






## 

le.mivivele

## 7 ancry. 10012

TiIE

## S ELECT WORKS

 0 F
## ANTONY VAN LEEUTWENHOEK,

CONTAINING HIS
MICROSCOPICAL DISCOVERIES

IN MANY OF THE WORES OF NATURE.
TRINSLATED FROM THE DUTCII AND LATIN EDITIONS PUBLISHED EY THE AUTHOR,
By SAMUEL HOOLE.


Inde hominum pecudumque genus, vitæque volantum Et quæ marmoreo fert monftra fub æquore pontus.

Virg. IEn. vi. 728, 729 .
"Lo, thefe are parts of his ways: but how little a portion is heard of him?

Fob. xxvi. 14.

LONDON:
PRINTED FOR THE TRANSLATOR,
By G. Sidney, Black-Horse Court, Fleet-Strieet;
And fold by G. and W. Nicol, Bookfellers to his Majefty, Pall-Mall; J. Whire, Fleet-Street;
J. \& A. Arch, Gracechurch-Street; and J. Wright, Piccadilly.

M,DCCC.

## ADVERTISEMENT.



THE following tranflation was begun from the Latin Edition publifhed in Holland, but after the tranflator had proceeded in the work as far as the conclufion of the fubjects defcribed in the two firft plates, he obtained from Holland the original Dutch Edition. He has carefully compared the two verfons, and finds that the Dutch is faithfully rendered in the Latin, and confequently that the fenfe of the author is not injured by the Englifh being fo far taken from thence. The learned reader may himfelf form a judgment of this, by the following paragraphs, taken from the Dutch and Latin Editions, whereto an Englifh tranflation is fubjoined, and in which care has been taken to follow the Dutch original as literally as poffible.
" Wy willen dan hoopen, dat de onderfoekers der natuurlyke "zaken, die tet nog toe verborgentheden dieper en dieper fullen " op delven, on alfoo meer en meer de waarheid voor de oogen "geftelt hebbende, van veele oude dwalingen, een afkeer te doen " krygen, waar na alle die de waarheid lief hebben behooren te " tragten. Want ray en konnen den Heer en Maaker van bet gebeel "A . Al, niet meer terbeerlyken, als dat wey in alle zaken, boe klein die ook "in onfe bloote oogen mogen $\approx y n$, als $\approx e$ maar lerenen wasdom bebben "' ontfangen, zyn Al-wy/beit en Volmaaktheit, met de uiterfte rerwondering fien uit fleken."

> Leeuwenhoeks Brieven, gofte mifive.
> "Speramus ergo naturæ indagatores omnem in pofterum in id "impenfuros operam, ut ea, que adhuc in cjus finu occulta latent "ulterius in propatulo ponant, atque ita in hominibus, veritatis " lumine illuftratis, antiquorum errorum ingenerent faftidium; "quod omnium veritatem amantium ftudium efle decet. Fon enim. "bujus unizerfi Dominum atque Opificem melius nos glorificure pofe
"cenfeo, quam fr fumman ejus Perfecfionem atque Sapientiam, in om" nibus rebus, quantumeis nudo oculo exiguis, modo vitam ac incre" mentum nactis, elucentes, admiremur Semper atque colebremus."

Continuatio Leeuwerhoekii Epiftolarum. Ep. 99.
We will hope then, that the enquirers into Nature's works, by diving deeper aud deeper into her hidden myfteries, will more and more place the difcoveries of thofe truths before the eyes of all, fo als to produce an averfion to the errors of former times, which all thofe who love the truth ought diligently to aim at. For wee camot in any betier mannor: glorify the Lord and Creator of the Unizerfe, than that, in all things, bow fmall foever they appear to our naked eyes, which yet bure received the gift of life and power of increafe, we conten:plate the difplay of bis Omnifcience and Perfections with the utmoft admirution.
N. B. The Dutch words printed in Italics, are written under the author's portrait prefixed to thiṣ Work.

The Dutch motto in the title page, is taken from the works of Jacob Cats, who has been ftiled by way of eminence, the Horace of Holland; the learned reader will find it under the head of "Gedachten; Op 'tgefichte van fchoone Schepfels." As the Tranflator is not poffeffed of any poetical talents, his readers muft be content with plain Englifh profe.
> "When thou beholdeft the curious works of nature, do not be content with merely gazing at their beauties, (and canft thou poffibly dwell on them without looking higher?) but raife thy thoughts to the contemplation of Him by whom every thing that is fair and beautiful was created."

Cats's Reflections on viewing the Beauties of the Creation.
The Latin quotation from Virgil, is thus rendered by Mr. Dryden.
"Hence men and beaffs the breath of life obtain,
"And birds of air, and monfters of the main."
Dryden's Virgil, En. B. vi. I. g86.

## TRANSLATOR'S PREFACE.

Considering the high eflimation in which the Works of Mr. Leeuwenhoek have always been held, it feems ftrange, that no compleat Englifl Tranflation of them has ever appeared. For this, feveral reafons might, perhaps, be affigned: what feems to me the moft probable is, that there are interfperfed throughout his writings, many fubjects of a medical and chirurgical nature, with Difquifitions of a peculiar kind, which to many Readers might be offenfive; fo that I think his works have been confidered as calculated for the profeffional Man and Philofopher, rather than for general Perufal, and therefore have remained in the Dutch and Latin Tongues.

Be that as it may, when I firft read this Author's works, I found in them fo many wonderful and entertaining difcoveries, with fo much ufeful information, that I confidered, whether it was not practicable to feparate thofe parts

## ( iv )

from what might be deemed exceptionable; and, at length, I determined to attempt the Englifh Selection now offered to the Public. To make this more correct, I procured, from Holland, the original Edition in Dutch, by which I have been able to correct fome few miftakes in the Latin Tranflation, though in general it is a very faithful one.

My endeavour has been to ftudy perfpicuity, and ufe plainnefs of diction, fo as to make the book intelligible to readers of every defcription; I have given the Author's own words as nearly as a Tranflation would admit ; and $\mathbf{I}$ flatter myfelf that I have not omitted any thing material, which ought to have been inferted in this Selection.

The works of Mr. Leeuwenhoek are publifhed in Letters, written by him from time to time, to men of eminence and learned Bodies, and in particular to the Royal Society of London. The fubjects are not placed in any regular order, and fome of them are treated on at very different periods of time. In this Selection, I have reduced them to fome method, by collecting under different heads, what I found difperfed throughout thofe Letters.

In the original Dutch Edition, the Letters are numbered progreflively, beginning at No. 28, and the reafon why no Epifles appear prior to that Number, is prefixed in thefe words :

## ( $\mathbf{v}$ )

"The preceding 27 Letters, written by the Author, " he cannot yet determine to make public in print ; "therefore the 28th Letter is the firft that is here pub" lifhed."

If I may be allowed to form a conjecture on this occafion, it is, that Mr. Lecuwenhoek had not, by fubfequent obfervation, convinced himfelf of the accuracy of his firft difcoveries, and, on perufing fome of his firt Letters to the Royal Society. I faw reafon to be confirmed in that idea.

I will conclude with the following teftimony in favour of our Author, by Sir Martin Folkes, formerly Prefident of the Royal Society.
"We have feen fo many, and thofe of his moft fur" prifing difcoveries, fo perfectly confirmed by great num${ }^{6}$ bers of the moft curious and judicious Obfervers, that " there can furely be no reafon to diftruft his accuracy in " thofe others which have not yet been fo frequently or " carefully examined."

Philofophical Tranfactions, No. 380, Sect. vi.


## I NTRODUCTION.

To O thofe who are acquainted with the works of Mr . Leeuwenhoek, or who have been much converfant in Microfcopical ftudies, this Introduction may appear unneceflary: but thofe to whom the fubject is new, will find fo many wonders laid open to their view, as perhaps to induce a doubt of the Author's accuracy in his obfervations, or his veracity in his narrations. Indeed, the extreme minutcnefs of many of the fubjects on which he treats, is in fome inftances beyond the reach of our capacities to comprehend,* although we may be fully affured of their exifence. In fact, it appears by Mr. Leeuwenhoek's writings, that the difficulty now ftated, was

[^0]made a matter of objection by feveral of his cotemporaries, therefore the following pallage in his own words, will ferve to fate the objection, and the mamer in which it was anfwered by the Author himfelf.

- I have often heard, that many perfons difpute the truth of 6 what I advance in my writings, faying that my narrations con' cerning animalcules, or minute living creatures, are merely of my - own invention. And, it feems, fome perlons in France have even - ventured to affert, that thofe are not in truth living creatures, - which I deferibe as difcoverable to our fight, and alledge, that after - water has been boiled, thele particles in it which I pronounce to be - animalenles will be fill obferved to move. The contrary of this, - howerer, I have demonftrated to many emment men, and I will be - bold to fay, that thole gentlemen who hold this language, have
" own univerfe; fuch a fpeculation, by reafon of its niccty, appears ridiculous to thofe who
' have not turned their thoughts that way, though at the lame time it is founded on no lets
6 than the evidence of a demonftration. Nay, we may yet carry it farther, and difcover in the
' fmalleft particle of this little world, a new incxhaufted fund of matter, capable of being - Spun cut into another univerfe.
'I have dwelt the longer on this fubj.et, becaufe I think it may fhew us the proper limite, * as well as the defectivends of our imagination; how it is confined to a very finall quantity ' of fpace, and immediately ftopt in its operations, when it endeavours to take in any thing * that is very great, or very little. Let a man try to conccive the different bulk of an animal, ' which is twenty, from another which is a hundred times lefs than a mite, or to compare in
- his thoughts, a length of a thoufand diameters of the earth, with that of a million, and he ' will quickly find that he has no different meafures in his mind, adjufted to fuch cxtraordi' nary degrecs of grandeur or minutenefs. The underitanding, indeed, opens an infunite face on ' every fide of us; but the imagination, after a few faint efforts, is immediately at a ftand, and
- finds herfelf fwallowed up in the immenfity of the void that furrounds it: our reafon can pur-
- fue a particle of matter through an infinite varicty of divifions; but the fancy foon lofes
- fight of it, and feels in itfelf a kind of chafm, that wants to be filled with matter of more fen-
- fible bulk. We can neither widen, nor contract the faculty to the dimenfions of either
' extreme. The object is too big for our capacity, when we would comprehend the circum-
- ference of a world: and dwindles monothing, when we endeavour afer the idea of an
' atom.'


## ( v )

' not attained to a degree of proficiency to obferve fuch objects truly.

- For my own part, I will not fcruple to afiert, that I can clearly
' place before my eye the fmalleft fpecies of thofe animalcules con-
' corning which I now write, and can as plainly fee them endued
' with life, as with the naked eye we behold fimall flies, or gnats
- fporting in the open air, though thefe animalcules are more than a
' million of degrees lefs than a large grain of fand. For I not only
' behold their motions in all directions, but I alfo fee them turn
' about, remain ftill, and tometimes expire ; and the larger linds of ' them I as plainly perceive running along, as we do mice with the ' naked cye. Nay, I fee fome of them open their mouths, and move ' the organs or parts within them ; and I have difcovered hairs at ' the mouths of fome of thefe fpecies, though they were fome thou-- fand degrees lefs than a grain of fand.
' But fince it is pronounced to be incredible, that within the fpace - occupied by a grain of fand fo many animalcules can be contained, ' and that it is impoflible for me to calculate truly fuch numbers, I - have thought on the following method of computation, to place ' this matter in a clearer light. I lay it down as a pofition or truth, ' that with the microfcope I can fee the fpace occupied by a grain of 'fand* magnified to the fize reprefented by the circle ABGC. - Next, I fuppofe that I obferve within this fpace an animalcule ' fwimming or rumning along, and appearing of the fize reprefented 'at D. Taking the meafure of this by my cye, I conceive the axis ' or thicknefs of the animalcule thus pictured at D , to be the twelfth ' part of the axis of the grain of fand reprefented by ABGC ; there'fore, by the common rules of arithmetic, the folid contents of a 'fphere or globe whofe circumference is defcribed by the circle 'A B G C, will be 1728 times larger than a fphere of the fize of D .

[^1]' Nest, I obferve another kind of animalcule, which, meafuring. by ' my eye through a good microfcope, I judge the axis or thicknefs ' of it to be one fifth, but fuppofe it only a fourth part of the fize of ' the firt anmalcule D , fuch as is reprefented by the circle F , and - then, by the fame rule, the fize of $D$ muft be 6 f times larger than - that of E ; and if this laft number be multiplied by the former, - $(1728)$ we fhall find that $110,5.92$ animalcules of the fize of E , - (fuppling their bodies to be of a fpherical figure), will be required ' to make up the fize of the fphere A B G C. Laftly, I perceive a 'third kind of anmalcule, the fize of which appears to be only a 'tenth part of the amimalcule at E , fuch as the point at F denotes; ' and that confequently, one thoufand of thefe will be more than equal ' to the fize of that at E . And, if this number be again multiplied by ' the former, it will be plain to demonftration, that more than an - hundred millions of animalcules can be contained within the com'pats of a grain of fand*.'

This paffage refpects the fize of animalcules, which the Author reprefents by comparifon with the known fize of a grain of fand ; other minute objects which he frequently defcribes, are, the veffels in the bodies of infects, the threads of Spiders, the filaments or threads of wool, the fibres compoling the flefh of animals and the like. All thele he confiders as of a cylindrical form, that is to fay,

[^2]
if hollow, like a round pipe, and, if folid, like a round fick, wire, or rope, and he conveys to his readers an idea of their minutenefs, by comparing them with the known fize of a fingle hair. The method ufed by him in afcertaining this proportion he detcribes as follows:
'In examining the inteftines of flies and other infects by the mi'crofcope, I have difcovered veffels conveying the blood and juices, ' the fmalleft ramifications or branches whereof appeared to me more 'than two hundred thoufand times lefs than an hair of my beard. - And I will here explain how I compute this proportion, which to ' many may appear wonderful.

- I have a plate of copper, with many lines engraven on it, and ' divided into a number of fmall equal parts. I then carefully ob-- ferve how many of thefe parts one hair taken from my beard, and - feen through the microfcope, appears to cover. Suppofing that the - diameter of this hair, when magnified, appears equal to fifty of 'thofe parts, then with the point of a needle I trace on the copper - a line, of the fame fize by the naked eye as is cqual to one of thofe - fmall veins or veffels in a fly, feen through the microfcope; and I - find that nine of thofe fmall lines fo traced with a needle, when ' placed clofe together, are a fiftieth part of the diameter of the hair. - If then 450 diameters of thofe fmall veins which I moft plainly fee in ' a fly are no more than equal to the diameter of one hair taken from - my beard, it follows,* by the rules of arithmetic, that one of fuch

[^3]\[

$$
\begin{gathered}
450 \\
450 \\
\hline 22500 \\
\hline 202,500
\end{gathered}
$$
\]

- hairs is more than $£ 00,000$ times larger than thofe very fmall blood ' vellels in a fly-

The author fometimes computes the fize of fimall oljects by aliquot or equal parts of an inch, and, for the more readily placing thefe before the reader's view, the tranflator has fubjoined a fcale of inches divided into feveral different numbers of equal parts, and in each of thefe divifions is marked the proportionate fize of the fame number of parts in a fquare inch.

Further, at HIK L, is given a reprefentation of a cube, and at MNOP, a drawing of a cylinder, in order to convey an idea of thofe figures to fuch readers as have not been much converfant in the doctrine of folids. The number of parts or circles contained in the cylinder, will not be found to anfwer fo exactly to the arithmetical computation as thofe in the cube, and this is occafioned by the interftices or fpaces between the circles in the cylinder, which only touch each other in a point,





## Of the OAK。

The Nature of its Production; the different Degrees of Gooduefs in Oak Timber; and the Ciufes of that Difference. The Aulior's Opinion as to the proper Wuyfon for felling Timber.

JN order to form a true judgment of the nature of this Tree, and the better to comprehend the following defcriptions of the * veffels, which compofe the fame, let us firft attend to Plate I. fig. I 中, BCD , and imagine it to reprefent the furface of an Oak when cut tranfverfely or acrofs the middle, on which furface eighteen circles appear; which circles are the clear and undoubted marks of cighteen years growth, the trea being increafed every year by the addition of one circle, (and in the latter of thofe years the circles are the largeft, though not all of equal magnitude, but in proportion to the fertility of each year.) The fmall portion of this wood, deferibed in the next figure is marked in the fixteenth circle by the letter E. Farther, fuppofing the tree to be fawn acrofs, as abovementioned, and afterwards planed or polifhed, we fhall obferve throughout the furface, fireaks or creafes, reaching from the centre $A$, to the circumference $B$, and thefe are veffels conveying the nu-

[^4]tritive juices of the plant outwards towards the bark, as in the nexi figure will be more fully explained.

Fig. w, AB C. D, reprefents a fmall piece of Oak, drawn as nearly as could be done. according to its appearance feen through a microfcope, prepared by me for that purpofe, and which piece of wood appears to the maked eye of the fize reprefented at fig. $\propto, \mathrm{X}$.

The dark fhades at F F, F F, indicates the part where, towards Autumn, the vegetation and increafe for that year ceale ; and about this time, and in this part, the wood becomes exceeding hard, being compofed of fuch finall reffels, that it is difficult, and at laft impoffible to diftinguifh them, for which reafon they affime the appearance of dark freaks or thades. Between the letters F F, FF, is contained that fpace, or thicknefs, which the tree acquires through its circumference, in the face of one year.

This fpecies of timber tree, has five different kinds of veffels, three rifing perpendicularly, and two extending, or fpreading horizontally.

EEE, reprefent the firf fort of thefe perpendicular veffels, which are very large, and are produced in the fpring, with the firli rife of the fap. The infides of thefe veffels are full of a kind of veficles, or little bladders, compofed of very thin membranes, or flins, and thefe are to be feen in fig. 3, where, at the letters L K IM, is reprefented a fection of one of thefe large veffels, divided longitudinally, and feen through the microfcope.

The fecond fort of thefe perpendicular veffels is much finaller, and is alfo compofed of exceeding fine membranes, intermixed with a Find of fpots, which by the microfeope, appeared to my eye like globules, or little balls, as reprefented in fig. 4, O N, which exhibits one of thete fecond fized veffels, divided longitudinally.

The third kind of thefe perpendicular veffels is exceeding fimall, but in great numbers: likewile compofed of cxcellively minute

## (3)

membranes, and thefe are alfo reprefented when cut longitudinally, or lengthways, at fig. 4, P Q.

All thefe perpendicular veffels, which are found in fo timall a piece of wood as that before reprefented, and which in fize, is about the ninctieth part of a fquare inch, do amount in number, in my opinion, to twenty thoufand ; fo that an Oak tree of four feet in circumference * contains, according to my computation, more than three thoufand two inundred millions of thefe perpendicular veffels, and in a tree of no more than one fort in circumference, will be found two hundred millions of fuch veffels.

Thefe perpendicular veffels do, for the moft part, infufe, or inftil their juices into other reffels, which are almof imnumerable, lying in an horizontal pofition in the tree, and by the means of which it's bulk or thicknefs is daily increafed : thefe veffels are of two forts.

Fig. a, G G G, reprefents one fort of thefe horizontal veflels, which originally, or at the firf formation of the plant, are derived from the marrow, or pith, in the centre of it ; but afterwards, in great numbers, take their origin from the perpendicular veffels. Thefe veffels appeared to my eye like dark ftreaks; but in order to examine them more clearly, I cut a piece of the wood lengthwife, fo that they were cut exactly acrofs, and then each of them appeared to be formed of five, fix, or even feven veffels joined one on another, as they are reprefented in fig. 4, intermixed among the perpendicular veffels.

The other fort of horizontal veffels, lying in great numbers or clufters, clofely joined to each other, though not evenly diffufed throughout the wood, when examined in their horizontal pofition, appear as in fig. $2, \mathrm{AB}$, or CD , (but when cut tranfverfely,

[^5]they are reprefented as feen by the naked eve, in fig. 5, R S, ) and where they are reperented magnified and feen longitudinally in jig. e, I have in many phaces drawn crofs lines, to reprefent what I conceive to be minute valves, and though I could not fee them fo diftinctly, as here they are drawn, yet I camot doubt of their exiftence, having frequentily feen thefe valves in other woods, and particu!arly; very difinctly in the Elm ; befides, it feems evident to me, that without fuch valves the tree could not be increafed in its bulk, on account of the great furce required to feparate and looten the bark from the tree, in the time of fpring, and alfo for the violent burfting open of the bark, to allow for the growth and increafe of the wood: and if there were not fuch valves, the juices, which by the action of the fun are drawn outwarls, would, at fin fet, when that motion of the juices ceafes, be drawn back again, and their exertions to diftend the bark become fruitlefs. A portion of thefe veffels is reprefented in fig. $4, ~ T V$, which figure is drawn from a microfcope of greater magnifying power than that from which the perpendicular veffels are drawn, in order that thefe horizontal ones may be more clearly feen: and in this fmall piece of wood, and in this little fpace, which is no more than the feven hundredth part of a fquare inch, are more than two thoufand veflels.

It is well hnown that there is a great difference in Oak Timber, namely, whether it grew in mountainous fituations, or low lands, and whether in warmer or colder climates, and laftly, whether it was of quicker or flower growth. As to the fpecimen of Oak which has been juft defcribed, it was taken from a tree of the beft quality, very compact and clofe grained, and which had been very flomrifhing in its growth.

Oak timber of this fuperior quality we muft not expect to find in the Northern or cold comntries, but in the warmer ones. The very beft timber that we have here, in Holland, is brought down the

## ( 5 )

Rhine from the places of its growth, which are nearly in the fame parallel of Northern latitude with ourfelves. The Gak which we have from Riga, Koningfberg, and Dantzick, is very perihable, and of a fpongy nature, becaufe it grows in a colder climate, and increafes in it's bulk much more flowly than that before-mentioned; but yet this wood, though fo perifhable, is deemed the beft for making beerbarrels, becaufe it does not impart any ill tafte to the beer, the rea. fon of which I take to be, that in cold climates the Oak does not acquire fo much acrid falt as it does in warmer ones; but I do believe, that if the better fpecies of Oak, after being cleft into ftaves, were to be foaked in water for a ccrtain time, this acrid falt would be extracted from it, and that the cafks made of it would be greatly fuperior to thole made of Riga Timber.

The Oak, as has been before obferved, in the begiming of its growth ewery fipring, produces very large vaffels, but the reft of the year much fmaller ones; confequently, when the tree fo flomifhes as to acquire an increafe in it's femi-diameter, or on one ficle of it's outward furface, of one half, one third, or a quarter of an inch, there will be in this face only one feries, or row of fuch large vef.. fels; but on the contrary, where the increafe is ीow, then, within the fame fpace of one half, one third, or a quarter of an inch, there will be formed from twenty to tení, or eleven fuch rows of large velfels. This great number of large veffels in fo fimall a fpace, not only renders the wood very porous and brittle, but alfo very periflable, efpecially if it is ufed in works expofed to much moifure, and where there is no free current of air: and hence it is, that Mhips built of French or Englifh Oak, are much more durable than thofe built of timber growing in the more Northern and cold countries.

In order, more clearly, to explain the nature of the beft Oak timber, let us reveit to fig. a, reprefenting a portion of a tree which, in one year, had acquired in thicknefs almoft a fixth part of an inch

in it's femi-diameter, or one third of an inch in the whole, and in this, one row or circle, and no more, of the very large veffels, before defcribed, had been formed. Then, to difeern the difference between this timber and that brought from Riga and Koningfloerg, let us attend to fig. $6, \dot{A} \mathrm{BCDEF}$, wherein is exhibited a fmall piece of fuch timber sut tranfverfely, and drawn from the microfcope.

The piece of wood which, in this figure, is reprefented by $A B C$, or D E.F, contains about the fifteenth part of an inch in length*, and this length, or rather this thicknefs, the tree had acquired in two years growth, fo that $A B$ denotes the thicknefs produced in the tree in one year, and is about the thirticth part of an inch in length; BC or E D, indicate the increafe of the following year; $A B C$ and FED reprefent the larger horizontal veffels, which in fig. 2 , are explainedby AB or CD; and the dark lines HHHH, indicate the fmaller horizontal ones, which imfg. , are defcribed by GGG: all the round cavities, of which there are three different fizes reprlented in this figure, and which are found within the compafs of the thirtieth part of an inch in length, are the three different forts of perpendicular veffels before deforibed, Hence we fee that in a tree, which is augmented in fize, in it's femi-diameter, one inch, or in the whole diameter two inches and no more, in the growth of thirty years, there will be formed thirty rows, or feries of large veffels; from whence it follows, that the greateft part of Oak Timber, of fuch flow growth, muft be very foft and perifhable: and if on the other hand we confider, that Oaks growing in a warmer climate may, in one year, increafe in fize, in their femi-diameter half an inch, or an inch in their whole cliameter, we may eafily perceive how large a portion of wood will be formed in them, having only one row of the large veffels in it, and how firm, folid, and durable fuch wood muft be.

[^6]
## ( 7 )

Let a tree of flourifhing growth be increafed in magnitude, in the fpace of a year, one fourth part of an inch, in fuch a fpace will be produced one circle of the large veffels; another tree growing in a colder climate fhall require eight or ten years growth to increafe in the fame degree : in this laft tree, within the fourth of aa inch fpace will be formed eight or ten circles of large veffels, the neceflary conclufion is, that Oak Timber growing in cold climates muft be foft and perifhable, and it mutt be acknowledged that Oak timber growing in this country of Holland, is fuperior in quality to that produced in more Northern latitudes: again, that the Oak Timber of Brabant and Flanders, is fuperior to ours, and laftly, that the French and Englifh Oaks are the moft excellent of all.

One thing mufthowever be conlidered, which is, that the very largeft Oaks are not always fo valuable as trees of a more moderate fize, that is to fay, if they were of good growth, and are free from decay; for though large trees, in the firft thirty, forty, or fifty years may grow very fafi, and produce excellent timber, yet when they come to the age of ain hundred, or an hundred and twenty years, the circles of wood added every year, become very narrow, and the thicknefs increafes flowly, fo that the large veffels in the wood approach near together, and confequently the exterior or outward parts of fuch large timber become very foft, in comparifon with the imner part of it.

It is the general opinion in this Country that timber is much more folid or durable when felled in winter than in fummer. But I think that if we examine this opinion, we flall find it to be erroneous.

It is true, that if timber be felled in the fummer time, the bark can much more eafily be feparated from it than in the winter; for the wood newly formed each year always adheres to the bark, and the bark is every year propelled or driven outwards from the laft
year's weod, and as the tubes or veffels of which fuch newly formed wood is compofed, are during the time of their growth not folid, but of a very foft texture, this is the reafon why the bark can be fo eafily ftripped off in the fummer time. But that any part of the tree, except that of the new growth, fhould be more folid in winter than in fummer, feems to be altogether impoflible ; for it is plain to demonftration that all trees are compofed of multitudes of fmall tubes or veflcls, which are formed every year by the tree's growth, and that when once formed they preferve their fhape and fize, without any alteration, although the tree be above an hundred years old. Thefe tubes, which in all feafons are filled with juices, are neither lefs in winter nor larger in fummer, for the juice which circulates through them is at all times the fame. But if it were poffible that the fubftance of trees in winter conld be more clofe or compact, and in fimmer more fpongy or diftended, it would follow that the hard and dead bark furrounding the tree would in winter be feparated from the wood, and in fimmer more fplit open than it is found to be; but fince we do not obferve this to happen in either inftance, it muit be the better opinion, that timber felled in fummer is equally good with that cut down in winer ; and if any one will take the trouble to examine thofe finall chinks or fiffures which are produced in the bark during the tree's growth in fummer, he will find that trees are not increafed in their fize or fubftance in an hafty manner, but by very flow degrees.


## Of the FiR.

The different Degrees of Goodness in Fir Timber, kow difcoverable; the minute Veffels which enter into the Compofition of this Tree deforibed at large.

In treating of the Oak I have confidered, that the fpecies of it growing in warm climates, is fuperior to that which is produced in cold countries. But we muft not imagine this to be the cafe with all Woods; on the contrary the Fir Timber growing in cold countries is fuperior to that produced in warm ones, where its growth is rapid. For the perpendicular veffels of which the Fir is compofed are comparatively finall, and though we may fee here and there in this wood a large perpendicular veffel, that is no great exception to the general nature of it.

In the Fir, at the begiming of its growth every year, the perpendicular veffels, (which are all of the fame kind), are formed twice as large as thofe towards the end of the feafon, when the growth ceafes, and thefe latter-formed veffels are, in refpect of their component woody parts, very compact and clofe, having very fimall cavities, and confequently producing durable timber; and the lefs this tree grows every year, the greater number of thefe compact veffels enter into its compofition. Hence we may gather, that if, upon examining Fir Timber at the ends, when it has been
cut or fawn acrofs, we obferve the circles, denoting each year's growth to approach very near together, we may eafily conclude that fuch timber is firm and durable, efpecially if we perceive great part of thefe circles to be moiftened or tinged with a refmous or gruminy fubfance, named Turpentine.

The production or growth of the Fir is thewn in Plate I. fig. 7. which reprefents a fmall piece of this wood, as feen by the microfcope, when cut tranferfely, in order to fhew the difference between the perpendicular veflels formed in the Spring, and thofe produced in Autumn, when the growth ceafes.

The natural fize of the fpace contained between ABC , or EFG , is about the fifteenth part of an inch in length ; $A B F G$, denote that portion of the wood formed towards the latter end of the year, and the line of feparation appearing at BF, is the place where the increafe for that year ceafed. BCEF indicate a part of the fame wood, produced in the beginning of the following year.

DD , and GG , are the horizontal velfels, which in this wood are placed very clofe to each other, fo that when cut tranfverfely it is difficult to diftinguifh them.

In this figure, we fee the difference between the veffels formed at the begimning and at the end of each year's growth. And if the wood here reprefented, within the fpace ABC (which is the fifteenth part of an inch) required two years to enlarge the femidiameter of the tree to that thicknefs, it follows, that in this fpace there will be two rows or circles of the compaet vellels pictured, between A B. Moreover, the piece of wood which is here defcribed was from a tree of yuick growth, and timber of flower growth not only would produce fewer of the large veffels, but alfo thofe veffels firft formed in the fpring would be fimaller in proportion, efpecially if growing in a colder country, and in a good foil. In a word, the nearer the circles before mentioned approach together, the flower was the growth, and thas fpecies of Fir is the moft durabie.

In refleiting upon the nature of the tubes or veffels of which wood confifts, I confidered with myfelf, whether each of thefe tubes was not formed of two diftinct kinds of exceflively fmall veffels or coats, one fort extending lengthways, and the other fort encompaffing each tube in a circular direction, as I had obferved the quills * of feathers to be formed, in order to give to each tube a degree of ftrength and firmmefs.

To inveftigate this, I examined feveral kinds of wood, and particularly the Fir, and at length I obferved in fplitting the larger tubes or veffels of the wood, that fome of them were indented or jagged in the fplitting, and I alfo imagined that I faw the tube to confift of fmaller veffels in a firait perpendicular dire Gion which were not diffufed all over the membrane or coat, but only placed on each fide of it, whence I gathered, that though the minute veffels, fome of which I conceived to extend longitudinally, and others to encompafs each tube of the wood, cannot always by reafon of their exceeding fmallnels be difcovered, yet that the tubes are in reality formediike the quills of birds in order to give them the greater frength.

In further profecuting this inquiry, I procured a piece of the Pitch Pine or Fir newly felled, and which had been of very quick growth; and having placed a fmall part of it before the microfcope, I directed the Engraver to copy the figure of it as exactly as poffible.

Fig. 8, ABCDEFG, reprefents this fmall piece of wood, which I fplit longitudinally as thin as pollible. It's extreme thimnefs brought clearly into view a great number of globules contained in the veffels of this wood, and which afford a moft pleafing fpectacle, not only on account of their exact globular figure, but alfo becaulc in each of the globules is a lucid or bright fpot.

This fmall piece of wood I found particularly eligible for my

[^7]obfervations, partly becaufe it is very rare to find a piece fplit out fo long, and fo thin with the perpendicular veffels fo clearly difcernible in it without obitruction to the fight from the horizontal ones, and partly becaufe I have feldom found fo many of the globules in fo fmall a fpace. Thefe globules in my opinion are the fubfance we call Turpentine, and from which, by burning the wood, Pitch and Tar are procured.:

Between DE and F, are to be feen the tubes of the wood when divided, which plainly appear to be fplit, not exactly frait in length; but in a manner indented or jagged and broken fideways.

I alfo put into the Engraver's hands two feparate microfcopes that he might make diftinet drawings of thefe tubes of the wood, and from one of thele was taken fig. 9, M N, where two of fuch tubes are reprefented when fplit lengthways; but the Engraver faid that he could not poffibly draw all the jagged parts which he faw. And we both of us perceived in the broken membrane or coat of the tube; many exceflively minute veffels, which by reafon of their fmallnefs he was umable to exprefs in the drawing. Fig. 10, O P, reprefents a fingle tube of the wood, in which, as plainly as could be done, is reprefented the broken parts of the membrane of which the tube is chiefly compofed.

Since then we find by thefe obfervations, that the very fine membranes of which thefe woody tubes confift, is not always fplit lengthways, but often in an indented or jagged form, we may eafily conceive that the tubes of wood, however minute they be, are partly formed fimilar to the quills of feathers.

[^8]The fiflure or fplitting of the particle of wood, reprefented in fig.8, was in fuch a direction that, as I may fay, it pafled or took its direction through the center of the tree, by which means the horizontal veflels, as well as the perpendicular ones, were divided longitudinally, and therefore are both exhibited in the fame figure.

Between KI and HG, the horizontal tubes or veffels are reprefented when divided longitudinally. Thefe veffels are found in great abundance in this wood, and in fome places fix, feven, or even twelve of them fhall be found clofe together, and it is very rare to fee fo large a fpace of the perpendicular veffels without horizontal ones, as is between $G$ and $F$ in this figure, though the real fize of that face is not more than the thicknefs of a large grain of fand.

I have often reflected on the nature of thefe horizontal veffels, that is, how they are formed, and how fupplied with nutritive juices, for through them a now coat of bark is every year produced round the tree. At firft, they undoubtedly have their rife from the marrow or pith in the center, but afterwards they muft necelfarily proceed from the afcending velfels. In this enquiry I could not fully fatisfy myfelf, except that 1 obferved the appearance of certain fmall dots or points in many parts of the perpendicular velfels, which at length 1 difcovered to be no other than fmall round apertures. Thefe are reprefented in fig. 8 , between B C, and G H1, and as I did not fee them in any other places than where I had divided the horizontal from the afeending vefiels, I concluded that at thefe fimall apertures the horizontal veffels are united to the perpendicular ones. And I began to confider whether the afcending tubes were not air veffels, as well as infrumental in conveying the mutritive juices.

I then fat about a more accurate examination of this wood, by cutting off thin flices with the flarpeft elged tools 1 could procure, and placed them before the microfcope, and hereupon I difcovered a much larger number of afcending veffeis than I had before
obferved, which laft difeovered veffels were exceeding fmall in comparifon of the former ; fo fmall, indeed, that if a large grain of fand were divided into ten millions of parts, thefe veflels would fill be impervious to them. Hercupon I concluded that all the perpendicular veffels which I had before difcovered in this wood, and through which I had fuppofed the juices for the nourifhmet of the tree, and its fruit, were conveyed, were really only air voffels; for thofe which 1 now name air veffels are furrounded with three or four of the very fmall veffels before mentioned. And I am clearly of opinion, that thefe minute veffels do conftitute and form thofe others which I name air veffels, and connect them one with another; and that thefe fimaller veffels convey all the nutritive fubftance for the fupport of the tree, its leaves and fruit, and that therefore they may properly be named arterial veffels.

The wood which in fig. 8, is reprefented fplit longitudinally, I now cut or divided tranfierfely, to fhew the nature of thefe veffels when infpected into or looked down upon, if I may fo exprefs myfelf; and at fig. 11, UVW Y Z, a portion of it is reprefented as feen by the microfcope, the natural fize of which was no more than could be covered by a middling fized grain of fand; and in this figure, between the veffels compofing the wood, or the air veffels before mentioned, are feen the very mimute veffels which I call the arteries of the wood cut tranfverfely; but as they are fo very minute, I caufed four of the air veffels to be drawn feparate as viewed by a fill deeper magnifier, that thefe laft might be the better diftinguifhed, and thefe are fhewn at fig. Iथ, as they lie between the air veffels.

The dark ftreaks which are reprefented in $f g .11$, at $W$ Y Z, are a fimall part of the horizontal veffels divided longitudinally, and which veffels are reprefented in fig. 8 , between GH , and I K.

To thes defcription I muft add a little piece of the fame wood which

## ( 15 )

I cut longitudinally, but in a different manner from that defcribed in fig. 8 ; for as in that figure the wood is reprefented when fo fplit that the air veffels, and thole fmailer ones which I call arteries, and alfo the horizontal tubes of the wood, are all divided longitudinally, here on the contrary the perpendicular veffels are fplit or divided longitudinally, but the horizontal ones are cut obliquely.

Fig. 13, LMNO, reprefents fuch a particle of the wood in which the horizontal veffels may be feen placed fo clofe to each other as to be only feparated by one or other of the air veflels. Thefe horizontal veffels lying fo clofely and regularly befide each other it is no wonder that this kind of wood is of all, the moft eaflly fplit, and ftrait in the fplitting.

I have caufed a feparate drawing to be made of thefe horizontal tubes or veffels in their pofitions adjoining to each other, in order the better to diftinguifh how they lie among the perpendicnlar ones.

Fig. 14, PQ, reprefents thefe horizontal tubes or veffels, many of which are feen in fig. 13 . Thefe veflels in fome places lie twice as clofe together as they do in others; and upon examining them with the greateft accuracy I was able, I muft fay that I faw two kinds of thefe horizontal veffels or tubes of the wood, one fort of which was fo much finaller than the other as almof to efcape the fight.

For the more fully elucidating this fubject, and for the information of any who may have the curiofity to repeat my obfervations, I have in fig. 15 , given a drawing of the manner in which I cut or fplit the wood. In this figure ABCDF, reprefents the fourth part of a round piece of the tree or a branch of it, of which $B$ denotes the center of the tree or branch ; at G is fhewn how the particle of wood, reprefented in fg .8 , was fplit off; at C , how the particle reprefented in figures 1 , and 12 , was cit off, and at $E$, how the particle reprefented in fig.13, was fplit off.

I have fometimes (as I before hinted) fecin fome of the perpendicular or afcending veffels in the fir, much larger in diameter than others; but thefe are fo few, that it is very rare to obferve them.

In fig. S , between B and C , are to be feen the minute round apertures in thofe parts of the afcending tubes or air veffels, where the horizontal ones are feen, which apertures I conceive are deftined to tranfmit air or the juices of the tree, from the afcending to the lorizontal veffels.

Thefe difcoveries of mine, refpecting the fmallnefs or thimnels of the vefficls or tubes, compofing the fubftance of trees, may not eafily be credited by many, as not comprehending how, by reafon of their excceding finallnefs, any juice or liquer can poffibly pafs through them, and, what is mere difficult to conceive, how through fuch veffels afcending perpendicularly, any mutritive fubfance can be derived from the root of the tree to the extremities of the upper branches.

But as, on the one hand, it is out of the reach of our finite capacities to comprehend the extent of the Univerfe;* fo on the other, we are equally unable to conceive the minutenefs of the veffels and component parts of which not only animals, but alfo vegetables are formed, and much lefs, how the parts of matter are united toge.. ther, or how one part grows out of, or is added to, another.

[^9]

## Of the WEEVIL or CORN. BEETLE.

Wherein the common opinion that this Infect is bred in Corn fpontaneoufly, is flezen to be erroneous; the true nature of its Generation explained; with the means to preferve Corn from its infection.

I HAVE heard it ftrongly argued, that the Weevil or Cornbeetle, (which is a very noxious infect, well known to corn- dealers and bakers in this country,) is produced by what is called equivocal or fpontaneous generation, that is to fay, from inanimate fubftances without any parent. The principal reafons alledged in fupport of this opinion are, that we often find this infect in a new granary. where never wheat was kept before, and therefore it is deemed a neceffary conclufion, that Weevils are not propagated by the ordinary courfe of generation. Again it is faid, that we may open many grains of wheat, which are found and uninjured, fo that no mark of a perforation or hole, fhall be difcernible on the outfide, yet within thefe grains fhall be found perfectly formed and living Weevils.

The anfwer which I have given to thefe arguments has been, that thefe little animals may, by ourfelves, be removed from one granary to another without our knowledge : for fuppofing the perfon employed to remove coin, to have come out of a granary, or barn, infefted with Weevils, he may eafily carry fome grains of corn containing them, or fome of the infects themfelves, fticking about his clothes, or in his fhoes, and thus remove them into a granary where none

## ( 18 )

had ever been. Befides, the fhip, wangon, or cart, employed to carry com, may be infected with Weevls, by having carried errain in which they abound, and thes from a ferr of the le inlocts, multitudes may be produced by the ordinary courie of genemation.

But in order fully to involtigate the truth of this, I dofircd the perfons who had argued this matter with me, to bring me the firft Weerils they themferves fhould find, (it being then the winter leafon) ; and on the $13^{\text {th }}$ of March, I received fome grains of wheat, (many of which had the infides eaten away) mixed with Weerils.

I took three glaffes, in each of which I put fix, eight, or nime Weevils, and eight, ten, or twelve grains of wheat, which wheat I was the more affired cond not be infected, becaufe it had been kept for feveral months, clofely covered up, in my fiudy. In a fourth giafs I put fome Weevils without any wheat, but this laft mode of experiment I afterwards rejected, obferving that in, the fpace of twelve days they all died. As to the other three glaffes, the weather being cold, and, oblerving the animals, for the moft part, to lie motionlefs, I put them into a leather cafe, which : always carried about me. And I had no doubt, but I thould cleanly prove to all, that the Weevil proceeds from a maggot, for which reafon I frequently examined thefe objects by the microfcope.

I, at frff, entertained an opinion, that the Weevil, like the Silkworm's moth, and many other infects, did not, while in that fhape, take any food: but herein I found myfelf mifaken, and obferved that the Weevil not only feeds upon wheat, but that it can excavate or fcoop out the whole contents of every grain, and creep about in the infide, being provided with a beak, or trunk of a great length, in proportion to the fize of its body, at the extremity of which are certain exccedingly fmall organs, or inftruments like teeth, and with thefe it can bore or pierce through the outward hufk or fhell of the wheat, and thus open to itfelf a paffage to devour the contents.

At a fortnight's end, mamely, on the 27th of March, I obferved
fome of timefe Ticevils coupled together, and from this time I fre. quently infeect dhen, but faw no appearance of any living creature beng prolued fiom them until the 10 th of June, when I obferved lying among tie Wesvils and the wheat, two fhort and thick little maggots, one of them about the fize of a large grain of fand, and the other atbont ine forth part larger : feeing this, I opened one of the giffe, in whit I hat enclofed fix Weevils, and examined the dificiont grains of wheat that had been put in with them, and found two of them to be entirely hollow and empty; from another of the giatiss, which by the external appearance was the leaft eaten or confumed, but had many frall perfomations or little holes not difcemible by the nakici ese. I drew out a perfectly fomed Weevil, which was of a jellow colour: wiereas thofe which were at firf brought to me, and had been fluat up in the glals for three months, were of a deep red, almo? approaching to black.

In another grain of the wheat I found a Weevil, of a very pale or white colour, with its claws, horns, and beak, or trunk, lying clofe to its body, in exact order, as we fee the wings and legs of a Siikworm's chryfalis or aurelia, when it is almoft arrived at the fate of a flying infect, only with this difference, that the mformed Weevil is not inclofed in a thell or cafe, like the aurelia of a filk worm.

In other grains of the wheat I foumd maggots of different fizes, and from one grain I took out a perfectly formed Weevil, whofe white colour was changing to a red, and which was continually in mo-- tion.

Lxamining the other ghffes, I found fome of the grains of wheat perlorated with little holes, and others half eaten. Some of the Weevils which had been thut up in thefe glaffes I opened, and in one of the females, I found five white egres, which I conceived to be of their full fize: in others I obferted eggs, fome of which were arrived to maturity, and others gradually lefs and lefs,

Hence I concluded, that whereas the Silh-wom's moth, living
only a few days, in that time lays a multitude of eggs and then dies: on the contrary, the Weevil, which every day produces but few eggs, is a long lived animal, and by this means may be as prolific as Silk-worms or other infects: for the Weevils which I an now treating of were all alive the preceeding fummer.

As to the two maggots which I at firft found in the glafs among the wheat, I had no doubt that they had fallen out of the grains wherein they had been firft depofited, by reafon that thofe grains had been rather too much eaten away before the eggs were laid inv. them, and the holes which had been made in them rather too large; and, as all creatures, however minute, are endowed with moft admirable faculties and powers to anfwer the ends of their creation, I think it very probable that the large trunk or beak with which this infect is provided, (furnifhed with teeth or pincers, which open and. fhut in exact correfpondence with each other,) is given to it of fuch: a length that it may be enabled to bore a fmall deep hole in every grain of wheat, and therein depofit an egg, otherwife the maggots breeding from thefe eggs would never grow to maturity: for if a Weevil were to lay its egg on the outfide of a grain, and a maggot fhould be hatched from it, fuch a maggot could not poffibly pierce the hufk of the wheat. Again, were a Weevil to lay more than one egg in one grain, and all thefe eggs produced maggots, they would hinder each other's growth, for want of having fufficient nourifhment, inafmuch as one grain is not more than fufficient to nourifh one maggot, and fo to produce one Weevil.

I obferved in opening one grain in which a fmall hole had been made, and out of which I took one fingle egg, that round about that part where the egg was placed, the mealy fubftance of the wheat had been loofened or reduced to powder, from whence I concluded that the parent Weevil, before it laid the egg, had by means of its trunk, feparated the particles of meal in that part, both to make a
foft place for the egg to lie in; and allo, that when the minute maggot flould creep out, it might find this foft and loofened meal prepared for its firft feeding on.

Some of thefe maggots I placed in glaffes by themfelves, and obferved them gradually to affime the form of Weevils, the beak, horns, and claws, appearing by degrees, and the colour alfo changing from a white to a yellow, and then to the red colour of the Weevil:

As I had obferved, that none of thefe infects which were kept in glaffes together with grains of wheat, ever depofited their eggs on the glafs, I put three females into a glafs by themfelves, and in the fpace of twenty-four hours they laid four eggs. One of which eggs drawn from the microfcope, is reprefented in Plate II. fig. 1, ABC. In the fpace of feven days thefe eggs produced the kind of maggots before menticned, which, when firft hatched, were not larger than a grain of fand, and one of thefe as lying on its back, and drawn from the microfcope is reprefented at fig. 2, wherein D E F, is the head and FGD the body. This maggot was in continual motion, but when a little at reft, it contracted its body together, and in this pofition the limner drew its figure, and when it attained to its full fize, the thape remained the fame until the time approached for its being changed into a Weevil. Another maggot which I had fixed or faftened by its hind part before the microfcope, I caufed to be drawn when it extended its body, and this is fhewn at fig. 3, H I K.

Theie maggots have very little frength to move from place to place, fo that it feemis defigned by nature, that they fhould be fed no where but in grains of corn: for if a Weevil were to depofit its egg in any place, except in the infide of a grain, it would in my opinion, be impolfible for the maggot thence produced to procure any nourihmment and become a perfect Weevil.

Thefe things confidered, we may be fully fatisfied refpecting the
reafon, why in com, which is frequently moved and fhifted, the Weevil can increafe but little: for fuppofing one of thefe infects to have pierced and prepared two or three grains ready to depofit its eggs, and foon afterwards the corn is moved or fpread about, the animal, when it is ready to lay an egg, finaing no grain prepaet to receive it, muft leave fuch egg on the outfide of the corn, whe:e the young maggot, when hatched, will be in the fame fituation as feed fown in barren land, and confequently muft perifh. But if fuch corn is undifurbed, the Weevil may muitiply, in a great degree, by depofiting its eggs in the grains fitly prepared for them, and which may be confidered as fo many nefts for the reception of the young. Again, the long life of this iniect caufes it to multiply exccedingly, for the Weevils which I received ir the month of March, (the youngent of which was undoubtedly a year old,) were alive and vigorous in Jume following; and who can tell how long the natural life of this infe.t may be?

For the information of thofe who never faw a Weevil, one of thefe infects is reprefented of its matural fize at fig. $4, \mathrm{X}$, and underneath it, I have given a drawing of its beak or trunk, as feen by the microfcope, to fhew by what organs or inftrments this creature is enabled to pierce the corn, partly to feed on the contents, and partly to depofit its egrs in the fmall holes it makes therein : for, as other animals are taught by nature to prepare their nefts for the reception and fupport of their young, fo it is the peculiar inftinct of the Weevil to aim at clepofiting its eggs in no other place than where the little animals produced from thofe eggs finall be able to find fubfiftence, and this is in the grains of corn.

At MNOP is reprefented the probofcis, trunk, or beak of the Weevil, which naturally is not fo ftraight as here pictured, but appears bent downwards when feen fideways, as marked at MOO; but had the figure been drawn in that view, the opening at the ex-

## ( 23 )

ficmity with its pincers or teeth would not hare been vifible, as it is now to be feen at $O$ : within this mouth or orifice are two fings or pie:cers which are continually in motion and one of which is leen in the figure, but I never obferved the amimal to protrude or thruft thofe fings or piercers farther than the extremity of the pincers at O; fo that I imagine the only ufe of thefe organs is to break or divide the hufks of the wheat and the meal within it; and, having frequently contemplated this animal, while feeding, I obferved it, after having thruft its trunk into a grain of wheat, to ftick fo clofely to it, that, though tofed about, it would not let go its hold.

ST, are the two lorns; LMR, is part of the head; and at M are reprefented* a coltection of globules, which through the microfcope cxhibit the lame appearance as if by the naked eye we were to fee a parcel of very minute black coral beads placed in exact order clofe together ; and this I concluded to be one of the eyes.

I am not very fond of clrawing the whole bodies of fmall animals from the microf cope, becaufe I con der that to be of little utility; and this is the reafon why I have only given a figure of part of this infect when magnified.

I truit that thefe experiments and obfervations will prove that Weevils cannot be produced, otherwife than by propagation, that is to fay, by copulating and laying eggs, from which eggs maggots proceed ; and finally thofe maggots are changed into Weevils. But whether the vulgar will be hereby convinced of the error of their opinion in this refpect, fomuch doubt, being continually peftered with their objections to what I have advanced. It is, however, with me, a moft certain truth, that what I have demonftrated refpecting the

[^10]$$
(24)
$$

Weevil, namely, that it camot be produced otherwife than by generation, does alfo hold good with regard to all creatures endued with life and motion. And although this is a very-minute animal, yet its fpecies muft have been continued in the way I have laid down, from its firf being formed at the creation: and were it otherwile, namely, that from inanimate matter, fuch as ftones, wood, earth, plants, or feeds, this or any other animal fhould be produced, that would be a departure from the general courfe of nature; and fuch formation or new creation, muft be continually derived from the fupreme Almighty Creator.

Probably what I here advance may appear ftrange to fome, and they may perhaps wifh me to enquire into the propagation of other minute animals:; but for the prefent I leave the profecution of thefe matters to thofe who may chufe to beftow as much labour thereon as I have done in this examination of the Weevil, affuring them that my obfervations are the refult of more than four months application to the fubject.


Of the Maggot or Caterpillar infefing Corn in Granaries; the natitre of its generation explained, and the means to prevent its increafe pointed out.

覌AVING, as I hope, by my obfervations on the Weevil, convinced mankind, that it is propagated in the ordinary way of generation, I have fince employed myfelf in the examination of that Infect or maggot which our bakers and corn dealers name " de Wolf."

This creature is a very fmall white maggot, provided with two red pincers, or organs like teeth, placed in the fore part of its head, by which it not only feeds on, and confumes wheat, and other grain, but alfo can perforate or gnaw holes in wood. The common opinion is, that it is produced from corruption, or elfe from what fome call a blight. But, in order to refute this vulgar error, I procured from a Merchant, a box of wheat, in which this infect abounded, that I might difcover to all, the real manner of its propagation.

Upon infpecting this wheat, I found, that one fingle maggot had fuck or faftened together from five, to fix, feven, or even eight, grains of wheat, in one of which itfelf was concealed, and that moft of the other grains were hollowed or fcooped out in the middle; and it feems to me that this maggot is much more pernicious than

[^11]
## ( 26 )

the Weevil, becaufe it featters a great quantity of its excrements in the thape of white round balls, which are very large in proportion to the fize of its body.

Moreover, this maggot has in the anterior, or fore part of its head, an organ, or infrument, through which it continually fpins an exceeding fine thread, which thread it fixes to every fubftance it approaches. By this means its body is always fupported fo that it cannot fall, and in a clean glafs it can move from place to place, being fufpended by this thread, and by this thread alfo it comnects or binds the grains of wheat together.

Some of this wheat I put into a glafs tube, about the fize of a finger, and a foot in length, clofing each end with a good ftopper, and the reft of the wheat I kept in a wooden box. But, towards the end of the fummer, I obferved feveral of the maggots forlaking the wheat, and faftening themfelves to the glafs, and others of them I faw creeping about among my papers, and I found the box, in which I had put them, perforated in two places, through which many of them had efcaped. I alfo faw the ftopper to the glafs iube gnawed into, as deep as the thicknefs of a finger, and upon taking it out, I found that eight or ten of the maggots had crept into it ; upon which I placed them again in the glafs tube, with the grains of wheat, and ftopping the orifices with a cork, I covered the cork on the outfide with fealing-wax, to prevent the maggots again efcaping, but at the fame time I contrived a fmall aperture that they might not be deprived of air. Plate II. fig. 5, A BCD reprelents this glafs tube, of which $A D$, and $B C$ are the two extremities, each clofed with a ftopper covered with fealing-wax ; EG and FH are two fmall glafs tubes, paffed through the foppers, to fupply the maggots with frefh air, but thofe apertures were fo fmall as not to permit their efcape.

Abont the fame time that I was employed in thefe obfervations, I vifited a granary infeffed with this infect, and faw the maggots, in great numbers, creeping up the walls, from whence I concluded,

## ( 27 )

that in like mamer as the maggots in the glafs tube quitted the wheat, and lodged themfelves in the floppers, fo in the granary they concealed themfelres in the linings and beams, until their transformation into flying inferts fhould be compleated. And I was confirmed in this opinion by obferving the granary to have been fo perforated, or eaten into by thefe maggots, that not a fingers breadth was left untouched by them.

I alfo obferved that great part of the fropper which was within the glafs tube, was grawed or reduced to powder, and many chinks or cranmies formed in it, and though the maggots endeavoured to conceal themfelves within the ftopper, yet three of them remained in the glafs, in which they lay quiet the whole winter, and they were folittle covered with their web or thread, that, with the microfcope, I could difcover them move their heads.

On the 2gth of April following, I faw them begin to affime a reddifh colour, and to be fomewhat contracted in length ; the next day the rednefs increafed, and they feemed to me to be turned into aurelias.

At the fame time, upon examining the wheat, which was kept in the box, and had been full of the maggots, I found that they had all elcaped through the holes perforated by them in the box.

On the 2gd of May, the aurelias before mentioned, had become of a red colour, and the next day I faw a flying infect, which is called a Moth, fluttering about the glais tube. This had proceeded from one of the aurelias, which had been the chief fubject of my obfervations, and I faw lying near it, a pellicle, or little fkin, which had been the cafe or fheath in its aurelia fate.

Two days before difcovering this moth, I had obferved feveral of the fame winged infects flying about my fudy, two of which I killed, and upon examining them by the microfope, I found them to be formed in the fame manner with this in the glafs, fo that I was convinced they had proceed from fome of the maggots which had efcaped
out of the box. And on the 25 th of May I faw two more moths come out of the flopper to the tube, leaving their fhells or cafes hanging to it.

As many perfons are unacquainted with the figure of thefe moths, I have caufed a drawing to be made of them, which is to be feen at fig. 6, A A ; and alfo a drawing of the covering, fhell or cafe which enclofes them while in their aurelia flate, fig. 7, PQ. Thefe figures were drawn of the natural fize, and if I had not had ocular proof of it, I could not have believed it poffible for the moths to come out of fo fmall a cafe or covering as is here pictured. *

On the fame 25 th of May, I went to the granary, where, the preceding autumn I had feen the maggots before mentioned creeping up the walls, and there I faw a number of moths, fome clinging to the wall, and others flying about. I had brought with me fix glats tubes, and, as it was cafy to diftinguifh the males from the females, the former being fmaller than the latter, I put in each of thefe glaffes fome of both fexes.

At my return home, I diffected three of thefe females, and, by the moft accurate reckoning I could make, I found in each of their bodies upwards of fifty eggs. At another time, I judged that I took out of another female moth, above feventy eggs. Thefe eggs were exactly the fhape of hens eggs, but no larger than fmall grains of fand. The reft of the moths which I had brought from this granary and kept alive, laid many eggs, and one of them produced to the number of feventy.

Inext confidered, whether the moths, which thus propagate the

* This obfervation of the Author is corroborated, and, at the fame time, the a;pearance can be accounted for, by a circumftance which was fome years ago communicated to the tranflator by a curious oblerver of the change of aurclias into butterfies and moths, iamely, that immediately after their emerging from the fhell, or covering, which inclofes the $n$, they increafe in fize fo rapidly, particulaty in the wings, that their growth may be difcerned by the eye.
pernicious infect I am treating of, might not, by fome means, be deftroyed in the granaries, fo as to prevent their propagation.

For this purpofe I took a round glafs veffel, large enough, as I fuppofed, to hold fix pints of water, and in it I put eight living moths newly taken. In the orifice of this vefel I fet fire to the fourth part of a grain of fu!phur, and as foon as the moths began to feel the rapour, or fmoke of the fulphur, they fluttered about the glafs with great violence, though but for a fhort time, for they all fell to the bottom, and after a little motion in their feet, they died. Four hours afterwards, I took them out of the glafs, and put into it fome frefh ones alive, in order to repeat the experiment, but while I was preparing to burn the fulpher, I faw them all lie dead, they having been killed with the bare odour of the fulphur which had been left in the glafs.

From the fize of this glafs, I computed what quantity of fulphur would be requifite to fumigate a granary twenty four feet long, fixteen broad, and eight feet high, and I reckoned that half a pound would be fufficient for the purpofe.

After this, I fumigated a granary, in which were eight loads of wheat, and a great number of motlis fying about. For this purpofe I took two pieces of fuphur, containing about a quarter of a pound, prepared in the fame manner as is dune by wine-merchants or coopers, to fumigate their wise cafis. Thefe pieces of fulphur I fufpended by a brafs wire, in a tall earthen veffei, with a narrow top, and placed the veffel in an earthen difh, to mevent any danger of fire. This apparatus I fet in the middle of the wheat, and as foon as the fulphur began to burn, I retired out of the granary and thut the door. In a large granary two or three of thefe veffels might be ufed.

Two days afterwards, I vifited the granary, and then I faw feverai moths fill cinging to the wall and beams, but before the fumigation, I believe there were ten times as many. And I accounted for thefe moths being found alive, cither becaufe many of the panes of.
glafs in the windows were broken, through which much of the fmoke of the fulphur had efeaped, or elfe, that the moths which I now fiw, had come ont of their aurelia fate after the fumigation was over; for I am well affured, that fo long as the moths are inclofed in their aurclia cafe, or covering, the fmoke of fu!phur cannot do them any injury. Therefore it will be neceffary for thofe who may chufe to fumigate their granaries in the manmer I have recommended, to begin the operation as foon as ever the moths appear, that they may be prevented laying their eggs, and alfo to continue the ufe of it fome days, indeed as long as any moths are to be feen, becaule thete creatures do not all come out of their aurelia flate at the fame time. The expence of fumigating is no object, for a pound of fulphur may be bought for a trifle, and it is in no fort injurious to the wheat, nor is it prejudicial to the health of any perfon, but rather falubrious.*

Towards the end of fummer, when the maggots quit the wheat, and creep up the walis, they may eafily be fwept down and deftroyed, for this infect is a very tender animal, and foon killed. And thefe precautions being obferved, very few moths will be feen the following year.

Some of the eggs laid by thefe moths I put in glafies by themfelves, which I carried about in my pocket, others of them I placed in my fudy, and I obferved that thofe which I carried about me were, by the heat of my body, much fooner hatched than thofe which were in my fudy, for thefe latter were fixteen days before the maggots crept out of them ; but at leven days end thofe in the former made their appearance.

One of thele maggots, when newly hatched, I put into a glafs tube, the infide of which was about the fifth part of an inch wide, and having placed this before the microfcope, I gave it to the limner

[^12]to make a drawing of, but as it was impoffible for him to draw all the minute parts of it, he drew it withont the feet, as is fhewn in fig. 8, KL.* The fore part of this maggot is provided with fix feet, which fometimes could be difcerned when the animal lay flat on its belly, and thefe, with part of the body are fhewn at fig. 9, MN. In the hind part are various organs aflifting in its motion. This maggot, although, when newly hatched it appeared no longer to the naked eye than is defcribed in the center of the circle at $f \mathrm{~g} .10$, was yet twice the length of the egg from which it was produced.

As I obferved fome of thefe young maggots to be dying, I put fome grains of wheat into the glafs, and foon afterwards the living ones difappeared, whence I concluded that they had found their way into the wheat, and in three or four days time I faw their excrements feattered about the glafs.

I have often contemplated the fhells of the eggs from whence thefe maggots proceeded, and obferved veffels in them in the nature of net-work, which I could not diftinguith while the eggs were full. A drawing of one of thefe is given at fig.11, RSTV, but as thefe eggs are exceedingly minute, this drawing was made from a microfcope of greater magnifying power than that from which the former figures are drawn. STV is the broken fhell of the egg in the part where the young maggot crept out.

The moths I have been defcribing are very pretty objects to behold, the wings, which are four in number, licing white, fprinked all over with black fpots; and on examining them by the microfoope I found that this whitenefs proceeded from the white feathers on the wings, and that the black fpots were caufed by other feathers which were black at the edges. Some thoufands of thefe feathers

[^13]I faw fticking to the glaffes in which I kept the moths, which in their fluttering againft the glafs or one another, had been rubbed off their wings and other parts of their bodies; and to the naked eye, exhibited the appearance of a vapour or fmoke on the glafs.

Though I examined fome thoufands of thefe feathers, they were all fo differently formed, that I cannot fay I faw two exactly alike. Fig 13, A B, C D, EF, reprefents three of the largeft of them, when feen through the microfcope. At their broad ends, they are tinged with black, and when feveral of them lie clofe together, they exhibit a black fpot. Others of thefe feathers, as $f_{\mathrm{f}} \mathrm{g} .14, \mathrm{GH}, \mathrm{IK}, \mathrm{LM}$, are tranfparent, but when lying one on another they produce thewhitenefs I have mentioned. All of them, although fo very minute, have quills like the feathers of birds, by which they are fixed or rooted in the membrane that forms the wing, and fo completely cover it that it camot be feen.

The feathers, which cover the edges of the wings, are much longer than the others, and of different fhapes; five of them are reprefented at fig. $15, \mathrm{RS}, \mathrm{TVV}$, and at $f g$. $16, \mathrm{NOPQ}$, are fhewn a number of the fimall feathers of different fhapes.

This maggot, which among us is called the wolf, is not only mifchievons, by devouring the com, but it is of that fpecies which is found in houfes, and gnaws holes in wood, alfo in boses and books, and likewife hides itfelf in woollen garments, eating holes in them, and at length becomes a flying infect, named as before mentioned, a moth.

This moth, of itfelf, is very innocent, for while in that ftate, it .does not, as I could difcover, take any food, but, if not deftroyed in time, one female may produce ferenty maggots, for out of upwards of feventy eggs, laid by one moth, I only faw one barren ; and in three others of the eggs, I could difcern the maggots lying dead, by reafon, as I fuppofe, that they could not break their fhells.

I heard it affirmed, by a com-dealer, in fupport of his opinion,
that thefe maggots are produced in wheat fpontaneoufly, that they are more rarely found in old wheat than in new; to which 1 gave for anfwer, that when firlt hatched, they are very fmall and tender, fo that it is difficult for them to pierce the hufk of old wheat, the fame being very dry and hard, and confequently many of them die for want of nourifhment. This I fully proved by experiment, for I had three glafles fanding in my fudy, in one of which there were more than fixty maggots newly hatched. In this glafs I put fome grains of wheat, one of which was broken, or fiplit down the middle. and this alone was caten into, the others remaining uninjured, and all the maggots, except one or two, died; all which, I had no doubt, proceeded from this, that thefe grains of wheat were remarkably dry and hard, having been kept for two or three years in a box in my fludy. and in another of the glaffes, wherein I obferved the maggots creeping about on the furface of the wheat, without being able to penetrate it, I cut feveral of the grains in pieces, and by this means many of the maggots were kept alive.

Towards the end of the month of Scptember, I received from a baker a handful of very excellent rye, with many of thefe maggots in it, all which I put into a large glafs velfel, and I obferved the maggots quit the rye and creep up the fides of the veffel. I then burnt a fmall quantity of fulphur in it, and in a fhort time they were all killed.
It may not here be unworthy of notice, that, in the glafs tube before deferibed, and in which I imagined I had put nothing except wheat, and the caterpillar or maggot, of which I have been treating, I found a Weevil make its appearance : this creature I kept in the glafs to fee if any more would appear, and I obferved, that in the winter or in cold weather it lay motionlefs as dead, but upon applying fome warmth, it would revive. At length, after keeping it upwards of eighteen months, in which time, I did not oblerve any more of the fpecies, it died.

## ( 31 )

Moreuter, while I was examining the granary before mentioned, I faw many rery minute animalcules*, no bigger than grains of fand, crecping up the walls. Some of thefe I brought home with me in glafles, and I obferred them to couple together, and to lay exceffively minute eggs, which eggs, after fome time, produced animalcules formed like the parents. By this it appears that thefe little creatures propagate their like, without undergoing any fuch change as is obferved in fleas, moths, flies, and many other infects: I think, however, it is fully proved, that no living creature is produced from corruption or putrefaction.

Indeed, can any man in his fober fenfes imagine, that the moth, of which I have given the defcription, which is fitly provided by nature with the means to propagate its fpecies, furnifhed with eyes exquifitely formed, with horns, with tufts of feathers on its head, with wings covered with fuch multitudes of feathers, all of different thapes, and thefe exactly covering the wings in every part; can this moth, I fay, adorned with fo many beauties, be produced from corruption? For, in a word, in this little creature, contemptible as it feems to us, there fhine forth fo much perfection and fkill in the formation, as to exceed what we obferve in larger animals.

[^14]

## Or the SPIDER.

KIE following obfervations were made on thofe kinds of Spiders which are found in gavdens; where they fix their webs to vines, herbs, and Snrubs.

I have oiten feen thefe Spiders, when dropping, or falling, as it feemed, from a tree, fop or fippore themfelves in the midway, by means of their thread, and I found that this was done by the help of one of their hind feet, which they continually apply to the thread as they fpin it. Thefe feet are each of them furnifhed with three nails or claws, ftanding feparate, or apart from each other. Two of thefe claws are at the extremity of the foot, and cach of them is formed with tceth, or notches, like the cuts in a faw, growing narrower towards the bottom; and with thefe they are enabled to hold faft the thread, in like namner as the pulley or wheel, ufed by clockmakers, in their thirty-hour clocks, is contrived to lay hold of the clock-line, by means of the groove being narrower at bottom. For the more perfectly underfanding this formation, I caufed the following figure to be drawn.

Platell. fig. 17, A BC DE F, reprefents a fimall part of the Spider's hind foot, magnified, and at BCD, are flewn the two claws, or nails, with the notches or teeth in them, as before defcribed: at letter E , is feen the third clatr, which is deflitute of teeth or nothes, but, ak I conceive, ferves for various ufes to the anmal, and this is always to be noted, that when the Spider does mot want to afcend to an height, but only to lay hold of the ricb it has fpun, it always ufes this claw for that purpofe.

The kind of Spider I am now detcribing, has the hind part of its body much larger than is feen in other Spiders; it is provided with eight longer and two fhorter legs. which fhorter ones are placed in the fore part of its body on each fide of the head, and all furnifhed with an indented or notched claw as before deferibed. Some will lave it, that Spiders have no more than eight legs, but this appears to be a miftaken opinion.

In thefe Spiders I plainly perceived eight eyes, two of which are placed near to each other at the top of the head, and, in my judgment, defigned to fee thofe objects which are above the animal. Two others of them are fituated a little lower down, in order to difcorer all objects in front; and on each fide of the head are a pair of eyes clole to each other, and of thefe, the two which ftand forward, are to take in the view of all objects lying obliquely, or not ftraight in front; and the two which fand backward, are undoubtedly diefigned to behold all objects behind the animal. And if we confider that the pupils of thefe eyes are immoveable in the head, we may eafily conclude, that this number is neceflary, for enabling the Spider to behold all circumjacent objects, and to go in fearch of its food.

That the form of thefe eight eyes, and their fituation, may be more eafily conceived, I have caufed a drawing to be made of them at fig. 18, GHIKLMNO, which reprefents a part of the Spider's head; $P Q$, are the two cyes which look upwards, $K$ and $L$, the two defigned to view objects in front, I and M , thofe which take in objects obliquely in front, and H and N thofe which look obliquely backwards.

I have often heard it faid, that the Spider has a fting, with which, it is alfo reported, it can kill the toad; but no one could tell me in what part of the body this fting was placed, therefore, I concluded that if there was one, it muft be in the pofterior or hind part, as in other animals and infects; but on examination, I found this opinion to be gromadlefs. The Spider is, however, provided with two
organs or weapons anfwering cvery purpofe of a fting, which are placed in front of its head juft below the cyes, and when not in ufe; they lic between the two fhorter feet.

Thefe weapons or inftuments of offence, which are bent in the nature of claws, are very fimilar to the fing of the Scorpion and the fangs of the *Mill-peda of India, and in each of thefe fangs (for lo I will call them: is a fmail aperture, through which, in all probability, a liquid poifon is emitted by the Spider at the time it inflicts the wound.

At $f i g .19, \operatorname{ABCDEFGHIKLM}$, are reprefented both thefe fangs as feen through the microfcope: $B C$, is one of them when lying frill, HIK fhews the other, railed to frrike. At C and I , is to be feen the finall aperture + I have mentioned, which aperture appears the fame on both fides of each fang, and through this we may reafonably conclude that the Spider ejects its renom. At the letters EFG, is a double row of teeth, betwcen which each fang is placed when at reit, and the ufe of thefe tecth feems to me to be for the firmer gralping the prey, that when bitten it may not elcape. All the other parts of thefe weapons or organs which are reprefented in fg. 19, were thick fet with hairs, but which it was not thought neceflary to exhibit in the drawing.

I at feveral times inclofed two or three large Spiders in the fame glafs, and always found that when they approached each other, they

[^15]* Employment for the Microfene.


## ( $3^{8}$ )

would fight to that degree, as to be covered with the effufion of blood from their bodies*, which was foon followed by the death of the womded Spider. I allo obferved, that the finaller Spiders always avoided the larger, but when two of nearly equal fize approached each other, neither would give way, but both of them grappled together furioufly with their fangs, till one of them lay dead upon the fpot, its body being as wet with the blood flowing from the wounds received, as if water had been poured upon it.

I at one time had a Spider which was wounded by the bite of another in the thickeft part of its leg, and from the wound there iffued fome blood, in quantity, about the fize of a large srain of fand; this wounded leg, the Spider held up, as umable to ufe it, and foon afterwards the whole leg dropped from its body: whenever the breaft or fore part of the Spider was wounded, I always obleired the wound to be mortal.

I had imagined, that when a Spider applied its thread either to fome foreign fubfance or to another thread, that the thread newly fpun muft be covered with fome vifcous or glutinous matter by which it became faftened, in like manner as we obferve in Silk-worms threads. But I now found that the Spider cannot fix its thread to any thing, withont imprinting the hind part of its body on the place, by which preffure, it emits an incredible number of exceflively fmall threads, diverging in every direction, from whence we may conclude, that as foon as the threads are expofed to the air, they lofe their vifcofity or glewy quality.

When I at ifrt began the diffection of the Spider, and endeavoured to difcover the vifeous or gummy fubfance from whence the fe threads proceed, and could not fatisfy my felf in that particular, I was atonifhed, not being able to conceive how, from fo moift a

[^16]body as this creature's, there could in fu thort a time, be produced threads ftrong enough to bear the weight, not only of one, but of fix Spiders at a time. And upon endearouring to difeorer the texture of the thread, I could at that time perceive no more, than that the fame thread appeared in fome places to be one and entire, and in others, to be compofed of three, four, or more threads ; and though I often endearoured to obferve thofe threads immediately as they illied from the Spider's body, I could not obtain a perfect view of them, notwithftanding which, I did not doubt, that what is commonly fuppofed to be one thread, is, in fact, compofed of many.

I detemined therefore, fo to fix: a Spider on its back, that it could not move the hind part of its body; and this leing done, I contrived with a fmall pair of pincers to draw out from the body, that fimall part of the thread which projected from the organ or inftrument from which the threads proceed, and then I perceived a great number of exceeding fmall threads iffie forth, which, when at about one or two hairs breadth diftance from the Spider's body, united in one or two threads, and that in this manner the larger threads were compofed.

Not content with thefe obfervations, I fat about devifing means of keeping the threads feparate, as they iffue from the Spider's body, fo that I might be able to give fome reprefentation of their inconceivable finenefs, and at three leveral times I fucceeded herein to my wifh. But yet, this finenefs cannot by any efforts of the pen or pencil, be adequately defcribed. For upon applying the utmoft magnifying powers of the microfcope, threads are difcovered fo exquifitely flender, as almof entirely to efcape the fight. I have fometimes endeavoured to count thefe threads as they iffued forth, but always without fuccefs.

The Limner, to whom I exhibited this object by the microfcope, declared, that it was not in his power to give a true drawing of it

With the pencil, but that by an engraving, it might in fome meafure be reprefented. This is done in fige 25, MNOPQ. being a portion of thefe threads, as magni' ed by the microfoope, and pietured fepawate and ditinet from each other, as they iffied from the body of the animal. Thefe feemed to me to iffue from two of the ergans, which - fhall prefentiy defribe.

If we duly conider that the threads of Spiders, which to the maked eye leen to be fingle, are compofed of many fmaller ones, and that they thence acquire the firength we obferve them to have. we thall more than ever be aflured, that no flexible bodies (except thole made of metal, the component particles of which are, by the force of fire, moft clofely compacted or knit together), can have any great itrength or toughnels, milefs they are compofed of oblong parts laid fide by fide, and that their ftrength or toughmels will be greater where thefe oblong component parts are twiffed together, or made to cohere by fome glutinous matter, as are fpun filk, linen garments, ropes and the like. And this is the reafon why all the fingle threads of flax are very toug' in proportion to their fize, for each of them is compofed of fill finaller particies or fibres, which are not only joined together by a certain vifcous or gummy matter, but are ailo furrounded with a cont or bark, as it may be called, whereby their inward component fibres are rendered fill ftronger

Again, if we advert to the great number of exceffively flender threads, proceeding, all at the fame time from the body of the Spider, we muft acknowledge that this kind of formation is neceflary, for were it a fingle thread which is fpun by this creature with fiuch celerity, the liquid matter of which it is formed, could not on its expofure to the air, become a folid fubfance fo quickly as thefe leffer threads ; an hundred or more of which, taken together, cio not in my opinion equal the hundredth part of one of thofe hairs I can take from the back of my land.

## ( $44^{1}$ )

In a word, the infcrutable power and wifdom of the Almighty Creator, are manifefily difplayed in the formation of fuch a thread as the Spider's, the wonderful make of which is feldom obferved, becaufe the finenefs and delicacy of its texture are not difcernible by the naked eye.

Upon beholding the exquifite flendernefs, and allow the multitude of thee threads, I was ftruck with aftonifhment, upon confidering how wonderful muff be the organs in a Spider's body to produce fo many, and at the fame time all diftinct from each other. And although I never expected that I fhould be able to dive into this fecret of Nature, yet, upon diffecting the hind part of one of the largeft Spiders I could procure, and attentively examining it, I at length. with the greateft admiration, perceived a great number of exceffively final organs, from each of which, one exquifitely fine thread proceeded, and thee were to many, that I thought their number muff at leaft exceed four hundred. They were not all placed clofe tonether, but in eight diftinct foots or compartments, fo that if the Spider ufes all thee organs at the fame time, eight feveral threads may be formed, each of which will confift of a great number of faller ones. Again, thee fmaller threads differ in fize, for one of the organs will be feel to fin a thread twice as large as the next adjoining to it.

If any perfon examines by the microfcope that part towards the extremity of the Spider's body, from whence its thread proceeds, he will observe the foot to be, as it were, furrounded by five feveral protuberances or rifings, each ending in a point, and altogether forming a kind of enclofure; but from the anterior or forwardeft of the fe five protuberances no threads proceed. The other four, on their outer fides are thick feet with hairs, fo that all the fmaller organs defined to fin the threads, are fituated towards the infide, the ealon of which, I take to be, that they may be preferred uninjured,
when the Spider is creping into holes, where it does not want to fpin its web, or while ruming along the gromid, or after its prey. SVhen thefe laft mentioned four protuberances are put afide from each other, the:e will be feen in the middle or face between them four limaller ones, each fumilhed with the like organs for fpimning threads, but lefer in fize and fewer in number.

Thefe organs for fimning, being by this means all expofed to view, exhibit the appearance, as it were, of a field, thick fet with an incredible number of pointed parts, each producing one thread; but thefe pointed parts are not made gradually tapering from the bafe to the point; they are formed, as if one were to imagine a fmall reed fomewhat tapering, having a ftill fmaller one joined to its taper end*, and this latter terminating in a point, which point, in thele organs I am now defcribing, is as fine as imagination can conceive.

Now if we lay it down as a fact, that a young Spider which is feveral hundred times fimaller than a full grown one, is furnifhed with the fame organs as the larger, and that, as the Spider, fo the organs do by degrees grow proportionably larger, the neceflary cor:clufion is, that the threads fpun by a young Spider, are many humdred times finer than thole fpun by one full grown, which exquifite flendernefs, it feems beyond the power of the human mind to form a true idea of.

I have given a reprefentation of fome of the organs, by which thefe incredibly fmall and numerous threads are fpum, as nearly as the Limner was able to draw them, when feen by the microfcope. And, at fig. \&1, RSTV, exhibits one of the four external parts or protuberances I have been defcribing; this part, including all which with it is reprefented in the figure, was not in its natural fize fo large as a common grain of fand, from whence fome judgment may be formed how minute muft be thefe organs, and how exquifitely fine the threads which iffue from them.

$$
\text { * See fig. } 2 z .
$$

## (. $4: 3$ )

In this figure, that part which is marked with the letter W: was covered with as many organs, and thofe placed as ciofe together, as are reprefented between the letters K and $S$, but as thefe latier, flanding directly in front, could not by any means be diftinctly fhewn in the drawing, I ordered that fpace to be left vacant: the part which is out of fight, was not covered with thefe organs but with hairs.

While I held this objeet up to the Limmer's view, I turned rotind the different parts of it, that he might declare how many of the organs for fpinuing the threads, in his judgment, it contained, upon the view of which, he was confident that there were above one hundred.

I have before mentioned, that fome of thefe organs appeared to me to be larger than others, and that I fuppofed their ufe was for fpimning the larger threads. One of thefe, as it ftood between two fimaller ones, I placed in view of the Limmer, directing him to make a drawing of it. This is feen at fig. 22, C FF, and in the fame figure, at the letters AB and DE, are reprefented the two leffer organs, from one of which, a thread is feen to iflite.

After this, I took a fmall Frog, whofe body was about an inch and an half in length, which I put into a glafs tube together with a large Spider, in order to fee the actions of thefe two animals when brought together; and I obferved the Spider pafs over the Frog without hurting it, though with its fangs dilplayed as if to attack the Frog. Upon this, I cauled the Frog to fall againft the Spider, who, thereupon, flruck his fangs into the Frog's back, making two wounds, one of which exhibited a red mark, and the other a purple fpot. I then brought the Frog to the Spider a fecond time, who, thereupon, firuck his fangs into one of the Frog's fore feet, whereby lome few of the blood veffels were wounded. And having provoked the Spider a third time, he ftruck both fangs into the Frog's nofe.
prefently after which, I took the Spider cut of the glafs. The Frog, thus wounded, fat without motion, and in about the fpace of half an hour, it firetched out its hind legs and expired.

The next day I brought another Frog, about the fame fize as the former, to the fame Spider, but though it was twice wounded, I did not perceive it to be injured thereby, perhaps becaufe the Spider's bite may not be fo senomous in our climate as in warmer regions, or elfe, that the poifon of this Spider might have been exhaufed by former attacks; the Frog I threw back into the water whence I had taken it.

Towards the end of October, I took feveral of the largeft Spiders that could be got, and placed them in glaffes apart by themfelves, in onder to wait for their laying eggs, which I purpofed to open, and examine the contents. Two of thefe Spiders, after being confined ten or twelve days, I found had laid their eggs, and enveloped them in fo thick a web, that I was aftonifhed to behold it, confidering that it had been fpun in a few hours fpace.

Some of thefe eggs I opened, and found the infides to be of a yellowilh colour; the form of cach egg was almoft round, and nearly the thirtieth part of an inch in diameter, and the whole collection of cggs laid by one Spider compofed a rounding figure, almoft fpherical, nearly half an inch in diameter, from whence may be compited how great a number of eggs the Spider lays. And one would almoft think it impoflible for fo many to be contained within this creature's body; fince upon viewing them with the naked cye, as they lie together in regular order, they occupy a larger face than the fize of the animal itlelf. But it muft be confidered, and it is what I have often experienced in opening Spiders, that the eggs while within their bodies are not of a globular figure, but being very foft they lie compreffed together, and therefore are of divers thapes, but as foon as emitted from the Spider they allime a fpherical form, by
reafon of the equal preffure of the atmofphere on every part of them ; and when of this round figure, being placed in exact order, fide by fide, and only touching each other in a point, they muft neceffarily, to our view, occupy more fpace that they did while in the animal's body.

I at firft was not able to conceive by what means the Spider could place its eggs fo exactly in the centre of the web, but now I was fatisfied in that particular, for while I was obferving a third Spider which was fixing a web to the glafs in order to lay her eggs in it, I faw that firlt fhe made a kind of thick layer of threads, and faftened them to the glafs before the began to lay one egg ; and it was moft worthy of remark that this layer or fratum was not flat, but curioufly made with a romodifh cavity. In about three quarters of an hour's fpace, upon again obferving the Spider, I faw that this cavity was not only filled with eggs, but that eggs were piled up above the edges of it to the fame heighth as the hollow of the cavity below, and the Spider was then bufied in Spinning a web to enclofe the eggs on every fide. For this purpofe fhe employed not only the hind part of her body from whence the threads were fpun, but her two hinder feet, with which the placed the threads in due order. And now all the organs ufed in producing the threads appeared in view, each of them in the act of emitting its particular thread. I alfo obferved the Spider elevate the hind part of its body about the breadth of a firaw, and then fix the thread which by the elevation had been drawn out to that length, to the web which was already fpun about the eggs.

I was very defirous to fee a Spider in the act of laying its eggs, which at length 1 obtained a fight of, and obferved that they were not emitted from the fame part as is ufual in all other minute animals; but from the fore part of its belly, not far from the hind legs, and near the place, I obferved a kind of little hooked organ, handfomely fnaped, which I had often before feen in this anmal, and

## ( $4^{6}$ )

could not imagine for what purpofe it was defigned ; but now I perceived, that it extended over that part whence the eggs iffied, and I therefore conjectured that its ufe was to depofit them in regular order within the web prepared to receive them. To gire fome Teprefentation of thefe parts, I caufed a drawing to be made of a middling fized Spider, lying flat on its back, with the legs contracted, as if it were dead. This is fhewn in fig. $\simeq 3, \mathrm{ABC}$, and near to letter D is the hook juft mentioned.

This hook I then feparated from the Spider's body, and placing it before the microfope I delivered it to the limner, that he might make a drawing of it as it appeared to him. This drawing is given at fig. 24, GHIK, and therein between the letters I and K, certain folds or wrinkles appear, this organ being fo formed as to have a greater extent of motion and action than ufual. The letters EF denote that part which was joined to the Spider's body.

On the firft of Janary, I put fome Spider's eggs into a glafs tube which I conftantly carried about me, in order to difcover whether by the warmth I imparted to them, they would be hatched fooner than the ufual time, which is in the fpring ; and on the 17 th of January I faw above twenty five young Spiders compleatly hatched, and as many more half way out of the eggs ; and in the evening of the fame day I counted above an hundred and fifty young ones. The next day, the number was not increafed, for the remainder of the eggs, to the number of fifty, or thereabouts, were either barren, or the young Spiders were dead within them.

Upon expofing the glafs tube at this cold feafon, to the air for about a quarter of an hour, the young Spiders lay without motion, but upon applying fome warmth to it, they began to move, and the greater number of them crouded themfelves together in an heap, after the manner of bees, within the web where the eggs liad been. On the 21 ft of January I could difiern eight eyes in each of them,
which till then had not been vifible, and on the 25 th of January they began to fpin webs in the fame manner as full grown fipiders.

I had hitherto been at a lofs to conceive how this great number of young Spiders could be fupplied with nourifhment, confidering that the natural food of this creature is the fubflance of other infects; but I now perceived that they had fed on the barren eggs which had been left in the glafs, and they afterwards devoured one another till they were reduced to a very few in number.

I have often compared the fize of the thread fpun by full grown Spiders with a hair of my beard. For this purpofe I placed the thickeft part of the hair before the microfcope, and from the moft accurate judgment I could form, more than an hundred of fuch threads placed fide by fide could not equal the diameter of one fuch hair: If then we fuppofe fuch an hair to be of a round form, it follows that ten thoufand of the threads fjun by the full grown Spiders when taken together, will not be equal in fubftance to the fize of a fingle hair.*

To this if we add that fourp hundred young Spiders at the time

* This is found by multiplying the number of Spiders' threads, conftituting the diameterof the hair (which the Author computes to be one hundred) intu itfelf, the contents of cylinders (which round threads may be called), being in the fame proportion as the fquares of their diameters-

| therefore |
| :---: |
| multiplied by the fame number |
| the fquare will be |$+100$ diameters of the thread

and this being multiplied by
pared with an old one, gives four millions, the proportion affigned by the Author to the young Spiders' threads.

The Author's manner of computing thefe very minute dimenfions, is fully explained in the Introduction.

+ The difference in the fize of garden Spiders in Spring and Autumn, muft have been noticed by almoft every one, and the Author in his computation, confiders thern as fpheri-
when they begin to fpin their webs, are not larger than a full grown one, and that each of thefe minute Spiders pofleffes the fame organs as the larger ones, it follows, that the exceeding fmall threads fpun by thefe little creatures, muft be ftill four hundred times flenderer, and confequently that four millions of thefe minute Spiders' threads camot equal in fubfance the fize of a fingle hair. And if we farther confider of how many filaments or parts each of thefe threads confifts, to compole the fize we have been computing, we are compelled to cry out, O what incredible minutenefs is here! and how little do we know of the works of Nature!

I never could procure a fight of thefe animals when coupling together, either in the gardens or fields, nor when inclofed in glaffes, for I always perceived the female to run away at the approach of the male, and having at one time inclofed three male Spiders with a female in one glafs, the female flew at the males with fo much fury, and wounded them to fuch a degree, that blood iffued from their legs and feet. Herempon I killed the female, and the next day I faw two of the males lie dead, and the furvivor employed in devouring the dead female.

Thefe are the chief of my obfervations on the Spider, an animal held in fuch deteftation by many, that they dread even the fight or approach of it, but in which we find as much perfection and beauty as in any other animal.

[^17]
## Of the SILK worm.

$\mathrm{T}_{\mathrm{H}}$HE Royal Society having recommended to my examiination, the fruitful and barren eggs of the Silk-worm, I procured a number of thofe eggs, which had been lately laid by the Moth or Butterfly produced from that infect ; this was about the beginning of the month of September. Thefe eggs, when firft laid, were of a yellowifh colour, which in about two days time affumed a reddifh caft, and at fix days end they appeared to the naked eye of a liver colour. feveral of them I opened, by taking off the upper part of the fhell with as light a touch as poffible, and in every one of them I obferved an exceeding fimall and delicate membrane, which to the naked eye appeared blackifh, but on examining it by the microfcope, I found the real colour to be violet, but where the violet particles compofing it lay clofe together, they affumed a blackifh appearance. This membrane lay next to the fhell of the egg, and I imagined, that within it the future Silk-worm would be formed; and in the part where this membrane was joined to the fhell, I faw a minute fpeck or fpot, which I concluded to be the vital principle, and the rather, as this fpeck was wanting in thofe eggs which I found to be afterwards barren; and it is further to be noted, that in the barren eggs no fuch membrane as I have mentioned was formed, nor did they change their original yellow colour. This membrane in a fhort time extended over the whole infide of the egg, and being feen through the fhelI, which is tranfparent, caufed it to appear of a bluifh colour.

Some of thefe eggs, which were fix weeks old, I put into a flat
fcrewed box, which in the day time I carried in my pocket, and at - night placed befide me in bed, that they might continually be kept warm : and in another box of the fame kind, I put fome more egss, three weeks old, and thele my wife (who was always very warmly clad) conftantly carried in her bofom. This we did, to try the experiment, whether it were polible to promote the growth of Silkworms in the autumn.

In the month of October I opened fome of the eggs which I had thus kept by me for about a month, and in one of them, I obfersed a minute Silk-worm, about the thicknefs of an hair, and proportionable in length, but I was not able to diftinguifh any particular parts in its body. In the fpace of ten days more, I found larger worms in the eggs, whereupon, I opened fome of thote which my wife had carried about her, and in thofe, I faw Silk-worms, which by the microfcope, appeared as large as one's finger, and thefe I propofed to have given drawings of, but the animals foon drying, and all the moifture in the eggs evaporating, they entirely loft their figure, fo that neither the head nor tail, nor any other parts of their bodies could be diffinguifhed, although I had very plainly feen them when the eggs were firft opened.

After this, I from time to time opened others of thefe eggs, but I could not perceive any farther growth in the animals, and at length all the moifture in the eggs fo dried away, that they loft their fhape and became flattened.

In the beginning of May, in the following year, I opened feveral of the eggs which had remained all the winter in my ftudy, and then I obferved minute Silk-worms within them, and a kind of globular particles lying clofe to them, which I jedged would afterwards be formed into the limbs of the animals.

Towards the end of this month, the Silk-worms increafed in growth very rapidly, fo that on the 20th of May, upon opening feveral of the eggs, I could perceive, not only feveral parts of each
amimal's head, but alfo a great number of fimall veffels in it which branched out into others extending all over the body, particularly to thofe parts where I could perceive the claws begin to appear, and which, therefore, I concluded, were nourithed by thofe veffels. In fhort, I faw fuch multitudes of veffels, with their branches, all of a blackifh colour, as is not to be conceived, for when thefe branches became beyond meafure flender, they loft their dark tinge, and at length became invifible. And I can fafely fay, that I do not think I have feen fo many arteries pictured in the drawing of an human body, as appeared in thefe objects, which I fhould have given a drawing of, but the moifture in thefe minute veffels dried fo quickly, that they lof their figure, and could no longer be diftinguifhed.

On the 21 ft of May, I opened feveral more eggs, and faw that many of the Silk-worms in the fpace of the laft twenty-four hours were fo much grown, that they appeared compleatly formed, for I could not only fee the head perfectly formed with all its parts, but alfo all the claws and limbs, and the body every where covered with hairs : upon opening thefe Silk-worms, I faw the inteftines, and now the membrane, which hitherto had inclofed the animal, was difappeared, the fubfance thereof by this time having paffed into its body, which had affimed a blackifh colour, but the head was particularly black, and I perceived fome motion in the animal when taken out of the egg.

The next morning, upon opening more eggs, each Silk-worm which had lain in a round pofture within, immediately extended itfelf and crept about,' and I found that all the moifture which I had hitherto obferved in the eggs was gone, it having paffed into the body of the worm, which was perfectly dry. In the afternoon of the fame day, I obferved that feveral worms had crept out of the eggs placed in my clofet, whereupon I fat about examining the remainder of thofe egrss, chufing fuch of them, wherein the formation of the ani-
mal appeared to be leaft advanced, whereas before this I had opened the moft perfect ones: and thefe I found in the fame forwardnefs of growth as the egers I had opened on the 2oth of May, and by this time all the dark coloured bodies of the animals, efpecially the head, might plainly be difcerned through the tranfparent fhell.

This rapid formation of the Silk-worm, and its motion within the egg, excited in me the greateft admiration, and if I had not profecuted the obfervations I have been relating, I fhould have thought it abfolutely impoffible : for, in the preceding autumn, I had placed thefe eggs in a much greater degree of heat than they were now expoled to, and yet I could not at that time promote the perfect formation of the animals within them. And, from my prefent obfervations, I was led to conclude that it has been an effential property of this creature, implanted in its fpecies at the firft creation, that the vital principle muft lie fhut up in the egg for more than the fipace of fix months, without any augmentation of its fubftance, except in the formation of that part which is to ferve firft for the defence and prefervation, and afterwards for the nourifhment and increafe of the animal, and this is the membrane or fkin I have before deferibed; and that were it not for this provifion made by nature, the whole fpecies of the Silk-worm would be liable to perifh in one year: for if a warm feafon in autumn fhould caufe the worms to be excluded from the eggs, the fucceeding cold and rains muft prove their deftruction.

I obferved that the Silk-worms always came forth from their eggs in the moming, and not in the afternoon. To afcertain this, on the laft day of May, in the evening, I counted the eggs I had then left, which I found to be about two hundred. The next day, namely, on the firft of June, at fix in the morning, ninety-feven Silk-worms had come out of their eggs, and the fame day at dimer-time, or about one o'clock, thirty-two more. In all the afternoon, although the atmolphere was warm, only one made its appearance; but the next
day, at feven in the morning, forty more were excluded from their eggs.

I always found, that the opening in the fhells, through which the worms crept forth, was blackifh about the edges, and, as I could not conceive this blacknefs to be caufed merely by the touch of their bodies as they crept through the opening, I carefully obferved the animals at the time they were employed in biting or gnawing open. the egg, and I always perceived, that in doing this, they frequently emitted a blackifl watery humour or liquid from their mouths, with which they moiflened the fhell in that part where they were biting it, and this not merely on the infide, for when they lad made the aperture large enough for them to emit this liquor on the outfide, they then moiftened the thell both within and without. I alfo obferved, thas when the worm was about moiftening the fhell, it ceafed biting or gnawing for a fhort time, until (as I fuppofe) it had brought into its mouth a portion of the liquid for that purpofe, in like manner as oxen, while chewing the cud, defift at intervals for a fhort fpace, mutil they have produced a frefl portion of their food from their fomachs.

From hence I concluded that without this kind of liquid, it would be impoffible for the young silk-worm to open to itfolf a paffage through the fhell of the egg. And I faw that the anmal was very fparing in the confumption of this liquid; for in that part where it had moiftened the flell, it continued to bite or gnaw (without move. ing to a frefh place), until (as it appeared to me) it had eaten or taken into its mouth the liquid, and the bitten or feraped-off part of the fhell. At which inconceivable perfection in this little creature, I. was ftruck with aftonifhment, and I drew from it this conclufion in my mind, that not only the Silk-worm, but other creeping infects, when come to maturity in their eggs, do emit fome liquid matter from their bodies, in order to foften the fhell in that part where they are endeavouring to break forth, and poffibly this liquor may have in

## ( 5 t )

it fome acute or corrofive falt, fitted for foftening the fhell of the egg.

1 camot quit this part of the fubject, without exhibiting the formation of the Silk-worm's egg, becaufe the feveral particles of which it confifts, are fo firmly and clofely united together, that they preferve the liquid fubfance within the egg many months without the leaft evaporation.
Plate II. fig. $2_{5}$, F GH, is the thell of the Silk-worm's egg, opened by the animal, as it appeared to the limner through the microfcope; G H, is part of the aperture which the worm, by biting or gnawing, opened for itfelf, and through which it crept out of the fhell.

Some years after the preceding obfervations, I further profecuted my enquiries by obferving the Silk-worms as they advanced in growth, which I could eafily do, having two mulberry trees in my garden, which fupplied me with food for the worms, of which I had three or four hundred.

I have often by the microfcope examined the cuticle or thin fkin which is thed by thefe infects the $*$ laft time before they are full grown, and particularly the more folid part of it which covers the head ; and with great wonder, I beheld in it all the organs or members with which the head is furnifhed, and particularly I faw a mumber of eyes difpofed on each fize of the head, in fit order to enable the animal to fee every object around it: further to examine which, I have feveral times cut off the heads of full grown Silk-worms, for ${ }^{-}$ otherwife they were in fuch continual motion, that I could not clearly diftinguifh thefe eyes. When the Silk-worms were changed into aurelias, I faw the fkins of their heads and the refi of their bodies, which they had put off on the change, and upon examining thefe by the microfcope, I always found the homy coats of the eyes in their caft-off fkins. Several parts or pieces of the head with the eyes in

[^18]them, I placed before the microfcope, and delivered them to the limner, that he might make a drawing of one of them.

Fig. 26, QRS T V W, reprefents one fide of the Silk-worm's head, with fix eyes placed therein ; on view of which, it plainly appears that the eye marked with the letter $Q$, is defigned to view objects directly in front; that marked R , to look a little obliquely forwards, and at the fame time upwards; the eye marked S, to look on one fide, and at the fame time a little upwaids; that marked T , to look rather backwards, and alfo obliquely upwards; the eye marked V, to look entirely backwards; and that marked W, downwards. And, confidering that the eyes of thefe creatures are immoveable, the number and pofition of them as before defcribed (fix on each fide), are the beft calculated for enabling the animal to fee all circumjacent objects.

At the fame time, I obferved the teeth or pincers with which the head is provided, and with which this animal bites or chews the leaves it feeds on; a row or fet of thefe teeth is placed on each fide of the head, and they moft exactly fit into or correfpond with each other. Fig. 27, A BCDE, reprefents thofe teeth which wereplaced on the right fide of the head, and here may plainly be feen how each tooth has a thicknefs or rifing about the middle of it, in order to give it frength, whereas the parts of the tecth between D E, are exceedingly fharp and fine, in order more effectually to cut or chew the leaves: and each of thefe teeth has the lame thicknefs or rifing, both on the infide and outfide. The part reprefented at ABCD , appears very thick in proportion to its fize, but upon more narrowly examining it, I found that this thicknels did not confift of a folid bone, but was hollow within, which cavity probably had been filled by fome kind of mufcle. At A and B, appear two round boney parts, which in my opinion fit into hollow fockets in the head, fo as to give the tecth free and fufficient motion,

## ( $5^{6}$ )

When I firft examined the Silk-worm's thread by the microfeope, it feemed to me not to be of a round form but flat, for the fame thread appeared in fome places four times thicker or broader than in others; I alfo thought, that each of the threads was double, or compofed of two others, forafimuch as the middle of the thread always feemed darker than the reft, and the whole appeared, as if one were to fuppofe, two tranfparent threads lying clofe and parallel to each other, and glued or faflened together, and each of thefe two threads not to be fo pellucid at the fides as in the middle.

I next confidered with my felf, whether thefe fingle threads might not be compofed of many fmaller ones, and having at length found means to break or feparate them into very fmall fragments, I plainly perceived each of them to be compofed of a number of excelfively mimute filaments.

Farther, I placed a Silk-worm which was begiming to fpin its ball or covering, in a glafs tube, large enough to give the animal liberty to move and turn itfelf about, and I obferved it to fix the thread in varions places, fometimes to the glafs and afterwards to the threads already fpun, by means of a certain glutinous or gummy matter, with which the threads are fmeared when they firft ilfue from the animal's body. In the progrefs of its fpiming or forming its ball or cone, the Silk-worm frequently changed its pofition, and carried the thread by various turnings and windings in every direction, it being implanted in this creature by nature, always to form its cone or web of an equal fubftance and frength in every part next its body.

Upon examining this cone or ball of filk by the microfope, I perceived in hundreds of places, that the threads of which it was compofed, were not fingle but double threads, and this was more particularly diftinguifhable in thofe places where they were bent in a very fhort elbow or turning in their fixure, either to the glafs or to one another. This is explained at fig. $28, \mathrm{ABCD}$, which reprefents
a very fmall particle of the Silk-wom's thread, and this is here feen to be formed of two others, which, for the greateft part, are joined together as at letter A, but where there is a fhort turning or winding they are feparated, and appear in two parts. This double thread remains united, by means of the vifcous or gummy matter before mentioned, until, by being immerged in water, the gum is diffolved.

Now, if we confider that the Silkworm's threads are not round but flat, we fhall prefently difcover the reafon why no fubftance, whether of wool or hemp, how fine foever it may be, can be formed into cloths or ftuffs, that will compare with filken garments in the gloffinefs of their appearance. For, the flat furfaces of the filken threads, reflect the light more copioufly and ftrongly, producing their glittering or gloffy appearance, whereas the light which dhines on fmall round bodies is very little reflected from them.

In order to exhibit the flatnefs of thefe double threads more plainly to the limner, I twifted fome of them a little, and then placing them before the microfcope, I caufed him to make a drawing thereof. One of thefe threads is fhewn at fig. 29, EF GHI, and between the letters FG and HI, it is pictured as feen obliquely, proving that the threads as fpun by the worm are not round but flat; they are likewife fo tranfparent, that one thread can eafily be feen through another which is placed upon or over it.

Let us but attentively confider the make and compofition of fuch a thread as the Silk-worm's, bearing in mind alfo, how wonderful muft be the ftructure of the creature's body from which thele double threads are produced, each of which again confifts of a great number of oblong particles or fmaller filaments ; and when we further reflect that from fo moift and watery a body as is the Silk-worm's, fuch ftrong and tough threads are produced, capable of being applied to the many purpofes we continually experience, who, upon leeing ald
this, can refrain from exclaiming with me "How infcrutable and incompreheníble are the hidden works of Nature !"

The filken cafe or web of which I am now treating, and which the induffry and ingenuity of mankind has converted to fo many ufeful purpofes, is conftructed by the animal for no other end than that, when its change into a chryfalis or aurelia approaches, and it cannot then be concealed under the leaves of the trees, nor can during the time of its change adhere to any thing, nor even change its place, and during all that time lies as it were motionlefs, it may be preferved from becoming a prey to birds; and this I am well convinced is the cafe with all infects of the caterpillar kind, which, when they are full grown, and their change approaches, wrap themfelves in fome kind of web or covering.

But my chief object, in all thefe my obfervations, was, to difcover as much as poffible the nature of that organ from which thefe two threads proceed, and by what contrivance they are joined fo clofely together : the common opinion refpecting which threads is, that they iffie from the animal's mouth. For this purpofe I found it neceffary to fix a Silk-worm on its back, and then the organ, which is placed below the mouth, appeared in fight. Fig. 30, A B C, exhibits this organ. The parts marked DE and FG are placed below the mouth, and the organ from which the threads iffie is fituated fill lower. While the limner was making this drawing, fome part of the teeth appeared in his view, which he alfo included in the figure, at the letters HIK, and this was done, more clearly to prove, that the threads do not proceed out of the Silk-worm's mouth, as is the rulgar opinion.

After I had difcovered the particulars above enumerated, I endeavoured to inveftigate the matter or fubftance from which the threads are formed in the body of this infect. For this purpofe I cut off the heads of feveral silk-worms which had begun to fpin their web or cone, and then I faw, befides the other internal parts, two oblong
and round bodies four times folded or doubled together, which I took out of the animal's body. Thefe parts were almoft twice the length of the Silk-worm, and at one end, the fituation of which I conceived was in the head, they terminated in a point, and fometimes I faw iffue from this pointed end, an exceffirely flender thread, four times the length of the Silk-worm.
Thefe organs, or rather veffels, in the thickeft parts of them, were of a red colour, yet when examined by the microfcope they feemed yellow; but when I feparated the inner from the external part of them, the exterior part fecn by the naked eye appeared of a perfect yellow.

Fig. 31, LMN, flhews one of thefe bodies or parts which I have been juft defcribing, and of the fame fize it appeared to the naked eye when diry and contracted. The letters M and N denote how far the red colour extended ; from L to M was of a perfect yellow, and here I judged that the thread when produced from the interior part of the animal's body was kept ready for ufe. At N is the fmall end, the fituation of which was near the head, and indeed within the head itfelf. Between $L$ and $O$, in my judgment, is the way or paflage through which is conveyed the matter or fubfance of which the threads are compofed. This part was of a yellow colour, and is longer than here pictured, being broken off at $O$. Another part or organ of the fame make and fhape, was alfo contained in the Silkworm's body, and from thefe two parts the fubftance is fupplied for producing the two diftinct threads I have been defrribing.

Sometimes when this part or organ was broken off at N, I perceived in it a kind of cavity, but extremely minute.

I oftentimes took hold of the end of the thread which the Silk-worm was preparing to fpin, and drew it out from the body with fo much rapidity, as by twenty-five times to excced the fivifteft motion of the worm in its own lpinning ; and I found that when the thread was drawn forth to the length of about fifteen or finteen inches, it broke

## ( 60 )

off, either near the organ from whence the theads proceed, (marked in fig. 3 , with the letece C ) or elle within the body of the Silk-worm itfelf. And on thefe occafions I allo obferved that the threads were covered with much more of the vifcous or gummy lubftance than ufually adheres to them when fpun by the worm, which lubfance allo appeared of a yellow colour.

Further, I took a Silk-worm which had fipu more of its ball or cone than any I had before examined, and on opening it, I perceived that the part which in fig. 30 , had appeared of a red colour was now quite yellow; and when I opened another Silk-worm which had, as it were, confumed or exhaufted all its filk in finining the web, the fame parts appeared quite of a pale colour.

When I examined by the microfcope that part which is reprefented in fig. $3^{1}$, at L M N, I difcovered in it a great number of blood vellels, moftly compofed of amular parts or rings. A fmall portion of one of thefe veflels in a place where it divides into two branches, is reprefented at fig. $3^{2}$, F G II I K. This was not one of the largeft reffels I faw, for near to it was one four times the fize.

I have at feveral times when the Silk-worms had, as I fuppofed, nearly finifhed their web or covering, cut it open, in order to obferve the change they underwent, and at that time I remarked, that when the fkin about the head became loofened, the worm was then changed into a chryfalis or aurelia, and nothing wanting to compleat that change, but the putting off its lkin of a worm. But when I myfelf endeavoured to firip off this fkin, I found the under one fo foft and tender, that I could not avoid injuring it.

Moreover, I have examined by the microfcope the Silk-worm, when it firft iffued from the egg, to difcover, if polfible, whether the exceeding flender thread fipun by fo minute a creature was a double thread, and in more than one inftance, I found this to be the cafe. Thefe threads I judged to be above a thoufand times flenderer than thofe fiun by full grown Silk-worms, and they were all covered

## ( 61 )

with a proportionable quantity of the glutinous or gummy matter

## ©

 before-mentioned. In flhort, there is no doubt that the fame perfections exift in a newly-hatched Silk-worm, as can be difcovered in one full grown.I have frequently examined the flying infect, moth or butterfly produced from the aurelia or chryfalis of the Silk-worm; and, having before particularly defcribed the eyes of this creature while a worm, l now employed myfelf to difcover the nature of its eyes, when changed into a moth; and for this purpofe I placed before the microfcope one of thofe organs of fight, which in this anmal is commonly deemed one eye. This is protuberant or rifing above the head, rather more than an hemifphere, and is compofed of a number of fmaller optical organs: Thefe I counted with the greateft exactnefs I was able, begimning at the bottom of the hemifphere, and proceeding to the fummit or uppermoft part of it, which diftance madc the fourth part of a fphere ; and in this fpace I counted thirty-fix optical organs or eyes. But, not fatisfied with my own computation, I delivered the microfcope to the limner, defiring him to comnt them, and in the fame fpace he reckoned thirty-five. This latter number I will fuppofe to be right, and from it I proceed to compute as follows: -If the fourth part of the circumference or great circle furrounding a fphere contains thrity-five; the entire circumference will contain 140 . Now Metius informs us, that having the length of the great circle in a fphere, the calculation of the whole fuperficies of fuch fphere is beft and eafieft computed, thus: As 22 is to 7 , fo is the quadrature of the great circle to the fuperfices of the fphere, therefore in the prefent cafe the computation is as follows ;-


## (6a)

From hence it follows, that each of the limall parts or organs of fight of this infect, which is vulgarly deemed but one fingle eye, is compofed of more than three thoufand optical organs or eyes, but if both parts together conftitute a fphere, they then contain 6236 eptical organs or eyes.

I have caufed this part or cye of the infeet to be drawn of the fame fize as it appeared to the naked eye of the limner, to give the better idea of the wonders which are concealed in fo finall an animal. This is fhewn at fig. 33, between the letters L and M. Each of the optical organs contained in this eye is feparated from the reft by a line or divifion of fix fides, or of an hexagonal figure, and all thefe hexagonal organs or eyes are placed in the moft exact order that can poflible be conceived. A few of them, as feen by the microfcope, are feen at fig. 33, $a, b, c, d$,

When this little part, cleared from the optic nerres within it, was place before the microfcope, all the furrounding objects were clearly to be feen through each of the fimall optical organs I have been deferibing, though wonderfully diminutive; for the great tower or fieeple of our new church in Delft, which is three hundred feet high, and about feven hundred and fifty feet diftant from my houle, when viewed throngh any one of thefe optical organs, appeared no larger than the point of a fmall needle feen by the naked eye: and from hence may eafily be collected how minute the optic nerves muft appear to me.

Now, if we confider that a Silk-worm, within the fpace of eight or nine days, thall not only have fpun its web, cone, or ball, but alfo thall be changed into an aurelia or chryfalis, and that in the fame fpace of time, not only its eyes but all the members pertaining to it as a flying infect thall be formed, who can aroid being ftruck with amazement at all thefe wonders in one Silk-worm? And yet, how little do we difcover in comparifon of thofe things which now are and for ever will be hidden from our fight? the whole of which I

## ( 63 )

am fully perfuaded no one will ever be able to dive into, and to explain their caufes and effects.

If we examinc the wings of this creature by the microfcope, we fhall find them covered with an incredible number of feathers, of of fuch various forms, that if an hundred or more of them were to be feen lying together, each would appear of a different fhape. To fhew more clearly this wonderful object, I caufed eight different feathers to be delineated, for 1 do not remember that I ever faw them of fo curious a make in any other flying infect. Thefe feathers are fhewn at fig 34, ABCDEFGHIKLMNO, and the letters ACEG ILN, denote their quills which were fixed in the membrane or fkin of the wing.

Although the microfcope by which thefe feathers were drawn, reprefented objects very diftinctly, the limner could not, through it, fee the ftreaks or ribs in each feather, until I pointed them out to him. Therefore I put into his hands a microlcope which magnified objects almoft as much as that by which the Silk-worm's thread was drawn, defiring him to give the figure of that feather which through it he could fee the moft diftinctly. This is done at fig. $95, \mathrm{PQR}$, in which plainly appear a great ntimber of ftreaks or parts like ribs, which give ftrength to the feather, and in fome of thefe feathers, where they fpread very wide, as at the part marked $R$, I have counted as many as thirty of thefe freaks, and if we confider that every feather is nourifhed through the quill which is pictured at $P$, how many and how various muft be the veffels in this quill ?

After this, I wiped off the feathers from a part of one of the wings. that I might difcover how clofe they were placed together, and I found that they were about an hair's breadth afmeder. And if, as a certain writer afferts, 640 hairs breadths are equal to one inch, we may demonftratively conclude, that the four wings of this infect are covered with more than four hundred thoufand feathers, for the fire.

## ( 64 )

face of all the wings when laid fide by fide takes up almoft tirree quarters of a fquare inch; and, as each wing is covered on both fides with feathers, this makes the fpace of an inch and an half fquare. To which if we add, that the body and legs of this butterfly are covered with as many feathers as are on the wings, the number of feathers above enumerated will be doubled.

I then examined the boney parts which give ftrength and fiffinefs to thefe wings, and I faw more plainly that in other flying infects the crooked or twifted veins within them. A very fmall portion of one of thefe boney parts is fhewn at $f g \cdot 3^{6}, \mathrm{ABCDEF}$, within which is feen that twifted vein, and where the bone is divided into two parts, the vein is the fame. In the fame figure, at ABH , is reprefented a fmall part of the membrane or fkin of the wing ftripped of its feathers. The dots in it indicate the cavities wherein the quills of the feathers had been fixed.

It is alfo a pleafant object to behold the curioully formed claws in each of the fhort feet of the Silk-worm, and which are fhed or put off with the fkin at the animal's change into an aurelia, one of thefe is fhewn at fig. 87. I K L, and when changed into a flying infect or butterfly each foot is furnifhed with two nails or claws, with which it very frongly clings to every thing it touches. Thefe nails or claws are fhewn at fig. $3^{8}$, MNO.

To clofe this fubject; feeing that the Silk-worm, in its change, only puts off the fkins of its feet, and that, in the fame places where, while a worm, it had very fhort feet ; it is, when a butterfly, furnifhed with legs, covered with numbers of feathers, and armed with nails or claws as before defcribed, the metamorphofis or change of this creature mult feem almoft incredible, and cannot but excite in zes the greateft admiration.


On the nature of the fcales of Fifbes, and bow the age of tho Se Animals may be determined by obfervation of the fcales; The Autbor's reafonings and opinion refpecting the Longevity of this part of the Animal Creation.

I
IT is the opinion of the Jews that they are forbidden by their law to ule the Eel as food, becaufe that Fifh is faid to be without fcales; and in the book of Denteronomy, Chap. xiv. v. 10. it is written, " whatfoever hath not fins and fcales, ye may not eat, it is unclean unto you ;" and in Leviticus, xi. v. 12, are thefe words, (which they apply to the fame fpecies of Fifh,) "whatfoever hath no fins nor "fcales in the waters, that fhall be an abomination unto you.
But when I examined this kind of Fifh, by the microfcope, after I had cleared away that vifcous or flimy matter which adheres to them, I found their fkins to be as completely covered with fcales as thofe of any other river Fifh, which fcales (though very fmall and thin) lie as clofe together and are placed one on another in as regular order as can be obferved in any other Fifh whatever, whether of frelh or falt water. Mereover, this fpecies of Fifh is provided with fins equally as others, mamely, one at the head, and one above, and another below, the tail ; and becaufe I apprehend that this difcovery of mine is new, at leaft to perfons of the Jewifh mation, (for to this day they deem this delicate Filh to be unclean, and hold it as an abomination to them,) 1 determined to give a figure of one of thefe
fcales, (taken from the belly of the Fifh, where they are the fma'left,) as it appeared through the microfcope.

Plate III. fig. 1, A B C D, exhibits this fale; it was taken from the belly of a large Eel, which, next the head was of the thicknefs of feven fingers or thereabouts: on the back and fides of this Fifh the fcales are larger: The greateft part of this fcale, A D C was covered by two others. The part B, was placed towards the tail, and in this pofition were all the fcales; they were all principally compofed of a kind of globules or little balls, which globules in many places exhibited an appearance, as if they were covered with a cobweb, which by reafon of its exceflive finenefs, could not be expreffed in the drawing.* In thefe fales the globules compofing them were very tranfparent, though fome more than others; again, fome had in them a dark fpot. Thefe opaque globules lying in rows contiguous to each other, produced the appearance of divers circles or rings on the face of the fcale. And although I did not obferve thefe fcales to be exactly alike, yet the circles or rings feemed to me to be of the fame number in all of them, whence I was led to conclude, that the fcale had been every year angmented by the addition of one circle, and confequently, that, as there were feven circles in this fcale, this Eel was probably feven years old. Thefe circles are marked in fig. 1, by the letters EFGHIKL, and at X the fcale is reprefented of the fame fize as it appeared to the naked eye.

Having examined the fales on the body of a very large Eel, I perceived that thofe on the back and belly of the Fifh were placed in regular and even courfes behind each other, but that thofe between the back and the belly were many of them laid obliquely, fome towards the belly and others towards the back, but all fo difpofed as to cover the fkin exactly in every part.

[^19]
## ( 67 )

* After this, I cexamined the matter or fubftance with which thele fcales are covered, which, as well as the fcales, has been generatly deemed nothing more than flime, and is by moft perfons thought to be an excrementitious matter, adhering to this fpecies of Filh; but I am now convinced by experience, and the cleareft ocular demonftration, that this fuppofed flime does not collect on the animal's body from without, but is really part of the body itfelf; forafmuch as this fubftance, although it appears to the maked eye, and very often through the microfcope no otherwife than like a cryftalline or pellucid humour or fubftance, yet in fact it is no other than a congeries or collection of veins or veffels, which in their exquifite finenels or flendernefs do almoft exceed belief, fpreading themfelves one among another in fuch an incomprehenfible and immenfe number of brunches, that I could not contemplate them without the greateft admiration. Indeed, many were fo thin and flender, that I could not difcover them without the moft careful attention, and I thought it probable that there might be others fill more minute, fo as entirely to efcape the fight. Such of thele veffels as I could diftinctly perceive, I judged to be fo fmall (meafuring them by my eye) that if one of the globulest of blood from whence its rednefs proceeds, were to be divided into a thonfand parts, not one of thofe parts could pafs through thefe wonderfully thin and flender veffels.

From thefe obfervations I concluded, that this fubfance only anfwers the purpofe of a membrane or fkin lying next to the feales, and that, when an Eel is creeping through a narrow paffage or hole,

[^20]a part of this membrane or cuticle, which we call flime, is rubbed off in the paffige ; and that when Eels are kept in any kind of veffel without water, and in their motion wear off this cuticle, they cannot long furvive; and upon my talking over this fubject with a Fifh-monger, who was a very intelligent man in his bufinefs, he confirmed all that I have here mentioned.

Further, I imagined that this cuticle or fkin fo covering the feales of Eels, and in lome fort procceding from the fales themfelves, and the veffels which in a great meafure compofe that fkin which we imagine to be flime, extend to far and wide, that the veffels procceding from one fale fpread over more than twenty-five others. ant that this is the reafon why this flimy matter covering the feales is fo thick and tough.

But, not yet fatisfied with thefe oblervations, I endeavoured to find out the veffels in the feales from whence thefe flimy excrementitious veffe!s were formed, and in order to exhibit more plainly the rough or wrinkled make of the fales, I have caufed an exceeding fmall particle of one to be delineated, the appearance of which, by the microfcope, was that of a lucid or bright cryftal, both within and without. This is fhewn in fig. 2, I K L M, wherin the fide I M, reprefents that part which was fixed or rooted in the Fifh, being about the length of two common grains of fand. I have fometimes divided the fales of this Fifh into fmall parts, and I always found that though the wrinkles in them appeared very pellucid, they were compofed of nothing but thofe inconceivably flender ftreaks, or rather - velfels. mixed and twifted one within another, as is in fome fort reprefented in this figure by the letters K L N.

Some years after the preceding obfervations were publifhed, I received from : perfon of fome note in this city, a parcel of fales taken from a very large Carp which had been kept in his Fifh-pond, and was fo tame that it would take food out of a perfon's hand.

But in the time of a fevere froft, the gardener being employed in breaking the ice with an hatchet, to give frefh air to the Fifh in the pond, this Carp came to the hole, and unfortumately received a wound from the hatchet, which occafioned its death. This Fifh was in length $4, \frac{1}{4}$ inches, and in circumference at the thickeft part of its body $93 \frac{1}{\ddagger}$ inches.

In order more eafily to cut one of thefe fcales in pieces, I fteeped it in warm water, and then I cut off a flice from it, pafling through that part where the firft formation of the fcale appeared, which original fiale was very minute, and I then obferved forty rows of fcales lying one on another, or in other words, this fingle feale was a clufter of forty other fales lying one on another. For every year a new feale fomewhat larger than that immediately preceding it, is added to the number, and is as it were glued to the former ones; therefore as many of thefe fcales as are found thus joined together, fo many are the years of the Fiih's age. This affertion of mine is however violently contradicted, becaufe many people think that I cannot by any means prove what I affirm.

I determined therefore, to cut off a flice from this fcale very obliquely, whereby the rows of the component fcales might be more clearly difcerned, and I caufed a drawing of this to be macie from the microf cope, which is fhewn at fig. 3, ABCD ; the part reaching from $A$ to $B$, or from $D$ to $C$ denotes the difference in fize by which each nowly-formed fcale exceeds that of the preceding year, the whole thicknefs of the fcale as it appeared through the microfcope, is the fpace between B and C , but in fact, the real thicknefs, as feen by the naked eye, is no more than that of an hog's brifte.

Another piece of the fame fcale, cut ftill more obliquely, I placed before another microfcope, a drawing of which is given at fig. 4, EF G H. The fpace between E and $F$ is the thicknefs of the feale, and as many divifions or rows as are there piftured, fo many of the

## ( 70 )

limall component feales lie heaped one on another, (at leaft as far as the limmer was able to obferve them) and fo many years had elapfed between the formation of the firft fcale, and all the others which were added to it.

This cutting or flicing off pieces from the feales, does not fucceed equally well in all, for fometimes their thimefs caufes it to fail, but if the extremity of each fcale can but be perceived, the age of the Fifh may be gathered from it with little danger of miftake. In order to fhew this irregular kind of fection, I caufed a fmall piece of that defeription to be drawn from the microfcope, and this is fhewn in fig. 5, IKLM; here the additional fcales produced every year. fometimes appear of a darker fhade than they are in reality, and therefore the yearly increafe in fize feems reprefented at I O and M O, but the addition of three years' growth appears at I O K. At fig. 6 , between $P$ and $Q$, is fhewn the natural fize of the flice or piece of fale reprefented when magnified, at fig. 4 .

Since we now find, that the fales of Fifhes are every year angmented in the way I have been defcribing, we may form a pretty good judgment as to the time when this augmentation is made by analogy to what we obferve in the other productions of nature, and thence we fhall conclude that the additional fcales are compleated at that feafon, when the further growth ceafes. For this is evident in trees, at leaft fuch as grow in thele regions. The like alfo is the cafe in regard to cows, for between certain fpaces of time, when their growth is intermitted or ceafes and when it again returns, it is fhewn in the homs, whence we gather that as many knots or rings as are found on the cow's horn, fo many years of age is the animal.

And, though this may not appear exactly in the fame mamer in all creatures, yet we muft allow, that fuch a diftinguifhing circumfance exifts, and this is proved in the falling off of the hair from animals, and the fhedding of feathers by birds, at certain regular periods.

I have often confidered with myfelf, refpecting the longevity of Fifhes, and I am perfuaded that in deep and extenfive waters, and in running ftrcams, where the water does not corrupt or putrefy, they are not liable to any difeafes, nor ever die of old age. Such wounds as a Fifh may receive, either by fwallowing the hook baited to catch it, and which, being broken off and remaining in the fomach, may caufe an exulceration ; or by devouring fome fubftance which it cannot digeft, are not to be deemed difeales, but accidents. Now, terreftrial animals, through great fatigue, heat, cold, hunger or thirf, may eafily fall into diftempers and die, but to thofe accidents Fifhes are feldom or never fubjeet.

Firft, as to fatigue, this in Fifhes cannot be great, becaufe their chief exercife confifts in the larger purfuing the fimaller, in queft of them for food; or in the flight of the fmaller ones from the larger ; and in thefe exertions the fine juices of their blood can in no degree, or at leaft but very little, be exhaufted; becaufe in fuch kind of purfuit or flight, no evaporation can be produced from their bodies through heat or drynefs; befides, they never want for drink, by which means their blood, and the other juices of their bodies are kept continually diluted, fo that the circulation is conftantly preferved.

No one can pretend to fay that a Fifh is ever killed by heat, for many kinds of fifh, in the middle of fummer, and in the burning heat of the fun, do either play, as it were, on the furface of the water; or hide themfelves under the leaves, weeds, or other fubfances at the bottom.

As to cold, we do not know that Fifh in deep waters ever perifh with cold ; but we know by experience, that at fuch feafons they feek the bottom of the water.

As to food, they are not eafily killed by hunger; many Fifhes live for five or fix months face without any other fupport than what they

## ( 72 )

receive from the water, or rather from the finall particles in it, which are by us commonly confidered as part of the water only ; in fuch a fituation indeed, they increafe little or nothing in fize, but rather, if they were before fat and plump, they will fall away.

I am alfo perfuaded, that all Fifhes which have a conftant fupply of food, do daily increafe in fize, and this without ever ceafing to grow, fo that any real definite fize camot be affigned to them, as it can to terrefrial animals, fome of which arrive fooner, and others later, to their full and perfect flature, which they never afterwards exceed, although they continue to live many years. The reafon of which, I am convinced is this, that terreftrial anmals continue growing as long as their nutritive juices have force fufficient to protrude or thruit themfelves through the cavities of the bones, and fo to increafe the fize of them, as well in length as in thicknefs. But when the bones of thele animals, by being expofed to the air, are become fo rigid and hard, that they camot be any more difiended, their farther growth muft necefiarily ceafe, and any frefh fupplies of nutritive juices can only tend to increafe the animal's fatnefs. But the bones of Fithes are for the moft part deflitute of marrow, and they camot be rendered rigid by expofure to the air, confequently the very fimall tubuli or pipes of which they are compofed, are exceedingly foft in comparifon with thofe of other anmals. All which confidered, there feems no reafon to exift, why the bones of Fifhes fhould not continue always growing, fo long as the animals do not want for food.

In the lakes with us. where are many Fifheries, Pike have been caught of the length of 56 inches, and $3^{6}$ or $3^{8}$ pounds weight. Pearch alfo 28 inches long; and who can tell to what fize thefe filhes might have arrived, if they could have longer efcaped the nets?

The Author's refutation of the doctrine of equivocal or Spontaneous generation in the inflance of the Sea-Mufcle, with a particular defcription of that Species of Fifh.

I
HAVE been informed, that a book is publifhed at Rome, by a learned Jefuit, named Plilippo Bonamni, wherein he maintains, that animalcules, or fimall living creatures, can be produced out of inanimate fubftances, fuch as mud or fand, by fpontaneous generation, according to the doctrine of Ariftotle ; and it feems that this learned gentleman is limfelf very defirous to fee my obfervations on the fubject. I fhall therefore proceed to confider Signor Bonami's pofitions, and I doubt not, that upon inveffigation, they will be found of no weight or fubfance, but will vanifh like fmoke or vapour.

We will admit, that out of the mud or fand which is found on the fea-fhore, or the beds of our rivers, at low water, fhell-fifh or teftaccous animals come forth; but it does not from thence by any means follow, that they are produced without any regular courfe of generation.

Among the mud, in the creeks or fhallows of our fea coafts, are taken great quantities of that fhell-fifh, called Mufcles, which are ufed by us as an article of food; and, as I had in the autumn been employing myfelf in obfervations upon this fpecies of fifh, I applied to a filherman who made it his bufmefs to catch Mufcles, and queftioned him as to what his opinion was, with regard to the propagation of that filh.

This fifherman, who was a very intelligent man, aud of good eftimation in his profeflion, and had been brought up to it from his youth, informed me, that he had often experienced, that in the fame tract of coaft where he had found for feveral years fucceflively very good Mufcles, and in great abundance, yet afterwards in or about the fame place, very few or none were to be got; for which he afligned thefe reafons :
"At the time of the Mufeles laying their eggs or fpawn, which lafts but for a fhort feafon, this fpawn, by ftrong tides and heavy gales of wind, will be carried from the places where it is depofited, and when the water becomes fill and calm, it will fink to the botton, or adhere to the weeds growing there ; and then in the fpace of two or three years, a good and plenteous Mufcle-bank will be formed in the place; adding, that by this means Mufcles are taken where none were ever found before, and Mufcle-banks formed of very great extent, the fpawn laid by the Mufcles being in fuch abundance, as to make the fea-water appear of a white colour."

If then, at the feafon when the Mufcles depofit their eggs or fpawn, we take up a quantity of the mud or fandy matter from the fhore, and kecp it covered with water, we need not wonder if we find Mufcles or other thell-filh produced from thence; but if we imagine that this comes to pafs by any other means than the ordinary courle of generation, we fhall therein deceive ourfelves. And for my part, I hold it equally impoffible for a fimall fhell-filh to be produced without generation, as for a whale to have its origin from the mud.

The eggs or fpawn of Mufcles, and other fhell-fifh, being carried along with the fea-water to the fides of thips lying in harbours, will adhere to them, and become fhell-fifh, by which means thofe thips in their voyages to other countries, will introduce fuch kinds of fhellfith as were before unknown in thofe parts.

But how can it be conceived that living creatures can proceed from

## ( 75 )

fand, or obtain any nourifhment from thence? for there is no other difference between the grams of fand, and the beach-flones on the fea-fhore, than that the one are larger than the others; and, as incapable as glafs is of affording fupport to any living creature, fo is it impoffible for any nourifhment to be found in fand.

If it were poflible for the mere fand on the fhore to produce fhellfifh, how much would our coafts abound with them, and not with them only, but alfo with all other forts of fifh ; for the Alat-fith feed on thefe fmall fhell-fifh, and thereby become rery fat and good; and fo does alfo the whiting.

The chief reafon, in my opinion, why we do not find fhell-fifh in equal plenty, at all times, is, that the frong north-wefl winds blowing directly on our coaft, do fo fir up the fand and muddy bottom on the fhore, that the floch-fifh are thereby overwhelmed and buried, and fo perinh.

During the laft five or fix years, we have not had any great froms from that quarter, and we have for thele laft three or four years fueceffively, had fuch excellent flat-fifh, efpecially flounders, that no one remembers to have feen the like; the reafon for which I have already affigned, namely, that the fhell-fifh during that fpace of time, multiplied exceedingly, affording plenty of food for fattening the flatfirhes. And this is alfo proved by experience ; for whenever flomders are in perfection, their flomachs and bowels are found to be full of fragments of fmall mells. And, upon reflecting with myfelf as to the caufe of thefe fimall fhells being fo broken into fragments, I could not allign any other reafon than the following :

The flounder, fole, turbot, and other flat-fifh, are formed by nature with their mouths diftorted and in a different pofition from that of moft other filhes; and this formation feems to be, for enabling them to pick up their food from the bottom of the fea, and not to go
in chafe of other finf ; and I conceive that thefe flat-fif, when picking up the fmall hell-fich, do break their fhells to pieces in their mouths (which feem to me to be formed principally for that purpofe) and then fivallow then, rejecting thofe thells which are too hard for them to break, for which reafon we never find any rery hard or large pieces of theils in their fomachs ; and it is not in the power of the flat fifl to feparate thefe fimaller ones from their thells, becaufe they are all, as far as I have ever obferved, clofely united to them by ligaments or tendons, and always keep their fhells clofely fhut.

I have enquired of thofe Fihhermen, whom I thought men of reflection, what could be the reafon why fome years ago our flounders were very indifferent, and for thefe laft three or four years fo exceeding good; for which they could not afign to me any reafon ; but when I laid before them my fentiments refpecting thefe fifh being fattened by feeding on the fmall hell-fifh, they were furprifed thereat, and added, that this might very probably be the cafc. But upon converfing with two principal merchants who fend out fifhing-veffels, they not only agreed with me in my opinion, as before related, but alfo in the following, namely, that not only the flat-fifh feed fo much on the fimall fhell-fifh, but the whiting is fo abundantly nourifaed by them, that in the fummer-time its flefi becomes hard and tough; for this reafon, at the time when the fhell-fifh abound on our flores, the whiting reforts thither in queft of them, and this latter is followed by the cod-fifh, which preys on the whiting. In fhort, I conclude that the plenty of fin found on our coaft, proceeds from this caufe only, the great quantities of hell-fith which every year breed there.

Towards the end of the month of February, being the firf time in the fpring that Mufiles were brouglit to our city for fale, I caufed fome of them to be bought, in order to make my obfervations thereon: I found thefe to be very lean, and for a long time my fearch after their fpawn was fruitlefs, though I could not think that the time was paft for their depofiting it.

## ( 77 )

Upon examining that part of the Mufcle which is called the beard, I not only found it of a wonderful make, but the motion I faw in the fmall component parts of it was fo incredibly great, that I could not be fatisfied with the fpectacle; and it is not in the mind of man to conceive all the motions which I beheld within the compafs of a grain of fand.

When I obferved the large and ftrong tendons or finews in the Mufcle, which are fixed to the fhell, and thofe which lie in the fame order and pofition as the ribs in a terreftrial animal, I thought that we cannot fufficiently admire the wonderful make of this filh; and that if we could obtain an infight into all thofe parts which we fee in one of them, and could we afign their feveral ufes, and give them names, and alfo make drawings of them, I donbt not that we fhould admire fo claborate and curious a work, beyond many others of nature's productions; and that thofe perfons who now affert that fhell-fifhes (among which the Mufcle is in leaft eftimation) are produced fpontaneoully, or of themfelves, would renounce their opinions, and embrace the truth, namely, that fo perfect a creature cannot be produced from corruption, congealed water, or mud, buf can only be generated by parents of its own fpecies.

I obferved that every Mufcle was provided with a kind of ftring or ligament, which, at a little diftance from the fifh, was divided into $8,10,12,15$, and even 20 other ligaments of different lengths; and with thefe ligaments, I obferved, that the Mufcles faftened themfelves to other Mufcles, and allo to pieces of fhells, and to mell-finh of other fpecies.

I was deffrous to know how this faftening was effected, and which I immediately difcovered; for I faw, to my great furprife, that the extremity of every ligament was provided with a thin flat membrane or fkin, of a roundifh fhape, which was as firmly fixed to
the fhell on which it was placed (the ligament being in the middle of it,) as if it were glued to the fhell ; and when I endeavoured to pull off the ligament, I found, by fereral trials, that (though it was very firong and tough, in proportion to its fize) it would break before the flat thin membrane could be loofened.

Herenpon I recollected, that when a boy, I had often amufed myfelf with a plar-thing which we called * "een Treck-leertje." This is a fmall romd piece of leather, about two inches in cliameter, having a fmall hole in the middle, through which was drawn a packthread, with a knot at the end. This leather being firft foaked in water, was placed flat on a ftone, and with this we could not only lift up the fone, but carry it to fome diftance.

Now, upon the fame principle as the fone adheres to the leather, partly by the preflire of the atmofphere, and partly becaufe no air or water can gain admittance between the fone and the leather, the like effect is produced in the cohefion or fticking of the membrane I have been defrribing.

I have thought it proper to give a drawing of the ligament beforementioned, and its feveral branches : and in Ilate III. fig. 8, is fhewn al part of it, which is cut off at A in the part which comes out of the fhell; this in fig. 7 , is fhewn at BE of its matmal fize. In fig, 8, I G HIK are feen the ramifications or branches, or rather a finall part of them: and at $\mathrm{L} M$ is hewn one of the fhort ligaments, with its membrane NOP, the ligament here appears on the upper fide of the membrane, in like manner as if the latter was fixed to fome other hell ; and here are to be feen the many parts whereby the ligament is joined to the membrane, which latter alfo appears fomewhat elewated at the place of joining.

[^21]At $Q \mathrm{R}$ is reprefented another ligament, and at $\mathrm{S} \mathrm{T} V$ its membrane, with the concave part of it, appearing open, being in a contrary pofition to the former reprefentation. I have often feen this cavity reach into the ligament as far as M or $R$, but otherwife it is quite clofe and compact.

Each of thefc ligaments confifts of a great number of exceffively fmall particles, which cannot be contemplated without the greateft admiration, efpecially when we recollect the power which the Mufcle has of moving each of thefe ligaments, and alfo that the membrame muft be placed quite fmooth and flat upon the fhell, to which it is fixed, in order to caufe it firmly to adhere thereto.

Now, if we farther confider that Mufcles, while in the fea, always lie with that fhell upwards which they open occafionally, and that their fhells (which are very thin) and their bodies together are but little heavier than the water wherein they live, and alfo that many of them at low ebb-tides are left deftitute of water, at which times, in my opinion, much air muft infmuate itfelf between their fhells, by which means they become lighter than the water; they would then be liable either with the ebb to be carried out into the deep, or by the flood to be thrown upon the land, and fo would perifh. But provident Nature has taken care to preferve them in this refpect, by furnifhing them with a ligament, fpreading into various branches, and at the end of each branch an organ, which I have named a membrane, by the help of which the Mufcles can fix themfelves either to empty fhells, or other fubltances, or to one another, by which means they are preferved.

But as my principal defign was to difcover, as far as poflible, the gineration, or procreation, of thefe fifh, I come now to that part of the lubject.

I obferved, that thefe Mufcles, fome in a greater, and others in a lefs degree, had the outfides of their thells covered with a kind of fublance, thinly fread upon the fhell, and firmly adhering to it, or
rather to the membrane which covered it. Obferving this by the microfcope, I faw that the particles of which it conffifed, were all of a fimilar furm, and alfo placed fide by fide, in regular order, and the membranes or flins of thefe particles, as it were, united, or clofely joined together. I feparated a part of this fubftance from the fhell and placing it before the microfcope, I fom that all the regularly difpofed particles were much longer than they were broad, alfo that one of their edges was roundifh and thick, the other terminating in a point or edge, and moreover that in many of them one fide was rifing, and the other flat; in a word, many of thefe particles, in fhape, were very like a Mufcle; and I not only thought that they were the eggs or fpawn of the Mufcle, but I alfo obferved, that when I broke the ftrong membranes inclofing them, feveral of the eggs, which were in thape like a Mufcle, appeared lying fingly and fepartely on the outfide of that membrane ; and when I feparated thefe unformed Mufcles fingly, one from another, I imagined that I could fee the membranes or tendons of which they were compofed.

I alfo faw the fhells, membranes, or coverings of feveral eggs which were cmpty, and which I faw, or more properly fpeaking, imagined to be barren eggs. In other parts of this fubfance I faw eggs wherein I concluded that there were unformed Mufcles, which conclufion I gathered from the multitude of veffels which I faw, which veffels conftituted the hape or figure of a Mufcle.

Thefe eggs were not larger than a grain of common fcoweringfand.

Moreover, I obferved, that the fmall or taper ends of the fhells were feldom or never covered with the fpawn or eggs, the reafon of which I took to be, that at the time the Mufcles emit their fpawn, they lie with the flat and broad part, as hewn at fig. $7, \mathrm{ABCD}$, uppermoft, and that part marked with the letter A, next the ground, or bottom; for I have often obferved that when Mufcles have

## ( 81 )

been cleaned and put into a veffel of water, and an handful of falt thrown upon them, many will be foon found placed in the pofition I have mentioned; and while they lie in this pofition, and the eggs are put forth from the part marked C D, where muft neceflarily be more eggs lodged near that fpot, than towards the farther end of the fhell.

Several of thefe Mufcles I placed in my ftudy, in two glaffes of water, with fome falt fprinkled on them, in order to examine them daily, and fee the progrels of growth in the young ones; and upon this occafion, I could not fufficiently admire the exact and regular order in which the eggs were in many places difpofed, juft as if they had been fo placed by men's hands; and from hence I was convinced that Mufcles do not, like many other fifhes, lay their eggs promifcuoully, but that they muft be furnifhed with fome kind of organ, which they can project beyond the fhell, and with it difpofe them fo regularly.

I have before faid, that I thought I faw a kind of finews or tendons in the eggs ; and upon further examination, I perceived fixteen of thefe tendons, like flreaks, in the unformed Mufcle, and among them I faw fome ftill fmaller ftreaks, from whence I concluded, that they were in fact, veffels to form the fubftance of the future fhell, for they lay all in one direction, that is, from the fmall end, fpreading or diverging round about ; and they were thickeft at that part, and thimneft at the extremities, fpreading wider towards the broad and thin end of the fhell : I caufed a cirawing to be made of a few of the eggs, in the order they lay on the parent fhell, and as they appeared through the microfcope; this is thewn at fig. 9, ABCDE, reprefenting eight of them, in fome of which it may be feen that one fide is more curved than the other, and in which eggs may alfo be feen the finews, veffels, or fireaks I have mentioned.

Upon confidering that the lobfter and the fhrimp carry their egoss
about them until the young are perfectly formed, it feems probable to me, that this is alfo the cafe with the Mufcle, for otherwife, how could this fpecies of fifh be propagated? efpecially if we confider that they lay their eggs in the middle of winter, and are generally in fhallow waters, where the fhore is maddy; and if the eggs were not depofited on the fhells, they would be buried in the mud, with the common flux and reflux of the tide: not to mention that in formy weather they would be carried out to fea; but while they are fixed to the fhells of the parent, and thefe laft adhering to folid fubftances on the fhore, the eggs are, by this means, in great numbers, preferved; and thefe young Mufcles, when come to fuch maturity as to be feparated from the fhells, may, in windy weather, firong tides or currents, be eafily carried to other muddy fhores on the coaft, in places where for many years before no Mufcles were to be found.

I have made a rough calculation of the numbers of thefe eggs, and I compute that there are frequently more than two thoufand fixed to the fhell of one Mufcle ; in fact, I have feen Mufcles, each of which I judged had more than three thoufand on it.

I have before faid, that the eggs of Mufcles are the fize of common fcowering-fand, but as this is not of the fame fize in all countries, I compute that, to the beft of my judgment, feven of thefe eggs, in breadth, are equal to the fifteenth part of an inch, confequently the breadth of 105 eggs , is equal to one inch; and I alfo compute, that fixty eggs, in length, make an inch; therefore a fquare inch will contain 6300 ; and as each egg is no thicker than broad, 105 of them muft lie one on another to make the thicknefs of an inch ; the fum total then of the eggs which will be contained within the fpace of a cubic inch, is 661,500; and hundreds of fuch eggs may lie under fhells, fand, or mud, without being perceived, and yet Mufcles be produced from them.

Having taken fome of the unformed Mufcles out of the eggs, I
caufed a drawing to be made of their figure, as nedr as the Engraver was able to imitate it ; this is fhewn at fig. 10, F G, which reprefents fuch an unformed Mufcle, inclofed in its membrane, or covering, in which the freaks before-mentioned, did not appear, until the greateft part of the moifture thereof, was evaporated. Fig. 11, HIK, fhews another of them, the ftreaks, or veffels in which, between I and K, appeared feparated, or fundered from each other ; and this was done in the taking it out of the egg, being in that operation deprived of the furrounding membrane, or fkin.

At the latter end of April, when I had finifhed the preceding obfervations, I received a large jar full of Mufcles out of Zealand; upon examination of which, I was much furprifed to fee that moft of the fhells were quite fmooth and polifhed, being not only deftitute of eggs, but for the moft part, bare of the membrane, which gives them a blackifh colour, fo that they now appeared of a lively blue; however, I found four or five with perfect eggs on them, and in them were young Mufcles; fome of thefe! took ont of the eggs, and now plainly faw, that what I had at firft taken for the unformed Mufcle, was, in fact, only the ligament, or fring, whreby the young Mufcle was nourfhed. A drawing of the real thape, as it now appeared to me, is given at $f \mathrm{~g} .12$, where GHI reprefents the ligaments of the unformed young Mufcle, and I K the Mufcle itfelf; another of them is reprefented at $f i g .1 g$, where LM flews the ftrings or ligaments, and MN the Mufcle; and this laft figure, I think, exhibits the true form of the young Mufcle, as it lies in the egg; and from thefe laft oblervations it appears, that the parts reprefented in fig. 10 , at $G$, and in fig. 11, at H , were only the fubfance, or matter, from whence the Mufcle would be formed, and which, at the time when that drawing was made, had not come to fufficient perfection to render the parts diftinguifhable.

Now, fince we fee, that the eggs of Mufcles adhere fo long to the
fhells of the parent, before they are perfectly formed, and alfo confider that during all that time they muft be fupplied with nourifhment, we fhall not wonder that the parent Mufcles, during that time, do become lean, efpecially in the month of April, for then the young are moft in need of fuftenance.

We may alfo here obferve, that in our enquiries after any truth, and more efpecially in regard to the generation of fmall living creatures, which cannot be examined by the naked eye, we ought not to rely on any tales that are told on thefe fubjects, but on our own experience, and even that not lightly, but by long and unwearied trials and experiments, whereby to come at the truth.

In the courfe of the laft obferrations, I examined that hard and variegated, or marbly-coloured part, lying in the middle of the Mufcle, which fome call the heart, and others take to be the tongue of this fifh ; and when, upon the Mufcle, I cut out this part, and placed it before the microfcope, I obferved fo tremulous or quivering a motion in the furface, as if millions of little living creatures were rumning about upon it; befides another motion, which the part had to and fro. This part the Mufcle can extend fo far, that I think it will almoft reach all over the fhell, which made me think that, perhaps, by this organ, the eggs are placed on the fhell in the regular order I have before defcribed.


Of the Mufcle rubich is found in frefo water: a particular defcription of its internal formation, and of the manner in which its young are produced.

I
HAVE obferved, that when our navigable canals here in Holland, or our ditches are cleaned, a kind of large fifh are taken from the bottom, named by us, "* Veen Moffelen," or Peat Mufcles. Of thefe I procured fome, which were about three or four inches long with very thin fhells.

A countryman, whom I faw collecting thefe fhell fifh, told me they were to be found under the banks, and in the flallow parts of the ditches, or canals, among the leaves and twigs, or other litter; and, indeed, I have feen them taken in thofe places; but as I was. certain that thefe fhallow places were frozen to the bottom in the winter, which the fhell fifh couid not furvive, I was told that they had a power of moving from place to place.

To fatisfy myfelf, in this refpect, I made two experiments on thefe Mufcles, of which I put fix or eight into an earthen veffel, with a flat bottom, and poured on them fome of the fame water in which they were taken; this vefel I placed in my ftudy, and I found that in a few hours time, they had all changed their pofitions, and had approached nearer together, than they were when firf placed in the veffel.

[^22]And I obferved, that thefe Mufcles, about the midale of their fhells, thruft out, through the opening, a flefhy fubfance, or organ, about two-third parts the length of the fhell; this part was about half an inch broad, and fharp at the end; and in order to move themfelves from place to place, they thruft this organ under their fhell, and applying it with a quick motion to the bottom of the place where they lay, could by this means not only change their pofture, but turn themfelves upfide down.

At the end of the month of Auguft, upon opening fix of thefe Mufcles, I found many eggs within them, which were fo perfect, that I could diftinguifh the newly formed fhells, fo that they were not fo properly to be named eggs as unborn Feat-Mufcles. Two of the parent Mufcles were fo fmall, that I judged they were not above a year old, whereas the others were, in my opinion, fix, eight, or nine years old ; but the young Mufcles were of the fame fize in all of them.

In the beginning of September, I procured about fifty more of thefe Mufcles, and upon opening twelve of them, I found two wherein the young ones feemed to be fo perfect, that they would probably foon be exclucled from the parent. I always found that the ecors were firft formed in the flelhy part of the Mufcle, but as they advanced in growth, they were moved to that part which, in oyfters, is called the beard, and which, by the great number of the youns Mufcles contained therein, then fwells in bulk.

As there are many perfons who are unacquainted with this fpecies of Mufcle, and others who may wilh to inveltigate the particulars of my obfervations, I have caufed the following drawings to be made:

Fig. 14. G H I K L, fhews one of thefe frefh-water, or, as I call them, Peat-Mufcles, of the ordinary fize, which is opened fo as to leave the whole of the fifh lying in one of the fhells; at HIK , is reprefented the empty thell, and at M M, the two tendons, or finews, by the help of which the filh fhuts and opens the fhell ; and here it

## ( 87 )

is to be noted, that thefe fifhes, by reafon of the length of their fhells, are each provided with two of thofe tendons, or finews, whereas oyfters and falt-water Mufcles have only one. N O P is a thin membrane, or fkin, lying folded up, with which the whole infide of the empty fhell had been covered, or lined.

QRS is one of the two receptacles wherein the eggs, as they advance to maturity, are lodged, and which parts do then become fwollen thereby, but at other times they are very thin ; thefe parts, in oyfters, are called the beard; T V is the other of thefe receptacles, which, in oyfters, is alfo called the beard; and in thefe receptacles, I did not obferve any thing particalarly rem rrable, except their wonderful make.

W X Y is a Colid Heny part, wrinkled on the outer edge, and in refpect of the other parts of the finh, very ftrong ; this part, as I have already mentioned, the Mufcle protrudes, or thrufts out of its fhell, to a confiderable length, when it prepares to change its place; and when at reft, it generally has a fmall portion projecting out of the thell ; but if it be touched, though very lightly it immediately withdraws it. The fpot marked with the letter Y , is the place where the eggs lie before they are depofited in what we call the beard; and if an incifion be made in this part, the eggs, with a watery liquor, ifliue forth.

Some of thefe Mufcles I opened in the prelence of the Engraver, in order, that as foon as I had taken fome of the young ones out of their receptacles, he might make a drawing of them, for, were they fuffered to ftand but a few hours, their true figure would be loft. The unborn Mufcles being put into a glafs tube, and placed before the microfcope, I faw with aftonifhment a moft pleafing fpectacle, for every one of them, each in its particular membrane, or covering had a flow circumvolution, and that not for a fhort fpace of time, but fuch turning round or rotatory motion was oblervable for three hours afterwards, and it was the more curious, becaufe the young Mufcles, during the whole of their motion, confantly kept in the
centre of their membranes, juft as if one were to fee a fiphere or globe revolving upon its axis. This uncommonly pleafing fipectacle was enjoyed by myfelf, my daughter, and the Engraver for three whole hours, and we thought it one of the moft delightful that could be exhibited.

Fig, ${ }^{15}$. A B C D E exlibits fix of thefe unborn Mufcles inclofed in their refpective membranes; they were drawn by the Engraver in the moft accurate manner he could, while they were in motion. Of thefe, I computed that each parent Mufcle contained fome thoufands.

I had at the fame time fome unborn Oyfters before a microfcope which I had taken out of the parent Oyfter five weeks before, and as they ftill appeared perfect in thape, I caufed a drawing to be made of them alfo, and this is thewn at fig. 16, F G H I. In fome of thefe the openings of their fhells were plainly to be difcerned.

Thefe young Oyfters bore the moft exact refemblance to full grown ones, though they were fo minute that one hundred of them laid together would not equal an inch in length, and I have computed that each parent Oyfter contained three or four thoufand of them.


On the Circulation of the Blood; that it is not difcoverable by the fight, in an buman body, nor in the bodies of terreftrial animals: the fame completely feen in fflbes, and the nature of it particularly defcribed.

THE Blood is compofed of exceeding firiall particles, named, globules, * which, in moft animals, are of a red $\downarrow$ colour, fwimming in a liquor, called, by phyficians, the ferum; and by means of thefe globules the motion of the Blood becomes vifible, which otherwife would not be difcoverable by the fight. Thefe particles, or globules, are fo minute, that one hundred of them, placed fide by fide, would not equal the diameter of a common grain of fand ; confequently, a grain of fand is above a million times the fize of one fuch globule.

I have often endeavoured to view the circulation of the blood in terreftrial animals, but without fuccefs, by reafon that no parts of their bodies were fufficiently tranfparent. Among others, I tried the experiment with a young Cock; which I wrapped in a cloth, in order to keep him quiet, leaving out only his head; and infpected his comb, but could not therein perceive the motion of the Blood:

[^23]I afterwards examined his gills, or thofe parts hanging under the throat, and there I faw it running in an inconceivable number of veffels; many of which were fo minute, that numbers of them taken together would not equal the fize of a fingle hair: but it was impollible for me to trace the circulation in them, by reafon of their immenfe number, croffing each other in all directions: for the rednefs which we obferve in a cock's comb and gills, proceeds entirely from the great number of blood-veffels on their furface, where they are only covered with a thin tranfparent fini.

After this, I made my obfervations on white Rabbits, by placing their ears before the microfcope; but, with all my pains, I could not do more than fee the Blood rumning with great fwiftnefs through the arteries and veins. When I plucked off the fhort hairs from the extremities of the ears, becaufe they obftructed my fight, I obferved, that the pulling off each hair had broken or injured feveral of the veffels, and caufed an effufion of blood. From hence I gathered the reafon, why I had perceived that the pulling out any hairs from the back of my hand produced a rednefs in the part; and I now concluded, that we cannot pull out a fingle hair from any part of our bodies, while fuch hair is growing, without injuring fome veffels, fo as to caufe the Blood to fart.

But my greateft expectation of fuccefs, was placed on a Bat, becaufe I conceived that the membrane, or flin, which ferves this animal for wings, muft be fo thin and tronfparent, as to afford a view of the veffels. And, having procured one of thefe creatures, I put it into a glafs and examined it by the microfcope. Here I faw the motion of the Blood, both in the arteries and viens, moft diftinctly, and fully to my fatisfaction, though by no means fo clearly as is to be feen in fihes; firft, becaufe the membrane compofing the bat's wing, is not fo tran?parent ; fecondly, becaufe there is more of the watery part (or fermo, as it is called) in the Blood of fifhes than in terreftrial

## ( $9^{1}$ )

animals; and thirdly, becaufe the particles of blood from which its rednefs proceeds, appear much larger in fifhes, they being of a fiat and oval fhape; whereas, on the contrary, as far as I could judge from my eye, they, in this animal were fpherical. I ufed every means I could devife to fee the compleat circulation of the blood, namely, that one of the fmalleft of thofe velfels which we call veins, arofe from another which is called an artery, and afterwards conveyed its contents into a larger vein ; but this I found to be impoffible, for when I followed the courfe of the artery, until it became fo fimall as only to admit one or two globules to pafs through it at a time, I then lof fight of it. If this artery, throughout its circuit, had not been. fmaller than the twenty-fifth part of an hair, I do not doubt that I could have feen the whole circulation; but as thefe veffels were at their extremities diminifhed to a much lefs fize, and the membrane of the wing was covered with a kind of fcales, I could not (as I have before faid.) follow with my eye thofe minute ramifications. I perceived, however, in many places, an artery and a vein, placed clole befide each other, and of a fize large enough to admit the paflage of ten or twelve globules of blood at the fame time; and in this artery the blood was protruded or driven forward with great fwiftnefs, and flowed back through the vein, which was a moft pleafing fpectacle to behold.

I could alfo moft plainly perceive in the arteries, the rifing, or pulfation, caufed by the motion which the blood receives from the heart; thefe pulfations were fo rapid that I judged feven frokes were performed in a fecond of time.

The worm, or fmall animal which is produced from the fpawn of frogs, and is called a tapdole, afforded me a ftill more diftinct view of this fubject; for, upon placing one of them, which was newly hatched, before the microfcope, I could diftinetly perceive the whole circuit of the blood, in its paffage to the cxtremities of the veffels, and in its return towards the heart. But I mult here obferve, (as
before mentionel) that if this blood had been an uniformily clear liquor, its motion could not by any means have been difcovered; but as it confined of a very tranfparent fluid, mixed, as it feemed, with globules of difficerent fizes, which were plainly to be diftinguifhed, though they had not, as yet, in this creature acquired any colour, the circulation was thereby rendered very apparent.
When thele tadpoles were about eight or ten days old, I could perceive a finall particle moving within their bodies, which I concluded to be the heart; and the fluid which was protruded from it began to affume a red colour.

Upon examining the tail of this creature, a fight prefented itfelf, more delightful than any that my eyes had ever beheld; for here I difcovered more than fifty circulations of the blood, in different places, while the animal lay quiet in the water, and I could bring it before the microfcope to my wifh. For I faw, not only that the blood in many places was conveyed through exceedingly minute veffels, from the middle of the tail towards the edges, but that each of thefe veffels had a curve, or turning, and carried the blood back towards the middle of the tail, in order to be again conveyed to the heart. Hereby it plainly appeared to me, that the blood-veffiels I now faw in this animal, and which bear the names of arteries and veins, are, in fact, one and the fane, that is to fay, that they are properly termed arteries fo long as they convey the blood to the fartheft extremities of its veffels, and veins when they bring it back towards the heart. For example, I fee many blood-veffels in the tail of a tadpole taking their courfe, as reprefented in Plate IV. fig. 1. ABC, where the pofition of the parts A and C is towards the fpine or middle of the tail, and the part B towards the edge of it. In A B, the blood is driven from the heart, and in B C, it is brought back again, and thus may we fay, that the veffel A B C, is both an artery and a vein, for it cannot be denominated an artery, farther than where the
blood is driven in it to its fartheft extent, that is, from A to B; and we muft name B C, a vein, becaufe, in it, the blood is returning back to the heart. And thus it appears, that an artery and a vein are one and the fame veffel prolonged or extended.

In the part where I faw this circulation, the arteries were no larger than to admit a fingle particle of blood to pals freely through them : thefe particles, though in this creature they were of a flat and oval fhape, yet fometimes by reafon of the fmallnefs of the artery, aflumed a kind of oblong round figure, and when the animal, by being taken out of the water, grew languid, the blood in thefe very minute arteries began to fagnate, and when it again acquired motion, many of the globules appeared twice as long as broad, and alfo pointed at their extremities.

In another place, I faw a larger artery divide itfelf into two branches, which are fhewn at $f$ is.e. D E, and each of thefe branches returned back with a curve, as reprefented at E F and E G. Now, if we denominate D E F, and DE G, arterics, becaufe, in them the blood is driven outwards from the heart, it follows that F H, and G I K, muft be veins, becaule they each bring it back towards the heart. Again, not far from K , was another fmaller artery, which is figured at M L ; this was united to the vein I K, fo that the arteries D E G, and M L, together formed one vein at I K. In a word, in this figure, HF is a vein, DEF and DEG , are arteries ; GIK and KIL, are veins, and ML is an artery; and yet we muft fay, that thefe are only the faine veffels continked.

In another place I faw three of the fmalleft arteries, after returning in a curve, as before defcribed, unite in one, and thus form a vein three times the fize of each artery. But all thefe three veffels with their bendings wherein the circulation was performed did not occupy more fpace, than could be covered by a grain of fand.

I often perceived an artery, taking its courfe over, or croffing

## ( 94 )

a rein, and, if a perfon did not clearly fee the different courfes of the veffels, he might conclude that here the circulation was performed or compleated, and this I faw not only in the fmalleft veffels, but in thofe which were ten times larger. This tranfverfe courfe, or current of the veffels, I had often before obferved in terreftrial animals, whilf I was endeavouring to difcover the conjunction of their arteries and veins. But, as I became then well affured, that this conjunction, or circulation, did not take place in the larger veffels, but in the very fmalleft of all, (for otherwife I am perfuaded, that all the parts of the body could not be fupplied with nourifhment) and that therefore I fhould in vain attempt to difcover fuch circulation, I, fome years ago, abandoned the farther inveftigation of it. For, if we now plainly perceive, that the paffage of the blood from the arteries into the veins of the tadpole, is not performed in any other than thofe veffels, which are fo minute as only to admit the paffage of a fingle globule at a time, we may conclude that the fame is performed in like manner in our own bodies, and in thofe of other animals. And if fo, it muft be impoffible for us ever to difcover the paffage from the arteries into the veins in the human body, or of any terreftrial anianimal ; firft, becaule a fingle globule, when lying in one of thofe minute arteries, has not any vifible colour, and fecondly, becaufe, in thofe veffels which are folarge as to come within our fight, the blood has not any perceptible motion.

The particles in the blood of frogs are (as before obferved) of a flat and oval thape, and thefe, when viewed fingly, appear, as I may fay, colourlefs; but when two are laid on one another, they appear a little of a reddin caft; and where three are together, the rednefs becomes deeper. This may be explaned by fig. 3. wherein A reprefents one of thefe oval particles, which, in part, is covered by another particle B ; and C is a third particle, covering a fimall part of both $A$ and $B$; by which means the part at $D$, where the particles are threc-fold, acquires a fill darker colour. But when

I have attentively examined one of thefe oval particles on the edge, as is feen at E , I have found it exhibit a ftronger blood-red than where three particles lay flat one on another:

Among the tadpoles, which I caufed to be taken ont of the canals, I perceived a few very fmall fifhes, having their Rins marked with. dark fpots, fome of which were of the figures of little fars. This fpecies of fifh I judged to be of its full fize, becaufe I had never feen any by the naked eye of the fame thape as thefe appeared when magnified. One of them I placed before the microfcope, and, upon obferving the finny part which conftitutes the extremity of the tail, I plainly faw the fame kind of flender arteries and veins as I have before defcribed, though with more difficulty than in the tadpole, partly, becaufe this fifh did not long continue quiet, and partly becaufe the particles of Blood (which, in thefe obfervations appeared to me no other than globules) were much fmaller than in the tadpole. Thefe arteries and veins were placed near the boney parts, or rifings, which give firength to the fin at the tail, and in them I faw the compleat circulation of the Blood; for, on both fides of each of the beforementioned boney parts was an artery, which had a bending, or backward turning at its extremity, and thus became the beginning of a vein.

Upon viewing this fifn's tail, at the part where the fin begins, I. there faw, to my great admiration, a large artery dividing itfelf into the before-mentioned fmaller ones; and clofe to it, numbers of the minute veins returning from the fin, and uniting in one large vein. In flort, here was fuch an agitation, or motion of the Blood driven out of the large artery to the farthefen of the tail and into the fin, and ruming back in the finall viens, into the large one, as is inconceivable.

In order to thew the fize of this little fin, wherein I obferved all thefe motions of the blood, I caufed a figure of it to be drawn, as it appeared to the naked eje, and this is flewn in Plate IV. fig. 4. At
fig. 5 , is fhewn part of the body and the tail of the fame fifh, as feen through the microfcope. DE is a fin on the back, and L M, another under the belly, near the tail, and FGHIK is the fin of the tail, wherein are to be numbered feventeen finall bones.

Thefe fmall bones, contrived by Nature to give ftrength to the fin, were formed with joints; and I could fee that they were compofed of oblong particles, which, probably, were hollow tubes; the pellicle, or membrane, which covered them, and compofed the greateft part of the fin, was alfo formed of oblong parts, but thefe things the limner could not perceive, becaule the fifh being then dead, they were become invifible.

I have before faid, that on each fide of thefe boney parts of the tail I had diftinctly feen the compleat circulation of the blood, and this was in thirty-four places, two between each bone ; that is, there were in this fifh's tail fixty-eight blood veffels; namely, thirty-four arteries, and as many veins, befides thofe veffels that, probably, were in the finalleft part of the fin, about F or K, which I did not attend to.

To thew this circulation more plainly, I caufed one of the boney parts of the tail to be drawn fomewhat more magnified, which is reprefented at fig. 6, O PQR. Clofe to each fide of this bone lies an artery, which in the figure is pictured at S T and W X, and in thefe veffels are reprefented the particles of blood, which appear of a round figure. Here the blood was to be feen ruming with a fwift courfe from S to T , and with the fame fwiftnefs returning back from T to V, fo that ST is an artery, and T V a vein, and yet, both of them but one blood-veffel, continued and prolonged. In like mamer, were the blood-veffels on the other fide of the bone at WX Y. But thefe arteries and veins were not at fo great a proportionate diffance as here reprefented, for, in many places, they were fo clofe as to touch each other.

## 97 )

In other places, and alfo in the two fins D E and L M, I faw the blood not only ruming along, but alfo taking its whole courfe forward and back again, in mamer before defcribed.

Now, if in the tail of fo fmall a fifh, as this which is pictured at $f g .4$, there are to be found thirty-four diftinct circulations of blood, what an incredible number of them muf there be in an human body! And this being lo, it is no wonder, that, upon the leaft puncture made by a needle, or any other fmail inftrument, the bloodiffies forth. Indeed, from thefe my obfervations, I am well affured, that, in the fipace of a finger's nail, in any part of the furface of our bodies, there are more than a thoufand circulations of blood.

Some years after thefe, and other obfervations of the like kind, had been made by me, I accidentally fell into converlation with a certain learned Gentleman, (not a native of Holland) on this fubject of the circulation of the blond, particularly in the minuteft veffels which are contained in a very fmall fpace, and that this circulation could as plainly be feen, as with the naked eye we fee water fpringing up from a fomtain, and falling down again; but though 1 ufed all my endeavours to convince him of the truth of what I advanced, yet this learned Gentleman refufed to give credit to my words, declaring that he could not form any conception of the matters which I related.

This Gentleman's incredulity took up much of my thoughts, particularly upon a time when I had got fome very fimall eels, not longer than one's little finger : and on this occafion I fent for a limner, who I knew was a very curions obferver, and had a very acute fight, judging that he would be able to make a drawing of fome of thofe blood-veffels.

I then put one of thefe fmall eels into a glafs tube, about the fize of a goofe-quill, and placing it before the microfcope, I delivered it into the limner's hands, defiring him particularly to attend to the current of blood which at that time was moft diftinctily to be feen in
fome fmall veffels; defiring him, at the fame time, to obferve, that all thofe refie's the noll which the bleod was driven outwards to the radolites, wemenamal arterics, bot where the blood, when arrived at the fimallell vellels, began to take its courfe back again, there they were called reins, although it plainly appeared that the fofiels were one and the fame.

The limner could not fufficiently admire this fpectacle of the blood circulating in fuch minute reflels, arifing out of the larger ones; and he was equally in achniration at the blood's returning from thole very fimall seffels into the larger. And as the eel continued guiet longer than ufual, without moving its tail, I frequently defired the limmer that he would, as long as poflible, keep his eye fixed on this current of the blood, in order to imprint the idea on his memory. At length, he put his hand to paper. and made a rough fketch of fume blood-velfels and their ramilications, or branches; and he repaa cd his obfervation and his drawing, until he had compleatly traced fis: feveral blood-reffels, namely, thee arteries, and as many reins, nith their ramifications, with all the accuracy he was able, faying, he hed now fufficient materials to make a perfect drawing, fo as to deferibe the exact propation both of the larger and fmaller veffels.

In Plate Ii'. fig. 7 , and in the fpace between $1,2,8$, are reprefented fi: of thefe blood-veflels, which I directed to be drawn on rather a larger feale than the firft fketch taken of them, in order that the feveral veliels might be eafier diffinguifhed ; therefore this figure fhews them about twice as large as they appeared to the limmer through the microfoope.
'Thefe veficls were not at the very extremity of the fifh's tail, but a little below it, towards the cud of the fin. And that part, or fpot, which the limner faw throagh the microlcope, and the feveral bloos:reffels of which he made the drawing, did not, in my judgment, take up as much fpace as is occupsied by a large grain of fand ; for though the riew of the microfcope might include the compafs of four fuch

## ( 99 )

grains, yet the part wherein the blood-veffels were feen, did not amount to a fourth of that fpace; fo that, within lefs compafs than that of a grain of fand, there are found to be in the tail of an eel, as great a number of blood-vefiels as are here reprefented between $1,2,3 \cdot 4$.

At the letter $A$, is reprefented one of thofe blood-veftels, which are called reins; $B$, one of thofe named arteries; $C$, is a vein; $D$, an artery; E, another vein, and F , another artery.

But, in order more clearly to explain the courfe of the blood in thefe veffels, and to fhew, at what part, though in fact they are one and the fame, they affume different names, I have in the figure more particularly pointed out, and fhall now defcribe one of thofe reflels called an artery.

D, is that artery, out of which, at G, proceeds a fmall branch, which, at H , divides itfelf into two, as HIK: and here we fee, that the branch GHI is properly to be named an artery, becaufe, as far as I, the blood is driven from the heart, and IK, we muft name a rein, becaufe, from $I$ to $K$ the blood is brought back towards the heart. In the other branch, which proceeds from $\boldsymbol{H}$, in the direction H LM, the blood is infufed into the rein E at M ; and fince at M it firf begins to take its courfe towards the heart, it follows that at M this veflel firft affumes the name of a vein.

In this fimall artery GH, it is to be obferved that the limmer has been very accurate in defcribing the exact fize of the veffel, and we muft always bear in mind, that in thefe branchings, or ramifications, the arteries grow fmaller and fmaller, and the veins continually grow larger, as they receive the blood from the arteries. Farther, all the minute blood-veffels defcribed in this figure the limner has reprefented, not by lines, but by finall circular dots, fo as to give an idea of the particles or globules of blood, which he very diftinctly faw, rumning or pafling through them.

All the minute veffels which are reprefented in this figure, of the
fize pictured at HIK, or HLM, are of equal dimenfions, and they are fo flender, that I can fafely affirm, that if a grain of our common fcowering fand were divided into a million of equal parts, each of thofe parts would fill be too large to find a paffage through thefe minute reffels. Which being confidered, we may conclude how exquifitely flender muft be the reffels in which the circulation is performed: and if it were not fo, how could all the parts of our bodies be continually fupplied with nourithment? *

Farther, in the before-mentioned artery D, is another fimall ramification at N , which depofits its contents in the vein E at O , and a little higher, at $P$, is a branch which unites itfelf with the vein E at Q .

At R , may be obferved another fimall branch, proceeding from the fame artery D , which, at S , is joined with a fimall branch from the artery $B$, and afterwards both fall into the vein $C$.

Again, at $T$, is another fimall branch, ariling out of the artery $D$. which, at V, fubdivides itfelf into two, and, in two fereral places, namely, at W and K , conveys the blood into the vein E , and from the fame artery another branch arifes at $\mathbf{Y}$, which, at $Z$, is divided into two, and thefe are united to the vein $C$ at the places marked $a$ and $b$.

At a fmall diftance from Y , is another very minute brancly at $c$, which is joined to the rein C at $d$.

Farther, at $e$, another fmall artery branches forth from D , taking the direction ef, and at $f$ is fubdivided into two ftill fmaller branches, both which join the vein E at $g$ and $b$.

* A very eminent phyfician of our own country, (Dr Mead) expreffes himfelf in very nearly the fame words: "Every animal machine is of fuch a nature, that there is a " fort of infinity in its conftituent parts, by which exprefion I mean, that their fibres are " fo extremely fmall, that we cannot difcover the ultimate ftamina, even by the affiftance " of the beft microfcopes. Had it been otherwife, aliment could not be conveyed to " every individual part of the body; nor could the neceffary functions of life be per" formed. Mead's Medical Preceprs, in the Introduction.

A little higher in the artery D , a fimall artery branches off at $i$, proceeding to $k$ and $l$, where it again divides itfelf into two, and joins the vein E at $m$ and $n$.

Clofe to $i$, two fimall branches arife at $o$, and join the vein $C$ at $p$ and $q$.

At $r$ arifes another fmall artery $r s$, which at $s$ divides into two maller branches, one of them taking the courfe $s t$, to join the vein C, and the other pafling by suz $x$, to join the vein E .

Laftly, the extremity, or finalleft part of the artery D , is fhewn at $r y \approx$, and is united to the vein E at A , firlt fending off a branch near the letter $u$, which taking the direction $u b$, is united to the rein $C$ at $t$.

Hence it plainly appears, how many various branches or minute arteries proceed from thofe fmall blood-veffels, or arteries, reprefented at $\mathrm{B}, \mathrm{D}$ and F , and how thefe all unite with the other fimall reffels called veins, which are fhewn at $\mathrm{A}, \mathrm{C}$ and E ; and this alfo proses what has been fo often mentioned, that all thefe blood-velfels, though called by different names, are yet the fame identical veffels. And if we reflect, that each of thefe very finall veffels muft be formed with the fame kind of coat as the larger ones though of a thinnefs proportioned to its fize; and farther, if we confider of what wonderfully fine and invifible membranes the coats of the fmalleft veffels muft be formed, and how eafily the fineft part of the arterial blood may find a paffage through thofe coats, to the end that every part of the body may, from thence, be continually fupplied with neceffary and fuitable nourifhment; thefe things, I fay, being duly weighed and confidered, it feems clear that the arterial blood, coming from the heart, muft contain more fubtile and fluid parts than when in its paffage to the heart. For the blood will not be deprived of its more fubtile juices, while in the larger arteries; to prevent which, I imagine that they are provided with thick and folid coats. And here the particles of blood from which its redncfs proceeds, fwimming in a thin juice, are of a bright red colour; but
in the linalleit arteries, fome of its parts are drawn off for the fupport and nourifhment of the body, whereby the blood, when returning in the veins, being deprived of thofe thin juices, allumes a darker red, and as more of the thin juices are tahen away, it will appear blackifin.

The circulation of the blood is reprelented in another view, at fig. 8, A B C D E F G HIK, which is a drawing of fome veffels feen by the microfcope, in the tail of a tadpole; thefe animals are much quieter than eels, and the arteries and veins are as cafily to be feen in them as in any other creature; and in the fimalleft vefiels where the period, or the retrograde motion of the blood is performed, its particles are more diftant from each other than in any other ammal.

The vellel, thewin in this figure, (which was an artery, wherein the blood was driven fortard with great fwiftrefs from A to B) was rather larger than to admit one of the particles of blood at a time. At B it divided itfelf into two branches, which are reprefented at BC and BE ; thele two branches were at D again united in one, for a fhort fpace, and at $F$ they again feparated, as fhewn at $F \in$ and F I. Here thefe two arterial branches, making a fimall curve, or bend, again joined in one at $H$, forming a fomewhat larger veflel, which is feen at II $K$, and at $K$, this was joined to a fiill larger blood-veffel.

Here it is plain, that the veffels ABCDEFG, and ABEFI, forafmuch as in them the blood is driven from the heart, to $G$ and I, its greateft difance, muft be named arteries ; and the veffels $\mathrm{G} / 1 \mathrm{i}$ and I H K, becaufe in them the blood is returning to the heart, muft be named veins.

I formerly was of opinion, that in all cales where by an accidental fall or blow, there were produced livid or purple fpots upon the Kkin, which proceeded from coagulated blood, this blocd (if no exulceration fhould take place in the part) would by degrees be fo diflolved, as to be carried off by perfpiration; but the following fervations caufed me to alter my opinion in this refpect.

In the tail of this tadpole, I oblerved a veffel, of a fize to admit twenty of the particles or globules at once; fo that this was a large veflel, in proportion to thofe which I have before defrribed. A fmall part of it is reprefented at fig. 9, L M ; and from this, proceeded a minnte veflel, which is flewn at MO.

The current in this veffel, from L to M, was not fo fwift as I obferred in the other veffels, and for this reafon, that, in another part of it, at R , the blood was coagulated, infomuch, that no diftinct particles could be perceived in it, but only an uniform rednefs; but in the frmall veflel N , the current was as fiwift as in any of the others.

In confequence of this ftagnation at R , the blood was driven forwards from MI to P , with every pulfation of the heart, and inftantly ram back again, in like mamer, as if with the maked eye we beheld a fivift aiternate or reciprocal motion, like that of a faw.

We know, that water camot be comprefied into a lefs fpace than it naturally occupies; and this being allo the cafe with regard to the hlood, we muft conclucle, that the coat of this veffel, between N and I', and alfo a little below N, was, at every pulfation, expanded in diancter, and, at the intermitting of the pulfation, would contract itfolf, and fo drive the blood back again.

Keeping my eye fixed on the object, I perceived, in a little time, the blood between P and R begin to move, and by little and little, from $P$ towards $R$, to have the fame alternate motion to and fro, as I have before defcribed. At the fame time, the blood in the veffel $\mathcal{N} S$, where, at firft, little or no motion could be feen, the current was now as fwift as ufuàl. And in the fimall blood-veflel, marked P ( ) which wats only of a fize to admit one globule at a time, and wherein I could not at firft difcover any motion, the circulation was now refured ; but the particles of blood were few in number, and at a difance from each other.

At length all the blood from $P$ to $R$, was fo far rendered fluid, that, at every pulfation, it was driven forward, and then returned back again. In thefe obferrations, about two minutes of time elaplecl, and my eye being fatigued, I took it off the object to give it reft, in which interval, the conimal put itfelf into a violent agitation, thereby precluding any farther obfervation.

But, fince we now clearly fee, that coagulated blood can, by the pulfation of the heart, in courfe of time, not only be put in motion, but alfo fo far diffolved, that its component particles or globules may re-affime their priftine figure, we may fairly conclude, that blood, in any animal, which by a blow or bruife, is made to coagulate and ftagnate in the veffels, may, in the fpace of fome days, be reflored to motion.


For, fuppofing, that in an human body, the blood is driven from the heart feventy-five times in the fpace of a minute (fome fay the number of pulfations does not exceed fixty, but I believe my computation to be neareft the truth) it follows, that the pulfations in an hour's time, are 4.500 , and, in the fpace of a day and a night, 108,000.
Now, if we find, that the appearance produced by coagulated blood, will, in the fpace of ten days difappear, from our bodies, and confider, that, in the fame fpace of time, a million and eighty thoufand pulfations are performed, and fuppofing, that, at every pulfation, fo much of the blood is put in motion in the feveral veflels, as is only equal in fize to a grain of fand, we may gather how much of fag. nant blood may be refored to motion, in the fpace of time juft mentioned,

For example, let us fuppofe, that the quantity of blood, which at every pulfation can be rendered fluid, and reftored to its motion, is no more than the fize or quantity of a grain of fand, and that eighty of fuch grains placed fide by fide do not exceed the length of one inch; we find then that 512000 grains of fand taken together are equal to a cubic inch, which number is not the half of the number above afigned.

In this blood-veffel, which I have juft mentioned, I could not only very clearly difcern the feveral pulfations, but I could alfo many times in all the artcries, fee to make an exact computation how many times the blood was propelled from the heart in the fpace of one minute.

Now, if we confider that fo great a quantity of blood, as is contained within the compals of a cubic inch, is very rarely by a blow or bruife congealed in one fpot, we may eafily conceive, that when a coagulation does happen, it may, by fuch frequent propulfions or pulfations as I have mentioned, be at length diffolved, and in all, or moft of the veffels, reftored to the fame current or courfe as before.

At another time, I obferved an appearance of a different nature in the blood-veffels, which was occafioned by my having put a tadpole into a piece of clean paper, whereby a fmall fpot in the very thimeft part of its tail ftuck to the paper, and thereby received a fimall injury, fo that fome blood flowed from the wound, out of an artery which was of a fize to admit about four globules of blood to pafs through it at a time.

The blcod thus flowing out, remained collected about the wounded part; but here another fight prefented itfelf, which engaged all my attention; for, in this fame artery, at about the half of an hair's breadth diftance from the wounded part, another fmall branch appeared, whercin the blood purfued its courfe in the fame uniform and difinet manner, as if the artery had remained uninjured.

At $f g .10, \mathrm{TV}$, is feen this artery, which was woinded a little above V . The letters V and X indicate the extravafated blood. V W denote the minute artery in which the blood purfued its regular courfe, though clofe to the place, at $P$, it iffined out from the artery TV.

This fight at firft furprized me, but my wonder ceafed when I obferved that this blood veflel V W, was united with a large one dt W, and of that fort which, carrying back the blood to the heart, is called a vein. And by means of this laft-mentioned veffel, the blood was carried through the paffige $V$ W, as it were, by a kind of fuction, with as much fwiftnefs as it had been before driven from T to V , infomuch that I was perfuaded, that if the fmall veffel V lad not been united to the artery TV , but only its orifice had laid in the extravafated blood, about the fpot at $V$, that fuch extravafated blood would in a thort time have been, as I may fay, fucked up and carried away with the remainder of the blood towards W .

I have often reflected on the nature of thofe very thin tranfparent pellicles, or fkins, which conftitute the wings of fmall flying infects, fuch as gnats, flies, moths, and the like; fome of which I have obferved to be entirely covered with feathers, others compofed only of thofe mufcular parts which ftrengthen and expand the wing, and others are wholly covered with hairs: and when I confidered, that thefe hairs, or feathers, are fixed or rooted in regular order in the membrane of the wing, my thoughts were wholly bent to difcover how thefe wings might be formed.

As to the fuppofition which at firft occured, that thefe membranes were compoled of a tranfparent vifcous or gummy matter, congealed or hardened to a due confiftence, I could not fatisfy myfelf with that idea, for it feemed impoffible to me, that in that cafe the feathers and hairs could be produced in fuch regular order; and yet, it was beyond my comprehenfion how fo thin a membrane could be furnifh-
ed with fuch a number of veins or veffels as would be requifite for the formation of fuch feathers and hairs.

In my endeavours to inveftigate this fubject, I firft examined one of thofe flying infects, whofe wings confift of membranes only, without either hairs or feathers; which membranes are placed between the large veffels and finews, giving ftrength and ftiffnefs to the wings; and upon the examination of thefe, I plainly faw that there were large blood-veffels running among the finews or mufcular parts, from which arofe fmaller veffels, and thefe again divided themfelves into fill finaller ones, until at length they became invifible.

I was not, however, content with this, and among other objects, I met with a large green grafshopper, in the wing of which I more clearly perceived not only, that from the large blood-veffels in the wing, other fmaller ones arofe, but I alfo faw that the colour of the blood in thefe large veffels was green; and in the fmaller veffels and their more minute ramifications, I could ftill diftinguifh the blood to have a greenifh caft ; but when thefe veffels were again fubdivided into fmaller ones, I could not perceive any colour in them, and the veffels themfelves became fo clear and tranfparent that they entirely efcaped the fight.

Though I could moft plainly fee that the fubfance, or matter, of which this blood was compofed, confifted of globules fwimming in a elear liquor, I moreover cut the wing in two, and out of the veffels collected fome of the blood, which I placed before the microfcope, and olferved that where the globules or particles of it lay in numbers or heaps together, the colcur was a lively green, where they lay fo thin as not to amount to the twentieth part of the thicknels of an hair of one's head, the colour was only greenifh, but where the giobules were fingly difperfed, it had no longer any appearance of colour at all, but became tranfparent ; and here it clearly appeared
to me, theit all thefe green globules were contained in a thin tranfparent fluid.

From thefe obfervations I concluded, that the tranfparent membranes which principally conftitute the wings of thefe finall animals, are as completely provided with blood-veffels, finews, \&ic. as the bodies of other creatures.

I formerly was of opinion, that in the wings of thefe fimall flying creatures there was no circulation of the blood, for I judged, that in its paflage through fuch exceeding flender veffils, it muft be evaporated or dried up: and the rather, as many of thefe winged infects do not take any food, but only live a few days, and die as foon as they have coupled, and laid their eggs. But if we recollect, that the membranes of their wings are of a hard and homy nature, though excecting thin, we may conclide, that all the veffels, compofing this horny membrane are fo firm and tough, that, though all the fluid contained in them fhould be dried up by the heat of the fun, the vellels themfelves would not collapfe or fhrink up, as thofe in our own bodies, or the bodies of other animals would do in the like cale.

I was confirmed in this opinion, by obferving that the blood-veffels in the wings of thefe infects were not of the fame make as thofe in the bodies of the human fpecies and of terreftrial animals, but were compofed of amular parts, or rings, like the windpipe and the veffels pertaining to refpiration in the lungs of animals. And, though we may not be able to difcover all thefe veffels in the wings of infects, yet we may be affired that there is an incredible number of them entering into the compofition of thofe wings. And, fhould we inagine, that thefe veffels by reafon of their fmallnefs or their hard and dry nature, are impervious to blood and juices for the fuftenance of the wing, we muf confider that there is not a fingle hair or feather, how fimall foever it be, which is found upon one of thefe wings, but muft have had in it many fmall veffels necelfary for its production; for every feather has its quill and every quill mult have a great num-
ber of veffels, in order to contribute to the increafe of fuch feather : and who knows whether each of fuch fmall feathers may not have been formed out of more than a thoufand veffels? And when we reflect on the great number of feathers or hairs with which the wing of a fly or moth is covered, we fhall find it impoffible to conceive the numbers of veffels of which thefe infects, though they appear contemptible in our eyes, are compofed. Indeed, I am of opinion, that many phyficians and furgeons camot reckon up fo great a number of vellels in a cat or a dog, as I imagine enter into the compofition of a gnat.

It was alfo at one time my opinion, that the ridges, or thicker parts, in the wings of thefe flying infects, and which I have named finews, were only the boney parts of the wing to give it firength. But when I perceived, that there were large blood-veffels in thofe parts, I applied myfelf with all diligence to difcover, if poffible, the current of blood in thofe veffels.

For this purpofe, I took thofe butterflies which proceed from the catterpillar that feeds on the alpin, the poplar, or the willow ; and which, in fize and fhape, refemble the filk worm's butterfly. Their wings are, on both fides, covered with white feathers, and, unlefs thefe are taken off, the membrane cannot be difcerned. Thele feathers I wiped from the wing with a foft piece of leather, as gently as poffible, to avoid injuring the wing or hurting the butterfly. And I then applied the wing (while the animal was alive) to the microfcope; but, with all my attention, I could not difcern the leafi current of blood in the vefiels, though if there had been any regular motion, I have no doubt but I fhould have feen it, and the rather, as this blocd was of a yellowifh colour; and, upon opening the large veffels in thefe wings, I have often preffed out the blood which they contained.

For the moft part, thefe large vellels lye in, or near, that boney part of the wing which gives it frength; and I have often obferved
thofe veffels to be placed, not in a right line, or parallel with the boney part, but twifted, with various turnings, in like manner as if one were to fee the inteftines of an animal in the pofture they lie while joined to their membranes.

After this, I accidently met with a large grey moth or butterfly, which in a manner flew into my hand. This butterfly I kifled, and cut off the wings, and, having taken off the feathers, I placed them before the microfcope: and here I faw the bloodveflels more plainly than in the wings of the other infects I have mentioned. A part of one of thefe wings I placed before the microfcope, and caufed a drawing to be made, not only of thofe blood-veffels lying in the boney part of the wing, but alfo of thofe which were difperfed over the membrane, and of which the membrane, in part, confifts; in order to thew, how the veffels lye twifted in various turnings; alfo, how they are compofed of amnular parts or rings placed together ; and likewife, how, from thefe large veffels fmaller branches arile, which, in great numbers, are fpread all over the membrane.

In Plate 1V. fig. 11, $\mathrm{P} Q \mathrm{R}$ reprefents a blood-veffel, with its various branches, fpread over the membrane. ABCDEFG, is a large blood-veffel in one of the boney parts of the wing, wherein is feen, the manner how this reflel is twifted or bent, and alfo, the amular parts of which it is compofed; in conformity with the formation of the blood-veffels in all infects; infomuch that I have feen the blood-veffels in the loufe and flea, to be compofed of fuch ammular parts.

In the fame figure, $\mathrm{BH}, \mathrm{I} K, \mathrm{CL}, \mathrm{DM}, \mathrm{E} \mathrm{N}$, and EO , reprefent the blood-rellels with their branches ifliung from this laftmentioned veffel, and fpreading over the membrane; and in thefe alfo, the amnular parts could be diftinguifhed; but when they became fo fmall, as to appear no larger through the microfcope, than a horfe-hair to the naked cye, then the rings in them could no longer be diferned. Thefe reffels the limer purfued in his
drawing as far as his eye could diftinguifh them, but at length they became fo minute, and fo intermixed one with another, that no true judgment could be formed of them.

In S TV, are fhewn a few of the feathers, which fo exactly cover both ficles of the membrane, that no part of it can be feen. W W W, are three larger feathers which were placed on the edges of the wing. XXXXX indicate the membrane, when it was laid bare of its feathers, on both fides, in order to difcover the blood-veffels. And here, though not in regular order, may be feen the cavities or holes in which the quills were fixed, and from which they had their origin.

Farther, I confidered with myfelf, whether or no the blood-veffels confifted of arteries and reins; but I conld not fee any other than one fort of veffels in the wings of all the infects of this fpecies, which I have examined, except that once I thought I faw in the thimeeft part of the wing of a grafshopper, that in the larger veffels next the body, another fpecies of veffels was inferted.

The conclufion drawn by me upon the whole was, that there was not any circulation of the blood in the wings of thefe creatures, and that the blood-veffels I have been defcribing, which certainly were arteries, were only defigned to perfect the formation of the wing with its multitudes of feathers, and afterwards, to convey the blood, with an exceeding flow motion, through the veflels, in orler to afford a finall degree of fupport to the wing in its perfect fate. For, as thefe butterflies, and thofe which are produced from the filk-worm, and many other flying infects which proceed from caterpillars, do not take any food, and do not live any longer than till they have coupled and laid their eggs, it is not neceffary, in my opinion, that the blood in their wings fhould have any circulating or retrograde motion, and befides, the membranes being of a fiff horny nature, they require little or no nourifhment.

I cannot here omit to mention, that I have heretofore often take!
great pains to difcover two kinds of reffels in the leaves of trees and plants in order to afcertain, whether there was any circulation in leaves, but I never could fee more than one fpecies of yeffels, namely thofe that convey the nutritive juices to the feveral parts.

But, if we confider, that not only the leaves of trees, but alfo their fruits, do not need any other than thofe nutritive juices, which are requifite to bring them to perfection, we fhall not wonder that when at a fate of maturity, they are, as it were, fpontaneoufly loofened or fhaken off from the tree, without the leaft appearance of having been broken off; may, that part of the ftalk which was originally united to the tree, will appear as fmooth as if, with its multitude of veffels, it never had been joined to it.

In a word, I will venture to affert, that neither the wings of the before mentioned flying infects, nor the leaves or fruit of trees, require that kind of circulation of the juices, which we have been confidering.


Of the formation of the Teeth in Several animals; the Aructure of the buman Teeth expluined, and Some of the diforders to which the fame are liable accounted for.

HAVING taken great pains to inveftigate the formation of the elephant's tooth, and examined into the nature of it by every means I could devife, I found it to confift only of a collection of tubuli, or pipes, which are exceedingly fmall, and all derive their origin from the inner part of the tooth, for I never could difcover any of them lying longitudinally or lengthwife in it.

Upon examining that part of the tooth where the boney fubfance is but thin, which is where it is united to the head, I very plainly perceived that one end of thefe tubuli took its rife from the cavity within, and the other end extended to the circumference, which circumference or outfide was compoled of a kind of fcaly particles laid one on another, and I confidered with myfelf whether each feries or layer of thefe fcaly particles might not be the fubftance or thicknefs formed in the fpace of one year.

Purfuing thefe my obfervations in the examination of that part of the tooth where to the eye it feems perfectly folid, I there found it to have, near the middle, a fmall cavity, through which cavity I concluded the nutritive fubfance muft be conveyed, for the continual fupport and increafe of the tooth. And upon examining the tubuli round about this fmall cavity, I perceived that they all arofe from thence, and fpread themfelves all round towards the circumference. I endeavoured to examine ftill farther, beyond the part where this cavity ended, in order to difcover whether from thefe firft formed
*ubuli others might not arife or branch forth ; but this part of nature's work was infcrutable to me. My conjecture refpecting the matter however was, that each of the boney tubuli (proceeding from the fmall cavity before mentioned) might be compofed of many folds or coats, and thus not only be difpofed to diverge or fpread into a larger fpace, fo as to form the fubftance of the tooth, but alfo, by this means, contribute to its firength.

I alfo examined the teeth taken from young hogs, and found them to be likewife formed of tubuli fpreading from the cavity in the center, to the circunference.

After this, I was defirous of examining the ftructure of the human teeth, and having for that purpofe procured a number of the large ones, called the grinders, I found them to be formed exactly in the manner before defcribed, namely, of tubuli or little boney pipes, clofely joined together, arifing at the cavity in the middle of the tooth, and ending at the circumference or outfide. And in order to explain this formation to the Reader as clearly as poffible, I caufed the following drawings to be made :

In Plate V. fig.1, at A B C, is reprefented a human tooth, on one fide of which, with a file, I cut away almoft the half, not to difcover the cavity therein, which is well known to moft perfons, but only to fhew the mamer how the tubuli, of which the boney part is compofed, take their rife from the cavity in the center, and terminate at the circumference. But it muft be underfood, that thefe tubuli are by no means of the fize reprefented by the lines in this figure, the fame only denoting the order in which they lic, for the tubuli themfelves are exceedingly fmall, and camot be well difcerned without the help of the very beft microfcopes.

In the fame figure, at G H I, is reprefented another tooth, which is filed down from the upper part of it as far as the before-mentioned cavity, in order to fhew how the tubuli do here alfo fpread themfelves round about from the center. All the extremities of the
tubuli which lie near the outfide of the tooth, (as far as they are above the gums, and expofed to the air) are extremely hard, being as it were the folid cafe, fhell, or covering of the tooth : and if we examine the furface of this cafe or covering attentively, we fhall find one tooth to have forty, another perhaps fifty circles on it, like wrinkles, or gatherings, which in fome places run in a curved or wavy direction, as is reprefented in the figure at D E F , where a drawing is given of this outfide fhell, with fome of the circles marked thereon; and I imagine that the circles which thus appear like wrinkles proceed from hence, that they are the places where the toath, while growing, is from time to time protruded or thruft out from the gum.

In the teeth fhed by children, and likewile in thofe of many young animals, I have obferved that the ends of their roots are entirely open or hollow; and in like manner I inagine that the roots of the molar teeth or grinders which I have been juft defcribing, are at firft formed in the fame manner, but that in procefs of time they become oflified or converted into a boney fubfance, of a fpongy nature, through which many veffels pafs, conveying biood, and nutritive juices into the cavity of the tooth, and I alfo conceive that this cavity is filled with nerves and veffels fpreading themfelves into fo many branches, that every one of the boney tubuli is thereby increafed during the time of its growth, and afterwards, (while the tooth continues found) nourifhed and fupported. I alfo conjecture that thefe fmall veffels thus nourifhing and fupporting the boney tubuli do not end at the furface of the tooth (I mean, in that part of it which is within the gum) but that the aliment or nutritive fubftance has a continued courfe through thefe veffels, and that the ends of the boney tubuli are again converted into foft or pliable veffels, fpreading through the gum, and that thofe veffels are what principally keep the tooth fixed in its place.

The firft formation, and fubfequent fupport or nourifhment of the
rooth being as before defcribed, we may eafily conceive that the boney tubuli, (being of a folid nature, and incapable of dilatation or fpreading: may happen to be obftructed by fome grols or concreted matter, and then the fimall veffels contained within the cavity of the tooth muft immediately by fuch obftruction in the circulation of their juices be deftined. This diftention or fwelling will neceffarily excite great pain, for all the veffels contained in the tooth will prefs clofely on each other, forafinuch as they cannot fwell or fpread themfelves as other veffels can, which are not confined within the folid fubftance of a bone. Again, fuppofing thefe boney tubuli to be obfiructed, and the obftruction not removed, we may from thence gather the reafon why our teeth partially decay, fometimes on the fides, and fometimes at the tops, the reft of the teeth remaining found for feveral years after.

In order to fhew the proportion which the fize or thicknefs of the tooth bears to its component parts before defcribed, I placed a very fimall piece of this tooth before the microfcope, and delivered that microtcope to the limner, directing him to draw an exact reprefentation of what he faw, (but without acquainting him what that object was). And here I muft obferve, that in this tooth the tubuli appeared to me much larger than I had before obferved in any animal, or in the elephant's tooth.

In Plate V. at fig. a, K L M N, is reprefented * an exceeding fmall particle, or piece of a human tooth, of that fort called the molar teeth, or grinders, as feen through the microfcope. The reafon why in this figure fome of the tubuli there pictured appear of a darker hade than the reft, is only this, that in that place where they feem darker there were more of the tubuli lying one

[^24]
## ( 117 )

behind the other, owing to the piece of tooth being thicker in that part, for this finall fragment was fplit off, and not cut from the tooth.

The breadth of this tooth was almoft two fifth parts of an inch, and from the beft computation I could make, I judged that within the forty-fifth part of an inch, I faw an hundred and twenty of the tubuli, which amounts, in the fpace of one inch in length, to five thoufand four hundred : now fuppofing this molar tooth, or grinder, before defcribed, to be of a round figure, the diameter of it would be $215^{\circ}$ times the thicknefs of one of the tubili of which the fame is compofed, and when this number is multiplied into itfelf, the product is $4,822,500$. In a word, the proportion of one of the boney tubili to the fize of fuch a tooth, is as one to $4,822,500$

Notwithftanding I had now obtained a very fatisfactory infight into the formation of the human tooth, I was not yet content, but bccame defirous to examine into the nature of the fubfance, or veffels contained in the cavity, and for this purpofe, I procured fome of the fore teeth, and the jaw-bone of an ox, which were taken out aid brought to me immediately after the animal had been killed ; feveral of thefe fore-teeth, and fome of the grinders, I broke, or fplit open, and with great admiration obferved, that thofe veffels, which, paffing through finall apertures in the lower part of the tooth, filled all the cavity within, confifted of fuch an inconceivable number of blood-velfels, and other veffels, as to furpafs all imagination: indeed, many of them. I obferved to be as fimall and flender as the tubili themfelves, of which the tooth was formed; and among them were fmall blood-veffels branching out into fill finaller ones, many of them entirely colourlefs; therefore, I thought it probable that there might be ftull fmaller veffels entirely undifcernible by our fight.

All thefe veffels were inclofed in a membrane, or coat, which was eafily to be feparated from the bone, and, laving kept fome
of thefe teeth by me four or five days before I broke them open, (in which time all the internal moifture was evaporated), I obferved in fome places within the tooth, a bloody fubfance which had penetrated into the boney tubuli, giving fome of them a reddifh colour.

It is my cuftom, every morning, to rub my teeth with falt, and afterwards to wafl my mouth, and after eating I always clean my large teeth with a tooth-pick, and fometimes rub them very hard with a cloth. By thefe means, my teeth are fo clean and white, that few perfons of my age * can fhew fo good a fet, nor do my gums ever blecd, although I rub them hard with falt; and yet I cannot keep my teeth fo clean, but that upon examining them with a magnifying glafs, I have obferved a fort of white libffance collceted between them, in confiftence like a mixture of flour and water. In reflecting on this fubftance, I thought it probable, (though I could not obferve any motion in it,) that it might contain fome living creatures. Having therefore mixed it with rain water, which I knew was perfectly pure, I found, to my great furprife, that it contained many very finall animalcules, the motions of which were very pleafing to behold. The largeft fort of them is reprefented in Plate V. fig. 3, at $A$, and thefe had the greateft, and the quickef motion, leaping about in the fluid, like the fifh called a Jack; the number of thefe was very fimall. The fecond fort are reprefented at B , thefe often had a kind of whirling motion, and fometimes moved in the direction reprefented by the dotted line C D, thefe were more in number. Of the third fort, I could not well afcertain the figure, for fometimes they feemed roundifh but oblong, and fometimes perfectly round. Thefe were fo finall, that they did not appear larger than reprefented at E . The motion of thefe little creatures, one among another, may be imagined like that of a great number of gnats, or flies fporting in the air. From the appearance of thefe, to me, I

[^25]judged that I faw fome thoufands of them in a portion of liquid, no larger than a grain of fand, and this liquid confifted of eight parts water, and one part only of the before-mentioned fubftance taken from the teeth.

With the point of a needle, I took fome of the fame kind of fubftance from the teeth of two ladies, who I knew were very punctual in cleaning them every day, and therein I obferved as many of thefe animalcules as I have juft mentioned. I alfo faw the fame in the white fubftance taken from the teeth of a boy about eight years old; and upon examining in like manner, the fame fubftance taken from the teeth of an old gentleman, who was very carelefs about keeping them clean, I found an incredible number of living animalcules, fwimming about more rapidly than any I had before feen, and in fuch numbers, that the water which contained them, (though but a fmall portion of the matter taken from the teeth was mixed in it,) feemed to be alive.

Some time after making the preceding obfervations, I received from Sir Hans Sloane, a packet, containing three fmall maggots, two of which were dead, and the third alive, with a letter, informing me that they were found in a perfon's decayed tooth, from whence they had been expelled by fumigation. Upon examining thefe, I had no doubt that they were of the fort found in cheefe, and upon comparing them with fome living ones which I procured from a cheefemonger, I found them to correfpond exactly in make and fhape. Thefe maggots are the offispring of a finall fly, which is frequently feen in cheefemongers' hops, and lays its eggs in the cheefe, where the little maggots produced from them find nourifhment, and are in time converted into flies.

The maggots fent me by the cheefemonger, I kept in a glais tube, and fupplied them with food, and in a fhort time they were converted into flies, which laid eggs, and thefe again produced maggots of the fame kind as the former. The living maggot
which I received from Sir Hans Sloane I kept by itfelf, and it was alfo converted into a fly of the fame fpecies.

Thefe maggots when firft hatched from the egg, are no bigger than a grain of fand, but afterwards grow to about four times that fize; they have two fmall teeth by which they are enabled to gnaw their way into the cheefe; and as their fkin is very firm and hard they are not eafily cruhzed or deftroyed. Now, it is eafy to conceive, that the perfon in whofe tooth the maggots firft mentioned were found, might have been eating of fuch old cheefe, and that the maggots, or the eggs producing them, might have been lodged uninjured in the cavity of the tooth, where, when they began to gnaw, they muft caufe great pain ; and we may elfo eafily imagine that by the fumigation they might have been driven out of the part.


ON COFFEE.

IN my inquiries into the nature of feveral kinds of feeds, iexamined, among others, thofe which are called Cottee Beans, which are much in ufe in this country, for preparing the well known drink of that name.

I was firft defirous to know in what part of thefe feeds the young plant was placed, and for this purpole I procured fome entire coffee beans, inclofed in their original hufk or thell.

In Plate V. fig. 4, E, F is reprefented this nut, hufk, or fhell, in which are two of thefe coffee beans, divided by a membrane, or partition : for, that which at firft fight appears as a fingle feed, does in fact confift of two diftinct beans or feeds, lying in regular order befide each other, juft as we obferve two kernels in an almond, a filbert, or an apricot.

In $f g .5, \mathrm{GH}$, is flewn the nut or fhell, opened on one fide, fhewing how the two beans lie with their flat fides next each other; $G$, is that part which was joined to the plant, and from whence the feed derived its nourifhment, and H , is the end where the young plant is formed in the feed: fig. $6, \mathrm{I} \mathrm{K}$, is a coffce-bean lying with its flat fide upwards.

I cut a flice from one of thefe beans, at the end marked I, and caufed a figure of it to be drawn, fomewhat magnified, only to fhew the place where the young plant lies.

Fig. 7, L M N, is this flice, and at O is to be feen the part of the 2
bean where the young plant is formed; and here that part which would have grown up into a falk or fem, is cut tranfverfely.

I have alfo laid coffec beans for fome time in water, in order more eafly to take out the young plant, and to give a drawing of it from the microfope. This young plant, fo magnified, is fhewn in Plate V. fig. 8, P Q R S T V. At Q R S T V are three compleatly formed leaves, and I could fee the veffels and globules whereof they confifted very diftinctly in fome of them, efpecially where the leaves did not lie two or three together. A few of the ef globules, compofing the leaf, are reprefented in this figure, at letter $T$. That part where the root and ftem would fhoot forth is fhewn at PQV .

After this young begiming of the plant had food fume months before the microfcope, I perceived that the leaves were covered with a fort of mouldinefs. This appearance ufually begins by a kind of falk ; from whence a globule proceeds, and out of that many more, exhibiting together the likenefs of foliage, but the mourldinefs I am now fpeaking of, had a very different appearance, being much more in the fhape of flowers, as is fhewn in fig. 8, at a a a a. But I have often feen this mouldinefs, even on the diead bodics or parts of the bodies of infects, and alfo on the thell of a filk-worm's egg.

Some of thefe beans I placed in a proper chymical veffel over the fire, and obferved, that in the roafting, or burning them, a great great quantity of oily fubftance. and alfo of watery moifture was expelled. The roafted beans I broke into fmall pieces, and after infufing them in clear rain water, I fuffered the water to evaporate, after pouring it off from the groffer parts of the coffee, and then I difcorered a great number of oblong faline particles of different fizes, (but mof of them exceedingly minute) all of them with fharp points at the ends, and thick in the middle.

Afterwards, I took fome of the coffee beans in the fame flate they
are imported to us, and upon fqueezing, or preffing them with great force, a larger quantity of the oil was expreffed than could be imagined, and I obferved that this oil was very clear and thin.

I alfo cut coffee beans into very finall fragments, or pieces, in every direction, and I always found them to be of a wery open and fpongy texture : for, whereas, almoft all feeds confift of a farinaceous, or mealy fubftance, (except in that part where the young plant is contained) this feed, on the contrary, is formed of nothing but fibres, branching or fpreading one among another, and the cavities between them, in many places, filled with oil; for when I cut off very fmall pieces from the bean, I could plainly perceive the oil, and take it out from the part where it lay.

From the middle of a bean, I cut a very finall flice, and placed it before the mierofcope, in order to thew the open and fpongy texture of this feed; and in Plate V. fig. $9, \mathrm{ABCD}$, is reprefented this particle, or piece of bean when magnified, the natural fize of which was no larger than might be covered by two grains of fand. The parts which in this figure appear clofed up, and fome of them to confift of globules, were filled with oil. When a coffee bean is thus cut into fmall pieces, and the pieces preffed between the fingers, or fqueezed between any hard fubftances, the fingers, or whatever is ufed in fuch preffiure, will be much fained with oil; (that is to fay, in proportion to the force applied) and I will venture to fay, that by a fingle operation of this kind, more than one thoufand little drops of oil will be expreffed : it is here to be noted, that the oily particles formed in the coffee bean are not perfectly of a round figure, but in many places they lie together in irregular fhapes.

This formation of the coffee bean being confidered, we need
no longer wonder, that they camot be reduced into powder until they have been roafted, or burnt, for, in the roafting, much of the oil is driven off and confumed by the fire, and the branchey, or fibrous particles become weaker or more brittle, and the more they are burnt, or roafted, the more eafily they can be pounded in a mortar.

As to myfelf, who am accuftomed to take this kind of drink every morning for breakfaft, I do not fuffer the coffee beans to be much burnt, and I caufe them to be pounded, or reduced into fuch fmall particles, that they will pafs through a filken fieve, and until they feel between the fingers as fine and fmootls as flour. A proper quantity of the coffee thus prepared, being put into a coffee-pot, I pour on it boiling rain water, and then fet it again on the fire, but not to boil, and after letting it ftand for a fhort time to fettle, this is the coffee I make ufe of.

This is not, indeed, a very profitable way of making coffee, though much more grateful and pleafant to the palate, except to thofe who like the burnt flavour. For, when the coffee beans are violently roafted, they can more eaffly be pounded to powder and paffed through a fieve, and the liquor clarifies fooner ; and alfo, by reafon of the burning, the bitter tafte fpreads farther, and produces more of the liquor, efpecially if the coffee be boiled in the water

But, if we judge, that the oil and falts which are found in coffee, are the parts wherein its virtue confifts, and from which we are to expect benefit to our health, we fhall prefer that coffee which is not over roafted, to that which is more burnt, for, in the coffee which I drink, I always obferve a great quantity of oily particles fwimming on the furface, which would not be found there, if the coffee were more roafted, for in that cafe the oily particles are - more driven off by the force of the fire.

Many perfons fay, that coffee is not wholefome, unlefs it is made bright and clear before it be drank; but this, I think, is of no confequence, becaufe 1 am well convincel that the particles of coffee, (excepting the oil and falts, which I have before mentioned to be contained in it,) are of fo hard and inflexible a nature, that they never can be introduced into the fyftem of our bodies.

I have oftentimes endeavoured to bring coffee beans to a fate of growth and vegetation, but herein I never could fucceed : whether this was, becaufe they had been kept too long, or whether, that at the place of their growth, they had been over dried, to facilitate their exportation to diftant countries, whereby the juices which fhould have nourihhed the young plant were dried away, I cannot pretend to fay.

I have feveral times placed coffee beans in a clean glafs under water, without finding any alteration in the colour of them or of the water, but when they were fo placed that part of them was above the furface of the water, then both the coffee-beans and the water became of a grafs green colour.

I formerly thought that thefe coffee beans were produced by fowing them annually in the manner of our peafe and beans in Europe, but I have been lately informed by a Gentleman who has travelled in the Eaft, that they are the feed or fruit of a tree which grows to about the fize of our lime trees.*

* The coffee-tree is a native of Arabia, from whence in the laft and prefent centuries it has been cultivated both in the Eaft and Weft Indies, but the Mocha coffee is ftill in the greateft eftimation.



## ON VINEGAR.

I HAVE obferved, that on expofing a fmall quantity of white wine Vinegar to the air for a few hours, a vaft number of corpulcles, or fmall folid fubfances appear in it, which I take on myfelf to name the lalts of Vinegar. Some of thefe are reprefented in Plate V. fig. 10; thofe at A appoared to temmate in a flamp point at each end, having in the middie a dark fpot; others were glittering like cryftals, as at B , and thefe were moft in number: others of thefe corpufcles were of an oblong figure, and of a dark colour, with a lucid fpot in the middle, as at $C$; and fome few of an oval form with an oral bright fpot in the mieldle, as at D . Among the figures A, D, D, I was convinced that I faw feveral with a cavity or hollow in them, which gave them the appearance of being half dark coloured, and half tranfparent. Others of thefe falts or cryfals laid one on another in clufters, as at E ; and lafty, fome there were with points at one end only like half cryfals, as at F . It is not ealy to defcribe the extreme minutenef's of thefe corpufcles, and fome of them were indeed, fo fimall that they aimoft efcaped the riew of the microfcope.

All thefe particles, which I name the falt of vinegar, I concluce to be thofe parts of it which excite on the tongue that tafte or fenfe named acid. And, although they appeared to me, thruugh the microfoope, of the fhapes and lizes I have mentioned, yet I concluded that they were ail compofed of fitll fmaller particles, of the fame flape, in like manmer as I have often in our common fea-water, or in water wherein common falt is difolved, when placed before a microfope, feen many particles moft caactly quadriatemal, or four- liuare, but fo mante that milions of
them were not equal to a grain of fand ; and thefe, while I contem. plated them, would increafe in fize fill preferving their exact fquare figure. In like mamer I conclude, that there are none of thefe tharp pointed falts which I obferve in vinegar, but are compofed of numbers of finaller particles of fimilar fhape.

Having kept in my parlour for about two months, a glafs, two fingers broad, with a fmall quantity of vinegar in it, expofed to the air, I obferved, at the end of that time, numbers of faline particles fwimming on the furface, and, upon more narrowly examining them, I plainly difcerned, what I had not fo clearly feen before, that thefe faline particles had a kind of cavity in them, as eafily to be feen, as if, with the naked eye we were to look into a fmall boat or a fhip, and which, the longer the vinegar was fuffered to fand, grew larger : fome of thefe, with the cavity in front, are reprefented at $G$, and at H fome of the fame feen fideways. I alfo caufed a drawing to be made of a living eel, of that fpecies which is often found in vinegar, whercof the number I faw in this liquor was very great; this is hewn at L M ; and at NO, another eel dead. which I killed, on purpofe that the limmer might take it's figure more accurately. Thefe cels (which are invifible to the naked eye) I caufed to be drawn, that by comparing them with the before-mentioned faline particles, the extreme minutenefs of thofe falts might be the better conceived, and it fhould be underftood, that by far the greater part of thefe falts could not be difcovered by the common microfcope. Which made the eels vifible. I am alfo defrous to convince thofe of their error, who imagine, that the acid tafte of vinegar arifes from the pungency, or fiarp, fenfation, which thefe eels are fuppofed to excite on our tongues, by their pointed tails; for, were this the cafe, many forts of vinegar would be taftelefs, becaufe none of the cels are to be found in them ; and in winter time, vinegar would become vapid, or lofe it's foumefs, becaufe thefe minute cels are killed by cold or froft.

I was defirous to obfere the effect of crabs' eyes being infufed in vinegar, it being faid that they abforb or take away it; formefs, and I concluded that this mult be performed by the acute falts before mentioned being altered in figure, or rendered more foft or flexible, fo as to lofe their pungency on the tongue. I took therefore, fome new glafles, and after mixing in them vinegar with crabs' eyes broken in fimall pieces, I found, that the long pointel falts I have before delcribed, were altered to a kind of oblong quadrilateral figure rifing in the middle in form of a pyramid, fimilar to a diamond when polithed; thefe are reprefented in fig. 18, at P . others were exactly ferare, as at $Q$, and others of the fhape reprefented at 12. But it is to be noted, that thele particles bore no proportion in point of fize to the faline particles in common vinegar, for thefe laft were drawn from much deeper magnifiers, without the help of which, I could not have difcovered their fhapes. And, what I particularly wondered at was, that thefe faline particles were almof all of the fame fize, which I never obferved in any other fpecies of falts. After the effervelience produced by the mixture of the vinegar and crabs' cyes was fubfided, I drank about a third part of a thimble full of the vinegar, and found that it had no acid tafte, but a bittemefs, fo difgufting, as almoft to occafion a naufea or ficknefs.

I have alfo pounded white chalk and mixed it with vinegar, and I found that it produced the fame effervefcence as the crabs' eyes, and the fame change of figure in the faline particles, and that it alfo took away all the acid tafte of the vinegar.


## OF THE SCORPION.

T
HE Directors of the Eaft India Company in Delft, having fent to me a living Indian Scorpion, I put it into a long and wide glafs tube, flopped at the ends with cork, though not quite clofe; and I prefuned that, on account of the coldnefs of the glafs, the Scorpion would place itfelf on the cork, and fo be preferved longer alive: and I occafionally put it into a thimer glafs tube, in order, as far as I was able, to examine it by the microfcope.

I firft made my obfervations on its legs, the fifth joint of which, from the body, being very tranfparent, I there plainly perceived the blood ruming in an artery towards the extremity of the foot; which artery, I judged to be the fize of an hair of ones head and clofe befide it, the blood was returning in a vein of the fame thicknefs. Thefe two veffels I deemed to be the principal bloodveffels in that limb, and, though I was well affured, that there were many fmall branches through which the blood was conveyed out of the artery into the vein, and thus the circulation was compleated, yet I could not get a fight of thofe minute veffels.

The blood of this creature not being of a red colour, it may be ranked among thofe animals, which the antients named exfangues, or bloodiefs.

I faw that this Scorpion had two black eyes; placed, not at the extremity of the head, as we obferve in many fmall animals, by which they difcover objects on both fides of them; but thele two eyes food about the eighth part of an inch towards the back R
part of its head, and feemed defigned for the view of objects upwards. And 1 dilcovered, on each fide of the head, three other eyes, only an eiginth part the fize of the before mentioned ones, placed in regular order befide each other, fo that thefe creatures are provided with cight eyes; and, as the two eyes on the top of the head are only fitted to look upwards, fo, thefe eyes placed on the fides are calculated to fupply the defect of the former ones. And herein we fee, with how mich perfection and provident forefight, every creature, however difgufting it may be to us, is formed by Nature ; and that none of fuch creatures have ever proceeded from corruption, as fome men have imagined, but have been produced by their like ever fince the Creation.

I put two living flies into the glafs with this Scorpion, in order to fee whether it would feize them as its prey; but they appeared not at all frightened at the Scorpion, even fitting upon its body, and the Scorpion was equally indifferent, and did not move itfelf on account of the flies. I afterwards put a fmall lizard, newt or eft ; and likewife a fider and a fly at the fame time into the glafs with the Scorpion; but it appeared equally indifferent to them all; and after I had kept it by me almoft three months, in which time it had not taken any food, it died.

As foon as I perceived that the Scorpion was dead, I took a pair of fimall forceps, and laid hold on that part in which I was perfuaded the poifon was depofited, and brought the fting before the microfcope; then, by a little compreffion of the forceps, I caufed the poifonous matter to iffue forth, which might be thought to be emitted at the very extremity of the fting, but upon examining the fiing by the microfcope, I fomnd that on each fide of it, near the point, was a fmall aperture.

I have caufed a drawing to be made of this Scorpion, in order to explain the nature of its fing.

Plate V. fig. 11, reprefents the Scorpion itfelf, and at A, is the tiing, which the animal, whether in motion or at reft, always
carries with its tail bent, or turned inwards, in order, noft probably, to preferve the fting from any injury it might fuftain by the blunting of the point, or otherwife.

Fig. 12, F GHI, reprefents the fing, as feen through the microfcope, and, between the letters $G$ and $H$, may be feen the aperture which the fing has, on one fide; - and fig. $10, \mathrm{~K}$ L M N, reprefents the other fide of the fing where the fame aperture is to be obferved between the letters L M.

It mult here be noted, that the prominent part which is feen in figs. 12 and 13 , at letter X , is not to be taken for a fecond fting, for in my opinion it ferves only as a bafe or fupport, to be fixed on the Rin, in order that by its help, the fting may be thruft in with greater force.

Upon reflecting frequently on the make of this fting, I confidered with myfelf, that, if the above mentioned aperture had been at the very extremity, the fing could not fo eafily have been made to pierce the Ikin: I alfo thought, that the Scorpion has not power to expel the poifon, but that when the fting enters the flefh, then the fides of the oblong cavity in it (which is feen in the figs. 12 and 13, between the letters G H and LM) are, by the preflime on the fing in its entrance (in regard the immer parts of this cavity are of a foft and yielding nature) forced inwards, and by that means the poifon within the fing is driven out. Now, if the Scorpion had power to eject its venom, I imagine that it would not ftrike at any object whatever with its fting, without at the fame time emitting fome of the venom; but as this is not obferved to be the cafe, we muft conclude, that the poifon is kept within the fting, until, by the force applied in piercing the hiin or flefh, the poilon is driven out, and there it will exert its full force upon the juices of the wounded part.

The liquid matter, or poifon which I before mentioned to have extracted from the ftong by preffure (though it was in a very fmall quantity) I put into a clean glafs, which I prepared on
purpofe, in order, if poffible, to difcover the faline particles contained in it, which alone, as it feems probable, do render this liquid poifonous in fo great a degree; but, with all my attention, l could not perccive any thing in it particularly worthy of noting.

This liquid, being in a very finall quantity, and alfo being fpread very thin, in a thort time, all the moifture of it was evaporated, leaving a kind of thick gummy matter, mixed with various different particles, to which I could not affign any particular figure. Hereupon, I, without lofs of time, made a puncture on my finger with a needle, and applied a fmall portion of the blood which iflued from the part, to this poifonous fubfance, in order to fee, whether the blood would undergo any alteration by the mixture. But, nothing of that kind appeared, for I could not difeern any difference between the blood which was placed on the poifon, and that which lay near it.

The next morning, I difected the tail of this Scorpion, and, from each joint, I took out two flefhy mulcles, of a very white colour, each of which was compofed of a great number of very finall oblong particles, terminating at the extremity of the mufel where it grew fmaller, thus forming the tendon : on one of thefe mufcles was a kind of veffel, fhaped in the middle like a bladder, and this, I concluded, was deftined to convey the poifon to the extremity of the tail. Thefe flefly mufcles were furnithed with amular parts, or rings, ferving to extend and contract the mufcle.

Thofe eyes which were fituated on the upper part of the head, I placed before the microfcope, whereby I faw how periectly the tunica cornea, or horney coat of the eye was formed; for through it I could fee all the furrounding objects (though wonderfully diminifhed) fo diftinctly, that I could not contemplate the fpectacle without admiration ; but this pleafing fight was not of long continuance, for the tunica cornea foon dried and fhrivelled up.

Upon opening the belley, I could not form any judgment of the inteftines, by reafon that they had begun to decay, except that I

## ( 133 )

found twelve eggs, each about the fize of a grain of millet, of a yellow colour, and in thape not unlike a lemon.

In the fore part of the head; and jult in front of the mouth, I obferved two teeth, each fixed on a fhort joint, and they are ufed, as I imagine, by the Scorpion, to grind its food, before it is taken into the mouth. Thefe I feparated from the head, and found each to confift of a three-fold tooth, one of which was fo made, as to fit exactly the cavity between the two oppofite ones. And, to mew the ftrength of thefe teeth, I caufed a drawing to be made of one of them. Fig. 14, O P Q R, is this tooth, or more properly this three fold tooth, and on it, at P, are to be feen fome hairs; the legs of this creature are alfo covered with hairs.

I alfo placed before the microfcope one of the claws, which are like thofe of crabs or lobfers, and in fig. 11, are to be feen at C or D. And I caufed a drawing of this claw to be made, in order to fhew the curious formation of it. Fig. 15, S T, is the claw, magnified, and on it are plainly to be feen a great number of teeth or notches, like thofe of a faw, fome of them larger than others, and which faw-like teeth, I doubt not are fo formed for enabling the Scorpion firmly to hold fuch fmall living creatures as it catches for its prey.

Seeing now, the wonderful make of this animal, though to us it is fo deteftible, and indeed fo noxious; and, confidering the perfect wifdom requifite for the contrivance of its feveral parts, we have furely ten thoufand times more reafon to believe that its origin is derived from thofe which were created at the Beginning, than to adhere to the chimæras and crrors of the ancients, fome of whom have tranfmitted to us in their writings, the notion, that Scorpions are not produced by generation, but from the great heat of the fun; others, that they are bred from putrefaction in the bodies of crccodiles; and others again, that they are generated in rotten wood, and fuch like fictions.

## ADDITION, BY THE TRANSLATOR.

Ir may not be unacceptable to the Reader, to fubjoin a quotation from Ur. Mead's celebrated Effiy on Poifons, and the rather, as the fentiments of our Author, in regard to the nature of the Scorpion's poifon, are exactly fimilar to thofe of the Doctor's, when treating of that emitted from the Viper's fangs; which animal, being much larger than the Scorpion, might afford Dr. Mead a better opportunity of inveffigating the nature of this fubfance, than Mr. Leeuwenhoek could have, in the very fmall quantity which he collefted from the Scorpion's iting: and, as we fee that the operations of Nature are performed with the greatelt uniformity in cafes which are analogous, it may fairly be concluded, that what Dr. Mead has faid, refpecting the Viper's venom, may be applied to that of the Scorpion, and of more minute noxious animals.

Dr. Mead expreffes himfelf on this fubject, in the following words:

- This venomous juice itfelf is of fo inconfiderable a quantity, that it is no ' more than one good drop that does the execution. And for this reafon, ' authors have contented themfelves with trials of the bite upon feveral animals, ' never effaying to examine the texture and make of the liquor itfelf: for ' which purpofe, I have oftentimes, by holding a Viper advantageoufly, and ' enraging it till it fruck out its teeth, made it bite upon fomewhat folid, fo as ' to void its poifon; which, carefully putting upon a glafs plate, I have with a ' microfcope, as nicely as I could, viewed its parts and compofition.
- Upon the firf fight, I could difcover nothing, but a parcel of fmall falts - nimbly floating in the liquor; but in a very fhort time, the appearance was ' changed, and thefe faline particles were now fhot out, as it were, into cryftals c of an incredible tenuity and fharpnefs, with fomething like knots here and ' there, from which they feemed to proceed: كo that the whole texture did in ' a manner reprefent a fpider's web, though infinitely finer, and more minute; ' and yet withal, fo rigid where thefe pellucid fpicula, or darts, that they remain' ed unaltered upon my glafs for feveral months.*
' I have tried feveral ways to find out, if I could, under what tribe of falts ' thefe cryftals are to be ranged, and to difcover what alterations they make in

[^26]
## ( 135 )

" the blood: and, rent without fome difficulty, by reafon of the minute quantity - of the liquor, and the hazard of experiments of this kind, fome curious friends, ' and myfelf together, made the following obfervations:

- About balf an ounce of human blood received into a warm glafs, in which - wure five or fix grains of the viperine poifon newly ejected, was not vifibly - alteled either in colour or confiftence: it then was, and remained undiftin-- guifhable from the fame blood, taken into another glafs in which was no - poifon at all.
- Thefe portions of blood were feverally mixed with acids and alkalis: the - empoifoned blood was, arter fuch mixtures, of the fame colour and confift-- ence as the other.
- Spirit of nitre, fpirit of falt, and juice of lemons, feverally poured upon * the fanies itfelf, produced neither fermentation, nor any change of colour.
- Salt of tartar run per deliquium, and the fmple fpirit of harfhorn, dropped s upon the venom, neither altered its colour, nor raifed any ebullition.
* Syrup of violets mixed with the poifon did not change its colour either to - red or green.
- The tincture of heliotropium, that is, blue paper, was not altered by the - fanies ejected upon it ; and this, drying, ftill retained its yellowifh colour.
- We caufed feveral animals, dogs, cats and pigeons, to be bit by an enraged
- Viper ; which generally died, fome in a longer, others in a fhorter fpace of
' time. But we conftantly obferved, that they all, immediately upon the bite,
- Mewed with figns of acute pain, marks of their life being affected, by
- ficknefs, faintings, convulfions, \&c.
- The head of a large Viper lay three hours after it was cut off; it was per-
- fectly flaccid and without motion. A pigeon, wounded upon the breaft with - the fangs of this head, was prefently convulied, \&c. as from the bite of the - animal, and died in feven hours.
- We contrived a fharp fteel needle to be made, crooked, in fhape not un-
- like to the Viper's tooth, with a fulcus or hollow on the convex part, not far - from the point : into this, we put a drop of the vellom, and with it wounded
- the nofe of a young dog. It produced the ufual diforders of vomiting, purg-- irg, \&c. but in a lefs degree, and the dog recovered. It was remarkable, - that upon making the wound the dog cried but little, till the poifon came - into it; but then he howled, \& c. in the fame manner as if bit by the viper - itfelf. But a pigeon pricked in the flefhy part of the breaft, by the fame - poifoned needle, fuffered as from the bite, and died in about eight hours.
- We refolved to end out poifon-inquiries by tafting the venomous liquor. - Accordingly, having diluted a quantity of it with a very little warm water, - feveral of us ventured to put fome of it upon the tip of our tongues. We all ' agreed, that it tafted very fharp and fiery, as if the tonguc had been ftruck ' through with fomething fcalding or burning. This fenfation went not off in ' two or three hours, and one gentleman, who would not be fatisfied without ' trying a large drop undiluted, found his tongue fwelled, with a little inflam6 mation, and the forenefs lafted two days; but neither his, nor our boldnefs, ' was attended with any ill confequence.
' This is no objection to the hurfful quality of this juice: for, as fome chy' mical liquors ferment with others of a certain kind only, fo thefe poifonous - falts may affect o:re fluid of the body, and not another; it is fufficient to the ' prefent purpofe to fay, that the faline fpicula are broken and diffolved in the ' mouth by the clammy falival humour: and if any of them fhould pafs thence ' into the flomach and inteftines, the balfam of the bile will be an antidote " there, powerful enough to overcome their force.
- Thefe experiments upon the Viper poifon and the blood, are a fufficient - confirmation, that the nervous liquor only is affected by this venom; and at ' the fame time afford a convincing proof, how much thofe fcanty principles of s our chymits, acid and alkali, fall fhort in explaining the actions of natural ${ }^{c}$ bodies; fince neither of thefe falts could in any way be found to affect the - viperine venom.'

Mechanical Account of Poifons, p. 14, \& feq. Ed. r747.
The Doctor's Effay on the Nervous Fluid and the manner in which it is affected by animal poifons, is too long to infert in this place, but the Reader will find it in the Introduction to the work from which the preceding paffage is taken ; that is to fay, in the later editions, for it is not to be found in the firf, printed 1702.


Of the Oak gall, or Gall-nut; that it is not a fruit, but an excrefcence produced on the leaves of the oak, by means of an infect; the manner of its formation particularly defcribed. A fimilar excrefcence produced in like manner on the TKifle.

WHile I was employed in the fummer feafon, to collect acoms from the oak, in order to examine the beginning plant in that feed, I faw with furprize, that the gall-nuts were produced upon the leaves of the trees. This feemed the more extraordinary, becaufe I had fuppofed that they were the fruit of the tree, but now I found that they were occafionally, or accidently produced on the leaves of the oak. I was convinced of this, partly, becaufe I faw but a few leaves here and there with gall-nuts on them, (in fome of which 1 found four, five, and even fix galls) and in others I could not find a fingle one; and in the next place, becaufe I faw, that thefe galls were formed upon the large fibres, or veffels in the leaves, which were burlt or broken, in the places where the galls were formed; fo that I concluded that fome infect had wounded or gnawed thofe veffels, and that the juices of the tree, flowing out of the wounded part, had extended themfelves in globules and veffels, and thus, at length caufed the formation of the gall-nut.

[^27]On my return home, I examined thefe gall-nuts more accurately, and found that each of them had a cavity in the middle, wherein lay a living white worm, which had very little motion: it was thick, in proportion to its length, and lay bent in a circular form, the body of it confifting of thirteen or fourteen rings, as we fee filk-worms and caterpillars, and thefe covered with pointed hairs.

It feemed to me worthy of obfervation, that, from this time, I obferved thefe worms, or maggots, contimue alive to the end of December; and that, in gall-nuts which I had gathered in the fummer, and which were fo dried, that I thought they were thrunk to half their former fize; whereupon I concluded that the worms, for want of fufficient nourifhment, had not arrived at their full growth, fo as to be changed into flies, and had only been fupplied with food fufficient to keep them alive. But, when they had grown to be fomewhat larger than a great pin's head, then I faw the eyes begiming to be formed, which were of a black colour.

After this, I went occafionally into the wood at the Hague, in order to purfue my fpecnlations, and obferved that thele worms were changing into flies; for, I not only could fee their eyes perfectly formed, but I alfo could difcern plainly their horns and feet, and the hind part of their bodies. This infeet then lay without any motion that I could perceive, with its fect, fix in number, and its two horns lying in regular order clofe to its body, in like manner as we fee in the aurelia of the filk worm, before it comes out of its fhell, or covering, but in this animalcule I did not then obferve any fuch cafe or covering ; but only the fhape of a fmall fly without wings, the hind part of its body of a round form and of a fhining black colour, and which in a fhort time was provided with two larger and two fmaller wings: and I afterwards found that thefe aurelias had a thin covering, which enclofed the body, but not the feet.

From thele my obfervations, I concluded, that the fe animalcules
were thus produced, namely, by the before-mentioned kind of fly, laying its eggs on the leaves of the oak, where, when the young maggot is hatched, it bites or pierces the veffels of the leaf, fo that the juices flow out, and are hardened into globules, fpreading themfelves, at the fame time, in a circular form like veffels, and thus produce what is called the gall-mut, and which juices, while hardening, do inclofe the maggot in the middle.

This newly-formed gall-nut fupplies the animal with food, for it eats away the fubftance of the nut by little and little, round about itfelf, whence proceeds the cavity we find in the middle of thefe galls, and which cavity grows larger, as the animal increafes in fize. And it feems to me, that unlefs fome of the large veffels in the leaves ware injured or perforated by one of the maggots I have delcribed, there could not be any gall-nut formed, for in every nut which I opened, I conftantly found a maggot (though in an hundred fuch nuts, I found but two which contained more than one) and this, though one gall-nut was fixty times the fize of another,

It is however to be noted, that the wounding or biting the large veffels in the leaves, does not conftantly produce a gallnut; for this is only formed, where a fufficient quantity of the juices iffues from the opened veffels; to this alfo, the heat contributes much, by condenfing or thickening the juice ; and hereupon it is my opinion, that where thefe veffels are opened in the morning, galls will more eafily be formed than when it happens in the evening; for I faw on thofe leaves on which were gall-nuts, and alfo on thofe where none were to be feen, the leaves and veffels much eaten into, and the veffels pierced through, and yet, not the leaft appearance of the formation of a nut on the place. Farther, I concluded, that many of thefe maggots get their fuftenance from the leaves without piercing the large veffels, for in many places I faw the leaves eaten away and in holes.

In further profecuting my inquiries on this fubject, I found
that the beft fort of gall-nuts which are ufed in this country, are brouglit from Aleppo. Hereupon I confulted 'Tavernier's Travels, to fee what he fays on this fubject ; and I found, that in his third book, when fpeaking of his journey to Aleppo, he fays, the ' hills are covered with oaks bearing the gall-nut, and fome ' of them, befides gall-nuts, alfo produce acoms.' But, after the preceeding obfervations, we are not to wonder, that the fame oak will produce both galls and acoms, fince nothing more is wanting for the production of a gall-nut, than fuch a fly as 1 have mentioned, from the eggs of which, worms thall proceed, which feed upon the leaves of the oak.

To fatisfy myfelf more fully in this particular, I examined feveral of thofe gall-nuts which are imported to us, and are much ufed by dyers; and in fome of them I found a dead fly, of the fame fhape with thofe found in the galls of this country, and in others, only a cavity in the middle, with a round hole reaching from that cavity to the furface of the nut, and in the cavity a kind of duft, which I imagined to have been the excrements of the worm while it was in the nut. And I found upon farther profecuting my obfervations on the galls which I gathered from the trees here, that not only the maggot is able to gnaw the fubfance of the nut ; but alfo, that the fly has power to perforate it, to open a paffage for itfelf though I do not think that the fly ules the fubftance of the nut for food.

In others of thefe Aleppo galls, I faw no appearance of any living creature having been inclofed; the reafon of which I concluded to be, firft, the maggot in our gall-nut, eren when of its perfect fize, is very tender, and crufhed with the leaft touch. and contains nothing in it, but a whitifh fluid fubfance, fo that if a maggot happens to die in the nut, whether from the juices being too acrid, or the nut too hard, in fuch cafe, the fubftance of the worm may fo dry away, as to leave no traces behind it. In the next place, a maggot, when grown to a confiderabie fize,

## ( 141 )

may pierce a large refel in the leaf, and afterwards fhift itfelf to another place, and out of the large vefiel fo wounded, a gall-nut may be produced without any maggot in it. The gall-nuts which are formed without any infects in them, are generally the heavieft, by reafon that they have not any cavity made in their infides.

With regard to my preceding obfervations on this fpecies of fly, I was the more confirmed in my opinion, upon recollection of what I have obferved of the like kind in divers trees, and particularly the willow ; on the leaves of which I have feen certain green tubercles or fwellings, on opening which I have found animalcules within them, fome of which were alive, and others dead; all which I doubted not were produced by maggots hatched from the eggs of the flies of the fane fpecies as thofe which I had found in fuch tumours or fwellings. For it is with me an eftablined principle, that no living animal, whether worm, fly, ginat, or mite, can be produced from the mere juice or leaf of any tree or plant, nor from corrupted or decayed fubfances.

I have caufed a drawing to be macio of thefe galls, as they grow or are produced on the leaves; and in Plate V. fig. 17, A B C D, is reprefented an oak leaf, with that fide upwards, which, when on the tree is undermoft; for I never faw any of thefe galls on the upper fide of the leaf; the reafon of which I take to be, that if the maggot was placed on the upper fide, and expofed to the fun's heat but for a fhort time, it would, by reafon of its fmallnefs, be dried up and perifh. On this leaf are feen two large galls, and two finaller ones, at the letters $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}$.
Fig. 1S, 18, exhibit a gall-nut cut in half, wherein, at $\mathrm{N}, \mathrm{N}$, appears the cavity, in which the maggot lay; fome of thefe maggots, of different fizes, are flhewn at I, K. L M.

Fig. 19, fhews one haif of a grall-nut, with the fyy in it, which has opened to itlelf a pafiage from the cavity as far as the furface of the nut, and at fig so, is the other half, cxhibiting the carity in
the center, formed by the maggot, and the perforation to the circumference made by the fly.

Fig. 2 1, is the fly bred in this gall-nut, whofe body is not quite fo large as reprefented in this figure, but the wings are of the fame fize as they appear here.

Alter thefe obfervations, in the month of January, I again went in fearch of gall-nuts, upon the leaves of the young oaks, and thofe which hung near the ground; and I found a great number of them, although the leaves were very much dried: in many of thefe galls I faw the perforation through which the fly had iflued; in others of them I found living flics; and in others, living maggots.

Some of thefe galls I placed in my clofet, and opened them at different intervals of time, and I always found either the maggot in them alive, or a hole, through which the fly had iffued: ten of thefe I kept till the end of April, and upon opening them, I found them all perforated with holes, and the flies which had iflued from them, lying dead.

While I an on this fubject, I can not forbear to mention, that in the autumn there were brought to me a parcel of roundifh fubfances, which were gathered from thiftles, and therefore, called thifle-nuts. Many of our countrymen carry thefe nuts in their pockets, under a notion that while they wear them, they fhall be free from the diforder called the piles, particularly if every year, they throw away the old nuts and procure frefh ones (which, it is faid, do not grow in our province). And fome fay, that there is a maggot in thefe nuts, and that while it lives, the before mentioned virtue remains in the nut, but upon its dying the virtue is loft.

As foon as I faw thefe fuppofed nuts, I concluded that they were produced, as I might fay, by accident; and that their virtue againft the piles was a mere imagination. And upon examining the nuts, I found that there was not one of them which had not one,
two, three, four, and fome as many as fere or eight cavities in it, each cavity containing a hort, white aurelia, or chrysalis, formed of many joints like rings; there aurelias were almoft all alive, and I judged them to have been produced from maggots, the offspring of come fly or fuch like infect, which had laid its $\operatorname{egg}$ on the thiftle; and that thole maggots having pierced the veffels of the thifle, while in the flourifhing time of its growth. had occafioned a copious effusion of juices, by means of which a tumor or fuelling had been formed upon the thintle, which had inclofed the maggot, and formed a folid fubftance round it. And upon further profecuting this fubject, to elucidate liny own poriton that thee nuts had been produced by means of maggots, I opened feveral of them at different times in the fucceeding winter, prelerving the aurelias; and at length, towards the end of the April following, they produced a fpecies of black flies, different from any I had before feen, for the hind part of their bodies terminted in a point, forming a kind of heath, wherein was containe a finally fang.

I thought it would not be amifs, to exhibit to the view, the flute and make of thefe nuts, in order to flew the fizes of them and of the cavities they contain; and alpo how far, fancy and imagination will go with forme people.

Plate V. fig. 22, $\Omega_{3}$, $\Omega_{4}$, reprefent three of there thiftle-muts dried, and of different fizes.

Fig. $9_{5}$, is one of the fame nuts, cut open on the fade, where may be feed two cavities, one of them, at A, containing an aurelia.

Fig. 26, is the fly produced from this aurelia.
Fig. 27, is a thifte-mut cut across, hewing feven cavities, wherein the aurelia had lain.

END OF TIE FIRST PART.


```
INTRODUCTION to the SECOND P.1RT.
```

AS I have entitled this Tranfation, The difcoveries of the Author in many of the Works of Nature, 'a term ured by him.elf) I fhall take the liberty to lay before the Reader a few words, relfecting the ided we ought to amex to that expreflion.

By the word Nature, here ufed, I underftand that unfeen power whereby different parts of Matter are brought together, and, by their various combinations and modifications, produce thofe bodies or fubflances which we obferve on this terraqueons globe. Natter, is that Something, of which Budies are compoled, and I call it Something, becaufe it primary or original particles are fo minute as to be entirely undifeernible by us; and it is not until they are combined or collected in lurger portions that they become objects of our fenfes. This is capable of demonitration many ways: for example, Earth, which, in itfelf, ha; little either of tafte or fmell, produces herbs, flowers, and fruits, poffelling an endlefs variety of taftes and odours; and not only fo, but of natures entirely different from each other, the fame fpot of earth which prodaces wholefome herbs for our tables, bringing fortn alfo the moft noxious plants, according to the guality of the feed or plant cummitted to it: and yet, we cammot trace thefe various talies and odours, nor thefe wholefome and noxious properties, in plants, to any nther original than the fame common parent Earth, aided by fuch fupplies as they receive from the other *elements. Herbs, taken into the ftomachs of amimals, are converted

[^28]ii
into the flethy parts of their bodies, and even compofe the folid fubftances of the bones and teeth : and all thefe vegetable and amimal fablances do, by putrefation, return to the general mals of Matter from which they were finf fumed, and enter into the compofition of new Bodies. Again, water evaporates, or is carried up into the atmofphere, in particles fo fmall as to be invifible to us ; and even me:cury or quickfilver, the heavieft of all fluds, upon the application of a moderate degree of heat, fles off in vipour, and, un'efs confined by fome folid body, fuch as a chenit's reort, wholly d fappears. Arguing then, from thefe appeamaces, we mul conclude, that the e'ementary or original particles of Matter, are not, as fuch, difcoverab'e by us Aud, as far as ocular e amination can reach, Mr. Leeuwenhoek has given it as his opinion, that, had he been ab.e, by the lelp of glafles, to have difcerned objects, millions of times fmalier than thefe his microfcopes difcovered, he could not have traced Bodies to their original component particles.

Some I'hilofuphers have fpent much time in aryuing on the infinite divifibility of Matter, and in propofing ftiange * the ries refrecting its inherent properties. But berein, they feem to have exercifel their wits, without much improving the underfand ngs; for furely, it is of no utility to propound queftions, which catnot porbily be brought to the teft of experiment. In oppofition to thefe vain lpeculations, how wife, and, at the fame time, how modeff, are the words of Sir Ifac Newton: 中 "It feems probable to me, that God in the Ee" gimning, formed Matter, in folid, maffy, hard, impenetrable, move" able particles, of fuch fizes and figures, and with fuch other proper" ties, and in fuch proportion to Space, as moft conduced to the end for

[^29]$\dagger$ Newton's Opticks, Qin. 31, near the end.
"w!ac's 'se fowinn them ; and that the fe primitive particles beinr
 " of them, e'e: fo very ha il as never to wear or break in pieces; " no orlinar" power being able to divide, what God himfe f made one " in the firlt Creation. While the particles continne entire, they may "compoie Bodies of one and the fane nature and texture in all ages; " but, thould they wear away or break in peices, the nature of things "depending on them would be chanced. W"ter and Earth, com"pofed of cld worn particles, and fragments of particles, would not " be of the fame nature and iexture now, with water and earth com" pofed of entire particles in the Begimning. And therefore, that " Nature may be lafting, the changes of corporeal things are to be "placel onlv in the various feparations and new allociations and mo"tions, of thefe permanent particles; compound bodies being apt to " break, not in the millt of fulid particles, but where thole particles "s are laid togretler, and only touch in a few points." This feems to be the ne plus ultra, or ntmof extent of human fagacity, terminating in a conclution, worthy of that great Philofopher and good Man. In conformity to which, I think we may fay, that the particles of Matter are nut infinitely, but indefinitely limall, or, in other words, fo minnte as to te lingly, invifible to us, though colledtively, they are the daily objects of our fenfes. It now remains to confider the properties of Natter, or, the means by which its particles are brought intu action.

The Honourable Mr. Boyle has written an Eflay on this fubject, wherem he refutes the error of the ancient heathen Philofophers, and their followers among the moderns, the Schoolmen, who figured to themfeives, an active, intelligent Being, which they caled Nature; fubordinate indeed to the Deity, but yet, prefiding over the mundane Sylfem, and directiner its operations. He thews, in a variety of mfinuces, that the fuppofition of fuch a Peing, is mfaficeient to folve
the diferent phamomena in the fyfiem, and, that it detracts from the honour of the Author and Governor of the World : And he gives us his opinion on the fubject, in thefe words : * Since the prefent is a " philotuphical enquiry only, we fhall only, at prefent, confult the " light of reafon in the formation of the World, which might proba" bly be after the following manner. The great and wife Author of "s things, firft forming the univerfal undiftinguifhed Matter, put its - feveral parts into various motions, by which they muft needs be di" vided into inmumerous particles of different bulks, figures, and fitu" ations; guiding and over-ruling the motions of thofe parts, by his :- wifdom and power, fo as to difpofe them into that beautiful and - orderly frame we call the World; fome being fo contrived, as to " form feeds, or the feminal principles of Plants and Animals. Be-- fides, he fettled fuch laws or rules of local motion, amonglt the parts -6 of Matter, that, by his ordinary concourfe, the parts of the Univerfe " once compleated, fhould continue the oeconomy of the Univerfe, and " propagate the lpecies of living creatures." And again, he fays, "If we fuppofe the univerfal laws of motion to be eftablifhed, and " that, by their conventions, the feminal principles of various things "were contrived, by the local motion of Matier, fkilfully guided at the " hegiming, and that God's ordinary and general concourfe, contri" buted to perfect the Univerle, and continue it fo, there is no need of " any diftinct powerful intelligent Being to aflift him, as Nature is " reprefented ; fince the Phenomena which occur, will flow from the " mere fabrick and conftitution of the World."

The learned Dr. Mead has a paffage on this fubject of Nature, when applied to animated bodies, which I the rather quote, as it contains a reproof to thofe vifionary Philofophers I have mentioned.

+ "Whereas the Word Nature, is made ufe of by Phyficians, in

[^30]" the cure of all difeafes, I will here, once for all, plainly declare my " fentiments of what we ought to underftand by that word. That " there is fomething within us, which perceives, thinks, and reafons, " is manifeft beyond contradiction: And yet, the nature of that " Jomething, cannot be fully and perfectly comprehended in this life.
" Wherefore I thall refign the difquifition of this point to thofe, who, " while they know too little of, and care lefs for, things falling under " their fenfes, take great pleafure in inveffigating thofe things which " human reafon is incapable of conceiving. However, thus far the " foundeft Philofophers agree concerning it, that it is fomewhat in" corporeal. For, how can fluggifh Matter, which is, of itfeif, void " of all motion, be the fource and firft caufe of Thought, the moft " excellent of all motions? Wherefore, it is fufficiently evident, " that this firft mover within us, is a fipirit of fome kind or other, " entirely different and feparable from terreftrial matter, and yet, " moft intimately united with our body."
" Moreover, to me, it feems probable, that this active principle, is " not of the fame fort in all; that the Almighty Creator has en" dowed man with one fort, and brutes with another; that the for" mer fo far partakes of a divine nature, as to be able to exift, and " think, after its feparation from the body ; but that fike latter is of " fuch an inferior order, as to perifh with the body."
" Now this matter, if I am not miftaken, fands thus : Such is the " compofition of our fabrick, that when any thing pernicious has got " footing within the body, the governing mind gives fuch an impulfe " to thofe inftruments of motion, the animal fpirits, as to raife "thofe commotions in the blood and humours, which may reliese " the whole frame from the danger in which it is involved. And " this is clone in fo fudden a manner, that it fhould feem to be the " effect of inftinct, rather than voluntary motion, though it be " effected at the command of the active principle. And, indecd, thole
"Sery motions, which are commonly cal'ed natural and vita!. as " thote of the lieart, lu, gs, and inteflines, which perfevere thongh " the whole courfe of life, even when the will camot be con enned " in then, as they have their begiming from the mind, fo they are " rerpetnally under its direction.

Sir Ifate Newton, in that part of his works above quoted. exprefles himlelf as fullows: "All materiat things feem to have been " compored of the hard and lolid particies above mentioned, var oufly " aliociated in the firft Creation, by the comfel of an intelligent Agent. "Ifor, it becane him who created them, to fet them in order. And, * if lee did fo, it is mphilofophical to feek for any other origin of the " Viorid, or to pretend, that it might arife out of a chaos, by the " mere laws of Nature ; though, being once formed, it may continue " by hole laws, for many ages. For, while Comets move in very " eccentrick orbs, in all mamer of pofiticns, blind Fate could never " make all the lianets move one and the fame way, in crbs cencen" trick, fome inconfider.able irresularities excepted, which may hate " arifen from the mutual actions of Comets and llanets upon cre " ancther, and which will be apt to increafe, till this Syftem wants " a reformation. Such a wonderful miformity in the Planctary "Syitem, muft be allowed the cflect of choice. And fo muft the " umiformity in the bodies of anmals they having gencrally, a right " and a left fide, fhaped alike, and, on either fide of their bedies, two " legs behind, and either two arms, or two legs, or two wings before "upon their fhoulders; and, between their thoulders, a neck run" ning down into a back bone, and a head upon it; and, in the liead, " two ears, two eyes, a nofe, a mouth and a tongue, alike fituated. "Alfo, the firf contrivance of thofe very artificial parts of animals, " the eyes, ears, bram, mulcles, heart, lungs, midriff, glands, larym, " hands, wings, fwimming bladders, natural fpectacles, and ctler " organs of fenfe and motion, and the inftinct of brutes and infeets,
"can be the efficit of nothing elfe, than the wifdom and ikill of a " powerful ever-living Agent, who, being in all places, is mo e able, " by his will, to move the bodies within his boundlefs unform * *Senforimm, and thereby to form and reform the parts of the Lni" verfe, than we are, by our will, to move the parts of our cun " bodies."

I hope I may be permitted to add to the opinions of thefe great men, an obfervation, which, I think, muft have occurred to them, though they have not particularly mentioned it, escept Sir Ifaac Newton, in the laft lines of the paffage I have quoted from him. The laws of motion which, according to Mr. Boyle, were eftablifhed at the Begiming, and afterwards, continued. by what he calls, " the " ordinary concourfe of the Creator," and which principles are ftiited by Sir Ifaac Nemton, " the laws of Nature," canot have any force without the fame exertion of power to fupport them, by which they were at firft created. Nor can the incorporeal mind or fpirit, mentioned by Dr. Mead, preferve its activity without the continued influence of the Supreme Mind. For, the cafe is not analogous to what may be fuppofed of a workman, conftructing a machine, which fhall for a length of time continue in motion, without his intervention; nor to that of a mafter, giving directions to his fervants to perform, what they afterwards accomplin of themfelves. For, in the one inftance, the machine, if its firft mover be a weight, is kept geing by the law of gravity, and, if a fpring. by the power of elafticity, both which are entirely independent of the workman; and, in the other infance, the fervant executes his mafter's commands by virtue of the powers of felf volition andaction he poffefies, independent of that mafter, though, for the time, he willingly applies thofe powers to the accomplifhment of the talk affigned to him. But, we cannot

[^31]siii
conceive any active principle to exiff, in either Matter or Spirit, without the fupport of the firft Caule; for this would be to fuppofe more than cue active iudenencent Exiftence, which Dr. Clarke has proved to be the $\Phi$ cateft abfirdity * Upon the whole, when we inveltigate this fubject as far as our facult.es will extend, we camot co otherwife than refolve al!, that we call the operations of Nature, into the contin al gences of the fift Creator. And, though we are loft in the idea of fuch :mmen!e and inceffant energy, we are equally fo, in the con'emplation of any other of the Divine Attributes, forafmuch as finite capacities camot comprehend Infinitude.

While we polfefs thele fentiments, and keep the idea of Nature, and the Author of Nature, comected, (which it is not eafy for a relecting mind to feparate) I camot, for my part, but approve the + perfonifying "gure, which I think more decorous than to name the Deity on every trivial occafion: and Mr . Lecuwonhock feems to have been of this opinion, for he frequently ufes the expreflion " de vourfichtig Naturur" i. e. provident Nature, but when the wonders he difcovers excite his admiration, that admiration is always directed to the Creator.

[^32]

D

(4)

E


Of an Animalcule or fimall living creature, webich is Sometimes fornd in the livers of Sheep and other beafts.
To make my obfervations on this fubject the more intelligible, I fhall place them in the following order: Firft, as to the fhape and make of this anmalcule ; Secondly, the part of the inteftines where it is found ; Thirdly, its numbers, and the manner of its propagation ; and Fourthly, how thefe creatures, and other animalcules of a fimilar nature, by fixing themfelves in the liver and other internal parts of the body, can produce certain difeafes, and their fatal confequences.

Firft, as to the fhape and fize of this creature, and its fimilitude to other known animals; it bears a near refemblarice (in miniature) to our fole or flounder, as appears by fig. A, which reprefents it of the fize it is commonly found ; this figure thews the back or prominent fide; and fig. B, the belly, or flat fide of it. C is one of the young of the fame fpecies, fhewing the back, D the belly of the fame; E and F are figures of the fame creature, fomewhat magnified. and fhewn in the pofitions, before mentioned.

Thefe animals are not often feen alive, becaufe the difeafe they produce does not always thew itfelf by outward tokens, and the beaft afflicted with them, fometimes feems fat and in good health, and then the liver is not perhaps examined till fome time after the beaft is killed; and thefe creatures camot endure cold, but if by being expofed to it they are deprived of motion, they will revive, if the liver be held in a warm hand or put into warm water. Their motion is undulating or wriggling like that of the fifhes before mentioned, their colour a yellowifh brown, the belly quite flat, and
much paler coloured than the back, the 隹in rough and corered with prickles or prints, and fo tranfparent, that the bowels and velfels may plainly be feen on both fides. The head which is fhewn confiderably magnified, at letter $G$, is of a pointed form, planoconvex, that is, rounding above and flat below, the mouth projecting, open, and of an oral fhape, nearly in fathion like a carp. The cyes, which are picturd feparately at H and I, are very prominent, and furrounded with a cartilaginous or grifly ring, which is thewn at $K$, and they are placed, as we fee in many flat fithes, both of them on one fide of the back, with a divifion between them.

The heart is fo near to the head, and the howels fo clofely conjoined to the heart, that I quedtion whether there is any thing, properly to diftinguith the head from the reft of the body, which yet in moft animals are feparate and diftinct. From the heart, arife two veffels fureading over the whole bocly, with a wide fpace between them, estending almoft the whole length of the back, as reprefented at letter $L$, and between thele veffelsare many fimailer ones, as fhewn at M, which are fo minute that no moifure can be difcovered within them. I olferved in the larger veffels two forts of juices, namely, in - fome a yellowith brown, and fometimes a kind of purple; in others a pale green, both of a glutinous or flimy nature, and yet flowing in the reffels even after the death of the animal, towards the heart, if held up by the tail, and back again, upon the head being raifed.

The excretory duct, or paffage of the bowels, is in an unufual place, being on the right fide of the body, clofe under the head, for which reafon the inteftines are as it were, crowded together in an heap. There is a fmall protuberance at the begiming of the bowels, which I take to be the liver, and between this and the bowels, I find in all of thofe amimalcules which I have examined, an immomerable quantity of oval particles, hundreds of which, taken together, are not equal to the fize of a grain of fand. They are of a pale red colour, and I take them to
be the fpawn or eggs. Notwithfanding my moft diligent examination of thefe creatures, I never could difcover any difference of fexes; and it feems to me moft probable, that they are of that fipecies called Hermaphrodites, or every one equally prolifick; at leaft, none has ever fallen into my hands which appeared plainly to be a male. The tail, though of the fame texture with the reft of the body, is much tenderer, breaking or tearing upon the flighteft touch.

The parts in feveral animals wherein I have hitherto found thefe creatures, are only the veffels, tubes, and chamels wherein the gall is formed and collected, though mof commonly in the liver; and here they may be faid to fwarm, producing grievous fwellings, callofities, contorfions, and fimifes in the part; and cavities, which will be often found an inch and an half in cliameter. In thefe parts thefe noxious animalcules are found in heaps, and the places where they lie, become hard and cartilaginous. In the fmall gallducts they lie longitudinally, and fometimes rolled or curled up together; and I believe that many perlons have hereby been led into a mifake refpecting the fhape of them, defcribing them to be cblong, round worms; but in truth, however clofely they may be thus rolled up, they will fpread open again, even after they are dead, upon being thrown into warm water, for then they recover their flat thape, but at the fame time they become rather of a paler colour than they originally were.

Thefe creatures are commonly found in great numbers, though in this particular they vary much, as it depends on their having had more or leis time to propugate; I have taken out of one liver, 870 in number, befides maisy fragments, and exclufive of thofe which were cut in pieces or deffroyed in opening the liver. And in another liver I have feen but ten or twelve.

They are found in many different kinds of beafis. I have been

## ( d )

informed by Hunters, that they have found them in Stags, wild Boars, and other kinds of game, both great and fimall. I myfelf have feen them frequently in Calses, and once in a young Bullock. Sheep are infefted by then even from the womb of the parent, and Lambs of a year old and upwards, as well as aged Sheep.

As to the production and propagation of thefe animalcules, I confider as idle tales, what fone writers affert, of their being generated by putrefaction or decayed fubltances, immoderate wet or heats, and other equally fenfelels imaginations; and I lay it down as a certain truth, that thefe, as well as all other linall living creatures, are produced from their like, by the means of eggs, feed, or fjawn, according to the nature implanted in them at their firft creation. And it feems to me moft probable, that thefe animals, with their eggs, find their way into the bodies of Sheep, (and which we may fuppole to be the cafe alfo with other infeets and their eggs,) in the following manner ; namely, that in wet fummers and autumns thefe animalcules, which are originally bred on the furface of the earth, may, with the water in which they live, be fiwallowed by the Sheep; and I have been confirmed in this opinion by converfing with Countrymen, Huntfmen, and Butchers, on the firbject. But I am not of the opinion that after being fwallowed, they do themfelves force their way out of the ftomach and bowels into the gall-bladder; I rather conclude, from reafon and my own experience,* that their fpawn or eggs may, with the oily part of the chyle in the infected beaft

[^33]be carried into the veffels of the gall bladder, and there fix themfelves; forafmuch as thefe vellels are lined with a flimy and tenacious fubftance, and alfo becaufe the gall is not like the blcod, in continual circulation, but is retained in its veffels, or emitted, as the calls of the animal occonomy require. Again, they are found fwarming in the liver, where they produce tumours and callofities, and caufe the colour of it to change. And it feems to me not at all furprizing that thefe animalcules fhould live and be nourifhed in the juices of the gall, for every living creature has a fituation and fpecies of food peculiar to itfelf. Sca-filh die in frefh, and river-fifh in falt water. A worm cannot live in the air, and a fowl expires in the earth. What wonder is it then that the creature of which we are treating, when introduced into the body of another animal, thould fund its peculiar place of life, growth, and increafe, in the veffels of the gall, and in the gall itfelf ?

In the laft place, like as we experience, that many living creatures are found in the human body, producing difeale, pain, and death itfelf; fo it is my opinion, that the animalcules of which I hare been treating, and which are fometimes found together by thoufands, may preduce the following mifchievous confequences :

Firft, the extraordinary diftenfion of the parts where they harbour, as well by the growth and increafe of their own bodies, as by the multiplication of their fpecies or brood.

Secondly, by their biting or gnawing the parts they infeft, fo as at length to break or deftroy their texture ; and thus wholly, or in part, render them incapable of performing their functions.

Thirdly, by forcing their bodies into the fmall tubes, and veffels, whereby the delicate frame of thofe tender parts is torn afunder.

Fourthly, by obftructing the paffages in the veffels, whereby the circulation of the juices is prevented, and an inflammation enfues.

Fifthly, by devouring and confuming the nutritive juices, whereby
the adjacent parts are deprived of their fupport and nourifhment.

Sixthly, by clogging the vefcls with their excrements, their eggs or flawn, and the bodies of fuch of the animalcules themfelves as die, whereby the motion of thofe parts being impeded, the moft fatal confequences follow.

There are many other ways in which thefe creatures may prove noxious to animals, but thofe which I have here entmerated may be fufficient to give an idea of the reft.

He, then, who can find out and practife a method whereby, without injury to the parts of the body where thefe vermin harbour, can prevent their gnawing the parts, their creeping abont in the inteltines, and, what is worfe, their dying there; or rather, can difcover how to expel them, while alive, out of the body, will in this refpect bid fair to effeet a cure. It is laid down as a truth, that a diftemperature of the blood and juices, whether proceeding from an ill conftitution thercof, or from an interruption in the circulation, can caufe many difeafes and their ill confequences: but muft it therefore be deemed unreafonable to attempt proving, that animalcules being found in the juices, or even in the more folid parts of the body, may alfo produce difeafes? The firft of thefe points is mere matter of theory or argument ; of the fecond, more certain proofs can be brought ; confequently, it feems more rational, that thofe perfons, who altogether rely upon their experience, fhould, in their enquiries, diligently inveftigate the reafons on which they found their opinions.

I forbear to fay any more on this fubject, forafinuch as what I have written is only for the improvement of medical knowledge, and as an incentive to the laborious enquirers after new difcoveries in fcience, the field of which, is indeed indefinite.


## ADDITION, by the TRANSLATOR.

IT is proper to inform the Reader, that the preceding Eflay has not Mr. Leeuwenhoek for its author, but is taken from a letter written to him on the fubject by G. Bidloo, a profeflional gentleman at Leyden, under date of the 21 ft March 1698 , and publifhed in the Dutch Edition of Mr. Lecuwenhoek's Works, though it does not appear in the Latin Verfion; but, as the fubject is interefting, and probably this Effay has not before appeared in any other than the Dutch language, the Tranflator thought that it might be acceptable to the Englifh Reader.

Since the perufal of this Eflay, the Tranflator has had opportunities of converfing with feveral judicious Gentlemen, who are converfant in the grazing of Sheep, from whom he has collected the following particulars:

That in very wet feafons, particularly towards the latter end of the year, a fpecies of grafs fprings up in the low and wet lands, by feeding on which, the Sheep are fuppofed to contract the diftemper called the Rot. That, if the rains do not abound, until after the winter froft has been experienced, the Sheep are not then obnoxious to this difeafe, but otherwife, if a wet feafon precedes the froft; and laftly, that Sheep infected with this difeafe, do, for a time, appear fat and healthy, but, when the diforder gets to a height, they fall away rapidly.

Thefe particulars feem to prove, that the difeafe called the Rot in Sheep, does in fact proceed from the animal deforibed in the preceding Elhay, which, being bred in the water, and adhering, with its eggs, to the grafs growing in watery places, is fwallowed by the Sheep. And, it is probable that when the fiof precedos a wet feafon, the animalcules and their egors are killed by the fool. and confequently the Sheep elcape: we may alfo conclude. that while this nowious animalcule is in an infant flate in the bowels of the Sheep,
it may not be particularly injurious, but when it arrives at a fize to prey upon the liver, firft, a ficknels, and wafting in the animal, and afterwards, death muft enfue ; and the Tranflator has been informed by a gentleman's Gamekeeper, that he has frequently found Hares, dead of this difeafe, and that upon opening them, hundreds of the anmalcules were found in their livers.

Thefe particulars the Tranflator thought proper to notice, leaving it to thofe who are qualified, to exercife their medical fkill in the difcovery of a remedy for this fatal diftemper.

The animalcule before defcribed is called in fome parts of England a Fluke, in others a Loop, but moft generally a Flounder, probably from the refemblance it bears to the fifh of that name.

* The Author's opinion and reafoning refpecting the formation of that Species of fuel which is called Peat $\dagger$, and alfo with regard to the trees dug out of thofe places where Peat is found: from whence be takes occafion to propofe and difcufs a queftion, whether the Sea may not, in process of time, become more clevated in refpeet of the Land.

I HAVE heard many perfons deliver their fentiments, refpecting the manner in which that fubftance called Peat was produced in this country of Holland. The general opinion is, that the place where this Peat is found was, in former ages, nothing but a wood, and that the falling leaves and fmaller branches or twigs of the trees, collecting together on the earth, did in procefs of time, produce this fubftance, which is by us called Veen. It is alfo believed, that thofe trees, numbers of which are found among the Peat, formerly grew in the fame place, and were all blown down by fome violent tempeft of wind

* In this Effay, the Author departs from his ufual method of invelligating the works of Nature by the microfcope, and proceeds upon theory. It will be feen, kowever, that he does, in one inftance, draw a very frong argument in fupport of his hypothefis, from microfcopical examination.
+ The words Peat, and Turf, are fometimes ufed promifcuonlly, though their true meaning is very different. Turf, properly fo called, as denoting an article of fuel, is compofed of the thick roots of grafs, pared off the furface of the eatth on commons, and dried in the fun. The bark of oak, after it has been ufed by the tanners, made up into fquare pieces or cakes, and dried, is fold in London for firing, under the name of Turf. But Peat, of which the author here treats, is found under the furface of the earth, fometimes to a confiderable depth.
from the North-Weft, and that for this reafon, the roots of all the trees fo dug up at this day do point towards the North-Weft.

Thefe opinions I have often controverted: for how can it be imagined, that fo great a quantity of Peat could be produced from trees ftanding together in a wood; inafmuch as Peat is in fome places found collected to the thicknefs of ten or twelve feet, and fometimes more? Neither can it be conceived, how thofe large oak trees, which are now found, lying in the midft of the Peat, could ever have grown to their full fize in fuch a foil, for, a common form of wind would have been fufficient to blow them down.

Again, it is well known, that thofe trees which are found at a confiderable depth in the Peat never have on them the fmall branches on the ftem, nor any fmall ramifications on the roots, and all thofe fmall light branches of alders and willows which are found in Peat, are not (as far as I have ever known) firm or folid in their kinds, but very much decayed, the fame as if they had been for feveral years expofed to the air, or had died and withered on the trees, or were almoft rotten. Thefe decayed portions of wood cannot, as I conceive, have grown in the places where they are now found, but muft have been carried thither by fome flood, or ftream of water, and that they either floated on the water, or had lain expofed to the ail for feveral years, and therefore may properly be denominated decayed wood; and I remember, that on handling fome pieces of willow about the thicknefs of a finger, which I myfelf faw dug up, I found them as foft and flexible as a withered carrot.

Now, if thofe oak trees, which are found at a great depth in the Peat, had originally grown in the fame place, fuch trees would certainly be found with the fmall branches on their ftems and roots, if not in the whole, at leaft in part, and thofe not decayed, for in the very fame places there have been found in the Peat, hazle-nuts, with their fhells entire.

We know that thefe trees lye eight or ten feet below the furface of the Peat, which furface is, in fome places, four feet lower than the fea at low water; how, then, can it be conceived that thofe trees could have grown in fuch low lands, unlefs we fuppofe that the level of the fea was at that time full twenty feet lower than it is at prefent?

To this may be added, what I have myfelf been an cye-witnefs to, that a violent ftorm from the North-Weft has fo agitated that river which we call Hollands Diep, or Haring Vliet, as to tear up from the bottom large portions of a fubftance fimilar to our Peat, but fo light, as to be carried by the waves againft the banks, and there left, fometimes in pieces larger than a cart-load, which fubftance I was told the poorer fort of people carried away for fuel. Now, it is impoffible that this Peat-like fubftance raifed from the bottom of the Haring Vliet, and which, like Peat, is compofed of leaves, finall fibres of the roots of trees, and other regetable fubftances (and who knows how deep the bed thereof may be ?) could ever have grown in that place.

I once faw Peat taken up from the depth of ten feet, in a watery place, where it had never before been dug. I examined the texture of it, and found it in part to confift of an herb called heath, which herb does not grow in our Peat-lands. And I have alfo feen Peat dug up at a confiderable depth under the fands, not in regular ftrata or beds, but in broken interrupted patches, and fometimes in a large body collected. This Peat I examined, and found that it confifted of leaves of trees, the roots of grafs, the ftalks of leaves, and very fmall pieces of wood; in fhort, there is no vegetable fubftance that grows wild of itfelf, but what, upon an accurate inveftigation, will be found among Peat.

Some years ago, being on a journey at a fmall diftance on this fide of Haerlem, I faw in a meadow by the road fide, a labourer digging in the earth in a cavity as deep as an ordinary man's height ; and, being curious to know what he was taking up, I alighted from my carriage, and found that it was Peat which was laid by in pieces to dry for firing.

In the place where this man was digging, the Peat lay only in fimall parcels, or collected portions, and near the fame fpot there was not any token or appearance of Peat. I was at the fame time furprized, to fee lying on the fand among the Peat, a certain fubfance of a fine blue colour, and I was told, that, near the place, it had been found in a larger quantity, and enough of it collected to fill a fmall cafk, which had been carried away and fold.

At another time, in paffing through the town of Helvoetfluys, I obferved before the houfes of feveral poor people, parcels of Peat piled up to dry, and I was told that it was grood fuel, but produced a difagreeable fmell, and that it had been dug out in enlarging the dock for fhips; and on breaking fome of this Peat in pieces, I perceived in it fome fmall fhining particles, which induced me to carry home a finall quantity of it, that I might examine it by the microfcope.

I was informed, that this Peat was d g in a place where there had formerly been a dyke, or bank againft the fea, and that the peat did not lye ina regular bed, but only in three places, and that under it was the kind of fand we call klapzand, all which, upon examination, I found to be as related. Hereupon I concluded, that this fand, called klapzand, had in former times been the fea-fhore, and that the Peat had by floods been brought to the three places where it was now found, and afterwards covered with fand from the fea, or that wafhed down the river.

On my return home, I examined this Peat by the microfcope, and found, that the before mentioned fhining particles were the feeds of fome plant, which, if they had been larger, might have been taken for beans, but thefe were fcarcely the fifteenth part of an inch in diancter. Other fhining particles I alfo obferved in this Peat, which, upon a more accurate examination, I found to be pieces of the fkins of thofe flying infects which are produced by tranfmutation from maggots or caterpillars, who hide themfelves in the earth; and, among others, I faw fome pieces of an infect of the beetle kind, which, as it frequent!y
creeps into the earth, has its wings covered with a kind of fhell or cafe for their defence, in like mamer as we obferve in thofe infects which are called by children cockchafers and ladybirds.

I alfo difcovered divers pieces of the bodies of various fmall animals, in which I could diftinguifh thofe little cavities or fpots which are obferved on infects, particularly on the cafes covering the wings; alfo on fome of thefe fragments I faw very minute hairs, fuch as the bodies of infects are generally covered with, likewife fome fragments of wings with hairs on them. I found alfo a kind of fting of lome infect, and at the extremity of it an aperture, fuch as is feen in the fting of a fcorpion; in a word, I found an increcible number of particles or broken fragments of infects of various kinds and fizes, confidering the fmall quantity of Peat in which they were contained, fo that it may fairly be concluded, that all thofe infects had been promifcuoully collected together when the earth on which they lay had firft been wafhed away.

In the fame portion of Peat were various particles, appearing to the naked eye like the falks of grafs or plants, and fuch I found them by the microfcope to be, and by it I plainly perceived the tubes or vellels of which they were compofed. I alfo difcovered fome few particles, which feemed to be the hufks of feeds, and others which I imagined were the rinds or bark of twigs.

All thefe particles, of the many different kinds I have enumerated, were contamed within the compafs of a portion of Peat not exceeding: a cubic inch in fize.

From thefe obfervations it appears, how incorruptible are fome fubftances, when buried deep under fand and water, when the fame fubfances being expofed to the air, and in frequent agitation, are fo divided and broken that they efcape our fight, and then we fay they perifh ; and who knows whether this Peat-iike fubftance might not have lain for fome thoufand years under the fand and fea water before the place became firm land?

It is well known, that not only in Holland, Guelderland, and Utrecht, but alfo on all the fea-coaft, as far as Holftein, much Peat is found; and if it be true, as is generally believed, that not only England and Scotland were formerly united to Ireland, but that the Orcades, Shetlond, and Faro, and the other fmall iflands near them, were formerly united (which iflands being rocks, or rocky on their fhores, are able to refift the force of the fea), and that in thefe iflands this Peat-like fubfance is alfo found, we can withont much difficulty folve the quation, if we fuppofe that thefe larger and fmaller inlands, by violent ftoms and high tides of the ocean, may have been feparated from each other, and that the carth or foil which was then carried away, was covered with various trees, grafs, and herbs; all thefe fubfrances floating on the fea, might, by the tides and North-Weft winds, be driven to the places where they now lie; and the trees which we find lying with ther roots pointing to the North-Weft, mun of neceffity be depofited in that pofition: for, as the roots of trees are heavier than the upper parts of the ftem, thofe roots mult fink deepeft in the water, and, being dragged along the bottom of the fea, the ftems would be driven foremoft, and caufe the trees, when wafhed on the land, to lye with their roots towards the North-Weft. The heavier fubfances, as fand and clay, which had conftituted the foil fo carried away by the fea, would, by their weight, fink to the bottom, and, taking the fame courfe with the Peat, would be thrown upon it, and produce a fandy fhore, as we now perceive it.

It is further to be confidered, that our rivers, the Rhine and the Maes, do every year bring down with them great quantities of foil, and particularly in the fpring time, becaufe at that feafon, by the fun and rains, the fnow is melted on the tops of the high mountains, and, ruming over the lands, wafhes away with it great quantities of fand, clay, and earth, and thefe, by reafon of the fwift current of thofe waters, find no reft until the rivers, becoming wider at their mouths,
and meeting alfo the flood from the fea, their current is diminifhed, and the fand fubfiding, produces fhallows. In thefe fhallows, the clay and earthy fubftances alfo fettle, becaufe in thofe places the waters have little motion, in proportion to what they have higher up the rivers, and, by this means it is well known that there is a continual increafe of dry land in fome parts of our fhores.

If we obferve attentively our fea-coafts, we fhall in fome places, even thofe which the fea daily breaks againft and wathes over, obferve large. pieces of black earthy matter, very compact and clofely cohering, and which lye partly covered with fand, and partly overflowed every tide. Thefe portions of earthy matter fo depofited. produce a ftrong argument, to convince us that our fhores thus wafhed up by the fea, were not merely formed by fmall quantities of foil gradually depofited, but by large portions or fragments of land. And, who knows how long fuch fragments of land might, by reafon of their gravity, lye at the bottom of the fea before they were thrown upon the fhore, which, in all probability, could not be effected otherwife than by violent florms, and that, many years after the fhoaly or fandy bottom was firft fcrmed.

The magiftrates of Leyden had it lately in contemplation, if it could have been done, to make a chamel, outlet, or opening for water, into the fea at Catwick, in the place where the Rhine formerly difembogued itfelf; but they found the undertaking to be impracticable, by reafon that the level of the fea was too high at that fpot. This, at firft, appeared ftrange to me, as I could not conceive how the fea could obtain a greater altitude than in former ages, feeing there is not a greater portion of waters on our terraqueous globe, than at its firft formation. But the difficulty ceafed in my mind, when I confidered, what quantities of fine fand and flime, or clay, are continually carried down our rivers. infomuch as to make firm land, where formerly it was dieep water; and further, what large rivers there are in other parts of the world, all which carry gleat
quantities of fuch fand and flime into the fea; whereby, at the mouths of thofe rivers many levels of marh land are produced, while on the other hand, moft countries far diffant from the fea are momtainous.

If we then conclude, that, by all thefe rivers, a great quantity of fand and earth, and whatever is heavier than the water, is depofited in the fea, it neceffarily follows, that the fea muft from time to time be more elevated. Again, by earthquakes, large portions or tracts of land are buried in the fea, leaving nothing but lakes in their place; and we have inflances of a volcano or burning mountain cafting fo many rocks and fones into the fea, as to raife iflands where before it had been deep water.

In the jear 169 , by an eartlquake in the iffand of Jamaica, a large fpace of land was fwallowed up, and converted into a lake ; and, at the diftance of thirty miles from the fea, two hills, by the fide of a river were thrown down, caufing the river to take another courle; from which new channel, a great quantity of earth muft have been carried into thre fea: and although the coaft of Norway, and that of Ireland, Scotland, and part of England, are rocky cliffs, yet their rivers muft continually carry much folid or heavy matter with their waters, and, the beating of the waves againft the cliffs, will carry thefe kinds of fubftances into the bottom of the fea, and fo elevate its furface.

To fome perfons this affertion may feem frange, as judging that the great extent of the fea bears no proportion to the fimall quanity of earth which the rivers wafh into it; and that therefore, the fea camot be fo much elevated, as to make any perceptible difference in feveral hundred years.

In order to fet this matter in a true point of view, I have made a queltion with myfelf: Suppofing the mountain called the Peak of Teneriffe, to be funk in the fea, what clevation would it produce in
the general furface of the water? Now, (confidering the whole of this globe to be one third part land, and two thirds water) I compute that the whole furface of the waters would be thereby raifed between one fourth and one third of an inch. And, fuppofing all the rivers in the world, which are very numerous, (for according to our maps Spain and Portugal only, contain one hundred) do yearly carry with their waters into the fea fo much earth as is equal in fize to one half of the Peak of Teneriffe, the fea would, in the fpace of one hundred years be elevated nearly two feet.

This being fo, it is not to be wondered, that we find our flood tides, in ftrong winds from the North-Weft, to rife higher than they were known to do in former times, and that the Rhine, which heretofore fell into the fea at Catwick, cannot now have any outlet that way; and laftly, that on the fame account, we are obliged to raife our dykes higher than formerly. Indeed, we may conclude, that if in a courfe of many years, there fhould not be more fpace given to the waters of the ocean, by earthquakes or fubterraneous fires, producing cavities in the deep, the low lands near the fea will at length be overflowed.

As to the quantity of land excavated in digging Peat, which fome may imagine affords room to the waters, the fpace of earth or foil fo taken away, does not, in my judgment, amount to a thoufandth part of the fand and clay which is brought down the rivers, and befides, the places fo excavated are, for the moft part, afterwards drained.


On the effects of Acids in the Stomach, and the ufe of Fi/b Diet, with a particular defcription and examination of the liquor or fubfance named Runnet, which is ufed in the making of Cheefe.

IT is the opinion of many medical perfons, that various diforders in the human frame are caufed by acid in the ftomach, which coagulates the juices; and fome condemn the ufe of acids, and alfo of fifh, as articles of food. But to thele opinions I camot fubfcribe, for, at a town in my neighbourhood, where the people get their living by fifhing, and principally feed on fifh, efpecially when they are on the fea, the men are very robuft and healthy, even to a great age ; and, with refpect to myfelf, I have experienced, that, when my habit of body has been indifpofed, I have been greatly refrefhed by eating fifh, with fauce compofed of a mixture of butter and vinegar, and I never found acid fauces difagree with me. It is alfo my opinion, that a fifh diet is more wholefome than flefh, particularly to thofe perfons who do not ufe much exercife, becaufe fifh is more cafily comminuted and digefted in the fomach and bowels than flefl, and, as flefh affords a more nutritious fubftance, fuch fupcrabundant nutriment is, in my opinion the fource of many difeafes. And, I think it may be made appear, that the coagulation or curdiing of food in the flomach, when caufed by acid, is not prejudicial, but rather conducive to health.

In the markets which are held weekly in our town, it is ufual to expofe to fale, that part of the inteftines of calves which is called
the Maw ; this is falted, and kept in cafks, and, with the pickle in which it is preferved, goes by the name of Rumnet. It is purchafed by farmers, and when poured on milk* curdles it, of which curcs. cheefe is made. Some of this pickle I purchafed, in order to examine it more accurately, but was obftructed in my enquiry, by the numbers of faline particles in it.

I therefore purpofed to procure from a butcher, fome of the liquor when newly taken out of the maw, as foon as the animal was killed; and I was informed, that if a calf had fwallowed any milk a few hours before it was killed, there would be found in its maw a quantity of coagulated or curdled milk, which it was cuftomary for the butchers to take out and preferve with falt in a jar, (fome of which curd was fhewn to me), in order to fell the fame to the farmers, who found by experience that a fimall portion of this curdled milk, was of more ftrength or virtue for their purpofe, than the liquor in which the maw was pickled.

I then went to another butcher's, where I faw the maw of a calf, wherein, although the animal had not fucked for the face of twenty four hours before it was killed, I perceived fome portions of curdled milk, larger than a walnut; thefe I caufed to be wafhed in clean water, and carried them home with mc , and I was much furprized to find them as hard to the touch as new made cheefe.

This curdled milk I put into a glafs, and poured on it rain water, fo as to cover it about an inch, and then broke the curd into fmaller pieces, in order that the faline particles, if any there were in it, might be diffolved by the water ; and, after it had food thus for fome hours, I frained the water through a filtering paper, into a new and perfectly clean glafs.

[^34]Some of this filtered water I poured on a portion of wine, in ordes to fee whether it would have any effect on the faline particles which are in wine, but, after it had ftood feveral hours, I could not perceive any alteration; I therefore determined to try the experiment with rinegar. And, as the vinegar which is commonly fold, is for the moft part adulterated, I took white wine vinegar, which I had kept with marygold-leaves in it for fire and twenty years, and was uncommonly ftrong, and mixed with it a fmall quantity of the before mentioned liquor, but I faw no other faline particles in it than thofe which are found in vinegar. I obferved, indeed, feveral globules of oil, which in all probability proceeded from the marygold flowers.

But, when I took a fmall quantity of new milk, and mixed with it a very little of the before mentioned water, on bringing it before my eye as foon as I poffibly could, I faw moft of thofe round particles which caufe its white colour, curdled together, and an inconceivable number of fmalier particles, fwimming among the curdled ones, from whence I concluded, that thele fmaller particles were of a different nature from the coagulated ones; I alfo faw in the fluid or whey various pellucid globules of different fizes, the finalleft of which were no larger than globules of blood, and the largeft of thefe pellucid globules were twenty-five times that fize ; all thefe I concluded to be thofe particles in the milk, of which butter is compofed.

From thefe obfervations it appears, that this liquor called Rumnet, which coagulates or curdles milk, does not take any effect on wine or vinegar, neither of which are adapted to the food of calves.

I was informed by the butcher, that the fame curdling of milk, took place in the flomachs of fucking lambs; and moreover, that if lambs were taken from their dams and fattened with cow's milk, it would be curclled in larger quantities, by reafon, (as he judicioufly added) that cwes milk has more particles of fat in it than that of cows.

## ( 1.57 )

After this, I mixed new milk with a large quantity of Rumnet, to fee whether thofe fimalleir particles which I have before mentioned to have feen fwimming in the whey, would thereby be coagulated, but they fill continued to preferve their figure.

Upon examining the before-mentioned filtered liquor by the mi-crofcope, I faw in it an inconceivable number of uncommoniy minute particles, to which, ber reafon of their exceeding fmallnefs, I could not' give any other name than that of globules.

Whether the glubules or falts in the Rumet, have fuch an effect on rain water, as to caufe any of its particles to coagulate, fo as to become vifible by the microfcope, I have not yet been able to difcover.

I feveral times tried the experiment of pricking my finger with a needle, and, immediately mixed fome of this liquor with the blood, to fee whether any of its particles would therehy be coagulated: on viewing the fame through the microfcope, it exhibited a curious and pleafant fpectacle of vaft numbers of the globules of blood, rolling one over another, but they were fo far from being coagulated by the mixture, that they feemed more fluid than before.

After this mixture had ftood about the fpace of half a minute, I perceived in it many fmall pellucid particles, which by degrees grew larger, but yet were fo minute, and fo much covered by the circumjacent particles, that I could not clearly difcover their figure; but, to the beft of my judgment, they were irregular faline particles, appearing all of different thapes, and adhering together, in like manner as we obferve in fugar-candy. Now, whether this appearance was compofed of falts in the blood, or falts in the milk, or both, I am not able to difcover.

I feveral times applied a drop of the before-mentioned filtered liquor to my tongue, and I judged it to have more of a bitter than an acid tafte; whereupon I confidered, whether its property to curdle milk, might not be derived from the gall.

I therefore went to a butcher's, to fee whether the gall was not emptied into the maw, but 1 found that the gall bladder did not difcharge its contents into the maw, but farther down, where the bowel grows narrower ; this gall bladder I caufed to be cut off to as to leave the reffel through which the gall palles, joined to the bowel, and having bound both ends of thefe with a thread, I inflated the gallreffel with wind, but I found the parts to be fo contrived that not the leaft portion of water, or even of air, could pafs out of it into the maw.

When fome of this Rumet had food with a little water on it in a glafs, for the fpace of two days, it acquired as acrid a fmell, as we perceive in four curdled milk.

I at one time. received from a butcher, the gall bladder of a calf, which was entirely void of gall, whence I fippofed that its contents hat been filled by accident, but I afterwards underfood that no gall had been in it, and that the like appearance was often ubferved.

But, what fhall we fay, when welee in how high eftimation tobacco is held, and acids altogether condemned; as if all our bodies were exactly of the fame difpofition or conftitution.

For my part, I have for many years been ufed to fmoke tobacco for the cure of the tooth-ach, but I have often found that before I finoked half a pipe, I was fo fick, as to be obliged to lie down near the fire, and fo much difordered, that I could not even endure to be fpoken to ; whereas, on the contrary, every kind of acid, whether ufed in food, or taken by itfelf, agrees perfectly well with me. In fhort, we can much better judge for ourfelves as to what agrees or difagrees with our conftitutions, than pretend to advife other peop'e what is good diet, or the contrary.

With regard to the curdled milk, which I have mentioned to be taken out of the calf in hard pieces, it feems to me probabie, that the milk at firf was but lightly curdled, and that the frequent contrac-
tions of the bowel where it lay, which in the courfe of nature are performed many times in a minute, were the caufe of its being found in that ftate.

Seeing now, how powerfully coagulation is performed in animals, we may conclude, that fomething of the fame kind muft take place with the food in our own fomachs, in order to render the fame nutritive to us. And who can tell, how far fuch coagulation may take place, not only with milk, but alfo with wine, vinegar, falt, and other parts of our food? This, however, is certain, that if a fucking child cafts up the milk, on account of having fwallowed more than its ftomach can contain, fuch milk, though juft before taken from the breaft, is in a curdled ftate; confequently we muft conclude, that coagulation in our ftomachs is a neceffary part of the animal œconomy.

If milk in the fomachs of fmall animals was not curdled, it would in a few hours pafs through their inteftines, and afford but little nourifhment to their bodies. And, in this opinion I have been confirmed by the experience of the butchers, from whom I find, that when the excrements of calves or fucking lambs are thin and fluid, they thrive but little, and, that at thofe times, no curdled milk is found in their fomachs.

I am aware, that thefe my obfervations, may difpleafe fome perfons, as thinking that herein I am going out of my province; but, thofe confiderations weigh little with me, forafmuch as every judicious perfon knows, that Phyficians themfelves, in many things proceed merely by guefs, and therefore, I affume to myfelf the liberty of offering my conjectures on this fubject.


## ADDITION by the TRANSLATOR.

Almof all the arts, which contribute to the fupport or comfort of human life, have been the refult of long and repeated experience. I will inflance in the two moft neceffary articles of food, which are bread and beer, refpecting which, a celcbrated writer of the laft age thus expreffes himfelf:-" The arts of " brewing and making bread have, by flow degrees been brought to the per"fection they now are in, but, to have invented them at once, and, * ì pricri, ": Would have required more knowledge and deeper infight into the nature of " fermentation, than the greatef Philofopher has hitherto been endowed with; " yet the fruits of both, are now enjoyed by the meanclt of our fpecies."

Cheele, however, another principal article of food, at leall among the poor, was mof probably brought into ufe, à pricri, by adverting to the change made in milk, from a fluid to a folid, in the ftomach of the calf, and by imitating nature in the manner deferibed in the preceding Effay. To preferve the concreted or hardened fubflance, in a wholelome flate, for a length of time, human invention added falt, and, by thefe two cafy operations, is produced that, which is now a luxury to the rich, and a fupport to the poor.

How the change in milk, by the mixture of Rumnct, is produced, Mr. I.ceuwenhoek's indultry, we fee, has not been able to difcover; we can only therefore admire the manner in which nature operates, to produce this effect. For, there is no other known fubllance that fo effeclually curdles milk, and, though the tafte of Runnct is of itfelf rery naufcous, yet none of this difagrecable tafte is imparted to the curd ; on the contrary, that which is called cream cheefe, or new cheefe, being merely the curd, without any mixture of falt, is of a fweet and delicious tafte, and is produced as a dainty at our tables.

* The exprefion, à priori, means, in logic, or in practice, to arguc or to act upon known and eftablifhed principles, from whence a certain conclufion or cffect enfues; à poferiors menns, where, arguing from the effert, we trace it backwards to its caulf.

Of the Snail or Infect found on the Vine, alfo on the nature of Sage, and whence its virtue proceeds; with fome obfervations on the manner in zubich diffcrent animals emit their poifon.

A Gentleman of fome confequence in this country, upon a certain time, put into my hands, a parcel of fimall whitifh eggs, together with fome dry earth, in which they were found ; and defired that I would endeavour to difcover what fpecies of animal would be produced from them. The axis of thefe eggs was nearly equal to one fifteenth part of an inch.

One of thefe I diffected, and found in it a thin fluid, mixed with round particles, or globules; the reft of them I put into a glafs, but their contents in a few days entirely evaporated, and the fhells, which were very brittle and tender, upon the liquid they contained being exhaufted, became fhrivelled, fo that no living creature proceeded from them.

The following year, the fame gentleman brought to me fome more of thofe kind of eggs, which I treated in the fame manner as the former, but with no better fuccefs.

In the month of July, in the third year, I received from the fame perfon a larger parcel of thofe eggs, which were mixed with about an handful of moift earth.

Seeing this, I began to confider, that perhaps, the reafor why the liquor being evaporated from the former egis, had thereby prevented their producing any living creature, was, that in dry earth they be-
came barren, and that in their nature they required to be kept moift ; confequently, that if I treated them in the fame manner as the former, I fhould never obtain my wifh to difcover their fpecies. I therefore put thefe, and the moift earth wherein they lay, into a glafs tube, about ten inches long, and three quarters of an inch wide, one end of which I had clofed together by heat, and the other I ftopped with a cork, by which means whatever moifture might evaporate from the earth, would be confined by the glafs, and, there condenfing, the greater part of it would fall back on the earth, and keep it, and the eggs, always moift.

This tube I placed in my clofet, fo as to be continually in the way of my notice, and, after fome days, I faw, to my great furprize, two fmall * Snails, of that fpecies which infeft the branches of vines, (and which are called by us Wyngaart-flakken, Vine-fnails or Vine-flugs) on the infide of the tube, and which had crept out of the earth contained in it.

I then took out of the tube an egg, or rather what was now become a fmall Snail, with part of the egg thell adhering to it, and put it into a finaller tube, in order to examine it by the microfcope more accurately; and thereupon I perceived in one of the horns a very rapid motion, performed in a veflel, apparently an artery, and which I judged to be about one fourth part the fize of an hair. This motion was not an uniform or continued one, but by fits, or pulfes, and, fo quick, that I judged the juices in the veffel were propelled forward, three times within the period of one pulfation in the human body; and I concluded, that this veffel muft certainly be an artery, and not far diftant from the heart, becaufe the quick pulfations I have noted, could not, otherwife, have been fo diftinctly feen.

The next morning this finall Snail was dead; as I gueffed, for want of food, for the others of the fame fize, which were in the larger-

[^35]tube with the earth, continucd alive; the next day more of the fame kind of Snails came out of the eggs, and the third day many more.

I often contemplated one of thefe Snails, while adhering to the infide of the glafs tube, and, with great pleafure, I faw through its fhell (which was fo pellucid as to tranfmit the light) a part of its body not larger than a grain of fand, and of an oval fhape, which alternately was contracted and extended, each altermate motion being performed in the fame fpace of time as is required to pronounce diftinctly a word of four fyllables. This little point or corpufcle, I deemed to be the creature's lungs, and the reciprocating motion, that of refpiration.

I have formerly often diffected thefe kind of Snails found on Vines, chufing for that purpofe the largeft I could find, in order, if poffible, to difcover the manner of their generation, and whether any young ones were to be found in them, but hitherto without any fuccefs ; and now, almoft by accident, and with little trouble, I plainly perceived that thefe creatures were propagated by laying eggs.

It has frequently been matter of great wonder to me, to obferve in the fpring, young Snails of this fpecies on the Vine branches, when I could not conceive, how they could have been bred and brought forth fo early in the feafon. But, fince it now appears, that they are produced from eggs, the difficulty ceafes, becaufe we can eafily conceive how thefe animals may be hid in the earth all the winter in the egg, and break out from thence, as foon as the firf warmth of the fpring returns.

I have likewife often obferved full grown Snails of this fpecies, whofe fhells were covered with earth or clay, as if they had been newly dug out of the ground, and never could fatisfy myfelf as to the caufe; but this is alfo now accounted for, becaufe, as they muft crecp into the earth to depofit their eggs, it is natural to fuppofe that fome portions of earth or clay may be left fticking to their thells or horns. And, if any perfon flould wonder how thefe creatures can
creep into the earth, I can fatisfy him in that point, from my own experience ; for I have frequently feen, after I had picked feveral of them off the tree, and not only thrown them on the ground, but preffed them with violence into the earth, by famping on them with my foot, yet, in a fhort time, if their fhells efeaped unhurt, they would find their way out again.

In the month of Auguft, I invited the friend I have mentioned, fo my houfe, and acquainted him with the mamer I hatd treated the eggs. he had fent me, and fhewed him the Snails which they had produced, with which he was greatly pleafed ; and told me he had rather fuppofed, that the fpecies of lizard commonly called Efts would have been the produce. The next day, he brought to me a very large Snail of this fpecies, the furface of whofe fhell was covered with moift carth, juft as if it lad newly crept out of the ground ; and he informed me, that, while he was bringing it, he perceived it lay an egg. Hereupon, I put this Snail into a glafs tube, about ten inches long, and wide enough to give it full liberty of moving about; and within half an hour it laid feven eggs, which I perccived fticking to the glafs, and in two hours time as many more ; but, when I next examined it, I found that in creeping about the glafs it had broken them all, and in two days it died, as I fuppofe for want of food, without laying any more eggs.

The fmall Snails, which, as I before mentioned, were produced from the eggs, did not live above two or three days, and I perceived that the fhells from whence they had iffued were very white, but the remainder of the eggs which had not produced any young ones, and were barren, were of a dark colour, and of a watery appearance.

It being now demonftrated by the foregoing obfervations, that thefe Snails are produced from eggs, the old eftablifhed error muft be abandoned, which thofe adopt, who dream that thefe creatures are produced from corruption, or the decayed leaves of trees; and

## ( $16_{5}$ )

thence conclude, that, if fuch leaves are not taken out of gardens, thefe Snails will be bred from them. Whereas, we ought rather, on confidering the matter, to fay, that if the leaves which fall in autumn are left in gardens, the eggs depofited by thefe Infects in the ground, the furface of which is covered with fuch leaves, will be the better* defended from the winter's cold, and confequently more of thofe animals will be produced in the following fummer.

A certain Author, of the name of Kircher, having publifned to the world, that he had, by his microfcope, difcovered on the leaves of Sage fomething like a fider's web, woven by fome fmall infect, and having thereupon founded an affertion, that thofe who fhould eat of Sage leaves, without wafhing them, would be poifoned, I was requefted by fome learned friends, to examine into the truth of this affertion.

I had many years before this time, frequently infpected the leaves of Sage, and always found that they were, in many places, covered with fmall globules, but 1 never perceived on them any animalcules, nor their eggs, even by the affiftance of the microfcope.

Upon this occafion, I procured fome Sage, not only the green fort, but that, which, becaufe its leaves are yellow at the edges, is called variegated Sage. This I examined by the microfcope, and perceived the leaves to be covered with many capillary or hairy parts, too fmall to be difcerned by the naked eye ; and fo clofely fet together, that there was not a place in the leaves, of the breadth of an hair without them, and, I cannot give them a better name, than capillaments, or fmall hairs, becaufe, like the hairs of animals, they all terminate in a fharp point. And I fuppofe, that Kircher had imagined thefe capillaments to be the webs of fpiders.

At the extremities of many of thefe capillaments, I perceived certain globules, which, through the microfcope, appeared no larger
than grains of fand feen by the naked eye ; and thefe globules feemed to me to be filled with an oily fubftance. But I could not difcern the leaft trace of any living anmalcules on the furface of the leaves, and I ann certain, that, had there been any fuch, though an hundred millions of degrees lefs than a grain of fand, they would have been vifible by my microfcope.

This oil, wherein the virtue of Sage confifts, is produced on every leaf of it in fuch abundance, as no one would believe, but from experience ; infomuch that one can fearcely touch a leaf of Sage, but an incredible quantity of oily particles will adhere to the fingers.

My admiration was greatly excited, by obferving that the greater number of the capillaments I have mentioned, were formed with three joints, and fome, which ftood on the vefles of the leaves, with four. Thefe joints I do not remember to have feen in the capillaments on any other leaf, but whether that is to be attributed to my want of attention, I do not know.

When Sage is dried, its leaves exhibit a whitifh colour, and that is cauled by thefe capillaments, which, lying thick one on another, do, by their tranfparency, produce that whitenefs.

This fame Kircher, in his writings, gives it as his opinion, that Sage, and alfo Fennel, are very wholefome herbs, but, that in them is produced a maggot, which, being inadvertently eaten, will caufe grievous fymptoms, and even death itfelf; and he moreover pretends to have found by experience, that there is no plant which does not breed fome maggot or moth; but furely, if he had been provided with a good nicrofcope, and had underfood how to ufe it in the diffection and examination of minute animals, he never could have broached fuch abfurdities.

For my part, it is my fixed and fettled opinion, that no leaf, no tree, nor any root, ever did, or ever can, produce or breed any animal endued with life and motion. But, a fmall animal may lay its egos, or

## 167)

depofit its young, on the leaf or fruit of a tree, which young one, when depofited, or when hatched from the egg, may make its way into the leaf or fruit, and there find nourifhment to promote its growth.
It is an eftablifhed axiom among Philofophers, that, nothing can come of nothing; how then can a being or fubftance void of motion, produce a creature endued with motion and life? And this is certain, that, whenever we diffect or evamine finall animals, the wonderful fabrick of their bodies, both externally and internally, frikes us with aftonifhment.
As to the opinion, that venomous animals do fhed their poifon on fruits or leaves, I do not fee that this can be faid of the Scorpion, nor that poifonous ferpent called the Rattle Snake, neither of the Spider, nor the Indian Millepeda, becaufe, as far as I can underftand, they have not power to hurt, by fpitting or voiding their poifon on any object, becaufe they cannot caft it to any diftance, but they do mifchief, by injecting it into a wound made in the flefh. But, it is poflible for the Frog and Toad to infect plants with their venom, for I have more than once obferved thofe animals, when irritated, eject a kind of water, in a fream, from their pofteriors, which water poffeffes an extraordinary corrofive acrimony. This property was firft experienced here, by a refpe:table perfon, who, in fifhing for Jack, ufed young frogs for a bait; and once, while he was fixing a frog to his hook, the animal on a fudden fcattered a little of this liquor into his eye, which produced an excruciating pain in the part.

I have often taken notice of a large dog, who was very eager in the purfuit of mice, which he would fwallow whole, without chewing. He was alfo very fond of hunting frogs and toads, and, when he had killed them, by biting, he ufed to throw them away; but at thofe times his mouth was entirely covered with froth or foam, which I attributed to the liquor emitted by them. This was moft particularly the cafe,
when he caught a toad, for then, he appeared almoft mad, violently thaking his head, and, great quantities of froth or flaver iffuing out of his mouth; but he was accuftomed, before he began to bite the toads, repeatedly to take them in his mouth, and dafh them againft the ground.

This virulent liquid in frogs and toads, they do not, in my opinion, emit, except upon extraordinary occafions, when they are irritated, for it is a natural inftinct in all animals, carefully to preferve that, which Nature has given them for their defence. So the Scorpion, whofe weapon of defence is his fting, does, while creeping or rumning along, carry the point of the fting turned inward, towards his body, in order to preferve it from injury.

This fagacity, and the other faculties we obferve in animals, camot be fuppofed to be produced fpontancoufly, nor that, with the creature it is bred from corruption or putrefaction, but, we ought to lay it down as a certain pofition, that thefe faculties implanted in animals, at the Begimning, have been, by a conftant fucceflion, tranfinitted to their offspring ; forafmuch as we are not to fuppofe that any new animal, or fpecies of animals, is created at this day. In a word, the make and ftructure of every creature, and the powers implanted in it, muft, in my judgment, be afcribed to God alone, the Creator of the Univerfe.


On Wheat, and the manner of its vegetation; the nature of the feveral component parts of that grain explained, and their figures defcribed as feen by the microfcope.

AlL feeds contain in them the rudiments, or firft begimning plants, of their refpective fpecies; that is, the part which, in the progrefs of vegetation, floots upwards, and forms the ftalk or ftem, and that, which penetrates downwards into the earth, and is called the root. Seeds do alfo, for the moft part, contain a farinaceous or mealy fubffance, which affords nourifhment to the young plants until the roots are of a fufficient fize for extracting fupplies from the earth, to continue and perfect their growth.

Among many other feeds, I have particularly examined the grains of Wheat ; and, in them, the young plant I have mentioned, before it began to vegetate, having firft either put them in water for a thort time, or held a few grains in my mouth, merely to moiften the outward membranes, whereby they could the eafier be taken off. And, having feparated the two external membranes which cover the young plant, I took it out from the grain, and placed it before the microfcope, when it appeared to me to be compofed of nothing elfe than a collection of afcending veffels, with fome flexures or bendings in them, and fome minute tubercles or pimples, which pimples I conceived to be only canfed by the evaporating of the moifture.

In Plate VI. fig: 1, ABCDEF, is the whole of this beginY
ning of the plant, magnified : EF D, are the parts or points from whence not only three difting roots will grow, but they are alfo the bergimings of three feveral fipires or ftalks of Wheat; for the minute rotuberances which appear at F A, and C D, are two diftinot plants: fo that, from every grain of Wheat ( which is well worthy of obfervation) there will arife, not merely a fir.gle falk, bit three diffinat ones, which are formed in the feed itielf. And as, when fipeaking of artidokes, we call the principal or upperne't fruit, the parent artichoke, and the others chicken artichokes, fo. in the infance before us, we may properly mame the uppe:moft plant, which appears at B, and who'e root projects lower than all the refl at F , the paent plant, and the two fimatler ones, at F $\AA$, anal D C, the tww chickens or fuckers.

In oder to form a computation of the proportionabie fise of theefe firft formed p.ants, I placed them betide an $\mathrm{c} \mathrm{s}^{+} \mathrm{e} \mathrm{e}$ gain, which I judged to be four times their fize bothin length an' ti ` nefs, whence it follows, that each grain of Wheat is fixty-four tans larger than the three feveral young plants formed in it, and which are to receive nomilhment from it, in the beginning of their vegetation.

I cut off a piece of this young plant, by a tranverfe fe ion, acrofs the part where the three vegetative principies I have defcribed are fituated, or at the place in the tigure from F to D , only to thew how, and in what order, the roots (or that which is the place or fource of the roots and plants in this fee.l) do lie in refpect of each other ; and alfo, to point out the multitudes of vefiels formed in them.

In fig. 2. A B C, is the firft or outward membrane or covering, which enclufes both the plant, and the whole circumference of the grain of Wheat, and is compofed of nothing but veffels extending lengthwife, and which, being cut tranfverfely, appear in this membrane as they are flewn in the figure, particularly at B , where may be feen a few of thefe veffels, prefenting part of their fides to the eye. The fecond membrane or covering, is in part fhewn at DEF.

The reafon why thefe membranes appear at fo great a diftance from HIK , the three young phants, is, that this grain of Wheat was very much dried, and therefore, in the cutting, the membranes were eafily feparated from the farinaccous part, where the young plants are placed; but when the plants and the mealy fubftance, lying in the fpace marked by the letters DHIKFGD, are a little moiftened, they very foon fwell fo much, as to fill up the whole fpace HEKI. This, however, is the cafe in but few grains of Wheat, for, when the young plants, and the fubfance wherein they lie, contract in drying, the membranes which inclofe them contract likewife, they being, generally, all clofely united or adhering together.

At the letters HIK , are thewn the three begiming falks, or roots, of the future plants, as cut tranfverfely; and, in thefe, the veffels would have been much more confpicuous than here reprefented, had it not been, that in the cutting them (although the knife I ufed was very tharp) they were filled up or nopped; but, though by moiftening, and then cutting them, the veflels appeared more diftinet, yet, no fooner did the moinure evaporate, than they contracted themfelves in fuch an irregular manner, as to be much lefs confpicuous than at firt. And, as to thofe which were vifible, the limerer continually complained, that it was impoflible for him to reprefent in his drawing, the multitudes of flender veffels which he faw.

The fubfance whercin the young plants of Wheat are contained, (which is very little in quantity) appears of a different colour from the mealy part of the grain, by reafon, that the globules which compofe it, are not, fingly, fo pellucid, and therefore do not, altogether, appear fo white, as the meal which compofes the greateft part of Wheat. And thefe two fubiances are clivided from each other, by a third, of a nill brighter colour than the white meal, as in the figure is flewn at D G F.

If, in this figure, I had caufed the whole circumference of the grain,

## ( 172 )

thus cut tranfverfely, and magnified, to be delineated, it would have occupied too much face in the paper ; and therefore, I only included to much of the mealy part of the grain, as is expreffed between the letters, a, D, G, F, c.

I have given a figure of the reffels compofingthe external fhell, hufk, or covering of Wheat, becaufe, contrary to what is generally obferved, they do not end in a tubular flape, but grow out into a kind of hairs.

Fig. 3, GHIKLM reprefents a very fmall piece of this outward hufk, which, when ground, and feparated from the meal, is denominated Bran. Here, not only are to be feen the multitudes of veffels whereof it confints, but alfo, how at their extremities, they grow out beyond the grain, and terminate in hairy points, as at I K L.

The fecond membrane, lying within the firft, exhibits a curious fpectacle, on account of the tranfverfe courfe of the reffels, in a different direction from the former; and at fig. $4, \mathrm{ABCDEF}$, is thewn an exceeding fmall particle of it, wherein, though it is no more than can becovered by a grain of fand, the wonderful courfe of thofe numerous minute veffels is plainly to be feen. And, as it is truly faid, that nothing is made in vain, we cannot fufficiently admire this, and fimilar obje fs, when viewed by the microfcope.

In the fame figure, at D and E , may be feen fome of thofe globules which compofe the mealy fubfance of Wheat, lying within, what feemed to me at firf, an exquifitely thin pellicle, like a third membrane, but was, in reality, only the finer part of the meal.

I many times endeavoured to trace in the young plant, while in the feed, the veftige or firft formation of the ear, but all my endeavours, even with the alfiftance of my microfcopes, were fruitlefs, though I was well affired in my own mind, that it did there exitt: at length, to fatisfy mylelf, if poflible, in this refpect, I took a fmall brafs box, and almoft filled it with that fort of white fand called fcowering fand, on the furface of which I placed, upright, about fixteen grains of Wheat,

## ( 173 )

and, after ftrewing more fand on them, to about the thicknefs of the back of a knife, I moiftened the fand with rain water ; and, becaufe the weather was extremely cold, it being in the midft of winter, I carried the box about with me in my pocket.

At the end of four days, fome of the grains had put forth floots to the breadth of a finger: one of thefe fhoots, I cut off clofe to its root, and, opening it, I took out the middle part of the plant, wherein, by the help of the microfcope, I perceived fome minute leaves, and, from their appearance, I was well affured that the ear between them had increafed in fize, though I could not diftinctly perceive it.

After carrying the box and the remaining grains in my pocket four days longer, I opened it again, and, taking out from one of the fhoots that part which confifted of the imnermoft leaf, immediately inclofing the ear, I placed it before the microfcope, directing the limner to make a drawing of it, as it appeared to him. This is fhewn at fig. 5, ABCD , where ABD , is the young ear, and BCD , the inner leaf inclofing it.

At the end of four days more, being the twelfth day, I opened another of the grains, and, having feparated the young leaves a littie afunder, I was much more confident than before, that I difcerned the ear ; this alfo' I caufed to be drawn from the microfcope, as at fig. 6 . EFGH.

From thefe obfervations we may be fully affured, that warmth and water, will, of themfelves alone, promote the growth of plants. And alfo, that.God, the all-wife Creator of the Univerfe, does not create any new fpecies of Things on this Earth, but that, at the Begiming, he fo ordained and conffituted all things, that, his Creation being perfect, the feeds of plants, when come to maturity, fhall produce or contain in themfelves (however undilcoverable by us) the part or vegetative principle of the future plant, which, in its due time will be produced, and that, in all refpects conformable to the

## ( 174 )

original plant. And thi:, I take to be a certain truth, which prevails not only in plants, but in all living creatures what foever.

I was delirous to examine, whether in the vegetation of com, there would be as great a number of radicles proceed from the firft rout, as I had oblerved in crafs, and for this purpole, I took a glats tube, about half an inch in diameter, and three inches long; having Itopped this at one end, I filled it rather more than two third parts with dry fand, which I moiltened with rain water, and preffed it gently together to keep it in its place, and then depofited it in three grains of Wheat, ftopping allo the other end.

This glats tube I fiequently carried in my pocket, and in theec or four days, the Wheat began to put forth roots. On the feventh day, the roots were fo far grown, that I could moft plainly difeern them to be compofed of wonderfully minute tubes, each of which was formed with joints, as are to be feen in reeds or ftraws.

The diancter of thele roots was, as near as I could compute, about the fixticth part of an inch, and, at the extremities, they were obtufe or rounding, like the ends of thofe quills which are taken out of the wings of birds: the lirface of them was very fimooth and fhining, without any appearance of radicles illiung from them, excepting near the grain, where numbers of exquifitely minute radicles were to be feen.

On the eighth day, the young germ or fhoot had grown to the length of three quarters of an inch, the roots were alfo fo far grown as to reach the bottom of the tube, whereupon I took out the cork, and they then protruded themfelves out of the tube, and 1 hoped to have difcovered in them, whether there were the fame joints in the fmall radicles as in the larger roots; but, in the fpace of half a minute, the moifture in them was fo evaporated, that they became contracted into irregular hapes.

With regard to the fize of thefe exceffively minute radicles, I made the following eftimate, as far as my eye could judge. Suppofing the diameter of them to be as 1 , that of the larger root from which they proceeded muft be confidered as 20 , and confequently, 400 of thefe flender radicles taken together were equal to the fize of the larger root. Now, the diameter of this larger root being, as before obferved, the fixtieth part of an inch, 3600 of thofe roots will be equal to a cylinder of an inch diameter ; and if this number be multiplied by 400 , it follows, that $1,4,40,000$ of the finalleft radicles are altogether equal to a cylinder the fize of an inch.

This being the cafe, we may naturally conclude, that when any plant is pulled up by the roots, luch flender radicles as thefe, not only efcape our fight, but muft almoft all be broken off, unlefs the earth or moift fand which furromeds them adhere to, or is taken up with them.

After thefe very flender radicles I have defcribed, had remained in the tube three or four days, thofe parts of them which did not touch either the fand or the glafs, and were expofed only to the air within the cavity, were fo dried up and contracted into irregular forms, that they appearel like parcels of wool, or the threads of fine linen tangled together.

In the month of April, I took up in a field, which in the preseding autumn had been fown with wheat, fome of the young blades or fhoots, with their roots, and the earth adhering to them : and upon examining thefe, I oblerved nothing vifible, except the largelf fhoot or parent plant, which wars by far the largeft, and had thot up much the highef. To thew the fize of this plant, I caufed a drawing to be made of it, which is to be feen at fig. 7 , WX YZ; and in this plant the blade being fhot up to the height of about four inches, the joints, or knots in the falk, were already formed, the young ear lying at the end next to the root, at W.

This plant, reprefented at fig. 7 , I cut open, and took in pieces, until I perceived the fimalleft leaves of all, which as I may fay, furrounded the ear; thefe allo I took off, and then the ear it felf was vifible, which, viewed through the microfcope, appeared as at fig. 8, ABCDE. But, I did not deliver this Object to the Limmer, until I had diflected feveral of the young plants, and found, that they were all exactly of the fame figure.

At the expiration of nine days from this time, I examined more of the young blades of Wheat, but did not perceive any change in the ear worthy of note, except that it was grown fomewhat higher from the root, and that the joints or knots in the falk, were more plainly to be diftinguifhed.

The ftems or ftalks of Wheat, which, after the grain has been threfhed out from the car, are denominated Straw, appear to the eye wonderfully fmooth and thining, the outer coat of them being compoled for the greater part, of veffels incredibly flender, with here and there a few larger ones intermixed ; the inner part is compoled of larger veffels, all which I have reprefented as nearly as poilible to Nature, in the following figure.

Fig. 9, A BCDEF is a very fmall piece of Straw, cut tranfverfely, and feen throughthe microfcope : any perfon, by confidering what proportion the arch, or curved external part of it, marked AF, bears to a circle, and, comparing the fame with fo much of the known diameter of a Straw, may catily conceive the natural fize of the particle here reprefented.

ABEF, is the bark or outer coat, compofed of the veffels before defribed; $G G G G$, are the veffels of which the inner part for the moft part confifts ; they are of four, five, and fix fides, according as, at their firft formation, their flape is accommodated to thofe adjoining them.

HHHH, are reffels intermixed with the laft mentioned ones, and
containing in them fill fmaller veffels; in thefe veffels I have feen the juices (at the time the Wheat ftalks are growing) running with a wonderfully rapid courfe ; and, through the joints or valves in thole reflels marked $G$, the juice was carried upwards, which juice was for the greateft part compofed of globules; and when the fe globules came to pafs the valves where the paffage through the veffels is very narrow, they affumed an oblong figure, until they cane into a larger fpace, when they reaffumed their priftine globular fhape.

Fig. 10 reprefents thefe afcending veffels cut longitadinally, and feen through the microfcope, being the fame which in fig. 9 , are marked G G: at I III, are the valves I have mentioned, and, in thofe parts, the paffiges through the veffels are the moft narrow or confined of all.

The ftalks of Wheat, are formed of none other than perpendicular or afcending veflels, and that, in my judgment, is the reafon, why they are furnifhed with a kind of joints or knots, at certain intervals, in order to give ftrength to them ; and that, without fuch joints, the ftalk would not be able to fupport the ear, which is its fruit. This is alfo the cafe with graffes, and likewife with reeds, for the fame reafon ; and it alfo obtains in the bodies of fome trees. In thefe northern parts, indeed, all trees are provided with horizontal veffels, whereby they have a fufficient ftrength; but, in the warmer climates, where many of the trees have no other than perpendicular veffels, fuch as is the cocoa-nut tree, the want of horizontal veffels is compenfated, by numbers of thefe kind of joints, formed at fhort intervals, through the whole length of the tree.

The farinaceous or mealy part, of which the grains of Wheat are principally compofed, confifts of thofe minute globules I have before noticed. Thefe globules are, fingly, tranfparent, and lie clofely compacted withim a kind of membranes, fo exquifitely thin and tranf-

## ( 178 )

parent, that, in fome places, their texture is not to be difeemed. A very fmall particle of one of thefe membranes, as it appeared upon the grain being cut longitudinally, is thewn at fig. 11, EFGH; within thele membranes the globules of meal are inclofed, as it were, in cells ; and, at H , fone of thofe cells are reprefented, filled with the globules of meal : the natural fize of this figure, is no more than can be covered by a common grain of fand.

The globules of meal, are of very different fizes, fome being more than an hundred times larger than others, and fome fo fimall, that they almoft efcape the view of the microfcope. In order to give the reader fome general idea of their minutenefs, I took one of the larger grains of that fort of pellucid fand, ufed in fcowering or grinding; this grain of fand, together with fome of the globules of meal adhering to it, I caufed to be drawn from the microfcope, as at fig. 12, ABCDE . In the fame figure, F G H denote a finaller grain of land adjoining to the former. IKLM are fome of the larger and fimaller globules of meal, lying near the grains of fand.

I had at firft imagined thefe mealy particles to be quite globular, but I afterwards found, that I had been miliaken in that refpeet; and that they were not perfect fpheres, each of them hasing a kind of creafe, chink, or indenting, like that which we fee in the grains of Wheat, which had at firft elcaped my notice, partly from the extreme minutenefs of the particles themfelves, and partly from their different pofitions with refpect to the eye.

Upon viewing thefe mealy particles, and the indentings in them I have mentioned, I began, not without wonder, thus to reafon with myfelf. Certainly thele particles of meal were not compofed by a concretion or collection of fill fimaller particles, placed fide by fide, as is obferved in fome liquors, fuch as wine and beer, whofe particles coagulate, and grow together in maffes, which, in the former we call dregs, and, in the lattertartar ; but the particles of meal mult beformed
in another manner, that is, not by coagulation, but by growth. And the membranes which inclofe them in cells, muft be provided with to many veins or vefficls, that every particle of meal may have its feparate vein, whence it derives its fubftance and increale, in like manner as the eggs of fifhes are nourifhed by a ligament or veffel, which is obferved not only in the larger fifh, but in thofe very minute eggs which are feen in vaft numbers on fhrimps. Now, if the particles of meal, which, though not ftrictly fpherical, may yet be termed globules, had rot acquired their growth in that manner, it fhould feem that they could not obtain that globular figure.

Winen we confider the tranfparency of every one of thefe globules of meal, we may well cxclaim, How wonderful is this formation, and hoiv clofely compacied muft be the finalleft particles of which each globule is compofed, to give it that tranfparency!

I next proceeded to camine, whether thefe particles of meal might not be giobules, inciofed in a certain thin membrane, as we fee is the cale with all feeds; but I cannot be confident, that I ever did bring this to my ocular demonftration. I then broke the globules in pieces, and imagined that I faw fmaller ones inclofed in them, but herein I found myfelf miftaken, for, thole globules which I faw feattered among the pieces, were fome of the very limalleft mealy globules, collected in finall parcels.

I then ufed my utmoft endeavours, to difcover the internal hidden make of the globules of meal, wherein, at length, to my great fatilfaction, I fucceeded. I placed fome of them on a clean glafs, and mixed them with a very fuall drop of water: when they were by this means feparated, I poured on them two more drops of water, and brought the glafs fo near to the fire, that in the fpace of a minute, the water was all evaporated. Then, bringing them before the microfcope, I perceived, that their globular form was changed into flat flapes, of different fizes, according to the different magnitudes of the
globules themfelves. Many of them had a little rifing in the middle, which I judged to be that part, through which they had received their growth and increafe.

This convinced me, that the globules of meal in Wheat, are covered with a fkin or fhell, in like manner as the Wheat itfelf, for, by the compreflion and flattening of the figures in the above esperiment, they would have been diffolved or feparated, had they not been confined by fome fuch covering. I then concluded, that the chinks, creafes, or indentings I have noted in thefe globules, were in thofe parts where their fkins had a kind of feam or joining, fo that when warmed and moiftened, their fkins had burft open at thofe places, and the globules fubfided into a flat fhape, as before mentioned.

From this obfervation, I was induced to examine the grains of Wheat themfelves, in order to inveftigate, how, and for what purpofe they were formed with thofe indentings, chinks, or creafes.

For this purpofe, I cut pieces off the grains, by a tranfverfe fection, and examined thofe pieces by the microfcope, when I found, that the fhell or hufk takes its courfe into the middle of the grain, and, on each fide, returns in a curve or bending to the chink, by which means, the hulk, when the grain fwells upon being, moiftened, can expand itfelf into a greater fpace.

Hereupon I was led to confider, that, whereas fowls, turkies, partridges, pigeons, and other birds who feed on corn, camot with their bills, break or grind the grains of Wheat, Rye, and Barley, but take them into their fomachs entire, where, by reafon of the hardnefs of the hufks, they cannot be broken; feeing this, I fay, I cunfidered, that thefe kinds of grain muft have been fo contrived and formed by the all-wife Creator, that, without the hufks being broken in pieces and digefted, their contents may be diffolved: which is thus per-formed, namely, that by the moifture and heat in the ftomachs of.
thofe animals, the outward hufks, or thells, may be expanded and burft open, and the meal which they contain, having by this means a paflage opened to quit its covering, may be diffolved, digefted, and converted into nutriment.

To inveftigate this more fully, I took a glafs tube, about the fize of a finger, and clofed at one end; into this I put fome grains of Wheat and Barley, with a fufficient quantity of water, and then applied fo much heat to it, as, in a fhort time, made the water boil. Then, upon examining the Wheat and Barley, I obferved, that their hufks, which before, had been as it were clofely folded or clofed together, were not now, broken or torn afunder, but, in the places where the grains had been contracted and turned inwards, the parts had now receded either way, caufing the hufk to gape open, fo that, in fome of the grains, a part of the meal was vifible, and in others the whole contents were laid open. Some of the grains of Wheat, however, I obferved, which had fwelled to three times their original fize, the hufks remaining entire.

After this, I examined the dung of fome hens, which, in the time of a deep fnow, were kept fhut up in a coop, and fed with nothing but barley, which, it is well known, they fwallow whole. And, in the dung of thefe fowls, I was much furprized to find nothing obfervable, except a great number of pieces of the hufks of barley; and I was at a lofs to comprehend, how fo great a quantity of meal as thofe hufks had contained, could have entered into the bodies of thefe fowls, confidering that they were all full grown.

Farther, I infpected the ding of many fparrows, in which I found a great number of very fmall hairs, clofely compacted together, in a kind of regular order; together with many fragments of the hufks of Wheat and Barley. I at firft wondered what thefe hairs might be, till I recollected the hairy or reed-like parts at the extremities of the grains of corn, which I have before defcribed, and found thefe to be
the fane, for, in them I could perceive a kind of freak or hollow, which is obfervable on thofe hairs. Thefe fparrows, landerftood, during this feafon, when the ground was every where covered with finow, fought their food in the corn market, where they picked up the grains which, in handling and viewing the corn, had fallen to the ground.

In order to exhibit to the eye, the manner in which the hufks of Wheat are folded or clofed together. I caufed a drawing to be made from the miciofcope, of a piece cut from the grain tranfverfely; but firft, to thew the pofition of the chink or indenting, 1 ordered the limner to draw a figure of the entire grain, in its natural fize. This is fhewn at fig. 1 , wherein the fiffure, chink, or indenting, is denoted by the letters $N \mathrm{O}$. The line $P Q$, indicates the part from which, with a very flarp knife, I cut feveral flices.

Fig. ${ }_{5}$, A BCDE, reprefents a part or flice of the hafk of Wheat, inclofing the meal, cut off as above mentioned, and viewed through the microfcope. A, is the part near that place in the giain, where the young plant is fituated. GHFKI, are the two bendings inwards of the hufk, in a kind of circular courfe, the intent of which formation doubtlefs is, that, when the grain fwells upon being moiftened, the hufk may expand itfelf, and ftill preferve the meal in its place: and by infpection of the part F, it will be feen, that the hufk is not clofely united where the two bendings or flexures meet, to the end, that when the meal expands itfelf ftill more, the two fides of the hufk may recede from each other, and produce an opening at that place.

I have already defcribed the fize of the globules of meal, by comparifon with larger and finaller grains of land. I alfo caufed fome of thefe globules to be drawn, as feen through a microfeope of very great magnifying power ; firft, to fhew more diftinctly that they are formed with a chink or crevice on them, next to exhibit to view the
finaller globules, mixed with the larger, and finally, how the chink or crevice appears on them. Thefe are fhewn at fig, $1 \sigma_{2}$ LMNOP QR.

I have fiequently repeated the experiment of placing a portion of thefe globules of meal, no larger than a grain of fand, upon a clean glafs; and, after pouring a drop of water on them, brought it to the fire. After the water and globules were heated, and the moifture was evaporated, the globules allumed a flat thape, very like that of cakes, which is reprefented in fig. 17, STV W. Moft of thefe had a little rifing in the middle, being the place, as I before mentioned, where, in my judgment, they were fupplied with juices in their growth. And I have often feen the very fmalleft of the globules undergo the fame alteration in their fhape as the larger ones. In thefe obfervations I found a portion of meal, no larger than a grain of fand, mixed with a fmall drop of water, fully fufficient to exhibit the change of fhape before noted; for, if more of the meal is ufed, the particles lie fo confufedly heaped on one another, that they camot be diffinctly feen, and, it is fcarcely to be conceived, that a portion of meal, no larger than a grain of fand, fhould confift of fo many particles as are pictured in fig. 17.

I have often examined a fmall piece of bread, taken from a loaf made of fine flour, after the hufk or bran had been taken from it. The particles of meal in this frmall piece of bread, appeared very much like thofe reprefented in fig. 17, with this difference only, that the particles in the bread, lay much more irregularly, and appeared more mis-llapen, with ragged points and rifings; a true reprefentation of all which is to be feen at fig. 18, ABCDE.


## ADDITION, BY THE TRANSLATOR.

WHOEVER perufes Mr. Lecuwcnhock's Works, will find difplajed in them much found philofophical knowledge, of which fome inftances appear in the preceding Effay. Thele I thall quote, in order to explain tho leparts in them, which may appear difficult to fome of my readers. In page 171, the author tells us, that the fubfance inclofing the young plants of wheat, appears of a different colour from the mealy part of the grain, by reafon that the globules which compofe it are not, fingly, fo pellucid, and therefore do not, altogether, appear fo white, as the meal ; and in p. 179 he reflects, with admiration, how clofely compabted mult be the fimalleft component particles of the globules of meal, to give them that tranfparency: To thofe, who are not converfant in optics, it may appear ftrange, that the moft tranfparent bodics have the fimalleft pores, and, that a collection of fmall tranfparent globules fhould altogether exhibit a white colour, but this is according to the eftablifhed doctrine of light and colours, of which Mr. Leeuwenhock appears to have been fully informed.

As to the firf, Sir Ifaac Newton has fhewn, that it is not the largenefs of the pores of bodies which makes them tranfparent, but the equal denfity or continuity of their parts; which, he fays, appears from hence, that all opake bodies immediately begin to be tranfparent, when their pores become filled with a fubflance of equal or almoft equal denfity, with their parts: thus paper, dipped in water or oil, linen cloth fteeped in oil or vinegar; and other fubftances, foaked in fuch fluids as will intimately pervade their little pores, become more tranfparent than before.

As to the fccond, white being a compofition of all colours, a collection of tranfparent globules, which, from their furfaces reflect the light in all directions, will produce whitenefs by that refledion. This is feen in the froth on liquids, and particularly foap-fuds, which is nothing but a compofition of minute globules of water, made tenacious by the foap.

## Of the Cocoa Tree, and its Fruit, commonly called the Cocoa-nut.

1 HAVE faid, that fraws, reeds, and many other ftalks of plants, were formed of none other than perpendicular veffels, whereas the flems or bodies of all trees growing in our climate, at leaft as far as I have ever underftood, are likewife provided with horizontal veffels; the ufe of fuch laf mentioned veffels being, in my judgment, to convey the nutritive juices to the exterior parts of the tree. Now thefe horizontal veffels impart fuch frength and firmnefs to the timber or trunk, that the moft fpreading trees are enabled to refift the violence of the wind.

But ftraws, reeds, and other ftalks which are deflitute of horizontal veffels, require fome other means of fupport ; for, if all the veffels, from the cartl up to the fummit of the ftalk, were difpofed only in minterrupted parallel lines, the ftalks would be fo weak and flexible, that they could neither reffit the wind, nor be able even to bear the weight of their own fruit. Therefore, thefe kinds of falks, are ftrengthened by a fort of joints or knots, at intervals, which prevent the over much bending of the falk; and the joints are placed at fuch diftances that the lipaces between each will allow the bending, only fo much as to recover itfelf.

What has been faid of the joints in falks growing in thefe regions. I confider as applicable to fome forts of trees in the Indies; and, ripon feeing fome of thofe Indian trees defcribed in drawings, I inmediately concluded, that the Cocoa Tree was of the number.

After feveral endeavours to obtain a fipecimen of this trec, I at length
procured from a certain fea captain, a piece of one, about a foot long, and ten inches in diameter. The bark of this wood was found, but the wood itielf fo decayed, that it crumbled into powder under the fingers, excepting only a very finall part. The capillary or hairy parts which run lengthwife on the infide of the bark, were tolerably found, but they feparated from each other, as eafily as if they had never been firmly united, which inade me fufpect, that, if there ever had been any other parts to comect them, they were decayed.

I perceived that thefe capillary or hairy parts, grew out of the bark, and that many of them were divided into two; and I alfo perceived in each of thefe capillaments many veffels. Among thefe capillary parts were others, fome firm and folid, others in the nature of velfels, but the greater part of them much decayed.

Thefe capillary parts, were covered by the external folid bark, which bark was, in fome few places, thicker than in others, but, at the knots or joints, the bark was remarkably thick and lolid.

This bark, cut tranfverfely, I examined by the microfcope, and found it chiefly to confift of roundifh threads, about the thicknefs of an hair, and thefe again compofed of oblong filaments, hollowed on the infides. Many of thefe latter did not take a ftraight, perpendicular courfe, but turned inwards towards the body of the tree. Farther, I obferved, intermixed among them, a kind of fubftance, confifting of roundifh globules, comected in a fort of regular order. Thefe parts, compofing the external fubftance of the tree, were fo clofely united together, that it might be thought the tree had not any bark on it. From all thefe obfervations, I was led to conclucle, that this tree receives its growth and increafe from the bark alone. And I perceived certain roundifh parts, which feemed to iffue in a right fine from the bark inwards, as if they were defigned for no other ufe, than to convey the nutritive juices in that direction.

If, however, we could be furnifhed with a piece of this tree, cut while alive and growing, our obfervations might be much more accurate. And, indecd, I was not without fufpicion that this piece of wood had been cut from a dead tree, though one of the feamen affured me, that the decay which Ihave before mentioned, happened to it on board the fhip.

In order to place before the reader's eye the form of the joints knots, or bands, whereby the body of the Cocoa-tree is firengthened, and which as it were, furround it throughout with a fort of girdle, I caufed a drawing to be made of this piece of wood, on a contracted fcale; from which drawing will be feen, how firmly thofe trees, which have no horizontal veffels, are ftrengthened by thefe kind of bands, furrounding them in an oblique direction.

In Plate ViI. fig. 1, A BCDEFGHiKLM, reprefent this wood drawn fimaller than the natural fize. C M, C L, D L, E K, F K, F I, indicate the pofition and courfe of the knots or bands, that is, that they do not go in a ftraight line round the tree, but fometimes approach to, and fometimes recede from, each other, which approacin and receding are fhown at K L. And, this oblique courfe of the knots, bands, or cinctures, contributes more to the ftrength of the tree, than if they encircled it in the form of hoops.

By cutting and examining this wood, in the manner I have deforibed, I fully fatisfied myfelf in the particular wherem in wifhed to be afcertained, namely, that the Cocoa Tree has no horizontal veffels. And there is moreover a circumftance to be noted in thefe kinds of trees, that they have no branches except at the very tops, and therefore, are not fo ftrongly acted upon by the force of the wind. Nor are the branches which they have, peremnial, but they every year fall off, and are replaced by freth branches, which grow on the tree at the fame time with the fruit.

I alfo cut tranfverfely a piece of the wood, in a part where it was
found, in order to fhew, as accurately as pofible, the make and texture of this wood, when viewed by the microfcope.

Fig. 2, OPQR, reprefents a very fmall particle of the Cocoa wood, cut tranfverfely, and magnified, wherein are to be feen fix of the larger of the perpendicular veffels, two of which, furrounded by a great number of fmaller veficis, are to be feen at TT. Of thefe larger and fimaller veffels, the capillary or hairy parts I have mentioned, and which are very tough and ftrong, are compoled. But thefe veffels do not all afcend in an exact perpendicular direction, but creep upwards in a kind of oblique courfe, one among another, by which pofition they contribute to the ftrength of the tree. And when one of thefe veffels or threads divides itfelf, each divided part, though it prefents the figure of a fimaller filament, is yet in truth a perfect veffel. Thefe fmaller veffels, intermixed with the larger ones, I have caufed to be reprefented in the drawing.

Thefe larger veffels feem connected together by a kind of veficles, which, I imagine, while the tree is alive and flourifhing; are filled with fome kind of liquid. Thefe veficles are not difpofed in any orderly or proportionate manner, but in fome places they may be feen heaped together to the number of five and twenty, and in other places, between two capillaments, will be found only a fingle veficle.

Such of thefe capillaments as are next to the bark of the tree, are excceding fmall, in comparifon of thofe nearer the middle; and, to exhibit them to the reader, I cut off a piece of the wood next to the bark, and caufed it to be drawn from the microfcope, which drawing is copied at fig. 3, A B C D. In this figure, A D is an innermoft bark next the wood, being a very thin fkin, and the capillaments next to it are the fimalleft of all, whereas thofe more inwards, grow larger and larger. But, though thefe innermoft cappillaments are the largeft, they are ftill compofed of thofe eaquifitely
thin and hollow filaments ? have mentioned, the hollows or cavities in which I have cauled to be reprelented by a fort of points or de's. The biack flade in this figure, denotes minute veffels furrounding the others, which by reafon of their exceeding fmallnefs courd not be reprefented in the drawing.

Thefe veficles, which I have mentioned to adhere to the capillaments, as they appear, when cut by a fraight fection, are fhewn at fig. 4, EFGM. In thefe veficles there appeared fome finall particles, concerning which, however, I could not pronounce any thing with certainty.

After I had made the preceding obfervations, I received from a friend who obferved how defirous I was to inveftigate the nature of the Cocoa wood, a piece of that wood which he had procured from the ifland of Curaçoa. This was feven inches in diameter, and about four inches long : in the middle, it was compofed of the before mentioned larger capillary parts, but, on the outfide, and about an inch from the furface, it was fo hard, that in attempting to fplitit, I broke a fteel wedse in pieces, and I do not remember ever to have met with fo hard a wood.

Between the bark and the folid part of this wood, I faw fome capillary parts creeping along, and which were of the fame nature as thofe pictured in fig. 1, between G and N , and thefe capillaments, I was informed, are made ufe of to be twifted into ropes and cables.

I obferved, that wherever the knots or bands in the bark approached each other, as at F K , there the capillaments grew out of the bark: fometimes I ebferved one or two branches rife ont of one of thefe capillaments, and thefe again fubdivide into fmaller ones, hollow within, and which capillaments I judged might in time unite and form velfels of the fize pictured in fig. 2, at T T. And if fo, it follows that the Cocoa tree receives the addition to its bulk from the
batk, contrary to what we fee in the trees of this country, the bark of which receives its increale from the wood.

I alfo cut this wood from Curaçoa tranferfely, and examining it by the microfcope, I found it to agree in all refpects with that reprefented in fig. a, with this difference only, that where this wood was harder than the former, there the capillaments were fimaller, and alfo exceedingly tough.

But as the veficles in the former wood, which are reprefented at fig. 4, EFGH, were in this latter much harder, and alfo fmaller than the former, I cut fome of them by a ftraight fection, and cauled a very fmall particle of them, when magnified, to be drawn from the microfope, which is to be feen in fig. 5 , at 3 LM 2 . Thefe veficles, I perceived were of a more firm and folid texture, than thofe in the other piece of wood, and they had in their centers a black fpot, which was a fign that they had had a cavity in them : fome of thefe reficles I cut in fuch thin flices that they appeared tranfparent.

While I was buffed in this part of my inveftigation, I happened to cut one of the afcending veffels, which in fig. 2 , is denoted by T , but which here is fhewn between $\mathrm{IK}_{3} 2 \mathrm{~N}$. And, though the finaller veffels furrounding it, could not, by reafon of their minutenefs, be otherwife expreffed, than by ftraight lines, yet this larger veffel plainly appeared to be formed of a kind of amnular parts, rumning round each other in a fort of fipal form. And, though I had obferved this formation of the veffels in many other forts of wood, yet I could not till now, venture to fay, that thefe veffels were formed in that mamer, becaufe I had hitherto loft my time and labour in endearouring to diffect them accurately. But now in this object, where the veffel fpread or opened itfelf a little, at the place marked N, I plainly faw the fpiral formation, which difiovery gave me great nleafure.

I proceeded fill farther in the examination of this larger veffel, and I found it to be compofed of, at leaft, five fmaller ones, which were placed in regular order, befide each other, and each feverally formed in the fpiral manner I have mentioned. All thefe are fhewn in fig. 6, OP , and in the fame figure, at P Q , is to be feen the part which I before mentioned having feen, as defcribed in fig. 5 , at N .

This circuitous figure of the veffels, may be exactly compared to a brafs wire, twifted round a finall rod, and the fame kind of formation I have frequently, as I have before mentioned, feen in other woods. And even in a ftraw I once obferved, by the microfcope, one of its larger veffels to be formed, much in the fame mamer as this I have defcribed at O P. And, when we confider the fubject, we cannot, in my humble opinion, conceive any form fo fuitable for thofe veflels to raife the juices upwards.

The fame gentleman from whom I reccived the laft mentioned piece of Cocoa wood, fent me alfo two Cocoa nuts, inclofed in their feveral fhells or coverings. From one of thefe I cut fo much of the outer covering, as to exhibit the inner fhell to view ; and I caufed a drawing to be made of both, on a contracted fcale, which is to be feen at $f i g$. 7, A B C D. The diameter of this external cafe or covering was nearly five inches and three quarters, meafured by the fcale $B \mathrm{D}$, which is five inches long.
This external hufk or fhell fo firmly adhered to the inner one, being comected to it by multitudes of veffels, that I found it a work of confiderable labour, to tear it off. The inner fhell was four inches in diameter, and, having cleared it from all the veffels adhering to it, I replaced it in the half of the cafe or hufk, as is to be feen in the drawing.
I have often been told, that the filaments of which this external hufk or bark confifts, are of fuch a length that they are twifted into cables, and alfo wove into fail-cloth. I proceeded, therefore, to exa-
mine the texture of this hufk or bark, when I found, that not a tenth part of it confifted of thofe filaments, but that, from them proceeded a certain fubftance, like a collection of veficles, which veficles, while the fruit was living on the tree, had been filled with juices, in like mamer as thofe parts which, collected in great numbers, from the fubfance of the pear called the Sugar pear, do proceed from the veins or veffels in that pear.

To convey a true idea of the formation of this external coat, hufk, or covering, of the Cocoa-nut, I caufed a drawing to be made from the microfcope of a very fmall piece of it, as is to be ficen in fig. S, M NOPQ. Here, NP Q denote the capillaments, which may more properly be called veffels; they are each inclofed in a larger one, which larger one is compofed of numbers of minute vellels.

It is well known, that all fruits. and even the fmalleft leaves, are covered with a flin, which, that it may prevent the exhalation of the juices, is of a very clofe texture. This external coat or hufk of the Cocon-mut has that kind of fkin, which, as it appears through the microfcope, is exhibited in fig. 9, ABCDEFGH, where are fhewn as exactly as may be, the veffels ruming along this fkin , and connected with the internal part of the huk, as for example, as B D E, A E, and $H \mathrm{G}$. A branch procceding from the veffel BE , is reprefenited at C D.

In the fhell of the mut, pictured at fig. 7 , there are three parts fomewhat refembling eyes, two of which point towards each other, the third contains the young plant, which, when the kernel begins to regetate, flroots out through that carity. And this young plant in its regetation receives nourifhnent from the kernel, through the fe perforations I have called eyes, until it is able to draw its nourilhment from the earth, and this, without there being a neceffity for the fhell of the nut to breat or open. The vegetation of the
chefut is performed in the fame way, contrary to what is ouferved in the ficeds of nuts, plumbs, and the like, the thells of which, as the vegetation of the kernel advances, divide and open themfelves.

Moreover, I cut off feveral pieces from the hard fhell of the Coccabut, fome of them longitudinally, fome tranfverfely, in order to thew the texture of it, as feen by the microfope, This is reprefented at for. 10 , IKLMN, in the inner part of which is a rein or reffe! dividing itfelf into many finaller ones.

I next proceeded to examine a thin membrane or fkin, which lines the infide of this hard fleell. An incredible number of veffels which may be feen by the naked eye, are difperfed through this membrane; the hard thell is of a dark colour, verging towards a black, and the membrane of a faint afh colour. I have often placed pieces of this membrane before the microfcope, and colild not, without admiration, behold the almoft incredible number of fmail oblong parts therein, which were heaped one on another, in fuch various manners that I could not conjecture for what ufe they were defigned ; but they all confifted of fpiral parts, fuch as are defcribed in fig. G, at OP. The?e parts were fo exquifite'y flender, that upon comparing them with a vein taken from the breaft of a flea, which I had ftanding before a microfope, I found that the rein (which was alfo of a fpiral form) was about four times as large as thefe component parts of the membrane, and I could not fuficiently wonder at the multitude of thofe fpiral parts.

I have alfo often placed before the microfope, thofe capillaments which in breaking the fhell I found adhering to it by one of their extremities, merely for the pleafure of contemplating the object; for, a capillament no larger than an hair, would be feen to confift of twenty filaments, the fmalleft of which I judged to be lefs than the thread fpun by the filk worm. So that, if we would compute the whole B b
number of thefe filaments in a fingle nut, we muft not reckon thens by thoufaids, bit by hundreds of thoufants.

That which is the kernel of this nut, and is commonly called the Cocou-nut, is a very white fublance, about half an inch thick, clofely foined to the whole interior part of the fhell ; the remainder of the avity contains a watery juice, which is what I never obferved in any other fced, when come to maturity. For nuts and chefnuts are entirely compofed of folid parts, which we call the kernel, though before they come to maturity the matter inclofed in them. is no more than a watery and limy fubfance.

Upon this head, I reafoned with myfelf; that before the inward fubftance of the Cocoa-nut is full grown and ripe, the fhell becomes harder than thofe of any fruit known in the northern climates; and I concluded that when the fhell is grown perfectly hard, it cannot be afterwards increafed in fize, nor can the kernel it contains receive any addition to its fubftance: and therefore, that part of the nutritive juice which is of a watery nature, and cannot be converted into kernel, muft remain in the center of the nut.

I afterwards fell into converfation with two mafters of fhips, who had vifited both the Eaft and Weft Indies, and had been often employed in collecting Cocoa-nuts. They informed me, that when the fhells of the muts were fo foft that they could be cut with a knife, there was nothing to be found in them except a lymph, or thin liquor, of a very pleafant tafte, which information confirmed me in the opinion I have before related.

At another time, upon a different inveftigation of the Cocoa-nut, I preffed from the pulp or white fubftance of it, fuch a quantity of oil as fixed me in aftonifhment.

After this, upon opening a Cocoa-nut which I had kept for the fpace of feven months in my cabinet, I obferved thofe three foft places in the fhell which are called eyes, and from one of which the
young plant fhoots forth, to he covered, and, as it were, fealed up. with a fubftance like rofin or pitch.

To give a more perfect idea of the nature of the Cocoannut o: lemel, after I had bored the fhell near the phace where thofe parts I have likened to eyes are fituated, and poured out the juice contained in the cavity, I broke away the fhell fo for as was fulficient to fhew the infide of the nut, that it might be exprefied in a drawing.

Fig. 11, OPQR, reprefents the Cocoannut or kernel as it appears, inclofed in the flell, which thell is denoted by PQR. At PR, are fome of thofe capillaments, which in great numbers, are found united to the fhell, and, as they are in fact, no other than veffels defined to convey the nutritive juices, they penetrate into the interior part of the fhell, and there impart nourifhment to the fruit. Farther, many very fmall veffels take their courfe through the hard fhell, and thefe, as I found by the microfcope, were compofed of other veffels incredibly flender, the finalleft of which were of the fpiral formation defcribed in fig. 6, O P.

S TV, denote the nut itfelf, properly fo called. WXY is a cavity within it, which contains the fap or juice I have mentioned, which is very pleafint to the tafte, and of a nourifhing quality. A drop of this juice I put into a very clean glafs, in order, when the watery parts of it were exhaled, to examine the remainder, and therein I did not find any faline particles, but it had the appearance of a fyrup, which did not evaporate, being more of a fixed nature.

This kernel is connected with the hard fhell by infinite nambers of veffels, and on the fide next the fhell is alfo covered with a thin akin, through which multitudes of veffels take their courfe; they are of the fame fipiral figure as before mentioned, and lye clofe together, and they are not much thicker than the hair of a man's B b 2
beard. Whence it appears that the kernel is formed and nourithed from thefe very flender veffels.

Upon examining this nut or kernel by the microfope, I found that its lubftance is not, like other feeds, inclofed in fimall membranes, but confifts of multitudes of minute tubes, which take their rife from the hard fhell, and reach to the cavity, within the kemel, where the juice I have mentioned is collected. They are not all of an equal fize, nor are they of a round figure, but rather of fix fides, whicli thape is well adapted to permit their lying clofe together and in regular order. Some of thefe are turgid with a certain fubfance, which in part evaporates; others of them contain globules which I judged to be chiefly filled with an oil.

Thefe fnall tubes, which in fig. 11 are to be feen at W , I cut tranfverfely, and caufed a draving to be made of a very fmall portion, as viewed by the microfcope, which in fig. 12 is expreffed by $A B C D$ : the fmall points, or dots in this figure, denote fome very fimall particles, which I obferved in thefe tubes.

Moreover, I caufed a drawing to be made of that part of the nut or kernel, where I judged the young plant to be fituated, in the flape it exhibits when feen by the eye alone, without the microfcope: This occupies but a very fmall part of the kernel, and is fituated in a part where its fubftance is thimeft. A drawing of this, of the natural fize, is to be feen at fig. $13, \mathrm{ABCDEF}$, and HEG is the part which in my judigment contains the entire young plant.

From this part I cut fome very thin flices at that end of it whicif in fig. 13 is neareft to the letter E. For I was defirous to examine whether any thing would there be found bearing any fimilitude or refemblance in figure to the fiture ftem of the tree. Some of thefe flices I placed before the microfcope, and caufed a very fimall portion thereof to be drawn, that it might not take up too much fpace ins the paper. This is reprefented in fig. 14, at EFGIII. In this
figure IEF denote the fin or covering, inclofing what I take to be the plant. The remainder of the figure reprefents afcending vencels, and which, as far as I could difeover, were filled with an oil. Thofe parts which appear like larger veffels, and are indicated by $K K K$, were fhining and tranfparent, and were compofed of other veffels, fo finall as to exceed all belief.

Upon cutting this part marked HEG, not far from the end, next $\mathrm{H}, \mathrm{l}$ was aftonifhed to find that this was not, wholly, the young plant, but chiefly its cafe or inclofure, the young plant itfelf, which was contained in it, being not much larger than a grain of fand. One of the pieces thus cut off I placed before the miciofcope, and delivered it to the limner, directing him to make a drawing of the object which prefented itlielf to him, as nearly as it was poffible for his art to imitate it. This flice, which had been cut lengthwife, thus depicted, is fhewn at fig. 15, I K L M.

I took great pains to examine many Cocoa-nuts before I could be certain that what in fig. 1.5, is marked IK M, was really that part of the young plant which would penetrate downwards into the earth, and become the root, and that what is deferibed at K. L M was that part which would grow upwards into a tree; but I am now fatisfied that this is the cafe, and that the parts laft mentioned are the leaves, which in this young plant are already formed.

I many times endeavoured to feparate thefe young plants from the integuments inclofing them, but always in vain; becaufe that part which in fig. ${ }^{1.5}$ is denoted by IK M, frmly adhered to thofe integuments. All I could do therefore, was, to cut the young plants in pieces by a longitudinal fection; in doing which, however, it often lappened, that the object prefented three or four fhapes to the view, by reafon that I had fometimes eut the plant directly through the middle, and fometimes on one or the other fide. To fet this alfo before the reader, I have given two drawings of the picces fo cut,

$$
(20 \nmid)
$$

omitting only the integuments or circumjacent parts inclofing then.

The firt is, of a plant which I had, as I beliere, cut exactly throngh the middle, and it is thewn at fige 16, NOPQ. Here, NOQ, is the part which would become the root, and OPQ, that which would grow upwards into a tree. And, in this young plant, are plainly to be feen the leases with which it is maturally furnilhed.

The other, is of a plant which I judged, had not been cut through the middle; for which reafon it did not appear fo large as the former, nor were the leaves equally confpicuons. This is exhibited at fog. 17. R S TABZ. The place of the future root in this plant is mar'ied by R SZ, and that of the ftem by SABZ.

Although I frequently repeated thefe experiments, it was only twice that I could obferve the upper part or future ftem of the plant, in drying, feparate itfelf from the circumjacent parts. This feparation I have cauled to be exprefled in the fame fig. 17, at $S A B Z$, and at TY.

I have gencrally obferved, that the young plant, in that part which, in $f g .19$, is noted by EH G, occupied not more than one half of the fpace there reprefented, and lay near the part marked $H$. But, at one time, I faw the young plant occupy only a third part of the fpace; whence it follows, that fuch fpace or cavity was nine times as large as the plant it contained:

Farther, I twice obferved the young plant to lie, not precifely in the middle, but rather on one fide of the before mentioned cavity, whence I concluded, that it had begun to vegetate while in that part, for I law that the circumjacent parts had in that place begun to feparate from each other; fo that, had the regetation continued, the plant would have found its way out of the thell. This leparation of the parts is reprefented in $f \mathrm{fg} .17$, at A W B.

Moreover, I thought it right to give fome reprefentation of thofe
extended parts which furround the upper part of the young plant, or, more properly fpeaking, the whole of that plant.

Let us fuppofe then, that I have cut off a fimall flice of that part which in $f g .13$ is pictured between $G$ and $H$, and, that in fig. 77 , a fmall part of the circumference of this flice, and of the fkin inclofing it, are defcribed at VWX. By T, and by V W X Y, that fubftance is expreffed, in which the young plant, or rather the upper part of it, is as it were, inclofed and wrapped up. The parts of this fubtrance, exhibit the appearance of finall veffels, which lie difpofed in fuch itraight lines, that they naturally feem defigned to convey nousifhment to the plant. But, in the part pictured at H , in fig . 19 , and where there will be found a kind of fivelling, thefe veffels are ftretched out to fuch a degree of finenel's, that none of the parts within them can be diftinguifhed without the greateft attention.

As the kernels of Almonds, Walnuts, Peaches, and Plumbs, which are inclofed in fhells, are denominated the feeds of their refpedive trees, fo the Cocoa-nut, or fruit of the Cocoa tree, ought to be reckoned among the feeds of trees. In the feeds, however, of the trees I have firft mentioned, whofe fhells are all formed with a feam or joining, thofe fhells, when the vegetation proceeds, and the kernel fwells, open at the feam, and the young plant in the kernel, having more fpace afforded it, can expand in its growth, and frike its root into the earth. But the fhell of the Cocoa-nut has not any feam or joining, being of an equal ftrength and thicknefs throughout, therefore its vegetation muft be provided for in a different manner; and this I conclude to be as follows. The moifture in the Cocoa-nut being inclofed and confined on every fide, when it begins to be agitated by that inteftime motion, produced by heat, muft neceffarily expand itfelf with great violence, and, by that expanfion, the part which contains in it the young plant, is by degrees, as the
phant incecafs in fize, chiven out of the fhell through the aperture i) fore notect.

Tliolc, who have lived many years in India, affirm, that there is n. tree fo beneficial, or which produces fo many conveniences to mankind, as the Cocon ; and that it is converted to upwards of fixty different ufes by man. The nut not only fupplies him with food and drink, but from the nut is alfo extracted a liquor not much unlike the fipirit diftilled from barley, and from the fame nut vinegar is made. 'The tree itfelf furnifhes matts for fmaller velfels, and the capillaments or filaments which furround the nut are partly wove into fail-cloth, and partly twifted into cables, which are ufed even for large fhips. If the trunk of the tree be pierced with a finall incifion, there will flow from the wound, every day, a quart of excellent liquor. and this operation may be performed twice in the year ; the trecs, however, which are thus treated, are deprived of their fertility for that year.

If we compare the fize of the Cocoa-nut, with the very fimall plant it contains, we may fafely fay, that the nut is above one hundred thoufand times larger than the plant, and we may thence conclude that this mut, and the pieafant liquor it contains, are deftined by mature, or which is the fame, by Providence, for the ufe of man, and to fupply many of his wants.


## ON II OPS.

O
F the Hops which grow in the Low Countries, thofe from Liege are preferred to ours here in Holland, and, I doubt not, with reafon, becaufe the territory of Liege is one degree and an half more to the fouthward than Holland, confequently the Hops will fooner come to maturity there; befides, in the lands about Liege the foil is deeper than ours. The following are the obfervations I have made upon this plant.

I examined by the microfcope, thofe leaves of the Hop, which compofe the pod, or cafe, containing the feed; which leaves, being remarkably thin, afforded me a very pleafant object to behold, the veins or veffels fattering themfelves in all directions about the leaves, and, in fome places, uniting again. Some of thefe veffels, I perceived to be filled with a red fubftance, others were of a fpiral figure, refembling thofe veins which I have obferved in the leaves of tea.

Many of thefe leaves, I obferved to have a fimall feed adhering to them, at that part, where the footftalk of the leaf had been joined. And, indeed, I think, that thefe fmall leaves thus bearing the feed, are fo formed, that each fhall produce one feed, but, it is my opinion, that the feeds, when the leaves do not grow to perfect maturity, cannot ripen.

Many of the feeds I diffected, and found nothing in them, except the young plant, which was chiefly compofed of the part that would in time become the root. There were, however, two leaves formed
in the plant, but nothing effe remarkable, except an immenfe number of fimall velfe's or veins, difperled throughout the beginning root.

All thele feed pods or leaves, chicfly in that part through which they had received their growth and increafe, were covered with exceeding minute globules, glittering with a beautiful yellow, like gold. As far as my eye was able to judge, thefe globules were in diameter about equal to the thicknefs of an hair oi one's beard, but fome of them not fo large. I do not confider them to be the fruit of the Hop, but, fome matter or fubfiance, iffiung from the plant, fuch, for example, as if it was turgid with a fuperabundant quantity of juices, or, that the heat of the fum might fome days be remarkably intenfe, and that by the very great quantity of juices, or their extraordinary expanfion, they had burft through the reffels. Nany of them I broke, and I did not think that they were covered with any fhell or coat, farther than that their external furface being hardened in drying, exhibited fomething of that appearance. They contained only a limpid oil, of a glittering yellow, and alfo other globules, much lmaller, but more folid, and which with the oil, filled up the cavity of thole firf mentioned globules.

This appearance of globules, on the furface of the leaves, I think very fimilar to what l obferved fome jears ago, at a houfe where I was upon a vifit; the back part of which houfe, was covered with a vine, facing the fouthern fun. The young fhoots of this vine, I obferved to be, in many places, covered with tranfarent glubules, and I judged them to have arifen from the fuperabundint juices, which, by the heat of the fun, had been brought forth in fuch plenty, that there was not a paffage for them through the narrow veffels of the branches, fo that they might be abforbed by the grapes. And the warmith on this vine feemed to me, to be farther augmented from this circmemfance, that the ground which corered the root, was very durioully paved with fmall different-coloured pebbles, without an
herb or blade of grais appearing between them. And the juice, thus expelled from the branches, was infpiffated or thickened on their furfaces into globules.

Upon examining the globules on the Hops by the microfope, I found, that the part which might be called their coat or flell, was not fmooth, but rough, and in wrinkles, occafioned, as I concluded: by this, that the juice which iffued from the plant, and formed itlelf intu globules, had, in part evaporated, wherely the outer firface or fkin of thofe globules, contracted into wrinkles.

Thefe yellow globules, when broken, and put into a clean glafs, I fuffered to ftand in the glafs for fome days, and then applied myfeii to examine the oil. I foumd that great part of this oil, had collected itfelf into thin oblong particles, and, in fuch mumbers, that I could not but filently wonder at the fight. Where this oily fubftance lay much difperfed, there, the oblong particles I have mentioned, did not exceed in length the diameter of a very fine thread of wool, but, where the oil was collected in larger quantities, they were four times that fize. In fome places, I obferved oblong particles, with twelve points, ifluing, as it were, from a center, with one of their ends terminating in a point, the others, blunt or obtufe.

Now, we may lay it down for a certain truth, that thofe pellucid and oblong particles, which I have mentioned to be intermixed with the oil, although, by their minutenefs, they efcape our fight, are really a fpecies of falts, and that the bittennefs which Hops impart to beer, is produced by thofe filts. And we may alfo be affined, that thefe minute falts, although they may be a thoufand times lefs than what can be feen by the microfiope, do fet, agree in fhape and figure, with the larger falts of the fane fpecies compounded of them, in like manner as we obferve in common falt, in nitre, or falt petre, and in many other falts. The fame may be oblerved, in that kind of fugar called fugar-candy; for, upon this becoming damp, on being C $\mathrm{C}=$
expoled to a moift atmofphere, when it afterwards dried, I have heard women complain of its having loft its bright colomr. Upon examining into the reafon of this, I found, that the furface had been in part dillolved by the moift air, and when, in drying by the fire, it again became hard. an incredible multitude of fimall particles, very many of which agreed in fhape with the larger parts, had collected upon the furface. and this collection of minute particles, clouded the brightnef's of the fugar-candy.

But, to return to the falts in Hops; how will thofe philofophers get over the difficulty, who obftinately contend, that bitternefs is cauled by a fort of minute hooks in the falts, which by their punctures produce that tane we call bitternefs?

I have often laid a fingle leaf of the Hop, fuch as I have deferibed it. upon my tongue, and held it there the lipace of half a minute; for I was defirous to try the experiment, whether fuch a fingle leaf, which is frequently covered with the yellow globules I have deferibed, could excite a fenle of bitternefs. And, it is not without wonder, I declare, that fuch a fingle leaf, upon being ftrongly comprefled between the tongre and the palate, fpread all over my tongue a very bitter tafie, and indeed, much ftronger than I expected.

Not content with thefe obfervations. I placed a parcel of thefe oily globules, fome of them pounded or bruifed, fome of them entire, in two feparate glaffes, and, with all the attention I was able, I examined them by the microfcope, but I did not find any particular kind of particles in them.

I then placed the glaffes in my cabinct, and, that no kind of fith or dirt might become mixed with the oil, I covered them with paper. After twenty-four hours had elapfed, I examined them very attentively, and, in fome few places, I perceived fome of thofe oblong particles I have before mentioned, which were very fimall and thins, and after twenty-four hours longer time, a much larger portion of fech
falts was difcoverable. Thefe obfervations were in the winter, when the weather was not favourable for fuch enquiries; but, had they been made in a milder feafon of the year, I doubt not, that the falts would have been formed more fipeedily, and in greater plenty.

I think it might be worth while, in the fummer-time, to examine the flowers and bloffoms of various trees, particularly thofe, of which bees appear the fondeft, by which examination it might perhaps be difcovered, what kind of fubfance, if any, and of what qualities or properties, iffues from fuch flowers, and adheres to their furfaces.

At one time, in the month of OSober, I was informed by a Hop Factor, that the Hops in that year, were of an excellent quality, whereupon I procured fome of the feed pods, of that ycar's growth. Upon examination, I found each of the fe feed pods to contain thirty or even forty feeds. When I had ftripped the feeds of the fimall leaves or integuments furrounding them, I obferved, that the young plants within them contained, in proportion to their fize, abundance of oil: I farther noted, what I have already mentioned, that each young plant had two leaves, and thefe in proportion to the minutenefs of the plant, were remarkably long. Thefe leaves lay in each feed compacted and twined together. much like the fpiral folds in the fhell of a fiail ; and. when I laid opeis the folds. I faw within them, ftill more leaves, but exceflively minute, and which indeed, I could not difcover in all the feeds. From hence it appears, that the leeds of the Hop differ from moft of the larger fort of feeds, and do not contain in them any fubitance to nourifh the young phant. which plont therefore is more perfectly formed than that in the larger feed of the Chefnut.

As to thofe beautiful globules which I have before mentioned to have obferved, thofe, in this fpecimen of the Ilop. were dried. and rather fhrivelled. Iasing broken them, I put them into a glafs, and breathed on them with ny warm breath wo or thee times, where-

Upon the dil diffolsed into a wonderfully fluid fubfance. The glafs then placed, whore no dult could reach it, and, upon ewamining it the next day, l liw fuch a multitude of falts of different magnitudes difperled about the oil, as it would ahmoft exceed belief to relate. Molk of thate lalts were pointed at each end, but many of them were fo minute, that their figure could not be known or judged of, but by reference to the larger ones adjoining to them. In fome of my obferGations on this oil, I found the lales to appear in it, at the expiration of only half an hotir after it had been put into the glafs, and they increated in mumber and fize every hour, the fmaller growing larger, and the oily liquor eraporating; and I found that this fpecimen of the Hop plant, contained twiee as many falts as were in the former ne.

I obferved one thing which feemed ftrange to me, namely, that many of thofe oblong falts which I had faid were pointed at both cheds, did not extend in a firaight line, but were fomewhat bent or doubled together; but, whether thefe falts fo bent into a bow-like figure, do, for that reafon, escite the motion or fenfation in our tongues, which we denominate bitter, I leave to be examined by other.


## On COCHINEAL.

W HEN I firft applied myfelf to inveftigate the nature of Cochineal, I concurred in the general opinion which then prevailed, that it was the fruit of fome tree; and, having at the requeft of the Honourable Mr. Boyle, further profecuted the examination, each fingle piece, or fruit, as I then thought it, appeared to contain one hundred or upwards of what feemed to me to be very fmall feeds, fhaped like eggs, each inclofed in its particular membrane; thefe objects, however, I could not bring into view, until the Cochincal had lain in water for fome hours, and then, the outer fkin being taken off, thefe apparent feeds, which were very foft, prefented themfelves; many of which were inclofel in the membranes I have mentioned, which feemed to be their natural coats or coverings, and were twice as large as the feeds themfelves: the membranes were filled with a watery fubfance, of a lovely red, but the feeds were of a dark red or tawny colour. The feeds themfelves, upon being diffected, appeared to confift of nothing but very minute globules of a red colou:

The remander of the Cochincal, or that part of it which inclofed all thefe feeds, was compled of very thin membranes, which were allo of a red colour, except that a very fmall quantity was to be feen, of a certain coloulefs fubfance, which, to me, had the appearance of an oil. And to give an idea of the general appearance of the figure of Cochineal, I know not any manner of exprefling it, better than by compariforn, with a parcel of dried black currants, with their fhins and fecds,

Agent being neverthelefs had to the different fixes of the currants, and the Cochineal. Laffly, when I divided the membranes or feeds of which Cochineal appeared to confift, into as thin portions or partitties as I was able, thole thin particles, did not, as I may fay, exthihit any particular colour.

The preceding observations I communicated by letter to Mr. Boyle, from whom I received an anfwer, to the following effect: that he had underfood from a Governor of Jamaica, that Cochineal was produced from the fruit of the fig-tree, when in a fate of decay, at which time, there proceeded from thence, certain maggots or aurelias, which changed into flies; that thee flies fettling on the trees were there killed by making fires under the trees, the fimoke of which caufed them to fall down; after which, they were ftripped of their heads, the fore parts of their bodies, and their wings, and the remainder preserved for ufe, fo that Cochineal was properly, and in truth, the hinder part, or tail of a fly, and confequently, that my obfervations were fo far correct, that the fubfances I had feen were really eggs, fuck as are found in the hinder part of the filk-worm's moth.

To this I replied, that, in my preceding observations, it was imppoffib'e for me to judge, that Cochineal was an animal fubftance, because there was nothing to be feel in it, that refembled an animalcole, and that I had concluded, if it had been an animal, it would have been devoured by thole minute animalcules, called mites; and I added, that in consequence of the information commmicated by the Hon. Ar. Boyle, in his letter, I had repeated my observations, the refult of which as $\mathbf{1}$ communicated them to him, is as follows.

On this renewed inveftigation of the fulbject, I was fully convinced, that every fingle grain of Cochineal, was part of an animalcule, from which, not only the head, the fore part of the body, and the wings, hat been broken off, but that alfo the leys, and that part of the body
to which the legs are joined, had been thrown away, fo that nothing was left, except the animal's hinder part; and I imagined, that the coloulel's fubfance I before mentioned, and which is to be obferved in the chinks or creafes in every grain, is fome preparation, applied to the Cochineal, when it is collecied for fale, to defend it from the mites, which otherwife would deftroy or devour it.

Thefe creafes or rings, in every grain of Cochineal, I imagine are, the articulations or joints, in thofe kinds of maggots or caterpillars, which afterwards change into a flying infect: And I did not doubt, that, at the proper feafon, when a fimiar kind of infects could be foumd in this country, I thould eftablifh that fact, allowing only for the difference in fhape and colour between them, and thofe which conftitute Cochineal.

After this, I examined a large parcel of Cochineal, and in it I found feveral of the fhells or cuverings of the wings, which fhells were of a black colour, with edeh a red fpot in the middle. Many infects are provided with thefe kinds of fhields, fhells, or cafes, to defend their wings and the hinder parts of their bodies, which are very foft, from injury; and, when they prepare to take their flight, they erect thefe fhields or cafes upright, and fpread their wings.

In this parcel of Cochineal, I alfo found anong the grains, fome fragments of aurelias, which I concluded had been formed from the maggots or caterpillars of this fpecies, and, in one of them was a piece of a maggot, which, in part, feemed to have been devoured by mites.

The children in this country, are accuftomed, in the fpring time, (when the white nettles, or, as they are commonly called, the blind nettles, are in bloffom) to go in fearch of a fpecies of fmall flying infects, called by them lady-birds, which, for the moft part, are to bee found on thofe nettles. The fubject now before me, caufed me to turn my thoughts on thefe infects (though they are fimaller than thofe whofe bodies conftitute Cochineal) and I employed fome chil-
dren, at the proper feafon, to collect fome of them for me; judging that, when ftripped of their wings with the cafes, and their heads and feet, the remainder would be found to refemble Cochineal.

Thefe lady-birds, as they are calied, I killed with the fmoke of fulphur, and afterwards dried them; and when I had taken off the red thells or cafes which cover the hind parts of their bodies, I found under them two red wings, the extremities of which were folded together, becaufe, being loager than the cafes. they cannot otherwife be covered by them. I alfo took off their wings, feet, and heads, and then I found. that the cavity which is feen on every grain of Cochineal, is on the back or upper fide of the animalcule, and is caufed by the drying; that part of the grain which appears with a kind of rifing, is the lower part or belly. As to thofe grains in Cochineal, which have fmaller cavities than others, I conclude, that they muft have been the femaie infeets, whofe bodies, being filled with eserss, do not admit of their contracting in fo great a degree; and though the hind parts of the bodies of thofe infects which compofe Cochineal, do fomewhat differ from thote of the lady-birds, yet, I was now, more than ever, affured, that, not only the infeet which produces the Cochineal, but alfo thofe others I have juft mentioned, are formed from maggots or caterpillars. For, if we confider the nature of all thofe flying anmals which are bred from caterpillars, maggots, or, what are called gentles, we fhall find, that all thofe ammular parts, articulations, or circular creafes, which are in the coterpillars, maggots, and gentles, are alfo found in the flying infects bred from them; and in the fame number. To inftance in the gentle, from which the common fly is bred; if we examine the fly, and confider its head to be compofed of one of the ammular parts, or articulations in the gentle, we fhall find that the breaft to which are joined the fix feet, contains three difinet articulations, and the hind part of the body five more. In a word, the body of the fly is divided
into nine fereral parts, joints, or articulations, and fo many alfo are found in the gentle. This gives the reaton, why we muft not fuppofe, that the rings or creafes which we fee on the grains of Cochineal, are accidentally produced in the diying, for they were compleatly formed in the maggot, from whence the flying infect iffied, the hinder part of whofe body conftitutes that fubfance named Cochineal; of which, if we examine the grains, we fhall find them to contain ten articulations; and the fore part of the infect's body, which includes the head and feet, and the wings with their cafes, being compofed of four joints or rings, it follows, that the Cochineal infect is formed of fourteen joints, rings, or articulations.

After I had left the grains of Cochineal in water, for the fpace of twenty-four hours or upwards, I obferved, that the cavity, which had been caufed in them by the drying, was fwelled and extended to its original fhape, fo that the grains appeared exactly to agree, in form and make, with the hinder parts of thole infects, whofe wings and bodies are covered with thells or cafes.


An account of fome pieces of Amber prefented to the Autbor; alfo of a fubfance refembling burnt puper, reported to bave follen out of the clouds in Courland.

APruffian Gentleman, by profeflion a phyfician, on a certain time, earneftly requefted me, by letter, to receive a vifit from him, and, with the fame letter, tranfmitted to me, fome fmall pieces of Amber, which, he faid, were fent as a prefent to me, from fome perfons of note in Pruflia.

In thefe pieces of Amber were feveral finall animals, namely, a Fly, a Gnat, a Spider, and an Ant. In the two firft of thefe creatares, I not only plainly faw the wings, but, by the microfcope I could difcover the feathers and hairs on them, and alfo thofe protuberances or appearances like coral beads, of which the eyes of thofe infects are compofed; I alfo faw the hairs, and nails or claws on all of them, as plainly as if they had been placed before the microfcope, without any intervening medium. In one of thefe pieces of Amber, I faw a little piece of ftraw, in which I could diftinguifh the tubes or veffels of which ftraw is compofed.

The manner how thefe animalcules became inclofed in the Amber, and the nature and compofition of Amber, are equally unknown to me; and I cannot fubferibe to the theories or opinions of others, which do not feem fuficiently fupported, nor am I at prefent particularly called upon, to make any farther enquiry into this matter.

The fame Gentleman, among other fubjects of converfation, told me, that in Courland, there had been found in a field, fomething refembling burnt paper, being as much as two or three fheets in quan-
tity, which it was reported had fallen from the clouds; that he had procured a piece of it, which he had examined by the microfcope, but could not form any fatisfactory judgment refpecting it. And, finding me defirous of feeing this pretended paper, he afterwards fent me a piece of it.

I had not had this fuppofed paper in my poffeffion half an hour, before I obtained, by the help of the microfcope, fo much infight into its nature, that 1 judged it to be a vegetable production, of a fort which grows in the water ; and I concluded, that if the fact was, as reported, that it had fallen from the upper region of the air, it had been carried up thither by what is called a water fpout; though I am much more inclined to believe, that by fome heavy ftorm of rain, or the melting of frow, (if the country is mountainous) the ponds or ditches might have overflowed, and carried with their current this vegetable production while green, leaving it on fome field of grafs or arable land, and there, by the fun and wind, it might be very much dried, fo as, in fome meafure, to relemble burnt paper: moreover, I was well affured, that I had feen this kind of fubfance in confiderable quantities in ponds, ditches, or canals, in this country; my only difficulty was, to dilcover, how it acquired the black or apparently burnt colour before mentioned.

To fatisfy myfelf in this refpect, I went to fome fagnating pieces of water in the neighbourhood of this town, where I had feen this vegetable, which is an aquatic piant or weed, in great abundance, fome of it I brought home with me, and fpreading it open between pieces of thick paper, I laid it before the fire to dry. I then perceived that where many pieces lay heaped one on another, their matural green was changed to a blackifh caft ; but, where the pieces lay fingly, they preferved their green colour.

After this, I examined the before mentioned imaginary paper more a.ccurately, and I faw very diftinctly, that it was exactiy of the fame
make and testure, with the pieces of green plant or weed I had gathered ; and, upon examining this laft, when in the fame flate as I rook it out of the water, I faw by a common magnifier, what feemed to me like very thin threads in it, much finer than hars; they were round. and their menbranes or coats very tranfarent, and they were filled with great mumbers of green globules, of different fizes, the molt of them about the fixth part as large as a globule of the human blood. And though this green weed, when I firlt laid it to dry, was in parels heaped together, to the thicknefs of one's little finger, yet, when dried, it was no thicker than common paper, whence may be gathered, what a vaft quantity, of watery particles are contained in this aquatic plant or weed.

In a word, this fuppoled paper from Courland, which is there reported to have fallen from the cludds, and the green weed or leaf, prepared by me in imitation of it, are, in their component parts, fo exactly alike, that they may be faid to be one and the fame. For, in divers of the filaments or threads of the firft, I could perceive the membranes compofing them to be the fame as in the fecond, and, in an hundrest places, I could perceive thefe filaments to be furnifhed with joints, which were alike formed in each fpecimen.

Thefe obfervations fhew, how far conceit and imagination will lead fome people, and who knows, how many perfons may have pieces of this imaginary paper, treafured up in their cabincts as great rarities?


Of the herb Periwinkle, wherein the opinion that it does not bear any seed, is refuted.

I WAS induced to turn my thoughts to the confideration of the herb Periwinkle, from an opinion which is entertained, that, though it bears a flower, it does not produce any feed. I therefore procured fome bloffoms or flowers of this herb, as they grew on the ftalks, for I was well affured, that no flower is produced by any plant, which, when it falls off, is not fucceeded by fome kind of feed. And, upon examining by the microfope thefe flowers, and the remains, as I may fay, of fome of them, which adhered to the talk, in the places where the flowers lad fallen off, I very plainly faw, that thefe remains were formed for the particular purpofe of producing feed; for, in fome of them, I faw two or three feeds, though very minute.
An acquaintance of mine, a refpectable perfon, gave me fome of thefe flowers, which he had gathered from a plant, growing in a place, where the rays of the fun feldom penetrated: and the fanc perfon, pafing by a houfe, where this plant was placed as an ornament, and obferving that there were fome feeds on it, he brought me a few of thofe feeds with the fhells or pods inclofing them. Thefe fecds were of a dark colour, oblong, and much larger than I expecticd to have feen, and they were inclofed in a flrong and tough fhell. They were not much fhorter than coffee berries, though the coffee berries are four times as thick; and laftly, the feeds of
the Perwinkle are difinguthable by the fame kind of creafe or chimk, as is to be feen in coffee berries.

Six of thefe feeds, I feeped in water for feveral hours, in order that I might be able to cut them, through the hard fhell or hufk, into very thin flices; and, upon placing thole flices before the microfcope. I faw, in every feed, the young plant concealed. I faw likewife, in feveral of them, the two leaves with which thefe kind of roung plants are generally provided, and thefe fmall leaves, which, in diffecting the feed, I had cut through, appeared fomewhat of a flat thape : I alfo could diftinguith the veins and veflels in thefe leaves. Upon repeating the experiment, I cut through that place in the feed which partly fhoots upwards into a falk, and partly penetrates downwards into a root. And here, I could difcern the veffels, deftined to convey the juices upwards or downwards, to thofe refpective parts of the plant. In fome of thefe feeds, however, the young plant was not compleatly fomed.

After this, I cut the outer huk or thell, and the farinaccous fubftance which furrounded the young plant, into very fimall pioces lenghwife, in order to take the young plant, whole and entire out of the feed. And having fucceeded therein to my wilh, I clearly perceived in the plant the two oblong leaves I have mentioned, with their reflels and veins; and I farther faw, that the fides of the leaves, which lay next each other, were fomewhat flat, the outer fides of them rounding. The veffels on the fides of the leaves, on account of their opacity, I could not perfectly diftinguifh. The young plant, inclofed in the feed, I judged to be fixteen times fmaller than the feed itfelf.

The young plant in the feed of this herb, Periwinkle, is remarkably long and flender; the plant itfelf does not rife up into a ftalk, but creeps along on the ground. And, as in this refpect, it is fimilar to mont plants of the vine fpecies, which are by mature what is called
creeping, and therefore are ufually trained againft fome fupport; fo, the young plants, in the feeds of the Periwinkle, and in that of the Vine, I mean, what is contained in the grape-ftone, are of a fimilar fhape, though the feeds themfelves, are wholly of a different figure : and, as to the circumftance, that feeds are feldom found in - the Periwinkle, whence the notion of its being entirely deftitute of feeds, feems to have proceeded, I guefs this to be the reaton, that, it is generaly planted in the moft obfore and unfavourable places, where it receives rery few of the fun-beams.

Morcover, ! examined the mealy fubfance which furrounds the young plant, and found it to confift, in part, of veficles, of equal fizes, but much larger, than the veficles which are found in the cocoa-nut. When I Atrongly compreffed thefe mealy particles, I obferved many oily parts, of a globular form, and fo large, that they feemed to be compofed of many receptacles of that oil.

Finally, I placed fix of the Periwinkle feeds in moift fand, which I put into a ffrong and large glafs tube; this i carried, for the fpace of an entire month, in my pocket, where, in the day-time, the natural he it of my body was imparted to them; and, at the expiration of that time, I took out one of the feeds, but, I did not perceive any alteration in it. I therefore kept the remaining five feeds in the fand, taking care, that they fhould always be moift. And, at the end of another month, I again e. amined them, but found their figure unaitered, though the feeds were grown fo foft, that, they might be broken with one's nail only. I then took the young plants out of the feeds, and I conid not obferve in them any tendency towards decay or diffolution, nor any advance towards regetation or increafe.

$$
\mathrm{E} \mathrm{e}
$$

> Of the rout named * Parcira Brated.

SEEING, in the Philofophical Tranfactions of the Royal Society of London, the Root named Pareira Brava, very much extolled, on account of the meticinal virtues it is faid to poffefs, I was induced to publifh the obfervations I had made on that root.

A gentleman of fome confequence in this country, produced to me a piece of this root, adding, that it was difficult to be met with, and was very highly valued, for that a few grains of the powder, adminiftered to a fick perfon, wotild be found of finguiar benefit.

In order to examine this wood by the microfcope, I obtained from this gentleman a fmall piece, from which I cut off about the quantity of a grain, and this again, I divided into fitl fmalier flices, fome by a longitudinal, and fome by a tranfverfe fection. I then, by the help of the microfcope, difcovered, that the wood contained many very large pores, in fome places difpofed fingly, in others, two or three placed adjoining to each other. I next, put thefe very thin flices into a perfectly clean glafs, and poured water on them, in order to feparate from them, the falts they might contain, which I was very defirous to examine. Then, upon applying the microfcope, I obferved great numbers of exceflively minute, glittering particles difpofed throughout the water. Thefe particles were of various and peculiar fhapes, very like thofe falts which I have often

[^36]found in fea-fifh. Then, becaufe I imagined that thefe particles, as far as I could judge by my eye, were no other, than abfolute falts, I immerfed fome of them in burnt wine, to fee whether they would be diffolved in the wine. But, all of them preferved their thapes unaltered, fome of them exhibiting on the glafs, a triangular figure, and fome being perfectly fquare. But, it was my opinion, that thefe falts, had been inclofed in certain veficles in the root, and, when extracted from them by the water, had concreted into the falts I have defribed; for, I lad obferved the Pareira Brava to be furnifhed with many of thofe veficles.
Not having fully fatisfied myfelf by the examination of this piece of the Pareira Brava, I endeavoured to purchafe fome of the root in our town, but I found, that the very name of it was unknown here; however, in a neighbouring town, where it had been in ufe for about a twelvemonth, I procured an ounce and a quarter, and, upon comparing this with the former fpecimen, by the help of the microfcope. 1 found them to correfpond exactly.

This laft-mentioned root, was a piece, fplit lengthwife, and, as near as I could judge, of five years growth: it was half an inch in thicknefs, and the texture of it appeared to me of a wonderful make.* I divided a finall piece of it, into very minute fragments, and, putirig them into a clean glafs with fome rain water, I caufed the water to boil, until more than half of it was boiled away, the remainder I took off the fire, judging, that the faline particles, were, by this boiling fully incorporated with the water. In this water, however, I difcovered nothing by the microfcope, except feveral very fimall and thin membranes fiwmming on: the furface: I therefore expofed fome drops of it to the air, in order, that the evaporation of the moifture might caule the falts to concrete. But, in a fhoor time,

$$
\begin{aligned}
& \text { * The author has not given a figure of this root. } \\
& \text { E } \mathrm{e} \text { ? }
\end{aligned}
$$

there appeared fuch a membrane or filin on the furface of the water: that nothing could be diftinguifhed in the fluid, except fome exceffively minute particles fwimming in the water in fuch multitudes, that, if fome of them had not coilected together in the form of falts, I could not have difcovered them. And, I could not fufliciently admire, that from fo finall a fragment of the root, fuch a quantity of falts had palfed into the water.

After this water had food undifurbed for fome time, and the films on it were fubfided, I put a drop of it, about the fize of a pin's head, into a clean glafs, and mixed with it fome blood, which, by the pmeture of a needle, I drew from my finger. Whereupon I faw, that the globules of blood from whence its rednefs procceds, were, upon being thus diluted, more feparated and feattered than I remember to have ever obferved. There was alfo this remarkable appearance, that moft of the globules had a kind of finns or cavity in them, the fame as if one had a bladder filled with water, and by prefling a finger on the middle of the bladder, made a cavity or furrow in it. And, when the globules, after afluming a flat fhape (for when they are fomewhat difperfed or feparated, their extreme foftnefs caules them to become flat) got fomewhat cloler together, they put on an oval figure, and then, the cavities I have mentioned, alfo became fomewhat oblong. But, when globules of blood are eoncreted or coagulated, they exhibit the appearance of a folid body, the component parts of which, cannot be diftinguifhed by the eye, except that, in the coagulated parts, they feem rather to differ in fize.

Now, having fo often experienced as I have done, how very foft are the globules of blood, and how fpeedily, when flightly in contact, and expofed to the air, they coagulate, I cannot, in any manner, comprehend, how it is, that thofe globules when in the veins and arteries, where they fo ftrongly propel and comprefs one another, do not coagulate. Still lefs can I comprehend, why, when
the fkin, or the arteries, are compreffed with the hand, the blood itfelf cloes not become thicker.

After this, I cut the root into many fmall pieces, both longitudinally and tranfverfely, in order to inveftigate, whether thofe mimute falts, which I deemed to be in the root, could be there difcovered. For, I was perfuaded, that there were in the root, fome kind of veficles, full of a certain humour or moift fubftance, and, that upon the evaporation of the moifture, the fatine particles which abounded in it, concreted together, as 1 have mentioned above.

Having now pienty of the root, to purfue my experiments, I found, that more than one-third part of it, confifted of veficles, arifing at the inner part of the root, and tending towards the exterior. In thefe veficles, lay certain minute falts, collected as it were in clufters, fo that frequently, fix or feven appeared together, in a circular pofition : and, where thefe clufters were longer than broad, I judged that, at leaft there were twenty falts irr every cluffer.

Thefe particles, in my opinion, when firlt formed in the root, are larger; but, that in the drying, they become fo clofely compacted together, that they each affume different fhapes, fome being triangular, fome quadrangular, \&c. which I have alfo obferved, in moft things when heaped together promifuoufly. From hence, at length I gathered, that thele finall particles, were no other than very minute falts.

For my farther fatisfaction herein, I took fome of thefe very minute falts out of the membranes or veficles containing them, and after wetting them with rain-water, I pat them into a very clean glafs, and placed them over a burning coal, in like manner as I have practifed in experiments on the globules of meal. I then obferved, that thefe particles, which, for the prefent, I will call mealy particles, and which, before, were globular, now affumed a flat fhape of a circular figure. So that, thefe particles may, perhaps,

Without impropriety, be deemed farimaccous or mealy parts; for, as I have faid, their globular form was changed to that of flat and circular, but of different dimenfions. This experiment I often repeated, and always found the event alike.

Having never before, found thefe collections of particles furrounded by a membrane in any other wood, but only in certain feeds, I was not content with the examination of this root, Pareira Brava, but applied myfelf to the infpection of other roots, fuch as that of the China root*, in which, I not only found the fame kind of fubfance, or particles, as in the Parcira Brava, but, the particles were fo very large, that I could very plainly perceive in them, the fame kind of chink, furrow, or creafe, as I have in another place mentioned, to have obferved in the grains and meal of wheat. And, as to all thefe mealy particles, in both the fubjects I have mentioned, I could perceive them, when brought to the fire, uniformly alter their figures, from a giobular, to a flat and circular fhape.

Now, fince it appears, that the particles in the laft-mentioned root, have in them thefe chinks or creafes, and, that when wetted and afterwards dried, they change their figures as belore related, we may reafonably conclude, that the very minute particles which abound in the Parcira Brava, have alfo the fane kind of chink, or furow, though fuch furrow is to us invifible.

Let us now fuppofe thele very minute particles, which I call mealy cnes, contained in the root of the Pareira Brava, to be adminifterel as a medicine, and by the heat and moifture of the body to be diffolved: let us farther fuppofe that the particles, fo diffolved, are, by the continual motion and agitation of the body, in order, that they may perform their office of reftoring health, comminuted and broken into other particles of inconceivable tenuity

[^37]and finenefs. We do indeed, hereby gain fome infight into the mamer of Nature's operation of healing ; but, in what particular mamer, the particles, to atemated, do aet in the accomplifhment of her purpofe, will, if I miftake not, for ever remain undifcoverable by human powers.

Farther, I took a portion of the root, in quantity about five grains apothecary's weight, and placed it on the fire, in order to draw from it the oil and volatile fpirit it might contain. When this was burst to a coal; in order to difcover its fixed falts, I poured on it a little rain water, which water becoming very turbid and foul, by reafon of the burnt matter, I frained it through a filtering-paper, and placed portions of it on fereral pieces of clean glafs, to the end, that the watery parts imight evaporate. Neverthelefs, there fill remamed fomething of a vifcous matter, from whence I concluded, that fome parts of the root had efcaped the fire: this was all that occurred to me worthy of note in this experiment.

A certain phyfician, in converfation on the fubject, fuggefted to me, that if the coal of the root was burnt to a white afh, the falts would certainly be difcovered. But, though, in attempting to effect this, the glafs on which the pieces of root were placed, always melted by the violence of the heat, the pieces of wood were never burnt to afhes.

Hereupon, I placed fome pieces of the Pareira Brava root, on a piece of charcoal, fuch as the goldfimiths ufe, and directed the tlame of a large candle againft it, by the blaft of a blow-pipe; by which means, the root was almoft all confumed to a white afli : thin, I caft into a fmall quantity of water in a glafs, and filtering the water, which was very turbid, I let it fall drop by drop on different glafles, made perfectly clean. One of thele glafles I placed on a burning coal, in order to evaporate the moifture, for, at that time, the atmofphere was very damp, and rainy. When this drop of wa-
ter was evaporated, fuch a quantity of falts appeared, that I was alionifhed at the fight; for they lay heaped together, in like manner as, in a wood, the twigs and fimall branches are feen fpread on the eromat. After they had remained thus for a linall time, though within an hour, they diffulsed into moifture: I found the fame effece to follow breathing on them.

Now, what fhall we fay of this mof extraordinary and intimate union of thefe falts with the root? For, it has been obferved, that Whoush the glals melted by the rehemence of the heat applied to it, the liats in the pieces of root, which lay on the glafs, were nut expelled; though afterwards, when furrounded by a fronger heat, they were feparated from the wood.

When we find thefe things upon experiment, we cannot but reafon thus with ourfelves; How wonderful is the make and texture of this roct, and how powerfully may the lalt which is thus clufely buited to it, act as a medicine on the human body! For my part, if I may fpeak my opinion, it is, that the make of thefe falts is not to be altered by the power of fire.

Again, upon confidering whether the charcoal, which I had ufed in the preceding experiment, might not polfibly have fome foulnels or extrameons natter on it , which was imparted to the root whilf buming, I placed fome pieces of the Parcira Brava on a filver plate, and, when they feemed to be quite burnt to afhes, and were glowing hot, I hrew them into fome rain water, which had been boiled in a clea:n velel well timed, and only ufed to boil water for the making of te: or coffee. This water, after ftraining it through filtering paper, I placed in four feparate glafies, and fuffered it to remain there ail might. The next day, the atmof phere being dry and clear, I examined them by four feveral microlcopes, and found, that the greateit part, but not the whole, of the water was evaporated. The event of the experiment was, howerer, the fame as in the laft, namely, that an immomerable multitude of the falts before defcribed, were to be feen, and that more diftinctly than before.

On the formation of the cryftalline Bumour of the Eye, in varions animals, birds, and fibles.

THE cryftalline or tranfparent body or fubftance, (which is commonly called the cryftalline humour) of the Eye, is, in confiftence or hardnefs, almoft the fame as a preferved mutmeg. When I firft began to make my obfervations on it, I cut off, with a tharp razor, fome fmall pieces or flices, and found it to confift of a fort of fcaly particles, laid one on another, in a kind of circular form, taking their origin from the center, and all of them then feemed to me, to be compofed of cryftalline globules. After I had left this cryftalline fubftance, for the fpace of three days to dry, it became fo hard, that it flew into pieces before the edge of the knife, after the manner of rofin. Upon again examining its nature and compofition, I perceived, not only the faly formation, and in the checulardirection I have mentioned, but I difcorered, that each of the fales or coats was compofed of parts, lying in a circular pofition, and in regular order, in refpect to each other. In other words, the formation of the cryftalline humour, may be compared to a fmall globe, or fphere, made up of thin pieces of paper, laid one on another: this will ferve to give an idea of the fcales or coats above mentioned, and, fuppofing each paper to be compofed of particles or lines, placed fomewhat in the pofition of the meridian lines on a globe, extending from one pole to the other, this may explain the nature of the component parts of thofe fcales or coats.

After"thefe firft obfervations, I employed myfelf, more narrowly to examine, the eyes of oxen and cows; for, I thought, that I had Ff
not then, invefigatel the fomation of the eryfalline lumour, fo accurately as I ought to have done.

I, therefore, firft fat about examining that pellicle or thin membrane, wherein the eryfalline humour is inclofed, and by which it is, as it were. feparated from the other humous, compofing the fabfance of the Eye. I was then, well aflured, that I faw this membrane to be compofed of threads or filaments, though afterwards, notwithftanding the greateft aticntion that I could beflow, I could not diftinguifh fuch filaments.

In this examination, I fometimes, but not often, obferved, that the fuall fibres compofing the filamentary fubftance of the external coat of the cryftalline humour, were united to the before mentioned membrane ; whence I concluded, that this membrane was effential to the cryfalline homour, in order to fmooth any inequalities that there might be in the filaments of its extermal coat, and make its round furface perfefly even.

I alfo confidered with myfelf, whether this membrane might not be formed, for the purjofe, occafionally, by its compreflion, to alter the figure of the cryfalline humour; that is, to make its rounding fhape flatter at times, as the purpofes of vifion might require ; and, if fo, this part of the Eye which has hitherto been called the cryfalline humour, ought rather to be named, the cryftalline mufcle of the Eye: and yet, I camot affirm with certainty, that I have clearly feen this membrane to be compofed of filaments intermixed one among another, though, I am well affired that it cannot be formed in any other manner; for, I have always found every Kind of thin membrane which I examined, to be of a filamentary or fibrous make. With regard to this, now under confideration, I perceived, when viewing it fideways, that it was compofed of a kind of ftreaks perfectly tranfparent, which I concluded to be, fome lymphatic teffels. deftined for the nourifhment of the cryftalline humour ; but

$$
\left(9_{33}\right)
$$

when I followed with my eye, thefe ftreaks, or lymplatic veffels, to the part where they joined the cryftalline humour, they became fo flender, that they vanifhed from my fight.

With regard to the before mentioned fales or coats, which compofe the cryftalline humour, I found them to be fo exceedingly thin, that, meafuring them by my eye, I muft fay, there were more than two thoufand of them, lying one on another. For, when I had ftripped the cryftalline hmour of the membrane in which it was inclofed, I found, that its axis or diameter where it was thickeft, (for it is not ia perfect globe, but fomewhat flattened) was equal to two third parts of an inch; therefore, from the center to the circumference, is one third of an inch; and, as I have found by repeated experiments, that fix lumdred hairs of a man's head, are in breadth equal to an inch, two hundred of them confitute the third of an inch. Now, I have feen, that where ten of the before mentioned fcales or coats lay clofe, one on another, they were not, altogether, equal to the diameter of an hair ; therefore, if thele ten be multiplied by two hundred, it follows, as I have before mentioned, that the cryftalline humour is, in its fubftance or thicknefs, compofed of more than two thoufand fcales or coats: and laftly I faw, that each of thefe roats or fcales was formed of filaments or threads, plared in regular order, fide by fide, each coat being of the thicknefs of one fuch filament.

In order to explain to the reader, the mature of this formation of the cryfalime humour, that is, how it is compofed of fibres or filaments, I have, in the following figures, reprefented thofe filaments by lines drawn in a circle, as accurately as I was able; firft premifing, that in Plate VIII. fig. 1. A BC reprefents the cryfalline humour, in an ox's eye, of its natural fize; $B$, is the place in that part of the tunica comea, or horny coat of the eye, through which the rays of light pafs. In the following figures, the natural dimenfons are increaled. in order that the filaments of which the feales or conts are compofed, may be exhibited more diftinctly.

In Plate VIII, at fige 2, is reprefented the furface of the cryfalline humbur. pietured at fig. 1 , but, which is here to be confidered, as if that figure dial prelent a circular thape to the eye. In this figure, are many lines to reprefent the comfe or diredtion of the filaments, but, it muft not be fuppoled to give a true reprefentation of their numbers, the circumference of the cryfalline humour of an ox's eye, containing more than twelve thoufand of fuch filaments. For, ten of thefe filaments laid fide by fide are, (as before obferred) not equal to the diameter of an hair ; and the whole axis or diameter of the cryfalline humour being, as before noted, equal to four hundred hair's breadth, it confifts of four thoufand filaments in diameter. And, by the common rules of arithmetic, whereby we find the circumference of a circle, of a given diameter, it will be found, that the circumference of the cryftalline humour in an ox's eye, confifts of $12571 \frac{3}{7}$ filaments.

Hence we may collect, how exceffively thin thefe filaments are; and, we fhall be flruck with admiration, in viewing the wonderful mamer they take their courfe, not, in a regular circle round the ball of the cryfalline humour, as I firft thought, but, by three different circuits, proceeding from the point L , which point, I will call their axis or center. They do not, on the other fide of the fphere, approach each other in a center like this at L, but return in a fhort or fudden turn or bend, where they are the fhorteft, fo that, the filaments of which each coat is compofed, have not in reality, any termination or end. To explain this more particularly, the fhorteft filaments $\mathrm{MK}, \mathrm{HN}$, and OF , which fill the fipace on the other fide of the fphere, conftitute a kind of axis or center, fimilar to this at $L$; fo that, the filaments MK, having gone their extent, and filled up the face on the other fide, in like manner as is here thewn by the lines ELI, return back, and become the fhorteft filaments, IN . Thefe filaments H N, paffing on the other fide of the fphere, again form another axis or center,
and return in the diredtion $O F$, and the fitaments OF again, on the other fide of the fiphere, collect romd a thind center, and thence return in the direction KM ; fo that, the filaments which on this fide are the fhorteft, on the other fide are the longen, and thofe which there are the fhorteft, are here the longeft.

In order to exhibit more clearly to the view, the nature and difpofition of thofe filaments, confituting each feale or coat of the cryfalline humour, I have given a figure of them, as feen fideways, and which, in the plate, is expreffed by lines; but it muft be obferved, that in thefe figures, the cryftalline humour is reprefented as if it were of a fpherical form, and, in the defcription I call it a fphere, as being more intelligible in the defcription, though. in truth, it is not perfectly globular, as I have before noted.

In Plate VIII. fig. 3, RTPS WQ, is defigned to reprefent one of the coats of the cryfalline humour, allowing for the difierence in thape as before noted: $P$, and $Q$ are axes or centers, one of which, $P$, in fg. 2 , was fhewn at $L$; the flaments coming from the point $P$, (which in fig. 2 is L) proceed to V , where they are thorteft; from whence they return towards $P$, where again they are longeft, and, from $P$ they proceed towards $W$, where they are again fhorteft. In like manner, the filaments at $T$, take their direction towards $Q$, and from thence towards $X$, and from $X$ again towards $Q$ : fo that, in this figure (allowing it to be confidered as an hemifphere) may be feen the one half of the courfe or circuit of the flaments. In a word, the filaments LI, in $f \mathrm{~g} \cdot 2$, are the fame as in this, are fhewn at PS; and the filaments between L and M in fig. 2, are here feen between $P$ and $X$, and thofe between $L$ and $O$, in fig. 2 , are here, between $P$ and T ; fo that the filaments which in fig. 2, are feen between FOL IK E, and in fig. 3 , in RTPS do reprefent the felf fame filaments.

I muft here farther obferve, that the filaments, of which the cryftalline humour, or rather fubftance, confifts, are thickeft about $R$

$$
(\simeq 36)
$$

and S , and, where they approach nearer, at P or O , they become thinner or flemeder: Finally, upon an attentive examination of the cryflalline hmom, we thall be convinced, that its tranfarency is not to be exceeded by any ghts, although it confits of fo many thoufand filaments, which is mof wonderful ; and the more, if we confider, how clolely the fidments mufi be united, that they may admit the rays of light to palis through them in Arait lines; for otherwile, the cryfalline humour woth not be pellucid, but would exhibit a white appearance.

In order to explain this formation of the cryfalline humour ftill more plainly to fome curious gentlemen, I took a fimall temis ball, and wound it clofe round about, with fome very fimall twine, confining the twine by pins ftuck in the ball, in the polition or courle which the filmments take; I then fpread over the whole fome ftrong glue, and when it was dry, 1 took out the pins, and then the twine thus wound round the ball, gave a true reprefentation of the courfe of the flaments as before deferibed.

Ihave mentioned in the beginning of this Effary, that the parts Which I now plainly perceive are filaments, I then thought were compofel of g'obules, and this, in fome filaments, did then feem to me very apparent; but, not having feen the fame appearance miformly in all, I now conclude, that the filaments being (as before mentioned) mofe clofely united, it might happen, that in the feparating then, fome fragments or particles of one, might fick to another of them, and thefe I might miftake for globules.

After this, I took the eyes of theep, hogs, clogs, cats, and other animals, and examined their cryflalline humours, in the fane mamer as I had treated the eyes of oxen ; but, neither in the frales or coats conflituting the eryitallune humours, nor in the difpofition of the filaments, of which each coat or leale was compofed, did I perceive: the leath difforme. Moreower, I extracted the eryfalline humour.
from the eyes of hares and rabbits; thefe alfo, I futnd to confift of feales or coats, inclofed one in another, aned each feale or coat compofed of filaments; but, whereas the filaments compofing the eryftalline humour in the eyes of the fereral anmals I have firl chermerated, do arife from three centers, and thence are difperfed three different ways round the circumference, the filaments in thefe two laft mentioned animals, take only a twofold courfe or direction. This is fhewn in fig. $4, \mathrm{ABCD}$, which reprefents the hemifphere, or one half of the cryftalline humour, in the eye of an hare or a rabbit. E, is the center near the pupil or fight of the eye; thefe filaments, compofing the coats or fcales, pafling through, or near the central point E , take their courfe, fome towards F , and others towards G , fo that F and G , on the contrary fide, conftitute another central point.

I alfo made a drawing, which is copied at fis is, of the fame object, as it appeared when viewed fideways, in order more clearly to fhew the nature of thefe laft mentioned filaments, which, with a kind of fibrous fubftance, compofe each fcale or coat. I will fuppofe then, that the filaments, which in fig. \& are reprefented between EF, are the fame which in fig. 5 , are pictured at the letters $I O$; fo that, the filaments proceeding from the point $I$, that is, in the former figure at E , here end their courfe at N and L , where they are the fhorteft, and thole at O, take their courfe throngh or befide the point or center N , where they are the longeft, and then terminate, or rather, with a kind of flexure or bending, return as here reprefented. In a word, thofe flaments, which, on this fide, appear neareft the center, would, on the farther fide be feen remotef from it.

In thefe experiments, I always endeavoured, to difcover the formation of that part of the Eye which matomifls call the vitreous or glafly humour, and, which in great part, furrounds the cryfalline hmome, becaufe I was well affured, that this vitreous humour, was

$$
\left(\begin{array}{ll}
\approx 8
\end{array}\right)
$$

not a watery fubfance, but rather a kind of pellucid mufcie; but, notwithlianding all my endeavours, I could not form any determinate or certain judgment on this head, becaufe the fibftance of this vitreous humonr, always changed into a kind of watery matter.

Moreover, 1 examined the eyes of fifhes; thefe are perfectly fpherical, and I found, that they confifted of the fame kind of thin coats or feales, laid one on another, as I have defcribed the eyes of animals to be formed ; each coat or feale, was alfo compofed of filaments, but, thefe filaments have not that kind of bending courfe, as in animals; and, with all my endeavours, I could not difcover in what direction they were placed; for, where the filaments draw towards a point or center, they are fo exceedingly flender, and cohere fo clofely, that they efcape the fight, and caufe fiuch a confufion of objects, that I cannot be certain, whether they terminate in that center, or return back again from it. Fig. 6, A B C D, reprefents the cryftalline humour or fubfance in the eye of a cod-fifh; and, though I drew the lines, here made to reprefent the filaments, from the center or point $A$, to the center or point $C$, with only a pair of compaffes, wider apart than in the other figures, yet the filaments which compofe thefe feales or coats, are not in fact thicker, except in the middle at B and D , and the nearer they approach the point A or C the thimer they are. Fig. 7 , thews the natural fize of the cryftalline humour in this eye.

I alfo examined the cryfalline hmour in the eyes of birds, only to fee how the filaments compofing their coats or fcales, took their courfe; and,"at length, after many obfervations, i found the filaments, in the eye of a turkey, to take the fame direction, as thofe in fifhes: but whereas the cryftalline humour in the eyes of fifhes is perfectly round, that in the eyes of birds, is flattened, as at fig. 8, lying with its flat fide D, next the timica comea or homy coat of the eye. And, upon my cutting with a fharp knife many pieces of the feales or conts
compofing it, in order to reduce the fize fimaller, it altered its figure to an oblong and flat fhape, as fhewn at fig. 9 , where E is the fame part which, in fig. 8 , was fhewn at D ; being the point where the filaments are united, or, in other words, where they fo clofely approach, and are fo exceedingly flender, as to become invifible : hence we may conclude, that the filaments which lie neareft to the central point, being very thin, do thereby produce the oblong round fhape, and, where the cryftalline humour is larger, the filaments in the middle are thicker, and thus caufe the fhape to be flattened, which I myfelf have feen ; for the filaments in the eye of a turkey, where they were thickeft, were, fingly, larger than thofe in the eye of an ox, hog, or theep.

I have often, while looking in a mirror, taken notice of that liquid fubfance or moifture, with which the exterior membrane or coat of the eye is covered, and, in which liquid, there are always fome few very minute globules intermixed ; which moifture, and the globules in it, as often as we fhut our eye-lids are thereby made to change their places: feeing this, I gathered the reafon, why it is neceliary for terreftrial animals to be furnifhed with eye-lids (for fihhes, and other inhabitants of the waters do not need them) and, that if it were not for the eye-lids, we fhould become blind ; becaufe if the eye-lids did not continually, when we clofe them, moiften the external membrane or coat of the eye, its furface would grow dry, and contract in wrinkles, efpecially in ftrong funfhine, or when we approach a large fire. And I think it very probable, that there is continually, fome kind of humour or moifture, protruded from the imner part of the eye through the tunica cornea, which, by the eye-lids, is fpread over the eye: for, in feveral eyes of hogs, whofe bodies had been immerfed in hot water, to facilitate the fcraping off the hair, I almoft always faw a thin membrane, lying on the outer furface of the tunica
G g
comea, which was fomewhat fealded by the water, and therefore might eafily be taken off; and, upon comprefling the ball of the eye between my fingers, I faw in many places, a thin watery matter, iffue from the tunica comea, and appearing on its furface, like vapour. or fteam, adhering to a glafs, and, when the preffure was continued, the watery particles, which food on the furface, in the form of minute drops, were fo much enlarged, as to run into one another. And we need not wonder at this appearance, when we conficler, that the tunica comea is compofed of nothing but particles, like ftreaks or fibrous parts with their ramifications, and all of them very thin and flender.

I at one time cut the tunica cornea of an ox's eye into fuch thin flices, that the thicknefs of it was feven times divided, and, in each of thofe feven parts, I faw with great admiration (and more diftinetly than I had before done) the great multitudes of pellucid ftreaks or fibres intermixed together, many of which I judged were a kind of blood veffels, though fo fmall and flender, that they would not admit the globules of blood, which caufe its red colour, to pafs through them ; and I conclude that, when we rub our eyes, thofe veffels may, by the preflure, be fo extended, as to admit the red globules of blood, which, for a time, ftagnating there, caufe the eyes to appear red, or, what is commonly called blood-fhot.

But, to retum to the eye-lids, it is my opinion, that they never can be confidered as in a ftate of reft, except when they are flut; and hence it is, that we cannot keep them fteadily open, for any length of time, without applying fome external force: and, as it were, to give them reft, we frequently (and involuntarily) clofe them; which involuntary motion in the eye-lids, does, I doubt not, by preffing on the orifice of fome minute lymphatic veffels, caufe them continually to emit fmall portions of the lymph, whereby the tunica cornea is continually kept moift, as has been before obferved. And I have feen perfons, in a public audience, when very attentive, clofe their cyes, though fome did this more frequently than others.

Myfelf, and thofe of my family, have often, when contemplating objects by the microfcope, feen an appearance of finall globules before the fight, * which, I have no doubt, were particles iffuing from the veffels in the eye, and lying on its furface: thefe, with the leaft motion of the eye, feemed to be in great agitation, and many would affirm, that they faw living creatures before their fight ; but whoever gives this fubject an attentive confideration, will find, that thefe globules or ffreaks, though they feem, while the eye is kept fill, to be in motion, fometimes upwards and fometimes downwards, yet they do not alter their pofition in refpect of each other ; and perhaps at another time we fhall fee none, or if any, of a very different kind. I believe, however, that this appearance is what has led fome people to fancy, that they beheld animalcules moving in water, even after it has been boiled, and to affirm, that thefe are the fame kind of animalcules which I profefs to have plainly feen: but we muft forgive fuch perfons their error, confidering they know no better.

[^38]

Gge

## ADDITION, by the TRANSLATOR.

THE preceding Eflay is one of the moft curious, and the Tranflator conceives, that his Readers will deem it the moft interefting, of any in this Work; forafmuch as it refpects the choiceft corporeal gift of God to his creatures, the Bleffing of Sight: and, for the information of thofe, who are not acquainted with the particular ftructure of that wonderful Organ, the Eye ; the following defcription of it is fubjoined, taken from Mr. Adams's Effay on Vifion, a finall Treatife, well worthy the perufal of every one.

## "Of the Globe of the Eye.

"If the conftruction of the Univerfe were not fo evident a proof of " the exiftence of a fupremely wife and benevolent Creator, as to" render particular arguments umeceffary, the ftructure of the eye" " might be offered as one, by no means the leaft ; this inftance, " among numberlefs others, demonfirating, that the beft perform" ances of art are infinitely flort of thofe which are continually pro"duced by the Divine Mechanic.
"The globe of the eye, or the organ of fight, may be defined in " general as a kind of cafe, confifting of feveral coats, containing " three pellucid humours, which are fo adjufted, that the rays pro" ceeding from luminous objects, and admitted at a hole in the fore " part of the eye, are brought to a focus upon the back part of it, " where they fall upon a foft pulpy fubftance, from whence the mind " receives it's intelligence of vifible objects.
" It is not to be expeeted, that any account given of the eye can be " altogether accurate; for as it is impoffible to examine all the " parts of the eye whilt in a natural and living fate, fo it is alfo" nearly impofible, when it is taken out of its focket, to preferve

## ( 243 )

" the figure of the parts entire; a circumfance which accounts for " the difagreement we find among anatomifts.

> "Of the Coats of the Eye.
"The eye is compofed externally of three coats, or teguments, " one covering the other, and forming a ball perfectly globular, ex"cept at the fore part, which is a little more protuberant than the " reft ; within this ball are three different fubfances called humours.
" The firft, or outer coat, is called the filerotica; the fecond, or " middle one, is called the choroides; the interior one is named the " retina.

## "Sclerotica. Cornea.

"The exterior membrane, which inclofes and covers the whole eyc, " is called the fclerotica and cornea; it is, however, ftrictly fpeak" ing, but one and the fame membrane, with different names appro"priated to different parts: the hinder and opake part being more " generally denominated the fclerotica, the fore and tranfparent part " the cornea.
"The fclerotica is hard, elaftic, of a white colour, refembling a kind " of parchment; the hinder part is very thick and opake, but "it grows gradually thimer as it advances towards the part where " the white of the eye terminates. The fore part is thimner, and " tranfparent; it is alfo more protuberant and convex than the reff " of the eye, appearing like a fegınent of a fmall fphere applied to " a larger, and is called cornea, from its tranfparency. The cornea " is thick, ftrong, and infenfible; its tranfparency is neceffary for " the free admiffion of the light. This membrane is compofed of fe"veral plates, laid one over the other, replenifliel witin a clear " water, and pellucid veffels; thefe phates ate more eviscntly dif" tinet in the fore than the hinder part. The ficlorotica is cmbraced

## ( 244 )

" on its outfide by fix mufcles, by which the eye may be moved in " any direction.
"Choroides. Uriea. Iris.
"Under the fclerotica is a membrane, known by the name of the " choroides; it is a foft and tender coat, compoled of innumerable vef" fels; it is concentric to the fclerotica, and adheres clofely to it by a " cellular fubftance, and many veffels. This membrane is outwardly " of a brown colour, but inwardly of a more ruffet brown, almoft " black. Like the fclerotica, it is diftinguifhed by two different names, " the fore part being called the uvea, while the hinder part retains " the name of the choroides.
" The fore part commences at the place where the cornea begins; " it here attaches itfelf more ftrongly to the fclerotica by a cellular " fubftance forming a kind of white narrow circular rim : the cho"roides feparates at this place from the fclerotica, changes its " direction, turning, or rather folding, directly inwards, towards the " axis of the eye, cutting the eye as it were tranfverfely: in the mid"dle of this part is a round hole, called the pupil, or fight of the eye: " the pupil is not exactly in the middle of the iris, that is to fay, the "centers of the pupil and iris do not coincide, the former being a lit" tle nearer the nofe than the latter.
" This part, when it has changed its direction, is no longer called " the choroides; but the anterior furface, which is of different co" lours, in different fubjects, is called the iris; the pofterior furface " is called the uvea, from the black colour with which it is painted. "The iris has a fmooth velvet-like appearance, and feems to confift of " fmall filaments regularly difpofed, and directed towards the center " of the pupil.
" The eye is denominated blue, black, \&c. according to the colour " of the iris. The more general colours are the hazel and the blue,
" and very often both thefe colours are found in the fame eye. It has " been obferved, tlat in general, thofe, whofe hair and complexion " are light coloured, have the iris blue or grey ; and on the contrary, "thofe whofe hair and complexion are dark, have the iris of a deep " brown: whether this occafions any difference in the fenfe of vifion, " is not difcoverable. Thofe eyes which are called black, when nar" rowly infpected, are only of a dark hazel colour, appearing black, " becaufe they are contrafted with the white of the eye. The black " and the blue are the moft beautiful colours, and give moft fire and " vivacity of expreflion to the eye. In black eyes there is more " force and impetuofity; but the blue excel in fweetnefs and delicacy.
" The pupil of the eye has no determinate fize, being greater or " fmaller, according to the quantity of light that falls upon the eye. "When the light is ftrong, or the vifual object too luminous, we con" tract the pupil, in order to intercept a part of the light, which " would otherwife hurt or dazzle our eyes; but when the light is weak, " we enlarge the pupil, that a greater quantity may enter the eye, " and thus make a ftronger impreffion upon it. This aperture dilates "alfo for viewing diftant objects, and becomes narrower for fuch as " are near. The contraction of the pupil is a fate of violence, "effected by an exertion of the will : the dilatation is a remiffion of " power, or rather an intermiffion of volition. The latitude of con" traction and dilatation of the pupil is very confiderable; and it is " very admirable, that while the pupil changes its magnitude, it pre" ferves its figure.
"Anatomifts are not agreed, whether the iris be compofed of two " fets of fibres, the orbicular and radial, or of either. Haller fays, " he could never difcover the orbicular fibres, even with a microfcope; " the radial feem vifible to the naked eye, and are fufficient to an" fiwer all the purpofes required in the motion of the iris: when the " pupil is contracted the radial fibres are ftrait, when it is dilated, " they are drawn into ferpentine folds.

## ( 246 )

" In children this aperture is more dilated than in grown perfons; " in elderly people it is fill fimaller than in adults, and has but little " motion; hence it is, that thofe who begin to want fpectacles, are "obliged to hold the candle between the eye and the paper they "read, that the frong light of the candle may force their rigid "pupils into fuch a ftate of contraction, as will enable them to fee "diftinetly. Thofe who are fhort-fighted, have the pupils of their "eyes, in general, very large; whereas in thole whole eyes are "perfect, or long-fighted, they are much fmaller.
" The whole of the choroides is opake, by which means no light " is allowed to enter into the eye, but what paffes through the pupil. "To render this opacity more perfect, and the chamber of the cye " flill darker, the pofterior furface of this membrane is covered all " over with a black mucus, called the pigmentum nigrum. This pig" ment is thimeft upon the concave fide of the choroides, near the " retina, and on the fore fide of the iris; but is thickeft on the ex"terior fide of the choroides, and the inner fide of the uvea.
"The circular edge of the choroides, at that part where it folds in" wards to form the usea, feems to be of a different fubftance from " the reft of the membrane, being much harder, more denfe, and " of a white colour; it has been called by fome writers the ciliary "circle, becaufe the ligamentum ciliare (of which we fhall foon " fpeak) arifes from it.

## "Retina.

"The third and laft membrane of the eye is called the retina, be"caufe it is fpread like a net over the bottom of the eye ; others de" rive the name from the refemblance of the net which the gladia" tors called retiarii, employed to entangle their antagonifts. It is " the thimeft and leaft folid of the three coats, a fine expanfion of

## ( $2 . \frac{17}{7}$ )

"the medulary part of the optic nerve The convex fide of it "- lines the choroides, the concave fide covers the fariace of the vi" troous humour, terminating where the chorvides fo'ds inwards. "It is an effential organ of vifion; on it the images of objects are "reprefented, and their picture formed. This membrane appears to " be black in infants, not fo black at the age of twenty, of a greyifh " colour about the thirtieth year, and in very old age almoft white. "The retina, however, is aiway tronfarent and colourlels: any ap" parent changes therefore, of its colour, muft depend upon altera" tions of the pigmentum which is feen through it.

## "Oplic Nerve.

"Behind all the coats is fituated the optic nerve, which paffes out of "the foull, through a fmall loole in the buttom of the orbit which " contains the eye. It enters the orbit a little infecsed, of a figure "fomewhat iound, but compreffed, and is inferted into the globe " of the eye, not in the middle, but a little higher, and nearer to " the nofe; an artery runs through the optic nerve, goes ftrait " through the vitreons humour, and fpreads itfelf on the membrane " that covers the buck fide of the cryftalline.
" Monl. Ivariotte has demonfrated, that our eyes are infenfible " at the place where the optic nerve enters: if, therefore, this nerve " had been fituated in the axis of the eye itfelf, then the mid"dle part of every object would have been inwifible, and where all "things contribute to make us fee beft, we fhould not have feen at " all; but it is wifely placed by the divine artift for this and " other advantageous purpofes, not in the middle, but, as we have " alrcady oblerved, a little higher and nearer to the nofe.

## "Of the Humours of the Eye.

"The coats of the eye, which inveft and fupport each other, after Hh
" the nammer of an onion, or other bubbous root, include its humours, "by which name are underfood three fibbtances, the one a folid, the "rither a loft body, and the third truly a liquor. Thefe fubfances "are of fuch forms and tranlparency, as not only to tranfmit rea" dily the rays of light, buit alfo to give them the polition befi "adapted for the purpo!es of vifion. They are clear like water, and "do not tinge the object with any particular colour.

## "Aqueous IItinour.

"The moff fluid of the three humours is called the aqueous one: "filling the erreat interfice between the cornea and the pupil, and " alfo the fmail fipace extending from the usea to the cryftalline lens; " it is thin and clear like water, though fomewhat more fpiritous and " vilcuous; its quantity is fo confiderable, that it fwells out the fore " part of the eye into a protuberance very favourable to vifion. The " usea fwims in this fluid. It covers the fore part of the cryflalline; "that part of this humour which lies before the uvea, communicates "with that which is behind, by the hole which forms the pupil of " the eye. It is included in a membrane, fo tender, that it camot " he made vifible, nor preferved, without tie mof concentrated lixi" vial fluid.
"It has not been clearly afcertained whence this humour is derived; - but its fource muft be plentiful: for if the coat containing it be fo " wounded, that all the humour runs out, and the eye be kept clofed " for a feafon, the wound will heal, and the fluid be recruited.
" The colour and confifience of this humour alters with age ; it "becomes thicker, cloudy, and lefs tranfparent, as we advance in " years, which is one reafon, among others, why many elderly peo" ple do not reap all that benefit from fpectacles which they migh "naturally expect

# ( 249 ) <br> "Cryftulline. 

"The fecond humour of the cye is the cryfalline, which is as "tranfparent as the pureff cryftal; and though lefs in quantity than "the aqueous humour, yct it is of equal weight, being of a more " denfe and folid nature ; in confiftency it is fomewhat like a hard " jelly, growing fofter from the middle outwards. Its form is that " of a double convex lens, of unequal convexities, the moft conver "part being received into an equal concavity in the vitreous humour.
"The cryftalline is contained in a kind of cafe, or capfule, the " fore part of which is very thick and elaftic, the hinder part is thin" ner and fofter. This capfule is fufpended in its place by a muf"cle called ligamentum ciliare, which, together with the cryftalline, "d divides the globe of the eye into two unequal portions; the firft " and fmaller one contains the aqueous humour, the hinder and "larger part the vitreous humour. The crytalline has no vifible "communication with its capfule, for as foon as this is opened the " humour within flips clean out.
"The cryftalline is placed fo, that its axis correfponds with that of " the pupil, and confequently it is not exacitly in a vertical plane di" viding the eye into two equal parts; but fomewhat nearer the nofe. "It is formed of concentric plates or fcales, fucceeding each other, and "thefe fcales are formed of fibres elegantly figured, and woind up " in a ftupendous manner; thefe are comected by cellular fibres, " fo as to form a tender cellular texture. Between thefe fcales is a " pellucid liquor, which in old age becomes of a yellow colour. The " immermoft fcales lie clofer together, and form at laft a fort of nu" cleus, harder than the reft of the lens. The cryftalline has no vi"fible communication with its capfule, fo that when this is opened, " it readily flips out: fome fay, that a fmall quantity of water is "effufed round it. Leeuwenhoek has computed that there are " two thoufand lamine, or fcales, in one cryflalline, and that each
" of thefe is made up of a fingle fibre, or fine thread, ruming this "way and that, in feveral courfes, and meeting in as many centers, " and jet not interfering with, or crofling, each other.
"The yellow colour wherewith the cryflalline is more and more "tinged as we adrance in years, muft make all oljects appear more "and more tinged with that colour: nor does our being infenfible of "any change in the colour of objects, prove to us that their colour "continnes the fame; for in order that we floould be fenfible of this " change, the tincture mult not only be confiderable, but it mufthap"pen on a fudden. In the cataract it is opake; the feat of this dif"order is in the cryftalline lens.

## " Vitro sis Humour.

"The vitreons is the third hamour of the eye; it receives its mame " from its appearance, which is like that of melted glafs. It is nei"ther fo hard as the cryfailine, nor fo liquid as the aqueous humomr; "it fills the greateff part of the eye, extending from the infertion of " the optic nerve to the cryffalline humour. It fupports the retina, "and keeps it at a proper diftance for receiving and forming dif". thet images of oljocets.
"The vitreous humour is contained ina very thin pellucid membrane, "and concave at its fore part, to receive the cryfalline; at this " place its membrane divides into two, the one covering the cavity " in which the cryftalline lies, the other paffing above, and covering "the fore part of the cryfalline, thus forming a kind of fleath for "the cryffalline. The fabric of the vitreous hamour is cellular, "the lubfiance of it being divided by a very fine tramparent mem" brane into cellules, or little membrancous con antments, con" taining a very tranfparent li puor.

## "Ligamentum Ciliare.

"There is fitl one part to be defcribed, which, though very
"delicate and fimall, is of great importance; it is called the liga" mentum ciliare, becaufe it is compoled of fmall filaments, or fibres, " not unlike the cilia, or eyclafhes; thefe fibres arife from the " infide of the choroides, all round the circular edge, where it joins st the uvea; from whence they run upon the fore part of the vitreous " humour, at that place where it divides to cover the cryftalline; " thofe fibres are at fome diftance from one another, but the inter"f fices are filled up with a dark-coloured mucus, giving it the ap" pearance of a black membrane.

## "Of the Figure reprefenting the Eye.

"Figure 10, reprefents a fecetion of the ey"e through the middle, "by un horizontal plane paffing through both eyes; the diameter of " $t i$ efigure is about twice the diameter of the human eye.
"The outermoit cuat, which is called fclerotica, is reprefented by " the fpace between the two exterior circles B F B ; the more glo"bular part, adjoining to the fclerotica at the points BB reprefented " by the fpace betweets the two circles at $\mathrm{B} \Lambda \mathrm{B}$, is the cornea.
"The next coat under the felerotica is a membrane of lefs firm"ners, reprefented by the two innermoft circles of B F L , and called " the cboroides.
"Adicining to the choroides. at $B \mathrm{~B}$, is a flat membrane, caller! "the uvea: a a is tie pupil, being a fmall hole in the urea, a little " nearer the ne.fe than the middl.e.
" $V$ the oplic nerie; the fibres of this ner: c , after their entrance " into the eye, fpread the: "lves over the choroides, forming a thin "membrane. called the retina, and is reprefented in the fionveb; " the thick thade con ${ }^{+j g g u o n s ~ t o ~ t h e ~ c i r c l e ~ B ~ F ~ P . ~}$
"E E is the crofalline humour ; it is fafpended $b=$ a mufcle $\mathrm{Bb} b \mathrm{~B}$. "called the ligameatem ciliare. This mulcle arifes behild the u: a "at $B \mathrm{~B}$, where the folerotica and comea join ingetioc at $b \mathrm{~b}$, is

$$
(252)
$$

"enters the eaprulis, and thence fpreads orer a great part of its " anterior furface.
"The aqueors hunsur occupies the fpace BABhCb .
"The larger face 33 b Db BF contains the vitreous humour.
"The foregoing defcription, we prefume, will be found fufficient " to sive the reader a seneral idea of the conftruction of this won" derful organ : for a fulier accónt we mult refer him to the writers "on anatomy. Enough has been exhibited to fhew with what art " and wifdom the eye las been conftucted."

The following is a quotation by Mr. Adams, from Reid's Inquiry into the Human Mind:
"If we fhould fuppofe an order of beings endued with every hu" man faculty but that of fight, how incredible would it appear to " fuch beings, accuftomed only to the flow information of touch, that " by the addition of an organ, confifting of a ball and focket of an " inch diameter. they might be enabled, in an inftant of time, without "changing their place, to perceive the difpofition of a whole army, "the order of a battle, the figure of a magnificent palace, or all " the variety of a beautiful landfeape? If a man were, by fecling, to " find out the figure of the Peak of Teneriffe, or even of St. Peter's " church at Rome, it would be the work of a life-time.
" It would appear ftill more incredible to fuch beings as we have "fuppofed, if they were informed of the difcoveries which may be " made by this little organ, in things far beyond the reach of any. " other fenfe. That, by means of it, we can find our way on the " pathlefs ocean, traverle the glohe of the earth, determine its fize " and figure, meafure the planetary orbs, and make difcoveries in " the fphere of the fixed ftars.
"Would it not appear fill more aftonifhing to thefe beings, if "they fhould be further informed, that by means of this organ we "can perceive the tempers and difpofitions, the affections and paf-
"fions, of our fellow-creatures, even when they want moft to " conceal them? that by this organ we can often perceive what is "forait and crooked, in the mind as well as the body: that it par" ticipates of every mental cmotion, the foftelt and moft tender. as "well as the moft violent and tumultuous: that it exhibits thefe " emotions with force, and infufes into the foul of the โpectator the " fire and the agitation of that mind in which they originate? To " many myfterious things muft a blind man give credit, if he will " believe the relations of thole that fee! his faith muft exceed that "which the poor fceptic derides as impoffible, or condemns as " absurd.
" It is not, therefore, without reafon, that the faculty of feeing is " looked upon as more noble than the other fenfes, as having fome" thing in it fuperior to fenfation, as the fenfe of the underfanding, "the language of intelligence. The evidence of reafon is called "Seeing, not feeling, fmelling, tafting,; nay, we exprefs the man" ner of the divine knowledge by feeing, as that kind of knowledge " which is moft perfect in ourfelves."

It is too true, that we do not, in general, know the real value of any blefling, until we are deprived of it; therefore, let us hear, how the lofs of fight is pathetically defcribed by Milton, from his own feeling: In his addrefs to the Light he fays,
"I feel thy fovran vital lamp; but thou
"Revifit'ft not thefe eyes, that roll in vain
"To find thy piercing ray, and find no dawn ;
"So thick a *drop ferene hath quench'd their orbs
"Or dim fuffifion veil'd. $\qquad$

[^39]$(204)$
_-......" Thus with the year
"Ecalons return, but not to me returns
"Day, or the fivect approach of ev'n or morn,
"Or fight of rernal bloom, or fummer's rofe,
"Or flocks, or herds, or human face divine ;
"But cloud inftead, and ever-during dark
"Surrounds me, from the checrful ways of men
" Cut oft, and for the book of knowledge fair
"Prefented with a miverlal blank
"Of Nature's works to me expung'd aud ras'd,
"And wifdom at one entrance quite fhut out.
The Tranflator concludes this fubject in the words of the fame great Poet, as conveying a fentiment, which a wife man muft deem the moft effcctual, if not the only real confolation under fuch an affliction.
"So much the rather thou, celeftial Light,
"Shine inward, and the mind through all her powers
" Irradiate, there plant eyes, all mift from thence
" Purge and difperfe, that I may fee and tell
" Of things invifible to mortal fight."
Milton's Paradife Loft, Book 1II.


> On the internal formation of an Ox's Tongue; and on that of the Heait, in Animals, Fowls, and Fifb.

A CERTAIN profeflional gentleman of my acquaintance, was urgent with me to examine the formation of a cat's tongue, but this I deferred from time to time, wilhing rather, to inveftigate the nature of the human tongue, which I thought would be much more worthy of examination ; by reafon, that it muft neceffarily be provided with more mufcles than the tongues of animals: for, this will appear manifeft, if we confider how many various motions our tongues muft exert in fpeaking, finging, or whifling.

Not finding an opportunity to procure an human tongue, or that of a cat, I began by cxamining the tongues of o ch, cutting from them fmall pieces, both longitudinally and tranfverfely: and, though I thought that a complete defcription of the whole tongue would take up too much time and labour, I determined to give a drawing of the fmall mufcles, and point out how they are difpofed longitudinally and tranfverfely; for, in an ox's tongue, the number of them is incredible, and in this defeription will be feen, not only the wonderful formation and multitude of thefe minute mufcles, but alfo, we flall be fully fatisfied with regard to the manner in which the tongue is fometimes extended and fometimes contracted, both in breadth and thicknefs.

In Plate VIII. fig. 11, A B C DEFGMIIKLM, reprefents a fimall piece of an ox's tongue, cut off from the fide, in that part where the
tongue was thickeft. In this limall piece are to be feen various minute mufcles, cut tranfverfely, which are reprefented between BCKL, and DEHI; and among thefe, again, there appear many exceedingly minute particles, alfo cut tranferlely, which, by reafon of their fmallnefs, could by no means be reprefented in the drawing, but each of them may, in fact, be confidered as a mufcle, for if, by the microfcope, we were to diffect the before mentioned minute mufcles, we fhould find them compofed of fmaller parts, like a large mulele, when diffected and viewed by the naked eye.

Thele flefly mufcles, thus cut tranferfely, conltitute the lubftance or thicknefs of the tongue ; and the mufcles pictured at the three places in this figure, $\mathrm{ABL} \mathrm{M}, \mathrm{CDIK}$, and EFGH , which are fhewn lengthwile, extend along the tongue from end to end. And, as between the letters BCKL and DEHI , is fhewn how the flefhy mufcles appear, when cut tranferfely, fo at ABLM, CDIK and EFGH may be feen their figure when cut longitudinally.

All thefe flefhy mufcles, taken together, are not larger, when viewed by the naked cye, than the fmall piece or particle flewn at fig. 12.

I alfo judged it right, to take off one of thefe flefhy mufcles, lengthwife, and to caufe a drawing to be made of it, to exhibit to the eye its true formation, and alfo, as nearly as poffible, to fhew thereby, how, in the motion of the tongue, thefe mufcles are exerted, and how they change their figure.

Fig. 3, NOPQ, reprelents this flefhy mufcle, which I took off lengthwife, preferving the whole of its thicknefs, fo that none of its conftituent parts were broken off, except at the extremities NO and P()$_{\text {: }}$ in which mufcle feveral bendings are to be feen.

Now, fuppofing this mufcle, placed lengthwife in the tongue, to be contracted in bendings, we muft conclude, that the tongue then becomes thorter and thicker, and the mufcles which lie acrofs it, are

## ( 257 )

then perfectly fraight; and, that when the animal extends its tongue, this flethy mufcle, fig. 19, NOP Q, and all the others which lie lengthwife in the tongue, are extended and become ftraight, and thofe mufcles which lie acrofs the tongue are then inflected or bent in like manner as reprefented in the former mufcle at fig. 13, NOPQ.

When this mufcle had ftood three months before the inicrofcope, it became covered with a fort of mouldinefs, * which, bearing a refemblance to finall flowers, I directed the limner to imitate them as nearly as poflible in his drawing, and they are to be feen at RRRRRRR.

The flefhy mufcles, which in fig. 11, appear cut tranfverfely, are, in the part lying between BCK L, four diftinct and feparate mufcles, and, in the fpace between DEHI, fix of the fame kind, all of them diftinet from each other. The parts, or fpaces between them in the figure, are no other than membranes, and particles of fat, lying within thofe membranes. For, I never faw in fuch a mufcle as is exhibited in fig. 1g, NOPQ, any vein, nor any detached particle of fat, but every one of thefe kind of mufcles, as far as I have hitherto oblerved, is always enveloped in a membrane, and, if the ox is a very fat one, particles of fat will be feen in the membrane.

It fhould be remembered, that every one of thefe mufcles muft have its tendon, or terminate in a membrane which conftitutes. a tendon, and not only fo, but every oblong flefhy particle, of which each fuch mufcle confifts, and which appear in fig. $19, \mathrm{NOPQ}$, muft. alfo be provided with a tendon, or terminate in a membrane as before mentioned, and all thefe tendons and membranes (in my judgment) do, together, conftitute that part which many take only for an inner fkin, which inner fkin, or rather mufcular part, covering the tongue all over, is defended, as it were, by a thick external fkin:

[^40]
## ( 258 )

this hatter ikin is eafily taken off when a tongue has been boiled, on has lain fome time mot water.

This difpofition of the mufcles in the tongue is wonderfuil, and the mamer of their acting inconceivable by us, and fill more, with regard to the human tongue, when we confider the variety of ways in which the mufcles muft move and turn, to produce the effect of fipeaking, finging, and whiftling, as before obferved.

The exertions of the flefhy mufcles in the tongue, are chiefly produced by their affuming a ftraight figure, or by being inflected or bent, contrary to the manner of the flefhy mufcles in other parts of the body, (as far as has come to my knowledge) for their contraction and extenfion, is produced by means of the multitudes of excelfively minute wrinkles or crimped up particles, of which each mufcle confifts.

After this, I curforily examined the tongue of an hog, to fee, whether in it, the flefhy mufcles were intermixed or laid one acrofs another, in the fame manner as 1 have delcribed in the tongue of an ox: this I firft infpected in the thickeft part of the tongue, on the upper fide, where it rifes in a ridge like a back; and, I faw not only, that the mufcles were difpofed in the fame manner as the ox's, but that fome few of thofe which lay the lengthway of the tongue, in fome places croffed each other; the tranfverfe mufcles were the fame as in the ox's. Searching farther inward into the thickeft part, I there faw many flefhy mulcles lying parallel to each other, lengthways in the tongue; but no others lying athwart or croffing them. I alfo beftowed fome inveftigation on the thimer parts of this tongue, without finding any thing worthy of note.

I have often employed my thoughts, on the formation of the flefhy part in the hearts of amimals; not particularly to inveftigate the courle of the flefhy mufcles, which I doubt not, has been fufficiently ex-

## ( 959 )

amined and explained by others. And, though I determined, if I thould oblerve any thing narticular in that part of the fubject, to commit my remarks to writing, yet, my principal object was, to inveltigate the formation of the very fmallef flefhy mufcles, and to examine whether any thing might be found therein worthy of note.

For this purpofe, I took the heart of a hheep, but, with all my pains. I could not fucceed in feparating or taking off any flefny mufcle like that defcribed at fig. 13, NOPQ, for, in the operation, it was fo torn, and, fo many of the adjoining parts adhered to it, that I could not then fatisfy myfelf as to the true formation of fuch mufcle; nor with regard to the umion or comection between it and the adjoining parts.

After this, I tried the heart of an ox, cutting off many pieces, and contriving every poffible means I could devife, to feparate a fmall ftrip or oblong particle from the adjoining parts, but all to no purpofe; and, at length, I found, that thefe flefhy particles were fo linked together, that it would be impoffible to fever them without breaking.

This concatenation, or linking together of the fleflyy parts, (which parts, in treating of the tongue, I have called minute flefhy mufcles) in the fubftance of the heart, is of fuch a nature, that, at firf, I defpaired of being able to reprefent it to the eye by any figure or drawing; but at length, I fo far fucceeded, as to exhibit a reprefentation thereof to the reader.

In thefe experiments, I tried the heart of a duck, in order to fee whether its formation, and particularly this union of the parts, agreed with that of an ox; and I found, that the flefhy parts in the duck's heart, were linked together in the fame mamer as in that of the ○×; and not only fo, but that I could better give a reprelentation of fuch concatenation or linking, from the heart of the duck, than from any of the other fubjects 1 had examined : and thereupon, I delivered to

## ( 260 )

the Limmer a microfoope, before which was placed an exceeding finall piece of the flefhy part of a duck's heart, directing him to make as accurate a drawing as poflible, of the object which prefented itfelf to him.

Fig. 14, A BCDEFGHIKLM, reprefents this minute particle magnified, in which may plainly be feen, not only how every fingle fleflyy particle is united or linked to the adjoining one, but alfo, how all the flefly particles, fhewn in this figure, are connected, chained or linked tocrether.

As to the vacant fpaces appearing in this figure, two of which may be feen at BCD, and HNI, we muft not fuppofe, that the flefhy parts are fo far afunder as the drawing reprefents, for I am. fully perfuaded, that, when the heart is in its natural ftate, all the flemy particles of which it confifts, are fo clofe to cach other, that nothing but an exceeding thin membrane intervenes, within which membrane the blood-vellels take their courle; and there alfo, may fometimes be feen particles of fat, efpecially where the blood veffels are larger than ordinary.

Farther, I always obferved, not only in the hearts of an ox and fheep, but alfo in that of a cluck, all the flelhy particles, which, when deleribing them in fig. 13, I have called mufcles, but which I cannot here call by that name, becaufe they are not enveloped by membranes peculiar to themfelves; thefe particles, I fay, which in fig. 4, are exhibited at LM or $\mathrm{AB}, 1$ found, again to confift of great numbers of flender oblong particles, which often feparated from each other, and at little diffances united with other particles: but thefe finaller particles are not reprefented in the figure, becaufe they had become fo dried, as not to be vifible to the Engraver.

We may now figure to ourfelves, that the particle of flefh, which fig. 4, exhibits at A B, again confifts of an hundred and more oblong particles, and, that a little above A B, they are divided into four
parts, and thefe parts, again united with other flefhy particles. But how often this feparation and reunion of parts take place, and what courfe the particles themfelves take, I have not yet been able to difcover.

Each of thefe feveral flefhy parts, of which only two are exhibited in fig. 4, at BC D, and HNI, were covered with broken and torn fragments of other parts, but thefe I direged the Limner not to delineate, that the concatenation, or the manner in which the particles are linked together, might be better diftinguifhed.

After I had cauled the before mentioned drawing, fig. 14, to be made, I again examined various flethy particles in the heart of a duck, and, while I was thus employed, I met with one fimall piece, in which I was convinced, that the concatenation or linking together of the parts, would be fill more diftinetly feen. This, being placed before a microfcope of fomewhat lefs magnifying power, I delivered to the Limmer to make a drawing of.

Fig. ${ }_{5}$, A BC DEF G H, is this piece of a duck's heart, in which, more plainly than before, can be feen the nature of its formation, which will appear ftill more wonderful, if we confider, as the truth is, that the connection or linking together of the parts, in the particle which this fig. 15, reprefents, was, in the fubject itfelf, thrice as much as here expreffed ; for, I could not feparate a piece of this fize from the heart, without tearing afunder twice as many parts or points of union as are here exhibited. This particle was taken from ahmoft the outfide of the heart, and, that part which in the figure is marked ABCD , was fituated pointing towards the fmall end or tip of it.

In order to fhew the true dimenfions of the particle reprefented, in this laft figure, I meafured it, and found, that the whole length thewn in the figure, between the letters EFGH, was, in its natural fize, not more than two third parts of the breadth or thicknefs of that part
which, in the figure, appears between the letters 6 and H , or, the fize pićtured at $X$.

Seeing now, that this flefhy particle, though not in fact, larger than the frace between $G$ and $H$, or at $X$, does jet confift of more than an hundred diftinet oblong particles, as I can aftirm from the moft ceact computation of my own view, and, that this is not only the cafe, in the heart of a duck, but affo in that of an ox ; and moreover, that each of thofe flender, obtong, component particles, again confifts of a great number of exceffively minute particles, we fhail more and more be fluck with wonder, at this formation of the hoort. And who can tell, into how many fmall particles, entirely madifcoverable by us, thefe laft named particles may be again divided?

Vie find, that in the common mufcles of the body, thofe fmall mufcular parts, which conftitute a large mufcle, may be feparated from the larger one, often withont kearing the oblong flefhy parts which compofe it, nothing being broken, except the thin membrane with which the fimall mufeular parts are, as it were, enveloped: for, all thofe flender, oblong, Hefhy parts, lie difpofed in regular parallel order, befide each other ; and, at their extremities, are united to a membrane which furrounds the mufele, or, rather, forms the tendon of that mufele, which in fact the menibrane does: bence we may eafily compretend, that, when any part of a common mufele is wounded, the part which remains minjured, may fill, in fome degree, perform its functions; becaufe, as I have betore faid, the fmall mufles which compofe a larger one, are only comeeted hy a kind of membrane: but, on the contrary, when any one particle in the Hefhy fubfance of the heart, fuch as is reprefented in fig. 15 at ABCD, or any other particle though much more minute, is wounded, the whoce fell or lubitance of the heart, (by reafon of the intimate union of its parts) not only fuffers, but, through the violent and continual agitation of the heart, in the protrufion or expelling the blood

$$
\left(2 \sigma_{3}\right)
$$

in circulation, it becomes weaker, and, from fo fmall a wound, death muft enfuc. Moreover, when I confider, how often we find a fmall exulceration or fore, in the hand, finger, or other part of the body, of which we cannot perhaps trace the caufe, I can eafly conceive, that a fmall exulceration may, by fome accident, happen in the heart, whereby fome of the flethy particles may be injured, or rendered incapable of performing their functions; whence the heart not only languifhes, and becomes feeble, but, at length, may ceafe to move, whence fudden death enfues : and the Phyfician, not knowing the real caufe, is led to pronounce, according to the common opinion, that the perlon died of an apoplexy. Thefe are, however, no more than my own conjectures.

From what I have advanced, it may naturally be concluded, tluat I fhall farther lay it down as a certain pofition, that the heart camot fuffer any wound, without certain and immediate death being the confequence: this, however, is not my opinion, in all cafes whatfoever. For, we know, that there are many veins between the flefhy parts in the infide of the heart, which take their courfe from thence, and unite with the blood veffels furrounding it on the outfide; which blood veffels, are, throughout, and efpecially on the outfide of the heart, covered with fatty particles; fo that there may be inftances, where the very extremity or point of a fword, may penctrate into the heart itfelf, but, being in a part where thofe veins and particles of fat lie, none of the flefhy particles of the heart may be injured, and the vein and fatty particles alone receive the wound, together with the external membrane furrounding the heart : hence it will follow, that fudden death may not in fuch a cafe enfue.

After this, I examined the heart of a hen, in which alfo, not without pleafure, I faw the concatenation or linking of the fleflyy parte, to be exactly the fame as in the other hearts I lave mentioned.

This, however, I obferved in the hen's heart, that, when cutting K k

$$
(26+\ldots)
$$

it longitudinally, there appeared fome difference in the formation, for, whereas the cavity in the hearts of oxen and fheep, is provided with a tendon; on the contrary, here, inftead of the tendon, I found various flefhy parts, with their ramifications, fpread over the cavity of it. Whereupon, I began to reflect on the great exertion, which birds are obliged to ufe in flying, and how little they are fatigued, even after taking a long flight. But, to fay any thing fatisfactorily on this head, many previous obfervations ought to made.

Afterwards, I examined the heart of a cod fihh, and found its component parts linked together in the fame manner as I have defcribed thofe of the other anmals, and of the duck, to be: but when I reflected on the circulation of the blood through this heart, (which appeared more of a ffefhy than a fifly nature) and confidered, how the blood is propelled from it, into a white body, in folidity or denfity nearly equal to the heart, whofe particles are linked together in the mamer I have defcribed, and to how great a degree thefe particles upon the infufion of the blood muft be extended, and how contracted in its propulfion, I was more and more loft in admiration.


On the eye of a Whale, weith the Author's obfervations on the preflure of the fea-water at great depths.

THE mafter of one of our Greenland fhips, by name Ifaac van Krimpen, upon a certain time, made me a prefent of the eye of a Whale, preferved in fpirits of wine. This eye was not of a perfectly fpherical figure, for its axis, in the thickeft part, was two inches and feven-tentlis of an inch in length, and the axis in the thimeft part was not longer than two inches and an half.

That part of the tunica comea in front of the eye, which rifes in a globular protuberance, was two inches and an half in diameter.

The cryftalline humour was not quite of a circular figure, as we generally find it to be in fifhes; but on one fide, its fhape was fomewhat depreffed, and the axis thereof meafured feventeen thirtieth parts of an inch, but the axis of that part which was extended towards the object of vifion, was about half an inch in length.

The cavity, wherein the cryftalline humour is included, was almoft two inches diameter. The fubfance conflituting the furface of, and furrounding that cavity, was fo compact and ftrong, that I was farcely able to cut it with a very fharp knife.

Obferving this, I began to confider, whether the nature of this fifh did not require, that the fubfance inclofing the eryftalline humour, fhoukl be fo hard and folid; becaufe a Whale fometimes dives to great depihs in the ocean, and, as the fifh under confideration, had run out the length of fourteen whale lines, each of which is K K 2
an hundred fathoms long; and, in this depth of fea, the preffiure of water on the bottom, is much greater than is commonly imagined.

For, fuppofing the ocean, in any given place, to be 1400 fathoms decp, and each fathom to contain fix feet, which is the common meafure, it follows, that the ocean is, in fuch a phace, 8400 feet deep.

It is well known, that a cubic foot of water, fuel as is found in our canals, weighs 65 pounds, but that the fame quantity of fea water, being in its nature heavier, does not weigh lefs than $66 \frac{1}{2}$ pounds; but taking it only at 66 pounds, the refult will be, that every cubic foot of fea water, where the ocean is 3400 feet deep, does prefs on the bottom with the weight of 554,400 pounds. And, with regard to the whale lines, which I have faid are 100 fathoms long, I am told that they are more commonly 120 fathoms, which gives a depth of 16,080 feet.

The fame Captain Krimpen, in a fubfequent converfation informed me, that this Whale, having run out the length of fourteen lines, lay on the fandy bottom of the fea at that depth, from whence it was weighed up or raifed by means of the windlafs, and he added, that he fhould not have fucceeded in getting up this fifh, unlef's the line, which by the harpoon iron was fixed in it, had alfo got a turn or two round the tail, by which means, the Whale was brought up to the furface, the tail foremoft.

The weighing up this Whale, was at firft fo difficult and laborions, that fix men at leaft, were neceffarily employed in heaving at the windlafs, and no lefs than fix hours were fpent in the operation. But, when all the lines fave one, were hove in, the labour became as nothing ; for which latter circumftance, I afligned to Krimpen, this twofold reafon, that the preflime of the water on the Whale was then greatly diminifhed; and, that the fifh abounding with oily or fatty parts, which are lighter than water, would have a tendency to be buoyant.

## ( $\quad 6_{7}$ )

Let us now fuppofe, the cye of this Whale, in that part of it which was expofed to the fea water, to contain fix fquare inches in its fuperficies, we may juftly fay, that when the fifl defcended to the depth of fea we have mentioned, the preffure on its eye muft be equal to 23100 pounds weight. For, fix fquare inches are the twenty-fourth part of a fquare foot, and, if the preffure on a fquare foot, at the before mentioned depth, is 554,400 pounds, it follows, that the twenty-fourth part, will fuftain a preffure of 23100 pounds, which is one ton, fix hundred, and a quarter of a hundred weight.

Seeing then, that fix fquare inches of fpace, at the bottom of the fea, where it is 84,00 feet deep, do endure a preflure of water equal to 23100 pounds weight, it is no wonder that the fea in the Bay of Bifcay is not to be fathomed by the lead. For, if the fea water, at the depth we have mentioned, preffes on the bottom with the weight we have computed, it follows, that in fome parts of the ocean, which are at leaft eight times that depth, the preffure muft be eight times as much.

Hence we may fairly infer, that a weight, although of lead, fuch as that which feamen call the deep-fea lead, camot, where the depth is fo very great, tonch the bottom, or at leaft, not in a mamer to be perceptible, not only on account of the very great preffure on the lead, but alfo, on account of the much greater preffure on the leadline, by reafon of its great length, which line itfelf is not much heavier than the fea water; fo that the preflime may very naturally be fuppofed to prevent the lead reaching the bottom. Again, it muft be confidered, that the ocean, though no current may be vifible on its furface, yet is never at reft; fo that though the lead, when caft, feems to fink ftraight downwards, yet it may be carried away by fome fubmarine current, far from the man who heaves it, and the line may be bent and twifted many ways, by all which means, in fuch great depths, the lead may be prevented from reaching the bottom. But to return,

The cryftalline humour in this cye, was fo clofely joined to the tunica cornca, as to force it out into a kind of globular extuberance or rifing, which appearance feemed very ftrange to me, having never obferved the like, in any fifh or animal.

I took off a piece of the tunica cornea, rather more than an inch in diameter, and, after leaving it a while to dry, I cut it by an oblique incifion into flices, in order to count, with greater facility, the number of thin membranes of which it was compofed, and I found, that it confifted of, at leaft fixteen or eighteen of thofe thin membranes, laid one on another.

This tunica cornea, was lined on its infide, with a black membrane, every where entirely impervious to the light, excepting an oval aperture immediately in front of the cryfalline humour, through which the light was tranfmitted; this alfo was to me an unufual appearance. This oval aperture was in length half an inch, and in breadth fomewhat lefs than a quarter of an inch.

From this laft obfervation, a thought occurred to me, whether the whale has not a power of enlarging and contracting this aperture at pleafure, fo as to alter the mamer of its vifion, as occafion may require. The fame power of dilating and contracting the pupil, I remember to have obferved in the eyes of a cat.

I then employed myfelf, to extract the membrane which covers the back part of the eye, and to examine the optic nerve ; this I found to be no larger than the optic nerve in the eye of an ox, but I noted this fingular circumfance attending it, that in many places, and I eafily counted as far as twenty five of them, I faw adhering to the membrane, arteries and nerves, which illued from the part through which the optic nerve paffes. Some of thefe, were about the fize of a common pin, others much larger.

Thefe are the matters, which appeared to me worthy of note on this occaffon, though, if it were poflible to obtain the eye of a Whale when

## ( 269 )

newly taken out of the head, I doubt not, that our enquiries might be profecuted much farther, and that, confequently, greater fatisfaction might be procured in the inveftigation.

If we confider the propagation of the Whale, by comparifon with that of the fmaller fifh, we fhall be led to admire the wife difpofition of Nature in this refpect. To inftance in the common thrimp ; every one of them may be denominated a female, for they all, without exception, propagate their fpecies by eggs; and that, in fuch numbers, that once, when I began to count the eggs on one fhrimp, I had not got half way through the mafs of them, before I was tired, and gave up the attempt. Such a vaft number of eggs, produced by one fmall fifh is wonderful, efpecially if we confider, that every one of thefe minute eggs is nourifhed by a blood veffel. Now the larger fifh, which devour the finaller, fuch as the Whale, the porpoife, and the fword fifh, are not propagated by eggs, but bring forth their young perfectly formed; for if thefe kind of filh increafed to abundantly as the others, the fmaller fifh would every one be devoured by them. The Whale in particular, brings forth only a fingle young one at a time, and is provided with two breafts filled with milk, and fuckles the young, after the manner of terreftrial animals.

I have fometimes, when reflecting on the enormous bulk of thofe Whales which were taken at the begimning of the Whale fifhery, and on thofe huge bones of Whales, which are in many places fixed up for public view; I have, I fay, on thefe occafions, conjectured, that probably thofe Whales might be of the age of a thoufand years and upwards. . For I am perfuaded, that fifhes never die of old age, forafmuch as their bones, being always of a foft texture, which never grows hard, may always be extended, fo that the fifh themfelves are always growing larger. But, terreftrial animals are expoled to the changes of the atmofphere, whereby their bones grow hard, and
when the bones are hardened, the body of the creature camot be extended to a larger fize.

Having once, with the affiftance of an able geometrician, and by the eye with the help of quadrants, meafured the height of the tower of our new church in Delft, we found it to be 999 fect.* So that the depth of the fea, to which the Whale I have mentioned defeended, was twenty-fix times as much as the height of that tower.

* The London reader will be better able to judge of thefe altitudes, (the word altitude taken in the fenfe of the Latin, altitudo, from which it is derived, fignifies both height and depth) by comparing then with the Church of St. Paul's or the Monument: the former of thefe is about 500 feet in beight, and the latter 200 ; fo that if we call the height of the fteeple at Delft 300 feet, the Church of St. Paul's is two thirds higher, and the Monument one third lower than that fteeple. And the depth of fea from whence the Whale was raifed, was equal to forty-two times the height of the Monument, and more than fixteen times the height of St . Paul's.


Of the Quills ufed in writing, and their feathers: on buman bair, and the buir and wool of animals.

WIY reflections on the nature of thofe Quills with which we write. as alfo on the general make of the feathers of birds, led me to an inquiry into the manner of their formation; which at length I difcovered, and found, that Quills are compoied of ftreaks, or more properly fpeaking, veffels. Thele veffels, in every Quill, are threefold. The firft, or extemal ones, which conftitute but a fimall part of the Quill, are parallel to its length: the fecond, which are in a much larger quantity, take their courie round about the Quill, within the former ones: thefe fecond fort of veffels are not fo clofely united as to form what may be likened to a folid body, but lie one on another like fcales or coats, in fuch manner, that the different layers of them may be plainly perceived: the third fort of velfels, which compofe the thickeft or greateft part of the Quill, lie lengthwife, in like manner as the firf mentioned ones: this third fort of veffels, are alfo difpofed in the manner of fcaly parts laid one on another ; and, confidering the thimefs of a Quill, and the large cavity it contains, its formation is, in my judgment, the moft perfect that could be contrived; for, hereby it is made tough and ftrong, both in its circumference, and in its length. To exhibit the nature of it to the eye, I caufed a drawing to be made of one.

In Plate IX. fig. i, ABCDEFG, reprefents a common goufe L 1

Quill, drawn finaller than the natural fize. At ABG , are reprefented thofe velfels which compofe the external part of the Quill, and lie in it longitudinally; BCF G, are thofe which take their courfe round about it ; CDEF, are the veffels, which, like the firft.mentioned ones, are placed the length way of the Quill.

From thele obfervations, I difcorered the reafon, why fome Quilis when they are fplit lengthwife, in that part where they are hardeft, form a kind of indented or jagged part in the fiffure; * namely, becaufe thofe velfels, whole courfe is round the Quill, are not all broken in an even ftraight line; efpecially, as I faid before, where the Quill is hardeft : and where thefe veffels are heaped together in greater quantities than in other parts. Therefore, to prevent this accident, when the Quill is fo very hard, it is necelfary to fcrape it a little with the pen knife, by which means, in the fplitting, it will be furaight and even.

I have frequently, by the microfcope, contemplated that part of thefe Quills which is called the feather, and alfo the feathers of fmall birds; and always viewed them with admiration; not only on account of the multitude of parts to be feen in them, but alfo, by reafon of the great numbers, and extreme minutenefs of the veffels, of which, not only the whole feather, but every little part of it is compofed.

To exhibit to the view, the great numbers of veffels of whel the feather confifts, I placed a fimall piece of one before a microficone, and a drawing of it is given at fig. 2, LMNOP().

In the preceding $/ g$. 1 , DHIKE exhibits part of the feather of the common writing Quill, fmaller, as before obferved, than the natural fize. At $K$, is reprefented a fmall part of the feather, a piece of which, feen by the microfcope, is thewn at fig. 2 , for, if the whole

[^41]
## ( 273 )

of this piece were to be drawn when magnified, it wouldappear larger than the whole feather, feen by the naked eye. When this fmall part of the feather is viewed by the microfcope, it will appear, how every one of its parts confifts of a great number of fimaller feather thaped parts, all which parts are fo comnected or knit together, as to give ftrength to the whole feather.

The reader, here, muft underfand, that the particle or piece which is hewn magnified at $f g .2, \operatorname{LMNOPQ}$, is not, in fact, fo big as a large grain of fand : and further, that this particle received nourifhment in its growth, no otherwife than by fmall veffels: the reader alfo will advert to fig. $\frac{3}{}$, RS, which is drawn from a microfcope of greater magnifying power, and is feripped of from the fide of fig. o, at MNO, and alfo to fig. $4, \mathrm{TV}$, which is taken from the fide of fig. a, at QPO.

At LAM , is reprefented a part, bearing the appearance of globules, of which the interior fubftance of this fmall particle of a feather is compofed, which agrees with the formation of the correlponding part in the entire feather of the Quill, pictured at $f g .1$.

In the figures 9 and 4 , by $R$ and $T$, are reprefented fome finall veffels broken or torn afunder.

All thefe fmall particles, each of which may be called a minute feather, not only ferve to give firength to the whole feather, but are fo contrived, that in the bird's flight, thele particles remain fo clofely joined together, as to cnable it to make a ftrong impreffion on the particles of air, by the exact and regular order of the component parts of the feathers. For otherwife, birds would not be able to fupport themfelves in the air. All thefe particles, as I faid before, lie in moft exact order befide each other, which has induced me frequently to contemplate them, as alfo on account of the innumerable multitudes of veffels of which the Quill confilts.

From this inftance, in the formation of the feathers of birds, we
may obferve, that provident Nature, if not in all, at leaft in many things which come under our inveftigation, performs her operations with the grenteft unifomity ; for, in like mamer, the cryftalline humour of the eyes, not only of men, but of the larger terreftrial animals, and allo of fifhes, as far as I have examined into them, confifts of a kind of fealy parts, laid one on another: fo likewife the tunica comea or horny coat of the eye, which coat, I at firt conceived to be compofed of only three diftinct membranes, but afterwards, on a more accurate inveftigation, 1 found to confift of an hundred membranes, laid one on another like fales. And I conclude that this formation is defigned, not only to give the coats of the eye a great degree of ftrength and firmnefs, but allo, that if one of the membranes fhould be hurt, the others may elcape uminjured.

It is the opinion of many, that the hairs on the bodies of men and animals, are hollow, and fome think, that they contain in them a marrow like the bones; but thefe opinions are crroneuts. Hairs are formed with a kind of coat, which is analogous to the bark of trees, and their internal fubatance confifts of ftreaks or fibres. Their growth, is not like that of plants, but is produced by a kind of propulfion, that is to fay, that the part which one day is within the ffin, and is as it were, the root, in a day or two, is thruft out beyond the fkin : and as, when the hair firft comes forth, it is, in all its parts, very moift, as foon as the moifture begins to evaporate, the coat or bark of the hair, and the fibres adjacent to it, acquire a degree of firmnefs which prevents the hair from contracting invards, whence it comes to pafs, that, as the internal fibres continue to dry, and thereby become thinner, they are divided afunder, and recede from cach other, fometimes forming one, and fometimes more chinks. exhibiting a kind of darkifh furrow or furrows, which,
doubtlefs, is what has been taken for the marrow of the hair. All this will be better underfood from the following figures.

Fig. 5. ABCD, is a piece of an hog's briftle, which I cut by a tranferfe fection; EEEE, are the chinks or eracks, arifing from the drying of the hair as above mentioned, and this hair is burft or cracked, in the infide, more than ordinary. Fig. 6, FGHI, is a piece of the fame hair, fomewhat nearer the fkin, alfo cut tranfverfely, in which, there are not many cracks, or chinks, but only one, which is, however, folarge, as to exhibit the appearance of a hole or cavity in the hair, as appears at K LM, and any one, upon feeing fuch an hair as this, would certainly conclude, that the carity here feen, was not accidental, but the natural form and make, and confequently, that all hairs are hollow. Fig. 7, NOPQ, is another piece of an hog's briftle cut tranferfely, from which I fuppofe the moifture had evaporated fo flowly, as not to leave the leaft appearance of a chink or crack: fig. 8 , is a perfectly black hog's briftle cut tranfierfely, and, as it exhibited a pietty appearance, I have given a drawing of it. And, though the roughnefs, which is on the edge of the fharpeft razor, frequently leaves feratches on the face of the hairs thus cut tranfverfely, I almoft wholly avoided that appearance, for which reafon, I was better able to point out the ftreaks or fibres of which the hairs confift.

From the preceding figures, it will appear, how much thofe are miftaken, who will have it, that all hairs are round, whereas we ought rather to fay, that every hair has a figure peculiar to itfelf.

It is my opinion, that the hairs on man's body, do, at certain feafons, fall off, and are again renewed, like the feathers on birds; at leaft, I have experienced this to be the cafe with myfelf every fpring, (excepting the hairs on my head and beard) and I have obferved, that thofe hairs which feemed ready to fall off, could be pulled out with a fmall pair of pincers, and not caufe that pain which attends

$$
\left(\begin{array}{ll}
276
\end{array}\right)
$$

the plicking ont a hair that is firmly fixed; and I have farther obferved, that thofe hairs which are pulled ont hy force, have large thick roots, whereas, the roots of thofe which are near falling off: are pery fmall and pointed.

Fig. 9, ABCDEFG, and HLMN1Q, are two very fmall human hairs with their roots; in thefe will be feen, that the points or fmall ends of them, at G and O, are fomewhat bent, which I attiribute to this, that the points, when thin and tender at their firft expulfion from the fkin, had met with fome obftacle in their growtl, which not heing able to penetrate, they were bent obliquely: It is not uftal to fee hairs bent at the fmall end, in the mamer fhewn at $G$, but they mof commonly appear as at $Q$.
$A B$, and il L, are the roots of thefe hairs, which do not appear folarge, if the hair falls off of itfelf, but, when a hair is pulled out by force, the root appears much larger than the hair itfelf, as is thewn in this figure.

The bending of the hairs I have noted above, may very caffly be occafioned by their meeting with fome obfiruction in their growth, and having obferved a hair on my arm, which was very much bent, I pulled it out, and placed it before a microfcope, in orter to fhew its figure in a drawing.

Fig. 10, ABCDEFGHI, exhibits this hair, in which, ABC is the root, and at AC may be feen a fmall portion of the cuticle or outer fkin, which adhered to the hair. DEF, indicate a confiderable bending in the hair, and at GEH is fhewn a much greater bending, or rather, an entire circular curve.

I have faid, that hairs are covered with a coat or bark, in like mamer as trees, and that, however fmall, they are compofed on the infide of oblong parts or fibres, and I am perfuaded, that there is no difference between theep's wool, which is the fimalleft kind of hair, and the hairs of men and animals, except, that fheep's wool confifts

## ( 277 )

of a lefs number of internal fibres. In order to fatisfy myfelf in this refpect, I ofter broke pieces of wool, and endeavoured to fplit them into finaller parts, wherein at firft I was unfuccefsful, but at length I found means, not oniy, diftinctly to fee this formation mylelf, but alfo to exhibit the fame to the view of others.

I therefore delivered to the Limner three microfcopes, directing him, to make drawings of the objects he faw.

Fig. 11, KLMN, reprefents a finall piece of white fheep's wool, in which, at $L$ and M may be feen, that it conffifs of a great number of fmaller hairs, (if we may call the interior parts of the wool by that name; ) and who can tell, whether each of the particles, fhewn at LM, may not again confift of a great number of fill fimaller particles?

This piece of white fheep's wool, was very tranfparent before it was broken, or cracked; but, at L and M , where many of its oblong component particles are broken or fevered afunder, it appeared quite opake, and more of a black colour than tranfparent.

Fig. 12, OPQ, reprefents a piece of white wool, placed before another microfcope; this piece is broken or burft open only in one place, where alone the internal parts appear, and at $Q$ only two of thofe intemal parts can be feen, whereas, in the piece pictured at fig. 11, all the internal fibres are divided afunder.

Obferving one of the hairs on my arm, to be not only much broken or worn away, by the friction of my flirt, but alfo the internal parts to be feparated from each other, I pulled out the hair, and placed it before a microfcope : this piece of broken hair, magnified, is reprefented at fig. $13, \mathrm{KS}$, wherein at S , which is the part worn or fictted away, fome fmaller particles appear, being the fmall fibres of which the hair confifts.

The preceding experiments and obfervations, will, I truft, refute the erroncous opinion I have mentioned, that the hairs on our bodies

## ( 278 )

are hollow within, and, if hair and wool, (which is the hair of fheep) were not compofed of many minute hairs or fibres, they would not have that ftrength and toughnels which we obferve in them.

Sometimes, in human hairs, and efpecially in the very middle of them. I have obferved a dark line: particularly in feveral of the hairs taken from ${ }^{\circ}$ my own beard: and when I attentively examined this dark line, I found it to confift of fuch minute and flender particles, as to be almoft undifcoverable even by the microfcope. Examining fome very finall hairs, of three, four or five days growth, and findmg fome to be throughout quite tranfparent, others darkened only in a very fimall degree, and finally, others with no more than a fimall dark lpot on them, I began to confider, whether this dark thade in the hairs, might not proceed from fome particles of blood in the fubftance of the hair, and there dried.

To sive the reader an idea of this dark line, I caufed a drawing to be made of a piece of a fingle hair, which I concluded to be of three days growth; this is to be feen at fig. 14, O PQRSTVW, in which at QRS and V VV O, are the two ends where the piece of hair was cut with a knife: from IV to $P$, or as far as $T$, the dark line I have mentioned extencis, which I have mentioned to be vifible in fome hairs, and in others not fo confpicuous, Laftly, between R and T P are reprefented thofe dark fots, which are to be obferved in other hairs.


## The TRANSLATOR, to the READER.

IF this tranflation is a faithful one, I doubt not that the Reader will be led to admire the extenfive range of the Author's refearches, and the pains he takes to make his difcoveries intelligible to all; and thofe who compare his defcriptions with the productions of Nature at this day, will be equally pleafed to obferve their exact coincidence.

But, though I think it may fairly be faid, that the works of Mr. Leeuwenhoek are, upon the whole, fuperior to any that have appeared upon Microfcopical fubjects, I do not mean to fay, that there are no inftances, in which others have not been equally fuccefsful. A countryman of our own, Dr. Robert Hooke, who was a cotemporary of the Author, and Secretary to the Royal Society foon after its firft inftitution, publifhed feveral Effays, containing his difcoveries by the Microfcope, with many very judicious and ufeful remarks. In fome of thefe, Dr. Hooke has handled the fame fubjects as our Author, and I fhall take occafion, here to introduce a paffage from that Book, wherein fome of the particulars refpecting Feathers, mentioned in the preceding Effay, are more minutely defcribed than by Mr. Lecuwenhoek. *
" Examining feveral forts of Feathers, I took notice of thefe par"ticulars in all forts of wing-Feathers, efpecially in thofe which "ferved for the beating of the air in the action of flying.
" That the outward furface of the Quill and ftem was of a very " hard, ftiff, and horny fubftance, which is obvious enough, and " that the part above the quill was filled with a very white and light " pith, and, with the microfcope, I found this pith to be nothing " elfe but a kind of natural congeries of fmall bubbles, the films of

[^42]M m
－Which feem to be of the lame fibhtame with that of the quith，that

－As for the make and comteveme of the down itfelf．it is indeed ＂very rame and admirahle amd fuch as 1 eam hamy beliese that －the like is io be difiowerd in any wher hody in the wotd：for ＂there is hardly a lange Feather in the wing of a himb bat comains ＂mear．a millinel of dettact pars．and every one of them thapod in ＂a modt rewniar and adminald form，adapted ona particnhar defign：
 －whth my mate ere，that the man fom of it comaned about 500 －longer and mone down lumehings upon ome fide and as many ons
 ＂of thete homs：and downy bramohing examined with an or－
 ＂fanall leses．（as I mas call them）lowh as lif in the figure＊ ＂and as mam talks：on the other fise foch as 1 K in the fanc
 －vided into aboar fivieon or cegheon fimall jomts as may be feen －phonly chongh in the fighe ont of mote of which there feemed ＂to swow fmall long fibers finch as are opretiod in the tisume caty ＂of them reag propurtonably thaped acowatag to its polition，or

 ＂potite to them om the uper：and divers of them．luch as e．s．a．
 ＂मling thwe lmall owols．Which ame vilhbe enongh of the maked ＂ere in the lechbuttens of hatochs．The taks lihewife．I K，on －the wher fose focmed divided into mon as man fonall hooted
 ＊them some the mathe $\mathcal{K}$ ，fomed diveded into ino pars by a kind？

- ひur IN. ニット
" of fork, one lick of which, manely, $k$ L, was extemeded near the "length of KI, the other, M, was very thom.
"The tanferte feetions of the flems of the fe bamehners, mani" Refied the thape or ligure of it to be much like IN Oli, which com-
" lifted of a homy tkin or covering, and a white leomingly fothe "pith, much like the make of the mam flem of a leather.
"The flems of the downy banches 1 NOE, being ratuged in the
"order vifible enomgh to the maked eye at the dillame of 1 F , or " fomewhat more, the collateral thatks and leaves (if l maty lo call "thofe bodies I newly deferibed) are lo ranged, that the leates or "hatry fialks of the one fide lie at top, or are incmonent on the "taalks of the other, and crofs eath other, mach after the "manner expreffed in the ligure, ${ }^{*}$ by which means exoy one of "thole litule hooked fiberes of the laved tatk gets between the " maked llalks, and the flalks being fill of koots, and a protty ". Way disjoined. fo that the tibres can eatily gee between then, "the two parts are fo dofely and admitably wower logether, "that it is able to impede, for the greatef part, the tandertion of " the air ; and homgh they are fo exceedingly limath, ats that the "thicknefis of one of ohefe lialks amoments not to a , jooth part of an "inch, yet do they compofe fo firong a texture, as, notwithfanding "the exceoding quick and volent beating of them ageanfl the air, hy "the firength of the bird's wing, they fimbly hold together. And it " argues an adminable providence of Nature in the contrivance and "Fabrick of them ; for their texture is fiech, that though by any ex"temal injury the parts of them are volently disponed, fo as that " the leaves and lialks tonch not one another, and confequentiy fe"veral of thefe rents would impede the bird's flying ; yed, for the " moft part, of themfelves they readily re-join and re-contex them-

[^43]"felves, and are cafily by the bircls ftroking the Feather, or draw" ing it through its bill, all of them fettled and woven into their for" mer and natural pofture ; for there are fuch an infinite company of "thefe finall fibres in the under fide of the leaves, and moft of them " have fuch little crooks at their ends, that they readily catch and hold " the falks they touch."

Here we fee a perfect agreement between thefe two valuable writers, in defcribing the fame fubject, with this difference only, that the Englifh author has more minutely deferibed that curious part in Feathers, which Mr. Leeuwenhoek only mentioned flightly; I mean the contrivance of Nature, whereby the feveral minute Feathers compofing the larger, are knit together fo firmly as to bear the ftrong exertion of the bird in flying, without yielding a paffage to the air.

The fame Author, in treating of hair, has thefe words, "The " root of the hair was pretty finooth, tapering inwards, almoft like " a parfinip, nor could I find that it had any filaments, or any other: " veflels, fuch as the fibres of plants.
"The top when fplit (which is common in long hair) appeared " like the end of a ftick, beaten till it be all.flittered, there being, " not only two fplinters, but fometimes lialf a fcore and more.
" For the briftles of a log, I found them to be, firft, a hard " tranfparent horny fubftance, without the leaft appearance of pores " or holes in it, and this I tried with the greatelt care I was able, "cutting many of them with a very fharp razor, fo that they ap" peared, even in the glafs, to have a pretty fmooth firface, but "fomewhat waved by the fawing to and fro of the razor, as is vifi"ble in the end of the prifmatical body A in the figure.* The fhape " of the briftes was very various, neither perfectly round, nor fharp "edged, but prifmatical, with divers fides, and round angles as " appears in the fame figure. 中

$$
\text { * Micrographia, P. } 157 \quad \text { \& Plate IX. fir } 17 .
$$

An extraordinary quantity of Fifb on the fea coaft near Delft, noted by the Author, with the reafons affigned by him for the fame.

IN the months of April and May 1716, there were brought to our town of Delft, from the fea coafts at Schevling, Catwick, and Terheid, a great quantity of the fifh called haddocks, which, though very frefl and good, were fold at a low price. The glut of this fifh was fo great, that though in general they are caught with hooks, they were on this occafion, taken in nets.

Seeing this, I confidered, that there muft be fome particular reafon, why thefe fifh fhould at that time refort to our coafts in fuch multitudes, and I was afterwards confirmed in that opinion, for in a month or two afterwards, not one of thofe fifh was to be taken : and the reafon which I affigned to myfelf for the abundance I lave mentioned was, that at that time, there was a greater quantity of food for them on the coait than ufual, whereby they had been tempted thither.

In order to inveftigate this matter, I opened the ftomachs of many haddocks, and found them to be filled with a certain fimall fpecies of fhrimps, called by our fifhermen meutjens, which are taken among. the common fhrimps, and are ufed for food by people living along the fhore.

About a fortnight afterwards, on examining the fomachs of the haddocks, I found fome of them quite empty, and others not more

$$
\left(2 S_{4}\right)
$$

than half filled with the before mentioned fmall fifh ; and fo much was the glut then diminifhed, that few or no haddocks were taken. Upon enquiring the reafon of this diminution from a fifherman, he anfwered only, that every fort of fifh lad its feafon, though I fhould rather have faid, in the words of feripture, "that where the food is, there will the eagles be gathered together."

At the time there was this glut of haddocks, there was a great quantity of cod fifh caught on our coaft, the reafon of which I took to be, that thefe cod flocked to our fhores in purfuit of the haddlocks which are their food.

About the begiming of October, in the fame year, there were taken on our coafts, great quantities of the common fhrimps, and thofe in better condition than they are generally found in the fummer time. Hence I concluded, that the haddocks would again refort to our coafts, and that the flurimps, to avoid them, would crowd in greater quantities to the fhores and fhallows.

To fatisfy myfelf in this refpect, and that I might learn what particular kind of food is ufed by the haddock, I caufed the entrails of a very large one to be brought to my houfe; but, to my great furprize, I found not only the ftomach, but the inteftines adjoining it, to be entirely empty of food.

I enquired of a fifhwoman what might be the reafon of this, who gave me the following anfwer: Our fifhermen (for fhe lived at Delftshaven) liave a pond or ciftern, lined at the bottom and on the fides with timber full of holes, fo that the water freely paffes in and out with the tide; and the fifh being kept in this ciftern, can at all times be brought to market alive and vigorous. But the fifhermen fay, that when the haddocks are thrown into this ciftern, they immediately empty their fomachs of all the food they have fwallowed.

Hereupon, I examined a little of the matter or fubftance contained
in the inteftines at a confiderable diftance from the ftomach, and I found the fame to confift of fragments of fhrimps mixed with many particles of fand, rather larger than the fand found on the fea fhore, and which particles of fand I concluded the haddock had picked up with the fhrimps from the bottom of the fea, and had fwallowed down both together. Among thefe grains of fand, I faw many fhining particles, fome thoufands of which, laid together in an heap, would not equal a large grain of fand : thefe were all of different fhapes, but, in every one of them, the fides, angles and points, were fo fmooth and glittering, as to be very little inferior in beanty to the moft polifhed diamonds. At firft, I fuppofed them to be no other than common falt, but I found them to be much more hard and folid than our falt. After I had feeped them a floort time in rain water, I could ftill diftinguifh fome of them, though much diminifhed in brightnefs; others of them, feemed to be partly diffolved, and to be furrounded with fmaller particles : thefe latter, I concluded to be, ftill more minute falts, which, in diffolving, had feparated from the larger ones, and afterwards concreted in clufters.

In the month of November in the fame year, there was another great draught of haddocks on our coaft, whereupon I went to the fifh market to examine the inteftines, when newly taken out of the fifh: I found moft of the ftomachs to be empty of food, but fome remains thereof in the inteftines; and, as at the fame time, great plenty of cod fifh were caught, I judged that the haddocks, avoiding the purfuit of the cod, and thefe purfiuing the haddocks, was the reafon, that both were taken in fuch abundance.

Thofe perfons, who are very nice in their tafte, prefer the haddocks brought to us from Maeflandfluys, to thofe that are brought ftraight from the fea fhore, though both are taken near the fame tract in the ocean. Upon confidering with myfelf, what might be the reafon of this difference, I could not affign any more probable-
one than this, that thofe haddocks which are brought ftraight from the fea fide, are, as foon as taken, thrown into bafkets, to the number of eight or ten in each bafket, and die, thus heaped together, before they are expofed to fale: whereas, the fifhermen at Maeflandfluys, keep their fifh for a time in thofe cifterns I have defcribed; and the fifhermen of Delfthaven, have alfo a kind of fifh trunk or well in their boats for the like purpofe. Therefore, the fifh which are thus kept alive without food for two or three days after they are caught, are of a much better tafte.

The fame is experienced in river fifh, efpecially trout, which, when caught in the fummer time, are unpleafant to the palate, tafting of the herbs on which they feed, but, if kept a few days in ftew ponds, cifterns, or other fit receptacles, are much improved in flavour.

But to return to the fubject of the fifh market, I obferved a large cod fifh, very much diftended with a quantity of food, namely, haddocks, which it had devoured, when fome of the finaller cod lying near it, appeared empty. Hereupon, I enquired of an old filherman, whether thofe cod fifh, which were fo diftended, did not differ in tafte from thofe, whofe fomachs were empty; to which he anfwered, that thofe cod were to be preferred, whofe bellies were compact or clofe. This is a phrafe among fifhermen, applied to thofe fifh whofe roes are not very large, and whofe fomachs are very little, or not at all diftencled with food.


Of the Nutmeg; the young plant in it difcovered; the root of the N'ut-meg-tree examined and defcribed; with fome bints from the Author respecting the beft metbod of preferving Nutmegs from being injured by infects.

1 AVING, at many different times, employed myfelf in the examination of Nutmegs, in order, if poffible, to difcover the young plaint of the future tree (which, I was well affured they contained) but always without fuccefs, $r$ at length received, from one of the Directors of the Eaft India Company, refiding in our town, a few Nutmegs, and alfo a parcel of powder or dufty matter, which had been found adhering to fome of the nuts *, to the intent, that I might examine them, and fee whether this powder had not been gnawed or bitten of the nuts by mites.

With the greateft accuracy I was able, I examined this dufly matter, and, with all my attention, I could not difcover in it any mite either alive or dead, but in fome of the Nutmegs which had been in part eaten away, I found feveral finall maggots of different linds, and alfo a few flying infects which I concluded had been bred from maggots of the fame fpecies; but the bodies of all thefe creatures were fo much fhrivelled, that I concluded they lad been long dead, and that, not being natives of thefe regions, they could not endure the cold of our climate.

[^44]I next went to our Eaft India Company's warehoufe, at the time the olficers employed to fort the fpices were buly in allotting the Nutmegs according to their qualities, and I brought home with me, two or three handfuls of the refufe thrown away: any one upon viewing this with the maked eye, would eafily be led to conclude, that it contained mites, but with my nimoft attention, I could not difcover any mites, much lefs their eggs, and only a few of the dead infects I have before mentioned. I alfo brought home ten or twelve of the moft damaged Nutmegs, which felt very light in the hand, and were much fhrivelled: upon examining thefe carefully, I found that moft part of the duft or powder, which upon a curlory view might be taken for mites, was nothing clfe than the dult of the Nutmegs, and the excrements of maggots which had ahnoft entirely fcooped out the infides of thofe nuts.

In the examination of thefe and other Nutmegs, it appeared to me, that thofe which had been gathered umripe, were the moft liable to be devoured by maggots, becaufe the oily matter in this nut, which pervalles its fubfance in ftreaks like the veins of marble, and covers the outward bark in like manner, is contrary to the nature of thefe maggots; for when I cut open the nuts wherein they were, I found the oily part every where uninjured, and on the contrary, all the whitifl part of the nut confumed, fo that thofe oily parts lay within the mut, exhibiting to me, as it were, a labyrinth of turnings and windings, whereas, the unripe nuts, where the oily fubfance was not completely formed, were in the infides, quite confumed; I alfo perceived the external coat of the ripe nuts in fome places bored or eaten through, but in my opinion, when the maggots reached the parts were the oil was fully ripened, they defifted from farther biting, and only devoured that part where the young plant is fituated, and which is the thickeft part of the nut.

I was much furprifed, that I could not difcover any mites among

## ( 289 )

the Nutmegs, becaufe there is rarely any fubftance that can be ufed for food, where they are not to be found.

I determined therefore, to examine whether mites fed upon the Nutmeg, and therefore I placed about a quarter of a nut, among a parcel of mites, when I perceived that they fled from it.

Moreover, I took a glaf's tube, fomewhat larger than a fwan's quill, one end of which I fopped with a cork, and, after putting into the glats fome hundreds of mites, I cut a fmall piece of Nutmeg of a fize that I could put it into the tube; and I perceived that the mites next the Nutmeng foon died. I then put another piece at the other extienity of the tube where there were many live mites, which allo in a very fhort time died.

To fatisfy my felf fuill farther, I took a glafs tube, thirteen inches long, and haif an inch diameter ; one end of this I clofed by melting it, and put as many mites into it as I computed in bulk altogether to be equal to half a cubic inch, and, according to the exacteft computation I couk make, they were in number 150,000 .

After thefe mites had been about a quarter of an hour in the tube, they fpread themfelves from the mafs in which they were, when firft plit in, and difperfed all over the glafs; I then fplit a very foumd and good Nutmeg into four parts, one of which parts I placed in the open end of the glafs, fo that I might obferve by the microfcope, what effect it would have on the mites when they approached it.

Moft of them I faw creeping towards the open end of the tube, and when they came to within about a fraw's breadth of that part where the piece of mut touched the glafs by two of its points, many of them returned back, though they might have paffed by the nut without approaching nearer than the eighth part of an inch to the main fubfance of it.

The retreat (fo to exprefs myfelf) of thefe multitudes of mites, afforded me a very pleafant fpectacle, for here it appeared, that the exhalation or vapour procceding from the piece of Nutmeg, was fo
noxious and offenfive to them, that they drew back from it fafter than they had adranced towards it, in order to make their efcape out of the glafs.

Some others of the mites having advanced fo far as to have got fome hairs breadth diflance beyond the Numeg, were prefently arrefted in their courfe, and, lofing all motion, they expired.

Moreover, I obferved numbers of the mites creeping along the glafs, near that part of the Nummeg which was covered with the rind, and they would have efcaped, if I had not intercepted them by placing another piece in the way, fo that they could not get out withont palling the broken part of the nut, and honce it appeared to me, that the vapour of the nut exhaled much more feebly next the rind, than fromi the internal newly broken part. Hereby, not only the efcape of thele mites was prevented, but all that were near the nut died there, and in the fipace of eight and forty howrs, out of fo great a number of mites very few were left alive.

To explain this experiment better, I caufed a drawing to be made of the glals tube I ufed on the occafion, which is to be feen in Plate X , fig. 1, ABCDEFGHI. Here, AI is the open end of the tube; F, the end which was clofed, and in which the mites, when firft put into the tube, lay in the greateft numbers. Between CD and FG, was placed the firft quarter of the Nutmeg with the internal broken part next the eye, where fome of the mites had crept on the other fide of the glafs next the rind. and paffed by the nut, when as I mentioned before, I placed the other piece of nut, with its broken fide the contrary way to the other, fo that the rind appears between $A B$ ind HI next the eye, by which the mites were prevented from efcaping, and all died within the glafs.

In reflecting on the circumftance of thefe mites being thus killed, I judged that it was not by the vapour of the Nutmeg being hurtful
to their bodies in general, fuch as the Rin, bones, \&ic. but that it acted fo powerfully on the lungs of thofe creatures, as to prevent their refpiration. For, in like manner as noxious vapours do not, fo far as I know, in any manner injure our fkins, becaufe the moifture of our bodies is continually expelled from the inward parts outwards, through the tkin to the furface; and as no particles, either of foul air or common water can be received into the body through the fkin, for which reafon it is, that the fleflyy parts of fifh or other animals, living in water, however falt it be, do not partake of that faltnefs; fo mites, the fame as larger animals, who are kept alive by refpiration, die when that refiration is obftructed or prevented. And if fo, we have here another inftance of the furprifing order and regularity with which all things are created, fhewn in the wonderful formation of the mite, which, though unknown to many perfons, and, by reafon of its minutenefs, held of no account, coes yet appear to me, endowed with greater perfection, and more curioufly formed than many larger animals.

After the preceling obfervations, our Eaft India Fleet arrived, whereupon, 1 became defirous to procure fome of the Nutmegs newly imported, and thofe of the beft and ripeft: in order, that if pofible, I might fo far caufe them to vegetate, that I might be conrinced I faw the young plant in the nut, and might alfo be able to take it out from thence. And one of our Eatt India Directors very kindly gave me fome of the largeft Nutmegs ; among thefe I perceived a few, which, though thoroughly ripe, were infefted with maggots.

Tivo of thefe nuts I opened, and out of each I took a thick flort white maggot, about the fifteenth part of an inch in length, fumifhed with fix feec in the fore part of its body, and covered with a great number of long and very flender hairs: from the fame nuts I alfo took two or three pellicles or thin fkins of different fizes, which appot
rently had belonged to maggots of the fame fpecies, whence I concluded, that during their growth, thefe maggots change their fhins in like mamer as filk worms are obferved to do.

I alfo found in thefe nuts, two flying infects of different kinds, but they, as well as the maggots, notwithitanding all the care I could take, foon died, whence I was more convinced that the maggots which feed on the Nutmeg are not natives of thefe regions, and I do not doulbt, that if the warchoufes in India, where Numegs are kept, were to be well fumigated with fuphor, once a month, (for if this is done only once, thole inferts which are at that time alive may be killed, but the minute mageris inclofed in the eggs will efcape unhurt, and therefore the fumigation muft be repeated) by this operation the Nutmegs would, in a great meafure, be preferved from damage. And I alfo think, that it would be very proper to fumigate the holds of the fluips with fulphur, by which means thefe maggots, and thofe whofe nature it is to perforate and feed on timber; alfo, the infects called cock roaciies, the millepeeles. or thous. find legs, and even mice, which hide themfelves in the holds of fhips, muft be all deftroyed.

I endeavoured, three feveral times, to caufe the Nutmerg to regetate, but I had not the good fortume to fucceed; which, I think, was partly owing to the lime with which the nuts had been fprinkled, and partly to their being fo much dried, that in mary places they were cracked in the infide. In this my fearch, however, after diffecting many muts, I at length, with great pleafure, not only difcovered the plant, but fucceeded in taking it out of the nut. The outer part of the leaves of this plant was formed with many indentings and points in the manner of vine leaves, and the leaves themfelves were as large as I ever found in the feed of any tree whatever. [Tpen viening thefe leaves by the microfore, If could fee the veins or veffels, lying in as regular order, as are to be feen by the naked ewe in the full grown leaf of any tree.

Fig. 2, KLMN, reprefents this fmall plant taken out of tire Nutmeg, as nearly as the limer was able to draw it from the naked eye; and though it feems to be compoed of many leaves, yet, in my judgment, there are but two ; but I could not examine that matter very accurately, becaufe in the attempt, the phant was of ien broken. The part in this figure marked N is that, from whence the fem and root would grow.

Morcover, I placed a fmall pece of the outward part of this leaf before a nicrofcope, and directed the fimner to make a drawing of it with all the veliels in it, as they appearel to him.

Fig. 3, OPQRS, reprefents this piece of leaf; OP, is the part which was broken off from the relt of the leaf, and $Q R$ is the extemal edge of it.

In this funall piece of leaf we not only fec, how the veffels or veins are branchel out into fmaller ramifications, but in many places may plainly be feen, the oily matter or fubitance, which is the fame in nature and colour, as is to be feen in the nut itfelf. And fince we fee fo many branchings of the veins in fo fmall a picce of a leaf, who can tell how many more ramifications there may be in it, entirely efcaring our fight?

During the time that I was employed in fearching for the plant in the Nutmeg, I fell into converfation with a friend refpecting the tree that bears this fruit, which tree, I was perfuaded, had fome cavity in the middle of it; this coming to the ears of a certain Profeffor, he fent me two picces of the root of the Nutmeg tree.

Upon examining thofe pieces of root, both at the larger and fmaller ends, I was greatly furprized to find, that this wood is of a remarkably fpongy mature and very porous, though it has not any cavity in it, different from the wood of other trees; for, from the root, we muft conc'ude, that the tree itfelf is of the like formation.

And in this root, I perceived fome wonderfully minnte veffels, furrounding, as it in were, many places, the larger tubes of the wood, and through which, as I fuppofe, the tree receives nourifhment in its growth.

In order, as exaćtly as poffible, to exhibit to view the wood, or rather the root of the Nutmeg-tree, which bears fuch a precious and highly valued fruit, I have given the figure of a circle, which we muft fuppofe to be a branch of the tree, or of its root, fawed off tranfverfely, as is to be feen at fig. 4, A BCDEF. From the center of this figure are clawn many very fmall lines, as appears between CDF $A$, and thefe we are to fuppofe are thofe vellels which ferve for the increafe of the tree or root, and, by means of which, there is every year a new fubftance formed about the tree, as I have often heretofore mentioned.

Now, in order to inveftigate accurately, the true formation of this wood, we muft not examine merely the extremity of it, which would prefent an obfcure object to the cye, but we muft cut off a fmall piece or particle of the wood, as from E to the circumference, after we have, with a very thin and fharp knife, cut or pared the extremity as fmooth as poffible. In this manner I cut of a piece or particle of the wood, not fo large as is thewn at fig. 5. This piece of wood, placed before the microfcope, and copied as exactly as the limner was able to reprefent it in his drawing, is fhewn at fig. 6, ABCDEFGH, and in it are to be feen, many of the veffels or tubes of which the wood confifts, fome of the larger ones of which, I have exhibited at I, I, I.

Among thefe larger tubes of the wood are to be feen a great number of fmaller ones, and many of thefe fmaller tubes are again furrounded by other exceffively minute veffels, through which latter veffels, for the moft part, the nowrifhment is conveyed upwards in the tree, as I fuppofe.

But, as thefe fimaller veffels, which are plainly to be feen by the microfcope, cannot, by reafon of their minutenefs be well expreffed in a drawing, unlefs ftill more enlarged, I ufed a microfcope of greater magnifying power, and cauled a fmall portion of the wood which in fig. 6 , is fituated between the two larger veffels, K and L , to be drawn lomewhat larger than it appeared through the microfoope before which it was placed, and this is thewn in fig. 7. ABCD.

This piece of wood was fo cut, that all the horizontal veffels were exactly divided, and I could plainly perceive them, whether 1 viewed the object upwards or downwards ; and I further faw, that where the horizontal veflels lay, there the lirger tubes of the wood were fituated, as appears in this figure at $A B$, and $D C$, which is where the horizontal velfels were fituated.

In fig. 6, are alfo thewn, the horizontal veffels which take their courfe among the perpendicular veffels or tubes of the wood, but, as all the afcending veffels or tubes are cut tranfverfely, fo that their cavities become confpicuotis, on the contrary, the horizontal veffels, by this manner of cutting, preferve their fhape as near as may be. In this figure there appear more of thefe laft veffels about the parts marked A and B, than about G, or between G and F ; the reaton of which is, that in fplitting the wood, the knife did not pafs in lo flraight a direction along thole veffels as I wifhed: for the fame reafon thefe horizontal veffels appear in greater numbers at E , or between E and F , than about C .

In thefe horizontal veffels may be feen a red and yellowilh fubfance, fimilar to the oily matter in the Nutmeg, and the young plant it contains, fo that the horizontal reffels are of a reddifh colour.

Farther, I determined to cut thefe horizontal vefiels, each of which can be diftinctly feen, and which generally lie three, or at the moft, four together in rows, in an oblique mamer, fo as to exhibit their cavities to vicw. A fmall particle of the wood reprefented at fig. A, O o

ABCDF , fplit lengthwife, at the part marked DF. I placed beforea microfoope, and this very thin particle, fo fiplit off, is hewn at ffg. S, PQRS, in which appear cight diftinct places, where the horizontal vefiels are cut in this oblique manner, as may be feen by the cavities in many of them, a part of which is fhewn at $Q$.

The perpendicular afcending velfees, fig. 8, PS, or QR, are thofe finall veffels, which in fog. 6 , between K and L are thewn cut obliquely.

Moreover, I fplit this branch of wood in the middle, as the line A B C in fig. 4 denotes, and from the piece fo fplit, I cut a fimall particle, dividing the horizontal veffels longitudinally. This particle of wood is reprefented at fig. 9, TVIV X Y ZA B, where T V, and Y Z, are the afcending veffels, and the horizontal veffels which crofs them, are fhewn at W X and AB : and in, and anong thefe horizontal veffels we faw various minute globules, which the limmer, as nearly as he was able, imitated in the drawing.

In my obfervations on this wood, I faw four feveral kinds of woody tubes, befides other fimaller ones, which, by reafon of their minutenel's, as I judged, could not be diffinctly feen; but thofe which could be diffinguifhed I caufed to be drawn.
Fig. 10, C D, reprefents a tube of the wood partly compofed of annular parts, like a wire wound romnd a pin; and, next this a tuibe formed in a different muner, feeming to confift of a pellucid membrane, covered with many fimall dots or fpecks, which in feveral places were contiguous to each other; this tube is reprefented in fgr. : 0 , at EF.

Fig. t1, G H, reprefents a third tube of the wood. covered with: finaller fpecks or clots. but, what is more remarkable, it contains in this fmall fpace five joints, very much like thofe of which fleww is compofed : two of thefe joints are reprefented at $\mathcal{G}$ and H .
I endeavoured alfo, if poffible, to difcoter the fermation of the larger tubes, fhewn in fig. $G$, at $\mathrm{I}, \mathrm{I}, \mathrm{K}, \mathrm{L}$, and whie 1 was thus
employed, it appeared to me, that the tranfparent membrane confitutiug the thbe, was compofed of veffels taking their courfe round about the tube.

To make proof of this, I tore fome of thefe tubes of the wood afunder longitudinally, when I perceived, that where torn, they were very much indented or jagged, whence I concluded, that however tranfparent they might appear to me, they were yet compofed of a great number of relfels lying in a circular direction.

Fig. 12, I K, reprefents a part of one of thofe larger tubes fo torn and jagged, which is very clofely united to the adjoining finall veffel at LM in the fame figure, and from which, as I think, this larger tube received nowifhment in its growth, and the rather becaufe, though the membrane or coat of this tube appeared tranfparent, yet it plainly appeared, that the membrane was compofed of minute veffels, which appeared to derive their origin from that fmall veffel.

I then proceeded to examine thefe larger tubes of the wood, with all the accuracy I was able, and I was well affured, that I fave the membrane compofing them to be made of veffels like ftreaks croffing each other at right angles; a particle of this membrane is fhewa infg. 12, at LNOI, where the veffels or ftreaks from I to N and from L to O mutually crofs each other, by which means this thin fubfance is ftrengthened; and who can tell how many, and what various parts fuch a tube of the wood may contain?

I think I have formerly faid, refpecting the veins in the leares of trees, that they are of a fpiral twifted form, like that reprefented in firs 10 at CD ; and allo, that the fring by which many nuts (as the filberd, almond, \&ic.) have nourifhment conveyed to them through the hard finells, confifts of many veffels of the like kind, and upon recollecting this I determined, as far as I was able, to difees the youmg plant I had taken out of the Nutmeg, to fie whether the veffels reprefented in fig. 10. at CD and which are in great numbers in the wood, could allo be found in the young plant.

For this purpofe, I firft examined the leaf of the young plant, in that part where it was fo thick as to be opake, and immediately I faw in it three diftinct velfels of the like fpiral or twifted form, as I have before mentioned to have feen in the root. This enquiry I profecuted as far as the extremity of the leaf, where I faw a finall veflel of the like kind, and fo diftinctly, that I could count every fingle fold or fpiral turning in it.

Since it now appears plain to us, that provident Nature forms all the veffels of this tree in fo perfect a manmer, that the fmall ones in a young plant in the feed, are as plainly to be feen as thofe in the wood at full growth, which we may juftly conclude is the cafe in all. feeds, however minute ; we are not to wonder that the fmalleft of any animal which we view by the microfoope, is as completely provided. with all its parts as when it is grown larger. In a word, the farther we endeavour to dive into the hidden works of Nature, the more wo ought to be convinced, that we never can arrive at her fartheft receffes, though many perfons, when making ufe of a good microfcope, weakly fuppofe, that nothing is out of the reach of their obfervation.


On damaged Mace, commonly called white Mace; the caufe from zulence this defect arifes, ghewn to be an infect which feeds on the internal parts of the Mace, with a particular defcription of that infect; and fome farther account of the Nutmeg.
UPON hearing formerly, mention made of that fort of Mace which is denominated white Nace, I merely thought, that it was not fo good either in flavour or virtue as the reddifh-coloured Mace, and the rather, as I long ago heard that a certain phyfician had the art to give the white Mace the fame colour as the beft; but laving been fince informed that this white Mace had fo little virtue, that it was forted from the reft and burnt, and hearing that its inferiority was fuppofed to proceed from fome defect or want of nourifhment in the growth of the plant, I had a great defire to examine the nature of this white Mace.

On converfing upon this fubject with one of the Directors of our Eaft India Company, he informed me of the time when the officers at the Company's warehoufe, were employed to fort out the white Mace, and gave me permiffion to go to the warehoufe and fatisfy my curiofity in this refpect. I accordingly attended at the warehoufe, and perceived, not without furprize, that the white Mace was compofed of nothing but thin membranes or fkins, and I alfo obferved a kind of webs, which I concluded had been fpur by fome infect, which webs were fixed to fome of the Mace, not only the found, but alfo the damaged. I brought home with me eight or ten of thefe webs, and found them to be covered in parr
with certain oblong black particles, which I concluded to be the excrements of the maggots, by which thofe webs had heen fpun: in feveral of thefe wels, I alfo faw certain particles which feemed to be the fragments of aurelias, from which fome fpecies of fiying infect had proceeded, and, as in one of thete webs I perceived feremal minute feathers, very much like thofe found on the wings of mothis, Ifurther concluded, that the flying infects which proceeded from thele webs muft bear fome refemblance to the moths in this country.

In order to fatisfy my felf further, I went the next day to the Coms pany's warehoufe, and fpent a whole hour with fome of the officers in learch of thefe webs, and at the fame time, the officers gave me a leaf or piece of Mace very much flrivelled, in which was the apzperance of a web, and on opening the leaf, I found in it a white flying infect, (which was not only dead, but had loft fome of its legs,) in thape and fize not unlike thofe white moths that are found in granaries, and from whole eggs proceeds the maggot called the wolf, $*$ though I judged this infect to be of a different fpecies. Upon my seturn home, I examined all the webs I had found, and in fereral of them, difcovered the fkins or cafes of aurelias, from which flying infects had procecded, and in two of them, the infeas themfelves; I alfo found one perfect cryfalis, and in it the infect dead ; and upon attentively examining this cryfalis, I plainly perceived that it was exactly of the fame fhape and nature with all the other flins of aurelias which I had found. I caufed a drawing to be made of this aurclia or ery falis of the fame fize it appeared to the naked eve; this is flewn at figure $19, A B$, in which the refemblance is taken as accurately as the limner could imitate it in his cirawing.

Fig. 14, CD reprefents the flying infect which proceeded from one of thefe aurelias; the wings of which, would I believe, have appeared longer than here reprefented, had not the animal while

[^45]flruggling to get out from amongtt the Mace where it was enclofed, broken off part of them, in which firuggle alfo, I fancy it had been killed.

After this, I applied myfelf to examine the white Mace, as it is called, a parcel of which I had brought home with me; and I immediatcly perceived that all the matter or fubfance which had been enclofed between the membranes compofing the outward furface of the Mace, was confumed or eaten away. This fubftance, which for the moft part, confifs of oily globules; in which the whole virtue of the Mace confifts, being fo fripped from thofe membranes (of which membranes, the leaves of all plants, however fmall they be, are compofed, and whereby the internal moiflure of the leaf is kept from evaporation) nothing remains but the thin membranes themfelves, conffing of wonderfully minute reffels, lying lengthwife in the leaf, which altogether exhibit a white appearance: hence thefe leaves are called white leaves, or white flowers of Mace, whereas, in fact they are nothing but the very thin membranes of thofe leaves.
I found, on the infide of thefe membranes, various oblong particles pointed at the ends, and fome of them traniparent; thefe I concluded to be the excrements of the maggots I have mentioned, and to have been voided by them at different periods of their growth, becaufe, though of different fizes, thele particles were all of the fame flape. Farther, I obferved fome of the broader leaves of Nace to be fo eaten away, that only one of the menbranes remained, and having in vain fought among them for any animalcule, I thew them all away.

After this, I procured a frefh fupply of the white leaves of Mace, not doubting that I fhould find fome dead animals among them. At length, alter a long fearch, I found a fmall white particle, not larger than a grain of fand, which, examining by the microfcope, I found to be an animalculc, the hind fart of whofe body was tranf-
parent and oblong, but the fore part was covered with fome extraneous matter, which endeavouring to wipe away, I broke it off from the hind part.

I was, however, herely induced to make a further fearch, not doubting, that I flould find fome of thefe infects of a large fize, but I could not difcover any of them among the leaves whole membranes were entirely ftripped of their contents; whence I concluded, that the maggots, when grown large, had either quitted the leaves or undergone a change in their form, whereupon I fat about examining thofe white leaves which lay next the others that were found, as alfo thofe leaves which were in great part, but not wholly, confumed; fix or feven of which I had brought with me; and among thele, I found a few animalcules of the lame flape with the one I laft mentioned ; thefe were not only larger than the former, but their bodies were of a reddifl colour, and I judged that this colour proceeded from their feeding on the oily matter, of which the Mace, for the greateft part confifts, and that the former tranfparent animal had died before it had fed on that coloured fubfance.

At fig. 15, is thewn one of the le maggots, of the fame fize as it appeared to the naked eye ; this was one of the largeft that I had met with in my learch.

The difoovery of thefe maggots very much excited my admiration, becaufe I had never feen any thing like them in the Nutmeg, and the more, becaufe thefe maggots feed and fubfift on the oil in the Mace, of which oil the Nutmess are alfo in part compofed. But the reafon why thofe animalcules, which feek their food in the Nutmers are not found in the Mace, is, in my opinion this, that thofe which devour the Nutmeg avoid thic oily matter it contains and only feed on thofe parts of the nut where there is little or none of that oil.

Having thus difcovered the maggots (defcribed in fig. 16,) which feed on that thin matter or fubfance found within the membranes of
the Mace, and which afterwards quit the Mace, leaving the mem. branes themfelves unhurt, except in that part where they firft gained admittance ; I caufed a drawing to be made of lome of thefe Mace leaves, a part of which is of that fort called white Mace.

Fig. 16, A B K C DE, exhibits part of a leaf of Mace, and in this figure, between EF G and H, may be feen the ftripes of the leaf, which are engraved with very light touches, fo as to give the appearance of white ; thele are the parts called white Mace, and from them the oily fubftance is all confumed, learing only the bare membranes. Now, if this whitenefs had been caufed by the want of nourifhment in the plant, then the extremities of the leaves at C or D , would have been white alfo, whercas, on the contrary, they were of the proper colour, and of a good flavour, by reafon that the maggots had not eaten away the oil from within the membranes farther than where the leaves appeared white.

Lower down, in the figure, between G and H , may be feen a imall hole made in the membrane of the leaf, which I conclude, was bitten by the maggot, to open for itfelf a paffage into the leaf, and the rather, becaufe the thin membranes in this part of the leaf were entirely unhurt, nor did there appear any perforation in them, except in the before mentioned place towards A B. And, if we confider the narrownefs of the cavity in thefe white leaves, where the oil is eaten away, we may conclude, that it muft have been an exceeding minute creature which could turn itfelf about in fo fmall a fpace, and then procure its fubfiftence; and, between the membranes in this part of the leaf, I found nothing, except the excrements of the maggot.

When I was endeavouring, fome time fince, to difcover the young plant in the Nutmeg, I alfo tried to find out, in what manner the nut, while inclofed in its fhell, received nourifhment from the tree; and for that purpofe, I took a Nutmeg which was preferved in fugar,
and diffected it, but, as the fyrup had penetrated into the infide of the nut and was there candied, my fearch was at that time fruitiefs; however, during my prefent inquiry, the forters of fpices prefented me with fix or eight Nutmegs, which they had found among the Mace, which, with their original hufks, and the Mace inclofing them, altogether fomewhat bigger than large hazel nuts; and alfo two of the fame, fomewhat larger.

Upon examining thefe nuts attentively, I perceived, that the fkin which covers the hard bark or fhell of the Nutmeg, was perforated in forne places among the Mace, though the Mace leaves themfelves were unhurt ; hence I judged, that this perforation was the work of thofe maggots, or animalcules which I have in another place mentioned, as feeding on thofe parts of the Nutmeg wherein there is none of the oily matter compofing the Mace, on which oil they cannot fubfift.

I viewed the Mace which inclofed thefe Nutmegs by the microfcope, and found it to be covered with many dried bodies of mites, but in all my fearch, I could not difcover any living mite, whence I concluded, that the packages inclofing thefe Nutmegs, had been ftowed in a part of the thip near the bread-room, and, upon enquiry, I found that this had actually been the cafe; fo that I doubt not, thefe mites, which multiply in vaft numbers among the bread, had been killed, when the packages of Nutmegs and Mace were fowed there: and this confirms what I have, in another place mentioned, that the vapour of Nutmegs is mortal to thofe creatures.

Farther, upon examining thefe Nutmegs, and the leaves of Mace inclofing them, I obferved in feveral of them, that, at the part where they receive their nourifhment from the tree, they were perforated with a fmall round hole, penetrating into the nut itfelf, the Mace for the moft part appearing untouched; and this was done where the bark of the nut was the fofteft: in one of thefe holes I found a

## ( 805 )

dead flying infect, of the fame fpecies with thore, many of which I have mentioned to have found in the Nutmeg. Upon breaking open one of thefe nuts, I faw, that all the internal whitifh fubftance of it, where there had been little of the oil, was eaten away, and nothing left in the cavity except the excrements of the maggot, and the web it had fpun while in that place ; but, as I did not find any hhin or remnant of an aurelia, I judged that the maggot, not finding a fufficient quantity of fuftenance in this nut, had quitted it before it arrived at its full growth. On this occafion, I could not but admire the inftinct which teaches thefe infects to perforate the hard thell of the Nutmegs, and for that purpofe, to find out that part in it which is fofter than the reft; for this I found to be the cafe not merely in one or two inftances, but in as many as ten Nutmegs, I obferved the fame.

Fig. 17, L MN, reprefents the Nutmeg inclofed in its fhell, and covered with the leaves of Mace, but which coverings are, in India ftripped off while frefh and green. All thefe receive their growth and increafe through the part between L and M , which is the place where the nut adjoins to the tree; and I at firft thought, that the Nutmeg was nourifhed from its fhell or bark, as I had obferved was the cafe with the walnut; but upon a more careful inveftigation, and after cutting open the flell with a fine faw, I found, that I had been miftaken herein, for I could not difcover any thing at the part marked L M, which had the appearance of having tranfinitted nourilhment to the fruit. I foon, however, perceived two places adjoining to each other, one, as I concluded, for the nourifhment of the bark, and the other of the nut itfelf ; and, on further fearching, I faw, that the veffels deftined for this purpofe, did not immediately enter the mut at that point; as I had obferved in filberts, almonds, and other feeds, but that the veffels in this mut take a courfe from M in fig .17 to the point of the nut at N , and there pafs through the Ppa

## ( 306 )

fhell, and by this means, the nut receives its nourifhment ; for it is not united to its fhell in any other place.

To exhibit this to the eye, I caufed a drawing to be made of the bark or fhell containing the Nutmeg, after the leaves of Mace had been ftripped off, and having alfo firft loofened from it the ftring through the veffels in which nourifhment is conveyed, leaving only the ftring affised to the part where it enters through the bark, to fhew more plainly the place where the nut receives its nourifhment.

Fig. 18, O PQ, reprefents the bark or fhell wherein the Nutmeg is inclofed; QR , is the ftring, confinting of multitudes of veffels which convey nourifhment to the nut; $O$ and $Q$ exhibit the furrow or creafe wherein the ftring lay before it was pulled out. This ftring I cut into very thin flices, fome of which I placed before the microfcope, that I might the better difcern the great number of veffels in them, of which I caufed a drawing to be made, as nearly as they could be diftinguifhed and reprefented. This is thewn in fg. 19, ABCDE, being one of the flices I have mentioned, cut obliquely, and magnified.

Now, if we contemplate the incredible number of veffels in fo fmall a ftring, (for that which in fig. 18 is fhewn at Q , is, in reality twice the fize of the real ftring, becaufe I did not firip it of the fkin which covered it, left I fhould injure the veffels it contained) befides thofe which the fight cannot reach, we muft conclude, and be affured, that there is not a veffel in a full grown Nutmeg tree, for whatever ufe it may be deftined, but there is a fimilar one in this ftring; otherwife it could not communicate to the young plant in the Nutmeg, all the vefiels requifite for the formation of the future tree and fruit.

In a word, the inconccivable perfections which are contained in thefe firings of plants, and confequently in every feed, are to us incomprehenfible, and, fill more, infcrutable.

## ( 307 )

Moreover, I have given a drawing of the bark or fhell of the Nutmeg, when broken in two, having firft ftuck a pin into the place through which the ftring, which I have been defcribing paffes, in order more plainly to fhew the nature of it. This is reprefented at fig. so, S T V, in which figure, W X is the pin, marking the place through which the flring paffed, and at Y is a kind of protuberance on the infide of the fhell; in the nut itfelf is a cavity correfponding with it, and above this cavity, is the place where the ftring is united to the nut; but the ftrings are almoft always broken from the Nutmegs before they arrive in Europe, becaufe the nuts in drying, or by the evaporation of their moifture, become fmaller, whereas the hard flell dries and fhrinks little or nothing, fo that the nut getting loofe within, does, by its weight break off the firing, and, when fhaken in the fhell may be heard to rattle.

At fig. 21, T G H, is a drawing of a piece of the fhell at that end next the tree, and at K is the romd hole I have mentioned, in one of which holes, I found a flying infect : in this figure alfo, that part of the ftring conveying the nourifhment to the nut, and which here, is joined to the tree, is flewn at I KL: this fhell being removed, I found that the animal had penetrated into the nut as I have before obferved.

Fig. 22, M N O, reprefents the nut itfelf, in which the above mentioned fmall hole, is fhewn between Pand $Q$ : at this place, the young plant is fituated in the nut, and here alfo, as far as I have ever obferved, the infects penctrate the muts becaufe it is the fofteft part of the fruit, and contains the leaft of the oil.

Since we now fee, that thefe creatures, not only when maggots, but alfo when changed into flying infects, feed on thofe parts of the nut where the oil leaf abounds, we may readily conclude that, however minute, they are very pernicious to Nutmegs. In the ftate of flying infects, however, they are not, in my opinion, fo hurtful on
account of their feeding on the Nutneg, as by laying their eggs, the maggots proceeding from which, muft be exceedingly pernicious, becaufe they acquire their whole growth within the nut.

I ann perfuaded, that if the timber and wood in warehoufes was painted with the common red paint ufed in this comntry, the fpices might be preferved from many noxious infects, becaufe the particles of that paint, though ground very fine, are of fo hard a nature, that no fimall infećt can penctrate them. And if the wood is obferved to be perforated with many worm-holes, the painting fhould be repeated until all thofe holes are fopped up with it.

It may be faid indeed, that Nutmegs and Mace are kept but a fhort time in the warehoufes, and therefore not liable to be much injured; but in that floort time, and while expofed to dry, they may be infected by thefe flying infects laying their eggs among them; and it is well known, that many of thefe creatures lay many eggs in a very little time. Indeed, if Nutmegs and Mace are kept in large heaps in the warchoufes, I believe that only the furface of them might be expofed to injury, becaufe the infects cannot penetrate far into the heaps to lay their eggs, and therefore the middle of thefe heaps may be minjured.

But thefe matters are all conjecture, and, as it were, riddles to us at this diftance, refpecting which, thofe who are employed upon the fpot, in collecting or drying the fpices, could give much better information, if they were perfons of intelligence and oblervation.

To return to the infects which I found among the Mace; I was doubtful how to purfue my enquiry refpecting the generation of thele creatures, and the rather, becaufe thofe which I found, were not only dead, but their bodies very much dried, for, had they been living, I doubt not, that I fhould eafily liave difcovered the manner in which their fpecies is propagated.

At length, upon confidering the fhape and make of thefe mag-
gots, and, having feen by the microfcope, that their hodies are formed with creafes or rings, it occurred to me, that they were of that fort which do not bring forth young ones while in that ftate, but, like catterpiilars, feveral kinds of maggots, and alfo fleas, change into aurelias, and thefe again into flying or creeping infects, and in that ftate couple and lay eggs.

Now, as 1 had found thefe maggots among the fkins of the Mace, I concluded, that when their change approaches, it is in their nature to abandon the leaves : and, as in my former fearch i had found a cryfalis, which I concluded had been changed from one of thefe maggots, inclofed in its fleell or covering, I went a third time to the India Company's warehoufe, and caufed a confiderable quantity of the white Mace to be put into a fieve and fifted, in expectation, that among the finer parts, which paffed through the fieve, I mould find feveral infects that had gone through their change.

By this means, I obtained two handfuls of fmall matter or duft, mixed with many minute particles of Mace, but I perceived, that the greater part confifted of the excrements of infects; I alfo took a handful of duft, fifted from a parcel of Mace, before the officers had forted the damaged from the found: on my return, I carefully examined the whole, and found in it, at leaft one hundred dead animals, which I concluded had been produced from the before mentioned maggots, I alfo found two flying infects of the fame fort with the fe which I had obferved in the Nutmeg; likewile the Ikins of two aurelias, and one of thofe creatures called a weevil, but which, as well as the reft, was dead. Such of thefe animals as had been produced by tranfmutation, were all of the like make, and almoft of the fame fize as the full grown maggots, and I judged, that if they had not proceeded from thofe maggots, they would have been of different fizes.

Some of thefe maggots, I placed before different microfcopes,
that I might caufe a drawing to be made of fuch one of them as was the moft perfect, becaufe all that I found were not only dead, but to dried, that the leaft touch would brak their bodies, or at leaft their fect.

I have already giren at fig. 15, a drawing of one of the fe maggots, of the natural fize; Fig. \& , EFGHIKLMNO, reprefents the lame maggot as feen through the microfcope: the body of this creature is formed with many joints or rings, alfo with fix finall feet, furnifhed with curious nails, the extremities of which nails are indented or notched, as fhewn at G and N .

In the lower part of the body of this animal, as well on the belly as on the back, there appears an uncommon number of blood veffels, which, on each fide of the body at HI and ML are the thickeft and largelt, and feem to come from the inner part of the body: thefe blood veffels are divided into various exceedingly minute branches, feveral of which, procceding from H to M , and from M to H there meet, and are again mited, which not only appears in the branches about H and M , but alfo through the whole body, though the limner could not reprefent them all.

In the head of this creature, fo many organs appeared, that they could not all be copied in the drawing.

At O and F are reprefented, two prettily fhaped horns, made with joints, and covered with hairs: at E is the mouth, or rather two teeth, fomething like pincers, with which the maggot, as I judge bites into the leaves of the Nutmeg on which it feeds, and fcrapes off the fubftance they contain; within the fkin at P P are two other organs with which the head of this maggot is furnifhed.

I know very well, that thefe fmall animals are called bloodlefs, a name given to them by thofe, who, I fuppofe could not difcover either the blood or the blood veffels, but this miftake I attribute only to their want of better information.

Now, as all caterpillars, magrots, and other finall animals when changed into flying infects do fill preferve the fame fort of creafes, rings, or divifions, which they originally had, fo I perceived in the flying animal, produced from thefe maggots, the fame kind of rings or divifions, but thefe did not become confpicuous till the two fhells, or cafes which covered the hind part of the body were removed: under thefe cafes lie two exceeding finall wings folded together, and by reafon of their being longer than the body, doubled up: fo that it feems probable to me, that thefe creatures are formed in the fame manner as infects of the beetle kind, with regard to their wings, and the cafes that cover them.

If we reflect on the nature of thofe flying animals, whofe wings are thus folded up and covered with fhields or cafes, and who are deftined to feek their food in liard fubftances, fuch as wood, nuts, and the like, or who are hatched in the earth, we thall fee the neceffity of their wings being formed in that manner, for if the wings were not longer than the hind parts of their bodies, they would be too fmall for Hight, and if not defended by the cafes or flields, they would be liable, when the animals are creeping into holes either in the earth or in the hard fubftances on which they feed, to be fo broken or injured, as to be unfit for the purpofe of bearing them through the air.

Thefe animals, even after they are converted into flying infêts, do, in my opinion, take food, contrary to what is obferved in the moths or butterflies produced from filk.worms and caterpillars, for I obferved, that fome of thefe were of a bright and others of a dark red, the former of which, I fuppofe, had not been long changed, and therefore had not taken fo much food as the latter.

I have often thought, that perhaps, thele kinds of animals may feed upon wood, but, that when they get among Mace, which is of

## ( 312 )

a much fofter nature, they may then multiply much fafter than thofe which breed in wood, and efpecially in the harder forts.

I placed one of thefe creatures, changed from the maggot into a flying infect, before the microfcope, and having removed the fhiclds or cafes of its wings a little afide, in like manner as if the animal was living and about to take its flight, I beheld fo wonderful a piece of workmanfhip, wrought with fuch curious art, that I determined to have a drawing made of it, though it was impolfible to delineate all the wonders that were difplayed in this minute animal.
Fig. थ\&, ABCDEFGHIKL, exhibits this flying animal, which appeared longer than the maggot from which it was produced, the reafon of which I take to be, that the bodies of thefe maggots being very foft, they contract when their moifture evaporates, whereas when changed into flying animals their bodies are hard on the outfide, and therefore cannot contract.

LM, and BN , are the two horns made with many joints and covered with hairs.

L, B, are the eyes compofed of varions optical organs, though but few in comparifon of thofe which are found in the eyes of dics.

This creature has fix feet, each furnifhed with two curioully made little claws; the legs are made with various joints at the extremities, and are covered with hairs, or rather with pointed particles like thofe on brambles: two of thefe legs with their claws, are fhewn at CO and D P.

At DI and KI are pictured the two fhields, or cafes, with which the animal, when not in the act of flying, can cover the hind part of its body, fo that I conclude, no particles of the wood, or of the Mace, nor any drops of water which may accidentally fall on its body, can injure the wings.

Upon attentively contemplating thefe fhiclds or cafes, I was
aftonifhed at the wonderful and elaborate workmanfhip exhibited in this creature, which appears fo minute to the naked eye, but does, I think, in perfection, far exceed the larger animals we daily behold.

If we advert to the lind part of the body, formed with joints indented in the fame manner as in the maggot, from which, by tranfmutation it was produced, and obferve the multitudes of veins, fattered over it, we muft more and more be confounded at fuch great perfection in fo minute a creature.

In like manner in the wings, we fee many veffels and finews, which finews ferve to expand and frengthen them ; likewife many pointed particles or hairs, with which the membranes of the wings are covered : it is alfo worthy of obfervation, how the wings are folded and doubled up, both in length and breadth (which is fhewn between G and H , as nearly as the limner could imitate it) in order that they may be entirely covered by the cafes; befides which, this animal is provided with another exceedingly minute wing on each ficle. Let us alfo confider, with what inconceivably minute finews or mufcles thefe wings muit be provided, in order that the animal, when it prepares for fight, may unfold them both in length and breadth ; and how the joints and finews muft be contrived, fo to ftrengthen the wings when unfolded, that by their fivift vibrations, the animal may fhape its courfe through the air.

In order, more clearly, to give an idea of the foldings in thefe wings, I took one of them from under its cafe, and placed it, together with the finew or mufcle which adhered to it, before a microfcone, directing the limner to make a drawing of it, and alfo of the finew, whereby the wing is unfolded and put in motion.

Fis. 25, QSVWXY, reprefents this wing according to its pofition when covered by the cafe or thell ; V , is the broadeft part of the wing, and this part lay either under or above the correfponding Q q 9
wing. () R is the mufcular part, by means of which, not only the wing is put in motion, but doubtlefs many leffer mufeles are derived from this, by means of which, that part of the wing at $1 \mathrm{X} X \mathrm{Y}$ is extended in ength, and the part at Y Q expanded in breadth: at $S T$ is the minlite wing I mentioned above.

When we duly confider this moft perfect workmanfhip of the Divine Artift, we muft confels, that thofe things which we difcover by our microfcopes and induftry, are but as the fhadow of thofe which hitherto remain concealed from us, not only in fuch fmall animals as this now under confideration, but alfo in larger animals, and in plants.

It is to be hoped then, that the enquirers into Nature's works, by fearching deeper and deeper into her hiclden myfteries, will more and more place the difcoveries of thofe truths before the eyes of all, fo as to produce an averfion to the errors of former times, which all thofe who love the truth, aught diligently to aim at. For,

We camot in any better manner, glorify the Lord and Creator of the Univerfe, than that, in all things, how fmall foever they appear to our naked eyes, but which yet have received the gift of life, and power of increafe, we contemplate the difplay of his Omnifcience and Perfections with the utmoft admiration.

## END OF THE FIRST VOLUME.



| 0 0 0 0 0 0 0 0 0 0 0 |  |
| :---: | :---: |

[^46]
[^0]:    * The Spectator, in one of his papers on the Plcafures of the Imagination, has a paffage full to the prefent purpefe, which is as follows:
    ' Nothing is more pleafint to the fancy, than to cn'arge itfelf by degrecs, in its contem' plation of the various proportions which its \{everal objects bear to each other, when it com' pares the body of man to the bulk of the whole earth, the earth to the circle it deferibes round ' the fun, that circle to the fpliere of the fixed ftars, the fphere of the fixed fars to the circuit ' of the whole creation, the whole creation iffelf to the infinite fpace that is every where dif-- fufed about it: or when the imagination works downward, and confiders the bulk of a human - body, in refpect of an animal a hundred times lefs than a mite, the particular limbs of fuch ' an animal, the different fprings which atuate the limbe, the fpirits which fet thefe fprings a ' going, and the proportionable minutenefs of thefe feveral parts, before they have arrived at ' their full growth and perfection. But if, after all this, we take the leaft particle of thefe ' animal fpirits, and confider its capacity of being wrought into a world, that faall contain ' within thofe narrow dimenfions a heaven and carth, ftars and planets, and every different 6 Pecies of living ereatures, in the fame analogy and proportion they bear to each other in our

[^1]:    * 'A grain of fand the Author in another phace defcribes to be of that fort callud fcowering ' fand, or glafs-griniers fand.

[^2]:    * • The folid contents of fpheres being in the fame proportion as the cubes of their axes, ' the mathematical demonftration of the Author's pofition is fet down by him thus:-

[^3]:    * Mr. Leeuwenhoek here confiders the hair to be round, as well as the fmall veffels he alludes to, and, fuppofing each of thefe to be cut through or acrofs the middle, the fection would exhibit a circle. Now the areas of circles being in proportion to the fquares of their diameters, the Author's propofition is mathematically demonftrated thus:

[^4]:    * Sy the word vefiels, are to be underfond, throughout this Work, fmall tubes, or pipes, running in different directions, in the fubjects treated of.
    + This figure, which in the original, is only fo many circles, the Tranflator has caufed to be engraved from a picce of Oak of the fize here deferibed; at F is reprefented a knot which was in ti.e tree.

[^5]:    * The circumference of a circle being about three times it's diameter, a tree of four feet in circumference, will be fixteen inches in diameter, and one of a foot in circumfcrence, four inches diameter, the fize reprefented in fig. 1 .

[^6]:    * This fize is reprefented in fig. 6 , at $X$.

[^7]:    * The Author's cxamination of this fubject will appear in the courfe of the work.

[^8]:    * It is well known, that Turpentinc is procured from the Fir, by making a wound or incifion in the Tree, from whence the Turpentine flows in great abundance. This, upon being diftilled produces the firit of Turpentiae, and what remains at the bottom of the fill, is the fublance called Rofin.- Pitch and Tar are obtained by burning large quantities of the kitlets of Fir, either in the open air, covered with fods to prevent evaporation as was the ancient practice, or in ovens conftrueted for that purpofe, as is bic modern methect.

[^9]:    * This fentiment is more fully expreffed and largely dilated on, in the Spectator, No. 420, and many of the reafonings in that Paper feem to have been taken from the difcoveries then newly made by our Author and his cotemporaries.

[^10]:    * To thofe who have not been much converfant in thefe objects, it may feem ftrange that a collection of globules or little balls fhould conftitute but one eye; but fuch readers will be pleafed to underftand, that in moft infects, each eye is formed of a great number of frmaller optical organs, or eyes, and this fubject will be found amply difcuffed in the courfe of this werk.

[^11]:    * That is, in Englifh, "the Wolf." This Infect is not much known in England among the country people, for the Tranlator having procured from an Importer of Corn, a fample of Piufian wheat infected with it, and fhewn it to feveral farmers, the appearance feemed new to them, nor could they affign to the animal any name in Englifh. But to the 1)utch, who have always been great importers and exporters of corn, it feems to have been familiar, and the Author's remarks on this fubject may be well worthy the attention of cur Englifh merchants.

[^12]:    $\therefore$ This opinion is confirmed by D..IFodges, and Dr. Me. ${ }^{1}$, in their Treatifs on the Plergue.

[^13]:    * This figure does not feem taken wih fo much exactnefs as is generally found in thofe given by Mr. Leeuwenhock, therefore the Tranflator has caufed a drawing from one of the maggots when full grown, to be made of the fame fize it appears to the naked eye, and this is to be feen at fig. 12.

[^14]:    * Mr. Leeuwenhoek has not given any figure of thefe animalculce, but they feem to be a fpecies of mite: the tranflator has obferved fome of the like kind in bran.

[^15]:    * That is in Englifh, thoufand legs, the name vulgarly given to this animal; the Dutch call it Duyfent-been, a ward of the fame import.
    + Dr. Meas, in his ceiebrated Efiay on Porfons, when treating of the Spider, expreffed his doubt of this fi.f, by reafon that he could not himef difoover the apcrure, and Mr. Henry Baker, in his Treatife on the Micrefcope, concurred in opinion with the Doctor, that Mr. Lecuwenhek muft have been miftaken in this particuitr. But in another Treatife*, afterwards publifhed by M1. Baker, he informs his readers, that he had at length plainly perceived the aperture, and had hewn the fame to Dr. Mead, who was much pleared with the difoovery. A tefimony this, greaty to the honour of our Author.

[^16]:    * If any reajer mou'd be chif:ofat to try this experiment, he muf mot expeit to fee a red
    
     mas.

[^17]:    cal bodies, which according to the rules of arithmetic, are in the fame proportion to each other as the cubes of their refpective diameters. Thus, if a young Spider's body is a feventh part of the ciameter of a full grown one, the latter will be 343 times the bulk of the former, if an eighth part, 512 times. The proportion here affigued by the author, is nearly the medium between theie two.

[^18]:    * Silk-worms fhed their fins four feveral times, before they begin to $f_{\mathrm{p}} \mathrm{in}$ their cone or covering.

[^19]:    * This appearance feems to have been afterwards more fully inv Atigated by the Author, and cxplained by a drawing, as will appear in the following pages.

[^20]:    * Thefe obfervations of the Author on the Eel appear to have been written pofterior to the time when he publifhed the preceding ones, and it fhould feem, that what he before defcribes to be an appearance like a cobweb adhering to the feales, is the effect of the veffels here defcribed.
    t The author's computation of the fize of a gl.sbule of blood, will be found in another place, where he treats of that fubject.

[^21]:    * That is, in Englifh, a pulling or drawing-leather; it is a common play-thing among boys in England, and is called by thom a fucker.

[^22]:    * This word, "Vcen, " means the Turf or Peat, which is dug up in great quantities in Holland, and is their principal article of fuel. Our author has a very ingenious differtation on the origin of this fubftance, a tranflation of which will be found in its place. - Thefe frefla water Mufcles are found in the rivers in England.

[^23]:    * Later writers contend, that the particles of Blood are not fpherical, as this word imports, but plane, or of a flat fhape; and this Mr. Leeuwenhoek admits to be true with regard to fines. However, the word globules is always ufed to denote the component particles of the circulating fluid.
    + In fome fifhes the Blood is not of a red colour, and alfo in many infets, which have been therefore improperly denominated exfangues, or bloodlefs.

[^24]:    * The author having juft below informed us, that 120 of the boney tubuli make only the forty-fifth part of an inch, we may, by counting the tubuli reprefented in this figure, judge the natural fize of the fragment, or piece of tooth here magnified, and it will be found to be about the fortieth part of an inch in length and the fiftieth part of an inch in breadth, or of the fize fhewn at $X$.

[^25]:    * Mr, Lccuwenhoek, at the time of writing this, was upwards of fifty years of age.

[^26]:    * A reprefentation of this, taken from Dr. Mead's work, is given in Place V. fig. 16.

[^27]:    * This is a literal tranlation of the Dutch word Galnoot, ufed by the Author; in the Latin tranflation it is Galla, which Ainfworth renders 'a fruit called gall, or oak-apple;' but this is a miftake, for the oak-apple is not the gall, nor is it formed on the leaves of the tree, but at the ends of the fmall twigs; and it is produced, not by a fingle infect, but by a great number collected together, and thofe of a different fpecies from the infect found in the gall-nut.

[^28]:    * Water, it is well known, is effential to the growih of plants, neither will they vegetate without a fupply of Air, a fluid eight hundred times licsleter than water; and, it is the opinion of Sir Ifaac Newton, that Light, which is beyond all co:seption more rare and fubtile than air, does enter into the compofition of Bodies.

[^29]:    * Such as that of fuppofing the cohefion of bodies to be caufed hy their particles being formed with little hooks; and, that repulfi n proceeds from other particlos being made like hoops rolled up, and afterwar s expranding themfelves.

[^30]:    * Enquiry into the received not on of Nature. + Mead on the Small Pox, Chap. II.

[^31]:    * Senforium, means the feat of confcioufnefs or perception, in animated Beings; and, when applicd to the Deity, his Omniprefence makes it to be every part of Space.

[^32]:    * Clarke's Demonftration of the Being and Attributes of God.
    + The Ancients pictured Nature in a female form, to denote her fruitfulnefs; and, with many breafts, to typify the abundant provifion made by her for her different productions.

[^33]:    * It muft feem ftrange to us that a creature, originally bred in the water, fhould find a proper receptacle for its life and growth in the warm bowels of an animal; and yet we d.iily fee leeches, which are alfo bred in the water, and perfectly cold themfelves, fuck the warm blood of the human fpecies with an avidity fcarcely to be paralleled. But, as Mr. Lecuwenhoek, in one part of his works obferves, we may wonder at thefe operations of Nature, but admiration, and nothing more, will be the refult of our cogitations.

[^34]:    * Linturn in German, and romnen or runnen in Dutch, mean to curdle; this gives us the true derivation of the word Runnet.

[^35]:    * Mr. Lecuwenhock has not given a figure of this animal.

[^36]:    * This is the root of an American convolvulus, (the ciffampclos Parcira of Linnæus) brought to us from Brazil. 'The reader will find it defcribed in the New Edinburgh Dif-penfatory, being an improvement of Dr. Lewis's.

[^37]:    * This rovt is very m rately defcribed in Dr. Aftruc's Treatif on the Vercea! Diferfe.

[^38]:    * The Tranflator can give a ftrong fimilar inftance, from his own painful experience; for, having met with an accident by which the furface of his eye was injured, the confequence was, for fome hours after the hurt, an appearance of minute, wonderfully bright globules, feeming to whirl round the ball of the eye with a rapidity like lightning; and, for feveral following days, many dark fpecks, in motion before the fight; but all, as Mr. Lecuwenhoek fays, preferving the fame diftance in refpect of each other : one of thefe in particular, appeared in fize, colour, and fhape, much like a common fly, which feemed to be running along the wainfcot of the room, or upon the table.

[^39]:    * This is a literal tranflation of the Latin words gutta ferena, a difear?, by which the patient is deprived of fight, though to a fpectator, the eye does not appear to be injured; becaufe the feat of the diforder is in the optic nerve, and not in the ball of the eye. This was Milton's care.

[^40]:    * The fame appearance is noted by the author, when treating of the young plant ia the Coffee-bean.

[^41]:    * This mof commonly happens in thofe Quills which have not been, what is called clarified, or when the Quill is fplit near the feather; this jagged Mape of the fplit is will knuwa to fhoo! boys, and is denominated by them, cats tecth.

[^42]:    * Hooke's Micrographia, p. 165, Edit. 1667.

[^43]:    * Plate IX. fire 16.

    M 11 e

[^44]:    * This valuable fruit or fpice, which, in Englifh, is called by the fingle word Nutmeg, is in Dutch denominated Noot Mufcaat, herein agreeing with the botanical Latin name Nux mofchata, the Muß-nut; it is alfo denominated Nux myriftica, the odoriferous or fweetfmelling nut.

[^45]:    * The defeription of this infect is to be feen at page 25.

[^46]:    经O
    
    

