, and thus the whole work is only
-

<STT.

This is an instance in which the estimate by the electro-magnetic process exactly

agiees with the result of simpler considerations, as given in 35 above

44. It will be found that the alteration of five signs is sufficient to remove

the knotting from the annexed figure, and the stages of operation of the various

modes of reduction show that this form can be regarded as made

up of simpler knots intersecting one another on the same string

These separate knots are virtually independent, and to change hit

the signs in any one of them does not in cases like this necessarily

simplify the knot Uncorrectcd the work is 13 x 4nr. Corrected

it is - 10 x 4?r, which agiees with the removal of the beknotted-

ness by change of Jive signs only.

If the sign of the one unsymmetrical crossing be altered, four changes of sign

will suffice
;

for the uncorrected work is 11 x 4?r
,

corrected it is - 8 x 4-rr, corre-

sponding to four changes of sign

45. It is clear from what precedes that the Gaussian integral does not, except

in certain classes of cases, express the measure of what may be called, by analogy

with 35, Belinkedness. It may be well to examine a simple form of link with all

its possible arrangements of sign to see what the integral really gives in each ol

these. Let us choose for this purpose two lemniscates having four mutual crossings

suggested by the edges of the band shown in
fig. 13, Plate IV

If we suppose the signs to be made alternately + and
,
as in Plate V. fig. 10

the form is a six crossing one, and irreducible. The silver or copper character of tht

self crossings does not depend upon the directions in which we suppose the lemnis

cates to be described, that of the mutual crossings does. We thus 'have, from anothei
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point of view than that of 41,- a proof that these are to be left out of account

in the reckoning.

The four crossings of the two curves are copper, if these curves are supposed to

be described in the same way round; those of the separate curves (which do not

count) are silver Hence the work is 167T, or two degrees of bclinkedness.

Change the sign of any one of P, Q, R, S, that and the adjacent one slip off,

U and V become nugatory. The linkage is the simplest possible, and the integral

is STT.

Change the sign of either or both of U and V. In either of these three cases

both become nugatory, and the whole takes the form of two doubly-linked ovals, with

the integral
= - 167T. (Plate V. figs 12, 13.)

If the signs of both R and S be changed the value of the integral is obviously
4 (2 2) TT, for U and S have become silver, while P and Q remain copper.

If in addition the signs of U and V be both, or neither, changed, only one

crossing is got rid of, and the link may be put in the form (Plate V. fig. 14)

It cannot be farther reduced, because the crossings are alternately over and under.

But if the sign of one only of U, V be changed, it will be seen that there is

no linking (Plate V. fig 11). Here the integral vanishes because there is really

no work, not as in the last case, where there are equal amounts of positive and

work

46 This gives a hint as to the reckoning of beknottedness from the silver

and copper crossings in the cases where we have found a difficulty. After omitting
from the reckoning the crossings which belong merely to the outline of the figure,

there must remain an even number of crossings ( 22). Hence, whatever numbers be

silver and copper respectively, the excess of the one of these over the other must

be an even number (zero included) In general, half this number is the beknottedness.

But when the knot, or even part of it, is amphicheiral there is usually more beknot-

tedness than this rule would give. And, in particular, there may be beknottcdnesa

when the number is zero In this case the number of silver (and of copper) crossings

is even, and is double the degree of beknottedness.

As I have already stated, I have not fully investigated this point, and therefore

for the present I content myself with giving two instructive examples from the six-fold

knots. The observations which will be made on these contain at least the germ of

the complete solution.

The form 7 (of 8) is not amphicheiral. As there drawn, it has four copper and

two silver crossings, the latter being the intersections of the loop with the trefoil; but

the scheme shows that two copper crossings must be omitted from the reckoning, one

of these being necessarily that which is uppermost in the figure. If the sign of this

last be changed, the knot opens out, so that it has but one degree of beknottedness.

Hence, in this case, the two copper and two silver crossings correspond to one degree

T. 40
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of beknottedness only. But if we change the sign of any one of the other three copper

junctions the Jcnot ginks to the 4-fold amphicheiral, retaining its one degree of be-

knottedness.

In the amphicheiral form ft (of 8) there are three silver and three copper cross-

ings. As the figure is drawn, these are to the right and left of the figure respectively;

a,nd either crossing at the end of the lower coil may be left out, along with any one

of the three on the other side. Thus there remain, as in the former case, two silver

and two copper ones. This corresponds to one degree of beknottedness, as in the last

case, for the change of sign of either crossing at the end of the lower coil unlooses

the knot. But if any one of the other four cro&sings (alone) have its sign changed, the

whole becomes a right or left-handed trefoil knot, retaining, as in the former example,
its one degree of beknottedness.

To give the greatest beknottedness to these forms, we must alter two signs in (7)

and three in ($). In each case one crossing is lost, and the form becomes the pentacle

(7) with its two degrees of beknottedness.

PART V.

Amphicheiral Forms,

47. These have been defined in 17, and several examples have been given, not

only of knots, but of links, which possess the peculiar property of being transformable

into their own perversions.

The partition method ( 21) suggests the following mode of getting amphicheirals :

Since the right-handed and left-handed compartments must agree one by one, and

since ( 20) the whole number of compartments is greater by two than the number of

crossings, the number of crossings must be even. Let it be 2w, and let pi, p^.-pn+i be

the partitions. Then our selection must be made from the numbers which satisfy

no one being greater than the sum of the others. If a set of such can be grouped
as in 20 so that the other set for the complete scheme shall be the same numbers

with the same grouping, we have an amphicheiral form. The words in italics are necessary,

as the following example shows; for here the black and white compartments have the

same set of partitions but not the same grouping, and the knot is not amphicheiral :
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But a different grouping of the same set of partitions gives the amphicheiral form

below

But an easier mode of procedure, though even more purely tentative, is the follow-

ing: If a cord be knotted, any number of times, according to the pattern below,

it is obviously perverted by simple inversion. Hence, when the free ends are joined

it is an amphicheiral knot. Its simplest form is that of 4-fold knottiness. All its forms

have knottiness expressible as 4?i.

The following pattern gives amphicheiral knottiness 2 -f 6n .

And a little consideration shows that on the following pattern may be formed

amphicheiral knots of all the orders included in 6w and 4 + 6n .

Among them these forms contain all the even numbers, so that there is at least

one amphicfieiral form of every even order

Many more complex forms may easily be given. See, for instance, Plato V. figs.

18, 19, 20. Some are closely connected with knitting, &c.

An excessively simple mode of obtaining such to any desired extent is to start

with an amphicheiral, whether knot or link, and insert additional crossings. These must,

of course, be inserted symmetrically in pairs, each in the original figure being accompanied

by another which will take its place in the perversion or image.

Thus, taking the simplest of all amphicheirals, the single link (Plate V. first of

figures 27), we may operate on it by successive steps as in the succeeding figures.

402
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The second, third, and fourth are formed from the first by adding, the fifth and

sixth from the fourth by removing, pairs of crossings. The third, like the first, is

a link
;
the others are knots.

Figures 28, Plate V., give another series, of which the genesis is obvious. The

protuberances put in the first figure, for instance, show how it becomes the second.

The fifth of
fig. 27, and the second and fourth of fig. 28, all alike represent the

amphicheiral form (/S) of 8. But we need not pursue this subject.

48. It will be seen at a glance that the first pattern in last section gives for

two loops (i.e , four crossings) the knot of 6
,
while the third pattern as drawn is

simply ft of 8. In this form of the knot, the two dominant crossings ( 46) are

those in the middle, and mere inspection of the figures shows that the whole knotting
becomes nugatory if the sign of either of these be changed.

It might appear at first sight that amphicheirals of the same knottmess, formed on

such apparently different patterns as the two first of last section, would be necessarily

different. But the very simplest case serves to refute this notion. For the lowest

integers which make

give 8 as the value of either side. Figs. 22, 23, Plate V., represent the corresponding

amphicheirals, apparently very different, but really transformable into one another by the

processes of 11. Fig. 21, Plate V., represents another 8-fold amphicheiral form,

suggested by a somewhat similar pattern. I hope to return to the consideration of

this very curious part of the subject, and at the same time to develop a method of

treating knots altogether different from anything here given, which I recently described

to the Society*

After the papers, of which the foregoing is a digest, had been read, I obtained

from Professors Listing and Klein a few references to the literature of the subject of

knots. It is very scanty, and has scarcely any bearing upon the main question which

I have treated above. Considering that Listing's Essay was published thirty years ago,

and that it seems to be pretty well known in Germany, this is a curious fact. From

Listing's letter (Proc. E. 8. E. 1877, p. 316), it is clear that he has published only

a small part of the results of his investigations. Kleinf himself has made the very

singular discovery that in space of four dimensions there cannot be knots.

The value of Gauss' integral has been discussed at considerable length by Boeddicker

(by the help of the usual co-ordinates for potentials) in an Inaugural Dissertation, with

the title, Beitrag zur Theorie des Winkels, Gbttingen, 1876J.

*
Proceeding* RS.E., May 7th, 1877.

t Mathematitcht. Annalen, ix. 478.

Professor Fischer has just shown me an enlarged copy of Boeddicker's pamphlet above mentioned.

Twenty pages are now added, mainly referring to the connection of knots with Biemann's surfaces, aud the

title is altered to Erweiterung der Gauss'tchen Theorie der Venchlingungen, Stuttgart, 1878.
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An Inaugural Dissertation by Weith, Topologische Untersuchung der Kurven-Ver-

echlingung, Zurich, 1876, is professedly based on Listing's Essay. It contains a proof that

there is an infinite numbei of different forms of knots ! The author points out what

he (erroneously) supposes to be mistakes in Listing's Essay , and, in consequence, gives
as something quite new an illustration of the obvious fact that there can be irreducible

knots in which the crossings are not alternately over and under. The rest of this

paper is devoted to the relations of knots to Riemann's surfaces.
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XL.

ON KNOTS. PART II.

[Transactions of the Royal Society of Edinburgh, Vol. xxxn. Bead 2nd June, 1884.]

ONE main object of the present brief paper is to take advantage of the results

obtained by Kirkman*, and thus to extend my census of distinct forms to knottiness

of the 8th and 9th orders; for the carrying out of which, by my own methods, I could

not find time. But I employ the opportunity to give, in a more extended form than

that in the short abstract in the Proceedings, some results connected with the general

subject of knots, which were communicated to the Society on January 6, 1879, as well

as others communicated at a later date, but not yet printed even in abstract.

I. Census of S-Fold and of 9-Fold Knottiness

1. The method devised and employed by Kirkman is undoubtedly much less

laborious than the thoroughly exhaustive process (depending on the Scheme) which was

fully described and illustrated in my former paperf ;
but it shares, with the Partition

method, which I described in 21 of that paper and to which it has some resemblance,

the disadvantage of being to a greater or less extent tentative. Not that the rules

laid down, either in Kirkman's method or in my partition method, leave any room for

mere guessing, but that they are too complex to be always completely kept in view.

Thus we cannot be absolutely certain that by means of such processes we have obtained

all the essentially different forms which the definition we employ comprehends. This

is proved by the fact that, by the partition method, I detected certain omissions in

Kirkman's list, which in their turn enabled him to discover others, all of which have

now been corrected. And, on this ground, the present census may still err in defect,

though such an error is now perhaps not very probable.

* The Enumeration, Description, and Construction of Knots with fewer than Ten Crossings. Tram. R.S.E. xzxii.

t No. XXXIX, above.
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On the other hand, the treatment to which I have subjected Kirkman's collection

of forms, in order to group together all mere varieties or transformations of one special

form, is undoubtedly still more tentative in its nature; and thus, though I have grouped
together many widely different but equivalent forms, I cannot be absolutely certain that

all those groups are essentially different one from another.

Unfortunately these sources of possible error, though they tend (numerically) in

opposite directions, and might thus by chance compensate one another so far as to

make the assigned numbers of essentially different forms accurate, cannot in any other

sense compensate. In other words, there may still be some fundamental forms omitted,
while others may be retained in more than one group of their possible transformations.

Both difficulties grow at a fearfully rapid rate as we pass from one order of knottiness

to the next above; and thus I have thought it well to make the most I could of the

valuable materials placed before me; for the full study of 10-fold and 11 -fold knottiness

seems to be relegated to the somewhat distant future.

2. The problem which Kirkman has attacked may, from the point of view which
I adopt, be thus stated :

" Form all the essentially distinct polytiedra* (whether solids,

quasi-solids, or unsolids) which have three, four, &c., eight, or nine, four-edged solid angles"
Thus, in his results, there is no fear of encountering two different projections of the
same polyhedron; or, in the language of my former paper, no two of his results will

give the same scheme. Thus there is no one which can be formed from another by the

processes of 5 of my former paper.

3. But, when a projection of a knot is viewed as a polyhedron, we necessarily
lose sight of the changes which may be produced, by twisting, in the knot itself when
formed of cord or wire; a process which (without introducing nugatory crossings) may
alter, often in many ways, the character of the corresponding polyhedron. This subject
was treated in 4, 11, 14, &c. of my former paper. But it is so essential in the present
application that it is necessary to say something more about it here. It would lead

to great detail were I to discuss each example which has presented itself, especially in

the 9-folds
;
but they can all be seen in Plate VI., by comparing together two and two

the various members of each of the groups.

The following example, however, though one only of several possible transformations
is given, is sufficiently general to show the whole bearing of the remark, so far at least

as we at present require it.

* This word is objectionable, on many grounds, in the present connection. But a more suitable one does
not occur to me; and the qualification (given in braoketa) will prevent any misconception. Of course no pro-
jection of a true polyhedron can be cut by a straight line in two points only.
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It is obvious that either figure may be converted into the other, by merely rotating

through two right angles the part drawn in full lines, the dotted part of the cord

being held fixed. Also, the numbers of corners or edges in the right and left-handed

meshes in these two figures are respectively as below:

55332 64332

443322 433332.

These numbers would necessarily be identical if the forms could be -represented by
the same scheme. As will be seen by the list below, 6, these arc respectively the

second, and the sixth, of the group of equivalent forms of number vm of the ninefold

knots. (See Plate VI)

The characters of the various faces of the representative polyhedra (so far at least

as the number of their sides is concerned) are widely different in the two cases.

[Mr Kirkman objects to this process that it introduces twisting of the cord or tape

itself. No doubt it does, or at least seems to do so, but the algebraic sum of all tho

twists thus introduced is always zero; i e., by "ironing out" the tape m its new form,

all this twist will be removed. I have often used a comparison very analogous to this,

to give to students a notion of the nature of the kinematical explanation of the equal

quantities of -f and electricity, which are always produced by electrification. If the

two ends of a stretched rope, along whose cylindrical surface a generating line is drawn,

be fixed, and torsion be applied to the middle by means of a marlinspike passed

through it at right angles, one half of the generating line becomes a right-handed, the

other an equal left-handed cork-screw. Thus the algebraic sum of the distortions is

zero. And, in consequence, if the rope be untwistable (the Universal Flexure Joint of

109 of Thomson and Tait's Natural Philosophy) and endless, the turning of the spike

merely gives it rotation like that of a vortex-ring. Such considerations are of weighty

import in many modern physical theories]

As will be seen, by an examination of the latter part of Plate VI., even among
the forms of 9-fold knottiness there are several which are capable of more than one

different changes of this kind. Some of these I may have failed to notice. But it is

worthy of remark that the 8-folds seem, with two exceptions, to resemble the 7-folds

in having at most two distinct polyhedral forms for any one knot.

4. Kirkman's results for knottiness 3, 4, 5, 6, 7, when bifilars and composites are

excluded, agree exactly with those given in my former paper. I have figured these

afresh in Plate VI , in the forms suggested by Kirkman's drawings, omitting only the

single 6-fold, and the single 7 -fold, which are composite knots.

As will be seen in the Plate, where they are figured in groups, there are but

18 simple forma of 8-fold knottiness Besides these there are 3 not properly 8-fold,

being composite (i.e., made up of two separate knots on the same string); either two

of the unique 4-fold, or a trefoil with one or other of the two 5-fold8. These it was
not thought necessary to figure, especially as they may present themselves in a variety
of forms.
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And the Plate also shows that there are 41 simple forms of 9-fold knottiness

Besides these, and not figured, there are 5 made up of two mere separate knots of

lower orders, and one which is made up of three separate trefoils.

5. Thus the distinct forms of each order, from the 3rd to the 9th inclusive, are

in number
1, 1, 2, 4, 8, 21, 47;

or, if we exclude combinations of separate knots,

1, 1, 2, 3, 7, 18, 41.

The later and larger of the numbers in these series, however, would be considerably
increased if we were to take account of arrangements of sign at the crossings, other

than the alternate over and under which has been tacitly assumed
,

for these are, in

certain cases, compatible with non-degradation of the order of knottiness. This raises

a question of considerable difficulty, upon which I do not enter at present. Applications
to one of the 8-foldh and to one of the 9-folds will be found in my former paper,
42 (1).

Another interesting fact which appears from Plate VI. is, that there are six distinct

amphicheiral forms of 8-fold knottiness at least if we include one, not figured, which

consists of two separate 4-folds , in which case we must consider that there are two six-fold

amphicheirals, the second being the combination of right and left-handed trefoils, described

in 13 of my former paper. Thus the number of amphicheirals is, in the 4-fold,

6-fold, and 8-fold knots respectively, either 1, 2, 6, or (if we exclude composites), 1, 1, 5.

All but two of these 8-fold amphicheirals were treated in my former paper, two having
been separately figured, and the other being a mere common case of the general forms

of 47.

Finally, as a curious addition to the paragiaphs on the genesis of amphicheiral

knots, given in my first paper, I mention the following, which is at once suggested

by the amphicheiral 6-fold : Keeping one end of a string fixed, make a loop on the

other
, pass the free end through it and across the fixed end

; pass the free end again

through the external loop last made, then across the fixed end, and so on indefinitely.

The second time the fixed end is reached we have the trefoil (if the alternate over and

under be adhered to), the third time we have the amphicheiral 6-fold; and, generally,
the th time, a knot of 3 (n 1) fold knottiness, which is amphicheiral if n is odd.

Three of these were, incidentally, given in my former paper.

But, reverting to the mam object of my former paper, we now sec that the

distinctive forms of less than 10-fold knottiness are together more than sufficient (with

their perversions, &c.) for the known elements, as on the Vortex Atom Theory.

6. From the point of view of theory, as suggested m 12, 21, of my former

paper, it may be well to give here the partitions of 2n which correspond to true knots

for the values of n from 3 to 9 inclusive. The various partitions, subject to the proper

conditions, are all given, in the order of the number of separate parts in each
,

those

T. 41
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which have a share in one or more of the true knots, as given in the Plate, are

printed in larger type.

n 6 (contd.) n = 8 (contd.)

The whole numbers of available partitions are thus in order :

2, 4, 7, 14, 23, 40, 66.

(contd.)
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Of these there are employed for knots proper only

2, 1, 4, 4, 12, 17, 36,

respectively. The remainder give links, or composite knots, or combinations of these

(See Appendix.)

To enable the reader to identify, at a glance, any knot of less than 10-fold

knottmess, I subjoin the partitions corresponding to each figure in Plate VI. It is to

be remembered that (as in 15 of my former paper) deformations which are compatible
with the same scheme, however they may change the appearance of a knot, do not alter

the partitions. But it is also to be remembered that identity of partitions, alone, does

not necessarily secure identity of form.

The 3, 4, 5, and 6-folds may be disposed of in a single line.

71 = 5

442 55

3322 , 22222

33

222 332 4332

543

33222

552

33222

Here the bar indicates not only that the right and left-handed partitions are alike

in number and value, but also that they are similarly connected, i.e., that the knot

is arnphicheiral.

For the Sevenfolds, we have



I.

44433

433332

III

II.

63333 63333 54333 54333 44433 44433

533322
r

443322
r

533322
r

443322
r

533322
r

443322

IV.

54432 54432 54432 54432

533322
r

533322
r

443322
r

443322

54333 44433

443322
r

443322

VI.

64332 55332 64332
[

55332 T
443322

r
443322

r
443322

[_

T

443322J

44442

443322

VII.

55332
]

54432 54432
'

433332
r

433332

IX.

VIII.

64332 55332 64332 55332 55332 64332

443322
r

443322
r

533322
r

533322
r

433332
r

433332

54432

443322

X.

5553

3333222

XI.

5544

3333222

XIII.

55422 55422 55422

443322
r

533322
r

433332533322

55332

443322

XV.

65322 55332 55332 65322

443322
r

443322
r

543222
r

543222

XII.

64422 64422 64422 64422

433332
r

333333
r

533322
r

443322

XIV.

65322 65322 65322 65322

433332
r

433332
r

533322
r

443322

XVI.

7632 7632 7632

3333222
r

3333222
r

4332222

XVIII.

64332 54333 54432

543222
r

543222
r

543222

XVII.

64332 64332 54432 54432

533322
r

443322
r

533322
r

443322

XIX. XA
55422 55422 55332 54432 54432

533322
r

443322 543222
r

543222
r

543222

*
[See Part III. below, 20, p. 344; and fig. L, pi. VII 1898.]



XL.] ON KNOTS. PART II. 325

XXI. XXII.

7443 7443 6543 6543 7533 6633 7533 6633

XXIII. XXIV. XXV.

6543 5553 6552 6552 64422 44442 44442 64422

4332222
r
3333222 443322

r
543222

or
443322

r
543222

It will be seen that the above list suggests many curious remarks Thus, in the

eightfolds, we have two different amphicheirals, each having the partitions 44332.

54322 _ -

Again, we have
1-4099

ôr a ^no^ wnicn 18 no^ amphicheiral, as well as 54322 for one

54322
which is amphicheiral. (See 47 of my former paper.) And we have AA n*a standing

for two quite distinct knots. All these apparent difficulties, however, are due to the

incompleteness of the definition by partitions merely (i.e, as by Listing's Type-Symbol).
For, in addition to this, it is requisite that we should know the relative grouping of

the right-handed or of the left-handed partitions.

In the Plate I have inserted the designations given in my former paper to the

\arious forms of 6-fold and 7-fold knottiness: and I have also appended to each form

the designation of the corresponding figure in Kirkman's drawings.

The Plate contains a great deal of information of a kind not yet alluded to m
this paper. It gives, for instance, an excellent set of examples of Knotfulness. This

term implies ( 35 of my former paper)
"
the number of knots of lower orders (whether

interlinked or not) of which a given knot is built up." It is to be understood as applied
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to simple forms only; for we have set aside, as composite knots, all such as have any
one component separable, so that it may be drawn tight without fastening together

two laps belonging to one or two of the other components.

Thus, as a few of the examples of 2-fold knotfulness among the 8-folds, we have

vi. and XI. (3-fold and once-beknotted 5-fold);

and n. and V. (each two 4-folds); while

in., ix., and xiv. are different forms of two (linked) 3-folds.

Among the 9-folds we have, for instance,

xxx. and xxxin. (4-fold and clear coiled 5-fold),

xvi. and xxvi. (3-fold and 8 6-fold),

Xiv,, xv., xviii., and xxv. (4-fold and once-beknotted 5-fold).

But we have also

iv., xili., XXIII., and xxiv. (linked 3-fold and 4-fold),

XX., xxvn (two 3-folds, linked, and with one kink).

The analysis of self-locked knots, such as iv. and vn. of the 8-folds, and 11, ix., x.,

xix., &c., of the 9-folds, is considered below.

II. Beknottedness.

7. The question of Beknottedness (on which I have occasionally made short com--

raunications to the Society since my papers of 1876-7 were printed in a brief condensed

form) has been again forcibly impressed on me while endeavouring to recognise identities

among Kirkman's groups. I still consider that its proper measure is the smallest number

of changes of sign which will remove all knottiness. But, shortly after my former paper
was published, I was led to modify some ideas on the subject, which were at least

partially given there. I had been so much impressed by the very singular fact of

the existence of amphicheiral forms, that I fancied their properties might in great

measure explain the inherent difficulties of this part of the Subject. I have since come

to see that' this notion was to some extent based on an imperfect analogy, due to

the properties of the 4-fold amphicheiral, and that the true difficulty is connected with

Locking.

8. The existence and nature of this third method of entangling cords were first

made clear to me by one of the random sketches which I drew to illustrate Sir W.
Thomson's paper on Vortex-Motion [Trans. R. 8. R, 1867-8]. I had not then even

imagined that the crossings in any knot or linkage could always be taken alter-

nately over and under, though I found that I could make them so ill all these

sketches. The particular figure above referred to again presented itself, among others

possessing a similar character, while I was studying the peculiar group of plaited knots
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whose schemes contain the lettering in alphabetical order in the even as well as in the

odd places. (See 27, 42, of my former paper.) But I soon saw that, though I had
first detected locking in those members of the group of plaits where three separate

strings are involved, essentially the same sort of thing occurs m the other members
of the group, though they are also proper knots in the sense of being each formed

with a single continuous and endless string. And, as the above very simple example

sufficiently shows, we can have locking, independent of either knotting or linking, with

two separate strings. For it is clear that the irreducibihty of this combination depends

solely upon the sign of the central crossing. There is no real linking of the two

cords, and there is obviously no knotting. But if the sign of any one of the crossings,

except the central one, be changed, the whole becomes the simple amphicheiral link,

the linking having been introduced by the change of sign. [This, as will be seen in

14 below, is an excellent example of a case in which the key-crossing of a locking
is also a root-crossing of a fundamental loop.]

9. We may therefore define, as one degree of locking, any arrangement, or in-

dependent part of an arrangement, analogous to that above (whether it be made of

one, two, or three separate strings), the criterion being that the change of one sign

unlocks the whole. But it is well to notice, again, that if, in the above figure, we

change the sign of any crossing except the central one, we have one degree of linking

left, and that this has in reality been introduced by the change of sign. This remark

extends, with few exceptions, to more complex cases.

10. Thus, though the following 8-fold knot (which I reproduce from No. XXXIX.

above, 47, p. 314) does not, at first sight, appear to depend on locking, we have only to

make a simple transformation (as ante, 3) to reduce it to the symmetrical form in

which the single degree of locking is at once evident. It was by considering this knot,
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with its (quite unexpected) single degree of beknottedness, that I first saw the true bearing

of locking in the present subject. (It is given as X. of the 8-folds in Plate VI.)

Other excellent instances of the same difficulty are the following. The first of

these is completely resolved, the second changed to the 3-fold, while the third becomes

apparently two linked trefoils, all by the change of the single crossing in the middle

of the lock. But with the 9-fold knot (which is merely a different projection of Plate

VI., fig. XXXV.) the trefoils are so linked after this operation, that the change of sign

of one crossing of either resolves the whole. This is, however, much more easily seen

by at once changing the signs of the middle and of the lower (or the upper) crossing,

for the whole is thus resolved. [This course is at once pointed out by the process

of 13 below, if we choose as fundamental crossings the three highest in the figure.]

Hence the beknottedness is 1, 2, 2 in the last three figures respectively.

11. Another instructive example is afforded by the 8-fold knot below, which is

figured as iv. on Plate VI.:

At a first glance it appears to be made of two once-linked trefoils, and therefore to

have three degrees of beknottedness. But a little consideration shows that neither

the trefoils nor the link have alternations of signs {i.e., there is neither knotting

nor linking), but that the whole is kept from resolution solely by the lap of cord

which has been drawn as a straight line in the figure. This forms, as it were, the
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tail of a Rupert's drop; break it, and the whole falls to pieces. A change of sign
of either of the interior crossings on that lap makes one trefoil; of either of the

4 lateral external crossings, the 6-fold amphicheiral ;
of the upper crossing, the 4-fold

amphicheiral ; and of the lower axial crossing, the 5-fold of one degree of beknotted-

ness. All these modes of resolution lead to the result that the knot is of 2-fold

beknottedness.

12. It is now obvious why, in consequence of locking and not of amphicheiralism
as I first thought, the electro-magnetic test fails in certain classes of cases to indicate

properly the amount of beknottedness. For it is clear that in pure locking there is

no electro-magnetic wc^k along the locked part of any one of the three courses in-

volved. Hence, for the part of a knot or link which is locked, the electro-magnetic
test necessarily gives an incorrect indication of beknottedness. Perhaps it may be

said that, in such cases, beknottedness is not the proper name for this numerical

feature of a knot: but it is obviously correct if de/ined as in 7 above.

13. A simple but thoroughly practical improvement on the methods given in my
first paper for the graphical solution of Gauss' problem (extended) is as follows:

Draw the knot or link, as below, with a double line, like the edges of an untwisted

tape, and dot (or go over with a coloured crayon) one of the two lines. Now it

is easy to see that, of the four angles at a crossing, one angle is bounded by full

lines, and its vertical angle by dotted lines. These will be called the symmetrical

angles. Also it is clear that the electro-magnetic work has one sign for the crossings

when the symmetrical angles are right-handed, and the opposite sign when they are

left-handed. Thus we can at onco mark each crossing as r or I, silver or copper,

at pleasure. If the figure be a knot, and if we cut it along a line dividing a

symmetrical angle, re-uniting the pairs of ends on either side of that line, the whole

remains a knot (still with alternations of over and under if the original was so),

but of knottedness at least one degree lower. When the line divides an unsym-
metncal angle, the whole becomes (after re-\initing the ends, as before) two separate

closed curves, in general linked and, it may be, individually knotted. [When we treat

a link in this way at any of the Unkings (i.e., where two different strings cross one

another), it becomes a knot. It is curious that by this process a knot is equally

likely to be changed into a knot or into a link, while a link always becomes a knot.]

This method has the farther advantage of showing at a glance the various sets of

crossings which we may choose for omission (in the electro-magnetic reckoning), as

due merely to the coiling of the figure, not to knotting, linking, or locking. For

each such crossing must belong to a simple I '*^ojvhich,
for reference, we will call

T.
V 42
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fundamental. Such a loop is detected immediately by its having (throughout) the

full line or the dotted line for its external boundary, and therefore is necessarily
closed at a symmetrical angle. If we now erase these fundamental loops in succession,
till no crossings are left, the crossings at their bases form one of the groups which

may be tried. When part of the knot has locking, it is sometimes necessary to try
more than one of these groups before we arrive at the true measure of beknottedness.

As this is a matter of importance, it may be well to discuss it a little farther.

14. When there is no beknottedness (whether true, or depending on linking or

locking), the electro-magnetic work, with the proper correction for mere coiling, is

certainly nil. But this proper correction requires to be found, and where there is

locking its discovery sometimes presents a little difficulty. When there is no locking,
all we need do is to draw the knot afresh, beginning at a point external to each
of the fundamental loops, and making each crossing positive when we first reach it.

It is evident that the fundamental loops or coils will now be simply laid on one
another. The signs of all the crossings on any one loop may be changed, while
that of the base of the loop is immaterial, and this process may be carried out with

some or all of the other fundamental loops in any order. Compare the various signs
in any state thus produced with those (alternate or not) of the original knot, so as

to find the smallest number of changes necessary for its full resolution. The sign
of the crossing at the base of each fundamental loop is simply to be disregarded.
Another mode of going to work is to alter the signs at pairs of points where two
fundamental loops cross, so as to diminish as far as possible the necessary number
of real changes of sign. But we must be very careful in using this process, to see

that it does not introduce locking.

15. When there is locking in part of the knot, the real difficulty is met with

only if the crossing or crossings, which form as it were the key of the locked part,
must also be taken as the base or bases of fundamental loops. In this case we
commence the fresh drawing of the knot at a point exterior to the locking, but on
the fundamental loop of which one of the key crossings forms the base. This ensures
that the completion of the fundamental loop is effected by the last of the operations
on the locked part. But the application of the method can be learned far more

easily from an example or two than from any rules which could be laid down. Thus
the following drawings represent the results of this method as applied to two of the
knots already figured. In the first of these the two lower external crossings are taken
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for the fundamental loops, and we see that the knot (if originally over and under

alternately) requires for its full resolution only the change of sign of each of the

two crossings which lie in its axis of symmetry. But, if we had chosen the crossings

last mentioned as bases of fundamental loops, we should at once have felt the difficulty

due to locking.

In the second, all four crossings in the axis of symmetry close fundamental loops;

but the change of the sign of the lowest of these, alone (which is the key of the

locked part), is required for the full resolution.

422
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APPENDIX.

Note on a Problem in Partitions.

(Read July 7, 1884.)

IN the partition method of constructing knots of any order, n, of knottiness, we have

to select from the group of partitions of 2n those only in which no part is greater than n,

and no part less than 2.

Thus, as given in the text, 6, we have for sevenfold knottiness the series of partitions

of 14; but they are now arranged below in classes according to the value of the largest par-

tition.

33332 2222222

332222

It is an interesting inquiry to find how many there are in each class, for any value of n.

The number of classes is obviously n - 1
; and, if we remove from each the first partition

(i.e., that which is not inferior to any of the others), the remainders form a new aet of

classes of partitions which we may designate as

Pnt P+\> #7l K-a

respectively; where p't is defined as the number of partitions of s, in which no partition is

greater than r, and none less than 2.

Without explicitly introducing finite differences or generating functions it is easy to

calculate the values of the quantity /; and to put them in a table of double entry which

can be developed to any desired extent by the simplest arithmetical processes. The method

is similar to one which I employed some years ago for the solution of a problem in

Arrangements (No. XXVII. above).

In the first place we see at once that if r > s

P:=P:-

Thus, if r denote the column, and 8 the row, of the table in which p't occurs, all

numbers in the row following p\ are equal to it. Thus the values of p\ enable us to fill

up half the table. In the remaining half r is less than s; and by a dissection of this class

of partitions, similar to that which was given above, we see that

tf = tf-, + jC!+i+ +#- +X-1+K.

where the two last terms obviously vanish; and the first term is obviously 1 in the case

of r
,
unless r < 2, when it vanishes.

Hence, if the following be a portion of the table, the crosses being placed for the various

values of p't) nti or not,
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it will be seen at a glance that the above equation tells us to add the numbers A, B, C,

D, E together, to find the number at K. This is quite general, so that L, in the second last

column, is the sum of A, B, . . .
,
H

,
and all the numbers beyond it, in the same row, are

equal to it. In the table on next page, each number coi responding to the first L is printed

in heavier type, and its repetitions are taken for granted.

Thus it is clear that simple addition will enable us to construct the table, row by row,

provided we know the numbers in the first row and those in the first column. Those in

the first and second columns are all obviously zero, as above. The rest of the first row

consists of units. These are the values of p
r

ot i.e., the first term of the expression above

for p\ Hence we have the table on the following page, which is completed only to r=17,
with the corresponding sub-groups.

From the table we see that fJ=8. Hence the partitions of 18, subject to the con-

ditions, are in number
8 + 11 + 11 + 14 + 10 + 8 + 3-1-1 66,

which agrees with the detailed list in 7 above.

[The rule is to look out the number p", and add it to all those which he in the

diagonal line drawn from it downwards towards the left. But the construction of the table

shows us that this is the same as to look out pln at once
]

Similarly we verify the other numbers of partitions given in the text.

And it is to be remembered that pi is the number of required partitions in which n

occurs, and that every one of the class p" T
has for its largest constituent n - r. Thus, looking

in the table for p] and the numbers in the corresponding downward left-handed diagonal, we

find the series

4 6 5 S 2 1,

which will be seen at once to represent the dissection of the partitions of 14 given above.

The investigation above was limited by the restriction, imposed by the theory of knots,

that no partition should be less than 2 But it is obvious that the method of this note

is applicable to partitions,' whether unrestricted, or with other restrictions than that above.

The only difficulty lies in the bordering of the table of double-entry. Thus, if we wish to

include unit partitions, all we have to do is to put unit instead of zero at the place r=l,
s = 0, and develop as before. Or, what will come to the same thing, sum all the columns

of the above table downwards from the top, and write each partial sum instead of the last

quantity added, putting unit at every place in the second column.

Similarly, we may easily form the corresponding tables when it is required that the par-

titions shall be all even, or all odd.
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Table of the values of p\, the number of partitions of a in which no one is less than 2,

nor greater than r.

(The values of r are in t/te first row, tlwse of s in the first column.)

01 2 34 56 7 8 9 10 11 12 13 14 15 16 17

From what has been stated in the previous pages, it is easy to see how to extend this

table; forming the successive terms of each row by adding step by step upwards to the

right along a diagonal, thence upwards to the top, zig-zag along the row of heavier type
as soon as it is reached.
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XLI.

ON KNOTS. PART III.

[Transactions of the Royal Society of Edinburgh, 1885.]

(Chapter I. read June 1st, Chapter II. July 20th, 1885. One change, small but important, wa made

during printing. It is described at the end of the paper.)

THE following additional remarks are the outcome of my study of the polyhedral
data for tenfold knottiness, which 1 received from Mr Kirkman on the 26th of last

January. My main object was, as in the first chapter of Part II., to determine the

number of different types; as well as the number of essentially different forms which

each type can assume, as distinguished from mere deformations due to the mode of

projection.

This study has been a somewhat protracted one, in consequence (1) of the great

number of tenfold knots, (2) of the very considerable number of distortions of several

of the types, many of which are essentially distinct while others present themselves

m pairs differing by mere reversion, and especially (3) of the fact that the polyhedral

method often presents some of the distinct forms of one and the same type projected

from essentially different points of view (of which, in the present case, there are some-

times twelve in all). Reason (3) depends on the fact that Kirkman's method occasionally

builds up various forms of one type on different bases of a lower order, and it really

involves additional labour only; but great care is requisite to avoid confusion as regards

(2), and m consequence I may not have fully reduced the final number of distinct

types. [At the end of this paper I shall give a simple illustration of the nature of

this special difficulty.]

The fact that I was dealing with knottiness of an even order induced me to

commence the testing of the materials at my command by picking out the Amphi-
cheirals. This led to some new considerations of a very singular nature, which are
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treated in the first of the following chapters. The second deals with the tenfolds as

a whole.

I. Various Orders and Classes of Amphicheirals.

1. As one form of check on Kirkman's results, I sought for an independent method

of forming all the ainphicheirals of a given order. But, as will be seen below, we must

be careful in this matter, which is not so simple as I first thought. I therefore com-

mence by recalling the original definition of an amphicheiral.

In 17 of my first paper I introduced it thus:

An amphicheiral knot is one which can be deformed into its own perversion.

The word "deformed" was here used in the sense of alteration of form by mere

change of point of view, or mode of projection; a process which leaves the number

of corners in each mesh, and the relative positions of the various meshes, unchanged.
This definition implies that the right and left handed meshes are similar in pairs and

similarly situated in congruent groups ;
and it will be adhered to for the present, though

we shall afterwards find that there are at least three other senses in which a knot

may be called amphicheiral, and shall thus be led to speak of different orders and

classes of amphicheirals. The above definition will then be considered to belong to amphi-
cheirals of the First Order and First Class.

2. Suppose an amphicheiral knot to be constructed in cord, and extended over

the surface of a sphere which swells out when necessary so as to keep the cord 'tight

like the netting on a gazogene. Let its various laps be displaced until the several

corresponding pairs of right and left handed meshes are made equal as well as similar.

Trace its position on the sphere. Now suppose it to become rigid, and move it about

on the surface of the sphere. We can again bring it to coincide with its former trace,

but in such a way that each left-handed compartment now stands where the corre-

sponding right-handed one was, and each right-handed where its corresponding left-handed

was. Now such a displacement, as we know, can always be effected by a finite rotation

about a diameter of the sphere as axis.

This axis, of course, cannot terminate (at either end) inside a mesh, else that com-

partment could not be shifted by the rotation to the original position of the corresponding
one of the other kind. Hence either end of the axis must be at a crossing, or midway
on the lap of cord passing through two adjoining crossings. A little consideration

shows that if one end be at a crossing the other also must be at a crossing, and the

whole must be a link. This is easily seen from the fact that, if one end of the axis

be at a crossing, the four meshes which meet there must each exactly fit that next

it when the whole is turned through a right angle; and the series which immediately
surrounds these must possess a similar property, &c., &c. Thus the whole spherical

surface must be covered with a pattern which consists of four equal and similar parts,
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each of which takes the place of the preceding one at every quarter of a rotation

about the axis. And four laps of the string must therefore proceed all in the same

way from one end of the axis to the other; since, if we can trace one lap of the

string continuously from one crossing to the other, exactly the same must be true of

the other three. [Of course, if the string cannot be traced from one crossing to the

other, there must be two separate strings at least.]

Hence, for a true knot, both ends of the axis must be the middle points of laps;

and therefore

There must be two laps, at least, in every amphicheiral knot, each of which is common

to a pair of corresponding right and left handed meshes; and when the whole is sym-

metrically stretched over a sphere the middle points of these laps are at opposite ends

of a diameter,

3. With regard to the middle point of either of these laps, the various pairs of

corresponding right and left handed meshes are situated at equal arcual distances

measured in opposite directions on the same great circle. Hence if the whole be opened

up at the middle point of either of these laps and projected on a plane symmetrically
about the middle point of the other, the halves into which the plane figure is divided

by any straight line passing through the latter point are congruent figures applied on

opposite sides of that line as base, the point being, as it were, a centre. There are,

thus, at least two ways of opening up any amphicheiral knot so as to exhibit this

species of quasi-symmetry.

What precedes is on the supposition that the system of right, or of left, handed

meshes can be applied to itself in one way only. If there be, as happens in some

specially symmetrical cases, more than one way of doing this, there is a corresponding
increase in the number of pairs of common laps, as defined in the preceding section.

It has also been assumed above that, on the sphere, the systems of right and left

handed meshes are not only similar but congruent. The question of the possible existence

of knots in which the system of right hand meshes shall be the reversion of the left

hand system will be considered later.

4. We now obtain a perfectly general, though of course in one sense tentative,

method of constructing amphicheirals of any order. Think of the result of 3 as to

the congruency of the halves of the knot when opened at either of the pair of cor-

responding laps. As a continuous line necessarily cuts the projection of a complete knot

in an even number of points, the half figure which is to be drawn on one side of

the common base must meet it in an odd number of points because one lap has been

opened. Let these be called, in order, A, B, C, &c. Then, to form the half figure,

these points must be joined in pairs, the odd one forming one end of the line whose

other terminal is at the broken lap. These joining lines, and that with the free end,

must be made to intersect one another m a number of points equal to half the

knottiness of the amphicheirals sought. Every mode of doing this gives a figure which,

when its congruent has been applied on the other side of the base, possesses the

amphicheiral quasi-symmetry above described.

T. 43
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5. To ensure that the figure shall be a knot, and not a link or a set of detached

figures, the following precautions are necessary. If A', B', C7

, &c., in the congruent

figure correspond to A, B, C, &c., in the original, they will be adjusted to one

another as follows. (The case of five is taken as being sufficient to show the general

principle.) ABODE
E' D' C' B' A'.

Now if B be joined with D, however the joining line be linked with the others, B will

be joined to D'; and these parts will form, together, one closed circuit, so that the

figure is not a knot. Similarly if A and E be joined. Similarly if A be joined to B,

and also D to E. If C be the terminal of the free lap, so will C', and again we

have a figure consisting of more than one string.

It will be observed that the common characteristic of these exceptcd cases is that

each possesses at least partial symmetry in the mode in which points to be joined

are selected from the group. Hence the rule for selection is simply to avoid every trace

of symmetry.

Even when this is done the final result may be a composite knot, ie., two or

more separate knots on the same string. These can be detected and removed at

once, so that it is not necessary to lay down rules for preventing their occurrence.

Repetitions of the same form from different points of view form the only really

troublesome part of this process. These are inevitable, as we see at once from the

fact that there may be several essentially different ways of cutting the complete

quasi-symmetrical figure into congruent halves by lines meeting it in the same odd

number of points. But it may also often be cut by one such line in one odd number

of points and by another in a different odd number.

Still, with all these inherent drawbacks, the method is applicable without much
labour to the tenfold amphicheirals ;

and it fully answered my purpose.

6. I had proceeded but a short way with the application of this method when

I found that there may be more than one distinct amphicheiral belonging to the same

type.

One example of this had been already given in 48 of Part I. while I was

dealing with amphicheirals, and again in Part II. in my census of eightfolds (Type V.),

but I had carelessly passed it over as a special peculiarity probably due to the fact

that the knot in question, though not composite, was constructed of portions each of

which possessed, all but complete, the outline of the fourfold amphicheiral. From the

point of view taken in 4 above, however, the reason of the property is evident.

For if the half knot, when the extremities of the strings are all held fixed, be

capable of a distortion which shall change the relative positions of some of its meshes

or the numbers of their corners, the same can of course be done with the congruent
half. The whole preserves its type, and is still amphicheiral, but it becomes an

essentially distinct form.
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It will be seen that there is one type of tenfolds which has four different

nmphicheiral forms; another contains three; while there are four types each with

two forms. The remaining seven amphicheiral types are either unique forms or have

no amphicheiral distortion.

7. We are now prepared for one extension of the definition of an amphicheiral

given in 1 above. But we prefer to establish a new and independent definition:

thus

An amphicheiral knot of the First Order and Second Class is one which can be

distorted into its own perversion.

Under this definition every distortion of an amphicheiral knot is included, even

although it be such that its right and left handed meshes do not correspond to one

another in pairs For, whatever be the distortion, and whatever parts of the knot be

affected by it, an exactly similar distortion might have been applied to the congruent

parts of the original amphicheiral. These two distorted forms are, of course, capable
of being distorted one into the other: and that other is its perversion.

Every amphicheiral knot of the first order and second class corresponds to, and

can be distorted into, at least one of the first class: but the converse is not neces-

sarily true.

8. Whether there are other classes of amphicheirals of the first order besides

these I do not yet know. I have made attempts to construct a specimen of a supposed
Third Class which should have the property of being changed into its own perversion

by the twisting of a single, limited, portion, while the result could not be obtained

by any simpler method. Such forms, if they exist, must in general be incapable of

distortion into amphicheirals of either the first or the second class. This search has

been fruitless. Among the requirements which it introduces, is the necessity for an

ordinary amphichoiral in which two pairs of corresponding right and left hand meshes

shall have one common corner, a condition which does not seem to be satisfied except

by the simplest (amphicheiral) link, in which indeed it must be satisfied, as there are

but four compartments in all. But this gives no satisfactory solution.

9. We may now take up the curious question raised in the last paragraph of

3 above.

A simple method of producing arrangements in which the group of left handed

meshes is similar to, but not congruent with, that of the right handed follows at

once from the fact that, if one end of n diameter of a sphere trace a figure of

any kind, the other end traces a similar and equal but (except in special cases of

symmetry) non-congruent figure. These figures can, if we choose, be taken so as

together to form one closed curve; and this, along with a great circle of the sphere,

forms a link of two cords possessing the required property. On the plane we can

carry out this construction by describing any figure within a circle, along with its

inverse as regards the circle but on the opposite side of the centre; and arranging

432
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so that these may join into a continuous curve linked with the circle. But this

arrangement remains a link when we unite the new curve with the circle by so

introducing new meshes as to leave the whole possessed of the required property.

Or, we may trace any curve on a hemisphere, and its image (in the common

base) on the other hemisphere. These, together with the great circle separating the

hemispheres, give another link solution.

It is clear, from the essentially limited nature of the spherical surface, that these

two methods give the only possible solutions of the problem: i.e., when the cor-

responding right and left handed meshes required by the conditions are made equal

in pairs, the lines joining similarly situated points in them must either meet in one

point (which, of course, must be the centre of the sphere), or they must be parallel.

10. As I did not at once see how to obtain solutions corresponding to unifilar

knots by means of either of these methods, I asked Mr Kirkman whether he knew

of a polyhedron which possessed the requisite property. The first he suggested to

me corresponded, as I easily found, to a trifilar which belongs to the results of the

first method above: i.e., one of its cords being taken as the circle, the other two

were inverses of one another with regard to it. But, as soon as he mentioned to

me that the polyhedron, corresponding to a composite knot consisting of two separate

once-beknotted 5-folds on the same string, satisfies the special conditions of the present

question (though inadmissible on other grounds), I saw why I had failed in obtaining

unifilars by the first of the two methods above. For the purpose of avoiding trifilars

from the first I had always made the curve traced by either end of the moving
diameter (in the process of 9 above) cross the great circle wherever it met it, , so

as to join that traced by the other end. No insertions of new meshes could then'

reduce the whole to a unifilar without depriving it of the property for which it was

sought.

11. But if we make the closed curve traced by one end of the moving diameter

touch the great circle in one point, the point of contact must of course be regarded
as a crossing, while the circle and the closed curve necessarily fuse into one continuous

line. The same happens with the curve traced by the opposite end of the diameter.

Thus we may obtain with the greatest ease any number of unifilars satisfying the

conditions. And it is clear that, by a slight extension of the definition above, all

such knots will be brought under the general term amphicheiral. To make them
true knots, ie., not composites, the curves traced by the ends of the diameter must
intersect one another, which implies that they must each cut the great circle in two

points at least besides touching it at one or more. Hence the lowest knottiness in

which they can possibly occur is 10-fold ; i,e., 2 points of contact vdth the great

circle, 4 intersections with it, and 4 intersections of the two branches,

This process fails when applied in connection with the second method of 9, for

it brings in triple points which cannot be opened up into three double ones without

depriving the whole figure of the desired property.
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12. The 10-fold, whose genesis is described in last section, has the form shown
in Plate VII. fig. D, where the great circle is made prominent. It is easily recog-
nised as the ordinary amphicheiral, fig. 31, of Plate VIII. The reason why it figures
in both categories is that the arrangement of the right or left handed meshes, being
symmetrical, is not changed by reversion. Thus every ordinary amphicheiral, which is

in this sense symmetrical, belongs also to the new kind of amphicheirals with which
we are now dealing.

Plate VII.
fig.

A shows a 12-fold knot, which is its own inverse with regard
to the part drawn as nearly circular, and which is not amphicheiral in the ordinary
sense

Equal distortions of two corresponding parts give it the new form
fig. B, which

is also its own inverse with regard to the circular part.

But if, as in
fig. C, we perform one of these distortions alone, the form is no

longer its own inverse. But it is certainly amphicheiral, in the sense that it can

be distorted into its own perversion. This is effected, of course, by undoing the

single distortion which produced C from A, and inflicting the other of the pair of

distortions which, together, produced B from A.

13. Thus there are at least four different senses in which a knot may be amphi-
cheiral.

A (a) Those in which the systems of right and left hand meshes are similar and

congruent.

A () Unsymmetrical distortions of any of the preceding, when such exist. [When
the distortion is symmetiical the knot remains one of A (a).]

B (a) Those in which the systems of right and left hand meshes are similar

but not congruent.

B ()8) Unsymmetrical distortions of any of the preceding. [When the distortion

is symmetrical the knot remains one of B (a) ]

A and B may be spoken of as different Orders, the First and Second; a and /3

as Classes, First and Second. As already stated, the knot of
fig.

D belongs to both

orders. But no knot can belong either to both classes of one order, or to the first

of one order and the second of the other.

14. In fig. (D) the 10-fold (fig. 31) of 11 is drawn so as to exhibit its sym-

metry. And we thus 'see at a glance that there are at least two ways (indicated

by heavier lines, one continuous, the other dotted) in which we can choose the laps

which are to form the circle with regard to which it is its own inverse.

Fig. 38 of the 10-folds, which by reason of its symmetry belongs to both orders

of amphicheirals, can have its circles shown as in figs. (E) and (F).

15. But if we take a non-symmetrical knot of the kind B (a), such as
fig. A

above treated, we obtain some still more striking results as to the number of ways
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in which we can choose the laps which form the circular portion. In this figure

corresponding right and left handed meshes are marked with the same letter.

Thus, if we throw out the right hand mesh, d, from the contents of the circle

and take in the left hand d instead, the figure (drawn to show the new circle)

becomes fig. G.

If we throw out /, and take the amplexum instead, we obtain
fig.

H.

But, if we throw out from the circle g, c, and e, and take instead of them the

corresponding external meshes, the figure takes the curious form K. Here the full

line is the new boundary between the two halves of the figure. This new boundary,
as well as the entire figure, is easily seen to be its own inverse with regard to the

part bounded by the heavier portion of the full line. This, however, is only one of

four ways in which it might be selected from the full line alone. Such modifications

are very curious as well as numerous, but we cannot pursue them here.

16. In the upper rows of Plate VII. I have given the amphicheirals of the

first class, up to the tenfolds inclusive. They are drawn on the principle of 4

above, and the first form in which each presented itself has been preserved A
comparison of these, with the corresponding figures as drawn in Plate VIII. directly

from Kirkman's results, is very instructive.

[Added, Oct. 19, 1885 Though the general statement in 11 above is true from

the point of view there taken, there is a possibility of evading it. Thus, if we draw

a figure like E, Plate VII., but with a four-pointed star inside, we get vii. of the

8-folds; which is thus shown to be an amphicheiral of the Second, as well as of the

First, Order. But, if we try a three-pointed star, we get the simplest trifilar locking;
as in Part I. 42 (1), and Part II. 8.]

II. Cenws of Ten-fold Knottiness.

17. Omitting composites, the number of separate types of 10-fold knottineas

is, as shown in Plates VIII., IX., 123. Of these 48 are unique, while the remaining
74 give 315 distinct forms, 364 individuals in all. The largest number of distinct

forms for one type is 12; and there are two such groups. One type which furnishes

a group of 10, has 4 of them amphicheirals of the first order and first class, the

remainder of the second class.

Each of the figures is drawn in the special deformation in which it is presented

by the polyhedral method, and, for reference, the corresponding designation of the

knot in Kirkman's list is appended to it.

18. Of the 107 partitions of 20, under the limits imposed by the nature of a

knot, 52 only are utilised; the rest belonging to links, composites, &c. These

are as below
;

each being followed by a distinctive letter, which will presently be

employed (for brevity) in place of it.
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For knots with 6 right handed and 6 left handed meshes:

653222 A 544322 F

643322 B 543332 G

633332 C 533333 H
554222 D 444332 K
553322 E 443333 L

For 5 meshes of one class and 7 of the other:

77222 a 65432 I

76322 b 65333 m
75422 c 64442 n

75332 d 64433 p
74432 e 55532 q

74333/ 55442 r

66422 g 55433 s

66332 h
'

54443 *

65522 k 44444 u

For 4 of one and 8 of the other :

8732 a

8633 b

8552 c

8543d

7742 e

7652 f

7643 g

7544 h

6653 k

65541

And for 3 of one and 9 of the other:

992 p

983 q

974 r

965 s

875 t

776 u

5522222 a

5432222 p
5333222 7

4442222 8

4433222 e

4333322 f

3333332 77

43322222 B

33332222 K

332222222 X

19. In Part II. of this series I arranged the types of each degree of knottiness

in the order in which their respective deformations first appeared in Mr Kirkman's

lists. This had the disadvantage of mixing up together types with very different

relative numbers of right and left handed meshes. On the present occasion I have

taken in the first rank the knots which have an equal number of meshes (six) of

each kind, next those which have respectively 5 and 7, 4 and 8, &c. This will

considerably simplify the process of seeking for any particular ten-fold in so long a
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list. The arrangement of the various types in each rank, however, follows somewhat

closely the order of their earliest appearance in the first list which I got from

Mr Kirkman, that upon which I commenced the present work.

To identify any 10-fold, all that is necessary is to count the numbers of corners

in the respective right and left handed meshes, look out the contracted expressions

for the corresponding partitions of 20 in 18, and then search below for the symbol,

or pair of letters so obtained. Their order, of course, is immaterial, as it can be

altered by a mere change of mode of projection. If the symbol occur more than

once, a closer examination must be made, account being now taken of the way in

which the right, or the left handed, meshes are coupled together. This is easily

done as in 20 of my first paper.

20. The number of distinct forms which I detected as not contained in

Mr Kirkman's first list of 10-folds bears a far smaller ratio to the whole than was

the case with the nine-folds. 1 consider that this is due not to my remissness, but

to Mr Kirkman's improvements in his methods, i.e., rather to the non-existence than

to the non-detection of omissions; and I think it is improbable that any distinct

variety of a recognised type has escaped detection. Thus in the present census some

types may be omitted (this is more likely to be true of unique types than of others);

and I may have, as already indicated, grouped in two or more smaller detachments

the varieties of one and the same type. But the possibility of either defect is due

to the somewhat tentative nature of the methods employed.

The guarded way in which I spoke (Part II., 1) of the completeness of -the

Census has been justified by a recent observation mado by Mr Kirkman, viz., a

9-fold not included either in his list or in mine. Fortunately this knot, figured as
fig.

L., PL VII, is not a new type but a distinct form of type VI. of the 9-folds as

shown in the Plate attached to Part II. My methods ought to have supplied this

additional member of a group, of which some forms had been furnished by Kirkman;

but I had not, at the time, much readiness in applying them. The labour of the

10-folds has made me much more skilful than before in this matter.

21. In the following list, the order is the same as in the plates. The symbols

for each knot are so written that the second, in all cases, corresponds to the group

of meshes to which (as the figure happens to be drawn) the amplex belongs.

The various Types of Ten-folds with their distinct Forms.

Six right and six left hand meshes; 24 non-unique types, 14 unique; 133

individual distinct forms in all. Amphicheirals of the first order and first class are

marked by a bar over the symbol instead of a repetition.
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1. C, G, GC, GG, CG, KG, KG, G, GK, K, 2. FC, GF, GF, GF.

3. HB, LB, BC, GB, BG, KB, HF, FC, FG, LF, GF, FK.

4. GE, KE, GE, GE, BK, QB, GB, KB, BG, GB, EK, EG.

5. FF, KB, FB, BF, FF, FK. 6. GE, LE, KE.

7. FE, FG, FB, EB, EG, EE, FE, FG, FB. 8. FK, KF. 9. F, FF, F. 10. GF, KF.

11 BF, KE, BB, GF, KG, GB, EF, KB, BE. 12. LF, LF, FH. 13. KG, K, G.

14 B, E, G, EB, BG, EG. 15. A, EA, E 16 BB, FB, KB, KF, FB, FF

17. GF, GF. 18. FD.DB, KD. 19. FA, KA, FA, GA, GA, EA.

20. BA, KA, KA.AF. 21. GA, GA, AF, BA. 22. FB, B, F. 23. DB, FD.

24. EA, AA 25. KG. 26. G. 27. F. 28. LK. 29. K. 30. LG.

31. F 32. EF. 33. FE. 34. EF. 35 D. 36. AD. 37. A. 38. H.

Five meshes of one kind, seven of the other. Forty-three non-unique types,

twenty-one unique 200 distinct forms in all.

39. es, es, ep, yp, sy, sy 40. em, em, ef. 41. el, ee, yl, ye, rje, yl, 1, e, e, l.

42. q, yl, el, yq, eq, 1. 43. ef, em, ep, es, yf, ym, y8t yp, p%, 8%, m, %f. 44. se, te

45. fd, (ft, eh, eh, ed, ed, h^ d$ 46. &, #, ^. 47. ky, ek, rjk, 0b.

48. eh, ed, em, hft, mft, dp 49. fc, c, tjc, yc, fr, ec. 50 gy, eg, %g, %g.

51. f&, 6, (ft, be, yb. 52. 6, eb, h&, eh, eh, eb. 53 er, ftr, el, el, 01, 10. 54. pe, te

55. sft, tft, mft, sft, pft, s@. 56. Bft 8p, 8s. 57. >ny, yn, en, en.

58. r, ry, ee, ye, & er. 59. 81, $q. 60. ee, ey, ly, el, &, &.

61 ee, el, et, f/8, eft, Ift 62 eft, p&, Ift, el, ep, ee. 63. ek, ky, k. 64. ftl, ftq, 8ft.

65. rft,ec,er,ftc. 66. eb, ftb, eb 67. dft, mft, ftl 68. dft, ftl, sft.

69. eg, gy. 70. Sd, 18. 71. ftr, tft, eft. 72. Ift, rft. 73. pa, to, la, ra.

74. ec, rft, re, eft. 75. ek, ftk. 76. ftc, ec. 77. ea, ea, aft. 78. bft,hft.

79 ftc, ec. 80. ra, ac 81. /ia, ab. 82. t,u. 83. se. 84. e*. 85. &
86. h 87. T/S. 88. p 89. er. 90. n. 91. eq. 92. re. 93. f.

94. m 95. re. 96. el. 97. If. 98. el. 99. eh. 100. ftk. 101. bft. 102. aa.

Four meshes of one kind, eight of the other. Seven non-unique types and eight

unique twenty-five distinct forms m all.

103. *f, 9i 104. a, *a, 0a. 103. *d, /eg, d0, g^. 106. >cc, 0c. 107. ^d, 1^.

108. 0b, gO. 109. m, ^h. 110. *k. 111. 1. 112. h. 113. /eg.

114 ^k 115. 0f. 116 ^e. 117. a0.

Three meshes of one kind, nine of the other. Six unique types.

118 Xu 119 Xq. 120. Xp. 121. Xs. 122. Xr. 123. Xt.

T. 44
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22. The nature of the special difficulty hinted at in the beginning of the

paper will be easily seen from the simple case illustrated by the four figures M,

Plate VII. They denote various forms of the type 40 of Plate VIII.

It will be noticed that the crossings A, B, C may, one, two, or all, be changed
from one lap of the string to the other, as shown in the second figure. Also D
may be transferred to a position between A and B, or between A and C. There

are thus two positions for each of A, B, and C
;

and three positions for D
; giving

24 combinations in all. But it is clear that we need not shift D at all, so far as

the outline of the figure is concerned; for a mere rotation of the whole in its own

plane (as A, B, and C are similar to one another) will effect this. Then a change
of B will merely give the reverse of the figure obtained by changing C. Again, by

inverting the first figure about a point in the inner mesh, we get the second. If

we had changed C, and then inverted, we should have got the same figure as by

changing simultaneously A and B. By changing C alone in the first, we get the

third; but by shifting D in the first we get the fourth; and these two are obviously

each the reverse of. the other. Thus the 24 figures reduce to the three shown in

Plate VIII. As another example, take the third form of the third type of 10-folds

as given in Plate VIII. Two of the crossings on its external boundary can be shifted,

but each to one other place only. The form itself, and the same with one or both

of these crossings shifted, give a set of four; each of which can take five new

forms by the shifting of other crossings. But it will be found that the 24 forms

thus obtained are identical in pairs; thus reducing to the 12 given in the Plate.

23. Mr Kirkman informs me that he has nearly completed the enumeration

and description of the polyhedra corresponding to the umfilar 11 -folds. I h9pe,

therefore, at some future time to lay before the Society the census of 11 -fold

knottiness. This was the limit to which I ventured to aspire nearly two years ago,

in a paper* which, I am happy to think, directed Mr Kirkman's attention to the

subject.

24. It must be remembered that, so far as these instalments of the census

have gone, we have proceeded on the supposition that in each form the crossings

have been taken over and under alternately. But, as was shown in 13 of Part I.,

as soon as we come to 8-folds we have some knots which may preserve their

knottiness even when this condition is not fulfilled. These ought, therefore, to be

regarded as proper knots and to be included in the census as new and distinct

types. This is a difficulty of a very formidable order. It depends upon the property
which I have called Knotfulness (Part I. 35, II. 6), for whose treatment I have

not yet managed to devise any but tentative methods.

To show, by a single case (even though not thoroughly worked out), of how

great importance is this consideration, I have appended to Plate VII. the five figures

N
;

with the nature of each crossing indicated. The numbers affixed show the

positions they occupied in the census of 8-folds, when the crossings were alternately

over and under. Then they were all unique knots, incapable of any change of form.

*
"Listing's Topologie," 22, Phil Mag., Jan. 1884. [To be reprinted below. 1898.]
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Now they are capable of being changed into one another. The linked trefoils in

N, xiv. are perversions of one another. But we may have them of the same kind,

and the link such that there shall be continuations of sign. This was briefly treated

in Part I. 42, 1. How many new types may by this process be added to the

census, I have not yet made out with certainty even for the 8-folds.

P.8. I may introduce here, as a note on Part I. of this series of papers, a

remark or two with reference to the three-ply plaits treated there; in 27 as fully

knotted, and in 42, 1, as fully beknotted. First, it is obvious that the 4-fold, as

first drawn in 17, should have been repeated in Plate V., at the head of the

series of figures 15, 16, 17, &c. It is the case of 3n + 1 of 27, with n-1.

Secondly, with its crossings arranged as in fig. P, Plate VII. of the present paper,

it should have come in before figs. 24 and 25 of Plate VI., Part I., in a form

reducible to the ordinary trefoil. Fig. 25 of that Plate puzzled me much at the

time when I drew it, for I could not account for the production of a 3-fold and a

5-fold (linked) from a figure possessing a peculiar kind of (cyclonic?) symmetry
round an axis. The figure is accurate, but I now see that it gives an erroneous

impression of the true nature of the knotfulness. The correct idea is at once obtained

from Plate VII., fig. Q, of the present paper. The knot is an irreducible trefoil,

with a second of the same character tied twice through one of its three-cornered

meshes.

(Added, September 3, 1885)

Three days ago I received from Mr Lockyer a copy of a most interesting

pamphlet
" On Knots, with a Census for Order Ten," a reprint from the Trans

Connecticut Acad , vol. vn., 1885. The author, Prof. Little of the State University,

Nebraska, has made an independent census of 10-fold knots
; employing the partition

method, with some new special rules analogous to those in Mr Kirkman's recent

paper. So far as I can judge from a first hasty comparison of the mere number
of types and forms in each class, there are important discrepancies between this

census and my own One of these, at least, is due to a slip on my part ; and, as

my paper was not printed off when I detected it, I have taken the opportunity of

correcting it both in the text and in the corresponding Plate I had failed to notice

that the two forms which now appear under No 109 really belong to one type.

Hence I have had to reduce by one the number of the distinct 10-fold types which

was originally given in my paper. I hope in time to make a full comparison of the

two versions of the census. Meanwhile I may note that there is one omission, and

also one duplicate, in Class VI. of Mr Little's version. This duplicate has led him

to insert one type too many.

More than a month ago I received from Mr Kirkman the full polyhedral data

for the census of 11 -folds, which I hope soon to undertake. The number of forms

is so great, and the time I can spare for the work so limited, that I cannot

promise it at an early date. [This arduous work was kindly undertaken by Prof. Little,

who, in 1890, gave the 357 types in Plates I, II, Trans. RS.E., vol. xxxvi., 1898.]

442
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XLII.

NOTE ON THE EFFECT OF HEAT ON INFUSIBLE IMPALPABLE

POWDERS.

[Proceedings of tiie Royal Society of Edinburgh, January 29, 1877.]

SEVERAL years ago Professor Dewar gave me a specimen of silica in a state of

exceedingly minute division, which had been produced in Dr Playfair's laboratory in

the preparation of fluosilicic acid. I noticed at the time how much its great mobility

is increased by heating so that it behaves almost like a liquid. And I fancied

that I observed close to the surface a thin stratum of what might by the same

analogy be called a vapour ; consisting of particles thrown up and falling back again,

like the little drops thrown up at the surface of soda-water. I was inclined to

ascribe these phenomena to heat directly supposing that the particles were fine

enough to behave, though in a very imperfect way, as the kinetic theory assumes

the particles of a gas to behave. However this may be, the extreme mobility of

such powders when heated on a platinum dish
;

and the fact, noticed by chemists,

that a bath of calcined magnesia is capable of propagating wavevS when heated ;
seem

to show that valuable results might be obtained by seeking for evidence of inter-

diffusion as the result of experiments made by very long-continued heating of vessels

containing fine silica and magnesia originally in separate strata. I have brought this

before the Society in the hope that (as it can hardly be classed as a laboratory

experiment) some of the Fellows, who may have access to a suitable furnace which

is in activity the greater part of the year, may be induced to give the experiment

a fair trial.
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XLIII.

NOTE ON AN IDENTITY.

[Proceedings of the Royal Society of Edinburgh, June 4, 1877.]

WHATEVER be p and q it is obvious that

1=1+1^ 1
p q q 'p'

Hence U 1 + fcz
(I +

* =
. 1) ,

j> a & V<7, ft W
and so on. Finally we see that

1 = 1 + 2L7JP 1 L~^ 2LZ_/?
*

' '

'"
q^

'

qn qi

'

q*

'"
qn >'

absolutely without any re&triction on the values of the quantities involved.

It is obvious that an immense number of curious results m the form of sums

of series, &c. can be derived with great case from this expression and from various

modifications of it. I give, therefore, only a few very simple examples.

Take qlt qz , &c., as the first n of the natural numbers, and the series becomes

_V-iz! P-l p-n-l
}n
p-l p-^ p-nl

' ' " ^ ' ' '"
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whence at once the sum of the first n + 1 terms of the expansion of (1 1)** is seen

to be

_

1
'

2
"

n
'

We obtain merely the same result if we take qlt qt , &c., as any set of consecutive

whole numbers
;

but from the theorem itself it is easy to obtain the equality,

P\l + P r+P^ PL+.l
+ .

P + r P + -l)
r\ r+1 r+1

'

r+2
*'" +

r+l'" s
j

_j? + r p + r+l +s
r

'

r+1
'"

s

Next, write the general identity as follows:

i! + H(!_!U(i
P ?i ft \P 9i/ 9 Vp

+ !lVi_i)...(i__LUpn-,(
qn \p qJ \p qn-J

r
\

If in this we write each letter for its reciprocal we have

of which a particular case is the curious formula

,-n.i(i-JU(i-iVi-?U...\ pj \ pj \ p)

+ n fi-l)fi.?)...(i.!LrJ) + p fi-i)...V j?A p/ \ P J "\ pJ
Another is

I=co8^ + cos2^(l-cos^) + cos3^(l-cos^)(l-

+ cos w0 (1
- cos 0) ...(1 -cos(n- 1)0)

+ (1
- cos 6) (1

- cos 20) ... (1
- cos w0),

of which a very interesting case is given by nO = 2?r.

As a final example we have the singular formula

)_ + &c......

whence it follows that, subject to the introduction of the remainders as above (which
vanish if the series are extended to infinity, and if x > y},

(1+ y . _yJyiL. + V*_+<i

,*"

a? (a? + !)(* +2)
......
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By another application of the formula we may easily obtain finite expressions
for the sum of the series of which two successive terms are

y(y + l)
-

,

s-l) x(x+ 1) ...(# + *)'

I obtained the first expression above by integrating by parts a power such as

ac*"1
, but the following mode of obtaining it shows at once its nature.

Let there be a number of independent events, A, B, ... N, whose separate

probabilities are a, 13, ... v. Then the chance that one at least of them occurs is

l-(l-)(l-0). ..<!-).

But we may obtain another expression for the same result by writing the chance

that any one (say A) occurs, adding to that the chance that another (say B) occurs

while A does not occur, then that C occurs and neither A nor S, &c. This gives

a + (!-) + 7(1 -a) (!-)+...

Equating these two expressions we get an identity which is easily transformed into

that first given.

But its truth is much more easily seen if we write a' for (1 a), &c., when the

last given form becomes

which is an obvious truism. The method seems well worth the attention of any one

with leisure and some analytical skill.

July 24 Mr Muir has kindly given me a reference to Crelle, vol xn. p 354-,

where it is stated that the above identity in one of its forms is in- Schweins"
"
Analyse," p 237. This work I have not seen. Mr Muir adds that no developments

or applications of the theorem are made.
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XLIV.

NOTE ON VECTOR CONDITIONS OF INTEGRABILITY.

[Proceedings of the Royal Society of Edinburgh, December 3, 1877.]

(1) THE relation

dff = uqdpq~*

ensures that the tensor of dff shall always be u times that of dp. Hence, if p be

the common vector of three series of surfaces which together cut space into cubes,

ff possesses the same property. (See 6 of my paper "On Orthogonal Isothermal

Surfaces," No. XXV. above, p. 180. In what follows this paper will be referred to

as a)

We may suppose the tensor of q to be any constant, unity say. Then, from

2V = 1,

we have 8 . dqKq = 8 . dqq~
l =

Thus, it appears that q~
l

.dq and its equal -dq~
l

.q

are vectors.

(2) From the given equation we have

dff

From these <T %- q-& ^y.^ .to ^y.d*
dxdy* dy dy

* J dx J dx *

From the three equations of this form we obtain by the operations S.i, S.j, S.k,

nine scalar equations, of which the following are three:
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p-2uS.k
d
f' ,.dx dy

*

** ..
dx *

.
(8 . 7
-

The last of these, with its two similar equations, shows that

which express Dupin's theorem for this particular case.

(3) If we put for simplicity

dv =

the equations of last section give at once three like

353

[fi (33)],so that dq.<f-*
= V.dpVv

and Vo- . g = 2. iVWv = - 2Vv = -
,^ ^ u

or V.w^-^O .......................................... [ft (13)].

(4) But we have, by differentiation, from the second equations of 3,

do-1

dq ^ d_ v iVv
dx

'

dy~ dy
V '

dydx
^

dy
'

dx
~
dx

' ^

Subtracting, and noticing that

dx
'

dy^-f dx' q

we have

Three like this give at once

or = 2wVJ

T.

) . Vt = V

[fl (21)].
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(5) But if, instead of combining the last set of three, we equate to zero the

scalar coefficients of i, j, k separately in each, we have three equations of each of

the following forms:

dv efo _ d?v d? d*v _ /dv

doc dy

Transformed to u, they become

_ _ _
doc dy

~
dxdy

'

da? dy*

~

du du _ d*u .

dx dy
~

dxdy
'

The integrals of the first three are obviously

i = X' -* = Y - ^'U
=*Z'

u* dx '

Ma

dy
'

w* dz

where the right-hand members are functions of as, y, z respectively. Thus

and the first of the second set of three equations becomes

n(X" + Y" + 2uZ'3 + 2WF") =

or X" +Y" = -u (X'
8 + F/a + Z'*)

Thus X"=Y" = Z"=C,

or, as we may take the origin where we please,

1

This is, therefore, the only value of u which satisfies the conditions of the problem, and

the last equation in 4 above shows that C or D must vanish If G vanish, u and q

are both constant.

(6) If D vanish, we have by 3 above

This gives q = aUp

where a is any constant versor.
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Ca

Also d<F =

so that a is the Electric Image of p rotated through any angle about any axis through
the centre of the reflecting sphere, (fl 12 )

(7) If the equations of any three systems of ortlwgonal surfaces be

we may obviously wi'te for the flux of heat through each the expression

VFl
= ^ qiq~\ ^F^ = u^qjq~

l

t
VJ?3 = u,qkq~

l

;

so that we have three equations of the form

where alt o^, a, are scalars, which separately vanish when the systems are isothermal.

Expanding the last equation we have

or, writing qiq~
l = i',

We obtain Dupin's Theorem in its most general form by operating by 8. i', S.j', S.k'

on this and the two similar equations respectively. It is thus expressed as three

equations, of which one is

Again, by multiplication by i', and by adding the other two equations multiplied by

j' and k' respectively, we obtain also

'"^- 2F. Vflfl-' + 2V^. 9-'= 2

or S + 27.
u

whence

and S
U M!
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When the systems are isothermal as well as orthogonal, this equation may be put

in the singular form

The results given in this section were laid before the Society in May, 1876, but were

mislaid, with other papers then read.

(8) The great desideratum in the application of quaternions to problems such as

those just treated, seems to lie in the discovery of the general solution of the equation

Vr-0,

where r is a quaternion Unfortunately this seems to depend ultimately upon Laplace's

equation, treat it how we may. It is easily seen to be equivalent to the kinematical

problem of finding a displacement which shall produce no compression, but shall produce

a rotation whose vector axis is derived from a potential.

The nature of the difficulty is also easily seen in another way, for, when we try to

find the conditions of integrability of such an equation as

we may, of course, make the assumption

dfi
SB $dp

where the coefficients of < are functions of
p.

This gives at once

so that 7.V<'a =

whatever constant vector be a.

Suppose this satisfied, we have the farther condition

V.Kjdp^dv,

or S.<l>'V(a*,)dp**8<idvt

so that, whatever be
, V. V0' ( Va\) = 0.

Taken in conjunction with the former condition, this shows that V may here be con-

sidered as operating on \
only,

In this very particular case, however, we find at once that X must be constant, and

fchat
dp m <j>dp

= id* +jdv -r kdw.
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XLV.

NOTE ON A GEOMETRICAL THEOREM.

[Proceedings of the Royal Society of Edinburgh, January 7, 1878.]

IN Trans. E.S.E. (1864-5) Fox Talbot proved very simply, by means of a species of

co-ordinates depending on corifocal conies, the following theorem, at the same time

asking for a simple geometrical proof.

If tiuo sets of three concentric circles, with the same common difference of radii,

intersect one another the chords of the arcs intercepted on the mean circle of each series by

the extremes of the other are equal

A properly geometrical proof may possibly be obtained by showing that the middle

points of these arcs arc equidistant from the line joining the centres It is, of course,

quite easy to build up a quasi-geometrical proof, but Talbot's would be much better.

The following investigation shows the nature of the theorem, and gives some elegant

constructions.

Let d be the common difference, b and c the mean radii, and a the distance

between the centres. Then the square of one of the chords is easily seen to be

where B' and are given by

(6
-

d)*
= a2 + cs - 2oc cos 6 ,

(b + d)*
- a? + ca - 2oc cos &.
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The expressions for the other chords differ only by the interchange of 6 and c.

Elimination gives at once

"2ac

f /a" + * - (6
- d)V) * L /aa + c*-(6 + d)Vl *)

t I

-

2ob J ft V

-
2^c
---

j f I

T 2 (4oV - (a
8 + o8 - (6

- <W)* (4aV - (a
8 + ca - (6 +

where A and 4' are the areas of the "
inscribable

"
quadrilaterals, crossed and uncrossed,

whose sides are a, &, c, d. This, of course, proves Talbot's theorem.

Hence 4?

a remarkably simple expression. The two values of p are given at once by Talbot's

diagram, and the rectangles under their quarter sum, and difference, respectively, with
the distance between the centres, give the areas of the quadrilaterals above mentioned.

Or, better, the triangles whose angular points are the middles of the arcs respectively, and
the centres, have areas equal to half the sum and half the difference of the quadri-
laterals.

The symmetry of these expressions shows that in Talbot's theorem any two of the

four quantities employed may be interchanged the lengths of the corresponding pairs
of equal chords being always inversely as the quantity chosen for the distance between
the centres of the two series of circles.

Again, it is easy to see that we have by the above equations

,, . & 6A = ac am
-^

cos -
,

A ff . e
A=*ac cos <r sm g ,

so that, construct the figure how we will with four given lines, the ratio of the

tangents of the halves of the pair of angles corresponding to 0, &, is constant. This
is the relation between True and Excentric Anomaly. And we have also the very
simple expression
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so that the product of the areas of the crossed and uncrossed quadrilaterals is equal to

the product of the areas of the (construction) triangles whose sides are

, c, b-d,

and a, c, b + d,

respectively. Here again the letters may be interchanged at will ; which, in itself, is a

curious theorem.

While seeking a quaternion proof of the above theorem, I hit upon the following

result. Given two opposite sides of a gauche quadrilateral in magnitude and direction.

If one of these be fixed, and if the diagonals are to be of equal lengths, the locus

of either end of the other is a plane.
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XLVI.

NOTE ON THE SURFACE OF A BODY IN TEEMS OF A

VOLUME-INTEGRAL.

[Proceedings of the Royal Society of Edinburgh, January 21, 1878.]

IN 25 of my paper on "Green's and other Allied Theorems" (No. XIX. above)
I gave the following relation between a volume and a surface integral, the limits being
determined by any simply connected closed space:

If in this equation we assume r (which is arbitrary) to be equal to Uv at every point

of the surface, we have

where P = C is the (scalar) equation of the surface. The equation then becomes

fjfvU<?F)d*ffd*.
Applied to the ellipsoid

*++*-!
a3+^+ c3-

1

this gives for the whole surface the expression

,,,,
.

,

S6*Ste*3
:
S6*

"' g^
the limits being given by the equation of the surface
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XLVII.

NOTE ON THE STRENGTH OF THE CURRENTS REQUIRED TO
WORK A TELEPHONE.

[Proceedings of the Royal Society of Edinburgh, February 4, 1878. Deferred from

January 7.]

PERHAPS the most/ singular fact connected with the telephone is the excessive

feebleness of the currents which suffice to work it. I have had no opportunity of

testing any but rough arrangements set up by present or former students of my
own, so that I cannot judge how far my results may apply to the instrument as

sold.

1. A striking illustration of the feebleness of the currents required is furnished

by using a Holtz machine driven very slowly, without condenser, and with its terminals

so close that the discharge is barely audible, aud certainly invisible except in the dark.

When insulated wires were led from these terminals to the telephone (placed in a

distant room) the effect was very curious. The instrument gave a hissing sound, quite

comparable in intensity with that which was produced directly when the terminals of the

machine were widely separated, one connected with the ground and the other with a

large conductor discharging by brushes into the air, the machine being turned rapidly

The telephone continued to give audible sounds with slow turning, even when the

terminals of the machine (somewhat tarnished) were pressed into contact

2. To measure roughly the intensity of the current, I placed one prong of an

unmagnetised tuning-fork about half an inch in front of the sending telephone, and

measured by a microscope and scale the extent of its vibrations when the note just

ceased to be audible to a listener at the receiving telephone. Next I substituted for the

receiving telephone an exceedingly delicate astatic galvanometer, with very small moment

T. 46
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of inertia, and measured the swing produced by one definitely assigned motion of the

proog of the tuning-fork. By means of a known thermo-electric couple, I determined

the strength of the current corresponding to the observed swing. The result is, of

course, only a very rough approximation. It is that a single Grove's cell would produce,

in a circuit of somewhere about a billion B.A. units resistance, a current sufficient, if

reversed 500 times per second, to produce ari audible sound in the telephone I

employed.

3. Several attempts at explanation of the action of the telephone have been given

here and elsewhere, and others are promised for to-night. For my own part, I think

there are at least three separate causes at work in the telephones I have used.

There can be no doubt that the inventor's own explanation is, at least to a certain

extent, correct. For we can easily dispense with the magnet in the receiving telephone,

using merely a thin iron disc in front of a coil. And Mr Blyth has, I believe, found

that we may make the disc, even in this case, of copper, and yet have transmission

(though very feeble) of intelligible sounds.

But this cannot be the full explanation. For it does not attempt to account for

the peculiar nasality of the transmitted speech. Without going more closely into the

matter, the difference of quality between an open and a closed pipe suggests a certain

amount of constraint as the cause. And we know that the sounds in the original

telephone of Reiss were produced by molecular motions due to magnetism in soft iron.

Mr Blyth has shown conclusively that molecular motion in the magnet itself has a

large share in the results, because he has successfully substituted other metals than

iron, and even non-conductors, for the disc, and in certain cases finds that he can

dispense with the disc altogether.

Besides this, however, it seems to me that there is a third cause, which in certain

cases is more effective than either of the others. This is suggested by the fact that

(at least with the instruments I have tried) high notes, even of comparatively small

intensity, are much more clearly transmitted than low notes, indicating that the rapidity
of the molecular change has a great deal to do with the result. In fact, in this

respect, the telephone is really a variety of the so-called curb-key, giving very sudden

reversals.

These considerations have led me to fancy that rapid change of form in matter,

whether paramagnetic or not, may probably be capable of detection by the telephone,

for the associated electric currents may be in certain cases powerful enough to

produce audible sounds. I am at present engaged in a series of preliminary experi-

ments on this subject.
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XLVIII.

THERMAL AND ELECTRIC CONDUCTIVITY.

[Transactions of the Royal Society of Edinburgh, Vol. xxvin.]

( 1-16, Read March 18, 1878 Revised (from a Shorthand Writer's extended Notes) December 4, 1878.)

( 17-23, Read June 3, 1878 )

THE following paper contains the results of an inquiry which has occupied me
at intervals for somewhere about ten years. It was carried out in part at the expense
of the British Association, and I have already reported results to that body in 1869

and 1871. But these provisional reports referred to very short ranges of temperature

only, and the expeuments were made with faulty thermometers, for which I had not

the corrections which had been carefully determined by Welsh at Kew.

The inquiry arose from my desire to extend to other metals the very beautiful

and original method which Principal Forbes devised, and which the state of his health

prevented him from applying to any substance but iron. Forbes' experiments gave
a result so very remarkable, and (as it seemed to me) so theoretically suggestive,

that I wished to extend them to other pure metals, and also, in one or two cases

at least, to alloys.

I believe that Principal Forbes had at least two reasons for undertaking his in-

vestigations : (1) When he commenced his inquiry, there was no really accurate or

trustworthy determination of the absolute conductivity of any body whatever for heat.

(2) Forbes had himself, in 1833* and subsequent years, pointed out a very remarkable

analogy between the conducting powers of metals for electricity and for heat, and had

shown that these were almost precisely proportional to one another that is to say,

that the list of the average relative conductivities of different metals for electricity

* Proc. R.S.E., i. 5.
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differed, from that of their relative conductivities with regard to heat, certainly not

more than did the several electric lists furnished by different experimenters, and certainly

less than did the corresponding thermal lists. Hence it was natural to suppose that

temperature might have a marked effect on thermal conductivity, as it was known to

have such an effect on electric conductivity.

The great merit of Forbes' method* is, that it seeks the conductivity in terms

of its definition; instead of seeking a value of the conductivity which will best satisfy

the integral of Fourier's equation formed on the hypothesis of uniform conductivity,

and of loss of heat from the surface of the bar in direct proportion to the temperature-
excess above the surrounding air. Although Forbes' paper has been printed in the

Transactions of this Society f, I may make a few additional remarks on the methods

he employed.

He used for the first part of the experiment, what he called the statical experiment,

a bar of iron, 8 feet long by 1 inch square section. One end of this was raised to

a high temperature by means of a pot containing melted solder, whose temperature
was maintained nearly constant for eight or nine hours. The rest of the bar was

exposed to the air -of the laboratory, and of course parted with a portion of the

heat conducted to it partly by radiation, partly by convection. It was found that

after about eight hours a stationary distribution of temperature was attained, in which

the net gain of heat in any section of the bar by conduction was just neutralized by
the surface loss. This temperature distribution was then accurately determined. In

the second or dynamical experiment, a shorter bar, of exactly the same transverse

dimensions, was employed; not, however, for the conduction of heat, but for the

purpose of ascertaining at what rate its heat was lost by radiation and convection

at different temperatures. For this purpose the bar was heated as uniformly as

possible, once for all, and then allowed to cool in the air, its temperature teing
noted at measured intervals of time. The introduction of the experiments with the

shorter bar was the main point of great importance in which Forbes improved the

experimental part of the determination. And, as regards the subsequent calculations,

it need only be said, to show the improvement he introduced, that had he followed

Biot's mode of procedure he would probably have failed to discover that thermal

conductivity (in some cases at least) depends on temperature. As I have already

said, though Forbes' results were confined to iron, they were the first of any real

value to the absolute measurement of thermal conductivity.

1. Viewed in the light of the results attained, I do not now think so much

as I was originally disposed to do of one of the chief reasons which led me to the

present inquiry. But that does not in any way matter to my other chief reason
;

for, though an attractive hypothesis has been shown to be untenable, at all events

without very considerable restrictions, some valuable and even curious measurements

have been made. Forbes' results for iron have been, in all but one particular, closely

reproduced by myself, but their most striking peculiarity, the falling off of conductivity

*
Report B.A., 1852. t Tran*. R S.K., 1860-61, and 1864-5.
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with rise of temperature is, so far as I yet know, confined to the single metal

which he experimented on. I had fancied that as the numerical results given by
him seemed closely consistent with a conductivity varying inversely as the absolute

temperature, such might be generally the case. Inquiring into possible physical

reasons for this, I saw that if it were assumed that, in the steady linear propagation

of heat, the amount of available energy of the heat in three successive slices of a

solid, of equal thickness, were always the lowest possible, consistent with the conditions

of the experiment, Forbes' result would follow, and would give, in fact, an excellent

instance of dissipation of energy. [See No XIV above. 1898.]

2. The subjects I set myself to inquire into were definitely these

(1) Whether in pure metals there is always a decrease of thermal conductivity

with a rise of temperature. And for this purpose I chose the metals copper and

lead, because we can easily and at small expense procure them in large quantity

and in a state of great purity.

(2) Whether different specimens of the same metal may not differ in thermal

conductivity, at least as widely as they are known to do in electric conductivity ,

and for this purpose, in consequence of Sir W. Thomson's * remarkable observations

on the electric conductivity of copper, I selected copper.

(3) Whether an alloy, such as is chosen for resistance coils because its electric

conductivity changes little with change of temperature, does not show a similar small

change of thermal conductivity; for this purpose I chose the alloy, German silver,

which is frequently used for such coils.

(4) A fourth question, which I have not yet answered, was whether there may
not be some conduction-peculiarity in a substance whose specific heat varies little with

temperature. This was suggested to me by the theoretical notions above alluded to,

and probably falls with them. For such a purpose there can be no doubt that the

best substance is platinum, because its specific heat is known to alter very little; and

Messrs Johnston and Matthey were kind enough to offer to provide me with a bar

of platinum of the same dimensions as Forbes' iron bar, at the comparatively small

expense of working the material into the necessary form and working it down again.

The value of the material of such a bar, it may be well to mention, would have

been about 2000.

3. The results I have hitherto published in the Reports of the British

Association were, of course, strictly preliminary. For, besides the -want of scale-errors

for my thermometers, another great difficulty felt at the commencement of the

experiments was that of maintaining a nearly constant temperature in the source of

heat for the statical experiment. At the time I gave those provisional reports, I

had operated only with temperatures not much higher than that of boiling water
,

through a range, in fact, barely sufficient to indicate with certainty a change of

conductivity even in iron.

* Proc. R.S., 1857 (June 15).
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4. Shortly after Forbes published the full result of his experiments on iron,

another excellent and novel method, quite distinct in principle from his, was described

by Angstrb'm*. Of that method I availed myself, with the help of the various bars

and thermometers obtained for the present inquiry. In Angstrom's method it is so

much more easy to calculate out the results, and derive the conductivity from the

experiments, than in that of Forbes, that I have already in 1872-73f communicated

to the Society the results obtained by this method, though I had years before made

some of the experimental determinations required by Forbes' method, whose numerical

consequences are only now produced. But my thermometers, though excellent for the

use of Forbes' method, were not nearly delicate enough for the proper application

of that of Angstrom. It requires, for its successful carrying out, the very accurate

reading of small changes of temperature. Hence the results of 1872-73 can be looked

upon as at best but very rough approximations. One great defect of Angstrom's

method, as compared with that of Forbes, lies in the assumption (which forms part

of its necessary basis) that the rate of surface loss is proportional directly to the

excess of temperature over the surrounding air. Even for the moderate range of

temperature employed in Angstrom's experiments}:, this is not nearly correct. Hence,

and for other reasons (for instance, his equations being formed as if A; were constant),

I do not accept his statement that the thermal conductivity of copper falls off as

the temperature rises, as one which his method was competent to decide. Even with

Forbes' much superior method, a range of at least 100 C. is absolutely necessary to

settle such a point.

I have had several reasons for delay in publishing the results of these experiments.
For the most part, the experiments themselves were made eight or nine years ago,

but for the delay with regard to the calculations I am not wholly responsible. Since

I obtained the assistance of Mr Evans, however, there has been no unnecessary delay
in the computations. Experimental difficulties of various kinds were, however, constantly

cropping up. Besides the difficulty already alluded to, of maintaining a steady tem-

perature of the source of heat, a very peculiar difficulty arose from the behaviour

of the thermometers. These, after being exposed to high temperatures and cooled,

showed a gradual rise of the zero points; and, m some of those which have been

most frequently exposed to the highest temperatures, the zero point has risen as

much as about five degrees. There were also very great difficulties about the heating
of the short bar for the cooling experiment. Here my results were very different (at

high temperatures) from those of Forbes. Again, the lead and copper, and sometimes

(in extreme cases), even the iron and German silver, when highly heated, become

oxidised, and the coating of oxide on the surface promotes radiation, if not also

convection; and as the surface becomes oxidised to different amounts at different

temperatures no one set of experiments with the short bar is strictly comparable with

anything but one part of the long bar. That difficulty is not so much felt in the

case of the iron, still it is felt to a certain extent m the case of all the metals

tried. My results are all somewhat uncertain on this account. This uncertainty, and
means of removing it, are discussed in 13.

*
Pogg. Ann., 1862. Phil. Mag., 1868, i. f Proc. R.S E. { Pogg. Ann,, Band 118, 1868.
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Another reason for the delay that has occurred in producing the results has been

my endeavouring to a certain extent fruitlessly to give the results in terms of

absolute temperature, by the help of air-thermometers. Much time has been spent on

that work, yet, even with the assistance of Dr Joule and others, I have not been

able to get a really good set of determinations. The real difficulty lies in the fact

that the holes cut in the bars for the insertion of the bulbs of thermometers are

necessarily so small, that it is not possible to construct any efficient air-thermometer

which can be made to take the place of the mercurial ones.

I have been assisted in the experimental part of the work by several of my
Laboratory students

;
but most especially by my mechanical assistant, Mr T. Lindsay,

who has been throughout the inquiry as valuable to me as was his father to Forbes.

5. The results now given are founded, some of them on experiments made

before 1871, and some on experiments made last year. The calculations have all

been carried out with care and accuracy by Mr Evans (who used the processes

described by Forbes), and their results have been verified by myself, partly by

graphical methods, partly by various devices for interpolation, and in the majority of

instances by calculation also*. But, as will be seen, I content myself at present with

the statement of probable values only. I have only now arrived at nearly definite

conclusions as to the best mode of working, after having pushed to the extreme

admissible limit every part of the process.

Before giving the results, it may be well to detail with some care the particulars

in which my apparatus and modes of experimenting differ from those employed by
Forbes.

* One of these interpolation methods is so easily applied, and (in consequence of the usual nature of

the statical curves) gives results so fairly approximate, that it must be mentioned here as of great use if

only in checking the results of the more complex calculations.

Let t>i,
i>
2 , a V be the observed temperatures shown by the four thermometers, placed at intervals of

three inches on the long bar. Let w be the number of degrees lost per minute by the thermometer in the

short bar, when its temperature-excess above the air js nearly that of i(f2 + i's). Then the conductivity at

the temperature i(va + v3), in terms of the units employed in 15 below, is very approximately

[This formula assumes third differences of v^ to vanish.] With a single bar of 20 inches, or so, in length

(with four or more holes three inches apart), to be used alternately for the statical and for the dynamical

experiment (in the former with its free end artificially cooled), I believe that very fair determinations of

thermal conductivity may be made in a few hours by the use of the above formula. Had I known this

ten years ago I should not have undertaken the repetition and extension of Forbes' experiments under

conditions exactly similar to his. But, on the other hand, had I not undertaken this work, I should probably

not have fallen upon this simple method.

I believe that it may be found applicable even to stout wires or rods, the temperatures being observed

by a thermo-electric process. Thus these determinations may be made for very rare metals, and also for

substances of very low conductivity. I hope, with the assistance of a party of my Laboratory students, to

get a large number of metals examined by this method during next winter and summer sessions.
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6. With regard to the bars employed The iron bar experimented on was that

last made for Forbes' experiments. My chief object in employing this bar was, of

course, to ascertain how nearly I could reproduce Forbes' results; with the view of

obtaining, as far as I had the means of doing so, a check upon my own work. A
couple of copper bars were procured for me, at the instance of Mr Willoughby

Smith, from a firm largely engaged in furnishing copper cores for submarine cables.

These were of the same dimensions as Forbes' iron bar but, while one (Crown) was

made of copper of the highest electric conductivity, the other (G) was made of copper
of the worst conductivity. The only difference in construction between these copper
bars (as well as the other bars which I employed) and Forbes' iron bar, consisted

in the necessary protection of the metal from the mercury which was employed to

surround the bulbs of the thermometers when inserted in the holes. For this purpose
it was necessary that the holes should be lined with iron; and, therefore, little cups
like the heads of arrows are sunk into the copper, lead, and German silver bars.

The thickness of the iron shell is so small that it is not sufficient to influence in

the slightest measurable degree the progress of the heat along the bar. The copper
was in the hard state. I propose, at some future time, when some of the desiderata

after-mentioned are supplied, to have these bars annealed and repeat the measurement

of their conductivity.

Along with the copper bars just described, I received some specimens of wire

for electric testing. These were said to be made of the same materials. My experience
of them has not been satisfactory, as different specimens from the same material

show considerable differences in electric conductivity. I therefore defer the consideration

of the electric conductivity of these materials till I have time to test for this purpose
the long bars themselves.

The German silver bars, long and short, were cut from an exceedingly line

casting, procured for me by the late Mr Becker. Its transverse section is of exactly

the same dimensions as the others. The bars of lead were cast by Messrs Milne,

and are in all respects like the others, save that the bar for the statical experiments
is not so long. It required special additional supports to prevent flexure.

The bar of gas-coke upon which some experiments have been made, was sawn

from a block of coke obtained from Mr Young of the Dalkeith gas-works. The bar

is exactly of the same transverse section as the other bars employed, but though

only a few inches in length, it was found sufficient. Even with the highest

temperature applied at one end, after 10 hours exposure, there was scarcely any

perceptible heating at the further end. The same bar served first for the statical

experiment, and then was heated again for the cooling experiment.

7. In procuring the thermometers, on whose accurate indications the whole

value of the experimental work depends, I availed myself of the assistance of

Dr Balfour Stewart, who was then director of the Observatory at Kew. Two sets of

thermometers were made under his supervision, one set with long range and short

degrees, the other with short range and long degrees, and all were tested by him.
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I had wished as far as possible to carry out Forbes' idea that it was better to use

thermometers, even if they did not show the zero point, which even at high

temperatures exposed only a small quantity of mercury in the stem, than to have a

long column exposed to the air, with its temperature of course very different at

different parts. Dr Balfour Stewart, however, told me that, so far as he knew, it

was impossible accurately to graduate thermometers under these conditions, and he

advised me to take the thermometers as he could make them and guarantee them,

namely, mercurial ones, made of proper glass, carefully divided by graduating instru-

ments at Kew, and showing C. As this is a point of vital importance, I append
in a foot-note an extract from Dr Stewart's letter*.

I have already spoken of the circumstance that when the bulbs of some of these

thermometers had been heated several times to over 200 C., and especially when

heated more than once to nearly 300 C., their indications began to be permanently
altered in the way of increase; and in some of them which had been exposed in

the holes or bores, closest to the source of heat, where they had been often raised

to a temperature of 300 centigrade, it was found that the permanent alteration of

zero was as much as 5 degrees. As it appeared that the probable nature of the

distortion was a permanent shrinkage of the bulb, I calculated what should on that

supposition be the behaviour of the instrument at different temperatures ;
and by

comparing its indications step by step with those of another of the thermometers

which had not been distorted by violent heating, I found the results of calculation

verified. The altered instrument loses slightly to the other, so that at 300 C. it is

little more than four degrees in advance instead of the five it had at zero.

But, after all, this change of error (for the altered instruments were used for the

higher temperatures only) can be easily allowed for in correcting the readings for

scale-errors; and it is very small in comparison with other inevitable errors of the

determination. To mention only one of these, a very slight inexactitude in the

position of the hole bored for one of the higher thermometers would involve a more

serious error. And, in the mercury, or fusible metal, in each hole there is a most

peculiar distribution of temperature, due to the fact that one side of the hole is

very considerably hotter than the other.

8. I have already mentioned the very great difficulty encountered in obtaining
a properly uniform source of heat in the statical experiment. I tried various processes

* Extract from a letter, Dr STKWABT to Prof TAIT.

"Kicw OBSERVATORY, 8th December 1868.

... "We have come to the conclusion that each instrument ought to go down as low as the freezing

point.

"It is possible, no doubt, starting with an instrument that includes the freezing point in order to

determine the graduation constants, and afterwards taking out some mercury, to produce instruments that

begin to register only at high temperatures. But there is an element of uncertainty introduced m taking out

the mercury, which may not only cause a constant error, but an error of scale value.

(Signed) "B. STKWABT."

T. 47
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depending on boiling points, and all aorta of gas regulators, without success, until I

got a very valuable suggestion from Dr Crum Brown. The principle is excessively

simple, but in working it was found to be almost perfect. It rendered quite unnecessary
the constant watching described by Forbes. All that was required was a reading of

the whole set of thermometers every hour or half-hour.

The following extract from my note-book tells its tale sufficiently:

Gas lit at 6.25 A.M.

12h. 25m. P.M. Ih. llm. Ih. 51m. 2h. 58m.

Temperature at hole nearest source, 299 301 3011 301

In fact, during the last three hours of the experiment referred to, the temperature,

though about 300 C., varied by only about one-tenth of a degree. This was actually

less than the change of temperature of the air of the room. Of course this, and a

few others like it, are exceptional cases, but not possible, even as such, with any
other arrangement I have tried. As a rule, a change of at most three degrees in

the temperature shown by the thermometer nearest the source (and this change a

very gradual one) was the utmost fluctuation during the last three hours in the great

majority of the experiments. In the few cases in which there was a greater change,
it was traced at once to the "

burning-down
"

of one or more barrels of the six-

barrelled Bunsen I employed. In such cases, the experiment was at once stopped,
and the record crossed out.

Nothing more satisfactory could have been expected in a matter so very difficult

as that of regulating the gas supply, when, as all know, in a town like Edinburgh,
the pressure is sometimes varied arbitrarily by an amount almost equal to one-third

or one-fourth of the whole; and where, especially towards dusk, there are very sudden

changes, partly due to increased pressure in . the

gasometers, partly to the rapid lighting of many
burners. The process employed by Crum Brown

is to cut off, or increase, the supply of gas to a

small gasholder by a sort of valve which acts

almost instantaneously. The valve consists of an

india-rubber tube, which is just on the point of

being nipped that is, being bent over so as almost

completely to close it. A very slight motion of

one end effects the difference between nipping and

comparative openness, so that when this tube is

appended to one of the weights of the gasholder,

it maintains a perfectly regular pressure in the

holder. In fact, it was not possible to observe,

from half-hour to half-hour, any variation of level

of the inverted vessel.

The theory of this application is that, where

absolute regularity or steadiness cannot be had, the
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best substitute for it is extreme stability of equilibrium. There is, no doubt, a constant

change going on, but any displacement produces such a disproportionately great force

of restitution as practically to keep everything steady.

9. Another source of great difficulty, which had been fully felt by Forbes,

was the heating of the short bar. The method he finally adopted is perhaps not

applicable, except to iron: at least when high temperatures are required. He plunged
his iron bar bodily into a bath of melted fusible metal. The bar was wrapped in

paper to prevent too sudden an abstraction of heat from the melted metal. I first

tried to heat the bars by means of a sort of air-bath, but I found that in such a

bath they all became oxidised before the temperature was sufficiently raised. I

endeavoured to overcome this difficulty by putting successive covers on the bath,

making it, in fact almost air-tight, and passing a uniform current of dry carbonic

acid gas through it

These methods proved comparative failures, and the simple process ultimately

adopted consisted in taking a brass gas-pipe, pierced along its upper side by a

number of holes at equal intervals from one another. This burner was connected

directly with the gasometer and produced a row of little jets. As these were of

gradually diminishing intensity (in consequence of diminishing pressure), the tube was

slightly inclined upwards from the gasholder. The bar (previously raised to a

temperature of about 100, by radiation from a fire to prevent deposition of moisture

from the flames) was placed over it in a horizontal position on a sort of rack, on

which it was kept turning round and round, until it was very uniformly heated;

being occasionally turned end for end. It was found that when the bar was not

heated above 200 C , but little oxidation was produced during the time required for

the heating. When it was necessary to raise the temperature higher, the nature of

the effect on the surface was described by its colour, which was noted and compared
with the effect found to be produced on different parts of the corresponding long
bar by its more gradual heating. It would be very easy to burn a mixture of gas
and air, and so to a great extent got rid of the possibility of smoking the surface,

but practically it was found that no insuperable difficulties were introduced by taking
the ordinary coal-gas. But, for a reason presently to be mentioned, the short bars

had always to be raised to a temperature much higher than that at which the

readings of the thermometers commenced. Thus all my results must necessarily be

a little too large, as the cooling was in every case observed on a bar more oxidised

than the portion of the long bar which had the same temperature.

10 With reference to the estimation of the true temperature of the bulbs of

the thermometers from the readings of a variably heated stem, the great difficulty

experienced was one felt by Forbes also one which he endeavoured to get rid of

by detaching arbitrarily a column of mercury, and throwing it up into the little

bulb at the top of the thermometer, thus working from an arbitrary zero. Dr Balfour

Stewart told me it was almost impossible to get trustworthy results from the

thermometer so treated, and I determined to take my chance of the insufficient

heating of the column of mercury in the thermometer, which was not directly

472
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immersed in the mercury in the holes in the bar. I do not think very much error

can be introduced by this, for the following reasons. If we calculate for a temperature

of 250 C. which is nearly the highest used in the greater number of the experiments

the utmost error that can be introduced in the indications of the thermometers used

is somewhere about 10 C. That is to say, the highest temperatures were read at

the most 10 less than they would have been if the whole thermometer had been

exposed to the same temperature. This correction of 10 at 250 diminishes at lower

temperatures, and increases at higher nearly as the squire of the excess of temperature

above the freezing point But as the same thermometers, or exactly similar ones,

were employed, under precisely* similar conditions, in the short bars as in the long

ones, the difference between the corresponding errors in the two associated experiments
must have been at most a fraction of a degree even at the higher temperatures.

The numerical results, therefore, are stated in terms of the temperatures so read, and

these involve (from this cause) an error in defect, of somewhere about 10 at 250 C.,

and varying for other temperatures as above stated. I have preserved all the notes

of experiments, as well as the thermometers, as it may ultimately be possible to get

an air-thermometer which will enable me to reduce the determinations to a more

accurate standard ;
but until that can be done it seems hopeless to expect to improve

(in this particular) the method I have employed, however important might be the

results.

11. There is one respect, and one only, in which my results have been found

to be not quite consistent with those of Forbes. This is in regard to the law of

cooling of the short bar in terms of the temperature. Forbes, in fact, called special

attention to this question, and he evidently felt considerable surprise at the result he

obtained, for he tried it over and over again with the same conclusion. Although he

pointed out that the initial uniformity of temperature of the heated bar would tend

to produce the appearance of such a result, Forbes expressed himself as convinced

that the curve representing the rate of cooling of the short bar in terms of the

temperature begins to be straight about 150C., and then bends over so as to become

convex upwards. I have carried it considerably farther, in fact, up to estimated

temperatures of at least 300 C., without finding the slighest trace of convexity. It

is obviously essential that this discrepancy should be explained ,
and I think it

depends on the fact that Forbes did not heat his short bar much above the tem-

perature (200 C. or thereabout) at which the readings commenced. Under these

circumstances the flow of heat from the interior of the bar is for some time retarded;

in fact, till a state of things is arrived at in which the temperatures at different

distances from the axis or from the ends of the bar cease to undergo a rapid

relative change, the inserted thermometer does not indicate the true loss of heat by
the bar. I think that this explanation is borne out by the fact that Forbes' results,

with a bar of smaller section and length (in which the abnormal state is of shorter

duration), agree more nearly with mine, so far at least as change of rate of cooling
is concerned.

* Jan. IS, 1879. In spite of the contents of 11*, now added, this is nearly true of my experiments,
for the highest of the thermometer readings m the cooling bars were not used in the calculations.
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I easily reproduced Forbes' results by heating the bar only to the temperature
at which the readings commenced. But to avoid this source of error I always, when

it could be done, raised the temperature much above the point at which readings

were to begin, so as, in fact, to read only when the normal state of cooling had

been arrived at. In some of my experiments with iron the bar was heated to such

an extent that mercury boiled furiously when put into the hole and I had to

employ fusible metal instead. In all cases I obtained results resembling those of

Forbes during the first few minutes of cooling.

The following short table illustrates this difference, as well as the fact stated

in 9 that my numbers are all a little too high. The first column gives the

temperature-excess over the air; the second contains the rate of cooling as given by

Forbes; the third column contains results obtained (for the same temperatures) by
a rough graphic method from my own numbers. The rates are in degrees C. per
minute :

Rates of cooling of Iron Bar.

Ratio.

20 0-275 0-29 T06

50 080 0-85 1-06

100 1-84 1-95 106
160 318 3-45 1-09

200 378 4-60 1'22

260 4-52 6-50 1'44

I have every reason to believe that Forbes' results, in this matter, for tem-

peratures under 150 C. are more exact than mine, especially as his bar was not

exposed to air during the heating. Thus it would appear that my numbers are,

throughout, about 5 or 6 per cent, too high. The really vital difference between our

results appears in the three last numbers in the column of ratios.

[ 11*. Added, January 1879.] I was so well satisfied with the explanation given

above, as in character thoroughly consistent with the observations, that* I did not

work out its numerical consequences. While the paper was passing through the press,

however, I tried to estimate the time required for the disappearance of the abnormal

state, and arrived at conclusions which are not quite consistent with this mode of

accounting for the difference between Forbes' results and my own. To make this

statement intelligible, a short account of Fourier's treatment of the problem is

The equation for the cooling of an infinitely long cylinder, in which the

temperature depends only upon tho distance from the axis, is (assuming conductivity

constant)

(d*v I dv\ dv
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This linear equation Fourier integrates by assuming as a particular integral

v = e~mtu

where u is a function of r only. We thus have

cPu 1 du m

The surface condition (assuming rate of surface-loss to be proportional to excess

of temperature over air) is

From the first of these equations we have u in terms of m and r. The

second gives an infinite number of real positive values of m, say m lt ma , &c, in

ascending order of magnitude, in terms of r (the radius of the cylinder), k, and h.

Now h is easily found (approximately) from the rate of cooling, and k is known.

Hence we determine the values of m, and have

where the coefficients (A) are to be calculated so as to make v agree with the

initial state when <= 0.

Without doing this, however, it is obvious that the proposed explanation given

above depends for its validity on the supposition that m* is not enormously greater

than wij; for, if it be, the abnormal terms due to the original uniform heating will

disappear with very great rapidity.

A rough calculation showed me that mtfml for the iron bar lies between 2000- and

3000. Hence the bar is barely out of the bath before these abnormal terms have

become insensible. The effect due to the finite length of the bar is easily calculated

by the help of Fouriei's method for a cube, which applies to a rectangular parallel-

epiped of any dimensions, symmetrically heated. It depends on the fact that the

temperature at any point can be expressed as the product of three functions, each

containing the time and one only of the coordinates. I owe this hint to Professor

Chrystal.

Calling 2a, 26, 2c the edges of the parallelepiped, this method leads to the

following expression

^ *-***} V (e . -

where the values of n, n', n" are the roots of

. ha ,, ,
hb ,, , he

na tan na -7- , rib tan n b = y- , n c tan n c = -j- ,

k k k

and v is the initial uniform temperature.
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With the data contained in the present paper, it is easy to obtain from the

above the following values of -57 corresponding to a uniform initial temperature (u )
Vo dt

of about 200 G, the bar being l inches square, by 20 inches in length, and only

the slower vanishing terms being retained :

Iron .....................

Copper (Crown) ...... - 0'0262r<| -'>a 2t (1-0 06e-1>08(

).

Hence the rate of cooling is diminished initially as regards the longitudinal flux of

heat by above 5 per cent, in both bars. [The omitted terms reduce this by one-

fourth, at first] In copper this is diminished to 1 per cent, (less than the errors of

observation) in less than two minutes, so that it cannot be traced in any of the

observations, as certainly two minutes must elapse after the heating before readings
can commence. In iron the error is reduced to 2 per cent, after about six minutes

;

so that to this cause is duo a part, but only a small part, of the difference

between Forbes' results and mine. For the initial sluggishness of cooling, is exhibited

by copper as well as iron, so that there must be another and more effective cause

besides longitudinal cooling.

I next tried (but without the least hope that it would help me) whether the

discrepance might not be due to the fact that Fourier assumes k to be constant.

If we assume (for the range of temperature employed)

fc.J^L
a+v

which is not far from the truth, the equation is no longer linear, even for the

infinitely long cylinder*. But I found that this would not account for the result to

be explained, and that no substitution of a more accurate law of cooling than that

adopted by Fourier would remove the difficulty.

Thus I was driven to seek the mam cause of the phenomenon in the ther-

mometer, not in the bar, and I traced it. to the fact that the mercury in the bulb

is all but fully heated almost at once, but that the final adjustment in the bulb

and stem takes place more gradually. No previous heating of the bulb will much

help in such a case.

To test this explanation I heated the short iron bar, and immersed a thermometer

bulb at once in one of the holes, reading it, as usual, every minute. After six

minutes had elapsed, I inserted a second thermometer in a hole very near the first,

and read it at half time between the continued readings of the first. After another

period of six minutes a third thermometer was inserted close to the others. The
result has fully verified the correctness of my conjecture. The following table,

*
It is interesting, however, to know that it can be transformed into

/dV + l*0\ *d*a*U r^y dt

which differs only by the factor e* on the right from the equation for constant conductivity.
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graphically calculated from the readings, explains itself. A refers to the first-mentioned

thermometer, B to the second, G to the third. The thermometers were read as soon

as they ceased to rise.

Rates of cooling of the same bar, simultaneously indicated by thermometers

whose bulbs had been immersed for different periods.

Temperature-excess. A 1) C

210 C. 515

200 4-98

190 475

180 4-42 4-10

170 4-06 3-89

160 370 3'61 328

150 3-33 328 3'18

140 2-96 2-91 2-88

NOTE. For this experiment the bar, which was much discoloured, \\as not polished previous to heating;
BO that the numbers are necessarily larger than those in 11 above. This does not affect the relative results

In each of these columns the differences are obviously least at the top, and

the corresponding points of inflection in the curves of cooling are obviously at

temperatures which are the lower, the colder was the bar when the thermometer was

inserted Also, it will be observed that the thermometers arrive more quickly at the

true temperature the lower it is i.e., the shorter the column of mercury in the stem.

Another experiment gave analogous results with a copper bar. Thus the main

difference between Forbes' results and mine is fully explained.

One result of this discussion is that in heating the short bars it is more

important to prevent oxidation than to secure absolute uniformity of heating.

Another is that the hypothesis of uniform temperature in the cross-sections of the

long bar is practically very near the truth.

12. In the treatment of the Statical Curves I have always used, as Forbes

did, the formula

It is easy to work with, and its results are usually accurate within the unavoidable errors

of other parts of the determination.

Where, as with the iron and the German silver bars, the nature of the problem
admitted it, I have constructed graphically each of two curves of statical distribution

for the same metal (with the solder at very different temperatures), and, to the

same absciss as the values of v, the calculated values of dvfdx. One of these drawings
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was on tracing paper, and was superposed upon the other, with the view not

merely of detecting possible errors in the calculations, but also of testing how far

the results might be trusted. On this point I have no remarks to offer further

than this, that the values of dv/das for the lower temperatures, must, when they
are small, as a rule be determined graphically.

When the highest temperature (observed) was over 300 C., it was impossible to

reconcile it with the curve deduced by means of the above formula from the indications

of the three succeeding thermometers. As this was obviously due to the rapid expansion
of mercury near its boiling point, the irreconcilable observation (sometimes as much
as 10 above the curve mentioned) was not taken into account.

13. The Curves of Cooling were at first treated in the same way. But they
had to be broken up into several sections, and it was not easy to decide (without

great additional labour) how to obtain the most trustworthy value of the rate of

cooling at a point common to two sections, from the more or lebs discordant values

obtained from the separate formulae for the sections.

I next tried to treat them by taking three points with abscissas in arithmetical

progression, and determining the common quantity to be subtracted from their ordmateb,

so that the intervening arc might be treated as logarithmic. [Forbes used the logarithmic

curve, but he endeavoured to make it pass through three points without subtraction from

their ordinates.]

This is a very good method so far as results go, and might be applied to all

the different curves required for these experiments. But I found that, though the

details which it involves are easy, even practised calculators were liable to get confused

with their multiplicity.

Finally, for my own revision of the whole work, I adopted the following method.

I constructed a curve, usually with 5m , 10m
, and 20m intervals for the abscissae, whose

ordinates were th of the changes of temperature during the 5m periods, or ^th of

the changes for the 10'" periods, &c The scale for ordinates was usuajly much larger
than that for abscissae. The points so determined did not, of course, give a very
smooth curve (especially where successive readings at intervals of lm or 2m came to

be within one or two tenths of a degree of a division on the scale), but it was very

easy to draw a smooth curve so as to equalize the errors, and the ordinates of this

curve are at once the desired values of rates of cooling. This process has proved

exceedingly successful. It is very much less tedious, and much less liable to large

error, than any other at all accurate one and its results compare favourably with

those obtained by the other methods above. I believe that this process, applied to

the cooling of bars, especially if one be of platinum, will give good results as to

change of specific heat with temperature

I have already stated that as the short bars were always necessarily heated much

above the temperatures at which their cooling was observed, my results are a little

too large. The only really serious case is that of the copper bars. But for these the

T. 48
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curve of cooling was observed through the same range for very different degrees of

initial heating, and it was found that the only effect of oxidation was to increase all

the ordinates through that range in a slowly increasing ratio, so that the assumed

correction for oxidation was easily made, and probably pretty accurate. I cannot,

however, feel certain that I have in all cases applied it rightly. It is not at all

easy to pronounce on an equality of oxidation of two bars (so far as our present

purpose is concerned) unless both be employed for the cooling experiment.

Forbes expressed an opinion (which I do not share) against electro-plating the

bars to prevent oxidation. I intend to try this method ; and also, if possible, the

wrapping of the bar in thin sheet iron, so as to employ Forbes* bath of solder. I

have made several experiments with bars smoked. The method promises well, except

perhaps in the case of copper, but the calculations are not yet effected.

14. The Statical Curves of Cooling were constructed exactly as described by
Forbes. But there are two remarks of some importance to be made upon the mode
of obtaining their areas.

In the first place, they are not even approximately logarithmic, except for small

intervals. And even then the axis is not usually the asymptote. Their area between

two ordinates is usually greater than that of a logarithmic with the same axis and

passing through the two corresponding points.

Secondly, It is a matter of great difficulty to determine what to allow for the

portion, in the6ry infinitely long, but finite in area, which extends beyond the point
of lowest observation of temperature on the long bar: except in the case of the copper

bars, where the temperature was kept at the further end lower than that of the

surrounding air. The end of the bar was introduced into a large vessel of gutta-percha
full of water, which was constantly renewed from below by means of a pipe connected

with a large cistern. Thus the values of dv/dx were never very small at any observed

part of the bar.

The question here raised is a very important one. It is not at all probable that

the thermal conductivity should, in all the substances I have examined, begin to change

very much more rapidly below 50 C. than it had been changing during the whole

range to that point from 200 C. or even from 300 C. Hence, when I found the

conductivity to be well represented between these limits (in terms of the temperature)

by a straight line, I have ignored (as almost certainly due to errors inseparable from

the method employed) the somewhat marked and rapidly increasing curvature, which

is indicated in many cases, for the lower 20 or 30 of observed temperatures. I

justify this proceeding on the ground that (in addition to the fact that the areas, the

smaller ones especially, are underrated by treating the curve as logarithmic) very slight
differences in the quantity allowed for the infinitely prolonged area (a quantity whose

value we can only guess at) make all the difference between a rapidly increasing
curvature and a rapidly diminishing one (sometimes even with a point of contrary

flexure), while barely affecting the run of the higher and much more extensive part
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of the curve. This remark does not require (as will be seen) to be applied to the

case of iron, which appears to be a thoroughly exceptional one, though manifest

indications of it are to be seen in Forbes' diagram of the conductivities of the bar

when naked and when covered with paper. Another cause may have some effect here.

The excesses of temperature above that of the air are so small that an inevitable error

of even 0i
l may produce a serious effect on the calculated result.

If I have sufficient leisure, in the course of next session, I hope to settle this

point by using a cold water bath applied near the middle of each of the iron, German

silver, and lead bars, the source of heat being kept at as high a temperature as in

the experiments already made. I now believe from experience that in measuring

conductivity, at whatever temperature, things ought to be arranged so as to avoid any

very slow flux of heat. And I also think that, especially for very good conductors,

such as copper, the bars should be smoked.

15. With these observations I submit the following values, by no means as

final even so far as my own work is concerned but, as probably fair approximations
to the truth. The units are the foot, minute, and degree centigrade, the unit of heat

being that required to raise the temperature of a cubic foot of the substance by
1 C., at each of the specified temperatures. [See the end of this section.]

IRON

F.

(00190)
00131

00115

00107

00100

00094

0-0089

The two numbers marked with an asterisk are merely probable deductions from the

curve representing the others. They are introduced to show the difference in character

between ray results and those of Forbes, due mainly to the difference in our estimates

of the rate of cooling at high temperatures. The column headed F. is (graphically)

interpolated from Forbes' table (Trans. R.8.E., 1864, p. 102), which refers to the same

bar under the same conditions. This table does not extend below 17 C., so that the

number in brackets is to some extent conjectural. It is inserted to illustrate what I

have said in 14 above as to the rapid change of conductivity indicated when

temperature excesses are small.

My numbers seem to point to a temperature, somewhere about red-heat, at which

the thermal conductivity of iron (measured as above) is a minimum, but this is

altogether uncertain.

482
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COPPER.

Crown. C.

0-076 0-054

100 0-079 0-057

200 0-082 0-060

300 0-085 0-063

I have already (13 above) stated that uncertainty must attach to all these

determinations of conductivity of copper at high temperatures on account of the different

amounts of oxidation of the short bars and of different parts of the long bars. The

small increase of conductivity with rise of temperature, here shown, may depend upon
too great a rate of cooling having been adopted for the hotter parts of the long bars.

GERMAN SILVER,

0-0088

100 0-0090

200 0-0092

300 0094

The several experiments on German silver, both statical and dynamical, did not

show so satisfactory an agreement as those on the other bars. A set of mean values

is therefore given.

LEAD.

0-0152

100 0-0160

The experiments on lead have not been conducted through a sufficient range of

temperature to make the change here indicated certain.

The experiments on gas-coke proved a failure. The method is not adapted to

substances of such low conductivity.

To convert these numbers to the usual unit of conductivity, they must be

multiplied by the specific gravity and the specific heat of each substance: and also

by the number of pounds in a cubic foot of water, if heat is to be measured in the

usual thermal unit. The former constants I have as yet determined only roughly, and

not for very great ranges of temperature. I need scarcely, therefore, add that in the

calculations no heed has been taken of the change of specific heat with temperature.
This would increase the values of k at higher temperatures, and thus reduce the change
in conductivity in iron, and increase the small changes indicated for the other substances.

16. As the above results, though the outcome of a very protracted investigation,

are, for reasons already stated, only provisional, I do not think it necessary to print

the details of the observations, graphical constructions, or calculations. Several points

must be thoroughly cleared up before more definite statements can be made. Mean-

while the MS. of the whole work is placed at the disposal of the Society.
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17. To determine the electric conductivity of the bars above described, I

employed, in succession, three different methods. The results of these separate methods

agreed with one another quite as well as did results by any one method made on

different portions of the same bar. The German silver bar is the least uniform of the

metallic bars, portions of it of 10 inches length at different parts varying through a

range of as much as 5 per cent, in their conductivity. Slight defects in the casting,

some of which are visible at the surface, of course easily account for this. I give the

average value.

Neither the absolute nor the relative electric conducting powers of these bars were

found to agree at all well with those of wires (said to be of the same material) which

were furnished to me along with them. Hence some of my earlier statements to the

British Association (especially with regard to copper) were inaccurate. The fortunate

circumstance that I had no wire said to be of the same material as the Forbes iron

bar, led me to test all the thick bars themselves for their electric conductivity.

18. The first process I employed was that described by Sir W. Thomson

(Proc. R.S. 1861) The principle of the method will be easily seen from the following

diagram.

The bars to be compared are placed parallel to one another, and connected by a

hmall resistance D at one end, while the poles of a single cell E (sometimes short-

circuited) are applied to the other ends for a period usually very short. Points A, A',

B, B', are joined by resistances, similarly divided in C, C' . and these latter points

are connected with the terminals of a sensitive galvanometer whose coil has a resistance,

large in comparison with that of any other part of the arrangement

Under these conditions, if i be the current in the battery, the current in the

galvanometer coil is (to a sufficient approximation),

^ (aq-bp fa+ ~

Here the resistances are AC = a, CA' = b,

galvanometer =g. If, for instance, a = 6,

there is no deflection, we have then

,
C'K = p, AB = p, A'B' = q, BDB' = c,

very exactly, and if we adjust B' till

ie., AB and A'B' have equal resistance. For accuracy by this method we must have,

as Thomson has pointed out, a/6= a//3 very accurately, and c very small.
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19. The second and third methods which I employed require a differential

galvanometer. This was very exactly adjusted, before the experiments, by putting the

coils in multiple arc, and using the cell on them without a shunt. The exact balance

was obtained by means of a box of resistance coils inserted in one or other of the

branches. This being done, I connected one coil with A, Rt and the other with A'
t
B.

Here the effect is approximately proportional to

where g and g' are the resistances in the galvanometer coils, and e is the ratio of

their deflecting forces on the needle when equal currents pass through them. The

adjustment above described makes, very accurately,

and the joint effect on the needle is therefore as

Shifting & as before 1

till there is no deflection, the resistances AB, A'B' are equal.

20. But I find by trial, that by far the most expeditious and simple method

is to connect the coils of the differential galvanometer directly with A, B and A', B'.

Here the deflection is accurately proportional to

-e p-\~

g'+p)

so that the resistance c is not involved. I found, in fact, that I could, without sensible

alteration of the balance, put for c (which, m addition to short portions of the thick

bars, was usually a brightly polished cube of copper of the same section as the bars,

and clamped very tightly between them), a short thin wire, which became red-hot when
the current was allowed to pass for a few seconds. Nothing but absolutely perfect

adjustment could have made this possible when using the other methods.

In my experiments the most unfavourable case gave

g > 30,000 q,

80 that q and p are practically equal when there is no deflection.

21. I employed the bar C. of inferior copper in all these comparative experiments.
But the conductivity of the German silver bar is so much less that 1 could employ only
10 inches of it, as against 7 feet of the inferior copper. I therefore endeavoured, by
experiments on short lengths of the two copper bars, to find approximately the

correction required, in consequence mainly of the breadth of my contact pieces, very

slightly, perhaps, in consequence of the great section of the bars. Here are the results

in inches,
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C. Crown. Ratio. Mean of

A'B'. AS. Unconnected, Corrected. Corrected.

49-66 85-7 1-726 1732

48-47 *83'5 1723 1729

41-47 71-25 1718 1725

18-8 32-2 1713 1728

16-65 *28-46 1709 1-731

9-25 157 1-697 1729

[NOTE. In the experiments marked with an asterisk the arrangement was altered by shifting the crown

bar to the other coil of the galvanometer. The agreement of these with the others is a good guarantee of

the accuracy of the adjustments, and the goodness of the method is seen in the fact, that no observation

deviates so much as per cent, from the mean. This is a striking verification of what was said above about

the small effect of the b lea bored in the bars, for the nippers were placed quite at random in the various

experiments.]

The contact pieces were nippers of polished copper, O f42 inch broad, which were

easily slipped along the bars, and were tightened on them by screw clamps when the

final adjustment was nearly arrived at.

It appears from the column of corrected ratios above, that it is only necessary to

subtract 0'4 inch (the sum of the half breadths of the nippers, the wires being soldered

to them symmetrically) from each of the measured distances to secure almost perfect

uniformity. Thus I was led to see that the influence of the section of the copper
bars is almost undiscoverable by such experiments.

22. For the Forbes iron bar the following results were obtained (but with the

correction 2 inch)

Ratio.

Fe. C. Uncorrected. Corrected.

20 74-3 3715 374
10 373 373 379
5 18'4 368 379

For German silver (mean of several experiments at different parts of the bar, with

correction 02 inch),

Ratio.

G. S. C. Unoorrected. Corrected.

10 841 8-41 8-56

For lead (also with the correction 0*2 inch),

Ratio.

Pb. C. Uncorrected. Corrected. *"

14 937 6-69 677

10 66-9 6-69 6-80

These experiments were repeated for me by Mr D'Arcy Thompson, who used,

as contact pieces, plates of copper pressed edgeways against the long bars in planes
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perpendicular to their axes. His results differ in no case from mine before the third

significant figure

23. Taking the inferior copper as unit, both for thermal and for electric con-

ductivity, we find the following table of conductivities at ordinary temperatures, with

the rough results as to specific gravity and specific heat referred to in 15 above:

Thermal. Electric.

Copper (Crown) .... 1-41 1729

C. .... 1-00 I'OOO

Forbes' Iron 029 0264

Lead .... . 012 0149

German Silver 014 0117

The agreement of these numbers is by no means so close as is generally stated;

but this is no longer remarkable, for it is well known that the electric conductivity
of all pure metals alters very much with the temperature, while we have seen that,

as regards thermal conductivity, there is but slight change with either copper or lead,

though there is a large change with iron This accords with some results of my own
on the electric conductivity of iron at high temperatures (Proc. R S.E., 1872-3, p. 32),

and with the results of the repetition of these experiments by a party of my laboratory

students (Proc. RS.E., 1875-6, p. G29).

The only alloy treated above, violates, as was to be expected, Forbes' rule for pure

metals, for it seems to be superior to lead in thermal conductivity, while decidedly
inferior to it as regards electric conductivity.

24. The chief results of these papers may be thus brietly summonsed

1. The thermal conductivity* of iron diminishes as its temperature is raised.
*

,

This accords with the statement of Forbes, whose numbers for temperatures between

50 and 150 C. are probably very accurate.

2. At temperatures above 150 C. the diminution of conductivity of iron is less rapid
than that assigned by Forbes. The conductivity seems to reach a minimum somewhere

about red-heat

3. The thermal conductivity of copper and lead changes much less than that of
iron with rise of temperature, and probably in the sense of increase instead of diminution.

The same is true of German silver

4. Electrically bad copper conducts heat worse than electrically good copper but not

in the same ratio.

5. The metals examined have the same order as conductors of heat and of electricity.

The alloy violates this arrangement.

*
[Had I been writing this paper afresh, instead of merely reprinting it, I should of course have used

the term Thermometnc Conductivity (after Maxwell) or Thermal Di/wnvity (after Kelvin). But the whole

context, specially the last paragraph of 15, clearly defines what is meant. 1898.]
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Postscript. As I have not given the experimental data for the first part of this

paper, I may state here the peculiarity upon which the above deductions chiefly

depend

The law of cooling is nearly the same (to a constant factor) for iron and the

two kinds of copper throughout the range of temperatures employed.

But the statical curve for iron differs considerably from that for copper. The ratios

of the temperature-excesses at intervals of three inches along the long bars increase

at higher temperatures in iron much faster than in copper. In fact, the inferior copper

almost realises Lambert's result.

ADDITION TO XLVII1.

[IN July, 1887, I wrote the subjoined Introduction to a paper by Professor Crichton

Mitchell on the "Thermal Conductivity of Iron, Copper, and German Silver," which

appears in the Trans, of the Royal Society of Edinburgh, vol. xxxin. It is given here

because it briefly narrates how the work described in the preceding paper was subse-

quently followed up. 1898.]

Shortly after I read to the Society my paper on "Thermal and Electric Con-

ductivity" [No. XLVIII. above], in which I stated that the results were "by no means

final, oven so far as my own work is concerned," I was requested by Sir Wyville Thomson

to undertake the examination of the "Pressure Errors of the 'Challenger' Thermometers."

This investigation led to another on the "
Compression of Sea-Water," and allied subjects,

which is not yet finished. Meanwhile, though I had prepared everything for my
promised repetition of the experiments on Thermal Conductivity, the bars formerly used

having been nickehsed, &c, I found that it would be impossible for me to carry out the

investigation. I therefore asked Mr Mitchell, who, as Ncil-Arnott Scholar, had already

done good and careful work on Thermal Conductivity in my Laboratory, to repeat the

experiments under the altered conditions. I put at his disposal all the apparatus which

was employed m the former research. The Government Grant Committee allowed a

sum for the payment of a computer to reduce the results, and the observations were

at once commenced. The results are now laid before the Society, and are probabl)
as good as the method and the thermometers employed can furnish.

As regards the method, one grand defect is the uncertainty as to the relative

amounts of surface loss of heat in the two parts of the experiment. The nickelising

has, to a very great extent at least, removed the part of this uncertainty which was

due to oxidation of the bars; but there remains another part, not at all easy to reckon

and allow for, which depends on the fact that each thermometer in the long bar is

maintained for hours in a nearly constant state of graduated temperature throughout
its stem, while the corresponding state of that in the short bar not only varies rapidl}

as the cooling proceeds, but probably always materially differs from it. No attempt
has been made to correct the results so far as this cause of error (which is probably
of no great importance) is concerned. It is clear that its effect will be to make the

T. 49
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rate of cooling a little too small at the lower, as compared with the higher,

temperatures.

Another defect, which indeed Forbes pointed out, is due to the very small tem-

perature-gradients towards the colder end of the long bar. Mr Mitchell has carried

out my suggestion of an artificial cooling of the middle of the bar, and it is highly

interesting to compare together the results he has obtained with and without this

cooling.

Angstrom expressly stated (Pogg. Ann., cxviii. 1863) that no account need be

taken of the change of specific heat with temperature. In my paper above referred

to, I said that it appears that, in iron especially, this change produces a very consider-

able effect on the estimated values of the conductivity. In default of better data,

Mr Mitchell has used those given (after Nichol and others) in a short paper in Proc.

R.S.E. [Reprinted, as Addition II., below. 1898.] The importance of this correction is

shown by the comparison of the results obtained from it with those obtained when it

is not applied. Mr Mitchell's experimental results are given in such a form that any

subsequent improvement in these data can be taken advantage of without further

experiment, and with very little trouble in the matter of calculation. The fact that

the various short bar^ were exactly similar in surface in his experiments has enabled

him to make a rough test of the accuracy of these data.

In the paper above referred to, [p. 390, below], I showed that the consideration of the

use of specific heat with temperature would destroy if not overcome the apparent fall of

conductivity of iron at higher temperatures. But I had not then the means of properly

applying the correction without repeating about one-half of the laborious calculations

incident to Forbes' method. Mr Mitchell has in his calculations taken account of this

consideration : and it must be regarded as one of the chief features of his paper that

he has thus shown that iron does not form an exception to the law that ordinary
metals improve in thermal conductivity as their temperature is raised.

As I am responsible for the methods employed by Mr Mitchell in the experiments
and calculations, though not for the calculations themselves, I must state here the

directions given and the grounds for them, at least in so far as they introduce

processes differing (to any considerable extent) from those used by Forbes or by

myself.

1. As to the empirical formula (B) for the statical curve, in the special case of

the iron bar when there was no artificial cooling.

This I obtained by plotting the logarithms of the temperature-excesses as ordinates,

the abscissas being distances along the bar. The curve so obtained was nearly straight

at the lower temperatures, and became rapidly more curved at higher temperatures.
I therefore treated it as a branch of a hyperbola, and found its asymptote. Thus

the form of the empirical expression was suggested at once.

2. The allowance for the unequal heating of the stems of the thermometers was

obtained thus:
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Let v be the observed temperature (not the temperature-excess), w the true tem-

perature, and in accordance with 10 of my paper e 10/250' = 0'00016. From the

result of Mr Mitchell's comparison of the two thermometers, one partially, the other

wholly, immersed in a paraffin bath, I have been confirmed in my assumption of an

error of 10 at 250 C. Then we have

w = v + ev\

Thus, for the true temperature-gradient in the statical experiment,

dw ,, .dv

Similarly, for the true rate of cooling, we have

dw ,, _ . dv

The quantities on the right-hand sides are given by the experiments, or deduced

directly by graphical methods or calculation.

For the statical curve of cooling it is easy to see in this way that each instalment

of area must be multiplied by

2
'

where v
l
and va are the limiting temperatures of the instalment.

It is clear that this correction increases the gradient at any point of the bar in

ft greater ratio than that in which it increases the total area of the corresponding

part of the curve which expresses the flux of heat; so that its effect must be to

diminish the estimates of conductivity at higher, more than at lower, temperatures.

3. I was much surprised at the first results obtained by Mr Mitchell for the

rates of cooling at high temperatures. At my instance he has repeated this part of

the experiment in a form similar to that which I had employed, and certainly less

likely to entail error, and the data thus obtained have been incorporated in the paper,

in so far as they relate to the specified tables [The remaining small difference

between our results may be due to an overestimate in my 6 p. c. reduction for

oxidation.]

4. There still remains a possible source of error, due to the thermometers them-

selves: Kew Standards though they be. This arises from the way in which the

200 C. and 300 C. points were determined at Kew. The tubes having been carefully
calibrated before filling, the standard points C. and 100 C. were directly determined

in the usual manner. But the positions of 200 C. and 300 C. were determined by

taking successive portions of the tube whose volume (cold) corresponded to that of the

portion (also cold) from C. to 100 C. I have not the means of making allowance

for this defect, which will probably mar all experiments of the kind until suitable

air-thermometers are employed.

492
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5. The fact that the values of conductivity deduced from experiments on the iron

bar, when its full length is employed, differ so considerably from those obtained when it is

artificially cooled in the middle, appears to be intimately connected with a remark made

in my paper ( 14) that "in measuring conductivity, at whatever temperature, things

ought to be arranged so as to avoid any slow flux of heat." It seems that, even after

the lapse of eight hours, the steady state of temperature has not been reached in the

colder parts of the long iron bar.

H. As the numerical data, concerning specific gravity and specific heat, which

Mr Mitchell has (in default of better) been obliged to employ, are only rough estimates,

I asked him to test them by finding the ratios of the rates of cooling of copper and

iron at various common temperatures The surface material was the same in the two

bare, and their dimensions equal, so that the amount of heat lost in a given (short) time

must have been the same for each at the same temperature. The ratio of the rates

of cooling should therefore be constant for all temperatures if, and only if, the rate

of change of specific heat with temperature be the same for each of the two materials.

The result does not seem to favour the accuracy of the assumed data, but the process

employed is not by any means an accurate one.

7. As my determinations of the relative electric conductivities of the bars had been

verified by Mr D'Arcy Thompson, there is no necessity for their repetition. But, using

them, with Mr Mitchell's results for thermal conductivity, my comparative table [ante,

p. 384], should be altered (subject, of course, to correction for improved values of specific

gravity and specific heat) to something like the following:

Thermal. Electric.

Copper (Crown) . . . 1-5 1'729

(C.) . .1-0 1-000

Forbes' Iron ... . 0'23 0'264

Lead ... . 0'12 0'149

German Silver . . 0'13 0'117

ADDITION II.

NOTE ON THERMAL CONDUCTIVITY, AND ON THE EFFECTS OF TEMPERATURE-CHANGES OF

SPECIFIC HEAT AND CONDUCTIVITY ON THE PROPAGATION OF PLANE HEAT WAVES.

[Proceedings of the Royal Society of Edinburgh, February 7, 1881.]

IN the great majority, at least, of investigations (experimental or mathematical)
connected with conduction of heat, it has been assumed that the known changes of

specific heat of metals do not require to be taken into account. Thus Angstrom says,
even in his paper on the Change of Conductivity with temperature (Pogg. 118,1863):
" Da indess diese Veranderungen, soweit man sie kennt, wenigstens innerhalb der bei
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den Beobachtungen vorkommenden Temperaturgranzen, nicht bedeutend smd, so

mttssen dieselben den Werth des Warmecoefficienten nur unbedeutend afficiron konnen."

In my paper on "Thermal and Electric Conductivity" [No. XLVIII. above, p. 380], I

said that
"
the change of specific heat with temperature would increase the values of k at

higher temperatures, and thus reduce the change in conductivity in iron, and increase

the small changes indicated for the other substances." But I had not at hand the

means of applying these corrections. Recent discussions as to the comparative merits

of different experimental methods have led me to investigate the amount of this effect,

by the aid of the best data I could procure. A comparison of these seems to leave

no doubt that the specific heat of iron increases by somewhere about 7^ of its amount

for each degree of rise of temperature ;
at least from to 300 C., between which

limits the investigations of conductivity have hitherto beeo earned on.

Besides this result, which I have gathered from various scientific journals, I may
adduce from my Laboratory Book for 1868 the following determinations: which were

made with great care by the late Mr J. P. Nichol, by means of the method of

mixtures. The nature of the process employed is such that the results must all err

in defect, and the more so the higher the temperature. The iron was heated sometimes

in oil, sometimes in paraffin.

Specific Heat of Iron.

Mean.

15 to 100 C . . . 0-1154\

0-H27I

0-1158f
1152

0-1168J

15 to 150 C.
C'1193)
0-11891 01189

0-1186J

15 to 200 C .

0-1208]
012141 01213

0-1218)

15 to 250 C. .

(H234J
0-1240}

15 to 300 C 0-1274) _
0-1276)

From the first two of these means we find that the specific heat at 15 is 0'109

nearly, and that it increases by rfath for each degree.

Now, Forbes' experiments on iron indicated that the quantity k/c, the ratio of the

conductivity to the thermal capacity, diminishes by about -y^th part for each degree from

0C. to 200 C, Hence it is clear that, in this case at least, the alteration of specific
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heat cannot be neglected in estimating that of conductivity. For it follows from the

numbers just given that the diminution per 1 in the conductivity of iron is really

only about v&ftfa of the whole amount. My own experiments with Forbes' bars gave
an average change of kjc less than that due to the increase of c alone, thus indicating
an increase of conductivity with rise of temperature. Angstrb'm's result, on the other

hand, is considerably greater than that of Forbes. But the range of temperatures he

employed was not above forty degrees. For reasons pointed out in my paper above

referred to, I consider Forbes' estimate of the value of &/c, from to 150C., to be

probably very near the truth. In other metals the change of specific heat is usually

less than in iron. But so is also that of kfc. It would thus appear that we cannot

yet state positively that there is any metal whose conductivity becomes less as its

temperature rises; and thus the long-sought analogy between thermal and electric

conductivity is not likely to be realised

In the method devised and carried out by Forbes, the change of specific heat

must be attended to during the calculations. Thus we cannot, without going over

again the whole numerical work connected with what he called the Statical Curve of

Cooling, estimate accurately what will be the effect of this element upon the values

of the conductivity.- But we cap easily show that its influence upon Angstrom's results

is to be calculated, at least approximately, by the simple process above.

To avoid the error introduced by supposing rate of surface loss to be proportional

to v, we take (instead of a bar) a plane slab heated and cooled periodically over one

surface.

The equation for the consequent distribution of temperature is

dv d fj dv\

If we assume c = c (1 + OH),

fcA? (l-tO,

where a and /8 are small positive constants;

J . *0
and put K = ,

v =* u -f o>,

where o> depends upon first powers of a and /3 only, higher powers being neglected, the

equation splits into two as follows:

du dhi ...

aa? ...........................................(1)'

du\t- <+-*(&' <2>
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For our present purpose it is sufficient to take

u = - Bx+ Ce-* cos (ZicmH
- tnx\

which satisfies (1), and shows the ultimate effect of a persistent simple harmonic

application of heat to one side of the slab, whose temperature is taken as our temporary

zero; the other side being kept at the temperature Bs, where 8 is the thickness

of the slab. Here 8 must be supposed so large that Ce"75*
is insensible, else the value

of 11 would be so complicated that (2) would become unmanageable.

Substituting the above value of u in (2), and integrating, we obtain the value

of ft>. It consists of three parts.

We have, first, terms containing x only:

These terms show how the mean temperature is altered throughout.

Next, we have the single term

This is a small wave of half period, which we need not farther consider.

Finally we have, as the modification of the original wave,

m (a +-~ Bx + - ma) -
<" + B? sin (2*rt -

ro)}

These terms, when combined with the harmonic part of the assumed value of u, may
be put in the form

Ce~miX cos (2mft m.0),

where Wl = m(l_^_ a +
^),

We thus see the effects of the introduction of the quantities a and ft upon the

amplitude and phase of the wave; and it is evident that they are of the greater

consequence the greater is the difference of mean temperatures at the sides of the slab.

Hence the only legitimate mode of applying Angstrom's method is to keep the

mean temperature the same throughout the slab. This can easily be effected.

It is obvious, moreover, from the values of m, and m* above, that Angstrom's
method gives the value of k/c for the mean of the mean temperatures indicated by the
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two thermometers. Only, there is always the extraneous factor

I+'-^B4w
which is usually very nearly unity.

I have worked out by the above method the case of two harmonic waves (in the

value of u\ one of half the period of the other. New terms are thus introduced

into Wj and m*. They are such as to seriously affect the values of these quantities

when x is small, but they rapidly diminish by increase of OB.

If the new term in u be

Z)e-"wvs cos (4*w2
f mx </2 + E),

the additional terms in m^ are

+ # DC-* sinX -
5-,-lUj-

- -** Cos X.4m 2 \/2 1 m

Those in w, are formed from these by making the first term positive, and interchanging
the sine and cosine 'of

X = mx (V2 + 1)-E.

It appears from this investigation that Angstrom's method, when applied with

proper precautions, is theoretically capable of giving very good results. But it is>

probable that, in practice, the thermometers will have to be supplanted by thermoelectric

junctions and a good dead-beat galvanometer. The best thermometers, when employed
for rapidly varying temperatures, work by sudden starts.
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XLIX.

NOTE ON ELECTROLYTIC CONDUCTION.

[Proceedings of the Royal Society of Edinburgh, April 15, 1878.]

IT is commonly said that there is a resistance to a current at the surface of

contact of a solid conductor and an electrolyte. Some good authorities, however, say that

we have as yet no proof of this, as the effects observed may be due to polarisation alone.

It is obvious that, if the reverse electromotive force due to polarisation contain a

term directly proportional to the strength of the current, the ordinary methods of

measurement would not enable us to distinguish this from the surface resistance above

mentioned. For, in the expression

if the numerator contain a term of the form el, it may be expunged, provided e be

added to the denominator.

To clear up this point I have recently made a number of experiments. These

have led me to some curious results bearing on the theory of electrolysis, which I

propose to bring before the Society on a futxire occasion. At present I refer to

them merely so far as to say that they seem to establish the existence of the surface

resistance above mentioned. But I was led to see that if a slip of platinum be

inserted between the electrodes of a decomposing cell it ought, except in extreme

cases, to produce almost precisely the same result as a similar and equal slip of glass

or mica. This was easily verified. Here we have the singular result of a marked

diminution of the current by the insertion into the electrolyte of a substance which

is in itself a much superior conductor. Even when the platinum completely closes the

path from one electrode to the other, so as to form two decomposing cells instead

of one, a comparatively small hole made in it at once modifies its function from that

of common electrode to each of two decomposing cells towards that of a mere obstruction

in one cell. It is an interesting experimental inquiry to trace the intermediate stages
between these two states, as a pinhole in the platinum is gradually enlarged. What-

ever, then, be the behaviour of the particles of an electrolyte, they do not behave

like little pieces of platinum. [This question is treated in a later paper. 1898.]

T. 50
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NOTE ON A MODE OF PRODUCING SOUNDS OF VERY GREAT
INTENSITY.

[Proceedings of the Royal Society of Edinburgh, July 1, 1878.]

Two years ago I had an opportunity of making from the deck of the steamer
" Pharos

"
some observations on the performance of the fog-siren at Sanda, off the Mull

of Cantire. The instrument is worked by air at about \\ atmospheres pressure.; and,

though driven by a powerful air-engine, sounds for 7 seconds only per minute. One
obvious defect of such an arrangement I saw to be the waste of energy in producing
a current of air through the trumpet of the siren along with the oscillations. It then
occurred to me that a regular alternation of puffing and sucking exactly analogous to

the air-disturbance produced by a drum must be a much leas costly source of sound.

I have since constructed a siren on this double action principle, the air in the trumpet,
which acts as a resonator, being put alternately in connection with reservoirs of com-

pressed and rarefied air. The small model has given very good results, and a larger
one is in progress. The only defect which my model showed was a waste of energy
in the form of pulsations in the tubes leading to the exhausted receiver and to that

containing compressed air. This can be very greatly reduced, but I do not yet see

how to get rid of it entirely, unless it be possible to make both receivers so exactly
as to act as additional resonators to the siren. If this can be carried out in practice
there will be no energy spent except in sound. It is obvious that the principle just
described is approximated to in practice whenever steam is employed in a siren: the

vacuum being produced by the condensation of the steam.

Another device of a somewhat different character was suggested to me by the
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experiments described in the preceding paper*. After trying, without much success,

to reduce the intensity of the siren notes by filing the edges of the apertures, it

occurred to me that I might usefully intensify them. I therefore had copper plates
soldered perpendicularly to the revolving disc, so as to increase instead of diminishing
the virtual thickness of the edges of the apertures. The result was veiy striking.

Such a siren gives a sound whose intensity is not sensibly increased by a powerful
blast from an organ bellows. It produces strong currents of air through the holes in

the fixed disc, whose direction in general depends upon, the direction in which the

rotating disc is made to revolve; and especially does so when the copper plates are

inclined to the surface of that disc. When the discs are both furnished with these

plates, turned in opposite directions, the result is still more striking. Various other

modifications have occurred to me, and are now under trial, especially one for pro-

ducing currents alternately in opposite directions through the holes.

By bringing up a flat plate towards the instrument, the quality of the sound is

altered in a remarkable manner, and to such an extent that it seems well adapted
for rapid Morse-signalling As this instrument requires no work to be spent except
in turning it, a very large number may be kept continuously at work at once by
the same expenditure of power as is required for the intermittent roaring of a single

fog-siren.

*
[" On certain Effects of Periodic Variation of Intensity of a Musical Note. By Professors Crum Brown and

Tait." The sound was admitted through apertures pierced in a fixed plate and in another which rotated in close

contiguity to it; and the experiments were interfered with, when considerable angular speed was given to the

latter, by its direct action as a sort of siren 1898 ]

502
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LI.

OBITUARY NOTICE OF JAMES CLERK-MAXWELL.

[Proceedings of the Royal Society of Edinburgh, December 1, 1879]

WHEN I first made Clerk-Maxwell's acquaintance about thirty-five years ago, at

the Edinburgh Academy, he was a year before me, being in the fifth class while I

was in the fourth

At school he was at first regarded as shy and rather dull; he made no friend-

ships, and he spent his occasional holidays in reading old ballads, drawing curious

diagrams, and making rude mechanical models. His absorption in such pursuits,

totally unintelligible to his schoolfellows (who were then quite innocent of mathe-

matics), of course procured him a not very complimentary nickname, which I know
is still remembered by many Fellows of this Society. About the middle of his school

career, however, he surprised his companions by suddenly becoming one of the most

brilliant among them, gaining high, and sometimes the highest, prizes for Scholarship,

Mathematics, and English verse composition. From this time forward I became very
intimate with him, and we discussed together, with school-boy enthusiasm, numerous

curious problems, among which I remember particularly the various plane sections of

a ring or tore, and the form of a cylindrical mirror which should show one his own

image imperverted. I still possess some of the MSS. which we exchanged in 1846

and early m 1847. Those by Maxwell are on "The Conical Pendulum," "Descartes'

Ovals," "Meloid and Apioid," and "Trifocal Curves." All are drawn up in strict

geometrical fonn and divided into consecutive propositions. The three latter are

connected with his first published paper, communicated by Forbes to this Society
and printed in our Proceedings, vol. II., under the title

" On the Description of Oval

Curves, and those having a plurality of foci" (1846).
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At the time when these papers were written he had received no instruction in

Mathematics beyond a few books of Euclid, and the merest elements of Algebra.

The winter of 1847 found us together in the classes of Forbes and Kelland,

where he highly distinguished himself. With the former he was a particular favourite,

being admitted to the free use of the class apparatus for original experiments. He

lingered here behind most of his former associates, having spent three years at the

University of Edinburgh, working (without any assistance or supervision) with physical

and chemical apparatus, and devouring all sorts of scientific works in the library*.

During this period he wrote two valuable papers, which are published in our

Transactions, on "The Theory of Rolling Curves," and "On the Equilibrium of

Elastic Solids." Thus he brought to Cambridge in the autumn of 1850 a mass of

knowledge which was really immense for so young a man, but in a state of disorder

appalling to his methodical private tutor. Though that tutor was William Hopkins,
the pupil to a great extent took his own way; and it may safely be said that no

high wrangler of recent years ever entered the Senate-House more imperfectly trained

to produce
"
paying

"
work than did Clerk-Maxwell. But by sheer strength of intellect,

though with the very minimum of knowledge how to use it to advantage under the

conditions of the examination, he obtained the position of Second Wrangler, and was

bracketed equal with the Senior Wrangler in the higher ordeal of the Smith's Prizes.

His name appears in the Cambridge
" Calendar

"
as Maxwell of Trinity, but he was

originally entered at Peterhouse, and kept his first term there, in that small but

most ancient foundation which has of late furnished Scotland with the majority of

the Professors of Mathematics and Natural Philosophy in her four Universities.

In 1856 he became Professor of Natural Philosophy in Marischal College,

Aberdeen
;

in 1860, Professor of Physics and Astronomy in King's College, London.

He was successively Scholar and Fellow of Trinity ;
and was elected an Honorary

Fellow of Trinity when he finally became, in 1871, Professor of Experimental Physics
m the University of Cambridge. There can be no doubt that the post to which he

was ultimately called was one for which he was in every way pre-eminently qualified ;

and the Cavendish Laboratory, erected and furnished under his supervision, remains

as remarkable a monument to his wide-ranging practical knowledge and theoretical

skill as it is to the well-directed munificence of its noble founder.

If the title of mathematician be restricted (as it too commonly is) to those who

possess peculiarly ready mastery over symbols, whether they try to understand the

significance of each step or no, Maxwell was not, and certainly never attempted to

be, in the foremost rank of mathematicians. He was slow in "writing out," and

avoided as far as he could the intricacies of analysis. He preferred always to have

before him a geometrical or physical representation of the problem in which he was

engaged, and to take all his steps with the aid of this: afterwards, when necessary,

* From the University Library lists for this period it appears that Maxwell perused at home Fourier's

Throrie de la Chaleur, Monge's Gfomftrte Descriptive, Newton's Optics, Willis's Principles of Mechanism,

Cauohy's Calcul DIJMrentiel, Taylor's Scientific Memoirs, and many other works of a high order Un-

fortunately no record is kept of books consulted m the reading-room.
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translating them into symbols. In the comparative paucity of symbols in many of

his great papers, and in the way in which, when wanted, they seem to grow full-

blown from pages of ordinary text, his writings resemble much those of Sir William

Thomson, which in early life he had with great wisdom chosen as a model.

There can be no doubt that in this habit, of constructing a mental representation

of every problem, lay one of the chief secrets of his wonderful success as an

investigator. To this were added an extraordinary power of penetration, and an

altogether unusual amount 'of patient determination. The clearness of his mental

vision was quite on a par with that of Faraday ;
and in this (the true) sense of

the word he was a mathematician of the highest order.

But the rapidity of his thinking, which he could not control, was such as to

destroy, except for the very highest class of students, the value of his lectures. His

books and his written addresses (always gone over twice in MS.) are models of clear

and precise exposition ;
but his extempore lectures exhibited, in a manner most

aggravating to the listener, the extraordinary fertility of his imagination.

During his undergraduateship in Cambridge he developed the germs of his

future great work' on "Electricity and Magnetism" (1873) in the form of a paper
"On Faraday's Lines of Force/' which was ultimately printed in 1856 in the Trans,

of the Cambridge Philosophical Society. He showed me the MS. of the greater part

of it in 1853. It is a paper of great interest in itself, but extremely important ns

indicating the first steps to such a splendid result. His idea of a fluid, incompressible

and without mass, but subject to a species of friction in space, was confessedly

adopted from the analogy pointed out by Thomson in 1843 between the steady flow

of heat and the phenomena of statical electricity.

In recent years he came to the conclusion that all such analogies, depending, as

they do on Laplace's equation, were best symbolised by the quaternion notation with

Hamilton's V operator; and in consequence, in his work on electricity, he gives the

expressions for all the more important physical quantities in their quaternion form,

though without employing the calculus itself in their establishment. I have discussed

in another place (Nature, vol. vn. p. 478) the various important discoveries in this

remarkable wotk, which of itself is sufficient to secure for its author a foremost

place among natural philosophers. I may here state that the main object of the

work is to do away with " action at a distance," so far at least as electrical and

magnetic forces are concerned, and to explain these by means ot stresses and motions

of the medium which is required to account for the phenomena of light. Maxwell

has shown that, on this hypothesis, the speed of light is the ratio of the electro-

magnetic and electro-static units. Since this ratio, and the actual speed of light,

can be determined by absolutely independent experiments, the theory can be put at

once to an exceedingly severe preliminary test. Neither quantity is yet fairly known

within about 2 or 3 per cent., and the most probable values of both certainly agree
more closely than do the separate determinations of either. There can now be little

doubt that Maxwell's theory of electrical phenomena rests upon foundations as secure
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as those of the undulatory theory of light. But the life-long work of its creator has

left it still in its infancy, and it will probably require for its proper development
the services of whole generations of mathematicians.

The next in point of date of Maxwell's greatest works is his
"
Essay on the

Stability of Saturn's Rings," which obtained the Adams' Prize in 1859. In this

admirable investigation he shows that it is dynamically impossible that these rings
can be cither solids or continuous liquid masses; the only other available hypothesis,

viz., that they consist of a multitude of discrete parts, each a satellite, must therefore

be the correct one.

Another question which he treated with great success, as well from the experi-

mental as from the theoretical point of view, was the Perception of Colour, the

Primary Colour se sations, and the Nature of Colour Blindness. His earliest paper
on these subjects bears date 1855, and the seventh has the date 1872 He received

the Rumford Medal from the Royal Society in 1860, "For his Researches on the

Composition of Colours, and other optical papers." Though a triplicity about colour

had long been known or suspected, which Young had (most probably correctly)

attributed to the existence of three sensations, and Brewster had erroneously*

supposed to be objective, Maxwell was the first to make colour-sensation the subject

of actual measurement. He proved experimentally that any colour C (given in

intensity of illumination as well as in character) may be expressed in terms of three

arbitrarily chosen standard colours. X, Y, Z, by the formula

Here a, b, c are numerical coefficients, which may be positive or negative ; the sign
= means "matches," + means "superposed," and directs the term to be taken to

the other side of the equation.

The la&t of his greatest investigations bore on the Kinetic Theory of Gases.

Originating with [Hooke and] D Bernoulli, thi^ theory was advanced by the successive

labours of Herapath, Joule, and particularly of Clausius, to such an extent as to put its

general accuracy beyond a doubt. But by far the greatest developments it has received

are due to Maxwell, part of whose mathematical work has recently been still further

extended in some directions by Boltzmann. In this field Maxwell appears as an

experimenter (on the laws of gaseous friction) as well as a mathematician. His two

latest papers deal with this bianch of physics, one is an extension and simplification

of some of Boltzmann's chief results, the other treats of tho kinetic theory as applied

to the motion of the radiometer.

He has written an admirable text-book of the "
Theory of Heat," which has

already gone through several editions, and a very excellent elementary treatise on

"Matter and Motion" (See, again, Nature, vol. xvi. p. 119.) Even this, like his

other and larger works, is full of valuable matter, worthy of the most attentive

perusal not of students alone but of the very foremost scientific men.

* All we can positively say to be erroneous is some of the principal arguments by which firewater's

view was maintained, for the subjective character of the triplicity has not been absolutely demonstrated.
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Of his other scientific work, which extended over the whole range of physics, I

may specially mention the following papers-

On the transformation of surfaces by bending, Camb. Phil. Trans., 1854.

The discovery of the production of double refraction in viscous liquids (Proc. R.8.,

1873), a late consequence of some of the results of his early paper of 1850.

A general theory of optical instruments, Quart. Journ. of Math., 1858.

On reciprocal figures, frames, and diagrams of forces, Trans. R.S.E., 1872. For this

paper he obtained the Keith Prize.

His share in the construction of the British Association units of electric resistance,

and in the admirable reports of the Committee. Also his experimental
verification of Ohm's law.

For further particulars recourse must be had to the Royal Society's Catalogue of

Scientific Papers.

To these may now be added his numerous contributions to the latest edition of

the Encyclopaedia 'BritannicaAtom, Attraction, Capillarity, &c.
;

and the laborious

task of preparing for the press, with copious and very valuable original notes, the

Electrical Researches of the Hon. Henry Cavendish. This work has appeared only

within a month or two, and contains many singular and most unexpected revelations

as to the early progress of the science of electricity.

The works which we have mentioned would of themselves indicate extraordinary

activity on the part of their author, but they form only a fragment of what he has

published ,
and when we add to this the further statement, that Maxwell was always

ready to assist those who sought advice or instruction from him, and that he Jias

read over the proof-sheets of many works by his more intimate friends (enriching

them by notes, always valuable and often of the quaintest character), we may well

wonder how he found time to do so much.

Maxwell's early skill in versification developed itself in later years into real

poetic talent. But it always had an object, and often veiled the keenest satire under

an air of charming innocence and naive admiration. No living man has shown a

greater power of condensing the whole substance of a question into a few clear and

compact sentences than Maxwell exhibits in his verses. As an exceedingly good

example of his style we may quote the lines written for the portrait of Cayley, now

in Trinity College, Cambridge.

" wretched race of men, to space confined !

What honour shall ye pay to him whose mind

To that which lies beyond hath penetrated ?

The symbols he hath formed shall sound his praise,

And lead him on through ummagmed ways
To conquests new hi worlds not yet created.
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"First ye determinants, in ordered row

And massive column ranged, before him go,

To form a phalanx for his safe protection.

Ye powers of the nth roots of -
1,

Around his head in endless cycles run,

As disembodied spirits of direction.

"And you ye undevelopable scrolls,

Above the host wave your emblazoned rolls,

Ruled for the record of his bright inventions.

Ye cubic surfaces, by threes and nines,

Draw round his camp your seven-arid-twenty lines,

The seal of Solomon in three dimensions.

"March on, symbolic host, with step sublime,

Up to the flaming bounds of space aiid time ;

There halt, until, by Dickenson depicted
In two dimensions, we the form may trace

Of him whose mind, too large for vulgar space,

In n dimensions flourished unrestricted."

Other exquisite specimens are given in Nature : especially good is his " Lecture

to a Lady on Thomson's Reflecting Galvanometer." One of the few others which
have been printed was secured by John Blackwood for his Magazine, where it

appeared under the title
" British Association, 1874," in November of that year.

It is to be hoped that these scattered gems may be collected and published,
for they are of the very highest interest, as the work during leisure hours of one

of the most piercing intellects of modern times. Every one of them contains evidence

of close and accurate thought, and many are in the happiest form of epigram.

I cannot adequately express in words the extent of the loss which his early

death has inflicted not merely on his personal friends, on this Society, on the

University of Cambridge, on the whole scientific world, but also, and most especially,

on the cause of common sense, of true science, and of religion itself,, in these days
of much vain-babbling, pseudo-science, and materialism. But men of his stamp never

live in vain
;

and in one sense at least they cannot die. The spirit of Clerk-

Maxwell still lives with us in his imperishable writings, and will speak to the next

generation by the lips of those who have caught inspiration from his teachings and

example.

Scotland may well be proud of the galaxy of grand scientific men whom she

numbers among her own recently lost ones
; yet even in a company which includes

Brewster, Forbes, Graham, Rowan Hamilton, Rankine, and Archibald Smith, she will

assign a place in the very front rank to James Clerk-Maxwell.

[This sketch appeared again, with considerable changes, mainly in the way of

further development, in Nature, Vol. xxi. 1898.]

T. 51
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LII.

MATHEMATICAL NOTES.

[Proceedings of the Royal Society of Edinburgh, January 5, 1880.]

(a) ON A PROBLEM IN ARRANGEMENTS.

WHILE making some algebraic problems last summer for an examination, I devised

the following question:

"A schoolmaster went mad, and amused himself by arranging the boys. He turned

the dux boy down one place, the new dux two places, the next three, and so on till

every boy's place had been altered at least once. Then he began again, and so on;

till, after 306 turnings down, all the boys got back to their original places. This

disgusted him, and he kicked one boy out. Then he was amazed to find that he had

to operate 1120 times before all got back to their original places. How many boys
were in the class?"

It is clear that one of the factors of the number of turnings down is (n-1),
where n is the number of boys in the class. The factors of 306 are 18 and 17,

and those of 1120 are 7, 10, and 16. If we try 17 as the original value of -l,
16 will be the value for one boy less : from which it appears by a tentative process

that the class consisted of 18 boys. But it is interesting to examine the nature of

the question more closely. It is intimately connected with one of the problems

suggested in my paper on " Knots "
(No. XXXIX. above, 5, pp. 278 sq.). If we

know the arrangement of the boys after one of them has for the first time been

turned to the foot of the class, the processes given in that paper lead easily to

the complete solution.

Now it is easy to see that the particular arrangement just mentioned can be found

diagrammatically as follows :
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Write down the numbers 1 21.

Put the double of the middle number to the right of it, and the next lower number to

the left. Thus

13241.
Operate in the same way on the numbers last introduced, and we have

153627481.
Continue in this way, and arrange these groups in successive order, leaving out the final

1 from each. We thus have the series

1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, &c.

Strike off the firs* n 1 of these numbers (n being the number of boys), and the

next n represent the arrangement of the class after all have been displaced: the

numbers designating the several boys by their original places. Hence we have the

key for translating the senes into the successive derangements.

Another curious mode of getting this series is to begin with 1, then prefix 1, and

insert 2, as below :

121.

Again prefix 1, and insert 2, 3, 4, then

1213241,
and so on indefinitely.

It is worthy of remark that this series gives the integral of the equation

Maz+1 = Ux 5

with the conditions u^ =#+!,

Ui =1;

i.e., the solution of the following question :

"
Arrange an infinite row of numbers, those in the even places being 2, 3, 4, &c.,

so that if the first (n 1) be struck off (n being any integer) the next n may consist of

all the natural numbers from 1 to n inclusive."

Another result which these numbers present is the following: Every positive integer

can be expressed, in one way only, by the sum of a finite number of terms of one

of the infinite set of series

1 + 2+ 4+ 8 + 16 +
2 + 3 + 6 + 12 + 24 +

4 + 5 + 10 + 20 + 40 +

6 + 7 + 14 + 28 + 56 +
8 + 9 + 18 + 36 + 72 +

&c., &c.,

512
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the partial sums for each being the several places occupied in the above series by
each particular integer. This, however, is obvious when we consider that the sum -of

(n-f 1) terms of any one of these series is of the form

and that this expression can be made to equal any given positive integer by one definite

pair (and one only) of values of r and n.

Thus we see that we may write

where the bar under x+ l means that it is to be divided by the highest power of 2

that it contains.

The numbers of operations, for classes of different numbers of boys from 2 to

25 inclusive, are in order as follows:

2, 4, 9, 20, 30, 36, 28, 72, 36, 280, 110, 108, 182, 168, 75, 1120, 306,

432, 190, 140, 4410, 2772, 2530, 1440.

The calculation of the numerical value of any particular term is easy, but I have' not

attempted to express the general law of this very curious series. It seems, however,

to be well worthy of attention, especially from the point of view of the expressions

for numbers in the binary scale.

(6) ON A GRAPHICAL SOLUTION OF THE EQUATION Vp<j>p
= Q. .

This equation has been exhaustively treated in our Transactions by M. G. Plarr.

The present note is a mere sketch of a graphical solution. Let
<j>

be divided into

parts, one self-conjugate, the other not, then

<f>
= 5+7.6,

and the given equation may be written

/> + Vep = xp.

Hence 8. p {(v
-

x) a + Vae}
=

whatever be a. Let a, $, 7 be the principal unit-vectors of the pure strain w, and

a, b, c (in descending order of magnitude) the associated scalars. Then the equation for

x is, at once,

8 . {(a
-

x) a + Vote] {(b
-

x) ft + Vfc] {(c
-

0) 7 + Vye] = 0.

This may be written as
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Thus the problem is reduced to finding the limiting value of Te, for any given value

of- Ue, so that the above equation may have all its roots real. This leads by the

ordinary methods to a cubic in 2V, but the expression is rather complicated.

For variety let us adopt a graphic method. It is obvious that the extreme values

ofS.UeiirUe are a and c.

Let the curve represent the equation

and let OD represent any assumed value of S.UeOrUe. D must he on the finite

line AC. From D draw, as in the figure, a tangent DP to the curve; and suppose a

simple shear to be applied to the figure-, parallel to the axis of y, so as to make

this tangent coincide with the axis of x. The equation of the curve after the shear

will obviously be

y = (x
- a)(x

-
b) (x - c) + tan PDA (x- OD}

and it will touch the axis of x. Comparing this with the equation above, we see that

we have for the maximum value required

The absolute maximum of Te is obviously when the point of contact is the point of

inflexion of the curve (whose abscissa is $(a + b+c)\ and the least values when D
coincides with C or with A. These values are easily seen to be, in order,
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LIII.

NOTE ON THE THEORY OF THE "15 PUZZLE."

[Proceedings of the Royal Society of Edinburgh, June 7, 1880.]

[ArrER this note had been laid before the Council, the new number (vol n.

No. 4) of the American Journal of Mathematics reached us. In it there are exhaustive

papers by Messrs Johnston and Story on the subject of this American invention.

The principles they give differ only in form of statement from those at which I

had independently arrived. I have, therefore, cut down my paper to the smallest

dimensions consistent with intelligibility. P. G. T.]

The essential feature of this puzzle is that the circulation of the pieces is

necessarily in rectangular channels. Whether these form four-sided figures, or have

any greater (even) number of sides, the number of squares in the channel itself is

always even. (This is the same thing as saying that a rook's re-entrant path always
contains an even number of squares. This follows immediately from the fact that a

rook always passes through black and white squares alternately. The same thing is

true of a bishop's re-entering path, for it is a rook's upon a new chess-board formed

by the alternate diagonals of the squares on the original board.) That there may
be circulation in the channel, one of its squares must be the blank one.

Hence an odd number of pieces lies along the channel, and, therefore, when

they are anyhow displaced along it, so that the blank square finally remains unchanged,
the number of interchanges is essentially even.

Thus to test whether any given arrangement can be solved, alj we need know

is how many interchanges of two pieces will reduce it to the normal one. If this

number be even, the solution is possible. To find the number of interchanges, we

have only to write in pairs the numbers occupying the same square in each
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arrangement, and divide them into groups, such as , .
,
which form closed cycles.

Here there are four pairs in the group, which correspond to three interchanges,
, a b . . A i
because , is one interchange.

Dr Crum Brown suggests the term Aryan for the normal arrangement, with the

corresponding term Semitic for its perversion. Similarly Chinese would signify the

Aryan rotated right-handedly through a quadrant, and Mongol Semitic rotated left-

handedly through a quadrant.

Now it is easily seen that Aryan is changed into Semitic, and Chinese into

Mongol, or vice versd, by an odd number of interchanges. Similarly Aryan and

Mongol, and Semitic and Chinese, differ by an even number of interchanges.

Hence any given arrangement must be either Aryan or Semitic. The former can

be changed into Mongol, the latter into Chinese.

Unless the 6 and 9 be carefully distinguished from one another every case is

solvable, for if it be Semitic the mere turning these figures upside down effects one

interchange and makes it Aryan.

The principle above stated is, of course, easily applicable to the conceivable, but

scarcely realisable, case of a rectangular arrangement of equal cubes with one vacant

space
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NOTE ON A THEOREM IN GEOMETRY OF POSITION.

[Transactions of the Royal Society of Edinburgh. Read July 19
;

revised

November 13, 1880.]

IN connection with the problem of Map-colouring, I incidentally gave (Proc.

M.S.E 1880, pp. 502, 729) a theorem which may be stated as follows:

If 2n points be joined by 3n lines, so that three lines, and three only, meet at

each point, these lines can be divided (usually in many different ways) into three

groups of n each, such that one of each group ends at each of the points.

Fig. 1, Plate X., shows such an arrangement (drawn at random) with one mode
of grouping the lines, indicated by the marks Q, I, II.

The difficulty of obtaining a simple proof of this theorem originates in the fact

that it is not true without limitation. For it fails when an odd number of the

points forms a group connected by a single line only with the rest, as in
fig. 2;

and, though we may enunciate the theorem in a form in which it is universally

true so far as the literal interpretation of the words is concerned, we do not, so far

as I can see, thereby facilitate the proof: while we deprive the theorem of its full

generality. For the projection of a polyhedron cannot have a group of points joined

to the rest by two lines only; and yet the theorem is true for such a diagram.
The altered form is as follows:

The edges of any polyhedron, which lias trihedral summits only, can be divided

into three groups, one from each group ending in each summit.

But a diagram such as fig. 3, for which the proposition is obviously true, is

excluded from this enunciation, unless we agree to apply the term polyhedron to

solids such as (for instance) an ordinary cylindrical lens with two edges and flat ends.
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Hamilton's Icosian Oame is a particular application of this theorem, the corre-

sponding figure being a projection of a pentagonal dodecahedron. It was suggested
to him by the remark, in Mr Kirkman's paper on Polyhedra (Phil. Trans. 1858,

p. 160), that a clear "circle of edges" of a unique type passed through all the

summits of this polyhedron.

In this note I sketch, each very briefly, a number of different ways of considering
the question.

1. The simplest mode is to join, two and two, in any way whatever, the points
of the system, by lines additional to those already drawn, neglecting any new
intersections which may thus arise. The figure has then an even number of points,

with four lines drawn to each; and can therefore be regarded as formed of super-

posed (not self-cutt-'ng) closed circuits, each of which cuts another in an even number

of points. The new lines must be so grouped that in the circuits which contain

them they alternate with lines originally in the figure. It will be seen in 2 that

this proves the theorem at once by the help of those circuits which contain none of

the new lines. But the application of this method to particular cases is by no

means easy; for we may have to try several combinations before we obtain a

solution of the kind desired.

2. Assuming, for a moment, the truth of the proposition as given in the first

statement, it is obvious that the lines of any two of the groups together form a

closed polygon or polygons, each of an even number of sides: and, conversely, when

(as just shown) we have such circuits, the proposition is true. (The italicised words

show at once the reason for the exception to the theorem. For if the single joining

line be part of a polygon, that cannot be a closed one; and, if it be not part of

a polygon, there must be at least two polygons with an odd number of sides each.)

When there are more polygons than one, the letterings of the alternate sides of one

of them may be interchanged, and we thus get, by combining these separately with

the third set of n lines, a couple of new solutions. If either of these consist of

more polygons than one, this process may be again applied, and thus we have two

more solutions. Hence it is always possible to obtain a solution in which two

assigned sides of one compartment of the diagram shall form parts of the same

even-sided polygon. (From this consideration, as appears in 5, we have another

direct proof of the theorem.) Hence, also, it would appear that, as this breaking
into different sets of polygons cannot go on indefinitely, there must always be at

least one solution which consists of a single polygon: provided, at least, that we

keep to projections of polyhedra, for the statement is obviously not true of diagrams
like fig. 3. But on this point I am not yet certain

;
and I pass it by for the

present, as it is not of importance to the proposition, though it would be of great

consequence to the making a perfectly general puzzle on the plan of the icosian

game.

3. A glance at the groups of connected figures of Plate X. (in which the

polygon or polygons are bounded by double lines), will show better than any words

of description the nature of the processes which I have just indicated.

T. 52
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Fig. 7 has a very large number of solutions, twelve only of which are drawn.

8 is merely fig. 1 a little distorted. The additional line, which distinguishes it from fig. 7,

makes it essentially unsymmetrical.

9 is essentially the same diagram as that of the Icosian Game.

10 is merely fig. 3; with one additional line, causing one at least of the two-sided compart-
ments to be joined to the rest by three lines. This at once makes the solution with

a single polygon possible.

N.D. When a figure is symmetrical about any axis, the perversion of any solution is also a solution.

4. Or thus: when a set of points are joined so that two, and only two, joining

lines meet at each point, these lines must obviously form one or more closed

polygons. Hence, in the case before us, by limiting the selection to two out of the

three lines drawn to each point, we can always, in many different ways, form a

polygon or polygons. If the number of sides in each of these is even, the main

proposition is at once proved ;
for the alternate sides of the polygons belong to two

of the three groups the unused lines forming the third group. Such solutions must

evidently be possible in all cases, with the exception of that already excluded. This

knowledge, however, does not at once help us to a practical solution of the problem
in any particular case. We must, therefore, look at the result more generally.

If the selection we have made gives more than one polygon, two or other even

number of them may have an odd number of sides each. Suppose there are but two.

If these be connected by one line only, we have the excepted case above. If they
be connected by three, or a larger odd number of lines, we may always proceed as

is indicated in figs. 6. 6a shows the two odd-sided polygons. 66 and 6c show how,

neglecting the points C and C', we form even-sided polygons passing through them

and including AB and A'B' respectively. Finally, 6d shows the result when the two

latter figures are joined. Thus the proposition is proved by actually effecting the

decomposition into polygons of an even number of sides. Hence it is true' for any
even number of points (the excepted case excluded) if it is true for smaller even

numbers of points. But it is obviously true for two, for four, and for six, points.

5. Another mode of reaching the same conclusion, is to pass from a case of

2n points to one of 2n + 2 by drawing a new line terminating in any two sides of

one of the even-sided polygons of the former case ( 2). That polygon remains

even-sided, but its sides must be relettered; and then we have one or more solutions

of the new case.

In fact, by temporarily suppressing, two by two, points and their joining line

(always taking care that the figure left shall not belong to the excepted case) we
can reduce any case, however complex, to the four points for which the proposition

is always true. [Or we may suppress one line, and divide the figure into two odd-

sided polygons passing respectively through its ends. On restoring the line, these

two polygons give a solution.]

6. Practically, in every case, the simplest mode of solution is to begin at any

point, and go through all (through some, perhaps, more than once) till we return
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to the starting-point. Then treat, as not gone over, all the lines which have been

gone over an even number of times. This process is very easily learned by trial,

the only special rule to be attended to being that we must never isolate a point.

Should two odd-sided polygons be thus obtained, we may either begin afresh: or go
over a second time, attending to the above rule, part of the region of the figure in

which these two polygons are contained It is easy to see the connection of this

method with the idea of a galvanic circuit of unit strength circulating (say right-

handedly) in each of the polygons: and the treating of any new or unused line as

a conductor which can, when necessary, be split into two traversed by equal and

opposite currents. It is probable that the known laws of such currents in a network

may lead to the proof of the existence of a single polygon when the figure is a

projection of a polyhedron.

7. Another method is suggested by Mr Kempe's solution of the map-colouring

problem (Nature, vol. xxi. p. 399). As the number of districts is, necessarily, n + 2,

and the aggregate number of their sides 6n, there must always be at least one

district with fewer than six sides. Now, one side may be erased from a district of

two or of three sides, and restored again, without altering the nomenclature of the

remaining lines. Similarly, either pair of opposite sides of a four-sided district may
be erased, and afterwards restored. But when we erase any two non-adjacent sides

of a five-sided district, a condition is thereby imposed on the nomenclature of the

remaining lines, with which I do not yet see how generally to deal

8. An immediate consequence of the theorem is that, in any network of

triangles (however many lines meet at a point) the sides of each triangle belong one

to each of three groups into which the whole set of lines can be divided. The
theorem itself follows, conversely, if this proposition be independently proved

9. In No. 494> of the Astronomische Nachrichten, Clausen has a problem closely

connected with the present subject. It refers to the minimum number of separate

strokes of a pen by which a given figure consisting of lines can be drawn. Listing,

in his Vorstudien zur Topologie, has shown how to find this minimum number by

counting the points at which an odd number of lines meet. In our present proposition,

if one polygon can be found containing all the points, it and one of the unused lines

together form one penstroke, and the remaining group of n 1 unused lines forms

the rest. If there be two polygons, they and one of the unused lines together form

one penstroke. And so on.

10. To apply the result above to the problem of map-colouring, insert a new

district surrounding each point of the map where more than three boundaries meet.

Then divide the boundaries, which now meet in threes, into three groups as above.

(The excepted case obviously cannot arise.) Now let Q separate the colours A and B,

or C and D\ \
t
A and G, or B and D

;
and H, A and D, or B and 0; and the thing

is done. For we may now suppose the inserted districts to become smaller, till they
vanish.

522
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LV.

ON MINDING'S THEOREM.

[Transactions of the Royal Society of Edinburgh. Revised June 23, 1880.]

THE following paper contains a short digest of investigations communicated to the

Society on several occasions during the past, and the present, session. The work had

been for some months laid aside, but my attention was recalled to it by Professor

Chrystal's valuable paper*, in which he treats Minding's Theorem as an example of

Plticker's methods, and also by the help of Rodrigues' co-ordinates. I am induced

to publish a few of my results in full, as I think that a comparison of the analysis

employed by Chrystal, with the very different analysis employed by myself, .may bo

useful as well as interesting, especially from the point of view of the simplicity of

the quaternion method. Even when the quaternion processes are written out at full

length, they are
'

in general shorter than the most condensed forms of ordinary

analysis ;
and there can be no doubt that they are much more easily interpretable

into the corresponding geometrical ideas.

A hastily-written proof of the main theorem, somewhat on the same lines as the

first of those now given, was printed in the Proceedings of the London Matfomatical

Society, No. 147. But the present version is much simpler; and it is requisite for

the intelligibility of the rest of the paper which, I repeat, is given mainly for the

sake of the quaternion processes involved.

I commence with a few preliminary transformations. This would be altogether
needless if quaternion methods were at all as familiar to the majority of mathematical

readers as are the more usual ones.

1. In what follows we have a good deal of use to make of certain properties
of linear and vector functions, so that some of the less obvious of them are here

briefly stated.

* " On Minding's System of Forces." Tram. R.S.E. xxix. p. 519.
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Let ,, aa , &c., /8,, $,, &c., be any two sets of vectors, and let us consider

the vector

*2F/3 ............................................. (1).

If we operate by V . <r, where a- is any vector whatever, we have

F<r*=F.<r2F/9a

-<*-*> .........
'
...............................(2)

= 2Feo- ................................................ (3),

if V . e be the impure part of the strain

$-2aflf/S( ) .......................................(4).

Hence if be put (as can always be done) in the normal form

where i, j, k form a rectangular unit system ;
we have

* = 2F/9a-F(i+ji7 + Jfe0) ................................. (5).

In the particular case which we shall chiefly require, it will be found that there

is a certain vector /Q such that

43-o.

Hence we may write
</>

in the form

where 7, 8 are any two unit vectors perpendicular to each other and to ft. If, now,

we change
y to 7 cos S- + S sin ^,

and 8 to 7 sin ^ + 8 cos ^,

(which are still unit vectors, perpendicular to one another, and to J3)

x 7' becomes 7' cos & 8' sin $-,

and 8' ,, 7 sin * + 8' cos fc.

These are at right angles to one another if

o a
y

*

This always gives real values of ^, corresponding to two definite directions at right

angles to one another. Hence we may always take

...................................(4')

where 7 and 8 are as before, and 7' and 8' are vectors at right angles to one

another.
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Another point to be borne in mind is that rotation of a rigid system may
be expressed by a special linear and vector function, # which possesses the following

characteristic properties;

(of which a particular case is

and

Also the conjugate of % is its reciprocal, or

*-*-'
These premised, we may attack the question.

2. When any number of forces act on a rigid system; & at the point

j3s at atg, &c., their resultant consists of the single force

= 2/3

acting at the origin, and the couple

=:2F/3a............................................. (1).

If these can be reduced to a single force, the equation of the line in which

the force acts is evidently

rjSp-SFjSa ..........................................(5)

Now suppose the system of forces to turn about, preserving their magnitudes,
their points of application, and their mutual inclinations, then Minding's Theorem,

proved (in Crelle's Journal, vols. xiv., xv.) by an excessively elaborate process, assigns

certain fixed curves in space, each of which is intersected by the line (5) in every
one of the infinite number of its positions.

3. To prove this, and to find the curves in question, we may proceed as

follows :

Operating on (5) by V . J3, it becomes

pfr-p80p = <t>0-<t>'0

with the notation of (2). Now, however the forces may turn,

is an absolute constant; for each scalar factor as 8/3J& is unaltered by rotation.

Let us therefore change the origin, i.e., the value of each a, so as to make

i.e., 40-0 ........................................(6)

Thus we see that <j> may be expressed in the form given in (4') above.
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4. Equation (5) is now

bVftp = FT/ + PW .......................................(5')

where 6 is the tensor, and ft the versor, of ft.

The condition that the force shall lie in the plane of the couple is, of course,

included in this, and is found by operating by 8 . ft. Thus

(7).

We have here all the data of the problem, and solutions can only differ from one

another in the mode of attacking (5') and (7). The most purely quaternionic mode,
so far as Hamilton developed his calculus, seems to be the following:

Writing (7) in Jie form

Sry($'+Vfty')
= 0,

we have at once

ty-VftV + ftVfty', )

whence tf- - Vfty' + ftVftB',}
....................................(7 '

where t is an undetermined scalar.

By means of these we may put (5') in the form

where w = y'Sy ( ) &SB' ( ).

Let the tensors of 7' and S' be elt e* respectively, and let ft be a unit vector

perpendicular to them, then we may write

btp
= a:ft + #'-*ft (8).

Operating by (nr a?)"
1

, and noting that

we have

x

Taking the scalar of the product of (8) and (8') we have

bWSp (vr
-

a;)-
1

p
= - -

(xft + e&J?)* - Sftvrft.

But by (7') we have

(9)

so that, finally, --)
(10).
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5. Equation (10), in which t* is given by (9) in terras of /8, is true for every

point of every single resultant. But we get an immense simplification by assuming
for ao either of the particular values e? or ef. For then the right-hand side of (10)

is reduced to negative unity, and the equation represents one or other of the focal

conies of the system of confocal surfaces

S>(tBr-/i)-
1

p = -gi
,

a point of each of which must therefore lie on the line (8). This is Minding's
Theorem.

6. A singular form, in which it can be expressed, appears at once from equation

(S'). For that equation is obviously the condition that the linear and vector function

shall denote a pure strain.

Hence the following problem : Given a set of rectangular unit vectors, which may
take any initial position: let two of them, after a homogeneous strain, become given
vectors at right angles to one another, find what the third must become that the strain

may be pure. The locus of the extremity of the third is, for every initial position,

one of the single resultants of Minding's system; and therefore passes through each

of the fixed conies.

Thus we see another very remarkable analogy between strains and couples, which

is in fact suggested at once by the general expression for the impure part of a

linear and vector function.

7. The scalar t, which was introduced in equations (7'), is shown by (9) to be

a function of ft alone. In this connection it is interesting to study the surface of

the fourth order

Srvr - (e, + e/) ra - Ze&TrSffr = 1,

where r = 0.

But this may be left as an exercise

Another form of t (by 7') is Syy' + SS&.

Meanwhile (9) shows that for any assumed value of # there are but two

corresponding Minding lines.

If, on the other hand, p be given there are in general four values of ft. For

variety we may take a different mode of attacking equations (7) and (5'), which

contain the whole matter. In what follows 6 will be merged in p.

8. Operating by V . /9 we transform (5') into

p + 0S0p--(7fly0 + &S'0) ..............................(5").

Squaring both sides we have

(11).
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Since /9 is a unit vector, this may be taken as the equation of a cyclic cone
;

and

every central axis through the point p lies upon it. For we have not yet taken

account of (7), which is the condition that there shall be no couple.

To introduce (7), operate on (5") by 8 . 7' and by 8 . &. We thus have, by a

double employment of (7),

^ } '

Next, multiplying (11) by $/3w$, and adding to it the squares of (12), we have

(13).

This is a second cyclic cone, intersecting (11) in the four directions /9. Of course

it is obvious that ^il) and (13) are unaltered by the substitution of p + yft for p.

If we look on /3 as given, while p is to be found, (11) is the equation of a

right cylinder, and (13) that of a central surface of the second order.

9. A curious transformation of these equations may be made by assuming p,

to be any other point on one of the Minding lines represented by (11) and (13).

Introducing the factor /9
s
(= 1) in the terms where # does not appear, and then

putting throughout

(11) becomes
-
pV + <SPp/>i

= 8 (PJ.
-

p) -sr (pl
-

p) .......................... (11').

As this is symmetrical in p, pi, we should obtain only the same result by putting

Pi for p in (11), and substituting again for ft as before.

From (13) we obtain the corresponding symmetrical result

(p
a - SppJ 8pliffp 1 + (Pl

a - SppJ Spvp = - Spp.S (Pl -p)*r(pl -p)-S (Pl
-

p) *T* (ft
-

p). ..(13').

These equations become very much simplified if we assume p and pl to he re-

spectively in any two conjugate planes ; specially in the planes of the focal conies,

so that SB'p
= 0, and $/ft = 0.

For if the planes be conjugate we have

p!
= 0,

Spvr*pi
= 0,

and if, besides, they be those of the focal conies,

p, &c.,

and the equations are

-pW + S'pp^SpWi + Spvrp .................................... (11"),

and p*Spi'Bpl + p l*Spiffp
= Spl'Gr*pl Spiff*p ................... (13").

T. 53
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From these we have at once the equations of the two Minding curves in a variety

of different ways. Thus, for instance, let

P,-P*
and eliminate p between the equations We get the focal conic in the plane of

yS
7

, y'. In this way we see that Minding lines pass through each point of each of

the two curves
;
and by a similar process that every line joining two points, one on

the one curve the other on the other, is a Minding line.

Another process is more instructive. Note that, by the equations of condition

above, we have

Then our equations become

i |

and
(/>' + ea

3
) Spivpi + (p? + eft Spvp = 0.

If we eliminate p
a or pf from these equations, tho resultant obviously becomes

divisible by Spisp or Spivrpt, and we at once obtain the equation of one of the

focal conies.

10. In passing it may be well to notice that equation (13) may be written in

the simpler form

8 . p

Also it is easy to see that if we put

6 =

we have (11) in the form

800 = 0,

and by the help of this (13) becomes

6* = Spvp.

This gives another elegant mode of attacking the problem.

11. Another valuable transformation of (5") is obtained by considering the linear

and vector function, % suppose, by which /?, 7, 8 are derived from the system

/S*, Uy' t
US'* For then we have obviously

P = XX& + XV*X& ....................................(O-

This represents any central axis, and the corresponding form of the Minding
condition is

8.yxv-*v=s.Sx*~*y .................................CO-

Most of the preceding formulse may be looked upon as results of the elimination of

the function x fr m these equations. This forms probably the most important
feature of such investigations, so far at least as the quaternion calculus is concerned.
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I employed the equation (5'") as the basis of an investigation, one or two of

whose results were communicated last session to the Society*. I will now give the

main features of that investigation.

12. It is evident from (5'") that the vector-perpendicular from the origin on

the central axis parallel to ^ is expressed by

T-xw*X^-
But there is an infinite number of values of ^ for which UT is a given versor.

Hence the problem ;
to find the maximum and minimum value of Tr, when UT

is given i.e., to find the surface bounding the. region which is filled with the feet of

perpendiculars on central axes.

We have

Hence

0**

0=
But as Tfi is constant

0-
These three equations give at sight

(w + iOxifr-tt'ffT,

where u, u' are unknown scalars. Operate by S.x/3' and we have

-Z*r-w0,

so that ^T(T + TS
)-

I T=O.

This differs from the equation of Fresnel's wave-surface only in having cr + r2

instead of -cr + T~J

\i.e.,
Tr for r

]
>
and denotes therefore the reciprocal of that

surface. In the statical problem, however, we have

r'=0,

and thus the corresponding wave-surface has zero for one of its parameters.

[If this restriction be not imposed, the locus of the point

where < is now any given linear and vector function whatever, will be found, by
a process precisely similar to that just given, to be

8 . (T
- f ') (f <*>

+ T*)-
1

(r
- fff) - 0,

where
<f>

is the conjugate of $. This, however, has nothing to do with Mmding's

Theorem.]

* Proe. Roy. Soc. Edin., 1879, p. 200.

532
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13. As the reader may not feel secure of results derived by the differentiation

of a vector function operator, it may be well to obtain the result of last section

by a more usual process.

We obviously have by (5")

or, as in (11),

But also
f

S0Ur = Q.

P 1.

To make Tr a maximum with these conditions, we have

Sfafi = 0\

S00T-ol

80/3 =OJ

and, by elimination of and $ among these equations, we have as before

The first of the undifferentiated equations is that of an elliptic cylinder of variable

magnitude but constant form and position, the second a diametral plane, and the

third the unit sphere. Obviously there is one maximum and one minimum value of

Tr. These occur when the variable ellipse given by the first and second equations

touches the fixed circle given by the second and third. It may do so internally or

externally, and consequently the resulting equation gives two values of Tr for each

value of Ur.

14. This is, in fact, in quaternions identical with the second process employed

by Professor Chrystal. For, by writing r for p + ftSfip in (11) it becomes

TJ = flf/8w&

and in the same way (13) becomes

These, translated into Cartesian scalars, are Chrystal's equations (8) and (9) (Second

Method, Tram. R.8.E., xxix., p. 523). They may be obtained directly by a process

similar to that in section 8 above. Chrystal's first method is, of course, included

in the solutions afforded by the use of ^.

I may remark, in conclusion, that the process of section 4, leading to an

equation like (10) above, seems to be the most natural method of applying quaternions

to questions connected with congruencies.
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APPENDIX.

ON SOME SPACE-LOCI.

[Proceedings of the Royal Society of Edinburgh, March 21, 1881.]

(Abstract.)

THE class of problems treated is one to which considerable attention has been

paid of late, as for instance by Olaisher and others in this country, and by Mannheim,

&c., abroad.

Two years ago (Proc. R.8.E. 1879, p. 200), in connection with Minding's Theorem,

I investigated the space-locus of the feet of perpendiculars from the origin on the rays

of a complex. These were found to fill the space bounded by the two sheets of

the reciprocal of a Fresnel's wave-surface. The method I employed is capable of very

extended application in the same direction, and the following general process is

applicable to all the problems I have seen treated by the authors above referred to

Let p = a. + a;ft,

where 2/3 = 1,

be any ray of a complex ;
and let the scalar condition determining a point on it be

This determines # in terms of a, ft, and the number of independent scalar variables

is reduced by two additional data, such as a relation between a and ft (e.g ,

8.aft = Q), or a relation among the values of x (eg., /(#,, x2 , ...)
=

0), according to

the nature of the complex

We have now to make Ta a maximum or minimum, subject to the additional

condition that

Ua. = constant.

This gives rise to three scalar equations which may be written

or, finally, 8.^^ =
0,

i.e., ft is coplanar with vlt v* t
which are usually normals to surfaces at the points of

intersection with a ray of the complex. This is one of the chief points of Mannheim's
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treatment of the subject. When, as is often the case, the surface on which the

complex is made to depend is an ellipsoid
'

the last written equation usually takes the form

*<* = 0,

whence - 1 = z*S . a
(y<J> + 1 )- a.

In this equation y and z depend upon jPa, so that the space-locus is closely connected

with Fresnel's wave-surface, whose equation is capable of a very remarkable series of

transformations, depending on the properties of the expression
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LVI.

A ROTATORY POLARIZATION SPECTROSCOPE OF GREAT
DISPERSION.

[Nature, Vol. xxn., 1880.]

I HAVE just had an opportunity of trying, on a fine aurora, an instrument for

measunng the wave-length of monochromatic light in terms of quartz-rotation of its

plane of polarization. My apparatus is, as yet, very roughly put together, so that I

got no measurements of any value, but to-night's experience has shown me that the

method, while simple in application, is capable of very great accuracy.

The construction of the instrument will be easily understood from the annexed

rough sketch. The course of the light is with the arrows. N is a Nicol, S an

adjustable slit, L a lens at its focal distance from S, Q a plate of quartz cut

perpendicularly to the axis, P a double-image prism, and E a small direct-vision

spectroscope, which may be dispensed with when absolutely monochromatic light is

to be examined.

When the instrument is properly adjusted by daylight the two images of S
formed by P are parts of a straight line, so that E gives two spectra side by side.

These are crossed by dark bands, which arc numerous in proportion to the thickness

o'f Q, and move along the spectra as N is made to rotate.

In observing a bright-line spectrum the slit is to be made as wide as possible,

subject to the condition that no two of the differently-coloured images shall overlap.

We have thus a pair of juxtaposited rectangles for each of the bright lines, and

the angular positions of N, when the members of the several pairs are equally bright,

are read off on a divided head. I find by trial that a division to 2 is quite

sufficient.
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L Q P

A first set of readings is taken with a plate Q (permanently fixed in the

instrument) 5 or 6 millimetres thick. Then an additional plate of quartz 100

millimetres or more thick is introduced between Q and L, and a second set of

readings is taken. From the readings with the thin plate we find approximately the

positions of the spectral lilies, and the more exact determination is obtained from

the readings with the thick plate.

This is the chief feature of the instrument. The actual error of any one reading
is not more than 2, but when a thick plate is used the whole rotation may be

from ten to twenty or even thirty circumferences. By thus increasing the thickness

of the quartz plate very little additional loss of light is incurred, while the inevitable

error forms a smaller and smaller fraction of the whole quantity to be measured.

The graduation of the instrument is to be effected by very careful measurements

upon a hydrogen Qeissler tube, and comparison with the known wave-lengths of the

hydrogen lines.

An observer furnished with this instrument (which is not much larger than a

pocket spectroscope) and with a long rod of quartz, will be able to make measurements

of any required degree of accuracy.
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LVIL

NOTE ON A SINGULAR PROBLEM IN KINETICS.

[Proceedings of the Royal Society of Edinburgh, March 7, 1881.]

THE following problem presented itself to me nearly thirty years ago I cannot

find any notice of it m books, though it must have occurred to every one who has

studied the oscillations of a balance :

Two equal masses are attached to the ends of a cord passing over a smooth pulley

(as in Atwood's machine). One of them is slightly disturbed, in a vertical plane, from
its position of equilibrium. Find the nature of the subsequent motion of the system.

The interest of this case of small motions is twofold. From the peculiar form

of the equations of motion, it is of exceptional mathematical difficulty. This is

probably the reason for its not having been given as an example in Kinetics. And
irom the physical point of view it presents a very beautiful example of excessively

slow, but continued, transformation of mixed potential and kinetic energy into kinetic

energy alone.

If r and 6 denote the polar coordinates of the disturbed mass, we have

(supposing the curvature of the pulley to be large) by Lagrange's method

Writing %gr for r, and 0V2 for 6, these become

54
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Hence, the motion of the disturbed mass w [of] the same [character] aa that of
a particle of unit mass under forces &* along\ and 20 perpendicular to, the radius

vector.

[The work done by or against this system, along any arc of a curve, is the

difference between the values of rff* at its ends.]

Changing to rectangular coordinates (x vertical), and maintaining the same degree
of approximation as before, we have

-5.)

1

The first suffices, without farther analysis, to show that the vertical acceleration

of the disturbed mass is persistently downwards. Hence, the result of the disturbance

must be the continuous transformation of the mixed potential and kinetic energy,

of the vibration originally given to the disturbed mass, into kinetic energy of

translation of the whole system.

The equation of energy is easily seen to be

ty

and here the term "- has an infinite series of successively diminishing maxima.

From some rough calculations I find that the amplitude of y increases, but

much more slowly in percentage value than does x\ so that the maximum inclination

of the vibrating part of the string to the vertical constantly diminishes.

It would be interesting to obtain an approximate solution of the equations (1),

and to compare the motion of the vibrating mass with that of a simple pendulum
whose cord is uniformly lengthened. The equation for the latter case has been fully

treated by Fourier in his Theorie de la Chaleur.

When both masses (in the original problem) are simultaneously disturbed, it

appears from the equations of motion that that mass whose end of the cord vibrates

through the greater angle will have downward acceleration. As this in the former

case was found to be accompanied by a diminution of the angle, the angle of the

ascending mass should increase ; and thus it would seem that after a time the

downward acceleration will change sign. Thus (if the string were long enough) the

vertical motions of the system would be oscillatory. But this curious result cannot

be verified without proceeding to a formal approximation. I have not found time to

carry out this laborious but not difficult work.

Another variety of the problem is easily formed by seeking the requisite ratio

of the two masses, so that the motion shall be wholly periodic, with a period equal
to that of the vibration of the disturbed mass. This is, relatively to the above, a

very simple question.
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LVIII.

ON MIRAGE.

[Transactions of the Royal Society of Edinburgh, Vol. xxx. Read December 5, 1881.]

I WAS led to the following investigations while seeking an elementary, and at

the same time instructive, application of Hamilton's General Method in Optics*. They
were completed in all but a few of their numerical details before I met with the

remarkable paper by Wollastonf, in which the subject of multiple atmospheric

images seems first to have been treated by a sound physical method. Wollaston's

experiment with a long bar of iron raised to a high temperature suggests undoubtedly
the true explanation of at least many of the curious phenomena seen by Vince*,

Scoresby, and others. But he seems to have thought that sufficient temperature-
differences for the natural production of the phenomena could not exist in the

atmosphere ;
and thus the latter part of his paper, in which he tries to explain

them by the agency of aqueous vapour, presents a singular contrast to the strength

and correctness of the earlier part. A good deal of what follows is implied, if not

directly stated, in Wollaston's paper, but I think there is sufficient novelty in what

remains to justify my bringing it before the Society.

The subject is one which offers immense facilities for the construction of elegant

"Problems," but I have confined myself to the simplest hypotheses which (while

enabling me to obtain exact results) promised to throw light upon it : feeling that

anything else would be out of place m endeavouring to explain a class of phenomena
which have probably never occurred twice in exactly the same way. I have, however,

shown at least the general nature of the alterations to which my results would be

subject in consequence of modification of the assumptions.

* Tram. B. I. A., 1883. t Phil. Trans., 1800.

t Phtl. Trans., 1799. Greenland, and Trans. Roy. Soc. Edin., ix and M.

542
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1. Most of the images seen by Scoresby were inverted, and elevated above the

apparent position of the object seen directly, and each series of them (when there

were more series than one) can be explained at once by the existence of a horizontal

stratum of air in which the rate of diminution of refractive index in ascending is

greater than that in the air immediately below. [This is merely the sort of arrange-
ment which, as is perfectly well known, produces the mirage of the desert; but

turned upside down.] But the chief phenomenon figured by Vince, and also in a few

cases by Scoresby, involves pn inverted image with a direct image above it. In

some other cases observed by Scoresby, the direct or the inverted image alone was

seen, the object itself being situated .far below the horizon. Some excerpts from

Scoresby's figures (which are themselves composite) are given in Plate XI., fig. 1. A
comparison of these observations with Vince's diagram of the supposed courses of the

rays seemed to me to show that a single transition stratum may be capable of giving
either a single image, direct or inverted according to circumstances, or an inverted

image with a direct image above it. As, in at least the greater number of the

observations to which I have referred, both the object and the spectator seem to

have been below the transition stratum which caused the phenomena, I do not think

that Wollaston's square bottle with two interdiffusing liquids presents a fair analogy.

For, with that arrangement, the rays enter and emerge from the transition stratum

by its ends, and not by its lower side, as, from Vince's diagram, they would appear
to do in nature.

I propose to return to the consideration of this arrangement of Wollaston's.

But meanwhile I will sketch (1) the mode in which I was led to see that, under

proper conditions, a simple continuous law of refractive index may lead to the

formation of three images, (2) how the consideration of the mode in which these

are produced in a medium whose refractive index varies to four-fold or more of. the

minimum value, led me by necessary steps to see how they can be produced in the

lower atmosphere whose refractive index can vary, even in extreme cases, by only

1/40,000 or so.

2. To fix the ideas, we will begin with a particular case, which is a thoroughly

illustrative one so far as theory is concerned, and is also interesting as it reproduces,

with singular accuracy, the exaggerated diagram by which Vince endeavoured to

explain his observations.

The ordinary characteristic of a maximum or minimum is that it differs from

neighbouring values of the function by a quantity depending on the square of the

increment of the independent variable. Assuming then, without any inquiry as to

the other physical circumstances, the existence of a medium whose refractive index

is represented by the equation

it is clear that y is a plane of minimum refractive index.
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Hamilton's equation for this case is, T being the characteristic function,

since it is obvious that the path is in a plane perpendicular to y = 0.

A complete integral is

T = ax + I dy Va
2 + y

2 - a2
.

Hence the equation of a ray is

C = X-A^J3.

[This result might, of course, have been at once obtained from the corpuscular

theory. For its principles give

Equation (2) has two distinct forms according as a is greater or less than a.

These are separated by the limiting form when a = a, viz. :

a logarithmic curve asymptotic to the axis of x. When a is less than a, the ray

passes through the plane y = Q, and we need not consider it further.

We may therefore assume

and it is obvious that y cannot he less than ij. With this expression for a, the

mere form of the equation (2) shows that the curve has a vertex at the point

y = 77, and that it is symmetrical about the ordinate through that point.

We must remark, in passing, that this property of symmetry about an axis, at

the extremity of which is a vertex, is common to groups of rays in all media in

which the refractive index depends only on the distance from a particular plane :

the groups which possess it being those which either do not reach that plane, or

pass through it more than once.

3. Let us now consider only rays which have vertices, and which pass through

a particular point a; = 0, y = b, Then if be the ^-coordinate of the vertex, equation

(2) becomes

WoM^f .-^- ....................................(3).

.Nvy-7,
2
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This is the equation of the Locus of Vertices of all rays (having vertices) which

pass through the point 0, 6. We may write it in the form

(3).

To draw the corresponding curve we may construct, for different values of 6, the set

of curves

The ordinates of these curves are proportional to the reciprocals of those of a

common catenary.

Next construct, for the given value of a, the equilateral hyperbola whose

equation is

Then we have, at once, for any given value of ?,

For the purpose of carrying out this process we have tabulated as below, a few

rough numerical values: and by the help of these the curve (4) has been drawn,

along with (3), in three forms
;

for b = 2a, 6 = 4a, and 6 = 6a. See
fig. 2. In each

case (4) is represented by a dotted curve, (3) by the corresponding full curve.

1}
. fb IV

\
\ A 7?' /I 1," ,

. .

,

6 log^-
+

/s/--lj V 1 -^ V4 +
6'

(ratlo)

O'O oo 10 0-5 0-5

0-05 369 0-99 0'51 0'51

0-1 2-99 099 0-51 0'51

0-2 2-29 0-98 054 0'55

0'3 1'87 0-95 0-58 061

0-4 1-57 092 0-64 070

0-5 132 0-87 0-71 0'82

0-6 110 08 0-78 0-97

0-7 0-89 0-71 0-86 T20

0-8 069 0-6 0-94 1'56

0-9 0-47 0-44 1-03 2'36

1-0 0-0 0-0 1-12 oo

4. Let us digress to consider what we learn, in any case, from the form of

the Locus of Vertices.
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I

It is obvious that if, instead of the special law of refractive index assumed

in the preceding section, we had written quite generally

(3) would have become

while (2) would have been (for rays passing through the point 0, 6),

The new forn of (2') shows that, for a given value of y, as increases with

increase of a; provided no vertex is reached. For the denominator of the differential

is less, and the integral is multiplied by a greater factor, than before. Hence two

contiguous rays from the same point cannot again intersect till one, at least, has

passed its vertex. When the vertex is included within the limits of integration, (2')

may by the symmetry of the ray be written

Now the middle term (as we have seen) is positive, and increases with a, if

y>b. Hence the second intersection of the rays which have the common point 0, b,

is at a point where y > b, if and only if, f increases as a increases ; id., if the line,

drawn from the vertex of the ray nearer to the minimum plane to that of the

other, leans back towards the first common point of the two rays. The converse is

easily seen to hold, by taking the second point of intersection as the starting-point

and reversing the rays. Hence, if the minimum stratum be horizontal, two neighbour-

ing rays, issuing from a common point below it, and originally directed above the

horizon, intersect again before they have got back to the level of their former

intersection, if their vertices be at a part of the curve of vertices where the tangent
leans backwards over the starting-point, and vice versd. This proposition is, in fact,

obvious from a mere inspection of the diagram fig. 3, in which the dotted curve is

that of vertices, the eye being at E.

To apply it to the case of phenomena such as those observed by Vince and

Scoresby, suppose the strata of equal refractive index to be horizontal. Then two

rays slightly inclined to one another, leaving any point in a common vertical plane,
will in general intersect one another before they again reach the level of the

starting-point, if, and not unless, the vertex of the higher ray be horizontally nearer

to the starting-point than that of the lower ray; i.e., if the part of the curve of

vertices concerned leans towards the starting-point. Also, as is well known, when two

rays slightly inclined to one another, cross once between the eye and the object, the

image formed is an inverted one.
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5. Hence the following graphical method for finding the number and characters

of the images of an object situated at the level of the eye. Trace the curve of

vertices for all rays leaving the eye in the vertical plane containing the object.

Draw also a vertical line midway between the eye and the object. The intersections

of this line with the curve of vertices are the vertices of all the paths by which

the object can be seen, when the eye is in the assigned position. Or, what comes

to the same thing, but (unlike the simpler construction) admits of application to an

object at any level, draw the curve of the vertices as before, and then draw another

for an eye placed at the object. Their intersections determine the vertices of the

rays giving all possible images.

It is easy to see that, at the intersections with the vertical line midway between

eye and object, the curve of vertices, if continuous, must alternately lean from, and

towards, the eye, i.e., the images seen are alternately erect and inverted ;
their

number depends of course upon the form of the curve of vertices; which, in its

turn, depends not only upon the law of refractive index in terms of level, but also

upon the position of the eye. [This alternation of images does not necessarily hold

when eye and object are at different levels.]

Thus, as has long been known, the vertices 'of all the coplanar paths in which

a projectile, fired with a given velocity, can move, with different elevations of the

piece, He in an ellipse whose major axis (double the minor axis) is horizontal. The

lower half of this ellipse leans from the gun, the upper half towards it, and these

correspond to angles of elevation of the piece, respectively less and greater than 45.

In the former case (when the elevation is less than 45), a slight increase of

elevation increases the range on a horizontal plane, so that the new path is wholly
above the old one

; which, however, would intersect it under the horizon. In the

latter case a slight increase of elevation shortens the range, so that the two paths
must intersect before reaching the ground.

6. Recurring to the imagined medium in which

fi?
= a? + y*,

we see by fig. 3 the paths of the rays by which the three images of AB are seen

by an eye placed at E. This figure, as already remarked, is (with the exception of

the introduction of the curve of vertices) almost identical with that of Vince in the

Phil. Trans, for 1799.

But it is easy to see that, although this shows the possibility of three images
in the relative positions observed by Vince, it is m no way capable of explaining
his observation. For the existence of three images, in such a medium, requires (as

I have found by an approximate method)* that b be at least =3'68a. Hence the

* When ^=0, we have 1 + '= ^/ 1 -
]

log
(-

+^ ~
3
- iV Plotting the curves whose ordinates (in

terms of 17) are expressed by these two quantities, we find that they touch when 6= 8-68n.
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refractive index at the level of the eye (^a* + 68
) must be at least 3'8 times that

in the minimum stratum. And the distance at which an object on the horizon

requires to be situated, in order that there may be three images of it, lies within

exceedingly narrow limits, unless the refractive index at the level of the eye very

greatly exceed this lowest admissible value.

7. The possibility of three images of an object at the level of the eye evidently

depends on the existence of three values of y, for the s/une value of x, in the curve

of vertices. It is therefore necessary that we should study the question from this

point of view.

On thinking of the relative forms of the curves of vertices in fig. 2
;

the first

of which gives onlv one image, the second and third (in certain cases) three: I saw

that the point of inflexion, on which the triple value of y depends, is due to the

gradual diminution of curvature of the ray near the eye (for rays of a given
inclination to the vertical) as the eye is placed lower in the medium. Hence any

ariangement which lessens the curvature of the lower parts of the rays will increase

this effect.

In fact, the portion ABC of the ray OB (fig. 4) is congruent with the ray abc,

if only the tangents at A and a be parallel. Hence the point B would be shifted

to b if the ray Oa were straight (or at all events, less curved than OA) and the

angle at a equal to that at A.

Thus it was at once obvious that the curve of vertices (fig. 5) in the stratum

above RS, might be made asymptotic to that line towards the right of the figure

(the eye being still at 0), if only the stratum below it were of uniform refractive

index, or at least of a refractive index diminishing so slowly with increased height
that a ray from could intersect RS at a practically infinite distance. This at

once showed me the general nature of one mode of explanation. The curve of

vertices QPQ' in the stratum RU will now be asymptotic, towards the right, to both

RS and TU, and therefore can be cut in two points by a sufficiently distant vertical

These points correspond to Vince's two upper images, the third and lowest is seen

by rays which have not reached the upper stratum, and for which the corresponding
branch of the curve of vertices is the horizontal line OM, passing through the eye.

8. To repeat : the conditions requisite for the production of Vince's phenomenon,
at least in the way conjectured by him, are, a stratum in which the refractive index

diminishes upwards to a minimum (or, at all events, nearly to a stationary state);

and, below it, a stratum in which the upward diminution is either considerably less

or vanishes altogether. The former condition (the fall to a nearly stationary state)

secures the upper erect image, the latter the inverted image. When the former is

not present, we have the phenomenon so often observed and figured by Scoresby.
This requires merely a change from a slowly diminishing refractive index to a more

quickly diminishing one, and may occur simultaneously in more than one horizontal

layer. Turned upside down, this arrangement gives the ordinary mirage of the desert.

T. 55
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When this condition is not present, but only the stationary state, we have Vince's

upper erect image without the inverted one. This is figured several times by

Scoresby.

9, If, instead of a plane of minimum, we have a plane of maximum, refractive

index, we may assume

/i'-a'-iA

An investigation precisely similar to the preceding gives for a ray passing

through 0, 6 the equation

x SB Vtt* w9
f sin"

1 - sin" 1 -
) .

\ V nJ

Each ray therefore is a harmonic curve, whose level line is in the maximum

stratum, and which passes through that stratum an infinite number of times. The

locus of vertices is

Here t) is to be taken positive when n (any integer) is even, and negative when
it is odd.

The following rough table suffices to determine the general form of this curve

in the particular case a 56. It is shown in fig. 6
;
and it has been foreshortened

for convenience of representation.

b 2 .6- COS"1 - T
t] TT V)

n=0 n=l

1-0 00 00 f8 9-8

"

-

095 02 0-98 8-8 1076

0-9 0-29 1-39 8-35 11-13

08 0-41 1-98 770 1166

07 051 2-42 7-16 12'0

0-6 0-59 2-78 6'64 122

0-5 0-67 3'05 0-11 12*21

0-4 0-74 3-20 5-46 1186

0-3 0-80 2-97 4-47 10'41

0-25 0-84 1-9 2-5 6'3

02 087 0-0 O'O O'O

0-1 093
00 100

The general problem of determining the images is, in this case, a very com-

plicated, though not difficult, one
;

but it becomes much simplified if we assume as

before the object and eye to be at the same level. It is obvious that a vertical

line, midway between the eye and the object, will cut the curve of vertices an
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infinite number of times, both above and below the maximum stratum. Thus there

is in such a case an infinite number of images, which are seen by rays which

have crossed the maximum stratum an even number of times, in which zero may
be included. These must each have one, or some other odd number, of vertices

between the eye and the object, and the horizontal distance between two such

vertices is

which is therefore less for that one of two rays which intersects the maximum plane

at the greater angle.

In nature, of course, the number of images depending on a law like this must

always be finite, because the utmost percentage change of refractive index in the

lower atmosphere is very small. But, independent of equilibrium considerations, there

is the farther objection that it cannot be reconciled with the appearances seen by
Vince and Scoresby. For these were, in the main, very similar to one another for

all distances of the object beyond certain limits
;

while with the present assumption,

the appearances presented by an object moving to successively greater distances

would exhibit a species of qitasi periodic change which I have nowhere seen described.

And, if we keep to probable changes in the refractive index of the atmosphere, this

law will give only one image : not, of course, in the true direction of the object :

but erect, and therefore not properly coming under the designation of "mirage."

10. After trying a number of assumptions as to the law of refractive index in

the transition stratum, I finally chose for detailed examination the following.

p* = a* 4- & cos^ .

This seemed to me particularly worthy of investigation, for it must be at least a

fair approximation to the state of matters near the common boundary of two inter-

diffusing fluids, or of two masses of the same fluid at different temperatures. This

follows from the facts that : it gives a stationary state at y = 0, with a maximum

refractive index; and another at y = l), with a minimum index. Near y = ^
tnere 18

a stratum of greatest rapidity of change of index. This hypothesis has also the

advantage of leading to equations which can be treated by the ordinary elliptic

integrals.

With this law it follows that, if the eye be in the piano y 0, the equation

of the curve of vertices is

V'
y

cos ?
6

552
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The equation of the path of a ray is

dy
.-

/
,V C

where sin
-=-j-

= sin -' sin
^

We have also

da;

and, for y = 0, this takes the value

For the application of these formulae the following little table has been prepared :

I J- 5 iw
00 00

7T/2 7T/2

0-1 6-39 1-58 1-60

0-2 3-24 161 1-69

03 2-20 166 1-87

0-4 170 1-74 2-18

0-5 1-41 1-85 270
0-6 124 2-01 3'67

0-7 1-12 224 574

0-8 105 2-60 11-53

0-9 1012 3-26 4224

0-95 1-003 394 164-17

0-975 100077 4-62 650-85

10 1-000 oo QO

The headings explain themselves. The last column is required, as will soon be

seen, for the determination of the magnitudes of the images, as compared with that

of the object when seen (at its true distance) through uniform air.
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11. Let us now extend the formulas of 4 to the case of a stratum of depth

c, in which the refractive index ia constant (=^/(c)); surmounted by another of

thickness 6, in which the index is

The equation of a ray, passing from the origin, which we now take in the lower

surface of the inferior stratum, is

# = a I

Jo

While y is not greater than c, this is the straight line

**V/

But when y is greater than c, we have

(2").

Also, for the branch of the curve of vertices which is in the upper stratum (the

other branch being, of course, the axis of x),

Fig. 5 has been roughly traced from this formula and the curve of
fig. 2.

12 In the next following equations, iccumng to the form

ff = Q? + & COS
^ ,

we will simplify matters by making a=l, and altogether neglecting the terms in ea

when they are added to others not containing e This will be fully justified, so far

as air is concerned, m a subsequent section.

By 10, 11 the equation of the curve of vertices is

c TT; &V2 ? d$

If we write

. . TTT? tan~ sm
26

=
/2~"

'

where 9 is the inclination of the straight part of the ray, this becomes
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Differentiating, and eliminating 8k, remembering that 9 is always very small (so

that sec 8 = 1 practically), we have

By means of these expressions we can easily calculate the relative apparent vertical

heights of the various images.

For, if there be a small object, of height h, at a distance 2 in a horizontal

direction, it will be seen direct (through the stratum of uniform density) under the

angle

h

if-

But the imago is obviously seen under the angle 80, corresponding to rays

which, leaving the eye, pass through its upper and lower points. If 2 ( + 8) be

the range of the ray through the upper point of the object, we obviously have (to

a sufficient approximation),

and thus we find

Hence the ratio, of the apparent altitude of the image to that of the object as

seen directly, is

In passing, we observe that, as it is easy to see, the multiplier of h in the above

expression for 80 represents the divergence or convergence of the pencil which

reaches the eye from a point of the image. It expresses convergence when its

value is positive.

13. Let the value of % be given, a suppose; then we have, to determine k,

the equation
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I
The short table ( 15) which follows shows that this equation gives two real

values of k (say ki and ky) for all values of a exceeding a certain limit. For the

quantity J is infinite alike for ij
= and for y = b, and has one minimum only.

The angular separation of the two corresponding images of a point on the horizon is

This quantity must obviously become less as the object approaches the spectator,

for the values of k become more nearly equal. Its utmost value is \/2 e.

14. If the object be now raised above the horizon, let its coordinates be 2a, h
;

then for either of the rays which pass through an image

. *>

. h

By the process of 13, above, we find that the ratio of the apparent heights of

the image and object is now

which agrees with the former result when h = 0.

By a well-known optical theorem, the result would have been the same if the

object had been left where it was, and the eye had been elevated through a

height h.

It is well to observe here that, as the eye and object are not now on the

same horizontal line, we can no longer conclude without special investigation that

only three images will be produced. But this opens up a new question, somewhat

more complex than those with which we are engaged. I may recur to it on some

other occasion. For the present I confine myself to repeating the remark, that if

we draw the curve of vertices as before, and in addition draw that corresponding
to an eye placed at the object, the intersections of these two curves give all the

possible vertices. This is the obvious modification which the process requires, when

the eye and object are not at the same level. In the present case, we see at once

by this process that no new images come in.

15. The following numerical values have been calculated for the purpose of
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illustrating these formulae. The symbols employed are the same as in the analysis

above :

6 = l<te i-. 6-^
J-jgg

16, We must now consider, so far as is necessary, the physical properties of

air: and observations which have been made as to actual changes of temperature
at different elevations above the earth's surface. There is no necessity for dealing
with very exact physical data, because we must make assumptions as to distribution

of temperature which cannot, at the best, be more than rough approximations. All

that we can attempt to show is, that the observed phenomena are of a character

and on a scale compatible with the known properties of air, with observed changes
of temperature in the atmosphere, and with the arrangement we have suggested for

the production of these phenomena.

Thus, although aqueous vapour diminishes the refractive index of air, the practical

effect is so minute at its utmost that we neglect it- a very slight change in our

assumption as to temperature would be sufficient to make up for it.

Assume, then, for air at C. and 760 mm.,

ft - 1-000194-1+
jig.

Assume farther, what is only approximately true, that the refractive power depends
on the density alone, and is proportional to it : i.e.,

The next assumption : that the air is practically in hydrostatic equilibrium, when
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such phenomena are observed : is probably not far from the truth, except in the
case of the mirage of the desert. It gives

dp$''
or, with the laws of Boyle and Chailes,

E
~dy

~~ 9P '

Now if H =: 26,000 feet, be the "height of the homogeneous atmosphere," we have

so that the hydrostatic equation becomes

d(p_
dy

~
H'

or, to a sufficient approximation,

Idt 1 _ J_ dp
tu dy~ H p dy

Instability occurs when ~ is positne. Hence the greatest rate of fall of

temperature, per foot of ascent, which is consistent with stability is

dt tn 274

dy~ H~ 26,000
C>

1 05 C. per hundred feet.

Glaisher*, in a captive balloon, on two occasions out of twenty-seven, observed

the fall of temperature m the first hundred feet to be 1
0<8 F. and 1'9 F. respectively.

On other three of these occasions it was 1 7F., 1 5 F and 1'3 F. respectively.

The first two correspond almost exactly to the 1 05 C. above computed for a

stratum of uniform refractive index. The temperature near the earth's surface was

on these occasions 73 6 F. and 76 2 F.
, or, roughly 24 C. The greatest rise of

temperature per 100 feet of ascent, which he observed on any of these twenty-seven
occasions was 0'3 F. only. It seems from what follows, therefore, that on none of

these occasions would Vince's phenomena have been possible.

17. To fix the ideas, let us now assume that the first 50 feet of air is of

uniform density, and that next there is a stratum of 50 feet thick in which the

refractive index is given by

,
IT (y

-
50)

p* = a3 + e2 cos ->,.
-

,

ou

B. A Report, 1869, p. 37

T. 56
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y being measured from the surface of the earth. Since we may look on /u, as

practically unity, we have by the formulas above

Id/*__-Li^- 1 (I ldt\

/* dy
~
3400 p <fy~~3400\#

+
t dy)

*

Hence, by our assumed law of refractive index,

JL i ^ - !*9? H* ' 7r(y-50)

Hence the greatest rate of change of temperature per foot of ascent (at

y = 75 feet) is

274 x 347T63 - 0-0105.

The whole change of temperature, from the bottom to the top of the stratum, is

274 x 3400ea - 0'53.

Both of these quantities are in degrees centigrade.

18. To get an idea of the magnitude of e*, we note that, by Scoresby's

observations, the elevation of the images above the horizon is usually about 10 or 15

minutes of arc at the utmost. Hence, by the value of
-j^

in 10, we may assume

as an upper limit,

or
'

ea = 0-000008.

With this, the greatest rate of rise of temperature in the assumed stratum is

0'22 C. per foot of ascent, and the whole rise is about 6 9 C. These quantities,

moderate as they are, would be greatly diminished by our relinquishing the assumption
that the density in the lower stratum is constant.

But even this indicated rise of temperature with elevation has been actually

observed. Thus Glaisher* gives, for July 17th, 1862,

Time. Altitude. Temperature. By Gridiron Thermometer.

10.30 A.M 19,415 feet 38-l F. 38-l F.

10.35A.M. 19,435 feet 43-0 F. 42'2 F.

10.39 A.M. 19,380 feet 37'0 F. 36'5 F.

The greatest difference here observed is as much as 5 F. m 20 feet
; i.e., at

the rate of 12'5 F. or 7 C. per 50 feet, precisely what is required above.

B. A. Rtport, 1862.
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19. We have another and independent mode of testing whether this value of

e accords with observation. For Scoresby tells us that, only on rare occasions and
then only slightly, were objects at four miles' distance affected The usual distance

was 10 to 15 miles. Now, by the table in 15 we see that the nearest object of

which an image can be formed is distant

ire

or, with the above value of e, about 12 miles.

There is thus a fair agreement, so far at least as these tests can tell us,

between the results of our hypothesis and observation.

The table in 15 shows that, with the same value of e, and the same thickness

of the lower stratum, as before, but with the assumption of a transition stratum of

a thickness of five feet only; the distance of the nearest object of which an image
could be formed would be about six miles only. A still farther reduction of the

thickness of the transition stratum reduces this least distance still farther; but it is

clear from the table that there is a limit somewhere about five miles. This would

be still farther reduced if we supposed the lower uniform stratum to have a depth
of less than 50 feet On the other hand, we see that an increase of thickness of

the transition stratum introduces distances greater than are consistent with observation;

unless, indeed, the thickness of the lower stratum be at the same time reduced. In

the table $ and C5 depend upon the ratio of 6 to c ;
is proportional to c.

20 The columns headed (ffi in the table of 15 give, as shown in 12, the

magnitudes of the images relative to that of the object seen directly. They show

that the inverted image is always taller than the object. This is consistent with

Scoresby's observations. When the object is not near the critical distance, however,

this magnification is not considerable: even if we assume a 50-foot transition

stratum. On the other hand, the erect image, except when the object is not far

beyond the critical distance, is much smaller than the object. Moreover, as is

obvious from 12, 15, this image is seen by converging rays No doubt they are

so nearly parallel as to be capable of producing distinct vision in a normal eye ,

but the remark is necessary as showing how different, in some respects, is the

phenomenon from one of Wollaston's imitations of it. Both images become infinite :

i.e., there is simply
"
looming

"
: when the object is situated at the critical distance.

And, as the tables show from the result of 13, the ratio of the distance between

the images to the apparent size of the object seen directly, increases as the object

recedes beyond the critical distance. All this seems to accord completely with Vince's

and Scoresby's observations. The only additional remark I need make is that possibly

Scoresby, from insufficient telescopic power, failed to sec (or at least to recognise as

part of the phenomenon) the upper erect image, when the object was much beyond
the critical distance. The table shows the great rapidity with which its height

562
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diminishes as the object recedes. The disparity between the images depends of course

upon the fact that we have assumed a law which places the plane of most rapid

change in the middle of the stratum. This may often not be the case in nature.

It might be useful to work out the whole again, assuming a law (for the transition

stratum) which would place the plane of most rapid change considerably out of the

middle of the stratum. But I cannot attempt this at present. The results of 14

seem also to be in complete accord with Scoresby's observations at Bridlington Quay,
which are the only detailed ,ones I have met with in which the point of view was

shifted to or from the transition stratum.

21. For an approximate estimate of the effect of the earth's curvature on

these phenomena, let us suppose the same law of density as before
;

but let the

strata be now level, i.en spheres concentric with the earth. The path of a ray m
the lower stratum will still be straight, but the angle at which it meets the

transition stratum (6 + -^, suppose) will now be necessarily greater than its original

inclination (0) to the horizon. See fig. 7.

If R be the radius of the earth, we find to a sufficient approximation,

(R + c) cos^-R = R^e,

As cannot be negative, the greatest value of ^ is

#
=
460

nearly ; c being 50 feet, as before. If we write - for this quantity, we have

2^)0= pyjr,

whence, by giving pyjr the values 1, 0'9, 0'8, &c., we easily obtain the following

table :

6 + ty

00000 0-0022

0-0002 0-0022

0-0005 00022

0-0008 0023

0-0012 0-0025

0-001G 0-0027

0-0023 0032

0-0033 0-0040

0053 0-0057

00110 0-0112
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Now if we take the value of e as in 18, we have 0004 for the greatest
value of +

ijr,
which is consistent with the rays not passing through the transition

stratum. This corresponds to

= 0-0033 ==L = 12/ nearly-oOO

Hence, with this value of e, other assumptions remaining the same, even the

upper erect image could not (on account of the earth's curvature) be elevated more

than about 12' above the horizon, and the nearest object of which multiple images
could be formed would be at a distance of about 13 miles. Greater values of e

might remove this difficulty, but they would introduce greater changes of tem-

perature. This si jws, therefore, that the assumption of a lower stratum of uniform

density is untenable. If there is to be a simple arrangement in that stratum,

it must therefore be such that the refractive index diminishes with elevation,

but, of course, less rapidly than in the lower half of the transition stratum.

The effect of this would be to slightly raise the images, and to reduce the critical

distance.

Instead of the upper image, consider the lower one. This would be, at its

farthest, within the distance of the visible horizon as seen from an elevation of

50 feet. Hence no inverted image of the hull of a vessel could be seen if it

were more than 18 miles distant, and even then it would be seen horizontally.

The only ways of reconciling this with Scoresby's observations are (1) to assume

that the lower uniform stratum is much more than 50 feet thick
; (2) to assume

that it is not uniform, but gives rays a concavity downwards The former alternative

is inadmissible on several of the grounds already mentioned
;

so we are again forced

to assume the latter, which certainly holds if the temperature throughout the lower

stratum be constant.

22 In order that the above calculations may be applicable to the phenomena
shown by mter-diffusing solutions, it is necessary that the length of the vessel in

which the solutions are contained be great enough to allow all rays (by which the

images are seen) to enter and escape from the transition stratum by one of its

horizontal surfaces, and not by its ends By using a vessel nearly 4 feet long,

containing a layer of weak brine diffusing into pure water above, I have verified the

general accuracy of the results just given For those rays which enter or escape by
an end, the calculation is by no means so simple, and trial shows that the law

determining the relative magnitudes of the images is considerably modified. On the

other hand, when the vessel is so short and the rays so nearly horizontal, that each

ray, while passing through the vessel, may be supposed practically to move in a

stratum of uniform rate of change of refractive index, a very simple calculation

suffices to give the general nature of the phenomena produced. For the curvature

of a ray, in the vessel, may now be regarded as constant throughout. Here
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J. Thomson's formula* is immediately and usefully applicable. For, if lt -0,, be

the angles the ray makes with the horizon just after entering and just before

escaping, we have

where t is the length of the vessel. But, if a', -#</> be its directions before

entering and after escaping, we have approximately,

Thus the whole change of direction is

depending only on the rate of change, not on the value, of the refractive index.

Parallel rays, passing nearly horizontally through such a vessel, will all be bent in

the direction in which the refractive index increases: but that which passes through
the stratum of most rapid change of index will be the most bent, so that the

illuminated portion of a sufficiently distant screen on which the rays fall will be

terminated by a spectral band of which the violet is outermost. Measurements of the

position of this band, from day to day, from hour to hour, or even (in some cases)

from minute to minute, will give an extremely accurate mode of measuring the rate

of diffusion. To interpret their indications, however, a determination must be made

of the law which connects the refractive index of a mixture of the two fluids with

the relative proportions in which they are mixed. And it may not always, or even

usually, be the case that the stratum of greatest rapidity of change of refractive

index is necessarily coincident with that of most rapid diffusion. From the former,

however, the latter can always be found, and, so long as the original layers of the

fluids remain in part unaltered by the diffusion, the knowledge of the plane and

rate of greatest diffusion is sufficient for the complete determination of the other

circumstances. I believe that many important questions connected with diffusion may
be speedily and accurately investigated by this very simple method. I propose to

give a detailed account of it, with experimental results, to the Society on a future

23. In order to calculate roughly the number, position, and dimensions of the

images visible to an eye looking through the media nearly horizontally at a distant

*
B. A. Report, 1870. Thomson finds by a simple process, for the curvature of a ray in a mm-

homogeneous medium, the expression

1__ I dp

p
~

n dn
'

where n is measured towards the centre of curvature. The result is seen to follow immediately from the

corpuscular theory (in which /x=t>) by multiplying both sides by /*
a
, for it is thus found to be merely the

equation of acceleration of a corpuscle in the direction perpendicular to its path. It is really involved in

Prop I. of WoUaston'B paper (Phil. Trim., 1800).
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object, all that is necessary is to draw the caustic, as in
fig. 8. It consists, so far

as the transition stratum is concerned, of the two (practically) equal and similar

curves ABt A'F; which touch the stratum above and below, and have as common

asymptote the path of the most deflected ray. So long as the eye is not within

the region BAG, only one image is seen. But from any point within this region
two tangents can be drawn to the caustic, and a line can be drawn to the object

so as to pass altogether below the stratum. Thus there are three images. In order

that the middle one may be distinctly visible, the eye must be 10 inches or so

beyond the point of contact of the corresponding ray with the lower caustic. Then

the image is an inverted one. The others are always direct. [It may be remarked,

in passing, that the intersection of the ray AC with the screen is always definite

and measurable.]

Here the tipper image is always seen by diverging rays, the middle one by

diverging or converging rays according to the position of the eye. Contrast this

with the results given in 20. This middle image changes its direction far more

rapidly than the others when the eye is moved vertically. It coincides with the

upper image when the eye, gradually moved downwards, reaches the line DB. When
they meet, both become blue and then disappear by moving the eye farther down.

On moving the eye upwards, the middle image approaches the lower one, and they
unite arid disappear when the eye reaches the line DC. These results are easily

verified by trial, and I have mentioned them only with the view of bearing out my
statement, that this form of experiment, unless the tank be long enough, does not

give results the same as those of Mirage.

(Read 19th June, 1882.)

A few days ago, while finally preparing the above pages for press, I had

occasion once more to consult Wollaston's paper, and inadvertently took down the

wrong volume of the Phil. Trans. In it (the vol. for 1803) I found another paper
on Mirage by Wollaston, in which he speaks of certain articles by Woltmann and

Gruber, and regrets his inability to read German This led me to consult the

Register-band of Gilberts Annalen\ and I thus learned the existence of a very
elaborate memoir by Biot* which I had never seen referred to, and in which the

subject of mirage is exhaustively treated both by calculation and by long series of

exact measurements of the phenomena as seen by Mathieu and Biot at Dunkirk, and

by Arago and Biot at Majorca The previous work of Gruber, Woltmann, Biisch, and

others, is carefully summarised by Gilbert in vol. XL of his Annalen (1802) in notes

* M6m. de Vlwtitut, 1809
;

Rtcherches sur les R(fractions extraordinaues qui ont lieu prl* de Vhorizon.

I presume that my having been altogether ignorant of the existence of this memoir is connected with the

fact that it is unintelligible without the plates, and that these were not issued along with it. For in each

of the three first libraries which I consulted, that of the Society being one, this volume of the 3/cw. de

VIntMut is devoid of plates. Biot's memoir, however, was issued also as a separate volume, and a copy

of this, containing the plates, I procured at last from the Cambridge University Library.
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to his translation of Wollaston's great paper of 1800. A good deal of Biot'a work

is thus seen to have been anticipated. It may be well to quote here Gilbert's

remark as to the priority of explanation of some of these phenomena think of it now

as we may:
"In der That ist Wollaston der Erate und Einzige, der die Spieglung aufwtirto mit GlUck zu

erklaren unternommen hat, ob er gleich auch hierin noch sehr viel zu thun Ubrig lasat."

Biot, on the other hand, gives Wollaston credit only for the physical, as distinguished

from the mathematical, parts of his paper. He says:

"Sous le rapport do la physique, son travail ne laisae rien & ddsiror."

Biot has considered the subject from a point of view somewhat similar to that

which I had adopted, and anticipated of course the great majority of the more general

results at which I had arrived. I was occasionally almost startled as I looked through
his memoir, to find how closely (even in mode of stating them) I had reproduced
some of his main ideas. His whole treatment, for instance, of the ordinary mirage of

the desert : on the assumption that the square of the velocity of a luminous corpuscle

is proportional to the height above the ground, but only through a limited stratum,

together with the important effects of limitation of the stratum : is almost the same

as mme> except that he (inconveniently I think) uses the caustics in preference to the

curve of vertices, though he also notices the latter as the courbe des minima In con-

sequence, I had all but made up my mind to withdraw my paper, before I had looked

more than half-way through Biot's long memoir; for, though I found here and there

statements which I think inaccurate, these are of very small consequence compared with

the whole. But it was otherwise when I read farther, where Biot gives his tentative

explanation of Vince's observation. There I found our assumptions to be so entirely

different m character that, being fairly satisfied with my own, I thought I might still

reasonably produce them with their results My paper, therefore, appeals as it was

presented to the Society, except in so far as (a) a part of bhe introduction, (b) the

detailed examination of the ordinary mirage of the desert, (c) a discussion of the singular
outline sometimes presented by the setting sun, and (d) a few minor remarks, are

concerned. These parts have been simply struck out, the first as historically imperfect,
the others as practically a mere reproduction of what had already been satisfactorily

done by Biot, who had many opportunities of observing and measuring the phenomena.
As to the ordinary mirage, however, there can be no doubt that the discovery of the

existence of four images, when the eye and object are both above the hot stratum,

is far more easy by means of the curve of vertices than by the caustics employed

by Biot.

I transcribe some of the more important parts of Biot's remarks on Vince's

phenomenon, premising that it was of course impossible for him to have been ac-

quainted with Scoresby's observations, at least at the time when his memoir was written.

I fancy that, if he had seen these, he might have felt some doubts as to the

accuracy of his inference that the rays, in their course to Vince's eye, were probably
at first concave upwards', and this to such an extent as to make a vessel, which

was situated close to the ordinary horizon, show only its top-masts above the apparent
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horizon. He does not advert to the certainty that, had this law held over the

nearer parts of the sea, Vince would have seen inverted images under ships within

the visible horizon. None such are described. After quoting the passages in question

I shall add a few comments on them. To make them as intelligible as possible, I

have reproduced Biot's hypothetical figure, it is numbered as fig. 9 in Plate XI.

In many respects the following passages are obscure, but to clear them up (if it

can be done at all) would require a thoroughly careful perusal of the whole minute

details of Biot's volume, and for this I have not been able to find leisure.

Je crois pouvoir expliquer par la mfime throne les phenomenes des triples images observes par
M. Vince et dont j'ai dej& parlo plus haut. Quand je dis expliquer, j'entends ramener ces phenomenes
a uno mCme cause, & une mfime forme de caustique, tello que la disposition des images, et leur

marche relative quand ellos s'abaissent ou qu'elles s'eievent, soient des consequences n^cessaires de

la forme supposed. Car admettre, comme 1'a fait M. Vince, autant de lois differentes de densite

qu'il y a d'images visibles, ne me parolt point une explication satiafaisante, piusque lea mouvemens

respectifs des images restent arbitraires
,

tandis que, d'apres la descnption qu'il en donne, ces

mouvemens avoient entre eux des rapports determines.

Malheureusement M. Vince n'a pas observe" Moment le plus necessaire pour Pexplication de

ces phenomenes, je veux dire la depression apparente de 1'honzon de la mer. De sorte que 1'ou ne

peut pas affirmer a priori, si les trajectoires, dans leur partie m&rieure, etoient concaves ou convexes

vers la surface des eaux. Cependant je crois pouvoir conclure qu'elles etoient convexes d'apres

plusieurs raisons que jo vais deVelopper.

Ainsi, pendant 1'observation du phdnom&ne, qui se fit depuis 4 heures J du sou1

jusqu'a
8 heures, la temperature de 1'air devoit avoir considerablement dimmue', surtout dans les couches

supdrieures, par 1'efFet de 1'abaissemcnt du soleil. Mais la surface de la mer n'avoit pas du se

refroidir aussi vito. Elle pouvoit done alors et devoit probablement se trouver plus chaude que 1'air,

ce qui donne des trajectoires convexes dans leur partie mfe'rieure, et une densite' croissante du bas

en haut, jusqu'a une petite hauteur ; apres quoi 1'mfluence de la mer devenant moms sensible, la

densite devoit aller do nouveau en dimmuant comme a 1'ordinaire, et probablement suivant mie loi

be<iucoup plus rapide, tatit a cause de I'abaissement subit de la temperature, qu'a cause de la

chute des vapours aqueusos qui devoit on resulter, et qui par leur accumulation et par le froid

qu'elles produisoient en se precipitant pouvoient contnbuer a augmenter la refraction dans les couches

qu'elles traversoient. Cos conjectures sont confirmees par plusieurs remarques de M. Vince lui-me'nie

Je tire encore dos observations mfimes une autro preuve que les trajectoiros n'etoient pas
convoxea dans toute 1'etendue de leur cours, comme cela auroit eu lieu s'll n'y avoit eu dans 1'air

qu'un seul etat de densite decroissante de haut en bas. Cette preuve consiste en ce quo les deux

images supeneures dont la plus haute etoit directe et 1'autre renversde, ont ete plusieurs fois

completes, c'est-a-dire que la vaistseau y etoit represonte tout entier depuis le sommet des mats

jusqu'au corps memo du batiment Or, d'apres les experiences que nous avons faites sur lo sable

a Dunkerque, si cos deux images eussent ete donne*eu par des trajectoiros entierement convexes vers

la mer, ces trajectoires eussent necessairement forme uue caustique qui se seroit eievee au-dessus de

la surface de la mer a mesure qu'elle s'eioignoit de 1'observateur. Cette caustique auroit done cache

de plus en plus les parties inferieures du vaisseau a mosure qu'il s'eioignoit, et par consequent les

deux images de ce vaisseau n'auroient pas ete completes On peut encore prouver par
les observations de M. Vinco que la caustique n'etoit pas formee d'uno branche unique, rnais de

deux branches distmctes rdunioa par un point de rebroussement et dont la plus basse alloit

contmuellement en s'approchant de la surface de la mer a mesure qu'elle s'eioigtioit de 1'observateur.

Car puisque M. Vince a vu des images completes de vaisseaux qui se touchoient par le corps mfime

T. 57
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du batiment, il falloit bien qu'alors le vaisseau reposftt sur la caustique; et corame il en a vu

aussi d'autres qui se touchoient par le sommet dea mats, il falloit bien qu'alora le vaisseau se

trouvat sous la caustique et la touchat par le aommet de sea mats. Enfin, puisque les images
d'un mdme vaisseau donne'es par ces deux branches s'ecartoient continuellement Tune de 1'autre, a

mesure que le vaiaseau s'eloignoit, les deux branches de la caustique s'eloignoient done aussi Pune

de 1'autre; ce qui indique une forme qui seroit donnde par la combinaison de deux

decroiasemena de densite" contraires.

Cette consequence d^duite imm&iatement des observations s'accordant avec I'dtat de"croissant de la

temperature, et avec toutes les apparences que nous avons discutees, je croia pouvoir admettre comme
une chose tres-probable que, par Vexces de chaleur de la mer, &, I'dpoque oil a observd M. Vince,

les couches infeVieures de 1'air se trouvoient daus un dtat de densit<5 croissante de bas en haut,

jusqu'fc une petite hauteur, au-dessus de laquelle les densitds alloient de nouvoau en ddcroissant par
suite de I'abaissement do la temperature, avec assez de rapidite* pour donner des images par en haut.

D'apres les elevations donne'es par M. Vince, nous devons placer 1'observatour dans ces couches

supe^ieures, car il dit avoir observd le phdnomene a 25 et a 80 pieds de hauteur Nous avons dejk

examine' prdc&lemment les combinaisons de ces deux dtats contraires, et Ton a vu qu'elle explique

trea-aise'ment les images multiples observes au Desierto de las Pahnas et a Cullera, phdnomenes qui

paroissent avoir le plus grand rapport avec ceux que M. Vince a decrits. Nous supposerons done,

conforme'ment a 1'endroit cite", que la caustique avoit une forme VRV (fig. 9) Soit

AMH la ciramfe'rence de la terre, 1'observateur, OMV la trajectoire limite tangente h la surface

de la mer. II tfagit d'examiner les phdnomenes resultans de cette loi.

La supposition que nous venons de faire sur la non-sphericitd des couches n'est point gratuite,

car M. Vince remarque que des vaisseaux cgalement clove's au-dessus de I'honzou apparent presentoient

des apparences tres-diverses, souvent plusieurs images, comme nous venons de le dire, quelquefois

deux seulement, rinfe"rieure constamment droite, la supdrieure renversde, d'autrefois enfin on n'en

apercevoit qu'une seule directe et reposant sur 1'horizon. Les cotes de Calais qui prdsentoient aussi

des phdnomenes analogues, offroient aussi les m6mes varidtds, quelquefois on les voyoit doubles, un

instant apres elles dtoient invisibles. Toutes ces apparences sont contraires & 1'idtSo d'une sphdricite*

parfaite des couches d'air qui produisoient ces phdnomenes, et Ton conoit en effet qu'dtant le

resultat d'un dquihbre non stable, ils peuvent difficilement s'accorder avec une forme constanto.
%

On this I would remark, generally, that I think Vince *ia here rather hardly
treated. It seems to me, on comparing the two explanations, that the reproach of
" autant des lois di/drentes qu'il y a d'images visibles

"
is not merited by Vince, and

would perhaps more justly apply to his censor. It is certainly most unfortunate that

Vince did not note the level of the apparent horizon; though, unless he had done

so from a great many different heights above the sea, I fail to see how the

observation would have helped to decide between the various possible explanations.

Biot evidently expected a depression, for he states as much in reference to the

elevated patches of sea and the "heavy fog" which Vince observed; yet this is

inconsistent with his own figure ! But the following passage from Vince's paper (in

which I have italicised some words) seems to have escaped the notice of Biot.

" The usual refraction at the same time was uncommonly great ; for the tide was high, and
at the very edge of the water I could see the cliffs of Calais a very considerable height above the

horizon ; whereas they are frequently not to be seen in clear weather from the high lands about the

place. The French coast also appeared both ways, to a much greater distance than I ever observed

it at any other time: "

Now, one of the most striking of Vince's observations was that of a ship (hull
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down) with an inverted image above it, both projected on the confused image of

the French cliffs as a background. If Biot's explanation were correct, this background
must have been visible by rays of a truly achlangenformig character (as Gilbert calls

them), for they must have been at least twice (more probably thrice) concave down-

wards; with a convexity downwards, somewhere between the spectator and the ship

(and probably another between the ship and the French coast). It seems much more

likely that the ship's hull was really beyond the ordinary horizon, and that the

French cliffs were visible by rays originally concave upwards so as to rise up, as it

were, behind the ship ;
and then concave downwards, according to the theory I have

propounded, from the ship to the spectator.

Biot's memoir shows, throughout, the pervading influence of his almost daily

observations of rrys which were concave upwards, because passing very close to the

ground over extensive surfaces of hot sand. If his explanation of Vince's observation

were correct, there would have been an inverted image (of a part of the top-mast)
under the lowest of the three images, and objects comparatively near hand would

have been affected as well as those at a considerable distance.

But there is much more to urge against Biot's view of the phenomena in

question. Vince expressly states that "the evening was very sultry." As his obser-

vations were made at heights above the sea, varying from twenty-five to eighty feet,

it is pretty clear that this sultriness was not due to the exceptionally high tempera-
ture of the surface of the sea. Biot, in fact, allows that the effects of this were

only sensible "jusqu'a une petite hauteur." But then he assumes (contrary to Vince's

statement) a rapid descent of temperature at higher levels. This he looks on as

developed, how he does not tell us, by the cold produced by vapour in condensing
'

Besides, if this were true, it would make the diminution of density upwards less,

instead of greater than usual, and the optical results of such an arrangement would

be in contradiction to iiis explanation

It is much to be regretted that Vince's description, like his drawings, is of the

very roughest character It is quite otherwise with those of Scoresby, There can be

no doubt whatever that Biot's mode of explanation is altogether inapplicable to the

majority of Scoresby's observations

I quote a single passage*, which is apparently decisive.

"A dense appearance in the atmosphere arose to the southward of us .... When it

came to the S.W. of us, I first noticed that the horizon, under this apparent density, was

considerably elevated. . . . Two ships lying beset about fourteen miles off, the hulls of

which, before the density came on, could not be wholly seen, seemed now from the mast-head not

to be above half the distance, as the horizon was visible considerably beyond them "

Had the arrangement of strata here been as Biot supposes in Vince's case, only
the top-masts would have remained visible, the apparent horizon would have come

in front of the hulls, and there would have been inverted images of nearer objects

visible under the objects themselves.

*
Scoreeby's Arctic Regions, i. 887 (1820).

572
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It will be noticed that these observations were taken over a surface of ice

in which the vessels were " beset." The sun is said to have been "
powerful," but

the lowest strata of air, in contact with ice or ice-cold water, must have been

colder than those above them. The haze, or "density" as Scoresby calls it, probably
consisted of minute drops of water, and would thus be much raised in temperature

by the sun. In connection with this 1 may mention that when a trough, in which

brine has been diffusing for some time into water, is suddenly and roughly stirred

for a short period, it settles, in a few minutes into a large number of strata of

different densities. Something similar must hold in the case of air irregularly heated,

and thus we have a very probable explanation of the series of inverted images

figured by Scoresby. The strata which produced these, in all likelihood produced
direct images also, but (except on very rare occasions) so small in vertical dimensions

as to have escaped observation. In the absence of wind such strata, once formed,

would last for a long time, m consequence of the very small thermal conductivity
of air. I might also refer to an interesting case of inverted images seen from a

balloon by Tissandier*. The height at which the balloon was situated is not stated

expressly, but from the context it must have been somewhere about 6000 feet. This,

of course, proves the existence, at a great elevation, of a stratum in which there

was a comparatively rapid diminution of refractive index with increasing height.

I will quote, in conclusion, Scoresby's account of his remarkable observation of

an isolated inverted image of a ship, which was situated far beyond the horizon.

His drawing is reproduced as the second of the series in
fig. 1. The obvious and

simple explanation of this is what has already been mentioned for Tissandier's

observation, though, of course, it could also be accounted for by an infinite number
of different laws of refractive index, all of more or less ingenious complexity.

"The atmosphere, in consequence of the warmth, being in a highly refractive state, sc great

many curious appearances were presented by tbe land and icebergs. The most extraordinary effect

of this state of the atmosphere, however, was the distinct inverted image of a ship in the clear

sky, .... the ship itself being entirely beyond the horaou It was so extremely
well denned, that when examined with a telescope by Dollond, I could distinguish every sail, the

general
'

rig of the ship,' and its particular character ; insomuch that I confidently pronounced it

to be my Father's ship, the 'Fame,' which it afterwards proved to be ; though, on comparing notes

with my Father, I found that our relative position at the time gave our distance from one another

very nearly thirty miles, and some leagues beyond the limit of direct vision t."

It seems hard to reconcile the clearness of definition in this case with any
other than a stable state of equilibrium of a transition stratum. The mirage of the

desert, where the equilibrium is essentially unstable, is always exceedingly unsteady.

Biot makes a point, to which I have not yet alluded, from Vince's statement

that the inverted image appeared to rise as the object moved farther away. His

mode of explaining this, however, savours of the " autant des lois di/drentes" &c.
;

and, besides, the result follows quite as directly from my explanation as from his.

*
Glaiaher'B Travels in the Air, p. 297 (1871).

t Scoresby'a Journal of a Voyage to the Northern Whale Fishery (1823), p. 189.
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Vince's observations were by no means precise enough to make this point certain ;

besides, he speaks of the top-masts and not of the hulls; and, from the diminution

of the image as the distance increases, it may be quite true that the top-masts

appear to rise in the inverted image while the hull really sinks. At any rate it is

assuredly not so in the majority of Scoresby's careful figures. In fig.
1 several

examples are shown of multiple images of ships at different distances in nearly the

same direction
;

and in all it will be observed that the inverted image of the hull

is lower as the vessel is farther off. Also that in the upper direct image the hull

appears to rise as the vessel recedes.

[Feb. 10, 1883. I have to acknowledge the kindness of Mr J. W. L. Glaisher

in verifying, and in some important instances correcting, the numerical values given
in 10 and 15. My own original calculations, made for the most part with four-

place logarithms only, were insufficient to give accurately the values of <& close to

the critical point. The reason is obvious from the form of the expression for that

quantity as given in 12, above.]

[The main results of the preceding paper are given, in a less technical form,

in Nature, xxvm. p. 84,
" State of the Atmosphere which produces the Forms of

Mirage observed by Vince and by Scoresby." 1898.]
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LIX.

SOLAR CHEMISTRY.

[Nature, Vol. xxiv., October, 1881.]

THE researches of Mr Lockyer, and others, summarised by him in recent numbers

of Nature, have to a great extent complicated the aspect of this grand problem,
which appeared so simple to Stokes and Thomson in 1852, and to Stewart and

Kirchhoff a few years later.

I wish to consider briefly, what are these new and puzzling complications of the

solar problem ,
and whether we may not still preserve our belief m the existence- of

essentially different elementary atoms, which is the basis of the beautiful Vortex

Theory. For it seems that to hazard (however naturally) such a step as is involved

in assumed dissociation of the (so-called) elements, before we make certain that no

less serious hypothesis will account for the observed facts, is contrary to the spirit of

Newton's Reyulce Philosophandi.

The most prominent of these complications seem to be

(1) The variations of the relative brightness, width, &c., of the lines in the

spectrum of a particular substance, in dependence on the source and circumstances

of its incandescence.

(2) The so-called "long" and "short" lines (These, as will be seen, are pro-

bably a case of (1).)

(3) The fact that, in the spectra of sun-spots, some lines supposed to be due

to a particular element indicate rapid motion of the glowing gas; while others,

supposed due to the same element, give no such indication.

(4) The (at least apparent) coincidence of lines in the spectra of two or more

elementary substances.
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To these may be added :

(5) The remarkable peculiarities of star-spectra; especially the paucity, and the

breadth, of the lines in the spectra of white stars.

As regards (1), let us consider a sounding body with a large number of different

modes of vibration, exposed to impacts either periodic or at least with an average

period. The relative intensities of the various notes which it can give will obviously

depend upon the period of the impacts. Now this is precisely the case of a particle

(I use the word to avoid misconception) of a glowing gas. 'The average number of blows

it receives will depend on (a) the number of particles per cubic inch (and also upon
whether there be another gas present or no, a point of very great importance), and

(6) the temperature, which is directly connected with the speed of the particles.

Change the density, the temperature, the admixture with foreign substances, or

any two, or all, of these
;
and the average period of the battering to which a particle

is subjected may be so altered as to elicit from it in any required ratios of relative

intensity the various simple rays it can give out.

It will readily be seen that this may account for all of the phenomena of classes

(1) and (2) above.

(3) may be accounted for in many ways. I mention only one, as my object is

merely to show that we are not yet compelled to accept dissociation of so-called

elements even in its mildest form. Other modes of escape, though not quite so

simple, present themselves.

What is seen in a sun-spot is the integral, as it were, of all that is taking

place (as regards both radiation and absorption) in many thousand miles of solar

atmosphere, containing the same substance under the most varied conditions. That

portions in which certain lines of that substance are prominent over others may be

at rest relatively to the observer along the line of sight; while others, in which

(from different density, temperature, or admixture, as above explained) other lines are

specially prominent, may have large relative velocities, is certain. This would at once

account for these singular observations.

As to (5) we must remember that in a star-spectrum we have, as it were, a

triple integral. For we not only integrate through the depth of the atmosphere, but

also over the whole surface of the star
; spots, hurricanes, and rotation of the whole,

included. This is equivalent to the superposition of innumerable separate spectra, no

two of which may have any one individual line in the same place or of the same

breadth, &c. Feeble lines may, in fact, entirely disappear under such treatment.

(4) If not due to want of dispersive power in the apparatus, this may be

legitimately attributed to inevitable impurities. It is only in "tall talk" (or in

advertisements) that any human preparation, elementary or not, can be spoken of as

"chemisch rein." And we all know how faint a trace of impurity can be detected

by the help of the spectroscope.



450 SOLAR CHEMISTRY. [LIX.

Even in the last resort, I see nothing to hinder the existence of exactly equal

vibration-periods in two perfectly distinct vortex-atoms: though their occurrence is

extremely improbable.

If we could get an absolutely transparent gas; one, therefore, which could give
no radiation under any circumstances ; the study of the behaviour of a given quantity
of hydrogen mixed with different proportions of it in a vessel of given size, and

subjected always to the same conditions of incandescence, would give us invaluable

information.
'
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LX.

THE PRESSURE ERRORS OF THE CHALLENGER
THERMOMETERS.

Challenger Narrative, Vol. n
, Appendix A.

[Plate XII.]

THOUGH the contents of the following paper have been, with the sanction of

Sir Wyville Thomson, communicated at intervals during the last two sessions, and in

particular on April 4th, 1881, to the Royal Society of Edinburgh, they are now

published for the first time. The brief abstracts which have appeared in some scientific

journals have given an inadequate, and by no means accurate, account of my method

and results.

The subject is the reduction of the deep-sea observations which were made on

the Challenger, in so far as these are affected by pressure. The thermometers employed
had protected bulbs, but the steins, in which there were certain aneurisms 1

,
were

wholly unprotected. The determination of the necessary pressure coirections is of great

importance, especially in the bearing of the results upon ocean circulation and other

grand points of physical geography ;
and when, at Sir Wyville Thomson's request, I

undertook the inquiry, 1 resolved to carry it out with a degree of accuracy suitable

at once to the capabilities of the thermometers employed and to the magnitude of

the issues involved.

In the course of my work several improvements, which may be useful m future

investigations of a similar kind, have suggested themselves; but my primary object

was simply to find how to obtain the most trustworthy results from a set of

1 From dpetfpw/ua, a widening or swelling (di/& and tvput) ; not, as is sometimes stated, a-cfupos (without

sinews). Hence the word is correctly used for the peculiarity in the thermometers.

T 58
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observations already made, the instruments with which they were made having been

put. in my possession.

The work has extended through a very considerable time, having occupied my
leisure momenta for a large part of each of the last three years. The nature of the

difficulties which were successively met with and overcome will be easily seen from

what follows without further preface.

The whole matter looks < uncommonly simple now that the instrumental and other

difficulties have been discovered and met, and I have recently repeated the investigation

in a tenth of the time it originally cost me. The data given in columns 7, 8, 9, 12,

and 13 of the Table in Appendix E below, are (with the exception of those for

one thermometer in which the mercury column had been accidentally broken) those

obtained in this repetition of the inquiry. They were found to agree so well with

the earlier data that it was considered unnecessary to print these.

I found myself at the beginning of the inquiry very much in the position of a

chemist who has given to him a mixture containing half-a-dozen absolutely unknown

elements, all in ,very small and in nearly equal quantities, and who is required to

determine the nature and properties of each, and also the proportions in which they
occur in the mixture.

A great many very curious offshoots have sprung from the inquiry, some of which

are of real scientific importance. For instance, the determination of the amount of

heat developed by exposing to very high pressures, under different circumstances,

various kinds of substances. This question, so far as I am aware, has as yet been

treated (even theoretically) only for moderate pressures. Again, there is the very curious

question, What is the cause of the breaking of a piece of glass or other fragile body,

under hydrostatic pressure? Does it break in consequence of uniform compression, or

of shearing, or of extension only; and at what amount of compression, or shear, or

extension, does it give way ? And there is the very important practical que&tion of

the accurate measurement of pressures greater than can readily be compared with the

weight of a tall column of mercury. Amagat has successfully worked with a column

of mercury of more than 1000 feet in height, corresponding to a pressure of about

3 tons weight per square inch. But there is a limit, to experiment in this direction,

which he has nearly reached. The simple and easily manageable apparatus described

below has been found capable of giving results of considerable accuracy up to pressures
of 12 tons weight on the square inch, and will probably be applicable much farther.

After some consideration I have decided to give, first, a general account of the

whole work in terms which will be easily intelligible to all readers; and then to

develop at length special parts of the inquiry which have scientific interest, either

pure or practical, but which are not of a nature to be easily comprehended except

by specialists. Of course I reserve for the latter part the proofs (experimental or

mathematical) of the statements now to be made.



LX.J THE PRESSURE ERRORS OF THE CHALLENGER THERMOMETERS. 459

For convenience, this subject is arranged as follows:

The Pressure Corrections supplied to the Challenger along with the Thermometers

Construction of the Thermometers.

Wholly protected Instruments. Their Defect.

Individual Peculiarities of some of the Challenger Thermometers.

Captain Davis* Mode of Testing ; and his Correction for the Mascimum Side. (With
this Appendix C. Heating of Water by Compression.) 9

Consequent Correction for the Minimum Side.

Theoretical Determination of the Direct Effect of Pressure. Eacperimental Verification.

(With this Appendix A. On the Accurate Measurement of High Pressures.)

The Aneurisms. Their Objects and Effects. (With this Appendix B. Calculation

of the Effect of fen Aneurism.)

Imploding and Exploding of the Thermometer Bulbs.

Description of the Apparatus for applying Pressure. (Extended in Appendix D.)

Accurate Measurement of great Pressures. (Also Appendix A.)

Internal Pressure Gauges

External Pressure Gauge.

Results of the Experiments The true correction for pressure is very small

Sources of the large effect obtained in the Press.

Final Conclusion from the Investigation. (Detailed in Appendix E. Tabular

Synopsis of the General Results of Experiment and Calculation.)

These we will now take in order

The Pressure-Corrections supplied to the Challenger along with the Thermometers.

When I was first asked to examine the thermometers I judged from the appear-

ance and nature of the protection over the bulbs, that very slight corrections only

would be required, even for the greatest pressures to which they had been exposed.

But Sir Wyville Thomson told me that a correction of at least half a degree Fahr.

had been assigned for them for every mile under the sea. This correction had been

given him by Captain Davis of the Admiralty, who had in his experiments
1

the

assistance and advice of such exceedingly able experimenters as the late Professor W.

Allen Miller and others.

Hence, although it appeared to me at first sight incredible that any such correction

should be required for thermometers with protected bulbs, I considered it absolutely

necessary to try Captain Davis' experiments over again, under the same conditions as

those which he had adopted in conjunction with Professor Miller. My object was, of

1 "On Deep-Sea Thermometers,"' by Captain J E, Davis, R.N (Proceedings oj the Meteorological Society,

April 1871)

582
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piece of steel, so that they can be set by means of an external magnet. The large bulb

ou which the temperature effects are mainly produced is protected by an exterior shell

of glass strong enough to resist a pressure of at least 5000 fathoms of sea-water; that

is to say, approximately, somewhere about six tons weight per square inch. This

external shell is nearly filled with alcohol. The main difference between this and the

first invented form of protected thermometer, which (so far as I know) was introduced

by Sir William Thomson 1

,
is simply that the bulb only is protected, the stem being

1 "The Effect of Pressure in Lowering the Freezing-point of Water experimentally demonstrated," by
Professor W. Thomson (Prnc. R.S.E., February 1850). See also the paper by Parrot (1833) quoted below.

In this a protected thermometer was undoubtedly employed ; but the protecting sheath was part of the wall
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exposed, and therefore the effects produced directly by compression are due solely to the

stem of the instrument: unless, indeed, there be a strain produced on the protected

bulb (altering its volume) by the wry-neckedness of the protecting shell.

Now, as a rule, till quite recently, practical workers in glass supposed that no effect

at all would be produced by pressure upon an ordinary thermometer stem, simply

because the external diameter is so much greater than the internal; and, in fact, so

little was the nature of the effects of hydrostatic pressure known to practical glass-

blowers that one of Mr Casella's workmen undertook in 1869 to furnish Captain Davis

with thermometers whose bulbs should be so thick as to
"
defy compression

"
! It will

be seen presently that such an idea is entirely absurd: that, however thick is an

unprotected thermometer, it will still have its indications altered by compression, and

very nearly as much as a thinner one, unless that be extremely thin. So far as the

Challenger instruments are concerned, the only effect that can be expected to be

produced directly by pressure is the diminution of the bore and length of the narrow

tube, and the consequent forcing of the liquid which occupies it to fill a greater length
in it. I made at starting a rough calculation of the amount of effect of this kind

which was to be expected ; taking average data as to the compressibility and rigidity

of 'glass. I found* it to be a small fraction only of a degree for each ton-weight of

pressure, except on those thermometers which had very short degrees. It was clear

to me, therefore, that (unless the wry-neckedness already mentioned was the cause)

the larger part of Captain Davis' result was not due to pressure directly.

Wholly protected Instruments. Their Defect.

For the purpose of comparison with the Challenger instruments, so far as regards
the effect on the unprotected stem, Sir Wyville Thomson sent me two merjcmy
thermometers constructed after Sir William Thomson's device. In these instruments

the whole, bulb and stem alike, is enclosed in a strong glass tube, nearly filled with

alcohol. The effects of pressure on these instruments were very much smaller than

on the thermometers of the Challenger. This result was so unexpected that I at first

thought it due to defects in the new instruments. But, as will be seen later, it is

quite consistent with the final result oi my investigations. It is, however, very difficult

to obtain good results from these instruments under the circumstances in which I

was working. Their recording adjustment is constructed on a new plan, m which a

little portion of mercury is detached from the rest; and separated from it by a small

quantity of air, which does not move it until compressed to a definite amount. To

set the index before an observation, the instrument has to be swung round somewhat

sharply at arm's length. It was scarcely ever possible under these circumstances to

of the compression apparatus and was not attached to the thermometer itself. From a reference in this paper
I was led to consult Lena's observations on deep-sea temperatures. He appears to have measured these temperatures

by bringing to the surface, with great care, a considerable quantity of water from each depth. There was

a thermometer in the collecting apparatus, with a bulb of extra thickness ; but no recording index was employed,
so as to show what was its indication under pressure.
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adjust it to the temperature of the water in the press. The indices in the Challenger

thermometers, on the other hand, consist each of a piece of enamel with a couple

of hairs attached to it so as to fix itself in the tube and retain a record of the

observation, They have also a little piece of needle inside, and can thus be moved

from the exterior by means of a horse-shoe magnet, so that the adjustment can be

made at pleasure, and without any alteration of the temperature. The thermometers

are plunged for some hours in the water in the press, and the indices are set in

an instant while the instrument is partially lifted out for the purpose. With the other

instruments one might spend days before he could get them introduced, except after

special cooling, into the press with the index suitably adjusted to the temperature of

the water. The whole difficulty might have been avoided by putting an exceedingly

small piece of iron or steel wire above the index, to be acted on by a sufficiently

powerful magnet.

Thus, although these instruments are absolutely perfect so far as regards immunity
from pressure (and in other essential respects which will be mentioned later), it is

not easy to work with them under the circumstances of this investigation.

Individual Peculiarities of some of the Challenger Thermometers.

The Challenger thermometers are not all exactly similar to one another. Some of

them have their degrees very much longer than others, others have the extraordinary

peculiarity that the degrees upon the maximum side are nearly half as long again as

those on the minimum side, and sometimes it is the reverse. In one of the instruments

which was occasionally used in the deep sea, the length of a single degree on the

maximum side is only about three-fourths of a millimetre, and thus a reading to a tenth

ot a degree is not to be looked for. But on account of this unexpected peculiarity, this

particular instrument was of use, as will be seen later, in demonstrating that the effects

produced in the press were due partly to heating, partly to compression Several

instances of useful peculiarities of a similar character were detected, and utilised.

In fact, the instruments cannot be said to do more than furnish rough and ready
means of approximating to temperatures within about a quarter of a degree, or in the

most favourable circumstances a tenth of a degree Fahrenheit. Had they been more

nearly what would be called "scientific" instruments, they might have altogether failed

on account of the rough treatment to which they were necessarily subjected during
use. Letting them down into the sea presents in general no great difficulties, but

when they have to be hauled on board again they are subject to jerks and shocks,

and sometimes swing through large arcs at the end of the lead line. Such misadventures

are unavoidable at sea, and are excessively unfavourable to accurate results, because

the index is necessarily not fitted so tightly m the stem that it may not in a few

oscillations be sensibly displaced. And there is a defect inseparable from the use of

movable indices : viz., that the reading of the mercury column is sensibly different

according as the index is, and is not, in contact with it. The capillary convexity
affects the maximum and minimum indices in opposite ways.
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Further, I may observe (though it does not affect my work) that in these

thermometers the scale is at some distance from the mercury in the stem, and no

provision is made for avoiding parallax or personal equation. By merely altering the

position in which one holds the thermometer, it is possible to read the temperature

whether by the mercury column or the end of the index next it, to an amount different

in some of the thermometers by as much as a quarter of a degree, and in the great

majority of them by as much as a tenth. Thus if we get readings consistent within

a tenth of a degree we get ^all
that the instruments are capable of furnishing. I

have therefore always read the thermometers in exactly the same position and (when
so much accuracy was attainable) only to the nearest tenth of a degree. And I have

always made my comparisons between successive positions of the index
;

the only

readings of the mercury directly being taken roughly to find whether any permanent

temperature-change had been produced in the water of the press by pressure or

otherwise, during the course of an experiment

A great many different materials were tried for the framing of the thermometers-

and vulcanite was finally chosen, having been found to answer the purpose exceedingly
well. Wood warped, and metal was unsuitable for various reasons. It is rather curious

to find, as will be seen below, that this substance was one of the main causes of the

very large amount assigned to the pressure-correction.

Captain Davis' Mode of Testing ; and his Correction for the Maximum Side.

It is necessary to look somewhat closely into the mode in which Captain Davis

conducted his experiments, in so far at least as it differs from the one I afterwards

employed ;
in order that we may be able to form an idea how, with nearly all the facts

before him, he yet failed to get their proper interpretation Take, for instance, the way
in which he attempted to determine the correction which is due to the heating of

water by compression. This, of course, affects the thermometers while in the hydrostatic

press, but not when they are let down into the sea. When the water in the press is

compressed with the thermometers in it, it becomes hotter as the pressure increases (so

long at least as its temperature is above 4 C. or 39'2 Fahr., that of its maximum

density). This is quite analogous to the heating of aii in a cylinder when a piston is

suddenly forced down
; when, as every one knows, tinder can be kindled by the heat

developed. So water is heated by compression, but not to anything like the same extent.

But it is necessary to remark that the amount of heating of water by a given compression

depends in a very curious manner upon the original temperature of the water. For

water taken at its maximum density is neither heated nor cooled by compression, but it

is heated by compression if it is at a temperature higher, and cooled if it is at a

temperature lower, than that of the maximum density. One set of Captain Davis'

observations were made in water at temperatures near, but under, the maximum density

point : in which, therefore, very little effect can be produced, even by very great

pressure (and that little should be cooling, not heating), and he combined these with

a number of other observations made at temperatures approaching 55 F., in which a
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comparatively large amount of heating is produced even by moderate pressures. The

average of the results of these determinations was taken, but, unfortunately, Captain

Davis struck out before taking the average all those observations which appeared to

give much larger effects than the others, taking them as being obviously erroneous.

When we sift out from the observations all those made nearly at any one

temperature we find they agree fairly enough with the theoretical result of the com-

pression. But observations made at different temperatures were included in the group
from which the average effect was deduced. Such an aveftige has no physical meaning.

As this is a point of some importance, I shall give a graphic representation of

one set of the observations, those made with one of Sir William Thomson's thermo-

meters; showing which were rejected, the average thus obtained, what ought to ha\e

been obtained, and also the strict theoretical result. In the diagram above, pressures
arc measured in fathoms of sea water along the horizontal line, and the corresponding

changes of temperature, shown by one of the completely protected thermometers, are

represented by vertical lines. The centres of each of the series of white and black

spots inserted in the diagram represent the various observations made by Captain Davis

.and Professor Miller at temperatures near 55 F.

If we suppose that all these observations had been made in precisely similar

circumstances, a fairly approximate way to get the average effect indicated would have

been to draw a line through the series of spots in such a way that the average
distance from it of those which lay above, should be equal to that of those lying
below. This would have shown a rise of temperature of the water in proportion to

the increase of pressure, but its amount would have been considerably under the

truth. But the experimenters used only the white spots; and by the help of these

drew the full line in the figure as indicating their average ;
thus obtaining a very

slow increase of heating by pressure.

T. 59
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By the help of Sir William Thomson's 1 formula for the heat developed by com-

pression, I have calculated what amount of heating should have been obtained in these

experiments, on the supposition that the pressure is applied with sufficient suddenness

to let the full effect be produced on the thermometers before there is any sensible

absorption of heat by the walls of the pressure vessel: and on the farther assumption

(not, as will be seen, justified by experiment) that there is no heating of the glass

protecting sheath by pressure. It is represented by the dashed line in the figure,

and it is certainly very remarkable that this line (the true one) runs through the

group of rejected observations^ paying as it were no attention whatever to those which

were retained! The formula referred to is discussed in Appendix below; but, as

will be seen at a later stage, the effect on the protected thermometer is not due solely

to the heating of water by compression.

Captain Davis concluded from two sets of observations, one at 55F. and the

other about 39 F., that little attention need be paid to the heating of water by

compression, (obtaining, in fact, the dotted line), and thus that the effect observed in

the hydraulic press was due mainly to direct pressure, and would, of course, be ex-

perienced by the thermometers when they were let down into the sea.

The officers who managed the thermometers of the expedition, were, in consequence,

furnished with corrections for each thermometer, all of the order already indicated, i.e.,

about half a degree for each mile under the surface of the sea. These corrections

were, of course, for the maximum side of each instrument.

Consequent Correction for the Minimum Side.

Looking at the thermometers, it seemed to me perfectly evident that this correc-

tion, if it was to be applied at all, must be applied in very nearly the same amount

both to the maximum index, for which it was determined, and also to the minimum.

Any difference between these two must be due solely to the effects of temperature

upon the column of mercury which lies between the two indices, and of pressure on

the tube containing that mercury. Unless the heating effect were confined to the space
between the indices, the former is provided for by the graduation of the instrument

itself; and it was quite certain that the two together could not produce an effect

amounting to more than a small fraction of the degree and a half for three tons

pressure.

Therefore, as all the readings of the Challenger thermometers were taken from

the minimum index, they were subject, according to my interpretation of Captain
Davis' results, to a correction of very nearly half a degree Fahr. for every mile

of depth.

Now, even if the heating effect on the water in the press had been correctly

determined, the result would have led to a deduction of at the utmost only about

one-fourth of the whole correction, thus still leaving a very formidable correction indeed.

1 " On the Alterations of Temperature accompanying Changes of Pressure in Fluids," by Professor W. Thomson

(Proc. R. S. t June 1857).
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Theoretical Determination of the Direct Effect of Pressure. Experimental Verification.

I therefore calculated the effect of pressure on a thermometer tube, assuming the

best data for the compressibility and the rigidity of glass. The investigation is given,

in Appendix A to this paper. As the matter is of considerable importance, I have

developed the formulae sufficiently for application to any case of the kind which is

likely to occur. The result, so far as is required for the present argument, is that

the internal capacity of a glass tube (whose walls are thick in comparison with the

diameter of the bore) is reduced by about TflW^ P8^ for e&ch ton weight (per square

inch) of pressure applied from without; the ends being closed. Hence, if such a tube

be partly filled with mercury, with an index above it; the index should be displaced

by y^th of the length of the column of mercury for each ton weight of pressure

applied to the outside of the tube.

I tried the experiment with a thermometer tube, the length of the mercury column

being as nearly as possible a metre, and I found for every ton weight of pressure to

which the tube was exposed the index was displaced by one millimetre, the T^th part

of the length of the column precisely, being far more nearly than I had expected the

result I had already calculated from theory. Since, then, there is only a change of

one-thousandth in the length of the column, it is quite obvious that the amount of

effect produced upon the column of mercury in the Challenger thermometers (which
is not above a sixth or a seventh of a metre in length at the utmost), that is to

say, the whole correction-difference between the maximum and minimum indices is a

matter of a sixth or seventh of a millimetre; or in general very nearly the same

fraction of a degree of the scale. Thus it is proved in two different ways that the

correction supplied by the Admiralty, if it is to be applied at all, ought to be applied

almost in its entirety to the minimum index

The Aneurisms. Their Object and Effects

There it> another peculiarity of the Challenger thermometers which leads to a

slight but only a slight modification of this statement, viz., that at the lower end

of each of the two vertical columns there is an aneurism on the tube. These form

a sort of secondary bulb, making the tube faulty again after the primary bulb has

been protected. Their effect is slightly to increase the effective length of the column

of mercury.

I learned from Sir George Nares that the object of these aneurisms, and of

another which is situated close to the bulb, is to prevent the indices from being

jammed at the bends of the stem, or forced into the bulb, when the instrument is

exposed to very high or very low temperatures. They seem to be in every respect

objectionable, especially as the necessity for them would be entirely removed by adding
an inch or two to the length of the instrument; or, if they must be retained, by

protecting them and using more powerful magnets. Their presence produces an effect

large compared with their apparent importance. The sketch subjoined represents, on a

592
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large scale, one of the most highly developed of the more effective of these aneurisms,

that which is situated close to the main bulb of the instrument.

By reason of the convexity of the thermometer tube the diameter of the bore

appears from the outside to be considerably larger than it really is. In fact a very

simple geometrical construction shows that the ratio of its apparent diameter to its

real diameter is that of the refractive index of glass to unity, i.e., it appears to be

about 1*6 times its actual diameter. So that even when the aneurism, and the liquid

filling it, appear to occupy the whole diameter of the tube, they only occupy 1/1*6 or

about two-thirds, so that even in this extreme case the walls of the aneurism are

not usually very thin. The percentage diminution of volume of the middle portion

of the aneurism is in such a case (roughly) 50 per cent, greater than that of the

unaltered tube.

The real mischief done by the aneurism is not due mainly to thinness of the

walls and consequent greater liability to distortion by pressure; it is due to the fact

that the aneurism, in consequence of its greater section, contains a much larger quantity
of mercury than does an equal length of the tube; and therefore that a small per-

centage diminution of its volume will produce a marked displacement by the outflow

into the narrow tube. Several of the aneurisms I have measured produce a disturbance

of the index corresponding to that produced by at least five times their own length
of the tube.

.

In some of the more exaggerated ones it actually produces an effect on the maxi-

mum and minimum index equal to that due to the extension of very nearly one-half

of the mercury column in the thermometer. But this, though easily remediable, is

not a defect of much consequence. [The calculation of the effect due to an aneurism is

given in Appendix B.]

Imploding and Exploding of the Thermometer Bulbs.

In connection with the breaking of some of the thermometers, as a result of

pressure whether in the press or in the sea, it may be well to describe the curious

nature of the effects produced by pressure upon the material of a tube, according as the

pressure is applied from without or from within.

First, with regard to the thermometers themselves, which are exposed to external

pressure, but have comparatively very slight pressure applied in the interior of their

bore; and second, the corresponding effect when pressure is applied, as in the press

itself, from the inside and tends to stretch the walls. [This second case has occurred

with one or two of the Challenger thermometers also. Its source is usually defective
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strength of the terminal bulb of the maximum end of the tube. This bulb implodes, then

the pressure is applied to the interior of the protected bulb, which, in its turn, explodes.]

In the diagrams below, the first three figures refer to part of the walls of the

glass tube, which is exposed to pressure from the outside, but has no corresponding

pressure applied within. The effects of pressure indicated are those in a transverse

section of the tube. The circles represent (on a large scale) transverse sections of very

small spherical elements of the glass wall of the tube, the first close- to the outside,

the second in the middle of the wall of the tube, and the third close to the inner

surface. The ellipses which are drawn along with the circles represent (of course, with

much exaggeration) the corresponding transverse sections of the ellipsoids into which

the spheres are distorted by the external pressure. The sphere near the outside is com-

pressed in all directions, but much less in a radial direction than it is in a direction

perpendicular to the former. The greatest amount of compression is tangential as it

were, and the circular section of the sphere has been compressed into an ellipse which

has a major axis in the radial direction very nearly equal to its original length, while

the minor axis is very considerably reduced. The second figure refers to a small spherical

portion inside the glass wall originally situated at a distance from the axis equal to 1'6,

times the internal radius of the tube. (It is curious that the number. 1'6, though
obtained from a totally different source, should be so nearly the samo as that already

quoted as the refractive index of the glass ) The little spherical element at that place

suffers no radial compression, but there is considerable tangential compression. Close

to the interior surface of the glass tube we find large compression, in a tangential

direction and actual extension in the radial direction. These diagrams have been

purposely exaggerated to make the effects visible. They represent what would be the

effect of a pressure of 650 tons weight per square inch, provided glass could stand such

a pressure and still continued to follow Hooke's law; and the outer radius of the tube

has been taken as 2'2 times the inner. But they give all that is really required, viz.,

the character of the distortion at different points in the wall of the tube.

The next three figures represent the corresponding changes in spherical elements

of the same cylindrical tube exposed to pressure from within. All portions of the tube

are now extended tangentially and compressed radially, but the amount is greater on

each layer as it is nearer the interior surface.

It is now ear

<y to see how it is that a glass tube is broken by the application

of pressure from without. The effect is, of course, produced first at the interior

surface. For the compression is the same for every portion of the glass, but it is
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accompanied by shear, which increases towards the inner surface; and it is probably
the resulting extension which produces the effect. But when a tube is exposed to

pressure from the interior there is dilatation of the walls, which aids the shear. Thus

we see why a thin tube is so much more capable of resisting external than internal

pressure. It is probable that, in the case of glass, the element which first gives way
is not so much crushed as torn asunder. If so, the tube which is compressed from

without is in a much more favourable condition for resisting than that in which the

pressure is applied internally. For, in the first, the whole substance of the walls is

compressed, and thus the linear extension produced by the shear is in part counter-

acted. In the second, the whole substance is expanded, and the linear extension due to

the shear is aided. As will be seen in Appendix A, the case of very thick tubes is

considerably different.

Description of the Apparatus for applying Pressure.

Sir Wyville Thomson handed over to me, with the thermometers, a press which

was made for him before he started in the Challenger, and which he had carried all

round the world; but when we made some preliminary experiments with it, w,e found

it to be objectionable in many ways. It was in the first place not safe at
'

high

pressures, although an attempt had been made to strengthen it by surrounding it with

massive rings of Swedish iron. As the experiments had to be conducted in College,
and to a great extent by students who volunteered their services, this was a fatal

defect; though I believe that the danger from the bursting of a hydrostatic press
has been usually very much exaggerated. The bursting of the cylinder itself would

probably be unattended with danger; but some of the nuts and connecting pieces

had occasionally been projected with great violence.

A slight numerical calculation shows that a cubic foot of water at a pressure of

one ton weight to the square inch is capable of doing only about 1210 foot Ibs. of

work in expanding, the reason being that although the pressure is intense, the amount
of compression it produces is exceedingly small. But a cubic foot of air at a pressure

of a ton weight to the square inch is capable of doing nearly 1300 times as much
work in expanding. Hence the danger of having large quantities of air in the press

before the compression is begun.

Another defect of the apparatus was the comparatively small interior bore, which

did not admit of the proper carrying out of my scheme for measuring pressures
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the Bourdon gauge having shown itself quite untrustworthy. Besides, two thermometers,
at most, could be exposed to pressure simultaneously, even when no gauge was inserted

along with them.

The apparatus which Sir Wyville Thomson finally obtained from the Woolwich gun
factories, through the intervention of the Admiralty, was in fact a Fraser gun with

a few adaptations made to suit it to the purposes of the investigation. The gun, which

is shown in the Plate, on a scale of one-eighth the full size, was made of a cylinder
of mild steel, round which were shrunk two successive wipught-iron coils. The effective

interior is 4 inches in bore, and nearly 4 feet long.

This cylinder was guaranteed to be safe under pressures up to 18 or 20 tons

weight per square inch, and we have for various purposes already worked up to pressures
of 11 and 12 to. A. [The official memorandum concerning this apparatus is given in

Appendix D.]

The rest of the apparatus, to fit it for our immediate purpose, consisted of a

tightly-fitting steel plug which was forced into the upper end of the cylinder after

the thermometers and other apparatus had been inserted, and the whole had been filled

with water. The plug was forced down by the weight of an assistant standing on

it, while a stop-cock at the bottom of the cylinder was kept open for the escape of

water, until a massive steel key could be put in through a slot in the side of the

cylinder to lock the plug in its definite position.

To the lower end of the steel cylinder was adapted a series of fittings by means

of which it could be connected with a powerful force-pump, and simultaneously with

a gauge whose construction will be afterwards described. The gauge enabled the ex-

perimenters to know at every stage of the operation what amount of pressure had

been reached in the interior of the cylinder. The pump was worked at first by hand.

Of late a more powerful pump has been procured, and it can be fitted when necessary
to the gas-engine of my laboratory.

Only one real difficulty was met with in working thq apparatus; viz., the difficulty

of making the plug fit perfectly tight. At first, when it came from Woolwich, the
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gases at high pressures. Amagat's data were obtained in the most direct and satis-

factory manner, inasmuch as he measured his pressures by means of an actual

column of mercury- extending sometimes to 300 metres, and more. All other means

of measuring pressure are as it were valueless in comparison with this. We know

by these experiments the compressibility of nitrogen, and of air, up to pressures of

at least 2 tons weight per square inch, with almost all desirable accuracy.

All that was necessary therefore in order to determine the pressures in the

operating cylinder, and thus to calibrate the gauges enjployed, was to compress once

for all a quantity of air, measure the volume to which it . was compressed and the

corresponding indications of the gauges, and then by the help of Amagat's tables

compute the pressure actually attained The apparatus I employed for this purpose

is figured in section in the diagram below.

This apparatus, filled with dry air, was allowed to come exactly to the temperature
of the water inside the compression apparatus; then, the lower end of it being

dipped into a large vessel of mercury, it was let down full of air into the compression

cylinder and pressure was applied. The effect was of course to compress the air,

force up the mercury until it gradually filled the vessel and forced, the air entirely

into the smaller bulb. After a few trials we found roughly what amount of pressure

was necessary in order just to commence the forcing of mercury into the small bulb.

The mercury forced in was weighed ;
then the capacity of the small bulb was

determined by weighing its content in mercury. The difference of these weights is

the weight of mercury, which would occupy the same volume as did the air when

compressed. Finally, the original volume of the air was found by weighing the

whole apparatus, first empty, then filled with water, and, most important in view of

Amagat's results, the barometer and thermometer were carefully observed at the

instant when the apparatus had its lower end placed in the vessel of mercury.
Mr Kemp, who made these instruments for me, suggested and carried out the great

improvement of inserting a small triangular pyramid of glass into the choked part
of the bore (as shown in the small sketch). The effect is to break the mercury

(which must be very clean) into exceedingly small drops. In this way the actual

compression of the air was determined with a limit of error, represented at the

utmost by the ratio of the volume of one of the small drops of mercury formed at

the obstruction to the whole capacity of the small bulb. By working simultaneously
with three instruments of this kind, even thia very small error could be in great

T. 60
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part eliminated: and, practically, the compressions were measured far more accurately

than was at all necessary for the purpose in hand. For greater accuracy a larger

apparatus would be required. This, however, was quite unnecessary. And the requisite

limit of accuracy in the experiment rendered it unnecessary to correct for the

alteration of volume of the smaller bulb consequent on the pressure to which it was

subjected.

In my later experiments a long carefully-gauged tube of 1*5 mm, in bore was

substituted for the small bulb* This tube was coated internally with an excessively

thin film of metallic silver thrown down by sugar of milk. The process was arrested

the moment the film became visible by reflection. This film is at once dissolved

by the mercury up to the point which it reaches at the greatest pressure, and

leaves a perfectly sharp and nearly opaque edge from which to measure. This device

has proved so very successful that I have now substituted it for the indices in all

the pressure gauges (shortly to be described) which are employed for very accurate

measures. And I am at present engaged in measuring, by comparison of a glass

gauge and an air gauge both fitted in this manner, the compression of various gases

at pressures up to fourfold those applied by Amagat.

Internal Pressure Gauges.

The next step was to find some plan of construction for an instrument which,

having its scale determined once for all by comparison with the air-gauge, should

ever afterwards serve instead of it, thus affording a ready measure of pressure.

Liquids are obviously better fitted for this purpose than solids, if only on account

of their absolute homogeneity and their greater compressibility But, unfortunately,

two liquids must be employed, since a record must be kept: the apparatus being
surrounded on all sides by 9 inches of iron : and, as will be seen in Appendix E, all

my trials with two liquids were more or less unsatisfactory The very fact that I was

dealing with thermometers whose bulbs were protected from pressure, at once sug-

gested an unprotected thermometer as something perfectly well suited to the purpose
so long as the glass might be trusted to follow Hooke's law. [I have since found

that the invention of such an instrument, to be used as an e'late'romktre, is due to

Parrot.1 His investigation of the effects of pressure is wholly incorrect, as it takes

no account of distortion; but the device, and the recognition of the fact that its

indications are proportional to the pressure, are wholly his]

These instruments, which, like the thermometers, are fitted with a needle-index

with hairs attached, have only one defect, which is that they act like thermometers

as well as pressure gauges. That defect I managed to remove almost completely by

1
"Experiences de forte compression BUT divers corps, par M. Parrot" (M6noire de VAcadtmie Imperial*

det Sciencet de St Peterebourg, 6me Sine, tome ii., 1833). The pages are headed "Parrot et Lent," and

it was by mere accident (seeking in the Royal Society's Catalogue of Scientific Memoirs for a reference to

Lenz't thermo-electric writings) that I lit on the paper. I was much surprised at some of the statements

it contains, till I found at the very end a footnote by Lena, in which he disclaims all responsibility for

the writing of the paper, and for the conclusions drawn in it.
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the simple device of enclosing in the bulb a closed glass tube which all but fills it.

The liquid then occupies only a small space between the interior tube of glass and
the exterior tube forming the bulb, and is as ready as ever to give indications of

pressure, while it is not in sufficient volume to be more than slightly disturbed even

by a serious change of temperature.

As will
tye seen in Appendix A to this paper, it is quite easy, by comparing

two instruments of this kind in which the ratios of the internal to the external

radius of the cylindrical bulb are different, to find by trial through what range its

indications are strictly proportional to the pressure. Thus all the requisites of a

perfect gauge, so far as the experiments required, were met by this simple apparatus,
That I have obtained a sufficient accuracy in the graduation of these instruments

is proved by the close agreement between my results for the volumes of air at

different pressures as measured by means of them, with the volumes corresponding
to these pressures in Amagat's table. If Boyle's Law had been even approximately
true for these high pressures, this mode of verification would have been fallacious.

It would, however, be easy to make an independent verification, by sinking some of

these instruments, each thoroughly imbedded in a mass of lard (as a protection from

shocks), to a measured depth in the sea. This idea is worthy of consideration,

especially if the gauge be made to register by means of a silvered tube. The only

probable cause of error in such a case would be the breaking of the mercury column by
a jerk, and to this all other forms are at least equally liable.

External Pressure Gauge.

But it was necessary not merely to measure accurately the pressure applied, but

also, for the sake of the thermometers, to provide that the pressure should not be

carried too far; and for that purpose it was indispensable to have an exterior indicator

of pressure.

This was furnished by a thin cylindrical steel tube enclosed in a cavity bored

in a large block of iron, the interior of the steel tube being full of mercury and

the narrow space between it and the large iron block also full of mercury. This

exterior space was connected with the pressure apparatus. The pressure then throughout

the whole of the space exterior to the steel cylinder was the pressure in the pump.
The steel cylinder was therefore compressed from the outside. In the neck of the

steel cylinder, which was screwed into the surface of the block, there was luted a

vertical glass tube. It was exposed to no pressure, but the mercury in it rose, by

the compression of the steel cylinder, and the height to which it rose could be easily

602
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measured. Comparative experiments were made several times by putting one of the

glass gauges, whose scale had been carefully ascertained, inside the apparatus, while

this newly-described gauge was also connected with it. In this way the external

gauge was accurately calibrated. But, lest an accident should happen to one of the

gauges, or to its index (as sometimes was the case) no experiment was made without

the presence of at least three gauges. The way in which these worked togethei

during the whole course of the experiments is the best possible proof of their value

This form of gauge, also, is greatly improved by inserting a glass tube (closed at

both ends) into the bulb
;

for the temperature changes produced by pressure in

mercury are greater than those in water at ordinary temperatures.

Results of the Experiments. The true correction for pressure is very small.

Having described the apparatus I proceed to the results. As soon as I applied

pressure to the Challenger thermometers I found I reproduced pretty nearly the
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results obtained by Captain Davis. I had already seen one proof that at least a

large part of the result was in _ .my not due directly to pressure. The

experiment with the long thermometer tube showed that my theoretical calculations

had been correct. The question thus became : Is this a pressure effect of any kind
;

and, if so, how does it originate? and if it is not a direct pressure effect, to what

is it due? There are many ways of answering such questions. One answer was

furnished by one of the thermometers (A 3), whose degrees (especially on the

maximum side) are very short. The whole effect (in degrees) on this thermometer

was not very markedly greater for a given pressure than on the others, as it would

certainly have been had the effect been entirely due to pressure directly. Another

is, if it be not a direct pressure effect it must be a heating effect. With Sir

Wyville Thomson'^ permission I got from Mr Casella, the maker of the Challenger

thermometers, a couple of others of exactly the same form and dimensions, but with

the bulbs plugged after the manner of the gauges already described, so as to diminish

their susceptibility to changes of temperature. When I put one of these into the

pressure apparatus along with one of the Challenger thermometers, I found the effects

on the new form very much smaller than on the old. Thus it was at once proved
that the effect could not bo due to wry-neckedness produced by the fitting on of

the protecting bulb
;

which would have been an effect due to pressure directly : but

that it must be an effect due to heat. That is to say, it was now completely
established that the large results obtained by Captain Davis are due in the main to

causes which can produce no effect when the thermometers are let down gradually
into the deep sea

; they are due to causes connected with the thermometers, and

perhaps also with the pump, but solely under the circumstances of a laboratory

experiment.

Sources of the large effect obtained in the Press.

Now comes the question (no longer important to the Challenger work, but of

great scientific interest), What are these various sources, and how much of the effect

is due to each? First of all we have seen that the water in the press is heated

when pressure is applied. Using Sir William Thomson's formula I found the amount

of that heating should be about 0'05 F. at 43 F., 16 at 50, and only 0'3 at

59, for one ton of pressure. [These numbers, as will be seen in Appendix B, are

rather too small. We do not yet know to what extent the temperature of the

maximum density point of water is lowered by pressure.] These cannot be expected
to be fully shown under the circumstances of the experiments, and even if they
were fully shown the greatest of them represents only about one-half of the whole

of Captain Davis' result, there must therefore be some other cause.

I next thought of the heat produced by pumping water into the pressure vessel.

That vessel, as is shown in the cut, is connected to the pump by means of a long

narrow tube of copper, leading to another long narrow tube in the lower end of the

vessel. These tubes were from -^th to -j^th inch in bore, and nearly three feet in

length. To estimate roughly the heat developed by the pumping, I calculated that
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about 300 strokes of the pump had to be made in getting up a pressure of about

three tons, each stroke through about 2 feet, and with a mean or average pressure

of about 20 Ibs. weight. If the whole work done in that way had been expended
in heating the water, the temperature effect would have been about 0'5 F., as it

was due to 12,000 foot Ibs. of work done on about 30 Ibs. of water. But this is

an overestimate, and besides a very large portion of the heat actually developed is

given to the pump and the connecting tubes, and much of the rest is at once

conducted away by the walls of the massive cylinder, and thus the rise of temperature

due to this cause is exceedingly small.

The direct compression of the thermometer tubes already referred to accounts for

on the average about 0'25 F. per ton pressure, so that there is still a considerable

part of the whole result to be accounted for. I saw at once that it must be duo

in part at least to the glass protecting bulb, and perhaps also in part to the

vulcanite on which the thermometers are mounted. In order to venfy the latter

hypothesis I took one of the Challenger thermometers and embedded the bulb of it

(protecting case and all) in a mass of lard. I was sure the lard would act as a

perfectly plastic body under these great pressures, and so could do no harm to the

bulb. The result far more than answered my expectations, because by a pressure of

not more than 3 tons the effect on the lard-covered thermometer was over 5 F.

This showed me at once that we were working in a new sort of world, where

all things had properties very different from those they show under ordinary pressures,

and therefore I began to think it possible that the vulcanite might havo a large

share in the residual effects.

In order to test the point I took one of the Challenger thermometers on which

I had already made numerous concordant experiments, and removed it from its vulcanite

sheath. After replacing the scale, I performed with it exactly the same experiments
as before. The result was unmistakable. The effect of pressure was notably diminished

by the absence of the vulcanite. This is a source of error which may differ greatly

in efficiency in the different thermometers, according to the quality of the vulcanite

and its exact position relatively to the protected bulb.

The remaining part of the error, due to distortion of the glass protecting bulb,

has given me much more trouble than all the others together. Its amount cannot be

calculated, so far as I know, for it is a case of shear and compression combined,

whereas in the case of vulcanite it was a pure compression. I made some determinations,

however, by opening the protecting bulb, and substituting mercury and other liquids,

and sometimes air alone, for the alcohol which it originally contained. The general

conclusion from such experiments was, that a small amount of the whole observed effect

is due to the glass protecting bulb.

To make this more certain I surrounded the protecting bulb with a test tube

filled with pounded glass, and I found the heating of this glass by compression, in

spite of the heating of the glass of the protecting bulb, produced a decided increase

in the observed rise of temperature.
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Thus it appears that there are no less than five different causes which contribute

each its share to Captain Davis' result. Of these, one is independent of the others,

and would produce its full effect even if they were not present. The other four give
effects which are not cumulative, and it would be very troublesome to try to assign
to each its exact share of the result when two or more act together. Fortunately, it

will be seen that we do not require to attempt to solve this problem.

(1) First is the direct effect of the external pressure upon the exposed part of

the thermometer tubes. This, in general, will be found very small, except in tubes

where there are large aneurisms. The whole effect of 3 tons pressure on a Challenger
thermometer without aneurisms, at temperatures near freezing point, so far as the

minimum index is concerned, would be only about 3 one thousandths of 30 degrees
or so, that is 90 thousandths or at most 01 of a degree for 3 tons pressure. That

is an amount which, in consequence of the necessary errors of reading the thermometers,

may be entirely neglected, and, unless there are large aneurisms, there mil be little

need for pressure corrections even in six miles of sea.

The other parts of the observed effect were

(2) Heating of water. This I observed to follow very nearly, according to Thomson's

formula, the original temperature of the water. By comparing the pressure effects on

the same thermometers during summer, and during winter (for which latter the late

continued frost was of particular service, and enabled me to work for many days at

the temperature of the maximum density of water), I found the results to vary in

accordance with calculation.

(3) Heat due to friction during pumping. This from its very nature was un-

avoidable unless we could have got an apparatus into which (by enormous pressure)

the plug could have been forced directly. This could not, however, have been done in

my laboratory, even if the apparatus had been adapted to such a form of experiment.

But it was very easy to calculate the extreme possible amount of this effect.

(4) The peculiar heating effect due to the vulcanite mounting. I verified this effect

of vulcanite by taking a thermometer which had no vulcanite about it and measuring
the effect produced upon it by a definite pressure, and then putting loosely round the

bulb (in a test-tube, which had itself been previously experimented on) a small quantity

of vulcanite in thin plates. I found that so little as 8 grammes of vulcanite round the

protecting bulb raised the effect produced by a pressure of 3 2 tons weight from 5 F.

to l'l F. The vulcanite was m thin strips about a millimetre and a half in thickness.

The effect of the vulcanite on the Challenger thermometers (in the hydrostatic press)

must, from the mode of their construction and mounting, in all cases be considerably

greater than this.

Under these circumstances, we might without farther inquiry fairly attribute the

whole outstanding effects to the massive vulcanite slabs on which these thermometers

are framed. But there still remains

(5) The most difficult question of all, the temperature effect produced by pressure

upon the protecting bulb, which is under different circumstances altogether from the
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vulcanite; for the vulcanite is simply compressed, while the glass sheath is under

pressure on one side and not on another, and is therefore subject to shear as well.

In its interior the glass is extended in a radial and compressed in a tangential

direction. Nobody has yet made any approximation to an answer to the question what

effect in the way of heating or cooling will be produced by deformation which consists

partly of compression and partly of change of form. We know that in indiarubber a

cooling effect is produced by traction, and it may happen that a similar change of form

in glass also produces a reduction of temperature. This is a question, however, which is

not capable of answer by the help of my present apparatus , though it will probably be

answered by experiment before theory is able to touch it. The results of my experiments
on the thermometers with plugged bulbs show that, on the whole, a heating effect

results from the combined compression and shear in a bulb exposed to external pressure

only. This has been verified by cutting down a thermometer, an exact counterpart of

the Challenger thermometers but without aneurisms, taking out the greater part of the

mercury and inserting a second (now a maximum) index in the minimum side of the

tube. When this instrument was stripped of its vulcanite, the effect of pressure at 40 F.

was considerably greater than that due to compression of the tube.

But it doe's not. require to be taken into account so far as the Challenger
thermometers are concerned.

Final Conclusion from the Investigation.

The final conclusion is that only one of these five causes, which are active in

the laboratory experiment, can affect the Challenger thermometers when lot down into

the sea, namely, pressure. There is there no heating of water by compression ;
there

is no heating by pumping ;
there is no heating of vulcanite, because the thermometers

are let down so quickly that the water which surrounds them is rapidly changed,
and thus each little rise of temperature is at once done away with as the thermo-

meter passes through a few additional yards. For the same reason, also, the effect on

the protecting glass, which is a heating effect on the whole, is all but done away
with step by step as it is produced. All these four causes, therefore, which made

Captain Davis' correction so much too large, are valid only for experiments in a

laboratory press, and not for experiments in the deep sea. Therefore, as a final

conclusion, I assert that, if the Challenger thermometers had had no aneurisms, the

amount of correction to be applied to the minimum index would have been somewhat

less than 0>05 F. for every ton of pressure, i.e., for every mile of depth. All the

thermometers which have large aneurisms have had special calculations made for them,
but m no case does the correction to be applied to the minimum index exceed 0'14

or about |th of a degree per mile of depth. [The results of the special calculation

for each thermometer are given in Appendix E. These refer to temperatures about

60 F.
;

for lower temperatures somewhat less correction is necessary, as the part of

the tube to which the effect is due is then a little shorter.]
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Various singular results were met with in the course of the experiments, especially

in connection with the crushing (in some cases) or the explosion (in others) of one

or two of the thermometers. In one of these cases the copper tube surrounding the

instrument was considerably distorted. I learn that the same thing occurred to the

copper sheaths of the thermometers which were crushed in deep water during the

Challenger voyage. The explanation of this occurrence will be found in Appendix D,

to which I refer for the description of other singular phenomena observed during the

course of the inquiry.

The preliminary experiments connected with this investigation were carried on

mainly by students working in my laboratory, but all the experiments on which the

preceding conclusions were founded were carried on by myself with the very efficient

assistance of Mr R T. Omond and of my assistant Mr Lindsay. I have been singularly
fortunate in having at hand the mechanical skill of Mr Chalmers and the glass-

blowing skill of Mr Kemp. To these able artificers I am indebted for the prompt
and thorough manner in which they have executed the various novel forms of

apparatus required in the course of this protracted investigation.

61
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APPENDICES.

APPENDIX A.

ON THE ACCURATE MEASUREMENT OF HIGH PRESSURES.

[Mainly from Proceedings of the Royal Society of Edinburgh, 187980.]

IN the course of an examination of some of the Challenger deep-sea thermometers, I

have recently had occasion for measurements, accurate to one or two per cent., of pressures

such as five or six tons weight per square inch. The ordinary gauges showed themselves

to be quite untrustworthy, and it was necessary to devise some plan of whose accuracy the

experimenter can feel assured. The following process has proved completely successful, and

is capable of any desired degree of accuracy.

Simple methods baaed on the compression of gases, such as air or nitrogen, are of the

highest value wherever they can be adopted ;
for the law of compression of these bodies

is known with great accuracy (at least for one definite temperature) from the measurements

recently made by Amagat, in which the pressures were directly reckoned in terms of a column

of mercury. A simple form of gauge, in which the column of mercury compressing the gas

into a small bulb at the extremity is made to break off at a constriction in the connecting

tube, enabling us (by weighing the mercury forced over into the bulb) to measure the

compression very accurately, suffices amply for all pressures up to a ton weight per square

inch, or even farther.

But this instrument becomes rapidly less and less sensitive at higher pressures ;
so that,

though the law of compression for a considerably extended range is now known, for pressures

above a ton something else is required. Besides, this method is very laborious, and there-

fore is not to be employed oftener than is absolutely necessary.

Hooke's Law now comes to our assistance. An instrument resembling a thermometer in

form supplies the next step. Its bulb is all but filled by a glass tube closed at each end, and

it is thus practically unaffected by the changes of temperature produced in such experiments.

Over the mercury in the stem is a long column of alcohol in which the index moves, and the

rest of the tube contains alcohol vapour only. The bulb is made cylindrical for several

reasons
;
the chief being to secure uniformity of thickness, which is practically unattainable (or

at least unverifiable) in a sphere. By properly choosing the thickness of the cylinder in

proportion to its bore, and its volume as compared with that of an inch of the fine tube, the

sensitiveness of this gauge may be made as great or as small as we please. And, by employing
two or more, with bulbs of nearly the same internal dimensions, but differing considerably from

one another in the thickness of the cylindrical walls, a very important advantage is secured.

For, under the same pressure, the maximum amounts of distortion of the glass are greater

in the thinner bulbs, and thus these begin to deviate from Hooke's Law at pressures under

which the thicker ones are still following it accurately. Thus, by comparison, we can easily

find through what portion of its range each instrument gives effects strictly proportional to

the pressure. The thinnest of these has the unit of its scale determined by comparison with

the nitrogen gauge.
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When this method has to be extended to pressures such as would crush glass, recourse

must be had to steel. A number of steel instruments, in their turn, can have their scale

units determined accurately from one another, each from a thinner one; until we come to

the thinnest, whose unit is exactly found by comparison with one of the thicker of the glass

instruments. We have thus a series of gauges, each of any desired sensitiveness, capable

of reading accurately pressures up to those for which steel at the interior of a thick tube ceases

to follow Hooke's Law.

To illustrate this process, and to show what amount of sensitiveness is to be expected

from an instrument of known dimensions, I append an approximate solution of the problem
of the compression of a cylindrical tube with rounded ends The exact solution would be very

difficult to obtain, and would certainly not repay the trouble of seeking it. I content

myself, therefore, with the assumption that all transverse sections aro similarly distorted
; which,

of course, involvef their continuing to be transverse sections.

Let denote the displacement of a transverse section originally distant x from one end,

and let p be the change of r the original distance of any point of the section from the

axis. Then, as it ia obvious that the principal tractions are along a radius, parallel to the

axis, and in a direction perpendicular to each of these, we have at once*

dr T dx

where e - + - /= - - -

Here r is the compressibility, and n the rigidity, of the material of the tube.

In addition we have for the equilibrium of an element bounded by coaxal cylinders,

planes through the axis, and planes perpendicular to it,

d

and the approximate assumption above gives
~ = constant.

From these five equations t^, ty ,
ts , p, and are to be found.

They show that ta is constant, and its value must therefore be - II ~ ~
a ;

where II is the

pressure, supposed to be wholly external.

With the surface conditions, ^ = -11 when r = 1 ,

we determine the arbitrary constants, and it is easy to see that

)

w

* Thomson and Tait, Nat. Phil. 682, 688.

612
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These quantities express the change per unit of length : (a) tangentially to a cross-section

of radius <r\ (b) radially for the same section; and (c) longitudinally for all parts of the tube.

They indicate a strain made up of two parts : a uniform compression of

n a/
3Jfc !*

- a a

in all directions ; and a shear of 1 + 5--~ 5
~

' ~2n Oi'-ao **

in the plane of a transverse section.

The diminution per unit volume of the interior of the cylinder is

When II is a ton-weight per square inch, the value of the quantity

is, according to the best determinations, somewhere about y^ViF ^or ordinary specimens of flint

glass, and about, j^jfoy for steel. This expression is very simple, and enables us at once

to calculate the requisite length of bulb, when its internal and external radii are known,
which shall have any assigned sensitiveness when fitted with a fine tube of a given bore.

To obtain great sensitiveness, increasing the diameter of the bulb is preferable to diminishing

its thickness, as we thus preserve its strength; and we have seen how to avoid the com-

plication of temperature corrections.

It is obvious from the expressions above that the change of unit volume is the same

throughout the whole of the substance of the walls of the tube, having the value

But the shear is greater as r is less. Its greatest value is therefore at the interior surface,

where it is

-
2w o^ - a *

'

It is here that the tube first gives way to pressure, and it does so probably because of

radial extension. For the expression (6) above, is, for glass, numerically per ton of pressure

aS (
1 _^_L\

a,
a -a a

V8106 T* 3200;*

This vanishes, or there is no radial compression, whatever bo the external pressure, when

r-~. = 1'6<J
, nearly,

4^/2
'

as stated in the text above. It is worthy of notice that this expression is independent of a1}

and thus that, in all tubes, if the outer radius exceeds the inner at least in the proportion

of 1'6 : 1, there is a cylindrical element whose thickness is not diminished by compression,

and its radius is in all cases 1 6 times that of the inner bore. For all values of r less

than this there is radial extension, and its utmost value is at the inner surface, where for
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T tons pressure it amounts per unit of length to about

T n a

SSOOa^-ao
8

'

From some experiments made for the purpose, I find (Proc. R.S.E., 1881) that ordinary lead

glass gives way when the shear is about 1 + ^^ (coupled with y^th of compression in all

directions). It is not clear whether it is the shear or the mere radial extension (in this

case =
^775-)

under which the glass yields. This question is of importance when we consider

internal pressure. At any rate, it follows that no tube
(pf

this kind of glass), however

thick, can stand more than about 14 tons external pressure. [The calculations here given are,

of course, based on the assumption that glass accurately follows Hooke's Law until it gives

way. This is certainly not quite exact, but we do not yet know the amount of the

deviation. I hope to approximate to it by the comparison of gauges of different thickness.

But the true eftecta cannot largely differ from those based on the assumed generality of

Hooke's Law.]

When the pressure is internal we have

r
~
a? - <io* \3A

"*"

r8 2n/
'

rfr

~
af - a s

\3k
~

V* 2n)
'

dx
=
of- a 3k

'

whence the corresponding conclusions may be drawn. In particular, the increase per unit

volume of the substance of the tube is

k /-<"
which, in thick tubes of small bore, is very small compared with the compression produced

by the same pressure applied externally. Also the increase per unit volume of the interior is

ITa
2

/I rtj
a 1\

In very thick tubes of narrow bore this is roughly ,
the value of which in glass is about

Y^Vff only for one ton pressure. Also, according to the two separate hypotheses above, the

utmost internal pressure which a tube of common lead glass can stand is either 8 or

14 tons. If it breaks by shearing alone, it is equally resisting to external and internal

pressures, if by mero extension, it resists external pressure more than internal in the pro-

portion of about 5 : 3.

When the pressure is the same outside and inside the cylinder, we have

P_ n <i% _ n

and the diminution per unit volume of the interior is, as in Orsted's experiment,

n
k'

The value of this in flint glass is, for one ton pressure, about ^wv.

When there are, simultaneously, pressures IIj external and II internal, we have
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whence the increase of unit volume of the walls is at every point

[LX.

and the shear in the transverse sections

ETo-IL.~~
The increase of volume of the interior is

which agrees with the special results above when n or HI is made to vanish.

For a spherical bulb the equations are reduced to

*-*-3ft, = -A + (-/)*,

and we have for external pressure II

As a verification of these formulse, in addition to the simple one described in the text

above, I had an apparatus constructed of ordinary lead glass of the following dimensions :

Length of cylindrical bulb, 745 mm. Ratio a : o1
= 8'7 : 21 9. The weight of mercury filling

424 mm. of this bulb was 167 grm. To the bulb was attached a smaller tube of which the

mercury filling 68 mm. weighed 1-43 grm.

Hence we have 1-187.

Also the content of the whole bulb in mercury is
T^-J

167 grm. = 293'4 grm. Hence a pressure

of one ton-weight should force into the narrow tube f
y^r-293-4

=
J
0-348 grm. of mercury.

This ought to displace the index through (
f7Za~68=J

16ram"55. Comparing this with the

result of experiment, we had the following remarkably satisfactory numbers:

There was no glass tube in the interior of the bulb, so that the slight discrepancies between

the several ratios of calculated to observed effects are mainly due to effects of temperature.
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APPENDIX B.

CALCULATION 'OF THE EFFECT OF AN ANEURISM.

The above formulae contain all that is necessary for work of this kind. But there is

one special application about which a little farther explanation is necessary.

In calculating, for the general table in Appendix E below, the effect of the aneurism

nearest to the principal bulb, which is the only one of importance, I have taken the

following plan. i

I assumed the section of the aneurism through the axis to be bounded by a simple

harmonic wave curve complete from trough to trough, which agrees very exactly with its

apparent outline as seen through the wall of the tube. Hence, if 2a be the greatest diameter

of the aneurism, ?' the diameter of the tube, and I the length of the aneurism, its volume is

Or, if we write n for the ratio a : 6, the aneurism adds to the volume of mercury in the

part of the tube containing it an amount equal to that contained in a length

3n2 -4-2/1-5

g
f,

of the unaltered tube.

It has been stated in the text that the diameters of the aneurism and of the bore

appear magnified in the same proportion. Hence it was only necessary to measure them

carefully, in terms of any common unit, by means of & small telescope with a micrometer

eyepiece, in order to find the value of n in the above expression

I have not thought it worth while to attempt the complex problem of calculating the

effect of pressure on the aneurism, having simply assumed that the volumes of all parts of

the bore are diminished in the same proportion, viz. by Yinnr*n ^or eacn ton-weight of

pressure This makes all my numbers in the llth column of the table too small. But the

error is of no consequence except for one or two of the instruments, in which the aneurism

appears almost to fill the whole external diameter of the tube; and, even then, it will in

no case affect the first figure of the tabular result. A somewhat greater error (also in

defect) affects the numbers in the 10th column, for I have not taken account of the

aneurisms at the bends of the tube. These are, however, in all cases much smaller than that

first referred to, and the numbers for the maximum index are of no great practical

importance

APPENDIX C

HEATING OF WATER BY COMPRESSION.

In the paper referred to in the text, Sir William Thomson gives for the rise of

temperature of a fluid, the pressure on which is suddenly raised from p to p + m, the general

expression y^ ro. Here t is the absolute temperature of the fluid
;

e its coefficient of ex-

pansion, and K its average capacity for heat, under constant pressure, between p and p + w.

J is Joule's equivalent.
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The value of e, as given by Kopp's experiments, is nearly

<-278

72,000'

for temperatures within 20 C. of the maximum density point. The mean of the experimental

determinations of Matthiessen, Pierre, and Hagen, makes it about 5 or 6 per cent, greater.

For the Centigrade scale the value of / is 1390 foot-lbs. An atmosphere of pressure

is nearly 2117 Ibs. weight per square foot; and K is about 6345 (the number of pounds
of water in a cubic foot).

Hence it follows that, for one additional atmosphere of pressure, the temperature of water

is raised (in degrees Centigrade) by about

<(<-278)

2,850,000'

Now 56 F. is 130>3 C., for which = 287-$, and tho rise of temperature produced by a ton-

weight per square inch is 0'14 C. or 0'25 F.

This is the statement in the text.

From the above formula we find the heating effect of one ton pressure on water at

50 F. to be nearly
0<16 F. ;

and for each degree above or below 50 F. this number must

be increased or diminished by about one-tenth of its amount.

This expression is very easy to recollect, and it gives the results with ample accuracy

throughout the whole range of temperatures (40 60 F.) within which my experiments were

conducted.

It is to be observed that Thomson's formula is strictly true for small pressures only.

No account has been taken of a possible lowering of the temperature of maximum density,

or of a change of expansibility, under pressure. Nor is it known how a considerable increase

of pressure affects the thermal capacity.

APPENDIX D.

THE APPARATUS EMPLOYED.

The plate appended shows in section and in elevation the Fraser gun in which the

thermometers and gauges were exposed to pressure. The following memorandum from the

Royal Gun Factories sufficiently explains the material, mode of construction, and dimensions

of the instrument. The plate is copied from the sketch which accompanied the memorandum.

" Memorandum on the Construction of Testing Cylinder for Sir Wyvdle TJwmson.

"No. 1. Interior tube is made of mild steel, similar to that used for inner tubes of

guns, and containing a very small amount of carbon. The tube has been tempered in oil, and

its limits of elasticity when in tension are about 30 tons per square inch. The ultimate

tenacity of the metal 18 about 45 tons per square inch.

"No. 2. The key and plug are made of similar material, and have also been tempered
in oil, and their limits of strength correspond to those of the inner tube.
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" No. 3. The intermediate coils B and B1 -were made by coiling a bar

of this section round a cast-iron mandril, and then welding this coil into a

compact hollow cylinder, open at both ends, and the fibre of the iron running
**

round and round the circumference of the cylinder

"The exterior coil C was made in a similar manner, on a larger mandril from a bar

of this section, and coiled in the reverse direction to the inner coil.

"The cylinders were then bored and turned

"The steel cylinder A was turned -01 of an inch larger than the interior of

the intermediate coils B and ft
1

; the coils were then heated to expand them,
and were put on to the steel cylinder and allowed to cool. When cold, the

exterior of B and 1? was turned "02 of an inch larger than the interior of the cylinder (7,

which was then heated and put on the cylinder B-B\

"The strength of the iron of which the coils are made is about 20 tons circumferentially,

and 10 tons in a longitudinal direction with the cylinder.

" No 4 The inner steel cylinder A was subjected to* hydraulic pressure before the outer

coils were shrunk upon it, of about 2 tons per square inch, in order to test the general sound-

ness of the metal.

"No. 5 The cylinder in its pieaent condition may be worked with safety up to 18

or 20 tons per square inch. Of course the breaking strength, calculated in the resistance

of the several parts of the cylinder, is very much greater.

"No 6 The weights of the several parts are as follows:

Tons cwts. qrs Ibn

"Cylindei . 3100
Key 3 14

Plug . . 1 27

Total ... 3 2 1 13

"17/2/79 (Signed) W. YOUNGTIUSBAND, M Gen\"

The instrument was erected in a basement room on the north side of the College, on

a stone slab 18 inches thick, which was supported by a large mass of concrete imbedded in

the ground below the floor, and in no way connected with the building.

A wooden platform, 3 feet 9 in. high, was erected round the instrument to facilitate

access to the chamber from the top. When very high pressures were to be applied, a wooden

screen, lined with sheet-iron, was erected under the platform as a defence against nuts or

other pieces of metal, in case part of the lower fittings (by far the weakest part of the

whole) should give way. This precaution was taken in consequence of an accident which

had happened with the old pressure apparatus. Although no great pressure had been reached,

a screw was stripped, and the nut projected with considerable violence

The nature of these lower fittings will be seen at once from the woodcut annexed A
block of iron, with lateral attachments for the pump and for the external gauge, was fixed

by three powerful vices to the external flange of the steel core of the pressure-chamber
It was pierced by a hole of ^th inch diameter, exactly in line with the hole in the

steel cylinder above This hole was closed below by a screw-tap, so that by withdrawing
the tap a steel wire could be easily passed into the pressure-chamber in case of obstructions

T. 62
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in the narrow tube. This hole was intersected at right angles by another bore, communi-

cating at its ends with the lateral attachments. To prevent leakage where the block was

pressed against the lower flange of the steel cylinder, we first employed a leather washer.

But for this we afterwards substituted a washer of block tin This was found to work

admirably. Copper washers are employed at smaller junctions. The tubes connecting the

apparatus with the pump and with the external gauge are of copper, half-an-inch in diameter,

and ^yth inch in internal bore. The pump has a bore of 0-25 inch; and the piston, which is

a solid steel rod with a sharp cup-shaped end (like the large plug) has a stroke of 2'16 inches.

At the usual rate of working of the gas-engine, there are 44 strokes per minute. All these

fittings were executed in Edinburgh after the arrival of the main tube from Woolwich.

The plug was supported by block and tackle from a strong beam fixed in the walls of

the apartment, 5 feet above the upper end of the pressure apparatus.

The key was originally planed true to the slot, but it was deemed prudent .to reduce

(very slightly) its depth; lest, under great pressures, it might flex at the plug and become

permanently jammed.

During the winter session, when the temperature conditions were most favourable, I was

in general unable to find time for more than one experiment each day. But the great

capacity of the pressure-chamber enabled me to operate on five thermometers at once, three

gauges and sometimes other apparatus being also introduced. At least one thermometer was

common to every two batches of five thus operated on.

The mode of conducting an experiment was as follows :

The thermometers, gauges, &c., to be operated on had been left all night, in light

tinned-iron cans, in the pressure-chamber, which was full of water. The cans were lifted

out, full of water, and the thermometers and gauges were then taken out one by one and

read, after the indices had been adjusted by the external magnet. The instruments having
been restored to the cans, these were at once lowered into the pressure-chamber, which

occasionally required to have a small additional quantity of water put in. This was taken

from a vessel which had been kept standing beside the pressure vessel all night. The plug,

carefully coated with a mixture of tallow and oil, was then let down into the cylinder,
and pressed down by hand as far as possible. Then one of the working party mounted

(by means of the tackle) on the top of the plug, which was thus gradually forced in by
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his weight, till it just passed the slot. At that instant another of the party opened the

screw-tap below, to allow the escape of water. A third mounted on the platform, and with

a umrlin-spike occasionally gave a slight rotation to the plug in its descent; so that when
it was home there should be a clear passage for the large steel key through the slots in

the walls of the tube and in the plug. The moment that tho key was shot in, the screw-tap
below was closed, the external gauge read, and the gas-engine turned on. After a little

practice the observer at the external gauge could give a signal to throw off the engine, so

that the pumping should be stopped exactly when the desired pressure was reached.

The thermometers, &c. were then left under full presflire for about three minutes only ;

during which interval the pressure, when originally three tons, lost at the utmost about

I'D per cent. usually, however, not more than about 0-8 per cent. A pressure of three

tons, when there were no air-gauges in the pressure-chamber, was generally reached in six

or seven minut 5. After the three minutes' interval the screw-tap was very slowly opened,

so that the relaxation of pressure usually occupied from one and a half to two minutes.

[When the tap was less slowly opened, the issuing stream of water was at a temperature

many degrees higher than that of the iron vessel an excellent instance of what was said

in the text above about the heat developed by friction in narrow channels.]

I have satisfied myself, by trials both with this large apparatus and with the smaller

one soon to be described, that, for tho object I had in view, nothing was to be gained by

prolonging the exposure of the instruments to pressure. A very slight additional compression

might probably have resulted
,

but it would in all cases have produced much less effect on

the thermometers than that due to changes of temperature in the room towards afternoon,

especially with several persons working for a considerable time round the apparatus This

was the case when we \vere working at an initial temperature of 40 F., when water is not

heated by pressure. When we worked at temperatures of 50 F. or upwards, it would have

been vain to expect anything from protracted pressure ,
for the sudden rise of temperature

in the water is soon greatly diminished by the good conducting power of the steel gun>
and the largo capacity of three tons of steel and iron, as compared with that of 25 Ibs

of water Thus the mercury in the thermometers falls away from the index, so that, even

if a farther compression took place under continued pressure, the index would not be

affected by it. This cooling explains, to a great extent, the apparent leakage described in

the last paragraph.

After the pressure had been let off, our most formidable difficulty presented itself, viz
,

the extraction of the plug with as little as possible of a jerk, and (especially when there

wore air-gauges in the instrument) with as little exhaustion of pressure as possible. To do

this with perfect steadiness, and with the requisite slowness imposed by the great length

and very small bore of the lower aperture, a powerful screw-jack would have been required.

But, though I have an instrument of the kind, I determined to do as well as I could

without it, as the necessary fittings would have l>een not only expensive, but exceedingly

cumbersome, and would have greatly extended the time required for each experiment. The

method adopted was to haul the tackle tight, but not so tight as to start the plug , and

then, by pinching two laps of the chain together, to produce the desired result There was

always about th or th of the air sucked out in this way from our air-gauges, except

when we took the precaution of putting into the chamber before commencing operations

a large inverted vessel full of air. This works well enough in some respects, but it is

objectionable for several reasons, especially the heat developed in compressing air. Another

622
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mode was to force out the plug by reapplying pressure after the key had been extracted.

This was, of course, a very tedious operation as, even when no air-gauges were in the

apparatus, at least 900 strokes of the pump were required : for the section of the plug is

16 square inches, and it had to be raised 5*6 inches, the pump inserting ^th of a cubic

inch of water at each stroke. Any other mode of meeting this difficulty would have involved

a weakening of the apparatus, which could not be permitted.

The smaller pressure apparatus, already alluded to, is figured in section in the woodcut.

Its bore is one inch in diameter; and its content, when the plug is in, is about nine cubic

inches. A single stroke or two 'of the pump only is required to produce in it a pressure

of three to four tons. The important feature in its construction is the large flange by which

the lower end, with its fittings, is attached. Between the flanges two large leather washers

(carefully soaked in wax) are compressed by means of six powerful screws. Their object is

to enable us to insert a thermo-electric junction in the pressure-chamber, the other junction

of the circuit being outside. In the sketch the covered wires (copper and iron of 23 gauge,

two of each metal) are seen twisted together and extending up the chamber in a corkscrew

form with the junction at the top. This arrangement enables the experimenter to raise the

junction above the top of the cylinder when he wishes to fit it into a mass of any substance

which is to be tested for the heat developed by compression. The wires pass out, each by

itself, and are laid in a serpentine form between the leather washers. A day or two after

it was first set up, this apparatus leaked considerably at the flange, but by tightening the

screws a second time it was made, and still remains, almost perfectly water-tight even up
to five and six tons pressure.

By means of this apparatus I have measured directly the rise of temperature, produced

by pressure, in a great variety of substances. Some of my results will be found in the

Proc. R.S.E., May 1881. I do not insert them here, but content myself with mentioning
that they fully bear out the results already obtained with vulcanite and lard by means of

the larger apparatus.

One or two other remarks as to the behaviour of the thermometers under pressure may
conveniently be inserted here, as they serve to explain some of the results obtained during
the expedition.

On the first occasion on which one of the thermometers gave way, we were much

surprised at the loudness and musical quality of the sound produced. The whole mass of

iron and steel vibrated like a bell in consequence of the (comparatively slight) sudden relaxation

of pressure. On another occasion, just as a pressure of three and a half tons had been

reached, the whole apparatus gave a strong, protracted musical sound, which continued until

the screw-tap was opened. This was probably due to a species of hydraulic-ram behaviour

on the part of one of the valves of the pump. These are little conical pieces of steel, with

the points much elongated, which are ground accurately into conical beds, and fall back into

their places by gravity. It was not observed that this powerful vibration had in the least degree
altered the position of the indices in the thermometers or gauges which were in the pressure-

chamber. Their indications agreed perfectly with those of the preceding and succeeding day.

I made a number of experiments with the view of determining the amount of distortion

at which glass gives way, with the view of finding the limit of strength of a glass tube,

and also the ratio of external to internal diameter to secure it against any assigned lower

pressure.
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The approximate results of these experiments are given in Appendix A, but I allude to

them now in consequence of a curious fact observed, which gives the explanation of a singular

occurrence noticed on board the Challenger The walls of the tubes, when they gave way,
were crushed into fine powder, which gave a milky appearance to the water in the compression

apparatus. But the fragments of the ends were larger, and gave much annoyance by

preventing the valves of the apparatus from closing To remedy this inconvenience, T enclosed

the glass tube in a tube of stout brass, closed at the bottom only, but was surprised to

find that it was crushed almost flat on the first trial. This was evidently due to the fact

that water is compressible, and therefore t\w relaxation of pressure (produced by the breaking
of the glass tube) takes time to travel from the inside to the outside of the brass tube;

so that for about nn)<nr^n of a second that tube was exposed to a pressure of four or five

tons weight per square inch on its outer surface, and no pressure on the inner. The
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impulsive pressure on the bottom of the tube projected it upwards, so that it stuck in the

tallow which fills the hollow of the steel-plug. Even a piece of gun-barrel, which I substituted

for the brass tube, was cracked, and an iron disc, tightly screwed into the bottom of it

to close it, was blown in. I have since used a portion of a thicker gun-barrel, and have

had the end welded in. But I feel sure that an impulsive pressure of ten or twelve tons

weight would seriously damage even this. These remarks seem to be of some interest on

several grounds, for they not only explain the crushing of the open copper cases of those

of the Challenger thermometers which gave way at the bottom of the sea, but they also

give a hint explanatory of the every remarkable effects of dynamite and other explosives

when fired in the open air. [It is easy to see that, ceteris paribus, the effects of this

impulsive pressure will be greater in a large apparatus than in a small one.]

APPENDIX E.

TABULAR SYNOPSIS OF THE GENERAL RESULTS OF EXPERIMENT AND CALCULATION.

The first four columns of the table give the numbers by which the various thermometers

were distinguished, 1 in my Laboratory, 2 on board the Challenger, 3 by Captain Davis,
4 by the maker Mr Casella.

The series of thermometers Al, ....A26, though they were used on board the Challenger,
are the private property of Sir Wyville Thomson, and were not uniformly stamped, as were

the Challenger thermometers proper, with their numbers on the copper cases. Hence, when

they were obtained from Captain Tizard, it appeared necessary to put on some distinguishing

mark, and the titles X, LV, +, &c
,
were the chance devices on little tablets which were

at once affixed to each of the instruments which had no outward distinguishing mark. I

have since found the means of recognising, without uncertainty, each of the instruments.

The fifth column gives the correction supplied to the Admiralty by Captain Davis for

those thermometers which he tested. The correction is, in all cases, for 2500 fathoms With

reference to the numbers in this column, the following extract from a letter addressed to

me by Captain Tizard (of date llth January, 1881) must be kept well in \iew .

"The method employed by Captain Davis, in experimenting on the thermometers, was

to place in the press, with the instruments on trial, one of Phillips' thermometers, enclosed

in a tube on Sir William Thomson's principle. He took it for granted that this perfectly

enclosed thermometer would not l>e affected by pressure, but that any alteration of its index

would be due to the generation of heat m forcing the water into the press. The alteration

of its index, which was always of very small amount, was deducted from the alterations in

the indices of the instruments on trial, and the differences assumed to be the errors of the

thermometers at a given pressure. But, as I mentioned to you before, this alteration was

always on the maximum side of the tube, and not the minimum. Consequently it appeared
to us to require considerable modification."

On this it is necessary to remark that the indication of the Phillips' thermometer (as

is obvious from the text above) is not due to heating of the water in the press alone, but

also to the heating effect of pressure upon the strong protecting tube. Thus I have no

direct means of comparing my results quantitatively with those given by Captain Davis.
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Under the circumstances, I have done what appeared to me best for obtaining a rough

comparison. I have given in column 7 the observed effects of a pressure of three tons

(nearly 2500 fms.) on each thermometer. In column 8 the temperatures are given, and in

column 9 the corresponding temperature-change (by Thomson's formula. Appendix 0, ante).

Column 6 gives the differences of the numbers in columns 7 and 9; and these differences

may be roughly compared with those of Captain Davis in column 5. There is a general

agreement, but my reduced numbers are, on the whole, rather greater than those of

Captain Davis.

This may be ascribed, in part, to the fact that in Captain Davis' apparatus (as I under-

stand) the water was pumped in from above, and thus the heat developed by friction did

not affect his results. And it may be due in part to inadequate measurement of pressure,

a point which was impressed on me from the very commencement of my work. I have

learned from Mr Casella that the pressure gauge employed by Captain Davis has been broken ;

so that it is impossible now to verify his scale of pressures. To show how possible is a

serious mistake in this matter, I append a comparison of the indications of the very elaborate

gauge attached to the old Challenger apparatus with those of my steel external gauge

already described. The scale of the Challenger gauge is divided to cwts. on the square inch.

My gauge gives very nearly 20 mm. per ton; so that, for a rough comparison, we may take

1 mm. as equivalent to 1 cwt. The two instruments were simultaneously attached to the

pump, and the pressure was therefore the same in both at each reading. There can be no

doubt whatever, from repeated comparisons with glass gauges of all sizes and shapes, that my
gauge follows Hooke's law with great accuracy. The only possibility of serious error is in

the actual value of the unit. This important determination has, however, been very care-

fully repeated by the aid of Amagat's numbers and the indications of the silvered gauge

already described
;
and the result is as above stated

Steel Gauge Challenger Gauge.
Millimetres. Cwts. per sq. in. Ratio.5000

9 1-2 0-13

15 8-7 58

20 13-9 0-69

30 23-6 0-78

40 35-0 87

50 47-0 0-94

60 58-7 0-98

70 71-7 102

The comparison was repeated several times with almost exactly the same results.

It is quite clear that the Challenger gauge does not follow Hooke's law. It lags behind

the steel gauge at first (does not give any indication, in fact, till the pressure is nearly

50 atmospheres), then gradually gams on it
, and, at pressures greater than 3 tons, appears

to leave it rapidly behind. The instrument is, however, graduated up to 4 tons only. My very

first experiments with this Challenger instrument, in which I used a simple form of mano-

meter, showed that it was not trustworthy, and led me to make various trials for the purpose

of getting a proper mode of measuring high pressures.
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[Inserted, July 8, 1881 After recently examining a number of gauges of the Bourdon

pattern, some constructed to read to 600 atmospheres, I again tried the old Challenger gauge.

The result was very remarkable. Four successive trials agreed very closely with each other

in giving

Steel Gauge. Challenger Gauge.
Millimetres. Cwts. per sq. in Ratio

10 106 1-06

20 20-3 1 02

30 * 31-0 1-03

40 42-8 1 07

50 54-1 1 08

60 65-7 1 09

70 78-7 1-12

A comparison of these, with the numbers of the former trials, shows that all the readings

are increased by somewhere about 7 cwts This seems to show a definite slip of one of the

bearing!), or possibly a new arrangement of the teeth gearing with one another in the two

toothed arcs. But whatever be the cause, the untrustworthiness of the gauge is obvious.]

Columns 10 -and 11 give the pure pressure effect on each of the thermometers, as calculated

from the measured dimensions of each instrument and of its principal aneurism by the help of

the formulae in Appendices A and B. The numbers given for the maximum side of each instru-

ment are all slightly too small, as I have not allowed for the effects of the (comparatively

trifling) aneurisms at the bends of the tube. Those given for the minimum side are the only

ones of real importance ; and, in calculating these, all accessible details have been carefully

attended to. One or two of the instruments were entirely smashed, so that no trace of the

main aneurism was left In such a case the correction has a + inserted after it. In the

other broken instruments the aneurism was still measurable, and the correction has been

adequately determined.

The remaining columns of the table give the scale errors of the thermometers at 50 F.

These were determined casually in the course of the work, by comparing with a Kew Standard

the thermometers for trial next day, which were (for this purpose) kept for some hours in a

steady stream of water. These numbers are not given as exact, though they are probably very

near the truth. I have noticed that the scale; error, in a thermometer with two liquids in contact,

varies within considerable limits at any one temperature, according as the thermometer has been

raised to that temperature from a lower one, or cooled down to it from a higher. I found an

excellent illustration of this in some of my glass pressure-gauges, where (for the purpose of

allowing the interior plug to be seen) I at first employed a transparent liquid in tho bulb, with

a short column of mercury in the stem to move the index In some of these instruments,

after they had been several times exposed to high pressures, a film of the transparent liquid

entirely surrounded the column of mercury, which could then move pretty freely, even in the

narrow tube, under the action of gravity Of course this mode of construction was at once

given up.

There seems to be no necessity for the printing of the records of the very numerous

experiments which have been made on the various thermometers. In the text above, I have

said enough to show that the true pressure correction to be applied to the deep sea observa-

tions is exceedingly small, and in column 11 of the annexed table it is calculated with all
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Nil and HI were handed to me by Mr Muriay ,

XXIII c e direct from Mr Casella The remainder were sent to me by Captain Tizard.
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necessary accuracy. I have already said that no fair comparison can be drawn between the

numbers in columns 5 and 6. There is a general resemblance between them, and that is all

that could be expected where the modes of obtaining them were so different.

As regards the numbers in column 7 of the table, the remainder, when the corresponding

number for the maximum index in column 10 is subtracted, ought to be nearly the same for

all the thermometers if the vulcanite supports and cover were similarly applied to each. The

differences among them are mainly due to this cause, and it is somewhat surprising to find that

they are so nearly alike

I have so often mentioned (Vmagat's determinations of the volume of air at different

pressures, as the basis of the whole of my measurements, that it is well to give, as I have

done in fig. 3 of the plate, a graphic representation of them. The horizontal axis gives pressure

of air in atmospheres, the vertical gives the corresponding densities, or (what comes to the

same thing) the pressures calculated from the densities by assuming the truth of Boyle's law.

It will be seen that the straight line, which would represent densities in terms of the actual

pressures, if Boyle's law were true, lies below the curve at first- i.e. air is more compressible

at first than Boyle's law would make it. At about a ton (or rather 140 atmospheres), its

volume is exactly that which Boyle's law would give ,
and at higher pressures its com-

pressibility falls farther and farther short of that assigned by the law But the error caused

by assuming Boyle's law to hold good up to one ton pressure is, at its greatest, only about

1 per cent.
; and this occurs considerably under 100 atmospheres. Practically, my gauge unit

was determined at pressures at which Boyle's law is almost exactly true.

Finally, it may be interesting to mention that a fairly approximate determination of the

compressibility of water was made by counting the number of strokes of the pump required to

produce a measured pressure in the interior of the large apparatus.
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