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THE PROBLEM 

Develop statistical, physical, and computer techniques 

for interpreting, Summarizing, and extrapolating oceanic 

and meteorologic data for reliable estimation of the sound 

velocity distribution in the ocean. Specifically, determine 

the effect of random missing data and the effect of several 

long periods of missing data on the regression and auto- 

correlation analyses used in the estimation of sea-surface 

temperatures. 

RESULTS 

Analysis of records of sea-surface temperature, 

taken in the N. Atlantic and N. Pacific and up to 40 years 

in length, has shown that: 

1. For many stations, the time series of sea-surface 

temperatures have missing temperatures scattered at ran- 

dom throughout the series. For each day there is a certain 

probability that the temperature will be missing. For such 

series, proper adjustments can be made in the computations 

of the regression and autocorrelation coefficients. The 

random deletion of data yields coefficients whose variances 

exceed those of a complete time series by an amount as 

predicted by the reduction in sample size. 

2. For certain stations, there are an excessive 

number of longer sequences of missing data. For the time 

series considered, the increase in the variances of the re- 

gression coefficients attributable to this nonrandom missing 

data is twice the increase attributable to random missing 

data. Alternatively, for fractions of missing data greater 

than 0.2, time series with nonrandom missing data will 

have regression coefficient variances equal to those the 

same series with 0.15 more missing data would have, if 

all the missing data were random, 
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3. The effect of nonrandom, longer sequences of 

missing data on autocorrelation coefficients is less pro- 

nounced than for regression coefficients. The increase in 

the variances of autocorrelation coefficients attributable to 

nonrandom missing data is 1.2 times the increase attributable 

to random missing data. Alternatively, for fractions of 

missing data greater than 0.2, time series with nonrandom 

missing data will have autocorrelation coefficient variances 

equal to those the same series with 0.05 more missing data 

would have, if all the missing data were random. 

RECOMMENDATIONS 

1. Examine the nature of missing data in time series 

of sea-surface temperatures as to the randomness of 

occurrence intime. Then apply the appropriate results of 

this report in estimating the variances of regression 

coefficients and autocorrelation coefficients. 

2. Perform an investigation similar to the present 

one On the effect of missing data for the regression prob- 

lem but with several independent variables, namely, time, 

depth, and geographical location. The dependent variable 

will be water temperature. 

3. Examine the effect of missing data on the short 

range prediction of sea-surface temperatures, 
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INTRODUCTION 

The time-series analysis of sea-surface temperatures 

is of interest to oceanographers, meteorologists, and 

biologists. This study discusses methods used in an anal- 

ysis of daily sea-surface temperatures. It is the first ina 

proposed series and is primarily concerned with the effect 

of missing data in certain regression and autocorrelation 

analyses. Only enough detail of these analyses will be in- 

cluded to ensure a degree of completeness to the present 

study. 

Many time-series measurements have been made at 

various locations. Inthe eastern Pacific Ocean such 

measurements have been made by Canadian and American 

oceanographers at coastal, island, and ship locations for 

time periods up to 45 years. These data have been the 

subject of numerous papers including, among others, those 

of Pickard and McLeod’ and Roden.*** This study differs 

*Pickard, G. L. and McLeod, D. C., ''Seasonal Variation of 

Temperature and Salinity of Surface Waters of the British 

Columbia Coast,'' Journal of the Fisheries Research 

Board, Canada, v. 10, p. 125-145, 1953 

?Roden, G. I., ‘Spectral Analysis of a Sea-Surface 

Temperature and Atmospheric Pressure Record off 

Southern California,'’ Journal of Marine Research, v. 16, 

p. 90-95, 1958 

“Roden, G. I., "On Nonseasonal Temperature and Salinity 
Variations Along the West Coast of the United States and 

Canada,'' California Cooperative Oceanic Fisheries In- 
vestigations. Reports, v. 8, p. 95-119, 1961 



from those cited in that the original daily temperatures 

are used in the analysis without a preliminary smoothing 

by monthly averaging. 

The purpose of time-series analysis is to isolate 

trends oscillations, and random elements, which are 

defined as follows. Trend is a gradual increase or decrease 

in a system over a long period of time; an oscillation is a 

variation about the trend that occurs with more or less 

regularity over some time interval; and a random element 

is an unpredictable variation in the variable. If long term 

trend does not exist, then the primary need is the statistical 

fitting of some function to time series to represent the 

oscillatory element. 

Several sets of daily sea-surface temperatures have 

been examined. Measurements were made at the two open 

ocean and four island or coastal locations shown in figure 1. 

To indicate how individual temperature measurements vary 

throughout the year, one year of measurements for each 

location is presented in figure 2. These years of tempera- 

tures are taken from records that vary in length from 7 to 

40 years. Pertinent information about the stations yielding 

these records are included in table 1. 
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TABLE 1. SEA-SURFACE TEMPERATURE TIME SERIES 

Time Number | Number Daily | Percent Possible 

Location Period Days Observations | Observations 

Weather Ship ''PAPA" 1/56 - 1/63 2557 1690 66 

50°N 145°W 7 yr 
North Pacific 

Weather Ship ''ECHO"' 9/49 - 9/56 255K 1533 60 

35°N 48°w il sae 
North Atlantic 

St. James Island 1/40 - 1/61 7671 6180 81 

52°N 131°W 21 yr 
North Pacific 

Triple Island 1/40 - 1/61 7671 7244 95 

54°N 131°W 2 ileyats 

North Pacific 

Langara Island 1/An = 1/61 7304 6402 88 

54°N 133°W 20 yr 

North Pacific 

Seripps Pier Lj2l = 1/8) 1a610 14352 98 
BS IN, WLW 40 yr 

North Pacific 

al 
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REGRESSION AND AUTOCORRELATION ANALYSES 

A visual observation of the data suggests statistically 

fitting some theoretical function which oscillates with a 

period of one year. Further justification is provided by the 

autocorrelation function 

= Ky = G, =COV(Z T, )/ VAR(Z,), for lags Oil mens 

In this application the variable 7, is the sea-surface tem- 

perature on day v, 7,;is the temperature * days later, 

and COV and VAR are the covariance and variance of the 

variables as indicated. Computation of the autocorrelation 

function yields peaks whose magnitudes and spacings 

strongly indicate the existence of an annual oscillation in 

the time series. 

The simplest model consisting of an oscillatory 

function with period one year is 

Gee i] 6B, +asin [2r(D- 6)/365] + « 

iT] B, + B,sin (27D/365) + B.cos (27 D/365) + € 

where D is time measured in days from some arbitrary 

origin and 7” is the fitted value of the surface temperature. 

Fitting the function of equation (2B) to the observed sur- 

face temperatures 7 using the method of least squares 

yields estimates of the regression coefficients B,, B, and 

8, and an estimate of the variance of €. The amplitude a 

and phase @can be obtained from B, and B,. The quantity 

€ is the random, or error, or residual term. 

If the residuals 7 - 7’ are examined visually or by 
computation of the autocorrelation function of the residual 

time series, a fairly strong semiannual oscillation is dis- 

covered for some of the stations. This suggests the model 

(1) 

(2A) 

(2B) 



ip = B, + B,sin(2mD/ 365) + B, cos(2mD/365) (3) 

+ B sin(4mD/365) + B cos(4mD/365) + € 

The addition of semiannual oscillatory terms to the re- 

gression equation improves the fit obtained with the annual 

terms. Tests of significance of sums of squares attributable 

to annual and semiannual oscillations are performed using 

the appropriate /-ratios. 

Computation of the autocorrelation functions of the 

residual time series after equation (3) has been fitted to the 

series of sea-surface temperatures yields the plots of fig- 

ure 3. These residuals are themselves autocorrelated, 

although no additional oscillatory terms exist. The least 

Squares method is valid if (1) the error between the true 

regression curve and the observed value is distributed in- 

dependently of the independent variables with zero mean and 

constant variance; and (2) ideally, successive errors are 

distributed independently of one another. Actually, the 

problem of using the method of least squares when the error 

terms are autocorrelated has been solved if the e's follow 

certain autoregressive processes.* The autocorrelated 

residuals should affect the distributions of the regression 

coefficients. As will be seen later, the effect on the 

variance of the regression coefficients is negligible. 

“Anderson, R. L., ''The Problem of Autocorrelation in 

Regression Analysis,''’ American Statistical Association. 
Journal, v. 49, p. 113-129, March 1954 

3 
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If equation (3) is fitted to individual years of data, the 

analysis provides in B . an estimate of the yearly average of 

the surface temperature. The sequence of B 's can be ex- 

amined for the existence of trend in the time series. Testing 

for trend using either the theory of runs or the autocorrelation 

coefficient with lag unity indicates that no long term trend 

exists in any of the time series under consideration. Details 

of the trend analysis will be presented in a subsequent 

report. 

MISSING DATA 

The six locations have data missing in amounts varying 

from 2 percent to 40 percent of the number of possible 

observations. Intuitively it would seem that, for the types 

of analyses attempted, a fairly large fraction of randomly 

distributed missing data can be tolerated. It is the purpose 

of this report to examine quantitatively the effect of various 

fractions of missing data. 

Although the expression missing data has been 

used thus far in the discussion, it is worthwhile now to 

comment on this usage. Conceivably, in a statistical prob- 

lem, missing data can result in nothing more drastic than a 

sample of smaller size than planned. This might well be 

the case in a regression analysis in which the residuals are 

independently distributed with equal variances, and the 

missing data are uniformly or randomly distributed through- 

out the ranges of the independent variables. On the other 

hand, missing data in an extreme case can invalidate an 

experiment. 

15 
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Table 1 shows that the stations with the largest 

fractions of missing data are the weather ships, partly 

because of the exclusion of temperatures if the ships are 

off station. Data may also be missing at either weather 

ships or shore locations because of bad weather or equipment 

failure. As an indication of the nature of occurrence of the 

missing data for stations with fairly large fractions of 

missing data, consider figure 4. Shown are histograms of 

the frequency of missing temperature sequences for 7 years 

of PAPA data and 21 years of St. James Island data. Sta- 

tion PAPA was selected from the two open ocean locations 

since the bathythermograph observations were made by 

oceanographers and were considered to be more accurate 

than for station ECHO. St. James Island was chosen from 

among the island and coastal locations since it had the 

largest fraction of missing data of these stations. 

Except for a few long periods of missing data for each 

station, as indicated in figure 4, the missing data days are 

distributed very much as though at random. That is, given 

the appropriate probability of there being data on a day, the 

distributions by length of data-present sequences and data- 

missing sequences are like those expected. More specifi- 

cally, the computed histograms shown in figure 4 result 

from randomly generated time series with two controlling 

conditional probabilities. The first conditional probability 

used for figure 4A is 0.76, which is the probability that a 

temperature will be observed, given that a temperature 

was observed the previous day. The second conditional 

probability used is 0.51, which is the probability that a 

temperature will be observed, given that a temperature was 

not observed the previous day. The corresponding probabil- 

ities for figure 4B are 0.89 and 0.59. These conditional 

probabilities agree quite well with the physical situation 

that missing data sequences occur infrequently, but once 

they occur they persist longer than can be explained by a 

single probability. 
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MODEL FOR MISSING DATA 

It is proposed that the effect of missing data be 

evaluated in the following manner. There exist series of 

sea surface temperatures for which there are no missing 

data (Scripps Pier), or almost none (Triple Island), over 

periods of several years. Complete series of length up to 

12 years can be selected from each of these sources. The 

few missing temperatures for Triple Island are filled in by 

adding to interpolated values random normal deviates having 

the appropriate variance. The complete series remains 

unchanged thereafter. It is thought necessary to consider 

two stations, whose time series of sea-surface temperatures 

have slightly different characteristics with respect to 

residual variability and significance of semiannual oscilla- 

tory terms, in order to avoid decisions which might be too 

dependent on the characteristics of a single station. 

Regression and autocorrelation analyses are performed 

on the complete series. Estimates of the variances of the 

regression coefficients B are available from the matrix in- 

verse to that of the coefficients in the normal equations of 

the least squares analysis. The estimates of the variances 

used assume independent, equal variance residuals. These 

variances are attributable to the residual variability of 

observations about the true regression curve. 

The 40 years of Scripps Pier residuals with very few 

missing observations provide an estimate of the variance 

of the near-zero autocorrelation coefficients. The autocor- 

relation function for Scripps Pier was computed out to a lag 

of 1800 days, an arbitrary figure slightly over 10 percent 

of the total sample length. The standard deviation of the 

autocorrelation coefficients with lags from 400 days (end of 

the initial decay of the function) to 1800 days iso, = 0.293. 

This estimate of o, is considered to be the best available 

measure of the random variability of the near-zero auto- 

correlation coefficients of sea-surface temperature anomalies. 

It is based on a large sample of the autocorrelation coefficient, 

and the maximum lag involved is still only a small fraction 

of the total time series length. 



Missing data days are randomly introduced into a 

complete time series using computer-generated, uniformly 

distributed random numbers. Any desired fraction of missing 

data can be introduced by associating with each daily tem- 

perature one of the random numbers with range Otol. If 

the random number has a value greater than the desired 

fraction, the temperature is retained; if not, the tempera- 

ture is deleted. Although two probabilities are used to 

generate each of the computed histograms of figure 4, it is 

more convenient in the analyses below to use single prob- 

abilities yielding the same fractions of missing data. The 

resulting computed histograms decrease more rapidly as a 

function of length of sequence than do those of figure 4, but 

the analysis used is fairly insensitive to the shape of the 

histograms. Since the gross characteristics of the time 

series are similar for all stations, any deletion of tempera- 

tures from complete Scripps Pier and Triple Island time 

series yields sample time series which are like those with 

naturally missing larger fractions of data, and which have 

whatever weaknesses are implied by the missing data. In 

the remainder of this paper, the namesample time series 

refers to a complete time series with data deleted by the 

above described process. 

MONTE CARLO APPROACH 

For a sample time series, the harmonic and autocor- 

relation analyses can be performed just as for a complete 

series, the proper adjustments being made in the computa- 

tions. The regression and autocorrelation coefficients ob- 

tained from a sample time series are different from those 

obtained from the corresponding complete series. If many 

sample time series with the same fraction of missing data 

are independently generated from the same complete time 

series, and if regression and autocorrelation analyses are 

performed for each sample time series, then the variabilities 
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in the resulting coefficients will measure the effect of 

missing data. The generation of many such time series to 

give estimates and confidence limits for parameters is an 

example of the technique which has been given the name 

Monte Carlo. 

The major interest in the B's as statistical variables 

is the variability from sample to sample of their deviations 

from some true, but unknown, values. For an integral 

number of years of complete time series, the four estimates 

of the variances of B,, B.. B.» and Bs as obtained from 

the inverse matrix, are equal. Figures 5A, 5B, 6A, and 

6B are histograms of the differences between the f's of 

120 independently generated sample time series and the 

corresponding B's of the complete time series for 7 years 

of Scripps Pier and Triple Island data. The B's are uncor- 

related and have equal variances. Because of the effective 

increase in sample size, the differences have been grouped 

for the four B's. For figures 5A and 6A the sample time 

series average 50 percent missing data; for figures 5B and 

6B they average 20 percent missing data. The histograms 

are presented to demonstrate that the differences are sym- 

metrically distributed about zero, and to show the dispersion. 

Figure 7 is a plot of B, vs B, for a sample time series. 

It is included to demonstrate that the B's are uncorrelated. 

Table 2 presents the correlation coefficients & for all com- 

binations of B's for the 7-year sample time series with 50 

percent of the data missing. The 5 percent critical value of 

fis 0.179. One of the twelve #'s barely exceeds this value. 

This not unlikely event has prior probability 0.34. 
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TABLE 2. CORRELATION COEFFICIENTS BETWEEN 

SAMPLE £'S, 50 PERCENT OF DATA MISSING 

Correlation Coefficients 

Variables Scripps Pier Triple Island 

Bi Bo 0.139 0.187 

By,» Bs -0,151 0.023 

Bi, Bz = ()eylulir -0. 043 

Bz, Bs Os 0.061 

5 5 (8a -0.148 =On 075 

(se we -0.155 0. 026 

The Monte Carlo technique has been applied to data 

for the combinations of two stations, Scripps Pier and 

Triple Island; for three lengths of series, 4, 7, and 12 

years; and for fractions f of data missing in the range 0.09 

to 0.70. With respect to regression coefficients, figures 

8A, 8B, and 8C display the results of these analyses ina 

normalized form. The quantity plotted is the ratio 9 of the 

variances of the B's attributable to missing data to the 

variances of the f's attributable to residual variability. 

This ratio is the fractional increase in the variance of the 

B's attributable to missing data. Each point is based on 

120 sample time series. 
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The ratio attributable to reduced sample size is 

shown by the continuous curve. The variances of B's based 

on samples from the same population are inversely pro- 

portional to sample size. If //is the sample size for the 

complete time series, J/(1 - f) is the size of the sample 

time series. For the B's 

o icine = 1/(1 - 7) 
s 

where the subscripts s and crefer to sample and complete 

time series, respectively. The increase in variance 

attributable to reduced sample size is 

Oe Gh aap) = lS gel = a) 

The variances of the B's for the complete time series 

are computed as though the residuals are independent. The 

variances for the sample time series reflect the influence 

of the autocorrelated residuals. The empirical ratios of 

figure 8 lie almost on the theoretical curve, which assumes 

independent residuals. Thus, it is concluded that the com- 

bination of autocorrelated residuals and random deletion of 

data yields regression coefficients whose variances are as 

expected simply on the basis of sample size. 

NONRANDOM MISSING DATA 

As indicated in figure 4, there is an excessive num- 

ber of longer sequences of missing data days. These 

sequences occur in the poor weather months October to 

March, inclusive. In addition there are several sequences 

of 5 to 10 days each, which are in excess of the number of 

such sequences expected by chance. It has been demon- 

strated above that randomly distributed missing data affect 

the variance of the regression coefficients just as though the 

sample size were smaller. It is necessary to determine if 

the longer sequences lead to the same result. 



To approximate the time series yielding figure 4, 

sample time series have been generated in which longer 

sequences of data have been deleted in a random manner 

during the poor weather months. Then, individual temper- 

atures are deleted at random from the remaining days until 

certain arbitrary fractions of missing data are obtained. 

Table 3 contains the number of longer sequences deleted 

for three series lengths and for three fractions of missing 

data. Analysis for 4-year series length was not attempted 

for the smallest missing fraction. The Monte Carlo technique 

is applied using 120 independently generated sample time 

series for each station and each combination of series 

length and fraction deleted. 

TABLE 3. NUMBER OF LONGER SEQUENCES DELETED 

Total Period Series Length 

Fraction Length 

Missing (days) 4 Years 

The normalized results are displayed in figure 9. 

The same theoretical curve has been plotted as in figure 8. 

The arbitrary dashed curve has twice the ordinate of the 

solid curve. Because of the much longer sequences deleted, 

and perhaps because of compromises necessary in con- 

structing table 3, the scatter of points in figure 9 is 

greater than in figure 8. 

The dashed curve has been fitted conservatively. It 

indicates that the fractional increase in the variance of the 
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coefficients due to nonrandom 

missing data. 

6's attributable to nonrandom missing data is twice the in- 

crease attributable to random missing data. This suggests 

caution in estimating the variances of B's, or of residuals, 

for time series when the missing data occurs in sequences 

longer than those occurring by chance. 



The dashed curve can be interpreted another way. 

For fractions of missing data greater than 0.2, the dashed 

curve lies about 0.15 unit to the left of the continuous curve. 

When applicable, this quantity 0.15 should be added to the 

actual fraction of missing data. Then conclusions about 

nonrandom missing data can be made as for random missing 

data, but with the larger fraction of missing data used. 

THE AUTOCORRELATION COEFFICIENT 

The effect of missing data on autocorrelation coeffi- 

cients will now be considered. The results are perhaps not 

as straightforward to evaluate as for regression coefficients, 

but are more encouraging as far as tolerating nonrandom 

missing data. Figure 10 presents the results of Monte 

Carlo analyses of autocorrelation coefficients similar to 

those for regression coefficients. The autocorrelation 

coefficients are for the time series of residuals remaining 

after the regression analyses have been performed, The 

same combinations of stations, series length, and fractions 

deleted are used. The variances of autocorrelation coeffi- 

cients are averaged for lags from 10 to 100 in steps of 10. 

Assuming the variances are inversely proportional to 

series length, the average variances are normalized to an 

arbitrary series length of one year. In figure 10, results 

for random missing data are plotted as circles; results 

for nonrandom missing data are plotted as triangles. 

The variance of near-zero autocorrelation coefficients 

based on 40 years of Scripps Pier data is 0.000859, 

Normalized to the series length of one year, the variance 

is 0.0344. This quantity is plotted as the dashed line at the 

top of figure 10. 

Somewhat arbitrary curves have been fitted to the 

two sets of points. The effect of missing data on the 

variance of autocorrelation coefficients results in 
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curves similar to those for regression coefficients. The 

major difference is that the magnitude of the effect of in- 

troducing nonrandom missing data is much less in the case 

of autocorrelation coefficients. The ratio of ordinates 

averages about 1.2 instead of the 2.0 for the regression 

coefficient case. The dashed curve is about 0.05 unit to 

the left of the continuous curve rather than 0.15 unit. If 

the analyses of regression and autocorrelation coefficients 

are of equal importance, then the limitations on nonrandom 

missing data are determined by the regression coefficient 

results above. 

A comparison of the variance determined from the 

40 years of Scripps Pier, near-zero autocorrelation co- 

efficients with the variance of the Monte Carlo analysis in- 

dicates that 70 percent of the data may be randomly missing 

before the two variances are equal. 

COMMENTS AND CONCLUSIONS 

In the analysis above, certain compromises are made 

with computer techniques and computing times required: 

(1) The distribution of missing day sequences based on a 

simple use of random numbers will never agree exactly 

with the observed distribution of missing day sequences 

for a given station. Nevertheless, the techniques used 

provide good initial estimates of the effect of missing data. 

(2) The use of 120 Monte Carlo runs per case is a compro- 

mise between computer time required and the apparent rate 

of convergence to a limit of the parameters estimated. 

It is concluded that random missing data in a time 

series result in regression coefficients whose variances in- 

crease over those of a complete time series by an amount 

as predicted by the reduction in sample size. However, the 

presence of longer sequences of nonrandom missing data 

may have a pronounced effect in estimating regression co- 
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efficients. Specifically, if variances of regression co- 

efficients are estimated in the usual manner, on the average 

these estimates must be adjusted upwards. Roughly, the 

increase in variance due to missing data must be doubled. 

Alternatively, for fractions of missing data greater than 

0.2, time series with nonrandom missing data will have 

regression coefficient variances equal to those the same 

series with 0.15 more missing data would have, if all the 

missing data were random, 

The effect of nonrandom missing data on autocorrelation 

coefficients is less pronounced. The increase in their es- 

timated variance need be only 20 percent. Alternatively, 

for fractions of missing data greater than 0.2, time series 

with nonrandom missing data will have autocorrelation co- 

efficient variances equal to those the same series with only 

0.05 more missing data would have, if all the missing data 

were random, 

RECOMMENDATIONS 

Almost all time series of sea-surface temperatures 

contain missing data. The nature of this missing data as to 

randomness of occurrence in time should be examined before 

regression and autocorrelation analyses are performed. 

The appropriate results of this report should be applied in 

estimating the variances of regression and autocorrelation 

coefficients. 

A similar investigation of the effect of missing data 

should be performed for the regression problem with 

several independent variables, namely time, depth and 

geographical location. The dependent variable will be water 

temperature. 

The results of this report apply to the long range 

estimation of sea-surface temperatures. An examination 

should be made of the effect of missing data on the short 

range (a few weeks or months) prediction of sea-surface 

temperatures. 



GA
ld

IS
SW

IO
NN

 
S!

 
p4

ed
 

si
yy

 

($
-p

1 
Aj
sa
ws
oy
 

‘1
S¢
0p
7 

13
N)
 

98
50

 
4S
21
 

“1
0 

€0
 

70
0 

US
 

T
D
 

P
A
 

Ue
A 

| 

su
o)

ed
i|

dd
y 

- 
SI

SA
jP

ue
|e

IN
SH

eI
S 

°Z
 

SI
SA

JB
Ue

 
|e

I1
}S

1}
2}

S 
- 

ey
ep

 
je
di
yd

ei
bo

ue
as

g 
“T

 

GA
ld

IS
SW

IO
NN

 
S!

 
p4

ed
 

si
yy

 

($
-7
1 

Aj
sa
ui
4o
y 

‘1
66
07
7 

13
N)
 

98
50

 
XS

EL
 

‘1
0 

€0
 

p0
0 

US
 

T
D
 

Y
A
 

Ue
A 

| 

Su
ol

eo
l|

dd
y 

- 
SI
SA
jB
ue
 

BI
II
SE
IS
 

2 
SI
SA
JE
UB
 

[E
DI
}S
I}
E}
S 

- 
Py

ep
 

je
di

yd
es

bo
ue

as
g 

‘]
 

*$
}U

91
91

JJ
80

9 
U0

1}
2]

84
14

09
0}

Ne
 

pu
e 

Uo
Is

sa
tb

ha
4 

Jo
 

SU
O!
}e
}N
dw
Wo
d 

U!
 

ey
ep

 
BH
ul
ss
iW
 

al
} 

JO
 

$}
9a
jJ
a 

AY
} 

40
J 

19
94
40
9 

0}
 

aU
O 

aj
qe
ua
 

je
u}

 
pa

yu
as

 
-d

4d
 

as
e 

sp
ou

jy
aw

 
“e
ye
p 

Bu
ls

si
w 

jo
 

sp
ol

sa
d 

bu
oy
 

Jo
 

ey
ep

 
Bu

is
si

w 
Wo

pu
ed

 
a4
nj
ea
j 

Sa
in

je
sa

dw
ia

} 
ad

ej
in

s-
ea

s 
Jo

 
sa
lj
as
 

aw
l}

 
A
u
e
 

da
l4
dI
SS
VI
ON
N 

‘gg uer¢ ‘de 

‘JNA 

UPA 

“TO 

AQ 
‘NOILVWILS] 

JUNLYYIdWIL 

JOVIYNS 

-V3S 
96

21
 

}4
od

ay
 

‘y
lj
eg
 

‘o
ba
ig
 

ue
s 

‘*
qe
7 

$d
}U
01
}9
a/
9 

Av
en
 

°$}U91914J909 

U0
!}

2}
a4

40
90

}N
e 

pu
e 

Uo
!s

sa
sb

as
 

Jo
 

SU
O!
}E
}N
dw
Wo
d 

Ul
 

ey
ep

 
HU

IS
S|

W 
9}

 
JO

 
$}
99
JJ
a 

AY
} 

40
J 

19
94

10
9 

0}
 

U
O
 

aj
qe
ua
 

je
y}
 

pa
yu

as
 

-d
4d

 
aj
e 

sp
ou
ja
w 

“e
ye
p 

bu
ls

si
w 

jo
 

sp
ol

ia
d 

bu
o|

 
Jo

 
ey

ep
 

bu
is

si
w 

wo
pu

ed
 

ai
nj

ea
y 

Sa
in
jy
es
ad
wi
a}
 

ad
ey

in
s-

ea
s 

jo
 

sa
li
as
 

aw
l}

 
A
u
e
 

Ga
ld

IS
SV

IO
NN

 

‘gg uerg ‘de 

‘VIIA 

UPA 

“fF 
“OD 
AQ 

'NOILYWILS9 

JUNLYYadWAL 

JOV4YNS 

-VS 

96
21
 

J4
od

ay
 

"y
ye
9 

‘o
ba
iq
 

ue
s 

‘*
qe

7 
s9
}U
04
}9
9;
3 

AA
eN
 

GA
Id
IS
SW
IO
NN
 

S!
 

pe
o 

st
y]
 

($
-p

1 
Aj
4a
ut
oy
 

‘T
¢¢
0p
7 

Ta
N)
 

98
50

 
4S

21
 

“1
0 

€0
 

p0
0 

US
 

T
O
 

P
N
A
 

U
A
 

| 

Su
ol

eo
i|

dd
y 

- 
Si

sA
je

ue
 

je
rs

ie
ys

 
2 

SI
SA

JB
UP

 
[B

91
}S

1}
2}

S 
- 

ey
ep
 

je
di
yd
es
bo
ue
as
9 

‘T
 

($
-p

7 
Aj

sa
wi

so
y 

‘T
¢¢
0P
7 

13
N)

 
98

50
 

¥S
€1
 

“1
0 

€0
 

70
0 

US
 

T
D
 

P
I
A
 

Ue
A 

+ 

su
ol

je
oi

jd
dy

 

- 
SI

SA
|B

uU
e 

JB
II

SH
EI

S 
Zz
 

SI
SA

JB
UC

 
J2
91
}S
1}
2}
S 

- 
ye
p 

je
di

yd
eu

bo
ue

as
g 

‘T
 

GA
ld

IS
SW

IO
NN

 
S!
 

p4
eo

 
st

y,
 

°$}U91914J909 

UO
!}
2]
91
40
90
}N
e 

pu
e 

UO
!S

sa
sh

a4
 

Jo
 

SU
O!
}e
yN
dw
Wo
d 

U!
 

ey
ep
 

BU
IS

SI
W 

AU
} 

JO
 

$}
99
JJ
a 

AY
} 

JO
J 

19
94

10
9 

0}
 

BU
 

aj
qe
Ua
 

je
u}

 
pa

yu
as

 
-0

1d
 

ai
e 

s
p
o
u
j
a
 

“e
ye

p 
Bu
is
si
w 

jo
 

sp
oj
se
d 

H
u
o
 

Jo
 

ey
ep
 

Bu
is

si
w 

Wo
pu
ed
 

ai
nj

ea
y 

Sa
in
je
sa
dw
a}
 

ad
ej

yu
ns

-e
as

 
jo
 

sa
lj
as
 

au
l,
 

Au
eW
 

da
ld
IS
SV
IO
NN
 

‘gg uer¢ ‘d ze 

‘JBIIA 

UPA 

“fT 
“O 
AQ 

‘NOLLWWILS3 

JUNLWYAdWAL 

JOWINNS 

-V3S 
9621 }4oday 

‘yyjeQ 

‘obaig 

ues 

‘“qe] 

$d1U04399/9 

Aven 

°$}U9191JJa09 

U0
1}
2]
81
41
09
0}
Ne
 

pu
e 

UO
ls

sa
tb

as
 

jo
 

Su
O!

}e
}n

dw
od

 
U!

 
ey
ep
 

HU
IS

SI
W 

AU
} 

JO
 

$}
99
JJ
a 

AY
} 

JO
J 

19
94

10
9 

0}
 

B
U
 

a[
qe
ua
 

ye
u}
 

pa
}u

as
 

-d
4d

 
as
e 

sp
ou
ja
w 

“e
ye
p 

Bu
ls
si
w 

jo
 

sp
ol

sa
d 

Hu
o|

 
Jo
 

ey
ep
 

Bu
ls
si
w 

Wo
pu
ed
 

a4
nj

ea
j 

Sa
in

je
sa

dw
ia

} 
ad
ej
in
s-
ea
s 

jo
 

sa
li
as
 

aw
l}
 

Au
ew
 

da
ld
IS
SV
IO
NA
 

‘gg uer¢ dz 

‘JANA 

UPA 

“fT 
“DO 
AQ 
‘NOILVWILS] 

JUNLYYIdWA3L 

JOVIYNS 

-W3S 

9621 
j4oday 

“y1ye9 
‘obaiq 
ues 
‘*qe7 
$91U04}99}3 
AAeN 



INITIAL DISTRIBUTION LIST 

CHIEF» BUREAU OF SHIPS 
CODE 210L CODE 345B 
CODE 240C (2) 
CODE 320 
CODE 360 (3) 
CODE 370 

CHIEF» BUREAU OF NAVAL WEAPONS 
DLI-3 
DLI-31 
FASS 
RU-222 
RUDC-2 
RUDC-11 

CHIEF» BUREAU OF YARDS AND DOCKS 
CHIEF OF NAVAL PERSONNEL 

PERS 118 
CHIEF OF NAVAL OPERATIONS 

OP-O7T OP-716C 
op-71 
OP-76C 
OP-03EG 
oPp-0985 

CHIEF OF NAVAL RESEARCH 
CODE 416 
CODE 466 
CODE 468 

COMMANDER IN CHIEF US PACIFIC FLEET 
COMMANDER IN CHIEF US ATLANTIC FLEET 
COMMANDER OPERATIONAL TEST AND 

EVALUATION FORCE 
DEPUTY COMMANDER OPERATIONAL TEST - 

EVALUATION FORCE» PACIFIC 
COMMANDER CRUISER-DESTROYER FORCE> 

US ATLANTIC FLEET 
US PACIFIC FLEET 

COMMANDER TRAINING COMMAND 
US PACIFIC FLEET 

COMMANDER SUBMARINE DEVELOPMENT 
GROUP TWO 

FLEET AIR WINGS» ATLANTIC FLEET 
SCIENTIFIC ADVISORY TEAM 

US NAVAL AIR DEVELOPMENT CENTER 
NADC LIBRARY 

US NAVAL MISSILE CENTER 
TECHe LIBRARY» CODE NO 3022 

PACIFIC MISSILE RANGE /CODE 3250/ 
US NAVAL ORDNANCE LABORATORY 

LIBRARY 
US NAVAL ORDNANCE TEST STATION 

PASADENA ANNEX LIBRARY 

CODE 334 

CHINA LAKE 
US NAVAL WEAPONS LABORATORY 

KXL 
PUGET SOUND NAVAL SHIPYARD 
USN RADIOLOGICAL DEFENSE LABORATORY 
DAVID TAYLOR MODEL BASIN 

APPLIED MATHEMATICS LABORATORY 
/LIBRARY/ 

US NAVY MINE DEFENSE LABORATORY 
US NAVAL TRAINING DEVICE CENTER 

CODE 365H» ASW DIVISION 
USN UNDERWATER SOUND LABORATORY 

LIBRARY 
ATLANTIC FLEET ASW TACTICAL SCHOOL 
USN MARINE ENGINEERING LABORATORY 
US NAVAL CIVIL ENGINEERING LAB. 

L54 
US NAVAL RESEARCH LABORATORY 

CODE 2027 
US NAVAL ORDNANCE LABORATORY 

CORONA 
USN UNDERWATER SOUND REFERENCE LABe 
BEACH JUMPER UNIT TWO 
US FLEET ASW SCHOOL 
US FLEET SONAR SCHOOL 
USN UNDERWATER ORDNANCE STATION 
OFFICE OF NAVAL RESEARCH 

PASADENA 
USN WEATHER RESEARCH FACILITY 
US NAVAL OCEANOGRAPHIC OFFICE (2) 
US NAVAL POSTGRADUATE SCHOOL 

LIBRARY 
DEPT. OF ENVIRONMENTAL SCIENCES 

OFFICE OF NAVAL RESEARCH 
LONDON 
BOSTON 
CHICAGO 
SAN FRANCISCO 

FLEET NUMERICAL WEATHER FACILITY 

US NAVAL ACADEMY 
ASSISTANT SECRETARY OF THE NAVY R-D 

ONR SCIENTIFIC LIAISON OFFICER 
WOODS HOLE OCEANOGRAPHIC INSTITUTION 

INSTITUTE OF NAVAL STUDIES 
LIBRARY 

AIR DEVELOPMENT SQUADRON ONE /VX-1/ 
DEFENSE DOCUMENTATION CENTER (20) 

DOD RESEARCH AND ENGINEERING 

TECHNICAL LIBRARY 
NATIONAL OCEANOGRAPHIC DATA CENTER (2) 

NASA 
LANGLEY RESEARCH CENTER 

COMMITTEE ON UNDERSEA WARFARE 
US COAST GUARD 

OCEANOGRAPHY — METEOROLOGY BRANCH 

ARCTIC RESEARCH LABORATORY 
WOODS HOLE OCEANOGRAPHIC INSTITUTION 
US COAST AND GEODETIC SURVEY 

MARINE DATA DIVISION /ATTN-22/ 
US WEATHER BUREAU 
US GEOLOGICAL SURVEY LIBRARY 

DENVER SECTION 

US BUREAU OF COMMERCIAL FISHERIES 

LA JOLLA DRe AHLSTROM 

WASHINGTON 259 De Ceo 
POINT LOMA STATION 
WOODS HOLE» MASSACHUSETTS 
HONOLULU-JOHN C MARR 

LA JOLLA» CALIFORNIA 
HONOLULU» HAWAII 
STANFORD» CALIFORNIA 
POINT LOMA STA-Je He JOHNSON 

ABERDEEN PROVING GROUND» MARYLAND 

REDSTONE SCIENTIFIC INFORMATION 

CENTER 
BEACH EROSION BOARD 

CORPS OF ENGINEERS» US ARMY 
DEPUTY CHIEF OF STAFFs US AIR FORCE 

AFRST-SC 
STRATEGIC AIR COMMAND 
HQ AIR WEATHER SERVICE 

UNIVERSITY OF MIAMI 
THE MARINE LABe LIBRARY (3) 

COLUMBIA UNIVERSITY 
HUDSON LABORATORIES 

LAMONT GEOLOGICAL OBSERVATORY 
DARTMOUTH COLLEGE 

THAYER SCHOOL OF ENGINEERING 

RADIOPHYSICS LABORATORY 
RUTGERS UNIVERSITY 
CORNELL UNIVERSITY 

OREGON STATE UNIVERSITY 
DEPARTMENT OF OCEANOGRAPHY 

UNIVERSITY OF SOUTHERN CALIFORNIA 
ALLAN HANCOCK FOUNDATION 

UNIVERSITY OF WASHINGTON 

DEPARTMENT OF OCEANOGRAPHY 

FISHERIES—OCEANOGRAPHY LIBRARY 

NEW YORK UNIVERSITY 
DEPT OF METEOROLOGY - OCEANOGRAPHY 

UNIVERSITY OF 
DRe JOHN Ceo 

UNIVERSITY OF 

GEOPHYSICAL 
UNIVERSITY OF 

MICHIGAN 
AYERS 
ALASKA 
INSTITUTE 
RHODE ISLAND 

NARRAGANSETT MARINE LABORATORY 

YALE UNIVERSITY 
BINGHAM OCEANOGRAPHIC LABORATORY 

FLORIDA STATE UNIVERSITY 
OCEANOGRAPHIC INSTITUTE 

UNIVERSITY OF HAWAII 
HAWAII INSTITUTE OF GEOPHYSICS 
ELECTRICAL ENGINEERING DEPT 

A-M COLLEGE OF TEXAS 
DEPARTMENT OF OCEANOGRAPHY 

THE UNIVERSITY OF TEXAS 
DEFENSE RESEARCH LABORATORY 

HARVARD UNIVERSITY 
SCRIPPS INSTITUTION OF OCEANOGRAPHY (4) 

MARINE PHYSICAL LAB 
UNIVERSITY OF CALIFORNIA 

ENGINEERING DEPARTMENT 
UNIVERSITY OF CALIFORNIAs SAN DIEGO 

SIO 
THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
INSTITUTE FOR DEFENSE ANALYSIS 


