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7rfk . IV

This book is intended as a sequel to the " First lessons

in Geometry," and, therefore, presupposes some acquaint-

ance with that little treatise. I think it better, however,

that some interval should elapse between the study of

that book and of this,
— during which time the child may

be occupied in the study of Arithmetic.

Geometrical facts and conceptions are easier to a child

than those of Arithmetic, but arithmetical reasoning is

easier than geometrical. The true scientific order in a

mathematical education would therefore be, to begin with

the facts of Geometry, then take both the facts and rea-

soning of Arithmetic, and afterwards return to Geometry,

not to its facts only, but to its proofs.

The object of "First Lessons in Geometry" is to develop

the child's powers of imagination ;
the object of this book

is to develop his powers of reasoning. That book I con-

sider adapted to children from six to twelve years of age,

this to children from thirteen to eighteen years old.

(3)
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SECOND BOOK IN GEOMETRY.

PART I.

CHAPTER I.

PRELIMINARY.

1. Geometry is the science of forai. We really begin
to learn Geometry when we first begin to notice the forms

of things about us. Some pei*sons observe forms much
more closely than others do

; partly owing to their nat-

ural taste, and partly to their peculiar education. The

study of plants, animals, and minerals, the practice of

drawing, and the use of building blocks and geometrical

puzzles, are good modes of leading one to notice, quickly
and accurately, differences of form.

2. The second step in learning Geometry is to become
able to imagine perfect forms, without seeing them drawn.

The Httle book called "First Lessons in Geometry" was

chiefly designed to help in the attainment of this power.
It is filled with descriptions of forms that cannot be ex-

actly drawn. This is especially true of many of tlie

curves, which cannot be drawn so exactly as straight-lined

figures and circles, but which we can, with equal ease,

imagine perfect.

(11)
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: -^l .'Tiift' 't£1^4 sfep^*in Ibaming Geometry is to learn to

reason aborrt. 'foriiisi and to prove the truth of the inter-

esting facts which we think that we have observed. This

is the only way in which we can become able to find out

new truths, and to be certain that they are true. And
the firet part of this second book is written to teach the

scholar how to reason out, or prove, geometrical truths.

4. After learning to reason out or prove geometrical

tmths, it is pleasant to know how to use them. This is

not the only object of Geometry. It is worth while to

know a truth, simply because it is true. But it is also

pleasant to be able to apply that truth to practical use, for

the benefit of our fellow-men. And the second part of

this book is written to show in what way we can turn

Geometry to practical use.

CHAPTER II.

DEFINITIONS.

5. Geometry is the science o^form. Every form or

shape is, in general, enclosed by a surface
; every surface

can be imagined as bounded, or else as divided, by lines
;

and in every line we can imagine an endless number of

points.

6. A point is a place without any size. It has a position,
but no dimensions

;
neither length, breadth, nor depth.

7. A line is a place having length, without breadth or

depth. As we attempt to mark the position of a point by
making a dot with the point of a pen or pencil, and the

position of a line by moving the pencil point along the
surface of tlie paper, we find it convenient to speak of a

geometrical line as if it were made by the motion of a geo-
fnetrical point.

As the eye runs along the pencil line, so
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the eye of the mind runs along the geometrical line from

point to point.

8. A surface is a place having length and breadth, with-

out depth, that is, without thickness.

9. A solid is a place having length, breadth, and depth,

A geometrical solid is not a solid body, but is simply the

space that a solid body would occupy, if it were of tliat

shape and in that place. In like manner a geometrical
surface is not the surface of a solid body, but simply the

surface of a geometrical solid.

10. A straight line is a line that does not bend
j^

in any part. A point moving in it never changes
the direction of its motion, unless it reverses its di-

rection.

11. A cui*ve is a line that bends imperceptibly at

every point. It must not have any

^q\ straight portion, nor any corners;
A ^^.JV that is to say, it must bend at

every point, but the bend must be

too small, at each place, to be measurable.

12. A plane is a geometrical surface, such that B

a point, moving in a straight line from any one point in

the surface to any other, never leaves the surfece. The
common name of a plane is ^'ajlat surface."

13. An angle is the difference of two directions in ono

plane. If the line C O should

turn around the point O so as to

make the arc D C grow longer,

the difference of the directions

of O C and O D would increase,

and we should say that the angle DOC grew larger and

larger until the point C arrived at A, so that the two lines

O D and O C were opposite in direction.

14. If the point C were earned round halfway to the

opposite point A, that is, to the point E, the angle DOC
2
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-±

would be a right angle, as D O E is. A right angle is a

difference of direction half as great as oppositeness of di-

rection. The difference between an angle and a right an-

gle is called the complement of the angle. The difference

between an angle and two right angles is called the sup-

plement of the angle. Thus C O E is the complement of

DOC, and C O A is the supplement ofD O C.

15. When two lines

make no angle with each y/
other, or make two right

angles, they are called C —
parallel lines. That is to —

say, parallel lines are

those that lie in the same direction or in opposite direc-

tions. When two lines in a plane are not parallel, the

point where they cross, or would cross if prolonged, is

called the vertex of the angle. Lines making a right angle
with each other are called perpendicular to each other.

16. A triangle is a figure enclosed by three

straight lines in one plane.

17. A right triangle is a triangle in which two
of the sides make a right angle
with each other. These sides

are then called the legs of the

triangle, while the third side is

called the hypothenuse.
18. A parallelogram is a figure

bounded by four straight lines in

a plane, with its opposite sides

parallel.

19. A rectangle is a parallelo-
^

gram with its angles all right angles.

20. A square is a

rectangle with its

sides all equal.

"/
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CHAPTER III.

REASONING.

21. Suppose that we wished to make another person

believe that the tliree angles of a

triangle are, together, equal to two

right angles. One way of convin-

cing him would be to take a trian-

gular piece of card, or of paper, cut

off the corners by a waving line, and lay the three comei^s

together, to show him that the outer edges will make a

straight line, as two square comers put together will do.

22. Yet he might not be satisfied that the line was per-

fectly straight. Or perhaps he might say that if the angles

of the triangle were in a different proportion, the corners

put together would not make a straight line with their

outer edges.

23. A gentleman once came to me and said,
" I have

found out that if you draw such and such

lines, you will always find these two, A B
and C D, equal. At least my most careful

measurement shows no difference between

them ." I said to another gentleman, who
knew something of Geometry,

" Can you prove that these

lines will be equal if the figure is drawn exactly as direct-

ed ?
" He said he would try, and in a few days he sent

me what he called a proof. But on reading it I found it

only amounted to saying that " if the lines are equal, they
are equal." I then examined the matter myself, and found

that the lines were, in reality, never equal, although the

difference was always very small,
— too small to be easily

discovered by measurement.

C D
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24. Such errors, too small to be discovered by measure-

ment, are sometimes large enough to do great mischief;

and at any rate, however small, they are still errors, and

it is best to get rid of errors, and to find the exact truth,

whether the error is mischievous or not. In order to do

this we must leani how to reason, how to prove truths.

And in order to avoid such mistakes as that of my friend,

who thought he had proved the false proposition of which

I have been speaking, we must learn to reason correctly.

25. When we put the comers of a paper triangle to-

gether to make a straight line, we may say, Perhaps there

is some slight error here, too small to be detected by meas-

urement. How then shall we prove that there is no such

error in a perfect geometrical triangle ?

26. The first thought that occurs to us will be, that if

any straight line be dra^vn through one vertex of a trian-

gle, as D E is drawn through the point ^
A, without passing through the trian- A^
gle, the three angles on one side of the

-pv

line, about the point A, are equal to two

right angles, and if the sum of the three C li

angles of the triangle is equal to two right angles, it must

be equal to that of the three about the point A.

27. But as the central angle at A is already an angle
of the triangle, it follows that the other two angles must
be equal in their sum to the sum of the angles B and C

28. Now, this w^ill be true in whatever direction the

line D E is drawn, only provided it does

not pass through the triangle. Let us

then imagine it to pass in such a direc-

tion as to make the angle B A E equal
to the angle ABC, and it will only be

necessary to prove that D A C is then equal to A C B.
For ifD A C is equal to A C B, then, since we have sup-

posed B A E equal to A B C, and BAG is one of the
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angles of the triangle, we shall have the three angles about

A equal to the three angles of the triangle ;
and as the three

ano-les about A are equal in their sum to two right angles,

the three angles of the triangle will be equal to two right

angles, which is what we wish to prove.

29. But to say that D A C is equal to A C B is equiva-

lent to saying that A D and C B differ equally in their

direction from the direction of A C ;
and since A C is a

straight line and its direction from A is opposite to its

direction from C, this is equivalent to saying that AD
and C B go in opposite directions.

30. All that we have now to prove is, that the line A D
or E D goes in the same direction as the line B C. But

this needs no proof, because we have already supposed

that E A makes the same angle with A B that B C does ;

and as A B is a straight line, the direction of E A and

C B must be opposite. But as E A is part of the same

straight line with A D, it has the same direction as A D.

The proof is now complete.
31. And this mode of proof does not depend at all upon

the particular shape of the triangle. We have made no

supposition concerning the shape of A B C, except that

it should be a triangle. We have, therefore, proved that

the sum of the three angles of any triangle is equivalent
to two right angles.

32. Thus we have analyzed the proposition that the

sum of the three angles of a triangle is equivalent- to two

right angles, and found that it resolved itself at last into

saying that two lines making equal angles on opposite
sides at the end of a straight line must point in opposite
directions— a proposition which is easily shown to be

true.

33. But this mode of analyzing is very tedious when
stated in words. A geometer usually does not state it ;

he

passes through it very rapidly in his own mind, and then

2*
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restates the process carefully in an inverted order, as fol-

lows in articles 34, 35, and 36.

34. When one straight line crosses another, the oppo-
site or vertical angles are equal. For since each line has

but one direction, the difference of direction on one side

of the vertex must be the same as on the other side.

35. When one straight line crosses two parallel straight

lines, the alternate inter-

nal angles are equal, or j^

in the figure A G E is ~7g ^

equal to D H F. For c "Zl D
DHF is equal to B GF, y^

having its sides pointing
' ^

-in the same direction as those of B G F, and A G E is

equal to B G F by article 34.

36. Through the vertex of any triangle, as through A,
draw a straight line D E parallel to the

opposite side B C. Then E A B will be D -tJt
^

equal to its alternate internal angle y^ \ \
ABC; and for the same reason D A C c -^ ^

—-^B

will be equal to A C B. So that the

three angles of the triangle will be equal to the three an-

gles about the point A, and their sum is plainly two right

angles.

37. The mode of proving that the sum of the three an-

gles of a triangle is equal to two right angles, by cutting
a piece of card, is called experimental proof. It is of very
little use in mathematics, but of great use in the study of

physics, especially in mechanics and chemistry.
38. The mode of proof used in articles 26-31 is called,

by metaphysicians and by writers on Arithmetic, analysis.
But as geometers, in their writings, almost never use this

method, they have no name for it; and when they speak
of analysis, or of analytical methods, they usually refer to

something else apparently of a very different <;liaracter.
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39. The mode of proof in articles 34-36, called by
metaphysicians synthesis, by geometers demonstration

or deduction, is that usually employed in stating geomet-
rical results. This mode is chiefly applicable to mathe-

matics, and must be used with very great caution in rea-

soning upon other subjects.

40. A proposition, which we wish to prove, may be

compared to a mountain peak which we wish to show is

accessible from the highway. The method of articles

26-31 may be compared to taking a flight by a balloon to

the top of the peak, and then finding a path down to the

highway; while the method of articles 34-36 maybe com-

pared to the direct ascent of the mountain. In either case

we show that the peak is accessible, because we actually

pass over all the steps of a connected pathway between

the road and the mountain top.

Thus in geometrical demonstration we pass through

every step connecting the simplest self-evident truths with

the highest deductions of the science ;
while in the process

which writers on Arithmetic call analysis, we pass over

ever^ step from the latter truths down to the simplest.

In either case we prove that the higher truth really stands

on the same basis as the simpler, and must, therefore, be

true.

CHAPTER IV.

ANALYSIS AND SYNTHESIS.

41. What I have called demonstration or deduction,

but which is better called synthesis, because it is a putting

together, one by one, of the parts of a complex truth, is the

only mode of proof that you will usually find in works on
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geometry. And if such works are carefully read they are

always intelligible
to a child of good geometrical reason-

ing powers.
42. But the study of such works does not always teach

a child to reason for himself. The pupil says,
"
Yes, I un-

derstand all this, and yet I could not have done it without

aid
;
I do not see how the writer knew where to begin ;

how he knew that by starting from these particular truths,

and going in that particular path, he could reach that

proposition." A pupil who had never studied geometry
could not, for instance, tell why in articles 34-36 we should

begin with showing that vertical angles are equal. He
would not see any contiection between that truth and the

desired proof, and would not know that this synthesis had

been preceded, in the mind of the writer, by a rapid anal-

ysis, such as that of articles 26-31.

43. It is as though a mountain guide, wishing to make
for a child a path up to a mountain peak, should lead him

along the highway until the peak was hidden by the

lower hills about its base, and then begin boldly to clear

a road, through the brush-wood and trees, until he reached

the top. The child might say.
" How did you dare begin

at once to cut down the bushes and clear the path ? How
did you know that the road you were making would not

lead you to the edge, or to the foot, of some precipice, or

that it would not take you to a different peak from that

which you wished to climb ?" And if the child received

no answer to his questions,
— if he was not told that the

guide had already climbed to the summit and again de-

scended,— he would have learned little to help him in

laying out paths for himself.

44. In like manner, although the descent from difficult

propositions to more simple is more tedious than the as-

cent, it will be more useful to a learner, because it will

show him the maimer in which, by a mental process, we
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discover the points from wliich wc are to- start in our

ascent. That is to say, if we follow a good analysis, we
shall learn how to perform synthesis for ourselves

;
but if

we were simply to follow a writer's synthesis, we should

not learn how to analyze, which must nevertheless always

go before synthesis,

45. Among the first requisites in reasoning is a clear

understanding of the object in view ;
that is, of the point

to be proved ; and next, a clear perception of each partic-

ular part of the demonstration, and of the connection of

each part wuth the adjacent parts.

Thus, in laying out a path up a mountain, it is necessary
to know exactly from what point yon wish to start, and to

what point you wish to go. It is also necessary to exam-

ine carefully each point of the road, for a single impassable

place would destroy the value of the whole road.

46. Each step of the proof must be a simple step, and

clearly true
;
that is, it must be so simple and self-evident

as to be beyond all doubt.

47. The analysis must end, or the synthesis begin, with

truths that are self-evident, or else that have been already

proved. Your mountain path must begin on level, or at

least on accessible ground.
48. Care must be taken not to introduce any thing as

true which has not been proved. This would be like

starting your mountain road in two places at once. You

might afterwards find impassable barriei-s between the two

parts of your road, and perhaps find that one of them could

not be made to the top of the mountain, nor the other to

its base. For example, in Art. 36, I drew a straight line

through A, parallel to B C. This was very well— for no
one can possibly doubt such a line might be drawn. But

if, instead of that, I had said. Let us draw a straight line

through A in such a manner as to make the angles on
the two sides of A equal to the angles B and C, I should
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have done what I had no right to do. For that would be

taking for granted a thing which I must prove ; namely,
that a straight line can be thus drawn. It would be start-

ing half way up my mountain, and taking for granted that

the lower part of the path could be built afterwards. It

would require a straight line to fulfil two conditions at

once, without having shown that one condition does not

exclude the other.

49. Whether we reason by synthesis or analysis, we
must therefore reason very carefully, in order to connect

the proposition which we wish to prove by a stairway of

self-evident steps with a self-evident foundation.

50. By a self-evident truth, I mean a truth which can-

not be made any plainer, and which is already perfectly

plain to an intelligent person who looks steadily at it.

For instance, that two straight lines can cross each other

only in one place at once
;
that any cui-ve can be cut by a

straight line in at least two places ;
that either side of a

triangle is shorter than the sum of the other two ; tl\at if

three strings, and no more than three, come from one

point, one of them must have an end at that point,
—

these are self-evident truths.

51. By a self-evident step in reasoning, I mean the

statement of the relation of one truth to another, or of the

dependence of one truth upon another, when that depend-
ence or that relation is itself a self-evident truth. Self

evident steps in reasoning are simply the statement of

self-evident truths of connection. For instance, when w^
have explained the meaning of " a straight line

"
by calling

it a line that has in every part the same direction, and

have explainedthe word "angle" to mean the difference of

two directions in one plane, then it follows that the angle
which two straight lines make with each other is the same

in one part of the lines as in any other, and that tlie two

different angles apparently made by two straight lines
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cannot really bo made, unless one of the lines goes in two

o[)posite directions at the same time. No reasoning can

make the connection between these definitions and the

equality of vertical angles any more plain. It is a self-

evident connection.

52. Or, suppose that we say that you cannot make one

rope go from a centre post to the four corners of a square,

and also around the square, and have but a single rope

from post to post. We should prove it in this

way. Let there be a rope around the square,

and going also from each post to the centre.

This of course can be imagined. It is a defi-

nite and allowable conception. But we will prove that

this rope must be in two pieces. For each of the four

corners will have three lines coming from it, one towards

each adjacent corner, and one towards the centre. Thus

it follows by self-evident connection, from the conception
of the rope going around the square and to each corner,

that there will be four points, from each of which three

lines come. But it is a self-evident truth that at each of

these points there must be one end of a rope. Hence, by
self-evident connection, there will be four ends of rope
about the square. Hence, by self-evident connection with

the self-evident truth that one piece of rope can have but

two, and must have two, ends, it follows that there must

be two pieces of rope, and cannot be only one. Now, the

whole of this proof is simply the statement of self-evident

connections betvv^een the proposition that one rope cannot

go around a square and also from each corner to the cen-

tre without doubling, and the self-evident truths that a

piece of rope must have two, and cannot have more than

two, ends
;
and that when only three lines of rope come

from one point, one of them must end at that point. The

proof is simple ;
and yet intelligent men have spent hours

in experimenting with a string and five posts thus arranged,
or with a pencil and five dots representing posts.
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53. Many self-evident truths are general, and self-evi-

dent steps are generally the recognition of general rela-

tions; and therefore most writers on reasoning say that

reasoning consists simply in showing that a particular case

comes under a general class, that is, that the only self-

evident connection ofpropositions is the actual inclusion of

one proposition in another. But in the mathematics, there

are many self-evident truths which it is difficult to state in

a general form
;
and I therefore think that the explanation

which I have given of the process of reasoning will be of

more use to you in your geometrical studies.

CHAPTER V.

VARIETY or PATHS.

54. As there are usually many paths by which we may
ascend a hill, so there are usually many modes by which

we may demonstrate a proposition. In the case of a sim-

ple proposition, it is not usually worth while to try more
than one mode. But with more difficult problems, it is

sometimes worth while to spend a great deal of labor in

discovering the simplest mode of demonstration. There

are geometrical truths which can be demonstrated in so

simple a manner as to require only twenty lines to write

down the demonstration
;
and yet some writers, from ig-

norance of this simple mode, have written more thantwent)^

pages to prove the same truths.

55. It will therefore be useful to you, to show you, by
a simple example, such as that of the equality of the sum
of the angles in a triangle to two right angles, the great

variety of methods by which a single proposition can be

proved.
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56. In the proofs of this proposition, which I will now

give yon, I will not be careful to follow out every step.

It will be enough, /br the purpose ice now have in vieWy

simply to show you the general line of the paths, without

taking you through every step of the way.
57. The line D E might be drawn so as to coincide in

direction with one of the other sides

of the triangle, as A B, which would

give us the figure in the margin. And

by imagining the dotted line A F par-

allel to C B, we should have F A C

equal to A C B, and FAD equal to

C B A, which would make the three angles at A equal to

the three angles of the triangle, as in the former proof.

(See Chapter III.)

58. By prolonging the lines C A and B A through the

^oint A, D E being parallel to B C,

we should have NAD equal to ^ \A^
ABC, JAE equal to A CB, and

NAJ equal to CAB. So that

the three angles of the triangle will

be equal to the three angles on the upper side of the line

D E, which are manifestly equal to two right angles.

59. The three methods of proving this proposition that

I have now given, are strictly geometrical. Others might
be given, that are something more like algebraic reasoning.

60. Let us, for instance, imagine each side of a triangle

prolonged at its right hand end,

as in this figure, and also a line ^
drawn from one vertex, as C, \
parallel to the opposite side B A.

Now, the external angles F C B, ^
D B A, E A F, are plainly equal

^

to the three angles F C B, B C G, G C F, and these amount

to four right angles. But each external angle is plainly

3



26 VAEIETY OF PATHS.

the supplement of one of the angles of the triangle ;
that

is, it is equal to the difference between two right angles

and one angle of the triangle. The sum of the three ex-

ternal angles must therefore be equal to the difference

between six right angles and the angles of the triangle.

But as this difference is four right angles, the three angles

of the triangle must be equivalent to two right angles.

61. If we introduce the idea of motion, we can devise

quite a different sort of demonstration. p
Suppose, for instance, that I stand at the

point A, w^ith my face towards C. Let

me now turn to the right until I face

towards B. I have now changed the

direction ofmy flice by an amount w^hich

is equal to the angle at A. Suj)pose that I now walk to

B, without turning ;
I shall have my back towards A, and

if standing still, I turn to the right, until I have cliangcd

my direction by an amount equal to the angle ABC; I

shall have my back towards C. Let me now walk back-

ward without turning, until I reach C, and I shall have

my face tOAvards B. I will now turn a third time to tlie

right, until I face the point A. My three turnhigs, or

changes of direction, have been equal to the three angles
of the triangle; they have all been to the right ;

thci-efore

my whole change of direction is equal to tlie sum of these

angles ;
I am now looking in exactly tlie opposite direction

to that from which I started
;
I am looking from C to A,

instead of from A to C; I have turned half way round;
that is, through two right angles. Whence, the sum of

the three angles of the triangle is equivalent to tv/o right

angles.

62. Another demonstration, by means of motion, may
be obtained as follows : Suj)posc an arrow, longer than

either side of the triangle, to be laid upon the side A C,

pointing in the direction from A to C. Taking hold of the

pointed end beyond C, turn the arrow round upon the
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point A, as a pivot, until the arrow lies upon the line A B.

Taking now hold of the further end, beyond A, turn the

aiTow upon B as a pivot, until the arrow lies upon the

line B C. Using C as a pivot, turn it now until the point
of the arrow is over A. The arrow has thus been reversed

in direction, turned half way round, or through two right

angles. It has been turned successively through tlie three

angles of a triangle, and every time in the same direction,

like the hands of a watch ; so that its total change of

direction, two right angles, is equivalent to the sum of the

three angles.

63. You have thus seen how a single proposition may
be proved in a variety of ways. We have shown what is

the value of the sum of the angles in a triangle in six

different ways ;
in three, by what is called rigid geometry ;

in one, by a partly algebraical process ;
and in two, by

introducing the idea of motion. And I wish you to ob-

serve, that every one of the six ways is satisfactory. They
are all proofs that are certain, because they lead you from

self-evident truths by self-evident steps. One is not more

certain than the other, because they are all absolutely cer-

tain. The only choice between them is, that some are more

purely geometrical ;
some are better adapted to the peculiar

tastes of different students ;
and some are neater, and more

quickly perceived by untaught persons.

Examples.

By aid of the principles and methods of the five preced-

ing chapters, the learner may demonstrate (sometimes in

a variety of Avays) the following simple projiositions X—
I. When parallel lines

are crossed by a third, the /^
external ' internal angles ~7g
are equal ;

that is, F G B C ^/^. D
= GHD,4fcc. X
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II. If two lines,' cut by a third, make the alternate-

internal, the external-internal or the opposite-external

angles equal, the lines are parallel.

III. If two lines, crossed by a third, make the adjacent
internal angles (as B G H, D H G) supplements to each

other, the lines are parallel.

IV. If two lines make the same angle with a third, they
are parallel to each other.

V. State this proposition for the cases when the angle
is zero, one right angle, and two right angles.

VI. Parallel lines can never meet. [Note. To prove
a negative of this kind, the easiest mode is to show the

absurdity of the affirmative. In the present case, grant
that the lines met at a certain point, and show from the

nature of the straight line, that the parallel lines must in

this case be one line, which is absurd.]

VII. Only one perpendicular can pass through a given

point to a given straight line. [Proof by VI.]

CHAPTER VI.

the PYTHAGOREAN PROPOSITION.

64. YoTJ recollect that the square built on the hypoth-

enuse of a right triangle is equivalent in its area to the

sum of the squares built upon its legs.

This is one of the most useful of all

geometrical truths. Let us first an-

alyze it in one or two modes, and

then build it up synthetically by the

same paths. We may afterwards, if

we like, devise other modes of anal-

ysis and synthesis ;
for this proposi-

tion, like all others, may be ap-

proached in various ways.
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65. The Pythagorean proposition or theorem might bo

suggested in different ways. But in whatever way wo
were led to suspect that the square on the liypothenuse
is equivalent to the sum of the squares on the legs, we

should, in reflecting upon it, probably begin by drawing a

right triangle with a square built upon each side.

CG. We should inquire whether the square on the hy-

pothenuse could be divided into two parts that should be

respectively equal to the other two squares. And we
should judge that these parts should be somewhat similar

to each otlier in shape, because the legs do not differ in

their relations to the hypothenuse, except in size, and in

the angles they make with it.

67. But we cannot readily conceive of any division of

the square into two somewhat similar parts, except into

two rectangles. And then it is ap-

parent that two rectangles, bearing

respectively the same relations to

the squares on the legs, may be

formed by drawing a line from the

vertex of the right angle at right

angles with the hypothenuse, and

continuing it through the square, as

C F is here drawn.

68. It will now only be necessary
to show that one of these rectangles is equivalent to its

corresponding square ; because the same mode of proof will

obviously answer for the other rectangle and its square.
69. Now, if we know, or can prove, that the area of a

rectangle is measured by the product of its sides, we shall
have to prove that A E X A B, or A E X A B, is equiva-
lent to A C X A e.

70. But by the doctrine of proportion it may be shown
that this would be equivalent to saying that A E is to A C
35 A C is to A B.

3*
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71. Again, it may be shown by geometry that this pro-

portion between the lines A B, A C, and A E, would be

true if the triangle A E C were similar to A C B, and that

A E stood in one to AC as A C stood to A B in the

other ;
so that all that remains for us to do is to show that

these triangles are similar.

72. But we can show by geometry that two triangles

are similar when their angles are equal.

73. And it is easy to show that the angles of these tri-

angles are equal to each other.

74. For CAB and C A E are the same angle ;
A C B

and A E C are both right angles ;
and therefore ABC and

ACE are each complements of C A E. Moreover, A C
and A E are situated in the triangle A E C, in the same

manner that A B and A C are situated in the triangle

ABC.
75. We have thus, in articles 66-74, sufficiently ana-

lyzed the Pythagorean proposition to enable us to build it

up again in a deductive form. This analysis, however,
has been partly algebraical, as it has introduced the idea

of multiplying two lines to produce a surface. Let us

now begin and build up the proposition by the same road.

We shall find 31 articles necessary ;
and I will number

them from 76 to 106.

First Proof of the Pythagorean Proposition.

76. Pefinition, The comparative size oftwo quantities
is called their ratio

; thus, if one is twice as large as the

other, they are said to be in the same ratio as that of 2 to

1
;
or to be in the ratio 2 to 1

;
or it is said, in a looser

way, that their ratio equals 2.

77. Notation, Ratio is written by means of the marks

:, —, and by writing one quantity over the other. Thus,

A : B, A -f- B, and
jg,

are each used to signify the ratio
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of A to 1^>. These marks arc the same as those used in

iirithni'v lie. to .sigiiity Quotient, because the meanmg of a

(juotiuiit is '-d number havmg the same ratio to 1 that

the dividend has to the divisor." The ratio of A to B is

not the quotient of A divided by 13, but it is the ratio of
that quotient to iniity.

78. Axiom. If each of two quantities is multipUed or

divided by the same number, the ratio of the products or

quotients will be tlie same as that of the quantities them-
selves. Thus twenty inches is in the same ratio to twenty'
rods as one inch to one rod, or as the twentieth of an inch
to the twentieth of a rod.

79. Dejinition. A proportion is the equality of two
r:itios. Thus (if we use the sign i= to signify "is equal
to ") A : 13= C : D is the statement of a proportion. It

signilies that A is in the same ratio to B that C is to D.
80. Definition, When a proportion is written as in

article 79, the first and last terms, that is, A and D, are

called the extremes, and the others, that is, B and C, arc

c;illed the means.

81. Theorem, In every proportion the product of the

means is equal to that of the extremes. Proof, In any

pro]^ortion, as M : N"= P : Q, we wish to prove (using the

mark X to signify
«
multipHed by") that M X Q= N X P.

Xow, in order to do this, we must use only self-evident

truths. The only truth of this character that we have

given above is that of article 78. But in order, by means

of the multiplications of article 78, to change the first ratio

]\[ : N^ into M X Q, we must, whatever else we do, at least

m ultiply each term by Q, and this will give us M X Q :

X X Q = P : Q ;
and in order to change the second ratio

P : Q into N X P? we must, at all events, multiply each

term by N, and this will give us M X Q • ^ X Q=
N X P : N X Q.

Thus, from the self-evident truth of article 78, we find
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that the product of the means bears the same ratio to the

product N X Q that is borne to it by the product of the

extremes. And as it is self-evident that two quantities,

bearing the same ratio to a third, must be equal to each

other, we have proved that the product of the means is

equal to that of the extremes.

82. Definition, When both the means are the 'same

quantity, that quantity is called a mean proportional be-

tween the extremes.

83. Corollary. It follows from article 81, that the

product of the mean proportional multiplied by itself is

equal to the product of the extremes.

84. Definitions » A unit of length is a line taken as a

standard of comparison for lengths. Thus an inch, a foot,

a pace, a span, &c., are units. The length of any line is

its ratio to the unit of length.
85. Definition, A unit of surface is a surface taken

as a standard of comparison. The most common unit of

surface is a square whose side is a unit of length.
86. Definition. The area of a surface is the ratio of

the surface to the unit of surface.

87. Theorem, Any straight line in the same plane with

two parallel lines makes the same angle with one that it

does with the other. Proof, For as the straight line has

but one direction, and each of the parallel lines may al-

ways be considered as going in the same direction as the

other, the difference of that direction from the direction of

the third straight line must be the same for each of the

parallel lines.

88. Corollary, If a straight hne is parallel to one of

two parallel lines, it is parallel to the other
;
if at right

angles to one of the two, it is at right angles to the other.

89. Theorem, If a straight line makes on the same side

of itself the same angle with two other straight lines in the

same plane, those other straight lines must be parallel.
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Scholium. The line must not be conceived as reversing
its direction at any point. Proof, For if two directions

differ equally from a third, they must be equal to each

oUier.

Second Scholium, If the straight line reverses its di-

rection between the other lines, and makes equal angles
with them, it shows that it crosses each at an equal dis-

tance from their point of mutual intersection.

90. Axiom, If the boundaries of one plane surface are

similar to those of another in such a way that the two
surfaces would coincide in extent if laid one upon the

other, the two surfaces are equivalent.

CHAPTER VII.

THE PYTHAGOREAN PROPOSITION CONTINUED

91. Theorem, If a triangle has one side and the adja-

cent angles equal respectively to a side and the adjacent

angles in another triangle, the two ^ j,

triangles are equal. Proof, Let us

suppose that, in the trianglesABC
and D E F, we have the side A B
equal to the side D E, the angle at

A equal to the angle at D, and that at B equal to that at E.

Let us imagine the triangle D E F to be laid upon ABC
in such a manner as to place E upon B, and D upon A,
which can be done, because A B is equal to D E. Now, as

the angle A is equal to D, the line D F will run in the

same direction as A C, and, as it starts from the same

point, will coincide with it. Also, since the angle B is

equal to E, the line E F will coincide wnth B C. The
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point (F) of intersection of D F and E F must therefore

coincide witli C, the point of intersection of A C and

B C. Whence, by article 90, the triangles are equal.

92. Theorem, The opposite sides of a parallelogram
are equal. Proof, Article 90 gives us the only test of

geometrical equality. So that, in order to prove this the-

orem, we must show that in a parallelogram like A B C D,
AB may be made to

coincide with D C, 5^— . -jj^y
C

and B C with A D.

And this would ev-

idently be done if

we could show that

the triangle A B C is equal to A D C. But in these tri-

angles the line A C is the same,, and by article 87 the adja-

cent angles A C B and CAB are equal to the adjacent

angles CAD and A C D ; whence, by article 91, the two

triangles are equal, and A D is equal to B C, and A B
equal to D C.

93. Axiom, * If one end of a straight line stands still

while the other tunis round, the end that moves will hegin

to move in a direction at right angles to that of the line

itself Thus ifA B were to
^

begin to turn about the point A B

A, B would hegin to move
either towards C or towards D. [If this proposition is not

acknowledged as an axiom, the proof is in Ex. XIX. at the

close of the chapter.]
94. Theorem, The angles of a triangle cannot be al-

tered without altering the length of the sides. Proof. If

in any triangle, as ABC, the sides were unchangeable,

any alteration of the angles A and B would, by article 93,

make the point C move in two directions at once, (namely,
at right angles to A C, and at right angles to B C,) which

is impossible, and therefore the angles cannot be altered.
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95. Corollary, If the tlireo sides of a tri.in<j;l(^ m-o

respectively equal to tlic tlnvo sides of anotlier triuiigle,

the angles of one must be equal to those of the other, and

the equal angles are enclosed in the equal sides.

9G. Theorem, If the opposite sides of a quadrangle are

equal, the quadrangle is a parallelogram. Proof, If, in the

quadrangle A B C D, the sides A B and C D arc equal,

and also the sides A D and B C are equal, then, by draw-

ing tjic diagonal A C, we have the triangles ABC and

ADC composed of equal sides, and, by article 95, the

angle D A C must be equal to the angle A C B, and tlie

angle D C A to the angle B A C
; whence, by article 89,

the figure is a parallelogram.
97. Theoreni, The area of a rectangle is the product

of its length by its breadth. Proof, By drawing lines, at

a distance apart equal to the unit

of length, parallel to the sides of the

rectangle, we shall (articles 87-89)
divide the rectangle into little

squares, each of which is a unit of

surface. Moreover, these squares
are arranged in as many rows as there are units of length
in one side of the rectangle, each row containing as many
squares as there are units of length in the other side

;
so

tliat the whole number of squares is found by multiplying
the length of the rectangle by its breadth.

98. Scholium, In the above proof it is taken for grant-
ed that the sides of the rectangle can be divided into units

of length. This can usually be done by taking the units

suihciently short, that is to say, if the lines are not an even
number of inches in length, we may take tenths of an inch

as the unit
;
if they are not even tenths, we can divide them

into hundredths, or thousandths, or even millionths, of an

inch. If, after dividing each line into millionths of an inch,

any thing less than the millionth of an inch were left at
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either end, it would be too small to be taken into consid-

eration. There would be no error, even in reasoning, from

neglecting it. For as long as any thing is left at the ends

of the lines, we can choose smaller units
;
but as long as the

units are of any size at all, our reasoning holds good, and

the rectangle is measured by the product of its dimensions.

99. Theorem. If the angles of one triangle are equal

to those of another triangle, any two sides of one of the

triangles have the same ratio

to each other as that of the

two sides including the same

angle in the other triangle.

Proof. Let the triangles

ABC and D E F be equi-

angular with respect to each

other. Place the vertex A upon the vertex D, and allow

the side A B to fall upon the side D E. Since the angles
A and D are equal, the line A C will fall upon the line

D F
;
and since the angles C and F are equal, the line B C

will lie parallel to the line E F.

Let the sides A B and D E be divided into units of

length, A a, a B, B ^, &c. Through the points of division

draw lines a c, h c?, &c., parallel to E F. Draw also the

lines a 6, B/, &c., parallel to D F. By article 91, the tri-

angles A a c, « B e, &c., are equal. By article 92, a e is

equal to c C, B/*to C d^ &c. Hence it is easy to see that

A B is composed of the same number of times A a, that

AC is of A c, and that in like manner D E is as many
times D a, as D F is times D c. And thus, by article 78,

DE:DFi=:AB:DC, because each of these ratios is

equal to B a : 6f c.

100. Scholium. If the linesA B and D E do not consist

of a certain number of times the first unit of length which

we have chosen, we may choose a unit so small as to

make the remainder small enough to be neglected.
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101. Definitions. The right angle, right triangle, legs,

and hypothenuse are defined in articles 14 and 17.

10*2. Theorem, The sum of the three angles of a trian-

gle is equivalent to two right angles.

This proposition has been proved in articles 26-31, 34-

36, and 57-62.

103. Corollary, The sum of the two angles opposite
to tlie legs of a right triangle is equivalent to one right

angle.

104. Corollary, If an angle opposite a leg in one right-

triangle is equal to an angle in another right triangle, the

two right triangles are equiangular with respect to each
other.

105. Theorem. If from the vertex of the right angle in

a right triangle, a line be drawn at right angles to the

hypothenuse dividing the hypothenuse into two segments,
each leg is a mean proportional between the whole hy-

pothenuse and the segment nearest the leg. Proof, Let

ABC be a right triangle with aright angle-at C. Draw
C F at right angles to A B. The triangle B E C is right

angled at E, and has an angle at B equal that at B in the

triangle ABC. Hence, by article 104, the triangle B E C
has its angles equal to those of

ABC. Hence, by article 99,

BE:BC= BC:BA. In the

same way A E : A C ; : A C :

AB.
106. Theorem, The square

on the hypothenuse is equiva-
lent to the sum of the squares
on the legs. Proof, Let A C B
be a right triangle, with a right

angle at C, and let a square
be drawn on each side. Draw

4

Fig. A.

C F at right angles
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to A B. The figure B F will be a rectangle, because all

its angles will be right angles. It w411, therefore, be meas-

ured by the product of B E into E F, or (since E F :^:=

B G, and B G z= B A) by the product of B E X B A.

But since B C is a mean proportional between the lines

B E and B A, this product is equal to B C X B C, which

is the measure of the square on B C. That is, the measure

of the rectangle B F is the same as that of the square on

B C. In the same manner it may be shown that the rec-

tangle A F is equivalent to the square on A C. But the

sum of these two rectangles is evidently equal to the square

on the hypothenuse.
107. In these thirty-one articles I have given you a

proof of the Pythagorean proposition in the usual synthet-

ic form. Parts of the proof are not completely filled out
;

but the omitted steps are so short and easy, that I think

you will have no difficulty wdiatever in supplying them.

Do not be satisfied with understanding each of the thirty-

one articles, but examine them closely from the 76tli to

the 106th, and see whether I have introduced any thing
which is not necessary to the proof of 106. In making
this examination, it w^ill be most convenient for you to

proceed backward.

These thirty-one articles have been here introduced as

lemmas, i. e., preparatory propositions, for demonstrating
the Pythagorean proposition. But they are also, each one,

truths worth knowing, and will aid in establishing many
theorems that have no connection with a right triangle.

108. Another mode of analyzing this proposition w^ould

be suggested by our knowledge of the fact that nny trian-

gle is equivalent to half a rectangle of the same base and

altitude. I will not lead you through this analysis, but

w^ill simply build up for you, by synthesis, a
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Second Proof of t/ie Pythagorean Proposition.

109. Definitions, Any side of a triangle or quadrangle

may be called its base, and the altitude of the figure is the

distance from the base to the most distant vertex of the

figure. This distance is measured by a straight line at

right angles to the base, and contained between the vertex

and the base, prolonged if need be.

110. Theorem, Every parallelogram is equivalent to a

rectangle of the same base and altitude. Proof, Let

A B C D be a rectan- Fig. c.

gle, andA B E F a par-

allelogram having the

same base A B, and the

same altitude B D. It

is manifest if the trian-

gle B D F by which the

parallelogram overlaps the rectangle is equal to the trian-

gle A E C by which the rectangle overlaps the parallelo-

gram, the two quadrangles are equivalent. But A E and
its adjacent angles are equal to B F and its adjacent angles,
and therefore the triangles are equal (Art. 91), and the

quadrangles equivalent.
111. Theorem, Every triangle is equivalent to half a

rectangle of the same base and altitude. Proof, Let

A F B be a triangle, and A B C D a rectangle having the

same base A B and the same altitude B D, (Fig. C.) Con-

tinue C D to F, and draw A E parallel to B F. The tri-

angle A E F has its three sides equal to those ofA B F
;

the triangles are, therefore, equal to each other (Art. 95) ;

and each is equal to half the parallelogram A B E F, which
is equivalent to the rectangle A B C D.

112. Theorem, The square on the hypothenuse is

equivalent to the suni of the -squares on the legs. Proof,
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Having drawn the figure (Fig. A.), as for the former

proof, draw the lines O B, and B' C. The triangle A B' C
has the same base A B', and the same altitude A E as the

rectangle A F, and is equivalent to half that rectangle.

The triangle ABC has the same base A C^ and the same

altitude A C as the square O C, and is equivalent to half

that square ;
so that if the triangles ABC and A B' C

are equal, the rectangle is equivalent to the square. But
these triangles are equal, for if A B' C were turned about

the vertex A as on a pivot until the point C covered C,
then B' would cover B, and the triangles would coincide.

For A C would rotate through a right angle, and A B'

through a right angle ;
and A C = A C, and A B= A IV.

113. This proof of the Pythagorean proposition is more

strictly geometrical than the preceding, as it does not in-

volve the idea of multiplying lines to measure areas. But

you must remember that both are equally conclusive. I

have here also omitted some of the shorter steps. You
should not only be able to fill out these steps when the

omission is pointed out to you, but also to discover the

omission for yourselves. Take the proofs which I have

written down and examine them step by step, asking at

each step. Is that strictly self-evident ? Can it be ques-

tioned ? Can it be divided into two steps ? Is there need

of proof? If so, has the proof been given in a previous

article? It is only by such an earnest study of the book

and of the subject that you can make the process of math-

ematical reasoning become a sure and pleasant road for

you to the discovery of truth.

Examples.

Demonstrate the theorems that follow.

VIII. If one triangle have two sides and the included

angle, equal to two sides and the included angle in another

triangle, the two triangles are equal.
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IX. Lines drawn from a point in a pei-pendiciilar to

points at equal distances from its foot are equal.

X. The perpendicular is the shortest line from a point

^to a straight line. [This may be proved from the Pythag-
orean proposition.]

XI. An isosceles triangle is one in which two sides are

equal. Prove by VIII. (having first drawn one line in the

triangle) that the angles opposite the equal sides are equal.

XII. An equilateral triangle is equiangular.

XIII. A line bisecting (dividing equally) the angle
between two equal sides in a triangle, is perpendicular to

the third side, and bisects it.

XIY. Two angles in a triangle being equal, the opposite

sides are equal. [Use Art. 91, looking at the triangle

from both sides of its plane, or conceiving it turned over.]
*' XV. An equiangular triangle is equilateral.

XVI. If one side of a triangle is prolonged, the external

angle thus formed is equal to the sum of the opposite in-

terior angles, and so greater than either of them.

7\. XVII. If one side of a triangle is longer than another,

the angle opposite the first is greater than that opposite
the second. [Let ABC be the triangle, and A C be

longer than A B. Put the point D on A C, making A D
=r A B. Join B D. ISTow prove XVII. by means of XL
and the last clause of XVI.]
XVIII. In an isosceles triangle either of the equal

angles is the complement of half the third angle.
XIX. If a straight line, A B, revolves about the point

A, the point B moves at right angles to B A. [Allow B
to have moved, complete the triangle, apply XVIIL, and

then suppose the distance moved to be infinitesimal.]
XX. The square on the diagonal of a square is double

that square.

XXL If the four angles of a quadrangle consist of two

pairs of opposite equal angles, the quadrangle is a paral-

lelogram. 4 *
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XXII. The sum of tlie nngles of a quadrangle is equiv-
alent to four right angles ;

of a pentagon, to six
;
of a

heptagon, to ten.

XXIII. The perpendicular on the hypothenuse froni

the opposite vertex is a mean proportional between the

segments of the hypothenuse.
XXIV. The areas of triangles having the same base

are proportional to their altitudes
5
that is, have the ratio

of their altitudes.

CHAPTER VIII.

THE MAXIMUM AREA.

114. I WILL prove only one more proposition; but I will

select a difficult one, in order that it may require a num-

ber of preliminary proofs. I will select the jiroposition

given in the " First Lessons in Geometry," Chap. XXIII.

§ 14 : Of all isoperimetrical figures the circle is the very

largest.

115. When we attempt to analyze this, we shall see

that it implies that any regular polygon is less than a cir-

cle isoperimetrical with it, and that any other polygon is

less than a regular one isoperimetrical with it.

116. Let us begin, however, by defining a few of the

Avords we shall need to use.

117. A polygon is a plane figure bounded by straight
lines.

118. The perimeter of a polygon is the sum of the length
of its sides.

119. Isoperimetrical polygons are those of equal perim-
eter.

120. Among quantities of the same kind, the largest is

called a maximum.
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If the figure

121. A circle is a plane figure, bounded by one line that

curves equally in every part. This line is called the circum-

ference of the circle, and frequently the line itself is called

the circle. Portions of the circumference are called arcs.
'

12*2. Theorem. There is a point within the circle

equally distant from every point of the circumference.

This })oint is called the centre of the circle.

Vroof, Let A D and B D be equal adja-

cent arcs in a circumference. Through the

points A, B, and D draw lines at right an-

gles to the curve at those points. Now,
since the circle curves uniformly at every

point, BD is in all respects equal to D A.

BCD were laid upon D C A the arcs would coincide
;

and also, D C would go in the direction ofA C, while B C
vv ould go in the present direction of D C. The figures
A C D and D C B would thus coincide, and A C= D C
=rr B C. Hence the points A, B, and D are equally dis-

tant from C. But A and B may be taken any where in

the circle, only provided they are equaily#distant from D
;

and hence every point in the circle is equally distant from

C, the centre of the circle.

123. A straight line joining the centre to the circum-

ference is called a radius. The straight line formed of two

opposite radii is called a diameter.

124. All radii are of course equal to each other, and all

diameters equal to each other.

125. A straight line

joining the two ends

of an arc is called a

chord.

126. A straight line

which, however much

prolonged, touches the

circle in one point only, is called a tangent.
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127. It is manifest that the tangent coincides in direc-

tion with the arc at the point of contact.

128. A polygon formed wholly of chords in a circle is

said to be inscribed in that circle.

129. A polygon formed wholly by tangents to a circle

is said to be circumscribed about the circle.

130. The circle is said to be inscribed in the circum-

scribed polygon, and to be circumscribed about the in-

scribed polygon.
131. If a polygon, about which a circle can be circum-

scribed, or in which a circle can be inscribed, has its sides

equal, one to the other, the polygon is called a regular

polygon, and the centre of these circles is called also the

centre of the polygon.
132. Let us now attempt to analyze the proposition

that the circle is the maximum among isoperimetrical pol-

ygons. This is equivalent to saying that if an isoperimet-

rical circle and regular polygon are laid one over the other,

the polygon will be the smaller. But we see that by lay-

ing them one oii the other, a circle inscribed in the poly-

gon would be smaller than the isoperimetrical circle. The

question of course suggests itself, whether the area of a

regular polygon is not proportional to the radius of the

inscribed circle. Now, it is plain that it is. For by divid-

ing the polygon into triangles, by lines from its centre to

its vertices, we find the area of the polygon will be the

sum of the areas of the triangles, and these areas will be

measured by half the product of the perimeter multiplied

by the radius of the inscribed circle. The area of the

isoperimetrical circle will be measured by half the product
of the perimeter multiplied by the radius. But as the

perimeters of the polygon and the isoperimetrical circle are

the same, and the radius of tlie inscribed circle is smaller

than that of the isoperimetrical circle, it is evident that the ,

area of the polygon is smaller than that of the isoperimet-
rical circle.
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It will now remain to show that the area of a regular

polygon is greater than that of an isoperimetrical irregular

polygon. It is evident that this can be done, since a pol-

ygon of given sides is manifestly largest when most nearly

circular, and a polygon of a given number of sides is man-

ifestly largest when the sides are equal. We can surely
have no difficulty in proving these two points, and then

our proof will be complete.
133. Let us return, then, to the synthetic mode, and

establish these propositions : First, that the maximum of

polygons formed of given sides may be inscribed in a cir-

cle
; secondly, that the maximum of isoperimetrical poly-

gons having a given number of sides has its sides equal ;

and thirdly, that such a regular polygon is of smaller area

than a circle isoperimetrical with it.

134. Theorem, The area of a triangle is found by mul-

tiplying the base by half the altitude. This theorem has

been already proved. (Art. 111.)

135. We shall need the Pythagorean proposition, which

implies all the propositions into which we have already

analyzed it. (Arts. 64-113.)

136. Theorem. Of two unequal lines, from a point to a

third straight line, the shorter is more near^y perpendicu-
lar to the third line. Proof, Let C be the given point,

and AD the third straight

line. Let C A and C B be

two lines, of which C B is

the shorter. Draw CD per-

pendicular to A D. We wish

to prove that B D is shorter than A D. But this is mani-

fest from the Pythagorean proposition, since the square on

A D is the difference of the squares on ,K C and C D,
and the square on B D is the difference of the squares on

B C (which is smaller than A C) and the same C D.

137. Corollary, A perpendicular is the shortest line

from a point to a given straight line.
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188. Theorem, The radius is perpendicular to the tan-

gent at its extremity. Proof, For if not, then, by Art. 137,
the tangent would pass inside the circle, which is contrary
to its definition.

139. Corollary, The radius is perpendicular to the arc
at its extremity.

140. Theorem, Either side of a triangle is shorter than
the sitm of the other two. Proof, Upon either side, pro-

longed if necessary, drop from the opposite vertex a per-
pendicular. The sum of the distances from the foot of this

"

perpendicular to the adjoining vertices cannot be less than
the whole of the selected side, but must, by 187, be less

than the sum of the other two. Another proof. The
straight line is the shortest line between its extremities.

141. Theorem, The maximum of triangles having two
sides given is formed when these two sides are at right

angles. Proof, JLet A' B,

A B, and A'^ B be equal to

each other. The area of

A'BC, ABC, orA^'BC,

being found by multiplying
B C into half the perpen-
dicular height of A, A', or

A'', above B C, will be in proportion to that height.

Let, then, A B be perpendicular to B C, and the height
of A above the base will equal B A. But the height of

A" above the base must, by 187, be less than B A'', which

is equal to B A.

142. An angle is said to be measured by an arc of a

circle such as would be intercepted by radii making that

angle with each other. And, since the circumference

curves equally in all parts, and the radii are at right angles
to it, it is evident that this measure is just, and that the

angle will bear the same ratio to four right angles that

the arc bears to a whole circumference, whatever be the

size of the circle.
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143. Theorem, If two sides in a triangle are equal, the

angles opposite those sides
-p

are equal. Proof, Let
^^""'''^T^*^'"*"^

AB and B C be equal sides
}l

^^^^^^ • ^^"^^^ C
in a triangle. Imagine
A C divided in the centre, at the point h. The triangles

A B Z> and C B ^ will now be composed of equal sides, and

we have already proved (Arts. 91-95) that they must have

equal angles ;
that is, the angle at A is equal to that

at C.

144. Theorem, If one side of a triangle is prolonged,
the external angle is equal to the sum of the opposite in-

ternal angles. This has been proved in Art. 57.

145. Two chords starting from one point in a circum-

ference intercept double the arc that would be intercepted

by radii making the same angle ;
that is, the angle of the

chords is measured by half the arc included between them.

Proof, If one chord, as AB, passes

through the centre D of the circle, it is

plain that by drawing D C the angle
CD B will be equal to the sum of the

angles CAD and D C A. But since

D A and D C are equal, these angles
arc equal, and C D B is equal to twice CAD.

If neither chord passes through the centre of the circle,

we can draw a third chord, starting from A, passing

through the centre of the circle, and apply this reasoning
to the two angles formed with this third chord by the

other two. The angle of the other two chords will simply
be the sum or the difference of these two angles.

146. Corollary, If the vertex of a right angle be placed
in the circumference, the sides will intercept a semicircle.

147. Corollary, If a circle be circumscribed about a

triangle, and one side of the triangle passes through the

centre of the circle, the opposite angle is a right angle.
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148. Theorem. The maximum of polygons, having all

the sides given but one, may have a circle circumscribed

about it, having the unknown side for a diameter.

Proof. Let A B C D E be the maxi-

mum polygon, formed of given sides

A B, B C, &c., and the unknown side,

A E. Join B E by a straight line.

Now, since the polygon is a maximum,
we cannot, leaving B E unaltered,

by altering A E enlarge the triangle

ABE, because that would enlarge
the polygon. The angle ABE is therefore a right angle,

by Art. 141, and a circumference, having A E for its di-

ameter, would pass througli the point B. In like manner

it can be shown that a circumference having the same

diameter Svould pass through each of the other points.

149. Theorem. The maximum of polygons formed with

given sides can be inscribed in a circle. Proof, Let

A B C D E be a polygon, formed of

given sides, with a circle circumscribed

about it. Draw the diameter A F, and
'

join F C and F D. The polygons
A B € F and A E D F are now maxi-

mum polygons, and therefore ABODE
must also be a maximum, since its en-

largement would enlarge the sum of

the other two.

We have thus proved the converse of the proposition,

and the proposition is true, unless there is more than one

maximum form of the polygon.
The converse is more easily proved than the proposition,

and I therefore proved it, on the assumption that there is

but one maximum form. That is, I have proved that a

polygon of given sides, when inscribed in a circle, is a

maximum
;
but that does not strictly prove that the maxi-
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mum can always be inscribed in a circle
; except on the

assumption, which is, however, a safe one, that a polygon
formed of given sides, arranged in a given order of succes-

sion, can have but one maximum form.

150. Theorem, Of isopcrimetrical triangles with one

side given, the maximum has the two undetermined sides

equal. Proof, In order to prove
this we have only to show that

the point A is at its greatest dis-

tance from the base B C, w^hen

opposite the middle of it. This

might seem scarcely to need

proof For when we use a string and stick to illustrate

the problem, we can see that by sliding the finger from

the middle of the string, it can be

brought down into a line with the

stick; and the greatest height from the

stick is near the middle of the string.

Further consideration shows it must

be exactly at the centre of the string,

because the finger and string have precisely the same rela-

tion to one end of the stick as to the other ;
and- a motion

towards either end must afiect the height of the finger in

a similar manner.

This reasoning is doubtless satisfactory to every fair

mind. Yet it is not a good mathematical demonstration,

and I have given it to you for the purpose of illustrating

the peculiar nature of mathematical reasoning. The rea-

soning just given leaves no real doubt on the mind, but it

is rather because we see with the eye that the finger is

highest in the middle, than because we see with the mind

that it must be. There is another step still lacking, to

prove to us that the highest points are not on each side

of the exact middle, as that would satisfy the conditions

of symmetry and of declination towards each end. Let us
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then seek a proof which shall not force us to consider the

whole motion of the finger, but which shall simply compare
two forms of the triangle, one with the finger in the mid-

dle of the string, and one with the finger on one side, ^y
151. Theorem, If a straight line be drawn from the

vertex of two equal sides in a triangle, at right angles to

the third side, it divides the third side into equal parts.

Proof, Let c and a be ^
equal sides in a triangle e^.^''^'T^'*^**-^

ABC. Since the angles . ^^^^^"^ { ^^""""^^
^^

at A and C are equal, the ^

angles SBC and ^ B A are also equal. If, therefore,

the triangle B 5 C be folded over on the line B ^, the line

a will take the same direction as the line c, and, being of

the same length, will coincide with it. Hence, b C will

also coincide with h A, and the two lines must be of equal

length.
•152. Mio 2'>roofofArt, 150. Let A B C and A B C be

isoperimetrical, and let A B and B C be equal. Continue

A B to D, making B D =: B A rzr: B C,

and join D C. Then, by Art. 147,

the angle D C A is a right angle.

Draw B' E making it equal to B' C.

Join A E. A E will be less than

the sum ofA B' and B' E, that is, less

than A B' and B'C, that is, less than
^ ^

A B and B C, that is, less than A D. But if A E is less

than A D, then C E must be less than C D, by Art. 136.

Draw B H and B' I at right angles to CD; we have C I,

which is half C E, less than C H which is half CD. But
C I and C H are the altitudes of the triangles ABC and

A B' C above their common base A C. The triangle with

the undetermined sides equal has the greatest altitude,

and must be the largest triangle.

153. Theorem, The maximum of isoperimetrical poly-

A
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gons of a given number of sides is equilateral, that is, lias

equal sides. Proof. Let A B C E D
be the maximum of isoperimetrical

polygons of a given number of sides.

Then A B must equal B C. For if it

did not, then after joining A and C
we could enlarge the triangle ABC
by equalizing A B and A C, and thus

enlarge the polygon without altering

the number of sides of the perimeter,

and the present form would not be the maximum.
In like manner we may prove that B C= C E, &c.

154. Corollary, The maximum of isoperimetrical poly-

gons of a given number of sides is regular by Arts. 149

and 153.

155. Axiom, A circle may be considered as a regular

polygon having an unlimited number of sides. And this

regular polygon may be considered as either inscribed in

or circumscribed about the real curve.

156. Theorem. The area of a regular polygon is meas-

ured by half the product of the perimeter into the radius

of the inscribed circle. Proof. Eor if lines be drawn from

each vertex of the polygon to the centre, the polygon will

be divided into triangles having a common altitude equal
to the radius of the inscribed circle, the sum of the bases

of these triangles being equal to the perimeter of the

polygon. yf^.

157. Corollary. The area of a circle is measured by
half the product of the radius into the circumference.

158. Theorem. The perimeter of a circum- A
scribed polygon is greater than the circum-

ference of the circle. Proof Let A B be half ^\
a side of a circumscribed polygon, and D B
the portion of arc intercepted by lines drawn

from A and B to the centre of the circle. Di-
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vide D B into arcs so small that each may be considered

as a short straight line. Through the points of division

draw lines extending from the line A B to the point C.

At the end B, the little arcs are equal to the correspond-

ing pieces of the line A B; but as you approach A the

divisions of the line grow longer than the correspond-

ing divisions of the arc, for two reasons
; first, the little

arcs are at right angles to the radii, while the portions
of the line are not (Art. 139) ; secondly, the little arcs are

nearer to the point C, towards which the radii converge.
The whole ofA B must therefore be longer than the whole

ofD B. But it is manifest that the circumference consists

of as many times D B as the perimeter does of the line

AB.
159. Corollary, The circle inscribed in a regular poly-

gon is smaller than a circle isoperimetrical with the poly-

gon, and has a shorter radius.

160. Corollary, The circle is the maximum among
isoperimetrical regular polygons.

161. Corollary, The circle is the maximum among iso-

perimetrical figures ;
a proposition towards which we have

been directing our course through 48 articles, some of

which are themselves complex propositions, referring to

the preceding chapters. No other science requires any

thing like such long trains of connected reasoning as those

used in the mathematics. An argument in other matters

usually consists of only a few steps
— what are called

long arguments being really a collection of shorter inde-

pendent proofs of the same thing. In the mathematics,

we are frequently required to take, as in the present in-

stance, hundreds of consecutive steps to attain a single

position.

162. Scholium, A slight modification of the reasoning
in Arts. 158-160, would show, that of isoperimetrical pol-

ygons that is greatest which has the greatest number of

sides.
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163. He that really wishes to learn geometry must learn

to work alone. I advise the learner now to take up
" First

Lessons in Geometry," and, beginning with the fourth

chapter, go through to the twenty-sixth, trying how many
of the facts he can prove. I think he can, if he sets him-

self to work with a good will, prove the greater part.

Perhaps he will be obliged to ask some help of his teacher,

but I think not much. He will, however, do well to show
liis demonstrations to his teacher for his criticism.

When he comes to Chap. XXVI. of the " First Lessons ^

he will be obliged to lay down the book again, as the

propositions in the remainder of the book cannot be proved
without the aid of higher branches of mathematics— Al-

gebra, Trigonometry, and the Calculus.

164. In proving the Pythagorean proposition, and the

proposition that the circle is the maximum among isoperi-

metrical plane figures, I have tried to give good examples
ofthe mathematical mode of proof,

— the analysis, in which

the mind turns the proposition over in every form, trying
all sorts of experiments upon it intellectually, to discover

its vulnerable side,
— and the synthesis, by which we then

enter step by step into the very secret of the mystery.

Analysis consists in taking the proposition itself as the

starting point, and going, step by step, to self-evident

truths, or at least to truths already proved. Synthesis
consists in starting with self-evident truths, or truths al-

ready proved, and going step by step to the truth which

you would prove. But synthesis generally requires a pre-
vious rough analysis, by which you select the proper point
of departure for your synthetical reasoning.
A species of analysis, called rediictio ad ahsurdum^ is

often used in cases where true analysis or true synthesis
is difficult. In this form of proof you assume that your

proposition is not true, and by analysis show that this

would lead you, step by step, to the denial of self-evident
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truth. This shows the proposition to be true, by simply

sljowing that it cannot be false. Art. 138 gives an in-

stance of this proof; also Example VI.

I think you will, after mastering this book thoroughly,
be able to read any of the books on geometry which you
will be at all likely to meet with.
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PART II.

CHAPTER I.

GEOMETRICAL CONSTRUCTION.

1G5. The first reason for learning Geometry is, that it

toadies us truth. This reason would be sufficient in itself.

It is as important for us to learn truth as it is for us to eat

food. But there is another reason for learning Geometry,
and that is, the use which we may make of its truths.

1G6. The uses which can be made of Geometry are of

two kinds. We can use it in the investigation of other

kinds of truths, that is, in studying Astronomy, Mechanics,

Chemistry, and other sciences
;
or we can use it in arts and

trades. I shall not, however, attempt to keep up this dis-

tinction in the following pages.

1G7. Definition, We can frequently solve a mathe-

inatical question by representing given quantities as lines

and angles, constructing or drawing the figure on paper,
and then measuring the lines or angles representing the

unknown quantities. This is called " solution by geomet-
rical construction." I will explain it more fully a few

pages farther on.

168. The first requisite for geometrical constructions,

after a supply of drawing paper and pencils, and a plane

table, is a straight ruler. It is not necessary that the table

should be perfectly plane, but it must be smooth, and

nearly plane. But the ruler should have a perfectly

straight edge; at least as nearly so as the material of

which it is made will allow.
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The mechanical means of obtaining a straight edge will

illustrate the uses of geometrical knowledge. The axiom

that the shortest distance between two points is measured

by a straight line, shows that a stretched thread#will

mark a straight line, and afford a guide for sawing out a

tolerably straight ruler. The sawn edge will not, howev-

er, be smooth
;
and in the process of smoothing it may be

brought more nearly into a perfectly straight line by the

application of various tests.

The first method is by "sighting" the edge; that is,

looking at it with one end very near one eye, and observ-

ing whether the farther end will, upon raising the near end

a little higher, disappear at the same moment that the

whole edge disappears. If any part of the edge remains

in sight after any other part has disappeared, the edge
cannot be perfectly straight. This assertion is founded on

the assumption that light moves in straight lines. "
Sight-

ing
" does • not afford a very delicate means of testing a

straight edge, partly on account of the impossibility of

looking at a near and at a distant point at the same

instant.

A second test is founded on the obvious truth, that two
lines cannot coincide unless they are both straight or both

have the same bondings. If two straight edges are placed

together, and touch throughout their wliole extent, the

probability is very strong that they are perfectly straight.

That probability is still further increased if they continue

to touch in their whole extent when one is made to slide

backwards and forwards upon the other. In that case

they must be either straight, or else arcs of the same cir-

cumference. This may be finally tested by drawing a fine

line by means of one of the suspected straight edges upon
firm paper, and then applying the same straight edge to

the opposite side of the line. If curved, this reversion

will at once show it.

169. The second most important requisite for geomet-
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rical construction is a pair of compasses, or dividers. These

are made of various degrees of delicacy, and

are of various prices. Some have merely steel

points, by which circles can be scratched

upon paper or upon wood ;
othei*s are ar-

ranged to carry lead pencils, or to cariy ink

in a peculiar kind of pen. The best ink for

such uses is, however, made by rubbing the

solid " Indian ink" with water.

170. Compasses, or dividers, have two uses, as their two

names imply. They can be opened to any width, and thus

be made to measure the length of lines, and the distances

between points. Or, having been opened to the width of

the radius of a required circle, one point can be held still

at the centre while the other traces the circumference.

The joint should be finn enough to prevent the radius

from readily changing its length.

171. The third requisite is a scale. This is a piece of

wood, bone, ivory, or metal, marked on its various sides

with lines at equal distances (of an inch, half inch, or other

convenient unity), having at one end also a diagonal net-

work for measuring tenths, hundredths, and thousandths

of the unit.

The lines A B and C D are parallel, and one unit apart.

This space is divided into tenths on A C and also on B D,
and each point of

division on A C is
^

joined to the next

higher point on

BD. The space I
between the line

A C and the line

D B is divided

into • tenths by
parallel lines, such

as 4, 4, and 5, 5. The modes of using this scale will
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be obvious on the slightest reflection. The distance be-

tween A and 6 is six tenths of the units, between B and

7 is seven tenths. But the lines A B, and 6, 7, are, at any
intermediate point, at an intermediate distance apart; as,

for instance, their distance measured on the line 4, 4, would

be 64 hundredths of a unit
;
measured on the line 5, 5, it

would be 65 hundredths
;
and measured at three tenths

of the way down from 4, 4, to 5, 5, it would be 643 thou-

sandths of a unit. Thus, with very fine pointed dividers

you can readily measure to the thousandths of a unit ; or

rather measure to the hundredths, and estimate very accu-

rately to thousandths. If you have no such scale prepared,

you can, with a very fine pencil point, sharpened flat, draw
one for yourself on card, and make it durable by sizing it

with a drop ofgum water.

172. I can now give you an illustration of the definition

in Art. 167. Suppose that you wish to know the product
of 1.413 multiplied by .647. This would be the same as

wishing to know what number bears the same ratio to

1.413 that .647 bears to unity.

Draw then two lines, AD and

A E, as long as you please, and

making what angle you please.

Open your compasses to the

length of a unit, and putting one foot at A with the other

make a dot at C. Open then again to the width .647 (that

is to say, in Fig., Art. 171, until they measure the distance

from a point in the line 6, 7, seven tenths of the way from

4, 4, towards 5, 5, to the line A B), and set that off from

A to B. Join the points C and B by a straight line. In

like manner open your compasses to the width 1.413, and

set it off from A to E. Draw E D parallel to C B, and as

the triangles ABC and A D E are similar, it is manifest

that A D will be the required product. Open your com-

passes till they just stretch from A to D, and you will find,
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on applying thorn to your scale, that the lengtli is .91G—
the ])rodiicX of 1.413 by .648.

This would be multiplying two numbers by geometrical
construction. You would represent the numbers by lines,

and unity by a line, and the product of the numbers will

then be represented by a line bearing the same ratio to the

multiplicand that the multiplier bears to unity. This line

is found by drawing two similar triangles ;
and the line

being measured gives the product in figures.

173. In the simple illustration I have given, there would

be no advantage in a geometrical construction over the

arithmetical process. But it is by no means always so.

On the contrary, there are a vast variety of cases in which

geometrical construction is by far the best method of solv-

ing practical questions of mathematics. For this reason, I

recommend the scholar to make himself famihar with its

processes. The whole of the second part of this volume
is intended to assist him in gaining this knowledge.

CHAPTER II.

POSTULATES.

174. In the same manner that there are certain truths

too plain to need proof, which are called axioms, so there

are processes of mechanical construction too simple and

easy to make it doubtful whether they can be performed.
These are sometimes called postulates, that is, things

asked, because you are asked to take it for granted that

they can be done.

175. Postulate. It is possible to have a plane sheet of
paper,

— Of course no surface of paper can be perfectly

plane ; but it is easy to obtain a table so nearly plane, and
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paper so nearly plane in its surface, that no appreciable
eri'or can arise in using them as plane.

176. Postulate. A straight line can he drawnfrom one

point to another on plane paper,— This again cannot, of

course, be done with perfect exactness; but when the

points are marked by fine dots, we can bring the straight

edge of a ruler up to the two points, and draw a line so

nearly through them, and so nearly straight, that there

shall be no appreciable error.

177. Postulate, Any straight line may he continued

at either end for any distance,— This requires, of course,

the same limitation as to accuracy as the preceding postu-

late. The edge of the ruler is to be applied to the line

already drawn, as a guide in prolonging it farther.

178. Postulate, Around any point as a centre a circle

may he drawn of any radius, required,
— This postulate,

also, must be limited to mean, that this can be done with-

out appreciable error. But no man can put down one foot

of the compasses exactly in the centre of a dot, nor open a

pair exactly to the length of a given line.

179. In the writings of geometers, usually these postu-

lates are not limited, and are used only as the foundation

of theoretical solutions. But as I do not see the value of

putting a theorem into the form of a problem, unless for

practical use in geometrical constructions, I have added

these limitations.
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CHAPTER III.

STRAIGHT LINES AND ANGLES.

180. Problem, To divide a line into equalparts,— If

the parts are to be two in num-

ber, draw from the ends of the

line, as centres, arcs o( equal ra-

dii, the radius being long enough
to cause the arcs to intersect

each other at two points. Join

the points of intersection by a

straight line, and this line will

intersect the given line in the

middle. For, since B C and A C are equal, the angles
C A E and C B E are (Ex. XI.) equal ;

and since the tri-

angles D A C and D B C are composed of sides of the same

length, the angles B C E and ACE are (by Art. 95) equal.

Hence, by Art. 91, the triangle B E C and A E C are equal,

and AErr::EB.
If the parts are to be more in number than two, other

methods of division may readily be devised, which shall

only require the postulates of Chap. II.

But a slight extension of the postulate of Art. 178

renders all methods of division practically unnecessary.

The ability to draw a circle around any centre implies

your ability to put one foot of the compasses on any point

you choose. And the postulate, that you can draw it with

any radius, implies that the compasses may be opened to

any width desired. But if we can open the compasses to

extend from A to B, it is practically just as true that we
can open them to extend half way, so that two "

steps
"

shall take us from A to B, or one third, one fourth, &c. ;

C
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the way, so that three or four steps may carry us from one

end to the other. If the first effort does not succeed, tlie

width of the compasses is to be altered in proportion to

the number of steps we have made. In dividing a line

into sevenths, if our seventh step left us .14 of an inch

from the end of the line, the compasses are to be opened

only one fiftieth of an inch wider than before.

181. To divide any angle into equalparts.
—A similar

extension of the postulate in Art. 178 will show us that we

can, without appreciable error, find a chord, which, being

applied a given number of times to a given arc, will coincide

at its extremities with the extremities of the arc
;
in other

words, we can open the compasses to a width Avhicli will

step over an arc in a given number of steps.

Let, then, B A C be the angle
to be divided. With any radius,

taking A as the centre, draw an

arc B C between the sides of the

angle. Step, with the compass-

es, over this arc in as many ste23S as the parts into wliich

the angle is to be divided. Let d and e be two points of

division thus determined nearest B. Draw c^?A and <? A,
and the angles eKd and c?A B are two of the required

parts of the angle BAG. For if we imagine chords e d and

c?B to be drawn, then the triangles eKd and c?A B will

be composed of sides of the same length, that is, equilat-

eral with respect to each other, and of course equal in all

Irheir i3arts (Art. 95) ;
whence the angles eKd and ^? A B

will be equal. /-'

182. Corollary. If the figure eKd were tunied over

on the line A J as a hinge, the line A e would coincide

wkh A B, and, as all parts of the arcs are at equal distances

from A, the arcs ed and d^ woi>ld coincide. That is,

equal chords in the same circle subtend equal arcs, and
arcs can be equally divided by a pair of dividers, in tlie

same manner as straight lines and angles.
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183. Frohlem, To draio an angle of a given number

of degrees,
— From any point

A, as centre, in a straight line
; r--.,^^ ^

A B, with any radius A B, dc-
j

/'^n

scribe an arc B C. Keeping •

A^
the compasses open at the same

j \
width, place one foot at B, and

j
J^D

with the other mark the point I ^.^^^^^ \
C. The arc B C is then (Ex. j ^^
XII.) an arc of 60^ Closing \k^^^ \^
the compasses until they will

pass over the same arc in four steps, you obtain (by Art.

182) arcs of 15°. Selecting either of these, according to

the degrees required, close the compasses, until they divide

it into arcs of 5°. By dividing one of these arcs of 5° into

^\Q equal parts, you can obtain the required degree, count-

ing from B up to D. Join D A, and you manifestly have

the angle required. Thus, if the given number of degrees

were twenty-seven, we should take the second arc of 15°,

the third arc of 5^ in that arc of 15°, and the second de-

gree of those five.

184. The formation of a protractor.
— Take a piece

of hard, smooth card, draw a fine, straight line, as A B (see

fig. above), and with a convenient radius, say three inches,

draw the arc B C. Measure carefully the arc B of 60° by
having the compasses, while yet unaltered from the radius

with which you drew the arc, step from B to C. Divide

the arc as accurately as possible into four equal arcs of 15*^

each, and set off two such arcs beyond C, so as to make
the whole arc 90°. Divide each arc of 15° carefully into

three equal parts, which will each be 5°. Divide each also

into five parts, each of which will be 3°. By stepping over

the whole arc with the compasses open for three degrees,
first stepping over it lightly to make sure that twenty steps

will exactly make 60°, and then with a heavier step, so as
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to leave footprints ; repeating this heavier stepping from

each point of division of the 5° arcs, you can divide t\ie

prolonged arc into 90 equal degrees. The first divisions,

starting from B, will give 3, 6, 9, 12, 15, 18, 21, &c. The

second, starting from the 5° point, will give 2, 6, 8, 11, 14,

17, 20, &G, The third, starting from the 10° point, will

give 1, 4, 7, 10, 13, 16, 19, 22, &c.
;
and these three series

evidently embrace all numbers. Mark each fifth point
with a longer mark, and number them from B towards C.

185. The graduated arc and its centre, described in Art.

183, is called a protractor, and may be found for sale, en-

graved on wood, ivory, or brass. It is used for measuring

angles, and also for drawing angles of a given size. There

are two ways in which it can be finished and used. The
first way of measuring an angle, is to draw an arc between

its sides, prolonged if necessary, with the same radius as

that of your protractor, its centre being exactly at the

vertex. Set the compasses so as to reach exactly across

this arc from side to side of the angle ; then, placing one

foot of the compasses at the point B of the protractor, the

other will mark out on the graduated arc the size of the

angle. The reverse process of drawing a given angle

consists in drawing an arc of the same radius as that of the

protractor, and then with the compasses taking the chord

of the given number of degrees from the protractor and

setting it upon the arc
;
lines drawn from these two points

of the arc to the centre from which it was drawn, will

make the required angle.

The second method of using the protractor is to cut off

all the card below the line A B and all outside the gradu-

ated arc B C. Placing then the point A over the vertex

of the angle, and making A B coincide with one side of the

angle, the other side prolonged if necessary, -will P^^s out

under the graduated edge of the card, and the degree of

the angle can be at once read. Or, if you wish to draw an
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angle of a given size, having placed the edge A B as just

directed, make a dot on the paper, at the right degree on

the graduated edge, and then, removing the protractor,

join the dot by a straight line with the vertex that was

under A.

Protractors may be purchased having graduated arcs

of 180°, or of 360°. In the latter case, the central part of

the plate is removed, and a piece of transparent mica in-

serted, with a fine dot upon it to mark the exact centre.

186. To draw an angle equal to a given angle.
— If

the given angle is given in degrees, the required angle mjiy

be drawn by Art. 185. But if the given angle is one sim-

ply drawn on paper, as A B C, then from the vertex of the

given angle as a centre, with any radius, draw an arc be-

tween the sides of the angle ;
and with the vertex of the

required angle as a centre, with the same radius, describe

an arc of equal length. (Art. 182.) Lines drawn through
the extremities of this arc to the vertex will make the

required angle.

Thus, if it be required to draw a line from the point A,

making the angle E with the

line A B, draw with any radius

the arc F G, and with the same

radius the arc C D, making C D
equal to F G. A line drawn

through the points A and D will ^ ^
-^

make the required angle.

187. To draw tkrougJi a given pointy as C, a line paral-
lel to a given line^ as A B.— Join C to any point in the

given line by a straight

line, as C A. Make the

angle D C A equal to

CAB, and the line DC
will be manifestly par-
allel to A B. To draw through C a line making any angle

6*

D C
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with A B, we need only draw, from any point in A B, a

line making the required angle with A B, and then draw

through C a line parallel with the line so drawn.

188. A simpler mode of doing the same thing, though
not allowed by the postulates of Chaj). II., is to open
the compasses until, with one foot on the point C, the other

will describe an arc touching the line A B, but not cutting

it. With the same radius and one foot at B, describe an-

other arc at E. Draw a line through C, touching, but not

cutting, the arc E, and it will be parallel to A B. The

proof may be readily discovered by the learner.

189. The instrument called a parallel ruler is simply
two rulers with par- i

; 1

.

allel edges, joined ^A^V
—'

^^*Nr

by two strips of . XL _
\̂5~

brass, riveted to the " '

rulers, but the rivets allowing motion in the plane of the

paper on which it is laid. Great care must be taken to

have the rivet holes in the two pieces of brass at equal

distances, and also those in the rulers at equal distances.

If this is done, then, while one ruler is held still and the

other moved, the moving ruler must remain parallel to its

first position.

Additional care is usually taken, in making the instni-

ment, that this position shall be parallel to that of the sta-

tionary ruler, by having the holes in each ruler on a line

parallel with its edges. Another kind of parallel ruler is

made by simply mounting a ruler on rollers. This is less

accurate.

The readiest and most accurate mode of drawing paral-

lel lines is, however, to use a flat triangle of wood, one

side of wliich is slid against the edge of a straight ruler,

held firmly stationary, while the other sides remain paral-

lel to their first position.

190. The drawing of a parallel line is simply the draw-
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ing of an angle equal to zero. Another angle of pecnliar
interest is the right angle, and there are better ways than

that of Art. 185 for drawing a right angle.
191. 2'o raise a perpefidicular at a given point A

upon a straight line A 13.— I^irst Method, From any
point B, in the line A B, with Dn

any radius B C, describe an

arc, and from the point A,
with the same radius, describe

an arc cutting the first at C.

Draw the line B C, prolonging
C D to equal C B. Join D A
by a straight line, and it will

be perpendicular to A B, by Ait. 147.

Second Method, Opening the compasses to any con-

venient width, step off ^nq equal portions of A B, begin-

ning at A. Let B be the fourth point of division. From
B as a centre, with a radius equal to five of these parts,

(^•aw an arc above A, and from A as a centre, with a ra-

dius equal to three parts, draw a second arc intersecting

the first at D. Join D to A by a straight line, and it will

be at right angles to A B, by Art. 106.

Third Method, Measure with the compasses equal dis-

tances on each side of A, and bisect the line thus meas-

ured off by the method of Art. 180, and you have a line

passing through A at right angles to A B.

Fourth Method, Visiting or business cards are usually
cut very exactly at right angles. By applying one corner

of a card at A, and making one edge coincide with A B,

the other edge will be at right angles to A B. The accu-

racy of this right angle may be tested by drawing perpen-
diculars on opposite sides of A.

Fifth Method, If you have neither card nor compasses,

fold a piece of writing paper carefully, and then double the

folded edge carefully on itself. This corner of four thick-
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nesses of paper will be a square corner, to be used as the

card.

Sixth Method. From any point outside the line, as C,

with a radius equal to C A, draw an arc cutting A B, say-

in B, and prolonged to a point where the radius B C, pro-

longed through C, may cut it, say in D. DA will then,

by Art. 147, be the perpendicular required.

192. To let fall a perpendicular from a pointy as D,

upon a straight line, as A B. D^
— I^irst Method. Join any

point of the line A B, as, for in-

stance, the point B, to the point

D,by a straight lineD B. From

C, the middle of D B, with a

radius equal to CB or CD,
draw an arc cutting A B at E,
and D E will be (by Art. 147) the peipendicular required.

/Second Method. From D as a p
centre, describe any arc cutting

the line A B in two places. The
middle point between these places

will be E, the foot of the perpen-
dicular from D.

Third Method. Make one side of the square card coin-

cide with A B, and slip the card along until the end passes

through D. Or if the triangle of Art. 189 be made with an-

gles of 30\ 60°, and 90°, its square corner may be used.

Fourth Method. If the perpendicular is to be drawn

merely for the sake of measuring its length, that is, for

finding the distance of D from the line A B, it need not

be drawn
; but you may simply place one foot of the com-

I^asses in D, and then open them wide enough to desciibe

an arc touching, but not cutting, A B. Although the pos-

sibility of doing this is not claimed in the postulates, yet it

is practically equivalent to the postulate of Art. 178.
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CHAPTER ly.

TRIANGLES.

195. To draio a triaiigle of three given sides,— If the

eides are not drawn, but are given in numbers, open the

compasses to extend upon the scale to a number corre-

sponding to one of the sides. If the lines are drawn, open
the compasses to the length of one of them. Set the

dividers on paper with sufficient pressure to mark the

points where the feet touch. From these points as cen-

tres, with radii equal to the other sides of the triangle,

draw arcs cutting each other. This point of intersection

and the points used as centres will be the vertices of

the required triangle, and must be joined by straight
lines.

194. To draw a triangle xolien tioo sides and one angle
are given.

— First Case. When the angle is included

heticeen the given sides. Draw two lines making the re-

quired angle ;
and upon each line set off with the com-

passes, from the vertex, the length of the given sides
; join

their extremities by a straight line, and you evidently have

the required triangle.

Second Case. When the angle is opposite one of the

given sides. Draw two lines, A B
and A C, making the given angle.

Set off from the vertex A the given

adjacent side A B, and from B as a

centre, with the other given side

B C as a radius, draw an arc cutting A C in C or c. Ei-

ther A B C or A B c will be the required triangle. IfB C
is greater than A B, only on<i triangle can be formed.

195. To draw a triangle when 09ie side and two angles
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are gimn,— First Case, When the side lies' between the

angles. Draw a line equal in length to the given side,

and draw at the ends of it lines making the given angles
with the given side. These lines being produced far

enough to meet, will give the required triangle.
Second Case. W7ien one angle is opposite the given

side. If the angles are given in degrees, the simplest way
is to add the two angles together, and subtract the sum
from 180'

;
this will give the third angle, and reduce this

case to the first case. But if the angles are given by-

being drawn, it will be better to draw the given side A B,
and at one end raise the line A C, mak- ^ C

ing the given adjacent angle. At any
point, as C, draw C D, making A C D
equal to the given opposite angle.

Through B draw B E parallel to CD, and B E A is evi-

dently the required triangle. Such a line as C D should

be drawn lightly, so that, if necessary, it can be erased.

196. It is manifest that, in all the problems of this

chapter, if the sides are given in numbers, any convenient

unit may be taken to represent unity in the numbers.

That is to say, if the original numbers represent feet,

yards, or miles, they may in your drawing be taken as

inches, tenths of inches, twentieths, or hundredths, as you

please ; only remembering that the same quantity must

be taken as the unit in all parts of any one figure.

In drawing profiles, or vertical sections, however, two

units are usually employed. Thus, in drawing a sketch

of the elevations and depressions of a railroad 100 miles

long, in which the greatest elevation attained was 500 feet,

you might represent the length on a scale of one mile to

an inch, but the elevations and depressions on a scale of

400 feet or 500 feet to an inch.

197. The problem of Art. 193 is impossible if either of

the given sides is greater than the sum of the other two.
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198. In the second case of Art. 194, the problem is im-

possible if the side opposite the given angle is too short

to reach the side not given.

199. In Art. 195, the problem is impossible if the sum
of the angles given equals or exceeds 180°.

Examples.

200. Draw a triangle, with sides of 19, 33, and 41 feet.

Draw one with sides of 41, 33, and 19 miles. Draw trian-

gles with sides of 18, 13, and 27
;
of 341, 263, 501

;
of 76.8,

54, 43.7 ; of 673, 321, 352; of 67, 32, 34; of 71, 39, 43
;
of

67, 29, 47.

201. Measure, by Art. 185, the angles of each triangle

in Art. 200, and test the accuracy of your measures by

adding the angles of each triangle together; the sum

should, of course, be 180°.

202. Draw a map of a triangular building lot, whose

sides are 97 and 73 feet, the angle between these sides

being 57"^. Draw a map of another triangular lot, with

sides of 84 and 77 feet, and the angle opposite the side of

77 feet equal to 43°. Draw a triangle with a side of 81,

another of 41, and the angle opposite 41 equal to 23°.

Try the same with the angle 37°.

203. Measure the other angles of the triangles of Art.

202, and the third sides, testing the angles as in Art. 201.

204. One side of a triangular lot being 83, what is the

size of the opposite angle, and the length of the other two

sides, the adjacent angles being 67° and 93""- Answer the

same question when the angles are 33° and 111°. When
the angles are 61° and 119°.

205. If we have only the angles of a triangle given, we
of course cannot discover the length of the sides.

206. It is plain that, having two sides given, we must

also have an angle given, in order to draw the triangle.
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207. If one side is given, it is plain that we must have

two angles given, or, having but one actually given, must
have some condition given which will determine another

;

such, for instance, as the ratio which the unknown angles
bear to each other.

208. A ship at anchor finds that a round lighthouse-

tower, known to be 17 feet in diameter, covers a degree
and a half of the horizon

;
in other words, lines drawn from

the ship to oj^posite sides of the tower make an angle of

1° 30'
;
and those lines make, with one diameter of the

tower, equal angles of 89° 15' each. Draw this triangle,

and find from it the distance of the ship from the light-

house.

What is the moon's diameter, if her distance from the

earth is 240,000 miles, and her apparent diameter 30' ?

CHAPTER V.

QUADRANGLES.

209. To draw a quadrangle when all the sides and one
'

angle are given; the sides, i7icluding the angle^ being

named,—Draw two lines, making the

given angle. A, and measure upon them
the sides, including the angle. From the

extremities, B, C, of these sides, as cen-

tres, with radii equal to the other sides,

draw arcs intersecting each other, and the

point of intersection will be the fourth vertex of the

quadrangle.
210. It is manifest that the arcs will intersect in two

places, and also that the third and fourth sides can change
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places with each other, so that four quadrangles can some-

times be drawn satisfying the conditions of Art. 209.

211. To draw a quadrangle when three sides and two

angles are given^ the order of the sides and angles being
named,— If both the angles are included between given

sides, draw the middle side and raise the other two sides,

making the proper angles with the middle side. It will

only remain to join their extremities by a straight line.

If one angle is adjacent to the unknown side, as, for

instance, if AB, A D, and D c are given A B

sides, and A and B given angles, draw
A B and AD of the given lengths and

making the given angle. From B draw
B C of indefinite length, making B of the

given size. From D as a centre, with the

given length D C as a radius, describe an

arc cutting B C in C and c. Join either

D C or D c, and it completes the quadrangle.
But if both given angles are adjacent to the unknown

side, that is, suppose Be the unknown

side, and B and C the given angles,

then at B, and at any other point on

B c, as c, raise at the proper angles the

sides B A and c d of the given length.

From the pointA, with the radius A D,

draw an arc. From d draw, parallel

to c B, a line cutting this arc at D.

Draw D C parallel to d c, and the

quadrangle is manifestly completed.
212. To draw a quadrangle ichen two sides and three

angles are given^ their order ofposition being named,—
The three angles being subtracted from 360° will give the

fourth angle.

If the given sides are adjacent, as A B, A D, draw those

sides of the given length, making the given angle, and

7
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from the extremities, B and D, draw lines making the

given angles B and D. The intersection of these lines

will complete the quadrangle.
If the given sides are not adjacent, as A B and D C,

from the extremities of A B, draw lines A D and B C, of

any length, but making the given angles A and B. From

any point c in B c draw c c7, making the angle Bed equal
to the given angle C. Take c d equal to the given side

D c. Draw c?D parallel to c B. The point at which dY>

crosses A D will be one corner of the quadrangle. From
this point D draw D C parallel to d c, and the quadrangle
is manifestly completed.

213. My garden is an iiTegular quadrangle, the sides

being 150, 207, 315, and 97 feet. The sides are placed in

that order, and the angle between the first and second is

96°. Draw me a plot.

The south front of a lot is 37 feet, the east side 63, the

west 52 feet, and the south-west corner is 92'', the south-

east 62°. Draw a map.
The south front of a lot of land being 31 feet, the east

side 53, the west 46 feet, the south-west corner is a right

angle, the north-east corner measures 78°. Draw a map.
The sides of another lot, and its south front, measure \\\q

same as in the last example, but the two corners in the

rear are square corners. Draw a map.

CHAPTER VI,

CIRCLES.

214. To dram an arc of a circle^ the radius being given,— As a practical question this is one of great importance,
as it concerns not only the process of geometrical cofl^-
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struction, but many processes of mechanical construction

also. In geometrical construction the compasses usually

afford the readiest means of draAving arcs and circumfer-

ences
;
but in mechanical construction of machines, roads,

and other things, the compasses are frequently of no

value.

Sometimes a thread, string, or rope is fastened by one

end to the spot selected for the centre of the arc, while

the other end is carried round. It is plain thataf the line

is kept stretched, and equally stretched, its moving end

remains always at the same distance from the station-

ary end, and the curve must be the circumference of a

circle.

Sometimes the thing on which you wish to describe a

circle is turned round, as in a lathe.

Sometimes, at the blacksmith's shop, a circle is made by

bending a strip ofiron equally at every part. This is done

by passing it between three rollers. The amount of bend-

ing at each point must be inconceivably small, because any

perceptible bend at any one point would make an angle
there. Yet small as the bending at each point must be, it

must be practically measured by a screw that raiseg or de-

presses the middle roller, and thus alters the curvature of

the tire as it passes between them.

In laying out railroads, arcs of circles are drawn by
measuring off equal angles
from one point, as A, and

setting off equal chords be-

tween the sides of the angles,

beginning at the point A.

That these will be chords to

a circle may be proved from

Art. 145. Engineers have

tables prepared, telling them

what the angle must be in order to have chords of 100
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feet each from circles of 300 feet, 400 feet, or any other

radius.

In laying out garden paths and walks, it is convenient

to have a wooden "
square," such as A B D. A B should be

straight, and have a
-q

mark in the middle ^ c E
at C. BD should

'

be divided into small divisions. Putting down two stakes,

one at A afid one at C, a third one may be placed on D,
at such a distance from B as is desirable. Taking up the

square, now place the end A at the stake which was at C,

and place the point C at the stake which was at D. Put
down a fourth stake on the side D as far from B as the

third stake was placed. The size of the circle will depend

upon the distance from B at which the stake on the side

D is placed. For a small circle, divide C B in the middle

at E, and use the instrument as though it had been cut off

at C. By using the whole for a small circle, D is carried

too far from B, and thus C D becomes longer than A C,

which will make the first few stakes irregular.

215. I^irst Solution of Art 214. Open the compasses
to the given radius, and draw the arc as usual.

216. Second Solution, If the radius is too long for the

compasses to be opened to that width, we may use a string,

a strip of wood or of paper. If a pin be thrust through
one end of a strip of stiff paper, and a pencil point be in-

serted through a small hole at the required distance on

the strip, very accurate arcs of circles may be drawn, and

the radius measured beforehand with accuracy. The pin
is held at the centre of the circle, and the pencil carried

round.

217. Third Solution. When there is no convenient

place to set the central foot of the compasses, or the pin in

the paper strip, upon, other plans may be adopted.
Draw two lines on a piece of stiff paper at an angle of
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165° 31'. Trim the paper off to these lines, leaving a

small piece about the intersec-

tion. At the point of intersec-

tion make a small hole in the

paper to insert a lead pencil.

Placing two pins P P at a

distance apart equal to half the

radius, a neat arc may thus be drawn. Other angles may
be used with corresponding parts of the radius. For in-

stance, 170° 24', with pins at a distance apart equal to one

third the radius. Of course, in drawing these angles it is

easier to measure the supplement of the angle, that is, the

remainder after subtracting it from 180°, and then simply ,

let the lines cross.

218. Fourth Solution, If we draw a tangent to a cir-

cle, and measure off upon it, from the point of contact, dis-

tances equal to one tenth the radius, we shall find the dis-

tance of the tangent to the circumference at the first three

points of division equal to .005, .020, .046 of the radius.

Hence we may draw an arc of a given radius by drawing
a straight line, and marking upon it half a dozen spots

equally distant, at a distance equal to one tenth the radius.

If over any one of these we make a dot at the distance of

five thousandths of the radius, over the next a dot at the

distance of twenty thousandths, &c., a curve drawn care-

fully through these dots will be an arc as required. If we
take twentieths of the radius instead of tenths, the distance

of the curve will be .001, .005, .011, .020, .031, .046.

219. To draw through a given point a tangent to a

given circle,— First Case, If the point is inside the cir-

cle, the problem is insoluble.

Second Case, If the point is in the circumference, draw
aradiustothe circumference at that point. Draw a line

at right angles to the end of the radius, and it will be a

tangent.
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Third Case. When the point is outside the circle,

let A be the point and C the cen-

tre of the circle. Join the point
A to the centre C by a straight

line. From the middle point B,

of that line, with a radius B C,

equal to half the line, draw an arc

which will cut the circumference at

the points through which the tan-

gents from A must pass. For it is

manifest that if the angle ADC were drawn, it would be

a right angle, by Art. 147.

Practically^ it is only necessary to lay the ruler with its

edge upon A, and touching the circumference without

cutting. This is not, however, practically useful when A
is very nearly touching the circumference, and not at all

practical when A is actually on the circumference, as in

that case the angle of the line with the radius to the

point of contact might fail to be a right angle.
220. Draw a circle of two inches radius. A semicircle

of three inches diameter. Draw, by Art. 217, an arc three

inches long, with a radius of sixteen inches. Draw,

by Art. 218, an arc five inches long, with a radius of

ten inches, also of twenty inches. What angle does a

tangent through A make with a straight line drawn from

A to the centre of the circle, the radius being 1.5 inches,

and the distance from A to the centre 3 inches ? Over

how many degrees of latitude could you then look from a

balloon at a height of four thousand miles above the sea,

supposing it possible to rise that height? Over how many
degrees of latitude could you look from a balloon at the

height of one thousand miles ?

221. To inscribe a circle in a triangle,
— Bisect two of

the angles of the triangle; that is, divide each angle into

two equal parts by a straight line. The point where these
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two lines intersect each other will be the centre of the

required circle, and the radius will

be the length of a perpendicular
to either side of the triangle. That

these perpendiculars will be equal
in length, may readily be shown
from the equality of the triangles

which they form. Thus the triangles A F D and A E D
are equal, because they have the same line AD for hy-

pothenuse, and equal angles, by the construction of the

figure. Therefore D F rz: D E. In like manner, D G may
may be shown to be equal to D F.

222. To circumscribe a circle about a triangle. In

other words. To draio a circumference that will pass

through three given points^ as the vertices of a triangle.
—

As the centre of the circle must be equally distant from

each of the points, it must be found on a line perpendicu-
lar to the middle of a line joining any two points. (Art.

136.) In other words, if we draw lines perpendicular to

two sides of the triangle, at the middle of those sides, the

centre will be in both these lines
;
that is, will be found at

their intersection.

223. Tofind the centre of a given arc,— It is manifest

from Art. 222, that we only need draw any two chords in

the arc, and erect perpendiculars at the middle of each

chord.

224. Tofind the radius of a circumference that willpass

through three given points when they lie nearly in a

straight line. In other words, WTien the radius is large^

to draio the arc without finding the centre,— The arc

may be drawn by setting up pins at the extreme points,

and cutting a piece of paper with straight edges at the

angle that is made by lines to the intermediate point,

then proceeding as in Art. 217. The length of the radius

may be found by measuring the supplement of this angle.
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According as it measures 1% 2°, 3^ 4°, 5°, 6°, 7^ 8% 9°, or

10°, so must you multiply the distance between the ex-

treme points by the number 28.65, 14.33, 9.55, 7.17, 5.74,

4.78, 4.12, 3.59, 3.20, or 2.88, to obtain the radius. It will

be noticed how nearly any ofthese numbers can be obtained

by dividing 28.65 by the number of degrees in the supple-
ment

;
this will enable you to obtain it for angles not con-

sisting of whole degrees. Thus for the angle 2J degr^s,

you will divide 28.65 by five halves.

225. Make three dots upon paper nearly in a straight

line, and discover by Art. 224 the radius of a circle that

will pass through them.

226. To describe an equilateral triangle in a circle,—
Step round the circumference with the radius, and you will

require six steps (since by joining two of the points thus

marked with each other and with the centre of the circle

you form an equilateral triangle, whose angles must each

equal \ of 180°, or \ of 360) : by joining the alternate

points of division with straight lines you draw the triangle

required. ^

227. To describe a hexagon in a circle,— Step round the

circumference with the radius, and join each point, thus

marked, with the adjacent points, by straight lines : the

hexagon is drawn.

228. To describe a square in a given circle.— Bisect

the arcs to which two opposite sides of the hexagon are

chords, join the points of bisection with the two vertices

of the hexagon that are at 90°

from them, and you will mani-

festly have drawn a square.

229. To describe a regular pen-

tagon orjive-sidedfigure in a cir-

cle,— Draw a diameter H G, and
erect a radius CF perpendicular to

it. From D, at the bisection of C G, measure D E equal to
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D F. Join E to F by a straight line, and it will be equal
in length to one side of a pentagon.
The proof of this proposition is somewhat intricate, and

would require more use of algebraic language than is con-

sistent with the design of this little book. Supposing the

radius C F to be 1
;
then C D would equal ^. From this

we should find the value of D F by the Pythagorean

proposition. E C would then be found by subtracting ^
from D F. Hence, by the Pythagorean proposition, we
could find E F. Next, supposing a chord of 72° (the side

of a pentagon) drawn in a circle of radius of unity, we
could show that its length would be precisely the same

as that of E F.

But the simplest way to draw a pentagon is to open the

compasses to, as nearly as you can estimate it, the fifth of

a circumference, and after stepping round once, alter their

width, as nearly as you can estimate it, the fifth part of the

resulting error. This really conforms to the spirit of the

postulate, that one can open the compasses to a given
radius

;
and the preceding method is given simply to show

a way of drawing a pentagon in conformity with the let-

ter of the postulate. If the compasses are opened so as

to step round five times without any apparent resulting

error, their real error is probably but one fifth as great as

it usually is in measuring a radius.

CHAPTER VII.

AREAS.

230. Areas are the numbers which measure surfaces;

that is, which express the ratio of the surfaces to a unit

surface, or surface adopted as a unit, or standard of ref-

erence.
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231. The usual unit of surface is a square whose side is

a linear unit
;
for instance, a square inch, square mile, &c.

232. To find the area of a rectangle.
—

Multiply the

length of a side by that of an end, and the product will

be the area. (Art. 97.)

233. To find the area of a parallelogram,— Multiply
the length of a side by the distance to the opposite side

;

the product will be the area. (Art. 110.)
234. To find the area of a triangle,

—
Multiply the

length of either side by the distance from the opposite

vertex; the product will be twice the area. (Art. 111.)
235. To find the area of any polygon.— Divide the

polygon by diagonals
— that is, by lines drawn through

vertices not adjacent
— into triangles, and measure these

triangles.

236. To multiply two numbers by geometrical construc-

tion.— This problem is not commonly practically useful,

and yet to one who wishes only approximative results, and

dislikes numerical computation, it may be made to yield

good results, especially if care be taken in using the par-

allel ruler.

Have prepared, on a piece of hard, smooth paper, two

lines at an angle of 30° or 40°, and on one of them a unit,

AB, measured from the vertex

A, and permanently marked. Lay
off either number fromA to C, the

other from A to D. Join B C,

and draw D E parallel to B C.

A E is the required product. That is, if A B were an

inch, A C 1^ inches, and A D 2 inches, then A E would be

found to be 3 inches.

Proof. The triangles ABC and A D E given, by Art.

99 the proportion A E is to A D as A C is to A B, that is,

as A C is to unity. But this is the definition of a product,

that it is a quantity bearing the same ratio to the multipli-

cand that the multiplier does to unity.
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287. To find the area of a circle,— If the circumfer-

ence, instead of being a curve, consisted of many millions

of short, straight sides, it is plain that the circle could be

divided into many millions of little triangles, by means of

many millions of radii. Now, the circumference may be

thus conceived of, and the area of these triangles may be

found, according to Art. 234, by multiplying the circum-

ference (which is the sum of the short sides) by the radius

(the distance to the opposite vertex), and dividing by two.

The circumference or the radius may be divided by two

before they are multiplied. (Art. 157.)

238. To find the circumference of a circlefrom knowing
its radius.— It is manifest from Arts. 237 and 99 that the

ratio of the circumference to the radius is the same in all

circles, and we have only to find the circumference of the

circle whose radius is unity. Suppose,

then, that B E is a chord of 60°, bi-

sected at D, and that A is the centre

of the circle. Knowing D B is equal
to i, and A B to 1, we can, by the

Pythagorean proposition, calculate the

length ofA D. Subtracting this from

1 gives us D C. Then, knowing D C
and D B, we can, by the same proposition, calculate B C.

Bisecting B C at c?, we know A C and C d, and can therefore

calculate A d, and thus find d c. Hence we get the chord

C c, or chord of ^V ^^ ^ circle. By continuing this process
of applying the Pythagorean proposition we can find the

chord of the 48th, or 96th, or 192d of a circumference.

Multiplying these chords by 48, or 96, or 192, gives us

nearly the length of the circumference
;
and the greater the

number of times that we bisect the arc of 60°, the more

nearly will we attain the exact length. The length of the

semi-circumference, with a radius of unity, or of a circum-

ference with a diameter of unity, is called n.
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Vastly more rapid ways of calculating n have been

found by the Differential Calculus. Its exact value cannot

be obtained, because the diameter and circumference are

not in the ratio of any two numbers whatever. For ordi-

nary calculations it may be taken as equal to 3.1416, and

for the most accurate osculations 3.14159265.

239. As the area of a circle is, by Art. 237, equal to the ra-

dius multiplied by the semi-circumference, and as the semi-

circumference is, by Art. 238, equal to the radius multiplied

by TT, it follows that the area is equal to the radius multiplied

by itself and then by n. In other words, the area of a circle

is 3.1416 times as large as the square on the radius.

240. As the square on a radius is one fourth the square
on the diameter, we may find the area of a circle by mul-

tiplying the square of the diameter by one fourth of 3.1416,

that is, by .7854
; or, for very accurate calculations, by

.785398.

241. To find the length of an arc of any number of

degreeSy and of a given radius,— The semi-circumference

with a radius of 1 is 3.14159265, and if we divide this by
180 it gives the length of one degree, .017453. If we

multiply this decimal (.017453) by the number of degrees
in the given arc, it will give the length of that arc in a

circumference whose radius is 1. Multiplying this by the

given radius will give the required arc.

242. To find the area of a sector of a circle ; that is^ of a

figure included between two radii and an arc,— Multi-

ply the arc by the radius, and the product will be twice

the area. Or find the area of the circle, divide it by 360,

and multiply the quotient by the number of degrees in

the arc.

243. To find the area of a segment of a circle ; that is^

pf afigure included between an arc and its chord.— Find

the area of the sector, having the same arc, and also of the

triangle included between the radii and the chord. If the
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arc is less than 180°, subtract the triangle from the sector;
if the arc is more than 180°, add the triangle to the sector.

Examples.

244. With a radius of 7.3 inches what is the length of

the circumference ? Of an arc of 79° ? of 53° ? of 58^° ?

What is the area of the circle? Of a sector of 51°? of

37° ? Of a segment of 63° ? of 79° ? of 176° ? of 183° ?

245. In measuring the altitude of triangles, or the dis-

tance of any point from a line, the simplest mode, justified

by the spirit, although not the letter, of the usual postu-

lates, is to place one foot of the compasses on the point,
and open them until the other foot, swinging near the line,

will touch it without crossing it.

246. What is the area of a triangle whose sides are 17,

23, 31? What is the area of the four lots in Art. 213?
Of the triangles in Arts. 204, 202, 200.

CHAPTER VIII.

DOUBLE POSITION.

247. In many practical problems there may be no direct

method of solution, and nevertheless there may be direct

modes of testing the accuracy of a solution. In these

cases the arithmetical rule of "Double Position" is a most

valuable means of obtaining the number sought. It pro-

ceeds upon the simple supposition that the errors of a

result are in proportion to the errors of the data from

which the result is obtained.

248. To solve a question by double position, you must

first discover a mode of testing an answer by subjecting it

to calculations which, if the answer is correct, will yield a



86- DOUBLE POSITION-.

given number. Make two "
positions," or supposed

answers, test them, and note the errors of the results.

Then the difference of the results is to the difference of

the positions as the error of either result is to the error of

its position, and the solution of this problem in the " Rule

of Three" will enable you to correct your "position."

249. To solve the question of doubleposition by geometri-

cal construction.— Draw a straight line A B of any length.

Mark upon it, at any convenient

place, a point C, to represent the

smaller number of your two po-

sitions. Measure C D equal to the a ^^r t b

difference of your positions, taken

on the scale. Above or below C and D, at right angles to

A B, at a distance equal to the error of their results, mark
the dots d and c measured on the same scale as C D, or on

a different scale, and join them by a straight line, cutting
A B in E. Measure C E on the same scale as that on which

C D was measured, and subtract it from the smaller posi-

tion. This will give a new position, more correct than C
or D. Try now two new positions, nearly equal to this

corrected one, and employ a larger scale in constructing

them, and thus proceed until you find a position nearly

enough exact for your purpose. If either result is too

small, the corresponding point c or d will be below the

line A B, and E will fall between C and D, so that C E
must be added to the position C. 1^ T> d is less than C c,

then E will fall beyond D, and it will be better to measure

D E, and add it to the position D. If the line c d is too

nearly parallel to A B, then the distance CD must be

measured on a smaller scale, ox X> d and C c on a larger

scale.

In many cases a more exact result can be more rapidly

attained by making three positions, plotting three points

like d and c, and then drawing an arc instead of a straight
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line through them. The intersection of this arc with the

line A B will then show most exactly the true point for a
"
position

" which will stand the test.

250. A few examples will show more clearly the mean-

ing of the above directions.

(a.) What two iiumbers are they whose sum is 11 and
the sum of their squares 76 ?

Supposing the least number to be 3, the greater will be

8, and the sum of the squares will be 9 -j- 64 i= 73. It is

therefore plain that 3 is too large, or rather that 8 is too

small. Supposing, therefore, the least number to be 2.5,

the greater number will be 8.5, and the sum of the squares

will be 6.25 + 72.25= 78.5. On a straight line A B, I

now make two dots, C and D, at the dis- Cv

tance of .5 of an inch apart, because my \^
P

positions for the smallest number were \
2.5 and 3, and 3— 2.5= .5. Over C, I ^<?

put a dot, c, at the distance of .25 of an inch, because 78.5

— 76 = 2.5, and I reduce it to one tenth the scale, for con-

venience sake. Under D, I put the dot c?, at the distance

.3 of an inch, because 76— 73 = 3, which I reduce to one

tenth the scale. Joining c to c? by a straight line, I meas-

ure the distance from C to 6, and find it .23 of an inch.

Adding this to 2.5 gives me 2.73 for a new "
position."

Supposing successively the smaller number to be 2.71,

2.72, and 2.73, the greater number would become 8.29, 8.28,

and 8.27 ;
and the sums of the squares 76.068, 75.957, and

75.846. The differences of these numbers from the required

sum, 76, are -f .063,
—

.043, and — .154.

Drawing, now, the straight line A B C, I put the points
A B C at equal distances, one inch apart ;

that is, I map the

differences between my positions, multiplying each by 100.

I next put the points a b c below and above the line,

at the distances .315, .215, and .77
;
that is, I map the dif-

ferences of my results, multiplying each by 5. Holding,

now, a straight edge from A to C, I mark the point e
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where I judge by my eye that an arc through ah c would
cut the line AB.
Measuring A 6 I

find it .61, and as

A B is magnified
100 times, I add

.0061 to my first

position, giving me
2.7161 for a new

position. Then, taking 2.7161 and 2.7162 fi)r new positions,
1 might construct a new one on a scale of 10,000 for 1,

instead of 100 for 1, and this would give me a result still

more accurate; that is, I should find that .000018 is to be

added to 2.7161, giving 2.716118. This process continued

would lead to any desired degree of accuracy.

(^.) Find by this process two numbers ichosc difference

is 1 and product 11.— Suppose the smaller number 3 and

larger 4, the product will be 12, giving an error of 1. Sup-

pose the smaller number 2.9 and larger 3.9, the product
will be 11.31, giving an error of .31. Map the differences

of positions multiplied by 10, and the difference of results

from 11, without changing the scale.

(c.) Find two numbers whose difference is 1 a^id the dif-

ference of their squares is 6.— SupjDOse the numbers to be

2 and 3, the difference of their squares is 5, an error of 1.

Suppose them to be 2.2 and 3.2, the difference of their

squares is 5.4, an en-or of .6. Suppose 3.5 and 2.5, the differ-

ence of the squares will be 6. Hence 3.5 and 2.5 is the

exact answer. Double position frequently thus leads, by a

fortunate guess, directly to an exact result.

{d,) What number is that^ the difference between whose

second and thirdpov^ersis 12?— Suppose 2, and the result-

ing error is 8. Suppose 3, and the resulting error is — 6.

Suppose 2.5, and the resulting error is 2.6. Suppose

2.6, and the resulting error is 1.18. Suppose 2.7, and

the resulting error is — .39. Hence 2.5, 2.6, and 2.7
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should be mapped with their difference of .1 represented

by one inch, and the error of the results mapped as deci-

mals of an inch. A curve drawn through the three points

would give the result, with an error less than .001.

(e.) What two 7imnbers are they whose difference is 1,

and the difference of their thirdpowers 7 ?

(/.) Solve the last question when you have written

8 for 7.

(</.)
Find two numbers such that their sum added t6

the square root of their sum tcill equal 12, and the sum

of their cubes will equal 189.— Suppose 3 for one number.

The cube of 3 is 27, which subtracted from 189 leaves 162.

The cube root of 162 is about 6.6. The sum of 3 and 5.6

is equal to 8.6, the square root of which is about 2.9.

Add 2.9 to 8.6 gives 11.5, and it should give 12, so that

the error of result is .5. A second position will probably

give you an exact result, so that there will be no need of

construction.

(h.) Perform the same example^ substituting 176 for

189.

CHAPTER IX.

INTERPOLATION AND AVERAGE.

251. Suppose that you wish to know what is the high-
est point to which the thermometer rises on a given day,
what it is at half past 10 o'clock, and what is the average

heat, that is, the mean temperature of the day, and at what
time the heat is greatest. But suppose that you are only
able to observe the thermometer at 4 o'clock, 6 o'clock,

8^ o'clock, and so on, at irregular hours during the day.
How shall you, from these observations, find the answers

to your four questions ?

8*
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You cannot obtain perfectly accurate answers in any
way ;

but the simplest way of getting tolerably correct an-

swers is by geometrical construction.

Draw a straight line A B, and on it mark points corre-

sponding in their distances from each other to the inter-

vals of time between your observations. The scale may
be a quarter of an inch to an hour, one tenth of an inch to

an hour, or any other scale you please. Now, from the

degrees of the thermometer, at each observation, subtract

the greatest number of tens contained in the lowest de-

gree. Set the remainders in any convenient scale, say one

tenth of an inch to a degree, over the corresponding point
on A B. Connect the points thus obtained, by drawing

through them as easy and natural a curve as possible.

The highest jDoint of the thermometer for the day will be

found by measuring the distance of the highest point of

the curve from the straight line A B. The time when the

thermometer was highest will be found by measuring the

distance from A to the point upon A B under the highest

point of the curve. The temperature at 10^ o'clock will

be found by measuring the height of the curve over the

point on A B corresponding to 10^ o'clock. The question
of the mean temperature, or average height of the ther-

mometer, will be a little more difficult to answer.

Draw, from those points on the line A B between which

you wish to find the mean temperature, perpendicular

lines, long enough to pass through the curve, and a little

more. Draw a fine silk thread tight, hold it on the paper

parallel to A B, and move it nearer or farther from A B
until the area between the curve and the thread, on one

side the thread, seems equal to the area between the

thread, the curve, and the perpendiculars on the other

side the thread
;
the distance of the thread from the line

A B will then indicate the mean temperature during the

time included between the perpendiculars.

252. It is plain that the same method can be applied
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to any similar questions concerning the barometer, or

dew-point, or other meteorological phenomena ; or to the

force of steam, or any thing varying by unknown laws.

253. A similar method may also bo employed in calcu-

lating things that alter by known, but complicated laws,

when you wish to anive at an approximate result without

arithmetical labor. Thus examples which we have given
in the chapter on Double Position may be solved by this

mode of interpolation.

Let us take, for example, the question. What two num-
bers differ by 2, and form the product 5 ? This may be

solved by double position, as in Art. 250, Example (^), or it

may be done as directed in Art. 251, by using one of the

numbers as the hour, and the product as the temperature.
If the number subtracted from the products, to make them
easier to plot, be taken equal to the required product, 5,

tins process of Art. 251 becomes exactly the same as that

of Art. 250. Art. 251 is therefore simply a wider and

more useful application of the method which you had used

in double position.

254. I found one morning the thermometer at 6 o'clock

ten above zero, at Q^ o'clock it was seven above, at 6f
o'clock six above, at 20 minutes before 8 it was seven

above, and at 8 nine above. Now, when was it coldest,

what was the greatest degree of cold, what was the mean

temperature for the two hours, and what was the temper-
ature at sunrise, namely, at 20 minutes past 7 ?

I draw a line A B, two inches long, to represent the two

hours, and mark dots

upon it at distances

corresponding to the

intervals between the

observations. Over

the ends of the line,

and over the dots (finding the perpendicular by a square-
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cornered card), I mark points as many tenths of an inch

above AB as the temperature at each observation was

above 4°, six tenths above A, five tenths above B, and so

on. Joining these points by a curve which looks easy
and natural, I find it approaches A B most nearly at the

point D, 1.08 inches from A, and is there .13 of an inch

above A B. Hence I know that the greatest cold was

about five minutes past 7, and that the thermometer was

then at 5.3 above zero. At C, con-esponding to sunrise,

the distance of the curve from A B is .16 of an inch, and

therefore at sunrise the temperature was 5.6 above zero.

The thread E F appeared to leave a space between itself

and the curve below equal to that between itself, the curve

above, and the perpendiculars from A and B, when it was

.29 of an inch above A B, and therefore the mean tempera-
ture of the two hours was 6.9 above zero.

255. The barometer stood, Monday morning, at 29.53

inches, Monday evening 29.45, Tuesday evening 29.61,

Wednesday morning 29.73, Wednesday evening 29.71,

Thursday evening 29.45, Friday morning 29.46. When
was it highest, and when lowest, and what was the aver-

age height during the four days ? What was the differ-

ence between its lowest and highest points ?

In plotting this, the four days might be drawn four

inches or four half inches. The height of the barometer,
with 29.40 subtracted, would be in hundredths of an inch,

13, 5, 21, 33, 31, 5, 6. These may be mapped either as

hundredths, or fiftieths, or even as tenths of an inch.

256. The sunlight at noon, Dec. 18, came on my floor

2.1 inches beyond a certain mark
; Dec. 19, at noon, 2.2

;

Dec. 20, at noon, 2.21
;
Dec. 21, at noon, 2.17

;
Dec. 22,

at noon, 2.07. At what time was the sun at his most

southerly position ?

257. Whenever, in mapping observations, you map on

an enlarged scale, as when, in plotting the degrees of the
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thermometer, you represent them by tenths of an incli,

or, in plotting the example of Art. 256, you represent hun-

dredths of an inch by tenths, you will probably find that

no curve drawn through the points will look natural and

easy ;
or at least none can be drawn without some undu-

lation. If, then, as in Art. 256, we know that the real

curve must be without waves, we may conclude that our

mapping by magnifying the errors of observation has

produced this appearance. We ought, in such a case, to

draw a curve conforming as nearly to all the observations

as a regular curve can— as little above one point or be

low another as possible.

CHAPTER X.

SURVEYING.

258. Engineers and surveyors require nice and costly

instruments for measuring angles and measuring lines;

but a boy who chooses to make for himself a circle to

measure angles, and a j^ole to measure lengths, can read-

ily do so at a trifling cost, and find a great deal of pleas-

ure in doing it.

259. In measuring lengths, the best instrument for a

boy is a pole ten feet long, divided into feet, and each foot

divided into tenths. The tenths of a foot will be rather

larger than inches, and I recommend them in preference
to inches simply for the ease of calculation. Feet and

tenths of a foot can be written down like any other deci-

mal fractions.

260. For measuring angles, the simplest thin^
for a

boy's use is an instrument which he can make for himself,

as follows : On a smooth piece of board, about ten inches
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square, draw a circle with a radius of five inches. Through
the centre of the circle draw a diagonal across the board.

Starting from one of the points where this diagonal crosses

the circumference of the circle, divide the circumference

into 360 equal degrees. Make every fifth mark rather

longer than the others, and number from around to 180,
each way from your starting point, where the diagonal
crosses.

In the diagonal line outside the circumference, and neaf

the point marked 180% drive in a pin, which must stand

perpendicular to the surface of the board. Over the other

end of the line, near the zero, tack a piece of card or of

zinc, with a narrow slit in it, in such manner that part of

the zinc or card may stand up at right angles to the surface

of the board, and the slit stand perpendicular over the di-

agonal. If now, looking with one eye through this open-

ing in the zinc, the pin is made apparently to cover any
small distant object, it is manifest that the diagonal line

will point towards that object. Prepare now a flat stick,

ten inches long, to turn freely about a screw passed

through a hole in its middle, and screwed into the exact

centre of the circle. One end of this stick must carry a

card, or piece of zinc, perforated with a narrow opening,
similar to that in the stationary piece. Next, bringing
the two pieces of zinc, by turning the stick, as near to each

other as possible, look through both slits at once, and in-

sert a pin in the opposite end of the stick, so as to hide the

pin already in the board. A mark of some kind (either a

pencil mark or the cutting of a notch) must be made upon
the end of the stick to show the exact place of the zero

division when the stick is in this position. ^TsTow, it is

plain that if the board is held steady and immovable, so

that the stationary pin, as seen through the stationary slit,

shall hide one distant object, while the revolving pin, as

seen through the revolving slit, shall hide another distant
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object, the zero mark on the end of the stick will show

upon the graduated circle what angle is made by straight

lines drawn from the centre of the board to the two objects.

This simple piece of apparatus, if made with care, will

serve very well for measuring the angular distance between

any two stationary objects.

261. We sometimes wish to measure the angle which a

line drawn from us to an object makes with a perpendicu-

lar or horizontal line. One mode of effecting this is by an

artificial horizon. The surface of any fluid standing at

rest is, except near the sides of the vessel, exactly level.

Light is reflected from a surface at the same angle as that

at which it falls upon it. For a very high or distant object,

such as the heavenly bodies, we may consider the light

that comes to our eye as parallel to that which falls upon
a saucer of ink and water placed near the eye. For all

the purpose of a boy's surveying, we may consider the top
of a church steeple, or of a hill, as sufficiently distant to

make the same assumption.
262. A saucer of water, colored by any thing which will

prevent your seeing the inside of the saucer, may be called

an artificial horizon. If you hold your head in such

position as to see in the artificial horizon the image of a

stai' or the vane of a steeple, and then, by means of the

circle, measure the angle between the star and its image,
half that angle will be the altitude of the star, or the angle
which a line drawn from the vane to your eye makes with

a level line.

Thus let A be a vane, B an artificial horizon, and C
the eye of the beholder. D will be

the apparent image of the vane. B E
is a level line, and the angle ABE
is half the angle A B D. But ifA is

so distant from B and C as to make
the angle BAG insignificantly small.
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A C D, which is the angle measured by the circle, may
be considered as equal to A B D.

263. Instead of an artificial horizon, a plumb line may
be used

;
but then you will require another instrument, as

it would be difficult to make a plumb line hang from the

exact centre of the circle, already occupied by the screw.

264. Upon a piece of board draw a quarter of a circle,

and gi-aduate it as for a protractor. At the centre of the

arc drive in a pin perpendicular to the surface of the board.

At the point marked 90° fasten a piece of card or zinc,

pierced by a narrow slit. To the pin tie a piece of fine

silk, long enough to reach beyond the farthest corner of

the board, and to the end of the silk fasten a small weight.
This instrument is called a quadrant. It is plain that, if

the quadrant be held so as to allow the silk to play freely

over the surface of the board, it will mark upon the grad-
uated arc the measure of the angle which a line drawn
from your eye (applied to the slit) to the object hid by the

pin makes with the silk thread.

265. With these four simple instruments, a ten-foot pole,

a circle, an artificial horizon, and a quadrant, you will be

able to perform a great many interesting feats in survey-

ing, and in the measurement of heights and distances.

266. It is easier to measure angles than to measure dis-

tances, although it requires much more care and accuracy
in order to obtain good results. Men are therefore accus-

tomed to make instruments to measure angles as perfect as

possible, and then in surveying to measure only as many
lengths as is absolutely necessary.

267. If you wish to make a map of a piece of land,

measure carefully the length of one side, and then all the

angles which would be made with this side by diagonals

drawn from its ends to the different corners of the field.

Then map it by Art. 196. The area of the lot may be

found by Art. 234.
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268. It may sometimes be more convenient to measure

the length of more than one side. I only wish you to

remember that the measurement of only one length is

necessary, and that you will find it easier to measure an

angle than a line. You can, if you please, after making a

map by the measurement of one side and the angles, meas-

ure the other sides on the map, and then test the accuracy
of your work by measuring them afterwards on the ground
with the pole.

269. In measuring a line, you must remember that if

the ground is uneven you will make the line too long if

you follow the unevennesses of the ground. You must
hold the pole level, and mark the spot directly under the

elevated end. The area of a hill-side is not usually con-

sidered as that of its surface, but as that of its base.

CHAPTER XI.

HEIGHTS AND DISTANCES.

270. To find the height of a i^erpendicular object on

levd ground^ for instance^ a building or a tree,— From
a point directly under the top of the object, measure off

any convenient distance, and then wdth the quadrant take

the altitude^ or angle of elevation. Then, by Art. 195,

draw the triangle, whose vertices are your own eye, the

top of the object, and a point under the top at the level

of your eye. Drawing beneath the base a line to repre-

sent the ground (the distance between this line and the

base being the height of your eye), it is manifest that you
can measure the height of the object, and also, if you

choose, the distance from your feet to the top of the

object.

9
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271. At a distance of 60 feet from the centre of a cliurch

tower, I find the angle of elevation of the vane to be 5G\

What is the height of the vane, my eye being 5 feet above

the ground ?

At the distance of 15 feet from a wall, the angle of

elevation of its top is 63^ If my eye is 5 feet from tlio

ground, how long a ladder will I need to climb the wall ?

At the estimated distance of 5 miles, on a level, from

the centre of a mountain, the image of its summit in an

artificial horizon is 13° below the real summit. Wliat is

the j^robable height of the mountain above the point where

I stand ?

272. From a hnovm height to find the distance of an

object on level ground,— If we look in the opposite direc-

tion on the quadrant, that is, apply our eye near the centre,

and make the pin appear in the centre of the slit at the

moment when we can see the 'given object through the

slit, it is manifest that the thread wdll mark the angle of

elevation which w^e should have if viewed from the place
of the object. Therefore, in this problem, the constniciion

is the same as that of Art. 269, except that the lieiglit is

given, and the angle to be used is found by subtracting the

observed angle from 90°.

From the top of Prospect Hill, which I know to bo 420

feet above the level of a plain below, I observe, with the

quadrant, a stone wall on that plain to be 7° below a level.

What is the distance of the wall from the top of the hill

in a straight line, and what is its distance on a level ?

Another wall is seen directly between me and the first

wall, at a depression of 13°. What is the distance between

these two walls ?

273. To solve Art, 270 when apoint under the top of the

object is inaccessible,— This is frequently the case, espe-

cially with mountains and hills. The simplest mode of

solution is, to measure on level ground a straight line
going;i.
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directly towards the hill, and take the angle of elevation

at each end of this line
;
then drawing a straight line, A D,

measure off at one end a

portion A B to represent

your measured line. Draw-

ing next the two lines, A C
and B C, at the proper

angles, to represent rays of
light coming from the object,

their intersection, C will represent the place of the object,
and the perpendicular distance from the line A D can

be easily measured.

What is the perpendicular height of a hill when the

measured level line is 310 feet, and the angles 27° and 15° ?

274. If level ground cannot be obtained for the meas-

urement, of Arts. 270 and 271, it is only necessary to

measure by the quadrant the line of elevation of the

ground on which the measurement is made. This can be

done by placing at the highest end of the measured line a

stake, whose toj) shall be on a level with your eye when

you stand at its side. The angle of elevation of the top
of this stake, taken from the other end of the line, will be

the elevation of the ground.
275. The case supposed in Art. 270, and that in Art.

273, are in geometry the same, only that in Art. 270 one of

the angles of elevation is 90°.

276. In constructing a case under Art. 274, draw a line

A B to represent a level drawn through the station most

distan t from th e obj ect. Next
draw a line A C peiT^endicu-
lar to A B, to represent the

height of your eye. Draw
now A D and C E parallel to

each other, A D representing
the ground, and the angle
BAD being the angle of

elevation of the ground.

I
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Draw a line through C, making an angle with A B equal
to the elevation of the object from C. Through H, the

top of the stake, draw a line at the proper elevation, and

the intersection F with the former line will represent the

object. From this point let fall a perpendicular on A B,
and you may measure on that perpendicular the height of

the object, above or below, either the ground, or the level

AB.
277. Measuring down a steep hill-side a line 220 feet

long, directly towards a church steeple, which I knew to

be 123 feet high, I found the angle ofdepression of the vane,

at the upper end of the line, to be 10°, and at the lower end

4°. The depression of the line on the hill-side was 23°.

How high was the upper end of the line above the foot of

the steeple ?

278. At the foot of a hill, which rises at an angle of 17°,

the top of a tree on the hill-side has an angle of elevation

equal to 37°. On measuring my distance to the foot of

the tree, I find it about 417 feet. What is the height of

the tree ?

279. A house or tower may be taken as the side of the

hill on which the base line is measured, in which case the

angle of its elevation is 90°.

CHAPTER XII.

MISCELLANEOUS EXAMPLES.

280. Prove that the two diagonals of a rectangle are

equal, and that they mutually bisect each other.*

281. Prove that perpendiculars let fall from any two

points in a straight line upon a parallel straight line are

equal.

282. Given a side of a triangle 21 feet, the opposite
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angle 20°, and the ratio of the adjacent; •Jlligtes 3 :1, wlint'

are the other sides ? and the area ?

283. One side of a triangle is 40 feet, the opposite angle

is obtuse (greater than 90°), and the three angles are in

the proportion of 31, 20, and 9. Required the other sides,

and the area.

284. Prove that a square, circumscribed about a circle,

is twice as large as an inscribed square.

285. Prove that the angle between two chords that

do not touch each other is measured by half the difference

of the arcs between them. (Prolong them until they

meet, join their alternate extremities by a third chord, and

aj^ply Arts. 144 and 145.) Prove it also in another mode.

286. Prove that the angle made by a chord and a tan-

gent is measured by half the difference of the arcs between

them. Show what this becomes when the point of tan-

gency is at one end of the chord, and when the chord

also becomes a diameter.

287. When two chords cross, what is the measure of

their angle ?

288. Parallel lines intercept equal arcs. Prove it by Art.

285.

289. Prove that a perpendicular, let fall from the centre

of a circle, on a chord, bisects it.

290. Two circles intersect. Given their radii, 15 and

10, and the length of their common chord, 7, what is the

distance of their centres ?

291. Prove that a quadrangle, whose noith-east angle
measures 70°, and south-west angle measures 110^, can be

inscribed in a circle. (Divide it by a north-west and south-

east diagonal, and prove that the circle which is circum-

scribed about one triangle is circumscribed about the otlier.)

292. Substitute 85° and 95° in Art. 291; add that a third

angle is 100°, and determine, by construction, the ratio of

each side to the diameter of the circle,

9*
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293. Two ciiords' intersect. The segments nearer the

centre of the ch*cle are equal ; j^rove that the chords inter-

cept equal arcs.

294. Prove that parallel lines intercepted between par-

allel lines are equal.

295. How is the angle between two tangents to be

measured ?

296. Two sides of a triangle being given, and the length
of a perpendicular let fall on one from the opposite vertex,

to construct the triangle ?

297. Two sides being given, 41 and 53, and the altitude

of the triangle from the side 53 being 30°, what is the third

side?

298. My house lot is a triangle, with a front of 100 feet.

The perpendicular distance to the back corner is 67 feet.

The perpendicular distance from one end of the front line

to the opposite side is 79 feet. Draw a plot.

299. Given the base of a triangle, and its altitude, also

the altitude when another side is taken as base. Construct

the triangle.

300. One side of a triangle, and the perpendiculars let

fall from its extremities on the other sides, being given, to

construct the triangle.

301. One angle of a triangle is 70^, and the perpen-
diculars let drop from the other vertices on the sides

are 40 and 30 feet. Construct the triangle.

302. Announce problem 300 in general form, and give
a written exact rule for its solution.

303. One angle of a triangle is given, and the length of

a perpendicular let fall from its vertex on the opposite
side

;
also the perpendicular let fall from another vertex.

Construct the triangle.

304. Given the base of a triangle, an adjacent angle,

^nd its altitude. Construct the triangle. \

305. On a given line, as a chord, construct au arc of a
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i^ivon number of degrees. Use Arts. 289 and 286 to find

the centre of the arc.

80G. Given the base of a triangle, its opposite angle, and
the altitude. Construct the triangle, using Art. 305.

307. On the three sides of any triangle describe squares
exterior to the triangle. Connect the outermost corners

of the squares by right lines, and prove that each of the

three triangles thus formed is equivalent in area to the

original triangle.

308. A quadrilateral, with diagonals equal to 12 and 14,

is inscribed in a circle whose radius is 8. The diagonals
make an angle of 78° with each other. Construct the

quadiilatcral. Give a general rule. Show when the

problem would be impossible.

309. Given one angle of a triangle, and the segments of

the opposite side made by a perpendicular let fall from the

vertex. Construct the triangle.

310. A dressed piece of timber is 8 inches by 6, and is

3 feet long. What is the diagonal on the end, on the side,

and on the edge ? What is the longest straight line that

could be passed through the timber ?

311. A solid of six rectangular faces, like that of Art. 810,

is a rectangular parallelopiped. Given its three dimensions,

find by construction its diagonal.

312. Find by construction the value of such surds as

the square root of 19, or of 29, or 39, or 79, or 17, or 24, &c,

313. The base of a triangle is 20 feet, the opposite angle

30°, and the distance from the middle of the base to the

opposite vertex is 18 feet. Construct the triangle.

314. Announce Art. 313 in general form, give a general

solution, and state the cases of impossibility.

315. One angle of a triangle, adjacent to the base, is

SO"*
;
the altitude is 20 feet

;
the diameter of the circum-

scribed circle is 40 feet. Construct the triangle.

316. With the same elements given as in Art. 315,

when would the problem be impossible ?
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317. When two circles are tangent to each other, prove
that the point of tangency is in a straight line, joining

the centres.

318. Prove that a perpendicular from any point in a cir-

cumference, let fall on a diameter, is a mean proportional

between the segments of the diameter.

319. Find by construction a mean proportional between

two given lines.

320. A chord prolonged until it reaches a point without

a circle may be called a secant. Prove that if two secants

are drawn to one point, the entire secants are in the inverse

ratio of the parts outside the circle.

321. If a tangent and secant are drawn to one point,

prove that the tangent is a mean proportional between the

whole secant and the part outside the circle.

322. Prove that three points fix the position of a plane.

(Imagine the plane rotating on two of the points. Can it

have more than one position, and still include the third

point ?)

323. The intersection of two planes is a straight line.

Prove by Art. 12.

324. A sphere is a solid whose surface is at every point

equidistant from a point called the centre. Prove that a

section by a plane passing through the centre is a circle.

Also prove that a section of a sphere by any plane is a

circle.

325. The railroad starts due north from Tipton, and

runs straight one mile, then curves to the east with a

radius of 1320 feet until it bears 37° east of north, and

runs straight in that direction 1^ miles
;
then curves west-

erly, with a radius of 660 feet, until it bears 17° west of

north, and runs straight in that direction 3
J-
miles

;
then

curves easterly on a radius of 2640 feet, until it runs 3^

east of north, and runs straight 2 miles, to Haworth.

Draw a map, determine the length of the railroad, and tell
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the distance and direction, in an air line, of Ilaworth from

Tipton.
326. The first straight line starting from Tipton rises 40

feet
;
the first curve rises at the rate of 30 feet to the mile

;

the second straight line runs level for five eighths of a mile,

and rises the rest of the way at the rate of 25 feet to the

mile; the second curve is level; the third straight lino

rises the first mile 45 feet, descends for three fourths of a

mile at the rate of 48 feet a mile, and rises the rest of the

way at the rate of 30 feet to the mile
; the third curve

rises for two thirds its length, at the rate of 35 feet a mile,

and the other third descends at the rate of 40 feet a mile
;

the fourth straight line is descending all the way, at 30 feet

to the mile. Draw a profile on a horizontal scale of 1 mile

to an inch, and vertical scale of 100 feet to an inch, and

tell the difierence of level between Tipton and Haworth.
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PART III.

SOLID GEOMETRY.

PREFATORY NOTE.

In this Third Part we have removed the figures from

the text, in order to give the student the opportunity to use

his geometric imagination. By steadily fixing the points
named in his imagination, he may frequently dispense with

the figure. But in recitation he should be able to draw
his own figure. And in private study let him draw his

own figure if he does not clearly conceive it without

drawing. In unsolved problems he will frequently be

obliged to use his pencil, in order to gain a clearer concep-
tion of the problem. If he can neither dispense with a

figure, nor draw one himself, let him turn to the plate at

the end of the volume.

In some cases the notation of the points saves the neces-

sity of a figure. Thus, in reasoning, in Art. 412, concerning
two solid bodies, each with four solid corners, we have

denoted the corners of one by a, Z>, b\ c', and of the other

by a\ Z>, 5', c' ; and thus the notation shows that three cor-

ners in one coincide with three in the other, and that the

fourth, a, is analogous in position to the fourth, a'^ in the

other.
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CHAPTER I.

RATIO AND rilOrOUTION.

327. In algebraic notation letters are used to represent

numbers, cither known or unknown, and the results of

arithmetical operations on those numbers are represented

by signs.

328. The sum of the two numbers a and x is written

a -j- i^*5
and is called a plus x,

329. The difference between a and x is written a—
a*,

and is called a minus x,

330. The product of a by x is written cither a X ^t or

a •

a*, or simply a x^ and is called simply a^ x,

331. The quotient of a divided by x is written a -^ cc,

a
or a : x. or — .

X
332. A power or root is written either by means of ex-

ponents or of the radical sign. Thus, the ccth power of a is

1 rr .

cC^ and the x\h root of a is either a^ or V a,

333. A bar over two quantities indicates that they are

to be considered together, and a parenthesis is used for the

same purpose. Thus, Va+ x is the sum of x and of the

square root of a ; but ^ a-\-x is the square root of the

sum of a and x.

334. The notation thus far explained may be illustrated

by an example; such as '^ i{a xr- -\- {a yY— tf -r- tS-

Here the number a must be multiplied by. the second

power of ic, and the product added to the second power
of the product a times y. From this sum we must sub-

tract the number U The cube root of this difference must
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be raised to the second power, and then divided by the

number % and finally the square root of the quotient must
be extracted.

335. The sign z=l signifies that the sums of the quan-
tities on either side of it are numerically equal. Thus,
V zzmt-^m signifies that the number P is equal to the

sum ofm and the product n times L

336. The signs > and <^ are signs of inequality. Thus,
P> Q and Q <^ P signify that P is greater than Q, and

Q is less than P.

337. The first letters of the alphabet usually signify

known, and the last letters unknown, quantities.

338. The signs =, >, <^, are the only verbs in alge-

braic language, so that each sentence must contain one of

them. Such a sentence is called an equation. Equations

containing the sign >, or <;, are sometimes called ine-

qualities.

339. An equation may be transposed in any form what-

ever, if we are but careful to preserve the equality of the

two members; that is, to add or subtract from one side of

the sign precisely what we add or subtract from the other,

&c. Thus, suppose we have the equation v

and wish to find the value of x in terms of t and a. We
may first extract the square root of each member, which

simply gives a-— ta=:x^— t.

We may now add t to each member, producing the equa-
tion a^ — j5a+ ^= cc^.

From this we may at once infer that

x'^=za'^— ta-^-t ;

and extracting the square of each member, obtain

340. The quantity under the radical sign may be put

jnto other forms, thus :
—
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x=: \/ a^-\-t
— at.

aj=^a^+(l — a)t.

x=i yj a^— {a— 1)^.

an: ^ a{a— 0+^-
x=^J t— (t

— a) a.

341. The equality of two ratios is called a proportion.

Thus, the proportion a is to c as A is to C is announced

also by saying that the r;jtio of a to c is the same as that

ofA to C. Writing this as an equality between two quo-

tients, we obtain,—
a A

(^•)
c
=
C

Multiplying both members by the quantity C c, we get,
—

(2.) aC=iAc,

Dividing by A C will then give us

a c

(^•) A
=
C

Adding A a to both members of (2.), we obtain,—
(4.)

Aa + Caiz:Aa+ Ac.

Multiplying each member of (2.) by 2, and subtracting the

product, member by member, from (4.), gives,—

(5.)
A a— C a= A a— A c.

Equations (4.) and (5.) may be divided into factors, and

written as in Art. 340.

(6.) «(A+C) = A(«+ c).

(7.) a(A— C)=:A(a— c).

Dividing (6.) by (A+ C ) ( a+ c ),
and (7.) by (A— C )

(a— c ), will give us,
—

a A
. (^•) "^+^~A+ C

a A
(^•^ "^ir^~"A— c

Hence, by equation (3.), we obtain,—
10
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straight line, every part of that line is in tlie plane.

Proof, Let the foot of a perpendicular be 1*, the given

points be B and C, and let A and A' be points in the per-

pendicular equidistant from P. The triangles ABC and

A' B C are equal, because their sides are equal. Let D be

any point in the line B C. Then the triangles A' B D and

A B D have the sides A B = A' B, and B D common, and

the angles at B equal ;
whence A D = A' D, and the point

D is in the plane.

345. Three points fix the position of a plane. For if a

plane, passing through two of the points, be swung round

upon the line joining them, as an axis, it can evidently
take but one position, including the third point.

346. Two parallel lines are of necessity in one plane.

For if through any point in the second line we draw a

line parallel to the first line, and in the same plane with it,

it must coincide with the second line
; therefore, the sec-

ond line is in that plane.

347. If a straight line move in such manner that any
two points in it move in parallel straight lines, it generates
a plane.

348. Two lines, having a point in common, lie in one

plane. For a straight line from any point in the second

line drawn through its intersection with the first line, and

in the same plane with the first line, must coincide with

the second line.

349. A perpendicular to two lines at their point of inter-

section is perpendicular to their plane ;
that is, by Art. 1,

is perpendicular to every line in the plane drawn through
its foot. Proof. Using the notation of Art. 344, let B and

C be chosen in the given lines, and we have only to show
that the angle D P A is a riglit angle. But this follows at

once from the fact that in the triangle A A' D we have

A D 1= A^ D, and the base A A' is bisected at P.

350. When a line is perpendicular to a plane, the plane
is also said to be perpendicular to the line.
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851. It is manifest from the Pythagorean proposition,

that a perpendicular measures the shortest distance from

a point to a plane, and that of two lines from a point to a

plane, that more nearly perpendicular is shorter.

352. The intersection of two planes is a straight line.

For, by Art. 344, the straight line joining two points of

the intersection, lies wholly in both planes.

353. A second plane including a perpendicular to the

first is said to be perpendicular to the first.

354. If a straight line be drawn in the first plane, from

the foot of the perpendicular, at right angles to the inter-

section, it will be at right angles to two lines in the second

plane, and be a perpendicular to it. Hence, each plane is

perpendicular to the other, and they are said to be at

right angles to each other.

355. The angle made by two planes may be called a

diedral angle. A diedral angle is measured by the angle

made by two lines, one in each plane, each perpendicular
to the intersection of the planes. For it is manifest, that

if the planes be brought to coincidence, these lines coin-

cide, and that if the planes be then swung open the angle

of these lines is generated with exactly the velocity of the

motion of the planes.

356. Parallel lines, making the angle zero, may be con-

ceived as meeting at an infinite distance in either direction.

In like manner, when a diedral angle is zero, the planes

do not of necessity coincide, but are parallel, having their

intersection at an infinite distance.

357. As the intersection of parallel planes may be at

an infinite distance in any direction, any two parallel lines,

of which one is in either plane, may be considered as

measuring their angle.

858. A line parallel to a line in a plane is said to be

parallel to the plane.

859. A straight line, neither perpendicular to a plane
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nor parallel to it, makes an angle Avitli it, said lo bo

equal to the angle which the line makes with the intersec-

tion of the plane by a perpendicular plane, including the

given line.

360. When two parallel planes are cut by a third, the

intersections are two parallel lines. They are straight lines

by Art. 352, and although in the. same plane, cannot ap-

proach each other in either direction, because the inter-

section of the parallel planes is at an infinite distance, in

any direction.

361. A straight line makes the same angle with either

of two parallel planes, whether the angle be zero, a right

angle, or of intermediate value.

362. Parallel lines intercepted between parallel planes
are equal. For, joining the points of interception by

straight lines in the planes, gives, by Art. 360, a parallelo-

gram, whose sides are of course equal.

Hence it is evident that parallel planes are every where

equidistant.

363. When two lines neither intersect nor are parallel,

it may be made evident by Art. 351 that the shortest dis-

tance between them is the distance of a point in one from

a plane parallel to it drawn through the other. Hence,
when two lines neither intersect nor are parallel, it is evi-

dent that the right line joining their points of nearest

approach is- perpendicular to each.

364. If two right lines are intercepted between parallel

planes, a third parallel plane will divide the intercepts in

the same proportion. Proof, Let A, C, and A', C^, be tho

points of intersection of the right lines with the first planes,

and B, B', the points of intersection with the third plane.

Draw A B'' C^' parallel to A' C, and Ave have, by Art. 362,

A B" = A' B' and B'' 0" = B' C^ Completing the simi-

lar triangles ABB" and A C O' gives us A B : B C =
AB'' ;B' C := A'B' :B'C'.

10*
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365. The intersection of three planes produces triedral

angles, the point common to the three planes being called

their vertex. In English, the vertex of a diedral angle is

usually called an edge, that of a triedral angle a solid

corner.

366. If a third plane is j^erpendicular to each of two

planes, it is 2:)erpendicular to their intersection. Proof,
From the triedral vertex raise a perpendicular to the third

plane, and as it must be in both the other planes, it will

coincide with their line of intersection.

367. The vertex of a triedral angle is the vertex of

three plane angles, constituting the faces {edrai) of the

triedral angle.

368. The sum of any two of the angles of the faces is

greater than the third. For, if they were simply equal,

the two faces would be brought into the same plane with

tlie third, and thus reduce the solid corner to one plane ;

and if the sum of two were less than the third, the solid

corner would be impossible.

369. If two triedral angles have the same angles on

the fices, the diedral angles between equal plane angles

are equal. Proof. Let A be the vertex in one, A^ in the

other, and the plane angles B A C, B A D, D A C, be re-

spectively equal to B' A' C, B' A' D', and D' A' C. Make
A' B' ~ A B, and the angles A B C, A B D, A' B^ C^
A' B' D' all right angles. We have now to prove that the

angle D B C equals the angle D' B' C,— which is done if

we prove that the triangle D B C equals the triangle

J}' B' O. But the triangles ABC and A' B' C" have the

side A B and its adjacent angles equal, by construction,

to the side A^ B' and its adjacent angles. Hence, B C
= B' a, and A C = A^ C In like manner B D =
B'D', and AD — A'D'. Then, in the triangles A C D
and A' C D^, we have two sides in one, with their included

angle, equal to two sides of the other with their included
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angle. Ilcnco, the third sides arc equal, that is, D C =
D' C. The three sides of the triangle D B C being thus

proved equal to the three sides of D' B' C\ the angles are

equal, and the diedral angle on the line A B is equal to

that on A' B'. By proj^er changes in the figure the same

may be proved of the other diedral angles.

370. The two triedral angles mayjn this case be either

equal or symmetrically equivalent. Place one plane, say
that of A B C, and A' B' C horizontal with the vertices

from you and th6 lines A B, and A' B' on your left. If,

now, the* lines A D and A' D' are both above, or both below,
the horizontal plane, the triedral angles arc equal ;

but if

one is above and one below, they are merely equivalent,
371. A solid corner made of several planes may bo

called a polyedral angle. If the polygon produced by a

new ])lane, cutting off a solid piece from this corner, has

no reentering angles, the corner is called a convex polye-
dral angl^,

372. If the sum of the plane angles about a convex

polyedral angle is zefo, the polyedral angle becomes a

nee(llo-l>oint, a Kne; and if the sum of the angles is 2 ti,

that is four right angles, the polyedral angle becomes a

plane. The sum is always, therefore, less than 2 n.

CHAPTER III.

POLYEDRONS.

•
873. The least number of planes that can enclose a

space is four. The solid thus enclosed has four triangular

faces, and is called a tetraedron.

374. If two tetraedrons have each a solid angle enclosed

in three triangles, equal and similarly arranged in one and



116 POLYEDRONS.

in the other, the tetraedrons are equal. For, if one solid

angle be imagined laid in the other, so as to have one of

the three triangles in one coincide with the corresponding

triangle in the other, the other two will coincide, by Art.

369 and by hypothesis ;
and the boundaries of the fourth

triangle in each thus coinciding, the fourth triangles them-

selves will coincide. The entire surface of one solid thus

coinciding with that of -the other, the two solids are equal.

375. If two triangles in one tetraedron are equal to two

in another, and similarly disposed, and enclose the same

diedral angle, then the two tetraedrons are equal. For it

is manifest that the two triangles of the one may be ima-

gined superimposed upon the two triangles of the other,

and will coincide. Two sides of each of the unknown

triangles in one tetraedron will then coincide with two

sides in the unknown triangles of the other, and thus the

whole surfaces will coincide.

376. Polyedrons, like polygons, are called similar when
their homologous angles are equal and their homologous
sides are proportional. It follows, by induction from the

preceding sections, that polyedrons are similar when their

homologous faces are similar polygons, similarly arranged.
377. Two tetraedrons are similar if a triedral angle in

one and its homologous angle in the other are composed
of similar triangles, similarly arranged. For, if these two

angles are superimposed, they will coincide, by Arts. 369

and 374, and the fourth planes will be parallel to each

other. Hence follows, by Arts. 360 and 374, the similarity

of the fourth triangles, and the equality of ratios in the

homologous sides.

378. It will also be easy to show that, if two triangles

in one tetraedron are similar to two in another, and simi-

larly arranged, and enclose an equal diedral angle, the two
tetraedrons are similar.

379. If all the planes of a polyedron except one have a
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common point of intersection, tlie polycdron is called a

pyramid ;
the common point of intersection is called the

vertex of the pyramid ;
the face, which does not reach

the vertex, is called the base.

380. A pyramid is called triangular, quadrangular, &c.,

from the shape of its base. The other faces are, of course,

always triangles.

381. A tetraedron is, therefore, a triangular pyramid,

any face of which may be taken as its base.

382. If two faces of a polyedron are equal, and their

homologous sides are parallel, and if each of the other

faces is a plane joining a pair of these parallel sides, the

polyedron is called a prism. The parallel faces are called

the bases of the prism. The other faces are evidently

parallelograms. A section parallel to the base of a prism
is readily shown to be a polygon equal to the base.

383. When the bases of a prism are parallelograms, the

prism is called a parallelopipedon.
384. A right parallelopipedon is a prism of which

every face is a rectangle. When each face is a square,

the prism is called a cube.

385. When a pyramid is intersected by a plane parallel

to the base, the part intercepted between the bases is

called the frustum of the pyramid. The part above the

cutting plane is easily shown to be a pyramid, Avith all its

angles equal to those of the given pyramid, and therefore

similar to it.

386. Let a be the length of one side ofthe base of a pyra-

mid, a' that of the homologous line on the upper end of the

frustum; /ithe height of the pyramid, h' that of the similar

pyramid cut off; b and h' the slant heights of the pyramids
on the edge at the left end of a and a'.

By similar triangles we have a: a' =Lh',h', Also h : h' =
h : h'. Whence h: h' =:a: a^. Whence, by the theory

of proportions, a — a' laz^h — h! \h. Thus the total
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dimensions of the pyramid are obtained from that of the

frustum, since h —W \'$> shnply the vertical height of the

frustum ;
and h= r

a — a
Example. What is the height of a pyramid "whose base

has sides of 3, 6, 4^, and 6 inches, and at the perpendicular

heiglit of tAvo inches the sides of the frustum are 4, 8, 6,

and 8 inches ? What is the slant height on the corner, on

which the shxnt height of the frustum is 3 inches?

387. Any polyedron can be divided into pyramids by

simply selecting a point within the polyedron for a com-

mon vertex, and taking the faces of the polyedron as bases

for the pyramids. By taking the common vertex for the

pyramids in the surface of the polyedron, the number of the

pyramids may be reduced. Thus a right parallelopipedon

may be divided into six pyramids ;
but by bringing the

common vertex up to one of the faces, the pyramid of

which that face was base becomes zero, and the pyramids
are reduced to five ;

on moving the vertex to one of the

edges, a second pyramid becomes zero, reducing the number

to four
;
and on taking a vertex of the parallelopipedon as

the common vertex, the pyramids are reduced to three.

388. Any polyedron can be divided into triangular

pyramids by simply dividing each base in Art. 387 into

triangles.

389. Two bodies which are composed of equal and simi-

larly arranged triangular pyramids are evidently equal.
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CHAPTER IV.

AREAS.

390. When two polygons have all the angles of one

equal to those of the other, and similarly arranged, and

their homologous sides proportional,
— i. e., each pair hav-

ing the same ratio to each other, the polygons are called

similar.

391, Similar polygons may evidently be divided into

snnilar triangles by diagonals from homologous vertices.

392 Lines drawn in a similar manner, in two similar

polygons, may evidently be made the sides of similar trian-

gles, and shown to have the same ratio as homologous sides

of the polygons.
393. Hence the altitudes of similar triangles have the

same ratio as their bases.

394. Let h be the base and h the altitude of a triangle,

and X be their ratio to the base and altitude of a similar

triangle. The base of the second triangle will then be

h X and its altitude h x. The area of the first will be J- h h^

and of the second ^ hb x^. The ratio of these areas will

therefore be x"^.

Calling now the bases and altitudes h and B, h and H,
and the areas s and S, we have

B:h = ll:h = x\
^ : s zizx^ =:W-.h'' = ir : h\

395. It may easily be shown, by help of equation (10.)

(Art. 341), in the theory of proportions, that the areas of

-similar polygons, and of any homologous areas in or about

similar polyedrons, are in the same ratio
;
in other words,

that in similar figures homologous lines have all the same
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ratio, and that this ratio multiplied by itself will give the

ratio of homologous surfaces
; or, in other words, that in

similar figures homologous surfaces are in the ratio of

squares on homologous lines, or of circles on homologous
lines as diameters.

396. The similar polyedrons spoken of in Arts. 395,

385, 376, may be defined as polyedrons capable of being
divided into similar tetraedrons similarly arranged.

397. By the reasonmg alluded to in Art. 395, it may be

shown that the external surfaces of similar polyedrons are

in the ratio of squares built upon their homologous edges,
or upon any homologous lines

;
also that any pair of ho-

mologous faces are in the same ratio.

398. If any two pyramids be cut by a plane passing at

equal distances from their summits, the areas of the sec-

tions have a fixed ratio, whatever be that distance.

Proof, Let the plane pass first at the distance A, and

secondly at the distance h' from the summits, and the areas

of the sections be in the first case A and B, in the second

a and h. We have, by Art. 397,—
'

K h? B A2

A B '

.

Hence? —=t") and by (3.), in the theory of proportions,

we have :^=-i7> which is what we wish to prove.B h
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CHAPTER V.

VOLUMES.

399. The volume of a solid is the ratio which it bears
to a solid uuit. The solid unit generally emjDloyed is a

cube, whose faces are units of area, and wliose edges are
units of length.

^

400. It will readily be perceived that the volume of a

right parallelopiped is the product of the lengths of its three

edges. If each edge is commensurable with the unit of

length, the right parallelopiped may be divided into cubes

by three series of planes parallel to its faces, evidently
equal in number to the product of the numbers into which
each edge is divided. If the edges are incommensurable,
we can choose a unit as small as we please, and so multi-

ply our planes that the parallelopipedon shall need but an

infinitesimal change to render it capable of being divided

into cubes. If the right parallelopided cannot be divided

into cubic inches, it may be into cubic tenths, or hun-

dredths, or thousandths, &c., of an inch.

401. Any parallelopipedon is equivalent in volume to

any other parallelopipedon of equivalent base and equal al-

titude. Proof, Set the two parallelopipeds upon one plane,

and move a second plane, parallel to the bases, from above

steadily down until the two planes coincide. This mov-

ing plane moves with equal velocity through each paral-

lelopiped, and the sections of the two are constantly equiv-

alent from first to last. The two solids therefore pass

equal volumes through the moving plane in equal times,

and the volumes of the two are equal when the two planes
coincide.

402. Corollary. Any parallelopipedon is equivalent to

a right parallelopiped on of equivalent base and altitude.

11
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403. Let the six planes of a parallelopiped be A and A',

B and B\ C and C ;
similar letters denoting parallel faces.

Cut the solid by a plane, A'^, perpendicular to B and to C.

Transpose the parts, so thatA shall coincide with A', making
the surfaces on A'' new bases for the solid. Cut this new
solid by a plane, C, perpendicular to A'^ and to B, and

transpose so that C shall coincide with C. The solid is thus,

without loss or addition, converted into a right parallelo-

piped ;
two bases, B and B', remaining, in altered form,

of the same size as before, and their distance apart, as

measured on the intersection of A'' with C, being un-

changed. From Art. 402 thus proved. Art. 401 may be

drawn as a corollary. But if the plane A" cuts A or A',

this proof needs modification, by resections.

404. The diagonal of B being parallel to that of B\ a

plane may be passed through these two diagonals, dividing

every section made by a plane parallel to B into two equal

triangles, and the parallelopiped into two triangular prisms,

equivalent to each other. Conversely a triangular prism

may be considered as one half a parallelopiped.

405. Two triangular prisms of equivalent base and equal

altitude are, by Arts. 401 and 404, equivalent in volume.

406. The volume of a parallelopiped, or of a prism, is, by
Arts. 400, 402, 404, 405, found by multiplying the area of

its base by its altitude.

407. Pyi-amids of equivalent base and equal altitude are

equal. Proof, Let the pyramids be set upon a plane, and

a second plane, parallel to the first, move steadily from the

vertex of the pyramids to their base. As the sections of

the pyramids made by the second plane are, by Art. 398,

at each instant equivalent, the pyramids must be passing

with equal velocity through the second plane, and the total

amounts passed through at any instant are equivalent, and

the whole amounts, when the two planes coincide, will be

equal.

408. Every triangular prism is divisible into tlirce
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equivalent tetraeclrons. Proof. Lot the ends of tlie prism
be the equal triangles ah c and a! h' (/, a and a! being at

the ends of tlie same edge, etc. Pass two planes, aV d
and a h d^ through the prism, and you have manifestly di-

vided it into three triangular pyramids. But of these, two
have the common vertex a, and the equal bases hU d and

hcd^ and are therefore equal ; while the third has a com-
mon vertex </, with the first of the others, and a base a a' h'

equal to its base a h h'^ and is therefore equal to either of

the others.

409. Corollary, The volume of a triangular pyramid is

found by multiplying the area of its base by one third its

altitude.

410. Corollary, The volume of any pyramid is found

by multiplying its base by one third its altitude.

411. When a prism is divided by a plane not parallel to,

nor intersecting, the ends, each part of the prism is called

a truncated prism.
412. The volume of a truncated triangular prism is

equivalent to that of three pyramids having each a base

equal to that of the prism, and altitudes equal to the alti-

tudes of the three vertices of the prism. Proof. Using
the notation of Art. 408, consider d h' d as the base, and

ah c as the unequal triangle at the truncated end. It is

manifest that of the three tetraedrons into which the planes
ah' d and ah d divide the prism, one, viz., a a' h' c/, is one

of the required three. A second, viz., d ah h\ may be

proved equivalent to a second of the required three, viz.,

to h a' h' c'. For they maybe considered as having a com-

mon base, hh' d^ and their vertices a and a' are in a line

parallel to the plane of that base. Finally, the third pyra-

mid, ahcd^ is equivalent to the third required pyramid,
c a' h' c^, because their vertices a and a' are at equal alti-

tudes from the bases hcd and h' c c', and those bases are

equivalent triangles having the side c d in common, and

the vertices h and V in a line parallel to it.
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413. The volumes of similar triangular pyramids are

proportioned to the cubes built upon homologous lines.

Proof, Let h be one edge of the base, h the altitude of

that base as a triangle, and I the altitude of the pyramids.
For a similar pyramid these lines become h ir, li cc, and I x.

The areas of the bases will be J 5 A and ^h h x^. The
volumes will he ^b hi and ^h hlx^.

Using 5, B, A, H, /, L, v, and V, as in Art. 394, we have

That is, the volumes are in the ratio of the cubes of homol-

ogous lines; or the ratio of the volumes is the third

power of that of the lines.

414. Any polyedron being decomposable into triangular

pyramids, the last theorem may be extended to any similar

polyedral figures.

CHAPTER VI.

THE CONE.

415. If one point in a straight line be held fast, while

the line turning freely on that point be caused to glide

through a plane curve, the line passing freely in space

marks out a surface called the surface of a cone, whose

vertex is the fixed point.

416. When the curve is a circle, and a line through its

centre, perpendicular to its plane, passes through the vertex

of the cone, the cone is called a circular cone
;
and this is

the cone usually spoken of as the cone. The right line

through the vertex and the centre of the circle is called

the axis of the cone.
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417. The base of a cone is the plane figure intercepted

by its surfiice on any plane which cuts entirely across it.

418. The two parts of a cone lying on opposite sides of

its vertex are called its nappes. In ordinary geometry we
confine our attention to one nappe, and to the part inter-

cepted between the vertex and the base.

419. As any curve may be considered a polygon of an in-

finite number of sides, a cone may be considered a pyra-

mid, with a polygon for its base.

420. Hence the volume of a cone is one third the area

of its base, multiplied by the altitude of its vertex above

the base.

421. Hence, also, sections by planes parallel to the base

will be figures similar to the base. The altitude of such a

section above the base, and the lengths of two homologous
lines in the section and the base, give, by Art. 386, data to

determine the altitude of the cone.

422. When a circular cone has a circular base, it is called

a right cone.

423. The right cone may be imagined as generated by
the revolution of a right triangle about one leg as axis.

424. The convex surface of a right cone may be con-

ceived as composed of infinitesimal triangles, all with a com-

mon vertex (that of the cone), and all with equidistant

bases, forming the circumference of the base of the cone
;

so that this surface is measured by the product of half this

circumference into the length of the side.

425. Let r be the radius of the base of a right cone, and

then 2 TT r will be its circumference. Let I be its altitude,

and then V r ^
-}~ ^^ yfS}^^ by the Pythagorean proposition, be

its slant height. We have, therefore, for the area of the

base, s zz: TT r 2, and for the area of the convex surface S =
n T ( ^^ + ^^ )

^
; also, the volume, v ^=z ^n r'^ L

426. Pyramids and cones having equal altitudes will

evidently be proportioned in their volumes to their bases.

11*
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427. When the vertex of a cone is infinitely distant

from the base, the cone is called a cylinder; and if the cone

is a right cone, the cylinder is a right cylinder. But in

the consideration of a cylinder we usually limit ourselves

to a part enclosed between parallel bases. Thus, a cylinder
is simply a prism, with its parallelogram faces infinitely
numerous and infinitely narrow.

428. The sections of a cylinder by planes parallel to its

base, are evidently figures equal to the bases.

429. If the walls of the cylinder are perpendicular to its

base, it is evident that the convex surface is measured by
the product of the height of the cylinder into the periph-

ery of the base.

430. The volume of the cylinder of Art. 429 is evidently
the product of the area of the base by the altitude of the

cylinder.

431. Hence, the volume of a cone is one third that of a

cylinder of equivalent base and equal altitude.

CHAPTER VII.

OF THE SPHERE.

432. A SURFACE which curves equally in all directions,

for all distances, from any initial point, is called the sur-

face of a sphere.

433. There is a point within a sphere equally distant

from all parts of its surface, which may be called the centre

of the sphere. For,by definition, if we run round the sphere
in any direction, keeping in the plane in which we start,

perpendicular to the curved surface, we make a circle of a

given size. Moreover the planes of these circles are per-

pendicular to the tangent plane at the initial point. Hence,
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their diameters coincide, and they liavc a common centre
— the centre of tlic sphere.

434. The sphere may be conceived as generated by tlie

revohition of a semicircle about its diameter as axis.

435. The words diameter and radius may be used of a

s])here in a sense analogous to that in which tliey are used

of a circle.

436. All radii of a sphere arc, then, equal.

437. Every section of a sphere made by a plane is a

circle. Proof. Let fall from the centre a perpendicular

upon the plane. Join the centre to all parts of the inter-

section of the surface with the plane by straight lines. As
these lines are equal, they strike the plane at equal dis-

tances from the foot of the perpendicular. That foot is

therefore the centre, and that line of intersecting surfaces

the circumference of a circle.

438. When the plane passes through the centre of the

sphere, the circle is called a great circle. All great circles,

in the same sphere, are manifestly equal. All other circles

on the sphere are called small circles.

439. A spherical triangle is a spherical surfjicc enclosed

between three arcs of great circles.

440. The sides of the spherical triangle measure the

plane angles of the triedral angle made by their planes at

the centre of the sphere. They are therefore not expressed
in units of length, like the sides of plane triangles, but in

degrees and minutes, which express simply their ratio to

the circumference of the sphere.

441. The angles of a spherical triangle are the same as

the diedral angles made by the planes of their sides.

442. Any two great circles bisect each other; for the

intersection of their planes must pass through the centre

of the sphere, and be a diameter in each circle.

443. Any side of a spherical triangle is, by Arts. 440

and 368, less than the sum of the other two.
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444. The shortest path from point to point on the sur-

face of a sphere is the arc of a great circle.

This is assumed as axiomatic in Arts. 432, 433. But if

we assume other definitions of a sphere, we may prove
this proposition thus :

—
(1.) Two great circles, having two points of their circum-

ferences in common, coincide
;
for these two points and

the centre fix their planes as coincident.

(2.) A great circle and small circle cannot coincide for a

finite distance
; for, if two arcs coincide, their planes must

coincide, and their radii be equal, and the circles be one

and the same.

(3.) Let a and h be points on the surface of a sphere, con-

nected by the arc a 5 of a great circle, and the arc a rah
of a small circle. Draw the arcs of great circles a m and

TYh h. Then, by Art. 443, ab<^am^mb. But by draw-

ing arcs of great circles from a, w, and ^, to intermediate

points on the arc of the small circle, it may be shown that

a m '\' mhi^ less than the sum of the four arcs
;
and by

redivision, that these four are less than the sum of

eight arcs of great circles, placed as consecutive chords in

the small circle. This process may be continued until the

polygon is undistinguishable from the arc of the small

circle. A similar process may evidently be applied to any
curve, connecting a and ^, other than the arc a h,

445. The sum of the sides of a convex spherical poly-

gon can evidently not exceed 360°, i. e., the circumfer-

ence of a great circle.

446. The sum of the angles of a spherical triangle can-*

not, by Art. 441, exceed 3 tt, or be less than tt.

447. When the sum of the angles of a spherical triangle

is increased to six right angles, the triangle becomes a

hemisphere.
448. When the sum of the angles of a spherical triangle

is decreased to two right angles, the triangle becomes infin-
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itesimal in comparison with the spliere. Thus the triangles

of ordinary surveying are considered as plane triangles,

infinitesimal in comparison with the sui-ftice of the earth
;

but the triangles in surveying for maps, with sides of miles

in length, are spherical triangles, the sum of whose angles
exceeds tt,

449. If a diameter of the sphere be drawn perpendicu-
lar to the plane of a circle, it passes through the centre of

the circle, and its extremities are called poles of the circle.

450. The poles of a circle may be called its surface

centres, and the arcs of great circles from the pole to the

circumferences may be called surface radii.

451. The angle of two arcs of great circles (being in fact

a diedral angle) may either be measured by the angle made ,

by the intersections of the planes of the circles with the

l)lane tangent to the sphere at the vertex of the two arcs

(as is done in geodetic surveying), or by an arc struck

with a surface radius of 90°, and the vertex as pole, and

intercepted between the two arcs, prolonged if need be.

452. A plane perpendicular to the end of a radius is

evidently a tangent plane.
453. With the vertices of a triangle as centres, and with

radii each of 90^, draw three arcs intercepting. The trian-

gle thus formed is called the polar triangle of the first.

454. Each vertex of the polar triangle is by hypothe-
sis at 90° from each extremity of one side of the original

triangle, and is, therefore, the pole of that side. For the

great circle with that pole would pass through those

extremities, and therefore coincide with that side. The

original triangle is, therefore, a polar triangle to its polar

triangle ;
and the two triangles may simply be called polar

triangles.

455. If the arcs of Art. 453 be limited so that the pole
of each arc be on the same side of it, as the triangle is,

then the sides of a triangle are supplements to the angles
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of its polar triangle. Proof, Let a he and A B C be the

vertices of the two triangles. Let h' d be the points at

which a h and a c, prolonged if necessary, intercept B C.

Now we have, by construction,—
Be'= 90°, Q>h'=.^^.

But Bc'znB^'+ ^/c', and B 5'+ C ^>' zz: B C.

Hence, ^h> -\-h' d -^-Qh'= 180°= V>Q-^h' d.

But y d is the measure of the angle a. Hence, the angle
a and the side B C are supplements of each other

;
their

sum is TT HZ 180°.

456. If the three sides of a triangle are respectively

equal to the three, sides of another, the two triangles are

said to be equilateral with respect to each other.

457. If two triangles on the same sphere, or on equal

spheres, are equilateral with respect to each other, they
are also equiangular with each other

;
which follows from

Arts. 440 and 369.

458. Place the centres of the equal spheres together,

and bring one side of one triangle, say A B, into coinci-

dence with the equal homologous side A' B' on the other

Iriangle.
^

If, now, the equal angles A and A' lie on the

same side of AB, the triangles evidently coincide. But

if the angles A and A' lie on opposite sides of the com-

mon side, these triangles, equilateral and equiangular with

respect to each other, are called symmetrical.
459. If two triangles are equiangular with respect to

each other, they are also mutually equilateral. Proof, For

their polar triangles are, by Art. 455, equilateral, and there-

fore, by Art. 457, equiangular with respect to each other.

Hence, by Art. 455, the triangles themselves are equilateral

with respect to each other.

460. Spherical triangles, having one side and the adja-

cent angles, or two sides and the included angle, in one,

equal to the like parts in the other, are either equal or

symmetrical. For it may readily be shown that one would
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coincide with the other, or with a triangle symmetrical
with the other.

461. In measuring spherical surfaces a peculiar unit is

sometimes used, namely, the surface of a triangle whose

tliree sides are 90°, 90°, and 1°. This surface is called one

degree of surface, and is jij^th of the surface of a sphere.

462. The surface included between two great semicir-

cles is called a lune.

463. The surface of a lune is double the angle of the lune.

lu other words, the surface of the lune is to that of the

sphere as the angle of the lune is to 360°, or double the

angle is to 720°.

464. Symmetrical spherical tnangles are equivalent in

area. Proof, Place the vertex of one angle upon the

vertex of the equal angle in the other triangle, giving the

sides the same direction. Part of the triangles will

coincide. The non-coincident parts will be new triangles,

mutually equiangular, and therefore symmetiically equi-
lateral. The same operation may be repeated upon them,
and upon their

*

non-coincident parts, until, finally, the

non-coincident parts are infinitesimal symmetrical trian-

gles, or zeros, mutually equiangular and equilateral, whose
difference will differ nothing from zero.

465. To measure the surface of a spherical triangle.
—

Solution. Prolong one side, say A C, into a great circle.

I'rolong A B into a semicircle meeting A C prolonged in

A'; and in like manner prolong CB to C
Now, the triangle A' B C is symmetrical or equivalent

to the triangle required to complete the triangle ABC
into a lune with the angle B.

And the sui-face of the hemisphere (=360°) is equal to

the lune C A B C plus the triangle A' B O, plus the trian-

gle A'BC. The triangle A' B C is, however, the lune

.\ B C A' minus the triangle ABC. Substituting for each

lune the double of its angle gives us,
—
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360°= 2 C+ 2B— triangleAB C+ 2A— triangleAB C.

360° z=:2(A+ B+ C)— 2 triangle ABC.
180°=A+ B + C— triangle ABC.
Triangle ABCznA+ B + C— 180°.

That is, the surface of a triangle is to that of its sphere
as the excess of the sum of its angles over 180° is to 720°.

466. To measure the surface of afrustutn of a right
coue.— Let S be the area of the curved surface of the

frustum, S" that of the cone required to fill the deficiency
of the frustum, S' that of the cone thus completed ;

and

let 5, s"^ and s' be the slant heights of the three bodies.

Also, let r and r' be the radii of the two bases of the frus-

tum. We then have, by Art. 424, and by the evident

relations of the bodies,—
S' = ^ r s', S" zzinr' s",

^=:^'— ^"= 71 {rs'
— r' s").

But, on jDassing a plane through the apex of the cone and

the centre of the base, it will be evident, from similarity

of triangles, that

r\r'=:s'\s"\ whence, r' s' z=r s^'
;

and it cannot alter the value of any quantity to add to it

r' s'— r s". We may, therefore, write, remembering that

s=is'— s",

S =171 (r s'— r' s" -\-r' s'— r s'^ )
r= tt

( r -f- ^'
)

^'

The quantity 7t(r -^r') is the circumference of a circle,

whose radius is one half the sum of the radii of the bases ;

and it may readily be shown, by Art. 421, and reasoning
similar to that of Art. 364, that this circle is a section of

the frustum, parallel to the bases, bisecting the distance

between them. Hence, the convex surface of the frustum

of a right cone is measured by the product of its slant

height into the circumference of a section midway between

the bases.

467. Pass a plane through the centres of the bases of

the frustum, and calling the length of half the sections of
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the bases r and r', as in the preceding article, and the sec-

tion of convex side 5, let fall a perpendicular of the length
h from the extremity of r' upon r. From the mid-point
of s draw a perpendicular to the axis of the cone, and its

length is readily shown to be ^ ( r -f- r' ). From the same

point draw a perpendicular to 5, until it touches the axis

ofthe cone, prolonged if need be, and call the length of this

line R. We have now two right triangles, of which the

sides h and s in one are respectively perpendicular to two
sides i (>' + ^') ^^^ K i^^ the other. They therefore

enclose equal angles, and the two right triangles are simi-

lar, which gives

S = 2 TT R A.

That is, the convex surface of a frustum of a right cone is

measured by the product of its altitude into the circum-

ference of a circle whose radius is a perpendicular to the

slant surface reaching from its mid-point to the axis of the

cone.

468. A portion of a sphere enclosed between two paral-

lel planes
— that is, a spherical segment with parallel bases

—
may, if the bases are brought infinitely near together, be

considered as an infinitesimal frustum of a right cone,

whose axis passes through the centre of the segment and

of the sphere, and whose slant surface is perpendicular to

the radii of the sphere touching the surface.

469. A hemisphere may thus be cut, by an infinite num-

ber of planes parallel to its base, into an infinite number of

frustums of different cones. But all these frustums agree in

having their axis pass through the centre of the sphere,

and in having also perpendiculars to their slant suiface

pass through the centre of the sphere. Moreover, the sum

of their altitudes is the radius of the sphere. Hence, by
Art. 467, the surface of a hemisphere with the radius R is

S = 27rR2.

12
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But as the area of the base is 2 nR x i^ ^= ^ K>\ it

follows that the convex surface of a hemisiDhere is double

the plane surface of its base.

470. The surface of a sphere is therefore equivalent to

that of four great circles.

471. As a sphere may evidently be divided into pyra-

mids, with their common apex at the centre, and the sum
of their bases constituting the surface of the sphere, we

have, for itssoHdity, by Art. 410,—

472. Using D = 2 R as the diameter of the circle and

sphere, we have for the area of a circle,
—

A = 7rR2 = i7rD2=: .7854 X D 2.

V = |7rR3=:j7rD3 = .5236 X D^

CHAPTER VIII.

PROBLEMS AND THEOREMS.

473. Given the angle which a straight line makes with

a plane. Find, by geometrical construction, the altitude

from the plane of a point in the line at a given distance

from its intersection with the plane. For example, what

is the height of one end of a yardstick, the other end rest-

ing on the floor at an angle of 37° ?

474. Find, by geometrical construction, the angle which

a line makes with a plane, having given its altitude above

two given points in the plane, vertically under it
;
and find

the place of its intersection with the plane. For instance,

let two posts on level ground be seven feet apart, and be,

one four, the other six feet high. What is the inclination

to the horizon of a line joining their summits, and where

would it strike the ground ?
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475. Given the altitude of a second plane above three

given points in a first plane, to find by geometrical con-

struction the line of intersection of the planes, and their

diedral angle.

476. A right line drawn from one vertex of a parallelo-

pipedon to the vertex, which has no plane in common
with the first, is called a diagonal of the parallelopip-

edon. Prove that a plane containing one diagonal may-
be rotated upon it until it contains a second. Prove that

all four diagonals have a common point of intersection.

Prove that each diagonal is bisected at this point.

477. The convex surface of the frustum of a sphere is

called a zone. Prove that the area of a zone is the prod-
uct of the altitude of the frustum into the circumference

of a great circle.

478. Prove that the two tangents from a given point to

a circle are equal. Prove that a right line from the given

point to the centre of the circle bisects the angle between
the tangents.

479. Prove that when a chord is bisected by a diameter,
the semicbord is a mean proportional between the segments
of the diameter. Find a mean proportional between two

given lines.

480. Prove— what is assumed in Art. 468— that the

line of tangency of surfaces, when a sphere is enclosed in a

hollow cone, is the circumference of a circle whose plane
is at right angles to the axis of the cone.

481. Prove that, if two chords are prolonged until they
meet, the entire lines thus produced are inversely propor-
tioned to the parts without the circle. Calling these entire

lines secants, prove that if, from a given point, a tangent
and a secant be drawn to a circle, the tangent will be a

mean proportional between the secant and the part with-

out the circle.

482. Find the centres, by construction, of the two oir^



136 PROBLEMS AND THEOREMS.

cles whose circumferences pass through two given points
and are tangent to a given right line in one plane with
them. When would this problem become absurd ?

483. Find the centres of the two circles whose circum-

ferences pass through one given point and are tangent to

two given right lines all in one plane. Remember that a

right line passing through the centres is readily found, and
that a perpendicular upon it from the given point is a
semi-chord in both circles.

484. Find the centres of the four circles which are tan-

gent to three given right lines in one plane. In what case

would the problem be impossible ?

485. It is evident that circles concentric with those of

Art. 483 would pass equally near the given points and the

given right lines. Find, then, the centres of the four

circles which are tangent to a given circle and to two given

right lines.

486. Given the radius of a sphere and distance at which

a plane passes from its centre. Find the radius ofthe sec-

tion. When does this radius equal that of the sphere ?

when become zero ? and when become impossible ?

487. A given sphere has its centre on the axis of a given

cone, at a given distance from the vertex. Find the. radii

of the two circles made by the intersection of the surfaces.

In what cases will they be equal ? In what case will the

two circles coincide? When will they coincide with a

great circle ?

488. Given a great circle in a sphere, and the radii of

two small circles parallel to it. Find the hollow cones

tangent to the sphere on the small circles. Find also the

cones whose intersections with the sphere would give the

circumferences of both circles. Four cones are required

in each case.
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